File size: 5,518 Bytes
ed60a23 a121c1f ed60a23 e38141f ed60a23 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 |
import os
from xml.etree import ElementTree as ET
import datasets
_CITATION = """\
@InProceedings{huggingface:dataset,
title = {people-with-guns-segmentation-and-detection},
author = {TrainingDataPro},
year = {2023}
}
"""
_DESCRIPTION = """\
The dataset consists of photos depicting **individuals holding guns**. It specifically
focuses on the **segmentation** of guns within these images and the **detection** of
people holding guns.
Each image in the dataset presents a different scenario, capturing individuals from
various *backgrounds, genders, and age groups in different poses* while holding guns.
The dataset is an essential resource for the development and evaluation of computer
vision models and algorithms in fields related to *firearms recognition, security
systems, law enforcement, and safety analysis*.
"""
_NAME = "people-with-guns-segmentation-and-detection"
_HOMEPAGE = f"https://huggingface.co/datasets/TrainingDataPro/{_NAME}"
_LICENSE = ""
_DATA = f"https://huggingface.co/datasets/TrainingDataPro/{_NAME}/resolve/main/data/"
_LABELS = ["person", "gun"]
class PeopleWithGunsSegmentationAndDetection(datasets.GeneratorBasedBuilder):
BUILDER_CONFIGS = [
datasets.BuilderConfig(name=f"{_NAME}", data_dir=f"{_DATA}{_NAME}.zip"),
]
DEFAULT_CONFIG_NAME = f"{_NAME}"
def _info(self):
return datasets.DatasetInfo(
description=_DESCRIPTION,
features=datasets.Features(
{
"id": datasets.Value("int32"),
"name": datasets.Value("string"),
"image": datasets.Image(),
"mask": datasets.Image(),
"width": datasets.Value("uint16"),
"height": datasets.Value("uint16"),
"shapes": datasets.Sequence(
{
"label": datasets.ClassLabel(
num_classes=len(_LABELS),
names=_LABELS,
),
"type": datasets.Value("string"),
"points": datasets.Sequence(
datasets.Sequence(
datasets.Value("float"),
),
),
"rotation": datasets.Value("float"),
"occluded": datasets.Value("uint8"),
"z_order": datasets.Value("int16"),
"attributes": datasets.Sequence(
{
"name": datasets.Value("string"),
"text": datasets.Value("string"),
}
),
}
),
}
),
supervised_keys=None,
homepage=_HOMEPAGE,
citation=_CITATION,
)
def _split_generators(self, dl_manager):
data = dl_manager.download_and_extract(self.config.data_dir)
return [
datasets.SplitGenerator(
name=datasets.Split.TRAIN,
gen_kwargs={
"data": data,
},
),
]
@staticmethod
def parse_shape(shape: ET.Element) -> dict:
label = shape.get("label")
shape_type = shape.tag
rotation = shape.get("rotation", 0.0)
occluded = shape.get("occluded", 0)
z_order = shape.get("z_order", 0)
points = None
if shape_type == "points":
points = tuple(map(float, shape.get("points").split(",")))
elif shape_type == "box":
points = [
(float(shape.get("xtl")), float(shape.get("ytl"))),
(float(shape.get("xbr")), float(shape.get("ybr"))),
]
elif shape_type == "polygon":
points = [
tuple(map(float, point.split(",")))
for point in shape.get("points").split(";")
]
attributes = []
for attr in shape:
attr_name = attr.get("name")
attr_text = attr.text
attributes.append({"name": attr_name, "text": attr_text})
shape_data = {
"label": label,
"type": shape_type,
"points": points,
"rotation": rotation,
"occluded": occluded,
"z_order": z_order,
"attributes": attributes,
}
return shape_data
def _generate_examples(self, data):
tree = ET.parse(os.path.join(data, "annotations.xml"))
root = tree.getroot()
for idx, file in enumerate(sorted(os.listdir(os.path.join(data, "images")))):
image_name = file.split("/")[-1]
img = root.find(f"./image[@name='images/{image_name}']")
image_id = img.get("id")
name = img.get("name")
width = img.get("width")
height = img.get("height")
shapes = [self.parse_shape(shape) for shape in img]
yield idx, {
"id": image_id,
"name": name,
"image": os.path.join(data, "images", file),
"mask": os.path.join(data, "labels", f"{file.split('.')[-2]}.png"),
"width": width,
"height": height,
"shapes": shapes,
}
|