File size: 3,505 Bytes
9d65543 cff5499 9d65543 cff5499 3e41e56 9d65543 cff5499 b4c047f 253feb7 8f0c0a8 253feb7 8f0c0a8 253feb7 8f0c0a8 253feb7 8f0c0a8 253feb7 8f0c0a8 253feb7 9d65543 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 |
import datasets
import pandas as pd
_CITATION = """\
@InProceedings{huggingface:dataset,
title = {hand-gesture-recognition-dataset},
author = {TrainingDataPro},
year = {2023}
}
"""
_DESCRIPTION = """\
The dataset consists of videos showcasing individuals demonstrating 5 different
hand gestures (*"one", "four", "small", "fist", and "me"*). Each video captures
a person prominently displaying a single hand gesture, allowing for accurate
identification and differentiation of the gestures.
The dataset offers a diverse range of individuals performing the gestures,
enabling the exploration of variations in hand shapes, sizes, and movements
across different individuals.
The videos in the dataset are recorded in reasonable lighting conditions and
with adequate resolution, to ensure that the hand gestures can be easily
observed and studied.
"""
_NAME = 'hand-gesture-recognition-dataset'
_HOMEPAGE = f"https://huggingface.co/datasets/TrainingDataPro/{_NAME}"
_LICENSE = "cc-by-nc-nd-4.0"
_DATA = f"https://huggingface.co/datasets/TrainingDataPro/{_NAME}/resolve/main/data/"
class HandGestureRecognitionDataset(datasets.GeneratorBasedBuilder):
def _info(self):
return datasets.DatasetInfo(description=_DESCRIPTION,
features=datasets.Features({
'set_id': datasets.Value('int32'),
'fist': datasets.Value('string'),
'four': datasets.Value('string'),
'me': datasets.Value('string'),
'one': datasets.Value('string'),
'small': datasets.Value('string')
}),
supervised_keys=None,
homepage=_HOMEPAGE,
citation=_CITATION,
license=_LICENSE)
def _split_generators(self, dl_manager):
files = dl_manager.download_and_extract(f"{_DATA}files.zip")
annotations = dl_manager.download(f"{_DATA}{_NAME}.csv")
files = dl_manager.iter_files(files)
return [
datasets.SplitGenerator(name=datasets.Split.TRAIN,
gen_kwargs={
"files": files,
'annotations': annotations
}),
]
def _generate_examples(self, files, annotations):
annotations_df = pd.read_csv(annotations, sep=';')
files = sorted(files)
files = [files[i:i + 5] for i in range(0, len(files), 5)]
for idx, files_set in enumerate(files):
set_id = int((files_set[0].split('/'))[-2])
data = {'set_id': set_id}
for file in files_set:
file_name = '/'.join(file.split('/')[-2])
if 'fist' in file_name.lower():
data['fist'] = file_name
elif 'four' in file_name.lower():
data['four'] = file_name
elif 'me' in file_name.lower():
data['me'] = file_name
elif 'one' in file_name.lower():
data['one'] = file_name
elif 'small' in file_name.lower():
data['small'] = file_name
# print(data)
yield idx, data
|