Datasets:
feat: script
Browse files
hand-gesture-recognition-dataset.py
ADDED
|
@@ -0,0 +1,84 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import datasets
|
| 2 |
+
import pandas as pd
|
| 3 |
+
|
| 4 |
+
_CITATION = """\
|
| 5 |
+
@InProceedings{huggingface:dataset,
|
| 6 |
+
title = {hand-gesture-recognition-dataset},
|
| 7 |
+
author = {TrainingDataPro},
|
| 8 |
+
year = {2023}
|
| 9 |
+
}
|
| 10 |
+
"""
|
| 11 |
+
|
| 12 |
+
_DESCRIPTION = """\
|
| 13 |
+
The dataset consists of videos showcasing individuals demonstrating 5 different
|
| 14 |
+
hand gestures (*"one", "four", "small", "fist", and "me"*). Each video captures
|
| 15 |
+
a person prominently displaying a single hand gesture, allowing for accurate
|
| 16 |
+
identification and differentiation of the gestures.
|
| 17 |
+
The dataset offers a diverse range of individuals performing the gestures,
|
| 18 |
+
enabling the exploration of variations in hand shapes, sizes, and movements
|
| 19 |
+
across different individuals.
|
| 20 |
+
The videos in the dataset are recorded in reasonable lighting conditions and
|
| 21 |
+
with adequate resolution, to ensure that the hand gestures can be easily
|
| 22 |
+
observed and studied.
|
| 23 |
+
"""
|
| 24 |
+
_NAME = 'hand-gesture-recognition-dataset'
|
| 25 |
+
|
| 26 |
+
_HOMEPAGE = f"https://huggingface.co/datasets/TrainingDataPro/{_NAME}"
|
| 27 |
+
|
| 28 |
+
_LICENSE = "cc-by-nc-nd-4.0"
|
| 29 |
+
|
| 30 |
+
_DATA = f"https://huggingface.co/datasets/TrainingDataPro/{_NAME}/resolve/main/data/"
|
| 31 |
+
|
| 32 |
+
|
| 33 |
+
class HandGestureRecognitionDataset(datasets.GeneratorBasedBuilder):
|
| 34 |
+
|
| 35 |
+
def _info(self):
|
| 36 |
+
return datasets.DatasetInfo(description=_DESCRIPTION,
|
| 37 |
+
features=datasets.Features({
|
| 38 |
+
'set_id': datasets.Value('int32'),
|
| 39 |
+
'fist': datasets.Value('string'),
|
| 40 |
+
'four': datasets.Value('string'),
|
| 41 |
+
'me': datasets.Value('string'),
|
| 42 |
+
'one': datasets.Value('string'),
|
| 43 |
+
"small": datasets.Value('string')
|
| 44 |
+
}),
|
| 45 |
+
supervised_keys=None,
|
| 46 |
+
homepage=_HOMEPAGE,
|
| 47 |
+
citation=_CITATION,
|
| 48 |
+
license=_LICENSE)
|
| 49 |
+
|
| 50 |
+
def _split_generators(self, dl_manager):
|
| 51 |
+
files = dl_manager.download_and_extract(f"{_DATA}files.zip")
|
| 52 |
+
annotations = dl_manager.download(f"{_DATA}{_NAME}.csv")
|
| 53 |
+
files = dl_manager.iter_files(files)
|
| 54 |
+
return [
|
| 55 |
+
datasets.SplitGenerator(name=datasets.Split.TRAIN,
|
| 56 |
+
gen_kwargs={
|
| 57 |
+
"files": files,
|
| 58 |
+
'annotations': annotations
|
| 59 |
+
}),
|
| 60 |
+
]
|
| 61 |
+
|
| 62 |
+
def _generate_examples(self, files, annotations):
|
| 63 |
+
annotations_df = pd.read_csv(annotations, sep=';')
|
| 64 |
+
|
| 65 |
+
files = sorted(files)
|
| 66 |
+
files = [files[i:i + 5] for i in range(0, len(files), 5)]
|
| 67 |
+
|
| 68 |
+
for idx, images_set in enumerate(files):
|
| 69 |
+
set_id = int(images_set[0].split('/')[2])
|
| 70 |
+
data = {'set_id': set_id}
|
| 71 |
+
|
| 72 |
+
for file in images_set:
|
| 73 |
+
if 'fist' in file.lower():
|
| 74 |
+
data['fist'] = file
|
| 75 |
+
elif 'four' in file.lower():
|
| 76 |
+
data['four'] = file
|
| 77 |
+
elif 'me' in file.lower():
|
| 78 |
+
data['me'] = file
|
| 79 |
+
elif 'one' in file.lower():
|
| 80 |
+
data['one'] = file
|
| 81 |
+
elif 'small' in file.lower():
|
| 82 |
+
data['small'] = file
|
| 83 |
+
|
| 84 |
+
yield idx, data
|