File size: 4,524 Bytes
42472b3 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 |
import gradio as gr
import random
import time
import requests
import io
from PIL import Image
import traceback
from base64 import b64decode,b64encode
from io import BytesIO
from better_profanity import profanity
with gr.Blocks(theme="darkdefault") as demo:
def welcome(name):
return f"Welcome to AIXRPL.com Minter, {name}!"
def profanityCheck(prompt):
prompt = prompt.replace('+',' ').replace('|',' ')
if profanity.contains_profanity(prompt):
return True
else:
return False
def inference(_prompt,_token):
try:
from PIL import Image
import uuid
import os
print(_prompt,_token)
if profanityCheck(_prompt):
img = Image.open('unsafe.png')
return img,'unsafe','','',''
r = requests.post(url='https://aixrplart-5czkww5hsa-uc.a.run.app/create',data={"prompt":_prompt,"token":_token})
all_data = r.json()
print(all_data.keys())
import base64
from io import BytesIO
from PIL import Image
im_bytes = base64.b64decode(all_data['img_data']) # im_bytes is a binary image
im_file = BytesIO(im_bytes) # convert image to file-like object
img = Image.open(im_file) # img is now PIL Image object
return(img,all_data['description'],all_data['image_url'],all_data['keywords'],all_data['keywords_string'])
except Exception as e:
print('exception:',e)
traceback.print_exc()
return '','','','',''
# img.save('/tmp/data.png')
#return '/tmp/data.png'
with gr.Group():
generate_progress = gr.StatusTracker(cover_container=True)
with gr.Row():
with gr.Column():
with gr.Tab("Create"):
gr.Markdown(
"""
Create AI generated artworks by using prompt engineering.
"""
)
text = gr.Textbox(
label="Enter Prompt", show_label=True, max_lines=5
).style(
border=(True, False, True, True),
rounded=(True, False, False, True),
container=True,
)
btn = gr.Button("Create").style(
margin=True,
rounded=(False, True, True, False),
)
gr.Markdown(
"""
AI generated metadata.
"""
)
description = gr.Textbox(
label="AI Generated Description", interactive=True, show_label=True, max_lines=1, elem_id="descData"
).style(
border=(True, False, True, True),
rounded=(True, False, False, True),
container=True,
)
traits = gr.HighlightedText(label="Auto Traits",interactive=True, show_label=True)
# build_result = gr.Gallery()#gr.Image(interactive=False, shape=(320,320))
with gr.Column():
with gr.Tab("Artwork"):
build_result = gr.Image(type="pil", shape=(512,None),show_label=True,label="Artwork Preview",interactive=False,)
walletToken = gr.Textbox(
visible=False, interactive=True, elem_id="walletToken", max_lines=1
)
imageData = gr.Textbox(
visible=False, interactive=False, elem_id="imageData", max_lines=1
)
attribData = gr.Textbox(
visible=False, interactive=False, elem_id="attribData", max_lines=1
)
btn.click(
inference,
inputs=[text,walletToken],
outputs=[build_result,description,imageData, traits, attribData],
status_tracker=generate_progress,
api_name="generate"
)
if __name__ == "__main__":
demo.launch(show_api=False, debug=True, enable_queue=True) |