content
stringlengths
35
762k
sha1
stringlengths
40
40
id
int64
0
3.66M
def pe(cmd, shell=True): """ Print and execute command on system """ ret = [] for line in execute(cmd, shell=shell): ret.append(line) print(line, end="") return ret
0a238be68a7c383153834d45fbf3193f9b8c9a72
13,957
def crop(image): """ Method to crop out the uncessary white parts of the image. Inputs: image (numpy array): Numpy array of the image label. Outputs: image (numpy array): Numpy array of the image label, cropped. """ image = ImageOps.invert(image) imageBox = image.getbbox() image = image.crop(imageBox) return ImageOps.invert(image)
37a12733bcda66a9da16d72ff3fae749784481a0
13,959
def all_pairs_normalized_distances(X): """ We can't really compute distances over incomplete data since rows are missing different numbers of entries. The next best thing is the mean squared difference between two vectors (a normalized distance), which gets computed only over the columns that two vectors have in common. If two vectors have no features in common then their distance is infinity. Parameters ---------- X : np.ndarray Data matrix of shape (n_samples, n_features) with missing entries marked using np.nan Returns a (n_samples, n_samples) matrix of pairwise normalized distances. """ n_rows, n_cols = X.shape # matrix of mean squared difference between between samples D = np.ones((n_rows, n_rows), dtype="float32", order="C") * np.inf # we can cheaply determine the number of columns that two rows share # by taking the dot product between their finite masks observed_elements = np.isfinite(X).astype(int) n_shared_features_for_pairs_of_rows = np.dot( observed_elements, observed_elements.T) no_overlapping_features_rows = n_shared_features_for_pairs_of_rows == 0 number_incomparable_rows = no_overlapping_features_rows.sum(axis=1) row_overlaps_every_other_row = (number_incomparable_rows == 0) row_overlaps_no_other_rows = number_incomparable_rows == n_rows valid_rows_mask = ~row_overlaps_no_other_rows valid_row_indices = np.where(valid_rows_mask)[0] # preallocate all the arrays that we would otherwise create in the # following loop and pass them as "out" parameters to NumPy ufuncs diffs = np.zeros_like(X) missing_differences = np.zeros_like(diffs, dtype=bool) valid_rows = np.zeros(n_rows, dtype=bool) ssd = np.zeros(n_rows, dtype=X.dtype) for i in valid_row_indices: x = X[i, :] np.subtract(X, x.reshape((1, n_cols)), out=diffs) np.isnan(diffs, out=missing_differences) # zero out all NaN's diffs[missing_differences] = 0 # square each difference diffs **= 2 observed_counts_per_row = n_shared_features_for_pairs_of_rows[i] if row_overlaps_every_other_row[i]: # add up all the non-missing squared differences diffs.sum(axis=1, out=D[i, :]) D[i, :] /= observed_counts_per_row else: np.logical_not(no_overlapping_features_rows[i], out=valid_rows) # add up all the non-missing squared differences diffs.sum(axis=1, out=ssd) ssd[valid_rows] /= observed_counts_per_row[valid_rows] D[i, valid_rows] = ssd[valid_rows] return D
c744c6ac87cbd3760d6512178747ac60794d616a
13,960
import torch def forward_pass(model, target_angle, mixed_data, conditioning_label, args): """ Runs the network on the mixed_data with the candidate region given by voice """ target_pos = np.array([ FAR_FIELD_RADIUS * np.cos(target_angle), FAR_FIELD_RADIUS * np.sin(target_angle) ]) data, _ = utils.shift_mixture( torch.tensor(mixed_data).to(args.device), target_pos, args.mic_radius, args.sr) data = data.float().unsqueeze(0) # Batch size is 1 # Normalize input data, means, stds = normalize_input(data) # Run through the model valid_length = model.valid_length(data.shape[-1]) delta = valid_length - data.shape[-1] padded = F.pad(data, (delta // 2, delta - delta // 2)) output_signal = model(padded, conditioning_label) output_signal = center_trim(output_signal, data) output_signal = unnormalize_input(output_signal, means, stds) output_voices = output_signal[:, 0] # batch x n_mics x n_samples output_np = output_voices.detach().cpu().numpy()[0] energy = librosa.feature.rms(output_np).mean() return output_np, energy
e9644b01ea04b08ae92d50d3c7944e0d72213b2b
13,961
import select from typing import Optional from datetime import datetime import pytz async def get_event_by_code(code: str, db: AsyncSession) -> Event: """ Get an event by its code """ statement = select(Event).where(Event.code == code) result = await db.execute(statement) event: Optional[Event] = result.scalars().first() if event is None: raise HTTPException( status_code=HTTPStatus.BAD_REQUEST, detail="invalid attendance code", ) # Check that the code is still valid with tracer.start_as_current_span("check-validity"): now = datetime.now(tz=pytz.utc) if not event.enabled or now < event.valid_from or now > event.valid_until: raise HTTPException(status_code=HTTPStatus.FORBIDDEN, detail="invalid code") return event
592cd6b5aad7b12a98889bf82ea7e32a55b8832e
13,962
def get(name): """Returns an OpDef for a given `name` or None if the lookup fails.""" with _sync_lock: return _registered_ops.get(name)
75e3ba3601f1ad8f67e77046a9b286bee8e60be6
13,963
def angle_detect_dnn(img, adjust=True): """ 文字方向检测 """ h, w = img.shape[:2] ROTATE = [0, 90, 180, 270] if adjust: thesh = 0.05 xmin, ymin, xmax, ymax = int(thesh * w), int(thesh * h), w - int(thesh * w), h - int(thesh * h) img = img[ymin:ymax, xmin:xmax] ##剪切图片边缘 inputBlob = cv2.dnn.blobFromImage(img, scalefactor=1.0, size=(224, 224), swapRB=True, mean=[103.939, 116.779, 123.68], crop=False); angleNet.setInput(inputBlob) pred = angleNet.forward() index = np.argmax(pred, axis=1)[0] return ROTATE[index]
a3fc8513afce26e96a315a606acfd9be9feaa376
13,964
def get_correct_line(df_decisions): """ The passed df has repeated lines for the same file (same chemin_source). We take the most recent one. :param df_decisions: Dataframe of decisions :return: Dataframe without repeated lines (according to the chemin_source column) """ return df_decisions.sort_values('timestamp_modification').drop_duplicates('chemin_source', keep='last')
989f1aba1c5e0c61f8b7ca1c883baf4dd181ebbc
13,965
def fix_1(lst1, lst2): """ Divide all of the elements in `lst1` by each element in `lst2` and return the values in a list. >>> fix_1([1, 2, 3], [0, 1]) [1.0, 2.0, 3.0] >>> fix_1([], []) [] >>> fix_1([10, 20, 30], [0, 10, 10, 0]) [1.0, 2.0, 3.0, 1.0, 2.0, 3.0] """ out = [] for div in lst2: for num in lst1: try: out.append(num / div) # add try-except block except ZeroDivisionError: pass return out
7929cfc19952a829c66c18af967668d1015f8477
13,966
def user_wants_upload(): """ Determines whether or not the user wants to upload the extension :return: boolean """ choice = input("Do you want to upload your extension right now? :") if "y" in choice or "Y" in choice: return True else: return False
67643d1ccf8d1ffe23ddc503cd8e9f4dc4e98707
13,967
def has_genus_flag(df, genus_col="mhm_Genus", bit_col="mhm_HasGenus", inplace=False): """ Creates a bit flag: `mhm_HasGenus` where 1 denotes a recorded Genus and 0 denotes the contrary. Parameters ---------- df : pd.DataFrame A mosquito habitat mapper DataFrame genus_col : str, default="mhm_Genus" The name of the column in the mosquito habitat mapper DataFrame that contains the genus records. bit_col : str, default="mhm_HasGenus" The name of the column which will store the generated HasGenus flag inplace : bool, default=False Whether to return a new DataFrame. If True then no DataFrame copy is not returned and the operation is performed in place. Returns ------- pd.DataFrame A DataFrame with the HasGenus flag. If `inplace=True` it returns None. """ if not inplace: df = df.copy() df[bit_col] = (~pd.isna(df[genus_col].to_numpy())).astype(int) if not inplace: return df
7e178f7570f8de436521047e012518e6f5ee6a72
13,968
from typing import Tuple def compass( size: Tuple[float, float] = (4.0, 2.0), layer: Layer = gf.LAYER.WG, port_type: str = "electrical", ) -> Component: """Rectangular contact pad with centered ports on rectangle edges (north, south, east, and west) Args: size: rectangle size layer: tuple (int, int) port_type: """ c = gf.Component() dx, dy = size points = [ [-dx / 2.0, -dy / 2.0], [-dx / 2.0, dy / 2], [dx / 2, dy / 2], [dx / 2, -dy / 2.0], ] c.add_polygon(points, layer=layer) c.add_port( name="e1", midpoint=[-dx / 2, 0], width=dy, orientation=180, layer=layer, port_type=port_type, ) c.add_port( name="e2", midpoint=[0, dy / 2], width=dx, orientation=90, layer=layer, port_type=port_type, ) c.add_port( name="e3", midpoint=[dx / 2, 0], width=dy, orientation=0, layer=layer, port_type=port_type, ) c.add_port( name="e4", midpoint=[0, -dy / 2], width=dx, orientation=-90, layer=layer, port_type=port_type, ) c.auto_rename_ports() return c
fefa0842958fb91b870eb78e2170a81d7c8daaa9
13,969
def get_service(vm, port): """Return the service for a given port.""" for service in vm.get('suppliedServices', []): if service['portRange'] == port: return service
d617771c25c69ee874b0bc64adcc735aa876f929
13,970
async def async_setup_entry(hass, config_entry): """Set up AirVisual as config entry.""" entry_updates = {} if not config_entry.unique_id: # If the config entry doesn't already have a unique ID, set one: entry_updates["unique_id"] = config_entry.data[CONF_API_KEY] if not config_entry.options: # If the config entry doesn't already have any options set, set defaults: entry_updates["options"] = DEFAULT_OPTIONS if entry_updates: hass.config_entries.async_update_entry(config_entry, **entry_updates) websession = aiohttp_client.async_get_clientsession(hass) hass.data[DOMAIN][DATA_CLIENT][config_entry.entry_id] = AirVisualData( hass, Client(websession, api_key=config_entry.data[CONF_API_KEY]), config_entry ) try: await hass.data[DOMAIN][DATA_CLIENT][config_entry.entry_id].async_update() except InvalidKeyError: _LOGGER.error("Invalid API key provided") raise ConfigEntryNotReady hass.async_create_task( hass.config_entries.async_forward_entry_setup(config_entry, "sensor") ) async def refresh(event_time): """Refresh data from AirVisual.""" await hass.data[DOMAIN][DATA_CLIENT][config_entry.entry_id].async_update() hass.data[DOMAIN][DATA_LISTENER][config_entry.entry_id] = async_track_time_interval( hass, refresh, DEFAULT_SCAN_INTERVAL ) config_entry.add_update_listener(async_update_options) return True
e09b0c8e499a055123a88503cac4d1d1492a3d53
13,971
def rotation_point_cloud(pc): """ Randomly rotate the point clouds to augment the dataset rotation is per shape based along up direction :param pc: B X N X 3 array, original batch of point clouds :return: BxNx3 array, rotated batch of point clouds """ # rotated_data = np.zeros(pc.shape, dtype=np.float32) rotation_angle = np.random.uniform() * 2 * np.pi cosval = np.cos(rotation_angle) sinval = np.sin(rotation_angle) # rotation_matrix = np.array([[cosval, 0, sinval], # [0, 1, 0], # [-sinval, 0, cosval]]) rotation_matrix = np.array([[1, 0, 0], [0, cosval, -sinval], [0, sinval, cosval]]) # rotation_matrix = np.array([[cosval, -sinval, 0], # [sinval, cosval, 0], # [0, 0, 1]]) rotated_data = np.dot(pc.reshape((-1, 3)), rotation_matrix) return rotated_data
f1f84b9dad06bea6c377559d8b4a64be88031847
13,972
import time def alliance_system_oneday(mongohandle, alliance_id, system): """find by corp and system - one day""" allkills = mongohandle.allkills system = int(system) timeframe = 24 * 60 * 60 gmtminus = time.mktime(time.gmtime()) - timeframe cursor = allkills.find({"alliance_id": alliance_id, "solar_system_id": system, "unix_kill_time": { "$gte": gmtminus}}, {"ship": 1, "items": 1, "_id": 0}).hint('alliancesystemtime') (ships, items, ammos) = parsecursor.ships_and_items(cursor) return (ships, items, ammos)
b951f11f606352dc6614e1ff1c587c3a64ed1ea8
13,973
def slit_select(ra, dec, length, width, center_ra=0, center_dec=0, angle=0): """ :param ra: angular coordinate of photon/ray :param dec: angular coordinate of photon/ray :param length: length of slit :param width: width of slit :param center_ra: center of slit :param center_dec: center of slit :param angle: orientation angle of slit, angle=0 corresponds length in RA direction :return: bool, True if photon/ray is within the slit, False otherwise """ ra_ = ra - center_ra dec_ = dec - center_dec x = np.cos(angle) * ra_ + np.sin(angle) * dec_ y = - np.sin(angle) * ra_ + np.cos(angle) * dec_ if abs(x) < length / 2. and abs(y) < width / 2.: return True else: return False
a3047a59bbc8566d261f1d52f92b437ad2b26d52
13,974
def login(): """ Logs in user """ req = flask.request.get_json(force=True) username = req.get('username', None) password = req.get('password', None) user = guard.authenticate(username, password) ret = {'access_token': guard.encode_jwt_token(user)} return ret, 200
b577c7982bf65d3a24cfd3f116f5cb128079cd1f
13,975
def statuses_filter(auth, **params): """ Collect tweets from the twitter statuses_filter api. """ endpoint = "https://stream.twitter.com/1.1/statuses/filter.json" if "follow" in params and isinstance(params["follow"], (list, tuple)): params["follow"] = list_to_csv(params["follow"]) if "track" in params and isinstance(params["track"], (list, tuple)): params["track"] = list_to_csv(params["track"]) params.setdefault("delimited", 0) params.setdefault("stall_warnings", 1) return stream_call(endpoint, auth, params, "post")
e81f85d5c747a4bcca8fc9b3b82d362905404452
13,976
def adjust_hue(image, hue_factor): """Adjusts hue of an image. The image hue is adjusted by converting the image to HSV and cyclically shifting the intensities in the hue channel (H). The image is then converted back to original image mode. `hue_factor` is the amount of shift in H channel and must be in the interval `[-0.5, 0.5]`. Args: image (PIL.Image): PIL Image to be adjusted. hue_factor (float): How much to shift the hue channel. Should be in [-0.5, 0.5]. 0.5 and -0.5 give complete reversal of hue channel in HSV space in positive and negative direction respectively. 0 means no shift. Therefore, both -0.5 and 0.5 will give an image with complementary colors while 0 gives the original image. Returns: PIL.Image: Hue adjusted image. """ if not (-0.5 <= hue_factor <= 0.5): raise ValueError('hue_factor ({}) is not in [-0.5, 0.5].'.format(hue_factor)) dtype = image.dtype image = image.astype(np.uint8) hsv_img = cv2.cvtColor(image, cv2.COLOR_RGB2HSV_FULL) h, s, v = cv2.split(hsv_img) alpha = np.random.uniform(hue_factor, hue_factor) h = h.astype(np.uint8) # uint8 addition take cares of rotation across boundaries with np.errstate(over="ignore"): h += np.uint8(alpha * 255) hsv_img = cv2.merge([h, s, v]) return cv2.cvtColor(hsv_img, cv2.COLOR_HSV2RGB_FULL).astype(dtype)
52390b83a60cc8f23632f198a558b518d687f94e
13,977
import json import requests import time def lambda_handler(event, context): """Sample pure Lambda function Parameters ---------- event: dict, required API Gateway Lambda Proxy Input Format Event doc: https://docs.aws.amazon.com/apigateway/latest/developerguide/set-up-lambda-proxy-integrations.html#api-gateway-simple-proxy-for-lambda-input-format context: object, required Lambda Context runtime methods and attributes Context doc: https://docs.aws.amazon.com/lambda/latest/dg/python-context-object.html Returns ------ API Gateway Lambda Proxy Output Format: dict Return doc: https://docs.aws.amazon.com/apigateway/latest/developerguide/set-up-lambda-proxy-integrations.html """ #print("Received event: " + json.dumps(event, indent=2)) body = json.loads(event['body']) print(f"Body is: {body}") url = body['url'] print(f"Getting image from URL: {url}") response = requests.get(url) print("Load image into memory") img = PILImage.create(BytesIO(response.content)) print("Doing forward pass") start = time.time() pred,pred_idx,probs = learn.predict(img) end = time.time() inference_time = np.round((end - start) * 1000, 2) print(f'class: {pred}, probability: {probs[pred_idx]:.04f}') print(f'Inference time is: {str(inference_time)} ms') return { "statusCode": 200, "body": json.dumps( { "class": pred, "probability": "%.4f" % probs[pred_idx] } ), }
05b5da6e2c2aff16c43a3822978f0cd800370bed
13,978
def compareDict(a, b): """ Compare two definitions removing the unique Ids from the entities """ ignore = ['Id'] _a = [hashDict(dict(x), ignore) for x in a] _b = [hashDict(dict(y), ignore) for y in b] _a.sort() _b.sort() return _a == _b
19f0340064c95584a4e80ecb4a090c25944f6923
13,979
import traceback import time def create_twitter_auth(cf_t): """Function to create a twitter object Args: cf_t is configuration dictionary. Returns: Twitter object. """ # When using twitter stream you must authorize. # these tokens are necessary for user authentication # create twitter API object auth = OAuth(cf_t['access_token'], cf_t['access_token_secret'], cf_t['consumer_key'], cf_t['consumer_secret']) try: # create twitter API object twitter = Twitter(auth = auth) except TwitterHTTPError: traceback.print_exc() time.sleep(cf_t['sleep_interval']) return twitter
0eff78ce2dba182d739cc2bb082d5053a6a8847a
13,980
def _project(doc, projection): """Return new doc with items filtered according to projection.""" def _include_key(key, projection): for k, v in projection.items(): if key == k: if v == 0: return False elif v == 1: return True else: raise ValueError('Projection value must be 0 or 1.') if projection and key != '_id': return False return True return {k: v for k, v in doc.items() if _include_key(k, projection)}
0f2cd190e73b39ceeec0f850054baab1dd357587
13,981
import random def random_swap(words, n): """ Randomly swap two words in the sentence n times Args: words ([type]): [description] n ([type]): [description] Returns: [type]: [description] """ def swap_word(new_words): random_idx_1 = random.randint(0, len(new_words) - 1) random_idx_2 = random_idx_1 counter = 0 while random_idx_2 == random_idx_1: random_idx_2 = random.randint(0, len(new_words) - 1) counter += 1 if counter > 3: return new_words new_words[random_idx_1], new_words[random_idx_2] = ( new_words[random_idx_2], new_words[random_idx_1], ) return new_words new_words = words.copy() for _ in range(n): new_words = swap_word(new_words) return new_words
d6916404c363176f13010d006cd61354dcd4e16e
13,982
def get_dist_for_angles(dict_of_arrays, clusters, roll, pitch, yaw, metric='3d', kind='max'): """ Calculate a single distance metric for a combination of angles """ if (dict_of_arrays['yaw_corr'] == 0).all(): rot_by_boresight = apply_boresight_same(dict_of_arrays, roll, pitch, yaw) else: rot_by_boresight = apply_boresight_yaw_correct(dict_of_arrays, roll, pitch, yaw) rot_to_real_world = rotate_to_real_world(rot_by_boresight) real_wrld_coords = shift_to_real_world(rot_to_real_world) if kind == 'mean': distance = get_mean_3D_distance(real_wrld_coords, clusters, metric) elif kind == 'median': distance = get_median_3D_distance(real_wrld_coords, clusters, metric) else: distance = get_max_3D_distance(real_wrld_coords, clusters, metric) return distance
4db8a68cebc845de942817eb9eb28e57d2db5cc4
13,983
import asyncio async def stream(): """Main streaming loop for PHD""" while True: if phd_client.is_connected and manager.active_connections: response = await phd_client.get_responses() if response is not None: # Add to the websocket queue # If it is the initial data, put in variable if response.get('Event') == 'Version': phd_client.initial_data = response q.put_nowait(response) await asyncio.sleep(STREAM_INTERVAL) return None
19e1934e8cb48fa66f8ab3f61ca013fd19b040fc
13,984
def filter_camera_angle(places, angle=1.): """Filter pointclound by camera angle""" bool_in = np.logical_and((places[:, 1] * angle < places[:, 0]), (-places[:, 1] * angle < places[:, 0])) return places[bool_in]
9956c5b001989c5f64d935087a1e13ffbc6469b7
13,985
def load_nifti(path: str) \ -> tuple[np.ndarray, np.ndarray, nib.nifti1.Nifti1Header]: """ This function loads a nifti image using the nibabel library. """ # Extract image img = nib.load(path) img_aff = img.affine img_hdr = img.header # Extract the actual data in a numpy array data = img.get_fdata() return data, img_aff, img_hdr
9e76e3f6e6d200b3cd3be34b3780f8fe84cad53e
13,986
def f5_list_policy_hostnames_command(client: Client, policy_md5: str) -> CommandResults: """ Get a list of all policy hostnames. Args: client (Client): f5 client. policy_md5 (str): MD5 hash of the policy. """ result = client.list_policy_hostnames(policy_md5) table_name = 'f5 data for listing policy hostname:' readable_output, printable_result = build_command_result(result, table_name) command_results = CommandResults( outputs_prefix='f5.Hostname', outputs_key_field='id', readable_output=readable_output, outputs=printable_result, raw_response=result ) return command_results
38263c85480ba5d7de8a21509820052444b4cdab
13,987
def predict(m, count, s, A): """predict the chain after s calculate the probability of a m-length chain, then return chains. CAUTION the number of chains maybe less then count args: m: the length of predict chain count: the number of predict chain s: the last element of the current chain A: transition matrix return: some chains save in list """ process = [] start = {} start[s] = [1, None] process.append(start) for i in range(m): line = process[-1] next_line = {} for key in line.keys(): if A.get(key, None) is None: continue for k in A[key].keys(): p = next_line.get(k, [0, None])[0] if p < A[key][k] * line[key][0]: next_line[k] = [A[key][k] * line[key][0], key] process.append(next_line) ans = process[-1] # sort according to probability from high to low ans = sorted(ans.iteritems(), key=lambda item: item[1][0], reverse=True) if len(ans) == 0: return None # Can't predict, because of no answer can be find else: count = min(len(ans), count) # the number of ans maybe less than count chains = [] length = len(process) for i in range(count): elem = ans[i][0] chain = get_chain(elem, length-1, process) chains.append(chain[1:]) return chains
f45acc67c97204efdabb48f29d73277fb4b75967
13,988
def f_multidim(anchors, basis, distance_measurements, coeffs): """ :param anchors: anchors dim x N :param basis: basis vectors K x M :param distance_measurements: matrix of squared distances M x N :param coeffs: coefficient matrix dim x K :return: vector of differences between estimate distance and measured distance. """ assert basis.shape[0] == coeffs.shape[1] assert anchors.shape[0] == coeffs.shape[0] assert anchors.shape[1] == distance_measurements.shape[1] assert basis.shape[1] == distance_measurements.shape[0] X = coeffs.dot(basis) # is (dim x M) diff = anchors[:, :, np.newaxis] - X[:, np.newaxis, :] distance_estimates = np.linalg.norm(diff, axis=0)**2 diff = distance_measurements.T - distance_estimates nnz_diffs = diff[distance_measurements.T > 0].flatten() return nnz_diffs
cd9f7fa67e6cbf3cfb5fe14e53b019713c56aa26
13,990
def getHomography(indict, outdict, outsize=None): """Returns a transformation to go from input pts to output pts using a homography. 'indict' and 'outdict' should contain identical keys mapping to 2-tuples. We create A: x1 y1 1 0 0 0 -x1*x1' -y1*x1' 0 0 0 x1 y1 1 -x1*y1' -y1*y1' x2 y2 1 0 0 0 -x2*x2' -y2*x2' 0 0 0 x2 y2 1 -x2*y2' -y2*y2' ... And b: [x1' y1' x2' y2' x3' y3' ...].T Then solve for h in Ah = b using linear least squares, where h is: [h11 h12 h13 h21 h22 h23 h31 h32].T and h33 is 1. Returns (h, Ah), where the 2nd term is the transformed locations of the inputs. """ # initialize both matrices A = np.zeros((2*len(outdict), 8), dtype=np.double) b = np.zeros((2*len(outdict), 1), dtype=np.double) inputs, outputs = getFidsFromDicts(indict, outdict, outsize=outsize) # copy over data for i, ((xi, yi, _), (xo, yo, _)) in enumerate(zip(inputs, outputs)): A[2*i,:] = [xi, yi, 1, 0, 0, 0, -xi*xo, -yi*xo] A[2*i+1, :] = [0, 0, 0, xi, yi, 1, -xi*yo, -yi*yo] b[2*i] = xo b[2*i+1] = yo #print A, A.shape, b, b.shape, inputs, inputs.shape # Linear least squares solve h, resids, rank, s = np.linalg.lstsq(A, b) h = h.flatten() ret = np.ones((3,3), dtype=np.double) ret[:, :] = [h[:3], h[3:6], [h[6], h[7], 1.0]] ret = ret.transpose() # we need transposed version of h throughout ah = np.dot(inputs, ret) ah /= ah[:, -1:] if 0: print h, len(h) print 'ret\n', ret, ret.shape print 'normed ah\n', ah, ah.shape print 'outputs\n', outputs print 'inputs\n', inputs print 'diff %\n', 100.0*(outputs-ah)/outputs return ret, ah
709fad7ffba7047e8d2c15e79611c3ac897733b7
13,991
def variables_to_restore(scope=None, strip_scope=False): """Returns a list of variables to restore for the specified list of methods. It is supposed that variable name starts with the method's scope (a prefix returned by _method_scope function). Args: methods_names: a list of names of configurable methods. strip_scope: if True will return variable names without method's scope. If methods_names is None will return names unchanged. model_scope: a scope for a whole model. Returns: a dictionary mapping variable names to variables for restore. """ if scope: variable_map = {} method_variables = slim.get_variables_to_restore(include=[scope]) for var in method_variables: if strip_scope: var_name = var.op.name[len(scope) + 1:] else: var_name = var.op.name variable_map[var_name] = var return variable_map else: return {v.op.name: v for v in slim.get_variables_to_restore()}
bc1f433b6a67898d8c010a56c6c51821f50df81a
13,992
def from_strings(data, gaps="-", length=None, dtype=np.int8): """Convert a series of strings to an array of integer encoded alleles. Parameters ---------- data : array_like, str Sequence of strings of alleles. gaps : str, optional String of symbols to be interpreted as gaps in the sequence. length : int, optional Truncate or extend sequence to a set length by padding with gap values. dtype : dtype, optional Specify dtype of returned array. Returns ------- array : ndarray, int Array of alleles encoded as integers. """ if isinstance(data, str): return vector_from_string(data, gaps=gaps, length=length, dtype=dtype) if isinstance(data, np.ndarray): pass else: data = np.array(data, copy=False) sequences = data.ravel() # default to length of longest element if length is None: length = max(len(i) for i in sequences) # number of sequences n_seq = len(sequences) # new array with gap as default array = np.empty((n_seq, length), dtype=dtype) for i in range(n_seq): array[i] = vector_from_string( sequences[i], gaps=gaps, length=length, dtype=dtype ) shape = data.shape + (length,) return array.reshape(shape)
7405e208613aa75b132f686fcf5fe7451a4160cc
13,993
def get_relationship_targets(item_ids, relationships, id2rec): """Get item ID set of item IDs in a relationship target set""" # Requirements to use this function: # 1) item Terms must have been loaded with 'relationships' # 2) item IDs in 'item_ids' arguement must be present in id2rec # 3) Arg, 'relationships' must be True or an iterable reltgt_objs_all = set() for goid in item_ids: obj = id2rec[goid] for reltype, reltgt_objs_cur in obj.relationship.items(): if relationships is True or reltype in relationships: reltgt_objs_all.update(reltgt_objs_cur) return reltgt_objs_all
55542448af0eb2b46442bff0e0464361b669241a
13,994
def cli(ctx, newick, analysis_id, name="", xref_db="null", xref_accession="", match_on_name=False, prefix=""): """Load a phylogenetic tree (Newick format) into Chado db Output: Number of inserted trees """ return ctx.gi.phylogeny.load_tree(newick, analysis_id, name=name, xref_db=xref_db, xref_accession=xref_accession, match_on_name=match_on_name, prefix=prefix)
9b68dec5584a692f2fe04746d9bb179c9e002682
13,995
def roll_neighbors(sites, site, dims=None, radius=1): """ N-dimensional pixel neighborhood for periodic images on regular grids """ index = np.unravel_index(site, dims=dims) neighs = sites.take(nbr_range+index, axis=0, mode='wrap') return neighs.flatten()
e653604c07f4824ef766c3a7f41a6c6c8a35bad0
13,996
import requests import json def folder0_content(folder0_id, host, token): """ Modules ------- request, json ---------- Parameters ---------- folder0_id : Onedata folder level 0 id containing the data to publish. host : OneData provider (e.g., ceta-ciemat-02.datahub.egi.eu). token : OneData personal access token. ------- Returns ------- all_level0: "name" and "id" of the folders contained in the folder defined by "folder0_id" """ OneData_urlchildren = "https://" + host + '/api/v3/oneprovider/data/' + folder0_id + "/children" request_param = {'X-Auth-Token': token} r_level0 = requests.get(OneData_urlchildren, headers=request_param) all_level0 = json.loads(r_level0.text) return (all_level0)
8ce6ae617666f936643b9599ae115e140b30bd2b
13,999
import urllib import json def fetch_object(object_id: int, url: str): """ Fetch a single object from a feature layer. We have to fetch objects one by one, because they can get pretty big. Big enough, that if you ask for more than one at a time, you're likely to encounter 500 errors. object_id: object id to fetch (e.g. 1) url: layer url to fetch (e.g. https://maps.gov.bc.ca/arcserver/rest/services/whse/bcgw_pub_whse_legal_admin_boundaries/MapServer/2) """ print(f'fetching object {object_id}') params = { 'where': f'objectid={object_id}', 'geometryType': 'esriGeometryEnvelope', 'spatialRel': 'esriSpatialRelIntersects', # 'outSR': '102100', 'outFields': '*', 'returnGeometry': 'true', 'returnIdsOnly': 'false', 'f': 'geojson' } encode_params = urllib.parse.urlencode(params).encode("utf-8") print(f'{url}/query?{encode_params.decode()}') with urllib.request.urlopen(f'{url}/query?', encode_params) as response: json_data = json.loads(response.read()) return json_data
d193d9368eec79028beeb545a3fe411fa0c131bc
14,000
def density_forecast_param(Yp, sigma, _, rankmatrix, errordist_normed, dof): """creates a density forecast for Yp with Schaake Schuffle Parameters ---------- Yp: numpy.array 24-dimensional array with point-predictions of day ahead prices sigma: numpy.array Variance prediction for each hour _ : rankmatrix: numpy.array Matrix with rank positions of forecast samples errordist_normed: numpy.array Realized normed prediction errors dof: int Degrees of Freedom of parametric margins 0: Normal distribution >0: t-distribution Returns ------- newdataarray: numpy.array Array containing the density predictions of day ahead price """ # Initialize errordist=errordist_normed.copy() nzero=np.size(rankmatrix,axis=0) n_sample=np.size(errordist, axis=0) sqrtsigma = np.sqrt(sigma) # for h in range(24): # Assume Normal distribution for dof==0 if dof[0]==0: errordist[:, h]=np.linspace(st.norm(Yp[0, h], sqrtsigma[h]).ppf(1 / (n_sample + 1)), st.norm(Yp[0, h], sqrtsigma[h]).ppf(n_sample / (n_sample + 1)), n_sample) # Assume t-distribution with given degrees of freedom else: errordist[:, h] = np.linspace(st.t(loc=Yp[0, h], scale=sqrtsigma[h],df=dof[h]).ppf(1 / (n_sample + 1)), st.t(loc=Yp[0, h], scale=sqrtsigma[h],df=dof[h]).ppf(n_sample / (n_sample + 1)), n_sample) Yt = np.zeros(shape=(nzero, 24)) u_new = np.arange(1, nzero + 1) / (nzero + 1) std_error = np.zeros(shape=(nzero, 24)) for h in range(24): helper = np.sort(errordist[:, h]) std_error_pos = np.array(np.floor(u_new * np.size(errordist, axis=0)), dtype='int') std_error[:, h] = helper[std_error_pos] for i in range(nzero): Yt[i, :] = std_error[i, :] # order newdata according to rank-matrix newdataarray = np.zeros(shape=(nzero, 24)) for col in range(24): for i in range(0, nzero): help = int(rankmatrix[i, col] - 1) newdataarray[i, col] = Yt[help, col] return newdataarray
809458a7d3de0ae2997f392e52f91a9b4c02e181
14,001
def gaussian_blur(img: np.ndarray, kernel_size: int) -> np.ndarray: """Applies a Gaussian Noise kernel""" if not is_valid_kernel_size(kernel_size): raise ValueError( "kernel_size must either be 0 or a positive, odd integer") return cv2.GaussianBlur(img, (kernel_size, kernel_size), 0)
6bedc6b15848c18ed52c8348f3bec1b4181f74d7
14,002
def get_controls_snapshots_count(selenium, src_obj): """Return dictionary with controls snapshots actual count and count taken from tab title.""" controls_ui_service = webui_service.ControlsService(selenium) return { "controls_tab_count": controls_ui_service.get_count_objs_from_tab( src_obj=src_obj), "controls_count": len(controls_ui_service.get_list_objs_from_tree_view( src_obj=src_obj))}
5e6a11a2a94093850f810e0ec6c93037a9f40bca
14,003
import random import math def fast_gnp_random_graph(n, p, seed=None, directed=False): """Returns a `G_{n,p}` random graph, also known as an Erdős-Rényi graph or a binomial graph. Parameters ---------- n : int The number of nodes. p : float Probability for edge creation. seed : int, optional Seed for random number generator (default=None). directed : bool, optional (default=False) If ``True``, this function returns a directed graph. Notes ----- The `G_{n,p}` graph algorithm chooses each of the `[n (n - 1)] / 2` (undirected) or `n (n - 1)` (directed) possible edges with probability `p`. This algorithm runs in `O(n + m)` time, where `m` is the expected number of edges, which equals `p n (n - 1) / 2`. This should be faster than :func:`gnp_random_graph` when `p` is small and the expected number of edges is small (that is, the graph is sparse). See Also -------- gnp_random_graph References ---------- .. [1] Vladimir Batagelj and Ulrik Brandes, "Efficient generation of large random networks", Phys. Rev. E, 71, 036113, 2005. """ G = empty_graph(n) G.name="fast_gnp_random_graph(%s,%s)"%(n,p) if not seed is None: random.seed(seed) if p <= 0 or p >= 1: return nx.gnp_random_graph(n,p,directed=directed) w = -1 lp = math.log(1.0 - p) if directed: G = nx.DiGraph(G) # Nodes in graph are from 0,n-1 (start with v as the first node index). v = 0 while v < n: lr = math.log(1.0 - random.random()) w = w + 1 + int(lr/lp) if v == w: # avoid self loops w = w + 1 while w >= n and v < n: w = w - n v = v + 1 if v == w: # avoid self loops w = w + 1 if v < n: G.add_edge(v, w) else: # Nodes in graph are from 0,n-1 (start with v as the second node index). v = 1 while v < n: lr = math.log(1.0 - random.random()) w = w + 1 + int(lr/lp) while w >= v and v < n: w = w - v v = v + 1 if v < n: G.add_edge(v, w) return G
f84c577a4f575186913980c8d9a5dcc16d771291
14,004
import math def round_to(f: float, p: int = 0) -> float: """Round to the specified precision using "half up" rounding.""" # Do no rounding, just return a float with full precision if p == -1: return float(f) # Integer rounding elif p == 0: return round_half_up(f) # Round to the specified precision else: whole = int(f) digits = 0 if whole == 0 else int(math.log10(-whole if whole < 0 else whole)) + 1 return round_half_up(whole if digits > p else f, p - digits)
ad464bced2e2b1b87208f61e7ca73b42d5e31fa5
14,005
def get_interface_type(interface): """Gets the type of interface """ if interface.upper().startswith('GI'): return 'GigabitEthernet' elif interface.upper().startswith('TE'): return 'TenGigabitEthernet' elif interface.upper().startswith('FA'): return 'FastEthernet' elif interface.upper().startswith('FO'): return 'FortyGigabitEthernet' elif interface.upper().startswith('LON'): return 'LongReachEthernet' elif interface.upper().startswith('ET'): return 'Ethernet' elif interface.upper().startswith('VL'): return 'Vlan' elif interface.upper().startswith('LO'): return 'loopback' elif interface.upper().startswith('PO'): return 'Port-channel' elif interface.upper().startswith('NV'): return 'nve' elif interface.upper().startswith('TWE'): return 'TwentyFiveGigE' elif interface.upper().startswith('HU'): return 'HundredGigE' else: return 'unknown'
8a898f75e0e05715e0ced7258b8e8d4bf9905377
14,006
def __get_global_options(cmd_line_options, conf_file_options=None): """ Get all global options :type cmd_line_options: dict :param cmd_line_options: Dictionary with all command line options :type conf_file_options: dict :param conf_file_options: Dictionary with all config file options :returns: dict """ options = {} for option in DEFAULT_OPTIONS['global'].keys(): options[option] = DEFAULT_OPTIONS['global'][option] if conf_file_options and option in conf_file_options: options[option] = conf_file_options[option] if cmd_line_options and option in cmd_line_options: options[option] = cmd_line_options[option] return options
3c9880616ae274f4254cdd29558f1022fdfc6ff4
14,007
def download_file(service, drive_file): """Download a file's content. Args: service: Drive API service instance. drive_file: Drive File instance. Returns: File's content if successful, None otherwise. """ download_url = drive_file.get('downloadUrl') if download_url: resp, content = service._http.request(download_url) if resp.status == 200: #print 'Status: %s' % resp return content else: #print 'An error occurred: %s' % resp return None else: # The file doesn't have any content stored on Drive. return None
fa8ad859e47dbaec0cb9a4eea0be5497239e359e
14,008
def get_include_file_end_before(block: Block) -> str: """ >>> # test end-before set to 'end-marker' >>> block = lib_test.get_test_block_ok() >>> get_include_file_end_before(block) '# end-marker' >>> assert block.include_file_end_before == '# end-marker' >>> # test end-before not set >>> block = lib_test.get_test_block_end_before_not_set() >>> get_include_file_end_before(block) '' >>> # test end-before invalid >>> block = lib_test.get_test_block_end_before_invalid() >>> get_include_file_end_before(block) # doctest: +ELLIPSIS +NORMALIZE_WHITESPACE Traceback (most recent call last): ... ValueError: Error in File ".../README.template.rst", Line 47106: option "end-before" has no value """ include_file_end_before = block.include_file_end_before if lib_block_options.is_option_in_block('end-before', block): include_file_end_before = lib_block_options.get_option_value_from_block_or_raise_if_empty_or_invalid('end-before', block) block.include_file_end_before = include_file_end_before return include_file_end_before
c8ae330fb24a2a7e5304d8a5e5c5438bf9346c63
14,009
import torch import random def add_random_circles(tensor: torch.Tensor, n_circles: int, equalize_overlaps: bool = True): """Adds n_circles random circles onto the image.""" height, width = tensor.shape circle_img = torch.zeros_like(tensor) for _ in range(n_circles): circle_img = add_circle(circle_img, {'x': random.randint(0, width), 'y': random.randint(0, height)}, random.randint(1, int(max(height, width) / 30))) tensor += (circle_img != 0) if equalize_overlaps: tensor = (tensor != 0) return tensor.type(torch.FloatTensor)
17e0cf8d53cf0f8b3c542f0fd0f49151c6842ba9
14,010
def sample_quadric_surface(quadric, center, samples): """Samples the algebraic distance to the input quadric at sparse locations. Args: quadric: Tensor with shape [..., 4, 4]. Contains the matrix of the quadric surface. center: Tensor with shape [..., 3]. Contains the [x,y,z] coordinates of the center of the coordinate frame of the quadric surface in NIC space with a top-left origin. samples: Tensor with shape [..., N, 3], where N is the number of samples to evaluate. These are the sample locations in the same space in which the quadric surface center is defined. Supports broadcasting the batching dimensions. Returns: distances: Tensor with shape [..., N, 1]. Contains the algebraic distance to the surface at each sample. """ with tf.name_scope('sample_quadric_surface'): batching_dimensions = quadric.get_shape().as_list()[:-2] batching_rank = len(batching_dimensions) tf_util.assert_shape(quadric, batching_dimensions + [4, 4], 'sample_quadric_surface:quadric') tf_util.assert_shape(center, batching_dimensions + [-1], 'sample_quadric_surface:center') tf_util.assert_shape(samples, batching_rank * [-1] + [-1, 3], 'sample_quadric_surface:samples') # We want to transform the coordinates so that they are in the coordinate # frame of the conic section matrix, so we subtract the center of the # conic. samples = samples - tf.expand_dims(center, axis=batching_rank) sample_count = samples.get_shape().as_list()[-2] homogeneous_sample_ones = tf.ones( samples.get_shape().as_list()[:-1] + [1], dtype=tf.float32) homogeneous_sample_coords = tf.concat([samples, homogeneous_sample_ones], axis=-1) # When we transform the coordinates per-image, we broadcast on both sides- # the batching dimensions broadcast up the coordinate grid, and the # coordinate center broadcasts up along the height and width. # Per-pixel, the algebraic distance is v^T * M * v, where M is the matrix # of the conic section, and v is the homogeneous column vector [x y z 1]^T. half_distance = tf.matmul( quadric, homogeneous_sample_coords, transpose_b=True) rank = batching_rank + 2 half_distance = tf.transpose( half_distance, perm=list(range(rank - 2)) + [rank - 1, rank - 2]) algebraic_distance = tf.reduce_sum( tf.multiply(homogeneous_sample_coords, half_distance), axis=-1) return tf.reshape(algebraic_distance, batching_dimensions + [sample_count, 1])
e4448be0058f4a8010a72eaf9506e95695b1b35e
14,011
def mol2df(mols: Mols[pd.DataFrame], multiindex=False) -> pd.DataFrame: """ flattens a mol into a dataframe with the columns containing the start, stop and price :param mols: mols to transform :return: """ if multiindex: flat = { ((start, stop), price): series for (start, stop), mol in mols.items() for price, series in mol.items() } else: flat = { f"{start} -> {stop}: {price}": series for (start, stop), mol in mols.items() for price, series in mol.items() } return pd.concat(flat, axis="columns")
63b16fa99a9c76a29cbef8755cf29928f05637f6
14,012
from typing import Tuple def load_sequence_classifier_configs(args) -> Tuple[WrapperConfig, pet.TrainConfig, pet.EvalConfig]: """ Load the model, training and evaluation configs for a regular sequence classifier from the given command line arguments. This classifier can either be used as a standalone model or as the final classifier for PET/iPET. """ model_cfg = WrapperConfig( model_type=args.model_type, model_name_or_path=args.model_name_or_path, wrapper_type=SEQUENCE_CLASSIFIER_WRAPPER, task_name=args.task_name, label_list=args.label_list, max_seq_length=args.sc_max_seq_length, verbalizer_file=args.verbalizer_file, cache_dir=args.cache_dir, ) train_cfg = pet.TrainConfig( device=args.device, per_gpu_train_batch_size=args.sc_per_gpu_train_batch_size, per_gpu_unlabeled_batch_size=args.sc_per_gpu_unlabeled_batch_size, n_gpu=args.n_gpu, num_train_epochs=args.sc_num_train_epochs, max_steps=args.sc_max_steps, min_steps=args.sc_min_steps, temperature=args.temperature, gradient_accumulation_steps=args.sc_gradient_accumulation_steps, weight_decay=args.weight_decay, learning_rate=args.learning_rate, adam_epsilon=args.adam_epsilon, warmup_steps=args.warmup_steps, logging_steps=args.logging_steps, logging_number=args.logging_number, max_grad_norm=args.max_grad_norm, use_logits=args.method != "sequence_classifier", local_rank=args.local_rank, ) eval_cfg = pet.EvalConfig( device=args.device, n_gpu=args.n_gpu, metrics=args.metrics, per_gpu_eval_batch_size=args.sc_per_gpu_eval_batch_size, local_rank=args.local_rank, ) return model_cfg, train_cfg, eval_cfg
8729851faae06ed7c0331960db4f933283e7278e
14,013
def gender(word): """ Returns the gender for the given word, either: MALE, FEMALE, (MALE, FEMALE), (MALE, PLURAL) or (FEMALE, PLURAL). """ w = word.lower() # Adjectives ending in -e: cruciale, difficile, ... if w.endswith(("ale", "ile", "ese", "nte")): return (MALE, FEMALE) # Most nouns ending in -a (-e) are feminine, -o (-i) masculine: if w.endswith(("ore", "ista", "mma")): return MALE if w.endswith(("a", u"tà", u"tù", "ione", "rice")): return FEMALE if w.endswith(("e", "oni")): return (FEMALE, PLURAL) if w.endswith("i"): return (MALE, PLURAL) if w.endswith("o"): return MALE return MALE
7a8384d778b9aec9fcc5eb32f26c282805cdfa0b
14,014
from typing import Counter def fcmp(d,r): """ Compares two files, d and r, cell by cell. Float comparisons are made to 4 decimal places. Extending this function could be a project in and of itself. """ # we need to compare the files dh=open(d,'rb') rh=open(r,'rb') dlines = dh.readlines() rlines = rh.readlines() boolCounter = Counter() for dline, rline in zip(dlines,rlines): for dc,rc in zip(dline.split(','), rline.split(',')): if _isfloat(dc): if round(float(dc),4)!=round(float(rc),4): boolCounter[False] += 1 else: boolCounter[True] += 1 else: pass if dc!=rc: boolCounter[False]+= 1 else: boolCounter[True]+= 1 dh.close() rh.close() if all(boolCounter): return True else: return False
9f6f24314316fbef26ce0fb404a88d34c3049b2b
14,015
def is_vector_equal(vec1, vec2, tolerance=1e-10): """Compare if two vectors are equal (L1-norm) according to a tolerance""" return np.all(np.abs(vec1 - vec2) <= tolerance)
9bb42fa3bc2cbb25edd6eabeddb2aa2d8d93e5c8
14,016
def partition_pair(bif_point): """Calculate the partition pairs at a bifurcation point. The number of nodes in each child tree is counted. The partition pairs is the number of bifurcations in the two child subtrees at each branch point. """ n = float(sum(1 for _ in bif_point.children[0].ipreorder())) m = float(sum(1 for _ in bif_point.children[1].ipreorder())) return (n, m)
7889eb95a0ac3b2a7d1138061a4651b1e79427c0
14,017
def readPyCorrFit(file): """ Read header and data of .csv PyCorrFit output file ========== =============================================================== Input Meaning ---------- --------------------------------------------------------------- file String with path to .csv file ========== =============================================================== ========== =============================================================== Output Meaning ---------- --------------------------------------------------------------- outputdata Object with the tau, G, Gfit, Gres in data field, and separate fields for the fitted values n, SP, offset, and chi2 ========== =============================================================== """ # create object outputdata = PyCorrFitData() # read .csv header f = open(file, "r") if f.mode == "r": contents = f.read() start = contents.find("Parameters:") [n, start] = readPyCorrFitSingleParam(contents, "# n\t", "\n", start) [tauD, start] = readPyCorrFitSingleParam(contents, "_diff [ms]\t", "\n", start) [SP, start] = readPyCorrFitSingleParam(contents, "# SP\t", "\n", start) [offset, start] = readPyCorrFitSingleParam(contents, "# offset\t", "\n", start) start = contents.find("Fitting:", start) [chi2, start] = readPyCorrFitSingleParam(contents, "\t", "\n", start) [Gfitstart, start] = readPyCorrFitSingleParam(contents, "# Ival start [ms]\t", "\n", start) [Gfitstop, start] = readPyCorrFitSingleParam(contents, "# Ival end [ms]\t", "\n", start) outputdata.n = n outputdata.tauD = tauD outputdata.SP = SP outputdata.offset = offset outputdata.chi2 = chi2 outputdata.Gfitstart = Gfitstart outputdata.Gfitstop = Gfitstop # load .csv file data = csv2array(file) # extract data tau = data[:,0] G = data[:,1] Gfit = data[:,2] Gres = G - Gfit outputdata.data = np.stack((tau, G, Gfit, Gres), axis=1) return outputdata
0dcaa26c0ef2f8270748241cbd03bc6aaa750672
14,018
def end_of_time(t): """ Return the next hour of the passed time. e.g, 18:25:36 --> 19:00:00 """ return t + timedelta(minutes=60) - timedelta(minutes=t.minute) - timedelta(seconds=t.second)
dce1f0cde67c834580edb349e0dfbcdee0b4d171
14,019
def modf(x): """modf(x) Return the fractional and integer parts of x. Both results carry the sign of x. """ signx = sign(x) absx = Abs(x) return (signx * Mod(absx, 1), signx * floor(absx))
18f4e9aca22591f2960bb6ddf28fcf677bedee65
14,020
from typing import Tuple def get_user_from_request(request, available_query_params: list()) -> Tuple[User, GeneralApiResponse]: """ Entra com o request da view e uma lista de query params do user que podem ser consultados Retorna um user caso seja si mesmo, ou tenha permissão de acesso a outros usuários Retorna uma resposta de erro caso algo não possa ser completado """ get_keys = list(request.GET.keys()) if len(get_keys) != 0 or (len(get_keys) > 1 and 'page' in get_keys): if request.user.is_superuser: if any(query_param not in available_query_params for query_param in get_keys): return None, GeneralApiResponse.bad_request() # algum query param na requisição de user ta zoado ignore_page_query_params = {key: v for key, v in request.GET.dict().items() if key not in ['page']} users = User.objects.filter(**ignore_page_query_params) # ignora o query param "page" if not users.exists(): return None, GeneralApiResponse.not_found() # não achou usuário que atendesse à query elif len(users) > 1: return None, GeneralApiResponse.bad_request('a query retorna mais de um user') else: return users[0], None else: return None, GeneralApiResponse.unauthorized() else: return request.user, None
b9d0274ac5ea8e0cbc210b1f4f5e8d46398e8e6d
14,021
def longest_CD(values): """ Return the sequence range for the longest continuous disorder (CDl) subsequence. """ # Filter residues with score equal or greater than 0.5 # and store its position index dis_res = [index for index, res in enumerate(values) if float(res) >= 0.5] # Initialize longest CD region CDl = [] # Counter to store partial results of each continuous region c = [] # Iterate over disordered residues list for i, j in zip(dis_res, dis_res[1:]): # Check if residues are consecutive if j - i == 1: # Update counter c.append(i) # Not consecutive else: # Add last residue of the interval c.append(i) # Update CDl if len(c) > len(CDl): CDl = c # Reset counter for the next interval c = [] return CDl
f07b74b9553c156d2d4b62e17ea02b466a16fe74
14,022
def get_read_length(filename): """ Return the first read length of fastq file. :param str filename: fastq file. """ with FastqReader(filename) as filin: read_len = len(next(iter(filin))) return read_len
961af7ff12c422c68349dabee064acd465a1a090
14,023
def no_outliers_estimator(base_estimator, x, alpha=0.01): """ Calculate base_estimator function after removal of extreme quantiles from the sample """ x = np.array(x) if len(x.shape) < 3: x = np.expand_dims(x, -1) low_value = np.quantile(x, alpha, axis=(0, 1)) high_value = np.quantile(x, 1 - alpha, axis=(0, 1)) result = np.zeros(x.shape[2], x.dtype) for i in range(x.shape[2]): x_ch = x[:, :, i] x_ch = x_ch[(x_ch >= low_value[i]) & (x_ch <= high_value[i])] result[i] = base_estimator(x_ch) return result
3c23f9cacc1108d6ecb24b690ff731e3a3554b44
14,024
from server.forms import FormNotCompleteError, FormValidationError from typing import cast from typing import Tuple def error_state_to_dict(err: ErrorState) -> ErrorDict: """Return an ErrorDict based on the exception, string or tuple in the ErrorState. Args: err: ErrorState from a api error state Returns: An ErrorDict containing the error message a status_code and a traceback if available """ # Import here to prevent cyclic imports if isinstance(err, FormValidationError): return { "class": type(err).__name__, "error": str(err), "traceback": err, "validation_errors": err.errors, # type:ignore "status_code": HTTPStatus.BAD_REQUEST, } elif isinstance(err, FormNotCompleteError): return { "class": type(err).__name__, "error": str(err), "traceback": err, "form": err.form, "status_code": HTTPStatus.NOT_EXTENDED, } elif isinstance(err, Exception): if is_api_exception(err): err = cast(ApiException, err) return { "class": type(err).__name__, "error": err.reason, "status_code": err.status, "body": err.body, "headers": "\n".join(f"{k}: {v}" for k, v in err.headers.items()), "traceback": err, } return { "class": type(err).__name__, "error": str(err), "traceback": show_ex(err), } elif isinstance(err, tuple): cast(Tuple, err) error, status_code = err return {"error": str(error), "status_code": int(status_code)} elif isinstance(err, str): return {"error": err} elif isinstance(err, dict) and "error" in err: # type: ignore return err else: raise TypeError("ErrorState should be a tuple, exception or string")
79cf9a971886241c8760bf0091af0c91a4d80ade
14,025
from typing import Set def english_words() -> Set[str]: """Return a set of english words from the nltk corpus "words". Returns: Set of english words. """ nltk_resource("corpora/words") return set(nltk.corpus.words.words())
2cda38fb0026805c7792bcf45727492b09b38a89
14,026
def bipartite_matching_wrapper(a, b, score_func, symmetric=False): """A wrapper to `bipartite_matching()` that returns `(matches, unmatched_in_a, unmatched_in_b)` The list of `matches` contains tuples of `(score, a_element, b_element)`. The two unmatched lists are elements from each of the respective input lists. """ found_a, found_b = set(), set() matches = [] for score, i, j in bipartite_matching(a, b, score_func, symmetric=symmetric): matches.append((score, i, j)) found_a.add(i) found_b.add(j) unmatched_in_a = set(a) - found_a unmatched_in_b = set(b) - found_b return matches, unmatched_in_a, unmatched_in_b
702c290b6874b595fb0249c865c5723c84d485ba
14,027
def get_interface_type(interface): """Gets the type of interface Args: interface (str): full name of interface, i.e. Ethernet1/1, loopback10, port-channel20, vlan20 Returns: type of interface: ethernet, svi, loopback, management, portchannel, or unknown """ if interface.upper().startswith('ET'): return 'ethernet' elif interface.upper().startswith('VL'): return 'svi' elif interface.upper().startswith('LO'): return 'loopback' elif interface.upper().startswith('MG'): return 'management' elif interface.upper().startswith('MA'): return 'management' elif interface.upper().startswith('PO'): return 'portchannel' else: return 'unknown'
8196bfa37ef25f0fa1c08577d215329ecc977c4a
14,029
def create_int_feature_list(name, key, prefix="", module_dict=None): """Creates accessor functions for bytes feature lists. The provided functions are has_${NAME}, get_${NAME}_size, get_${NAME}_at, clear_${NAME}, and add_${NAME}. example = tensorflow.train.SequenceExample() add_image_timestamp(1000000, example) add_image_timestamp(2000000, example) if has_image_timestamp: for i in range(get_image_timestamp_size(example): timestamp = get_image_timestamp_at(i, example) clear_image_timestamp(example) Args: name: the name of the feature to use in function names. key: the key for this feature in the SequenceExample. prefix: a prefix to append to the key in the SequenceExample module_dict: adds the functions to the corresponding module dict. """ def _has(sequence_example, prefix=prefix): return has_feature_list(key, sequence_example, prefix=prefix) def _get_size(sequence_example, prefix=prefix): return get_feature_list_size(key, sequence_example, prefix=prefix) def _get_at(index, sequence_example, prefix=prefix): return get_int_at(key, index, sequence_example, prefix=prefix) def _clear(sequence_example, prefix=prefix): clear_feature_list(key, sequence_example, prefix=prefix) def _add(value, sequence_example, prefix=prefix): add_int(key, value, sequence_example, prefix=prefix) def _get_key(prefix=prefix): return merge_prefix(prefix, key) def _get_default_parser(): return tf.io.FixedLenSequenceFeature((), tf.int64) function_dict = { "has_" + name: _has, "get_" + name + "_size": _get_size, "get_" + name + "_at": _get_at, "clear_" + name: _clear, "add_" + name: _add, "get_" + name + "_key": _get_key, "get_" + name + "_default_parser": _get_default_parser, } add_functions_to_module(function_dict, module_dict)
58b08f518050a67db72f0572a78f7dab5a68d468
14,030
def ROC(y_pred, y_true, positive_column = 0,draw = True): """ ROC """ y_pred = y_pred[:,0] y_true = y_true[:,0] # sort by y_pred sort_index = np.argsort(-y_pred) y_pred = y_pred[sort_index] y_true = y_true[sort_index] tprs = [] fprs = [] positive_num = (y_true == 1.0).sum() negivate_num = len(y_true) - positive_num for threshold in np.arange(0,1+0.1,0.1): t = ((y_true == 1.0)& (y_pred >= threshold)).sum() f = ((y_true == 0.0) & (y_pred >= threshold)).sum() tprs.append(t*1.0/positive_num) fprs.append(f*1.0/negivate_num) if draw: plt.plot(fprs,tprs,c='r') plt.show() return tprs, fprs
efeefbd570988c83f912345794cbd19e15ec67a2
14,031
def ignore_check(self, channel: discord.TextChannel, ignore_dm: bool = False, from_main: bool = False): """ A function that checks whether or not that channel allows command. Args: self: instance of the class this command calls or this can be commands.Bot channel (discord.TextChannel): the channel the command call happened in ignore_dm (bool): whether or not the command is being ignored in direct messages from_main (bool): indicator for whether or not this call is from Main.py, which switches changes how self is read Returns: True: if channel needs to be ignored False: if channel is fine """ if ignore_dm: if channel.type is discord.ChannelType.private: return True try: if from_main: ignore = self.get_cog("Ignores").find(channel.guild.id, channel.id) else: ignore = self.bot.get_cog('Ignores').find(channel.guild.id, channel.id) except AttributeError: return False if ignore: return True return False
284ba6432d792a3382383cf9b53a5932897b5e53
14,032
def network_count_allocated_ips(context, network_id): """Return the number of allocated non-reserved ips in the network.""" return IMPL.network_count_allocated_ips(context, network_id)
33f7ce340d222c3843962e6e64a06440e5dfd526
14,033
def _parse_transform_spec( transform_spec ): """ Parses a transform specification into its name and parameters dictionary. Raises ValueError if the specification is invalid, it represents an unknown transform, or if the encoded parameters do not match the transform's expected types. Takes 1 argument: transform_spec - Transform specification string. See lookup_transform() for details. Returns 2 values: transform_name - Name of the specified transform. transform_parameters - Dictionary of parameters for the specified transform. Dictionary values are cast to the types expected the transform. """ try: # break the "<name>:<parameters>" string. make sure we don't break # the <parameters> into multiple components so it can contain colons # in the (key, value) pairs. (transform_name, transform_parameters_spec) = transform_spec.split( ":", maxsplit=1 ) except ValueError: raise ValueError( "Failed to get a transform name and parameters " "specification from '{:s}'.".format( transform_spec ) ) # make sure this is a known transform. if transform_name not in _transform_map: raise ValueError( "Unknown transform '{:s}'!".format( transform_name ) ) # get the associated parameter parser for this transform. _, parameter_parser = _transform_map[transform_name] try: # split the remaining <parameters> into (key, value) pairs. each # (key, value) set is colon-delimited, and each set equal # sign-delimited. # # e.g. "parameter1=value1:parameter2=value2a,value2b,value2c" # transform_parameters = dict( map( lambda key_value: key_value.split( "=" ), transform_parameters_spec.split( ":" ) ) ) # map individual parameters to their expected data types. transform_parameters = parameter_parser( transform_parameters ) except ValueError as e: raise ValueError( "<parameters> -> (<key>, <value>) ({:s})".format( str( e ) ) ) return (transform_name, transform_parameters)
b914d96d9ad1e8da3deb10f1c6500c2ee58b4928
14,034
from typing import Union from typing import List def parse_text_multiline(data: Union[str, List[str]]) -> str: """Parse the text in multiline mode.""" if isinstance(data, str): return data elif isinstance(data, list) and all(map(is_str, data)): return '\n'.join(data) else: raise ValueError(data)
ba8e50422a89de14a464d4917138c5faa051124d
14,035
def _set_user_permissions_for_volumes(users, volumes): """ Returns the section of the user data script to create a Linux user group and grant the group permission to access the mounted volumes on the EC2 instance. """ group_name = 'volumes' user_data_script_section = f""" groupadd {group_name} """ for user in users: user_data_script_section += f""" usermod -a -G {group_name} {user.login} """ for volume in volumes: user_data_script_section += f""" chgrp -R {group_name} {volume.mount} chmod -R 2775 {volume.mount} """ return user_data_script_section
2d262a52cfa2f3e142da3dd7767dcc6cff14c929
14,037
def cached_examples(): """This view should be cached for 60 sec""" examples = ExampleModel.query() return render_template('list_examples_cached.html', examples=examples)
f598589967f82daaf3c7e9cb88f7679786e5bf18
14,038
from typing import Callable import datasets def librispeech_adversarial( split_type: str = "adversarial", epochs: int = 1, batch_size: int = 1, dataset_dir: str = None, preprocessing_fn: Callable = None, cache_dataset: bool = True, framework: str = "numpy", clean_key: str = "clean", adversarial_key: str = "adversarial", ) -> datasets.ArmoryDataGenerator: """ Adversarial dataset based on Librispeech-dev-clean using Universal Perturbation with PGD. split_type - one of ("adversarial") returns: Generator """ if clean_key != "clean": raise ValueError(f"{clean_key} != 'clean'") if adversarial_key != "adversarial": raise ValueError(f"{adversarial_key} != 'adversarial'") return datasets._generator_from_tfds( "librispeech_adversarial:1.0.0", split_type=split_type, batch_size=batch_size, epochs=epochs, dataset_dir=dataset_dir, preprocessing_fn=preprocessing_fn, as_supervised=False, supervised_xy_keys=("audio", "label"), variable_length=bool(batch_size > 1), cache_dataset=cache_dataset, framework=framework, lambda_map=lambda x, y: ((x[clean_key], x[adversarial_key]), y), )
2ab2da4f56194dada3cd361371ef32b1f2fd6194
14,040
def search4letters(phrase, letters='aeiou'): """ ->return a set of the 'letters' found in 'phrase'. :param phrase: phrase where the search will be made :param letters:set of letters that will be searched for in the sentence :return returns a set () """ return set(letters).intersection(set(phrase))
e58d0863aa090ac3644cd7bf26e783efe2956d35
14,041
import gc def merge_flights(prev_flights_filename, next_flights_filename, ids_df, log): """ Gets the next days flights that are the continuation of the previous days flights and merges them with the previous days flights. It writes the new next days and previous days flights to files prepended with new. it returns True if successful, False otherwise. """ new_items_df = get_next_day_items(next_flights_filename, ids_df, log) # free memory used by get_next_day_items gc.collect() prev_flights_df = pd.DataFrame() try: prev_flights_df = pd.read_csv(prev_flights_filename, index_col='FLIGHT_ID', converters={'FLIGHT_ID': lambda x: UUID(x)}, memory_map=True) log.info('%s read ok', prev_flights_filename) except EnvironmentError: log.error('could not read file: %s', prev_flights_filename) return False # merge next days flight data with the previous days flight data update_flight_data(prev_flights_df, new_items_df) # Output the new previous flights new_prev_flights_filename = 'new_' + prev_flights_filename try: is_bz2 = has_bz2_extension(prev_flights_filename) if is_bz2: new_prev_flights_filename = new_prev_flights_filename[:-BZ2_LENGTH] prev_flights_df.to_csv(new_prev_flights_filename, index=True, date_format=ISO8601_DATETIME_FORMAT) log.info('written file: %s', new_prev_flights_filename) except EnvironmentError: log.error('could not write file: %s', new_prev_flights_filename) return False return True
6d0cec2c8cc66d04facdde01e24ce0b3aa57dc55
14,043
def findClusters( peaks, thresh ): """Since the peaks are in sequence, this method follows a very simplistic approach. For each peak it checks its distance from the previous peak. If it is less than threshold, it clusters that peak with the previous one. Note that in each of the clusters, input order is maintained.""" clusters, cluster = [], [] cluster.append(peaks[0]) for peak in peaks[1:]: if euclideanDistance( cluster[-1], peak ) < thresh: cluster.append( peak ) else: clusters.append(cluster) cluster = [peak] clusters.append( cluster ) print( clusters ) return clusters
f74e504557e7c7e796d29290dccabe043ac70dc0
14,044
def acq_max_single_seed(ac, gp, y_max, bounds): """ A function to find the maximum of the acquisition function using the 'L-BFGS-B' method. Input Parameters ---------- ac: The acquisition function object that return its point-wise value. gp: A gaussian process fitted to the relevant data. y_max: The current maximum known value of the target function. bounds: The variables bounds to limit the search of the acq max. Returns ------- :return: x_max, The arg max of the acquisition function. """ # Start with the lower bound as the argmax x_max = bounds[:, 0] #max_acq = None dim=bounds.shape[0] x_tries = np.random.uniform(bounds[:, 0], bounds[:, 1],size=(50*dim, dim)) # evaluate y_tries=ac(x_tries,gp=gp, y_max=y_max) #find x optimal for init idx_max=np.argmax(y_tries) x_init_max=x_tries[idx_max] #x_try=np.array(bounds[:, 0]) # Find the minimum of minus the acquisition function res = minimize(lambda x: -ac(x.reshape(1, -1), gp=gp, y_max=y_max), x_init_max.reshape(1, -1), bounds=bounds, method="L-BFGS-B") x_max = res.x #max_acq = -res.fun # Clip output to make sure it lies within the bounds. Due to floating # point technicalities this is not always the case. return np.clip(x_max, bounds[:, 0], bounds[:, 1])
5a705e15e41be8063f476a40b1cfae9385b98af7
14,047
def futures_pig_rank(symbol: str = "外三元") -> pd.DataFrame: """ 价格排行榜 https://zhujia.zhuwang.cc/lists.shtml :param symbol: choice of {"外三元", "内三元", "土杂猪", "玉米", "豆粕"} :type symbol: str :return: 价格排行榜 :rtype: pandas.DataFrame """ if symbol == "外三元": temp_df = pd.read_html("https://zhujia.zhuwang.cc/lists.shtml")[0] temp_df.columns = [ '排名', '品种', '省份', '价格-公斤', '价格-斤', ] temp_df['价格-公斤'] = temp_df['价格-公斤'].str.strip("元") temp_df['价格-斤'] = temp_df['价格-斤'].str.strip("元") temp_df['价格-公斤'] = pd.to_numeric(temp_df['价格-公斤']) temp_df['价格-斤'] = pd.to_numeric(temp_df['价格-斤']) return temp_df elif symbol == "内三元": temp_df = pd.read_html("https://zhujia.zhuwang.cc/lists-1.shtml")[0] temp_df.columns = [ '排名', '品种', '省份', '价格-公斤', '价格-斤', ] temp_df['价格-公斤'] = temp_df['价格-公斤'].str.strip("元") temp_df['价格-斤'] = temp_df['价格-斤'].str.strip("元") temp_df['价格-公斤'] = pd.to_numeric(temp_df['价格-公斤']) temp_df['价格-斤'] = pd.to_numeric(temp_df['价格-斤']) return temp_df elif symbol == "土杂猪": temp_df = pd.read_html("https://zhujia.zhuwang.cc/lists-2.shtml")[0] temp_df.columns = [ '排名', '品种', '省份', '价格-公斤', '价格-斤', ] temp_df['价格-公斤'] = temp_df['价格-公斤'].str.strip("元") temp_df['价格-斤'] = temp_df['价格-斤'].str.strip("元") temp_df['价格-公斤'] = pd.to_numeric(temp_df['价格-公斤']) temp_df['价格-斤'] = pd.to_numeric(temp_df['价格-斤']) return temp_df elif symbol == "玉米": temp_df = pd.read_html("https://zhujia.zhuwang.cc/lists-3.shtml")[0] temp_df.columns = [ '排名', '品种', '省份', '价格-公斤', '价格-斤', ] temp_df['价格-公斤'] = temp_df['价格-公斤'].str.strip("元") temp_df['价格-斤'] = temp_df['价格-斤'].str.strip("元") temp_df['价格-公斤'] = pd.to_numeric(temp_df['价格-公斤']) temp_df['价格-斤'] = pd.to_numeric(temp_df['价格-斤']) return temp_df elif symbol == "豆粕": temp_df = pd.read_html("https://zhujia.zhuwang.cc/lists-4.shtml")[0] temp_df.columns = [ '排名', '品种', '省份', '价格-公斤', '价格-斤', ] temp_df['价格-公斤'] = temp_df['价格-公斤'].str.strip("元") temp_df['价格-斤'] = temp_df['价格-斤'].str.strip("元") temp_df['价格-公斤'] = pd.to_numeric(temp_df['价格-公斤']) temp_df['价格-斤'] = pd.to_numeric(temp_df['价格-斤']) return temp_df
9afc155021afc2b8ffbef4a0e778f1ab6360219f
14,048
import math def psubl_T(T): """ EQ 6 / Sublimation Pressure """ T_star = 273.16 p_star = 611.657E-6 a = (-0.212144006E2, 0.273203819E2, -0.610598130E1) b = ( 0.333333333E-2, 0.120666667E1, 0.170333333E1) theta = T / T_star sum = 0 for i in range(0, 3): sum += a[i] * theta ** b[i] pi_subl = math.exp((theta ** -1) * sum) return pi_subl * p_star
0e3f875fc2d249c78a5db6268dcc0df31213a7ff
14,049
def map_key_values(f, dct): """ Like map_with_obj but expects a key value pair returned from f and uses it to form a new dict :param f: Called with a key and value :param dct: :return: """ return from_pairs(values(map_with_obj(f, dct)))
0918ff4ff9ab994b10fe2543dce305f99b7278fb
14,050
def plot_ppc( ax, length_plotters, rows, cols, figsize, animated, obs_plotters, pp_plotters, posterior_predictive, pp_sample_ix, kind, alpha, linewidth, mean, xt_labelsize, ax_labelsize, jitter, total_pp_samples, legend, markersize, animation_kwargs, num_pp_samples, ): """Matplotlib ppc plot.""" if ax is None: fig, axes = _create_axes_grid(length_plotters, rows, cols, figsize=figsize) else: axes = np.ravel(ax) if len(axes) != length_plotters: raise ValueError( "Found {} variables to plot but {} axes instances. They must be equal.".format( length_plotters, len(axes) ) ) if animated: fig = axes[0].get_figure() if not all([ax.get_figure() is fig for ax in axes]): raise ValueError("All axes must be on the same figure for animation to work") for i, ax_i in enumerate(axes): var_name, selection, obs_vals = obs_plotters[i] pp_var_name, _, pp_vals = pp_plotters[i] dtype = posterior_predictive[pp_var_name].dtype.kind # flatten non-specified dimensions obs_vals = obs_vals.flatten() pp_vals = pp_vals.reshape(total_pp_samples, -1) pp_sampled_vals = pp_vals[pp_sample_ix] if kind == "kde": plot_kwargs = {"color": "C5", "alpha": alpha, "linewidth": 0.5 * linewidth} if dtype == "i": plot_kwargs["drawstyle"] = "steps-pre" ax_i.plot([], color="C5", label="Posterior predictive {}".format(pp_var_name)) if dtype == "f": plot_kde( obs_vals, label="Observed {}".format(var_name), plot_kwargs={"color": "k", "linewidth": linewidth, "zorder": 3}, fill_kwargs={"alpha": 0}, ax=ax_i, legend=legend, ) else: bins = get_bins(obs_vals) _, hist, bin_edges = histogram(obs_vals, bins=bins) hist = np.concatenate((hist[:1], hist)) ax_i.plot( bin_edges, hist, label="Observed {}".format(var_name), color="k", linewidth=linewidth, zorder=3, drawstyle=plot_kwargs["drawstyle"], ) pp_densities = [] pp_xs = [] for vals in pp_sampled_vals: vals = np.array([vals]).flatten() if dtype == "f": pp_density, lower, upper = _fast_kde(vals) pp_x = np.linspace(lower, upper, len(pp_density)) pp_densities.append(pp_density) pp_xs.append(pp_x) else: bins = get_bins(vals) _, hist, bin_edges = histogram(vals, bins=bins) hist = np.concatenate((hist[:1], hist)) pp_densities.append(hist) pp_xs.append(bin_edges) if animated: animate, init = _set_animation( pp_sampled_vals, ax_i, dtype=dtype, kind=kind, plot_kwargs=plot_kwargs ) else: if dtype == "f": ax_i.plot(np.transpose(pp_xs), np.transpose(pp_densities), **plot_kwargs) else: for x_s, y_s in zip(pp_xs, pp_densities): ax_i.plot(x_s, y_s, **plot_kwargs) if mean: if dtype == "f": rep = len(pp_densities) len_density = len(pp_densities[0]) new_x = np.linspace(np.min(pp_xs), np.max(pp_xs), len_density) new_d = np.zeros((rep, len_density)) bins = np.digitize(pp_xs, new_x, right=True) new_x -= (new_x[1] - new_x[0]) / 2 for irep in range(rep): new_d[irep][bins[irep]] = pp_densities[irep] ax_i.plot( new_x, new_d.mean(0), color="C0", linestyle="--", linewidth=linewidth, zorder=2, label="Posterior predictive mean {}".format(pp_var_name), ) else: vals = pp_vals.flatten() bins = get_bins(vals) _, hist, bin_edges = histogram(vals, bins=bins) hist = np.concatenate((hist[:1], hist)) ax_i.plot( bin_edges, hist, color="C0", linewidth=linewidth, label="Posterior predictive mean {}".format(pp_var_name), zorder=2, linestyle="--", drawstyle=plot_kwargs["drawstyle"], ) ax_i.tick_params(labelsize=xt_labelsize) ax_i.set_yticks([]) elif kind == "cumulative": drawstyle = "default" if dtype == "f" else "steps-pre" ax_i.plot( *_empirical_cdf(obs_vals), color="k", linewidth=linewidth, label="Observed {}".format(var_name), drawstyle=drawstyle, zorder=3 ) if animated: animate, init = _set_animation( pp_sampled_vals, ax_i, kind=kind, alpha=alpha, drawstyle=drawstyle, linewidth=linewidth, ) else: pp_densities = np.empty((2 * len(pp_sampled_vals), pp_sampled_vals[0].size)) for idx, vals in enumerate(pp_sampled_vals): vals = np.array([vals]).flatten() pp_x, pp_density = _empirical_cdf(vals) pp_densities[2 * idx] = pp_x pp_densities[2 * idx + 1] = pp_density ax_i.plot( *pp_densities, alpha=alpha, color="C5", drawstyle=drawstyle, linewidth=linewidth ) ax_i.plot([], color="C5", label="Posterior predictive {}".format(pp_var_name)) if mean: ax_i.plot( *_empirical_cdf(pp_vals.flatten()), color="C0", linestyle="--", linewidth=linewidth, drawstyle=drawstyle, label="Posterior predictive mean {}".format(pp_var_name) ) ax_i.set_yticks([0, 0.5, 1]) elif kind == "scatter": if mean: if dtype == "f": plot_kde( pp_vals.flatten(), plot_kwargs={ "color": "C0", "linestyle": "--", "linewidth": linewidth, "zorder": 3, }, label="Posterior predictive mean {}".format(pp_var_name), ax=ax_i, legend=legend, ) else: vals = pp_vals.flatten() bins = get_bins(vals) _, hist, bin_edges = histogram(vals, bins=bins) hist = np.concatenate((hist[:1], hist)) ax_i.plot( bin_edges, hist, color="C0", linewidth=linewidth, label="Posterior predictive mean {}".format(pp_var_name), zorder=3, linestyle="--", drawstyle="steps-pre", ) _, limit = ax_i.get_ylim() limit *= 1.05 y_rows = np.linspace(0, limit, num_pp_samples + 1) jitter_scale = y_rows[1] - y_rows[0] scale_low = 0 scale_high = jitter_scale * jitter obs_yvals = np.zeros_like(obs_vals, dtype=np.float64) if jitter: obs_yvals += np.random.uniform(low=scale_low, high=scale_high, size=len(obs_vals)) ax_i.plot( obs_vals, obs_yvals, "o", color="C0", markersize=markersize, alpha=alpha, label="Observed {}".format(var_name), zorder=4, ) if animated: animate, init = _set_animation( pp_sampled_vals, ax_i, kind=kind, height=y_rows.mean() * 0.5, markersize=markersize, ) else: for vals, y in zip(pp_sampled_vals, y_rows[1:]): vals = np.ravel(vals) yvals = np.full_like(vals, y, dtype=np.float64) if jitter: yvals += np.random.uniform(low=scale_low, high=scale_high, size=len(vals)) ax_i.plot( vals, yvals, "o", zorder=2, color="C5", markersize=markersize, alpha=alpha ) ax_i.plot([], "C5o", label="Posterior predictive {}".format(pp_var_name)) ax_i.set_yticks([]) if var_name != pp_var_name: xlabel = "{} / {}".format(var_name, pp_var_name) else: xlabel = var_name ax_i.set_xlabel(make_label(xlabel, selection), fontsize=ax_labelsize) if legend: if i == 0: ax_i.legend(fontsize=xt_labelsize * 0.75) else: ax_i.legend([]) if animated: ani = animation.FuncAnimation( fig, animate, np.arange(0, num_pp_samples), init_func=init, **animation_kwargs ) return axes, ani else: return axes
83d01e6b9f9f170b9e8dc2ff3cf95916106196c5
14,051
import importlib def load_module(name): """Load the named module without registering it in ``sys.modules``. Parameters ---------- name : string Module name Returns ------- mod : module Loaded module """ spec = importlib.util.find_spec(name) mod = importlib.util.module_from_spec(spec) mod.__spec__ = spec mod.__loader__ = spec.loader spec.loader.exec_module(mod) return mod
762c99efcc17f9f1d1659cdae52989c9cfa9423a
14,052
def make_no_graph_input_fn(graph_data, args, treatments, outcomes, filter_test=False): """ A dataset w/ all the label processing, but no graph structure. Used at evaluation and prediction time """ def input_fn(): vertex_dataset = tf.data.Dataset.from_tensor_slices( ({'vertex_index': np.expand_dims(np.array(range(graph_data.num_vertices)), 1), 'is_positive': np.expand_dims(np.array(range(graph_data.num_vertices)), 1)},)) data_processing = adapters.compose( adapters.append_vertex_labels(treatments, 'treatment'), adapters.append_vertex_labels(outcomes, 'outcome'), adapters.make_split_vertex_labels( graph_data.num_vertices, args.proportion_censored, np.random.RandomState(args.seed)), adapters.format_features_labels()) dataset = vertex_dataset.map(data_processing, 8) if filter_test: def filter_test_fn(features, labels): return tf.equal(tf.squeeze(features['in_test']), 1) dataset = dataset.filter(filter_test_fn) batch_size = args.batch_size dataset = dataset.batch(batch_size=batch_size, drop_remainder=False) return dataset return input_fn
8526a64b55608f986ef4b000b2cb75a99160e1a0
14,053
import torch def compute_gradient_penalty(D, real_samples, fake_samples): """Calculates the gradient penalty loss for WGAN GP""" # Random weight term for interpolation between real and fake samples alpha = torch.tensor(np.random.random((real_samples.size(0), 1, 1, 1,1)), dtype = real_samples.dtype, device = real_samples.device) # Get random interpolation between real and fake samples #print(alpha.shape, fake_samples.shape) interpolates = (alpha * real_samples + ((1 - alpha) * fake_samples)).requires_grad_(True) d_interpolates = D(interpolates) fake = Variable(Tensor(d_interpolates.shape[0], 1).fill_(1.0), requires_grad=False).view(-1) #print(d_interpolates.shape, interpolates.shape, fake.shape) # Get gradient w.r.t. interpolates gradients = autograd.grad( outputs=d_interpolates, inputs=interpolates, grad_outputs=fake, create_graph=True, retain_graph=True, only_inputs=True, )[0] gradients = gradients.view(gradients.size(0), -1) gradient_penalty = ((gradients.norm(2, dim=1) - 1) ** 2).mean() return gradient_penalty
110e4854284be694c0813fd5fc71d2ff51d3b6d8
14,054
def tab(num): """ Get tab indentation. Parameters ---------- num : int indentation depth """ return num * 4 * " "
39311a9f28aa70f105271432916745dddeb0b46a
14,056
def merge_sort(lst): """Sorts the input list into ascending order.""" if len(lst) < 2: return lst half = len(lst) // 2 # This variant of merge sort uses O(N * log N) memory, since list slicing in Python 3 creates a copy. return merge(merge_sort(lst[:half]), merge_sort(lst[half:]))
e8cada6428fde5aa430497c3c562dc4361c11c1e
14,057
from typing import Optional def get_top_experts_per_item_dispatcher(gates: Array, name: str, num_selected_experts: int, batch_priority: bool, capacity: Optional[int] = None, capacity_factor: Optional[float] = None, **dispatcher_kwargs) -> BaseDispatcher: """Returns a dispatcher implementing Top-Experts-Per-Item routing. For each item, the `num_selected_experts` experts with the largest gating score are selected in a greedy fashion. However, because each expert has a fixed `capacity`, if more items than `capacity` select a given expert some of the assignments will be ignored. All top-1 choices have priority over top-2 choices and so on. In addition, the choices that are ignored also depend on `batch_priority`. If it is False, the "Vanilla" algorithm is used, meaning that items in earlier positions of the array have priority. If it is True, the "Batch Priority Routing" algorithm (see https://arxiv.org/abs/2106.05974) is used, which gives more priority to the items whose largest score is greater. Args: gates: (S, E) array with the gating values for each (item, expert). These values will also be used as combine_weights for the selected pairs. name: String with the type of dispatcher to use (supported values are "einsum" and "indices"). num_selected_experts: Maximum number of experts to select per each item (K). batch_priority: Whether to use batch priority routing or not. capacity: If given, maximum number of items processed by each expert. Either this or `capacity_factor` must be given. capacity_factor: If given, sets the `capacity` to this factor of S * K / E. Either this or `capacity` must be given. **dispatcher_kwargs: Additional arguments for the dispatcher object. Returns: A dispatcher. """ if (capacity is None) == (capacity_factor is None): raise ValueError( "You must specify either 'capacity' or 'capacity_factor', and not both." f" Current values are capacity = {capacity!r}, " f"capacity_factor = {capacity_factor!r}") if not capacity: group_size, num_experts = gates.shape capacity = _compute_capacity( # Target number of tokens to split among the `num_experts` experts. num_tokens=group_size * num_selected_experts, num_experts=num_experts, capacity_factor=capacity_factor) fn_map = { "einsum": _get_top_experts_per_item_einsum_dispatcher, "indices": _get_top_experts_per_item_expert_indices_dispatcher, } if name not in fn_map: raise ValueError(f"Unknown dispatcher type: {name!r}") return fn_map[name](gates, num_selected_experts, capacity, batch_priority, **dispatcher_kwargs)
94e090bc3de59fd03903151fa2e34b2daca50198
14,058
def find_files_list(*args, **kwargs): """ Returns a list of find_files generator""" return list(find_files(*args, **kwargs))
b51595dbc75308c583b75c3151c41ea84aafaeaf
14,060
def bool_from_string(subject, strict=False, default=False): """Interpret a subject as a boolean. A subject can be a boolean, a string or an integer. Boolean type value will be returned directly, otherwise the subject will be converted to a string. A case-insensitive match is performed such that strings matching 't','true', 'on', 'y', 'yes', or '1' are considered True and, when `strict=False`, anything else returns the value specified by 'default'. Useful for JSON-decoded stuff and config file parsing. If `strict=True`, unrecognized values, including None, will raise a ValueError which is useful when parsing values passed in from an API call. Strings yielding False are 'f', 'false', 'off', 'n', 'no', or '0'. """ if isinstance(subject, bool): return subject if not isinstance(subject, str): subject = str(subject) lowered = subject.strip().lower() if lowered in TRUE_STRINGS: return True elif lowered in FALSE_STRINGS: return False elif strict: acceptable = ", ".join( "'%s'" % s for s in sorted(TRUE_STRINGS + FALSE_STRINGS)) msg = ("Unrecognized value '%(val)s', acceptable values are:" " %(acceptable)s") % {"val": subject, "acceptable": acceptable} raise ValueError(msg) else: return default
b3f7728eb5fdd4c660144279200daabd25034bf3
14,061
import logging def get_msg_timeout(options): """Reads the configured sbd message timeout from each device. Key arguments: options -- options dictionary Return Value: msg_timeout (integer, seconds) """ # get the defined msg_timeout msg_timeout = -1 # default sbd msg timeout cmd = generate_sbd_command(options, "dump") (return_code, out, err) = run_command(options, cmd) for line in out.split("\n"): if len(line) == 0: continue if "msgwait" in line: tmp_msg_timeout = int(line.split(':')[1]) if -1 != msg_timeout and tmp_msg_timeout != msg_timeout: logging.warn(\ "sbd message timeouts differ in different devices") # we only save the highest timeout if tmp_msg_timeout > msg_timeout: msg_timeout = tmp_msg_timeout return msg_timeout
4b2df955ac796da38b5b9fa176477fec3c0470a2
14,063
import requests import logging def odata_getone(url, headers): """ Get a single object from Odata """ r = requests.get(url, headers=headers) if not r.ok: logging.warning(f"Fetch url {url} hit {r.status_code}") return None rjson = r.json() if 'error' in rjson: logging.warning(f"Fetching of {url} returned error {r.text}") return None return rjson
5d6c668845132d821f175a2e8c1a924492a9eb2f
14,064
import json def _tokenizer_from_json(json_string): """Parses a JSON tokenizer configuration file and returns a tokenizer instance. # Arguments json_string: JSON string encoding a tokenizer configuration. # Returns A Keras Tokenizer instance """ tokenizer_config = json.loads(json_string) config = tokenizer_config.get('config') word_counts = json.loads(config.pop('word_counts')) word_docs = json.loads(config.pop('word_docs')) index_docs = json.loads(config.pop('index_docs')) # Integer indexing gets converted to strings with json.dumps() index_docs = {int(k): v for k, v in index_docs.items()} index_word = json.loads(config.pop('index_word')) index_word = {int(k): v for k, v in index_word.items()} word_index = json.loads(config.pop('word_index')) tokenizer = tf.keras.preprocessing.text.Tokenizer(**config) tokenizer.word_counts = word_counts tokenizer.word_docs = word_docs tokenizer.index_docs = index_docs tokenizer.word_index = word_index tokenizer.index_word = index_word return tokenizer
665485d9faad1352927879e81c381dd81b77b5c5
14,065
from typing import List from pathlib import Path def get_all_pip_requirements_files() -> List[Path]: """ If the root level hi-ml directory is available (e.g. it has been installed as a submodule or downloaded directly into a parent repo) then we must add it's pip requirements to any environment definition. This function returns a list of the necessary pip requirements files. If the hi-ml root directory does not exist (e.g. hi-ml has been installed as a pip package, this is not necessary and so this function returns an empty list.) :return: An list list of pip requirements files in the hi-ml and hi-ml-azure packages if relevant, or else an empty list """ files = [] if paths.is_himl_used_from_git_repo(): git_root = paths.git_repo_root_folder() for folder in [Path("hi-ml") / "run_requirements.txt", Path("hi-ml-azure") / "run_requirements.txt"]: files.append(git_root / folder) return files
7ce5a327af6961ad23555ba5334246b75d8bd782
14,066
def load_data(dataset_name: str, split: str) -> object: """ Load the data from datasets library and convert to dataframe Parameters ---------- dataset_name : str name of the dataset to be downloaded. split : str type of split (train or test). Returns ------- object dataframe. """ data = load_dataset(dataset_name, split=split) logger.info(split + " dataset downloaded!") return data
f6dc374d8c12fa74b9f390a1766af369791bc3b2
14,067
def horizontal_south_link_neighbor(shape, horizontal_ids, bad_index_value=-1): """ID of south horizontal link neighbor. Parameters ---------- shape : tuple of int Shape of grid of nodes. horizontal_ids : array of int Array of all horizontal link ids *must be of len(horizontal_links)*. bad_index_value: int, optional Value assigned to inactive indicies in the array. Returns ------- ndarray : Link IDs of south horizontal neighbor links. Length of number_of_horizontal_links. Examples -------- The following example uses this grid:: *--27-->*--28-->*--29-->*--30-->* *--18-->*--19-->*--20-->*--21-->* *---9-->*--10-->*--11-->*--12-->* *---0-->*---1-->*---2-->*---3-->* .. note:: Only horizontal links are shown. When no neighbor is found, bad_index_value is returned. ``*`` indicates nodes Numeric values correspond to the horizontal IDs. >>> from landlab import RasterModelGrid >>> from landlab.components.overland_flow._links import (horizontal_link_ids, ... horizontal_north_link_neighbor) >>> rmg = RasterModelGrid((4, 5)) >>> horizontal_links = horizontal_link_ids(rmg.shape).flatten() >>> horizontal_south_link_neighbor(rmg.shape, horizontal_links) array([-1, -1, -1, -1, 0, 1, 2, 3, 9, 10, 11, 12, 18, 19, 20, 21]) """ links = np.roll(horizontal_ids.reshape((shape[0], shape[1] - 1)), 1, axis=0) links[0, :] = bad_index_value return links.reshape(-1)
413fdd5a4af8a0e77b0c3ab191bac60f2ba2cc26
14,068
def _get_output(algorithm, iport=0, iconnection=0, oport=0, active_scalar=None, active_scalar_field='point'): """A helper to get the algorithm's output and copy input's vtki meta info""" ido = algorithm.GetInputDataObject(iport, iconnection) data = wrap(algorithm.GetOutputDataObject(oport)) data.copy_meta_from(ido) if active_scalar is not None: data.set_active_scalar(active_scalar, preference=active_scalar_field) return data
dd70cbb1ee6c2d6ed085fc589c24e88fc62a17ab
14,069