Statement:
stringlengths 7
24.3k
|
---|
lemma conv_no_start_points_path:
"no_start_points_path x \<longleftrightarrow> no_end_points_path (x\<^sup>T)" |
lemma (in infinite_coin_toss_space) nat_filtration_Suc_sets:
shows "sets (nat_filtration n) \<subseteq> sets (nat_filtration (Suc n))" |
lemma seq_mono_left: "c\<^sub>0 \<sqsubseteq> c\<^sub>1 \<Longrightarrow> c\<^sub>0 ; d \<sqsubseteq> c\<^sub>1 ; d" |
lemma substitute_below_singlesI:
assumes "t \<sqsubseteq> singles S"
assumes "\<And> x. carrier (f x) \<inter> S = {}"
shows "substitute f T t \<sqsubseteq> singles S" |
lemma table_classes_Main [simp]: "table_of Classes Main = Some MainCl" |
lemma "x - (x - y) = (y::real)" |
lemma not_comp_lcp: assumes "\<not> r \<bowtie> s"
shows "f (r \<and>\<^sub>p s) \<cdot> \<alpha> = f r \<cdot> f (r \<cdot> s) \<and>\<^sub>p f s \<cdot> f (r \<cdot> s)" |
lemma marl_append_hnr_aux: "(uncurry marl_append,uncurry (RETURN oo op_list_append)) \<in> [\<lambda>(l,_). length l<N]\<^sub>a ((is_ms_array_list N)\<^sup>d *\<^sub>a id_assn\<^sup>k) \<rightarrow> is_ms_array_list N" |
lemma (in category) cat_finite_pcategory_cat_singleton:
assumes "j \<in>\<^sub>\<circ> Vset \<alpha>"
shows "finite_pcategory \<alpha> (set {j}) (\<lambda>i. \<CC>)" |
lemma map_in_list_rel_conv:
shows "(l, l') \<in> \<langle>br \<alpha> I\<rangle>list_rel \<longleftrightarrow> ((\<forall>x\<in>set l. I x) \<and> l'=map \<alpha> l)" |
lemma isCont_tan' [simp,continuous_intros]:
fixes a :: "'a::{real_normed_field,banach}" and f :: "'a \<Rightarrow> 'a"
shows "isCont f a \<Longrightarrow> cos (f a) \<noteq> 0 \<Longrightarrow> isCont (\<lambda>x. tan (f x)) a" |
lemma InSync_\<tau>red0t_xt:
"\<tau>red0t extTA P t h (e, xs) (e', xs') \<Longrightarrow> \<tau>red0t extTA P t h (insync\<^bsub>V\<^esub> (a) e, xs) (insync\<^bsub>V\<^esub> (a) e', xs')" |
lemma lifting_wf_thread_conf: "lifting_wf JVM_final (mexecd P) (\<lambda>t x m. P,m \<turnstile> t \<surd>t)" |
lemma comm_monoid_rng_of_frac:
shows "comm_monoid (rec_monoid_rng_of_frac)" |
lemma conv_concat_helper:
assumes "(s,ls) \<in> conv ars" and "ss2 \<in> conv ars" and "lst_conv (s,ls) = fst ss2"
shows "(s,ls@snd ss2) \<in> conv ars \<and> (lst_conv (s,ls@snd ss2) = lst_conv ss2)" |
lemma under_dim:"rat_poly.row_length (brickmat under) = 4" and "length (brickmat under) = 4" |
lemma cond_spmf_fst_map_prod_inj:
"cond_spmf_fst (map_spmf (\<lambda>(x, y). (f x, g x y)) p) (f x) = map_spmf (g x) (cond_spmf_fst p x)"
if "inj f" |
lemma keys_nth [simp]:
"keys (nth xs) = fst ` {(n, v) \<in> set (enumerate 0 xs). v \<noteq> 0}" |
lemma transitionI:
fixes P :: pi
and Rs :: residual
and P' :: pi
shows "P \<Longrightarrow>\<^sub>l Rs \<Longrightarrow> P \<Longrightarrow>\<^sub>l\<^sup>^Rs"
and "P \<Longrightarrow>\<^sub>l\<^sup>^\<tau> \<prec> P" |
lemma [code]:
"is_target step \<tau>s pc' =
list_ex (\<lambda>pc. pc' \<noteq> pc+1 \<and> List.member (map fst (step pc (\<tau>s!pc))) pc') [0..<size \<tau>s]" |
lemma Field_restrict_rel_subset: "Field (restrict_rel A R) \<subseteq> A \<inter> Field R" |
lemma transpose_row_code [code abstract]:
"vec_nth (transpose_row A i) = (%j. A $ j $ i)" |
lemma measurable_expr_sem[measurable]:
assumes "\<Gamma> \<turnstile> e : t" and "free_vars e \<subseteq> V"
shows "(\<lambda>\<sigma>. expr_sem \<sigma> e) \<in> measurable (state_measure V \<Gamma>)
(subprob_algebra (stock_measure t))" |
lemma abc_list_crsp_steps:
"\<lbrakk>abc_steps_l (0, lm @ 0\<up>m) aprog stp = (a, lm'); aprog \<noteq> []\<rbrakk>
\<Longrightarrow> \<exists> lma. abc_steps_l (0, lm) aprog stp = (a, lma) \<and>
abc_list_crsp lm' lma" |
lemma filter_filter_mset_cond_simp:
assumes "\<And> a . P a \<Longrightarrow> Q a"
shows "filter_mset P A = filter_mset P (filter_mset Q A)" |
lemma rel_sum_map1:
"rel_sum R1 R2 (map_sum f1 f2 x) y \<longleftrightarrow> rel_sum (\<lambda>x. R1 (f1 x)) (\<lambda>x. R2 (f2 x)) x y" |
lemma val_stuck: fixes e::exp assumes val_e: "isval e" shows "stuck e" |
lemma mulextp_cong[fundef_cong]:
assumes "xs1 = ys1"
and "xs2 = ys2"
and "\<And> x x'. x \<in># ys1 \<Longrightarrow> x' \<in># ys2 \<Longrightarrow> f x x' = g x x'"
shows "mulextp f xs1 xs2 = mulextp g ys1 ys2" |
lemma attracting_fixed_point_neq_repelling_fixed_point:
assumes "loxodromic_isometry f"
shows "attracting_fixed_point f \<noteq> repelling_fixed_point f" |
lemma preserve_mat_rep_num:
assumes "inj_on_01_hom f"
assumes "i < dim_row M"
shows "mat_rep_num M i = mat_rep_num (map_mat f M) i" |
lemma sq_mtx_inv_mult:
assumes "mtx_invertible A" and "mtx_invertible B"
shows "(A * B)\<^sup>-\<^sup>1 = B\<^sup>-\<^sup>1 * A\<^sup>-\<^sup>1" |
lemma (in ring) indexed_pmult_zero [simp]:
shows "indexed_pmult (indexed_const \<zero>) i = indexed_const \<zero>" |
lemma correctness: "protocol (m0,m1) c = funct_OT_12 (m0,m1) c" |
lemma convergent_powser'_eventually:
assumes "convergent_powser' cs f"
shows "eventually (\<lambda>x. powser cs x = f x) (nhds 0)" |
lemma vars_llist_alt_def:
\<open>vars_llist xs \<subseteq> \<V> \<longleftrightarrow> vars_of_poly_in xs \<V>\<close> |
lemma term_to_sig_ctxt_apply [simp]:
"ctxt_well_def_hole_path \<F> C \<Longrightarrow> term_to_sig \<F> v C\<langle>s\<rangle> = (inv_const_ctxt \<F> v C)\<langle>term_to_sig \<F> v s\<rangle>" |
lemma fun_rel_mono[relator_props]: "\<lbrakk> R1\<subseteq>R2; R3\<subseteq>R4 \<rbrakk> \<Longrightarrow> R2\<rightarrow>R3 \<subseteq> R1\<rightarrow>R4" |
lemma try_bind_spmf_lossless2:
"lossless_spmf q \<Longrightarrow> TRY (bind_spmf p f) ELSE q = TRY (p \<bind> (\<lambda>x. TRY (f x) ELSE q)) ELSE q" |
lemma setsetmapim_comp: "(f\<circ>g)\<turnstile>A = f\<turnstile>(g\<turnstile>A)" |
lemma has_integral_dominated_convergence_at_top:
fixes f :: "real \<Rightarrow> 'n::euclidean_space \<Rightarrow> 'm::euclidean_space"
assumes "\<And>k. (f k has_integral y k) s" "h integrable_on s"
"\<And>k x. x\<in>s \<Longrightarrow> norm (f k x) \<le> h x" "\<forall>x\<in>s. ((\<lambda>k. f k x) \<longlongrightarrow> g x) at_top"
and x: "(y \<longlongrightarrow> x) at_top"
shows "(g has_integral x) s" |
lemma nonneg_cexprI_shift:
assumes "\<And>x \<sigma>. x \<in> type_universe t \<Longrightarrow> \<sigma> \<in> space (state_measure V \<Gamma>) \<Longrightarrow>
0 \<le> extract_real (cexpr_sem (case_nat x \<sigma>) e)"
shows "nonneg_cexpr (shift_var_set V) (case_nat t \<Gamma>) e" |
lemma parCompose:
fixes P :: pi
and Q :: pi
and R :: pi
and T :: pi
and Rel :: "(pi \<times> pi) set"
and Rel' :: "(pi \<times> pi) set"
and Rel'' :: "(pi \<times> pi) set"
assumes PSimQ: "P \<leadsto>[Rel] Q"
and RSimT: "R \<leadsto>[Rel'] S"
and PRelQ: "(P, Q) \<in> Rel"
and RRel'T: "(R, S) \<in> Rel'"
and Par: "\<And>P' Q' R' S'. \<lbrakk>(P', Q') \<in> Rel; (R', S') \<in> Rel'\<rbrakk> \<Longrightarrow> (P' \<parallel> R', Q' \<parallel> S') \<in> Rel''"
and Res: "\<And>S T x. (S, T) \<in> Rel'' \<Longrightarrow> (<\<nu>x>S, <\<nu>x>T) \<in> Rel''"
shows "P \<parallel> R \<leadsto>[Rel''] Q \<parallel> S" |
lemma list_map_autoref_delete2[param]:
shows "(list_map_delete (=), op_map_delete) \<in> Id \<rightarrow>
br map_of list_map_invar \<rightarrow> br map_of list_map_invar" |
lemma LtK_Nonce: "LtK X \<noteq> Nonce X'" |
lemma thr_conv [simp]: "thr (ls, (ts, m), ws) = ts" |
lemma discr_raw_coind:
assumes *: "phi c" and
**: "\<And> c s c' s'. \<lbrakk>phi c; (c,s) \<rightarrow>c (c',s')\<rbrakk> \<Longrightarrow> s \<approx> s' \<and> phi c'" and
***: "\<And> c s s'. \<lbrakk>phi c; (c,s) \<rightarrow>t s'\<rbrakk> \<Longrightarrow> s \<approx> s'"
shows "discr c" |
lemma ac_Diff_iff: "c \<in>\<^sub>A A - B \<longleftrightarrow> c \<in>\<^sub>A A \<and> c \<notin>\<^sub>A B" |
lemma object_ptr_kinds_M_reads:
"reads (\<Union>object_ptr. {preserved (get_M\<^sub>O\<^sub>b\<^sub>j\<^sub>e\<^sub>c\<^sub>t object_ptr RObject.nothing)}) object_ptr_kinds_M h h'" |
lemma tree_chop_ap_tree [simp]:
"tree_chop (f \<diamondop> x) = tree_chop f \<diamondop> tree_chop x" |
lemma fls_of_int: "(of_int i :: 'a::ring_1 fls) = fls_const (of_int i)" |
lemma FvarsT_rawpsubstT:
assumes "r \<in> atrm" and "snd ` (set txs) \<subseteq> var" and "fst ` (set txs) \<subseteq> atrm"
and "distinct (map snd txs)" and "\<forall> x \<in> snd ` (set txs). \<forall> t \<in> fst ` (set txs). x \<notin> FvarsT t"
shows "FvarsT (rawpsubstT r txs) =
(FvarsT r - snd ` (set txs)) \<union>
(\<Union> {if x \<in> FvarsT r then FvarsT t else {} | t x . (t,x) \<in> set txs})" |
lemma allDefs_ign[simp]: "CFG_SSA_base.allDefs (ign gen_ssa_defs g) (ign Mapping.lookup (gen_phis g)) ga n = CFG_SSA_base.allDefs gen_ssa_defs (\<lambda>g. Mapping.lookup (gen_phis g)) g n" |
lemma new_shadow_root_get_disconnected_nodes_is_l_new_shadow_root_get_disconnected_nodes [instances]:
"l_new_shadow_root_get_disconnected_nodes get_disconnected_nodes_locs" |
lemma ex_closed [simp]: \<open>\<exists>m. closed m p\<close> |
lemma bres_anti: "x \<le> y \<Longrightarrow> y \<rightarrow> z \<le> x \<rightarrow> z" |
lemma get_elements_by_tag_name_is_strongly_scdom_component_safe:
assumes "heap_is_wellformed h" and "type_wf h" and "known_ptrs h"
assumes "h \<turnstile> get_elements_by_tag_name ptr idd \<rightarrow>\<^sub>r results"
assumes "h \<turnstile> get_elements_by_tag_name ptr idd \<rightarrow>\<^sub>h h'"
shows "is_strongly_scdom_component_safe {ptr} (cast ` set results) h h'" |
lemma (in semicategory) op_smc_is_idem_arr[smc_op_simps]:
"f : \<mapsto>\<^sub>i\<^sub>d\<^sub>e\<^bsub>op_smc \<CC>\<^esub> b \<longleftrightarrow> f : \<mapsto>\<^sub>i\<^sub>d\<^sub>e\<^bsub>\<CC>\<^esub> b" |
lemma fmap_freshness_lemma:
fixes h :: "('a::at,'b::pt) fmap"
assumes a: "\<exists>a. atom a \<sharp> (h, h $$ a)"
shows "\<exists>x. \<forall>a. atom a \<sharp> h \<longrightarrow> h $$ a = x" |
lemma last_append [simp]: "last (p, xs @ ys) = last (last (p, xs), ys)" |
lemma fv\<^sub>s\<^sub>t_is_subterm_trms\<^sub>s\<^sub>t: "x \<in> fv\<^sub>s\<^sub>t A \<Longrightarrow> Var x \<in> subterms\<^sub>s\<^sub>e\<^sub>t (trms\<^sub>s\<^sub>t A)" |
lemma omap_eq_append_conv[simp]: "omap f xs = Some (ys\<^sub>1@ys\<^sub>2) \<longleftrightarrow> (\<exists>xs\<^sub>1 xs\<^sub>2. xs=xs\<^sub>1@xs\<^sub>2 \<and> omap f xs\<^sub>1 = Some ys\<^sub>1 \<and> omap f xs\<^sub>2 = Some ys\<^sub>2)" |
lemma minus_Real: "cauchy X \<Longrightarrow> - Real X = Real (\<lambda>n. - X n)" |
lemma assumes wf:"wf_prog wf_md P"
and typeof:" P \<turnstile> typeof\<^bsub>h\<^esub> v = Some T'"
and type:"is_type P T"
shows sub_casts:"P \<turnstile> T' \<le> T \<Longrightarrow> \<exists>v'. P \<turnstile> T casts v to v'" |
lemma udom_uupdate_pfun [simp]:
fixes m :: "(('k, 'v) pfun, '\<alpha>) uexpr"
shows "dom\<^sub>u(m(k \<mapsto> v)\<^sub>u) = {k}\<^sub>u \<union>\<^sub>u dom\<^sub>u(m)" |
lemma test_sup_distributive:
"test x \<Longrightarrow> sup_distributive x" |
lemma accs_exclusive_aux:
"\<lbrakk> accs \<delta>n n q; \<delta>n=\<delta>\<union>\<delta>'; \<delta>_states \<delta> \<inter> \<delta>_states \<delta>' = {}; q\<in>\<delta>_states \<delta> \<rbrakk>
\<Longrightarrow> accs \<delta> n q" |
lemma n_eq_1_iff: "s \<in> S \<Longrightarrow> n s = 1 \<longleftrightarrow> (\<forall>cfg\<in>cfg_on s. v cfg = 1)" |
lemma bind_spmf_spmf_of_set:
"\<And>A. \<lbrakk> finite A; A \<noteq> {} \<rbrakk> \<Longrightarrow> bind_spmf (spmf_of_set A) = bind_pmf (pmf_of_set A)" |
lemma sum_upd_C: "sum I (s(C := x)) = sum I s" |
lemma Unassigned_botdefault: "\<forall> s r. (nP r) \<noteq> DontCare \<longrightarrow> \<not> allowed_flow (nP s) s (nP r) r \<longrightarrow> \<not> allowed_flow DontCare s (nP r) r" |
lemma finite_zero_cardD [dest!]:
"\<lbrakk> card A = 0; finite A \<rbrakk> \<Longrightarrow> A = {}" |
lemma lconf_hext [elim]: "[| G,h\<turnstile>l[::\<preceq>]L; h\<le>|h' |] ==> G,h'\<turnstile>l[::\<preceq>]L" |
lemma scalar_prod_right_unit[simp]: assumes i: "i < n"
shows "(v :: 'a :: semiring_1 vec) \<bullet> unit_vec n i = v $ i" |
lemma "\<sim>TND \<^bold>\<not>\<^sup>I \<and> Fr_1 \<F> \<and> Fr_3 \<F> \<and> Fr_4 \<F> \<and> DM3 \<^bold>\<not>\<^sup>I" |
lemma load_cond_cap_frag:
assumes "load h c t = Success ret"
and "\<exists> x n. ret = Cap_v_frag x n"
shows "\<exists> m mc tagval tg nth_frag.
Mapping.lookup (heap_map h) (block_id c) = Some (Map m) \<and>
offset c \<ge> fst (bounds m) \<and>
offset c + |t|\<^sub>\<tau> \<le> snd (bounds m) \<and>
(is_contiguous_bytes (content m) (nat (offset c)) |t|\<^sub>\<tau> \<longrightarrow>
is_contiguous_zeros (content m) (nat (offset c)) |t|\<^sub>\<tau> \<and>
ret = Cap_v NULL) \<and>
(\<not> is_contiguous_bytes (content m) (nat (offset c)) |t|\<^sub>\<tau> \<longrightarrow>
is_cap (content m) (nat (offset c)) \<and>
mc = get_cap (content m) (nat (offset c)) \<and>
(t = Uint8 \<or> t = Sint8) \<and>
tagval = the (Mapping.lookup (tags m) (nat (offset c))) \<and>
tg = (case perm_cap_load c of False \<Rightarrow> False | True \<Rightarrow> tagval) \<and>
nth_frag = of_nth (the (Mapping.lookup (content m) (nat (offset c)))))" |
lemma state_update_after_is_action:
"(relation_of Ac ;; R (true \<turnstile> (\<lambda>(A, A'). sc (more A, more A') & \<not>wait A' & tr A = tr A'))) \<in> {p. is_CSP_process p}" |
lemma (in group) r_inv_ex [simp]:
"x \<in> carrier G ==> \<exists>y \<in> carrier G. x \<otimes> y = \<one>" |
theorem Spy_not_see_NA:
"\<lbrakk>Says A B (Crypt(pubEK B) \<lbrace>Nonce NA, Agent A\<rbrace>) \<in> set evs;
A \<notin> bad; B \<notin> bad; evs \<in> ns_public\<rbrakk>
\<Longrightarrow> Nonce NA \<notin> analz (knows Spy evs)" |
lemma lset_ltake: "(\<And>m. m < n \<Longrightarrow> lnth xs m \<in> A) \<Longrightarrow> lset (ltake (enat n) xs) \<subseteq> A" |
lemma sig_trd_aux_irred:
assumes "fst args0 \<in> keys (rep_list (snd args0))"
and "\<And>b s. b \<in> set bs \<Longrightarrow> rep_list b \<noteq> 0 \<Longrightarrow> fst args0 \<prec> s + punit.lt (rep_list b) \<Longrightarrow>
s \<oplus> lt b \<prec>\<^sub>t lt (snd (args0)) \<Longrightarrow> lookup (rep_list (snd args0)) (s + punit.lt (rep_list b)) = 0"
shows "\<not> is_sig_red (\<prec>\<^sub>t) (\<preceq>) (set bs) (sig_trd_aux args0)" |
lemma plus_adds_pp_0:
assumes "(s + t) adds\<^sub>p v"
shows "s adds\<^sub>p (v \<ominus> t)" |
lemma SINK_plus_current: "SINK (plus_current f g) = SINK f \<inter> SINK g" |
lemma vector_derivative_diff_chain_within:
assumes Df: "(f has_vector_derivative f') (at x within S)"
and Dg: "(g has_derivative g') (at (f x) within f`S)"
shows "((g \<circ> f) has_vector_derivative (g' f')) (at x within S)" |
lemma top_on_opt_widen:
"top_on_opt o1 X \<Longrightarrow> top_on_opt o2 X \<Longrightarrow> top_on_opt (o1 \<nabla> o2 :: _ st option) X" |
lemma "\<sim>TND \<^bold>\<not>\<^sup>I \<and> Fr_1 \<F> \<and> Fr_3 \<F> \<and> Fr_4 \<F> \<and> CoP2 \<^bold>\<not>\<^sup>I" |
lemma swapnorm_isnpoly [simp]:
assumes "SORT_CONSTRAINT('a::field_char_0)"
shows "isnpoly (swapnorm n m p)" |
lemma create_document_is_weakly_dom_component_safe_step:
assumes "heap_is_wellformed h" and "type_wf h" and "known_ptrs h"
assumes "h \<turnstile> create_document \<rightarrow>\<^sub>h h'"
assumes "ptr \<noteq> cast |h \<turnstile> create_document|\<^sub>r"
shows "preserved (get_M\<^sub>O\<^sub>b\<^sub>j\<^sub>e\<^sub>c\<^sub>t ptr getter) h h'" |
lemma constant_function_comp_is_constant_seq:
assumes "a \<in> carrier R"
assumes "s \<in> closed_seqs R"
shows "is_constant_seq R ((const a) \<circ> s)" |
lemma set_gC[simp]: "set (gC c) = gL ` (set c) \<union> glitOfC c" |
lemma (in CRR_market) delta_hedging_trading_strat:
assumes "N = bernoulli_stream q"
and "0 < q"
and "q < 1"
and "der \<in> borel_measurable (G matur)"
shows "trading_strategy (delta_hedging N der matur)" |
lemma "ECQm \<^bold>\<not>" |
lemma ide_prod [intro, simp]:
assumes "ide a" and "ide b"
shows "ide (a \<otimes> b)" |
lemma (in Module) indmhom_someTr:"\<lbrakk>R module N; f \<in> mHom R M N;
X \<in> set_mr_cos M (ker\<^bsub>M,N\<^esub> f)\<rbrakk> \<Longrightarrow> f (SOME xa. xa \<in> X) \<in> f `(carrier M)" |
lemma length_filter_conv_size_filter_mset: "length (filter P xs) = size (filter_mset P (mset xs))" |
lemma mu_isotone:
"has_least_prefixpoint f \<Longrightarrow> has_least_prefixpoint g \<Longrightarrow> isotone f \<Longrightarrow> isotone g \<Longrightarrow> f \<le>\<le> g \<Longrightarrow> \<mu> f \<le> \<mu> g" |
lemma jordan_matrix_concat_diag_block_mat: "jordan_matrix (concat jbs) = diag_block_mat (map jordan_matrix jbs)" |
lemma comp_by_index_inj: "comp_by_index x1 y1 = comp_by_index x2 y2 \<Longrightarrow> x1=x2 \<and> y1=y2" |
lemma ntcf_ntsmcf_ntcf_0: "ntcf_ntsmcf (ntcf_0 \<AA>) = ntsmcf_0 (cat_smc \<AA>)" |
lemma bigtheta_const_ln_pow' [landau_simp]:
"0 < a \<Longrightarrow> (\<lambda>x::real. ln (x * a) ^ p) \<in> \<Theta>(\<lambda>x. ln x ^ p)" |
lemma sep_conj_exists1:
"((EXS x. P x) ** Q) = (EXS x. (P x ** Q))" |
Subsets and Splits
No community queries yet
The top public SQL queries from the community will appear here once available.