vkashko commited on
Commit
ed60a23
·
1 Parent(s): a97574b

feat: load script

Browse files
people-with-guns-segmentation-and-detection.py ADDED
@@ -0,0 +1,160 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import os
2
+ from xml.etree import ElementTree as ET
3
+
4
+ import datasets
5
+
6
+ _CITATION = """\
7
+ @InProceedings{huggingface:dataset,
8
+ title = {people-with-guns-segmentation-and-detection},
9
+ author = {TrainingDataPro},
10
+ year = {2023}
11
+ }
12
+ """
13
+
14
+ _DESCRIPTION = """\
15
+ The dataset consists of photos depicting **individuals holding guns**. It specifically
16
+ focuses on the **segmentation** of guns within these images and the **detection** of
17
+ people holding guns.
18
+ Each image in the dataset presents a different scenario, capturing individuals from
19
+ various *backgrounds, genders, and age groups in different poses* while holding guns.
20
+ The dataset is an essential resource for the development and evaluation of computer
21
+ vision models and algorithms in fields related to *firearms recognition, security
22
+ systems, law enforcement, and safety analysis*.
23
+ """
24
+ _NAME = "people-with-guns-segmentation-and-detection"
25
+
26
+ _HOMEPAGE = f"https://huggingface.co/datasets/TrainingDataPro/{_NAME}"
27
+
28
+ _LICENSE = ""
29
+
30
+ _DATA = f"https://huggingface.co/datasets/TrainingDataPro/{_NAME}/resolve/main/data/"
31
+
32
+ _LABELS = ["person", "gun"]
33
+
34
+
35
+ class PeopleWithGunsSegmentationAndDetection(datasets.GeneratorBasedBuilder):
36
+ BUILDER_CONFIGS = [
37
+ datasets.BuilderConfig(name=f"{_NAME}", data_dir=f"{_DATA}{_NAME}"),
38
+ ]
39
+
40
+ DEFAULT_CONFIG_NAME = f"{_NAME}"
41
+
42
+ def _info(self):
43
+ return datasets.DatasetInfo(
44
+ description=_DESCRIPTION,
45
+ features=datasets.Features(
46
+ {
47
+ "id": datasets.Value("int32"),
48
+ "name": datasets.Value("string"),
49
+ "image": datasets.Image(),
50
+ "mask": datasets.Image(),
51
+ "width": datasets.Value("uint16"),
52
+ "height": datasets.Value("uint16"),
53
+ "shapes": datasets.Sequence(
54
+ {
55
+ "label": datasets.ClassLabel(
56
+ num_classes=len(_LABELS),
57
+ names=_LABELS,
58
+ ),
59
+ "type": datasets.Value("string"),
60
+ "points": datasets.Sequence(
61
+ datasets.Sequence(
62
+ datasets.Value("float"),
63
+ ),
64
+ ),
65
+ "rotation": datasets.Value("float"),
66
+ "occluded": datasets.Value("uint8"),
67
+ "z_order": datasets.Value("int16"),
68
+ "attributes": datasets.Sequence(
69
+ {
70
+ "name": datasets.Value("string"),
71
+ "text": datasets.Value("string"),
72
+ }
73
+ ),
74
+ }
75
+ ),
76
+ }
77
+ ),
78
+ supervised_keys=None,
79
+ homepage=_HOMEPAGE,
80
+ citation=_CITATION,
81
+ )
82
+
83
+ def _split_generators(self, dl_manager):
84
+ data = dl_manager.download_and_extract(self.config.data_dir)
85
+ return [
86
+ datasets.SplitGenerator(
87
+ name=datasets.Split.TRAIN,
88
+ gen_kwargs={
89
+ "data": data,
90
+ },
91
+ ),
92
+ ]
93
+
94
+ @staticmethod
95
+ def parse_shape(shape: ET.Element) -> dict:
96
+ label = shape.get("label")
97
+ shape_type = shape.tag
98
+ rotation = shape.get("rotation", 0.0)
99
+ occluded = shape.get("occluded", 0)
100
+ z_order = shape.get("z_order", 0)
101
+
102
+ points = None
103
+
104
+ if shape_type == "points":
105
+ points = tuple(map(float, shape.get("points").split(",")))
106
+
107
+ elif shape_type == "box":
108
+ points = [
109
+ (float(shape.get("xtl")), float(shape.get("ytl"))),
110
+ (float(shape.get("xbr")), float(shape.get("ybr"))),
111
+ ]
112
+
113
+ elif shape_type == "polygon":
114
+ points = [
115
+ tuple(map(float, point.split(",")))
116
+ for point in shape.get("points").split(";")
117
+ ]
118
+
119
+ attributes = []
120
+
121
+ for attr in shape:
122
+ attr_name = attr.get("name")
123
+ attr_text = attr.text
124
+ attributes.append({"name": attr_name, "text": attr_text})
125
+
126
+ shape_data = {
127
+ "label": label,
128
+ "type": shape_type,
129
+ "points": points,
130
+ "rotation": rotation,
131
+ "occluded": occluded,
132
+ "z_order": z_order,
133
+ "attributes": attributes,
134
+ }
135
+
136
+ return shape_data
137
+
138
+ def _generate_examples(self, data):
139
+ tree = ET.parse(os.path.join(data, "annotations.xml"))
140
+ root = tree.getroot()
141
+
142
+ for idx, file in enumerate(sorted(os.listdir(os.path.join(data, "images")))):
143
+ image_name = file.split("/")[-1]
144
+ img = root.find(f"./image[@name='images/{image_name}']")
145
+
146
+ image_id = img.get("id")
147
+ name = img.get("name")
148
+ width = img.get("width")
149
+ height = img.get("height")
150
+ shapes = [self.parse_shape(shape) for shape in img]
151
+
152
+ yield idx, {
153
+ "id": image_id,
154
+ "name": name,
155
+ "image": os.path.join(data, "images", file),
156
+ "mask": os.path.join(data, "masks", file),
157
+ "width": width,
158
+ "height": height,
159
+ "shapes": shapes,
160
+ }