Statement:
stringlengths
7
24.3k
lemma dual_set_as_map_image_code[code] : fixes t :: "('a1 ::ccompare \<times> 'a2 :: ccompare) set_rbt" and f1 :: "('a1 \<times> 'a2) \<Rightarrow> ('b1 :: ccompare \<times> 'b2 ::ccompare)" and f2 :: "('a1 \<times> 'a2) \<Rightarrow> ('c1 :: ccompare \<times> 'c2 ::ccompare)" shows "dual_set_as_map_image (RBT_set t) f1 f2 = (case ID CCOMPARE(('a1 \<times> 'a2)) of Some _ \<Rightarrow> let mm = (RBT_Set2.fold (\<lambda> kv (m1,m2) . ( case f1 kv of (x,z) \<Rightarrow> (case Mapping.lookup m1 (x) of None \<Rightarrow> Mapping.update (x) {z} m1 | Some zs \<Rightarrow> Mapping.update (x) (Set.insert z zs) m1) , case f2 kv of (x,z) \<Rightarrow> (case Mapping.lookup m2 (x) of None \<Rightarrow> Mapping.update (x) {z} m2 | Some zs \<Rightarrow> Mapping.update (x) (Set.insert z zs) m2))) t (Mapping.empty,Mapping.empty)) in (Mapping.lookup (fst mm), Mapping.lookup (snd mm)) | None \<Rightarrow> Code.abort (STR ''dual_set_as_map_image RBT_set: ccompare = None'') (\<lambda>_. (dual_set_as_map_image (RBT_set t) f1 f2)))"
lemma eOp_simp6[simp]: assumes "\<not> liftAll (\<lambda> eA. eA \<noteq> ERR) ebinp" shows "eOp MOD delta einp ebinp = ERR"
lemma real_to_01open_inverse_correct': assumes "0 < r" "r < 1" shows "real_to_01open (real_to_01open_inverse r) = r"
lemma comm_ring_1: "OFCLASS('a, comm_ring_1_class)"
lemma size'_char_eq_0 [simp, code]: \<open>size_char c = 0\<close>
lemma \<beta>_boundedness_diag_le': fixes m :: int shows "- k y \<le> (m :: int) \<Longrightarrow> m \<le> k x \<Longrightarrow> x \<in> X \<Longrightarrow> y \<in> X \<Longrightarrow> Z \<subseteq> {u \<in> V. u x - u y \<le> m} \<Longrightarrow> Approx\<^sub>\<beta> Z \<subseteq> {u \<in> V. u x - u y \<le> m}"
lemma (in comm_ring_1) poly_divides_diff: "p divides q \<Longrightarrow> p divides (q +++ r) \<Longrightarrow> p divides r"
lemma N_\<mu>': assumes "i < m" "j \<le> i" shows "(\<mu>' i j)\<^sup>2 \<le> N ^ (3 * Suc j)"
lemma r_phi_recfn [simp]: "recfn 2 r_phi"
lemma ftv_tyS: fixes S::"tyS" shows "supp S = set (ftv S)"
lemma (in MinkowskiPrimitive) card2_either_elt1_or_elt2: assumes "card X = 2" and "x\<in>X" and "y\<in>X" and "x\<noteq>y" and "z\<in>X" and "z\<noteq>x" shows "z=y"
lemma (in carrier) openI: "m \<in> T \<Longrightarrow> m open"
lemma crel_vs_executeD: assumes "crel_vs R a b" "P heap" "Q heap" "state_dp_consistency.cmem heap" obtains x heap' where "execute b heap = Some (x, heap')" "P heap'" "Q heap'" "state_dp_consistency.cmem heap'" "R a x"
lemma ZFfunIdRight: assumes a: "isZFfun f" shows "f |o| (ZFfun ( |cod|f) ( |cod|f) (\<lambda>x. x)) = f"
lemma unfolding_monotonic: "w \<Turnstile>\<^sub>n \<phi>[X]\<^sub>\<nu> \<Longrightarrow> w \<Turnstile>\<^sub>n (Unf \<phi>)[X]\<^sub>\<nu>"
lemma column_Gram_Schmidt_column_k': fixes A::"'a::{real_inner}^'n::{mod_type}^'m::{mod_type}" assumes i_not_k: "i\<noteq>k" shows "column i (Gram_Schmidt_column_k A (to_nat k)) = (column i A)"
lemma size_multiset_union [simp]: "size_multiset f (M + N::'a multiset) = size_multiset f M + size_multiset f N"
lemma sorted_list_of_set_mono_on: "finite A \<Longrightarrow> mono_on {..<card A} (\<lambda>n. sorted_list_of_set A ! n)"
lemma conv_callee_parallel: "converter_of_callee (parallel_intercept callee1 callee2) (s,s') = parallel_converter2 (converter_of_callee callee1 s) (converter_of_callee callee2 s')"
lemma C_normal_ML_lift_ML: "C_normal\<^sub>M\<^sub>L(lift\<^sub>M\<^sub>L k v) = C_normal\<^sub>M\<^sub>L v"
lemma HEN007_2: "EQU001_0_ax equal & (\<forall>X Y. mless_equal(X::'a,Y) --> quotient(X::'a,Y,Zero)) & (\<forall>X Y. quotient(X::'a,Y,Zero) --> mless_equal(X::'a,Y)) & (\<forall>Y Z X. quotient(X::'a,Y,Z) --> mless_equal(Z::'a,X)) & (\<forall>Y X V3 V2 V1 Z V4 V5. quotient(X::'a,Y,V1) & quotient(Y::'a,Z,V2) & quotient(X::'a,Z,V3) & quotient(V3::'a,V2,V4) & quotient(V1::'a,Z,V5) --> mless_equal(V4::'a,V5)) & (\<forall>X. mless_equal(Zero::'a,X)) & (\<forall>X Y. mless_equal(X::'a,Y) & mless_equal(Y::'a,X) --> equal(X::'a,Y)) & (\<forall>X. mless_equal(X::'a,identity)) & (\<forall>X Y. quotient(X::'a,Y,Divide(X::'a,Y))) & (\<forall>X Y Z W. quotient(X::'a,Y,Z) & quotient(X::'a,Y,W) --> equal(Z::'a,W)) & (\<forall>X Y W Z. equal(X::'a,Y) & quotient(X::'a,W,Z) --> quotient(Y::'a,W,Z)) & (\<forall>X W Y Z. equal(X::'a,Y) & quotient(W::'a,X,Z) --> quotient(W::'a,Y,Z)) & (\<forall>X W Z Y. equal(X::'a,Y) & quotient(W::'a,Z,X) --> quotient(W::'a,Z,Y)) & (\<forall>X Z Y. equal(X::'a,Y) & mless_equal(Z::'a,X) --> mless_equal(Z::'a,Y)) & (\<forall>X Y Z. equal(X::'a,Y) & mless_equal(X::'a,Z) --> mless_equal(Y::'a,Z)) & (\<forall>X Y W. equal(X::'a,Y) --> equal(Divide(X::'a,W),Divide(Y::'a,W))) & (\<forall>X W Y. equal(X::'a,Y) --> equal(Divide(W::'a,X),Divide(W::'a,Y))) & (\<forall>X. quotient(X::'a,identity,Zero)) & (\<forall>X. quotient(Zero::'a,X,Zero)) & (\<forall>X. quotient(X::'a,X,Zero)) & (\<forall>X. quotient(X::'a,Zero,X)) & (\<forall>Y X Z. mless_equal(X::'a,Y) & mless_equal(Y::'a,Z) --> mless_equal(X::'a,Z)) & (\<forall>W1 X Z W2 Y. quotient(X::'a,Y,W1) & mless_equal(W1::'a,Z) & quotient(X::'a,Z,W2) --> mless_equal(W2::'a,Y)) & (mless_equal(x::'a,y)) & (quotient(z::'a,y,zQy)) & (quotient(z::'a,x,zQx)) & (~mless_equal(zQy::'a,zQx)) --> False"
lemma ctx_subtype_v_rig_eq: fixes v::v assumes "replace_in_g_subtyped \<Theta> \<B> \<Gamma>' [(x,c0)] \<Gamma>" and "\<Theta>; \<B>; \<Gamma>' \<turnstile> v \<Rightarrow> t1" shows "\<Theta>; \<B>; \<Gamma> \<turnstile> v \<Rightarrow> t1"
lemma finite_dom_lookup: "finite (dom (lookup t))"
lemma inner_prod_with_row_bra_vec [simp]: assumes "dim_vec u = dim_vec v" shows "\<langle>u|v\<rangle> = row (bra_vec u) 0 \<bullet> v"
lemma cycle_free_diag: "cycle_free m n \<Longrightarrow> i \<le> n \<Longrightarrow> 0 \<le> m i i"
lemma pickE[simp]: assumes "length xl = length al" and "distinct xl" and "\<And> i. i < length xl \<Longrightarrow> intT (tpOfV (xl!i)) (al!i)" and "i < length xl" shows "pickE xl al (xl!i) = al!i"
lemma left_null_space_orthogonal_complement_col_space: fixes A::"'a^'cols::{finite, wellorder}^'rows::{finite, wellorder}" shows "left_null_space A = ROWS.v.orthogonal_complement (col_space (\<chi> i j. cnj (A $ i $ j)))"
lemma conseq_extract_state_indep_prop: assumes state_indep_prop:"\<forall>s \<in> P. R" assumes to_show: "R \<Longrightarrow> \<Gamma>,\<Theta>\<turnstile>\<^sub>t\<^bsub>/F\<^esub> P c Q,A" shows "\<Gamma>,\<Theta>\<turnstile>\<^sub>t\<^bsub>/F\<^esub> P c Q,A"
lemma Amin_ge1Tr:"(\<forall>j\<le>(Suc n). (f j) \<in> Z\<^sub>\<infinity> \<and> z \<le> (f j)) \<longrightarrow> z \<le> (Amin (Suc n) f)"
lemma locally_Times: fixes S :: "('a::metric_space) set" and T :: "('b::metric_space) set" assumes PS: "locally P S" and QT: "locally Q T" and R: "\<And>S T. P S \<and> Q T \<Longrightarrow> R(S \<times> T)" shows "locally R (S \<times> T)"
lemma generate_valid_stateful_policy_IFSACS_noIFS_noACSsideeffects_imp_fullgraph: assumes validReqs: "valid_reqs M" and wfG: "wf_graph G" and high_level_policy_valid: "all_security_requirements_fulfilled M G" and edgesList: "(set edgesList) = edges G" and no_ACS_sideeffects: "\<forall>F \<in> get_offending_flows (get_ACS M) \<lparr>nodes = nodes G, edges = edges G \<union> backflows (edges G)\<rparr>. F \<subseteq> (backflows (edges G)) - (edges G)" and no_IFS: "get_IFS M = []" shows "stateful_policy_to_network_graph (generate_valid_stateful_policy_IFSACS G M edgesList) = undirected G"
lemma (in topology) closure_eq_closed: "closure a = a \<Longrightarrow> a closed"
lemma \<alpha>_strict[simp]: "\<alpha> (Sup {}) = bot"
lemma member_of_to_member_in: "G \<turnstile> m member_of C \<Longrightarrow> G \<turnstile>m member_in C"
lemma type_vector_space_on_with: "vector_space_on_with UNIV plus_S minus_S uminus_S (zero_S::'s) scale_S"
lemma is_calls_not_is_vals [dest]: "calls es = \<lfloor>aMvs\<rfloor> \<Longrightarrow> \<not> is_vals es"
lemma WPC_through_make_step: assumes "set_of_graph_rules Rs" "graph (graph_of (X 0))" and makestep: "\<forall> i. X (Suc i) = make_step selector (X i)" and selector: "valid_selector Rs selector" shows "Simple_WPC t Rs (\<lambda> i. graph_of (X i))" "chain (\<lambda> i. graph_of (X i))"
lemma alpha_Tree_eqvt': "t1 =\<^sub>\<alpha> t2 \<longleftrightarrow> p \<bullet> t1 =\<^sub>\<alpha> p \<bullet> t2"
lemma n2_type1: "\<lbrakk>t1 \<in> Um h; t2 \<in> B h\<rbrakk> \<Longrightarrow> n2 t1 a t2 \<in> T (Suc h)"
lemma arctic_weak_carrier: "weak_SN_both_mono_ordered_semiring_1 (>) 1 pos_arctic"
lemma HAInitState_HAInitStates [simp]: "HAInitState A \<in> HAInitStates A"
lemma invar_empty[simp]: "invar []" "tail_invar []"
lemma uminus_in_iff [simp]: "(\<lambda>x. -f x) \<in> L F (g) \<longleftrightarrow> f \<in> L F (g)"
lemma squarefree_part_nonzero [simp]: "squarefree_part n \<noteq> 0"
lemma list_of_pdevs_perm_filter_nonzero: "map snd (list_of_pdevs X) <~~> (filter ((\<noteq>) 0) (dense_list_of_pdevs X))"
lemma lsu_inf_closed_var [simp]: "\<nu>\<^sup>\<natural> (\<nu>\<^sup>\<natural> x \<sqinter> \<nu>\<^sup>\<natural> y) = \<nu>\<^sup>\<natural> (x::'a::unital_quantale) \<sqinter> \<nu>\<^sup>\<natural> y"
lemma similar_mat_wit_char_matrix: assumes wit: "similar_mat_wit A B P Q" shows "similar_mat_wit (char_matrix A ev) (char_matrix B ev) P Q"
lemma wf_tuple_upd_None: "wf_tuple n A xs \<Longrightarrow> A - {i} = B \<Longrightarrow> wf_tuple n B (xs[i:=None])"
lemma pow_res_disjoint': assumes "n > 0" assumes "a \<in> nonzero Q\<^sub>p" assumes "pow_res n a \<noteq> pow_res n \<one>" shows "\<not> (\<exists>y \<in> nonzero Q\<^sub>p. a = y[^]n)"
lemma adopt_node_wf_is_l_adopt_node_wf [instances]: "l_adopt_node_wf type_wf known_ptr heap_is_wellformed parent_child_rel get_child_nodes get_disconnected_nodes known_ptrs adopt_node"
lemma comp_in_homI [intro]: assumes "\<guillemotleft>f : a \<rightarrow> b\<guillemotright>" and "\<guillemotleft>g : b \<rightarrow> c\<guillemotright>" shows "\<guillemotleft>g \<cdot> f : a \<rightarrow> c\<guillemotright>"
lemma cat_smc_is_arr[slicing_simps]: "f : a \<mapsto>\<^bsub>cat_smc \<CC>\<^esub> b \<longleftrightarrow> f : a \<mapsto>\<^bsub>\<CC>\<^esub> b"
lemma subrel_runiq: assumes "runiq Q" "P \<subseteq> Q" shows "runiq P"
lemma coeff_mod_qr_poly: assumes "degree (f::'a mod_ring poly) \<ge> n" "degree f < 2*n" "i<n" shows "poly.coeff (f mod qr_poly) i = poly.coeff f i - poly.coeff f (i+n)"
lemma snd_foldl_ef_det_eq: "snd (foldl (echelon_form_of_column_k_det bezout) (n, A, 0) [0..<k]) = foldl (echelon_form_of_column_k bezout) (A, 0) [0..<k]"
lemma lmirror_aux_LCons: "lmirror_aux acc (LCons x xs) = LCons x (lappend (lmirror_aux LNil xs) (LCons x acc))"
lemma card_irred_aux: assumes "n > 0" shows "order R^n = (\<Sum>d | d dvd n. d * card {f. monic_irreducible_poly R f \<and> degree f = d})" (is "?lhs = ?rhs")
lemma add_set_commm: "A \<otimes> B = B \<otimes> A"
lemma "JML \<Longrightarrow> DM3 \<^bold>\<not>"
lemma wbalanced_balance_list[simp]: "wbalanced (balance_list xs)"
lemma length_tabulate[simp]: "length (tabulate f x n) = n"
lemma tl_upt [simp]: "tl [m..<n] = [Suc m..<n]"
lemma is_regular_spair_component_lt_cases: assumes "is_regular_spair p q" shows "component_of_term (lt (spair p q)) = component_of_term (lt p) \<or> component_of_term (lt (spair p q)) = component_of_term (lt q)"
lemma transpose_aux_max: "max (Suc (length xs)) (foldr (\<lambda>xs. max (length xs)) xss 0) = Suc (max (length xs) (foldr (\<lambda>x. max (length x - Suc 0)) (filter (\<lambda>ys. ys \<noteq> []) xss) 0))" (is "max _ ?foldB = Suc (max _ ?foldA)")
lemma ereal_zero_times[simp]: fixes a b :: ereal shows "a * b = 0 \<longleftrightarrow> a = 0 \<or> b = 0"
lemma set_tag_name_get_tag_name_is_l_set_tag_name_get_tag_name [instances]: "l_set_tag_name_get_tag_name type_wf get_tag_name get_tag_name_locs set_tag_name set_tag_name_locs"
lemma prec_eq_None_or_equal: fixes s1 s2 assumes "s1 \<preceq> s2" shows "s1 = None \<or> s1 = s2"
lemma (in program) history_consistent_append_Prog\<^sub>s\<^sub>b: assumes step: "\<theta>\<turnstile> p \<rightarrow>\<^sub>p (p', mis)" shows "history_consistent \<theta> (hd_prog p xs) xs \<Longrightarrow> last_prog p xs = p \<Longrightarrow> history_consistent \<theta> (hd_prog p' (xs@[Prog\<^sub>s\<^sub>b p p' mis])) (xs@[Prog\<^sub>s\<^sub>b p p' mis])"
lemma rbt_lookup_rbt_interwk: "\<lbrakk> rbt_sorted t1; rbt_sorted t2 \<rbrakk> \<Longrightarrow> rbt_lookup (rbt_inter_with_key f t1 t2) k = (case rbt_lookup t1 k of None \<Rightarrow> None | Some v \<Rightarrow> case rbt_lookup t2 k of None \<Rightarrow> None | Some w \<Rightarrow> Some (f k v w))"
lemma apply_cltn2_left_abs: assumes "v \<noteq> 0" shows "apply_cltn2 (proj2_abs v) C = proj2_abs (v v* cltn2_rep C)"
lemma X: "\<not> (\<tau> \<Turnstile> (invalid and B))"
lemma "((x :: 32 word) >> 3) AND 7 = (x AND 56) >> 3"
lemma cl_op_prop_var [iff]: "(cl_op (x \<squnion> cl_op y) = cl_op y) = (cl_op (x::'a::clattice_with_clop) \<le> cl_op y)"
lemma uint_split_asm: "P (uint x) = (\<nexists>i. word_of_int i = x \<and> 0 \<le> i \<and> i < 2^LENGTH('a) \<and> \<not> P i)" for x :: "'a::len word"
lemma init_tr_wf: "wf_tr M (init_tr M)"
lemma p2_ident: "int (CARD('a) - 2) = p - 2"
lemma bind_case_contract_cong [fundef_cong]: assumes "x = x'" and "\<And>a. x = Method a \<Longrightarrow> f a s = f' a s" and "\<And>a. x = Var a \<Longrightarrow> g a s = g' a s" shows "(case x of (Method a) \<Rightarrow> f a | (Var a) \<Rightarrow> g a) s = (case x' of (Method a) \<Rightarrow> f' a | (Var a) \<Rightarrow> g' a) s"
lemma msed_map_invL: assumes "image_mset f (add_mset a M) = N" shows "\<exists>N1. N = add_mset (f a) N1 \<and> image_mset f M = N1"
lemma vote_setD: "rv \<in> vote_set v_f {a} \<Longrightarrow> v_f (fst rv) a = Some (snd rv)"
lemma im_len_eq_iff: "\<^bold>|u\<^bold>| = \<^bold>|f u\<^bold>| \<longleftrightarrow> (\<forall> c. c \<in> set u \<longrightarrow> \<^bold>|f [c]\<^bold>| = 1)"
lemma ya2'_parts_imp_ya1'_parts [rule_format]: "[| evs \<in> ya; B \<notin> bad |] ==> Ciph B \<lbrace>Agent A, Nonce NA, Nonce NB\<rbrace> \<in> parts (spies evs) \<longrightarrow> \<lbrace>Agent A, Nonce NA\<rbrace> \<in> spies evs"
lemma undeclared_not_declared: "G\<turnstile> memberid m undeclared_in C \<Longrightarrow> \<not> G\<turnstile> m declared_in C"
lemma stopping_timeD: "stopping_time F T \<Longrightarrow> Measurable.pred (F t) (\<lambda>x. T x \<le> t)"
lemma (in encoding) enc_preserves_pred_iff_source_target_rel_preserves_pred: fixes Pred :: "('procS, 'procT) Proc \<Rightarrow> bool" shows "enc_preserves_pred Pred = (\<exists>Rel. (\<forall>S. (SourceTerm S, TargetTerm (\<lbrakk>S\<rbrakk>)) \<in> Rel) \<and> rel_preserves_pred Rel Pred)" and "enc_preserves_pred Pred = (\<exists>Rel. (\<forall>S. (SourceTerm S, TargetTerm (\<lbrakk>S\<rbrakk>)) \<in> Rel) \<and> rel_preserves_pred Rel Pred \<and> preorder Rel)"
lemma fM_rel_inv[intro]: notes fun_upd_apply[simp] shows "\<lbrace> LSTP (fM_rel_inv \<^bold>\<and> tso_store_inv) \<rbrace> sys \<lbrace> LSTP fM_rel_inv \<rbrace>"
lemma degree_pos_iff: "MPoly_Type.degree p x > 0 \<longleftrightarrow> x \<in> vars p"
lemma partitions_imp_finite_elements: assumes "p partitions n" shows "finite {i. 0 < p i}"
lemma (in group) subgroup_generated_minimal: "\<lbrakk>subgroup H G; S \<subseteq> H\<rbrakk> \<Longrightarrow> carrier(subgroup_generated G S) \<subseteq> H"
lemma measurable_on_scaleR_const: assumes f: "f measurable_on S" shows "(\<lambda>x. c *\<^sub>R f x) measurable_on S"
lemma signed_take_bit_Suc_bit0 [simp]: \<open>signed_take_bit (Suc n) (numeral (Num.Bit0 k)) = signed_take_bit n (numeral k) * (2 :: int)\<close>
lemma add_multiple_rows_index_unchanged [simp]: "i < dim_row A \<Longrightarrow> j < dim_col A \<Longrightarrow> k \<noteq> i \<Longrightarrow> add_multiple_rows a k ls A $$ (i,j) = A $$(i,j)"
lemma check_indices_state: assumes "\<not> \<U> s \<Longrightarrow> \<Turnstile>\<^sub>n\<^sub>o\<^sub>l\<^sub>h\<^sub>s s" "\<not> \<U> s \<Longrightarrow> \<diamond> s" "\<not> \<U> s \<Longrightarrow> \<triangle> (\<T> s)" "\<not> \<U> s \<Longrightarrow> \<nabla> s" shows "indices_state (check s) = indices_state s"
lemma e_approx_32: "\<bar>exp(1) - 5837465777 / 2147483648\<bar> \<le> (inverse(2 ^ 32)::real)"
lemma eq_E_simple_3[PLM]: "[(x \<^bold>= y) \<^bold>\<equiv> ((\<lparr>O!,x\<rparr> \<^bold>& \<lparr>O!,y\<rparr> \<^bold>& \<^bold>\<box>(\<^bold>\<forall>F . \<lparr>F,x\<rparr> \<^bold>\<equiv> \<lparr>F,y\<rparr>)) \<^bold>\<or> (\<lparr>A!,x\<rparr> \<^bold>& \<lparr>A!,y\<rparr> \<^bold>& \<^bold>\<box>(\<^bold>\<forall>F. \<lbrace>x,F\<rbrace> \<^bold>\<equiv> \<lbrace>y,F\<rbrace>))) in v]"
lemma inf_continuous_and[order_continuous_intros]: "inf_continuous P \<Longrightarrow> inf_continuous Q \<Longrightarrow> inf_continuous (\<lambda>x. P x \<and> Q x)"
lemma from_nat_suc: shows "from_nat (j + 1) = from_nat j + 1"
lemma blinfun_compose_diff_right: "f o\<^sub>L (g - h) = (f o\<^sub>L g) - (f o\<^sub>L h)"
lemma weight_return_pmf_None [simp]: "weight_spmf (return_pmf None) = 0"
theorem routing_ipassmt_wi: assumes vpfx: "valid_prefixes tbl" shows "output_iface (routing_table_semantics tbl k) = output_port \<longleftrightarrow> (\<exists>ip_range. k \<in> wordinterval_to_set ip_range \<and> (output_port, ip_range) \<in> set (routing_ipassmt_wi tbl))"
lemma bulkload_Mapping [code]: "Mapping.bulkload vs = Mapping (RBT.bulkload (List.map (\<lambda>n. (n, vs ! n)) [0..<length vs]))"