File size: 3,505 Bytes
9d65543
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
cff5499
9d65543
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
cff5499
3e41e56
9d65543
 
cff5499
b4c047f
253feb7
8f0c0a8
253feb7
8f0c0a8
253feb7
8f0c0a8
253feb7
8f0c0a8
253feb7
8f0c0a8
253feb7
9d65543
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
import datasets
import pandas as pd

_CITATION = """\
@InProceedings{huggingface:dataset,
title = {hand-gesture-recognition-dataset},
author = {TrainingDataPro},
year = {2023}
}
"""

_DESCRIPTION = """\
The dataset consists of videos showcasing individuals demonstrating 5 different
hand gestures (*"one", "four", "small", "fist", and "me"*). Each video captures
a person prominently displaying a single hand gesture, allowing for accurate
identification and differentiation of the gestures.
The dataset offers a diverse range of individuals performing the gestures,
enabling the exploration of variations in hand shapes, sizes, and movements
across different individuals. 
The videos in the dataset are recorded in reasonable lighting conditions and
with adequate resolution, to ensure that the hand gestures can be easily
observed and studied.
"""
_NAME = 'hand-gesture-recognition-dataset'

_HOMEPAGE = f"https://huggingface.co/datasets/TrainingDataPro/{_NAME}"

_LICENSE = "cc-by-nc-nd-4.0"

_DATA = f"https://huggingface.co/datasets/TrainingDataPro/{_NAME}/resolve/main/data/"


class HandGestureRecognitionDataset(datasets.GeneratorBasedBuilder):

    def _info(self):
        return datasets.DatasetInfo(description=_DESCRIPTION,
                                    features=datasets.Features({
                                        'set_id': datasets.Value('int32'),
                                        'fist': datasets.Value('string'),
                                        'four': datasets.Value('string'),
                                        'me': datasets.Value('string'),
                                        'one': datasets.Value('string'),
                                        'small': datasets.Value('string')
                                    }),
                                    supervised_keys=None,
                                    homepage=_HOMEPAGE,
                                    citation=_CITATION,
                                    license=_LICENSE)

    def _split_generators(self, dl_manager):
        files = dl_manager.download_and_extract(f"{_DATA}files.zip")
        annotations = dl_manager.download(f"{_DATA}{_NAME}.csv")
        files = dl_manager.iter_files(files)
        return [
            datasets.SplitGenerator(name=datasets.Split.TRAIN,
                                    gen_kwargs={
                                        "files": files,
                                        'annotations': annotations
                                    }),
        ]

    def _generate_examples(self, files, annotations):
        annotations_df = pd.read_csv(annotations, sep=';')

        files = sorted(files)
        files = [files[i:i + 5] for i in range(0, len(files), 5)]
        for idx, files_set in enumerate(files):
            set_id = int((files_set[0].split('/'))[-2])
            data = {'set_id': set_id}

            for file in files_set:
                file_name = '/'.join(file.split('/')[-2])
                if 'fist' in file_name.lower():
                    data['fist'] = file_name
                elif 'four' in file_name.lower():
                    data['four'] = file_name
                elif 'me' in file_name.lower():
                    data['me'] = file_name
                elif 'one' in file_name.lower():
                    data['one'] = file_name
                elif 'small' in file_name.lower():
                    data['small'] = file_name
            # print(data)
            yield idx, data