File size: 4,524 Bytes
42472b3
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
import gradio as gr
import random
import time
import requests
import io
from PIL import Image
import traceback

from base64 import b64decode,b64encode
from io import BytesIO
from better_profanity import profanity


    
with gr.Blocks(theme="darkdefault") as demo:

    def welcome(name):
        return f"Welcome to AIXRPL.com Minter, {name}!"




    def profanityCheck(prompt):
            prompt = prompt.replace('+',' ').replace('|',' ')
            if profanity.contains_profanity(prompt):
                return True
            else:
                return False


    def inference(_prompt,_token):
        try:
            from PIL import Image
            import uuid
            import os
            print(_prompt,_token)
            
            if profanityCheck(_prompt):
                    img = Image.open('unsafe.png') 
                    return img,'unsafe','','',''        
            
            r = requests.post(url='https://aixrplart-5czkww5hsa-uc.a.run.app/create',data={"prompt":_prompt,"token":_token})
            all_data = r.json()
            print(all_data.keys())
            
            import base64
            from io import BytesIO
            from PIL import Image
            
            im_bytes = base64.b64decode(all_data['img_data'])   # im_bytes is a binary image
            im_file = BytesIO(im_bytes)  # convert image to file-like object
            img = Image.open(im_file)   # img is now PIL Image object
            
            
            return(img,all_data['description'],all_data['image_url'],all_data['keywords'],all_data['keywords_string'])
        except Exception as e:
                    print('exception:',e)
                    traceback.print_exc()
                    return '','','','',''
        # img.save('/tmp/data.png')
        #return '/tmp/data.png'


    with gr.Group():                
        generate_progress = gr.StatusTracker(cover_container=True)

        with gr.Row():
            with gr.Column():
              with gr.Tab("Create"):
                  
                gr.Markdown(
                    """
                    Create AI generated artworks by using prompt engineering.
                    """
                        )

                text = gr.Textbox(
                    label="Enter Prompt", show_label=True, max_lines=5
                ).style(
                    border=(True, False, True, True),
                    rounded=(True, False, False, True),
                    container=True,
                )

                btn = gr.Button("Create").style(
                    margin=True,
                    rounded=(False, True, True, False),
                )

                gr.Markdown(
                    """
                    AI generated metadata.
                    """
                        )

                description = gr.Textbox(
                    label="AI Generated Description", interactive=True, show_label=True, max_lines=1, elem_id="descData"
                ).style(
                    border=(True, False, True, True),
                    rounded=(True, False, False, True),
                    container=True,
                )
                
                traits = gr.HighlightedText(label="Auto Traits",interactive=True, show_label=True)
                # build_result = gr.Gallery()#gr.Image(interactive=False, shape=(320,320))



            with gr.Column():
              with gr.Tab("Artwork"):

                        build_result = gr.Image(type="pil", shape=(512,None),show_label=True,label="Artwork Preview",interactive=False,)

                        walletToken = gr.Textbox(
                            visible=False, interactive=True, elem_id="walletToken", max_lines=1
                        )  

                        imageData = gr.Textbox(
                            visible=False, interactive=False, elem_id="imageData", max_lines=1
                        )  

                        attribData = gr.Textbox(
                            visible=False, interactive=False, elem_id="attribData", max_lines=1
                        )  


            btn.click(
                      inference,
                      inputs=[text,walletToken],
                      outputs=[build_result,description,imageData, traits, attribData],
                      status_tracker=generate_progress,
                      api_name="generate"
                  )


if __name__ == "__main__":
    demo.launch(show_api=False, debug=True, enable_queue=True)