parquet-converter commited on
Commit
1adc797
·
1 Parent(s): 1b864a8

Update parquet files (step 4 of 476)

Browse files
This view is limited to 50 files because it contains too many changes.   See raw diff
Files changed (50) hide show
  1. spaces/101-5/gpt4free/testing/wewordle/testing.py +0 -30
  2. spaces/1acneusushi/gradio-2dmoleculeeditor/data/Bus Simulator 2012 English Patch 1.2.4 Experience the Realistic and Fun Bus Driving Game.md +0 -157
  3. spaces/1acneusushi/gradio-2dmoleculeeditor/data/Call of Duty 4 Modern Warfare 11 English Language Pack - Where to Find and How to Use It.md +0 -82
  4. spaces/1acneusushi/gradio-2dmoleculeeditor/data/Embird 2017 Registration Password The Secret to Creating Amazing Embroidery Designs.md +0 -33
  5. spaces/1gistliPinn/ChatGPT4/Examples/Buku Zoologi Vertebrata.pdf Extra Quality.md +0 -6
  6. spaces/1gistliPinn/ChatGPT4/Examples/Delock Usb Sound Adapter 7.1 Driver Download.md +0 -6
  7. spaces/1toTree/lora_test/ppdiffusers/pipelines/stable_diffusion_safe/safety_checker.py +0 -113
  8. spaces/2023Liu2023/bingo/src/components/tone-selector.tsx +0 -43
  9. spaces/A00001/bingothoo/src/components/ui/textarea.tsx +0 -24
  10. spaces/AIGC-Audio/AudioGPT/text_to_audio/Make_An_Audio/ldm/modules/losses_audio/vqperceptual.py +0 -136
  11. spaces/AIGC-Audio/AudioGPT/text_to_speech/modules/commons/conformer/conformer.py +0 -72
  12. spaces/AIxPha/QSign/unidbg-fetch-qsign/bin/unidbg-fetch-qsign.bat +0 -89
  13. spaces/AchyuthGamer/ImMagician-Image-Generator/share_btn.py +0 -78
  14. spaces/AchyuthGamer/OpenGPT-Chat-UI/src/app.html +0 -32
  15. spaces/AchyuthGamer/OpenGPT-Chat-UI/src/lib/types/SharedConversation.ts +0 -12
  16. spaces/AchyuthGamer/OpenGPT/server/babel.py +0 -48
  17. spaces/Adapter/CoAdapter/ldm/modules/diffusionmodules/model.py +0 -852
  18. spaces/AgentVerse/agentVerse/agentverse/environments/simulation_env/rules/describer/pokemon.py +0 -51
  19. spaces/AgentVerse/agentVerse/ui/src/phaser3-rex-plugins/templates/bejeweled/methods/WaitEventMethods.js +0 -13
  20. spaces/AgentVerse/agentVerse/ui/src/phaser3-rex-plugins/templates/ui/maker/builders/utils/CreateAnyLabel.js +0 -18
  21. spaces/AkitoP/umamusume_bert_vits2/text/english_bert_mock.py +0 -5
  22. spaces/AliSaria/MilitarEye/app.py +0 -45
  23. spaces/Amrrs/DragGan-Inversion/PTI/models/StyleCLIP/global_directions/dnnlib/util.py +0 -472
  24. spaces/Amrrs/fashion-aggregator-duplicated/app.py +0 -217
  25. spaces/Androidonnxfork/CivitAi-to-Diffusers/diffusers/tests/pipelines/stable_diffusion/test_stable_diffusion_inpaint.py +0 -1398
  26. spaces/Androidonnxfork/CivitAi-to-Diffusers/diffusers/tests/pipelines/stable_diffusion_2/test_stable_diffusion_depth.py +0 -599
  27. spaces/Andy1621/uniformer_image_segmentation/configs/deeplabv3/deeplabv3_r50-d8_512x1024_80k_cityscapes.py +0 -4
  28. spaces/Andy1621/uniformer_image_segmentation/configs/dmnet/dmnet_r50-d8_512x1024_80k_cityscapes.py +0 -4
  29. spaces/AnishKumbhar/ChatBot/text-generation-webui-main/.github/pull_request_template.md +0 -3
  30. spaces/Anonymous-sub/Rerender/ControlNet/config.py +0 -1
  31. spaces/Ariharasudhan/YoloV5/models/tf.py +0 -608
  32. spaces/ArtyomKhyan/Detection/utils/datasets.py +0 -887
  33. spaces/AtomdffAI/wechatgpt4atom/bot/bot_factory.py +0 -26
  34. spaces/Big-Web/MMSD/env/Lib/site-packages/botocore/signers.py +0 -832
  35. spaces/Bready11/Onodofthenorth-SD_PixelArt_SpriteSheet_Generator/app.py +0 -3
  36. spaces/CVPR/Dual-Key_Backdoor_Attacks/bottom-up-attention-vqa/classifier.py +0 -18
  37. spaces/CVPR/Dual-Key_Backdoor_Attacks/datagen/detectron2/projects/PointRend/README.md +0 -115
  38. spaces/CVPR/LIVE/thrust/cmake/AppendOptionIfAvailable.cmake +0 -14
  39. spaces/CVPR/LIVE/thrust/thrust/detail/cstdint.h +0 -79
  40. spaces/CVPR/LIVE/thrust/thrust/system/cuda/detail/async/reduce.h +0 -350
  41. spaces/CVPR/LIVE/thrust/thrust/system/cuda/detail/gather.h +0 -107
  42. spaces/CVPR/VizWiz-CLIP-VQA/README.md +0 -10
  43. spaces/Choisuren/AnimeGANv3/README.md +0 -12
  44. spaces/CikeyQI/meme-api/meme_generator/memes/hug_leg/__init__.py +0 -32
  45. spaces/CofAI/chat/client/css/conversation.css +0 -158
  46. spaces/CofAI/chat/client/js/sidebar-toggler.js +0 -34
  47. spaces/DKDohare/Chat-GPT4-MAX/app.py +0 -141
  48. spaces/DQChoi/gpt-demo/venv/lib/python3.11/site-packages/httpcore/_async/http_proxy.py +0 -350
  49. spaces/DQChoi/gpt-demo/venv/lib/python3.11/site-packages/huggingface_hub/keras_mixin.py +0 -481
  50. spaces/DVLH/nlpconnect-vit-gpt2-image-captioning/app.py +0 -3
spaces/101-5/gpt4free/testing/wewordle/testing.py DELETED
@@ -1,30 +0,0 @@
1
- from Wewordle import ChatCompletion
2
-
3
- # Test 1
4
- response = ChatCompletion.create(model="gpt-3.5-turbo",
5
- provider="Wewordle",
6
- stream=False,
7
- messages=[{'role': 'user', 'content': 'who are you?'}])
8
-
9
- print(response)
10
-
11
- # Test 2
12
- response = ChatCompletion.create(model="gpt-3.5-turbo",
13
- provider="Wewordle",
14
- stream=False,
15
- messages=[{'role': 'user', 'content': 'what you can do?'}])
16
-
17
- print(response)
18
-
19
-
20
- # Test 3
21
- response = ChatCompletion.create(model="gpt-3.5-turbo",
22
- provider="Wewordle",
23
- stream=False,
24
- messages=[
25
- {'role': 'user', 'content': 'now your name is Bob'},
26
- {'role': 'assistant', 'content': 'Hello Im Bob, you asistant'},
27
- {'role': 'user', 'content': 'what your name again?'},
28
- ])
29
-
30
- print(response)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
spaces/1acneusushi/gradio-2dmoleculeeditor/data/Bus Simulator 2012 English Patch 1.2.4 Experience the Realistic and Fun Bus Driving Game.md DELETED
@@ -1,157 +0,0 @@
1
- <br />
2
- <h1>Bus Simulator 2012: A Realistic and Fun Driving Simulation Game</h1>
3
- <p>Have you ever wondered what it's like to drive a bus in a busy city? Do you want to experience the challenges and rewards of being a bus driver? If you answered yes to any of these questions, then you should try <strong>Bus Simulator 2012</strong>, a simulation game developed by TML Studios and published by astragon Entertainment in 2012.</p>
4
- <p>In this game, you can explore a detailed and virtual world based on a picturesque German city behind the wheel of a realistically modeled and freely accessible bus. You can choose from different types of buses, routes, and scenarios, and interact with your passengers and traffic. You can also customize your vehicles and share them with the game community.</p>
5
- <h2>Bus Simulator 2012 English Patch 1.2.4</h2><br /><p><b><b>DOWNLOAD</b> &#9658;&#9658;&#9658; <a href="https://byltly.com/2uKzu6">https://byltly.com/2uKzu6</a></b></p><br /><br />
6
- <p>In this article, we will tell you everything you need to know about Bus Simulator 2012, including what it is, how to install it, what is the English patch 1.2.4, how to play it, and some tips and tricks to make your gameplay more enjoyable.</p>
7
- <h2>What is Bus Simulator 2012?</h2>
8
- <p>Bus Simulator 2012 is a simulation game that lets you experience the life of a bus driver in a realistic and immersive way. You can drive various buses with different features and physics, such as city buses, articulated buses, double-decker buses, school buses, etc. You can also organize your own routes and service more than 450 bus stops in a huge and open 3D-world.</p>
9
- <h3>Features of Bus Simulator 2012</h3>
10
- <p>Some of the features that make Bus Simulator 2012 stand out from other simulation games are:</p>
11
- <ul>
12
- <li>You can switch on the air-conditioning, monitor your engine's temperature, check the charging level of the cooling liquid, oil, and gasoline, etc.</li>
13
- <li>You can interact with your passengers by selling tickets, greeting them, announcing stops, etc. They will react accordingly to your behavior and service quality.</li>
14
- <li>You can enjoy the realistic AI of both pedestrians and traffic, which will influence your driving style and schedule.</li>
15
- <li>You can create your own vehicles using the integrated bus editor and share them online with other players.</li>
16
- <li>You can use partial controller support or keyboard and mouse controls.</li>
17
- <li>You can choose from different languages for the game interface and audio.</li>
18
- </ul>
19
- <h3>System Requirements for Bus Simulator 2012</h3>
20
- <p>To play Bus Simulator 2012 on your PC, you need to meet the following minimum system requirements:</p>
21
- <table>
22
- <tr><td>OS</td><td>Windows XP/Vista/7/8/10</td></tr>
23
- <tr><td>Processor</td><td>Dual core processor with 2.6 GHz</td></tr>
24
- <tr><td>Memory</td><td>4 GB RAM</td></tr>
25
- <tr><td>Graphics</td><td>NVIDIA GeForce® or AMD Radeon™ with at least 512 MB VRAM</td></tr>
26
- <tr><td>DirectX</td><td>Version 9.0c</td></tr>
27
- <tr><td>Storage</td><td>5 GB available space</td></tr>
28
- <tr><td>Sound Card</td><td>DirectX compatible sound card</td></tr>
29
- </table>
30
- <h2>How to Install Bus Simulator 2012?</h2>
31
- <p>If you want to play Bus Simulator 2012 on your PC, you need to follow these steps:</p>
32
- <h3>Downloading and Extracting the Game Files</h3>
33
- <ol>
34
- <li>You need to download the game files from a reliable source. You can buy it from Steam or other online platforms for $9.99.</li>
35
- <li>You need to extract the game files using a software like WinRAR or 7-Zip. You will get a folder named "Bus-Simulator_2012" with several subfolders inside.</li>
36
- <li>You need to open the folder "Bus-Simulator_2012" and find the file named "setup.exe". You need to double-click on it to start the installation process.</li>
37
- </ol>
38
- <h3>Running the Setup and Choosing the Language</h3>
39
- <ol start="4">
40
- <li>You need to follow the instructions on the screen to complete the installation process. You will be asked to choose a destination folder for the game files.</li>
41
- <li>You will also be asked to choose a language for the game interface and audio. You can choose from English, German, French, Italian, Spanish, Turkish, Polish, Czech, Hungarian, Russian, Dutch, Portuguese (Brazil), or Chinese (Simplified).</li>
42
- <li>You will see a message that says "Installation complete" when the process is finished. You can click on "Finish" to exit the setup.</li>
43
- <li>You will find a shortcut icon for Bus Simulator 2012 on your desktop or start menu. You can click on it to launch the game.</li>
44
- </ol>
45
- <h2>What is Bus Simulator 2012 English Patch 1.2.4?</h2>
46
- <p>If you have installed Bus Simulator 2012 in a language other than English, you might encounter some problems with the game interface or audio. For example, some texts might be missing or unreadable, some sounds might be distorted or muted, etc.</p>
47
- <h3>Why Do You Need the English Patch?</h3>
48
- <p>To fix these problems, you need to download and apply an English patch for Bus Simulator 2012. This patch will update your game files to match the English language and fix any bugs or errors. The latest version of the English patch is 1.2.4, which was released on March 13, 2012.</p>
49
- <h3>How to Download and Apply the English Patch?</h3>
50
- <p>To download and apply the English patch for Bus Simulator 2012, you need to follow these steps:</p>
51
- <p>Bus Simulator 2012 patch 1.2.4 download<br />
52
- How to install Bus Simulator 2012 English Patch<br />
53
- Bus Simulator 2012 gameplay with English Patch<br />
54
- Bus Simulator 2012 patch 1.2.4 changelog<br />
55
- Bus Simulator 2012 mods compatible with English Patch<br />
56
- Bus Simulator 2012 system requirements for patch 1.2.4<br />
57
- Bus Simulator 2012 patch 1.2.4 error fix<br />
58
- Bus Simulator 2012 review with English Patch<br />
59
- Bus Simulator 2012 patch 1.2.4 free download<br />
60
- Bus Simulator 2012 cheats and tips with English Patch<br />
61
- Bus Simulator 2012 update to patch 1.2.4<br />
62
- Bus Simulator 2012 patch 1.2.4 crack<br />
63
- Bus Simulator 2012 best routes with English Patch<br />
64
- Bus Simulator 2012 patch 1.2.4 multiplayer<br />
65
- Bus Simulator 2012 patch notes for English Patch<br />
66
- Bus Simulator 2012 comparison with other bus simulators<br />
67
- Bus Simulator 2012 patch 1.2.4 features and improvements<br />
68
- Bus Simulator 2012 English Patch tutorial<br />
69
- Bus Simulator 2012 patch 1.2.4 bugs and issues<br />
70
- Bus Simulator 2012 patch 1.2.4 trailer and screenshots<br />
71
- Bus Simulator 2012 patch history and versions<br />
72
- Bus Simulator 2012 English Patch compatibility and performance<br />
73
- Bus Simulator 2012 patch 1.2.4 release date and news<br />
74
- Bus Simulator 2012 patch 1.2.4 size and download speed<br />
75
- Bus Simulator 2012 English Patch feedback and ratings<br />
76
- Bus Simulator 2012 realistic mode with English Patch<br />
77
- Bus Simulator 2012 patch 1.2.4 steam key<br />
78
- Bus Simulator 2012 custom buses with English Patch<br />
79
- Bus Simulator 2012 patch 1.2.4 sound and graphics quality<br />
80
- Bus Simulator 2012 English Patch installation guide and troubleshooting<br />
81
- Bus Simulator 2012 patch 1.2.4 achievements and rewards<br />
82
- Bus Simulator 2012 fun and challenging scenarios with English Patch<br />
83
- Bus Simulator 2012 patch 1.2.4 offline mode and save data<br />
84
- Bus Simulator 2012 English Patch requirements and recommendations<br />
85
- Bus Simulator 2012 patch 1.2.4 support and contact information<br />
86
- Bus Simulator 2012 sandbox mode with English Patch<br />
87
- Bus Simulator 2012 patch 1.2.4 license key and activation code<br />
88
- Bus Simulator 2012 realistic physics and weather with English Patch<br />
89
- Bus Simulator 2012 patch 1.2.4 optimization and settings<br />
90
- Bus Simulator 2012 English Patch pros and cons<br />
91
- Bus Simulator 2012 patch alternative download links and sources<br />
92
- Bus Simulator 2012 different bus models and types with English Patch<br />
93
- Bus Simulator 2012 patch verification and validation process<br />
94
- Bus Simulator 2012 dynamic traffic and pedestrians with English Patch <br />
95
- Bus Simulator 2012 patch backup and restore options <br />
96
- Bus Simulator 2012 map editor and custom maps with English Patch <br />
97
- Bus Simulator 2012 patch uninstallation and removal instructions <br />
98
- Bus Simulator 2012 voice commands and controls with English Patch <br />
99
- Bus Simulator 2012 patch compatibility with other patches and updates <br />
100
- Bus Simulator 2012 online community and forums with English Patch</p>
101
- <ol>
102
- <li>You need to go to the official website of TML Studios and find the page for Bus Simulator 2012. You can also use this link: <a href="http://www.tml-studios.de/index.php?option=com_content&view=article&id=30&Itemid=40&lang=en">http://www.tml-studios.de/index.php?option=com_content&view=article&id=30&Itemid=40&lang=en</a></li>
103
- <li>You need to scroll down to the section "Patches" and click on the link for "Patch 1.3.2 (ENGLISH)". You will be redirected to a download page.</li>
104
- <li>You need to click on the button "Download" and save the file "BusSimulator2012_Update_1_3_2_EN.exe" on your PC.</li>
105
- <li>You need to run the file "BusSimulator2012_Update_1_3_2_EN.exe" and follow the instructions on the screen to install the patch. You will be asked to choose a destination folder for the patch files.</li>
106
- <li>You will see a message that says "Installation complete" when the process is finished. You can click on "Finish" to exit the setup.</li>
107
- <li>You can now launch Bus Simulator 2012 and enjoy the game in English.</li>
108
- </ol>
109
- <h2>How to Play Bus Simulator 2012?</h2>
110
- <p>Now that you have installed Bus Simulator 2012 and applied the English patch, you are ready to play the game. Here are some basic steps to get you started:</p>
111
- <h3>Choosing a Bus and a Route</h3>
112
- <ol>
113
- <li>When you launch the game, you will see a main menu with several options. You can click on "Start Game" to begin a new game or continue a saved game.</li>
114
- <li>You will be taken to a screen where you can choose your bus and your route. You can use the arrows on the left and right sides of the screen to browse through different buses and routes. You can also click on the icons at the bottom of the screen to access more options, such as changing your name, your company name, your difficulty level, etc.</li>
115
- <li>When you have selected your bus and your route, you can click on "Start" to begin your journey.</li>
116
- </ol>
117
- <h3>Driving and Interacting with Passengers</h3>
118
- <ol start="4">
119
- <li>You will see a cockpit view of your bus with various controls and indicators. You can use your mouse or keyboard to steer, accelerate, brake, etc. You can also use the number keys (1-9) to switch between different camera views, such as outside view, passenger view, mirror view, etc.</li>
120
- <li>You will also see a map on the bottom right corner of the screen that shows your current location, your destination, your route, and other points of interest. You can use the M key to toggle between different map modes, such as zoom in, zoom out, rotate, etc.</li>
121
- <li>You will have to follow your schedule and drive safely and responsibly. You will have to stop at bus stops, open and close doors, sell tickets, greet passengers, announce stops, etc. You will also have to obey traffic rules and avoid collisions with other vehicles or pedestrians.</li>
122
- <li>You will earn money and reputation points based on your performance and service quality. You can use your money to buy new buses or upgrade your existing ones. You can use your reputation points to unlock new routes or scenarios.</li>
123
- </ol>
124
- <h3>Customizing and Sharing Your Vehicles</h3>
125
- <ol start="8">
126
- <li>If you want to customize your vehicles or create new ones, you can use the integrated bus editor that is accessible from the main menu. You can change various aspects of your buses, such as color, design, logo, interior, etc.</li>
127
- <li>If you want to share your vehicles with other players online, you can use the integrated upload function that is accessible from the bus editor. You can also download vehicles created by other players from the official website of TML Studios or other online platforms.</li>
128
- </ol>
129
- <h2>Tips and Tricks for Bus Simulator 2012</h2>
130
- <p>To make your gameplay more enjoyable and successful, here are some tips and tricks that you can use:</p>
131
- <h3>How to Use the Keyboard Shortcuts</h3>
132
- <p>There are many keyboard shortcuts that you can use in Bus Simulator 2012 to access different functions or features quickly. Here are some of them:</p>
133
- <ul>
134
- <li>F1: Help menu</li>
135
- <li>F5: Save game</li>
136
- <li>F6: Load game</li>
137
- <li>F7: Pause game</li>
138
- <li>F8: Screenshot</li>
139
- <li>F9: Toggle HUD</li>
140
- <li>F10: Toggle FPS counter</li>
141
- <li>F11: Toggle free camera mode</li>
142
- <li>F12: Toggle windowed mode</li>
143
- <li>Tab: Toggle bus stop list</li>
144
- <li>Space: Handbrake</li>
145
- <li>Enter: Start/stop engine</li>
146
- <li>E: Open/close doors</li>
147
- <li>T: Sell ticket</li>
148
- <li>G: Greet passenger</li>
149
- <li>A: Announce stop</li>
150
- <li>L: Toggle lights</li>
151
- <li>K: Toggle wipers</li>
152
- <li>H: Horn</li>
153
- <li>I: Toggle indicators</li>
154
- <li>O: Toggle hazard lights</li>
155
- <li>P: Toggle parking brake</li></p> 0a6ba089eb<br />
156
- <br />
157
- <br />
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
spaces/1acneusushi/gradio-2dmoleculeeditor/data/Call of Duty 4 Modern Warfare 11 English Language Pack - Where to Find and How to Use It.md DELETED
@@ -1,82 +0,0 @@
1
-
2
- <h1>Call of Duty 4: Modern Warfare 11 - English Language Pack</h1>
3
- <p>If you are a fan of first-person shooter games, you have probably heard of <strong>Call of Duty 4: Modern Warfare 11</strong>, one of the most popular and acclaimed titles in the franchise. This game offers an immersive and cinematic action experience that takes you to various hotspots around the world, where you can use advanced and powerful weapons and gear to fight against enemies and complete missions. However, if you are not a native speaker of English, you might have some difficulties in enjoying the game fully, as it might not be available in your preferred language. That's why you need an <strong>English language pack</strong> for Call of Duty 4: Modern Warfare 11, which will allow you to play the game in English and enhance your gaming experience. In this article, we will tell you everything you need to know about this language pack, including what it is, why you need it, how to download and install it, how to uninstall or restore it, and some tips and tricks for playing the game in English. Let's get started!</p>
4
- <h2>What is Call of Duty 4: Modern Warfare 11?</h2>
5
- <p>Call of Duty 4: Modern Warfare 11 is a first-person shooter video game developed by Infinity Ward and published by Activision in November 2007. It is the fourth installment in the Call of Duty series and the first one to be set in modern times, rather than World War II. The game follows the story of a British SAS officer, a US Marine, and a Russian informant who are involved in a conflict that spans from Russia to the Middle East. The game features both a single-player campaign mode and a multiplayer mode, where players can compete with or against each other in various modes and maps. The game also introduces new features such as killstreaks, perks, challenges, and customization options for weapons and characters.</p>
6
- <h2>call-of-duty-4-modern-warfare-11-english-language-pack</h2><br /><p><b><b>Download Zip</b> &#11088; <a href="https://byltly.com/2uKvOH">https://byltly.com/2uKvOH</a></b></p><br /><br />
7
- <p>Call of Duty 4: Modern Warfare 11 received critical acclaim from critics and players alike, who praised its graphics, sound, gameplay, story, and multiplayer mode. It won several awards and became one of the best-selling games of all time, selling over 18 million copies worldwide. It also spawned two sequels, Call of Duty: Modern Warfare 2 (2009) and Call of Duty: Modern Warfare 3 (2011), which continued the story arc of the original game.</p>
8
- <h2>Why do you need an English language pack for Call of Duty 4: Modern Warfare 11?</h2>
9
- <p>If you are not a native speaker of English, you might wonder why you need an English language pack for Call of Duty 4: Modern Warfare 11. After all, you can still play the game in your own language, right? Well, not exactly. Depending on where you bought or downloaded the game from, it might not have an option to change the language settings or it might only have a limited number of languages available. For example, if you bought or downloaded the game from Steam, you can only choose between English, French, German, Italian, Spanish - Spain (not Latin America), Polish (not Brazilian), Russian (not Ukrainian), or Chinese (not Japanese). If you want to play in any other language than these ones, you are out of luck.</p>
10
- <p>However, even if your preferred language is among these ones, you might still want to play in English for several reasons. First of all, playing in English can help you improve your listening comprehension and vocabulary skills in this language. You can learn new words and expressions related to military terms, weapons names, locations names, commands orders etc. You can also practice your pronunciation by repeating what you hear from the characters or other players. Secondly, playing in English can enhance your immersion and enjoyment of the game. You can appreciate better the voice acting quality ,the dialogue writing ,the sound effects ,and the atmosphere of the game in its original language . You can also communicate more effectively with other players who speak English , especially if you play online . Thirdly, playing in English can help you understand the gameplay and the storyline better. You can follow more easily what is happening on screen ,what are your objectives ,what are your allies or enemies saying ,and what are the consequences of your actions .You can also avoid missing any important details or clues that might be lost in translation or localization .</p>
11
- <h2>How to download and install the English language pack for Call of Duty 4: Modern Warfare 11?</h2>
12
- <p>Now that you know why you need an English language pack for Call of Duty 4: Modern Warfare 11 ,you might wonder how to get it .Fortunately ,there are several ways to download and install this language pack ,depending on where you got your game from .Here are some options :</p>
13
- <h3>Downloading the language pack from Steam</h3>
14
- <p>If you bought or downloaded your game from Steam ,you can easily change its language settings by following these steps :</p>
15
- <ol>
16
- <li>Open Steam and go to your Library .</li>
17
- <li>Right-click on Call of Duty 4: Modern Warfare (2007) and select Properties .</li>
18
- <li>Go to Language tab .</li>
19
- <li>Select English from the drop-down menu .</li>
20
- <li>Click OK .</li>
21
- <li>Steam will automatically download and install any necessary files for changing your game's language .This might take some time depending on your internet speed .</li>
22
- <li>Once done ,launch your game and enjoy playing it in English .</li>
23
- </ol>
24
- <h3>Downloading the language pack from noName.zone</h3>
25
- <p>If you don't have Steam or prefer another source ,you can also download an English language pack from noName.zone ,a website that offers various gaming tutorials ,tools ,and mods .Here is how :</p>
26
- <p>How to change language in Call of Duty 4: Modern Warfare[^3^]<br />
27
- Call of Duty 4: Modern Warfare English patch download<br />
28
- Call of Duty 4 Language Pack - Gaming Tutorials - noName.zone[^1^]<br />
29
- Call of Duty 4: Modern Warfare German language pack<br />
30
- Call of Duty 4: Modern Warfare Russian language pack<br />
31
- Call of Duty 4: Modern Warfare French language pack<br />
32
- Call of Duty 4: Modern Warfare Italian language pack<br />
33
- Call of Duty 4: Modern Warfare Polish language pack<br />
34
- Call of Duty 4: Modern Warfare Spanish language pack<br />
35
- Call of Duty 4: Modern Warfare Chinese language pack<br />
36
- Call of Duty 4: Modern Warfare Lite version language pack[^1^]<br />
37
- Call of Duty 4: Modern Warfare Full version language pack[^1^]<br />
38
- Call of Duty 4: Modern Warfare Language Pack install guide[^1^]<br />
39
- Call of Duty 4: Modern Warfare Language Pack uninstall guide[^1^]<br />
40
- Call of Duty 4: Modern Warfare Language Pack tool download[^1^]<br />
41
- Call of Duty 4: Modern Warfare English languagepack Steam discussion[^2^]<br />
42
- Call of Duty 4: Modern Warfare English version keys<br />
43
- Call of Duty 4: Modern Warfare Russian version keys<br />
44
- Call of Duty 4: Modern Warfare German version keys<br />
45
- Call of Duty 4: Modern Warfare English version backup profile<br />
46
- Call of Duty 4: Modern Warfare English version SoundCloud stream[^4^]<br />
47
- Call of Duty 4: Modern Warfare English version free download<br />
48
- Call of Duty 4: Modern Warfare English version crack<br />
49
- Call of Duty 4: Modern Warfare English version torrent<br />
50
- Call of Duty 4: Modern Warfare English version gameplay<br />
51
- Call of Duty 4: Modern Warfare English version review<br />
52
- Call of Duty 4: Modern Warfare English version trailer<br />
53
- Call of Duty 4: Modern Warfare English version system requirements<br />
54
- Call of Duty 4: Modern Warfare English version cheats<br />
55
- Call of Duty 4: Modern Warfare English version mods<br />
56
- Call of Duty 4: Modern Warfare English version multiplayer<br />
57
- Call of Duty 4: Modern Warfare English version singleplayer<br />
58
- Call of Duty 4: Modern Warfare English version campaign<br />
59
- Call of Duty 4: Modern Warfare English version missions<br />
60
- Call of Duty 4: Modern Warfare English version weapons<br />
61
- Call of Duty 4: Modern Warfare English version maps<br />
62
- Call of Duty 4: Modern Warfare English version graphics<br />
63
- Call of Duty 4: Modern Warfare English version soundtrack<br />
64
- Call of Duty 4: Modern Warfare English version voice actors<br />
65
- Call of Duty 4: Modern Warfare English version subtitles<br />
66
- Call of Duty 4: Modern Warfare English version settings<br />
67
- Call of Duty 4: Modern Warfare English version patch notes<br />
68
- Call of Duty 4: Modern Warfare English version bugs and fixes<br />
69
- Call of Duty 4: Modern Warfare English version tips and tricks<br />
70
- Call of Duty 4: Modern Warfare English version best loadout<br />
71
- Call of Duty 4: Modern Warfare English version ranking system<br />
72
- Call of Duty 4: Modern Warfare English version achievements and trophies<br />
73
- Call of Duty 4: Modern Warfare English version comparison with other versions<br />
74
- Call of Duty 4: Modern Warfare English version history and development</p>
75
- <ol>
76
- <li>Go to https://noname.zone/index.php?/tutorials/article/8-call-of-duty-4-language-pack/ .</li>
77
- <li>Scroll down until you see two links :Full version (~443MB) - Patch entire multiplayer Lite version (~8MB) - Patch almost everything (more details in spoiler) .</li>
78
- <li>Select which version you want depending on how much data you want to download .The full version will patch everything related to multiplayer mode ,while lite version will patch most things except some minor text elements .Both versions will patch single-player mode as well .</li>
79
- <li>Click on either link and download LanguagePack.zip or LanguagePack (Lite).zip file .</li>
80
- <li>Extract LanguagePack folder to CoD4 root directory .This is usually located at C:\Program Files (x86)\Steam\steamapps\common\Call Of Duty\Modern Warfare\Call Of Duty\Modern Warfare\Call Of Duty\Modern Warfare</p> 0a6ba089eb<br />
81
- <br />
82
- <br />
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
spaces/1acneusushi/gradio-2dmoleculeeditor/data/Embird 2017 Registration Password The Secret to Creating Amazing Embroidery Designs.md DELETED
@@ -1,33 +0,0 @@
1
-
2
- <h1>How to Get Embird 2017 Registration Password for Free</h1>
3
- <p>Embird 2017 is a popular embroidery software that allows you to create, edit, and digitize embroidery designs. It also supports various embroidery formats and machines. However, to use the full features of Embird 2017, you need to register it with a password that you can purchase from the official website.</p>
4
- <h2>embird 2017 registration password crack</h2><br /><p><b><b>Download</b> &#10001; &#10001; &#10001; <a href="https://byltly.com/2uKwnS">https://byltly.com/2uKwnS</a></b></p><br /><br />
5
- <p>But what if you don't want to spend money on the registration password? Is there a way to get Embird 2017 registration password for free? The answer is yes, but you need to be careful. There are many websites and programs that claim to offer free Embird 2017 registration passwords, but most of them are scams or viruses that can harm your computer or steal your personal information.</p>
6
- <p>In this article, we will show you how to get Embird 2017 registration password for free safely and legally. We will also share some tips on how to use Embird 2017 effectively and avoid common problems.</p>
7
- <h2>How to Get Embird 2017 Registration Password for Free</h2>
8
- <p>The best way to get Embird 2017 registration password for free is to use the trial version of the software. The trial version allows you to use Embird 2017 for 30 days without any limitations. You can download the trial version from the official website <a href="https://www.embird.net/">here</a>.</p>
9
- <p>To use the trial version, you need to enter your name and email address when you install the software. You will then receive an email with a link to activate the trial version. Once you activate it, you can use Embird 2017 for 30 days without any restrictions.</p>
10
- <p></p>
11
- <p>However, after 30 days, the trial version will expire and you will need to purchase the registration password to continue using the software. If you want to extend the trial period, you can try uninstalling and reinstalling the software with a different name and email address. However, this may not work for some computers or versions of Embird 2017.</p>
12
- <p>Another way to get Embird 2017 registration password for free is to use a crack or a keygen program. These are programs that generate fake registration passwords that can bypass the security of Embird 2017. However, we do not recommend using these programs for several reasons:</p>
13
- <ul>
14
- <li>They are illegal and violate the terms of service of Embird 2017.</li>
15
- <li>They may contain viruses or malware that can damage your computer or steal your data.</li>
16
- <li>They may not work properly or cause errors or crashes in Embird 2017.</li>
17
- <li>They may not be compatible with the latest updates or features of Embird 2017.</li>
18
- <li>They may not support all embroidery formats or machines.</li>
19
- </ul>
20
- <p>Therefore, we advise you to avoid using crack or keygen programs and stick to the trial version or purchase the registration password from the official website.</p>
21
- <h2>How to Use Embird 2017 Effectively</h2>
22
- <p>Now that you know how to get Embird 2017 registration password for free, let's see how to use the software effectively. Here are some tips and tricks that can help you create beautiful embroidery designs with Embird 2017:</p>
23
- <ul>
24
- <li>Use the tutorials and manuals that come with the software. They will teach you how to use the basic and advanced features of Embird 2017 and how to solve common problems.</li>
25
- <li>Use the online support and forums that are available on the official website. They will answer your questions and provide tips and advice from other users and experts.</li>
26
- <li>Use the built-in design library that contains thousands of ready-made embroidery designs that you can edit or combine with your own designs.</li>
27
- <li>Use the design manager that allows you to organize, view, convert, print, and export your embroidery designs in various formats and sizes.</li>
28
- <li>Use the editor that allows you to modify, resize, rotate, mirror, split, merge, align, and optimize your embroidery designs.</li>
29
- <li>Use the digitizer that allows you to create your own embroidery designs from scratch or from images or vector graphics.</li>
30
- <li>Use the simulator that allows you to preview how your embroidery designs will look on different fabrics and colors before stitching them.</li>
31
- <li>Use the manager that allows you to control your embroidery machine and send your designs directly from your</p> ddb901b051<br />
32
- <br />
33
- <br />
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
spaces/1gistliPinn/ChatGPT4/Examples/Buku Zoologi Vertebrata.pdf Extra Quality.md DELETED
@@ -1,6 +0,0 @@
1
- <h2>Buku Zoologi Vertebrata.pdf</h2><br /><p><b><b>Download</b> &#9193; <a href="https://imgfil.com/2uxYsB">https://imgfil.com/2uxYsB</a></b></p><br /><br />
2
-
3
- 899543212b<br />
4
- <br />
5
- <br />
6
- <p></p>
 
 
 
 
 
 
 
spaces/1gistliPinn/ChatGPT4/Examples/Delock Usb Sound Adapter 7.1 Driver Download.md DELETED
@@ -1,6 +0,0 @@
1
- <h2>Delock Usb Sound Adapter 7.1 Driver Download</h2><br /><p><b><b>Download File</b> &#10004; <a href="https://imgfil.com/2uy20S">https://imgfil.com/2uy20S</a></b></p><br /><br />
2
-
3
- Download and Print Say You Love Me sheet music for Piano & Vocal by Fleetwood ... Delock Adapter USB 2.0 Sound 7.1 extern. frutiger roman font free mac; ... address allows us to send you informative newsletters and driver information, and ... 1fdad05405<br />
4
- <br />
5
- <br />
6
- <p></p>
 
 
 
 
 
 
 
spaces/1toTree/lora_test/ppdiffusers/pipelines/stable_diffusion_safe/safety_checker.py DELETED
@@ -1,113 +0,0 @@
1
- # Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
2
- # Copyright 2022 The HuggingFace Team. All rights reserved.
3
- #
4
- # Licensed under the Apache License, Version 2.0 (the "License");
5
- # you may not use this file except in compliance with the License.
6
- # You may obtain a copy of the License at
7
- #
8
- # http://www.apache.org/licenses/LICENSE-2.0
9
- #
10
- # Unless required by applicable law or agreed to in writing, software
11
- # distributed under the License is distributed on an "AS IS" BASIS,
12
- # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13
- # See the License for the specific language governing permissions and
14
- # limitations under the License.
15
-
16
- import paddle
17
- import paddle.nn.functional as F
18
-
19
- from paddlenlp.transformers import (
20
- CLIPPretrainedModel,
21
- CLIPVisionConfig,
22
- CLIPVisionModel,
23
- )
24
-
25
- from ...utils import logging
26
-
27
- logger = logging.get_logger(__name__)
28
-
29
-
30
- def cosine_distance(image_embeds, text_embeds):
31
- normalized_image_embeds = F.normalize(image_embeds)
32
- normalized_text_embeds = F.normalize(text_embeds)
33
- return paddle.matmul(normalized_image_embeds, normalized_text_embeds, transpose_y=True)
34
-
35
-
36
- class SafeStableDiffusionSafetyChecker(CLIPPretrainedModel):
37
- config_class = CLIPVisionConfig
38
-
39
- def __init__(self, config: CLIPVisionConfig):
40
- super().__init__(config)
41
- self.clip = CLIPVisionModel(config)
42
-
43
- self.vision_projection = paddle.create_parameter(
44
- (config.hidden_size, config.projection_dim), dtype=paddle.get_default_dtype()
45
- )
46
-
47
- self.register_buffer("concept_embeds", paddle.ones([17, config.projection_dim]))
48
- self.register_buffer("special_care_embeds", paddle.ones([3, config.projection_dim]))
49
-
50
- self.register_buffer("concept_embeds_weights", paddle.ones([17]))
51
- self.register_buffer("special_care_embeds_weights", paddle.ones([3]))
52
-
53
- @paddle.no_grad()
54
- def forward(self, clip_input, images):
55
- pooled_output = self.clip(clip_input)[1] # pooled_output
56
- image_embeds = paddle.matmul(pooled_output, self.vision_projection)
57
-
58
- # we always cast to float32 as this does not cause significant overhead and is compatible with bfloa16
59
- special_cos_dist = cosine_distance(image_embeds, self.special_care_embeds).astype("float32").numpy()
60
- cos_dist = cosine_distance(image_embeds, self.concept_embeds).astype("float32").numpy()
61
-
62
- result = []
63
- batch_size = image_embeds.shape[0]
64
- for i in range(batch_size):
65
- result_img = {"special_scores": {}, "special_care": [], "concept_scores": {}, "bad_concepts": []}
66
-
67
- # increase this value to create a stronger `nfsw` filter
68
- # at the cost of increasing the possibility of filtering benign images
69
- adjustment = 0.0
70
-
71
- for concept_idx in range(len(special_cos_dist[0])):
72
- concept_cos = special_cos_dist[i][concept_idx]
73
- concept_threshold = self.special_care_embeds_weights[concept_idx].item()
74
- result_img["special_scores"][concept_idx] = round(concept_cos - concept_threshold + adjustment, 3)
75
- if result_img["special_scores"][concept_idx] > 0:
76
- result_img["special_care"].append({concept_idx, result_img["special_scores"][concept_idx]})
77
- adjustment = 0.01
78
-
79
- for concept_idx in range(len(cos_dist[0])):
80
- concept_cos = cos_dist[i][concept_idx]
81
- concept_threshold = self.concept_embeds_weights[concept_idx].item()
82
- result_img["concept_scores"][concept_idx] = round(concept_cos - concept_threshold + adjustment, 3)
83
- if result_img["concept_scores"][concept_idx] > 0:
84
- result_img["bad_concepts"].append(concept_idx)
85
-
86
- result.append(result_img)
87
-
88
- has_nsfw_concepts = [len(res["bad_concepts"]) > 0 for res in result]
89
-
90
- return images, has_nsfw_concepts
91
-
92
- def forward_fastdeploy(self, clip_input: paddle.Tensor, images: paddle.Tensor):
93
- pooled_output = self.clip(clip_input)[1] # pooled_output
94
- image_embeds = paddle.matmul(pooled_output, self.vision_projection)
95
-
96
- special_cos_dist = cosine_distance(image_embeds, self.special_care_embeds)
97
- cos_dist = cosine_distance(image_embeds, self.concept_embeds)
98
-
99
- # increase this value to create a stronger `nsfw` filter
100
- # at the cost of increasing the possibility of filtering benign images
101
- adjustment = 0.0
102
-
103
- special_scores = special_cos_dist - self.special_care_embeds_weights + adjustment
104
- # special_scores = special_scores.round(decimals=3)
105
- special_care = paddle.any(special_scores > 0, axis=1)
106
- special_adjustment = special_care * 0.01
107
- special_adjustment = special_adjustment.unsqueeze(1).expand([-1, cos_dist.shape[1]])
108
-
109
- concept_scores = (cos_dist - self.concept_embeds_weights) + special_adjustment
110
- # concept_scores = concept_scores.round(decimals=3)
111
- has_nsfw_concepts = paddle.any(concept_scores > 0, axis=1)
112
-
113
- return images, has_nsfw_concepts
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
spaces/2023Liu2023/bingo/src/components/tone-selector.tsx DELETED
@@ -1,43 +0,0 @@
1
- import React from 'react'
2
- import { BingConversationStyle } from '@/lib/bots/bing/types'
3
- import { cn } from '@/lib/utils'
4
-
5
- type ToneItem = {
6
- type: BingConversationStyle,
7
- name: string
8
- }
9
-
10
- const ToneList: ToneItem[] = [
11
- { name: '有创造力', type: BingConversationStyle.Creative },
12
- { name: '更平衡', type: BingConversationStyle.Balanced },
13
- { name: '更精确', type: BingConversationStyle.Precise }
14
- ]
15
-
16
- interface ToneSelectorProps {
17
- type: BingConversationStyle | ''
18
- onChange?: (type: BingConversationStyle) => void
19
- }
20
-
21
- export function ToneSelector({ type, onChange }: ToneSelectorProps) {
22
- return (
23
- <div className="fieldset">
24
- <div className="legend">
25
- 选择对话样式
26
- </div>
27
- <div className="options-list-container">
28
- <ul id="tone-options" className="options">
29
- {
30
- ToneList.map(tone => (
31
- <li className="option" key={tone.name} onClick={() => onChange?.(tone.type)}>
32
- <button className={cn(`tone-${type.toLowerCase()}`, { selected: tone.type === type}) } aria-pressed="true" >
33
- <span className="caption-2-strong label-modifier">更</span>
34
- <span className="body-1-strong label">{tone.name}</span>
35
- </button>
36
- </li>
37
- ))
38
- }
39
- </ul>
40
- </div>
41
- </div>
42
- )
43
- }
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
spaces/A00001/bingothoo/src/components/ui/textarea.tsx DELETED
@@ -1,24 +0,0 @@
1
- import * as React from 'react'
2
-
3
- import { cn } from '@/lib/utils'
4
-
5
- export interface TextareaProps
6
- extends React.TextareaHTMLAttributes<HTMLTextAreaElement> {}
7
-
8
- const Textarea = React.forwardRef<HTMLTextAreaElement, TextareaProps>(
9
- ({ className, ...props }, ref) => {
10
- return (
11
- <textarea
12
- className={cn(
13
- 'flex min-h-[80px] w-full rounded-md border border-input bg-transparent px-3 py-2 text-sm ring-offset-background placeholder:text-muted-foreground focus-visible:outline-none focus-visible:ring-2 focus-visible:ring-ring focus-visible:ring-offset-2 disabled:cursor-not-allowed disabled:opacity-50',
14
- className
15
- )}
16
- ref={ref}
17
- {...props}
18
- />
19
- )
20
- }
21
- )
22
- Textarea.displayName = 'Textarea'
23
-
24
- export { Textarea }
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
spaces/AIGC-Audio/AudioGPT/text_to_audio/Make_An_Audio/ldm/modules/losses_audio/vqperceptual.py DELETED
@@ -1,136 +0,0 @@
1
- import torch
2
- import torch.nn as nn
3
- import torch.nn.functional as F
4
- import sys
5
- from ldm.util import exists
6
- sys.path.insert(0, '.') # nopep8
7
- from ldm.modules.discriminator.model import (NLayerDiscriminator, NLayerDiscriminator1dFeats,
8
- NLayerDiscriminator1dSpecs,
9
- weights_init)
10
- from ldm.modules.losses_audio.lpaps import LPAPS
11
- from ldm.modules.losses.vqperceptual import l1, l2, measure_perplexity, hinge_d_loss, vanilla_d_loss, adopt_weight
12
-
13
-
14
-
15
- class DummyLoss(nn.Module):
16
- def __init__(self):
17
- super().__init__()
18
-
19
- class VQLPAPSWithDiscriminator(nn.Module):
20
- def __init__(self, disc_start, codebook_weight=1.0, pixelloss_weight=1.0,
21
- disc_num_layers=3, disc_in_channels=3, disc_factor=1.0, disc_weight=1.0,
22
- perceptual_weight=1.0, use_actnorm=False, disc_conditional=False,
23
- disc_ndf=64, disc_loss="hinge", n_classes=None, pixel_loss="l1"):
24
- super().__init__()
25
- assert disc_loss in ["hinge", "vanilla"]
26
- self.codebook_weight = codebook_weight
27
- self.pixel_weight = pixelloss_weight
28
- self.perceptual_loss = LPAPS().eval()
29
- self.perceptual_weight = perceptual_weight
30
-
31
- if pixel_loss == "l1":
32
- self.pixel_loss = l1
33
- else:
34
- self.pixel_loss = l2
35
-
36
- self.discriminator = NLayerDiscriminator(input_nc=disc_in_channels,
37
- n_layers=disc_num_layers,
38
- use_actnorm=use_actnorm,
39
- ndf=disc_ndf
40
- ).apply(weights_init)
41
- self.discriminator_iter_start = disc_start
42
- if disc_loss == "hinge":
43
- self.disc_loss = hinge_d_loss
44
- elif disc_loss == "vanilla":
45
- self.disc_loss = vanilla_d_loss
46
- else:
47
- raise ValueError(f"Unknown GAN loss '{disc_loss}'.")
48
- print(f"VQLPAPSWithDiscriminator running with {disc_loss} loss.")
49
- self.disc_factor = disc_factor
50
- self.discriminator_weight = disc_weight
51
- self.disc_conditional = disc_conditional
52
- self.n_classes = n_classes
53
-
54
- def calculate_adaptive_weight(self, nll_loss, g_loss, last_layer=None):
55
- if last_layer is not None:
56
- nll_grads = torch.autograd.grad(nll_loss, last_layer, retain_graph=True)[0]
57
- g_grads = torch.autograd.grad(g_loss, last_layer, retain_graph=True)[0]
58
- else:
59
- nll_grads = torch.autograd.grad(nll_loss, self.last_layer[0], retain_graph=True)[0]
60
- g_grads = torch.autograd.grad(g_loss, self.last_layer[0], retain_graph=True)[0]
61
-
62
- d_weight = torch.norm(nll_grads) / (torch.norm(g_grads) + 1e-4)
63
- d_weight = torch.clamp(d_weight, 0.0, 1e4).detach()
64
- d_weight = d_weight * self.discriminator_weight
65
- return d_weight
66
-
67
- def forward(self, codebook_loss, inputs, reconstructions, optimizer_idx,
68
- global_step, last_layer=None, cond=None, split="train", predicted_indices=None):
69
- if not exists(codebook_loss):
70
- codebook_loss = torch.tensor([0.]).to(inputs.device)
71
- rec_loss = torch.abs(inputs.contiguous() - reconstructions.contiguous())
72
- if self.perceptual_weight > 0:
73
- p_loss = self.perceptual_loss(inputs.contiguous(), reconstructions.contiguous())
74
- rec_loss = rec_loss + self.perceptual_weight * p_loss
75
- else:
76
- p_loss = torch.tensor([0.0])
77
-
78
- nll_loss = rec_loss
79
- # nll_loss = torch.sum(nll_loss) / nll_loss.shape[0]
80
- nll_loss = torch.mean(nll_loss)
81
-
82
- # now the GAN part
83
- if optimizer_idx == 0:
84
- # generator update
85
- if cond is None:
86
- assert not self.disc_conditional
87
- logits_fake = self.discriminator(reconstructions.contiguous())
88
- else:
89
- assert self.disc_conditional
90
- logits_fake = self.discriminator(torch.cat((reconstructions.contiguous(), cond), dim=1))
91
- g_loss = -torch.mean(logits_fake)
92
-
93
- try:
94
- d_weight = self.calculate_adaptive_weight(nll_loss, g_loss, last_layer=last_layer)
95
- except RuntimeError:
96
- assert not self.training
97
- d_weight = torch.tensor(0.0)
98
-
99
- disc_factor = adopt_weight(self.disc_factor, global_step, threshold=self.discriminator_iter_start)
100
- loss = nll_loss + d_weight * disc_factor * g_loss + self.codebook_weight * codebook_loss.mean()
101
-
102
- log = {"{}/total_loss".format(split): loss.clone().detach().mean(),
103
- "{}/quant_loss".format(split): codebook_loss.detach().mean(),
104
- "{}/nll_loss".format(split): nll_loss.detach().mean(),
105
- "{}/rec_loss".format(split): rec_loss.detach().mean(),
106
- "{}/p_loss".format(split): p_loss.detach().mean(),
107
- "{}/d_weight".format(split): d_weight.detach(),
108
- "{}/disc_factor".format(split): torch.tensor(disc_factor),
109
- "{}/g_loss".format(split): g_loss.detach().mean(),
110
- }
111
- # if predicted_indices is not None:
112
- # assert self.n_classes is not None
113
- # with torch.no_grad():
114
- # perplexity, cluster_usage = measure_perplexity(predicted_indices, self.n_classes)
115
- # log[f"{split}/perplexity"] = perplexity
116
- # log[f"{split}/cluster_usage"] = cluster_usage
117
- return loss, log
118
-
119
- if optimizer_idx == 1:
120
- # second pass for discriminator update
121
- if cond is None:
122
- logits_real = self.discriminator(inputs.contiguous().detach())
123
- logits_fake = self.discriminator(reconstructions.contiguous().detach())
124
- else:
125
- logits_real = self.discriminator(torch.cat((inputs.contiguous().detach(), cond), dim=1))
126
- logits_fake = self.discriminator(torch.cat((reconstructions.contiguous().detach(), cond), dim=1))
127
-
128
- disc_factor = adopt_weight(self.disc_factor, global_step, threshold=self.discriminator_iter_start)
129
- d_loss = disc_factor * self.disc_loss(logits_real, logits_fake)
130
-
131
- log = {"{}/disc_loss".format(split): d_loss.clone().detach().mean(),
132
- "{}/logits_real".format(split): logits_real.detach().mean(),
133
- "{}/logits_fake".format(split): logits_fake.detach().mean()
134
- }
135
- return d_loss, log
136
-
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
spaces/AIGC-Audio/AudioGPT/text_to_speech/modules/commons/conformer/conformer.py DELETED
@@ -1,72 +0,0 @@
1
- from torch import nn
2
- from .espnet_positional_embedding import RelPositionalEncoding
3
- from .espnet_transformer_attn import RelPositionMultiHeadedAttention
4
- from .layers import Swish, ConvolutionModule, EncoderLayer, MultiLayeredConv1d
5
- from ..layers import Embedding
6
-
7
-
8
- class ConformerLayers(nn.Module):
9
- def __init__(self, hidden_size, num_layers, kernel_size=9, dropout=0.0, num_heads=4,
10
- use_last_norm=True, save_hidden=False):
11
- super().__init__()
12
- self.use_last_norm = use_last_norm
13
- self.layers = nn.ModuleList()
14
- positionwise_layer = MultiLayeredConv1d
15
- positionwise_layer_args = (hidden_size, hidden_size * 4, 1, dropout)
16
- self.pos_embed = RelPositionalEncoding(hidden_size, dropout)
17
- self.encoder_layers = nn.ModuleList([EncoderLayer(
18
- hidden_size,
19
- RelPositionMultiHeadedAttention(num_heads, hidden_size, 0.0),
20
- positionwise_layer(*positionwise_layer_args),
21
- positionwise_layer(*positionwise_layer_args),
22
- ConvolutionModule(hidden_size, kernel_size, Swish()),
23
- dropout,
24
- ) for _ in range(num_layers)])
25
- if self.use_last_norm:
26
- self.layer_norm = nn.LayerNorm(hidden_size)
27
- else:
28
- self.layer_norm = nn.Linear(hidden_size, hidden_size)
29
- self.save_hidden = save_hidden
30
- if save_hidden:
31
- self.hiddens = []
32
-
33
- def forward(self, x, padding_mask=None):
34
- """
35
-
36
- :param x: [B, T, H]
37
- :param padding_mask: [B, T]
38
- :return: [B, T, H]
39
- """
40
- self.hiddens = []
41
- nonpadding_mask = x.abs().sum(-1) > 0
42
- x = self.pos_embed(x)
43
- for l in self.encoder_layers:
44
- x, mask = l(x, nonpadding_mask[:, None, :])
45
- if self.save_hidden:
46
- self.hiddens.append(x[0])
47
- x = x[0]
48
- x = self.layer_norm(x) * nonpadding_mask.float()[:, :, None]
49
- return x
50
-
51
-
52
- class ConformerEncoder(ConformerLayers):
53
- def __init__(self, hidden_size, dict_size, num_layers=None):
54
- conformer_enc_kernel_size = 9
55
- super().__init__(hidden_size, num_layers, conformer_enc_kernel_size)
56
- self.embed = Embedding(dict_size, hidden_size, padding_idx=0)
57
-
58
- def forward(self, x):
59
- """
60
-
61
- :param src_tokens: [B, T]
62
- :return: [B x T x C]
63
- """
64
- x = self.embed(x) # [B, T, H]
65
- x = super(ConformerEncoder, self).forward(x)
66
- return x
67
-
68
-
69
- class ConformerDecoder(ConformerLayers):
70
- def __init__(self, hidden_size, num_layers):
71
- conformer_dec_kernel_size = 9
72
- super().__init__(hidden_size, num_layers, conformer_dec_kernel_size)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
spaces/AIxPha/QSign/unidbg-fetch-qsign/bin/unidbg-fetch-qsign.bat DELETED
@@ -1,89 +0,0 @@
1
- @rem
2
- @rem Copyright 2015 the original author or authors.
3
- @rem
4
- @rem Licensed under the Apache License, Version 2.0 (the "License");
5
- @rem you may not use this file except in compliance with the License.
6
- @rem You may obtain a copy of the License at
7
- @rem
8
- @rem https://www.apache.org/licenses/LICENSE-2.0
9
- @rem
10
- @rem Unless required by applicable law or agreed to in writing, software
11
- @rem distributed under the License is distributed on an "AS IS" BASIS,
12
- @rem WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13
- @rem See the License for the specific language governing permissions and
14
- @rem limitations under the License.
15
- @rem
16
-
17
- @if "%DEBUG%" == "" @echo off
18
- @rem ##########################################################################
19
- @rem
20
- @rem unidbg-fetch-qsign startup script for Windows
21
- @rem
22
- @rem ##########################################################################
23
-
24
- @rem Set local scope for the variables with windows NT shell
25
- if "%OS%"=="Windows_NT" setlocal
26
-
27
- set DIRNAME=%~dp0
28
- if "%DIRNAME%" == "" set DIRNAME=.
29
- set APP_BASE_NAME=%~n0
30
- set APP_HOME=%DIRNAME%..
31
-
32
- @rem Resolve any "." and ".." in APP_HOME to make it shorter.
33
- for %%i in ("%APP_HOME%") do set APP_HOME=%%~fi
34
-
35
- @rem Add default JVM options here. You can also use JAVA_OPTS and UNIDBG_FETCH_QSIGN_OPTS to pass JVM options to this script.
36
- set DEFAULT_JVM_OPTS=
37
-
38
- @rem Find java.exe
39
- if defined JAVA_HOME goto findJavaFromJavaHome
40
-
41
- set JAVA_EXE=java.exe
42
- %JAVA_EXE% -version >NUL 2>&1
43
- if "%ERRORLEVEL%" == "0" goto execute
44
-
45
- echo.
46
- echo ERROR: JAVA_HOME is not set and no 'java' command could be found in your PATH.
47
- echo.
48
- echo Please set the JAVA_HOME variable in your environment to match the
49
- echo location of your Java installation.
50
-
51
- goto fail
52
-
53
- :findJavaFromJavaHome
54
- set JAVA_HOME=%JAVA_HOME:"=%
55
- set JAVA_EXE=%JAVA_HOME%/bin/java.exe
56
-
57
- if exist "%JAVA_EXE%" goto execute
58
-
59
- echo.
60
- echo ERROR: JAVA_HOME is set to an invalid directory: %JAVA_HOME%
61
- echo.
62
- echo Please set the JAVA_HOME variable in your environment to match the
63
- echo location of your Java installation.
64
-
65
- goto fail
66
-
67
- :execute
68
- @rem Setup the command line
69
-
70
- set CLASSPATH=%APP_HOME%\lib\unidbg-fetch-qsign-1.1.0.jar;%APP_HOME%\lib\unidbg-fix.jar;%APP_HOME%\lib\ktor-server-content-negotiation-jvm-2.3.1.jar;%APP_HOME%\lib\ktor-serialization-kotlinx-json-jvm-2.3.1.jar;%APP_HOME%\lib\ktor-server-netty-jvm-2.3.1.jar;%APP_HOME%\lib\ktor-server-host-common-jvm-2.3.1.jar;%APP_HOME%\lib\ktor-server-core-jvm-2.3.1.jar;%APP_HOME%\lib\ktor-serialization-kotlinx-jvm-2.3.1.jar;%APP_HOME%\lib\ktor-serialization-jvm-2.3.1.jar;%APP_HOME%\lib\ktor-events-jvm-2.3.1.jar;%APP_HOME%\lib\ktor-websockets-jvm-2.3.1.jar;%APP_HOME%\lib\ktor-http-cio-jvm-2.3.1.jar;%APP_HOME%\lib\ktor-http-jvm-2.3.1.jar;%APP_HOME%\lib\ktor-network-jvm-2.3.1.jar;%APP_HOME%\lib\ktor-utils-jvm-2.3.1.jar;%APP_HOME%\lib\ktor-io-jvm-2.3.1.jar;%APP_HOME%\lib\kotlin-stdlib-jdk8-1.8.22.jar;%APP_HOME%\lib\kotlinx-serialization-json-jvm-1.5.1.jar;%APP_HOME%\lib\kotlinx-serialization-protobuf-jvm-1.5.1.jar;%APP_HOME%\lib\kotlinx-serialization-core-jvm-1.5.1.jar;%APP_HOME%\lib\logback-classic-1.2.11.jar;%APP_HOME%\lib\kotlinx-coroutines-jdk8-1.7.1.jar;%APP_HOME%\lib\kotlinx-coroutines-core-jvm-1.7.1.jar;%APP_HOME%\lib\kotlin-stdlib-jdk7-1.8.22.jar;%APP_HOME%\lib\kotlin-reflect-1.8.10.jar;%APP_HOME%\lib\kotlin-stdlib-1.8.22.jar;%APP_HOME%\lib\slf4j-api-1.7.36.jar;%APP_HOME%\lib\kotlin-stdlib-common-1.8.22.jar;%APP_HOME%\lib\config-1.4.2.jar;%APP_HOME%\lib\jansi-2.4.0.jar;%APP_HOME%\lib\netty-codec-http2-4.1.92.Final.jar;%APP_HOME%\lib\alpn-api-1.1.3.v20160715.jar;%APP_HOME%\lib\netty-transport-native-kqueue-4.1.92.Final.jar;%APP_HOME%\lib\netty-transport-native-epoll-4.1.92.Final.jar;%APP_HOME%\lib\logback-core-1.2.11.jar;%APP_HOME%\lib\annotations-23.0.0.jar;%APP_HOME%\lib\netty-codec-http-4.1.92.Final.jar;%APP_HOME%\lib\netty-handler-4.1.92.Final.jar;%APP_HOME%\lib\netty-codec-4.1.92.Final.jar;%APP_HOME%\lib\netty-transport-classes-kqueue-4.1.92.Final.jar;%APP_HOME%\lib\netty-transport-classes-epoll-4.1.92.Final.jar;%APP_HOME%\lib\netty-transport-native-unix-common-4.1.92.Final.jar;%APP_HOME%\lib\netty-transport-4.1.92.Final.jar;%APP_HOME%\lib\netty-buffer-4.1.92.Final.jar;%APP_HOME%\lib\netty-resolver-4.1.92.Final.jar;%APP_HOME%\lib\netty-common-4.1.92.Final.jar
71
-
72
-
73
- @rem Execute unidbg-fetch-qsign
74
- "%JAVA_EXE%" %DEFAULT_JVM_OPTS% %JAVA_OPTS% %UNIDBG_FETCH_QSIGN_OPTS% -classpath "%CLASSPATH%" MainKt %*
75
-
76
- :end
77
- @rem End local scope for the variables with windows NT shell
78
- if "%ERRORLEVEL%"=="0" goto mainEnd
79
-
80
- :fail
81
- rem Set variable UNIDBG_FETCH_QSIGN_EXIT_CONSOLE if you need the _script_ return code instead of
82
- rem the _cmd.exe /c_ return code!
83
- if not "" == "%UNIDBG_FETCH_QSIGN_EXIT_CONSOLE%" exit 1
84
- exit /b 1
85
-
86
- :mainEnd
87
- if "%OS%"=="Windows_NT" endlocal
88
-
89
- :omega
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
spaces/AchyuthGamer/ImMagician-Image-Generator/share_btn.py DELETED
@@ -1,78 +0,0 @@
1
- community_icon_html = """<svg id="share-btn-share-icon" xmlns="http://www.w3.org/2000/svg" xmlns:xlink="http://www.w3.org/1999/xlink" aria-hidden="true" focusable="false" role="img" width="1em" height="1em" preserveAspectRatio="xMidYMid meet" viewBox="0 0 32 32">
2
- <path d="M20.6081 3C21.7684 3 22.8053 3.49196 23.5284 4.38415C23.9756 4.93678 24.4428 5.82749 24.4808 7.16133C24.9674 7.01707 25.4353 6.93643 25.8725 6.93643C26.9833 6.93643 27.9865 7.37587 28.696 8.17411C29.6075 9.19872 30.0124 10.4579 29.8361 11.7177C29.7523 12.3177 29.5581 12.8555 29.2678 13.3534C29.8798 13.8646 30.3306 14.5763 30.5485 15.4322C30.719 16.1032 30.8939 17.5006 29.9808 18.9403C30.0389 19.0342 30.0934 19.1319 30.1442 19.2318C30.6932 20.3074 30.7283 21.5229 30.2439 22.6548C29.5093 24.3704 27.6841 25.7219 24.1397 27.1727C21.9347 28.0753 19.9174 28.6523 19.8994 28.6575C16.9842 29.4379 14.3477 29.8345 12.0653 29.8345C7.87017 29.8345 4.8668 28.508 3.13831 25.8921C0.356375 21.6797 0.754104 17.8269 4.35369 14.1131C6.34591 12.058 7.67023 9.02782 7.94613 8.36275C8.50224 6.39343 9.97271 4.20438 12.4172 4.20438H12.4179C12.6236 4.20438 12.8314 4.2214 13.0364 4.25468C14.107 4.42854 15.0428 5.06476 15.7115 6.02205C16.4331 5.09583 17.134 4.359 17.7682 3.94323C18.7242 3.31737 19.6794 3 20.6081 3ZM20.6081 5.95917C20.2427 5.95917 19.7963 6.1197 19.3039 6.44225C17.7754 7.44319 14.8258 12.6772 13.7458 14.7131C13.3839 15.3952 12.7655 15.6837 12.2086 15.6837C11.1036 15.6837 10.2408 14.5497 12.1076 13.1085C14.9146 10.9402 13.9299 7.39584 12.5898 7.1776C12.5311 7.16799 12.4731 7.16355 12.4172 7.16355C11.1989 7.16355 10.6615 9.33114 10.6615 9.33114C10.6615 9.33114 9.0863 13.4148 6.38031 16.206C3.67434 18.998 3.5346 21.2388 5.50675 24.2246C6.85185 26.2606 9.42666 26.8753 12.0653 26.8753C14.8021 26.8753 17.6077 26.2139 19.1799 25.793C19.2574 25.7723 28.8193 22.984 27.6081 20.6107C27.4046 20.212 27.0693 20.0522 26.6471 20.0522C24.9416 20.0522 21.8393 22.6726 20.5057 22.6726C20.2076 22.6726 19.9976 22.5416 19.9116 22.222C19.3433 20.1173 28.552 19.2325 27.7758 16.1839C27.639 15.6445 27.2677 15.4256 26.746 15.4263C24.4923 15.4263 19.4358 19.5181 18.3759 19.5181C18.2949 19.5181 18.2368 19.4937 18.2053 19.4419C17.6743 18.557 17.9653 17.9394 21.7082 15.6009C25.4511 13.2617 28.0783 11.8545 26.5841 10.1752C26.4121 9.98141 26.1684 9.8956 25.8725 9.8956C23.6001 9.89634 18.2311 14.9403 18.2311 14.9403C18.2311 14.9403 16.7821 16.496 15.9057 16.496C15.7043 16.496 15.533 16.4139 15.4169 16.2112C14.7956 15.1296 21.1879 10.1286 21.5484 8.06535C21.7928 6.66715 21.3771 5.95917 20.6081 5.95917Z" fill="#FF9D00"></path>
3
- <path d="M5.50686 24.2246C3.53472 21.2387 3.67446 18.9979 6.38043 16.206C9.08641 13.4147 10.6615 9.33111 10.6615 9.33111C10.6615 9.33111 11.2499 6.95933 12.59 7.17757C13.93 7.39581 14.9139 10.9401 12.1069 13.1084C9.29997 15.276 12.6659 16.7489 13.7459 14.713C14.8258 12.6772 17.7747 7.44316 19.304 6.44221C20.8326 5.44128 21.9089 6.00204 21.5484 8.06532C21.188 10.1286 14.795 15.1295 15.4171 16.2118C16.0391 17.2934 18.2312 14.9402 18.2312 14.9402C18.2312 14.9402 25.0907 8.49588 26.5842 10.1752C28.0776 11.8545 25.4512 13.2616 21.7082 15.6008C17.9646 17.9393 17.6744 18.557 18.2054 19.4418C18.7372 20.3266 26.9998 13.1351 27.7759 16.1838C28.5513 19.2324 19.3434 20.1173 19.9117 22.2219C20.48 24.3274 26.3979 18.2382 27.6082 20.6107C28.8193 22.9839 19.2574 25.7722 19.18 25.7929C16.0914 26.62 8.24723 28.3726 5.50686 24.2246Z" fill="#FFD21E"></path>
4
- </svg>"""
5
-
6
- loading_icon_html = """<svg id="share-btn-loading-icon" style="display:none;" class="animate-spin"
7
- style="color: #ffffff;
8
- "
9
- xmlns="http://www.w3.org/2000/svg" xmlns:xlink="http://www.w3.org/1999/xlink" aria-hidden="true" fill="none" focusable="false" role="img" width="1em" height="1em" preserveAspectRatio="xMidYMid meet" viewBox="0 0 24 24"><circle style="opacity: 0.25;" cx="12" cy="12" r="10" stroke="white" stroke-width="4"></circle><path style="opacity: 0.75;" fill="white" d="M4 12a8 8 0 018-8V0C5.373 0 0 5.373 0 12h4zm2 5.291A7.962 7.962 0 014 12H0c0 3.042 1.135 5.824 3 7.938l3-2.647z"></path></svg>"""
10
-
11
- share_js = """async () => {
12
- async function uploadFile(file){
13
- const UPLOAD_URL = 'https://huggingface.co/uploads';
14
- const response = await fetch(UPLOAD_URL, {
15
- method: 'POST',
16
- headers: {
17
- 'Content-Type': file.type,
18
- 'X-Requested-With': 'XMLHttpRequest',
19
- },
20
- body: file, /// <- File inherits from Blob
21
- });
22
- const url = await response.text();
23
- return url;
24
- }
25
-
26
- async function getInputImgFile(imgEl){
27
- const res = await fetch(imgEl.src);
28
- const blob = await res.blob();
29
- const imgId = Date.now() % 200;
30
- const isPng = imgEl.src.startsWith(`data:image/png`);
31
- if(isPng){
32
- const fileName = `sd-perception-${{imgId}}.png`;
33
- return new File([blob], fileName, { type: 'image/png' });
34
- }else{
35
- const fileName = `sd-perception-${{imgId}}.jpg`;
36
- return new File([blob], fileName, { type: 'image/jpeg' });
37
- }
38
- }
39
- const gradioEl = document.querySelector("gradio-app").shadowRoot || document.querySelector('body > gradio-app');
40
- const generatedImages = gradioEl.querySelectorAll(".grid-wrap img")
41
- const prompt = gradioEl.querySelector("#component-3 textarea").value
42
-
43
- const shareBtnEl = gradioEl.querySelector('#share-btn');
44
- const shareIconEl = gradioEl.querySelector('#share-btn-share-icon');
45
- const loadingIconEl = gradioEl.querySelector('#share-btn-loading-icon');
46
-
47
- shareBtnEl.style.pointerEvents = 'none';
48
- shareIconEl.style.display = 'none';
49
- loadingIconEl.style.removeProperty('display');
50
-
51
- let urlOutputs = [];
52
-
53
- for (let i = 0; i < generatedImages.length; i++) {
54
- let imgEl = generatedImages[i];
55
- let outputFile = await getInputImgFile(imgEl);
56
- let urlOutputImg = await uploadFile(outputFile);
57
- urlOutputs.push(urlOutputImg);
58
- }
59
- const imgTags = urlOutputs.map(url => `![Generated Image](${url})`).join('\n');
60
-
61
- const descriptionMd = `### Prompt
62
- ${prompt}
63
-
64
- #### Generated Images:
65
- {imgTags}
66
- `;
67
- console.log(descriptionMd)
68
- const params = new URLSearchParams({
69
- title: prompt,
70
- description: descriptionMd,
71
- preview: true
72
- });
73
- const paramsStr = params.toString();
74
- window.open(`https://huggingface.co/spaces/warp-ai/Wuerstchen/discussions/new?${paramsStr}`, '_blank');
75
- shareBtnEl.style.removeProperty('pointer-events');
76
- shareIconEl.style.removeProperty('display');
77
- loadingIconEl.style.display = 'none';
78
- }"""
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
spaces/AchyuthGamer/OpenGPT-Chat-UI/src/app.html DELETED
@@ -1,32 +0,0 @@
1
- <!DOCTYPE html>
2
- <html lang="en" class="h-full">
3
- <link rel="stylesheet" href="https://www.w3schools.com/w3css/4/w3.css" />
4
- <head>
5
- <!-- Google Tag Manager -->
6
- <script>
7
- var _paq = window._paq || [];
8
- window._paq=_paq;
9
- (function(w,d,s,l,i){w[l]=w[l]||[];w[l].push({'gtm.start':
10
- new Date().getTime(),event:'gtm.js'});var f=d.getElementsByTagName(s)[0],
11
- j=d.createElement(s),dl=l!='dataLayer'?'&l='+l:'';j.async=true;j.src=
12
- 'https://www.googletagmanager.com/gtm.js?id='+i+dl;f.parentNode.insertBefore(j,f);
13
- })(window,document,'script','dataLayer','GTM-TVD93MF');
14
- </script>
15
- <!-- End Google Tag Manager -->
16
- <meta charset="utf-8" />
17
- <meta name="viewport" content="width=device-width, initial-scale=1, user-scalable=no" />
18
- <meta property="og:image" content="/chatui/thumbnail.jpg" />
19
- <script>
20
- if (
21
- localStorage.theme === "dark" ||
22
- (!("theme" in localStorage) && window.matchMedia("(prefers-color-scheme: dark)").matches)
23
- ) {
24
- document.documentElement.classList.add("dark");
25
- }
26
- </script>
27
- %sveltekit.head%
28
- </head>
29
- <body data-sveltekit-preload-data="hover" class="h-full dark:bg-gray-900">
30
- <div id="app" class="contents h-full">%sveltekit.body%</div>
31
- </body>
32
- </html>
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
spaces/AchyuthGamer/OpenGPT-Chat-UI/src/lib/types/SharedConversation.ts DELETED
@@ -1,12 +0,0 @@
1
- import type { Message } from "./Message";
2
- import type { Timestamps } from "./Timestamps";
3
-
4
- export interface SharedConversation extends Timestamps {
5
- _id: string;
6
-
7
- hash: string;
8
-
9
- model: string;
10
- title: string;
11
- messages: Message[];
12
- }
 
 
 
 
 
 
 
 
 
 
 
 
 
spaces/AchyuthGamer/OpenGPT/server/babel.py DELETED
@@ -1,48 +0,0 @@
1
- import os
2
- import subprocess
3
- from flask import request, session, jsonify
4
- from flask_babel import Babel
5
-
6
-
7
- def get_languages_from_dir(directory):
8
- """Return a list of directory names in the given directory."""
9
- return [name for name in os.listdir(directory)
10
- if os.path.isdir(os.path.join(directory, name))]
11
-
12
-
13
- BABEL_DEFAULT_LOCALE = 'en_US'
14
- BABEL_LANGUAGES = get_languages_from_dir('translations')
15
-
16
-
17
- def create_babel(app):
18
- """Create and initialize a Babel instance with the given Flask app."""
19
- babel = Babel(app)
20
- app.config['BABEL_DEFAULT_LOCALE'] = BABEL_DEFAULT_LOCALE
21
- app.config['BABEL_LANGUAGES'] = BABEL_LANGUAGES
22
-
23
- babel.init_app(app, locale_selector=get_locale)
24
- compile_translations()
25
-
26
-
27
- def get_locale():
28
- """Get the user's locale from the session or the request's accepted languages."""
29
- return session.get('language') or request.accept_languages.best_match(BABEL_LANGUAGES)
30
-
31
-
32
- def get_languages():
33
- """Return a list of available languages in JSON format."""
34
- return jsonify(BABEL_LANGUAGES)
35
-
36
-
37
- def compile_translations():
38
- """Compile the translation files."""
39
- result = subprocess.run(
40
- ['pybabel', 'compile', '-d', 'translations'],
41
- stdout=subprocess.PIPE,
42
- )
43
-
44
- if result.returncode != 0:
45
- raise Exception(
46
- f'Compiling translations failed:\n{result.stdout.decode()}')
47
-
48
- print('Translations compiled successfully')
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
spaces/Adapter/CoAdapter/ldm/modules/diffusionmodules/model.py DELETED
@@ -1,852 +0,0 @@
1
- # pytorch_diffusion + derived encoder decoder
2
- import math
3
- import torch
4
- import torch.nn as nn
5
- import numpy as np
6
- from einops import rearrange
7
- from typing import Optional, Any
8
-
9
- from ldm.modules.attention import MemoryEfficientCrossAttention
10
-
11
- try:
12
- import xformers
13
- import xformers.ops
14
- XFORMERS_IS_AVAILBLE = True
15
- except:
16
- XFORMERS_IS_AVAILBLE = False
17
- print("No module 'xformers'. Proceeding without it.")
18
-
19
-
20
- def get_timestep_embedding(timesteps, embedding_dim):
21
- """
22
- This matches the implementation in Denoising Diffusion Probabilistic Models:
23
- From Fairseq.
24
- Build sinusoidal embeddings.
25
- This matches the implementation in tensor2tensor, but differs slightly
26
- from the description in Section 3.5 of "Attention Is All You Need".
27
- """
28
- assert len(timesteps.shape) == 1
29
-
30
- half_dim = embedding_dim // 2
31
- emb = math.log(10000) / (half_dim - 1)
32
- emb = torch.exp(torch.arange(half_dim, dtype=torch.float32) * -emb)
33
- emb = emb.to(device=timesteps.device)
34
- emb = timesteps.float()[:, None] * emb[None, :]
35
- emb = torch.cat([torch.sin(emb), torch.cos(emb)], dim=1)
36
- if embedding_dim % 2 == 1: # zero pad
37
- emb = torch.nn.functional.pad(emb, (0,1,0,0))
38
- return emb
39
-
40
-
41
- def nonlinearity(x):
42
- # swish
43
- return x*torch.sigmoid(x)
44
-
45
-
46
- def Normalize(in_channels, num_groups=32):
47
- return torch.nn.GroupNorm(num_groups=num_groups, num_channels=in_channels, eps=1e-6, affine=True)
48
-
49
-
50
- class Upsample(nn.Module):
51
- def __init__(self, in_channels, with_conv):
52
- super().__init__()
53
- self.with_conv = with_conv
54
- if self.with_conv:
55
- self.conv = torch.nn.Conv2d(in_channels,
56
- in_channels,
57
- kernel_size=3,
58
- stride=1,
59
- padding=1)
60
-
61
- def forward(self, x):
62
- x = torch.nn.functional.interpolate(x, scale_factor=2.0, mode="nearest")
63
- if self.with_conv:
64
- x = self.conv(x)
65
- return x
66
-
67
-
68
- class Downsample(nn.Module):
69
- def __init__(self, in_channels, with_conv):
70
- super().__init__()
71
- self.with_conv = with_conv
72
- if self.with_conv:
73
- # no asymmetric padding in torch conv, must do it ourselves
74
- self.conv = torch.nn.Conv2d(in_channels,
75
- in_channels,
76
- kernel_size=3,
77
- stride=2,
78
- padding=0)
79
-
80
- def forward(self, x):
81
- if self.with_conv:
82
- pad = (0,1,0,1)
83
- x = torch.nn.functional.pad(x, pad, mode="constant", value=0)
84
- x = self.conv(x)
85
- else:
86
- x = torch.nn.functional.avg_pool2d(x, kernel_size=2, stride=2)
87
- return x
88
-
89
-
90
- class ResnetBlock(nn.Module):
91
- def __init__(self, *, in_channels, out_channels=None, conv_shortcut=False,
92
- dropout, temb_channels=512):
93
- super().__init__()
94
- self.in_channels = in_channels
95
- out_channels = in_channels if out_channels is None else out_channels
96
- self.out_channels = out_channels
97
- self.use_conv_shortcut = conv_shortcut
98
-
99
- self.norm1 = Normalize(in_channels)
100
- self.conv1 = torch.nn.Conv2d(in_channels,
101
- out_channels,
102
- kernel_size=3,
103
- stride=1,
104
- padding=1)
105
- if temb_channels > 0:
106
- self.temb_proj = torch.nn.Linear(temb_channels,
107
- out_channels)
108
- self.norm2 = Normalize(out_channels)
109
- self.dropout = torch.nn.Dropout(dropout)
110
- self.conv2 = torch.nn.Conv2d(out_channels,
111
- out_channels,
112
- kernel_size=3,
113
- stride=1,
114
- padding=1)
115
- if self.in_channels != self.out_channels:
116
- if self.use_conv_shortcut:
117
- self.conv_shortcut = torch.nn.Conv2d(in_channels,
118
- out_channels,
119
- kernel_size=3,
120
- stride=1,
121
- padding=1)
122
- else:
123
- self.nin_shortcut = torch.nn.Conv2d(in_channels,
124
- out_channels,
125
- kernel_size=1,
126
- stride=1,
127
- padding=0)
128
-
129
- def forward(self, x, temb):
130
- h = x
131
- h = self.norm1(h)
132
- h = nonlinearity(h)
133
- h = self.conv1(h)
134
-
135
- if temb is not None:
136
- h = h + self.temb_proj(nonlinearity(temb))[:,:,None,None]
137
-
138
- h = self.norm2(h)
139
- h = nonlinearity(h)
140
- h = self.dropout(h)
141
- h = self.conv2(h)
142
-
143
- if self.in_channels != self.out_channels:
144
- if self.use_conv_shortcut:
145
- x = self.conv_shortcut(x)
146
- else:
147
- x = self.nin_shortcut(x)
148
-
149
- return x+h
150
-
151
-
152
- class AttnBlock(nn.Module):
153
- def __init__(self, in_channels):
154
- super().__init__()
155
- self.in_channels = in_channels
156
-
157
- self.norm = Normalize(in_channels)
158
- self.q = torch.nn.Conv2d(in_channels,
159
- in_channels,
160
- kernel_size=1,
161
- stride=1,
162
- padding=0)
163
- self.k = torch.nn.Conv2d(in_channels,
164
- in_channels,
165
- kernel_size=1,
166
- stride=1,
167
- padding=0)
168
- self.v = torch.nn.Conv2d(in_channels,
169
- in_channels,
170
- kernel_size=1,
171
- stride=1,
172
- padding=0)
173
- self.proj_out = torch.nn.Conv2d(in_channels,
174
- in_channels,
175
- kernel_size=1,
176
- stride=1,
177
- padding=0)
178
-
179
- def forward(self, x):
180
- h_ = x
181
- h_ = self.norm(h_)
182
- q = self.q(h_)
183
- k = self.k(h_)
184
- v = self.v(h_)
185
-
186
- # compute attention
187
- b,c,h,w = q.shape
188
- q = q.reshape(b,c,h*w)
189
- q = q.permute(0,2,1) # b,hw,c
190
- k = k.reshape(b,c,h*w) # b,c,hw
191
- w_ = torch.bmm(q,k) # b,hw,hw w[b,i,j]=sum_c q[b,i,c]k[b,c,j]
192
- w_ = w_ * (int(c)**(-0.5))
193
- w_ = torch.nn.functional.softmax(w_, dim=2)
194
-
195
- # attend to values
196
- v = v.reshape(b,c,h*w)
197
- w_ = w_.permute(0,2,1) # b,hw,hw (first hw of k, second of q)
198
- h_ = torch.bmm(v,w_) # b, c,hw (hw of q) h_[b,c,j] = sum_i v[b,c,i] w_[b,i,j]
199
- h_ = h_.reshape(b,c,h,w)
200
-
201
- h_ = self.proj_out(h_)
202
-
203
- return x+h_
204
-
205
- class MemoryEfficientAttnBlock(nn.Module):
206
- """
207
- Uses xformers efficient implementation,
208
- see https://github.com/MatthieuTPHR/diffusers/blob/d80b531ff8060ec1ea982b65a1b8df70f73aa67c/src/diffusers/models/attention.py#L223
209
- Note: this is a single-head self-attention operation
210
- """
211
- #
212
- def __init__(self, in_channels):
213
- super().__init__()
214
- self.in_channels = in_channels
215
-
216
- self.norm = Normalize(in_channels)
217
- self.q = torch.nn.Conv2d(in_channels,
218
- in_channels,
219
- kernel_size=1,
220
- stride=1,
221
- padding=0)
222
- self.k = torch.nn.Conv2d(in_channels,
223
- in_channels,
224
- kernel_size=1,
225
- stride=1,
226
- padding=0)
227
- self.v = torch.nn.Conv2d(in_channels,
228
- in_channels,
229
- kernel_size=1,
230
- stride=1,
231
- padding=0)
232
- self.proj_out = torch.nn.Conv2d(in_channels,
233
- in_channels,
234
- kernel_size=1,
235
- stride=1,
236
- padding=0)
237
- self.attention_op: Optional[Any] = None
238
-
239
- def forward(self, x):
240
- h_ = x
241
- h_ = self.norm(h_)
242
- q = self.q(h_)
243
- k = self.k(h_)
244
- v = self.v(h_)
245
-
246
- # compute attention
247
- B, C, H, W = q.shape
248
- q, k, v = map(lambda x: rearrange(x, 'b c h w -> b (h w) c'), (q, k, v))
249
-
250
- q, k, v = map(
251
- lambda t: t.unsqueeze(3)
252
- .reshape(B, t.shape[1], 1, C)
253
- .permute(0, 2, 1, 3)
254
- .reshape(B * 1, t.shape[1], C)
255
- .contiguous(),
256
- (q, k, v),
257
- )
258
- out = xformers.ops.memory_efficient_attention(q, k, v, attn_bias=None, op=self.attention_op)
259
-
260
- out = (
261
- out.unsqueeze(0)
262
- .reshape(B, 1, out.shape[1], C)
263
- .permute(0, 2, 1, 3)
264
- .reshape(B, out.shape[1], C)
265
- )
266
- out = rearrange(out, 'b (h w) c -> b c h w', b=B, h=H, w=W, c=C)
267
- out = self.proj_out(out)
268
- return x+out
269
-
270
-
271
- class MemoryEfficientCrossAttentionWrapper(MemoryEfficientCrossAttention):
272
- def forward(self, x, context=None, mask=None):
273
- b, c, h, w = x.shape
274
- x = rearrange(x, 'b c h w -> b (h w) c')
275
- out = super().forward(x, context=context, mask=mask)
276
- out = rearrange(out, 'b (h w) c -> b c h w', h=h, w=w, c=c)
277
- return x + out
278
-
279
-
280
- def make_attn(in_channels, attn_type="vanilla", attn_kwargs=None):
281
- assert attn_type in ["vanilla", "vanilla-xformers", "memory-efficient-cross-attn", "linear", "none"], f'attn_type {attn_type} unknown'
282
- if XFORMERS_IS_AVAILBLE and attn_type == "vanilla":
283
- attn_type = "vanilla-xformers"
284
- print(f"making attention of type '{attn_type}' with {in_channels} in_channels")
285
- if attn_type == "vanilla":
286
- assert attn_kwargs is None
287
- return AttnBlock(in_channels)
288
- elif attn_type == "vanilla-xformers":
289
- print(f"building MemoryEfficientAttnBlock with {in_channels} in_channels...")
290
- return MemoryEfficientAttnBlock(in_channels)
291
- elif type == "memory-efficient-cross-attn":
292
- attn_kwargs["query_dim"] = in_channels
293
- return MemoryEfficientCrossAttentionWrapper(**attn_kwargs)
294
- elif attn_type == "none":
295
- return nn.Identity(in_channels)
296
- else:
297
- raise NotImplementedError()
298
-
299
-
300
- class Model(nn.Module):
301
- def __init__(self, *, ch, out_ch, ch_mult=(1,2,4,8), num_res_blocks,
302
- attn_resolutions, dropout=0.0, resamp_with_conv=True, in_channels,
303
- resolution, use_timestep=True, use_linear_attn=False, attn_type="vanilla"):
304
- super().__init__()
305
- if use_linear_attn: attn_type = "linear"
306
- self.ch = ch
307
- self.temb_ch = self.ch*4
308
- self.num_resolutions = len(ch_mult)
309
- self.num_res_blocks = num_res_blocks
310
- self.resolution = resolution
311
- self.in_channels = in_channels
312
-
313
- self.use_timestep = use_timestep
314
- if self.use_timestep:
315
- # timestep embedding
316
- self.temb = nn.Module()
317
- self.temb.dense = nn.ModuleList([
318
- torch.nn.Linear(self.ch,
319
- self.temb_ch),
320
- torch.nn.Linear(self.temb_ch,
321
- self.temb_ch),
322
- ])
323
-
324
- # downsampling
325
- self.conv_in = torch.nn.Conv2d(in_channels,
326
- self.ch,
327
- kernel_size=3,
328
- stride=1,
329
- padding=1)
330
-
331
- curr_res = resolution
332
- in_ch_mult = (1,)+tuple(ch_mult)
333
- self.down = nn.ModuleList()
334
- for i_level in range(self.num_resolutions):
335
- block = nn.ModuleList()
336
- attn = nn.ModuleList()
337
- block_in = ch*in_ch_mult[i_level]
338
- block_out = ch*ch_mult[i_level]
339
- for i_block in range(self.num_res_blocks):
340
- block.append(ResnetBlock(in_channels=block_in,
341
- out_channels=block_out,
342
- temb_channels=self.temb_ch,
343
- dropout=dropout))
344
- block_in = block_out
345
- if curr_res in attn_resolutions:
346
- attn.append(make_attn(block_in, attn_type=attn_type))
347
- down = nn.Module()
348
- down.block = block
349
- down.attn = attn
350
- if i_level != self.num_resolutions-1:
351
- down.downsample = Downsample(block_in, resamp_with_conv)
352
- curr_res = curr_res // 2
353
- self.down.append(down)
354
-
355
- # middle
356
- self.mid = nn.Module()
357
- self.mid.block_1 = ResnetBlock(in_channels=block_in,
358
- out_channels=block_in,
359
- temb_channels=self.temb_ch,
360
- dropout=dropout)
361
- self.mid.attn_1 = make_attn(block_in, attn_type=attn_type)
362
- self.mid.block_2 = ResnetBlock(in_channels=block_in,
363
- out_channels=block_in,
364
- temb_channels=self.temb_ch,
365
- dropout=dropout)
366
-
367
- # upsampling
368
- self.up = nn.ModuleList()
369
- for i_level in reversed(range(self.num_resolutions)):
370
- block = nn.ModuleList()
371
- attn = nn.ModuleList()
372
- block_out = ch*ch_mult[i_level]
373
- skip_in = ch*ch_mult[i_level]
374
- for i_block in range(self.num_res_blocks+1):
375
- if i_block == self.num_res_blocks:
376
- skip_in = ch*in_ch_mult[i_level]
377
- block.append(ResnetBlock(in_channels=block_in+skip_in,
378
- out_channels=block_out,
379
- temb_channels=self.temb_ch,
380
- dropout=dropout))
381
- block_in = block_out
382
- if curr_res in attn_resolutions:
383
- attn.append(make_attn(block_in, attn_type=attn_type))
384
- up = nn.Module()
385
- up.block = block
386
- up.attn = attn
387
- if i_level != 0:
388
- up.upsample = Upsample(block_in, resamp_with_conv)
389
- curr_res = curr_res * 2
390
- self.up.insert(0, up) # prepend to get consistent order
391
-
392
- # end
393
- self.norm_out = Normalize(block_in)
394
- self.conv_out = torch.nn.Conv2d(block_in,
395
- out_ch,
396
- kernel_size=3,
397
- stride=1,
398
- padding=1)
399
-
400
- def forward(self, x, t=None, context=None):
401
- #assert x.shape[2] == x.shape[3] == self.resolution
402
- if context is not None:
403
- # assume aligned context, cat along channel axis
404
- x = torch.cat((x, context), dim=1)
405
- if self.use_timestep:
406
- # timestep embedding
407
- assert t is not None
408
- temb = get_timestep_embedding(t, self.ch)
409
- temb = self.temb.dense[0](temb)
410
- temb = nonlinearity(temb)
411
- temb = self.temb.dense[1](temb)
412
- else:
413
- temb = None
414
-
415
- # downsampling
416
- hs = [self.conv_in(x)]
417
- for i_level in range(self.num_resolutions):
418
- for i_block in range(self.num_res_blocks):
419
- h = self.down[i_level].block[i_block](hs[-1], temb)
420
- if len(self.down[i_level].attn) > 0:
421
- h = self.down[i_level].attn[i_block](h)
422
- hs.append(h)
423
- if i_level != self.num_resolutions-1:
424
- hs.append(self.down[i_level].downsample(hs[-1]))
425
-
426
- # middle
427
- h = hs[-1]
428
- h = self.mid.block_1(h, temb)
429
- h = self.mid.attn_1(h)
430
- h = self.mid.block_2(h, temb)
431
-
432
- # upsampling
433
- for i_level in reversed(range(self.num_resolutions)):
434
- for i_block in range(self.num_res_blocks+1):
435
- h = self.up[i_level].block[i_block](
436
- torch.cat([h, hs.pop()], dim=1), temb)
437
- if len(self.up[i_level].attn) > 0:
438
- h = self.up[i_level].attn[i_block](h)
439
- if i_level != 0:
440
- h = self.up[i_level].upsample(h)
441
-
442
- # end
443
- h = self.norm_out(h)
444
- h = nonlinearity(h)
445
- h = self.conv_out(h)
446
- return h
447
-
448
- def get_last_layer(self):
449
- return self.conv_out.weight
450
-
451
-
452
- class Encoder(nn.Module):
453
- def __init__(self, *, ch, out_ch, ch_mult=(1,2,4,8), num_res_blocks,
454
- attn_resolutions, dropout=0.0, resamp_with_conv=True, in_channels,
455
- resolution, z_channels, double_z=True, use_linear_attn=False, attn_type="vanilla",
456
- **ignore_kwargs):
457
- super().__init__()
458
- if use_linear_attn: attn_type = "linear"
459
- self.ch = ch
460
- self.temb_ch = 0
461
- self.num_resolutions = len(ch_mult)
462
- self.num_res_blocks = num_res_blocks
463
- self.resolution = resolution
464
- self.in_channels = in_channels
465
-
466
- # downsampling
467
- self.conv_in = torch.nn.Conv2d(in_channels,
468
- self.ch,
469
- kernel_size=3,
470
- stride=1,
471
- padding=1)
472
-
473
- curr_res = resolution
474
- in_ch_mult = (1,)+tuple(ch_mult)
475
- self.in_ch_mult = in_ch_mult
476
- self.down = nn.ModuleList()
477
- for i_level in range(self.num_resolutions):
478
- block = nn.ModuleList()
479
- attn = nn.ModuleList()
480
- block_in = ch*in_ch_mult[i_level]
481
- block_out = ch*ch_mult[i_level]
482
- for i_block in range(self.num_res_blocks):
483
- block.append(ResnetBlock(in_channels=block_in,
484
- out_channels=block_out,
485
- temb_channels=self.temb_ch,
486
- dropout=dropout))
487
- block_in = block_out
488
- if curr_res in attn_resolutions:
489
- attn.append(make_attn(block_in, attn_type=attn_type))
490
- down = nn.Module()
491
- down.block = block
492
- down.attn = attn
493
- if i_level != self.num_resolutions-1:
494
- down.downsample = Downsample(block_in, resamp_with_conv)
495
- curr_res = curr_res // 2
496
- self.down.append(down)
497
-
498
- # middle
499
- self.mid = nn.Module()
500
- self.mid.block_1 = ResnetBlock(in_channels=block_in,
501
- out_channels=block_in,
502
- temb_channels=self.temb_ch,
503
- dropout=dropout)
504
- self.mid.attn_1 = make_attn(block_in, attn_type=attn_type)
505
- self.mid.block_2 = ResnetBlock(in_channels=block_in,
506
- out_channels=block_in,
507
- temb_channels=self.temb_ch,
508
- dropout=dropout)
509
-
510
- # end
511
- self.norm_out = Normalize(block_in)
512
- self.conv_out = torch.nn.Conv2d(block_in,
513
- 2*z_channels if double_z else z_channels,
514
- kernel_size=3,
515
- stride=1,
516
- padding=1)
517
-
518
- def forward(self, x):
519
- # timestep embedding
520
- temb = None
521
-
522
- # downsampling
523
- hs = [self.conv_in(x)]
524
- for i_level in range(self.num_resolutions):
525
- for i_block in range(self.num_res_blocks):
526
- h = self.down[i_level].block[i_block](hs[-1], temb)
527
- if len(self.down[i_level].attn) > 0:
528
- h = self.down[i_level].attn[i_block](h)
529
- hs.append(h)
530
- if i_level != self.num_resolutions-1:
531
- hs.append(self.down[i_level].downsample(hs[-1]))
532
-
533
- # middle
534
- h = hs[-1]
535
- h = self.mid.block_1(h, temb)
536
- h = self.mid.attn_1(h)
537
- h = self.mid.block_2(h, temb)
538
-
539
- # end
540
- h = self.norm_out(h)
541
- h = nonlinearity(h)
542
- h = self.conv_out(h)
543
- return h
544
-
545
-
546
- class Decoder(nn.Module):
547
- def __init__(self, *, ch, out_ch, ch_mult=(1,2,4,8), num_res_blocks,
548
- attn_resolutions, dropout=0.0, resamp_with_conv=True, in_channels,
549
- resolution, z_channels, give_pre_end=False, tanh_out=False, use_linear_attn=False,
550
- attn_type="vanilla", **ignorekwargs):
551
- super().__init__()
552
- if use_linear_attn: attn_type = "linear"
553
- self.ch = ch
554
- self.temb_ch = 0
555
- self.num_resolutions = len(ch_mult)
556
- self.num_res_blocks = num_res_blocks
557
- self.resolution = resolution
558
- self.in_channels = in_channels
559
- self.give_pre_end = give_pre_end
560
- self.tanh_out = tanh_out
561
-
562
- # compute in_ch_mult, block_in and curr_res at lowest res
563
- in_ch_mult = (1,)+tuple(ch_mult)
564
- block_in = ch*ch_mult[self.num_resolutions-1]
565
- curr_res = resolution // 2**(self.num_resolutions-1)
566
- self.z_shape = (1,z_channels,curr_res,curr_res)
567
- print("Working with z of shape {} = {} dimensions.".format(
568
- self.z_shape, np.prod(self.z_shape)))
569
-
570
- # z to block_in
571
- self.conv_in = torch.nn.Conv2d(z_channels,
572
- block_in,
573
- kernel_size=3,
574
- stride=1,
575
- padding=1)
576
-
577
- # middle
578
- self.mid = nn.Module()
579
- self.mid.block_1 = ResnetBlock(in_channels=block_in,
580
- out_channels=block_in,
581
- temb_channels=self.temb_ch,
582
- dropout=dropout)
583
- self.mid.attn_1 = make_attn(block_in, attn_type=attn_type)
584
- self.mid.block_2 = ResnetBlock(in_channels=block_in,
585
- out_channels=block_in,
586
- temb_channels=self.temb_ch,
587
- dropout=dropout)
588
-
589
- # upsampling
590
- self.up = nn.ModuleList()
591
- for i_level in reversed(range(self.num_resolutions)):
592
- block = nn.ModuleList()
593
- attn = nn.ModuleList()
594
- block_out = ch*ch_mult[i_level]
595
- for i_block in range(self.num_res_blocks+1):
596
- block.append(ResnetBlock(in_channels=block_in,
597
- out_channels=block_out,
598
- temb_channels=self.temb_ch,
599
- dropout=dropout))
600
- block_in = block_out
601
- if curr_res in attn_resolutions:
602
- attn.append(make_attn(block_in, attn_type=attn_type))
603
- up = nn.Module()
604
- up.block = block
605
- up.attn = attn
606
- if i_level != 0:
607
- up.upsample = Upsample(block_in, resamp_with_conv)
608
- curr_res = curr_res * 2
609
- self.up.insert(0, up) # prepend to get consistent order
610
-
611
- # end
612
- self.norm_out = Normalize(block_in)
613
- self.conv_out = torch.nn.Conv2d(block_in,
614
- out_ch,
615
- kernel_size=3,
616
- stride=1,
617
- padding=1)
618
-
619
- def forward(self, z):
620
- #assert z.shape[1:] == self.z_shape[1:]
621
- self.last_z_shape = z.shape
622
-
623
- # timestep embedding
624
- temb = None
625
-
626
- # z to block_in
627
- h = self.conv_in(z)
628
-
629
- # middle
630
- h = self.mid.block_1(h, temb)
631
- h = self.mid.attn_1(h)
632
- h = self.mid.block_2(h, temb)
633
-
634
- # upsampling
635
- for i_level in reversed(range(self.num_resolutions)):
636
- for i_block in range(self.num_res_blocks+1):
637
- h = self.up[i_level].block[i_block](h, temb)
638
- if len(self.up[i_level].attn) > 0:
639
- h = self.up[i_level].attn[i_block](h)
640
- if i_level != 0:
641
- h = self.up[i_level].upsample(h)
642
-
643
- # end
644
- if self.give_pre_end:
645
- return h
646
-
647
- h = self.norm_out(h)
648
- h = nonlinearity(h)
649
- h = self.conv_out(h)
650
- if self.tanh_out:
651
- h = torch.tanh(h)
652
- return h
653
-
654
-
655
- class SimpleDecoder(nn.Module):
656
- def __init__(self, in_channels, out_channels, *args, **kwargs):
657
- super().__init__()
658
- self.model = nn.ModuleList([nn.Conv2d(in_channels, in_channels, 1),
659
- ResnetBlock(in_channels=in_channels,
660
- out_channels=2 * in_channels,
661
- temb_channels=0, dropout=0.0),
662
- ResnetBlock(in_channels=2 * in_channels,
663
- out_channels=4 * in_channels,
664
- temb_channels=0, dropout=0.0),
665
- ResnetBlock(in_channels=4 * in_channels,
666
- out_channels=2 * in_channels,
667
- temb_channels=0, dropout=0.0),
668
- nn.Conv2d(2*in_channels, in_channels, 1),
669
- Upsample(in_channels, with_conv=True)])
670
- # end
671
- self.norm_out = Normalize(in_channels)
672
- self.conv_out = torch.nn.Conv2d(in_channels,
673
- out_channels,
674
- kernel_size=3,
675
- stride=1,
676
- padding=1)
677
-
678
- def forward(self, x):
679
- for i, layer in enumerate(self.model):
680
- if i in [1,2,3]:
681
- x = layer(x, None)
682
- else:
683
- x = layer(x)
684
-
685
- h = self.norm_out(x)
686
- h = nonlinearity(h)
687
- x = self.conv_out(h)
688
- return x
689
-
690
-
691
- class UpsampleDecoder(nn.Module):
692
- def __init__(self, in_channels, out_channels, ch, num_res_blocks, resolution,
693
- ch_mult=(2,2), dropout=0.0):
694
- super().__init__()
695
- # upsampling
696
- self.temb_ch = 0
697
- self.num_resolutions = len(ch_mult)
698
- self.num_res_blocks = num_res_blocks
699
- block_in = in_channels
700
- curr_res = resolution // 2 ** (self.num_resolutions - 1)
701
- self.res_blocks = nn.ModuleList()
702
- self.upsample_blocks = nn.ModuleList()
703
- for i_level in range(self.num_resolutions):
704
- res_block = []
705
- block_out = ch * ch_mult[i_level]
706
- for i_block in range(self.num_res_blocks + 1):
707
- res_block.append(ResnetBlock(in_channels=block_in,
708
- out_channels=block_out,
709
- temb_channels=self.temb_ch,
710
- dropout=dropout))
711
- block_in = block_out
712
- self.res_blocks.append(nn.ModuleList(res_block))
713
- if i_level != self.num_resolutions - 1:
714
- self.upsample_blocks.append(Upsample(block_in, True))
715
- curr_res = curr_res * 2
716
-
717
- # end
718
- self.norm_out = Normalize(block_in)
719
- self.conv_out = torch.nn.Conv2d(block_in,
720
- out_channels,
721
- kernel_size=3,
722
- stride=1,
723
- padding=1)
724
-
725
- def forward(self, x):
726
- # upsampling
727
- h = x
728
- for k, i_level in enumerate(range(self.num_resolutions)):
729
- for i_block in range(self.num_res_blocks + 1):
730
- h = self.res_blocks[i_level][i_block](h, None)
731
- if i_level != self.num_resolutions - 1:
732
- h = self.upsample_blocks[k](h)
733
- h = self.norm_out(h)
734
- h = nonlinearity(h)
735
- h = self.conv_out(h)
736
- return h
737
-
738
-
739
- class LatentRescaler(nn.Module):
740
- def __init__(self, factor, in_channels, mid_channels, out_channels, depth=2):
741
- super().__init__()
742
- # residual block, interpolate, residual block
743
- self.factor = factor
744
- self.conv_in = nn.Conv2d(in_channels,
745
- mid_channels,
746
- kernel_size=3,
747
- stride=1,
748
- padding=1)
749
- self.res_block1 = nn.ModuleList([ResnetBlock(in_channels=mid_channels,
750
- out_channels=mid_channels,
751
- temb_channels=0,
752
- dropout=0.0) for _ in range(depth)])
753
- self.attn = AttnBlock(mid_channels)
754
- self.res_block2 = nn.ModuleList([ResnetBlock(in_channels=mid_channels,
755
- out_channels=mid_channels,
756
- temb_channels=0,
757
- dropout=0.0) for _ in range(depth)])
758
-
759
- self.conv_out = nn.Conv2d(mid_channels,
760
- out_channels,
761
- kernel_size=1,
762
- )
763
-
764
- def forward(self, x):
765
- x = self.conv_in(x)
766
- for block in self.res_block1:
767
- x = block(x, None)
768
- x = torch.nn.functional.interpolate(x, size=(int(round(x.shape[2]*self.factor)), int(round(x.shape[3]*self.factor))))
769
- x = self.attn(x)
770
- for block in self.res_block2:
771
- x = block(x, None)
772
- x = self.conv_out(x)
773
- return x
774
-
775
-
776
- class MergedRescaleEncoder(nn.Module):
777
- def __init__(self, in_channels, ch, resolution, out_ch, num_res_blocks,
778
- attn_resolutions, dropout=0.0, resamp_with_conv=True,
779
- ch_mult=(1,2,4,8), rescale_factor=1.0, rescale_module_depth=1):
780
- super().__init__()
781
- intermediate_chn = ch * ch_mult[-1]
782
- self.encoder = Encoder(in_channels=in_channels, num_res_blocks=num_res_blocks, ch=ch, ch_mult=ch_mult,
783
- z_channels=intermediate_chn, double_z=False, resolution=resolution,
784
- attn_resolutions=attn_resolutions, dropout=dropout, resamp_with_conv=resamp_with_conv,
785
- out_ch=None)
786
- self.rescaler = LatentRescaler(factor=rescale_factor, in_channels=intermediate_chn,
787
- mid_channels=intermediate_chn, out_channels=out_ch, depth=rescale_module_depth)
788
-
789
- def forward(self, x):
790
- x = self.encoder(x)
791
- x = self.rescaler(x)
792
- return x
793
-
794
-
795
- class MergedRescaleDecoder(nn.Module):
796
- def __init__(self, z_channels, out_ch, resolution, num_res_blocks, attn_resolutions, ch, ch_mult=(1,2,4,8),
797
- dropout=0.0, resamp_with_conv=True, rescale_factor=1.0, rescale_module_depth=1):
798
- super().__init__()
799
- tmp_chn = z_channels*ch_mult[-1]
800
- self.decoder = Decoder(out_ch=out_ch, z_channels=tmp_chn, attn_resolutions=attn_resolutions, dropout=dropout,
801
- resamp_with_conv=resamp_with_conv, in_channels=None, num_res_blocks=num_res_blocks,
802
- ch_mult=ch_mult, resolution=resolution, ch=ch)
803
- self.rescaler = LatentRescaler(factor=rescale_factor, in_channels=z_channels, mid_channels=tmp_chn,
804
- out_channels=tmp_chn, depth=rescale_module_depth)
805
-
806
- def forward(self, x):
807
- x = self.rescaler(x)
808
- x = self.decoder(x)
809
- return x
810
-
811
-
812
- class Upsampler(nn.Module):
813
- def __init__(self, in_size, out_size, in_channels, out_channels, ch_mult=2):
814
- super().__init__()
815
- assert out_size >= in_size
816
- num_blocks = int(np.log2(out_size//in_size))+1
817
- factor_up = 1.+ (out_size % in_size)
818
- print(f"Building {self.__class__.__name__} with in_size: {in_size} --> out_size {out_size} and factor {factor_up}")
819
- self.rescaler = LatentRescaler(factor=factor_up, in_channels=in_channels, mid_channels=2*in_channels,
820
- out_channels=in_channels)
821
- self.decoder = Decoder(out_ch=out_channels, resolution=out_size, z_channels=in_channels, num_res_blocks=2,
822
- attn_resolutions=[], in_channels=None, ch=in_channels,
823
- ch_mult=[ch_mult for _ in range(num_blocks)])
824
-
825
- def forward(self, x):
826
- x = self.rescaler(x)
827
- x = self.decoder(x)
828
- return x
829
-
830
-
831
- class Resize(nn.Module):
832
- def __init__(self, in_channels=None, learned=False, mode="bilinear"):
833
- super().__init__()
834
- self.with_conv = learned
835
- self.mode = mode
836
- if self.with_conv:
837
- print(f"Note: {self.__class__.__name} uses learned downsampling and will ignore the fixed {mode} mode")
838
- raise NotImplementedError()
839
- assert in_channels is not None
840
- # no asymmetric padding in torch conv, must do it ourselves
841
- self.conv = torch.nn.Conv2d(in_channels,
842
- in_channels,
843
- kernel_size=4,
844
- stride=2,
845
- padding=1)
846
-
847
- def forward(self, x, scale_factor=1.0):
848
- if scale_factor==1.0:
849
- return x
850
- else:
851
- x = torch.nn.functional.interpolate(x, mode=self.mode, align_corners=False, scale_factor=scale_factor)
852
- return x
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
spaces/AgentVerse/agentVerse/agentverse/environments/simulation_env/rules/describer/pokemon.py DELETED
@@ -1,51 +0,0 @@
1
- from __future__ import annotations
2
-
3
- from typing import TYPE_CHECKING, Any, List, Optional, Dict
4
- from copy import deepcopy
5
-
6
- from . import describer_registry as DescriberRegistry
7
- from .base import BaseDescriber
8
-
9
- if TYPE_CHECKING:
10
- from agentverse.environments.pokemon import PokemonEnvironment
11
-
12
-
13
- @DescriberRegistry.register("pokemon")
14
- class PokemonDescriber(BaseDescriber):
15
- def get_env_description(
16
- self,
17
- environment: PokemonEnvironment,
18
- player_content: str = "",
19
- ) -> List[str]:
20
- time = environment.time
21
- if player_content == "":
22
- agent_to_location = environment.get_agent_to_location()
23
- descriptions = []
24
- for agent in environment.agents:
25
- description = ""
26
- if agent.name not in agent_to_location:
27
- # Agent is on the way to a location
28
- descriptions.append("")
29
- continue
30
- location = agent_to_location[agent.name]
31
- agents_in_same_loc = deepcopy(environment.locations_to_agents[location])
32
- agents_in_same_loc.remove(agent.name)
33
- agents_in_same_loc = list(agents_in_same_loc)
34
- description += f"It is now {time}. You are at {location}."
35
- if len(agents_in_same_loc) == 0:
36
- description += " There is no one else here."
37
- elif len(agents_in_same_loc) == 1:
38
- description += f" {agents_in_same_loc[0]} is also here."
39
- else:
40
- other_agents = ", ".join(agents_in_same_loc)
41
- description += f" {other_agents} are also here."
42
- # description += " The locations you can go to include: \n"
43
- # for loc, dsec in environment.locations_descriptions.items():
44
- # description += f"{loc}: {dsec}\n"
45
- descriptions.append(description)
46
- return descriptions
47
- else:
48
- description = ""
49
- description += f"It is now {time}. Brendan is talking to you.\n"
50
- description += f"[Brendan]: {player_content}\n"
51
- return [description for _ in range(len(environment.agents))]
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
spaces/AgentVerse/agentVerse/ui/src/phaser3-rex-plugins/templates/bejeweled/methods/WaitEventMethods.js DELETED
@@ -1,13 +0,0 @@
1
- export default {
2
- waitEvent(eventEmitter, eventName) {
3
- if (eventName === undefined) {
4
- eventName = 'complete';
5
- }
6
- this.waitEvents.waitEvent(eventEmitter, eventName);
7
- return this;
8
- },
9
-
10
- isWaitingEvent() {
11
- return !this.waitEvents.noWaitEvent;
12
- },
13
- }
 
 
 
 
 
 
 
 
 
 
 
 
 
 
spaces/AgentVerse/agentVerse/ui/src/phaser3-rex-plugins/templates/ui/maker/builders/utils/CreateAnyLabel.js DELETED
@@ -1,18 +0,0 @@
1
- import MergeStyle from './MergeStyle.js';
2
- import CreateChild from './CreateChild.js';
3
-
4
- var CreateAnyLabel = function (scene, data, view, styles, customBuilders, LabelClass) {
5
- data = MergeStyle(data, styles);
6
-
7
- // Replace data by child game object
8
- CreateChild(scene, data, 'background', view, styles, customBuilders);
9
- CreateChild(scene, data, 'icon', view, styles, customBuilders);
10
- CreateChild(scene, data, 'text', view, styles, customBuilders);
11
- CreateChild(scene, data, 'action', view, styles, customBuilders);
12
-
13
- var gameObject = new LabelClass(scene, data);
14
- scene.add.existing(gameObject);
15
- return gameObject;
16
- }
17
-
18
- export default CreateAnyLabel;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
spaces/AkitoP/umamusume_bert_vits2/text/english_bert_mock.py DELETED
@@ -1,5 +0,0 @@
1
- import torch
2
-
3
-
4
- def get_bert_feature(norm_text, word2ph):
5
- return torch.zeros(1024, sum(word2ph))
 
 
 
 
 
 
spaces/AliSaria/MilitarEye/app.py DELETED
@@ -1,45 +0,0 @@
1
- import gradio as gr
2
- from tensorflow.keras.models import load_model
3
- from PIL import Image
4
- import numpy as np
5
- import matplotlib.pyplot as plt
6
- from io import BytesIO
7
-
8
- # Load the trained model
9
- model = load_model('model1.h5') # Make sure 'model1.h5' is the correct path to your model
10
-
11
- # Prediction function for the Gradio app
12
- def predict_and_visualize(img):
13
- # Store the original image size
14
- original_size = img.size
15
-
16
- # Convert the input image to the target size expected by the model
17
- img_resized = img.resize((256, 256))
18
- img_array = np.array(img_resized) / 255.0 # Normalize the image
19
- img_array = np.expand_dims(img_array, axis=0) # Add batch dimension
20
-
21
- # Make a prediction
22
- prediction = model.predict(img_array)
23
-
24
- # Assuming the model outputs a single-channel image, normalize to 0-255 range for display
25
- predicted_mask = (prediction[0, :, :, 0] * 255).astype(np.uint8)
26
-
27
- # Convert the prediction to a PIL image
28
- prediction_image = Image.fromarray(predicted_mask, mode='L') # 'L' mode is for grayscale
29
-
30
- # Resize the predicted image back to the original image size
31
- prediction_image = prediction_image.resize(original_size, Image.NEAREST)
32
-
33
- return prediction_image
34
-
35
- # Create the Gradio interface
36
- iface = gr.Interface(
37
- fn=predict_and_visualize,
38
- inputs=gr.Image(type="pil"), # We expect a PIL Image
39
- outputs=gr.Image(type="pil"), # We will return a PIL Image
40
- title="MilitarEye: Military Stealth Camouflage Detector",
41
- description="Please upload an image of a military personnel camouflaged in their surroundings. On the right, the model will attempt to predict the camouflage mask silhouette."
42
- )
43
-
44
- # Launch the Gradio app
45
- iface.launch()
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
spaces/Amrrs/DragGan-Inversion/PTI/models/StyleCLIP/global_directions/dnnlib/util.py DELETED
@@ -1,472 +0,0 @@
1
- # Copyright (c) 2020, NVIDIA CORPORATION. All rights reserved.
2
- #
3
- # NVIDIA CORPORATION and its licensors retain all intellectual property
4
- # and proprietary rights in and to this software, related documentation
5
- # and any modifications thereto. Any use, reproduction, disclosure or
6
- # distribution of this software and related documentation without an express
7
- # license agreement from NVIDIA CORPORATION is strictly prohibited.
8
-
9
- """Miscellaneous utility classes and functions."""
10
-
11
- import ctypes
12
- import fnmatch
13
- import importlib
14
- import inspect
15
- import numpy as np
16
- import os
17
- import shutil
18
- import sys
19
- import types
20
- import io
21
- import pickle
22
- import re
23
- import requests
24
- import html
25
- import hashlib
26
- import glob
27
- import tempfile
28
- import urllib
29
- import urllib.request
30
- import uuid
31
-
32
- from distutils.util import strtobool
33
- from typing import Any, List, Tuple, Union
34
-
35
-
36
- # Util classes
37
- # ------------------------------------------------------------------------------------------
38
-
39
-
40
- class EasyDict(dict):
41
- """Convenience class that behaves like a dict but allows access with the attribute syntax."""
42
-
43
- def __getattr__(self, name: str) -> Any:
44
- try:
45
- return self[name]
46
- except KeyError:
47
- raise AttributeError(name)
48
-
49
- def __setattr__(self, name: str, value: Any) -> None:
50
- self[name] = value
51
-
52
- def __delattr__(self, name: str) -> None:
53
- del self[name]
54
-
55
-
56
- class Logger(object):
57
- """Redirect stderr to stdout, optionally print stdout to a file, and optionally force flushing on both stdout and the file."""
58
-
59
- def __init__(self, file_name: str = None, file_mode: str = "w", should_flush: bool = True):
60
- self.file = None
61
-
62
- if file_name is not None:
63
- self.file = open(file_name, file_mode)
64
-
65
- self.should_flush = should_flush
66
- self.stdout = sys.stdout
67
- self.stderr = sys.stderr
68
-
69
- sys.stdout = self
70
- sys.stderr = self
71
-
72
- def __enter__(self) -> "Logger":
73
- return self
74
-
75
- def __exit__(self, exc_type: Any, exc_value: Any, traceback: Any) -> None:
76
- self.close()
77
-
78
- def write(self, text: str) -> None:
79
- """Write text to stdout (and a file) and optionally flush."""
80
- if len(text) == 0: # workaround for a bug in VSCode debugger: sys.stdout.write(''); sys.stdout.flush() => crash
81
- return
82
-
83
- if self.file is not None:
84
- self.file.write(text)
85
-
86
- self.stdout.write(text)
87
-
88
- if self.should_flush:
89
- self.flush()
90
-
91
- def flush(self) -> None:
92
- """Flush written text to both stdout and a file, if open."""
93
- if self.file is not None:
94
- self.file.flush()
95
-
96
- self.stdout.flush()
97
-
98
- def close(self) -> None:
99
- """Flush, close possible files, and remove stdout/stderr mirroring."""
100
- self.flush()
101
-
102
- # if using multiple loggers, prevent closing in wrong order
103
- if sys.stdout is self:
104
- sys.stdout = self.stdout
105
- if sys.stderr is self:
106
- sys.stderr = self.stderr
107
-
108
- if self.file is not None:
109
- self.file.close()
110
-
111
-
112
- # Cache directories
113
- # ------------------------------------------------------------------------------------------
114
-
115
- _dnnlib_cache_dir = None
116
-
117
- def set_cache_dir(path: str) -> None:
118
- global _dnnlib_cache_dir
119
- _dnnlib_cache_dir = path
120
-
121
- def make_cache_dir_path(*paths: str) -> str:
122
- if _dnnlib_cache_dir is not None:
123
- return os.path.join(_dnnlib_cache_dir, *paths)
124
- if 'DNNLIB_CACHE_DIR' in os.environ:
125
- return os.path.join(os.environ['DNNLIB_CACHE_DIR'], *paths)
126
- if 'HOME' in os.environ:
127
- return os.path.join(os.environ['HOME'], '.cache', 'dnnlib', *paths)
128
- if 'USERPROFILE' in os.environ:
129
- return os.path.join(os.environ['USERPROFILE'], '.cache', 'dnnlib', *paths)
130
- return os.path.join(tempfile.gettempdir(), '.cache', 'dnnlib', *paths)
131
-
132
- # Small util functions
133
- # ------------------------------------------------------------------------------------------
134
-
135
-
136
- def format_time(seconds: Union[int, float]) -> str:
137
- """Convert the seconds to human readable string with days, hours, minutes and seconds."""
138
- s = int(np.rint(seconds))
139
-
140
- if s < 60:
141
- return "{0}s".format(s)
142
- elif s < 60 * 60:
143
- return "{0}m {1:02}s".format(s // 60, s % 60)
144
- elif s < 24 * 60 * 60:
145
- return "{0}h {1:02}m {2:02}s".format(s // (60 * 60), (s // 60) % 60, s % 60)
146
- else:
147
- return "{0}d {1:02}h {2:02}m".format(s // (24 * 60 * 60), (s // (60 * 60)) % 24, (s // 60) % 60)
148
-
149
-
150
- def ask_yes_no(question: str) -> bool:
151
- """Ask the user the question until the user inputs a valid answer."""
152
- while True:
153
- try:
154
- print("{0} [y/n]".format(question))
155
- return strtobool(input().lower())
156
- except ValueError:
157
- pass
158
-
159
-
160
- def tuple_product(t: Tuple) -> Any:
161
- """Calculate the product of the tuple elements."""
162
- result = 1
163
-
164
- for v in t:
165
- result *= v
166
-
167
- return result
168
-
169
-
170
- _str_to_ctype = {
171
- "uint8": ctypes.c_ubyte,
172
- "uint16": ctypes.c_uint16,
173
- "uint32": ctypes.c_uint32,
174
- "uint64": ctypes.c_uint64,
175
- "int8": ctypes.c_byte,
176
- "int16": ctypes.c_int16,
177
- "int32": ctypes.c_int32,
178
- "int64": ctypes.c_int64,
179
- "float32": ctypes.c_float,
180
- "float64": ctypes.c_double
181
- }
182
-
183
-
184
- def get_dtype_and_ctype(type_obj: Any) -> Tuple[np.dtype, Any]:
185
- """Given a type name string (or an object having a __name__ attribute), return matching Numpy and ctypes types that have the same size in bytes."""
186
- type_str = None
187
-
188
- if isinstance(type_obj, str):
189
- type_str = type_obj
190
- elif hasattr(type_obj, "__name__"):
191
- type_str = type_obj.__name__
192
- elif hasattr(type_obj, "name"):
193
- type_str = type_obj.name
194
- else:
195
- raise RuntimeError("Cannot infer type name from input")
196
-
197
- assert type_str in _str_to_ctype.keys()
198
-
199
- my_dtype = np.dtype(type_str)
200
- my_ctype = _str_to_ctype[type_str]
201
-
202
- assert my_dtype.itemsize == ctypes.sizeof(my_ctype)
203
-
204
- return my_dtype, my_ctype
205
-
206
-
207
- def is_pickleable(obj: Any) -> bool:
208
- try:
209
- with io.BytesIO() as stream:
210
- pickle.dump(obj, stream)
211
- return True
212
- except:
213
- return False
214
-
215
-
216
- # Functionality to import modules/objects by name, and call functions by name
217
- # ------------------------------------------------------------------------------------------
218
-
219
- def get_module_from_obj_name(obj_name: str) -> Tuple[types.ModuleType, str]:
220
- """Searches for the underlying module behind the name to some python object.
221
- Returns the module and the object name (original name with module part removed)."""
222
-
223
- # allow convenience shorthands, substitute them by full names
224
- obj_name = re.sub("^np.", "numpy.", obj_name)
225
- obj_name = re.sub("^tf.", "tensorflow.", obj_name)
226
-
227
- # list alternatives for (module_name, local_obj_name)
228
- parts = obj_name.split(".")
229
- name_pairs = [(".".join(parts[:i]), ".".join(parts[i:])) for i in range(len(parts), 0, -1)]
230
-
231
- # try each alternative in turn
232
- for module_name, local_obj_name in name_pairs:
233
- try:
234
- module = importlib.import_module(module_name) # may raise ImportError
235
- get_obj_from_module(module, local_obj_name) # may raise AttributeError
236
- return module, local_obj_name
237
- except:
238
- pass
239
-
240
- # maybe some of the modules themselves contain errors?
241
- for module_name, _local_obj_name in name_pairs:
242
- try:
243
- importlib.import_module(module_name) # may raise ImportError
244
- except ImportError:
245
- if not str(sys.exc_info()[1]).startswith("No module named '" + module_name + "'"):
246
- raise
247
-
248
- # maybe the requested attribute is missing?
249
- for module_name, local_obj_name in name_pairs:
250
- try:
251
- module = importlib.import_module(module_name) # may raise ImportError
252
- get_obj_from_module(module, local_obj_name) # may raise AttributeError
253
- except ImportError:
254
- pass
255
-
256
- # we are out of luck, but we have no idea why
257
- raise ImportError(obj_name)
258
-
259
-
260
- def get_obj_from_module(module: types.ModuleType, obj_name: str) -> Any:
261
- """Traverses the object name and returns the last (rightmost) python object."""
262
- if obj_name == '':
263
- return module
264
- obj = module
265
- for part in obj_name.split("."):
266
- obj = getattr(obj, part)
267
- return obj
268
-
269
-
270
- def get_obj_by_name(name: str) -> Any:
271
- """Finds the python object with the given name."""
272
- module, obj_name = get_module_from_obj_name(name)
273
- return get_obj_from_module(module, obj_name)
274
-
275
-
276
- def call_func_by_name(*args, func_name: str = None, **kwargs) -> Any:
277
- """Finds the python object with the given name and calls it as a function."""
278
- assert func_name is not None
279
- func_obj = get_obj_by_name(func_name)
280
- assert callable(func_obj)
281
- return func_obj(*args, **kwargs)
282
-
283
-
284
- def construct_class_by_name(*args, class_name: str = None, **kwargs) -> Any:
285
- """Finds the python class with the given name and constructs it with the given arguments."""
286
- return call_func_by_name(*args, func_name=class_name, **kwargs)
287
-
288
-
289
- def get_module_dir_by_obj_name(obj_name: str) -> str:
290
- """Get the directory path of the module containing the given object name."""
291
- module, _ = get_module_from_obj_name(obj_name)
292
- return os.path.dirname(inspect.getfile(module))
293
-
294
-
295
- def is_top_level_function(obj: Any) -> bool:
296
- """Determine whether the given object is a top-level function, i.e., defined at module scope using 'def'."""
297
- return callable(obj) and obj.__name__ in sys.modules[obj.__module__].__dict__
298
-
299
-
300
- def get_top_level_function_name(obj: Any) -> str:
301
- """Return the fully-qualified name of a top-level function."""
302
- assert is_top_level_function(obj)
303
- module = obj.__module__
304
- if module == '__main__':
305
- module = os.path.splitext(os.path.basename(sys.modules[module].__file__))[0]
306
- return module + "." + obj.__name__
307
-
308
-
309
- # File system helpers
310
- # ------------------------------------------------------------------------------------------
311
-
312
- def list_dir_recursively_with_ignore(dir_path: str, ignores: List[str] = None, add_base_to_relative: bool = False) -> List[Tuple[str, str]]:
313
- """List all files recursively in a given directory while ignoring given file and directory names.
314
- Returns list of tuples containing both absolute and relative paths."""
315
- assert os.path.isdir(dir_path)
316
- base_name = os.path.basename(os.path.normpath(dir_path))
317
-
318
- if ignores is None:
319
- ignores = []
320
-
321
- result = []
322
-
323
- for root, dirs, files in os.walk(dir_path, topdown=True):
324
- for ignore_ in ignores:
325
- dirs_to_remove = [d for d in dirs if fnmatch.fnmatch(d, ignore_)]
326
-
327
- # dirs need to be edited in-place
328
- for d in dirs_to_remove:
329
- dirs.remove(d)
330
-
331
- files = [f for f in files if not fnmatch.fnmatch(f, ignore_)]
332
-
333
- absolute_paths = [os.path.join(root, f) for f in files]
334
- relative_paths = [os.path.relpath(p, dir_path) for p in absolute_paths]
335
-
336
- if add_base_to_relative:
337
- relative_paths = [os.path.join(base_name, p) for p in relative_paths]
338
-
339
- assert len(absolute_paths) == len(relative_paths)
340
- result += zip(absolute_paths, relative_paths)
341
-
342
- return result
343
-
344
-
345
- def copy_files_and_create_dirs(files: List[Tuple[str, str]]) -> None:
346
- """Takes in a list of tuples of (src, dst) paths and copies files.
347
- Will create all necessary directories."""
348
- for file in files:
349
- target_dir_name = os.path.dirname(file[1])
350
-
351
- # will create all intermediate-level directories
352
- if not os.path.exists(target_dir_name):
353
- os.makedirs(target_dir_name)
354
-
355
- shutil.copyfile(file[0], file[1])
356
-
357
-
358
- # URL helpers
359
- # ------------------------------------------------------------------------------------------
360
-
361
- def is_url(obj: Any, allow_file_urls: bool = False) -> bool:
362
- """Determine whether the given object is a valid URL string."""
363
- if not isinstance(obj, str) or not "://" in obj:
364
- return False
365
- if allow_file_urls and obj.startswith('file://'):
366
- return True
367
- try:
368
- res = requests.compat.urlparse(obj)
369
- if not res.scheme or not res.netloc or not "." in res.netloc:
370
- return False
371
- res = requests.compat.urlparse(requests.compat.urljoin(obj, "/"))
372
- if not res.scheme or not res.netloc or not "." in res.netloc:
373
- return False
374
- except:
375
- return False
376
- return True
377
-
378
-
379
- def open_url(url: str, cache_dir: str = None, num_attempts: int = 10, verbose: bool = True, return_filename: bool = False, cache: bool = True) -> Any:
380
- """Download the given URL and return a binary-mode file object to access the data."""
381
- assert num_attempts >= 1
382
- assert not (return_filename and (not cache))
383
-
384
- # Doesn't look like an URL scheme so interpret it as a local filename.
385
- if not re.match('^[a-z]+://', url):
386
- return url if return_filename else open(url, "rb")
387
-
388
- # Handle file URLs. This code handles unusual file:// patterns that
389
- # arise on Windows:
390
- #
391
- # file:///c:/foo.txt
392
- #
393
- # which would translate to a local '/c:/foo.txt' filename that's
394
- # invalid. Drop the forward slash for such pathnames.
395
- #
396
- # If you touch this code path, you should test it on both Linux and
397
- # Windows.
398
- #
399
- # Some internet resources suggest using urllib.request.url2pathname() but
400
- # but that converts forward slashes to backslashes and this causes
401
- # its own set of problems.
402
- if url.startswith('file://'):
403
- filename = urllib.parse.urlparse(url).path
404
- if re.match(r'^/[a-zA-Z]:', filename):
405
- filename = filename[1:]
406
- return filename if return_filename else open(filename, "rb")
407
-
408
- assert is_url(url)
409
-
410
- # Lookup from cache.
411
- if cache_dir is None:
412
- cache_dir = make_cache_dir_path('downloads')
413
-
414
- url_md5 = hashlib.md5(url.encode("utf-8")).hexdigest()
415
- if cache:
416
- cache_files = glob.glob(os.path.join(cache_dir, url_md5 + "_*"))
417
- if len(cache_files) == 1:
418
- filename = cache_files[0]
419
- return filename if return_filename else open(filename, "rb")
420
-
421
- # Download.
422
- url_name = None
423
- url_data = None
424
- with requests.Session() as session:
425
- if verbose:
426
- print("Downloading %s ..." % url, end="", flush=True)
427
- for attempts_left in reversed(range(num_attempts)):
428
- try:
429
- with session.get(url) as res:
430
- res.raise_for_status()
431
- if len(res.content) == 0:
432
- raise IOError("No data received")
433
-
434
- if len(res.content) < 8192:
435
- content_str = res.content.decode("utf-8")
436
- if "download_warning" in res.headers.get("Set-Cookie", ""):
437
- links = [html.unescape(link) for link in content_str.split('"') if "export=download" in link]
438
- if len(links) == 1:
439
- url = requests.compat.urljoin(url, links[0])
440
- raise IOError("Google Drive virus checker nag")
441
- if "Google Drive - Quota exceeded" in content_str:
442
- raise IOError("Google Drive download quota exceeded -- please try again later")
443
-
444
- match = re.search(r'filename="([^"]*)"', res.headers.get("Content-Disposition", ""))
445
- url_name = match[1] if match else url
446
- url_data = res.content
447
- if verbose:
448
- print(" done")
449
- break
450
- except:
451
- if not attempts_left:
452
- if verbose:
453
- print(" failed")
454
- raise
455
- if verbose:
456
- print(".", end="", flush=True)
457
-
458
- # Save to cache.
459
- if cache:
460
- safe_name = re.sub(r"[^0-9a-zA-Z-._]", "_", url_name)
461
- cache_file = os.path.join(cache_dir, url_md5 + "_" + safe_name)
462
- temp_file = os.path.join(cache_dir, "tmp_" + uuid.uuid4().hex + "_" + url_md5 + "_" + safe_name)
463
- os.makedirs(cache_dir, exist_ok=True)
464
- with open(temp_file, "wb") as f:
465
- f.write(url_data)
466
- os.replace(temp_file, cache_file) # atomic
467
- if return_filename:
468
- return cache_file
469
-
470
- # Return data as file object.
471
- assert not return_filename
472
- return io.BytesIO(url_data)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
spaces/Amrrs/fashion-aggregator-duplicated/app.py DELETED
@@ -1,217 +0,0 @@
1
- """Provide a text query describing what you are looking for and get back out images with links!"""
2
- """This has been duplicated to show the new duplication feature demo"""
3
- import argparse
4
- import logging
5
- import os
6
- import wandb
7
- import gradio as gr
8
-
9
- import zipfile
10
- import pickle
11
- from pathlib import Path
12
- from typing import List, Any, Dict
13
- from PIL import Image
14
- from pathlib import Path
15
-
16
- from transformers import AutoTokenizer
17
- from sentence_transformers import SentenceTransformer, util
18
- from multilingual_clip import pt_multilingual_clip
19
- import torch
20
-
21
- from pathlib import Path
22
- from typing import Callable, Dict, List, Tuple
23
- from PIL.Image import Image
24
-
25
- print(__file__)
26
-
27
- os.environ["CUDA_VISIBLE_DEVICES"] = "" # do not use GPU
28
-
29
- logging.basicConfig(level=logging.INFO)
30
- DEFAULT_APPLICATION_NAME = "fashion-aggregator"
31
-
32
- APP_DIR = Path(__file__).resolve().parent # what is the directory for this application?
33
- FAVICON = APP_DIR / "t-shirt_1f455.png" # path to a small image for display in browser tab and social media
34
- README = APP_DIR / "README.md" # path to an app readme file in HTML/markdown
35
-
36
- DEFAULT_PORT = 11700
37
-
38
- EMBEDDINGS_DIR = "artifacts/img-embeddings"
39
- EMBEDDINGS_FILE = os.path.join(EMBEDDINGS_DIR, "embeddings.pkl")
40
- RAW_PHOTOS_DIR = "artifacts/raw-photos"
41
-
42
- # Download image embeddings and raw photos
43
- wandb.login(key="4b5a23a662b20fdd61f2aeb5032cf56fdce278a4") # os.getenv('wandb')
44
- api = wandb.Api()
45
- artifact_embeddings = api.artifact("ryparmar/fashion-aggregator/unimoda-images:v1")
46
- artifact_embeddings.download(EMBEDDINGS_DIR)
47
- artifact_raw_photos = api.artifact("ryparmar/fashion-aggregator/unimoda-raw-images:v1")
48
- artifact_raw_photos.download("artifacts")
49
-
50
- with zipfile.ZipFile("artifacts/unimoda.zip", 'r') as zip_ref:
51
- zip_ref.extractall(RAW_PHOTOS_DIR)
52
-
53
-
54
- class TextEncoder:
55
- """Encodes the given text"""
56
-
57
- def __init__(self, model_path="M-CLIP/XLM-Roberta-Large-Vit-B-32"):
58
- self.model = pt_multilingual_clip.MultilingualCLIP.from_pretrained(model_path)
59
- self.tokenizer = AutoTokenizer.from_pretrained(model_path)
60
-
61
- @torch.no_grad()
62
- def encode(self, query: str) -> torch.Tensor:
63
- """Predict/infer text embedding for a given query."""
64
- query_emb = self.model.forward([query], self.tokenizer)
65
- return query_emb
66
-
67
-
68
- class ImageEnoder:
69
- """Encodes the given image"""
70
-
71
- def __init__(self, model_path="clip-ViT-B-32"):
72
- self.model = SentenceTransformer(model_path)
73
-
74
- @torch.no_grad()
75
- def encode(self, image: Image) -> torch.Tensor:
76
- """Predict/infer text embedding for a given query."""
77
- image_emb = self.model.encode([image], convert_to_tensor=True, show_progress_bar=False)
78
- return image_emb
79
-
80
-
81
- class Retriever:
82
- """Retrieves relevant images for a given text embedding."""
83
-
84
- def __init__(self, image_embeddings_path=None):
85
- self.text_encoder = TextEncoder()
86
- self.image_encoder = ImageEnoder()
87
-
88
- with open(image_embeddings_path, "rb") as file:
89
- self.image_names, self.image_embeddings = pickle.load(file)
90
- self.image_names = [
91
- img_name.replace("fashion-aggregator/fashion_aggregator/data/photos/", "")
92
- for img_name in self.image_names
93
- ]
94
- print("Images:", len(self.image_names))
95
-
96
- @torch.no_grad()
97
- def predict(self, text_query: str, k: int = 10) -> List[Any]:
98
- """Return top-k relevant items for a given embedding"""
99
- query_emb = self.text_encoder.encode(text_query)
100
- relevant_images = util.semantic_search(query_emb, self.image_embeddings, top_k=k)[0]
101
- return relevant_images
102
-
103
- @torch.no_grad()
104
- def search_images(self, text_query: str, k: int = 6) -> Dict[str, List[Any]]:
105
- """Return top-k relevant images for a given embedding"""
106
- images = self.predict(text_query, k)
107
- paths_and_scores = {"path": [], "score": []}
108
- for img in images:
109
- paths_and_scores["path"].append(os.path.join(RAW_PHOTOS_DIR, self.image_names[img["corpus_id"]]))
110
- paths_and_scores["score"].append(img["score"])
111
- return paths_and_scores
112
-
113
-
114
- def main(args):
115
- predictor = PredictorBackend(url=args.model_url)
116
- frontend = make_frontend(predictor.run, flagging=args.flagging, gantry=args.gantry, app_name=args.application)
117
- frontend.launch(
118
- # server_name="0.0.0.0", # make server accessible, binding all interfaces # noqa: S104
119
- # server_port=args.port, # set a port to bind to, failing if unavailable
120
- # share=False, # should we create a (temporary) public link on https://gradio.app?
121
- # favicon_path=FAVICON, # what icon should we display in the address bar?
122
- )
123
-
124
-
125
- def make_frontend(
126
- fn: Callable[[Image], str], flagging: bool = False, gantry: bool = False, app_name: str = "fashion-aggregator"
127
- ):
128
- """Creates a gradio.Interface frontend for text to image search function."""
129
-
130
- allow_flagging = "never"
131
-
132
- # build a basic browser interface to a Python function
133
- frontend = gr.Interface(
134
- fn=fn, # which Python function are we interacting with?
135
- outputs=gr.Gallery(label="Relevant Items"),
136
- # what input widgets does it need? we configure an image widget
137
- inputs=gr.components.Textbox(label="Item Description"),
138
- title="📝 Text2Image 👕", # what should we display at the top of the page?
139
- thumbnail=FAVICON, # what should we display when the link is shared, e.g. on social media?
140
- description=__doc__, # what should we display just above the interface?
141
- cache_examples=False, # should we cache those inputs for faster inference? slows down start
142
- allow_flagging=allow_flagging, # should we show users the option to "flag" outputs?
143
- flagging_options=["incorrect", "offensive", "other"], # what options do users have for feedback?
144
- )
145
- return frontend
146
-
147
-
148
- class PredictorBackend:
149
- """Interface to a backend that serves predictions.
150
-
151
- To communicate with a backend accessible via a URL, provide the url kwarg.
152
-
153
- Otherwise, runs a predictor locally.
154
- """
155
-
156
- def __init__(self, url=None):
157
- if url is not None:
158
- self.url = url
159
- self._predict = self._predict_from_endpoint
160
- else:
161
- model = Retriever(image_embeddings_path=EMBEDDINGS_FILE)
162
- self._predict = model.predict
163
- self._search_images = model.search_images
164
-
165
- def run(self, text: str):
166
- pred, metrics = self._predict_with_metrics(text)
167
- self._log_inference(pred, metrics)
168
- return pred
169
-
170
- def _predict_with_metrics(self, text: str) -> Tuple[List[str], Dict[str, float]]:
171
- paths_and_scores = self._search_images(text)
172
- metrics = {"mean_score": sum(paths_and_scores["score"]) / len(paths_and_scores["score"])}
173
- return paths_and_scores["path"], metrics
174
-
175
- def _log_inference(self, pred, metrics):
176
- for key, value in metrics.items():
177
- logging.info(f"METRIC {key} {value}")
178
- logging.info(f"PRED >begin\n{pred}\nPRED >end")
179
-
180
-
181
- def _make_parser():
182
- parser = argparse.ArgumentParser(description=__doc__)
183
- parser.add_argument(
184
- "--model_url",
185
- default=None,
186
- type=str,
187
- help="Identifies a URL to which to send image data. Data is base64-encoded, converted to a utf-8 string, and then set via a POST request as JSON with the key 'image'. Default is None, which instead sends the data to a model running locally.",
188
- )
189
- parser.add_argument(
190
- "--port",
191
- default=DEFAULT_PORT,
192
- type=int,
193
- help=f"Port on which to expose this server. Default is {DEFAULT_PORT}.",
194
- )
195
- parser.add_argument(
196
- "--flagging",
197
- action="store_true",
198
- help="Pass this flag to allow users to 'flag' model behavior and provide feedback.",
199
- )
200
- parser.add_argument(
201
- "--gantry",
202
- action="store_true",
203
- help="Pass --flagging and this flag to log user feedback to Gantry. Requires GANTRY_API_KEY to be defined as an environment variable.",
204
- )
205
- parser.add_argument(
206
- "--application",
207
- default=DEFAULT_APPLICATION_NAME,
208
- type=str,
209
- help=f"Name of the Gantry application to which feedback should be logged, if --gantry and --flagging are passed. Default is {DEFAULT_APPLICATION_NAME}.",
210
- )
211
- return parser
212
-
213
-
214
- if __name__ == "__main__":
215
- parser = _make_parser()
216
- args = parser.parse_args()
217
- main(args)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
spaces/Androidonnxfork/CivitAi-to-Diffusers/diffusers/tests/pipelines/stable_diffusion/test_stable_diffusion_inpaint.py DELETED
@@ -1,1398 +0,0 @@
1
- # coding=utf-8
2
- # Copyright 2023 HuggingFace Inc.
3
- #
4
- # Licensed under the Apache License, Version 2.0 (the "License");
5
- # you may not use this file except in compliance with the License.
6
- # You may obtain a copy of the License at
7
- #
8
- # http://www.apache.org/licenses/LICENSE-2.0
9
- #
10
- # Unless required by applicable law or agreed to in writing, software
11
- # distributed under the License is distributed on an "AS IS" BASIS,
12
- # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13
- # See the License for the specific language governing permissions and
14
- # limitations under the License.
15
-
16
- import gc
17
- import random
18
- import traceback
19
- import unittest
20
-
21
- import numpy as np
22
- import torch
23
- from huggingface_hub import hf_hub_download
24
- from PIL import Image
25
- from transformers import CLIPTextConfig, CLIPTextModel, CLIPTokenizer
26
-
27
- from diffusers import (
28
- AsymmetricAutoencoderKL,
29
- AutoencoderKL,
30
- DDIMScheduler,
31
- DPMSolverMultistepScheduler,
32
- LMSDiscreteScheduler,
33
- PNDMScheduler,
34
- StableDiffusionInpaintPipeline,
35
- UNet2DConditionModel,
36
- )
37
- from diffusers.models.attention_processor import AttnProcessor
38
- from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion_inpaint import prepare_mask_and_masked_image
39
- from diffusers.utils import floats_tensor, load_image, load_numpy, nightly, slow, torch_device
40
- from diffusers.utils.testing_utils import (
41
- enable_full_determinism,
42
- require_torch_2,
43
- require_torch_gpu,
44
- run_test_in_subprocess,
45
- )
46
-
47
- from ...models.test_models_unet_2d_condition import create_lora_layers
48
- from ..pipeline_params import TEXT_GUIDED_IMAGE_INPAINTING_BATCH_PARAMS, TEXT_GUIDED_IMAGE_INPAINTING_PARAMS
49
- from ..test_pipelines_common import PipelineKarrasSchedulerTesterMixin, PipelineLatentTesterMixin, PipelineTesterMixin
50
-
51
-
52
- enable_full_determinism()
53
-
54
-
55
- # Will be run via run_test_in_subprocess
56
- def _test_inpaint_compile(in_queue, out_queue, timeout):
57
- error = None
58
- try:
59
- inputs = in_queue.get(timeout=timeout)
60
- torch_device = inputs.pop("torch_device")
61
- seed = inputs.pop("seed")
62
- inputs["generator"] = torch.Generator(device=torch_device).manual_seed(seed)
63
-
64
- pipe = StableDiffusionInpaintPipeline.from_pretrained(
65
- "runwayml/stable-diffusion-inpainting", safety_checker=None
66
- )
67
- pipe.scheduler = PNDMScheduler.from_config(pipe.scheduler.config)
68
- pipe.to(torch_device)
69
- pipe.set_progress_bar_config(disable=None)
70
-
71
- pipe.unet.to(memory_format=torch.channels_last)
72
- pipe.unet = torch.compile(pipe.unet, mode="reduce-overhead", fullgraph=True)
73
-
74
- image = pipe(**inputs).images
75
- image_slice = image[0, 253:256, 253:256, -1].flatten()
76
-
77
- assert image.shape == (1, 512, 512, 3)
78
- expected_slice = np.array([0.0425, 0.0273, 0.0344, 0.1694, 0.1727, 0.1812, 0.3256, 0.3311, 0.3272])
79
-
80
- assert np.abs(expected_slice - image_slice).max() < 3e-3
81
- except Exception:
82
- error = f"{traceback.format_exc()}"
83
-
84
- results = {"error": error}
85
- out_queue.put(results, timeout=timeout)
86
- out_queue.join()
87
-
88
-
89
- class StableDiffusionInpaintPipelineFastTests(
90
- PipelineLatentTesterMixin, PipelineKarrasSchedulerTesterMixin, PipelineTesterMixin, unittest.TestCase
91
- ):
92
- pipeline_class = StableDiffusionInpaintPipeline
93
- params = TEXT_GUIDED_IMAGE_INPAINTING_PARAMS
94
- batch_params = TEXT_GUIDED_IMAGE_INPAINTING_BATCH_PARAMS
95
- image_params = frozenset([])
96
- # TO-DO: update image_params once pipeline is refactored with VaeImageProcessor.preprocess
97
- image_latents_params = frozenset([])
98
-
99
- def get_dummy_components(self):
100
- torch.manual_seed(0)
101
- unet = UNet2DConditionModel(
102
- block_out_channels=(32, 64),
103
- layers_per_block=2,
104
- sample_size=32,
105
- in_channels=9,
106
- out_channels=4,
107
- down_block_types=("DownBlock2D", "CrossAttnDownBlock2D"),
108
- up_block_types=("CrossAttnUpBlock2D", "UpBlock2D"),
109
- cross_attention_dim=32,
110
- )
111
- scheduler = PNDMScheduler(skip_prk_steps=True)
112
- torch.manual_seed(0)
113
- vae = AutoencoderKL(
114
- block_out_channels=[32, 64],
115
- in_channels=3,
116
- out_channels=3,
117
- down_block_types=["DownEncoderBlock2D", "DownEncoderBlock2D"],
118
- up_block_types=["UpDecoderBlock2D", "UpDecoderBlock2D"],
119
- latent_channels=4,
120
- )
121
- torch.manual_seed(0)
122
- text_encoder_config = CLIPTextConfig(
123
- bos_token_id=0,
124
- eos_token_id=2,
125
- hidden_size=32,
126
- intermediate_size=37,
127
- layer_norm_eps=1e-05,
128
- num_attention_heads=4,
129
- num_hidden_layers=5,
130
- pad_token_id=1,
131
- vocab_size=1000,
132
- )
133
- text_encoder = CLIPTextModel(text_encoder_config)
134
- tokenizer = CLIPTokenizer.from_pretrained("hf-internal-testing/tiny-random-clip")
135
-
136
- components = {
137
- "unet": unet,
138
- "scheduler": scheduler,
139
- "vae": vae,
140
- "text_encoder": text_encoder,
141
- "tokenizer": tokenizer,
142
- "safety_checker": None,
143
- "feature_extractor": None,
144
- }
145
- return components
146
-
147
- def get_dummy_inputs(self, device, seed=0):
148
- # TODO: use tensor inputs instead of PIL, this is here just to leave the old expected_slices untouched
149
- image = floats_tensor((1, 3, 32, 32), rng=random.Random(seed)).to(device)
150
- image = image.cpu().permute(0, 2, 3, 1)[0]
151
- init_image = Image.fromarray(np.uint8(image)).convert("RGB").resize((64, 64))
152
- mask_image = Image.fromarray(np.uint8(image + 4)).convert("RGB").resize((64, 64))
153
- if str(device).startswith("mps"):
154
- generator = torch.manual_seed(seed)
155
- else:
156
- generator = torch.Generator(device=device).manual_seed(seed)
157
- inputs = {
158
- "prompt": "A painting of a squirrel eating a burger",
159
- "image": init_image,
160
- "mask_image": mask_image,
161
- "generator": generator,
162
- "num_inference_steps": 2,
163
- "guidance_scale": 6.0,
164
- "output_type": "numpy",
165
- }
166
- return inputs
167
-
168
- def test_stable_diffusion_inpaint(self):
169
- device = "cpu" # ensure determinism for the device-dependent torch.Generator
170
- components = self.get_dummy_components()
171
- sd_pipe = StableDiffusionInpaintPipeline(**components)
172
- sd_pipe = sd_pipe.to(device)
173
- sd_pipe.set_progress_bar_config(disable=None)
174
-
175
- inputs = self.get_dummy_inputs(device)
176
- image = sd_pipe(**inputs).images
177
- image_slice = image[0, -3:, -3:, -1]
178
-
179
- assert image.shape == (1, 64, 64, 3)
180
- expected_slice = np.array([0.4723, 0.5731, 0.3939, 0.5441, 0.5922, 0.4392, 0.5059, 0.4651, 0.4474])
181
-
182
- assert np.abs(image_slice.flatten() - expected_slice).max() < 1e-2
183
-
184
- def test_stable_diffusion_inpaint_image_tensor(self):
185
- device = "cpu" # ensure determinism for the device-dependent torch.Generator
186
- components = self.get_dummy_components()
187
- sd_pipe = StableDiffusionInpaintPipeline(**components)
188
- sd_pipe = sd_pipe.to(device)
189
- sd_pipe.set_progress_bar_config(disable=None)
190
-
191
- inputs = self.get_dummy_inputs(device)
192
- output = sd_pipe(**inputs)
193
- out_pil = output.images
194
-
195
- inputs = self.get_dummy_inputs(device)
196
- inputs["image"] = torch.tensor(np.array(inputs["image"]) / 127.5 - 1).permute(2, 0, 1).unsqueeze(0)
197
- inputs["mask_image"] = torch.tensor(np.array(inputs["mask_image"]) / 255).permute(2, 0, 1)[:1].unsqueeze(0)
198
- output = sd_pipe(**inputs)
199
- out_tensor = output.images
200
-
201
- assert out_pil.shape == (1, 64, 64, 3)
202
- assert np.abs(out_pil.flatten() - out_tensor.flatten()).max() < 5e-2
203
-
204
- def test_stable_diffusion_inpaint_lora(self):
205
- device = "cpu" # ensure determinism for the device-dependent torch.Generator
206
-
207
- components = self.get_dummy_components()
208
- sd_pipe = StableDiffusionInpaintPipeline(**components)
209
- sd_pipe = sd_pipe.to(torch_device)
210
- sd_pipe.set_progress_bar_config(disable=None)
211
-
212
- # forward 1
213
- inputs = self.get_dummy_inputs(device)
214
- output = sd_pipe(**inputs)
215
- image = output.images
216
- image_slice = image[0, -3:, -3:, -1]
217
-
218
- # set lora layers
219
- lora_attn_procs = create_lora_layers(sd_pipe.unet)
220
- sd_pipe.unet.set_attn_processor(lora_attn_procs)
221
- sd_pipe = sd_pipe.to(torch_device)
222
-
223
- # forward 2
224
- inputs = self.get_dummy_inputs(device)
225
- output = sd_pipe(**inputs, cross_attention_kwargs={"scale": 0.0})
226
- image = output.images
227
- image_slice_1 = image[0, -3:, -3:, -1]
228
-
229
- # forward 3
230
- inputs = self.get_dummy_inputs(device)
231
- output = sd_pipe(**inputs, cross_attention_kwargs={"scale": 0.5})
232
- image = output.images
233
- image_slice_2 = image[0, -3:, -3:, -1]
234
-
235
- assert np.abs(image_slice - image_slice_1).max() < 1e-2
236
- assert np.abs(image_slice - image_slice_2).max() > 1e-2
237
-
238
- def test_inference_batch_single_identical(self):
239
- super().test_inference_batch_single_identical(expected_max_diff=3e-3)
240
-
241
- def test_stable_diffusion_inpaint_strength_zero_test(self):
242
- device = "cpu" # ensure determinism for the device-dependent torch.Generator
243
- components = self.get_dummy_components()
244
- sd_pipe = StableDiffusionInpaintPipeline(**components)
245
- sd_pipe = sd_pipe.to(device)
246
- sd_pipe.set_progress_bar_config(disable=None)
247
-
248
- inputs = self.get_dummy_inputs(device)
249
-
250
- # check that the pipeline raises value error when num_inference_steps is < 1
251
- inputs["strength"] = 0.01
252
- with self.assertRaises(ValueError):
253
- sd_pipe(**inputs).images
254
-
255
-
256
- class StableDiffusionSimpleInpaintPipelineFastTests(StableDiffusionInpaintPipelineFastTests):
257
- pipeline_class = StableDiffusionInpaintPipeline
258
- params = TEXT_GUIDED_IMAGE_INPAINTING_PARAMS
259
- batch_params = TEXT_GUIDED_IMAGE_INPAINTING_BATCH_PARAMS
260
- image_params = frozenset([])
261
- # TO-DO: update image_params once pipeline is refactored with VaeImageProcessor.preprocess
262
-
263
- def get_dummy_components(self):
264
- torch.manual_seed(0)
265
- unet = UNet2DConditionModel(
266
- block_out_channels=(32, 64),
267
- layers_per_block=2,
268
- sample_size=32,
269
- in_channels=4,
270
- out_channels=4,
271
- down_block_types=("DownBlock2D", "CrossAttnDownBlock2D"),
272
- up_block_types=("CrossAttnUpBlock2D", "UpBlock2D"),
273
- cross_attention_dim=32,
274
- )
275
- scheduler = PNDMScheduler(skip_prk_steps=True)
276
- torch.manual_seed(0)
277
- vae = AutoencoderKL(
278
- block_out_channels=[32, 64],
279
- in_channels=3,
280
- out_channels=3,
281
- down_block_types=["DownEncoderBlock2D", "DownEncoderBlock2D"],
282
- up_block_types=["UpDecoderBlock2D", "UpDecoderBlock2D"],
283
- latent_channels=4,
284
- )
285
- torch.manual_seed(0)
286
- text_encoder_config = CLIPTextConfig(
287
- bos_token_id=0,
288
- eos_token_id=2,
289
- hidden_size=32,
290
- intermediate_size=37,
291
- layer_norm_eps=1e-05,
292
- num_attention_heads=4,
293
- num_hidden_layers=5,
294
- pad_token_id=1,
295
- vocab_size=1000,
296
- )
297
- text_encoder = CLIPTextModel(text_encoder_config)
298
- tokenizer = CLIPTokenizer.from_pretrained("hf-internal-testing/tiny-random-clip")
299
-
300
- components = {
301
- "unet": unet,
302
- "scheduler": scheduler,
303
- "vae": vae,
304
- "text_encoder": text_encoder,
305
- "tokenizer": tokenizer,
306
- "safety_checker": None,
307
- "feature_extractor": None,
308
- }
309
- return components
310
-
311
- def test_stable_diffusion_inpaint(self):
312
- device = "cpu" # ensure determinism for the device-dependent torch.Generator
313
- components = self.get_dummy_components()
314
- sd_pipe = StableDiffusionInpaintPipeline(**components)
315
- sd_pipe = sd_pipe.to(device)
316
- sd_pipe.set_progress_bar_config(disable=None)
317
-
318
- inputs = self.get_dummy_inputs(device)
319
- image = sd_pipe(**inputs).images
320
- image_slice = image[0, -3:, -3:, -1]
321
-
322
- assert image.shape == (1, 64, 64, 3)
323
- expected_slice = np.array([0.4925, 0.4967, 0.4100, 0.5234, 0.5322, 0.4532, 0.5805, 0.5877, 0.4151])
324
-
325
- assert np.abs(image_slice.flatten() - expected_slice).max() < 1e-2
326
-
327
- @unittest.skip("skipped here because area stays unchanged due to mask")
328
- def test_stable_diffusion_inpaint_lora(self):
329
- ...
330
-
331
-
332
- @slow
333
- @require_torch_gpu
334
- class StableDiffusionInpaintPipelineSlowTests(unittest.TestCase):
335
- def setUp(self):
336
- super().setUp()
337
-
338
- def tearDown(self):
339
- super().tearDown()
340
- gc.collect()
341
- torch.cuda.empty_cache()
342
-
343
- def get_inputs(self, device, generator_device="cpu", dtype=torch.float32, seed=0):
344
- generator = torch.Generator(device=generator_device).manual_seed(seed)
345
- init_image = load_image(
346
- "https://huggingface.co/datasets/diffusers/test-arrays/resolve/main"
347
- "/stable_diffusion_inpaint/input_bench_image.png"
348
- )
349
- mask_image = load_image(
350
- "https://huggingface.co/datasets/diffusers/test-arrays/resolve/main"
351
- "/stable_diffusion_inpaint/input_bench_mask.png"
352
- )
353
- inputs = {
354
- "prompt": "Face of a yellow cat, high resolution, sitting on a park bench",
355
- "image": init_image,
356
- "mask_image": mask_image,
357
- "generator": generator,
358
- "num_inference_steps": 3,
359
- "guidance_scale": 7.5,
360
- "output_type": "numpy",
361
- }
362
- return inputs
363
-
364
- def test_stable_diffusion_inpaint_ddim(self):
365
- pipe = StableDiffusionInpaintPipeline.from_pretrained(
366
- "runwayml/stable-diffusion-inpainting", safety_checker=None
367
- )
368
- pipe.to(torch_device)
369
- pipe.set_progress_bar_config(disable=None)
370
- pipe.enable_attention_slicing()
371
-
372
- inputs = self.get_inputs(torch_device)
373
- image = pipe(**inputs).images
374
- image_slice = image[0, 253:256, 253:256, -1].flatten()
375
-
376
- assert image.shape == (1, 512, 512, 3)
377
- expected_slice = np.array([0.0427, 0.0460, 0.0483, 0.0460, 0.0584, 0.0521, 0.1549, 0.1695, 0.1794])
378
-
379
- assert np.abs(expected_slice - image_slice).max() < 6e-4
380
-
381
- def test_stable_diffusion_inpaint_fp16(self):
382
- pipe = StableDiffusionInpaintPipeline.from_pretrained(
383
- "runwayml/stable-diffusion-inpainting", torch_dtype=torch.float16, safety_checker=None
384
- )
385
- pipe.to(torch_device)
386
- pipe.set_progress_bar_config(disable=None)
387
- pipe.enable_attention_slicing()
388
-
389
- inputs = self.get_inputs(torch_device, dtype=torch.float16)
390
- image = pipe(**inputs).images
391
- image_slice = image[0, 253:256, 253:256, -1].flatten()
392
-
393
- assert image.shape == (1, 512, 512, 3)
394
- expected_slice = np.array([0.1350, 0.1123, 0.1350, 0.1641, 0.1328, 0.1230, 0.1289, 0.1531, 0.1687])
395
-
396
- assert np.abs(expected_slice - image_slice).max() < 5e-2
397
-
398
- def test_stable_diffusion_inpaint_pndm(self):
399
- pipe = StableDiffusionInpaintPipeline.from_pretrained(
400
- "runwayml/stable-diffusion-inpainting", safety_checker=None
401
- )
402
- pipe.scheduler = PNDMScheduler.from_config(pipe.scheduler.config)
403
- pipe.to(torch_device)
404
- pipe.set_progress_bar_config(disable=None)
405
- pipe.enable_attention_slicing()
406
-
407
- inputs = self.get_inputs(torch_device)
408
- image = pipe(**inputs).images
409
- image_slice = image[0, 253:256, 253:256, -1].flatten()
410
-
411
- assert image.shape == (1, 512, 512, 3)
412
- expected_slice = np.array([0.0425, 0.0273, 0.0344, 0.1694, 0.1727, 0.1812, 0.3256, 0.3311, 0.3272])
413
-
414
- assert np.abs(expected_slice - image_slice).max() < 5e-3
415
-
416
- def test_stable_diffusion_inpaint_k_lms(self):
417
- pipe = StableDiffusionInpaintPipeline.from_pretrained(
418
- "runwayml/stable-diffusion-inpainting", safety_checker=None
419
- )
420
- pipe.scheduler = LMSDiscreteScheduler.from_config(pipe.scheduler.config)
421
- pipe.to(torch_device)
422
- pipe.set_progress_bar_config(disable=None)
423
- pipe.enable_attention_slicing()
424
-
425
- inputs = self.get_inputs(torch_device)
426
- image = pipe(**inputs).images
427
- image_slice = image[0, 253:256, 253:256, -1].flatten()
428
-
429
- assert image.shape == (1, 512, 512, 3)
430
- expected_slice = np.array([0.9314, 0.7575, 0.9432, 0.8885, 0.9028, 0.7298, 0.9811, 0.9667, 0.7633])
431
-
432
- assert np.abs(expected_slice - image_slice).max() < 6e-3
433
-
434
- def test_stable_diffusion_inpaint_with_sequential_cpu_offloading(self):
435
- torch.cuda.empty_cache()
436
- torch.cuda.reset_max_memory_allocated()
437
- torch.cuda.reset_peak_memory_stats()
438
-
439
- pipe = StableDiffusionInpaintPipeline.from_pretrained(
440
- "runwayml/stable-diffusion-inpainting", safety_checker=None, torch_dtype=torch.float16
441
- )
442
- pipe = pipe.to(torch_device)
443
- pipe.set_progress_bar_config(disable=None)
444
- pipe.enable_attention_slicing(1)
445
- pipe.enable_sequential_cpu_offload()
446
-
447
- inputs = self.get_inputs(torch_device, dtype=torch.float16)
448
- _ = pipe(**inputs)
449
-
450
- mem_bytes = torch.cuda.max_memory_allocated()
451
- # make sure that less than 2.2 GB is allocated
452
- assert mem_bytes < 2.2 * 10**9
453
-
454
- @require_torch_2
455
- def test_inpaint_compile(self):
456
- seed = 0
457
- inputs = self.get_inputs(torch_device, seed=seed)
458
- # Can't pickle a Generator object
459
- del inputs["generator"]
460
- inputs["torch_device"] = torch_device
461
- inputs["seed"] = seed
462
- run_test_in_subprocess(test_case=self, target_func=_test_inpaint_compile, inputs=inputs)
463
-
464
- def test_stable_diffusion_inpaint_pil_input_resolution_test(self):
465
- pipe = StableDiffusionInpaintPipeline.from_pretrained(
466
- "runwayml/stable-diffusion-inpainting", safety_checker=None
467
- )
468
- pipe.scheduler = LMSDiscreteScheduler.from_config(pipe.scheduler.config)
469
- pipe.to(torch_device)
470
- pipe.set_progress_bar_config(disable=None)
471
- pipe.enable_attention_slicing()
472
-
473
- inputs = self.get_inputs(torch_device)
474
- # change input image to a random size (one that would cause a tensor mismatch error)
475
- inputs["image"] = inputs["image"].resize((127, 127))
476
- inputs["mask_image"] = inputs["mask_image"].resize((127, 127))
477
- inputs["height"] = 128
478
- inputs["width"] = 128
479
- image = pipe(**inputs).images
480
- # verify that the returned image has the same height and width as the input height and width
481
- assert image.shape == (1, inputs["height"], inputs["width"], 3)
482
-
483
- def test_stable_diffusion_inpaint_strength_test(self):
484
- pipe = StableDiffusionInpaintPipeline.from_pretrained(
485
- "runwayml/stable-diffusion-inpainting", safety_checker=None
486
- )
487
- pipe.scheduler = LMSDiscreteScheduler.from_config(pipe.scheduler.config)
488
- pipe.to(torch_device)
489
- pipe.set_progress_bar_config(disable=None)
490
- pipe.enable_attention_slicing()
491
-
492
- inputs = self.get_inputs(torch_device)
493
- # change input strength
494
- inputs["strength"] = 0.75
495
- image = pipe(**inputs).images
496
- # verify that the returned image has the same height and width as the input height and width
497
- assert image.shape == (1, 512, 512, 3)
498
-
499
- image_slice = image[0, 253:256, 253:256, -1].flatten()
500
- expected_slice = np.array([0.0021, 0.2350, 0.3712, 0.0575, 0.2485, 0.3451, 0.1857, 0.3156, 0.3943])
501
- assert np.abs(expected_slice - image_slice).max() < 3e-3
502
-
503
- def test_stable_diffusion_simple_inpaint_ddim(self):
504
- pipe = StableDiffusionInpaintPipeline.from_pretrained("runwayml/stable-diffusion-v1-5", safety_checker=None)
505
- pipe.to(torch_device)
506
- pipe.set_progress_bar_config(disable=None)
507
- pipe.enable_attention_slicing()
508
-
509
- inputs = self.get_inputs(torch_device)
510
- image = pipe(**inputs).images
511
-
512
- image_slice = image[0, 253:256, 253:256, -1].flatten()
513
-
514
- assert image.shape == (1, 512, 512, 3)
515
- expected_slice = np.array([0.5157, 0.6858, 0.6873, 0.4619, 0.6416, 0.6898, 0.3702, 0.5960, 0.6935])
516
-
517
- assert np.abs(expected_slice - image_slice).max() < 6e-4
518
-
519
- def test_download_local(self):
520
- filename = hf_hub_download("runwayml/stable-diffusion-inpainting", filename="sd-v1-5-inpainting.ckpt")
521
-
522
- pipe = StableDiffusionInpaintPipeline.from_single_file(filename, torch_dtype=torch.float16)
523
- pipe.scheduler = DDIMScheduler.from_config(pipe.scheduler.config)
524
- pipe.to("cuda")
525
-
526
- inputs = self.get_inputs(torch_device)
527
- inputs["num_inference_steps"] = 1
528
- image_out = pipe(**inputs).images[0]
529
-
530
- assert image_out.shape == (512, 512, 3)
531
-
532
- def test_download_ckpt_diff_format_is_same(self):
533
- ckpt_path = "https://huggingface.co/runwayml/stable-diffusion-inpainting/blob/main/sd-v1-5-inpainting.ckpt"
534
-
535
- pipe = StableDiffusionInpaintPipeline.from_single_file(ckpt_path)
536
- pipe.scheduler = DDIMScheduler.from_config(pipe.scheduler.config)
537
- pipe.unet.set_attn_processor(AttnProcessor())
538
- pipe.to("cuda")
539
-
540
- inputs = self.get_inputs(torch_device)
541
- inputs["num_inference_steps"] = 5
542
- image_ckpt = pipe(**inputs).images[0]
543
-
544
- pipe = StableDiffusionInpaintPipeline.from_pretrained("runwayml/stable-diffusion-inpainting")
545
- pipe.scheduler = DDIMScheduler.from_config(pipe.scheduler.config)
546
- pipe.unet.set_attn_processor(AttnProcessor())
547
- pipe.to("cuda")
548
-
549
- inputs = self.get_inputs(torch_device)
550
- inputs["num_inference_steps"] = 5
551
- image = pipe(**inputs).images[0]
552
-
553
- assert np.max(np.abs(image - image_ckpt)) < 1e-4
554
-
555
-
556
- @slow
557
- @require_torch_gpu
558
- class StableDiffusionInpaintPipelineAsymmetricAutoencoderKLSlowTests(unittest.TestCase):
559
- def setUp(self):
560
- super().setUp()
561
-
562
- def tearDown(self):
563
- super().tearDown()
564
- gc.collect()
565
- torch.cuda.empty_cache()
566
-
567
- def get_inputs(self, device, generator_device="cpu", dtype=torch.float32, seed=0):
568
- generator = torch.Generator(device=generator_device).manual_seed(seed)
569
- init_image = load_image(
570
- "https://huggingface.co/datasets/diffusers/test-arrays/resolve/main"
571
- "/stable_diffusion_inpaint/input_bench_image.png"
572
- )
573
- mask_image = load_image(
574
- "https://huggingface.co/datasets/diffusers/test-arrays/resolve/main"
575
- "/stable_diffusion_inpaint/input_bench_mask.png"
576
- )
577
- inputs = {
578
- "prompt": "Face of a yellow cat, high resolution, sitting on a park bench",
579
- "image": init_image,
580
- "mask_image": mask_image,
581
- "generator": generator,
582
- "num_inference_steps": 3,
583
- "guidance_scale": 7.5,
584
- "output_type": "numpy",
585
- }
586
- return inputs
587
-
588
- def test_stable_diffusion_inpaint_ddim(self):
589
- vae = AsymmetricAutoencoderKL.from_pretrained("cross-attention/asymmetric-autoencoder-kl-x-1-5")
590
- pipe = StableDiffusionInpaintPipeline.from_pretrained(
591
- "runwayml/stable-diffusion-inpainting", safety_checker=None
592
- )
593
- pipe.vae = vae
594
- pipe.to(torch_device)
595
- pipe.set_progress_bar_config(disable=None)
596
- pipe.enable_attention_slicing()
597
-
598
- inputs = self.get_inputs(torch_device)
599
- image = pipe(**inputs).images
600
- image_slice = image[0, 253:256, 253:256, -1].flatten()
601
-
602
- assert image.shape == (1, 512, 512, 3)
603
- expected_slice = np.array([0.0521, 0.0606, 0.0602, 0.0446, 0.0495, 0.0434, 0.1175, 0.1290, 0.1431])
604
-
605
- assert np.abs(expected_slice - image_slice).max() < 6e-4
606
-
607
- def test_stable_diffusion_inpaint_fp16(self):
608
- vae = AsymmetricAutoencoderKL.from_pretrained(
609
- "cross-attention/asymmetric-autoencoder-kl-x-1-5", torch_dtype=torch.float16
610
- )
611
- pipe = StableDiffusionInpaintPipeline.from_pretrained(
612
- "runwayml/stable-diffusion-inpainting", torch_dtype=torch.float16, safety_checker=None
613
- )
614
- pipe.vae = vae
615
- pipe.to(torch_device)
616
- pipe.set_progress_bar_config(disable=None)
617
- pipe.enable_attention_slicing()
618
-
619
- inputs = self.get_inputs(torch_device, dtype=torch.float16)
620
- image = pipe(**inputs).images
621
- image_slice = image[0, 253:256, 253:256, -1].flatten()
622
-
623
- assert image.shape == (1, 512, 512, 3)
624
- expected_slice = np.array([0.1343, 0.1406, 0.1440, 0.1504, 0.1729, 0.0989, 0.1807, 0.2822, 0.1179])
625
-
626
- assert np.abs(expected_slice - image_slice).max() < 5e-2
627
-
628
- def test_stable_diffusion_inpaint_pndm(self):
629
- vae = AsymmetricAutoencoderKL.from_pretrained("cross-attention/asymmetric-autoencoder-kl-x-1-5")
630
- pipe = StableDiffusionInpaintPipeline.from_pretrained(
631
- "runwayml/stable-diffusion-inpainting", safety_checker=None
632
- )
633
- pipe.vae = vae
634
- pipe.scheduler = PNDMScheduler.from_config(pipe.scheduler.config)
635
- pipe.to(torch_device)
636
- pipe.set_progress_bar_config(disable=None)
637
- pipe.enable_attention_slicing()
638
-
639
- inputs = self.get_inputs(torch_device)
640
- image = pipe(**inputs).images
641
- image_slice = image[0, 253:256, 253:256, -1].flatten()
642
-
643
- assert image.shape == (1, 512, 512, 3)
644
- expected_slice = np.array([0.0976, 0.1071, 0.1119, 0.1363, 0.1260, 0.1150, 0.3745, 0.3586, 0.3340])
645
-
646
- assert np.abs(expected_slice - image_slice).max() < 5e-3
647
-
648
- def test_stable_diffusion_inpaint_k_lms(self):
649
- vae = AsymmetricAutoencoderKL.from_pretrained("cross-attention/asymmetric-autoencoder-kl-x-1-5")
650
- pipe = StableDiffusionInpaintPipeline.from_pretrained(
651
- "runwayml/stable-diffusion-inpainting", safety_checker=None
652
- )
653
- pipe.vae = vae
654
- pipe.scheduler = LMSDiscreteScheduler.from_config(pipe.scheduler.config)
655
- pipe.to(torch_device)
656
- pipe.set_progress_bar_config(disable=None)
657
- pipe.enable_attention_slicing()
658
-
659
- inputs = self.get_inputs(torch_device)
660
- image = pipe(**inputs).images
661
- image_slice = image[0, 253:256, 253:256, -1].flatten()
662
-
663
- assert image.shape == (1, 512, 512, 3)
664
- expected_slice = np.array([0.8909, 0.8620, 0.9024, 0.8501, 0.8558, 0.9074, 0.8790, 0.7540, 0.9003])
665
-
666
- assert np.abs(expected_slice - image_slice).max() < 6e-3
667
-
668
- def test_stable_diffusion_inpaint_with_sequential_cpu_offloading(self):
669
- torch.cuda.empty_cache()
670
- torch.cuda.reset_max_memory_allocated()
671
- torch.cuda.reset_peak_memory_stats()
672
-
673
- vae = AsymmetricAutoencoderKL.from_pretrained(
674
- "cross-attention/asymmetric-autoencoder-kl-x-1-5", torch_dtype=torch.float16
675
- )
676
- pipe = StableDiffusionInpaintPipeline.from_pretrained(
677
- "runwayml/stable-diffusion-inpainting", safety_checker=None, torch_dtype=torch.float16
678
- )
679
- pipe.vae = vae
680
- pipe = pipe.to(torch_device)
681
- pipe.set_progress_bar_config(disable=None)
682
- pipe.enable_attention_slicing(1)
683
- pipe.enable_sequential_cpu_offload()
684
-
685
- inputs = self.get_inputs(torch_device, dtype=torch.float16)
686
- _ = pipe(**inputs)
687
-
688
- mem_bytes = torch.cuda.max_memory_allocated()
689
- # make sure that less than 2.45 GB is allocated
690
- assert mem_bytes < 2.45 * 10**9
691
-
692
- @require_torch_2
693
- def test_inpaint_compile(self):
694
- pass
695
-
696
- def test_stable_diffusion_inpaint_pil_input_resolution_test(self):
697
- vae = AsymmetricAutoencoderKL.from_pretrained(
698
- "cross-attention/asymmetric-autoencoder-kl-x-1-5",
699
- )
700
- pipe = StableDiffusionInpaintPipeline.from_pretrained(
701
- "runwayml/stable-diffusion-inpainting", safety_checker=None
702
- )
703
- pipe.vae = vae
704
- pipe.scheduler = LMSDiscreteScheduler.from_config(pipe.scheduler.config)
705
- pipe.to(torch_device)
706
- pipe.set_progress_bar_config(disable=None)
707
- pipe.enable_attention_slicing()
708
-
709
- inputs = self.get_inputs(torch_device)
710
- # change input image to a random size (one that would cause a tensor mismatch error)
711
- inputs["image"] = inputs["image"].resize((127, 127))
712
- inputs["mask_image"] = inputs["mask_image"].resize((127, 127))
713
- inputs["height"] = 128
714
- inputs["width"] = 128
715
- image = pipe(**inputs).images
716
- # verify that the returned image has the same height and width as the input height and width
717
- assert image.shape == (1, inputs["height"], inputs["width"], 3)
718
-
719
- def test_stable_diffusion_inpaint_strength_test(self):
720
- vae = AsymmetricAutoencoderKL.from_pretrained("cross-attention/asymmetric-autoencoder-kl-x-1-5")
721
- pipe = StableDiffusionInpaintPipeline.from_pretrained(
722
- "runwayml/stable-diffusion-inpainting", safety_checker=None
723
- )
724
- pipe.vae = vae
725
- pipe.scheduler = LMSDiscreteScheduler.from_config(pipe.scheduler.config)
726
- pipe.to(torch_device)
727
- pipe.set_progress_bar_config(disable=None)
728
- pipe.enable_attention_slicing()
729
-
730
- inputs = self.get_inputs(torch_device)
731
- # change input strength
732
- inputs["strength"] = 0.75
733
- image = pipe(**inputs).images
734
- # verify that the returned image has the same height and width as the input height and width
735
- assert image.shape == (1, 512, 512, 3)
736
-
737
- image_slice = image[0, 253:256, 253:256, -1].flatten()
738
- expected_slice = np.array([0.2458, 0.2576, 0.3124, 0.2679, 0.2669, 0.2796, 0.2872, 0.2975, 0.2661])
739
- assert np.abs(expected_slice - image_slice).max() < 3e-3
740
-
741
- def test_stable_diffusion_simple_inpaint_ddim(self):
742
- vae = AsymmetricAutoencoderKL.from_pretrained("cross-attention/asymmetric-autoencoder-kl-x-1-5")
743
- pipe = StableDiffusionInpaintPipeline.from_pretrained("runwayml/stable-diffusion-v1-5", safety_checker=None)
744
- pipe.vae = vae
745
- pipe.to(torch_device)
746
- pipe.set_progress_bar_config(disable=None)
747
- pipe.enable_attention_slicing()
748
-
749
- inputs = self.get_inputs(torch_device)
750
- image = pipe(**inputs).images
751
-
752
- image_slice = image[0, 253:256, 253:256, -1].flatten()
753
-
754
- assert image.shape == (1, 512, 512, 3)
755
- expected_slice = np.array([0.3312, 0.4052, 0.4103, 0.4153, 0.4347, 0.4154, 0.4932, 0.4920, 0.4431])
756
-
757
- assert np.abs(expected_slice - image_slice).max() < 6e-4
758
-
759
- def test_download_local(self):
760
- vae = AsymmetricAutoencoderKL.from_pretrained(
761
- "cross-attention/asymmetric-autoencoder-kl-x-1-5", torch_dtype=torch.float16
762
- )
763
- filename = hf_hub_download("runwayml/stable-diffusion-inpainting", filename="sd-v1-5-inpainting.ckpt")
764
-
765
- pipe = StableDiffusionInpaintPipeline.from_single_file(filename, torch_dtype=torch.float16)
766
- pipe.vae = vae
767
- pipe.scheduler = DDIMScheduler.from_config(pipe.scheduler.config)
768
- pipe.to("cuda")
769
-
770
- inputs = self.get_inputs(torch_device)
771
- inputs["num_inference_steps"] = 1
772
- image_out = pipe(**inputs).images[0]
773
-
774
- assert image_out.shape == (512, 512, 3)
775
-
776
- def test_download_ckpt_diff_format_is_same(self):
777
- pass
778
-
779
-
780
- @nightly
781
- @require_torch_gpu
782
- class StableDiffusionInpaintPipelineNightlyTests(unittest.TestCase):
783
- def tearDown(self):
784
- super().tearDown()
785
- gc.collect()
786
- torch.cuda.empty_cache()
787
-
788
- def get_inputs(self, device, generator_device="cpu", dtype=torch.float32, seed=0):
789
- generator = torch.Generator(device=generator_device).manual_seed(seed)
790
- init_image = load_image(
791
- "https://huggingface.co/datasets/diffusers/test-arrays/resolve/main"
792
- "/stable_diffusion_inpaint/input_bench_image.png"
793
- )
794
- mask_image = load_image(
795
- "https://huggingface.co/datasets/diffusers/test-arrays/resolve/main"
796
- "/stable_diffusion_inpaint/input_bench_mask.png"
797
- )
798
- inputs = {
799
- "prompt": "Face of a yellow cat, high resolution, sitting on a park bench",
800
- "image": init_image,
801
- "mask_image": mask_image,
802
- "generator": generator,
803
- "num_inference_steps": 50,
804
- "guidance_scale": 7.5,
805
- "output_type": "numpy",
806
- }
807
- return inputs
808
-
809
- def test_inpaint_ddim(self):
810
- sd_pipe = StableDiffusionInpaintPipeline.from_pretrained("runwayml/stable-diffusion-inpainting")
811
- sd_pipe.to(torch_device)
812
- sd_pipe.set_progress_bar_config(disable=None)
813
-
814
- inputs = self.get_inputs(torch_device)
815
- image = sd_pipe(**inputs).images[0]
816
-
817
- expected_image = load_numpy(
818
- "https://huggingface.co/datasets/diffusers/test-arrays/resolve/main"
819
- "/stable_diffusion_inpaint/stable_diffusion_inpaint_ddim.npy"
820
- )
821
- max_diff = np.abs(expected_image - image).max()
822
- assert max_diff < 1e-3
823
-
824
- def test_inpaint_pndm(self):
825
- sd_pipe = StableDiffusionInpaintPipeline.from_pretrained("runwayml/stable-diffusion-inpainting")
826
- sd_pipe.scheduler = PNDMScheduler.from_config(sd_pipe.scheduler.config)
827
- sd_pipe.to(torch_device)
828
- sd_pipe.set_progress_bar_config(disable=None)
829
-
830
- inputs = self.get_inputs(torch_device)
831
- image = sd_pipe(**inputs).images[0]
832
-
833
- expected_image = load_numpy(
834
- "https://huggingface.co/datasets/diffusers/test-arrays/resolve/main"
835
- "/stable_diffusion_inpaint/stable_diffusion_inpaint_pndm.npy"
836
- )
837
- max_diff = np.abs(expected_image - image).max()
838
- assert max_diff < 1e-3
839
-
840
- def test_inpaint_lms(self):
841
- sd_pipe = StableDiffusionInpaintPipeline.from_pretrained("runwayml/stable-diffusion-inpainting")
842
- sd_pipe.scheduler = LMSDiscreteScheduler.from_config(sd_pipe.scheduler.config)
843
- sd_pipe.to(torch_device)
844
- sd_pipe.set_progress_bar_config(disable=None)
845
-
846
- inputs = self.get_inputs(torch_device)
847
- image = sd_pipe(**inputs).images[0]
848
-
849
- expected_image = load_numpy(
850
- "https://huggingface.co/datasets/diffusers/test-arrays/resolve/main"
851
- "/stable_diffusion_inpaint/stable_diffusion_inpaint_lms.npy"
852
- )
853
- max_diff = np.abs(expected_image - image).max()
854
- assert max_diff < 1e-3
855
-
856
- def test_inpaint_dpm(self):
857
- sd_pipe = StableDiffusionInpaintPipeline.from_pretrained("runwayml/stable-diffusion-inpainting")
858
- sd_pipe.scheduler = DPMSolverMultistepScheduler.from_config(sd_pipe.scheduler.config)
859
- sd_pipe.to(torch_device)
860
- sd_pipe.set_progress_bar_config(disable=None)
861
-
862
- inputs = self.get_inputs(torch_device)
863
- inputs["num_inference_steps"] = 30
864
- image = sd_pipe(**inputs).images[0]
865
-
866
- expected_image = load_numpy(
867
- "https://huggingface.co/datasets/diffusers/test-arrays/resolve/main"
868
- "/stable_diffusion_inpaint/stable_diffusion_inpaint_dpm_multi.npy"
869
- )
870
- max_diff = np.abs(expected_image - image).max()
871
- assert max_diff < 1e-3
872
-
873
-
874
- class StableDiffusionInpaintingPrepareMaskAndMaskedImageTests(unittest.TestCase):
875
- def test_pil_inputs(self):
876
- height, width = 32, 32
877
- im = np.random.randint(0, 255, (height, width, 3), dtype=np.uint8)
878
- im = Image.fromarray(im)
879
- mask = np.random.randint(0, 255, (height, width), dtype=np.uint8) > 127.5
880
- mask = Image.fromarray((mask * 255).astype(np.uint8))
881
-
882
- t_mask, t_masked, t_image = prepare_mask_and_masked_image(im, mask, height, width, return_image=True)
883
-
884
- self.assertTrue(isinstance(t_mask, torch.Tensor))
885
- self.assertTrue(isinstance(t_masked, torch.Tensor))
886
- self.assertTrue(isinstance(t_image, torch.Tensor))
887
-
888
- self.assertEqual(t_mask.ndim, 4)
889
- self.assertEqual(t_masked.ndim, 4)
890
- self.assertEqual(t_image.ndim, 4)
891
-
892
- self.assertEqual(t_mask.shape, (1, 1, height, width))
893
- self.assertEqual(t_masked.shape, (1, 3, height, width))
894
- self.assertEqual(t_image.shape, (1, 3, height, width))
895
-
896
- self.assertTrue(t_mask.dtype == torch.float32)
897
- self.assertTrue(t_masked.dtype == torch.float32)
898
- self.assertTrue(t_image.dtype == torch.float32)
899
-
900
- self.assertTrue(t_mask.min() >= 0.0)
901
- self.assertTrue(t_mask.max() <= 1.0)
902
- self.assertTrue(t_masked.min() >= -1.0)
903
- self.assertTrue(t_masked.min() <= 1.0)
904
- self.assertTrue(t_image.min() >= -1.0)
905
- self.assertTrue(t_image.min() >= -1.0)
906
-
907
- self.assertTrue(t_mask.sum() > 0.0)
908
-
909
- def test_np_inputs(self):
910
- height, width = 32, 32
911
-
912
- im_np = np.random.randint(0, 255, (height, width, 3), dtype=np.uint8)
913
- im_pil = Image.fromarray(im_np)
914
- mask_np = (
915
- np.random.randint(
916
- 0,
917
- 255,
918
- (
919
- height,
920
- width,
921
- ),
922
- dtype=np.uint8,
923
- )
924
- > 127.5
925
- )
926
- mask_pil = Image.fromarray((mask_np * 255).astype(np.uint8))
927
-
928
- t_mask_np, t_masked_np, t_image_np = prepare_mask_and_masked_image(
929
- im_np, mask_np, height, width, return_image=True
930
- )
931
- t_mask_pil, t_masked_pil, t_image_pil = prepare_mask_and_masked_image(
932
- im_pil, mask_pil, height, width, return_image=True
933
- )
934
-
935
- self.assertTrue((t_mask_np == t_mask_pil).all())
936
- self.assertTrue((t_masked_np == t_masked_pil).all())
937
- self.assertTrue((t_image_np == t_image_pil).all())
938
-
939
- def test_torch_3D_2D_inputs(self):
940
- height, width = 32, 32
941
-
942
- im_tensor = torch.randint(
943
- 0,
944
- 255,
945
- (
946
- 3,
947
- height,
948
- width,
949
- ),
950
- dtype=torch.uint8,
951
- )
952
- mask_tensor = (
953
- torch.randint(
954
- 0,
955
- 255,
956
- (
957
- height,
958
- width,
959
- ),
960
- dtype=torch.uint8,
961
- )
962
- > 127.5
963
- )
964
- im_np = im_tensor.numpy().transpose(1, 2, 0)
965
- mask_np = mask_tensor.numpy()
966
-
967
- t_mask_tensor, t_masked_tensor, t_image_tensor = prepare_mask_and_masked_image(
968
- im_tensor / 127.5 - 1, mask_tensor, height, width, return_image=True
969
- )
970
- t_mask_np, t_masked_np, t_image_np = prepare_mask_and_masked_image(
971
- im_np, mask_np, height, width, return_image=True
972
- )
973
-
974
- self.assertTrue((t_mask_tensor == t_mask_np).all())
975
- self.assertTrue((t_masked_tensor == t_masked_np).all())
976
- self.assertTrue((t_image_tensor == t_image_np).all())
977
-
978
- def test_torch_3D_3D_inputs(self):
979
- height, width = 32, 32
980
-
981
- im_tensor = torch.randint(
982
- 0,
983
- 255,
984
- (
985
- 3,
986
- height,
987
- width,
988
- ),
989
- dtype=torch.uint8,
990
- )
991
- mask_tensor = (
992
- torch.randint(
993
- 0,
994
- 255,
995
- (
996
- 1,
997
- height,
998
- width,
999
- ),
1000
- dtype=torch.uint8,
1001
- )
1002
- > 127.5
1003
- )
1004
- im_np = im_tensor.numpy().transpose(1, 2, 0)
1005
- mask_np = mask_tensor.numpy()[0]
1006
-
1007
- t_mask_tensor, t_masked_tensor, t_image_tensor = prepare_mask_and_masked_image(
1008
- im_tensor / 127.5 - 1, mask_tensor, height, width, return_image=True
1009
- )
1010
- t_mask_np, t_masked_np, t_image_np = prepare_mask_and_masked_image(
1011
- im_np, mask_np, height, width, return_image=True
1012
- )
1013
-
1014
- self.assertTrue((t_mask_tensor == t_mask_np).all())
1015
- self.assertTrue((t_masked_tensor == t_masked_np).all())
1016
- self.assertTrue((t_image_tensor == t_image_np).all())
1017
-
1018
- def test_torch_4D_2D_inputs(self):
1019
- height, width = 32, 32
1020
-
1021
- im_tensor = torch.randint(
1022
- 0,
1023
- 255,
1024
- (
1025
- 1,
1026
- 3,
1027
- height,
1028
- width,
1029
- ),
1030
- dtype=torch.uint8,
1031
- )
1032
- mask_tensor = (
1033
- torch.randint(
1034
- 0,
1035
- 255,
1036
- (
1037
- height,
1038
- width,
1039
- ),
1040
- dtype=torch.uint8,
1041
- )
1042
- > 127.5
1043
- )
1044
- im_np = im_tensor.numpy()[0].transpose(1, 2, 0)
1045
- mask_np = mask_tensor.numpy()
1046
-
1047
- t_mask_tensor, t_masked_tensor, t_image_tensor = prepare_mask_and_masked_image(
1048
- im_tensor / 127.5 - 1, mask_tensor, height, width, return_image=True
1049
- )
1050
- t_mask_np, t_masked_np, t_image_np = prepare_mask_and_masked_image(
1051
- im_np, mask_np, height, width, return_image=True
1052
- )
1053
-
1054
- self.assertTrue((t_mask_tensor == t_mask_np).all())
1055
- self.assertTrue((t_masked_tensor == t_masked_np).all())
1056
- self.assertTrue((t_image_tensor == t_image_np).all())
1057
-
1058
- def test_torch_4D_3D_inputs(self):
1059
- height, width = 32, 32
1060
-
1061
- im_tensor = torch.randint(
1062
- 0,
1063
- 255,
1064
- (
1065
- 1,
1066
- 3,
1067
- height,
1068
- width,
1069
- ),
1070
- dtype=torch.uint8,
1071
- )
1072
- mask_tensor = (
1073
- torch.randint(
1074
- 0,
1075
- 255,
1076
- (
1077
- 1,
1078
- height,
1079
- width,
1080
- ),
1081
- dtype=torch.uint8,
1082
- )
1083
- > 127.5
1084
- )
1085
- im_np = im_tensor.numpy()[0].transpose(1, 2, 0)
1086
- mask_np = mask_tensor.numpy()[0]
1087
-
1088
- t_mask_tensor, t_masked_tensor, t_image_tensor = prepare_mask_and_masked_image(
1089
- im_tensor / 127.5 - 1, mask_tensor, height, width, return_image=True
1090
- )
1091
- t_mask_np, t_masked_np, t_image_np = prepare_mask_and_masked_image(
1092
- im_np, mask_np, height, width, return_image=True
1093
- )
1094
-
1095
- self.assertTrue((t_mask_tensor == t_mask_np).all())
1096
- self.assertTrue((t_masked_tensor == t_masked_np).all())
1097
- self.assertTrue((t_image_tensor == t_image_np).all())
1098
-
1099
- def test_torch_4D_4D_inputs(self):
1100
- height, width = 32, 32
1101
-
1102
- im_tensor = torch.randint(
1103
- 0,
1104
- 255,
1105
- (
1106
- 1,
1107
- 3,
1108
- height,
1109
- width,
1110
- ),
1111
- dtype=torch.uint8,
1112
- )
1113
- mask_tensor = (
1114
- torch.randint(
1115
- 0,
1116
- 255,
1117
- (
1118
- 1,
1119
- 1,
1120
- height,
1121
- width,
1122
- ),
1123
- dtype=torch.uint8,
1124
- )
1125
- > 127.5
1126
- )
1127
- im_np = im_tensor.numpy()[0].transpose(1, 2, 0)
1128
- mask_np = mask_tensor.numpy()[0][0]
1129
-
1130
- t_mask_tensor, t_masked_tensor, t_image_tensor = prepare_mask_and_masked_image(
1131
- im_tensor / 127.5 - 1, mask_tensor, height, width, return_image=True
1132
- )
1133
- t_mask_np, t_masked_np, t_image_np = prepare_mask_and_masked_image(
1134
- im_np, mask_np, height, width, return_image=True
1135
- )
1136
-
1137
- self.assertTrue((t_mask_tensor == t_mask_np).all())
1138
- self.assertTrue((t_masked_tensor == t_masked_np).all())
1139
- self.assertTrue((t_image_tensor == t_image_np).all())
1140
-
1141
- def test_torch_batch_4D_3D(self):
1142
- height, width = 32, 32
1143
-
1144
- im_tensor = torch.randint(
1145
- 0,
1146
- 255,
1147
- (
1148
- 2,
1149
- 3,
1150
- height,
1151
- width,
1152
- ),
1153
- dtype=torch.uint8,
1154
- )
1155
- mask_tensor = (
1156
- torch.randint(
1157
- 0,
1158
- 255,
1159
- (
1160
- 2,
1161
- height,
1162
- width,
1163
- ),
1164
- dtype=torch.uint8,
1165
- )
1166
- > 127.5
1167
- )
1168
-
1169
- im_nps = [im.numpy().transpose(1, 2, 0) for im in im_tensor]
1170
- mask_nps = [mask.numpy() for mask in mask_tensor]
1171
-
1172
- t_mask_tensor, t_masked_tensor, t_image_tensor = prepare_mask_and_masked_image(
1173
- im_tensor / 127.5 - 1, mask_tensor, height, width, return_image=True
1174
- )
1175
- nps = [prepare_mask_and_masked_image(i, m, height, width, return_image=True) for i, m in zip(im_nps, mask_nps)]
1176
- t_mask_np = torch.cat([n[0] for n in nps])
1177
- t_masked_np = torch.cat([n[1] for n in nps])
1178
- t_image_np = torch.cat([n[2] for n in nps])
1179
-
1180
- self.assertTrue((t_mask_tensor == t_mask_np).all())
1181
- self.assertTrue((t_masked_tensor == t_masked_np).all())
1182
- self.assertTrue((t_image_tensor == t_image_np).all())
1183
-
1184
- def test_torch_batch_4D_4D(self):
1185
- height, width = 32, 32
1186
-
1187
- im_tensor = torch.randint(
1188
- 0,
1189
- 255,
1190
- (
1191
- 2,
1192
- 3,
1193
- height,
1194
- width,
1195
- ),
1196
- dtype=torch.uint8,
1197
- )
1198
- mask_tensor = (
1199
- torch.randint(
1200
- 0,
1201
- 255,
1202
- (
1203
- 2,
1204
- 1,
1205
- height,
1206
- width,
1207
- ),
1208
- dtype=torch.uint8,
1209
- )
1210
- > 127.5
1211
- )
1212
-
1213
- im_nps = [im.numpy().transpose(1, 2, 0) for im in im_tensor]
1214
- mask_nps = [mask.numpy()[0] for mask in mask_tensor]
1215
-
1216
- t_mask_tensor, t_masked_tensor, t_image_tensor = prepare_mask_and_masked_image(
1217
- im_tensor / 127.5 - 1, mask_tensor, height, width, return_image=True
1218
- )
1219
- nps = [prepare_mask_and_masked_image(i, m, height, width, return_image=True) for i, m in zip(im_nps, mask_nps)]
1220
- t_mask_np = torch.cat([n[0] for n in nps])
1221
- t_masked_np = torch.cat([n[1] for n in nps])
1222
- t_image_np = torch.cat([n[2] for n in nps])
1223
-
1224
- self.assertTrue((t_mask_tensor == t_mask_np).all())
1225
- self.assertTrue((t_masked_tensor == t_masked_np).all())
1226
- self.assertTrue((t_image_tensor == t_image_np).all())
1227
-
1228
- def test_shape_mismatch(self):
1229
- height, width = 32, 32
1230
-
1231
- # test height and width
1232
- with self.assertRaises(AssertionError):
1233
- prepare_mask_and_masked_image(
1234
- torch.randn(
1235
- 3,
1236
- height,
1237
- width,
1238
- ),
1239
- torch.randn(64, 64),
1240
- height,
1241
- width,
1242
- return_image=True,
1243
- )
1244
- # test batch dim
1245
- with self.assertRaises(AssertionError):
1246
- prepare_mask_and_masked_image(
1247
- torch.randn(
1248
- 2,
1249
- 3,
1250
- height,
1251
- width,
1252
- ),
1253
- torch.randn(4, 64, 64),
1254
- height,
1255
- width,
1256
- return_image=True,
1257
- )
1258
- # test batch dim
1259
- with self.assertRaises(AssertionError):
1260
- prepare_mask_and_masked_image(
1261
- torch.randn(
1262
- 2,
1263
- 3,
1264
- height,
1265
- width,
1266
- ),
1267
- torch.randn(4, 1, 64, 64),
1268
- height,
1269
- width,
1270
- return_image=True,
1271
- )
1272
-
1273
- def test_type_mismatch(self):
1274
- height, width = 32, 32
1275
-
1276
- # test tensors-only
1277
- with self.assertRaises(TypeError):
1278
- prepare_mask_and_masked_image(
1279
- torch.rand(
1280
- 3,
1281
- height,
1282
- width,
1283
- ),
1284
- torch.rand(
1285
- 3,
1286
- height,
1287
- width,
1288
- ).numpy(),
1289
- height,
1290
- width,
1291
- return_image=True,
1292
- )
1293
- # test tensors-only
1294
- with self.assertRaises(TypeError):
1295
- prepare_mask_and_masked_image(
1296
- torch.rand(
1297
- 3,
1298
- height,
1299
- width,
1300
- ).numpy(),
1301
- torch.rand(
1302
- 3,
1303
- height,
1304
- width,
1305
- ),
1306
- height,
1307
- width,
1308
- return_image=True,
1309
- )
1310
-
1311
- def test_channels_first(self):
1312
- height, width = 32, 32
1313
-
1314
- # test channels first for 3D tensors
1315
- with self.assertRaises(AssertionError):
1316
- prepare_mask_and_masked_image(
1317
- torch.rand(height, width, 3),
1318
- torch.rand(
1319
- 3,
1320
- height,
1321
- width,
1322
- ),
1323
- height,
1324
- width,
1325
- return_image=True,
1326
- )
1327
-
1328
- def test_tensor_range(self):
1329
- height, width = 32, 32
1330
-
1331
- # test im <= 1
1332
- with self.assertRaises(ValueError):
1333
- prepare_mask_and_masked_image(
1334
- torch.ones(
1335
- 3,
1336
- height,
1337
- width,
1338
- )
1339
- * 2,
1340
- torch.rand(
1341
- height,
1342
- width,
1343
- ),
1344
- height,
1345
- width,
1346
- return_image=True,
1347
- )
1348
- # test im >= -1
1349
- with self.assertRaises(ValueError):
1350
- prepare_mask_and_masked_image(
1351
- torch.ones(
1352
- 3,
1353
- height,
1354
- width,
1355
- )
1356
- * (-2),
1357
- torch.rand(
1358
- height,
1359
- width,
1360
- ),
1361
- height,
1362
- width,
1363
- return_image=True,
1364
- )
1365
- # test mask <= 1
1366
- with self.assertRaises(ValueError):
1367
- prepare_mask_and_masked_image(
1368
- torch.rand(
1369
- 3,
1370
- height,
1371
- width,
1372
- ),
1373
- torch.ones(
1374
- height,
1375
- width,
1376
- )
1377
- * 2,
1378
- height,
1379
- width,
1380
- return_image=True,
1381
- )
1382
- # test mask >= 0
1383
- with self.assertRaises(ValueError):
1384
- prepare_mask_and_masked_image(
1385
- torch.rand(
1386
- 3,
1387
- height,
1388
- width,
1389
- ),
1390
- torch.ones(
1391
- height,
1392
- width,
1393
- )
1394
- * -1,
1395
- height,
1396
- width,
1397
- return_image=True,
1398
- )
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
spaces/Androidonnxfork/CivitAi-to-Diffusers/diffusers/tests/pipelines/stable_diffusion_2/test_stable_diffusion_depth.py DELETED
@@ -1,599 +0,0 @@
1
- # coding=utf-8
2
- # Copyright 2023 HuggingFace Inc.
3
- #
4
- # Licensed under the Apache License, Version 2.0 (the "License");
5
- # you may not use this file except in compliance with the License.
6
- # You may obtain a copy of the License at
7
- #
8
- # http://www.apache.org/licenses/LICENSE-2.0
9
- #
10
- # Unless required by applicable law or agreed to in writing, software
11
- # distributed under the License is distributed on an "AS IS" BASIS,
12
- # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13
- # See the License for the specific language governing permissions and
14
- # limitations under the License.
15
-
16
- import gc
17
- import random
18
- import tempfile
19
- import unittest
20
-
21
- import numpy as np
22
- import torch
23
- from PIL import Image
24
- from transformers import (
25
- CLIPTextConfig,
26
- CLIPTextModel,
27
- CLIPTokenizer,
28
- DPTConfig,
29
- DPTFeatureExtractor,
30
- DPTForDepthEstimation,
31
- )
32
-
33
- from diffusers import (
34
- AutoencoderKL,
35
- DDIMScheduler,
36
- DPMSolverMultistepScheduler,
37
- LMSDiscreteScheduler,
38
- PNDMScheduler,
39
- StableDiffusionDepth2ImgPipeline,
40
- UNet2DConditionModel,
41
- )
42
- from diffusers.utils import (
43
- floats_tensor,
44
- is_accelerate_available,
45
- is_accelerate_version,
46
- load_image,
47
- load_numpy,
48
- nightly,
49
- slow,
50
- torch_device,
51
- )
52
- from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu, skip_mps
53
-
54
- from ..pipeline_params import (
55
- IMAGE_TO_IMAGE_IMAGE_PARAMS,
56
- TEXT_GUIDED_IMAGE_VARIATION_BATCH_PARAMS,
57
- TEXT_GUIDED_IMAGE_VARIATION_PARAMS,
58
- TEXT_TO_IMAGE_IMAGE_PARAMS,
59
- )
60
- from ..test_pipelines_common import PipelineKarrasSchedulerTesterMixin, PipelineLatentTesterMixin, PipelineTesterMixin
61
-
62
-
63
- enable_full_determinism()
64
-
65
-
66
- @skip_mps
67
- class StableDiffusionDepth2ImgPipelineFastTests(
68
- PipelineLatentTesterMixin, PipelineKarrasSchedulerTesterMixin, PipelineTesterMixin, unittest.TestCase
69
- ):
70
- pipeline_class = StableDiffusionDepth2ImgPipeline
71
- test_save_load_optional_components = False
72
- params = TEXT_GUIDED_IMAGE_VARIATION_PARAMS - {"height", "width"}
73
- required_optional_params = PipelineTesterMixin.required_optional_params - {"latents"}
74
- batch_params = TEXT_GUIDED_IMAGE_VARIATION_BATCH_PARAMS
75
- image_params = IMAGE_TO_IMAGE_IMAGE_PARAMS
76
- image_latents_params = TEXT_TO_IMAGE_IMAGE_PARAMS
77
-
78
- def get_dummy_components(self):
79
- torch.manual_seed(0)
80
- unet = UNet2DConditionModel(
81
- block_out_channels=(32, 64),
82
- layers_per_block=2,
83
- sample_size=32,
84
- in_channels=5,
85
- out_channels=4,
86
- down_block_types=("DownBlock2D", "CrossAttnDownBlock2D"),
87
- up_block_types=("CrossAttnUpBlock2D", "UpBlock2D"),
88
- cross_attention_dim=32,
89
- attention_head_dim=(2, 4),
90
- use_linear_projection=True,
91
- )
92
- scheduler = PNDMScheduler(skip_prk_steps=True)
93
- torch.manual_seed(0)
94
- vae = AutoencoderKL(
95
- block_out_channels=[32, 64],
96
- in_channels=3,
97
- out_channels=3,
98
- down_block_types=["DownEncoderBlock2D", "DownEncoderBlock2D"],
99
- up_block_types=["UpDecoderBlock2D", "UpDecoderBlock2D"],
100
- latent_channels=4,
101
- )
102
- torch.manual_seed(0)
103
- text_encoder_config = CLIPTextConfig(
104
- bos_token_id=0,
105
- eos_token_id=2,
106
- hidden_size=32,
107
- intermediate_size=37,
108
- layer_norm_eps=1e-05,
109
- num_attention_heads=4,
110
- num_hidden_layers=5,
111
- pad_token_id=1,
112
- vocab_size=1000,
113
- )
114
- text_encoder = CLIPTextModel(text_encoder_config)
115
- tokenizer = CLIPTokenizer.from_pretrained("hf-internal-testing/tiny-random-clip")
116
-
117
- backbone_config = {
118
- "global_padding": "same",
119
- "layer_type": "bottleneck",
120
- "depths": [3, 4, 9],
121
- "out_features": ["stage1", "stage2", "stage3"],
122
- "embedding_dynamic_padding": True,
123
- "hidden_sizes": [96, 192, 384, 768],
124
- "num_groups": 2,
125
- }
126
- depth_estimator_config = DPTConfig(
127
- image_size=32,
128
- patch_size=16,
129
- num_channels=3,
130
- hidden_size=32,
131
- num_hidden_layers=4,
132
- backbone_out_indices=(0, 1, 2, 3),
133
- num_attention_heads=4,
134
- intermediate_size=37,
135
- hidden_act="gelu",
136
- hidden_dropout_prob=0.1,
137
- attention_probs_dropout_prob=0.1,
138
- is_decoder=False,
139
- initializer_range=0.02,
140
- is_hybrid=True,
141
- backbone_config=backbone_config,
142
- backbone_featmap_shape=[1, 384, 24, 24],
143
- )
144
- depth_estimator = DPTForDepthEstimation(depth_estimator_config).eval()
145
- feature_extractor = DPTFeatureExtractor.from_pretrained(
146
- "hf-internal-testing/tiny-random-DPTForDepthEstimation"
147
- )
148
-
149
- components = {
150
- "unet": unet,
151
- "scheduler": scheduler,
152
- "vae": vae,
153
- "text_encoder": text_encoder,
154
- "tokenizer": tokenizer,
155
- "depth_estimator": depth_estimator,
156
- "feature_extractor": feature_extractor,
157
- }
158
- return components
159
-
160
- def get_dummy_inputs(self, device, seed=0):
161
- image = floats_tensor((1, 3, 32, 32), rng=random.Random(seed))
162
- image = image.cpu().permute(0, 2, 3, 1)[0]
163
- image = Image.fromarray(np.uint8(image)).convert("RGB").resize((32, 32))
164
- if str(device).startswith("mps"):
165
- generator = torch.manual_seed(seed)
166
- else:
167
- generator = torch.Generator(device=device).manual_seed(seed)
168
- inputs = {
169
- "prompt": "A painting of a squirrel eating a burger",
170
- "image": image,
171
- "generator": generator,
172
- "num_inference_steps": 2,
173
- "guidance_scale": 6.0,
174
- "output_type": "numpy",
175
- }
176
- return inputs
177
-
178
- def test_save_load_local(self):
179
- components = self.get_dummy_components()
180
- pipe = self.pipeline_class(**components)
181
- pipe.to(torch_device)
182
- pipe.set_progress_bar_config(disable=None)
183
-
184
- inputs = self.get_dummy_inputs(torch_device)
185
- output = pipe(**inputs)[0]
186
-
187
- with tempfile.TemporaryDirectory() as tmpdir:
188
- pipe.save_pretrained(tmpdir)
189
- pipe_loaded = self.pipeline_class.from_pretrained(tmpdir)
190
- pipe_loaded.to(torch_device)
191
- pipe_loaded.set_progress_bar_config(disable=None)
192
-
193
- inputs = self.get_dummy_inputs(torch_device)
194
- output_loaded = pipe_loaded(**inputs)[0]
195
-
196
- max_diff = np.abs(output - output_loaded).max()
197
- self.assertLess(max_diff, 1e-4)
198
-
199
- @unittest.skipIf(torch_device != "cuda", reason="float16 requires CUDA")
200
- def test_save_load_float16(self):
201
- components = self.get_dummy_components()
202
- for name, module in components.items():
203
- if hasattr(module, "half"):
204
- components[name] = module.to(torch_device).half()
205
- pipe = self.pipeline_class(**components)
206
- pipe.to(torch_device)
207
- pipe.set_progress_bar_config(disable=None)
208
-
209
- inputs = self.get_dummy_inputs(torch_device)
210
- output = pipe(**inputs)[0]
211
-
212
- with tempfile.TemporaryDirectory() as tmpdir:
213
- pipe.save_pretrained(tmpdir)
214
- pipe_loaded = self.pipeline_class.from_pretrained(tmpdir, torch_dtype=torch.float16)
215
- pipe_loaded.to(torch_device)
216
- pipe_loaded.set_progress_bar_config(disable=None)
217
-
218
- for name, component in pipe_loaded.components.items():
219
- if hasattr(component, "dtype"):
220
- self.assertTrue(
221
- component.dtype == torch.float16,
222
- f"`{name}.dtype` switched from `float16` to {component.dtype} after loading.",
223
- )
224
-
225
- inputs = self.get_dummy_inputs(torch_device)
226
- output_loaded = pipe_loaded(**inputs)[0]
227
-
228
- max_diff = np.abs(output - output_loaded).max()
229
- self.assertLess(max_diff, 2e-2, "The output of the fp16 pipeline changed after saving and loading.")
230
-
231
- @unittest.skipIf(torch_device != "cuda", reason="float16 requires CUDA")
232
- def test_float16_inference(self):
233
- components = self.get_dummy_components()
234
- pipe = self.pipeline_class(**components)
235
- pipe.to(torch_device)
236
- pipe.set_progress_bar_config(disable=None)
237
-
238
- for name, module in components.items():
239
- if hasattr(module, "half"):
240
- components[name] = module.half()
241
- pipe_fp16 = self.pipeline_class(**components)
242
- pipe_fp16.to(torch_device)
243
- pipe_fp16.set_progress_bar_config(disable=None)
244
-
245
- output = pipe(**self.get_dummy_inputs(torch_device))[0]
246
- output_fp16 = pipe_fp16(**self.get_dummy_inputs(torch_device))[0]
247
-
248
- max_diff = np.abs(output - output_fp16).max()
249
- self.assertLess(max_diff, 1.3e-2, "The outputs of the fp16 and fp32 pipelines are too different.")
250
-
251
- @unittest.skipIf(
252
- torch_device != "cuda" or not is_accelerate_available() or is_accelerate_version("<", "0.14.0"),
253
- reason="CPU offload is only available with CUDA and `accelerate v0.14.0` or higher",
254
- )
255
- def test_cpu_offload_forward_pass(self):
256
- components = self.get_dummy_components()
257
- pipe = self.pipeline_class(**components)
258
- pipe.to(torch_device)
259
- pipe.set_progress_bar_config(disable=None)
260
-
261
- inputs = self.get_dummy_inputs(torch_device)
262
- output_without_offload = pipe(**inputs)[0]
263
-
264
- pipe.enable_sequential_cpu_offload()
265
- inputs = self.get_dummy_inputs(torch_device)
266
- output_with_offload = pipe(**inputs)[0]
267
-
268
- max_diff = np.abs(output_with_offload - output_without_offload).max()
269
- self.assertLess(max_diff, 1e-4, "CPU offloading should not affect the inference results")
270
-
271
- def test_dict_tuple_outputs_equivalent(self):
272
- components = self.get_dummy_components()
273
- pipe = self.pipeline_class(**components)
274
- pipe.to(torch_device)
275
- pipe.set_progress_bar_config(disable=None)
276
-
277
- output = pipe(**self.get_dummy_inputs(torch_device))[0]
278
- output_tuple = pipe(**self.get_dummy_inputs(torch_device), return_dict=False)[0]
279
-
280
- max_diff = np.abs(output - output_tuple).max()
281
- self.assertLess(max_diff, 1e-4)
282
-
283
- def test_progress_bar(self):
284
- super().test_progress_bar()
285
-
286
- def test_stable_diffusion_depth2img_default_case(self):
287
- device = "cpu" # ensure determinism for the device-dependent torch.Generator
288
- components = self.get_dummy_components()
289
- pipe = StableDiffusionDepth2ImgPipeline(**components)
290
- pipe = pipe.to(device)
291
- pipe.set_progress_bar_config(disable=None)
292
-
293
- inputs = self.get_dummy_inputs(device)
294
- image = pipe(**inputs).images
295
- image_slice = image[0, -3:, -3:, -1]
296
-
297
- assert image.shape == (1, 32, 32, 3)
298
- if torch_device == "mps":
299
- expected_slice = np.array([0.6071, 0.5035, 0.4378, 0.5776, 0.5753, 0.4316, 0.4513, 0.5263, 0.4546])
300
- else:
301
- expected_slice = np.array([0.5435, 0.4992, 0.3783, 0.4411, 0.5842, 0.4654, 0.3786, 0.5077, 0.4655])
302
-
303
- assert np.abs(image_slice.flatten() - expected_slice).max() < 1e-3
304
-
305
- def test_stable_diffusion_depth2img_negative_prompt(self):
306
- device = "cpu" # ensure determinism for the device-dependent torch.Generator
307
- components = self.get_dummy_components()
308
- pipe = StableDiffusionDepth2ImgPipeline(**components)
309
- pipe = pipe.to(device)
310
- pipe.set_progress_bar_config(disable=None)
311
-
312
- inputs = self.get_dummy_inputs(device)
313
- negative_prompt = "french fries"
314
- output = pipe(**inputs, negative_prompt=negative_prompt)
315
- image = output.images
316
- image_slice = image[0, -3:, -3:, -1]
317
-
318
- assert image.shape == (1, 32, 32, 3)
319
- if torch_device == "mps":
320
- expected_slice = np.array([0.6296, 0.5125, 0.3890, 0.4456, 0.5955, 0.4621, 0.3810, 0.5310, 0.4626])
321
- else:
322
- expected_slice = np.array([0.6012, 0.4507, 0.3769, 0.4121, 0.5566, 0.4585, 0.3803, 0.5045, 0.4631])
323
-
324
- assert np.abs(image_slice.flatten() - expected_slice).max() < 1e-3
325
-
326
- def test_stable_diffusion_depth2img_multiple_init_images(self):
327
- device = "cpu" # ensure determinism for the device-dependent torch.Generator
328
- components = self.get_dummy_components()
329
- pipe = StableDiffusionDepth2ImgPipeline(**components)
330
- pipe = pipe.to(device)
331
- pipe.set_progress_bar_config(disable=None)
332
-
333
- inputs = self.get_dummy_inputs(device)
334
- inputs["prompt"] = [inputs["prompt"]] * 2
335
- inputs["image"] = 2 * [inputs["image"]]
336
- image = pipe(**inputs).images
337
- image_slice = image[-1, -3:, -3:, -1]
338
-
339
- assert image.shape == (2, 32, 32, 3)
340
-
341
- if torch_device == "mps":
342
- expected_slice = np.array([0.6501, 0.5150, 0.4939, 0.6688, 0.5437, 0.5758, 0.5115, 0.4406, 0.4551])
343
- else:
344
- expected_slice = np.array([0.6557, 0.6214, 0.6254, 0.5775, 0.4785, 0.5949, 0.5904, 0.4785, 0.4730])
345
-
346
- assert np.abs(image_slice.flatten() - expected_slice).max() < 1e-3
347
-
348
- def test_stable_diffusion_depth2img_pil(self):
349
- device = "cpu" # ensure determinism for the device-dependent torch.Generator
350
- components = self.get_dummy_components()
351
- pipe = StableDiffusionDepth2ImgPipeline(**components)
352
- pipe = pipe.to(device)
353
- pipe.set_progress_bar_config(disable=None)
354
-
355
- inputs = self.get_dummy_inputs(device)
356
-
357
- image = pipe(**inputs).images
358
- image_slice = image[0, -3:, -3:, -1]
359
-
360
- if torch_device == "mps":
361
- expected_slice = np.array([0.53232, 0.47015, 0.40868, 0.45651, 0.4891, 0.4668, 0.4287, 0.48822, 0.47439])
362
- else:
363
- expected_slice = np.array([0.5435, 0.4992, 0.3783, 0.4411, 0.5842, 0.4654, 0.3786, 0.5077, 0.4655])
364
-
365
- assert np.abs(image_slice.flatten() - expected_slice).max() < 1e-3
366
-
367
- @skip_mps
368
- def test_attention_slicing_forward_pass(self):
369
- return super().test_attention_slicing_forward_pass()
370
-
371
- def test_inference_batch_single_identical(self):
372
- super().test_inference_batch_single_identical(expected_max_diff=7e-3)
373
-
374
-
375
- @slow
376
- @require_torch_gpu
377
- class StableDiffusionDepth2ImgPipelineSlowTests(unittest.TestCase):
378
- def tearDown(self):
379
- super().tearDown()
380
- gc.collect()
381
- torch.cuda.empty_cache()
382
-
383
- def get_inputs(self, device="cpu", dtype=torch.float32, seed=0):
384
- generator = torch.Generator(device=device).manual_seed(seed)
385
- init_image = load_image(
386
- "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/depth2img/two_cats.png"
387
- )
388
- inputs = {
389
- "prompt": "two tigers",
390
- "image": init_image,
391
- "generator": generator,
392
- "num_inference_steps": 3,
393
- "strength": 0.75,
394
- "guidance_scale": 7.5,
395
- "output_type": "numpy",
396
- }
397
- return inputs
398
-
399
- def test_stable_diffusion_depth2img_pipeline_default(self):
400
- pipe = StableDiffusionDepth2ImgPipeline.from_pretrained(
401
- "stabilityai/stable-diffusion-2-depth", safety_checker=None
402
- )
403
- pipe.to(torch_device)
404
- pipe.set_progress_bar_config(disable=None)
405
- pipe.enable_attention_slicing()
406
-
407
- inputs = self.get_inputs()
408
- image = pipe(**inputs).images
409
- image_slice = image[0, 253:256, 253:256, -1].flatten()
410
-
411
- assert image.shape == (1, 480, 640, 3)
412
- expected_slice = np.array([0.5435, 0.4992, 0.3783, 0.4411, 0.5842, 0.4654, 0.3786, 0.5077, 0.4655])
413
-
414
- assert np.abs(expected_slice - image_slice).max() < 6e-1
415
-
416
- def test_stable_diffusion_depth2img_pipeline_k_lms(self):
417
- pipe = StableDiffusionDepth2ImgPipeline.from_pretrained(
418
- "stabilityai/stable-diffusion-2-depth", safety_checker=None
419
- )
420
- pipe.scheduler = LMSDiscreteScheduler.from_config(pipe.scheduler.config)
421
- pipe.to(torch_device)
422
- pipe.set_progress_bar_config(disable=None)
423
- pipe.enable_attention_slicing()
424
-
425
- inputs = self.get_inputs()
426
- image = pipe(**inputs).images
427
- image_slice = image[0, 253:256, 253:256, -1].flatten()
428
-
429
- assert image.shape == (1, 480, 640, 3)
430
- expected_slice = np.array([0.6363, 0.6274, 0.6309, 0.6370, 0.6226, 0.6286, 0.6213, 0.6453, 0.6306])
431
-
432
- assert np.abs(expected_slice - image_slice).max() < 8e-4
433
-
434
- def test_stable_diffusion_depth2img_pipeline_ddim(self):
435
- pipe = StableDiffusionDepth2ImgPipeline.from_pretrained(
436
- "stabilityai/stable-diffusion-2-depth", safety_checker=None
437
- )
438
- pipe.scheduler = DDIMScheduler.from_config(pipe.scheduler.config)
439
- pipe.to(torch_device)
440
- pipe.set_progress_bar_config(disable=None)
441
- pipe.enable_attention_slicing()
442
-
443
- inputs = self.get_inputs()
444
- image = pipe(**inputs).images
445
- image_slice = image[0, 253:256, 253:256, -1].flatten()
446
-
447
- assert image.shape == (1, 480, 640, 3)
448
- expected_slice = np.array([0.6424, 0.6524, 0.6249, 0.6041, 0.6634, 0.6420, 0.6522, 0.6555, 0.6436])
449
-
450
- assert np.abs(expected_slice - image_slice).max() < 5e-4
451
-
452
- def test_stable_diffusion_depth2img_intermediate_state(self):
453
- number_of_steps = 0
454
-
455
- def callback_fn(step: int, timestep: int, latents: torch.FloatTensor) -> None:
456
- callback_fn.has_been_called = True
457
- nonlocal number_of_steps
458
- number_of_steps += 1
459
- if step == 1:
460
- latents = latents.detach().cpu().numpy()
461
- assert latents.shape == (1, 4, 60, 80)
462
- latents_slice = latents[0, -3:, -3:, -1]
463
- expected_slice = np.array(
464
- [-0.7168, -1.5137, -0.1418, -2.9219, -2.7266, -2.4414, -2.1035, -3.0078, -1.7051]
465
- )
466
-
467
- assert np.abs(latents_slice.flatten() - expected_slice).max() < 5e-2
468
- elif step == 2:
469
- latents = latents.detach().cpu().numpy()
470
- assert latents.shape == (1, 4, 60, 80)
471
- latents_slice = latents[0, -3:, -3:, -1]
472
- expected_slice = np.array(
473
- [-0.7109, -1.5068, -0.1403, -2.9160, -2.7207, -2.4414, -2.1035, -3.0059, -1.7090]
474
- )
475
-
476
- assert np.abs(latents_slice.flatten() - expected_slice).max() < 5e-2
477
-
478
- callback_fn.has_been_called = False
479
-
480
- pipe = StableDiffusionDepth2ImgPipeline.from_pretrained(
481
- "stabilityai/stable-diffusion-2-depth", safety_checker=None, torch_dtype=torch.float16
482
- )
483
- pipe = pipe.to(torch_device)
484
- pipe.set_progress_bar_config(disable=None)
485
- pipe.enable_attention_slicing()
486
-
487
- inputs = self.get_inputs(dtype=torch.float16)
488
- pipe(**inputs, callback=callback_fn, callback_steps=1)
489
- assert callback_fn.has_been_called
490
- assert number_of_steps == 2
491
-
492
- def test_stable_diffusion_pipeline_with_sequential_cpu_offloading(self):
493
- torch.cuda.empty_cache()
494
- torch.cuda.reset_max_memory_allocated()
495
- torch.cuda.reset_peak_memory_stats()
496
-
497
- pipe = StableDiffusionDepth2ImgPipeline.from_pretrained(
498
- "stabilityai/stable-diffusion-2-depth", safety_checker=None, torch_dtype=torch.float16
499
- )
500
- pipe = pipe.to(torch_device)
501
- pipe.set_progress_bar_config(disable=None)
502
- pipe.enable_attention_slicing(1)
503
- pipe.enable_sequential_cpu_offload()
504
-
505
- inputs = self.get_inputs(dtype=torch.float16)
506
- _ = pipe(**inputs)
507
-
508
- mem_bytes = torch.cuda.max_memory_allocated()
509
- # make sure that less than 2.9 GB is allocated
510
- assert mem_bytes < 2.9 * 10**9
511
-
512
-
513
- @nightly
514
- @require_torch_gpu
515
- class StableDiffusionImg2ImgPipelineNightlyTests(unittest.TestCase):
516
- def tearDown(self):
517
- super().tearDown()
518
- gc.collect()
519
- torch.cuda.empty_cache()
520
-
521
- def get_inputs(self, device="cpu", dtype=torch.float32, seed=0):
522
- generator = torch.Generator(device=device).manual_seed(seed)
523
- init_image = load_image(
524
- "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/depth2img/two_cats.png"
525
- )
526
- inputs = {
527
- "prompt": "two tigers",
528
- "image": init_image,
529
- "generator": generator,
530
- "num_inference_steps": 3,
531
- "strength": 0.75,
532
- "guidance_scale": 7.5,
533
- "output_type": "numpy",
534
- }
535
- return inputs
536
-
537
- def test_depth2img_pndm(self):
538
- pipe = StableDiffusionDepth2ImgPipeline.from_pretrained("stabilityai/stable-diffusion-2-depth")
539
- pipe.to(torch_device)
540
- pipe.set_progress_bar_config(disable=None)
541
-
542
- inputs = self.get_inputs()
543
- image = pipe(**inputs).images[0]
544
-
545
- expected_image = load_numpy(
546
- "https://huggingface.co/datasets/diffusers/test-arrays/resolve/main"
547
- "/stable_diffusion_depth2img/stable_diffusion_2_0_pndm.npy"
548
- )
549
- max_diff = np.abs(expected_image - image).max()
550
- assert max_diff < 1e-3
551
-
552
- def test_depth2img_ddim(self):
553
- pipe = StableDiffusionDepth2ImgPipeline.from_pretrained("stabilityai/stable-diffusion-2-depth")
554
- pipe.scheduler = DDIMScheduler.from_config(pipe.scheduler.config)
555
- pipe.to(torch_device)
556
- pipe.set_progress_bar_config(disable=None)
557
-
558
- inputs = self.get_inputs()
559
- image = pipe(**inputs).images[0]
560
-
561
- expected_image = load_numpy(
562
- "https://huggingface.co/datasets/diffusers/test-arrays/resolve/main"
563
- "/stable_diffusion_depth2img/stable_diffusion_2_0_ddim.npy"
564
- )
565
- max_diff = np.abs(expected_image - image).max()
566
- assert max_diff < 1e-3
567
-
568
- def test_img2img_lms(self):
569
- pipe = StableDiffusionDepth2ImgPipeline.from_pretrained("stabilityai/stable-diffusion-2-depth")
570
- pipe.scheduler = LMSDiscreteScheduler.from_config(pipe.scheduler.config)
571
- pipe.to(torch_device)
572
- pipe.set_progress_bar_config(disable=None)
573
-
574
- inputs = self.get_inputs()
575
- image = pipe(**inputs).images[0]
576
-
577
- expected_image = load_numpy(
578
- "https://huggingface.co/datasets/diffusers/test-arrays/resolve/main"
579
- "/stable_diffusion_depth2img/stable_diffusion_2_0_lms.npy"
580
- )
581
- max_diff = np.abs(expected_image - image).max()
582
- assert max_diff < 1e-3
583
-
584
- def test_img2img_dpm(self):
585
- pipe = StableDiffusionDepth2ImgPipeline.from_pretrained("stabilityai/stable-diffusion-2-depth")
586
- pipe.scheduler = DPMSolverMultistepScheduler.from_config(pipe.scheduler.config)
587
- pipe.to(torch_device)
588
- pipe.set_progress_bar_config(disable=None)
589
-
590
- inputs = self.get_inputs()
591
- inputs["num_inference_steps"] = 30
592
- image = pipe(**inputs).images[0]
593
-
594
- expected_image = load_numpy(
595
- "https://huggingface.co/datasets/diffusers/test-arrays/resolve/main"
596
- "/stable_diffusion_depth2img/stable_diffusion_2_0_dpm_multi.npy"
597
- )
598
- max_diff = np.abs(expected_image - image).max()
599
- assert max_diff < 1e-3
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
spaces/Andy1621/uniformer_image_segmentation/configs/deeplabv3/deeplabv3_r50-d8_512x1024_80k_cityscapes.py DELETED
@@ -1,4 +0,0 @@
1
- _base_ = [
2
- '../_base_/models/deeplabv3_r50-d8.py', '../_base_/datasets/cityscapes.py',
3
- '../_base_/default_runtime.py', '../_base_/schedules/schedule_80k.py'
4
- ]
 
 
 
 
 
spaces/Andy1621/uniformer_image_segmentation/configs/dmnet/dmnet_r50-d8_512x1024_80k_cityscapes.py DELETED
@@ -1,4 +0,0 @@
1
- _base_ = [
2
- '../_base_/models/dmnet_r50-d8.py', '../_base_/datasets/cityscapes.py',
3
- '../_base_/default_runtime.py', '../_base_/schedules/schedule_80k.py'
4
- ]
 
 
 
 
 
spaces/AnishKumbhar/ChatBot/text-generation-webui-main/.github/pull_request_template.md DELETED
@@ -1,3 +0,0 @@
1
- ## Checklist:
2
-
3
- - [ ] I have read the [Contributing guidelines](https://github.com/oobabooga/text-generation-webui/wiki/Contributing-guidelines).
 
 
 
 
spaces/Anonymous-sub/Rerender/ControlNet/config.py DELETED
@@ -1 +0,0 @@
1
- save_memory = False
 
 
spaces/Ariharasudhan/YoloV5/models/tf.py DELETED
@@ -1,608 +0,0 @@
1
- # YOLOv5 🚀 by Ultralytics, GPL-3.0 license
2
- """
3
- TensorFlow, Keras and TFLite versions of YOLOv5
4
- Authored by https://github.com/zldrobit in PR https://github.com/ultralytics/yolov5/pull/1127
5
-
6
- Usage:
7
- $ python models/tf.py --weights yolov5s.pt
8
-
9
- Export:
10
- $ python export.py --weights yolov5s.pt --include saved_model pb tflite tfjs
11
- """
12
-
13
- import argparse
14
- import sys
15
- from copy import deepcopy
16
- from pathlib import Path
17
-
18
- FILE = Path(__file__).resolve()
19
- ROOT = FILE.parents[1] # YOLOv5 root directory
20
- if str(ROOT) not in sys.path:
21
- sys.path.append(str(ROOT)) # add ROOT to PATH
22
- # ROOT = ROOT.relative_to(Path.cwd()) # relative
23
-
24
- import numpy as np
25
- import tensorflow as tf
26
- import torch
27
- import torch.nn as nn
28
- from tensorflow import keras
29
-
30
- from models.common import (C3, SPP, SPPF, Bottleneck, BottleneckCSP, C3x, Concat, Conv, CrossConv, DWConv,
31
- DWConvTranspose2d, Focus, autopad)
32
- from models.experimental import MixConv2d, attempt_load
33
- from models.yolo import Detect, Segment
34
- from utils.activations import SiLU
35
- from utils.general import LOGGER, make_divisible, print_args
36
-
37
-
38
- class TFBN(keras.layers.Layer):
39
- # TensorFlow BatchNormalization wrapper
40
- def __init__(self, w=None):
41
- super().__init__()
42
- self.bn = keras.layers.BatchNormalization(
43
- beta_initializer=keras.initializers.Constant(w.bias.numpy()),
44
- gamma_initializer=keras.initializers.Constant(w.weight.numpy()),
45
- moving_mean_initializer=keras.initializers.Constant(w.running_mean.numpy()),
46
- moving_variance_initializer=keras.initializers.Constant(w.running_var.numpy()),
47
- epsilon=w.eps)
48
-
49
- def call(self, inputs):
50
- return self.bn(inputs)
51
-
52
-
53
- class TFPad(keras.layers.Layer):
54
- # Pad inputs in spatial dimensions 1 and 2
55
- def __init__(self, pad):
56
- super().__init__()
57
- if isinstance(pad, int):
58
- self.pad = tf.constant([[0, 0], [pad, pad], [pad, pad], [0, 0]])
59
- else: # tuple/list
60
- self.pad = tf.constant([[0, 0], [pad[0], pad[0]], [pad[1], pad[1]], [0, 0]])
61
-
62
- def call(self, inputs):
63
- return tf.pad(inputs, self.pad, mode='constant', constant_values=0)
64
-
65
-
66
- class TFConv(keras.layers.Layer):
67
- # Standard convolution
68
- def __init__(self, c1, c2, k=1, s=1, p=None, g=1, act=True, w=None):
69
- # ch_in, ch_out, weights, kernel, stride, padding, groups
70
- super().__init__()
71
- assert g == 1, "TF v2.2 Conv2D does not support 'groups' argument"
72
- # TensorFlow convolution padding is inconsistent with PyTorch (e.g. k=3 s=2 'SAME' padding)
73
- # see https://stackoverflow.com/questions/52975843/comparing-conv2d-with-padding-between-tensorflow-and-pytorch
74
- conv = keras.layers.Conv2D(
75
- filters=c2,
76
- kernel_size=k,
77
- strides=s,
78
- padding='SAME' if s == 1 else 'VALID',
79
- use_bias=not hasattr(w, 'bn'),
80
- kernel_initializer=keras.initializers.Constant(w.conv.weight.permute(2, 3, 1, 0).numpy()),
81
- bias_initializer='zeros' if hasattr(w, 'bn') else keras.initializers.Constant(w.conv.bias.numpy()))
82
- self.conv = conv if s == 1 else keras.Sequential([TFPad(autopad(k, p)), conv])
83
- self.bn = TFBN(w.bn) if hasattr(w, 'bn') else tf.identity
84
- self.act = activations(w.act) if act else tf.identity
85
-
86
- def call(self, inputs):
87
- return self.act(self.bn(self.conv(inputs)))
88
-
89
-
90
- class TFDWConv(keras.layers.Layer):
91
- # Depthwise convolution
92
- def __init__(self, c1, c2, k=1, s=1, p=None, act=True, w=None):
93
- # ch_in, ch_out, weights, kernel, stride, padding, groups
94
- super().__init__()
95
- assert c2 % c1 == 0, f'TFDWConv() output={c2} must be a multiple of input={c1} channels'
96
- conv = keras.layers.DepthwiseConv2D(
97
- kernel_size=k,
98
- depth_multiplier=c2 // c1,
99
- strides=s,
100
- padding='SAME' if s == 1 else 'VALID',
101
- use_bias=not hasattr(w, 'bn'),
102
- depthwise_initializer=keras.initializers.Constant(w.conv.weight.permute(2, 3, 1, 0).numpy()),
103
- bias_initializer='zeros' if hasattr(w, 'bn') else keras.initializers.Constant(w.conv.bias.numpy()))
104
- self.conv = conv if s == 1 else keras.Sequential([TFPad(autopad(k, p)), conv])
105
- self.bn = TFBN(w.bn) if hasattr(w, 'bn') else tf.identity
106
- self.act = activations(w.act) if act else tf.identity
107
-
108
- def call(self, inputs):
109
- return self.act(self.bn(self.conv(inputs)))
110
-
111
-
112
- class TFDWConvTranspose2d(keras.layers.Layer):
113
- # Depthwise ConvTranspose2d
114
- def __init__(self, c1, c2, k=1, s=1, p1=0, p2=0, w=None):
115
- # ch_in, ch_out, weights, kernel, stride, padding, groups
116
- super().__init__()
117
- assert c1 == c2, f'TFDWConv() output={c2} must be equal to input={c1} channels'
118
- assert k == 4 and p1 == 1, 'TFDWConv() only valid for k=4 and p1=1'
119
- weight, bias = w.weight.permute(2, 3, 1, 0).numpy(), w.bias.numpy()
120
- self.c1 = c1
121
- self.conv = [
122
- keras.layers.Conv2DTranspose(filters=1,
123
- kernel_size=k,
124
- strides=s,
125
- padding='VALID',
126
- output_padding=p2,
127
- use_bias=True,
128
- kernel_initializer=keras.initializers.Constant(weight[..., i:i + 1]),
129
- bias_initializer=keras.initializers.Constant(bias[i])) for i in range(c1)]
130
-
131
- def call(self, inputs):
132
- return tf.concat([m(x) for m, x in zip(self.conv, tf.split(inputs, self.c1, 3))], 3)[:, 1:-1, 1:-1]
133
-
134
-
135
- class TFFocus(keras.layers.Layer):
136
- # Focus wh information into c-space
137
- def __init__(self, c1, c2, k=1, s=1, p=None, g=1, act=True, w=None):
138
- # ch_in, ch_out, kernel, stride, padding, groups
139
- super().__init__()
140
- self.conv = TFConv(c1 * 4, c2, k, s, p, g, act, w.conv)
141
-
142
- def call(self, inputs): # x(b,w,h,c) -> y(b,w/2,h/2,4c)
143
- # inputs = inputs / 255 # normalize 0-255 to 0-1
144
- inputs = [inputs[:, ::2, ::2, :], inputs[:, 1::2, ::2, :], inputs[:, ::2, 1::2, :], inputs[:, 1::2, 1::2, :]]
145
- return self.conv(tf.concat(inputs, 3))
146
-
147
-
148
- class TFBottleneck(keras.layers.Layer):
149
- # Standard bottleneck
150
- def __init__(self, c1, c2, shortcut=True, g=1, e=0.5, w=None): # ch_in, ch_out, shortcut, groups, expansion
151
- super().__init__()
152
- c_ = int(c2 * e) # hidden channels
153
- self.cv1 = TFConv(c1, c_, 1, 1, w=w.cv1)
154
- self.cv2 = TFConv(c_, c2, 3, 1, g=g, w=w.cv2)
155
- self.add = shortcut and c1 == c2
156
-
157
- def call(self, inputs):
158
- return inputs + self.cv2(self.cv1(inputs)) if self.add else self.cv2(self.cv1(inputs))
159
-
160
-
161
- class TFCrossConv(keras.layers.Layer):
162
- # Cross Convolution
163
- def __init__(self, c1, c2, k=3, s=1, g=1, e=1.0, shortcut=False, w=None):
164
- super().__init__()
165
- c_ = int(c2 * e) # hidden channels
166
- self.cv1 = TFConv(c1, c_, (1, k), (1, s), w=w.cv1)
167
- self.cv2 = TFConv(c_, c2, (k, 1), (s, 1), g=g, w=w.cv2)
168
- self.add = shortcut and c1 == c2
169
-
170
- def call(self, inputs):
171
- return inputs + self.cv2(self.cv1(inputs)) if self.add else self.cv2(self.cv1(inputs))
172
-
173
-
174
- class TFConv2d(keras.layers.Layer):
175
- # Substitution for PyTorch nn.Conv2D
176
- def __init__(self, c1, c2, k, s=1, g=1, bias=True, w=None):
177
- super().__init__()
178
- assert g == 1, "TF v2.2 Conv2D does not support 'groups' argument"
179
- self.conv = keras.layers.Conv2D(filters=c2,
180
- kernel_size=k,
181
- strides=s,
182
- padding='VALID',
183
- use_bias=bias,
184
- kernel_initializer=keras.initializers.Constant(
185
- w.weight.permute(2, 3, 1, 0).numpy()),
186
- bias_initializer=keras.initializers.Constant(w.bias.numpy()) if bias else None)
187
-
188
- def call(self, inputs):
189
- return self.conv(inputs)
190
-
191
-
192
- class TFBottleneckCSP(keras.layers.Layer):
193
- # CSP Bottleneck https://github.com/WongKinYiu/CrossStagePartialNetworks
194
- def __init__(self, c1, c2, n=1, shortcut=True, g=1, e=0.5, w=None):
195
- # ch_in, ch_out, number, shortcut, groups, expansion
196
- super().__init__()
197
- c_ = int(c2 * e) # hidden channels
198
- self.cv1 = TFConv(c1, c_, 1, 1, w=w.cv1)
199
- self.cv2 = TFConv2d(c1, c_, 1, 1, bias=False, w=w.cv2)
200
- self.cv3 = TFConv2d(c_, c_, 1, 1, bias=False, w=w.cv3)
201
- self.cv4 = TFConv(2 * c_, c2, 1, 1, w=w.cv4)
202
- self.bn = TFBN(w.bn)
203
- self.act = lambda x: keras.activations.swish(x)
204
- self.m = keras.Sequential([TFBottleneck(c_, c_, shortcut, g, e=1.0, w=w.m[j]) for j in range(n)])
205
-
206
- def call(self, inputs):
207
- y1 = self.cv3(self.m(self.cv1(inputs)))
208
- y2 = self.cv2(inputs)
209
- return self.cv4(self.act(self.bn(tf.concat((y1, y2), axis=3))))
210
-
211
-
212
- class TFC3(keras.layers.Layer):
213
- # CSP Bottleneck with 3 convolutions
214
- def __init__(self, c1, c2, n=1, shortcut=True, g=1, e=0.5, w=None):
215
- # ch_in, ch_out, number, shortcut, groups, expansion
216
- super().__init__()
217
- c_ = int(c2 * e) # hidden channels
218
- self.cv1 = TFConv(c1, c_, 1, 1, w=w.cv1)
219
- self.cv2 = TFConv(c1, c_, 1, 1, w=w.cv2)
220
- self.cv3 = TFConv(2 * c_, c2, 1, 1, w=w.cv3)
221
- self.m = keras.Sequential([TFBottleneck(c_, c_, shortcut, g, e=1.0, w=w.m[j]) for j in range(n)])
222
-
223
- def call(self, inputs):
224
- return self.cv3(tf.concat((self.m(self.cv1(inputs)), self.cv2(inputs)), axis=3))
225
-
226
-
227
- class TFC3x(keras.layers.Layer):
228
- # 3 module with cross-convolutions
229
- def __init__(self, c1, c2, n=1, shortcut=True, g=1, e=0.5, w=None):
230
- # ch_in, ch_out, number, shortcut, groups, expansion
231
- super().__init__()
232
- c_ = int(c2 * e) # hidden channels
233
- self.cv1 = TFConv(c1, c_, 1, 1, w=w.cv1)
234
- self.cv2 = TFConv(c1, c_, 1, 1, w=w.cv2)
235
- self.cv3 = TFConv(2 * c_, c2, 1, 1, w=w.cv3)
236
- self.m = keras.Sequential([
237
- TFCrossConv(c_, c_, k=3, s=1, g=g, e=1.0, shortcut=shortcut, w=w.m[j]) for j in range(n)])
238
-
239
- def call(self, inputs):
240
- return self.cv3(tf.concat((self.m(self.cv1(inputs)), self.cv2(inputs)), axis=3))
241
-
242
-
243
- class TFSPP(keras.layers.Layer):
244
- # Spatial pyramid pooling layer used in YOLOv3-SPP
245
- def __init__(self, c1, c2, k=(5, 9, 13), w=None):
246
- super().__init__()
247
- c_ = c1 // 2 # hidden channels
248
- self.cv1 = TFConv(c1, c_, 1, 1, w=w.cv1)
249
- self.cv2 = TFConv(c_ * (len(k) + 1), c2, 1, 1, w=w.cv2)
250
- self.m = [keras.layers.MaxPool2D(pool_size=x, strides=1, padding='SAME') for x in k]
251
-
252
- def call(self, inputs):
253
- x = self.cv1(inputs)
254
- return self.cv2(tf.concat([x] + [m(x) for m in self.m], 3))
255
-
256
-
257
- class TFSPPF(keras.layers.Layer):
258
- # Spatial pyramid pooling-Fast layer
259
- def __init__(self, c1, c2, k=5, w=None):
260
- super().__init__()
261
- c_ = c1 // 2 # hidden channels
262
- self.cv1 = TFConv(c1, c_, 1, 1, w=w.cv1)
263
- self.cv2 = TFConv(c_ * 4, c2, 1, 1, w=w.cv2)
264
- self.m = keras.layers.MaxPool2D(pool_size=k, strides=1, padding='SAME')
265
-
266
- def call(self, inputs):
267
- x = self.cv1(inputs)
268
- y1 = self.m(x)
269
- y2 = self.m(y1)
270
- return self.cv2(tf.concat([x, y1, y2, self.m(y2)], 3))
271
-
272
-
273
- class TFDetect(keras.layers.Layer):
274
- # TF YOLOv5 Detect layer
275
- def __init__(self, nc=80, anchors=(), ch=(), imgsz=(640, 640), w=None): # detection layer
276
- super().__init__()
277
- self.stride = tf.convert_to_tensor(w.stride.numpy(), dtype=tf.float32)
278
- self.nc = nc # number of classes
279
- self.no = nc + 5 # number of outputs per anchor
280
- self.nl = len(anchors) # number of detection layers
281
- self.na = len(anchors[0]) // 2 # number of anchors
282
- self.grid = [tf.zeros(1)] * self.nl # init grid
283
- self.anchors = tf.convert_to_tensor(w.anchors.numpy(), dtype=tf.float32)
284
- self.anchor_grid = tf.reshape(self.anchors * tf.reshape(self.stride, [self.nl, 1, 1]), [self.nl, 1, -1, 1, 2])
285
- self.m = [TFConv2d(x, self.no * self.na, 1, w=w.m[i]) for i, x in enumerate(ch)]
286
- self.training = False # set to False after building model
287
- self.imgsz = imgsz
288
- for i in range(self.nl):
289
- ny, nx = self.imgsz[0] // self.stride[i], self.imgsz[1] // self.stride[i]
290
- self.grid[i] = self._make_grid(nx, ny)
291
-
292
- def call(self, inputs):
293
- z = [] # inference output
294
- x = []
295
- for i in range(self.nl):
296
- x.append(self.m[i](inputs[i]))
297
- # x(bs,20,20,255) to x(bs,3,20,20,85)
298
- ny, nx = self.imgsz[0] // self.stride[i], self.imgsz[1] // self.stride[i]
299
- x[i] = tf.reshape(x[i], [-1, ny * nx, self.na, self.no])
300
-
301
- if not self.training: # inference
302
- y = x[i]
303
- grid = tf.transpose(self.grid[i], [0, 2, 1, 3]) - 0.5
304
- anchor_grid = tf.transpose(self.anchor_grid[i], [0, 2, 1, 3]) * 4
305
- xy = (tf.sigmoid(y[..., 0:2]) * 2 + grid) * self.stride[i] # xy
306
- wh = tf.sigmoid(y[..., 2:4]) ** 2 * anchor_grid
307
- # Normalize xywh to 0-1 to reduce calibration error
308
- xy /= tf.constant([[self.imgsz[1], self.imgsz[0]]], dtype=tf.float32)
309
- wh /= tf.constant([[self.imgsz[1], self.imgsz[0]]], dtype=tf.float32)
310
- y = tf.concat([xy, wh, tf.sigmoid(y[..., 4:5 + self.nc]), y[..., 5 + self.nc:]], -1)
311
- z.append(tf.reshape(y, [-1, self.na * ny * nx, self.no]))
312
-
313
- return tf.transpose(x, [0, 2, 1, 3]) if self.training else (tf.concat(z, 1),)
314
-
315
- @staticmethod
316
- def _make_grid(nx=20, ny=20):
317
- # yv, xv = torch.meshgrid([torch.arange(ny), torch.arange(nx)])
318
- # return torch.stack((xv, yv), 2).view((1, 1, ny, nx, 2)).float()
319
- xv, yv = tf.meshgrid(tf.range(nx), tf.range(ny))
320
- return tf.cast(tf.reshape(tf.stack([xv, yv], 2), [1, 1, ny * nx, 2]), dtype=tf.float32)
321
-
322
-
323
- class TFSegment(TFDetect):
324
- # YOLOv5 Segment head for segmentation models
325
- def __init__(self, nc=80, anchors=(), nm=32, npr=256, ch=(), imgsz=(640, 640), w=None):
326
- super().__init__(nc, anchors, ch, imgsz, w)
327
- self.nm = nm # number of masks
328
- self.npr = npr # number of protos
329
- self.no = 5 + nc + self.nm # number of outputs per anchor
330
- self.m = [TFConv2d(x, self.no * self.na, 1, w=w.m[i]) for i, x in enumerate(ch)] # output conv
331
- self.proto = TFProto(ch[0], self.npr, self.nm, w=w.proto) # protos
332
- self.detect = TFDetect.call
333
-
334
- def call(self, x):
335
- p = self.proto(x[0])
336
- # p = TFUpsample(None, scale_factor=4, mode='nearest')(self.proto(x[0])) # (optional) full-size protos
337
- p = tf.transpose(p, [0, 3, 1, 2]) # from shape(1,160,160,32) to shape(1,32,160,160)
338
- x = self.detect(self, x)
339
- return (x, p) if self.training else (x[0], p)
340
-
341
-
342
- class TFProto(keras.layers.Layer):
343
-
344
- def __init__(self, c1, c_=256, c2=32, w=None):
345
- super().__init__()
346
- self.cv1 = TFConv(c1, c_, k=3, w=w.cv1)
347
- self.upsample = TFUpsample(None, scale_factor=2, mode='nearest')
348
- self.cv2 = TFConv(c_, c_, k=3, w=w.cv2)
349
- self.cv3 = TFConv(c_, c2, w=w.cv3)
350
-
351
- def call(self, inputs):
352
- return self.cv3(self.cv2(self.upsample(self.cv1(inputs))))
353
-
354
-
355
- class TFUpsample(keras.layers.Layer):
356
- # TF version of torch.nn.Upsample()
357
- def __init__(self, size, scale_factor, mode, w=None): # warning: all arguments needed including 'w'
358
- super().__init__()
359
- assert scale_factor % 2 == 0, "scale_factor must be multiple of 2"
360
- self.upsample = lambda x: tf.image.resize(x, (x.shape[1] * scale_factor, x.shape[2] * scale_factor), mode)
361
- # self.upsample = keras.layers.UpSampling2D(size=scale_factor, interpolation=mode)
362
- # with default arguments: align_corners=False, half_pixel_centers=False
363
- # self.upsample = lambda x: tf.raw_ops.ResizeNearestNeighbor(images=x,
364
- # size=(x.shape[1] * 2, x.shape[2] * 2))
365
-
366
- def call(self, inputs):
367
- return self.upsample(inputs)
368
-
369
-
370
- class TFConcat(keras.layers.Layer):
371
- # TF version of torch.concat()
372
- def __init__(self, dimension=1, w=None):
373
- super().__init__()
374
- assert dimension == 1, "convert only NCHW to NHWC concat"
375
- self.d = 3
376
-
377
- def call(self, inputs):
378
- return tf.concat(inputs, self.d)
379
-
380
-
381
- def parse_model(d, ch, model, imgsz): # model_dict, input_channels(3)
382
- LOGGER.info(f"\n{'':>3}{'from':>18}{'n':>3}{'params':>10} {'module':<40}{'arguments':<30}")
383
- anchors, nc, gd, gw = d['anchors'], d['nc'], d['depth_multiple'], d['width_multiple']
384
- na = (len(anchors[0]) // 2) if isinstance(anchors, list) else anchors # number of anchors
385
- no = na * (nc + 5) # number of outputs = anchors * (classes + 5)
386
-
387
- layers, save, c2 = [], [], ch[-1] # layers, savelist, ch out
388
- for i, (f, n, m, args) in enumerate(d['backbone'] + d['head']): # from, number, module, args
389
- m_str = m
390
- m = eval(m) if isinstance(m, str) else m # eval strings
391
- for j, a in enumerate(args):
392
- try:
393
- args[j] = eval(a) if isinstance(a, str) else a # eval strings
394
- except NameError:
395
- pass
396
-
397
- n = max(round(n * gd), 1) if n > 1 else n # depth gain
398
- if m in [
399
- nn.Conv2d, Conv, DWConv, DWConvTranspose2d, Bottleneck, SPP, SPPF, MixConv2d, Focus, CrossConv,
400
- BottleneckCSP, C3, C3x]:
401
- c1, c2 = ch[f], args[0]
402
- c2 = make_divisible(c2 * gw, 8) if c2 != no else c2
403
-
404
- args = [c1, c2, *args[1:]]
405
- if m in [BottleneckCSP, C3, C3x]:
406
- args.insert(2, n)
407
- n = 1
408
- elif m is nn.BatchNorm2d:
409
- args = [ch[f]]
410
- elif m is Concat:
411
- c2 = sum(ch[-1 if x == -1 else x + 1] for x in f)
412
- elif m in [Detect, Segment]:
413
- args.append([ch[x + 1] for x in f])
414
- if isinstance(args[1], int): # number of anchors
415
- args[1] = [list(range(args[1] * 2))] * len(f)
416
- if m is Segment:
417
- args[3] = make_divisible(args[3] * gw, 8)
418
- args.append(imgsz)
419
- else:
420
- c2 = ch[f]
421
-
422
- tf_m = eval('TF' + m_str.replace('nn.', ''))
423
- m_ = keras.Sequential([tf_m(*args, w=model.model[i][j]) for j in range(n)]) if n > 1 \
424
- else tf_m(*args, w=model.model[i]) # module
425
-
426
- torch_m_ = nn.Sequential(*(m(*args) for _ in range(n))) if n > 1 else m(*args) # module
427
- t = str(m)[8:-2].replace('__main__.', '') # module type
428
- np = sum(x.numel() for x in torch_m_.parameters()) # number params
429
- m_.i, m_.f, m_.type, m_.np = i, f, t, np # attach index, 'from' index, type, number params
430
- LOGGER.info(f'{i:>3}{str(f):>18}{str(n):>3}{np:>10} {t:<40}{str(args):<30}') # print
431
- save.extend(x % i for x in ([f] if isinstance(f, int) else f) if x != -1) # append to savelist
432
- layers.append(m_)
433
- ch.append(c2)
434
- return keras.Sequential(layers), sorted(save)
435
-
436
-
437
- class TFModel:
438
- # TF YOLOv5 model
439
- def __init__(self, cfg='yolov5s.yaml', ch=3, nc=None, model=None, imgsz=(640, 640)): # model, channels, classes
440
- super().__init__()
441
- if isinstance(cfg, dict):
442
- self.yaml = cfg # model dict
443
- else: # is *.yaml
444
- import yaml # for torch hub
445
- self.yaml_file = Path(cfg).name
446
- with open(cfg) as f:
447
- self.yaml = yaml.load(f, Loader=yaml.FullLoader) # model dict
448
-
449
- # Define model
450
- if nc and nc != self.yaml['nc']:
451
- LOGGER.info(f"Overriding {cfg} nc={self.yaml['nc']} with nc={nc}")
452
- self.yaml['nc'] = nc # override yaml value
453
- self.model, self.savelist = parse_model(deepcopy(self.yaml), ch=[ch], model=model, imgsz=imgsz)
454
-
455
- def predict(self,
456
- inputs,
457
- tf_nms=False,
458
- agnostic_nms=False,
459
- topk_per_class=100,
460
- topk_all=100,
461
- iou_thres=0.45,
462
- conf_thres=0.25):
463
- y = [] # outputs
464
- x = inputs
465
- for m in self.model.layers:
466
- if m.f != -1: # if not from previous layer
467
- x = y[m.f] if isinstance(m.f, int) else [x if j == -1 else y[j] for j in m.f] # from earlier layers
468
-
469
- x = m(x) # run
470
- y.append(x if m.i in self.savelist else None) # save output
471
-
472
- # Add TensorFlow NMS
473
- if tf_nms:
474
- boxes = self._xywh2xyxy(x[0][..., :4])
475
- probs = x[0][:, :, 4:5]
476
- classes = x[0][:, :, 5:]
477
- scores = probs * classes
478
- if agnostic_nms:
479
- nms = AgnosticNMS()((boxes, classes, scores), topk_all, iou_thres, conf_thres)
480
- else:
481
- boxes = tf.expand_dims(boxes, 2)
482
- nms = tf.image.combined_non_max_suppression(boxes,
483
- scores,
484
- topk_per_class,
485
- topk_all,
486
- iou_thres,
487
- conf_thres,
488
- clip_boxes=False)
489
- return (nms,)
490
- return x # output [1,6300,85] = [xywh, conf, class0, class1, ...]
491
- # x = x[0] # [x(1,6300,85), ...] to x(6300,85)
492
- # xywh = x[..., :4] # x(6300,4) boxes
493
- # conf = x[..., 4:5] # x(6300,1) confidences
494
- # cls = tf.reshape(tf.cast(tf.argmax(x[..., 5:], axis=1), tf.float32), (-1, 1)) # x(6300,1) classes
495
- # return tf.concat([conf, cls, xywh], 1)
496
-
497
- @staticmethod
498
- def _xywh2xyxy(xywh):
499
- # Convert nx4 boxes from [x, y, w, h] to [x1, y1, x2, y2] where xy1=top-left, xy2=bottom-right
500
- x, y, w, h = tf.split(xywh, num_or_size_splits=4, axis=-1)
501
- return tf.concat([x - w / 2, y - h / 2, x + w / 2, y + h / 2], axis=-1)
502
-
503
-
504
- class AgnosticNMS(keras.layers.Layer):
505
- # TF Agnostic NMS
506
- def call(self, input, topk_all, iou_thres, conf_thres):
507
- # wrap map_fn to avoid TypeSpec related error https://stackoverflow.com/a/65809989/3036450
508
- return tf.map_fn(lambda x: self._nms(x, topk_all, iou_thres, conf_thres),
509
- input,
510
- fn_output_signature=(tf.float32, tf.float32, tf.float32, tf.int32),
511
- name='agnostic_nms')
512
-
513
- @staticmethod
514
- def _nms(x, topk_all=100, iou_thres=0.45, conf_thres=0.25): # agnostic NMS
515
- boxes, classes, scores = x
516
- class_inds = tf.cast(tf.argmax(classes, axis=-1), tf.float32)
517
- scores_inp = tf.reduce_max(scores, -1)
518
- selected_inds = tf.image.non_max_suppression(boxes,
519
- scores_inp,
520
- max_output_size=topk_all,
521
- iou_threshold=iou_thres,
522
- score_threshold=conf_thres)
523
- selected_boxes = tf.gather(boxes, selected_inds)
524
- padded_boxes = tf.pad(selected_boxes,
525
- paddings=[[0, topk_all - tf.shape(selected_boxes)[0]], [0, 0]],
526
- mode="CONSTANT",
527
- constant_values=0.0)
528
- selected_scores = tf.gather(scores_inp, selected_inds)
529
- padded_scores = tf.pad(selected_scores,
530
- paddings=[[0, topk_all - tf.shape(selected_boxes)[0]]],
531
- mode="CONSTANT",
532
- constant_values=-1.0)
533
- selected_classes = tf.gather(class_inds, selected_inds)
534
- padded_classes = tf.pad(selected_classes,
535
- paddings=[[0, topk_all - tf.shape(selected_boxes)[0]]],
536
- mode="CONSTANT",
537
- constant_values=-1.0)
538
- valid_detections = tf.shape(selected_inds)[0]
539
- return padded_boxes, padded_scores, padded_classes, valid_detections
540
-
541
-
542
- def activations(act=nn.SiLU):
543
- # Returns TF activation from input PyTorch activation
544
- if isinstance(act, nn.LeakyReLU):
545
- return lambda x: keras.activations.relu(x, alpha=0.1)
546
- elif isinstance(act, nn.Hardswish):
547
- return lambda x: x * tf.nn.relu6(x + 3) * 0.166666667
548
- elif isinstance(act, (nn.SiLU, SiLU)):
549
- return lambda x: keras.activations.swish(x)
550
- else:
551
- raise Exception(f'no matching TensorFlow activation found for PyTorch activation {act}')
552
-
553
-
554
- def representative_dataset_gen(dataset, ncalib=100):
555
- # Representative dataset generator for use with converter.representative_dataset, returns a generator of np arrays
556
- for n, (path, img, im0s, vid_cap, string) in enumerate(dataset):
557
- im = np.transpose(img, [1, 2, 0])
558
- im = np.expand_dims(im, axis=0).astype(np.float32)
559
- im /= 255
560
- yield [im]
561
- if n >= ncalib:
562
- break
563
-
564
-
565
- def run(
566
- weights=ROOT / 'yolov5s.pt', # weights path
567
- imgsz=(640, 640), # inference size h,w
568
- batch_size=1, # batch size
569
- dynamic=False, # dynamic batch size
570
- ):
571
- # PyTorch model
572
- im = torch.zeros((batch_size, 3, *imgsz)) # BCHW image
573
- model = attempt_load(weights, device=torch.device('cpu'), inplace=True, fuse=False)
574
- _ = model(im) # inference
575
- model.info()
576
-
577
- # TensorFlow model
578
- im = tf.zeros((batch_size, *imgsz, 3)) # BHWC image
579
- tf_model = TFModel(cfg=model.yaml, model=model, nc=model.nc, imgsz=imgsz)
580
- _ = tf_model.predict(im) # inference
581
-
582
- # Keras model
583
- im = keras.Input(shape=(*imgsz, 3), batch_size=None if dynamic else batch_size)
584
- keras_model = keras.Model(inputs=im, outputs=tf_model.predict(im))
585
- keras_model.summary()
586
-
587
- LOGGER.info('PyTorch, TensorFlow and Keras models successfully verified.\nUse export.py for TF model export.')
588
-
589
-
590
- def parse_opt():
591
- parser = argparse.ArgumentParser()
592
- parser.add_argument('--weights', type=str, default=ROOT / 'yolov5s.pt', help='weights path')
593
- parser.add_argument('--imgsz', '--img', '--img-size', nargs='+', type=int, default=[640], help='inference size h,w')
594
- parser.add_argument('--batch-size', type=int, default=1, help='batch size')
595
- parser.add_argument('--dynamic', action='store_true', help='dynamic batch size')
596
- opt = parser.parse_args()
597
- opt.imgsz *= 2 if len(opt.imgsz) == 1 else 1 # expand
598
- print_args(vars(opt))
599
- return opt
600
-
601
-
602
- def main(opt):
603
- run(**vars(opt))
604
-
605
-
606
- if __name__ == "__main__":
607
- opt = parse_opt()
608
- main(opt)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
spaces/ArtyomKhyan/Detection/utils/datasets.py DELETED
@@ -1,887 +0,0 @@
1
- import glob
2
- import math
3
- import os
4
- import random
5
- import shutil
6
- import time
7
- from pathlib import Path
8
- from threading import Thread
9
-
10
- import cv2
11
- import numpy as np
12
- import torch
13
- from PIL import Image, ExifTags
14
- from torch.utils.data import Dataset
15
- from tqdm import tqdm
16
-
17
- from utils.utils import xyxy2xywh, xywh2xyxy
18
- help_url = 'https://github.com/ultralytics/yolov5/wiki/Train-Custom-Data'
19
- img_formats = ['.bmp', '.jpg', '.jpeg', '.png', '.tif', '.dng']
20
- vid_formats = ['.mov', '.avi', '.mp4', '.mpg', '.mpeg', '.m4v', '.wmv', '.mkv']
21
-
22
- # Get orientation exif tag
23
- for orientation in ExifTags.TAGS.keys():
24
- if ExifTags.TAGS[orientation] == 'Orientation':
25
- break
26
-
27
-
28
- def exif_size(img):
29
- # Returns exif-corrected PIL size
30
- s = img.size # (width, height)
31
- try:
32
- rotation = dict(img._getexif().items())[orientation]
33
- if rotation == 6: # rotation 270
34
- s = (s[1], s[0])
35
- elif rotation == 8: # rotation 90
36
- s = (s[1], s[0])
37
- except:
38
- pass
39
-
40
- return s
41
-
42
-
43
- def create_dataloader(path, imgsz, batch_size, stride, opt, hyp=None, augment=False, cache=False, pad=0.0, rect=False):
44
- dataset = LoadImagesAndLabels(path, imgsz, batch_size,
45
- augment=augment, # augment images
46
- hyp=hyp, # augmentation hyperparameters
47
- rect=rect, # rectangular training
48
- cache_images=cache,
49
- single_cls=opt.single_cls,
50
- stride=stride,
51
- pad=pad)
52
-
53
- batch_size = min(batch_size, len(dataset))
54
- nw = min([os.cpu_count(), batch_size if batch_size > 1 else 0, 8]) # number of workers
55
- dataloader = torch.utils.data.DataLoader(dataset,
56
- batch_size=batch_size,
57
- num_workers=nw,
58
- pin_memory=True,
59
- collate_fn=LoadImagesAndLabels.collate_fn)
60
- return dataloader, dataset
61
-
62
-
63
- class LoadImages: # for inference
64
- def __init__(self, path, img_size=640):
65
- path = str(Path(path)) # os-agnostic
66
- files = []
67
- if os.path.isdir(path):
68
- files = sorted(glob.glob(os.path.join(path, '*.*')))
69
- elif os.path.isfile(path):
70
- files = [path]
71
-
72
- images = [x for x in files if os.path.splitext(x)[-1].lower() in img_formats]
73
- videos = [x for x in files if os.path.splitext(x)[-1].lower() in vid_formats]
74
- nI, nV = len(images), len(videos)
75
-
76
- self.img_size = img_size
77
- self.files = images + videos
78
- self.nF = nI + nV # number of files
79
- self.video_flag = [False] * nI + [True] * nV
80
- self.mode = 'images'
81
- if any(videos):
82
- self.new_video(videos[0]) # new video
83
- else:
84
- self.cap = None
85
- assert self.nF > 0, 'No images or videos found in %s. Supported formats are:\nimages: %s\nvideos: %s' % \
86
- (path, img_formats, vid_formats)
87
-
88
- def __iter__(self):
89
- self.count = 0
90
- return self
91
-
92
- def __next__(self):
93
- if self.count == self.nF:
94
- raise StopIteration
95
- path = self.files[self.count]
96
-
97
- if self.video_flag[self.count]:
98
- # Read video
99
- self.mode = 'video'
100
- ret_val, img0 = self.cap.read()
101
- if not ret_val:
102
- self.count += 1
103
- self.cap.release()
104
- if self.count == self.nF: # last video
105
- raise StopIteration
106
- else:
107
- path = self.files[self.count]
108
- self.new_video(path)
109
- ret_val, img0 = self.cap.read()
110
-
111
- self.frame += 1
112
- print('video %g/%g (%g/%g) %s: ' % (self.count + 1, self.nF, self.frame, self.nframes, path), end='')
113
-
114
- else:
115
- # Read image
116
- self.count += 1
117
- img0 = cv2.imread(path) # BGR
118
- assert img0 is not None, 'Image Not Found ' + path
119
- print('image %g/%g %s: ' % (self.count, self.nF, path), end='')
120
-
121
- # Padded resize
122
- img = letterbox(img0, new_shape=self.img_size)[0]
123
-
124
- # Convert
125
- img = img[:, :, ::-1].transpose(2, 0, 1) # BGR to RGB, to 3x416x416
126
- img = np.ascontiguousarray(img)
127
-
128
- # cv2.imwrite(path + '.letterbox.jpg', 255 * img.transpose((1, 2, 0))[:, :, ::-1]) # save letterbox image
129
- return path, img, img0, self.cap
130
-
131
- def new_video(self, path):
132
- self.frame = 0
133
- self.cap = cv2.VideoCapture(path)
134
- self.nframes = int(self.cap.get(cv2.CAP_PROP_FRAME_COUNT))
135
-
136
- def __len__(self):
137
- return self.nF # number of files
138
-
139
-
140
- class LoadWebcam: # for inference
141
- def __init__(self, pipe=0, img_size=640):
142
- self.img_size = img_size
143
-
144
- if pipe == '0':
145
- pipe = 0 # local camera
146
- # pipe = 'rtsp://192.168.1.64/1' # IP camera
147
- # pipe = 'rtsp://username:[email protected]/1' # IP camera with login
148
- # pipe = 'rtsp://170.93.143.139/rtplive/470011e600ef003a004ee33696235daa' # IP traffic camera
149
- # pipe = 'http://wmccpinetop.axiscam.net/mjpg/video.mjpg' # IP golf camera
150
-
151
- # https://answers.opencv.org/question/215996/changing-gstreamer-pipeline-to-opencv-in-pythonsolved/
152
- # pipe = '"rtspsrc location="rtsp://username:[email protected]/1" latency=10 ! appsink' # GStreamer
153
-
154
- # https://answers.opencv.org/question/200787/video-acceleration-gstremer-pipeline-in-videocapture/
155
- # https://stackoverflow.com/questions/54095699/install-gstreamer-support-for-opencv-python-package # install help
156
- # pipe = "rtspsrc location=rtsp://root:[email protected]:554/axis-media/media.amp?videocodec=h264&resolution=3840x2160 protocols=GST_RTSP_LOWER_TRANS_TCP ! rtph264depay ! queue ! vaapih264dec ! videoconvert ! appsink" # GStreamer
157
-
158
- self.pipe = pipe
159
- self.cap = cv2.VideoCapture(pipe) # video capture object
160
- self.cap.set(cv2.CAP_PROP_BUFFERSIZE, 3) # set buffer size
161
-
162
- def __iter__(self):
163
- self.count = -1
164
- return self
165
-
166
- def __next__(self):
167
- self.count += 1
168
- if cv2.waitKey(1) == ord('q'): # q to quit
169
- self.cap.release()
170
- cv2.destroyAllWindows()
171
- raise StopIteration
172
-
173
- # Read frame
174
- if self.pipe == 0: # local camera
175
- ret_val, img0 = self.cap.read()
176
- img0 = cv2.flip(img0, 1) # flip left-right
177
- else: # IP camera
178
- n = 0
179
- while True:
180
- n += 1
181
- self.cap.grab()
182
- if n % 30 == 0: # skip frames
183
- ret_val, img0 = self.cap.retrieve()
184
- if ret_val:
185
- break
186
-
187
- # Print
188
- assert ret_val, 'Camera Error %s' % self.pipe
189
- img_path = 'webcam.jpg'
190
- print('webcam %g: ' % self.count, end='')
191
-
192
- # Padded resize
193
- img = letterbox(img0, new_shape=self.img_size)[0]
194
-
195
- # Convert
196
- img = img[:, :, ::-1].transpose(2, 0, 1) # BGR to RGB, to 3x416x416
197
- img = np.ascontiguousarray(img)
198
-
199
- return img_path, img, img0, None
200
-
201
- def __len__(self):
202
- return 0
203
-
204
-
205
- class LoadStreams: # multiple IP or RTSP cameras
206
- def __init__(self, sources='streams.txt', img_size=640):
207
- self.mode = 'images'
208
- self.img_size = img_size
209
-
210
- if os.path.isfile(sources):
211
- with open(sources, 'r') as f:
212
- sources = [x.strip() for x in f.read().splitlines() if len(x.strip())]
213
- else:
214
- sources = [sources]
215
-
216
- n = len(sources)
217
- self.imgs = [None] * n
218
- self.sources = sources
219
- for i, s in enumerate(sources):
220
- # Start the thread to read frames from the video stream
221
- print('%g/%g: %s... ' % (i + 1, n, s), end='')
222
- cap = cv2.VideoCapture(0 if s == '0' else s)
223
- assert cap.isOpened(), 'Failed to open %s' % s
224
- w = int(cap.get(cv2.CAP_PROP_FRAME_WIDTH))
225
- h = int(cap.get(cv2.CAP_PROP_FRAME_HEIGHT))
226
- fps = cap.get(cv2.CAP_PROP_FPS) % 100
227
- _, self.imgs[i] = cap.read() # guarantee first frame
228
- thread = Thread(target=self.update, args=([i, cap]), daemon=True)
229
- print(' success (%gx%g at %.2f FPS).' % (w, h, fps))
230
- thread.start()
231
- print('') # newline
232
-
233
- # check for common shapes
234
- s = np.stack([letterbox(x, new_shape=self.img_size)[0].shape for x in self.imgs], 0) # inference shapes
235
- self.rect = np.unique(s, axis=0).shape[0] == 1 # rect inference if all shapes equal
236
- if not self.rect:
237
- print('WARNING: Different stream shapes detected. For optimal performance supply similarly-shaped streams.')
238
-
239
- def update(self, index, cap):
240
- # Read next stream frame in a daemon thread
241
- n = 0
242
- while cap.isOpened():
243
- n += 1
244
- # _, self.imgs[index] = cap.read()
245
- cap.grab()
246
- if n == 4: # read every 4th frame
247
- _, self.imgs[index] = cap.retrieve()
248
- n = 0
249
- time.sleep(0.01) # wait time
250
-
251
- def __iter__(self):
252
- self.count = -1
253
- return self
254
-
255
- def __next__(self):
256
- self.count += 1
257
- img0 = self.imgs.copy()
258
- if cv2.waitKey(1) == ord('q'): # q to quit
259
- cv2.destroyAllWindows()
260
- raise StopIteration
261
-
262
- # Letterbox
263
- img = [letterbox(x, new_shape=self.img_size, auto=self.rect)[0] for x in img0]
264
-
265
- # Stack
266
- img = np.stack(img, 0)
267
-
268
- # Convert
269
- img = img[:, :, :, ::-1].transpose(0, 3, 1, 2) # BGR to RGB, to bsx3x416x416
270
- img = np.ascontiguousarray(img)
271
-
272
- return self.sources, img, img0, None
273
-
274
- def __len__(self):
275
- return 0 # 1E12 frames = 32 streams at 30 FPS for 30 years
276
-
277
-
278
- class LoadImagesAndLabels(Dataset): # for training/testing
279
- def __init__(self, path, img_size=640, batch_size=16, augment=False, hyp=None, rect=False, image_weights=False,
280
- cache_images=False, single_cls=False, stride=32, pad=0.0):
281
- try:
282
- path = str(Path(path)) # os-agnostic
283
- parent = str(Path(path).parent) + os.sep
284
- if os.path.isfile(path): # file
285
- with open(path, 'r') as f:
286
- f = f.read().splitlines()
287
- f = [x.replace('./', parent) if x.startswith('./') else x for x in f] # local to global path
288
- elif os.path.isdir(path): # folder
289
- f = glob.iglob(path + os.sep + '*.*')
290
- else:
291
- raise Exception('%s does not exist' % path)
292
- self.img_files = [x.replace('/', os.sep) for x in f if os.path.splitext(x)[-1].lower() in img_formats]
293
- except:
294
- raise Exception('Error loading data from %s. See %s' % (path, help_url))
295
-
296
- n = len(self.img_files)
297
- assert n > 0, 'No images found in %s. See %s' % (path, help_url)
298
- bi = np.floor(np.arange(n) / batch_size).astype(np.int) # batch index
299
- nb = bi[-1] + 1 # number of batches
300
-
301
- self.n = n # number of images
302
- self.batch = bi # batch index of image
303
- self.img_size = img_size
304
- self.augment = augment
305
- self.hyp = hyp
306
- self.image_weights = image_weights
307
- self.rect = False if image_weights else rect
308
- self.mosaic = self.augment and not self.rect # load 4 images at a time into a mosaic (only during training)
309
- self.mosaic_border = [-img_size // 2, -img_size // 2]
310
- self.stride = stride
311
-
312
- # Define labels
313
- self.label_files = [x.replace('images', 'labels').replace(os.path.splitext(x)[-1], '.txt')
314
- for x in self.img_files]
315
-
316
- # Read image shapes (wh)
317
- sp = path.replace('.txt', '') + '.shapes' # shapefile path
318
- try:
319
- with open(sp, 'r') as f: # read existing shapefile
320
- s = [x.split() for x in f.read().splitlines()]
321
- assert len(s) == n, 'Shapefile out of sync'
322
- except:
323
- s = [exif_size(Image.open(f)) for f in tqdm(self.img_files, desc='Reading image shapes')]
324
- np.savetxt(sp, s, fmt='%g') # overwrites existing (if any)
325
-
326
- self.shapes = np.array(s, dtype=np.float64)
327
-
328
- # Rectangular Training https://github.com/ultralytics/yolov3/issues/232
329
- if self.rect:
330
- # Sort by aspect ratio
331
- s = self.shapes # wh
332
- ar = s[:, 1] / s[:, 0] # aspect ratio
333
- irect = ar.argsort()
334
- self.img_files = [self.img_files[i] for i in irect]
335
- self.label_files = [self.label_files[i] for i in irect]
336
- self.shapes = s[irect] # wh
337
- ar = ar[irect]
338
-
339
- # Set training image shapes
340
- shapes = [[1, 1]] * nb
341
- for i in range(nb):
342
- ari = ar[bi == i]
343
- mini, maxi = ari.min(), ari.max()
344
- if maxi < 1:
345
- shapes[i] = [maxi, 1]
346
- elif mini > 1:
347
- shapes[i] = [1, 1 / mini]
348
-
349
- self.batch_shapes = np.ceil(np.array(shapes) * img_size / stride + pad).astype(np.int) * stride
350
-
351
- # Cache labels
352
- self.imgs = [None] * n
353
- self.labels = [np.zeros((0, 5), dtype=np.float32)] * n
354
- create_datasubset, extract_bounding_boxes, labels_loaded = False, False, False
355
- nm, nf, ne, ns, nd = 0, 0, 0, 0, 0 # number missing, found, empty, datasubset, duplicate
356
- np_labels_path = str(Path(self.label_files[0]).parent) + '.npy' # saved labels in *.npy file
357
- if os.path.isfile(np_labels_path):
358
- s = np_labels_path # print string
359
- x = np.load(np_labels_path, allow_pickle=True)
360
- if len(x) == n:
361
- self.labels = x
362
- labels_loaded = True
363
- else:
364
- s = path.replace('images', 'labels')
365
-
366
- pbar = tqdm(self.label_files)
367
- for i, file in enumerate(pbar):
368
- if labels_loaded:
369
- l = self.labels[i]
370
- # np.savetxt(file, l, '%g') # save *.txt from *.npy file
371
- else:
372
- try:
373
- with open(file, 'r') as f:
374
- l = np.array([x.split() for x in f.read().splitlines()], dtype=np.float32)
375
- except:
376
- nm += 1 # print('missing labels for image %s' % self.img_files[i]) # file missing
377
- continue
378
-
379
- if l.shape[0]:
380
- assert l.shape[1] == 5, '> 5 label columns: %s' % file
381
- assert (l >= 0).all(), 'negative labels: %s' % file
382
- assert (l[:, 1:] <= 1).all(), 'non-normalized or out of bounds coordinate labels: %s' % file
383
- if np.unique(l, axis=0).shape[0] < l.shape[0]: # duplicate rows
384
- nd += 1 # print('WARNING: duplicate rows in %s' % self.label_files[i]) # duplicate rows
385
- if single_cls:
386
- l[:, 0] = 0 # force dataset into single-class mode
387
- self.labels[i] = l
388
- nf += 1 # file found
389
-
390
- # Create subdataset (a smaller dataset)
391
- if create_datasubset and ns < 1E4:
392
- if ns == 0:
393
- create_folder(path='./datasubset')
394
- os.makedirs('./datasubset/images')
395
- exclude_classes = 43
396
- if exclude_classes not in l[:, 0]:
397
- ns += 1
398
- # shutil.copy(src=self.img_files[i], dst='./datasubset/images/') # copy image
399
- with open('./datasubset/images.txt', 'a') as f:
400
- f.write(self.img_files[i] + '\n')
401
-
402
- # Extract object detection boxes for a second stage classifier
403
- if extract_bounding_boxes:
404
- p = Path(self.img_files[i])
405
- img = cv2.imread(str(p))
406
- h, w = img.shape[:2]
407
- for j, x in enumerate(l):
408
- f = '%s%sclassifier%s%g_%g_%s' % (p.parent.parent, os.sep, os.sep, x[0], j, p.name)
409
- if not os.path.exists(Path(f).parent):
410
- os.makedirs(Path(f).parent) # make new output folder
411
-
412
- b = x[1:] * [w, h, w, h] # box
413
- b[2:] = b[2:].max() # rectangle to square
414
- b[2:] = b[2:] * 1.3 + 30 # pad
415
- b = xywh2xyxy(b.reshape(-1, 4)).ravel().astype(np.int)
416
-
417
- b[[0, 2]] = np.clip(b[[0, 2]], 0, w) # clip boxes outside of image
418
- b[[1, 3]] = np.clip(b[[1, 3]], 0, h)
419
- assert cv2.imwrite(f, img[b[1]:b[3], b[0]:b[2]]), 'Failure extracting classifier boxes'
420
- else:
421
- ne += 1 # print('empty labels for image %s' % self.img_files[i]) # file empty
422
- # os.system("rm '%s' '%s'" % (self.img_files[i], self.label_files[i])) # remove
423
-
424
- pbar.desc = 'Caching labels %s (%g found, %g missing, %g empty, %g duplicate, for %g images)' % (
425
- s, nf, nm, ne, nd, n)
426
- assert nf > 0 or n == 20288, 'No labels found in %s. See %s' % (os.path.dirname(file) + os.sep, help_url)
427
- if not labels_loaded and n > 1000:
428
- print('Saving labels to %s for faster future loading' % np_labels_path)
429
- np.save(np_labels_path, self.labels) # save for next time
430
-
431
- # Cache images into memory for faster training (WARNING: large datasets may exceed system RAM)
432
- if cache_images: # if training
433
- gb = 0 # Gigabytes of cached images
434
- pbar = tqdm(range(len(self.img_files)), desc='Caching images')
435
- self.img_hw0, self.img_hw = [None] * n, [None] * n
436
- for i in pbar: # max 10k images
437
- self.imgs[i], self.img_hw0[i], self.img_hw[i] = load_image(self, i) # img, hw_original, hw_resized
438
- gb += self.imgs[i].nbytes
439
- pbar.desc = 'Caching images (%.1fGB)' % (gb / 1E9)
440
-
441
- # Detect corrupted images https://medium.com/joelthchao/programmatically-detect-corrupted-image-8c1b2006c3d3
442
- detect_corrupted_images = False
443
- if detect_corrupted_images:
444
- from skimage import io # conda install -c conda-forge scikit-image
445
- for file in tqdm(self.img_files, desc='Detecting corrupted images'):
446
- try:
447
- _ = io.imread(file)
448
- except:
449
- print('Corrupted image detected: %s' % file)
450
-
451
- def __len__(self):
452
- return len(self.img_files)
453
-
454
- # def __iter__(self):
455
- # self.count = -1
456
- # print('ran dataset iter')
457
- # #self.shuffled_vector = np.random.permutation(self.nF) if self.augment else np.arange(self.nF)
458
- # return self
459
-
460
- def __getitem__(self, index):
461
- if self.image_weights:
462
- index = self.indices[index]
463
-
464
- hyp = self.hyp
465
- if self.mosaic:
466
- # Load mosaic
467
- img, labels = load_mosaic(self, index)
468
- shapes = None
469
-
470
- else:
471
- # Load image
472
- img, (h0, w0), (h, w) = load_image(self, index)
473
-
474
- # Letterbox
475
- shape = self.batch_shapes[self.batch[index]] if self.rect else self.img_size # final letterboxed shape
476
- img, ratio, pad = letterbox(img, shape, auto=False, scaleup=self.augment)
477
- shapes = (h0, w0), ((h / h0, w / w0), pad) # for COCO mAP rescaling
478
-
479
- # Load labels
480
- labels = []
481
- x = self.labels[index]
482
- if x.size > 0:
483
- # Normalized xywh to pixel xyxy format
484
- labels = x.copy()
485
- labels[:, 1] = ratio[0] * w * (x[:, 1] - x[:, 3] / 2) + pad[0] # pad width
486
- labels[:, 2] = ratio[1] * h * (x[:, 2] - x[:, 4] / 2) + pad[1] # pad height
487
- labels[:, 3] = ratio[0] * w * (x[:, 1] + x[:, 3] / 2) + pad[0]
488
- labels[:, 4] = ratio[1] * h * (x[:, 2] + x[:, 4] / 2) + pad[1]
489
-
490
- if self.augment:
491
- # Augment imagespace
492
- if not self.mosaic:
493
- img, labels = random_affine(img, labels,
494
- degrees=hyp['degrees'],
495
- translate=hyp['translate'],
496
- scale=hyp['scale'],
497
- shear=hyp['shear'])
498
-
499
- # Augment colorspace
500
- augment_hsv(img, hgain=hyp['hsv_h'], sgain=hyp['hsv_s'], vgain=hyp['hsv_v'])
501
-
502
- # Apply cutouts
503
- # if random.random() < 0.9:
504
- # labels = cutout(img, labels)
505
-
506
- nL = len(labels) # number of labels
507
- if nL:
508
- # convert xyxy to xywh
509
- labels[:, 1:5] = xyxy2xywh(labels[:, 1:5])
510
-
511
- # Normalize coordinates 0 - 1
512
- labels[:, [2, 4]] /= img.shape[0] # height
513
- labels[:, [1, 3]] /= img.shape[1] # width
514
-
515
- if self.augment:
516
- # random left-right flip
517
- lr_flip = True
518
- if lr_flip and random.random() < 0.5:
519
- img = np.fliplr(img)
520
- if nL:
521
- labels[:, 1] = 1 - labels[:, 1]
522
-
523
- # random up-down flip
524
- ud_flip = False
525
- if ud_flip and random.random() < 0.5:
526
- img = np.flipud(img)
527
- if nL:
528
- labels[:, 2] = 1 - labels[:, 2]
529
-
530
- labels_out = torch.zeros((nL, 6))
531
- if nL:
532
- labels_out[:, 1:] = torch.from_numpy(labels)
533
-
534
- # Convert
535
- img = img[:, :, ::-1].transpose(2, 0, 1) # BGR to RGB, to 3x416x416
536
- img = np.ascontiguousarray(img)
537
-
538
- return torch.from_numpy(img), labels_out, self.img_files[index], shapes
539
-
540
- @staticmethod
541
- def collate_fn(batch):
542
- img, label, path, shapes = zip(*batch) # transposed
543
- for i, l in enumerate(label):
544
- l[:, 0] = i # add target image index for build_targets()
545
- return torch.stack(img, 0), torch.cat(label, 0), path, shapes
546
-
547
-
548
- def load_image(self, index):
549
- # loads 1 image from dataset, returns img, original hw, resized hw
550
- img = self.imgs[index]
551
- if img is None: # not cached
552
- path = self.img_files[index]
553
- img = cv2.imread(path) # BGR
554
- assert img is not None, 'Image Not Found ' + path
555
- h0, w0 = img.shape[:2] # orig hw
556
- r = self.img_size / max(h0, w0) # resize image to img_size
557
- if r != 1: # always resize down, only resize up if training with augmentation
558
- interp = cv2.INTER_AREA if r < 1 and not self.augment else cv2.INTER_LINEAR
559
- img = cv2.resize(img, (int(w0 * r), int(h0 * r)), interpolation=interp)
560
- return img, (h0, w0), img.shape[:2] # img, hw_original, hw_resized
561
- else:
562
- return self.imgs[index], self.img_hw0[index], self.img_hw[index] # img, hw_original, hw_resized
563
-
564
-
565
- def augment_hsv(img, hgain=0.5, sgain=0.5, vgain=0.5):
566
- r = np.random.uniform(-1, 1, 3) * [hgain, sgain, vgain] + 1 # random gains
567
- hue, sat, val = cv2.split(cv2.cvtColor(img, cv2.COLOR_BGR2HSV))
568
- dtype = img.dtype # uint8
569
-
570
- x = np.arange(0, 256, dtype=np.int16)
571
- lut_hue = ((x * r[0]) % 180).astype(dtype)
572
- lut_sat = np.clip(x * r[1], 0, 255).astype(dtype)
573
- lut_val = np.clip(x * r[2], 0, 255).astype(dtype)
574
-
575
- img_hsv = cv2.merge((cv2.LUT(hue, lut_hue), cv2.LUT(sat, lut_sat), cv2.LUT(val, lut_val))).astype(dtype)
576
- cv2.cvtColor(img_hsv, cv2.COLOR_HSV2BGR, dst=img) # no return needed
577
-
578
- # Histogram equalization
579
- # if random.random() < 0.2:
580
- # for i in range(3):
581
- # img[:, :, i] = cv2.equalizeHist(img[:, :, i])
582
-
583
-
584
- def load_mosaic(self, index):
585
- # loads images in a mosaic
586
-
587
- labels4 = []
588
- s = self.img_size
589
- yc, xc = [int(random.uniform(-x, 2 * s + x)) for x in self.mosaic_border] # mosaic center x, y
590
- indices = [index] + [random.randint(0, len(self.labels) - 1) for _ in range(3)] # 3 additional image indices
591
- for i, index in enumerate(indices):
592
- # Load image
593
- img, _, (h, w) = load_image(self, index)
594
-
595
- # place img in img4
596
- if i == 0: # top left
597
- img4 = np.full((s * 2, s * 2, img.shape[2]), 114, dtype=np.uint8) # base image with 4 tiles
598
- x1a, y1a, x2a, y2a = max(xc - w, 0), max(yc - h, 0), xc, yc # xmin, ymin, xmax, ymax (large image)
599
- x1b, y1b, x2b, y2b = w - (x2a - x1a), h - (y2a - y1a), w, h # xmin, ymin, xmax, ymax (small image)
600
- elif i == 1: # top right
601
- x1a, y1a, x2a, y2a = xc, max(yc - h, 0), min(xc + w, s * 2), yc
602
- x1b, y1b, x2b, y2b = 0, h - (y2a - y1a), min(w, x2a - x1a), h
603
- elif i == 2: # bottom left
604
- x1a, y1a, x2a, y2a = max(xc - w, 0), yc, xc, min(s * 2, yc + h)
605
- x1b, y1b, x2b, y2b = w - (x2a - x1a), 0, max(xc, w), min(y2a - y1a, h)
606
- elif i == 3: # bottom right
607
- x1a, y1a, x2a, y2a = xc, yc, min(xc + w, s * 2), min(s * 2, yc + h)
608
- x1b, y1b, x2b, y2b = 0, 0, min(w, x2a - x1a), min(y2a - y1a, h)
609
-
610
- img4[y1a:y2a, x1a:x2a] = img[y1b:y2b, x1b:x2b] # img4[ymin:ymax, xmin:xmax]
611
- padw = x1a - x1b
612
- padh = y1a - y1b
613
-
614
- # Labels
615
- x = self.labels[index]
616
- labels = x.copy()
617
- if x.size > 0: # Normalized xywh to pixel xyxy format
618
- labels[:, 1] = w * (x[:, 1] - x[:, 3] / 2) + padw
619
- labels[:, 2] = h * (x[:, 2] - x[:, 4] / 2) + padh
620
- labels[:, 3] = w * (x[:, 1] + x[:, 3] / 2) + padw
621
- labels[:, 4] = h * (x[:, 2] + x[:, 4] / 2) + padh
622
- labels4.append(labels)
623
-
624
- # Concat/clip labels
625
- if len(labels4):
626
- labels4 = np.concatenate(labels4, 0)
627
- # np.clip(labels4[:, 1:] - s / 2, 0, s, out=labels4[:, 1:]) # use with center crop
628
- np.clip(labels4[:, 1:], 0, 2 * s, out=labels4[:, 1:]) # use with random_affine
629
-
630
- # Replicate
631
- # img4, labels4 = replicate(img4, labels4)
632
-
633
- # Augment
634
- # img4 = img4[s // 2: int(s * 1.5), s // 2:int(s * 1.5)] # center crop (WARNING, requires box pruning)
635
- img4, labels4 = random_affine(img4, labels4,
636
- degrees=self.hyp['degrees'],
637
- translate=self.hyp['translate'],
638
- scale=self.hyp['scale'],
639
- shear=self.hyp['shear'],
640
- border=self.mosaic_border) # border to remove
641
-
642
- return img4, labels4
643
-
644
-
645
- def replicate(img, labels):
646
- # Replicate labels
647
- h, w = img.shape[:2]
648
- boxes = labels[:, 1:].astype(int)
649
- x1, y1, x2, y2 = boxes.T
650
- s = ((x2 - x1) + (y2 - y1)) / 2 # side length (pixels)
651
- for i in s.argsort()[:round(s.size * 0.5)]: # smallest indices
652
- x1b, y1b, x2b, y2b = boxes[i]
653
- bh, bw = y2b - y1b, x2b - x1b
654
- yc, xc = int(random.uniform(0, h - bh)), int(random.uniform(0, w - bw)) # offset x, y
655
- x1a, y1a, x2a, y2a = [xc, yc, xc + bw, yc + bh]
656
- img[y1a:y2a, x1a:x2a] = img[y1b:y2b, x1b:x2b] # img4[ymin:ymax, xmin:xmax]
657
- labels = np.append(labels, [[labels[i, 0], x1a, y1a, x2a, y2a]], axis=0)
658
-
659
- return img, labels
660
-
661
-
662
- def letterbox(img, new_shape=(640, 640), color=(114, 114, 114), auto=True, scaleFill=False, scaleup=True):
663
- # Resize image to a 32-pixel-multiple rectangle https://github.com/ultralytics/yolov3/issues/232
664
- shape = img.shape[:2] # current shape [height, width]
665
- if isinstance(new_shape, int):
666
- new_shape = (new_shape, new_shape)
667
-
668
- # Scale ratio (new / old)
669
- r = min(new_shape[0] / shape[0], new_shape[1] / shape[1])
670
- if not scaleup: # only scale down, do not scale up (for better test mAP)
671
- r = min(r, 1.0)
672
-
673
- # Compute padding
674
- ratio = r, r # width, height ratios
675
- new_unpad = int(round(shape[1] * r)), int(round(shape[0] * r))
676
- dw, dh = new_shape[1] - new_unpad[0], new_shape[0] - new_unpad[1] # wh padding
677
- if auto: # minimum rectangle
678
- dw, dh = np.mod(dw, 64), np.mod(dh, 64) # wh padding
679
- elif scaleFill: # stretch
680
- dw, dh = 0.0, 0.0
681
- new_unpad = new_shape
682
- ratio = new_shape[0] / shape[1], new_shape[1] / shape[0] # width, height ratios
683
-
684
- dw /= 2 # divide padding into 2 sides
685
- dh /= 2
686
-
687
- if shape[::-1] != new_unpad: # resize
688
- img = cv2.resize(img, new_unpad, interpolation=cv2.INTER_LINEAR)
689
- top, bottom = int(round(dh - 0.1)), int(round(dh + 0.1))
690
- left, right = int(round(dw - 0.1)), int(round(dw + 0.1))
691
- img = cv2.copyMakeBorder(img, top, bottom, left, right, cv2.BORDER_CONSTANT, value=color) # add border
692
- return img, ratio, (dw, dh)
693
-
694
-
695
- def random_affine(img, targets=(), degrees=10, translate=.1, scale=.1, shear=10, border=(0, 0)):
696
- # torchvision.transforms.RandomAffine(degrees=(-10, 10), translate=(.1, .1), scale=(.9, 1.1), shear=(-10, 10))
697
- # https://medium.com/uruvideo/dataset-augmentation-with-random-homographies-a8f4b44830d4
698
- # targets = [cls, xyxy]
699
-
700
- height = img.shape[0] + border[0] * 2 # shape(h,w,c)
701
- width = img.shape[1] + border[1] * 2
702
-
703
- # Rotation and Scale
704
- R = np.eye(3)
705
- a = random.uniform(-degrees, degrees)
706
- # a += random.choice([-180, -90, 0, 90]) # add 90deg rotations to small rotations
707
- s = random.uniform(1 - scale, 1 + scale)
708
- # s = 2 ** random.uniform(-scale, scale)
709
- R[:2] = cv2.getRotationMatrix2D(angle=a, center=(img.shape[1] / 2, img.shape[0] / 2), scale=s)
710
-
711
- # Translation
712
- T = np.eye(3)
713
- T[0, 2] = random.uniform(-translate, translate) * img.shape[1] + border[1] # x translation (pixels)
714
- T[1, 2] = random.uniform(-translate, translate) * img.shape[0] + border[0] # y translation (pixels)
715
-
716
- # Shear
717
- S = np.eye(3)
718
- S[0, 1] = math.tan(random.uniform(-shear, shear) * math.pi / 180) # x shear (deg)
719
- S[1, 0] = math.tan(random.uniform(-shear, shear) * math.pi / 180) # y shear (deg)
720
-
721
- # Combined rotation matrix
722
- M = S @ T @ R # ORDER IS IMPORTANT HERE!!
723
- if (border[0] != 0) or (border[1] != 0) or (M != np.eye(3)).any(): # image changed
724
- img = cv2.warpAffine(img, M[:2], dsize=(width, height), flags=cv2.INTER_LINEAR, borderValue=(114, 114, 114))
725
-
726
- # Transform label coordinates
727
- n = len(targets)
728
- if n:
729
- # warp points
730
- xy = np.ones((n * 4, 3))
731
- xy[:, :2] = targets[:, [1, 2, 3, 4, 1, 4, 3, 2]].reshape(n * 4, 2) # x1y1, x2y2, x1y2, x2y1
732
- xy = (xy @ M.T)[:, :2].reshape(n, 8)
733
-
734
- # create new boxes
735
- x = xy[:, [0, 2, 4, 6]]
736
- y = xy[:, [1, 3, 5, 7]]
737
- xy = np.concatenate((x.min(1), y.min(1), x.max(1), y.max(1))).reshape(4, n).T
738
-
739
- # # apply angle-based reduction of bounding boxes
740
- # radians = a * math.pi / 180
741
- # reduction = max(abs(math.sin(radians)), abs(math.cos(radians))) ** 0.5
742
- # x = (xy[:, 2] + xy[:, 0]) / 2
743
- # y = (xy[:, 3] + xy[:, 1]) / 2
744
- # w = (xy[:, 2] - xy[:, 0]) * reduction
745
- # h = (xy[:, 3] - xy[:, 1]) * reduction
746
- # xy = np.concatenate((x - w / 2, y - h / 2, x + w / 2, y + h / 2)).reshape(4, n).T
747
-
748
- # reject warped points outside of image
749
- xy[:, [0, 2]] = xy[:, [0, 2]].clip(0, width)
750
- xy[:, [1, 3]] = xy[:, [1, 3]].clip(0, height)
751
- w = xy[:, 2] - xy[:, 0]
752
- h = xy[:, 3] - xy[:, 1]
753
- area = w * h
754
- area0 = (targets[:, 3] - targets[:, 1]) * (targets[:, 4] - targets[:, 2])
755
- ar = np.maximum(w / (h + 1e-16), h / (w + 1e-16)) # aspect ratio
756
- i = (w > 2) & (h > 2) & (area / (area0 * s + 1e-16) > 0.2) & (ar < 20)
757
-
758
- targets = targets[i]
759
- targets[:, 1:5] = xy[i]
760
-
761
- return img, targets
762
-
763
-
764
- def cutout(image, labels):
765
- # https://arxiv.org/abs/1708.04552
766
- # https://github.com/hysts/pytorch_cutout/blob/master/dataloader.py
767
- # https://towardsdatascience.com/when-conventional-wisdom-fails-revisiting-data-augmentation-for-self-driving-cars-4831998c5509
768
- h, w = image.shape[:2]
769
-
770
- def bbox_ioa(box1, box2):
771
- # Returns the intersection over box2 area given box1, box2. box1 is 4, box2 is nx4. boxes are x1y1x2y2
772
- box2 = box2.transpose()
773
-
774
- # Get the coordinates of bounding boxes
775
- b1_x1, b1_y1, b1_x2, b1_y2 = box1[0], box1[1], box1[2], box1[3]
776
- b2_x1, b2_y1, b2_x2, b2_y2 = box2[0], box2[1], box2[2], box2[3]
777
-
778
- # Intersection area
779
- inter_area = (np.minimum(b1_x2, b2_x2) - np.maximum(b1_x1, b2_x1)).clip(0) * \
780
- (np.minimum(b1_y2, b2_y2) - np.maximum(b1_y1, b2_y1)).clip(0)
781
-
782
- # box2 area
783
- box2_area = (b2_x2 - b2_x1) * (b2_y2 - b2_y1) + 1e-16
784
-
785
- # Intersection over box2 area
786
-
787
- return inter_area / box2_area
788
-
789
- # create random masks
790
- scales = [0.5] * 1 + [0.25] * 2 + [0.125] * 4 + [0.0625] * 8 + [0.03125] * 16 # image size fraction
791
- for s in scales:
792
- mask_h = random.randint(1, int(h * s))
793
- mask_w = random.randint(1, int(w * s))
794
-
795
- # box
796
- xmin = max(0, random.randint(0, w) - mask_w // 2)
797
- ymin = max(0, random.randint(0, h) - mask_h // 2)
798
- xmax = min(w, xmin + mask_w)
799
- ymax = min(h, ymin + mask_h)
800
-
801
- # apply random color mask
802
- image[ymin:ymax, xmin:xmax] = [random.randint(64, 191) for _ in range(3)]
803
-
804
- # return unobscured labels
805
- if len(labels) and s > 0.03:
806
- box = np.array([xmin, ymin, xmax, ymax], dtype=np.float32)
807
- ioa = bbox_ioa(box, labels[:, 1:5]) # intersection over area
808
- labels = labels[ioa < 0.60] # remove >60% obscured labels
809
-
810
- return labels
811
-
812
-
813
- def reduce_img_size(path='../data/sm4/images', img_size=1024): # from utils.datasets import *; reduce_img_size()
814
- # creates a new ./images_reduced folder with reduced size images of maximum size img_size
815
- path_new = path + '_reduced' # reduced images path
816
- create_folder(path_new)
817
- for f in tqdm(glob.glob('%s/*.*' % path)):
818
- try:
819
- img = cv2.imread(f)
820
- h, w = img.shape[:2]
821
- r = img_size / max(h, w) # size ratio
822
- if r < 1.0:
823
- img = cv2.resize(img, (int(w * r), int(h * r)), interpolation=cv2.INTER_AREA) # _LINEAR fastest
824
- fnew = f.replace(path, path_new) # .replace(Path(f).suffix, '.jpg')
825
- cv2.imwrite(fnew, img)
826
- except:
827
- print('WARNING: image failure %s' % f)
828
-
829
-
830
- def convert_images2bmp(): # from utils.datasets import *; convert_images2bmp()
831
- # Save images
832
- formats = [x.lower() for x in img_formats] + [x.upper() for x in img_formats]
833
- # for path in ['../coco/images/val2014', '../coco/images/train2014']:
834
- for path in ['../data/sm4/images', '../data/sm4/background']:
835
- create_folder(path + 'bmp')
836
- for ext in formats: # ['.bmp', '.jpg', '.jpeg', '.png', '.tif', '.dng']
837
- for f in tqdm(glob.glob('%s/*%s' % (path, ext)), desc='Converting %s' % ext):
838
- cv2.imwrite(f.replace(ext.lower(), '.bmp').replace(path, path + 'bmp'), cv2.imread(f))
839
-
840
- # Save labels
841
- # for path in ['../coco/trainvalno5k.txt', '../coco/5k.txt']:
842
- for file in ['../data/sm4/out_train.txt', '../data/sm4/out_test.txt']:
843
- with open(file, 'r') as f:
844
- lines = f.read()
845
- # lines = f.read().replace('2014/', '2014bmp/') # coco
846
- lines = lines.replace('/images', '/imagesbmp')
847
- lines = lines.replace('/background', '/backgroundbmp')
848
- for ext in formats:
849
- lines = lines.replace(ext, '.bmp')
850
- with open(file.replace('.txt', 'bmp.txt'), 'w') as f:
851
- f.write(lines)
852
-
853
-
854
- def recursive_dataset2bmp(dataset='../data/sm4_bmp'): # from utils.datasets import *; recursive_dataset2bmp()
855
- # Converts dataset to bmp (for faster training)
856
- formats = [x.lower() for x in img_formats] + [x.upper() for x in img_formats]
857
- for a, b, files in os.walk(dataset):
858
- for file in tqdm(files, desc=a):
859
- p = a + '/' + file
860
- s = Path(file).suffix
861
- if s == '.txt': # replace text
862
- with open(p, 'r') as f:
863
- lines = f.read()
864
- for f in formats:
865
- lines = lines.replace(f, '.bmp')
866
- with open(p, 'w') as f:
867
- f.write(lines)
868
- elif s in formats: # replace image
869
- cv2.imwrite(p.replace(s, '.bmp'), cv2.imread(p))
870
- if s != '.bmp':
871
- os.system("rm '%s'" % p)
872
-
873
-
874
- def imagelist2folder(path='data/coco_64img.txt'): # from utils.datasets import *; imagelist2folder()
875
- # Copies all the images in a text file (list of images) into a folder
876
- create_folder(path[:-4])
877
- with open(path, 'r') as f:
878
- for line in f.read().splitlines():
879
- os.system('cp "%s" %s' % (line, path[:-4]))
880
- print(line)
881
-
882
-
883
- def create_folder(path='./new_folder'):
884
- # Create folder
885
- if os.path.exists(path):
886
- shutil.rmtree(path) # delete output folder
887
- os.makedirs(path) # make new output folder
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
spaces/AtomdffAI/wechatgpt4atom/bot/bot_factory.py DELETED
@@ -1,26 +0,0 @@
1
- """
2
- channel factory
3
- """
4
-
5
-
6
- def create_bot(bot_type):
7
- """
8
- create a channel instance
9
- :param channel_type: channel type code
10
- :return: channel instance
11
- """
12
- if bot_type == 'baidu':
13
- # Baidu Unit对话接口
14
- from bot.baidu.baidu_unit_bot import BaiduUnitBot
15
- return BaiduUnitBot()
16
-
17
- elif bot_type == 'chatGPT':
18
- # ChatGPT 网页端web接口
19
- from bot.chatgpt.chat_gpt_bot import ChatGPTBot
20
- return ChatGPTBot()
21
-
22
- elif bot_type == 'openAI':
23
- # OpenAI 官方对话模型API
24
- from bot.openai.open_ai_bot import OpenAIBot
25
- return OpenAIBot()
26
- raise RuntimeError
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
spaces/Big-Web/MMSD/env/Lib/site-packages/botocore/signers.py DELETED
@@ -1,832 +0,0 @@
1
- # Copyright 2014 Amazon.com, Inc. or its affiliates. All Rights Reserved.
2
- #
3
- # Licensed under the Apache License, Version 2.0 (the "License"). You
4
- # may not use this file except in compliance with the License. A copy of
5
- # the License is located at
6
- #
7
- # http://aws.amazon.com/apache2.0/
8
- #
9
- # or in the "license" file accompanying this file. This file is
10
- # distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF
11
- # ANY KIND, either express or implied. See the License for the specific
12
- # language governing permissions and limitations under the License.
13
- import base64
14
- import datetime
15
- import json
16
- import weakref
17
-
18
- import botocore
19
- import botocore.auth
20
- from botocore.awsrequest import create_request_object, prepare_request_dict
21
- from botocore.compat import OrderedDict
22
- from botocore.exceptions import (
23
- UnknownClientMethodError,
24
- UnknownSignatureVersionError,
25
- UnsupportedSignatureVersionError,
26
- )
27
- from botocore.utils import ArnParser, datetime2timestamp
28
-
29
- # Keep these imported. There's pre-existing code that uses them.
30
- from botocore.utils import fix_s3_host # noqa
31
-
32
-
33
- class RequestSigner:
34
- """
35
- An object to sign requests before they go out over the wire using
36
- one of the authentication mechanisms defined in ``auth.py``. This
37
- class fires two events scoped to a service and operation name:
38
-
39
- * choose-signer: Allows overriding the auth signer name.
40
- * before-sign: Allows mutating the request before signing.
41
-
42
- Together these events allow for customization of the request
43
- signing pipeline, including overrides, request path manipulation,
44
- and disabling signing per operation.
45
-
46
-
47
- :type service_id: botocore.model.ServiceId
48
- :param service_id: The service id for the service, e.g. ``S3``
49
-
50
- :type region_name: string
51
- :param region_name: Name of the service region, e.g. ``us-east-1``
52
-
53
- :type signing_name: string
54
- :param signing_name: Service signing name. This is usually the
55
- same as the service name, but can differ. E.g.
56
- ``emr`` vs. ``elasticmapreduce``.
57
-
58
- :type signature_version: string
59
- :param signature_version: Signature name like ``v4``.
60
-
61
- :type credentials: :py:class:`~botocore.credentials.Credentials`
62
- :param credentials: User credentials with which to sign requests.
63
-
64
- :type event_emitter: :py:class:`~botocore.hooks.BaseEventHooks`
65
- :param event_emitter: Extension mechanism to fire events.
66
- """
67
-
68
- def __init__(
69
- self,
70
- service_id,
71
- region_name,
72
- signing_name,
73
- signature_version,
74
- credentials,
75
- event_emitter,
76
- auth_token=None,
77
- ):
78
- self._region_name = region_name
79
- self._signing_name = signing_name
80
- self._signature_version = signature_version
81
- self._credentials = credentials
82
- self._auth_token = auth_token
83
- self._service_id = service_id
84
-
85
- # We need weakref to prevent leaking memory in Python 2.6 on Linux 2.6
86
- self._event_emitter = weakref.proxy(event_emitter)
87
-
88
- @property
89
- def region_name(self):
90
- return self._region_name
91
-
92
- @property
93
- def signature_version(self):
94
- return self._signature_version
95
-
96
- @property
97
- def signing_name(self):
98
- return self._signing_name
99
-
100
- def handler(self, operation_name=None, request=None, **kwargs):
101
- # This is typically hooked up to the "request-created" event
102
- # from a client's event emitter. When a new request is created
103
- # this method is invoked to sign the request.
104
- # Don't call this method directly.
105
- return self.sign(operation_name, request)
106
-
107
- def sign(
108
- self,
109
- operation_name,
110
- request,
111
- region_name=None,
112
- signing_type='standard',
113
- expires_in=None,
114
- signing_name=None,
115
- ):
116
- """Sign a request before it goes out over the wire.
117
-
118
- :type operation_name: string
119
- :param operation_name: The name of the current operation, e.g.
120
- ``ListBuckets``.
121
- :type request: AWSRequest
122
- :param request: The request object to be sent over the wire.
123
-
124
- :type region_name: str
125
- :param region_name: The region to sign the request for.
126
-
127
- :type signing_type: str
128
- :param signing_type: The type of signing to perform. This can be one of
129
- three possible values:
130
-
131
- * 'standard' - This should be used for most requests.
132
- * 'presign-url' - This should be used when pre-signing a request.
133
- * 'presign-post' - This should be used when pre-signing an S3 post.
134
-
135
- :type expires_in: int
136
- :param expires_in: The number of seconds the presigned url is valid
137
- for. This parameter is only valid for signing type 'presign-url'.
138
-
139
- :type signing_name: str
140
- :param signing_name: The name to use for the service when signing.
141
- """
142
- explicit_region_name = region_name
143
- if region_name is None:
144
- region_name = self._region_name
145
-
146
- if signing_name is None:
147
- signing_name = self._signing_name
148
-
149
- signature_version = self._choose_signer(
150
- operation_name, signing_type, request.context
151
- )
152
-
153
- # Allow mutating request before signing
154
- self._event_emitter.emit(
155
- 'before-sign.{}.{}'.format(
156
- self._service_id.hyphenize(), operation_name
157
- ),
158
- request=request,
159
- signing_name=signing_name,
160
- region_name=self._region_name,
161
- signature_version=signature_version,
162
- request_signer=self,
163
- operation_name=operation_name,
164
- )
165
-
166
- if signature_version != botocore.UNSIGNED:
167
- kwargs = {
168
- 'signing_name': signing_name,
169
- 'region_name': region_name,
170
- 'signature_version': signature_version,
171
- }
172
- if expires_in is not None:
173
- kwargs['expires'] = expires_in
174
- signing_context = request.context.get('signing', {})
175
- if not explicit_region_name and signing_context.get('region'):
176
- kwargs['region_name'] = signing_context['region']
177
- if signing_context.get('signing_name'):
178
- kwargs['signing_name'] = signing_context['signing_name']
179
- try:
180
- auth = self.get_auth_instance(**kwargs)
181
- except UnknownSignatureVersionError as e:
182
- if signing_type != 'standard':
183
- raise UnsupportedSignatureVersionError(
184
- signature_version=signature_version
185
- )
186
- else:
187
- raise e
188
-
189
- auth.add_auth(request)
190
-
191
- def _choose_signer(self, operation_name, signing_type, context):
192
- """
193
- Allow setting the signature version via the choose-signer event.
194
- A value of `botocore.UNSIGNED` means no signing will be performed.
195
-
196
- :param operation_name: The operation to sign.
197
- :param signing_type: The type of signing that the signer is to be used
198
- for.
199
- :return: The signature version to sign with.
200
- """
201
- signing_type_suffix_map = {
202
- 'presign-post': '-presign-post',
203
- 'presign-url': '-query',
204
- }
205
- suffix = signing_type_suffix_map.get(signing_type, '')
206
-
207
- # operation specific signing context takes precedent over client-level
208
- # defaults
209
- signature_version = context.get('auth_type') or self._signature_version
210
- signing = context.get('signing', {})
211
- signing_name = signing.get('signing_name', self._signing_name)
212
- region_name = signing.get('region', self._region_name)
213
- if (
214
- signature_version is not botocore.UNSIGNED
215
- and not signature_version.endswith(suffix)
216
- ):
217
- signature_version += suffix
218
-
219
- handler, response = self._event_emitter.emit_until_response(
220
- 'choose-signer.{}.{}'.format(
221
- self._service_id.hyphenize(), operation_name
222
- ),
223
- signing_name=signing_name,
224
- region_name=region_name,
225
- signature_version=signature_version,
226
- context=context,
227
- )
228
-
229
- if response is not None:
230
- signature_version = response
231
- # The suffix needs to be checked again in case we get an improper
232
- # signature version from choose-signer.
233
- if (
234
- signature_version is not botocore.UNSIGNED
235
- and not signature_version.endswith(suffix)
236
- ):
237
- signature_version += suffix
238
-
239
- return signature_version
240
-
241
- def get_auth_instance(
242
- self, signing_name, region_name, signature_version=None, **kwargs
243
- ):
244
- """
245
- Get an auth instance which can be used to sign a request
246
- using the given signature version.
247
-
248
- :type signing_name: string
249
- :param signing_name: Service signing name. This is usually the
250
- same as the service name, but can differ. E.g.
251
- ``emr`` vs. ``elasticmapreduce``.
252
-
253
- :type region_name: string
254
- :param region_name: Name of the service region, e.g. ``us-east-1``
255
-
256
- :type signature_version: string
257
- :param signature_version: Signature name like ``v4``.
258
-
259
- :rtype: :py:class:`~botocore.auth.BaseSigner`
260
- :return: Auth instance to sign a request.
261
- """
262
- if signature_version is None:
263
- signature_version = self._signature_version
264
-
265
- cls = botocore.auth.AUTH_TYPE_MAPS.get(signature_version)
266
- if cls is None:
267
- raise UnknownSignatureVersionError(
268
- signature_version=signature_version
269
- )
270
-
271
- if cls.REQUIRES_TOKEN is True:
272
- frozen_token = None
273
- if self._auth_token is not None:
274
- frozen_token = self._auth_token.get_frozen_token()
275
- auth = cls(frozen_token)
276
- return auth
277
-
278
- # If there's no credentials provided (i.e credentials is None),
279
- # then we'll pass a value of "None" over to the auth classes,
280
- # which already handle the cases where no credentials have
281
- # been provided.
282
- frozen_credentials = None
283
- if self._credentials is not None:
284
- frozen_credentials = self._credentials.get_frozen_credentials()
285
- kwargs['credentials'] = frozen_credentials
286
- if cls.REQUIRES_REGION:
287
- if self._region_name is None:
288
- raise botocore.exceptions.NoRegionError()
289
- kwargs['region_name'] = region_name
290
- kwargs['service_name'] = signing_name
291
- auth = cls(**kwargs)
292
- return auth
293
-
294
- # Alias get_auth for backwards compatibility.
295
- get_auth = get_auth_instance
296
-
297
- def generate_presigned_url(
298
- self,
299
- request_dict,
300
- operation_name,
301
- expires_in=3600,
302
- region_name=None,
303
- signing_name=None,
304
- ):
305
- """Generates a presigned url
306
-
307
- :type request_dict: dict
308
- :param request_dict: The prepared request dictionary returned by
309
- ``botocore.awsrequest.prepare_request_dict()``
310
-
311
- :type operation_name: str
312
- :param operation_name: The operation being signed.
313
-
314
- :type expires_in: int
315
- :param expires_in: The number of seconds the presigned url is valid
316
- for. By default it expires in an hour (3600 seconds)
317
-
318
- :type region_name: string
319
- :param region_name: The region name to sign the presigned url.
320
-
321
- :type signing_name: str
322
- :param signing_name: The name to use for the service when signing.
323
-
324
- :returns: The presigned url
325
- """
326
- request = create_request_object(request_dict)
327
- self.sign(
328
- operation_name,
329
- request,
330
- region_name,
331
- 'presign-url',
332
- expires_in,
333
- signing_name,
334
- )
335
-
336
- request.prepare()
337
- return request.url
338
-
339
-
340
- class CloudFrontSigner:
341
- '''A signer to create a signed CloudFront URL.
342
-
343
- First you create a cloudfront signer based on a normalized RSA signer::
344
-
345
- import rsa
346
- def rsa_signer(message):
347
- private_key = open('private_key.pem', 'r').read()
348
- return rsa.sign(
349
- message,
350
- rsa.PrivateKey.load_pkcs1(private_key.encode('utf8')),
351
- 'SHA-1') # CloudFront requires SHA-1 hash
352
- cf_signer = CloudFrontSigner(key_id, rsa_signer)
353
-
354
- To sign with a canned policy::
355
-
356
- signed_url = cf_signer.generate_signed_url(
357
- url, date_less_than=datetime(2015, 12, 1))
358
-
359
- To sign with a custom policy::
360
-
361
- signed_url = cf_signer.generate_signed_url(url, policy=my_policy)
362
- '''
363
-
364
- def __init__(self, key_id, rsa_signer):
365
- """Create a CloudFrontSigner.
366
-
367
- :type key_id: str
368
- :param key_id: The CloudFront Key Pair ID
369
-
370
- :type rsa_signer: callable
371
- :param rsa_signer: An RSA signer.
372
- Its only input parameter will be the message to be signed,
373
- and its output will be the signed content as a binary string.
374
- The hash algorithm needed by CloudFront is SHA-1.
375
- """
376
- self.key_id = key_id
377
- self.rsa_signer = rsa_signer
378
-
379
- def generate_presigned_url(self, url, date_less_than=None, policy=None):
380
- """Creates a signed CloudFront URL based on given parameters.
381
-
382
- :type url: str
383
- :param url: The URL of the protected object
384
-
385
- :type date_less_than: datetime
386
- :param date_less_than: The URL will expire after that date and time
387
-
388
- :type policy: str
389
- :param policy: The custom policy, possibly built by self.build_policy()
390
-
391
- :rtype: str
392
- :return: The signed URL.
393
- """
394
- both_args_supplied = date_less_than is not None and policy is not None
395
- neither_arg_supplied = date_less_than is None and policy is None
396
- if both_args_supplied or neither_arg_supplied:
397
- e = 'Need to provide either date_less_than or policy, but not both'
398
- raise ValueError(e)
399
- if date_less_than is not None:
400
- # We still need to build a canned policy for signing purpose
401
- policy = self.build_policy(url, date_less_than)
402
- if isinstance(policy, str):
403
- policy = policy.encode('utf8')
404
- if date_less_than is not None:
405
- params = ['Expires=%s' % int(datetime2timestamp(date_less_than))]
406
- else:
407
- params = ['Policy=%s' % self._url_b64encode(policy).decode('utf8')]
408
- signature = self.rsa_signer(policy)
409
- params.extend(
410
- [
411
- f"Signature={self._url_b64encode(signature).decode('utf8')}",
412
- f"Key-Pair-Id={self.key_id}",
413
- ]
414
- )
415
- return self._build_url(url, params)
416
-
417
- def _build_url(self, base_url, extra_params):
418
- separator = '&' if '?' in base_url else '?'
419
- return base_url + separator + '&'.join(extra_params)
420
-
421
- def build_policy(
422
- self, resource, date_less_than, date_greater_than=None, ip_address=None
423
- ):
424
- """A helper to build policy.
425
-
426
- :type resource: str
427
- :param resource: The URL or the stream filename of the protected object
428
-
429
- :type date_less_than: datetime
430
- :param date_less_than: The URL will expire after the time has passed
431
-
432
- :type date_greater_than: datetime
433
- :param date_greater_than: The URL will not be valid until this time
434
-
435
- :type ip_address: str
436
- :param ip_address: Use 'x.x.x.x' for an IP, or 'x.x.x.x/x' for a subnet
437
-
438
- :rtype: str
439
- :return: The policy in a compact string.
440
- """
441
- # Note:
442
- # 1. Order in canned policy is significant. Special care has been taken
443
- # to ensure the output will match the order defined by the document.
444
- # There is also a test case to ensure that order.
445
- # SEE: http://docs.aws.amazon.com/AmazonCloudFront/latest/DeveloperGuide/private-content-creating-signed-url-canned-policy.html#private-content-canned-policy-creating-policy-statement
446
- # 2. Albeit the order in custom policy is not required by CloudFront,
447
- # we still use OrderedDict internally to ensure the result is stable
448
- # and also matches canned policy requirement.
449
- # SEE: http://docs.aws.amazon.com/AmazonCloudFront/latest/DeveloperGuide/private-content-creating-signed-url-custom-policy.html
450
- moment = int(datetime2timestamp(date_less_than))
451
- condition = OrderedDict({"DateLessThan": {"AWS:EpochTime": moment}})
452
- if ip_address:
453
- if '/' not in ip_address:
454
- ip_address += '/32'
455
- condition["IpAddress"] = {"AWS:SourceIp": ip_address}
456
- if date_greater_than:
457
- moment = int(datetime2timestamp(date_greater_than))
458
- condition["DateGreaterThan"] = {"AWS:EpochTime": moment}
459
- ordered_payload = [('Resource', resource), ('Condition', condition)]
460
- custom_policy = {"Statement": [OrderedDict(ordered_payload)]}
461
- return json.dumps(custom_policy, separators=(',', ':'))
462
-
463
- def _url_b64encode(self, data):
464
- # Required by CloudFront. See also:
465
- # http://docs.aws.amazon.com/AmazonCloudFront/latest/DeveloperGuide/private-content-linux-openssl.html
466
- return (
467
- base64.b64encode(data)
468
- .replace(b'+', b'-')
469
- .replace(b'=', b'_')
470
- .replace(b'/', b'~')
471
- )
472
-
473
-
474
- def add_generate_db_auth_token(class_attributes, **kwargs):
475
- class_attributes['generate_db_auth_token'] = generate_db_auth_token
476
-
477
-
478
- def generate_db_auth_token(self, DBHostname, Port, DBUsername, Region=None):
479
- """Generates an auth token used to connect to a db with IAM credentials.
480
-
481
- :type DBHostname: str
482
- :param DBHostname: The hostname of the database to connect to.
483
-
484
- :type Port: int
485
- :param Port: The port number the database is listening on.
486
-
487
- :type DBUsername: str
488
- :param DBUsername: The username to log in as.
489
-
490
- :type Region: str
491
- :param Region: The region the database is in. If None, the client
492
- region will be used.
493
-
494
- :return: A presigned url which can be used as an auth token.
495
- """
496
- region = Region
497
- if region is None:
498
- region = self.meta.region_name
499
-
500
- params = {
501
- 'Action': 'connect',
502
- 'DBUser': DBUsername,
503
- }
504
-
505
- request_dict = {
506
- 'url_path': '/',
507
- 'query_string': '',
508
- 'headers': {},
509
- 'body': params,
510
- 'method': 'GET',
511
- }
512
-
513
- # RDS requires that the scheme not be set when sent over. This can cause
514
- # issues when signing because the Python url parsing libraries follow
515
- # RFC 1808 closely, which states that a netloc must be introduced by `//`.
516
- # Otherwise the url is presumed to be relative, and thus the whole
517
- # netloc would be treated as a path component. To work around this we
518
- # introduce https here and remove it once we're done processing it.
519
- scheme = 'https://'
520
- endpoint_url = f'{scheme}{DBHostname}:{Port}'
521
- prepare_request_dict(request_dict, endpoint_url)
522
- presigned_url = self._request_signer.generate_presigned_url(
523
- operation_name='connect',
524
- request_dict=request_dict,
525
- region_name=region,
526
- expires_in=900,
527
- signing_name='rds-db',
528
- )
529
- return presigned_url[len(scheme) :]
530
-
531
-
532
- class S3PostPresigner:
533
- def __init__(self, request_signer):
534
- self._request_signer = request_signer
535
-
536
- def generate_presigned_post(
537
- self,
538
- request_dict,
539
- fields=None,
540
- conditions=None,
541
- expires_in=3600,
542
- region_name=None,
543
- ):
544
- """Generates the url and the form fields used for a presigned s3 post
545
-
546
- :type request_dict: dict
547
- :param request_dict: The prepared request dictionary returned by
548
- ``botocore.awsrequest.prepare_request_dict()``
549
-
550
- :type fields: dict
551
- :param fields: A dictionary of prefilled form fields to build on top
552
- of.
553
-
554
- :type conditions: list
555
- :param conditions: A list of conditions to include in the policy. Each
556
- element can be either a list or a structure. For example:
557
- [
558
- {"acl": "public-read"},
559
- {"bucket": "mybucket"},
560
- ["starts-with", "$key", "mykey"]
561
- ]
562
-
563
- :type expires_in: int
564
- :param expires_in: The number of seconds the presigned post is valid
565
- for.
566
-
567
- :type region_name: string
568
- :param region_name: The region name to sign the presigned post to.
569
-
570
- :rtype: dict
571
- :returns: A dictionary with two elements: ``url`` and ``fields``.
572
- Url is the url to post to. Fields is a dictionary filled with
573
- the form fields and respective values to use when submitting the
574
- post. For example:
575
-
576
- {'url': 'https://mybucket.s3.amazonaws.com
577
- 'fields': {'acl': 'public-read',
578
- 'key': 'mykey',
579
- 'signature': 'mysignature',
580
- 'policy': 'mybase64 encoded policy'}
581
- }
582
- """
583
- if fields is None:
584
- fields = {}
585
-
586
- if conditions is None:
587
- conditions = []
588
-
589
- # Create the policy for the post.
590
- policy = {}
591
-
592
- # Create an expiration date for the policy
593
- datetime_now = datetime.datetime.utcnow()
594
- expire_date = datetime_now + datetime.timedelta(seconds=expires_in)
595
- policy['expiration'] = expire_date.strftime(botocore.auth.ISO8601)
596
-
597
- # Append all of the conditions that the user supplied.
598
- policy['conditions'] = []
599
- for condition in conditions:
600
- policy['conditions'].append(condition)
601
-
602
- # Store the policy and the fields in the request for signing
603
- request = create_request_object(request_dict)
604
- request.context['s3-presign-post-fields'] = fields
605
- request.context['s3-presign-post-policy'] = policy
606
-
607
- self._request_signer.sign(
608
- 'PutObject', request, region_name, 'presign-post'
609
- )
610
- # Return the url and the fields for th form to post.
611
- return {'url': request.url, 'fields': fields}
612
-
613
-
614
- def add_generate_presigned_url(class_attributes, **kwargs):
615
- class_attributes['generate_presigned_url'] = generate_presigned_url
616
-
617
-
618
- def generate_presigned_url(
619
- self, ClientMethod, Params=None, ExpiresIn=3600, HttpMethod=None
620
- ):
621
- """Generate a presigned url given a client, its method, and arguments
622
-
623
- :type ClientMethod: string
624
- :param ClientMethod: The client method to presign for
625
-
626
- :type Params: dict
627
- :param Params: The parameters normally passed to
628
- ``ClientMethod``.
629
-
630
- :type ExpiresIn: int
631
- :param ExpiresIn: The number of seconds the presigned url is valid
632
- for. By default it expires in an hour (3600 seconds)
633
-
634
- :type HttpMethod: string
635
- :param HttpMethod: The http method to use on the generated url. By
636
- default, the http method is whatever is used in the method's model.
637
-
638
- :returns: The presigned url
639
- """
640
- client_method = ClientMethod
641
- params = Params
642
- if params is None:
643
- params = {}
644
- expires_in = ExpiresIn
645
- http_method = HttpMethod
646
- context = {
647
- 'is_presign_request': True,
648
- 'use_global_endpoint': _should_use_global_endpoint(self),
649
- }
650
-
651
- request_signer = self._request_signer
652
-
653
- try:
654
- operation_name = self._PY_TO_OP_NAME[client_method]
655
- except KeyError:
656
- raise UnknownClientMethodError(method_name=client_method)
657
-
658
- operation_model = self.meta.service_model.operation_model(operation_name)
659
- bucket_is_arn = ArnParser.is_arn(params.get('Bucket', ''))
660
- endpoint_url, additional_headers = self._resolve_endpoint_ruleset(
661
- operation_model,
662
- params,
663
- context,
664
- ignore_signing_region=(not bucket_is_arn),
665
- )
666
-
667
- request_dict = self._convert_to_request_dict(
668
- api_params=params,
669
- operation_model=operation_model,
670
- endpoint_url=endpoint_url,
671
- context=context,
672
- headers=additional_headers,
673
- set_user_agent_header=False,
674
- )
675
-
676
- # Switch out the http method if user specified it.
677
- if http_method is not None:
678
- request_dict['method'] = http_method
679
-
680
- # Generate the presigned url.
681
- return request_signer.generate_presigned_url(
682
- request_dict=request_dict,
683
- expires_in=expires_in,
684
- operation_name=operation_name,
685
- )
686
-
687
-
688
- def add_generate_presigned_post(class_attributes, **kwargs):
689
- class_attributes['generate_presigned_post'] = generate_presigned_post
690
-
691
-
692
- def generate_presigned_post(
693
- self, Bucket, Key, Fields=None, Conditions=None, ExpiresIn=3600
694
- ):
695
- """Builds the url and the form fields used for a presigned s3 post
696
-
697
- :type Bucket: string
698
- :param Bucket: The name of the bucket to presign the post to. Note that
699
- bucket related conditions should not be included in the
700
- ``conditions`` parameter.
701
-
702
- :type Key: string
703
- :param Key: Key name, optionally add ${filename} to the end to
704
- attach the submitted filename. Note that key related conditions and
705
- fields are filled out for you and should not be included in the
706
- ``Fields`` or ``Conditions`` parameter.
707
-
708
- :type Fields: dict
709
- :param Fields: A dictionary of prefilled form fields to build on top
710
- of. Elements that may be included are acl, Cache-Control,
711
- Content-Type, Content-Disposition, Content-Encoding, Expires,
712
- success_action_redirect, redirect, success_action_status,
713
- and x-amz-meta-.
714
-
715
- Note that if a particular element is included in the fields
716
- dictionary it will not be automatically added to the conditions
717
- list. You must specify a condition for the element as well.
718
-
719
- :type Conditions: list
720
- :param Conditions: A list of conditions to include in the policy. Each
721
- element can be either a list or a structure. For example:
722
-
723
- [
724
- {"acl": "public-read"},
725
- ["content-length-range", 2, 5],
726
- ["starts-with", "$success_action_redirect", ""]
727
- ]
728
-
729
- Conditions that are included may pertain to acl,
730
- content-length-range, Cache-Control, Content-Type,
731
- Content-Disposition, Content-Encoding, Expires,
732
- success_action_redirect, redirect, success_action_status,
733
- and/or x-amz-meta-.
734
-
735
- Note that if you include a condition, you must specify
736
- the a valid value in the fields dictionary as well. A value will
737
- not be added automatically to the fields dictionary based on the
738
- conditions.
739
-
740
- :type ExpiresIn: int
741
- :param ExpiresIn: The number of seconds the presigned post
742
- is valid for.
743
-
744
- :rtype: dict
745
- :returns: A dictionary with two elements: ``url`` and ``fields``.
746
- Url is the url to post to. Fields is a dictionary filled with
747
- the form fields and respective values to use when submitting the
748
- post. For example:
749
-
750
- {'url': 'https://mybucket.s3.amazonaws.com
751
- 'fields': {'acl': 'public-read',
752
- 'key': 'mykey',
753
- 'signature': 'mysignature',
754
- 'policy': 'mybase64 encoded policy'}
755
- }
756
- """
757
- bucket = Bucket
758
- key = Key
759
- fields = Fields
760
- conditions = Conditions
761
- expires_in = ExpiresIn
762
-
763
- if fields is None:
764
- fields = {}
765
- else:
766
- fields = fields.copy()
767
-
768
- if conditions is None:
769
- conditions = []
770
-
771
- context = {
772
- 'is_presign_request': True,
773
- 'use_global_endpoint': _should_use_global_endpoint(self),
774
- }
775
-
776
- post_presigner = S3PostPresigner(self._request_signer)
777
-
778
- # We choose the CreateBucket operation model because its url gets
779
- # serialized to what a presign post requires.
780
- operation_model = self.meta.service_model.operation_model('CreateBucket')
781
- params = {'Bucket': bucket}
782
- bucket_is_arn = ArnParser.is_arn(params.get('Bucket', ''))
783
- endpoint_url, additional_headers = self._resolve_endpoint_ruleset(
784
- operation_model,
785
- params,
786
- context,
787
- ignore_signing_region=(not bucket_is_arn),
788
- )
789
-
790
- request_dict = self._convert_to_request_dict(
791
- api_params=params,
792
- operation_model=operation_model,
793
- endpoint_url=endpoint_url,
794
- context=context,
795
- headers=additional_headers,
796
- set_user_agent_header=False,
797
- )
798
-
799
- # Append that the bucket name to the list of conditions.
800
- conditions.append({'bucket': bucket})
801
-
802
- # If the key ends with filename, the only constraint that can be
803
- # imposed is if it starts with the specified prefix.
804
- if key.endswith('${filename}'):
805
- conditions.append(["starts-with", '$key', key[: -len('${filename}')]])
806
- else:
807
- conditions.append({'key': key})
808
-
809
- # Add the key to the fields.
810
- fields['key'] = key
811
-
812
- return post_presigner.generate_presigned_post(
813
- request_dict=request_dict,
814
- fields=fields,
815
- conditions=conditions,
816
- expires_in=expires_in,
817
- )
818
-
819
-
820
- def _should_use_global_endpoint(client):
821
- if client.meta.partition != 'aws':
822
- return False
823
- s3_config = client.meta.config.s3
824
- if s3_config:
825
- if s3_config.get('use_dualstack_endpoint', False):
826
- return False
827
- if (
828
- s3_config.get('us_east_1_regional_endpoint') == 'regional'
829
- and client.meta.config.region_name == 'us-east-1'
830
- ):
831
- return False
832
- return True
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
spaces/Bready11/Onodofthenorth-SD_PixelArt_SpriteSheet_Generator/app.py DELETED
@@ -1,3 +0,0 @@
1
- import gradio as gr
2
-
3
- gr.Interface.load("models/Onodofthenorth/SD_PixelArt_SpriteSheet_Generator").launch()
 
 
 
 
spaces/CVPR/Dual-Key_Backdoor_Attacks/bottom-up-attention-vqa/classifier.py DELETED
@@ -1,18 +0,0 @@
1
- import torch.nn as nn
2
- from torch.nn.utils.weight_norm import weight_norm
3
-
4
-
5
- class SimpleClassifier(nn.Module):
6
- def __init__(self, in_dim, hid_dim, out_dim, dropout):
7
- super(SimpleClassifier, self).__init__()
8
- layers = [
9
- weight_norm(nn.Linear(in_dim, hid_dim), dim=None),
10
- nn.ReLU(),
11
- nn.Dropout(dropout, inplace=True),
12
- weight_norm(nn.Linear(hid_dim, out_dim), dim=None)
13
- ]
14
- self.main = nn.Sequential(*layers)
15
-
16
- def forward(self, x):
17
- logits = self.main(x)
18
- return logits
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
spaces/CVPR/Dual-Key_Backdoor_Attacks/datagen/detectron2/projects/PointRend/README.md DELETED
@@ -1,115 +0,0 @@
1
- # PointRend: Image Segmentation as Rendering
2
-
3
- Alexander Kirillov, Yuxin Wu, Kaiming He, Ross Girshick
4
-
5
- [[`arXiv`](https://arxiv.org/abs/1912.08193)] [[`BibTeX`](#CitingPointRend)]
6
-
7
- <div align="center">
8
- <img src="https://alexander-kirillov.github.io/images/kirillov2019pointrend.jpg"/>
9
- </div><br/>
10
-
11
- In this repository, we release code for PointRend in Detectron2. PointRend can be flexibly applied to both instance and semantic (**comming soon**) segmentation tasks by building on top of existing state-of-the-art models.
12
-
13
- ## Installation
14
- Install Detectron 2 following [INSTALL.md](https://github.com/facebookresearch/detectron2/blob/master/INSTALL.md). You are ready to go!
15
-
16
- ## Quick start and visualization
17
-
18
- This [Colab Notebook](https://colab.research.google.com/drive/1isGPL5h5_cKoPPhVL9XhMokRtHDvmMVL) tutorial contains examples of PointRend usage and visualizations of its point sampling stages.
19
-
20
- ## Training
21
-
22
- To train a model with 8 GPUs run:
23
- ```bash
24
- cd /path/to/detectron2/projects/PointRend
25
- python train_net.py --config-file configs/InstanceSegmentation/pointrend_rcnn_R_50_FPN_1x_coco.yaml --num-gpus 8
26
- ```
27
-
28
- ## Evaluation
29
-
30
- Model evaluation can be done similarly:
31
- ```bash
32
- cd /path/to/detectron2/projects/PointRend
33
- python train_net.py --config-file configs/InstanceSegmentation/pointrend_rcnn_R_50_FPN_1x_coco.yaml --eval-only MODEL.WEIGHTS /path/to/model_checkpoint
34
- ```
35
-
36
- # Pretrained Models
37
-
38
- ## Instance Segmentation
39
- #### COCO
40
-
41
- <table><tbody>
42
- <!-- START TABLE -->
43
- <!-- TABLE HEADER -->
44
- <th valign="bottom">Mask<br/>head</th>
45
- <th valign="bottom">Backbone</th>
46
- <th valign="bottom">lr<br/>sched</th>
47
- <th valign="bottom">Output<br/>resolution</th>
48
- <th valign="bottom">mask<br/>AP</th>
49
- <th valign="bottom">mask<br/>AP&ast;</th>
50
- <th valign="bottom">model id</th>
51
- <th valign="bottom">download</th>
52
- <!-- TABLE BODY -->
53
- <tr><td align="left"><a href="configs/InstanceSegmentation/pointrend_rcnn_R_50_FPN_1x_coco.yaml">PointRend</a></td>
54
- <td align="center">R50-FPN</td>
55
- <td align="center">1&times;</td>
56
- <td align="center">224&times;224</td>
57
- <td align="center">36.2</td>
58
- <td align="center">39.7</td>
59
- <td align="center">164254221</td>
60
- <td align="center"><a href="https://dl.fbaipublicfiles.com/detectron2/PointRend/InstanceSegmentation/pointrend_rcnn_R_50_FPN_1x_coco/164254221/model_final_88c6f8.pkl">model</a>&nbsp;|&nbsp;<a href="https://dl.fbaipublicfiles.com/detectron2/PointRend/InstanceSegmentation/pointrend_rcnn_R_50_FPN_1x_coco/164254221/metrics.json">metrics</a></td>
61
- </tr>
62
- <tr><td align="left"><a href="configs/InstanceSegmentation/pointrend_rcnn_R_50_FPN_3x_coco.yaml">PointRend</a></td>
63
- <td align="center">R50-FPN</td>
64
- <td align="center">3&times;</td>
65
- <td align="center">224&times;224</td>
66
- <td align="center">38.3</td>
67
- <td align="center">41.6</td>
68
- <td align="center">164955410</td>
69
- <td align="center"><a href="https://dl.fbaipublicfiles.com/detectron2/PointRend/InstanceSegmentation/pointrend_rcnn_R_50_FPN_3x_coco/164955410/model_final_3c3198.pkl">model</a>&nbsp;|&nbsp;<a href="https://dl.fbaipublicfiles.com/detectron2/PointRend/InstanceSegmentation/pointrend_rcnn_R_50_FPN_3x_coco/164955410/metrics.json">metrics</a></td>
70
- </tr>
71
- </tbody></table>
72
-
73
- AP&ast; is COCO mask AP evaluated against the higher-quality LVIS annotations; see the paper for details. Run `python detectron2/datasets/prepare_cocofied_lvis.py` to prepare GT files for AP&ast; evaluation. Since LVIS annotations are not exhaustive `lvis-api` and not `cocoapi` should be used to evaluate AP&ast;.
74
-
75
- #### Cityscapes
76
- Cityscapes model is trained with ImageNet pretraining.
77
-
78
- <table><tbody>
79
- <!-- START TABLE -->
80
- <!-- TABLE HEADER -->
81
- <th valign="bottom">Mask<br/>head</th>
82
- <th valign="bottom">Backbone</th>
83
- <th valign="bottom">lr<br/>sched</th>
84
- <th valign="bottom">Output<br/>resolution</th>
85
- <th valign="bottom">mask<br/>AP</th>
86
- <th valign="bottom">model id</th>
87
- <th valign="bottom">download</th>
88
- <!-- TABLE BODY -->
89
- <tr><td align="left"><a href="configs/InstanceSegmentation/pointrend_rcnn_R_50_FPN_1x_cs.yaml">PointRend</a></td>
90
- <td align="center">R50-FPN</td>
91
- <td align="center">1&times;</td>
92
- <td align="center">224&times;224</td>
93
- <td align="center">35.9</td>
94
- <td align="center">164255101</td>
95
- <td align="center"><a href="https://dl.fbaipublicfiles.com/detectron2/PointRend/InstanceSegmentation/pointrend_rcnn_R_50_FPN_1x_cityscapes/164255101/model_final_318a02.pkl">model</a>&nbsp;|&nbsp;<a href="https://dl.fbaipublicfiles.com/detectron2/PointRend/InstanceSegmentation/pointrend_rcnn_R_50_FPN_1x_cityscapes/164255101/metrics.json">metrics</a></td>
96
- </tr>
97
- </tbody></table>
98
-
99
-
100
- ## Semantic Segmentation
101
-
102
- **[comming soon]**
103
-
104
- ## <a name="CitingPointRend"></a>Citing PointRend
105
-
106
- If you use PointRend, please use the following BibTeX entry.
107
-
108
- ```BibTeX
109
- @InProceedings{kirillov2019pointrend,
110
- title={{PointRend}: Image Segmentation as Rendering},
111
- author={Alexander Kirillov and Yuxin Wu and Kaiming He and Ross Girshick},
112
- journal={ArXiv:1912.08193},
113
- year={2019}
114
- }
115
- ```
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
spaces/CVPR/LIVE/thrust/cmake/AppendOptionIfAvailable.cmake DELETED
@@ -1,14 +0,0 @@
1
- include_guard(GLOBAL)
2
- include(CheckCXXCompilerFlag)
3
-
4
- macro (APPEND_OPTION_IF_AVAILABLE _FLAG _LIST)
5
-
6
- string(MAKE_C_IDENTIFIER "CXX_FLAG_${_FLAG}" _VAR)
7
- check_cxx_compiler_flag(${_FLAG} ${_VAR})
8
-
9
- if (${${_VAR}})
10
- list(APPEND ${_LIST} ${_FLAG})
11
- endif ()
12
-
13
- endmacro ()
14
-
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
spaces/CVPR/LIVE/thrust/thrust/detail/cstdint.h DELETED
@@ -1,79 +0,0 @@
1
- /*
2
- * Copyright 2008-2013 NVIDIA Corporation
3
- *
4
- * Licensed under the Apache License, Version 2.0 (the "License");
5
- * you may not use this file except in compliance with the License.
6
- * You may obtain a copy of the License at
7
- *
8
- * http://www.apache.org/licenses/LICENSE-2.0
9
- *
10
- * Unless required by applicable law or agreed to in writing, software
11
- * distributed under the License is distributed on an "AS IS" BASIS,
12
- * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13
- * See the License for the specific language governing permissions and
14
- * limitations under the License.
15
- */
16
-
17
- #pragma once
18
-
19
- #if (THRUST_HOST_COMPILER == THRUST_HOST_COMPILER_GCC) || (THRUST_HOST_COMPILER == THRUST_HOST_COMPILER_CLANG)
20
- #include <stdint.h>
21
- #endif
22
-
23
- namespace thrust
24
- {
25
- namespace detail
26
- {
27
-
28
- #if (THRUST_HOST_COMPILER == THRUST_HOST_COMPILER_MSVC)
29
-
30
- #if (_MSC_VER < 1300)
31
- typedef signed char int8_t;
32
- typedef signed short int16_t;
33
- typedef signed int int32_t;
34
- typedef unsigned char uint8_t;
35
- typedef unsigned short uint16_t;
36
- typedef unsigned int uint32_t;
37
- #else
38
- typedef signed __int8 int8_t;
39
- typedef signed __int16 int16_t;
40
- typedef signed __int32 int32_t;
41
- typedef unsigned __int8 uint8_t;
42
- typedef unsigned __int16 uint16_t;
43
- typedef unsigned __int32 uint32_t;
44
- #endif
45
- typedef signed __int64 int64_t;
46
- typedef unsigned __int64 uint64_t;
47
-
48
- #else
49
-
50
- typedef ::int8_t int8_t;
51
- typedef ::int16_t int16_t;
52
- typedef ::int32_t int32_t;
53
- typedef ::int64_t int64_t;
54
- typedef ::uint8_t uint8_t;
55
- typedef ::uint16_t uint16_t;
56
- typedef ::uint32_t uint32_t;
57
- typedef ::uint64_t uint64_t;
58
-
59
- #endif
60
-
61
-
62
- // an oracle to tell us how to define intptr_t
63
- template<int word_size = sizeof(void*)> struct divine_intptr_t;
64
- template<int word_size = sizeof(void*)> struct divine_uintptr_t;
65
-
66
- // 32b platforms
67
- template<> struct divine_intptr_t<4> { typedef thrust::detail::int32_t type; };
68
- template<> struct divine_uintptr_t<4> { typedef thrust::detail::uint32_t type; };
69
-
70
- // 64b platforms
71
- template<> struct divine_intptr_t<8> { typedef thrust::detail::int64_t type; };
72
- template<> struct divine_uintptr_t<8> { typedef thrust::detail::uint64_t type; };
73
-
74
- typedef divine_intptr_t<>::type intptr_t;
75
- typedef divine_uintptr_t<>::type uintptr_t;
76
-
77
- } // end detail
78
- } // end thrust
79
-
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
spaces/CVPR/LIVE/thrust/thrust/system/cuda/detail/async/reduce.h DELETED
@@ -1,350 +0,0 @@
1
- /******************************************************************************
2
- * Copyright (c) 2016, NVIDIA CORPORATION. All rights reserved.
3
- *
4
- * Redistribution and use in source and binary forms, with or without
5
- * modification, are permitted provided that the following conditions are met:
6
- * * Redistributions of source code must retain the above copyright
7
- * notice, this list of conditions and the following disclaimer.
8
- * * Redistributions in binary form must reproduce the above copyright
9
- * notice, this list of conditions and the following disclaimer in the
10
- * documentation and/or other materials provided with the distribution.
11
- * * Neither the name of the NVIDIA CORPORATION nor the
12
- * names of its contributors may be used to endorse or promote products
13
- * derived from this software without specific prior written permission.
14
- *
15
- * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
16
- * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
17
- * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
18
- * ARE DISCLAIMED. IN NO EVENT SHALL NVIDIA CORPORATION BE LIABLE FOR ANY
19
- * DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
20
- * (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
21
- * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND
22
- * ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
23
- * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
24
- * SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
25
- *
26
- ******************************************************************************/
27
-
28
- // TODO: Optimize for thrust::plus
29
-
30
- // TODO: Move into system::cuda
31
-
32
- #pragma once
33
-
34
- #include <thrust/detail/config.h>
35
- #include <thrust/detail/cpp14_required.h>
36
-
37
- #if THRUST_CPP_DIALECT >= 2014
38
-
39
- #if THRUST_DEVICE_COMPILER == THRUST_DEVICE_COMPILER_NVCC
40
-
41
- #include <thrust/system/cuda/config.h>
42
-
43
- #include <thrust/system/cuda/detail/async/customization.h>
44
- #include <thrust/system/cuda/detail/reduce.h>
45
- #include <thrust/system/cuda/future.h>
46
- #include <thrust/type_traits/remove_cvref.h>
47
- #include <thrust/iterator/iterator_traits.h>
48
- #include <thrust/distance.h>
49
-
50
- #include <type_traits>
51
-
52
- namespace thrust
53
- {
54
-
55
- namespace system { namespace cuda { namespace detail
56
- {
57
-
58
- template <
59
- typename DerivedPolicy
60
- , typename ForwardIt, typename Size, typename T, typename BinaryOp
61
- >
62
- auto async_reduce_n(
63
- execution_policy<DerivedPolicy>& policy
64
- , ForwardIt first
65
- , Size n
66
- , T init
67
- , BinaryOp op
68
- ) -> unique_eager_future<remove_cvref_t<T>>
69
- {
70
- using U = remove_cvref_t<T>;
71
-
72
- auto const device_alloc = get_async_device_allocator(policy);
73
-
74
- using pointer
75
- = typename thrust::detail::allocator_traits<decltype(device_alloc)>::
76
- template rebind_traits<U>::pointer;
77
-
78
- unique_eager_future_promise_pair<U, pointer> fp;
79
-
80
- // Determine temporary device storage requirements.
81
-
82
- size_t tmp_size = 0;
83
- thrust::cuda_cub::throw_on_error(
84
- cub::DeviceReduce::Reduce(
85
- nullptr
86
- , tmp_size
87
- , first
88
- , static_cast<U*>(nullptr)
89
- , n
90
- , op
91
- , init
92
- , nullptr // Null stream, just for sizing.
93
- , THRUST_DEBUG_SYNC_FLAG
94
- )
95
- , "after reduction sizing"
96
- );
97
-
98
- // Allocate temporary storage.
99
-
100
- auto content = uninitialized_allocate_unique_n<thrust::detail::uint8_t>(
101
- device_alloc, sizeof(U) + tmp_size
102
- );
103
-
104
- // The array was dynamically allocated, so we assume that it's suitably
105
- // aligned for any type of data. `malloc`/`cudaMalloc`/`new`/`std::allocator`
106
- // make this guarantee.
107
- auto const content_ptr = content.get();
108
- U* const ret_ptr = thrust::detail::aligned_reinterpret_cast<U*>(
109
- raw_pointer_cast(content_ptr)
110
- );
111
- void* const tmp_ptr = static_cast<void*>(
112
- raw_pointer_cast(content_ptr + sizeof(U))
113
- );
114
-
115
- // Set up stream with dependencies.
116
-
117
- cudaStream_t const user_raw_stream = thrust::cuda_cub::stream(policy);
118
-
119
- if (thrust::cuda_cub::default_stream() != user_raw_stream)
120
- {
121
- fp = make_dependent_future<U, pointer>(
122
- [] (decltype(content) const& c)
123
- {
124
- return pointer(
125
- thrust::detail::aligned_reinterpret_cast<U*>(
126
- raw_pointer_cast(c.get())
127
- )
128
- );
129
- }
130
- , std::tuple_cat(
131
- std::make_tuple(
132
- std::move(content)
133
- , unique_stream(nonowning, user_raw_stream)
134
- )
135
- , extract_dependencies(
136
- std::move(thrust::detail::derived_cast(policy))
137
- )
138
- )
139
- );
140
- }
141
- else
142
- {
143
- fp = make_dependent_future<U, pointer>(
144
- [] (decltype(content) const& c)
145
- {
146
- return pointer(
147
- thrust::detail::aligned_reinterpret_cast<U*>(
148
- raw_pointer_cast(c.get())
149
- )
150
- );
151
- }
152
- , std::tuple_cat(
153
- std::make_tuple(
154
- std::move(content)
155
- )
156
- , extract_dependencies(
157
- std::move(thrust::detail::derived_cast(policy))
158
- )
159
- )
160
- );
161
- }
162
-
163
- // Run reduction.
164
-
165
- thrust::cuda_cub::throw_on_error(
166
- cub::DeviceReduce::Reduce(
167
- tmp_ptr
168
- , tmp_size
169
- , first
170
- , ret_ptr
171
- , n
172
- , op
173
- , init
174
- , fp.future.stream().native_handle()
175
- , THRUST_DEBUG_SYNC_FLAG
176
- )
177
- , "after reduction launch"
178
- );
179
-
180
- return std::move(fp.future);
181
- }
182
-
183
- }}} // namespace system::cuda::detail
184
-
185
- namespace cuda_cub
186
- {
187
-
188
- // ADL entry point.
189
- template <
190
- typename DerivedPolicy
191
- , typename ForwardIt, typename Sentinel, typename T, typename BinaryOp
192
- >
193
- auto async_reduce(
194
- execution_policy<DerivedPolicy>& policy
195
- , ForwardIt first
196
- , Sentinel last
197
- , T init
198
- , BinaryOp op
199
- )
200
- THRUST_RETURNS(
201
- thrust::system::cuda::detail::async_reduce_n(
202
- policy, first, distance(first, last), init, op
203
- )
204
- )
205
-
206
- } // cuda_cub
207
-
208
- ///////////////////////////////////////////////////////////////////////////////
209
-
210
- namespace system { namespace cuda { namespace detail
211
- {
212
-
213
- template <
214
- typename DerivedPolicy
215
- , typename ForwardIt, typename Size, typename OutputIt
216
- , typename T, typename BinaryOp
217
- >
218
- auto async_reduce_into_n(
219
- execution_policy<DerivedPolicy>& policy
220
- , ForwardIt first
221
- , Size n
222
- , OutputIt output
223
- , T init
224
- , BinaryOp op
225
- ) -> unique_eager_event
226
- {
227
- using U = remove_cvref_t<T>;
228
-
229
- auto const device_alloc = get_async_device_allocator(policy);
230
-
231
- unique_eager_event e;
232
-
233
- // Determine temporary device storage requirements.
234
-
235
- size_t tmp_size = 0;
236
- thrust::cuda_cub::throw_on_error(
237
- cub::DeviceReduce::Reduce(
238
- nullptr
239
- , tmp_size
240
- , first
241
- , static_cast<U*>(nullptr)
242
- , n
243
- , op
244
- , init
245
- , nullptr // Null stream, just for sizing.
246
- , THRUST_DEBUG_SYNC_FLAG
247
- )
248
- , "after reduction sizing"
249
- );
250
-
251
- // Allocate temporary storage.
252
-
253
- auto content = uninitialized_allocate_unique_n<thrust::detail::uint8_t>(
254
- device_alloc, tmp_size
255
- );
256
-
257
- // The array was dynamically allocated, so we assume that it's suitably
258
- // aligned for any type of data. `malloc`/`cudaMalloc`/`new`/`std::allocator`
259
- // make this guarantee.
260
- auto const content_ptr = content.get();
261
-
262
- void* const tmp_ptr = static_cast<void*>(
263
- raw_pointer_cast(content_ptr)
264
- );
265
-
266
- // Set up stream with dependencies.
267
-
268
- cudaStream_t const user_raw_stream = thrust::cuda_cub::stream(policy);
269
-
270
- if (thrust::cuda_cub::default_stream() != user_raw_stream)
271
- {
272
- e = make_dependent_event(
273
- std::tuple_cat(
274
- std::make_tuple(
275
- std::move(content)
276
- , unique_stream(nonowning, user_raw_stream)
277
- )
278
- , extract_dependencies(
279
- std::move(thrust::detail::derived_cast(policy))
280
- )
281
- )
282
- );
283
- }
284
- else
285
- {
286
- e = make_dependent_event(
287
- std::tuple_cat(
288
- std::make_tuple(
289
- std::move(content)
290
- )
291
- , extract_dependencies(
292
- std::move(thrust::detail::derived_cast(policy))
293
- )
294
- )
295
- );
296
- }
297
-
298
- // Run reduction.
299
-
300
- thrust::cuda_cub::throw_on_error(
301
- cub::DeviceReduce::Reduce(
302
- tmp_ptr
303
- , tmp_size
304
- , first
305
- , output
306
- , n
307
- , op
308
- , init
309
- , e.stream().native_handle()
310
- , THRUST_DEBUG_SYNC_FLAG
311
- )
312
- , "after reduction launch"
313
- );
314
-
315
- return e;
316
- }
317
-
318
- }}} // namespace system::cuda::detail
319
-
320
- namespace cuda_cub
321
- {
322
-
323
- // ADL entry point.
324
- template <
325
- typename DerivedPolicy
326
- , typename ForwardIt, typename Sentinel, typename OutputIt
327
- , typename T, typename BinaryOp
328
- >
329
- auto async_reduce_into(
330
- execution_policy<DerivedPolicy>& policy
331
- , ForwardIt first
332
- , Sentinel last
333
- , OutputIt output
334
- , T init
335
- , BinaryOp op
336
- )
337
- THRUST_RETURNS(
338
- thrust::system::cuda::detail::async_reduce_into_n(
339
- policy, first, distance(first, last), output, init, op
340
- )
341
- )
342
-
343
- } // cuda_cub
344
-
345
- } // end namespace thrust
346
-
347
- #endif // THRUST_DEVICE_COMPILER == THRUST_DEVICE_COMPILER_NVCC
348
-
349
- #endif
350
-
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
spaces/CVPR/LIVE/thrust/thrust/system/cuda/detail/gather.h DELETED
@@ -1,107 +0,0 @@
1
- /******************************************************************************
2
- * Copyright (c) 2016, NVIDIA CORPORATION. All rights reserved.
3
- *
4
- * Redistribution and use in source and binary forms, with or without
5
- * modification, are permitted provided that the following conditions are met:
6
- * * Redistributions of source code must retain the above copyright
7
- * notice, this list of conditions and the following disclaimer.
8
- * * Redistributions in binary form must reproduce the above copyright
9
- * notice, this list of conditions and the following disclaimer in the
10
- * documentation and/or other materials provided with the distribution.
11
- * * Neither the name of the NVIDIA CORPORATION nor the
12
- * names of its contributors may be used to endorse or promote products
13
- * derived from this software without specific prior written permission.
14
- *
15
- * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
16
- * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
17
- * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
18
- * ARE DISCLAIMED. IN NO EVENT SHALL NVIDIA CORPORATION BE LIABLE FOR ANY
19
- * DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
20
- * (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
21
- * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND
22
- * ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
23
- * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
24
- * SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
25
- *
26
- ******************************************************************************/
27
- #pragma once
28
-
29
-
30
- #if THRUST_DEVICE_COMPILER == THRUST_DEVICE_COMPILER_NVCC
31
- #include <thrust/system/cuda/detail/transform.h>
32
- #include <thrust/iterator/permutation_iterator.h>
33
-
34
- namespace thrust
35
- {
36
- namespace cuda_cub {
37
-
38
- template <class Derived,
39
- class MapIt,
40
- class ItemsIt,
41
- class ResultIt>
42
- ResultIt __host__ __device__
43
- gather(execution_policy<Derived>& policy,
44
- MapIt map_first,
45
- MapIt map_last,
46
- ItemsIt items,
47
- ResultIt result)
48
- {
49
- return cuda_cub::transform(policy,
50
- thrust::make_permutation_iterator(items, map_first),
51
- thrust::make_permutation_iterator(items, map_last),
52
- result,
53
- identity());
54
- }
55
-
56
-
57
- template <class Derived,
58
- class MapIt,
59
- class StencilIt,
60
- class ItemsIt,
61
- class ResultIt,
62
- class Predicate>
63
- ResultIt __host__ __device__
64
- gather_if(execution_policy<Derived>& policy,
65
- MapIt map_first,
66
- MapIt map_last,
67
- StencilIt stencil,
68
- ItemsIt items,
69
- ResultIt result,
70
- Predicate predicate)
71
- {
72
- return cuda_cub::transform_if(policy,
73
- thrust::make_permutation_iterator(items, map_first),
74
- thrust::make_permutation_iterator(items, map_last),
75
- stencil,
76
- result,
77
- identity(),
78
- predicate);
79
- }
80
-
81
- template <class Derived,
82
- class MapIt,
83
- class StencilIt,
84
- class ItemsIt,
85
- class ResultIt>
86
- ResultIt __host__ __device__
87
- gather_if(execution_policy<Derived>& policy,
88
- MapIt map_first,
89
- MapIt map_last,
90
- StencilIt stencil,
91
- ItemsIt items,
92
- ResultIt result)
93
- {
94
- return cuda_cub::gather_if(policy,
95
- map_first,
96
- map_last,
97
- stencil,
98
- items,
99
- result,
100
- identity());
101
- }
102
-
103
-
104
- } // namespace cuda_cub
105
- } // end namespace thrust
106
-
107
- #endif
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
spaces/CVPR/VizWiz-CLIP-VQA/README.md DELETED
@@ -1,10 +0,0 @@
1
- ---
2
- title: CLIP-VQA for VizWiz 2022
3
- emoji: 👁️
4
- colorFrom: gray
5
- colorTo: indigo
6
- sdk: gradio
7
- sdk_version: 3.0.17
8
- app_file: app.py
9
- pinned: false
10
- ---
 
 
 
 
 
 
 
 
 
 
 
spaces/Choisuren/AnimeGANv3/README.md DELETED
@@ -1,12 +0,0 @@
1
- ---
2
- title: AnimeGANv3
3
- emoji: 🐠
4
- colorFrom: purple
5
- colorTo: yellow
6
- sdk: gradio
7
- sdk_version: 3.29.0
8
- app_file: app.py
9
- pinned: false
10
- ---
11
-
12
- Check out the configuration reference at https://huggingface.co/docs/hub/spaces-config-reference
 
 
 
 
 
 
 
 
 
 
 
 
 
spaces/CikeyQI/meme-api/meme_generator/memes/hug_leg/__init__.py DELETED
@@ -1,32 +0,0 @@
1
- from pathlib import Path
2
- from typing import List
3
-
4
- from PIL.Image import Image as IMG
5
- from pil_utils import BuildImage
6
-
7
- from meme_generator import add_meme
8
- from meme_generator.utils import save_gif
9
-
10
- img_dir = Path(__file__).parent / "images"
11
-
12
-
13
- def hug_leg(images: List[BuildImage], texts, args):
14
- img = images[0].convert("RGBA").square()
15
- locs = [
16
- (50, 73, 68, 92),
17
- (58, 60, 62, 95),
18
- (65, 10, 67, 118),
19
- (61, 20, 77, 97),
20
- (55, 44, 65, 106),
21
- (66, 85, 60, 98),
22
- ]
23
- frames: List[IMG] = []
24
- for i in range(6):
25
- frame = BuildImage.open(img_dir / f"{i}.png")
26
- x, y, w, h = locs[i]
27
- frame.paste(img.resize((w, h)), (x, y), below=True)
28
- frames.append(frame.image)
29
- return save_gif(frames, 0.06)
30
-
31
-
32
- add_meme("hug_leg", hug_leg, min_images=1, max_images=1, keywords=["抱大腿"])
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
spaces/CofAI/chat/client/css/conversation.css DELETED
@@ -1,158 +0,0 @@
1
- .conversation {
2
- width: 60%;
3
- margin: 0px 16px;
4
- display: flex;
5
- flex-direction: column;
6
- }
7
-
8
- .conversation #messages {
9
- width: 100%;
10
- display: flex;
11
- flex-direction: column;
12
- overflow: auto;
13
- overflow-wrap: break-word;
14
- padding-bottom: 8px;
15
- }
16
-
17
- .conversation .user-input {
18
- max-height: 180px;
19
- margin: 16px 0px;
20
- }
21
-
22
- .conversation .user-input input {
23
- font-size: 1rem;
24
- background: none;
25
- border: none;
26
- outline: none;
27
- color: var(--colour-3);
28
- }
29
-
30
- .conversation .user-input input::placeholder {
31
- color: var(--user-input);
32
- }
33
-
34
- .conversation-title {
35
- color: var(--colour-3);
36
- font-size: 14px;
37
- }
38
-
39
- .conversation .user-input textarea {
40
- font-size: 1rem;
41
- width: 100%;
42
- height: 100%;
43
- padding: 12px;
44
- background: none;
45
- border: none;
46
- outline: none;
47
- color: var(--colour-3);
48
- resize: vertical;
49
- max-height: 150px;
50
- min-height: 80px;
51
- }
52
-
53
- .box {
54
- backdrop-filter: blur(20px);
55
- -webkit-backdrop-filter: blur(20px);
56
- background-color: var(--blur-bg);
57
- height: 100%;
58
- width: 100%;
59
- border-radius: var(--border-radius-1);
60
- border: 1px solid var(--blur-border);
61
- }
62
-
63
- .box.input-box {
64
- position: relative;
65
- align-items: center;
66
- padding: 8px;
67
- cursor: pointer;
68
- }
69
-
70
- #send-button {
71
- position: absolute;
72
- bottom: 25%;
73
- right: 10px;
74
- z-index: 1;
75
- padding: 16px;
76
- }
77
-
78
- #cursor {
79
- line-height: 17px;
80
- margin-left: 3px;
81
- -webkit-animation: blink 0.8s infinite;
82
- animation: blink 0.8s infinite;
83
- width: 7px;
84
- height: 15px;
85
- }
86
-
87
- @keyframes blink {
88
- 0% {
89
- background: #ffffff00;
90
- }
91
-
92
- 50% {
93
- background: white;
94
- }
95
-
96
- 100% {
97
- background: #ffffff00;
98
- }
99
- }
100
-
101
- @-webkit-keyframes blink {
102
- 0% {
103
- background: #ffffff00;
104
- }
105
-
106
- 50% {
107
- background: white;
108
- }
109
-
110
- 100% {
111
- background: #ffffff00;
112
- }
113
- }
114
-
115
- /* scrollbar */
116
- .conversation #messages::-webkit-scrollbar {
117
- width: 4px;
118
- padding: 8px 0px;
119
- }
120
-
121
- .conversation #messages::-webkit-scrollbar-track {
122
- background-color: #ffffff00;
123
- }
124
-
125
- .conversation #messages::-webkit-scrollbar-thumb {
126
- background-color: #555555;
127
- border-radius: 10px;
128
- }
129
-
130
- @media screen and (max-width: 990px) {
131
- .conversation {
132
- width: 100%;
133
- height: 90%;
134
- }
135
- }
136
-
137
- @media screen and (max-height: 720px) {
138
- .conversation.box {
139
- height: 70%;
140
- }
141
-
142
- .conversation .user-input textarea {
143
- font-size: 0.875rem;
144
- }
145
- }
146
-
147
- @media screen and (max-width: 360px) {
148
- .box {
149
- border-radius: 0;
150
- }
151
- .conversation {
152
- margin: 0;
153
- margin-top: 48px;
154
- }
155
- .conversation .user-input {
156
- margin: 2px 0 8px 0;
157
- }
158
- }
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
spaces/CofAI/chat/client/js/sidebar-toggler.js DELETED
@@ -1,34 +0,0 @@
1
- const sidebar = document.querySelector(".sidebar");
2
- const menuButton = document.querySelector(".menu-button");
3
-
4
- function toggleSidebar(event) {
5
- if (sidebar.classList.contains("shown")) {
6
- hideSidebar(event.target);
7
- } else {
8
- showSidebar(event.target);
9
- }
10
- window.scrollTo(0, 0);
11
- }
12
-
13
- function showSidebar(target) {
14
- sidebar.classList.add("shown");
15
- target.classList.add("rotated");
16
- document.body.style.overflow = "hidden";
17
- }
18
-
19
- function hideSidebar(target) {
20
- sidebar.classList.remove("shown");
21
- target.classList.remove("rotated");
22
- document.body.style.overflow = "auto";
23
- }
24
-
25
- menuButton.addEventListener("click", toggleSidebar);
26
-
27
- document.body.addEventListener('click', function(event) {
28
- if (event.target.matches('.conversation-title')) {
29
- const menuButtonStyle = window.getComputedStyle(menuButton);
30
- if (menuButtonStyle.display !== 'none') {
31
- hideSidebar(menuButton);
32
- }
33
- }
34
- });
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
spaces/DKDohare/Chat-GPT4-MAX/app.py DELETED
@@ -1,141 +0,0 @@
1
- import gradio as gr
2
- import os
3
- import json
4
- import requests
5
-
6
- #Streaming endpoint
7
- API_URL = "https://api.openai.com/v1/chat/completions" #os.getenv("API_URL") + "/generate_stream"
8
-
9
- #Testing with my Open AI Key
10
- OPENAI_API_KEY = os.getenv("OPENAI_API_KEY")
11
-
12
- def predict(inputs, top_p, temperature, chat_counter, chatbot=[], history=[]):
13
-
14
- payload = {
15
- "model": "gpt-4",
16
- "messages": [{"role": "user", "content": f"{inputs}"}],
17
- "temperature" : 1.0,
18
- "top_p":1.0,
19
- "n" : 1,
20
- "stream": True,
21
- "presence_penalty":0,
22
- "frequency_penalty":0,
23
- }
24
-
25
- headers = {
26
- "Content-Type": "application/json",
27
- "Authorization": f"Bearer {OPENAI_API_KEY}"
28
- }
29
-
30
- print(f"chat_counter - {chat_counter}")
31
- if chat_counter != 0 :
32
- messages=[]
33
- for data in chatbot:
34
- temp1 = {}
35
- temp1["role"] = "user"
36
- temp1["content"] = data[0]
37
- temp2 = {}
38
- temp2["role"] = "assistant"
39
- temp2["content"] = data[1]
40
- messages.append(temp1)
41
- messages.append(temp2)
42
- temp3 = {}
43
- temp3["role"] = "user"
44
- temp3["content"] = inputs
45
- messages.append(temp3)
46
- #messages
47
- payload = {
48
- "model": "gpt-4",
49
- "messages": messages, #[{"role": "user", "content": f"{inputs}"}],
50
- "temperature" : temperature, #1.0,
51
- "top_p": top_p, #1.0,
52
- "n" : 1,
53
- "stream": True,
54
- "presence_penalty":0,
55
- "frequency_penalty":0,
56
- }
57
-
58
- chat_counter+=1
59
-
60
- history.append(inputs)
61
- print(f"payload is - {payload}")
62
- # make a POST request to the API endpoint using the requests.post method, passing in stream=True
63
- response = requests.post(API_URL, headers=headers, json=payload, stream=True)
64
- print(f"response code - {response}")
65
- token_counter = 0
66
- partial_words = ""
67
-
68
- counter=0
69
- for chunk in response.iter_lines():
70
- #Skipping first chunk
71
- if counter == 0:
72
- counter+=1
73
- continue
74
- #counter+=1
75
- # check whether each line is non-empty
76
- if chunk.decode() :
77
- chunk = chunk.decode()
78
- # decode each line as response data is in bytes
79
- if len(chunk) > 12 and "content" in json.loads(chunk[6:])['choices'][0]['delta']:
80
- #if len(json.loads(chunk.decode()[6:])['choices'][0]["delta"]) == 0:
81
- # break
82
- partial_words = partial_words + json.loads(chunk[6:])['choices'][0]["delta"]["content"]
83
- if token_counter == 0:
84
- history.append(" " + partial_words)
85
- else:
86
- history[-1] = partial_words
87
- chat = [(history[i], history[i + 1]) for i in range(0, len(history) - 1, 2) ] # convert to tuples of list
88
- token_counter+=1
89
- yield chat, history, chat_counter, response # resembles {chatbot: chat, state: history}
90
-
91
-
92
- def reset_textbox():
93
- return gr.update(value='')
94
-
95
- title = """<h1 align="center">🔥GPT4 with ChatCompletions API +🚀Gradio-Streaming</h1>"""
96
- description = """Language models can be conditioned to act like dialogue agents through a conversational prompt that typically takes the form:
97
- ```
98
- User: <utterance>
99
- Assistant: <utterance>
100
- User: <utterance>
101
- Assistant: <utterance>
102
- ...
103
- ```
104
- In this app, you can explore the outputs of a gpt-4 LLM.
105
- """
106
-
107
- theme = gr.themes.Default(primary_hue="green")
108
-
109
- with gr.Blocks(css = """#col_container { margin-left: auto; margin-right: auto;}
110
- #chatbot {height: 520px; overflow: auto;}""",
111
- theme=theme) as demo:
112
- gr.HTML(title)
113
- gr.HTML("""<h3 align="center">🔥This Huggingface Gradio Demo provides you full access to GPT4 API (4096 token limit). 🎉🥳🎉You don't need any OPENAI API key🙌</h1>""")
114
- gr.HTML('''<center><a href="https://huggingface.co/spaces/ysharma/ChatGPT4?duplicate=true"><img src="https://bit.ly/3gLdBN6" alt="Duplicate Space"></a>Duplicate the Space and run securely with your OpenAI API Key</center>''')
115
- with gr.Column(elem_id = "col_container"):
116
- #GPT4 API Key is provided by Huggingface
117
- #openai_api_key = gr.Textbox(type='password', label="Enter only your GPT4 OpenAI API key here")
118
- chatbot = gr.Chatbot(elem_id='chatbot') #c
119
- inputs = gr.Textbox(placeholder= "Hi there!", label= "Type an input and press Enter") #t
120
- state = gr.State([]) #s
121
- with gr.Row():
122
- with gr.Column(scale=7):
123
- b1 = gr.Button().style(full_width=True)
124
- with gr.Column(scale=3):
125
- server_status_code = gr.Textbox(label="Status code from OpenAI server", )
126
-
127
- #inputs, top_p, temperature, top_k, repetition_penalty
128
- with gr.Accordion("Parameters", open=False):
129
- top_p = gr.Slider( minimum=-0, maximum=1.0, value=1.0, step=0.05, interactive=True, label="Top-p (nucleus sampling)",)
130
- temperature = gr.Slider( minimum=-0, maximum=5.0, value=1.0, step=0.1, interactive=True, label="Temperature",)
131
- #top_k = gr.Slider( minimum=1, maximum=50, value=4, step=1, interactive=True, label="Top-k",)
132
- #repetition_penalty = gr.Slider( minimum=0.1, maximum=3.0, value=1.03, step=0.01, interactive=True, label="Repetition Penalty", )
133
- chat_counter = gr.Number(value=0, visible=False, precision=0)
134
-
135
- inputs.submit( predict, [inputs, top_p, temperature, chat_counter, chatbot, state], [chatbot, state, chat_counter, server_status_code],) #openai_api_key
136
- b1.click( predict, [inputs, top_p, temperature, chat_counter, chatbot, state], [chatbot, state, chat_counter, server_status_code],) #openai_api_key
137
- b1.click(reset_textbox, [], [inputs])
138
- inputs.submit(reset_textbox, [], [inputs])
139
-
140
- #gr.Markdown(description)
141
- demo.queue(max_size=20, concurrency_count=10).launch(debug=True)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
spaces/DQChoi/gpt-demo/venv/lib/python3.11/site-packages/httpcore/_async/http_proxy.py DELETED
@@ -1,350 +0,0 @@
1
- import logging
2
- import ssl
3
- from base64 import b64encode
4
- from typing import Iterable, List, Mapping, Optional, Sequence, Tuple, Union
5
-
6
- from .._backends.base import SOCKET_OPTION, AsyncNetworkBackend
7
- from .._exceptions import ProxyError
8
- from .._models import (
9
- URL,
10
- Origin,
11
- Request,
12
- Response,
13
- enforce_bytes,
14
- enforce_headers,
15
- enforce_url,
16
- )
17
- from .._ssl import default_ssl_context
18
- from .._synchronization import AsyncLock
19
- from .._trace import Trace
20
- from .connection import AsyncHTTPConnection
21
- from .connection_pool import AsyncConnectionPool
22
- from .http11 import AsyncHTTP11Connection
23
- from .interfaces import AsyncConnectionInterface
24
-
25
- HeadersAsSequence = Sequence[Tuple[Union[bytes, str], Union[bytes, str]]]
26
- HeadersAsMapping = Mapping[Union[bytes, str], Union[bytes, str]]
27
-
28
-
29
- logger = logging.getLogger("httpcore.proxy")
30
-
31
-
32
- def merge_headers(
33
- default_headers: Optional[Sequence[Tuple[bytes, bytes]]] = None,
34
- override_headers: Optional[Sequence[Tuple[bytes, bytes]]] = None,
35
- ) -> List[Tuple[bytes, bytes]]:
36
- """
37
- Append default_headers and override_headers, de-duplicating if a key exists
38
- in both cases.
39
- """
40
- default_headers = [] if default_headers is None else list(default_headers)
41
- override_headers = [] if override_headers is None else list(override_headers)
42
- has_override = set(key.lower() for key, value in override_headers)
43
- default_headers = [
44
- (key, value)
45
- for key, value in default_headers
46
- if key.lower() not in has_override
47
- ]
48
- return default_headers + override_headers
49
-
50
-
51
- def build_auth_header(username: bytes, password: bytes) -> bytes:
52
- userpass = username + b":" + password
53
- return b"Basic " + b64encode(userpass)
54
-
55
-
56
- class AsyncHTTPProxy(AsyncConnectionPool):
57
- """
58
- A connection pool that sends requests via an HTTP proxy.
59
- """
60
-
61
- def __init__(
62
- self,
63
- proxy_url: Union[URL, bytes, str],
64
- proxy_auth: Optional[Tuple[Union[bytes, str], Union[bytes, str]]] = None,
65
- proxy_headers: Union[HeadersAsMapping, HeadersAsSequence, None] = None,
66
- ssl_context: Optional[ssl.SSLContext] = None,
67
- max_connections: Optional[int] = 10,
68
- max_keepalive_connections: Optional[int] = None,
69
- keepalive_expiry: Optional[float] = None,
70
- http1: bool = True,
71
- http2: bool = False,
72
- retries: int = 0,
73
- local_address: Optional[str] = None,
74
- uds: Optional[str] = None,
75
- network_backend: Optional[AsyncNetworkBackend] = None,
76
- socket_options: Optional[Iterable[SOCKET_OPTION]] = None,
77
- ) -> None:
78
- """
79
- A connection pool for making HTTP requests.
80
-
81
- Parameters:
82
- proxy_url: The URL to use when connecting to the proxy server.
83
- For example `"http://127.0.0.1:8080/"`.
84
- proxy_auth: Any proxy authentication as a two-tuple of
85
- (username, password). May be either bytes or ascii-only str.
86
- proxy_headers: Any HTTP headers to use for the proxy requests.
87
- For example `{"Proxy-Authorization": "Basic <username>:<password>"}`.
88
- ssl_context: An SSL context to use for verifying connections.
89
- If not specified, the default `httpcore.default_ssl_context()`
90
- will be used.
91
- max_connections: The maximum number of concurrent HTTP connections that
92
- the pool should allow. Any attempt to send a request on a pool that
93
- would exceed this amount will block until a connection is available.
94
- max_keepalive_connections: The maximum number of idle HTTP connections
95
- that will be maintained in the pool.
96
- keepalive_expiry: The duration in seconds that an idle HTTP connection
97
- may be maintained for before being expired from the pool.
98
- http1: A boolean indicating if HTTP/1.1 requests should be supported
99
- by the connection pool. Defaults to True.
100
- http2: A boolean indicating if HTTP/2 requests should be supported by
101
- the connection pool. Defaults to False.
102
- retries: The maximum number of retries when trying to establish
103
- a connection.
104
- local_address: Local address to connect from. Can also be used to
105
- connect using a particular address family. Using
106
- `local_address="0.0.0.0"` will connect using an `AF_INET` address
107
- (IPv4), while using `local_address="::"` will connect using an
108
- `AF_INET6` address (IPv6).
109
- uds: Path to a Unix Domain Socket to use instead of TCP sockets.
110
- network_backend: A backend instance to use for handling network I/O.
111
- """
112
- super().__init__(
113
- ssl_context=ssl_context,
114
- max_connections=max_connections,
115
- max_keepalive_connections=max_keepalive_connections,
116
- keepalive_expiry=keepalive_expiry,
117
- http1=http1,
118
- http2=http2,
119
- network_backend=network_backend,
120
- retries=retries,
121
- local_address=local_address,
122
- uds=uds,
123
- socket_options=socket_options,
124
- )
125
- self._ssl_context = ssl_context
126
- self._proxy_url = enforce_url(proxy_url, name="proxy_url")
127
- self._proxy_headers = enforce_headers(proxy_headers, name="proxy_headers")
128
- if proxy_auth is not None:
129
- username = enforce_bytes(proxy_auth[0], name="proxy_auth")
130
- password = enforce_bytes(proxy_auth[1], name="proxy_auth")
131
- authorization = build_auth_header(username, password)
132
- self._proxy_headers = [
133
- (b"Proxy-Authorization", authorization)
134
- ] + self._proxy_headers
135
-
136
- def create_connection(self, origin: Origin) -> AsyncConnectionInterface:
137
- if origin.scheme == b"http":
138
- return AsyncForwardHTTPConnection(
139
- proxy_origin=self._proxy_url.origin,
140
- proxy_headers=self._proxy_headers,
141
- remote_origin=origin,
142
- keepalive_expiry=self._keepalive_expiry,
143
- network_backend=self._network_backend,
144
- )
145
- return AsyncTunnelHTTPConnection(
146
- proxy_origin=self._proxy_url.origin,
147
- proxy_headers=self._proxy_headers,
148
- remote_origin=origin,
149
- ssl_context=self._ssl_context,
150
- keepalive_expiry=self._keepalive_expiry,
151
- http1=self._http1,
152
- http2=self._http2,
153
- network_backend=self._network_backend,
154
- )
155
-
156
-
157
- class AsyncForwardHTTPConnection(AsyncConnectionInterface):
158
- def __init__(
159
- self,
160
- proxy_origin: Origin,
161
- remote_origin: Origin,
162
- proxy_headers: Union[HeadersAsMapping, HeadersAsSequence, None] = None,
163
- keepalive_expiry: Optional[float] = None,
164
- network_backend: Optional[AsyncNetworkBackend] = None,
165
- socket_options: Optional[Iterable[SOCKET_OPTION]] = None,
166
- ) -> None:
167
- self._connection = AsyncHTTPConnection(
168
- origin=proxy_origin,
169
- keepalive_expiry=keepalive_expiry,
170
- network_backend=network_backend,
171
- socket_options=socket_options,
172
- )
173
- self._proxy_origin = proxy_origin
174
- self._proxy_headers = enforce_headers(proxy_headers, name="proxy_headers")
175
- self._remote_origin = remote_origin
176
-
177
- async def handle_async_request(self, request: Request) -> Response:
178
- headers = merge_headers(self._proxy_headers, request.headers)
179
- url = URL(
180
- scheme=self._proxy_origin.scheme,
181
- host=self._proxy_origin.host,
182
- port=self._proxy_origin.port,
183
- target=bytes(request.url),
184
- )
185
- proxy_request = Request(
186
- method=request.method,
187
- url=url,
188
- headers=headers,
189
- content=request.stream,
190
- extensions=request.extensions,
191
- )
192
- return await self._connection.handle_async_request(proxy_request)
193
-
194
- def can_handle_request(self, origin: Origin) -> bool:
195
- return origin == self._remote_origin
196
-
197
- async def aclose(self) -> None:
198
- await self._connection.aclose()
199
-
200
- def info(self) -> str:
201
- return self._connection.info()
202
-
203
- def is_available(self) -> bool:
204
- return self._connection.is_available()
205
-
206
- def has_expired(self) -> bool:
207
- return self._connection.has_expired()
208
-
209
- def is_idle(self) -> bool:
210
- return self._connection.is_idle()
211
-
212
- def is_closed(self) -> bool:
213
- return self._connection.is_closed()
214
-
215
- def __repr__(self) -> str:
216
- return f"<{self.__class__.__name__} [{self.info()}]>"
217
-
218
-
219
- class AsyncTunnelHTTPConnection(AsyncConnectionInterface):
220
- def __init__(
221
- self,
222
- proxy_origin: Origin,
223
- remote_origin: Origin,
224
- ssl_context: Optional[ssl.SSLContext] = None,
225
- proxy_headers: Optional[Sequence[Tuple[bytes, bytes]]] = None,
226
- keepalive_expiry: Optional[float] = None,
227
- http1: bool = True,
228
- http2: bool = False,
229
- network_backend: Optional[AsyncNetworkBackend] = None,
230
- socket_options: Optional[Iterable[SOCKET_OPTION]] = None,
231
- ) -> None:
232
- self._connection: AsyncConnectionInterface = AsyncHTTPConnection(
233
- origin=proxy_origin,
234
- keepalive_expiry=keepalive_expiry,
235
- network_backend=network_backend,
236
- socket_options=socket_options,
237
- )
238
- self._proxy_origin = proxy_origin
239
- self._remote_origin = remote_origin
240
- self._ssl_context = ssl_context
241
- self._proxy_headers = enforce_headers(proxy_headers, name="proxy_headers")
242
- self._keepalive_expiry = keepalive_expiry
243
- self._http1 = http1
244
- self._http2 = http2
245
- self._connect_lock = AsyncLock()
246
- self._connected = False
247
-
248
- async def handle_async_request(self, request: Request) -> Response:
249
- timeouts = request.extensions.get("timeout", {})
250
- timeout = timeouts.get("connect", None)
251
-
252
- async with self._connect_lock:
253
- if not self._connected:
254
- target = b"%b:%d" % (self._remote_origin.host, self._remote_origin.port)
255
-
256
- connect_url = URL(
257
- scheme=self._proxy_origin.scheme,
258
- host=self._proxy_origin.host,
259
- port=self._proxy_origin.port,
260
- target=target,
261
- )
262
- connect_headers = merge_headers(
263
- [(b"Host", target), (b"Accept", b"*/*")], self._proxy_headers
264
- )
265
- connect_request = Request(
266
- method=b"CONNECT",
267
- url=connect_url,
268
- headers=connect_headers,
269
- extensions=request.extensions,
270
- )
271
- connect_response = await self._connection.handle_async_request(
272
- connect_request
273
- )
274
-
275
- if connect_response.status < 200 or connect_response.status > 299:
276
- reason_bytes = connect_response.extensions.get("reason_phrase", b"")
277
- reason_str = reason_bytes.decode("ascii", errors="ignore")
278
- msg = "%d %s" % (connect_response.status, reason_str)
279
- await self._connection.aclose()
280
- raise ProxyError(msg)
281
-
282
- stream = connect_response.extensions["network_stream"]
283
-
284
- # Upgrade the stream to SSL
285
- ssl_context = (
286
- default_ssl_context()
287
- if self._ssl_context is None
288
- else self._ssl_context
289
- )
290
- alpn_protocols = ["http/1.1", "h2"] if self._http2 else ["http/1.1"]
291
- ssl_context.set_alpn_protocols(alpn_protocols)
292
-
293
- kwargs = {
294
- "ssl_context": ssl_context,
295
- "server_hostname": self._remote_origin.host.decode("ascii"),
296
- "timeout": timeout,
297
- }
298
- async with Trace("start_tls", logger, request, kwargs) as trace:
299
- stream = await stream.start_tls(**kwargs)
300
- trace.return_value = stream
301
-
302
- # Determine if we should be using HTTP/1.1 or HTTP/2
303
- ssl_object = stream.get_extra_info("ssl_object")
304
- http2_negotiated = (
305
- ssl_object is not None
306
- and ssl_object.selected_alpn_protocol() == "h2"
307
- )
308
-
309
- # Create the HTTP/1.1 or HTTP/2 connection
310
- if http2_negotiated or (self._http2 and not self._http1):
311
- from .http2 import AsyncHTTP2Connection
312
-
313
- self._connection = AsyncHTTP2Connection(
314
- origin=self._remote_origin,
315
- stream=stream,
316
- keepalive_expiry=self._keepalive_expiry,
317
- )
318
- else:
319
- self._connection = AsyncHTTP11Connection(
320
- origin=self._remote_origin,
321
- stream=stream,
322
- keepalive_expiry=self._keepalive_expiry,
323
- )
324
-
325
- self._connected = True
326
- return await self._connection.handle_async_request(request)
327
-
328
- def can_handle_request(self, origin: Origin) -> bool:
329
- return origin == self._remote_origin
330
-
331
- async def aclose(self) -> None:
332
- await self._connection.aclose()
333
-
334
- def info(self) -> str:
335
- return self._connection.info()
336
-
337
- def is_available(self) -> bool:
338
- return self._connection.is_available()
339
-
340
- def has_expired(self) -> bool:
341
- return self._connection.has_expired()
342
-
343
- def is_idle(self) -> bool:
344
- return self._connection.is_idle()
345
-
346
- def is_closed(self) -> bool:
347
- return self._connection.is_closed()
348
-
349
- def __repr__(self) -> str:
350
- return f"<{self.__class__.__name__} [{self.info()}]>"
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
spaces/DQChoi/gpt-demo/venv/lib/python3.11/site-packages/huggingface_hub/keras_mixin.py DELETED
@@ -1,481 +0,0 @@
1
- import collections.abc as collections
2
- import json
3
- import os
4
- import warnings
5
- from pathlib import Path
6
- from shutil import copytree
7
- from typing import Any, Dict, List, Optional, Union
8
-
9
- from huggingface_hub import ModelHubMixin, snapshot_download
10
- from huggingface_hub.utils import (
11
- get_tf_version,
12
- is_graphviz_available,
13
- is_pydot_available,
14
- is_tf_available,
15
- yaml_dump,
16
- )
17
-
18
- from .constants import CONFIG_NAME
19
- from .hf_api import HfApi
20
- from .utils import SoftTemporaryDirectory, logging, validate_hf_hub_args
21
-
22
-
23
- logger = logging.get_logger(__name__)
24
-
25
- if is_tf_available():
26
- import tensorflow as tf # type: ignore
27
-
28
-
29
- def _flatten_dict(dictionary, parent_key=""):
30
- """Flatten a nested dictionary.
31
- Reference: https://stackoverflow.com/a/6027615/10319735
32
-
33
- Args:
34
- dictionary (`dict`):
35
- The nested dictionary to be flattened.
36
- parent_key (`str`):
37
- The parent key to be prefixed to the children keys.
38
- Necessary for recursing over the nested dictionary.
39
-
40
- Returns:
41
- The flattened dictionary.
42
- """
43
- items = []
44
- for key, value in dictionary.items():
45
- new_key = f"{parent_key}.{key}" if parent_key else key
46
- if isinstance(value, collections.MutableMapping):
47
- items.extend(
48
- _flatten_dict(
49
- value,
50
- new_key,
51
- ).items()
52
- )
53
- else:
54
- items.append((new_key, value))
55
- return dict(items)
56
-
57
-
58
- def _create_hyperparameter_table(model):
59
- """Parse hyperparameter dictionary into a markdown table."""
60
- if model.optimizer is not None:
61
- optimizer_params = model.optimizer.get_config()
62
- # flatten the configuration
63
- optimizer_params = _flatten_dict(optimizer_params)
64
- optimizer_params["training_precision"] = tf.keras.mixed_precision.global_policy().name
65
- table = "| Hyperparameters | Value |\n| :-- | :-- |\n"
66
- for key, value in optimizer_params.items():
67
- table += f"| {key} | {value} |\n"
68
- else:
69
- table = None
70
- return table
71
-
72
-
73
- def _plot_network(model, save_directory):
74
- tf.keras.utils.plot_model(
75
- model,
76
- to_file=f"{save_directory}/model.png",
77
- show_shapes=False,
78
- show_dtype=False,
79
- show_layer_names=True,
80
- rankdir="TB",
81
- expand_nested=False,
82
- dpi=96,
83
- layer_range=None,
84
- )
85
-
86
-
87
- def _create_model_card(
88
- model,
89
- repo_dir: Path,
90
- plot_model: bool = True,
91
- metadata: Optional[dict] = None,
92
- ):
93
- """
94
- Creates a model card for the repository.
95
- """
96
- hyperparameters = _create_hyperparameter_table(model)
97
- if plot_model and is_graphviz_available() and is_pydot_available():
98
- _plot_network(model, repo_dir)
99
- if metadata is None:
100
- metadata = {}
101
- readme_path = f"{repo_dir}/README.md"
102
- metadata["library_name"] = "keras"
103
- model_card: str = "---\n"
104
- model_card += yaml_dump(metadata, default_flow_style=False)
105
- model_card += "---\n"
106
- model_card += "\n## Model description\n\nMore information needed\n"
107
- model_card += "\n## Intended uses & limitations\n\nMore information needed\n"
108
- model_card += "\n## Training and evaluation data\n\nMore information needed\n"
109
- if hyperparameters is not None:
110
- model_card += "\n## Training procedure\n"
111
- model_card += "\n### Training hyperparameters\n"
112
- model_card += "\nThe following hyperparameters were used during training:\n\n"
113
- model_card += hyperparameters
114
- model_card += "\n"
115
- if plot_model and os.path.exists(f"{repo_dir}/model.png"):
116
- model_card += "\n ## Model Plot\n"
117
- model_card += "\n<details>"
118
- model_card += "\n<summary>View Model Plot</summary>\n"
119
- path_to_plot = "./model.png"
120
- model_card += f"\n![Model Image]({path_to_plot})\n"
121
- model_card += "\n</details>"
122
-
123
- if os.path.exists(readme_path):
124
- with open(readme_path, "r", encoding="utf8") as f:
125
- readme = f.read()
126
- else:
127
- readme = model_card
128
- with open(readme_path, "w", encoding="utf-8") as f:
129
- f.write(readme)
130
-
131
-
132
- def save_pretrained_keras(
133
- model,
134
- save_directory: Union[str, Path],
135
- config: Optional[Dict[str, Any]] = None,
136
- include_optimizer: bool = False,
137
- plot_model: bool = True,
138
- tags: Optional[Union[list, str]] = None,
139
- **model_save_kwargs,
140
- ):
141
- """
142
- Saves a Keras model to save_directory in SavedModel format. Use this if
143
- you're using the Functional or Sequential APIs.
144
-
145
- Args:
146
- model (`Keras.Model`):
147
- The [Keras
148
- model](https://www.tensorflow.org/api_docs/python/tf/keras/Model)
149
- you'd like to save. The model must be compiled and built.
150
- save_directory (`str` or `Path`):
151
- Specify directory in which you want to save the Keras model.
152
- config (`dict`, *optional*):
153
- Configuration object to be saved alongside the model weights.
154
- include_optimizer(`bool`, *optional*, defaults to `False`):
155
- Whether or not to include optimizer in serialization.
156
- plot_model (`bool`, *optional*, defaults to `True`):
157
- Setting this to `True` will plot the model and put it in the model
158
- card. Requires graphviz and pydot to be installed.
159
- tags (Union[`str`,`list`], *optional*):
160
- List of tags that are related to model or string of a single tag. See example tags
161
- [here](https://github.com/huggingface/hub-docs/blame/main/modelcard.md).
162
- model_save_kwargs(`dict`, *optional*):
163
- model_save_kwargs will be passed to
164
- [`tf.keras.models.save_model()`](https://www.tensorflow.org/api_docs/python/tf/keras/models/save_model).
165
- """
166
- if is_tf_available():
167
- import tensorflow as tf
168
- else:
169
- raise ImportError("Called a Tensorflow-specific function but could not import it.")
170
-
171
- if not model.built:
172
- raise ValueError("Model should be built before trying to save")
173
-
174
- save_directory = Path(save_directory)
175
- save_directory.mkdir(parents=True, exist_ok=True)
176
-
177
- # saving config
178
- if config:
179
- if not isinstance(config, dict):
180
- raise RuntimeError(f"Provided config to save_pretrained_keras should be a dict. Got: '{type(config)}'")
181
-
182
- with (save_directory / CONFIG_NAME).open("w") as f:
183
- json.dump(config, f)
184
-
185
- metadata = {}
186
- if isinstance(tags, list):
187
- metadata["tags"] = tags
188
- elif isinstance(tags, str):
189
- metadata["tags"] = [tags]
190
-
191
- task_name = model_save_kwargs.pop("task_name", None)
192
- if task_name is not None:
193
- warnings.warn(
194
- "`task_name` input argument is deprecated. Pass `tags` instead.",
195
- FutureWarning,
196
- )
197
- if "tags" in metadata:
198
- metadata["tags"].append(task_name)
199
- else:
200
- metadata["tags"] = [task_name]
201
-
202
- if model.history is not None:
203
- if model.history.history != {}:
204
- path = save_directory / "history.json"
205
- if path.exists():
206
- warnings.warn(
207
- "`history.json` file already exists, it will be overwritten by the history of this version.",
208
- UserWarning,
209
- )
210
- with path.open("w", encoding="utf-8") as f:
211
- json.dump(model.history.history, f, indent=2, sort_keys=True)
212
-
213
- _create_model_card(model, save_directory, plot_model, metadata)
214
- tf.keras.models.save_model(model, save_directory, include_optimizer=include_optimizer, **model_save_kwargs)
215
-
216
-
217
- def from_pretrained_keras(*args, **kwargs) -> "KerasModelHubMixin":
218
- r"""
219
- Instantiate a pretrained Keras model from a pre-trained model from the Hub.
220
- The model is expected to be in `SavedModel` format.
221
-
222
- Args:
223
- pretrained_model_name_or_path (`str` or `os.PathLike`):
224
- Can be either:
225
- - A string, the `model id` of a pretrained model hosted inside a
226
- model repo on huggingface.co. Valid model ids can be located
227
- at the root-level, like `bert-base-uncased`, or namespaced
228
- under a user or organization name, like
229
- `dbmdz/bert-base-german-cased`.
230
- - You can add `revision` by appending `@` at the end of model_id
231
- simply like this: `dbmdz/bert-base-german-cased@main` Revision
232
- is the specific model version to use. It can be a branch name,
233
- a tag name, or a commit id, since we use a git-based system
234
- for storing models and other artifacts on huggingface.co, so
235
- `revision` can be any identifier allowed by git.
236
- - A path to a `directory` containing model weights saved using
237
- [`~transformers.PreTrainedModel.save_pretrained`], e.g.,
238
- `./my_model_directory/`.
239
- - `None` if you are both providing the configuration and state
240
- dictionary (resp. with keyword arguments `config` and
241
- `state_dict`).
242
- force_download (`bool`, *optional*, defaults to `False`):
243
- Whether to force the (re-)download of the model weights and
244
- configuration files, overriding the cached versions if they exist.
245
- resume_download (`bool`, *optional*, defaults to `False`):
246
- Whether to delete incompletely received files. Will attempt to
247
- resume the download if such a file exists.
248
- proxies (`Dict[str, str]`, *optional*):
249
- A dictionary of proxy servers to use by protocol or endpoint, e.g.,
250
- `{'http': 'foo.bar:3128', 'http://hostname': 'foo.bar:4012'}`. The
251
- proxies are used on each request.
252
- token (`str` or `bool`, *optional*):
253
- The token to use as HTTP bearer authorization for remote files. If
254
- `True`, will use the token generated when running `transformers-cli
255
- login` (stored in `~/.huggingface`).
256
- cache_dir (`Union[str, os.PathLike]`, *optional*):
257
- Path to a directory in which a downloaded pretrained model
258
- configuration should be cached if the standard cache should not be
259
- used.
260
- local_files_only(`bool`, *optional*, defaults to `False`):
261
- Whether to only look at local files (i.e., do not try to download
262
- the model).
263
- model_kwargs (`Dict`, *optional*):
264
- model_kwargs will be passed to the model during initialization
265
-
266
- <Tip>
267
-
268
- Passing `token=True` is required when you want to use a private
269
- model.
270
-
271
- </Tip>
272
- """
273
- return KerasModelHubMixin.from_pretrained(*args, **kwargs)
274
-
275
-
276
- @validate_hf_hub_args
277
- def push_to_hub_keras(
278
- model,
279
- repo_id: str,
280
- *,
281
- config: Optional[dict] = None,
282
- commit_message: str = "Push Keras model using huggingface_hub.",
283
- private: bool = False,
284
- api_endpoint: Optional[str] = None,
285
- token: Optional[str] = None,
286
- branch: Optional[str] = None,
287
- create_pr: Optional[bool] = None,
288
- allow_patterns: Optional[Union[List[str], str]] = None,
289
- ignore_patterns: Optional[Union[List[str], str]] = None,
290
- delete_patterns: Optional[Union[List[str], str]] = None,
291
- log_dir: Optional[str] = None,
292
- include_optimizer: bool = False,
293
- tags: Optional[Union[list, str]] = None,
294
- plot_model: bool = True,
295
- **model_save_kwargs,
296
- ):
297
- """
298
- Upload model checkpoint to the Hub.
299
-
300
- Use `allow_patterns` and `ignore_patterns` to precisely filter which files should be pushed to the hub. Use
301
- `delete_patterns` to delete existing remote files in the same commit. See [`upload_folder`] reference for more
302
- details.
303
-
304
- Args:
305
- model (`Keras.Model`):
306
- The [Keras model](`https://www.tensorflow.org/api_docs/python/tf/keras/Model`) you'd like to push to the
307
- Hub. The model must be compiled and built.
308
- repo_id (`str`):
309
- ID of the repository to push to (example: `"username/my-model"`).
310
- commit_message (`str`, *optional*, defaults to "Add Keras model"):
311
- Message to commit while pushing.
312
- private (`bool`, *optional*, defaults to `False`):
313
- Whether the repository created should be private.
314
- api_endpoint (`str`, *optional*):
315
- The API endpoint to use when pushing the model to the hub.
316
- token (`str`, *optional*):
317
- The token to use as HTTP bearer authorization for remote files. If
318
- not set, will use the token set when logging in with
319
- `huggingface-cli login` (stored in `~/.huggingface`).
320
- branch (`str`, *optional*):
321
- The git branch on which to push the model. This defaults to
322
- the default branch as specified in your repository, which
323
- defaults to `"main"`.
324
- create_pr (`boolean`, *optional*):
325
- Whether or not to create a Pull Request from `branch` with that commit.
326
- Defaults to `False`.
327
- config (`dict`, *optional*):
328
- Configuration object to be saved alongside the model weights.
329
- allow_patterns (`List[str]` or `str`, *optional*):
330
- If provided, only files matching at least one pattern are pushed.
331
- ignore_patterns (`List[str]` or `str`, *optional*):
332
- If provided, files matching any of the patterns are not pushed.
333
- delete_patterns (`List[str]` or `str`, *optional*):
334
- If provided, remote files matching any of the patterns will be deleted from the repo.
335
- log_dir (`str`, *optional*):
336
- TensorBoard logging directory to be pushed. The Hub automatically
337
- hosts and displays a TensorBoard instance if log files are included
338
- in the repository.
339
- include_optimizer (`bool`, *optional*, defaults to `False`):
340
- Whether or not to include optimizer during serialization.
341
- tags (Union[`list`, `str`], *optional*):
342
- List of tags that are related to model or string of a single tag. See example tags
343
- [here](https://github.com/huggingface/hub-docs/blame/main/modelcard.md).
344
- plot_model (`bool`, *optional*, defaults to `True`):
345
- Setting this to `True` will plot the model and put it in the model
346
- card. Requires graphviz and pydot to be installed.
347
- model_save_kwargs(`dict`, *optional*):
348
- model_save_kwargs will be passed to
349
- [`tf.keras.models.save_model()`](https://www.tensorflow.org/api_docs/python/tf/keras/models/save_model).
350
-
351
- Returns:
352
- The url of the commit of your model in the given repository.
353
- """
354
- api = HfApi(endpoint=api_endpoint)
355
- repo_id = api.create_repo(repo_id=repo_id, token=token, private=private, exist_ok=True).repo_id
356
-
357
- # Push the files to the repo in a single commit
358
- with SoftTemporaryDirectory() as tmp:
359
- saved_path = Path(tmp) / repo_id
360
- save_pretrained_keras(
361
- model,
362
- saved_path,
363
- config=config,
364
- include_optimizer=include_optimizer,
365
- tags=tags,
366
- plot_model=plot_model,
367
- **model_save_kwargs,
368
- )
369
-
370
- # If `log_dir` provided, delete remote logs and upload new ones
371
- if log_dir is not None:
372
- delete_patterns = (
373
- []
374
- if delete_patterns is None
375
- else (
376
- [delete_patterns] # convert `delete_patterns` to a list
377
- if isinstance(delete_patterns, str)
378
- else delete_patterns
379
- )
380
- )
381
- delete_patterns.append("logs/*")
382
- copytree(log_dir, saved_path / "logs")
383
-
384
- return api.upload_folder(
385
- repo_type="model",
386
- repo_id=repo_id,
387
- folder_path=saved_path,
388
- commit_message=commit_message,
389
- token=token,
390
- revision=branch,
391
- create_pr=create_pr,
392
- allow_patterns=allow_patterns,
393
- ignore_patterns=ignore_patterns,
394
- delete_patterns=delete_patterns,
395
- )
396
-
397
-
398
- class KerasModelHubMixin(ModelHubMixin):
399
- """
400
- Implementation of [`ModelHubMixin`] to provide model Hub upload/download
401
- capabilities to Keras models.
402
-
403
-
404
- ```python
405
- >>> import tensorflow as tf
406
- >>> from huggingface_hub import KerasModelHubMixin
407
-
408
-
409
- >>> class MyModel(tf.keras.Model, KerasModelHubMixin):
410
- ... def __init__(self, **kwargs):
411
- ... super().__init__()
412
- ... self.config = kwargs.pop("config", None)
413
- ... self.dummy_inputs = ...
414
- ... self.layer = ...
415
-
416
- ... def call(self, *args):
417
- ... return ...
418
-
419
-
420
- >>> # Initialize and compile the model as you normally would
421
- >>> model = MyModel()
422
- >>> model.compile(...)
423
- >>> # Build the graph by training it or passing dummy inputs
424
- >>> _ = model(model.dummy_inputs)
425
- >>> # Save model weights to local directory
426
- >>> model.save_pretrained("my-awesome-model")
427
- >>> # Push model weights to the Hub
428
- >>> model.push_to_hub("my-awesome-model")
429
- >>> # Download and initialize weights from the Hub
430
- >>> model = MyModel.from_pretrained("username/super-cool-model")
431
- ```
432
- """
433
-
434
- def _save_pretrained(self, save_directory):
435
- save_pretrained_keras(self, save_directory)
436
-
437
- @classmethod
438
- def _from_pretrained(
439
- cls,
440
- model_id,
441
- revision,
442
- cache_dir,
443
- force_download,
444
- proxies,
445
- resume_download,
446
- local_files_only,
447
- token,
448
- **model_kwargs,
449
- ):
450
- """Here we just call [`from_pretrained_keras`] function so both the mixin and
451
- functional APIs stay in sync.
452
-
453
- TODO - Some args above aren't used since we are calling
454
- snapshot_download instead of hf_hub_download.
455
- """
456
- if is_tf_available():
457
- import tensorflow as tf
458
- else:
459
- raise ImportError("Called a TensorFlow-specific function but could not import it.")
460
-
461
- # TODO - Figure out what to do about these config values. Config is not going to be needed to load model
462
- cfg = model_kwargs.pop("config", None)
463
-
464
- # Root is either a local filepath matching model_id or a cached snapshot
465
- if not os.path.isdir(model_id):
466
- storage_folder = snapshot_download(
467
- repo_id=model_id,
468
- revision=revision,
469
- cache_dir=cache_dir,
470
- library_name="keras",
471
- library_version=get_tf_version(),
472
- )
473
- else:
474
- storage_folder = model_id
475
-
476
- model = tf.keras.models.load_model(storage_folder, **model_kwargs)
477
-
478
- # For now, we add a new attribute, config, to store the config loaded from the hub/a local dir.
479
- model.config = cfg
480
-
481
- return model
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
spaces/DVLH/nlpconnect-vit-gpt2-image-captioning/app.py DELETED
@@ -1,3 +0,0 @@
1
- import gradio as gr
2
-
3
- gr.Interface.load("models/nlpconnect/vit-gpt2-image-captioning").launch()