inputs
stringlengths
312
52k
targets
stringlengths
1
3.1k
block_type
stringclasses
11 values
scenario
stringclasses
7 values
<filename>tanuki_py/src/tanuki/validator.py<fim_prefix>""" Here are some snippets of code retrieved from other files in this repository that may help you: # tanuki_py/src/tanuki/trackers/dataset_worker.py def log_symbolic_patch(self, func_hash, example): """ Save the example to the patch dataset for the function hash Output must be a dictionary with the following structure: { "func_hash": int } Where func_hash is the hash of the function and int is the number of datapoints written to the dataset for this function Args: func_hash (str): the function hash example (FunctionExample): the example to be saved Returns: dict: dictionary with the structure above """ # tanuki_py/src/tanuki/__init__.py def get_instance_from_args(args): # Check if there are any arguments if args: first_arg = args[0] # Check if the first argument is named "self" or "cls" (or any other specific name) if isinstance(first_arg, ast.Name) and first_arg.id in ("self", "cls"): instance = first_arg args = args[1:] # Remove the first argument else: instance = None else: instance = None return instance, args # tanuki_py/src/tanuki/trackers/dataset_worker.py def load_function_config(self, func_hash): """ Get the config file for the function. Function config must be a dictionary and have the following structure: distilled_model (str): distilled_model_name ("" if no distilled model), current_model_stats (dict): dict for current model stats example: { "trained_on_datapoints" (int): 12 (number of datapoints trained on, 0 if not trained yet), "running_faults" (list): [0, 0, 1] (list of 0s and 1s, where 0 is no fault and 1 is fault) } last_training_run (dict): dict for the last training run example: { "job_id" (str): job_id for last training run, "trained_on_datapoints" (int): dataset_size that was trained on, "last_checked" (datetime in "%Y-%m-%d %H:%M:%S"): When the last check was made for status of training run) } Example when no training has been done yet: { "trained_on_datapoints": 0 } current_training_run (dict): Same structure as last_training_run, only is non-empty if currently a model is training Example when no training has been done yet: {} teacher_models (list of string): list of teacher models example: ["gpt-4", "gpt-4-32k"] nr_of_training_runs (int): number of training runs that have been done in total } The config file must be returned as a dictionary Args: func_hash (str): the function hash Returns: dict: the function config """ pass """ import abc from collections import defaultdict import collections import typing from collections import deque import dataclasses import inspect import json from dataclasses import is_dataclass from typing import get_origin, get_args, Any, Mapping, MutableMapping, OrderedDict, Literal, Union, get_type_hints, \ Type, Sequence, Tuple, Optional from pydantic import BaseModel, create_model import datetime class Validator: def __init__(self): # Extract types from collections and collections.abc collection_types = {cls for name, cls in collections.__dict__.items() if isinstance(cls, type)} abc_collection_types = {cls for name, cls in collections.abc.__dict__.items() if isinstance(cls, type)} # Filter out types that have dictionary-like methods self.dict_like_types = { cls for cls in collection_types.union(abc_collection_types) if hasattr(cls, 'keys') and hasattr(cls, 'items') } self.list_like_types = { cls for cls in collection_types.union(abc_collection_types) if hasattr(cls, 'append') and hasattr(cls, 'pop') } self.set_like_types = { cls for cls in collection_types.union(abc_collection_types) if hasattr(cls, 'add') and hasattr(cls, 'discard') } # Add the general Sequence to list-like types # if python version is 3.9 or above, use collections.abc.Sequence if hasattr(collections.abc, 'Sequence'): self.list_like_types.add(collections.abc.Sequence) else: self.list_like_types.add(collections.Sequence) self.list_like_types.add(typing.List) # Add the general Mapping to dict-like types if hasattr(collections.abc, 'Mapping'): self.dict_like_types.add(collections.abc.Mapping) else: self.dict_like_types.add(collections.Mapping) self.dict_like_types.add(typing.Dict) # Add the general Set to set-like types if hasattr(collections.abc, 'Set'): self.set_like_types.add(collections.abc.Set) else: self.set_like_types.add(collections.Set) self.set_like_types.add(typing.Set) # Add the general Tuple to tuple-like types self.tuple_like_types = { cls for cls in collection_types.union(abc_collection_types) if hasattr(cls, '__getitem__') and hasattr(cls, '__len__') } self.tuple_like_types.add(typing.Tuple) def is_base_type(self, _type: Any) -> bool: """Determine if a type is a base type.""" return _type in {int, float, str, bool, None} def validate_base_type(self, value: Any, typ: Any) -> bool: """Validate base types.""" if typ is None: return value is None return isinstance(value, typ) def validate_output(self, output: str, type_definition: Any) -> bool: try: deserialized_output = json.loads(output) except json.JSONDecodeError: return False return self.check_type(deserialized_output, type_definition) def check_type(self, value: Any, type_definition: Any) -> bool: """ Validate a value against a type definition. Args: value: Any object or primitive value type_definition: The type definition to validate against Returns: Whether the value is valid for the type definition """ if type_definition is Any: return True if self.is_base_type(type_definition): return self.validate_base_type(value, type_definition) origin = get_origin(type_definition) or type_definition args = get_args(type_definition) # Handle base types if self.is_base_type(origin): return self.validate_base_type(value, origin) if origin == Literal: return value in args if origin == Union: return any(self.check_type(value, union_type) for union_type in args) # Handle tuples if origin == tuple: if not isinstance(value, tuple): return False item_type = args[0] if args else Any return all(self.check_type(v, item_type) for v in value) # Handle lists if origin == list: if not isinstance(value, list): return False item_type = args[0] if args else Any return all(self.check_type(v, item_type) for v in value) # Handle more complex types that are collections and list-like if origin is list or issubclass(origin, tuple(self.list_like_types)): if not any(isinstance(value, t) for t in self.list_like_types): return False item_type = args[0] if args else Any return all(self.check_type(v, item_type) for v in value) # Handle sets if origin == set: if not isinstance(value, set): return False item_type = args[0] if args else Any return all(self.check_type(v, item_type) for v in value) # Handle datetime if origin in [datetime.datetime, datetime.date, datetime.time]: # try to instantiate datetime try: obj = origin(**value) return True except: return False # Handle dictionaries if origin is dict or issubclass(origin, tuple(self.dict_like_types)): if not isinstance(value, (dict, Mapping)):#, MutableMapping, OrderedDict)): return False if args: if len(args) == 1: key_type = args[0] value_type = Any # General assumption; specific dict-like types might differ elif len(args) == 2: key_type, value_type = args else: key_type = value_type = Any else: key_type = value_type = Any return all( self.check_type(k, key_type) and self.check_type(v, value_type) for k, v in value.items() ) # Handle pydantic models if self.is_pydantic_model(origin): try: #temp_model = create_model('TempModel', **value) if isinstance(value, origin): return True #return isinstance(temp_model, origin) # check if value is dict if not isinstance(value, dict): return False # get all required init arguments for origin # required arguments are the ones withouyt default values required_fields = [field for field, field_type in origin.__annotations__.items() if not (typing.get_origin(field_type) is Union and type(None) in typing.get_args(field_type))] # check that all required arguments are in value and do type checking for arg in required_fields: # check if it is in value if arg not in value: return False # get the type of the argument arg_type = origin.__annotations__[arg] if not self.check_type(value[arg], arg_type): return False # check that all arguments in value are correct type # this is additional check, because the above check only checks required arguments for arg, obj in value.items(): if arg in required_fields: continue arg_type = origin.__annotations__[arg] if not self.check_type(value[arg], arg_type): return False #origin.parse_obj(value) return True except Exception as e: print(e) return False # Handle dataclasses if self.is_dataclass_instance(origin): try: # for field in dataclasses.fields(origin): # field_name = field.name # field_type = field.type # if field_name not in value or not self.check_type(value[field_name], field_type): # return False # return True obj = origin(**value) return dataclasses.asdict(obj) == value except: return False # Handle dataclasses and arbitrary class types if inspect.isclass(origin) and not self.is_base_type(origin): # Ensure the value is an instance of the class if not isinstance(value, origin): return False # Gather type hints from the class and its bases type_hints = {} for cls in reversed(origin.__mro__): type_hints.update(get_type_hints(cls)) # Validate each attribute of the class for attr, attr_type in type_hints.items(): attr_value = getattr(value, attr, None) if not self.check_type(attr_value, attr_type): return False return True return False @staticmethod def is_pydantic_model(cls): return hasattr(cls, 'parse_obj') @staticmethod def is_dataclass_instance(cls): return hasattr(cls, '__annotations__') and hasattr(cls, '__dataclass_fields__') @staticmethod def _is_subclass_of_generic(cls: Type, generic: Type) -> bool: """Determine if the class is a subclass of a generic type.""" try: return issubclass(cls, generic) and cls is not generic except TypeError: if not hasattr(cls, '__origin__'): return False return cls.__origin__ is generic @staticmethod def _is_generic(cls: Type) -> bool: """Check if the provided type is a generic.""" return hasattr(cls, "__origin__") def _get_recursive_args(self, target_type: Type) -> Tuple[Type, ...]: """ Recursively check the base classes (i.e., the superclass chain) of the target type until we find one that retains the type arguments. :return: Type chain """ if get_args(target_type): return get_args(target_type) for base in target_type.__bases__: args = self._get_recursive_args(base) if args: return args return () def _find_generic_base_and_args(self, target_type: Type) -> Tuple[Type, Tuple[Type, ...]]: """ Navigate up the MRO to find the first generic base and its arguments. """ # First, check if target_type is a type annotation. # If so, directly return its origin and arguments. origin = get_origin(target_type) args = get_args(target_type) if origin and args: return origin, args # If target_type is a real class, then navigate its MRO. if hasattr(target_type, '__mro__'): if hasattr(target_type, '__orig_bases__'): for base in target_type.__orig_bases__: if get_args(base): return base, get_args(base) for base in target_type.__mro__: if get_args(base): return base, get_args(base) return None, () def _is_list_like(self, target_type: Type) -> bool: """Determine if the target type is list-like.""" if target_type in {list, typing.List}: return True if hasattr(target_type, "__origin__") and target_type.__origin__ in {list, typing.List}: return True return False def _is_tuple_like(self, target_type: Type) -> bool: """Determine if the target type is tuple-like.""" if target_type in {tuple, typing.Tuple}: return True if hasattr(target_type, "__origin__") and target_type.__origin__ in {tuple, typing.Tuple}: return True return False def _is_dict_like(self, target_type: Type) -> bool: """Determine if the target type is dict-like.""" if target_type in {dict, typing.Dict}: return True if hasattr(target_type, "__origin__") and target_type.__origin__ in {dict, typing.Dict}: return True return False def _is_set_like(self, target_type: Type) -> bool: """Determine if the target type is set-like.""" if target_type in {set, typing.Set}: return True if hasattr(target_type, "__origin__") and target_type.__origin__ in {set, typing.Set}: return True return False def instantiate(self, data: Any, target_type: Type) -> Any: """ Attempts to convert a JSON-compatible data structure into an instance of the specified type. Args: data: JSON-compatible data structure to instantiate the target type. target_type: The type to instantiate from the given data. Returns: An instance of the target type initialized with the data. """ # Handle None type if data is None: return None origin = get_origin(target_type) or target_type # If the target type is a built-in, attempt to instantiate and return if self.is_base_type(target_type) or target_type is Any: # If the parsed data is a string and target type is str, return it directly if isinstance(data, str) and target_type is str: return data # If any, return the data directly if target_type is Any: return data try: return target_type(data) except (ValueError, TypeError): # Handle the special case where the string represents a float but we want an integer if target_type is int: try: return int(float(data)) except (ValueError, TypeError): pass if target_type is float: try: return int(float(data)) except (ValueError, TypeError): pass raise TypeError(f"Failed to instantiate {target_type} from provided data.") # special handling for datetime if origin == datetime.datetime: # try to instantiate datetime try: return datetime.datetime(**data) except: raise TypeError(f"Failed to instantiate {target_type} from provided data.") # check if origin is Union, if so, instantiate the first type that works if origin == Union: for arg in get_args(target_type): try: return self.instantiate(data, arg) except: continue raise TypeError(f"Failed to instantiate {target_type} from provided data.") # If the data is a dictionary and the target is a custom class that can be instantiated from a dictionary. if isinstance(data, dict): if inspect.isclass(target_type) and not self.is_base_type(target_type): # Special handling for dataclasses if is_dataclass(target_type): fields = [f.name for f in dataclasses.fields(target_type)] type_hints = get_type_hints(target_type) filtered_data = {k: self.instantiate(v, type_hints.get(k, Any)) for k, v in data.items() if k in fields} return target_type(**filtered_data) # Special handling for Pydantic models if issubclass(target_type, BaseModel): # instantiate the sub attributes for attr, attr_type in target_type.__annotations__.items(): if attr in data: data[attr] = self.instantiate(data[attr], attr_type) try: return target_type.model_validate(data) except AttributeError as e: # backwards compatibility with pydantic < 2 return target_type.parse_obj(data) # For general classes, attempt instantiation try: return target_type(**data) except TypeError: raise TypeError(f"Failed to instantiate {target_type.__name__} from dictionary.") # Handle dictionary-like types # Check if the target type is or inherits from defaultdict if origin is defaultdict or (isinstance(origin, type) and issubclass(origin, defaultdict)): key_type, value_type = get_args(target_type) if get_args(target_type) else (Any, Any) instantiated_items = {self.instantiate(k, key_type): self.instantiate(v, value_type) for k, v in data.items()} # For defaultdict, you'll need a default factory. Here, I'm using `int` for simplicity, # but you might want to adapt this based on your needs. return defaultdict(int, instantiated_items) # Handle set-like dict types like OrderedDict # the first check needs to be done to ensure origin has the __mro__ attribute elif inspect.isclass(origin)and any(issubclass(base, dict) for base in origin.__mro__): key_type, value_type = get_args(target_type) if get_args(target_type) else (Any, Any) instantiated_items = {self.instantiate(k, key_type): self.instantiate(v, value_type) for k, v in data.items()} return origin(instantiated_items) # Handle other dictionary-like types elif origin is dict or self._is_subclass_of_generic(origin, dict): key_type, value_type = get_args(target_type) if get_args(target_type) else (Any, Any) instantiated_dict = {self.instantiate(k, key_type): self.instantiate(v, value_type) for k, v in data.items()} # If the target_type is a subclass of dict, return an instance of target_type if self._is_subclass_of_generic(target_type, dict) and not self._is_generic(target_type): return target_type(instantiated_dict) else: return dict(instantiated_dict) # Tuples aren't supported in JSONable types, so we look for lists instead if isinstance(data, list): try: # If the origin or target type is a list-like type, or if it implements a list-like collections type # e.g Sequence[int] if origin is list or self._is_subclass_of_generic(origin, list): base, item_types = self._find_generic_base_and_args(target_type) item_type = item_types[0] if item_types else Any instantiated_items = [] for item in data: # For each item, validate and instantiate it try: instantiated_item = self.instantiate(item, item_type) except ValueError: raise TypeError( f"Item of type {type(item).__name__} does not match expected type {item_type[0].__name__}.") safe = self.check_type(instantiated_item, item_type) if not safe: raise TypeError( f"Item of type {type(item).__name__} does not match expected type {item_type[0].__name__}.") instantiated_items.append(instantiated_item) # If target_type is a subclass of list, return an instance of target_type if self._is_subclass_of_generic(target_type, list) and not self._is_generic(target_type): return target_type(instantiated_items) return instantiated_items # Handle tuples if self._is_tuple_like(target_type) or (isinstance(origin, type) and issubclass(origin, tuple)): base, item_types = self._find_generic_base_and_args(target_type) instantiated_items = [] # If there are no subscripted types, assume Any if not item_types: item_types = (Any,) * len(data) for i, item in enumerate(data): # For each item, validate and instantiate it instantiated_item = self.instantiate(item, item_types[i]) instantiated_items.append(instantiated_item) # If the instantiated item does not match the expected type, raise an exception _type = item_types[i] if not isinstance(instantiated_item, _type): raise TypeError( f"Item {i} of type {type(item).__name__} does not match expected type {item_types[i].__name__}.") # Convert the list of instantiated items to a tuple instantiated_tuple = tuple(instantiated_items) # If target_type is a subclass of tuple, return an instance of target_type if self._is_subclass_of_generic(target_type, tuple): return target_type(instantiated_tuple) return instantiated_tuple # Handle sets if self._is_set_like(target_type) or (isinstance(origin, type) and issubclass(origin, set)): base, item_type = self._find_generic_base_and_args(target_type) if not item_type: item_type = Any instantiated_items = set() <fim_suffix> # If target_type is a subclass of set, return an instance of target_type if self._is_subclass_of_generic(target_type, set): return target_type(instantiated_items) return instantiated_items # Handle deques if origin is deque or (isinstance(origin, type) and issubclass(origin, set)): item_type = get_args(target_type)[0] if get_args(target_type) else Any return deque(self.instantiate(item, item_type) for item in data) if origin is frozenset or (isinstance(origin, type) and issubclass(origin, frozenset)): item_type = get_args(target_type)[0] if get_args(target_type) else Any return frozenset(self.instantiate(item, item_type) for item in data) except TypeError as e: print(e) raise TypeError(f"Failed to instantiate {target_type} from list. {e}") # If none of the above, return the data as-is return data <fim_middle>for item in data: # For each item, validate and instantiate it instantiated_item = self.instantiate(item, item_type[0]) instantiated_items.add(instantiated_item) # If the instantiated item does not match the expected type, raise an exception if not isinstance(instantiated_item, item_type[0]): raise TypeError( f"Item of type {type(item).__name__} does not match expected type {item_type[0].__name__}.")
for item in data: # For each item, validate and instantiate it instantiated_item = self.instantiate(item, item_type[0]) instantiated_items.add(instantiated_item) # If the instantiated item does not match the expected type, raise an exception if not isinstance(instantiated_item, item_type[0]): raise TypeError( f"Item of type {type(item).__name__} does not match expected type {item_type[0].__name__}.")
FOR
prefix_suffix_full_complete_current_block_with_repo_rag_oracle
<filename>tanuki_py/src/tanuki/validator.py<fim_prefix>""" Here are some snippets of code retrieved from other files in this repository that may help you: # tanuki_py/src/tanuki/trackers/dataset_worker.py def log_symbolic_patch(self, func_hash, example): """ Save the example to the patch dataset for the function hash Output must be a dictionary with the following structure: { "func_hash": int } Where func_hash is the hash of the function and int is the number of datapoints written to the dataset for this function Args: func_hash (str): the function hash example (FunctionExample): the example to be saved Returns: dict: dictionary with the structure above """ # tanuki_py/src/tanuki/__init__.py def get_instance_from_args(args): # Check if there are any arguments if args: first_arg = args[0] # Check if the first argument is named "self" or "cls" (or any other specific name) if isinstance(first_arg, ast.Name) and first_arg.id in ("self", "cls"): instance = first_arg args = args[1:] # Remove the first argument else: instance = None else: instance = None return instance, args # tanuki_py/src/tanuki/trackers/dataset_worker.py def load_function_config(self, func_hash): """ Get the config file for the function. Function config must be a dictionary and have the following structure: distilled_model (str): distilled_model_name ("" if no distilled model), current_model_stats (dict): dict for current model stats example: { "trained_on_datapoints" (int): 12 (number of datapoints trained on, 0 if not trained yet), "running_faults" (list): [0, 0, 1] (list of 0s and 1s, where 0 is no fault and 1 is fault) } last_training_run (dict): dict for the last training run example: { "job_id" (str): job_id for last training run, "trained_on_datapoints" (int): dataset_size that was trained on, "last_checked" (datetime in "%Y-%m-%d %H:%M:%S"): When the last check was made for status of training run) } Example when no training has been done yet: { "trained_on_datapoints": 0 } current_training_run (dict): Same structure as last_training_run, only is non-empty if currently a model is training Example when no training has been done yet: {} teacher_models (list of string): list of teacher models example: ["gpt-4", "gpt-4-32k"] nr_of_training_runs (int): number of training runs that have been done in total } The config file must be returned as a dictionary Args: func_hash (str): the function hash Returns: dict: the function config """ pass """ import abc from collections import defaultdict import collections import typing from collections import deque import dataclasses import inspect import json from dataclasses import is_dataclass from typing import get_origin, get_args, Any, Mapping, MutableMapping, OrderedDict, Literal, Union, get_type_hints, \ Type, Sequence, Tuple, Optional from pydantic import BaseModel, create_model import datetime class Validator: def __init__(self): # Extract types from collections and collections.abc collection_types = {cls for name, cls in collections.__dict__.items() if isinstance(cls, type)} abc_collection_types = {cls for name, cls in collections.abc.__dict__.items() if isinstance(cls, type)} # Filter out types that have dictionary-like methods self.dict_like_types = { cls for cls in collection_types.union(abc_collection_types) if hasattr(cls, 'keys') and hasattr(cls, 'items') } self.list_like_types = { cls for cls in collection_types.union(abc_collection_types) if hasattr(cls, 'append') and hasattr(cls, 'pop') } self.set_like_types = { cls for cls in collection_types.union(abc_collection_types) if hasattr(cls, 'add') and hasattr(cls, 'discard') } # Add the general Sequence to list-like types # if python version is 3.9 or above, use collections.abc.Sequence if hasattr(collections.abc, 'Sequence'): self.list_like_types.add(collections.abc.Sequence) else: self.list_like_types.add(collections.Sequence) self.list_like_types.add(typing.List) # Add the general Mapping to dict-like types if hasattr(collections.abc, 'Mapping'): self.dict_like_types.add(collections.abc.Mapping) else: self.dict_like_types.add(collections.Mapping) self.dict_like_types.add(typing.Dict) # Add the general Set to set-like types if hasattr(collections.abc, 'Set'): self.set_like_types.add(collections.abc.Set) else: self.set_like_types.add(collections.Set) self.set_like_types.add(typing.Set) # Add the general Tuple to tuple-like types self.tuple_like_types = { cls for cls in collection_types.union(abc_collection_types) if hasattr(cls, '__getitem__') and hasattr(cls, '__len__') } self.tuple_like_types.add(typing.Tuple) def is_base_type(self, _type: Any) -> bool: """Determine if a type is a base type.""" return _type in {int, float, str, bool, None} def validate_base_type(self, value: Any, typ: Any) -> bool: """Validate base types.""" if typ is None: return value is None return isinstance(value, typ) def validate_output(self, output: str, type_definition: Any) -> bool: try: deserialized_output = json.loads(output) except json.JSONDecodeError: return False return self.check_type(deserialized_output, type_definition) def check_type(self, value: Any, type_definition: Any) -> bool: """ Validate a value against a type definition. Args: value: Any object or primitive value type_definition: The type definition to validate against Returns: Whether the value is valid for the type definition """ if type_definition is Any: return True if self.is_base_type(type_definition): return self.validate_base_type(value, type_definition) origin = get_origin(type_definition) or type_definition args = get_args(type_definition) # Handle base types if self.is_base_type(origin): return self.validate_base_type(value, origin) if origin == Literal: return value in args if origin == Union: return any(self.check_type(value, union_type) for union_type in args) # Handle tuples if origin == tuple: if not isinstance(value, tuple): return False item_type = args[0] if args else Any return all(self.check_type(v, item_type) for v in value) # Handle lists if origin == list: if not isinstance(value, list): return False item_type = args[0] if args else Any return all(self.check_type(v, item_type) for v in value) # Handle more complex types that are collections and list-like if origin is list or issubclass(origin, tuple(self.list_like_types)): if not any(isinstance(value, t) for t in self.list_like_types): return False item_type = args[0] if args else Any return all(self.check_type(v, item_type) for v in value) # Handle sets if origin == set: if not isinstance(value, set): return False item_type = args[0] if args else Any return all(self.check_type(v, item_type) for v in value) # Handle datetime if origin in [datetime.datetime, datetime.date, datetime.time]: # try to instantiate datetime try: obj = origin(**value) return True except: return False # Handle dictionaries if origin is dict or issubclass(origin, tuple(self.dict_like_types)): if not isinstance(value, (dict, Mapping)):#, MutableMapping, OrderedDict)): return False if args: if len(args) == 1: key_type = args[0] value_type = Any # General assumption; specific dict-like types might differ elif len(args) == 2: key_type, value_type = args else: key_type = value_type = Any else: key_type = value_type = Any return all( self.check_type(k, key_type) and self.check_type(v, value_type) for k, v in value.items() ) # Handle pydantic models if self.is_pydantic_model(origin): try: #temp_model = create_model('TempModel', **value) if isinstance(value, origin): return True #return isinstance(temp_model, origin) # check if value is dict if not isinstance(value, dict): return False # get all required init arguments for origin # required arguments are the ones withouyt default values required_fields = [field for field, field_type in origin.__annotations__.items() if not (typing.get_origin(field_type) is Union and type(None) in typing.get_args(field_type))] # check that all required arguments are in value and do type checking for arg in required_fields: # check if it is in value if arg not in value: return False # get the type of the argument arg_type = origin.__annotations__[arg] if not self.check_type(value[arg], arg_type): return False # check that all arguments in value are correct type # this is additional check, because the above check only checks required arguments for arg, obj in value.items(): if arg in required_fields: continue arg_type = origin.__annotations__[arg] if not self.check_type(value[arg], arg_type): return False #origin.parse_obj(value) return True except Exception as e: print(e) return False # Handle dataclasses if self.is_dataclass_instance(origin): try: # for field in dataclasses.fields(origin): # field_name = field.name # field_type = field.type # if field_name not in value or not self.check_type(value[field_name], field_type): # return False # return True obj = origin(**value) return dataclasses.asdict(obj) == value except: return False # Handle dataclasses and arbitrary class types if inspect.isclass(origin) and not self.is_base_type(origin): # Ensure the value is an instance of the class if not isinstance(value, origin): return False # Gather type hints from the class and its bases type_hints = {} for cls in reversed(origin.__mro__): type_hints.update(get_type_hints(cls)) # Validate each attribute of the class for attr, attr_type in type_hints.items(): attr_value = getattr(value, attr, None) if not self.check_type(attr_value, attr_type): return False return True return False @staticmethod def is_pydantic_model(cls): return hasattr(cls, 'parse_obj') @staticmethod def is_dataclass_instance(cls): return hasattr(cls, '__annotations__') and hasattr(cls, '__dataclass_fields__') @staticmethod def _is_subclass_of_generic(cls: Type, generic: Type) -> bool: """Determine if the class is a subclass of a generic type.""" try: return issubclass(cls, generic) and cls is not generic except TypeError: if not hasattr(cls, '__origin__'): return False return cls.__origin__ is generic @staticmethod def _is_generic(cls: Type) -> bool: """Check if the provided type is a generic.""" return hasattr(cls, "__origin__") def _get_recursive_args(self, target_type: Type) -> Tuple[Type, ...]: """ Recursively check the base classes (i.e., the superclass chain) of the target type until we find one that retains the type arguments. :return: Type chain """ if get_args(target_type): return get_args(target_type) for base in target_type.__bases__: args = self._get_recursive_args(base) if args: return args return () def _find_generic_base_and_args(self, target_type: Type) -> Tuple[Type, Tuple[Type, ...]]: """ Navigate up the MRO to find the first generic base and its arguments. """ # First, check if target_type is a type annotation. # If so, directly return its origin and arguments. origin = get_origin(target_type) args = get_args(target_type) if origin and args: return origin, args # If target_type is a real class, then navigate its MRO. if hasattr(target_type, '__mro__'): if hasattr(target_type, '__orig_bases__'): for base in target_type.__orig_bases__: if get_args(base): return base, get_args(base) for base in target_type.__mro__: if get_args(base): return base, get_args(base) return None, () def _is_list_like(self, target_type: Type) -> bool: """Determine if the target type is list-like.""" if target_type in {list, typing.List}: return True if hasattr(target_type, "__origin__") and target_type.__origin__ in {list, typing.List}: return True return False def _is_tuple_like(self, target_type: Type) -> bool: """Determine if the target type is tuple-like.""" if target_type in {tuple, typing.Tuple}: return True if hasattr(target_type, "__origin__") and target_type.__origin__ in {tuple, typing.Tuple}: return True return False def _is_dict_like(self, target_type: Type) -> bool: """Determine if the target type is dict-like.""" if target_type in {dict, typing.Dict}: return True if hasattr(target_type, "__origin__") and target_type.__origin__ in {dict, typing.Dict}: return True return False def _is_set_like(self, target_type: Type) -> bool: """Determine if the target type is set-like.""" if target_type in {set, typing.Set}: return True if hasattr(target_type, "__origin__") and target_type.__origin__ in {set, typing.Set}: return True return False def instantiate(self, data: Any, target_type: Type) -> Any: """ Attempts to convert a JSON-compatible data structure into an instance of the specified type. Args: data: JSON-compatible data structure to instantiate the target type. target_type: The type to instantiate from the given data. Returns: An instance of the target type initialized with the data. """ # Handle None type if data is None: return None origin = get_origin(target_type) or target_type # If the target type is a built-in, attempt to instantiate and return if self.is_base_type(target_type) or target_type is Any: # If the parsed data is a string and target type is str, return it directly if isinstance(data, str) and target_type is str: return data # If any, return the data directly if target_type is Any: return data try: return target_type(data) except (ValueError, TypeError): # Handle the special case where the string represents a float but we want an integer if target_type is int: try: return int(float(data)) except (ValueError, TypeError): pass if target_type is float: try: return int(float(data)) except (ValueError, TypeError): pass raise TypeError(f"Failed to instantiate {target_type} from provided data.") # special handling for datetime if origin == datetime.datetime: # try to instantiate datetime try: return datetime.datetime(**data) except: raise TypeError(f"Failed to instantiate {target_type} from provided data.") # check if origin is Union, if so, instantiate the first type that works if origin == Union: for arg in get_args(target_type): try: return self.instantiate(data, arg) except: continue raise TypeError(f"Failed to instantiate {target_type} from provided data.") # If the data is a dictionary and the target is a custom class that can be instantiated from a dictionary. if isinstance(data, dict): if inspect.isclass(target_type) and not self.is_base_type(target_type): # Special handling for dataclasses if is_dataclass(target_type): fields = [f.name for f in dataclasses.fields(target_type)] type_hints = get_type_hints(target_type) filtered_data = {k: self.instantiate(v, type_hints.get(k, Any)) for k, v in data.items() if k in fields} return target_type(**filtered_data) # Special handling for Pydantic models if issubclass(target_type, BaseModel): # instantiate the sub attributes for attr, attr_type in target_type.__annotations__.items(): if attr in data: data[attr] = self.instantiate(data[attr], attr_type) try: return target_type.model_validate(data) except AttributeError as e: # backwards compatibility with pydantic < 2 return target_type.parse_obj(data) # For general classes, attempt instantiation try: return target_type(**data) except TypeError: raise TypeError(f"Failed to instantiate {target_type.__name__} from dictionary.") # Handle dictionary-like types # Check if the target type is or inherits from defaultdict if origin is defaultdict or (isinstance(origin, type) and issubclass(origin, defaultdict)): key_type, value_type = get_args(target_type) if get_args(target_type) else (Any, Any) instantiated_items = {self.instantiate(k, key_type): self.instantiate(v, value_type) for k, v in data.items()} # For defaultdict, you'll need a default factory. Here, I'm using `int` for simplicity, # but you might want to adapt this based on your needs. return defaultdict(int, instantiated_items) # Handle set-like dict types like OrderedDict # the first check needs to be done to ensure origin has the __mro__ attribute elif inspect.isclass(origin)and any(issubclass(base, dict) for base in origin.__mro__): key_type, value_type = get_args(target_type) if get_args(target_type) else (Any, Any) instantiated_items = {self.instantiate(k, key_type): self.instantiate(v, value_type) for k, v in data.items()} return origin(instantiated_items) # Handle other dictionary-like types elif origin is dict or self._is_subclass_of_generic(origin, dict): key_type, value_type = get_args(target_type) if get_args(target_type) else (Any, Any) instantiated_dict = {self.instantiate(k, key_type): self.instantiate(v, value_type) for k, v in data.items()} # If the target_type is a subclass of dict, return an instance of target_type if self._is_subclass_of_generic(target_type, dict) and not self._is_generic(target_type): return target_type(instantiated_dict) else: return dict(instantiated_dict) # Tuples aren't supported in JSONable types, so we look for lists instead if isinstance(data, list): try: # If the origin or target type is a list-like type, or if it implements a list-like collections type # e.g Sequence[int] if origin is list or self._is_subclass_of_generic(origin, list): base, item_types = self._find_generic_base_and_args(target_type) item_type = item_types[0] if item_types else Any instantiated_items = [] for item in data: # For each item, validate and instantiate it try: instantiated_item = self.instantiate(item, item_type) except ValueError: raise TypeError( f"Item of type {type(item).__name__} does not match expected type {item_type[0].__name__}.") safe = self.check_type(instantiated_item, item_type) if not safe: raise TypeError( f"Item of type {type(item).__name__} does not match expected type {item_type[0].__name__}.") instantiated_items.append(instantiated_item) # If target_type is a subclass of list, return an instance of target_type if self._is_subclass_of_generic(target_type, list) and not self._is_generic(target_type): return target_type(instantiated_items) return instantiated_items # Handle tuples if self._is_tuple_like(target_type) or (isinstance(origin, type) and issubclass(origin, tuple)): base, item_types = self._find_generic_base_and_args(target_type) instantiated_items = [] # If there are no subscripted types, assume Any if not item_types: item_types = (Any,) * len(data) <fim_suffix> # Convert the list of instantiated items to a tuple instantiated_tuple = tuple(instantiated_items) # If target_type is a subclass of tuple, return an instance of target_type if self._is_subclass_of_generic(target_type, tuple): return target_type(instantiated_tuple) return instantiated_tuple # Handle sets if self._is_set_like(target_type) or (isinstance(origin, type) and issubclass(origin, set)): base, item_type = self._find_generic_base_and_args(target_type) if not item_type: item_type = Any instantiated_items = set() for item in data: # For each item, validate and instantiate it instantiated_item = self.instantiate(item, item_type[0]) instantiated_items.add(instantiated_item) # If the instantiated item does not match the expected type, raise an exception if not isinstance(instantiated_item, item_type[0]): raise TypeError( f"Item of type {type(item).__name__} does not match expected type {item_type[0].__name__}.") # If target_type is a subclass of set, return an instance of target_type if self._is_subclass_of_generic(target_type, set): return target_type(instantiated_items) return instantiated_items # Handle deques if origin is deque or (isinstance(origin, type) and issubclass(origin, set)): item_type = get_args(target_type)[0] if get_args(target_type) else Any return deque(self.instantiate(item, item_type) for item in data) if origin is frozenset or (isinstance(origin, type) and issubclass(origin, frozenset)): item_type = get_args(target_type)[0] if get_args(target_type) else Any return frozenset(self.instantiate(item, item_type) for item in data) except TypeError as e: print(e) raise TypeError(f"Failed to instantiate {target_type} from list. {e}") # If none of the above, return the data as-is return data <fim_middle>for i, item in enumerate(data): # For each item, validate and instantiate it instantiated_item = self.instantiate(item, item_types[i]) instantiated_items.append(instantiated_item) # If the instantiated item does not match the expected type, raise an exception _type = item_types[i] if not isinstance(instantiated_item, _type): raise TypeError( f"Item {i} of type {type(item).__name__} does not match expected type {item_types[i].__name__}.")
for i, item in enumerate(data): # For each item, validate and instantiate it instantiated_item = self.instantiate(item, item_types[i]) instantiated_items.append(instantiated_item) # If the instantiated item does not match the expected type, raise an exception _type = item_types[i] if not isinstance(instantiated_item, _type): raise TypeError( f"Item {i} of type {type(item).__name__} does not match expected type {item_types[i].__name__}.")
FOR
prefix_suffix_full_complete_current_block_with_repo_rag_oracle
<filename>tanuki_py/src/tanuki/validator.py<fim_prefix>""" Here are some snippets of code retrieved from other files in this repository that may help you: # tanuki_py/src/tanuki/trackers/dataset_worker.py def log_symbolic_patch(self, func_hash, example): """ Save the example to the patch dataset for the function hash Output must be a dictionary with the following structure: { "func_hash": int } Where func_hash is the hash of the function and int is the number of datapoints written to the dataset for this function Args: func_hash (str): the function hash example (FunctionExample): the example to be saved Returns: dict: dictionary with the structure above """ # tanuki_py/src/tanuki/__init__.py def get_instance_from_args(args): # Check if there are any arguments if args: first_arg = args[0] # Check if the first argument is named "self" or "cls" (or any other specific name) if isinstance(first_arg, ast.Name) and first_arg.id in ("self", "cls"): instance = first_arg args = args[1:] # Remove the first argument else: instance = None else: instance = None return instance, args # tanuki_py/src/tanuki/trackers/dataset_worker.py def load_function_config(self, func_hash): """ Get the config file for the function. Function config must be a dictionary and have the following structure: distilled_model (str): distilled_model_name ("" if no distilled model), current_model_stats (dict): dict for current model stats example: { "trained_on_datapoints" (int): 12 (number of datapoints trained on, 0 if not trained yet), "running_faults" (list): [0, 0, 1] (list of 0s and 1s, where 0 is no fault and 1 is fault) } last_training_run (dict): dict for the last training run example: { "job_id" (str): job_id for last training run, "trained_on_datapoints" (int): dataset_size that was trained on, "last_checked" (datetime in "%Y-%m-%d %H:%M:%S"): When the last check was made for status of training run) } Example when no training has been done yet: { "trained_on_datapoints": 0 } current_training_run (dict): Same structure as last_training_run, only is non-empty if currently a model is training Example when no training has been done yet: {} teacher_models (list of string): list of teacher models example: ["gpt-4", "gpt-4-32k"] nr_of_training_runs (int): number of training runs that have been done in total } The config file must be returned as a dictionary Args: func_hash (str): the function hash Returns: dict: the function config """ pass """ import abc from collections import defaultdict import collections import typing from collections import deque import dataclasses import inspect import json from dataclasses import is_dataclass from typing import get_origin, get_args, Any, Mapping, MutableMapping, OrderedDict, Literal, Union, get_type_hints, \ Type, Sequence, Tuple, Optional from pydantic import BaseModel, create_model import datetime class Validator: def __init__(self): # Extract types from collections and collections.abc collection_types = {cls for name, cls in collections.__dict__.items() if isinstance(cls, type)} abc_collection_types = {cls for name, cls in collections.abc.__dict__.items() if isinstance(cls, type)} # Filter out types that have dictionary-like methods self.dict_like_types = { cls for cls in collection_types.union(abc_collection_types) if hasattr(cls, 'keys') and hasattr(cls, 'items') } self.list_like_types = { cls for cls in collection_types.union(abc_collection_types) if hasattr(cls, 'append') and hasattr(cls, 'pop') } self.set_like_types = { cls for cls in collection_types.union(abc_collection_types) if hasattr(cls, 'add') and hasattr(cls, 'discard') } # Add the general Sequence to list-like types # if python version is 3.9 or above, use collections.abc.Sequence if hasattr(collections.abc, 'Sequence'): self.list_like_types.add(collections.abc.Sequence) else: self.list_like_types.add(collections.Sequence) self.list_like_types.add(typing.List) # Add the general Mapping to dict-like types if hasattr(collections.abc, 'Mapping'): self.dict_like_types.add(collections.abc.Mapping) else: self.dict_like_types.add(collections.Mapping) self.dict_like_types.add(typing.Dict) # Add the general Set to set-like types if hasattr(collections.abc, 'Set'): self.set_like_types.add(collections.abc.Set) else: self.set_like_types.add(collections.Set) self.set_like_types.add(typing.Set) # Add the general Tuple to tuple-like types self.tuple_like_types = { cls for cls in collection_types.union(abc_collection_types) if hasattr(cls, '__getitem__') and hasattr(cls, '__len__') } self.tuple_like_types.add(typing.Tuple) def is_base_type(self, _type: Any) -> bool: """Determine if a type is a base type.""" return _type in {int, float, str, bool, None} def validate_base_type(self, value: Any, typ: Any) -> bool: """Validate base types.""" if typ is None: return value is None return isinstance(value, typ) def validate_output(self, output: str, type_definition: Any) -> bool: try: deserialized_output = json.loads(output) except json.JSONDecodeError: return False return self.check_type(deserialized_output, type_definition) def check_type(self, value: Any, type_definition: Any) -> bool: """ Validate a value against a type definition. Args: value: Any object or primitive value type_definition: The type definition to validate against Returns: Whether the value is valid for the type definition """ if type_definition is Any: return True if self.is_base_type(type_definition): return self.validate_base_type(value, type_definition) origin = get_origin(type_definition) or type_definition args = get_args(type_definition) # Handle base types if self.is_base_type(origin): return self.validate_base_type(value, origin) if origin == Literal: return value in args if origin == Union: return any(self.check_type(value, union_type) for union_type in args) # Handle tuples if origin == tuple: if not isinstance(value, tuple): return False item_type = args[0] if args else Any return all(self.check_type(v, item_type) for v in value) # Handle lists if origin == list: if not isinstance(value, list): return False item_type = args[0] if args else Any return all(self.check_type(v, item_type) for v in value) # Handle more complex types that are collections and list-like if origin is list or issubclass(origin, tuple(self.list_like_types)): if not any(isinstance(value, t) for t in self.list_like_types): return False item_type = args[0] if args else Any return all(self.check_type(v, item_type) for v in value) # Handle sets if origin == set: if not isinstance(value, set): return False item_type = args[0] if args else Any return all(self.check_type(v, item_type) for v in value) # Handle datetime if origin in [datetime.datetime, datetime.date, datetime.time]: # try to instantiate datetime try: obj = origin(**value) return True except: return False # Handle dictionaries if origin is dict or issubclass(origin, tuple(self.dict_like_types)): if not isinstance(value, (dict, Mapping)):#, MutableMapping, OrderedDict)): return False if args: if len(args) == 1: key_type = args[0] value_type = Any # General assumption; specific dict-like types might differ elif len(args) == 2: key_type, value_type = args else: key_type = value_type = Any else: key_type = value_type = Any return all( self.check_type(k, key_type) and self.check_type(v, value_type) for k, v in value.items() ) # Handle pydantic models if self.is_pydantic_model(origin): try: #temp_model = create_model('TempModel', **value) if isinstance(value, origin): return True #return isinstance(temp_model, origin) # check if value is dict if not isinstance(value, dict): return False # get all required init arguments for origin # required arguments are the ones withouyt default values required_fields = [field for field, field_type in origin.__annotations__.items() if not (typing.get_origin(field_type) is Union and type(None) in typing.get_args(field_type))] # check that all required arguments are in value and do type checking for arg in required_fields: # check if it is in value if arg not in value: return False # get the type of the argument arg_type = origin.__annotations__[arg] if not self.check_type(value[arg], arg_type): return False # check that all arguments in value are correct type # this is additional check, because the above check only checks required arguments for arg, obj in value.items(): if arg in required_fields: continue arg_type = origin.__annotations__[arg] if not self.check_type(value[arg], arg_type): return False #origin.parse_obj(value) return True except Exception as e: print(e) return False # Handle dataclasses if self.is_dataclass_instance(origin): try: # for field in dataclasses.fields(origin): # field_name = field.name # field_type = field.type # if field_name not in value or not self.check_type(value[field_name], field_type): # return False # return True obj = origin(**value) return dataclasses.asdict(obj) == value except: return False # Handle dataclasses and arbitrary class types if inspect.isclass(origin) and not self.is_base_type(origin): # Ensure the value is an instance of the class if not isinstance(value, origin): return False # Gather type hints from the class and its bases type_hints = {} for cls in reversed(origin.__mro__): type_hints.update(get_type_hints(cls)) # Validate each attribute of the class for attr, attr_type in type_hints.items(): attr_value = getattr(value, attr, None) if not self.check_type(attr_value, attr_type): return False return True return False @staticmethod def is_pydantic_model(cls): return hasattr(cls, 'parse_obj') @staticmethod def is_dataclass_instance(cls): return hasattr(cls, '__annotations__') and hasattr(cls, '__dataclass_fields__') @staticmethod def _is_subclass_of_generic(cls: Type, generic: Type) -> bool: """Determine if the class is a subclass of a generic type.""" try: return issubclass(cls, generic) and cls is not generic except TypeError: if not hasattr(cls, '__origin__'): return False return cls.__origin__ is generic @staticmethod def _is_generic(cls: Type) -> bool: """Check if the provided type is a generic.""" return hasattr(cls, "__origin__") def _get_recursive_args(self, target_type: Type) -> Tuple[Type, ...]: """ Recursively check the base classes (i.e., the superclass chain) of the target type until we find one that retains the type arguments. :return: Type chain """ if get_args(target_type): return get_args(target_type) for base in target_type.__bases__: args = self._get_recursive_args(base) if args: return args return () def _find_generic_base_and_args(self, target_type: Type) -> Tuple[Type, Tuple[Type, ...]]: """ Navigate up the MRO to find the first generic base and its arguments. """ # First, check if target_type is a type annotation. # If so, directly return its origin and arguments. origin = get_origin(target_type) args = get_args(target_type) if origin and args: return origin, args # If target_type is a real class, then navigate its MRO. if hasattr(target_type, '__mro__'): if hasattr(target_type, '__orig_bases__'): for base in target_type.__orig_bases__: if get_args(base): return base, get_args(base) for base in target_type.__mro__: if get_args(base): return base, get_args(base) return None, () def _is_list_like(self, target_type: Type) -> bool: """Determine if the target type is list-like.""" if target_type in {list, typing.List}: return True if hasattr(target_type, "__origin__") and target_type.__origin__ in {list, typing.List}: return True return False def _is_tuple_like(self, target_type: Type) -> bool: """Determine if the target type is tuple-like.""" if target_type in {tuple, typing.Tuple}: return True if hasattr(target_type, "__origin__") and target_type.__origin__ in {tuple, typing.Tuple}: return True return False def _is_dict_like(self, target_type: Type) -> bool: """Determine if the target type is dict-like.""" if target_type in {dict, typing.Dict}: return True if hasattr(target_type, "__origin__") and target_type.__origin__ in {dict, typing.Dict}: return True return False def _is_set_like(self, target_type: Type) -> bool: """Determine if the target type is set-like.""" if target_type in {set, typing.Set}: return True if hasattr(target_type, "__origin__") and target_type.__origin__ in {set, typing.Set}: return True return False def instantiate(self, data: Any, target_type: Type) -> Any: """ Attempts to convert a JSON-compatible data structure into an instance of the specified type. Args: data: JSON-compatible data structure to instantiate the target type. target_type: The type to instantiate from the given data. Returns: An instance of the target type initialized with the data. """ # Handle None type if data is None: return None origin = get_origin(target_type) or target_type # If the target type is a built-in, attempt to instantiate and return if self.is_base_type(target_type) or target_type is Any: # If the parsed data is a string and target type is str, return it directly if isinstance(data, str) and target_type is str: return data # If any, return the data directly if target_type is Any: return data try: return target_type(data) except (ValueError, TypeError): # Handle the special case where the string represents a float but we want an integer if target_type is int: try: return int(float(data)) except (ValueError, TypeError): pass if target_type is float: try: return int(float(data)) except (ValueError, TypeError): pass raise TypeError(f"Failed to instantiate {target_type} from provided data.") # special handling for datetime if origin == datetime.datetime: # try to instantiate datetime try: return datetime.datetime(**data) except: raise TypeError(f"Failed to instantiate {target_type} from provided data.") # check if origin is Union, if so, instantiate the first type that works if origin == Union: for arg in get_args(target_type): try: return self.instantiate(data, arg) except: continue raise TypeError(f"Failed to instantiate {target_type} from provided data.") # If the data is a dictionary and the target is a custom class that can be instantiated from a dictionary. if isinstance(data, dict): if inspect.isclass(target_type) and not self.is_base_type(target_type): # Special handling for dataclasses if is_dataclass(target_type): fields = [f.name for f in dataclasses.fields(target_type)] type_hints = get_type_hints(target_type) filtered_data = {k: self.instantiate(v, type_hints.get(k, Any)) for k, v in data.items() if k in fields} return target_type(**filtered_data) # Special handling for Pydantic models if issubclass(target_type, BaseModel): # instantiate the sub attributes for attr, attr_type in target_type.__annotations__.items(): if attr in data: data[attr] = self.instantiate(data[attr], attr_type) try: return target_type.model_validate(data) except AttributeError as e: # backwards compatibility with pydantic < 2 return target_type.parse_obj(data) # For general classes, attempt instantiation try: return target_type(**data) except TypeError: raise TypeError(f"Failed to instantiate {target_type.__name__} from dictionary.") # Handle dictionary-like types # Check if the target type is or inherits from defaultdict if origin is defaultdict or (isinstance(origin, type) and issubclass(origin, defaultdict)): key_type, value_type = get_args(target_type) if get_args(target_type) else (Any, Any) instantiated_items = {self.instantiate(k, key_type): self.instantiate(v, value_type) for k, v in data.items()} # For defaultdict, you'll need a default factory. Here, I'm using `int` for simplicity, # but you might want to adapt this based on your needs. return defaultdict(int, instantiated_items) # Handle set-like dict types like OrderedDict # the first check needs to be done to ensure origin has the __mro__ attribute elif inspect.isclass(origin)and any(issubclass(base, dict) for base in origin.__mro__): key_type, value_type = get_args(target_type) if get_args(target_type) else (Any, Any) instantiated_items = {self.instantiate(k, key_type): self.instantiate(v, value_type) for k, v in data.items()} return origin(instantiated_items) # Handle other dictionary-like types elif origin is dict or self._is_subclass_of_generic(origin, dict): key_type, value_type = get_args(target_type) if get_args(target_type) else (Any, Any) instantiated_dict = {self.instantiate(k, key_type): self.instantiate(v, value_type) for k, v in data.items()} # If the target_type is a subclass of dict, return an instance of target_type if self._is_subclass_of_generic(target_type, dict) and not self._is_generic(target_type): return target_type(instantiated_dict) else: return dict(instantiated_dict) # Tuples aren't supported in JSONable types, so we look for lists instead if isinstance(data, list): try: # If the origin or target type is a list-like type, or if it implements a list-like collections type # e.g Sequence[int] if origin is list or self._is_subclass_of_generic(origin, list): base, item_types = self._find_generic_base_and_args(target_type) item_type = item_types[0] if item_types else Any instantiated_items = [] <fim_suffix> # If target_type is a subclass of list, return an instance of target_type if self._is_subclass_of_generic(target_type, list) and not self._is_generic(target_type): return target_type(instantiated_items) return instantiated_items # Handle tuples if self._is_tuple_like(target_type) or (isinstance(origin, type) and issubclass(origin, tuple)): base, item_types = self._find_generic_base_and_args(target_type) instantiated_items = [] # If there are no subscripted types, assume Any if not item_types: item_types = (Any,) * len(data) for i, item in enumerate(data): # For each item, validate and instantiate it instantiated_item = self.instantiate(item, item_types[i]) instantiated_items.append(instantiated_item) # If the instantiated item does not match the expected type, raise an exception _type = item_types[i] if not isinstance(instantiated_item, _type): raise TypeError( f"Item {i} of type {type(item).__name__} does not match expected type {item_types[i].__name__}.") # Convert the list of instantiated items to a tuple instantiated_tuple = tuple(instantiated_items) # If target_type is a subclass of tuple, return an instance of target_type if self._is_subclass_of_generic(target_type, tuple): return target_type(instantiated_tuple) return instantiated_tuple # Handle sets if self._is_set_like(target_type) or (isinstance(origin, type) and issubclass(origin, set)): base, item_type = self._find_generic_base_and_args(target_type) if not item_type: item_type = Any instantiated_items = set() for item in data: # For each item, validate and instantiate it instantiated_item = self.instantiate(item, item_type[0]) instantiated_items.add(instantiated_item) # If the instantiated item does not match the expected type, raise an exception if not isinstance(instantiated_item, item_type[0]): raise TypeError( f"Item of type {type(item).__name__} does not match expected type {item_type[0].__name__}.") # If target_type is a subclass of set, return an instance of target_type if self._is_subclass_of_generic(target_type, set): return target_type(instantiated_items) return instantiated_items # Handle deques if origin is deque or (isinstance(origin, type) and issubclass(origin, set)): item_type = get_args(target_type)[0] if get_args(target_type) else Any return deque(self.instantiate(item, item_type) for item in data) if origin is frozenset or (isinstance(origin, type) and issubclass(origin, frozenset)): item_type = get_args(target_type)[0] if get_args(target_type) else Any return frozenset(self.instantiate(item, item_type) for item in data) except TypeError as e: print(e) raise TypeError(f"Failed to instantiate {target_type} from list. {e}") # If none of the above, return the data as-is return data <fim_middle>for item in data: # For each item, validate and instantiate it try: instantiated_item = self.instantiate(item, item_type) except ValueError: raise TypeError( f"Item of type {type(item).__name__} does not match expected type {item_type[0].__name__}.") safe = self.check_type(instantiated_item, item_type) if not safe: raise TypeError( f"Item of type {type(item).__name__} does not match expected type {item_type[0].__name__}.") instantiated_items.append(instantiated_item)
for item in data: # For each item, validate and instantiate it try: instantiated_item = self.instantiate(item, item_type) except ValueError: raise TypeError( f"Item of type {type(item).__name__} does not match expected type {item_type[0].__name__}.") safe = self.check_type(instantiated_item, item_type) if not safe: raise TypeError( f"Item of type {type(item).__name__} does not match expected type {item_type[0].__name__}.") instantiated_items.append(instantiated_item)
FOR
prefix_suffix_full_complete_current_block_with_repo_rag_oracle
<filename>tanuki_py/src/tanuki/validator.py<fim_prefix>""" Here are some snippets of code retrieved from other files in this repository that may help you: # tanuki_py/src/tanuki/register.py def get_class_definition(class_type): """Helper function to get class definition source if not a built-in type""" if hasattr(class_type, "__origin__"): # Check if it's a generic type origin_type = class_type.__origin__ if origin_type is Literal: # Handle Literal case return [literal for literal in class_type.__args__] elif hasattr(class_type, "__args__"): # Access inner types return [get_class_definition(arg) for arg in class_type.__args__ if arg is not None] elif inspect.isclass(class_type) and class_type.__module__ != "builtins": return get_source(class_type) return class_type.__name__ # tanuki_py/src/tanuki/__init__.py def extract_attributes(result): attributes = {} # If the result is a list, get its length if isinstance(result, list): attributes['length'] = len(result) # If the result is a dictionary, get its keys (or any other attributes) elif isinstance(result, dict): attributes['keys'] = list(result.keys()) return attributes # tanuki_py/src/tanuki/function_modeler.py def load_symbolic_align_statements(self, function_hash): """ Load all align statements First check the data storage blacklist, if the func hash is in the blacklist, then set the dataset size to 0 and the align buffer to empty bytearray """ if function_hash in self.store_data_blacklist: self.dataset_sizes[SYMBOLIC_ALIGNMENTS][function_hash] = 0 self.symbolic_align_buffer[function_hash] = bytearray() elif function_hash not in self.symbolic_align_buffer: dataset_size, align_dataset = self._get_dataset_info(SYMBOLIC_ALIGNMENTS, function_hash, type="both") if align_dataset: self.symbolic_align_buffer[function_hash] = bytearray(align_dataset) self.dataset_sizes[SYMBOLIC_ALIGNMENTS][function_hash] = dataset_size """ import abc from collections import defaultdict import collections import typing from collections import deque import dataclasses import inspect import json from dataclasses import is_dataclass from typing import get_origin, get_args, Any, Mapping, MutableMapping, OrderedDict, Literal, Union, get_type_hints, \ Type, Sequence, Tuple, Optional from pydantic import BaseModel, create_model import datetime class Validator: def __init__(self): # Extract types from collections and collections.abc collection_types = {cls for name, cls in collections.__dict__.items() if isinstance(cls, type)} abc_collection_types = {cls for name, cls in collections.abc.__dict__.items() if isinstance(cls, type)} # Filter out types that have dictionary-like methods self.dict_like_types = { cls for cls in collection_types.union(abc_collection_types) if hasattr(cls, 'keys') and hasattr(cls, 'items') } self.list_like_types = { cls for cls in collection_types.union(abc_collection_types) if hasattr(cls, 'append') and hasattr(cls, 'pop') } self.set_like_types = { cls for cls in collection_types.union(abc_collection_types) if hasattr(cls, 'add') and hasattr(cls, 'discard') } # Add the general Sequence to list-like types # if python version is 3.9 or above, use collections.abc.Sequence if hasattr(collections.abc, 'Sequence'): self.list_like_types.add(collections.abc.Sequence) else: self.list_like_types.add(collections.Sequence) self.list_like_types.add(typing.List) # Add the general Mapping to dict-like types if hasattr(collections.abc, 'Mapping'): self.dict_like_types.add(collections.abc.Mapping) else: self.dict_like_types.add(collections.Mapping) self.dict_like_types.add(typing.Dict) # Add the general Set to set-like types if hasattr(collections.abc, 'Set'): self.set_like_types.add(collections.abc.Set) else: self.set_like_types.add(collections.Set) self.set_like_types.add(typing.Set) # Add the general Tuple to tuple-like types self.tuple_like_types = { cls for cls in collection_types.union(abc_collection_types) if hasattr(cls, '__getitem__') and hasattr(cls, '__len__') } self.tuple_like_types.add(typing.Tuple) def is_base_type(self, _type: Any) -> bool: """Determine if a type is a base type.""" return _type in {int, float, str, bool, None} def validate_base_type(self, value: Any, typ: Any) -> bool: """Validate base types.""" if typ is None: return value is None return isinstance(value, typ) def validate_output(self, output: str, type_definition: Any) -> bool: try: deserialized_output = json.loads(output) except json.JSONDecodeError: return False return self.check_type(deserialized_output, type_definition) def check_type(self, value: Any, type_definition: Any) -> bool: """ Validate a value against a type definition. Args: value: Any object or primitive value type_definition: The type definition to validate against Returns: Whether the value is valid for the type definition """ if type_definition is Any: return True if self.is_base_type(type_definition): return self.validate_base_type(value, type_definition) origin = get_origin(type_definition) or type_definition args = get_args(type_definition) # Handle base types if self.is_base_type(origin): return self.validate_base_type(value, origin) if origin == Literal: return value in args if origin == Union: return any(self.check_type(value, union_type) for union_type in args) # Handle tuples if origin == tuple: if not isinstance(value, tuple): return False item_type = args[0] if args else Any return all(self.check_type(v, item_type) for v in value) # Handle lists if origin == list: if not isinstance(value, list): return False item_type = args[0] if args else Any return all(self.check_type(v, item_type) for v in value) # Handle more complex types that are collections and list-like if origin is list or issubclass(origin, tuple(self.list_like_types)): if not any(isinstance(value, t) for t in self.list_like_types): return False item_type = args[0] if args else Any return all(self.check_type(v, item_type) for v in value) # Handle sets if origin == set: if not isinstance(value, set): return False item_type = args[0] if args else Any return all(self.check_type(v, item_type) for v in value) # Handle datetime if origin in [datetime.datetime, datetime.date, datetime.time]: # try to instantiate datetime try: obj = origin(**value) return True except: return False # Handle dictionaries if origin is dict or issubclass(origin, tuple(self.dict_like_types)): if not isinstance(value, (dict, Mapping)):#, MutableMapping, OrderedDict)): return False if args: if len(args) == 1: key_type = args[0] value_type = Any # General assumption; specific dict-like types might differ elif len(args) == 2: key_type, value_type = args else: key_type = value_type = Any else: key_type = value_type = Any return all( self.check_type(k, key_type) and self.check_type(v, value_type) for k, v in value.items() ) # Handle pydantic models if self.is_pydantic_model(origin): try: #temp_model = create_model('TempModel', **value) if isinstance(value, origin): return True #return isinstance(temp_model, origin) # check if value is dict if not isinstance(value, dict): return False # get all required init arguments for origin # required arguments are the ones withouyt default values required_fields = [field for field, field_type in origin.__annotations__.items() if not (typing.get_origin(field_type) is Union and type(None) in typing.get_args(field_type))] # check that all required arguments are in value and do type checking for arg in required_fields: # check if it is in value if arg not in value: return False # get the type of the argument arg_type = origin.__annotations__[arg] if not self.check_type(value[arg], arg_type): return False # check that all arguments in value are correct type # this is additional check, because the above check only checks required arguments for arg, obj in value.items(): if arg in required_fields: continue arg_type = origin.__annotations__[arg] if not self.check_type(value[arg], arg_type): return False #origin.parse_obj(value) return True except Exception as e: print(e) return False # Handle dataclasses if self.is_dataclass_instance(origin): try: # for field in dataclasses.fields(origin): # field_name = field.name # field_type = field.type # if field_name not in value or not self.check_type(value[field_name], field_type): # return False # return True obj = origin(**value) return dataclasses.asdict(obj) == value except: return False # Handle dataclasses and arbitrary class types if inspect.isclass(origin) and not self.is_base_type(origin): # Ensure the value is an instance of the class if not isinstance(value, origin): return False # Gather type hints from the class and its bases type_hints = {} for cls in reversed(origin.__mro__): type_hints.update(get_type_hints(cls)) # Validate each attribute of the class for attr, attr_type in type_hints.items(): attr_value = getattr(value, attr, None) if not self.check_type(attr_value, attr_type): return False return True return False @staticmethod def is_pydantic_model(cls): return hasattr(cls, 'parse_obj') @staticmethod def is_dataclass_instance(cls): return hasattr(cls, '__annotations__') and hasattr(cls, '__dataclass_fields__') @staticmethod def _is_subclass_of_generic(cls: Type, generic: Type) -> bool: """Determine if the class is a subclass of a generic type.""" try: return issubclass(cls, generic) and cls is not generic except TypeError: if not hasattr(cls, '__origin__'): return False return cls.__origin__ is generic @staticmethod def _is_generic(cls: Type) -> bool: """Check if the provided type is a generic.""" return hasattr(cls, "__origin__") def _get_recursive_args(self, target_type: Type) -> Tuple[Type, ...]: """ Recursively check the base classes (i.e., the superclass chain) of the target type until we find one that retains the type arguments. :return: Type chain """ if get_args(target_type): return get_args(target_type) for base in target_type.__bases__: args = self._get_recursive_args(base) if args: return args return () def _find_generic_base_and_args(self, target_type: Type) -> Tuple[Type, Tuple[Type, ...]]: """ Navigate up the MRO to find the first generic base and its arguments. """ # First, check if target_type is a type annotation. # If so, directly return its origin and arguments. origin = get_origin(target_type) args = get_args(target_type) if origin and args: return origin, args # If target_type is a real class, then navigate its MRO. if hasattr(target_type, '__mro__'): if hasattr(target_type, '__orig_bases__'): <fim_suffix> for base in target_type.__mro__: if get_args(base): return base, get_args(base) return None, () def _is_list_like(self, target_type: Type) -> bool: """Determine if the target type is list-like.""" if target_type in {list, typing.List}: return True if hasattr(target_type, "__origin__") and target_type.__origin__ in {list, typing.List}: return True return False def _is_tuple_like(self, target_type: Type) -> bool: """Determine if the target type is tuple-like.""" if target_type in {tuple, typing.Tuple}: return True if hasattr(target_type, "__origin__") and target_type.__origin__ in {tuple, typing.Tuple}: return True return False def _is_dict_like(self, target_type: Type) -> bool: """Determine if the target type is dict-like.""" if target_type in {dict, typing.Dict}: return True if hasattr(target_type, "__origin__") and target_type.__origin__ in {dict, typing.Dict}: return True return False def _is_set_like(self, target_type: Type) -> bool: """Determine if the target type is set-like.""" if target_type in {set, typing.Set}: return True if hasattr(target_type, "__origin__") and target_type.__origin__ in {set, typing.Set}: return True return False def instantiate(self, data: Any, target_type: Type) -> Any: """ Attempts to convert a JSON-compatible data structure into an instance of the specified type. Args: data: JSON-compatible data structure to instantiate the target type. target_type: The type to instantiate from the given data. Returns: An instance of the target type initialized with the data. """ # Handle None type if data is None: return None origin = get_origin(target_type) or target_type # If the target type is a built-in, attempt to instantiate and return if self.is_base_type(target_type) or target_type is Any: # If the parsed data is a string and target type is str, return it directly if isinstance(data, str) and target_type is str: return data # If any, return the data directly if target_type is Any: return data try: return target_type(data) except (ValueError, TypeError): # Handle the special case where the string represents a float but we want an integer if target_type is int: try: return int(float(data)) except (ValueError, TypeError): pass if target_type is float: try: return int(float(data)) except (ValueError, TypeError): pass raise TypeError(f"Failed to instantiate {target_type} from provided data.") # special handling for datetime if origin == datetime.datetime: # try to instantiate datetime try: return datetime.datetime(**data) except: raise TypeError(f"Failed to instantiate {target_type} from provided data.") # check if origin is Union, if so, instantiate the first type that works if origin == Union: for arg in get_args(target_type): try: return self.instantiate(data, arg) except: continue raise TypeError(f"Failed to instantiate {target_type} from provided data.") # If the data is a dictionary and the target is a custom class that can be instantiated from a dictionary. if isinstance(data, dict): if inspect.isclass(target_type) and not self.is_base_type(target_type): # Special handling for dataclasses if is_dataclass(target_type): fields = [f.name for f in dataclasses.fields(target_type)] type_hints = get_type_hints(target_type) filtered_data = {k: self.instantiate(v, type_hints.get(k, Any)) for k, v in data.items() if k in fields} return target_type(**filtered_data) # Special handling for Pydantic models if issubclass(target_type, BaseModel): # instantiate the sub attributes for attr, attr_type in target_type.__annotations__.items(): if attr in data: data[attr] = self.instantiate(data[attr], attr_type) try: return target_type.model_validate(data) except AttributeError as e: # backwards compatibility with pydantic < 2 return target_type.parse_obj(data) # For general classes, attempt instantiation try: return target_type(**data) except TypeError: raise TypeError(f"Failed to instantiate {target_type.__name__} from dictionary.") # Handle dictionary-like types # Check if the target type is or inherits from defaultdict if origin is defaultdict or (isinstance(origin, type) and issubclass(origin, defaultdict)): key_type, value_type = get_args(target_type) if get_args(target_type) else (Any, Any) instantiated_items = {self.instantiate(k, key_type): self.instantiate(v, value_type) for k, v in data.items()} # For defaultdict, you'll need a default factory. Here, I'm using `int` for simplicity, # but you might want to adapt this based on your needs. return defaultdict(int, instantiated_items) # Handle set-like dict types like OrderedDict # the first check needs to be done to ensure origin has the __mro__ attribute elif inspect.isclass(origin)and any(issubclass(base, dict) for base in origin.__mro__): key_type, value_type = get_args(target_type) if get_args(target_type) else (Any, Any) instantiated_items = {self.instantiate(k, key_type): self.instantiate(v, value_type) for k, v in data.items()} return origin(instantiated_items) # Handle other dictionary-like types elif origin is dict or self._is_subclass_of_generic(origin, dict): key_type, value_type = get_args(target_type) if get_args(target_type) else (Any, Any) instantiated_dict = {self.instantiate(k, key_type): self.instantiate(v, value_type) for k, v in data.items()} # If the target_type is a subclass of dict, return an instance of target_type if self._is_subclass_of_generic(target_type, dict) and not self._is_generic(target_type): return target_type(instantiated_dict) else: return dict(instantiated_dict) # Tuples aren't supported in JSONable types, so we look for lists instead if isinstance(data, list): try: # If the origin or target type is a list-like type, or if it implements a list-like collections type # e.g Sequence[int] if origin is list or self._is_subclass_of_generic(origin, list): base, item_types = self._find_generic_base_and_args(target_type) item_type = item_types[0] if item_types else Any instantiated_items = [] for item in data: # For each item, validate and instantiate it try: instantiated_item = self.instantiate(item, item_type) except ValueError: raise TypeError( f"Item of type {type(item).__name__} does not match expected type {item_type[0].__name__}.") safe = self.check_type(instantiated_item, item_type) if not safe: raise TypeError( f"Item of type {type(item).__name__} does not match expected type {item_type[0].__name__}.") instantiated_items.append(instantiated_item) # If target_type is a subclass of list, return an instance of target_type if self._is_subclass_of_generic(target_type, list) and not self._is_generic(target_type): return target_type(instantiated_items) return instantiated_items # Handle tuples if self._is_tuple_like(target_type) or (isinstance(origin, type) and issubclass(origin, tuple)): base, item_types = self._find_generic_base_and_args(target_type) instantiated_items = [] # If there are no subscripted types, assume Any if not item_types: item_types = (Any,) * len(data) for i, item in enumerate(data): # For each item, validate and instantiate it instantiated_item = self.instantiate(item, item_types[i]) instantiated_items.append(instantiated_item) # If the instantiated item does not match the expected type, raise an exception _type = item_types[i] if not isinstance(instantiated_item, _type): raise TypeError( f"Item {i} of type {type(item).__name__} does not match expected type {item_types[i].__name__}.") # Convert the list of instantiated items to a tuple instantiated_tuple = tuple(instantiated_items) # If target_type is a subclass of tuple, return an instance of target_type if self._is_subclass_of_generic(target_type, tuple): return target_type(instantiated_tuple) return instantiated_tuple # Handle sets if self._is_set_like(target_type) or (isinstance(origin, type) and issubclass(origin, set)): base, item_type = self._find_generic_base_and_args(target_type) if not item_type: item_type = Any instantiated_items = set() for item in data: # For each item, validate and instantiate it instantiated_item = self.instantiate(item, item_type[0]) instantiated_items.add(instantiated_item) # If the instantiated item does not match the expected type, raise an exception if not isinstance(instantiated_item, item_type[0]): raise TypeError( f"Item of type {type(item).__name__} does not match expected type {item_type[0].__name__}.") # If target_type is a subclass of set, return an instance of target_type if self._is_subclass_of_generic(target_type, set): return target_type(instantiated_items) return instantiated_items # Handle deques if origin is deque or (isinstance(origin, type) and issubclass(origin, set)): item_type = get_args(target_type)[0] if get_args(target_type) else Any return deque(self.instantiate(item, item_type) for item in data) if origin is frozenset or (isinstance(origin, type) and issubclass(origin, frozenset)): item_type = get_args(target_type)[0] if get_args(target_type) else Any return frozenset(self.instantiate(item, item_type) for item in data) except TypeError as e: print(e) raise TypeError(f"Failed to instantiate {target_type} from list. {e}") # If none of the above, return the data as-is return data <fim_middle>for base in target_type.__orig_bases__: if get_args(base): return base, get_args(base)
for base in target_type.__orig_bases__: if get_args(base): return base, get_args(base)
FOR
prefix_suffix_full_complete_current_block_with_repo_rag_oracle
<filename>tanuki_py/src/tanuki/language_models/openai_api.py<fim_prefix>""" Here are some snippets of code retrieved from other files in this repository that may help you: # tanuki_py/src/tanuki/language_models/anyscale_api.py def generate(self, model, system_message, prompt, **kwargs): """ The main generation function, given the args, kwargs, function_modeler, function description and model type, generate a response Args model (Anyscaleconfig): The model to use for generation. system_message (str): The system message to use for generation. prompt (str): The prompt to use for generation. kwargs (dict): Additional generation parameters. """ self.check_api_key() temperature = kwargs.get("temperature", 0.1) top_p = kwargs.get("top_p", 1) frequency_penalty = kwargs.get("frequency_penalty", 0) presence_penalty = kwargs.get("presence_penalty", 0) max_new_tokens = kwargs.get("max_new_tokens") # check if there are any generation parameters that are not supported unsupported_params = [param for param in kwargs.keys() if param not in LLM_GENERATION_PARAMETERS] if len(unsupported_params) > 0: # log warning logging.warning(f"Unused generation parameters sent as input: {unsupported_params}."\ f"For Anyscale, only the following parameters are supported: {LLM_GENERATION_PARAMETERS}") params = { "model": model.model_name, "temperature": temperature, "max_tokens": max_new_tokens, "top_p": top_p, "frequency_penalty": frequency_penalty, "presence_penalty": presence_penalty, } if model.parsing_helper_tokens["start_token"]: prompt += model.parsing_helper_tokens["start_token"] messages = [ { "role": "system", "content": system_message }, { "role": "user", "content": prompt } ] params["messages"] = messages counter = 0 choice = None # initiate response so exception logic doesnt error out when checking for error in response response = {} while counter <= 5: try: anyscale_headers = { "Authorization": f"Bearer {self.api_key}", "Content-Type": "application/json", } response = requests.post( f"{ANYSCALE_URL}/chat/completions", headers=anyscale_headers, json=params, timeout=50 ) response = response.json() choice = response["choices"][0]["message"]["content"].strip("'") break except Exception as e: if ("error" in response and "code" in response["error"] and response["error"]["code"] == 'invalid_api_key'): raise Exception(f"The supplied Anyscale API key {self.api_key} is invalid") if counter == 5: raise Exception(f"Anyscale API failed to generate a response: {e}") counter += 1 time.sleep(2 ** counter) continue if not choice: raise Exception("Anyscale API failed to generate a response") if model.parsing_helper_tokens["end_token"]: # remove the end token from the choice choice = choice.split(model.parsing_helper_tokens["end_token"])[0] # check if starting token is in choice if model.parsing_helper_tokens["start_token"] in choice: # remove the starting token from the choice choice = choice.split(model.parsing_helper_tokens["start_token"])[-1] return choice.strip() # tanuki_py/src/tanuki/language_models/togetherai_api.py def generate(self, model, system_message, prompt, **kwargs): """ The main generation function, given the args, kwargs, function_modeler, function description and model type, generate a response Args model (OpenAIConfig): The model to use for generation. system_message (str): The system message to use for generation. prompt (str): The prompt to use for generation. kwargs (dict): Additional generation parameters. """ self.check_api_key() if model.model_name not in self.model_configs: self.model_configs[model.model_name] = together.Models.info(model.model_name)['config'] temperature = kwargs.get("temperature", 0.1) top_p = kwargs.get("top_p", 1) frequency_penalty = kwargs.get("frequency_penalty", 0) presence_penalty = kwargs.get("presence_penalty", 0) max_new_tokens = kwargs.get("max_new_tokens") # check if there are any generation parameters that are not supported unsupported_params = [param for param in kwargs.keys() if param not in LLM_GENERATION_PARAMETERS] if len(unsupported_params) > 0: # log warning logging.warning(f"Unused generation parameters sent as input: {unsupported_params}."\ f"For OpenAI, only the following parameters are supported: {LLM_GENERATION_PARAMETERS}") params = { "model": model.model_name, "temperature": temperature, "max_tokens": max_new_tokens, "top_p": top_p, "frequency_penalty": frequency_penalty, "presence_penalty": presence_penalty } if "stop" in self.model_configs[model.model_name]: params["stop"] = list(self.model_configs[model.model_name]["stop"]) if model.parsing_helper_tokens["end_token"]: params["stop"] = model.parsing_helper_tokens["end_token"] chat_prompt = model.chat_template if chat_prompt is None: try: prompt_format = str(self.model_configs[model.model_name]['prompt_format']) final_prompt = prompt_format.format(system_message=system_message, prompt=prompt) except: logging.warning("Chat prompt is not defined for this model. "\ "Please define it in the model config. Using default chat prompt") chat_prompt = "[INST]{system_message}[/INST]\n{user_prompt}" final_prompt = chat_prompt.format(system_message=system_message, user_prompt=prompt) else: final_prompt = chat_prompt.format(system_message=system_message, user_prompt=prompt) if model.parsing_helper_tokens["start_token"]: final_prompt += model.parsing_helper_tokens["start_token"] params["prompt"] = final_prompt counter = 0 choice = None # initiate response so exception logic doesnt error out when checking for error in response response = {} while counter <= 5: try: openai_headers = { "Authorization": f"Bearer {self.api_key}", "Content-Type": "application/json", } response = requests.post( TOGETHER_AI_URL, headers=openai_headers, json=params, timeout=50 ) response = response.json() choice = response["output"]["choices"][0]["text"].strip("'") break except Exception as e: if ("error" in response and "code" in response["error"] and response["error"]["code"] == 'invalid_api_key'): raise Exception(f"The supplied Together AI API key {self.api_key} is invalid") if counter == 5: raise Exception(f"Together AI API failed to generate a response: {e}") counter += 1 time.sleep(2 ** counter) continue if not choice: raise Exception("TogetherAI API failed to generate a response") if model.parsing_helper_tokens["end_token"]: # remove the end token from the choice choice = choice.split(model.parsing_helper_tokens["end_token"])[0] # check if starting token is in choice if model.parsing_helper_tokens["start_token"] in choice: # remove the starting token from the choice choice = choice.split(model.parsing_helper_tokens["start_token"])[-1] return choice.strip() # tanuki_py/src/tanuki/language_models/llama_bedrock_api.py def generate(self, model: BaseModelConfig, system_message: str, prompt: str, **kwargs): """ Generate a response using the Bedrock API for the specified LLama model. Args: model: The model to use for generation. system_message: The system message to use for generation. prompt: The prompt to use for generation. kwargs: Additional generation parameters. Returns: The generated response. """ # this needs to be done generally better, introduce the LLM_gen params class # so you can config it at the start temperature = kwargs.get("temperature", 0.1) top_p = kwargs.get("top_p", 1) max_tokens_to_sample = kwargs.get("max_new_tokens") # check if there are any generation parameters that are not supported unsupported_params = [param for param in kwargs.keys() if param not in LLM_GENERATION_PARAMETERS] if len(unsupported_params) > 0: # log warning logging.warning(f"Unused generation parameters sent as input: {unsupported_params}."\ f"For Llama Bedrock, only the following parameters are supported: {LLM_GENERATION_PARAMETERS}") chat_prompt = model.chat_template if chat_prompt is None: raise Exception("Chat prompt is not defined for this model"\ "Please define it in the model config") final_prompt = chat_prompt.format(system_message=system_message, user_prompt=prompt) if model.parsing_helper_tokens["start_token"]: final_prompt += model.parsing_helper_tokens["start_token"] body = json.dumps({ "prompt": final_prompt, "max_gen_len": max_tokens_to_sample, "temperature": temperature, "top_p": top_p, }) response_body = self.send_api_request(model, body) choice = response_body.get("generation") if model.parsing_helper_tokens["end_token"]: # remove the end token from the choice choice = choice.split(model.parsing_helper_tokens["end_token"])[0] # check if starting token is in choice if model.parsing_helper_tokens["start_token"] in choice: # remove the starting token from the choice choice = choice.split(model.parsing_helper_tokens["start_token"])[-1] return choice.strip() """ from typing import List import logging import time # import abstract base class from openai import OpenAI from openai.types import CreateEmbeddingResponse from openai.types.fine_tuning import FineTuningJob from tanuki.language_models.llm_finetune_api_abc import LLM_Finetune_API from tanuki.models.embedding import Embedding from tanuki.language_models.embedding_api_abc import Embedding_API from tanuki.language_models.llm_api_abc import LLM_API import os from tanuki.constants import DEFAULT_DISTILLED_MODEL_NAME from tanuki.language_models.llm_configs.openai_config import OpenAIConfig from tanuki.models.finetune_job import FinetuneJob import copy OPENAI_URL = "https://api.openai.com/v1/chat/completions" import requests LLM_GENERATION_PARAMETERS = ["temperature", "top_p", "max_new_tokens", "frequency_penalty", "presence_penalty"] class OpenAI_API(LLM_API, Embedding_API, LLM_Finetune_API): def __init__(self) -> None: # initialise the abstract base class super().__init__() self.api_key = os.environ.get("OPENAI_API_KEY") self.client = None def embed(self, texts: List[str], model: OpenAIConfig, **kwargs) -> List[Embedding]: """ Generate embeddings for the provided texts using the specified OpenAI model. Lightweight wrapper over the OpenAI client. :param texts: A list of texts to embed. :param model: The model to use for embeddings. :return: A list of embeddings. """ self.check_api_key() try: response: CreateEmbeddingResponse = self.client.embeddings.create( input=texts, model=model.model_name, **kwargs ) assert response.object == "list" assert len(response.data) == len(texts) embeddings = [] for embedding_response in response.data: assert embedding_response.object == "embedding" embeddings.append(Embedding(embedding_response.embedding)) return embeddings except Exception as e: print(f"An error occurred: {e}") return None def generate(self, model, system_message, prompt, **kwargs): """ The main generation function, given the args, kwargs, function_modeler, function description and model type, generate a response Args model (OpenAIConfig): The model to use for generation. system_message (str): The system message to use for generation. prompt (str): The prompt to use for generation. kwargs (dict): Additional generation parameters. """ self.check_api_key() temperature = kwargs.get("temperature", 0.1) top_p = kwargs.get("top_p", 1) frequency_penalty = kwargs.get("frequency_penalty", 0) presence_penalty = kwargs.get("presence_penalty", 0) max_new_tokens = kwargs.get("max_new_tokens") # check if there are any generation parameters that are not supported unsupported_params = [param for param in kwargs.keys() if param not in LLM_GENERATION_PARAMETERS] if len(unsupported_params) > 0: # log warning logging.warning(f"Unused generation parameters sent as input: {unsupported_params}."\ f"For OpenAI, only the following parameters are supported: {LLM_GENERATION_PARAMETERS}") params = { "model": model.model_name, "temperature": temperature, "max_tokens": max_new_tokens, "top_p": top_p, "frequency_penalty": frequency_penalty, "presence_penalty": presence_penalty, } if model.parsing_helper_tokens["start_token"]: prompt += model.parsing_helper_tokens["start_token"] messages = [ { "role": "system", "content": system_message }, { "role": "user", "content": prompt } ] params["messages"] = messages counter = 0 choice = None # initiate response so exception logic doesnt error out when checking for error in response response = {} <fim_suffix> if not choice: raise Exception("OpenAI API failed to generate a response") if model.parsing_helper_tokens["end_token"]: # remove the end token from the choice choice = choice.split(model.parsing_helper_tokens["end_token"])[0] # check if starting token is in choice if model.parsing_helper_tokens["start_token"] in choice: # remove the starting token from the choice choice = choice.split(model.parsing_helper_tokens["start_token"])[-1] return choice def list_finetuned(self, model_config, limit=100, **kwargs) -> List[FinetuneJob]: self.check_api_key() response = self.client.fine_tuning.jobs.list(limit=limit) jobs = [] for job in response.data: finetune_job = self.create_finetune_job(job, model_config) jobs.append(finetune_job) return jobs def get_finetuned(self, job_id, model_config: OpenAIConfig) -> FinetuneJob: self.check_api_key() response = self.client.fine_tuning.jobs.retrieve(job_id) finetune_job = self.create_finetune_job(response, model_config= model_config) return finetune_job def finetune(self, file, suffix, model_config, **kwargs) -> FinetuneJob: self.check_api_key() # Use the stream as a file response = self.client.files.create(file=file, purpose='fine-tune') training_file_id = response.id if not model_config.base_model_for_sft: model_config.base_model_for_sft = DEFAULT_DISTILLED_MODEL_NAME # submit the finetuning job finetuning_response: FineTuningJob = self.client.fine_tuning.jobs.create(training_file=training_file_id, model=model_config.base_model_for_sft, suffix=suffix) finetune_job = self.create_finetune_job(finetuning_response, model_config) return finetune_job def create_finetune_job(self, response: FineTuningJob, model_config: OpenAIConfig) -> FinetuneJob: finetuned_model_config = copy.deepcopy(model_config) finetuned_model_config.model_name = response.fine_tuned_model finetune_job = FinetuneJob(response.id, response.status, finetuned_model_config) return finetune_job def check_api_key(self): # check if api key is not none if not self.api_key: # try to get the api key from the environment, maybe it has been set later self.api_key = os.getenv("OPENAI_API_KEY") if not self.api_key: raise ValueError("OpenAI API key is not set") if not self.client: self.client = OpenAI(api_key=self.api_key) <fim_middle>while counter <= 5: try: openai_headers = { "Authorization": f"Bearer {self.api_key}", "Content-Type": "application/json", } response = requests.post( OPENAI_URL, headers=openai_headers, json=params, timeout=50 ) response = response.json() choice = response["choices"][0]["message"]["content"].strip("'") break except Exception as e: if ("error" in response and "code" in response["error"] and response["error"]["code"] == 'invalid_api_key'): raise Exception(f"The supplied OpenAI API key {self.api_key} is invalid") if counter == 5: raise Exception(f"OpenAI API failed to generate a response: {e}") counter += 1 time.sleep(2 ** counter) continue
while counter <= 5: try: openai_headers = { "Authorization": f"Bearer {self.api_key}", "Content-Type": "application/json", } response = requests.post( OPENAI_URL, headers=openai_headers, json=params, timeout=50 ) response = response.json() choice = response["choices"][0]["message"]["content"].strip("'") break except Exception as e: if ("error" in response and "code" in response["error"] and response["error"]["code"] == 'invalid_api_key'): raise Exception(f"The supplied OpenAI API key {self.api_key} is invalid") if counter == 5: raise Exception(f"OpenAI API failed to generate a response: {e}") counter += 1 time.sleep(2 ** counter) continue
WHILE
prefix_suffix_full_complete_current_block_with_repo_rag_oracle
<filename>UHGEval/uhgeval/dataset/truthfulqa.py<fim_prefix># @Author : YeZhaohui Wang # @Email : [email protected] import csv import json import os import random from uhgeval.dataset.base import BaseDataset class TruthfunQAGeneration(BaseDataset): def __init__(self, path: str, shuffle: bool = False, seed: int = 22): self.data = [] if os.path.isfile(path): with open(path, 'r', encoding='utf-8-sig') as file: csv_reader = csv.DictReader(file) id = 1 for row in csv_reader: row['id'] = id id += 1 self.data.append(row) if shuffle: random.seed(seed) random.shuffle(self.data) def __len__(self) -> int: return len(self.data) def __getitem__(self, key: int | slice) -> dict | list[dict]: return self.data[key] def load(self) -> list[dict]: return self.data[:] class TruthfunQAMC1(BaseDataset): def __init__(self, path: str, shuffle: bool = False, seed: int = 22): self.data<fim_suffix> id = 1 if os.path.isfile(path): with open(path, encoding='utf-8') as f: self.data = json.load(f) for row in self.data: row['id'] = id id += 1 if shuffle: random.seed(seed) random.shuffle(self.data) def __len__(self) -> int: return len(self.data) def __getitem__(self, key: int | slice) -> dict | list[dict]: return self.data[key] def load(self) -> list[dict]: return self.data[:] class TruthfunQAMC2(BaseDataset): def __init__(self, path: str, shuffle: bool = False, seed: int = 22): self.data = [] id = 1 if os.path.isfile(path): with open(path, encoding='utf-8') as f: self.data = json.load(f) for row in self.data: row['id'] = id id += 1 if shuffle: random.seed(seed) random.shuffle(self.data) def __len__(self) -> int: return len(self.data) def __getitem__(self, key: int | slice) -> dict | list[dict]: return self.data[key] def load(self) -> list[dict]: return self.data[:] <fim_middle> = []
= []
STATEMENT
prefix_suffix_full_complete_current_block_with_evidence
<filename>UHGEval/uhgeval/metric/common.py<fim_prefix># @Author : Shichao Song # @Email : [email protected] from typing import Callable import evaluate import jieba from loguru import logger from text2vec import Similarity def catch_all_exceptions(func): def wrapper(*args, **kwargs): try: result = func(*args, **kwargs) return result except Exception as e: logger.warning(repr(e)) return wrapper @catch_all_exceptions def bleu4_score( continuation: str, reference: str, with_penalty = False ) -> float: import math from nltk.translate.bleu_score import sentence_bleu # Tokenize the continuation and reference texts using the custom tokenizer function continuation_tokens = custom_tokenizer(continuation) reference_tokens = custom_tokenizer(reference) # Calculate the BLEU score using the nltk.translate.bleu_score.sentence_bleu function bleu_score = sentence_bleu([reference_tokens], continuation_tokens, weights=(0.25, 0.25, 0.25, 0.25)) # If the with_penalty flag is set to True, adjust the BLEU score for brevity penalty if with_penalty: # Calculate the length of the reference and continuation texts reference_length = len(reference_tokens) continuation_length = len(continuation_tokens) # Calculate the brevity penalty factor if continuation_length > reference_length: brevity_penalty = 1 else: brevity_penalty = math.exp(1 - (reference_length / continuation_length)) # Adjust the BLEU score with the brevity penalty bleu_score = bleu_score * brevity_penalty return bleu_score @catch_all_exceptions def rougeL_score( continuation: str, reference: str ) -> float: f = lambda text: list(jieba.cut(text)) rouge = evaluate.load('uhgeval/.cache/huggingface/rouge') results = rouge.compute(predictions=[continuation], references=[[reference]], tokenizer=f, rouge_types=['rougeL']) score = results['rougeL'] return score @catch_all_exceptions def kw_precision( continuation: str, reference: str, kw_extracter: Callable[[str], list[str]], with_kw_list: bool = True ) -> float | tuple[float, list[str], list[str]]: """Measure the rationality of a generated continuation sentence with respect to the original news object.""" kws = kw_extracter(continuation) if len(kws) == 0: return 0, [], [] if with_kw_list else 0 appeared_kws = [kw for kw in kws if kw in reference] precision = len(appeared_kws) / len(kws) return precision, appeared_kws, kws if with_kw_list else precision @catch_all_exceptions def bert_score( continuation: str, reference: str ) -> float: """ Note: Requesting the network to connect to Hugging Face. """ sim = Similarity() score = sim.get_score(continuation, reference) return score def classifications( predictions: list[bool], references: list[bool] ) -> tuple[float, float, float, float]: """ Calculate accuracy, precision, recall, and F1 in a binary classification problem. Args: predictions (list[bool]): List of predicted values (0 or 1). references (list[bool]): List of true values (0 or 1). Returns: tuple: Accuracy, precision, recall, and F1 scores. """ true_positive = sum(1 for a, b in zip(references, predictions) if a == 1 and b == 1) false_positive = sum(1 for a, b in zip(references, predictions) if a == 0 and b == 1) false_negative = sum(1 for a, b in zip(references, predictions) if a == 1 and b == 0) precision = true_positive / (true_positive + false_positive) if (true_positive + false_positive) > 0 else 0 recall = true_positive / (true_positive + false_negative) if (true_positive + false_negative) > 0 else 0 if precision + recall == 0: f1 = 0 else: f1 = 2 * (precision * recall) / (precision + recall) accuracy = sum(1 for a, b in zip(references, predictions) if a == b) / len(predictions) if len(predictions) > 0 else 0 return<fim_suffix> <fim_middle> accuracy, precision, recall, f1
accuracy, precision, recall, f1
STATEMENT
prefix_suffix_full_complete_current_block_with_evidence
<filename>UHGEval/uhgeval/metric/common.py<fim_prefix># @Author : Shichao Song # @Email : [email protected] from typing import Callable import evaluate import jieba from loguru import logger from text2vec import Similarity def catch_all_exceptions(func): def wrapper(*args, **kwargs): try: result = func(*args, **kwargs) return result except Exception as e: logger.warning(repr(e)) return wrapper @catch_all_exceptions def bleu4_score( continuation: str, reference: str, with_penalty = False ) -> float: import math from nltk.translate.bleu_score import sentence_bleu # Tokenize the continuation and reference texts using the custom tokenizer function continuation_tokens = custom_tokenizer(continuation) reference_tokens = custom_tokenizer(reference) # Calculate the BLEU score using the nltk.translate.bleu_score.sentence_bleu function bleu_score = sentence_bleu([reference_tokens], continuation_tokens, weights=(0.25, 0.25, 0.25, 0.25)) # If the with_penalty flag is set to True, adjust the BLEU score for brevity penalty if with_penalty: # Calculate the length of the reference and continuation texts reference_length = len(reference_tokens) continuation_length = len(continuation_tokens) # Calculate the brevity penalty factor if continuation_length > reference_length: brevity_penalty = 1 else: brevity_penalty = math.exp(1 - (reference_length / continuation_length)) # Adjust the BLEU score with the brevity penalty bleu_score = bleu_score * brevity_penalty return bleu_score @catch_all_exceptions def rougeL_score( continuation: str, reference: str ) -> float: f = lambda text: list(jieba.cut(text)) rouge = evaluate.load('uhgeval/.cache/huggingface/rouge') results = rouge.compute(predictions=[continuation], references=[[reference]], tokenizer=f, rouge_types=['rougeL']) score = results['rougeL'] return score @catch_all_exceptions def kw_precision( continuation: str, reference: str, kw_extracter: Callable[[str], list[str]], with_kw_list: bool = True ) -> float | tuple[float, list[str], list[str]]: """Measure the rationality of a generated continuation sentence with respect to the original news object.""" kws = kw_extracter(continuation) if len(kws) == 0: return 0, [], [] if with_kw_list else 0 appeared_kws = [kw for kw in kws if kw in reference] precision = len(appeared_kws) / len(kws) return precision, appeared_kws, kws if with_kw_list else precision @catch_all_exceptions def bert_score( continuation: str, reference: str ) -> float: """ Note: Requesting the network to connect to Hugging Face. """ sim = Similarity() score = sim.get_score(continuation, reference) return score def classifications( predictions: list[bool], references: list[bool] ) -> tuple[float, float, float, float]: """ Calculate accuracy, precision, recall, and F1 in a binary classification problem. Args: predictions (list[bool]): List of predicted values (0 or 1). references (list[bool]): List of true values (0 or 1). Returns: tuple: Accuracy, precision, recall, and F1 scores. """ true_positive = sum(1 for a, b in zip(references, predictions) if a == 1 and b == 1) false_positive = sum(1 for a, b in zip(references, predictions) if a == 0 and b == 1) false_negative = sum(1 for a, b in zip(references, predictions) if a == 1 and b == 0) precision = true_positive / (true_positive + false_positive) if (true_positive + false_positive) > 0 else 0 recall = true_positive / (true_positive + false_negative) if (true_positive + false_negative) > 0 else 0 if precision + recall == 0: f1 = 0 else: f1<fim_suffix> accuracy = sum(1 for a, b in zip(references, predictions) if a == b) / len(predictions) if len(predictions) > 0 else 0 return accuracy, precision, recall, f1 <fim_middle> = 2 * (precision * recall) / (precision + recall)
= 2 * (precision * recall) / (precision + recall)
STATEMENT
prefix_suffix_full_complete_current_block_with_evidence
<filename>UHGEval/uhgeval/metric/common.py<fim_prefix># @Author : Shichao Song # @Email : [email protected] from typing import Callable import evaluate import jieba from loguru import logger from text2vec import Similarity def catch_all_exceptions(func): def wrapper(*args, **kwargs): try: result = func(*args, **kwargs) return result except Exception as e: logger.warning(repr(e))<fim_suffix> return wrapper @catch_all_exceptions def bleu4_score( continuation: str, reference: str, with_penalty = False ) -> float: import math from nltk.translate.bleu_score import sentence_bleu # Tokenize the continuation and reference texts using the custom tokenizer function continuation_tokens = custom_tokenizer(continuation) reference_tokens = custom_tokenizer(reference) # Calculate the BLEU score using the nltk.translate.bleu_score.sentence_bleu function bleu_score = sentence_bleu([reference_tokens], continuation_tokens, weights=(0.25, 0.25, 0.25, 0.25)) # If the with_penalty flag is set to True, adjust the BLEU score for brevity penalty if with_penalty: # Calculate the length of the reference and continuation texts reference_length = len(reference_tokens) continuation_length = len(continuation_tokens) # Calculate the brevity penalty factor if continuation_length > reference_length: brevity_penalty = 1 else: brevity_penalty = math.exp(1 - (reference_length / continuation_length)) # Adjust the BLEU score with the brevity penalty bleu_score = bleu_score * brevity_penalty return bleu_score @catch_all_exceptions def rougeL_score( continuation: str, reference: str ) -> float: f = lambda text: list(jieba.cut(text)) rouge = evaluate.load('uhgeval/.cache/huggingface/rouge') results = rouge.compute(predictions=[continuation], references=[[reference]], tokenizer=f, rouge_types=['rougeL']) score = results['rougeL'] return score @catch_all_exceptions def kw_precision( continuation: str, reference: str, kw_extracter: Callable[[str], list[str]], with_kw_list: bool = True ) -> float | tuple[float, list[str], list[str]]: """Measure the rationality of a generated continuation sentence with respect to the original news object.""" kws = kw_extracter(continuation) if len(kws) == 0: return 0, [], [] if with_kw_list else 0 appeared_kws = [kw for kw in kws if kw in reference] precision = len(appeared_kws) / len(kws) return precision, appeared_kws, kws if with_kw_list else precision @catch_all_exceptions def bert_score( continuation: str, reference: str ) -> float: """ Note: Requesting the network to connect to Hugging Face. """ sim = Similarity() score = sim.get_score(continuation, reference) return score def classifications( predictions: list[bool], references: list[bool] ) -> tuple[float, float, float, float]: """ Calculate accuracy, precision, recall, and F1 in a binary classification problem. Args: predictions (list[bool]): List of predicted values (0 or 1). references (list[bool]): List of true values (0 or 1). Returns: tuple: Accuracy, precision, recall, and F1 scores. """ true_positive = sum(1 for a, b in zip(references, predictions) if a == 1 and b == 1) false_positive = sum(1 for a, b in zip(references, predictions) if a == 0 and b == 1) false_negative = sum(1 for a, b in zip(references, predictions) if a == 1 and b == 0) precision = true_positive / (true_positive + false_positive) if (true_positive + false_positive) > 0 else 0 recall = true_positive / (true_positive + false_negative) if (true_positive + false_negative) > 0 else 0 if precision + recall == 0: f1 = 0 else: f1 = 2 * (precision * recall) / (precision + recall) accuracy = sum(1 for a, b in zip(references, predictions) if a == b) / len(predictions) if len(predictions) > 0 else 0 return accuracy, precision, recall, f1 <fim_middle>
null
STATEMENT
prefix_suffix_full_complete_current_block_with_evidence
<filename>UHGEval/uhgeval/metric/common.py<fim_prefix># @Author : Shichao Song # @Email : [email protected] from typing import Callable import evaluate import jieba from loguru import logger from text2vec import Similarity def catch_all_exceptions(func): def wrapper(*args, **kwargs): try: result = func(*args, **kwargs) return result except Exception as e: logger.warning(repr(e)) return wrapper @catch_all_exceptions def bleu4_score( continuation: str, reference: str, with_penalty = False ) -> float: import math from nltk.translate.bleu_score import sentence_bleu # Tokenize the continuation and reference texts using the custom tokenizer function continuation_tokens = custom_tokenizer(continuation) reference_tokens = custom_tokenizer(reference) # Calculate the BLEU score using the nltk.translate.bleu_score.sentence_bleu function bleu_score = sentence_bleu([reference_tokens], continuation_tokens, weights=(0.25, 0.25, 0.25, 0.25)) # If the with_penalty flag is set to True, adjust the BLEU score for brevity penalty if with_penalty: # Calculate the length of the reference and continuation texts reference_length = len(reference_tokens) continuation_length = len(continuation_tokens) # Calculate the brevity penalty factor if continuation_length > reference_length: brevity_penalty = 1 else: brevity_penalty = math.exp(1 - (reference_length / continuation_length)) # Adjust the BLEU score with the brevity penalty bleu_score = bleu_score * brevity_penalty return bleu_score @catch_all_exceptions def rougeL_score( continuation: str, reference: str ) -> float: f = lambda text: list(jieba.cut(text)) rouge = evaluate.load('uhgeval/.cache/huggingface/rouge') results = rouge.compute(predictions=[continuation], references=[[reference]], tokenizer=f, rouge_types=['rougeL']) score = results['rougeL'] return score @catch_all_exceptions def kw_precision( continuation: str, reference: str, kw_extracter: Callable[[str], list[str]], with_kw_list: bool = True ) -> float | tuple[float, list[str], list[str]]: """Measure the rationality of a generated continuation sentence with respect to the original news object.""" kws = kw_extracter(continuation) if len(kws) == 0: return 0, [], [] if with_kw_list else 0 appeared_kws = [kw for kw in kws if kw in reference] precision = len(appeared_kws) / len(kws) return precision, appeared_kws, kws if with_kw_list else precision @catch_all_exceptions def bert_score( continuation: str, reference: str ) -> float: """ Note: Requesting the network to connect to Hugging Face. """ sim = Similarity() score = sim.get_score(continuation, reference) return score def classifications( predictions: list[bool], references: list[bool] ) -> tuple[float, float, float, float]: """ Calculate accuracy, precision, recall, and F1 in a binary classification problem. Args: predictions (list[bool]): List of predicted values (0 or 1). references (list[bool]): List of true values (0 or 1). Returns: tuple: Accuracy, precision, recall, and F1 scores. """ true_positive = sum(1 for a, b in zip(references, predictions) if a == 1 and b == 1) false_positive<fim_suffix> false_negative = sum(1 for a, b in zip(references, predictions) if a == 1 and b == 0) precision = true_positive / (true_positive + false_positive) if (true_positive + false_positive) > 0 else 0 recall = true_positive / (true_positive + false_negative) if (true_positive + false_negative) > 0 else 0 if precision + recall == 0: f1 = 0 else: f1 = 2 * (precision * recall) / (precision + recall) accuracy = sum(1 for a, b in zip(references, predictions) if a == b) / len(predictions) if len(predictions) > 0 else 0 return accuracy, precision, recall, f1 <fim_middle> = sum(1 for a, b in zip(references, predictions) if a == 0 and b == 1)
= sum(1 for a, b in zip(references, predictions) if a == 0 and b == 1)
STATEMENT
prefix_suffix_full_complete_current_block_with_evidence
<filename>UHGEval/uhgeval/metric/common.py<fim_prefix># @Author : Shichao Song # @Email : [email protected] from typing import Callable import evaluate import jieba from loguru import logger from text2vec import Similarity def catch_all_exceptions(func): def wrapper(*args, **kwargs): try: result = func(*args, **kwargs) return result except Exception as e: logger.warning(repr(e)) return wrapper @catch_all_exceptions def bleu4_score( continuation: str, reference: str, with_penalty = False ) -> float: import math from nltk.translate.bleu_score import sentence_bleu # Tokenize the continuation and reference texts using the custom tokenizer function continuation_tokens = custom_tokenizer(continuation) reference_tokens = custom_tokenizer(reference) # Calculate the BLEU score using the nltk.translate.bleu_score.sentence_bleu function bleu_score = sentence_bleu([reference_tokens], continuation_tokens, weights=(0.25, 0.25, 0.25, 0.25)) # If the with_penalty flag is set to True, adjust the BLEU score for brevity penalty if with_penalty: # Calculate the length of the reference and continuation texts reference_length = len(reference_tokens) continuation_length = len(continuation_tokens) # Calculate the brevity penalty factor if continuation_length > reference_length: brevity_penalty = 1 else: brevity_penalty = math.exp(1 - (reference_length / continuation_length)) # Adjust the BLEU score with the brevity penalty bleu_score = bleu_score * brevity_penalty return bleu_score @catch_all_exceptions def rougeL_score( continuation: str, reference: str ) -> float: f = lambda text: list(jieba.cut(text)) rouge = evaluate.load('uhgeval/.cache/huggingface/rouge') results = rouge.compute(predictions=[continuation], references=[[reference]], tokenizer=f, rouge_types=['rougeL']) score = results['rougeL'] return score @catch_all_exceptions def kw_precision( continuation: str, reference: str, kw_extracter: Callable[[str], list[str]], with_kw_list: bool = True ) -> float | tuple[float, list[str], list[str]]: """Measure the rationality of a generated continuation sentence with respect to the original news object.""" kws = kw_extracter(continuation) if len(kws) == 0: return 0, [], [] if with_kw_list else 0 appeared_kws = [kw for kw in kws if kw in reference] precision = len(appeared_kws) / len(kws) return precision, appeared_kws, kws if with_kw_list else precision @catch_all_exceptions def bert_score( continuation: str, reference: str ) -> float: """ Note: Requesting the network to connect to Hugging Face. """ sim = Similarity() score = sim.get_score(continuation, reference) return score def classifications( predictions: list[bool], references: list[bool] ) -> tuple[float, float, float, float]: """ Calculate accuracy, precision, recall, and F1 in a binary classification problem. Args: predictions (list[bool]): List of predicted values (0 or 1). references (list[bool]): List of true values (0 or 1). Returns: tuple: Accuracy, precision, recall, and F1 scores. """ true_positive = sum(1 for a, b in zip(references, predictions) if a == 1 and b == 1) false_positive = sum(1 for a, b in zip(references, predictions) if a == 0 and b == 1) false_negative = sum(1 for a, b in zip(references, predictions) if a == 1 and b == 0) precision = true_positive / (true_positive + false_positive) if (true_positive + false_positive) > 0 else 0 recall = true_positive / (true_positive + false_negative) if (true_positive + false_negative) > 0 else 0 if precision + recall == 0: f1 = 0 else: f1 = 2 * (precision * recall) / (precision + recall) accuracy<fim_suffix> return accuracy, precision, recall, f1 <fim_middle> = sum(1 for a, b in zip(references, predictions) if a == b) / len(predictions) if len(predictions) > 0 else 0
= sum(1 for a, b in zip(references, predictions) if a == b) / len(predictions) if len(predictions) > 0 else 0
STATEMENT
prefix_suffix_full_complete_current_block_with_evidence
<filename>UHGEval/uhgeval/metric/common.py<fim_prefix># @Author : Shichao Song # @Email : [email protected] from typing import Callable import evaluate import jieba from loguru import logger from text2vec import Similarity def catch_all_exceptions(func): def wrapper(*args, **kwargs): try: result = func(*args, **kwargs) return result except Exception as e: logger.warning(repr(e)) return wrapper @catch_all_exceptions def bleu4_score( continuation: str, reference: str, with_penalty = False ) -> float: import math from nltk.translate.bleu_score import sentence_bleu # Tokenize the continuation and reference texts using the custom tokenizer function continuation_tokens = custom_tokenizer(continuation) reference_tokens = custom_tokenizer(reference) # Calculate the BLEU score using the nltk.translate.bleu_score.sentence_bleu function bleu_score = sentence_bleu([reference_tokens], continuation_tokens, weights=(0.25, 0.25, 0.25, 0.25)) # If the with_penalty flag is set to True, adjust the BLEU score for brevity penalty if with_penalty: # Calculate the length of the reference and continuation texts reference_length = len(reference_tokens) continuation_length = len(continuation_tokens) # Calculate the brevity penalty factor if continuation_length > reference_length: brevity_penalty = 1 else: brevity_penalty = math.exp(1 - (reference_length / continuation_length)) # Adjust the BLEU score with the brevity penalty bleu_score = bleu_score * brevity_penalty return bleu_score @catch_all_exceptions def rougeL_score( continuation: str, reference: str ) -> float: f = lambda text: list(jieba.cut(text)) rouge = evaluate.load('uhgeval/.cache/huggingface/rouge') results = rouge.compute(predictions=[continuation], references=[[reference]], tokenizer=f, rouge_types=['rougeL']) score = results['rougeL'] return score @catch_all_exceptions def kw_precision( continuation: str, reference: str, kw_extracter: Callable[[str], list[str]], with_kw_list: bool = True ) -> float | tuple[float, list[str], list[str]]: """Measure the rationality of a generated continuation sentence with respect to the original news object.""" kws = kw_extracter(continuation) if len(kws) == 0: return 0, [], [] if with_kw_list else 0 appeared_kws = [kw for kw in kws if kw in reference] precision = len(appeared_kws) / len(kws) return precision, appeared_kws, kws if with_kw_list else precision @catch_all_exceptions def bert_score( continuation: str, reference: str ) -> float: """ Note: Requesting the network to connect to Hugging Face. """ sim = Similarity() score = sim.get_score(continuation, reference) return score def classifications( predictions: list[bool], references: list[bool] ) -> tuple[float, float, float, float]: """ Calculate accuracy, precision, recall, and F1 in a binary classification problem. Args: predictions (list[bool]): List of predicted values (0 or 1). references (list[bool]): List of true values (0 or 1). Returns: tuple: Accuracy, precision, recall, and F1 scores. """ true_positive<fim_suffix> false_positive = sum(1 for a, b in zip(references, predictions) if a == 0 and b == 1) false_negative = sum(1 for a, b in zip(references, predictions) if a == 1 and b == 0) precision = true_positive / (true_positive + false_positive) if (true_positive + false_positive) > 0 else 0 recall = true_positive / (true_positive + false_negative) if (true_positive + false_negative) > 0 else 0 if precision + recall == 0: f1 = 0 else: f1 = 2 * (precision * recall) / (precision + recall) accuracy = sum(1 for a, b in zip(references, predictions) if a == b) / len(predictions) if len(predictions) > 0 else 0 return accuracy, precision, recall, f1 <fim_middle> = sum(1 for a, b in zip(references, predictions) if a == 1 and b == 1)
= sum(1 for a, b in zip(references, predictions) if a == 1 and b == 1)
STATEMENT
prefix_suffix_full_complete_current_block_with_evidence
<filename>UHGEval/uhgeval/metric/common.py<fim_prefix># @Author : Shichao Song # @Email : [email protected] from typing import Callable import evaluate import jieba from loguru import logger from text2vec import Similarity def catch_all_exceptions(func): def wrapper(*args, **kwargs): try: result = func(*args, **kwargs) return result except Exception as e: logger.warning(repr(e)) return wrapper @catch_all_exceptions def bleu4_score( continuation: str, reference: str, with_penalty = False ) -> float: import math from nltk.translate.bleu_score import sentence_bleu # Tokenize the continuation and reference texts using the custom tokenizer function continuation_tokens = custom_tokenizer(continuation) reference_tokens = custom_tokenizer(reference) # Calculate the BLEU score using the nltk.translate.bleu_score.sentence_bleu function bleu_score = sentence_bleu([reference_tokens], continuation_tokens, weights=(0.25, 0.25, 0.25, 0.25)) # If the with_penalty flag is set to True, adjust the BLEU score for brevity penalty if with_penalty: # Calculate the length of the reference and continuation texts reference_length = len(reference_tokens) continuation_length = len(continuation_tokens) # Calculate the brevity penalty factor if continuation_length > reference_length: brevity_penalty = 1 else: brevity_penalty = math.exp(1 - (reference_length / continuation_length)) # Adjust the BLEU score with the brevity penalty bleu_score = bleu_score * brevity_penalty return bleu_score @catch_all_exceptions def rougeL_score( continuation: str, reference: str ) -> float: f = lambda text: list(jieba.cut(text)) rouge = evaluate.load('uhgeval/.cache/huggingface/rouge') results = rouge.compute(predictions=[continuation], references=[[reference]], tokenizer=f, rouge_types=['rougeL']) score = results['rougeL'] return score @catch_all_exceptions def kw_precision( continuation: str, reference: str, kw_extracter: Callable[[str], list[str]], with_kw_list: bool = True ) -> float | tuple[float, list[str], list[str]]: """Measure the rationality of a generated continuation sentence with respect to the original news object.""" kws = kw_extracter(continuation) if len(kws) == 0: return 0, [], [] if with_kw_list else 0 appeared_kws = [kw for kw in kws if kw in reference] precision = len(appeared_kws) / len(kws) return precision, appeared_kws, kws if with_kw_list else precision @catch_all_exceptions def bert_score( continuation: str, reference: str ) -> float: """ Note: Requesting the network to connect to Hugging Face. """ sim = Similarity() score = sim.get_score(continuation, reference) return score def classifications( predictions: list[bool], references: list[bool] ) -> tuple[float, float, float, float]: """ Calculate accuracy, precision, recall, and F1 in a binary classification problem. Args: predictions (list[bool]): List of predicted values (0 or 1). references (list[bool]): List of true values (0 or 1). Returns: tuple: Accuracy, precision, recall, and F1 scores. """ true_positive = sum(1 for a, b in zip(references, predictions) if a == 1 and b == 1) false_positive = sum(1 for a, b in zip(references, predictions) if a == 0 and b == 1) false_negative = sum(1 for a, b in zip(references, predictions) if a == 1 and b == 0) precision<fim_suffix> recall = true_positive / (true_positive + false_negative) if (true_positive + false_negative) > 0 else 0 if precision + recall == 0: f1 = 0 else: f1 = 2 * (precision * recall) / (precision + recall) accuracy = sum(1 for a, b in zip(references, predictions) if a == b) / len(predictions) if len(predictions) > 0 else 0 return accuracy, precision, recall, f1 <fim_middle> = true_positive / (true_positive + false_positive) if (true_positive + false_positive) > 0 else 0
= true_positive / (true_positive + false_positive) if (true_positive + false_positive) > 0 else 0
STATEMENT
prefix_suffix_full_complete_current_block_with_evidence
<filename>UHGEval/uhgeval/dataset/truthfulqa.py<fim_prefix># @Author : YeZhaohui Wang # @Email : [email protected] import csv import json import os import random from uhgeval.dataset.base import BaseDataset class TruthfunQAGeneration(BaseDataset): def __init__(self, path: str, shuffle: bool = False, seed: int = 22): self.data = [] if os.path.isfile(path): with open(path, 'r', encoding='utf-8-sig') as file: csv_reader = csv.DictReader(file) id = 1 for row in csv_reader: row['id'] = id id += 1 self.data.append(row) if shuffle: random.seed(seed) random.shuffle(self.data) def __len__(self) -> int: return len(self.data) def __getitem__(self, key: int | slice) -> dict | list[dict]: return self.data[key] def load(self) -> list[dict]: return self.data[:] class TruthfunQAMC1(BaseDataset): def __init__(self, path: str, shuffle: bool = False, seed: int = 22): self.data = [] id = 1 if os.path.isfile(path): with open(path, encoding='utf-8') as f: self.data = json.load(f) for row in self.data: row['id'] = id id += 1 if shuffle: random.seed(seed) random.shuffle(self.data) def __len__(self) -> int: return len(self.data) def __getitem__(self, key: int | slice) -> dict | list[dict]: return self.data[key] def load(self) -> list[dict]: return<fim_suffix> class TruthfunQAMC2(BaseDataset): def __init__(self, path: str, shuffle: bool = False, seed: int = 22): self.data = [] id = 1 if os.path.isfile(path): with open(path, encoding='utf-8') as f: self.data = json.load(f) for row in self.data: row['id'] = id id += 1 if shuffle: random.seed(seed) random.shuffle(self.data) def __len__(self) -> int: return len(self.data) def __getitem__(self, key: int | slice) -> dict | list[dict]: return self.data[key] def load(self) -> list[dict]: return self.data[:] <fim_middle> self.data[:]
self.data[:]
STATEMENT
prefix_suffix_full_complete_current_block_with_evidence
<filename>UHGEval/uhgeval/metric/common.py<fim_prefix># @Author : Shichao Song # @Email : [email protected] from typing import Callable import evaluate import jieba from loguru import logger from text2vec import Similarity def catch_all_exceptions(func): def wrapper(*args, **kwargs): try: result = func(*args, **kwargs) return<fim_suffix> except Exception as e: logger.warning(repr(e)) return wrapper @catch_all_exceptions def bleu4_score( continuation: str, reference: str, with_penalty = False ) -> float: import math from nltk.translate.bleu_score import sentence_bleu # Tokenize the continuation and reference texts using the custom tokenizer function continuation_tokens = custom_tokenizer(continuation) reference_tokens = custom_tokenizer(reference) # Calculate the BLEU score using the nltk.translate.bleu_score.sentence_bleu function bleu_score = sentence_bleu([reference_tokens], continuation_tokens, weights=(0.25, 0.25, 0.25, 0.25)) # If the with_penalty flag is set to True, adjust the BLEU score for brevity penalty if with_penalty: # Calculate the length of the reference and continuation texts reference_length = len(reference_tokens) continuation_length = len(continuation_tokens) # Calculate the brevity penalty factor if continuation_length > reference_length: brevity_penalty = 1 else: brevity_penalty = math.exp(1 - (reference_length / continuation_length)) # Adjust the BLEU score with the brevity penalty bleu_score = bleu_score * brevity_penalty return bleu_score @catch_all_exceptions def rougeL_score( continuation: str, reference: str ) -> float: f = lambda text: list(jieba.cut(text)) rouge = evaluate.load('uhgeval/.cache/huggingface/rouge') results = rouge.compute(predictions=[continuation], references=[[reference]], tokenizer=f, rouge_types=['rougeL']) score = results['rougeL'] return score @catch_all_exceptions def kw_precision( continuation: str, reference: str, kw_extracter: Callable[[str], list[str]], with_kw_list: bool = True ) -> float | tuple[float, list[str], list[str]]: """Measure the rationality of a generated continuation sentence with respect to the original news object.""" kws = kw_extracter(continuation) if len(kws) == 0: return 0, [], [] if with_kw_list else 0 appeared_kws = [kw for kw in kws if kw in reference] precision = len(appeared_kws) / len(kws) return precision, appeared_kws, kws if with_kw_list else precision @catch_all_exceptions def bert_score( continuation: str, reference: str ) -> float: """ Note: Requesting the network to connect to Hugging Face. """ sim = Similarity() score = sim.get_score(continuation, reference) return score def classifications( predictions: list[bool], references: list[bool] ) -> tuple[float, float, float, float]: """ Calculate accuracy, precision, recall, and F1 in a binary classification problem. Args: predictions (list[bool]): List of predicted values (0 or 1). references (list[bool]): List of true values (0 or 1). Returns: tuple: Accuracy, precision, recall, and F1 scores. """ true_positive = sum(1 for a, b in zip(references, predictions) if a == 1 and b == 1) false_positive = sum(1 for a, b in zip(references, predictions) if a == 0 and b == 1) false_negative = sum(1 for a, b in zip(references, predictions) if a == 1 and b == 0) precision = true_positive / (true_positive + false_positive) if (true_positive + false_positive) > 0 else 0 recall = true_positive / (true_positive + false_negative) if (true_positive + false_negative) > 0 else 0 if precision + recall == 0: f1 = 0 else: f1 = 2 * (precision * recall) / (precision + recall) accuracy = sum(1 for a, b in zip(references, predictions) if a == b) / len(predictions) if len(predictions) > 0 else 0 return accuracy, precision, recall, f1 <fim_middle> result
result
STATEMENT
prefix_suffix_full_complete_current_block_with_evidence
<filename>UHGEval/uhgeval/metric/common.py<fim_prefix># @Author : Shichao Song # @Email : [email protected] from typing import Callable import evaluate import jieba from loguru import logger from text2vec import Similarity def catch_all_exceptions(func): def wrapper(*args, **kwargs): try: result = func(*args, **kwargs) return result except Exception as e: logger.warning(repr(e)) return wrapper @catch_all_exceptions def bleu4_score( continuation: str, reference: str, with_penalty = False ) -> float: import math from nltk.translate.bleu_score import sentence_bleu # Tokenize the continuation and reference texts using the custom tokenizer function continuation_tokens = custom_tokenizer(continuation) reference_tokens = custom_tokenizer(reference) # Calculate the BLEU score using the nltk.translate.bleu_score.sentence_bleu function bleu_score = sentence_bleu([reference_tokens], continuation_tokens, weights=(0.25, 0.25, 0.25, 0.25)) # If the with_penalty flag is set to True, adjust the BLEU score for brevity penalty if with_penalty: # Calculate the length of the reference and continuation texts reference_length = len(reference_tokens) continuation_length = len(continuation_tokens) # Calculate the brevity penalty factor if continuation_length > reference_length: brevity_penalty = 1 else: brevity_penalty = math.exp(1 - (reference_length / continuation_length)) # Adjust the BLEU score with the brevity penalty bleu_score = bleu_score * brevity_penalty return bleu_score @catch_all_exceptions def rougeL_score( continuation: str, reference: str ) -> float: f = lambda text: list(jieba.cut(text)) rouge = evaluate.load('uhgeval/.cache/huggingface/rouge') results = rouge.compute(predictions=[continuation], references=[[reference]], tokenizer=f, rouge_types=['rougeL']) score = results['rougeL'] return score @catch_all_exceptions def kw_precision( continuation: str, reference: str, kw_extracter: Callable[[str], list[str]], with_kw_list: bool = True ) -> float | tuple[float, list[str], list[str]]: """Measure the rationality of a generated continuation sentence with respect to the original news object.""" kws = kw_extracter(continuation) if len(kws) == 0: return 0, [], [] if with_kw_list else 0 appeared_kws = [kw for kw in kws if kw in reference] precision = len(appeared_kws) / len(kws) return precision, appeared_kws, kws if with_kw_list else precision @catch_all_exceptions def bert_score( continuation: str, reference: str ) -> float: """ Note: Requesting the network to connect to Hugging Face. """ sim = Similarity() score = sim.get_score(continuation, reference) return score def classifications( predictions: list[bool], references: list[bool] ) -> tuple[float, float, float, float]: """ Calculate accuracy, precision, recall, and F1 in a binary classification problem. Args: predictions (list[bool]): List of predicted values (0 or 1). references (list[bool]): List of true values (0 or 1). Returns: tuple: Accuracy, precision, recall, and F1 scores. """ true_positive = sum(1 for a, b in zip(references, predictions) if a == 1 and b == 1) false_positive = sum(1 for a, b in zip(references, predictions) if a == 0 and b == 1) false_negative = sum(1 for a, b in zip(references, predictions) if a == 1 and b == 0) precision = true_positive / (true_positive + false_positive) if (true_positive + false_positive) > 0 else 0 recall = true_positive / (true_positive + false_negative) if (true_positive + false_negative) > 0 else 0 if<fim_suffix> accuracy = sum(1 for a, b in zip(references, predictions) if a == b) / len(predictions) if len(predictions) > 0 else 0 return accuracy, precision, recall, f1 <fim_middle> precision + recall == 0: f1 = 0 else: f1 = 2 * (precision * recall) / (precision + recall)
precision + recall == 0: f1 = 0 else: f1 = 2 * (precision * recall) / (precision + recall)
IF
prefix_suffix_full_complete_current_block_with_evidence
<filename>UHGEval/uhgeval/metric/common.py<fim_prefix># @Author : Shichao Song # @Email : [email protected] from typing import Callable import evaluate import jieba from loguru import logger from text2vec import Similarity def catch_all_exceptions(func): def wrapper(*args, **kwargs): try:<fim_suffix> except Exception as e: logger.warning(repr(e)) return wrapper @catch_all_exceptions def bleu4_score( continuation: str, reference: str, with_penalty = False ) -> float: import math from nltk.translate.bleu_score import sentence_bleu # Tokenize the continuation and reference texts using the custom tokenizer function continuation_tokens = custom_tokenizer(continuation) reference_tokens = custom_tokenizer(reference) # Calculate the BLEU score using the nltk.translate.bleu_score.sentence_bleu function bleu_score = sentence_bleu([reference_tokens], continuation_tokens, weights=(0.25, 0.25, 0.25, 0.25)) # If the with_penalty flag is set to True, adjust the BLEU score for brevity penalty if with_penalty: # Calculate the length of the reference and continuation texts reference_length = len(reference_tokens) continuation_length = len(continuation_tokens) # Calculate the brevity penalty factor if continuation_length > reference_length: brevity_penalty = 1 else: brevity_penalty = math.exp(1 - (reference_length / continuation_length)) # Adjust the BLEU score with the brevity penalty bleu_score = bleu_score * brevity_penalty return bleu_score @catch_all_exceptions def rougeL_score( continuation: str, reference: str ) -> float: f = lambda text: list(jieba.cut(text)) rouge = evaluate.load('uhgeval/.cache/huggingface/rouge') results = rouge.compute(predictions=[continuation], references=[[reference]], tokenizer=f, rouge_types=['rougeL']) score = results['rougeL'] return score @catch_all_exceptions def kw_precision( continuation: str, reference: str, kw_extracter: Callable[[str], list[str]], with_kw_list: bool = True ) -> float | tuple[float, list[str], list[str]]: """Measure the rationality of a generated continuation sentence with respect to the original news object.""" kws = kw_extracter(continuation) if len(kws) == 0: return 0, [], [] if with_kw_list else 0 appeared_kws = [kw for kw in kws if kw in reference] precision = len(appeared_kws) / len(kws) return precision, appeared_kws, kws if with_kw_list else precision @catch_all_exceptions def bert_score( continuation: str, reference: str ) -> float: """ Note: Requesting the network to connect to Hugging Face. """ sim = Similarity() score = sim.get_score(continuation, reference) return score def classifications( predictions: list[bool], references: list[bool] ) -> tuple[float, float, float, float]: """ Calculate accuracy, precision, recall, and F1 in a binary classification problem. Args: predictions (list[bool]): List of predicted values (0 or 1). references (list[bool]): List of true values (0 or 1). Returns: tuple: Accuracy, precision, recall, and F1 scores. """ true_positive = sum(1 for a, b in zip(references, predictions) if a == 1 and b == 1) false_positive = sum(1 for a, b in zip(references, predictions) if a == 0 and b == 1) false_negative = sum(1 for a, b in zip(references, predictions) if a == 1 and b == 0) precision = true_positive / (true_positive + false_positive) if (true_positive + false_positive) > 0 else 0 recall = true_positive / (true_positive + false_negative) if (true_positive + false_negative) > 0 else 0 if precision + recall == 0: f1 = 0 else: f1 = 2 * (precision * recall) / (precision + recall) accuracy = sum(1 for a, b in zip(references, predictions) if a == b) / len(predictions) if len(predictions) > 0 else 0 return accuracy, precision, recall, f1 <fim_middle> result = func(*args, **kwargs) return result
result = func(*args, **kwargs) return result
TRY
prefix_suffix_full_complete_current_block_with_evidence
<filename>UHGEval/uhgeval/metric/common.py<fim_prefix># @Author : Shichao Song # @Email : [email protected] from typing import Callable import evaluate import jieba from loguru import logger from text2vec import Similarity def catch_all_exceptions(func): def wrapper(*args, **kwargs): try: result = func(*args, **kwargs) return result except<fim_suffix> return wrapper @catch_all_exceptions def bleu4_score( continuation: str, reference: str, with_penalty = False ) -> float: import math from nltk.translate.bleu_score import sentence_bleu # Tokenize the continuation and reference texts using the custom tokenizer function continuation_tokens = custom_tokenizer(continuation) reference_tokens = custom_tokenizer(reference) # Calculate the BLEU score using the nltk.translate.bleu_score.sentence_bleu function bleu_score = sentence_bleu([reference_tokens], continuation_tokens, weights=(0.25, 0.25, 0.25, 0.25)) # If the with_penalty flag is set to True, adjust the BLEU score for brevity penalty if with_penalty: # Calculate the length of the reference and continuation texts reference_length = len(reference_tokens) continuation_length = len(continuation_tokens) # Calculate the brevity penalty factor if continuation_length > reference_length: brevity_penalty = 1 else: brevity_penalty = math.exp(1 - (reference_length / continuation_length)) # Adjust the BLEU score with the brevity penalty bleu_score = bleu_score * brevity_penalty return bleu_score @catch_all_exceptions def rougeL_score( continuation: str, reference: str ) -> float: f = lambda text: list(jieba.cut(text)) rouge = evaluate.load('uhgeval/.cache/huggingface/rouge') results = rouge.compute(predictions=[continuation], references=[[reference]], tokenizer=f, rouge_types=['rougeL']) score = results['rougeL'] return score @catch_all_exceptions def kw_precision( continuation: str, reference: str, kw_extracter: Callable[[str], list[str]], with_kw_list: bool = True ) -> float | tuple[float, list[str], list[str]]: """Measure the rationality of a generated continuation sentence with respect to the original news object.""" kws = kw_extracter(continuation) if len(kws) == 0: return 0, [], [] if with_kw_list else 0 appeared_kws = [kw for kw in kws if kw in reference] precision = len(appeared_kws) / len(kws) return precision, appeared_kws, kws if with_kw_list else precision @catch_all_exceptions def bert_score( continuation: str, reference: str ) -> float: """ Note: Requesting the network to connect to Hugging Face. """ sim = Similarity() score = sim.get_score(continuation, reference) return score def classifications( predictions: list[bool], references: list[bool] ) -> tuple[float, float, float, float]: """ Calculate accuracy, precision, recall, and F1 in a binary classification problem. Args: predictions (list[bool]): List of predicted values (0 or 1). references (list[bool]): List of true values (0 or 1). Returns: tuple: Accuracy, precision, recall, and F1 scores. """ true_positive = sum(1 for a, b in zip(references, predictions) if a == 1 and b == 1) false_positive = sum(1 for a, b in zip(references, predictions) if a == 0 and b == 1) false_negative = sum(1 for a, b in zip(references, predictions) if a == 1 and b == 0) precision = true_positive / (true_positive + false_positive) if (true_positive + false_positive) > 0 else 0 recall = true_positive / (true_positive + false_negative) if (true_positive + false_negative) > 0 else 0 if precision + recall == 0: f1 = 0 else: f1 = 2 * (precision * recall) / (precision + recall) accuracy = sum(1 for a, b in zip(references, predictions) if a == b) / len(predictions) if len(predictions) > 0 else 0 return accuracy, precision, recall, f1 <fim_middle> Exception as e: logger.warning(repr(e))
Exception as e: logger.warning(repr(e))
CATCH
prefix_suffix_full_complete_current_block_with_evidence
<filename>UHGEval/uhgeval/metric/common.py<fim_prefix># @Author : Shichao Song # @Email : [email protected] from typing import Callable import evaluate import jieba from loguru import logger from text2vec import Similarity def catch_all_exceptions(func): def wrapper(*args, **kwargs): try: result = func(*args, **kwargs) return result except Exception as e: logger.warning(repr(e)) return wrapper @catch_all_exceptions def bleu4_score( continuation: str, reference: str, with_penalty = False ) -> float: import math from nltk.translate.bleu_score import sentence_bleu # Tokenize the continuation and reference texts using the custom tokenizer function continuation_tokens = custom_tokenizer(continuation) reference_tokens = custom_tokenizer(reference) # Calculate the BLEU score using the nltk.translate.bleu_score.sentence_bleu function bleu_score = sentence_bleu([reference_tokens], continuation_tokens, weights=(0.25, 0.25, 0.25, 0.25)) # If the with_penalty flag is set to True, adjust the BLEU score for brevity penalty if with_penalty: # Calculate the length of the reference and continuation texts reference_length = len(reference_tokens) continuation_length = len(continuation_tokens) # Calculate the brevity penalty factor if continuation_length > reference_length: brevity_penalty = 1 else: brevity_penalty = math.exp(1 - (reference_length / continuation_length)) # Adjust the BLEU score with the brevity penalty bleu_score = bleu_score * brevity_penalty return bleu_score @catch_all_exceptions def rougeL_score( continuation: str, reference: str ) -> float: f = lambda text: list(jieba.cut(text)) rouge = evaluate.load('uhgeval/.cache/huggingface/rouge') results = rouge.compute(predictions=[continuation], references=[[reference]], tokenizer=f, rouge_types=['rougeL']) score = results['rougeL'] return score @catch_all_exceptions def kw_precision( continuation: str, reference: str, kw_extracter: Callable[[str], list[str]], with_kw_list: bool = True ) -> float | tuple[float, list[str], list[str]]: """Measure the rationality of a generated continuation sentence with respect to the original news object.""" kws = kw_extracter(continuation) if len(kws) == 0: return 0, [], [] if with_kw_list else 0 appeared_kws = [kw for kw in kws if kw in reference] precision = len(appeared_kws) / len(kws) return precision, appeared_kws, kws if with_kw_list else precision @catch_all_exceptions def bert_score( continuation: str, reference: str ) -> float: """ Note: Requesting the network to connect to Hugging Face. """ sim = Similarity() score = sim.get_score(continuation, reference) return score def classifications( predictions: list[bool], references: list[bool] ) -> tuple[float, float, float, float]: """<fim_suffix> true_positive = sum(1 for a, b in zip(references, predictions) if a == 1 and b == 1) false_positive = sum(1 for a, b in zip(references, predictions) if a == 0 and b == 1) false_negative = sum(1 for a, b in zip(references, predictions) if a == 1 and b == 0) precision = true_positive / (true_positive + false_positive) if (true_positive + false_positive) > 0 else 0 recall = true_positive / (true_positive + false_negative) if (true_positive + false_negative) > 0 else 0 if precision + recall == 0: f1 = 0 else: f1 = 2 * (precision * recall) / (precision + recall) accuracy = sum(1 for a, b in zip(references, predictions) if a == b) / len(predictions) if len(predictions) > 0 else 0 return accuracy, precision, recall, f1 <fim_middle> Calculate accuracy, precision, recall, and F1 in a binary classification problem. Args: predictions (list[bool]): List of predicted values (0 or 1). references (list[bool]): List of true values (0 or 1). Returns: tuple: Accuracy, precision, recall, and F1 scores. """
Calculate accuracy, precision, recall, and F1 in a binary classification problem. Args: predictions (list[bool]): List of predicted values (0 or 1). references (list[bool]): List of true values (0 or 1). Returns: tuple: Accuracy, precision, recall, and F1 scores. """
BLOCK_COMMENT
prefix_suffix_full_complete_current_block_with_evidence
<filename>UniRef/detectron2/structures/image_list.py<fim_prefix># Copyright (c) Facebook, Inc. and its affiliates. from __future__ import division from typing import Any, List, Tuple import torch from torch import device from torch.nn import functional as F from detectron2.layers.wrappers import shapes_to_tensor class ImageList(object): """ Structure that holds a list of images (of possibly varying sizes) as a single tensor. This works by padding the images to the same size. The original sizes of each image is stored in `image_sizes`. Attributes: image_sizes (list[tuple[int, int]]): each tuple is (h, w). During tracing, it becomes list[Tensor] instead. """ def __init__(self, tensor: torch.Tensor, image_sizes: List[Tuple[int, int]]): """ Arguments: tensor (Tensor): of shape (N, H, W) or (N, C_1, ..., C_K, H, W) where K >= 1 image_sizes (list[tuple[int, int]]): Each tuple is (h, w). It can be smaller than (H, W) due to padding. """ self.tensor = tensor self.image_sizes = image_sizes def __len__(self) -> int: return len(self.image_sizes) def __getitem__(self, idx) -> torch.Tensor: """<fim_suffix> size = self.image_sizes[idx] return self.tensor[idx, ..., : size[0], : size[1]] @torch.jit.unused def to(self, *args: Any, **kwargs: Any) -> "ImageList": cast_tensor = self.tensor.to(*args, **kwargs) return ImageList(cast_tensor, self.image_sizes) @property def device(self) -> device: return self.tensor.device @staticmethod def from_tensors( tensors: List[torch.Tensor], size_divisibility: int = 0, pad_value: float = 0.0 ) -> "ImageList": """ Args: tensors: a tuple or list of `torch.Tensor`, each of shape (Hi, Wi) or (C_1, ..., C_K, Hi, Wi) where K >= 1. The Tensors will be padded to the same shape with `pad_value`. size_divisibility (int): If `size_divisibility > 0`, add padding to ensure the common height and width is divisible by `size_divisibility`. This depends on the model and many models need a divisibility of 32. pad_value (float): value to pad Returns: an `ImageList`. """ assert len(tensors) > 0 assert isinstance(tensors, (tuple, list)) for t in tensors: assert isinstance(t, torch.Tensor), type(t) assert t.shape[:-2] == tensors[0].shape[:-2], t.shape image_sizes = [(im.shape[-2], im.shape[-1]) for im in tensors] image_sizes_tensor = [shapes_to_tensor(x) for x in image_sizes] max_size = torch.stack(image_sizes_tensor).max(0).values if size_divisibility > 1: stride = size_divisibility # the last two dims are H,W, both subject to divisibility requirement max_size = (max_size + (stride - 1)).div(stride, rounding_mode="floor") * stride # handle weirdness of scripting and tracing ... if torch.jit.is_scripting(): max_size: List[int] = max_size.to(dtype=torch.long).tolist() else: if torch.jit.is_tracing(): image_sizes = image_sizes_tensor if len(tensors) == 1: # This seems slightly (2%) faster. # TODO: check whether it's faster for multiple images as well image_size = image_sizes[0] padding_size = [0, max_size[-1] - image_size[1], 0, max_size[-2] - image_size[0]] batched_imgs = F.pad(tensors[0], padding_size, value=pad_value).unsqueeze_(0) else: # max_size can be a tensor in tracing mode, therefore convert to list batch_shape = [len(tensors)] + list(tensors[0].shape[:-2]) + list(max_size) batched_imgs = tensors[0].new_full(batch_shape, pad_value) for img, pad_img in zip(tensors, batched_imgs): pad_img[..., : img.shape[-2], : img.shape[-1]].copy_(img) return ImageList(batched_imgs.contiguous(), image_sizes) <fim_middle> Access the individual image in its original size. Args: idx: int or slice Returns: Tensor: an image of shape (H, W) or (C_1, ..., C_K, H, W) where K >= 1 """
Access the individual image in its original size. Args: idx: int or slice Returns: Tensor: an image of shape (H, W) or (C_1, ..., C_K, H, W) where K >= 1 """
BLOCK_COMMENT
prefix_suffix_full_complete_current_block_with_evidence
<filename>UniRef/detectron2/solver/build.py<fim_prefix># Copyright (c) Facebook, Inc. and its affiliates. import copy import itertools import logging from collections import defaultdict from enum import Enum from typing import Any, Callable, Dict, Iterable, List, Optional, Set, Type, Union import torch from fvcore.common.param_scheduler import CosineParamScheduler, MultiStepParamScheduler from detectron2.config import CfgNode from .lr_scheduler import LRMultiplier, WarmupParamScheduler _GradientClipperInput = Union[torch.Tensor, Iterable[torch.Tensor]] _GradientClipper = Callable[[_GradientClipperInput], None] class GradientClipType(Enum): VALUE = "value" NORM = "norm" def _create_gradient_clipper(cfg: CfgNode) -> _GradientClipper: """ Creates gradient clipping closure to clip by value or by norm, according to the provided config. """ cfg = copy.deepcopy(cfg) def clip_grad_norm(p: _GradientClipperInput): torch.nn.utils.clip_grad_norm_(p, cfg.CLIP_VALUE, cfg.NORM_TYPE) def clip_grad_value(p: _GradientClipperInput): torch.nn.utils.clip_grad_value_(p, cfg.CLIP_VALUE) _GRADIENT_CLIP_TYPE_TO_CLIPPER = { GradientClipType.VALUE: clip_grad_value, GradientClipType.NORM: clip_grad_norm, } return _GRADIENT_CLIP_TYPE_TO_CLIPPER[GradientClipType(cfg.CLIP_TYPE)] def _generate_optimizer_class_with_gradient_clipping( optimizer: Type[torch.optim.Optimizer], *, per_param_clipper: Optional[_GradientClipper] = None, global_clipper: Optional[_GradientClipper] = None, ) -> Type[torch.optim.Optimizer]: """ Dynamically creates a new type that inherits the type of a given instance and overrides the `step` method to add gradient clipping """ assert ( per_param_clipper is None or global_clipper is None ), "Not allowed to use both per-parameter clipping and global clipping" def optimizer_wgc_step(self, closure=None): if per_param_clipper is not None: for group in self.param_groups: for p in group["params"]: per_param_clipper(p) else: # global clipper for future use with detr # (https://github.com/facebookresearch/detr/pull/287) all_params = itertools.chain(*[g["params"] for g in self.param_groups]) global_clipper(all_params) super(type(self), self).step(closure) OptimizerWithGradientClip = type( optimizer.__name__ + "WithGradientClip", (optimizer,), {"step": optimizer_wgc_step}, ) return OptimizerWithGradientClip def maybe_add_gradient_clipping( cfg: CfgNode, optimizer: Type[torch.optim.Optimizer] ) -> Type[torch.optim.Optimizer]: """ If gradient clipping is enabled through config options, wraps the existing optimizer type to become a new dynamically created class OptimizerWithGradientClip that inherits the given optimizer and overrides the `step` method to include gradient clipping. Args: cfg: CfgNode, configuration options optimizer: type. A subclass of torch.optim.Optimizer Return: type: either the input `optimizer` (if gradient clipping is disabled), or a subclass of it with gradient clipping included in the `step` method. """ if not cfg.SOLVER.CLIP_GRADIENTS.ENABLED: return optimizer if isinstance(optimizer, torch.optim.Optimizer): optimizer_type = type(optimizer) else: assert issubclass(optimizer, torch.optim.Optimizer), optimizer optimizer_type = optimizer grad_clipper = _create_gradient_clipper(cfg.SOLVER.CLIP_GRADIENTS) OptimizerWithGradientClip = _generate_optimizer_class_with_gradient_clipping( optimizer_type, per_param_clipper=grad_clipper ) if isinstance(optimizer, torch.optim.Optimizer): optimizer.__class__ = OptimizerWithGradientClip # a bit hacky, not recommended return optimizer else: return OptimizerWithGradientClip def build_optimizer(cfg: CfgNode, model: torch.nn.Module) -> torch.optim.Optimizer: """ Build an optimizer from config. """ params = get_default_optimizer_params( model, base_lr=cfg.SOLVER.BASE_LR, weight_decay_norm=cfg.SOLVER.WEIGHT_DECAY_NORM, bias_lr_factor=cfg.SOLVER.BIAS_LR_FACTOR, weight_decay_bias=cfg.SOLVER.WEIGHT_DECAY_BIAS, ) return maybe_add_gradient_clipping(cfg, torch.optim.SGD)( params, lr=cfg.SOLVER.BASE_LR, momentum=cfg.SOLVER.MOMENTUM, nesterov=cfg.SOLVER.NESTEROV, weight_decay=cfg.SOLVER.WEIGHT_DECAY, ) def get_default_optimizer_params( model: torch.nn.Module, base_lr: Optional[float] = None, weight_decay: Optional[float] = None, weight_decay_norm: Optional[float] = None, bias_lr_factor: Optional[float] = 1.0, weight_decay_bias: Optional[float] = None, overrides: Optional[Dict[str, Dict[str, float]]] = None, ) -> List[Dict[str, Any]]: """ Get default param list for optimizer, with support for a few types of overrides. If no overrides needed, this is equivalent to `model.parameters()`. Args: base_lr: lr for every group by default. Can be omitted to use the one in optimizer. weight_decay: weight decay for every group by default. Can be omitted to use the one in optimizer. weight_decay_norm: override weight decay for params in normalization layers bias_lr_factor: multiplier of lr for bias parameters. weight_decay_bias: override weight decay for bias parameters overrides: if not `None`, provides values for optimizer hyperparameters (LR, weight decay) for module parameters with a given name; e.g. ``{"embedding": {"lr": 0.01, "weight_decay": 0.1}}`` will set the LR and weight decay values for all module parameters named `embedding`. For common detection models, ``weight_decay_norm`` is the only option needed to be set. ``bias_lr_factor,weight_decay_bias`` are legacy settings from Detectron1 that are not found useful. Example: :: torch.optim.SGD(get_default_optimizer_params(model, weight_decay_norm=0), lr=0.01, weight_decay=1e-4, momentum=0.9) """ if overrides is None: overrides = {} defaults = {} if base_lr is not None: defaults["lr"] = base_lr if weight_decay is not None: defaults["weight_decay"] = weight_decay bias_overrides = {} if bias_lr_factor is not None and bias_lr_factor != 1.0: # NOTE: unlike Detectron v1, we now by default make bias hyperparameters # exactly the same as regular weights. if base_lr is None: raise ValueError("bias_lr_factor requires base_lr") bias_overrides["lr"] = base_lr * bias_lr_factor if weight_decay_bias is not None: bias_overrides["weight_decay"] = weight_decay_bias if len(bias_overrides): if "bias" in overrides: raise ValueError("Conflicting overrides for 'bias'") overrides["bias"] = bias_overrides norm_module_types = ( torch.nn.BatchNorm1d, torch.nn.BatchNorm2d, torch.nn.BatchNorm3d, torch.nn.SyncBatchNorm, # NaiveSyncBatchNorm inherits from BatchNorm2d torch.nn.GroupNorm, torch.nn.InstanceNorm1d, torch.nn.InstanceNorm2d, torch.nn.InstanceNorm3d, torch.nn.LayerNorm, torch.nn.LocalResponseNorm, ) params: List[Dict[str, Any]] = [] memo: Set[torch.nn.parameter.Parameter] = set() for module in model.modules(): for module_param_name, value in module.named_parameters(recurse=False): if not value.requires_grad: continue # Avoid duplicating parameters if value in memo: continue memo.add(value) hyperparams = copy.copy(defaults) if isinstance(module, norm_module_types) and weight_decay_norm is not None: hyperparams["weight_decay"] = weight_decay_norm hyperparams.update(overrides.get(module_param_name, {})) params.append({"params": [value], **hyperparams}) return reduce_param_groups(params) def _expand_param_groups(params: List[Dict[str, Any]]) -> List[Dict[str, Any]]: # Transform parameter groups into per-parameter structure. # Later items in `params` can overwrite parameters set in previous items. ret = defaultdict(dict) for item in params: assert "params" in item cur_params = {x: y for x, y in item.items() if x != "params"} for param in item["params"]: ret[param].update({"params": [param], **cur_params}) return list(ret.values()) def reduce_param_groups(params: List[Dict[str, Any]]) -> List[Dict[str, Any]]: # Reorganize the parameter groups and merge duplicated groups. # The number of parameter groups needs to be as small as possible in order # to efficiently use the PyTorch multi-tensor optimizer. Therefore instead # of using a parameter_group per single parameter, we reorganize the # parameter groups and merge duplicated groups. This approach speeds # up multi-tensor optimizer significantly. params = _expand_param_groups(params) groups = defaultdict(list) # re-group all parameter groups by their hyperparams for item in params: cur_params = tuple((x, y) for x, y in item.items() if x != "params") groups[cur_params].extend(item["params"]) ret = [] for param_keys, param_values in groups.items(): cur = {kv[0]: kv[1] for kv in param_keys} cur["params"] = param_values ret.append(cur) return ret def build_lr_scheduler( cfg: CfgNode, optimizer: torch.optim.Optimizer ) -> torch.optim.lr_scheduler._LRScheduler: """<fim_suffix> name = cfg.SOLVER.LR_SCHEDULER_NAME if name == "WarmupMultiStepLR": steps = [x for x in cfg.SOLVER.STEPS if x <= cfg.SOLVER.MAX_ITER] if len(steps) != len(cfg.SOLVER.STEPS): logger = logging.getLogger(__name__) logger.warning( "SOLVER.STEPS contains values larger than SOLVER.MAX_ITER. " "These values will be ignored." ) sched = MultiStepParamScheduler( values=[cfg.SOLVER.GAMMA ** k for k in range(len(steps) + 1)], milestones=steps, num_updates=cfg.SOLVER.MAX_ITER, ) elif name == "WarmupCosineLR": end_value = cfg.SOLVER.BASE_LR_END / cfg.SOLVER.BASE_LR assert end_value >= 0.0 and end_value <= 1.0, end_value sched = CosineParamScheduler(1, end_value) else: raise ValueError("Unknown LR scheduler: {}".format(name)) sched = WarmupParamScheduler( sched, cfg.SOLVER.WARMUP_FACTOR, min(cfg.SOLVER.WARMUP_ITERS / cfg.SOLVER.MAX_ITER, 1.0), cfg.SOLVER.WARMUP_METHOD, ) return LRMultiplier(optimizer, multiplier=sched, max_iter=cfg.SOLVER.MAX_ITER) <fim_middle> Build a LR scheduler from config. """
Build a LR scheduler from config. """
BLOCK_COMMENT
prefix_suffix_full_complete_current_block_with_evidence
<filename>UniRef/detectron2/tracking/bbox_iou_tracker.py<fim_prefix>#!/usr/bin/env python3 # Copyright 2004-present Facebook. All Rights Reserved. import copy from typing import List import numpy as np import torch from detectron2.config import configurable from detectron2.structures import Boxes, Instances from detectron2.structures.boxes import pairwise_iou from ..config.config import CfgNode as CfgNode_ from .base_tracker import BaseTracker, TRACKER_HEADS_REGISTRY @TRACKER_HEADS_REGISTRY.register() class BBoxIOUTracker(BaseTracker): """ A bounding box tracker to assign ID based on IoU between current and previous instances """ @configurable def __init__( self, *, video_height: int, video_width: int, max_num_instances: int = 200, max_lost_frame_count: int = 0, min_box_rel_dim: float = 0.02, min_instance_period: int = 1, track_iou_threshold: float = 0.5, **kwargs ): """ Args: video_height: height the video frame video_width: width of the video frame max_num_instances: maximum number of id allowed to be tracked max_lost_frame_count: maximum number of frame an id can lost tracking exceed this number, an id is considered as lost forever min_box_rel_dim: a percentage, smaller than this dimension, a bbox is removed from tracking min_instance_period: an instance will be shown after this number of period since its first showing up in the video track_iou_threshold: iou threshold, below this number a bbox pair is removed from tracking """ super().__init__(**kwargs) self._video_height = video_height self._video_width = video_width self._max_num_instances = max_num_instances self._max_lost_frame_count = max_lost_frame_count self._min_box_rel_dim = min_box_rel_dim self._min_instance_period = min_instance_period self._track_iou_threshold = track_iou_threshold @classmethod def from_config(cls, cfg: CfgNode_): """ Old style initialization using CfgNode Args: cfg: D2 CfgNode, config file Return: dictionary storing arguments for __init__ method """ assert "VIDEO_HEIGHT" in cfg.TRACKER_HEADS assert "VIDEO_WIDTH" in cfg.TRACKER_HEADS video_height = cfg.TRACKER_HEADS.get("VIDEO_HEIGHT") video_width = cfg.TRACKER_HEADS.get("VIDEO_WIDTH") max_num_instances = cfg.TRACKER_HEADS.get("MAX_NUM_INSTANCES", 200) max_lost_frame_count = cfg.TRACKER_HEADS.get("MAX_LOST_FRAME_COUNT", 0) min_box_rel_dim = cfg.TRACKER_HEADS.get("MIN_BOX_REL_DIM", 0.02) min_instance_period = cfg.TRACKER_HEADS.get("MIN_INSTANCE_PERIOD", 1) track_iou_threshold = cfg.TRACKER_HEADS.get("TRACK_IOU_THRESHOLD", 0.5) return { "_target_": "detectron2.tracking.bbox_iou_tracker.BBoxIOUTracker", "video_height": video_height, "video_width": video_width, "max_num_instances": max_num_instances, "max_lost_frame_count": max_lost_frame_count, "min_box_rel_dim": min_box_rel_dim, "min_instance_period": min_instance_period, "track_iou_threshold": track_iou_threshold } def update(self, instances: Instances) -> Instances: """ See BaseTracker description """ if instances.has("pred_keypoints"): raise NotImplementedError("Need to add support for keypoints") instances = self._initialize_extra_fields(instances) if self._prev_instances is not None: # calculate IoU of all bbox pairs iou_all = pairwise_iou( boxes1=instances.pred_boxes, boxes2=self._prev_instances.pred_boxes, ) # sort IoU in descending order bbox_pairs = self._create_prediction_pairs(instances, iou_all) # assign previous ID to current bbox if IoU > track_iou_threshold self._reset_fields() for bbox_pair in bbox_pairs: idx = bbox_pair["idx"] prev_id = bbox_pair["prev_id"] if idx in self._matched_idx \ or prev_id in self._matched_ID \ or bbox_pair["IoU"] < self._track_iou_threshold: continue instances.ID[idx] = prev_id instances.ID_period[idx] = bbox_pair["prev_period"] + 1 instances.lost_frame_count[idx] = 0 self._matched_idx.add(idx) self._matched_ID.add(prev_id) self._untracked_prev_idx.remove(bbox_pair["prev_idx"]) instances = self._assign_new_id(instances) instances = self._merge_untracked_instances(instances) self._prev_instances = copy.deepcopy(instances) return instances def _create_prediction_pairs( self, instances: Instances, iou_all: np.ndarray ) -> List: """ For all instances in previous and current frames, create pairs. For each pair, store index of the instance in current frame predcitions, index in previous predictions, ID in previous predictions, IoU of the bboxes in this pair, period in previous predictions. Args: instances: D2 Instances, for predictions of the current frame iou_all: IoU for all bboxes pairs Return: A list of IoU for all pairs """ bbox_pairs = [] for i in range(len(instances)): for j in range(len(self._prev_instances)): bbox_pairs.append( { "idx": i, "prev_idx": j, "prev_id": self._prev_instances.ID[j], "IoU": iou_all[i, j], "prev_period": self._prev_instances.ID_period[j], } ) return bbox_pairs def _initialize_extra_fields(self, instances: Instances) -> Instances: """ If input instances don't have ID, ID_period, lost_frame_count fields, this method is used to initialize these fields. Args: instances: D2 Instances, for predictions of the current frame Return: D2 Instances with extra fields added """ if not instances.has("ID"): instances.set("ID", [None] * len(instances)) if not instances.has("ID_period"): instances.set("ID_period", [None] * len(instances)) if not instances.has("lost_frame_count"): instances.set("lost_frame_count", [None] * len(instances)) if self._prev_instances is None: instances.ID = list(range(len(instances))) self._id_count += len(instances) instances.ID_period = [1] * len(instances) instances.lost_frame_count = [0] * len(instances) return instances def _reset_fields(self): """ Before each uodate call, reset fields first """ self._matched_idx = set() self._matched_ID = set() self._untracked_prev_idx = set(range(len(self._prev_instances))) def _assign_new_id(self, instances: Instances) -> Instances: """<fim_suffix> untracked_idx = set(range(len(instances))).difference(self._matched_idx) for idx in untracked_idx: instances.ID[idx] = self._id_count self._id_count += 1 instances.ID_period[idx] = 1 instances.lost_frame_count[idx] = 0 return instances def _merge_untracked_instances(self, instances: Instances) -> Instances: """ For untracked previous instances, under certain condition, still keep them in tracking and merge with the current instances. Args: instances: D2 Instances, for predictions of the current frame Return: D2 Instances merging current instances and instances from previous frame decided to keep tracking """ untracked_instances = Instances( image_size=instances.image_size, pred_boxes=[], pred_masks=[], pred_classes=[], scores=[], ID=[], ID_period=[], lost_frame_count=[], ) prev_bboxes = list(self._prev_instances.pred_boxes) prev_classes = list(self._prev_instances.pred_classes) prev_scores = list(self._prev_instances.scores) prev_ID_period = self._prev_instances.ID_period if instances.has("pred_masks"): prev_masks = list(self._prev_instances.pred_masks) for idx in self._untracked_prev_idx: x_left, y_top, x_right, y_bot = prev_bboxes[idx] if ( (1.0 * (x_right - x_left) / self._video_width < self._min_box_rel_dim) or (1.0 * (y_bot - y_top) / self._video_height < self._min_box_rel_dim) or self._prev_instances.lost_frame_count[idx] >= self._max_lost_frame_count or prev_ID_period[idx] <= self._min_instance_period ): continue untracked_instances.pred_boxes.append(list(prev_bboxes[idx].numpy())) untracked_instances.pred_classes.append(int(prev_classes[idx])) untracked_instances.scores.append(float(prev_scores[idx])) untracked_instances.ID.append(self._prev_instances.ID[idx]) untracked_instances.ID_period.append(self._prev_instances.ID_period[idx]) untracked_instances.lost_frame_count.append( self._prev_instances.lost_frame_count[idx] + 1 ) if instances.has("pred_masks"): untracked_instances.pred_masks.append(prev_masks[idx].numpy().astype(np.uint8)) untracked_instances.pred_boxes = Boxes(torch.FloatTensor(untracked_instances.pred_boxes)) untracked_instances.pred_classes = torch.IntTensor(untracked_instances.pred_classes) untracked_instances.scores = torch.FloatTensor(untracked_instances.scores) if instances.has("pred_masks"): untracked_instances.pred_masks = torch.IntTensor(untracked_instances.pred_masks) else: untracked_instances.remove("pred_masks") return Instances.cat( [ instances, untracked_instances, ] ) <fim_middle> For each untracked instance, assign a new id Args: instances: D2 Instances, for predictions of the current frame Return: D2 Instances with new ID assigned """
For each untracked instance, assign a new id Args: instances: D2 Instances, for predictions of the current frame Return: D2 Instances with new ID assigned """
BLOCK_COMMENT
prefix_suffix_full_complete_current_block_with_evidence
<filename>UniRef/detectron2/structures/masks.py<fim_prefix># Copyright (c) Facebook, Inc. and its affiliates. import copy import itertools import numpy as np from typing import Any, Iterator, List, Union import pycocotools.mask as mask_util import torch from torch import device from detectron2.layers.roi_align import ROIAlign from detectron2.utils.memory import retry_if_cuda_oom from .boxes import Boxes def polygon_area(x, y): # Using the shoelace formula # https://stackoverflow.com/questions/24467972/calculate-area-of-polygon-given-x-y-coordinates return 0.5 * np.abs(np.dot(x, np.roll(y, 1)) - np.dot(y, np.roll(x, 1))) def polygons_to_bitmask(polygons: List[np.ndarray], height: int, width: int) -> np.ndarray: """ Args: polygons (list[ndarray]): each array has shape (Nx2,) height, width (int) Returns: ndarray: a bool mask of shape (height, width) """ if len(polygons) == 0: # COCOAPI does not support empty polygons return np.zeros((height, width)).astype(np.bool) rles = mask_util.frPyObjects(polygons, height, width) rle = mask_util.merge(rles) return mask_util.decode(rle).astype(np.bool) def rasterize_polygons_within_box( polygons: List[np.ndarray], box: np.ndarray, mask_size: int ) -> torch.Tensor: """ Rasterize the polygons into a mask image and crop the mask content in the given box. The cropped mask is resized to (mask_size, mask_size). This function is used when generating training targets for mask head in Mask R-CNN. Given original ground-truth masks for an image, new ground-truth mask training targets in the size of `mask_size x mask_size` must be provided for each predicted box. This function will be called to produce such targets. Args: polygons (list[ndarray[float]]): a list of polygons, which represents an instance. box: 4-element numpy array mask_size (int): Returns: Tensor: BoolTensor of shape (mask_size, mask_size) """ # 1. Shift the polygons w.r.t the boxes w, h = box[2] - box[0], box[3] - box[1] polygons = copy.deepcopy(polygons) for p in polygons: p[0::2] = p[0::2] - box[0] p[1::2] = p[1::2] - box[1] # 2. Rescale the polygons to the new box size # max() to avoid division by small number ratio_h = mask_size / max(h, 0.1) ratio_w = mask_size / max(w, 0.1) if ratio_h == ratio_w: for p in polygons: p *= ratio_h else: for p in polygons: p[0::2] *= ratio_w p[1::2] *= ratio_h # 3. Rasterize the polygons with coco api mask = polygons_to_bitmask(polygons, mask_size, mask_size) mask = torch.from_numpy(mask) return mask class BitMasks: """ This class stores the segmentation masks for all objects in one image, in the form of bitmaps. Attributes: tensor: bool Tensor of N,H,W, representing N instances in the image. """ def __init__(self, tensor: Union[torch.Tensor, np.ndarray]): """ Args: tensor: bool Tensor of N,H,W, representing N instances in the image. """ device = tensor.device if isinstance(tensor, torch.Tensor) else torch.device("cpu") tensor = torch.as_tensor(tensor, dtype=torch.bool, device=device) assert tensor.dim() == 3, tensor.size() self.image_size = tensor.shape[1:] self.tensor = tensor @torch.jit.unused def to(self, *args: Any, **kwargs: Any) -> "BitMasks": return BitMasks(self.tensor.to(*args, **kwargs)) @property def device(self) -> torch.device: return self.tensor.device @torch.jit.unused def __getitem__(self, item: Union[int, slice, torch.BoolTensor]) -> "BitMasks": """ Returns: BitMasks: Create a new :class:`BitMasks` by indexing. The following usage are allowed: 1. `new_masks = masks[3]`: return a `BitMasks` which contains only one mask. 2. `new_masks = masks[2:10]`: return a slice of masks. 3. `new_masks = masks[vector]`, where vector is a torch.BoolTensor with `length = len(masks)`. Nonzero elements in the vector will be selected. Note that the returned object might share storage with this object, subject to Pytorch's indexing semantics. """ if isinstance(item, int): return BitMasks(self.tensor[item].unsqueeze(0)) m = self.tensor[item] assert m.dim() == 3, "Indexing on BitMasks with {} returns a tensor with shape {}!".format( item, m.shape ) return BitMasks(m) @torch.jit.unused def __iter__(self) -> torch.Tensor: yield from self.tensor @torch.jit.unused def __repr__(self) -> str: s = self.__class__.__name__ + "(" s += "num_instances={})".format(len(self.tensor)) return s def __len__(self) -> int: return self.tensor.shape[0] def nonempty(self) -> torch.Tensor: """ Find masks that are non-empty. Returns: Tensor: a BoolTensor which represents whether each mask is empty (False) or non-empty (True). """ return self.tensor.flatten(1).any(dim=1) @staticmethod def from_polygon_masks( polygon_masks: Union["PolygonMasks", List[List[np.ndarray]]], height: int, width: int ) -> "BitMasks": """ Args: polygon_masks (list[list[ndarray]] or PolygonMasks) height, width (int) """ if isinstance(polygon_masks, PolygonMasks): polygon_masks = polygon_masks.polygons masks = [polygons_to_bitmask(p, height, width) for p in polygon_masks] if len(masks): return BitMasks(torch.stack([torch.from_numpy(x) for x in masks])) else: return BitMasks(torch.empty(0, height, width, dtype=torch.bool)) @staticmethod def from_roi_masks(roi_masks: "ROIMasks", height: int, width: int) -> "BitMasks": """ Args: roi_masks: height, width (int): """ return roi_masks.to_bitmasks(height, width) def crop_and_resize(self, boxes: torch.Tensor, mask_size: int) -> torch.Tensor: """ Crop each bitmask by the given box, and resize results to (mask_size, mask_size). This can be used to prepare training targets for Mask R-CNN. It has less reconstruction error compared to rasterization with polygons. However we observe no difference in accuracy, but BitMasks requires more memory to store all the masks. Args: boxes (Tensor): Nx4 tensor storing the boxes for each mask mask_size (int): the size of the rasterized mask. Returns: Tensor: A bool tensor of shape (N, mask_size, mask_size), where N is the number of predicted boxes for this image. """ assert len(boxes) == len(self), "{} != {}".format(len(boxes), len(self)) device = self.tensor.device batch_inds = torch.arange(len(boxes), device=device).to(dtype=boxes.dtype)[:, None] rois = torch.cat([batch_inds, boxes], dim=1) # Nx5 bit_masks = self.tensor.to(dtype=torch.float32) rois = rois.to(device=device) output = ( ROIAlign((mask_size, mask_size), 1.0, 0, aligned=True) .forward(bit_masks[:, None, :, :], rois) .squeeze(1) ) output = output >= 0.5 return output def get_bounding_boxes(self) -> Boxes: """<fim_suffix> boxes = torch.zeros(self.tensor.shape[0], 4, dtype=torch.float32) x_any = torch.any(self.tensor, dim=1) y_any = torch.any(self.tensor, dim=2) for idx in range(self.tensor.shape[0]): x = torch.where(x_any[idx, :])[0] y = torch.where(y_any[idx, :])[0] if len(x) > 0 and len(y) > 0: boxes[idx, :] = torch.as_tensor( [x[0], y[0], x[-1] + 1, y[-1] + 1], dtype=torch.float32 ) return Boxes(boxes) @staticmethod def cat(bitmasks_list: List["BitMasks"]) -> "BitMasks": """ Concatenates a list of BitMasks into a single BitMasks Arguments: bitmasks_list (list[BitMasks]) Returns: BitMasks: the concatenated BitMasks """ assert isinstance(bitmasks_list, (list, tuple)) assert len(bitmasks_list) > 0 assert all(isinstance(bitmask, BitMasks) for bitmask in bitmasks_list) cat_bitmasks = type(bitmasks_list[0])(torch.cat([bm.tensor for bm in bitmasks_list], dim=0)) return cat_bitmasks class PolygonMasks: """ This class stores the segmentation masks for all objects in one image, in the form of polygons. Attributes: polygons: list[list[ndarray]]. Each ndarray is a float64 vector representing a polygon. """ def __init__(self, polygons: List[List[Union[torch.Tensor, np.ndarray]]]): """ Arguments: polygons (list[list[np.ndarray]]): The first level of the list correspond to individual instances, the second level to all the polygons that compose the instance, and the third level to the polygon coordinates. The third level array should have the format of [x0, y0, x1, y1, ..., xn, yn] (n >= 3). """ if not isinstance(polygons, list): raise ValueError( "Cannot create PolygonMasks: Expect a list of list of polygons per image. " "Got '{}' instead.".format(type(polygons)) ) def _make_array(t: Union[torch.Tensor, np.ndarray]) -> np.ndarray: # Use float64 for higher precision, because why not? # Always put polygons on CPU (self.to is a no-op) since they # are supposed to be small tensors. # May need to change this assumption if GPU placement becomes useful if isinstance(t, torch.Tensor): t = t.cpu().numpy() return np.asarray(t).astype("float64") def process_polygons( polygons_per_instance: List[Union[torch.Tensor, np.ndarray]] ) -> List[np.ndarray]: if not isinstance(polygons_per_instance, list): raise ValueError( "Cannot create polygons: Expect a list of polygons per instance. " "Got '{}' instead.".format(type(polygons_per_instance)) ) # transform each polygon to a numpy array polygons_per_instance = [_make_array(p) for p in polygons_per_instance] for polygon in polygons_per_instance: if len(polygon) % 2 != 0 or len(polygon) < 6: raise ValueError(f"Cannot create a polygon from {len(polygon)} coordinates.") return polygons_per_instance self.polygons: List[List[np.ndarray]] = [ process_polygons(polygons_per_instance) for polygons_per_instance in polygons ] def to(self, *args: Any, **kwargs: Any) -> "PolygonMasks": return self @property def device(self) -> torch.device: return torch.device("cpu") def get_bounding_boxes(self) -> Boxes: """ Returns: Boxes: tight bounding boxes around polygon masks. """ boxes = torch.zeros(len(self.polygons), 4, dtype=torch.float32) for idx, polygons_per_instance in enumerate(self.polygons): minxy = torch.as_tensor([float("inf"), float("inf")], dtype=torch.float32) maxxy = torch.zeros(2, dtype=torch.float32) for polygon in polygons_per_instance: coords = torch.from_numpy(polygon).view(-1, 2).to(dtype=torch.float32) minxy = torch.min(minxy, torch.min(coords, dim=0).values) maxxy = torch.max(maxxy, torch.max(coords, dim=0).values) boxes[idx, :2] = minxy boxes[idx, 2:] = maxxy return Boxes(boxes) def nonempty(self) -> torch.Tensor: """ Find masks that are non-empty. Returns: Tensor: a BoolTensor which represents whether each mask is empty (False) or not (True). """ keep = [1 if len(polygon) > 0 else 0 for polygon in self.polygons] return torch.from_numpy(np.asarray(keep, dtype=np.bool)) def __getitem__(self, item: Union[int, slice, List[int], torch.BoolTensor]) -> "PolygonMasks": """ Support indexing over the instances and return a `PolygonMasks` object. `item` can be: 1. An integer. It will return an object with only one instance. 2. A slice. It will return an object with the selected instances. 3. A list[int]. It will return an object with the selected instances, correpsonding to the indices in the list. 4. A vector mask of type BoolTensor, whose length is num_instances. It will return an object with the instances whose mask is nonzero. """ if isinstance(item, int): selected_polygons = [self.polygons[item]] elif isinstance(item, slice): selected_polygons = self.polygons[item] elif isinstance(item, list): selected_polygons = [self.polygons[i] for i in item] elif isinstance(item, torch.Tensor): # Polygons is a list, so we have to move the indices back to CPU. if item.dtype == torch.bool: assert item.dim() == 1, item.shape item = item.nonzero().squeeze(1).cpu().numpy().tolist() elif item.dtype in [torch.int32, torch.int64]: item = item.cpu().numpy().tolist() else: raise ValueError("Unsupported tensor dtype={} for indexing!".format(item.dtype)) selected_polygons = [self.polygons[i] for i in item] return PolygonMasks(selected_polygons) def __iter__(self) -> Iterator[List[np.ndarray]]: """ Yields: list[ndarray]: the polygons for one instance. Each Tensor is a float64 vector representing a polygon. """ return iter(self.polygons) def __repr__(self) -> str: s = self.__class__.__name__ + "(" s += "num_instances={})".format(len(self.polygons)) return s def __len__(self) -> int: return len(self.polygons) def crop_and_resize(self, boxes: torch.Tensor, mask_size: int) -> torch.Tensor: """ Crop each mask by the given box, and resize results to (mask_size, mask_size). This can be used to prepare training targets for Mask R-CNN. Args: boxes (Tensor): Nx4 tensor storing the boxes for each mask mask_size (int): the size of the rasterized mask. Returns: Tensor: A bool tensor of shape (N, mask_size, mask_size), where N is the number of predicted boxes for this image. """ assert len(boxes) == len(self), "{} != {}".format(len(boxes), len(self)) device = boxes.device # Put boxes on the CPU, as the polygon representation is not efficient GPU-wise # (several small tensors for representing a single instance mask) boxes = boxes.to(torch.device("cpu")) results = [ rasterize_polygons_within_box(poly, box.numpy(), mask_size) for poly, box in zip(self.polygons, boxes) ] """ poly: list[list[float]], the polygons for one instance box: a tensor of shape (4,) """ if len(results) == 0: return torch.empty(0, mask_size, mask_size, dtype=torch.bool, device=device) return torch.stack(results, dim=0).to(device=device) def area(self): """ Computes area of the mask. Only works with Polygons, using the shoelace formula: https://stackoverflow.com/questions/24467972/calculate-area-of-polygon-given-x-y-coordinates Returns: Tensor: a vector, area for each instance """ area = [] for polygons_per_instance in self.polygons: area_per_instance = 0 for p in polygons_per_instance: area_per_instance += polygon_area(p[0::2], p[1::2]) area.append(area_per_instance) return torch.tensor(area) @staticmethod def cat(polymasks_list: List["PolygonMasks"]) -> "PolygonMasks": """ Concatenates a list of PolygonMasks into a single PolygonMasks Arguments: polymasks_list (list[PolygonMasks]) Returns: PolygonMasks: the concatenated PolygonMasks """ assert isinstance(polymasks_list, (list, tuple)) assert len(polymasks_list) > 0 assert all(isinstance(polymask, PolygonMasks) for polymask in polymasks_list) cat_polymasks = type(polymasks_list[0])( list(itertools.chain.from_iterable(pm.polygons for pm in polymasks_list)) ) return cat_polymasks class ROIMasks: """ Represent masks by N smaller masks defined in some ROIs. Once ROI boxes are given, full-image bitmask can be obtained by "pasting" the mask on the region defined by the corresponding ROI box. """ def __init__(self, tensor: torch.Tensor): """ Args: tensor: (N, M, M) mask tensor that defines the mask within each ROI. """ if tensor.dim() != 3: raise ValueError("ROIMasks must take a masks of 3 dimension.") self.tensor = tensor def to(self, device: torch.device) -> "ROIMasks": return ROIMasks(self.tensor.to(device)) @property def device(self) -> device: return self.tensor.device def __len__(self): return self.tensor.shape[0] def __getitem__(self, item) -> "ROIMasks": """ Returns: ROIMasks: Create a new :class:`ROIMasks` by indexing. The following usage are allowed: 1. `new_masks = masks[2:10]`: return a slice of masks. 2. `new_masks = masks[vector]`, where vector is a torch.BoolTensor with `length = len(masks)`. Nonzero elements in the vector will be selected. Note that the returned object might share storage with this object, subject to Pytorch's indexing semantics. """ t = self.tensor[item] if t.dim() != 3: raise ValueError( f"Indexing on ROIMasks with {item} returns a tensor with shape {t.shape}!" ) return ROIMasks(t) @torch.jit.unused def __repr__(self) -> str: s = self.__class__.__name__ + "(" s += "num_instances={})".format(len(self.tensor)) return s @torch.jit.unused def to_bitmasks(self, boxes: torch.Tensor, height, width, threshold=0.5): """ Args: see documentation of :func:`paste_masks_in_image`. """ from detectron2.layers.mask_ops import paste_masks_in_image, _paste_masks_tensor_shape if torch.jit.is_tracing(): if isinstance(height, torch.Tensor): paste_func = _paste_masks_tensor_shape else: paste_func = paste_masks_in_image else: paste_func = retry_if_cuda_oom(paste_masks_in_image) bitmasks = paste_func(self.tensor, boxes.tensor, (height, width), threshold=threshold) return BitMasks(bitmasks) <fim_middle> Returns: Boxes: tight bounding boxes around bitmasks. If a mask is empty, it's bounding box will be all zero. """
Returns: Boxes: tight bounding boxes around bitmasks. If a mask is empty, it's bounding box will be all zero. """
BLOCK_COMMENT
prefix_suffix_full_complete_current_block_with_evidence
<filename>UniRef/detectron2/tracking/bbox_iou_tracker.py<fim_prefix>#!/usr/bin/env python3 # Copyright 2004-present Facebook. All Rights Reserved. import copy from typing import List import numpy as np import torch from detectron2.config import configurable from detectron2.structures import Boxes, Instances from detectron2.structures.boxes import pairwise_iou from ..config.config import CfgNode as CfgNode_ from .base_tracker import BaseTracker, TRACKER_HEADS_REGISTRY @TRACKER_HEADS_REGISTRY.register() class BBoxIOUTracker(BaseTracker): """ A bounding box tracker to assign ID based on IoU between current and previous instances """ @configurable def __init__( self, *, video_height: int, video_width: int, max_num_instances: int = 200, max_lost_frame_count: int = 0, min_box_rel_dim: float = 0.02, min_instance_period: int = 1, track_iou_threshold: float = 0.5, **kwargs ): """ Args: video_height: height the video frame video_width: width of the video frame max_num_instances: maximum number of id allowed to be tracked max_lost_frame_count: maximum number of frame an id can lost tracking exceed this number, an id is considered as lost forever min_box_rel_dim: a percentage, smaller than this dimension, a bbox is removed from tracking min_instance_period: an instance will be shown after this number of period since its first showing up in the video track_iou_threshold: iou threshold, below this number a bbox pair is removed from tracking """ super().__init__(**kwargs) self._video_height = video_height self._video_width = video_width self._max_num_instances = max_num_instances self._max_lost_frame_count = max_lost_frame_count self._min_box_rel_dim = min_box_rel_dim self._min_instance_period = min_instance_period self._track_iou_threshold = track_iou_threshold @classmethod def from_config(cls, cfg: CfgNode_): """ Old style initialization using CfgNode Args: cfg: D2 CfgNode, config file Return: dictionary storing arguments for __init__ method """ assert "VIDEO_HEIGHT" in cfg.TRACKER_HEADS assert "VIDEO_WIDTH" in cfg.TRACKER_HEADS video_height = cfg.TRACKER_HEADS.get("VIDEO_HEIGHT") video_width = cfg.TRACKER_HEADS.get("VIDEO_WIDTH") max_num_instances = cfg.TRACKER_HEADS.get("MAX_NUM_INSTANCES", 200) max_lost_frame_count = cfg.TRACKER_HEADS.get("MAX_LOST_FRAME_COUNT", 0) min_box_rel_dim = cfg.TRACKER_HEADS.get("MIN_BOX_REL_DIM", 0.02) min_instance_period = cfg.TRACKER_HEADS.get("MIN_INSTANCE_PERIOD", 1) track_iou_threshold = cfg.TRACKER_HEADS.get("TRACK_IOU_THRESHOLD", 0.5) return { "_target_": "detectron2.tracking.bbox_iou_tracker.BBoxIOUTracker", "video_height": video_height, "video_width": video_width, "max_num_instances": max_num_instances, "max_lost_frame_count": max_lost_frame_count, "min_box_rel_dim": min_box_rel_dim, "min_instance_period": min_instance_period, "track_iou_threshold": track_iou_threshold } def update(self, instances: Instances) -> Instances: """ See BaseTracker description """ if instances.has("pred_keypoints"): raise NotImplementedError("Need to add support for keypoints") instances = self._initialize_extra_fields(instances) if self._prev_instances is not None: # calculate IoU of all bbox pairs iou_all = pairwise_iou( boxes1=instances.pred_boxes, boxes2=self._prev_instances.pred_boxes, ) # sort IoU in descending order bbox_pairs = self._create_prediction_pairs(instances, iou_all) # assign previous ID to current bbox if IoU > track_iou_threshold self._reset_fields() for bbox_pair in bbox_pairs: idx = bbox_pair["idx"] prev_id = bbox_pair["prev_id"] if idx in self._matched_idx \ or prev_id in self._matched_ID \ or bbox_pair["IoU"] < self._track_iou_threshold: continue instances.ID[idx] = prev_id instances.ID_period[idx] = bbox_pair["prev_period"] + 1 instances.lost_frame_count[idx] = 0 self._matched_idx.add(idx) self._matched_ID.add(prev_id) self._untracked_prev_idx.remove(bbox_pair["prev_idx"]) instances = self._assign_new_id(instances) instances = self._merge_untracked_instances(instances) self._prev_instances = copy.deepcopy(instances) return instances def _create_prediction_pairs( self, instances: Instances, iou_all: np.ndarray ) -> List: """ For all instances in previous and current frames, create pairs. For each pair, store index of the instance in current frame predcitions, index in previous predictions, ID in previous predictions, IoU of the bboxes in this pair, period in previous predictions. Args: instances: D2 Instances, for predictions of the current frame iou_all: IoU for all bboxes pairs Return: A list of IoU for all pairs """ bbox_pairs = [] for i in range(len(instances)): for j in range(len(self._prev_instances)): bbox_pairs.append( { "idx": i, "prev_idx": j, "prev_id": self._prev_instances.ID[j], "IoU": iou_all[i, j], "prev_period": self._prev_instances.ID_period[j], } ) return bbox_pairs def _initialize_extra_fields(self, instances: Instances) -> Instances: """ If input instances don't have ID, ID_period, lost_frame_count fields, this method is used to initialize these fields. Args: instances: D2 Instances, for predictions of the current frame Return: D2 Instances with extra fields added """ if not instances.has("ID"): instances.set("ID", [None] * len(instances)) if not instances.has("ID_period"): instances.set("ID_period", [None] * len(instances)) if not instances.has("lost_frame_count"): instances.set("lost_frame_count", [None] * len(instances)) if self._prev_instances is None: instances.ID = list(range(len(instances))) self._id_count += len(instances) instances.ID_period = [1] * len(instances) instances.lost_frame_count = [0] * len(instances) return instances def _reset_fields(self): """<fim_suffix> self._matched_idx = set() self._matched_ID = set() self._untracked_prev_idx = set(range(len(self._prev_instances))) def _assign_new_id(self, instances: Instances) -> Instances: """ For each untracked instance, assign a new id Args: instances: D2 Instances, for predictions of the current frame Return: D2 Instances with new ID assigned """ untracked_idx = set(range(len(instances))).difference(self._matched_idx) for idx in untracked_idx: instances.ID[idx] = self._id_count self._id_count += 1 instances.ID_period[idx] = 1 instances.lost_frame_count[idx] = 0 return instances def _merge_untracked_instances(self, instances: Instances) -> Instances: """ For untracked previous instances, under certain condition, still keep them in tracking and merge with the current instances. Args: instances: D2 Instances, for predictions of the current frame Return: D2 Instances merging current instances and instances from previous frame decided to keep tracking """ untracked_instances = Instances( image_size=instances.image_size, pred_boxes=[], pred_masks=[], pred_classes=[], scores=[], ID=[], ID_period=[], lost_frame_count=[], ) prev_bboxes = list(self._prev_instances.pred_boxes) prev_classes = list(self._prev_instances.pred_classes) prev_scores = list(self._prev_instances.scores) prev_ID_period = self._prev_instances.ID_period if instances.has("pred_masks"): prev_masks = list(self._prev_instances.pred_masks) for idx in self._untracked_prev_idx: x_left, y_top, x_right, y_bot = prev_bboxes[idx] if ( (1.0 * (x_right - x_left) / self._video_width < self._min_box_rel_dim) or (1.0 * (y_bot - y_top) / self._video_height < self._min_box_rel_dim) or self._prev_instances.lost_frame_count[idx] >= self._max_lost_frame_count or prev_ID_period[idx] <= self._min_instance_period ): continue untracked_instances.pred_boxes.append(list(prev_bboxes[idx].numpy())) untracked_instances.pred_classes.append(int(prev_classes[idx])) untracked_instances.scores.append(float(prev_scores[idx])) untracked_instances.ID.append(self._prev_instances.ID[idx]) untracked_instances.ID_period.append(self._prev_instances.ID_period[idx]) untracked_instances.lost_frame_count.append( self._prev_instances.lost_frame_count[idx] + 1 ) if instances.has("pred_masks"): untracked_instances.pred_masks.append(prev_masks[idx].numpy().astype(np.uint8)) untracked_instances.pred_boxes = Boxes(torch.FloatTensor(untracked_instances.pred_boxes)) untracked_instances.pred_classes = torch.IntTensor(untracked_instances.pred_classes) untracked_instances.scores = torch.FloatTensor(untracked_instances.scores) if instances.has("pred_masks"): untracked_instances.pred_masks = torch.IntTensor(untracked_instances.pred_masks) else: untracked_instances.remove("pred_masks") return Instances.cat( [ instances, untracked_instances, ] ) <fim_middle> Before each uodate call, reset fields first """
Before each uodate call, reset fields first """
BLOCK_COMMENT
prefix_suffix_full_complete_current_block_with_evidence
<filename>UniRef/detectron2/structures/boxes.py<fim_prefix># Copyright (c) Facebook, Inc. and its affiliates. import math import numpy as np from enum import IntEnum, unique from typing import List, Tuple, Union import torch from torch import device _RawBoxType = Union[List[float], Tuple[float, ...], torch.Tensor, np.ndarray] @unique class BoxMode(IntEnum): """ Enum of different ways to represent a box. """ XYXY_ABS = 0 """ (x0, y0, x1, y1) in absolute floating points coordinates. The coordinates in range [0, width or height]. """ XYWH_ABS = 1 """ (x0, y0, w, h) in absolute floating points coordinates. """ XYXY_REL = 2 """ Not yet supported! (x0, y0, x1, y1) in range [0, 1]. They are relative to the size of the image. """ XYWH_REL = 3 """ Not yet supported! (x0, y0, w, h) in range [0, 1]. They are relative to the size of the image. """ XYWHA_ABS = 4 """ (xc, yc, w, h, a) in absolute floating points coordinates. (xc, yc) is the center of the rotated box, and the angle a is in degrees ccw. """ @staticmethod def convert(box: _RawBoxType, from_mode: "BoxMode", to_mode: "BoxMode") -> _RawBoxType: """ Args: box: can be a k-tuple, k-list or an Nxk array/tensor, where k = 4 or 5 from_mode, to_mode (BoxMode) Returns: The converted box of the same type. """ if from_mode == to_mode: return box original_type = type(box) is_numpy = isinstance(box, np.ndarray) single_box = isinstance(box, (list, tuple)) if single_box: assert len(box) == 4 or len(box) == 5, ( "BoxMode.convert takes either a k-tuple/list or an Nxk array/tensor," " where k == 4 or 5" ) arr = torch.tensor(box)[None, :] else: # avoid modifying the input box if is_numpy: arr = torch.from_numpy(np.asarray(box)).clone() else: arr = box.clone() assert to_mode not in [BoxMode.XYXY_REL, BoxMode.XYWH_REL] and from_mode not in [ BoxMode.XYXY_REL, BoxMode.XYWH_REL, ], "Relative mode not yet supported!" if from_mode == BoxMode.XYWHA_ABS and to_mode == BoxMode.XYXY_ABS: assert ( arr.shape[-1] == 5 ), "The last dimension of input shape must be 5 for XYWHA format" original_dtype = arr.dtype arr = arr.double() w = arr[:, 2] h = arr[:, 3] a = arr[:, 4] c = torch.abs(torch.cos(a * math.pi / 180.0)) s = torch.abs(torch.sin(a * math.pi / 180.0)) # This basically computes the horizontal bounding rectangle of the rotated box new_w = c * w + s * h new_h = c * h + s * w # convert center to top-left corner arr[:, 0] -= new_w / 2.0 arr[:, 1] -= new_h / 2.0 # bottom-right corner arr[:, 2] = arr[:, 0] + new_w arr[:, 3] = arr[:, 1] + new_h arr = arr[:, :4].to(dtype=original_dtype) elif from_mode == BoxMode.XYWH_ABS and to_mode == BoxMode.XYWHA_ABS: original_dtype = arr.dtype arr = arr.double() arr[:, 0] += arr[:, 2] / 2.0 arr[:, 1] += arr[:, 3] / 2.0 angles = torch.zeros((arr.shape[0], 1), dtype=arr.dtype) arr = torch.cat((arr, angles), axis=1).to(dtype=original_dtype) else: if to_mode == BoxMode.XYXY_ABS and from_mode == BoxMode.XYWH_ABS: arr[:, 2] += arr[:, 0] arr[:, 3] += arr[:, 1] elif from_mode == BoxMode.XYXY_ABS and to_mode == BoxMode.XYWH_ABS: arr[:, 2] -= arr[:, 0] arr[:, 3] -= arr[:, 1] else: raise NotImplementedError( "Conversion from BoxMode {} to {} is not supported yet".format( from_mode, to_mode ) ) if single_box: return original_type(arr.flatten().tolist()) if is_numpy: return arr.numpy() else: return arr class Boxes: """ This structure stores a list of boxes as a Nx4 torch.Tensor. It supports some common methods about boxes (`area`, `clip`, `nonempty`, etc), and also behaves like a Tensor (support indexing, `to(device)`, `.device`, and iteration over all boxes) Attributes: tensor (torch.Tensor): float matrix of Nx4. Each row is (x1, y1, x2, y2). """ def __init__(self, tensor: torch.Tensor): """ Args: tensor (Tensor[float]): a Nx4 matrix. Each row is (x1, y1, x2, y2). """ device = tensor.device if isinstance(tensor, torch.Tensor) else torch.device("cpu") tensor = torch.as_tensor(tensor, dtype=torch.float32, device=device) if tensor.numel() == 0: # Use reshape, so we don't end up creating a new tensor that does not depend on # the inputs (and consequently confuses jit) tensor = tensor.reshape((-1, 4)).to(dtype=torch.float32, device=device) assert tensor.dim() == 2 and tensor.size(-1) == 4, tensor.size() self.tensor = tensor def clone(self) -> "Boxes": """ Clone the Boxes. Returns: Boxes """ return Boxes(self.tensor.clone()) def to(self, device: torch.device): # Boxes are assumed float32 and does not support to(dtype) return Boxes(self.tensor.to(device=device)) def area(self) -> torch.Tensor: """ Computes the area of all the boxes. Returns: torch.Tensor: a vector with areas of each box. """ box = self.tensor area = (box[:, 2] - box[:, 0]) * (box[:, 3] - box[:, 1]) return area def clip(self, box_size: Tuple[int, int]) -> None: """ Clip (in place) the boxes by limiting x coordinates to the range [0, width] and y coordinates to the range [0, height]. Args: box_size (height, width): The clipping box's size. """ assert torch.isfinite(self.tensor).all(), "Box tensor contains infinite or NaN!" h, w = box_size x1 = self.tensor[:, 0].clamp(min=0, max=w) y1 = self.tensor[:, 1].clamp(min=0, max=h) x2 = self.tensor[:, 2].clamp(min=0, max=w) y2 = self.tensor[:, 3].clamp(min=0, max=h) self.tensor = torch.stack((x1, y1, x2, y2), dim=-1) def nonempty(self, threshold: float = 0.0) -> torch.Tensor: """ Find boxes that are non-empty. A box is considered empty, if either of its side is no larger than threshold. Returns: Tensor: a binary vector which represents whether each box is empty (False) or non-empty (True). """ box = self.tensor widths = box[:, 2] - box[:, 0] heights = box[:, 3] - box[:, 1] keep = (widths > threshold) & (heights > threshold) return keep def __getitem__(self, item) -> "Boxes": """<fim_suffix> if isinstance(item, int): return Boxes(self.tensor[item].view(1, -1)) b = self.tensor[item] assert b.dim() == 2, "Indexing on Boxes with {} failed to return a matrix!".format(item) return Boxes(b) def __len__(self) -> int: return self.tensor.shape[0] def __repr__(self) -> str: return "Boxes(" + str(self.tensor) + ")" def inside_box(self, box_size: Tuple[int, int], boundary_threshold: int = 0) -> torch.Tensor: """ Args: box_size (height, width): Size of the reference box. boundary_threshold (int): Boxes that extend beyond the reference box boundary by more than boundary_threshold are considered "outside". Returns: a binary vector, indicating whether each box is inside the reference box. """ height, width = box_size inds_inside = ( (self.tensor[..., 0] >= -boundary_threshold) & (self.tensor[..., 1] >= -boundary_threshold) & (self.tensor[..., 2] < width + boundary_threshold) & (self.tensor[..., 3] < height + boundary_threshold) ) return inds_inside def get_centers(self) -> torch.Tensor: """ Returns: The box centers in a Nx2 array of (x, y). """ return (self.tensor[:, :2] + self.tensor[:, 2:]) / 2 def scale(self, scale_x: float, scale_y: float) -> None: """ Scale the box with horizontal and vertical scaling factors """ self.tensor[:, 0::2] *= scale_x self.tensor[:, 1::2] *= scale_y @classmethod def cat(cls, boxes_list: List["Boxes"]) -> "Boxes": """ Concatenates a list of Boxes into a single Boxes Arguments: boxes_list (list[Boxes]) Returns: Boxes: the concatenated Boxes """ assert isinstance(boxes_list, (list, tuple)) if len(boxes_list) == 0: return cls(torch.empty(0)) assert all([isinstance(box, Boxes) for box in boxes_list]) # use torch.cat (v.s. layers.cat) so the returned boxes never share storage with input cat_boxes = cls(torch.cat([b.tensor for b in boxes_list], dim=0)) return cat_boxes @property def device(self) -> device: return self.tensor.device # type "Iterator[torch.Tensor]", yield, and iter() not supported by torchscript # https://github.com/pytorch/pytorch/issues/18627 @torch.jit.unused def __iter__(self): """ Yield a box as a Tensor of shape (4,) at a time. """ yield from self.tensor def pairwise_intersection(boxes1: Boxes, boxes2: Boxes) -> torch.Tensor: """ Given two lists of boxes of size N and M, compute the intersection area between __all__ N x M pairs of boxes. The box order must be (xmin, ymin, xmax, ymax) Args: boxes1,boxes2 (Boxes): two `Boxes`. Contains N & M boxes, respectively. Returns: Tensor: intersection, sized [N,M]. """ boxes1, boxes2 = boxes1.tensor, boxes2.tensor width_height = torch.min(boxes1[:, None, 2:], boxes2[:, 2:]) - torch.max( boxes1[:, None, :2], boxes2[:, :2] ) # [N,M,2] width_height.clamp_(min=0) # [N,M,2] intersection = width_height.prod(dim=2) # [N,M] return intersection # implementation from https://github.com/kuangliu/torchcv/blob/master/torchcv/utils/box.py # with slight modifications def pairwise_iou(boxes1: Boxes, boxes2: Boxes) -> torch.Tensor: """ Given two lists of boxes of size N and M, compute the IoU (intersection over union) between **all** N x M pairs of boxes. The box order must be (xmin, ymin, xmax, ymax). Args: boxes1,boxes2 (Boxes): two `Boxes`. Contains N & M boxes, respectively. Returns: Tensor: IoU, sized [N,M]. """ area1 = boxes1.area() # [N] area2 = boxes2.area() # [M] inter = pairwise_intersection(boxes1, boxes2) # handle empty boxes iou = torch.where( inter > 0, inter / (area1[:, None] + area2 - inter), torch.zeros(1, dtype=inter.dtype, device=inter.device), ) return iou def pairwise_ioa(boxes1: Boxes, boxes2: Boxes) -> torch.Tensor: """ Similar to :func:`pariwise_iou` but compute the IoA (intersection over boxes2 area). Args: boxes1,boxes2 (Boxes): two `Boxes`. Contains N & M boxes, respectively. Returns: Tensor: IoA, sized [N,M]. """ area2 = boxes2.area() # [M] inter = pairwise_intersection(boxes1, boxes2) # handle empty boxes ioa = torch.where( inter > 0, inter / area2, torch.zeros(1, dtype=inter.dtype, device=inter.device) ) return ioa def pairwise_point_box_distance(points: torch.Tensor, boxes: Boxes): """ Pairwise distance between N points and M boxes. The distance between a point and a box is represented by the distance from the point to 4 edges of the box. Distances are all positive when the point is inside the box. Args: points: Nx2 coordinates. Each row is (x, y) boxes: M boxes Returns: Tensor: distances of size (N, M, 4). The 4 values are distances from the point to the left, top, right, bottom of the box. """ x, y = points.unsqueeze(dim=2).unbind(dim=1) # (N, 1) x0, y0, x1, y1 = boxes.tensor.unsqueeze(dim=0).unbind(dim=2) # (1, M) return torch.stack([x - x0, y - y0, x1 - x, y1 - y], dim=2) def matched_pairwise_iou(boxes1: Boxes, boxes2: Boxes) -> torch.Tensor: """ Compute pairwise intersection over union (IOU) of two sets of matched boxes that have the same number of boxes. Similar to :func:`pairwise_iou`, but computes only diagonal elements of the matrix. Args: boxes1 (Boxes): bounding boxes, sized [N,4]. boxes2 (Boxes): same length as boxes1 Returns: Tensor: iou, sized [N]. """ assert len(boxes1) == len( boxes2 ), "boxlists should have the same" "number of entries, got {}, {}".format( len(boxes1), len(boxes2) ) area1 = boxes1.area() # [N] area2 = boxes2.area() # [N] box1, box2 = boxes1.tensor, boxes2.tensor lt = torch.max(box1[:, :2], box2[:, :2]) # [N,2] rb = torch.min(box1[:, 2:], box2[:, 2:]) # [N,2] wh = (rb - lt).clamp(min=0) # [N,2] inter = wh[:, 0] * wh[:, 1] # [N] iou = inter / (area1 + area2 - inter) # [N] return iou <fim_middle> Args: item: int, slice, or a BoolTensor Returns: Boxes: Create a new :class:`Boxes` by indexing. The following usage are allowed: 1. `new_boxes = boxes[3]`: return a `Boxes` which contains only one box. 2. `new_boxes = boxes[2:10]`: return a slice of boxes. 3. `new_boxes = boxes[vector]`, where vector is a torch.BoolTensor with `length = len(boxes)`. Nonzero elements in the vector will be selected. Note that the returned Boxes might share storage with this Boxes, subject to Pytorch's indexing semantics. """
Args: item: int, slice, or a BoolTensor Returns: Boxes: Create a new :class:`Boxes` by indexing. The following usage are allowed: 1. `new_boxes = boxes[3]`: return a `Boxes` which contains only one box. 2. `new_boxes = boxes[2:10]`: return a slice of boxes. 3. `new_boxes = boxes[vector]`, where vector is a torch.BoolTensor with `length = len(boxes)`. Nonzero elements in the vector will be selected. Note that the returned Boxes might share storage with this Boxes, subject to Pytorch's indexing semantics. """
BLOCK_COMMENT
prefix_suffix_full_complete_current_block_with_evidence
<filename>UniRef/detectron2/structures/instances.py<fim_prefix># Copyright (c) Facebook, Inc. and its affiliates. import itertools from typing import Any, Dict, List, Tuple, Union import torch class Instances: """ This class represents a list of instances in an image. It stores the attributes of instances (e.g., boxes, masks, labels, scores) as "fields". All fields must have the same ``__len__`` which is the number of instances. All other (non-field) attributes of this class are considered private: they must start with '_' and are not modifiable by a user. Some basic usage: 1. Set/get/check a field: .. code-block:: python instances.gt_boxes = Boxes(...) print(instances.pred_masks) # a tensor of shape (N, H, W) print('gt_masks' in instances) 2. ``len(instances)`` returns the number of instances 3. Indexing: ``instances[indices]`` will apply the indexing on all the fields and returns a new :class:`Instances`. Typically, ``indices`` is a integer vector of indices, or a binary mask of length ``num_instances`` .. code-block:: python category_3_detections = instances[instances.pred_classes == 3] confident_detections = instances[instances.scores > 0.9] """ def __init__(self, image_size: Tuple[int, int], **kwargs: Any): """<fim_suffix> self._image_size = image_size self._fields: Dict[str, Any] = {} for k, v in kwargs.items(): self.set(k, v) @property def image_size(self) -> Tuple[int, int]: """ Returns: tuple: height, width """ return self._image_size def __setattr__(self, name: str, val: Any) -> None: if name.startswith("_"): super().__setattr__(name, val) else: self.set(name, val) def __getattr__(self, name: str) -> Any: if name == "_fields" or name not in self._fields: raise AttributeError("Cannot find field '{}' in the given Instances!".format(name)) return self._fields[name] def set(self, name: str, value: Any) -> None: """ Set the field named `name` to `value`. The length of `value` must be the number of instances, and must agree with other existing fields in this object. """ data_len = len(value) if len(self._fields): assert ( len(self) == data_len ), "Adding a field of length {} to a Instances of length {}".format(data_len, len(self)) self._fields[name] = value def has(self, name: str) -> bool: """ Returns: bool: whether the field called `name` exists. """ return name in self._fields def remove(self, name: str) -> None: """ Remove the field called `name`. """ del self._fields[name] def get(self, name: str) -> Any: """ Returns the field called `name`. """ return self._fields[name] def get_fields(self) -> Dict[str, Any]: """ Returns: dict: a dict which maps names (str) to data of the fields Modifying the returned dict will modify this instance. """ return self._fields # Tensor-like methods def to(self, *args: Any, **kwargs: Any) -> "Instances": """ Returns: Instances: all fields are called with a `to(device)`, if the field has this method. """ ret = Instances(self._image_size) for k, v in self._fields.items(): if hasattr(v, "to"): v = v.to(*args, **kwargs) ret.set(k, v) return ret def __getitem__(self, item: Union[int, slice, torch.BoolTensor]) -> "Instances": """ Args: item: an index-like object and will be used to index all the fields. Returns: If `item` is a string, return the data in the corresponding field. Otherwise, returns an `Instances` where all fields are indexed by `item`. """ if type(item) == int: if item >= len(self) or item < -len(self): raise IndexError("Instances index out of range!") else: item = slice(item, None, len(self)) ret = Instances(self._image_size) for k, v in self._fields.items(): ret.set(k, v[item]) return ret def __len__(self) -> int: for v in self._fields.values(): # use __len__ because len() has to be int and is not friendly to tracing return v.__len__() raise NotImplementedError("Empty Instances does not support __len__!") def __iter__(self): raise NotImplementedError("`Instances` object is not iterable!") @staticmethod def cat(instance_lists: List["Instances"]) -> "Instances": """ Args: instance_lists (list[Instances]) Returns: Instances """ assert all(isinstance(i, Instances) for i in instance_lists) assert len(instance_lists) > 0 if len(instance_lists) == 1: return instance_lists[0] image_size = instance_lists[0].image_size if not isinstance(image_size, torch.Tensor): # could be a tensor in tracing for i in instance_lists[1:]: assert i.image_size == image_size ret = Instances(image_size) for k in instance_lists[0]._fields.keys(): values = [i.get(k) for i in instance_lists] v0 = values[0] if isinstance(v0, torch.Tensor): values = torch.cat(values, dim=0) elif isinstance(v0, list): values = list(itertools.chain(*values)) elif hasattr(type(v0), "cat"): values = type(v0).cat(values) else: raise ValueError("Unsupported type {} for concatenation".format(type(v0))) ret.set(k, values) return ret def __str__(self) -> str: s = self.__class__.__name__ + "(" s += "num_instances={}, ".format(len(self)) s += "image_height={}, ".format(self._image_size[0]) s += "image_width={}, ".format(self._image_size[1]) s += "fields=[{}])".format(", ".join((f"{k}: {v}" for k, v in self._fields.items()))) return s __repr__ = __str__ <fim_middle> Args: image_size (height, width): the spatial size of the image. kwargs: fields to add to this `Instances`. """
Args: image_size (height, width): the spatial size of the image. kwargs: fields to add to this `Instances`. """
BLOCK_COMMENT
prefix_suffix_full_complete_current_block_with_evidence
<filename>UniRef/detectron2/structures/masks.py<fim_prefix># Copyright (c) Facebook, Inc. and its affiliates. import copy import itertools import numpy as np from typing import Any, Iterator, List, Union import pycocotools.mask as mask_util import torch from torch import device from detectron2.layers.roi_align import ROIAlign from detectron2.utils.memory import retry_if_cuda_oom from .boxes import Boxes def polygon_area(x, y): # Using the shoelace formula # https://stackoverflow.com/questions/24467972/calculate-area-of-polygon-given-x-y-coordinates return 0.5 * np.abs(np.dot(x, np.roll(y, 1)) - np.dot(y, np.roll(x, 1))) def polygons_to_bitmask(polygons: List[np.ndarray], height: int, width: int) -> np.ndarray: """ Args: polygons (list[ndarray]): each array has shape (Nx2,) height, width (int) Returns: ndarray: a bool mask of shape (height, width) """ if len(polygons) == 0: # COCOAPI does not support empty polygons return np.zeros((height, width)).astype(np.bool) rles = mask_util.frPyObjects(polygons, height, width) rle = mask_util.merge(rles) return mask_util.decode(rle).astype(np.bool) def rasterize_polygons_within_box( polygons: List[np.ndarray], box: np.ndarray, mask_size: int ) -> torch.Tensor: """ Rasterize the polygons into a mask image and crop the mask content in the given box. The cropped mask is resized to (mask_size, mask_size). This function is used when generating training targets for mask head in Mask R-CNN. Given original ground-truth masks for an image, new ground-truth mask training targets in the size of `mask_size x mask_size` must be provided for each predicted box. This function will be called to produce such targets. Args: polygons (list[ndarray[float]]): a list of polygons, which represents an instance. box: 4-element numpy array mask_size (int): Returns: Tensor: BoolTensor of shape (mask_size, mask_size) """ # 1. Shift the polygons w.r.t the boxes w, h = box[2] - box[0], box[3] - box[1] polygons = copy.deepcopy(polygons) for p in polygons: p[0::2] = p[0::2] - box[0] p[1::2] = p[1::2] - box[1] # 2. Rescale the polygons to the new box size # max() to avoid division by small number ratio_h = mask_size / max(h, 0.1) ratio_w = mask_size / max(w, 0.1) if ratio_h == ratio_w: for p in polygons: p *= ratio_h else: for p in polygons: p[0::2] *= ratio_w p[1::2] *= ratio_h # 3. Rasterize the polygons with coco api mask = polygons_to_bitmask(polygons, mask_size, mask_size) mask = torch.from_numpy(mask) return mask class BitMasks: """ This class stores the segmentation masks for all objects in one image, in the form of bitmaps. Attributes: tensor: bool Tensor of N,H,W, representing N instances in the image. """ def __init__(self, tensor: Union[torch.Tensor, np.ndarray]): """ Args: tensor: bool Tensor of N,H,W, representing N instances in the image. """ device = tensor.device if isinstance(tensor, torch.Tensor) else torch.device("cpu") tensor = torch.as_tensor(tensor, dtype=torch.bool, device=device) assert tensor.dim() == 3, tensor.size() self.image_size = tensor.shape[1:] self.tensor = tensor @torch.jit.unused def to(self, *args: Any, **kwargs: Any) -> "BitMasks": return BitMasks(self.tensor.to(*args, **kwargs)) @property def device(self) -> torch.device: return self.tensor.device @torch.jit.unused def __getitem__(self, item: Union[int, slice, torch.BoolTensor]) -> "BitMasks": """ Returns: BitMasks: Create a new :class:`BitMasks` by indexing. The following usage are allowed: 1. `new_masks = masks[3]`: return a `BitMasks` which contains only one mask. 2. `new_masks = masks[2:10]`: return a slice of masks. 3. `new_masks = masks[vector]`, where vector is a torch.BoolTensor with `length = len(masks)`. Nonzero elements in the vector will be selected. Note that the returned object might share storage with this object, subject to Pytorch's indexing semantics. """ if isinstance(item, int): return BitMasks(self.tensor[item].unsqueeze(0)) m = self.tensor[item] assert m.dim() == 3, "Indexing on BitMasks with {} returns a tensor with shape {}!".format( item, m.shape ) return BitMasks(m) @torch.jit.unused def __iter__(self) -> torch.Tensor: yield from self.tensor @torch.jit.unused def __repr__(self) -> str: s = self.__class__.__name__ + "(" s += "num_instances={})".format(len(self.tensor)) return s def __len__(self) -> int: return self.tensor.shape[0] def nonempty(self) -> torch.Tensor: """ Find masks that are non-empty. Returns: Tensor: a BoolTensor which represents whether each mask is empty (False) or non-empty (True). """ return self.tensor.flatten(1).any(dim=1) @staticmethod def from_polygon_masks( polygon_masks: Union["PolygonMasks", List[List[np.ndarray]]], height: int, width: int ) -> "BitMasks": """ Args: polygon_masks (list[list[ndarray]] or PolygonMasks) height, width (int) """ if isinstance(polygon_masks, PolygonMasks): polygon_masks = polygon_masks.polygons masks = [polygons_to_bitmask(p, height, width) for p in polygon_masks] if len(masks): return BitMasks(torch.stack([torch.from_numpy(x) for x in masks])) else: return BitMasks(torch.empty(0, height, width, dtype=torch.bool)) @staticmethod def from_roi_masks(roi_masks: "ROIMasks", height: int, width: int) -> "BitMasks": """ Args: roi_masks: height, width (int): """ return roi_masks.to_bitmasks(height, width) def crop_and_resize(self, boxes: torch.Tensor, mask_size: int) -> torch.Tensor: """ Crop each bitmask by the given box, and resize results to (mask_size, mask_size). This can be used to prepare training targets for Mask R-CNN. It has less reconstruction error compared to rasterization with polygons. However we observe no difference in accuracy, but BitMasks requires more memory to store all the masks. Args: boxes (Tensor): Nx4 tensor storing the boxes for each mask mask_size (int): the size of the rasterized mask. Returns: Tensor: A bool tensor of shape (N, mask_size, mask_size), where N is the number of predicted boxes for this image. """ assert len(boxes) == len(self), "{} != {}".format(len(boxes), len(self)) device = self.tensor.device batch_inds = torch.arange(len(boxes), device=device).to(dtype=boxes.dtype)[:, None] rois = torch.cat([batch_inds, boxes], dim=1) # Nx5 bit_masks = self.tensor.to(dtype=torch.float32) rois = rois.to(device=device) output = ( ROIAlign((mask_size, mask_size), 1.0, 0, aligned=True) .forward(bit_masks[:, None, :, :], rois) .squeeze(1) ) output = output >= 0.5 return output def get_bounding_boxes(self) -> Boxes: """ Returns: Boxes: tight bounding boxes around bitmasks. If a mask is empty, it's bounding box will be all zero. """ boxes = torch.zeros(self.tensor.shape[0], 4, dtype=torch.float32) x_any = torch.any(self.tensor, dim=1) y_any = torch.any(self.tensor, dim=2) for idx in range(self.tensor.shape[0]): x = torch.where(x_any[idx, :])[0] y = torch.where(y_any[idx, :])[0] if len(x) > 0 and len(y) > 0: boxes[idx, :] = torch.as_tensor( [x[0], y[0], x[-1] + 1, y[-1] + 1], dtype=torch.float32 ) return Boxes(boxes) @staticmethod def cat(bitmasks_list: List["BitMasks"]) -> "BitMasks": """ Concatenates a list of BitMasks into a single BitMasks Arguments: bitmasks_list (list[BitMasks]) Returns: BitMasks: the concatenated BitMasks """ assert isinstance(bitmasks_list, (list, tuple)) assert len(bitmasks_list) > 0 assert all(isinstance(bitmask, BitMasks) for bitmask in bitmasks_list) cat_bitmasks = type(bitmasks_list[0])(torch.cat([bm.tensor for bm in bitmasks_list], dim=0)) return cat_bitmasks class PolygonMasks: """ This class stores the segmentation masks for all objects in one image, in the form of polygons. Attributes: polygons: list[list[ndarray]]. Each ndarray is a float64 vector representing a polygon. """ def __init__(self, polygons: List[List[Union[torch.Tensor, np.ndarray]]]): """<fim_suffix> if not isinstance(polygons, list): raise ValueError( "Cannot create PolygonMasks: Expect a list of list of polygons per image. " "Got '{}' instead.".format(type(polygons)) ) def _make_array(t: Union[torch.Tensor, np.ndarray]) -> np.ndarray: # Use float64 for higher precision, because why not? # Always put polygons on CPU (self.to is a no-op) since they # are supposed to be small tensors. # May need to change this assumption if GPU placement becomes useful if isinstance(t, torch.Tensor): t = t.cpu().numpy() return np.asarray(t).astype("float64") def process_polygons( polygons_per_instance: List[Union[torch.Tensor, np.ndarray]] ) -> List[np.ndarray]: if not isinstance(polygons_per_instance, list): raise ValueError( "Cannot create polygons: Expect a list of polygons per instance. " "Got '{}' instead.".format(type(polygons_per_instance)) ) # transform each polygon to a numpy array polygons_per_instance = [_make_array(p) for p in polygons_per_instance] for polygon in polygons_per_instance: if len(polygon) % 2 != 0 or len(polygon) < 6: raise ValueError(f"Cannot create a polygon from {len(polygon)} coordinates.") return polygons_per_instance self.polygons: List[List[np.ndarray]] = [ process_polygons(polygons_per_instance) for polygons_per_instance in polygons ] def to(self, *args: Any, **kwargs: Any) -> "PolygonMasks": return self @property def device(self) -> torch.device: return torch.device("cpu") def get_bounding_boxes(self) -> Boxes: """ Returns: Boxes: tight bounding boxes around polygon masks. """ boxes = torch.zeros(len(self.polygons), 4, dtype=torch.float32) for idx, polygons_per_instance in enumerate(self.polygons): minxy = torch.as_tensor([float("inf"), float("inf")], dtype=torch.float32) maxxy = torch.zeros(2, dtype=torch.float32) for polygon in polygons_per_instance: coords = torch.from_numpy(polygon).view(-1, 2).to(dtype=torch.float32) minxy = torch.min(minxy, torch.min(coords, dim=0).values) maxxy = torch.max(maxxy, torch.max(coords, dim=0).values) boxes[idx, :2] = minxy boxes[idx, 2:] = maxxy return Boxes(boxes) def nonempty(self) -> torch.Tensor: """ Find masks that are non-empty. Returns: Tensor: a BoolTensor which represents whether each mask is empty (False) or not (True). """ keep = [1 if len(polygon) > 0 else 0 for polygon in self.polygons] return torch.from_numpy(np.asarray(keep, dtype=np.bool)) def __getitem__(self, item: Union[int, slice, List[int], torch.BoolTensor]) -> "PolygonMasks": """ Support indexing over the instances and return a `PolygonMasks` object. `item` can be: 1. An integer. It will return an object with only one instance. 2. A slice. It will return an object with the selected instances. 3. A list[int]. It will return an object with the selected instances, correpsonding to the indices in the list. 4. A vector mask of type BoolTensor, whose length is num_instances. It will return an object with the instances whose mask is nonzero. """ if isinstance(item, int): selected_polygons = [self.polygons[item]] elif isinstance(item, slice): selected_polygons = self.polygons[item] elif isinstance(item, list): selected_polygons = [self.polygons[i] for i in item] elif isinstance(item, torch.Tensor): # Polygons is a list, so we have to move the indices back to CPU. if item.dtype == torch.bool: assert item.dim() == 1, item.shape item = item.nonzero().squeeze(1).cpu().numpy().tolist() elif item.dtype in [torch.int32, torch.int64]: item = item.cpu().numpy().tolist() else: raise ValueError("Unsupported tensor dtype={} for indexing!".format(item.dtype)) selected_polygons = [self.polygons[i] for i in item] return PolygonMasks(selected_polygons) def __iter__(self) -> Iterator[List[np.ndarray]]: """ Yields: list[ndarray]: the polygons for one instance. Each Tensor is a float64 vector representing a polygon. """ return iter(self.polygons) def __repr__(self) -> str: s = self.__class__.__name__ + "(" s += "num_instances={})".format(len(self.polygons)) return s def __len__(self) -> int: return len(self.polygons) def crop_and_resize(self, boxes: torch.Tensor, mask_size: int) -> torch.Tensor: """ Crop each mask by the given box, and resize results to (mask_size, mask_size). This can be used to prepare training targets for Mask R-CNN. Args: boxes (Tensor): Nx4 tensor storing the boxes for each mask mask_size (int): the size of the rasterized mask. Returns: Tensor: A bool tensor of shape (N, mask_size, mask_size), where N is the number of predicted boxes for this image. """ assert len(boxes) == len(self), "{} != {}".format(len(boxes), len(self)) device = boxes.device # Put boxes on the CPU, as the polygon representation is not efficient GPU-wise # (several small tensors for representing a single instance mask) boxes = boxes.to(torch.device("cpu")) results = [ rasterize_polygons_within_box(poly, box.numpy(), mask_size) for poly, box in zip(self.polygons, boxes) ] """ poly: list[list[float]], the polygons for one instance box: a tensor of shape (4,) """ if len(results) == 0: return torch.empty(0, mask_size, mask_size, dtype=torch.bool, device=device) return torch.stack(results, dim=0).to(device=device) def area(self): """ Computes area of the mask. Only works with Polygons, using the shoelace formula: https://stackoverflow.com/questions/24467972/calculate-area-of-polygon-given-x-y-coordinates Returns: Tensor: a vector, area for each instance """ area = [] for polygons_per_instance in self.polygons: area_per_instance = 0 for p in polygons_per_instance: area_per_instance += polygon_area(p[0::2], p[1::2]) area.append(area_per_instance) return torch.tensor(area) @staticmethod def cat(polymasks_list: List["PolygonMasks"]) -> "PolygonMasks": """ Concatenates a list of PolygonMasks into a single PolygonMasks Arguments: polymasks_list (list[PolygonMasks]) Returns: PolygonMasks: the concatenated PolygonMasks """ assert isinstance(polymasks_list, (list, tuple)) assert len(polymasks_list) > 0 assert all(isinstance(polymask, PolygonMasks) for polymask in polymasks_list) cat_polymasks = type(polymasks_list[0])( list(itertools.chain.from_iterable(pm.polygons for pm in polymasks_list)) ) return cat_polymasks class ROIMasks: """ Represent masks by N smaller masks defined in some ROIs. Once ROI boxes are given, full-image bitmask can be obtained by "pasting" the mask on the region defined by the corresponding ROI box. """ def __init__(self, tensor: torch.Tensor): """ Args: tensor: (N, M, M) mask tensor that defines the mask within each ROI. """ if tensor.dim() != 3: raise ValueError("ROIMasks must take a masks of 3 dimension.") self.tensor = tensor def to(self, device: torch.device) -> "ROIMasks": return ROIMasks(self.tensor.to(device)) @property def device(self) -> device: return self.tensor.device def __len__(self): return self.tensor.shape[0] def __getitem__(self, item) -> "ROIMasks": """ Returns: ROIMasks: Create a new :class:`ROIMasks` by indexing. The following usage are allowed: 1. `new_masks = masks[2:10]`: return a slice of masks. 2. `new_masks = masks[vector]`, where vector is a torch.BoolTensor with `length = len(masks)`. Nonzero elements in the vector will be selected. Note that the returned object might share storage with this object, subject to Pytorch's indexing semantics. """ t = self.tensor[item] if t.dim() != 3: raise ValueError( f"Indexing on ROIMasks with {item} returns a tensor with shape {t.shape}!" ) return ROIMasks(t) @torch.jit.unused def __repr__(self) -> str: s = self.__class__.__name__ + "(" s += "num_instances={})".format(len(self.tensor)) return s @torch.jit.unused def to_bitmasks(self, boxes: torch.Tensor, height, width, threshold=0.5): """ Args: see documentation of :func:`paste_masks_in_image`. """ from detectron2.layers.mask_ops import paste_masks_in_image, _paste_masks_tensor_shape if torch.jit.is_tracing(): if isinstance(height, torch.Tensor): paste_func = _paste_masks_tensor_shape else: paste_func = paste_masks_in_image else: paste_func = retry_if_cuda_oom(paste_masks_in_image) bitmasks = paste_func(self.tensor, boxes.tensor, (height, width), threshold=threshold) return BitMasks(bitmasks) <fim_middle> Arguments: polygons (list[list[np.ndarray]]): The first level of the list correspond to individual instances, the second level to all the polygons that compose the instance, and the third level to the polygon coordinates. The third level array should have the format of [x0, y0, x1, y1, ..., xn, yn] (n >= 3). """
Arguments: polygons (list[list[np.ndarray]]): The first level of the list correspond to individual instances, the second level to all the polygons that compose the instance, and the third level to the polygon coordinates. The third level array should have the format of [x0, y0, x1, y1, ..., xn, yn] (n >= 3). """
BLOCK_COMMENT
prefix_suffix_full_complete_current_block_with_evidence
<filename>UniRef/detectron2/config/instantiate.py<fim_prefix># Copyright (c) Facebook, Inc. and its affiliates. import dataclasses import logging from collections import abc from typing import Any from detectron2.utils.registry import _convert_target_to_string, locate __all__ = ["dump_dataclass", "instantiate"] def dump_dataclass(obj: Any): """ Dump a dataclass recursively into a dict that can be later instantiated. Args: obj: a dataclass object Returns: dict """ assert dataclasses.is_dataclass(obj) and not isinstance( obj, type ), "dump_dataclass() requires an instance of a dataclass." ret = {"_target_": _convert_target_to_string(type(obj))} for f in dataclasses.fields(obj): v = getattr(obj, f.name) if dataclasses.is_dataclass(v): v = dump_dataclass(v) if isinstance(v, (list, tuple)): v = [dump_dataclass(x) if dataclasses.is_dataclass(x) else x for x in v] ret[f.name] = v return ret def instantiate(cfg): """<fim_suffix> from omegaconf import ListConfig if isinstance(cfg, ListConfig): lst = [instantiate(x) for x in cfg] return ListConfig(lst, flags={"allow_objects": True}) if isinstance(cfg, list): # Specialize for list, because many classes take # list[objects] as arguments, such as ResNet, DatasetMapper return [instantiate(x) for x in cfg] if isinstance(cfg, abc.Mapping) and "_target_" in cfg: # conceptually equivalent to hydra.utils.instantiate(cfg) with _convert_=all, # but faster: https://github.com/facebookresearch/hydra/issues/1200 cfg = {k: instantiate(v) for k, v in cfg.items()} cls = cfg.pop("_target_") cls = instantiate(cls) if isinstance(cls, str): cls_name = cls cls = locate(cls_name) assert cls is not None, cls_name else: try: cls_name = cls.__module__ + "." + cls.__qualname__ except Exception: # target could be anything, so the above could fail cls_name = str(cls) assert callable(cls), f"_target_ {cls} does not define a callable object" try: return cls(**cfg) except TypeError: logger = logging.getLogger(__name__) logger.error(f"Error when instantiating {cls_name}!") raise return cfg # return as-is if don't know what to do <fim_middle> Recursively instantiate objects defined in dictionaries by "_target_" and arguments. Args: cfg: a dict-like object with "_target_" that defines the caller, and other keys that define the arguments Returns: object instantiated by cfg """
Recursively instantiate objects defined in dictionaries by "_target_" and arguments. Args: cfg: a dict-like object with "_target_" that defines the caller, and other keys that define the arguments Returns: object instantiated by cfg """
BLOCK_COMMENT
prefix_suffix_full_complete_current_block_with_evidence
<filename>UniRef/detectron2/tracking/bbox_iou_tracker.py<fim_prefix>#!/usr/bin/env python3 # Copyright 2004-present Facebook. All Rights Reserved. import copy from typing import List import numpy as np import torch from detectron2.config import configurable from detectron2.structures import Boxes, Instances from detectron2.structures.boxes import pairwise_iou from ..config.config import CfgNode as CfgNode_ from .base_tracker import BaseTracker, TRACKER_HEADS_REGISTRY @TRACKER_HEADS_REGISTRY.register() class BBoxIOUTracker(BaseTracker): """ A bounding box tracker to assign ID based on IoU between current and previous instances """ @configurable def __init__( self, *, video_height: int, video_width: int, max_num_instances: int = 200, max_lost_frame_count: int = 0, min_box_rel_dim: float = 0.02, min_instance_period: int = 1, track_iou_threshold: float = 0.5, **kwargs ): """ Args: video_height: height the video frame video_width: width of the video frame max_num_instances: maximum number of id allowed to be tracked max_lost_frame_count: maximum number of frame an id can lost tracking exceed this number, an id is considered as lost forever min_box_rel_dim: a percentage, smaller than this dimension, a bbox is removed from tracking min_instance_period: an instance will be shown after this number of period since its first showing up in the video track_iou_threshold: iou threshold, below this number a bbox pair is removed from tracking """ super().__init__(**kwargs) self._video_height = video_height self._video_width = video_width self._max_num_instances = max_num_instances self._max_lost_frame_count = max_lost_frame_count self._min_box_rel_dim = min_box_rel_dim self._min_instance_period = min_instance_period self._track_iou_threshold = track_iou_threshold @classmethod def from_config(cls, cfg: CfgNode_): """ Old style initialization using CfgNode Args: cfg: D2 CfgNode, config file Return: dictionary storing arguments for __init__ method """ assert "VIDEO_HEIGHT" in cfg.TRACKER_HEADS assert "VIDEO_WIDTH" in cfg.TRACKER_HEADS video_height = cfg.TRACKER_HEADS.get("VIDEO_HEIGHT") video_width = cfg.TRACKER_HEADS.get("VIDEO_WIDTH") max_num_instances = cfg.TRACKER_HEADS.get("MAX_NUM_INSTANCES", 200) max_lost_frame_count = cfg.TRACKER_HEADS.get("MAX_LOST_FRAME_COUNT", 0) min_box_rel_dim = cfg.TRACKER_HEADS.get("MIN_BOX_REL_DIM", 0.02) min_instance_period = cfg.TRACKER_HEADS.get("MIN_INSTANCE_PERIOD", 1) track_iou_threshold = cfg.TRACKER_HEADS.get("TRACK_IOU_THRESHOLD", 0.5) return { "_target_": "detectron2.tracking.bbox_iou_tracker.BBoxIOUTracker", "video_height": video_height, "video_width": video_width, "max_num_instances": max_num_instances, "max_lost_frame_count": max_lost_frame_count, "min_box_rel_dim": min_box_rel_dim, "min_instance_period": min_instance_period, "track_iou_threshold": track_iou_threshold } def update(self, instances: Instances) -> Instances: """ See BaseTracker description """ if instances.has("pred_keypoints"): raise NotImplementedError("Need to add support for keypoints") instances = self._initialize_extra_fields(instances) if self._prev_instances is not None: # calculate IoU of all bbox pairs iou_all = pairwise_iou( boxes1=instances.pred_boxes, boxes2=self._prev_instances.pred_boxes, ) # sort IoU in descending order bbox_pairs = self._create_prediction_pairs(instances, iou_all) # assign previous ID to current bbox if IoU > track_iou_threshold self._reset_fields() for bbox_pair in bbox_pairs: idx = bbox_pair["idx"] prev_id = bbox_pair["prev_id"] if idx in self._matched_idx \ or prev_id in self._matched_ID \ or bbox_pair["IoU"] < self._track_iou_threshold: continue instances.ID[idx] = prev_id instances.ID_period[idx] = bbox_pair["prev_period"] + 1 instances.lost_frame_count[idx] = 0 self._matched_idx.add(idx) self._matched_ID.add(prev_id) self._untracked_prev_idx.remove(bbox_pair["prev_idx"]) instances = self._assign_new_id(instances) instances = self._merge_untracked_instances(instances) self._prev_instances = copy.deepcopy(instances) return instances def _create_prediction_pairs( self, instances: Instances, iou_all: np.ndarray ) -> List: """ For all instances in previous and current frames, create pairs. For each pair, store index of the instance in current frame predcitions, index in previous predictions, ID in previous predictions, IoU of the bboxes in this pair, period in previous predictions. Args: instances: D2 Instances, for predictions of the current frame iou_all: IoU for all bboxes pairs Return: A list of IoU for all pairs """ bbox_pairs = [] for i in range(len(instances)): for j in range(len(self._prev_instances)): bbox_pairs.append( { "idx": i, "prev_idx": j, "prev_id": self._prev_instances.ID[j], "IoU": iou_all[i, j], "prev_period": self._prev_instances.ID_period[j], } ) return bbox_pairs def _initialize_extra_fields(self, instances: Instances) -> Instances: """<fim_suffix> if not instances.has("ID"): instances.set("ID", [None] * len(instances)) if not instances.has("ID_period"): instances.set("ID_period", [None] * len(instances)) if not instances.has("lost_frame_count"): instances.set("lost_frame_count", [None] * len(instances)) if self._prev_instances is None: instances.ID = list(range(len(instances))) self._id_count += len(instances) instances.ID_period = [1] * len(instances) instances.lost_frame_count = [0] * len(instances) return instances def _reset_fields(self): """ Before each uodate call, reset fields first """ self._matched_idx = set() self._matched_ID = set() self._untracked_prev_idx = set(range(len(self._prev_instances))) def _assign_new_id(self, instances: Instances) -> Instances: """ For each untracked instance, assign a new id Args: instances: D2 Instances, for predictions of the current frame Return: D2 Instances with new ID assigned """ untracked_idx = set(range(len(instances))).difference(self._matched_idx) for idx in untracked_idx: instances.ID[idx] = self._id_count self._id_count += 1 instances.ID_period[idx] = 1 instances.lost_frame_count[idx] = 0 return instances def _merge_untracked_instances(self, instances: Instances) -> Instances: """ For untracked previous instances, under certain condition, still keep them in tracking and merge with the current instances. Args: instances: D2 Instances, for predictions of the current frame Return: D2 Instances merging current instances and instances from previous frame decided to keep tracking """ untracked_instances = Instances( image_size=instances.image_size, pred_boxes=[], pred_masks=[], pred_classes=[], scores=[], ID=[], ID_period=[], lost_frame_count=[], ) prev_bboxes = list(self._prev_instances.pred_boxes) prev_classes = list(self._prev_instances.pred_classes) prev_scores = list(self._prev_instances.scores) prev_ID_period = self._prev_instances.ID_period if instances.has("pred_masks"): prev_masks = list(self._prev_instances.pred_masks) for idx in self._untracked_prev_idx: x_left, y_top, x_right, y_bot = prev_bboxes[idx] if ( (1.0 * (x_right - x_left) / self._video_width < self._min_box_rel_dim) or (1.0 * (y_bot - y_top) / self._video_height < self._min_box_rel_dim) or self._prev_instances.lost_frame_count[idx] >= self._max_lost_frame_count or prev_ID_period[idx] <= self._min_instance_period ): continue untracked_instances.pred_boxes.append(list(prev_bboxes[idx].numpy())) untracked_instances.pred_classes.append(int(prev_classes[idx])) untracked_instances.scores.append(float(prev_scores[idx])) untracked_instances.ID.append(self._prev_instances.ID[idx]) untracked_instances.ID_period.append(self._prev_instances.ID_period[idx]) untracked_instances.lost_frame_count.append( self._prev_instances.lost_frame_count[idx] + 1 ) if instances.has("pred_masks"): untracked_instances.pred_masks.append(prev_masks[idx].numpy().astype(np.uint8)) untracked_instances.pred_boxes = Boxes(torch.FloatTensor(untracked_instances.pred_boxes)) untracked_instances.pred_classes = torch.IntTensor(untracked_instances.pred_classes) untracked_instances.scores = torch.FloatTensor(untracked_instances.scores) if instances.has("pred_masks"): untracked_instances.pred_masks = torch.IntTensor(untracked_instances.pred_masks) else: untracked_instances.remove("pred_masks") return Instances.cat( [ instances, untracked_instances, ] ) <fim_middle> If input instances don't have ID, ID_period, lost_frame_count fields, this method is used to initialize these fields. Args: instances: D2 Instances, for predictions of the current frame Return: D2 Instances with extra fields added """
If input instances don't have ID, ID_period, lost_frame_count fields, this method is used to initialize these fields. Args: instances: D2 Instances, for predictions of the current frame Return: D2 Instances with extra fields added """
BLOCK_COMMENT
prefix_suffix_full_complete_current_block_with_evidence
<filename>UniRef/detectron2/tracking/bbox_iou_tracker.py<fim_prefix>#!/usr/bin/env python3 # Copyright 2004-present Facebook. All Rights Reserved. import copy from typing import List import numpy as np import torch from detectron2.config import configurable from detectron2.structures import Boxes, Instances from detectron2.structures.boxes import pairwise_iou from ..config.config import CfgNode as CfgNode_ from .base_tracker import BaseTracker, TRACKER_HEADS_REGISTRY @TRACKER_HEADS_REGISTRY.register() class BBoxIOUTracker(BaseTracker): """ A bounding box tracker to assign ID based on IoU between current and previous instances """ @configurable def __init__( self, *, video_height: int, video_width: int, max_num_instances: int = 200, max_lost_frame_count: int = 0, min_box_rel_dim: float = 0.02, min_instance_period: int = 1, track_iou_threshold: float = 0.5, **kwargs ): """ Args: video_height: height the video frame video_width: width of the video frame max_num_instances: maximum number of id allowed to be tracked max_lost_frame_count: maximum number of frame an id can lost tracking exceed this number, an id is considered as lost forever min_box_rel_dim: a percentage, smaller than this dimension, a bbox is removed from tracking min_instance_period: an instance will be shown after this number of period since its first showing up in the video track_iou_threshold: iou threshold, below this number a bbox pair is removed from tracking """ super().__init__(**kwargs) self._video_height = video_height self._video_width = video_width self._max_num_instances = max_num_instances self._max_lost_frame_count = max_lost_frame_count self._min_box_rel_dim = min_box_rel_dim self._min_instance_period = min_instance_period self._track_iou_threshold = track_iou_threshold @classmethod def from_config(cls, cfg: CfgNode_): """ Old style initialization using CfgNode Args: cfg: D2 CfgNode, config file Return: dictionary storing arguments for __init__ method """ assert "VIDEO_HEIGHT" in cfg.TRACKER_HEADS assert "VIDEO_WIDTH" in cfg.TRACKER_HEADS video_height = cfg.TRACKER_HEADS.get("VIDEO_HEIGHT") video_width = cfg.TRACKER_HEADS.get("VIDEO_WIDTH") max_num_instances = cfg.TRACKER_HEADS.get("MAX_NUM_INSTANCES", 200) max_lost_frame_count = cfg.TRACKER_HEADS.get("MAX_LOST_FRAME_COUNT", 0) min_box_rel_dim = cfg.TRACKER_HEADS.get("MIN_BOX_REL_DIM", 0.02) min_instance_period = cfg.TRACKER_HEADS.get("MIN_INSTANCE_PERIOD", 1) track_iou_threshold = cfg.TRACKER_HEADS.get("TRACK_IOU_THRESHOLD", 0.5) return { "_target_": "detectron2.tracking.bbox_iou_tracker.BBoxIOUTracker", "video_height": video_height, "video_width": video_width, "max_num_instances": max_num_instances, "max_lost_frame_count": max_lost_frame_count, "min_box_rel_dim": min_box_rel_dim, "min_instance_period": min_instance_period, "track_iou_threshold": track_iou_threshold } def update(self, instances: Instances) -> Instances: """ See BaseTracker description """ if instances.has("pred_keypoints"): raise NotImplementedError("Need to add support for keypoints") instances = self._initialize_extra_fields(instances) if self._prev_instances is not None: # calculate IoU of all bbox pairs iou_all = pairwise_iou( boxes1=instances.pred_boxes, boxes2=self._prev_instances.pred_boxes, ) # sort IoU in descending order bbox_pairs = self._create_prediction_pairs(instances, iou_all) # assign previous ID to current bbox if IoU > track_iou_threshold self._reset_fields() for bbox_pair in bbox_pairs: idx = bbox_pair["idx"] prev_id = bbox_pair["prev_id"] if idx in self._matched_idx \ or prev_id in self._matched_ID \ or bbox_pair["IoU"] < self._track_iou_threshold: continue instances.ID[idx] = prev_id instances.ID_period[idx] = bbox_pair["prev_period"] + 1 instances.lost_frame_count[idx] = 0 self._matched_idx.add(idx) self._matched_ID.add(prev_id) self._untracked_prev_idx.remove(bbox_pair["prev_idx"]) instances = self._assign_new_id(instances) instances = self._merge_untracked_instances(instances) self._prev_instances = copy.deepcopy(instances) return instances def _create_prediction_pairs( self, instances: Instances, iou_all: np.ndarray ) -> List: """ For all instances in previous and current frames, create pairs. For each pair, store index of the instance in current frame predcitions, index in previous predictions, ID in previous predictions, IoU of the bboxes in this pair, period in previous predictions. Args: instances: D2 Instances, for predictions of the current frame iou_all: IoU for all bboxes pairs Return: A list of IoU for all pairs """ bbox_pairs = [] for i in range(len(instances)): for j in range(len(self._prev_instances)): bbox_pairs.append( { "idx": i, "prev_idx": j, "prev_id": self._prev_instances.ID[j], "IoU": iou_all[i, j], "prev_period": self._prev_instances.ID_period[j], } ) return bbox_pairs def _initialize_extra_fields(self, instances: Instances) -> Instances: """ If input instances don't have ID, ID_period, lost_frame_count fields, this method is used to initialize these fields. Args: instances: D2 Instances, for predictions of the current frame Return: D2 Instances with extra fields added """ if not instances.has("ID"): instances.set("ID", [None] * len(instances)) if not instances.has("ID_period"): instances.set("ID_period", [None] * len(instances)) if not instances.has("lost_frame_count"): instances.set("lost_frame_count", [None] * len(instances)) if self._prev_instances is None: instances.ID = list(range(len(instances))) self._id_count<fim_suffix> instances.ID_period = [1] * len(instances) instances.lost_frame_count = [0] * len(instances) return instances def _reset_fields(self): """ Before each uodate call, reset fields first """ self._matched_idx = set() self._matched_ID = set() self._untracked_prev_idx = set(range(len(self._prev_instances))) def _assign_new_id(self, instances: Instances) -> Instances: """ For each untracked instance, assign a new id Args: instances: D2 Instances, for predictions of the current frame Return: D2 Instances with new ID assigned """ untracked_idx = set(range(len(instances))).difference(self._matched_idx) for idx in untracked_idx: instances.ID[idx] = self._id_count self._id_count += 1 instances.ID_period[idx] = 1 instances.lost_frame_count[idx] = 0 return instances def _merge_untracked_instances(self, instances: Instances) -> Instances: """ For untracked previous instances, under certain condition, still keep them in tracking and merge with the current instances. Args: instances: D2 Instances, for predictions of the current frame Return: D2 Instances merging current instances and instances from previous frame decided to keep tracking """ untracked_instances = Instances( image_size=instances.image_size, pred_boxes=[], pred_masks=[], pred_classes=[], scores=[], ID=[], ID_period=[], lost_frame_count=[], ) prev_bboxes = list(self._prev_instances.pred_boxes) prev_classes = list(self._prev_instances.pred_classes) prev_scores = list(self._prev_instances.scores) prev_ID_period = self._prev_instances.ID_period if instances.has("pred_masks"): prev_masks = list(self._prev_instances.pred_masks) for idx in self._untracked_prev_idx: x_left, y_top, x_right, y_bot = prev_bboxes[idx] if ( (1.0 * (x_right - x_left) / self._video_width < self._min_box_rel_dim) or (1.0 * (y_bot - y_top) / self._video_height < self._min_box_rel_dim) or self._prev_instances.lost_frame_count[idx] >= self._max_lost_frame_count or prev_ID_period[idx] <= self._min_instance_period ): continue untracked_instances.pred_boxes.append(list(prev_bboxes[idx].numpy())) untracked_instances.pred_classes.append(int(prev_classes[idx])) untracked_instances.scores.append(float(prev_scores[idx])) untracked_instances.ID.append(self._prev_instances.ID[idx]) untracked_instances.ID_period.append(self._prev_instances.ID_period[idx]) untracked_instances.lost_frame_count.append( self._prev_instances.lost_frame_count[idx] + 1 ) if instances.has("pred_masks"): untracked_instances.pred_masks.append(prev_masks[idx].numpy().astype(np.uint8)) untracked_instances.pred_boxes = Boxes(torch.FloatTensor(untracked_instances.pred_boxes)) untracked_instances.pred_classes = torch.IntTensor(untracked_instances.pred_classes) untracked_instances.scores = torch.FloatTensor(untracked_instances.scores) if instances.has("pred_masks"): untracked_instances.pred_masks = torch.IntTensor(untracked_instances.pred_masks) else: untracked_instances.remove("pred_masks") return Instances.cat( [ instances, untracked_instances, ] ) <fim_middle> += len(instances)
+= len(instances)
STATEMENT
prefix_suffix_full_complete_current_block_with_evidence
<filename>UniRef/external/davis2017-evaluation/davis2017/metrics.py<fim_prefix>import math import numpy as np import cv2 def db_eval_iou(annotation, segmentation, void_pixels=None): """ Compute region similarity as the Jaccard Index. Arguments: annotation (ndarray): binary annotation map. segmentation (ndarray): binary segmentation map. void_pixels (ndarray): optional mask with void pixels Return: jaccard (float): region similarity """ assert annotation.shape == segmentation.shape, \ f'Annotation({annotation.shape}) and segmentation:{segmentation.shape} dimensions do not match.' annotation = annotation.astype(np.bool) segmentation = segmentation.astype(np.bool) if void_pixels is not None: assert annotation.shape == void_pixels.shape, \ f'Annotation({annotation.shape}) and void pixels:{void_pixels.shape} dimensions do not match.' void_pixels = void_pixels.astype(np.bool) else: void_pixels = np.zeros_like(segmentation) # Intersection between all sets inters<fim_suffix> union = np.sum((segmentation | annotation) & np.logical_not(void_pixels), axis=(-2, -1)) j = inters / union if j.ndim == 0: j = 1 if np.isclose(union, 0) else j else: j[np.isclose(union, 0)] = 1 return j def db_eval_boundary(annotation, segmentation, void_pixels=None, bound_th=0.008): assert annotation.shape == segmentation.shape if void_pixels is not None: assert annotation.shape == void_pixels.shape if annotation.ndim == 3: n_frames = annotation.shape[0] f_res = np.zeros(n_frames) for frame_id in range(n_frames): void_pixels_frame = None if void_pixels is None else void_pixels[frame_id, :, :, ] f_res[frame_id] = f_measure(segmentation[frame_id, :, :, ], annotation[frame_id, :, :], void_pixels_frame, bound_th=bound_th) elif annotation.ndim == 2: f_res = f_measure(segmentation, annotation, void_pixels, bound_th=bound_th) else: raise ValueError(f'db_eval_boundary does not support tensors with {annotation.ndim} dimensions') return f_res def f_measure(foreground_mask, gt_mask, void_pixels=None, bound_th=0.008): """ Compute mean,recall and decay from per-frame evaluation. Calculates precision/recall for boundaries between foreground_mask and gt_mask using morphological operators to speed it up. Arguments: foreground_mask (ndarray): binary segmentation image. gt_mask (ndarray): binary annotated image. void_pixels (ndarray): optional mask with void pixels Returns: F (float): boundaries F-measure """ assert np.atleast_3d(foreground_mask).shape[2] == 1 if void_pixels is not None: void_pixels = void_pixels.astype(np.bool) else: void_pixels = np.zeros_like(foreground_mask).astype(np.bool) bound_pix = bound_th if bound_th >= 1 else \ np.ceil(bound_th * np.linalg.norm(foreground_mask.shape)) # Get the pixel boundaries of both masks fg_boundary = _seg2bmap(foreground_mask * np.logical_not(void_pixels)) gt_boundary = _seg2bmap(gt_mask * np.logical_not(void_pixels)) from skimage.morphology import disk # fg_dil = binary_dilation(fg_boundary, disk(bound_pix)) fg_dil = cv2.dilate(fg_boundary.astype(np.uint8), disk(bound_pix).astype(np.uint8)) # gt_dil = binary_dilation(gt_boundary, disk(bound_pix)) gt_dil = cv2.dilate(gt_boundary.astype(np.uint8), disk(bound_pix).astype(np.uint8)) # Get the intersection gt_match = gt_boundary * fg_dil fg_match = fg_boundary * gt_dil # Area of the intersection n_fg = np.sum(fg_boundary) n_gt = np.sum(gt_boundary) # % Compute precision and recall if n_fg == 0 and n_gt > 0: precision = 1 recall = 0 elif n_fg > 0 and n_gt == 0: precision = 0 recall = 1 elif n_fg == 0 and n_gt == 0: precision = 1 recall = 1 else: precision = np.sum(fg_match) / float(n_fg) recall = np.sum(gt_match) / float(n_gt) # Compute F measure if precision + recall == 0: F = 0 else: F = 2 * precision * recall / (precision + recall) return F def _seg2bmap(seg, width=None, height=None): """ From a segmentation, compute a binary boundary map with 1 pixel wide boundaries. The boundary pixels are offset by 1/2 pixel towards the origin from the actual segment boundary. Arguments: seg : Segments labeled from 1..k. width : Width of desired bmap <= seg.shape[1] height : Height of desired bmap <= seg.shape[0] Returns: bmap (ndarray): Binary boundary map. David Martin <[email protected]> January 2003 """ seg = seg.astype(np.bool) seg[seg > 0] = 1 assert np.atleast_3d(seg).shape[2] == 1 width = seg.shape[1] if width is None else width height = seg.shape[0] if height is None else height h, w = seg.shape[:2] ar1 = float(width) / float(height) ar2 = float(w) / float(h) assert not ( width > w | height > h | abs(ar1 - ar2) > 0.01 ), "Can" "t convert %dx%d seg to %dx%d bmap." % (w, h, width, height) e = np.zeros_like(seg) s = np.zeros_like(seg) se = np.zeros_like(seg) e[:, :-1] = seg[:, 1:] s[:-1, :] = seg[1:, :] se[:-1, :-1] = seg[1:, 1:] b = seg ^ e | seg ^ s | seg ^ se b[-1, :] = seg[-1, :] ^ e[-1, :] b[:, -1] = seg[:, -1] ^ s[:, -1] b[-1, -1] = 0 if w == width and h == height: bmap = b else: bmap = np.zeros((height, width)) for x in range(w): for y in range(h): if b[y, x]: j = 1 + math.floor((y - 1) + height / h) i = 1 + math.floor((x - 1) + width / h) bmap[j, i] = 1 return bmap if __name__ == '__main__': from davis2017.davis import DAVIS from davis2017.results import Results dataset = DAVIS(root='input_dir/ref', subset='val', sequences='aerobatics') results = Results(root_dir='examples/osvos') # Test timing F measure for seq in dataset.get_sequences(): all_gt_masks, _, all_masks_id = dataset.get_all_masks(seq, True) all_gt_masks, all_masks_id = all_gt_masks[:, 1:-1, :, :], all_masks_id[1:-1] all_res_masks = results.read_masks(seq, all_masks_id) f_metrics_res = np.zeros(all_gt_masks.shape[:2]) for ii in range(all_gt_masks.shape[0]): f_metrics_res[ii, :] = db_eval_boundary(all_gt_masks[ii, ...], all_res_masks[ii, ...]) # Run using to profile code: python -m cProfile -o f_measure.prof metrics.py # snakeviz f_measure.prof <fim_middle> = np.sum((segmentation & annotation) & np.logical_not(void_pixels), axis=(-2, -1))
= np.sum((segmentation & annotation) & np.logical_not(void_pixels), axis=(-2, -1))
STATEMENT
prefix_suffix_full_complete_current_block_with_evidence
<filename>UniRef/detectron2/layers/losses.py<fim_prefix>import math import torch def diou_loss( boxes1: torch.Tensor, boxes2: torch.Tensor, reduction: str = "none", eps: float = 1e-7, ) -> torch.Tensor: """ Distance Intersection over Union Loss (Zhaohui Zheng et. al) https://arxiv.org/abs/1911.08287 Args: boxes1, boxes2 (Tensor): box locations in XYXY format, shape (N, 4) or (4,). reduction: 'none' | 'mean' | 'sum' 'none': No reduction will be applied to the output. 'mean': The output will be averaged. 'sum': The output will be summed. eps (float): small number to prevent division by zero """ x1, y1, x2, y2 = boxes1.unbind(dim=-1) x1g, y1g, x2g, y2g = boxes2.unbind(dim=-1) # TODO: use torch._assert_async() when pytorch 1.8 support is dropped assert (x2 >= x1).all(), "bad box: x1 larger than x2" assert (y2 >= y1).all(), "bad box: y1 larger than y2" # Intersection keypoints xkis1 = torch.max(x1, x1g) ykis1 = torch.max(y1, y1g) xkis2 = torch.min(x2, x2g) ykis2 = torch.min(y2, y2g) intsct = torch.zeros_like(x1) mask = (ykis2 > ykis1) & (xkis2 > xkis1) intsct[mask] = (xkis2[mask] - xkis1[mask]) * (ykis2[mask] - ykis1[mask]) union = (x2 - x1) * (y2 - y1) + (x2g - x1g) * (y2g - y1g) - intsct + eps iou = intsct / union # smallest enclosing box xc1 = torch.min(x1, x1g) yc1 = torch.min(y1, y1g) xc2 = torch.max(x2, x2g) yc2 = torch.max(y2, y2g) diag_len = ((xc2 - xc1) ** 2) + ((yc2 - yc1) ** 2) + eps # centers of boxes x_p = (x2 + x1) / 2 y_p = (y2 + y1) / 2 x_g = (x1g + x2g) / 2 y_g = (y1g + y2g) / 2 distance = ((x_p - x_g) ** 2) + ((y_p - y_g) ** 2) # Eqn. (7) loss = 1 - iou + (distance / diag_len) if reduction == "mean": loss = loss.mean() if loss.numel() > 0 else 0.0 * loss.sum() elif reduction == "sum": loss = loss.sum() return loss def ciou_loss( boxes1: torch.Tensor, boxes2: torch.Tensor, reduction: str = "none", eps: float = 1e-7, ) -> torch.Tensor: """ Complete Intersection over Union Loss (Zhaohui Zheng et. al) https://arxiv.org/abs/1911.08287 Args: boxes1, boxes2 (Tensor): box locations in XYXY format, shape (N, 4) or (4,). reduction: 'none' | 'mean' | 'sum' 'none': No reduction will be applied to the output. 'mean': The output will be averaged. 'sum': The output will be summed. eps (float): small number to prevent division by zero """ x1, y1, x2, y2 = boxes1.unbind(dim=-1) x1g, y1g, x2g, y2g = boxes2.unbind(dim=-1) # TODO: use torch._assert_async() when pytorch 1.8 support is dropped assert (x2 >= x1).all(), "bad box: x1 larger than x2" assert (y2 >= y1).all(), "bad box: y1 larger than y2" # Intersection keypoints xkis1 = torch.max(x1, x1g) ykis1 = torch.max(y1, y1g) xkis2 = torch.min(x2, x2g) ykis2 = torch.min(y2, y2g) intsct = torch.zeros_like(x1) mask = (ykis2 > ykis1) & (xkis2 > xkis1) intsct[mask]<fim_suffix> union = (x2 - x1) * (y2 - y1) + (x2g - x1g) * (y2g - y1g) - intsct + eps iou = intsct / union # smallest enclosing box xc1 = torch.min(x1, x1g) yc1 = torch.min(y1, y1g) xc2 = torch.max(x2, x2g) yc2 = torch.max(y2, y2g) diag_len = ((xc2 - xc1) ** 2) + ((yc2 - yc1) ** 2) + eps # centers of boxes x_p = (x2 + x1) / 2 y_p = (y2 + y1) / 2 x_g = (x1g + x2g) / 2 y_g = (y1g + y2g) / 2 distance = ((x_p - x_g) ** 2) + ((y_p - y_g) ** 2) # width and height of boxes w_pred = x2 - x1 h_pred = y2 - y1 w_gt = x2g - x1g h_gt = y2g - y1g v = (4 / (math.pi ** 2)) * torch.pow((torch.atan(w_gt / h_gt) - torch.atan(w_pred / h_pred)), 2) with torch.no_grad(): alpha = v / (1 - iou + v + eps) # Eqn. (10) loss = 1 - iou + (distance / diag_len) + alpha * v if reduction == "mean": loss = loss.mean() if loss.numel() > 0 else 0.0 * loss.sum() elif reduction == "sum": loss = loss.sum() return loss <fim_middle> = (xkis2[mask] - xkis1[mask]) * (ykis2[mask] - ykis1[mask])
= (xkis2[mask] - xkis1[mask]) * (ykis2[mask] - ykis1[mask])
STATEMENT
prefix_suffix_full_complete_current_block_with_evidence
<filename>UniRef/detectron2/layers/losses.py<fim_prefix>import math import torch def diou_loss( boxes1: torch.Tensor, boxes2: torch.Tensor, reduction: str = "none", eps: float = 1e-7, ) -> torch.Tensor: """ Distance Intersection over Union Loss (Zhaohui Zheng et. al) https://arxiv.org/abs/1911.08287 Args: boxes1, boxes2 (Tensor): box locations in XYXY format, shape (N, 4) or (4,). reduction: 'none' | 'mean' | 'sum' 'none': No reduction will be applied to the output. 'mean': The output will be averaged. 'sum': The output will be summed. eps (float): small number to prevent division by zero """ x1, y1, x2, y2 = boxes1.unbind(dim=-1) x1g, y1g, x2g, y2g = boxes2.unbind(dim=-1) # TODO: use torch._assert_async() when pytorch 1.8 support is dropped assert (x2 >= x1).all(), "bad box: x1 larger than x2" assert (y2 >= y1).all(), "bad box: y1 larger than y2" # Intersection keypoints xkis1 = torch.max(x1, x1g) ykis1 = torch.max(y1, y1g) xkis2 = torch.min(x2, x2g) ykis2 = torch.min(y2, y2g) intsct = torch.zeros_like(x1) mask = (ykis2 > ykis1) & (xkis2 > xkis1) intsct[mask] = (xkis2[mask] - xkis1[mask]) * (ykis2[mask] - ykis1[mask]) union = (x2 - x1) * (y2 - y1) + (x2g - x1g) * (y2g - y1g) - intsct + eps iou = intsct / union # smallest enclosing box xc1 = torch.min(x1, x1g) yc1 = torch.min(y1, y1g) xc2 = torch.max(x2, x2g) yc2 = torch.max(y2, y2g) diag_len = ((xc2 - xc1) ** 2) + ((yc2 - yc1) ** 2) + eps # centers of boxes x_p = (x2 + x1) / 2 y_p = (y2 + y1) / 2 x_g = (x1g + x2g) / 2 y_g = (y1g + y2g) / 2 distance = ((x_p - x_g) ** 2) + ((y_p - y_g) ** 2) # Eqn. (7) loss = 1 - iou + (distance / diag_len) if reduction == "mean": loss = loss.mean() if loss.numel() > 0 else 0.0 * loss.sum() elif reduction == "sum": loss = loss.sum() return loss def ciou_loss( boxes1: torch.Tensor, boxes2: torch.Tensor, reduction: str = "none", eps: float = 1e-7, ) -> torch.Tensor: """ Complete Intersection over Union Loss (Zhaohui Zheng et. al) https://arxiv.org/abs/1911.08287 Args: boxes1, boxes2 (Tensor): box locations in XYXY format, shape (N, 4) or (4,). reduction: 'none' | 'mean' | 'sum' 'none': No reduction will be applied to the output. 'mean': The output will be averaged. 'sum': The output will be summed. eps (float): small number to prevent division by zero """ x1, y1, x2, y2 = boxes1.unbind(dim=-1) x1g, y1g, x2g, y2g = boxes2.unbind(dim=-1) # TODO: use torch._assert_async() when pytorch 1.8 support is dropped assert (x2 >= x1).all(), "bad box: x1 larger than x2" assert (y2 >= y1).all(), "bad box: y1 larger than y2" # Intersection keypoints xkis1 = torch.max(x1, x1g) ykis1 = torch.max(y1, y1g) xkis2 = torch.min(x2, x2g) ykis2 = torch.min(y2, y2g) intsct = torch.zeros_like(x1) mask = (ykis2 > ykis1) & (xkis2 > xkis1) intsct[mask] = (xkis2[mask] - xkis1[mask]) * (ykis2[mask] - ykis1[mask]) union = (x2 - x1) * (y2 - y1) + (x2g - x1g) * (y2g - y1g) - intsct + eps iou = intsct / union # smallest enclosing box xc1<fim_suffix> yc1 = torch.min(y1, y1g) xc2 = torch.max(x2, x2g) yc2 = torch.max(y2, y2g) diag_len = ((xc2 - xc1) ** 2) + ((yc2 - yc1) ** 2) + eps # centers of boxes x_p = (x2 + x1) / 2 y_p = (y2 + y1) / 2 x_g = (x1g + x2g) / 2 y_g = (y1g + y2g) / 2 distance = ((x_p - x_g) ** 2) + ((y_p - y_g) ** 2) # width and height of boxes w_pred = x2 - x1 h_pred = y2 - y1 w_gt = x2g - x1g h_gt = y2g - y1g v = (4 / (math.pi ** 2)) * torch.pow((torch.atan(w_gt / h_gt) - torch.atan(w_pred / h_pred)), 2) with torch.no_grad(): alpha = v / (1 - iou + v + eps) # Eqn. (10) loss = 1 - iou + (distance / diag_len) + alpha * v if reduction == "mean": loss = loss.mean() if loss.numel() > 0 else 0.0 * loss.sum() elif reduction == "sum": loss = loss.sum() return loss <fim_middle> = torch.min(x1, x1g)
= torch.min(x1, x1g)
STATEMENT
prefix_suffix_full_complete_current_block_with_evidence
<filename>UniRef/detectron2/tracking/hungarian_tracker.py<fim_prefix>#!/usr/bin/env python3 # Copyright 2004-present Facebook. All Rights Reserved. import copy import numpy as np import torch from detectron2.structures import Boxes, Instances from .base_tracker import BaseTracker from scipy.optimize import linear_sum_assignment from ..config.config import CfgNode as CfgNode_ from typing import Dict from detectron2.config import configurable class BaseHungarianTracker(BaseTracker): """ A base class for all Hungarian trackers """ @configurable def __init__( self, video_height: int, video_width: int, max_num_instances: int = 200, max_lost_frame_count: int = 0, min_box_rel_dim: float = 0.02, min_instance_period: int = 1, **kwargs ): """ Args: video_height: height the video frame video_width: width of the video frame max_num_instances: maximum number of id allowed to be tracked max_lost_frame_count: maximum number of frame an id can lost tracking exceed this number, an id is considered as lost forever min_box_rel_dim: a percentage, smaller than this dimension, a bbox is removed from tracking min_instance_period: an instance will be shown after this number of period since its first showing up in the video """ super().__init__(**kwargs) self._video_height = video_height self._video_width = video_width self._max_num_instances = max_num_instances self._max_lost_frame_count = max_lost_frame_count self._min_box_rel_dim = min_box_rel_dim self._min_instance_period = min_instance_period @classmethod def from_config(cls, cfg: CfgNode_) -> Dict: raise NotImplementedError("Calling HungarianTracker::from_config") def build_cost_matrix(self, instances: Instances, prev_instances: Instances) -> np.ndarray: raise NotImplementedError("Calling HungarianTracker::build_matrix") def update(self, instances: Instances) -> Instances: if instances.has("pred_keypoints"): raise NotImplementedError("Need to add support for keypoints") instances = self._initialize_extra_fields(instances) if self._prev_instances is not None: self._untracked_prev_idx = set(range(len(self._prev_instances))) cost_matrix = self.build_cost_matrix(instances, self._prev_instances) matched_idx, matched_prev_idx = linear_sum_assignment(cost_matrix) instances = self._process_matched_idx(instances, matched_idx, matched_prev_idx) instances = self._process_unmatched_idx(instances, matched_idx) instances = self._process_unmatched_prev_idx(instances, matched_prev_idx) self._prev_instances = copy.deepcopy(instances) return instances def _initialize_extra_fields(self, instances: Instances) -> Instances: """ If input instances don't have ID, ID_period, lost_frame_count fields, this method is used to initialize these fields. Args: instances: D2 Instances, for predictions of the current frame Return: D2 Instances with extra fields added """ if not instances.has("ID"): instances.set("ID", [None] * len(instances)) if not instances.has("ID_period"): instances.set("ID_period", [None] * len(instances)) if not instances.has("lost_frame_count"): instances.set("lost_frame_count", [None] * len(instances)) if self._prev_instances is None: instances.ID = list(range(len(instances))) self._id_count += len(instances) instances.ID_period = [1] * len(instances) instances.lost_frame_count = [0] * len(instances) return instances def _process_matched_idx( self, instances: Instances, matched_idx: np.ndarray, matched_prev_idx: np.ndarray ) -> Instances: assert matched_idx.size == matched_prev_idx.size for i in range(matched_idx.size): instances.ID[matched_idx[i]] = self._prev_instances.ID[matched_prev_idx[i]] instances.ID_period[matched_idx[i]] = \ self._prev_instances.ID_period[matched_prev_idx[i]] + 1 instances.lost_frame_count[matched_idx[i]] = 0 return instances def _process_unmatched_idx(self, instances: Instances, matched_idx: np.ndarray) -> Instances: untracked_idx = set(range(len(instances))).difference(set(matched_idx)) for idx in untracked_idx: instances.ID[idx] = self._id_count self._id_count += 1 instances.ID_period[idx] = 1 instances.lost_frame_count[idx] = 0 return instances def _process_unmatched_prev_idx( self, instances: Instances, matched_prev_idx: np.ndarray ) -> Instances: untracked_instances = Instances( image_size=instances.image_size, pred_boxes=[], pred_masks=[], pred_classes=[], scores=[], ID=[], ID_period=[], lost_frame_count=[], ) prev_bboxes = list(self._prev_instances.pred_boxes) prev_classes = list(self._prev_instances.pred_classes) prev_scores = list(self._prev_instances.scores) prev_ID_period = self._prev_instances.ID_period if instances.has("pred_masks"): prev_masks = list(self._prev_instances.pred_masks) untracked_prev_idx = set(range(len(self._prev_instances))).difference(set(matched_prev_idx)) for idx in untracked_prev_idx: x_left, y_top, x_right, y_bot = prev_bboxes[idx] if ( (1.0 * (x_right - x_left) / self._video_width < self._min_box_rel_dim) or (1.0 * (y_bot - y_top) / self._video_height < self._min_box_rel_dim) or self._prev_instances.lost_frame_count[idx] >= self._max_lost_frame_count or prev_ID_period[idx] <= self._min_instance_period ): continue untracked_instances.pred_boxes.append(list(prev_bboxes[idx].numpy())) untracked_instances.pred_classes.append(int(prev_classes[idx])) untracked_instances.scores.append(float(prev_scores[idx])) untracked_instances.ID.append(self._prev_instances.ID[idx]) untracked_instances.ID_period.append(self._prev_instances.ID_period[idx]) untracked_instances.lost_frame_count.append( self._prev_instances.lost_frame_count[idx] + 1 ) if instances.has("pred_masks"): untracked_instances.pred_masks.append(prev_masks[idx].numpy().astype(np.uint8)) untracked_instances.pred_boxes = Boxes(torch.FloatTensor(untracked_instances.pred_boxes)) untracked_instances.pred_classes<fim_suffix> untracked_instances.scores = torch.FloatTensor(untracked_instances.scores) if instances.has("pred_masks"): untracked_instances.pred_masks = torch.IntTensor(untracked_instances.pred_masks) else: untracked_instances.remove("pred_masks") return Instances.cat( [ instances, untracked_instances, ] ) <fim_middle> = torch.IntTensor(untracked_instances.pred_classes)
= torch.IntTensor(untracked_instances.pred_classes)
STATEMENT
prefix_suffix_full_complete_current_block_with_evidence
<filename>UniRef/detectron2/checkpoint/c2_model_loading.py<fim_prefix># Copyright (c) Facebook, Inc. and its affiliates. import copy import logging import re from typing import Dict, List import torch from tabulate import tabulate def convert_basic_c2_names(original_keys): """ Apply some basic name conversion to names in C2 weights. It only deals with typical backbone models. Args: original_keys (list[str]): Returns: list[str]: The same number of strings matching those in original_keys. """ layer_keys = copy.deepcopy(original_keys) layer_keys = [ {"pred_b": "linear_b", "pred_w": "linear_w"}.get(k, k) for k in layer_keys ] # some hard-coded mappings layer_keys = [k.replace("_", ".") for k in layer_keys] layer_keys = [re.sub("\\.b$", ".bias", k) for k in layer_keys] layer_keys = [re.sub("\\.w$", ".weight", k) for k in layer_keys] # Uniform both bn and gn names to "norm" layer_keys = [re.sub("bn\\.s$", "norm.weight", k) for k in layer_keys] layer_keys = [re.sub("bn\\.bias$", "norm.bias", k) for k in layer_keys] layer_keys = [re.sub("bn\\.rm", "norm.running_mean", k) for k in layer_keys] layer_keys = [re.sub("bn\\.running.mean$", "norm.running_mean", k) for k in layer_keys] layer_keys = [re.sub("bn\\.riv$", "norm.running_var", k) for k in layer_keys] layer_keys = [re.sub("bn\\.running.var$", "norm.running_var", k) for k in layer_keys] layer_keys = [re.sub("bn\\.gamma$", "norm.weight", k) for k in layer_keys] layer_keys = [re.sub("bn\\.beta$", "norm.bias", k) for k in layer_keys] layer_keys = [re.sub("gn\\.s$", "norm.weight", k) for k in layer_keys] layer_keys = [re.sub("gn\\.bias$", "norm.bias", k) for k in layer_keys] # stem layer_keys = [re.sub("^res\\.conv1\\.norm\\.", "conv1.norm.", k) for k in layer_keys] # to avoid mis-matching with "conv1" in other components (e.g. detection head) layer_keys = [re.sub("^conv1\\.", "stem.conv1.", k) for k in layer_keys] # layer1-4 is used by torchvision, however we follow the C2 naming strategy (res2-5) # layer_keys = [re.sub("^res2.", "layer1.", k) for k in layer_keys] # layer_keys = [re.sub("^res3.", "layer2.", k) for k in layer_keys] # layer_keys = [re.sub("^res4.", "layer3.", k) for k in layer_keys] # layer_keys = [re.sub("^res5.", "layer4.", k) for k in layer_keys] # blocks layer_keys = [k.replace(".branch1.", ".shortcut.") for k in layer_keys] layer_keys = [k.replace(".branch2a.", ".conv1.") for k in layer_keys] layer_keys = [k.replace(".branch2b.", ".conv2.") for k in layer_keys] layer_keys = [k.replace(".branch2c.", ".conv3.") for k in layer_keys] # DensePose substitutions layer_keys = [re.sub("^body.conv.fcn", "body_conv_fcn", k) for k in layer_keys] layer_keys = [k.replace("AnnIndex.lowres", "ann_index_lowres") for k in layer_keys] layer_keys = [k.replace("Index.UV.lowres", "index_uv_lowres") for k in layer_keys] layer_keys = [k.replace("U.lowres", "u_lowres") for k in layer_keys] layer_keys = [k.replace("V.lowres", "v_lowres") for k in layer_keys] return layer_keys def convert_c2_detectron_names(weights): """ Map Caffe2 Detectron weight names to Detectron2 names. Args: weights (dict): name -> tensor Returns: dict: detectron2 names -> tensor dict: detectron2 names -> C2 names """ logger = logging.getLogger(__name__) logger.info("Renaming Caffe2 weights ......") original_keys = sorted(weights.keys()) layer_keys = copy.deepcopy(original_keys) layer_keys = convert_basic_c2_names(layer_keys) # -------------------------------------------------------------------------- # RPN hidden representation conv # -------------------------------------------------------------------------- # FPN case # In the C2 model, the RPN hidden layer conv is defined for FPN level 2 and then # shared for all other levels, hence the appearance of "fpn2" layer_keys = [ k.replace("conv.rpn.fpn2", "proposal_generator.rpn_head.conv") for k in layer_keys ] # Non-FPN case layer_keys = [k.replace("conv.rpn", "proposal_generator.rpn_head.conv") for k in layer_keys] # -------------------------------------------------------------------------- # RPN box transformation conv # -------------------------------------------------------------------------- # FPN case (see note above about "fpn2") layer_keys = [ k.replace("rpn.bbox.pred.fpn2", "proposal_generator.rpn_head.anchor_deltas") for k in layer_keys ] layer_keys = [ k.replace("rpn.cls.logits.fpn2", "proposal_generator.rpn_head.objectness_logits") for k in layer_keys ] # Non-FPN case layer_keys = [ k.replace("rpn.bbox.pred", "proposal_generator.rpn_head.anchor_deltas") for k in layer_keys ] layer_keys = [ k.replace("rpn.cls.logits", "proposal_generator.rpn_head.objectness_logits") for k in layer_keys ] # -------------------------------------------------------------------------- # Fast R-CNN box head # -------------------------------------------------------------------------- layer_keys = [re.sub("^bbox\\.pred", "bbox_pred", k) for k in layer_keys] layer_keys = [re.sub("^cls\\.score", "cls_score", k) for k in layer_keys] layer_keys = [re.sub("^fc6\\.", "box_head.fc1.", k) for k in layer_keys] layer_keys = [re.sub("^fc7\\.", "box_head.fc2.", k) for k in layer_keys] # 4conv1fc head tensor names: head_conv1_w, head_conv1_gn_s layer_keys = [re.sub("^head\\.conv", "box_head.conv", k) for k in layer_keys] # -------------------------------------------------------------------------- # FPN lateral and output convolutions # -------------------------------------------------------------------------- def fpn_map(name): """ Look for keys with the following patterns: 1) Starts with "fpn.inner." Example: "fpn.inner.res2.2.sum.lateral.weight" Meaning: These are lateral pathway convolutions 2) Starts with "fpn.res" Example: "fpn.res2.2.sum.weight" Meaning: These are FPN output convolutions """ splits = name.split(".") norm = ".norm" if "norm" in splits else "" if name.startswith("fpn.inner."): # splits example: ['fpn', 'inner', 'res2', '2', 'sum', 'lateral', 'weight'] stage = int(splits[2][len("res") :]) return "fpn_lateral{}{}.{}".format(stage, norm, splits[-1]) elif name.startswith("fpn.res"): # splits example: ['fpn', 'res2', '2', 'sum', 'weight'] stage = int(splits[1][len("res") :]) return "fpn_output{}{}.{}".format(stage, norm, splits[-1]) return name layer_keys = [fpn_map(k) for k in layer_keys] # -------------------------------------------------------------------------- # Mask R-CNN mask head # -------------------------------------------------------------------------- # roi_heads.StandardROIHeads case layer_keys = [k.replace(".[mask].fcn", "mask_head.mask_fcn") for k in layer_keys] layer_keys = [re.sub("^\\.mask\\.fcn", "mask_head.mask_fcn", k) for k in layer_keys] layer_keys = [k.replace("mask.fcn.logits", "mask_head.predictor") for k in layer_keys] # roi_heads.Res5ROIHeads case layer_keys = [k.replace("conv5.mask", "mask_head.deconv") for k in layer_keys] # -------------------------------------------------------------------------- # Keypoint R-CNN head # -------------------------------------------------------------------------- # interestingly, the keypoint head convs have blob names that are simply "conv_fcnX" layer_keys = [k.replace("conv.fcn", "roi_heads.keypoint_head.conv_fcn") for k in layer_keys] layer_keys = [ k.replace("kps.score.lowres", "roi_heads.keypoint_head.score_lowres") for k in layer_keys ] layer_keys = [k.replace("kps.score.", "roi_heads.keypoint_head.score.") for k in layer_keys] # -------------------------------------------------------------------------- # Done with replacements # -------------------------------------------------------------------------- assert len(set(layer_keys)) == len(layer_keys) assert len(original_keys) == len(layer_keys) new_weights = {} new_keys_to_original_keys = {} for orig, renamed in zip(original_keys, layer_keys): new_keys_to_original_keys[renamed] = orig if renamed.startswith("bbox_pred.") or renamed.startswith("mask_head.predictor."): # remove the meaningless prediction weight for background class new_start_idx = 4 if renamed.startswith("bbox_pred.") else 1 new_weights[renamed] = weights[orig][new_start_idx:] logger.info( "Remove prediction weight for background class in {}. The shape changes from " "{} to {}.".format( renamed, tuple(weights[orig].shape), tuple(new_weights[renamed].shape) ) ) elif renamed.startswith("cls_score."): # move weights of bg class from original index 0 to last index logger.info( "Move classification weights for background class in {} from index 0 to " "index {}.".format(renamed, weights[orig].shape[0] - 1) ) new_weights[renamed] = torch.cat([weights[orig][1:], weights[orig][:1]]) else: new_weights[renamed] = weights[orig] return new_weights, new_keys_to_original_keys # Note the current matching is not symmetric. # it assumes model_state_dict will have longer names. def align_and_update_state_dicts(model_state_dict, ckpt_state_dict, c2_conversion=True): """ Match names between the two state-dict, and returns a new chkpt_state_dict with names converted to match model_state_dict with heuristics. The returned dict can be later loaded with fvcore checkpointer. If `c2_conversion==True`, `ckpt_state_dict` is assumed to be a Caffe2 model and will be renamed at first. Strategy: suppose that the models that we will create will have prefixes appended to each of its keys, for example due to an extra level of nesting that the original pre-trained weights from ImageNet won't contain. For example, model.state_dict() might return backbone[0].body.res2.conv1.weight, while the pre-trained model contains res2.conv1.weight. We thus want to match both parameters together. For that, we look for each model weight, look among all loaded keys if there is one that is a suffix of the current weight name, and use it if that's the case. If multiple matches exist, take the one with longest size of the corresponding name. For example, for the same model as before, the pretrained weight file can contain both res2.conv1.weight, as well as conv1.weight. In this case, we want to match backbone[0].body.conv1.weight to conv1.weight, and backbone[0].body.res2.conv1.weight to res2.conv1.weight. """ model_keys = sorted(model_state_dict.keys()) if c2_conversion: ckpt_state_dict, original_keys = convert_c2_detectron_names(ckpt_state_dict) # original_keys: the name in the original dict (before renaming) else: original_keys = {x: x for x in ckpt_state_dict.keys()} ckpt_keys = sorted(ckpt_state_dict.keys()) def match(a, b): # Matched ckpt_key should be a complete (starts with '.') suffix. # For example, roi_heads.mesh_head.whatever_conv1 does not match conv1, # but matches whatever_conv1 or mesh_head.whatever_conv1. return a == b or a.endswith("." + b) # get a matrix of string matches, where each (i, j) entry correspond to the size of the # ckpt_key string, if it matches match_matrix = [len(j) if match(i, j) else 0 for i in model_keys for j in ckpt_keys] match_matrix = torch.as_tensor(match_matrix).view(len(model_keys), len(ckpt_keys)) # use the matched one with longest size in case of multiple matches max_match_size, idxs = match_matrix.max(1) # remove indices that correspond to no-match idxs[max_match_size == 0] = -1 logger = logging.getLogger(__name__) # matched_pairs (matched checkpoint key --> matched model key) matched_keys = {} result_state_dict = {} for idx_model, idx_ckpt in enumerate(idxs.tolist()): if idx_ckpt == -1: continue key_model = model_keys[idx_model] key_ckpt = ckpt_keys[idx_ckpt] value_ckpt = ckpt_state_dict[key_ckpt] shape_in_model = model_state_dict[key_model].shape if shape_in_model != value_ckpt.shape: logger.warning( "Shape of {} in checkpoint is {}, while shape of {} in model is {}.".format( key_ckpt, value_ckpt.shape, key_model, shape_in_model ) ) logger.warning( "{} will not be loaded. Please double check and see if this is desired.".format( key_ckpt ) ) continue assert key_model not in result_state_dict result_state_dict[key_model] = value_ckpt if key_ckpt in matched_keys: # already added to matched_keys logger.error( "Ambiguity found for {} in checkpoint!" "It matches at least two keys in the model ({} and {}).".format( key_ckpt, key_model, matched_keys[key_ckpt] ) ) raise ValueError("Cannot match one checkpoint key to multiple keys in the model.") matched_keys[key_ckpt] = key_model # logging: matched_model_keys = sorted(matched_keys.values()) if len(matched_model_keys) == 0: logger.warning("No weights in checkpoint matched with model.") return ckpt_state_dict common_prefix = _longest_common_prefix(matched_model_keys) rev_matched_keys = {v: k for k, v in matched_keys.items()} original_keys = {k: original_keys[rev_matched_keys[k]] for k in matched_model_keys} model_key_groups = _group_keys_by_module(matched_model_keys, original_keys) table = [] memo = set() for key_model in matched_model_keys: if key_model in memo: continue if key_model in model_key_groups: group = model_key_groups[key_model] memo |= set(group) shapes = [tuple(model_state_dict[k].shape) for k in group] table.append( ( _longest_common_prefix([k[len(common_prefix) :] for k in group]) + "*", _group_str([original_keys[k] for k in group]), " ".join([str(x).replace(" ", "") for x in shapes]), ) ) else: key_checkpoint = original_keys[key_model] shape = str(tuple(model_state_dict[key_model].shape)) table.append((key_model[len(common_prefix) :], key_checkpoint, shape)) table_str = tabulate( table, tablefmt="pipe", headers=["Names in Model", "Names in Checkpoint", "Shapes"] ) logger.info( "Following weights matched with " + (f"submodule {common_prefix[:-1]}" if common_prefix else "model") + ":\n" + table_str ) unmatched_ckpt_keys = [k for k in ckpt_keys if k not in set(matched_keys.keys())] for k in unmatched_ckpt_keys: result_state_dict[k] = ckpt_state_dict[k] return result_state_dict def _group_keys_by_module(keys: List[str], original_names: Dict[str, str]): """ Params in the same submodule are grouped together. Args: keys: names of all parameters original_names: mapping from parameter name to their name in the checkpoint Returns: dict[name -> all other names in the same group] """ def _submodule_name(key): pos = key.rfind(".") if pos < 0: return None prefix = key[: pos + 1] return prefix all_submodules = [_submodule_name(k) for k in keys] all_submodules = [x for x in all_submodules if x] all_submodules = sorted(all_submodules, key=len) ret = {} for prefix in all_submodules: group = [k for k in keys if k.startswith(prefix)] if len(group) <= 1: continue original_name_lcp = _longest_common_prefix_str([original_names[k] for k in group]) if len(original_name_lcp) == 0: # don't group weights if original names don't share prefix continue for k in group: if k in ret: continue ret[k] = group return ret def _longest_common_prefix(names: List[str]) -> str: """ ["abc.zfg", "abc.zef"] -> "abc." """ names = [n.split(".") for n in names] m1,<fim_suffix> ret = [a for a, b in zip(m1, m2) if a == b] ret = ".".join(ret) + "." if len(ret) else "" return ret def _longest_common_prefix_str(names: List[str]) -> str: m1, m2 = min(names), max(names) lcp = [a for a, b in zip(m1, m2) if a == b] lcp = "".join(lcp) return lcp def _group_str(names: List[str]) -> str: """ Turn "common1", "common2", "common3" into "common{1,2,3}" """ lcp = _longest_common_prefix_str(names) rest = [x[len(lcp) :] for x in names] rest = "{" + ",".join(rest) + "}" ret = lcp + rest # add some simplification for BN specifically ret = ret.replace("bn_{beta,running_mean,running_var,gamma}", "bn_*") ret = ret.replace("bn_beta,bn_running_mean,bn_running_var,bn_gamma", "bn_*") return ret <fim_middle> m2 = min(names), max(names)
m2 = min(names), max(names)
STATEMENT
prefix_suffix_full_complete_current_block_with_evidence
<filename>UniRef/detectron2/structures/masks.py<fim_prefix># Copyright (c) Facebook, Inc. and its affiliates. import copy import itertools import numpy as np from typing import Any, Iterator, List, Union import pycocotools.mask as mask_util import torch from torch import device from detectron2.layers.roi_align import ROIAlign from detectron2.utils.memory import retry_if_cuda_oom from .boxes import Boxes def polygon_area(x, y): # Using the shoelace formula # https://stackoverflow.com/questions/24467972/calculate-area-of-polygon-given-x-y-coordinates return 0.5 * np.abs(np.dot(x, np.roll(y, 1)) - np.dot(y, np.roll(x, 1))) def polygons_to_bitmask(polygons: List[np.ndarray], height: int, width: int) -> np.ndarray: """ Args: polygons (list[ndarray]): each array has shape (Nx2,) height, width (int) Returns: ndarray: a bool mask of shape (height, width) """ if len(polygons) == 0: # COCOAPI does not support empty polygons return np.zeros((height, width)).astype(np.bool) rles = mask_util.frPyObjects(polygons, height, width) rle = mask_util.merge(rles) return<fim_suffix> def rasterize_polygons_within_box( polygons: List[np.ndarray], box: np.ndarray, mask_size: int ) -> torch.Tensor: """ Rasterize the polygons into a mask image and crop the mask content in the given box. The cropped mask is resized to (mask_size, mask_size). This function is used when generating training targets for mask head in Mask R-CNN. Given original ground-truth masks for an image, new ground-truth mask training targets in the size of `mask_size x mask_size` must be provided for each predicted box. This function will be called to produce such targets. Args: polygons (list[ndarray[float]]): a list of polygons, which represents an instance. box: 4-element numpy array mask_size (int): Returns: Tensor: BoolTensor of shape (mask_size, mask_size) """ # 1. Shift the polygons w.r.t the boxes w, h = box[2] - box[0], box[3] - box[1] polygons = copy.deepcopy(polygons) for p in polygons: p[0::2] = p[0::2] - box[0] p[1::2] = p[1::2] - box[1] # 2. Rescale the polygons to the new box size # max() to avoid division by small number ratio_h = mask_size / max(h, 0.1) ratio_w = mask_size / max(w, 0.1) if ratio_h == ratio_w: for p in polygons: p *= ratio_h else: for p in polygons: p[0::2] *= ratio_w p[1::2] *= ratio_h # 3. Rasterize the polygons with coco api mask = polygons_to_bitmask(polygons, mask_size, mask_size) mask = torch.from_numpy(mask) return mask class BitMasks: """ This class stores the segmentation masks for all objects in one image, in the form of bitmaps. Attributes: tensor: bool Tensor of N,H,W, representing N instances in the image. """ def __init__(self, tensor: Union[torch.Tensor, np.ndarray]): """ Args: tensor: bool Tensor of N,H,W, representing N instances in the image. """ device = tensor.device if isinstance(tensor, torch.Tensor) else torch.device("cpu") tensor = torch.as_tensor(tensor, dtype=torch.bool, device=device) assert tensor.dim() == 3, tensor.size() self.image_size = tensor.shape[1:] self.tensor = tensor @torch.jit.unused def to(self, *args: Any, **kwargs: Any) -> "BitMasks": return BitMasks(self.tensor.to(*args, **kwargs)) @property def device(self) -> torch.device: return self.tensor.device @torch.jit.unused def __getitem__(self, item: Union[int, slice, torch.BoolTensor]) -> "BitMasks": """ Returns: BitMasks: Create a new :class:`BitMasks` by indexing. The following usage are allowed: 1. `new_masks = masks[3]`: return a `BitMasks` which contains only one mask. 2. `new_masks = masks[2:10]`: return a slice of masks. 3. `new_masks = masks[vector]`, where vector is a torch.BoolTensor with `length = len(masks)`. Nonzero elements in the vector will be selected. Note that the returned object might share storage with this object, subject to Pytorch's indexing semantics. """ if isinstance(item, int): return BitMasks(self.tensor[item].unsqueeze(0)) m = self.tensor[item] assert m.dim() == 3, "Indexing on BitMasks with {} returns a tensor with shape {}!".format( item, m.shape ) return BitMasks(m) @torch.jit.unused def __iter__(self) -> torch.Tensor: yield from self.tensor @torch.jit.unused def __repr__(self) -> str: s = self.__class__.__name__ + "(" s += "num_instances={})".format(len(self.tensor)) return s def __len__(self) -> int: return self.tensor.shape[0] def nonempty(self) -> torch.Tensor: """ Find masks that are non-empty. Returns: Tensor: a BoolTensor which represents whether each mask is empty (False) or non-empty (True). """ return self.tensor.flatten(1).any(dim=1) @staticmethod def from_polygon_masks( polygon_masks: Union["PolygonMasks", List[List[np.ndarray]]], height: int, width: int ) -> "BitMasks": """ Args: polygon_masks (list[list[ndarray]] or PolygonMasks) height, width (int) """ if isinstance(polygon_masks, PolygonMasks): polygon_masks = polygon_masks.polygons masks = [polygons_to_bitmask(p, height, width) for p in polygon_masks] if len(masks): return BitMasks(torch.stack([torch.from_numpy(x) for x in masks])) else: return BitMasks(torch.empty(0, height, width, dtype=torch.bool)) @staticmethod def from_roi_masks(roi_masks: "ROIMasks", height: int, width: int) -> "BitMasks": """ Args: roi_masks: height, width (int): """ return roi_masks.to_bitmasks(height, width) def crop_and_resize(self, boxes: torch.Tensor, mask_size: int) -> torch.Tensor: """ Crop each bitmask by the given box, and resize results to (mask_size, mask_size). This can be used to prepare training targets for Mask R-CNN. It has less reconstruction error compared to rasterization with polygons. However we observe no difference in accuracy, but BitMasks requires more memory to store all the masks. Args: boxes (Tensor): Nx4 tensor storing the boxes for each mask mask_size (int): the size of the rasterized mask. Returns: Tensor: A bool tensor of shape (N, mask_size, mask_size), where N is the number of predicted boxes for this image. """ assert len(boxes) == len(self), "{} != {}".format(len(boxes), len(self)) device = self.tensor.device batch_inds = torch.arange(len(boxes), device=device).to(dtype=boxes.dtype)[:, None] rois = torch.cat([batch_inds, boxes], dim=1) # Nx5 bit_masks = self.tensor.to(dtype=torch.float32) rois = rois.to(device=device) output = ( ROIAlign((mask_size, mask_size), 1.0, 0, aligned=True) .forward(bit_masks[:, None, :, :], rois) .squeeze(1) ) output = output >= 0.5 return output def get_bounding_boxes(self) -> Boxes: """ Returns: Boxes: tight bounding boxes around bitmasks. If a mask is empty, it's bounding box will be all zero. """ boxes = torch.zeros(self.tensor.shape[0], 4, dtype=torch.float32) x_any = torch.any(self.tensor, dim=1) y_any = torch.any(self.tensor, dim=2) for idx in range(self.tensor.shape[0]): x = torch.where(x_any[idx, :])[0] y = torch.where(y_any[idx, :])[0] if len(x) > 0 and len(y) > 0: boxes[idx, :] = torch.as_tensor( [x[0], y[0], x[-1] + 1, y[-1] + 1], dtype=torch.float32 ) return Boxes(boxes) @staticmethod def cat(bitmasks_list: List["BitMasks"]) -> "BitMasks": """ Concatenates a list of BitMasks into a single BitMasks Arguments: bitmasks_list (list[BitMasks]) Returns: BitMasks: the concatenated BitMasks """ assert isinstance(bitmasks_list, (list, tuple)) assert len(bitmasks_list) > 0 assert all(isinstance(bitmask, BitMasks) for bitmask in bitmasks_list) cat_bitmasks = type(bitmasks_list[0])(torch.cat([bm.tensor for bm in bitmasks_list], dim=0)) return cat_bitmasks class PolygonMasks: """ This class stores the segmentation masks for all objects in one image, in the form of polygons. Attributes: polygons: list[list[ndarray]]. Each ndarray is a float64 vector representing a polygon. """ def __init__(self, polygons: List[List[Union[torch.Tensor, np.ndarray]]]): """ Arguments: polygons (list[list[np.ndarray]]): The first level of the list correspond to individual instances, the second level to all the polygons that compose the instance, and the third level to the polygon coordinates. The third level array should have the format of [x0, y0, x1, y1, ..., xn, yn] (n >= 3). """ if not isinstance(polygons, list): raise ValueError( "Cannot create PolygonMasks: Expect a list of list of polygons per image. " "Got '{}' instead.".format(type(polygons)) ) def _make_array(t: Union[torch.Tensor, np.ndarray]) -> np.ndarray: # Use float64 for higher precision, because why not? # Always put polygons on CPU (self.to is a no-op) since they # are supposed to be small tensors. # May need to change this assumption if GPU placement becomes useful if isinstance(t, torch.Tensor): t = t.cpu().numpy() return np.asarray(t).astype("float64") def process_polygons( polygons_per_instance: List[Union[torch.Tensor, np.ndarray]] ) -> List[np.ndarray]: if not isinstance(polygons_per_instance, list): raise ValueError( "Cannot create polygons: Expect a list of polygons per instance. " "Got '{}' instead.".format(type(polygons_per_instance)) ) # transform each polygon to a numpy array polygons_per_instance = [_make_array(p) for p in polygons_per_instance] for polygon in polygons_per_instance: if len(polygon) % 2 != 0 or len(polygon) < 6: raise ValueError(f"Cannot create a polygon from {len(polygon)} coordinates.") return polygons_per_instance self.polygons: List[List[np.ndarray]] = [ process_polygons(polygons_per_instance) for polygons_per_instance in polygons ] def to(self, *args: Any, **kwargs: Any) -> "PolygonMasks": return self @property def device(self) -> torch.device: return torch.device("cpu") def get_bounding_boxes(self) -> Boxes: """ Returns: Boxes: tight bounding boxes around polygon masks. """ boxes = torch.zeros(len(self.polygons), 4, dtype=torch.float32) for idx, polygons_per_instance in enumerate(self.polygons): minxy = torch.as_tensor([float("inf"), float("inf")], dtype=torch.float32) maxxy = torch.zeros(2, dtype=torch.float32) for polygon in polygons_per_instance: coords = torch.from_numpy(polygon).view(-1, 2).to(dtype=torch.float32) minxy = torch.min(minxy, torch.min(coords, dim=0).values) maxxy = torch.max(maxxy, torch.max(coords, dim=0).values) boxes[idx, :2] = minxy boxes[idx, 2:] = maxxy return Boxes(boxes) def nonempty(self) -> torch.Tensor: """ Find masks that are non-empty. Returns: Tensor: a BoolTensor which represents whether each mask is empty (False) or not (True). """ keep = [1 if len(polygon) > 0 else 0 for polygon in self.polygons] return torch.from_numpy(np.asarray(keep, dtype=np.bool)) def __getitem__(self, item: Union[int, slice, List[int], torch.BoolTensor]) -> "PolygonMasks": """ Support indexing over the instances and return a `PolygonMasks` object. `item` can be: 1. An integer. It will return an object with only one instance. 2. A slice. It will return an object with the selected instances. 3. A list[int]. It will return an object with the selected instances, correpsonding to the indices in the list. 4. A vector mask of type BoolTensor, whose length is num_instances. It will return an object with the instances whose mask is nonzero. """ if isinstance(item, int): selected_polygons = [self.polygons[item]] elif isinstance(item, slice): selected_polygons = self.polygons[item] elif isinstance(item, list): selected_polygons = [self.polygons[i] for i in item] elif isinstance(item, torch.Tensor): # Polygons is a list, so we have to move the indices back to CPU. if item.dtype == torch.bool: assert item.dim() == 1, item.shape item = item.nonzero().squeeze(1).cpu().numpy().tolist() elif item.dtype in [torch.int32, torch.int64]: item = item.cpu().numpy().tolist() else: raise ValueError("Unsupported tensor dtype={} for indexing!".format(item.dtype)) selected_polygons = [self.polygons[i] for i in item] return PolygonMasks(selected_polygons) def __iter__(self) -> Iterator[List[np.ndarray]]: """ Yields: list[ndarray]: the polygons for one instance. Each Tensor is a float64 vector representing a polygon. """ return iter(self.polygons) def __repr__(self) -> str: s = self.__class__.__name__ + "(" s += "num_instances={})".format(len(self.polygons)) return s def __len__(self) -> int: return len(self.polygons) def crop_and_resize(self, boxes: torch.Tensor, mask_size: int) -> torch.Tensor: """ Crop each mask by the given box, and resize results to (mask_size, mask_size). This can be used to prepare training targets for Mask R-CNN. Args: boxes (Tensor): Nx4 tensor storing the boxes for each mask mask_size (int): the size of the rasterized mask. Returns: Tensor: A bool tensor of shape (N, mask_size, mask_size), where N is the number of predicted boxes for this image. """ assert len(boxes) == len(self), "{} != {}".format(len(boxes), len(self)) device = boxes.device # Put boxes on the CPU, as the polygon representation is not efficient GPU-wise # (several small tensors for representing a single instance mask) boxes = boxes.to(torch.device("cpu")) results = [ rasterize_polygons_within_box(poly, box.numpy(), mask_size) for poly, box in zip(self.polygons, boxes) ] """ poly: list[list[float]], the polygons for one instance box: a tensor of shape (4,) """ if len(results) == 0: return torch.empty(0, mask_size, mask_size, dtype=torch.bool, device=device) return torch.stack(results, dim=0).to(device=device) def area(self): """ Computes area of the mask. Only works with Polygons, using the shoelace formula: https://stackoverflow.com/questions/24467972/calculate-area-of-polygon-given-x-y-coordinates Returns: Tensor: a vector, area for each instance """ area = [] for polygons_per_instance in self.polygons: area_per_instance = 0 for p in polygons_per_instance: area_per_instance += polygon_area(p[0::2], p[1::2]) area.append(area_per_instance) return torch.tensor(area) @staticmethod def cat(polymasks_list: List["PolygonMasks"]) -> "PolygonMasks": """ Concatenates a list of PolygonMasks into a single PolygonMasks Arguments: polymasks_list (list[PolygonMasks]) Returns: PolygonMasks: the concatenated PolygonMasks """ assert isinstance(polymasks_list, (list, tuple)) assert len(polymasks_list) > 0 assert all(isinstance(polymask, PolygonMasks) for polymask in polymasks_list) cat_polymasks = type(polymasks_list[0])( list(itertools.chain.from_iterable(pm.polygons for pm in polymasks_list)) ) return cat_polymasks class ROIMasks: """ Represent masks by N smaller masks defined in some ROIs. Once ROI boxes are given, full-image bitmask can be obtained by "pasting" the mask on the region defined by the corresponding ROI box. """ def __init__(self, tensor: torch.Tensor): """ Args: tensor: (N, M, M) mask tensor that defines the mask within each ROI. """ if tensor.dim() != 3: raise ValueError("ROIMasks must take a masks of 3 dimension.") self.tensor = tensor def to(self, device: torch.device) -> "ROIMasks": return ROIMasks(self.tensor.to(device)) @property def device(self) -> device: return self.tensor.device def __len__(self): return self.tensor.shape[0] def __getitem__(self, item) -> "ROIMasks": """ Returns: ROIMasks: Create a new :class:`ROIMasks` by indexing. The following usage are allowed: 1. `new_masks = masks[2:10]`: return a slice of masks. 2. `new_masks = masks[vector]`, where vector is a torch.BoolTensor with `length = len(masks)`. Nonzero elements in the vector will be selected. Note that the returned object might share storage with this object, subject to Pytorch's indexing semantics. """ t = self.tensor[item] if t.dim() != 3: raise ValueError( f"Indexing on ROIMasks with {item} returns a tensor with shape {t.shape}!" ) return ROIMasks(t) @torch.jit.unused def __repr__(self) -> str: s = self.__class__.__name__ + "(" s += "num_instances={})".format(len(self.tensor)) return s @torch.jit.unused def to_bitmasks(self, boxes: torch.Tensor, height, width, threshold=0.5): """ Args: see documentation of :func:`paste_masks_in_image`. """ from detectron2.layers.mask_ops import paste_masks_in_image, _paste_masks_tensor_shape if torch.jit.is_tracing(): if isinstance(height, torch.Tensor): paste_func = _paste_masks_tensor_shape else: paste_func = paste_masks_in_image else: paste_func = retry_if_cuda_oom(paste_masks_in_image) bitmasks = paste_func(self.tensor, boxes.tensor, (height, width), threshold=threshold) return BitMasks(bitmasks) <fim_middle> mask_util.decode(rle).astype(np.bool)
mask_util.decode(rle).astype(np.bool)
STATEMENT
prefix_suffix_full_complete_current_block_with_evidence
<filename>UniRef/detectron2/structures/masks.py<fim_prefix># Copyright (c) Facebook, Inc. and its affiliates. import copy import itertools import numpy as np from typing import Any, Iterator, List, Union import pycocotools.mask as mask_util import torch from torch import device from detectron2.layers.roi_align import ROIAlign from detectron2.utils.memory import retry_if_cuda_oom from .boxes import Boxes def polygon_area(x, y): # Using the shoelace formula # https://stackoverflow.com/questions/24467972/calculate-area-of-polygon-given-x-y-coordinates return 0.5 * np.abs(np.dot(x, np.roll(y, 1)) - np.dot(y, np.roll(x, 1))) def polygons_to_bitmask(polygons: List[np.ndarray], height: int, width: int) -> np.ndarray: """ Args: polygons (list[ndarray]): each array has shape (Nx2,) height, width (int) Returns: ndarray: a bool mask of shape (height, width) """ if len(polygons) == 0: # COCOAPI does not support empty polygons return np.zeros((height, width)).astype(np.bool) rles = mask_util.frPyObjects(polygons, height, width) rle = mask_util.merge(rles) return mask_util.decode(rle).astype(np.bool) def rasterize_polygons_within_box( polygons: List[np.ndarray], box: np.ndarray, mask_size: int ) -> torch.Tensor: """ Rasterize the polygons into a mask image and crop the mask content in the given box. The cropped mask is resized to (mask_size, mask_size). This function is used when generating training targets for mask head in Mask R-CNN. Given original ground-truth masks for an image, new ground-truth mask training targets in the size of `mask_size x mask_size` must be provided for each predicted box. This function will be called to produce such targets. Args: polygons (list[ndarray[float]]): a list of polygons, which represents an instance. box: 4-element numpy array mask_size (int): Returns: Tensor: BoolTensor of shape (mask_size, mask_size) """ # 1. Shift the polygons w.r.t the boxes w, h = box[2] - box[0], box[3] - box[1] polygons = copy.deepcopy(polygons) for p in polygons: p[0::2] = p[0::2] - box[0] p[1::2] = p[1::2] - box[1] # 2. Rescale the polygons to the new box size # max() to avoid division by small number ratio_h = mask_size / max(h, 0.1) ratio_w = mask_size / max(w, 0.1) if ratio_h == ratio_w: for p in polygons: p *= ratio_h else: for p in polygons: p[0::2] *= ratio_w p[1::2] *= ratio_h # 3. Rasterize the polygons with coco api mask = polygons_to_bitmask(polygons, mask_size, mask_size) mask = torch.from_numpy(mask) return mask class BitMasks: """ This class stores the segmentation masks for all objects in one image, in the form of bitmaps. Attributes: tensor: bool Tensor of N,H,W, representing N instances in the image. """ def __init__(self, tensor: Union[torch.Tensor, np.ndarray]): """ Args: tensor: bool Tensor of N,H,W, representing N instances in the image. """ device = tensor.device if isinstance(tensor, torch.Tensor) else torch.device("cpu") tensor = torch.as_tensor(tensor, dtype=torch.bool, device=device) assert tensor.dim() == 3, tensor.size() self.image_size = tensor.shape[1:] self.tensor = tensor @torch.jit.unused def to(self, *args: Any, **kwargs: Any) -> "BitMasks": return BitMasks(self.tensor.to(*args, **kwargs)) @property def device(self) -> torch.device: return self.tensor.device @torch.jit.unused def __getitem__(self, item: Union[int, slice, torch.BoolTensor]) -> "BitMasks": """ Returns: BitMasks: Create a new :class:`BitMasks` by indexing. The following usage are allowed: 1. `new_masks = masks[3]`: return a `BitMasks` which contains only one mask. 2. `new_masks = masks[2:10]`: return a slice of masks. 3. `new_masks = masks[vector]`, where vector is a torch.BoolTensor with `length = len(masks)`. Nonzero elements in the vector will be selected. Note that the returned object might share storage with this object, subject to Pytorch's indexing semantics. """ if isinstance(item, int): return BitMasks(self.tensor[item].unsqueeze(0)) m = self.tensor[item] assert m.dim() == 3, "Indexing on BitMasks with {} returns a tensor with shape {}!".format( item, m.shape ) return BitMasks(m) @torch.jit.unused def __iter__(self) -> torch.Tensor: yield from self.tensor @torch.jit.unused def __repr__(self) -> str: s = self.__class__.__name__ + "(" s += "num_instances={})".format(len(self.tensor)) return s def __len__(self) -> int: return self.tensor.shape[0] def nonempty(self) -> torch.Tensor: """ Find masks that are non-empty. Returns: Tensor: a BoolTensor which represents whether each mask is empty (False) or non-empty (True). """ return self.tensor.flatten(1).any(dim=1) @staticmethod def from_polygon_masks( polygon_masks: Union["PolygonMasks", List[List[np.ndarray]]], height: int, width: int ) -> "BitMasks": """ Args: polygon_masks (list[list[ndarray]] or PolygonMasks) height, width (int) """ if isinstance(polygon_masks, PolygonMasks): polygon_masks = polygon_masks.polygons masks = [polygons_to_bitmask(p, height, width) for p in polygon_masks] if len(masks): return BitMasks(torch.stack([torch.from_numpy(x) for x in masks])) else: return BitMasks(torch.empty(0, height, width, dtype=torch.bool)) @staticmethod def from_roi_masks(roi_masks: "ROIMasks", height: int, width: int) -> "BitMasks": """ Args: roi_masks: height, width (int): """ return roi_masks.to_bitmasks(height, width) def crop_and_resize(self, boxes: torch.Tensor, mask_size: int) -> torch.Tensor: """ Crop each bitmask by the given box, and resize results to (mask_size, mask_size). This can be used to prepare training targets for Mask R-CNN. It has less reconstruction error compared to rasterization with polygons. However we observe no difference in accuracy, but BitMasks requires more memory to store all the masks. Args: boxes (Tensor): Nx4 tensor storing the boxes for each mask mask_size (int): the size of the rasterized mask. Returns: Tensor: A bool tensor of shape (N, mask_size, mask_size), where N is the number of predicted boxes for this image. """ assert len(boxes) == len(self), "{} != {}".format(len(boxes), len(self)) device = self.tensor.device batch_inds = torch.arange(len(boxes), device=device).to(dtype=boxes.dtype)[:, None] rois = torch.cat([batch_inds, boxes], dim=1) # Nx5 bit_masks = self.tensor.to(dtype=torch.float32) rois = rois.to(device=device) output = ( ROIAlign((mask_size, mask_size), 1.0, 0, aligned=True) .forward(bit_masks[:, None, :, :], rois) .squeeze(1) ) output = output >= 0.5 return output def get_bounding_boxes(self) -> Boxes: """ Returns: Boxes: tight bounding boxes around bitmasks. If a mask is empty, it's bounding box will be all zero. """ boxes = torch.zeros(self.tensor.shape[0], 4, dtype=torch.float32) x_any = torch.any(self.tensor, dim=1) y_any = torch.any(self.tensor, dim=2) for idx in range(self.tensor.shape[0]): x = torch.where(x_any[idx, :])[0] y = torch.where(y_any[idx, :])[0] if len(x) > 0 and len(y) > 0: boxes[idx, :] = torch.as_tensor( [x[0], y[0], x[-1] + 1, y[-1] + 1], dtype=torch.float32 ) return Boxes(boxes) @staticmethod def cat(bitmasks_list: List["BitMasks"]) -> "BitMasks": """ Concatenates a list of BitMasks into a single BitMasks Arguments: bitmasks_list (list[BitMasks]) Returns: BitMasks: the concatenated BitMasks """ assert isinstance(bitmasks_list, (list, tuple)) assert len(bitmasks_list) > 0 assert all(isinstance(bitmask, BitMasks) for bitmask in bitmasks_list) cat_bitmasks = type(bitmasks_list[0])(torch.cat([bm.tensor for bm in bitmasks_list], dim=0)) return cat_bitmasks class PolygonMasks: """ This class stores the segmentation masks for all objects in one image, in the form of polygons. Attributes: polygons: list[list[ndarray]]. Each ndarray is a float64 vector representing a polygon. """ def __init__(self, polygons: List[List[Union[torch.Tensor, np.ndarray]]]): """ Arguments: polygons (list[list[np.ndarray]]): The first level of the list correspond to individual instances, the second level to all the polygons that compose the instance, and the third level to the polygon coordinates. The third level array should have the format of [x0, y0, x1, y1, ..., xn, yn] (n >= 3). """ if not isinstance(polygons, list): raise ValueError( "Cannot create PolygonMasks: Expect a list of list of polygons per image. " "Got '{}' instead.".format(type(polygons)) ) def _make_array(t: Union[torch.Tensor, np.ndarray]) -> np.ndarray: # Use float64 for higher precision, because why not? # Always put polygons on CPU (self.to is a no-op) since they # are supposed to be small tensors. # May need to change this assumption if GPU placement becomes useful if isinstance(t, torch.Tensor): t = t.cpu().numpy() return np.asarray(t).astype("float64") def process_polygons( polygons_per_instance: List[Union[torch.Tensor, np.ndarray]] ) -> List[np.ndarray]: if not isinstance(polygons_per_instance, list): raise ValueError( "Cannot create polygons: Expect a list of polygons per instance. " "Got '{}' instead.".format(type(polygons_per_instance)) ) # transform each polygon to a numpy array polygons_per_instance = [_make_array(p) for p in polygons_per_instance] for polygon in polygons_per_instance: if len(polygon) % 2 != 0 or len(polygon) < 6: raise ValueError(f"Cannot create a polygon from {len(polygon)} coordinates.") return polygons_per_instance self.polygons: List[List[np.ndarray]] = [ process_polygons(polygons_per_instance) for polygons_per_instance in polygons ] def to(self, *args: Any, **kwargs: Any) -> "PolygonMasks": return self @property def device(self) -> torch.device: return torch.device("cpu") def get_bounding_boxes(self) -> Boxes: """ Returns: Boxes: tight bounding boxes around polygon masks. """ boxes = torch.zeros(len(self.polygons), 4, dtype=torch.float32) for idx, polygons_per_instance in enumerate(self.polygons): minxy = torch.as_tensor([float("inf"), float("inf")], dtype=torch.float32) maxxy = torch.zeros(2, dtype=torch.float32) for polygon in polygons_per_instance: coords = torch.from_numpy(polygon).view(-1, 2).to(dtype=torch.float32) minxy = torch.min(minxy, torch.min(coords, dim=0).values) maxxy = torch.max(maxxy, torch.max(coords, dim=0).values) boxes[idx, :2] = minxy boxes[idx,<fim_suffix> return Boxes(boxes) def nonempty(self) -> torch.Tensor: """ Find masks that are non-empty. Returns: Tensor: a BoolTensor which represents whether each mask is empty (False) or not (True). """ keep = [1 if len(polygon) > 0 else 0 for polygon in self.polygons] return torch.from_numpy(np.asarray(keep, dtype=np.bool)) def __getitem__(self, item: Union[int, slice, List[int], torch.BoolTensor]) -> "PolygonMasks": """ Support indexing over the instances and return a `PolygonMasks` object. `item` can be: 1. An integer. It will return an object with only one instance. 2. A slice. It will return an object with the selected instances. 3. A list[int]. It will return an object with the selected instances, correpsonding to the indices in the list. 4. A vector mask of type BoolTensor, whose length is num_instances. It will return an object with the instances whose mask is nonzero. """ if isinstance(item, int): selected_polygons = [self.polygons[item]] elif isinstance(item, slice): selected_polygons = self.polygons[item] elif isinstance(item, list): selected_polygons = [self.polygons[i] for i in item] elif isinstance(item, torch.Tensor): # Polygons is a list, so we have to move the indices back to CPU. if item.dtype == torch.bool: assert item.dim() == 1, item.shape item = item.nonzero().squeeze(1).cpu().numpy().tolist() elif item.dtype in [torch.int32, torch.int64]: item = item.cpu().numpy().tolist() else: raise ValueError("Unsupported tensor dtype={} for indexing!".format(item.dtype)) selected_polygons = [self.polygons[i] for i in item] return PolygonMasks(selected_polygons) def __iter__(self) -> Iterator[List[np.ndarray]]: """ Yields: list[ndarray]: the polygons for one instance. Each Tensor is a float64 vector representing a polygon. """ return iter(self.polygons) def __repr__(self) -> str: s = self.__class__.__name__ + "(" s += "num_instances={})".format(len(self.polygons)) return s def __len__(self) -> int: return len(self.polygons) def crop_and_resize(self, boxes: torch.Tensor, mask_size: int) -> torch.Tensor: """ Crop each mask by the given box, and resize results to (mask_size, mask_size). This can be used to prepare training targets for Mask R-CNN. Args: boxes (Tensor): Nx4 tensor storing the boxes for each mask mask_size (int): the size of the rasterized mask. Returns: Tensor: A bool tensor of shape (N, mask_size, mask_size), where N is the number of predicted boxes for this image. """ assert len(boxes) == len(self), "{} != {}".format(len(boxes), len(self)) device = boxes.device # Put boxes on the CPU, as the polygon representation is not efficient GPU-wise # (several small tensors for representing a single instance mask) boxes = boxes.to(torch.device("cpu")) results = [ rasterize_polygons_within_box(poly, box.numpy(), mask_size) for poly, box in zip(self.polygons, boxes) ] """ poly: list[list[float]], the polygons for one instance box: a tensor of shape (4,) """ if len(results) == 0: return torch.empty(0, mask_size, mask_size, dtype=torch.bool, device=device) return torch.stack(results, dim=0).to(device=device) def area(self): """ Computes area of the mask. Only works with Polygons, using the shoelace formula: https://stackoverflow.com/questions/24467972/calculate-area-of-polygon-given-x-y-coordinates Returns: Tensor: a vector, area for each instance """ area = [] for polygons_per_instance in self.polygons: area_per_instance = 0 for p in polygons_per_instance: area_per_instance += polygon_area(p[0::2], p[1::2]) area.append(area_per_instance) return torch.tensor(area) @staticmethod def cat(polymasks_list: List["PolygonMasks"]) -> "PolygonMasks": """ Concatenates a list of PolygonMasks into a single PolygonMasks Arguments: polymasks_list (list[PolygonMasks]) Returns: PolygonMasks: the concatenated PolygonMasks """ assert isinstance(polymasks_list, (list, tuple)) assert len(polymasks_list) > 0 assert all(isinstance(polymask, PolygonMasks) for polymask in polymasks_list) cat_polymasks = type(polymasks_list[0])( list(itertools.chain.from_iterable(pm.polygons for pm in polymasks_list)) ) return cat_polymasks class ROIMasks: """ Represent masks by N smaller masks defined in some ROIs. Once ROI boxes are given, full-image bitmask can be obtained by "pasting" the mask on the region defined by the corresponding ROI box. """ def __init__(self, tensor: torch.Tensor): """ Args: tensor: (N, M, M) mask tensor that defines the mask within each ROI. """ if tensor.dim() != 3: raise ValueError("ROIMasks must take a masks of 3 dimension.") self.tensor = tensor def to(self, device: torch.device) -> "ROIMasks": return ROIMasks(self.tensor.to(device)) @property def device(self) -> device: return self.tensor.device def __len__(self): return self.tensor.shape[0] def __getitem__(self, item) -> "ROIMasks": """ Returns: ROIMasks: Create a new :class:`ROIMasks` by indexing. The following usage are allowed: 1. `new_masks = masks[2:10]`: return a slice of masks. 2. `new_masks = masks[vector]`, where vector is a torch.BoolTensor with `length = len(masks)`. Nonzero elements in the vector will be selected. Note that the returned object might share storage with this object, subject to Pytorch's indexing semantics. """ t = self.tensor[item] if t.dim() != 3: raise ValueError( f"Indexing on ROIMasks with {item} returns a tensor with shape {t.shape}!" ) return ROIMasks(t) @torch.jit.unused def __repr__(self) -> str: s = self.__class__.__name__ + "(" s += "num_instances={})".format(len(self.tensor)) return s @torch.jit.unused def to_bitmasks(self, boxes: torch.Tensor, height, width, threshold=0.5): """ Args: see documentation of :func:`paste_masks_in_image`. """ from detectron2.layers.mask_ops import paste_masks_in_image, _paste_masks_tensor_shape if torch.jit.is_tracing(): if isinstance(height, torch.Tensor): paste_func = _paste_masks_tensor_shape else: paste_func = paste_masks_in_image else: paste_func = retry_if_cuda_oom(paste_masks_in_image) bitmasks = paste_func(self.tensor, boxes.tensor, (height, width), threshold=threshold) return BitMasks(bitmasks) <fim_middle> 2:] = maxxy
2:] = maxxy
STATEMENT
prefix_suffix_full_complete_current_block_with_evidence
<filename>UniRef/detectron2/layers/losses.py<fim_prefix>import math import torch def diou_loss( boxes1: torch.Tensor, boxes2: torch.Tensor, reduction: str = "none", eps: float = 1e-7, ) -> torch.Tensor: """ Distance Intersection over Union Loss (Zhaohui Zheng et. al) https://arxiv.org/abs/1911.08287 Args: boxes1, boxes2 (Tensor): box locations in XYXY format, shape (N, 4) or (4,). reduction: 'none' | 'mean' | 'sum' 'none': No reduction will be applied to the output. 'mean': The output will be averaged. 'sum': The output will be summed. eps (float): small number to prevent division by zero """ x1, y1, x2, y2 = boxes1.unbind(dim=-1) x1g, y1g, x2g, y2g = boxes2.unbind(dim=-1) # TODO: use torch._assert_async() when pytorch 1.8 support is dropped assert (x2 >= x1).all(), "bad box: x1 larger than x2" assert (y2 >= y1).all(), "bad box: y1 larger than y2" # Intersection keypoints xkis1 = torch.max(x1, x1g) ykis1 = torch.max(y1, y1g) xkis2 = torch.min(x2, x2g) ykis2 = torch.min(y2, y2g) intsct = torch.zeros_like(x1) mask = (ykis2 > ykis1) & (xkis2 > xkis1) intsct[mask] = (xkis2[mask] - xkis1[mask]) * (ykis2[mask] - ykis1[mask]) union = (x2 - x1) * (y2 - y1) + (x2g - x1g) * (y2g - y1g) - intsct + eps iou = intsct / union # smallest enclosing box xc1 = torch.min(x1, x1g) yc1 = torch.min(y1, y1g) xc2 = torch.max(x2, x2g) yc2 = torch.max(y2, y2g) diag_len = ((xc2 - xc1) ** 2) + ((yc2 - yc1) ** 2) + eps # centers of boxes x_p = (x2 + x1) / 2 y_p = (y2 + y1) / 2 x_g<fim_suffix> y_g = (y1g + y2g) / 2 distance = ((x_p - x_g) ** 2) + ((y_p - y_g) ** 2) # Eqn. (7) loss = 1 - iou + (distance / diag_len) if reduction == "mean": loss = loss.mean() if loss.numel() > 0 else 0.0 * loss.sum() elif reduction == "sum": loss = loss.sum() return loss def ciou_loss( boxes1: torch.Tensor, boxes2: torch.Tensor, reduction: str = "none", eps: float = 1e-7, ) -> torch.Tensor: """ Complete Intersection over Union Loss (Zhaohui Zheng et. al) https://arxiv.org/abs/1911.08287 Args: boxes1, boxes2 (Tensor): box locations in XYXY format, shape (N, 4) or (4,). reduction: 'none' | 'mean' | 'sum' 'none': No reduction will be applied to the output. 'mean': The output will be averaged. 'sum': The output will be summed. eps (float): small number to prevent division by zero """ x1, y1, x2, y2 = boxes1.unbind(dim=-1) x1g, y1g, x2g, y2g = boxes2.unbind(dim=-1) # TODO: use torch._assert_async() when pytorch 1.8 support is dropped assert (x2 >= x1).all(), "bad box: x1 larger than x2" assert (y2 >= y1).all(), "bad box: y1 larger than y2" # Intersection keypoints xkis1 = torch.max(x1, x1g) ykis1 = torch.max(y1, y1g) xkis2 = torch.min(x2, x2g) ykis2 = torch.min(y2, y2g) intsct = torch.zeros_like(x1) mask = (ykis2 > ykis1) & (xkis2 > xkis1) intsct[mask] = (xkis2[mask] - xkis1[mask]) * (ykis2[mask] - ykis1[mask]) union = (x2 - x1) * (y2 - y1) + (x2g - x1g) * (y2g - y1g) - intsct + eps iou = intsct / union # smallest enclosing box xc1 = torch.min(x1, x1g) yc1 = torch.min(y1, y1g) xc2 = torch.max(x2, x2g) yc2 = torch.max(y2, y2g) diag_len = ((xc2 - xc1) ** 2) + ((yc2 - yc1) ** 2) + eps # centers of boxes x_p = (x2 + x1) / 2 y_p = (y2 + y1) / 2 x_g = (x1g + x2g) / 2 y_g = (y1g + y2g) / 2 distance = ((x_p - x_g) ** 2) + ((y_p - y_g) ** 2) # width and height of boxes w_pred = x2 - x1 h_pred = y2 - y1 w_gt = x2g - x1g h_gt = y2g - y1g v = (4 / (math.pi ** 2)) * torch.pow((torch.atan(w_gt / h_gt) - torch.atan(w_pred / h_pred)), 2) with torch.no_grad(): alpha = v / (1 - iou + v + eps) # Eqn. (10) loss = 1 - iou + (distance / diag_len) + alpha * v if reduction == "mean": loss = loss.mean() if loss.numel() > 0 else 0.0 * loss.sum() elif reduction == "sum": loss = loss.sum() return loss <fim_middle> = (x1g + x2g) / 2
= (x1g + x2g) / 2
STATEMENT
prefix_suffix_full_complete_current_block_with_evidence
<filename>UniRef/detectron2/tracking/hungarian_tracker.py<fim_prefix>#!/usr/bin/env python3 # Copyright 2004-present Facebook. All Rights Reserved. import copy import numpy as np import torch from detectron2.structures import Boxes, Instances from .base_tracker import BaseTracker from scipy.optimize import linear_sum_assignment from ..config.config import CfgNode as CfgNode_ from typing import Dict from detectron2.config import configurable class BaseHungarianTracker(BaseTracker): """ A base class for all Hungarian trackers """ @configurable def __init__( self, video_height: int, video_width: int, max_num_instances: int = 200, max_lost_frame_count: int = 0, min_box_rel_dim: float = 0.02, min_instance_period: int = 1, **kwargs ): """ Args: video_height: height the video frame video_width: width of the video frame max_num_instances: maximum number of id allowed to be tracked max_lost_frame_count: maximum number of frame an id can lost tracking exceed this number, an id is considered as lost forever min_box_rel_dim: a percentage, smaller than this dimension, a bbox is removed from tracking min_instance_period: an instance will be shown after this number of period since its first showing up in the video """ super().__init__(**kwargs) self._video_height = video_height self._video_width = video_width self._max_num_instances = max_num_instances self._max_lost_frame_count = max_lost_frame_count self._min_box_rel_dim = min_box_rel_dim self._min_instance_period = min_instance_period @classmethod def from_config(cls, cfg: CfgNode_) -> Dict: raise NotImplementedError("Calling HungarianTracker::from_config") def build_cost_matrix(self, instances: Instances, prev_instances: Instances) -> np.ndarray: raise NotImplementedError("Calling HungarianTracker::build_matrix") def update(self, instances: Instances) -> Instances: if instances.has("pred_keypoints"): raise NotImplementedError("Need to add support for keypoints") instances = self._initialize_extra_fields(instances) if self._prev_instances is not None: self._untracked_prev_idx = set(range(len(self._prev_instances))) cost_matrix = self.build_cost_matrix(instances, self._prev_instances) matched_idx, matched_prev_idx = linear_sum_assignment(cost_matrix) instances = self._process_matched_idx(instances, matched_idx, matched_prev_idx) instances = self._process_unmatched_idx(instances, matched_idx) instances = self._process_unmatched_prev_idx(instances, matched_prev_idx) self._prev_instances = copy.deepcopy(instances) return instances def _initialize_extra_fields(self, instances: Instances) -> Instances: """ If input instances don't have ID, ID_period, lost_frame_count fields, this method is used to initialize these fields. Args: instances: D2 Instances, for predictions of the current frame Return: D2 Instances with extra fields added """ if not instances.has("ID"): instances.set("ID", [None] * len(instances)) if not instances.has("ID_period"): instances.set("ID_period", [None] * len(instances)) if not instances.has("lost_frame_count"): instances.set("lost_frame_count", [None] * len(instances)) if self._prev_instances is None: instances.ID = list(range(len(instances))) self._id_count += len(instances) instances.ID_period = [1] * len(instances) instances.lost_frame_count = [0] * len(instances) return instances def _process_matched_idx( self, instances: Instances, matched_idx: np.ndarray, matched_prev_idx: np.ndarray ) -> Instances: assert matched_idx.size == matched_prev_idx.size for i in range(matched_idx.size): instances.ID[matched_idx[i]] = self._prev_instances.ID[matched_prev_idx[i]] instances.ID_period[matched_idx[i]] = \ self._prev_instances.ID_period[matched_prev_idx[i]] + 1 instances.lost_frame_count[matched_idx[i]] = 0 return instances def _process_unmatched_idx(self, instances: Instances, matched_idx: np.ndarray) -> Instances: untracked_idx = set(range(len(instances))).difference(set(matched_idx)) for idx in untracked_idx: instances.ID[idx] = self._id_count self._id_count += 1 instances.ID_period[idx] = 1 instances.lost_frame_count[idx] = 0 return instances def _process_unmatched_prev_idx( self, instances: Instances, matched_prev_idx: np.ndarray ) -> Instances: untracked_instances = Instances( image_size=instances.image_size, pred_boxes=[], pred_masks=[], pred_classes=[], scores=[], ID=[], ID_period=[], lost_frame_count=[], ) prev_bboxes = list(self._prev_instances.pred_boxes) prev_classes = list(self._prev_instances.pred_classes) prev_scores = list(self._prev_instances.scores) prev_ID_period = self._prev_instances.ID_period if instances.has("pred_masks"): prev_masks = list(self._prev_instances.pred_masks) untracked_prev_idx = set(range(len(self._prev_instances))).difference(set(matched_prev_idx)) for idx in untracked_prev_idx: x_left, y_top, x_right, y_bot = prev_bboxes[idx] if ( (1.0 * (x_right - x_left) / self._video_width < self._min_box_rel_dim) or (1.0 * (y_bot - y_top) / self._video_height < self._min_box_rel_dim) or self._prev_instances.lost_frame_count[idx] >= self._max_lost_frame_count or prev_ID_period[idx] <= self._min_instance_period ): continue untracked_instances.pred_boxes.append(list(prev_bboxes[idx].numpy())) untracked_instances.pred_classes.append(int(prev_classes[idx])) untracked_instances.scores.append(float(prev_scores[idx])) untracked_instances.ID.append(self._prev_instances.ID[idx])<fim_suffix> untracked_instances.ID_period.append(self._prev_instances.ID_period[idx]) untracked_instances.lost_frame_count.append( self._prev_instances.lost_frame_count[idx] + 1 ) if instances.has("pred_masks"): untracked_instances.pred_masks.append(prev_masks[idx].numpy().astype(np.uint8)) untracked_instances.pred_boxes = Boxes(torch.FloatTensor(untracked_instances.pred_boxes)) untracked_instances.pred_classes = torch.IntTensor(untracked_instances.pred_classes) untracked_instances.scores = torch.FloatTensor(untracked_instances.scores) if instances.has("pred_masks"): untracked_instances.pred_masks = torch.IntTensor(untracked_instances.pred_masks) else: untracked_instances.remove("pred_masks") return Instances.cat( [ instances, untracked_instances, ] ) <fim_middle>
null
STATEMENT
prefix_suffix_full_complete_current_block_with_evidence
<filename>UniRef/detectron2/tracking/hungarian_tracker.py<fim_prefix>#!/usr/bin/env python3 # Copyright 2004-present Facebook. All Rights Reserved. import copy import numpy as np import torch from detectron2.structures import Boxes, Instances from .base_tracker import BaseTracker from scipy.optimize import linear_sum_assignment from ..config.config import CfgNode as CfgNode_ from typing import Dict from detectron2.config import configurable class BaseHungarianTracker(BaseTracker): """ A base class for all Hungarian trackers """ @configurable def __init__( self, video_height: int, video_width: int, max_num_instances: int = 200, max_lost_frame_count: int = 0, min_box_rel_dim: float = 0.02, min_instance_period: int = 1, **kwargs ): """ Args: video_height: height the video frame video_width: width of the video frame max_num_instances: maximum number of id allowed to be tracked max_lost_frame_count: maximum number of frame an id can lost tracking exceed this number, an id is considered as lost forever min_box_rel_dim: a percentage, smaller than this dimension, a bbox is removed from tracking min_instance_period: an instance will be shown after this number of period since its first showing up in the video """ super().__init__(**kwargs) self._video_height = video_height self._video_width = video_width self._max_num_instances = max_num_instances self._max_lost_frame_count = max_lost_frame_count self._min_box_rel_dim = min_box_rel_dim self._min_instance_period = min_instance_period @classmethod def from_config(cls, cfg: CfgNode_) -> Dict: raise NotImplementedError("Calling HungarianTracker::from_config") def build_cost_matrix(self, instances: Instances, prev_instances: Instances) -> np.ndarray: raise NotImplementedError("Calling HungarianTracker::build_matrix") def update(self, instances: Instances) -> Instances: if instances.has("pred_keypoints"): raise NotImplementedError("Need to add support for keypoints") instances = self._initialize_extra_fields(instances) if self._prev_instances is not None: self._untracked_prev_idx = set(range(len(self._prev_instances))) cost_matrix = self.build_cost_matrix(instances, self._prev_instances) matched_idx, matched_prev_idx = linear_sum_assignment(cost_matrix) instances = self._process_matched_idx(instances, matched_idx, matched_prev_idx) instances = self._process_unmatched_idx(instances, matched_idx) instances = self._process_unmatched_prev_idx(instances, matched_prev_idx) self._prev_instances = copy.deepcopy(instances) return instances def _initialize_extra_fields(self, instances: Instances) -> Instances: """ If input instances don't have ID, ID_period, lost_frame_count fields, this method is used to initialize these fields. Args: instances: D2 Instances, for predictions of the current frame Return: D2 Instances with extra fields added """ if not instances.has("ID"): instances.set("ID", [None] * len(instances)) if not instances.has("ID_period"): instances.set("ID_period", [None] * len(instances)) if<fim_suffix> if self._prev_instances is None: instances.ID = list(range(len(instances))) self._id_count += len(instances) instances.ID_period = [1] * len(instances) instances.lost_frame_count = [0] * len(instances) return instances def _process_matched_idx( self, instances: Instances, matched_idx: np.ndarray, matched_prev_idx: np.ndarray ) -> Instances: assert matched_idx.size == matched_prev_idx.size for i in range(matched_idx.size): instances.ID[matched_idx[i]] = self._prev_instances.ID[matched_prev_idx[i]] instances.ID_period[matched_idx[i]] = \ self._prev_instances.ID_period[matched_prev_idx[i]] + 1 instances.lost_frame_count[matched_idx[i]] = 0 return instances def _process_unmatched_idx(self, instances: Instances, matched_idx: np.ndarray) -> Instances: untracked_idx = set(range(len(instances))).difference(set(matched_idx)) for idx in untracked_idx: instances.ID[idx] = self._id_count self._id_count += 1 instances.ID_period[idx] = 1 instances.lost_frame_count[idx] = 0 return instances def _process_unmatched_prev_idx( self, instances: Instances, matched_prev_idx: np.ndarray ) -> Instances: untracked_instances = Instances( image_size=instances.image_size, pred_boxes=[], pred_masks=[], pred_classes=[], scores=[], ID=[], ID_period=[], lost_frame_count=[], ) prev_bboxes = list(self._prev_instances.pred_boxes) prev_classes = list(self._prev_instances.pred_classes) prev_scores = list(self._prev_instances.scores) prev_ID_period = self._prev_instances.ID_period if instances.has("pred_masks"): prev_masks = list(self._prev_instances.pred_masks) untracked_prev_idx = set(range(len(self._prev_instances))).difference(set(matched_prev_idx)) for idx in untracked_prev_idx: x_left, y_top, x_right, y_bot = prev_bboxes[idx] if ( (1.0 * (x_right - x_left) / self._video_width < self._min_box_rel_dim) or (1.0 * (y_bot - y_top) / self._video_height < self._min_box_rel_dim) or self._prev_instances.lost_frame_count[idx] >= self._max_lost_frame_count or prev_ID_period[idx] <= self._min_instance_period ): continue untracked_instances.pred_boxes.append(list(prev_bboxes[idx].numpy())) untracked_instances.pred_classes.append(int(prev_classes[idx])) untracked_instances.scores.append(float(prev_scores[idx])) untracked_instances.ID.append(self._prev_instances.ID[idx]) untracked_instances.ID_period.append(self._prev_instances.ID_period[idx]) untracked_instances.lost_frame_count.append( self._prev_instances.lost_frame_count[idx] + 1 ) if instances.has("pred_masks"): untracked_instances.pred_masks.append(prev_masks[idx].numpy().astype(np.uint8)) untracked_instances.pred_boxes = Boxes(torch.FloatTensor(untracked_instances.pred_boxes)) untracked_instances.pred_classes = torch.IntTensor(untracked_instances.pred_classes) untracked_instances.scores = torch.FloatTensor(untracked_instances.scores) if instances.has("pred_masks"): untracked_instances.pred_masks = torch.IntTensor(untracked_instances.pred_masks) else: untracked_instances.remove("pred_masks") return Instances.cat( [ instances, untracked_instances, ] ) <fim_middle> not instances.has("lost_frame_count"): instances.set("lost_frame_count", [None] * len(instances))
not instances.has("lost_frame_count"): instances.set("lost_frame_count", [None] * len(instances))
IF
prefix_suffix_full_complete_current_block_with_evidence
<filename>UniRef/external/davis2017-evaluation/davis2017/metrics.py<fim_prefix>import math import numpy as np import cv2 def db_eval_iou(annotation, segmentation, void_pixels=None): """ Compute region similarity as the Jaccard Index. Arguments: annotation (ndarray): binary annotation map. segmentation (ndarray): binary segmentation map. void_pixels (ndarray): optional mask with void pixels Return: jaccard (float): region similarity """ assert annotation.shape == segmentation.shape, \ f'Annotation({annotation.shape}) and segmentation:{segmentation.shape} dimensions do not match.' annotation = annotation.astype(np.bool) segmentation = segmentation.astype(np.bool) if void_pixels is not None: assert annotation.shape == void_pixels.shape, \ f'Annotation({annotation.shape}) and void pixels:{void_pixels.shape} dimensions do not match.' void_pixels = void_pixels.astype(np.bool) else: void_pixels = np.zeros_like(segmentation) # Intersection between all sets inters = np.sum((segmentation & annotation) & np.logical_not(void_pixels), axis=(-2, -1)) union = np.sum((segmentation | annotation) & np.logical_not(void_pixels), axis=(-2, -1)) j = inters / union if j.ndim == 0: j = 1 if np.isclose(union, 0) else j else: j[np.isclose(union, 0)] = 1 return j def db_eval_boundary(annotation, segmentation, void_pixels=None, bound_th=0.008): assert annotation.shape == segmentation.shape if void_pixels is not None: assert annotation.shape == void_pixels.shape if annotation.ndim == 3: n_frames = annotation.shape[0] f_res = np.zeros(n_frames) for frame_id in range(n_frames): void_pixels_frame = None if void_pixels is None else void_pixels[frame_id, :, :, ] f_res[frame_id] = f_measure(segmentation[frame_id, :, :, ], annotation[frame_id, :, :], void_pixels_frame, bound_th=bound_th) elif annotation.ndim == 2: f_res = f_measure(segmentation, annotation, void_pixels, bound_th=bound_th) else: raise ValueError(f'db_eval_boundary does not support tensors with {annotation.ndim} dimensions') return f_res def f_measure(foreground_mask, gt_mask, void_pixels=None, bound_th=0.008): """ Compute mean,recall and decay from per-frame evaluation. Calculates precision/recall for boundaries between foreground_mask and gt_mask using morphological operators to speed it up. Arguments: foreground_mask (ndarray): binary segmentation image. gt_mask (ndarray): binary annotated image. void_pixels (ndarray): optional mask with void pixels Returns: F (float): boundaries F-measure """ assert np.atleast_3d(foreground_mask).shape[2] == 1 if void_pixels is not None: void_pixels = void_pixels.astype(np.bool) else: void_pixels = np.zeros_like(foreground_mask).astype(np.bool) bound_pix = bound_th if bound_th >= 1 else \ np.ceil(bound_th * np.linalg.norm(foreground_mask.shape)) # Get the pixel boundaries of both masks fg_boundary = _seg2bmap(foreground_mask * np.logical_not(void_pixels)) gt_boundary = _seg2bmap(gt_mask * np.logical_not(void_pixels)) from skimage.morphology import disk # fg_dil = binary_dilation(fg_boundary, disk(bound_pix)) fg_dil = cv2.dilate(fg_boundary.astype(np.uint8), disk(bound_pix).astype(np.uint8)) # gt_dil = binary_dilation(gt_boundary, disk(bound_pix)) gt_dil = cv2.dilate(gt_boundary.astype(np.uint8), disk(bound_pix).astype(np.uint8)) # Get the intersection gt_match = gt_boundary * fg_dil fg_match = fg_boundary * gt_dil # Area of the intersection n_fg = np.sum(fg_boundary) n_gt = np.sum(gt_boundary) # % Compute precision and recall if n_fg == 0 and n_gt > 0: precision = 1 recall = 0 elif n_fg > 0 and n_gt == 0: precision = 0 recall = 1 elif n_fg == 0 and n_gt == 0: precision = 1 recall = 1 else: precision = np.sum(fg_match) / float(n_fg) recall = np.sum(gt_match) / float(n_gt) # Compute F measure if<fim_suffix> return F def _seg2bmap(seg, width=None, height=None): """ From a segmentation, compute a binary boundary map with 1 pixel wide boundaries. The boundary pixels are offset by 1/2 pixel towards the origin from the actual segment boundary. Arguments: seg : Segments labeled from 1..k. width : Width of desired bmap <= seg.shape[1] height : Height of desired bmap <= seg.shape[0] Returns: bmap (ndarray): Binary boundary map. David Martin <[email protected]> January 2003 """ seg = seg.astype(np.bool) seg[seg > 0] = 1 assert np.atleast_3d(seg).shape[2] == 1 width = seg.shape[1] if width is None else width height = seg.shape[0] if height is None else height h, w = seg.shape[:2] ar1 = float(width) / float(height) ar2 = float(w) / float(h) assert not ( width > w | height > h | abs(ar1 - ar2) > 0.01 ), "Can" "t convert %dx%d seg to %dx%d bmap." % (w, h, width, height) e = np.zeros_like(seg) s = np.zeros_like(seg) se = np.zeros_like(seg) e[:, :-1] = seg[:, 1:] s[:-1, :] = seg[1:, :] se[:-1, :-1] = seg[1:, 1:] b = seg ^ e | seg ^ s | seg ^ se b[-1, :] = seg[-1, :] ^ e[-1, :] b[:, -1] = seg[:, -1] ^ s[:, -1] b[-1, -1] = 0 if w == width and h == height: bmap = b else: bmap = np.zeros((height, width)) for x in range(w): for y in range(h): if b[y, x]: j = 1 + math.floor((y - 1) + height / h) i = 1 + math.floor((x - 1) + width / h) bmap[j, i] = 1 return bmap if __name__ == '__main__': from davis2017.davis import DAVIS from davis2017.results import Results dataset = DAVIS(root='input_dir/ref', subset='val', sequences='aerobatics') results = Results(root_dir='examples/osvos') # Test timing F measure for seq in dataset.get_sequences(): all_gt_masks, _, all_masks_id = dataset.get_all_masks(seq, True) all_gt_masks, all_masks_id = all_gt_masks[:, 1:-1, :, :], all_masks_id[1:-1] all_res_masks = results.read_masks(seq, all_masks_id) f_metrics_res = np.zeros(all_gt_masks.shape[:2]) for ii in range(all_gt_masks.shape[0]): f_metrics_res[ii, :] = db_eval_boundary(all_gt_masks[ii, ...], all_res_masks[ii, ...]) # Run using to profile code: python -m cProfile -o f_measure.prof metrics.py # snakeviz f_measure.prof <fim_middle> precision + recall == 0: F = 0 else: F = 2 * precision * recall / (precision + recall)
precision + recall == 0: F = 0 else: F = 2 * precision * recall / (precision + recall)
IF
prefix_suffix_full_complete_current_block_with_evidence
<filename>UniRef/detectron2/config/config.py<fim_prefix># -*- coding: utf-8 -*- # Copyright (c) Facebook, Inc. and its affiliates. import functools import inspect import logging from fvcore.common.config import CfgNode as _CfgNode from detectron2.utils.file_io import PathManager class CfgNode(_CfgNode): """ The same as `fvcore.common.config.CfgNode`, but different in: 1. Use unsafe yaml loading by default. Note that this may lead to arbitrary code execution: you must not load a config file from untrusted sources before manually inspecting the content of the file. 2. Support config versioning. When attempting to merge an old config, it will convert the old config automatically. .. automethod:: clone .. automethod:: freeze .. automethod:: defrost .. automethod:: is_frozen .. automethod:: load_yaml_with_base .. automethod:: merge_from_list .. automethod:: merge_from_other_cfg """ @classmethod def _open_cfg(cls, filename): return PathManager.open(filename, "r") # Note that the default value of allow_unsafe is changed to True def merge_from_file(self, cfg_filename: str, allow_unsafe: bool = True) -> None: """ Load content from the given config file and merge it into self. Args: cfg_filename: config filename allow_unsafe: allow unsafe yaml syntax """ assert PathManager.isfile(cfg_filename), f"Config file '{cfg_filename}' does not exist!" loaded_cfg = self.load_yaml_with_base(cfg_filename, allow_unsafe=allow_unsafe) loaded_cfg = type(self)(loaded_cfg) # defaults.py needs to import CfgNode from .defaults import _C latest_ver = _C.VERSION assert ( latest_ver == self.VERSION ), "CfgNode.merge_from_file is only allowed on a config object of latest version!" logger = logging.getLogger(__name__) loaded_ver = loaded_cfg.get("VERSION", None) if loaded_ver is None: from .compat import guess_version loaded_ver = guess_version(loaded_cfg, cfg_filename) assert loaded_ver <= self.VERSION, "Cannot merge a v{} config into a v{} config.".format( loaded_ver, self.VERSION ) if loaded_ver == self.VERSION: self.merge_from_other_cfg(loaded_cfg) else: # compat.py needs to import CfgNode from .compat import upgrade_config, downgrade_config logger.warning( "Loading an old v{} config file '{}' by automatically upgrading to v{}. " "See docs/CHANGELOG.md for instructions to update your files.".format( loaded_ver, cfg_filename, self.VERSION ) ) # To convert, first obtain a full config at an old version old_self = downgrade_config(self, to_version=loaded_ver) old_self.merge_from_other_cfg(loaded_cfg) new_config = upgrade_config(old_self) self.clear() self.update(new_config) def dump(self, *args, **kwargs): """ Returns: str: a yaml string representation of the config """ # to make it show up in docs return super().dump(*args, **kwargs) global_cfg = CfgNode() def get_cfg() -> CfgNode: """ Get a copy of the default config. Returns: a detectron2 CfgNode instance. """ from .defaults import _C return _C.clone() def set_global_cfg(cfg: CfgNode) -> None: """ Let the global config point to the given cfg. Assume that the given "cfg" has the key "KEY", after calling `set_global_cfg(cfg)`, the key can be accessed by: :: from detectron2.config import global_cfg print(global_cfg.KEY) By using a hacky global config, you can access these configs anywhere, without having to pass the config object or the values deep into the code. This is a hacky feature introduced for quick prototyping / research exploration. """ global global_cfg global_cfg.clear() global_cfg.update(cfg) def configurable(init_func=None, *, from_config=None): """ Decorate a function or a class's __init__ method so that it can be called with a :class:`CfgNode` object using a :func:`from_config` function that translates :class:`CfgNode` to arguments. Examples: :: # Usage 1: Decorator on __init__: class A: @configurable def __init__(self, a, b=2, c=3): pass @classmethod def from_config(cls, cfg): # 'cfg' must be the first argument # Returns kwargs to be passed to __init__ return {"a": cfg.A, "b": cfg.B} a1 = A(a=1, b=2) # regular construction a2 = A(cfg) # construct with a cfg a3 = A(cfg, b=3, c=4) # construct with extra overwrite # Usage 2: Decorator on any function. Needs an extra from_config argument: @configurable(from_config=lambda cfg: {"a: cfg.A, "b": cfg.B}) def a_func(a, b=2, c=3): pass a1 = a_func(a=1, b=2) # regular call a2 = a_func(cfg) # call with a cfg a3 = a_func(cfg, b=3, c=4) # call with extra overwrite Args: init_func (callable): a class's ``__init__`` method in usage 1. The class must have a ``from_config`` classmethod which takes `cfg` as the first argument. from_config (callable): the from_config function in usage 2. It must take `cfg` as its first argument. """ if init_func is not None: assert ( inspect.isfunction(init_func) and from_config is None and init_func.__name__ == "__init__" ), "Incorrect use of @configurable. Check API documentation for examples." @functools.wraps(init_func) def wrapped(self, *args, **kwargs): try: from_config_func = type(self).from_config except AttributeError as e: raise AttributeError( "Class with @configurable must have a 'from_config' classmethod." ) from e if not inspect.ismethod(from_config_func): raise TypeError("Class with @configurable must have a 'from_config' classmethod.") if _called_with_cfg(*args, **kwargs): explicit_args = _get_args_from_config(from_config_func, *args, **kwargs) init_func(self, **explicit_args) else: init_func(self, *args, **kwargs) return wrapped else: if from_config is None: return configurable # @configurable() is made equivalent to @configurable assert inspect.isfunction( from_config ), "from_config argument of configurable must be a function!" def wrapper(orig_func): @functools.wraps(orig_func) def wrapped(*args, **kwargs): if _called_with_cfg(*args, **kwargs): explicit_args = _get_args_from_config(from_config, *args, **kwargs) return orig_func(**explicit_args) else: return orig_func(*args, **kwargs) wrapped.from_config = from_config return wrapped return wrapper def _get_args_from_config(from_config_func, *args, **kwargs): """ Use `from_config` to obtain explicit arguments. Returns: dict: arguments to be used for cls.__init__ """ signature = inspect.signature(from_config_func) if list(signature.parameters.keys())[0] != "cfg": if inspect.isfunction(from_config_func): name = from_config_func.__name__ else: name = f"{from_config_func.__self__}.from_config" raise TypeError(f"{name} must take 'cfg' as the first argument!") support_var_arg = any( param.kind in [param.VAR_POSITIONAL, param.VAR_KEYWORD] for param in signature.parameters.values() ) if<fim_suffix> return ret def _called_with_cfg(*args, **kwargs): """ Returns: bool: whether the arguments contain CfgNode and should be considered forwarded to from_config. """ from omegaconf import DictConfig if len(args) and isinstance(args[0], (_CfgNode, DictConfig)): return True if isinstance(kwargs.pop("cfg", None), (_CfgNode, DictConfig)): return True # `from_config`'s first argument is forced to be "cfg". # So the above check covers all cases. return False <fim_middle> support_var_arg: # forward all arguments to from_config, if from_config accepts them ret = from_config_func(*args, **kwargs) else: # forward supported arguments to from_config supported_arg_names = set(signature.parameters.keys()) extra_kwargs = {} for name in list(kwargs.keys()): if name not in supported_arg_names: extra_kwargs[name] = kwargs.pop(name) ret = from_config_func(*args, **kwargs) # forward the other arguments to __init__ ret.update(extra_kwargs)
support_var_arg: # forward all arguments to from_config, if from_config accepts them ret = from_config_func(*args, **kwargs) else: # forward supported arguments to from_config supported_arg_names = set(signature.parameters.keys()) extra_kwargs = {} for name in list(kwargs.keys()): if name not in supported_arg_names: extra_kwargs[name] = kwargs.pop(name) ret = from_config_func(*args, **kwargs) # forward the other arguments to __init__ ret.update(extra_kwargs)
IF
prefix_suffix_full_complete_current_block_with_evidence
<filename>UniRef/detectron2/tracking/bbox_iou_tracker.py<fim_prefix>#!/usr/bin/env python3 # Copyright 2004-present Facebook. All Rights Reserved. import copy from typing import List import numpy as np import torch from detectron2.config import configurable from detectron2.structures import Boxes, Instances from detectron2.structures.boxes import pairwise_iou from ..config.config import CfgNode as CfgNode_ from .base_tracker import BaseTracker, TRACKER_HEADS_REGISTRY @TRACKER_HEADS_REGISTRY.register() class BBoxIOUTracker(BaseTracker): """ A bounding box tracker to assign ID based on IoU between current and previous instances """ @configurable def __init__( self, *, video_height: int, video_width: int, max_num_instances: int = 200, max_lost_frame_count: int = 0, min_box_rel_dim: float = 0.02, min_instance_period: int = 1, track_iou_threshold: float = 0.5, **kwargs ): """ Args: video_height: height the video frame video_width: width of the video frame max_num_instances: maximum number of id allowed to be tracked max_lost_frame_count: maximum number of frame an id can lost tracking exceed this number, an id is considered as lost forever min_box_rel_dim: a percentage, smaller than this dimension, a bbox is removed from tracking min_instance_period: an instance will be shown after this number of period since its first showing up in the video track_iou_threshold: iou threshold, below this number a bbox pair is removed from tracking """ super().__init__(**kwargs) self._video_height = video_height self._video_width = video_width self._max_num_instances = max_num_instances self._max_lost_frame_count = max_lost_frame_count self._min_box_rel_dim = min_box_rel_dim self._min_instance_period = min_instance_period self._track_iou_threshold = track_iou_threshold @classmethod def from_config(cls, cfg: CfgNode_): """ Old style initialization using CfgNode Args: cfg: D2 CfgNode, config file Return: dictionary storing arguments for __init__ method """ assert "VIDEO_HEIGHT" in cfg.TRACKER_HEADS assert "VIDEO_WIDTH" in cfg.TRACKER_HEADS video_height = cfg.TRACKER_HEADS.get("VIDEO_HEIGHT") video_width = cfg.TRACKER_HEADS.get("VIDEO_WIDTH") max_num_instances = cfg.TRACKER_HEADS.get("MAX_NUM_INSTANCES", 200) max_lost_frame_count = cfg.TRACKER_HEADS.get("MAX_LOST_FRAME_COUNT", 0) min_box_rel_dim = cfg.TRACKER_HEADS.get("MIN_BOX_REL_DIM", 0.02) min_instance_period = cfg.TRACKER_HEADS.get("MIN_INSTANCE_PERIOD", 1) track_iou_threshold = cfg.TRACKER_HEADS.get("TRACK_IOU_THRESHOLD", 0.5) return { "_target_": "detectron2.tracking.bbox_iou_tracker.BBoxIOUTracker", "video_height": video_height, "video_width": video_width, "max_num_instances": max_num_instances, "max_lost_frame_count": max_lost_frame_count, "min_box_rel_dim": min_box_rel_dim, "min_instance_period": min_instance_period, "track_iou_threshold": track_iou_threshold } def update(self, instances: Instances) -> Instances: """ See BaseTracker description """ if instances.has("pred_keypoints"): raise NotImplementedError("Need to add support for keypoints") instances = self._initialize_extra_fields(instances) if self._prev_instances is not None: # calculate IoU of all bbox pairs iou_all = pairwise_iou( boxes1=instances.pred_boxes, boxes2=self._prev_instances.pred_boxes, ) # sort IoU in descending order bbox_pairs = self._create_prediction_pairs(instances, iou_all) # assign previous ID to current bbox if IoU > track_iou_threshold self._reset_fields() for bbox_pair in bbox_pairs: idx = bbox_pair["idx"] prev_id = bbox_pair["prev_id"] if idx in self._matched_idx \ or prev_id in self._matched_ID \ or bbox_pair["IoU"] < self._track_iou_threshold: continue instances.ID[idx] = prev_id instances.ID_period[idx] = bbox_pair["prev_period"] + 1 instances.lost_frame_count[idx] = 0 self._matched_idx.add(idx) self._matched_ID.add(prev_id) self._untracked_prev_idx.remove(bbox_pair["prev_idx"]) instances = self._assign_new_id(instances) instances = self._merge_untracked_instances(instances) self._prev_instances = copy.deepcopy(instances) return instances def _create_prediction_pairs( self, instances: Instances, iou_all: np.ndarray ) -> List: """ For all instances in previous and current frames, create pairs. For each pair, store index of the instance in current frame predcitions, index in previous predictions, ID in previous predictions, IoU of the bboxes in this pair, period in previous predictions. Args: instances: D2 Instances, for predictions of the current frame iou_all: IoU for all bboxes pairs Return: A list of IoU for all pairs """ bbox_pairs = [] for i in range(len(instances)): for j in range(len(self._prev_instances)): bbox_pairs.append( { "idx": i, "prev_idx": j, "prev_id": self._prev_instances.ID[j], "IoU": iou_all[i, j], "prev_period": self._prev_instances.ID_period[j], } ) return bbox_pairs def _initialize_extra_fields(self, instances: Instances) -> Instances: """ If input instances don't have ID, ID_period, lost_frame_count fields, this method is used to initialize these fields. Args: instances: D2 Instances, for predictions of the current frame Return: D2 Instances with extra fields added """ if not instances.has("ID"): instances.set("ID", [None] * len(instances)) if<fim_suffix> if not instances.has("lost_frame_count"): instances.set("lost_frame_count", [None] * len(instances)) if self._prev_instances is None: instances.ID = list(range(len(instances))) self._id_count += len(instances) instances.ID_period = [1] * len(instances) instances.lost_frame_count = [0] * len(instances) return instances def _reset_fields(self): """ Before each uodate call, reset fields first """ self._matched_idx = set() self._matched_ID = set() self._untracked_prev_idx = set(range(len(self._prev_instances))) def _assign_new_id(self, instances: Instances) -> Instances: """ For each untracked instance, assign a new id Args: instances: D2 Instances, for predictions of the current frame Return: D2 Instances with new ID assigned """ untracked_idx = set(range(len(instances))).difference(self._matched_idx) for idx in untracked_idx: instances.ID[idx] = self._id_count self._id_count += 1 instances.ID_period[idx] = 1 instances.lost_frame_count[idx] = 0 return instances def _merge_untracked_instances(self, instances: Instances) -> Instances: """ For untracked previous instances, under certain condition, still keep them in tracking and merge with the current instances. Args: instances: D2 Instances, for predictions of the current frame Return: D2 Instances merging current instances and instances from previous frame decided to keep tracking """ untracked_instances = Instances( image_size=instances.image_size, pred_boxes=[], pred_masks=[], pred_classes=[], scores=[], ID=[], ID_period=[], lost_frame_count=[], ) prev_bboxes = list(self._prev_instances.pred_boxes) prev_classes = list(self._prev_instances.pred_classes) prev_scores = list(self._prev_instances.scores) prev_ID_period = self._prev_instances.ID_period if instances.has("pred_masks"): prev_masks = list(self._prev_instances.pred_masks) for idx in self._untracked_prev_idx: x_left, y_top, x_right, y_bot = prev_bboxes[idx] if ( (1.0 * (x_right - x_left) / self._video_width < self._min_box_rel_dim) or (1.0 * (y_bot - y_top) / self._video_height < self._min_box_rel_dim) or self._prev_instances.lost_frame_count[idx] >= self._max_lost_frame_count or prev_ID_period[idx] <= self._min_instance_period ): continue untracked_instances.pred_boxes.append(list(prev_bboxes[idx].numpy())) untracked_instances.pred_classes.append(int(prev_classes[idx])) untracked_instances.scores.append(float(prev_scores[idx])) untracked_instances.ID.append(self._prev_instances.ID[idx]) untracked_instances.ID_period.append(self._prev_instances.ID_period[idx]) untracked_instances.lost_frame_count.append( self._prev_instances.lost_frame_count[idx] + 1 ) if instances.has("pred_masks"): untracked_instances.pred_masks.append(prev_masks[idx].numpy().astype(np.uint8)) untracked_instances.pred_boxes = Boxes(torch.FloatTensor(untracked_instances.pred_boxes)) untracked_instances.pred_classes = torch.IntTensor(untracked_instances.pred_classes) untracked_instances.scores = torch.FloatTensor(untracked_instances.scores) if instances.has("pred_masks"): untracked_instances.pred_masks = torch.IntTensor(untracked_instances.pred_masks) else: untracked_instances.remove("pred_masks") return Instances.cat( [ instances, untracked_instances, ] ) <fim_middle> not instances.has("ID_period"): instances.set("ID_period", [None] * len(instances))
not instances.has("ID_period"): instances.set("ID_period", [None] * len(instances))
IF
prefix_suffix_full_complete_current_block_with_evidence
<filename>UniRef/detectron2/config/instantiate.py<fim_prefix># Copyright (c) Facebook, Inc. and its affiliates. import dataclasses import logging from collections import abc from typing import Any from detectron2.utils.registry import _convert_target_to_string, locate __all__ = ["dump_dataclass", "instantiate"] def dump_dataclass(obj: Any): """ Dump a dataclass recursively into a dict that can be later instantiated. Args: obj: a dataclass object Returns: dict """ assert dataclasses.is_dataclass(obj) and not isinstance( obj, type ), "dump_dataclass() requires an instance of a dataclass." ret = {"_target_": _convert_target_to_string(type(obj))} for f in dataclasses.fields(obj): v = getattr(obj, f.name) if dataclasses.is_dataclass(v): v = dump_dataclass(v) if isinstance(v, (list, tuple)): v = [dump_dataclass(x) if dataclasses.is_dataclass(x) else x for x in v] ret[f.name] = v return ret def instantiate(cfg): """ Recursively instantiate objects defined in dictionaries by "_target_" and arguments. Args: cfg: a dict-like object with "_target_" that defines the caller, and other keys that define the arguments Returns: object instantiated by cfg """ from omegaconf import ListConfig if isinstance(cfg, ListConfig): lst = [instantiate(x) for x in cfg] return ListConfig(lst, flags={"allow_objects": True}) if isinstance(cfg, list): # Specialize for list, because many classes take # list[objects] as arguments, such as ResNet, DatasetMapper return [instantiate(x) for x in cfg] if isinstance(cfg, abc.Mapping) and "_target_" in cfg: # conceptually equivalent to hydra.utils.instantiate(cfg) with _convert_=all, # but faster: https://github.com/facebookresearch/hydra/issues/1200 cfg = {k: instantiate(v) for k, v in cfg.items()} cls = cfg.pop("_target_") cls = instantiate(cls) if<fim_suffix> assert callable(cls), f"_target_ {cls} does not define a callable object" try: return cls(**cfg) except TypeError: logger = logging.getLogger(__name__) logger.error(f"Error when instantiating {cls_name}!") raise return cfg # return as-is if don't know what to do <fim_middle> isinstance(cls, str): cls_name = cls cls = locate(cls_name) assert cls is not None, cls_name else: try: cls_name = cls.__module__ + "." + cls.__qualname__ except Exception: # target could be anything, so the above could fail cls_name = str(cls)
isinstance(cls, str): cls_name = cls cls = locate(cls_name) assert cls is not None, cls_name else: try: cls_name = cls.__module__ + "." + cls.__qualname__ except Exception: # target could be anything, so the above could fail cls_name = str(cls)
IF
prefix_suffix_full_complete_current_block_with_evidence
<filename>UniRef/detectron2/tracking/bbox_iou_tracker.py<fim_prefix>#!/usr/bin/env python3 # Copyright 2004-present Facebook. All Rights Reserved. import copy from typing import List import numpy as np import torch from detectron2.config import configurable from detectron2.structures import Boxes, Instances from detectron2.structures.boxes import pairwise_iou from ..config.config import CfgNode as CfgNode_ from .base_tracker import BaseTracker, TRACKER_HEADS_REGISTRY @TRACKER_HEADS_REGISTRY.register() class BBoxIOUTracker(BaseTracker): """ A bounding box tracker to assign ID based on IoU between current and previous instances """ @configurable def __init__( self, *, video_height: int, video_width: int, max_num_instances: int = 200, max_lost_frame_count: int = 0, min_box_rel_dim: float = 0.02, min_instance_period: int = 1, track_iou_threshold: float = 0.5, **kwargs ): """ Args: video_height: height the video frame video_width: width of the video frame max_num_instances: maximum number of id allowed to be tracked max_lost_frame_count: maximum number of frame an id can lost tracking exceed this number, an id is considered as lost forever min_box_rel_dim: a percentage, smaller than this dimension, a bbox is removed from tracking min_instance_period: an instance will be shown after this number of period since its first showing up in the video track_iou_threshold: iou threshold, below this number a bbox pair is removed from tracking """ super().__init__(**kwargs) self._video_height = video_height self._video_width = video_width self._max_num_instances = max_num_instances self._max_lost_frame_count = max_lost_frame_count self._min_box_rel_dim = min_box_rel_dim self._min_instance_period = min_instance_period self._track_iou_threshold = track_iou_threshold @classmethod def from_config(cls, cfg: CfgNode_): """ Old style initialization using CfgNode Args: cfg: D2 CfgNode, config file Return: dictionary storing arguments for __init__ method """ assert "VIDEO_HEIGHT" in cfg.TRACKER_HEADS assert "VIDEO_WIDTH" in cfg.TRACKER_HEADS video_height = cfg.TRACKER_HEADS.get("VIDEO_HEIGHT") video_width = cfg.TRACKER_HEADS.get("VIDEO_WIDTH") max_num_instances = cfg.TRACKER_HEADS.get("MAX_NUM_INSTANCES", 200) max_lost_frame_count = cfg.TRACKER_HEADS.get("MAX_LOST_FRAME_COUNT", 0) min_box_rel_dim = cfg.TRACKER_HEADS.get("MIN_BOX_REL_DIM", 0.02) min_instance_period = cfg.TRACKER_HEADS.get("MIN_INSTANCE_PERIOD", 1) track_iou_threshold = cfg.TRACKER_HEADS.get("TRACK_IOU_THRESHOLD", 0.5) return { "_target_": "detectron2.tracking.bbox_iou_tracker.BBoxIOUTracker", "video_height": video_height, "video_width": video_width, "max_num_instances": max_num_instances, "max_lost_frame_count": max_lost_frame_count, "min_box_rel_dim": min_box_rel_dim, "min_instance_period": min_instance_period, "track_iou_threshold": track_iou_threshold } def update(self, instances: Instances) -> Instances: """ See BaseTracker description """ if instances.has("pred_keypoints"): raise NotImplementedError("Need to add support for keypoints") instances = self._initialize_extra_fields(instances) if self._prev_instances is not None: # calculate IoU of all bbox pairs iou_all = pairwise_iou( boxes1=instances.pred_boxes, boxes2=self._prev_instances.pred_boxes, ) # sort IoU in descending order bbox_pairs = self._create_prediction_pairs(instances, iou_all) # assign previous ID to current bbox if IoU > track_iou_threshold self._reset_fields() for bbox_pair in bbox_pairs: idx = bbox_pair["idx"] prev_id = bbox_pair["prev_id"] if idx in self._matched_idx \ or prev_id in self._matched_ID \ or bbox_pair["IoU"] < self._track_iou_threshold: continue instances.ID[idx] = prev_id instances.ID_period[idx] = bbox_pair["prev_period"] + 1 instances.lost_frame_count[idx] = 0 self._matched_idx.add(idx) self._matched_ID.add(prev_id) self._untracked_prev_idx.remove(bbox_pair["prev_idx"]) instances = self._assign_new_id(instances) instances = self._merge_untracked_instances(instances) self._prev_instances = copy.deepcopy(instances) return instances def _create_prediction_pairs( self, instances: Instances, iou_all: np.ndarray ) -> List: """ For all instances in previous and current frames, create pairs. For each pair, store index of the instance in current frame predcitions, index in previous predictions, ID in previous predictions, IoU of the bboxes in this pair, period in previous predictions. Args: instances: D2 Instances, for predictions of the current frame iou_all: IoU for all bboxes pairs Return: A list of IoU for all pairs """ bbox_pairs = [] for i in range(len(instances)): for j in range(len(self._prev_instances)): bbox_pairs.append( { "idx": i, "prev_idx": j, "prev_id": self._prev_instances.ID[j], "IoU": iou_all[i, j], "prev_period": self._prev_instances.ID_period[j], } ) return bbox_pairs def _initialize_extra_fields(self, instances: Instances) -> Instances: """ If input instances don't have ID, ID_period, lost_frame_count fields, this method is used to initialize these fields. Args: instances: D2 Instances, for predictions of the current frame Return: D2 Instances with extra fields added """ if<fim_suffix> if not instances.has("ID_period"): instances.set("ID_period", [None] * len(instances)) if not instances.has("lost_frame_count"): instances.set("lost_frame_count", [None] * len(instances)) if self._prev_instances is None: instances.ID = list(range(len(instances))) self._id_count += len(instances) instances.ID_period = [1] * len(instances) instances.lost_frame_count = [0] * len(instances) return instances def _reset_fields(self): """ Before each uodate call, reset fields first """ self._matched_idx = set() self._matched_ID = set() self._untracked_prev_idx = set(range(len(self._prev_instances))) def _assign_new_id(self, instances: Instances) -> Instances: """ For each untracked instance, assign a new id Args: instances: D2 Instances, for predictions of the current frame Return: D2 Instances with new ID assigned """ untracked_idx = set(range(len(instances))).difference(self._matched_idx) for idx in untracked_idx: instances.ID[idx] = self._id_count self._id_count += 1 instances.ID_period[idx] = 1 instances.lost_frame_count[idx] = 0 return instances def _merge_untracked_instances(self, instances: Instances) -> Instances: """ For untracked previous instances, under certain condition, still keep them in tracking and merge with the current instances. Args: instances: D2 Instances, for predictions of the current frame Return: D2 Instances merging current instances and instances from previous frame decided to keep tracking """ untracked_instances = Instances( image_size=instances.image_size, pred_boxes=[], pred_masks=[], pred_classes=[], scores=[], ID=[], ID_period=[], lost_frame_count=[], ) prev_bboxes = list(self._prev_instances.pred_boxes) prev_classes = list(self._prev_instances.pred_classes) prev_scores = list(self._prev_instances.scores) prev_ID_period = self._prev_instances.ID_period if instances.has("pred_masks"): prev_masks = list(self._prev_instances.pred_masks) for idx in self._untracked_prev_idx: x_left, y_top, x_right, y_bot = prev_bboxes[idx] if ( (1.0 * (x_right - x_left) / self._video_width < self._min_box_rel_dim) or (1.0 * (y_bot - y_top) / self._video_height < self._min_box_rel_dim) or self._prev_instances.lost_frame_count[idx] >= self._max_lost_frame_count or prev_ID_period[idx] <= self._min_instance_period ): continue untracked_instances.pred_boxes.append(list(prev_bboxes[idx].numpy())) untracked_instances.pred_classes.append(int(prev_classes[idx])) untracked_instances.scores.append(float(prev_scores[idx])) untracked_instances.ID.append(self._prev_instances.ID[idx]) untracked_instances.ID_period.append(self._prev_instances.ID_period[idx]) untracked_instances.lost_frame_count.append( self._prev_instances.lost_frame_count[idx] + 1 ) if instances.has("pred_masks"): untracked_instances.pred_masks.append(prev_masks[idx].numpy().astype(np.uint8)) untracked_instances.pred_boxes = Boxes(torch.FloatTensor(untracked_instances.pred_boxes)) untracked_instances.pred_classes = torch.IntTensor(untracked_instances.pred_classes) untracked_instances.scores = torch.FloatTensor(untracked_instances.scores) if instances.has("pred_masks"): untracked_instances.pred_masks = torch.IntTensor(untracked_instances.pred_masks) else: untracked_instances.remove("pred_masks") return Instances.cat( [ instances, untracked_instances, ] ) <fim_middle> not instances.has("ID"): instances.set("ID", [None] * len(instances))
not instances.has("ID"): instances.set("ID", [None] * len(instances))
IF
prefix_suffix_full_complete_current_block_with_evidence
<filename>UniRef/detectron2/structures/instances.py<fim_prefix># Copyright (c) Facebook, Inc. and its affiliates. import itertools from typing import Any, Dict, List, Tuple, Union import torch class Instances: """ This class represents a list of instances in an image. It stores the attributes of instances (e.g., boxes, masks, labels, scores) as "fields". All fields must have the same ``__len__`` which is the number of instances. All other (non-field) attributes of this class are considered private: they must start with '_' and are not modifiable by a user. Some basic usage: 1. Set/get/check a field: .. code-block:: python instances.gt_boxes = Boxes(...) print(instances.pred_masks) # a tensor of shape (N, H, W) print('gt_masks' in instances) 2. ``len(instances)`` returns the number of instances 3. Indexing: ``instances[indices]`` will apply the indexing on all the fields and returns a new :class:`Instances`. Typically, ``indices`` is a integer vector of indices, or a binary mask of length ``num_instances`` .. code-block:: python category_3_detections = instances[instances.pred_classes == 3] confident_detections = instances[instances.scores > 0.9] """ def __init__(self, image_size: Tuple[int, int], **kwargs: Any): """ Args: image_size (height, width): the spatial size of the image. kwargs: fields to add to this `Instances`. """ self._image_size = image_size self._fields: Dict[str, Any] = {} for k, v in kwargs.items(): self.set(k, v) @property def image_size(self) -> Tuple[int, int]: """ Returns: tuple: height, width """ return self._image_size def __setattr__(self, name: str, val: Any) -> None: if name.startswith("_"): super().__setattr__(name, val) else: self.set(name, val) def __getattr__(self, name: str) -> Any: if<fim_suffix> return self._fields[name] def set(self, name: str, value: Any) -> None: """ Set the field named `name` to `value`. The length of `value` must be the number of instances, and must agree with other existing fields in this object. """ data_len = len(value) if len(self._fields): assert ( len(self) == data_len ), "Adding a field of length {} to a Instances of length {}".format(data_len, len(self)) self._fields[name] = value def has(self, name: str) -> bool: """ Returns: bool: whether the field called `name` exists. """ return name in self._fields def remove(self, name: str) -> None: """ Remove the field called `name`. """ del self._fields[name] def get(self, name: str) -> Any: """ Returns the field called `name`. """ return self._fields[name] def get_fields(self) -> Dict[str, Any]: """ Returns: dict: a dict which maps names (str) to data of the fields Modifying the returned dict will modify this instance. """ return self._fields # Tensor-like methods def to(self, *args: Any, **kwargs: Any) -> "Instances": """ Returns: Instances: all fields are called with a `to(device)`, if the field has this method. """ ret = Instances(self._image_size) for k, v in self._fields.items(): if hasattr(v, "to"): v = v.to(*args, **kwargs) ret.set(k, v) return ret def __getitem__(self, item: Union[int, slice, torch.BoolTensor]) -> "Instances": """ Args: item: an index-like object and will be used to index all the fields. Returns: If `item` is a string, return the data in the corresponding field. Otherwise, returns an `Instances` where all fields are indexed by `item`. """ if type(item) == int: if item >= len(self) or item < -len(self): raise IndexError("Instances index out of range!") else: item = slice(item, None, len(self)) ret = Instances(self._image_size) for k, v in self._fields.items(): ret.set(k, v[item]) return ret def __len__(self) -> int: for v in self._fields.values(): # use __len__ because len() has to be int and is not friendly to tracing return v.__len__() raise NotImplementedError("Empty Instances does not support __len__!") def __iter__(self): raise NotImplementedError("`Instances` object is not iterable!") @staticmethod def cat(instance_lists: List["Instances"]) -> "Instances": """ Args: instance_lists (list[Instances]) Returns: Instances """ assert all(isinstance(i, Instances) for i in instance_lists) assert len(instance_lists) > 0 if len(instance_lists) == 1: return instance_lists[0] image_size = instance_lists[0].image_size if not isinstance(image_size, torch.Tensor): # could be a tensor in tracing for i in instance_lists[1:]: assert i.image_size == image_size ret = Instances(image_size) for k in instance_lists[0]._fields.keys(): values = [i.get(k) for i in instance_lists] v0 = values[0] if isinstance(v0, torch.Tensor): values = torch.cat(values, dim=0) elif isinstance(v0, list): values = list(itertools.chain(*values)) elif hasattr(type(v0), "cat"): values = type(v0).cat(values) else: raise ValueError("Unsupported type {} for concatenation".format(type(v0))) ret.set(k, values) return ret def __str__(self) -> str: s = self.__class__.__name__ + "(" s += "num_instances={}, ".format(len(self)) s += "image_height={}, ".format(self._image_size[0]) s += "image_width={}, ".format(self._image_size[1]) s += "fields=[{}])".format(", ".join((f"{k}: {v}" for k, v in self._fields.items()))) return s __repr__ = __str__ <fim_middle> name == "_fields" or name not in self._fields: raise AttributeError("Cannot find field '{}' in the given Instances!".format(name))
name == "_fields" or name not in self._fields: raise AttributeError("Cannot find field '{}' in the given Instances!".format(name))
IF
prefix_suffix_full_complete_current_block_with_evidence
<filename>UniRef/detectron2/tracking/bbox_iou_tracker.py<fim_prefix>#!/usr/bin/env python3 # Copyright 2004-present Facebook. All Rights Reserved. import copy from typing import List import numpy as np import torch from detectron2.config import configurable from detectron2.structures import Boxes, Instances from detectron2.structures.boxes import pairwise_iou from ..config.config import CfgNode as CfgNode_ from .base_tracker import BaseTracker, TRACKER_HEADS_REGISTRY @TRACKER_HEADS_REGISTRY.register() class BBoxIOUTracker(BaseTracker): """ A bounding box tracker to assign ID based on IoU between current and previous instances """ @configurable def __init__( self, *, video_height: int, video_width: int, max_num_instances: int = 200, max_lost_frame_count: int = 0, min_box_rel_dim: float = 0.02, min_instance_period: int = 1, track_iou_threshold: float = 0.5, **kwargs ): """ Args: video_height: height the video frame video_width: width of the video frame max_num_instances: maximum number of id allowed to be tracked max_lost_frame_count: maximum number of frame an id can lost tracking exceed this number, an id is considered as lost forever min_box_rel_dim: a percentage, smaller than this dimension, a bbox is removed from tracking min_instance_period: an instance will be shown after this number of period since its first showing up in the video track_iou_threshold: iou threshold, below this number a bbox pair is removed from tracking """ super().__init__(**kwargs) self._video_height = video_height self._video_width = video_width self._max_num_instances = max_num_instances self._max_lost_frame_count = max_lost_frame_count self._min_box_rel_dim = min_box_rel_dim self._min_instance_period = min_instance_period self._track_iou_threshold = track_iou_threshold @classmethod def from_config(cls, cfg: CfgNode_): """ Old style initialization using CfgNode Args: cfg: D2 CfgNode, config file Return: dictionary storing arguments for __init__ method """ assert "VIDEO_HEIGHT" in cfg.TRACKER_HEADS assert "VIDEO_WIDTH" in cfg.TRACKER_HEADS video_height = cfg.TRACKER_HEADS.get("VIDEO_HEIGHT") video_width = cfg.TRACKER_HEADS.get("VIDEO_WIDTH") max_num_instances = cfg.TRACKER_HEADS.get("MAX_NUM_INSTANCES", 200) max_lost_frame_count = cfg.TRACKER_HEADS.get("MAX_LOST_FRAME_COUNT", 0) min_box_rel_dim = cfg.TRACKER_HEADS.get("MIN_BOX_REL_DIM", 0.02) min_instance_period = cfg.TRACKER_HEADS.get("MIN_INSTANCE_PERIOD", 1) track_iou_threshold = cfg.TRACKER_HEADS.get("TRACK_IOU_THRESHOLD", 0.5) return { "_target_": "detectron2.tracking.bbox_iou_tracker.BBoxIOUTracker", "video_height": video_height, "video_width": video_width, "max_num_instances": max_num_instances, "max_lost_frame_count": max_lost_frame_count, "min_box_rel_dim": min_box_rel_dim, "min_instance_period": min_instance_period, "track_iou_threshold": track_iou_threshold } def update(self, instances: Instances) -> Instances: """ See BaseTracker description """ if instances.has("pred_keypoints"): raise NotImplementedError("Need to add support for keypoints") instances = self._initialize_extra_fields(instances) if self._prev_instances is not None: # calculate IoU of all bbox pairs iou_all = pairwise_iou( boxes1=instances.pred_boxes, boxes2=self._prev_instances.pred_boxes, ) # sort IoU in descending order bbox_pairs = self._create_prediction_pairs(instances, iou_all) # assign previous ID to current bbox if IoU > track_iou_threshold self._reset_fields() for bbox_pair in bbox_pairs: idx = bbox_pair["idx"] prev_id = bbox_pair["prev_id"] if idx in self._matched_idx \ or prev_id in self._matched_ID \ or bbox_pair["IoU"] < self._track_iou_threshold: continue instances.ID[idx] = prev_id instances.ID_period[idx] = bbox_pair["prev_period"] + 1 instances.lost_frame_count[idx] = 0 self._matched_idx.add(idx) self._matched_ID.add(prev_id) self._untracked_prev_idx.remove(bbox_pair["prev_idx"]) instances = self._assign_new_id(instances) instances = self._merge_untracked_instances(instances) self._prev_instances = copy.deepcopy(instances) return instances def _create_prediction_pairs( self, instances: Instances, iou_all: np.ndarray ) -> List: """ For all instances in previous and current frames, create pairs. For each pair, store index of the instance in current frame predcitions, index in previous predictions, ID in previous predictions, IoU of the bboxes in this pair, period in previous predictions. Args: instances: D2 Instances, for predictions of the current frame iou_all: IoU for all bboxes pairs Return: A list of IoU for all pairs """ bbox_pairs = [] for i in range(len(instances)): for j in range(len(self._prev_instances)): bbox_pairs.append( { "idx": i, "prev_idx": j, "prev_id": self._prev_instances.ID[j], "IoU": iou_all[i, j], "prev_period": self._prev_instances.ID_period[j], } ) return bbox_pairs def _initialize_extra_fields(self, instances: Instances) -> Instances: """ If input instances don't have ID, ID_period, lost_frame_count fields, this method is used to initialize these fields. Args: instances: D2 Instances, for predictions of the current frame Return: D2 Instances with extra fields added """ if not instances.has("ID"): instances.set("ID", [None] * len(instances)) if not instances.has("ID_period"): instances.set("ID_period", [None] * len(instances)) if<fim_suffix> if self._prev_instances is None: instances.ID = list(range(len(instances))) self._id_count += len(instances) instances.ID_period = [1] * len(instances) instances.lost_frame_count = [0] * len(instances) return instances def _reset_fields(self): """ Before each uodate call, reset fields first """ self._matched_idx = set() self._matched_ID = set() self._untracked_prev_idx = set(range(len(self._prev_instances))) def _assign_new_id(self, instances: Instances) -> Instances: """ For each untracked instance, assign a new id Args: instances: D2 Instances, for predictions of the current frame Return: D2 Instances with new ID assigned """ untracked_idx = set(range(len(instances))).difference(self._matched_idx) for idx in untracked_idx: instances.ID[idx] = self._id_count self._id_count += 1 instances.ID_period[idx] = 1 instances.lost_frame_count[idx] = 0 return instances def _merge_untracked_instances(self, instances: Instances) -> Instances: """ For untracked previous instances, under certain condition, still keep them in tracking and merge with the current instances. Args: instances: D2 Instances, for predictions of the current frame Return: D2 Instances merging current instances and instances from previous frame decided to keep tracking """ untracked_instances = Instances( image_size=instances.image_size, pred_boxes=[], pred_masks=[], pred_classes=[], scores=[], ID=[], ID_period=[], lost_frame_count=[], ) prev_bboxes = list(self._prev_instances.pred_boxes) prev_classes = list(self._prev_instances.pred_classes) prev_scores = list(self._prev_instances.scores) prev_ID_period = self._prev_instances.ID_period if instances.has("pred_masks"): prev_masks = list(self._prev_instances.pred_masks) for idx in self._untracked_prev_idx: x_left, y_top, x_right, y_bot = prev_bboxes[idx] if ( (1.0 * (x_right - x_left) / self._video_width < self._min_box_rel_dim) or (1.0 * (y_bot - y_top) / self._video_height < self._min_box_rel_dim) or self._prev_instances.lost_frame_count[idx] >= self._max_lost_frame_count or prev_ID_period[idx] <= self._min_instance_period ): continue untracked_instances.pred_boxes.append(list(prev_bboxes[idx].numpy())) untracked_instances.pred_classes.append(int(prev_classes[idx])) untracked_instances.scores.append(float(prev_scores[idx])) untracked_instances.ID.append(self._prev_instances.ID[idx]) untracked_instances.ID_period.append(self._prev_instances.ID_period[idx]) untracked_instances.lost_frame_count.append( self._prev_instances.lost_frame_count[idx] + 1 ) if instances.has("pred_masks"): untracked_instances.pred_masks.append(prev_masks[idx].numpy().astype(np.uint8)) untracked_instances.pred_boxes = Boxes(torch.FloatTensor(untracked_instances.pred_boxes)) untracked_instances.pred_classes = torch.IntTensor(untracked_instances.pred_classes) untracked_instances.scores = torch.FloatTensor(untracked_instances.scores) if instances.has("pred_masks"): untracked_instances.pred_masks = torch.IntTensor(untracked_instances.pred_masks) else: untracked_instances.remove("pred_masks") return Instances.cat( [ instances, untracked_instances, ] ) <fim_middle> not instances.has("lost_frame_count"): instances.set("lost_frame_count", [None] * len(instances))
not instances.has("lost_frame_count"): instances.set("lost_frame_count", [None] * len(instances))
IF
prefix_suffix_full_complete_current_block_with_evidence
<filename>UniRef/detectron2/tracking/bbox_iou_tracker.py<fim_prefix>#!/usr/bin/env python3 # Copyright 2004-present Facebook. All Rights Reserved. import copy from typing import List import numpy as np import torch from detectron2.config import configurable from detectron2.structures import Boxes, Instances from detectron2.structures.boxes import pairwise_iou from ..config.config import CfgNode as CfgNode_ from .base_tracker import BaseTracker, TRACKER_HEADS_REGISTRY @TRACKER_HEADS_REGISTRY.register() class BBoxIOUTracker(BaseTracker): """ A bounding box tracker to assign ID based on IoU between current and previous instances """ @configurable def __init__( self, *, video_height: int, video_width: int, max_num_instances: int = 200, max_lost_frame_count: int = 0, min_box_rel_dim: float = 0.02, min_instance_period: int = 1, track_iou_threshold: float = 0.5, **kwargs ): """ Args: video_height: height the video frame video_width: width of the video frame max_num_instances: maximum number of id allowed to be tracked max_lost_frame_count: maximum number of frame an id can lost tracking exceed this number, an id is considered as lost forever min_box_rel_dim: a percentage, smaller than this dimension, a bbox is removed from tracking min_instance_period: an instance will be shown after this number of period since its first showing up in the video track_iou_threshold: iou threshold, below this number a bbox pair is removed from tracking """ super().__init__(**kwargs) self._video_height = video_height self._video_width = video_width self._max_num_instances = max_num_instances self._max_lost_frame_count = max_lost_frame_count self._min_box_rel_dim = min_box_rel_dim self._min_instance_period = min_instance_period self._track_iou_threshold = track_iou_threshold @classmethod def from_config(cls, cfg: CfgNode_): """ Old style initialization using CfgNode Args: cfg: D2 CfgNode, config file Return: dictionary storing arguments for __init__ method """ assert "VIDEO_HEIGHT" in cfg.TRACKER_HEADS assert "VIDEO_WIDTH" in cfg.TRACKER_HEADS video_height = cfg.TRACKER_HEADS.get("VIDEO_HEIGHT") video_width = cfg.TRACKER_HEADS.get("VIDEO_WIDTH") max_num_instances = cfg.TRACKER_HEADS.get("MAX_NUM_INSTANCES", 200) max_lost_frame_count = cfg.TRACKER_HEADS.get("MAX_LOST_FRAME_COUNT", 0) min_box_rel_dim = cfg.TRACKER_HEADS.get("MIN_BOX_REL_DIM", 0.02) min_instance_period = cfg.TRACKER_HEADS.get("MIN_INSTANCE_PERIOD", 1) track_iou_threshold = cfg.TRACKER_HEADS.get("TRACK_IOU_THRESHOLD", 0.5) return { "_target_": "detectron2.tracking.bbox_iou_tracker.BBoxIOUTracker", "video_height": video_height, "video_width": video_width, "max_num_instances": max_num_instances, "max_lost_frame_count": max_lost_frame_count, "min_box_rel_dim": min_box_rel_dim, "min_instance_period": min_instance_period, "track_iou_threshold": track_iou_threshold } def update(self, instances: Instances) -> Instances: """ See BaseTracker description """ if instances.has("pred_keypoints"): raise NotImplementedError("Need to add support for keypoints") instances = self._initialize_extra_fields(instances) if self._prev_instances is not None: # calculate IoU of all bbox pairs iou_all = pairwise_iou( boxes1=instances.pred_boxes, boxes2=self._prev_instances.pred_boxes, ) # sort IoU in descending order bbox_pairs = self._create_prediction_pairs(instances, iou_all) # assign previous ID to current bbox if IoU > track_iou_threshold self._reset_fields() for bbox_pair in bbox_pairs: idx = bbox_pair["idx"] prev_id = bbox_pair["prev_id"] if idx in self._matched_idx \ or prev_id in self._matched_ID \ or bbox_pair["IoU"] < self._track_iou_threshold: continue instances.ID[idx] = prev_id instances.ID_period[idx] = bbox_pair["prev_period"] + 1 instances.lost_frame_count[idx] = 0 self._matched_idx.add(idx) self._matched_ID.add(prev_id) self._untracked_prev_idx.remove(bbox_pair["prev_idx"]) instances = self._assign_new_id(instances) instances = self._merge_untracked_instances(instances) self._prev_instances = copy.deepcopy(instances) return instances def _create_prediction_pairs( self, instances: Instances, iou_all: np.ndarray ) -> List: """ For all instances in previous and current frames, create pairs. For each pair, store index of the instance in current frame predcitions, index in previous predictions, ID in previous predictions, IoU of the bboxes in this pair, period in previous predictions. Args: instances: D2 Instances, for predictions of the current frame iou_all: IoU for all bboxes pairs Return: A list of IoU for all pairs """ bbox_pairs = [] for i in range(len(instances)): for j in range(len(self._prev_instances)): bbox_pairs.append( { "idx": i, "prev_idx": j, "prev_id": self._prev_instances.ID[j], "IoU": iou_all[i, j], "prev_period": self._prev_instances.ID_period[j], } ) return bbox_pairs def _initialize_extra_fields(self, instances: Instances) -> Instances: """ If input instances don't have ID, ID_period, lost_frame_count fields, this method is used to initialize these fields. Args: instances: D2 Instances, for predictions of the current frame Return: D2 Instances with extra fields added """ if not instances.has("ID"): instances.set("ID", [None] * len(instances)) if not instances.has("ID_period"): instances.set("ID_period", [None] * len(instances)) if not instances.has("lost_frame_count"): instances.set("lost_frame_count", [None] * len(instances)) if<fim_suffix> return instances def _reset_fields(self): """ Before each uodate call, reset fields first """ self._matched_idx = set() self._matched_ID = set() self._untracked_prev_idx = set(range(len(self._prev_instances))) def _assign_new_id(self, instances: Instances) -> Instances: """ For each untracked instance, assign a new id Args: instances: D2 Instances, for predictions of the current frame Return: D2 Instances with new ID assigned """ untracked_idx = set(range(len(instances))).difference(self._matched_idx) for idx in untracked_idx: instances.ID[idx] = self._id_count self._id_count += 1 instances.ID_period[idx] = 1 instances.lost_frame_count[idx] = 0 return instances def _merge_untracked_instances(self, instances: Instances) -> Instances: """ For untracked previous instances, under certain condition, still keep them in tracking and merge with the current instances. Args: instances: D2 Instances, for predictions of the current frame Return: D2 Instances merging current instances and instances from previous frame decided to keep tracking """ untracked_instances = Instances( image_size=instances.image_size, pred_boxes=[], pred_masks=[], pred_classes=[], scores=[], ID=[], ID_period=[], lost_frame_count=[], ) prev_bboxes = list(self._prev_instances.pred_boxes) prev_classes = list(self._prev_instances.pred_classes) prev_scores = list(self._prev_instances.scores) prev_ID_period = self._prev_instances.ID_period if instances.has("pred_masks"): prev_masks = list(self._prev_instances.pred_masks) for idx in self._untracked_prev_idx: x_left, y_top, x_right, y_bot = prev_bboxes[idx] if ( (1.0 * (x_right - x_left) / self._video_width < self._min_box_rel_dim) or (1.0 * (y_bot - y_top) / self._video_height < self._min_box_rel_dim) or self._prev_instances.lost_frame_count[idx] >= self._max_lost_frame_count or prev_ID_period[idx] <= self._min_instance_period ): continue untracked_instances.pred_boxes.append(list(prev_bboxes[idx].numpy())) untracked_instances.pred_classes.append(int(prev_classes[idx])) untracked_instances.scores.append(float(prev_scores[idx])) untracked_instances.ID.append(self._prev_instances.ID[idx]) untracked_instances.ID_period.append(self._prev_instances.ID_period[idx]) untracked_instances.lost_frame_count.append( self._prev_instances.lost_frame_count[idx] + 1 ) if instances.has("pred_masks"): untracked_instances.pred_masks.append(prev_masks[idx].numpy().astype(np.uint8)) untracked_instances.pred_boxes = Boxes(torch.FloatTensor(untracked_instances.pred_boxes)) untracked_instances.pred_classes = torch.IntTensor(untracked_instances.pred_classes) untracked_instances.scores = torch.FloatTensor(untracked_instances.scores) if instances.has("pred_masks"): untracked_instances.pred_masks = torch.IntTensor(untracked_instances.pred_masks) else: untracked_instances.remove("pred_masks") return Instances.cat( [ instances, untracked_instances, ] ) <fim_middle> self._prev_instances is None: instances.ID = list(range(len(instances))) self._id_count += len(instances) instances.ID_period = [1] * len(instances) instances.lost_frame_count = [0] * len(instances)
self._prev_instances is None: instances.ID = list(range(len(instances))) self._id_count += len(instances) instances.ID_period = [1] * len(instances) instances.lost_frame_count = [0] * len(instances)
IF
prefix_suffix_full_complete_current_block_with_evidence
<filename>UniRef/detectron2/tracking/hungarian_tracker.py<fim_prefix>#!/usr/bin/env python3 # Copyright 2004-present Facebook. All Rights Reserved. import copy import numpy as np import torch from detectron2.structures import Boxes, Instances from .base_tracker import BaseTracker from scipy.optimize import linear_sum_assignment from ..config.config import CfgNode as CfgNode_ from typing import Dict from detectron2.config import configurable class BaseHungarianTracker(BaseTracker): """ A base class for all Hungarian trackers """ @configurable def __init__( self, video_height: int, video_width: int, max_num_instances: int = 200, max_lost_frame_count: int = 0, min_box_rel_dim: float = 0.02, min_instance_period: int = 1, **kwargs ): """ Args: video_height: height the video frame video_width: width of the video frame max_num_instances: maximum number of id allowed to be tracked max_lost_frame_count: maximum number of frame an id can lost tracking exceed this number, an id is considered as lost forever min_box_rel_dim: a percentage, smaller than this dimension, a bbox is removed from tracking min_instance_period: an instance will be shown after this number of period since its first showing up in the video """ super().__init__(**kwargs) self._video_height = video_height self._video_width = video_width self._max_num_instances = max_num_instances self._max_lost_frame_count = max_lost_frame_count self._min_box_rel_dim = min_box_rel_dim self._min_instance_period = min_instance_period @classmethod def from_config(cls, cfg: CfgNode_) -> Dict: raise NotImplementedError("Calling HungarianTracker::from_config") def build_cost_matrix(self, instances: Instances, prev_instances: Instances) -> np.ndarray: raise NotImplementedError("Calling HungarianTracker::build_matrix") def update(self, instances: Instances) -> Instances: if instances.has("pred_keypoints"): raise NotImplementedError("Need to add support for keypoints") instances = self._initialize_extra_fields(instances) if self._prev_instances is not None: self._untracked_prev_idx = set(range(len(self._prev_instances))) cost_matrix = self.build_cost_matrix(instances, self._prev_instances) matched_idx, matched_prev_idx = linear_sum_assignment(cost_matrix) instances = self._process_matched_idx(instances, matched_idx, matched_prev_idx) instances = self._process_unmatched_idx(instances, matched_idx) instances = self._process_unmatched_prev_idx(instances, matched_prev_idx) self._prev_instances = copy.deepcopy(instances) return instances def _initialize_extra_fields(self, instances: Instances) -> Instances: """ If input instances don't have ID, ID_period, lost_frame_count fields, this method is used to initialize these fields. Args: instances: D2 Instances, for predictions of the current frame Return: D2 Instances with extra fields added """ if not instances.has("ID"): instances.set("ID", [None] * len(instances)) if not instances.has("ID_period"): instances.set("ID_period", [None] * len(instances)) if not instances.has("lost_frame_count"): instances.set("lost_frame_count", [None] * len(instances)) if self._prev_instances is None: instances.ID = list(range(len(instances))) self._id_count += len(instances) instances.ID_period = [1] * len(instances) instances.lost_frame_count = [0] * len(instances) return instances def _process_matched_idx( self, instances: Instances, matched_idx: np.ndarray, matched_prev_idx: np.ndarray ) -> Instances: assert matched_idx.size == matched_prev_idx.size for i in range(matched_idx.size): instances.ID[matched_idx[i]] = self._prev_instances.ID[matched_prev_idx[i]] instances.ID_period[matched_idx[i]] = \ self._prev_instances.ID_period[matched_prev_idx[i]] + 1 instances.lost_frame_count[matched_idx[i]] = 0 return instances def _process_unmatched_idx(self, instances: Instances, matched_idx: np.ndarray) -> Instances: untracked_idx = set(range(len(instances))).difference(set(matched_idx)) for idx in untracked_idx: instances.ID[idx] = self._id_count self._id_count += 1 instances.ID_period[idx] = 1 instances.lost_frame_count[idx] = 0 return instances def _process_unmatched_prev_idx( self, instances: Instances, matched_prev_idx: np.ndarray ) -> Instances: untracked_instances = Instances( image_size=instances.image_size, pred_boxes=[], pred_masks=[], pred_classes=[], scores=[], ID=[], ID_period=[], lost_frame_count=[], ) prev_bboxes = list(self._prev_instances.pred_boxes) prev_classes = list(self._prev_instances.pred_classes) prev_scores = list(self._prev_instances.scores) prev_ID_period = self._prev_instances.ID_period if instances.has("pred_masks"): prev_masks = list(self._prev_instances.pred_masks) untracked_prev_idx = set(range(len(self._prev_instances))).difference(set(matched_prev_idx)) for idx in untracked_prev_idx: x_left, y_top, x_right, y_bot = prev_bboxes[idx] if ( (1.0 * (x_right - x_left) / self._video_width < self._min_box_rel_dim) or (1.0 * (y_bot - y_top) / self._video_height < self._min_box_rel_dim) or self._prev_instances.lost_frame_count[idx] >= self._max_lost_frame_count or prev_ID_period[idx] <= self._min_instance_period ): continue untracked_instances.pred_boxes.append(list(prev_bboxes[idx].numpy())) untracked_instances.pred_classes.append(int(prev_classes[idx])) untracked_instances.scores.append(float(prev_scores[idx])) untracked_instances.ID.append(self._prev_instances.ID[idx]) untracked_instances.ID_period.append(self._prev_instances.ID_period[idx]) untracked_instances.lost_frame_count.append( self._prev_instances.lost_frame_count[idx] + 1 ) if<fim_suffix> untracked_instances.pred_boxes = Boxes(torch.FloatTensor(untracked_instances.pred_boxes)) untracked_instances.pred_classes = torch.IntTensor(untracked_instances.pred_classes) untracked_instances.scores = torch.FloatTensor(untracked_instances.scores) if instances.has("pred_masks"): untracked_instances.pred_masks = torch.IntTensor(untracked_instances.pred_masks) else: untracked_instances.remove("pred_masks") return Instances.cat( [ instances, untracked_instances, ] ) <fim_middle> instances.has("pred_masks"): untracked_instances.pred_masks.append(prev_masks[idx].numpy().astype(np.uint8))
instances.has("pred_masks"): untracked_instances.pred_masks.append(prev_masks[idx].numpy().astype(np.uint8))
IF
prefix_suffix_full_complete_current_block_with_evidence
<filename>UniRef/detectron2/structures/boxes.py<fim_prefix># Copyright (c) Facebook, Inc. and its affiliates. import math import numpy as np from enum import IntEnum, unique from typing import List, Tuple, Union import torch from torch import device _RawBoxType = Union[List[float], Tuple[float, ...], torch.Tensor, np.ndarray] @unique class BoxMode(IntEnum): """ Enum of different ways to represent a box. """ XYXY_ABS = 0 """ (x0, y0, x1, y1) in absolute floating points coordinates. The coordinates in range [0, width or height]. """ XYWH_ABS = 1 """ (x0, y0, w, h) in absolute floating points coordinates. """ XYXY_REL = 2 """ Not yet supported! (x0, y0, x1, y1) in range [0, 1]. They are relative to the size of the image. """ XYWH_REL = 3 """ Not yet supported! (x0, y0, w, h) in range [0, 1]. They are relative to the size of the image. """ XYWHA_ABS = 4 """ (xc, yc, w, h, a) in absolute floating points coordinates. (xc, yc) is the center of the rotated box, and the angle a is in degrees ccw. """ @staticmethod def convert(box: _RawBoxType, from_mode: "BoxMode", to_mode: "BoxMode") -> _RawBoxType: """ Args: box: can be a k-tuple, k-list or an Nxk array/tensor, where k = 4 or 5 from_mode, to_mode (BoxMode) Returns: The converted box of the same type. """ if from_mode == to_mode: return box original_type = type(box) is_numpy = isinstance(box, np.ndarray) single_box = isinstance(box, (list, tuple)) if single_box: assert len(box) == 4 or len(box) == 5, ( "BoxMode.convert takes either a k-tuple/list or an Nxk array/tensor," " where k == 4 or 5" ) arr = torch.tensor(box)[None, :] else: # avoid modifying the input box if is_numpy: arr = torch.from_numpy(np.asarray(box)).clone() else: arr = box.clone() assert to_mode not in [BoxMode.XYXY_REL, BoxMode.XYWH_REL] and from_mode not in [ BoxMode.XYXY_REL, BoxMode.XYWH_REL, ], "Relative mode not yet supported!" if from_mode == BoxMode.XYWHA_ABS and to_mode == BoxMode.XYXY_ABS: assert ( arr.shape[-1] == 5 ), "The last dimension of input shape must be 5 for XYWHA format" original_dtype = arr.dtype arr = arr.double() w = arr[:, 2] h = arr[:, 3] a = arr[:, 4] c = torch.abs(torch.cos(a * math.pi / 180.0)) s = torch.abs(torch.sin(a * math.pi / 180.0)) # This basically computes the horizontal bounding rectangle of the rotated box new_w = c * w + s * h new_h = c * h + s * w # convert center to top-left corner arr[:, 0] -= new_w / 2.0 arr[:, 1] -= new_h / 2.0 # bottom-right corner arr[:, 2] = arr[:, 0] + new_w arr[:, 3] = arr[:, 1] + new_h arr = arr[:, :4].to(dtype=original_dtype) elif from_mode == BoxMode.XYWH_ABS and to_mode == BoxMode.XYWHA_ABS: original_dtype = arr.dtype arr = arr.double() arr[:, 0] += arr[:, 2] / 2.0 arr[:, 1] += arr[:, 3] / 2.0 angles = torch.zeros((arr.shape[0], 1), dtype=arr.dtype) arr = torch.cat((arr, angles), axis=1).to(dtype=original_dtype) else: if to_mode == BoxMode.XYXY_ABS and from_mode == BoxMode.XYWH_ABS: arr[:, 2] += arr[:, 0] arr[:, 3] += arr[:, 1] elif from_mode == BoxMode.XYXY_ABS and to_mode == BoxMode.XYWH_ABS: arr[:, 2] -= arr[:, 0] arr[:, 3] -= arr[:, 1] else: raise NotImplementedError( "Conversion from BoxMode {} to {} is not supported yet".format( from_mode, to_mode ) ) if single_box: return original_type(arr.flatten().tolist()) if is_numpy: return arr.numpy() else: return arr class Boxes: """ This structure stores a list of boxes as a Nx4 torch.Tensor. It supports some common methods about boxes (`area`, `clip`, `nonempty`, etc), and also behaves like a Tensor (support indexing, `to(device)`, `.device`, and iteration over all boxes) Attributes: tensor (torch.Tensor): float matrix of Nx4. Each row is (x1, y1, x2, y2). """ def __init__(self, tensor: torch.Tensor): """ Args: tensor (Tensor[float]): a Nx4 matrix. Each row is (x1, y1, x2, y2). """ device = tensor.device if isinstance(tensor, torch.Tensor) else torch.device("cpu") tensor = torch.as_tensor(tensor, dtype=torch.float32, device=device) if tensor.numel() == 0: # Use reshape, so we don't end up creating a new tensor that does not depend on # the inputs (and consequently confuses jit) tensor = tensor.reshape((-1, 4)).to(dtype=torch.float32, device=device) assert tensor.dim() == 2 and tensor.size(-1) == 4, tensor.size() self.tensor = tensor def clone(self) -> "Boxes": """ Clone the Boxes. Returns: Boxes """ return Boxes(self.tensor.clone()) def to(self, device: torch.device): # Boxes are assumed float32 and does not support to(dtype) return Boxes(self.tensor.to(device=device)) def area(self) -> torch.Tensor: """ Computes the area of all the boxes. Returns: torch.Tensor: a vector with areas of each box. """ box = self.tensor area = (box[:, 2] - box[:, 0]) * (box[:, 3] - box[:, 1]) return area def clip(self, box_size: Tuple[int, int]) -> None: """ Clip (in place) the boxes by limiting x coordinates to the range [0, width] and y coordinates to the range [0, height]. Args: box_size (height, width): The clipping box's size. """ assert torch.isfinite(self.tensor).all(), "Box tensor contains infinite or NaN!" h, w = box_size x1 = self.tensor[:, 0].clamp(min=0, max=w) y1 = self.tensor[:, 1].clamp(min=0, max=h) x2 = self.tensor[:, 2].clamp(min=0, max=w) y2 = self.tensor[:, 3].clamp(min=0, max=h) self.tensor = torch.stack((x1, y1, x2, y2), dim=-1) def nonempty(self, threshold: float = 0.0) -> torch.Tensor: """ Find boxes that are non-empty. A box is considered empty, if either of its side is no larger than threshold. Returns: Tensor: a binary vector which represents whether each box is empty (False) or non-empty (True). """ box = self.tensor widths = box[:, 2] - box[:, 0] heights = box[:, 3] - box[:, 1] keep = (widths > threshold) & (heights > threshold) return keep def __getitem__(self, item) -> "Boxes": """ Args: item: int, slice, or a BoolTensor Returns: Boxes: Create a new :class:`Boxes` by indexing. The following usage are allowed: 1. `new_boxes = boxes[3]`: return a `Boxes` which contains only one box. 2. `new_boxes = boxes[2:10]`: return a slice of boxes. 3. `new_boxes = boxes[vector]`, where vector is a torch.BoolTensor with `length = len(boxes)`. Nonzero elements in the vector will be selected. Note that the returned Boxes might share storage with this Boxes, subject to Pytorch's indexing semantics. """ if isinstance(item, int): return Boxes(self.tensor[item].view(1, -1)) b = self.tensor[item] assert b.dim() == 2, "Indexing on Boxes with {} failed to return a matrix!".format(item) return Boxes(b) def __len__(self) -> int: return self.tensor.shape[0] def __repr__(self) -> str: return "Boxes(" + str(self.tensor) + ")" def inside_box(self, box_size: Tuple[int, int], boundary_threshold: int = 0) -> torch.Tensor: """ Args: box_size (height, width): Size of the reference box. boundary_threshold (int): Boxes that extend beyond the reference box boundary by more than boundary_threshold are considered "outside". Returns: a binary vector, indicating whether each box is inside the reference box. """ height, width = box_size inds_inside = ( (self.tensor[..., 0] >= -boundary_threshold) & (self.tensor[..., 1] >= -boundary_threshold) & (self.tensor[..., 2] < width + boundary_threshold) & (self.tensor[..., 3] < height + boundary_threshold) ) return inds_inside def get_centers(self) -> torch.Tensor: """ Returns: The box centers in a Nx2 array of (x, y). """ return (self.tensor[:, :2] + self.tensor[:, 2:]) / 2 def scale(self, scale_x: float, scale_y: float) -> None: """ Scale the box with horizontal and vertical scaling factors """ self.tensor[:, 0::2] *= scale_x self.tensor[:, 1::2] *= scale_y @classmethod def cat(cls, boxes_list: List["Boxes"]) -> "Boxes": """ Concatenates a list of Boxes into a single Boxes Arguments: boxes_list (list[Boxes]) Returns: Boxes: the concatenated Boxes """ assert isinstance(boxes_list, (list, tuple)) if len(boxes_list) == 0: return cls(torch.empty(0)) assert all([isinstance(box, Boxes) for box in boxes_list]) # use torch.cat (v.s. layers.cat) so the returned boxes never share storage with input cat_boxes = cls(torch.cat([b.tensor for b in boxes_list], dim=0)) return cat_boxes @property def device(self) -> device: return self.tensor.device # type "Iterator[torch.Tensor]", yield, and iter() not supported by torchscript # https://github.com/pytorch/pytorch/issues/18627 @torch.jit.unused def __iter__(self): """ Yield a box as a Tensor of shape (4,) at a time. """ yield from self.tensor def pairwise_intersection(boxes1: Boxes, boxes2: Boxes) -> torch.Tensor: """ Given two lists of boxes of size N and M, compute the intersection area between __all__ N x M pairs of boxes. The box order must be (xmin, ymin, xmax, ymax) Args: boxes1,boxes2 (Boxes): two `Boxes`. Contains N & M boxes, respectively. Returns: Tensor: intersection, sized [N,M]. """ boxes1, boxes2 = boxes1.tensor, boxes2.tensor width_height = torch.min(boxes1[:, None, 2:], boxes2[:, 2:]) - torch.max( boxes1[:, None, :2], boxes2[:, :2] ) # [N,M,2] width_height.clamp_(min=0) # [N,M,2] intersection = width_height.prod(dim=2) # [N,M] return intersection # implementation from https://github.com/kuangliu/torchcv/blob/master/torchcv/utils/box.py # with slight modifications def pairwise_iou(boxes1: Boxes, boxes2: Boxes) -> torch.Tensor: """ Given two lists of boxes of size N and M, compute the IoU (intersection over union) between **all** N x M pairs of boxes. The box order must be (xmin, ymin, xmax, ymax). Args: boxes1,boxes2 (Boxes): two `Boxes`. Contains N & M boxes, respectively. Returns: Tensor: IoU, sized [N,M]. """ area1 = boxes1.area() # [N] area2 = boxes2.area() #<fim_suffix> inter = pairwise_intersection(boxes1, boxes2) # handle empty boxes iou = torch.where( inter > 0, inter / (area1[:, None] + area2 - inter), torch.zeros(1, dtype=inter.dtype, device=inter.device), ) return iou def pairwise_ioa(boxes1: Boxes, boxes2: Boxes) -> torch.Tensor: """ Similar to :func:`pariwise_iou` but compute the IoA (intersection over boxes2 area). Args: boxes1,boxes2 (Boxes): two `Boxes`. Contains N & M boxes, respectively. Returns: Tensor: IoA, sized [N,M]. """ area2 = boxes2.area() # [M] inter = pairwise_intersection(boxes1, boxes2) # handle empty boxes ioa = torch.where( inter > 0, inter / area2, torch.zeros(1, dtype=inter.dtype, device=inter.device) ) return ioa def pairwise_point_box_distance(points: torch.Tensor, boxes: Boxes): """ Pairwise distance between N points and M boxes. The distance between a point and a box is represented by the distance from the point to 4 edges of the box. Distances are all positive when the point is inside the box. Args: points: Nx2 coordinates. Each row is (x, y) boxes: M boxes Returns: Tensor: distances of size (N, M, 4). The 4 values are distances from the point to the left, top, right, bottom of the box. """ x, y = points.unsqueeze(dim=2).unbind(dim=1) # (N, 1) x0, y0, x1, y1 = boxes.tensor.unsqueeze(dim=0).unbind(dim=2) # (1, M) return torch.stack([x - x0, y - y0, x1 - x, y1 - y], dim=2) def matched_pairwise_iou(boxes1: Boxes, boxes2: Boxes) -> torch.Tensor: """ Compute pairwise intersection over union (IOU) of two sets of matched boxes that have the same number of boxes. Similar to :func:`pairwise_iou`, but computes only diagonal elements of the matrix. Args: boxes1 (Boxes): bounding boxes, sized [N,4]. boxes2 (Boxes): same length as boxes1 Returns: Tensor: iou, sized [N]. """ assert len(boxes1) == len( boxes2 ), "boxlists should have the same" "number of entries, got {}, {}".format( len(boxes1), len(boxes2) ) area1 = boxes1.area() # [N] area2 = boxes2.area() # [N] box1, box2 = boxes1.tensor, boxes2.tensor lt = torch.max(box1[:, :2], box2[:, :2]) # [N,2] rb = torch.min(box1[:, 2:], box2[:, 2:]) # [N,2] wh = (rb - lt).clamp(min=0) # [N,2] inter = wh[:, 0] * wh[:, 1] # [N] iou = inter / (area1 + area2 - inter) # [N] return iou <fim_middle> [M]
[M]
LINE_COMMENT
prefix_suffix_full_complete_current_block_with_evidence
<filename>UniRef/detectron2/structures/boxes.py<fim_prefix># Copyright (c) Facebook, Inc. and its affiliates. import math import numpy as np from enum import IntEnum, unique from typing import List, Tuple, Union import torch from torch import device _RawBoxType = Union[List[float], Tuple[float, ...], torch.Tensor, np.ndarray] @unique class BoxMode(IntEnum): """ Enum of different ways to represent a box. """ XYXY_ABS = 0 """ (x0, y0, x1, y1) in absolute floating points coordinates. The coordinates in range [0, width or height]. """ XYWH_ABS = 1 """ (x0, y0, w, h) in absolute floating points coordinates. """ XYXY_REL = 2 """ Not yet supported! (x0, y0, x1, y1) in range [0, 1]. They are relative to the size of the image. """ XYWH_REL = 3 """ Not yet supported! (x0, y0, w, h) in range [0, 1]. They are relative to the size of the image. """ XYWHA_ABS = 4 """ (xc, yc, w, h, a) in absolute floating points coordinates. (xc, yc) is the center of the rotated box, and the angle a is in degrees ccw. """ @staticmethod def convert(box: _RawBoxType, from_mode: "BoxMode", to_mode: "BoxMode") -> _RawBoxType: """ Args: box: can be a k-tuple, k-list or an Nxk array/tensor, where k = 4 or 5 from_mode, to_mode (BoxMode) Returns: The converted box of the same type. """ if from_mode == to_mode: return box original_type = type(box) is_numpy = isinstance(box, np.ndarray) single_box = isinstance(box, (list, tuple)) if single_box: assert len(box) == 4 or len(box) == 5, ( "BoxMode.convert takes either a k-tuple/list or an Nxk array/tensor," " where k == 4 or 5" ) arr = torch.tensor(box)[None, :] else: # avoid modifying the input box if is_numpy: arr = torch.from_numpy(np.asarray(box)).clone() else: arr = box.clone() assert to_mode not in [BoxMode.XYXY_REL, BoxMode.XYWH_REL] and from_mode not in [ BoxMode.XYXY_REL, BoxMode.XYWH_REL, ], "Relative mode not yet supported!" if from_mode == BoxMode.XYWHA_ABS and to_mode == BoxMode.XYXY_ABS: assert ( arr.shape[-1] == 5 ), "The last dimension of input shape must be 5 for XYWHA format" original_dtype = arr.dtype arr = arr.double() w = arr[:, 2] h = arr[:, 3] a = arr[:, 4] c = torch.abs(torch.cos(a * math.pi / 180.0)) s = torch.abs(torch.sin(a * math.pi / 180.0)) # This basically computes the horizontal bounding rectangle of the rotated box new_w = c * w + s * h new_h = c * h + s * w # convert center to top-left corner arr[:, 0] -= new_w / 2.0 arr[:, 1] -= new_h / 2.0 # bottom-right corner arr[:, 2] = arr[:, 0] + new_w arr[:, 3] = arr[:, 1] + new_h arr = arr[:, :4].to(dtype=original_dtype) elif from_mode == BoxMode.XYWH_ABS and to_mode == BoxMode.XYWHA_ABS: original_dtype = arr.dtype arr = arr.double() arr[:, 0] += arr[:, 2] / 2.0 arr[:, 1] += arr[:, 3] / 2.0 angles = torch.zeros((arr.shape[0], 1), dtype=arr.dtype) arr = torch.cat((arr, angles), axis=1).to(dtype=original_dtype) else: if to_mode == BoxMode.XYXY_ABS and from_mode == BoxMode.XYWH_ABS: arr[:, 2] += arr[:, 0] arr[:, 3] += arr[:, 1] elif from_mode == BoxMode.XYXY_ABS and to_mode == BoxMode.XYWH_ABS: arr[:, 2] -= arr[:, 0] arr[:, 3] -= arr[:, 1] else: raise NotImplementedError( "Conversion from BoxMode {} to {} is not supported yet".format( from_mode, to_mode ) ) if single_box: return original_type(arr.flatten().tolist()) if is_numpy: return arr.numpy() else: return arr class Boxes: """ This structure stores a list of boxes as a Nx4 torch.Tensor. It supports some common methods about boxes (`area`, `clip`, `nonempty`, etc), and also behaves like a Tensor (support indexing, `to(device)`, `.device`, and iteration over all boxes) Attributes: tensor (torch.Tensor): float matrix of Nx4. Each row is (x1, y1, x2, y2). """ def __init__(self, tensor: torch.Tensor): """ Args: tensor (Tensor[float]): a Nx4 matrix. Each row is (x1, y1, x2, y2). """ device = tensor.device if isinstance(tensor, torch.Tensor) else torch.device("cpu") tensor = torch.as_tensor(tensor, dtype=torch.float32, device=device) if tensor.numel() == 0: # Use reshape, so we don't end up creating a new tensor that does not depend on #<fim_suffix> tensor = tensor.reshape((-1, 4)).to(dtype=torch.float32, device=device) assert tensor.dim() == 2 and tensor.size(-1) == 4, tensor.size() self.tensor = tensor def clone(self) -> "Boxes": """ Clone the Boxes. Returns: Boxes """ return Boxes(self.tensor.clone()) def to(self, device: torch.device): # Boxes are assumed float32 and does not support to(dtype) return Boxes(self.tensor.to(device=device)) def area(self) -> torch.Tensor: """ Computes the area of all the boxes. Returns: torch.Tensor: a vector with areas of each box. """ box = self.tensor area = (box[:, 2] - box[:, 0]) * (box[:, 3] - box[:, 1]) return area def clip(self, box_size: Tuple[int, int]) -> None: """ Clip (in place) the boxes by limiting x coordinates to the range [0, width] and y coordinates to the range [0, height]. Args: box_size (height, width): The clipping box's size. """ assert torch.isfinite(self.tensor).all(), "Box tensor contains infinite or NaN!" h, w = box_size x1 = self.tensor[:, 0].clamp(min=0, max=w) y1 = self.tensor[:, 1].clamp(min=0, max=h) x2 = self.tensor[:, 2].clamp(min=0, max=w) y2 = self.tensor[:, 3].clamp(min=0, max=h) self.tensor = torch.stack((x1, y1, x2, y2), dim=-1) def nonempty(self, threshold: float = 0.0) -> torch.Tensor: """ Find boxes that are non-empty. A box is considered empty, if either of its side is no larger than threshold. Returns: Tensor: a binary vector which represents whether each box is empty (False) or non-empty (True). """ box = self.tensor widths = box[:, 2] - box[:, 0] heights = box[:, 3] - box[:, 1] keep = (widths > threshold) & (heights > threshold) return keep def __getitem__(self, item) -> "Boxes": """ Args: item: int, slice, or a BoolTensor Returns: Boxes: Create a new :class:`Boxes` by indexing. The following usage are allowed: 1. `new_boxes = boxes[3]`: return a `Boxes` which contains only one box. 2. `new_boxes = boxes[2:10]`: return a slice of boxes. 3. `new_boxes = boxes[vector]`, where vector is a torch.BoolTensor with `length = len(boxes)`. Nonzero elements in the vector will be selected. Note that the returned Boxes might share storage with this Boxes, subject to Pytorch's indexing semantics. """ if isinstance(item, int): return Boxes(self.tensor[item].view(1, -1)) b = self.tensor[item] assert b.dim() == 2, "Indexing on Boxes with {} failed to return a matrix!".format(item) return Boxes(b) def __len__(self) -> int: return self.tensor.shape[0] def __repr__(self) -> str: return "Boxes(" + str(self.tensor) + ")" def inside_box(self, box_size: Tuple[int, int], boundary_threshold: int = 0) -> torch.Tensor: """ Args: box_size (height, width): Size of the reference box. boundary_threshold (int): Boxes that extend beyond the reference box boundary by more than boundary_threshold are considered "outside". Returns: a binary vector, indicating whether each box is inside the reference box. """ height, width = box_size inds_inside = ( (self.tensor[..., 0] >= -boundary_threshold) & (self.tensor[..., 1] >= -boundary_threshold) & (self.tensor[..., 2] < width + boundary_threshold) & (self.tensor[..., 3] < height + boundary_threshold) ) return inds_inside def get_centers(self) -> torch.Tensor: """ Returns: The box centers in a Nx2 array of (x, y). """ return (self.tensor[:, :2] + self.tensor[:, 2:]) / 2 def scale(self, scale_x: float, scale_y: float) -> None: """ Scale the box with horizontal and vertical scaling factors """ self.tensor[:, 0::2] *= scale_x self.tensor[:, 1::2] *= scale_y @classmethod def cat(cls, boxes_list: List["Boxes"]) -> "Boxes": """ Concatenates a list of Boxes into a single Boxes Arguments: boxes_list (list[Boxes]) Returns: Boxes: the concatenated Boxes """ assert isinstance(boxes_list, (list, tuple)) if len(boxes_list) == 0: return cls(torch.empty(0)) assert all([isinstance(box, Boxes) for box in boxes_list]) # use torch.cat (v.s. layers.cat) so the returned boxes never share storage with input cat_boxes = cls(torch.cat([b.tensor for b in boxes_list], dim=0)) return cat_boxes @property def device(self) -> device: return self.tensor.device # type "Iterator[torch.Tensor]", yield, and iter() not supported by torchscript # https://github.com/pytorch/pytorch/issues/18627 @torch.jit.unused def __iter__(self): """ Yield a box as a Tensor of shape (4,) at a time. """ yield from self.tensor def pairwise_intersection(boxes1: Boxes, boxes2: Boxes) -> torch.Tensor: """ Given two lists of boxes of size N and M, compute the intersection area between __all__ N x M pairs of boxes. The box order must be (xmin, ymin, xmax, ymax) Args: boxes1,boxes2 (Boxes): two `Boxes`. Contains N & M boxes, respectively. Returns: Tensor: intersection, sized [N,M]. """ boxes1, boxes2 = boxes1.tensor, boxes2.tensor width_height = torch.min(boxes1[:, None, 2:], boxes2[:, 2:]) - torch.max( boxes1[:, None, :2], boxes2[:, :2] ) # [N,M,2] width_height.clamp_(min=0) # [N,M,2] intersection = width_height.prod(dim=2) # [N,M] return intersection # implementation from https://github.com/kuangliu/torchcv/blob/master/torchcv/utils/box.py # with slight modifications def pairwise_iou(boxes1: Boxes, boxes2: Boxes) -> torch.Tensor: """ Given two lists of boxes of size N and M, compute the IoU (intersection over union) between **all** N x M pairs of boxes. The box order must be (xmin, ymin, xmax, ymax). Args: boxes1,boxes2 (Boxes): two `Boxes`. Contains N & M boxes, respectively. Returns: Tensor: IoU, sized [N,M]. """ area1 = boxes1.area() # [N] area2 = boxes2.area() # [M] inter = pairwise_intersection(boxes1, boxes2) # handle empty boxes iou = torch.where( inter > 0, inter / (area1[:, None] + area2 - inter), torch.zeros(1, dtype=inter.dtype, device=inter.device), ) return iou def pairwise_ioa(boxes1: Boxes, boxes2: Boxes) -> torch.Tensor: """ Similar to :func:`pariwise_iou` but compute the IoA (intersection over boxes2 area). Args: boxes1,boxes2 (Boxes): two `Boxes`. Contains N & M boxes, respectively. Returns: Tensor: IoA, sized [N,M]. """ area2 = boxes2.area() # [M] inter = pairwise_intersection(boxes1, boxes2) # handle empty boxes ioa = torch.where( inter > 0, inter / area2, torch.zeros(1, dtype=inter.dtype, device=inter.device) ) return ioa def pairwise_point_box_distance(points: torch.Tensor, boxes: Boxes): """ Pairwise distance between N points and M boxes. The distance between a point and a box is represented by the distance from the point to 4 edges of the box. Distances are all positive when the point is inside the box. Args: points: Nx2 coordinates. Each row is (x, y) boxes: M boxes Returns: Tensor: distances of size (N, M, 4). The 4 values are distances from the point to the left, top, right, bottom of the box. """ x, y = points.unsqueeze(dim=2).unbind(dim=1) # (N, 1) x0, y0, x1, y1 = boxes.tensor.unsqueeze(dim=0).unbind(dim=2) # (1, M) return torch.stack([x - x0, y - y0, x1 - x, y1 - y], dim=2) def matched_pairwise_iou(boxes1: Boxes, boxes2: Boxes) -> torch.Tensor: """ Compute pairwise intersection over union (IOU) of two sets of matched boxes that have the same number of boxes. Similar to :func:`pairwise_iou`, but computes only diagonal elements of the matrix. Args: boxes1 (Boxes): bounding boxes, sized [N,4]. boxes2 (Boxes): same length as boxes1 Returns: Tensor: iou, sized [N]. """ assert len(boxes1) == len( boxes2 ), "boxlists should have the same" "number of entries, got {}, {}".format( len(boxes1), len(boxes2) ) area1 = boxes1.area() # [N] area2 = boxes2.area() # [N] box1, box2 = boxes1.tensor, boxes2.tensor lt = torch.max(box1[:, :2], box2[:, :2]) # [N,2] rb = torch.min(box1[:, 2:], box2[:, 2:]) # [N,2] wh = (rb - lt).clamp(min=0) # [N,2] inter = wh[:, 0] * wh[:, 1] # [N] iou = inter / (area1 + area2 - inter) # [N] return iou <fim_middle> the inputs (and consequently confuses jit)
the inputs (and consequently confuses jit)
LINE_COMMENT
prefix_suffix_full_complete_current_block_with_evidence
<filename>UniRef/detectron2/checkpoint/c2_model_loading.py<fim_prefix># Copyright (c) Facebook, Inc. and its affiliates. import copy import logging import re from typing import Dict, List import torch from tabulate import tabulate def convert_basic_c2_names(original_keys): """ Apply some basic name conversion to names in C2 weights. It only deals with typical backbone models. Args: original_keys (list[str]): Returns: list[str]: The same number of strings matching those in original_keys. """ layer_keys = copy.deepcopy(original_keys) layer_keys = [ {"pred_b": "linear_b", "pred_w": "linear_w"}.get(k, k) for k in layer_keys ] # some hard-coded mappings layer_keys = [k.replace("_", ".") for k in layer_keys] layer_keys = [re.sub("\\.b$", ".bias", k) for k in layer_keys] layer_keys = [re.sub("\\.w$", ".weight", k) for k in layer_keys] # Uniform both bn and gn names to "norm" layer_keys = [re.sub("bn\\.s$", "norm.weight", k) for k in layer_keys] layer_keys = [re.sub("bn\\.bias$", "norm.bias", k) for k in layer_keys] layer_keys = [re.sub("bn\\.rm", "norm.running_mean", k) for k in layer_keys] layer_keys = [re.sub("bn\\.running.mean$", "norm.running_mean", k) for k in layer_keys] layer_keys = [re.sub("bn\\.riv$", "norm.running_var", k) for k in layer_keys] layer_keys = [re.sub("bn\\.running.var$", "norm.running_var", k) for k in layer_keys] layer_keys = [re.sub("bn\\.gamma$", "norm.weight", k) for k in layer_keys] layer_keys = [re.sub("bn\\.beta$", "norm.bias", k) for k in layer_keys] layer_keys = [re.sub("gn\\.s$", "norm.weight", k) for k in layer_keys] layer_keys = [re.sub("gn\\.bias$", "norm.bias", k) for k in layer_keys] # stem layer_keys = [re.sub("^res\\.conv1\\.norm\\.", "conv1.norm.", k) for k in layer_keys] # to avoid mis-matching with "conv1" in other components (e.g. detection head) layer_keys = [re.sub("^conv1\\.", "stem.conv1.", k) for k in layer_keys] # layer1-4 is used by torchvision, however we follow the C2 naming strategy (res2-5) # layer_keys = [re.sub("^res2.", "layer1.", k) for k in layer_keys] # layer_keys = [re.sub("^res3.", "layer2.", k) for k in layer_keys] # layer_keys = [re.sub("^res4.", "layer3.", k) for k in layer_keys] # layer_keys = [re.sub("^res5.", "layer4.", k) for k in layer_keys] # blocks layer_keys = [k.replace(".branch1.", ".shortcut.") for k in layer_keys] layer_keys = [k.replace(".branch2a.", ".conv1.") for k in layer_keys] layer_keys = [k.replace(".branch2b.", ".conv2.") for k in layer_keys] layer_keys = [k.replace(".branch2c.", ".conv3.") for k in layer_keys] # DensePose substitutions layer_keys = [re.sub("^body.conv.fcn", "body_conv_fcn", k) for k in layer_keys] layer_keys = [k.replace("AnnIndex.lowres", "ann_index_lowres") for k in layer_keys] layer_keys = [k.replace("Index.UV.lowres", "index_uv_lowres") for k in layer_keys] layer_keys = [k.replace("U.lowres", "u_lowres") for k in layer_keys] layer_keys = [k.replace("V.lowres", "v_lowres") for k in layer_keys] return layer_keys def convert_c2_detectron_names(weights): """ Map Caffe2 Detectron weight names to Detectron2 names. Args: weights (dict): name -> tensor Returns: dict: detectron2 names -> tensor dict: detectron2 names -> C2 names """ logger = logging.getLogger(__name__) logger.info("Renaming Caffe2 weights ......") original_keys = sorted(weights.keys()) layer_keys = copy.deepcopy(original_keys) layer_keys = convert_basic_c2_names(layer_keys) # -------------------------------------------------------------------------- #<fim_suffix> # -------------------------------------------------------------------------- # FPN case # In the C2 model, the RPN hidden layer conv is defined for FPN level 2 and then # shared for all other levels, hence the appearance of "fpn2" layer_keys = [ k.replace("conv.rpn.fpn2", "proposal_generator.rpn_head.conv") for k in layer_keys ] # Non-FPN case layer_keys = [k.replace("conv.rpn", "proposal_generator.rpn_head.conv") for k in layer_keys] # -------------------------------------------------------------------------- # RPN box transformation conv # -------------------------------------------------------------------------- # FPN case (see note above about "fpn2") layer_keys = [ k.replace("rpn.bbox.pred.fpn2", "proposal_generator.rpn_head.anchor_deltas") for k in layer_keys ] layer_keys = [ k.replace("rpn.cls.logits.fpn2", "proposal_generator.rpn_head.objectness_logits") for k in layer_keys ] # Non-FPN case layer_keys = [ k.replace("rpn.bbox.pred", "proposal_generator.rpn_head.anchor_deltas") for k in layer_keys ] layer_keys = [ k.replace("rpn.cls.logits", "proposal_generator.rpn_head.objectness_logits") for k in layer_keys ] # -------------------------------------------------------------------------- # Fast R-CNN box head # -------------------------------------------------------------------------- layer_keys = [re.sub("^bbox\\.pred", "bbox_pred", k) for k in layer_keys] layer_keys = [re.sub("^cls\\.score", "cls_score", k) for k in layer_keys] layer_keys = [re.sub("^fc6\\.", "box_head.fc1.", k) for k in layer_keys] layer_keys = [re.sub("^fc7\\.", "box_head.fc2.", k) for k in layer_keys] # 4conv1fc head tensor names: head_conv1_w, head_conv1_gn_s layer_keys = [re.sub("^head\\.conv", "box_head.conv", k) for k in layer_keys] # -------------------------------------------------------------------------- # FPN lateral and output convolutions # -------------------------------------------------------------------------- def fpn_map(name): """ Look for keys with the following patterns: 1) Starts with "fpn.inner." Example: "fpn.inner.res2.2.sum.lateral.weight" Meaning: These are lateral pathway convolutions 2) Starts with "fpn.res" Example: "fpn.res2.2.sum.weight" Meaning: These are FPN output convolutions """ splits = name.split(".") norm = ".norm" if "norm" in splits else "" if name.startswith("fpn.inner."): # splits example: ['fpn', 'inner', 'res2', '2', 'sum', 'lateral', 'weight'] stage = int(splits[2][len("res") :]) return "fpn_lateral{}{}.{}".format(stage, norm, splits[-1]) elif name.startswith("fpn.res"): # splits example: ['fpn', 'res2', '2', 'sum', 'weight'] stage = int(splits[1][len("res") :]) return "fpn_output{}{}.{}".format(stage, norm, splits[-1]) return name layer_keys = [fpn_map(k) for k in layer_keys] # -------------------------------------------------------------------------- # Mask R-CNN mask head # -------------------------------------------------------------------------- # roi_heads.StandardROIHeads case layer_keys = [k.replace(".[mask].fcn", "mask_head.mask_fcn") for k in layer_keys] layer_keys = [re.sub("^\\.mask\\.fcn", "mask_head.mask_fcn", k) for k in layer_keys] layer_keys = [k.replace("mask.fcn.logits", "mask_head.predictor") for k in layer_keys] # roi_heads.Res5ROIHeads case layer_keys = [k.replace("conv5.mask", "mask_head.deconv") for k in layer_keys] # -------------------------------------------------------------------------- # Keypoint R-CNN head # -------------------------------------------------------------------------- # interestingly, the keypoint head convs have blob names that are simply "conv_fcnX" layer_keys = [k.replace("conv.fcn", "roi_heads.keypoint_head.conv_fcn") for k in layer_keys] layer_keys = [ k.replace("kps.score.lowres", "roi_heads.keypoint_head.score_lowres") for k in layer_keys ] layer_keys = [k.replace("kps.score.", "roi_heads.keypoint_head.score.") for k in layer_keys] # -------------------------------------------------------------------------- # Done with replacements # -------------------------------------------------------------------------- assert len(set(layer_keys)) == len(layer_keys) assert len(original_keys) == len(layer_keys) new_weights = {} new_keys_to_original_keys = {} for orig, renamed in zip(original_keys, layer_keys): new_keys_to_original_keys[renamed] = orig if renamed.startswith("bbox_pred.") or renamed.startswith("mask_head.predictor."): # remove the meaningless prediction weight for background class new_start_idx = 4 if renamed.startswith("bbox_pred.") else 1 new_weights[renamed] = weights[orig][new_start_idx:] logger.info( "Remove prediction weight for background class in {}. The shape changes from " "{} to {}.".format( renamed, tuple(weights[orig].shape), tuple(new_weights[renamed].shape) ) ) elif renamed.startswith("cls_score."): # move weights of bg class from original index 0 to last index logger.info( "Move classification weights for background class in {} from index 0 to " "index {}.".format(renamed, weights[orig].shape[0] - 1) ) new_weights[renamed] = torch.cat([weights[orig][1:], weights[orig][:1]]) else: new_weights[renamed] = weights[orig] return new_weights, new_keys_to_original_keys # Note the current matching is not symmetric. # it assumes model_state_dict will have longer names. def align_and_update_state_dicts(model_state_dict, ckpt_state_dict, c2_conversion=True): """ Match names between the two state-dict, and returns a new chkpt_state_dict with names converted to match model_state_dict with heuristics. The returned dict can be later loaded with fvcore checkpointer. If `c2_conversion==True`, `ckpt_state_dict` is assumed to be a Caffe2 model and will be renamed at first. Strategy: suppose that the models that we will create will have prefixes appended to each of its keys, for example due to an extra level of nesting that the original pre-trained weights from ImageNet won't contain. For example, model.state_dict() might return backbone[0].body.res2.conv1.weight, while the pre-trained model contains res2.conv1.weight. We thus want to match both parameters together. For that, we look for each model weight, look among all loaded keys if there is one that is a suffix of the current weight name, and use it if that's the case. If multiple matches exist, take the one with longest size of the corresponding name. For example, for the same model as before, the pretrained weight file can contain both res2.conv1.weight, as well as conv1.weight. In this case, we want to match backbone[0].body.conv1.weight to conv1.weight, and backbone[0].body.res2.conv1.weight to res2.conv1.weight. """ model_keys = sorted(model_state_dict.keys()) if c2_conversion: ckpt_state_dict, original_keys = convert_c2_detectron_names(ckpt_state_dict) # original_keys: the name in the original dict (before renaming) else: original_keys = {x: x for x in ckpt_state_dict.keys()} ckpt_keys = sorted(ckpt_state_dict.keys()) def match(a, b): # Matched ckpt_key should be a complete (starts with '.') suffix. # For example, roi_heads.mesh_head.whatever_conv1 does not match conv1, # but matches whatever_conv1 or mesh_head.whatever_conv1. return a == b or a.endswith("." + b) # get a matrix of string matches, where each (i, j) entry correspond to the size of the # ckpt_key string, if it matches match_matrix = [len(j) if match(i, j) else 0 for i in model_keys for j in ckpt_keys] match_matrix = torch.as_tensor(match_matrix).view(len(model_keys), len(ckpt_keys)) # use the matched one with longest size in case of multiple matches max_match_size, idxs = match_matrix.max(1) # remove indices that correspond to no-match idxs[max_match_size == 0] = -1 logger = logging.getLogger(__name__) # matched_pairs (matched checkpoint key --> matched model key) matched_keys = {} result_state_dict = {} for idx_model, idx_ckpt in enumerate(idxs.tolist()): if idx_ckpt == -1: continue key_model = model_keys[idx_model] key_ckpt = ckpt_keys[idx_ckpt] value_ckpt = ckpt_state_dict[key_ckpt] shape_in_model = model_state_dict[key_model].shape if shape_in_model != value_ckpt.shape: logger.warning( "Shape of {} in checkpoint is {}, while shape of {} in model is {}.".format( key_ckpt, value_ckpt.shape, key_model, shape_in_model ) ) logger.warning( "{} will not be loaded. Please double check and see if this is desired.".format( key_ckpt ) ) continue assert key_model not in result_state_dict result_state_dict[key_model] = value_ckpt if key_ckpt in matched_keys: # already added to matched_keys logger.error( "Ambiguity found for {} in checkpoint!" "It matches at least two keys in the model ({} and {}).".format( key_ckpt, key_model, matched_keys[key_ckpt] ) ) raise ValueError("Cannot match one checkpoint key to multiple keys in the model.") matched_keys[key_ckpt] = key_model # logging: matched_model_keys = sorted(matched_keys.values()) if len(matched_model_keys) == 0: logger.warning("No weights in checkpoint matched with model.") return ckpt_state_dict common_prefix = _longest_common_prefix(matched_model_keys) rev_matched_keys = {v: k for k, v in matched_keys.items()} original_keys = {k: original_keys[rev_matched_keys[k]] for k in matched_model_keys} model_key_groups = _group_keys_by_module(matched_model_keys, original_keys) table = [] memo = set() for key_model in matched_model_keys: if key_model in memo: continue if key_model in model_key_groups: group = model_key_groups[key_model] memo |= set(group) shapes = [tuple(model_state_dict[k].shape) for k in group] table.append( ( _longest_common_prefix([k[len(common_prefix) :] for k in group]) + "*", _group_str([original_keys[k] for k in group]), " ".join([str(x).replace(" ", "") for x in shapes]), ) ) else: key_checkpoint = original_keys[key_model] shape = str(tuple(model_state_dict[key_model].shape)) table.append((key_model[len(common_prefix) :], key_checkpoint, shape)) table_str = tabulate( table, tablefmt="pipe", headers=["Names in Model", "Names in Checkpoint", "Shapes"] ) logger.info( "Following weights matched with " + (f"submodule {common_prefix[:-1]}" if common_prefix else "model") + ":\n" + table_str ) unmatched_ckpt_keys = [k for k in ckpt_keys if k not in set(matched_keys.keys())] for k in unmatched_ckpt_keys: result_state_dict[k] = ckpt_state_dict[k] return result_state_dict def _group_keys_by_module(keys: List[str], original_names: Dict[str, str]): """ Params in the same submodule are grouped together. Args: keys: names of all parameters original_names: mapping from parameter name to their name in the checkpoint Returns: dict[name -> all other names in the same group] """ def _submodule_name(key): pos = key.rfind(".") if pos < 0: return None prefix = key[: pos + 1] return prefix all_submodules = [_submodule_name(k) for k in keys] all_submodules = [x for x in all_submodules if x] all_submodules = sorted(all_submodules, key=len) ret = {} for prefix in all_submodules: group = [k for k in keys if k.startswith(prefix)] if len(group) <= 1: continue original_name_lcp = _longest_common_prefix_str([original_names[k] for k in group]) if len(original_name_lcp) == 0: # don't group weights if original names don't share prefix continue for k in group: if k in ret: continue ret[k] = group return ret def _longest_common_prefix(names: List[str]) -> str: """ ["abc.zfg", "abc.zef"] -> "abc." """ names = [n.split(".") for n in names] m1, m2 = min(names), max(names) ret = [a for a, b in zip(m1, m2) if a == b] ret = ".".join(ret) + "." if len(ret) else "" return ret def _longest_common_prefix_str(names: List[str]) -> str: m1, m2 = min(names), max(names) lcp = [a for a, b in zip(m1, m2) if a == b] lcp = "".join(lcp) return lcp def _group_str(names: List[str]) -> str: """ Turn "common1", "common2", "common3" into "common{1,2,3}" """ lcp = _longest_common_prefix_str(names) rest = [x[len(lcp) :] for x in names] rest = "{" + ",".join(rest) + "}" ret = lcp + rest # add some simplification for BN specifically ret = ret.replace("bn_{beta,running_mean,running_var,gamma}", "bn_*") ret = ret.replace("bn_beta,bn_running_mean,bn_running_var,bn_gamma", "bn_*") return ret <fim_middle> RPN hidden representation conv
RPN hidden representation conv
LINE_COMMENT
prefix_suffix_full_complete_current_block_with_evidence
<filename>UniRef/external/davis2017-evaluation/davis2017/metrics.py<fim_prefix>import math import numpy as np import cv2 def db_eval_iou(annotation, segmentation, void_pixels=None): """ Compute region similarity as the Jaccard Index. Arguments: annotation (ndarray): binary annotation map. segmentation (ndarray): binary segmentation map. void_pixels (ndarray): optional mask with void pixels Return: jaccard (float): region similarity """ assert annotation.shape == segmentation.shape, \ f'Annotation({annotation.shape}) and segmentation:{segmentation.shape} dimensions do not match.' annotation = annotation.astype(np.bool) segmentation = segmentation.astype(np.bool) if void_pixels is not None: assert annotation.shape == void_pixels.shape, \ f'Annotation({annotation.shape}) and void pixels:{void_pixels.shape} dimensions do not match.' void_pixels = void_pixels.astype(np.bool) else: void_pixels = np.zeros_like(segmentation) # Intersection between all sets inters = np.sum((segmentation & annotation) & np.logical_not(void_pixels), axis=(-2, -1)) union = np.sum((segmentation | annotation) & np.logical_not(void_pixels), axis=(-2, -1)) j = inters / union if j.ndim == 0: j = 1 if np.isclose(union, 0) else j else: j[np.isclose(union, 0)] = 1 return j def db_eval_boundary(annotation, segmentation, void_pixels=None, bound_th=0.008): assert annotation.shape == segmentation.shape if void_pixels is not None: assert annotation.shape == void_pixels.shape if annotation.ndim == 3: n_frames = annotation.shape[0] f_res = np.zeros(n_frames) for frame_id in range(n_frames): void_pixels_frame = None if void_pixels is None else void_pixels[frame_id, :, :, ] f_res[frame_id] = f_measure(segmentation[frame_id, :, :, ], annotation[frame_id, :, :], void_pixels_frame, bound_th=bound_th) elif annotation.ndim == 2: f_res = f_measure(segmentation, annotation, void_pixels, bound_th=bound_th) else: raise ValueError(f'db_eval_boundary does not support tensors with {annotation.ndim} dimensions') return f_res def f_measure(foreground_mask, gt_mask, void_pixels=None, bound_th=0.008): """ Compute mean,recall and decay from per-frame evaluation. Calculates precision/recall for boundaries between foreground_mask and gt_mask using morphological operators to speed it up. Arguments: foreground_mask (ndarray): binary segmentation image. gt_mask (ndarray): binary annotated image. void_pixels (ndarray): optional mask with void pixels Returns: F (float): boundaries F-measure """ assert np.atleast_3d(foreground_mask).shape[2] == 1 if void_pixels is not None: void_pixels = void_pixels.astype(np.bool) else: void_pixels = np.zeros_like(foreground_mask).astype(np.bool) bound_pix = bound_th if bound_th >= 1 else \ np.ceil(bound_th * np.linalg.norm(foreground_mask.shape)) #<fim_suffix> fg_boundary = _seg2bmap(foreground_mask * np.logical_not(void_pixels)) gt_boundary = _seg2bmap(gt_mask * np.logical_not(void_pixels)) from skimage.morphology import disk # fg_dil = binary_dilation(fg_boundary, disk(bound_pix)) fg_dil = cv2.dilate(fg_boundary.astype(np.uint8), disk(bound_pix).astype(np.uint8)) # gt_dil = binary_dilation(gt_boundary, disk(bound_pix)) gt_dil = cv2.dilate(gt_boundary.astype(np.uint8), disk(bound_pix).astype(np.uint8)) # Get the intersection gt_match = gt_boundary * fg_dil fg_match = fg_boundary * gt_dil # Area of the intersection n_fg = np.sum(fg_boundary) n_gt = np.sum(gt_boundary) # % Compute precision and recall if n_fg == 0 and n_gt > 0: precision = 1 recall = 0 elif n_fg > 0 and n_gt == 0: precision = 0 recall = 1 elif n_fg == 0 and n_gt == 0: precision = 1 recall = 1 else: precision = np.sum(fg_match) / float(n_fg) recall = np.sum(gt_match) / float(n_gt) # Compute F measure if precision + recall == 0: F = 0 else: F = 2 * precision * recall / (precision + recall) return F def _seg2bmap(seg, width=None, height=None): """ From a segmentation, compute a binary boundary map with 1 pixel wide boundaries. The boundary pixels are offset by 1/2 pixel towards the origin from the actual segment boundary. Arguments: seg : Segments labeled from 1..k. width : Width of desired bmap <= seg.shape[1] height : Height of desired bmap <= seg.shape[0] Returns: bmap (ndarray): Binary boundary map. David Martin <[email protected]> January 2003 """ seg = seg.astype(np.bool) seg[seg > 0] = 1 assert np.atleast_3d(seg).shape[2] == 1 width = seg.shape[1] if width is None else width height = seg.shape[0] if height is None else height h, w = seg.shape[:2] ar1 = float(width) / float(height) ar2 = float(w) / float(h) assert not ( width > w | height > h | abs(ar1 - ar2) > 0.01 ), "Can" "t convert %dx%d seg to %dx%d bmap." % (w, h, width, height) e = np.zeros_like(seg) s = np.zeros_like(seg) se = np.zeros_like(seg) e[:, :-1] = seg[:, 1:] s[:-1, :] = seg[1:, :] se[:-1, :-1] = seg[1:, 1:] b = seg ^ e | seg ^ s | seg ^ se b[-1, :] = seg[-1, :] ^ e[-1, :] b[:, -1] = seg[:, -1] ^ s[:, -1] b[-1, -1] = 0 if w == width and h == height: bmap = b else: bmap = np.zeros((height, width)) for x in range(w): for y in range(h): if b[y, x]: j = 1 + math.floor((y - 1) + height / h) i = 1 + math.floor((x - 1) + width / h) bmap[j, i] = 1 return bmap if __name__ == '__main__': from davis2017.davis import DAVIS from davis2017.results import Results dataset = DAVIS(root='input_dir/ref', subset='val', sequences='aerobatics') results = Results(root_dir='examples/osvos') # Test timing F measure for seq in dataset.get_sequences(): all_gt_masks, _, all_masks_id = dataset.get_all_masks(seq, True) all_gt_masks, all_masks_id = all_gt_masks[:, 1:-1, :, :], all_masks_id[1:-1] all_res_masks = results.read_masks(seq, all_masks_id) f_metrics_res = np.zeros(all_gt_masks.shape[:2]) for ii in range(all_gt_masks.shape[0]): f_metrics_res[ii, :] = db_eval_boundary(all_gt_masks[ii, ...], all_res_masks[ii, ...]) # Run using to profile code: python -m cProfile -o f_measure.prof metrics.py # snakeviz f_measure.prof <fim_middle> Get the pixel boundaries of both masks
Get the pixel boundaries of both masks
LINE_COMMENT
prefix_suffix_full_complete_current_block_with_evidence
<filename>UniRef/detectron2/checkpoint/c2_model_loading.py<fim_prefix># Copyright (c) Facebook, Inc. and its affiliates. import copy import logging import re from typing import Dict, List import torch from tabulate import tabulate def convert_basic_c2_names(original_keys): """ Apply some basic name conversion to names in C2 weights. It only deals with typical backbone models. Args: original_keys (list[str]): Returns: list[str]: The same number of strings matching those in original_keys. """ layer_keys = copy.deepcopy(original_keys) layer_keys = [ {"pred_b": "linear_b", "pred_w": "linear_w"}.get(k, k) for k in layer_keys ] # some hard-coded mappings layer_keys = [k.replace("_", ".") for k in layer_keys] layer_keys = [re.sub("\\.b$", ".bias", k) for k in layer_keys] layer_keys = [re.sub("\\.w$", ".weight", k) for k in layer_keys] # Uniform both bn and gn names to "norm" layer_keys = [re.sub("bn\\.s$", "norm.weight", k) for k in layer_keys] layer_keys = [re.sub("bn\\.bias$", "norm.bias", k) for k in layer_keys] layer_keys = [re.sub("bn\\.rm", "norm.running_mean", k) for k in layer_keys] layer_keys = [re.sub("bn\\.running.mean$", "norm.running_mean", k) for k in layer_keys] layer_keys = [re.sub("bn\\.riv$", "norm.running_var", k) for k in layer_keys] layer_keys = [re.sub("bn\\.running.var$", "norm.running_var", k) for k in layer_keys] layer_keys = [re.sub("bn\\.gamma$", "norm.weight", k) for k in layer_keys] layer_keys = [re.sub("bn\\.beta$", "norm.bias", k) for k in layer_keys] layer_keys = [re.sub("gn\\.s$", "norm.weight", k) for k in layer_keys] layer_keys = [re.sub("gn\\.bias$", "norm.bias", k) for k in layer_keys] # stem layer_keys = [re.sub("^res\\.conv1\\.norm\\.", "conv1.norm.", k) for k in layer_keys] # to avoid mis-matching with "conv1" in other components (e.g. detection head) layer_keys = [re.sub("^conv1\\.", "stem.conv1.", k) for k in layer_keys] # layer1-4 is used by torchvision, however we follow the C2 naming strategy (res2-5) # layer_keys = [re.sub("^res2.", "layer1.", k) for k in layer_keys] # layer_keys = [re.sub("^res3.", "layer2.", k) for k in layer_keys] # layer_keys = [re.sub("^res4.", "layer3.", k) for k in layer_keys] # layer_keys = [re.sub("^res5.", "layer4.", k) for k in layer_keys] # blocks layer_keys = [k.replace(".branch1.", ".shortcut.") for k in layer_keys] layer_keys = [k.replace(".branch2a.", ".conv1.") for k in layer_keys] layer_keys = [k.replace(".branch2b.", ".conv2.") for k in layer_keys] layer_keys = [k.replace(".branch2c.", ".conv3.") for k in layer_keys] # DensePose substitutions layer_keys = [re.sub("^body.conv.fcn", "body_conv_fcn", k) for k in layer_keys] layer_keys = [k.replace("AnnIndex.lowres", "ann_index_lowres") for k in layer_keys] layer_keys = [k.replace("Index.UV.lowres", "index_uv_lowres") for k in layer_keys] layer_keys = [k.replace("U.lowres", "u_lowres") for k in layer_keys] layer_keys = [k.replace("V.lowres", "v_lowres") for k in layer_keys] return layer_keys def convert_c2_detectron_names(weights): """ Map Caffe2 Detectron weight names to Detectron2 names. Args: weights (dict): name -> tensor Returns: dict: detectron2 names -> tensor dict: detectron2 names -> C2 names """ logger = logging.getLogger(__name__) logger.info("Renaming Caffe2 weights ......") original_keys = sorted(weights.keys()) layer_keys = copy.deepcopy(original_keys) layer_keys = convert_basic_c2_names(layer_keys) # -------------------------------------------------------------------------- # RPN hidden representation conv # -------------------------------------------------------------------------- # FPN case # In the C2 model, the RPN hidden layer conv is defined for FPN level 2 and then # shared for all other levels, hence the appearance of "fpn2" layer_keys = [ k.replace("conv.rpn.fpn2", "proposal_generator.rpn_head.conv") for k in layer_keys ] # Non-FPN case layer_keys = [k.replace("conv.rpn", "proposal_generator.rpn_head.conv") for k in layer_keys] # -------------------------------------------------------------------------- # RPN box transformation conv # -------------------------------------------------------------------------- # FPN case (see note above about "fpn2") layer_keys = [ k.replace("rpn.bbox.pred.fpn2", "proposal_generator.rpn_head.anchor_deltas") for k in layer_keys ] layer_keys = [ k.replace("rpn.cls.logits.fpn2", "proposal_generator.rpn_head.objectness_logits") for k in layer_keys ] # Non-FPN case layer_keys = [ k.replace("rpn.bbox.pred", "proposal_generator.rpn_head.anchor_deltas") for k in layer_keys ] layer_keys = [ k.replace("rpn.cls.logits", "proposal_generator.rpn_head.objectness_logits") for k in layer_keys ] # -------------------------------------------------------------------------- # Fast R-CNN box head # -------------------------------------------------------------------------- layer_keys = [re.sub("^bbox\\.pred", "bbox_pred", k) for k in layer_keys] layer_keys = [re.sub("^cls\\.score", "cls_score", k) for k in layer_keys] layer_keys = [re.sub("^fc6\\.", "box_head.fc1.", k) for k in layer_keys] layer_keys = [re.sub("^fc7\\.", "box_head.fc2.", k) for k in layer_keys] # 4conv1fc head tensor names: head_conv1_w, head_conv1_gn_s layer_keys = [re.sub("^head\\.conv", "box_head.conv", k) for k in layer_keys] # -------------------------------------------------------------------------- # FPN lateral and output convolutions # -------------------------------------------------------------------------- def fpn_map(name): """ Look for keys with the following patterns: 1) Starts with "fpn.inner." Example: "fpn.inner.res2.2.sum.lateral.weight" Meaning: These are lateral pathway convolutions 2) Starts with "fpn.res" Example: "fpn.res2.2.sum.weight" Meaning: These are FPN output convolutions """ splits = name.split(".") norm = ".norm" if "norm" in splits else "" if name.startswith("fpn.inner."): # splits example: ['fpn', 'inner', 'res2', '2', 'sum', 'lateral', 'weight'] stage = int(splits[2][len("res") :]) return "fpn_lateral{}{}.{}".format(stage, norm, splits[-1]) elif name.startswith("fpn.res"): # splits example: ['fpn', 'res2', '2', 'sum', 'weight'] stage = int(splits[1][len("res") :]) return "fpn_output{}{}.{}".format(stage, norm, splits[-1]) return name layer_keys = [fpn_map(k) for k in layer_keys] # -------------------------------------------------------------------------- # Mask R-CNN mask head # -------------------------------------------------------------------------- # roi_heads.StandardROIHeads case layer_keys = [k.replace(".[mask].fcn", "mask_head.mask_fcn") for k in layer_keys] layer_keys = [re.sub("^\\.mask\\.fcn", "mask_head.mask_fcn", k) for k in layer_keys] layer_keys = [k.replace("mask.fcn.logits", "mask_head.predictor") for k in layer_keys] # roi_heads.Res5ROIHeads case layer_keys = [k.replace("conv5.mask", "mask_head.deconv") for k in layer_keys] # -------------------------------------------------------------------------- # Keypoint R-CNN head # -------------------------------------------------------------------------- # interestingly, the keypoint head convs have blob names that are simply "conv_fcnX" layer_keys = [k.replace("conv.fcn", "roi_heads.keypoint_head.conv_fcn") for k in layer_keys] layer_keys = [ k.replace("kps.score.lowres", "roi_heads.keypoint_head.score_lowres") for k in layer_keys ] layer_keys = [k.replace("kps.score.", "roi_heads.keypoint_head.score.") for k in layer_keys] # -------------------------------------------------------------------------- # Done with replacements # -------------------------------------------------------------------------- assert len(set(layer_keys)) == len(layer_keys) assert len(original_keys) == len(layer_keys) new_weights = {} new_keys_to_original_keys = {} for orig, renamed in zip(original_keys, layer_keys): new_keys_to_original_keys[renamed] = orig if renamed.startswith("bbox_pred.") or renamed.startswith("mask_head.predictor."): # remove the meaningless prediction weight for background class new_start_idx = 4 if renamed.startswith("bbox_pred.") else 1 new_weights[renamed] = weights[orig][new_start_idx:] logger.info( "Remove prediction weight for background class in {}. The shape changes from " "{} to {}.".format( renamed, tuple(weights[orig].shape), tuple(new_weights[renamed].shape) ) ) elif renamed.startswith("cls_score."): # move weights of bg class from original index 0 to last index logger.info( "Move classification weights for background class in {} from index 0 to " "index {}.".format(renamed, weights[orig].shape[0] - 1) ) new_weights[renamed] = torch.cat([weights[orig][1:], weights[orig][:1]]) else: new_weights[renamed] = weights[orig] return new_weights, new_keys_to_original_keys # Note the current matching is not symmetric. # it assumes model_state_dict will have longer names. def align_and_update_state_dicts(model_state_dict, ckpt_state_dict, c2_conversion=True): """ Match names between the two state-dict, and returns a new chkpt_state_dict with names converted to match model_state_dict with heuristics. The returned dict can be later loaded with fvcore checkpointer. If `c2_conversion==True`, `ckpt_state_dict` is assumed to be a Caffe2 model and will be renamed at first. Strategy: suppose that the models that we will create will have prefixes appended to each of its keys, for example due to an extra level of nesting that the original pre-trained weights from ImageNet won't contain. For example, model.state_dict() might return backbone[0].body.res2.conv1.weight, while the pre-trained model contains res2.conv1.weight. We thus want to match both parameters together. For that, we look for each model weight, look among all loaded keys if there is one that is a suffix of the current weight name, and use it if that's the case. If multiple matches exist, take the one with longest size of the corresponding name. For example, for the same model as before, the pretrained weight file can contain both res2.conv1.weight, as well as conv1.weight. In this case, we want to match backbone[0].body.conv1.weight to conv1.weight, and backbone[0].body.res2.conv1.weight to res2.conv1.weight. """ model_keys = sorted(model_state_dict.keys()) if c2_conversion: ckpt_state_dict, original_keys = convert_c2_detectron_names(ckpt_state_dict) # original_keys: the name in the original dict (before renaming) else: original_keys = {x: x for x in ckpt_state_dict.keys()} ckpt_keys = sorted(ckpt_state_dict.keys()) def match(a, b): # Matched ckpt_key should be a complete (starts with '.') suffix. # For example, roi_heads.mesh_head.whatever_conv1 does not match conv1, # but matches whatever_conv1 or mesh_head.whatever_conv1. return a == b or a.endswith("." + b) # get a matrix of string matches, where each (i, j) entry correspond to the size of the #<fim_suffix> match_matrix = [len(j) if match(i, j) else 0 for i in model_keys for j in ckpt_keys] match_matrix = torch.as_tensor(match_matrix).view(len(model_keys), len(ckpt_keys)) # use the matched one with longest size in case of multiple matches max_match_size, idxs = match_matrix.max(1) # remove indices that correspond to no-match idxs[max_match_size == 0] = -1 logger = logging.getLogger(__name__) # matched_pairs (matched checkpoint key --> matched model key) matched_keys = {} result_state_dict = {} for idx_model, idx_ckpt in enumerate(idxs.tolist()): if idx_ckpt == -1: continue key_model = model_keys[idx_model] key_ckpt = ckpt_keys[idx_ckpt] value_ckpt = ckpt_state_dict[key_ckpt] shape_in_model = model_state_dict[key_model].shape if shape_in_model != value_ckpt.shape: logger.warning( "Shape of {} in checkpoint is {}, while shape of {} in model is {}.".format( key_ckpt, value_ckpt.shape, key_model, shape_in_model ) ) logger.warning( "{} will not be loaded. Please double check and see if this is desired.".format( key_ckpt ) ) continue assert key_model not in result_state_dict result_state_dict[key_model] = value_ckpt if key_ckpt in matched_keys: # already added to matched_keys logger.error( "Ambiguity found for {} in checkpoint!" "It matches at least two keys in the model ({} and {}).".format( key_ckpt, key_model, matched_keys[key_ckpt] ) ) raise ValueError("Cannot match one checkpoint key to multiple keys in the model.") matched_keys[key_ckpt] = key_model # logging: matched_model_keys = sorted(matched_keys.values()) if len(matched_model_keys) == 0: logger.warning("No weights in checkpoint matched with model.") return ckpt_state_dict common_prefix = _longest_common_prefix(matched_model_keys) rev_matched_keys = {v: k for k, v in matched_keys.items()} original_keys = {k: original_keys[rev_matched_keys[k]] for k in matched_model_keys} model_key_groups = _group_keys_by_module(matched_model_keys, original_keys) table = [] memo = set() for key_model in matched_model_keys: if key_model in memo: continue if key_model in model_key_groups: group = model_key_groups[key_model] memo |= set(group) shapes = [tuple(model_state_dict[k].shape) for k in group] table.append( ( _longest_common_prefix([k[len(common_prefix) :] for k in group]) + "*", _group_str([original_keys[k] for k in group]), " ".join([str(x).replace(" ", "") for x in shapes]), ) ) else: key_checkpoint = original_keys[key_model] shape = str(tuple(model_state_dict[key_model].shape)) table.append((key_model[len(common_prefix) :], key_checkpoint, shape)) table_str = tabulate( table, tablefmt="pipe", headers=["Names in Model", "Names in Checkpoint", "Shapes"] ) logger.info( "Following weights matched with " + (f"submodule {common_prefix[:-1]}" if common_prefix else "model") + ":\n" + table_str ) unmatched_ckpt_keys = [k for k in ckpt_keys if k not in set(matched_keys.keys())] for k in unmatched_ckpt_keys: result_state_dict[k] = ckpt_state_dict[k] return result_state_dict def _group_keys_by_module(keys: List[str], original_names: Dict[str, str]): """ Params in the same submodule are grouped together. Args: keys: names of all parameters original_names: mapping from parameter name to their name in the checkpoint Returns: dict[name -> all other names in the same group] """ def _submodule_name(key): pos = key.rfind(".") if pos < 0: return None prefix = key[: pos + 1] return prefix all_submodules = [_submodule_name(k) for k in keys] all_submodules = [x for x in all_submodules if x] all_submodules = sorted(all_submodules, key=len) ret = {} for prefix in all_submodules: group = [k for k in keys if k.startswith(prefix)] if len(group) <= 1: continue original_name_lcp = _longest_common_prefix_str([original_names[k] for k in group]) if len(original_name_lcp) == 0: # don't group weights if original names don't share prefix continue for k in group: if k in ret: continue ret[k] = group return ret def _longest_common_prefix(names: List[str]) -> str: """ ["abc.zfg", "abc.zef"] -> "abc." """ names = [n.split(".") for n in names] m1, m2 = min(names), max(names) ret = [a for a, b in zip(m1, m2) if a == b] ret = ".".join(ret) + "." if len(ret) else "" return ret def _longest_common_prefix_str(names: List[str]) -> str: m1, m2 = min(names), max(names) lcp = [a for a, b in zip(m1, m2) if a == b] lcp = "".join(lcp) return lcp def _group_str(names: List[str]) -> str: """ Turn "common1", "common2", "common3" into "common{1,2,3}" """ lcp = _longest_common_prefix_str(names) rest = [x[len(lcp) :] for x in names] rest = "{" + ",".join(rest) + "}" ret = lcp + rest # add some simplification for BN specifically ret = ret.replace("bn_{beta,running_mean,running_var,gamma}", "bn_*") ret = ret.replace("bn_beta,bn_running_mean,bn_running_var,bn_gamma", "bn_*") return ret <fim_middle> ckpt_key string, if it matches
ckpt_key string, if it matches
LINE_COMMENT
prefix_suffix_full_complete_current_block_with_evidence
<filename>UniRef/detectron2/tracking/iou_weighted_hungarian_bbox_iou_tracker.py<fim_prefix>#!/usr/bin/env python3 # Copyright 2004-present Facebook. All Rights Reserved. from typing import List import numpy as np from .base_tracker import TRACKER_HEADS_REGISTRY from .vanilla_hungarian_bbox_iou_tracker import VanillaHungarianBBoxIOUTracker from detectron2.config import configurable, CfgNode as CfgNode_ @TRACKER_HEADS_REGISTRY.register() class IOUWeightedHungarianBBoxIOUTracker(VanillaHungarianBBoxIOUTracker): """ A tracker using IoU as weight in Hungarian algorithm, also known as Munkres or Kuhn-Munkres algorithm """ @configurable def __init__( self, *, video_height: int, video_width: int, max_num_instances: int = 200, max_lost_frame_count: int = 0, min_box_rel_dim: float = 0.02, min_instance_period: int = 1, track_iou_threshold: float = 0.5, **kwargs ): """ Args: video_height: height the video frame video_width: width of the video frame max_num_instances: maximum number of id allowed to be tracked max_lost_frame_count: maximum number of frame an id can lost tracking exceed this number, an id is considered as lost forever min_box_rel_dim: a percentage, smaller than this dimension, a bbox is removed from tracking min_instance_period: an instance will be shown after this number of period since its first showing up in the video track_iou_threshold: iou threshold, below this number a bbox pair is removed from tracking """ super().__init__( video_height=video_height, video_width=video_width, max_num_instances=max_num_instances, max_lost_frame_count=max_lost_frame_count, min_box_rel_dim=min_box_rel_dim, min_instance_period=min_instance_period, track_iou_threshold=track_iou_threshold ) @classmethod def from_config(cls, cfg: CfgNode_): """ Old style initialization using CfgNode Args: cfg: D2 CfgNode, config file Return: dictionary storing arguments for __init__ method """ assert "VIDEO_HEIGHT" in cfg.TRACKER_HEADS assert "VIDEO_WIDTH" in cfg.TRACKER_HEADS video_height = cfg.TRACKER_HEADS.get("VIDEO_HEIGHT") video_width = cfg.TRACKER_HEADS.get("VIDEO_WIDTH") max_num_instances = cfg.TRACKER_HEADS.get("MAX_NUM_INSTANCES", 200) max_lost_frame_count = cfg.TRACKER_HEADS.get("MAX_LOST_FRAME_COUNT", 0) min_box_rel_dim = cfg.TRACKER_HEADS.get("MIN_BOX_REL_DIM", 0.02) min_instance_period = cfg.TRACKER_HEADS.get("MIN_INSTANCE_PERIOD", 1) track_iou_threshold = cfg.TRACKER_HEADS.get("TRACK_IOU_THRESHOLD", 0.5) return { "_target_": "detectron2.tracking.iou_weighted_hungarian_bbox_iou_tracker.IOUWeightedHungarianBBoxIOUTracker", # noqa "video_height": video_height, "video_width": video_width, "max_num_instances": max_num_instances, "max_lost_frame_count": max_lost_frame_count, "min_box_rel_dim": min_box_rel_dim, "min_instance_period": min_instance_period, "track_iou_threshold": track_iou_threshold } def assign_cost_matrix_values(self, cost_matrix: np.ndarray, bbox_pairs: List) -> np.ndarray: """ Based on IoU for each pair of bbox, assign the associated value in cost matrix Args: cost_matrix: np.ndarray, initialized 2D array with target dimensions bbox_pairs: list of bbox pair, in each pair, iou value is stored Return: np.ndarray, cost_matrix with assigned values """ for pair in bbox_pairs: #<fim_suffix> cost_matrix[pair["idx"]][pair["prev_idx"]] = -1 * pair["IoU"] return cost_matrix <fim_middle> assign (-1 * IoU) for above threshold pairs, algorithms will minimize cost
assign (-1 * IoU) for above threshold pairs, algorithms will minimize cost
LINE_COMMENT
prefix_suffix_full_complete_current_block_with_evidence
<filename>UniRef/external/davis2017-evaluation/davis2017/metrics.py<fim_prefix>import math import numpy as np import cv2 def db_eval_iou(annotation, segmentation, void_pixels=None): """ Compute region similarity as the Jaccard Index. Arguments: annotation (ndarray): binary annotation map. segmentation (ndarray): binary segmentation map. void_pixels (ndarray): optional mask with void pixels Return: jaccard (float): region similarity """ assert annotation.shape == segmentation.shape, \ f'Annotation({annotation.shape}) and segmentation:{segmentation.shape} dimensions do not match.' annotation = annotation.astype(np.bool) segmentation = segmentation.astype(np.bool) if void_pixels is not None: assert annotation.shape == void_pixels.shape, \ f'Annotation({annotation.shape}) and void pixels:{void_pixels.shape} dimensions do not match.' void_pixels = void_pixels.astype(np.bool) else: void_pixels = np.zeros_like(segmentation) #<fim_suffix> inters = np.sum((segmentation & annotation) & np.logical_not(void_pixels), axis=(-2, -1)) union = np.sum((segmentation | annotation) & np.logical_not(void_pixels), axis=(-2, -1)) j = inters / union if j.ndim == 0: j = 1 if np.isclose(union, 0) else j else: j[np.isclose(union, 0)] = 1 return j def db_eval_boundary(annotation, segmentation, void_pixels=None, bound_th=0.008): assert annotation.shape == segmentation.shape if void_pixels is not None: assert annotation.shape == void_pixels.shape if annotation.ndim == 3: n_frames = annotation.shape[0] f_res = np.zeros(n_frames) for frame_id in range(n_frames): void_pixels_frame = None if void_pixels is None else void_pixels[frame_id, :, :, ] f_res[frame_id] = f_measure(segmentation[frame_id, :, :, ], annotation[frame_id, :, :], void_pixels_frame, bound_th=bound_th) elif annotation.ndim == 2: f_res = f_measure(segmentation, annotation, void_pixels, bound_th=bound_th) else: raise ValueError(f'db_eval_boundary does not support tensors with {annotation.ndim} dimensions') return f_res def f_measure(foreground_mask, gt_mask, void_pixels=None, bound_th=0.008): """ Compute mean,recall and decay from per-frame evaluation. Calculates precision/recall for boundaries between foreground_mask and gt_mask using morphological operators to speed it up. Arguments: foreground_mask (ndarray): binary segmentation image. gt_mask (ndarray): binary annotated image. void_pixels (ndarray): optional mask with void pixels Returns: F (float): boundaries F-measure """ assert np.atleast_3d(foreground_mask).shape[2] == 1 if void_pixels is not None: void_pixels = void_pixels.astype(np.bool) else: void_pixels = np.zeros_like(foreground_mask).astype(np.bool) bound_pix = bound_th if bound_th >= 1 else \ np.ceil(bound_th * np.linalg.norm(foreground_mask.shape)) # Get the pixel boundaries of both masks fg_boundary = _seg2bmap(foreground_mask * np.logical_not(void_pixels)) gt_boundary = _seg2bmap(gt_mask * np.logical_not(void_pixels)) from skimage.morphology import disk # fg_dil = binary_dilation(fg_boundary, disk(bound_pix)) fg_dil = cv2.dilate(fg_boundary.astype(np.uint8), disk(bound_pix).astype(np.uint8)) # gt_dil = binary_dilation(gt_boundary, disk(bound_pix)) gt_dil = cv2.dilate(gt_boundary.astype(np.uint8), disk(bound_pix).astype(np.uint8)) # Get the intersection gt_match = gt_boundary * fg_dil fg_match = fg_boundary * gt_dil # Area of the intersection n_fg = np.sum(fg_boundary) n_gt = np.sum(gt_boundary) # % Compute precision and recall if n_fg == 0 and n_gt > 0: precision = 1 recall = 0 elif n_fg > 0 and n_gt == 0: precision = 0 recall = 1 elif n_fg == 0 and n_gt == 0: precision = 1 recall = 1 else: precision = np.sum(fg_match) / float(n_fg) recall = np.sum(gt_match) / float(n_gt) # Compute F measure if precision + recall == 0: F = 0 else: F = 2 * precision * recall / (precision + recall) return F def _seg2bmap(seg, width=None, height=None): """ From a segmentation, compute a binary boundary map with 1 pixel wide boundaries. The boundary pixels are offset by 1/2 pixel towards the origin from the actual segment boundary. Arguments: seg : Segments labeled from 1..k. width : Width of desired bmap <= seg.shape[1] height : Height of desired bmap <= seg.shape[0] Returns: bmap (ndarray): Binary boundary map. David Martin <[email protected]> January 2003 """ seg = seg.astype(np.bool) seg[seg > 0] = 1 assert np.atleast_3d(seg).shape[2] == 1 width = seg.shape[1] if width is None else width height = seg.shape[0] if height is None else height h, w = seg.shape[:2] ar1 = float(width) / float(height) ar2 = float(w) / float(h) assert not ( width > w | height > h | abs(ar1 - ar2) > 0.01 ), "Can" "t convert %dx%d seg to %dx%d bmap." % (w, h, width, height) e = np.zeros_like(seg) s = np.zeros_like(seg) se = np.zeros_like(seg) e[:, :-1] = seg[:, 1:] s[:-1, :] = seg[1:, :] se[:-1, :-1] = seg[1:, 1:] b = seg ^ e | seg ^ s | seg ^ se b[-1, :] = seg[-1, :] ^ e[-1, :] b[:, -1] = seg[:, -1] ^ s[:, -1] b[-1, -1] = 0 if w == width and h == height: bmap = b else: bmap = np.zeros((height, width)) for x in range(w): for y in range(h): if b[y, x]: j = 1 + math.floor((y - 1) + height / h) i = 1 + math.floor((x - 1) + width / h) bmap[j, i] = 1 return bmap if __name__ == '__main__': from davis2017.davis import DAVIS from davis2017.results import Results dataset = DAVIS(root='input_dir/ref', subset='val', sequences='aerobatics') results = Results(root_dir='examples/osvos') # Test timing F measure for seq in dataset.get_sequences(): all_gt_masks, _, all_masks_id = dataset.get_all_masks(seq, True) all_gt_masks, all_masks_id = all_gt_masks[:, 1:-1, :, :], all_masks_id[1:-1] all_res_masks = results.read_masks(seq, all_masks_id) f_metrics_res = np.zeros(all_gt_masks.shape[:2]) for ii in range(all_gt_masks.shape[0]): f_metrics_res[ii, :] = db_eval_boundary(all_gt_masks[ii, ...], all_res_masks[ii, ...]) # Run using to profile code: python -m cProfile -o f_measure.prof metrics.py # snakeviz f_measure.prof <fim_middle> Intersection between all sets
Intersection between all sets
LINE_COMMENT
prefix_suffix_full_complete_current_block_with_evidence
<filename>UniRef/detectron2/checkpoint/c2_model_loading.py<fim_prefix># Copyright (c) Facebook, Inc. and its affiliates. import copy import logging import re from typing import Dict, List import torch from tabulate import tabulate def convert_basic_c2_names(original_keys): """ Apply some basic name conversion to names in C2 weights. It only deals with typical backbone models. Args: original_keys (list[str]): Returns: list[str]: The same number of strings matching those in original_keys. """ layer_keys = copy.deepcopy(original_keys) layer_keys = [ {"pred_b": "linear_b", "pred_w": "linear_w"}.get(k, k) for k in layer_keys ] # some hard-coded mappings layer_keys = [k.replace("_", ".") for k in layer_keys] layer_keys = [re.sub("\\.b$", ".bias", k) for k in layer_keys] layer_keys = [re.sub("\\.w$", ".weight", k) for k in layer_keys] # Uniform both bn and gn names to "norm" layer_keys = [re.sub("bn\\.s$", "norm.weight", k) for k in layer_keys] layer_keys = [re.sub("bn\\.bias$", "norm.bias", k) for k in layer_keys] layer_keys = [re.sub("bn\\.rm", "norm.running_mean", k) for k in layer_keys] layer_keys = [re.sub("bn\\.running.mean$", "norm.running_mean", k) for k in layer_keys] layer_keys = [re.sub("bn\\.riv$", "norm.running_var", k) for k in layer_keys] layer_keys = [re.sub("bn\\.running.var$", "norm.running_var", k) for k in layer_keys] layer_keys = [re.sub("bn\\.gamma$", "norm.weight", k) for k in layer_keys] layer_keys = [re.sub("bn\\.beta$", "norm.bias", k) for k in layer_keys] layer_keys = [re.sub("gn\\.s$", "norm.weight", k) for k in layer_keys] layer_keys = [re.sub("gn\\.bias$", "norm.bias", k) for k in layer_keys] # stem layer_keys = [re.sub("^res\\.conv1\\.norm\\.", "conv1.norm.", k) for k in layer_keys] # to avoid mis-matching with "conv1" in other components (e.g. detection head) layer_keys = [re.sub("^conv1\\.", "stem.conv1.", k) for k in layer_keys] # layer1-4 is used by torchvision, however we follow the C2 naming strategy (res2-5) # layer_keys = [re.sub("^res2.", "layer1.", k) for k in layer_keys] # layer_keys = [re.sub("^res3.", "layer2.", k) for k in layer_keys] # layer_keys = [re.sub("^res4.", "layer3.", k) for k in layer_keys] # layer_keys = [re.sub("^res5.", "layer4.", k) for k in layer_keys] # blocks layer_keys = [k.replace(".branch1.", ".shortcut.") for k in layer_keys] layer_keys = [k.replace(".branch2a.", ".conv1.") for k in layer_keys] layer_keys = [k.replace(".branch2b.", ".conv2.") for k in layer_keys] layer_keys = [k.replace(".branch2c.", ".conv3.") for k in layer_keys] # DensePose substitutions layer_keys = [re.sub("^body.conv.fcn", "body_conv_fcn", k) for k in layer_keys] layer_keys = [k.replace("AnnIndex.lowres", "ann_index_lowres") for k in layer_keys] layer_keys = [k.replace("Index.UV.lowres", "index_uv_lowres") for k in layer_keys] layer_keys = [k.replace("U.lowres", "u_lowres") for k in layer_keys] layer_keys = [k.replace("V.lowres", "v_lowres") for k in layer_keys] return layer_keys def convert_c2_detectron_names(weights): """ Map Caffe2 Detectron weight names to Detectron2 names. Args: weights (dict): name -> tensor Returns: dict: detectron2 names -> tensor dict: detectron2 names -> C2 names """ logger = logging.getLogger(__name__) logger.info("Renaming Caffe2 weights ......") original_keys = sorted(weights.keys()) layer_keys = copy.deepcopy(original_keys) layer_keys = convert_basic_c2_names(layer_keys) # -------------------------------------------------------------------------- # RPN hidden representation conv # -------------------------------------------------------------------------- # FPN case # In the C2 model, the RPN hidden layer conv is defined for FPN level 2 and then # shared for all other levels, hence the appearance of "fpn2" layer_keys = [ k.replace("conv.rpn.fpn2", "proposal_generator.rpn_head.conv") for k in layer_keys ] # Non-FPN case layer_keys = [k.replace("conv.rpn", "proposal_generator.rpn_head.conv") for k in layer_keys] # -------------------------------------------------------------------------- # RPN box transformation conv # -------------------------------------------------------------------------- # FPN case (see note above about "fpn2") layer_keys = [ k.replace("rpn.bbox.pred.fpn2", "proposal_generator.rpn_head.anchor_deltas") for k in layer_keys ] layer_keys = [ k.replace("rpn.cls.logits.fpn2", "proposal_generator.rpn_head.objectness_logits") for k in layer_keys ] # Non-FPN case layer_keys = [ k.replace("rpn.bbox.pred", "proposal_generator.rpn_head.anchor_deltas") for k in layer_keys ] layer_keys = [ k.replace("rpn.cls.logits", "proposal_generator.rpn_head.objectness_logits") for k in layer_keys ] # -------------------------------------------------------------------------- # Fast R-CNN box head # -------------------------------------------------------------------------- layer_keys = [re.sub("^bbox\\.pred", "bbox_pred", k) for k in layer_keys] layer_keys = [re.sub("^cls\\.score", "cls_score", k) for k in layer_keys] layer_keys = [re.sub("^fc6\\.", "box_head.fc1.", k) for k in layer_keys] layer_keys = [re.sub("^fc7\\.", "box_head.fc2.", k) for k in layer_keys] # 4conv1fc head tensor names: head_conv1_w, head_conv1_gn_s layer_keys = [re.sub("^head\\.conv", "box_head.conv", k) for k in layer_keys] # -------------------------------------------------------------------------- # FPN lateral and output convolutions # -------------------------------------------------------------------------- def fpn_map(name): """ Look for keys with the following patterns: 1) Starts with "fpn.inner." Example: "fpn.inner.res2.2.sum.lateral.weight" Meaning: These are lateral pathway convolutions 2) Starts with "fpn.res" Example: "fpn.res2.2.sum.weight" Meaning: These are FPN output convolutions """ splits = name.split(".") norm = ".norm" if "norm" in splits else "" if name.startswith("fpn.inner."): # splits example: ['fpn', 'inner', 'res2', '2', 'sum', 'lateral', 'weight'] stage = int(splits[2][len("res") :]) return "fpn_lateral{}{}.{}".format(stage, norm, splits[-1]) elif name.startswith("fpn.res"): # splits example: ['fpn', 'res2', '2', 'sum', 'weight'] stage = int(splits[1][len("res") :]) return "fpn_output{}{}.{}".format(stage, norm, splits[-1]) return name layer_keys = [fpn_map(k) for k in layer_keys] # -------------------------------------------------------------------------- # Mask R-CNN mask head # -------------------------------------------------------------------------- # roi_heads.StandardROIHeads case layer_keys = [k.replace(".[mask].fcn", "mask_head.mask_fcn") for k in layer_keys] layer_keys = [re.sub("^\\.mask\\.fcn", "mask_head.mask_fcn", k) for k in layer_keys] layer_keys = [k.replace("mask.fcn.logits", "mask_head.predictor") for k in layer_keys] # roi_heads.Res5ROIHeads case layer_keys = [k.replace("conv5.mask", "mask_head.deconv") for k in layer_keys] # -------------------------------------------------------------------------- # Keypoint R-CNN head # -------------------------------------------------------------------------- # interestingly, the keypoint head convs have blob names that are simply "conv_fcnX" layer_keys = [k.replace("conv.fcn", "roi_heads.keypoint_head.conv_fcn") for k in layer_keys] layer_keys = [ k.replace("kps.score.lowres", "roi_heads.keypoint_head.score_lowres") for k in layer_keys ] layer_keys = [k.replace("kps.score.", "roi_heads.keypoint_head.score.") for k in layer_keys] # -------------------------------------------------------------------------- # Done with replacements # -------------------------------------------------------------------------- assert len(set(layer_keys)) == len(layer_keys) assert len(original_keys) == len(layer_keys) new_weights = {} new_keys_to_original_keys = {} for orig, renamed in zip(original_keys, layer_keys): new_keys_to_original_keys[renamed] = orig if renamed.startswith("bbox_pred.") or renamed.startswith("mask_head.predictor."): #<fim_suffix> new_start_idx = 4 if renamed.startswith("bbox_pred.") else 1 new_weights[renamed] = weights[orig][new_start_idx:] logger.info( "Remove prediction weight for background class in {}. The shape changes from " "{} to {}.".format( renamed, tuple(weights[orig].shape), tuple(new_weights[renamed].shape) ) ) elif renamed.startswith("cls_score."): # move weights of bg class from original index 0 to last index logger.info( "Move classification weights for background class in {} from index 0 to " "index {}.".format(renamed, weights[orig].shape[0] - 1) ) new_weights[renamed] = torch.cat([weights[orig][1:], weights[orig][:1]]) else: new_weights[renamed] = weights[orig] return new_weights, new_keys_to_original_keys # Note the current matching is not symmetric. # it assumes model_state_dict will have longer names. def align_and_update_state_dicts(model_state_dict, ckpt_state_dict, c2_conversion=True): """ Match names between the two state-dict, and returns a new chkpt_state_dict with names converted to match model_state_dict with heuristics. The returned dict can be later loaded with fvcore checkpointer. If `c2_conversion==True`, `ckpt_state_dict` is assumed to be a Caffe2 model and will be renamed at first. Strategy: suppose that the models that we will create will have prefixes appended to each of its keys, for example due to an extra level of nesting that the original pre-trained weights from ImageNet won't contain. For example, model.state_dict() might return backbone[0].body.res2.conv1.weight, while the pre-trained model contains res2.conv1.weight. We thus want to match both parameters together. For that, we look for each model weight, look among all loaded keys if there is one that is a suffix of the current weight name, and use it if that's the case. If multiple matches exist, take the one with longest size of the corresponding name. For example, for the same model as before, the pretrained weight file can contain both res2.conv1.weight, as well as conv1.weight. In this case, we want to match backbone[0].body.conv1.weight to conv1.weight, and backbone[0].body.res2.conv1.weight to res2.conv1.weight. """ model_keys = sorted(model_state_dict.keys()) if c2_conversion: ckpt_state_dict, original_keys = convert_c2_detectron_names(ckpt_state_dict) # original_keys: the name in the original dict (before renaming) else: original_keys = {x: x for x in ckpt_state_dict.keys()} ckpt_keys = sorted(ckpt_state_dict.keys()) def match(a, b): # Matched ckpt_key should be a complete (starts with '.') suffix. # For example, roi_heads.mesh_head.whatever_conv1 does not match conv1, # but matches whatever_conv1 or mesh_head.whatever_conv1. return a == b or a.endswith("." + b) # get a matrix of string matches, where each (i, j) entry correspond to the size of the # ckpt_key string, if it matches match_matrix = [len(j) if match(i, j) else 0 for i in model_keys for j in ckpt_keys] match_matrix = torch.as_tensor(match_matrix).view(len(model_keys), len(ckpt_keys)) # use the matched one with longest size in case of multiple matches max_match_size, idxs = match_matrix.max(1) # remove indices that correspond to no-match idxs[max_match_size == 0] = -1 logger = logging.getLogger(__name__) # matched_pairs (matched checkpoint key --> matched model key) matched_keys = {} result_state_dict = {} for idx_model, idx_ckpt in enumerate(idxs.tolist()): if idx_ckpt == -1: continue key_model = model_keys[idx_model] key_ckpt = ckpt_keys[idx_ckpt] value_ckpt = ckpt_state_dict[key_ckpt] shape_in_model = model_state_dict[key_model].shape if shape_in_model != value_ckpt.shape: logger.warning( "Shape of {} in checkpoint is {}, while shape of {} in model is {}.".format( key_ckpt, value_ckpt.shape, key_model, shape_in_model ) ) logger.warning( "{} will not be loaded. Please double check and see if this is desired.".format( key_ckpt ) ) continue assert key_model not in result_state_dict result_state_dict[key_model] = value_ckpt if key_ckpt in matched_keys: # already added to matched_keys logger.error( "Ambiguity found for {} in checkpoint!" "It matches at least two keys in the model ({} and {}).".format( key_ckpt, key_model, matched_keys[key_ckpt] ) ) raise ValueError("Cannot match one checkpoint key to multiple keys in the model.") matched_keys[key_ckpt] = key_model # logging: matched_model_keys = sorted(matched_keys.values()) if len(matched_model_keys) == 0: logger.warning("No weights in checkpoint matched with model.") return ckpt_state_dict common_prefix = _longest_common_prefix(matched_model_keys) rev_matched_keys = {v: k for k, v in matched_keys.items()} original_keys = {k: original_keys[rev_matched_keys[k]] for k in matched_model_keys} model_key_groups = _group_keys_by_module(matched_model_keys, original_keys) table = [] memo = set() for key_model in matched_model_keys: if key_model in memo: continue if key_model in model_key_groups: group = model_key_groups[key_model] memo |= set(group) shapes = [tuple(model_state_dict[k].shape) for k in group] table.append( ( _longest_common_prefix([k[len(common_prefix) :] for k in group]) + "*", _group_str([original_keys[k] for k in group]), " ".join([str(x).replace(" ", "") for x in shapes]), ) ) else: key_checkpoint = original_keys[key_model] shape = str(tuple(model_state_dict[key_model].shape)) table.append((key_model[len(common_prefix) :], key_checkpoint, shape)) table_str = tabulate( table, tablefmt="pipe", headers=["Names in Model", "Names in Checkpoint", "Shapes"] ) logger.info( "Following weights matched with " + (f"submodule {common_prefix[:-1]}" if common_prefix else "model") + ":\n" + table_str ) unmatched_ckpt_keys = [k for k in ckpt_keys if k not in set(matched_keys.keys())] for k in unmatched_ckpt_keys: result_state_dict[k] = ckpt_state_dict[k] return result_state_dict def _group_keys_by_module(keys: List[str], original_names: Dict[str, str]): """ Params in the same submodule are grouped together. Args: keys: names of all parameters original_names: mapping from parameter name to their name in the checkpoint Returns: dict[name -> all other names in the same group] """ def _submodule_name(key): pos = key.rfind(".") if pos < 0: return None prefix = key[: pos + 1] return prefix all_submodules = [_submodule_name(k) for k in keys] all_submodules = [x for x in all_submodules if x] all_submodules = sorted(all_submodules, key=len) ret = {} for prefix in all_submodules: group = [k for k in keys if k.startswith(prefix)] if len(group) <= 1: continue original_name_lcp = _longest_common_prefix_str([original_names[k] for k in group]) if len(original_name_lcp) == 0: # don't group weights if original names don't share prefix continue for k in group: if k in ret: continue ret[k] = group return ret def _longest_common_prefix(names: List[str]) -> str: """ ["abc.zfg", "abc.zef"] -> "abc." """ names = [n.split(".") for n in names] m1, m2 = min(names), max(names) ret = [a for a, b in zip(m1, m2) if a == b] ret = ".".join(ret) + "." if len(ret) else "" return ret def _longest_common_prefix_str(names: List[str]) -> str: m1, m2 = min(names), max(names) lcp = [a for a, b in zip(m1, m2) if a == b] lcp = "".join(lcp) return lcp def _group_str(names: List[str]) -> str: """ Turn "common1", "common2", "common3" into "common{1,2,3}" """ lcp = _longest_common_prefix_str(names) rest = [x[len(lcp) :] for x in names] rest = "{" + ",".join(rest) + "}" ret = lcp + rest # add some simplification for BN specifically ret = ret.replace("bn_{beta,running_mean,running_var,gamma}", "bn_*") ret = ret.replace("bn_beta,bn_running_mean,bn_running_var,bn_gamma", "bn_*") return ret <fim_middle> remove the meaningless prediction weight for background class
remove the meaningless prediction weight for background class
LINE_COMMENT
prefix_suffix_full_complete_current_block_with_evidence
<filename>UniRef/detectron2/config/instantiate.py<fim_prefix># Copyright (c) Facebook, Inc. and its affiliates. import dataclasses import logging from collections import abc from typing import Any from detectron2.utils.registry import _convert_target_to_string, locate __all__ = ["dump_dataclass", "instantiate"] def dump_dataclass(obj: Any): """ Dump a dataclass recursively into a dict that can be later instantiated. Args: obj: a dataclass object Returns: dict """ assert dataclasses.is_dataclass(obj) and not isinstance( obj, type ), "dump_dataclass() requires an instance of a dataclass." ret = {"_target_": _convert_target_to_string(type(obj))} for f in dataclasses.fields(obj): v = getattr(obj, f.name) if dataclasses.is_dataclass(v): v = dump_dataclass(v) if isinstance(v, (list, tuple)): v = [dump_dataclass(x) if dataclasses.is_dataclass(x) else x for x in v] ret[f.name] = v return ret def instantiate(cfg): """ Recursively instantiate objects defined in dictionaries by "_target_" and arguments. Args: cfg: a dict-like object with "_target_" that defines the caller, and other keys that define the arguments Returns: object instantiated by cfg """ from omegaconf import ListConfig if isinstance(cfg, ListConfig): lst = [instantiate(x) for x in cfg] return ListConfig(lst, flags={"allow_objects": True}) if isinstance(cfg, list): # Specialize for list, because many classes take # list[objects] as arguments, such as ResNet, DatasetMapper return [instantiate(x) for x in cfg] if isinstance(cfg, abc.Mapping) and "_target_" in cfg: # conceptually equivalent to hydra.utils.instantiate(cfg) with _convert_=all, # but faster: https://github.com/facebookresearch/hydra/issues/1200 cfg = {k: instantiate(v) for k, v in cfg.items()} cls = cfg.pop("_target_") cls = instantiate(cls) if isinstance(cls, str): cls_name = cls cls = locate(cls_name) assert cls is not None, cls_name else: try: cls_name = cls.__module__ + "." + cls.__qualname__ except Exception: # target could be anything, so the above could fail cls_name = str(cls) assert callable(cls), f"_target_ {cls} does not define a callable object" try: return cls(**cfg) except TypeError: logger = logging.getLogger(__name__) logger.error(f"Error when instantiating {cls_name}!") raise return cfg #<fim_suffix> <fim_middle> return as-is if don't know what to do
return as-is if don't know what to do
LINE_COMMENT
prefix_suffix_full_complete_current_block_with_evidence
<filename>UniRef/detectron2/checkpoint/c2_model_loading.py<fim_prefix># Copyright (c) Facebook, Inc. and its affiliates. import copy import logging import re from typing import Dict, List import torch from tabulate import tabulate def convert_basic_c2_names(original_keys): """ Apply some basic name conversion to names in C2 weights. It only deals with typical backbone models. Args: original_keys (list[str]): Returns: list[str]: The same number of strings matching those in original_keys. """ layer_keys = copy.deepcopy(original_keys) layer_keys = [ {"pred_b": "linear_b", "pred_w": "linear_w"}.get(k, k) for k in layer_keys ] # some hard-coded mappings layer_keys = [k.replace("_", ".") for k in layer_keys] layer_keys = [re.sub("\\.b$", ".bias", k) for k in layer_keys] layer_keys = [re.sub("\\.w$", ".weight", k) for k in layer_keys] # Uniform both bn and gn names to "norm" layer_keys = [re.sub("bn\\.s$", "norm.weight", k) for k in layer_keys] layer_keys = [re.sub("bn\\.bias$", "norm.bias", k) for k in layer_keys] layer_keys = [re.sub("bn\\.rm", "norm.running_mean", k) for k in layer_keys] layer_keys = [re.sub("bn\\.running.mean$", "norm.running_mean", k) for k in layer_keys] layer_keys = [re.sub("bn\\.riv$", "norm.running_var", k) for k in layer_keys] layer_keys = [re.sub("bn\\.running.var$", "norm.running_var", k) for k in layer_keys] layer_keys = [re.sub("bn\\.gamma$", "norm.weight", k) for k in layer_keys] layer_keys = [re.sub("bn\\.beta$", "norm.bias", k) for k in layer_keys] layer_keys = [re.sub("gn\\.s$", "norm.weight", k) for k in layer_keys] layer_keys = [re.sub("gn\\.bias$", "norm.bias", k) for k in layer_keys] # stem layer_keys = [re.sub("^res\\.conv1\\.norm\\.", "conv1.norm.", k) for k in layer_keys] # to avoid mis-matching with "conv1" in other components (e.g. detection head) layer_keys = [re.sub("^conv1\\.", "stem.conv1.", k) for k in layer_keys] # layer1-4 is used by torchvision, however we follow the C2 naming strategy (res2-5) # layer_keys = [re.sub("^res2.", "layer1.", k) for k in layer_keys] # layer_keys = [re.sub("^res3.", "layer2.", k) for k in layer_keys] # layer_keys = [re.sub("^res4.", "layer3.", k) for k in layer_keys] # layer_keys = [re.sub("^res5.", "layer4.", k) for k in layer_keys] # blocks layer_keys = [k.replace(".branch1.", ".shortcut.") for k in layer_keys] layer_keys = [k.replace(".branch2a.", ".conv1.") for k in layer_keys] layer_keys = [k.replace(".branch2b.", ".conv2.") for k in layer_keys] layer_keys = [k.replace(".branch2c.", ".conv3.") for k in layer_keys] # DensePose substitutions layer_keys = [re.sub("^body.conv.fcn", "body_conv_fcn", k) for k in layer_keys] layer_keys = [k.replace("AnnIndex.lowres", "ann_index_lowres") for k in layer_keys] layer_keys = [k.replace("Index.UV.lowres", "index_uv_lowres") for k in layer_keys] layer_keys = [k.replace("U.lowres", "u_lowres") for k in layer_keys] layer_keys = [k.replace("V.lowres", "v_lowres") for k in layer_keys] return layer_keys def convert_c2_detectron_names(weights): """ Map Caffe2 Detectron weight names to Detectron2 names. Args: weights (dict): name -> tensor Returns: dict: detectron2 names -> tensor dict: detectron2 names -> C2 names """ logger = logging.getLogger(__name__) logger.info("Renaming Caffe2 weights ......") original_keys = sorted(weights.keys()) layer_keys = copy.deepcopy(original_keys) layer_keys = convert_basic_c2_names(layer_keys) # -------------------------------------------------------------------------- # RPN hidden representation conv # -------------------------------------------------------------------------- # FPN case # In the C2 model, the RPN hidden layer conv is defined for FPN level 2 and then # shared for all other levels, hence the appearance of "fpn2" layer_keys = [ k.replace("conv.rpn.fpn2", "proposal_generator.rpn_head.conv") for k in layer_keys ] # Non-FPN case layer_keys = [k.replace("conv.rpn", "proposal_generator.rpn_head.conv") for k in layer_keys] # -------------------------------------------------------------------------- # RPN box transformation conv # -------------------------------------------------------------------------- # FPN case (see note above about "fpn2") layer_keys = [ k.replace("rpn.bbox.pred.fpn2", "proposal_generator.rpn_head.anchor_deltas") for k in layer_keys ] layer_keys = [ k.replace("rpn.cls.logits.fpn2", "proposal_generator.rpn_head.objectness_logits") for k in layer_keys ] # Non-FPN case layer_keys = [ k.replace("rpn.bbox.pred", "proposal_generator.rpn_head.anchor_deltas") for k in layer_keys ] layer_keys = [ k.replace("rpn.cls.logits", "proposal_generator.rpn_head.objectness_logits") for k in layer_keys ] # -------------------------------------------------------------------------- # Fast R-CNN box head # -------------------------------------------------------------------------- layer_keys = [re.sub("^bbox\\.pred", "bbox_pred", k) for k in layer_keys] layer_keys = [re.sub("^cls\\.score", "cls_score", k) for k in layer_keys] layer_keys = [re.sub("^fc6\\.", "box_head.fc1.", k) for k in layer_keys] layer_keys = [re.sub("^fc7\\.", "box_head.fc2.", k) for k in layer_keys] # 4conv1fc head tensor names: head_conv1_w, head_conv1_gn_s layer_keys = [re.sub("^head\\.conv", "box_head.conv", k) for k in layer_keys] # -------------------------------------------------------------------------- # FPN lateral and output convolutions # -------------------------------------------------------------------------- def fpn_map(name): """ Look for keys with the following patterns: 1) Starts with "fpn.inner." Example: "fpn.inner.res2.2.sum.lateral.weight" Meaning: These are lateral pathway convolutions 2) Starts with "fpn.res" Example: "fpn.res2.2.sum.weight" Meaning: These are FPN output convolutions """ splits = name.split(".") norm = ".norm" if "norm" in splits else "" if name.startswith("fpn.inner."): # splits example: ['fpn', 'inner', 'res2', '2', 'sum', 'lateral', 'weight'] stage = int(splits[2][len("res") :]) return "fpn_lateral{}{}.{}".format(stage, norm, splits[-1]) elif name.startswith("fpn.res"): # splits example: ['fpn', 'res2', '2', 'sum', 'weight'] stage = int(splits[1][len("res") :]) return "fpn_output{}{}.{}".format(stage, norm, splits[-1]) return name layer_keys = [fpn_map(k) for k in layer_keys] # -------------------------------------------------------------------------- # Mask R-CNN mask head # -------------------------------------------------------------------------- # roi_heads.StandardROIHeads case layer_keys = [k.replace(".[mask].fcn", "mask_head.mask_fcn") for k in layer_keys] layer_keys = [re.sub("^\\.mask\\.fcn", "mask_head.mask_fcn", k) for k in layer_keys] layer_keys = [k.replace("mask.fcn.logits", "mask_head.predictor") for k in layer_keys] # roi_heads.Res5ROIHeads case layer_keys = [k.replace("conv5.mask", "mask_head.deconv") for k in layer_keys] # -------------------------------------------------------------------------- # Keypoint R-CNN head # -------------------------------------------------------------------------- # interestingly, the keypoint head convs have blob names that are simply "conv_fcnX" layer_keys = [k.replace("conv.fcn", "roi_heads.keypoint_head.conv_fcn") for k in layer_keys] layer_keys = [ k.replace("kps.score.lowres", "roi_heads.keypoint_head.score_lowres") for k in layer_keys ] layer_keys = [k.replace("kps.score.", "roi_heads.keypoint_head.score.") for k in layer_keys] #<fim_suffix> # Done with replacements # -------------------------------------------------------------------------- assert len(set(layer_keys)) == len(layer_keys) assert len(original_keys) == len(layer_keys) new_weights = {} new_keys_to_original_keys = {} for orig, renamed in zip(original_keys, layer_keys): new_keys_to_original_keys[renamed] = orig if renamed.startswith("bbox_pred.") or renamed.startswith("mask_head.predictor."): # remove the meaningless prediction weight for background class new_start_idx = 4 if renamed.startswith("bbox_pred.") else 1 new_weights[renamed] = weights[orig][new_start_idx:] logger.info( "Remove prediction weight for background class in {}. The shape changes from " "{} to {}.".format( renamed, tuple(weights[orig].shape), tuple(new_weights[renamed].shape) ) ) elif renamed.startswith("cls_score."): # move weights of bg class from original index 0 to last index logger.info( "Move classification weights for background class in {} from index 0 to " "index {}.".format(renamed, weights[orig].shape[0] - 1) ) new_weights[renamed] = torch.cat([weights[orig][1:], weights[orig][:1]]) else: new_weights[renamed] = weights[orig] return new_weights, new_keys_to_original_keys # Note the current matching is not symmetric. # it assumes model_state_dict will have longer names. def align_and_update_state_dicts(model_state_dict, ckpt_state_dict, c2_conversion=True): """ Match names between the two state-dict, and returns a new chkpt_state_dict with names converted to match model_state_dict with heuristics. The returned dict can be later loaded with fvcore checkpointer. If `c2_conversion==True`, `ckpt_state_dict` is assumed to be a Caffe2 model and will be renamed at first. Strategy: suppose that the models that we will create will have prefixes appended to each of its keys, for example due to an extra level of nesting that the original pre-trained weights from ImageNet won't contain. For example, model.state_dict() might return backbone[0].body.res2.conv1.weight, while the pre-trained model contains res2.conv1.weight. We thus want to match both parameters together. For that, we look for each model weight, look among all loaded keys if there is one that is a suffix of the current weight name, and use it if that's the case. If multiple matches exist, take the one with longest size of the corresponding name. For example, for the same model as before, the pretrained weight file can contain both res2.conv1.weight, as well as conv1.weight. In this case, we want to match backbone[0].body.conv1.weight to conv1.weight, and backbone[0].body.res2.conv1.weight to res2.conv1.weight. """ model_keys = sorted(model_state_dict.keys()) if c2_conversion: ckpt_state_dict, original_keys = convert_c2_detectron_names(ckpt_state_dict) # original_keys: the name in the original dict (before renaming) else: original_keys = {x: x for x in ckpt_state_dict.keys()} ckpt_keys = sorted(ckpt_state_dict.keys()) def match(a, b): # Matched ckpt_key should be a complete (starts with '.') suffix. # For example, roi_heads.mesh_head.whatever_conv1 does not match conv1, # but matches whatever_conv1 or mesh_head.whatever_conv1. return a == b or a.endswith("." + b) # get a matrix of string matches, where each (i, j) entry correspond to the size of the # ckpt_key string, if it matches match_matrix = [len(j) if match(i, j) else 0 for i in model_keys for j in ckpt_keys] match_matrix = torch.as_tensor(match_matrix).view(len(model_keys), len(ckpt_keys)) # use the matched one with longest size in case of multiple matches max_match_size, idxs = match_matrix.max(1) # remove indices that correspond to no-match idxs[max_match_size == 0] = -1 logger = logging.getLogger(__name__) # matched_pairs (matched checkpoint key --> matched model key) matched_keys = {} result_state_dict = {} for idx_model, idx_ckpt in enumerate(idxs.tolist()): if idx_ckpt == -1: continue key_model = model_keys[idx_model] key_ckpt = ckpt_keys[idx_ckpt] value_ckpt = ckpt_state_dict[key_ckpt] shape_in_model = model_state_dict[key_model].shape if shape_in_model != value_ckpt.shape: logger.warning( "Shape of {} in checkpoint is {}, while shape of {} in model is {}.".format( key_ckpt, value_ckpt.shape, key_model, shape_in_model ) ) logger.warning( "{} will not be loaded. Please double check and see if this is desired.".format( key_ckpt ) ) continue assert key_model not in result_state_dict result_state_dict[key_model] = value_ckpt if key_ckpt in matched_keys: # already added to matched_keys logger.error( "Ambiguity found for {} in checkpoint!" "It matches at least two keys in the model ({} and {}).".format( key_ckpt, key_model, matched_keys[key_ckpt] ) ) raise ValueError("Cannot match one checkpoint key to multiple keys in the model.") matched_keys[key_ckpt] = key_model # logging: matched_model_keys = sorted(matched_keys.values()) if len(matched_model_keys) == 0: logger.warning("No weights in checkpoint matched with model.") return ckpt_state_dict common_prefix = _longest_common_prefix(matched_model_keys) rev_matched_keys = {v: k for k, v in matched_keys.items()} original_keys = {k: original_keys[rev_matched_keys[k]] for k in matched_model_keys} model_key_groups = _group_keys_by_module(matched_model_keys, original_keys) table = [] memo = set() for key_model in matched_model_keys: if key_model in memo: continue if key_model in model_key_groups: group = model_key_groups[key_model] memo |= set(group) shapes = [tuple(model_state_dict[k].shape) for k in group] table.append( ( _longest_common_prefix([k[len(common_prefix) :] for k in group]) + "*", _group_str([original_keys[k] for k in group]), " ".join([str(x).replace(" ", "") for x in shapes]), ) ) else: key_checkpoint = original_keys[key_model] shape = str(tuple(model_state_dict[key_model].shape)) table.append((key_model[len(common_prefix) :], key_checkpoint, shape)) table_str = tabulate( table, tablefmt="pipe", headers=["Names in Model", "Names in Checkpoint", "Shapes"] ) logger.info( "Following weights matched with " + (f"submodule {common_prefix[:-1]}" if common_prefix else "model") + ":\n" + table_str ) unmatched_ckpt_keys = [k for k in ckpt_keys if k not in set(matched_keys.keys())] for k in unmatched_ckpt_keys: result_state_dict[k] = ckpt_state_dict[k] return result_state_dict def _group_keys_by_module(keys: List[str], original_names: Dict[str, str]): """ Params in the same submodule are grouped together. Args: keys: names of all parameters original_names: mapping from parameter name to their name in the checkpoint Returns: dict[name -> all other names in the same group] """ def _submodule_name(key): pos = key.rfind(".") if pos < 0: return None prefix = key[: pos + 1] return prefix all_submodules = [_submodule_name(k) for k in keys] all_submodules = [x for x in all_submodules if x] all_submodules = sorted(all_submodules, key=len) ret = {} for prefix in all_submodules: group = [k for k in keys if k.startswith(prefix)] if len(group) <= 1: continue original_name_lcp = _longest_common_prefix_str([original_names[k] for k in group]) if len(original_name_lcp) == 0: # don't group weights if original names don't share prefix continue for k in group: if k in ret: continue ret[k] = group return ret def _longest_common_prefix(names: List[str]) -> str: """ ["abc.zfg", "abc.zef"] -> "abc." """ names = [n.split(".") for n in names] m1, m2 = min(names), max(names) ret = [a for a, b in zip(m1, m2) if a == b] ret = ".".join(ret) + "." if len(ret) else "" return ret def _longest_common_prefix_str(names: List[str]) -> str: m1, m2 = min(names), max(names) lcp = [a for a, b in zip(m1, m2) if a == b] lcp = "".join(lcp) return lcp def _group_str(names: List[str]) -> str: """ Turn "common1", "common2", "common3" into "common{1,2,3}" """ lcp = _longest_common_prefix_str(names) rest = [x[len(lcp) :] for x in names] rest = "{" + ",".join(rest) + "}" ret = lcp + rest # add some simplification for BN specifically ret = ret.replace("bn_{beta,running_mean,running_var,gamma}", "bn_*") ret = ret.replace("bn_beta,bn_running_mean,bn_running_var,bn_gamma", "bn_*") return ret <fim_middle> --------------------------------------------------------------------------
--------------------------------------------------------------------------
LINE_COMMENT
prefix_suffix_full_complete_current_block_with_evidence
<filename>UniRef/detectron2/structures/masks.py<fim_prefix># Copyright (c) Facebook, Inc. and its affiliates. import copy import itertools import numpy as np from typing import Any, Iterator, List, Union import pycocotools.mask as mask_util import torch from torch import device from detectron2.layers.roi_align import ROIAlign from detectron2.utils.memory import retry_if_cuda_oom from .boxes import Boxes def polygon_area(x, y): # Using the shoelace formula # https://stackoverflow.com/questions/24467972/calculate-area-of-polygon-given-x-y-coordinates return 0.5 * np.abs(np.dot(x, np.roll(y, 1)) - np.dot(y, np.roll(x, 1))) def polygons_to_bitmask(polygons: List[np.ndarray], height: int, width: int) -> np.ndarray: """ Args: polygons (list[ndarray]): each array has shape (Nx2,) height, width (int) Returns: ndarray: a bool mask of shape (height, width) """ if len(polygons) == 0: # COCOAPI does not support empty polygons return np.zeros((height, width)).astype(np.bool) rles = mask_util.frPyObjects(polygons, height, width) rle = mask_util.merge(rles) return mask_util.decode(rle).astype(np.bool) def rasterize_polygons_within_box( polygons: List[np.ndarray], box: np.ndarray, mask_size: int ) -> torch.Tensor: """ Rasterize the polygons into a mask image and crop the mask content in the given box. The cropped mask is resized to (mask_size, mask_size). This function is used when generating training targets for mask head in Mask R-CNN. Given original ground-truth masks for an image, new ground-truth mask training targets in the size of `mask_size x mask_size` must be provided for each predicted box. This function will be called to produce such targets. Args: polygons (list[ndarray[float]]): a list of polygons, which represents an instance. box: 4-element numpy array mask_size (int): Returns: Tensor: BoolTensor of shape (mask_size, mask_size) """ # 1. Shift the polygons w.r.t the boxes w, h = box[2] - box[0], box[3] - box[1] polygons = copy.deepcopy(polygons) for p in polygons: p[0::2] = p[0::2] - box[0] p[1::2] = p[1::2] - box[1] # 2. Rescale the polygons to the new box size # max() to avoid division by small number ratio_h = mask_size / max(h, 0.1) ratio_w = mask_size / max(w, 0.1) if ratio_h == ratio_w: for p in polygons: p *= ratio_h else: for p in polygons: p[0::2] *= ratio_w p[1::2] *= ratio_h # 3. Rasterize the polygons with coco api mask = polygons_to_bitmask(polygons, mask_size, mask_size) mask = torch.from_numpy(mask) return mask class BitMasks: """ This class stores the segmentation masks for all objects in one image, in the form of bitmaps. Attributes: tensor: bool Tensor of N,H,W, representing N instances in the image. """ def __init__(self, tensor: Union[torch.Tensor, np.ndarray]): """ Args: tensor: bool Tensor of N,H,W, representing N instances in the image. """ device = tensor.device if isinstance(tensor, torch.Tensor) else torch.device("cpu") tensor = torch.as_tensor(tensor, dtype=torch.bool, device=device) assert tensor.dim() == 3, tensor.size() self.image_size = tensor.shape[1:] self.tensor = tensor @torch.jit.unused def to(self, *args: Any, **kwargs: Any) -> "BitMasks": return BitMasks(self.tensor.to(*args, **kwargs)) @property def device(self) -> torch.device: return self.tensor.device @torch.jit.unused def __getitem__(self, item: Union[int, slice, torch.BoolTensor]) -> "BitMasks": """ Returns: BitMasks: Create a new :class:`BitMasks` by indexing. The following usage are allowed: 1. `new_masks = masks[3]`: return a `BitMasks` which contains only one mask. 2. `new_masks = masks[2:10]`: return a slice of masks. 3. `new_masks = masks[vector]`, where vector is a torch.BoolTensor with `length = len(masks)`. Nonzero elements in the vector will be selected. Note that the returned object might share storage with this object, subject to Pytorch's indexing semantics. """ if isinstance(item, int): return BitMasks(self.tensor[item].unsqueeze(0)) m = self.tensor[item] assert m.dim() == 3, "Indexing on BitMasks with {} returns a tensor with shape {}!".format( item, m.shape ) return BitMasks(m) @torch.jit.unused def __iter__(self) -> torch.Tensor: yield from self.tensor @torch.jit.unused def __repr__(self) -> str: s = self.__class__.__name__ + "(" s += "num_instances={})".format(len(self.tensor)) return s def __len__(self) -> int: return self.tensor.shape[0] def nonempty(self) -> torch.Tensor: """ Find masks that are non-empty. Returns: Tensor: a BoolTensor which represents whether each mask is empty (False) or non-empty (True). """ return self.tensor.flatten(1).any(dim=1) @staticmethod def from_polygon_masks( polygon_masks: Union["PolygonMasks", List[List[np.ndarray]]], height: int, width: int ) -> "BitMasks": """ Args: polygon_masks (list[list[ndarray]] or PolygonMasks) height, width (int) """ if isinstance(polygon_masks, PolygonMasks): polygon_masks = polygon_masks.polygons masks = [polygons_to_bitmask(p, height, width) for p in polygon_masks] if len(masks): return BitMasks(torch.stack([torch.from_numpy(x) for x in masks])) else: return BitMasks(torch.empty(0, height, width, dtype=torch.bool)) @staticmethod def from_roi_masks(roi_masks: "ROIMasks", height: int, width: int) -> "BitMasks": """ Args: roi_masks: height, width (int): """ return roi_masks.to_bitmasks(height, width) def crop_and_resize(self, boxes: torch.Tensor, mask_size: int) -> torch.Tensor: """ Crop each bitmask by the given box, and resize results to (mask_size, mask_size). This can be used to prepare training targets for Mask R-CNN. It has less reconstruction error compared to rasterization with polygons. However we observe no difference in accuracy, but BitMasks requires more memory to store all the masks. Args: boxes (Tensor): Nx4 tensor storing the boxes for each mask mask_size (int): the size of the rasterized mask. Returns: Tensor: A bool tensor of shape (N, mask_size, mask_size), where N is the number of predicted boxes for this image. """ assert len(boxes) == len(self), "{} != {}".format(len(boxes), len(self)) device = self.tensor.device batch_inds = torch.arange(len(boxes), device=device).to(dtype=boxes.dtype)[:, None] rois = torch.cat([batch_inds, boxes], dim=1) # Nx5 bit_masks = self.tensor.to(dtype=torch.float32) rois = rois.to(device=device) output = ( ROIAlign((mask_size, mask_size), 1.0, 0, aligned=True) .forward(bit_masks[:, None, :, :], rois) .squeeze(1) ) output = output >= 0.5 return output def get_bounding_boxes(self) -> Boxes: """ Returns: Boxes: tight bounding boxes around bitmasks. If a mask is empty, it's bounding box will be all zero. """ boxes = torch.zeros(self.tensor.shape[0], 4, dtype=torch.float32) x_any = torch.any(self.tensor, dim=1) y_any = torch.any(self.tensor, dim=2) for idx in range(self.tensor.shape[0]): x = torch.where(x_any[idx, :])[0] y = torch.where(y_any[idx, :])[0] if len(x) > 0 and len(y) > 0: boxes[idx, :] = torch.as_tensor( [x[0], y[0], x[-1] + 1, y[-1] + 1], dtype=torch.float32 ) return Boxes(boxes) @staticmethod def cat(bitmasks_list: List["BitMasks"]) -> "BitMasks": """ Concatenates a list of BitMasks into a single BitMasks Arguments: bitmasks_list (list[BitMasks]) Returns: BitMasks: the concatenated BitMasks """ assert isinstance(bitmasks_list, (list, tuple)) assert len(bitmasks_list) > 0 assert all(isinstance(bitmask, BitMasks) for bitmask in bitmasks_list) cat_bitmasks = type(bitmasks_list[0])(torch.cat([bm.tensor for bm in bitmasks_list], dim=0)) return cat_bitmasks class PolygonMasks: """ This class stores the segmentation masks for all objects in one image, in the form of polygons. Attributes: polygons: list[list[ndarray]]. Each ndarray is a float64 vector representing a polygon. """ def __init__(self, polygons: List[List[Union[torch.Tensor, np.ndarray]]]): """ Arguments: polygons (list[list[np.ndarray]]): The first level of the list correspond to individual instances, the second level to all the polygons that compose the instance, and the third level to the polygon coordinates. The third level array should have the format of [x0, y0, x1, y1, ..., xn, yn] (n >= 3). """ if not isinstance(polygons, list): raise ValueError( "Cannot create PolygonMasks: Expect a list of list of polygons per image. " "Got '{}' instead.".format(type(polygons)) ) def _make_array(t: Union[torch.Tensor, np.ndarray]) -> np.ndarray: # Use float64 for higher precision, because why not? # Always put polygons on CPU (self.to is a no-op) since they # are supposed to be small tensors. # May need to change this assumption if GPU placement becomes useful if isinstance(t, torch.Tensor): t = t.cpu().numpy() return np.asarray(t).astype("float64") def process_polygons( polygons_per_instance: List[Union[torch.Tensor, np.ndarray]] ) -> List[np.ndarray]: if not isinstance(polygons_per_instance, list): raise ValueError( "Cannot create polygons: Expect a list of polygons per instance. " "Got '{}' instead.".format(type(polygons_per_instance)) ) # transform each polygon to a numpy array polygons_per_instance = [_make_array(p) for p in polygons_per_instance] for polygon in polygons_per_instance: if len(polygon) % 2 != 0 or len(polygon) < 6: raise ValueError(f"Cannot create a polygon from {len(polygon)} coordinates.") return polygons_per_instance self.polygons: List[List[np.ndarray]] = [ process_polygons(polygons_per_instance) for polygons_per_instance in polygons ] def to(self, *args: Any, **kwargs: Any) -> "PolygonMasks": return self @property def device(self) -> torch.device: return torch.device("cpu") def get_bounding_boxes(self) -> Boxes: """ Returns: Boxes: tight bounding boxes around polygon masks. """ boxes = torch.zeros(len(self.polygons), 4, dtype=torch.float32) for<fim_suffix> return Boxes(boxes) def nonempty(self) -> torch.Tensor: """ Find masks that are non-empty. Returns: Tensor: a BoolTensor which represents whether each mask is empty (False) or not (True). """ keep = [1 if len(polygon) > 0 else 0 for polygon in self.polygons] return torch.from_numpy(np.asarray(keep, dtype=np.bool)) def __getitem__(self, item: Union[int, slice, List[int], torch.BoolTensor]) -> "PolygonMasks": """ Support indexing over the instances and return a `PolygonMasks` object. `item` can be: 1. An integer. It will return an object with only one instance. 2. A slice. It will return an object with the selected instances. 3. A list[int]. It will return an object with the selected instances, correpsonding to the indices in the list. 4. A vector mask of type BoolTensor, whose length is num_instances. It will return an object with the instances whose mask is nonzero. """ if isinstance(item, int): selected_polygons = [self.polygons[item]] elif isinstance(item, slice): selected_polygons = self.polygons[item] elif isinstance(item, list): selected_polygons = [self.polygons[i] for i in item] elif isinstance(item, torch.Tensor): # Polygons is a list, so we have to move the indices back to CPU. if item.dtype == torch.bool: assert item.dim() == 1, item.shape item = item.nonzero().squeeze(1).cpu().numpy().tolist() elif item.dtype in [torch.int32, torch.int64]: item = item.cpu().numpy().tolist() else: raise ValueError("Unsupported tensor dtype={} for indexing!".format(item.dtype)) selected_polygons = [self.polygons[i] for i in item] return PolygonMasks(selected_polygons) def __iter__(self) -> Iterator[List[np.ndarray]]: """ Yields: list[ndarray]: the polygons for one instance. Each Tensor is a float64 vector representing a polygon. """ return iter(self.polygons) def __repr__(self) -> str: s = self.__class__.__name__ + "(" s += "num_instances={})".format(len(self.polygons)) return s def __len__(self) -> int: return len(self.polygons) def crop_and_resize(self, boxes: torch.Tensor, mask_size: int) -> torch.Tensor: """ Crop each mask by the given box, and resize results to (mask_size, mask_size). This can be used to prepare training targets for Mask R-CNN. Args: boxes (Tensor): Nx4 tensor storing the boxes for each mask mask_size (int): the size of the rasterized mask. Returns: Tensor: A bool tensor of shape (N, mask_size, mask_size), where N is the number of predicted boxes for this image. """ assert len(boxes) == len(self), "{} != {}".format(len(boxes), len(self)) device = boxes.device # Put boxes on the CPU, as the polygon representation is not efficient GPU-wise # (several small tensors for representing a single instance mask) boxes = boxes.to(torch.device("cpu")) results = [ rasterize_polygons_within_box(poly, box.numpy(), mask_size) for poly, box in zip(self.polygons, boxes) ] """ poly: list[list[float]], the polygons for one instance box: a tensor of shape (4,) """ if len(results) == 0: return torch.empty(0, mask_size, mask_size, dtype=torch.bool, device=device) return torch.stack(results, dim=0).to(device=device) def area(self): """ Computes area of the mask. Only works with Polygons, using the shoelace formula: https://stackoverflow.com/questions/24467972/calculate-area-of-polygon-given-x-y-coordinates Returns: Tensor: a vector, area for each instance """ area = [] for polygons_per_instance in self.polygons: area_per_instance = 0 for p in polygons_per_instance: area_per_instance += polygon_area(p[0::2], p[1::2]) area.append(area_per_instance) return torch.tensor(area) @staticmethod def cat(polymasks_list: List["PolygonMasks"]) -> "PolygonMasks": """ Concatenates a list of PolygonMasks into a single PolygonMasks Arguments: polymasks_list (list[PolygonMasks]) Returns: PolygonMasks: the concatenated PolygonMasks """ assert isinstance(polymasks_list, (list, tuple)) assert len(polymasks_list) > 0 assert all(isinstance(polymask, PolygonMasks) for polymask in polymasks_list) cat_polymasks = type(polymasks_list[0])( list(itertools.chain.from_iterable(pm.polygons for pm in polymasks_list)) ) return cat_polymasks class ROIMasks: """ Represent masks by N smaller masks defined in some ROIs. Once ROI boxes are given, full-image bitmask can be obtained by "pasting" the mask on the region defined by the corresponding ROI box. """ def __init__(self, tensor: torch.Tensor): """ Args: tensor: (N, M, M) mask tensor that defines the mask within each ROI. """ if tensor.dim() != 3: raise ValueError("ROIMasks must take a masks of 3 dimension.") self.tensor = tensor def to(self, device: torch.device) -> "ROIMasks": return ROIMasks(self.tensor.to(device)) @property def device(self) -> device: return self.tensor.device def __len__(self): return self.tensor.shape[0] def __getitem__(self, item) -> "ROIMasks": """ Returns: ROIMasks: Create a new :class:`ROIMasks` by indexing. The following usage are allowed: 1. `new_masks = masks[2:10]`: return a slice of masks. 2. `new_masks = masks[vector]`, where vector is a torch.BoolTensor with `length = len(masks)`. Nonzero elements in the vector will be selected. Note that the returned object might share storage with this object, subject to Pytorch's indexing semantics. """ t = self.tensor[item] if t.dim() != 3: raise ValueError( f"Indexing on ROIMasks with {item} returns a tensor with shape {t.shape}!" ) return ROIMasks(t) @torch.jit.unused def __repr__(self) -> str: s = self.__class__.__name__ + "(" s += "num_instances={})".format(len(self.tensor)) return s @torch.jit.unused def to_bitmasks(self, boxes: torch.Tensor, height, width, threshold=0.5): """ Args: see documentation of :func:`paste_masks_in_image`. """ from detectron2.layers.mask_ops import paste_masks_in_image, _paste_masks_tensor_shape if torch.jit.is_tracing(): if isinstance(height, torch.Tensor): paste_func = _paste_masks_tensor_shape else: paste_func = paste_masks_in_image else: paste_func = retry_if_cuda_oom(paste_masks_in_image) bitmasks = paste_func(self.tensor, boxes.tensor, (height, width), threshold=threshold) return BitMasks(bitmasks) <fim_middle> idx, polygons_per_instance in enumerate(self.polygons): minxy = torch.as_tensor([float("inf"), float("inf")], dtype=torch.float32) maxxy = torch.zeros(2, dtype=torch.float32) for polygon in polygons_per_instance: coords = torch.from_numpy(polygon).view(-1, 2).to(dtype=torch.float32) minxy = torch.min(minxy, torch.min(coords, dim=0).values) maxxy = torch.max(maxxy, torch.max(coords, dim=0).values) boxes[idx, :2] = minxy boxes[idx, 2:] = maxxy
idx, polygons_per_instance in enumerate(self.polygons): minxy = torch.as_tensor([float("inf"), float("inf")], dtype=torch.float32) maxxy = torch.zeros(2, dtype=torch.float32) for polygon in polygons_per_instance: coords = torch.from_numpy(polygon).view(-1, 2).to(dtype=torch.float32) minxy = torch.min(minxy, torch.min(coords, dim=0).values) maxxy = torch.max(maxxy, torch.max(coords, dim=0).values) boxes[idx, :2] = minxy boxes[idx, 2:] = maxxy
FOR
prefix_suffix_full_complete_current_block_with_evidence
<filename>UniRef/detectron2/checkpoint/c2_model_loading.py<fim_prefix># Copyright (c) Facebook, Inc. and its affiliates. import copy import logging import re from typing import Dict, List import torch from tabulate import tabulate def convert_basic_c2_names(original_keys): """ Apply some basic name conversion to names in C2 weights. It only deals with typical backbone models. Args: original_keys (list[str]): Returns: list[str]: The same number of strings matching those in original_keys. """ layer_keys = copy.deepcopy(original_keys) layer_keys = [ {"pred_b": "linear_b", "pred_w": "linear_w"}.get(k, k) for k in layer_keys ] # some hard-coded mappings layer_keys = [k.replace("_", ".") for k in layer_keys] layer_keys = [re.sub("\\.b$", ".bias", k) for k in layer_keys] layer_keys = [re.sub("\\.w$", ".weight", k) for k in layer_keys] # Uniform both bn and gn names to "norm" layer_keys = [re.sub("bn\\.s$", "norm.weight", k) for k in layer_keys] layer_keys = [re.sub("bn\\.bias$", "norm.bias", k) for k in layer_keys] layer_keys = [re.sub("bn\\.rm", "norm.running_mean", k) for k in layer_keys] layer_keys = [re.sub("bn\\.running.mean$", "norm.running_mean", k) for k in layer_keys] layer_keys = [re.sub("bn\\.riv$", "norm.running_var", k) for k in layer_keys] layer_keys = [re.sub("bn\\.running.var$", "norm.running_var", k) for k in layer_keys] layer_keys = [re.sub("bn\\.gamma$", "norm.weight", k) for k in layer_keys] layer_keys = [re.sub("bn\\.beta$", "norm.bias", k) for k in layer_keys] layer_keys = [re.sub("gn\\.s$", "norm.weight", k) for k in layer_keys] layer_keys = [re.sub("gn\\.bias$", "norm.bias", k) for k in layer_keys] # stem layer_keys = [re.sub("^res\\.conv1\\.norm\\.", "conv1.norm.", k) for k in layer_keys] # to avoid mis-matching with "conv1" in other components (e.g. detection head) layer_keys = [re.sub("^conv1\\.", "stem.conv1.", k) for k in layer_keys] # layer1-4 is used by torchvision, however we follow the C2 naming strategy (res2-5) # layer_keys = [re.sub("^res2.", "layer1.", k) for k in layer_keys] # layer_keys = [re.sub("^res3.", "layer2.", k) for k in layer_keys] # layer_keys = [re.sub("^res4.", "layer3.", k) for k in layer_keys] # layer_keys = [re.sub("^res5.", "layer4.", k) for k in layer_keys] # blocks layer_keys = [k.replace(".branch1.", ".shortcut.") for k in layer_keys] layer_keys = [k.replace(".branch2a.", ".conv1.") for k in layer_keys] layer_keys = [k.replace(".branch2b.", ".conv2.") for k in layer_keys] layer_keys = [k.replace(".branch2c.", ".conv3.") for k in layer_keys] # DensePose substitutions layer_keys = [re.sub("^body.conv.fcn", "body_conv_fcn", k) for k in layer_keys] layer_keys = [k.replace("AnnIndex.lowres", "ann_index_lowres") for k in layer_keys] layer_keys = [k.replace("Index.UV.lowres", "index_uv_lowres") for k in layer_keys] layer_keys = [k.replace("U.lowres", "u_lowres") for k in layer_keys] layer_keys = [k.replace("V.lowres", "v_lowres") for k in layer_keys] return layer_keys def convert_c2_detectron_names(weights): """ Map Caffe2 Detectron weight names to Detectron2 names. Args: weights (dict): name -> tensor Returns: dict: detectron2 names -> tensor dict: detectron2 names -> C2 names """ logger = logging.getLogger(__name__) logger.info("Renaming Caffe2 weights ......") original_keys = sorted(weights.keys()) layer_keys = copy.deepcopy(original_keys) layer_keys = convert_basic_c2_names(layer_keys) # -------------------------------------------------------------------------- # RPN hidden representation conv # -------------------------------------------------------------------------- # FPN case # In the C2 model, the RPN hidden layer conv is defined for FPN level 2 and then # shared for all other levels, hence the appearance of "fpn2" layer_keys = [ k.replace("conv.rpn.fpn2", "proposal_generator.rpn_head.conv") for k in layer_keys ] # Non-FPN case layer_keys = [k.replace("conv.rpn", "proposal_generator.rpn_head.conv") for k in layer_keys] # -------------------------------------------------------------------------- # RPN box transformation conv # -------------------------------------------------------------------------- # FPN case (see note above about "fpn2") layer_keys = [ k.replace("rpn.bbox.pred.fpn2", "proposal_generator.rpn_head.anchor_deltas") for k in layer_keys ] layer_keys = [ k.replace("rpn.cls.logits.fpn2", "proposal_generator.rpn_head.objectness_logits") for k in layer_keys ] # Non-FPN case layer_keys = [ k.replace("rpn.bbox.pred", "proposal_generator.rpn_head.anchor_deltas") for k in layer_keys ] layer_keys = [ k.replace("rpn.cls.logits", "proposal_generator.rpn_head.objectness_logits") for k in layer_keys ] # -------------------------------------------------------------------------- # Fast R-CNN box head # -------------------------------------------------------------------------- layer_keys = [re.sub("^bbox\\.pred", "bbox_pred", k) for k in layer_keys] layer_keys = [re.sub("^cls\\.score", "cls_score", k) for k in layer_keys] layer_keys = [re.sub("^fc6\\.", "box_head.fc1.", k) for k in layer_keys] layer_keys = [re.sub("^fc7\\.", "box_head.fc2.", k) for k in layer_keys] # 4conv1fc head tensor names: head_conv1_w, head_conv1_gn_s layer_keys = [re.sub("^head\\.conv", "box_head.conv", k) for k in layer_keys] # -------------------------------------------------------------------------- # FPN lateral and output convolutions # -------------------------------------------------------------------------- def fpn_map(name): """ Look for keys with the following patterns: 1) Starts with "fpn.inner." Example: "fpn.inner.res2.2.sum.lateral.weight" Meaning: These are lateral pathway convolutions 2) Starts with "fpn.res" Example: "fpn.res2.2.sum.weight" Meaning: These are FPN output convolutions """ splits = name.split(".") norm = ".norm" if "norm" in splits else "" if name.startswith("fpn.inner."): # splits example: ['fpn', 'inner', 'res2', '2', 'sum', 'lateral', 'weight'] stage = int(splits[2][len("res") :]) return "fpn_lateral{}{}.{}".format(stage, norm, splits[-1]) elif name.startswith("fpn.res"): # splits example: ['fpn', 'res2', '2', 'sum', 'weight'] stage = int(splits[1][len("res") :]) return "fpn_output{}{}.{}".format(stage, norm, splits[-1]) return name layer_keys = [fpn_map(k) for k in layer_keys] # -------------------------------------------------------------------------- # Mask R-CNN mask head # -------------------------------------------------------------------------- # roi_heads.StandardROIHeads case layer_keys = [k.replace(".[mask].fcn", "mask_head.mask_fcn") for k in layer_keys] layer_keys = [re.sub("^\\.mask\\.fcn", "mask_head.mask_fcn", k) for k in layer_keys] layer_keys = [k.replace("mask.fcn.logits", "mask_head.predictor") for k in layer_keys] # roi_heads.Res5ROIHeads case layer_keys = [k.replace("conv5.mask", "mask_head.deconv") for k in layer_keys] # -------------------------------------------------------------------------- # Keypoint R-CNN head # -------------------------------------------------------------------------- # interestingly, the keypoint head convs have blob names that are simply "conv_fcnX" layer_keys = [k.replace("conv.fcn", "roi_heads.keypoint_head.conv_fcn") for k in layer_keys] layer_keys = [ k.replace("kps.score.lowres", "roi_heads.keypoint_head.score_lowres") for k in layer_keys ] layer_keys = [k.replace("kps.score.", "roi_heads.keypoint_head.score.") for k in layer_keys] # -------------------------------------------------------------------------- # Done with replacements # -------------------------------------------------------------------------- assert len(set(layer_keys)) == len(layer_keys) assert len(original_keys) == len(layer_keys) new_weights = {} new_keys_to_original_keys = {} for orig, renamed in zip(original_keys, layer_keys): new_keys_to_original_keys[renamed] = orig if renamed.startswith("bbox_pred.") or renamed.startswith("mask_head.predictor."): # remove the meaningless prediction weight for background class new_start_idx = 4 if renamed.startswith("bbox_pred.") else 1 new_weights[renamed] = weights[orig][new_start_idx:] logger.info( "Remove prediction weight for background class in {}. The shape changes from " "{} to {}.".format( renamed, tuple(weights[orig].shape), tuple(new_weights[renamed].shape) ) ) elif renamed.startswith("cls_score."): # move weights of bg class from original index 0 to last index logger.info( "Move classification weights for background class in {} from index 0 to " "index {}.".format(renamed, weights[orig].shape[0] - 1) ) new_weights[renamed] = torch.cat([weights[orig][1:], weights[orig][:1]]) else: new_weights[renamed] = weights[orig] return new_weights, new_keys_to_original_keys # Note the current matching is not symmetric. # it assumes model_state_dict will have longer names. def align_and_update_state_dicts(model_state_dict, ckpt_state_dict, c2_conversion=True): """ Match names between the two state-dict, and returns a new chkpt_state_dict with names converted to match model_state_dict with heuristics. The returned dict can be later loaded with fvcore checkpointer. If `c2_conversion==True`, `ckpt_state_dict` is assumed to be a Caffe2 model and will be renamed at first. Strategy: suppose that the models that we will create will have prefixes appended to each of its keys, for example due to an extra level of nesting that the original pre-trained weights from ImageNet won't contain. For example, model.state_dict() might return backbone[0].body.res2.conv1.weight, while the pre-trained model contains res2.conv1.weight. We thus want to match both parameters together. For that, we look for each model weight, look among all loaded keys if there is one that is a suffix of the current weight name, and use it if that's the case. If multiple matches exist, take the one with longest size of the corresponding name. For example, for the same model as before, the pretrained weight file can contain both res2.conv1.weight, as well as conv1.weight. In this case, we want to match backbone[0].body.conv1.weight to conv1.weight, and backbone[0].body.res2.conv1.weight to res2.conv1.weight. """ model_keys = sorted(model_state_dict.keys()) if c2_conversion: ckpt_state_dict, original_keys = convert_c2_detectron_names(ckpt_state_dict) # original_keys: the name in the original dict (before renaming) else: original_keys = {x: x for x in ckpt_state_dict.keys()} ckpt_keys = sorted(ckpt_state_dict.keys()) def match(a, b): # Matched ckpt_key should be a complete (starts with '.') suffix. # For example, roi_heads.mesh_head.whatever_conv1 does not match conv1, # but matches whatever_conv1 or mesh_head.whatever_conv1. return a == b or a.endswith("." + b) # get a matrix of string matches, where each (i, j) entry correspond to the size of the # ckpt_key string, if it matches match_matrix = [len(j) if match(i, j) else 0 for i in model_keys for j in ckpt_keys] match_matrix = torch.as_tensor(match_matrix).view(len(model_keys), len(ckpt_keys)) # use the matched one with longest size in case of multiple matches max_match_size, idxs = match_matrix.max(1) # remove indices that correspond to no-match idxs[max_match_size == 0] = -1 logger = logging.getLogger(__name__) # matched_pairs (matched checkpoint key --> matched model key) matched_keys = {} result_state_dict = {} for<fim_suffix> # logging: matched_model_keys = sorted(matched_keys.values()) if len(matched_model_keys) == 0: logger.warning("No weights in checkpoint matched with model.") return ckpt_state_dict common_prefix = _longest_common_prefix(matched_model_keys) rev_matched_keys = {v: k for k, v in matched_keys.items()} original_keys = {k: original_keys[rev_matched_keys[k]] for k in matched_model_keys} model_key_groups = _group_keys_by_module(matched_model_keys, original_keys) table = [] memo = set() for key_model in matched_model_keys: if key_model in memo: continue if key_model in model_key_groups: group = model_key_groups[key_model] memo |= set(group) shapes = [tuple(model_state_dict[k].shape) for k in group] table.append( ( _longest_common_prefix([k[len(common_prefix) :] for k in group]) + "*", _group_str([original_keys[k] for k in group]), " ".join([str(x).replace(" ", "") for x in shapes]), ) ) else: key_checkpoint = original_keys[key_model] shape = str(tuple(model_state_dict[key_model].shape)) table.append((key_model[len(common_prefix) :], key_checkpoint, shape)) table_str = tabulate( table, tablefmt="pipe", headers=["Names in Model", "Names in Checkpoint", "Shapes"] ) logger.info( "Following weights matched with " + (f"submodule {common_prefix[:-1]}" if common_prefix else "model") + ":\n" + table_str ) unmatched_ckpt_keys = [k for k in ckpt_keys if k not in set(matched_keys.keys())] for k in unmatched_ckpt_keys: result_state_dict[k] = ckpt_state_dict[k] return result_state_dict def _group_keys_by_module(keys: List[str], original_names: Dict[str, str]): """ Params in the same submodule are grouped together. Args: keys: names of all parameters original_names: mapping from parameter name to their name in the checkpoint Returns: dict[name -> all other names in the same group] """ def _submodule_name(key): pos = key.rfind(".") if pos < 0: return None prefix = key[: pos + 1] return prefix all_submodules = [_submodule_name(k) for k in keys] all_submodules = [x for x in all_submodules if x] all_submodules = sorted(all_submodules, key=len) ret = {} for prefix in all_submodules: group = [k for k in keys if k.startswith(prefix)] if len(group) <= 1: continue original_name_lcp = _longest_common_prefix_str([original_names[k] for k in group]) if len(original_name_lcp) == 0: # don't group weights if original names don't share prefix continue for k in group: if k in ret: continue ret[k] = group return ret def _longest_common_prefix(names: List[str]) -> str: """ ["abc.zfg", "abc.zef"] -> "abc." """ names = [n.split(".") for n in names] m1, m2 = min(names), max(names) ret = [a for a, b in zip(m1, m2) if a == b] ret = ".".join(ret) + "." if len(ret) else "" return ret def _longest_common_prefix_str(names: List[str]) -> str: m1, m2 = min(names), max(names) lcp = [a for a, b in zip(m1, m2) if a == b] lcp = "".join(lcp) return lcp def _group_str(names: List[str]) -> str: """ Turn "common1", "common2", "common3" into "common{1,2,3}" """ lcp = _longest_common_prefix_str(names) rest = [x[len(lcp) :] for x in names] rest = "{" + ",".join(rest) + "}" ret = lcp + rest # add some simplification for BN specifically ret = ret.replace("bn_{beta,running_mean,running_var,gamma}", "bn_*") ret = ret.replace("bn_beta,bn_running_mean,bn_running_var,bn_gamma", "bn_*") return ret <fim_middle> idx_model, idx_ckpt in enumerate(idxs.tolist()): if idx_ckpt == -1: continue key_model = model_keys[idx_model] key_ckpt = ckpt_keys[idx_ckpt] value_ckpt = ckpt_state_dict[key_ckpt] shape_in_model = model_state_dict[key_model].shape if shape_in_model != value_ckpt.shape: logger.warning( "Shape of {} in checkpoint is {}, while shape of {} in model is {}.".format( key_ckpt, value_ckpt.shape, key_model, shape_in_model ) ) logger.warning( "{} will not be loaded. Please double check and see if this is desired.".format( key_ckpt ) ) continue assert key_model not in result_state_dict result_state_dict[key_model] = value_ckpt if key_ckpt in matched_keys: # already added to matched_keys logger.error( "Ambiguity found for {} in checkpoint!" "It matches at least two keys in the model ({} and {}).".format( key_ckpt, key_model, matched_keys[key_ckpt] ) ) raise ValueError("Cannot match one checkpoint key to multiple keys in the model.") matched_keys[key_ckpt] = key_model
idx_model, idx_ckpt in enumerate(idxs.tolist()): if idx_ckpt == -1: continue key_model = model_keys[idx_model] key_ckpt = ckpt_keys[idx_ckpt] value_ckpt = ckpt_state_dict[key_ckpt] shape_in_model = model_state_dict[key_model].shape if shape_in_model != value_ckpt.shape: logger.warning( "Shape of {} in checkpoint is {}, while shape of {} in model is {}.".format( key_ckpt, value_ckpt.shape, key_model, shape_in_model ) ) logger.warning( "{} will not be loaded. Please double check and see if this is desired.".format( key_ckpt ) ) continue assert key_model not in result_state_dict result_state_dict[key_model] = value_ckpt if key_ckpt in matched_keys: # already added to matched_keys logger.error( "Ambiguity found for {} in checkpoint!" "It matches at least two keys in the model ({} and {}).".format( key_ckpt, key_model, matched_keys[key_ckpt] ) ) raise ValueError("Cannot match one checkpoint key to multiple keys in the model.") matched_keys[key_ckpt] = key_model
FOR
prefix_suffix_full_complete_current_block_with_evidence
<filename>UniRef/detectron2/structures/masks.py<fim_prefix># Copyright (c) Facebook, Inc. and its affiliates. import copy import itertools import numpy as np from typing import Any, Iterator, List, Union import pycocotools.mask as mask_util import torch from torch import device from detectron2.layers.roi_align import ROIAlign from detectron2.utils.memory import retry_if_cuda_oom from .boxes import Boxes def polygon_area(x, y): # Using the shoelace formula # https://stackoverflow.com/questions/24467972/calculate-area-of-polygon-given-x-y-coordinates return 0.5 * np.abs(np.dot(x, np.roll(y, 1)) - np.dot(y, np.roll(x, 1))) def polygons_to_bitmask(polygons: List[np.ndarray], height: int, width: int) -> np.ndarray: """ Args: polygons (list[ndarray]): each array has shape (Nx2,) height, width (int) Returns: ndarray: a bool mask of shape (height, width) """ if len(polygons) == 0: # COCOAPI does not support empty polygons return np.zeros((height, width)).astype(np.bool) rles = mask_util.frPyObjects(polygons, height, width) rle = mask_util.merge(rles) return mask_util.decode(rle).astype(np.bool) def rasterize_polygons_within_box( polygons: List[np.ndarray], box: np.ndarray, mask_size: int ) -> torch.Tensor: """ Rasterize the polygons into a mask image and crop the mask content in the given box. The cropped mask is resized to (mask_size, mask_size). This function is used when generating training targets for mask head in Mask R-CNN. Given original ground-truth masks for an image, new ground-truth mask training targets in the size of `mask_size x mask_size` must be provided for each predicted box. This function will be called to produce such targets. Args: polygons (list[ndarray[float]]): a list of polygons, which represents an instance. box: 4-element numpy array mask_size (int): Returns: Tensor: BoolTensor of shape (mask_size, mask_size) """ # 1. Shift the polygons w.r.t the boxes w, h = box[2] - box[0], box[3] - box[1] polygons = copy.deepcopy(polygons) for p in polygons: p[0::2] = p[0::2] - box[0] p[1::2] = p[1::2] - box[1] # 2. Rescale the polygons to the new box size # max() to avoid division by small number ratio_h = mask_size / max(h, 0.1) ratio_w = mask_size / max(w, 0.1) if ratio_h == ratio_w: for p in polygons: p *= ratio_h else: for p in polygons: p[0::2] *= ratio_w p[1::2] *= ratio_h # 3. Rasterize the polygons with coco api mask = polygons_to_bitmask(polygons, mask_size, mask_size) mask = torch.from_numpy(mask) return mask class BitMasks: """ This class stores the segmentation masks for all objects in one image, in the form of bitmaps. Attributes: tensor: bool Tensor of N,H,W, representing N instances in the image. """ def __init__(self, tensor: Union[torch.Tensor, np.ndarray]): """ Args: tensor: bool Tensor of N,H,W, representing N instances in the image. """ device = tensor.device if isinstance(tensor, torch.Tensor) else torch.device("cpu") tensor = torch.as_tensor(tensor, dtype=torch.bool, device=device) assert tensor.dim() == 3, tensor.size() self.image_size = tensor.shape[1:] self.tensor = tensor @torch.jit.unused def to(self, *args: Any, **kwargs: Any) -> "BitMasks": return BitMasks(self.tensor.to(*args, **kwargs)) @property def device(self) -> torch.device: return self.tensor.device @torch.jit.unused def __getitem__(self, item: Union[int, slice, torch.BoolTensor]) -> "BitMasks": """ Returns: BitMasks: Create a new :class:`BitMasks` by indexing. The following usage are allowed: 1. `new_masks = masks[3]`: return a `BitMasks` which contains only one mask. 2. `new_masks = masks[2:10]`: return a slice of masks. 3. `new_masks = masks[vector]`, where vector is a torch.BoolTensor with `length = len(masks)`. Nonzero elements in the vector will be selected. Note that the returned object might share storage with this object, subject to Pytorch's indexing semantics. """ if isinstance(item, int): return BitMasks(self.tensor[item].unsqueeze(0)) m = self.tensor[item] assert m.dim() == 3, "Indexing on BitMasks with {} returns a tensor with shape {}!".format( item, m.shape ) return BitMasks(m) @torch.jit.unused def __iter__(self) -> torch.Tensor: yield from self.tensor @torch.jit.unused def __repr__(self) -> str: s = self.__class__.__name__ + "(" s += "num_instances={})".format(len(self.tensor)) return s def __len__(self) -> int: return self.tensor.shape[0] def nonempty(self) -> torch.Tensor: """ Find masks that are non-empty. Returns: Tensor: a BoolTensor which represents whether each mask is empty (False) or non-empty (True). """ return self.tensor.flatten(1).any(dim=1) @staticmethod def from_polygon_masks( polygon_masks: Union["PolygonMasks", List[List[np.ndarray]]], height: int, width: int ) -> "BitMasks": """ Args: polygon_masks (list[list[ndarray]] or PolygonMasks) height, width (int) """ if isinstance(polygon_masks, PolygonMasks): polygon_masks = polygon_masks.polygons masks = [polygons_to_bitmask(p, height, width) for p in polygon_masks] if len(masks): return BitMasks(torch.stack([torch.from_numpy(x) for x in masks])) else: return BitMasks(torch.empty(0, height, width, dtype=torch.bool)) @staticmethod def from_roi_masks(roi_masks: "ROIMasks", height: int, width: int) -> "BitMasks": """ Args: roi_masks: height, width (int): """ return roi_masks.to_bitmasks(height, width) def crop_and_resize(self, boxes: torch.Tensor, mask_size: int) -> torch.Tensor: """ Crop each bitmask by the given box, and resize results to (mask_size, mask_size). This can be used to prepare training targets for Mask R-CNN. It has less reconstruction error compared to rasterization with polygons. However we observe no difference in accuracy, but BitMasks requires more memory to store all the masks. Args: boxes (Tensor): Nx4 tensor storing the boxes for each mask mask_size (int): the size of the rasterized mask. Returns: Tensor: A bool tensor of shape (N, mask_size, mask_size), where N is the number of predicted boxes for this image. """ assert len(boxes) == len(self), "{} != {}".format(len(boxes), len(self)) device = self.tensor.device batch_inds = torch.arange(len(boxes), device=device).to(dtype=boxes.dtype)[:, None] rois = torch.cat([batch_inds, boxes], dim=1) # Nx5 bit_masks = self.tensor.to(dtype=torch.float32) rois = rois.to(device=device) output = ( ROIAlign((mask_size, mask_size), 1.0, 0, aligned=True) .forward(bit_masks[:, None, :, :], rois) .squeeze(1) ) output = output >= 0.5 return output def get_bounding_boxes(self) -> Boxes: """ Returns: Boxes: tight bounding boxes around bitmasks. If a mask is empty, it's bounding box will be all zero. """ boxes = torch.zeros(self.tensor.shape[0], 4, dtype=torch.float32) x_any = torch.any(self.tensor, dim=1) y_any = torch.any(self.tensor, dim=2) for<fim_suffix> return Boxes(boxes) @staticmethod def cat(bitmasks_list: List["BitMasks"]) -> "BitMasks": """ Concatenates a list of BitMasks into a single BitMasks Arguments: bitmasks_list (list[BitMasks]) Returns: BitMasks: the concatenated BitMasks """ assert isinstance(bitmasks_list, (list, tuple)) assert len(bitmasks_list) > 0 assert all(isinstance(bitmask, BitMasks) for bitmask in bitmasks_list) cat_bitmasks = type(bitmasks_list[0])(torch.cat([bm.tensor for bm in bitmasks_list], dim=0)) return cat_bitmasks class PolygonMasks: """ This class stores the segmentation masks for all objects in one image, in the form of polygons. Attributes: polygons: list[list[ndarray]]. Each ndarray is a float64 vector representing a polygon. """ def __init__(self, polygons: List[List[Union[torch.Tensor, np.ndarray]]]): """ Arguments: polygons (list[list[np.ndarray]]): The first level of the list correspond to individual instances, the second level to all the polygons that compose the instance, and the third level to the polygon coordinates. The third level array should have the format of [x0, y0, x1, y1, ..., xn, yn] (n >= 3). """ if not isinstance(polygons, list): raise ValueError( "Cannot create PolygonMasks: Expect a list of list of polygons per image. " "Got '{}' instead.".format(type(polygons)) ) def _make_array(t: Union[torch.Tensor, np.ndarray]) -> np.ndarray: # Use float64 for higher precision, because why not? # Always put polygons on CPU (self.to is a no-op) since they # are supposed to be small tensors. # May need to change this assumption if GPU placement becomes useful if isinstance(t, torch.Tensor): t = t.cpu().numpy() return np.asarray(t).astype("float64") def process_polygons( polygons_per_instance: List[Union[torch.Tensor, np.ndarray]] ) -> List[np.ndarray]: if not isinstance(polygons_per_instance, list): raise ValueError( "Cannot create polygons: Expect a list of polygons per instance. " "Got '{}' instead.".format(type(polygons_per_instance)) ) # transform each polygon to a numpy array polygons_per_instance = [_make_array(p) for p in polygons_per_instance] for polygon in polygons_per_instance: if len(polygon) % 2 != 0 or len(polygon) < 6: raise ValueError(f"Cannot create a polygon from {len(polygon)} coordinates.") return polygons_per_instance self.polygons: List[List[np.ndarray]] = [ process_polygons(polygons_per_instance) for polygons_per_instance in polygons ] def to(self, *args: Any, **kwargs: Any) -> "PolygonMasks": return self @property def device(self) -> torch.device: return torch.device("cpu") def get_bounding_boxes(self) -> Boxes: """ Returns: Boxes: tight bounding boxes around polygon masks. """ boxes = torch.zeros(len(self.polygons), 4, dtype=torch.float32) for idx, polygons_per_instance in enumerate(self.polygons): minxy = torch.as_tensor([float("inf"), float("inf")], dtype=torch.float32) maxxy = torch.zeros(2, dtype=torch.float32) for polygon in polygons_per_instance: coords = torch.from_numpy(polygon).view(-1, 2).to(dtype=torch.float32) minxy = torch.min(minxy, torch.min(coords, dim=0).values) maxxy = torch.max(maxxy, torch.max(coords, dim=0).values) boxes[idx, :2] = minxy boxes[idx, 2:] = maxxy return Boxes(boxes) def nonempty(self) -> torch.Tensor: """ Find masks that are non-empty. Returns: Tensor: a BoolTensor which represents whether each mask is empty (False) or not (True). """ keep = [1 if len(polygon) > 0 else 0 for polygon in self.polygons] return torch.from_numpy(np.asarray(keep, dtype=np.bool)) def __getitem__(self, item: Union[int, slice, List[int], torch.BoolTensor]) -> "PolygonMasks": """ Support indexing over the instances and return a `PolygonMasks` object. `item` can be: 1. An integer. It will return an object with only one instance. 2. A slice. It will return an object with the selected instances. 3. A list[int]. It will return an object with the selected instances, correpsonding to the indices in the list. 4. A vector mask of type BoolTensor, whose length is num_instances. It will return an object with the instances whose mask is nonzero. """ if isinstance(item, int): selected_polygons = [self.polygons[item]] elif isinstance(item, slice): selected_polygons = self.polygons[item] elif isinstance(item, list): selected_polygons = [self.polygons[i] for i in item] elif isinstance(item, torch.Tensor): # Polygons is a list, so we have to move the indices back to CPU. if item.dtype == torch.bool: assert item.dim() == 1, item.shape item = item.nonzero().squeeze(1).cpu().numpy().tolist() elif item.dtype in [torch.int32, torch.int64]: item = item.cpu().numpy().tolist() else: raise ValueError("Unsupported tensor dtype={} for indexing!".format(item.dtype)) selected_polygons = [self.polygons[i] for i in item] return PolygonMasks(selected_polygons) def __iter__(self) -> Iterator[List[np.ndarray]]: """ Yields: list[ndarray]: the polygons for one instance. Each Tensor is a float64 vector representing a polygon. """ return iter(self.polygons) def __repr__(self) -> str: s = self.__class__.__name__ + "(" s += "num_instances={})".format(len(self.polygons)) return s def __len__(self) -> int: return len(self.polygons) def crop_and_resize(self, boxes: torch.Tensor, mask_size: int) -> torch.Tensor: """ Crop each mask by the given box, and resize results to (mask_size, mask_size). This can be used to prepare training targets for Mask R-CNN. Args: boxes (Tensor): Nx4 tensor storing the boxes for each mask mask_size (int): the size of the rasterized mask. Returns: Tensor: A bool tensor of shape (N, mask_size, mask_size), where N is the number of predicted boxes for this image. """ assert len(boxes) == len(self), "{} != {}".format(len(boxes), len(self)) device = boxes.device # Put boxes on the CPU, as the polygon representation is not efficient GPU-wise # (several small tensors for representing a single instance mask) boxes = boxes.to(torch.device("cpu")) results = [ rasterize_polygons_within_box(poly, box.numpy(), mask_size) for poly, box in zip(self.polygons, boxes) ] """ poly: list[list[float]], the polygons for one instance box: a tensor of shape (4,) """ if len(results) == 0: return torch.empty(0, mask_size, mask_size, dtype=torch.bool, device=device) return torch.stack(results, dim=0).to(device=device) def area(self): """ Computes area of the mask. Only works with Polygons, using the shoelace formula: https://stackoverflow.com/questions/24467972/calculate-area-of-polygon-given-x-y-coordinates Returns: Tensor: a vector, area for each instance """ area = [] for polygons_per_instance in self.polygons: area_per_instance = 0 for p in polygons_per_instance: area_per_instance += polygon_area(p[0::2], p[1::2]) area.append(area_per_instance) return torch.tensor(area) @staticmethod def cat(polymasks_list: List["PolygonMasks"]) -> "PolygonMasks": """ Concatenates a list of PolygonMasks into a single PolygonMasks Arguments: polymasks_list (list[PolygonMasks]) Returns: PolygonMasks: the concatenated PolygonMasks """ assert isinstance(polymasks_list, (list, tuple)) assert len(polymasks_list) > 0 assert all(isinstance(polymask, PolygonMasks) for polymask in polymasks_list) cat_polymasks = type(polymasks_list[0])( list(itertools.chain.from_iterable(pm.polygons for pm in polymasks_list)) ) return cat_polymasks class ROIMasks: """ Represent masks by N smaller masks defined in some ROIs. Once ROI boxes are given, full-image bitmask can be obtained by "pasting" the mask on the region defined by the corresponding ROI box. """ def __init__(self, tensor: torch.Tensor): """ Args: tensor: (N, M, M) mask tensor that defines the mask within each ROI. """ if tensor.dim() != 3: raise ValueError("ROIMasks must take a masks of 3 dimension.") self.tensor = tensor def to(self, device: torch.device) -> "ROIMasks": return ROIMasks(self.tensor.to(device)) @property def device(self) -> device: return self.tensor.device def __len__(self): return self.tensor.shape[0] def __getitem__(self, item) -> "ROIMasks": """ Returns: ROIMasks: Create a new :class:`ROIMasks` by indexing. The following usage are allowed: 1. `new_masks = masks[2:10]`: return a slice of masks. 2. `new_masks = masks[vector]`, where vector is a torch.BoolTensor with `length = len(masks)`. Nonzero elements in the vector will be selected. Note that the returned object might share storage with this object, subject to Pytorch's indexing semantics. """ t = self.tensor[item] if t.dim() != 3: raise ValueError( f"Indexing on ROIMasks with {item} returns a tensor with shape {t.shape}!" ) return ROIMasks(t) @torch.jit.unused def __repr__(self) -> str: s = self.__class__.__name__ + "(" s += "num_instances={})".format(len(self.tensor)) return s @torch.jit.unused def to_bitmasks(self, boxes: torch.Tensor, height, width, threshold=0.5): """ Args: see documentation of :func:`paste_masks_in_image`. """ from detectron2.layers.mask_ops import paste_masks_in_image, _paste_masks_tensor_shape if torch.jit.is_tracing(): if isinstance(height, torch.Tensor): paste_func = _paste_masks_tensor_shape else: paste_func = paste_masks_in_image else: paste_func = retry_if_cuda_oom(paste_masks_in_image) bitmasks = paste_func(self.tensor, boxes.tensor, (height, width), threshold=threshold) return BitMasks(bitmasks) <fim_middle> idx in range(self.tensor.shape[0]): x = torch.where(x_any[idx, :])[0] y = torch.where(y_any[idx, :])[0] if len(x) > 0 and len(y) > 0: boxes[idx, :] = torch.as_tensor( [x[0], y[0], x[-1] + 1, y[-1] + 1], dtype=torch.float32 )
idx in range(self.tensor.shape[0]): x = torch.where(x_any[idx, :])[0] y = torch.where(y_any[idx, :])[0] if len(x) > 0 and len(y) > 0: boxes[idx, :] = torch.as_tensor( [x[0], y[0], x[-1] + 1, y[-1] + 1], dtype=torch.float32 )
FOR
prefix_suffix_full_complete_current_block_with_evidence
<filename>UniRef/detectron2/tracking/utils.py<fim_prefix>#!/usr/bin/env python3 from detectron2.structures import Instances import numpy as np from typing import List def create_prediction_pairs( instances: Instances, prev_instances: Instances, iou_all: np.ndarray, threshold: float = 0.5, ) -> List: """ Args: instances: predictions from current frame prev_instances: predictions from previous frame iou_all: 2D numpy array containing iou for each bbox pair threshold: below the threshold, doesn't consider the pair of bbox is valid Return: List of bbox pairs """ bbox_pairs = [] for i in range(len(instances)): for<fim_suffix> return bbox_pairs LARGE_COST_VALUE = 100000 <fim_middle> j in range(len(prev_instances)): if iou_all[i, j] < threshold: continue bbox_pairs.append( { "idx": i, "prev_idx": j, "prev_id": prev_instances.ID[j], "IoU": iou_all[i, j], "prev_period": prev_instances.ID_period[j], } )
j in range(len(prev_instances)): if iou_all[i, j] < threshold: continue bbox_pairs.append( { "idx": i, "prev_idx": j, "prev_id": prev_instances.ID[j], "IoU": iou_all[i, j], "prev_period": prev_instances.ID_period[j], } )
FOR
prefix_suffix_full_complete_current_block_with_evidence
<filename>UniRef/detectron2/tracking/bbox_iou_tracker.py<fim_prefix>#!/usr/bin/env python3 # Copyright 2004-present Facebook. All Rights Reserved. import copy from typing import List import numpy as np import torch from detectron2.config import configurable from detectron2.structures import Boxes, Instances from detectron2.structures.boxes import pairwise_iou from ..config.config import CfgNode as CfgNode_ from .base_tracker import BaseTracker, TRACKER_HEADS_REGISTRY @TRACKER_HEADS_REGISTRY.register() class BBoxIOUTracker(BaseTracker): """ A bounding box tracker to assign ID based on IoU between current and previous instances """ @configurable def __init__( self, *, video_height: int, video_width: int, max_num_instances: int = 200, max_lost_frame_count: int = 0, min_box_rel_dim: float = 0.02, min_instance_period: int = 1, track_iou_threshold: float = 0.5, **kwargs ): """ Args: video_height: height the video frame video_width: width of the video frame max_num_instances: maximum number of id allowed to be tracked max_lost_frame_count: maximum number of frame an id can lost tracking exceed this number, an id is considered as lost forever min_box_rel_dim: a percentage, smaller than this dimension, a bbox is removed from tracking min_instance_period: an instance will be shown after this number of period since its first showing up in the video track_iou_threshold: iou threshold, below this number a bbox pair is removed from tracking """ super().__init__(**kwargs) self._video_height = video_height self._video_width = video_width self._max_num_instances = max_num_instances self._max_lost_frame_count = max_lost_frame_count self._min_box_rel_dim = min_box_rel_dim self._min_instance_period = min_instance_period self._track_iou_threshold = track_iou_threshold @classmethod def from_config(cls, cfg: CfgNode_): """ Old style initialization using CfgNode Args: cfg: D2 CfgNode, config file Return: dictionary storing arguments for __init__ method """ assert "VIDEO_HEIGHT" in cfg.TRACKER_HEADS assert "VIDEO_WIDTH" in cfg.TRACKER_HEADS video_height = cfg.TRACKER_HEADS.get("VIDEO_HEIGHT") video_width = cfg.TRACKER_HEADS.get("VIDEO_WIDTH") max_num_instances = cfg.TRACKER_HEADS.get("MAX_NUM_INSTANCES", 200) max_lost_frame_count = cfg.TRACKER_HEADS.get("MAX_LOST_FRAME_COUNT", 0) min_box_rel_dim = cfg.TRACKER_HEADS.get("MIN_BOX_REL_DIM", 0.02) min_instance_period = cfg.TRACKER_HEADS.get("MIN_INSTANCE_PERIOD", 1) track_iou_threshold = cfg.TRACKER_HEADS.get("TRACK_IOU_THRESHOLD", 0.5) return { "_target_": "detectron2.tracking.bbox_iou_tracker.BBoxIOUTracker", "video_height": video_height, "video_width": video_width, "max_num_instances": max_num_instances, "max_lost_frame_count": max_lost_frame_count, "min_box_rel_dim": min_box_rel_dim, "min_instance_period": min_instance_period, "track_iou_threshold": track_iou_threshold } def update(self, instances: Instances) -> Instances: """ See BaseTracker description """ if instances.has("pred_keypoints"): raise NotImplementedError("Need to add support for keypoints") instances = self._initialize_extra_fields(instances) if self._prev_instances is not None: # calculate IoU of all bbox pairs iou_all = pairwise_iou( boxes1=instances.pred_boxes, boxes2=self._prev_instances.pred_boxes, ) # sort IoU in descending order bbox_pairs = self._create_prediction_pairs(instances, iou_all) # assign previous ID to current bbox if IoU > track_iou_threshold self._reset_fields() for bbox_pair in bbox_pairs: idx = bbox_pair["idx"] prev_id = bbox_pair["prev_id"] if idx in self._matched_idx \ or prev_id in self._matched_ID \ or bbox_pair["IoU"] < self._track_iou_threshold: continue instances.ID[idx] = prev_id instances.ID_period[idx] = bbox_pair["prev_period"] + 1 instances.lost_frame_count[idx] = 0 self._matched_idx.add(idx) self._matched_ID.add(prev_id) self._untracked_prev_idx.remove(bbox_pair["prev_idx"]) instances = self._assign_new_id(instances) instances = self._merge_untracked_instances(instances) self._prev_instances = copy.deepcopy(instances) return instances def _create_prediction_pairs( self, instances: Instances, iou_all: np.ndarray ) -> List: """ For all instances in previous and current frames, create pairs. For each pair, store index of the instance in current frame predcitions, index in previous predictions, ID in previous predictions, IoU of the bboxes in this pair, period in previous predictions. Args: instances: D2 Instances, for predictions of the current frame iou_all: IoU for all bboxes pairs Return: A list of IoU for all pairs """ bbox_pairs = [] for i in range(len(instances)): for<fim_suffix> return bbox_pairs def _initialize_extra_fields(self, instances: Instances) -> Instances: """ If input instances don't have ID, ID_period, lost_frame_count fields, this method is used to initialize these fields. Args: instances: D2 Instances, for predictions of the current frame Return: D2 Instances with extra fields added """ if not instances.has("ID"): instances.set("ID", [None] * len(instances)) if not instances.has("ID_period"): instances.set("ID_period", [None] * len(instances)) if not instances.has("lost_frame_count"): instances.set("lost_frame_count", [None] * len(instances)) if self._prev_instances is None: instances.ID = list(range(len(instances))) self._id_count += len(instances) instances.ID_period = [1] * len(instances) instances.lost_frame_count = [0] * len(instances) return instances def _reset_fields(self): """ Before each uodate call, reset fields first """ self._matched_idx = set() self._matched_ID = set() self._untracked_prev_idx = set(range(len(self._prev_instances))) def _assign_new_id(self, instances: Instances) -> Instances: """ For each untracked instance, assign a new id Args: instances: D2 Instances, for predictions of the current frame Return: D2 Instances with new ID assigned """ untracked_idx = set(range(len(instances))).difference(self._matched_idx) for idx in untracked_idx: instances.ID[idx] = self._id_count self._id_count += 1 instances.ID_period[idx] = 1 instances.lost_frame_count[idx] = 0 return instances def _merge_untracked_instances(self, instances: Instances) -> Instances: """ For untracked previous instances, under certain condition, still keep them in tracking and merge with the current instances. Args: instances: D2 Instances, for predictions of the current frame Return: D2 Instances merging current instances and instances from previous frame decided to keep tracking """ untracked_instances = Instances( image_size=instances.image_size, pred_boxes=[], pred_masks=[], pred_classes=[], scores=[], ID=[], ID_period=[], lost_frame_count=[], ) prev_bboxes = list(self._prev_instances.pred_boxes) prev_classes = list(self._prev_instances.pred_classes) prev_scores = list(self._prev_instances.scores) prev_ID_period = self._prev_instances.ID_period if instances.has("pred_masks"): prev_masks = list(self._prev_instances.pred_masks) for idx in self._untracked_prev_idx: x_left, y_top, x_right, y_bot = prev_bboxes[idx] if ( (1.0 * (x_right - x_left) / self._video_width < self._min_box_rel_dim) or (1.0 * (y_bot - y_top) / self._video_height < self._min_box_rel_dim) or self._prev_instances.lost_frame_count[idx] >= self._max_lost_frame_count or prev_ID_period[idx] <= self._min_instance_period ): continue untracked_instances.pred_boxes.append(list(prev_bboxes[idx].numpy())) untracked_instances.pred_classes.append(int(prev_classes[idx])) untracked_instances.scores.append(float(prev_scores[idx])) untracked_instances.ID.append(self._prev_instances.ID[idx]) untracked_instances.ID_period.append(self._prev_instances.ID_period[idx]) untracked_instances.lost_frame_count.append( self._prev_instances.lost_frame_count[idx] + 1 ) if instances.has("pred_masks"): untracked_instances.pred_masks.append(prev_masks[idx].numpy().astype(np.uint8)) untracked_instances.pred_boxes = Boxes(torch.FloatTensor(untracked_instances.pred_boxes)) untracked_instances.pred_classes = torch.IntTensor(untracked_instances.pred_classes) untracked_instances.scores = torch.FloatTensor(untracked_instances.scores) if instances.has("pred_masks"): untracked_instances.pred_masks = torch.IntTensor(untracked_instances.pred_masks) else: untracked_instances.remove("pred_masks") return Instances.cat( [ instances, untracked_instances, ] ) <fim_middle> j in range(len(self._prev_instances)): bbox_pairs.append( { "idx": i, "prev_idx": j, "prev_id": self._prev_instances.ID[j], "IoU": iou_all[i, j], "prev_period": self._prev_instances.ID_period[j], } )
j in range(len(self._prev_instances)): bbox_pairs.append( { "idx": i, "prev_idx": j, "prev_id": self._prev_instances.ID[j], "IoU": iou_all[i, j], "prev_period": self._prev_instances.ID_period[j], } )
FOR
prefix_suffix_full_complete_current_block_with_evidence
<filename>UniRef/detectron2/tracking/bbox_iou_tracker.py<fim_prefix>#!/usr/bin/env python3 # Copyright 2004-present Facebook. All Rights Reserved. import copy from typing import List import numpy as np import torch from detectron2.config import configurable from detectron2.structures import Boxes, Instances from detectron2.structures.boxes import pairwise_iou from ..config.config import CfgNode as CfgNode_ from .base_tracker import BaseTracker, TRACKER_HEADS_REGISTRY @TRACKER_HEADS_REGISTRY.register() class BBoxIOUTracker(BaseTracker): """ A bounding box tracker to assign ID based on IoU between current and previous instances """ @configurable def __init__( self, *, video_height: int, video_width: int, max_num_instances: int = 200, max_lost_frame_count: int = 0, min_box_rel_dim: float = 0.02, min_instance_period: int = 1, track_iou_threshold: float = 0.5, **kwargs ): """ Args: video_height: height the video frame video_width: width of the video frame max_num_instances: maximum number of id allowed to be tracked max_lost_frame_count: maximum number of frame an id can lost tracking exceed this number, an id is considered as lost forever min_box_rel_dim: a percentage, smaller than this dimension, a bbox is removed from tracking min_instance_period: an instance will be shown after this number of period since its first showing up in the video track_iou_threshold: iou threshold, below this number a bbox pair is removed from tracking """ super().__init__(**kwargs) self._video_height = video_height self._video_width = video_width self._max_num_instances = max_num_instances self._max_lost_frame_count = max_lost_frame_count self._min_box_rel_dim = min_box_rel_dim self._min_instance_period = min_instance_period self._track_iou_threshold = track_iou_threshold @classmethod def from_config(cls, cfg: CfgNode_): """ Old style initialization using CfgNode Args: cfg: D2 CfgNode, config file Return: dictionary storing arguments for __init__ method """ assert "VIDEO_HEIGHT" in cfg.TRACKER_HEADS assert "VIDEO_WIDTH" in cfg.TRACKER_HEADS video_height = cfg.TRACKER_HEADS.get("VIDEO_HEIGHT") video_width = cfg.TRACKER_HEADS.get("VIDEO_WIDTH") max_num_instances = cfg.TRACKER_HEADS.get("MAX_NUM_INSTANCES", 200) max_lost_frame_count = cfg.TRACKER_HEADS.get("MAX_LOST_FRAME_COUNT", 0) min_box_rel_dim = cfg.TRACKER_HEADS.get("MIN_BOX_REL_DIM", 0.02) min_instance_period = cfg.TRACKER_HEADS.get("MIN_INSTANCE_PERIOD", 1) track_iou_threshold = cfg.TRACKER_HEADS.get("TRACK_IOU_THRESHOLD", 0.5) return { "_target_": "detectron2.tracking.bbox_iou_tracker.BBoxIOUTracker", "video_height": video_height, "video_width": video_width, "max_num_instances": max_num_instances, "max_lost_frame_count": max_lost_frame_count, "min_box_rel_dim": min_box_rel_dim, "min_instance_period": min_instance_period, "track_iou_threshold": track_iou_threshold } def update(self, instances: Instances) -> Instances: """ See BaseTracker description """ if instances.has("pred_keypoints"): raise NotImplementedError("Need to add support for keypoints") instances = self._initialize_extra_fields(instances) if self._prev_instances is not None: # calculate IoU of all bbox pairs iou_all = pairwise_iou( boxes1=instances.pred_boxes, boxes2=self._prev_instances.pred_boxes, ) # sort IoU in descending order bbox_pairs = self._create_prediction_pairs(instances, iou_all) # assign previous ID to current bbox if IoU > track_iou_threshold self._reset_fields() for<fim_suffix> instances = self._assign_new_id(instances) instances = self._merge_untracked_instances(instances) self._prev_instances = copy.deepcopy(instances) return instances def _create_prediction_pairs( self, instances: Instances, iou_all: np.ndarray ) -> List: """ For all instances in previous and current frames, create pairs. For each pair, store index of the instance in current frame predcitions, index in previous predictions, ID in previous predictions, IoU of the bboxes in this pair, period in previous predictions. Args: instances: D2 Instances, for predictions of the current frame iou_all: IoU for all bboxes pairs Return: A list of IoU for all pairs """ bbox_pairs = [] for i in range(len(instances)): for j in range(len(self._prev_instances)): bbox_pairs.append( { "idx": i, "prev_idx": j, "prev_id": self._prev_instances.ID[j], "IoU": iou_all[i, j], "prev_period": self._prev_instances.ID_period[j], } ) return bbox_pairs def _initialize_extra_fields(self, instances: Instances) -> Instances: """ If input instances don't have ID, ID_period, lost_frame_count fields, this method is used to initialize these fields. Args: instances: D2 Instances, for predictions of the current frame Return: D2 Instances with extra fields added """ if not instances.has("ID"): instances.set("ID", [None] * len(instances)) if not instances.has("ID_period"): instances.set("ID_period", [None] * len(instances)) if not instances.has("lost_frame_count"): instances.set("lost_frame_count", [None] * len(instances)) if self._prev_instances is None: instances.ID = list(range(len(instances))) self._id_count += len(instances) instances.ID_period = [1] * len(instances) instances.lost_frame_count = [0] * len(instances) return instances def _reset_fields(self): """ Before each uodate call, reset fields first """ self._matched_idx = set() self._matched_ID = set() self._untracked_prev_idx = set(range(len(self._prev_instances))) def _assign_new_id(self, instances: Instances) -> Instances: """ For each untracked instance, assign a new id Args: instances: D2 Instances, for predictions of the current frame Return: D2 Instances with new ID assigned """ untracked_idx = set(range(len(instances))).difference(self._matched_idx) for idx in untracked_idx: instances.ID[idx] = self._id_count self._id_count += 1 instances.ID_period[idx] = 1 instances.lost_frame_count[idx] = 0 return instances def _merge_untracked_instances(self, instances: Instances) -> Instances: """ For untracked previous instances, under certain condition, still keep them in tracking and merge with the current instances. Args: instances: D2 Instances, for predictions of the current frame Return: D2 Instances merging current instances and instances from previous frame decided to keep tracking """ untracked_instances = Instances( image_size=instances.image_size, pred_boxes=[], pred_masks=[], pred_classes=[], scores=[], ID=[], ID_period=[], lost_frame_count=[], ) prev_bboxes = list(self._prev_instances.pred_boxes) prev_classes = list(self._prev_instances.pred_classes) prev_scores = list(self._prev_instances.scores) prev_ID_period = self._prev_instances.ID_period if instances.has("pred_masks"): prev_masks = list(self._prev_instances.pred_masks) for idx in self._untracked_prev_idx: x_left, y_top, x_right, y_bot = prev_bboxes[idx] if ( (1.0 * (x_right - x_left) / self._video_width < self._min_box_rel_dim) or (1.0 * (y_bot - y_top) / self._video_height < self._min_box_rel_dim) or self._prev_instances.lost_frame_count[idx] >= self._max_lost_frame_count or prev_ID_period[idx] <= self._min_instance_period ): continue untracked_instances.pred_boxes.append(list(prev_bboxes[idx].numpy())) untracked_instances.pred_classes.append(int(prev_classes[idx])) untracked_instances.scores.append(float(prev_scores[idx])) untracked_instances.ID.append(self._prev_instances.ID[idx]) untracked_instances.ID_period.append(self._prev_instances.ID_period[idx]) untracked_instances.lost_frame_count.append( self._prev_instances.lost_frame_count[idx] + 1 ) if instances.has("pred_masks"): untracked_instances.pred_masks.append(prev_masks[idx].numpy().astype(np.uint8)) untracked_instances.pred_boxes = Boxes(torch.FloatTensor(untracked_instances.pred_boxes)) untracked_instances.pred_classes = torch.IntTensor(untracked_instances.pred_classes) untracked_instances.scores = torch.FloatTensor(untracked_instances.scores) if instances.has("pred_masks"): untracked_instances.pred_masks = torch.IntTensor(untracked_instances.pred_masks) else: untracked_instances.remove("pred_masks") return Instances.cat( [ instances, untracked_instances, ] ) <fim_middle> bbox_pair in bbox_pairs: idx = bbox_pair["idx"] prev_id = bbox_pair["prev_id"] if idx in self._matched_idx \ or prev_id in self._matched_ID \ or bbox_pair["IoU"] < self._track_iou_threshold: continue instances.ID[idx] = prev_id instances.ID_period[idx] = bbox_pair["prev_period"] + 1 instances.lost_frame_count[idx] = 0 self._matched_idx.add(idx) self._matched_ID.add(prev_id) self._untracked_prev_idx.remove(bbox_pair["prev_idx"])
bbox_pair in bbox_pairs: idx = bbox_pair["idx"] prev_id = bbox_pair["prev_id"] if idx in self._matched_idx \ or prev_id in self._matched_ID \ or bbox_pair["IoU"] < self._track_iou_threshold: continue instances.ID[idx] = prev_id instances.ID_period[idx] = bbox_pair["prev_period"] + 1 instances.lost_frame_count[idx] = 0 self._matched_idx.add(idx) self._matched_ID.add(prev_id) self._untracked_prev_idx.remove(bbox_pair["prev_idx"])
FOR
prefix_suffix_full_complete_current_block_with_evidence
<filename>UniRef/detectron2/tracking/hungarian_tracker.py<fim_prefix>#!/usr/bin/env python3 # Copyright 2004-present Facebook. All Rights Reserved. import copy import numpy as np import torch from detectron2.structures import Boxes, Instances from .base_tracker import BaseTracker from scipy.optimize import linear_sum_assignment from ..config.config import CfgNode as CfgNode_ from typing import Dict from detectron2.config import configurable class BaseHungarianTracker(BaseTracker): """ A base class for all Hungarian trackers """ @configurable def __init__( self, video_height: int, video_width: int, max_num_instances: int = 200, max_lost_frame_count: int = 0, min_box_rel_dim: float = 0.02, min_instance_period: int = 1, **kwargs ): """ Args: video_height: height the video frame video_width: width of the video frame max_num_instances: maximum number of id allowed to be tracked max_lost_frame_count: maximum number of frame an id can lost tracking exceed this number, an id is considered as lost forever min_box_rel_dim: a percentage, smaller than this dimension, a bbox is removed from tracking min_instance_period: an instance will be shown after this number of period since its first showing up in the video """ super().__init__(**kwargs) self._video_height = video_height self._video_width = video_width self._max_num_instances = max_num_instances self._max_lost_frame_count = max_lost_frame_count self._min_box_rel_dim = min_box_rel_dim self._min_instance_period = min_instance_period @classmethod def from_config(cls, cfg: CfgNode_) -> Dict: raise NotImplementedError("Calling HungarianTracker::from_config") def build_cost_matrix(self, instances: Instances, prev_instances: Instances) -> np.ndarray: raise NotImplementedError("Calling HungarianTracker::build_matrix") def update(self, instances: Instances) -> Instances: if instances.has("pred_keypoints"): raise NotImplementedError("Need to add support for keypoints") instances = self._initialize_extra_fields(instances) if self._prev_instances is not None: self._untracked_prev_idx = set(range(len(self._prev_instances))) cost_matrix = self.build_cost_matrix(instances, self._prev_instances) matched_idx, matched_prev_idx = linear_sum_assignment(cost_matrix) instances = self._process_matched_idx(instances, matched_idx, matched_prev_idx) instances = self._process_unmatched_idx(instances, matched_idx) instances = self._process_unmatched_prev_idx(instances, matched_prev_idx) self._prev_instances = copy.deepcopy(instances) return instances def _initialize_extra_fields(self, instances: Instances) -> Instances: """ If input instances don't have ID, ID_period, lost_frame_count fields, this method is used to initialize these fields. Args: instances: D2 Instances, for predictions of the current frame Return: D2 Instances with extra fields added """ if not instances.has("ID"): instances.set("ID", [None] * len(instances)) if not instances.has("ID_period"): instances.set("ID_period", [None] * len(instances)) if not instances.has("lost_frame_count"): instances.set("lost_frame_count", [None] * len(instances)) if self._prev_instances is None: instances.ID = list(range(len(instances))) self._id_count += len(instances) instances.ID_period = [1] * len(instances) instances.lost_frame_count = [0] * len(instances) return instances def _process_matched_idx( self, instances: Instances, matched_idx: np.ndarray, matched_prev_idx: np.ndarray ) -> Instances: assert matched_idx.size == matched_prev_idx.size for<fim_suffix> return instances def _process_unmatched_idx(self, instances: Instances, matched_idx: np.ndarray) -> Instances: untracked_idx = set(range(len(instances))).difference(set(matched_idx)) for idx in untracked_idx: instances.ID[idx] = self._id_count self._id_count += 1 instances.ID_period[idx] = 1 instances.lost_frame_count[idx] = 0 return instances def _process_unmatched_prev_idx( self, instances: Instances, matched_prev_idx: np.ndarray ) -> Instances: untracked_instances = Instances( image_size=instances.image_size, pred_boxes=[], pred_masks=[], pred_classes=[], scores=[], ID=[], ID_period=[], lost_frame_count=[], ) prev_bboxes = list(self._prev_instances.pred_boxes) prev_classes = list(self._prev_instances.pred_classes) prev_scores = list(self._prev_instances.scores) prev_ID_period = self._prev_instances.ID_period if instances.has("pred_masks"): prev_masks = list(self._prev_instances.pred_masks) untracked_prev_idx = set(range(len(self._prev_instances))).difference(set(matched_prev_idx)) for idx in untracked_prev_idx: x_left, y_top, x_right, y_bot = prev_bboxes[idx] if ( (1.0 * (x_right - x_left) / self._video_width < self._min_box_rel_dim) or (1.0 * (y_bot - y_top) / self._video_height < self._min_box_rel_dim) or self._prev_instances.lost_frame_count[idx] >= self._max_lost_frame_count or prev_ID_period[idx] <= self._min_instance_period ): continue untracked_instances.pred_boxes.append(list(prev_bboxes[idx].numpy())) untracked_instances.pred_classes.append(int(prev_classes[idx])) untracked_instances.scores.append(float(prev_scores[idx])) untracked_instances.ID.append(self._prev_instances.ID[idx]) untracked_instances.ID_period.append(self._prev_instances.ID_period[idx]) untracked_instances.lost_frame_count.append( self._prev_instances.lost_frame_count[idx] + 1 ) if instances.has("pred_masks"): untracked_instances.pred_masks.append(prev_masks[idx].numpy().astype(np.uint8)) untracked_instances.pred_boxes = Boxes(torch.FloatTensor(untracked_instances.pred_boxes)) untracked_instances.pred_classes = torch.IntTensor(untracked_instances.pred_classes) untracked_instances.scores = torch.FloatTensor(untracked_instances.scores) if instances.has("pred_masks"): untracked_instances.pred_masks = torch.IntTensor(untracked_instances.pred_masks) else: untracked_instances.remove("pred_masks") return Instances.cat( [ instances, untracked_instances, ] ) <fim_middle> i in range(matched_idx.size): instances.ID[matched_idx[i]] = self._prev_instances.ID[matched_prev_idx[i]] instances.ID_period[matched_idx[i]] = \ self._prev_instances.ID_period[matched_prev_idx[i]] + 1 instances.lost_frame_count[matched_idx[i]] = 0
i in range(matched_idx.size): instances.ID[matched_idx[i]] = self._prev_instances.ID[matched_prev_idx[i]] instances.ID_period[matched_idx[i]] = \ self._prev_instances.ID_period[matched_prev_idx[i]] + 1 instances.lost_frame_count[matched_idx[i]] = 0
FOR
prefix_suffix_full_complete_current_block_with_evidence
<filename>UniRef/detectron2/tracking/bbox_iou_tracker.py<fim_prefix>#!/usr/bin/env python3 # Copyright 2004-present Facebook. All Rights Reserved. import copy from typing import List import numpy as np import torch from detectron2.config import configurable from detectron2.structures import Boxes, Instances from detectron2.structures.boxes import pairwise_iou from ..config.config import CfgNode as CfgNode_ from .base_tracker import BaseTracker, TRACKER_HEADS_REGISTRY @TRACKER_HEADS_REGISTRY.register() class BBoxIOUTracker(BaseTracker): """ A bounding box tracker to assign ID based on IoU between current and previous instances """ @configurable def __init__( self, *, video_height: int, video_width: int, max_num_instances: int = 200, max_lost_frame_count: int = 0, min_box_rel_dim: float = 0.02, min_instance_period: int = 1, track_iou_threshold: float = 0.5, **kwargs ): """ Args: video_height: height the video frame video_width: width of the video frame max_num_instances: maximum number of id allowed to be tracked max_lost_frame_count: maximum number of frame an id can lost tracking exceed this number, an id is considered as lost forever min_box_rel_dim: a percentage, smaller than this dimension, a bbox is removed from tracking min_instance_period: an instance will be shown after this number of period since its first showing up in the video track_iou_threshold: iou threshold, below this number a bbox pair is removed from tracking """ super().__init__(**kwargs) self._video_height = video_height self._video_width = video_width self._max_num_instances = max_num_instances self._max_lost_frame_count = max_lost_frame_count self._min_box_rel_dim = min_box_rel_dim self._min_instance_period = min_instance_period self._track_iou_threshold = track_iou_threshold @classmethod def from_config(cls, cfg: CfgNode_): """ Old style initialization using CfgNode Args: cfg: D2 CfgNode, config file Return: dictionary storing arguments for __init__ method """ assert "VIDEO_HEIGHT" in cfg.TRACKER_HEADS assert "VIDEO_WIDTH" in cfg.TRACKER_HEADS video_height = cfg.TRACKER_HEADS.get("VIDEO_HEIGHT") video_width = cfg.TRACKER_HEADS.get("VIDEO_WIDTH") max_num_instances = cfg.TRACKER_HEADS.get("MAX_NUM_INSTANCES", 200) max_lost_frame_count = cfg.TRACKER_HEADS.get("MAX_LOST_FRAME_COUNT", 0) min_box_rel_dim = cfg.TRACKER_HEADS.get("MIN_BOX_REL_DIM", 0.02) min_instance_period = cfg.TRACKER_HEADS.get("MIN_INSTANCE_PERIOD", 1) track_iou_threshold = cfg.TRACKER_HEADS.get("TRACK_IOU_THRESHOLD", 0.5) return { "_target_": "detectron2.tracking.bbox_iou_tracker.BBoxIOUTracker", "video_height": video_height, "video_width": video_width, "max_num_instances": max_num_instances, "max_lost_frame_count": max_lost_frame_count, "min_box_rel_dim": min_box_rel_dim, "min_instance_period": min_instance_period, "track_iou_threshold": track_iou_threshold } def update(self, instances: Instances) -> Instances: """ See BaseTracker description """ if instances.has("pred_keypoints"): raise NotImplementedError("Need to add support for keypoints") instances = self._initialize_extra_fields(instances) if self._prev_instances is not None: # calculate IoU of all bbox pairs iou_all = pairwise_iou( boxes1=instances.pred_boxes, boxes2=self._prev_instances.pred_boxes, ) # sort IoU in descending order bbox_pairs = self._create_prediction_pairs(instances, iou_all) # assign previous ID to current bbox if IoU > track_iou_threshold self._reset_fields() for bbox_pair in bbox_pairs: idx = bbox_pair["idx"] prev_id = bbox_pair["prev_id"] if idx in self._matched_idx \ or prev_id in self._matched_ID \ or bbox_pair["IoU"] < self._track_iou_threshold: continue instances.ID[idx] = prev_id instances.ID_period[idx] = bbox_pair["prev_period"] + 1 instances.lost_frame_count[idx] = 0 self._matched_idx.add(idx) self._matched_ID.add(prev_id) self._untracked_prev_idx.remove(bbox_pair["prev_idx"]) instances = self._assign_new_id(instances) instances = self._merge_untracked_instances(instances) self._prev_instances = copy.deepcopy(instances) return instances def _create_prediction_pairs( self, instances: Instances, iou_all: np.ndarray ) -> List: """ For all instances in previous and current frames, create pairs. For each pair, store index of the instance in current frame predcitions, index in previous predictions, ID in previous predictions, IoU of the bboxes in this pair, period in previous predictions. Args: instances: D2 Instances, for predictions of the current frame iou_all: IoU for all bboxes pairs Return: A list of IoU for all pairs """ bbox_pairs = [] for<fim_suffix> return bbox_pairs def _initialize_extra_fields(self, instances: Instances) -> Instances: """ If input instances don't have ID, ID_period, lost_frame_count fields, this method is used to initialize these fields. Args: instances: D2 Instances, for predictions of the current frame Return: D2 Instances with extra fields added """ if not instances.has("ID"): instances.set("ID", [None] * len(instances)) if not instances.has("ID_period"): instances.set("ID_period", [None] * len(instances)) if not instances.has("lost_frame_count"): instances.set("lost_frame_count", [None] * len(instances)) if self._prev_instances is None: instances.ID = list(range(len(instances))) self._id_count += len(instances) instances.ID_period = [1] * len(instances) instances.lost_frame_count = [0] * len(instances) return instances def _reset_fields(self): """ Before each uodate call, reset fields first """ self._matched_idx = set() self._matched_ID = set() self._untracked_prev_idx = set(range(len(self._prev_instances))) def _assign_new_id(self, instances: Instances) -> Instances: """ For each untracked instance, assign a new id Args: instances: D2 Instances, for predictions of the current frame Return: D2 Instances with new ID assigned """ untracked_idx = set(range(len(instances))).difference(self._matched_idx) for idx in untracked_idx: instances.ID[idx] = self._id_count self._id_count += 1 instances.ID_period[idx] = 1 instances.lost_frame_count[idx] = 0 return instances def _merge_untracked_instances(self, instances: Instances) -> Instances: """ For untracked previous instances, under certain condition, still keep them in tracking and merge with the current instances. Args: instances: D2 Instances, for predictions of the current frame Return: D2 Instances merging current instances and instances from previous frame decided to keep tracking """ untracked_instances = Instances( image_size=instances.image_size, pred_boxes=[], pred_masks=[], pred_classes=[], scores=[], ID=[], ID_period=[], lost_frame_count=[], ) prev_bboxes = list(self._prev_instances.pred_boxes) prev_classes = list(self._prev_instances.pred_classes) prev_scores = list(self._prev_instances.scores) prev_ID_period = self._prev_instances.ID_period if instances.has("pred_masks"): prev_masks = list(self._prev_instances.pred_masks) for idx in self._untracked_prev_idx: x_left, y_top, x_right, y_bot = prev_bboxes[idx] if ( (1.0 * (x_right - x_left) / self._video_width < self._min_box_rel_dim) or (1.0 * (y_bot - y_top) / self._video_height < self._min_box_rel_dim) or self._prev_instances.lost_frame_count[idx] >= self._max_lost_frame_count or prev_ID_period[idx] <= self._min_instance_period ): continue untracked_instances.pred_boxes.append(list(prev_bboxes[idx].numpy())) untracked_instances.pred_classes.append(int(prev_classes[idx])) untracked_instances.scores.append(float(prev_scores[idx])) untracked_instances.ID.append(self._prev_instances.ID[idx]) untracked_instances.ID_period.append(self._prev_instances.ID_period[idx]) untracked_instances.lost_frame_count.append( self._prev_instances.lost_frame_count[idx] + 1 ) if instances.has("pred_masks"): untracked_instances.pred_masks.append(prev_masks[idx].numpy().astype(np.uint8)) untracked_instances.pred_boxes = Boxes(torch.FloatTensor(untracked_instances.pred_boxes)) untracked_instances.pred_classes = torch.IntTensor(untracked_instances.pred_classes) untracked_instances.scores = torch.FloatTensor(untracked_instances.scores) if instances.has("pred_masks"): untracked_instances.pred_masks = torch.IntTensor(untracked_instances.pred_masks) else: untracked_instances.remove("pred_masks") return Instances.cat( [ instances, untracked_instances, ] ) <fim_middle> i in range(len(instances)): for j in range(len(self._prev_instances)): bbox_pairs.append( { "idx": i, "prev_idx": j, "prev_id": self._prev_instances.ID[j], "IoU": iou_all[i, j], "prev_period": self._prev_instances.ID_period[j], } )
i in range(len(instances)): for j in range(len(self._prev_instances)): bbox_pairs.append( { "idx": i, "prev_idx": j, "prev_id": self._prev_instances.ID[j], "IoU": iou_all[i, j], "prev_period": self._prev_instances.ID_period[j], } )
FOR
prefix_suffix_full_complete_current_block_with_evidence
<filename>UniRef/detectron2/tracking/hungarian_tracker.py<fim_prefix>#!/usr/bin/env python3 # Copyright 2004-present Facebook. All Rights Reserved. import copy import numpy as np import torch from detectron2.structures import Boxes, Instances from .base_tracker import BaseTracker from scipy.optimize import linear_sum_assignment from ..config.config import CfgNode as CfgNode_ from typing import Dict from detectron2.config import configurable class BaseHungarianTracker(BaseTracker): """ A base class for all Hungarian trackers """ @configurable def __init__( self, video_height: int, video_width: int, max_num_instances: int = 200, max_lost_frame_count: int = 0, min_box_rel_dim: float = 0.02, min_instance_period: int = 1, **kwargs ): """ Args: video_height: height the video frame video_width: width of the video frame max_num_instances: maximum number of id allowed to be tracked max_lost_frame_count: maximum number of frame an id can lost tracking exceed this number, an id is considered as lost forever min_box_rel_dim: a percentage, smaller than this dimension, a bbox is removed from tracking min_instance_period: an instance will be shown after this number of period since its first showing up in the video """ super().__init__(**kwargs) self._video_height = video_height self._video_width = video_width self._max_num_instances = max_num_instances self._max_lost_frame_count = max_lost_frame_count self._min_box_rel_dim = min_box_rel_dim self._min_instance_period = min_instance_period @classmethod def from_config(cls, cfg: CfgNode_) -> Dict: raise NotImplementedError("Calling HungarianTracker::from_config") def build_cost_matrix(self, instances: Instances, prev_instances: Instances) -> np.ndarray: raise NotImplementedError("Calling HungarianTracker::build_matrix") def update(self, instances: Instances) -> Instances: if instances.has("pred_keypoints"): raise NotImplementedError("Need to add support for keypoints") instances = self._initialize_extra_fields(instances) if self._prev_instances is not None: self._untracked_prev_idx = set(range(len(self._prev_instances))) cost_matrix = self.build_cost_matrix(instances, self._prev_instances) matched_idx, matched_prev_idx = linear_sum_assignment(cost_matrix) instances = self._process_matched_idx(instances, matched_idx, matched_prev_idx) instances = self._process_unmatched_idx(instances, matched_idx) instances = self._process_unmatched_prev_idx(instances, matched_prev_idx) self._prev_instances = copy.deepcopy(instances) return instances def _initialize_extra_fields(self, instances: Instances) -> Instances: """ If input instances don't have ID, ID_period, lost_frame_count fields, this method is used to initialize these fields. Args: instances: D2 Instances, for predictions of the current frame Return: D2 Instances with extra fields added """ if not instances.has("ID"): instances.set("ID", [None] * len(instances)) if not instances.has("ID_period"): instances.set("ID_period", [None] * len(instances)) if not instances.has("lost_frame_count"): instances.set("lost_frame_count", [None] * len(instances)) if self._prev_instances is None: instances.ID = list(range(len(instances))) self._id_count += len(instances) instances.ID_period = [1] * len(instances) instances.lost_frame_count = [0] * len(instances) return instances def _process_matched_idx( self, instances: Instances, matched_idx: np.ndarray, matched_prev_idx: np.ndarray ) -> Instances: assert matched_idx.size == matched_prev_idx.size for i in range(matched_idx.size): instances.ID[matched_idx[i]] = self._prev_instances.ID[matched_prev_idx[i]] instances.ID_period[matched_idx[i]] = \ self._prev_instances.ID_period[matched_prev_idx[i]] + 1 instances.lost_frame_count[matched_idx[i]] = 0 return instances def _process_unmatched_idx(self, instances: Instances, matched_idx: np.ndarray) -> Instances: untracked_idx = set(range(len(instances))).difference(set(matched_idx)) for<fim_suffix> return instances def _process_unmatched_prev_idx( self, instances: Instances, matched_prev_idx: np.ndarray ) -> Instances: untracked_instances = Instances( image_size=instances.image_size, pred_boxes=[], pred_masks=[], pred_classes=[], scores=[], ID=[], ID_period=[], lost_frame_count=[], ) prev_bboxes = list(self._prev_instances.pred_boxes) prev_classes = list(self._prev_instances.pred_classes) prev_scores = list(self._prev_instances.scores) prev_ID_period = self._prev_instances.ID_period if instances.has("pred_masks"): prev_masks = list(self._prev_instances.pred_masks) untracked_prev_idx = set(range(len(self._prev_instances))).difference(set(matched_prev_idx)) for idx in untracked_prev_idx: x_left, y_top, x_right, y_bot = prev_bboxes[idx] if ( (1.0 * (x_right - x_left) / self._video_width < self._min_box_rel_dim) or (1.0 * (y_bot - y_top) / self._video_height < self._min_box_rel_dim) or self._prev_instances.lost_frame_count[idx] >= self._max_lost_frame_count or prev_ID_period[idx] <= self._min_instance_period ): continue untracked_instances.pred_boxes.append(list(prev_bboxes[idx].numpy())) untracked_instances.pred_classes.append(int(prev_classes[idx])) untracked_instances.scores.append(float(prev_scores[idx])) untracked_instances.ID.append(self._prev_instances.ID[idx]) untracked_instances.ID_period.append(self._prev_instances.ID_period[idx]) untracked_instances.lost_frame_count.append( self._prev_instances.lost_frame_count[idx] + 1 ) if instances.has("pred_masks"): untracked_instances.pred_masks.append(prev_masks[idx].numpy().astype(np.uint8)) untracked_instances.pred_boxes = Boxes(torch.FloatTensor(untracked_instances.pred_boxes)) untracked_instances.pred_classes = torch.IntTensor(untracked_instances.pred_classes) untracked_instances.scores = torch.FloatTensor(untracked_instances.scores) if instances.has("pred_masks"): untracked_instances.pred_masks = torch.IntTensor(untracked_instances.pred_masks) else: untracked_instances.remove("pred_masks") return Instances.cat( [ instances, untracked_instances, ] ) <fim_middle> idx in untracked_idx: instances.ID[idx] = self._id_count self._id_count += 1 instances.ID_period[idx] = 1 instances.lost_frame_count[idx] = 0
idx in untracked_idx: instances.ID[idx] = self._id_count self._id_count += 1 instances.ID_period[idx] = 1 instances.lost_frame_count[idx] = 0
FOR
prefix_suffix_full_complete_current_block_with_evidence
<filename>UniRef/external/davis2017-evaluation/davis2017/metrics.py<fim_prefix>import math import numpy as np import cv2 def db_eval_iou(annotation, segmentation, void_pixels=None): """ Compute region similarity as the Jaccard Index. Arguments: annotation (ndarray): binary annotation map. segmentation (ndarray): binary segmentation map. void_pixels (ndarray): optional mask with void pixels Return: jaccard (float): region similarity """ assert annotation.shape == segmentation.shape, \ f'Annotation({annotation.shape}) and segmentation:{segmentation.shape} dimensions do not match.' annotation = annotation.astype(np.bool) segmentation = segmentation.astype(np.bool) if void_pixels is not None: assert annotation.shape == void_pixels.shape, \ f'Annotation({annotation.shape}) and void pixels:{void_pixels.shape} dimensions do not match.' void_pixels = void_pixels.astype(np.bool) else: void_pixels = np.zeros_like(segmentation) # Intersection between all sets inters = np.sum((segmentation & annotation) & np.logical_not(void_pixels), axis=(-2, -1)) union = np.sum((segmentation | annotation) & np.logical_not(void_pixels), axis=(-2, -1)) j = inters / union if j.ndim == 0: j = 1 if np.isclose(union, 0) else j else: j[np.isclose(union, 0)] = 1 return j def db_eval_boundary(annotation, segmentation, void_pixels=None, bound_th=0.008): assert annotation.shape == segmentation.shape if void_pixels is not None: assert annotation.shape == void_pixels.shape if annotation.ndim == 3: n_frames = annotation.shape[0] f_res = np.zeros(n_frames) for frame_id in range(n_frames): void_pixels_frame = None if void_pixels is None else void_pixels[frame_id, :, :, ] f_res[frame_id] = f_measure(segmentation[frame_id, :, :, ], annotation[frame_id, :, :], void_pixels_frame, bound_th=bound_th) elif annotation.ndim == 2: f_res = f_measure(segmentation, annotation, void_pixels, bound_th=bound_th) else: raise ValueError(f'db_eval_boundary does not support tensors with {annotation.ndim} dimensions') return f_res def f_measure(foreground_mask, gt_mask, void_pixels=None, bound_th=0.008): """ Compute mean,recall and decay from per-frame evaluation. Calculates precision/recall for boundaries between foreground_mask and gt_mask using morphological operators to speed it up. Arguments: foreground_mask (ndarray): binary segmentation image. gt_mask (ndarray): binary annotated image. void_pixels (ndarray): optional mask with void pixels Returns: F (float): boundaries F-measure """ assert np.atleast_3d(foreground_mask).shape[2] == 1 if void_pixels is not None: void_pixels = void_pixels.astype(np.bool) else: void_pixels = np.zeros_like(foreground_mask).astype(np.bool) bound_pix = bound_th if bound_th >= 1 else \ np.ceil(bound_th * np.linalg.norm(foreground_mask.shape)) # Get the pixel boundaries of both masks fg_boundary = _seg2bmap(foreground_mask * np.logical_not(void_pixels)) gt_boundary = _seg2bmap(gt_mask * np.logical_not(void_pixels)) from skimage.morphology import disk # fg_dil = binary_dilation(fg_boundary, disk(bound_pix)) fg_dil = cv2.dilate(fg_boundary.astype(np.uint8), disk(bound_pix).astype(np.uint8)) # gt_dil = binary_dilation(gt_boundary, disk(bound_pix)) gt_dil = cv2.dilate(gt_boundary.astype(np.uint8), disk(bound_pix).astype(np.uint8)) # Get the intersection gt_match = gt_boundary * fg_dil fg_match = fg_boundary * gt_dil # Area of the intersection n_fg = np.sum(fg_boundary) n_gt = np.sum(gt_boundary) # % Compute precision and recall if n_fg == 0 and n_gt > 0: precision = 1 recall = 0 elif n_fg > 0 and n_gt == 0: precision = 0 recall = 1 elif n_fg == 0 and n_gt == 0: precision = 1 recall = 1 else: precision = np.sum(fg_match) / float(n_fg) recall = np.sum(gt_match) / float(n_gt) # Compute F measure if precision + recall == 0: F = 0 else: F = 2 * precision * recall / (precision + recall) return F def _seg2bmap(seg, width=None, height=None): """ From a segmentation, compute a binary boundary map with 1 pixel wide boundaries. The boundary pixels are offset by 1/2 pixel towards the origin from the actual segment boundary. Arguments: seg : Segments labeled from 1..k. width : Width of desired bmap <= seg.shape[1] height : Height of desired bmap <= seg.shape[0] Returns: bmap (ndarray): Binary boundary map. David Martin <[email protected]> January 2003 """ seg = seg.astype(np.bool) seg[seg > 0] = 1 assert np.atleast_3d(seg).shape[2] == 1 width = seg.shape[1] if width is None else width height = seg.shape[0] if height is None else height h, w = seg.shape[:2] ar1 = float(width) / float(height) ar2 = float(w) / float(h) assert not ( width > w | height > h | abs(ar1 - ar2) > 0.01 ), "Can" "t convert %dx%d seg to %dx%d bmap." % (w, h, width, height) e = np.zeros_like(seg) s = np.zeros_like(seg) se = np.zeros_like(seg) e[:, :-1] = seg[:, 1:] s[:-1, :] = seg[1:, :] se[:-1, :-1] = seg[1:, 1:] b = seg ^ e | seg ^ s | seg ^ se b[-1, :] = seg[-1, :] ^ e[-1, :] b[:, -1] = seg[:, -1] ^ s[:, -1] b[-1, -1] = 0 if w == width and h == height: bmap = b else: bmap = np.zeros((height, width)) for x in range(w): for<fim_suffix> return bmap if __name__ == '__main__': from davis2017.davis import DAVIS from davis2017.results import Results dataset = DAVIS(root='input_dir/ref', subset='val', sequences='aerobatics') results = Results(root_dir='examples/osvos') # Test timing F measure for seq in dataset.get_sequences(): all_gt_masks, _, all_masks_id = dataset.get_all_masks(seq, True) all_gt_masks, all_masks_id = all_gt_masks[:, 1:-1, :, :], all_masks_id[1:-1] all_res_masks = results.read_masks(seq, all_masks_id) f_metrics_res = np.zeros(all_gt_masks.shape[:2]) for ii in range(all_gt_masks.shape[0]): f_metrics_res[ii, :] = db_eval_boundary(all_gt_masks[ii, ...], all_res_masks[ii, ...]) # Run using to profile code: python -m cProfile -o f_measure.prof metrics.py # snakeviz f_measure.prof <fim_middle> y in range(h): if b[y, x]: j = 1 + math.floor((y - 1) + height / h) i = 1 + math.floor((x - 1) + width / h) bmap[j, i] = 1
y in range(h): if b[y, x]: j = 1 + math.floor((y - 1) + height / h) i = 1 + math.floor((x - 1) + width / h) bmap[j, i] = 1
FOR
prefix_suffix_full_complete_current_block_with_evidence
<filename>UniRef/detectron2/config/instantiate.py<fim_prefix># Copyright (c) Facebook, Inc. and its affiliates. import dataclasses import logging from collections import abc from typing import Any from detectron2.utils.registry import _convert_target_to_string, locate __all__ = ["dump_dataclass", "instantiate"] def dump_dataclass(obj: Any): """ Dump a dataclass recursively into a dict that can be later instantiated. Args: obj: a dataclass object Returns: dict """ assert dataclasses.is_dataclass(obj) and not isinstance( obj, type ), "dump_dataclass() requires an instance of a dataclass." ret = {"_target_": _convert_target_to_string(type(obj))} for f in dataclasses.fields(obj): v = getattr(obj, f.name) if dataclasses.is_dataclass(v): v = dump_dataclass(v) if isinstance(v, (list, tuple)): v = [dump_dataclass(x) if dataclasses.is_dataclass(x) else x for x in v] ret[f.name] = v return ret def instantiate(cfg): """ Recursively instantiate objects defined in dictionaries by "_target_" and arguments. Args: cfg: a dict-like object with "_target_" that defines the caller, and other keys that define the arguments Returns: object instantiated by cfg """ from<fim_suffix> if isinstance(cfg, ListConfig): lst = [instantiate(x) for x in cfg] return ListConfig(lst, flags={"allow_objects": True}) if isinstance(cfg, list): # Specialize for list, because many classes take # list[objects] as arguments, such as ResNet, DatasetMapper return [instantiate(x) for x in cfg] if isinstance(cfg, abc.Mapping) and "_target_" in cfg: # conceptually equivalent to hydra.utils.instantiate(cfg) with _convert_=all, # but faster: https://github.com/facebookresearch/hydra/issues/1200 cfg = {k: instantiate(v) for k, v in cfg.items()} cls = cfg.pop("_target_") cls = instantiate(cls) if isinstance(cls, str): cls_name = cls cls = locate(cls_name) assert cls is not None, cls_name else: try: cls_name = cls.__module__ + "." + cls.__qualname__ except Exception: # target could be anything, so the above could fail cls_name = str(cls) assert callable(cls), f"_target_ {cls} does not define a callable object" try: return cls(**cfg) except TypeError: logger = logging.getLogger(__name__) logger.error(f"Error when instantiating {cls_name}!") raise return cfg # return as-is if don't know what to do <fim_middle> omegaconf import ListConfig
omegaconf import ListConfig
IMPORT
prefix_suffix_full_complete_current_block_with_evidence
<filename>UniRef/detectron2/layers/roi_align.py<fim_prefix># Copyright (c) Facebook, Inc. and its affiliates. from torch import nn from torchvision.ops import roi_align # NOTE: torchvision's RoIAlign has a different default aligned=False class ROIAlign(nn.Module): def __init__(self, output_size, spatial_scale, sampling_ratio, aligned=True): """ Args: output_size (tuple): h, w spatial_scale (float): scale the input boxes by this number sampling_ratio (int): number of inputs samples to take for each output sample. 0 to take samples densely. aligned (bool): if False, use the legacy implementation in Detectron. If True, align the results more perfectly. Note: The meaning of aligned=True: Given a continuous coordinate c, its two neighboring pixel indices (in our pixel model) are computed by floor(c - 0.5) and ceil(c - 0.5). For example, c=1.3 has pixel neighbors with discrete indices [0] and [1] (which are sampled from the underlying signal at continuous coordinates 0.5 and 1.5). But the original roi_align (aligned=False) does not subtract the 0.5 when computing neighboring pixel indices and therefore it uses pixels with a slightly incorrect alignment (relative to our pixel model) when performing bilinear interpolation. With `aligned=True`, we first appropriately scale the ROI and then shift it by -0.5 prior to calling roi_align. This produces the correct neighbors; see detectron2/tests/test_roi_align.py for verification. The difference does not make a difference to the model's performance if ROIAlign is used together with conv layers. """ super().__init__() self.output_size = output_size self.spatial_scale = spatial_scale self.sampling_ratio = sampling_ratio self.aligned = aligned from<fim_suffix> version = tuple(int(x) for x in __version__.split(".")[:2]) # https://github.com/pytorch/vision/pull/2438 assert version >= (0, 7), "Require torchvision >= 0.7" def forward(self, input, rois): """ Args: input: NCHW images rois: Bx5 boxes. First column is the index into N. The other 4 columns are xyxy. """ assert rois.dim() == 2 and rois.size(1) == 5 if input.is_quantized: input = input.dequantize() return roi_align( input, rois.to(dtype=input.dtype), self.output_size, self.spatial_scale, self.sampling_ratio, self.aligned, ) def __repr__(self): tmpstr = self.__class__.__name__ + "(" tmpstr += "output_size=" + str(self.output_size) tmpstr += ", spatial_scale=" + str(self.spatial_scale) tmpstr += ", sampling_ratio=" + str(self.sampling_ratio) tmpstr += ", aligned=" + str(self.aligned) tmpstr += ")" return tmpstr <fim_middle> torchvision import __version__
torchvision import __version__
IMPORT
prefix_suffix_full_complete_current_block_with_evidence
<filename>UniRef/external/davis2017-evaluation/davis2017/metrics.py<fim_prefix>import math import numpy as np import cv2 def db_eval_iou(annotation, segmentation, void_pixels=None): """ Compute region similarity as the Jaccard Index. Arguments: annotation (ndarray): binary annotation map. segmentation (ndarray): binary segmentation map. void_pixels (ndarray): optional mask with void pixels Return: jaccard (float): region similarity """ assert annotation.shape == segmentation.shape, \ f'Annotation({annotation.shape}) and segmentation:{segmentation.shape} dimensions do not match.' annotation = annotation.astype(np.bool) segmentation = segmentation.astype(np.bool) if void_pixels is not None: assert annotation.shape == void_pixels.shape, \ f'Annotation({annotation.shape}) and void pixels:{void_pixels.shape} dimensions do not match.' void_pixels = void_pixels.astype(np.bool) else: void_pixels = np.zeros_like(segmentation) # Intersection between all sets inters = np.sum((segmentation & annotation) & np.logical_not(void_pixels), axis=(-2, -1)) union = np.sum((segmentation | annotation) & np.logical_not(void_pixels), axis=(-2, -1)) j = inters / union if j.ndim == 0: j = 1 if np.isclose(union, 0) else j else: j[np.isclose(union, 0)] = 1 return j def db_eval_boundary(annotation, segmentation, void_pixels=None, bound_th=0.008): assert annotation.shape == segmentation.shape if void_pixels is not None: assert annotation.shape == void_pixels.shape if annotation.ndim == 3: n_frames = annotation.shape[0] f_res = np.zeros(n_frames) for frame_id in range(n_frames): void_pixels_frame = None if void_pixels is None else void_pixels[frame_id, :, :, ] f_res[frame_id] = f_measure(segmentation[frame_id, :, :, ], annotation[frame_id, :, :], void_pixels_frame, bound_th=bound_th) elif annotation.ndim == 2: f_res = f_measure(segmentation, annotation, void_pixels, bound_th=bound_th) else: raise ValueError(f'db_eval_boundary does not support tensors with {annotation.ndim} dimensions') return f_res def f_measure(foreground_mask, gt_mask, void_pixels=None, bound_th=0.008): """ Compute mean,recall and decay from per-frame evaluation. Calculates precision/recall for boundaries between foreground_mask and gt_mask using morphological operators to speed it up. Arguments: foreground_mask (ndarray): binary segmentation image. gt_mask (ndarray): binary annotated image. void_pixels (ndarray): optional mask with void pixels Returns: F (float): boundaries F-measure """ assert np.atleast_3d(foreground_mask).shape[2] == 1 if void_pixels is not None: void_pixels = void_pixels.astype(np.bool) else: void_pixels = np.zeros_like(foreground_mask).astype(np.bool) bound_pix = bound_th if bound_th >= 1 else \ np.ceil(bound_th * np.linalg.norm(foreground_mask.shape)) # Get the pixel boundaries of both masks fg_boundary = _seg2bmap(foreground_mask * np.logical_not(void_pixels)) gt_boundary = _seg2bmap(gt_mask * np.logical_not(void_pixels)) from<fim_suffix> # fg_dil = binary_dilation(fg_boundary, disk(bound_pix)) fg_dil = cv2.dilate(fg_boundary.astype(np.uint8), disk(bound_pix).astype(np.uint8)) # gt_dil = binary_dilation(gt_boundary, disk(bound_pix)) gt_dil = cv2.dilate(gt_boundary.astype(np.uint8), disk(bound_pix).astype(np.uint8)) # Get the intersection gt_match = gt_boundary * fg_dil fg_match = fg_boundary * gt_dil # Area of the intersection n_fg = np.sum(fg_boundary) n_gt = np.sum(gt_boundary) # % Compute precision and recall if n_fg == 0 and n_gt > 0: precision = 1 recall = 0 elif n_fg > 0 and n_gt == 0: precision = 0 recall = 1 elif n_fg == 0 and n_gt == 0: precision = 1 recall = 1 else: precision = np.sum(fg_match) / float(n_fg) recall = np.sum(gt_match) / float(n_gt) # Compute F measure if precision + recall == 0: F = 0 else: F = 2 * precision * recall / (precision + recall) return F def _seg2bmap(seg, width=None, height=None): """ From a segmentation, compute a binary boundary map with 1 pixel wide boundaries. The boundary pixels are offset by 1/2 pixel towards the origin from the actual segment boundary. Arguments: seg : Segments labeled from 1..k. width : Width of desired bmap <= seg.shape[1] height : Height of desired bmap <= seg.shape[0] Returns: bmap (ndarray): Binary boundary map. David Martin <[email protected]> January 2003 """ seg = seg.astype(np.bool) seg[seg > 0] = 1 assert np.atleast_3d(seg).shape[2] == 1 width = seg.shape[1] if width is None else width height = seg.shape[0] if height is None else height h, w = seg.shape[:2] ar1 = float(width) / float(height) ar2 = float(w) / float(h) assert not ( width > w | height > h | abs(ar1 - ar2) > 0.01 ), "Can" "t convert %dx%d seg to %dx%d bmap." % (w, h, width, height) e = np.zeros_like(seg) s = np.zeros_like(seg) se = np.zeros_like(seg) e[:, :-1] = seg[:, 1:] s[:-1, :] = seg[1:, :] se[:-1, :-1] = seg[1:, 1:] b = seg ^ e | seg ^ s | seg ^ se b[-1, :] = seg[-1, :] ^ e[-1, :] b[:, -1] = seg[:, -1] ^ s[:, -1] b[-1, -1] = 0 if w == width and h == height: bmap = b else: bmap = np.zeros((height, width)) for x in range(w): for y in range(h): if b[y, x]: j = 1 + math.floor((y - 1) + height / h) i = 1 + math.floor((x - 1) + width / h) bmap[j, i] = 1 return bmap if __name__ == '__main__': from davis2017.davis import DAVIS from davis2017.results import Results dataset = DAVIS(root='input_dir/ref', subset='val', sequences='aerobatics') results = Results(root_dir='examples/osvos') # Test timing F measure for seq in dataset.get_sequences(): all_gt_masks, _, all_masks_id = dataset.get_all_masks(seq, True) all_gt_masks, all_masks_id = all_gt_masks[:, 1:-1, :, :], all_masks_id[1:-1] all_res_masks = results.read_masks(seq, all_masks_id) f_metrics_res = np.zeros(all_gt_masks.shape[:2]) for ii in range(all_gt_masks.shape[0]): f_metrics_res[ii, :] = db_eval_boundary(all_gt_masks[ii, ...], all_res_masks[ii, ...]) # Run using to profile code: python -m cProfile -o f_measure.prof metrics.py # snakeviz f_measure.prof <fim_middle> skimage.morphology import disk
skimage.morphology import disk
IMPORT
prefix_suffix_full_complete_current_block_with_evidence
<filename>UniRef/detectron2/utils/registry.py<fim_prefix># Copyright (c) Facebook, Inc. and its affiliates. from typing import Any import pydoc from fvcore.common.registry import Registry # for backward compatibility. """ ``Registry`` and `locate` provide ways to map a string (typically found in config files) to callable objects. """ __all__ = ["Registry", "locate"] def _convert_target_to_string(t: Any) -> str: """ Inverse of ``locate()``. Args: t: any object with ``__module__`` and ``__qualname__`` """ module, qualname = t.__module__, t.__qualname__ # Compress the path to this object, e.g. ``module.submodule._impl.class`` # may become ``module.submodule.class``, if the later also resolves to the same # object. This simplifies the string, and also is less affected by moving the # class implementation. module_parts = module.split(".") for k in range(1, len(module_parts)): prefix = ".".join(module_parts[:k]) candidate = f"{prefix}.{qualname}" try: if locate(candidate) is t: return candidate except ImportError: pass return f"{module}.{qualname}" def locate(name: str) -> Any: """ Locate and return an object ``x`` using an input string ``{x.__module__}.{x.__qualname__}``, such as "module.submodule.class_name". Raise Exception if it cannot be found. """ obj = pydoc.locate(name) # Some cases (e.g. torch.optim.sgd.SGD) not handled correctly # by pydoc.locate. Try a private function from hydra. if obj is None: try: # from hydra.utils import get_method - will print many errors from<fim_suffix> except ImportError as e: raise ImportError(f"Cannot dynamically locate object {name}!") from e else: obj = _locate(name) # it raises if fails return obj <fim_middle> hydra.utils import _locate
hydra.utils import _locate
IMPORT
prefix_suffix_full_complete_current_block_with_evidence
<filename>UniRef/detectron2/config/config.py<fim_prefix># -*- coding: utf-8 -*- # Copyright (c) Facebook, Inc. and its affiliates. import functools import inspect import logging from fvcore.common.config import CfgNode as _CfgNode from detectron2.utils.file_io import PathManager class CfgNode(_CfgNode): """ The same as `fvcore.common.config.CfgNode`, but different in: 1. Use unsafe yaml loading by default. Note that this may lead to arbitrary code execution: you must not load a config file from untrusted sources before manually inspecting the content of the file. 2. Support config versioning. When attempting to merge an old config, it will convert the old config automatically. .. automethod:: clone .. automethod:: freeze .. automethod:: defrost .. automethod:: is_frozen .. automethod:: load_yaml_with_base .. automethod:: merge_from_list .. automethod:: merge_from_other_cfg """ @classmethod def _open_cfg(cls, filename): return PathManager.open(filename, "r") # Note that the default value of allow_unsafe is changed to True def merge_from_file(self, cfg_filename: str, allow_unsafe: bool = True) -> None: """ Load content from the given config file and merge it into self. Args: cfg_filename: config filename allow_unsafe: allow unsafe yaml syntax """ assert PathManager.isfile(cfg_filename), f"Config file '{cfg_filename}' does not exist!" loaded_cfg = self.load_yaml_with_base(cfg_filename, allow_unsafe=allow_unsafe) loaded_cfg = type(self)(loaded_cfg) # defaults.py needs to import CfgNode from .defaults import _C latest_ver = _C.VERSION assert ( latest_ver == self.VERSION ), "CfgNode.merge_from_file is only allowed on a config object of latest version!" logger = logging.getLogger(__name__) loaded_ver = loaded_cfg.get("VERSION", None) if loaded_ver is None: from .compat import guess_version loaded_ver = guess_version(loaded_cfg, cfg_filename) assert loaded_ver <= self.VERSION, "Cannot merge a v{} config into a v{} config.".format( loaded_ver, self.VERSION ) if loaded_ver == self.VERSION: self.merge_from_other_cfg(loaded_cfg) else: # compat.py needs to import CfgNode from .compat import upgrade_config, downgrade_config logger.warning( "Loading an old v{} config file '{}' by automatically upgrading to v{}. " "See docs/CHANGELOG.md for instructions to update your files.".format( loaded_ver, cfg_filename, self.VERSION ) ) # To convert, first obtain a full config at an old version old_self = downgrade_config(self, to_version=loaded_ver) old_self.merge_from_other_cfg(loaded_cfg) new_config = upgrade_config(old_self) self.clear() self.update(new_config) def dump(self, *args, **kwargs): """ Returns: str: a yaml string representation of the config """ # to make it show up in docs return super().dump(*args, **kwargs) global_cfg = CfgNode() def get_cfg() -> CfgNode: """ Get a copy of the default config. Returns: a detectron2 CfgNode instance. """ from<fim_suffix> return _C.clone() def set_global_cfg(cfg: CfgNode) -> None: """ Let the global config point to the given cfg. Assume that the given "cfg" has the key "KEY", after calling `set_global_cfg(cfg)`, the key can be accessed by: :: from detectron2.config import global_cfg print(global_cfg.KEY) By using a hacky global config, you can access these configs anywhere, without having to pass the config object or the values deep into the code. This is a hacky feature introduced for quick prototyping / research exploration. """ global global_cfg global_cfg.clear() global_cfg.update(cfg) def configurable(init_func=None, *, from_config=None): """ Decorate a function or a class's __init__ method so that it can be called with a :class:`CfgNode` object using a :func:`from_config` function that translates :class:`CfgNode` to arguments. Examples: :: # Usage 1: Decorator on __init__: class A: @configurable def __init__(self, a, b=2, c=3): pass @classmethod def from_config(cls, cfg): # 'cfg' must be the first argument # Returns kwargs to be passed to __init__ return {"a": cfg.A, "b": cfg.B} a1 = A(a=1, b=2) # regular construction a2 = A(cfg) # construct with a cfg a3 = A(cfg, b=3, c=4) # construct with extra overwrite # Usage 2: Decorator on any function. Needs an extra from_config argument: @configurable(from_config=lambda cfg: {"a: cfg.A, "b": cfg.B}) def a_func(a, b=2, c=3): pass a1 = a_func(a=1, b=2) # regular call a2 = a_func(cfg) # call with a cfg a3 = a_func(cfg, b=3, c=4) # call with extra overwrite Args: init_func (callable): a class's ``__init__`` method in usage 1. The class must have a ``from_config`` classmethod which takes `cfg` as the first argument. from_config (callable): the from_config function in usage 2. It must take `cfg` as its first argument. """ if init_func is not None: assert ( inspect.isfunction(init_func) and from_config is None and init_func.__name__ == "__init__" ), "Incorrect use of @configurable. Check API documentation for examples." @functools.wraps(init_func) def wrapped(self, *args, **kwargs): try: from_config_func = type(self).from_config except AttributeError as e: raise AttributeError( "Class with @configurable must have a 'from_config' classmethod." ) from e if not inspect.ismethod(from_config_func): raise TypeError("Class with @configurable must have a 'from_config' classmethod.") if _called_with_cfg(*args, **kwargs): explicit_args = _get_args_from_config(from_config_func, *args, **kwargs) init_func(self, **explicit_args) else: init_func(self, *args, **kwargs) return wrapped else: if from_config is None: return configurable # @configurable() is made equivalent to @configurable assert inspect.isfunction( from_config ), "from_config argument of configurable must be a function!" def wrapper(orig_func): @functools.wraps(orig_func) def wrapped(*args, **kwargs): if _called_with_cfg(*args, **kwargs): explicit_args = _get_args_from_config(from_config, *args, **kwargs) return orig_func(**explicit_args) else: return orig_func(*args, **kwargs) wrapped.from_config = from_config return wrapped return wrapper def _get_args_from_config(from_config_func, *args, **kwargs): """ Use `from_config` to obtain explicit arguments. Returns: dict: arguments to be used for cls.__init__ """ signature = inspect.signature(from_config_func) if list(signature.parameters.keys())[0] != "cfg": if inspect.isfunction(from_config_func): name = from_config_func.__name__ else: name = f"{from_config_func.__self__}.from_config" raise TypeError(f"{name} must take 'cfg' as the first argument!") support_var_arg = any( param.kind in [param.VAR_POSITIONAL, param.VAR_KEYWORD] for param in signature.parameters.values() ) if support_var_arg: # forward all arguments to from_config, if from_config accepts them ret = from_config_func(*args, **kwargs) else: # forward supported arguments to from_config supported_arg_names = set(signature.parameters.keys()) extra_kwargs = {} for name in list(kwargs.keys()): if name not in supported_arg_names: extra_kwargs[name] = kwargs.pop(name) ret = from_config_func(*args, **kwargs) # forward the other arguments to __init__ ret.update(extra_kwargs) return ret def _called_with_cfg(*args, **kwargs): """ Returns: bool: whether the arguments contain CfgNode and should be considered forwarded to from_config. """ from omegaconf import DictConfig if len(args) and isinstance(args[0], (_CfgNode, DictConfig)): return True if isinstance(kwargs.pop("cfg", None), (_CfgNode, DictConfig)): return True # `from_config`'s first argument is forced to be "cfg". # So the above check covers all cases. return False <fim_middle> .defaults import _C
.defaults import _C
IMPORT
prefix_suffix_full_complete_current_block_with_evidence
<filename>UniRef/detectron2/checkpoint/c2_model_loading.py<fim_prefix># Copyright (c) Facebook, Inc. and its affiliates. import copy import logging import re from typing import Dict, List import torch from tabulate import tabulate def convert_basic_c2_names(original_keys): """ Apply some basic name conversion to names in C2 weights. It only deals with typical backbone models. Args: original_keys (list[str]): Returns: list[str]: The same number of strings matching those in original_keys. """ layer_keys = copy.deepcopy(original_keys) layer_keys = [ {"pred_b": "linear_b", "pred_w": "linear_w"}.get(k, k) for k in layer_keys ] # some hard-coded mappings layer_keys = [k.replace("_", ".") for k in layer_keys] layer_keys = [re.sub("\\.b$", ".bias", k) for k in layer_keys] layer_keys = [re.sub("\\.w$", ".weight", k) for k in layer_keys] # Uniform both bn and gn names to "norm" layer_keys = [re.sub("bn\\.s$", "norm.weight", k) for k in layer_keys] layer_keys = [re.sub("bn\\.bias$", "norm.bias", k) for k in layer_keys] layer_keys = [re.sub("bn\\.rm", "norm.running_mean", k) for k in layer_keys] layer_keys = [re.sub("bn\\.running.mean$", "norm.running_mean", k) for k in layer_keys] layer_keys = [re.sub("bn\\.riv$", "norm.running_var", k) for k in layer_keys] layer_keys = [re.sub("bn\\.running.var$", "norm.running_var", k) for k in layer_keys] layer_keys = [re.sub("bn\\.gamma$", "norm.weight", k) for k in layer_keys] layer_keys = [re.sub("bn\\.beta$", "norm.bias", k) for k in layer_keys] layer_keys = [re.sub("gn\\.s$", "norm.weight", k) for k in layer_keys] layer_keys = [re.sub("gn\\.bias$", "norm.bias", k) for k in layer_keys] # stem layer_keys = [re.sub("^res\\.conv1\\.norm\\.", "conv1.norm.", k) for k in layer_keys] # to avoid mis-matching with "conv1" in other components (e.g. detection head) layer_keys = [re.sub("^conv1\\.", "stem.conv1.", k) for k in layer_keys] # layer1-4 is used by torchvision, however we follow the C2 naming strategy (res2-5) # layer_keys = [re.sub("^res2.", "layer1.", k) for k in layer_keys] # layer_keys = [re.sub("^res3.", "layer2.", k) for k in layer_keys] # layer_keys = [re.sub("^res4.", "layer3.", k) for k in layer_keys] # layer_keys = [re.sub("^res5.", "layer4.", k) for k in layer_keys] # blocks layer_keys = [k.replace(".branch1.", ".shortcut.") for k in layer_keys] layer_keys = [k.replace(".branch2a.", ".conv1.") for k in layer_keys] layer_keys = [k.replace(".branch2b.", ".conv2.") for k in layer_keys] layer_keys = [k.replace(".branch2c.", ".conv3.") for k in layer_keys] # DensePose substitutions layer_keys = [re.sub("^body.conv.fcn", "body_conv_fcn", k) for k in layer_keys] layer_keys = [k.replace("AnnIndex.lowres", "ann_index_lowres") for k in layer_keys] layer_keys = [k.replace("Index.UV.lowres", "index_uv_lowres") for k in layer_keys] layer_keys = [k.replace("U.lowres", "u_lowres") for k in layer_keys] layer_keys = [k.replace("V.lowres", "v_lowres") for k in layer_keys] return layer_keys def convert_c2_detectron_names(weights): """ Map Caffe2 Detectron weight names to Detectron2 names. Args: weights (dict): name -> tensor Returns: dict: detectron2 names -> tensor dict: detectron2 names -> C2 names """ logger = logging.getLogger(__name__) logger.info("Renaming Caffe2 weights ......") original_keys = sorted(weights.keys()) layer_keys = copy.deepcopy(original_keys) layer_keys = convert_basic_c2_names(layer_keys) # -------------------------------------------------------------------------- # RPN hidden representation conv # -------------------------------------------------------------------------- # FPN case # In the C2 model, the RPN hidden layer conv is defined for FPN level 2 and then # shared for all other levels, hence the appearance of "fpn2" layer_keys = [ k.replace("conv.rpn.fpn2", "proposal_generator.rpn_head.conv") for k in layer_keys ] # Non-FPN case layer_keys = [k.replace("conv.rpn", "proposal_generator.rpn_head.conv") for k in layer_keys] # -------------------------------------------------------------------------- # RPN box transformation conv # -------------------------------------------------------------------------- # FPN case (see note above about "fpn2") layer_keys = [ k.replace("rpn.bbox.pred.fpn2", "proposal_generator.rpn_head.anchor_deltas") for k in layer_keys ] layer_keys = [ k.replace("rpn.cls.logits.fpn2", "proposal_generator.rpn_head.objectness_logits") for k in layer_keys ] # Non-FPN case layer_keys = [ k.replace("rpn.bbox.pred", "proposal_generator.rpn_head.anchor_deltas") for k in layer_keys ] layer_keys = [ k.replace("rpn.cls.logits", "proposal_generator.rpn_head.objectness_logits") for k in layer_keys ] # -------------------------------------------------------------------------- # Fast R-CNN box head # -------------------------------------------------------------------------- layer_keys = [re.sub("^bbox\\.pred", "bbox_pred", k) for k in layer_keys] layer_keys = [re.sub("^cls\\.score", "cls_score", k) for k in layer_keys] layer_keys = [re.sub("^fc6\\.", "box_head.fc1.", k) for k in layer_keys] layer_keys = [re.sub("^fc7\\.", "box_head.fc2.", k) for k in layer_keys] # 4conv1fc head tensor names: head_conv1_w, head_conv1_gn_s layer_keys = [re.sub("^head\\.conv", "box_head.conv", k) for k in layer_keys] # -------------------------------------------------------------------------- # FPN lateral and output convolutions # -------------------------------------------------------------------------- def fpn_map(name): """ Look for keys with the following patterns: 1) Starts with "fpn.inner." Example: "fpn.inner.res2.2.sum.lateral.weight" Meaning: These are lateral pathway convolutions 2) Starts with "fpn.res" Example: "fpn.res2.2.sum.weight" Meaning: These are FPN output convolutions """ splits = name.split(".") norm = ".norm" if "norm" in splits else "" if name.startswith("fpn.inner."): # splits example: ['fpn', 'inner', 'res2', '2', 'sum', 'lateral', 'weight'] stage = int(splits[2][len("res") :]) return "fpn_lateral{}{}.{}".format(stage, norm, splits[-1]) elif name.startswith("fpn.res"): # splits example: ['fpn', 'res2', '2', 'sum', 'weight'] stage = int(splits[1][len("res") :]) return "fpn_output{}{}.{}".format(stage, norm, splits[-1]) return name layer_keys = [fpn_map(k) for k in layer_keys] # -------------------------------------------------------------------------- # Mask R-CNN mask head # -------------------------------------------------------------------------- # roi_heads.StandardROIHeads case layer_keys = [k.replace(".[mask].fcn", "mask_head.mask_fcn") for k in layer_keys] layer_keys = [re.sub("^\\.mask\\.fcn", "mask_head.mask_fcn", k) for k in layer_keys] layer_keys = [k.replace("mask.fcn.logits", "mask_head.predictor") for k in layer_keys] # roi_heads.Res5ROIHeads case layer_keys = [k.replace("conv5.mask", "mask_head.deconv") for k in layer_keys] # -------------------------------------------------------------------------- # Keypoint R-CNN head # -------------------------------------------------------------------------- # interestingly, the keypoint head convs have blob names that are simply "conv_fcnX" layer_keys = [k.replace("conv.fcn", "roi_heads.keypoint_head.conv_fcn") for k in layer_keys] layer_keys = [ k.replace("kps.score.lowres", "roi_heads.keypoint_head.score_lowres") for k in layer_keys ] layer_keys = [k.replace("kps.score.", "roi_heads.keypoint_head.score.") for k in layer_keys] # -------------------------------------------------------------------------- # Done with replacements # -------------------------------------------------------------------------- assert len(set(layer_keys)) == len(layer_keys) assert len(original_keys) == len(layer_keys) new_weights = {} new_keys_to_original_keys = {} for orig, renamed in zip(original_keys, layer_keys): new_keys_to_original_keys[renamed] = orig if renamed.startswith("bbox_pred.") or renamed.startswith("mask_head.predictor."): # remove the meaningless prediction weight for background class new_start_idx = 4 if renamed.startswith("bbox_pred.") else 1 new_weights[renamed] = weights[orig][new_start_idx:] logger.info( "Remove prediction weight for background class in {}. The shape changes from " "{} to {}.".format( renamed, tuple(weights[orig].shape), tuple(new_weights[renamed].shape) ) ) elif renamed.startswith("cls_score."): # move weights of bg class from original index 0 to last index logger.info( "Move classification weights for background class in {} from index 0 to " "index {}.".format(renamed, weights[orig].shape[0] - 1) ) new_weights[renamed] = torch.cat([weights[orig][1:], weights[orig][:1]]) else: new_weights[renamed] = weights[orig] return new_weights, new_keys_to_original_keys # Note the current matching is not symmetric. # it assumes model_state_dict will have longer names. def align_and_update_state_dicts(model_state_dict, ckpt_state_dict, c2_conversion=True): """ Match names between the two state-dict, and returns a new chkpt_state_dict with names converted to match model_state_dict with heuristics. The returned dict can be later loaded with fvcore checkpointer. If `c2_conversion==True`, `ckpt_state_dict` is assumed to be a Caffe2 model and will be renamed at first. Strategy: suppose that the models that we will create will have prefixes appended to each of its keys, for example due to an extra level of nesting that the original pre-trained weights from ImageNet won't contain. For example, model.state_dict() might return backbone[0].body.res2.conv1.weight, while the pre-trained model contains res2.conv1.weight. We thus want to match both parameters together. For that, we look for each model weight, look among all loaded keys if there is one that is a suffix of the current weight name, and use it if that's the case. If multiple matches exist, take the one with longest size of the corresponding name. For example, for the same model as before, the pretrained weight file can contain both res2.conv1.weight, as well as conv1.weight. In this case, we want to match backbone[0].body.conv1.weight to conv1.weight, and backbone[0].body.res2.conv1.weight to res2.conv1.weight. """ model_keys = sorted(model_state_dict.keys()) if c2_conversion: ckpt_state_dict, original_keys = convert_c2_detectron_names(ckpt_state_dict) # original_keys: the name in the original dict (before renaming) else: original_keys = {x: x for x in ckpt_state_dict.keys()} ckpt_keys = sorted(ckpt_state_dict.keys()) def<fim_suffix> # get a matrix of string matches, where each (i, j) entry correspond to the size of the # ckpt_key string, if it matches match_matrix = [len(j) if match(i, j) else 0 for i in model_keys for j in ckpt_keys] match_matrix = torch.as_tensor(match_matrix).view(len(model_keys), len(ckpt_keys)) # use the matched one with longest size in case of multiple matches max_match_size, idxs = match_matrix.max(1) # remove indices that correspond to no-match idxs[max_match_size == 0] = -1 logger = logging.getLogger(__name__) # matched_pairs (matched checkpoint key --> matched model key) matched_keys = {} result_state_dict = {} for idx_model, idx_ckpt in enumerate(idxs.tolist()): if idx_ckpt == -1: continue key_model = model_keys[idx_model] key_ckpt = ckpt_keys[idx_ckpt] value_ckpt = ckpt_state_dict[key_ckpt] shape_in_model = model_state_dict[key_model].shape if shape_in_model != value_ckpt.shape: logger.warning( "Shape of {} in checkpoint is {}, while shape of {} in model is {}.".format( key_ckpt, value_ckpt.shape, key_model, shape_in_model ) ) logger.warning( "{} will not be loaded. Please double check and see if this is desired.".format( key_ckpt ) ) continue assert key_model not in result_state_dict result_state_dict[key_model] = value_ckpt if key_ckpt in matched_keys: # already added to matched_keys logger.error( "Ambiguity found for {} in checkpoint!" "It matches at least two keys in the model ({} and {}).".format( key_ckpt, key_model, matched_keys[key_ckpt] ) ) raise ValueError("Cannot match one checkpoint key to multiple keys in the model.") matched_keys[key_ckpt] = key_model # logging: matched_model_keys = sorted(matched_keys.values()) if len(matched_model_keys) == 0: logger.warning("No weights in checkpoint matched with model.") return ckpt_state_dict common_prefix = _longest_common_prefix(matched_model_keys) rev_matched_keys = {v: k for k, v in matched_keys.items()} original_keys = {k: original_keys[rev_matched_keys[k]] for k in matched_model_keys} model_key_groups = _group_keys_by_module(matched_model_keys, original_keys) table = [] memo = set() for key_model in matched_model_keys: if key_model in memo: continue if key_model in model_key_groups: group = model_key_groups[key_model] memo |= set(group) shapes = [tuple(model_state_dict[k].shape) for k in group] table.append( ( _longest_common_prefix([k[len(common_prefix) :] for k in group]) + "*", _group_str([original_keys[k] for k in group]), " ".join([str(x).replace(" ", "") for x in shapes]), ) ) else: key_checkpoint = original_keys[key_model] shape = str(tuple(model_state_dict[key_model].shape)) table.append((key_model[len(common_prefix) :], key_checkpoint, shape)) table_str = tabulate( table, tablefmt="pipe", headers=["Names in Model", "Names in Checkpoint", "Shapes"] ) logger.info( "Following weights matched with " + (f"submodule {common_prefix[:-1]}" if common_prefix else "model") + ":\n" + table_str ) unmatched_ckpt_keys = [k for k in ckpt_keys if k not in set(matched_keys.keys())] for k in unmatched_ckpt_keys: result_state_dict[k] = ckpt_state_dict[k] return result_state_dict def _group_keys_by_module(keys: List[str], original_names: Dict[str, str]): """ Params in the same submodule are grouped together. Args: keys: names of all parameters original_names: mapping from parameter name to their name in the checkpoint Returns: dict[name -> all other names in the same group] """ def _submodule_name(key): pos = key.rfind(".") if pos < 0: return None prefix = key[: pos + 1] return prefix all_submodules = [_submodule_name(k) for k in keys] all_submodules = [x for x in all_submodules if x] all_submodules = sorted(all_submodules, key=len) ret = {} for prefix in all_submodules: group = [k for k in keys if k.startswith(prefix)] if len(group) <= 1: continue original_name_lcp = _longest_common_prefix_str([original_names[k] for k in group]) if len(original_name_lcp) == 0: # don't group weights if original names don't share prefix continue for k in group: if k in ret: continue ret[k] = group return ret def _longest_common_prefix(names: List[str]) -> str: """ ["abc.zfg", "abc.zef"] -> "abc." """ names = [n.split(".") for n in names] m1, m2 = min(names), max(names) ret = [a for a, b in zip(m1, m2) if a == b] ret = ".".join(ret) + "." if len(ret) else "" return ret def _longest_common_prefix_str(names: List[str]) -> str: m1, m2 = min(names), max(names) lcp = [a for a, b in zip(m1, m2) if a == b] lcp = "".join(lcp) return lcp def _group_str(names: List[str]) -> str: """ Turn "common1", "common2", "common3" into "common{1,2,3}" """ lcp = _longest_common_prefix_str(names) rest = [x[len(lcp) :] for x in names] rest = "{" + ",".join(rest) + "}" ret = lcp + rest # add some simplification for BN specifically ret = ret.replace("bn_{beta,running_mean,running_var,gamma}", "bn_*") ret = ret.replace("bn_beta,bn_running_mean,bn_running_var,bn_gamma", "bn_*") return ret <fim_middle> match(a, b): # Matched ckpt_key should be a complete (starts with '.') suffix. # For example, roi_heads.mesh_head.whatever_conv1 does not match conv1, # but matches whatever_conv1 or mesh_head.whatever_conv1. return a == b or a.endswith("." + b)
match(a, b): # Matched ckpt_key should be a complete (starts with '.') suffix. # For example, roi_heads.mesh_head.whatever_conv1 does not match conv1, # but matches whatever_conv1 or mesh_head.whatever_conv1. return a == b or a.endswith("." + b)
METHOD
prefix_suffix_full_complete_current_block_with_evidence
<filename>UniRef/detectron2/structures/masks.py<fim_prefix># Copyright (c) Facebook, Inc. and its affiliates. import copy import itertools import numpy as np from typing import Any, Iterator, List, Union import pycocotools.mask as mask_util import torch from torch import device from detectron2.layers.roi_align import ROIAlign from detectron2.utils.memory import retry_if_cuda_oom from .boxes import Boxes def polygon_area(x, y): # Using the shoelace formula # https://stackoverflow.com/questions/24467972/calculate-area-of-polygon-given-x-y-coordinates return 0.5 * np.abs(np.dot(x, np.roll(y, 1)) - np.dot(y, np.roll(x, 1))) def polygons_to_bitmask(polygons: List[np.ndarray], height: int, width: int) -> np.ndarray: """ Args: polygons (list[ndarray]): each array has shape (Nx2,) height, width (int) Returns: ndarray: a bool mask of shape (height, width) """ if len(polygons) == 0: # COCOAPI does not support empty polygons return np.zeros((height, width)).astype(np.bool) rles = mask_util.frPyObjects(polygons, height, width) rle = mask_util.merge(rles) return mask_util.decode(rle).astype(np.bool) def rasterize_polygons_within_box( polygons: List[np.ndarray], box: np.ndarray, mask_size: int ) -> torch.Tensor: """ Rasterize the polygons into a mask image and crop the mask content in the given box. The cropped mask is resized to (mask_size, mask_size). This function is used when generating training targets for mask head in Mask R-CNN. Given original ground-truth masks for an image, new ground-truth mask training targets in the size of `mask_size x mask_size` must be provided for each predicted box. This function will be called to produce such targets. Args: polygons (list[ndarray[float]]): a list of polygons, which represents an instance. box: 4-element numpy array mask_size (int): Returns: Tensor: BoolTensor of shape (mask_size, mask_size) """ # 1. Shift the polygons w.r.t the boxes w, h = box[2] - box[0], box[3] - box[1] polygons = copy.deepcopy(polygons) for p in polygons: p[0::2] = p[0::2] - box[0] p[1::2] = p[1::2] - box[1] # 2. Rescale the polygons to the new box size # max() to avoid division by small number ratio_h = mask_size / max(h, 0.1) ratio_w = mask_size / max(w, 0.1) if ratio_h == ratio_w: for p in polygons: p *= ratio_h else: for p in polygons: p[0::2] *= ratio_w p[1::2] *= ratio_h # 3. Rasterize the polygons with coco api mask = polygons_to_bitmask(polygons, mask_size, mask_size) mask = torch.from_numpy(mask) return mask class BitMasks: """ This class stores the segmentation masks for all objects in one image, in the form of bitmaps. Attributes: tensor: bool Tensor of N,H,W, representing N instances in the image. """ def __init__(self, tensor: Union[torch.Tensor, np.ndarray]): """ Args: tensor: bool Tensor of N,H,W, representing N instances in the image. """ device = tensor.device if isinstance(tensor, torch.Tensor) else torch.device("cpu") tensor = torch.as_tensor(tensor, dtype=torch.bool, device=device) assert tensor.dim() == 3, tensor.size() self.image_size = tensor.shape[1:] self.tensor = tensor @torch.jit.unused def to(self, *args: Any, **kwargs: Any) -> "BitMasks": return BitMasks(self.tensor.to(*args, **kwargs)) @property def device(self) -> torch.device: return self.tensor.device @torch.jit.unused def __getitem__(self, item: Union[int, slice, torch.BoolTensor]) -> "BitMasks": """ Returns: BitMasks: Create a new :class:`BitMasks` by indexing. The following usage are allowed: 1. `new_masks = masks[3]`: return a `BitMasks` which contains only one mask. 2. `new_masks = masks[2:10]`: return a slice of masks. 3. `new_masks = masks[vector]`, where vector is a torch.BoolTensor with `length = len(masks)`. Nonzero elements in the vector will be selected. Note that the returned object might share storage with this object, subject to Pytorch's indexing semantics. """ if isinstance(item, int): return BitMasks(self.tensor[item].unsqueeze(0)) m = self.tensor[item] assert m.dim() == 3, "Indexing on BitMasks with {} returns a tensor with shape {}!".format( item, m.shape ) return BitMasks(m) @torch.jit.unused def __iter__(self) -> torch.Tensor: yield from self.tensor @torch.jit.unused def __repr__(self) -> str: s = self.__class__.__name__ + "(" s += "num_instances={})".format(len(self.tensor)) return s def __len__(self) -> int: return self.tensor.shape[0] def nonempty(self) -> torch.Tensor: """ Find masks that are non-empty. Returns: Tensor: a BoolTensor which represents whether each mask is empty (False) or non-empty (True). """ return self.tensor.flatten(1).any(dim=1) @staticmethod def from_polygon_masks( polygon_masks: Union["PolygonMasks", List[List[np.ndarray]]], height: int, width: int ) -> "BitMasks": """ Args: polygon_masks (list[list[ndarray]] or PolygonMasks) height, width (int) """ if isinstance(polygon_masks, PolygonMasks): polygon_masks = polygon_masks.polygons masks = [polygons_to_bitmask(p, height, width) for p in polygon_masks] if len(masks): return BitMasks(torch.stack([torch.from_numpy(x) for x in masks])) else: return BitMasks(torch.empty(0, height, width, dtype=torch.bool)) @staticmethod def from_roi_masks(roi_masks: "ROIMasks", height: int, width: int) -> "BitMasks": """ Args: roi_masks: height, width (int): """ return roi_masks.to_bitmasks(height, width) def crop_and_resize(self, boxes: torch.Tensor, mask_size: int) -> torch.Tensor: """ Crop each bitmask by the given box, and resize results to (mask_size, mask_size). This can be used to prepare training targets for Mask R-CNN. It has less reconstruction error compared to rasterization with polygons. However we observe no difference in accuracy, but BitMasks requires more memory to store all the masks. Args: boxes (Tensor): Nx4 tensor storing the boxes for each mask mask_size (int): the size of the rasterized mask. Returns: Tensor: A bool tensor of shape (N, mask_size, mask_size), where N is the number of predicted boxes for this image. """ assert len(boxes) == len(self), "{} != {}".format(len(boxes), len(self)) device = self.tensor.device batch_inds = torch.arange(len(boxes), device=device).to(dtype=boxes.dtype)[:, None] rois = torch.cat([batch_inds, boxes], dim=1) # Nx5 bit_masks = self.tensor.to(dtype=torch.float32) rois = rois.to(device=device) output = ( ROIAlign((mask_size, mask_size), 1.0, 0, aligned=True) .forward(bit_masks[:, None, :, :], rois) .squeeze(1) ) output = output >= 0.5 return output def get_bounding_boxes(self) -> Boxes: """ Returns: Boxes: tight bounding boxes around bitmasks. If a mask is empty, it's bounding box will be all zero. """ boxes = torch.zeros(self.tensor.shape[0], 4, dtype=torch.float32) x_any = torch.any(self.tensor, dim=1) y_any = torch.any(self.tensor, dim=2) for idx in range(self.tensor.shape[0]): x = torch.where(x_any[idx, :])[0] y = torch.where(y_any[idx, :])[0] if len(x) > 0 and len(y) > 0: boxes[idx, :] = torch.as_tensor( [x[0], y[0], x[-1] + 1, y[-1] + 1], dtype=torch.float32 ) return Boxes(boxes) @staticmethod def cat(bitmasks_list: List["BitMasks"]) -> "BitMasks": """ Concatenates a list of BitMasks into a single BitMasks Arguments: bitmasks_list (list[BitMasks]) Returns: BitMasks: the concatenated BitMasks """ assert isinstance(bitmasks_list, (list, tuple)) assert len(bitmasks_list) > 0 assert all(isinstance(bitmask, BitMasks) for bitmask in bitmasks_list) cat_bitmasks = type(bitmasks_list[0])(torch.cat([bm.tensor for bm in bitmasks_list], dim=0)) return cat_bitmasks class PolygonMasks: """ This class stores the segmentation masks for all objects in one image, in the form of polygons. Attributes: polygons: list[list[ndarray]]. Each ndarray is a float64 vector representing a polygon. """ def __init__(self, polygons: List[List[Union[torch.Tensor, np.ndarray]]]): """ Arguments: polygons (list[list[np.ndarray]]): The first level of the list correspond to individual instances, the second level to all the polygons that compose the instance, and the third level to the polygon coordinates. The third level array should have the format of [x0, y0, x1, y1, ..., xn, yn] (n >= 3). """ if not isinstance(polygons, list): raise ValueError( "Cannot create PolygonMasks: Expect a list of list of polygons per image. " "Got '{}' instead.".format(type(polygons)) ) def _make_array(t: Union[torch.Tensor, np.ndarray]) -> np.ndarray: # Use float64 for higher precision, because why not? # Always put polygons on CPU (self.to is a no-op) since they # are supposed to be small tensors. # May need to change this assumption if GPU placement becomes useful if isinstance(t, torch.Tensor): t = t.cpu().numpy() return np.asarray(t).astype("float64") def<fim_suffix> self.polygons: List[List[np.ndarray]] = [ process_polygons(polygons_per_instance) for polygons_per_instance in polygons ] def to(self, *args: Any, **kwargs: Any) -> "PolygonMasks": return self @property def device(self) -> torch.device: return torch.device("cpu") def get_bounding_boxes(self) -> Boxes: """ Returns: Boxes: tight bounding boxes around polygon masks. """ boxes = torch.zeros(len(self.polygons), 4, dtype=torch.float32) for idx, polygons_per_instance in enumerate(self.polygons): minxy = torch.as_tensor([float("inf"), float("inf")], dtype=torch.float32) maxxy = torch.zeros(2, dtype=torch.float32) for polygon in polygons_per_instance: coords = torch.from_numpy(polygon).view(-1, 2).to(dtype=torch.float32) minxy = torch.min(minxy, torch.min(coords, dim=0).values) maxxy = torch.max(maxxy, torch.max(coords, dim=0).values) boxes[idx, :2] = minxy boxes[idx, 2:] = maxxy return Boxes(boxes) def nonempty(self) -> torch.Tensor: """ Find masks that are non-empty. Returns: Tensor: a BoolTensor which represents whether each mask is empty (False) or not (True). """ keep = [1 if len(polygon) > 0 else 0 for polygon in self.polygons] return torch.from_numpy(np.asarray(keep, dtype=np.bool)) def __getitem__(self, item: Union[int, slice, List[int], torch.BoolTensor]) -> "PolygonMasks": """ Support indexing over the instances and return a `PolygonMasks` object. `item` can be: 1. An integer. It will return an object with only one instance. 2. A slice. It will return an object with the selected instances. 3. A list[int]. It will return an object with the selected instances, correpsonding to the indices in the list. 4. A vector mask of type BoolTensor, whose length is num_instances. It will return an object with the instances whose mask is nonzero. """ if isinstance(item, int): selected_polygons = [self.polygons[item]] elif isinstance(item, slice): selected_polygons = self.polygons[item] elif isinstance(item, list): selected_polygons = [self.polygons[i] for i in item] elif isinstance(item, torch.Tensor): # Polygons is a list, so we have to move the indices back to CPU. if item.dtype == torch.bool: assert item.dim() == 1, item.shape item = item.nonzero().squeeze(1).cpu().numpy().tolist() elif item.dtype in [torch.int32, torch.int64]: item = item.cpu().numpy().tolist() else: raise ValueError("Unsupported tensor dtype={} for indexing!".format(item.dtype)) selected_polygons = [self.polygons[i] for i in item] return PolygonMasks(selected_polygons) def __iter__(self) -> Iterator[List[np.ndarray]]: """ Yields: list[ndarray]: the polygons for one instance. Each Tensor is a float64 vector representing a polygon. """ return iter(self.polygons) def __repr__(self) -> str: s = self.__class__.__name__ + "(" s += "num_instances={})".format(len(self.polygons)) return s def __len__(self) -> int: return len(self.polygons) def crop_and_resize(self, boxes: torch.Tensor, mask_size: int) -> torch.Tensor: """ Crop each mask by the given box, and resize results to (mask_size, mask_size). This can be used to prepare training targets for Mask R-CNN. Args: boxes (Tensor): Nx4 tensor storing the boxes for each mask mask_size (int): the size of the rasterized mask. Returns: Tensor: A bool tensor of shape (N, mask_size, mask_size), where N is the number of predicted boxes for this image. """ assert len(boxes) == len(self), "{} != {}".format(len(boxes), len(self)) device = boxes.device # Put boxes on the CPU, as the polygon representation is not efficient GPU-wise # (several small tensors for representing a single instance mask) boxes = boxes.to(torch.device("cpu")) results = [ rasterize_polygons_within_box(poly, box.numpy(), mask_size) for poly, box in zip(self.polygons, boxes) ] """ poly: list[list[float]], the polygons for one instance box: a tensor of shape (4,) """ if len(results) == 0: return torch.empty(0, mask_size, mask_size, dtype=torch.bool, device=device) return torch.stack(results, dim=0).to(device=device) def area(self): """ Computes area of the mask. Only works with Polygons, using the shoelace formula: https://stackoverflow.com/questions/24467972/calculate-area-of-polygon-given-x-y-coordinates Returns: Tensor: a vector, area for each instance """ area = [] for polygons_per_instance in self.polygons: area_per_instance = 0 for p in polygons_per_instance: area_per_instance += polygon_area(p[0::2], p[1::2]) area.append(area_per_instance) return torch.tensor(area) @staticmethod def cat(polymasks_list: List["PolygonMasks"]) -> "PolygonMasks": """ Concatenates a list of PolygonMasks into a single PolygonMasks Arguments: polymasks_list (list[PolygonMasks]) Returns: PolygonMasks: the concatenated PolygonMasks """ assert isinstance(polymasks_list, (list, tuple)) assert len(polymasks_list) > 0 assert all(isinstance(polymask, PolygonMasks) for polymask in polymasks_list) cat_polymasks = type(polymasks_list[0])( list(itertools.chain.from_iterable(pm.polygons for pm in polymasks_list)) ) return cat_polymasks class ROIMasks: """ Represent masks by N smaller masks defined in some ROIs. Once ROI boxes are given, full-image bitmask can be obtained by "pasting" the mask on the region defined by the corresponding ROI box. """ def __init__(self, tensor: torch.Tensor): """ Args: tensor: (N, M, M) mask tensor that defines the mask within each ROI. """ if tensor.dim() != 3: raise ValueError("ROIMasks must take a masks of 3 dimension.") self.tensor = tensor def to(self, device: torch.device) -> "ROIMasks": return ROIMasks(self.tensor.to(device)) @property def device(self) -> device: return self.tensor.device def __len__(self): return self.tensor.shape[0] def __getitem__(self, item) -> "ROIMasks": """ Returns: ROIMasks: Create a new :class:`ROIMasks` by indexing. The following usage are allowed: 1. `new_masks = masks[2:10]`: return a slice of masks. 2. `new_masks = masks[vector]`, where vector is a torch.BoolTensor with `length = len(masks)`. Nonzero elements in the vector will be selected. Note that the returned object might share storage with this object, subject to Pytorch's indexing semantics. """ t = self.tensor[item] if t.dim() != 3: raise ValueError( f"Indexing on ROIMasks with {item} returns a tensor with shape {t.shape}!" ) return ROIMasks(t) @torch.jit.unused def __repr__(self) -> str: s = self.__class__.__name__ + "(" s += "num_instances={})".format(len(self.tensor)) return s @torch.jit.unused def to_bitmasks(self, boxes: torch.Tensor, height, width, threshold=0.5): """ Args: see documentation of :func:`paste_masks_in_image`. """ from detectron2.layers.mask_ops import paste_masks_in_image, _paste_masks_tensor_shape if torch.jit.is_tracing(): if isinstance(height, torch.Tensor): paste_func = _paste_masks_tensor_shape else: paste_func = paste_masks_in_image else: paste_func = retry_if_cuda_oom(paste_masks_in_image) bitmasks = paste_func(self.tensor, boxes.tensor, (height, width), threshold=threshold) return BitMasks(bitmasks) <fim_middle> process_polygons( polygons_per_instance: List[Union[torch.Tensor, np.ndarray]] ) -> List[np.ndarray]: if not isinstance(polygons_per_instance, list): raise ValueError( "Cannot create polygons: Expect a list of polygons per instance. " "Got '{}' instead.".format(type(polygons_per_instance)) ) # transform each polygon to a numpy array polygons_per_instance = [_make_array(p) for p in polygons_per_instance] for polygon in polygons_per_instance: if len(polygon) % 2 != 0 or len(polygon) < 6: raise ValueError(f"Cannot create a polygon from {len(polygon)} coordinates.") return polygons_per_instance
process_polygons( polygons_per_instance: List[Union[torch.Tensor, np.ndarray]] ) -> List[np.ndarray]: if not isinstance(polygons_per_instance, list): raise ValueError( "Cannot create polygons: Expect a list of polygons per instance. " "Got '{}' instead.".format(type(polygons_per_instance)) ) # transform each polygon to a numpy array polygons_per_instance = [_make_array(p) for p in polygons_per_instance] for polygon in polygons_per_instance: if len(polygon) % 2 != 0 or len(polygon) < 6: raise ValueError(f"Cannot create a polygon from {len(polygon)} coordinates.") return polygons_per_instance
METHOD
prefix_suffix_full_complete_current_block_with_evidence
<filename>UniRef/detectron2/checkpoint/c2_model_loading.py<fim_prefix># Copyright (c) Facebook, Inc. and its affiliates. import copy import logging import re from typing import Dict, List import torch from tabulate import tabulate def convert_basic_c2_names(original_keys): """ Apply some basic name conversion to names in C2 weights. It only deals with typical backbone models. Args: original_keys (list[str]): Returns: list[str]: The same number of strings matching those in original_keys. """ layer_keys = copy.deepcopy(original_keys) layer_keys = [ {"pred_b": "linear_b", "pred_w": "linear_w"}.get(k, k) for k in layer_keys ] # some hard-coded mappings layer_keys = [k.replace("_", ".") for k in layer_keys] layer_keys = [re.sub("\\.b$", ".bias", k) for k in layer_keys] layer_keys = [re.sub("\\.w$", ".weight", k) for k in layer_keys] # Uniform both bn and gn names to "norm" layer_keys = [re.sub("bn\\.s$", "norm.weight", k) for k in layer_keys] layer_keys = [re.sub("bn\\.bias$", "norm.bias", k) for k in layer_keys] layer_keys = [re.sub("bn\\.rm", "norm.running_mean", k) for k in layer_keys] layer_keys = [re.sub("bn\\.running.mean$", "norm.running_mean", k) for k in layer_keys] layer_keys = [re.sub("bn\\.riv$", "norm.running_var", k) for k in layer_keys] layer_keys = [re.sub("bn\\.running.var$", "norm.running_var", k) for k in layer_keys] layer_keys = [re.sub("bn\\.gamma$", "norm.weight", k) for k in layer_keys] layer_keys = [re.sub("bn\\.beta$", "norm.bias", k) for k in layer_keys] layer_keys = [re.sub("gn\\.s$", "norm.weight", k) for k in layer_keys] layer_keys = [re.sub("gn\\.bias$", "norm.bias", k) for k in layer_keys] # stem layer_keys = [re.sub("^res\\.conv1\\.norm\\.", "conv1.norm.", k) for k in layer_keys] # to avoid mis-matching with "conv1" in other components (e.g. detection head) layer_keys = [re.sub("^conv1\\.", "stem.conv1.", k) for k in layer_keys] # layer1-4 is used by torchvision, however we follow the C2 naming strategy (res2-5) # layer_keys = [re.sub("^res2.", "layer1.", k) for k in layer_keys] # layer_keys = [re.sub("^res3.", "layer2.", k) for k in layer_keys] # layer_keys = [re.sub("^res4.", "layer3.", k) for k in layer_keys] # layer_keys = [re.sub("^res5.", "layer4.", k) for k in layer_keys] # blocks layer_keys = [k.replace(".branch1.", ".shortcut.") for k in layer_keys] layer_keys = [k.replace(".branch2a.", ".conv1.") for k in layer_keys] layer_keys = [k.replace(".branch2b.", ".conv2.") for k in layer_keys] layer_keys = [k.replace(".branch2c.", ".conv3.") for k in layer_keys] # DensePose substitutions layer_keys = [re.sub("^body.conv.fcn", "body_conv_fcn", k) for k in layer_keys] layer_keys = [k.replace("AnnIndex.lowres", "ann_index_lowres") for k in layer_keys] layer_keys = [k.replace("Index.UV.lowres", "index_uv_lowres") for k in layer_keys] layer_keys = [k.replace("U.lowres", "u_lowres") for k in layer_keys] layer_keys = [k.replace("V.lowres", "v_lowres") for k in layer_keys] return layer_keys def convert_c2_detectron_names(weights): """ Map Caffe2 Detectron weight names to Detectron2 names. Args: weights (dict): name -> tensor Returns: dict: detectron2 names -> tensor dict: detectron2 names -> C2 names """ logger = logging.getLogger(__name__) logger.info("Renaming Caffe2 weights ......") original_keys = sorted(weights.keys()) layer_keys = copy.deepcopy(original_keys) layer_keys = convert_basic_c2_names(layer_keys) # -------------------------------------------------------------------------- # RPN hidden representation conv # -------------------------------------------------------------------------- # FPN case # In the C2 model, the RPN hidden layer conv is defined for FPN level 2 and then # shared for all other levels, hence the appearance of "fpn2" layer_keys = [ k.replace("conv.rpn.fpn2", "proposal_generator.rpn_head.conv") for k in layer_keys ] # Non-FPN case layer_keys = [k.replace("conv.rpn", "proposal_generator.rpn_head.conv") for k in layer_keys] # -------------------------------------------------------------------------- # RPN box transformation conv # -------------------------------------------------------------------------- # FPN case (see note above about "fpn2") layer_keys = [ k.replace("rpn.bbox.pred.fpn2", "proposal_generator.rpn_head.anchor_deltas") for k in layer_keys ] layer_keys = [ k.replace("rpn.cls.logits.fpn2", "proposal_generator.rpn_head.objectness_logits") for k in layer_keys ] # Non-FPN case layer_keys = [ k.replace("rpn.bbox.pred", "proposal_generator.rpn_head.anchor_deltas") for k in layer_keys ] layer_keys = [ k.replace("rpn.cls.logits", "proposal_generator.rpn_head.objectness_logits") for k in layer_keys ] # -------------------------------------------------------------------------- # Fast R-CNN box head # -------------------------------------------------------------------------- layer_keys = [re.sub("^bbox\\.pred", "bbox_pred", k) for k in layer_keys] layer_keys = [re.sub("^cls\\.score", "cls_score", k) for k in layer_keys] layer_keys = [re.sub("^fc6\\.", "box_head.fc1.", k) for k in layer_keys] layer_keys = [re.sub("^fc7\\.", "box_head.fc2.", k) for k in layer_keys] # 4conv1fc head tensor names: head_conv1_w, head_conv1_gn_s layer_keys = [re.sub("^head\\.conv", "box_head.conv", k) for k in layer_keys] # -------------------------------------------------------------------------- # FPN lateral and output convolutions # -------------------------------------------------------------------------- def<fim_suffix> layer_keys = [fpn_map(k) for k in layer_keys] # -------------------------------------------------------------------------- # Mask R-CNN mask head # -------------------------------------------------------------------------- # roi_heads.StandardROIHeads case layer_keys = [k.replace(".[mask].fcn", "mask_head.mask_fcn") for k in layer_keys] layer_keys = [re.sub("^\\.mask\\.fcn", "mask_head.mask_fcn", k) for k in layer_keys] layer_keys = [k.replace("mask.fcn.logits", "mask_head.predictor") for k in layer_keys] # roi_heads.Res5ROIHeads case layer_keys = [k.replace("conv5.mask", "mask_head.deconv") for k in layer_keys] # -------------------------------------------------------------------------- # Keypoint R-CNN head # -------------------------------------------------------------------------- # interestingly, the keypoint head convs have blob names that are simply "conv_fcnX" layer_keys = [k.replace("conv.fcn", "roi_heads.keypoint_head.conv_fcn") for k in layer_keys] layer_keys = [ k.replace("kps.score.lowres", "roi_heads.keypoint_head.score_lowres") for k in layer_keys ] layer_keys = [k.replace("kps.score.", "roi_heads.keypoint_head.score.") for k in layer_keys] # -------------------------------------------------------------------------- # Done with replacements # -------------------------------------------------------------------------- assert len(set(layer_keys)) == len(layer_keys) assert len(original_keys) == len(layer_keys) new_weights = {} new_keys_to_original_keys = {} for orig, renamed in zip(original_keys, layer_keys): new_keys_to_original_keys[renamed] = orig if renamed.startswith("bbox_pred.") or renamed.startswith("mask_head.predictor."): # remove the meaningless prediction weight for background class new_start_idx = 4 if renamed.startswith("bbox_pred.") else 1 new_weights[renamed] = weights[orig][new_start_idx:] logger.info( "Remove prediction weight for background class in {}. The shape changes from " "{} to {}.".format( renamed, tuple(weights[orig].shape), tuple(new_weights[renamed].shape) ) ) elif renamed.startswith("cls_score."): # move weights of bg class from original index 0 to last index logger.info( "Move classification weights for background class in {} from index 0 to " "index {}.".format(renamed, weights[orig].shape[0] - 1) ) new_weights[renamed] = torch.cat([weights[orig][1:], weights[orig][:1]]) else: new_weights[renamed] = weights[orig] return new_weights, new_keys_to_original_keys # Note the current matching is not symmetric. # it assumes model_state_dict will have longer names. def align_and_update_state_dicts(model_state_dict, ckpt_state_dict, c2_conversion=True): """ Match names between the two state-dict, and returns a new chkpt_state_dict with names converted to match model_state_dict with heuristics. The returned dict can be later loaded with fvcore checkpointer. If `c2_conversion==True`, `ckpt_state_dict` is assumed to be a Caffe2 model and will be renamed at first. Strategy: suppose that the models that we will create will have prefixes appended to each of its keys, for example due to an extra level of nesting that the original pre-trained weights from ImageNet won't contain. For example, model.state_dict() might return backbone[0].body.res2.conv1.weight, while the pre-trained model contains res2.conv1.weight. We thus want to match both parameters together. For that, we look for each model weight, look among all loaded keys if there is one that is a suffix of the current weight name, and use it if that's the case. If multiple matches exist, take the one with longest size of the corresponding name. For example, for the same model as before, the pretrained weight file can contain both res2.conv1.weight, as well as conv1.weight. In this case, we want to match backbone[0].body.conv1.weight to conv1.weight, and backbone[0].body.res2.conv1.weight to res2.conv1.weight. """ model_keys = sorted(model_state_dict.keys()) if c2_conversion: ckpt_state_dict, original_keys = convert_c2_detectron_names(ckpt_state_dict) # original_keys: the name in the original dict (before renaming) else: original_keys = {x: x for x in ckpt_state_dict.keys()} ckpt_keys = sorted(ckpt_state_dict.keys()) def match(a, b): # Matched ckpt_key should be a complete (starts with '.') suffix. # For example, roi_heads.mesh_head.whatever_conv1 does not match conv1, # but matches whatever_conv1 or mesh_head.whatever_conv1. return a == b or a.endswith("." + b) # get a matrix of string matches, where each (i, j) entry correspond to the size of the # ckpt_key string, if it matches match_matrix = [len(j) if match(i, j) else 0 for i in model_keys for j in ckpt_keys] match_matrix = torch.as_tensor(match_matrix).view(len(model_keys), len(ckpt_keys)) # use the matched one with longest size in case of multiple matches max_match_size, idxs = match_matrix.max(1) # remove indices that correspond to no-match idxs[max_match_size == 0] = -1 logger = logging.getLogger(__name__) # matched_pairs (matched checkpoint key --> matched model key) matched_keys = {} result_state_dict = {} for idx_model, idx_ckpt in enumerate(idxs.tolist()): if idx_ckpt == -1: continue key_model = model_keys[idx_model] key_ckpt = ckpt_keys[idx_ckpt] value_ckpt = ckpt_state_dict[key_ckpt] shape_in_model = model_state_dict[key_model].shape if shape_in_model != value_ckpt.shape: logger.warning( "Shape of {} in checkpoint is {}, while shape of {} in model is {}.".format( key_ckpt, value_ckpt.shape, key_model, shape_in_model ) ) logger.warning( "{} will not be loaded. Please double check and see if this is desired.".format( key_ckpt ) ) continue assert key_model not in result_state_dict result_state_dict[key_model] = value_ckpt if key_ckpt in matched_keys: # already added to matched_keys logger.error( "Ambiguity found for {} in checkpoint!" "It matches at least two keys in the model ({} and {}).".format( key_ckpt, key_model, matched_keys[key_ckpt] ) ) raise ValueError("Cannot match one checkpoint key to multiple keys in the model.") matched_keys[key_ckpt] = key_model # logging: matched_model_keys = sorted(matched_keys.values()) if len(matched_model_keys) == 0: logger.warning("No weights in checkpoint matched with model.") return ckpt_state_dict common_prefix = _longest_common_prefix(matched_model_keys) rev_matched_keys = {v: k for k, v in matched_keys.items()} original_keys = {k: original_keys[rev_matched_keys[k]] for k in matched_model_keys} model_key_groups = _group_keys_by_module(matched_model_keys, original_keys) table = [] memo = set() for key_model in matched_model_keys: if key_model in memo: continue if key_model in model_key_groups: group = model_key_groups[key_model] memo |= set(group) shapes = [tuple(model_state_dict[k].shape) for k in group] table.append( ( _longest_common_prefix([k[len(common_prefix) :] for k in group]) + "*", _group_str([original_keys[k] for k in group]), " ".join([str(x).replace(" ", "") for x in shapes]), ) ) else: key_checkpoint = original_keys[key_model] shape = str(tuple(model_state_dict[key_model].shape)) table.append((key_model[len(common_prefix) :], key_checkpoint, shape)) table_str = tabulate( table, tablefmt="pipe", headers=["Names in Model", "Names in Checkpoint", "Shapes"] ) logger.info( "Following weights matched with " + (f"submodule {common_prefix[:-1]}" if common_prefix else "model") + ":\n" + table_str ) unmatched_ckpt_keys = [k for k in ckpt_keys if k not in set(matched_keys.keys())] for k in unmatched_ckpt_keys: result_state_dict[k] = ckpt_state_dict[k] return result_state_dict def _group_keys_by_module(keys: List[str], original_names: Dict[str, str]): """ Params in the same submodule are grouped together. Args: keys: names of all parameters original_names: mapping from parameter name to their name in the checkpoint Returns: dict[name -> all other names in the same group] """ def _submodule_name(key): pos = key.rfind(".") if pos < 0: return None prefix = key[: pos + 1] return prefix all_submodules = [_submodule_name(k) for k in keys] all_submodules = [x for x in all_submodules if x] all_submodules = sorted(all_submodules, key=len) ret = {} for prefix in all_submodules: group = [k for k in keys if k.startswith(prefix)] if len(group) <= 1: continue original_name_lcp = _longest_common_prefix_str([original_names[k] for k in group]) if len(original_name_lcp) == 0: # don't group weights if original names don't share prefix continue for k in group: if k in ret: continue ret[k] = group return ret def _longest_common_prefix(names: List[str]) -> str: """ ["abc.zfg", "abc.zef"] -> "abc." """ names = [n.split(".") for n in names] m1, m2 = min(names), max(names) ret = [a for a, b in zip(m1, m2) if a == b] ret = ".".join(ret) + "." if len(ret) else "" return ret def _longest_common_prefix_str(names: List[str]) -> str: m1, m2 = min(names), max(names) lcp = [a for a, b in zip(m1, m2) if a == b] lcp = "".join(lcp) return lcp def _group_str(names: List[str]) -> str: """ Turn "common1", "common2", "common3" into "common{1,2,3}" """ lcp = _longest_common_prefix_str(names) rest = [x[len(lcp) :] for x in names] rest = "{" + ",".join(rest) + "}" ret = lcp + rest # add some simplification for BN specifically ret = ret.replace("bn_{beta,running_mean,running_var,gamma}", "bn_*") ret = ret.replace("bn_beta,bn_running_mean,bn_running_var,bn_gamma", "bn_*") return ret <fim_middle> fpn_map(name): """ Look for keys with the following patterns: 1) Starts with "fpn.inner." Example: "fpn.inner.res2.2.sum.lateral.weight" Meaning: These are lateral pathway convolutions 2) Starts with "fpn.res" Example: "fpn.res2.2.sum.weight" Meaning: These are FPN output convolutions """ splits = name.split(".") norm = ".norm" if "norm" in splits else "" if name.startswith("fpn.inner."): # splits example: ['fpn', 'inner', 'res2', '2', 'sum', 'lateral', 'weight'] stage = int(splits[2][len("res") :]) return "fpn_lateral{}{}.{}".format(stage, norm, splits[-1]) elif name.startswith("fpn.res"): # splits example: ['fpn', 'res2', '2', 'sum', 'weight'] stage = int(splits[1][len("res") :]) return "fpn_output{}{}.{}".format(stage, norm, splits[-1]) return name
fpn_map(name): """ Look for keys with the following patterns: 1) Starts with "fpn.inner." Example: "fpn.inner.res2.2.sum.lateral.weight" Meaning: These are lateral pathway convolutions 2) Starts with "fpn.res" Example: "fpn.res2.2.sum.weight" Meaning: These are FPN output convolutions """ splits = name.split(".") norm = ".norm" if "norm" in splits else "" if name.startswith("fpn.inner."): # splits example: ['fpn', 'inner', 'res2', '2', 'sum', 'lateral', 'weight'] stage = int(splits[2][len("res") :]) return "fpn_lateral{}{}.{}".format(stage, norm, splits[-1]) elif name.startswith("fpn.res"): # splits example: ['fpn', 'res2', '2', 'sum', 'weight'] stage = int(splits[1][len("res") :]) return "fpn_output{}{}.{}".format(stage, norm, splits[-1]) return name
METHOD
prefix_suffix_full_complete_current_block_with_evidence
<filename>UniRef/detectron2/checkpoint/c2_model_loading.py<fim_prefix># Copyright (c) Facebook, Inc. and its affiliates. import copy import logging import re from typing import Dict, List import torch from tabulate import tabulate def convert_basic_c2_names(original_keys): """ Apply some basic name conversion to names in C2 weights. It only deals with typical backbone models. Args: original_keys (list[str]): Returns: list[str]: The same number of strings matching those in original_keys. """ layer_keys = copy.deepcopy(original_keys) layer_keys = [ {"pred_b": "linear_b", "pred_w": "linear_w"}.get(k, k) for k in layer_keys ] # some hard-coded mappings layer_keys = [k.replace("_", ".") for k in layer_keys] layer_keys = [re.sub("\\.b$", ".bias", k) for k in layer_keys] layer_keys = [re.sub("\\.w$", ".weight", k) for k in layer_keys] # Uniform both bn and gn names to "norm" layer_keys = [re.sub("bn\\.s$", "norm.weight", k) for k in layer_keys] layer_keys = [re.sub("bn\\.bias$", "norm.bias", k) for k in layer_keys] layer_keys = [re.sub("bn\\.rm", "norm.running_mean", k) for k in layer_keys] layer_keys = [re.sub("bn\\.running.mean$", "norm.running_mean", k) for k in layer_keys] layer_keys = [re.sub("bn\\.riv$", "norm.running_var", k) for k in layer_keys] layer_keys = [re.sub("bn\\.running.var$", "norm.running_var", k) for k in layer_keys] layer_keys = [re.sub("bn\\.gamma$", "norm.weight", k) for k in layer_keys] layer_keys = [re.sub("bn\\.beta$", "norm.bias", k) for k in layer_keys] layer_keys = [re.sub("gn\\.s$", "norm.weight", k) for k in layer_keys] layer_keys = [re.sub("gn\\.bias$", "norm.bias", k) for k in layer_keys] # stem layer_keys = [re.sub("^res\\.conv1\\.norm\\.", "conv1.norm.", k) for k in layer_keys] # to avoid mis-matching with "conv1" in other components (e.g. detection head) layer_keys = [re.sub("^conv1\\.", "stem.conv1.", k) for k in layer_keys] # layer1-4 is used by torchvision, however we follow the C2 naming strategy (res2-5) # layer_keys = [re.sub("^res2.", "layer1.", k) for k in layer_keys] # layer_keys = [re.sub("^res3.", "layer2.", k) for k in layer_keys] # layer_keys = [re.sub("^res4.", "layer3.", k) for k in layer_keys] # layer_keys = [re.sub("^res5.", "layer4.", k) for k in layer_keys] # blocks layer_keys = [k.replace(".branch1.", ".shortcut.") for k in layer_keys] layer_keys = [k.replace(".branch2a.", ".conv1.") for k in layer_keys] layer_keys = [k.replace(".branch2b.", ".conv2.") for k in layer_keys] layer_keys = [k.replace(".branch2c.", ".conv3.") for k in layer_keys] # DensePose substitutions layer_keys = [re.sub("^body.conv.fcn", "body_conv_fcn", k) for k in layer_keys] layer_keys = [k.replace("AnnIndex.lowres", "ann_index_lowres") for k in layer_keys] layer_keys = [k.replace("Index.UV.lowres", "index_uv_lowres") for k in layer_keys] layer_keys = [k.replace("U.lowres", "u_lowres") for k in layer_keys] layer_keys = [k.replace("V.lowres", "v_lowres") for k in layer_keys] return layer_keys def convert_c2_detectron_names(weights): """ Map Caffe2 Detectron weight names to Detectron2 names. Args: weights (dict): name -> tensor Returns: dict: detectron2 names -> tensor dict: detectron2 names -> C2 names """ logger = logging.getLogger(__name__) logger.info("Renaming Caffe2 weights ......") original_keys = sorted(weights.keys()) layer_keys = copy.deepcopy(original_keys) layer_keys = convert_basic_c2_names(layer_keys) # -------------------------------------------------------------------------- # RPN hidden representation conv # -------------------------------------------------------------------------- # FPN case # In the C2 model, the RPN hidden layer conv is defined for FPN level 2 and then # shared for all other levels, hence the appearance of "fpn2" layer_keys = [ k.replace("conv.rpn.fpn2", "proposal_generator.rpn_head.conv") for k in layer_keys ] # Non-FPN case layer_keys = [k.replace("conv.rpn", "proposal_generator.rpn_head.conv") for k in layer_keys] # -------------------------------------------------------------------------- # RPN box transformation conv # -------------------------------------------------------------------------- # FPN case (see note above about "fpn2") layer_keys = [ k.replace("rpn.bbox.pred.fpn2", "proposal_generator.rpn_head.anchor_deltas") for k in layer_keys ] layer_keys = [ k.replace("rpn.cls.logits.fpn2", "proposal_generator.rpn_head.objectness_logits") for k in layer_keys ] # Non-FPN case layer_keys = [ k.replace("rpn.bbox.pred", "proposal_generator.rpn_head.anchor_deltas") for k in layer_keys ] layer_keys = [ k.replace("rpn.cls.logits", "proposal_generator.rpn_head.objectness_logits") for k in layer_keys ] # -------------------------------------------------------------------------- # Fast R-CNN box head # -------------------------------------------------------------------------- layer_keys = [re.sub("^bbox\\.pred", "bbox_pred", k) for k in layer_keys] layer_keys = [re.sub("^cls\\.score", "cls_score", k) for k in layer_keys] layer_keys = [re.sub("^fc6\\.", "box_head.fc1.", k) for k in layer_keys] layer_keys = [re.sub("^fc7\\.", "box_head.fc2.", k) for k in layer_keys] # 4conv1fc head tensor names: head_conv1_w, head_conv1_gn_s layer_keys = [re.sub("^head\\.conv", "box_head.conv", k) for k in layer_keys] # -------------------------------------------------------------------------- # FPN lateral and output convolutions # -------------------------------------------------------------------------- def fpn_map(name): """ Look for keys with the following patterns: 1) Starts with "fpn.inner." Example: "fpn.inner.res2.2.sum.lateral.weight" Meaning: These are lateral pathway convolutions 2) Starts with "fpn.res" Example: "fpn.res2.2.sum.weight" Meaning: These are FPN output convolutions """ splits = name.split(".") norm = ".norm" if "norm" in splits else "" if name.startswith("fpn.inner."): # splits example: ['fpn', 'inner', 'res2', '2', 'sum', 'lateral', 'weight'] stage = int(splits[2][len("res") :]) return "fpn_lateral{}{}.{}".format(stage, norm, splits[-1]) elif name.startswith("fpn.res"): # splits example: ['fpn', 'res2', '2', 'sum', 'weight'] stage = int(splits[1][len("res") :]) return "fpn_output{}{}.{}".format(stage, norm, splits[-1]) return name layer_keys = [fpn_map(k) for k in layer_keys] # -------------------------------------------------------------------------- # Mask R-CNN mask head # -------------------------------------------------------------------------- # roi_heads.StandardROIHeads case layer_keys = [k.replace(".[mask].fcn", "mask_head.mask_fcn") for k in layer_keys] layer_keys = [re.sub("^\\.mask\\.fcn", "mask_head.mask_fcn", k) for k in layer_keys] layer_keys = [k.replace("mask.fcn.logits", "mask_head.predictor") for k in layer_keys] # roi_heads.Res5ROIHeads case layer_keys = [k.replace("conv5.mask", "mask_head.deconv") for k in layer_keys] # -------------------------------------------------------------------------- # Keypoint R-CNN head # -------------------------------------------------------------------------- # interestingly, the keypoint head convs have blob names that are simply "conv_fcnX" layer_keys = [k.replace("conv.fcn", "roi_heads.keypoint_head.conv_fcn") for k in layer_keys] layer_keys = [ k.replace("kps.score.lowres", "roi_heads.keypoint_head.score_lowres") for k in layer_keys ] layer_keys = [k.replace("kps.score.", "roi_heads.keypoint_head.score.") for k in layer_keys] # -------------------------------------------------------------------------- # Done with replacements # -------------------------------------------------------------------------- assert len(set(layer_keys)) == len(layer_keys) assert len(original_keys) == len(layer_keys) new_weights = {} new_keys_to_original_keys = {} for orig, renamed in zip(original_keys, layer_keys): new_keys_to_original_keys[renamed] = orig if renamed.startswith("bbox_pred.") or renamed.startswith("mask_head.predictor."): # remove the meaningless prediction weight for background class new_start_idx = 4 if renamed.startswith("bbox_pred.") else 1 new_weights[renamed] = weights[orig][new_start_idx:] logger.info( "Remove prediction weight for background class in {}. The shape changes from " "{} to {}.".format( renamed, tuple(weights[orig].shape), tuple(new_weights[renamed].shape) ) ) elif renamed.startswith("cls_score."): # move weights of bg class from original index 0 to last index logger.info( "Move classification weights for background class in {} from index 0 to " "index {}.".format(renamed, weights[orig].shape[0] - 1) ) new_weights[renamed] = torch.cat([weights[orig][1:], weights[orig][:1]]) else: new_weights[renamed] = weights[orig] return new_weights, new_keys_to_original_keys # Note the current matching is not symmetric. # it assumes model_state_dict will have longer names. def align_and_update_state_dicts(model_state_dict, ckpt_state_dict, c2_conversion=True): """ Match names between the two state-dict, and returns a new chkpt_state_dict with names converted to match model_state_dict with heuristics. The returned dict can be later loaded with fvcore checkpointer. If `c2_conversion==True`, `ckpt_state_dict` is assumed to be a Caffe2 model and will be renamed at first. Strategy: suppose that the models that we will create will have prefixes appended to each of its keys, for example due to an extra level of nesting that the original pre-trained weights from ImageNet won't contain. For example, model.state_dict() might return backbone[0].body.res2.conv1.weight, while the pre-trained model contains res2.conv1.weight. We thus want to match both parameters together. For that, we look for each model weight, look among all loaded keys if there is one that is a suffix of the current weight name, and use it if that's the case. If multiple matches exist, take the one with longest size of the corresponding name. For example, for the same model as before, the pretrained weight file can contain both res2.conv1.weight, as well as conv1.weight. In this case, we want to match backbone[0].body.conv1.weight to conv1.weight, and backbone[0].body.res2.conv1.weight to res2.conv1.weight. """ model_keys = sorted(model_state_dict.keys()) if c2_conversion: ckpt_state_dict, original_keys = convert_c2_detectron_names(ckpt_state_dict) # original_keys: the name in the original dict (before renaming) else: original_keys = {x: x for x in ckpt_state_dict.keys()} ckpt_keys = sorted(ckpt_state_dict.keys()) def match(a, b): # Matched ckpt_key should be a complete (starts with '.') suffix. # For example, roi_heads.mesh_head.whatever_conv1 does not match conv1, # but matches whatever_conv1 or mesh_head.whatever_conv1. return a == b or a.endswith("." + b) # get a matrix of string matches, where each (i, j) entry correspond to the size of the # ckpt_key string, if it matches match_matrix = [len(j) if match(i, j) else 0 for i in model_keys for j in ckpt_keys] match_matrix = torch.as_tensor(match_matrix).view(len(model_keys), len(ckpt_keys)) # use the matched one with longest size in case of multiple matches max_match_size, idxs = match_matrix.max(1) # remove indices that correspond to no-match idxs[max_match_size == 0] = -1 logger = logging.getLogger(__name__) # matched_pairs (matched checkpoint key --> matched model key) matched_keys = {} result_state_dict = {} for idx_model, idx_ckpt in enumerate(idxs.tolist()): if idx_ckpt == -1: continue key_model = model_keys[idx_model] key_ckpt = ckpt_keys[idx_ckpt] value_ckpt = ckpt_state_dict[key_ckpt] shape_in_model = model_state_dict[key_model].shape if shape_in_model != value_ckpt.shape: logger.warning( "Shape of {} in checkpoint is {}, while shape of {} in model is {}.".format( key_ckpt, value_ckpt.shape, key_model, shape_in_model ) ) logger.warning( "{} will not be loaded. Please double check and see if this is desired.".format( key_ckpt ) ) continue assert key_model not in result_state_dict result_state_dict[key_model] = value_ckpt if key_ckpt in matched_keys: # already added to matched_keys logger.error( "Ambiguity found for {} in checkpoint!" "It matches at least two keys in the model ({} and {}).".format( key_ckpt, key_model, matched_keys[key_ckpt] ) ) raise ValueError("Cannot match one checkpoint key to multiple keys in the model.") matched_keys[key_ckpt] = key_model # logging: matched_model_keys = sorted(matched_keys.values()) if len(matched_model_keys) == 0: logger.warning("No weights in checkpoint matched with model.") return ckpt_state_dict common_prefix = _longest_common_prefix(matched_model_keys) rev_matched_keys = {v: k for k, v in matched_keys.items()} original_keys = {k: original_keys[rev_matched_keys[k]] for k in matched_model_keys} model_key_groups = _group_keys_by_module(matched_model_keys, original_keys) table = [] memo = set() for key_model in matched_model_keys: if key_model in memo: continue if key_model in model_key_groups: group = model_key_groups[key_model] memo |= set(group) shapes = [tuple(model_state_dict[k].shape) for k in group] table.append( ( _longest_common_prefix([k[len(common_prefix) :] for k in group]) + "*", _group_str([original_keys[k] for k in group]), " ".join([str(x).replace(" ", "") for x in shapes]), ) ) else: key_checkpoint = original_keys[key_model] shape = str(tuple(model_state_dict[key_model].shape)) table.append((key_model[len(common_prefix) :], key_checkpoint, shape)) table_str = tabulate( table, tablefmt="pipe", headers=["Names in Model", "Names in Checkpoint", "Shapes"] ) logger.info( "Following weights matched with " + (f"submodule {common_prefix[:-1]}" if common_prefix else "model") + ":\n" + table_str ) unmatched_ckpt_keys = [k for k in ckpt_keys if k not in set(matched_keys.keys())] for k in unmatched_ckpt_keys: result_state_dict[k] = ckpt_state_dict[k] return result_state_dict def _group_keys_by_module(keys: List[str], original_names: Dict[str, str]): """ Params in the same submodule are grouped together. Args: keys: names of all parameters original_names: mapping from parameter name to their name in the checkpoint Returns: dict[name -> all other names in the same group] """ def<fim_suffix> all_submodules = [_submodule_name(k) for k in keys] all_submodules = [x for x in all_submodules if x] all_submodules = sorted(all_submodules, key=len) ret = {} for prefix in all_submodules: group = [k for k in keys if k.startswith(prefix)] if len(group) <= 1: continue original_name_lcp = _longest_common_prefix_str([original_names[k] for k in group]) if len(original_name_lcp) == 0: # don't group weights if original names don't share prefix continue for k in group: if k in ret: continue ret[k] = group return ret def _longest_common_prefix(names: List[str]) -> str: """ ["abc.zfg", "abc.zef"] -> "abc." """ names = [n.split(".") for n in names] m1, m2 = min(names), max(names) ret = [a for a, b in zip(m1, m2) if a == b] ret = ".".join(ret) + "." if len(ret) else "" return ret def _longest_common_prefix_str(names: List[str]) -> str: m1, m2 = min(names), max(names) lcp = [a for a, b in zip(m1, m2) if a == b] lcp = "".join(lcp) return lcp def _group_str(names: List[str]) -> str: """ Turn "common1", "common2", "common3" into "common{1,2,3}" """ lcp = _longest_common_prefix_str(names) rest = [x[len(lcp) :] for x in names] rest = "{" + ",".join(rest) + "}" ret = lcp + rest # add some simplification for BN specifically ret = ret.replace("bn_{beta,running_mean,running_var,gamma}", "bn_*") ret = ret.replace("bn_beta,bn_running_mean,bn_running_var,bn_gamma", "bn_*") return ret <fim_middle> _submodule_name(key): pos = key.rfind(".") if pos < 0: return None prefix = key[: pos + 1] return prefix
_submodule_name(key): pos = key.rfind(".") if pos < 0: return None prefix = key[: pos + 1] return prefix
METHOD
prefix_suffix_full_complete_current_block_with_evidence
<filename>UniRef/detectron2/config/config.py<fim_prefix># -*- coding: utf-8 -*- # Copyright (c) Facebook, Inc. and its affiliates. import functools import inspect import logging from fvcore.common.config import CfgNode as _CfgNode from detectron2.utils.file_io import PathManager class CfgNode(_CfgNode): """ The same as `fvcore.common.config.CfgNode`, but different in: 1. Use unsafe yaml loading by default. Note that this may lead to arbitrary code execution: you must not load a config file from untrusted sources before manually inspecting the content of the file. 2. Support config versioning. When attempting to merge an old config, it will convert the old config automatically. .. automethod:: clone .. automethod:: freeze .. automethod:: defrost .. automethod:: is_frozen .. automethod:: load_yaml_with_base .. automethod:: merge_from_list .. automethod:: merge_from_other_cfg """ @classmethod def _open_cfg(cls, filename): return PathManager.open(filename, "r") # Note that the default value of allow_unsafe is changed to True def merge_from_file(self, cfg_filename: str, allow_unsafe: bool = True) -> None: """ Load content from the given config file and merge it into self. Args: cfg_filename: config filename allow_unsafe: allow unsafe yaml syntax """ assert PathManager.isfile(cfg_filename), f"Config file '{cfg_filename}' does not exist!" loaded_cfg = self.load_yaml_with_base(cfg_filename, allow_unsafe=allow_unsafe) loaded_cfg = type(self)(loaded_cfg) # defaults.py needs to import CfgNode from .defaults import _C latest_ver = _C.VERSION assert ( latest_ver == self.VERSION ), "CfgNode.merge_from_file is only allowed on a config object of latest version!" logger = logging.getLogger(__name__) loaded_ver = loaded_cfg.get("VERSION", None) if loaded_ver is None: from .compat import guess_version loaded_ver = guess_version(loaded_cfg, cfg_filename) assert loaded_ver <= self.VERSION, "Cannot merge a v{} config into a v{} config.".format( loaded_ver, self.VERSION ) if loaded_ver == self.VERSION: self.merge_from_other_cfg(loaded_cfg) else: # compat.py needs to import CfgNode from .compat import upgrade_config, downgrade_config logger.warning( "Loading an old v{} config file '{}' by automatically upgrading to v{}. " "See docs/CHANGELOG.md for instructions to update your files.".format( loaded_ver, cfg_filename, self.VERSION ) ) # To convert, first obtain a full config at an old version old_self = downgrade_config(self, to_version=loaded_ver) old_self.merge_from_other_cfg(loaded_cfg) new_config = upgrade_config(old_self) self.clear() self.update(new_config) def dump(self, *args, **kwargs): """ Returns: str: a yaml string representation of the config """ # to make it show up in docs return super().dump(*args, **kwargs) global_cfg = CfgNode() def get_cfg() -> CfgNode: """ Get a copy of the default config. Returns: a detectron2 CfgNode instance. """ from .defaults import _C return _C.clone() def set_global_cfg(cfg: CfgNode) -> None: """ Let the global config point to the given cfg. Assume that the given "cfg" has the key "KEY", after calling `set_global_cfg(cfg)`, the key can be accessed by: :: from detectron2.config import global_cfg print(global_cfg.KEY) By using a hacky global config, you can access these configs anywhere, without having to pass the config object or the values deep into the code. This is a hacky feature introduced for quick prototyping / research exploration. """ global global_cfg global_cfg.clear() global_cfg.update(cfg) def configurable(init_func=None, *, from_config=None): """ Decorate a function or a class's __init__ method so that it can be called with a :class:`CfgNode` object using a :func:`from_config` function that translates :class:`CfgNode` to arguments. Examples: :: # Usage 1: Decorator on __init__: class A: @configurable def __init__(self, a, b=2, c=3): pass @classmethod def from_config(cls, cfg): # 'cfg' must be the first argument # Returns kwargs to be passed to __init__ return {"a": cfg.A, "b": cfg.B} a1 = A(a=1, b=2) # regular construction a2 = A(cfg) # construct with a cfg a3 = A(cfg, b=3, c=4) # construct with extra overwrite # Usage 2: Decorator on any function. Needs an extra from_config argument: @configurable(from_config=lambda cfg: {"a: cfg.A, "b": cfg.B}) def a_func(a, b=2, c=3): pass a1 = a_func(a=1, b=2) # regular call a2 = a_func(cfg) # call with a cfg a3 = a_func(cfg, b=3, c=4) # call with extra overwrite Args: init_func (callable): a class's ``__init__`` method in usage 1. The class must have a ``from_config`` classmethod which takes `cfg` as the first argument. from_config (callable): the from_config function in usage 2. It must take `cfg` as its first argument. """ if init_func is not None: assert ( inspect.isfunction(init_func) and from_config is None and init_func.__name__ == "__init__" ), "Incorrect use of @configurable. Check API documentation for examples." @functools.wraps(init_func) def<fim_suffix> return wrapped else: if from_config is None: return configurable # @configurable() is made equivalent to @configurable assert inspect.isfunction( from_config ), "from_config argument of configurable must be a function!" def wrapper(orig_func): @functools.wraps(orig_func) def wrapped(*args, **kwargs): if _called_with_cfg(*args, **kwargs): explicit_args = _get_args_from_config(from_config, *args, **kwargs) return orig_func(**explicit_args) else: return orig_func(*args, **kwargs) wrapped.from_config = from_config return wrapped return wrapper def _get_args_from_config(from_config_func, *args, **kwargs): """ Use `from_config` to obtain explicit arguments. Returns: dict: arguments to be used for cls.__init__ """ signature = inspect.signature(from_config_func) if list(signature.parameters.keys())[0] != "cfg": if inspect.isfunction(from_config_func): name = from_config_func.__name__ else: name = f"{from_config_func.__self__}.from_config" raise TypeError(f"{name} must take 'cfg' as the first argument!") support_var_arg = any( param.kind in [param.VAR_POSITIONAL, param.VAR_KEYWORD] for param in signature.parameters.values() ) if support_var_arg: # forward all arguments to from_config, if from_config accepts them ret = from_config_func(*args, **kwargs) else: # forward supported arguments to from_config supported_arg_names = set(signature.parameters.keys()) extra_kwargs = {} for name in list(kwargs.keys()): if name not in supported_arg_names: extra_kwargs[name] = kwargs.pop(name) ret = from_config_func(*args, **kwargs) # forward the other arguments to __init__ ret.update(extra_kwargs) return ret def _called_with_cfg(*args, **kwargs): """ Returns: bool: whether the arguments contain CfgNode and should be considered forwarded to from_config. """ from omegaconf import DictConfig if len(args) and isinstance(args[0], (_CfgNode, DictConfig)): return True if isinstance(kwargs.pop("cfg", None), (_CfgNode, DictConfig)): return True # `from_config`'s first argument is forced to be "cfg". # So the above check covers all cases. return False <fim_middle> wrapped(self, *args, **kwargs): try: from_config_func = type(self).from_config except AttributeError as e: raise AttributeError( "Class with @configurable must have a 'from_config' classmethod." ) from e if not inspect.ismethod(from_config_func): raise TypeError("Class with @configurable must have a 'from_config' classmethod.") if _called_with_cfg(*args, **kwargs): explicit_args = _get_args_from_config(from_config_func, *args, **kwargs) init_func(self, **explicit_args) else: init_func(self, *args, **kwargs)
wrapped(self, *args, **kwargs): try: from_config_func = type(self).from_config except AttributeError as e: raise AttributeError( "Class with @configurable must have a 'from_config' classmethod." ) from e if not inspect.ismethod(from_config_func): raise TypeError("Class with @configurable must have a 'from_config' classmethod.") if _called_with_cfg(*args, **kwargs): explicit_args = _get_args_from_config(from_config_func, *args, **kwargs) init_func(self, **explicit_args) else: init_func(self, *args, **kwargs)
METHOD
prefix_suffix_full_complete_current_block_with_evidence
<filename>UniRef/detectron2/structures/masks.py<fim_prefix># Copyright (c) Facebook, Inc. and its affiliates. import copy import itertools import numpy as np from typing import Any, Iterator, List, Union import pycocotools.mask as mask_util import torch from torch import device from detectron2.layers.roi_align import ROIAlign from detectron2.utils.memory import retry_if_cuda_oom from .boxes import Boxes def polygon_area(x, y): # Using the shoelace formula # https://stackoverflow.com/questions/24467972/calculate-area-of-polygon-given-x-y-coordinates return 0.5 * np.abs(np.dot(x, np.roll(y, 1)) - np.dot(y, np.roll(x, 1))) def polygons_to_bitmask(polygons: List[np.ndarray], height: int, width: int) -> np.ndarray: """ Args: polygons (list[ndarray]): each array has shape (Nx2,) height, width (int) Returns: ndarray: a bool mask of shape (height, width) """ if len(polygons) == 0: # COCOAPI does not support empty polygons return np.zeros((height, width)).astype(np.bool) rles = mask_util.frPyObjects(polygons, height, width) rle = mask_util.merge(rles) return mask_util.decode(rle).astype(np.bool) def rasterize_polygons_within_box( polygons: List[np.ndarray], box: np.ndarray, mask_size: int ) -> torch.Tensor: """ Rasterize the polygons into a mask image and crop the mask content in the given box. The cropped mask is resized to (mask_size, mask_size). This function is used when generating training targets for mask head in Mask R-CNN. Given original ground-truth masks for an image, new ground-truth mask training targets in the size of `mask_size x mask_size` must be provided for each predicted box. This function will be called to produce such targets. Args: polygons (list[ndarray[float]]): a list of polygons, which represents an instance. box: 4-element numpy array mask_size (int): Returns: Tensor: BoolTensor of shape (mask_size, mask_size) """ # 1. Shift the polygons w.r.t the boxes w, h = box[2] - box[0], box[3] - box[1] polygons = copy.deepcopy(polygons) for p in polygons: p[0::2] = p[0::2] - box[0] p[1::2] = p[1::2] - box[1] # 2. Rescale the polygons to the new box size # max() to avoid division by small number ratio_h = mask_size / max(h, 0.1) ratio_w = mask_size / max(w, 0.1) if ratio_h == ratio_w: for p in polygons: p *= ratio_h else: for p in polygons: p[0::2] *= ratio_w p[1::2] *= ratio_h # 3. Rasterize the polygons with coco api mask = polygons_to_bitmask(polygons, mask_size, mask_size) mask = torch.from_numpy(mask) return mask class BitMasks: """ This class stores the segmentation masks for all objects in one image, in the form of bitmaps. Attributes: tensor: bool Tensor of N,H,W, representing N instances in the image. """ def __init__(self, tensor: Union[torch.Tensor, np.ndarray]): """ Args: tensor: bool Tensor of N,H,W, representing N instances in the image. """ device = tensor.device if isinstance(tensor, torch.Tensor) else torch.device("cpu") tensor = torch.as_tensor(tensor, dtype=torch.bool, device=device) assert tensor.dim() == 3, tensor.size() self.image_size = tensor.shape[1:] self.tensor = tensor @torch.jit.unused def to(self, *args: Any, **kwargs: Any) -> "BitMasks": return BitMasks(self.tensor.to(*args, **kwargs)) @property def device(self) -> torch.device: return self.tensor.device @torch.jit.unused def __getitem__(self, item: Union[int, slice, torch.BoolTensor]) -> "BitMasks": """ Returns: BitMasks: Create a new :class:`BitMasks` by indexing. The following usage are allowed: 1. `new_masks = masks[3]`: return a `BitMasks` which contains only one mask. 2. `new_masks = masks[2:10]`: return a slice of masks. 3. `new_masks = masks[vector]`, where vector is a torch.BoolTensor with `length = len(masks)`. Nonzero elements in the vector will be selected. Note that the returned object might share storage with this object, subject to Pytorch's indexing semantics. """ if isinstance(item, int): return BitMasks(self.tensor[item].unsqueeze(0)) m = self.tensor[item] assert m.dim() == 3, "Indexing on BitMasks with {} returns a tensor with shape {}!".format( item, m.shape ) return BitMasks(m) @torch.jit.unused def __iter__(self) -> torch.Tensor: yield from self.tensor @torch.jit.unused def __repr__(self) -> str: s = self.__class__.__name__ + "(" s += "num_instances={})".format(len(self.tensor)) return s def __len__(self) -> int: return self.tensor.shape[0] def nonempty(self) -> torch.Tensor: """ Find masks that are non-empty. Returns: Tensor: a BoolTensor which represents whether each mask is empty (False) or non-empty (True). """ return self.tensor.flatten(1).any(dim=1) @staticmethod def from_polygon_masks( polygon_masks: Union["PolygonMasks", List[List[np.ndarray]]], height: int, width: int ) -> "BitMasks": """ Args: polygon_masks (list[list[ndarray]] or PolygonMasks) height, width (int) """ if isinstance(polygon_masks, PolygonMasks): polygon_masks = polygon_masks.polygons masks = [polygons_to_bitmask(p, height, width) for p in polygon_masks] if len(masks): return BitMasks(torch.stack([torch.from_numpy(x) for x in masks])) else: return BitMasks(torch.empty(0, height, width, dtype=torch.bool)) @staticmethod def from_roi_masks(roi_masks: "ROIMasks", height: int, width: int) -> "BitMasks": """ Args: roi_masks: height, width (int): """ return roi_masks.to_bitmasks(height, width) def crop_and_resize(self, boxes: torch.Tensor, mask_size: int) -> torch.Tensor: """ Crop each bitmask by the given box, and resize results to (mask_size, mask_size). This can be used to prepare training targets for Mask R-CNN. It has less reconstruction error compared to rasterization with polygons. However we observe no difference in accuracy, but BitMasks requires more memory to store all the masks. Args: boxes (Tensor): Nx4 tensor storing the boxes for each mask mask_size (int): the size of the rasterized mask. Returns: Tensor: A bool tensor of shape (N, mask_size, mask_size), where N is the number of predicted boxes for this image. """ assert len(boxes) == len(self), "{} != {}".format(len(boxes), len(self)) device = self.tensor.device batch_inds = torch.arange(len(boxes), device=device).to(dtype=boxes.dtype)[:, None] rois = torch.cat([batch_inds, boxes], dim=1) # Nx5 bit_masks = self.tensor.to(dtype=torch.float32) rois = rois.to(device=device) output = ( ROIAlign((mask_size, mask_size), 1.0, 0, aligned=True) .forward(bit_masks[:, None, :, :], rois) .squeeze(1) ) output = output >= 0.5 return output def get_bounding_boxes(self) -> Boxes: """ Returns: Boxes: tight bounding boxes around bitmasks. If a mask is empty, it's bounding box will be all zero. """ boxes = torch.zeros(self.tensor.shape[0], 4, dtype=torch.float32) x_any = torch.any(self.tensor, dim=1) y_any = torch.any(self.tensor, dim=2) for idx in range(self.tensor.shape[0]): x = torch.where(x_any[idx, :])[0] y = torch.where(y_any[idx, :])[0] if len(x) > 0 and len(y) > 0: boxes[idx, :] = torch.as_tensor( [x[0], y[0], x[-1] + 1, y[-1] + 1], dtype=torch.float32 ) return Boxes(boxes) @staticmethod def cat(bitmasks_list: List["BitMasks"]) -> "BitMasks": """ Concatenates a list of BitMasks into a single BitMasks Arguments: bitmasks_list (list[BitMasks]) Returns: BitMasks: the concatenated BitMasks """ assert isinstance(bitmasks_list, (list, tuple)) assert len(bitmasks_list) > 0 assert all(isinstance(bitmask, BitMasks) for bitmask in bitmasks_list) cat_bitmasks = type(bitmasks_list[0])(torch.cat([bm.tensor for bm in bitmasks_list], dim=0)) return cat_bitmasks class PolygonMasks: """ This class stores the segmentation masks for all objects in one image, in the form of polygons. Attributes: polygons: list[list[ndarray]]. Each ndarray is a float64 vector representing a polygon. """ def __init__(self, polygons: List[List[Union[torch.Tensor, np.ndarray]]]): """ Arguments: polygons (list[list[np.ndarray]]): The first level of the list correspond to individual instances, the second level to all the polygons that compose the instance, and the third level to the polygon coordinates. The third level array should have the format of [x0, y0, x1, y1, ..., xn, yn] (n >= 3). """ if not isinstance(polygons, list): raise ValueError( "Cannot create PolygonMasks: Expect a list of list of polygons per image. " "Got '{}' instead.".format(type(polygons)) ) def<fim_suffix> def process_polygons( polygons_per_instance: List[Union[torch.Tensor, np.ndarray]] ) -> List[np.ndarray]: if not isinstance(polygons_per_instance, list): raise ValueError( "Cannot create polygons: Expect a list of polygons per instance. " "Got '{}' instead.".format(type(polygons_per_instance)) ) # transform each polygon to a numpy array polygons_per_instance = [_make_array(p) for p in polygons_per_instance] for polygon in polygons_per_instance: if len(polygon) % 2 != 0 or len(polygon) < 6: raise ValueError(f"Cannot create a polygon from {len(polygon)} coordinates.") return polygons_per_instance self.polygons: List[List[np.ndarray]] = [ process_polygons(polygons_per_instance) for polygons_per_instance in polygons ] def to(self, *args: Any, **kwargs: Any) -> "PolygonMasks": return self @property def device(self) -> torch.device: return torch.device("cpu") def get_bounding_boxes(self) -> Boxes: """ Returns: Boxes: tight bounding boxes around polygon masks. """ boxes = torch.zeros(len(self.polygons), 4, dtype=torch.float32) for idx, polygons_per_instance in enumerate(self.polygons): minxy = torch.as_tensor([float("inf"), float("inf")], dtype=torch.float32) maxxy = torch.zeros(2, dtype=torch.float32) for polygon in polygons_per_instance: coords = torch.from_numpy(polygon).view(-1, 2).to(dtype=torch.float32) minxy = torch.min(minxy, torch.min(coords, dim=0).values) maxxy = torch.max(maxxy, torch.max(coords, dim=0).values) boxes[idx, :2] = minxy boxes[idx, 2:] = maxxy return Boxes(boxes) def nonempty(self) -> torch.Tensor: """ Find masks that are non-empty. Returns: Tensor: a BoolTensor which represents whether each mask is empty (False) or not (True). """ keep = [1 if len(polygon) > 0 else 0 for polygon in self.polygons] return torch.from_numpy(np.asarray(keep, dtype=np.bool)) def __getitem__(self, item: Union[int, slice, List[int], torch.BoolTensor]) -> "PolygonMasks": """ Support indexing over the instances and return a `PolygonMasks` object. `item` can be: 1. An integer. It will return an object with only one instance. 2. A slice. It will return an object with the selected instances. 3. A list[int]. It will return an object with the selected instances, correpsonding to the indices in the list. 4. A vector mask of type BoolTensor, whose length is num_instances. It will return an object with the instances whose mask is nonzero. """ if isinstance(item, int): selected_polygons = [self.polygons[item]] elif isinstance(item, slice): selected_polygons = self.polygons[item] elif isinstance(item, list): selected_polygons = [self.polygons[i] for i in item] elif isinstance(item, torch.Tensor): # Polygons is a list, so we have to move the indices back to CPU. if item.dtype == torch.bool: assert item.dim() == 1, item.shape item = item.nonzero().squeeze(1).cpu().numpy().tolist() elif item.dtype in [torch.int32, torch.int64]: item = item.cpu().numpy().tolist() else: raise ValueError("Unsupported tensor dtype={} for indexing!".format(item.dtype)) selected_polygons = [self.polygons[i] for i in item] return PolygonMasks(selected_polygons) def __iter__(self) -> Iterator[List[np.ndarray]]: """ Yields: list[ndarray]: the polygons for one instance. Each Tensor is a float64 vector representing a polygon. """ return iter(self.polygons) def __repr__(self) -> str: s = self.__class__.__name__ + "(" s += "num_instances={})".format(len(self.polygons)) return s def __len__(self) -> int: return len(self.polygons) def crop_and_resize(self, boxes: torch.Tensor, mask_size: int) -> torch.Tensor: """ Crop each mask by the given box, and resize results to (mask_size, mask_size). This can be used to prepare training targets for Mask R-CNN. Args: boxes (Tensor): Nx4 tensor storing the boxes for each mask mask_size (int): the size of the rasterized mask. Returns: Tensor: A bool tensor of shape (N, mask_size, mask_size), where N is the number of predicted boxes for this image. """ assert len(boxes) == len(self), "{} != {}".format(len(boxes), len(self)) device = boxes.device # Put boxes on the CPU, as the polygon representation is not efficient GPU-wise # (several small tensors for representing a single instance mask) boxes = boxes.to(torch.device("cpu")) results = [ rasterize_polygons_within_box(poly, box.numpy(), mask_size) for poly, box in zip(self.polygons, boxes) ] """ poly: list[list[float]], the polygons for one instance box: a tensor of shape (4,) """ if len(results) == 0: return torch.empty(0, mask_size, mask_size, dtype=torch.bool, device=device) return torch.stack(results, dim=0).to(device=device) def area(self): """ Computes area of the mask. Only works with Polygons, using the shoelace formula: https://stackoverflow.com/questions/24467972/calculate-area-of-polygon-given-x-y-coordinates Returns: Tensor: a vector, area for each instance """ area = [] for polygons_per_instance in self.polygons: area_per_instance = 0 for p in polygons_per_instance: area_per_instance += polygon_area(p[0::2], p[1::2]) area.append(area_per_instance) return torch.tensor(area) @staticmethod def cat(polymasks_list: List["PolygonMasks"]) -> "PolygonMasks": """ Concatenates a list of PolygonMasks into a single PolygonMasks Arguments: polymasks_list (list[PolygonMasks]) Returns: PolygonMasks: the concatenated PolygonMasks """ assert isinstance(polymasks_list, (list, tuple)) assert len(polymasks_list) > 0 assert all(isinstance(polymask, PolygonMasks) for polymask in polymasks_list) cat_polymasks = type(polymasks_list[0])( list(itertools.chain.from_iterable(pm.polygons for pm in polymasks_list)) ) return cat_polymasks class ROIMasks: """ Represent masks by N smaller masks defined in some ROIs. Once ROI boxes are given, full-image bitmask can be obtained by "pasting" the mask on the region defined by the corresponding ROI box. """ def __init__(self, tensor: torch.Tensor): """ Args: tensor: (N, M, M) mask tensor that defines the mask within each ROI. """ if tensor.dim() != 3: raise ValueError("ROIMasks must take a masks of 3 dimension.") self.tensor = tensor def to(self, device: torch.device) -> "ROIMasks": return ROIMasks(self.tensor.to(device)) @property def device(self) -> device: return self.tensor.device def __len__(self): return self.tensor.shape[0] def __getitem__(self, item) -> "ROIMasks": """ Returns: ROIMasks: Create a new :class:`ROIMasks` by indexing. The following usage are allowed: 1. `new_masks = masks[2:10]`: return a slice of masks. 2. `new_masks = masks[vector]`, where vector is a torch.BoolTensor with `length = len(masks)`. Nonzero elements in the vector will be selected. Note that the returned object might share storage with this object, subject to Pytorch's indexing semantics. """ t = self.tensor[item] if t.dim() != 3: raise ValueError( f"Indexing on ROIMasks with {item} returns a tensor with shape {t.shape}!" ) return ROIMasks(t) @torch.jit.unused def __repr__(self) -> str: s = self.__class__.__name__ + "(" s += "num_instances={})".format(len(self.tensor)) return s @torch.jit.unused def to_bitmasks(self, boxes: torch.Tensor, height, width, threshold=0.5): """ Args: see documentation of :func:`paste_masks_in_image`. """ from detectron2.layers.mask_ops import paste_masks_in_image, _paste_masks_tensor_shape if torch.jit.is_tracing(): if isinstance(height, torch.Tensor): paste_func = _paste_masks_tensor_shape else: paste_func = paste_masks_in_image else: paste_func = retry_if_cuda_oom(paste_masks_in_image) bitmasks = paste_func(self.tensor, boxes.tensor, (height, width), threshold=threshold) return BitMasks(bitmasks) <fim_middle> _make_array(t: Union[torch.Tensor, np.ndarray]) -> np.ndarray: # Use float64 for higher precision, because why not? # Always put polygons on CPU (self.to is a no-op) since they # are supposed to be small tensors. # May need to change this assumption if GPU placement becomes useful if isinstance(t, torch.Tensor): t = t.cpu().numpy() return np.asarray(t).astype("float64")
_make_array(t: Union[torch.Tensor, np.ndarray]) -> np.ndarray: # Use float64 for higher precision, because why not? # Always put polygons on CPU (self.to is a no-op) since they # are supposed to be small tensors. # May need to change this assumption if GPU placement becomes useful if isinstance(t, torch.Tensor): t = t.cpu().numpy() return np.asarray(t).astype("float64")
METHOD
prefix_suffix_full_complete_current_block_with_evidence
<filename>UniRef/detectron2/config/config.py<fim_prefix># -*- coding: utf-8 -*- # Copyright (c) Facebook, Inc. and its affiliates. import functools import inspect import logging from fvcore.common.config import CfgNode as _CfgNode from detectron2.utils.file_io import PathManager class CfgNode(_CfgNode): """ The same as `fvcore.common.config.CfgNode`, but different in: 1. Use unsafe yaml loading by default. Note that this may lead to arbitrary code execution: you must not load a config file from untrusted sources before manually inspecting the content of the file. 2. Support config versioning. When attempting to merge an old config, it will convert the old config automatically. .. automethod:: clone .. automethod:: freeze .. automethod:: defrost .. automethod:: is_frozen .. automethod:: load_yaml_with_base .. automethod:: merge_from_list .. automethod:: merge_from_other_cfg """ @classmethod def _open_cfg(cls, filename): return PathManager.open(filename, "r") # Note that the default value of allow_unsafe is changed to True def merge_from_file(self, cfg_filename: str, allow_unsafe: bool = True) -> None: """ Load content from the given config file and merge it into self. Args: cfg_filename: config filename allow_unsafe: allow unsafe yaml syntax """ assert PathManager.isfile(cfg_filename), f"Config file '{cfg_filename}' does not exist!" loaded_cfg = self.load_yaml_with_base(cfg_filename, allow_unsafe=allow_unsafe) loaded_cfg = type(self)(loaded_cfg) # defaults.py needs to import CfgNode from .defaults import _C latest_ver = _C.VERSION assert ( latest_ver == self.VERSION ), "CfgNode.merge_from_file is only allowed on a config object of latest version!" logger = logging.getLogger(__name__) loaded_ver = loaded_cfg.get("VERSION", None) if loaded_ver is None: from .compat import guess_version loaded_ver = guess_version(loaded_cfg, cfg_filename) assert loaded_ver <= self.VERSION, "Cannot merge a v{} config into a v{} config.".format( loaded_ver, self.VERSION ) if loaded_ver == self.VERSION: self.merge_from_other_cfg(loaded_cfg) else: # compat.py needs to import CfgNode from .compat import upgrade_config, downgrade_config logger.warning( "Loading an old v{} config file '{}' by automatically upgrading to v{}. " "See docs/CHANGELOG.md for instructions to update your files.".format( loaded_ver, cfg_filename, self.VERSION ) ) # To convert, first obtain a full config at an old version old_self = downgrade_config(self, to_version=loaded_ver) old_self.merge_from_other_cfg(loaded_cfg) new_config = upgrade_config(old_self) self.clear() self.update(new_config) def dump(self, *args, **kwargs): """ Returns: str: a yaml string representation of the config """ # to make it show up in docs return super().dump(*args, **kwargs) global_cfg = CfgNode() def get_cfg() -> CfgNode: """ Get a copy of the default config. Returns: a detectron2 CfgNode instance. """ from .defaults import _C return _C.clone() def set_global_cfg(cfg: CfgNode) -> None: """ Let the global config point to the given cfg. Assume that the given "cfg" has the key "KEY", after calling `set_global_cfg(cfg)`, the key can be accessed by: :: from detectron2.config import global_cfg print(global_cfg.KEY) By using a hacky global config, you can access these configs anywhere, without having to pass the config object or the values deep into the code. This is a hacky feature introduced for quick prototyping / research exploration. """ global global_cfg global_cfg.clear() global_cfg.update(cfg) def configurable(init_func=None, *, from_config=None): """ Decorate a function or a class's __init__ method so that it can be called with a :class:`CfgNode` object using a :func:`from_config` function that translates :class:`CfgNode` to arguments. Examples: :: # Usage 1: Decorator on __init__: class A: @configurable def __init__(self, a, b=2, c=3): pass @classmethod def from_config(cls, cfg): # 'cfg' must be the first argument # Returns kwargs to be passed to __init__ return {"a": cfg.A, "b": cfg.B} a1 = A(a=1, b=2) # regular construction a2 = A(cfg) # construct with a cfg a3 = A(cfg, b=3, c=4) # construct with extra overwrite # Usage 2: Decorator on any function. Needs an extra from_config argument: @configurable(from_config=lambda cfg: {"a: cfg.A, "b": cfg.B}) def a_func(a, b=2, c=3): pass a1 = a_func(a=1, b=2) # regular call a2 = a_func(cfg) # call with a cfg a3 = a_func(cfg, b=3, c=4) # call with extra overwrite Args: init_func (callable): a class's ``__init__`` method in usage 1. The class must have a ``from_config`` classmethod which takes `cfg` as the first argument. from_config (callable): the from_config function in usage 2. It must take `cfg` as its first argument. """ if init_func is not None: assert ( inspect.isfunction(init_func) and from_config is None and init_func.__name__ == "__init__" ), "Incorrect use of @configurable. Check API documentation for examples." @functools.wraps(init_func) def wrapped(self, *args, **kwargs): try: from_config_func = type(self).from_config except AttributeError as e: raise AttributeError( "Class with @configurable must have a 'from_config' classmethod." ) from e if not inspect.ismethod(from_config_func): raise TypeError("Class with @configurable must have a 'from_config' classmethod.") if _called_with_cfg(*args, **kwargs): explicit_args = _get_args_from_config(from_config_func, *args, **kwargs) init_func(self, **explicit_args) else: init_func(self, *args, **kwargs) return wrapped else: if from_config is None: return configurable # @configurable() is made equivalent to @configurable assert inspect.isfunction( from_config ), "from_config argument of configurable must be a function!" def wrapper(orig_func): @functools.wraps(orig_func) def<fim_suffix> wrapped.from_config = from_config return wrapped return wrapper def _get_args_from_config(from_config_func, *args, **kwargs): """ Use `from_config` to obtain explicit arguments. Returns: dict: arguments to be used for cls.__init__ """ signature = inspect.signature(from_config_func) if list(signature.parameters.keys())[0] != "cfg": if inspect.isfunction(from_config_func): name = from_config_func.__name__ else: name = f"{from_config_func.__self__}.from_config" raise TypeError(f"{name} must take 'cfg' as the first argument!") support_var_arg = any( param.kind in [param.VAR_POSITIONAL, param.VAR_KEYWORD] for param in signature.parameters.values() ) if support_var_arg: # forward all arguments to from_config, if from_config accepts them ret = from_config_func(*args, **kwargs) else: # forward supported arguments to from_config supported_arg_names = set(signature.parameters.keys()) extra_kwargs = {} for name in list(kwargs.keys()): if name not in supported_arg_names: extra_kwargs[name] = kwargs.pop(name) ret = from_config_func(*args, **kwargs) # forward the other arguments to __init__ ret.update(extra_kwargs) return ret def _called_with_cfg(*args, **kwargs): """ Returns: bool: whether the arguments contain CfgNode and should be considered forwarded to from_config. """ from omegaconf import DictConfig if len(args) and isinstance(args[0], (_CfgNode, DictConfig)): return True if isinstance(kwargs.pop("cfg", None), (_CfgNode, DictConfig)): return True # `from_config`'s first argument is forced to be "cfg". # So the above check covers all cases. return False <fim_middle> wrapped(*args, **kwargs): if _called_with_cfg(*args, **kwargs): explicit_args = _get_args_from_config(from_config, *args, **kwargs) return orig_func(**explicit_args) else: return orig_func(*args, **kwargs)
wrapped(*args, **kwargs): if _called_with_cfg(*args, **kwargs): explicit_args = _get_args_from_config(from_config, *args, **kwargs) return orig_func(**explicit_args) else: return orig_func(*args, **kwargs)
METHOD
prefix_suffix_full_complete_current_block_with_evidence
<filename>UniRef/detectron2/utils/registry.py<fim_prefix># Copyright (c) Facebook, Inc. and its affiliates. from typing import Any import pydoc from fvcore.common.registry import Registry # for backward compatibility. """ ``Registry`` and `locate` provide ways to map a string (typically found in config files) to callable objects. """ __all__ = ["Registry", "locate"] def _convert_target_to_string(t: Any) -> str: """ Inverse of ``locate()``. Args: t: any object with ``__module__`` and ``__qualname__`` """ module, qualname = t.__module__, t.__qualname__ # Compress the path to this object, e.g. ``module.submodule._impl.class`` # may become ``module.submodule.class``, if the later also resolves to the same # object. This simplifies the string, and also is less affected by moving the # class implementation. module_parts = module.split(".") for k in range(1, len(module_parts)): prefix = ".".join(module_parts[:k]) candidate = f"{prefix}.{qualname}" try: if locate(candidate) is t: return candidate except ImportError: pass return f"{module}.{qualname}" def locate(name: str) -> Any: """ Locate and return an object ``x`` using an input string ``{x.__module__}.{x.__qualname__}``, such as "module.submodule.class_name". Raise Exception if it cannot be found. """ obj = pydoc.locate(name) # Some cases (e.g. torch.optim.sgd.SGD) not handled correctly # by pydoc.locate. Try a private function from hydra. if obj is None: try:<fim_suffix> except ImportError as e: raise ImportError(f"Cannot dynamically locate object {name}!") from e else: obj = _locate(name) # it raises if fails return obj <fim_middle> # from hydra.utils import get_method - will print many errors from hydra.utils import _locate
# from hydra.utils import get_method - will print many errors from hydra.utils import _locate
TRY
prefix_suffix_full_complete_current_block_with_evidence
<filename>UniRef/detectron2/config/instantiate.py<fim_prefix># Copyright (c) Facebook, Inc. and its affiliates. import dataclasses import logging from collections import abc from typing import Any from detectron2.utils.registry import _convert_target_to_string, locate __all__ = ["dump_dataclass", "instantiate"] def dump_dataclass(obj: Any): """ Dump a dataclass recursively into a dict that can be later instantiated. Args: obj: a dataclass object Returns: dict """ assert dataclasses.is_dataclass(obj) and not isinstance( obj, type ), "dump_dataclass() requires an instance of a dataclass." ret = {"_target_": _convert_target_to_string(type(obj))} for f in dataclasses.fields(obj): v = getattr(obj, f.name) if dataclasses.is_dataclass(v): v = dump_dataclass(v) if isinstance(v, (list, tuple)): v = [dump_dataclass(x) if dataclasses.is_dataclass(x) else x for x in v] ret[f.name] = v return ret def instantiate(cfg): """ Recursively instantiate objects defined in dictionaries by "_target_" and arguments. Args: cfg: a dict-like object with "_target_" that defines the caller, and other keys that define the arguments Returns: object instantiated by cfg """ from omegaconf import ListConfig if isinstance(cfg, ListConfig): lst = [instantiate(x) for x in cfg] return ListConfig(lst, flags={"allow_objects": True}) if isinstance(cfg, list): # Specialize for list, because many classes take # list[objects] as arguments, such as ResNet, DatasetMapper return [instantiate(x) for x in cfg] if isinstance(cfg, abc.Mapping) and "_target_" in cfg: # conceptually equivalent to hydra.utils.instantiate(cfg) with _convert_=all, # but faster: https://github.com/facebookresearch/hydra/issues/1200 cfg = {k: instantiate(v) for k, v in cfg.items()} cls = cfg.pop("_target_") cls = instantiate(cls) if isinstance(cls, str): cls_name = cls cls = locate(cls_name) assert cls is not None, cls_name else: try: cls_name = cls.__module__ + "." + cls.__qualname__ except Exception: # target could be anything, so the above could fail cls_name = str(cls) assert callable(cls), f"_target_ {cls} does not define a callable object" try:<fim_suffix> except TypeError: logger = logging.getLogger(__name__) logger.error(f"Error when instantiating {cls_name}!") raise return cfg # return as-is if don't know what to do <fim_middle> return cls(**cfg)
return cls(**cfg)
TRY
prefix_suffix_full_complete_current_block_with_evidence
<filename>UniRef/detectron2/config/instantiate.py<fim_prefix># Copyright (c) Facebook, Inc. and its affiliates. import dataclasses import logging from collections import abc from typing import Any from detectron2.utils.registry import _convert_target_to_string, locate __all__ = ["dump_dataclass", "instantiate"] def dump_dataclass(obj: Any): """ Dump a dataclass recursively into a dict that can be later instantiated. Args: obj: a dataclass object Returns: dict """ assert dataclasses.is_dataclass(obj) and not isinstance( obj, type ), "dump_dataclass() requires an instance of a dataclass." ret = {"_target_": _convert_target_to_string(type(obj))} for f in dataclasses.fields(obj): v = getattr(obj, f.name) if dataclasses.is_dataclass(v): v = dump_dataclass(v) if isinstance(v, (list, tuple)): v = [dump_dataclass(x) if dataclasses.is_dataclass(x) else x for x in v] ret[f.name] = v return ret def instantiate(cfg): """ Recursively instantiate objects defined in dictionaries by "_target_" and arguments. Args: cfg: a dict-like object with "_target_" that defines the caller, and other keys that define the arguments Returns: object instantiated by cfg """ from omegaconf import ListConfig if isinstance(cfg, ListConfig): lst = [instantiate(x) for x in cfg] return ListConfig(lst, flags={"allow_objects": True}) if isinstance(cfg, list): # Specialize for list, because many classes take # list[objects] as arguments, such as ResNet, DatasetMapper return [instantiate(x) for x in cfg] if isinstance(cfg, abc.Mapping) and "_target_" in cfg: # conceptually equivalent to hydra.utils.instantiate(cfg) with _convert_=all, # but faster: https://github.com/facebookresearch/hydra/issues/1200 cfg = {k: instantiate(v) for k, v in cfg.items()} cls = cfg.pop("_target_") cls = instantiate(cls) if isinstance(cls, str): cls_name = cls cls = locate(cls_name) assert cls is not None, cls_name else: try:<fim_suffix> except Exception: # target could be anything, so the above could fail cls_name = str(cls) assert callable(cls), f"_target_ {cls} does not define a callable object" try: return cls(**cfg) except TypeError: logger = logging.getLogger(__name__) logger.error(f"Error when instantiating {cls_name}!") raise return cfg # return as-is if don't know what to do <fim_middle> cls_name = cls.__module__ + "." + cls.__qualname__
cls_name = cls.__module__ + "." + cls.__qualname__
TRY
prefix_suffix_full_complete_current_block_with_evidence
<filename>UniRef/detectron2/config/config.py<fim_prefix># -*- coding: utf-8 -*- # Copyright (c) Facebook, Inc. and its affiliates. import functools import inspect import logging from fvcore.common.config import CfgNode as _CfgNode from detectron2.utils.file_io import PathManager class CfgNode(_CfgNode): """ The same as `fvcore.common.config.CfgNode`, but different in: 1. Use unsafe yaml loading by default. Note that this may lead to arbitrary code execution: you must not load a config file from untrusted sources before manually inspecting the content of the file. 2. Support config versioning. When attempting to merge an old config, it will convert the old config automatically. .. automethod:: clone .. automethod:: freeze .. automethod:: defrost .. automethod:: is_frozen .. automethod:: load_yaml_with_base .. automethod:: merge_from_list .. automethod:: merge_from_other_cfg """ @classmethod def _open_cfg(cls, filename): return PathManager.open(filename, "r") # Note that the default value of allow_unsafe is changed to True def merge_from_file(self, cfg_filename: str, allow_unsafe: bool = True) -> None: """ Load content from the given config file and merge it into self. Args: cfg_filename: config filename allow_unsafe: allow unsafe yaml syntax """ assert PathManager.isfile(cfg_filename), f"Config file '{cfg_filename}' does not exist!" loaded_cfg = self.load_yaml_with_base(cfg_filename, allow_unsafe=allow_unsafe) loaded_cfg = type(self)(loaded_cfg) # defaults.py needs to import CfgNode from .defaults import _C latest_ver = _C.VERSION assert ( latest_ver == self.VERSION ), "CfgNode.merge_from_file is only allowed on a config object of latest version!" logger = logging.getLogger(__name__) loaded_ver = loaded_cfg.get("VERSION", None) if loaded_ver is None: from .compat import guess_version loaded_ver = guess_version(loaded_cfg, cfg_filename) assert loaded_ver <= self.VERSION, "Cannot merge a v{} config into a v{} config.".format( loaded_ver, self.VERSION ) if loaded_ver == self.VERSION: self.merge_from_other_cfg(loaded_cfg) else: # compat.py needs to import CfgNode from .compat import upgrade_config, downgrade_config logger.warning( "Loading an old v{} config file '{}' by automatically upgrading to v{}. " "See docs/CHANGELOG.md for instructions to update your files.".format( loaded_ver, cfg_filename, self.VERSION ) ) # To convert, first obtain a full config at an old version old_self = downgrade_config(self, to_version=loaded_ver) old_self.merge_from_other_cfg(loaded_cfg) new_config = upgrade_config(old_self) self.clear() self.update(new_config) def dump(self, *args, **kwargs): """ Returns: str: a yaml string representation of the config """ # to make it show up in docs return super().dump(*args, **kwargs) global_cfg = CfgNode() def get_cfg() -> CfgNode: """ Get a copy of the default config. Returns: a detectron2 CfgNode instance. """ from .defaults import _C return _C.clone() def set_global_cfg(cfg: CfgNode) -> None: """ Let the global config point to the given cfg. Assume that the given "cfg" has the key "KEY", after calling `set_global_cfg(cfg)`, the key can be accessed by: :: from detectron2.config import global_cfg print(global_cfg.KEY) By using a hacky global config, you can access these configs anywhere, without having to pass the config object or the values deep into the code. This is a hacky feature introduced for quick prototyping / research exploration. """ global global_cfg global_cfg.clear() global_cfg.update(cfg) def configurable(init_func=None, *, from_config=None): """ Decorate a function or a class's __init__ method so that it can be called with a :class:`CfgNode` object using a :func:`from_config` function that translates :class:`CfgNode` to arguments. Examples: :: # Usage 1: Decorator on __init__: class A: @configurable def __init__(self, a, b=2, c=3): pass @classmethod def from_config(cls, cfg): # 'cfg' must be the first argument # Returns kwargs to be passed to __init__ return {"a": cfg.A, "b": cfg.B} a1 = A(a=1, b=2) # regular construction a2 = A(cfg) # construct with a cfg a3 = A(cfg, b=3, c=4) # construct with extra overwrite # Usage 2: Decorator on any function. Needs an extra from_config argument: @configurable(from_config=lambda cfg: {"a: cfg.A, "b": cfg.B}) def a_func(a, b=2, c=3): pass a1 = a_func(a=1, b=2) # regular call a2 = a_func(cfg) # call with a cfg a3 = a_func(cfg, b=3, c=4) # call with extra overwrite Args: init_func (callable): a class's ``__init__`` method in usage 1. The class must have a ``from_config`` classmethod which takes `cfg` as the first argument. from_config (callable): the from_config function in usage 2. It must take `cfg` as its first argument. """ if init_func is not None: assert ( inspect.isfunction(init_func) and from_config is None and init_func.__name__ == "__init__" ), "Incorrect use of @configurable. Check API documentation for examples." @functools.wraps(init_func) def wrapped(self, *args, **kwargs): try:<fim_suffix> except AttributeError as e: raise AttributeError( "Class with @configurable must have a 'from_config' classmethod." ) from e if not inspect.ismethod(from_config_func): raise TypeError("Class with @configurable must have a 'from_config' classmethod.") if _called_with_cfg(*args, **kwargs): explicit_args = _get_args_from_config(from_config_func, *args, **kwargs) init_func(self, **explicit_args) else: init_func(self, *args, **kwargs) return wrapped else: if from_config is None: return configurable # @configurable() is made equivalent to @configurable assert inspect.isfunction( from_config ), "from_config argument of configurable must be a function!" def wrapper(orig_func): @functools.wraps(orig_func) def wrapped(*args, **kwargs): if _called_with_cfg(*args, **kwargs): explicit_args = _get_args_from_config(from_config, *args, **kwargs) return orig_func(**explicit_args) else: return orig_func(*args, **kwargs) wrapped.from_config = from_config return wrapped return wrapper def _get_args_from_config(from_config_func, *args, **kwargs): """ Use `from_config` to obtain explicit arguments. Returns: dict: arguments to be used for cls.__init__ """ signature = inspect.signature(from_config_func) if list(signature.parameters.keys())[0] != "cfg": if inspect.isfunction(from_config_func): name = from_config_func.__name__ else: name = f"{from_config_func.__self__}.from_config" raise TypeError(f"{name} must take 'cfg' as the first argument!") support_var_arg = any( param.kind in [param.VAR_POSITIONAL, param.VAR_KEYWORD] for param in signature.parameters.values() ) if support_var_arg: # forward all arguments to from_config, if from_config accepts them ret = from_config_func(*args, **kwargs) else: # forward supported arguments to from_config supported_arg_names = set(signature.parameters.keys()) extra_kwargs = {} for name in list(kwargs.keys()): if name not in supported_arg_names: extra_kwargs[name] = kwargs.pop(name) ret = from_config_func(*args, **kwargs) # forward the other arguments to __init__ ret.update(extra_kwargs) return ret def _called_with_cfg(*args, **kwargs): """ Returns: bool: whether the arguments contain CfgNode and should be considered forwarded to from_config. """ from omegaconf import DictConfig if len(args) and isinstance(args[0], (_CfgNode, DictConfig)): return True if isinstance(kwargs.pop("cfg", None), (_CfgNode, DictConfig)): return True # `from_config`'s first argument is forced to be "cfg". # So the above check covers all cases. return False <fim_middle> from_config_func = type(self).from_config
from_config_func = type(self).from_config
TRY
prefix_suffix_full_complete_current_block_with_evidence
<filename>UniRef/detectron2/config/instantiate.py<fim_prefix># Copyright (c) Facebook, Inc. and its affiliates. import dataclasses import logging from collections import abc from typing import Any from detectron2.utils.registry import _convert_target_to_string, locate __all__ = ["dump_dataclass", "instantiate"] def dump_dataclass(obj: Any): """ Dump a dataclass recursively into a dict that can be later instantiated. Args: obj: a dataclass object Returns: dict """ assert dataclasses.is_dataclass(obj) and not isinstance( obj, type ), "dump_dataclass() requires an instance of a dataclass." ret = {"_target_": _convert_target_to_string(type(obj))} for f in dataclasses.fields(obj): v = getattr(obj, f.name) if dataclasses.is_dataclass(v): v = dump_dataclass(v) if isinstance(v, (list, tuple)): v = [dump_dataclass(x) if dataclasses.is_dataclass(x) else x for x in v] ret[f.name] = v return ret def instantiate(cfg): """ Recursively instantiate objects defined in dictionaries by "_target_" and arguments. Args: cfg: a dict-like object with "_target_" that defines the caller, and other keys that define the arguments Returns: object instantiated by cfg """ from omegaconf import ListConfig if isinstance(cfg, ListConfig): lst = [instantiate(x) for x in cfg] return ListConfig(lst, flags={"allow_objects": True}) if isinstance(cfg, list): # Specialize for list, because many classes take # list[objects] as arguments, such as ResNet, DatasetMapper return [instantiate(x) for x in cfg] if isinstance(cfg, abc.Mapping) and "_target_" in cfg: # conceptually equivalent to hydra.utils.instantiate(cfg) with _convert_=all, # but faster: https://github.com/facebookresearch/hydra/issues/1200 cfg = {k: instantiate(v) for k, v in cfg.items()} cls = cfg.pop("_target_") cls = instantiate(cls) if isinstance(cls, str): cls_name = cls cls = locate(cls_name) assert cls is not None, cls_name else: try: cls_name = cls.__module__ + "." + cls.__qualname__ except<fim_suffix> assert callable(cls), f"_target_ {cls} does not define a callable object" try: return cls(**cfg) except TypeError: logger = logging.getLogger(__name__) logger.error(f"Error when instantiating {cls_name}!") raise return cfg # return as-is if don't know what to do <fim_middle> Exception: # target could be anything, so the above could fail cls_name = str(cls)
Exception: # target could be anything, so the above could fail cls_name = str(cls)
CATCH
prefix_suffix_full_complete_current_block_with_evidence
<filename>UniRef/detectron2/utils/registry.py<fim_prefix># Copyright (c) Facebook, Inc. and its affiliates. from typing import Any import pydoc from fvcore.common.registry import Registry # for backward compatibility. """ ``Registry`` and `locate` provide ways to map a string (typically found in config files) to callable objects. """ __all__ = ["Registry", "locate"] def _convert_target_to_string(t: Any) -> str: """ Inverse of ``locate()``. Args: t: any object with ``__module__`` and ``__qualname__`` """ module, qualname = t.__module__, t.__qualname__ # Compress the path to this object, e.g. ``module.submodule._impl.class`` # may become ``module.submodule.class``, if the later also resolves to the same # object. This simplifies the string, and also is less affected by moving the # class implementation. module_parts = module.split(".") for k in range(1, len(module_parts)): prefix = ".".join(module_parts[:k]) candidate = f"{prefix}.{qualname}" try: if locate(candidate) is t: return candidate except ImportError: pass return f"{module}.{qualname}" def locate(name: str) -> Any: """ Locate and return an object ``x`` using an input string ``{x.__module__}.{x.__qualname__}``, such as "module.submodule.class_name". Raise Exception if it cannot be found. """ obj = pydoc.locate(name) # Some cases (e.g. torch.optim.sgd.SGD) not handled correctly # by pydoc.locate. Try a private function from hydra. if obj is None: try: # from hydra.utils import get_method - will print many errors from hydra.utils import _locate except<fim_suffix> else: obj = _locate(name) # it raises if fails return obj <fim_middle> ImportError as e: raise ImportError(f"Cannot dynamically locate object {name}!") from e
ImportError as e: raise ImportError(f"Cannot dynamically locate object {name}!") from e
CATCH
prefix_suffix_full_complete_current_block_with_evidence
<filename>UniRef/detectron2/config/config.py<fim_prefix># -*- coding: utf-8 -*- # Copyright (c) Facebook, Inc. and its affiliates. import functools import inspect import logging from fvcore.common.config import CfgNode as _CfgNode from detectron2.utils.file_io import PathManager class CfgNode(_CfgNode): """ The same as `fvcore.common.config.CfgNode`, but different in: 1. Use unsafe yaml loading by default. Note that this may lead to arbitrary code execution: you must not load a config file from untrusted sources before manually inspecting the content of the file. 2. Support config versioning. When attempting to merge an old config, it will convert the old config automatically. .. automethod:: clone .. automethod:: freeze .. automethod:: defrost .. automethod:: is_frozen .. automethod:: load_yaml_with_base .. automethod:: merge_from_list .. automethod:: merge_from_other_cfg """ @classmethod def _open_cfg(cls, filename): return PathManager.open(filename, "r") # Note that the default value of allow_unsafe is changed to True def merge_from_file(self, cfg_filename: str, allow_unsafe: bool = True) -> None: """ Load content from the given config file and merge it into self. Args: cfg_filename: config filename allow_unsafe: allow unsafe yaml syntax """ assert PathManager.isfile(cfg_filename), f"Config file '{cfg_filename}' does not exist!" loaded_cfg = self.load_yaml_with_base(cfg_filename, allow_unsafe=allow_unsafe) loaded_cfg = type(self)(loaded_cfg) # defaults.py needs to import CfgNode from .defaults import _C latest_ver = _C.VERSION assert ( latest_ver == self.VERSION ), "CfgNode.merge_from_file is only allowed on a config object of latest version!" logger = logging.getLogger(__name__) loaded_ver = loaded_cfg.get("VERSION", None) if loaded_ver is None: from .compat import guess_version loaded_ver = guess_version(loaded_cfg, cfg_filename) assert loaded_ver <= self.VERSION, "Cannot merge a v{} config into a v{} config.".format( loaded_ver, self.VERSION ) if loaded_ver == self.VERSION: self.merge_from_other_cfg(loaded_cfg) else: # compat.py needs to import CfgNode from .compat import upgrade_config, downgrade_config logger.warning( "Loading an old v{} config file '{}' by automatically upgrading to v{}. " "See docs/CHANGELOG.md for instructions to update your files.".format( loaded_ver, cfg_filename, self.VERSION ) ) # To convert, first obtain a full config at an old version old_self = downgrade_config(self, to_version=loaded_ver) old_self.merge_from_other_cfg(loaded_cfg) new_config = upgrade_config(old_self) self.clear() self.update(new_config) def dump(self, *args, **kwargs): """ Returns: str: a yaml string representation of the config """ # to make it show up in docs return super().dump(*args, **kwargs) global_cfg = CfgNode() def get_cfg() -> CfgNode: """ Get a copy of the default config. Returns: a detectron2 CfgNode instance. """ from .defaults import _C return _C.clone() def set_global_cfg(cfg: CfgNode) -> None: """ Let the global config point to the given cfg. Assume that the given "cfg" has the key "KEY", after calling `set_global_cfg(cfg)`, the key can be accessed by: :: from detectron2.config import global_cfg print(global_cfg.KEY) By using a hacky global config, you can access these configs anywhere, without having to pass the config object or the values deep into the code. This is a hacky feature introduced for quick prototyping / research exploration. """ global global_cfg global_cfg.clear() global_cfg.update(cfg) def configurable(init_func=None, *, from_config=None): """ Decorate a function or a class's __init__ method so that it can be called with a :class:`CfgNode` object using a :func:`from_config` function that translates :class:`CfgNode` to arguments. Examples: :: # Usage 1: Decorator on __init__: class A: @configurable def __init__(self, a, b=2, c=3): pass @classmethod def from_config(cls, cfg): # 'cfg' must be the first argument # Returns kwargs to be passed to __init__ return {"a": cfg.A, "b": cfg.B} a1 = A(a=1, b=2) # regular construction a2 = A(cfg) # construct with a cfg a3 = A(cfg, b=3, c=4) # construct with extra overwrite # Usage 2: Decorator on any function. Needs an extra from_config argument: @configurable(from_config=lambda cfg: {"a: cfg.A, "b": cfg.B}) def a_func(a, b=2, c=3): pass a1 = a_func(a=1, b=2) # regular call a2 = a_func(cfg) # call with a cfg a3 = a_func(cfg, b=3, c=4) # call with extra overwrite Args: init_func (callable): a class's ``__init__`` method in usage 1. The class must have a ``from_config`` classmethod which takes `cfg` as the first argument. from_config (callable): the from_config function in usage 2. It must take `cfg` as its first argument. """ if init_func is not None: assert ( inspect.isfunction(init_func) and from_config is None and init_func.__name__ == "__init__" ), "Incorrect use of @configurable. Check API documentation for examples." @functools.wraps(init_func) def wrapped(self, *args, **kwargs): try: from_config_func = type(self).from_config except<fim_suffix> if not inspect.ismethod(from_config_func): raise TypeError("Class with @configurable must have a 'from_config' classmethod.") if _called_with_cfg(*args, **kwargs): explicit_args = _get_args_from_config(from_config_func, *args, **kwargs) init_func(self, **explicit_args) else: init_func(self, *args, **kwargs) return wrapped else: if from_config is None: return configurable # @configurable() is made equivalent to @configurable assert inspect.isfunction( from_config ), "from_config argument of configurable must be a function!" def wrapper(orig_func): @functools.wraps(orig_func) def wrapped(*args, **kwargs): if _called_with_cfg(*args, **kwargs): explicit_args = _get_args_from_config(from_config, *args, **kwargs) return orig_func(**explicit_args) else: return orig_func(*args, **kwargs) wrapped.from_config = from_config return wrapped return wrapper def _get_args_from_config(from_config_func, *args, **kwargs): """ Use `from_config` to obtain explicit arguments. Returns: dict: arguments to be used for cls.__init__ """ signature = inspect.signature(from_config_func) if list(signature.parameters.keys())[0] != "cfg": if inspect.isfunction(from_config_func): name = from_config_func.__name__ else: name = f"{from_config_func.__self__}.from_config" raise TypeError(f"{name} must take 'cfg' as the first argument!") support_var_arg = any( param.kind in [param.VAR_POSITIONAL, param.VAR_KEYWORD] for param in signature.parameters.values() ) if support_var_arg: # forward all arguments to from_config, if from_config accepts them ret = from_config_func(*args, **kwargs) else: # forward supported arguments to from_config supported_arg_names = set(signature.parameters.keys()) extra_kwargs = {} for name in list(kwargs.keys()): if name not in supported_arg_names: extra_kwargs[name] = kwargs.pop(name) ret = from_config_func(*args, **kwargs) # forward the other arguments to __init__ ret.update(extra_kwargs) return ret def _called_with_cfg(*args, **kwargs): """ Returns: bool: whether the arguments contain CfgNode and should be considered forwarded to from_config. """ from omegaconf import DictConfig if len(args) and isinstance(args[0], (_CfgNode, DictConfig)): return True if isinstance(kwargs.pop("cfg", None), (_CfgNode, DictConfig)): return True # `from_config`'s first argument is forced to be "cfg". # So the above check covers all cases. return False <fim_middle> AttributeError as e: raise AttributeError( "Class with @configurable must have a 'from_config' classmethod." ) from e
AttributeError as e: raise AttributeError( "Class with @configurable must have a 'from_config' classmethod." ) from e
CATCH
prefix_suffix_full_complete_current_block_with_evidence
<filename>UniRef/detectron2/config/instantiate.py<fim_prefix># Copyright (c) Facebook, Inc. and its affiliates. import dataclasses import logging from collections import abc from typing import Any from detectron2.utils.registry import _convert_target_to_string, locate __all__ = ["dump_dataclass", "instantiate"] def dump_dataclass(obj: Any): """ Dump a dataclass recursively into a dict that can be later instantiated. Args: obj: a dataclass object Returns: dict """ assert dataclasses.is_dataclass(obj) and not isinstance( obj, type ), "dump_dataclass() requires an instance of a dataclass." ret = {"_target_": _convert_target_to_string(type(obj))} for f in dataclasses.fields(obj): v = getattr(obj, f.name) if dataclasses.is_dataclass(v): v = dump_dataclass(v) if isinstance(v, (list, tuple)): v = [dump_dataclass(x) if dataclasses.is_dataclass(x) else x for x in v] ret[f.name] = v return ret def instantiate(cfg): """ Recursively instantiate objects defined in dictionaries by "_target_" and arguments. Args: cfg: a dict-like object with "_target_" that defines the caller, and other keys that define the arguments Returns: object instantiated by cfg """ from omegaconf import ListConfig if isinstance(cfg, ListConfig): lst = [instantiate(x) for x in cfg] return ListConfig(lst, flags={"allow_objects": True}) if isinstance(cfg, list): # Specialize for list, because many classes take # list[objects] as arguments, such as ResNet, DatasetMapper return [instantiate(x) for x in cfg] if isinstance(cfg, abc.Mapping) and "_target_" in cfg: # conceptually equivalent to hydra.utils.instantiate(cfg) with _convert_=all, # but faster: https://github.com/facebookresearch/hydra/issues/1200 cfg = {k: instantiate(v) for k, v in cfg.items()} cls = cfg.pop("_target_") cls = instantiate(cls) if isinstance(cls, str): cls_name = cls cls = locate(cls_name) assert cls is not None, cls_name else: try: cls_name = cls.__module__ + "." + cls.__qualname__ except Exception: # target could be anything, so the above could fail cls_name = str(cls) assert callable(cls), f"_target_ {cls} does not define a callable object" try: return cls(**cfg) except<fim_suffix> return cfg # return as-is if don't know what to do <fim_middle> TypeError: logger = logging.getLogger(__name__) logger.error(f"Error when instantiating {cls_name}!") raise
TypeError: logger = logging.getLogger(__name__) logger.error(f"Error when instantiating {cls_name}!") raise
CATCH
prefix_suffix_full_complete_current_block_with_evidence
<filename>camp_zipnerf/internal/spin_math.py<fim_prefix># coding=utf-8 # Copyright 2023 The Google Research Authors. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # pyformat: mode=yapf """Math utility functions.""" from typing import Optional, Union from internal import math import jax from jax import numpy as jnp import optax def matmul(a, b): """jnp.matmul defaults to bfloat16 on TPU, but this doesn't.""" return jnp.matmul(a, b, precision=jax.lax.Precision.HIGHEST) def safe_sqrt(x, *, eps = jnp.finfo(jnp.float32).eps, value_at_zero = 0.0): """A safe version of jnp.sqrt that avoid evaluating at zero. Note: sqrt(x) = sqrt(eps) = 3e-4 when x < eps = 1.19e-7. Args: x: The operand. eps: A small number to prevent NaNs. value_at_zero: The value to clamp x to near zero. The return value will be sqrt(value_at_zero) Returns: The sqrt(x), or sqrt(value_at_zero) near zero. """ safe_x = jnp.where(x > eps, x, jnp.full_like(x, value_at_zero)) return jnp.sqrt(safe_x) def safe_acos(t, eps = jnp.finfo(jnp.float32).eps): """A safe version of arccos which avoids evaluating at -1 or 1.""" return jnp.arccos(jnp.clip(t, -1.0 + eps, 1.0 - eps)) def safe_log(x, *, eps = jnp.finfo(jnp.float32).eps, value_at_zero = jnp.finfo(jnp.float32).eps): """Computes a safe log that avoids evaluating at zero. Args: x: Input array. eps: A small number to prevent NaNs. value_at_zero: The value to clamp x to near zero. The return value will be sqrt(value_at_zero) Returns: log(x) or log(value_at_zero) near zero. """ safe_x = jnp.where(x > eps, x, jnp.full_like(x, value_at_zero)) return jnp.log(safe_x) def normalize( x, axis = -1, # pylint: disable=redefined-builtin ord = None, eps = jnp.finfo(jnp.float32).eps, ): """Normalize a vector.""" return x / optax.safe_norm(x, axis=axis, ord=ord, min_norm=eps, keepdims=True) def inv_sqrtm( matrix, normalize_eigvals = False, ): """Takes the inverse matrix square root of a PSD matrix. Forked from `coord.sqrtm`. Args: matrix: (..., d, d) A positive semi-definite matrix. normalize_eigvals: If True, normalize the eigenvalues by the geometric mean. Returns: The inverse square root of the matrix, and (eigvec, eigval) if return_eigs is True. """ eigvec, eigval = jax.lax.linalg.eigh( matrix, symmetrize_input=False, sort_eigenvalues=False) if normalize_eigvals: # Equivalent to dividing by geometric mean, but numerically stabler. log_eigval = jnp.log(eigval) eigval = jnp.exp(log_eigval - jnp.mean(log_eigval, axis=-1, keepdims=True)) scaling = math.safe_div(1, math.safe_sqrt(eigval)) scaling = scaling[Ellipsis, None, :] sqrtm_mat = matmul(eigvec * scaling, jnp.moveaxis(eigvec, -2, -1)) return sqrtm_mat, (eigvec, eigval) def to_homogeneous(v): """Converts a vector to a homogeneous representation. Args: v: (*, C) A non-homogeneous vector. Returns: (*, C+1) A homogeneous version of v. """ return jnp.concatenate([v, jnp.ones_like(v[Ellipsis, :1])], axis=-1) def from_homogeneous(v): """Converts a homogeneous vector to a non-homogeneous vector. Args: v: (*, C+1) A homogeneous vector. Returns: (*, C) The non-homogeneous version of v. """ return v[Ellipsis, :-1] / v[Ellipsis, -1:] def apply_homogeneous_transform(transform, vectors): """Apply a homogeneous transformation to a collection of vectors. Args: transform: (C+1,C+1) A homogeneous transformation matrix. vectors: (*,C) An array containing 3D points. Returns: (*,C) The points transformed by the array. """ vectors_h = to_homogeneous(vectors.reshape((-1, vectors.shape[-1]))) transformed = from_homogeneous(matmul(transform, vectors_h.T).T) return transformed.reshape(vectors.shape) def generalized_bias_and_gain(x, slope, threshold): """Maps<fim_suffix> eps = jnp.finfo(jnp.float32).tiny left_curve = (threshold * x) / (x + slope * (threshold - x) + eps) right_curve = ((1 - threshold) * (x - 1) / (1 - x - slope * (threshold - x) + eps) + 1) return jnp.where(x < threshold, left_curve, right_curve) <fim_middle> the input according to the generalized bias and gain function. References: https://arxiv.org/abs/2010.09714 Args: x: The inputs array with values in [0, 1] to map. slope: The slope parameter of the curve which controls the slope of the curve at the threshold. threshold: The value at which `x` reverses its shape, and the point at which the output is guaranteed to be equal to the input. Returns: The output of the curve at each input point `x`. """
the input according to the generalized bias and gain function. References: https://arxiv.org/abs/2010.09714 Args: x: The inputs array with values in [0, 1] to map. slope: The slope parameter of the curve which controls the slope of the curve at the threshold. threshold: The value at which `x` reverses its shape, and the point at which the output is guaranteed to be equal to the input. Returns: The output of the curve at each input point `x`. """
BLOCK_COMMENT
prefix_suffix_full_complete_current_block_with_evidence
<filename>camp_zipnerf/internal/stepfun.py<fim_prefix># coding=utf-8 # Copyright 2023 The Google Research Authors. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Tools for manipulating step functions (piecewise-constant 1D functions). We have a shared naming and dimension convention for these functions. All input/output step functions are assumed to be aligned along the last axis. `t` always indicates the x coordinates of the *endpoints* of a step function. `y` indicates unconstrained values for the *bins* of a step function `w` indicates bin weights that sum to <= 1. `p` indicates non-negative bin values that *integrate* to <= 1. """ from internal import linspline from internal import math from internal import utils import jax import jax.numpy as jnp import numpy as np def query(tq, t, y, left=None, right=None): """Query step function (t, y) at locations tq. Edges repeat by default.""" utils.assert_valid_stepfun(t, y) # Query the step function to recover the interval value. (i0, i1), ((yq, _),) = math.sorted_lookup(tq, t, (y,), utils.device_is_tpu()) # Apply boundary conditions. left = y[Ellipsis, :1] if left is None else left right = y[Ellipsis, -1:] if right is None else right yq = math.select([(i1 == 0, left), (i0 == y.shape[-1], right)], yq) return yq def weight_to_pdf(t, w): """Turn a vector of weights that sums to 1 into a PDF that integrates to 1.""" utils.assert_valid_stepfun(t, w) td = jnp.diff(t) return jnp.where(td < np.finfo(np.float32).tiny, 0, math.safe_div(w, td)) def pdf_to_weight(t, p): """Turn a PDF that integrates to 1 into a vector of weights that sums to 1.""" utils.assert_valid_stepfun(t, p) return p * jnp.diff(t) def integrate_weights(w): """Compute<fim_suffix> cw = jnp.minimum(1, jnp.cumsum(w[Ellipsis, :-1], axis=-1)) shape = cw.shape[:-1] + (1,) # Ensure that the CDF starts with exactly 0 and ends with exactly 1. cw0 = jnp.concatenate([jnp.zeros(shape), cw, jnp.ones(shape)], axis=-1) return cw0 def invert_cdf(u, t, w_logits): """Invert the CDF defined by (t, w) at the points specified by u in [0, 1).""" utils.assert_valid_stepfun(t, w_logits) # Compute the PDF and CDF for each weight vector. w = jax.nn.softmax(w_logits, axis=-1) cw = integrate_weights(w) # Interpolate into the inverse CDF. t_new = math.sorted_interp(u, cw, t, utils.device_is_tpu()) return t_new def sample( rng, t, w_logits, num_samples, single_jitter=False, deterministic_center=False, eps=jnp.finfo(jnp.float32).eps, ): """Piecewise-Constant PDF sampling from a step function. Args: rng: random number generator (or None for `linspace` sampling). t: [..., num_bins + 1], bin endpoint coordinates (must be sorted) w_logits: [..., num_bins], logits corresponding to bin weights num_samples: int, the number of samples. single_jitter: bool, if True, jitter every sample along each ray by the same amount in the inverse CDF. Otherwise, jitter each sample independently. deterministic_center: bool, if False, when `rng` is None return samples that linspace the entire PDF. If True, skip the front and back of the linspace so that the centers of each PDF interval are returned. eps: float, something like numerical epsilon. Returns: t_samples: jnp.ndarray(float32), [batch_size, num_samples]. """ utils.assert_valid_stepfun(t, w_logits) # Draw uniform samples. if rng is None: # Match the behavior of jax.random.uniform() by spanning [0, 1-eps]. if deterministic_center: pad = 1 / (2 * num_samples) u = jnp.linspace(pad, 1.0 - pad - eps, num_samples) else: u = jnp.linspace(0, 1.0 - eps, num_samples) u = jnp.broadcast_to(u, t.shape[:-1] + (num_samples,)) else: # `u` is in [0, 1) --- it can be zero, but it can never be 1. u_max = eps + (1 - eps) / num_samples max_jitter = (1 - u_max) / (num_samples - 1) - eps d = 1 if single_jitter else num_samples u = jnp.linspace(0, 1 - u_max, num_samples) + jax.random.uniform( rng, t.shape[:-1] + (d,), maxval=max_jitter ) return invert_cdf(u, t, w_logits) def sample_intervals( rng, t, w_logits, num_samples, single_jitter=False, domain=(-jnp.inf, jnp.inf), ): """Sample *intervals* (rather than points) from a step function. Args: rng: random number generator (or None for `linspace` sampling). t: [..., num_bins + 1], bin endpoint coordinates (must be sorted) w_logits: [..., num_bins], logits corresponding to bin weights num_samples: int, the number of intervals to sample. single_jitter: bool, if True, jitter every sample along each ray by the same amount in the inverse CDF. Otherwise, jitter each sample independently. domain: (minval, maxval), the range of valid values for `t`. Returns: t_samples: jnp.ndarray(float32), [batch_size, num_samples]. """ utils.assert_valid_stepfun(t, w_logits) if num_samples <= 1: raise ValueError(f'num_samples must be > 1, is {num_samples}.') # Sample a set of points from the step function. centers = sample( rng, t, w_logits, num_samples, single_jitter, deterministic_center=True ) # The intervals we return will span the midpoints of each adjacent sample. mid = (centers[Ellipsis, 1:] + centers[Ellipsis, :-1]) / 2 # Each first/last fencepost is the reflection of the first/last midpoint # around the first/last sampled center. first = 2 * centers[Ellipsis, :1] - mid[Ellipsis, :1] last = 2 * centers[Ellipsis, -1:] - mid[Ellipsis, -1:] samples = jnp.concatenate([first, mid, last], axis=-1) # We clamp to the limits of the input domain, provided by the caller. samples = jnp.clip(samples, *domain) return samples def lossfun_distortion(t, w): """Compute iint w[i] w[j] |t[i] - t[j]| di dj.""" utils.assert_valid_stepfun(t, w) # The loss incurred between all pairs of intervals. ut = (t[Ellipsis, 1:] + t[Ellipsis, :-1]) / 2 dut = jnp.abs(ut[Ellipsis, :, None] - ut[Ellipsis, None, :]) loss_inter = jnp.sum(w * jnp.sum(w[Ellipsis, None, :] * dut, axis=-1), axis=-1) # The loss incurred within each individual interval with itself. loss_intra = jnp.sum(w**2 * jnp.diff(t), axis=-1) / 3 return loss_inter + loss_intra def weighted_percentile(t, w, ps): """Compute the weighted percentiles of a step function. w's must sum to 1.""" utils.assert_valid_stepfun(t, w) cw = integrate_weights(w) # We want to interpolate into the integrated weights according to `ps`. wprctile = jnp.vectorize(jnp.interp, signature='(n),(m),(m)->(n)')( jnp.array(ps) / 100, cw, t ) return wprctile def resample(t, tp, vp, use_avg=False): """Resample a step function defined by (tp, vp) into intervals t. Notation roughly matches jnp.interp. Resamples by summation by default. Args: t: tensor with shape (..., n+1), the endpoints to resample into. tp: tensor with shape (..., m+1), the endpoints of the step function being resampled. vp: tensor with shape (..., m), the values of the step function being resampled. use_avg: bool, if False, return the sum of the step function for each interval in `t`. If True, return the average, weighted by the width of each interval in `t`. Returns: v: tensor with shape (..., n), the values of the resampled step function. """ utils.assert_valid_stepfun(tp, vp) if use_avg: wp = jnp.diff(tp) v_numer = resample(t, tp, vp * wp, use_avg=False) v_denom = resample(t, tp, wp, use_avg=False) v = math.safe_div(v_numer, v_denom) return v acc = jnp.cumsum(vp, axis=-1) acc0 = jnp.concatenate([jnp.zeros(acc.shape[:-1] + (1,)), acc], axis=-1) acc0_resampled = jnp.vectorize(jnp.interp, signature='(n),(m),(m)->(n)')( t, tp, acc0 ) v = jnp.diff(acc0_resampled, axis=-1) return v def blur_and_resample_weights(tq, t, w, blur_halfwidth): """Blur the (t, w) histogram by blur_halfwidth, then resample it into tq.""" utils.assert_valid_stepfun(t, w) # Convert the histogram to a PDF. p = weight_to_pdf(t, w) # Blur the PDF step function into a piecewise linear spline PDF. t_linspline, p_linspline = linspline.blur_stepfun(t, p, blur_halfwidth) # Integrate the spline PDF, then query it to get integrated weights. quad = linspline.compute_integral(t_linspline, p_linspline) acc_wq = linspline.interpolate_integral(tq, t_linspline, *quad) # Undo the integration to get weights. wq = jnp.diff(acc_wq, axis=-1) # Fix negative values to 0, as they should never happen but may due to # numerical issues. wq = jnp.maximum(0, wq) return wq <fim_middle> the cumulative sum of w, assuming all weight vectors sum to 1. The output's size on the last dimension is one greater than that of the input, because we're computing the integral corresponding to the endpoints of a step function, not the integral of the interior/bin values. Args: w: Tensor, which will be integrated along the last axis. This is assumed to sum to 1 along the last axis, and this function will (silently) break if that is not the case. Returns: cw0: Tensor, the integral of w, where cw0[..., 0] = 0 and cw0[..., -1] = 1 """
the cumulative sum of w, assuming all weight vectors sum to 1. The output's size on the last dimension is one greater than that of the input, because we're computing the integral corresponding to the endpoints of a step function, not the integral of the interior/bin values. Args: w: Tensor, which will be integrated along the last axis. This is assumed to sum to 1 along the last axis, and this function will (silently) break if that is not the case. Returns: cw0: Tensor, the integral of w, where cw0[..., 0] = 0 and cw0[..., -1] = 1 """
BLOCK_COMMENT
prefix_suffix_full_complete_current_block_with_evidence
<filename>camp_zipnerf/internal/render.py<fim_prefix># coding=utf-8 # Copyright 2023 The Google Research Authors. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Helper functions for shooting and rendering rays.""" import jax import jax.numpy as jnp import jax.scipy as jsp from internal import math from internal import stepfun def lift_gaussian(d, t_mean, t_var, r_var, diag): """Lift a Gaussian defined along a ray to 3D coordinates.""" mean = d[Ellipsis, None, :] * t_mean[Ellipsis, None] d_mag_sq = jnp.maximum(1e-10, jnp.sum(d**2, axis=-1, keepdims=True)) if diag: d_outer_diag = d**2 null_outer_diag = 1 - d_outer_diag / d_mag_sq t_cov_diag = t_var[Ellipsis, None] * d_outer_diag[Ellipsis, None, :] xy_cov_diag = r_var[Ellipsis, None] * null_outer_diag[Ellipsis, None, :] cov_diag = t_cov_diag + xy_cov_diag return mean, cov_diag else: d_outer = d[Ellipsis, :, None] * d[Ellipsis, None, :] eye = jnp.eye(d.shape[-1]) null_outer = eye - d[Ellipsis, :, None] * (d / d_mag_sq)[Ellipsis, None, :] t_cov = t_var[Ellipsis, None, None] * d_outer[Ellipsis, None, :, :] xy_cov = r_var[Ellipsis, None, None] * null_outer[Ellipsis, None, :, :] cov = t_cov + xy_cov return mean, cov def gaussianize_frustum(t0, t1): """Convert<fim_suffix> # A more stable version of Equation 7 from https://arxiv.org/abs/2103.13415. s = t0 + t1 d = t1 - t0 eps = jnp.finfo(jnp.float32).eps ** 2 ratio = d**2 / jnp.maximum(eps, 3 * s**2 + d**2) t_mean = s * (1 / 2 + ratio) t_var = (1 / 12) * d**2 - (1 / 15) * ratio**2 * (12 * s**2 - d**2) r_var = (1 / 16) * s**2 + d**2 * (5 / 48 - (1 / 15) * ratio) return t_mean, t_var, r_var def conical_frustum_to_gaussian(d, t0, t1, base_radius, diag): """Approximate a 3D conical frustum as a Gaussian distribution (mean+cov). Assumes the ray is originating from the origin, and base_radius is the radius at dist=1. Doesn't assume `d` is normalized. Args: d: jnp.float32 3-vector, the axis of the cone t0: float, the starting distance of the frustum. t1: float, the ending distance of the frustum. base_radius: float, the scale of the radius as a function of distance. diag: boolean, whether or the Gaussian will be diagonal or full-covariance. Returns: a Gaussian (mean and covariance). """ t_mean, t_var, r_var = gaussianize_frustum(t0, t1) r_var *= base_radius**2 mean, cov = lift_gaussian(d, t_mean, t_var, r_var, diag) return mean, cov def cylinder_to_gaussian(d, t0, t1, radius, diag): """Approximate a cylinder as a Gaussian distribution (mean+cov). Assumes the ray is originating from the origin, and radius is the radius. Does not renormalize `d`. Args: d: jnp.float32 3-vector, the axis of the cylinder t0: float, the starting distance of the cylinder. t1: float, the ending distance of the cylinder. radius: float, the radius of the cylinder diag: boolean, whether or the Gaussian will be diagonal or full-covariance. Returns: a Gaussian (mean and covariance). """ t_mean = (t0 + t1) / 2 r_var = radius**2 / 4 t_var = (t1 - t0) ** 2 / 12 return lift_gaussian(d, t_mean, t_var, r_var, diag) def cast_rays(tdist, origins, directions, radii, ray_shape, diag=True): """Cast rays (cone- or cylinder-shaped) and featurize sections of it. Args: tdist: float array, the "fencepost" distances along the ray. origins: float array, the ray origin coordinates. directions: float array, the ray direction vectors. radii: float array, the radii (base radii for cones) of the rays. ray_shape: string, the shape of the ray, must be 'cone' or 'cylinder'. diag: boolean, whether or not the covariance matrices should be diagonal. Returns: a tuple of arrays of means and covariances. """ t0 = tdist[Ellipsis, :-1] t1 = tdist[Ellipsis, 1:] if ray_shape == 'cone': gaussian_fn = conical_frustum_to_gaussian elif ray_shape == 'cylinder': gaussian_fn = cylinder_to_gaussian else: raise ValueError("ray_shape must be 'cone' or 'cylinder'") means, covs = gaussian_fn(directions, t0, t1, radii, diag) means = means + origins[Ellipsis, None, :] return means, covs def compute_alpha_weights_helper(density_delta): """Helper function for compute_alpha_weights.""" log_trans = -jnp.concatenate( [ jnp.zeros_like(density_delta[Ellipsis, :1]), jnp.cumsum(density_delta[Ellipsis, :-1], axis=-1), ], axis=-1, ) alpha = 1 - jnp.exp(-density_delta) trans = jnp.exp(log_trans) weights = alpha * trans return weights def compute_alpha_weights( density, tdist, dirs, **kwargs, ): """Helper function for computing alpha compositing weights.""" t_delta = jnp.diff(tdist) delta = t_delta * jnp.linalg.norm(dirs[Ellipsis, None, :], axis=-1) density_delta = density * delta return compute_alpha_weights_helper(density_delta, **kwargs) def volumetric_rendering( rgbs, weights, tdist, bg_rgbs, compute_extras, extras=None, percentiles = (5, 50, 95), ): """Volumetric Rendering Function. Args: rgbs: jnp.ndarray(float32), color, [batch_size, num_samples, 3] weights: jnp.ndarray(float32), weights, [batch_size, num_samples]. tdist: jnp.ndarray(float32), [batch_size, num_samples]. bg_rgbs: jnp.ndarray(float32), the color(s) to use for the background. compute_extras: bool, if True, compute extra quantities besides color. extras: dict, a set of values along rays to render by alpha compositing. percentiles: depth will be returned for these percentiles. Returns: rendering: a dict containing an rgb image of size [batch_size, 3], and other visualizations if compute_extras=True. """ eps = jnp.finfo(jnp.float32).eps rendering = {} acc = weights.sum(axis=-1) bg_w = jnp.maximum(0, 1 - acc[Ellipsis, None]) # The weight of the background. if rgbs is not None: rgb = (weights[Ellipsis, None] * rgbs).sum(axis=-2) + bg_w * bg_rgbs else: rgb = None rendering['rgb'] = rgb if compute_extras: rendering['acc'] = acc if extras is not None: for k, v in extras.items(): if v is not None: rendering[k] = (weights[Ellipsis, None] * v).sum(axis=-2) expectation = lambda x: (weights * x).sum(axis=-1) / jnp.maximum(eps, acc) t_mids = 0.5 * (tdist[Ellipsis, :-1] + tdist[Ellipsis, 1:]) # For numerical stability this expectation is computing using log-distance. rendering['distance_mean'] = jnp.clip( jnp.nan_to_num(jnp.exp(expectation(jnp.log(t_mids))), jnp.inf), tdist[Ellipsis, 0], tdist[Ellipsis, -1], ) # Normalize the weights to sum to 1. weights_norm = weights / jnp.maximum(eps, acc[Ellipsis, None]) distance_percentiles = stepfun.weighted_percentile( tdist, weights_norm, percentiles ) for i, p in enumerate(percentiles): s = 'median' if p == 50 else 'percentile_' + str(p) rendering['distance_' + s] = distance_percentiles[Ellipsis, i] return rendering <fim_middle> intervals along a conical frustum into means and variances."""
intervals along a conical frustum into means and variances."""
BLOCK_COMMENT
prefix_suffix_full_complete_current_block_with_evidence
<filename>camp_zipnerf/internal/math.py<fim_prefix># coding=utf-8 # Copyright 2023 The Google Research Authors. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Mathy utility functions.""" import functools import jax import jax.numpy as jnp import numpy as np tiny_val = np.float32(np.finfo(np.float32).tiny) min_val = np.float32(np.finfo(np.float32).min) max_val = np.float32(np.finfo(np.float32).max) def laplace_cdf(x, beta): alpha = 1 / beta return alpha * (0.5 + 0.5 * safe_sign(x) * (jnp.exp(-jnp.abs(x) / beta) - 1)) def scaled_softplus(x, scale=100.0): return (1.0 / scale) * jax.nn.softplus(scale * x) def matmul(a, b): """jnp.matmul defaults to bfloat16, but this helper function doesn't.""" return jnp.matmul(a, b, precision=jax.lax.Precision.HIGHEST) def unstack(x, axis=0): return tuple( jnp.squeeze(z, axis=axis) for z in jnp.split(x, x.shape[axis], axis=axis) ) @jax.custom_jvp def plus_eps(x): return jnp.where( jnp.abs(x) < tiny_val, tiny_val, jnp.nextafter(jnp.float32(x), jnp.inf) ) @jax.custom_jvp def minus_eps(x): return jnp.where( jnp.abs(x) < tiny_val, -tiny_val, jnp.nextafter(jnp.float32(x), -jnp.inf) ) @plus_eps.defjvp def plus_eps_jvp(primals, tangents): """Make plus_eps()'s gradient a no-op (nextafter's gradient is undefined).""" return plus_eps(*primals), tangents[0] @minus_eps.defjvp def minus_eps_jvp(primals, tangents): """Make minus_eps()'s gradient a no-op (nextafter's gradient is undefined).""" return minus_eps(*primals), tangents[0] @jax.custom_jvp def expm1(x): """jnp.expm1() has inaccurate gradients when x << 0, this doesn't.""" return jnp.expm1(x) @expm1.defjvp def expm1_jvp(primals, tangents): return expm1(*primals), tangents[0] * jnp.exp(primals[0]) def safe_trig_helper(x, fn, t=100 * jnp.pi): """Helper function used by safe_cos/safe_sin: mods x before sin()/cos().""" return fn(jnp.nan_to_num(jnp.where(jnp.abs(x) < t, x, x % t))) def safe_cos(x): """jnp.cos() on a TPU may NaN out for large values.""" return safe_trig_helper(x, jnp.cos) def safe_sin(x): """jnp.sin() on a TPU may NaN out for large values.""" return safe_trig_helper(x, jnp.sin) @jax.custom_vjp def safe_arctan2(x1, x2): return safe_arctan2_fwd(x1, x2)[0] def safe_arctan2_fwd(x1, x2): return jnp.arctan2(x1, x2), (x1, x2) def safe_arctan2_bwd(res, g): x1, x2 = res denom = remove_zero(x1**2 + x2**2) d1 = g * (x2 / denom) d2 = g * (-x1 / denom) return d1, d2 safe_arctan2.defvjp(safe_arctan2_fwd, safe_arctan2_bwd) def generate_clip_nograd_fn(a_min, a_max): """Generates a function that clips to [a_min, a_max] with no grad effects.""" @jax.custom_jvp def clip_nograd(a): """Clamps `a` from above and below.""" return jnp.clip(a, a_min, a_max) @clip_nograd.defjvp def clip_nograd_jvp(primals, tangents): """Override clips()'s gradient to be a no-op.""" return clip_nograd(primals[0]), tangents[0] return clip_nograd clip_finite_nograd = generate_clip_nograd_fn(min_val, max_val) clip_pos_finite_nograd = generate_clip_nograd_fn(tiny_val, max_val) def clip_pos(x): """Clamps `x` from below to be positive.""" return jnp.maximum(tiny_val, x) def safe_sign(x): """jnp.sign(x) except x=0 is assumed to have a sign of +1, not 0.""" return jnp.where(x < 0, -1, +1) def remove_zero(x): """Shifts `x` away from 0.""" return jnp.where(jnp.abs(x) < tiny_val, tiny_val, x) def clip_finite(x): return jnp.clip(x, min_val, max_val) @jax.custom_vjp def safe_div(n, d): """Divide `n` by `d` but the value and gradient never nan out.""" return safe_div_fwd(n, d)[0] def safe_div_fwd(n, d): r = jnp.clip(n / remove_zero(d), min_val, max_val) return jnp.where(jnp.abs(d) < tiny_val, 0, r), (d, r) def safe_div_bwd(res, g): d, r = res dn = jnp.clip(g / remove_zero(d), min_val, max_val) dd = jnp.clip(-g * r / remove_zero(d), min_val, max_val) return dn, dd safe_div.defvjp(safe_div_fwd, safe_div_bwd) def generate_safe_fn(fn, grad_fn, x_range): """Generate's a `safe` fn() where inputs are clipped in fwd and bwd passes.""" @jax.custom_jvp def safe_fn(x): """fn()<fim_suffix> return fn(jnp.clip(x, *x_range)) @safe_fn.defjvp def safe_fn_jvp(primals, tangents): """Backpropagate using the gradient and clipped inputs.""" (x,) = primals (x_dot,) = tangents y = safe_fn(x) y_dot = grad_fn(jnp.clip(x, *x_range), y, x_dot) return y, y_dot return safe_fn # These safe_* functions need to be wrapped in no-op function definitions for # gin to recognize them, otherwise they could just be calls to generate_safe_fn. def safe_log(x): return generate_safe_fn( jnp.log, lambda x, _, x_dot: x_dot / x, (tiny_val, max_val), )(x) def safe_exp(x): return generate_safe_fn( jnp.exp, lambda _, y, x_dot: y * x_dot, (min_val, np.nextafter(np.log(max_val), np.float32(0))), )(x) def safe_sqrt(x): return generate_safe_fn( jnp.sqrt, lambda x, _, x_dot: 0.5 * x_dot / jnp.sqrt(jnp.maximum(tiny_val, x)), (0, max_val), )(x) def safe_log1p(x): return generate_safe_fn( jnp.log1p, lambda x, _, x_dot: x_dot / (1 + x), (np.nextafter(np.float32(-1), np.float32(0)), max_val), )(x) def safe_expm1(x): return generate_safe_fn( expm1, # Note that we wrap around our more accurate expm1. lambda x, _, x_dot: jnp.exp(x) * x_dot, (min_val, np.nextafter(np.log1p(max_val), np.float32(0))), )(x) def safe_arccos(x): """jnp.arccos(x) where x is clipped to [-1, 1].""" y = jnp.arccos(jnp.clip(x, plus_eps(-1), minus_eps(1))) return jnp.where(x >= 1, 0, jnp.where(x <= -1, jnp.pi, y)) def apply_fn_to_grad(grad_fn): """Applies a scalar `grad_fn` function to the gradient of the input.""" @jax.custom_vjp def fn_out(x): return x fn_out.defvjp(lambda x: (x, None), lambda _, y: (grad_fn(y),)) return fn_out def select(cond_pairs, default): """A helpful wrapper around jnp.select() that is easier to read.""" return jnp.select(*zip(*cond_pairs), default) def power_ladder_max_output(p): """The limit of power_ladder(x, p) as x goes to infinity.""" return select( [ (p == -jnp.inf, 1), (p >= 0, jnp.inf), ], safe_div(p - 1, p), ) def power_ladder(x, p, premult=None, postmult=None): """Tukey's power ladder, with a +1 on x, some scaling, and special cases.""" # Compute sign(x) * |p - 1|/p * ((|x|/|p-1| + 1)^p - 1) if premult is not None: x = x * premult xp = jnp.abs(x) xs = xp / jnp.maximum(tiny_val, jnp.abs(p - 1)) p_safe = clip_finite_nograd(remove_zero(p)) y = safe_sign(x) * select( [ (p == 1, xp), (p == 0, safe_log1p(xp)), (p == -jnp.inf, -safe_expm1(-xp)), (p == jnp.inf, safe_expm1(xp)), ], clip_finite_nograd( jnp.abs(p_safe - 1) / p_safe * ((xs + 1) ** p_safe - 1) ), ) if postmult is not None: y = y * postmult return y def inv_power_ladder(y, p, premult=None, postmult=None): """The inverse of `power_ladder()`.""" if postmult is not None: y /= postmult yp = jnp.abs(y) p_safe = clip_finite_nograd(remove_zero(p)) y_max = minus_eps(power_ladder_max_output(p)) yp = override_gradient(jnp.clip(yp, -y_max, y_max), yp) # Clip val, not grad. x = safe_sign(y) * select( [ (p == 1, yp), (p == 0, safe_expm1(yp)), (p == -jnp.inf, -safe_log1p(-yp)), (p == jnp.inf, safe_log1p(yp)), ], jnp.abs(p_safe - 1) * ( ((safe_div(p_safe, jnp.abs(p_safe - 1)) * yp + 1)) ** (1 / p_safe) - 1 ), ) if premult is not None: x /= premult return x def log_lerp(t, v0, v1): """Interpolate log-linearly from `v0` (t=0) to `v1` (t=1).""" if v0 <= 0 or v1 <= 0: raise ValueError(f'Interpolants {v0} and {v1} must be positive.') lv0 = jnp.log(v0) lv1 = jnp.log(v1) return jnp.exp(jnp.clip(t, 0, 1) * (lv1 - lv0) + lv0) def approx_erf(x): """An approximation of erf() that is accurate to within 0.007.""" return jnp.sign(x) * jnp.sqrt(1 - jnp.exp(-(4 / jnp.pi) * x**2)) def create_learning_rate_decay(**kwargs): """A partial evaluation of learning rate decay that can be used with gin.""" return functools.partial(learning_rate_decay, **kwargs) def learning_rate_decay( step, lr_init, lr_final, max_steps, lr_delay_steps=0, lr_delay_mult=1 ): """Continuous learning rate decay function. The returned rate is lr_init when step=0 and lr_final when step=max_steps, and is log-linearly interpolated elsewhere (equivalent to exponential decay). If lr_delay_steps>0 then the learning rate will be scaled by some smooth function of lr_delay_mult, such that the initial learning rate is lr_init*lr_delay_mult at the beginning of optimization but will be eased back to the normal learning rate when steps>lr_delay_steps. Args: step: int, the current optimization step. lr_init: float, the initial learning rate. lr_final: float, the final learning rate. max_steps: int, the number of steps during optimization. lr_delay_steps: int, the number of steps to delay the full learning rate. lr_delay_mult: float, the multiplier on the rate when delaying it. Returns: lr: the learning for current step 'step'. """ if lr_delay_steps > 0: # A kind of reverse cosine decay. delay_rate = lr_delay_mult + (1 - lr_delay_mult) * jnp.sin( 0.5 * jnp.pi * jnp.clip(step / lr_delay_steps, 0, 1) ) else: delay_rate = 1.0 return delay_rate * log_lerp(step / max_steps, lr_init, lr_final) def sorted_lookup(x, xp, fps, device_is_tpu): """Lookup `x` into locations `xp` , return indices and each `[fp]` value.""" if not isinstance(fps, tuple): raise ValueError(f'Input `fps` must be a tuple, but is {type(fps)}.') if device_is_tpu: # Identify the location in `xp` that corresponds to each `x`. # The final `True` index in `mask` is the start of the matching interval. mask = x[Ellipsis, None, :] >= xp[Ellipsis, :, None] def find_interval(x): # Grab the value where `mask` switches from True to False, and vice versa. # This approach takes advantage of the fact that `x` is sorted. x0 = jnp.max(jnp.where(mask, x[Ellipsis, None], x[Ellipsis, :1, None]), -2) x1 = jnp.min(jnp.where(~mask, x[Ellipsis, None], x[Ellipsis, -1:, None]), -2) return x0, x1 idx0, idx1 = find_interval(jnp.arange(xp.shape[-1])) vals = [find_interval(fp) for fp in fps] else: # jnp.searchsorted() has slightly different conventions for boundary # handling than the rest of this codebase. idx = jnp.vectorize( lambda a, v: jnp.searchsorted(a, v, side='right'), signature='(n),(m)->(m)', )(xp, x) idx1 = jnp.minimum(idx, xp.shape[-1] - 1) idx0 = jnp.maximum(idx - 1, 0) vals = [] for fp in fps: fp0 = jnp.take_along_axis(fp, idx0, axis=-1) fp1 = jnp.take_along_axis(fp, idx1, axis=-1) vals.append((fp0, fp1)) return (idx0, idx1), vals def sorted_interp( x, xp, fp, device_is_tpu, eps=jnp.finfo(jnp.float32).eps ** 2 ): """A version of interp() where xp and fp must be sorted.""" (xp0, xp1), (fp0, fp1) = sorted_lookup( x, xp, (xp, fp), device_is_tpu=device_is_tpu )[1] offset = jnp.clip((x - xp0) / jnp.maximum(eps, xp1 - xp0), 0, 1) ret = fp0 + offset * (fp1 - fp0) return ret def searchsorted(a, v, device_is_tpu): """Behaves like jnp.searchsorted, excluding boundary conditions.""" return sorted_lookup(v, a, (), device_is_tpu=device_is_tpu)[0] def override_gradient(fval, bval): """Use `fval` in the forward pass but `bval` in the backward pass.""" # Note that the parentheses are needed to avoid catastrophic cancellation. return jax.lax.stop_gradient(fval) + (bval - jax.lax.stop_gradient(bval)) def average_across_multisamples(x): """Function that averages grid query results across the multisample dimension.""" return jnp.mean(x, axis=-2) def noop(x): return x @jax.custom_jvp def fake_clip(a, a_min, a_max): """jnp.clip() but the gradient doesn't get clipped on the backward pass.""" return jnp.clip(a, a_min, a_max) @fake_clip.defjvp def fake_clip_jvp(primals, tangents): """Override fake_clip()'s gradient so that it's a no-op.""" return jnp.clip(*primals), tangents[0] @jax.jit def general_lossfun(x, alpha, scale): r"""This implements the rho(x, \alpha, c) function described in "A General and Adaptive Robust Loss Function", Jonathan T. Barron, https://arxiv.org/abs/1701.03077. Args: x: The residual for which the loss is being computed. x can have any shape, and alpha and scale will be broadcasted to match x's shape if necessary. alpha: The shape parameter of the loss (\alpha in the paper), where more negative values produce a loss with more robust behavior (outliers "cost" less), and more positive values produce a loss with less robust behavior (outliers are penalized more heavily). Alpha can be any value in [-infinity, infinity], but the gradient of the loss with respect to alpha is 0 at -infinity, infinity, 0, and 2. Varying alpha allows for smooth interpolation between several discrete robust losses: alpha=-Infinity: Welsch/Leclerc Loss. alpha=-2: Geman-McClure loss. alpha=0: Cauchy/Lortentzian loss. alpha=1: Charbonnier/pseudo-Huber loss. alpha=2: L2 loss. scale: The scale parameter of the loss. When |x| < scale, the loss is an L2-like quadratic bowl, and when |x| > scale the loss function takes on a different shape according to alpha. Returns: The losses for each element of x, in the same shape as x. """ eps = jnp.finfo(jnp.float32).eps maxval = 1e15 # A "safe" versions of expm1 that will not NaN-out on large inputs. expm1_safe = lambda x: jnp.expm1(jnp.minimum(x, 43)) # `scale` must be > 0. scale = jnp.maximum(eps, scale) # Large values of |x| can cause non-finite gradients. x = fake_clip(x, -maxval, maxval) # The loss when alpha == 2. This will get reused repeatedly. loss_two = 0.5 * (x / scale)**2 # Clamp |alpha| to be >= machine epsilon so that it's safe to divide by. a = jnp.where(alpha >= 0, jnp.ones_like(alpha), -jnp.ones_like(alpha)) * jnp.maximum(eps, jnp.abs(alpha)) # Clamp |2-alpha| to be >= machine epsilon so that it's safe to divide by. b = jnp.maximum(eps, jnp.abs(a - 2)) # The loss when not in one of the special casess. loss_ow = (b / a) * ((loss_two / (0.5 * b) + 1)**(0.5 * a) - 1) # Select which of the cases of the loss to return as a function of alpha. return jnp.where( alpha == -jnp.inf, -expm1_safe(-loss_two), jnp.where( alpha == 0, jnp.log1p(loss_two), jnp.where(alpha == 2, loss_two, jnp.where(alpha == jnp.inf, expm1_safe(loss_two), loss_ow)))) <fim_middle> with clipped inputs."""
with clipped inputs."""
BLOCK_COMMENT
prefix_suffix_full_complete_current_block_with_evidence
<filename>camp_zipnerf/internal/linspline.py<fim_prefix># coding=utf-8 # Copyright 2023 The Google Research Authors. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Helper functions for linear splines.""" import functools from internal import math from internal import utils import jax from jax.experimental import checkify import jax.numpy as jnp def check_zero_endpoints(y): checkify.check(jnp.all(y[Ellipsis, 0] == 0), 'Splines must all start with 0.') checkify.check(jnp.all(y[Ellipsis, -1] == 0), 'Splines must all end with 0.') def query(tq, t, v): """Query linear spline (t, v) at tq.""" utils.assert_valid_linspline(t, v) interp = functools.partial(jnp.interp, left=0, right=0) return jnp.vectorize(interp, signature='(n),(m),(m)->(n)')(tq, t, v) def integrate(t, w): """Integrate (t, w) according to the trapezoid rule.""" utils.assert_valid_linspline(t, w) return 0.5 * jnp.sum((w[Ellipsis, :-1] + w[Ellipsis, 1:]) * jnp.diff(t), axis=-1) def normalize(t, w, eps=jnp.finfo(jnp.float32).eps ** 2): """Make w integrate to 1.""" utils.assert_valid_linspline(t, w) return w / jnp.maximum(eps, integrate(t, w))[Ellipsis, None] def insert_knot(ti, t, y): """Inserts knots ti into the linear spline (t, w). Assumes zero endpoints.""" utils.assert_valid_linspline(t, y) check_zero_endpoints(y) # Compute the spline value at the insertion points. yi = query(ti, t, y) # Concatenate the insertion points and values onto the end of each spline. ti_ex = jnp.broadcast_to(ti, t.shape[: -len(ti.shape)] + ti.shape) yi_ex = jnp.broadcast_to(yi, y.shape[: -len(yi.shape)] + yi.shape) to = jnp.concatenate([t, ti_ex], axis=-1) yo = jnp.concatenate([y, yi_ex], axis=-1) # Sort the spline according to t. sort_idx = jnp.argsort(to) to = jnp.take_along_axis(to, sort_idx, axis=-1) yo = jnp.take_along_axis(yo, sort_idx, axis=-1) return to, yo def clamp(t, y, minval, maxval): """Clamp (t, y) to be zero outside of t in [minval, maxval].""" utils.assert_valid_linspline(t, y) check_zero_endpoints(y) # Add in extra points at and immediately above/below the min/max vals. ti = jnp.concatenate( [ math.minus_eps(minval), minval, maxval, math.plus_eps(maxval), ], axis=-1, ) tc, yo = insert_knot(ti, t, y) # Zero the spline values outside of [minval, maxval]. yc = jnp.where(tc > maxval, 0, jnp.where(tc < minval, 0, yo)) return tc, yc def compute_integral(t, y): """Integrate<fim_suffix> utils.assert_valid_linspline(t, y) eps = jnp.finfo(jnp.float32).eps ** 2 dt = jnp.diff(t) a = jnp.diff(y) / jnp.maximum(eps, 2 * dt) b = y[Ellipsis, :-1] # The integral has an ambiguous global offset here, which we set to 0. c1 = 0.5 * jnp.cumsum(dt[Ellipsis, :-1] * (y[Ellipsis, :-2] + y[Ellipsis, 1:-1]), axis=-1) c = jnp.concatenate([jnp.zeros_like(y[Ellipsis, :1]), c1], axis=-1) # This quadratic is parameterized as: # (t - t[i])**2 * a[i] + (t - t[i]) * b[i] + c[i] return a, b, c def sorted_lookup(x, xp): """Lookup `x` at sorted locations `xp`.""" # jnp.searchsorted() has slightly different conventions for boundary # handling than the rest of this codebase. idx = jnp.vectorize( functools.partial(jnp.searchsorted, side='right'), signature='(n),(m)->(m)', )(xp, x) idx0 = jnp.maximum(idx - 1, 0) idx1 = jnp.minimum(idx, xp.shape[-1] - 1) return idx0, idx1 def interpolate_integral(tq, t, a, b, c): """Interpolate into the piecewise quadratic returned by compute_integral().""" utils.assert_valid_stepfun(t, a) utils.assert_valid_stepfun(t, b) utils.assert_valid_stepfun(t, c) # Clip to valid inputs (assumes repeating boundaries). tq = jnp.clip(tq, t[Ellipsis, :1], math.minus_eps(t[Ellipsis, -1:])) # Lookup the quadratic coefficients corresponding to each input query. idx0, _ = sorted_lookup(tq, t) # TODO(barron): It might be faster to stack (a, c, b) during generation and # do a single gather. t0 = jnp.take_along_axis(t, idx0, axis=-1) a0 = jnp.take_along_axis(a, idx0, axis=-1) b0 = jnp.take_along_axis(b, idx0, axis=-1) c0 = jnp.take_along_axis(c, idx0, axis=-1) td = tq - t0 v = a0 * td**2 + b0 * td + c0 return v def blur_stepfun(ts, ys, halfwidth): """Convolve a step function (ts, ys) with a box filter of size `halfwidth`.""" utils.assert_valid_stepfun(ts, ys) # Blur each entire step function by a single `halfwidth` value. # Dilate the t-values by at least numerical epsilon in each direction. ts_lo = ts - halfwidth ts_hi = jnp.maximum(math.plus_eps(ts), ts + halfwidth) # The difference in adjacent `y` values (zero padded) divided by the # difference in adjacent `t` values. ys0 = jnp.concatenate( [jnp.zeros_like(ys[Ellipsis, :1]), ys, jnp.zeros_like(ys[Ellipsis, :1])], axis=-1 ) dy = jnp.diff(ys0) / (ts_hi - ts_lo) # When decreasing t splat a positive second derivative, and when increasing # t splat a negative second derivative. tp = jnp.concatenate([ts_lo, ts_hi], axis=-1) dyp = jnp.concatenate([dy, -dy], axis=-1) # Sort the dilated t-values and their accompanying derivative weights. idx = jnp.argsort(tp, axis=-1) tp = jnp.take_along_axis(tp, idx, axis=-1) dyp = jnp.take_along_axis(dyp, idx[Ellipsis, :-2], axis=-1) # A ramp is the double integral of a delta function, so if we double- # integrate these derivatives you get the sum of a bunch of trapezoids. yp = jnp.cumsum(jnp.diff(tp)[Ellipsis, :-1] * jnp.cumsum(dyp, axis=-1), axis=-1) # Add in the missing first and last endpoint values, which must be zero # because we assume zero padding on `ys`. yp = jnp.concatenate( [jnp.zeros_like(yp[Ellipsis, :1]), yp, jnp.zeros_like(yp[Ellipsis, -1:])], axis=-1 ) return tp, yp <fim_middle> a linear spline into a piecewise quadratic spline."""
a linear spline into a piecewise quadratic spline."""
BLOCK_COMMENT
prefix_suffix_full_complete_current_block_with_evidence
<filename>camp_zipnerf/internal/ref_utils.py<fim_prefix># coding=utf-8 # Copyright 2023 The Google Research Authors. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Functions for reflection directions and directional encodings.""" import math from internal import math as math_lib import jax.numpy as jnp import numpy as np def reflect(viewdirs, normals): """Reflect view directions about normals. The reflection of a vector v about a unit vector n is a vector u such that dot(v, n) = dot(u, n), and dot(u, u) = dot(v, v). The solution to these two equations is u = 2 dot(n, v) n - v. Args: viewdirs: [..., 3] array of view directions. normals: [..., 3] array of normal directions (assumed to be unit vectors). Returns: [..., 3] array of reflection directions. """ return ( 2.0 * jnp.sum(normals * viewdirs, axis=-1, keepdims=True) * normals - viewdirs ) def l2_normalize(x, grad_eps=jnp.finfo(jnp.float32).eps): """Normalize x to unit length along last axis. Normalizing vectors is surprisingly tricky, because you have to address the case where the denominator in the normalization is tiny or zero, in which case gradients will explode. For this reason, we perform two normalizations: in the forward pass, we clamp the denominator with ~1e-40, but in the backward pass we clamp with `grad_eps`, which defaults to ~1e-7. This guarantees that the output of this function is unit norm (unless x is very very small) while preventing exploding gradients. Args: x: The array of values to normalize. grad_eps: The value to clip the squared norm by before division in the backward pass. Returns: A normalized array x / ||x||, normalized along the last axis. """ tiny = jnp.finfo(jnp.float32).tiny grad_eps = jnp.maximum(tiny, grad_eps) denom_sq = jnp.sum(x**2, axis=-1, keepdims=True) normal_val = x / jnp.sqrt(jnp.maximum(tiny, denom_sq)) normal_grad = x / jnp.sqrt(jnp.maximum(grad_eps, denom_sq)) # Use `normal_val` in the forward pass but `normal_grad` in the backward pass. normal = math_lib.override_gradient(normal_val, normal_grad) return jnp.where(denom_sq < tiny, jnp.zeros_like(normal), normal) def compute_weighted_mae(weights, normals, normals_gt): """Compute weighted mean angular error, assuming normals are unit length.""" angles = math_lib.safe_arccos((normals * normals_gt).sum(axis=-1)) return (180.0 / jnp.pi) * ((weights * angles).sum() / weights.sum()) def generalized_binomial_coeff(a, k): """Compute generalized binomial coefficients.""" return np.prod(a - np.arange(k)) / math.factorial(k) def assoc_legendre_coeff(l, m, k): """Compute associated Legendre polynomial coefficients. Returns the coefficient of the cos^k(theta)*sin^m(theta) term in the (l, m)th associated Legendre polynomial, P_l^m(cos(theta)). Args: l: associated Legendre polynomial degree. m: associated Legendre polynomial order. k: power of cos(theta). Returns: A float, the coefficient of the term corresponding to the inputs. """ return ( (-1) ** m * 2**l * math.factorial(l) / math.factorial(k) / math.factorial(l - k - m) * generalized_binomial_coeff(0.5 * (l + k + m - 1.0), l) ) def sph_harm_coeff(l, m, k): """Compute<fim_suffix> return np.sqrt( (2.0 * l + 1.0) * math.factorial(l - m) / (4.0 * np.pi * math.factorial(l + m)) ) * assoc_legendre_coeff(l, m, k) def get_ml_array(deg_view): """Create a list with all pairs of (l, m) values to use in the encoding.""" ml_list = [] for i in range(deg_view): l = 2**i # Only use nonnegative m values, later splitting real and imaginary parts. for m in range(l + 1): ml_list.append((m, l)) # Convert list into a numpy array. ml_array = np.array(ml_list).T return ml_array def generate_ide_fn(deg_view): """Generate integrated directional encoding (IDE) function. This function returns a function that computes the integrated directional encoding from Equations 6-8 of arxiv.org/abs/2112.03907. Args: deg_view: number of spherical harmonics degrees to use. Returns: A function for evaluating integrated directional encoding. Raises: ValueError: if deg_view is larger than 5. """ if deg_view > 5: raise ValueError('Only deg_view of at most 5 is numerically stable.') ml_array = get_ml_array(deg_view) l_max = 2 ** (deg_view - 1) # Create a matrix corresponding to ml_array holding all coefficients, which, # when multiplied (from the right) by the z coordinate Vandermonde matrix, # results in the z component of the encoding. mat = np.zeros((l_max + 1, ml_array.shape[1])) for i, (m, l) in enumerate(ml_array.T): for k in range(l - m + 1): mat[k, i] = sph_harm_coeff(l, m, k) def integrated_dir_enc_fn(xyz, kappa_inv): """Function returning integrated directional encoding (IDE). Args: xyz: [..., 3] array of Cartesian coordinates of directions to evaluate at. kappa_inv: [..., 1] reciprocal of the concentration parameter of the von Mises-Fisher distribution. Returns: An array with the resulting IDE. """ x = xyz[Ellipsis, 0:1] y = xyz[Ellipsis, 1:2] z = xyz[Ellipsis, 2:3] # Compute z Vandermonde matrix. vmz = jnp.concatenate([z**i for i in range(mat.shape[0])], axis=-1) # Compute x+iy Vandermonde matrix. vmxy = jnp.concatenate([(x + 1j * y) ** m for m in ml_array[0, :]], axis=-1) # Get spherical harmonics. sph_harms = vmxy * math_lib.matmul(vmz, mat) # Apply attenuation function using the von Mises-Fisher distribution # concentration parameter, kappa. sigma = 0.5 * ml_array[1, :] * (ml_array[1, :] + 1) ide = sph_harms * jnp.exp(-sigma * kappa_inv) # Split into real and imaginary parts and return return jnp.concatenate([jnp.real(ide), jnp.imag(ide)], axis=-1) return integrated_dir_enc_fn def generate_dir_enc_fn(deg_view): """Generate directional encoding (DE) function. Args: deg_view: number of spherical harmonics degrees to use. Returns: A function for evaluating directional encoding. """ integrated_dir_enc_fn = generate_ide_fn(deg_view) def dir_enc_fn(xyz): """Function returning directional encoding (DE).""" return integrated_dir_enc_fn(xyz, jnp.zeros_like(xyz[Ellipsis, :1])) return dir_enc_fn def orientation_loss(w, n, v): """Orientation loss on weights `w`, normals `n`, and -view directions `v`.""" n_dot_v = (n * v[Ellipsis, None, :]).sum(axis=-1) return jnp.mean((w * jnp.minimum(0.0, n_dot_v) ** 2).sum(axis=-1)) <fim_middle> spherical harmonic coefficients."""
spherical harmonic coefficients."""
BLOCK_COMMENT
prefix_suffix_full_complete_current_block_with_evidence
<filename>camp_zipnerf/internal/math.py<fim_prefix># coding=utf-8 # Copyright 2023 The Google Research Authors. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Mathy utility functions.""" import functools import jax import jax.numpy as jnp import numpy as np tiny_val = np.float32(np.finfo(np.float32).tiny) min_val = np.float32(np.finfo(np.float32).min) max_val = np.float32(np.finfo(np.float32).max) def laplace_cdf(x, beta): alpha = 1 / beta return alpha * (0.5 + 0.5 * safe_sign(x) * (jnp.exp(-jnp.abs(x) / beta) - 1)) def scaled_softplus(x, scale=100.0): return (1.0 / scale) * jax.nn.softplus(scale * x) def matmul(a, b): """jnp.matmul defaults to bfloat16, but this helper function doesn't.""" return jnp.matmul(a, b, precision=jax.lax.Precision.HIGHEST) def unstack(x, axis=0): return tuple( jnp.squeeze(z, axis=axis) for z in jnp.split(x, x.shape[axis], axis=axis) ) @jax.custom_jvp def plus_eps(x): return jnp.where( jnp.abs(x) < tiny_val, tiny_val, jnp.nextafter(jnp.float32(x), jnp.inf) ) @jax.custom_jvp def minus_eps(x): return jnp.where( jnp.abs(x) < tiny_val, -tiny_val, jnp.nextafter(jnp.float32(x), -jnp.inf) ) @plus_eps.defjvp def plus_eps_jvp(primals, tangents): """Make plus_eps()'s gradient a no-op (nextafter's gradient is undefined).""" return plus_eps(*primals), tangents[0] @minus_eps.defjvp def minus_eps_jvp(primals, tangents): """Make minus_eps()'s gradient a no-op (nextafter's gradient is undefined).""" return minus_eps(*primals), tangents[0] @jax.custom_jvp def expm1(x): """jnp.expm1() has inaccurate gradients when x << 0, this doesn't.""" return jnp.expm1(x) @expm1.defjvp def expm1_jvp(primals, tangents): return expm1(*primals), tangents[0] * jnp.exp(primals[0]) def safe_trig_helper(x, fn, t=100 * jnp.pi): """Helper function used by safe_cos/safe_sin: mods x before sin()/cos().""" return fn(jnp.nan_to_num(jnp.where(jnp.abs(x) < t, x, x % t))) def safe_cos(x): """jnp.cos() on a TPU may NaN out for large values.""" return safe_trig_helper(x, jnp.cos) def safe_sin(x): """jnp.sin() on a TPU may NaN out for large values.""" return safe_trig_helper(x, jnp.sin) @jax.custom_vjp def safe_arctan2(x1, x2): return safe_arctan2_fwd(x1, x2)[0] def safe_arctan2_fwd(x1, x2): return jnp.arctan2(x1, x2), (x1, x2) def safe_arctan2_bwd(res, g): x1, x2 = res denom = remove_zero(x1**2 + x2**2) d1 = g * (x2 / denom) d2 = g * (-x1 / denom) return d1, d2 safe_arctan2.defvjp(safe_arctan2_fwd, safe_arctan2_bwd) def generate_clip_nograd_fn(a_min, a_max): """Generates a function that clips to [a_min, a_max] with no grad effects.""" @jax.custom_jvp def clip_nograd(a): """Clamps `a` from above and below.""" return jnp.clip(a, a_min, a_max) @clip_nograd.defjvp def clip_nograd_jvp(primals, tangents): """Override clips()'s gradient to be a no-op.""" return clip_nograd(primals[0]), tangents[0] return clip_nograd clip_finite_nograd = generate_clip_nograd_fn(min_val, max_val) clip_pos_finite_nograd = generate_clip_nograd_fn(tiny_val, max_val) def clip_pos(x): """Clamps `x` from below to be positive.""" return jnp.maximum(tiny_val, x) def safe_sign(x): """jnp.sign(x) except x=0 is assumed to have a sign of +1, not 0.""" return jnp.where(x < 0, -1, +1) def remove_zero(x): """Shifts `x` away from 0.""" return jnp.where(jnp.abs(x) < tiny_val, tiny_val, x) def clip_finite(x): return jnp.clip(x, min_val, max_val) @jax.custom_vjp def safe_div(n, d): """Divide `n` by `d` but the value and gradient never nan out.""" return safe_div_fwd(n, d)[0] def safe_div_fwd(n, d): r = jnp.clip(n / remove_zero(d), min_val, max_val) return jnp.where(jnp.abs(d) < tiny_val, 0, r), (d, r) def safe_div_bwd(res, g): d, r = res dn = jnp.clip(g / remove_zero(d), min_val, max_val) dd = jnp.clip(-g * r / remove_zero(d), min_val, max_val) return dn, dd safe_div.defvjp(safe_div_fwd, safe_div_bwd) def generate_safe_fn(fn, grad_fn, x_range): """Generate's a `safe` fn() where inputs are clipped in fwd and bwd passes.""" @jax.custom_jvp def safe_fn(x): """fn() with clipped inputs.""" return fn(jnp.clip(x, *x_range)) @safe_fn.defjvp def safe_fn_jvp(primals, tangents): """Backpropagate<fim_suffix> (x,) = primals (x_dot,) = tangents y = safe_fn(x) y_dot = grad_fn(jnp.clip(x, *x_range), y, x_dot) return y, y_dot return safe_fn # These safe_* functions need to be wrapped in no-op function definitions for # gin to recognize them, otherwise they could just be calls to generate_safe_fn. def safe_log(x): return generate_safe_fn( jnp.log, lambda x, _, x_dot: x_dot / x, (tiny_val, max_val), )(x) def safe_exp(x): return generate_safe_fn( jnp.exp, lambda _, y, x_dot: y * x_dot, (min_val, np.nextafter(np.log(max_val), np.float32(0))), )(x) def safe_sqrt(x): return generate_safe_fn( jnp.sqrt, lambda x, _, x_dot: 0.5 * x_dot / jnp.sqrt(jnp.maximum(tiny_val, x)), (0, max_val), )(x) def safe_log1p(x): return generate_safe_fn( jnp.log1p, lambda x, _, x_dot: x_dot / (1 + x), (np.nextafter(np.float32(-1), np.float32(0)), max_val), )(x) def safe_expm1(x): return generate_safe_fn( expm1, # Note that we wrap around our more accurate expm1. lambda x, _, x_dot: jnp.exp(x) * x_dot, (min_val, np.nextafter(np.log1p(max_val), np.float32(0))), )(x) def safe_arccos(x): """jnp.arccos(x) where x is clipped to [-1, 1].""" y = jnp.arccos(jnp.clip(x, plus_eps(-1), minus_eps(1))) return jnp.where(x >= 1, 0, jnp.where(x <= -1, jnp.pi, y)) def apply_fn_to_grad(grad_fn): """Applies a scalar `grad_fn` function to the gradient of the input.""" @jax.custom_vjp def fn_out(x): return x fn_out.defvjp(lambda x: (x, None), lambda _, y: (grad_fn(y),)) return fn_out def select(cond_pairs, default): """A helpful wrapper around jnp.select() that is easier to read.""" return jnp.select(*zip(*cond_pairs), default) def power_ladder_max_output(p): """The limit of power_ladder(x, p) as x goes to infinity.""" return select( [ (p == -jnp.inf, 1), (p >= 0, jnp.inf), ], safe_div(p - 1, p), ) def power_ladder(x, p, premult=None, postmult=None): """Tukey's power ladder, with a +1 on x, some scaling, and special cases.""" # Compute sign(x) * |p - 1|/p * ((|x|/|p-1| + 1)^p - 1) if premult is not None: x = x * premult xp = jnp.abs(x) xs = xp / jnp.maximum(tiny_val, jnp.abs(p - 1)) p_safe = clip_finite_nograd(remove_zero(p)) y = safe_sign(x) * select( [ (p == 1, xp), (p == 0, safe_log1p(xp)), (p == -jnp.inf, -safe_expm1(-xp)), (p == jnp.inf, safe_expm1(xp)), ], clip_finite_nograd( jnp.abs(p_safe - 1) / p_safe * ((xs + 1) ** p_safe - 1) ), ) if postmult is not None: y = y * postmult return y def inv_power_ladder(y, p, premult=None, postmult=None): """The inverse of `power_ladder()`.""" if postmult is not None: y /= postmult yp = jnp.abs(y) p_safe = clip_finite_nograd(remove_zero(p)) y_max = minus_eps(power_ladder_max_output(p)) yp = override_gradient(jnp.clip(yp, -y_max, y_max), yp) # Clip val, not grad. x = safe_sign(y) * select( [ (p == 1, yp), (p == 0, safe_expm1(yp)), (p == -jnp.inf, -safe_log1p(-yp)), (p == jnp.inf, safe_log1p(yp)), ], jnp.abs(p_safe - 1) * ( ((safe_div(p_safe, jnp.abs(p_safe - 1)) * yp + 1)) ** (1 / p_safe) - 1 ), ) if premult is not None: x /= premult return x def log_lerp(t, v0, v1): """Interpolate log-linearly from `v0` (t=0) to `v1` (t=1).""" if v0 <= 0 or v1 <= 0: raise ValueError(f'Interpolants {v0} and {v1} must be positive.') lv0 = jnp.log(v0) lv1 = jnp.log(v1) return jnp.exp(jnp.clip(t, 0, 1) * (lv1 - lv0) + lv0) def approx_erf(x): """An approximation of erf() that is accurate to within 0.007.""" return jnp.sign(x) * jnp.sqrt(1 - jnp.exp(-(4 / jnp.pi) * x**2)) def create_learning_rate_decay(**kwargs): """A partial evaluation of learning rate decay that can be used with gin.""" return functools.partial(learning_rate_decay, **kwargs) def learning_rate_decay( step, lr_init, lr_final, max_steps, lr_delay_steps=0, lr_delay_mult=1 ): """Continuous learning rate decay function. The returned rate is lr_init when step=0 and lr_final when step=max_steps, and is log-linearly interpolated elsewhere (equivalent to exponential decay). If lr_delay_steps>0 then the learning rate will be scaled by some smooth function of lr_delay_mult, such that the initial learning rate is lr_init*lr_delay_mult at the beginning of optimization but will be eased back to the normal learning rate when steps>lr_delay_steps. Args: step: int, the current optimization step. lr_init: float, the initial learning rate. lr_final: float, the final learning rate. max_steps: int, the number of steps during optimization. lr_delay_steps: int, the number of steps to delay the full learning rate. lr_delay_mult: float, the multiplier on the rate when delaying it. Returns: lr: the learning for current step 'step'. """ if lr_delay_steps > 0: # A kind of reverse cosine decay. delay_rate = lr_delay_mult + (1 - lr_delay_mult) * jnp.sin( 0.5 * jnp.pi * jnp.clip(step / lr_delay_steps, 0, 1) ) else: delay_rate = 1.0 return delay_rate * log_lerp(step / max_steps, lr_init, lr_final) def sorted_lookup(x, xp, fps, device_is_tpu): """Lookup `x` into locations `xp` , return indices and each `[fp]` value.""" if not isinstance(fps, tuple): raise ValueError(f'Input `fps` must be a tuple, but is {type(fps)}.') if device_is_tpu: # Identify the location in `xp` that corresponds to each `x`. # The final `True` index in `mask` is the start of the matching interval. mask = x[Ellipsis, None, :] >= xp[Ellipsis, :, None] def find_interval(x): # Grab the value where `mask` switches from True to False, and vice versa. # This approach takes advantage of the fact that `x` is sorted. x0 = jnp.max(jnp.where(mask, x[Ellipsis, None], x[Ellipsis, :1, None]), -2) x1 = jnp.min(jnp.where(~mask, x[Ellipsis, None], x[Ellipsis, -1:, None]), -2) return x0, x1 idx0, idx1 = find_interval(jnp.arange(xp.shape[-1])) vals = [find_interval(fp) for fp in fps] else: # jnp.searchsorted() has slightly different conventions for boundary # handling than the rest of this codebase. idx = jnp.vectorize( lambda a, v: jnp.searchsorted(a, v, side='right'), signature='(n),(m)->(m)', )(xp, x) idx1 = jnp.minimum(idx, xp.shape[-1] - 1) idx0 = jnp.maximum(idx - 1, 0) vals = [] for fp in fps: fp0 = jnp.take_along_axis(fp, idx0, axis=-1) fp1 = jnp.take_along_axis(fp, idx1, axis=-1) vals.append((fp0, fp1)) return (idx0, idx1), vals def sorted_interp( x, xp, fp, device_is_tpu, eps=jnp.finfo(jnp.float32).eps ** 2 ): """A version of interp() where xp and fp must be sorted.""" (xp0, xp1), (fp0, fp1) = sorted_lookup( x, xp, (xp, fp), device_is_tpu=device_is_tpu )[1] offset = jnp.clip((x - xp0) / jnp.maximum(eps, xp1 - xp0), 0, 1) ret = fp0 + offset * (fp1 - fp0) return ret def searchsorted(a, v, device_is_tpu): """Behaves like jnp.searchsorted, excluding boundary conditions.""" return sorted_lookup(v, a, (), device_is_tpu=device_is_tpu)[0] def override_gradient(fval, bval): """Use `fval` in the forward pass but `bval` in the backward pass.""" # Note that the parentheses are needed to avoid catastrophic cancellation. return jax.lax.stop_gradient(fval) + (bval - jax.lax.stop_gradient(bval)) def average_across_multisamples(x): """Function that averages grid query results across the multisample dimension.""" return jnp.mean(x, axis=-2) def noop(x): return x @jax.custom_jvp def fake_clip(a, a_min, a_max): """jnp.clip() but the gradient doesn't get clipped on the backward pass.""" return jnp.clip(a, a_min, a_max) @fake_clip.defjvp def fake_clip_jvp(primals, tangents): """Override fake_clip()'s gradient so that it's a no-op.""" return jnp.clip(*primals), tangents[0] @jax.jit def general_lossfun(x, alpha, scale): r"""This implements the rho(x, \alpha, c) function described in "A General and Adaptive Robust Loss Function", Jonathan T. Barron, https://arxiv.org/abs/1701.03077. Args: x: The residual for which the loss is being computed. x can have any shape, and alpha and scale will be broadcasted to match x's shape if necessary. alpha: The shape parameter of the loss (\alpha in the paper), where more negative values produce a loss with more robust behavior (outliers "cost" less), and more positive values produce a loss with less robust behavior (outliers are penalized more heavily). Alpha can be any value in [-infinity, infinity], but the gradient of the loss with respect to alpha is 0 at -infinity, infinity, 0, and 2. Varying alpha allows for smooth interpolation between several discrete robust losses: alpha=-Infinity: Welsch/Leclerc Loss. alpha=-2: Geman-McClure loss. alpha=0: Cauchy/Lortentzian loss. alpha=1: Charbonnier/pseudo-Huber loss. alpha=2: L2 loss. scale: The scale parameter of the loss. When |x| < scale, the loss is an L2-like quadratic bowl, and when |x| > scale the loss function takes on a different shape according to alpha. Returns: The losses for each element of x, in the same shape as x. """ eps = jnp.finfo(jnp.float32).eps maxval = 1e15 # A "safe" versions of expm1 that will not NaN-out on large inputs. expm1_safe = lambda x: jnp.expm1(jnp.minimum(x, 43)) # `scale` must be > 0. scale = jnp.maximum(eps, scale) # Large values of |x| can cause non-finite gradients. x = fake_clip(x, -maxval, maxval) # The loss when alpha == 2. This will get reused repeatedly. loss_two = 0.5 * (x / scale)**2 # Clamp |alpha| to be >= machine epsilon so that it's safe to divide by. a = jnp.where(alpha >= 0, jnp.ones_like(alpha), -jnp.ones_like(alpha)) * jnp.maximum(eps, jnp.abs(alpha)) # Clamp |2-alpha| to be >= machine epsilon so that it's safe to divide by. b = jnp.maximum(eps, jnp.abs(a - 2)) # The loss when not in one of the special casess. loss_ow = (b / a) * ((loss_two / (0.5 * b) + 1)**(0.5 * a) - 1) # Select which of the cases of the loss to return as a function of alpha. return jnp.where( alpha == -jnp.inf, -expm1_safe(-loss_two), jnp.where( alpha == 0, jnp.log1p(loss_two), jnp.where(alpha == 2, loss_two, jnp.where(alpha == jnp.inf, expm1_safe(loss_two), loss_ow)))) <fim_middle> using the gradient and clipped inputs."""
using the gradient and clipped inputs."""
BLOCK_COMMENT
prefix_suffix_full_complete_current_block_with_evidence
<filename>camp_zipnerf/internal/render.py<fim_prefix># coding=utf-8 # Copyright 2023 The Google Research Authors. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Helper functions for shooting and rendering rays.""" import jax import jax.numpy as jnp import jax.scipy as jsp from internal import math from internal import stepfun def lift_gaussian(d, t_mean, t_var, r_var, diag): """Lift a Gaussian defined along a ray to 3D coordinates.""" mean = d[Ellipsis, None, :] * t_mean[Ellipsis, None] d_mag_sq = jnp.maximum(1e-10, jnp.sum(d**2, axis=-1, keepdims=True)) if diag: d_outer_diag = d**2 null_outer_diag = 1 - d_outer_diag / d_mag_sq t_cov_diag = t_var[Ellipsis, None] * d_outer_diag[Ellipsis, None, :] xy_cov_diag = r_var[Ellipsis, None] * null_outer_diag[Ellipsis, None, :] cov_diag = t_cov_diag + xy_cov_diag return mean, cov_diag else: d_outer = d[Ellipsis, :, None] * d[Ellipsis, None, :] eye = jnp.eye(d.shape[-1]) null_outer = eye - d[Ellipsis, :, None] * (d / d_mag_sq)[Ellipsis, None, :] t_cov = t_var[Ellipsis, None, None] * d_outer[Ellipsis, None, :, :] xy_cov = r_var[Ellipsis, None, None] * null_outer[Ellipsis, None, :, :] cov = t_cov + xy_cov return mean, cov def gaussianize_frustum(t0, t1): """Convert intervals along a conical frustum into means and variances.""" # A more stable version of Equation 7 from https://arxiv.org/abs/2103.13415. s = t0 + t1 d = t1 - t0 eps = jnp.finfo(jnp.float32).eps ** 2 ratio = d**2 / jnp.maximum(eps, 3 * s**2 + d**2) t_mean = s * (1 / 2 + ratio) t_var = (1 / 12) * d**2 - (1 / 15) * ratio**2 * (12 * s**2 - d**2) r_var = (1 / 16) * s**2 + d**2 * (5 / 48 - (1 / 15) * ratio) return t_mean, t_var, r_var def conical_frustum_to_gaussian(d, t0, t1, base_radius, diag): """Approximate a 3D conical frustum as a Gaussian distribution (mean+cov). Assumes the ray is originating from the origin, and base_radius is the radius at dist=1. Doesn't assume `d` is normalized. Args: d: jnp.float32 3-vector, the axis of the cone t0: float, the starting distance of the frustum. t1: float, the ending distance of the frustum. base_radius: float, the scale of the radius as a function of distance. diag: boolean, whether or the Gaussian will be diagonal or full-covariance. Returns: a Gaussian (mean and covariance). """ t_mean, t_var, r_var = gaussianize_frustum(t0, t1) r_var *= base_radius**2 mean, cov = lift_gaussian(d, t_mean, t_var, r_var, diag) return mean, cov def cylinder_to_gaussian(d, t0, t1, radius, diag): """Approximate<fim_suffix> t_mean = (t0 + t1) / 2 r_var = radius**2 / 4 t_var = (t1 - t0) ** 2 / 12 return lift_gaussian(d, t_mean, t_var, r_var, diag) def cast_rays(tdist, origins, directions, radii, ray_shape, diag=True): """Cast rays (cone- or cylinder-shaped) and featurize sections of it. Args: tdist: float array, the "fencepost" distances along the ray. origins: float array, the ray origin coordinates. directions: float array, the ray direction vectors. radii: float array, the radii (base radii for cones) of the rays. ray_shape: string, the shape of the ray, must be 'cone' or 'cylinder'. diag: boolean, whether or not the covariance matrices should be diagonal. Returns: a tuple of arrays of means and covariances. """ t0 = tdist[Ellipsis, :-1] t1 = tdist[Ellipsis, 1:] if ray_shape == 'cone': gaussian_fn = conical_frustum_to_gaussian elif ray_shape == 'cylinder': gaussian_fn = cylinder_to_gaussian else: raise ValueError("ray_shape must be 'cone' or 'cylinder'") means, covs = gaussian_fn(directions, t0, t1, radii, diag) means = means + origins[Ellipsis, None, :] return means, covs def compute_alpha_weights_helper(density_delta): """Helper function for compute_alpha_weights.""" log_trans = -jnp.concatenate( [ jnp.zeros_like(density_delta[Ellipsis, :1]), jnp.cumsum(density_delta[Ellipsis, :-1], axis=-1), ], axis=-1, ) alpha = 1 - jnp.exp(-density_delta) trans = jnp.exp(log_trans) weights = alpha * trans return weights def compute_alpha_weights( density, tdist, dirs, **kwargs, ): """Helper function for computing alpha compositing weights.""" t_delta = jnp.diff(tdist) delta = t_delta * jnp.linalg.norm(dirs[Ellipsis, None, :], axis=-1) density_delta = density * delta return compute_alpha_weights_helper(density_delta, **kwargs) def volumetric_rendering( rgbs, weights, tdist, bg_rgbs, compute_extras, extras=None, percentiles = (5, 50, 95), ): """Volumetric Rendering Function. Args: rgbs: jnp.ndarray(float32), color, [batch_size, num_samples, 3] weights: jnp.ndarray(float32), weights, [batch_size, num_samples]. tdist: jnp.ndarray(float32), [batch_size, num_samples]. bg_rgbs: jnp.ndarray(float32), the color(s) to use for the background. compute_extras: bool, if True, compute extra quantities besides color. extras: dict, a set of values along rays to render by alpha compositing. percentiles: depth will be returned for these percentiles. Returns: rendering: a dict containing an rgb image of size [batch_size, 3], and other visualizations if compute_extras=True. """ eps = jnp.finfo(jnp.float32).eps rendering = {} acc = weights.sum(axis=-1) bg_w = jnp.maximum(0, 1 - acc[Ellipsis, None]) # The weight of the background. if rgbs is not None: rgb = (weights[Ellipsis, None] * rgbs).sum(axis=-2) + bg_w * bg_rgbs else: rgb = None rendering['rgb'] = rgb if compute_extras: rendering['acc'] = acc if extras is not None: for k, v in extras.items(): if v is not None: rendering[k] = (weights[Ellipsis, None] * v).sum(axis=-2) expectation = lambda x: (weights * x).sum(axis=-1) / jnp.maximum(eps, acc) t_mids = 0.5 * (tdist[Ellipsis, :-1] + tdist[Ellipsis, 1:]) # For numerical stability this expectation is computing using log-distance. rendering['distance_mean'] = jnp.clip( jnp.nan_to_num(jnp.exp(expectation(jnp.log(t_mids))), jnp.inf), tdist[Ellipsis, 0], tdist[Ellipsis, -1], ) # Normalize the weights to sum to 1. weights_norm = weights / jnp.maximum(eps, acc[Ellipsis, None]) distance_percentiles = stepfun.weighted_percentile( tdist, weights_norm, percentiles ) for i, p in enumerate(percentiles): s = 'median' if p == 50 else 'percentile_' + str(p) rendering['distance_' + s] = distance_percentiles[Ellipsis, i] return rendering <fim_middle> a cylinder as a Gaussian distribution (mean+cov). Assumes the ray is originating from the origin, and radius is the radius. Does not renormalize `d`. Args: d: jnp.float32 3-vector, the axis of the cylinder t0: float, the starting distance of the cylinder. t1: float, the ending distance of the cylinder. radius: float, the radius of the cylinder diag: boolean, whether or the Gaussian will be diagonal or full-covariance. Returns: a Gaussian (mean and covariance). """
a cylinder as a Gaussian distribution (mean+cov). Assumes the ray is originating from the origin, and radius is the radius. Does not renormalize `d`. Args: d: jnp.float32 3-vector, the axis of the cylinder t0: float, the starting distance of the cylinder. t1: float, the ending distance of the cylinder. radius: float, the radius of the cylinder diag: boolean, whether or the Gaussian will be diagonal or full-covariance. Returns: a Gaussian (mean and covariance). """
BLOCK_COMMENT
prefix_suffix_full_complete_current_block_with_evidence
<filename>camp_zipnerf/internal/coord.py<fim_prefix># coding=utf-8 # Copyright 2023 The Google Research Authors. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Tools for manipulating coordinate spaces and distances along rays.""" from internal import geopoly from internal import math import jax from jax import random import jax.numpy as jnp import numpy as np def contract(x): """Contracts points towards the origin (Eq 10 of arxiv.org/abs/2111.12077).""" # Clamping to 1 produces correct scale inside |x| < 1 x_mag_sq = jnp.maximum(1, jnp.sum(x**2, axis=-1, keepdims=True)) scale = (2 * jnp.sqrt(x_mag_sq) - 1) / x_mag_sq z = scale * x return z def inv_contract(z): """The inverse of contract().""" # Clamping to 1 produces correct scale inside |z| < 1 z_mag_sq = jnp.maximum(1, jnp.sum(z**2, axis=-1, keepdims=True)) inv_scale = 2 * jnp.sqrt(z_mag_sq) - z_mag_sq x = z / inv_scale return x def track_linearize(fn, mean, cov): """Apply function `fn` to a set of means and covariances, ala a Kalman filter. We can analytically transform a Gaussian parameterized by `mean` and `cov` with a function `fn` by linearizing `fn` around `mean`, and taking advantage of the fact that Covar[Ax + y] = A(Covar[x])A^T (see https://cs.nyu.edu/~roweis/notes/gaussid.pdf for details). Args: fn: A function that can be applied to `mean`. mean: a tensor of Gaussian means, where the last axis is the dimension. cov: a tensor of covariances, where the last two axes are the dimensions. Returns: fn_mean: the transformed means. fn_cov: the transformed covariances. """ if (len(mean.shape) + 1) != len(cov.shape): raise ValueError('cov must be non-diagonal') fn_mean, lin_fn = jax.linearize(fn, mean) fn_cov = jax.vmap(lin_fn, -1, -2)(jax.vmap(lin_fn, -1, -2)(cov)) return fn_mean, fn_cov def track_isotropic(fn, mean, scale): """Apply function `fn` to a set of means and scales, ala a Kalman filter. This is the isotropic or scalar equivalent of track_linearize, as we're still linearizing a function and tracking a Gaussian through it, but the input and output Gaussians are all isotropic and are only represented with a single `scale` value (where `scale**2` is the variance of the Gaussian). Args: fn: A function that can be applied to `mean`. mean: a tensor of Gaussian means, where the last axis is the dimension. scale: a tensor of scales, with the same shape as means[..., -1]. Returns: fn_mean: the transformed means. fn_scale: the transformed scales. """ if mean.shape[:-1] != scale.shape: raise ValueError( f'mean.shape[:-1] {mean.shape}[:-1] != scale.shape {scale.shape}.' ) d = mean.shape[-1] fn_mean, lin_fn = jax.linearize(fn, mean) if scale is not None: # Compute the Jacobian of fn function at the locations of each mean. jac = jax.vmap(lin_fn, in_axes=-1, out_axes=-1)( jnp.broadcast_to(jnp.eye(d), mean.shape + (d,)) ) # The cube root of the determinant of the Jacobian is the geometric mean # of the eigenvalues of the Jacobian, which gives us the isotropic scaling # implied by `fn` at each mean that `scale` should be multiplied by. eps = jnp.finfo(jnp.float32).tiny # Guard against an inf gradient at 0. abs_det = jnp.maximum(eps, jnp.abs(jnp.linalg.det(jac))) # Special case d == 3 for speed's sake. fn_scale = scale * (jnp.cbrt(abs_det) if d == 3 else abs_det ** (1 / d)) else: fn_scale = None return fn_mean, fn_scale def contract3_isoscale(x): """A fast version of track_isotropic(contract, *)'s scaling for 3D inputs.""" if x.shape[-1] != 3: raise ValueError(f'Inputs must be 3D, are {x.shape[-1]}D.') norm_sq = jnp.maximum(1, jnp.sum(x**2, axis=-1)) # Equivalent to cbrt((2 * sqrt(norm_sq) - 1) ** 2) / norm_sq: return jnp.exp(2 / 3 * jnp.log(2 * jnp.sqrt(norm_sq) - 1) - jnp.log(norm_sq)) def construct_ray_warps(fn, t_near, t_far, *, fn_inv=None): """Construct a bijection between metric distances and normalized distances. See the text around Equation 11 in https://arxiv.org/abs/2111.12077 for a detailed explanation. Args: fn: the function to ray distances. t_near: a tensor of near-plane distances. t_far: a tensor of far-plane distances. fn_inv: Optional, if not None then it's used as the inverse of fn(). Returns: t_to_s: a function that maps distances to normalized distances in [0, 1]. s_to_t: the inverse of t_to_s. """ if fn is None: fn_fwd = lambda x: x fn_inv = lambda x: x else: fn_fwd = fn if fn_inv is None: # A simple mapping from some functions to their inverse. inv_mapping = { 'reciprocal': jnp.reciprocal, 'log': jnp.exp, 'exp': jnp.log, 'sqrt': jnp.square, 'square': jnp.sqrt, } fn_inv = inv_mapping[fn.__name__] fn_t_near, fn_t_far = [fn_fwd(t) for t in (t_near, t_far)] # Forcibly clip t to the range of valid values, to guard against inf's. t_clip = lambda t: jnp.clip(t, t_near, t_far) t_to_s = lambda t: (fn_fwd(t_clip(t)) - fn_t_near) / (fn_t_far - fn_t_near) s_to_t = lambda s: t_clip(fn_inv(s * fn_t_far + (1 - s) * fn_t_near)) return t_to_s, s_to_t def expected_sin(mean, var): """Compute<fim_suffix> return jnp.exp(-0.5 * var) * math.safe_sin(mean) # large var -> small value. def integrated_pos_enc(mean, var, min_deg, max_deg): """Encode `x` with sinusoids scaled by 2^[min_deg, max_deg). Args: mean: tensor, the mean coordinates to be encoded var: tensor, the variance of the coordinates to be encoded. min_deg: int, the min degree of the encoding. max_deg: int, the max degree of the encoding. Returns: encoded: jnp.ndarray, encoded variables. """ scales = 2.0 ** jnp.arange(min_deg, max_deg) shape = mean.shape[:-1] + (-1,) scaled_mean = jnp.reshape(mean[Ellipsis, None, :] * scales[:, None], shape) scaled_var = jnp.reshape(var[Ellipsis, None, :] * scales[:, None] ** 2, shape) return expected_sin( jnp.concatenate([scaled_mean, scaled_mean + 0.5 * jnp.pi], axis=-1), jnp.concatenate([scaled_var] * 2, axis=-1), ) def lift_and_diagonalize(mean, cov, basis): """Project `mean` and `cov` onto basis and diagonalize the projected cov.""" fn_mean = math.matmul(mean, basis) fn_cov_diag = jnp.sum(basis * math.matmul(cov, basis), axis=-2) return fn_mean, fn_cov_diag def pos_enc(x, min_deg, max_deg, append_identity=True): """The positional encoding used by the original NeRF paper.""" scales = 2.0 ** jnp.arange(min_deg, max_deg) shape = x.shape[:-1] + (-1,) scaled_x = x[Ellipsis, None, :] * scales[:, None] # (..., s, c). scaled_x = jnp.reshape(scaled_x, shape) # (..., s*c). # Note that we're not using safe_sin, unlike IPE. # (..., s*c + s*c). four_feat = jnp.sin( jnp.concatenate([scaled_x, scaled_x + 0.5 * jnp.pi], axis=-1) ) if append_identity: return jnp.concatenate([x, four_feat], axis=-1) else: return four_feat def sqrtm(mat, return_eigs=False): """Take the matrix square root of a PSD matrix [..., d, d].""" eigvec, eigval = jax.lax.linalg.eigh( mat, symmetrize_input=False, sort_eigenvalues=False ) scaling = math.safe_sqrt(eigval)[Ellipsis, None, :] sqrtm_mat = math.matmul(eigvec * scaling, jnp.moveaxis(eigvec, -2, -1)) return (sqrtm_mat, (eigvec, eigval)) if return_eigs else sqrtm_mat def isotropize(cov, mode='accurate'): """Turn covariances into isotropic covariances with the same determinant.""" d = cov.shape[-1] if d == 1: return cov if mode == 'fast': det = jnp.linalg.det(cov) diag_val = det ** (1 / d) is_invalid = (det <= jnp.finfo(jnp.float32).tiny) | ~jnp.isfinite(det) elif mode == 'accurate': log_det = jnp.linalg.slogdet(cov)[1] diag_val = jnp.exp(log_det / d) is_invalid = ~jnp.isfinite(log_det) else: raise ValueError(f'mode={mode} not implemented.') cov_iso = jnp.eye(d) * diag_val[Ellipsis, None, None] # Guard against NaN outputs when `det` is super small. Note that this does not # guard against NaN gradients! cov_iso = jnp.where(is_invalid[Ellipsis, None, None], jnp.zeros_like(cov), cov_iso) return cov_iso def construct_perp_basis(directions): """Construct a perpendicular basis for each 3-vector in `directions`.""" if directions.shape[-1] != 3: raise ValueError(f'directions must be 3D, but is {directions.shape[-1]}D') # To generate a vector perpendicular to `directions`, we take a cross-product # with an arbitrary vector [0, 0, 1]. cross1a = jnp.cross(directions, np.array([0.0, 0.0, 1.0])) # In the rare case that `directions` is very close to [0, 0, 1], we compute an # alternate cross-product with [1, 1, 1] to use instead. cross1b = jnp.cross(directions, np.array([1.0, 1.0, 1.0])) use_b = jnp.all(jnp.abs(cross1a) < np.finfo(np.float32).eps, axis=-1) cross1 = jnp.where(use_b[Ellipsis, None], cross1b, cross1a) # Crossing `directions` with `cross1` gives us our 3rd vector. cross2 = jnp.cross(directions, cross1) # Normalize vectors before returning them. normalize = lambda z: z / jnp.sqrt(jnp.sum(z**2, axis=-1, keepdims=True)) return normalize(cross1), normalize(cross2) def hexify(rng, *, origins, directions, radii, tdist): """Produce hexagon-shaped samples from ray segments.""" # Construct a base set of angles, by linspacing [0, 2pi] in a specific order. # This is one of two orderings of angles that doesn't induce any anisotropy # into the sample covariance of the multisample coordinates. Any rotation and # mirroring along the z-axis of this ordering is also valid. # There exists one alternative valid ordering, which is [0, 3, 2, 5, 4, 1]. # This seems to work less well though likely because of the strong correlation # between adjacent angles. thetas = (np.pi / 3) * np.array([0, 2, 4, 3, 5, 1]) # Lift the angles to the size of the rays. sz = tdist.shape[:-1] + (tdist.shape[-1] - 1, len(thetas)) thetas = jnp.broadcast_to(thetas, sz) if rng is not None: # Randomly reverse the order of half of the hexes. key, rng = random.split(rng) flip = random.bernoulli(key, shape=sz[:-1]) thetas = jnp.where(flip[Ellipsis, None], thetas[Ellipsis, ::-1], thetas) # Rotate each hex by some random amount. key, rng = random.split(rng) thetas += (2 * jnp.pi) * random.uniform(key, shape=sz[:-1])[Ellipsis, None] else: # If we're deterministic, flip and shift every other hex by 30 degrees. flip = jnp.arange(thetas.shape[-2]) % 2 thetas = jnp.where(flip[Ellipsis, None], thetas[Ellipsis, ::-1], thetas) thetas += (flip * jnp.pi / 6)[Ellipsis, None] # TODO(barron): Plumb through the dx/dy frame for the original ray in the # image plane, to avoid the need of this. perp_axis1, perp_axis2 = construct_perp_basis(directions) # Grab each t-interval's midpoint and half-width. t0, t1 = tdist[Ellipsis, :-1], tdist[Ellipsis, 1:] s = (t0 + t1) / 2 d = (t1 - t0) / 2 # Compute the length along the ray for each multisample, using mip-NeRF math. cz = t0[Ellipsis, None] + math.safe_div(d, (d**2 + 3 * s**2))[Ellipsis, None] * ( (t1**2 + 2 * s**2)[Ellipsis, None] + (3 / np.sqrt(7)) * (np.arange(6) * (2 / 5) - 1) * math.safe_sqrt(((d**2 - s**2) ** 2 + 4 * s**4))[Ellipsis, None] ) # Compute the offset from the ray for each multisample. perp_mag = jnp.sqrt(0.5) * radii[Ellipsis, None, :] * cz # Go from ray coordinate to world coordinates. cx = perp_mag * jnp.cos(thetas) cy = perp_mag * jnp.sin(thetas) control = ( origins[Ellipsis, None, None, :] + perp_axis1[Ellipsis, None, None, :] * cx[Ellipsis, None] + perp_axis2[Ellipsis, None, None, :] * cy[Ellipsis, None] + directions[Ellipsis, None, None, :] * cz[Ellipsis, None] ) return control, perp_mag def unscented_transform(mean, cov, basis, axis=0): """Construct "sigma points" along `axis` from each mean and covariance.""" d = cov.shape[-1] mean_ex = jnp.expand_dims(mean, axis) if basis == 'mean': # This effectively disables the unscented transform. return mean_ex if basis.startswith('random_'): num_random = int(basis.split('_')[-1]) # TODO(barron): use a non-fixed random seed? noise = random.multivariate_normal( random.PRNGKey(0), jnp.zeros_like(mean), cov, (num_random,) + mean.shape[:-1], ) control = mean_ex + jnp.moveaxis(jnp.nan_to_num(noise), 0, axis) return control sqrtm_cov = sqrtm(cov) if any([ basis.startswith(x) for x in ['tetrahedron', 'icosahedron', 'octahedron'] ]): # Use tessellated regular polyhedra vertices (and vec(0)) as control points. if d != 3: raise ValueError(f'Input is {d}D, but polyhedra are only defined for 3D.') base_shape, angular_tesselation = basis.split('_') transform = geopoly.generate_basis( base_shape, int(angular_tesselation), remove_symmetries=False ).T transform1 = np.concatenate([np.zeros((d, 1)), transform], axis=-1) transform1 /= np.sqrt(np.mean(transform1**2, axis=1))[:, None] control = mean_ex + jnp.moveaxis( math.matmul(sqrtm_cov, transform1), -1, axis ) elif basis == 'julier': # The most basic symmetric unscented transformation from the original paper, # which yields 2*d+1 control points. offsets = np.sqrt(d + 0.5) * jnp.moveaxis(sqrtm_cov, -1, axis) control = jnp.concatenate( [mean_ex, mean_ex + offsets, mean_ex - offsets], axis=axis ) elif basis == 'menegaz': # A compact unscented transformation from # folk.ntnu.no/skoge/prost/proceedings/cdc-ecc-2011/data/papers/2263.pdf # which yields d+1 control points. if d == 3: # A hand-optimized version of the d==3 case. sqrtm_cov_sum = jnp.sum(sqrtm_cov, axis=-1, keepdims=True) offsets = jnp.concatenate( [-sqrtm_cov_sum, 2 * sqrtm_cov - sqrtm_cov_sum / 3], axis=-1 ) control = mean_ex + jnp.moveaxis(offsets, -1, axis) else: transform = np.sqrt(d + 1) * np.eye(d) + (1 - np.sqrt(d + 1)) / d # == sqrt((d+1)) * sqrtm(eye(d) - 1/(d+1)) transform1 = np.concatenate([-np.ones((d, 1)), transform], axis=-1) control = mean_ex + jnp.moveaxis( math.matmul(sqrtm_cov, transform1), -1, axis ) else: raise ValueError(f'basis={basis} not implemented.') return control def compute_control_points( means, covs, rays, tdist, rng, unscented_mip_basis, unscented_scale_mult, ): """Wrapper to compute unscented control points for the MLP class.""" if unscented_mip_basis == 'hexify': control, perp_mag = hexify( rng, origins=rays.origins, directions=rays.directions, radii=rays.radii, tdist=tdist, ) else: # Use a normal unscented transformation. control = unscented_transform( means, covs, basis=unscented_mip_basis, axis=-2, ) if unscented_scale_mult > 0: if rays is None: raise SyntaxError( 'Rays are required as input if unscented_scale_mult > 0.' ) # Mimic the math used by hexify to produce comparable scales. t_recon = jnp.sum( (control - rays.origins[Ellipsis, None, None, :]) * rays.directions[Ellipsis, None, None, :], axis=-1, ) perp_mag = jnp.sqrt(0.5) * rays.radii[Ellipsis, None, :] * t_recon else: perp_mag = None return control, perp_mag <fim_middle> the mean of sin(x), x ~ N(mean, var)."""
the mean of sin(x), x ~ N(mean, var)."""
BLOCK_COMMENT
prefix_suffix_full_complete_current_block_with_evidence
<filename>camp_zipnerf/internal/math.py<fim_prefix># coding=utf-8 # Copyright 2023 The Google Research Authors. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Mathy utility functions.""" import functools import jax import jax.numpy as jnp import numpy as np tiny_val = np.float32(np.finfo(np.float32).tiny) min_val = np.float32(np.finfo(np.float32).min) max_val = np.float32(np.finfo(np.float32).max) def laplace_cdf(x, beta): alpha = 1 / beta return alpha * (0.5 + 0.5 * safe_sign(x) * (jnp.exp(-jnp.abs(x) / beta) - 1)) def scaled_softplus(x, scale=100.0): return (1.0 / scale) * jax.nn.softplus(scale * x) def matmul(a, b): """jnp.matmul defaults to bfloat16, but this helper function doesn't.""" return jnp.matmul(a, b, precision=jax.lax.Precision.HIGHEST) def unstack(x, axis=0): return tuple( jnp.squeeze(z, axis=axis) for z in jnp.split(x, x.shape[axis], axis=axis) ) @jax.custom_jvp def plus_eps(x): return jnp.where( jnp.abs(x) < tiny_val, tiny_val, jnp.nextafter(jnp.float32(x), jnp.inf) ) @jax.custom_jvp def minus_eps(x): return jnp.where( jnp.abs(x) < tiny_val, -tiny_val, jnp.nextafter(jnp.float32(x), -jnp.inf) ) @plus_eps.defjvp def plus_eps_jvp(primals, tangents): """Make plus_eps()'s gradient a no-op (nextafter's gradient is undefined).""" return plus_eps(*primals), tangents[0] @minus_eps.defjvp def minus_eps_jvp(primals, tangents): """Make minus_eps()'s gradient a no-op (nextafter's gradient is undefined).""" return minus_eps(*primals), tangents[0] @jax.custom_jvp def expm1(x): """jnp.expm1() has inaccurate gradients when x << 0, this doesn't.""" return jnp.expm1(x) @expm1.defjvp def expm1_jvp(primals, tangents): return expm1(*primals), tangents[0] * jnp.exp(primals[0]) def safe_trig_helper(x, fn, t=100 * jnp.pi): """Helper function used by safe_cos/safe_sin: mods x before sin()/cos().""" return fn(jnp.nan_to_num(jnp.where(jnp.abs(x) < t, x, x % t))) def safe_cos(x): """jnp.cos() on a TPU may NaN out for large values.""" return safe_trig_helper(x, jnp.cos) def safe_sin(x): """jnp.sin() on a TPU may NaN out for large values.""" return safe_trig_helper(x, jnp.sin) @jax.custom_vjp def safe_arctan2(x1, x2): return safe_arctan2_fwd(x1, x2)[0] def safe_arctan2_fwd(x1, x2): return jnp.arctan2(x1, x2), (x1, x2) def safe_arctan2_bwd(res, g): x1, x2 = res denom = remove_zero(x1**2 + x2**2) d1 = g * (x2 / denom) d2 = g * (-x1 / denom) return d1, d2 safe_arctan2.defvjp(safe_arctan2_fwd, safe_arctan2_bwd) def generate_clip_nograd_fn(a_min, a_max): """Generates a function that clips to [a_min, a_max] with no grad effects.""" @jax.custom_jvp def clip_nograd(a): """Clamps `a` from above and below.""" return jnp.clip(a, a_min, a_max) @clip_nograd.defjvp def clip_nograd_jvp(primals, tangents): """Override clips()'s gradient to be a no-op.""" return clip_nograd(primals[0]), tangents[0] return clip_nograd clip_finite_nograd = generate_clip_nograd_fn(min_val, max_val) clip_pos_finite_nograd = generate_clip_nograd_fn(tiny_val, max_val) def clip_pos(x): """Clamps<fim_suffix> return jnp.maximum(tiny_val, x) def safe_sign(x): """jnp.sign(x) except x=0 is assumed to have a sign of +1, not 0.""" return jnp.where(x < 0, -1, +1) def remove_zero(x): """Shifts `x` away from 0.""" return jnp.where(jnp.abs(x) < tiny_val, tiny_val, x) def clip_finite(x): return jnp.clip(x, min_val, max_val) @jax.custom_vjp def safe_div(n, d): """Divide `n` by `d` but the value and gradient never nan out.""" return safe_div_fwd(n, d)[0] def safe_div_fwd(n, d): r = jnp.clip(n / remove_zero(d), min_val, max_val) return jnp.where(jnp.abs(d) < tiny_val, 0, r), (d, r) def safe_div_bwd(res, g): d, r = res dn = jnp.clip(g / remove_zero(d), min_val, max_val) dd = jnp.clip(-g * r / remove_zero(d), min_val, max_val) return dn, dd safe_div.defvjp(safe_div_fwd, safe_div_bwd) def generate_safe_fn(fn, grad_fn, x_range): """Generate's a `safe` fn() where inputs are clipped in fwd and bwd passes.""" @jax.custom_jvp def safe_fn(x): """fn() with clipped inputs.""" return fn(jnp.clip(x, *x_range)) @safe_fn.defjvp def safe_fn_jvp(primals, tangents): """Backpropagate using the gradient and clipped inputs.""" (x,) = primals (x_dot,) = tangents y = safe_fn(x) y_dot = grad_fn(jnp.clip(x, *x_range), y, x_dot) return y, y_dot return safe_fn # These safe_* functions need to be wrapped in no-op function definitions for # gin to recognize them, otherwise they could just be calls to generate_safe_fn. def safe_log(x): return generate_safe_fn( jnp.log, lambda x, _, x_dot: x_dot / x, (tiny_val, max_val), )(x) def safe_exp(x): return generate_safe_fn( jnp.exp, lambda _, y, x_dot: y * x_dot, (min_val, np.nextafter(np.log(max_val), np.float32(0))), )(x) def safe_sqrt(x): return generate_safe_fn( jnp.sqrt, lambda x, _, x_dot: 0.5 * x_dot / jnp.sqrt(jnp.maximum(tiny_val, x)), (0, max_val), )(x) def safe_log1p(x): return generate_safe_fn( jnp.log1p, lambda x, _, x_dot: x_dot / (1 + x), (np.nextafter(np.float32(-1), np.float32(0)), max_val), )(x) def safe_expm1(x): return generate_safe_fn( expm1, # Note that we wrap around our more accurate expm1. lambda x, _, x_dot: jnp.exp(x) * x_dot, (min_val, np.nextafter(np.log1p(max_val), np.float32(0))), )(x) def safe_arccos(x): """jnp.arccos(x) where x is clipped to [-1, 1].""" y = jnp.arccos(jnp.clip(x, plus_eps(-1), minus_eps(1))) return jnp.where(x >= 1, 0, jnp.where(x <= -1, jnp.pi, y)) def apply_fn_to_grad(grad_fn): """Applies a scalar `grad_fn` function to the gradient of the input.""" @jax.custom_vjp def fn_out(x): return x fn_out.defvjp(lambda x: (x, None), lambda _, y: (grad_fn(y),)) return fn_out def select(cond_pairs, default): """A helpful wrapper around jnp.select() that is easier to read.""" return jnp.select(*zip(*cond_pairs), default) def power_ladder_max_output(p): """The limit of power_ladder(x, p) as x goes to infinity.""" return select( [ (p == -jnp.inf, 1), (p >= 0, jnp.inf), ], safe_div(p - 1, p), ) def power_ladder(x, p, premult=None, postmult=None): """Tukey's power ladder, with a +1 on x, some scaling, and special cases.""" # Compute sign(x) * |p - 1|/p * ((|x|/|p-1| + 1)^p - 1) if premult is not None: x = x * premult xp = jnp.abs(x) xs = xp / jnp.maximum(tiny_val, jnp.abs(p - 1)) p_safe = clip_finite_nograd(remove_zero(p)) y = safe_sign(x) * select( [ (p == 1, xp), (p == 0, safe_log1p(xp)), (p == -jnp.inf, -safe_expm1(-xp)), (p == jnp.inf, safe_expm1(xp)), ], clip_finite_nograd( jnp.abs(p_safe - 1) / p_safe * ((xs + 1) ** p_safe - 1) ), ) if postmult is not None: y = y * postmult return y def inv_power_ladder(y, p, premult=None, postmult=None): """The inverse of `power_ladder()`.""" if postmult is not None: y /= postmult yp = jnp.abs(y) p_safe = clip_finite_nograd(remove_zero(p)) y_max = minus_eps(power_ladder_max_output(p)) yp = override_gradient(jnp.clip(yp, -y_max, y_max), yp) # Clip val, not grad. x = safe_sign(y) * select( [ (p == 1, yp), (p == 0, safe_expm1(yp)), (p == -jnp.inf, -safe_log1p(-yp)), (p == jnp.inf, safe_log1p(yp)), ], jnp.abs(p_safe - 1) * ( ((safe_div(p_safe, jnp.abs(p_safe - 1)) * yp + 1)) ** (1 / p_safe) - 1 ), ) if premult is not None: x /= premult return x def log_lerp(t, v0, v1): """Interpolate log-linearly from `v0` (t=0) to `v1` (t=1).""" if v0 <= 0 or v1 <= 0: raise ValueError(f'Interpolants {v0} and {v1} must be positive.') lv0 = jnp.log(v0) lv1 = jnp.log(v1) return jnp.exp(jnp.clip(t, 0, 1) * (lv1 - lv0) + lv0) def approx_erf(x): """An approximation of erf() that is accurate to within 0.007.""" return jnp.sign(x) * jnp.sqrt(1 - jnp.exp(-(4 / jnp.pi) * x**2)) def create_learning_rate_decay(**kwargs): """A partial evaluation of learning rate decay that can be used with gin.""" return functools.partial(learning_rate_decay, **kwargs) def learning_rate_decay( step, lr_init, lr_final, max_steps, lr_delay_steps=0, lr_delay_mult=1 ): """Continuous learning rate decay function. The returned rate is lr_init when step=0 and lr_final when step=max_steps, and is log-linearly interpolated elsewhere (equivalent to exponential decay). If lr_delay_steps>0 then the learning rate will be scaled by some smooth function of lr_delay_mult, such that the initial learning rate is lr_init*lr_delay_mult at the beginning of optimization but will be eased back to the normal learning rate when steps>lr_delay_steps. Args: step: int, the current optimization step. lr_init: float, the initial learning rate. lr_final: float, the final learning rate. max_steps: int, the number of steps during optimization. lr_delay_steps: int, the number of steps to delay the full learning rate. lr_delay_mult: float, the multiplier on the rate when delaying it. Returns: lr: the learning for current step 'step'. """ if lr_delay_steps > 0: # A kind of reverse cosine decay. delay_rate = lr_delay_mult + (1 - lr_delay_mult) * jnp.sin( 0.5 * jnp.pi * jnp.clip(step / lr_delay_steps, 0, 1) ) else: delay_rate = 1.0 return delay_rate * log_lerp(step / max_steps, lr_init, lr_final) def sorted_lookup(x, xp, fps, device_is_tpu): """Lookup `x` into locations `xp` , return indices and each `[fp]` value.""" if not isinstance(fps, tuple): raise ValueError(f'Input `fps` must be a tuple, but is {type(fps)}.') if device_is_tpu: # Identify the location in `xp` that corresponds to each `x`. # The final `True` index in `mask` is the start of the matching interval. mask = x[Ellipsis, None, :] >= xp[Ellipsis, :, None] def find_interval(x): # Grab the value where `mask` switches from True to False, and vice versa. # This approach takes advantage of the fact that `x` is sorted. x0 = jnp.max(jnp.where(mask, x[Ellipsis, None], x[Ellipsis, :1, None]), -2) x1 = jnp.min(jnp.where(~mask, x[Ellipsis, None], x[Ellipsis, -1:, None]), -2) return x0, x1 idx0, idx1 = find_interval(jnp.arange(xp.shape[-1])) vals = [find_interval(fp) for fp in fps] else: # jnp.searchsorted() has slightly different conventions for boundary # handling than the rest of this codebase. idx = jnp.vectorize( lambda a, v: jnp.searchsorted(a, v, side='right'), signature='(n),(m)->(m)', )(xp, x) idx1 = jnp.minimum(idx, xp.shape[-1] - 1) idx0 = jnp.maximum(idx - 1, 0) vals = [] for fp in fps: fp0 = jnp.take_along_axis(fp, idx0, axis=-1) fp1 = jnp.take_along_axis(fp, idx1, axis=-1) vals.append((fp0, fp1)) return (idx0, idx1), vals def sorted_interp( x, xp, fp, device_is_tpu, eps=jnp.finfo(jnp.float32).eps ** 2 ): """A version of interp() where xp and fp must be sorted.""" (xp0, xp1), (fp0, fp1) = sorted_lookup( x, xp, (xp, fp), device_is_tpu=device_is_tpu )[1] offset = jnp.clip((x - xp0) / jnp.maximum(eps, xp1 - xp0), 0, 1) ret = fp0 + offset * (fp1 - fp0) return ret def searchsorted(a, v, device_is_tpu): """Behaves like jnp.searchsorted, excluding boundary conditions.""" return sorted_lookup(v, a, (), device_is_tpu=device_is_tpu)[0] def override_gradient(fval, bval): """Use `fval` in the forward pass but `bval` in the backward pass.""" # Note that the parentheses are needed to avoid catastrophic cancellation. return jax.lax.stop_gradient(fval) + (bval - jax.lax.stop_gradient(bval)) def average_across_multisamples(x): """Function that averages grid query results across the multisample dimension.""" return jnp.mean(x, axis=-2) def noop(x): return x @jax.custom_jvp def fake_clip(a, a_min, a_max): """jnp.clip() but the gradient doesn't get clipped on the backward pass.""" return jnp.clip(a, a_min, a_max) @fake_clip.defjvp def fake_clip_jvp(primals, tangents): """Override fake_clip()'s gradient so that it's a no-op.""" return jnp.clip(*primals), tangents[0] @jax.jit def general_lossfun(x, alpha, scale): r"""This implements the rho(x, \alpha, c) function described in "A General and Adaptive Robust Loss Function", Jonathan T. Barron, https://arxiv.org/abs/1701.03077. Args: x: The residual for which the loss is being computed. x can have any shape, and alpha and scale will be broadcasted to match x's shape if necessary. alpha: The shape parameter of the loss (\alpha in the paper), where more negative values produce a loss with more robust behavior (outliers "cost" less), and more positive values produce a loss with less robust behavior (outliers are penalized more heavily). Alpha can be any value in [-infinity, infinity], but the gradient of the loss with respect to alpha is 0 at -infinity, infinity, 0, and 2. Varying alpha allows for smooth interpolation between several discrete robust losses: alpha=-Infinity: Welsch/Leclerc Loss. alpha=-2: Geman-McClure loss. alpha=0: Cauchy/Lortentzian loss. alpha=1: Charbonnier/pseudo-Huber loss. alpha=2: L2 loss. scale: The scale parameter of the loss. When |x| < scale, the loss is an L2-like quadratic bowl, and when |x| > scale the loss function takes on a different shape according to alpha. Returns: The losses for each element of x, in the same shape as x. """ eps = jnp.finfo(jnp.float32).eps maxval = 1e15 # A "safe" versions of expm1 that will not NaN-out on large inputs. expm1_safe = lambda x: jnp.expm1(jnp.minimum(x, 43)) # `scale` must be > 0. scale = jnp.maximum(eps, scale) # Large values of |x| can cause non-finite gradients. x = fake_clip(x, -maxval, maxval) # The loss when alpha == 2. This will get reused repeatedly. loss_two = 0.5 * (x / scale)**2 # Clamp |alpha| to be >= machine epsilon so that it's safe to divide by. a = jnp.where(alpha >= 0, jnp.ones_like(alpha), -jnp.ones_like(alpha)) * jnp.maximum(eps, jnp.abs(alpha)) # Clamp |2-alpha| to be >= machine epsilon so that it's safe to divide by. b = jnp.maximum(eps, jnp.abs(a - 2)) # The loss when not in one of the special casess. loss_ow = (b / a) * ((loss_two / (0.5 * b) + 1)**(0.5 * a) - 1) # Select which of the cases of the loss to return as a function of alpha. return jnp.where( alpha == -jnp.inf, -expm1_safe(-loss_two), jnp.where( alpha == 0, jnp.log1p(loss_two), jnp.where(alpha == 2, loss_two, jnp.where(alpha == jnp.inf, expm1_safe(loss_two), loss_ow)))) <fim_middle> `x` from below to be positive."""
`x` from below to be positive."""
BLOCK_COMMENT
prefix_suffix_full_complete_current_block_with_evidence
<filename>camp_zipnerf/internal/stepfun.py<fim_prefix># coding=utf-8 # Copyright 2023 The Google Research Authors. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Tools for manipulating step functions (piecewise-constant 1D functions). We have a shared naming and dimension convention for these functions. All input/output step functions are assumed to be aligned along the last axis. `t` always indicates the x coordinates of the *endpoints* of a step function. `y` indicates unconstrained values for the *bins* of a step function `w` indicates bin weights that sum to <= 1. `p` indicates non-negative bin values that *integrate* to <= 1. """ from internal import linspline from internal import math from internal import utils import jax import jax.numpy as jnp import numpy as np def query(tq, t, y, left=None, right=None): """Query step function (t, y) at locations tq. Edges repeat by default.""" utils.assert_valid_stepfun(t, y) # Query the step function to recover the interval value. (i0, i1), ((yq, _),) = math.sorted_lookup(tq, t, (y,), utils.device_is_tpu()) # Apply boundary conditions. left = y[Ellipsis, :1] if left is None else left right = y[Ellipsis, -1:] if right is None else right yq = math.select([(i1 == 0, left), (i0 == y.shape[-1], right)], yq) return yq def weight_to_pdf(t, w): """Turn a vector of weights that sums to 1 into a PDF that integrates to 1.""" utils.assert_valid_stepfun(t, w) td = jnp.diff(t) return jnp.where(td < np.finfo(np.float32).tiny, 0, math.safe_div(w, td)) def pdf_to_weight(t, p): """Turn a PDF that integrates to 1 into a vector of weights that sums to 1.""" utils.assert_valid_stepfun(t, p) return p * jnp.diff(t) def integrate_weights(w): """Compute the cumulative sum of w, assuming all weight vectors sum to 1. The output's size on the last dimension is one greater than that of the input, because we're computing the integral corresponding to the endpoints of a step function, not the integral of the interior/bin values. Args: w: Tensor, which will be integrated along the last axis. This is assumed to sum to 1 along the last axis, and this function will (silently) break if that is not the case. Returns: cw0: Tensor, the integral of w, where cw0[..., 0] = 0 and cw0[..., -1] = 1 """ cw = jnp.minimum(1, jnp.cumsum(w[Ellipsis, :-1], axis=-1)) shape = cw.shape[:-1] + (1,) # Ensure that the CDF starts with exactly 0 and ends with exactly 1. cw0 = jnp.concatenate([jnp.zeros(shape), cw, jnp.ones(shape)], axis=-1) return cw0 def invert_cdf(u, t, w_logits): """Invert the CDF defined by (t, w) at the points specified by u in [0, 1).""" utils.assert_valid_stepfun(t, w_logits) # Compute the PDF and CDF for each weight vector. w = jax.nn.softmax(w_logits, axis=-1) cw = integrate_weights(w) # Interpolate into the inverse CDF. t_new = math.sorted_interp(u, cw, t, utils.device_is_tpu()) return t_new def sample( rng, t, w_logits, num_samples, single_jitter=False, deterministic_center=False, eps=jnp.finfo(jnp.float32).eps, ): """Piecewise-Constant PDF sampling from a step function. Args: rng: random number generator (or None for `linspace` sampling). t: [..., num_bins + 1], bin endpoint coordinates (must be sorted) w_logits: [..., num_bins], logits corresponding to bin weights num_samples: int, the number of samples. single_jitter: bool, if True, jitter every sample along each ray by the same amount in the inverse CDF. Otherwise, jitter each sample independently. deterministic_center: bool, if False, when `rng` is None return samples that linspace the entire PDF. If True, skip the front and back of the linspace so that the centers of each PDF interval are returned. eps: float, something like numerical epsilon. Returns: t_samples: jnp.ndarray(float32), [batch_size, num_samples]. """ utils.assert_valid_stepfun(t, w_logits) # Draw uniform samples. if rng is None: # Match the behavior of jax.random.uniform() by spanning [0, 1-eps]. if<fim_suffix> u = jnp.broadcast_to(u, t.shape[:-1] + (num_samples,)) else: # `u` is in [0, 1) --- it can be zero, but it can never be 1. u_max = eps + (1 - eps) / num_samples max_jitter = (1 - u_max) / (num_samples - 1) - eps d = 1 if single_jitter else num_samples u = jnp.linspace(0, 1 - u_max, num_samples) + jax.random.uniform( rng, t.shape[:-1] + (d,), maxval=max_jitter ) return invert_cdf(u, t, w_logits) def sample_intervals( rng, t, w_logits, num_samples, single_jitter=False, domain=(-jnp.inf, jnp.inf), ): """Sample *intervals* (rather than points) from a step function. Args: rng: random number generator (or None for `linspace` sampling). t: [..., num_bins + 1], bin endpoint coordinates (must be sorted) w_logits: [..., num_bins], logits corresponding to bin weights num_samples: int, the number of intervals to sample. single_jitter: bool, if True, jitter every sample along each ray by the same amount in the inverse CDF. Otherwise, jitter each sample independently. domain: (minval, maxval), the range of valid values for `t`. Returns: t_samples: jnp.ndarray(float32), [batch_size, num_samples]. """ utils.assert_valid_stepfun(t, w_logits) if num_samples <= 1: raise ValueError(f'num_samples must be > 1, is {num_samples}.') # Sample a set of points from the step function. centers = sample( rng, t, w_logits, num_samples, single_jitter, deterministic_center=True ) # The intervals we return will span the midpoints of each adjacent sample. mid = (centers[Ellipsis, 1:] + centers[Ellipsis, :-1]) / 2 # Each first/last fencepost is the reflection of the first/last midpoint # around the first/last sampled center. first = 2 * centers[Ellipsis, :1] - mid[Ellipsis, :1] last = 2 * centers[Ellipsis, -1:] - mid[Ellipsis, -1:] samples = jnp.concatenate([first, mid, last], axis=-1) # We clamp to the limits of the input domain, provided by the caller. samples = jnp.clip(samples, *domain) return samples def lossfun_distortion(t, w): """Compute iint w[i] w[j] |t[i] - t[j]| di dj.""" utils.assert_valid_stepfun(t, w) # The loss incurred between all pairs of intervals. ut = (t[Ellipsis, 1:] + t[Ellipsis, :-1]) / 2 dut = jnp.abs(ut[Ellipsis, :, None] - ut[Ellipsis, None, :]) loss_inter = jnp.sum(w * jnp.sum(w[Ellipsis, None, :] * dut, axis=-1), axis=-1) # The loss incurred within each individual interval with itself. loss_intra = jnp.sum(w**2 * jnp.diff(t), axis=-1) / 3 return loss_inter + loss_intra def weighted_percentile(t, w, ps): """Compute the weighted percentiles of a step function. w's must sum to 1.""" utils.assert_valid_stepfun(t, w) cw = integrate_weights(w) # We want to interpolate into the integrated weights according to `ps`. wprctile = jnp.vectorize(jnp.interp, signature='(n),(m),(m)->(n)')( jnp.array(ps) / 100, cw, t ) return wprctile def resample(t, tp, vp, use_avg=False): """Resample a step function defined by (tp, vp) into intervals t. Notation roughly matches jnp.interp. Resamples by summation by default. Args: t: tensor with shape (..., n+1), the endpoints to resample into. tp: tensor with shape (..., m+1), the endpoints of the step function being resampled. vp: tensor with shape (..., m), the values of the step function being resampled. use_avg: bool, if False, return the sum of the step function for each interval in `t`. If True, return the average, weighted by the width of each interval in `t`. Returns: v: tensor with shape (..., n), the values of the resampled step function. """ utils.assert_valid_stepfun(tp, vp) if use_avg: wp = jnp.diff(tp) v_numer = resample(t, tp, vp * wp, use_avg=False) v_denom = resample(t, tp, wp, use_avg=False) v = math.safe_div(v_numer, v_denom) return v acc = jnp.cumsum(vp, axis=-1) acc0 = jnp.concatenate([jnp.zeros(acc.shape[:-1] + (1,)), acc], axis=-1) acc0_resampled = jnp.vectorize(jnp.interp, signature='(n),(m),(m)->(n)')( t, tp, acc0 ) v = jnp.diff(acc0_resampled, axis=-1) return v def blur_and_resample_weights(tq, t, w, blur_halfwidth): """Blur the (t, w) histogram by blur_halfwidth, then resample it into tq.""" utils.assert_valid_stepfun(t, w) # Convert the histogram to a PDF. p = weight_to_pdf(t, w) # Blur the PDF step function into a piecewise linear spline PDF. t_linspline, p_linspline = linspline.blur_stepfun(t, p, blur_halfwidth) # Integrate the spline PDF, then query it to get integrated weights. quad = linspline.compute_integral(t_linspline, p_linspline) acc_wq = linspline.interpolate_integral(tq, t_linspline, *quad) # Undo the integration to get weights. wq = jnp.diff(acc_wq, axis=-1) # Fix negative values to 0, as they should never happen but may due to # numerical issues. wq = jnp.maximum(0, wq) return wq <fim_middle> deterministic_center: pad = 1 / (2 * num_samples) u = jnp.linspace(pad, 1.0 - pad - eps, num_samples) else: u = jnp.linspace(0, 1.0 - eps, num_samples)
deterministic_center: pad = 1 / (2 * num_samples) u = jnp.linspace(pad, 1.0 - pad - eps, num_samples) else: u = jnp.linspace(0, 1.0 - eps, num_samples)
IF
prefix_suffix_full_complete_current_block_with_evidence