|
import gradio as gr |
|
import random |
|
import time |
|
import requests |
|
import io |
|
from PIL import Image |
|
import traceback |
|
|
|
from base64 import b64decode,b64encode |
|
from io import BytesIO |
|
from better_profanity import profanity |
|
|
|
|
|
|
|
with gr.Blocks(theme="darkdefault") as demo: |
|
|
|
def welcome(name): |
|
return f"Welcome to AIXRPL.com Minter, {name}!" |
|
|
|
|
|
|
|
|
|
def profanityCheck(prompt): |
|
prompt = prompt.replace('+',' ').replace('|',' ') |
|
if profanity.contains_profanity(prompt): |
|
return True |
|
else: |
|
return False |
|
|
|
|
|
def inference(_prompt,_token): |
|
try: |
|
from PIL import Image |
|
import uuid |
|
import os |
|
print(_prompt,_token) |
|
|
|
if profanityCheck(_prompt): |
|
img = Image.open('unsafe.png') |
|
return img,'unsafe','','','' |
|
|
|
r = requests.post(url='https://aixrplart-5czkww5hsa-uc.a.run.app/create',data={"prompt":_prompt,"token":_token}) |
|
all_data = r.json() |
|
print(all_data.keys()) |
|
|
|
import base64 |
|
from io import BytesIO |
|
from PIL import Image |
|
|
|
im_bytes = base64.b64decode(all_data['img_data']) |
|
im_file = BytesIO(im_bytes) |
|
img = Image.open(im_file) |
|
|
|
|
|
return(img,all_data['description'],all_data['image_url'],all_data['keywords'],all_data['keywords_string']) |
|
except Exception as e: |
|
print('exception:',e) |
|
traceback.print_exc() |
|
return '','','','','' |
|
|
|
|
|
|
|
|
|
with gr.Group(): |
|
generate_progress = gr.StatusTracker(cover_container=True) |
|
|
|
with gr.Row(): |
|
with gr.Column(): |
|
with gr.Tab("Create"): |
|
|
|
gr.Markdown( |
|
""" |
|
Create AI generated artworks by using prompt engineering. |
|
""" |
|
) |
|
|
|
text = gr.Textbox( |
|
label="Enter Prompt", show_label=True, max_lines=5 |
|
).style( |
|
border=(True, False, True, True), |
|
rounded=(True, False, False, True), |
|
container=True, |
|
) |
|
|
|
btn = gr.Button("Create").style( |
|
margin=True, |
|
rounded=(False, True, True, False), |
|
) |
|
|
|
gr.Markdown( |
|
""" |
|
AI generated metadata. |
|
""" |
|
) |
|
|
|
description = gr.Textbox( |
|
label="AI Generated Description", interactive=True, show_label=True, max_lines=1, elem_id="descData" |
|
).style( |
|
border=(True, False, True, True), |
|
rounded=(True, False, False, True), |
|
container=True, |
|
) |
|
|
|
traits = gr.HighlightedText(label="Auto Traits",interactive=True, show_label=True) |
|
|
|
|
|
|
|
|
|
with gr.Column(): |
|
with gr.Tab("Artwork"): |
|
|
|
build_result = gr.Image(type="pil", shape=(512,None),show_label=True,label="Artwork Preview",interactive=False,) |
|
|
|
walletToken = gr.Textbox( |
|
visible=False, interactive=True, elem_id="walletToken", max_lines=1 |
|
) |
|
|
|
imageData = gr.Textbox( |
|
visible=False, interactive=False, elem_id="imageData", max_lines=1 |
|
) |
|
|
|
attribData = gr.Textbox( |
|
visible=False, interactive=False, elem_id="attribData", max_lines=1 |
|
) |
|
|
|
|
|
btn.click( |
|
inference, |
|
inputs=[text,walletToken], |
|
outputs=[build_result,description,imageData, traits, attribData], |
|
status_tracker=generate_progress, |
|
api_name="generate" |
|
) |
|
|
|
|
|
if __name__ == "__main__": |
|
demo.launch(show_api=False, debug=True, enable_queue=True) |