content
stringlengths
35
762k
sha1
stringlengths
40
40
id
int64
0
3.66M
import requests def move_release_to_another_collection_folder(user: UserWithUserTokenBasedAuthentication, username: str, source_folder_id: int, destination_folder_id: int, release_id: int, instance_id: int ) -> requests.models.Response: """ Move the instance of an release to another folder. User Authentication needed. Parameters: user: user object (required) username: string (required) -> The username of the collection you are trying to retrieve. source_folder_id: number (required) -> The ID of the source folder. destination_folder_id: number (required) -> The ID of the destination folder. release_id: number (required) -> The ID of the release you are modifying. instance_id: number (required) -> The ID of the instance. """ url = f"{USERS_URL}/{username}/collection/folders/{source_folder_id}/releases/{release_id}/instances/{instance_id}" params = user.params headers = user.headers data = {"folder_id": destination_folder_id} return requests.post(url, headers=headers, params=params, json=data)
47434146219d323b176db76905a6b5ffb4c25955
11,998
def load_region_maps(region_file): """Extracts creates a map from PHI region id to a continuous region id.""" region_ids = [] # Used mainly for eval region_ids_inv = {} # Used in data loader region_names_inv = {} # Used in eval for l in region_file.read().strip().split('\n'): tok_name_id, _ = l.strip().split(';') # second field is frequency, unused region_name, region_id = tok_name_id.split('_') region_name = region_name.strip() region_id = int(region_id) # Ignore unknown regions: if ((region_name == 'Unknown Provenances' and region_id == 884) or (region_name == 'unspecified subregion' and region_id == 885) or (region_name == 'unspecified subregion' and region_id == 1439)): continue region_ids.append(region_id) region_ids_inv[region_id] = len(region_ids_inv) region_names_inv[len(region_names_inv)] = region_name return { 'ids': region_ids, 'ids_inv': region_ids_inv, 'names_inv': region_names_inv }
201240ce485b4039b12741bb03c547de7976c99a
11,999
def _find_nearest_idx(a, a0): """Element idx in nd array `a` closest to the scalar value `a0`.""" if isinstance(a, list): a = np.array(a) idx = np.abs(a - a0).argmin() return idx
c681b96ee8d3629daacd15650428a36041189739
12,000
def does_user_have_product(product, username): """Return True/False if a user has the specified product.""" try: instance = adobe_api.AdobeAPIObject(username) except adobe_api.AdobeAPINoUserException: return False return instance.has_product(product)
eda5a4a983fac8fa089c575788982685836b4b87
12,002
from datetime import datetime def items_for_result(cl, result, form): """ Generate the actual list of data. """ def link_in_col(is_first, field_name, cl): if cl.list_display_links is None: return False if is_first and not cl.list_display_links: return True return field_name in cl.list_display_links first = True pk = cl.lookup_opts.pk.attname for field_index, field_name in enumerate(cl.list_display): empty_value_display = cl.model_admin.get_empty_value_display() row_classes = ['field-%s' % _coerce_field_name(field_name, field_index)] try: f, attr, value = lookup_field(field_name, result, cl.model_admin) except ObjectDoesNotExist: result_repr = empty_value_display else: empty_value_display = getattr(attr, 'empty_value_display', empty_value_display) if f is None or f.auto_created: if field_name == 'action_checkbox': row_classes = ['action-checkbox'] boolean = getattr(attr, 'boolean', False) result_repr = display_for_value(value, empty_value_display, boolean) if isinstance(value, (datetime.date, datetime.time)): row_classes.append('nowrap') else: if isinstance(f.remote_field, models.ManyToOneRel): field_val = getattr(result, f.name) if field_val is None: result_repr = empty_value_display else: result_repr = field_val else: result_repr = display_for_field(value, f, empty_value_display) if isinstance(f, (models.DateField, models.TimeField, models.ForeignKey)): row_classes.append('nowrap') elif isinstance(f, (models.BooleanField)): row_classes.append('checkmark-td') if value: row_classes.append('positive') else: row_classes.append('negative') elif isinstance(f, models.FileField): row_classes.append('file-td') row_class = mark_safe(' class="%s"' % ' '.join(row_classes)) # If list_display_links not defined, add the link tag to the first field if link_in_col(first, field_name, cl): table_tag = 'td' first = False # Display link to the result's change_view if the url exists, else # display just the result's representation. try: url = cl.url_for_result(result) except NoReverseMatch: link_or_text = result_repr else: url = add_preserved_filters({'preserved_filters': cl.preserved_filters, 'opts': cl.opts}, url) # Convert the pk to something that can be used in Javascript. # Problem cases are non-ASCII strings. if cl.to_field: attr = str(cl.to_field) else: attr = pk value = result.serializable_value(attr) link_or_text = result_repr # format_html( # '<a href="{}"{}>{}</a>', # url, # format_html( # ' data-popup-opener="{}"', value # ) if cl.is_popup else '', # result_repr) yield format_html('<{}{}>{}</{}>', table_tag, row_class, link_or_text, table_tag) else: # By default the fields come from ModelAdmin.list_editable, but if we pull # the fields out of the form instead of list_editable custom admins # can provide fields on a per request basis if (form and field_name in form.fields and not ( field_name == cl.model._meta.pk.name and form[cl.model._meta.pk.name].is_hidden)): bf = form[field_name] result_repr = mark_safe(str(bf.errors) + str(bf)) yield format_html('<td{}>{}</td>', row_class, result_repr) info = (result._meta.app_label, result._meta.model_name) admin_url = reverse('admin:%s_%s_change' % info, args=(result.pk,)) yield format_html(f'<td><a href={admin_url}></a></td>') if form and not form[cl.model._meta.pk.name].is_hidden: yield format_html('<td>{}</td>', form[cl.model._meta.pk.name])
99ec81a16f833d095de880f459dcd97dce056ccd
12,003
def system_to_ntp_time(timestamp): """Convert a system time to a NTP time. Parameters: timestamp -- timestamp in system time Returns: corresponding NTP time """ return timestamp + NTP_DELTA
2f0081e6c473b05302a5c08dc1818cea0c500caa
12,004
def bcewithlogits_loss(weight=None, size_average=None, reduce=None, reduction='mean', pos_weight=None): """Creates a criterion that combines a `Sigmoid` layer and the `BCELoss` in one single class Arguments: weights(Tensor, optional) : A manual rescaling weight given to the loss of each batch element. size_average (bool, optional) : By default, the losses are averaged over each loss element in the batch. Note that for some losses, there are multiple elements per sample. If the field size_average is set to False, the losses are instead summed for each minibatch. Ignored when reduce is False. (default: True) reduce (bool, optional) : By default, the losses are averaged or summed over observations for each minibatch depending on size_average. When reduce is False, returns a loss per batch element instead and ignores size_average. (default: True) reduction (string, optional) : Specifies the reduction to apply to the output: 'none' | 'mean' | 'sum'. (default: 'mean') pos_weight (Tensor, optional) : a weight of positive examples. Must be a vector with length equal to the number of classes. Returns: BCEWithLogitsLoss """ return nn.BCEWithLogitsLoss(weight, size_average, reduce, reduction, pos_weight)
57c125abb1df39d6e8b77bc741b31aa9bbaba9fc
12,005
from typing import Optional def transition_matrix( adata: AnnData, vkey: str = "velocity", backward: bool = False, weight_connectivities: Optional[float] = None, sigma_corr: Optional[float] = None, scale_by_variances: bool = False, var_key: Optional[str] = "velocity_graph_uncertainties", var_min: float = 0.1, use_negative_cosines: bool = True, self_transitions: bool = False, perc: Optional[float] = None, threshold: Optional[float] = None, density_normalize: bool = True, ) -> KernelExpression: """ Compute a transition matrix based on a combination of RNA Velocity and transcriptomic similarity. To learn more about the way in which the transition matrices are computed, see :class:`cellrank.tl.kernels.VelocityKernel` for the velocity-based transition matrix and :class:`cellrank.tl.kernels.ConnectivityKernel` for the transcriptomic-similarity-based transition matrix. Params ------ adata: :class:`anndata.AnnData` Annotated data object. vkey Key from :paramref:`adata` `.layers` to access the velocities. backward Direction of the process. weight_connectivities Weight given to transcriptomic similarities as opposed to velocities. Must be in `[0, 1]`. use_negative_cosines Whether to use correlations with cells that have an angle > 90 degree with :math:`v_i`. sigma_corr Scaling parameter for the softmax. Larger values will lead to a more concentrated distribution (more peaked). Default is to use 1 / median_velocity_correlation. scale_by_variances Use velocity variances to scale the softmax. var_key Key from `adata.uns` to acess velocity variances. var_min Variances are clipped to this value at the lower end. self_transitions Assigns elements to the diagonal of the velocity-graph based on a confidence measure perc Quantile of the distribution of exponentiated velocity correlations. This is used as a threshold to set smaller values to zero. threshold Set a threshold to remove exponentiated velocity correlations smaller than :paramref:`threshold`. density_normalize Whether to use density correction when computing the transition probabilities. Density correction is done as by [Haghverdi16]_. Returns ------- :class:`cellrank.tl.KernelExpression` A kernel expression object. """ # initialise the velocity kernel and compute transition matrix vk = VelocityKernel( adata, backward=backward, vkey=vkey, use_negative_cosines=use_negative_cosines, var_key=var_key, ) vk.compute_transition_matrix( sigma_corr=sigma_corr, scale_by_variances=scale_by_variances, var_min=var_min, self_transitions=self_transitions, perc=perc, threshold=threshold, density_normalize=density_normalize, ) if weight_connectivities is not None: if 0 < weight_connectivities < 1: logg.info( f"Using a connectivity kernel with weight `{weight_connectivities}`" ) ck = ConnectivityKernel(adata, backward=backward).compute_transition_matrix( density_normalize=density_normalize ) final = (1 - weight_connectivities) * vk + weight_connectivities * ck elif weight_connectivities == 0: final = vk elif weight_connectivities == 1: final = ConnectivityKernel( adata, backward=backward ).compute_transition_matrix(density_normalize=density_normalize) else: raise ValueError( f"The parameter `weight_connectivities` must be in range `[0, 1]`, found `{weight_connectivities}`." ) else: final = vk final.write_to_adata() return final
fde82fe71e6e63a5842cf041de60afa10316442d
12,006
from typing import Union from typing import Any from datetime import datetime def create_access_token( subject: Union[str, Any], expires_delta: timedelta = None, is_superuser: bool = False ) -> str: """ generate jwt token :param subject: subject need to save in token :param expires_delta: expires time :return: token """ if expires_delta: expire = datetime.utcnow() + expires_delta else: expire = datetime.utcnow() + timedelta(minutes=settings.ACCESS_TOKEN_EXPIRE) to_encode = {"exp": expire, "sub": str(subject)} # superuser token can always access if is_superuser: to_encode.pop("exp") encoded_jwt = jwt.encode( to_encode, settings.SECRET_KEY, algorithm=settings.TOKEN_ALGORITHMS ) return encoded_jwt
b07c94ae32311f71737daec6e168ef9deb12ef38
12,007
import numpy def transparency(wavelength): """Returns the sky transparency in [0, 1] for wavelength in [m]""" wavelength = wavelength / 10**-9 idx = numpy.argmin(numpy.abs( data_transparency['wavelength'] * 1000 - wavelength)) return data_transparency['fraction'][idx]
168691af8b8772203493df146b4b9629100e1002
12,008
def parse_all_moves(moves_string): """ Parse a move string """ moves = [] if not moves_string: raise ValueError("No Moves Given") moves_strings = moves_string.split(" ") for move_string in moves_strings: move = CubeMove.parse(move_string) moves.append(move) return moves
ddc063574b8cfe5a2a7bb604033976e505f85df2
12,010
import itertools def merge_samples(samples, nchannels, weight_table=None): """ Merges two samples :param samples: the samples, must have the same sample rate and channel count :param nchannels: the number of channels :param weight_table: adds a specific weight to each sample when merging the sound :return: the merged sample """ zipped = itertools.zip_longest(*samples, fillvalue=(0 for _ in range(nchannels))) mapped = map(lambda x: (__weighted_avg(itertools.islice(itertools.chain(*x), c, len(samples), nchannels), weight_table, len(samples)) for c in range(nchannels)), zipped) return mapped
dcae84c506ea13cc130c3846cbe250d59b6f5115
12,011
def get_spam_info(msg: Message, max_score=None) -> (bool, str): """parse SpamAssassin header to detect whether a message is classified as spam. Return (is spam, spam status detail) The header format is ```X-Spam-Status: No, score=-0.1 required=5.0 tests=DKIM_SIGNED,DKIM_VALID, DKIM_VALID_AU,RCVD_IN_DNSWL_BLOCKED,RCVD_IN_MSPIKE_H2,SPF_PASS, URIBL_BLOCKED autolearn=unavailable autolearn_force=no version=3.4.2``` """ spamassassin_status = msg["X-Spam-Status"] if not spamassassin_status: return False, "" return get_spam_from_header(spamassassin_status, max_score=max_score)
e11f806a8b8007d25898545b9b16f9ec2207fa89
12,012
def _check(isamAppliance, id=None): """ Check if the last created user has the exact same id or id exists :param isamAppliance: :param comment: :return: """ ret_obj = get_all(isamAppliance) if id != None: for users in ret_obj['data']: if users['id'] == id: return True return False
36ccb79bf303a6cf0c3eb7a33e7b2c8c1d1090d7
12,013
def plot_boxes_on_image(image, boxes, color=(0,255,255), thickness=2): """ Plot the boxes onto the image. For the boxes a center, size representation is expected: [cx, cy, w, h]. :param image: The image onto which to draw. :param boxes: The boxes which shall be plotted. :return: An image with the boxes overlayed over the image. """ for box in boxes: start_point = tuple([int(x) for x in box[:2] - box[2:] // 2]) end_point = tuple([int(x) for x in box[:2] + box[2:] // 2]) image = cv2.rectangle(image, start_point, end_point, color, thickness) return image
9bd58bb72e8b37b446f342eb145203af50175732
12,015
import re def get_text(markup: str) -> str: """Remove html tags, URLs and spaces using regexp""" text = re.sub(r"<.*?>", "", markup) url_pattern = r"(http|ftp)s?://(?:[a-zA-Z]|[0-9]|[$-_@.&#+]|[!*\(\),]|\ (?:%[0-9a-fA-F][0-9a-fA-F]))+" text = re.sub(url_pattern, "", text) text = re.sub(r"\s+", " ", text) return text.strip() def preprocess_token(token: Token) -> str: """Remove grave accents and return lemmatized token lower case""" result = remplace_accents(token.lemma_.strip().lower()) return result def is_token_allowed(token: Token) -> bool: """No Stop words, No Punctuations or len token >= 3""" # Avoid token: inmiscuyéndose lemma_ "inmiscuir el" if ( not token or token.is_space or token.is_stop or token.is_punct or len(token) < 3 or " " in token.lemma_.strip() ): return False return True
76b1c86cd852f82fecaa6011aa5e828bae0b4b45
12,016
def intercept_channel(channel, *interceptors): """Intercepts a channel through a set of interceptors. This is an EXPERIMENTAL API. Args: channel: A Channel. interceptors: Zero or more objects of type UnaryUnaryClientInterceptor, UnaryStreamClientInterceptor, StreamUnaryClientInterceptor, or StreamStreamClientInterceptor. Interceptors are given control in the order they are listed. Returns: A Channel that intercepts each invocation via the provided interceptors. Raises: TypeError: If interceptor does not derive from any of UnaryUnaryClientInterceptor, UnaryStreamClientInterceptor, StreamUnaryClientInterceptor, or StreamStreamClientInterceptor. """ from grpc import _interceptor # pylint: disable=cyclic-import return _interceptor.intercept_channel(channel, *interceptors)
0f56be58125afcad9afd7aefd5ba55c6ca3b2970
12,017
def create_static_ip(compute, project, region, name): """Create global static IP :param compute: GCE compute resource object using googleapiclient.discovery :param project: string, GCE Project Id :param region: string, GCE region :param name: string, Static IP name :return: Operation information :rtype: dict """ return compute.addresses().insert(project=project, region=region, body={ 'name': name, }).execute()
9f2f608ab3878c1534b3af47421866411d1ca523
12,018
import torch def ctc_loss(encoder_outputs, labels, frame_lens, label_lens, reduction, device): """ All sorts of stupid restrictions from documentation: In order to use CuDNN, the following must be satisfied: 1. targets must be in concatenated format, 2. all input_lengths must be T. 3. blank=0 4. target_lengths \leq 256, 5. the integer arguments must be of dtype torch.int32. """ assert (frame_lens[1:] - frame_lens[:-1] >= 0).all() # assert in increasing len # req (5) labels, frame_lens, label_lens = transform_data(lambda data: torch.tensor(data, dtype=torch.int32).to(device), labels, frame_lens, label_lens) # req (4) skipped_indices, working_indices = filter_data_on_len(label_lens, max_len=256) if len(skipped_indices) > 0: print('some labels too long, unable to compute CTC...') if len(working_indices) == 0: print('skipping entire batch') return None print('skipping indices in batch: ' + str(skipped_indices)) working_indices = torch.LongTensor(working_indices).to(device) (encoder_outputs, labels, frame_lens, label_lens) = transform_data(lambda data: data.index_select(0, working_indices), encoder_outputs, labels, frame_lens, label_lens) # frame_lens 1, 1, 2, 3, 3, 3, 4 # frame_len[1:] 1, 2, 3, 3, 3, 4 # frame_lebs[:-1] 1, 1, 2, 3, 3, 3 # diff 0, 1, 1, 0, 0, 1 # nonzero_idx 1, 2, 5 # change_points 2, 3, 6 change_points = (frame_lens[1:] - frame_lens[:-1]).nonzero().squeeze(dim=-1) + 1 change_points = torch.cat([change_points, torch.LongTensor([len(frame_lens)]).to(device)]) # add last portion # req 2 prev_change_point = 0 total_loss = 0 count = 0 global_encoder_outputs, global_labels, global_frame_lens, global_label_lens = encoder_outputs, labels, frame_lens, label_lens for change_point in change_points: # we call this a minibatch minibatch_size = len(frame_lens) (encoder_outputs, labels, frame_lens, label_lens) = transform_data(lambda data: data[prev_change_point:change_point], global_encoder_outputs, global_labels, global_frame_lens, global_label_lens) # req 3; moves up so that we leave idx=0 to blank labels = labels + 1 # req 1 concat_labels = torch.cat([label[:label_len] for label, label_len in zip(labels, label_lens)]) loss = F.ctc_loss(encoder_outputs.transpose(0, 1).cpu(), concat_labels.cpu(), frame_lens.cpu(), label_lens.cpu(), blank=0, reduction=reduction) if torch.isinf(loss): print('inf CTC loss occurred...') skipped_indices, working_indices = ctc_fallback(encoder_outputs, labels, frame_lens, label_lens, 0) if len(working_indices) == 0: print('skipping the entire minibatch') continue print('skipping indices in minibatch: ' + str(skipped_indices)) working_indices = torch.LongTensor(working_indices).to(device) (encoder_outputs, labels, frame_lens, label_lens) = transform_data(lambda data: data.index_select(0, working_indices), encoder_outputs, labels, frame_lens, label_lens) concat_labels = torch.cat([label[:label_len] for label, label_len in zip(labels, label_lens)]) loss = F.ctc_loss(encoder_outputs.transpose(0, 1).cpu(), concat_labels.cpu(), frame_lens.cpu(), label_lens.cpu(), blank=0, reduction=reduction) minibatch_size = len(working_indices) if reduction == 'mean': loss *= minibatch_size count += minibatch_size total_loss += loss prev_change_point = change_point if total_loss == 0: # all data points failed return None return total_loss / count if reduction == 'mean' else total_loss
9907e1890669da7843efea080f5da51f64a82c1a
12,019
import re def expand_parameters(host, params): """Expand parameters in hostname. Examples: * "target{N}" => "target1" * "{host}.{domain} => "host01.example.com" """ pattern = r"\{(.*?)\}" def repl(match): param_name = match.group(1) return params[param_name] return re.sub(pattern, repl, host)
04f62924fdc77b02f3a393e5cc0c5382d1d4279a
12,020
import math import time def search_s1(saturation, size, startTime): """ First stage for sequential adsorption. Returns list of circles, current saturation, list of times and list of saturations. Keyword arguments: size -- radius of single circle saturation -- max saturation startTime -- start time of algorithm """ D = size*2 rC = size*5 com_sat = 0 N = 0 ntimeList = [] satList = [] circles = [plt.Circle((np.random.rand(),np.random.rand()), size)] while(com_sat < saturation and N <= 1000): N += 1 newX = np.random.rand() newY = np.random.rand() neighborList = neighbors(newX, newY, circles, rC) if len(neighborList) != 0: for e in neighborList: circleX = circles[e].get_center()[0] circleY = circles[e].get_center()[1] if (math.sqrt((newX - circleX)**2 + (newY - circleY)**2) < D or math.sqrt((newX - circleX-V)**2 + (newY - circleY)**2) < D or math.sqrt((newX - circleX+V)**2 + (newY - circleY)**2) < D or math.sqrt((newX - circleX)**2 + (newY - circleY-V)**2) < D or math.sqrt((newX - circleX)**2 + (newY - circleY+V)**2) < D or math.sqrt((newX - circleX+V)**2 + (newY - circleY+V)**2) < D or math.sqrt((newX - circleX-V)**2 + (newY - circleY+V)**2) < D or math.sqrt((newX - circleX+V)**2 + (newY - circleY-V)**2) < D or math.sqrt((newX - circleX-V)**2 + (newY - circleY-V)**2) < D): collision = 1 break else: collision = 0 if (collision == 0): circles.append(plt.Circle((newX, newY), size)) com_sat = math.pi * size**2 * len(circles) * 100 ntimeList.append(time.time() - startTime) satList.append(com_sat) N = 0 else: circles.append(plt.Circle((newX, newY), size)) return circles, com_sat, satList, ntimeList
386909b285a5504a075f496edeb6e45bb41b6bc3
12,021
def draw_labeled_bounding_boxes(img, labeled_frame, num_objects): """ Starting from labeled regions, draw enclosing rectangles in the original color frame. """ # Iterate through all detected cars for car_number in range(1, num_objects + 1): # Find pixels with each car_number label value rows, cols = np.where(labeled_frame == car_number) # Find minimum enclosing rectangle x_min, y_min = np.min(cols), np.min(rows) x_max, y_max = np.max(cols), np.max(rows) cv2.rectangle(img, (x_min, y_min), (x_max, y_max), color=(255, 0, 0), thickness=6) return img
3eeacafb08a15a98ec70567361c2b7d807af156c
12,022
import re def _skip_comments_and_whitespace(lines, idx): ############################################################################### """ Starting at idx, return next valid idx of lines that contains real data """ if (idx == len(lines)): return idx comment_re = re.compile(r'^[#!]') lines_slice = lines[idx:] for line in lines_slice: line = line.strip() if (comment_re.match(line) is not None or line == ""): idx += 1 else: return idx return idx
b2b794681859eaa22dfc1807211bf050423cd107
12,023
def named_payload(name, parser_fn): """Wraps a parser result in a dictionary under given name.""" return lambda obj: {name: parser_fn(obj)}
259525b93d056e045b0f8d5355d4028d67bfac45
12,024
def prod_finished(job): """Check if prod stage is finished.""" try: step = "prod" + str(job.doc.prod_replicates_done - 1) except (KeyError, AttributeError): step = "prod" + "0" run_file = job.ws + "/run.{}".format(step) if job.isfile("run.{}".format(step)): with open(run_file) as myfile: return "Program ended" in myfile.read() else: return False
4ce509bb6656555a26384f733ccc91b974636d5f
12,026
def PrimaryCaps(layer_input, name, dim_capsule, channels, kernel_size=9, strides=2, padding='valid'): """ PrimaryCaps layer can be seen as a convolutional layer with a different activation function (squashing) :param layer_input :param name :param dim_capsule :param channels :param kernel_size """ assert channels % dim_capsule == 0, "Invalid size of channels and dim_capsule" # I.e. each primary capsule contains 8 convoutional units with a 9x9 kernel and a stride of 2. num_filters = channels * dim_capsule conv_layer = layers.Conv2D( name=name, filters=num_filters, kernel_size=kernel_size, strides=strides, activation=None, # We apply squasing later, therefore no activation funciton is needed here padding=padding)(layer_input) # In total PrimaryCapsules has [32x6x6] capsule outputs (each outpus is an 8D vector) and each # capsule in the [6x6] grid is sharing their weights with each other # See https://keras.io/layers/core/#reshape reshaped_conv = layers.Reshape(target_shape=(-1, dim_capsule))(conv_layer) # Now lets apply the squashing function return layers.Lambda(squashing)(reshaped_conv)
41bb066e6b2fdac74f3002ae63055096228bd386
12,027
def get_font(args): """ Gets a font. :param args: Arguments (ttf and ttfsize). :return: Font. """ try: return ImageFont.truetype(args.ttf, args.ttfsize) except: return ImageFont.load_default()
aee4761c93ef177f26b1bfd81ad5149186e32d47
12,028
def zeros(shape): """ Creates and returns a new array with the given shape which is filled with zeros. """ mat = empty(shape) return fill(mat, 0.0)
7cbe68c9928094e3588560643b8029867fa51ab7
12,029
def unpack_puzzle_input(dir_file: str) -> tuple[list, list]: """ Args: dir_file (str): location of .txt file to pull data from Returns: bingo numbers and bingo cards in list format """ with open(dir_file, "r") as file: content = file.read().splitlines() bingo_numbers = [int(i) for i in content[0].split(",")] bingo_cards = [] for index in range(2, len(content)): if content[index-1] == '': bingo_cards.append([[int(i) for i in content[index].split()]]) elif content[index] != '': bingo_cards[-1].append([int(i) for i in content[index].split()]) return bingo_numbers, bingo_cards
47ea8846233aabf1bc8e07f22e9993b7a5a328e1
12,030
def blank_response(): """Fixture that constructs a response with a blank body.""" return build_response(data="")
5ffe8c5b0b775db68c626f1e9cce8a83c66978ff
12,031
import torch def dense_image_warp(image:torch.Tensor, flow:torch.Tensor) -> torch.Tensor: """Image warping using per-pixel flow vectors. See [1] for the original reference (Note that the tensor shape is different, etc.). [1] https://www.tensorflow.org/addons/api_docs/python/tfa/image/dense_image_warp Parameters ---------- image : torch.Tensor [shape=(batch, channels, height, width)] flow : torch.Tensor [shape=(batch, 2, height, width)] Returns ------- warped_image : torch.Tensor [shape=(batch, channels, height, width)] """ batch_size, channels, height, width = image.shape # The flow is defined on the image grid. Turn the flow into a list of query # points in the grid space. y_range = torch.arange(0., height, device=image.device, requires_grad=False) x_range = torch.arange(0., width, device=image.device, requires_grad=False) y_grid, x_grid = torch.meshgrid(y_range, x_range) stacked_grid = torch.stack((y_grid, x_grid), dim=0) # shape=(2, height, width) batched_grid = stacked_grid.unsqueeze(0) # shape=(1, 2, height, width) query_points_on_grid = batched_grid - flow # shape=(batch_size, 2, height, width) query_points_flattened = einops.rearrange(query_points_on_grid, 'b x h w -> b (h w) x') # shape=(batch_size, height * width, 2) # Compute values at the query points, then reshape the result back to the # image grid. interpolated = interpolate_bilinear(image, query_points_flattened) # shape=(batch_size, channels, n_queries) interpolated = einops.rearrange(interpolated, 'b c (h w) -> b c h w', h=height, w=width) return interpolated
324be2c28dceeeb8079b4a89d94908e1a208c0a1
12,032
def validateRange(rangeStr : str) -> bool: """Validates the range argument""" # type cast and compare try: # get range indices ranges = rangeStr.split(",", 1) rangeFrom = 0 if ranges[0] == "" else int(ranges[0]) rangeTo = 0 if ranges[1] == "" else int(ranges[1]) # check first if both ranges are not set # using the -r , hack if ranges == ["", ""]: return False # check if any of the range param is set # and do testing per side # if either range start/end is set and is <= 0: if (ranges[0] != "" and rangeFrom < 0) or\ (ranges[1] != "" and rangeTo < 0): return False elif (ranges[0] != "") and (ranges[1] != ""): # if both are set, do conditions here # if from == to or from > to or from,to <=0, fail if (rangeFrom == rangeTo) or\ (rangeFrom > rangeTo) or\ ((rangeFrom <= 0) or (rangeTo <= 0)): return False except (ValueError, IndexError, AttributeError): return False return True
375d80ef61c429a4e22df7321d223fe18939f597
12,033
from operator import add def update_log_ip_dict_per_ingress_egress_point(flow_ingress_asn, flow_ip, origin_asn, ip_prefix, country_code, flow_bytes, flow_packets, d_ipsrc_level_analysis_perpoint): """ Account for unique IPAddresses, BGP prefixes, origin_asn per ingress/egress points. :param flow_ingress_asn: :param flow_ip: :param origin_asn: :param ip_prefix: :param d_ipsrc_level_analysis_perpoint: :return: dict of dict {'1234': {('10.10.10.1', 23456, '10.0.0.0/8'): [1]}, '5678': {('181.3.50.1', 98765, '181.3.50.0/20'): [1]}, ...} """ k = (flow_ip, origin_asn, ip_prefix, country_code) values = [1, flow_bytes, flow_packets] flow_ingress_asn = frozenset(flow_ingress_asn) if flow_ingress_asn not in d_ipsrc_level_analysis_perpoint.keys(): d_ipsrc_level_analysis_perpoint[flow_ingress_asn] = dict() d_ipsrc_level_analysis_perpoint[flow_ingress_asn][k] = values else: if k not in d_ipsrc_level_analysis_perpoint[flow_ingress_asn]: d_ipsrc_level_analysis_perpoint[flow_ingress_asn][k] = values else: d_ipsrc_level_analysis_perpoint[flow_ingress_asn][k] = map(add, d_ipsrc_level_analysis_perpoint[flow_ingress_asn][k], values) return d_ipsrc_level_analysis_perpoint
ad6ccefd62b11f3cf1a7b5e452789ddf22fcad55
12,034
import yaml def _config_from_file(configfile): """Return a dict containing all of the config values found in the given configfile. """ conf = {} # set from config if possible if configfile: with open(configfile, 'r') as fp: config_yaml = yaml.load(fp) conf = config_yaml # in the config yaml, 'years' is a map of years to styles; in the config # dict used in this module, 'year_styles' is that map and 'years' is # simply a list of the years to graph conf['year_styles'] = conf.pop('years', {}) conf['years'] = list(conf['year_styles'].keys()) return conf
2ab4d779fd18c13054e3c40ae411106856fae9ae
12,035
def odr_planar_fit(points, rand_3_estimate=False): """ Fit a plane to 3d points. Orthogonal distance regression is performed using the odrpack. Parameters ---------- points : list of [x, y, z] points rand_3_estimate : bool, optional First estimation of the plane using 3 random points from the input points list. Default is False which implies a regular least square fit for the first estimation. Returns ------- ndarray """ def f_3(beta, xyz): """ implicit definition of the plane""" return beta[0] * xyz[0] + beta[1] * xyz[1] + beta[2] * xyz[2] + beta[3] # # Coordinates of the 2D points x = points[:, 0] y = points[:, 1] z = points[:, 2] # x = np.r_[9, 35, -13, 10, 23, 0] # y = np.r_[34, 10, 6, -14, 27, -10] # z = np.r_[100, 101, 101, 100, 101, 101] if rand_3_estimate: # initial guess for parameters # select 3 random points i = np.random.choice(len(x), size=3, replace=False) # Form the 3 points r_point_1 = np.r_[x[i[0]], y[i[0]], z[i[0]]] r_point_2 = np.r_[x[i[1]], y[i[1]], z[i[1]]] r_point_3 = np.r_[x[i[2]], y[i[2]], z[i[2]]] # Two vectors on the plane v_1 = r_point_1 - r_point_2 v_2 = r_point_1 - r_point_3 # normal to the 3-point-plane u_1 = np.cross(v_1, v_2) # Construct the first estimation, beta0 d_0 = u_1[0] * r_point_1[0] + u_1[1] * r_point_1[1] + u_1[2] * r_point_1[2] beta0 = np.r_[u_1[0], u_1[1], u_1[2], d_0] else: beta0 = lstsq_planar_fit(points) # Create the data object for the odr. The equation is given in the implicit form 'a*x + b*y + c*z + d = 0' and # beta=[a, b, c, d] (beta is the vector to be fitted). The positional argument y=1 means that the dimensionality # of the fitting is 1. lsc_data = odr.Data(np.row_stack([x, y, z]), y=1) # Create the odr model lsc_model = odr.Model(f_3, implicit=True) # Create the odr object based on the data, the model and the first estimation vector. lsc_odr = odr.ODR(lsc_data, lsc_model, beta0) # run the regression. lsc_out = lsc_odr.run() return lsc_out.beta / lsc_out.beta[3]
d4b542f1527fc89937be92e3ff1ffc827cb5cced
12,036
def adjust_learning_rate_lrstep(epoch, opt): """Sets the learning rate to the initial LR decayed by decay rate every steep step""" steps = np.sum(epoch > np.asarray(opt.lr_decay_epochs)) if steps > 0: new_lr = opt.lr_init * (opt.lr_decay_rate ** steps) return new_lr return opt.lr_init
e3af0a5e654595f309a2a202d0620b57e5968530
12,037
def subplot(n, m, k): """ Create a subplot command Example:: import numpy as np x = np.linspace(-5, 5, 1000) figure(1) subplot(2, 1, 1) plot(x, np.sin(x), "r+") subplot(2, 1, 2) plot(x, np.cos(x), "g-") show() """ global _current_axes lig = (k - 1) / m col = (k - 1) % m fig = gcf() axe = fig.get_axes(lig, col) _current_axes = axe return axe
d7793d099a57ad8d825e16e737dc72f28dd0456c
12,038
from typing import Any from typing import cast def _create_gdcm_image(src: bytes, **kwargs: Any) -> "gdcm.Image": """Return a gdcm.Image from the `src`. Parameters ---------- src : bytes The raw image frame data to be encoded. **kwargs Required parameters: * `rows`: int * `columns`: int * `samples_per_pixel`: int * `number_of_frames`: int * `bits_allocated`: int * `bits_stored`: int * `pixel_representation`: int * `photometric_interpretation`: str Returns ------- gdcm.Image An Image containing the `src` as a single uncompressed frame. """ rows = kwargs['rows'] columns = kwargs['columns'] samples_per_pixel = kwargs['samples_per_pixel'] number_of_frames = kwargs['number_of_frames'] pixel_representation = kwargs['pixel_representation'] bits_allocated = kwargs['bits_allocated'] bits_stored = kwargs['bits_stored'] photometric_interpretation = kwargs['photometric_interpretation'] pi = gdcm.PhotometricInterpretation.GetPIType( photometric_interpretation ) # GDCM's null photometric interpretation gets used for invalid values if pi == gdcm.PhotometricInterpretation.PI_END: raise ValueError( "An error occurred with the 'gdcm' plugin: invalid photometric " f"interpretation '{photometric_interpretation}'" ) # `src` uses little-endian byte ordering ts = gdcm.TransferSyntax.ImplicitVRLittleEndian image = gdcm.Image() image.SetNumberOfDimensions(2) image.SetDimensions((columns, rows, 1)) image.SetPhotometricInterpretation( gdcm.PhotometricInterpretation(pi) ) image.SetTransferSyntax(gdcm.TransferSyntax(ts)) pixel_format = gdcm.PixelFormat( samples_per_pixel, bits_allocated, bits_stored, bits_stored - 1, pixel_representation ) image.SetPixelFormat(pixel_format) if samples_per_pixel > 1: # Default `src` is planar configuration 0 (i.e. R1 G1 B1 R2 G2 B2) image.SetPlanarConfiguration(0) # Add the Pixel Data element and set the value to `src` elem = gdcm.DataElement(gdcm.Tag(0x7FE0, 0x0010)) elem.SetByteStringValue(src) image.SetDataElement(elem) return cast("gdcm.Image", image)
d0844d92d3b0c6b62164019c56864cc498c51334
12,039
def _4_graphlet_contains_3star(adj_mat): """Check if a given graphlet of size 4 contains a 3-star""" return (4 in [a.sum() for a in adj_mat])
307f03707d1a7032df0ccb4f7951eec0c75832fe
12,040
from pathlib import Path def af4_path() -> Path: """Return the abspath of Go bio-target-rna-fusion binary. Builds the binary if necessary""" global AF4_PATH if not AF4_PATH: af4_label = "//go/src/github.com/grailbio/bio/cmd/bio-fusion" build([af4_label]) AF4_PATH = go_executable(af4_label) return AF4_PATH
f70b97661bf17eb4e3b67af20c5437ebd6123266
12,042
def get_sentence_content(sentence_token): """Extrac sentence string from list of token in present in sentence Args: sentence_token (tuple): contains length of sentence and list of all the token in sentence Returns: str: setence string """ sentence_content = '' for word in sentence_token[1]: sentence_content += word.text return sentence_content
4f6f1bb557bb508e823704fc645c2901e5f8f03f
12,043
def sequence_generator(data, look_back = 50): """\ Description: ------------ Input data for LSTM: Convert to user trajectory (maximum length: look back) """ train,test, valid = [],[],[] unique_users = set(data[:,0]) items_per_user = {int(user):[0 for i in range(look_back)] for user in unique_users} for (idx,row) in enumerate(data): user,item,time = int(row[0]),int(row[1]),row[2] items_per_user[user] = items_per_user[user][1:]+[item+1] current_items = items_per_user[user] if row[3]==0: train.append([current_items[:-1],current_items[-1]]) elif row[3]==2: test.append([current_items[:-1],current_items[-1]]) else: valid.append([current_items[:-1],current_items[-1]]) return train,test
688e572edf1b6d2dea2f069742b01c10ec36f928
12,045
def prefit_clf__svm(gamma: float = 0.001) -> base.ClassifierMixin: """Returns an unfitted SVM classifier object. :param gamma: ... :return: """ return svm.SVC(gamma=gamma)
481409fdd7b2970d3595a7f60e411e71ebb00ac0
12,046
def option_not_exist_msg(option_name, existing_options): """ Someone is referencing an option that is not available in the current package options """ result = ["'options.%s' doesn't exist" % option_name] result.append("Possible options are %s" % existing_options or "none") return "\n".join(result)
7ffa0afa81483d78a1ed0d40d68831e09710b7e1
12,047
def elslib_CylinderD2(*args): """ :param U: :type U: float :param V: :type V: float :param Pos: :type Pos: gp_Ax3 :param Radius: :type Radius: float :param P: :type P: gp_Pnt :param Vu: :type Vu: gp_Vec :param Vv: :type Vv: gp_Vec :param Vuu: :type Vuu: gp_Vec :param Vvv: :type Vvv: gp_Vec :param Vuv: :type Vuv: gp_Vec :rtype: void """ return _ElSLib.elslib_CylinderD2(*args)
af11eee7a0a429ead43d40ed678f932abd2313f7
12,048
def get_version_message(version: str): """Get the message for the zygrader version from the changelog""" changelog = load_changelog() msg = [f"zygrader version {version}", ""] version_index = 0 for line in changelog: if line == version: version_index = changelog.index(line) + 1 line = changelog[version_index] while line: msg.append(line) version_index += 1 line = changelog[version_index] return msg
8530180c9d2dc413a1057c2ca255aa0e3dddd72c
12,049
def get_arity(p, b_addr): """ Retrieves the arity by inspecting a funciton call :param p: angr project :param b_addr: basic block address :return: arity of the function """ return len(get_ord_arguments_call(p, b_addr))
47b7721421a226d969aada8d873c43f8f58810e9
12,050
def draw_des3_plot(): """ This function is to draw the plot of DES 3. """ objects = ('Singapore', 'Uruguay', 'Chile', 'Belgium', 'Denmark', 'Qatar', 'Portugal', 'Canada', 'Spain', 'Ireland') y_pos = np.arange(len(objects)) performance = [71, 69, 68, 66, 65, 65, 64, 63, 63, 62] plt.xkcd() fig = plt.figure(figsize=(9, 6), dpi=35) fig.suptitle('Number of people fully vaccinated by country') ax = fig.add_subplot(111) ax.barh(y_pos, performance, align='center', alpha=0.5) plt.yticks(y_pos, objects) ax.set_xlabel('Share of people fully vaccinated') return fig
6cc1bb3331e9eed57a700596d133d2bf00c3398e
12,051
def get_pi_id(rc): """ Gets the database id of the group PI Parameters ---------- rc: runcontrol object The runcontrol object. It must contain the 'groups' and 'people' collections in the needed databases Returns ------- The database '_id' of the group PI """ groupiter = list(all_docs_from_collection(rc.client, "groups")) peoplecoll = all_docs_from_collection(rc.client, "people") pi_ref = [i.get("pi_name") for i in groupiter if i.get("name").casefold() == rc.groupname.casefold()] pi = fuzzy_retrieval(peoplecoll, ["_id", "aka", "name"], pi_ref[0]) return pi.get("_id")
12a1e9c0805e8549be7861247b97f52defd576d9
12,052
def gather_from_processes(chunk, split_sizes, displacements, comm=MPI.COMM_WORLD): """Gather data chunks on rank zero :param chunk: Data chunks, living on ranks 0, 1, ..., comm.size-1 :type chunk: np.ndarray :param split_sizes: Chunk lenghts on individual ranks :type split_sizes: np.ndarray :param displacements: Chunk displacements (compare scatter_to_processes) :type displacements: np.ndarray :return: Dataset gathered again, living on rank 0 :type return: np.ndarray Inspired by: https://stackoverflow.com/a/36082684 Licensed under the Academic Free License version 3.0 """ comm.Barrier() total_length = np.array(chunk.shape[0]) gathered = np.empty((comm.allreduce(total_length), chunk.shape[1]), dtype=chunk.dtype) comm.Gatherv(chunk, [gathered, split_sizes, displacements, MPI.DOUBLE], root=0) return gathered
8f696241e0dc61bbb5dd9867f307e29e8358d69e
12,053
import json def edit_collab() : """ Endpoint to edit a specified collaboration's member variables. This endpoint requires the requesting user to be an authenticated user to properly function. Request Body Parameters: id: string, JSON, required owner: string, JSON, optional size: int, JSON, optional members: array of strings, JSON, optional date: int, JSON, optional duration: int, JSON, optional location, string, JSON, optional status: bool, JSON, optional title: string, JSON, optional description: string, JSON, optional classes: array of strings, JSON, optional skills: array of strings, JSON, optional applicants: array of strings, JSON, optional This endpoint queries the database for the specified collaboration. If the collaboration is found, other variables included, if any, are updated. If the search fails, an appropriate error message is returned. """ data = request.get_json() collab_id = data['id'] record = collabDB.find({'_id' : ObjectId(collab_id)}) if record is None: return json.dumps({'error': "No collaborations to update matched id", 'code': 996}) else: try: if 'owner' in data and isinstance(data['owner'], str): record = collabDB.update_one( {"_id": ObjectId(collab_id)}, { "$set": { "owner": data['owner'] } } ) if 'size' in data and isinstance(data['size'], int): record = collabDB.update_one( {"_id": ObjectId(collab_id)}, { "$set": { "size": data['size'] } } ) if 'members' in data and isinstance(data['members'], list): record = collabDB.update_one( {"_id": ObjectId(collab_id)}, { "$set": { "members": data['members'] } } ) if 'date' in data and isinstance(data['date'], int): record = collabDB.update_one( {"_id": ObjectId(collab_id)}, { "$set": { "date": data['date'] } } ) if 'duration' in data and isinstance(data['duration'], int): record = collabDB.update_one( {"_id": ObjectId(collab_id)}, { "$set": { "duration": data['duration'] } } ) if 'location' in data and isinstance(data['location'], str): record = collabDB.update_one( {"_id": ObjectId(collab_id)}, { "$set": { "location": data['location'] } } ) if 'status' in data and isinstance(data['status'], bool): record = collabDB.update_one( {"_id": ObjectId(collab_id)}, { "$set": { "status": data['status'] } } ) if 'title' in data and isinstance(data['title'], str): record = collabDB.update_one( {"_id": ObjectId(collab_id)}, { "$set": { "title": data['title'] } } ) if 'description' in data and isinstance(data['description'], str): record = collabDB.update_one( {"_id": ObjectId(collab_id)}, { "$set": { "description": data['description'] } } ) if 'classes' in data and isinstance(data['classes'], list): record = collabDB.update_one( {"_id": ObjectId(collab_id)}, { "$set": { "classes": data['classes'] } } ) if 'skills' in data and isinstance(data['skills'], list): record = collabDB.update_one( {"_id": ObjectId(collab_id)}, { "$set": { "skills": data['skills'] } } ) if 'applicants' in data and isinstance(data['applicants'], list): record = collabDB.update_one( {"_id": ObjectId(collab_id)}, { "$set": { "applicants": data['applicants'] } } ) if record.modified_count > 0: return json.dumps({'success': True}) else: return json.dumps({'success': True}) except Exception as e: print(e) return json.dumps({'error': "Error while trying to update existing doc.", 'code': 997})
f205302c6f1368542c870f3ab89bbde374e0957b
12,055
def create_lkas_ui(packer, main_on, enabled, steer_alert, defog, ahbc, ahbcramping, config, noipma, stats, persipma, dasdsply, x30, daschime, lines): """Creates a CAN message for the Ford Steer Ui.""" values = { "PersIndexIpma_D_Actl": persipma, "DasStats_D_Dsply": dasdsply, "Set_Me_X30": x30, "Lines_Hud": lines, "Hands_Warning_W_Chime": steer_alert, "CamraDefog_B_Req": defog, "AhbHiBeam_D_Rq": ahbc, "AhbcRampingV_D_Rq": ahbcramping, "FeatConfigIpmaActl": config, "FeatNoIpmaActl": noipma, "CamraStats_D_Dsply": stats, "DasWarn_D_Dsply": daschime, } return packer.make_can_msg("Lane_Keep_Assist_Ui", 0, values)
b9c855b6210b34fde8943eaa8293d691ee291527
12,056
import torch def _contextual_loss(x, y, reduction='mean'): """Contextual loss """ loss = -torch.log(_contextual_similarity(x, y)) if reduction == 'mean': loss = loss.mean() return loss
3dee81131c0b1468e822cdc36f1817204ec9eba3
12,057
def _actual_center(pos, angle): """ Calculate the position of the geometric center of the agent The value of self.cur_pos is the center of rotation. """ dir_vec = get_dir_vec(angle) return pos + (CAMERA_FORWARD_DIST - (ROBOT_LENGTH / 2)) * dir_vec
bd354e1ef64cd14132944da9e436df2a4696d0fe
12,058
def load_one_batch_mnist(batch_size=64, shuffle=True): """Return a single batch (inputs, labels) of MNIST data.""" dataloader = get_mnist_dataloder(batch_size, shuffle) X, y = next(iter(dataloader)) return X, y
2a2036a72cecf957fd7c8a5344c85a59935fb442
12,059
def KmeansInterCompare(k, data, nbTests): """Réalisation d'un nombre donné de classification Kmeans. Le meilleur résultat selon le critère d'inertie inter-groupe est affiché""" KmeansResults = [] for i in range(0, nbTests): KmeansResults.append(Kmeans(k, data)) # on maximise l'inertie inter-groupe donc on privilégie la séparation des groupes best_kmeans = 0 for i in range(1, nbTests): if inerInter(KmeansResults[best_kmeans][0], KmeansResults[best_kmeans][1]) < inerInter(KmeansResults[i][0], KmeansResults[i][1]): best_kmeans = i return KmeansResults[best_kmeans]
42d8d900ad5e7d6e80bbd16736178fe5a14f878c
12,061
from bs4 import BeautifulSoup def get_all_reports_url(url_1,url_2, headers=None): """ Returns all reports URLs on a single 'url' """ if headers == None: header = {'User-Agent':'Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/92.0.4515.131 Safari/537.36'} else: header = headers url = urljoin(url_1, url_2) # initialize the session session = HTMLSession() # make the HTTP request and retrieve response response = session.get(url, headers=header) # execute Javascript with a timeout of 20 seconds # response.html.render(timeout=20) ## pyppeteer.errors.TimeoutError: Navigation Timeout Exceeded: 20000 ms exceeded. # construct the soup parser soup = BeautifulSoup(response.html.html, "html.parser") urls = [] table = soup.find("table", class_="ms-rteTable-5") for report, name in zip(table.find_all("td", class_="ms-rteTableEvenCol-5"), table.find_all("td", class_="ms-rteTableOddCol-5")) : report_url = report.find("a").attrs.get("href") name = ((''.join(name.text.split())).replace("/", "-")).replace(" ", "").replace("\u200b", "") if not report_url: # if img does not contain src attribute, just skip continue # make the URL absolute by joining domain with the URL that is just extracted report_url = urljoin(url_1, report_url) try: pos = report_url.index("?") report_url = report_url[:pos] except ValueError: pass # finally, if the url is valid if is_valid(report_url): urls.append({'url':report_url, 'name':name}) # close the session to end browser process session.close() # print total images found in URL print(f"Total {len(urls)} Reports Found!") return urls
705047c4d21167f9ecde23f163e383e9f6aa00b2
12,062
def left_shift(k, n=32): """ Returns the n*n matrix corresponding to the operation lambda v: vec_from_int(int_from_vec(v) << k, n) >>> print_mat(left_shift(2, 6)) 000000 000000 100000 010000 001000 000100 >>> int_from_vec(left_shift(2) * vec_from_int(42)) == 42 << 2 True """ D = set(range(n)) return Mat((D, D), {(j + k, j): one for j in range(n - k)})
216011184a8b6a02675524fd2906f092553396c6
12,064
from typing import List from datetime import datetime def get_tensorboard_logger( trainer: Engine, evaluators: ThreeEvaluators, metric_names: List[str] ) -> TensorboardLogger: """ creates a ``tensorboard`` logger which read metrics from given evaluators and attaches it to a given trainer :param trainer: an ``ignite`` trainer to attach to :param evaluators: a triple of train, validation, and test evaluators to get metrics from :param metric_names: a list of metrics to log during validation and testing """ tb_logger = TensorboardLogger( log_dir=f"runs/{datetime.now()}", flush_secs=1 ) training_loss = OutputHandler( "training", ["running_loss"], global_step_transform=global_step_from_engine(trainer), ) tb_logger.attach(trainer, training_loss, Events.EPOCH_COMPLETED) validation_loss = OutputHandler( "validation", metric_names, global_step_transform=global_step_from_engine(trainer), ) tb_logger.attach(evaluators.validation, validation_loss, Events.COMPLETED) test_loss = OutputHandler( "test", metric_names, global_step_transform=global_step_from_engine(trainer), ) tb_logger.attach(evaluators.test, test_loss, Events.COMPLETED) return tb_logger
30a920c056cf10df4656cbda2a1e92fb28388f06
12,065
def get_vocabs(datasets): """Build vocabulary from an iteration of dataset objects Args: dataset: a list of dataset objects Returns: two sets of all the words and tags respectively in the dataset """ print("Building vocabulary...") vocab_words = set() vocab_tags = set() for dataset in datasets: for words, tags in dataset: vocab_words.update(words) vocab_tags.update(tags) print("- done. {} tokens".format(len(vocab_words))) return vocab_words, vocab_tags
1fce7fe7b9dbdd3216802d0816ac5fabc542b859
12,066
def check_row_uniqueness(board: list) -> bool: """ Return True if each row has no repeated digits. Return False otherwise. >>> check_row_uniqueness([\ "**** ****",\ "***1 ****",\ "** 3****",\ "* 4 1****",\ " 9 5 ",\ " 6 83 *",\ "3 1 **",\ " 8 2***",\ " 2 ****"\ ]) True >>> check_row_uniqueness([\ "**** ****",\ "***1 ****",\ "** 3****",\ "* 4 1****",\ " 5 9 5 ",\ " 6 83 *",\ "3 1 **",\ " 8 2***",\ " 2 ****"\ ]) False """ global NUMBER for row in board: count = 0 row_set = set() for char in row: if char.isdigit(): if int(char) in range(1, NUMBER + 1): count += 1 row_set.add(char) if len(row_set) != count: return False return True
b4d937f14de0da90e694621fb2c70e9a59e80f0a
12,067
def calculate_distance_to_divide( grid, longest_path=True, add_to_grid=False, clobber=False ): """Calculate the along flow distance from drainage divide to point. This utility calculates the along flow distance based on the results of running flow accumulation on the grid. It will use the connectivity used by the FlowAccumulator (e.g. D4, D8, Dinf). Parameters ---------- grid : ModelGrid longest_path : bool, optional Take the longest (or shortest) path to a drainage divide. Default is true. add_to_grid : boolean, optional Flag to indicate if the stream length field should be added to the grid. Default is False. The field name used is ``distance_to_divide``. clobber : boolean, optional Flag to indicate if adding the field to the grid should not clobber an existing field with the same name. Default is False. Returns ------- distance_to_divide : float ndarray The distance that has to be covered from an imaginary flow, located in each node of the grid, to reach the watershed's outlet. Examples -------- >>> import numpy as np >>> from landlab import RasterModelGrid >>> from landlab.components import FlowAccumulator >>> from landlab.utils.distance_to_divide import ( ... calculate_distance_to_divide) >>> mg = RasterModelGrid((5, 4)) >>> elev = np.array([0., 0., 0., 0., ... 0., 10., 10., 0., ... 0., 20., 20., 0., ... 0., 30., 30., 0., ... 0., 0., 0., 0.]) >>> _ = mg.add_field("topographic__elevation", elev, at="node") >>> mg.set_closed_boundaries_at_grid_edges( ... bottom_is_closed=False, ... left_is_closed=True, ... right_is_closed=True, ... top_is_closed=True) >>> fr = FlowAccumulator(mg, flow_director = 'D8') >>> fr.run_one_step() >>> distance_to_divide = calculate_distance_to_divide( ... mg, ... add_to_grid=True, ... clobber=True, ... ) >>> mg.at_node['distance_to_divide'] array([ 0., 3., 3., 0., 0., 2., 2., 0., 0., 1., 1., 0., 0., 0., 0., 0., 0., 0., 0., 0.]) Now, let's change to MFD the flow_director method, which routes flow to multiple nodes. >>> from landlab import RasterModelGrid >>> from landlab.components import FlowAccumulator >>> from landlab.utils.distance_to_divide import ( ... calculate_distance_to_divide) >>> mg = RasterModelGrid((5, 4), xy_spacing=(1, 1)) >>> elev = np.array([0., 0., 0., 0., ... 0., 10., 10., 0., ... 0., 20., 20., 0., ... 0., 30., 30., 0., ... 0., 0., 0., 0.]) >>> _ = mg.add_field("topographic__elevation", elev, at="node") >>> mg.set_closed_boundaries_at_grid_edges( ... bottom_is_closed=False, ... left_is_closed=True, ... right_is_closed=True, ... top_is_closed=True) >>> fr = FlowAccumulator(mg, flow_director = 'MFD') >>> fr.run_one_step() >>> distance_to_divide = calculate_distance_to_divide( ... mg, ... add_to_grid=True, ... clobber=True, ... ) >>> mg.at_node['distance_to_divide'] array([ 0., 3., 3., 0., 0., 2., 2., 0., 0., 1., 1., 0., 0., 0., 0., 0., 0., 0., 0., 0.]) The distance_to_divide utility can also work on irregular grids. For the example we will use a Hexagonal Model Grid, a special type of Voroni Grid that has regularly spaced hexagonal cells. >>> from landlab import HexModelGrid >>> from landlab.components import FlowAccumulator >>> from landlab.utils.distance_to_divide import ( ... calculate_distance_to_divide) >>> dx = 1 >>> hmg = HexModelGrid((5, 3), dx) >>> _ = hmg.add_field( ... "topographic__elevation", ... hmg.node_x + np.round(hmg.node_y), ... at="node", ... ) >>> hmg.status_at_node[hmg.boundary_nodes] = hmg.BC_NODE_IS_CLOSED >>> hmg.status_at_node[0] = hmg.BC_NODE_IS_FIXED_VALUE >>> fr = FlowAccumulator(hmg, flow_director = 'D4') >>> fr.run_one_step() >>> distance_to_divide = calculate_distance_to_divide( ... hmg, ... add_to_grid=True, ... clobber=True, ... ) >>> hmg.at_node['distance_to_divide'] array([ 3., 0., 0., 0., 2., 1., 0., 0., 1., 1., 0., 0., 0., 0., 0., 0., 0., 0., 0.]) """ # check that flow__receiver nodes exists if "flow__receiver_node" not in grid.at_node: raise FieldError( "A 'flow__receiver_node' field is required at the " "nodes of the input grid." ) if "flow__upstream_node_order" not in grid.at_node: raise FieldError( "A 'flow__upstream_node_order' field is required at the " "nodes of the input grid." ) if "drainage_area" not in grid.at_node: raise FieldError( "A 'flow__upstream_node_order' field is required at the " "nodes of the input grid." ) # get the reciever nodes, depending on if this is to-one, or to-multiple, # we'll need to get a different at-node field. if grid.at_node["flow__receiver_node"].size != grid.size("node"): to_one = False else: to_one = True flow__receiver_node = grid.at_node["flow__receiver_node"] drainage_area = grid.at_node["drainage_area"] # get the upstream node order flow__upstream_node_order = grid.at_node["flow__upstream_node_order"] # get downstream flow link lengths, result depends on type of grid. if isinstance(grid, RasterModelGrid): flow_link_lengths = grid.length_of_d8[ grid.at_node["flow__link_to_receiver_node"] ] else: flow_link_lengths = grid.length_of_link[ grid.at_node["flow__link_to_receiver_node"] ] # create an array that representes the distance to the divide. distance_to_divide = np.zeros(grid.nodes.size) if not longest_path: distance_to_divide[:] = 2 * grid.size("node") * np.max(flow_link_lengths) # iterate through the flow__upstream_node_order backwards. for node in reversed(flow__upstream_node_order): # if drainage are is equal to node cell area, set distance to zeros # this should handle the drainage divide cells as boundary cells have # their area set to zero. if drainage_area[node] == grid.cell_area_at_node[node]: distance_to_divide[node] = 0 # get flow recievers reciever = flow__receiver_node[node] if to_one: # if not processing an outlet node. if reciever != node: if longest_path: cond = ( distance_to_divide[reciever] < distance_to_divide[node] + flow_link_lengths[node] ) else: cond = ( distance_to_divide[reciever] > distance_to_divide[node] + flow_link_lengths[node] ) if cond: distance_to_divide[reciever] = ( distance_to_divide[node] + flow_link_lengths[node] ) else: # non-existant links are coded with -1 useable_receivers = np.where(reciever != grid.BAD_INDEX)[0] for idx in range(len(useable_receivers)): r = reciever[useable_receivers][idx] fll = flow_link_lengths[node][useable_receivers][idx] # if not processing an outlet node. if r != node: if longest_path: cond = distance_to_divide[r] < distance_to_divide[node] + fll else: cond = distance_to_divide[r] > distance_to_divide[node] + fll if cond: distance_to_divide[r] = distance_to_divide[node] + fll # store on the grid if add_to_grid: grid.add_field( "distance_to_divide", distance_to_divide, at="node", clobber=clobber ) return distance_to_divide
99afc09e88aee3ea7486a9dfddc45d98358d0bd7
12,068
def string_unquote(value: str): """ Method to unquote a string Args: value: the value to unquote Returns: unquoted string """ if not isinstance(value, str): return value return value.replace('"', "").replace("'", "")
e062c012fc43f9b41a224f168de31732d885b21f
12,070
def translate(tx, ty, tz): """Translate.""" return affine(t=[tx, ty, tz])
f3b11f6bcf0f77b39423d8aac3d34149ae8b93a7
12,071
import torch def randomized_svd_gpu(M, n_components, n_oversamples=10, n_iter='auto', transpose='auto', random_state=0, lib='pytorch',tocpu=True): """Computes a truncated randomized SVD on GPU. Adapted from Sklearn. Parameters ---------- M : ndarray or sparse matrix Matrix to decompose n_components : int Number of singular values and vectors to extract. n_oversamples : int (default is 10) Additional number of random vectors to sample the range of M so as to ensure proper conditioning. The total number of random vectors used to find the range of M is n_components + n_oversamples. Smaller number can improve speed but can negatively impact the quality of approximation of singular vectors and singular values. n_iter : int or 'auto' (default is 'auto') Number of power iterations. It can be used to deal with very noisy problems. When 'auto', it is set to 4, unless `n_components` is small (< .1 * min(X.shape)) `n_iter` in which case is set to 7. This improves precision with few components. transpose : True, False or 'auto' (default) Whether the algorithm should be applied to M.T instead of M. The result should approximately be the same. The 'auto' mode will trigger the transposition if M.shape[1] > M.shape[0] since this implementation of randomized SVD tend to be a little faster in that case. random_state : int, RandomState instance or None, optional (default=None) The seed of the pseudo random number generator to use when shuffling the data. If int, random_state is the seed used by the random number generator; If RandomState instance, random_state is the random number generator; If None, the random number generator is the RandomState instance used by `np.random`. lib : {'cupy', 'pytorch'}, str optional Chooses the GPU library to be used. Notes ----- This algorithm finds a (usually very good) approximate truncated singular value decomposition using randomization to speed up the computations. It is particularly fast on large matrices on which you wish to extract only a small number of components. In order to obtain further speed up, `n_iter` can be set <=2 (at the cost of loss of precision). References ---------- * Finding structure with randomness: Stochastic algorithms for constructing approximate matrix decompositions Halko, et al., 2009 http://arxiv.org/abs/arXiv:0909.4061 * A randomized algorithm for the decomposition of matrices Per-Gunnar Martinsson, Vladimir Rokhlin and Mark Tygert * An implementation of a randomized algorithm for principal component analysis A. Szlam et al. 2014 """ random_state = check_random_state(random_state) n_random = n_components + n_oversamples n_samples, n_features = M.shape if n_iter == 'auto': # Checks if the number of iterations is explicitly specified n_iter = 7 if n_components < .1 * min(M.shape) else 4 if transpose == 'auto': transpose = n_samples < n_features if transpose: M = M.T # this implementation is a bit faster with smaller shape[1] if lib == 'pytorch': M_gpu = torch.Tensor.cuda(torch.from_numpy(M.astype('float32'))) # Generating normal random vectors with shape: (M.shape[1], n_random) Q = torch.cuda.FloatTensor(M_gpu.shape[1], n_random).normal_() # Perform power iterations with Q to further 'imprint' the top # singular vectors of M in Q for i in range(n_iter): Q = torch.mm(M_gpu, Q) Q = torch.mm(torch.transpose(M_gpu, 0, 1), Q) # Sample the range of M using by linear projection of Q. Extract an orthonormal basis Q, _ = torch.qr(torch.mm(M_gpu, Q)) # project M to the (k + p) dimensional space using the basis vectors B = torch.mm(torch.transpose(Q, 0, 1), M_gpu) # compute the SVD on the thin matrix: (k + p) wide Uhat, s, V = torch.svd(B) del B U = torch.mm(Q, Uhat) if transpose: # transpose back the results according to the input convention U, s, V=(torch.transpose(V[:n_components, :], 0, 1),s[:n_components],torch.transpose(U[:, :n_components], 0, 1)) else: U, s, V=( U[:, :n_components], s[:n_components], V[:n_components, :]) if tocpu is True: return np.array(U.cpu()).astype('float'), np.array(s.cpu()).astype('float'), np.array(V.cpu()).astype('float') else: return U, s, V
31483d2f83b66d8cd4bc15a929ecf657c67d0af2
12,072
import re def clean_column_names(df: pd.DataFrame) -> pd.DataFrame: """Cleans the column names of the given dataframe by applying the following steps after using the janitor `clean_names` function: * strips any 'unnamed' field, for example 'Unnamed: 0' * replaces the first missing name with 'is_away' * coverts '#' to '_nbr' * converts '%' to '_pct' Args: df (pd.DataFrame): The dataframe to clean the column names of. Returns: pd.DataFrame: The dataframe with cleaned column names. """ df = clean_names(df) cols = df.columns cols = [re.sub("unnamed_[0-9]+_level_[0-9]", "", x).strip("_") for x in cols] # away will always be the first empty string following cleaning step above cols[cols.index("")] = "is_away" cols = [x.replace("#", "_nbr") for x in cols] cols = [x.replace("%", "_pct") for x in cols] cols = ["is_active" if x == "status" else x for x in cols] cols = ["is_start" if x == "gs" else x for x in cols] df.columns = cols return df
37c41b02846cacab1e412d402b50d94e18e1e20e
12,073
def cos(x): """Return the cosine. INPUTS x (Variable object or real number) RETURNS if x is a Variable, then return a Variable with val and der. if x is a real number, then return the value of np.cos(x). EXAMPLES >>> x = Variable(0, name='x') >>> t = cos(x) >>> print(t.val, t.der['x']) 1.0 0.0 """ try: val = np.cos(x.val) ders = defaultdict(float) sec_ders = defaultdict(float) for key in x.der: ders[key] += -np.sin(x.val) * (x.der[key]) sec_ders[key] += -x.sec_der[key]*np.sin(x.val)+(x.der[key]**2)*(-np.cos(x.val)) return Variable(val, ders, sec_ders) except AttributeError: return np.cos(x)
472bfb53345c14545a8f1bf75deb5679fe1916f8
12,074
def _get_regions(connection): """ Get list of regions in database excluding GB. If no regions are found, a ValueError is raised. """ query_regions = connection.execute( db.select([models.Region.code]).where(models.Region.code != "GB") ) regions = [r[0] for r in query_regions] if not regions: raise ValueError("NPTG data not populated yet.") return regions
ffb58c5c695a8dd669497f8dccdf5ef8202e5a21
12,075
def retrieve_from_stream(iden, interval=60): """ Return messages from a stream. :param iden: Identifier of the stream. :param interval: defaults to messages of last 60 seconds. """ return stm_str.get_messages(str(UID), str(TOKEN), interval, iden)
166918258ff3bc8ff972164027df4bf93b4a280e
12,077
def train_op(tot_loss, lr, var_opt, name): """ When only the discriminator is trained, the learning rate is set to be 0.0008 When the generator model is also trained, the learning rate is set to be 0.0004 Since there are batch_normalization layers in the model, we need to use update_op for keeping train and test moving average of the batch_norm parameters """ # optimizer = tf.train.RMSPropOptimizer(learning_rate = lr) epsilon = 1e-4 # added on 18th of July optimizer = tf.train.AdamOptimizer(learning_rate=lr, epsilon=epsilon, name=name) update_ops = tf.get_collection(tf.GraphKeys.UPDATE_OPS) with tf.control_dependencies(update_ops): grads = optimizer.compute_gradients(tot_loss, var_list=var_opt) print("================================================") print("I am printing the non gradient") for grad, var in grads: if grad is None: print("no gradient", grad, var) print("================================================") opt = optimizer.apply_gradients(grads) return opt
52dc967b9adac561f210fe4305d69b8724841607
12,078
import math def logadd(x, y): """Adds two log values. Ensures accuracy even when the difference between values is large. """ if x < y: temp = x x = y y = temp z = math.exp(y - x) logProb = x + math.log(1.0 + z) if logProb < _MinLogExp: return _MinLogExp else: return logProb
d1993f9e3d9fd5f44938509df12d818fb5eb7f3d
12,079
def getResourceNameString(ro_config, rname, base=None): """ Returns a string value corresoponding to a URI indicated by the supplied parameter. Relative references are assumed to be paths relative to the supplied base URI or, if no rbase is supplied, relative to the current directory. """ rsplit = rname.split(":") if len(rsplit) == 2: # Try to interpret name as CURIE for rpref in ro_config["annotationPrefixes"]: if rsplit[0] == rpref: rname = ro_config["annotationPrefixes"][rpref]+rsplit[1] if urlparse.urlsplit(rname).scheme == "": if base: rname = resolveUri(rname, base) else: rname = resolveFileAsUri(rname) return rname
f5840a7effb4ac91a77810531f10d323a03490ce
12,080
def get_mean_from_protobin(filename): """Get image mean from protobinary and return ndarray with skimage format. """ img = read_caffe_protobin(filename) size = (img.channels, img.height, img.width) img = caffe.io.blobproto_to_array(img).reshape(size) img = img.transpose([1, 2, 0]) return img
ba03cdeb534d00885c1c6bee22bee15af3880a85
12,083
def has_key(key): """ Check if key is in the minion datastore .. versionadded:: 2015.8.0 CLI Example: .. code-block:: bash salt '*' data.has_key <mykey> """ store = load() return key in store
7d551773da4c7d98f090d7ff9b489bcbecbec32e
12,084
def __create_setting(ingest): """Creates the setting for a particular family""" signer, addresser, auth_keys, threshold = ingest settings = Settings( auth_list=','.join(auth_keys), threshold=threshold) return ( signer, addresser, SettingPayload( action=SettingPayload.CREATE, dimension=addresser.family, data=settings.SerializeToString()))
a74d7c5a109555de591d26f5e123c31a5d0b4a7a
12,085
def paser_bs(sent): """Convert compacted bs span to triple list Ex: """ sent=sent.strip('<sos_b>').strip('<eos_b>') sent = sent.split() belief_state = [] domain_idx = [idx for idx,token in enumerate(sent) if token in all_domain] for i,d_idx in enumerate(domain_idx): next_d_idx = len(sent) if i+1 == len(domain_idx) else domain_idx[i+1] domain = sent[d_idx] sub_span = sent[d_idx+1:next_d_idx] sub_s_idx = [idx for idx,token in enumerate(sub_span) if token in all_slots] for j,s_idx in enumerate(sub_s_idx): next_s_idx = len(sub_span) if j == len(sub_s_idx) - 1 else sub_s_idx[j+1] slot = sub_span[s_idx] value = ' '.join(sub_span[s_idx+1:next_s_idx]) bs = " ".join([domain,slot,value]) belief_state.append(bs) return list(set(belief_state))
b517d58e7a7958b9186c7f9216cb33e506c148f7
12,086
def app_factory(global_conf, **local_conf): """paste.deploy app factory for creating WSGI container server apps.""" conf = global_conf.copy() conf.update(local_conf) return ContainerController(conf)
d493112d714e0303b807304b8be11d0d8b8c5b37
12,087
import traceback def retrieve_succinct_traceback() -> str: """ A utility that retrive succint traceback digest from a complete traceback string. """ tb = traceback.format_exc() return "\n".join(pg.splitlines()[-1] for pg in split_paragraphs(tb))
882e190138fd51be807d37f014c22aead57f88ba
12,088
def get_canonical_format_name(format_name): """ Get the canonical format name for a possible abbreviation Args: format_name (str): Format name or abbreviation Returns: The canonical name from CANONICAL_FORMATS, or None if the format is not recognized. """ try: return CANONICAL_FORMATS[format_name.lower()] except KeyError: return None
ae95d0321e2f8880ccbd7710e48666991208a470
12,089
def build_protoc_args( ctx, plugin, proto_infos, out_arg, extra_options = [], extra_protoc_args = [], short_paths = False, resolve_tools = True): """ Build the args for a protoc invocation. This does not include the paths to the .proto files, which should be done external to this function. Args: ctx: The Bazel rule execution context object. plugin: The ProtoPluginInfo for the plugin to use. proto_infos: The list of ProtoInfo providers. out_arg: The path to provide as the output arg to protoc, usually the generation root dir. extra_options: An optional list of extra options to pass to the plugin. extra_protoc_args: An optional list of extra args to add to the command. short_paths: Whether to use the .short_path instead of .path when creating paths. The short_path is used when making a test/executable and referencing the runfiles. resolve_tools: Whether to resolve and add the tools to returned inputs. Returns: - The list of args. - The inputs required for the command. - The input manifests required for the command. """ # Specify path getter get_path = _short_path if short_paths else _path # Build inputs and manifests list inputs = [] input_manifests = [] if plugin.tool and resolve_tools: plugin_runfiles, plugin_input_manifests = ctx.resolve_tools(tools = [plugin.tool]) inputs += plugin_runfiles.to_list() input_manifests += plugin_input_manifests inputs += plugin.data # Get plugin name plugin_name = plugin.name if plugin.protoc_plugin_name: plugin_name = plugin.protoc_plugin_name # Build args args_list = [] # Load all descriptors (direct and transitive) and remove dupes descriptor_sets = depset([ descriptor_set for proto_info in proto_infos for descriptor_set in proto_info.transitive_descriptor_sets.to_list() ]).to_list() inputs += descriptor_sets # Add descriptors pathsep = ctx.configuration.host_path_separator args_list.append("--descriptor_set_in={}".format(pathsep.join( [get_path(f) for f in descriptor_sets], ))) # Add --plugin if not a built-in plugin if plugin.tool_executable: # If Windows, mangle the path. It's done a bit awkwardly with # `host_path_seprator` as there is no simple way to figure out what's # the current OS. if ctx.configuration.host_path_separator == ";": plugin_tool_path = get_path(plugin.tool_executable).replace("/", "\\") else: plugin_tool_path = get_path(plugin.tool_executable) args_list.append("--plugin=protoc-gen-{}={}".format(plugin_name, plugin_tool_path)) # Add plugin --*_out/--*_opt args plugin_options = list(plugin.options) plugin_options.extend(extra_options) if plugin_options: opts_str = ",".join( [option.replace("{name}", ctx.label.name) for option in plugin_options], ) if plugin.separate_options_flag: args_list.append("--{}_opt={}".format(plugin_name, opts_str)) else: out_arg = "{}:{}".format(opts_str, out_arg) args_list.append("--{}_out={}".format(plugin_name, out_arg)) # Add any extra protoc args provided or that plugin has args_list.extend(extra_protoc_args) if plugin.extra_protoc_args: args_list.extend(plugin.extra_protoc_args) return args_list, inputs, input_manifests
24796ea7d817dd3a11ec2c1b54de23573c6da275
12,090
def make_rare_deleterious_variants_filter(sample_ids_list=None): """ Function for retrieving rare, deleterious variants """ and_list = [ { "$or": [ {"cadd.esp.af": {"$lt": 0.051}}, {"cadd.esp.af": {"$exists": False}} ] }, { "$or": [ {"func_knowngene": "exonic"}, {"func_knowngene": "splicing"} ] }, {"cadd.phred": {"$gte": 10}}, {"exonicfunc_knowngene": {"$ne": "synonymous SNV"}}, {"1000g2015aug_all": {"$lt": 0.051}} ] result = _append_sample_id_constraint_if_needed(and_list, sample_ids_list) return result
2a97e5a0aa96b2a221c32639dde20fcf8de09bce
12,092
def PluginCompleter(unused_self, event_object): """Completer function that returns a list of available plugins.""" ret_list = [] if not IsLoaded(): return ret_list if not '-h' in event_object.line: ret_list.append('-h') plugins_list = parsers_manager.ParsersManager.GetWindowsRegistryPlugins() for plugin_cls in plugins_list.GetKeyPlugins(RegCache.hive_type): plugins_list = plugin_cls(reg_cache=RegCache.reg_cache) plugin_name = plugins_list.plugin_name if plugin_name.startswith('winreg'): plugin_name = plugin_name[7:] if plugin_name == 'default': continue ret_list.append(plugin_name) return ret_list
c03b765ed39c1e43d3b67aaf9486c0f015b7bc4e
12,093
def train_model(item_user_data) -> []: """"Returns trained model""" model = implicit.als.AlternatingLeastSquares(factors=50) model.fit(item_user_data) return model
d3917cb422707bebdd519bab04b9332c1056ec7a
12,094
def refresh_blind_balances(wallet, balances, storeback=True): """ Given a list of (supposedly) unspent balances, iterate over each one and verify it's status on the blockchain. Each balance failing this verification updates own status in the database (if storeback is True). Returns a list of TRULY unspent balances. """ rpc = wallet.rpc unspent = [ ] for balance in balances: result = rpc.get_blinded_balances([balance["commitment"]]) if len(result) == 0: if storeback: wallet.modifyBlindBalance(balance["commitment"], used=True) else: unspent.append(balance) return unspent
2d468827ae32d359b323921d5933796ada22d627
12,095
def hull_area(par, llhs, above_min=1): """Estimate projected area of llh minimum for single parameter Parameters ---------- par : np.ndarray the parameter values llhs : np.ndarray the llh values Returns ------- float """ min_llh = llhs.min() try: Hull = ConvexHull(np.stack([par, llhs]).T[llhs < min_llh+above_min]) return Hull.volume except QhullError: return np.inf
3284a9742dfd9889fff67fd6f68ab9435858a521
12,097
def assemble_chain(leaf, store): """Assemble the trust chain. This assembly method uses the certificates subject and issuer common name and should be used for informational purposes only. It does *not* cryptographically verify the chain! :param OpenSSL.crypto.X509 leaf: The leaf certificate from which to build the chain. :param list[OpenSSL.crypto.X509] store: A list of certificates to use to resolve the chain. :return: The trust chain. :rtype: list[OpenSSL.crypto.X509] """ store_dict = {} for cert in store: store_dict[cert.get_subject().CN] = cert chain = [leaf] current = leaf try: while current.get_issuer().CN != current.get_subject().CN: chain.append(store_dict[current.get_issuer().CN]) current = store_dict[current.get_issuer().CN] except KeyError: invalid = crypto.X509() patch_certificate(invalid) invalid.set_subject(current.get_issuer()) chain.append(invalid) chain.reverse() return chain
c59025ddcbb777f4f5358f8d89e05191c22eb780
12,098
def dilate( data, iterations=1, structure=None ): """Dilate a binary ND array by a number of iterations.""" # Convert to binary, just in case. mask = binarise(data).astype(int) if not structure: structure = ndimage.generate_binary_structure(3,1) # Check we have positive iterations - no header available here to convert from mm. iterations = np.abs(iterations) # Slightly awkward as I'm not certain iterations == voxels print (" Dilating {0} iterations ...".format(iterations)) if iterations > 0: dilated_mask = ndimage.binary_dilation( mask, structure, iterations ) return dilated_mask # End of dilate() definition
724b10f0c1d0d417f4ca693a5322349f390da17c
12,100
from PyPDF4 import PdfFileReader def text_from_pdf(file_name : str) -> str: """ Extract text from PDF file ========================== Parameters ---------- file_name : str Name of the file to extract text from. Returns ------- str The extracted text. """ text = '' with open(file_name, 'rb') as instream: reader = PdfFileReader(instream) for i in range(reader.numPages): text += '{}\n'.format(reader.getPage(i).extractText()) return text
a1b0077b143b4fee211dd38b6beabf58c7692177
12,101
import configparser def read_section(section, fname): """Read the specified section of an .ini file.""" conf = configparser.ConfigParser() conf.read(fname) val = {} try: val = dict((v, k) for v, k in conf.items(section)) return val except configparser.NoSectionError: return None
65d6b81b45fc7b75505dd6ee4dda19d13ebf7095
12,102
import torch def freqz( b, a=1, worN=512, whole=False, fs=2 * np.pi, log=False, include_nyquist=False ): """Compute the frequency response of a digital filter.""" h = None lastpoint = 2 * np.pi if whole else np.pi if log: w = np.logspace(0, lastpoint, worN, endpoint=include_nyquist and not whole) else: w = np.linspace(0, lastpoint, worN, endpoint=include_nyquist and not whole) w = torch.tensor(w, device=b.device) if a.size() == 1: n_fft = worN if whole else worN * 2 h = torch.fft.rfft(b, n=n_fft)[:worN] h /= a if h is None: zm1 = torch.exp(-1j * w) h = polyval(b, zm1) / (polyval(a, zm1) + 1e-16) # need to catch NaNs here w = w * fs / (2 * np.pi) return w, h
d6950acc8535791968d34edf8c4ebd557000b72e
12,103
def _helper_fit_partition(self, pnum, endog, exog, fit_kwds, init_kwds_e={}): """handles the model fitting for each machine. NOTE: this is primarily handled outside of DistributedModel because joblib cannot handle class methods. Parameters ---------- self : DistributedModel class instance An instance of DistributedModel. pnum : scalar index of current partition. endog : array_like endogenous data for current partition. exog : array_like exogenous data for current partition. fit_kwds : dict-like Keywords needed for the model fitting. init_kwds_e : dict-like Additional init_kwds to add for each partition. Returns ------- estimation_method result. For the default, _est_regularized_debiased, a tuple. """ temp_init_kwds = self.init_kwds.copy() temp_init_kwds.update(init_kwds_e) model = self.model_class(endog, exog, **temp_init_kwds) results = self.estimation_method(model, pnum, self.partitions, fit_kwds=fit_kwds, **self.estimation_kwds) return results
30b7e6d48c2f0fa3eb2d2486fee9a87dad609886
12,104
def generate_2d_scatter(data, variables, class_data=None, class_names=None, nrows=None, ncols=None, sharex=False, sharey=False, show_legend=True, xy_line=False, trendline=False, cmap_class=None, shorten_variables=False, **kwargs): """Generate 2D scatter plots from the given data and variables. This method will generate 2D scatter plots for all combinations of the given variables. Parameters ---------- data : object like :class:`pandas.core.frame.DataFrame` The data we will plot here. variables : list of strings The variables we will generate scatter plots for. class_data : object like :class:`pandas.core.series.Series`, optional Class information for the points (if available). class_names : dict of strings, optional A mapping from the class data to labels/names. nrows : integer, optional The number of rows to use in a figure. ncols : integer, optional The number of columns to use in a figure. sharex : boolean, optional If True, the scatter plots will share the x-axis. sharey : boolean, optional If True, the scatter plots will share the y-axis. show_legend : boolean, optional If True, we will create a legend here and show it. xy_line : boolean, optional If True, we will add a x=y line to the plot. trendline : boolean, optional If True, we will add a trend line to the plot. cmap_class : string or object like :class:`matplotlib.colors.Colormap`, optional A color map to use for classes. kwargs : dict, optional Additional arguments used for the plotting. Returns ------- figures : list of objects like :class:`matplotlib.figure.Figure` The figures containing the plots. axes : list of objects like :class:`matplotlib.axes.Axes` The axes containing the plots. """ nplots = comb(len(variables), 2, exact=True) figures, axes = create_fig_and_axes( nplots, nrows=nrows, ncols=ncols, sharex=sharex, sharey=sharey, **kwargs, ) fig = None for i, (xvar, yvar) in enumerate(combinations(variables, 2)): # We do not want to repeat the legend in all subplots: show_legend_ax = False if axes[i].figure != fig: fig = axes[i].figure show_legend_ax = True xlabel = None ylabel = None if shorten_variables: if len(xvar) > 5: xlabel = xvar[:3] + '...' if len(yvar) > 5: ylabel = yvar[:3] + '...' _, _, patches, labels = plot_scatter( data, xvar, yvar, axi=axes[i], xlabel=xlabel, ylabel=ylabel, class_data=class_data, class_names=class_names, cmap_class=cmap_class, **kwargs, ) if xy_line: line_xy = add_xy_line(axes[i], alpha=0.7, color='black') patches.append(line_xy) labels.append('x = y') if trendline: line_trend = add_trendline(axes[i], data[xvar], data[yvar], alpha=0.7, ls='--', color='black') patches.append(line_trend) labels.append('y = a + bx') if show_legend and show_legend_ax and patches and labels: axes[i].legend(patches, labels) return figures, axes
9d2a843f07cbfed921831a64ad39b4c13a947500
12,105
def getOptions(options): """translate command line options to PAML options.""" codeml_options = {} if options.analysis == "branch-specific-kaks": codeml_options["seqtype"] = "1" codeml_options["model"] = "1" elif options.analysis == "branch-fixed-kaks": codeml_options["seqtype"] = "1" codeml_options["model"] = "0" elif options.analysis == "branch-all-but-one-fixed-kaks": codeml_options["seqtype"] = "1" codeml_options["model"] = "2" if not tree: raise ValueError("please supply a tree for this mode.") if not options.filename_output_tree: raise ValueError( "please speficy filename-output-tree as location " "(relative to this script) for trees.") elif options.analysis == "site-specific-kaks": codeml_options["ncatG"] = "10" codeml_options["getSE"] = "1" codeml_options["seqtype"] = "1" codeml_options["NSsites"] = "0 3 1 2 7 8" codeml_options["model"] = "0" codeml_options["CodonFreq"] = "2" elif options.analysis == "pairwise": codeml_options["seqtype"] = "1" codeml_options["model"] = "0" codeml_options["runmode"] = "-2" if options.multiple_genes: codeml_options["Malpha"] = "0" codeml_options["Mgene"] = "0" if options.omega is not None: codeml_options["omega"] = str(options.omega) if options.estimate_ancestors: codeml_options["RateAncestor"] = "1" if options.codon_frequencies is not None: c = options.codon_frequencies.upper() if c in ("UNIFORM", "FEQUAL"): a = "0" elif c == "F1X4": a = "1" elif c == "F3X4": a = "2" elif c == "F61": a = "3" else: a = options.codon_frequencies codeml_options["CodonFreq"] = a if options.method is not None: codeml_options["method"] = str(options.method) if options.optimization_threshold is not None: codeml_options["Small_Diff"] = str(options.optimization_threshold) if options.clean_data: codeml_options["cleandata"] = options.clean_data return codeml_options
86b0fa157e9a9c48d7bf683e57f24f49e32f15e7
12,106
def get_invocations(benchmark: Benchmark): """ Returns a list of invocations that invoke the tool for the given benchmark. It can be assumed that the current directory is the directory from which execute_invocations.py is executed. For QCOMP 2020, this should return a list of invocations for all tracks in which the tool can take part. For each track an invocation with default settings has to be provided and in addition, an optimized setting (e.g., the fastest engine and/or solution technique for this benchmark) can be specified. Only information about the model type, the property type and the state space size are allowed to be used to tweak the parameters. If this benchmark is not supported, an empty list has to be returned. """ if not is_benchmark_supported(benchmark): return [] prec = dict() prec["epsilon-correct"] = "0.000001" prec["probably-epsilon-correct"] = "0.05" prec["often-epsilon-correct"] = "0.001" prec["often-epsilon-correct-10-min"] = "0.001" result = [] for track in prec.keys(): benchmark_settings = "./pet.sh reachability --precision {} --relative-error --only-result -m {} -p {} --property {}".format( prec[track], benchmark.get_prism_program_filename(), benchmark.get_prism_property_filename(), benchmark.get_property_name(), ) if benchmark.get_open_parameter_def_string() != "": benchmark_settings += " --const {}".format( benchmark.get_open_parameter_def_string() ) if ( "haddad" in benchmark.get_prism_program_filename() or "gathering" in benchmark.get_prism_program_filename() ): benchmark_settings = "./fix-syntax " + benchmark_settings # default settings PET eps-corr default_inv = Invocation() default_inv.identifier = "default" default_inv.note = "Default settings." default_inv.track_id = track default_inv.add_command(benchmark_settings) result += [default_inv] if ( track == "epsilon-correct" or benchmark.get_model_type() == "ctmc" or "haddad" in benchmark.get_prism_program_filename() or "csma" in benchmark.get_prism_program_filename() or "wlan" in benchmark.get_prism_program_filename() or "gathering" in benchmark.get_prism_program_filename() ): # smc is prob eps correct, cannot handle ctmc and haddad monmege cannot be parsed by it continue if benchmark.get_num_states_tweak() is None: # need this info continue smc_settings = "./smc.sh {} {} -prop {} -heuristic RTDP_ADJ -RTDP_ADJ_OPTS 1 -colourParams S:{},Av:10,e:{},d:0.05,p:0.05,post:64".format( benchmark.get_prism_program_filename(), benchmark.get_prism_property_filename(), benchmark.get_property_name(), benchmark.get_num_states_tweak(), prec[track], ) if benchmark.get_open_parameter_def_string() != "": smc_settings += " -const {}".format( benchmark.get_open_parameter_def_string() ) if ( "haddad" in benchmark.get_prism_program_filename() or "gathering" in benchmark.get_prism_program_filename() ): smc_settings = "./fix-syntax " + smc_settings # SMC invocations SMC_inv = Invocation() SMC_inv.identifier = "specific" SMC_inv.note = "Statistical model checking with limited information (no transition probabilities)" SMC_inv.track_id = track SMC_inv.add_command(smc_settings) result += [SMC_inv] return result
4afeaa62cecd2ae21f6e112fe5c87dff54310a95
12,108
def see(node: "Position", move: Move = None) -> float: """Static-Exchange-Evaluation Args: node: The current position to see move (Move, optional): The capture move to play. Defaults to None. Returns: float: The score associated with this capture. Positive is good. """ c = node.state.turn bitboards = node.boards if move is None: return 0 if not move.is_capture: return 0 i = 0 gain = [0] * 32 target = bitboards.piece_at(move._to) if target is None: return 0 occ = bitboards.occupancy from_bb = Bitboard(1 << move._from) attack_defend_bb = bitboards.attack_defend_to(move._to, c) xrays = bitboards.xrays_bb gain[i] = PIECE_VALUES[target._type] assert target is not None pt = (bitboards.piece_at(move._from))._type while True: i += 1 gain[i] = PIECE_VALUES[pt] - gain[i-1] if max(-gain[i-1], gain[i]) < 0: break attack_defend_bb ^= from_bb occ ^= from_bb from_bb, pt = least_valuable_attacker(~c, bitboards, attack_defend_bb) if not from_bb: break i -= 1 while i: gain[i-1] = -max(-gain[i-1], gain[i]) i -= 1 return gain[0]
e6062b7cd09e9b2dca514e5be23b7fa870ff923f
12,109
def rk4(f, t0, y0, h, N): """"Solve IVP given by y' = f(t, y), y(t_0) = y_0 with step size h > 0, for N steps, using the Runge-Kutta 4 method. Also works if y is an n-vector and f is a vector-valued function.""" t = t0 + np.array([i * h for i in range(N+1)]) m = len(y0) y = np.zeros((N+1, m)) y[0] = y0 # Repeatedly approximate next value. for n in range(N): k1 = f(t[n], y[n]) k2 = f(t[n] + h/2, y[n] + k1 * h/2) k3 = f(t[n] + h/2, y[n] + k2 * h/2) k4 = f(t[n] + h, y[n] + k3 * h) y[n+1] = y[n] + h * (k1 + 2 * k2 + 2 * k3 + k4) / 6 return t, y
e6b7c3d1ac0ea765a3ac9ebac69159dd2c2eab78
12,111
import torch def parse_predictions(est_data, gt_data, config_dict): """ Parse predictions to OBB parameters and suppress overlapping boxes Args: est_data, gt_data: dict {point_clouds, center, heading_scores, heading_residuals, size_scores, size_residuals, sem_cls_scores} config_dict: dict {dataset_config, remove_empty_box, use_3d_nms, nms_iou, use_old_type_nms, conf_thresh, per_class_proposal} Returns: batch_pred_map_cls: a list of len == batch size (BS) [pred_list_i], i = 0, 1, ..., BS-1 where pred_list_i = [(pred_sem_cls, box_params, box_score)_j] where j = 0, ..., num of valid detections - 1 from sample input i """ eval_dict = {} pred_center = est_data['center'] # B,num_proposal,3 pred_heading_class = torch.argmax(est_data['heading_scores'], -1) # B,num_proposal heading_residuals = est_data['heading_residuals_normalized'] * ( np.pi / config_dict['dataset_config'].num_heading_bin) # Bxnum_proposalxnum_heading_bin pred_heading_residual = torch.gather(heading_residuals, 2, pred_heading_class.unsqueeze(-1)) # B,num_proposal,1 pred_heading_residual.squeeze_(2) pred_size_class = torch.argmax(est_data['size_scores'], -1) # B,num_proposal size_residuals = est_data['size_residuals_normalized'] * torch.from_numpy( config_dict['dataset_config'].mean_size_arr.astype(np.float32)).cuda().unsqueeze(0).unsqueeze(0) pred_size_residual = torch.gather(size_residuals, 2, pred_size_class.unsqueeze(-1).unsqueeze(-1).repeat(1, 1, 1, 3)) # B,num_proposal,1,3 pred_size_residual.squeeze_(2) pred_sem_cls = torch.argmax(est_data['sem_cls_scores'], -1) # B,num_proposal sem_cls_probs = softmax(est_data['sem_cls_scores'].detach().cpu().numpy()) # B,num_proposal,10 pred_sem_cls_prob = np.max(sem_cls_probs, -1) # B,num_proposal num_proposal = pred_center.shape[1] # Since we operate in upright_depth coord for points, while util functions # assume upright_camera coord. bsize = pred_center.shape[0] pred_corners_3d_upright_camera = np.zeros((bsize, num_proposal, 8, 3)) pred_center_upright_camera = flip_axis_to_camera(pred_center.detach().cpu().numpy()) for i in range(bsize): for j in range(num_proposal): heading_angle = config_dict['dataset_config'].class2angle( \ pred_heading_class[i, j].detach().cpu().numpy(), pred_heading_residual[i, j].detach().cpu().numpy()) box_size = config_dict['dataset_config'].class2size( \ int(pred_size_class[i, j].detach().cpu().numpy()), pred_size_residual[i, j].detach().cpu().numpy()) corners_3d_upright_camera = get_3d_box(box_size, -heading_angle, pred_center_upright_camera[i, j, :]) pred_corners_3d_upright_camera[i, j] = corners_3d_upright_camera K = pred_center.shape[1] # K==num_proposal nonempty_box_mask = np.ones((bsize, K)) if config_dict['remove_empty_box']: # ------------------------------------- # Remove predicted boxes without any point within them.. batch_pc = gt_data['point_clouds'].cpu().numpy()[:, :, 0:3] # B,N,3 for i in range(bsize): pc = batch_pc[i, :, :] # (N,3) for j in range(K): box3d = pred_corners_3d_upright_camera[i, j, :, :] # (8,3) box3d = flip_axis_to_depth(box3d) pc_in_box, inds = extract_pc_in_box3d(pc, box3d) if len(pc_in_box) < 5: nonempty_box_mask[i, j] = 0 # ------------------------------------- obj_logits = est_data['objectness_scores'].detach().cpu().numpy() obj_prob = softmax(obj_logits)[:, :, 1] # (B,K) if not config_dict['use_3d_nms']: # ---------- NMS input: pred_with_prob in (B,K,7) ----------- pred_mask = np.zeros((bsize, K), dtype=np.uint8) for i in range(bsize): boxes_2d_with_prob = np.zeros((K, 5)) for j in range(K): boxes_2d_with_prob[j, 0] = np.min(pred_corners_3d_upright_camera[i, j, :, 0]) boxes_2d_with_prob[j, 2] = np.max(pred_corners_3d_upright_camera[i, j, :, 0]) boxes_2d_with_prob[j, 1] = np.min(pred_corners_3d_upright_camera[i, j, :, 2]) boxes_2d_with_prob[j, 3] = np.max(pred_corners_3d_upright_camera[i, j, :, 2]) boxes_2d_with_prob[j, 4] = obj_prob[i, j] nonempty_box_inds = np.where(nonempty_box_mask[i, :] == 1)[0] pick = nms_2d_faster(boxes_2d_with_prob[nonempty_box_mask[i, :] == 1, :], config_dict['nms_iou'], config_dict['use_old_type_nms']) assert (len(pick) > 0) pred_mask[i, nonempty_box_inds[pick]] = 1 eval_dict['pred_mask'] = pred_mask # ---------- NMS output: pred_mask in (B,K) ----------- elif config_dict['use_3d_nms'] and (not config_dict['cls_nms']): # ---------- NMS input: pred_with_prob in (B,K,7) ----------- pred_mask = np.zeros((bsize, K), dtype=np.uint8) for i in range(bsize): boxes_3d_with_prob = np.zeros((K, 7)) for j in range(K): boxes_3d_with_prob[j, 0] = np.min(pred_corners_3d_upright_camera[i, j, :, 0]) boxes_3d_with_prob[j, 1] = np.min(pred_corners_3d_upright_camera[i, j, :, 1]) boxes_3d_with_prob[j, 2] = np.min(pred_corners_3d_upright_camera[i, j, :, 2]) boxes_3d_with_prob[j, 3] = np.max(pred_corners_3d_upright_camera[i, j, :, 0]) boxes_3d_with_prob[j, 4] = np.max(pred_corners_3d_upright_camera[i, j, :, 1]) boxes_3d_with_prob[j, 5] = np.max(pred_corners_3d_upright_camera[i, j, :, 2]) boxes_3d_with_prob[j, 6] = obj_prob[i, j] nonempty_box_inds = np.where(nonempty_box_mask[i, :] == 1)[0] pick = nms_3d_faster(boxes_3d_with_prob[nonempty_box_mask[i, :] == 1, :], config_dict['nms_iou'], config_dict['use_old_type_nms']) assert (len(pick) > 0) pred_mask[i, nonempty_box_inds[pick]] = 1 eval_dict['pred_mask'] = pred_mask # ---------- NMS output: pred_mask in (B,K) ----------- elif config_dict['use_3d_nms'] and config_dict['cls_nms']: # ---------- NMS input: pred_with_prob in (B,K,8) ----------- pred_mask = np.zeros((bsize, K), dtype=np.uint8) for i in range(bsize): boxes_3d_with_prob = np.zeros((K, 8)) for j in range(K): boxes_3d_with_prob[j, 0] = np.min(pred_corners_3d_upright_camera[i, j, :, 0]) boxes_3d_with_prob[j, 1] = np.min(pred_corners_3d_upright_camera[i, j, :, 1]) boxes_3d_with_prob[j, 2] = np.min(pred_corners_3d_upright_camera[i, j, :, 2]) boxes_3d_with_prob[j, 3] = np.max(pred_corners_3d_upright_camera[i, j, :, 0]) boxes_3d_with_prob[j, 4] = np.max(pred_corners_3d_upright_camera[i, j, :, 1]) boxes_3d_with_prob[j, 5] = np.max(pred_corners_3d_upright_camera[i, j, :, 2]) boxes_3d_with_prob[j, 6] = obj_prob[i, j] boxes_3d_with_prob[j, 7] = pred_sem_cls[i, j] # only suppress if the two boxes are of the same class!! nonempty_box_inds = np.where(nonempty_box_mask[i, :] == 1)[0] pick = nms_3d_faster_samecls(boxes_3d_with_prob[nonempty_box_mask[i, :] == 1, :], config_dict['nms_iou'], config_dict['use_old_type_nms']) assert (len(pick) > 0) pred_mask[i, nonempty_box_inds[pick]] = 1 eval_dict['pred_mask'] = pred_mask # ---------- NMS output: pred_mask in (B,K) ----------- return eval_dict, {'pred_corners_3d_upright_camera': pred_corners_3d_upright_camera, 'sem_cls_probs': sem_cls_probs, 'obj_prob': obj_prob, 'pred_sem_cls': pred_sem_cls}
9d31b44e37e7af458084b29927eaa29d2e1889af
12,113
def benchmark_op(op, burn_iters: int = 2, min_iters: int = 10): """Final endpoint for all kb.benchmarks functions.""" assert not tf.executing_eagerly() with tf.compat.v1.Session() as sess: sess.run(tf.compat.v1.global_variables_initializer()) bm = tf.test.Benchmark() result = bm.run_op_benchmark( sess, op, burn_iters=burn_iters, min_iters=min_iters ) summarize(result) return result
4b46cbb4f487332b43e1c06daef294e9e01f13a5
12,114
def run_truncated_sprt(list_alpha, list_beta, logits_concat, labels_concat, verbose=False): """ Calculate confusion matrix, mean hitting time, and truncate rate of a batch. Args: list_alpha: A list of floats. list_beta: A list of floats with the same length as list_alpha's. logits_concat: A logit Tensor with shape (batch, (duration - order_sprt), order_sprt + 1, 2). This is the output of datasets.data_processing.sequential_concat(logit_slice, labels_slice) labels_concat: A binary label Tensor with shape (batch size,) with label = 0 or 1. This is the output of datasets.data_processing.sequential_concat(logit_slice, labels_slice). Returns: dict_confmx_sprt: A dictionary with keys like "thresh=0.2342,-0.2342". Value is a confusion matrix Tensor. dict_mean_hittimes: A dictionary with keys like "thresh=0.2342,-0.2342". Value is a mean hitting time. dict_truncate_rates: A dictionary with keys like "thresh=0.2342,-0.2342". Value is an truncate rate. """ dict_confmx_sprt = dict() dict_mean_hittimes = dict() dict_var_hittimes = dict() dict_truncate_rates = dict() batch_size_tmp = labels_concat.shape[0] for alpha, beta in zip(list_alpha, list_beta): # Calc thresholds alpha = float(alpha) beta = float(beta) thresh = [np.log(beta/(1-alpha)), np.log((1-beta)/alpha)] key = "thresh={:6.4f},{:7.4f}".format(thresh[0], thresh[1]) # Run truncated sprt confmx, mean_hittime, var_hittime, truncate_rate = binary_truncated_sprt(logits_concat, labels_concat, alpha, beta) dict_confmx_sprt[key] = confmx dict_mean_hittimes[key] = mean_hittime dict_var_hittimes[key] = var_hittime dict_truncate_rates[key] = truncate_rate if verbose: print("====================================") print("SPRT w/ alpha={}, beta={}".format(alpha, beta)) print("Thresholds = {}".format(thresh)) print("Confusion Matrix") print(confmx) print("Mean Hitting Time: {} +- {}".format(mean_hittime, tf.sqrt(var_hittime))) print("truncate: {} / {} = {}".format(tf.round(truncate_rate*batch_size_tmp), batch_size_tmp, truncate_rate)) print("====================================") return dict_confmx_sprt, dict_mean_hittimes, dict_var_hittimes, dict_truncate_rates
7934b1de29c60a59df056cbb1e4dce42e76ca540
12,115
def get_users(metadata): """ Pull users, handles hidden user errors Parameters: metadata: sheet of metadata from mwclient Returns: the list of users """ users = [] for rev in metadata: try: users.append(rev["user"]) except (KeyError): users.append(None) return users
48dbae6a63019b0e4c2236a97e147102fe4d8758
12,116