inputs
stringlengths
312
52k
targets
stringlengths
1
3.1k
block_type
stringclasses
11 values
scenario
stringclasses
7 values
<filename>open-iris/src/iris/nodes/iris_response/probe_schemas/regular_probe_schema.py<fim_prefix>from typing import List, Literal, Optional, Tuple, Union import numpy as np from pydantic import Field, PositiveInt, confloat, fields, validator from iris.io.errors import ProbeSchemaError from iris.nodes.iris_response.probe_schemas.probe_schema_interface import ProbeSchema class RegularProbeSchema(ProbeSchema): """Probe Schema for a regular Grid.""" class RegularProbeSchemaParameters(ProbeSchema.ProbeSchemaParameters): """RegularProbeSchema parameters.""" n_rows: int = Field(..., gt=1) n_cols: int = Field(..., gt=1) boundary_rho: List[confloat(ge=0.0, lt=1)] boundary_phi: Union[ Literal["periodic-symmetric", "periodic-left"], List[confloat(ge=0.0, lt=1)], ] image_shape: Optional[List[PositiveInt]] @validator("boundary_rho", "boundary_phi") def check_overlap( cls: type, v: Union[Literal["periodic-symmetric", "periodic-left"], List[confloat(ge=0.0, lt=1)]], field: fields.ModelField, ) -> Union[Literal["periodic-symmetric", "periodic-left"], List[confloat(ge=0.0, lt=1)]]: """Validate offsets to avoid overlap. Args: cls (type): Class type. v (Union[Literal["periodic-symmetric", "periodic-left"], List[confloat(ge=0.0, lt=1)]]): Value to check. field (fields.ModelField): Field descriptor. Raises: ProbeSchemaError: Raises warning that offsets are together too large. Returns: Union[Literal["periodic-symmetric", "periodic-left"], List[confloat(ge=0.0, lt=1)]]: The value for boundary_rho or boundary_phi respectively """ if isinstance(v, List): if (v[0] + v[1]) >= 1: raise ProbeSchemaError( f"Offset for {field.name} on left and right corner must be a sum smaller 1, otherwise, offsets overlap." ) return v __parameters_type__ = RegularProbeSchemaParameters def __init__( self, n_rows: int, n_cols: int, boundary_rho: List[float] = [0, 0.0625], boundary_phi: Union[ Literal["periodic-symmetric", "periodic-left"], List[confloat(ge=0.0, lt=1)] ] = "periodic-left", image_shape: Optional[List[PositiveInt]] = None, ) -> None: """Assign parameters. Args: n_rows (int): Number of rows used, represents the number of different rho values n_cols (int): Number of columns used, represents the number of different phi values boundary_rho (List[float], optional): List with two values f1 and f2. The sampling goes from 0+f1 to 0-f2. boundary_phi (Union[Literal["periodic-symmetric", "periodic-left"], List[confloat(ge=0.0, lt=1)]], optional): Boundary conditions for the probing can either be periodic or non-periodic, if they are periodic, the distance from one column to the next must be the same also for the boundaries. Else, no conditions for the boundaries are required. Options are: - 'periodic-symmetric': the first and the last column are placed with an offset to the borders, that is half of the spacing of the two columns - 'periodic-left': the first column is at the border of the bottom of the image, while the last column is one spacing apart from the top of the image - list with two values: in this case the an offset of value f1 and f2 is set on both ends, i.e. the the sampling no longer goes from 0 to 1 ('no-offset') but instead from 0+f1 to 0-f2 Defaults to "periodic_symmetric". image_shape (list, optional): list containing the desired image dimensions. If provided, the function will throw a warning if interpolation happens, i.e. if a kernel would be placed in between two pixels. Defaults to None. """ super().__init__( n_rows=n_rows, n_cols=n_cols, boundary_rho=boundary_rho, boundary_phi=boundary_phi, image_shape=image_shape, ) def generate_schema(self) -> Tuple[np.ndarray, np.ndarray]: """Generate rhos and phis. Return: Tuple[np.ndarray, np.ndarray]: the rhos and phis. """ rho = np.linspace( 0 + self.params.boundary_rho[0], 1 - self.params.boundary_rho[1], self.params.n_rows, endpoint=True ) if self.params.boundary_phi == "periodic-symmetric": phi = np.linspace(0, 1, self.params.n_cols, endpoint=False) phi = phi + (phi[1] - phi[0]) / 2 if self.params.bo<fim_suffix>undary_phi == "periodic-left": phi = np.linspace(0, 1, self.params.n_cols, endpoint=False) if isinstance(self.params.boundary_phi, List): phi = np.linspace( 0 + self.params.boundary_phi[0], 1 - self.params.boundary_phi[1], self.params.n_cols, endpoint=True ) phis, rhos = np.meshgrid(phi, rho) rhos = rhos.flatten() phis = phis.flatten() # if image_shape provided: verify that values lie on pixel values if self.params.image_shape is not None: rhos_pixel_values = rhos * self.params.image_shape[0] phis_pixel_values = phis * self.params.image_shape[1] rho_pixel_values = np.logical_or( np.less_equal(rhos_pixel_values % 1, 10 ** (-10)), np.less_equal(1 - 10 ** (-10), rhos_pixel_values % 1), ).all() phi_pixel_values = np.logical_or( np.less_equal(phis_pixel_values % 1, 10 ** (-10)), np.less_equal(1 - 10 ** (-10), phis_pixel_values % 1), ).all() if not rho_pixel_values: raise ProbeSchemaError( f"Choice for n_rows {self.params.n_rows} leads to interpolation errors, please change input variables" ) if not phi_pixel_values: raise ProbeSchemaError(f"Choice for n_cols {self.params.n_cols} leads to interpolation errors") return rhos, phis @staticmethod def find_suitable_n_rows( row_min: int, row_max: int, length: int, boundary_condition: Union[ Literal["periodic-symmetric", "periodic-left"], List[float], ] = "periodic_symmetric", ) -> List[int]: """Find proper spacing of rows/columns for given boundary conditions (i.e. image size, offset. etc). Args: row_min (int): Starting value for row count row_max (int): End value for row count length (int): Pixels in the respective dimension boundary_condition (Union[Literal["periodic-symmetric", "periodic-left"], List[float]], optional): Boundary conditions for the probing can either be periodic or non-periodic, if they are periodic, the distance from one row to the next must be the same also for the boundaries. Else, no conditions for the boundaries are required. Options are: - 'periodic-symmetric': the first and the last row are placed with an offset to the borders, that is half of the spacing of the two rows - 'periodic-left': the first row is at the border of the bottom of the image, while the last row is one spacing apart from the top of the image - list with two values: in this case the an offset of value f1 and f2 is set on both ends, i.e. the the sampling no longer goes from 0 to 1 ('no-offset') but instead from 0+f1 to 0-f2 Defaults to "periodic_symmetric". Returns: list: List of all number of rows that does not lead to interpolation errors """ suitable_values: List[int] = [] # loop through all values and validate whether they are suitable for counter in range(row_min, row_max + 1): if boundary_condition == "periodic-symmetric": values = np.linspace(0, 1, counter, endpoint=False) values = values + (values[1] - values[0]) / 2 if boundary_condition == "periodic-left": values = np.linspace(0, 1, counter, endpoint=False) if isinstance(boundary_condition, List): values = np.linspace(0 + boundary_condition[0], 1 - boundary_condition[1], counter, endpoint=True) pixel_values = values * length pixel_values_modulo = pixel_values % 1 no_interpolation = np.less_equal(pixel_values_modulo, 10 ** (-10)) no_interpolation = np.logical_or(no_interpolation, np.less_equal(1 - 10 ** (-10), pixel_values_modulo)) no_interpolation = no_interpolation.all() if no_interpolation: suitable_values.append(counter) return suitable_values <fim_middle>
null
IF
complete_current_header_empty_completion
<filename>open-iris/src/iris/io/validators.py<fim_prefix>from typing import Any, Callable, Dict, Iterable, List import numpy as np from pydantic import fields # ----- validators ----- def is_odd(cls: type, v: int, field: fields.ModelField) -> int: """Check that kernel size are odd numbers. Args: cls (type): Class type. v (int): Value to check. field (fields.ModelField): Field descriptor. Raises: ValueError: Exception raised if number isn't odd. Returns: int: `v` sent for further processing. """ if (v % 2) == 0: raise ValueError(f"{cls.__name__}: {field.name} must be odd numbers.") return v def is_binary(cls: type, v: np.ndarray, field: fields.ModelField) -> np.ndarray: """Check if array has only boolean values, i.e. is binary. Args: cls (type): Class type. v (np.ndarray): Value to check. field (fields.ModelField): Field descriptor. Raises: ValueError: Exception raised if array doesn't contain bool datatypes. Returns: np.ndarray: `v` sent for further processing. """ if v.dtype != np.dtype("bool"): raise ValueError(f"{cls.__name__}: {field.name} must be binary. got dtype {v.dtype}") return v def is_list_of_points(cls: type, v: np.ndarray, field: fields.ModelField) -> np.ndarray: """Check if np.ndarray has shape (_, 2). Args: cls (type): Class type. v (np.ndarray): Value to check. field (fields.ModelField): Field descriptor. Raises: ValueError: Exception raised if array doesn't contain 2D points. Returns: np.ndarray: `v` sent for further processing. """ if len(v.shape) != 2 or v.shape[1] != 2: raise ValueError(f"{cls.__name__}: {field.name} must have shape (_, 2).") return v def is_not_empty(cls: type, v: List[Any], field: fields.ModelField) -> List[Any]: """Check that both inputs are not empty. Args: cls (type): Class type. v (List[Any]): Value to check. field (fields.ModelField): Field descriptor. Raises: ValueError: Exception raised if list is empty. Returns: List[Any]: `v` sent for further processing. """ if len(v) == 0: raise ValueError(f"{cls.__name__}: {field.name} list cannot be empty.") return v def is_not_zero_sum(cls: type, v: Any, field: fields.ModelField) -> Any: """Check that both inputs are not empty. Args: cls (type): Class type. v (Any): Value to check. field (fields.ModelField): Field descriptor. Raises: ValueError: Raised if v doesn't sum to 0. Returns: Any: `v` sent for further processing. """ if np.sum(v) == 0: raise ValueError(f"{cls.__name__}: {field.name} sum cannot be zero.") return v def are_all_positive(cls: type, v: Any, field: fields.ModelField) -> Any: """Check that all values are positive. Args: cls (type): Class type. v (Any): Value to check. field (fields.ModelField): Field descriptor. Raises: ValueError: Raise if not all values in are positive. Returns: Any: `v` sent for further processing. """ if isinstance(v, Iterable): if not np.array([value >= 0 for value in v]).all(): raise ValueError(f"{cls.__name__}: all {field.name} must be positive. Received {v}") elif v < 0.0: raise ValueError(f"{cls.__name__}: {field.name} must be positive. Received {v}") return v def to_dtype_float32(cls: type, v: np.ndarray, field: fields.ModelField) -> np.ndarray: """Convert input np.ndarray to dtype np.float32. Args: cls (type): Class type. v (np.ndarray): Value to convert field (fields.ModelField): Field descriptor. Returns: np.ndarray: `v` sent for further processing. """ return v.astype(np.float32) # ----- root_validators ----- def is_valid_bbox(cls: type, values: Dict[str, float]) -> Dict[str, float]: """Check that the bounding box is valid.""" if values["x_min"] >= values["x_max"] or values["y_min"] >= values["y_max"]: raise ValueError( f'{cls.__name__}: invalid bbox. x_min={values["x_min"]}, x_max={values["x_max"]},' f' y_min={values["y_min"]}, y_max={values["y_max"]}' ) return values # ----- parametrized validators ----- def is_array_n_dimensions(nb_dimensions: int) -> Callable: """Create a pydantic validator checking if an array is n-dimensional. Args: nb_dimensions (int): number of dimensions the array must have Returns: Callable: the validator. """ def validator(cls: type, v: np.ndarray, field: fields.ModelField) -> np.ndarray: """Check if the array has the right number of dimensions.""" if len(v.shape) != nb_dimensions and (v.shape != (0,) or nb_dimensions != 0): raise ValueError( f"{cls.__name__}: wrong number of dimensions for {field.name}. " f"Expected {nb_dimensions}, got {len(v.shape)}" ) return v return validator # ----- parametrized root_validators ----- def are_lengths_equal(field1: str, field2: str) -> Callable: """Create a pydantic validator checking if the two fields have the same length. Args: field1 (str): name of the first field field2 (str): name of the first field Returns: Callable: the validator. """ def __root_validator(cls: type, values: Dict[str, List[Any]]) -> Dict[str, List[Any]]: """Check if len(field1) equals len(field2).""" if len(values[field1]) != len(val<fim_suffix>ues[field2]): raise ValueError( f"{cls.__name__}: {field1} and {field2} length mismatch, " f"resp. {len(values[field1])} and {len(values[field2])}" ) return values return __root_validator def are_shapes_equal(field1: str, field2: str) -> Callable: """Create a pydantic validator checking if the two fields have the same shape. Args: field1 (str): name of the first field field2 (str): name of the first field Returns: Callable: the validator. """ def __root_validator(cls: type, values: Dict[str, np.ndarray]) -> Dict[str, np.ndarray]: """Check if field1.shape equals field2.shape.""" if values[field1].shape != values[field2].shape: raise ValueError(f"{cls.__name__}: {field1} and {field2} shape mismatch.") return values return __root_validator def are_all_shapes_equal(field1: str, field2: str) -> Callable: """Create a pydantic validator checking if two lists of array have the same shape per element. This function creates a pydantic validator for two lists of np.ndarrays which checks if they have the same length, and if all of their element have the same shape one by one. Args: field1 (str): name of the first field field2 (str): name of the first field Returns: Callable: the validator. """ def __root_validator(cls: type, values: Dict[str, np.ndarray]) -> Dict[str, np.ndarray]: """Check if len(field1) equals len(field2) and if every element have the same shape.""" shapes_field_1 = [element.shape for element in values[field1]] shapes_field_2 = [element.shape for element in values[field2]] if len(values[field1]) != len(values[field2]) or shapes_field_1 != shapes_field_2: raise ValueError( f"{cls.__name__}: {field1} and {field2} shape mismatch, resp. {shapes_field_1} and {shapes_field_2}." ) return values return __root_validator <fim_middle>
null
IF
complete_current_header_empty_completion
<filename>open-iris/src/iris/nodes/normalization/common.py<fim_prefix>from typing import Tuple import numpy as np from pydantic import NonNegativeInt from iris.io.dataclasses import GeometryPolygons from iris.utils import common def generate_iris_mask(extrapolated_contours: GeometryPolygons, noise_mask: np.ndarray) -> np.ndarray: """Generate iris mask by first finding the intersection region between extrapolated iris contours and eyeball contours. Then remove from the outputted mask those pixels for which noise_mask is equal to True. Args: extrapolated_contours (GeometryPolygons): Iris polygon vertices. noise_mask (np.ndarray): Noise mask. Returns: np.ndarray: Iris mask. """ img_h, img_w = noise_mask.shape[:2] iris_mask = common.contour_to_mask(extrapolated_contours.iris_array, (img_w, img_h)) eyeball_mask = common.contour_to_mask(extrapolated_contours.eyeball_array, (img_w, img_h)) iris_mask = iris_mask & eyeball_mask iris_mask = ~(iris_mask & noise_mask) & iris_mask return iris_mask def correct_orientation( pupil_points: np.ndarray, iris_points: np.ndarray, eye_orientation: float ) -> Tuple[np.ndarray, np.ndarray]: """Correct orientation by changing the starting angle in pupil and iris points' arrays. Args: pupil_points (np.ndarray): Pupil boundary points' array. NumPy array of shape (num_points = 512, xy_coords = 2). iris_points (np.ndarray): Iris boundary points' array. NumPy array of shape (num_points = 512, xy_coords = 2). eye_orientation (float): Eye orientation angle in radians. Returns: Tuple[np.ndarray, np.ndarray]: Tuple with rotated based on eye_orientation angle boundary points (pupil_points, iris_points). """ orientation_angle = np.degrees(eye_orientation) num_rotations = -round(orientation_angle * len(pupil_points) / 360.0) pupil_points = np.roll(pupil_points, num_rotations, axis=0) iris_points = np.roll(iris_points, num_rotations, axis=0) return pupil_points, iris_points def getgrids(res_in_r: NonNegativeInt, p2i_ratio: NonNegativeInt) -> np.ndarray: """Generate radius grids for nonlinear normalization based on p2i_ratio (pupil_to_iris ratio). Args: res_in_r (NonNegativeInt): Normalized image r resolution. p2i_ratio (NonNegativeInt): pupil_to_iris ratio, range in [0,100] Returns: np.ndarray: nonlinear sampling grids for normalization """ p = [np.square(x) for x in np.arange(28, max(74 - p2i_ratio, p2i_ratio - 14), 1)] q = p - p[0] q = q / q[-1] grids = np.interp(np.linspace(0, 1.0, res_in_r + 1), np.linspace(0, 1.0, len(q)), q) return grids[0:-1] + np.diff(grids) / 2 def interpolate_pixel_intensity(image: np.ndarray, pixel_coords: Tuple[float, float]) -> float: """Perform bilinear interpolation to estimate pixel intensity in a given location. Args: image (np.ndarray): Original, not normalized image. pixel_coords (Tuple[float, float]): Pixel coordinates. Returns: float: Interpolated pixel intensity. Reference: [1] https://en.wikipedia.org/wiki/Bilinear_interpolation """ def get_pixel_intensity(image: np.ndarray, pixel_x: float, pixel_y: float) -> float: """Get the intensity value of a pixel from an intensity image. Args: image (np.ndarray): Intensity image. pixel_x (float): Pixel x coordinate. pixel_y (float): Pixel y coordinate. Returns: float: Pixel value. """ try: return image[int(pixel_y), int(pixel_x)] except IndexError: return 0.0 def get_interpolation_points_coords( image: np.ndarray, pixel_x: float, pixel_y: float ) -> Tuple[float, float, float, float]: """Extract interpolation points coordinates. Args: image (np.ndarray): Original, not normalized image. pixel_x (float): Pixel x coordinate. pixel_y (float): Pixel y coordinate. Returns: Tuple[float, float, float, float]: Tuple with interpolation points coordinates in a format (xmin, ymin, xmax, ymax). """ xmin, ymin = np.floor(pixel_x), np.floor(pixel_y) xmax, ymax = np.ceil(pixel_x), np.ceil(pixel_y) img_h, img_w = image.shape[:2] if xmin == xmax and not xmax == img_w - 1: xmax += 1 if xmin == xmax and xmax == img_w - 1: xmin -= 1 if ymin == ymax and not ymax == img_h -<fim_suffix> 1: ymax += 1 if ymin == ymax and ymax == img_h - 1: ymin -= 1 return xmin, ymin, xmax, ymax pixel_x, pixel_y = pixel_coords xmin, ymin, xmax, ymax = get_interpolation_points_coords(image, pixel_x=pixel_x, pixel_y=pixel_y) lower_left_pixel_intensity = get_pixel_intensity(image, pixel_x=xmin, pixel_y=ymax) lower_right_pixel_intensity = get_pixel_intensity(image, pixel_x=xmax, pixel_y=ymax) upper_left_pixel_intensity = get_pixel_intensity(image, pixel_x=xmin, pixel_y=ymin) upper_right_pixel_intensity = get_pixel_intensity(image, pixel_x=xmax, pixel_y=ymin) xs_differences = np.array([xmax - pixel_x, pixel_x - xmin]) neighboring_pixel_intensities = np.array( [ [lower_left_pixel_intensity, upper_left_pixel_intensity], [lower_right_pixel_intensity, upper_right_pixel_intensity], ] ) ys_differences = np.array([[pixel_y - ymin], [ymax - pixel_y]]) pixel_intensity = np.matmul(np.matmul(xs_differences, neighboring_pixel_intensities), ys_differences) return pixel_intensity.item() <fim_middle>
null
IF
complete_current_header_empty_completion
<filename>open-iris/src/iris/nodes/iris_response/image_filters/gabor_filters.py<fim_prefix>from typing import Any, Dict, Tuple import numpy as np from pydantic import Field, conint, root_validator, validator import iris.io.validators as pydantic_v from iris.io.errors import ImageFilterError from iris.nodes.iris_response.image_filters.image_filter_interface import ImageFilter def upper_bound_Gabor_parameters(cls: type, values: Dict[str, Any]) -> Dict[str, Any]: """Check upper bounds of Gabor filter parameters such as sigma_phi, sigma_rho and lambda_phi for the given kernel_size. Args: cls (type): class type. values (Dict[str, Any]): values to be checked. Raises: ImageFilterError: Raised if 1) sigma_phi is greater than kernel_size[0], 2) sigma_rho is greater than kernel_size[1], 3) lambda_phi greater than kernel_size[0]. Returns: Dict[str, Any]: values of checked parameters. """ kernel_size, sigma_phi, sigma_rho, lambda_phi = ( values["kernel_size"], values["sigma_phi"], values["sigma_rho"], values["lambda_phi"], ) if sigma_phi >= kernel_size[0]: raise ImageFilterError("Invalid parameters: sigma_phi can not be greater than kernel_size[0].") if sigma_rho >= kernel_size[1]: raise ImageFilterError("Invalid parameters: sigma_rho can not be greater than kernel_size[1].") if lambda_phi >= kernel_size[0]: raise ImageFilterError("Invalid parameters: lambda_phi can not be greater than kernel_size[0].") return values def upper_bound_LogGabor_parameters(cls: type, values: Dict[str, Any]) -> Dict[str, Any]: """Check upper bound of LogGabor filter parameter lambda_rho for the given kernel_size. Args: cls (type): class type. values (Dict[str, Any]): values to be checked. Raises: ImageFilterError: lambda_phi can not be greater than kernel_size[1]. Returns: Dict[str, Any]: values of checked parameters. """ kernel_size, lambda_rho = values["kernel_size"], values["lambda_rho"] if lambda_rho >= kernel_size[1]: raise ImageFilterError("Invalid parameters: lambda_rho can not be greater than kernel_size[1].") return values def get_xy_mesh(kernel_size: Tuple[int, int]) -> Tuple[np.ndarray, np.ndarray]: """Get (x,y) meshgrids for a given kernel size. Args: kernel_size (Tuple[int, int]): Kernel width and height. Returns: Tuple[np.ndarray, np.ndarray]: meshgrid of (x, y) positions. """ ksize_phi_half = kernel_size[0] // 2 ksize_rho_half = kernel_size[1] // 2 y, x = np.meshgrid( np.arange(-ksize_phi_half, ksize_phi_half + 1), np.arange(-ksize_rho_half, ksize_rho_half + 1), indexing="xy", sparse=True, ) return x, y def get_radius(x: np.ndarray, y: np.ndarray) -> np.ndarray: """Get radius to the image center for a given array of relative positions (x,y). Args: x (np.ndarray): x position relative to the image center. y (np.ndarray): y position relative to the image center. Returns: np.ndarray: radius to the image center. """ radius = np.sqrt(x**2 + y**2) return radius def rotate(x: np.ndarray, y: np.ndarray, angle: float) -> Tuple[np.ndarray, np.ndarray]: """Rotate a given array of relative positions (x,y) by a given angle. Args: x (np.ndarray): x position. y (np.ndarray): y position. angle (float): angle for rotation (in degrees). Returns: Tuple[np.ndarray, np.ndarray]: rotated x, y positions. """ cos_theta = np.cos(angle * np.pi / 180) sin_theta = np.sin(angle * np.pi / 180) rotx = x * cos_theta + y * sin_theta roty = -x * sin_theta + y * cos_theta return rotx, roty def normalize_kernel_values(kernel_values: np.ndarray) -> np.ndarray: """Normalize the kernel values so that the square sum is 1. Args: kernel_values (np.ndarray): Kernel values (complex numbers). Returns: np.ndarray: normalized Kernel values. """ norm_real = np.linalg.norm(kernel_values.real, ord="fro") i<fim_suffix>f norm_real > 0: kernel_values.real /= norm_real norm_imag = np.linalg.norm(kernel_values.imag, ord="fro") if norm_imag > 0: kernel_values.imag /= norm_imag return kernel_values def convert_to_fixpoint_kernelvalues(kernel_values: np.ndarray) -> np.ndarray: """Convert the kernel values (both real and imaginary) to fix points. Args: kernel_values (np.ndarray): Kernel values. Returns: np.ndarray: fix-point Kernel values. """ if np.iscomplexobj(kernel_values): kernel_values.real = np.round(kernel_values.real * 2**15) kernel_values.imag = np.round(kernel_values.imag * 2**15) else: kernel_values = np.round(kernel_values * 2**15) return kernel_values class GaborFilter(ImageFilter): """Implementation of a 2D Gabor filter. Reference: [1] https://inc.ucsd.edu/mplab/75/media//gabor.pdf. """ class Parameters(ImageFilter.Parameters): """GaborFilter parameters.""" kernel_size: Tuple[conint(gt=3, lt=99), conint(gt=3, lt=99)] sigma_phi: float = Field(..., ge=1) sigma_rho: float = Field(..., ge=1) theta_degrees: float = Field(..., ge=0, lt=360) lambda_phi: float = Field(..., ge=2) dc_correction: bool to_fixpoints: bool _upper_bound = root_validator(pre=True, allow_reuse=True)(upper_bound_Gabor_parameters) _is_odd = validator("kernel_size", allow_reuse=True, each_item=True)(pydantic_v.is_odd) __parameters_type__ = Parameters def __init__( self, *, kernel_size: Tuple[conint(gt=3, lt=99), conint(gt=3, lt=99)], sigma_phi: float, sigma_rho: float, theta_degrees: float, lambda_phi: float, dc_correction: bool = True, to_fixpoints: bool = False, ) -> None: """Assign parameters. Args: kernel_size (Tuple[conint(gt=3, lt=99), conint(gt=3, lt=99)]): Kernel width and height. sigma_phi (float): phi standard deviation. sigma_rho (float): rho standard deviation. theta_degrees (float): orientation of kernel in degrees. lambda_phi (float): wavelength of the sinusoidal factor, lower value = thinner strip. dc_correction (bool, optional): whether to enable DC correction. Defaults to True. to_fixpoints (bool, optional): whether to convert kernel values to fixpoints. Defaults to False. """ super().__init__( kernel_size=kernel_size, sigma_phi=sigma_phi, sigma_rho=sigma_rho, theta_degrees=theta_degrees, lambda_phi=lambda_phi, dc_correction=dc_correction, to_fixpoints=to_fixpoints, ) def compute_kernel_values(self) -> np.ndarray: """Compute 2D Gabor filter kernel values. Returns: np.ndarray: Kernel values. """ # convert to polar coordinates x, y = get_xy_mesh(self.params.kernel_size) rotx, roty = rotate(x, y, self.params.theta_degrees) # calculate carrier and envelope carrier = 1j * 2 * np.pi / self.params.lambda_phi * rotx envelope = -(rotx**2 / self.params.sigma_phi**2 + roty**2 / self.params.sigma_rho**2) / 2 # calculate kernel values kernel_values = np.exp(envelope + carrier) kernel_values /= 2 * np.pi * self.params.sigma_phi * self.params.sigma_rho # apply DC correction if self.params.dc_correction: # Step 1: calculate mean value of Gabor Wavelet g_mean = np.mean(np.real(kernel_values), axis=-1) # Step 2: define gaussian offset correction_term_mean = np.mean(envelope, axis=-1) # Step 3: substract gaussian kernel_values = kernel_values - (g_mean / correction_term_mean)[:, np.newaxis] * envelope # normalize kernel values kernel_values = normalize_kernel_values(kernel_values) if self.params.to_fixpoints: kernel_values = convert_to_fixpoint_kernelvalues(kernel_values) return kernel_values class LogGaborFilter(ImageFilter): """Implementation of a 2D LogGabor filter. Reference: [1] https://en.wikipedia.org/wiki/Log_Gabor_filter. """ class Parameters(ImageFilter.Parameters): """LogGaborFilter parameters.""" kernel_size: Tuple[conint(gt=3, lt=99), conint(gt=3, lt=99)] sigma_phi: float = Field(..., gt=0, le=np.pi) sigma_rho: float = Field(..., gt=0.1, le=1) theta_degrees: float = Field(..., ge=0, lt=360) lambda_rho: float = Field(..., gt=2) to_fixpoints: bool _upper_bound = root_validator(pre=True, allow_reuse=True)(upper_bound_LogGabor_parameters) _is_odd = validator("kernel_size", allow_reuse=True, each_item=True)(pydantic_v.is_odd) __parameters_type__ = Parameters def __init__( self, *, kernel_size: Tuple[conint(gt=3, lt=99), conint(gt=3, lt=99)], sigma_phi: float, sigma_rho: float, theta_degrees: float, lambda_rho: float, to_fixpoints: bool = False, ) -> None: """Assign parameters. Args: kernel_size (Tuple[conint(gt=3, lt=99), conint(gt=3, lt=99)]): Kernel width and height. sigma_phi (float): bandwidth in phi (frequency domain). sigma_rho (float): bandwidth in rho (frequency domain). theta_degrees (float): orientation of filter in degrees. lambda_rho (float): wavelength in rho. to_fixpoints (bool, optional): whether to convert kernel values to fixpoints. Defaults to False. """ super().__init__( kernel_size=kernel_size, sigma_phi=sigma_phi, sigma_rho=sigma_rho, theta_degrees=theta_degrees, lambda_rho=lambda_rho, to_fixpoints=to_fixpoints, ) def compute_kernel_values(self) -> np.ndarray: """Compute 2D LogGabor filter kernel values. Returns: np.ndarray: Kernel values. """ # convert to polar coordinates x, y = get_xy_mesh(self.params.kernel_size) radius = get_radius(x, y) # remove 0 radius value in the center ksize_phi_half = self.params.kernel_size[0] // 2 ksize_rho_half = self.params.kernel_size[1] // 2 radius[ksize_rho_half][ksize_phi_half] = 1 # get angular distance [rotx, roty] = rotate(x, y, self.params.theta_degrees) dtheta = np.arctan2(roty, rotx) # calculate envelope and orientation envelope = np.exp( -0.5 * np.log2(radius * self.params.lambda_rho / self.params.kernel_size[1]) ** 2 / self.params.sigma_rho**2 ) envelope[ksize_rho_half][ksize_phi_half] = 0 orientation = np.exp(-0.5 * dtheta**2 / self.params.sigma_phi**2) # calculate kernel values kernel_values = envelope * orientation kernel_values = np.fft.fftshift(np.fft.ifft2(np.fft.ifftshift(kernel_values))) # normalize kernel values kernel_values = normalize_kernel_values(kernel_values) if self.params.to_fixpoints: kernel_values = convert_to_fixpoint_kernelvalues(kernel_values) return kernel_values <fim_middle>
null
IF
complete_current_header_empty_completion
<filename>open-iris/src/iris/nodes/iris_response/image_filters/gabor_filters.py<fim_prefix>from typing import Any, Dict, Tuple import numpy as np from pydantic import Field, conint, root_validator, validator import iris.io.validators as pydantic_v from iris.io.errors import ImageFilterError from iris.nodes.iris_response.image_filters.image_filter_interface import ImageFilter def upper_bound_Gabor_parameters(cls: type, values: Dict[str, Any]) -> Dict[str, Any]: """Check upper bounds of Gabor filter parameters such as sigma_phi, sigma_rho and lambda_phi for the given kernel_size. Args: cls (type): class type. values (Dict[str, Any]): values to be checked. Raises: ImageFilterError: Raised if 1) sigma_phi is greater than kernel_size[0], 2) sigma_rho is greater than kernel_size[1], 3) lambda_phi greater than kernel_size[0]. Returns: Dict[str, Any]: values of checked parameters. """ kernel_size, sigma_phi, sigma_rho, lambda_phi = ( values["kernel_size"], values["sigma_phi"], values["sigma_rho"], values["lambda_phi"], ) if sigma_phi >= kernel_size[0]: raise ImageFilterError("Invalid parameters: sigma_phi can not be greater than kernel_size[0].") if sigma_rho >= kernel_size[1]: raise ImageFilterError("Invalid parameters: sigma_rho can not be greater than kernel_size[1].") if lambda_phi >= kernel_size[0]: raise ImageFilterError("Invalid parameters: lambda_phi can not be greater than kernel_size[0].") return values def upper_bound_LogGabor_parameters(cls: type, values: Dict[str, Any]) -> Dict[str, Any]: """Check upper bound of LogGabor filter parameter lambda_rho for the given kernel_size. Args: cls (type): class type. values (Dict[str, Any]): values to be checked. Raises: ImageFilterError: lambda_phi can not be greater than kernel_size[1]. Returns: Dict[str, Any]: values of checked parameters. """ kernel_size, lambda_rho = values["kernel_size"], values["lambda_rho"] if lambda_rho >= kernel_size[1]: raise ImageFilterError("Invalid parameters: lambda_rho can not be greater than kernel_size[1].") return values def get_xy_mesh(kernel_size: Tuple[int, int]) -> Tuple[np.ndarray, np.ndarray]: """Get (x,y) meshgrids for a given kernel size. Args: kernel_size (Tuple[int, int]): Kernel width and height. Returns: Tuple[np.ndarray, np.ndarray]: meshgrid of (x, y) positions. """ ksize_phi_half = kernel_size[0] // 2 ksize_rho_half = kernel_size[1] // 2 y, x = np.meshgrid( np.arange(-ksize_phi_half, ksize_phi_half + 1), np.arange(-ksize_rho_half, ksize_rho_half + 1), indexing="xy", sparse=True, ) return x, y def get_radius(x: np.ndarray, y: np.ndarray) -> np.ndarray: """Get radius to the image center for a given array of relative positions (x,y). Args: x (np.ndarray): x position relative to the image center. y (np.ndarray): y position relative to the image center. Returns: np.ndarray: radius to the image center. """ radius = np.sqrt(x**2 + y**2) return radius def rotate(x: np.ndarray, y: np.ndarray, angle: float) -> Tuple[np.ndarray, np.ndarray]: """Rotate a given array of relative positions (x,y) by a given angle. Args: x (np.ndarray): x position. y (np.ndarray): y position. angle (float): angle for rotation (in degrees). Returns: Tuple[np.ndarray, np.ndarray]: rotated x, y positions. """ cos_theta = np.cos(angle * np.pi / 180) sin_theta = np.sin(angle * np.pi / 180) rotx = x * cos_theta + y * sin_theta roty = -x * sin_theta + y * cos_theta return rotx, roty def normalize_kernel_values(kernel_values: np.ndarray) -> np.ndarray: """Normalize the kernel values so that the square sum is 1. Args: kernel_values (np.ndarray): Kernel values (complex numbers). Returns: np.ndarray: normalized Kernel values. """ norm_real = np.linalg.norm(kernel_values.real, ord="fro") if norm_real > 0: kernel_values.real /= norm_real norm_imag = np.linalg.norm(kernel_values.imag, ord="fro") if norm_imag > 0: kernel_values.imag /= norm_imag return kernel_values def convert_to_fixpoint_kernelvalues(kernel_values: np.ndarray) -> np.ndarray: """Convert the kernel values (both real and imaginary) to fix points. Args: kernel_values (np.ndarray): Kernel values. Returns: np.ndarray: fix-point Kernel values. """ if np.iscomplexobj(kernel_values): kernel_values.real = np.round(kernel_values.real * 2**15) kernel_values.imag = np.round(kernel_values.imag * 2**15) else: kernel_values = np.round(kernel_values * 2**15) return kernel_values class GaborFilter(ImageFilter): """Implementation of a 2D Gabor filter. Reference: [1] https://inc.ucsd.edu/mplab/75/media//gabor.pdf. """ class Parameters(ImageFilter.Parameters): """GaborFilter parameters.""" kernel_size: Tuple[conint(gt=3, lt=99), conint(gt=3, lt=99)] sigma_phi: float = Field(..., ge=1) sigma_rho: float = Field(..., ge=1) theta_degrees: float = Field(..., ge=0, lt=360) lambda_phi: float = Field(..., ge=2) dc_correction: bool to_fixpoints: bool _upper_bound = root_validator(pre=True, allow_reuse=True)(upper_bound_Gabor_parameters) _is_odd = validator("kernel_size", allow_reuse=True, each_item=True)(pydantic_v.is_odd) __parameters_type__ = Parameters def __init__( self, *, kernel_size: Tuple[conint(gt=3, lt=99), conint(gt=3, lt=99)], sigma_phi: float, sigma_rho: float, theta_degrees: float, lambda_phi: float, dc_correction: bool = True, to_fixpoints: bool = False, ) -> None: """Assign parameters. Args: kernel_size (Tuple[conint(gt=3, lt=99), conint(gt=3, lt=99)]): Kernel width and height. sigma_phi (float): phi standard deviation. sigma_rho (float): rho standard deviation. theta_degrees (float): orientation of kernel in degrees. lambda_phi (float): wavelength of the sinusoidal factor, lower value = thinner strip. dc_correction (bool, optional): whether to enable DC correction. Defaults to True. to_fixpoints (bool, optional): whether to convert kernel values to fixpoints. Defaults to False. """ super().__init__( kernel_size=kernel_size, sigma_phi=sigma_phi, sigma_rho=sigma_rho, theta_degrees=theta_degrees, lambda_phi=lambda_phi, dc_correction=dc_correction, to_fixpoints=to_fixpoints, ) def compute_kernel_values(self) -> np.ndarray: """Compute 2D Gabor filter kernel values. Returns: np.ndarray: Kernel values. """ # convert to polar coordinates x, y = get_xy_mesh(self.params.kernel_size) rotx, roty = rotate(x, y, self.params.theta_degrees) # calculate carrier and envelope carrier = 1j * 2 * np.pi / self.params.lambda_phi * rotx envelope = -(rotx**2 / self.params.sigma_phi**2 + roty**2 / self.params.sigma_rho**2) / 2 # calculate kernel values kernel_values = np.exp(envelope + carrier) kernel_values /= 2 * np.pi * self.params.sigma_phi * self.params.sigma_rho # apply DC correction if self.params.dc_correction: # Step 1: calculate mean value of Gabor Wavelet g_mean = np.mean(np.real(kernel_values), axis=-1) # Step 2: define gaussian offset correction_term_mean = np.mean(envelope, axis=-1) # Step 3: substract gaussian kernel_values = kernel_values - (g_mean / correction_term_mean)[:, np.newaxis] * envelope #<fim_suffix> normalize kernel values kernel_values = normalize_kernel_values(kernel_values) if self.params.to_fixpoints: kernel_values = convert_to_fixpoint_kernelvalues(kernel_values) return kernel_values class LogGaborFilter(ImageFilter): """Implementation of a 2D LogGabor filter. Reference: [1] https://en.wikipedia.org/wiki/Log_Gabor_filter. """ class Parameters(ImageFilter.Parameters): """LogGaborFilter parameters.""" kernel_size: Tuple[conint(gt=3, lt=99), conint(gt=3, lt=99)] sigma_phi: float = Field(..., gt=0, le=np.pi) sigma_rho: float = Field(..., gt=0.1, le=1) theta_degrees: float = Field(..., ge=0, lt=360) lambda_rho: float = Field(..., gt=2) to_fixpoints: bool _upper_bound = root_validator(pre=True, allow_reuse=True)(upper_bound_LogGabor_parameters) _is_odd = validator("kernel_size", allow_reuse=True, each_item=True)(pydantic_v.is_odd) __parameters_type__ = Parameters def __init__( self, *, kernel_size: Tuple[conint(gt=3, lt=99), conint(gt=3, lt=99)], sigma_phi: float, sigma_rho: float, theta_degrees: float, lambda_rho: float, to_fixpoints: bool = False, ) -> None: """Assign parameters. Args: kernel_size (Tuple[conint(gt=3, lt=99), conint(gt=3, lt=99)]): Kernel width and height. sigma_phi (float): bandwidth in phi (frequency domain). sigma_rho (float): bandwidth in rho (frequency domain). theta_degrees (float): orientation of filter in degrees. lambda_rho (float): wavelength in rho. to_fixpoints (bool, optional): whether to convert kernel values to fixpoints. Defaults to False. """ super().__init__( kernel_size=kernel_size, sigma_phi=sigma_phi, sigma_rho=sigma_rho, theta_degrees=theta_degrees, lambda_rho=lambda_rho, to_fixpoints=to_fixpoints, ) def compute_kernel_values(self) -> np.ndarray: """Compute 2D LogGabor filter kernel values. Returns: np.ndarray: Kernel values. """ # convert to polar coordinates x, y = get_xy_mesh(self.params.kernel_size) radius = get_radius(x, y) # remove 0 radius value in the center ksize_phi_half = self.params.kernel_size[0] // 2 ksize_rho_half = self.params.kernel_size[1] // 2 radius[ksize_rho_half][ksize_phi_half] = 1 # get angular distance [rotx, roty] = rotate(x, y, self.params.theta_degrees) dtheta = np.arctan2(roty, rotx) # calculate envelope and orientation envelope = np.exp( -0.5 * np.log2(radius * self.params.lambda_rho / self.params.kernel_size[1]) ** 2 / self.params.sigma_rho**2 ) envelope[ksize_rho_half][ksize_phi_half] = 0 orientation = np.exp(-0.5 * dtheta**2 / self.params.sigma_phi**2) # calculate kernel values kernel_values = envelope * orientation kernel_values = np.fft.fftshift(np.fft.ifft2(np.fft.ifftshift(kernel_values))) # normalize kernel values kernel_values = normalize_kernel_values(kernel_values) if self.params.to_fixpoints: kernel_values = convert_to_fixpoint_kernelvalues(kernel_values) return kernel_values <fim_middle>
null
LINE_COMMENT
complete_current_header_empty_completion
<filename>open-iris/src/iris/utils/math.py<fim_prefix>import math from typing import Dict, Tuple import numpy as np def area(array: np.ndarray) -> float: """Shoelace formula for simple polygon area calculation. WARNING: This formula only works for simple polygons, i.e planar polygon without self-intersection nor holes. These conditions are not checked within this function. Args: array (np.ndarray): np array representing a polygon as a list of points, i.e. of shape (_, 2). Raises: ValueError: if the input array does not have shape (_, 2) Returns: float: Polygon area References: [1] https://en.wikipedia.org/wiki/Shoelace_formula [2] https://stackoverflow.com/questions/24467972/calculate-area-of-polygon-given-x-y-coordinates """ if len(array.shape) != 2 or array.shape[1] != 2: raise ValueError(f"Unable to determine the area of a polygon with shape {array.shape}. Expecting (_, 2).") xs, ys = array.T area = 0.5 * np.abs(np.dot(xs, np.roll(ys, 1)) - np.dot(ys, np.roll(xs, 1))) return float(area) def estimate_diameter(polygon: np.ndarray) -> float: """Estimates the diameter of an arbitrary arc by evaluating the maximum distance between any two points on the arc. Args: polygon (np.ndarray): Polygon points. Returns: float: Estimated diameter length. Reference: [1] https://sparrow.dev/pairwise-distance-in-numpy/ """ return float(np.linalg.norm(polygon[:, None, :] - polygon[None, :, :], axis=-1).max()) def cartesian2polar(xs: np.ndarray, ys: np.ndarray, center_x: float, center_y: float) -> Tuple[np.ndarray, np.ndarray]: """Convert xs and ys cartesian coordinates to polar coordinates. Args: xs (np.ndarray): x values. ys (np.ndarray): y values. center_x (float): center's x. center_y (float): center's y. Returns: Tuple[np.ndarray, np.ndarray]: Converted coordinates (rhos, phis). """ x_rel: np.ndarray = xs - center_x y_rel: np.ndarray = ys - center_y C = np.vectorize(complex)(x_rel, y_rel) rho = np.abs(C) phi = np.angle(C) % (2 * np.pi) return rho, phi def polar2cartesian( rhos: np.ndarray, phis: np.ndarray, center_x: float, center_y: float ) -> Tuple[np.ndarray, np.ndarray]: """Convert polar coordinates to cartesian coordinates. Args: rho (np.ndarray): rho values. phi (np.ndarray): phi values. center_x (float): center's x. center_y (float): center's y. Returns: Tuple[np.ndarray, np.ndarray]: Converted coordinates (xs, ys). """ xs = center_x + rhos * np.cos(phis) ys = center_y + rhos * np.sin(phis) return xs, ys def orientation(moments: Dict[str, float]) -> float: """Compute the main orientation of a contour or a binary image given its precomputed cv2 moments. Args: moments (Dict[str, float]): cv2.moments of desired the binary image or contour. Returns: float: Main orientation of the shape. The orientation is a float in [-pi/2, pi/2[ representing the signed angle from the x axis. """ # Edge case of null denominator if (moments["mu20"] - moments["mu02"]) == 0: if moments["mu11"] == 0: orientation = 0.0 else: orientation = math.copysign(np.pi / 4, moments["mu11"]) else: # General formula orientation = 0.5 * np.arctan(2 * moments["mu11"] / (moments["mu20"] - moments["mu02"])) if (moments["mu20"] - moments["mu02"]) < 0: orientation += np.pi / 2 # Restricting the angle to [-pi/2, pi/2[ orientation = np.mod(orientation + np.pi / 2, np.pi) - np.pi / 2 return orientation def eccentricity(moments: Dict[str, float]) -> float: r"""Compute the eccentricity of a contour or a binary image given its precomputed cv2 moments. The eccentricity is a number in [0, 1] which caracterises the "roundness" or "linearity" of a shape. A perfect circle will have an eccentricity of 0, and an infinite line an eccentricity of 1. For ellipses, the eccentricity is calculated as :math:`\frac{\sqrt{a^2 - b^2}}{a^2}` with a (resp. b) the semi-major (resp. -minor) axis of the ellipses. For `mu20 + mu02 == 0`, i.e. perfect line, the max theoretical value (1.0) is returned Args: moments (Dict[str, float]): cv2.moments of desired the binary image or contour. Returns: eccentricity (float): the eccentricity of the contour or binary map. Reference: [1] https://t1.daumcdn.net/cfile/tistory/15425F4150F4EBFC19 """ if moments["mu20"] + moments["mu02"] == 0: return 1.0 # fmt: off eccentricity = ((moments["mu20"] - moments["mu02"]) ** 2 + 4 * moments["mu11"] ** 2) / (moments["mu20"] + moments["mu02"]) ** 2 # <fim_suffix>fmt: on return eccentricity def apply_weights_1d(scores_1d: np.ndarray, weights_1d: np.ndarray) -> float: """Apply weights for score fusion. Args: scores_1d (np.ndarray): scores to be fused. weights_1d (np.ndarray): weights. Raises: ValueError: if the input 1d arrays do not have the same length. Returns: float: fused score. """ if len(scores_1d) != len(weights_1d): raise ValueError("Unable to apply weights. Dimension is different between scores and weights.") if len(weights_1d) == 0: raise ValueError("Unable to apply weights. Empty arrays.") if np.sum(weights_1d) == 0: raise ValueError("Unable to apply weights. Sum of weights is zero.") weighted_score = np.sum(np.multiply(scores_1d, weights_1d)) return weighted_score / np.sum(weights_1d) def polygon_length(polygon: np.ndarray, max_point_distance: int = 20) -> float: """Compute the length of a polygon represented as a (_, 2)-dimensionnal numpy array. One polygon can include several disjoint arcs, which should be identified as separate so that the distance between them is not counted. If a polygon is made of two small arc separated by a large distance, then the large distance between the two arcs will not be discounted in the polygon's length WARNING: The input polygon is assumed to be non-looped, i.e. if the first and last point are not equal, which is the case for all ou GeometryPolygons. The last implicit segment looping back from the last to the first point is therefore not included in the computed polygon length. Args: polygon (np.ndarray): (_, 2) - shaped numpy array representing a polygon. max_point_distance (int): Maximum distance between two points for them to be considered part of the same arc. Returns: float: length of the polygon, in pixels. """ if polygon.ndim != 2 or polygon.shape[1] != 2: raise ValueError(f"This function expects a polygon, i.e. an array of shape (_, 2). Got {polygon.shape}") inter_point_distances = np.linalg.norm(np.roll(polygon, 1, axis=0) - polygon, axis=1) inter_point_distances = inter_point_distances[inter_point_distances < max_point_distance] return inter_point_distances.sum() <fim_middle>
null
LINE_COMMENT
complete_current_header_empty_completion
<filename>open-iris/src/iris/nodes/iris_response/image_filters/gabor_filters.py<fim_prefix>from typing import Any, Dict, Tuple import numpy as np from pydantic import Field, conint, root_validator, validator import iris.io.validators as pydantic_v from iris.io.errors import ImageFilterError from iris.nodes.iris_response.image_filters.image_filter_interface import ImageFilter def upper_bound_Gabor_parameters(cls: type, values: Dict[str, Any]) -> Dict[str, Any]: """Check upper bounds of Gabor filter parameters such as sigma_phi, sigma_rho and lambda_phi for the given kernel_size. Args: cls (type): class type. values (Dict[str, Any]): values to be checked. Raises: ImageFilterError: Raised if 1) sigma_phi is greater than kernel_size[0], 2) sigma_rho is greater than kernel_size[1], 3) lambda_phi greater than kernel_size[0]. Returns: Dict[str, Any]: values of checked parameters. """ kernel_size, sigma_phi, sigma_rho, lambda_phi = ( values["kernel_size"], values["sigma_phi"], values["sigma_rho"], values["lambda_phi"], ) if sigma_phi >= kernel_size[0]: raise ImageFilterError("Invalid parameters: sigma_phi can not be greater than kernel_size[0].") if sigma_rho >= kernel_size[1]: raise ImageFilterError("Invalid parameters: sigma_rho can not be greater than kernel_size[1].") if lambda_phi >= kernel_size[0]: raise ImageFilterError("Invalid parameters: lambda_phi can not be greater than kernel_size[0].") return values def upper_bound_LogGabor_parameters(cls: type, values: Dict[str, Any]) -> Dict[str, Any]: """Check upper bound of LogGabor filter parameter lambda_rho for the given kernel_size. Args: cls (type): class type. values (Dict[str, Any]): values to be checked. Raises: ImageFilterError: lambda_phi can not be greater than kernel_size[1]. Returns: Dict[str, Any]: values of checked parameters. """ kernel_size, lambda_rho = values["kernel_size"], values["lambda_rho"] if lambda_rho >= kernel_size[1]: raise ImageFilterError("Invalid parameters: lambda_rho can not be greater than kernel_size[1].") return values def get_xy_mesh(kernel_size: Tuple[int, int]) -> Tuple[np.ndarray, np.ndarray]: """Get (x,y) meshgrids for a given kernel size. Args: kernel_size (Tuple[int, int]): Kernel width and height. Returns: Tuple[np.ndarray, np.ndarray]: meshgrid of (x, y) positions. """ ksize_phi_half = kernel_size[0] // 2 ksize_rho_half = kernel_size[1] // 2 y, x = np.meshgrid( np.arange(-ksize_phi_half, ksize_phi_half + 1), np.arange(-ksize_rho_half, ksize_rho_half + 1), indexing="xy", sparse=True, ) return x, y def get_radius(x: np.ndarray, y: np.ndarray) -> np.ndarray: """Get radius to the image center for a given array of relative positions (x,y). Args: x (np.ndarray): x position relative to the image center. y (np.ndarray): y position relative to the image center. Returns: np.ndarray: radius to the image center. """ radius = np.sqrt(x**2 + y**2) return radius def rotate(x: np.ndarray, y: np.ndarray, angle: float) -> Tuple[np.ndarray, np.ndarray]: """Rotate a given array of relative positions (x,y) by a given angle. Args: x (np.ndarray): x position. y (np.ndarray): y position. angle (float): angle for rotation (in degrees). Returns: Tuple[np.ndarray, np.ndarray]: rotated x, y positions. """ cos_theta = np.cos(angle * np.pi / 180) sin_theta = np.sin(angle * np.pi / 180) rotx = x * cos_theta + y * sin_theta roty = -x * sin_theta + y * cos_theta return rotx, roty def normalize_kernel_values(kernel_values: np.ndarray) -> np.ndarray: """Normalize the kernel values so that the square sum is 1. Args: kernel_values (np.ndarray): Kernel values (complex numbers). Returns: np.ndarray: normalized Kernel values. """ norm_real = np.linalg.norm(kernel_values.real, ord="fro") if norm_real > 0: kernel_values.real /= norm_real norm_imag = np.linalg.norm(kernel_values.imag, ord="fro") if norm_imag > 0: kernel_values.imag /= norm_imag return kernel_values def convert_to_fixpoint_kernelvalues(kernel_values: np.ndarray) -> np.ndarray: """Convert the kernel values (both real and imaginary) to fix points. Args: kernel_values (np.ndarray): Kernel values. Returns: np.ndarray: fix-point Kernel values. """ if np.iscomplexobj(kernel_values): kernel_values.real = np.round(kernel_values.real * 2**15) kernel_values.imag = np.round(kernel_values.imag * 2**15) else: kernel_values = np.round(kernel_values * 2**15) return kernel_values class GaborFilter(ImageFilter): """Implementation of a 2D Gabor filter. Reference: [1] https://inc.ucsd.edu/mplab/75/media//gabor.pdf. """ class Parameters(ImageFilter.Parameters): """GaborFilter parameters.""" kernel_size: Tuple[conint(gt=3, lt=99), conint(gt=3, lt=99)] sigma_phi: float = Field(..., ge=1) sigma_rho: float = Field(..., ge=1) theta_degrees: float = Field(..., ge=0, lt=360) lambda_phi: float = Field(..., ge=2) dc_correction: bool to_fixpoints: bool _upper_bound = root_validator(pre=True, allow_reuse=True)(upper_bound_Gabor_parameters) _is_odd = validator("kernel_size", allow_reuse=True, each_item=True)(pydantic_v.is_odd) __parameters_type__ = Parameters def __init__( self, *, kernel_size: Tuple[conint(gt=3, lt=99), conint(gt=3, lt=99)], sigma_phi: float, sigma_rho: float, theta_degrees: float, lambda_phi: float, dc_correction: bool = True, to_fixpoints: bool = False, ) -> None: """Assign parameters. Args: kernel_size (Tuple[conint(gt=3, lt=99), conint(gt=3, lt=99)]): Kernel width and height. sigma_phi (float): phi standard deviation. sigma_rho (float): rho standard deviation. theta_degrees (float): orientation of kernel in degrees. lambda_phi (float): wavelength of the sinusoidal factor, lower value = thinner strip. dc_correction (bool, optional): whether to enable DC correction. Defaults to True. to_fixpoints (bool, optional): whether to convert kernel values to fixpoints. Defaults to False. """ super().__init__( kernel_size=kernel_size, sigma_phi=sigma_phi, sigma_rho=sigma_rho, theta_degrees=theta_degrees, lambda_phi=lambda_phi, dc_correction=dc_correction, to_fixpoints=to_fixpoints, ) def compute_kernel_values(self) -> np.ndarray: """Compute 2D Gabor filter kernel values. Returns: np.ndarray: Kernel values. """ # convert to polar coordinates x, y = get_xy_mesh(self.params.kernel_size) rotx, roty = rotate(x, y, self.params.theta_degrees) # calculate carrier and envelope carrier = 1j * 2 * np.pi / self.params.lambda_phi * rotx envelope = -(rotx**2 / self.params.sigma_phi**2 + roty**2 / self.params.sigma_rho**2) / 2 #<fim_suffix> calculate kernel values kernel_values = np.exp(envelope + carrier) kernel_values /= 2 * np.pi * self.params.sigma_phi * self.params.sigma_rho # apply DC correction if self.params.dc_correction: # Step 1: calculate mean value of Gabor Wavelet g_mean = np.mean(np.real(kernel_values), axis=-1) # Step 2: define gaussian offset correction_term_mean = np.mean(envelope, axis=-1) # Step 3: substract gaussian kernel_values = kernel_values - (g_mean / correction_term_mean)[:, np.newaxis] * envelope # normalize kernel values kernel_values = normalize_kernel_values(kernel_values) if self.params.to_fixpoints: kernel_values = convert_to_fixpoint_kernelvalues(kernel_values) return kernel_values class LogGaborFilter(ImageFilter): """Implementation of a 2D LogGabor filter. Reference: [1] https://en.wikipedia.org/wiki/Log_Gabor_filter. """ class Parameters(ImageFilter.Parameters): """LogGaborFilter parameters.""" kernel_size: Tuple[conint(gt=3, lt=99), conint(gt=3, lt=99)] sigma_phi: float = Field(..., gt=0, le=np.pi) sigma_rho: float = Field(..., gt=0.1, le=1) theta_degrees: float = Field(..., ge=0, lt=360) lambda_rho: float = Field(..., gt=2) to_fixpoints: bool _upper_bound = root_validator(pre=True, allow_reuse=True)(upper_bound_LogGabor_parameters) _is_odd = validator("kernel_size", allow_reuse=True, each_item=True)(pydantic_v.is_odd) __parameters_type__ = Parameters def __init__( self, *, kernel_size: Tuple[conint(gt=3, lt=99), conint(gt=3, lt=99)], sigma_phi: float, sigma_rho: float, theta_degrees: float, lambda_rho: float, to_fixpoints: bool = False, ) -> None: """Assign parameters. Args: kernel_size (Tuple[conint(gt=3, lt=99), conint(gt=3, lt=99)]): Kernel width and height. sigma_phi (float): bandwidth in phi (frequency domain). sigma_rho (float): bandwidth in rho (frequency domain). theta_degrees (float): orientation of filter in degrees. lambda_rho (float): wavelength in rho. to_fixpoints (bool, optional): whether to convert kernel values to fixpoints. Defaults to False. """ super().__init__( kernel_size=kernel_size, sigma_phi=sigma_phi, sigma_rho=sigma_rho, theta_degrees=theta_degrees, lambda_rho=lambda_rho, to_fixpoints=to_fixpoints, ) def compute_kernel_values(self) -> np.ndarray: """Compute 2D LogGabor filter kernel values. Returns: np.ndarray: Kernel values. """ # convert to polar coordinates x, y = get_xy_mesh(self.params.kernel_size) radius = get_radius(x, y) # remove 0 radius value in the center ksize_phi_half = self.params.kernel_size[0] // 2 ksize_rho_half = self.params.kernel_size[1] // 2 radius[ksize_rho_half][ksize_phi_half] = 1 # get angular distance [rotx, roty] = rotate(x, y, self.params.theta_degrees) dtheta = np.arctan2(roty, rotx) # calculate envelope and orientation envelope = np.exp( -0.5 * np.log2(radius * self.params.lambda_rho / self.params.kernel_size[1]) ** 2 / self.params.sigma_rho**2 ) envelope[ksize_rho_half][ksize_phi_half] = 0 orientation = np.exp(-0.5 * dtheta**2 / self.params.sigma_phi**2) # calculate kernel values kernel_values = envelope * orientation kernel_values = np.fft.fftshift(np.fft.ifft2(np.fft.ifftshift(kernel_values))) # normalize kernel values kernel_values = normalize_kernel_values(kernel_values) if self.params.to_fixpoints: kernel_values = convert_to_fixpoint_kernelvalues(kernel_values) return kernel_values <fim_middle>
null
LINE_COMMENT
complete_current_header_empty_completion
<filename>open-iris/src/iris/nodes/eye_properties_estimation/bisectors_method.py<fim_prefix>from typing import Tuple import numpy as np from pydantic import Field from iris.io.class_configs import Algorithm from iris.io.dataclasses import EyeCenters, GeometryPolygons from iris.io.errors import EyeCentersEstimationError class BisectorsMethod(Algorithm): """Implementation of eye's center estimation algorithm using bisectors method for finding a circle center. This algorithm samples a given number of bisectors from the pupil and iris polygons, and averages their intersection to produce the polygon center. This method is robust against noise in the polygons, making it a good choice for non-perfect shapes. It is also robust to polygons missing parts of the circle arc, making it a good choice for partially-occluded shapes. LIMITATIONS: The iris and pupil can be approximated to circles, when the user is properly gazing at the camera. This requires that the cases of off-gaze have already been filtered out. """ class Parameters(Algorithm.Parameters): """Default Parameters for BisectorsMethod algorithm.""" num_bisectors: int = Field(..., gt=0) min_distance_between_sector_points: float = Field(..., gt=0.0, lt=1.0) max_iterations: int = Field(..., gt=0) __parameters_type__ = Parameters def __init__( self, num_bisectors: int = 100, min_distance_between_sector_points: float = 0.75, max_iterations: int = 50, ) -> None: """Assign parameters. Args: num_bisectors (int, optional): Number of bisectors.. Defaults to 100. min_distance_between_sector_points (float, optional): Minimum distance between sectors expressed as a fractional value of a circular shape diameter. Defaults to 0.75. max_iterations (int, optional): Max iterations for bisector search.. Defaults to 50. """ super().__init__( num_bisectors=num_bisectors, min_distance_between_sector_points=min_distance_between_sector_points, max_iterations=max_iterations, ) def run(self, geometries: GeometryPolygons) -> EyeCenters: """Estimate eye's iris and pupil centers. Args: geometries (GeometryPolygons): Geometry polygons. Returns: EyeCenters: Eye's centers object. """ pupil_center_x, pupil_center_y = self._find_center_coords(geometries.pupil_array, geometries.pupil_diameter) iris_center_x, iris_center_y = self._find_center_coords(geometries.iris_array, geometries.iris_diameter) return EyeCenters(pupil_x=pupil_center_x, pupil_y=pupil_center_y, iris_x=iris_center_x, iris_y=iris_center_y) def _find_center_coords(self, polygon: np.ndarray, diameter: float) -> Tuple[float, float]: """Find center coordinates of a polygon. Args: polygon (np.ndarray): np.ndarray. diameter (float): diameter of the polygon. Returns: Tuple[float, float]: Tuple with the center location coordinates (x, y). """ min_distance_between_sector_points_in_px = self.params.min_distance_between_sector_points * diameter first_bisectors_point, second_bisectors_point = self._calculate_perpendicular_bisectors( polygon, min_distance_between_sector_points_in_px ) return self._find_best_intersection(first_bisectors_point, second_bisectors_point) def _calculate_perpendicular_bisectors( self, polygon: np.ndarray, min_distance_between_sector_points_in_px: float ) -> Tuple[np.ndarray, np.ndarray]: """Calculate the perpendicular bisector of self.params.num_bisectors randomly chosen points from a polygon's vertices. A pair of points is used if their distance is larger then min_distance_between_sector_points_in_px. Args: polygon (np.ndarray): np.ndarray based on which we are searching the center of a circular shape. min_distance_between_sector_points_in_px (float): Minimum distance between sector points. Raises: EyeCentersEstimationError: Raised if not able to find enough random pairs of points on the arc with a large enough distance! Returns: Tuple[np.ndarray, np.ndarray]: Calculated perpendicular bisectors. """ np.random.seed(142857) bisectors_first_points = np.empty([0, 2]) bisectors_second_points = np.empty([0, 2]) for _ in range(self.params.max_iterations): random_indices = np.random.choice(len(polygon), size=(self.params.num_bisectors, 2)) first_drawn_points = polygon[random_indices[:, 0]] second_drawn_points = polygon[random_indices[:, 1]] norms = np.linalg.norm(first_drawn_points - second_drawn_points, axis=1) mask = norms > min_distance_between_sector_points_in_px bisectors_first_points = np.vstack([bisectors_first_points, first_drawn_points[mask]]) bisectors_second_points = np.vstack([bisectors_second_points, second_drawn_points[mask]]) if len(bisectors_first_points) >= self.params.num_bisectors: break else: raise EyeCentersEstimationError( "Not able to find enough random pairs of points on the arc with a large enough distance!" ) bisectors_first_points = bisectors_first_points[: self.params.num_bisectors] bisectors_second_points = bisectors_second_points[: self.params.num_bisectors] bisectors_center = (bisectors_first_points + bisectors_second_points) / 2 # Flip xs with ys and flip sign of on of them to create a 90deg rotation inv_bisectors_center_slope = np.fliplr(bisectors_second_points - bisectors_first_points) inv_bisectors_center_slope[:, 1] = -inv_bisectors_center_slope[:, 1] # Add perpendicular vector to center<fim_suffix> and normalize norm = np.linalg.norm(inv_bisectors_center_slope, axis=1) inv_bisectors_center_slope[:, 0] /= norm inv_bisectors_center_slope[:, 1] /= norm first_bisectors_point = bisectors_center - inv_bisectors_center_slope second_bisectors_point = bisectors_center + inv_bisectors_center_slope return first_bisectors_point, second_bisectors_point def _find_best_intersection(self, fst_points: np.ndarray, sec_points: np.ndarray) -> Tuple[float, float]: """fst_points and sec_points are NxD arrays defining N lines. D is the dimension of the space. This function returns the least squares intersection of the N lines from the system given by eq. 13 in http://cal.cs.illinois.edu/~johannes/research/LS_line_intersecpdf. Args: fst_points (np.ndarray): First bisectors points. sec_points (np.ndarray): Second bisectors points. Returns: Tuple[float, float]: Best intersection point. Reference: [1] http://cal.cs.illinois.edu/~johannes/research/LS_line_intersecpdf """ norm_bisectors = (sec_points - fst_points) / np.linalg.norm(sec_points - fst_points, axis=1)[:, np.newaxis] # Generate the array of all projectors I - n*n.T projections = np.eye(norm_bisectors.shape[1]) - norm_bisectors[:, :, np.newaxis] * norm_bisectors[:, np.newaxis] # Generate R matrix and q vector R = projections.sum(axis=0) q = (projections @ fst_points[:, :, np.newaxis]).sum(axis=0) # Solve the least squares problem for the intersection point p: Rp = q p = np.linalg.lstsq(R, q, rcond=None)[0] intersection_x, intersection_y = p return intersection_x.item(), intersection_y.item() <fim_middle>
null
LINE_COMMENT
complete_current_header_empty_completion
<filename>open-iris/src/iris/nodes/geometry_estimation/lsq_ellipse_fit_with_refinement.py<fim_prefix>from typing import List import cv2 import numpy as np from pydantic import Field from iris.callbacks.callback_interface import Callback from iris.io.class_configs import Algorithm from iris.io.dataclasses import GeometryPolygons class LSQEllipseFitWithRefinement(Algorithm): """Algorithm that implements least square ellipse fit with iris polygon refinement by finding points to refine by computing euclidean distance. Algorithm steps: 1) Use OpenCV's fitEllipse method to fit an ellipse to predicted iris and pupil polygons. 2) Refine predicted pupil polygons points to their original location to prevent location precision loss for those points which were predicted by semseg algorithm. """ class Parameters(Algorithm.Parameters): """Parameters of least square ellipse fit extrapolation algorithm.""" dphi: float = Field(..., gt=0.0, lt=360.0) __parameters_type__ = Parameters def __init__(self, dphi: float = 1.0, callbacks: List[Callback] = []) -> None: """Assign parameters. Args: dphi (float, optional): Angle's delta. Defaults to 1.0. callbacks (List[Callback], optional): List of callbacks. Defaults to []. """ super().__init__(dphi=dphi, callbacks=callbacks) def run(self, input_polygons: GeometryPolygons) -> GeometryPolygons: """Estimate extrapolated polygons with OpenCV's method fitEllipse. Args: input_polygons (GeometryPolygons): Smoothed polygons. Returns: GeometryPolygons: Extrapolated polygons. """ extrapolated_pupil = self._extrapolate(input_polygons.pupil_array) extrapolated_iris = self._extrapolate(input_polygons.iris_array) for point in input_polygons.pupil_array: extrapolated_pupil[self._find_correspondence(point, extrapolated_pupil)] = point return GeometryPolygons( pupil_array=extrapolated_pupil, iris_array=extrapolated_iris, eyeball_array=input_polygons.eyeball_array ) def _extrapolate(self, polygon_points: np.ndarray) -> np.ndarray: """Perform extrapolation for points in an array. Args: polygon_points (np.ndarray): Smoothed polygon ready for applying extrapolation algorithm on it. Returns: np.ndarray: Estimated extrapolated polygon. """ (x0, y0), (a, b), theta = cv2.fitEllipse(polygon_points) extrapolated_polygon = LSQEllipseFitWithRefinement.parametric_ellipsis( a / 2, b / 2, x0, y0, np.radians(theta), round(360 / self.params.dphi) ) # Rotate such that 0 degree is parallel with x-axis and array is c<fim_suffix>lockwise roll_amount = round((-theta - 90) / self.params.dphi) extrapolated_polygon = np.flip(np.roll(extrapolated_polygon, roll_amount, axis=0), axis=0) return extrapolated_polygon def _find_correspondence(self, src_point: np.ndarray, dst_points: np.ndarray) -> int: """Find correspondence with Euclidean distance. Args: src_point (np.ndarray): Source points. dst_points (np.ndarray): Destination points. Returns: int: Source point index the closes one to the destination points. """ src_x, src_y = src_point distance = (dst_points[:, 1] - src_y) ** 2 + (dst_points[:, 0] - src_x) ** 2 idx = np.where(distance == distance.min())[0] return idx @staticmethod def parametric_ellipsis(a: float, b: float, x0: float, y0: float, theta: float, nb_step: int = 100) -> np.ndarray: """Given the parameters of a general ellipsis, returns an array of points in this ellipsis. Args: a (float): Major axis length. b (float): Minor axis length. x0 (float): x offset. y0 (float): y offset. theta (float): rotation of the ellipsis. nb_step (int): number of points in the ellipsis. Returns: np.ndarray: points within the ellipsis. """ t = np.linspace(0, 2 * np.pi, nb_step) x_coords = x0 + b * np.cos(t) * np.sin(-theta) + a * np.sin(t) * np.cos(-theta) y_coords = y0 + b * np.cos(t) * np.cos(-theta) - a * np.sin(t) * np.sin(-theta) return np.array([x_coords, y_coords]).T <fim_middle>
null
LINE_COMMENT
complete_current_header_empty_completion
<filename>open-iris/src/iris/nodes/iris_response/image_filters/gabor_filters.py<fim_prefix>from typing import Any, Dict, Tuple import numpy as np from pydantic import Field, conint, root_validator, validator import iris.io.validators as pydantic_v from iris.io.errors import ImageFilterError from iris.nodes.iris_response.image_filters.image_filter_interface import ImageFilter def upper_bound_Gabor_parameters(cls: type, values: Dict[str, Any]) -> Dict[str, Any]: """Check upper bounds of Gabor filter parameters such as sigma_phi, sigma_rho and lambda_phi for the given kernel_size. Args: cls (type): class type. values (Dict[str, Any]): values to be checked. Raises: ImageFilterError: Raised if 1) sigma_phi is greater than kernel_size[0], 2) sigma_rho is greater than kernel_size[1], 3) lambda_phi greater than kernel_size[0]. Returns: Dict[str, Any]: values of checked parameters. """ kernel_size, sigma_phi, sigma_rho, lambda_phi = ( values["kernel_size"], values["sigma_phi"], values["sigma_rho"], values["lambda_phi"], ) if sigma_phi >= kernel_size[0]: raise ImageFilterError("Invalid parameters: sigma_phi can not be greater than kernel_size[0].") if sigma_rho >= kernel_size[1]: raise ImageFilterError("Invalid parameters: sigma_rho can not be greater than kernel_size[1].") if lambda_phi >= kernel_size[0]: raise ImageFilterError("Invalid parameters: lambda_phi can not be greater than kernel_size[0].") return values def upper_bound_LogGabor_parameters(cls: type, values: Dict[str, Any]) -> Dict[str, Any]: """Check upper bound of LogGabor filter parameter lambda_rho for the given kernel_size. Args: cls (type): class type. values (Dict[str, Any]): values to be checked. Raises: ImageFilterError: lambda_phi can not be greater than kernel_size[1]. Returns: Dict[str, Any]: values of checked parameters. """ kernel_size, lambda_rho = values["kernel_size"], values["lambda_rho"] if lambda_rho >= kernel_size[1]: raise ImageFilterError("Invalid parameters: lambda_rho can not be greater than kernel_size[1].") return values def get_xy_mesh(kernel_size: Tuple[int, int]) -> Tuple[np.ndarray, np.ndarray]: """Get (x,y) meshgrids for a given kernel size. Args: kernel_size (Tuple[int, int]): Kernel width and height. Returns: Tuple[np.ndarray, np.ndarray]: meshgrid of (x, y) positions. """ ksize_phi_half = kernel_size[0] // 2 ksize_rho_half = kernel_size[1] // 2 y, x = np.meshgrid( np.arange(-ksize_phi_half, ksize_phi_half + 1), np.arange(-ksize_rho_half, ksize_rho_half + 1), indexing="xy", sparse=True, ) return x, y def get_radius(x: np.ndarray, y: np.ndarray) -> np.ndarray: """Get radius to the image center for a given array of relative positions (x,y). Args: x (np.ndarray): x position relative to the image center. y (np.ndarray): y position relative to the image center. Returns: np.ndarray: radius to the image center. """ radius = np.sqrt(x**2 + y**2) return radius def rotate(x: np.ndarray, y: np.ndarray, angle: float) -> Tuple[np.ndarray, np.ndarray]: """Rotate a given array of relative positions (x,y) by a given angle. Args: x (np.ndarray): x position. y (np.ndarray): y position. angle (float): angle for rotation (in degrees). Returns: Tuple[np.ndarray, np.ndarray]: rotated x, y positions. """ cos_theta = np.cos(angle * np.pi / 180) sin_theta = np.sin(angle * np.pi / 180) rotx = x * cos_theta + y * sin_theta roty = -x * sin_theta + y * cos_theta return rotx, roty def normalize_kernel_values(kernel_values: np.ndarray) -> np.ndarray: """Normalize the kernel values so that the square sum is 1. Args: kernel_values (np.ndarray): Kernel values (complex numbers). Returns: np.ndarray: normalized Kernel values. """ norm_real = np.linalg.norm(kernel_values.real, ord="fro") if norm_real > 0: kernel_values.real /= norm_real norm_imag = np.linalg.norm(kernel_values.imag, ord="fro") if norm_imag > 0: kernel_values.imag /= norm_imag return kernel_values def convert_to_fixpoint_kernelvalues(kernel_values: np.ndarray) -> np.ndarray: """Convert the kernel values (both real and imaginary) to fix points. Args: kernel_values (np.ndarray): Kernel values. Returns: np.ndarray: fix-point Kernel values. """ if np.iscomplexobj(kernel_values): kernel_values.real = np.round(kernel_values.real * 2**15) kernel_values.imag = np.round(kernel_values.imag * 2**15) else: kernel_values = np.round(kernel_values * 2**15) return kernel_values class GaborFilter(ImageFilter): """Implementation of a 2D Gabor filter. Reference: [1] https://inc.ucsd.edu/mplab/75/media//gabor.pdf. """ class Parameters(ImageFilter.Parameters): """GaborFilter parameters.""" kernel_size: Tuple[conint(gt=3, lt=99), conint(gt=3, lt=99)] sigma_phi: float = Field(..., ge=1) sigma_rho: float = Field(..., ge=1) theta_degrees: float = Field(..., ge=0, lt=360) lambda_phi: float = Field(..., ge=2) dc_correction: bool to_fixpoints: bool _upper_bound = root_validator(pre=True, allow_reuse=True)(upper_bound_Gabor_parameters) _is_odd = validator("kernel_size", allow_reuse=True, each_item=True)(pydantic_v.is_odd) __parameters_type__ = Parameters def __init__( self, *, kernel_size: Tuple[conint(gt=3, lt=99), conint(gt=3, lt=99)], sigma_phi: float, sigma_rho: float, theta_degrees: float, lambda_phi: float, dc_correction: bool = True, to_fixpoints: bool = False, ) -> None: """Assign parameters. Args: kernel_size (Tuple[conint(gt=3, lt=99), conint(gt=3, lt=99)]): Kernel width and height. sigma_phi (float): phi standard deviation. sigma_rho (float): rho standard deviation. theta_degrees (float): orientation of kernel in degrees. lambda_phi (float): wavelength of the sinusoidal factor, lower value = thinner strip. dc_correction (bool, optional): whether to enable DC correction. Defaults to True. to_fixpoints (bool, optional): whether to convert kernel values to fixpoints. Defaults to False. """ super().__init__( kernel_size=kernel_size, sigma_phi=sigma_phi, sigma_rho=sigma_rho, theta_degrees=theta_degrees, lambda_phi=lambda_phi, dc_correction=dc_correction, to_fixpoints=to_fixpoints, ) def compute_kernel_values(self) -> np.ndarray: """Compute 2D Gabor filter kernel values. Returns: np.ndarray: Kernel values. """ # convert to polar co<fim_suffix>ordinates x, y = get_xy_mesh(self.params.kernel_size) rotx, roty = rotate(x, y, self.params.theta_degrees) # calculate carrier and envelope carrier = 1j * 2 * np.pi / self.params.lambda_phi * rotx envelope = -(rotx**2 / self.params.sigma_phi**2 + roty**2 / self.params.sigma_rho**2) / 2 # calculate kernel values kernel_values = np.exp(envelope + carrier) kernel_values /= 2 * np.pi * self.params.sigma_phi * self.params.sigma_rho # apply DC correction if self.params.dc_correction: # Step 1: calculate mean value of Gabor Wavelet g_mean = np.mean(np.real(kernel_values), axis=-1) # Step 2: define gaussian offset correction_term_mean = np.mean(envelope, axis=-1) # Step 3: substract gaussian kernel_values = kernel_values - (g_mean / correction_term_mean)[:, np.newaxis] * envelope # normalize kernel values kernel_values = normalize_kernel_values(kernel_values) if self.params.to_fixpoints: kernel_values = convert_to_fixpoint_kernelvalues(kernel_values) return kernel_values class LogGaborFilter(ImageFilter): """Implementation of a 2D LogGabor filter. Reference: [1] https://en.wikipedia.org/wiki/Log_Gabor_filter. """ class Parameters(ImageFilter.Parameters): """LogGaborFilter parameters.""" kernel_size: Tuple[conint(gt=3, lt=99), conint(gt=3, lt=99)] sigma_phi: float = Field(..., gt=0, le=np.pi) sigma_rho: float = Field(..., gt=0.1, le=1) theta_degrees: float = Field(..., ge=0, lt=360) lambda_rho: float = Field(..., gt=2) to_fixpoints: bool _upper_bound = root_validator(pre=True, allow_reuse=True)(upper_bound_LogGabor_parameters) _is_odd = validator("kernel_size", allow_reuse=True, each_item=True)(pydantic_v.is_odd) __parameters_type__ = Parameters def __init__( self, *, kernel_size: Tuple[conint(gt=3, lt=99), conint(gt=3, lt=99)], sigma_phi: float, sigma_rho: float, theta_degrees: float, lambda_rho: float, to_fixpoints: bool = False, ) -> None: """Assign parameters. Args: kernel_size (Tuple[conint(gt=3, lt=99), conint(gt=3, lt=99)]): Kernel width and height. sigma_phi (float): bandwidth in phi (frequency domain). sigma_rho (float): bandwidth in rho (frequency domain). theta_degrees (float): orientation of filter in degrees. lambda_rho (float): wavelength in rho. to_fixpoints (bool, optional): whether to convert kernel values to fixpoints. Defaults to False. """ super().__init__( kernel_size=kernel_size, sigma_phi=sigma_phi, sigma_rho=sigma_rho, theta_degrees=theta_degrees, lambda_rho=lambda_rho, to_fixpoints=to_fixpoints, ) def compute_kernel_values(self) -> np.ndarray: """Compute 2D LogGabor filter kernel values. Returns: np.ndarray: Kernel values. """ # convert to polar coordinates x, y = get_xy_mesh(self.params.kernel_size) radius = get_radius(x, y) # remove 0 radius value in the center ksize_phi_half = self.params.kernel_size[0] // 2 ksize_rho_half = self.params.kernel_size[1] // 2 radius[ksize_rho_half][ksize_phi_half] = 1 # get angular distance [rotx, roty] = rotate(x, y, self.params.theta_degrees) dtheta = np.arctan2(roty, rotx) # calculate envelope and orientation envelope = np.exp( -0.5 * np.log2(radius * self.params.lambda_rho / self.params.kernel_size[1]) ** 2 / self.params.sigma_rho**2 ) envelope[ksize_rho_half][ksize_phi_half] = 0 orientation = np.exp(-0.5 * dtheta**2 / self.params.sigma_phi**2) # calculate kernel values kernel_values = envelope * orientation kernel_values = np.fft.fftshift(np.fft.ifft2(np.fft.ifftshift(kernel_values))) # normalize kernel values kernel_values = normalize_kernel_values(kernel_values) if self.params.to_fixpoints: kernel_values = convert_to_fixpoint_kernelvalues(kernel_values) return kernel_values <fim_middle>
null
LINE_COMMENT
complete_current_header_empty_completion
<filename>open-iris/src/iris/nodes/iris_response/probe_schemas/regular_probe_schema.py<fim_prefix>from typing import List, Literal, Optional, Tuple, Union import numpy as np from pydantic import Field, PositiveInt, confloat, fields, validator from iris.io.errors import ProbeSchemaError from iris.nodes.iris_response.probe_schemas.probe_schema_interface import ProbeSchema class RegularProbeSchema(ProbeSchema): """Probe Schema for a regular Grid.""" class RegularProbeSchemaParameters(ProbeSchema.ProbeSchemaParameters): """RegularProbeSchema parameters.""" n_rows: int = Field(..., gt=1) n_cols: int = Field(..., gt=1) boundary_rho: List[confloat(ge=0.0, lt=1)] boundary_phi: Union[ Literal["periodic-symmetric", "periodic-left"], List[confloat(ge=0.0, lt=1)], ] image_shape: Optional[List[PositiveInt]] @validator("boundary_rho", "boundary_phi") def check_overlap( cls: type, v: Union[Literal["periodic-symmetric", "periodic-left"], List[confloat(ge=0.0, lt=1)]], field: fields.ModelField, ) -> Union[Literal["periodic-symmetric", "periodic-left"], List[confloat(ge=0.0, lt=1)]]: """Validate offsets to avoid overlap. Args: cls (type): Class type. v (Union[Literal["periodic-symmetric", "periodic-left"], List[confloat(ge=0.0, lt=1)]]): Value to check. field (fields.ModelField): Field descriptor. Raises: ProbeSchemaError: Raises warning that offsets are together too large. Returns: Union[Literal["periodic-symmetric", "periodic-left"], List[confloat(ge=0.0, lt=1)]]: The value for boundary_rho or boundary_phi respectively """ if isinstance(v, List): if (v[0] + v[1]) >= 1: raise ProbeSchemaError( f"Offset for {field.name} on left and right corner must be a sum smaller 1, otherwise, offsets overlap." ) return v __parameters_type__ = RegularProbeSchemaParameters def __init__( self, n_rows: int, n_cols: int, boundary_rho: List[float] = [0, 0.0625], boundary_phi: Union[ Literal["periodic-symmetric", "periodic-left"], List[confloat(ge=0.0, lt=1)] ] = "periodic-left", image_shape: Optional[List[PositiveInt]] = None, ) -> None: """Assign parameters. Args: n_rows (int): Number of rows used, represents the number of different rho values n_cols (int): Number of columns used, represents the number of different phi values boundary_rho (List[float], optional): List with two values f1 and f2. The sampling goes from 0+f1 to 0-f2. boundary_phi (Union[Literal["periodic-symmetric", "periodic-left"], List[confloat(ge=0.0, lt=1)]], optional): Boundary conditions for the probing can either be periodic or non-periodic, if they are periodic, the distance from one column to the next must be the same also for the boundaries. Else, no conditions for the boundaries are required. Options are: - 'periodic-symmetric': the first and the last column are placed with an offset to the borders, that is half of the spacing of the two columns - 'periodic-left': the first column is at the border of the bottom of the image, while the last column is one spacing apart from the top of the image - list with two values: in this case the an offset of value f1 and f2 is set on both ends, i.e. the the sampling no longer goes from 0 to 1 ('no-offset') but instead from 0+f1 to 0-f2 Defaults to "periodic_symmetric". image_shape (list, optional): list containing the desired image dimensions. If provided, the function will throw a warning if interpolation happens, i.e. if a kernel would be placed in between two pixels. Defaults to None. """ super().__init__( n_rows=n_rows, n_cols=n_cols, boundary_rho=boundary_rho, boundary_phi=boundary_phi, image_shape=image_shape, ) def generate_schema(self) -> Tuple[np.ndarray, np.ndarray]: """Generate rhos and phis. Return: Tuple[np.ndarray, np.ndarray]: the rhos and phis. """ rho = np.linspace( 0 + self.params.boundary_rho[0], 1 - self.params.boundary_rho[1], self.params.n_rows, endpoint=True ) if self.params.boundary_phi == "periodic-symmetric": phi = np.linspace(0, 1, self.params.n_cols, endpoint=False) phi = phi + (phi[1] - phi[0]) / 2 if self.params.boundary_phi == "periodic-left": phi = np.linspace(0, 1, self.params.n_cols, endpoint=False) if isinstance(self.params.boundary_phi, List): phi = np.linspace( 0 + self.params.boundary_phi[0], 1 - self.params.boundary_phi[1], self.params.n_cols, endpoint=True ) phis, rhos = np.meshgrid(phi, rho) rhos = rhos.flatten() phis = phis.flatten() # if image_shap<fim_suffix>e provided: verify that values lie on pixel values if self.params.image_shape is not None: rhos_pixel_values = rhos * self.params.image_shape[0] phis_pixel_values = phis * self.params.image_shape[1] rho_pixel_values = np.logical_or( np.less_equal(rhos_pixel_values % 1, 10 ** (-10)), np.less_equal(1 - 10 ** (-10), rhos_pixel_values % 1), ).all() phi_pixel_values = np.logical_or( np.less_equal(phis_pixel_values % 1, 10 ** (-10)), np.less_equal(1 - 10 ** (-10), phis_pixel_values % 1), ).all() if not rho_pixel_values: raise ProbeSchemaError( f"Choice for n_rows {self.params.n_rows} leads to interpolation errors, please change input variables" ) if not phi_pixel_values: raise ProbeSchemaError(f"Choice for n_cols {self.params.n_cols} leads to interpolation errors") return rhos, phis @staticmethod def find_suitable_n_rows( row_min: int, row_max: int, length: int, boundary_condition: Union[ Literal["periodic-symmetric", "periodic-left"], List[float], ] = "periodic_symmetric", ) -> List[int]: """Find proper spacing of rows/columns for given boundary conditions (i.e. image size, offset. etc). Args: row_min (int): Starting value for row count row_max (int): End value for row count length (int): Pixels in the respective dimension boundary_condition (Union[Literal["periodic-symmetric", "periodic-left"], List[float]], optional): Boundary conditions for the probing can either be periodic or non-periodic, if they are periodic, the distance from one row to the next must be the same also for the boundaries. Else, no conditions for the boundaries are required. Options are: - 'periodic-symmetric': the first and the last row are placed with an offset to the borders, that is half of the spacing of the two rows - 'periodic-left': the first row is at the border of the bottom of the image, while the last row is one spacing apart from the top of the image - list with two values: in this case the an offset of value f1 and f2 is set on both ends, i.e. the the sampling no longer goes from 0 to 1 ('no-offset') but instead from 0+f1 to 0-f2 Defaults to "periodic_symmetric". Returns: list: List of all number of rows that does not lead to interpolation errors """ suitable_values: List[int] = [] # loop through all values and validate whether they are suitable for counter in range(row_min, row_max + 1): if boundary_condition == "periodic-symmetric": values = np.linspace(0, 1, counter, endpoint=False) values = values + (values[1] - values[0]) / 2 if boundary_condition == "periodic-left": values = np.linspace(0, 1, counter, endpoint=False) if isinstance(boundary_condition, List): values = np.linspace(0 + boundary_condition[0], 1 - boundary_condition[1], counter, endpoint=True) pixel_values = values * length pixel_values_modulo = pixel_values % 1 no_interpolation = np.less_equal(pixel_values_modulo, 10 ** (-10)) no_interpolation = np.logical_or(no_interpolation, np.less_equal(1 - 10 ** (-10), pixel_values_modulo)) no_interpolation = no_interpolation.all() if no_interpolation: suitable_values.append(counter) return suitable_values <fim_middle>
null
LINE_COMMENT
complete_current_header_empty_completion
<filename>open-iris/src/iris/nodes/eye_properties_estimation/bisectors_method.py<fim_prefix>from typing import Tuple import numpy as np from pydantic import Field from iris.io.class_configs import Algorithm from iris.io.dataclasses import EyeCenters, GeometryPolygons from iris.io.errors import EyeCentersEstimationError class BisectorsMethod(Algorithm): """Implementation of eye's center estimation algorithm using bisectors method for finding a circle center. This algorithm samples a given number of bisectors from the pupil and iris polygons, and averages their intersection to produce the polygon center. This method is robust against noise in the polygons, making it a good choice for non-perfect shapes. It is also robust to polygons missing parts of the circle arc, making it a good choice for partially-occluded shapes. LIMITATIONS: The iris and pupil can be approximated to circles, when the user is properly gazing at the camera. This requires that the cases of off-gaze have already been filtered out. """ class Parameters(Algorithm.Parameters): """Default Parameters for BisectorsMethod algorithm.""" num_bisectors: int = Field(..., gt=0) min_distance_between_sector_points: float = Field(..., gt=0.0, lt=1.0) max_iterations: int = Field(..., gt=0) __parameters_type__ = Parameters def __init__( self, num_bisectors: int = 100, min_distance_between_sector_points: float = 0.75, max_iterations: int = 50, ) -> None: """Assign parameters. Args: num_bisectors (int, optional): Number of bisectors.. Defaults to 100. min_distance_between_sector_points (float, optional): Minimum distance between sectors expressed as a fractional value of a circular shape diameter. Defaults to 0.75. max_iterations (int, optional): Max iterations for bisector search.. Defaults to 50. """ super().__init__( num_bisectors=num_bisectors, min_distance_between_sector_points=min_distance_between_sector_points, max_iterations=max_iterations, ) def run(self, geometries: GeometryPolygons) -> EyeCenters: """Estimate eye's iris and pupil centers. Args: geometries (GeometryPolygons): Geometry polygons. Returns: EyeCenters: Eye's centers object. """ pupil_center_x, pupil_center_y = self._find_center_coords(geometries.pupil_array, geometries.pupil_diameter) iris_center_x, iris_center_y = self._find_center_coords(geometries.iris_array, geometries.iris_diameter) return EyeCenters(pupil_x=pupil_center_x, pupil_y=pupil_center_y, iris_x=iris_center_x, iris_y=iris_center_y) def _find_center_coords(self, polygon: np.ndarray, diameter: float) -> Tuple[float, float]: """Find center coordinates of a polygon. Args: polygon (np.ndarray): np.ndarray. diameter (float): diameter of the polygon. Returns: Tuple[float, float]: Tuple with the center location coordinates (x, y). """ min_distance_between_sector_points_in_px = self.params.min_distance_between_sector_points * diameter first_bisectors_point, second_bisectors_point = self._calculate_perpendicular_bisectors( polygon, min_distance_between_sector_points_in_px ) return self._find_best_intersection(first_bisectors_point, second_bisectors_point) def _calculate_perpendicular_bisectors( self, polygon: np.ndarray, min_distance_between_sector_points_in_px: float ) -> Tuple[np.ndarray, np.ndarray]: """Calculate the perpendicular bisector of self.params.num_bisectors randomly chosen points from a polygon's vertices. A pair of points is used if their distance is larger then min_distance_between_sector_points_in_px. Args: polygon (np.ndarray): np.ndarray based on which we are searching the center of a circular shape. min_distance_between_sector_points_in_px (float): Minimum distance between sector points. Raises: EyeCentersEstimationError: Raised if not able to find enough random pairs of points on the arc with a large enough distance! Returns: Tuple[np.ndarray, np.ndarray]: Calculated perpendicular bisectors. """ np.random.seed(142857) bisectors_first_points = np.empty([0, 2]) bisectors_second_points = np.empty([0, 2]) for _ in range(self.params.max_iterations): random_indices = np.random.choice(len(polygon), size=(self.params.num_bisectors, 2)) first_drawn_points = polygon[random_indices[:, 0]] second_drawn_points = polygon[random_indices[:, 1]] norms = np.linalg.norm(first_drawn_points - second_drawn_points, axis=1) mask = norms > min_distance_between_sector_points_in_px bisectors_first_points = np.vstack([bisectors_first_points, first_drawn_points[mask]]) bisectors_second_points = np.vstack([bisectors_second_points, second_drawn_points[mask]]) if len(bisectors_first_points) >= self.params.num_bisectors: break else: raise EyeCentersEstimationError( "Not able to find enough random pairs of points on the arc with a large enough distance!" ) bisectors_first_points = bisectors_first_points[: self.params.num_bisectors] bisectors_second_points = bisectors_second_points[: self.params.num_bisectors] bisectors_center = (bisectors_first_points + bisectors_second_points) / 2 # Flip xs with ys and flip <fim_suffix>sign of on of them to create a 90deg rotation inv_bisectors_center_slope = np.fliplr(bisectors_second_points - bisectors_first_points) inv_bisectors_center_slope[:, 1] = -inv_bisectors_center_slope[:, 1] # Add perpendicular vector to center and normalize norm = np.linalg.norm(inv_bisectors_center_slope, axis=1) inv_bisectors_center_slope[:, 0] /= norm inv_bisectors_center_slope[:, 1] /= norm first_bisectors_point = bisectors_center - inv_bisectors_center_slope second_bisectors_point = bisectors_center + inv_bisectors_center_slope return first_bisectors_point, second_bisectors_point def _find_best_intersection(self, fst_points: np.ndarray, sec_points: np.ndarray) -> Tuple[float, float]: """fst_points and sec_points are NxD arrays defining N lines. D is the dimension of the space. This function returns the least squares intersection of the N lines from the system given by eq. 13 in http://cal.cs.illinois.edu/~johannes/research/LS_line_intersecpdf. Args: fst_points (np.ndarray): First bisectors points. sec_points (np.ndarray): Second bisectors points. Returns: Tuple[float, float]: Best intersection point. Reference: [1] http://cal.cs.illinois.edu/~johannes/research/LS_line_intersecpdf """ norm_bisectors = (sec_points - fst_points) / np.linalg.norm(sec_points - fst_points, axis=1)[:, np.newaxis] # Generate the array of all projectors I - n*n.T projections = np.eye(norm_bisectors.shape[1]) - norm_bisectors[:, :, np.newaxis] * norm_bisectors[:, np.newaxis] # Generate R matrix and q vector R = projections.sum(axis=0) q = (projections @ fst_points[:, :, np.newaxis]).sum(axis=0) # Solve the least squares problem for the intersection point p: Rp = q p = np.linalg.lstsq(R, q, rcond=None)[0] intersection_x, intersection_y = p return intersection_x.item(), intersection_y.item() <fim_middle>
null
LINE_COMMENT
complete_current_header_empty_completion
<filename>open-iris/src/iris/nodes/iris_response/image_filters/gabor_filters.py<fim_prefix>from typing import Any, Dict, Tuple import numpy as np from pydantic import Field, conint, root_validator, validator import iris.io.validators as pydantic_v from iris.io.errors import ImageFilterError from iris.nodes.iris_response.image_filters.image_filter_interface import ImageFilter def upper_bound_Gabor_parameters(cls: type, values: Dict[str, Any]) -> Dict[str, Any]: """Check upper bounds of Gabor filter parameters such as sigma_phi, sigma_rho and lambda_phi for the given kernel_size. Args: cls (type): class type. values (Dict[str, Any]): values to be checked. Raises: ImageFilterError: Raised if 1) sigma_phi is greater than kernel_size[0], 2) sigma_rho is greater than kernel_size[1], 3) lambda_phi greater than kernel_size[0]. Returns: Dict[str, Any]: values of checked parameters. """ kernel_size, sigma_phi, sigma_rho, lambda_phi = ( values["kernel_size"], values["sigma_phi"], values["sigma_rho"], values["lambda_phi"], ) if sigma_phi >= kernel_size[0]: raise ImageFilterError("Invalid parameters: sigma_phi can not be greater than kernel_size[0].") if sigma_rho >= kernel_size[1]: raise ImageFilterError("Invalid parameters: sigma_rho can not be greater than kernel_size[1].") if lambda_phi >= kernel_size[0]: raise ImageFilterError("Invalid parameters: lambda_phi can not be greater than kernel_size[0].") return values def upper_bound_LogGabor_parameters(cls: type, values: Dict[str, Any]) -> Dict[str, Any]: """Check upper bound of LogGabor filter parameter lambda_rho for the given kernel_size. Args: cls (type): class type. values (Dict[str, Any]): values to be checked. Raises: ImageFilterError: lambda_phi can not be greater than kernel_size[1]. Returns: Dict[str, Any]: values of checked parameters. """ kernel_size, lambda_rho = values["kernel_size"], values["lambda_rho"] if lambda_rho >= kernel_size[1]: raise ImageFilterError("Invalid parameters: lambda_rho can not be greater than kernel_size[1].") return values def get_xy_mesh(kernel_size: Tuple[int, int]) -> Tuple[np.ndarray, np.ndarray]: """Get (x,y) meshgrids for a given kernel size. Args: kernel_size (Tuple[int, int]): Kernel width and height. Returns: Tuple[np.ndarray, np.ndarray]: meshgrid of (x, y) positions. """ ksize_phi_half = kernel_size[0] // 2 ksize_rho_half = kernel_size[1] // 2 y, x = np.meshgrid( np.arange(-ksize_phi_half, ksize_phi_half + 1), np.arange(-ksize_rho_half, ksize_rho_half + 1), indexing="xy", sparse=True, ) return x, y def get_radius(x: np.ndarray, y: np.ndarray) -> np.ndarray: """Get radius to the image center for a given array of relative positions (x,y). Args: x (np.ndarray): x position relative to the image center. y (np.ndarray): y position relative to the image center. Returns: np.ndarray: radius to the image center. """ radius = np.sqrt(x**2 + y**2) return radius def rotate(x: np.ndarray, y: np.ndarray, angle: float) -> Tuple[np.ndarray, np.ndarray]: """Rotate a given array of relative positions (x,y) by a given angle. Args: x (np.ndarray): x position. y (np.ndarray): y position. angle (float): angle for rotation (in degrees). Returns: Tuple[np.ndarray, np.ndarray]: rotated x, y positions. """ cos_theta = np.cos(angle * np.pi / 180) sin_theta = np.sin(angle * np.pi / 180) rotx = x * cos_theta + y * sin_theta roty = -x * sin_theta + y * cos_theta return rotx, roty def normalize_kernel_values(kernel_values: np.ndarray) -> np.ndarray: """Normalize the kernel values so that the square sum is 1. Args: kernel_values (np.ndarray): Kernel values (complex numbers). Returns: np.ndarray: normalized Kernel values. """ norm_real = np.linalg.norm(kernel_values.real, ord="fro") if norm_real > 0: kernel_values.real /= norm_real norm_imag = np.linalg.norm(kernel_values.imag, ord="fro") if norm_imag > 0: kernel_values.imag /= norm_imag return kernel_values def convert_to_fixpoint_kernelvalues(kernel_values: np.ndarray) -> np.ndarray: """Convert the kernel values (both real and imaginary) to fix points. Args: kernel_values (np.ndarray): Kernel values. Returns: np.ndarray: fix-point Kernel values. """ if np.iscomplexobj(kernel_values): kernel_values.real = np.round(kernel_values.real * 2**15) kernel_values.imag = np.round(kernel_values.imag * 2**15) else: kernel_values = np.round(kernel_values * 2**15) return kernel_values class GaborFilter(ImageFilter): """Implementation of a 2D Gabor filter. Reference: [1] https://inc.ucsd.edu/mplab/75/media//gabor.pdf. """ class Parameters(ImageFilter.Parameters): """GaborFilter parameters.""" kernel_size: Tuple[conint(gt=3, lt=99), conint(gt=3, lt=99)] sigma_phi: float = Field(..., ge=1) sigma_rho: float = Field(..., ge=1) theta_degrees: float = Field(..., ge=0, lt=360) lambda_phi: float = Field(..., ge=2) dc_correction: bool to_fixpoints: bool _upper_bound = root_validator(pre=True, allow_reuse=True)(upper_bound_Gabor_parameters) _is_odd = validator("kernel_size", allow_reuse=True, each_item=True)(pydantic_v.is_odd) __parameters_type__ = Parameters def __init__( self, *, kernel_size: Tuple[conint(gt=3, lt=99), conint(gt=3, lt=99)], sigma_phi: float, sigma_rho: float, theta_degrees: float, lambda_phi: float, dc_correction: bool = True, to_fixpoints: bool = False, ) -> None: """Assign parameters. Args: kernel_size (Tuple[conint(gt=3, lt=99), conint(gt=3, lt=99)]): Kernel width and height. sigma_phi (float): phi standard deviation. sigma_rho (float): rho standard deviation. theta_degrees (float): orientation of kernel in degrees. lambda_phi (float): wavelength of the sinusoidal factor, lower value = thinner strip. dc_correction (bool, optional): whether to enable DC correction. Defaults to True. to_fixpoints (bool, optional): whether to convert kernel values to fixpoints. Defaults to False. """ super().__init__( kernel_size=kernel_size, sigma_phi=sigma_phi, sigma_rho=sigma_rho, theta_degrees=theta_degrees, lambda_phi=lambda_phi, dc_correction=dc_correction, to_fixpoints=to_fixpoints, ) def compute_kernel_values(self) -> np.ndarray: """Compute 2D Gabor filter kernel values. Returns: np.ndarray: Kernel values. """ # convert to polar coordinates x, y = get_xy_mesh(self.params.kernel_size) rotx, roty = rotate(x, y, self.params.theta_degrees) # calculate carrier and envelope carrier = 1j * 2 * np.pi / self.params.lambda_phi * rotx envelope = -(rotx**2 / self.params.sigma_phi**2 + roty**2 / self.params.sigma_rho**2) / 2 # calculate kernel values kernel_values = np.exp(envelope + carrier) kernel_values /= 2 * np.pi * self.params.sigma_phi * self.params.sigma_rho # apply DC correction if self.params.dc_correction: # Step 1: cal<fim_suffix>culate mean value of Gabor Wavelet g_mean = np.mean(np.real(kernel_values), axis=-1) # Step 2: define gaussian offset correction_term_mean = np.mean(envelope, axis=-1) # Step 3: substract gaussian kernel_values = kernel_values - (g_mean / correction_term_mean)[:, np.newaxis] * envelope # normalize kernel values kernel_values = normalize_kernel_values(kernel_values) if self.params.to_fixpoints: kernel_values = convert_to_fixpoint_kernelvalues(kernel_values) return kernel_values class LogGaborFilter(ImageFilter): """Implementation of a 2D LogGabor filter. Reference: [1] https://en.wikipedia.org/wiki/Log_Gabor_filter. """ class Parameters(ImageFilter.Parameters): """LogGaborFilter parameters.""" kernel_size: Tuple[conint(gt=3, lt=99), conint(gt=3, lt=99)] sigma_phi: float = Field(..., gt=0, le=np.pi) sigma_rho: float = Field(..., gt=0.1, le=1) theta_degrees: float = Field(..., ge=0, lt=360) lambda_rho: float = Field(..., gt=2) to_fixpoints: bool _upper_bound = root_validator(pre=True, allow_reuse=True)(upper_bound_LogGabor_parameters) _is_odd = validator("kernel_size", allow_reuse=True, each_item=True)(pydantic_v.is_odd) __parameters_type__ = Parameters def __init__( self, *, kernel_size: Tuple[conint(gt=3, lt=99), conint(gt=3, lt=99)], sigma_phi: float, sigma_rho: float, theta_degrees: float, lambda_rho: float, to_fixpoints: bool = False, ) -> None: """Assign parameters. Args: kernel_size (Tuple[conint(gt=3, lt=99), conint(gt=3, lt=99)]): Kernel width and height. sigma_phi (float): bandwidth in phi (frequency domain). sigma_rho (float): bandwidth in rho (frequency domain). theta_degrees (float): orientation of filter in degrees. lambda_rho (float): wavelength in rho. to_fixpoints (bool, optional): whether to convert kernel values to fixpoints. Defaults to False. """ super().__init__( kernel_size=kernel_size, sigma_phi=sigma_phi, sigma_rho=sigma_rho, theta_degrees=theta_degrees, lambda_rho=lambda_rho, to_fixpoints=to_fixpoints, ) def compute_kernel_values(self) -> np.ndarray: """Compute 2D LogGabor filter kernel values. Returns: np.ndarray: Kernel values. """ # convert to polar coordinates x, y = get_xy_mesh(self.params.kernel_size) radius = get_radius(x, y) # remove 0 radius value in the center ksize_phi_half = self.params.kernel_size[0] // 2 ksize_rho_half = self.params.kernel_size[1] // 2 radius[ksize_rho_half][ksize_phi_half] = 1 # get angular distance [rotx, roty] = rotate(x, y, self.params.theta_degrees) dtheta = np.arctan2(roty, rotx) # calculate envelope and orientation envelope = np.exp( -0.5 * np.log2(radius * self.params.lambda_rho / self.params.kernel_size[1]) ** 2 / self.params.sigma_rho**2 ) envelope[ksize_rho_half][ksize_phi_half] = 0 orientation = np.exp(-0.5 * dtheta**2 / self.params.sigma_phi**2) # calculate kernel values kernel_values = envelope * orientation kernel_values = np.fft.fftshift(np.fft.ifft2(np.fft.ifftshift(kernel_values))) # normalize kernel values kernel_values = normalize_kernel_values(kernel_values) if self.params.to_fixpoints: kernel_values = convert_to_fixpoint_kernelvalues(kernel_values) return kernel_values <fim_middle>
null
LINE_COMMENT
complete_current_header_empty_completion
<filename>open-iris/src/iris/nodes/iris_response/image_filters/gabor_filters.py<fim_prefix>from typing import Any, Dict, Tuple import numpy as np from pydantic import Field, conint, root_validator, validator import iris.io.validators as pydantic_v from iris.io.errors import ImageFilterError from iris.nodes.iris_response.image_filters.image_filter_interface import ImageFilter def upper_bound_Gabor_parameters(cls: type, values: Dict[str, Any]) -> Dict[str, Any]: """Check upper bounds of Gabor filter parameters such as sigma_phi, sigma_rho and lambda_phi for the given kernel_size. Args: cls (type): class type. values (Dict[str, Any]): values to be checked. Raises: ImageFilterError: Raised if 1) sigma_phi is greater than kernel_size[0], 2) sigma_rho is greater than kernel_size[1], 3) lambda_phi greater than kernel_size[0]. Returns: Dict[str, Any]: values of checked parameters. """ kernel_size, sigma_phi, sigma_rho, lambda_phi = ( values["kernel_size"], values["sigma_phi"], values["sigma_rho"], values["lambda_phi"], ) if sigma_phi >= kernel_size[0]: raise ImageFilterError("Invalid parameters: sigma_phi can not be greater than kernel_size[0].") if sigma_rho >= kernel_size[1]: raise ImageFilterError("Invalid parameters: sigma_rho can not be greater than kernel_size[1].") if lambda_phi >= kernel_size[0]: raise ImageFilterError("Invalid parameters: lambda_phi can not be greater than kernel_size[0].") return values def upper_bound_LogGabor_parameters(cls: type, values: Dict[str, Any]) -> Dict[str, Any]: """Check upper bound of LogGabor filter parameter lambda_rho for the given kernel_size. Args: cls (type): class type. values (Dict[str, Any]): values to be checked. Raises: ImageFilterError: lambda_phi can not be greater than kernel_size[1]. Returns: Dict[str, Any]: values of checked parameters. """ kernel_size, lambda_rho = values["kernel_size"], values["lambda_rho"] if lambda_rho >= kernel_size[1]: raise ImageFilterError("Invalid parameters: lambda_rho can not be greater than kernel_size[1].") return values def get_xy_mesh(kernel_size: Tuple[int, int]) -> Tuple[np.ndarray, np.ndarray]: """Get (x,y) meshgrids for a given kernel size. Args: kernel_size (Tuple[int, int]): Kernel width and height. Returns: Tuple[np.ndarray, np.ndarray]: meshgrid of (x, y) positions. """ ksize_phi_half = kernel_size[0] // 2 ksize_rho_half = kernel_size[1] // 2 y, x = np.meshgrid( np.arange(-ksize_phi_half, ksize_phi_half + 1), np.arange(-ksize_rho_half, ksize_rho_half + 1), indexing="xy", sparse=True, ) return x, y def get_radius(x: np.ndarray, y: np.ndarray) -> np.ndarray: """Get radius to the image center for a given array of relative positions (x,y). Args: x (np.ndarray): x position relative to the image center. y (np.ndarray): y position relative to the image center. Returns: np.ndarray: radius to the image center. """ radius = np.sqrt(x**2 + y**2) return radius def rotate(x: np.ndarray, y: np.ndarray, angle: float) -> Tuple[np.ndarray, np.ndarray]: """Rotate a given array of relative positions (x,y) by a given angle. Args: x (np.ndarray): x position. y (np.ndarray): y position. angle (float): angle for rotation (in degrees). Returns: Tuple[np.ndarray, np.ndarray]: rotated x, y positions. """ cos_theta = np.cos(angle * np.pi / 180) sin_theta = np.sin(angle * np.pi / 180) rotx = x * cos_theta + y * sin_theta roty = -x * sin_theta + y * cos_theta return rotx, roty def normalize_kernel_values(kernel_values: np.ndarray) -> np.ndarray: """Normalize the kernel values so that the square sum is 1. Args: kernel_values (np.ndarray): Kernel values (complex numbers). Returns: np.ndarray: normalized Kernel values. """ norm_real = np.linalg.norm(kernel_values.real, ord="fro") if norm_real > 0: kernel_values.real /= norm_real norm_imag = np.linalg.norm(kernel_values.imag, ord="fro") if norm_imag > 0: kernel_values.imag /= norm_imag return kernel_values def convert_to_fixpoint_kernelvalues(kernel_values: np.ndarray) -> np.ndarray: """Convert the kernel values (both real and imaginary) to fix points. Args: kernel_values (np.ndarray): Kernel values. Returns: np.ndarray: fix-point Kernel values. """ if np.iscomplexobj(kernel_values): kernel_values.real = np.round(kernel_values.real * 2**15) kernel_values.imag = np.round(kernel_values.imag * 2**15) else: kernel_values = np.round(kernel_values * 2**15) return kernel_values class GaborFilter(ImageFilter): """Implementation of a 2D Gabor filter. Reference: [1] https://inc.ucsd.edu/mplab/75/media//gabor.pdf. """ class Parameters(ImageFilter.Parameters): """GaborFilter parameters.""" kernel_size: Tuple[conint(gt=3, lt=99), conint(gt=3, lt=99)] sigma_phi: float = Field(..., ge=1) sigma_rho: float = Field(..., ge=1) theta_degrees: float = Field(..., ge=0, lt=360) lambda_phi: float = Field(..., ge=2) dc_correction: bool to_fixpoints: bool _upper_bound = root_validator(pre=True, allow_reuse=True)(upper_bound_Gabor_parameters) _is_odd = validator("kernel_size", allow_reuse=True, each_item=True)(pydantic_v.is_odd) __parameters_type__ = Parameters def __init__( self, *, kernel_size: Tuple[conint(gt=3, lt=99), conint(gt=3, lt=99)], sigma_phi: float, sigma_rho: float, theta_degrees: float, lambda_phi: float, dc_correction: bool = True, to_fixpoints: bool = False, ) -> None: """Assign parameters. Args: kernel_size (Tuple[conint(gt=3, lt=99), conint(gt=3, lt=99)]): Kernel width and height. sigma_phi (float): phi standard deviation. sigma_rho (float): rho standard deviation. theta_degrees (float): orientation of kernel in degrees. lambda_phi (float): wavelength of the sinusoidal factor, lower value = thinner strip. dc_correction (bool, optional): whether to enable DC correction. Defaults to True. to_fixpoints (bool, optional): whether to convert kernel values to fixpoints. Defaults to False. """ super().__init__( kernel_size=kernel_size, sigma_phi=sigma_phi, sigma_rho=sigma_rho, theta_degrees=theta_degrees, lambda_phi=lambda_phi, dc_correction=dc_correction, to_fixpoints=to_fixpoints, ) def compute_kernel_values(self) -> np.ndarray: """Compute 2D Gabor filter kernel values. Returns: np.ndarray: Kernel values. """ # convert to polar coordinates x, y = get_xy_mesh(self.params.kernel_size) rotx, roty = rotate(x, y, self.params.theta_degrees) # calculate carrier and envel<fim_suffix>ope carrier = 1j * 2 * np.pi / self.params.lambda_phi * rotx envelope = -(rotx**2 / self.params.sigma_phi**2 + roty**2 / self.params.sigma_rho**2) / 2 # calculate kernel values kernel_values = np.exp(envelope + carrier) kernel_values /= 2 * np.pi * self.params.sigma_phi * self.params.sigma_rho # apply DC correction if self.params.dc_correction: # Step 1: calculate mean value of Gabor Wavelet g_mean = np.mean(np.real(kernel_values), axis=-1) # Step 2: define gaussian offset correction_term_mean = np.mean(envelope, axis=-1) # Step 3: substract gaussian kernel_values = kernel_values - (g_mean / correction_term_mean)[:, np.newaxis] * envelope # normalize kernel values kernel_values = normalize_kernel_values(kernel_values) if self.params.to_fixpoints: kernel_values = convert_to_fixpoint_kernelvalues(kernel_values) return kernel_values class LogGaborFilter(ImageFilter): """Implementation of a 2D LogGabor filter. Reference: [1] https://en.wikipedia.org/wiki/Log_Gabor_filter. """ class Parameters(ImageFilter.Parameters): """LogGaborFilter parameters.""" kernel_size: Tuple[conint(gt=3, lt=99), conint(gt=3, lt=99)] sigma_phi: float = Field(..., gt=0, le=np.pi) sigma_rho: float = Field(..., gt=0.1, le=1) theta_degrees: float = Field(..., ge=0, lt=360) lambda_rho: float = Field(..., gt=2) to_fixpoints: bool _upper_bound = root_validator(pre=True, allow_reuse=True)(upper_bound_LogGabor_parameters) _is_odd = validator("kernel_size", allow_reuse=True, each_item=True)(pydantic_v.is_odd) __parameters_type__ = Parameters def __init__( self, *, kernel_size: Tuple[conint(gt=3, lt=99), conint(gt=3, lt=99)], sigma_phi: float, sigma_rho: float, theta_degrees: float, lambda_rho: float, to_fixpoints: bool = False, ) -> None: """Assign parameters. Args: kernel_size (Tuple[conint(gt=3, lt=99), conint(gt=3, lt=99)]): Kernel width and height. sigma_phi (float): bandwidth in phi (frequency domain). sigma_rho (float): bandwidth in rho (frequency domain). theta_degrees (float): orientation of filter in degrees. lambda_rho (float): wavelength in rho. to_fixpoints (bool, optional): whether to convert kernel values to fixpoints. Defaults to False. """ super().__init__( kernel_size=kernel_size, sigma_phi=sigma_phi, sigma_rho=sigma_rho, theta_degrees=theta_degrees, lambda_rho=lambda_rho, to_fixpoints=to_fixpoints, ) def compute_kernel_values(self) -> np.ndarray: """Compute 2D LogGabor filter kernel values. Returns: np.ndarray: Kernel values. """ # convert to polar coordinates x, y = get_xy_mesh(self.params.kernel_size) radius = get_radius(x, y) # remove 0 radius value in the center ksize_phi_half = self.params.kernel_size[0] // 2 ksize_rho_half = self.params.kernel_size[1] // 2 radius[ksize_rho_half][ksize_phi_half] = 1 # get angular distance [rotx, roty] = rotate(x, y, self.params.theta_degrees) dtheta = np.arctan2(roty, rotx) # calculate envelope and orientation envelope = np.exp( -0.5 * np.log2(radius * self.params.lambda_rho / self.params.kernel_size[1]) ** 2 / self.params.sigma_rho**2 ) envelope[ksize_rho_half][ksize_phi_half] = 0 orientation = np.exp(-0.5 * dtheta**2 / self.params.sigma_phi**2) # calculate kernel values kernel_values = envelope * orientation kernel_values = np.fft.fftshift(np.fft.ifft2(np.fft.ifftshift(kernel_values))) # normalize kernel values kernel_values = normalize_kernel_values(kernel_values) if self.params.to_fixpoints: kernel_values = convert_to_fixpoint_kernelvalues(kernel_values) return kernel_values <fim_middle>
null
LINE_COMMENT
complete_current_header_empty_completion
<filename>open-iris/src/iris/nodes/normalization/perspective_normalization.py<fim_prefix>from typing import Collection, List, Tuple import cv2 import numpy as np from pydantic import Field, validator from iris.io.class_configs import Algorithm from iris.io.dataclasses import EyeOrientation, GeometryPolygons, IRImage, NoiseMask, NormalizedIris from iris.io.errors import NormalizationError from iris.nodes.normalization.common import correct_orientation, generate_iris_mask, interpolate_pixel_intensity class PerspectiveNormalization(Algorithm): """Implementation of a normalization algorithm which uses perspective transformation to map image pixels. Algorithm steps: 1) Create a grid of trapezoids around iris in original image based on following algorithm parameters: res_in_phi, res_in_r, intermediate_radiuses. 2) Create a grid of corresponding to each trapezoid rectangles in normalized image. 3) For each corresponding trapezoid, rectangle pair compute perspective matrix to estimate normalized image pixel location in an original image location. 4) Map each normalized image pixel to original image pixel based on estimated perspective matrix and perform bilinear interpolation if necessary. """ class Parameters(Algorithm.Parameters): """Parameters class for PerspectiveNormalization.""" res_in_phi: int = Field(..., gt=0) res_in_r: int = Field(..., gt=0) skip_boundary_points: int = Field(..., gt=0) intermediate_radiuses: Collection[float] oversat_threshold: int = Field(..., gt=0) @validator("intermediate_radiuses") def check_intermediate_radiuses(cls: type, v: Collection[float]) -> Collection[float]: """Check intermediate_radiuses parameter. Args: cls (type): PerspectiveNormalization.Parameters class. v (Collection[float]): Variable value to check. Raises: NormalizationError: Raised if number of radiuses is invalid or min value is less then 0.0 or greater than 1.0. Returns: Collection[float]: intermediate_radiuses value passed for further processing. """ if len(v) < 2: raise NormalizationError(f"Invalid number of intermediate_radiuses: {len(v)}.") if min(v) < 0.0: raise NormalizationError(f"Invalid min value of intermediate_radiuses: {min(v)}.") if max(v) > 1.0: raise NormalizationError(f"Invalid max value of intermediate_radiuses: {max(v)}.") return v __parameters_type__ = Parameters def __init__( self, res_in_phi: int = 512, res_in_r: int = 128, skip_boundary_points: int = 1, intermediate_radiuses: Collection[float] = np.linspace(0.0, 1.0, 8), oversat_threshold: int = 254, ) -> None: """Assign parameters. Args: res_in_phi (int): Normalized image phi resolution. Defaults to 512. res_in_r (int): Normalized image r resolution. Defaults to 128. skip_boundary_points (int, optional): Take every nth point from estimated boundaries when generating correspondences. Defaults to 1. intermediate_radiuses (t.Iterable[float], optional): Intermediate rings radiuses used to generate additional points for estimating transformations. Defaults to np.linspace(0.0, 1.0, 8). oversat_threshold (int, optional): threshold for masking over-satuated pixels. Defaults to 254. """ super().__init__( res_in_phi=res_in_phi, res_in_r=res_in_r, skip_boundary_points=skip_boundary_points, intermediate_radiuses=intermediate_radiuses, oversat_threshold=oversat_threshold, ) def run( self, image: IRImage, noise_mask: NoiseMask, extrapolated_contours: GeometryPolygons, eye_orientation: EyeOrientation, ) -> NormalizedIris: """Normalize iris using perspective transformation estimated for every region of an image separately. Args: image (IRImage): Input image to normalize. noise_mask (NoiseMask): Noise mask. extrapolated_contours (GeometryPolygons): Extrapolated contours. eye_orientation (EyeOrientation): Eye orientation angle. Returns: NormalizedIris: NormalizedIris object containing normalized image and iris mask. """ if len(extrapolated_contours.pupil_array) != len(extrapolated_contours.iris_array): raise NormalizationError("Extrapolated amount of iris and pupil points must be the same.") pupil_points, iris_points = correct_orientation( extrapolated_contours.pupil_array, extrapolated_contours.iris_array, eye_orientation.angle, ) iris_mask = generate_iris_mask(extrapolated_contours, noise_mask.mask) iris_mask[image.img_data >= self.params.oversat_threshold] = False src_points, dst_points = self._generate_correspondences(pupil_points, iris_points) normalized_iris = NormalizedIris( normalized_image=np.zeros((self.params.res_in_r, self.params.res_in_phi), dtype=np.float32), normalized_mask=np.zeros((self.params.res_in_r, self.params.res_in_phi), dtype=bool), ) for angle_point_idx in range(src_points.shape[1] - 1): for ring_idx in range(src_points.shape[0] - 1): current_src, current_dst = self._correspondence_rois_coords( angle_idx=angle_point_idx, ring_idx=ring_idx, src_points=src_points, dst_points=dst_points, ) xmin, ymin, xmax, ymax = self._bbox_coords(current_dst) normalized_image_roi, normalized_mask_roi = self._normalize_roi( original_image=image.img_data, iris_mask=iris_mask, src_points=current_src.astype(np.float32), dst_points=current_dst.astype(np.float32), normalize_roi_output_shape=(ymax - ymin, xmax - xmin), ) normalized_iris.normalized_image[ymin:ymax, xmin:xmax] = normalized_image_roi normalized_iris.normalized_mask[ymin:ymax, xmin:xmax] = normalized_mask_roi return normalized_iris def _generate_correspondences( self, pupil_points: np.ndarray, iris_points: np.ndarray ) -> Tuple[np.ndarray, np.ndarray]: """Generate correspondences between points in original image and normalized image. Args: pupil_points (np.ndarray): Pupil bounding points. NumPy array of shape (num_points = 512, xy_coords = 2). iris_points (np.ndarray): Iris bounding points. NumPy array of shape (num_points = 512, xy_coords = 2). Returns: Tuple[np.ndarray, np.ndarray]: Tuple with generated correspondences. """ pupil_points = pupil_points[:: self.params.skip_boundary_points] iris_points = iris_points[:: self.params.skip_boundary_points] src_points = [] for radius in self.params.intermediate_radiuses: ring = pupil_points + radius * (iris_points - pupil_points) ring = np.vstack([ring, ring[0]]) src_points.append(ring) src_points = np.array(src_points) num_rings, num_ring_points = src_points.shape[:2] dst_xs, dst_ys = np.meshgrid( np.linspace(0, self.params.res_in_phi, num_ring_points).astype(int), np.linspace(0, self.params.res_in_r, num_rings).astype(int), ) dst_points = np.array([dst_xs, dst_ys]).transpose((1, 2, 0)) return src_points, dst_points def _normalize_roi( self, original_image: np.ndarray, iris_mask: np.ndarray, src_points: np.ndarray, dst_points: np.ndarray, normalize_roi_output_shape: Tuple[float, float], ) -> Tuple[np.ndarray, np.ndarray]: """Normalize a single ROI of an image. Args: original_image (np.ndarray): Entire input image to normalize. iris_mask (np.ndarray): Iris class segmentation mask. src_points (np.ndarray): ROI's original input image points. dst_points (np.ndarray): ROI's normalized image points. normalize_roi_output_shape (t.Tuple[float, float]): Output shape of normalized ROI. Returns: Tuple[np.ndarray, np.ndarray]: Tuple with normalized image and mask ROIs. """ xmin, ymin, xmax, ymax = self._bbox_coords(dst_points) normalize_image_xs = np.arange(xmin, xmax) normalize_image_ys = np.arange(ymin, ymax) normalize_image_points = np.meshgrid(normalize_image_xs, normalize_image_ys) normalize_image_points = self.cartesian2homogeneous(normalize_image_points) perspective_mat = cv2.getPerspectiveTransform(dst_points, src_points) mapped_points = np.matmul(perspective_mat, normalize_image_points) mapped_points = self.homogeneous2cartesian(mapped_points) normalized_image_roi = np.zeros(normalize_roi_output_shape, dtype=np.float32) normalized_mask_roi = np.zeros(normalize_roi_output_shape, dtype=bool) for image_xy, normalized_xy in zip(mapped_points.T, normalize_image_points.T[..., :2]): norm_x, norm_y = normalized_xy.astype(int) shifted_y, shifted_x = norm_y - ymin, norm_x - xmin normalized_image_roi[shifted_y, shifted_x] = interpolate_pixel_intensity( original_image, pixel_coords=image_xy ) t<fim_suffix>ry: img_x, img_y = map(int, image_xy) normalized_mask_roi[shifted_y, shifted_x] = iris_mask[img_y, img_x] except IndexError: normalized_mask_roi[shifted_y, shifted_x] = False return normalized_image_roi / 255.0, normalized_mask_roi def _bbox_coords(self, norm_dst_points: np.ndarray) -> Tuple[int, int, int, int]: """Extract the bounding box of currently processed normalized image ROI. Args: norm_dst_points (np.ndarray): Normalized image ROI coordinates. Returns: Tuple[int, int, int, int]: Bounding box coordinates in form (xmin, ymin, xmax, ymax). """ xmin, ymin = norm_dst_points[0].astype(int) xmax, ymax = norm_dst_points[-1].astype(int) return (xmin, ymin, xmax, ymax) def _correspondence_rois_coords( self, angle_idx: int, ring_idx: int, src_points: np.ndarray, dst_points: np.ndarray, ) -> Tuple[np.ndarray, np.ndarray]: """Generate a single correspondence ROIs between original image and normalized one based on angle index and ring index. Args: angle_idx (int): Boundary point angle index. ring_idx (int): Intermediate ring index. src_points (np.ndarray): All mapping points from an original image. NumPy array of shape ( num_intermediate_rings = self.intermediate_radiuses, num_boundary_points = 512 // self.skip_boundary_points, xy_coords = 2 ). dst_points (np.ndarray): All mapping points from an normalized image. NumPy array of shape ( num_intermediate_rings = self.intermediate_radiuses, num_boundary_points = 512 // self.skip_boundary_points, xy_coords = 2 ). Returns: Tuple[np.ndarray, np.ndarray]: Tuple with extracted from src_points and dst_points ROIs. """ src_roi = src_points[ring_idx : ring_idx + 2, angle_idx : angle_idx + 2] dst_roi = dst_points[ring_idx : ring_idx + 2, angle_idx : angle_idx + 2] return src_roi.reshape(4, 2), dst_roi.reshape(4, 2) @staticmethod def cartesian2homogeneous(points: List[np.ndarray]) -> np.ndarray: """Convert points in cartesian coordinates to homogeneous coordinates. Args: points (List[np.ndarray]): Points in cartesian coordinates. Array should be in format: [[x values], [y values]]. Returns: np.ndarray: Points in homogeneous coordinates. Returned array will have format: [[x values], [y values], [1 ... 1]]. """ x_coords, y_coords = points x_coords = x_coords.reshape(-1, 1) y_coords = y_coords.reshape(-1, 1) homogeneous_coords = np.hstack([x_coords, y_coords, np.ones((len(x_coords), 1))]) return homogeneous_coords.T @staticmethod def homogeneous2cartesian(points: np.ndarray) -> np.ndarray: """Convert points in homogeneous coordinates to cartesian coordinates. Args: points (np.ndarray): Points in homogeneous coordinates. Array should be in format: [[x values], [y values], [perspective scale values]]. Returns: np.ndarray: Points in cartesian coordinates. Returned array will have format: [[x values], [y values]]. """ points /= points[-1] points = points[:2] return points <fim_middle>
null
TRY
complete_current_header_empty_completion
<filename>open-iris/src/iris/nodes/normalization/common.py<fim_prefix>from typing import Tuple import numpy as np from pydantic import NonNegativeInt from iris.io.dataclasses import GeometryPolygons from iris.utils import common def generate_iris_mask(extrapolated_contours: GeometryPolygons, noise_mask: np.ndarray) -> np.ndarray: """Generate iris mask by first finding the intersection region between extrapolated iris contours and eyeball contours. Then remove from the outputted mask those pixels for which noise_mask is equal to True. Args: extrapolated_contours (GeometryPolygons): Iris polygon vertices. noise_mask (np.ndarray): Noise mask. Returns: np.ndarray: Iris mask. """ img_h, img_w = noise_mask.shape[:2] iris_mask = common.contour_to_mask(extrapolated_contours.iris_array, (img_w, img_h)) eyeball_mask = common.contour_to_mask(extrapolated_contours.eyeball_array, (img_w, img_h)) iris_mask = iris_mask & eyeball_mask iris_mask = ~(iris_mask & noise_mask) & iris_mask return iris_mask def correct_orientation( pupil_points: np.ndarray, iris_points: np.ndarray, eye_orientation: float ) -> Tuple[np.ndarray, np.ndarray]: """Correct orientation by changing the starting angle in pupil and iris points' arrays. Args: pupil_points (np.ndarray): Pupil boundary points' array. NumPy array of shape (num_points = 512, xy_coords = 2). iris_points (np.ndarray): Iris boundary points' array. NumPy array of shape (num_points = 512, xy_coords = 2). eye_orientation (float): Eye orientation angle in radians. Returns: Tuple[np.ndarray, np.ndarray]: Tuple with rotated based on eye_orientation angle boundary points (pupil_points, iris_points). """ orientation_angle = np.degrees(eye_orientation) num_rotations = -round(orientation_angle * len(pupil_points) / 360.0) pupil_points = np.roll(pupil_points, num_rotations, axis=0) iris_points = np.roll(iris_points, num_rotations, axis=0) return pupil_points, iris_points def getgrids(res_in_r: NonNegativeInt, p2i_ratio: NonNegativeInt) -> np.ndarray: """Generate radius grids for nonlinear normalization based on p2i_ratio (pupil_to_iris ratio). Args: res_in_r (NonNegativeInt): Normalized image r resolution. p2i_ratio (NonNegativeInt): pupil_to_iris ratio, range in [0,100] Returns: np.ndarray: nonlinear sampling grids for normalization """ p = [np.square(x) for x in np.arange(28, max(74 - p2i_ratio, p2i_ratio - 14), 1)] q = p - p[0] q = q / q[-1] grids = np.interp(np.linspace(0, 1.0, res_in_r + 1), np.linspace(0, 1.0, len(q)), q) return grids[0:-1] + np.diff(grids) / 2 def interpolate_pixel_intensity(image: np.ndarray, pixel_coords: Tuple[float, float]) -> float: """Perform bilinear interpolation to estimate pixel intensity in a given location. Args: image (np.ndarray): Original, not normalized image. pixel_coords (Tuple[float, float]): Pixel coordinates. Returns: float: Interpolated pixel intensity. Reference: [1] https://en.wikipedia.org/wiki/Bilinear_interpolation """ def get_pixel_intensity(image: np.ndarray, pixel_x: float, pixel_y: float) -> float: """Get the intensity value of a pixel from an intensity image. Args: image (np.ndarray): Intensity image. pixel_x (float): Pixel x coordinate. pixel_y (float): Pixel y coordinate. Returns: float: Pixel value. """ try<fim_suffix>: return image[int(pixel_y), int(pixel_x)] except IndexError: return 0.0 def get_interpolation_points_coords( image: np.ndarray, pixel_x: float, pixel_y: float ) -> Tuple[float, float, float, float]: """Extract interpolation points coordinates. Args: image (np.ndarray): Original, not normalized image. pixel_x (float): Pixel x coordinate. pixel_y (float): Pixel y coordinate. Returns: Tuple[float, float, float, float]: Tuple with interpolation points coordinates in a format (xmin, ymin, xmax, ymax). """ xmin, ymin = np.floor(pixel_x), np.floor(pixel_y) xmax, ymax = np.ceil(pixel_x), np.ceil(pixel_y) img_h, img_w = image.shape[:2] if xmin == xmax and not xmax == img_w - 1: xmax += 1 if xmin == xmax and xmax == img_w - 1: xmin -= 1 if ymin == ymax and not ymax == img_h - 1: ymax += 1 if ymin == ymax and ymax == img_h - 1: ymin -= 1 return xmin, ymin, xmax, ymax pixel_x, pixel_y = pixel_coords xmin, ymin, xmax, ymax = get_interpolation_points_coords(image, pixel_x=pixel_x, pixel_y=pixel_y) lower_left_pixel_intensity = get_pixel_intensity(image, pixel_x=xmin, pixel_y=ymax) lower_right_pixel_intensity = get_pixel_intensity(image, pixel_x=xmax, pixel_y=ymax) upper_left_pixel_intensity = get_pixel_intensity(image, pixel_x=xmin, pixel_y=ymin) upper_right_pixel_intensity = get_pixel_intensity(image, pixel_x=xmax, pixel_y=ymin) xs_differences = np.array([xmax - pixel_x, pixel_x - xmin]) neighboring_pixel_intensities = np.array( [ [lower_left_pixel_intensity, upper_left_pixel_intensity], [lower_right_pixel_intensity, upper_right_pixel_intensity], ] ) ys_differences = np.array([[pixel_y - ymin], [ymax - pixel_y]]) pixel_intensity = np.matmul(np.matmul(xs_differences, neighboring_pixel_intensities), ys_differences) return pixel_intensity.item() <fim_middle>
null
TRY
complete_current_header_empty_completion
<filename>open-iris/src/iris/nodes/normalization/common.py<fim_prefix>from typing import Tuple import numpy as np from pydantic import NonNegativeInt from iris.io.dataclasses import GeometryPolygons from iris.utils import common def generate_iris_mask(extrapolated_contours: GeometryPolygons, noise_mask: np.ndarray) -> np.ndarray: """Generate iris mask by first finding the intersection region between extrapolated iris contours and eyeball contours. Then remove from the outputted mask those pixels for which noise_mask is equal to True. Args: extrapolated_contours (GeometryPolygons): Iris polygon vertices. noise_mask (np.ndarray): Noise mask. Returns: np.ndarray: Iris mask. """ img_h, img_w = noise_mask.shape[:2] iris_mask = common.contour_to_mask(extrapolated_contours.iris_array, (img_w, img_h)) eyeball_mask = common.contour_to_mask(extrapolated_contours.eyeball_array, (img_w, img_h)) iris_mask = iris_mask & eyeball_mask iris_mask = ~(iris_mask & noise_mask) & iris_mask return iris_mask def correct_orientation( pupil_points: np.ndarray, iris_points: np.ndarray, eye_orientation: float ) -> Tuple[np.ndarray, np.ndarray]: """Correct orientation by changing the starting angle in pupil and iris points' arrays. Args: pupil_points (np.ndarray): Pupil boundary points' array. NumPy array of shape (num_points = 512, xy_coords = 2). iris_points (np.ndarray): Iris boundary points' array. NumPy array of shape (num_points = 512, xy_coords = 2). eye_orientation (float): Eye orientation angle in radians. Returns: Tuple[np.ndarray, np.ndarray]: Tuple with rotated based on eye_orientation angle boundary points (pupil_points, iris_points). """ orientation_angle = np.degrees(eye_orientation) num_rotations = -round(orientation_angle * len(pupil_points) / 360.0) pupil_points = np.roll(pupil_points, num_rotations, axis=0) iris_points = np.roll(iris_points, num_rotations, axis=0) return pupil_points, iris_points def getgrids(res_in_r: NonNegativeInt, p2i_ratio: NonNegativeInt) -> np.ndarray: """Generate radius grids for nonlinear normalization based on p2i_ratio (pupil_to_iris ratio). Args: res_in_r (NonNegativeInt): Normalized image r resolution. p2i_ratio (NonNegativeInt): pupil_to_iris ratio, range in [0,100] Returns: np.ndarray: nonlinear sampling grids for normalization """ p = [np.square(x) for x in np.arange(28, max(74 - p2i_ratio, p2i_ratio - 14), 1)] q = p - p[0] q = q / q[-1] grids = np.interp(np.linspace(0, 1.0, res_in_r + 1), np.linspace(0, 1.0, len(q)), q) return grids[0:-1] + np.diff(grids) / 2 def interpolate_pixel_intensity(image: np.ndarray, pixel_coords: Tuple[float, float]) -> float: """Perform bilinear interpolation to estimate pixel intensity in a given location. Args: image (np.ndarray): Original, not normalized image. pixel_coords (Tuple[float, float]): Pixel coordinates. Returns: float: Interpolated pixel intensity. Reference: [1] https://en.wikipedia.org/wiki/Bilinear_interpolation """ def get_pixel_intensity(image: np.ndarray, pixel_x: float, pixel_y: float) -> float: """Get the intensity value of a pixel from an intensity image. Args: image (np.ndarray): Intensity image. pixel_x (float): Pixel x coordinate. pixel_y (float): Pixel y coordinate. Returns: float: Pixel value. """ t<fim_suffix>ry: return image[int(pixel_y), int(pixel_x)] except IndexError: return 0.0 def get_interpolation_points_coords( image: np.ndarray, pixel_x: float, pixel_y: float ) -> Tuple[float, float, float, float]: """Extract interpolation points coordinates. Args: image (np.ndarray): Original, not normalized image. pixel_x (float): Pixel x coordinate. pixel_y (float): Pixel y coordinate. Returns: Tuple[float, float, float, float]: Tuple with interpolation points coordinates in a format (xmin, ymin, xmax, ymax). """ xmin, ymin = np.floor(pixel_x), np.floor(pixel_y) xmax, ymax = np.ceil(pixel_x), np.ceil(pixel_y) img_h, img_w = image.shape[:2] if xmin == xmax and not xmax == img_w - 1: xmax += 1 if xmin == xmax and xmax == img_w - 1: xmin -= 1 if ymin == ymax and not ymax == img_h - 1: ymax += 1 if ymin == ymax and ymax == img_h - 1: ymin -= 1 return xmin, ymin, xmax, ymax pixel_x, pixel_y = pixel_coords xmin, ymin, xmax, ymax = get_interpolation_points_coords(image, pixel_x=pixel_x, pixel_y=pixel_y) lower_left_pixel_intensity = get_pixel_intensity(image, pixel_x=xmin, pixel_y=ymax) lower_right_pixel_intensity = get_pixel_intensity(image, pixel_x=xmax, pixel_y=ymax) upper_left_pixel_intensity = get_pixel_intensity(image, pixel_x=xmin, pixel_y=ymin) upper_right_pixel_intensity = get_pixel_intensity(image, pixel_x=xmax, pixel_y=ymin) xs_differences = np.array([xmax - pixel_x, pixel_x - xmin]) neighboring_pixel_intensities = np.array( [ [lower_left_pixel_intensity, upper_left_pixel_intensity], [lower_right_pixel_intensity, upper_right_pixel_intensity], ] ) ys_differences = np.array([[pixel_y - ymin], [ymax - pixel_y]]) pixel_intensity = np.matmul(np.matmul(xs_differences, neighboring_pixel_intensities), ys_differences) return pixel_intensity.item() <fim_middle>
null
TRY
complete_current_header_empty_completion
<filename>open-iris/src/iris/nodes/normalization/common.py<fim_prefix>from typing import Tuple import numpy as np from pydantic import NonNegativeInt from iris.io.dataclasses import GeometryPolygons from iris.utils import common def generate_iris_mask(extrapolated_contours: GeometryPolygons, noise_mask: np.ndarray) -> np.ndarray: """Generate iris mask by first finding the intersection region between extrapolated iris contours and eyeball contours. Then remove from the outputted mask those pixels for which noise_mask is equal to True. Args: extrapolated_contours (GeometryPolygons): Iris polygon vertices. noise_mask (np.ndarray): Noise mask. Returns: np.ndarray: Iris mask. """ img_h, img_w = noise_mask.shape[:2] iris_mask = common.contour_to_mask(extrapolated_contours.iris_array, (img_w, img_h)) eyeball_mask = common.contour_to_mask(extrapolated_contours.eyeball_array, (img_w, img_h)) iris_mask = iris_mask & eyeball_mask iris_mask = ~(iris_mask & noise_mask) & iris_mask return iris_mask def correct_orientation( pupil_points: np.ndarray, iris_points: np.ndarray, eye_orientation: float ) -> Tuple[np.ndarray, np.ndarray]: """Correct orientation by changing the starting angle in pupil and iris points' arrays. Args: pupil_points (np.ndarray): Pupil boundary points' array. NumPy array of shape (num_points = 512, xy_coords = 2). iris_points (np.ndarray): Iris boundary points' array. NumPy array of shape (num_points = 512, xy_coords = 2). eye_orientation (float): Eye orientation angle in radians. Returns: Tuple[np.ndarray, np.ndarray]: Tuple with rotated based on eye_orientation angle boundary points (pupil_points, iris_points). """ orientation_angle = np.degrees(eye_orientation) num_rotations = -round(orientation_angle * len(pupil_points) / 360.0) pupil_points = np.roll(pupil_points, num_rotations, axis=0) iris_points = np.roll(iris_points, num_rotations, axis=0) return pupil_points, iris_points def getgrids(res_in_r: NonNegativeInt, p2i_ratio: NonNegativeInt) -> np.ndarray: """Generate radius grids for nonlinear normalization based on p2i_ratio (pupil_to_iris ratio). Args: res_in_r (NonNegativeInt): Normalized image r resolution. p2i_ratio (NonNegativeInt): pupil_to_iris ratio, range in [0,100] Returns: np.ndarray: nonlinear sampling grids for normalization """ p = [np.square(x) for x in np.arange(28, max(74 - p2i_ratio, p2i_ratio - 14), 1)] q = p - p[0] q = q / q[-1] grids = np.interp(np.linspace(0, 1.0, res_in_r + 1), np.linspace(0, 1.0, len(q)), q) return grids[0:-1] + np.diff(grids) / 2 def interpolate_pixel_intensity(image: np.ndarray, pixel_coords: Tuple[float, float]) -> float: """Perform bilinear interpolation to estimate pixel intensity in a given location. Args: image (np.ndarray): Original, not normalized image. pixel_coords (Tuple[float, float]): Pixel coordinates. Returns: float: Interpolated pixel intensity. Reference: [1] https://en.wikipedia.org/wiki/Bilinear_interpolation """ def get_pixel_intensity(image: np.ndarray, pixel_x: float, pixel_y: float) -> float: """Get the intensity value of a pixel from an intensity image. Args: image (np.ndarray): Intensity image. pixel_x (float): Pixel x coordinate. pixel_y (float): Pixel y coordinate. Returns: float: Pixel value. """ try: return image[int(pixel_y), int(pixel_x)] except <fim_suffix>IndexError: return 0.0 def get_interpolation_points_coords( image: np.ndarray, pixel_x: float, pixel_y: float ) -> Tuple[float, float, float, float]: """Extract interpolation points coordinates. Args: image (np.ndarray): Original, not normalized image. pixel_x (float): Pixel x coordinate. pixel_y (float): Pixel y coordinate. Returns: Tuple[float, float, float, float]: Tuple with interpolation points coordinates in a format (xmin, ymin, xmax, ymax). """ xmin, ymin = np.floor(pixel_x), np.floor(pixel_y) xmax, ymax = np.ceil(pixel_x), np.ceil(pixel_y) img_h, img_w = image.shape[:2] if xmin == xmax and not xmax == img_w - 1: xmax += 1 if xmin == xmax and xmax == img_w - 1: xmin -= 1 if ymin == ymax and not ymax == img_h - 1: ymax += 1 if ymin == ymax and ymax == img_h - 1: ymin -= 1 return xmin, ymin, xmax, ymax pixel_x, pixel_y = pixel_coords xmin, ymin, xmax, ymax = get_interpolation_points_coords(image, pixel_x=pixel_x, pixel_y=pixel_y) lower_left_pixel_intensity = get_pixel_intensity(image, pixel_x=xmin, pixel_y=ymax) lower_right_pixel_intensity = get_pixel_intensity(image, pixel_x=xmax, pixel_y=ymax) upper_left_pixel_intensity = get_pixel_intensity(image, pixel_x=xmin, pixel_y=ymin) upper_right_pixel_intensity = get_pixel_intensity(image, pixel_x=xmax, pixel_y=ymin) xs_differences = np.array([xmax - pixel_x, pixel_x - xmin]) neighboring_pixel_intensities = np.array( [ [lower_left_pixel_intensity, upper_left_pixel_intensity], [lower_right_pixel_intensity, upper_right_pixel_intensity], ] ) ys_differences = np.array([[pixel_y - ymin], [ymax - pixel_y]]) pixel_intensity = np.matmul(np.matmul(xs_differences, neighboring_pixel_intensities), ys_differences) return pixel_intensity.item() <fim_middle>
null
CATCH
complete_current_header_empty_completion
<filename>open-iris/src/iris/nodes/normalization/perspective_normalization.py<fim_prefix>from typing import Collection, List, Tuple import cv2 import numpy as np from pydantic import Field, validator from iris.io.class_configs import Algorithm from iris.io.dataclasses import EyeOrientation, GeometryPolygons, IRImage, NoiseMask, NormalizedIris from iris.io.errors import NormalizationError from iris.nodes.normalization.common import correct_orientation, generate_iris_mask, interpolate_pixel_intensity class PerspectiveNormalization(Algorithm): """Implementation of a normalization algorithm which uses perspective transformation to map image pixels. Algorithm steps: 1) Create a grid of trapezoids around iris in original image based on following algorithm parameters: res_in_phi, res_in_r, intermediate_radiuses. 2) Create a grid of corresponding to each trapezoid rectangles in normalized image. 3) For each corresponding trapezoid, rectangle pair compute perspective matrix to estimate normalized image pixel location in an original image location. 4) Map each normalized image pixel to original image pixel based on estimated perspective matrix and perform bilinear interpolation if necessary. """ class Parameters(Algorithm.Parameters): """Parameters class for PerspectiveNormalization.""" res_in_phi: int = Field(..., gt=0) res_in_r: int = Field(..., gt=0) skip_boundary_points: int = Field(..., gt=0) intermediate_radiuses: Collection[float] oversat_threshold: int = Field(..., gt=0) @validator("intermediate_radiuses") def check_intermediate_radiuses(cls: type, v: Collection[float]) -> Collection[float]: """Check intermediate_radiuses parameter. Args: cls (type): PerspectiveNormalization.Parameters class. v (Collection[float]): Variable value to check. Raises: NormalizationError: Raised if number of radiuses is invalid or min value is less then 0.0 or greater than 1.0. Returns: Collection[float]: intermediate_radiuses value passed for further processing. """ if len(v) < 2: raise NormalizationError(f"Invalid number of intermediate_radiuses: {len(v)}.") if min(v) < 0.0: raise NormalizationError(f"Invalid min value of intermediate_radiuses: {min(v)}.") if max(v) > 1.0: raise NormalizationError(f"Invalid max value of intermediate_radiuses: {max(v)}.") return v __parameters_type__ = Parameters def __init__( self, res_in_phi: int = 512, res_in_r: int = 128, skip_boundary_points: int = 1, intermediate_radiuses: Collection[float] = np.linspace(0.0, 1.0, 8), oversat_threshold: int = 254, ) -> None: """Assign parameters. Args: res_in_phi (int): Normalized image phi resolution. Defaults to 512. res_in_r (int): Normalized image r resolution. Defaults to 128. skip_boundary_points (int, optional): Take every nth point from estimated boundaries when generating correspondences. Defaults to 1. intermediate_radiuses (t.Iterable[float], optional): Intermediate rings radiuses used to generate additional points for estimating transformations. Defaults to np.linspace(0.0, 1.0, 8). oversat_threshold (int, optional): threshold for masking over-satuated pixels. Defaults to 254. """ super().__init__( res_in_phi=res_in_phi, res_in_r=res_in_r, skip_boundary_points=skip_boundary_points, intermediate_radiuses=intermediate_radiuses, oversat_threshold=oversat_threshold, ) def run( self, image: IRImage, noise_mask: NoiseMask, extrapolated_contours: GeometryPolygons, eye_orientation: EyeOrientation, ) -> NormalizedIris: """Normalize iris using perspective transformation estimated for every region of an image separately. Args: image (IRImage): Input image to normalize. noise_mask (NoiseMask): Noise mask. extrapolated_contours (GeometryPolygons): Extrapolated contours. eye_orientation (EyeOrientation): Eye orientation angle. Returns: NormalizedIris: NormalizedIris object containing normalized image and iris mask. """ if len(extrapolated_contours.pupil_array) != len(extrapolated_contours.iris_array): raise NormalizationError("Extrapolated amount of iris and pupil points must be the same.") pupil_points, iris_points = correct_orientation( extrapolated_contours.pupil_array, extrapolated_contours.iris_array, eye_orientation.angle, ) iris_mask = generate_iris_mask(extrapolated_contours, noise_mask.mask) iris_mask[image.img_data >= self.params.oversat_threshold] = False src_points, dst_points = self._generate_correspondences(pupil_points, iris_points) normalized_iris = NormalizedIris( normalized_image=np.zeros((self.params.res_in_r, self.params.res_in_phi), dtype=np.float32), normalized_mask=np.zeros((self.params.res_in_r, self.params.res_in_phi), dtype=bool), ) for angle_point_idx in range(src_points.shape[1] - 1): for ring_idx in range(src_points.shape[0] - 1): current_src, current_dst = self._correspondence_rois_coords( angle_idx=angle_point_idx, ring_idx=ring_idx, src_points=src_points, dst_points=dst_points, ) xmin, ymin, xmax, ymax = self._bbox_coords(current_dst) normalized_image_roi, normalized_mask_roi = self._normalize_roi( original_image=image.img_data, iris_mask=iris_mask, src_points=current_src.astype(np.float32), dst_points=current_dst.astype(np.float32), normalize_roi_output_shape=(ymax - ymin, xmax - xmin), ) normalized_iris.normalized_image[ymin:ymax, xmin:xmax] = normalized_image_roi normalized_iris.normalized_mask[ymin:ymax, xmin:xmax] = normalized_mask_roi return normalized_iris def _generate_correspondences( self, pupil_points: np.ndarray, iris_points: np.ndarray ) -> Tuple[np.ndarray, np.ndarray]: """Generate correspondences between points in original image and normalized image. Args: pupil_points (np.ndarray): Pupil bounding points. NumPy array of shape (num_points = 512, xy_coords = 2). iris_points (np.ndarray): Iris bounding points. NumPy array of shape (num_points = 512, xy_coords = 2). Returns: Tuple[np.ndarray, np.ndarray]: Tuple with generated correspondences. """ pupil_points = pupil_points[:: self.params.skip_boundary_points] iris_points = iris_points[:: self.params.skip_boundary_points] src_points = [] for radius in self.params.intermediate_radiuses: ring = pupil_points + radius * (iris_points - pupil_points) ring = np.vstack([ring, ring[0]]) src_points.append(ring) src_points = np.array(src_points) num_rings, num_ring_points = src_points.shape[:2] dst_xs, dst_ys = np.meshgrid( np.linspace(0, self.params.res_in_phi, num_ring_points).astype(int), np.linspace(0, self.params.res_in_r, num_rings).astype(int), ) dst_points = np.array([dst_xs, dst_ys]).transpose((1, 2, 0)) return src_points, dst_points def _normalize_roi( self, original_image: np.ndarray, iris_mask: np.ndarray, src_points: np.ndarray, dst_points: np.ndarray, normalize_roi_output_shape: Tuple[float, float], ) -> Tuple[np.ndarray, np.ndarray]: """Normalize a single ROI of an image. Args: original_image (np.ndarray): Entire input image to normalize. iris_mask (np.ndarray): Iris class segmentation mask. src_points (np.ndarray): ROI's original input image points. dst_points (np.ndarray): ROI's normalized image points. normalize_roi_output_shape (t.Tuple[float, float]): Output shape of normalized ROI. Returns: Tuple[np.ndarray, np.ndarray]: Tuple with normalized image and mask ROIs. """ xmin, ymin, xmax, ymax = self._bbox_coords(dst_points) normalize_image_xs = np.arange(xmin, xmax) normalize_image_ys = np.arange(ymin, ymax) normalize_image_points = np.meshgrid(normalize_image_xs, normalize_image_ys) normalize_image_points = self.cartesian2homogeneous(normalize_image_points) perspective_mat = cv2.getPerspectiveTransform(dst_points, src_points) mapped_points = np.matmul(perspective_mat, normalize_image_points) mapped_points = self.homogeneous2cartesian(mapped_points) normalized_image_roi = np.zeros(normalize_roi_output_shape, dtype=np.float32) normalized_mask_roi = np.zeros(normalize_roi_output_shape, dtype=bool) for image_xy, normalized_xy in zip(mapped_points.T, normalize_image_points.T[..., :2]): norm_x, norm_y = normalized_xy.astype(int) shifted_y, shifted_x = norm_y - ymin, norm_x - xmin normalized_image_roi[shifted_y, shifted_x] = interpolate_pixel_intensity( original_image, pixel_coords=image_xy ) try: img_x, img_y = map(int, image_xy) normalized_mask_roi[shifted_y, shifted_x] = iris_mask[img_y, img_x] exce<fim_suffix>pt IndexError: normalized_mask_roi[shifted_y, shifted_x] = False return normalized_image_roi / 255.0, normalized_mask_roi def _bbox_coords(self, norm_dst_points: np.ndarray) -> Tuple[int, int, int, int]: """Extract the bounding box of currently processed normalized image ROI. Args: norm_dst_points (np.ndarray): Normalized image ROI coordinates. Returns: Tuple[int, int, int, int]: Bounding box coordinates in form (xmin, ymin, xmax, ymax). """ xmin, ymin = norm_dst_points[0].astype(int) xmax, ymax = norm_dst_points[-1].astype(int) return (xmin, ymin, xmax, ymax) def _correspondence_rois_coords( self, angle_idx: int, ring_idx: int, src_points: np.ndarray, dst_points: np.ndarray, ) -> Tuple[np.ndarray, np.ndarray]: """Generate a single correspondence ROIs between original image and normalized one based on angle index and ring index. Args: angle_idx (int): Boundary point angle index. ring_idx (int): Intermediate ring index. src_points (np.ndarray): All mapping points from an original image. NumPy array of shape ( num_intermediate_rings = self.intermediate_radiuses, num_boundary_points = 512 // self.skip_boundary_points, xy_coords = 2 ). dst_points (np.ndarray): All mapping points from an normalized image. NumPy array of shape ( num_intermediate_rings = self.intermediate_radiuses, num_boundary_points = 512 // self.skip_boundary_points, xy_coords = 2 ). Returns: Tuple[np.ndarray, np.ndarray]: Tuple with extracted from src_points and dst_points ROIs. """ src_roi = src_points[ring_idx : ring_idx + 2, angle_idx : angle_idx + 2] dst_roi = dst_points[ring_idx : ring_idx + 2, angle_idx : angle_idx + 2] return src_roi.reshape(4, 2), dst_roi.reshape(4, 2) @staticmethod def cartesian2homogeneous(points: List[np.ndarray]) -> np.ndarray: """Convert points in cartesian coordinates to homogeneous coordinates. Args: points (List[np.ndarray]): Points in cartesian coordinates. Array should be in format: [[x values], [y values]]. Returns: np.ndarray: Points in homogeneous coordinates. Returned array will have format: [[x values], [y values], [1 ... 1]]. """ x_coords, y_coords = points x_coords = x_coords.reshape(-1, 1) y_coords = y_coords.reshape(-1, 1) homogeneous_coords = np.hstack([x_coords, y_coords, np.ones((len(x_coords), 1))]) return homogeneous_coords.T @staticmethod def homogeneous2cartesian(points: np.ndarray) -> np.ndarray: """Convert points in homogeneous coordinates to cartesian coordinates. Args: points (np.ndarray): Points in homogeneous coordinates. Array should be in format: [[x values], [y values], [perspective scale values]]. Returns: np.ndarray: Points in cartesian coordinates. Returned array will have format: [[x values], [y values]]. """ points /= points[-1] points = points[:2] return points <fim_middle>
null
CATCH
complete_current_header_empty_completion
<filename>open-iris/src/iris/nodes/normalization/common.py<fim_prefix>from typing import Tuple import numpy as np from pydantic import NonNegativeInt from iris.io.dataclasses import GeometryPolygons from iris.utils import common def generate_iris_mask(extrapolated_contours: GeometryPolygons, noise_mask: np.ndarray) -> np.ndarray: """Generate iris mask by first finding the intersection region between extrapolated iris contours and eyeball contours. Then remove from the outputted mask those pixels for which noise_mask is equal to True. Args: extrapolated_contours (GeometryPolygons): Iris polygon vertices. noise_mask (np.ndarray): Noise mask. Returns: np.ndarray: Iris mask. """ img_h, img_w = noise_mask.shape[:2] iris_mask = common.contour_to_mask(extrapolated_contours.iris_array, (img_w, img_h)) eyeball_mask = common.contour_to_mask(extrapolated_contours.eyeball_array, (img_w, img_h)) iris_mask = iris_mask & eyeball_mask iris_mask = ~(iris_mask & noise_mask) & iris_mask return iris_mask def correct_orientation( pupil_points: np.ndarray, iris_points: np.ndarray, eye_orientation: float ) -> Tuple[np.ndarray, np.ndarray]: """Correct orientation by changing the starting angle in pupil and iris points' arrays. Args: pupil_points (np.ndarray): Pupil boundary points' array. NumPy array of shape (num_points = 512, xy_coords = 2). iris_points (np.ndarray): Iris boundary points' array. NumPy array of shape (num_points = 512, xy_coords = 2). eye_orientation (float): Eye orientation angle in radians. Returns: Tuple[np.ndarray, np.ndarray]: Tuple with rotated based on eye_orientation angle boundary points (pupil_points, iris_points). """ orientation_angle = np.degrees(eye_orientation) num_rotations = -round(orientation_angle * len(pupil_points) / 360.0) pupil_points = np.roll(pupil_points, num_rotations, axis=0) iris_points = np.roll(iris_points, num_rotations, axis=0) return pupil_points, iris_points def getgrids(res_in_r: NonNegativeInt, p2i_ratio: NonNegativeInt) -> np.ndarray: """Generate radius grids for nonlinear normalization based on p2i_ratio (pupil_to_iris ratio). Args: res_in_r (NonNegativeInt): Normalized image r resolution. p2i_ratio (NonNegativeInt): pupil_to_iris ratio, range in [0,100] Returns: np.ndarray: nonlinear sampling grids for normalization """ p = [np.square(x) for x in np.arange(28, max(74 - p2i_ratio, p2i_ratio - 14), 1)] q = p - p[0] q = q / q[-1] grids = np.interp(np.linspace(0, 1.0, res_in_r + 1), np.linspace(0, 1.0, len(q)), q) return grids[0:-1] + np.diff(grids) / 2 def interpolate_pixel_intensity(image: np.ndarray, pixel_coords: Tuple[float, float]) -> float: """Perform bilinear interpolation to estimate pixel intensity in a given location. Args: image (np.ndarray): Original, not normalized image. pixel_coords (Tuple[float, float]): Pixel coordinates. Returns: float: Interpolated pixel intensity. Reference: [1] https://en.wikipedia.org/wiki/Bilinear_interpolation """ def get_pixel_intensity(image: np.ndarray, pixel_x: float, pixel_y: float) -> float: """Get the intensity value of a pixel from an intensity image. Args: image (np.ndarray): Intensity image. pixel_x (float): Pixel x coordinate. pixel_y (float): Pixel y coordinate. Returns: float: Pixel value. """ try: return image[int(pixel_y), int(pixel_x)] except IndexEr<fim_suffix>ror: return 0.0 def get_interpolation_points_coords( image: np.ndarray, pixel_x: float, pixel_y: float ) -> Tuple[float, float, float, float]: """Extract interpolation points coordinates. Args: image (np.ndarray): Original, not normalized image. pixel_x (float): Pixel x coordinate. pixel_y (float): Pixel y coordinate. Returns: Tuple[float, float, float, float]: Tuple with interpolation points coordinates in a format (xmin, ymin, xmax, ymax). """ xmin, ymin = np.floor(pixel_x), np.floor(pixel_y) xmax, ymax = np.ceil(pixel_x), np.ceil(pixel_y) img_h, img_w = image.shape[:2] if xmin == xmax and not xmax == img_w - 1: xmax += 1 if xmin == xmax and xmax == img_w - 1: xmin -= 1 if ymin == ymax and not ymax == img_h - 1: ymax += 1 if ymin == ymax and ymax == img_h - 1: ymin -= 1 return xmin, ymin, xmax, ymax pixel_x, pixel_y = pixel_coords xmin, ymin, xmax, ymax = get_interpolation_points_coords(image, pixel_x=pixel_x, pixel_y=pixel_y) lower_left_pixel_intensity = get_pixel_intensity(image, pixel_x=xmin, pixel_y=ymax) lower_right_pixel_intensity = get_pixel_intensity(image, pixel_x=xmax, pixel_y=ymax) upper_left_pixel_intensity = get_pixel_intensity(image, pixel_x=xmin, pixel_y=ymin) upper_right_pixel_intensity = get_pixel_intensity(image, pixel_x=xmax, pixel_y=ymin) xs_differences = np.array([xmax - pixel_x, pixel_x - xmin]) neighboring_pixel_intensities = np.array( [ [lower_left_pixel_intensity, upper_left_pixel_intensity], [lower_right_pixel_intensity, upper_right_pixel_intensity], ] ) ys_differences = np.array([[pixel_y - ymin], [ymax - pixel_y]]) pixel_intensity = np.matmul(np.matmul(xs_differences, neighboring_pixel_intensities), ys_differences) return pixel_intensity.item() <fim_middle>
null
CATCH
complete_current_header_empty_completion
<filename>open-iris/src/iris/nodes/normalization/common.py<fim_prefix>from typing import Tuple import numpy as np from pydantic import NonNegativeInt from iris.io.dataclasses import GeometryPolygons from iris.utils import common def generate_iris_mask(extrapolated_contours: GeometryPolygons, noise_mask: np.ndarray) -> np.ndarray: """Generate iris mask by first finding the intersection region between extrapolated iris contours and eyeball contours. Then remove from the outputted mask those pixels for which noise_mask is equal to True. Args: extrapolated_contours (GeometryPolygons): Iris polygon vertices. noise_mask (np.ndarray): Noise mask. Returns: np.ndarray: Iris mask. """ img_h, img_w = noise_mask.shape[:2] iris_mask = common.contour_to_mask(extrapolated_contours.iris_array, (img_w, img_h)) eyeball_mask = common.contour_to_mask(extrapolated_contours.eyeball_array, (img_w, img_h)) iris_mask = iris_mask & eyeball_mask iris_mask = ~(iris_mask & noise_mask) & iris_mask return iris_mask def correct_orientation( pupil_points: np.ndarray, iris_points: np.ndarray, eye_orientation: float ) -> Tuple[np.ndarray, np.ndarray]: """Correct orientation by changing the starting angle in pupil and iris points' arrays. Args: pupil_points (np.ndarray): Pupil boundary points' array. NumPy array of shape (num_points = 512, xy_coords = 2). iris_points (np.ndarray): Iris boundary points' array. NumPy array of shape (num_points = 512, xy_coords = 2). eye_orientation (float): Eye orientation angle in radians. Returns: Tuple[np.ndarray, np.ndarray]: Tuple with rotated based on eye_orientation angle boundary points (pupil_points, iris_points). """ orientation_angle = np.degrees(eye_orientation) num_rotations = -round(orientation_angle * len(pupil_points) / 360.0) pupil_points = np.roll(pupil_points, num_rotations, axis=0) iris_points = np.roll(iris_points, num_rotations, axis=0) return pupil_points, iris_points def getgrids(res_in_r: NonNegativeInt, p2i_ratio: NonNegativeInt) -> np.ndarray: """Generate radius grids for nonlinear normalization based on p2i_ratio (pupil_to_iris ratio). Args: res_in_r (NonNegativeInt): Normalized image r resolution. p2i_ratio (NonNegativeInt): pupil_to_iris ratio, range in [0,100] Returns: np.ndarray: nonlinear sampling grids for normalization """ p = [np.square(x) for x in np.arange(28, max(74 - p2i_ratio, p2i_ratio - 14), 1)] q = p - p[0] q = q / q[-1] grids = np.interp(np.linspace(0, 1.0, res_in_r + 1), np.linspace(0, 1.0, len(q)), q) return grids[0:-1] + np.diff(grids) / 2 def interpolate_pixel_intensity(image: np.ndarray, pixel_coords: Tuple[float, float]) -> float: """Perform bilinear interpolation to estimate pixel intensity in a given location. Args: image (np.ndarray): Original, not normalized image. pixel_coords (Tuple[float, float]): Pixel coordinates. Returns: float: Interpolated pixel intensity. Reference: [1] https://en.wikipedia.org/wiki/Bilinear_interpolation """ def ge<fim_suffix>t_pixel_intensity(image: np.ndarray, pixel_x: float, pixel_y: float) -> float: """Get the intensity value of a pixel from an intensity image. Args: image (np.ndarray): Intensity image. pixel_x (float): Pixel x coordinate. pixel_y (float): Pixel y coordinate. Returns: float: Pixel value. """ try: return image[int(pixel_y), int(pixel_x)] except IndexError: return 0.0 def get_interpolation_points_coords( image: np.ndarray, pixel_x: float, pixel_y: float ) -> Tuple[float, float, float, float]: """Extract interpolation points coordinates. Args: image (np.ndarray): Original, not normalized image. pixel_x (float): Pixel x coordinate. pixel_y (float): Pixel y coordinate. Returns: Tuple[float, float, float, float]: Tuple with interpolation points coordinates in a format (xmin, ymin, xmax, ymax). """ xmin, ymin = np.floor(pixel_x), np.floor(pixel_y) xmax, ymax = np.ceil(pixel_x), np.ceil(pixel_y) img_h, img_w = image.shape[:2] if xmin == xmax and not xmax == img_w - 1: xmax += 1 if xmin == xmax and xmax == img_w - 1: xmin -= 1 if ymin == ymax and not ymax == img_h - 1: ymax += 1 if ymin == ymax and ymax == img_h - 1: ymin -= 1 return xmin, ymin, xmax, ymax pixel_x, pixel_y = pixel_coords xmin, ymin, xmax, ymax = get_interpolation_points_coords(image, pixel_x=pixel_x, pixel_y=pixel_y) lower_left_pixel_intensity = get_pixel_intensity(image, pixel_x=xmin, pixel_y=ymax) lower_right_pixel_intensity = get_pixel_intensity(image, pixel_x=xmax, pixel_y=ymax) upper_left_pixel_intensity = get_pixel_intensity(image, pixel_x=xmin, pixel_y=ymin) upper_right_pixel_intensity = get_pixel_intensity(image, pixel_x=xmax, pixel_y=ymin) xs_differences = np.array([xmax - pixel_x, pixel_x - xmin]) neighboring_pixel_intensities = np.array( [ [lower_left_pixel_intensity, upper_left_pixel_intensity], [lower_right_pixel_intensity, upper_right_pixel_intensity], ] ) ys_differences = np.array([[pixel_y - ymin], [ymax - pixel_y]]) pixel_intensity = np.matmul(np.matmul(xs_differences, neighboring_pixel_intensities), ys_differences) return pixel_intensity.item() <fim_middle>
null
METHOD
complete_current_header_empty_completion
<filename>open-iris/src/iris/nodes/normalization/common.py<fim_prefix>from typing import Tuple import numpy as np from pydantic import NonNegativeInt from iris.io.dataclasses import GeometryPolygons from iris.utils import common def generate_iris_mask(extrapolated_contours: GeometryPolygons, noise_mask: np.ndarray) -> np.ndarray: """Generate iris mask by first finding the intersection region between extrapolated iris contours and eyeball contours. Then remove from the outputted mask those pixels for which noise_mask is equal to True. Args: extrapolated_contours (GeometryPolygons): Iris polygon vertices. noise_mask (np.ndarray): Noise mask. Returns: np.ndarray: Iris mask. """ img_h, img_w = noise_mask.shape[:2] iris_mask = common.contour_to_mask(extrapolated_contours.iris_array, (img_w, img_h)) eyeball_mask = common.contour_to_mask(extrapolated_contours.eyeball_array, (img_w, img_h)) iris_mask = iris_mask & eyeball_mask iris_mask = ~(iris_mask & noise_mask) & iris_mask return iris_mask def correct_orientation( pupil_points: np.ndarray, iris_points: np.ndarray, eye_orientation: float ) -> Tuple[np.ndarray, np.ndarray]: """Correct orientation by changing the starting angle in pupil and iris points' arrays. Args: pupil_points (np.ndarray): Pupil boundary points' array. NumPy array of shape (num_points = 512, xy_coords = 2). iris_points (np.ndarray): Iris boundary points' array. NumPy array of shape (num_points = 512, xy_coords = 2). eye_orientation (float): Eye orientation angle in radians. Returns: Tuple[np.ndarray, np.ndarray]: Tuple with rotated based on eye_orientation angle boundary points (pupil_points, iris_points). """ orientation_angle = np.degrees(eye_orientation) num_rotations = -round(orientation_angle * len(pupil_points) / 360.0) pupil_points = np.roll(pupil_points, num_rotations, axis=0) iris_points = np.roll(iris_points, num_rotations, axis=0) return pupil_points, iris_points def getgrids(res_in_r: NonNegativeInt, p2i_ratio: NonNegativeInt) -> np.ndarray: """Generate radius grids for nonlinear normalization based on p2i_ratio (pupil_to_iris ratio). Args: res_in_r (NonNegativeInt): Normalized image r resolution. p2i_ratio (NonNegativeInt): pupil_to_iris ratio, range in [0,100] Returns: np.ndarray: nonlinear sampling grids for normalization """ p = [np.square(x) for x in np.arange(28, max(74 - p2i_ratio, p2i_ratio - 14), 1)] q = p - p[0] q = q / q[-1] grids = np.interp(np.linspace(0, 1.0, res_in_r + 1), np.linspace(0, 1.0, len(q)), q) return grids[0:-1] + np.diff(grids) / 2 def interpolate_pixel_intensity(image: np.ndarray, pixel_coords: Tuple[float, float]) -> float: """Perform bilinear interpolation to estimate pixel intensity in a given location. Args: image (np.ndarray): Original, not normalized image. pixel_coords (Tuple[float, float]): Pixel coordinates. Returns: float: Interpolated pixel intensity. Reference: [1] https://en.wikipedia.org/wiki/Bilinear_interpolation """ def get_pixel_intensity(image: np.ndarray, pixel_x: float, pixel_y: float) -> float: """Get the intensity value of a pixel from an intensity image. Args: image (np.ndarray): Intensity image. pixel_x (float): Pixel x coordinate. pixel_y (float): Pixel y coordinate. Returns: float: Pixel value. """ try: return image[int(pixel_y), int(pixel_x)] except IndexError: return 0.0 def get_interpolatio<fim_suffix>n_points_coords( image: np.ndarray, pixel_x: float, pixel_y: float ) -> Tuple[float, float, float, float]: """Extract interpolation points coordinates. Args: image (np.ndarray): Original, not normalized image. pixel_x (float): Pixel x coordinate. pixel_y (float): Pixel y coordinate. Returns: Tuple[float, float, float, float]: Tuple with interpolation points coordinates in a format (xmin, ymin, xmax, ymax). """ xmin, ymin = np.floor(pixel_x), np.floor(pixel_y) xmax, ymax = np.ceil(pixel_x), np.ceil(pixel_y) img_h, img_w = image.shape[:2] if xmin == xmax and not xmax == img_w - 1: xmax += 1 if xmin == xmax and xmax == img_w - 1: xmin -= 1 if ymin == ymax and not ymax == img_h - 1: ymax += 1 if ymin == ymax and ymax == img_h - 1: ymin -= 1 return xmin, ymin, xmax, ymax pixel_x, pixel_y = pixel_coords xmin, ymin, xmax, ymax = get_interpolation_points_coords(image, pixel_x=pixel_x, pixel_y=pixel_y) lower_left_pixel_intensity = get_pixel_intensity(image, pixel_x=xmin, pixel_y=ymax) lower_right_pixel_intensity = get_pixel_intensity(image, pixel_x=xmax, pixel_y=ymax) upper_left_pixel_intensity = get_pixel_intensity(image, pixel_x=xmin, pixel_y=ymin) upper_right_pixel_intensity = get_pixel_intensity(image, pixel_x=xmax, pixel_y=ymin) xs_differences = np.array([xmax - pixel_x, pixel_x - xmin]) neighboring_pixel_intensities = np.array( [ [lower_left_pixel_intensity, upper_left_pixel_intensity], [lower_right_pixel_intensity, upper_right_pixel_intensity], ] ) ys_differences = np.array([[pixel_y - ymin], [ymax - pixel_y]]) pixel_intensity = np.matmul(np.matmul(xs_differences, neighboring_pixel_intensities), ys_differences) return pixel_intensity.item() <fim_middle>
null
METHOD
complete_current_header_empty_completion
<filename>searcharray/searcharray/postings.py<fim_prefix>"""Tokenized, searchable text as a pandas dtype.""" import pandas as pd import numbers from pandas.api.extensions import ExtensionDtype, ExtensionArray, register_extension_dtype from pandas.api.types import is_list_like from pandas.api.extensions import take import json from collections import Counter import warnings import logging from typing import List, Union, Optional, Iterable import numpy as np from searcharray.phrase.scan_merge import scan_merge_ins from searcharray.phrase.posn_diffs import compute_phrase_freqs from searcharray.phrase.middle_out import PosnBitArray from searcharray.similarity import Similarity, default_bm25 from searcharray.indexing import build_index_from_tokenizer, build_index_from_terms_list from searcharray.term_dict import TermMissingError logger = logging.getLogger(__name__) # When running in pytest import sys # noqa handler = logging.StreamHandler(sys.stdout) handler.setLevel(logging.ERROR) formatter = logging.Formatter("[%(filename)s:%(lineno)s - %(funcName)20s() ] %(message)s") handler.setFormatter(formatter) logger.addHandler(handler) logger.setLevel(logging.ERROR) class Terms: """An indexed search doc - a single bag of tokenized words and positions.""" def __init__(self, postings, doc_len: int = 0, posns: Optional[dict] = None, encoded=False): self.postings = postings self.posns = None self.encoded = encoded self.doc_len = doc_len self.posns = posns def _validate_posns(self): # (For testing/assertions) - Confirm every term in positions also in postings if self.posns is None: return for term in self.posns: if term not in self.postings: raise ValueError(f"Term {term} in positions but not in postings. ") def termfreq(self, token): return self.postings[token] def terms(self): return self.postings.items() def positions(self, term=None): if self.posns is None: return {} if term is None: posns = self.posns.items() else: posns = self.posns[term] return posns def raw_positions(self, term_dict, term=None): if self.posns is None: return {} if term is None: posns = [(term_dict.get_term_id(term), posns) for term, posns in self.posns.items()] else: posns = [(term_dict.get_term_id(term), self.posns[term])] return posns def tf_to_dense(self, term_dict): """Convert to a dense vector of term frequencies.""" dense = np.zeros(len(term_dict)) for term, freq in self.terms(): dense[term_dict.get_term_id(term)] = freq return dense def __len__(self): return len(self.postings) def __repr__(self): posting_keys = set(self.postings.keys()) rval = f"Terms({posting_keys})" return rval def __str__(self): return repr(self) def __eq__(self, other): # Flip to the other implementation if we're comparing to a SearchArray # to get a boolean array back if isinstance(other, SearchArray): return other == self same_postings = isinstance(other, Terms) and self.postings == other.postings if same_postings and self.doc_len == other.doc_len: return True def __lt__(self, other): # return isinstance(other, Terms) and hash(self) < hash(other) keys_both = set(self.postings.keys()).union(set(other.postings.keys())) # Sort lexically keys_both = sorted(keys_both) # Iterate as if these are two vectors of the same large dimensional vector sparse for key in keys_both: lhs_val = 0 rhs_val = 0 try: lhs_val = self.postings[key] except KeyError: pass try: rhs_val = other.postings[key] except KeyError: pass if lhs_val < rhs_val: return True elif lhs_val > rhs_val: return False else: continue return False def __le__(self, other): return self < other or self == other def __gt__(self, other): return not (self < other) and self != other def __hash__(self): return hash(json.dumps(self.postings, sort_keys=True)) class TermsDtype(ExtensionDtype): """Pandas dtype for terms.""" name = 'tokenized_text' type = Terms kind = 'O' @classmethod def construct_from_string(cls, string): if not isinstance(string, str): raise TypeError( "'construct_from_string' expects a string, got {}".format(type(string)) ) elif string == cls.name: return cls() else: raise TypeError( "Cannot construct a '{}' from '{}'".format(cls.__name__, string) ) @classmethod def construct_array_type(cls): return SearchArray def __repr__(self): return 'TermsDtype()' @property def na_value(self): return Terms({}) def valid_value(self, value): return isinstance(value, dict) or pd.isna(value) or isinstance(value, Terms) register_extension_dtype(TermsDtype) def ws_tokenizer(string): if pd.isna(string): return [] if not isinstance(string, str): raise ValueError("Expected a string") return string.split() def _row_to_postings_row(doc_id, row, doc_len, term_dict, posns: PosnBitArray): tfs = {} labeled_posns = {} for term_idx in row.cols: term = term_dict.get_term(term_idx) tfs[term] = 1 enc_term_posns = posns.doc_encoded_posns(term_idx, doc_id=doc_id) labeled_posns[term] = enc_term_posns result = Terms(tfs, posns=labeled_posns, doc_len=doc_len, encoded=True) return result class SearchArray(ExtensionArray): """An array of tokenized text (Termss).""" dtype = TermsDtype() def __init__(self, postings, tokenizer=ws_tokenizer, avoid_copies=True): # Check dtype, raise TypeError if not is_list_like(postings): raise TypeError("Expected list-like object, got {}".format(type(postings))) self.avoid_copies = avoid_copies self.tokenizer = tokenizer self.term_mat, self.posns, \ self.term_dict, self.avg_doc_length, \ self.doc_lens = build_index_from_terms_list(postings, Terms) @classmethod def index(cls, array: Iterable, tokenizer=ws_tokenizer, truncate=False, batch_size=100000, avoid_copies=True) -> 'SearchArray': """Index an array of strings using tokenizer.""" if not is_list_like(array): raise TypeError("Expected list-like object, got {}".format(type(array))) term_mat, posns, term_dict, avg_doc_length, doc_lens =\ build_index_from_tokenizer(array, tokenizer, batch_size=batch_size, truncate=truncate) postings = cls([], tokenizer=tokenizer, avoid_copies=avoid_copies) postings.term_mat = term_mat postings.posns = posns postings.term_dict = term_dict postings.avg_doc_length = avg_doc_length postings.doc_lens = doc_lens return postings @classmethod def _from_sequence(cls, scalars, dtype=None, copy=False): """Construct a new SearchArray from a sequence of scalars (PostingRow or convertible into).""" if dtype is not None: if not isinstance(dtype, TermsDtype): return scalars if isinstance(scalars, np.ndarray) and scalars.dtype == TermsDtype(): return cls(scalars) # String types elif isinstance(scalars, np.ndarray) and scalars.dtype.kind in 'US': return cls(scalars) # Other objects elif isinstance(scalars, np.ndarray) and scalars.dtype != object: return scalars return cls(scalars) def memory_usage(self, deep=False): """Return memory usage of this array in bytes.""" return self.nbytes @property def nbytes(self): return self.term_mat.nbytes + self.posns.nbytes + self.doc_lens.nbytes + self.term_dict.nbytes def __getitem__(self, key): key = pd.api.indexers.check_array_indexer(self, key) # Want to take rows of term freqs if isinstance(key, numbers.Integral): try: rows = self.term_mat[key] doc_len = self.doc_lens[key] doc_id = key if doc_id < 0: doc_id += len(self) return _row_to_postings_row(doc_id, rows[0], doc_len, self.term_dict, self.posns) except IndexError: raise IndexError("index out of bounds") else: # Construct a sliced view of this array sliced_tfs = self.term_mat.slice(key) sliced_posns = self.posns.slice(sliced_tfs.rows) if not self.avoid_copies else self.posns arr = SearchArray([], tokenizer=self.tokenizer) arr.term_mat = sliced_tfs arr.doc_lens = self.doc_lens[key] arr.posns = sliced_posns arr.term_dict = self.term_dict arr.avg_doc_length = self.avg_doc_length return arr def __setitem__(self, key, value): """Set an item in the array.""" key = pd.api.indexers.check_array_indexer(self, key) if isinstance(value, pd.Series): value = value.values if isinstance(value, pd.DataFrame): value = value.values.flatten() if isinstance(value, SearchArray): value = value.to_numpy() if isinstance(value, list): value = np.asarray(value, dtype=object) if not isinstance(value, np.ndarray) and not self.dtype.valid_value(value): raise ValueError(f"Cannot set non-object array to SearchArray -- you passed type:{type(value)} -- {value}") # Cant set a single value to an array if isinstance(key, numbers.Integral) and isinstance(value, np.ndarray): raise ValueError("Cannot set a single value to an array") try: is_encoded = False posns = None term_mat = np.asarray([]) doc_lens = np.asarray([]) if isinstance(value, float): term_mat = np.asarray([value]) doc_lens = np.asarray([0]) elif isinstance(value, Terms): term_mat = np.asarray([value.tf_to_dense(self.term_dict)]) doc_lens = np.asarray([value.doc_len]) is_encoded = value.encoded posns = [value.raw_positions(self.term_dict)] elif isinstance(value, np.ndarray): term_mat = np.asarray([x.tf_to_dense(self.term_dict) for x in value]) doc_lens = np.asarray([x.doc_len for x in value]) is_encoded = value[0].encoded if len(value) > 0 else False posns = [x.raw_positions(self.term_dict) for x in value] np.nan_to_num(term_mat, copy=False, nan=0) self.term_mat[key] = term_mat self.doc_lens[key] = doc_lens if posns is not None: self.posns.insert(key, posns, is_encoded) # Assume we have a positions for each term, doc pair. We can just update it. # Otherwise we would have added new terms except TermMissingError: self._add_new_terms(key, value) def _add_new_terms(self, key, value): msg = """Adding new terms! This might not be good if you tokenized this new text with a different tokenizer. Also. This is slow.""" warnings.warn(msg) scan_value = value if isinstance(value, Terms): scan_value = np.asarray([value]) for row in scan_value: for term in row.terms(): self.term_dict.add_term(term[0]) self.term_mat.resize((self.term_mat.shape[0], len(self.term_dict))) # Ensure posns_lookup has at least max self.posns self[key] = value def value_counts( self, dropna: bool = True, ): if dropna: counts = Counter(self[:]) counts.pop(Terms({}), None) else: counts = Counter(self[:]) return pd.Series(counts) def __len__(self): len_rval = len(self.term_mat.rows) return len_rval def __ne__(self, other): if isinstance(other, pd.DataFrame) or isinstance(other, pd.Series) or isinstance(other, pd.Index): return NotImplemented return ~(self == other) def __eq__(self, other): """Return a boolean numpy array indicating elementwise equality.""" # When other is a dataframe or series, not implemented if isinstance(other, pd.DataFrame) or isinstance(other, pd.Series) or isinstance(other, pd.Index): return NotImplemented # When other is an ExtensionArray if isinstance(other, SearchArray): if len(self) != len(other): return False elif len(other) == 0: return np.array([], dtype=bool) else: # Compatible term dicts, and same term freqs # (not looking at positions, maybe we should?) if self.term_dict.compatible(other.term_dict): return (self.term_mat == other.term_mat) & (self.doc_lens == other.doc_lens) else: return np.zeros(len(self), dtype=bool) # return np.array(self[:]) == np.array(other[:]) # When other is a scalar value elif isinstance(other, Terms): other = SearchArray([other], tokenizer=self.tokenizer) warnings.warn("Comparing a scalar value to a SearchArray. This is slow.") return np.array(self[:]) == np.array(other[:]) # When other is a sequence but not an ExtensionArray # its an array of dicts elif is_list_like(other): if len(self) != len(other): return False elif len(other) == 0: return np.array([], dtype=bool) # We actually don't know how it was tokenized other = SearchArray(other, tokenizer=self.tokenizer) return np.array(self[:]) == np.array(other[:]) # Return False where 'other' is neither the same length nor a scalar else: return np.full(len(self), False) def isna(self): # Every row with all 0s empties = self.doc_lens == 0 return empties def take(self, indices, allow_fill=False, fill_value=None): # Want to take rows of term freqs row_indices = np.arange(len(self.term_mat.rows)) # Take within the row indices themselves result_indices = take(row_indices, indices, allow_fill=allow_fill, fill_value=-1) if allow_fill and -1 in result_indices: if fill_value is None or pd.isna(fill_value): fill_value = Terms({}, encoded=True) to_fill_mask = result_indices == -1 # This is slow as it rebuilds all the term dictionaries # on the subsequent assignment lines # However, this case tends to be the exception for # most dataframe operations taken = SearchArray([fill_value] * len(result_indices)) taken[~to_fill_mask] = self[result_indices[~to_fill_mask]].copy() return taken else: taken = self[result_indices].copy() return taken def copy(self): postings_arr = SearchArray([], tokenizer=self.tokenizer) postings_arr.doc_lens = self.doc_lens.copy() postings_arr.term_mat = self.term_mat.copy() postings_arr.posns = self.posns postings_arr.term_dict = self.term_dict postings_arr.avg_doc_length = self.avg_doc_length if not self.avoid_copies: postings_arr.posns = self.posns.copy() postings_arr.term_dict = self.term_dict.copy() return postings_arr @classmethod def _concat_same_type(cls, to_concat): concatenated_data = np.concatenate([ea[:] for ea in to_concat]) return SearchArray(concatenated_data, tokenizer=to_concat[0].tokenizer) @classmethod def _from_factorized(cls, values, original): return cls(values) def _values_for_factorize(self): """Return an array and missing value suitable for factorization (ie grouping).""" arr = np.asarray(self[:], dtype=object) return arr, Terms({}) def _check_token_arg(self, token): if isinstance(token, str): return token elif isinstance(token, list) and len(token) == 1: return token[0] elif isinstance(token, list): return token else: raise TypeError("Expected a string or list of strings for phrases") # *********************************************************** # Search functionality # *********************************************************** def termfreqs(self, token: Union[List[str], str]) -> np.ndarray: token = self._check_token_arg(token) if isinstance(token, list): return self.phrase_freq(token) try: term_id = self.term_dict.get_term_id(token) matches = np.zeros(len(self), dtype=int) slice_of_rows = None if self.term_mat.subset: slice_of_rows = self.term_mat.rows doc_ids, termfreqs = self.posns.termfreqs(term_id, doc_ids=slice_of_rows) mask = np.isin(self.term_mat.rows, doc_ids) matches[mask] = termfreqs return matches else: doc_ids, termfreqs = self.posns.termfreqs(term_id, doc_ids=slice_of_rows) matches[doc_ids] = termfreqs return matches except TermMissingError: return np.zeros(len(self), dtype=int) def docfreq(self, token: str) -> int: if not isinstance(token, str): raise TypeError("Expected a string") # Count number of rows where the term appears try: return self.posns.docfreq(self.term_dict.get_term_id(token)) except TermMissingError: return 0 def doclengths(self) -> np.ndarray: return self.doc_lens def match(self, token: Union[List[str], str], slop: int = 1) -> np.ndarray: """Return a boolean numpy array indicating which elements contain the given term.""" token = self._check_token_arg(token) if isinstance(token, list): term_freq = self.phrase_freq(token) else: term_freq = self.termfreqs(token) return term_freq > 0 def score(self, token: Union[str, List[str]], similarity: Similarity = default_bm25) -> np.ndarray: """Score each doc using a similarity function. Parameters ---------- token : str or list of str of what to search (already tokenized) similarity : How to score the documents. Default is BM25. """ # Get term freqs per token token = self._check_token_arg(token) # For expensive toknes, we compute doc freq first, so we # cache them in the DF cache, to let TF cache know it should be cached tokens_l = [token] if isinstance(token, str) else token all_dfs = np.asarray([self.docfreq(token) for token in tokens_l]) tfs = self.termfreqs(token) token = self._check_token_arg(token) doc_lens = self.doclengths() scores = similarity(term_freqs=tfs, doc_freqs=all_dfs, doc_lens=doc_lens, avg_doc_lens=self.avg_doc_length, num_docs=len(self)) return scores def positions(self, token: str, key=None) -> List[np.ndarray]: """Return a list of lists of positions of the given term.""" term_id = self.term_dict.get_term_id(token) key = self.term_mat.rows[key] if key is not None else self.term_mat.rows posns = self.posns.positions(term_id, doc_ids=key) return posns def and_query(self, tokens: Union[List[str], List[List[str]]]) -> np.ndarray: """Return a mask on the postings array indicating which elements contain all terms.""" masks = [self.match(term) for term in tokens] mask = np.ones(len(self), dtype=bool) for curr_mask in masks: mask = mask & curr_mask return mask def or_query(self, tokens: Union[List[str], List[List[str]]], min_should_match: int = 1) -> np.ndarray: """Return a mask on the postings array indicating which elements c<fim_suffix>ontain all terms.""" masks = [self.match(term) for term in tokens] mask = np.sum(masks, axis=0) >= min_should_match return mask def phrase_freq(self, tokens: List[str], slop=1) -> np.ndarray: if slop == 1 and len(tokens) == len(set(tokens)): phrase_freqs = np.zeros(len(self)) try: doc_ids = self.term_mat.rows term_ids = [self.term_dict.get_term_id(token) for token in tokens] return self.posns.phrase_freqs(term_ids, doc_ids=doc_ids, phrase_freqs=phrase_freqs) except TermMissingError: return phrase_freqs else: return self.phrase_freq_every_diff(tokens, slop=slop) def phrase_freq_scan(self, tokens: List[str], mask=None, slop=1) -> np.ndarray: if mask is None: mask = self.and_query(tokens) if np.sum(mask) == 0: return mask # Gather positions posns = [self.positions(token, mask) for token in tokens] phrase_freqs = np.zeros(len(self)) phrase_freqs[mask] = scan_merge_ins(posns, phrase_freqs[mask], slop=slop) return phrase_freqs def phrase_freq_every_diff(self, tokens: List[str], slop=1) -> np.ndarray: phrase_freqs = -np.ones(len(self)) mask = self.and_query(tokens) phrase_freqs[~mask] = 0 if np.sum(mask) == 0: return phrase_freqs term_posns = [self.positions(term, mask) for term in tokens] for width in [10, 20, 30, 40]: phrase_freqs[mask] = compute_phrase_freqs(term_posns, phrase_freqs[mask], slop=slop, width=width) remaining_mask = phrase_freqs == -1 if np.any(remaining_mask): remainder_freqs = self.phrase_freq_scan(tokens, mask=remaining_mask, slop=slop) phrase_freqs[remaining_mask] = remainder_freqs[remaining_mask] return phrase_freqs <fim_middle>
null
BLOCK_COMMENT
complete_current_header_empty_completion
<filename>searcharray/searcharray/utils/roaringish.py<fim_prefix>"""Roaring-ish bit array for storing sorted integers in numpy array. See - https://softwaredoug.com/blog/2024/01/21/search-array-phrase-algorithm """ import numpy as np import sortednp as snp import logging import numbers from typing import Optional, Tuple, List, Union logger = logging.getLogger(__name__) # When running in pytest import sys # noqa handler = logging.StreamHandler(sys.stdout) handler.setLevel(logging.ERROR) formatter = logging.Formatter("[%(filename)s:%(lineno)s - %(funcName)20s() ] %(message)s") handler.setFormatter(formatter) logger.addHandler(handler) logger.setLevel(logging.ERROR) DEFAULT_KEY_MASK = np.uint64(0xFFFFFFF000000000) DEFAULT_KEY_BITS = np.uint64(28) DEFAULT_PAYLOAD_MSB_MASK = np.uint64(0x0000000FFFFC0000) DEFAULT_PAYLOAD_MSB_BITS = np.uint64(18) DEFAULT_PAYLOAD_LSB_MASK = np.uint64(0x000000000003FFFF) DEFAULT_PAYLOAD_LSB_BITS = np.uint64(18) # To not constantly type coerce _64 = np.uint64(64) _2 = np.uint64(2) _1 = np.uint64(1) _0 = np.uint64(0) _neg1 = np.int64(-1) _algorithm = snp.GALLOPING_SEARCH def n_msb_mask(n: np.uint64) -> np.uint64: """Return the n most significant bits of num.""" return np.uint64(~(np.uint64(_1 << (_64 - n))) + _1) def sorted_unique(arr: np.ndarray) -> np.ndarray: return snp.intersect(arr, arr, duplicates=snp.DROP) class RoaringishEncoder: """An encoder for key->integer sets as a numpy array. Each returned array represents a single term, with key as MSBS, ie: | 32 MSBs | 16 LSBs | 16 LSBs | key | bits msbs | payload (different number of MSBs / payload bits can be specified) """ def __init__(self, key_bits: np.uint64 = DEFAULT_KEY_BITS): payload_bits = _64 - key_bits self.payload_msb_bits = payload_bits // _2 self.payload_lsb_bits = np.uint64(payload_bits - self.payload_msb_bits) self.key_bits = key_bits assert self.key_bits.dtype == np.uint64 # key bits MSB of 64 bits self.key_mask = n_msb_mask(key_bits) self.payload_msb_mask = n_msb_mask(np.uint64(self.payload_msb_bits + key_bits)) & ~self.key_mask assert self.payload_msb_bits.dtype == np.uint64, f"MSB bits dtype was {self.payload_msb_bits.dtype}" assert self.payload_msb_mask.dtype == np.uint64, f"MSB mask dtype was {self.payload_msb_mask.dtype}" self.payload_lsb_mask = (_1 << self.payload_lsb_bits) - np.uint64(1) assert self.payload_lsb_bits.dtype == np.uint64, f"LSB bits dtype was {self.payload_lsb_bits.dtype}" assert self.payload_lsb_mask.dtype == np.uint64, f"LSB mask dtype was {self.payload_lsb_mask.dtype}" if key_bits == DEFAULT_KEY_BITS: assert self.key_mask == DEFAULT_KEY_MASK assert self.payload_msb_mask == DEFAULT_PAYLOAD_MSB_MASK assert self.payload_lsb_mask == DEFAULT_PAYLOAD_LSB_MASK self.max_payload = np.uint64(2**self.payload_lsb_bits - 1) def validate_payload(self, payload: np.ndarray): """Optional validation of payload.""" if np.any(payload > self.max_payload): raise ValueError(f"Positions must be less than {2**self.payload_lsb_bits}") def encode(self, payload: np.ndarray, keys: Optional[np.ndarray] = None, boundaries: Optional[np.ndarray] = None) -> Tuple[np.ndarray, Optional[np.ndarray]]: """Pack a sorted array of integers into compact bit numpy array. each returned array represents a single term, with key as MSBS, ie: | 32 MSBs | 16 LSBs | 16 LSBs | key | bits msbs| payload for later easy intersection of 32+16 msbs, then checking for adjacent positions If boundaries are provided, then we consider multiple distinct payloads being encoded simultaneously, and we return the boundaries of each """ cols = np.floor_divide(payload, self.payload_lsb_bits, dtype=np.uint64) # Header of bit to use cols <<= self.payload_msb_bits if keys is not None: cols |= keys.astype(np.uint64) << (_64 - self.key_bits) values = payload % self.payload_lsb_bits # Value to encode change_indices_one_doc = np.nonzero(np.diff(cols))[0] + 1 change_indices_one_doc = np.concatenate([[0], change_indices_one_doc]) if boundaries is not None: change_indices = snp.merge(change_indices_one_doc, boundaries, duplicates=snp.DROP) new_boundaries = snp.intersect(boundaries, change_indices, indices=True)[1][1] new_boundaries = np.concatenate([new_boundaries, [len(change_indices)]]) else: change_indices = change_indices_one_doc new_boundaries = None # 0 as a position, goes in bit 1, # 1 as a position, goes in bit 2, etc values = _1 << values cols |= values encoded = cols if len(encoded) == 0: return encoded, new_boundaries reduced = np.bitwise_or.reduceat(encoded, change_indices) return reduced, new_boundaries def decode(self, encoded: np.ndarray, get_keys: bool = True) -> Union[List[Tuple[np.uint64, np.ndarray]], List[np.ndarray]]: """D<fim_suffix>ecode an encoded bit array into keys / payloads.""" keys = (encoded & self.key_mask) >> (_64 - self.key_bits) msbs = (encoded & self.payload_msb_mask) >> self.payload_msb_bits to_concat = [] for bit in range(self.payload_lsb_bits): mask = 1 << bit lsbs = encoded & mask set_lsbs = (lsbs != 0) this_keys = keys[set_lsbs] payload = bit + (msbs[set_lsbs] * self.payload_lsb_bits) doc_with_posn = np.dstack([this_keys, payload])[0] to_concat.append(doc_with_posn) stacked = np.vstack(to_concat) # Sort by doc_id, then posn sorted_payload = stacked[np.lexsort((stacked[:, 1], stacked[:, 0]))] keys, idx = np.unique(sorted_payload[:, 0], return_index=True) grouped = np.split(sorted_payload[:, 1], idx[1:]) if get_keys: return list(zip(keys, grouped)) else: return grouped def keys(self, encoded: np.ndarray) -> np.ndarray: """Return keys from encoded.""" return (encoded & self.key_mask) >> (_64 - self.key_bits) def keys_unique(self, encoded: np.ndarray) -> np.ndarray: """Return keys from encoded.""" keys = self.keys(encoded) intersected = sorted_unique(keys) return intersected def payload_msb(self, encoded: np.ndarray) -> np.ndarray: """Return payload MSBs from encoded.""" return (encoded & self.payload_msb_mask) >> self.payload_msb_bits def payload_lsb(self, encoded: np.ndarray) -> np.ndarray: """Return payload LSBs from encoded.""" return encoded & self.payload_lsb_mask def intersect_rshift(self, lhs: np.ndarray, rhs: np.ndarray, rshift: np.int64 = _neg1) -> Tuple[np.ndarray, np.ndarray]: """Return the MSBs that are common to both lhs and rhs (same keys, same MSBs) Parameters ---------- lhs : np.ndarray of uint64 (encoded) values rhs : np.ndarray of uint64 (encoded) values rshift : int how much to shift rhs by to the right """ rhs_int = rhs assert rshift < 0, "rshift must be negative" rhs_int = rhs[self.payload_msb(rhs) >= np.abs(rshift)] rshft = rshift.view(np.uint64) rhs_shifted = (rhs_int >> self.payload_lsb_bits) + rshft # assert np.all(np.diff(rhs_shifted) >= 0), "not sorted" _, (lhs_idx, rhs_idx) = snp.intersect(lhs >> self.payload_lsb_bits, rhs_shifted, indices=True, algorithm=_algorithm) return lhs[lhs_idx], rhs_int[rhs_idx] def intersect(self, lhs: np.ndarray, rhs: np.ndarray) -> Tuple[np.ndarray, np.ndarray]: """Return the MSBs that are common to both lhs and rhs (same keys, same MSBs) Parameters ---------- lhs : np.ndarray of uint64 (encoded) values rhs : np.ndarray of uint64 (encoded) values """ # assert np.all(np.diff(rhs_shifted) >= 0), "not sorted" _, (lhs_idx, rhs_idx) = snp.intersect(lhs >> self.payload_lsb_bits, rhs >> self.payload_lsb_bits, indices=True, algorithm=_algorithm) return lhs[lhs_idx], rhs[rhs_idx] def slice(self, encoded: np.ndarray, keys: np.ndarray) -> np.ndarray: """Get list of encoded that have values in keys.""" assert len(keys.shape) == 1 assert len(encoded.shape) == 1 encoded_keys = encoded.view(np.uint64) >> (_64 - self.key_bits) _, (idx_docs, idx_enc) = snp.intersect(keys, encoded_keys, indices=True, duplicates=snp.KEEP_MAX_N, algorithm=_algorithm) return encoded[idx_enc] def convert_keys(keys) -> np.ndarray: """Convert keys to range or np.ndarray of uint64.""" if isinstance(keys, numbers.Number): return np.asarray([keys], dtype=np.uint64) elif isinstance(keys, list): return np.asarray(keys, dtype=np.uint64) elif isinstance(keys, np.ndarray): return keys.astype(np.uint64) elif isinstance(keys, range) and len(keys) > 0: # UNFORTUNATE COPY return np.arange(keys[0], keys[-1] + 1, dtype=np.uint64) + keys[0] elif isinstance(keys, range): return np.asarray([], dtype=np.uint64) raise ValueError(f"Unknown type for keys: {type(keys)}") <fim_middle>
null
BLOCK_COMMENT
complete_current_header_empty_completion
<filename>searcharray/searcharray/utils/roaringish.py<fim_prefix>"""Roaring-ish bit array for storing sorted integers in numpy array. See - https://softwaredoug.com/blog/2024/01/21/search-array-phrase-algorithm """ import numpy as np import sortednp as snp import logging import numbers from typing import Optional, Tuple, List, Union logger = logging.getLogger(__name__) # When running in pytest import sys # noqa handler = logging.StreamHandler(sys.stdout) handler.setLevel(logging.ERROR) formatter = logging.Formatter("[%(filename)s:%(lineno)s - %(funcName)20s() ] %(message)s") handler.setFormatter(formatter) logger.addHandler(handler) logger.setLevel(logging.ERROR) DEFAULT_KEY_MASK = np.uint64(0xFFFFFFF000000000) DEFAULT_KEY_BITS = np.uint64(28) DEFAULT_PAYLOAD_MSB_MASK = np.uint64(0x0000000FFFFC0000) DEFAULT_PAYLOAD_MSB_BITS = np.uint64(18) DEFAULT_PAYLOAD_LSB_MASK = np.uint64(0x000000000003FFFF) DEFAULT_PAYLOAD_LSB_BITS = np.uint64(18) # To not constantly type coerce _64 = np.uint64(64) _2 = np.uint64(2) _1 = np.uint64(1) _0 = np.uint64(0) _neg1 = np.int64(-1) _algorithm = snp.GALLOPING_SEARCH def n_msb_mask(n: np.uint64) -> np.uint64: """Return the n most significant bits of num.""" return np.uint64(~(np.uint64(_1 << (_64 - n))) + _1) def sorted_unique(arr: np.ndarray) -> np.ndarray: return snp.intersect(arr, arr, duplicates=snp.DROP) class RoaringishEncoder: """An encoder for key->integer sets as a numpy array. Each returned array represents a single term, with key as MSBS, ie: | 32 MSBs | 16 LSBs | 16 LSBs | key | bits msbs | payload (different number of MSBs / payload bits can be specified) """ def __init__(self, key_bits: np.uint64 = DEFAULT_KEY_BITS): payload_bits = _64 - key_bits self.payload_msb_bits = payload_bits // _2 self.payload_lsb_bits = np.uint64(payload_bits - self.payload_msb_bits) self.key_bits = key_bits assert self.key_bits.dtype == np.uint64 # key bits MSB of 64 bits self.key_mask = n_msb_mask(key_bits) self.payload_msb_mask = n_msb_mask(np.uint64(self.payload_msb_bits + key_bits)) & ~self.key_mask assert self.payload_msb_bits.dtype == np.uint64, f"MSB bits dtype was {self.payload_msb_bits.dtype}" assert self.payload_msb_mask.dtype == np.uint64, f"MSB mask dtype was {self.payload_msb_mask.dtype}" self.payload_lsb_mask = (_1 << self.payload_lsb_bits) - np.uint64(1) assert self.payload_lsb_bits.dtype == np.uint64, f"LSB bits dtype was {self.payload_lsb_bits.dtype}" assert self.payload_lsb_mask.dtype == np.uint64, f"LSB mask dtype was {self.payload_lsb_mask.dtype}" if key_bits == DEFAULT_KEY_BITS: assert self.key_mask == DEFAULT_KEY_MASK assert self.payload_msb_mask == DEFAULT_PAYLOAD_MSB_MASK assert self.payload_lsb_mask == DEFAULT_PAYLOAD_LSB_MASK self.max_payload = np.uint64(2**self.payload_lsb_bits - 1) def validate_payload(self, payload: np.ndarray): """Optional validation of payload.""" if np.any(payload > self.max_payload): raise ValueError(f"Positions must be less than {2**self.payload_lsb_bits}") def encode(self, payload: np.ndarray, keys: Optional[np.ndarray] = None, boundaries: Optional[np.ndarray] = None) -> Tuple[np.ndarray, Optional[np.ndarray]]: """Pack a sorted array of integers into compact bit numpy array. each returned array represents a single term, with key as MSBS, ie: | 32 MSBs | 16 LSBs | 16 LSBs | key | bits msbs| payload for later easy intersection of 32+16 msbs, then checking for adjacent positions If boundaries are provided, then we consider multiple distinct payloads being encoded simultaneously, and we return the boundaries of each """ cols = np.floor_divide(payload, self.payload_lsb_bits, dtype=np.uint64) # Header of bit to use cols <<= self.payload_msb_bits if keys is not None: cols |= keys.astype(np.uint64) << (_64 - self.key_bits) values = payload % self.payload_lsb_bits # Value to encode change_indices_one_doc = np.nonzero(np.diff(cols))[0] + 1 change_indices_one_doc = np.concatenate([[0], change_indices_one_doc]) if boundaries is not None: change_indices = snp.merge(change_indices_one_doc, boundaries, duplicates=snp.DROP) new_boundaries = snp.intersect(boundaries, change_indices, indices=True)[1][1] new_boundaries = np.concatenate([new_boundaries, [len(change_indices)]]) else: change_indices = change_indices_one_doc new_boundaries = None # 0 as a position, goes in bit 1, # 1 as a position, goes in bit 2, etc values = _1 << values cols |= values encoded = cols if len(encoded) == 0: return encoded, new_boundaries reduced = np.bitwise_or.reduceat(encoded, change_indices) return reduced, new_boundaries def decode(self, encoded: np.ndarray, get_keys: bool = True) -> Union[List[Tuple[np.uint64, np.ndarray]], List[np.ndarray]]: """Decode an encoded bit array into keys / payloads.""" keys = (encoded & self.key_mask) >> (_64 - self.key_bits) msbs = (encoded & self.payload_msb_mask) >> self.payload_msb_bits to_concat = [] for bit in range(self.payload_lsb_bits): mask = 1 << bit lsbs = encoded & mask set_lsbs = (lsbs != 0) this_keys = keys[set_lsbs] payload = bit + (msbs[set_lsbs] * self.payload_lsb_bits) doc_with_posn = np.dstack([this_keys, payload])[0] to_concat.append(doc_with_posn) stacked = np.vstack(to_concat) # Sort by doc_id, then posn sorted_payload = stacked[np.lexsort((stacked[:, 1], stacked[:, 0]))] keys, idx = np.unique(sorted_payload[:, 0], return_index=True) grouped = np.split(sorted_payload[:, 1], idx[1:]) if get_keys: return list(zip(keys, grouped)) else: return grouped def keys(self, encoded: np.ndarray) -> np.ndarray: """Return keys from encoded.""" return (encoded & self.key_mask) >> (_64 - self.key_bits) def keys_unique(self, encoded: np.ndarray) -> np.ndarray: """Return keys from encoded.""" keys = self.keys(encoded) intersected = sorted_unique(keys) return intersected def payload_msb(self, encoded: np.ndarray) -> np.ndarray: """Return payload MSBs from encoded.""" return (encoded & self.payload_msb_mask) >> self.payload_msb_bits def payload_lsb(self, encoded: np.ndarray) -> np.ndarray: """Return payload LSBs from encoded.""" return encoded & self.payload_lsb_mask def intersect_rshift(self, lhs: np.ndarray, rhs: np.ndarray, rshift: np.int64 = _neg1) -> Tuple[np.ndarray, np.ndarray]: """Return the MSBs that are common to both lhs and rhs (same keys, same MSBs) Parameters ---------- lhs : np.ndarray of uint64 (encoded) values rhs : np.ndarray of uint64 (encoded) values rshift : int how much to shift rhs by to the right """ rhs_int = rhs assert rshift < 0, "rshift must be negative" rhs_int = rhs[self.payload_msb(rhs) >= np.abs(rshift)] rshft = rshift.view(np.uint64) rhs_shifted = (rhs_int >> self.payload_lsb_bits) + rshft # assert np.all(np.diff(rhs_shifted) >= 0), "not sorted" _, (lhs_idx, rhs_idx) = snp.intersect(lhs >> self.payload_lsb_bits, rhs_shifted, indices=True, algorithm=_algorithm) return lhs[lhs_idx], rhs_int[rhs_idx] def intersect(self, lhs: np.ndarray, rhs: np.ndarray) -> Tuple[np.ndarray, np.ndarray]: """Return the MSBs that are common to both lhs and rhs (same keys, same MSBs) Parameters ---------- lhs : np.ndarray of uint64 (encoded) values rhs : np.ndarray of uint64 (encoded) values """ # assert np.all(np.diff(rhs_shifted) >= 0), "not sorted" _, (lhs_idx, rhs_idx) = snp.intersect(lhs >> self.payload_lsb_bits, rhs >> self.payload_lsb_bits, indices=True, algorithm=_algorithm) return lhs[lhs_idx], rhs[rhs_idx] def slice(self, encoded: np.ndarray, keys: np.ndarray) -> np.ndarray: """Get list of encoded that have values in keys.""" assert len(keys.shape) == 1 assert len(encoded.shape) == 1 encoded_keys = encoded.view(np.uint64) >> (_64 - self.key_bits) _, (idx_docs, idx_enc) = snp.intersect(keys, encoded_keys, indices=True, duplicates=snp.KEEP_MAX_N, algorithm=_algorithm) return encoded[idx_enc] def convert_keys(keys) -> np.ndarray: """Convert keys to range or np.ndarra<fim_suffix>y of uint64.""" if isinstance(keys, numbers.Number): return np.asarray([keys], dtype=np.uint64) elif isinstance(keys, list): return np.asarray(keys, dtype=np.uint64) elif isinstance(keys, np.ndarray): return keys.astype(np.uint64) elif isinstance(keys, range) and len(keys) > 0: # UNFORTUNATE COPY return np.arange(keys[0], keys[-1] + 1, dtype=np.uint64) + keys[0] elif isinstance(keys, range): return np.asarray([], dtype=np.uint64) raise ValueError(f"Unknown type for keys: {type(keys)}") <fim_middle>
null
BLOCK_COMMENT
complete_current_header_empty_completion
<filename>searcharray/searcharray/phrase/middle_out.py<fim_prefix>"""Encode positions in bits along with some neighboring information for wrapping. See this notebook for motivation: https://colab.research.google.com/drive/10tIEkdlCE_1J_CcgEcV0jkLfBc-0H4am?authuser=1#scrollTo=XWzy-n9dF3PG """ import numpy as np import sortednp as snp from copy import deepcopy from typing import List, Tuple, Dict, Union, cast, Optional from searcharray.utils.roaringish import RoaringishEncoder, convert_keys, sorted_unique import numbers import logging from collections import defaultdict from searcharray.utils.bitcount import bit_count64 logger = logging.getLogger(__name__) # When running in pytest import sys # noqa handler = logging.StreamHandler(sys.stdout) handler.setLevel(logging.ERROR) formatter = logging.Formatter("[%(filename)s:%(lineno)s - %(funcName)20s() ] %(message)s") handler.setFormatter(formatter) logger.addHandler(handler) logger.setLevel(logging.ERROR) encoder = RoaringishEncoder() # To not constantly type coerce _64 = np.uint64(64) _2 = np.uint64(2) _1 = np.uint64(1) _0 = np.uint64(0) _neg1 = np.int64(-1) MAX_POSN = encoder.max_payload def inner_bigram_freqs(lhs: np.ndarray, rhs: np.ndarray, phrase_freqs: np.ndarray) -> Tuple[np.ndarray, np.ndarray]: """Count bigram matches between two encoded arrays, within a 64 bit word with same MSBs. Returns: -------- count: number of matches per doc rhs_next: the next rhs array to continue matching """ lhs_int, rhs_int = encoder.intersect(lhs, rhs) lhs_doc_ids = encoder.keys(lhs_int) if len(lhs_int) != len(rhs_int): raise ValueError("Encoding error, MSBs apparently are duplicated among your encoded posn arrays.") if len(lhs_int) == 0: return phrase_freqs, rhs_int same_term = (len(lhs_int) == len(rhs_int) and lhs_int[0] == rhs_int[0]) if same_term: # Find adjacent matches rhs_shift = rhs_int << _1 overlap = lhs_int & rhs_shift overlap = encoder.payload_lsb(overlap) adjacents = bit_count64(overlap).astype(np.int64) adjacents -= -np.floor_divide(adjacents, -2) # ceiling divide phrase_freqs[lhs_doc_ids] += adjacents return phrase_freqs, rhs_int overlap_bits = (lhs_int & encoder.payload_lsb_mask) & ((rhs_int & encoder.payload_lsb_mask) >> _1) rhs_next2 = (overlap_bits << _1) & encoder.payload_lsb_mask rhs_next2 |= (rhs_int & (encoder.key_mask | encoder.payload_msb_mask)) phrase_freqs2 = phrase_freqs.copy() matches2 = overlap_bits > 0 if np.any(matches2): transitions = np.argwhere(np.diff(lhs_doc_ids[matches2]) != 0).flatten() + 1 transitions = np.insert(transitions, 0, 0) counted_bits = bit_count64(overlap_bits[matches2]) reduced = np.add.reduceat(counted_bits, transitions) phrase_freqs2[np.unique(lhs_doc_ids[matches2])] += reduced return phrase_freqs2, rhs_next2 def adjacent_bigram_freqs(lhs: np.ndarray, rhs: np.ndarray, phrase_freqs: np.ndarray) -> Tuple[np.ndarray, np.ndarray]: """Count bigram matches between two encoded arrays where they occur in adjacent 64 bit words. Returns: -------- count: number of matches per doc rhs_next: the next rhs array to continue matching """ lhs_int, rhs_int = encoder.intersect_rshift(lhs, rhs, rshift=_neg1) lhs_doc_ids = encoder.keys(lhs_int) # lhs lsb set and rhs lsb's most significant bit set upper_bit = _1 << (encoder.payload_lsb_bits - _1) matches = ((lhs_int & upper_bit) != 0) & ((rhs_int & _1) != 0) unique, counts = np.unique(lhs_doc_ids[matches], return_counts=True) phrase_freqs[unique] += counts rhs_next = rhs_int rhs_next[~matches] |= ~encoder.payload_lsb_mask rhs_next[matches] |= (encoder.payload_lsb_mask & _1) return phrase_freqs, rhs_next def bigram_freqs(lhs: np.ndarray, rhs: np.ndarray, phrase_freqs: np.ndarray) -> Tuple[np.ndarray, np.ndarray]: """Count bigr<fim_suffix>am matches between two encoded arrays. Returns: -------- count: number of matches per doc rhs_next: the next rhs array to continue matching """ # Combine lhs and rhs matches from two strategies phrase_freqs, rhs_next_inner = inner_bigram_freqs(lhs, rhs, phrase_freqs) phrase_freqs, rhs_next_adj = adjacent_bigram_freqs(lhs, rhs, phrase_freqs) rhs_next = np.sort(np.concatenate([rhs_next_inner, rhs_next_adj])) # Combine return phrase_freqs, rhs_next def trim_phrase_search(encoded_posns: List[np.ndarray], phrase_freqs: np.ndarray) -> List[np.ndarray]: """Trim long phrases by searching the rarest terms first.""" # Start with rarest term shortest_keys = None shortest_idx = None min_len = 1e100 max_len = 0 for idx, enc_posn in enumerate(encoded_posns): if len(enc_posn) < min_len: shortest_keys = encoder.keys(enc_posn) shortest_idx = idx min_len = len(enc_posn) if len(enc_posn) > max_len: max_len = len(enc_posn) if shortest_keys is None: return encoded_posns for enc_posn_idx in range(len(encoded_posns)): if enc_posn_idx == shortest_idx: continue if len(encoded_posns[enc_posn_idx]) > (10 * min_len): encoded_posns[enc_posn_idx] = encoder.slice(encoded_posns[enc_posn_idx], shortest_keys) return encoded_posns def compute_phrase_freqs(encoded_posns: List[np.ndarray], phrase_freqs: np.ndarray) -> np.ndarray: if len(encoded_posns) < 2: raise ValueError("phrase must have at least two terms") # Trim long phrases by searching the rarest terms first if len(encoded_posns) > 3: encoded_posns = trim_phrase_search(encoded_posns, phrase_freqs) mask = np.ones(len(phrase_freqs), dtype=bool) lhs = encoded_posns[0] for rhs in encoded_posns[1:]: # Only count the count of the last bigram (ignoring the ones where priors did not match) phrase_freqs[mask] = 0 phrase_freqs, lhs = bigram_freqs(lhs, rhs, phrase_freqs) mask &= (phrase_freqs > 0) phrase_freqs[~mask] = 0 return phrase_freqs class PosnBitArrayFromFlatBuilder: """ Build from sorted array shape num terms x 3. 0th is term id 1st is doc id 2nd is posn Sorted by term id then posns """ def __init__(self, flat_array: np.ndarray): self.flat_array = flat_array def build(self): """Slice the flat array into a 2d array of doc ids and posns.""" term_boundaries = np.argwhere(np.diff(self.flat_array[0]) > 0).flatten() + 1 term_boundaries = np.concatenate([[0], term_boundaries, [len(self.flat_array[1])]]) encoded, enc_term_boundaries = encoder.encode(keys=self.flat_array[1].view(np.uint64), boundaries=term_boundaries[:-1], payload=self.flat_array[2].view(np.uint64)) term_ids = self.flat_array[0][term_boundaries[:-1]] encoded_term_posns = {} for into_terms, (beg_idx, end_idx) in enumerate(zip(enc_term_boundaries[:-1], enc_term_boundaries[1:])): sliced = encoded[beg_idx:end_idx] encoded_term_posns[term_ids[into_terms]] = sliced return PosnBitArray(encoded_term_posns, self.flat_array[1].max()) class PosnBitArrayBuilder: def __init__(self): self.term_posns = defaultdict(list) self.term_posn_doc_ids = defaultdict(list) self.max_doc_id = 0 def add_posns(self, doc_id: int, term_id: int, posns: List[int]): doc_ids = [doc_id] * len(posns) self.term_posns[term_id].extend(posns) self.term_posn_doc_ids[term_id].extend(doc_ids) def ensure_capacity(self, doc_id): self.max_doc_id = max(self.max_doc_id, doc_id) def build(self, check=False): encoded_term_posns = {} for term_id, posns in self.term_posns.items(): if len(posns) == 0: posns = np.asarray([], dtype=np.uint32).flatten() elif isinstance(posns, list): posns_arr = np.asarray(posns, dtype=np.uint32).flatten() posns = posns_arr doc_ids = self.term_posn_doc_ids[term_id] if isinstance(doc_ids, list): doc_ids = np.asarray(doc_ids, dtype=np.uint32) encoded = encoder.encode(keys=doc_ids, payload=posns) if check: decode_again = encoder.decode(encoded) docs_to_posns = dict(decode_again) doc_ids_again = [] posns_again = [] for doc_id, posns_dec in docs_to_posns.items(): for posn in posns_dec: doc_ids_again.append(doc_id) posns_again.append(posn) assert np.array_equal(doc_ids_again, doc_ids) assert np.array_equal(posns, posns_again) encoded_term_posns[term_id] = encoded return PosnBitArray(encoded_term_posns, self.max_doc_id) class PosnBitArrayAlreadyEncBuilder: def __init__(self): self.encoded_term_posns = {} self.max_doc_id = 0 def add_posns(self, doc_id: int, term_id: int, posns): self.encoded_term_posns[term_id] = posns def ensure_capacity(self, doc_id): self.max_doc_id = max(self.max_doc_id, doc_id) def build(self, check=False): return PosnBitArray(self.encoded_term_posns, self.max_doc_id) def index_range(rng, key): if key is None: return rng if isinstance(rng, np.ndarray): return rng[key] if isinstance(key, slice): return rng[key] elif isinstance(key, numbers.Number): return rng[key] elif isinstance(key, np.ndarray): try: # UNFORTUNATE COPY r_val = np.asarray(list(rng))[key] return r_val except IndexError as e: raise e # Last resort # UNFORTUNATE COPY # Here probably elipses or a tuple of various things return np.asarray(list(rng))[key] class PosnBitArray: def __init__(self, encoded_term_posns, max_doc_id: int): self.encoded_term_posns = encoded_term_posns self.max_doc_id = max_doc_id self.docfreq_cache : Dict[int, np.uint64] = {} self.termfreq_cache : Dict[int, Tuple[np.ndarray, np.ndarray]] = {} def copy(self): new = PosnBitArray(deepcopy(self.encoded_term_posns), self.max_doc_id) return new def concat(self, other): """Merge other into self. Assumes other's doc ids are not overlapping with self's doc ids. """ # Shared terms shared_terms = set(self.encoded_term_posns.keys()).intersection(set(other.encoded_term_posns.keys())) for term_id in shared_terms: # Append then sort self.encoded_term_posns[term_id] = np.concatenate([self.encoded_term_posns[term_id], other.encoded_term_posns[term_id]]) self.encoded_term_posns[term_id].sort() only_other_terms = set(other.encoded_term_posns.keys()).difference(set(self.encoded_term_posns.keys())) for term_id in only_other_terms: self.encoded_term_posns[term_id] = other.encoded_term_posns[term_id] self.max_doc_id = max(self.max_doc_id, other.max_doc_id) # Empty caches self.termfreq_cache = {} self.docfreq_cache = {} def slice(self, key): sliced_term_posns = {} doc_ids = convert_keys(key) max_doc_id = np.max(doc_ids) for term_id, posns in self.encoded_term_posns.items(): encoded = self.encoded_term_posns[term_id] assert len(encoded.shape) == 1 sliced_term_posns[term_id] = encoder.slice(encoded, keys=doc_ids) return PosnBitArray(sliced_term_posns, max_doc_id) def __getitem__(self, key): return self.slice(key) def merge(self, other): # Unique terms unique_terms = set(self.encoded_term_posns.keys()).union(set(other.encoded_term_posns.keys())) for term_id in unique_terms: if term_id not in other.encoded_term_posns: continue elif term_id not in self.encoded_term_posns: self.encoded_term_posns[term_id] = other.encoded_term_posns[term_id] else: posns_self = self.encoded_term_posns[term_id] posns_other = other.encoded_term_posns[term_id] self.encoded_term_posns[term_id] = snp.merge(posns_self, posns_other) self.max_doc_id = self.max_doc_id + other.max_doc_id # Empty caches self.termfreq_cache = {} self.docfreq_cache = {} def doc_encoded_posns(self, term_id: int, doc_id: int) -> np.ndarray: term_posns = encoder.slice(self.encoded_term_posns[term_id], keys=np.asarray([doc_id], dtype=np.uint64)) return term_posns def phrase_freqs(self, term_ids: List[int], phrase_freqs: np.ndarray, doc_ids: np.ndarray) -> np.ndarray: if len(term_ids) < 2: raise ValueError("Must have at least two terms") if phrase_freqs.shape[0] == self.max_doc_id + 1: enc_term_posns = [self.encoded_term_posns[term_id] for term_id in term_ids] else: enc_term_posns = [encoder.slice(self.encoded_term_posns[term_id], keys=doc_ids.view(np.uint64)) for term_id in term_ids] return compute_phrase_freqs(enc_term_posns, phrase_freqs) def positions(self, term_id: int, doc_ids) -> Union[List[np.ndarray], np.ndarray]: if isinstance(doc_ids, numbers.Number): doc_ids = np.asarray([doc_ids]) try: np_doc_ids = convert_keys(doc_ids) term_posns = encoder.slice(self.encoded_term_posns[term_id], keys=np_doc_ids) except KeyError: r_val = [np.array([], dtype=np.uint32) for doc_id in doc_ids] if len(r_val) == 1 and len(doc_ids) == 1 and isinstance(doc_ids[0], numbers.Number): return [r_val[0]] return r_val decoded = encoder.decode(encoded=term_posns, get_keys=True) if len(decoded) == 0: return [np.array([], dtype=np.uint32)] if len(decoded) != len(doc_ids): # Fill non matches decoded = cast(List[Tuple[np.uint64, np.ndarray]], decoded) as_dict: Dict[np.uint64, np.ndarray] = dict(decoded) decs = [] for doc_id in doc_ids: if doc_id in as_dict: decs.append(as_dict[doc_id]) else: decs.append(np.array([], dtype=np.uint32)) return decs else: decs = [dec[1] for dec in decoded] return decs def termfreqs(self, term_id: int, doc_ids: Optional[np.ndarray] = None) -> Tuple[np.ndarray, np.ndarray]: """Count term freqs using unique positions.""" if doc_ids is None: return self._termfreqs_with_cache(term_id) encoded = self.encoded_term_posns[term_id] term_posns = encoded term_posns = encoder.slice(encoded, keys=doc_ids.astype(np.uint64)) return self._computed_term_freqs(term_posns) def _computed_term_freqs(self, term_posns) -> Tuple[np.ndarray, np.ndarray]: doc_ids = encoder.keys(term_posns) change_indices = np.nonzero(np.diff(doc_ids))[0] change_indices = np.concatenate((np.asarray([0]), change_indices + 1)) posns = term_posns & encoder.payload_lsb_mask bit_counts = bit_count64(posns) term_freqs = np.add.reduceat(bit_counts, change_indices) return sorted_unique(doc_ids), term_freqs def _termfreqs_with_cache(self, term_id: int) -> Tuple[np.ndarray, np.ndarray]: try: return self.termfreq_cache[term_id] except KeyError: term_posns = self.encoded_term_posns[term_id] doc_ids, term_freqs = self._computed_term_freqs(term_posns) if self._is_cached(term_id): self.termfreq_cache[term_id] = (doc_ids, term_freqs) return doc_ids, term_freqs def _is_cached(self, term_id: int) -> bool: return term_id in self.docfreq_cache def _docfreq_from_cache(self, term_id: int) -> np.uint64: return self.docfreq_cache[term_id] def _maybe_cache_docfreq(self, term_id: int, docfreq: np.uint64): if self.max_doc_id >= 100000 and docfreq > (self.max_doc_id // 100): self.docfreq_cache[term_id] = docfreq def docfreq(self, term_id: int) -> np.uint64: try: return self.docfreq_cache[term_id] except KeyError: encoded = self.encoded_term_posns[term_id] docfreq = np.uint64(encoder.keys_unique(encoded).size) self._maybe_cache_docfreq(term_id, docfreq) return docfreq def insert(self, key, term_ids_to_posns, is_encoded=False): new_posns = PosnBitArrayBuilder() if is_encoded: new_posns = PosnBitArrayAlreadyEncBuilder() max_doc_id = 0 for doc_id, new_posns_row in enumerate(term_ids_to_posns): for term_id, positions in new_posns_row: new_posns.add_posns(doc_id, term_id, positions) max_doc_id = max(doc_id, max_doc_id) new_posns.max_doc_id = max_doc_id ins_arr = new_posns.build() self.merge(ins_arr) @property def nbytes(self): arr_bytes = 0 for doc_id, posn in self.encoded_term_posns.items(): arr_bytes += posn.nbytes for term_id, (doc_ids, term_freqs) in self.termfreq_cache.items(): arr_bytes += doc_ids.nbytes arr_bytes += term_freqs.nbytes for term_id, docfreq in self.docfreq_cache.items(): arr_bytes += docfreq.nbytes return arr_bytes <fim_middle>
null
BLOCK_COMMENT
complete_current_header_empty_completion
<filename>searcharray/searcharray/postings.py<fim_prefix>"""Tokenized, searchable text as a pandas dtype.""" import pandas as pd import numbers from pandas.api.extensions import ExtensionDtype, ExtensionArray, register_extension_dtype from pandas.api.types import is_list_like from pandas.api.extensions import take import json from collections import Counter import warnings import logging from typing import List, Union, Optional, Iterable import numpy as np from searcharray.phrase.scan_merge import scan_merge_ins from searcharray.phrase.posn_diffs import compute_phrase_freqs from searcharray.phrase.middle_out import PosnBitArray from searcharray.similarity import Similarity, default_bm25 from searcharray.indexing import build_index_from_tokenizer, build_index_from_terms_list from searcharray.term_dict import TermMissingError logger = logging.getLogger(__name__) # When running in pytest import sys # noqa handler = logging.StreamHandler(sys.stdout) handler.setLevel(logging.ERROR) formatter = logging.Formatter("[%(filename)s:%(lineno)s - %(funcName)20s() ] %(message)s") handler.setFormatter(formatter) logger.addHandler(handler) logger.setLevel(logging.ERROR) class Terms: """An indexed search doc - a single bag of tokenized words and positions.""" def __init__(self, postings, doc_len: int = 0, posns: Optional[dict] = None, encoded=False): self.postings = postings self.posns = None self.encoded = encoded self.doc_len = doc_len self.posns = posns def _validate_posns(self): # (For testing/assertions) - Confirm every term in positions also in postings if self.posns is None: return for term in self.posns: if term not in self.postings: raise ValueError(f"Term {term} in positions but not in postings. ") def termfreq(self, token): return self.postings[token] def terms(self): return self.postings.items() def positions(self, term=None): if self.posns is None: return {} if term is None: posns = self.posns.items() else: posns = self.posns[term] return posns def raw_positions(self, term_dict, term=None): if self.posns is None: return {} if term is None: posns = [(term_dict.get_term_id(term), posns) for term, posns in self.posns.items()] else: posns = [(term_dict.get_term_id(term), self.posns[term])] return posns def tf_to_dense(self, term_dict): """Convert to a dense vector of term frequencies.""" dense = np.zeros(len(term_dict)) for term, freq in self.terms(): dense[term_dict.get_term_id(term)] = freq return dense def __len__(self): return len(self.postings) def __repr__(self): posting_keys = set(self.postings.keys()) rval = f"Terms({posting_keys})" return rval def __str__(self): return repr(self) def __eq__(self, other): # Flip to the other implementation if we're comparing to a SearchArray # to get a boolean array back if isinstance(other, SearchArray): return other == self same_postings = isinstance(other, Terms) and self.postings == other.postings if same_postings and self.doc_len == other.doc_len: return True def __lt__(self, other): # return isinstance(other, Terms) and hash(self) < hash(other) keys_both = set(self.postings.keys()).union(set(other.postings.keys())) # Sort lexically keys_both = sorted(keys_both) # Iterate as if these are two vectors of the same large dimensional vector sparse for key in keys_both: lhs_val = 0 rhs_val = 0 try: lhs_val = self.postings[key] except KeyError: pass try: rhs_val = other.postings[key] except KeyError: pass if lhs_val < rhs_val: return True elif lhs_val > rhs_val: return False else: continue return False def __le__(self, other): return self < other or self == other def __gt__(self, other): return not (self < other) and self != other def __hash__(self): return hash(json.dumps(self.postings, sort_keys=True)) class TermsDtype(ExtensionDtype): """Pandas dtype for terms.""" name = 'tokenized_text' type = Terms kind = 'O' @classmethod def construct_from_string(cls, string): if not isinstance(string, str): raise TypeError( "'construct_from_string' expects a string, got {}".format(type(string)) ) elif string == cls.name: return cls() else: raise TypeError( "Cannot construct a '{}' from '{}'".format(cls.__name__, string) ) @classmethod def construct_array_type(cls): return SearchArray def __repr__(self): return 'TermsDtype()' @property def na_value(self): return Terms({}) def valid_value(self, value): return isinstance(value, dict) or pd.isna(value) or isinstance(value, Terms) register_extension_dtype(TermsDtype) def ws_tokenizer(string): if pd.isna(string): return [] if not isinstance(string, str): raise ValueError("Expected a string") return string.split() def _row_to_postings_row(doc_id, row, doc_len, term_dict, posns: PosnBitArray): tfs = {} labeled_posns = {} for term_idx in row.cols: term = term_dict.get_term(term_idx) tfs[term] = 1 enc_term_posns = posns.doc_encoded_posns(term_idx, doc_id=doc_id) labeled_posns[term] = enc_term_posns result = Terms(tfs, posns=labeled_posns, doc_len=doc_len, encoded=True) return result class SearchArray(ExtensionArray): """An array of tokenized text (Termss).""" dtype = TermsDtype() def __init__(self, postings, tokenizer=ws_tokenizer, avoid_copies=True): # Check dtype, raise TypeError if not is_list_like(postings): raise TypeError("Expected list-like object, got {}".format(type(postings))) self.avoid_copies = avoid_copies self.tokenizer = tokenizer self.term_mat, self.posns, \ self.term_dict, self.avg_doc_length, \ self.doc_lens = build_index_from_terms_list(postings, Terms) @classmethod def index(cls, array: Iterable, tokenizer=ws_tokenizer, truncate=False, batch_size=100000, avoid_copies=True) -> 'SearchArray': """Index an array of strings using tokenizer.""" if not is_list_like(array): raise TypeError("Expected list-like object, got {}".format(type(array))) term_mat, posns, term_dict, avg_doc_length, doc_lens =\ build_index_from_tokenizer(array, tokenizer, batch_size=batch_size, truncate=truncate) postings = cls([], tokenizer=tokenizer, avoid_copies=avoid_copies) postings.term_mat = term_mat postings.posns = posns postings.term_dict = term_dict postings.avg_doc_length = avg_doc_length postings.doc_lens = doc_lens return postings @classmethod def _from_sequence(cls, scalars, dtype=None, copy=False): """Construct a new SearchArray from a sequence of scalars (PostingRow or convertible into).""" if dtype is not None: if not isinstance(dtype, TermsDtype): return scalars if isinstance(scalars, np.ndarray) and scalars.dtype == TermsDtype(): return cls(scalars) # String types elif isinstance(scalars, np.ndarray) and scalars.dtype.kind in 'US': return cls(scalars) # Other objects elif isinstance(scalars, np.ndarray) and scalars.dtype != object: return scalars return cls(scalars) def memory_usage(self, deep=False): """Return memory usage of this array in bytes.""" return self.nbytes @property def nbytes(self): return self.term_mat.nbytes + self.posns.nbytes + self.doc_lens.nbytes + self.term_dict.nbytes def __getitem__(self, key): key = pd.api.indexers.check_array_indexer(self, key) # Want to take rows of term freqs if isinstance(key, numbers.Integral): try: rows = self.term_mat[key] doc_len = self.doc_lens[key] doc_id = key if doc_id < 0: doc_id += len(self) return _row_to_postings_row(doc_id, rows[0], doc_len, self.term_dict, self.posns) except IndexError: raise IndexError("index out of bounds") else: # Construct a sliced view of this array sliced_tfs = self.term_mat.slice(key) sliced_posns = self.posns.slice(sliced_tfs.rows) if not self.avoid_copies else self.posns arr = SearchArray([], tokenizer=self.tokenizer) arr.term_mat = sliced_tfs arr.doc_lens = self.doc_lens[key] arr.posns = sliced_posns arr.term_dict = self.term_dict arr.avg_doc_length = self.avg_doc_length return arr def __setitem__(self, key, value): """Set an item in the array.""" key = pd.api.indexers.check_array_indexer(self, key) if isinstance(value, pd.Series): value = value.values if isinstance(value, pd.DataFrame): value = value.values.flatten() if isinstance(value, SearchArray): value = value.to_numpy() if isinstance(value, list): value = np.asarray(value, dtype=object) if not isinstance(value, np.ndarray) and not self.dtype.valid_value(value): raise ValueError(f"Cannot set non-object array to SearchArray -- you passed type:{type(value)} -- {value}") # Cant set a single value to an array if isinstance(key, numbers.Integral) and isinstance(value, np.ndarray): raise ValueError("Cannot set a single value to an array") try: is_encoded = False posns = None term_mat = np.asarray([]) doc_lens = np.asarray([]) if isinstance(value, float): term_mat = np.asarray([value]) doc_lens = np.asarray([0]) elif isinstance(value, Terms): term_mat = np.asarray([value.tf_to_dense(self.term_dict)]) doc_lens = np.asarray([value.doc_len]) is_encoded = value.encoded posns = [value.raw_positions(self.term_dict)] elif isinstance(value, np.ndarray): term_mat = np.asarray([x.tf_to_dense(self.term_dict) for x in value]) doc_lens = np.asarray([x.doc_len for x in value]) is_encoded = value[0].encoded if len(value) > 0 else False posns = [x.raw_positions(self.term_dict) for x in value] np.nan_to_num(term_mat, copy=False, nan=0) self.term_mat[key] = term_mat self.doc_lens[key] = doc_lens if posns is not None: self.posns.insert(key, posns, is_encoded) # Assume we have a positions for each term, doc pair. We can just update it. # Otherwise we would have added new terms except TermMissingError: self._add_new_terms(key, value) def _add_new_terms(self, key, value): msg = """Adding new terms! This might not be good if you tokenized this new text with a different tokenizer. Also. This is slow.""" warnings.warn(msg) scan_value = value if isinstance(value, Terms): scan_value = np.asarray([value]) for row in scan_value: for term in row.terms(): self.term_dict.add_term(term[0]) self.term_mat.resize((self.term_mat.shape[0], len(self.term_dict))) # Ensure posns_lookup has at least max self.posns self[key] = value def value_counts( self, dropna: bool = True, ): if dropna: counts = Counter(self[:]) counts.pop(Terms({}), None) else: counts = Counter(self[:]) return pd.Series(counts) def __len__(self): len_rval = len(self.term_mat.rows) return len_rval def __ne__(self, other): if isinstance(other, pd.DataFrame) or isinstance(other, pd.Series) or isinstance(other, pd.Index): return NotImplemented return ~(self == other) def __eq__(self, other): """Return a boolean numpy array indicating elementwise equality.""" # When other is a dataframe or series, not implemented if isinstance(other, pd.DataFrame) or isinstance(other, pd.Series) or isinstance(other, pd.Index): return NotImplemented # When other is an ExtensionArray if isinstance(other, SearchArray): if len(self) != len(other): return False elif len(other) == 0: return np.array([], dtype=bool) else: # Compatible term dicts, and same term freqs # (not looking at positions, maybe we should?) if self.term_dict.compatible(other.term_dict): return (self.term_mat == other.term_mat) & (self.doc_lens == other.doc_lens) else: return np.zeros(len(self), dtype=bool) # return np.array(self[:]) == np.array(other[:]) # When other is a scalar value elif isinstance(other, Terms): other = SearchArray([other], tokenizer=self.tokenizer) warnings.warn("Comparing a scalar value to a SearchArray. This is slow.") return np.array(self[:]) == np.array(other[:]) # When other is a sequence but not an ExtensionArray # its an array of dicts elif is_list_like(other): if len(self) != len(other): return False elif len(other) == 0: return np.array([], dtype=bool) # We actually don't know how it was tokenized other = SearchArray(other, tokenizer=self.tokenizer) return np.array(self[:]) == np.array(other[:]) # Return False where 'other' is neither the same length nor a scalar else: return np.full(len(self), False) def isna(self): # Every row with all 0s empties = self.doc_lens == 0 return empties def take(self, indices, allow_fill=False, fill_value=None): # Want to take rows of term freqs row_indices = np.arange(len(self.term_mat.rows)) # Take within the row indices themselves result_indices = take(row_indices, indices, allow_fill=allow_fill, fill_value=-1) if allow_fill and -1 in result_indices: if fill_value is None or pd.isna(fill_value): fill_value = Terms({}, encoded=True) to_fill_mask = result_indices == -1 # This is slow as it rebuilds all the term dictionaries # on the subsequent assignment lines # However, this case tends to be the exception for # most dataframe operations taken = SearchArray([fill_value] * len(result_indices)) taken[~to_fill_mask] = self[result_indices[~to_fill_mask]].copy() return taken else: taken = self[result_indices].copy() return taken def copy(self): postings_arr = SearchArray([], tokenizer=self.tokenizer) postings_arr.doc_lens = self.doc_lens.copy() postings_arr.term_mat = self.term_mat.copy() postings_arr.posns = self.posns postings_arr.term_dict = self.term_dict postings_arr.avg_doc_length = self.avg_doc_length if not self.avoid_copies: postings_arr.posns = self.posns.copy() postings_arr.term_dict = self.term_dict.copy() return postings_arr @classmethod def _concat_same_type(cls, to_concat): concatenated_data = np.concatenate([ea[:] for ea in to_concat]) return SearchArray(concatenated_data, tokenizer=to_concat[0].tokenizer) @classmethod def _from_factorized(cls, values, original): return cls(values) def _values_for_factorize(self): """Return an array and missing value suitable for factorization (ie grouping).""" arr = np.asarray(self[:], dtype=object) return arr, Terms({}) def _check_token_arg(self, token): if isinstance(token, str): return token elif isinstance(token, list) and len(token) == 1: return token[0] elif isinstance(token, list): return token else: raise TypeError("Expected a string or list of strings for phrases") # *********************************************************** # Search functionality # *********************************************************** def termfreqs(self, token: Union[List[str], str]) -> np.ndarray: token = self._check_token_arg(token) if isinstance(token, list): return self.phrase_freq(token) try: term_id = self.term_dict.get_term_id(token) matches = np.zeros(len(self), dtype=int) slice_of_rows = None if self.term_mat.subset: slice_of_rows = self.term_mat.rows doc_ids, termfreqs = self.posns.termfreqs(term_id, doc_ids=slice_of_rows) mask = np.isin(self.term_mat.rows, doc_ids) matches[mask] = termfreqs return matches else: doc_ids, termfreqs = self.posns.termfreqs(term_id, doc_ids=slice_of_rows) matches[doc_ids] = termfreqs return matches except TermMissingError: return np.zeros(len(self), dtype=int) def docfreq(self, token: str) -> int: if not isinstance(token, str): raise TypeError("Expected a string") # Count number of rows where the term appears try: return self.posns.docfreq(self.term_dict.get_term_id(token)) except TermMissingError: return 0 def doclengths(self) -> np.ndarray: return self.doc_lens def match(self, token: Union[List[str], str], slop: int = 1) -> np.ndarray: """Return a boolean numpy array indicating w<fim_suffix>hich elements contain the given term.""" token = self._check_token_arg(token) if isinstance(token, list): term_freq = self.phrase_freq(token) else: term_freq = self.termfreqs(token) return term_freq > 0 def score(self, token: Union[str, List[str]], similarity: Similarity = default_bm25) -> np.ndarray: """Score each doc using a similarity function. Parameters ---------- token : str or list of str of what to search (already tokenized) similarity : How to score the documents. Default is BM25. """ # Get term freqs per token token = self._check_token_arg(token) # For expensive toknes, we compute doc freq first, so we # cache them in the DF cache, to let TF cache know it should be cached tokens_l = [token] if isinstance(token, str) else token all_dfs = np.asarray([self.docfreq(token) for token in tokens_l]) tfs = self.termfreqs(token) token = self._check_token_arg(token) doc_lens = self.doclengths() scores = similarity(term_freqs=tfs, doc_freqs=all_dfs, doc_lens=doc_lens, avg_doc_lens=self.avg_doc_length, num_docs=len(self)) return scores def positions(self, token: str, key=None) -> List[np.ndarray]: """Return a list of lists of positions of the given term.""" term_id = self.term_dict.get_term_id(token) key = self.term_mat.rows[key] if key is not None else self.term_mat.rows posns = self.posns.positions(term_id, doc_ids=key) return posns def and_query(self, tokens: Union[List[str], List[List[str]]]) -> np.ndarray: """Return a mask on the postings array indicating which elements contain all terms.""" masks = [self.match(term) for term in tokens] mask = np.ones(len(self), dtype=bool) for curr_mask in masks: mask = mask & curr_mask return mask def or_query(self, tokens: Union[List[str], List[List[str]]], min_should_match: int = 1) -> np.ndarray: """Return a mask on the postings array indicating which elements contain all terms.""" masks = [self.match(term) for term in tokens] mask = np.sum(masks, axis=0) >= min_should_match return mask def phrase_freq(self, tokens: List[str], slop=1) -> np.ndarray: if slop == 1 and len(tokens) == len(set(tokens)): phrase_freqs = np.zeros(len(self)) try: doc_ids = self.term_mat.rows term_ids = [self.term_dict.get_term_id(token) for token in tokens] return self.posns.phrase_freqs(term_ids, doc_ids=doc_ids, phrase_freqs=phrase_freqs) except TermMissingError: return phrase_freqs else: return self.phrase_freq_every_diff(tokens, slop=slop) def phrase_freq_scan(self, tokens: List[str], mask=None, slop=1) -> np.ndarray: if mask is None: mask = self.and_query(tokens) if np.sum(mask) == 0: return mask # Gather positions posns = [self.positions(token, mask) for token in tokens] phrase_freqs = np.zeros(len(self)) phrase_freqs[mask] = scan_merge_ins(posns, phrase_freqs[mask], slop=slop) return phrase_freqs def phrase_freq_every_diff(self, tokens: List[str], slop=1) -> np.ndarray: phrase_freqs = -np.ones(len(self)) mask = self.and_query(tokens) phrase_freqs[~mask] = 0 if np.sum(mask) == 0: return phrase_freqs term_posns = [self.positions(term, mask) for term in tokens] for width in [10, 20, 30, 40]: phrase_freqs[mask] = compute_phrase_freqs(term_posns, phrase_freqs[mask], slop=slop, width=width) remaining_mask = phrase_freqs == -1 if np.any(remaining_mask): remainder_freqs = self.phrase_freq_scan(tokens, mask=remaining_mask, slop=slop) phrase_freqs[remaining_mask] = remainder_freqs[remaining_mask] return phrase_freqs <fim_middle>
null
BLOCK_COMMENT
complete_current_header_empty_completion
<filename>searcharray/searcharray/utils/roaringish.py<fim_prefix>"""Roaring-ish bit array for storing sorted integers in numpy array. See - https://softwaredoug.com/blog/2024/01/21/search-array-phrase-algorithm """ import numpy as np import sortednp as snp import logging import numbers from typing import Optional, Tuple, List, Union logger = logging.getLogger(__name__) # When running in pytest import sys # noqa handler = logging.StreamHandler(sys.stdout) handler.setLevel(logging.ERROR) formatter = logging.Formatter("[%(filename)s:%(lineno)s - %(funcName)20s() ] %(message)s") handler.setFormatter(formatter) logger.addHandler(handler) logger.setLevel(logging.ERROR) DEFAULT_KEY_MASK = np.uint64(0xFFFFFFF000000000) DEFAULT_KEY_BITS = np.uint64(28) DEFAULT_PAYLOAD_MSB_MASK = np.uint64(0x0000000FFFFC0000) DEFAULT_PAYLOAD_MSB_BITS = np.uint64(18) DEFAULT_PAYLOAD_LSB_MASK = np.uint64(0x000000000003FFFF) DEFAULT_PAYLOAD_LSB_BITS = np.uint64(18) # To not constantly type coerce _64 = np.uint64(64) _2 = np.uint64(2) _1 = np.uint64(1) _0 = np.uint64(0) _neg1 = np.int64(-1) _algorithm = snp.GALLOPING_SEARCH def n_msb_mask(n: np.uint64) -> np.uint64: """Return the n most significant bits of num.""" return np.uint64(~(np.uint64(_1 << (_64 - n))) + _1) def sorted_unique(arr: np.ndarray) -> np.ndarray: return snp.intersect(arr, arr, duplicates=snp.DROP) class RoaringishEncoder: """An encoder for key->integer sets as a numpy array. Each returned array represents a single term, with key as MSBS, ie: | 32 MSBs | 16 LSBs | 16 LSBs | key | bits msbs | payload (different number of MSBs / payload bits can be specified) """ def __init__(self, key_bits: np.uint64 = DEFAULT_KEY_BITS): payload_bits = _64 - key_bits self.payload_msb_bits = payload_bits // _2 self.payload_lsb_bits = np.uint64(payload_bits - self.payload_msb_bits) self.key_bits = key_bits assert self.key_bits.dtype == np.uint64 # key bits MSB of 64 bits self.key_mask = n_msb_mask(key_bits) self.payload_msb_mask = n_msb_mask(np.uint64(self.payload_msb_bits + key_bits)) & ~self.key_mask assert self.payload_msb_bits.dtype == np.uint64, f"MSB bits dtype was {self.payload_msb_bits.dtype}" assert self.payload_msb_mask.dtype == np.uint64, f"MSB mask dtype was {self.payload_msb_mask.dtype}" self.payload_lsb_mask = (_1 << self.payload_lsb_bits) - np.uint64(1) assert self.payload_lsb_bits.dtype == np.uint64, f"LSB bits dtype was {self.payload_lsb_bits.dtype}" assert self.payload_lsb_mask.dtype == np.uint64, f"LSB mask dtype was {self.payload_lsb_mask.dtype}" if key_bits == DEFAULT_KEY_BITS: assert self.key_mask == DEFAULT_KEY_MASK assert self.payload_msb_mask == DEFAULT_PAYLOAD_MSB_MASK assert self.payload_lsb_mask == DEFAULT_PAYLOAD_LSB_MASK self.max_payload = np.uint64(2**self.payload_lsb_bits - 1) def validate_payload(self, payload: np.ndarray): """Optional validation of payload.""" if np.any(payload > self.max_payload): raise ValueError(f"Positions must be less than {2**self.payload_lsb_bits}") def encode(self, payload: np.ndarray, keys: Optional[np.ndarray] = None, boundaries: Optional[np.ndarray] = None) -> Tuple[np.ndarray, Optional[np.ndarray]]: """Pack a sorted array of integers into compact bit numpy array. each returned array represents a single term, with key as MSBS, ie: | 32 MSBs | 16 LSBs | 16 LSBs | key | bits msbs| payload for later easy intersection of 32+16 msbs, then checking for adjacent positions If boundaries are provided, then we consider multiple distinct payloads being encoded simultaneously, and we return the boundaries of each """ cols = np.floor_divide(payload, self.payload_lsb_bits, dtype=np.uint64) # Header of bit to use cols <<= self.payload_msb_bits if keys is not None: cols |= keys.astype(np.uint64) << (_64 - self.key_bits) values = payload % self.payload_lsb_bits # Value to encode change_indices_one_doc = np.nonzero(np.diff(cols))[0] + 1 change_indices_one_doc = np.concatenate([[0], change_indices_one_doc]) if boundaries is not None: change_indices = snp.merge(change_indices_one_doc, boundaries, duplicates=snp.DROP) new_boundaries = snp.intersect(boundaries, change_indices, indices=True)[1][1] new_boundaries = np.concatenate([new_boundaries, [len(change_indices)]]) else: change_indices = change_indices_one_doc new_boundaries = None # 0 as a position, goes in bit 1, # 1 as a position, goes in bit 2, etc values = _1 << values cols |= values encoded = cols if len(encoded) == 0: return encoded, new_boundaries reduced = np.bitwise_or.reduceat(encoded, change_indices) return reduced, new_boundaries def decode(self, encoded: np.ndarray, get_keys: bool = True) -> Union[List[Tuple[np.uint64, np.ndarray]], List[np.ndarray]]: """Decode an encoded bit array into keys / payloads.""" keys = (encoded & self.key_mask) >> (_64 - self.key_bits) msbs = (encoded & self.payload_msb_mask) >> self.payload_msb_bits to_concat = [] for bit in range(self.payload_lsb_bits): mask = 1 << bit lsbs = encoded & mask set_lsbs = (lsbs != 0) this_keys = keys[set_lsbs] payload = bit + (msbs[set_lsbs] * self.payload_lsb_bits) doc_with_posn = np.dstack([this_keys, payload])[0] to_concat.append(doc_with_posn) stacked = np.vstack(to_concat) # Sort by doc_id, then posn sorted_payload = stacked[np.lexsort((stacked[:, 1], stacked[:, 0]))] keys, idx = np.unique(sorted_payload[:, 0], return_index=True) grouped = np.split(sorted_payload[:, 1], idx[1:]) if get_keys: return list(zip(keys, grouped)) else: return grouped def keys(self, encoded: np.ndarray) -> np.ndarray: """Return keys from encoded.""" return (encoded & self.key_mask) >> (_64 - self.key_bits) def keys_unique(self, encoded: np.ndarray) -> np.ndarray: """Return keys from encoded.""" keys = self.keys(encoded) intersected = sorted_unique(keys) return intersected def payload_msb(self, encoded: np.ndarray) -> np.ndarray: """Return payl<fim_suffix>oad MSBs from encoded.""" return (encoded & self.payload_msb_mask) >> self.payload_msb_bits def payload_lsb(self, encoded: np.ndarray) -> np.ndarray: """Return payload LSBs from encoded.""" return encoded & self.payload_lsb_mask def intersect_rshift(self, lhs: np.ndarray, rhs: np.ndarray, rshift: np.int64 = _neg1) -> Tuple[np.ndarray, np.ndarray]: """Return the MSBs that are common to both lhs and rhs (same keys, same MSBs) Parameters ---------- lhs : np.ndarray of uint64 (encoded) values rhs : np.ndarray of uint64 (encoded) values rshift : int how much to shift rhs by to the right """ rhs_int = rhs assert rshift < 0, "rshift must be negative" rhs_int = rhs[self.payload_msb(rhs) >= np.abs(rshift)] rshft = rshift.view(np.uint64) rhs_shifted = (rhs_int >> self.payload_lsb_bits) + rshft # assert np.all(np.diff(rhs_shifted) >= 0), "not sorted" _, (lhs_idx, rhs_idx) = snp.intersect(lhs >> self.payload_lsb_bits, rhs_shifted, indices=True, algorithm=_algorithm) return lhs[lhs_idx], rhs_int[rhs_idx] def intersect(self, lhs: np.ndarray, rhs: np.ndarray) -> Tuple[np.ndarray, np.ndarray]: """Return the MSBs that are common to both lhs and rhs (same keys, same MSBs) Parameters ---------- lhs : np.ndarray of uint64 (encoded) values rhs : np.ndarray of uint64 (encoded) values """ # assert np.all(np.diff(rhs_shifted) >= 0), "not sorted" _, (lhs_idx, rhs_idx) = snp.intersect(lhs >> self.payload_lsb_bits, rhs >> self.payload_lsb_bits, indices=True, algorithm=_algorithm) return lhs[lhs_idx], rhs[rhs_idx] def slice(self, encoded: np.ndarray, keys: np.ndarray) -> np.ndarray: """Get list of encoded that have values in keys.""" assert len(keys.shape) == 1 assert len(encoded.shape) == 1 encoded_keys = encoded.view(np.uint64) >> (_64 - self.key_bits) _, (idx_docs, idx_enc) = snp.intersect(keys, encoded_keys, indices=True, duplicates=snp.KEEP_MAX_N, algorithm=_algorithm) return encoded[idx_enc] def convert_keys(keys) -> np.ndarray: """Convert keys to range or np.ndarray of uint64.""" if isinstance(keys, numbers.Number): return np.asarray([keys], dtype=np.uint64) elif isinstance(keys, list): return np.asarray(keys, dtype=np.uint64) elif isinstance(keys, np.ndarray): return keys.astype(np.uint64) elif isinstance(keys, range) and len(keys) > 0: # UNFORTUNATE COPY return np.arange(keys[0], keys[-1] + 1, dtype=np.uint64) + keys[0] elif isinstance(keys, range): return np.asarray([], dtype=np.uint64) raise ValueError(f"Unknown type for keys: {type(keys)}") <fim_middle>
null
BLOCK_COMMENT
complete_current_header_empty_completion
<filename>searcharray/searcharray/solr.py<fim_prefix>"""Utility functions for Solr users of searcharray.""" import re import pandas as pd import numpy as np from typing import List, Optional, Dict, Tuple from searcharray.postings import SearchArray from searcharray.similarity import Similarity, default_bm25 def parse_min_should_match(num_clauses: int, spec: str) -> int: """Parse Solr's min should match (ie mm) spec. See this ChatGPT translation of mm code from Solr's Java code for parsing this https://chat.openai.com/share/76642aec-7e05-420f-a53a-83b8e2eea8fb Parameters ---------- num_clauses : int spec : str Returns ------- int : the number of clauses that must match """ def checked_parse_int(value, error_message): try: return int(value) except ValueError: raise ValueError(error_message) result = num_clauses spec = spec.strip() if '<' in spec: # we have conditional spec(s) space_around_less_than_pattern = re.compile(r'\s*<\s*') spec = space_around_less_than_pattern.sub('<', spec) for s in spec.split(): parts = s.split('<', 1) if len(parts) < 2: raise ValueError("Invalid 'mm' spec: '" + s + "'. Expecting values before and after '<'") upper_bound = checked_parse_int(parts[0], "Invalid 'mm' spec. Expecting an integer.") if num_clauses <= upper_bound: return result else: result = parse_min_should_match(num_clauses, parts[1]) return result # otherwise, simple expression if '%' in spec: # percentage - assume the % was the last char. If not, let int() fail. spec = spec[:-1] percent = checked_parse_int(spec, "Invalid 'mm' spec. Expecting an integer.") calc = (result * percent) * (1 / 100) result = result + int(calc) if calc < 0 else int(calc) else: calc = checked_parse_int(spec, "Invalid 'mm' spec. Expecting an integer.") result = result + calc if calc < 0 else calc return min(num_clauses, max(result, 0)) def parse_field_boosts(field_lists: List[str]) -> dict: """Parse Solr's qf, pf, pf2, pf3 field boosts.""" if not field_lists: return {} out = {} carat_pattern = re.compile(r'\^') for field in field_lists: parts = carat_pattern.split(field) out[parts[0]] = None if len(parts) == 1 else float(parts[1]) return out def get_field(frame, field) -> SearchArray: if field not in frame.columns: raise ValueError(f"Field {field} not in dataframe") if not isinstance(frame[field].array, SearchArray): raise ValueError(f"Field {field} is not a searcharray field") return frame[field].array def parse_query_terms(frame: pd.DataFrame, query: str, query_fields: List[str]): search_terms: Dict[str, List[str]] = {} num_search_terms = 0 term_centric = True for field in query_fields: arr = get_field(frame, field) tokenizer = arr.tokenizer search_terms[field] = [] field_num_search_terms = 0 for posn, term in enumerate(tokenizer(query)): search_terms[field].append(term) field_num_search_terms += 1 if num_search_terms == 0: num_search_terms = field_num_search_terms elif field_num_search_terms != num_search_terms: term_centric = False return num_search_terms, search_terms, term_centric def _edismax_term_centric(frame: pd.DataFrame, query_fields: Dict[str, float], num_search_terms: int, search_terms: Dict[str, List[str]], mm: str, similarity: Similarity) -> Tuple[np.ndarray, str]: explain = [] term_scores = [] for term_posn in range(num_search_terms): max_scores = np.zeros(len(frame)) term_explain = [] for field, boost in query_fields.items(): term = search_terms[field][term_posn] post_arr = get_field(frame, field) field_term_score = post_arr.score(term, similarity=similarity) * (1 if boost is None else boost) boost_exp = f"{boost}" if boost is not None else "1" term_explain.append(f"{field}:{term}^{boost_exp}") max_scores = np.maximum(max_scores, field_term_score) term_scores.append(max_scores) explain.append("(" + " | ".join(term_explain) + ")") min_should_match = parse_min_should_match(num_search_terms, spec=mm) qf_scores = np.asarray(term_scores) matches_gt_mm = np.sum(qf_scores > 0, axis=0) >= min_should_match qf_scores = np.sum(term_scores, axis=0) qf_scores[~matches_gt_mm] = 0 return qf_scores, "(" + " ".join(explain) + f")~{min_should_match}" def _edismax_field_centric(frame: pd.DataFrame, query_fields: Dict[str, float], num_search_terms: int, search_terms: Dict[str, List[str]], mm: str, similarity: Similarity = default_bm25) -> Tuple[np.ndarray, str]: field_scores = [] explain = [] for field, boost in query_fields.items(): post_arr = get_field(frame, field) term_scores = np.array([post_arr.score(term, similarity=similarity) for term in search_terms[field]]) min_should_match = parse_min_should_match(len(search_terms[field]), spec=mm) exp = " ".join([f"{field}:{term}" for term in search_terms[field]]) boost_exp = f"{boost}" if boost is not None else "1" exp = "(" + exp + f")~{min(min_should_match, len(search_terms[field]))}" exp = "(" + exp + f")^{boost_exp}" matches_gt_mm = np.sum(term_scores > 0, axis=0) >= min(min_should_match, len(search_terms[field])) sum_terms_bm25 = np.sum(term_scores, axis=0) sum_terms_bm25[~matches_gt_mm] = 0 field_scores.append(sum_terms_bm25 * (1 if boost is None else boost)) explain.append(exp) # Take maximum field scores as qf qf_scores = np.asarray(field_scores) qf_scores = np.max(qf_scores, axis=0) return qf_scores, " | ".join(explain) def edismax(frame: pd.DataFrame, q: str, qf: List[str], mm: Optional[str] = None, pf: Optional[List[str]] = None, pf2: Optional[List[str]] = None, pf3: Optional[List[str]] = None, q_op: str = "OR", similarity: Similarity = default_bm25) -> Tuple[np.ndarray, str]: """Ru<fim_suffix>n edismax search over dataframe with searcharray fields. Parameters ---------- q : str The query string mm : str The minimum should match spec qf : list The fields to search pf : list The fields to search for phrase matches pf2 : list The fields to search for bigram matches pf3 : list The fields to search for trigram matches q_op : str, optional The default operator, by default "OR" Returns ------- np.ndarray The search results """ def listify(x): return x if isinstance(x, list) else [x] query_fields = parse_field_boosts(listify(qf)) phrase_fields = parse_field_boosts(listify(pf)) if pf else {} if mm is None: mm = "1" if q_op == "AND": mm = "100%" # bigram_fields = parse_field_boosts(pf2) if pf2 else {} # trigram_fields = parse_field_boosts(pf3) if pf3 else {} num_search_terms, search_terms, term_centric = parse_query_terms(frame, q, list(query_fields.keys())) if term_centric: qf_scores, explain = _edismax_term_centric(frame, query_fields, num_search_terms, search_terms, mm, similarity=similarity) else: qf_scores, explain = _edismax_field_centric(frame, query_fields, num_search_terms, search_terms, mm, similarity=similarity) phrase_scores = [] for field, boost in phrase_fields.items(): arr = get_field(frame, field) terms = search_terms[field] field_phrase_score = arr.score(terms, similarity=similarity) * (1 if boost is None else boost) boost_exp = f"{boost}" if boost is not None else "1" explain += f" ({field}:\"{' '.join(terms)}\")^{boost_exp}" phrase_scores.append(field_phrase_score) if len(phrase_scores) > 0: phrase_scores = np.sum(phrase_scores, axis=0) # Add where term_scores > 0 term_match_idx = np.where(qf_scores)[0] qf_scores[term_match_idx] += phrase_scores[term_match_idx] return qf_scores, explain <fim_middle>
null
BLOCK_COMMENT
complete_current_header_empty_completion
<filename>searcharray/searcharray/utils/row_viewable_matrix.py<fim_prefix>import numbers import numpy as np from searcharray.utils.mat_set import SparseMatSet from typing import Optional, Union, Dict, List def rowwise_eq(mat: SparseMatSet, other: SparseMatSet) -> Union[bool, np.ndarray]: """Check equals on a<fim_suffix> row-by-row basis.""" if len(mat) != len(other): return False row_eq = np.zeros(mat.shape[0], dtype=np.dtype('bool')) for row_idx in range(len(mat)): if np.all(mat[row_idx] == other[row_idx]): row_eq[row_idx] = True return row_eq class RowViewableMatrix: """A slicable matrix that can return views without copying.""" def __init__(self, mat: SparseMatSet, rows: Optional[np.ndarray] = None, subset=False): self.mat = mat self.col_cache: Dict[int, np.ndarray] = {} self.cols_cached: List[int] = [] if rows is None: self.rows = np.arange(self.mat.shape[0]) elif isinstance(rows, numbers.Integral): self.rows = np.array([rows]) else: self.rows = rows self.subset = subset def slice(self, keys): return RowViewableMatrix(self.mat, self.rows[keys], subset=True) def __setitem__(self, keys, values): # Replace nan with 0 self.col_cache = {} self.cols_cached = [] actual_keys = self.rows[keys] if isinstance(actual_keys, numbers.Integral): self.mat[actual_keys] = values elif len(actual_keys) > 0: self.mat[actual_keys] = values def copy_row_at(self, row): return self.mat[self.rows[row]] def copy(self): return RowViewableMatrix(self.mat.copy(), self.rows.copy(), subset=self.subset) def cols_per_row(self): return self.mat[self.rows].num_cols_per_row() def copy_col_at(self, col): if col not in self.col_cache: self.col_cache[col] = self.mat[self.rows, col] self.cols_cached.append(col) if len(self.cols_cached) > 10: del self.col_cache[self.cols_cached.pop(0)] return self.col_cache[col] def __getitem__(self, key): if isinstance(key, numbers.Integral): return self.copy_row_at(key) else: return self.slice(key) @property def nbytes(self): return self.mat.nbytes + \ self.rows.nbytes @property def shape(self): return (len(self.rows), self.mat.shape[1]) def resize(self, shape): self.mat.ensure_capacity(shape[0] - 1) def __len__(self): return len(self.rows) def __repr__(self): return f"RowViewableMatrix({repr(self.mat)}, {repr(self.rows)})" def __str__(self): return f"RowViewableMatrix({str(self.mat)}, {str(self.rows)})" def __eq__(self, other): return rowwise_eq(self.mat[self.rows], other.mat[other.rows]) <fim_middle>
null
BLOCK_COMMENT
complete_current_header_empty_completion
<filename>searcharray/searcharray/solr.py<fim_prefix>"""Utility functions for Solr users of searcharray.""" import re import pandas as pd import numpy as np from typing import List, Optional, Dict, Tuple from searcharray.postings import SearchArray from searcharray.similarity import Similarity, default_bm25 def parse_min_should_match(num_clauses: int, spec: str) -> int: """Parse Solr's min should match (ie mm) spec. See this ChatGPT translation of mm code from Solr's Java code for parsing this https://chat.openai.com/share/76642aec-7e05-420f-a53a-83b8e2eea8fb Parameters ---------- num_clauses : int spec : str Returns ------- int : the number of clauses that must match """ def checked_parse_int(value, error_message): try: return int(value) except ValueError: raise ValueError(error_message) result = num_clauses spec = spec.strip() if '<' in spec: # we have conditional spec(s) space_around_less_than_pattern = re.compile(r'\s*<\s*') spec = space_around_less_than_pattern.sub('<', spec) for s in spec.split(): parts = s.split('<', 1) if len(parts) < 2: raise ValueError("Invalid 'mm' spec: '" + s + "'. Expecting values before and after '<'") upper_bound = checked_parse_int(parts[0], "Invalid 'mm' spec. Expecting an integer.") if num_clauses <= upper_bound: return result else: result = parse_min_should_match(num_clauses, parts[1]) return result # otherwise, simple expression if '%' in spec: # percentage - assume the % was the last char. If not, let int() fail. spec = spec[:-1] percent = checked_parse_int(spec, "Invalid 'mm' spec. Expecting an integer.") calc = (result * percent) * (1 / 100) result = result + int(calc) if calc < 0 else int(calc) else: calc = checked_parse_int(spec, "Invalid 'mm' spec. Expecting an integer.") result = result + calc if calc < 0 else calc return min(num_clauses, max(result, 0)) def parse_field_boosts(field_lists: List[str]) -> dict: """Parse Solr's qf, pf, pf2, pf3 field boo<fim_suffix>sts.""" if not field_lists: return {} out = {} carat_pattern = re.compile(r'\^') for field in field_lists: parts = carat_pattern.split(field) out[parts[0]] = None if len(parts) == 1 else float(parts[1]) return out def get_field(frame, field) -> SearchArray: if field not in frame.columns: raise ValueError(f"Field {field} not in dataframe") if not isinstance(frame[field].array, SearchArray): raise ValueError(f"Field {field} is not a searcharray field") return frame[field].array def parse_query_terms(frame: pd.DataFrame, query: str, query_fields: List[str]): search_terms: Dict[str, List[str]] = {} num_search_terms = 0 term_centric = True for field in query_fields: arr = get_field(frame, field) tokenizer = arr.tokenizer search_terms[field] = [] field_num_search_terms = 0 for posn, term in enumerate(tokenizer(query)): search_terms[field].append(term) field_num_search_terms += 1 if num_search_terms == 0: num_search_terms = field_num_search_terms elif field_num_search_terms != num_search_terms: term_centric = False return num_search_terms, search_terms, term_centric def _edismax_term_centric(frame: pd.DataFrame, query_fields: Dict[str, float], num_search_terms: int, search_terms: Dict[str, List[str]], mm: str, similarity: Similarity) -> Tuple[np.ndarray, str]: explain = [] term_scores = [] for term_posn in range(num_search_terms): max_scores = np.zeros(len(frame)) term_explain = [] for field, boost in query_fields.items(): term = search_terms[field][term_posn] post_arr = get_field(frame, field) field_term_score = post_arr.score(term, similarity=similarity) * (1 if boost is None else boost) boost_exp = f"{boost}" if boost is not None else "1" term_explain.append(f"{field}:{term}^{boost_exp}") max_scores = np.maximum(max_scores, field_term_score) term_scores.append(max_scores) explain.append("(" + " | ".join(term_explain) + ")") min_should_match = parse_min_should_match(num_search_terms, spec=mm) qf_scores = np.asarray(term_scores) matches_gt_mm = np.sum(qf_scores > 0, axis=0) >= min_should_match qf_scores = np.sum(term_scores, axis=0) qf_scores[~matches_gt_mm] = 0 return qf_scores, "(" + " ".join(explain) + f")~{min_should_match}" def _edismax_field_centric(frame: pd.DataFrame, query_fields: Dict[str, float], num_search_terms: int, search_terms: Dict[str, List[str]], mm: str, similarity: Similarity = default_bm25) -> Tuple[np.ndarray, str]: field_scores = [] explain = [] for field, boost in query_fields.items(): post_arr = get_field(frame, field) term_scores = np.array([post_arr.score(term, similarity=similarity) for term in search_terms[field]]) min_should_match = parse_min_should_match(len(search_terms[field]), spec=mm) exp = " ".join([f"{field}:{term}" for term in search_terms[field]]) boost_exp = f"{boost}" if boost is not None else "1" exp = "(" + exp + f")~{min(min_should_match, len(search_terms[field]))}" exp = "(" + exp + f")^{boost_exp}" matches_gt_mm = np.sum(term_scores > 0, axis=0) >= min(min_should_match, len(search_terms[field])) sum_terms_bm25 = np.sum(term_scores, axis=0) sum_terms_bm25[~matches_gt_mm] = 0 field_scores.append(sum_terms_bm25 * (1 if boost is None else boost)) explain.append(exp) # Take maximum field scores as qf qf_scores = np.asarray(field_scores) qf_scores = np.max(qf_scores, axis=0) return qf_scores, " | ".join(explain) def edismax(frame: pd.DataFrame, q: str, qf: List[str], mm: Optional[str] = None, pf: Optional[List[str]] = None, pf2: Optional[List[str]] = None, pf3: Optional[List[str]] = None, q_op: str = "OR", similarity: Similarity = default_bm25) -> Tuple[np.ndarray, str]: """Run edismax search over dataframe with searcharray fields. Parameters ---------- q : str The query string mm : str The minimum should match spec qf : list The fields to search pf : list The fields to search for phrase matches pf2 : list The fields to search for bigram matches pf3 : list The fields to search for trigram matches q_op : str, optional The default operator, by default "OR" Returns ------- np.ndarray The search results """ def listify(x): return x if isinstance(x, list) else [x] query_fields = parse_field_boosts(listify(qf)) phrase_fields = parse_field_boosts(listify(pf)) if pf else {} if mm is None: mm = "1" if q_op == "AND": mm = "100%" # bigram_fields = parse_field_boosts(pf2) if pf2 else {} # trigram_fields = parse_field_boosts(pf3) if pf3 else {} num_search_terms, search_terms, term_centric = parse_query_terms(frame, q, list(query_fields.keys())) if term_centric: qf_scores, explain = _edismax_term_centric(frame, query_fields, num_search_terms, search_terms, mm, similarity=similarity) else: qf_scores, explain = _edismax_field_centric(frame, query_fields, num_search_terms, search_terms, mm, similarity=similarity) phrase_scores = [] for field, boost in phrase_fields.items(): arr = get_field(frame, field) terms = search_terms[field] field_phrase_score = arr.score(terms, similarity=similarity) * (1 if boost is None else boost) boost_exp = f"{boost}" if boost is not None else "1" explain += f" ({field}:\"{' '.join(terms)}\")^{boost_exp}" phrase_scores.append(field_phrase_score) if len(phrase_scores) > 0: phrase_scores = np.sum(phrase_scores, axis=0) # Add where term_scores > 0 term_match_idx = np.where(qf_scores)[0] qf_scores[term_match_idx] += phrase_scores[term_match_idx] return qf_scores, explain <fim_middle>
null
BLOCK_COMMENT
complete_current_header_empty_completion
<filename>searcharray/searcharray/postings.py<fim_prefix>"""Tokenized, searchable text as a pandas dtype.""" import pandas as pd import numbers from pandas.api.extensions import ExtensionDtype, ExtensionArray, register_extension_dtype from pandas.api.types import is_list_like from pandas.api.extensions import take import json from collections import Counter import warnings import logging from typing import List, Union, Optional, Iterable import numpy as np from searcharray.phrase.scan_merge import scan_merge_ins from searcharray.phrase.posn_diffs import compute_phrase_freqs from searcharray.phrase.middle_out import PosnBitArray from searcharray.similarity import Similarity, default_bm25 from searcharray.indexing import build_index_from_tokenizer, build_index_from_terms_list from searcharray.term_dict import TermMissingError logger = logging.getLogger(__name__) # When running in pytest import sys # noqa handler = logging.StreamHandler(sys.stdout) handler.setLevel(logging.ERROR) formatter = logging.Formatter("[%(filename)s:%(lineno)s - %(funcName)20s() ] %(message)s") handler.setFormatter(formatter) logger.addHandler(handler) logger.setLevel(logging.ERROR) class Terms: """An indexed search doc - a single bag of tokenized words and positions.""" def __init__(self, postings, doc_len: int = 0, posns: Optional[dict] = None, encoded=False): self.postings = postings self.posns = None self.encoded = encoded self.doc_len = doc_len self.posns = posns def _validate_posns(self): # (For testing/assertions) - Confirm every term in positions also in postings if self.posns is None: return for term in self.posns: if term not in self.postings: raise ValueError(f"Term {term} in positions but not in postings. ") def termfreq(self, token): return self.postings[token] def terms(self): return self.postings.items() def positions(self, term=None): if self.posns is None: return {} if term is None: posns = self.posns.items() else: posns = self.posns[term] return posns def raw_positions(self, term_dict, term=None): if self.posns is None: return {} if term is None: posns = [(term_dict.get_term_id(term), posns) for term, posns in self.posns.items()] else: posns = [(term_dict.get_term_id(term), self.posns[term])] return posns def tf_to_dense(self, term_dict): """Convert to a dense vector of term frequencies.""" dense = np.zeros(len(term_dict)) for term, freq in self.terms(): dense[term_dict.get_term_id(term)] = freq return dense def __len__(self): return len(self.postings) def __repr__(self): posting_keys = set(self.postings.keys()) rval = f"Terms({posting_keys})" return rval def __str__(self): return repr(self) def __eq__(self, other): # Flip to the other implementation if we're comparing to a SearchArray # to get a boolean array back if isinstance(other, SearchArray): return other == self same_postings = isinstance(other, Terms) and self.postings == other.postings if same_postings and self.doc_len == other.doc_len: return True def __lt__(self, other): # return isinstance(other, Terms) and hash(self) < hash(other) keys_both = set(self.postings.keys()).union(set(other.postings.keys())) # Sort lexically keys_both = sorted(keys_both) # Iterate as if these are two vectors of the same large dimensional vector sparse for key in keys_both: lhs_val = 0 rhs_val = 0 try: lhs_val = self.postings[key] except KeyError: pass try: rhs_val = other.postings[key] except KeyError: pass if lhs_val < rhs_val: return True elif lhs_val > rhs_val: return False else: continue return False def __le__(self, other): return self < other or self == other def __gt__(self, other): return not (self < other) and self != other def __hash__(self): return hash(json.dumps(self.postings, sort_keys=True)) class TermsDtype(ExtensionDtype): """Pandas dtype for terms.""" name = 'tokenized_text' type = Terms kind = 'O' @classmethod def construct_from_string(cls, string): if not isinstance(string, str): raise TypeError( "'construct_from_string' expects a string, got {}".format(type(string)) ) elif string == cls.name: return cls() else: raise TypeError( "Cannot construct a '{}' from '{}'".format(cls.__name__, string) ) @classmethod def construct_array_type(cls): return SearchArray def __repr__(self): return 'TermsDtype()' @property def na_value(self): return Terms({}) def valid_value(self, value): return isinstance(value, dict) or pd.isna(value) or isinstance(value, Terms) register_extension_dtype(TermsDtype) def ws_tokenizer(string): if pd.isna(string): return [] if not isinstance(string, str): raise ValueError("Expected a string") return string.split() def _row_to_postings_row(doc_id, row, doc_len, term_dict, posns: PosnBitArray): tfs = {} labeled_posns = {} for term_idx in row.cols: term = term_dict.get_term(term_idx) tfs[term] = 1 enc_term_posns = posns.doc_encoded_posns(term_idx, doc_id=doc_id) labeled_posns[term] = enc_term_posns result = Terms(tfs, posns=labeled_posns, doc_len=doc_len, encoded=True) return result class SearchArray(ExtensionArray): """An array of tokenized text (Termss).""" dtype = TermsDtype() def __init__(self, postings, tokenizer=ws_tokenizer, avoid_copies=True): # Check dtype, raise TypeError if not is_list_like(postings): raise TypeError("Expected list-like object, got {}".format(type(postings))) self.avoid_copies = avoid_copies self.tokenizer = tokenizer self.term_mat, self.posns, \ self.term_dict, self.avg_doc_length, \ self.doc_lens = build_index_from_terms_list(postings, Terms) @classmethod def index(cls, array: Iterable, tokenizer=ws_tokenizer, truncate=False, batch_size=100000, avoid_copies=True) -> 'SearchArray': """Index an array of strings using tokenizer.""" if not is_list_like(array): raise TypeError("Expected list-like object, got {}".format(type(array))) term_mat, posns, term_dict, avg_doc_length, doc_lens =\ build_index_from_tokenizer(array, tokenizer, batch_size=batch_size, truncate=truncate) postings = cls([], tokenizer=tokenizer, avoid_copies=avoid_copies) postings.term_mat = term_mat postings.posns = posns postings.term_dict = term_dict postings.avg_doc_length = avg_doc_length postings.doc_lens = doc_lens return postings @classmethod def _from_sequence(cls, scalars, dtype=None, copy=False): """Construct a new SearchArray from a sequence of scalars (PostingRow or convertible into).""" if dtype is not None: if not isinstance(dtype, TermsDtype): return scalars if isinstance(scalars, np.ndarray) and scalars.dtype == TermsDtype(): return cls(scalars) # String types elif isinstance(scalars, np.ndarray) and scalars.dtype.kind in 'US': return cls(scalars) # Other objects elif isinstance(scalars, np.ndarray) and scalars.dtype != object: return scalars return cls(scalars) def memory_usage(self, deep=False): """Return memory usage of this array in bytes.""" return self.nbytes @property def nbytes(self): return self.term_mat.nbytes + self.posns.nbytes + self.doc_lens.nbytes + self.term_dict.nbytes def __getitem__(self, key): key = pd.api.indexers.check_array_indexer(self, key) # Want to take rows of term freqs if isinstance(key, numbers.Integral): try: rows = self.term_mat[key] doc_len = self.doc_lens[key] doc_id = key if doc_id < 0: doc_id += len(self) return _row_to_postings_row(doc_id, rows[0], doc_len, self.term_dict, self.posns) except IndexError: raise IndexError("index out of bounds") else: # Construct a sliced view of this array sliced_tfs = self.term_mat.slice(key) sliced_posns = self.posns.slice(sliced_tfs.rows) if not self.avoid_copies else self.posns arr = SearchArray([], tokenizer=self.tokenizer) arr.term_mat = sliced_tfs arr.doc_lens = self.doc_lens[key] arr.posns = sliced_posns arr.term_dict = self.term_dict arr.avg_doc_length = self.avg_doc_length return arr def __setitem__(self, key, value): """Set an item in the array.""" key = pd.api.indexers.check_array_indexer(self, key) if isinstance(value, pd.Series): value = value.values if isinstance(value, pd.DataFrame): value = value.values.flatten() if isinstance(value, SearchArray): value = value.to_numpy() if isinstance(value, list): value = np.asarray(value, dtype=object) if not isinstance(value, np.ndarray) and not self.dtype.valid_value(value): raise ValueError(f"Cannot set non-object array to SearchArray -- you passed type:{type(value)} -- {value}") # Cant set a single value to an array if isinstance(key, numbers.Integral) and isinstance(value, np.ndarray): raise ValueError("Cannot set a single value to an array") try: is_encoded = False posns = None term_mat = np.asarray([]) doc_lens = np.asarray([]) if isinstance(value, float): term_mat = np.asarray([value]) doc_lens = np.asarray([0]) elif isinstance(value, Terms): term_mat = np.asarray([value.tf_to_dense(self.term_dict)]) doc_lens = np.asarray([value.doc_len]) is_encoded = value.encoded posns = [value.raw_positions(self.term_dict)] elif isinstance(value, np.ndarray): term_mat = np.asarray([x.tf_to_dense(self.term_dict) for x in value]) doc_lens = np.asarray([x.doc_len for x in value]) is_encoded = value[0].encoded if len(value) > 0 else False posns = [x.raw_positions(self.term_dict) for x in value] np.nan_to_num(term_mat, copy=False, nan=0) self.term_mat[key] = term_mat self.doc_lens[key] = doc_lens if posns is not None: self.posns.insert(key, posns, is_encoded) # Assume we have a positions for each term, doc pair. We can just update it. # Otherwise we would have added new terms except TermMissingError: self._add_new_terms(key, value) def _add_new_terms(self, key, value): msg = """Adding new terms! This might not be good if you tokenized this new text with a different tokenizer. Also. This is slow.""" warnings.warn(msg) scan_value = value if isinstance(value, Terms): scan_value = np.asarray([value]) for row in scan_value: for term in row.terms(): self.term_dict.add_term(term[0]) self.term_mat.resize((self.term_mat.shape[0], len(self.term_dict))) # Ensure posns_lookup has at least max self.posns self[key] = value def value_counts( self, dropna: bool = True, ): if dropna: counts = Counter(self[:]) counts.pop(Terms({}), None) else: counts = Counter(self[:]) return pd.Series(counts) def __len__(self): len_rval = len(self.term_mat.rows) return len_rval def __ne__(self, other): if isinstance(other, pd.DataFrame) or isinstance(other, pd.Series) or isinstance(other, pd.Index): return NotImplemented return ~(self == other) def __eq__(self, other): """Return a boolean numpy array indicating elementwise equality.""" # When other is a dataframe or series, not implemented if isinstance(other, pd.DataFrame) or isinstance(other, pd.Series) or isinstance(other, pd.Index): return NotImplemented # When other is an ExtensionArray if isinstance(other, SearchArray): if len(self) != len(other): return False elif len(other) == 0: return np.array([], dtype=bool) else: # Compatible term dicts, and same term freqs # (not looking at positions, maybe we should?) if self.term_dict.compatible(other.term_dict): return (self.term_mat == other.term_mat) & (self.doc_lens == other.doc_lens) else: return np.zeros(len(self), dtype=bool) # return np.array(self[:]) == np.array(other[:]) # When other is a scalar value elif isinstance(other, Terms): other = SearchArray([other], tokenizer=self.tokenizer) warnings.warn("Comparing a scalar value to a SearchArray. This is slow.") return np.array(self[:]) == np.array(other[:]) # When other is a sequence but not an ExtensionArray # its an array of dicts elif is_list_like(other): if len(self) != len(other): return False elif len(other) == 0: return np.array([], dtype=bool) # We actually don't know how it was tokenized other = SearchArray(other, tokenizer=self.tokenizer) return np.array(self[:]) == np.array(other[:]) # Return False where 'other' is neither the same length nor a scalar else: return np.full(len(self), False) def isna(self): # Every row with all 0s empties = self.doc_lens == 0 return empties def take(self, indices, allow_fill=False, fill_value=None): # Want to take rows of term freqs row_indices = np.arange(len(self.term_mat.rows)) # Take within the row indices themselves result_indices = take(row_indices, indices, allow_fill=allow_fill, fill_value=-1) if allow_fill and -1 in result_indices: if fill_value is None or pd.isna(fill_value): fill_value = Terms({}, encoded=True) to_fill_mask = result_indices == -1 # This is slow as it rebuilds all the term dictionaries # on the subsequent assignment lines # However, this case tends to be the exception for # most dataframe operations taken = SearchArray([fill_value] * len(result_indices)) taken[~to_fill_mask] = self[result_indices[~to_fill_mask]].copy() return taken else: taken = self[result_indices].copy() return taken def copy(self): postings_arr = SearchArray([], tokenizer=self.tokenizer) postings_arr.doc_lens = self.doc_lens.copy() postings_arr.term_mat = self.term_mat.copy() postings_arr.posns = self.posns postings_arr.term_dict = self.term_dict postings_arr.avg_doc_length = self.avg_doc_length if not self.avoid_copies: postings_arr.posns = self.posns.copy() postings_arr.term_dict = self.term_dict.copy() return postings_arr @classmethod def _concat_same_type(cls, to_concat): concatenated_data = np.concatenate([ea[:] for ea in to_concat]) return SearchArray(concatenated_data, tokenizer=to_concat[0].tokenizer) @classmethod def _from_factorized(cls, values, original): return cls(values) def _values_for_factorize(self): """Return an array and missing value suitable for factorization (ie grouping).""" arr = np.asarray(self[:], dtype=object) return arr, Terms({}) def _check_token_arg(self, token): if isinstance(token, str): return token elif isinstance(token, list) and len(token) == 1: return token[0] elif isinstance(token, list): return token else: raise TypeError("Expected a string or list of strings for phrases") # *********************************************************** # Search functionality # *********************************************************** def termfreqs(self, token: Union[List[str], str]) -> np.ndarray: token = self._check_token_arg(token) if isinstance(token, list): return self.phrase_freq(token) try: term_id = self.term_dict.get_term_id(token) matches = np.zeros(len(self), dtype=int) slice_of_rows = None if self.term_mat.subset: slice_of_rows = self.term_mat.rows doc_ids, termfreqs = self.posns.termfreqs(term_id, doc_ids=slice_of_rows) mask = np.isin(self.term_mat.rows, doc_ids) matches[mask] = termfreqs return matches else: doc_ids, termfreqs = self.posns.termfreqs(term_id, doc_ids=slice_of_rows) matches[doc_ids] = termfreqs return matches except TermMissingError: return np.zeros(len(self), dtype=int) def docfreq(self, token: str) -> int: if not isinstance(token, str): raise TypeError("Expected a string") # Count number of rows where the term appears try: return self.posns.docfreq(self.term_dict.get_term_id(token)) except TermMissingError: return 0 def doclengths(self) -> np.ndarray: return self.doc_lens def match(self, token: Union[List[str], str], slop: int = 1) -> np.ndarray: """Return a boolean numpy array indicating which elements contain the given term.""" token = self._check_token_arg(token) if isinstance(token, list): term_freq = self.phrase_freq(token) else: term_freq = self.termfreqs(token) return term_freq > 0 def score(self, token: Union[str, List[str]], similarity: Similarity = default_bm25) -> np.ndarray: """Sco<fim_suffix>re each doc using a similarity function. Parameters ---------- token : str or list of str of what to search (already tokenized) similarity : How to score the documents. Default is BM25. """ # Get term freqs per token token = self._check_token_arg(token) # For expensive toknes, we compute doc freq first, so we # cache them in the DF cache, to let TF cache know it should be cached tokens_l = [token] if isinstance(token, str) else token all_dfs = np.asarray([self.docfreq(token) for token in tokens_l]) tfs = self.termfreqs(token) token = self._check_token_arg(token) doc_lens = self.doclengths() scores = similarity(term_freqs=tfs, doc_freqs=all_dfs, doc_lens=doc_lens, avg_doc_lens=self.avg_doc_length, num_docs=len(self)) return scores def positions(self, token: str, key=None) -> List[np.ndarray]: """Return a list of lists of positions of the given term.""" term_id = self.term_dict.get_term_id(token) key = self.term_mat.rows[key] if key is not None else self.term_mat.rows posns = self.posns.positions(term_id, doc_ids=key) return posns def and_query(self, tokens: Union[List[str], List[List[str]]]) -> np.ndarray: """Return a mask on the postings array indicating which elements contain all terms.""" masks = [self.match(term) for term in tokens] mask = np.ones(len(self), dtype=bool) for curr_mask in masks: mask = mask & curr_mask return mask def or_query(self, tokens: Union[List[str], List[List[str]]], min_should_match: int = 1) -> np.ndarray: """Return a mask on the postings array indicating which elements contain all terms.""" masks = [self.match(term) for term in tokens] mask = np.sum(masks, axis=0) >= min_should_match return mask def phrase_freq(self, tokens: List[str], slop=1) -> np.ndarray: if slop == 1 and len(tokens) == len(set(tokens)): phrase_freqs = np.zeros(len(self)) try: doc_ids = self.term_mat.rows term_ids = [self.term_dict.get_term_id(token) for token in tokens] return self.posns.phrase_freqs(term_ids, doc_ids=doc_ids, phrase_freqs=phrase_freqs) except TermMissingError: return phrase_freqs else: return self.phrase_freq_every_diff(tokens, slop=slop) def phrase_freq_scan(self, tokens: List[str], mask=None, slop=1) -> np.ndarray: if mask is None: mask = self.and_query(tokens) if np.sum(mask) == 0: return mask # Gather positions posns = [self.positions(token, mask) for token in tokens] phrase_freqs = np.zeros(len(self)) phrase_freqs[mask] = scan_merge_ins(posns, phrase_freqs[mask], slop=slop) return phrase_freqs def phrase_freq_every_diff(self, tokens: List[str], slop=1) -> np.ndarray: phrase_freqs = -np.ones(len(self)) mask = self.and_query(tokens) phrase_freqs[~mask] = 0 if np.sum(mask) == 0: return phrase_freqs term_posns = [self.positions(term, mask) for term in tokens] for width in [10, 20, 30, 40]: phrase_freqs[mask] = compute_phrase_freqs(term_posns, phrase_freqs[mask], slop=slop, width=width) remaining_mask = phrase_freqs == -1 if np.any(remaining_mask): remainder_freqs = self.phrase_freq_scan(tokens, mask=remaining_mask, slop=slop) phrase_freqs[remaining_mask] = remainder_freqs[remaining_mask] return phrase_freqs <fim_middle>
null
BLOCK_COMMENT
complete_current_header_empty_completion
<filename>searcharray/searcharray/phrase/middle_out.py<fim_prefix>"""Encode positions in bits along with some neighboring information for wrapping. See this notebook for motivation: https://colab.research.google.com/drive/10tIEkdlCE_1J_CcgEcV0jkLfBc-0H4am?authuser=1#scrollTo=XWzy-n9dF3PG """ import numpy as np import sortednp as snp from copy import deepcopy from typing import List, Tuple, Dict, Union, cast, Optional from searcharray.utils.roaringish import RoaringishEncoder, convert_keys, sorted_unique import numbers import logging from collections import defaultdict from searcharray.utils.bitcount import bit_count64 logger = logging.getLogger(__name__) # When running in pytest import sys # noqa handler = logging.StreamHandler(sys.stdout) handler.setLevel(logging.ERROR) formatter = logging.Formatter("[%(filename)s:%(lineno)s - %(funcName)20s() ] %(message)s") handler.setFormatter(formatter) logger.addHandler(handler) logger.setLevel(logging.ERROR) encoder = RoaringishEncoder() # To not constantly type coerce _64 = np.uint64(64) _2 = np.uint64(2) _1 = np.uint64(1) _0 = np.uint64(0) _neg1 = np.int64(-1) MAX_POSN = encoder.max_payload def inner_bigram_freqs(lhs: np.ndarray, rhs: np.ndarray, phrase_freqs: np.ndarray) -> Tuple[np.ndarray, np.ndarray]: """Count bigram matches between two encoded arrays, within a 64 bit word with same MSBs. Returns: -------- count: number of matches per doc rhs_next: the next rhs array to continue matching """ lhs_int, rhs_int = encoder.intersect(lhs, rhs) lhs_doc_ids = encoder.keys(lhs_int) if len(lhs_int) != len(rhs_int): raise ValueError("Encoding error, MSBs apparently are duplicated among your encoded posn arrays.") if len(lhs_int) == 0: return phrase_freqs, rhs_int same_term = (len(lhs_int) == len(rhs_int) and lhs_int[0] == rhs_int[0]) if same_term: # Find a<fim_suffix>djacent matches rhs_shift = rhs_int << _1 overlap = lhs_int & rhs_shift overlap = encoder.payload_lsb(overlap) adjacents = bit_count64(overlap).astype(np.int64) adjacents -= -np.floor_divide(adjacents, -2) # ceiling divide phrase_freqs[lhs_doc_ids] += adjacents return phrase_freqs, rhs_int overlap_bits = (lhs_int & encoder.payload_lsb_mask) & ((rhs_int & encoder.payload_lsb_mask) >> _1) rhs_next2 = (overlap_bits << _1) & encoder.payload_lsb_mask rhs_next2 |= (rhs_int & (encoder.key_mask | encoder.payload_msb_mask)) phrase_freqs2 = phrase_freqs.copy() matches2 = overlap_bits > 0 if np.any(matches2): transitions = np.argwhere(np.diff(lhs_doc_ids[matches2]) != 0).flatten() + 1 transitions = np.insert(transitions, 0, 0) counted_bits = bit_count64(overlap_bits[matches2]) reduced = np.add.reduceat(counted_bits, transitions) phrase_freqs2[np.unique(lhs_doc_ids[matches2])] += reduced return phrase_freqs2, rhs_next2 def adjacent_bigram_freqs(lhs: np.ndarray, rhs: np.ndarray, phrase_freqs: np.ndarray) -> Tuple[np.ndarray, np.ndarray]: """Count bigram matches between two encoded arrays where they occur in adjacent 64 bit words. Returns: -------- count: number of matches per doc rhs_next: the next rhs array to continue matching """ lhs_int, rhs_int = encoder.intersect_rshift(lhs, rhs, rshift=_neg1) lhs_doc_ids = encoder.keys(lhs_int) # lhs lsb set and rhs lsb's most significant bit set upper_bit = _1 << (encoder.payload_lsb_bits - _1) matches = ((lhs_int & upper_bit) != 0) & ((rhs_int & _1) != 0) unique, counts = np.unique(lhs_doc_ids[matches], return_counts=True) phrase_freqs[unique] += counts rhs_next = rhs_int rhs_next[~matches] |= ~encoder.payload_lsb_mask rhs_next[matches] |= (encoder.payload_lsb_mask & _1) return phrase_freqs, rhs_next def bigram_freqs(lhs: np.ndarray, rhs: np.ndarray, phrase_freqs: np.ndarray) -> Tuple[np.ndarray, np.ndarray]: """Count bigram matches between two encoded arrays. Returns: -------- count: number of matches per doc rhs_next: the next rhs array to continue matching """ # Combine lhs and rhs matches from two strategies phrase_freqs, rhs_next_inner = inner_bigram_freqs(lhs, rhs, phrase_freqs) phrase_freqs, rhs_next_adj = adjacent_bigram_freqs(lhs, rhs, phrase_freqs) rhs_next = np.sort(np.concatenate([rhs_next_inner, rhs_next_adj])) # Combine return phrase_freqs, rhs_next def trim_phrase_search(encoded_posns: List[np.ndarray], phrase_freqs: np.ndarray) -> List[np.ndarray]: """Trim long phrases by searching the rarest terms first.""" # Start with rarest term shortest_keys = None shortest_idx = None min_len = 1e100 max_len = 0 for idx, enc_posn in enumerate(encoded_posns): if len(enc_posn) < min_len: shortest_keys = encoder.keys(enc_posn) shortest_idx = idx min_len = len(enc_posn) if len(enc_posn) > max_len: max_len = len(enc_posn) if shortest_keys is None: return encoded_posns for enc_posn_idx in range(len(encoded_posns)): if enc_posn_idx == shortest_idx: continue if len(encoded_posns[enc_posn_idx]) > (10 * min_len): encoded_posns[enc_posn_idx] = encoder.slice(encoded_posns[enc_posn_idx], shortest_keys) return encoded_posns def compute_phrase_freqs(encoded_posns: List[np.ndarray], phrase_freqs: np.ndarray) -> np.ndarray: if len(encoded_posns) < 2: raise ValueError("phrase must have at least two terms") # Trim long phrases by searching the rarest terms first if len(encoded_posns) > 3: encoded_posns = trim_phrase_search(encoded_posns, phrase_freqs) mask = np.ones(len(phrase_freqs), dtype=bool) lhs = encoded_posns[0] for rhs in encoded_posns[1:]: # Only count the count of the last bigram (ignoring the ones where priors did not match) phrase_freqs[mask] = 0 phrase_freqs, lhs = bigram_freqs(lhs, rhs, phrase_freqs) mask &= (phrase_freqs > 0) phrase_freqs[~mask] = 0 return phrase_freqs class PosnBitArrayFromFlatBuilder: """ Build from sorted array shape num terms x 3. 0th is term id 1st is doc id 2nd is posn Sorted by term id then posns """ def __init__(self, flat_array: np.ndarray): self.flat_array = flat_array def build(self): """Slice the flat array into a 2d array of doc ids and posns.""" term_boundaries = np.argwhere(np.diff(self.flat_array[0]) > 0).flatten() + 1 term_boundaries = np.concatenate([[0], term_boundaries, [len(self.flat_array[1])]]) encoded, enc_term_boundaries = encoder.encode(keys=self.flat_array[1].view(np.uint64), boundaries=term_boundaries[:-1], payload=self.flat_array[2].view(np.uint64)) term_ids = self.flat_array[0][term_boundaries[:-1]] encoded_term_posns = {} for into_terms, (beg_idx, end_idx) in enumerate(zip(enc_term_boundaries[:-1], enc_term_boundaries[1:])): sliced = encoded[beg_idx:end_idx] encoded_term_posns[term_ids[into_terms]] = sliced return PosnBitArray(encoded_term_posns, self.flat_array[1].max()) class PosnBitArrayBuilder: def __init__(self): self.term_posns = defaultdict(list) self.term_posn_doc_ids = defaultdict(list) self.max_doc_id = 0 def add_posns(self, doc_id: int, term_id: int, posns: List[int]): doc_ids = [doc_id] * len(posns) self.term_posns[term_id].extend(posns) self.term_posn_doc_ids[term_id].extend(doc_ids) def ensure_capacity(self, doc_id): self.max_doc_id = max(self.max_doc_id, doc_id) def build(self, check=False): encoded_term_posns = {} for term_id, posns in self.term_posns.items(): if len(posns) == 0: posns = np.asarray([], dtype=np.uint32).flatten() elif isinstance(posns, list): posns_arr = np.asarray(posns, dtype=np.uint32).flatten() posns = posns_arr doc_ids = self.term_posn_doc_ids[term_id] if isinstance(doc_ids, list): doc_ids = np.asarray(doc_ids, dtype=np.uint32) encoded = encoder.encode(keys=doc_ids, payload=posns) if check: decode_again = encoder.decode(encoded) docs_to_posns = dict(decode_again) doc_ids_again = [] posns_again = [] for doc_id, posns_dec in docs_to_posns.items(): for posn in posns_dec: doc_ids_again.append(doc_id) posns_again.append(posn) assert np.array_equal(doc_ids_again, doc_ids) assert np.array_equal(posns, posns_again) encoded_term_posns[term_id] = encoded return PosnBitArray(encoded_term_posns, self.max_doc_id) class PosnBitArrayAlreadyEncBuilder: def __init__(self): self.encoded_term_posns = {} self.max_doc_id = 0 def add_posns(self, doc_id: int, term_id: int, posns): self.encoded_term_posns[term_id] = posns def ensure_capacity(self, doc_id): self.max_doc_id = max(self.max_doc_id, doc_id) def build(self, check=False): return PosnBitArray(self.encoded_term_posns, self.max_doc_id) def index_range(rng, key): if key is None: return rng if isinstance(rng, np.ndarray): return rng[key] if isinstance(key, slice): return rng[key] elif isinstance(key, numbers.Number): return rng[key] elif isinstance(key, np.ndarray): try: # UNFORTUNATE COPY r_val = np.asarray(list(rng))[key] return r_val except IndexError as e: raise e # Last resort # UNFORTUNATE COPY # Here probably elipses or a tuple of various things return np.asarray(list(rng))[key] class PosnBitArray: def __init__(self, encoded_term_posns, max_doc_id: int): self.encoded_term_posns = encoded_term_posns self.max_doc_id = max_doc_id self.docfreq_cache : Dict[int, np.uint64] = {} self.termfreq_cache : Dict[int, Tuple[np.ndarray, np.ndarray]] = {} def copy(self): new = PosnBitArray(deepcopy(self.encoded_term_posns), self.max_doc_id) return new def concat(self, other): """Merge other into self. Assumes other's doc ids are not overlapping with self's doc ids. """ # Shared terms shared_terms = set(self.encoded_term_posns.keys()).intersection(set(other.encoded_term_posns.keys())) for term_id in shared_terms: # Append then sort self.encoded_term_posns[term_id] = np.concatenate([self.encoded_term_posns[term_id], other.encoded_term_posns[term_id]]) self.encoded_term_posns[term_id].sort() only_other_terms = set(other.encoded_term_posns.keys()).difference(set(self.encoded_term_posns.keys())) for term_id in only_other_terms: self.encoded_term_posns[term_id] = other.encoded_term_posns[term_id] self.max_doc_id = max(self.max_doc_id, other.max_doc_id) # Empty caches self.termfreq_cache = {} self.docfreq_cache = {} def slice(self, key): sliced_term_posns = {} doc_ids = convert_keys(key) max_doc_id = np.max(doc_ids) for term_id, posns in self.encoded_term_posns.items(): encoded = self.encoded_term_posns[term_id] assert len(encoded.shape) == 1 sliced_term_posns[term_id] = encoder.slice(encoded, keys=doc_ids) return PosnBitArray(sliced_term_posns, max_doc_id) def __getitem__(self, key): return self.slice(key) def merge(self, other): # Unique terms unique_terms = set(self.encoded_term_posns.keys()).union(set(other.encoded_term_posns.keys())) for term_id in unique_terms: if term_id not in other.encoded_term_posns: continue elif term_id not in self.encoded_term_posns: self.encoded_term_posns[term_id] = other.encoded_term_posns[term_id] else: posns_self = self.encoded_term_posns[term_id] posns_other = other.encoded_term_posns[term_id] self.encoded_term_posns[term_id] = snp.merge(posns_self, posns_other) self.max_doc_id = self.max_doc_id + other.max_doc_id # Empty caches self.termfreq_cache = {} self.docfreq_cache = {} def doc_encoded_posns(self, term_id: int, doc_id: int) -> np.ndarray: term_posns = encoder.slice(self.encoded_term_posns[term_id], keys=np.asarray([doc_id], dtype=np.uint64)) return term_posns def phrase_freqs(self, term_ids: List[int], phrase_freqs: np.ndarray, doc_ids: np.ndarray) -> np.ndarray: if len(term_ids) < 2: raise ValueError("Must have at least two terms") if phrase_freqs.shape[0] == self.max_doc_id + 1: enc_term_posns = [self.encoded_term_posns[term_id] for term_id in term_ids] else: enc_term_posns = [encoder.slice(self.encoded_term_posns[term_id], keys=doc_ids.view(np.uint64)) for term_id in term_ids] return compute_phrase_freqs(enc_term_posns, phrase_freqs) def positions(self, term_id: int, doc_ids) -> Union[List[np.ndarray], np.ndarray]: if isinstance(doc_ids, numbers.Number): doc_ids = np.asarray([doc_ids]) try: np_doc_ids = convert_keys(doc_ids) term_posns = encoder.slice(self.encoded_term_posns[term_id], keys=np_doc_ids) except KeyError: r_val = [np.array([], dtype=np.uint32) for doc_id in doc_ids] if len(r_val) == 1 and len(doc_ids) == 1 and isinstance(doc_ids[0], numbers.Number): return [r_val[0]] return r_val decoded = encoder.decode(encoded=term_posns, get_keys=True) if len(decoded) == 0: return [np.array([], dtype=np.uint32)] if len(decoded) != len(doc_ids): # Fill non matches decoded = cast(List[Tuple[np.uint64, np.ndarray]], decoded) as_dict: Dict[np.uint64, np.ndarray] = dict(decoded) decs = [] for doc_id in doc_ids: if doc_id in as_dict: decs.append(as_dict[doc_id]) else: decs.append(np.array([], dtype=np.uint32)) return decs else: decs = [dec[1] for dec in decoded] return decs def termfreqs(self, term_id: int, doc_ids: Optional[np.ndarray] = None) -> Tuple[np.ndarray, np.ndarray]: """Count term freqs using unique positions.""" if doc_ids is None: return self._termfreqs_with_cache(term_id) encoded = self.encoded_term_posns[term_id] term_posns = encoded term_posns = encoder.slice(encoded, keys=doc_ids.astype(np.uint64)) return self._computed_term_freqs(term_posns) def _computed_term_freqs(self, term_posns) -> Tuple[np.ndarray, np.ndarray]: doc_ids = encoder.keys(term_posns) change_indices = np.nonzero(np.diff(doc_ids))[0] change_indices = np.concatenate((np.asarray([0]), change_indices + 1)) posns = term_posns & encoder.payload_lsb_mask bit_counts = bit_count64(posns) term_freqs = np.add.reduceat(bit_counts, change_indices) return sorted_unique(doc_ids), term_freqs def _termfreqs_with_cache(self, term_id: int) -> Tuple[np.ndarray, np.ndarray]: try: return self.termfreq_cache[term_id] except KeyError: term_posns = self.encoded_term_posns[term_id] doc_ids, term_freqs = self._computed_term_freqs(term_posns) if self._is_cached(term_id): self.termfreq_cache[term_id] = (doc_ids, term_freqs) return doc_ids, term_freqs def _is_cached(self, term_id: int) -> bool: return term_id in self.docfreq_cache def _docfreq_from_cache(self, term_id: int) -> np.uint64: return self.docfreq_cache[term_id] def _maybe_cache_docfreq(self, term_id: int, docfreq: np.uint64): if self.max_doc_id >= 100000 and docfreq > (self.max_doc_id // 100): self.docfreq_cache[term_id] = docfreq def docfreq(self, term_id: int) -> np.uint64: try: return self.docfreq_cache[term_id] except KeyError: encoded = self.encoded_term_posns[term_id] docfreq = np.uint64(encoder.keys_unique(encoded).size) self._maybe_cache_docfreq(term_id, docfreq) return docfreq def insert(self, key, term_ids_to_posns, is_encoded=False): new_posns = PosnBitArrayBuilder() if is_encoded: new_posns = PosnBitArrayAlreadyEncBuilder() max_doc_id = 0 for doc_id, new_posns_row in enumerate(term_ids_to_posns): for term_id, positions in new_posns_row: new_posns.add_posns(doc_id, term_id, positions) max_doc_id = max(doc_id, max_doc_id) new_posns.max_doc_id = max_doc_id ins_arr = new_posns.build() self.merge(ins_arr) @property def nbytes(self): arr_bytes = 0 for doc_id, posn in self.encoded_term_posns.items(): arr_bytes += posn.nbytes for term_id, (doc_ids, term_freqs) in self.termfreq_cache.items(): arr_bytes += doc_ids.nbytes arr_bytes += term_freqs.nbytes for term_id, docfreq in self.docfreq_cache.items(): arr_bytes += docfreq.nbytes return arr_bytes <fim_middle>
null
LINE_COMMENT
complete_current_header_empty_completion
<filename>searcharray/searcharray/postings.py<fim_prefix>"""Tokenized, searchable text as a pandas dtype.""" import pandas as pd import numbers from pandas.api.extensions import ExtensionDtype, ExtensionArray, register_extension_dtype from pandas.api.types import is_list_like from pandas.api.extensions import take import json from collections import Counter import warnings import logging from typing import List, Union, Optional, Iterable import numpy as np from searcharray.phrase.scan_merge import scan_merge_ins from searcharray.phrase.posn_diffs import compute_phrase_freqs from searcharray.phrase.middle_out import PosnBitArray from searcharray.similarity import Similarity, default_bm25 from searcharray.indexing import build_index_from_tokenizer, build_index_from_terms_list from searcharray.term_dict import TermMissingError logger = logging.getLogger(__name__) # When running in pytest import sys # noqa handler = logging.StreamHandler(sys.stdout) handler.setLevel(logging.ERROR) formatter = logging.Formatter("[%(filename)s:%(lineno)s - %(funcName)20s() ] %(message)s") handler.setFormatter(formatter) logger.addHandler(handler) logger.setLevel(logging.ERROR) class Terms: """An indexed search doc - a single bag of tokenized words and positions.""" def __init__(self, postings, doc_len: int = 0, posns: Optional[dict] = None, encoded=False): self.postings = postings self.posns = None self.encoded = encoded self.doc_len = doc_len self.posns = posns def _validate_posns(self): # (For testing/assertions) - Confirm every term in positions also in postings if self.posns is None: return for term in self.posns: if term not in self.postings: raise ValueError(f"Term {term} in positions but not in postings. ") def termfreq(self, token): return self.postings[token] def terms(self): return self.postings.items() def positions(self, term=None): if self.posns is None: return {} if term is None: posns = self.posns.items() else: posns = self.posns[term] return posns def raw_positions(self, term_dict, term=None): if self.posns is None: return {} if term is None: posns = [(term_dict.get_term_id(term), posns) for term, posns in self.posns.items()] else: posns = [(term_dict.get_term_id(term), self.posns[term])] return posns def tf_to_dense(self, term_dict): """Convert to a dense vector of term frequencies.""" dense = np.zeros(len(term_dict)) for term, freq in self.terms(): dense[term_dict.get_term_id(term)] = freq return dense def __len__(self): return len(self.postings) def __repr__(self): posting_keys = set(self.postings.keys()) rval = f"Terms({posting_keys})" return rval def __str__(self): return repr(self) def __eq__(self, other): # Flip to the other implementation if we're comparing to a SearchArray # to get a boolean array back if isinstance(other, SearchArray): return other == self same_postings = isinstance(other, Terms) and self.postings == other.postings if same_postings and self.doc_len == other.doc_len: return True def __lt__(self, other): # return isinstance(other, Terms) and hash(self) < hash(other) keys_both = set(self.postings.keys()).union(set(other.postings.keys())) # Sort lexically keys_both = sorted(keys_both) # Iterate as if these are two vectors of the same large dimensional vector sparse for key in keys_both: lhs_val = 0 rhs_val = 0 try: lhs_val = self.postings[key] except KeyError: pass try: rhs_val = other.postings[key] except KeyError: pass if lhs_val < rhs_val: return True elif lhs_val > rhs_val: return False else: continue return False def __le__(self, other): return self < other or self == other def __gt__(self, other): return not (self < other) and self != other def __hash__(self): return hash(json.dumps(self.postings, sort_keys=True)) class TermsDtype(ExtensionDtype): """Pandas dtype for terms.""" name = 'tokenized_text' type = Terms kind = 'O' @classmethod def construct_from_string(cls, string): if not isinstance(string, str): raise TypeError( "'construct_from_string' expects a string, got {}".format(type(string)) ) elif string == cls.name: return cls() else: raise TypeError( "Cannot construct a '{}' from '{}'".format(cls.__name__, string) ) @classmethod def construct_array_type(cls): return SearchArray def __repr__(self): return 'TermsDtype()' @property def na_value(self): return Terms({}) def valid_value(self, value): return isinstance(value, dict) or pd.isna(value) or isinstance(value, Terms) register_extension_dtype(TermsDtype) def ws_tokenizer(string): if pd.isna(string): return [] if not isinstance(string, str): raise ValueError("Expected a string") return string.split() def _row_to_postings_row(doc_id, row, doc_len, term_dict, posns: PosnBitArray): tfs = {} labeled_posns = {} for term_idx in row.cols: term = term_dict.get_term(term_idx) tfs[term] = 1 enc_term_posns = posns.doc_encoded_posns(term_idx, doc_id=doc_id) labeled_posns[term] = enc_term_posns result = Terms(tfs, posns=labeled_posns, doc_len=doc_len, encoded=True) return result class SearchArray(ExtensionArray): """An array of tokenized text (Termss).""" dtype = TermsDtype() def __init__(self, postings, tokenizer=ws_tokenizer, avoid_copies=True): # Check dtype, raise TypeError if not is_list_like(postings): raise TypeError("Expected list-like object, got {}".format(type(postings))) self.avoid_copies = avoid_copies self.tokenizer = tokenizer self.term_mat, self.posns, \ self.term_dict, self.avg_doc_length, \ self.doc_lens = build_index_from_terms_list(postings, Terms) @classmethod def index(cls, array: Iterable, tokenizer=ws_tokenizer, truncate=False, batch_size=100000, avoid_copies=True) -> 'SearchArray': """Index an array of strings using tokenizer.""" if not is_list_like(array): raise TypeError("Expected list-like object, got {}".format(type(array))) term_mat, posns, term_dict, avg_doc_length, doc_lens =\ build_index_from_tokenizer(array, tokenizer, batch_size=batch_size, truncate=truncate) postings = cls([], tokenizer=tokenizer, avoid_copies=avoid_copies) postings.term_mat = term_mat postings.posns = posns postings.term_dict = term_dict postings.avg_doc_length = avg_doc_length postings.doc_lens = doc_lens return postings @classmethod def _from_sequence(cls, scalars, dtype=None, copy=False): """Construct a new SearchArray from a sequence of scalars (PostingRow or convertible into).""" if dtype is not None: if not isinstance(dtype, TermsDtype): return scalars if isinstance(scalars, np.ndarray) and scalars.dtype == TermsDtype(): return cls(scalars) # String types elif isinstance(scalars, np.ndarray) and scalars.dtype.kind in 'US': return cls(scalars) # Other objects elif isinstance(scalars, np.ndarray) and scalars.dtype != object: return scalars return cls(scalars) def memory_usage(self, deep=False): """Return memory usage of this array in bytes.""" return self.nbytes @property def nbytes(self): return self.term_mat.nbytes + self.posns.nbytes + self.doc_lens.nbytes + self.term_dict.nbytes def __getitem__(self, key): key = pd.api.indexers.check_array_indexer(self, key) # Want to take rows of term freqs if isinstance(key, numbers.Integral): try: rows = self.term_mat[key] doc_len = self.doc_lens[key] doc_id = key if doc_id < 0: doc_id += len(self) return _row_to_postings_row(doc_id, rows[0], doc_len, self.term_dict, self.posns) except IndexError: raise IndexError("index out of bounds") else: # Construct a sliced view of this array sliced_tfs = self.term_mat.slice(key) sliced_posns = self.posns.slice(sliced_tfs.rows) if not self.avoid_copies else self.posns arr = SearchArray([], tokenizer=self.tokenizer) arr.term_mat = sliced_tfs arr.doc_lens = self.doc_lens[key] arr.posns = sliced_posns arr.term_dict = self.term_dict arr.avg_doc_length = self.avg_doc_length return arr def __setitem__(self, key, value): """Set an item in the array.""" key = pd.api.indexers.check_array_indexer(self, key) if isinstance(value, pd.Series): value = value.values if isinstance(value, pd.DataFrame): value = value.values.flatten() if isinstance(value, SearchArray): value = value.to_numpy() if isinstance(value, list): value = np.asarray(value, dtype=object) if not isinstance(value, np.ndarray) and not self.dtype.valid_value(value): raise ValueError(f"Cannot set non-object array to SearchArray -- you passed type:{type(value)} -- {value}") # Cant set a single value to an array if isinstance(key, numbers.Integral) and isinstance(value, np.ndarray): raise ValueError("Cannot set a single value to an array") try: is_encoded = False posns = None term_mat = np.asarray([]) doc_lens = np.asarray([]) if isinstance(value, float): term_mat = np.asarray([value]) doc_lens = np.asarray([0]) elif isinstance(value, Terms): term_mat = np.asarray([value.tf_to_dense(self.term_dict)]) doc_lens = np.asarray([value.doc_len]) is_encoded = value.encoded posns = [value.raw_positions(self.term_dict)] elif isinstance(value, np.ndarray): term_mat = np.asarray([x.tf_to_dense(self.term_dict) for x in value]) doc_lens = np.asarray([x.doc_len for x in value]) is_encoded = value[0].encoded if len(value) > 0 else False posns = [x.raw_positions(self.term_dict) for x in value] np.nan_to_num(term_mat, copy=False, nan=0) self.term_mat[key] = term_mat self.doc_lens[key] = doc_lens if posns is not None: self.posns.insert(key, posns, is_encoded) # Assume we have a positions for each term, doc pair. We can just update it. # Otherwise we would have added new terms except TermMissingError: self._add_new_terms(key, value) def _add_new_terms(self, key, value): msg = """Adding new terms! This might not be good if you tokenized this new text with a different tokenizer. Also. This is slow.""" warnings.warn(msg) scan_value = value if isinstance(value, Terms): scan_value = np.asarray([value]) for row in scan_value: for term in row.terms(): self.term_dict.add_term(term[0]) self.term_mat.resize((self.term_mat.shape[0], len(self.term_dict))) # Ensure posns_lookup has at least max self.posns self[key] = value def value_counts( self, dropna: bool = True, ): if dropna: counts = Counter(self[:]) counts.pop(Terms({}), None) else: counts = Counter(self[:]) return pd.Series(counts) def __len__(self): len_rval = len(self.term_mat.rows) return len_rval def __ne__(self, other): if isinstance(other, pd.DataFrame) or isinstance(other, pd.Series) or isinstance(other, pd.Index): return NotImplemented return ~(self == other) def __eq__(self, other): """Return a boolean numpy array indicating elementwise equality.""" # When other is a dataframe or series, not implemented if isinstance(other, pd.DataFrame) or isinstance(other, pd.Series) or isinstance(other, pd.Index): return NotImplemented # When other is an ExtensionArray if isinstance(other, SearchArray): if len(self) != len(other): return False elif len(other) == 0: return np.array([], dtype=bool) else: # Compatible term dicts, and same term freqs # (not looking at positions, maybe we should?) if self.term_dict.compatible(other.term_dict): return (self.term_mat == other.term_mat) & (self.doc_lens == other.doc_lens) else: return np.zeros(len(self), dtype=bool) # return np.array(self[:]) == np.array(other[:]) # W<fim_suffix>hen other is a scalar value elif isinstance(other, Terms): other = SearchArray([other], tokenizer=self.tokenizer) warnings.warn("Comparing a scalar value to a SearchArray. This is slow.") return np.array(self[:]) == np.array(other[:]) # When other is a sequence but not an ExtensionArray # its an array of dicts elif is_list_like(other): if len(self) != len(other): return False elif len(other) == 0: return np.array([], dtype=bool) # We actually don't know how it was tokenized other = SearchArray(other, tokenizer=self.tokenizer) return np.array(self[:]) == np.array(other[:]) # Return False where 'other' is neither the same length nor a scalar else: return np.full(len(self), False) def isna(self): # Every row with all 0s empties = self.doc_lens == 0 return empties def take(self, indices, allow_fill=False, fill_value=None): # Want to take rows of term freqs row_indices = np.arange(len(self.term_mat.rows)) # Take within the row indices themselves result_indices = take(row_indices, indices, allow_fill=allow_fill, fill_value=-1) if allow_fill and -1 in result_indices: if fill_value is None or pd.isna(fill_value): fill_value = Terms({}, encoded=True) to_fill_mask = result_indices == -1 # This is slow as it rebuilds all the term dictionaries # on the subsequent assignment lines # However, this case tends to be the exception for # most dataframe operations taken = SearchArray([fill_value] * len(result_indices)) taken[~to_fill_mask] = self[result_indices[~to_fill_mask]].copy() return taken else: taken = self[result_indices].copy() return taken def copy(self): postings_arr = SearchArray([], tokenizer=self.tokenizer) postings_arr.doc_lens = self.doc_lens.copy() postings_arr.term_mat = self.term_mat.copy() postings_arr.posns = self.posns postings_arr.term_dict = self.term_dict postings_arr.avg_doc_length = self.avg_doc_length if not self.avoid_copies: postings_arr.posns = self.posns.copy() postings_arr.term_dict = self.term_dict.copy() return postings_arr @classmethod def _concat_same_type(cls, to_concat): concatenated_data = np.concatenate([ea[:] for ea in to_concat]) return SearchArray(concatenated_data, tokenizer=to_concat[0].tokenizer) @classmethod def _from_factorized(cls, values, original): return cls(values) def _values_for_factorize(self): """Return an array and missing value suitable for factorization (ie grouping).""" arr = np.asarray(self[:], dtype=object) return arr, Terms({}) def _check_token_arg(self, token): if isinstance(token, str): return token elif isinstance(token, list) and len(token) == 1: return token[0] elif isinstance(token, list): return token else: raise TypeError("Expected a string or list of strings for phrases") # *********************************************************** # Search functionality # *********************************************************** def termfreqs(self, token: Union[List[str], str]) -> np.ndarray: token = self._check_token_arg(token) if isinstance(token, list): return self.phrase_freq(token) try: term_id = self.term_dict.get_term_id(token) matches = np.zeros(len(self), dtype=int) slice_of_rows = None if self.term_mat.subset: slice_of_rows = self.term_mat.rows doc_ids, termfreqs = self.posns.termfreqs(term_id, doc_ids=slice_of_rows) mask = np.isin(self.term_mat.rows, doc_ids) matches[mask] = termfreqs return matches else: doc_ids, termfreqs = self.posns.termfreqs(term_id, doc_ids=slice_of_rows) matches[doc_ids] = termfreqs return matches except TermMissingError: return np.zeros(len(self), dtype=int) def docfreq(self, token: str) -> int: if not isinstance(token, str): raise TypeError("Expected a string") # Count number of rows where the term appears try: return self.posns.docfreq(self.term_dict.get_term_id(token)) except TermMissingError: return 0 def doclengths(self) -> np.ndarray: return self.doc_lens def match(self, token: Union[List[str], str], slop: int = 1) -> np.ndarray: """Return a boolean numpy array indicating which elements contain the given term.""" token = self._check_token_arg(token) if isinstance(token, list): term_freq = self.phrase_freq(token) else: term_freq = self.termfreqs(token) return term_freq > 0 def score(self, token: Union[str, List[str]], similarity: Similarity = default_bm25) -> np.ndarray: """Score each doc using a similarity function. Parameters ---------- token : str or list of str of what to search (already tokenized) similarity : How to score the documents. Default is BM25. """ # Get term freqs per token token = self._check_token_arg(token) # For expensive toknes, we compute doc freq first, so we # cache them in the DF cache, to let TF cache know it should be cached tokens_l = [token] if isinstance(token, str) else token all_dfs = np.asarray([self.docfreq(token) for token in tokens_l]) tfs = self.termfreqs(token) token = self._check_token_arg(token) doc_lens = self.doclengths() scores = similarity(term_freqs=tfs, doc_freqs=all_dfs, doc_lens=doc_lens, avg_doc_lens=self.avg_doc_length, num_docs=len(self)) return scores def positions(self, token: str, key=None) -> List[np.ndarray]: """Return a list of lists of positions of the given term.""" term_id = self.term_dict.get_term_id(token) key = self.term_mat.rows[key] if key is not None else self.term_mat.rows posns = self.posns.positions(term_id, doc_ids=key) return posns def and_query(self, tokens: Union[List[str], List[List[str]]]) -> np.ndarray: """Return a mask on the postings array indicating which elements contain all terms.""" masks = [self.match(term) for term in tokens] mask = np.ones(len(self), dtype=bool) for curr_mask in masks: mask = mask & curr_mask return mask def or_query(self, tokens: Union[List[str], List[List[str]]], min_should_match: int = 1) -> np.ndarray: """Return a mask on the postings array indicating which elements contain all terms.""" masks = [self.match(term) for term in tokens] mask = np.sum(masks, axis=0) >= min_should_match return mask def phrase_freq(self, tokens: List[str], slop=1) -> np.ndarray: if slop == 1 and len(tokens) == len(set(tokens)): phrase_freqs = np.zeros(len(self)) try: doc_ids = self.term_mat.rows term_ids = [self.term_dict.get_term_id(token) for token in tokens] return self.posns.phrase_freqs(term_ids, doc_ids=doc_ids, phrase_freqs=phrase_freqs) except TermMissingError: return phrase_freqs else: return self.phrase_freq_every_diff(tokens, slop=slop) def phrase_freq_scan(self, tokens: List[str], mask=None, slop=1) -> np.ndarray: if mask is None: mask = self.and_query(tokens) if np.sum(mask) == 0: return mask # Gather positions posns = [self.positions(token, mask) for token in tokens] phrase_freqs = np.zeros(len(self)) phrase_freqs[mask] = scan_merge_ins(posns, phrase_freqs[mask], slop=slop) return phrase_freqs def phrase_freq_every_diff(self, tokens: List[str], slop=1) -> np.ndarray: phrase_freqs = -np.ones(len(self)) mask = self.and_query(tokens) phrase_freqs[~mask] = 0 if np.sum(mask) == 0: return phrase_freqs term_posns = [self.positions(term, mask) for term in tokens] for width in [10, 20, 30, 40]: phrase_freqs[mask] = compute_phrase_freqs(term_posns, phrase_freqs[mask], slop=slop, width=width) remaining_mask = phrase_freqs == -1 if np.any(remaining_mask): remainder_freqs = self.phrase_freq_scan(tokens, mask=remaining_mask, slop=slop) phrase_freqs[remaining_mask] = remainder_freqs[remaining_mask] return phrase_freqs <fim_middle>
null
LINE_COMMENT
complete_current_header_empty_completion
<filename>searcharray/searcharray/postings.py<fim_prefix>"""Tokenized, searchable text as a pandas dtype.""" import pandas as pd import numbers from pandas.api.extensions import ExtensionDtype, ExtensionArray, register_extension_dtype from pandas.api.types import is_list_like from pandas.api.extensions import take import json from collections import Counter import warnings import logging from typing import List, Union, Optional, Iterable import numpy as np from searcharray.phrase.scan_merge import scan_merge_ins from searcharray.phrase.posn_diffs import compute_phrase_freqs from searcharray.phrase.middle_out import PosnBitArray from searcharray.similarity import Similarity, default_bm25 from searcharray.indexing import build_index_from_tokenizer, build_index_from_terms_list from searcharray.term_dict import TermMissingError logger = logging.getLogger(__name__) # When running in pytest import sys # noqa handler = logging.StreamHandler(sys.stdout) handler.setLevel(logging.ERROR) formatter = logging.Formatter("[%(filename)s:%(lineno)s - %(funcName)20s() ] %(message)s") handler.setFormatter(formatter) logger.addHandler(handler) logger.setLevel(logging.ERROR) class Terms: """An indexed search doc - a single bag of tokenized words and positions.""" def __init__(self, postings, doc_len: int = 0, posns: Optional[dict] = None, encoded=False): self.postings = postings self.posns = None self.encoded = encoded self.doc_len = doc_len self.posns = posns def _validate_posns(self): # (For testing/assertions) - Confirm every term in positions also in postings if self.posns is None: return for term in self.posns: if term not in self.postings: raise ValueError(f"Term {term} in positions but not in postings. ") def termfreq(self, token): return self.postings[token] def terms(self): return self.postings.items() def positions(self, term=None): if self.posns is None: return {} if term is None: posns = self.posns.items() else: posns = self.posns[term] return posns def raw_positions(self, term_dict, term=None): if self.posns is None: return {} if term is None: posns = [(term_dict.get_term_id(term), posns) for term, posns in self.posns.items()] else: posns = [(term_dict.get_term_id(term), self.posns[term])] return posns def tf_to_dense(self, term_dict): """Convert to a dense vector of term frequencies.""" dense = np.zeros(len(term_dict)) for term, freq in self.terms(): dense[term_dict.get_term_id(term)] = freq return dense def __len__(self): return len(self.postings) def __repr__(self): posting_keys = set(self.postings.keys()) rval = f"Terms({posting_keys})" return rval def __str__(self): return repr(self) def __eq__(self, other): # Flip to the other implementation if we're comparing to a SearchArray # to get a boolean array back if isinstance(other, SearchArray): return other == self same_postings = isinstance(other, Terms) and self.postings == other.postings if same_postings and self.doc_len == other.doc_len: return True def __lt__(self, other): # return isinstance(other, Terms) and hash(self) < hash(other) keys_both = set(self.postings.keys()).union(set(other.postings.keys())) # Sort lexically keys_both = sorted(keys_both) # Iterate as if these are two vectors of the same large dimensional vector sparse for key in keys_both: lhs_val = 0 rhs_val = 0 try: lhs_val = self.postings[key] except KeyError: pass try: rhs_val = other.postings[key] except KeyError: pass if lhs_val < rhs_val: return True elif lhs_val > rhs_val: return False else: continue return False def __le__(self, other): return self < other or self == other def __gt__(self, other): return not (self < other) and self != other def __hash__(self): return hash(json.dumps(self.postings, sort_keys=True)) class TermsDtype(ExtensionDtype): """Pandas dtype for terms.""" name = 'tokenized_text' type = Terms kind = 'O' @classmethod def construct_from_string(cls, string): if not isinstance(string, str): raise TypeError( "'construct_from_string' expects a string, got {}".format(type(string)) ) elif string == cls.name: return cls() else: raise TypeError( "Cannot construct a '{}' from '{}'".format(cls.__name__, string) ) @classmethod def construct_array_type(cls): return SearchArray def __repr__(self): return 'TermsDtype()' @property def na_value(self): return Terms({}) def valid_value(self, value): return isinstance(value, dict) or pd.isna(value) or isinstance(value, Terms) register_extension_dtype(TermsDtype) def ws_tokenizer(string): if pd.isna(string): return [] if not isinstance(string, str): raise ValueError("Expected a string") return string.split() def _row_to_postings_row(doc_id, row, doc_len, term_dict, posns: PosnBitArray): tfs = {} labeled_posns = {} for term_idx in row.cols: term = term_dict.get_term(term_idx) tfs[term] = 1 enc_term_posns = posns.doc_encoded_posns(term_idx, doc_id=doc_id) labeled_posns[term] = enc_term_posns result = Terms(tfs, posns=labeled_posns, doc_len=doc_len, encoded=True) return result class SearchArray(ExtensionArray): """An array of tokenized text (Termss).""" dtype = TermsDtype() def __init__(self, postings, tokenizer=ws_tokenizer, avoid_copies=True): # Check dtype, raise TypeError if not is_list_like(postings): raise TypeError("Expected list-like object, got {}".format(type(postings))) self.avoid_copies = avoid_copies self.tokenizer = tokenizer self.term_mat, self.posns, \ self.term_dict, self.avg_doc_length, \ self.doc_lens = build_index_from_terms_list(postings, Terms) @classmethod def index(cls, array: Iterable, tokenizer=ws_tokenizer, truncate=False, batch_size=100000, avoid_copies=True) -> 'SearchArray': """Index an array of strings using tokenizer.""" if not is_list_like(array): raise TypeError("Expected list-like object, got {}".format(type(array))) term_mat, posns, term_dict, avg_doc_length, doc_lens =\ build_index_from_tokenizer(array, tokenizer, batch_size=batch_size, truncate=truncate) postings = cls([], tokenizer=tokenizer, avoid_copies=avoid_copies) postings.term_mat = term_mat postings.posns = posns postings.term_dict = term_dict postings.avg_doc_length = avg_doc_length postings.doc_lens = doc_lens return postings @classmethod def _from_sequence(cls, scalars, dtype=None, copy=False): """Construct a new SearchArray from a sequence of scalars (PostingRow or convertible into).""" if dtype is not None: if not isinstance(dtype, TermsDtype): return scalars if isinstance(scalars, np.ndarray) and scalars.dtype == TermsDtype(): return cls(scalars) # String types elif isinstance(scalars, np.ndarray) and scalars.dtype.kind in 'US': return cls(scalars) # Other objects elif isinstance(scalars, np.ndarray) and scalars.dtype != object: return scalars return cls(scalars) def memory_usage(self, deep=False): """Return memory usage of this array in bytes.""" return self.nbytes @property def nbytes(self): return self.term_mat.nbytes + self.posns.nbytes + self.doc_lens.nbytes + self.term_dict.nbytes def __getitem__(self, key): key = pd.api.indexers.check_array_indexer(self, key) # Want to take rows of term freqs if isinstance(key, numbers.Integral): try: rows = self.term_mat[key] doc_len = self.doc_lens[key] doc_id = key if doc_id < 0: doc_id += len(self) return _row_to_postings_row(doc_id, rows[0], doc_len, self.term_dict, self.posns) except IndexError: raise IndexError("index out of bounds") else: # Construct a sliced view of this array sliced_tfs = self.term_mat.slice(key) sliced_posns = self.posns.slice(sliced_tfs.rows) if not self.avoid_copies else self.posns arr = SearchArray([], tokenizer=self.tokenizer) arr.term_mat = sliced_tfs arr.doc_lens = self.doc_lens[key] arr.posns = sliced_posns arr.term_dict = self.term_dict arr.avg_doc_length = self.avg_doc_length return arr def __setitem__(self, key, value): """Set an item in the array.""" key = pd.api.indexers.check_array_indexer(self, key) if isinstance(value, pd.Series): value = value.values if isinstance(value, pd.DataFrame): value = value.values.flatten() if isinstance(value, SearchArray): value = value.to_numpy() if isinstance(value, list): value = np.asarray(value, dtype=object) if not isinstance(value, np.ndarray) and not self.dtype.valid_value(value): raise ValueError(f"Cannot set non-object array to SearchArray -- you passed type:{type(value)} -- {value}") # Cant set a single value to an array if isinstance(key, numbers.Integral) and isinstance(value, np.ndarray): raise ValueError("Cannot set a single value to an array") try: is_encoded = False posns = None term_mat = np.asarray([]) doc_lens = np.asarray([]) if isinstance(value, float): term_mat = np.asarray([value]) doc_lens = np.asarray([0]) elif isinstance(value, Terms): term_mat = np.asarray([value.tf_to_dense(self.term_dict)]) doc_lens = np.asarray([value.doc_len]) is_encoded = value.encoded posns = [value.raw_positions(self.term_dict)] elif isinstance(value, np.ndarray): term_mat = np.asarray([x.tf_to_dense(self.term_dict) for x in value]) doc_lens = np.asarray([x.doc_len for x in value]) is_encoded = value[0].encoded if len(value) > 0 else False posns = [x.raw_positions(self.term_dict) for x in value] np.nan_to_num(term_mat, copy=False, nan=0) self.term_mat[key] = term_mat self.doc_lens[key] = doc_lens if posns is not None: self.posns.insert(key, posns, is_encoded) # Assume we have a positions for each term, doc pair. We can just update it. # Otherwise we would have added new terms except TermMissingError: self._add_new_terms(key, value) def _add_new_terms(self, key, value): msg = """Adding new terms! This might not be good if you tokenized this new text with a different tokenizer. Also. This is slow.""" warnings.warn(msg) scan_value = value if isinstance(value, Terms): scan_value = np.asarray([value]) for row in scan_value: for term in row.terms(): self.term_dict.add_term(term[0]) self.term_mat.resize((self.term_mat.shape[0], len(self.term_dict))) # Ensure posns_lookup has at least max self.posns self[key] = value def value_counts( self, dropna: bool = True, ): if dropna: counts = Counter(self[:]) counts.pop(Terms({}), None) else: counts = Counter(self[:]) return pd.Series(counts) def __len__(self): len_rval = len(self.term_mat.rows) return len_rval def __ne__(self, other): if isinstance(other, pd.DataFrame) or isinstance(other, pd.Series) or isinstance(other, pd.Index): return NotImplemented return ~(self == other) def __eq__(self, other): """Return a boolean numpy array indicating elementwise equality.""" # When other is a dataframe or series, not implemented if isinstance(other, pd.DataFrame) or isinstance(other, pd.Series) or isinstance(other, pd.Index): return NotImplemented # When other is an ExtensionArray if isinstance(other, SearchArray): if len(self) != len(other): return False elif len(other) == 0: return np.array([], dtype=bool) else: # Compatible term dicts, and same term freqs # (not looking at positions, maybe we should?) if self.term_dict.compatible(other.term_dict): return (self.term_mat == other.term_mat) & (self.doc_lens == other.doc_lens) else: return np.zeros(len(self), dtype=bool) # return np.array(self[:]) == np.array(other[:]) # When other is a scalar value elif isinstance(other, Terms): other = SearchArray([other], tokenizer=self.tokenizer) warnings.warn("Comparing a scalar value to a SearchArray. This is slow.") return np.array(self[:]) == np.array(other[:]) # When other is a sequence but not an ExtensionArray # its an array of dicts elif is_list_like(other): if len(self) != len(other): return False elif len(other) == 0: return np.array([], dtype=bool) # We actually don't know how it was tokenized other = SearchArray(other, tokenizer=self.tokenizer) return np.array(self[:]) == np.array(other[:]) # Return False where 'other' is neither the same length nor a scalar else: return np.full(len(self), False) def isna(self): # Every row with all 0s empties = self.doc_lens == 0 return empties def take(self, indices, allow_fill=False, fill_value=None): # Want to take rows of term freqs row_indices = np.arange(len(self.term_mat.rows)) # Take within the row indices themselves result_indices = take(row_indices, indices, allow_fill=allow_fill, fill_value=-1) if allow_fill and -1 in result_indices: if fill_value is None or pd.isna(fill_value): fill_value = Terms({}, encoded=True) to_fill_mask = result_indices == -1 # This is slow as it rebuilds all the term dictionaries # on the subsequent assignment lines # However, this case tends to be the exception for # most dataframe operations taken = SearchArray([fill_value] * len(result_indices)) taken[~to_fill_mask] = self[result_indices[~to_fill_mask]].copy() return taken else: taken = self[result_indices].copy() return taken def copy(self): postings_arr = SearchArray([], tokenizer=self.tokenizer) postings_arr.doc_lens = self.doc_lens.copy() postings_arr.term_mat = self.term_mat.copy() postings_arr.posns = self.posns postings_arr.term_dict = self.term_dict postings_arr.avg_doc_length = self.avg_doc_length if not self.avoid_copies: postings_arr.posns = self.posns.copy() postings_arr.term_dict = self.term_dict.copy() return postings_arr @classmethod def _concat_same_type(cls, to_concat): concatenated_data = np.concatenate([ea[:] for ea in to_concat]) return SearchArray(concatenated_data, tokenizer=to_concat[0].tokenizer) @classmethod def _from_factorized(cls, values, original): return cls(values) def _values_for_factorize(self): """Return an array and missing value suitable for factorization (ie grouping).""" arr = np.asarray(self[:], dtype=object) return arr, Terms({}) def _check_token_arg(self, token): if isinstance(token, str): return token elif isinstance(token, list) and len(token) == 1: return token[0] elif isinstance(token, list): return token else: raise TypeError("Expected a string or list of strings for phrases") # *********************************************************** # Search functionality # *********************************************************** def termfreqs(self, token: Union[List[str], str]) -> np.ndarray: token = self._check_token_arg(token) if isinstance(token, list): return self.phrase_freq(token) try: term_id = self.term_dict.get_term_id(token) matches = np.zeros(len(self), dtype=int) slice_of_rows = None if self.term_mat.subset: slice_of_rows = self.term_mat.rows doc_ids, termfreqs = self.posns.termfreqs(term_id, doc_ids=slice_of_rows) mask = np.isin(self.term_mat.rows, doc_ids) matches[mask] = termfreqs return matches else: doc_ids, termfreqs = self.posns.termfreqs(term_id, doc_ids=slice_of_rows) matches[doc_ids] = termfreqs return matches except TermMissingError: return np.zeros(len(self), dtype=int) def docfreq(self, token: str) -> int: if not isinstance(token, str): raise TypeError("Expected a string") # Count number of rows where the term appears try: return self.posns.docfreq(self.term_dict.get_term_id(token)) except TermMissingError: return 0 def doclengths(self) -> np.ndarray: return self.doc_lens def match(self, token: Union[List[str], str], slop: int = 1) -> np.ndarray: """Return a boolean numpy array indicating which elements contain the given term.""" token = self._check_token_arg(token) if isinstance(token, list): term_freq = self.phrase_freq(token) else: term_freq = self.termfreqs(token) return term_freq > 0 def score(self, token: Union[str, List[str]], similarity: Similarity = default_bm25) -> np.ndarray: """Score each doc using a similarity function. Parameters ---------- token : str or list of str of what to search (already tokenized) similarity : How to score the documents. Default is BM25. """ # Get term freqs per token token = self._check_token_arg(token) # For expensive <fim_suffix>toknes, we compute doc freq first, so we # cache them in the DF cache, to let TF cache know it should be cached tokens_l = [token] if isinstance(token, str) else token all_dfs = np.asarray([self.docfreq(token) for token in tokens_l]) tfs = self.termfreqs(token) token = self._check_token_arg(token) doc_lens = self.doclengths() scores = similarity(term_freqs=tfs, doc_freqs=all_dfs, doc_lens=doc_lens, avg_doc_lens=self.avg_doc_length, num_docs=len(self)) return scores def positions(self, token: str, key=None) -> List[np.ndarray]: """Return a list of lists of positions of the given term.""" term_id = self.term_dict.get_term_id(token) key = self.term_mat.rows[key] if key is not None else self.term_mat.rows posns = self.posns.positions(term_id, doc_ids=key) return posns def and_query(self, tokens: Union[List[str], List[List[str]]]) -> np.ndarray: """Return a mask on the postings array indicating which elements contain all terms.""" masks = [self.match(term) for term in tokens] mask = np.ones(len(self), dtype=bool) for curr_mask in masks: mask = mask & curr_mask return mask def or_query(self, tokens: Union[List[str], List[List[str]]], min_should_match: int = 1) -> np.ndarray: """Return a mask on the postings array indicating which elements contain all terms.""" masks = [self.match(term) for term in tokens] mask = np.sum(masks, axis=0) >= min_should_match return mask def phrase_freq(self, tokens: List[str], slop=1) -> np.ndarray: if slop == 1 and len(tokens) == len(set(tokens)): phrase_freqs = np.zeros(len(self)) try: doc_ids = self.term_mat.rows term_ids = [self.term_dict.get_term_id(token) for token in tokens] return self.posns.phrase_freqs(term_ids, doc_ids=doc_ids, phrase_freqs=phrase_freqs) except TermMissingError: return phrase_freqs else: return self.phrase_freq_every_diff(tokens, slop=slop) def phrase_freq_scan(self, tokens: List[str], mask=None, slop=1) -> np.ndarray: if mask is None: mask = self.and_query(tokens) if np.sum(mask) == 0: return mask # Gather positions posns = [self.positions(token, mask) for token in tokens] phrase_freqs = np.zeros(len(self)) phrase_freqs[mask] = scan_merge_ins(posns, phrase_freqs[mask], slop=slop) return phrase_freqs def phrase_freq_every_diff(self, tokens: List[str], slop=1) -> np.ndarray: phrase_freqs = -np.ones(len(self)) mask = self.and_query(tokens) phrase_freqs[~mask] = 0 if np.sum(mask) == 0: return phrase_freqs term_posns = [self.positions(term, mask) for term in tokens] for width in [10, 20, 30, 40]: phrase_freqs[mask] = compute_phrase_freqs(term_posns, phrase_freqs[mask], slop=slop, width=width) remaining_mask = phrase_freqs == -1 if np.any(remaining_mask): remainder_freqs = self.phrase_freq_scan(tokens, mask=remaining_mask, slop=slop) phrase_freqs[remaining_mask] = remainder_freqs[remaining_mask] return phrase_freqs <fim_middle>
null
LINE_COMMENT
complete_current_header_empty_completion
<filename>searcharray/searcharray/solr.py<fim_prefix>"""Utility functions for Solr users of searcharray.""" import re import pandas as pd import numpy as np from typing import List, Optional, Dict, Tuple from searcharray.postings import SearchArray from searcharray.similarity import Similarity, default_bm25 def parse_min_should_match(num_clauses: int, spec: str) -> int: """Parse Solr's min should match (ie mm) spec. See this ChatGPT translation of mm code from Solr's Java code for parsing this https://chat.openai.com/share/76642aec-7e05-420f-a53a-83b8e2eea8fb Parameters ---------- num_clauses : int spec : str Returns ------- int : the number of clauses that must match """ def checked_parse_int(value, error_message): try: return int(value) except ValueError: raise ValueError(error_message) result = num_clauses spec = spec.strip() if '<' in spec: # we have conditional spec(s) space_around_less_than_pattern = re.compile(r'\s*<\s*') spec = space_around_less_than_pattern.sub('<', spec) for s in spec.split(): parts = s.split('<', 1) if len(parts) < 2: raise ValueError("Invalid 'mm' spec: '" + s + "'. Expecting values before and after '<'") upper_bound = checked_parse_int(parts[0], "Invalid 'mm' spec. Expecting an integer.") if num_clauses <= upper_bound: return result else: result = parse_min_should_match(num_clauses, parts[1]) return result # otherwis<fim_suffix>e, simple expression if '%' in spec: # percentage - assume the % was the last char. If not, let int() fail. spec = spec[:-1] percent = checked_parse_int(spec, "Invalid 'mm' spec. Expecting an integer.") calc = (result * percent) * (1 / 100) result = result + int(calc) if calc < 0 else int(calc) else: calc = checked_parse_int(spec, "Invalid 'mm' spec. Expecting an integer.") result = result + calc if calc < 0 else calc return min(num_clauses, max(result, 0)) def parse_field_boosts(field_lists: List[str]) -> dict: """Parse Solr's qf, pf, pf2, pf3 field boosts.""" if not field_lists: return {} out = {} carat_pattern = re.compile(r'\^') for field in field_lists: parts = carat_pattern.split(field) out[parts[0]] = None if len(parts) == 1 else float(parts[1]) return out def get_field(frame, field) -> SearchArray: if field not in frame.columns: raise ValueError(f"Field {field} not in dataframe") if not isinstance(frame[field].array, SearchArray): raise ValueError(f"Field {field} is not a searcharray field") return frame[field].array def parse_query_terms(frame: pd.DataFrame, query: str, query_fields: List[str]): search_terms: Dict[str, List[str]] = {} num_search_terms = 0 term_centric = True for field in query_fields: arr = get_field(frame, field) tokenizer = arr.tokenizer search_terms[field] = [] field_num_search_terms = 0 for posn, term in enumerate(tokenizer(query)): search_terms[field].append(term) field_num_search_terms += 1 if num_search_terms == 0: num_search_terms = field_num_search_terms elif field_num_search_terms != num_search_terms: term_centric = False return num_search_terms, search_terms, term_centric def _edismax_term_centric(frame: pd.DataFrame, query_fields: Dict[str, float], num_search_terms: int, search_terms: Dict[str, List[str]], mm: str, similarity: Similarity) -> Tuple[np.ndarray, str]: explain = [] term_scores = [] for term_posn in range(num_search_terms): max_scores = np.zeros(len(frame)) term_explain = [] for field, boost in query_fields.items(): term = search_terms[field][term_posn] post_arr = get_field(frame, field) field_term_score = post_arr.score(term, similarity=similarity) * (1 if boost is None else boost) boost_exp = f"{boost}" if boost is not None else "1" term_explain.append(f"{field}:{term}^{boost_exp}") max_scores = np.maximum(max_scores, field_term_score) term_scores.append(max_scores) explain.append("(" + " | ".join(term_explain) + ")") min_should_match = parse_min_should_match(num_search_terms, spec=mm) qf_scores = np.asarray(term_scores) matches_gt_mm = np.sum(qf_scores > 0, axis=0) >= min_should_match qf_scores = np.sum(term_scores, axis=0) qf_scores[~matches_gt_mm] = 0 return qf_scores, "(" + " ".join(explain) + f")~{min_should_match}" def _edismax_field_centric(frame: pd.DataFrame, query_fields: Dict[str, float], num_search_terms: int, search_terms: Dict[str, List[str]], mm: str, similarity: Similarity = default_bm25) -> Tuple[np.ndarray, str]: field_scores = [] explain = [] for field, boost in query_fields.items(): post_arr = get_field(frame, field) term_scores = np.array([post_arr.score(term, similarity=similarity) for term in search_terms[field]]) min_should_match = parse_min_should_match(len(search_terms[field]), spec=mm) exp = " ".join([f"{field}:{term}" for term in search_terms[field]]) boost_exp = f"{boost}" if boost is not None else "1" exp = "(" + exp + f")~{min(min_should_match, len(search_terms[field]))}" exp = "(" + exp + f")^{boost_exp}" matches_gt_mm = np.sum(term_scores > 0, axis=0) >= min(min_should_match, len(search_terms[field])) sum_terms_bm25 = np.sum(term_scores, axis=0) sum_terms_bm25[~matches_gt_mm] = 0 field_scores.append(sum_terms_bm25 * (1 if boost is None else boost)) explain.append(exp) # Take maximum field scores as qf qf_scores = np.asarray(field_scores) qf_scores = np.max(qf_scores, axis=0) return qf_scores, " | ".join(explain) def edismax(frame: pd.DataFrame, q: str, qf: List[str], mm: Optional[str] = None, pf: Optional[List[str]] = None, pf2: Optional[List[str]] = None, pf3: Optional[List[str]] = None, q_op: str = "OR", similarity: Similarity = default_bm25) -> Tuple[np.ndarray, str]: """Run edismax search over dataframe with searcharray fields. Parameters ---------- q : str The query string mm : str The minimum should match spec qf : list The fields to search pf : list The fields to search for phrase matches pf2 : list The fields to search for bigram matches pf3 : list The fields to search for trigram matches q_op : str, optional The default operator, by default "OR" Returns ------- np.ndarray The search results """ def listify(x): return x if isinstance(x, list) else [x] query_fields = parse_field_boosts(listify(qf)) phrase_fields = parse_field_boosts(listify(pf)) if pf else {} if mm is None: mm = "1" if q_op == "AND": mm = "100%" # bigram_fields = parse_field_boosts(pf2) if pf2 else {} # trigram_fields = parse_field_boosts(pf3) if pf3 else {} num_search_terms, search_terms, term_centric = parse_query_terms(frame, q, list(query_fields.keys())) if term_centric: qf_scores, explain = _edismax_term_centric(frame, query_fields, num_search_terms, search_terms, mm, similarity=similarity) else: qf_scores, explain = _edismax_field_centric(frame, query_fields, num_search_terms, search_terms, mm, similarity=similarity) phrase_scores = [] for field, boost in phrase_fields.items(): arr = get_field(frame, field) terms = search_terms[field] field_phrase_score = arr.score(terms, similarity=similarity) * (1 if boost is None else boost) boost_exp = f"{boost}" if boost is not None else "1" explain += f" ({field}:\"{' '.join(terms)}\")^{boost_exp}" phrase_scores.append(field_phrase_score) if len(phrase_scores) > 0: phrase_scores = np.sum(phrase_scores, axis=0) # Add where term_scores > 0 term_match_idx = np.where(qf_scores)[0] qf_scores[term_match_idx] += phrase_scores[term_match_idx] return qf_scores, explain <fim_middle>
null
LINE_COMMENT
complete_current_header_empty_completion
<filename>searcharray/searcharray/phrase/middle_out.py<fim_prefix>"""Encode positions in bits along with some neighboring information for wrapping. See this notebook for motivation: https://colab.research.google.com/drive/10tIEkdlCE_1J_CcgEcV0jkLfBc-0H4am?authuser=1#scrollTo=XWzy-n9dF3PG """ import numpy as np import sortednp as snp from copy import deepcopy from typing import List, Tuple, Dict, Union, cast, Optional from searcharray.utils.roaringish import RoaringishEncoder, convert_keys, sorted_unique import numbers import logging from collections import defaultdict from searcharray.utils.bitcount import bit_count64 logger = logging.getLogger(__name__) # When running in pytest import sys # noqa handler = logging.StreamHandler(sys.stdout) handler.setLevel(logging.ERROR) formatter = logging.Formatter("[%(filename)s:%(lineno)s - %(funcName)20s() ] %(message)s") handler.setFormatter(formatter) logger.addHandler(handler) logger.setLevel(logging.ERROR) encoder = RoaringishEncoder() # To not constantly type coerce _64 = np.uint64(64) _2 = np.uint64(2) _1 = np.uint64(1) _0 = np.uint64(0) _neg1 = np.int64(-1) MAX_POSN = encoder.max_payload def inner_bigram_freqs(lhs: np.ndarray, rhs: np.ndarray, phrase_freqs: np.ndarray) -> Tuple[np.ndarray, np.ndarray]: """Count bigram matches between two encoded arrays, within a 64 bit word with same MSBs. Returns: -------- count: number of matches per doc rhs_next: the next rhs array to continue matching """ lhs_int, rhs_int = encoder.intersect(lhs, rhs) lhs_doc_ids = encoder.keys(lhs_int) if len(lhs_int) != len(rhs_int): raise ValueError("Encoding error, MSBs apparently are duplicated among your encoded posn arrays.") if len(lhs_int) == 0: return phrase_freqs, rhs_int same_term = (len(lhs_int) == len(rhs_int) and lhs_int[0] == rhs_int[0]) if same_term: # Find adjacent matches rhs_shift = rhs_int << _1 overlap = lhs_int & rhs_shift overlap = encoder.payload_lsb(overlap) adjacents = bit_count64(overlap).astype(np.int64) adjacents -= -np.floor_divide(adjacents, -2) # cei<fim_suffix>ling divide phrase_freqs[lhs_doc_ids] += adjacents return phrase_freqs, rhs_int overlap_bits = (lhs_int & encoder.payload_lsb_mask) & ((rhs_int & encoder.payload_lsb_mask) >> _1) rhs_next2 = (overlap_bits << _1) & encoder.payload_lsb_mask rhs_next2 |= (rhs_int & (encoder.key_mask | encoder.payload_msb_mask)) phrase_freqs2 = phrase_freqs.copy() matches2 = overlap_bits > 0 if np.any(matches2): transitions = np.argwhere(np.diff(lhs_doc_ids[matches2]) != 0).flatten() + 1 transitions = np.insert(transitions, 0, 0) counted_bits = bit_count64(overlap_bits[matches2]) reduced = np.add.reduceat(counted_bits, transitions) phrase_freqs2[np.unique(lhs_doc_ids[matches2])] += reduced return phrase_freqs2, rhs_next2 def adjacent_bigram_freqs(lhs: np.ndarray, rhs: np.ndarray, phrase_freqs: np.ndarray) -> Tuple[np.ndarray, np.ndarray]: """Count bigram matches between two encoded arrays where they occur in adjacent 64 bit words. Returns: -------- count: number of matches per doc rhs_next: the next rhs array to continue matching """ lhs_int, rhs_int = encoder.intersect_rshift(lhs, rhs, rshift=_neg1) lhs_doc_ids = encoder.keys(lhs_int) # lhs lsb set and rhs lsb's most significant bit set upper_bit = _1 << (encoder.payload_lsb_bits - _1) matches = ((lhs_int & upper_bit) != 0) & ((rhs_int & _1) != 0) unique, counts = np.unique(lhs_doc_ids[matches], return_counts=True) phrase_freqs[unique] += counts rhs_next = rhs_int rhs_next[~matches] |= ~encoder.payload_lsb_mask rhs_next[matches] |= (encoder.payload_lsb_mask & _1) return phrase_freqs, rhs_next def bigram_freqs(lhs: np.ndarray, rhs: np.ndarray, phrase_freqs: np.ndarray) -> Tuple[np.ndarray, np.ndarray]: """Count bigram matches between two encoded arrays. Returns: -------- count: number of matches per doc rhs_next: the next rhs array to continue matching """ # Combine lhs and rhs matches from two strategies phrase_freqs, rhs_next_inner = inner_bigram_freqs(lhs, rhs, phrase_freqs) phrase_freqs, rhs_next_adj = adjacent_bigram_freqs(lhs, rhs, phrase_freqs) rhs_next = np.sort(np.concatenate([rhs_next_inner, rhs_next_adj])) # Combine return phrase_freqs, rhs_next def trim_phrase_search(encoded_posns: List[np.ndarray], phrase_freqs: np.ndarray) -> List[np.ndarray]: """Trim long phrases by searching the rarest terms first.""" # Start with rarest term shortest_keys = None shortest_idx = None min_len = 1e100 max_len = 0 for idx, enc_posn in enumerate(encoded_posns): if len(enc_posn) < min_len: shortest_keys = encoder.keys(enc_posn) shortest_idx = idx min_len = len(enc_posn) if len(enc_posn) > max_len: max_len = len(enc_posn) if shortest_keys is None: return encoded_posns for enc_posn_idx in range(len(encoded_posns)): if enc_posn_idx == shortest_idx: continue if len(encoded_posns[enc_posn_idx]) > (10 * min_len): encoded_posns[enc_posn_idx] = encoder.slice(encoded_posns[enc_posn_idx], shortest_keys) return encoded_posns def compute_phrase_freqs(encoded_posns: List[np.ndarray], phrase_freqs: np.ndarray) -> np.ndarray: if len(encoded_posns) < 2: raise ValueError("phrase must have at least two terms") # Trim long phrases by searching the rarest terms first if len(encoded_posns) > 3: encoded_posns = trim_phrase_search(encoded_posns, phrase_freqs) mask = np.ones(len(phrase_freqs), dtype=bool) lhs = encoded_posns[0] for rhs in encoded_posns[1:]: # Only count the count of the last bigram (ignoring the ones where priors did not match) phrase_freqs[mask] = 0 phrase_freqs, lhs = bigram_freqs(lhs, rhs, phrase_freqs) mask &= (phrase_freqs > 0) phrase_freqs[~mask] = 0 return phrase_freqs class PosnBitArrayFromFlatBuilder: """ Build from sorted array shape num terms x 3. 0th is term id 1st is doc id 2nd is posn Sorted by term id then posns """ def __init__(self, flat_array: np.ndarray): self.flat_array = flat_array def build(self): """Slice the flat array into a 2d array of doc ids and posns.""" term_boundaries = np.argwhere(np.diff(self.flat_array[0]) > 0).flatten() + 1 term_boundaries = np.concatenate([[0], term_boundaries, [len(self.flat_array[1])]]) encoded, enc_term_boundaries = encoder.encode(keys=self.flat_array[1].view(np.uint64), boundaries=term_boundaries[:-1], payload=self.flat_array[2].view(np.uint64)) term_ids = self.flat_array[0][term_boundaries[:-1]] encoded_term_posns = {} for into_terms, (beg_idx, end_idx) in enumerate(zip(enc_term_boundaries[:-1], enc_term_boundaries[1:])): sliced = encoded[beg_idx:end_idx] encoded_term_posns[term_ids[into_terms]] = sliced return PosnBitArray(encoded_term_posns, self.flat_array[1].max()) class PosnBitArrayBuilder: def __init__(self): self.term_posns = defaultdict(list) self.term_posn_doc_ids = defaultdict(list) self.max_doc_id = 0 def add_posns(self, doc_id: int, term_id: int, posns: List[int]): doc_ids = [doc_id] * len(posns) self.term_posns[term_id].extend(posns) self.term_posn_doc_ids[term_id].extend(doc_ids) def ensure_capacity(self, doc_id): self.max_doc_id = max(self.max_doc_id, doc_id) def build(self, check=False): encoded_term_posns = {} for term_id, posns in self.term_posns.items(): if len(posns) == 0: posns = np.asarray([], dtype=np.uint32).flatten() elif isinstance(posns, list): posns_arr = np.asarray(posns, dtype=np.uint32).flatten() posns = posns_arr doc_ids = self.term_posn_doc_ids[term_id] if isinstance(doc_ids, list): doc_ids = np.asarray(doc_ids, dtype=np.uint32) encoded = encoder.encode(keys=doc_ids, payload=posns) if check: decode_again = encoder.decode(encoded) docs_to_posns = dict(decode_again) doc_ids_again = [] posns_again = [] for doc_id, posns_dec in docs_to_posns.items(): for posn in posns_dec: doc_ids_again.append(doc_id) posns_again.append(posn) assert np.array_equal(doc_ids_again, doc_ids) assert np.array_equal(posns, posns_again) encoded_term_posns[term_id] = encoded return PosnBitArray(encoded_term_posns, self.max_doc_id) class PosnBitArrayAlreadyEncBuilder: def __init__(self): self.encoded_term_posns = {} self.max_doc_id = 0 def add_posns(self, doc_id: int, term_id: int, posns): self.encoded_term_posns[term_id] = posns def ensure_capacity(self, doc_id): self.max_doc_id = max(self.max_doc_id, doc_id) def build(self, check=False): return PosnBitArray(self.encoded_term_posns, self.max_doc_id) def index_range(rng, key): if key is None: return rng if isinstance(rng, np.ndarray): return rng[key] if isinstance(key, slice): return rng[key] elif isinstance(key, numbers.Number): return rng[key] elif isinstance(key, np.ndarray): try: # UNFORTUNATE COPY r_val = np.asarray(list(rng))[key] return r_val except IndexError as e: raise e # Last resort # UNFORTUNATE COPY # Here probably elipses or a tuple of various things return np.asarray(list(rng))[key] class PosnBitArray: def __init__(self, encoded_term_posns, max_doc_id: int): self.encoded_term_posns = encoded_term_posns self.max_doc_id = max_doc_id self.docfreq_cache : Dict[int, np.uint64] = {} self.termfreq_cache : Dict[int, Tuple[np.ndarray, np.ndarray]] = {} def copy(self): new = PosnBitArray(deepcopy(self.encoded_term_posns), self.max_doc_id) return new def concat(self, other): """Merge other into self. Assumes other's doc ids are not overlapping with self's doc ids. """ # Shared terms shared_terms = set(self.encoded_term_posns.keys()).intersection(set(other.encoded_term_posns.keys())) for term_id in shared_terms: # Append then sort self.encoded_term_posns[term_id] = np.concatenate([self.encoded_term_posns[term_id], other.encoded_term_posns[term_id]]) self.encoded_term_posns[term_id].sort() only_other_terms = set(other.encoded_term_posns.keys()).difference(set(self.encoded_term_posns.keys())) for term_id in only_other_terms: self.encoded_term_posns[term_id] = other.encoded_term_posns[term_id] self.max_doc_id = max(self.max_doc_id, other.max_doc_id) # Empty caches self.termfreq_cache = {} self.docfreq_cache = {} def slice(self, key): sliced_term_posns = {} doc_ids = convert_keys(key) max_doc_id = np.max(doc_ids) for term_id, posns in self.encoded_term_posns.items(): encoded = self.encoded_term_posns[term_id] assert len(encoded.shape) == 1 sliced_term_posns[term_id] = encoder.slice(encoded, keys=doc_ids) return PosnBitArray(sliced_term_posns, max_doc_id) def __getitem__(self, key): return self.slice(key) def merge(self, other): # Unique terms unique_terms = set(self.encoded_term_posns.keys()).union(set(other.encoded_term_posns.keys())) for term_id in unique_terms: if term_id not in other.encoded_term_posns: continue elif term_id not in self.encoded_term_posns: self.encoded_term_posns[term_id] = other.encoded_term_posns[term_id] else: posns_self = self.encoded_term_posns[term_id] posns_other = other.encoded_term_posns[term_id] self.encoded_term_posns[term_id] = snp.merge(posns_self, posns_other) self.max_doc_id = self.max_doc_id + other.max_doc_id # Empty caches self.termfreq_cache = {} self.docfreq_cache = {} def doc_encoded_posns(self, term_id: int, doc_id: int) -> np.ndarray: term_posns = encoder.slice(self.encoded_term_posns[term_id], keys=np.asarray([doc_id], dtype=np.uint64)) return term_posns def phrase_freqs(self, term_ids: List[int], phrase_freqs: np.ndarray, doc_ids: np.ndarray) -> np.ndarray: if len(term_ids) < 2: raise ValueError("Must have at least two terms") if phrase_freqs.shape[0] == self.max_doc_id + 1: enc_term_posns = [self.encoded_term_posns[term_id] for term_id in term_ids] else: enc_term_posns = [encoder.slice(self.encoded_term_posns[term_id], keys=doc_ids.view(np.uint64)) for term_id in term_ids] return compute_phrase_freqs(enc_term_posns, phrase_freqs) def positions(self, term_id: int, doc_ids) -> Union[List[np.ndarray], np.ndarray]: if isinstance(doc_ids, numbers.Number): doc_ids = np.asarray([doc_ids]) try: np_doc_ids = convert_keys(doc_ids) term_posns = encoder.slice(self.encoded_term_posns[term_id], keys=np_doc_ids) except KeyError: r_val = [np.array([], dtype=np.uint32) for doc_id in doc_ids] if len(r_val) == 1 and len(doc_ids) == 1 and isinstance(doc_ids[0], numbers.Number): return [r_val[0]] return r_val decoded = encoder.decode(encoded=term_posns, get_keys=True) if len(decoded) == 0: return [np.array([], dtype=np.uint32)] if len(decoded) != len(doc_ids): # Fill non matches decoded = cast(List[Tuple[np.uint64, np.ndarray]], decoded) as_dict: Dict[np.uint64, np.ndarray] = dict(decoded) decs = [] for doc_id in doc_ids: if doc_id in as_dict: decs.append(as_dict[doc_id]) else: decs.append(np.array([], dtype=np.uint32)) return decs else: decs = [dec[1] for dec in decoded] return decs def termfreqs(self, term_id: int, doc_ids: Optional[np.ndarray] = None) -> Tuple[np.ndarray, np.ndarray]: """Count term freqs using unique positions.""" if doc_ids is None: return self._termfreqs_with_cache(term_id) encoded = self.encoded_term_posns[term_id] term_posns = encoded term_posns = encoder.slice(encoded, keys=doc_ids.astype(np.uint64)) return self._computed_term_freqs(term_posns) def _computed_term_freqs(self, term_posns) -> Tuple[np.ndarray, np.ndarray]: doc_ids = encoder.keys(term_posns) change_indices = np.nonzero(np.diff(doc_ids))[0] change_indices = np.concatenate((np.asarray([0]), change_indices + 1)) posns = term_posns & encoder.payload_lsb_mask bit_counts = bit_count64(posns) term_freqs = np.add.reduceat(bit_counts, change_indices) return sorted_unique(doc_ids), term_freqs def _termfreqs_with_cache(self, term_id: int) -> Tuple[np.ndarray, np.ndarray]: try: return self.termfreq_cache[term_id] except KeyError: term_posns = self.encoded_term_posns[term_id] doc_ids, term_freqs = self._computed_term_freqs(term_posns) if self._is_cached(term_id): self.termfreq_cache[term_id] = (doc_ids, term_freqs) return doc_ids, term_freqs def _is_cached(self, term_id: int) -> bool: return term_id in self.docfreq_cache def _docfreq_from_cache(self, term_id: int) -> np.uint64: return self.docfreq_cache[term_id] def _maybe_cache_docfreq(self, term_id: int, docfreq: np.uint64): if self.max_doc_id >= 100000 and docfreq > (self.max_doc_id // 100): self.docfreq_cache[term_id] = docfreq def docfreq(self, term_id: int) -> np.uint64: try: return self.docfreq_cache[term_id] except KeyError: encoded = self.encoded_term_posns[term_id] docfreq = np.uint64(encoder.keys_unique(encoded).size) self._maybe_cache_docfreq(term_id, docfreq) return docfreq def insert(self, key, term_ids_to_posns, is_encoded=False): new_posns = PosnBitArrayBuilder() if is_encoded: new_posns = PosnBitArrayAlreadyEncBuilder() max_doc_id = 0 for doc_id, new_posns_row in enumerate(term_ids_to_posns): for term_id, positions in new_posns_row: new_posns.add_posns(doc_id, term_id, positions) max_doc_id = max(doc_id, max_doc_id) new_posns.max_doc_id = max_doc_id ins_arr = new_posns.build() self.merge(ins_arr) @property def nbytes(self): arr_bytes = 0 for doc_id, posn in self.encoded_term_posns.items(): arr_bytes += posn.nbytes for term_id, (doc_ids, term_freqs) in self.termfreq_cache.items(): arr_bytes += doc_ids.nbytes arr_bytes += term_freqs.nbytes for term_id, docfreq in self.docfreq_cache.items(): arr_bytes += docfreq.nbytes return arr_bytes <fim_middle>
null
LINE_COMMENT
complete_current_header_empty_completion
<filename>searcharray/searcharray/postings.py<fim_prefix>"""Tokenized, searchable text as a pandas dtype.""" import pandas as pd import numbers from pandas.api.extensions import ExtensionDtype, ExtensionArray, register_extension_dtype from pandas.api.types import is_list_like from pandas.api.extensions import take import json from collections import Counter import warnings import logging from typing import List, Union, Optional, Iterable import numpy as np from searcharray.phrase.scan_merge import scan_merge_ins from searcharray.phrase.posn_diffs import compute_phrase_freqs from searcharray.phrase.middle_out import PosnBitArray from searcharray.similarity import Similarity, default_bm25 from searcharray.indexing import build_index_from_tokenizer, build_index_from_terms_list from searcharray.term_dict import TermMissingError logger = logging.getLogger(__name__) # When running in pytest import sys # noqa handler = logging.StreamHandler(sys.stdout) handler.setLevel(logging.ERROR) formatter = logging.Formatter("[%(filename)s:%(lineno)s - %(funcName)20s() ] %(message)s") handler.setFormatter(formatter) logger.addHandler(handler) logger.setLevel(logging.ERROR) class Terms: """An indexed search doc - a single bag of tokenized words and positions.""" def __init__(self, postings, doc_len: int = 0, posns: Optional[dict] = None, encoded=False): self.postings = postings self.posns = None self.encoded = encoded self.doc_len = doc_len self.posns = posns def _validate_posns(self): # (For testing/assertions) - Confirm every term in positions also in postings if self.posns is None: return for term in self.posns: if term not in self.postings: raise ValueError(f"Term {term} in positions but not in postings. ") def termfreq(self, token): return self.postings[token] def terms(self): return self.postings.items() def positions(self, term=None): if self.posns is None: return {} if term is None: posns = self.posns.items() else: posns = self.posns[term] return posns def raw_positions(self, term_dict, term=None): if self.posns is None: return {} if term is None: posns = [(term_dict.get_term_id(term), posns) for term, posns in self.posns.items()] else: posns = [(term_dict.get_term_id(term), self.posns[term])] return posns def tf_to_dense(self, term_dict): """Convert to a dense vector of term frequencies.""" dense = np.zeros(len(term_dict)) for term, freq in self.terms(): dense[term_dict.get_term_id(term)] = freq return dense def __len__(self): return len(self.postings) def __repr__(self): posting_keys = set(self.postings.keys()) rval = f"Terms({posting_keys})" return rval def __str__(self): return repr(self) def __eq__(self, other): # Flip to the other implementation if we're comparing to a SearchArray # to get a boolean array back if isinstance(other, SearchArray): return other == self same_postings = isinstance(other, Terms) and self.postings == other.postings if same_postings and self.doc_len == other.doc_len: return True def __lt__(self, other): # return isinstance(other, Terms) and hash(self) < hash(other) keys_both = set(self.postings.keys()).union(set(other.postings.keys())) # Sort lexically keys_both = sorted(keys_both) # Iterate as if these are two vectors of the same large dimensional vector sparse for key in keys_both: lhs_val = 0 rhs_val = 0 try: lhs_val = self.postings[key] except KeyError: pass try: rhs_val = other.postings[key] except KeyError: pass if lhs_val < rhs_val: return True elif lhs_val > rhs_val: return False else: continue return False def __le__(self, other): return self < other or self == other def __gt__(self, other): return not (self < other) and self != other def __hash__(self): return hash(json.dumps(self.postings, sort_keys=True)) class TermsDtype(ExtensionDtype): """Pandas dtype for terms.""" name = 'tokenized_text' type = Terms kind = 'O' @classmethod def construct_from_string(cls, string): if not isinstance(string, str): raise TypeError( "'construct_from_string' expects a string, got {}".format(type(string)) ) elif string == cls.name: return cls() else: raise TypeError( "Cannot construct a '{}' from '{}'".format(cls.__name__, string) ) @classmethod def construct_array_type(cls): return SearchArray def __repr__(self): return 'TermsDtype()' @property def na_value(self): return Terms({}) def valid_value(self, value): return isinstance(value, dict) or pd.isna(value) or isinstance(value, Terms) register_extension_dtype(TermsDtype) def ws_tokenizer(string): if pd.isna(string): return [] if not isinstance(string, str): raise ValueError("Expected a string") return string.split() def _row_to_postings_row(doc_id, row, doc_len, term_dict, posns: PosnBitArray): tfs = {} labeled_posns = {} for term_idx in row.cols: term = term_dict.get_term(term_idx) tfs[term] = 1 enc_term_posns = posns.doc_encoded_posns(term_idx, doc_id=doc_id) labeled_posns[term] = enc_term_posns result = Terms(tfs, posns=labeled_posns, doc_len=doc_len, encoded=True) return result class SearchArray(ExtensionArray): """An array of tokenized text (Termss).""" dtype = TermsDtype() def __init__(self, postings, tokenizer=ws_tokenizer, avoid_copies=True): # Check dtype, raise TypeError if not is_list_like(postings): raise TypeError("Expected list-like object, got {}".format(type(postings))) self.avoid_copies = avoid_copies self.tokenizer = tokenizer self.term_mat, self.posns, \ self.term_dict, self.avg_doc_length, \ self.doc_lens = build_index_from_terms_list(postings, Terms) @classmethod def index(cls, array: Iterable, tokenizer=ws_tokenizer, truncate=False, batch_size=100000, avoid_copies=True) -> 'SearchArray': """Index an array of strings using tokenizer.""" if not is_list_like(array): raise TypeError("Expected list-like object, got {}".format(type(array))) term_mat, posns, term_dict, avg_doc_length, doc_lens =\ build_index_from_tokenizer(array, tokenizer, batch_size=batch_size, truncate=truncate) postings = cls([], tokenizer=tokenizer, avoid_copies=avoid_copies) postings.term_mat = term_mat postings.posns = posns postings.term_dict = term_dict postings.avg_doc_length = avg_doc_length postings.doc_lens = doc_lens return postings @classmethod def _from_sequence(cls, scalars, dtype=None, copy=False): """Construct a new SearchArray from a sequence of scalars (PostingRow or convertible into).""" if dtype is not None: if not isinstance(dtype, TermsDtype): return scalars if isinstance(scalars, np.ndarray) and scalars.dtype == TermsDtype(): return cls(scalars) # String types elif isinstance(scalars, np.ndarray) and scalars.dtype.kind in 'US': return cls(scalars) # Other objects elif isinstance(scalars, np.ndarray) and scalars.dtype != object: return scalars return cls(scalars) def memory_usage(self, deep=False): """Return memory usage of this array in bytes.""" return self.nbytes @property def nbytes(self): return self.term_mat.nbytes + self.posns.nbytes + self.doc_lens.nbytes + self.term_dict.nbytes def __getitem__(self, key): key = pd.api.indexers.check_array_indexer(self, key) # Want to take rows of term freqs if isinstance(key, numbers.Integral): try: rows = self.term_mat[key] doc_len = self.doc_lens[key] doc_id = key if doc_id < 0: doc_id += len(self) return _row_to_postings_row(doc_id, rows[0], doc_len, self.term_dict, self.posns) except IndexError: raise IndexError("index out of bounds") else: # Construct a sliced view of this array sliced_tfs = self.term_mat.slice(key) sliced_posns = self.posns.slice(sliced_tfs.rows) if not self.avoid_copies else self.posns arr = SearchArray([], tokenizer=self.tokenizer) arr.term_mat = sliced_tfs arr.doc_lens = self.doc_lens[key] arr.posns = sliced_posns arr.term_dict = self.term_dict arr.avg_doc_length = self.avg_doc_length return arr def __setitem__(self, key, value): """Set an item in the array.""" key = pd.api.indexers.check_array_indexer(self, key) if isinstance(value, pd.Series): value = value.values if isinstance(value, pd.DataFrame): value = value.values.flatten() if isinstance(value, SearchArray): value = value.to_numpy() if isinstance(value, list): value = np.asarray(value, dtype=object) if not isinstance(value, np.ndarray) and not self.dtype.valid_value(value): raise ValueError(f"Cannot set non-object array to SearchArray -- you passed type:{type(value)} -- {value}") # Cant set a single value to an array if isinstance(key, numbers.Integral) and isinstance(value, np.ndarray): raise ValueError("Cannot set a single value to an array") try: is_encoded = False posns = None term_mat = np.asarray([]) doc_lens = np.asarray([]) if isinstance(value, float): term_mat = np.asarray([value]) doc_lens = np.asarray([0]) elif isinstance(value, Terms): term_mat = np.asarray([value.tf_to_dense(self.term_dict)]) doc_lens = np.asarray([value.doc_len]) is_encoded = value.encoded posns = [value.raw_positions(self.term_dict)] elif isinstance(value, np.ndarray): term_mat = np.asarray([x.tf_to_dense(self.term_dict) for x in value]) doc_lens = np.asarray([x.doc_len for x in value]) is_encoded = value[0].encoded if len(value) > 0 else False posns = [x.raw_positions(self.term_dict) for x in value] np.nan_to_num(term_mat, copy=False, nan=0) self.term_mat[key] = term_mat self.doc_lens[key] = doc_lens if posns is not None: self.posns.insert(key, posns, is_encoded) # Assume we have a positions for each term, doc pair. We can just update it. # Otherwise we would have added new terms except TermMissingError: self._add_new_terms(key, value) def _add_new_terms(self, key, value): msg = """Adding new terms! This might not be good if you tokenized this new text with a different tokenizer. Also. This is slow.""" warnings.warn(msg) scan_value = value if isinstance(value, Terms): scan_value = np.asarray([value]) for row in scan_value: for term in row.terms(): self.term_dict.add_term(term[0]) self.term_mat.resize((self.term_mat.shape[0], len(self.term_dict))) # Ensure posns_lookup has at least max self.posns self[key] = value def value_counts( self, dropna: bool = True, ): if dropna: counts = Counter(self[:]) counts.pop(Terms({}), None) else: counts = Counter(self[:]) return pd.Series(counts) def __len__(self): len_rval = len(self.term_mat.rows) return len_rval def __ne__(self, other): if isinstance(other, pd.DataFrame) or isinstance(other, pd.Series) or isinstance(other, pd.Index): return NotImplemented return ~(self == other) def __eq__(self, other): """Return a boolean numpy array indicating elementwise equality.""" # When other is a dataframe or series, not implemented if isinstance(other, pd.DataFrame) or isinstance(other, pd.Series) or isinstance(other, pd.Index): return NotImplemented # When other is an ExtensionArray if isinstance(other, SearchArray): if len(self) != len(other): return False elif len(other) == 0: return np.array([], dtype=bool) else: # Compatible term dicts, and same term freqs # (not looking at positions, maybe we sho<fim_suffix>uld?) if self.term_dict.compatible(other.term_dict): return (self.term_mat == other.term_mat) & (self.doc_lens == other.doc_lens) else: return np.zeros(len(self), dtype=bool) # return np.array(self[:]) == np.array(other[:]) # When other is a scalar value elif isinstance(other, Terms): other = SearchArray([other], tokenizer=self.tokenizer) warnings.warn("Comparing a scalar value to a SearchArray. This is slow.") return np.array(self[:]) == np.array(other[:]) # When other is a sequence but not an ExtensionArray # its an array of dicts elif is_list_like(other): if len(self) != len(other): return False elif len(other) == 0: return np.array([], dtype=bool) # We actually don't know how it was tokenized other = SearchArray(other, tokenizer=self.tokenizer) return np.array(self[:]) == np.array(other[:]) # Return False where 'other' is neither the same length nor a scalar else: return np.full(len(self), False) def isna(self): # Every row with all 0s empties = self.doc_lens == 0 return empties def take(self, indices, allow_fill=False, fill_value=None): # Want to take rows of term freqs row_indices = np.arange(len(self.term_mat.rows)) # Take within the row indices themselves result_indices = take(row_indices, indices, allow_fill=allow_fill, fill_value=-1) if allow_fill and -1 in result_indices: if fill_value is None or pd.isna(fill_value): fill_value = Terms({}, encoded=True) to_fill_mask = result_indices == -1 # This is slow as it rebuilds all the term dictionaries # on the subsequent assignment lines # However, this case tends to be the exception for # most dataframe operations taken = SearchArray([fill_value] * len(result_indices)) taken[~to_fill_mask] = self[result_indices[~to_fill_mask]].copy() return taken else: taken = self[result_indices].copy() return taken def copy(self): postings_arr = SearchArray([], tokenizer=self.tokenizer) postings_arr.doc_lens = self.doc_lens.copy() postings_arr.term_mat = self.term_mat.copy() postings_arr.posns = self.posns postings_arr.term_dict = self.term_dict postings_arr.avg_doc_length = self.avg_doc_length if not self.avoid_copies: postings_arr.posns = self.posns.copy() postings_arr.term_dict = self.term_dict.copy() return postings_arr @classmethod def _concat_same_type(cls, to_concat): concatenated_data = np.concatenate([ea[:] for ea in to_concat]) return SearchArray(concatenated_data, tokenizer=to_concat[0].tokenizer) @classmethod def _from_factorized(cls, values, original): return cls(values) def _values_for_factorize(self): """Return an array and missing value suitable for factorization (ie grouping).""" arr = np.asarray(self[:], dtype=object) return arr, Terms({}) def _check_token_arg(self, token): if isinstance(token, str): return token elif isinstance(token, list) and len(token) == 1: return token[0] elif isinstance(token, list): return token else: raise TypeError("Expected a string or list of strings for phrases") # *********************************************************** # Search functionality # *********************************************************** def termfreqs(self, token: Union[List[str], str]) -> np.ndarray: token = self._check_token_arg(token) if isinstance(token, list): return self.phrase_freq(token) try: term_id = self.term_dict.get_term_id(token) matches = np.zeros(len(self), dtype=int) slice_of_rows = None if self.term_mat.subset: slice_of_rows = self.term_mat.rows doc_ids, termfreqs = self.posns.termfreqs(term_id, doc_ids=slice_of_rows) mask = np.isin(self.term_mat.rows, doc_ids) matches[mask] = termfreqs return matches else: doc_ids, termfreqs = self.posns.termfreqs(term_id, doc_ids=slice_of_rows) matches[doc_ids] = termfreqs return matches except TermMissingError: return np.zeros(len(self), dtype=int) def docfreq(self, token: str) -> int: if not isinstance(token, str): raise TypeError("Expected a string") # Count number of rows where the term appears try: return self.posns.docfreq(self.term_dict.get_term_id(token)) except TermMissingError: return 0 def doclengths(self) -> np.ndarray: return self.doc_lens def match(self, token: Union[List[str], str], slop: int = 1) -> np.ndarray: """Return a boolean numpy array indicating which elements contain the given term.""" token = self._check_token_arg(token) if isinstance(token, list): term_freq = self.phrase_freq(token) else: term_freq = self.termfreqs(token) return term_freq > 0 def score(self, token: Union[str, List[str]], similarity: Similarity = default_bm25) -> np.ndarray: """Score each doc using a similarity function. Parameters ---------- token : str or list of str of what to search (already tokenized) similarity : How to score the documents. Default is BM25. """ # Get term freqs per token token = self._check_token_arg(token) # For expensive toknes, we compute doc freq first, so we # cache them in the DF cache, to let TF cache know it should be cached tokens_l = [token] if isinstance(token, str) else token all_dfs = np.asarray([self.docfreq(token) for token in tokens_l]) tfs = self.termfreqs(token) token = self._check_token_arg(token) doc_lens = self.doclengths() scores = similarity(term_freqs=tfs, doc_freqs=all_dfs, doc_lens=doc_lens, avg_doc_lens=self.avg_doc_length, num_docs=len(self)) return scores def positions(self, token: str, key=None) -> List[np.ndarray]: """Return a list of lists of positions of the given term.""" term_id = self.term_dict.get_term_id(token) key = self.term_mat.rows[key] if key is not None else self.term_mat.rows posns = self.posns.positions(term_id, doc_ids=key) return posns def and_query(self, tokens: Union[List[str], List[List[str]]]) -> np.ndarray: """Return a mask on the postings array indicating which elements contain all terms.""" masks = [self.match(term) for term in tokens] mask = np.ones(len(self), dtype=bool) for curr_mask in masks: mask = mask & curr_mask return mask def or_query(self, tokens: Union[List[str], List[List[str]]], min_should_match: int = 1) -> np.ndarray: """Return a mask on the postings array indicating which elements contain all terms.""" masks = [self.match(term) for term in tokens] mask = np.sum(masks, axis=0) >= min_should_match return mask def phrase_freq(self, tokens: List[str], slop=1) -> np.ndarray: if slop == 1 and len(tokens) == len(set(tokens)): phrase_freqs = np.zeros(len(self)) try: doc_ids = self.term_mat.rows term_ids = [self.term_dict.get_term_id(token) for token in tokens] return self.posns.phrase_freqs(term_ids, doc_ids=doc_ids, phrase_freqs=phrase_freqs) except TermMissingError: return phrase_freqs else: return self.phrase_freq_every_diff(tokens, slop=slop) def phrase_freq_scan(self, tokens: List[str], mask=None, slop=1) -> np.ndarray: if mask is None: mask = self.and_query(tokens) if np.sum(mask) == 0: return mask # Gather positions posns = [self.positions(token, mask) for token in tokens] phrase_freqs = np.zeros(len(self)) phrase_freqs[mask] = scan_merge_ins(posns, phrase_freqs[mask], slop=slop) return phrase_freqs def phrase_freq_every_diff(self, tokens: List[str], slop=1) -> np.ndarray: phrase_freqs = -np.ones(len(self)) mask = self.and_query(tokens) phrase_freqs[~mask] = 0 if np.sum(mask) == 0: return phrase_freqs term_posns = [self.positions(term, mask) for term in tokens] for width in [10, 20, 30, 40]: phrase_freqs[mask] = compute_phrase_freqs(term_posns, phrase_freqs[mask], slop=slop, width=width) remaining_mask = phrase_freqs == -1 if np.any(remaining_mask): remainder_freqs = self.phrase_freq_scan(tokens, mask=remaining_mask, slop=slop) phrase_freqs[remaining_mask] = remainder_freqs[remaining_mask] return phrase_freqs <fim_middle>
null
LINE_COMMENT
complete_current_header_empty_completion
<filename>searcharray/searcharray/similarity.py<fim_prefix>"""Similarity functions given term stats.""" from typing import Protocol import numpy as np class Similarity(Protocol): """Similarity function protocol.""" def __call__(self, term_freqs: np.ndarray, doc_freqs: np.ndarray, doc_lens: np.ndarray, avg_doc_lens: int, num_docs: int) -> np.ndarray: """Calculate similarity scores.""" ... def bm25_similarity(k1: float = 1.2, b: float = 0.75) -> Similarity: """BM25 similarity function, as in Lucene 9.""" def bm25(term_freqs: np.ndarray, doc_freqs: np.ndarray, doc_lens: np.ndarray, avg_doc_lens: int, num_docs: int) -> np.ndarray: """Calculate BM25 scores.""" # Sum doc freq<fim_suffix>s sum_dfs = np.sum(doc_freqs, axis=0) # Calculate idf idf = np.log(1 + (num_docs - sum_dfs + 0.5) / (sum_dfs + 0.5)) # Calculate tf tf = term_freqs / (term_freqs + k1 * (1 - b + b * doc_lens / avg_doc_lens)) return idf * tf return bm25 def bm25_legacy_similarity(k1: float = 1.2, b: float = 0.75) -> Similarity: """BM25 similarity prior to LUCENE-8563 with k1 + 1 in numerator.""" # (freq * (k1 + 1)) / (freq + k1 * (1 - b + b * fieldLength / avgFieldLength)) def bm25(term_freqs: np.ndarray, doc_freqs: np.ndarray, doc_lens: np.ndarray, avg_doc_lens: int, num_docs: int) -> np.ndarray: """Calculate BM25 scores.""" # Sum doc freqs sum_dfs = np.sum(doc_freqs, axis=0) # Calculate idf idf = np.log(1 + (num_docs - sum_dfs + 0.5) / (sum_dfs + 0.5)) # Calculate tf tf = (term_freqs * (k1 + 1)) / (term_freqs + k1 * (1 - b + b * doc_lens / avg_doc_lens)) return idf * tf return bm25 def classic_similarity() -> Similarity: """Classic Lucene TF-IDF similarity function.""" def classic(term_freqs: np.ndarray, doc_freqs: np.ndarray, doc_lens: np.ndarray, avg_doc_lens: int, num_docs: int) -> np.ndarray: """Calculate classic TF-IDF scores.""" # Sum doc freqs sum_dfs = np.sum(doc_freqs, axis=0) # Calculate idf as log((docCount+1)/(docFreq+1)) + 1 idf = np.log((num_docs + 1) / (sum_dfs + 1)) + 1 length_norm = 1.0 / np.sqrt(doc_lens) # Calculate tf tf = np.sqrt(term_freqs) return idf * tf * length_norm return classic default_bm25 = bm25_similarity() <fim_middle>
null
LINE_COMMENT
complete_current_header_empty_completion
<filename>searcharray/searcharray/postings.py<fim_prefix>"""Tokenized, searchable text as a pandas dtype.""" import pandas as pd import numbers from pandas.api.extensions import ExtensionDtype, ExtensionArray, register_extension_dtype from pandas.api.types import is_list_like from pandas.api.extensions import take import json from collections import Counter import warnings import logging from typing import List, Union, Optional, Iterable import numpy as np from searcharray.phrase.scan_merge import scan_merge_ins from searcharray.phrase.posn_diffs import compute_phrase_freqs from searcharray.phrase.middle_out import PosnBitArray from searcharray.similarity import Similarity, default_bm25 from searcharray.indexing import build_index_from_tokenizer, build_index_from_terms_list from searcharray.term_dict import TermMissingError logger = logging.getLogger(__name__) # When running in pytest import sys # noqa handler = logging.StreamHandler(sys.stdout) handler.setLevel(logging.ERROR) formatter = logging.Formatter("[%(filename)s:%(lineno)s - %(funcName)20s() ] %(message)s") handler.setFormatter(formatter) logger.addHandler(handler) logger.setLevel(logging.ERROR) class Terms: """An indexed search doc - a single bag of tokenized words and positions.""" def __init__(self, postings, doc_len: int = 0, posns: Optional[dict] = None, encoded=False): self.postings = postings self.posns = None self.encoded = encoded self.doc_len = doc_len self.posns = posns def _validate_posns(self): # (For testing/assertions) - Confirm every term in positions also in postings if self.posns is None: return for term in self.posns: if term not in self.postings: raise ValueError(f"Term {term} in positions but not in postings. ") def termfreq(self, token): return self.postings[token] def terms(self): return self.postings.items() def positions(self, term=None): if self.posns is None: return {} if term is None: posns = self.posns.items() else: posns = self.posns[term] return posns def raw_positions(self, term_dict, term=None): if self.posns is None: return {} if term is None: posns = [(term_dict.get_term_id(term), posns) for term, posns in self.posns.items()] else: posns = [(term_dict.get_term_id(term), self.posns[term])] return posns def tf_to_dense(self, term_dict): """Convert to a dense vector of term frequencies.""" dense = np.zeros(len(term_dict)) for term, freq in self.terms(): dense[term_dict.get_term_id(term)] = freq return dense def __len__(self): return len(self.postings) def __repr__(self): posting_keys = set(self.postings.keys()) rval = f"Terms({posting_keys})" return rval def __str__(self): return repr(self) def __eq__(self, other): # Flip to the other implementation if we're comparing to a SearchArray # to get a boolean array back if isinstance(other, SearchArray): return other == self same_postings = isinstance(other, Terms) and self.postings == other.postings if same_postings and self.doc_len == other.doc_len: return True def __lt__(self, other): # return isinstance(other, Terms) and hash(self) < hash(other) keys_both = set(self.postings.keys()).union(set(other.postings.keys())) # Sort lexically keys_both = sorted(keys_both) # Iterate as if these are two vectors of the same large dimensional vector sparse for key in keys_both: lhs_val = 0 rhs_val = 0 try: lhs_val = self.postings[key] except KeyError: pass try: rhs_val = other.postings[key] except KeyError: pass if lhs_val < rhs_val: return True elif lhs_val > rhs_val: return False else: continue return False def __le__(self, other): return self < other or self == other def __gt__(self, other): return not (self < other) and self != other def __hash__(self): return hash(json.dumps(self.postings, sort_keys=True)) class TermsDtype(ExtensionDtype): """Pandas dtype for terms.""" name = 'tokenized_text' type = Terms kind = 'O' @classmethod def construct_from_string(cls, string): if not isinstance(string, str): raise TypeError( "'construct_from_string' expects a string, got {}".format(type(string)) ) elif string == cls.name: return cls() else: raise TypeError( "Cannot construct a '{}' from '{}'".format(cls.__name__, string) ) @classmethod def construct_array_type(cls): return SearchArray def __repr__(self): return 'TermsDtype()' @property def na_value(self): return Terms({}) def valid_value(self, value): return isinstance(value, dict) or pd.isna(value) or isinstance(value, Terms) register_extension_dtype(TermsDtype) def ws_tokenizer(string): if pd.isna(string): return [] if not isinstance(string, str): raise ValueError("Expected a string") return string.split() def _row_to_postings_row(doc_id, row, doc_len, term_dict, posns: PosnBitArray): tfs = {} labeled_posns = {} for term_idx in row.cols: term = term_dict.get_term(term_idx) tfs[term] = 1 enc_term_posns = posns.doc_encoded_posns(term_idx, doc_id=doc_id) labeled_posns[term] = enc_term_posns result = Terms(tfs, posns=labeled_posns, doc_len=doc_len, encoded=True) return result class SearchArray(ExtensionArray): """An array of tokenized text (Termss).""" dtype = TermsDtype() def __init__(self, postings, tokenizer=ws_tokenizer, avoid_copies=True): # Check dtype, raise TypeError if not is_list_like(postings): raise TypeError("Expected list-like object, got {}".format(type(postings))) self.avoid_copies = avoid_copies self.tokenizer = tokenizer self.term_mat, self.posns, \ self.term_dict, self.avg_doc_length, \ self.doc_lens = build_index_from_terms_list(postings, Terms) @classmethod def index(cls, array: Iterable, tokenizer=ws_tokenizer, truncate=False, batch_size=100000, avoid_copies=True) -> 'SearchArray': """Index an array of strings using tokenizer.""" if not is_list_like(array): raise TypeError("Expected list-like object, got {}".format(type(array))) term_mat, posns, term_dict, avg_doc_length, doc_lens =\ build_index_from_tokenizer(array, tokenizer, batch_size=batch_size, truncate=truncate) postings = cls([], tokenizer=tokenizer, avoid_copies=avoid_copies) postings.term_mat = term_mat postings.posns = posns postings.term_dict = term_dict postings.avg_doc_length = avg_doc_length postings.doc_lens = doc_lens return postings @classmethod def _from_sequence(cls, scalars, dtype=None, copy=False): """Construct a new SearchArray from a sequence of scalars (PostingRow or convertible into).""" if dtype is not None: if not isinstance(dtype, TermsDtype): return scalars if isinstance(scalars, np.ndarray) and scalars.dtype == TermsDtype(): return cls(scalars) # String types elif isinstance(scalars, np.ndarray) and scalars.dtype.kind in 'US': return cls(scalars) # Other objects elif isinstance(scalars, np.ndarray) and scalars.dtype != object: return scalars return cls(scalars) def memory_usage(self, deep=False): """Return memory usage of this array in bytes.""" return self.nbytes @property def nbytes(self): return self.term_mat.nbytes + self.posns.nbytes + self.doc_lens.nbytes + self.term_dict.nbytes def __getitem__(self, key): key = pd.api.indexers.check_array_indexer(self, key) # Want to take rows of term freqs if isinstance(key, numbers.Integral): try: rows = self.term_mat[key] doc_len = self.doc_lens[key] doc_id = key if doc_id < 0: doc_id += len(self) return _row_to_postings_row(doc_id, rows[0], doc_len, self.term_dict, self.posns) except IndexError: raise IndexError("index out of bounds") else: # Construct a sliced view of this array sliced_tfs = self.term_mat.slice(key) sliced_posns = self.posns.slice(sliced_tfs.rows) if not self.avoid_copies else self.posns arr = SearchArray([], tokenizer=self.tokenizer) arr.term_mat = sliced_tfs arr.doc_lens = self.doc_lens[key] arr.posns = sliced_posns arr.term_dict = self.term_dict arr.avg_doc_length = self.avg_doc_length return arr def __setitem__(self, key, value): """Set an item in the array.""" key = pd.api.indexers.check_array_indexer(self, key) if isinstance(value, pd.Series): value = value.values if isinstance(value, pd.DataFrame): value = value.values.flatten() if isinstance(value, SearchArray): value = value.to_numpy() if isinstance(value, list): value = np.asarray(value, dtype=object) if not isinstance(value, np.ndarray) and not self.dtype.valid_value(value): raise ValueError(f"Cannot set non-object array to SearchArray -- you passed type:{type(value)} -- {value}") # Cant set a single value to an array if isinstance(key, numbers.Integral) and isinstance(value, np.ndarray): raise ValueError("Cannot set a single value to an array") try: is_encoded = False posns = None term_mat = np.asarray([]) doc_lens = np.asarray([]) if isinstance(value, float): term_mat = np.asarray([value]) doc_lens = np.asarray([0]) elif isinstance(value, Terms): term_mat = np.asarray([value.tf_to_dense(self.term_dict)]) doc_lens = np.asarray([value.doc_len]) is_encoded = value.encoded posns = [value.raw_positions(self.term_dict)] elif isinstance(value, np.ndarray): term_mat = np.asarray([x.tf_to_dense(self.term_dict) for x in value]) doc_lens = np.asarray([x.doc_len for x in value]) is_encoded = value[0].encoded if len(value) > 0 else False posns = [x.raw_positions(self.term_dict) for x in value] np.nan_to_num(term_mat, copy=False, nan=0) self.term_mat[key] = term_mat self.doc_lens[key] = doc_lens if posns is not None: self.posns.insert(key, posns, is_encoded) # Assume we have a positions for each term, doc pair. We can just update it. # Otherwise we would have added new terms except TermMissingError: self._add_new_terms(key, value) def _add_new_terms(self, key, value): msg = """Adding new terms! This might not be good if you tokenized this new text with a different tokenizer. Also. This is slow.""" warnings.warn(msg) scan_value = value if isinstance(value, Terms): scan_value = np.asarray([value]) for row in scan_value: for term in row.terms(): self.term_dict.add_term(term[0]) self.term_mat.resize((self.term_mat.shape[0], len(self.term_dict))) # Ensure posns_lookup has at least max self.posns self[key] = value def value_counts( self, dropna: bool = True, ): if dropna: counts = Counter(self[:]) counts.pop(Terms({}), None) else: counts = Counter(self[:]) return pd.Series(counts) def __len__(self): len_rval = len(self.term_mat.rows) return len_rval def __ne__(self, other): if isinstance(other, pd.DataFrame) or isinstance(other, pd.Series) or isinstance(other, pd.Index): return NotImplemented return ~(self == other) def __eq__(self, other): """Return a boolean numpy array indicating elementwise equality.""" # When other is a dataframe or series, not implemented if isinstance(other, pd.DataFrame) or isinstance(other, pd.Series) or isinstance(other, pd.Index): return NotImplemented # When other is an ExtensionArray if isinstance(other, SearchArray): if len(self) != len(other): return False elif len(other) == 0: return np.array([], dtype=bool) else: # Compatible term dicts, and same term freqs # (not looking at positions, maybe we should?) if self.term_dict.compatible(other.term_dict): return (self.term_mat == other.term_mat) & (self.doc_lens == other.doc_lens) else: return np.zeros(len(self), dtype=bool) # return np.array(self[:]) == np.array(other[:]) # When other is a scalar value elif isinstance(other, Terms): other = SearchArray([other], tokenizer=self.tokenizer) warnings.warn("Comparing a scalar value to a SearchArray. This is slow.") return np.array(self[:]) == np.array(other[:]) # When other is a sequence but not an ExtensionArray # its an array of dicts elif is_list_like(other): if len(self) != len(other): return False elif len(other) == 0: return np.array([], dtype=bool) # We actually don't know how it was tokenized other = SearchArray(other, tokenizer=self.tokenizer) return np.array(self[:]) == np.array(other[:]) # Return False where 'other' is neither the same length nor a scalar else: return np.full(len(self), False) def isna(self): # Every row with all 0s empties = self.doc_lens == 0 return empties def take(self, indices, allow_fill=False, fill_value=None): # Want to take rows of term freqs row_indices = np.arange(len(self.term_mat.rows)) # Take within the row indices themselves result_indices = take(row_indices, indices, allow_fill=allow_fill, fill_value=-1) if allow_fill and -1 in result_indices: if fill_value is None or pd.isna(fill_value): fill_value = Terms({}, encoded=True) to_fill_mask = result_indices == -1 # This is slow as it rebuilds all the term dictionaries # on the subsequent assignment lines # However, this case tends to be the exception for # most dataframe operations taken = SearchArray([fill_value] * len(result_indices)) taken[~to_fill_mask] = self[result_indices[~to_fill_mask]].copy() return taken else: taken = self[result_indices].copy() return taken def copy(self): postings_arr = SearchArray([], tokenizer=self.tokenizer) postings_arr.doc_lens = self.doc_lens.copy() postings_arr.term_mat = self.term_mat.copy() postings_arr.posns = self.posns postings_arr.term_dict = self.term_dict postings_arr.avg_doc_length = self.avg_doc_length if not self.avoid_copies: postings_arr.posns = self.posns.copy() postings_arr.term_dict = self.term_dict.copy() return postings_arr @classmethod def _concat_same_type(cls, to_concat): concatenated_data = np.concatenate([ea[:] for ea in to_concat]) return SearchArray(concatenated_data, tokenizer=to_concat[0].tokenizer) @classmethod def _from_factorized(cls, values, original): return cls(values) def _values_for_factorize(self): """Return an array and missing value suitable for factorization (ie grouping).""" arr = np.asarray(self[:], dtype=object) return arr, Terms({}) def _check_token_arg(self, token): if isinstance(token, str): return token elif isinstance(token, list) and len(token) == 1: return token[0] elif isinstance(token, list): return token else: raise TypeError("Expected a string or list of strings for phrases") # *********************************************************** # Search functionality # *********************************************************** def termfreqs(self, token: Union[List[str], str]) -> np.ndarray: token = self._check_token_arg(token) if isinstance(token, list): return self.phrase_freq(token) try: term_id = self.term_dict.get_term_id(token) matches = np.zeros(len(self), dtype=int) slice_of_rows = None if self.term_mat.subset: slice_of_rows = self.term_mat.rows doc_ids, termfreqs = self.posns.termfreqs(term_id, doc_ids=slice_of_rows) mask = np.isin(self.term_mat.rows, doc_ids) matches[mask] = termfreqs return matches else: doc_ids, termfreqs = self.posns.termfreqs(term_id, doc_ids=slice_of_rows) matches[doc_ids] = termfreqs return matches except TermMissingError: return np.zeros(len(self), dtype=int) def docfreq(self, token: str) -> int: if not isinstance(token, str): raise TypeError("Expected a string") # Co<fim_suffix>unt number of rows where the term appears try: return self.posns.docfreq(self.term_dict.get_term_id(token)) except TermMissingError: return 0 def doclengths(self) -> np.ndarray: return self.doc_lens def match(self, token: Union[List[str], str], slop: int = 1) -> np.ndarray: """Return a boolean numpy array indicating which elements contain the given term.""" token = self._check_token_arg(token) if isinstance(token, list): term_freq = self.phrase_freq(token) else: term_freq = self.termfreqs(token) return term_freq > 0 def score(self, token: Union[str, List[str]], similarity: Similarity = default_bm25) -> np.ndarray: """Score each doc using a similarity function. Parameters ---------- token : str or list of str of what to search (already tokenized) similarity : How to score the documents. Default is BM25. """ # Get term freqs per token token = self._check_token_arg(token) # For expensive toknes, we compute doc freq first, so we # cache them in the DF cache, to let TF cache know it should be cached tokens_l = [token] if isinstance(token, str) else token all_dfs = np.asarray([self.docfreq(token) for token in tokens_l]) tfs = self.termfreqs(token) token = self._check_token_arg(token) doc_lens = self.doclengths() scores = similarity(term_freqs=tfs, doc_freqs=all_dfs, doc_lens=doc_lens, avg_doc_lens=self.avg_doc_length, num_docs=len(self)) return scores def positions(self, token: str, key=None) -> List[np.ndarray]: """Return a list of lists of positions of the given term.""" term_id = self.term_dict.get_term_id(token) key = self.term_mat.rows[key] if key is not None else self.term_mat.rows posns = self.posns.positions(term_id, doc_ids=key) return posns def and_query(self, tokens: Union[List[str], List[List[str]]]) -> np.ndarray: """Return a mask on the postings array indicating which elements contain all terms.""" masks = [self.match(term) for term in tokens] mask = np.ones(len(self), dtype=bool) for curr_mask in masks: mask = mask & curr_mask return mask def or_query(self, tokens: Union[List[str], List[List[str]]], min_should_match: int = 1) -> np.ndarray: """Return a mask on the postings array indicating which elements contain all terms.""" masks = [self.match(term) for term in tokens] mask = np.sum(masks, axis=0) >= min_should_match return mask def phrase_freq(self, tokens: List[str], slop=1) -> np.ndarray: if slop == 1 and len(tokens) == len(set(tokens)): phrase_freqs = np.zeros(len(self)) try: doc_ids = self.term_mat.rows term_ids = [self.term_dict.get_term_id(token) for token in tokens] return self.posns.phrase_freqs(term_ids, doc_ids=doc_ids, phrase_freqs=phrase_freqs) except TermMissingError: return phrase_freqs else: return self.phrase_freq_every_diff(tokens, slop=slop) def phrase_freq_scan(self, tokens: List[str], mask=None, slop=1) -> np.ndarray: if mask is None: mask = self.and_query(tokens) if np.sum(mask) == 0: return mask # Gather positions posns = [self.positions(token, mask) for token in tokens] phrase_freqs = np.zeros(len(self)) phrase_freqs[mask] = scan_merge_ins(posns, phrase_freqs[mask], slop=slop) return phrase_freqs def phrase_freq_every_diff(self, tokens: List[str], slop=1) -> np.ndarray: phrase_freqs = -np.ones(len(self)) mask = self.and_query(tokens) phrase_freqs[~mask] = 0 if np.sum(mask) == 0: return phrase_freqs term_posns = [self.positions(term, mask) for term in tokens] for width in [10, 20, 30, 40]: phrase_freqs[mask] = compute_phrase_freqs(term_posns, phrase_freqs[mask], slop=slop, width=width) remaining_mask = phrase_freqs == -1 if np.any(remaining_mask): remainder_freqs = self.phrase_freq_scan(tokens, mask=remaining_mask, slop=slop) phrase_freqs[remaining_mask] = remainder_freqs[remaining_mask] return phrase_freqs <fim_middle>
null
LINE_COMMENT
complete_current_header_empty_completion
<filename>searcharray/searcharray/phrase/middle_out.py<fim_prefix>"""Encode positions in bits along with some neighboring information for wrapping. See this notebook for motivation: https://colab.research.google.com/drive/10tIEkdlCE_1J_CcgEcV0jkLfBc-0H4am?authuser=1#scrollTo=XWzy-n9dF3PG """ import numpy as np import sortednp as snp from copy import deepcopy from typing import List, Tuple, Dict, Union, cast, Optional from searcharray.utils.roaringish import RoaringishEncoder, convert_keys, sorted_unique import numbers import logging from collections import defaultdict from searcharray.utils.bitcount import bit_count64 logger = logging.getLogger(__name__) # When running in pytest import sys # noqa handler = logging.StreamHandler(sys.stdout) handler.setLevel(logging.ERROR) formatter = logging.Formatter("[%(filename)s:%(lineno)s - %(funcName)20s() ] %(message)s") handler.setFormatter(formatter) logger.addHandler(handler) logger.setLevel(logging.ERROR) encoder = RoaringishEncoder() # To not constantly type coerce _64 = np.uint64(64) _2 = np.uint64(2) _1 = np.uint64(1) _0 = np.uint64(0) _neg1 = np.int64(-1) MAX_POSN = encoder.max_payload def inner_bigram_freqs(lhs: np.ndarray, rhs: np.ndarray, phrase_freqs: np.ndarray) -> Tuple[np.ndarray, np.ndarray]: """Count bigram matches between two encoded arrays, within a 64 bit word with same MSBs. Returns: -------- count: number of matches per doc rhs_next: the next rhs array to continue matching """ lhs_int, rhs_int = encoder.intersect(lhs, rhs) lhs_doc_ids = encoder.keys(lhs_int) if len(lhs_int) != len(rhs_int): raise ValueError("Encoding error, MSBs apparently are duplicated among your encoded posn arrays.") if len(lhs_int) == 0: return phrase_freqs, rhs_int same_term = (len(lhs_int) == len(rhs_int) and lhs_int[0] == rhs_int[0]) if same_term: # Find adjacent matches rhs_shift = rhs_int << _1 overlap = lhs_int & rhs_shift overlap = encoder.payload_lsb(overlap) adjacents = bit_count64(overlap).astype(np.int64) adjacents -= -np.floor_divide(adjacents, -2) # ceiling divide phrase_freqs[lhs_doc_ids] += adjacents return phrase_freqs, rhs_int overlap_bits = (lhs_int & encoder.payload_lsb_mask) & ((rhs_int & encoder.payload_lsb_mask) >> _1) rhs_next2 = (overlap_bits << _1) & encoder.payload_lsb_mask rhs_next2 |= (rhs_int & (encoder.key_mask | encoder.payload_msb_mask)) phrase_freqs2 = phrase_freqs.copy() matches2 = overlap_bits > 0 if np.any(matches2): transitions = np.argwhere(np.diff(lhs_doc_ids[matches2]) != 0).flatten() + 1 transitions = np.insert(transitions, 0, 0) counted_bits = bit_count64(overlap_bits[matches2]) reduced = np.add.reduceat(counted_bits, transitions) phrase_freqs2[np.unique(lhs_doc_ids[matches2])] += reduced return phrase_freqs2, rhs_next2 def adjacent_bigram_freqs(lhs: np.ndarray, rhs: np.ndarray, phrase_freqs: np.ndarray) -> Tuple[np.ndarray, np.ndarray]: """Count bigram matches between two encoded arrays where they occur in adjacent 64 bit words. Returns: -------- count: number of matches per doc rhs_next: the next rhs array to continue matching """ lhs_int, rhs_int = encoder.intersect_rshift(lhs, rhs, rshift=_neg1) lhs_doc_ids = encoder.keys(lhs_int) # lhs lsb set and rhs lsb's most significant bit set upper_bit = _1 << (encoder.payload_lsb_bits - _1) matches = ((lhs_int & upper_bit) != 0) & ((rhs_int & _1) != 0) unique, counts = np.unique(lhs_doc_ids[matches], return_counts=True) phrase_freqs[unique] += counts rhs_next = rhs_int rhs_next[~matches] |= ~encoder.payload_lsb_mask rhs_next[matches] |= (encoder.payload_lsb_mask & _1) return phrase_freqs, rhs_next def bigram_freqs(lhs: np.ndarray, rhs: np.ndarray, phrase_freqs: np.ndarray) -> Tuple[np.ndarray, np.ndarray]: """Count bigram matches between two encoded arrays. Returns: -------- count: number of matches per doc rhs_next: the next rhs array to continue matching """ # Combine lhs and rhs matches from two str<fim_suffix>ategies phrase_freqs, rhs_next_inner = inner_bigram_freqs(lhs, rhs, phrase_freqs) phrase_freqs, rhs_next_adj = adjacent_bigram_freqs(lhs, rhs, phrase_freqs) rhs_next = np.sort(np.concatenate([rhs_next_inner, rhs_next_adj])) # Combine return phrase_freqs, rhs_next def trim_phrase_search(encoded_posns: List[np.ndarray], phrase_freqs: np.ndarray) -> List[np.ndarray]: """Trim long phrases by searching the rarest terms first.""" # Start with rarest term shortest_keys = None shortest_idx = None min_len = 1e100 max_len = 0 for idx, enc_posn in enumerate(encoded_posns): if len(enc_posn) < min_len: shortest_keys = encoder.keys(enc_posn) shortest_idx = idx min_len = len(enc_posn) if len(enc_posn) > max_len: max_len = len(enc_posn) if shortest_keys is None: return encoded_posns for enc_posn_idx in range(len(encoded_posns)): if enc_posn_idx == shortest_idx: continue if len(encoded_posns[enc_posn_idx]) > (10 * min_len): encoded_posns[enc_posn_idx] = encoder.slice(encoded_posns[enc_posn_idx], shortest_keys) return encoded_posns def compute_phrase_freqs(encoded_posns: List[np.ndarray], phrase_freqs: np.ndarray) -> np.ndarray: if len(encoded_posns) < 2: raise ValueError("phrase must have at least two terms") # Trim long phrases by searching the rarest terms first if len(encoded_posns) > 3: encoded_posns = trim_phrase_search(encoded_posns, phrase_freqs) mask = np.ones(len(phrase_freqs), dtype=bool) lhs = encoded_posns[0] for rhs in encoded_posns[1:]: # Only count the count of the last bigram (ignoring the ones where priors did not match) phrase_freqs[mask] = 0 phrase_freqs, lhs = bigram_freqs(lhs, rhs, phrase_freqs) mask &= (phrase_freqs > 0) phrase_freqs[~mask] = 0 return phrase_freqs class PosnBitArrayFromFlatBuilder: """ Build from sorted array shape num terms x 3. 0th is term id 1st is doc id 2nd is posn Sorted by term id then posns """ def __init__(self, flat_array: np.ndarray): self.flat_array = flat_array def build(self): """Slice the flat array into a 2d array of doc ids and posns.""" term_boundaries = np.argwhere(np.diff(self.flat_array[0]) > 0).flatten() + 1 term_boundaries = np.concatenate([[0], term_boundaries, [len(self.flat_array[1])]]) encoded, enc_term_boundaries = encoder.encode(keys=self.flat_array[1].view(np.uint64), boundaries=term_boundaries[:-1], payload=self.flat_array[2].view(np.uint64)) term_ids = self.flat_array[0][term_boundaries[:-1]] encoded_term_posns = {} for into_terms, (beg_idx, end_idx) in enumerate(zip(enc_term_boundaries[:-1], enc_term_boundaries[1:])): sliced = encoded[beg_idx:end_idx] encoded_term_posns[term_ids[into_terms]] = sliced return PosnBitArray(encoded_term_posns, self.flat_array[1].max()) class PosnBitArrayBuilder: def __init__(self): self.term_posns = defaultdict(list) self.term_posn_doc_ids = defaultdict(list) self.max_doc_id = 0 def add_posns(self, doc_id: int, term_id: int, posns: List[int]): doc_ids = [doc_id] * len(posns) self.term_posns[term_id].extend(posns) self.term_posn_doc_ids[term_id].extend(doc_ids) def ensure_capacity(self, doc_id): self.max_doc_id = max(self.max_doc_id, doc_id) def build(self, check=False): encoded_term_posns = {} for term_id, posns in self.term_posns.items(): if len(posns) == 0: posns = np.asarray([], dtype=np.uint32).flatten() elif isinstance(posns, list): posns_arr = np.asarray(posns, dtype=np.uint32).flatten() posns = posns_arr doc_ids = self.term_posn_doc_ids[term_id] if isinstance(doc_ids, list): doc_ids = np.asarray(doc_ids, dtype=np.uint32) encoded = encoder.encode(keys=doc_ids, payload=posns) if check: decode_again = encoder.decode(encoded) docs_to_posns = dict(decode_again) doc_ids_again = [] posns_again = [] for doc_id, posns_dec in docs_to_posns.items(): for posn in posns_dec: doc_ids_again.append(doc_id) posns_again.append(posn) assert np.array_equal(doc_ids_again, doc_ids) assert np.array_equal(posns, posns_again) encoded_term_posns[term_id] = encoded return PosnBitArray(encoded_term_posns, self.max_doc_id) class PosnBitArrayAlreadyEncBuilder: def __init__(self): self.encoded_term_posns = {} self.max_doc_id = 0 def add_posns(self, doc_id: int, term_id: int, posns): self.encoded_term_posns[term_id] = posns def ensure_capacity(self, doc_id): self.max_doc_id = max(self.max_doc_id, doc_id) def build(self, check=False): return PosnBitArray(self.encoded_term_posns, self.max_doc_id) def index_range(rng, key): if key is None: return rng if isinstance(rng, np.ndarray): return rng[key] if isinstance(key, slice): return rng[key] elif isinstance(key, numbers.Number): return rng[key] elif isinstance(key, np.ndarray): try: # UNFORTUNATE COPY r_val = np.asarray(list(rng))[key] return r_val except IndexError as e: raise e # Last resort # UNFORTUNATE COPY # Here probably elipses or a tuple of various things return np.asarray(list(rng))[key] class PosnBitArray: def __init__(self, encoded_term_posns, max_doc_id: int): self.encoded_term_posns = encoded_term_posns self.max_doc_id = max_doc_id self.docfreq_cache : Dict[int, np.uint64] = {} self.termfreq_cache : Dict[int, Tuple[np.ndarray, np.ndarray]] = {} def copy(self): new = PosnBitArray(deepcopy(self.encoded_term_posns), self.max_doc_id) return new def concat(self, other): """Merge other into self. Assumes other's doc ids are not overlapping with self's doc ids. """ # Shared terms shared_terms = set(self.encoded_term_posns.keys()).intersection(set(other.encoded_term_posns.keys())) for term_id in shared_terms: # Append then sort self.encoded_term_posns[term_id] = np.concatenate([self.encoded_term_posns[term_id], other.encoded_term_posns[term_id]]) self.encoded_term_posns[term_id].sort() only_other_terms = set(other.encoded_term_posns.keys()).difference(set(self.encoded_term_posns.keys())) for term_id in only_other_terms: self.encoded_term_posns[term_id] = other.encoded_term_posns[term_id] self.max_doc_id = max(self.max_doc_id, other.max_doc_id) # Empty caches self.termfreq_cache = {} self.docfreq_cache = {} def slice(self, key): sliced_term_posns = {} doc_ids = convert_keys(key) max_doc_id = np.max(doc_ids) for term_id, posns in self.encoded_term_posns.items(): encoded = self.encoded_term_posns[term_id] assert len(encoded.shape) == 1 sliced_term_posns[term_id] = encoder.slice(encoded, keys=doc_ids) return PosnBitArray(sliced_term_posns, max_doc_id) def __getitem__(self, key): return self.slice(key) def merge(self, other): # Unique terms unique_terms = set(self.encoded_term_posns.keys()).union(set(other.encoded_term_posns.keys())) for term_id in unique_terms: if term_id not in other.encoded_term_posns: continue elif term_id not in self.encoded_term_posns: self.encoded_term_posns[term_id] = other.encoded_term_posns[term_id] else: posns_self = self.encoded_term_posns[term_id] posns_other = other.encoded_term_posns[term_id] self.encoded_term_posns[term_id] = snp.merge(posns_self, posns_other) self.max_doc_id = self.max_doc_id + other.max_doc_id # Empty caches self.termfreq_cache = {} self.docfreq_cache = {} def doc_encoded_posns(self, term_id: int, doc_id: int) -> np.ndarray: term_posns = encoder.slice(self.encoded_term_posns[term_id], keys=np.asarray([doc_id], dtype=np.uint64)) return term_posns def phrase_freqs(self, term_ids: List[int], phrase_freqs: np.ndarray, doc_ids: np.ndarray) -> np.ndarray: if len(term_ids) < 2: raise ValueError("Must have at least two terms") if phrase_freqs.shape[0] == self.max_doc_id + 1: enc_term_posns = [self.encoded_term_posns[term_id] for term_id in term_ids] else: enc_term_posns = [encoder.slice(self.encoded_term_posns[term_id], keys=doc_ids.view(np.uint64)) for term_id in term_ids] return compute_phrase_freqs(enc_term_posns, phrase_freqs) def positions(self, term_id: int, doc_ids) -> Union[List[np.ndarray], np.ndarray]: if isinstance(doc_ids, numbers.Number): doc_ids = np.asarray([doc_ids]) try: np_doc_ids = convert_keys(doc_ids) term_posns = encoder.slice(self.encoded_term_posns[term_id], keys=np_doc_ids) except KeyError: r_val = [np.array([], dtype=np.uint32) for doc_id in doc_ids] if len(r_val) == 1 and len(doc_ids) == 1 and isinstance(doc_ids[0], numbers.Number): return [r_val[0]] return r_val decoded = encoder.decode(encoded=term_posns, get_keys=True) if len(decoded) == 0: return [np.array([], dtype=np.uint32)] if len(decoded) != len(doc_ids): # Fill non matches decoded = cast(List[Tuple[np.uint64, np.ndarray]], decoded) as_dict: Dict[np.uint64, np.ndarray] = dict(decoded) decs = [] for doc_id in doc_ids: if doc_id in as_dict: decs.append(as_dict[doc_id]) else: decs.append(np.array([], dtype=np.uint32)) return decs else: decs = [dec[1] for dec in decoded] return decs def termfreqs(self, term_id: int, doc_ids: Optional[np.ndarray] = None) -> Tuple[np.ndarray, np.ndarray]: """Count term freqs using unique positions.""" if doc_ids is None: return self._termfreqs_with_cache(term_id) encoded = self.encoded_term_posns[term_id] term_posns = encoded term_posns = encoder.slice(encoded, keys=doc_ids.astype(np.uint64)) return self._computed_term_freqs(term_posns) def _computed_term_freqs(self, term_posns) -> Tuple[np.ndarray, np.ndarray]: doc_ids = encoder.keys(term_posns) change_indices = np.nonzero(np.diff(doc_ids))[0] change_indices = np.concatenate((np.asarray([0]), change_indices + 1)) posns = term_posns & encoder.payload_lsb_mask bit_counts = bit_count64(posns) term_freqs = np.add.reduceat(bit_counts, change_indices) return sorted_unique(doc_ids), term_freqs def _termfreqs_with_cache(self, term_id: int) -> Tuple[np.ndarray, np.ndarray]: try: return self.termfreq_cache[term_id] except KeyError: term_posns = self.encoded_term_posns[term_id] doc_ids, term_freqs = self._computed_term_freqs(term_posns) if self._is_cached(term_id): self.termfreq_cache[term_id] = (doc_ids, term_freqs) return doc_ids, term_freqs def _is_cached(self, term_id: int) -> bool: return term_id in self.docfreq_cache def _docfreq_from_cache(self, term_id: int) -> np.uint64: return self.docfreq_cache[term_id] def _maybe_cache_docfreq(self, term_id: int, docfreq: np.uint64): if self.max_doc_id >= 100000 and docfreq > (self.max_doc_id // 100): self.docfreq_cache[term_id] = docfreq def docfreq(self, term_id: int) -> np.uint64: try: return self.docfreq_cache[term_id] except KeyError: encoded = self.encoded_term_posns[term_id] docfreq = np.uint64(encoder.keys_unique(encoded).size) self._maybe_cache_docfreq(term_id, docfreq) return docfreq def insert(self, key, term_ids_to_posns, is_encoded=False): new_posns = PosnBitArrayBuilder() if is_encoded: new_posns = PosnBitArrayAlreadyEncBuilder() max_doc_id = 0 for doc_id, new_posns_row in enumerate(term_ids_to_posns): for term_id, positions in new_posns_row: new_posns.add_posns(doc_id, term_id, positions) max_doc_id = max(doc_id, max_doc_id) new_posns.max_doc_id = max_doc_id ins_arr = new_posns.build() self.merge(ins_arr) @property def nbytes(self): arr_bytes = 0 for doc_id, posn in self.encoded_term_posns.items(): arr_bytes += posn.nbytes for term_id, (doc_ids, term_freqs) in self.termfreq_cache.items(): arr_bytes += doc_ids.nbytes arr_bytes += term_freqs.nbytes for term_id, docfreq in self.docfreq_cache.items(): arr_bytes += docfreq.nbytes return arr_bytes <fim_middle>
null
LINE_COMMENT
complete_current_header_empty_completion
<filename>searcharray/searcharray/utils/roaringish.py<fim_prefix>"""Roaring-ish bit array for storing sorted integers in numpy array. See - https://softwaredoug.com/blog/2024/01/21/search-array-phrase-algorithm """ import numpy as np import sortednp as snp import logging import numbers from typing import Optional, Tuple, List, Union logger = logging.getLogger(__name__) # When running in pytest import sys # noqa handler = logging.StreamHandler(sys.stdout) handler.setLevel(logging.ERROR) formatter = logging.Formatter("[%(filename)s:%(lineno)s - %(funcName)20s() ] %(message)s") handler.setFormatter(formatter) logger.addHandler(handler) logger.setLevel(logging.ERROR) DEFAULT_KEY_MASK = np.uint64(0xFFFFFFF000000000) DEFAULT_KEY_BITS = np.uint64(28) DEFAULT_PAYLOAD_MSB_MASK = np.uint64(0x0000000FFFFC0000) DEFAULT_PAYLOAD_MSB_BITS = np.uint64(18) DEFAULT_PAYLOAD_LSB_MASK = np.uint64(0x000000000003FFFF) DEFAULT_PAYLOAD_LSB_BITS = np.uint64(18) # To not constantly type coerce _64 = np.uint64(64) _2 = np.uint64(2) _1 = np.uint64(1) _0 = np.uint64(0) _neg1 = np.int64(-1) _algorithm = snp.GALLOPING_SEARCH def n_msb_mask(n: np.uint64) -> np.uint64: """Return the n most significant bits of num.""" return np.uint64(~(np.uint64(_1 << (_64 - n))) + _1) def sorted_unique(arr: np.ndarray) -> np.ndarray: return snp.intersect(arr, arr, duplicates=snp.DROP) class RoaringishEncoder: """An encoder for key->integer sets as a numpy array. Each returned array represents a single term, with key as MSBS, ie: | 32 MSBs | 16 LSBs | 16 LSBs | key | bits msbs | payload (different number of MSBs / payload bits can be specified) """ def __init__(self, key_bits: np.uint64 = DEFAULT_KEY_BITS): payload_bits = _64 - key_bits self.payload_msb_bits = payload_bits // _2 self.payload_lsb_bits = np.uint64(payload_bits - self.payload_msb_bits) self.key_bits = key_bits assert self.key_bits.dtype == np.uint64 # key bits MSB of 64 bits self.key_mask = n_msb_mask(key_bits) self.payload_msb_mask = n_msb_mask(np.uint64(self.payload_msb_bits + key_bits)) & ~self.key_mask assert self.payload_msb_bits.dtype == np.uint64, f"MSB bits dtype was {self.payload_msb_bits.dtype}" assert self.payload_msb_mask.dtype == np.uint64, f"MSB mask dtype was {self.payload_msb_mask.dtype}" self.payload_lsb_mask = (_1 << self.payload_lsb_bits) - np.uint64(1) assert self.payload_lsb_bits.dtype == np.uint64, f"LSB bits dtype was {self.payload_lsb_bits.dtype}" assert self.payload_lsb_mask.dtype == np.uint64, f"LSB mask dtype was {self.payload_lsb_mask.dtype}" if key_bits == DEFAULT_KEY_BITS: assert self.key_mask == DEFAULT_KEY_MASK assert self.payload_msb_mask == DEFAULT_PAYLOAD_MSB_MASK assert self.payload_lsb_mask == DEFAULT_PAYLOAD_LSB_MASK self.max_payload = np.uint64(2**self.payload_lsb_bits - 1) def validate_payload(self, payload: np.ndarray): """Optional validation of payload.""" if np.any(payload > self.max_payload): raise ValueError(f"Positions must be less than {2**self.payload_lsb_bits}") def encode(self, payload: np.ndarray, keys: Optional[np.ndarray] = None, boundaries: Optional[np.ndarray] = None) -> Tuple[np.ndarray, Optional[np.ndarray]]: """Pack a sorted array of integers into compact bit numpy array. each returned array represents a single term, with key as MSBS, ie: | 32 MSBs | 16 LSBs | 16 LSBs | key | bits msbs| payload for later easy intersection of 32+16 msbs, then checking for adjacent positions If boundaries are provided, then we consider multiple distinct payloads being encoded simultaneously, and we return the boundaries of each """ cols = np.floor_divide(payload, self.payload_lsb_bits, dtype=np.uint64) # Header of bit to use cols <<= self.payload_msb_bits if keys is not None: cols |= keys.astype(np.uint64) << (_64 - self.key_bits) values = payload % self.payload_lsb_bits # Value to encode change_indices_one_doc = np.nonzero(np.diff(cols))[0] + 1 change_indices_one_doc = np.concatenate([[0], change_indices_one_doc]) if boundaries is not None: change_indices = snp.merge(change_indices_one_doc, boundaries, duplicates=snp.DROP) new_boundaries = snp.intersect(boundaries, change_indices, indices=True)[1][1] new_boundaries = np.concatenate([new_boundaries, [len(change_indices)]]) else: change_indices = change_indices_one_doc new_boundaries = None # 0 as a position, goes in bit 1, # 1 as a position, goes in bit 2, etc values = _1 << values cols |= values encoded = cols if len(encoded) == 0: return encoded, new_boundaries reduced = np.bitwise_or.reduceat(encoded, change_indices) return reduced, new_boundaries def decode(self, encoded: np.ndarray, get_keys: bool = True) -> Union[List[Tuple[np.uint64, np.ndarray]], List[np.ndarray]]: """Decode an encoded bit array into keys / payloads.""" keys = (encoded & self.key_mask) >> (_64 - self.key_bits) msbs = (encoded & self.payload_msb_mask) >> self.payload_msb_bits to_concat = [] for bit in range(self.payload_lsb_bits): mask = 1 << bit lsbs = encoded & mask set_lsbs = (lsbs != 0) this_keys = keys[set_lsbs] payload = bit + (msbs[set_lsbs] * self.payload_lsb_bits) doc_with_posn = np.dstack([this_keys, payload])[0] to_concat.append(doc_with_posn) stacked = np.vstack(to_concat) # Sort by doc_id, then posn sorted_payload = stacked[np.lexsort((stacked[:, 1], stacked[:, 0]))] keys, idx = np.unique(sorted_payload[:, 0], return_index=True) grouped = np.split(sorted_payload[:, 1], idx[1:]) if get_keys: return list(zip(keys, grouped)) else: return grouped def keys(self, encoded: np.ndarray) -> np.ndarray: """Return keys from encoded.""" return (encoded & self.key_mask) >> (_64 - self.key_bits) def keys_unique(self, encoded: np.ndarray) -> np.ndarray: """Return keys from encoded.""" keys = self.keys(encoded) intersected = sorted_unique(keys) return intersected def payload_msb(self, encoded: np.ndarray) -> np.ndarray: """Return payload MSBs from encoded.""" return (encoded & self.payload_msb_mask) >> self.payload_msb_bits def payload_lsb(self, encoded: np.ndarray) -> np.ndarray: """Return payload LSBs from encoded.""" return encoded & self.payload_lsb_mask def intersect_rshift(self, lhs: np.ndarray, rhs: np.ndarray, rshift: np.int64 = _neg1) -> Tuple[np.ndarray, np.ndarray]: """Return the MSBs that are common to both lhs and rhs (same keys, same MSBs) Parameters ---------- lhs : np.ndarray of uint64 (encoded) values rhs : np.ndarray of uint64 (encoded) values rshift : int how much to shift rhs by to the right """ rhs_int = rhs assert rshift < 0, "rshift must be negative" rhs_int = rhs[self.payload_msb(rhs) >= np.abs(rshift)] rshft = rshift.view(np.uint64) rhs_shifted = (rhs_int >> self.payload_lsb_bits) + rshft # assert np.all(np.diff(rhs_shifted) >= 0), "not sorted" _, (lhs_idx, rhs_idx) = snp.intersect(lhs >> self.payload_lsb_bits, rhs_shifted, indices=True, algorithm=_algorithm) return lhs[lhs_idx], rhs_int[rhs_idx] def intersect(self, lhs: np.ndarray, rhs: np.ndarray) -> Tuple[np.ndarray, np.ndarray]: """Return the MSBs that are common to both lhs and rhs (same keys, same MSBs) Parameters ---------- lhs : np.ndarray of uint64 (encoded) values rhs : np.ndarray of uint64 (encoded) values """ # assert np.all(np.diff(rhs_shifted) >= 0), "not sorted" _, (lhs_idx, rhs_idx) = snp.intersect(lhs >> self.payload_lsb_bits, rhs >> self.payload_lsb_bits, indices=True, algorithm=_algorithm) return lhs[lhs_idx], rhs[rhs_idx] def slice(self, encoded: np.ndarray, keys: np.ndarray) -> np.ndarray: """Get list of encoded that have values in keys.""" assert len(keys.shape) == 1 assert len(encoded.shape) == 1 encoded_keys = encoded.view(np.uint64) >> (_64 - self.key_bits) _, (idx_docs, idx_enc) = snp.intersect(keys, encoded_keys, indices=True, duplicates=snp.KEEP_MAX_N, algorithm=_algorithm) return encoded[idx_enc] def convert_keys(keys) -> np.ndarray: """Convert keys to range or np.ndarray of uint64.""" if isinstance(keys, numbers.Number): return np.asarray([keys], dtype=np.uint64) elif isinstance(keys, list): return np.asarray(keys, dtype=np.uint64) elif isinstance(keys, np.ndarray): return keys.astype(np.uint64) elif isinstance(keys, range) and len(keys) > 0: # U<fim_suffix>NFORTUNATE COPY return np.arange(keys[0], keys[-1] + 1, dtype=np.uint64) + keys[0] elif isinstance(keys, range): return np.asarray([], dtype=np.uint64) raise ValueError(f"Unknown type for keys: {type(keys)}") <fim_middle>
null
LINE_COMMENT
complete_current_header_empty_completion
<filename>searcharray/searcharray/postings.py<fim_prefix>"""Tokenized, searchable text as a pandas dtype.""" import pandas as pd import numbers from pandas.api.extensions import ExtensionDtype, ExtensionArray, register_extension_dtype from pandas.api.types import is_list_like from pandas.api.extensions import take import json from collections import Counter import warnings import logging from typing import List, Union, Optional, Iterable import numpy as np from searcharray.phrase.scan_merge import scan_merge_ins from searcharray.phrase.posn_diffs import compute_phrase_freqs from searcharray.phrase.middle_out import PosnBitArray from searcharray.similarity import Similarity, default_bm25 from searcharray.indexing import build_index_from_tokenizer, build_index_from_terms_list from searcharray.term_dict import TermMissingError logger = logging.getLogger(__name__) # When running in pytest import sys # noqa handler = logging.StreamHandler(sys.stdout) handler.setLevel(logging.ERROR) formatter = logging.Formatter("[%(filename)s:%(lineno)s - %(funcName)20s() ] %(message)s") handler.setFormatter(formatter) logger.addHandler(handler) logger.setLevel(logging.ERROR) class Terms: """An indexed search doc - a single bag of tokenized words and positions.""" def __init__(self, postings, doc_len: int = 0, posns: Optional[dict] = None, encoded=False): self.postings = postings self.posns = None self.encoded = encoded self.doc_len = doc_len self.posns = posns def _validate_posns(self): # (For testing/assertions) - Confirm every term in positions also in postings if self.posns is None: return for term in self.posns: if term not in self.postings: raise ValueError(f"Term {term} in positions but not in postings. ") def termfreq(self, token): return self.postings[token] def terms(self): return self.postings.items() def positions(self, term=None): if self.posns is None: return {} if term is None: posns = self.posns.items() else: posns = self.posns[term] return posns def raw_positions(self, term_dict, term=None): if self.posns is None: return {} if term is None: posns = [(term_dict.get_term_id(term), posns) for term, posns in self.posns.items()] else: posns = [(term_dict.get_term_id(term), self.posns[term])] return posns def tf_to_dense(self, term_dict): """Convert to a dense vector of term frequencies.""" dense = np.zeros(len(term_dict)) for term, freq in self.terms(): dense[term_dict.get_term_id(term)] = freq return dense def __len__(self): return len(self.postings) def __repr__(self): posting_keys = set(self.postings.keys()) rval = f"Terms({posting_keys})" return rval def __str__(self): return repr(self) def __eq__(self, other): # Flip to the other implementation if we're comparing to a SearchArray # to get a boolean array back if isinstance(other, SearchArray): return other == self same_postings = isinstance(other, Terms) and self.postings == other.postings if same_postings and self.doc_len == other.doc_len: return True def __lt__(self, other): # return isinstance(other, Terms) and hash(self) < hash(other) keys_both = set(self.postings.keys()).union(set(other.postings.keys())) # Sort lexically keys_both = sorted(keys_both) # Iterate as if these are two vectors of the same large dimensional vector sparse for key in keys_both: lhs_val = 0 rhs_val = 0 try: lhs_val = self.postings[key] except KeyError: pass try: rhs_val = other.postings[key] except KeyError: pass if lhs_val < rhs_val: return True elif lhs_val > rhs_val: return False else: continue return False def __le__(self, other): return self < other or self == other def __gt__(self, other): return not (self < other) and self != other def __hash__(self): return hash(json.dumps(self.postings, sort_keys=True)) class TermsDtype(ExtensionDtype): """Pandas dtype for terms.""" name = 'tokenized_text' type = Terms kind = 'O' @classmethod def construct_from_string(cls, string): if not isinstance(string, str): raise TypeError( "'construct_from_string' expects a string, got {}".format(type(string)) ) elif string == cls.name: return cls() else: raise TypeError( "Cannot construct a '{}' from '{}'".format(cls.__name__, string) ) @classmethod def construct_array_type(cls): return SearchArray def __repr__(self): return 'TermsDtype()' @property def na_value(self): return Terms({}) def valid_value(self, value): return isinstance(value, dict) or pd.isna(value) or isinstance(value, Terms) register_extension_dtype(TermsDtype) def ws_tokenizer(string): if pd.isna(string): return [] if not isinstance(string, str): raise ValueError("Expected a string") return string.split() def _row_to_postings_row(doc_id, row, doc_len, term_dict, posns: PosnBitArray): tfs = {} labeled_posns = {} for term_idx in row.cols: term = term_dict.get_term(term_idx) tfs[term] = 1 enc_term_posns = posns.doc_encoded_posns(term_idx, doc_id=doc_id) labeled_posns[term] = enc_term_posns result = Terms(tfs, posns=labeled_posns, doc_len=doc_len, encoded=True) return result class SearchArray(ExtensionArray): """An array of tokenized text (Termss).""" dtype = TermsDtype() def __init__(self, postings, tokenizer=ws_tokenizer, avoid_copies=True): # Check dtype, raise TypeError if not is_list_like(postings): raise TypeError("Expected list-like object, got {}".format(type(postings))) self.avoid_copies = avoid_copies self.tokenizer = tokenizer self.term_mat, self.posns, \ self.term_dict, self.avg_doc_length, \ self.doc_lens = build_index_from_terms_list(postings, Terms) @classmethod def index(cls, array: Iterable, tokenizer=ws_tokenizer, truncate=False, batch_size=100000, avoid_copies=True) -> 'SearchArray': """Index an array of strings using tokenizer.""" if not is_list_like(array): raise TypeError("Expected list-like object, got {}".format(type(array))) term_mat, posns, term_dict, avg_doc_length, doc_lens =\ build_index_from_tokenizer(array, tokenizer, batch_size=batch_size, truncate=truncate) postings = cls([], tokenizer=tokenizer, avoid_copies=avoid_copies) postings.term_mat = term_mat postings.posns = posns postings.term_dict = term_dict postings.avg_doc_length = avg_doc_length postings.doc_lens = doc_lens return postings @classmethod def _from_sequence(cls, scalars, dtype=None, copy=False): """Construct a new SearchArray from a sequence of scalars (PostingRow or convertible into).""" if dtype is not None: if not isinstance(dtype, TermsDtype): return scalars if isinstance(scalars, np.ndarray) and scalars.dtype == TermsDtype(): return cls(scalars) # String types elif isinstance(scalars, np.ndarray) and scalars.dtype.kind in 'US': return cls(scalars) # Other objects elif isinstance(scalars, np.ndarray) and scalars.dtype != object: return scalars return cls(scalars) def memory_usage(self, deep=False): """Return memory usage of this array in bytes.""" return self.nbytes @property def nbytes(self): return self.term_mat.nbytes + self.posns.nbytes + self.doc_lens.nbytes + self.term_dict.nbytes def __getitem__(self, key): key = pd.api.indexers.check_array_indexer(self, key) # Want to take rows of term freqs if isinstance(key, numbers.Integral): try: rows = self.term_mat[key] doc_len = self.doc_lens[key] doc_id = key if doc_id < 0: doc_id += len(self) return _row_to_postings_row(doc_id, rows[0], doc_len, self.term_dict, self.posns) except IndexError: raise IndexError("index out of bounds") else: # Construct a sliced view of this array sliced_tfs = self.term_mat.slice(key) sliced_posns = self.posns.slice(sliced_tfs.rows) if not self.avoid_copies else self.posns arr = SearchArray([], tokenizer=self.tokenizer) arr.term_mat = sliced_tfs arr.doc_lens = self.doc_lens[key] arr.posns = sliced_posns arr.term_dict = self.term_dict arr.avg_doc_length = self.avg_doc_length return arr def __setitem__(self, key, value): """Set an item in the array.""" key = pd.api.indexers.check_array_indexer(self, key) if isinstance(value, pd.Series): value = value.values if isinstance(value, pd.DataFrame): value = value.values.flatten() if isinstance(value, SearchArray): value = value.to_numpy() if isinstance(value, list): value = np.asarray(value, dtype=object) if not isinstance(value, np.ndarray) and not self.dtype.valid_value(value): raise ValueError(f"Cannot set non-object array to SearchArray -- you passed type:{type(value)} -- {value}") # Cant set a single value to an array if isinstance(key, numbers.Integral) and isinstance(value, np.ndarray): raise ValueError("Cannot set a single value to an array") try: is_encoded = False posns = None term_mat = np.asarray([]) doc_lens = np.asarray([]) if isinstance(value, float): term_mat = np.asarray([value]) doc_lens = np.asarray([0]) elif isinstance(value, Terms): term_mat = np.asarray([value.tf_to_dense(self.term_dict)]) doc_lens = np.asarray([value.doc_len]) is_encoded = value.encoded posns = [value.raw_positions(self.term_dict)] elif isinstance(value, np.ndarray): term_mat = np.asarray([x.tf_to_dense(self.term_dict) for x in value]) doc_lens = np.asarray([x.doc_len for x in value]) is_encoded = value[0].encoded if len(value) > 0 else False posns = [x.raw_positions(self.term_dict) for x in value] np.nan_to_num(term_mat, copy=False, nan=0) self.term_mat[key] = term_mat self.doc_lens[key] = doc_lens if posns is not None: self.posns.insert(key, posns, is_encoded) # Assume we have a positions for each term, doc pair. We can just update it. # Otherwise we would have added new terms except TermMissingError: self._add_new_terms(key, value) def _add_new_terms(self, key, value): msg = """Adding new terms! This might not be good if you tokenized this new text with a different tokenizer. Also. This is slow.""" warnings.warn(msg) scan_value = value if isinstance(value, Terms): scan_value = np.asarray([value]) for row in scan_value: for term in row.terms(): self.term_dict.add_term(term[0]) self.term_mat.resize((self.term_mat.shape[0], len(self.term_dict))) # Ensure posns_lookup has at least max self.posns self[key] = value def value_counts( self, dropna: bool = True, ): if dropna: counts = Counter(self[:]) counts.pop(Terms({}), None) else: counts = Counter(self[:]) return pd.Series(counts) def __len__(self): len_rval = len(self.term_mat.rows) return len_rval def __ne__(self, other): if isinstance(other, pd.DataFrame) or isinstance(other, pd.Series) or isinstance(other, pd.Index): return NotImplemented return ~(self == other) def __eq__(self, other): """Return a boolean numpy array indicating elementwise equality.""" # When other is a dataframe or series, not implemented if isinstance(other, pd.DataFrame) or isinstance(other, pd.Series) or isinstance(other, pd.Index): return NotImplemented # When other is an ExtensionArray if isinstance(other, SearchArray): if len(self) != len(other): return False elif len(other) == 0: return np.array([], dtype=bool) else: # Compatible term dicts, and same term freqs # (not looking at positions, maybe we should?) if self.term_dict.compatible(other.term_dict): return (self.term_mat == other.term_mat) & (self.doc_lens == other.doc_lens) else: return np.zeros(len(self), dtype=bool) # return np.array(self[:]) == np.array(other[:]) # When other is a scalar value elif isinstance(other, Terms): other = SearchArray([other], tokenizer=self.tokenizer) warnings.warn("Comparing a scalar value to a SearchArray. This is slow.") return np.array(self[:]) == np.array(other[:]) # When other is a sequence but not an ExtensionArray # its an array of dicts elif is_list_like(other): if len(self) != len(other): return False elif len(other) == 0: return np.array([], dtype=bool) # We actually don't know how it was tokenized other = SearchArray(other, tokenizer=self.tokenizer) return np.array(self[:]) == np.array(other[:]) # Return False where 'other' is neither the same length nor a scalar else: return np.full(len(self), False) def isna(self): # Every row with all 0s empties = self.doc_lens == 0 return empties def take(self, indices, allow_fill=False, fill_value=None): # Want to take rows of term freqs row_indices = np.arange(len(self.term_mat.rows)) # Take within the row indices themselves result_indices = take(row_indices, indices, allow_fill=allow_fill, fill_value=-1) if allow_fill and -1 in result_indices: if fill_value is None or pd.isna(fill_value): fill_value = Terms({}, encoded=True) to_fill_mask = result_indices == -1 # This is slow as it rebuilds all the term dictionaries # on the subsequent assignment lines # However, this case tends to be the exception for # most dataframe operations taken = SearchArray([fill_value] * len(result_indices)) taken[~to_fill_mask] = self[result_indices[~to_fill_mask]].copy() return taken else: taken = self[result_indices].copy() return taken def copy(self): postings_arr = SearchArray([], tokenizer=self.tokenizer) postings_arr.doc_lens = self.doc_lens.copy() postings_arr.term_mat = self.term_mat.copy() postings_arr.posns = self.posns postings_arr.term_dict = self.term_dict postings_arr.avg_doc_length = self.avg_doc_length if not self.avoid_copies: postings_arr.posns = self.posns.copy() postings_arr.term_dict = self.term_dict.copy() return postings_arr @classmethod def _concat_same_type(cls, to_concat): concatenated_data = np.concatenate([ea[:] for ea in to_concat]) return SearchArray(concatenated_data, tokenizer=to_concat[0].tokenizer) @classmethod def _from_factorized(cls, values, original): return cls(values) def _values_for_factorize(self): """Return an array and missing value suitable for factorization (ie grouping).""" arr = np.asarray(self[:], dtype=object) return arr, Terms({}) def _check_token_arg(self, token): if isinstance(token, str): return token elif isinstance(token, list) and len(token) == 1: return token[0] elif isinstance(token, list): return token else: raise TypeError("Expected a string or list of strings for phrases") # *********************************************************** # Search functionality # *********************************************************** def termfreqs(self, token: Union[List[str], str]) -> np.ndarray: token = self._check_token_arg(token) if isinstance(token, list): return self.phrase_freq(token) try: term_id = self.term_dict.get_term_id(token) matches = np.zeros(len(self), dtype=int) slice_of_rows = None if self.term_mat.subset: slice_of_rows = self.term_mat.rows doc_ids, termfreqs = self.posns.termfreqs(term_id, doc_ids=slice_of_rows) mask = np.isin(self.term_mat.rows, doc_ids) matches[mask] = termfreqs return matches else: doc_ids, termfreqs = self.posns.termfreqs(term_id, doc_ids=slice_of_rows) matches[doc_ids] = termfreqs return matches except TermMissingError: return np.zeros(len(self), dtype=int) def docfreq(self, token: str) -> int: if not isinstance(token, str): raise TypeError("Expected a string") # Count number of rows where the term appears try: return self.posns.docfreq(self.term_dict.get_term_id(token)) except TermMissingError: return 0 def doclengths(self) -> np.ndarray: return self.doc_lens def match(self, token: Union[List[str], str], slop: int = 1) -> np.ndarray: """Return a boolean numpy array indicating which elements contain the given term.""" token = self._check_token_arg(token) if isinstance(token, list): term_freq = self.phrase_freq(token) else: term_freq = self.termfreqs(token) return term_freq > 0 def score(self, token: Union[str, List[str]], similarity: Similarity = default_bm25) -> np.ndarray: """Score each doc using a similarity function. Parameters ---------- token : str or list of str of what to search (already tokenized) similarity : How to score the documents. Default is BM25. """ # Get term freqs per token token = self._check_token_arg(token) # For expensive toknes, we compute doc freq first, so we # cache them in the DF cache, to let TF cache know it should be cached tokens_l = [token] if isinstance(token, str) else token all_dfs = np.asarray([self.docfreq(token) for token in tokens_l]) tfs = self.termfreqs(token) token = self._check_token_arg(token) doc_lens = self.doclengths() scores = similarity(term_freqs=tfs, doc_freqs=all_dfs, doc_lens=doc_lens, avg_doc_lens=self.avg_doc_length, num_docs=len(self)) return scores def positions(self, token: str, key=None) -> List[np.ndarray]: """Return a list of lists of positions of the given term.""" term_id = self.term_dict.get_term_id(token) key = self.term_mat.rows[key] if key is not None else self.term_mat.rows posns = self.posns.positions(term_id, doc_ids=key) return posns def and_query(self, tokens: Union[List[str], List[List[str]]]) -> np.ndarray: """Return a mask on the postings array indicating which elements contain all terms.""" masks = [self.match(term) for term in tokens] mask = np.ones(len(self), dtype=bool) for curr_mask in masks: mask = mask & curr_mask return mask def or_query(self, tokens: Union[List[str], List[List[str]]], min_should_match: int = 1) -> np.ndarray: """Return a mask on the postings array indicating which elements contain all terms.""" masks = [self.match(term) for term in tokens] mask = np.sum(masks, axis=0) >= min_should_match return mask def phrase_freq(self, tokens: List[str], slop=1) -> np.ndarray: if slop == 1 and len(tokens) == len(set<fim_suffix>(tokens)): phrase_freqs = np.zeros(len(self)) try: doc_ids = self.term_mat.rows term_ids = [self.term_dict.get_term_id(token) for token in tokens] return self.posns.phrase_freqs(term_ids, doc_ids=doc_ids, phrase_freqs=phrase_freqs) except TermMissingError: return phrase_freqs else: return self.phrase_freq_every_diff(tokens, slop=slop) def phrase_freq_scan(self, tokens: List[str], mask=None, slop=1) -> np.ndarray: if mask is None: mask = self.and_query(tokens) if np.sum(mask) == 0: return mask # Gather positions posns = [self.positions(token, mask) for token in tokens] phrase_freqs = np.zeros(len(self)) phrase_freqs[mask] = scan_merge_ins(posns, phrase_freqs[mask], slop=slop) return phrase_freqs def phrase_freq_every_diff(self, tokens: List[str], slop=1) -> np.ndarray: phrase_freqs = -np.ones(len(self)) mask = self.and_query(tokens) phrase_freqs[~mask] = 0 if np.sum(mask) == 0: return phrase_freqs term_posns = [self.positions(term, mask) for term in tokens] for width in [10, 20, 30, 40]: phrase_freqs[mask] = compute_phrase_freqs(term_posns, phrase_freqs[mask], slop=slop, width=width) remaining_mask = phrase_freqs == -1 if np.any(remaining_mask): remainder_freqs = self.phrase_freq_scan(tokens, mask=remaining_mask, slop=slop) phrase_freqs[remaining_mask] = remainder_freqs[remaining_mask] return phrase_freqs <fim_middle>
null
IF
complete_current_header_empty_completion
<filename>searcharray/searcharray/postings.py<fim_prefix>"""Tokenized, searchable text as a pandas dtype.""" import pandas as pd import numbers from pandas.api.extensions import ExtensionDtype, ExtensionArray, register_extension_dtype from pandas.api.types import is_list_like from pandas.api.extensions import take import json from collections import Counter import warnings import logging from typing import List, Union, Optional, Iterable import numpy as np from searcharray.phrase.scan_merge import scan_merge_ins from searcharray.phrase.posn_diffs import compute_phrase_freqs from searcharray.phrase.middle_out import PosnBitArray from searcharray.similarity import Similarity, default_bm25 from searcharray.indexing import build_index_from_tokenizer, build_index_from_terms_list from searcharray.term_dict import TermMissingError logger = logging.getLogger(__name__) # When running in pytest import sys # noqa handler = logging.StreamHandler(sys.stdout) handler.setLevel(logging.ERROR) formatter = logging.Formatter("[%(filename)s:%(lineno)s - %(funcName)20s() ] %(message)s") handler.setFormatter(formatter) logger.addHandler(handler) logger.setLevel(logging.ERROR) class Terms: """An indexed search doc - a single bag of tokenized words and positions.""" def __init__(self, postings, doc_len: int = 0, posns: Optional[dict] = None, encoded=False): self.postings = postings self.posns = None self.encoded = encoded self.doc_len = doc_len self.posns = posns def _validate_posns(self): # (For testing/assertions) - Confirm every term in positions also in postings if self.posns is None: return for term in self.posns: if term not in self.postings: raise ValueError(f"Term {term} in positions but not in postings. ") def termfreq(self, token): return self.postings[token] def terms(self): return self.postings.items() def positions(self, term=None): if self.posns is None: return {} if term is None: posns = self.posns.items() else: posns = self.posns[term] return posns def raw_positions(self, term_dict, term=None): if self.posns is None: return {} if term is None: posns = [(term_dict.get_term_id(term), posns) for term, posns in self.posns.items()] else: posns = [(term_dict.get_term_id(term), self.posns[term])] return posns def tf_to_dense(self, term_dict): """Convert to a dense vector of term frequencies.""" dense = np.zeros(len(term_dict)) for term, freq in self.terms(): dense[term_dict.get_term_id(term)] = freq return dense def __len__(self): return len(self.postings) def __repr__(self): posting_keys = set(self.postings.keys()) rval = f"Terms({posting_keys})" return rval def __str__(self): return repr(self) def __eq__(self, other): # Flip to the other implementation if we're comparing to a SearchArray # to get a boolean array back if isinstance(other, SearchArray): return other == self same_postings = isinstance(other, Terms) and self.postings == other.postings if same_postings and self.doc_len == other.doc_len: return True def __lt__(self, other): # return isinstance(other, Terms) and hash(self) < hash(other) keys_both = set(self.postings.keys()).union(set(other.postings.keys())) # Sort lexically keys_both = sorted(keys_both) # Iterate as if these are two vectors of the same large dimensional vector sparse for key in keys_both: lhs_val = 0 rhs_val = 0 try: lhs_val = self.postings[key] except KeyError: pass try: rhs_val = other.postings[key] except KeyError: pass if lhs_val < rhs_val: return True elif lhs_val > rhs_val: return False else: continue return False def __le__(self, other): return self < other or self == other def __gt__(self, other): return not (self < other) and self != other def __hash__(self): return hash(json.dumps(self.postings, sort_keys=True)) class TermsDtype(ExtensionDtype): """Pandas dtype for terms.""" name = 'tokenized_text' type = Terms kind = 'O' @classmethod def construct_from_string(cls, string): if not isinstance(string, str): raise TypeError( "'construct_from_string' expects a string, got {}".format(type(string)) ) elif string == cls.name: return cls() else: raise TypeError( "Cannot construct a '{}' from '{}'".format(cls.__name__, string) ) @classmethod def construct_array_type(cls): return SearchArray def __repr__(self): return 'TermsDtype()' @property def na_value(self): return Terms({}) def valid_value(self, value): return isinstance(value, dict) or pd.isna(value) or isinstance(value, Terms) register_extension_dtype(TermsDtype) def ws_tokenizer(string): if pd.isna(string): return [] if not isinstance(string, str): raise ValueError("Expected a string") return string.split() def _row_to_postings_row(doc_id, row, doc_len, term_dict, posns: PosnBitArray): tfs = {} labeled_posns = {} for term_idx in row.cols: term = term_dict.get_term(term_idx) tfs[term] = 1 enc_term_posns = posns.doc_encoded_posns(term_idx, doc_id=doc_id) labeled_posns[term] = enc_term_posns result = Terms(tfs, posns=labeled_posns, doc_len=doc_len, encoded=True) return result class SearchArray(ExtensionArray): """An array of tokenized text (Termss).""" dtype = TermsDtype() def __init__(self, postings, tokenizer=ws_tokenizer, avoid_copies=True): # Check dtype, raise TypeError if not is_list_like(postings): raise TypeError("Expected list-like object, got {}".format(type(postings))) self.avoid_copies = avoid_copies self.tokenizer = tokenizer self.term_mat, self.posns, \ self.term_dict, self.avg_doc_length, \ self.doc_lens = build_index_from_terms_list(postings, Terms) @classmethod def index(cls, array: Iterable, tokenizer=ws_tokenizer, truncate=False, batch_size=100000, avoid_copies=True) -> 'SearchArray': """Index an array of strings using tokenizer.""" if not is_list_like(array): raise TypeError("Expected list-like object, got {}".format(type(array))) term_mat, posns, term_dict, avg_doc_length, doc_lens =\ build_index_from_tokenizer(array, tokenizer, batch_size=batch_size, truncate=truncate) postings = cls([], tokenizer=tokenizer, avoid_copies=avoid_copies) postings.term_mat = term_mat postings.posns = posns postings.term_dict = term_dict postings.avg_doc_length = avg_doc_length postings.doc_lens = doc_lens return postings @classmethod def _from_sequence(cls, scalars, dtype=None, copy=False): """Construct a new SearchArray from a sequence of scalars (PostingRow or convertible into).""" if dtype is not None: if not isinstance(dtype, TermsDtype): return scalars if isinstance(scalars, np.ndarray) and scalars.dtype == TermsDtype(): return cls(scalars) # String types elif isinstance(scalars, np.ndarray) and scalars.dtype.kind in 'US': return cls(scalars) # Other objects elif isinstance(scalars, np.ndarray) and scalars.dtype != object: return scalars return cls(scalars) def memory_usage(self, deep=False): """Return memory usage of this array in bytes.""" return self.nbytes @property def nbytes(self): return self.term_mat.nbytes + self.posns.nbytes + self.doc_lens.nbytes + self.term_dict.nbytes def __getitem__(self, key): key = pd.api.indexers.check_array_indexer(self, key) # Want to take rows of term freqs if isinstance(key, numbers.Integral): try: rows = self.term_mat[key] doc_len = self.doc_lens[key] doc_id = key if doc_id < 0: doc_id += len(self) return _row_to_postings_row(doc_id, rows[0], doc_len, self.term_dict, self.posns) except IndexError: raise IndexError("index out of bounds") else: # Construct a sliced view of this array sliced_tfs = self.term_mat.slice(key) sliced_posns = self.posns.slice(sliced_tfs.rows) if not self.avoid_copies else self.posns arr = SearchArray([], tokenizer=self.tokenizer) arr.term_mat = sliced_tfs arr.doc_lens = self.doc_lens[key] arr.posns = sliced_posns arr.term_dict = self.term_dict arr.avg_doc_length = self.avg_doc_length return arr def __setitem__(self, key, value): """Set an item in the array.""" key = pd.api.indexers.check_array_indexer(self, key) if isinstance(value, pd.Series): value = value.values if isinstance(value, pd.DataFrame): value = value.values.flatten() if isinstance(value, SearchArray): value = value.to_numpy() if isinstance(value, list): value = np.asarray(value, dtype=object) if not isinstance(value, np.ndarray) and not self.dtype.valid_value(value): raise ValueError(f"Cannot set non-object array to SearchArray -- you passed type:{type(value)} -- {value}") # Cant set a single value to an array if isinstance(key, numbers.Integral) and isinstance(value, np.ndarray): raise ValueError("Cannot set a single value to an array") try: is_encoded = False posns = None term_mat = np.asarray([]) doc_lens = np.asarray([]) if isinstance(value, float): term_mat = np.asarray([value]) doc_lens = np.asarray([0]) elif isinstance(value, Terms): term_mat = np.asarray([value.tf_to_dense(self.term_dict)]) doc_lens = np.asarray([value.doc_len]) is_encoded = value.encoded posns = [value.raw_positions(self.term_dict)] elif isinstance(value, np.ndarray): term_mat = np.asarray([x.tf_to_dense(self.term_dict) for x in value]) doc_lens = np.asarray([x.doc_len for x in value]) is_encoded = value[0].encoded if len(value) > 0 else False posns = [x.raw_positions(self.term_dict) for x in value] np.nan_to_num(term_mat, copy=False, nan=0) self.term_mat[key] = term_mat self.doc_lens[key] = doc_lens if posns is not None: self.posns.insert(key, posns, is_encoded) # Assume we have a positions for each term, doc pair. We can just update it. # Otherwise we would have added new terms except TermMissingError: self._add_new_terms(key, value) def _add_new_terms(self, key, value): msg = """Adding new terms! This might not be good if you tokenized this new text with a different tokenizer. Also. This is slow.""" warnings.warn(msg) scan_value = value if isinstance(value, Terms): scan_value = np.asarray([value]) for row in scan_value: for term in row.terms(): self.term_dict.add_term(term[0]) self.term_mat.resize((self.term_mat.shape[0], len(self.term_dict))) # Ensure posns_lookup has at least max self.posns self[key] = value def value_counts( self, dropna: bool = True, ): if dropna: counts = Counter(self[:]) counts.pop(Terms({}), None) else: counts = Counter(self[:]) return pd.Series(counts) def __len__(self): len_rval = len(self.term_mat.rows) return len_rval def __ne__(self, other): if isinstance(other, pd.DataFrame) or isinstance(other, pd.Series) or isinstance(other, pd.Index): return NotImplemented return ~(self == other) def __eq__(self, other): """Return a boolean numpy array indicating elementwise equality.""" # When other is a dataframe or series, not implemented if isinstance(other, pd.DataFrame) or isinstance(other, pd.Series) or isinstance(other, pd.Index): return NotImplemented # When other is an ExtensionArray if isinstance(other, SearchArray): if len(self) != len(other): return False elif len(other) == 0: return np.array([], dtype=bool) else: # Compatible term dicts, and same term freqs # (not looking at positions, maybe we should?) if self.term_dict.compatible(other.term_dict): return (self.term_mat == other.term_mat) & (self.doc_lens == other.doc_lens) else: return np.zeros(len(self), dtype=bool) # return np.array(self[:]) == np.array(other[:]) # When other is a scalar value elif isinstance(other, Terms): other = SearchArray([other], tokenizer=self.tokenizer) warnings.warn("Comparing a scalar value to a SearchArray. This is slow.") return np.array(self[:]) == np.array(other[:]) # When other is a sequence but not an ExtensionArray # its an array of dicts elif is_list_like(other): if len(self) != len(other): return False elif len(other) == 0: return np.array([], dtype=bool) # We actually don't know how it was tokenized other = SearchArray(other, tokenizer=self.tokenizer) return np.array(self[:]) == np.array(other[:]) # Return False where 'other' is neither the same length nor a scalar else: return np.full(len(self), False) def isna(self): # Every row with all 0s empties = self.doc_lens == 0 return empties def take(self, indices, allow_fill=False, fill_value=None): # Want to take rows of term freqs row_indices = np.arange(len(self.term_mat.rows)) # Take within the row indices themselves result_indices = take(row_indices, indices, allow_fill=allow_fill, fill_value=-1) if allow_fill and -1 in result_indices: if fill_value is None or pd.isna(fill_value): fill_value = Terms({}, encoded=True) to_fill_mask = result_indices == -1 # This is slow as it rebuilds all the term dictionaries # on the subsequent assignment lines # However, this case tends to be the exception for # most dataframe operations taken = SearchArray([fill_value] * len(result_indices)) taken[~to_fill_mask] = self[result_indices[~to_fill_mask]].copy() return taken else: taken = self[result_indices].copy() return taken def copy(self): postings_arr = SearchArray([], tokenizer=self.tokenizer) postings_arr.doc_lens = self.doc_lens.copy() postings_arr.term_mat = self.term_mat.copy() postings_arr.posns = self.posns postings_arr.term_dict = self.term_dict postings_arr.avg_doc_length = self.avg_doc_length if not self.avoid_copies: postings_arr.posns = self.posns.copy() postings_arr.term_dict = self.term_dict.copy() return postings_arr @classmethod def _concat_same_type(cls, to_concat): concatenated_data = np.concatenate([ea[:] for ea in to_concat]) return SearchArray(concatenated_data, tokenizer=to_concat[0].tokenizer) @classmethod def _from_factorized(cls, values, original): return cls(values) def _values_for_factorize(self): """Return an array and missing value suitable for factorization (ie grouping).""" arr = np.asarray(self[:], dtype=object) return arr, Terms({}) def _check_token_arg(self, token): if isinstance(token, str): return token elif isinstance(token, list) and len(token) == 1: return token[0] elif isinstance(token, list): return token else: raise TypeError("Expected a string or list of strings for phrases") # *********************************************************** # Search functionality # *********************************************************** def termfreqs(self, token: Union[List[str], str]) -> np.ndarray: token = self._check_token_arg(token) if isinstance(token, list): return self.phrase_freq(token) try: term_id = self.term_dict.get_term_id(token) matches = np.zeros(len(self), dtype=int) slice_of_rows = None if self.term_mat.subset: slice_of_rows = self.term_mat.rows doc_ids, termfreqs = self.posns.termfreqs(term_id, doc_ids=slice_of_rows) mask = np.isin(self.term_mat.rows, doc_ids) matches[mask] = termfreqs return matches else: doc_ids, termfreqs = self.posns.termfreqs(term_id, doc_ids=slice_of_rows) matches[doc_ids] = termfreqs return matches except TermMissingError: return np.zeros(len(self), dtype=int) def docfreq(self, token: str) -> int: if not isinstance(token, str): raise TypeError("Expected a string") # Count number of rows where the term appears try: return self.posns.docfreq(self.term_dict.get_term_id(token)) except TermMissingError: return 0 def doclengths(self) -> np.ndarray: return self.doc_lens def match(self, token: Union[List[str], str], slop: int = 1) -> np.ndarray: """Return a boolean numpy array indicating which elements contain the given term.""" token = self._check_token_arg(token) if isinstance<fim_suffix>(token, list): term_freq = self.phrase_freq(token) else: term_freq = self.termfreqs(token) return term_freq > 0 def score(self, token: Union[str, List[str]], similarity: Similarity = default_bm25) -> np.ndarray: """Score each doc using a similarity function. Parameters ---------- token : str or list of str of what to search (already tokenized) similarity : How to score the documents. Default is BM25. """ # Get term freqs per token token = self._check_token_arg(token) # For expensive toknes, we compute doc freq first, so we # cache them in the DF cache, to let TF cache know it should be cached tokens_l = [token] if isinstance(token, str) else token all_dfs = np.asarray([self.docfreq(token) for token in tokens_l]) tfs = self.termfreqs(token) token = self._check_token_arg(token) doc_lens = self.doclengths() scores = similarity(term_freqs=tfs, doc_freqs=all_dfs, doc_lens=doc_lens, avg_doc_lens=self.avg_doc_length, num_docs=len(self)) return scores def positions(self, token: str, key=None) -> List[np.ndarray]: """Return a list of lists of positions of the given term.""" term_id = self.term_dict.get_term_id(token) key = self.term_mat.rows[key] if key is not None else self.term_mat.rows posns = self.posns.positions(term_id, doc_ids=key) return posns def and_query(self, tokens: Union[List[str], List[List[str]]]) -> np.ndarray: """Return a mask on the postings array indicating which elements contain all terms.""" masks = [self.match(term) for term in tokens] mask = np.ones(len(self), dtype=bool) for curr_mask in masks: mask = mask & curr_mask return mask def or_query(self, tokens: Union[List[str], List[List[str]]], min_should_match: int = 1) -> np.ndarray: """Return a mask on the postings array indicating which elements contain all terms.""" masks = [self.match(term) for term in tokens] mask = np.sum(masks, axis=0) >= min_should_match return mask def phrase_freq(self, tokens: List[str], slop=1) -> np.ndarray: if slop == 1 and len(tokens) == len(set(tokens)): phrase_freqs = np.zeros(len(self)) try: doc_ids = self.term_mat.rows term_ids = [self.term_dict.get_term_id(token) for token in tokens] return self.posns.phrase_freqs(term_ids, doc_ids=doc_ids, phrase_freqs=phrase_freqs) except TermMissingError: return phrase_freqs else: return self.phrase_freq_every_diff(tokens, slop=slop) def phrase_freq_scan(self, tokens: List[str], mask=None, slop=1) -> np.ndarray: if mask is None: mask = self.and_query(tokens) if np.sum(mask) == 0: return mask # Gather positions posns = [self.positions(token, mask) for token in tokens] phrase_freqs = np.zeros(len(self)) phrase_freqs[mask] = scan_merge_ins(posns, phrase_freqs[mask], slop=slop) return phrase_freqs def phrase_freq_every_diff(self, tokens: List[str], slop=1) -> np.ndarray: phrase_freqs = -np.ones(len(self)) mask = self.and_query(tokens) phrase_freqs[~mask] = 0 if np.sum(mask) == 0: return phrase_freqs term_posns = [self.positions(term, mask) for term in tokens] for width in [10, 20, 30, 40]: phrase_freqs[mask] = compute_phrase_freqs(term_posns, phrase_freqs[mask], slop=slop, width=width) remaining_mask = phrase_freqs == -1 if np.any(remaining_mask): remainder_freqs = self.phrase_freq_scan(tokens, mask=remaining_mask, slop=slop) phrase_freqs[remaining_mask] = remainder_freqs[remaining_mask] return phrase_freqs <fim_middle>
null
IF
complete_current_header_empty_completion
<filename>searcharray/searcharray/utils/roaringish.py<fim_prefix>"""Roaring-ish bit array for storing sorted integers in numpy array. See - https://softwaredoug.com/blog/2024/01/21/search-array-phrase-algorithm """ import numpy as np import sortednp as snp import logging import numbers from typing import Optional, Tuple, List, Union logger = logging.getLogger(__name__) # When running in pytest import sys # noqa handler = logging.StreamHandler(sys.stdout) handler.setLevel(logging.ERROR) formatter = logging.Formatter("[%(filename)s:%(lineno)s - %(funcName)20s() ] %(message)s") handler.setFormatter(formatter) logger.addHandler(handler) logger.setLevel(logging.ERROR) DEFAULT_KEY_MASK = np.uint64(0xFFFFFFF000000000) DEFAULT_KEY_BITS = np.uint64(28) DEFAULT_PAYLOAD_MSB_MASK = np.uint64(0x0000000FFFFC0000) DEFAULT_PAYLOAD_MSB_BITS = np.uint64(18) DEFAULT_PAYLOAD_LSB_MASK = np.uint64(0x000000000003FFFF) DEFAULT_PAYLOAD_LSB_BITS = np.uint64(18) # To not constantly type coerce _64 = np.uint64(64) _2 = np.uint64(2) _1 = np.uint64(1) _0 = np.uint64(0) _neg1 = np.int64(-1) _algorithm = snp.GALLOPING_SEARCH def n_msb_mask(n: np.uint64) -> np.uint64: """Return the n most significant bits of num.""" return np.uint64(~(np.uint64(_1 << (_64 - n))) + _1) def sorted_unique(arr: np.ndarray) -> np.ndarray: return snp.intersect(arr, arr, duplicates=snp.DROP) class RoaringishEncoder: """An encoder for key->integer sets as a numpy array. Each returned array represents a single term, with key as MSBS, ie: | 32 MSBs | 16 LSBs | 16 LSBs | key | bits msbs | payload (different number of MSBs / payload bits can be specified) """ def __init__(self, key_bits: np.uint64 = DEFAULT_KEY_BITS): payload_bits = _64 - key_bits self.payload_msb_bits = payload_bits // _2 self.payload_lsb_bits = np.uint64(payload_bits - self.payload_msb_bits) self.key_bits = key_bits assert self.key_bits.dtype == np.uint64 # key bits MSB of 64 bits self.key_mask = n_msb_mask(key_bits) self.payload_msb_mask = n_msb_mask(np.uint64(self.payload_msb_bits + key_bits)) & ~self.key_mask assert self.payload_msb_bits.dtype == np.uint64, f"MSB bits dtype was {self.payload_msb_bits.dtype}" assert self.payload_msb_mask.dtype == np.uint64, f"MSB mask dtype was {self.payload_msb_mask.dtype}" self.payload_lsb_mask = (_1 << self.payload_lsb_bits) - np.uint64(1) assert self.payload_lsb_bits.dtype == np.uint64, f"LSB bits dtype was {self.payload_lsb_bits.dtype}" assert self.payload_lsb_mask.dtype == np.uint64, f"LSB mask dtype was {self.payload_lsb_mask.dtype}" if key_bits == DEFAULT_KEY_BITS: assert self.key_mask == DEFAULT_KEY_MASK assert self.payload_msb_mask == DEFAULT_PAYLOAD_MSB_MASK assert self.payload_lsb_mask == DEFAULT_PAYLOAD_LSB_MASK self.max_payload = np.uint64(2**self.payload_lsb_bits - 1) def validate_payload(self, payload: np.ndarray): """Optional validation of payload.""" if np.any(payload > self.max_payload): raise ValueError(f"Positions must be less than {2**self.payload_lsb_bits}") def encode(self, payload: np.ndarray, keys: Optional[np.ndarray] = None, boundaries: Optional[np.ndarray] = None) -> Tuple[np.ndarray, Optional[np.ndarray]]: """Pack a sorted array of integers into compact bit numpy array. each returned array represents a single term, with key as MSBS, ie: | 32 MSBs | 16 LSBs | 16 LSBs | key | bits msbs| payload for later easy intersection of 32+16 msbs, then checking for adjacent positions If boundaries are provided, then we consider multiple distinct payloads being encoded simultaneously, and we return the boundaries of each """ cols = np.floor_divide(payload, self.payload_lsb_bits, dtype=np.uint64) # Header of bit to use cols <<= self.payload_msb_bits if keys is not None: cols |= keys.astype(np.uint64) << (_64 - self.key_bits) values = payload % self.payload_lsb_bits # Value to encode change_indices_one_doc = np.nonzero(np.diff(cols))[0] + 1 change_indices_one_doc = np.concatenate([[0], change_indices_one_doc]) if boundaries is not None: change_indices = snp.merge(change_indices_one_doc, boundaries, duplicates=snp.DROP) new_boundaries = snp.intersect(boundaries, change_indices, indices=True)[1][1] new_boundaries = np.concatenate([new_boundaries, [len(change_indices)]]) else: change_indices = change_indices_one_doc new_boundaries = None # 0 as a position, goes in bit 1, # 1 as a position, goes in bit 2, etc values = _1 << values cols |= values encoded = cols if len(encoded) == 0: return encoded, new_boundaries reduced = np.bitwise_or.reduceat(encoded, change_indices) return reduced, new_boundaries def decode(self, encoded: np.ndarray, get_keys: bool = True) -> Union[List[Tuple[np.uint64, np.ndarray]], List[np.ndarray]]: """Decode an encoded bit array into keys / payloads.""" keys = (encoded & self.key_mask) >> (_64 - self.key_bits) msbs = (encoded & self.payload_msb_mask) >> self.payload_msb_bits to_concat = [] for bit in range(self.payload_lsb_bits): mask = 1 << bit lsbs = encoded & mask set_lsbs = (lsbs != 0) this_keys = keys[set_lsbs] payload = bit + (msbs[set_lsbs] * self.payload_lsb_bits) doc_with_posn = np.dstack([this_keys, payload])[0] to_concat.append(doc_with_posn) stacked = np.vstack(to_concat) # Sort by doc_id, then posn sorted_payload = stacked[np.lexsort((stacked[:, 1], stacked[:, 0]))] keys, idx = np.unique(sorted_payload[:, 0], return_index=True) grouped = np.split(sorted_payload[:, 1], idx[1:]) if get_keys: return list(zip(keys, grouped)) else: return grouped def keys(self, encoded: np.ndarray) -> np.ndarray: """Return keys from encoded.""" return (encoded & self.key_mask) >> (_64 - self.key_bits) def keys_unique(self, encoded: np.ndarray) -> np.ndarray: """Return keys from encoded.""" keys = self.keys(encoded) intersected = sorted_unique(keys) return intersected def payload_msb(self, encoded: np.ndarray) -> np.ndarray: """Return payload MSBs from encoded.""" return (encoded & self.payload_msb_mask) >> self.payload_msb_bits def payload_lsb(self, encoded: np.ndarray) -> np.ndarray: """Return payload LSBs from encoded.""" return encoded & self.payload_lsb_mask def intersect_rshift(self, lhs: np.ndarray, rhs: np.ndarray, rshift: np.int64 = _neg1) -> Tuple[np.ndarray, np.ndarray]: """Return the MSBs that are common to both lhs and rhs (same keys, same MSBs) Parameters ---------- lhs : np.ndarray of uint64 (encoded) values rhs : np.ndarray of uint64 (encoded) values rshift : int how much to shift rhs by to the right """ rhs_int = rhs assert rshift < 0, "rshift must be negative" rhs_int = rhs[self.payload_msb(rhs) >= np.abs(rshift)] rshft = rshift.view(np.uint64) rhs_shifted = (rhs_int >> self.payload_lsb_bits) + rshft # assert np.all(np.diff(rhs_shifted) >= 0), "not sorted" _, (lhs_idx, rhs_idx) = snp.intersect(lhs >> self.payload_lsb_bits, rhs_shifted, indices=True, algorithm=_algorithm) return lhs[lhs_idx], rhs_int[rhs_idx] def intersect(self, lhs: np.ndarray, rhs: np.ndarray) -> Tuple[np.ndarray, np.ndarray]: """Return the MSBs that are common to both lhs and rhs (same keys, same MSBs) Parameters ---------- lhs : np.ndarray of uint64 (encoded) values rhs : np.ndarray of uint64 (encoded) values """ # assert np.all(np.diff(rhs_shifted) >= 0), "not sorted" _, (lhs_idx, rhs_idx) = snp.intersect(lhs >> self.payload_lsb_bits, rhs >> self.payload_lsb_bits, indices=True, algorithm=_algorithm) return lhs[lhs_idx], rhs[rhs_idx] def slice(self, encoded: np.ndarray, keys: np.ndarray) -> np.ndarray: """Get list of encoded that have values in keys.""" assert len(keys.shape) == 1 assert len(encoded.shape) == 1 encoded_keys = encoded.view(np.uint64) >> (_64 - self.key_bits) _, (idx_docs, idx_enc) = snp.intersect(keys, encoded_keys, indices=True, duplicates=snp.KEEP_MAX_N, algorithm=_algorithm) return encoded[idx_enc] def convert_keys(keys) -> np.ndarray: """Convert keys to range or np.ndarray of uint64.""" if<fim_suffix> isinstance(keys, numbers.Number): return np.asarray([keys], dtype=np.uint64) elif isinstance(keys, list): return np.asarray(keys, dtype=np.uint64) elif isinstance(keys, np.ndarray): return keys.astype(np.uint64) elif isinstance(keys, range) and len(keys) > 0: # UNFORTUNATE COPY return np.arange(keys[0], keys[-1] + 1, dtype=np.uint64) + keys[0] elif isinstance(keys, range): return np.asarray([], dtype=np.uint64) raise ValueError(f"Unknown type for keys: {type(keys)}") <fim_middle>
null
IF
complete_current_header_empty_completion
<filename>searcharray/searcharray/postings.py<fim_prefix>"""Tokenized, searchable text as a pandas dtype.""" import pandas as pd import numbers from pandas.api.extensions import ExtensionDtype, ExtensionArray, register_extension_dtype from pandas.api.types import is_list_like from pandas.api.extensions import take import json from collections import Counter import warnings import logging from typing import List, Union, Optional, Iterable import numpy as np from searcharray.phrase.scan_merge import scan_merge_ins from searcharray.phrase.posn_diffs import compute_phrase_freqs from searcharray.phrase.middle_out import PosnBitArray from searcharray.similarity import Similarity, default_bm25 from searcharray.indexing import build_index_from_tokenizer, build_index_from_terms_list from searcharray.term_dict import TermMissingError logger = logging.getLogger(__name__) # When running in pytest import sys # noqa handler = logging.StreamHandler(sys.stdout) handler.setLevel(logging.ERROR) formatter = logging.Formatter("[%(filename)s:%(lineno)s - %(funcName)20s() ] %(message)s") handler.setFormatter(formatter) logger.addHandler(handler) logger.setLevel(logging.ERROR) class Terms: """An indexed search doc - a single bag of tokenized words and positions.""" def __init__(self, postings, doc_len: int = 0, posns: Optional[dict] = None, encoded=False): self.postings = postings self.posns = None self.encoded = encoded self.doc_len = doc_len self.posns = posns def _validate_posns(self): # (For testing/assertions) - Confirm every term in positions also in postings if self.posns is None: return for term in self.posns: if term not in self.postings: raise ValueError(f"Term {term} in positions but not in postings. ") def termfreq(self, token): return self.postings[token] def terms(self): return self.postings.items() def positions(self, term=None): if self.posns is None: return {} if term is None: posns = self.posns.items() else: posns = self.posns[term] return posns def raw_positions(self, term_dict, term=None): if self.posns is None: return {} if term is None: posns = [(term_dict.get_term_id(term), posns) for term, posns in self.posns.items()] else: posns = [(term_dict.get_term_id(term), self.posns[term])] return posns def tf_to_dense(self, term_dict): """Convert to a dense vector of term frequencies.""" dense = np.zeros(len(term_dict)) for term, freq in self.terms(): dense[term_dict.get_term_id(term)] = freq return dense def __len__(self): return len(self.postings) def __repr__(self): posting_keys = set(self.postings.keys()) rval = f"Terms({posting_keys})" return rval def __str__(self): return repr(self) def __eq__(self, other): # Flip to the other implementation if we're comparing to a SearchArray # to get a boolean array back if isinstance(other, SearchArray): return other == self same_postings = isinstance(other, Terms) and self.postings == other.postings if same_postings and self.doc_len == other.doc_len: return True def __lt__(self, other): # return isinstance(other, Terms) and hash(self) < hash(other) keys_both = set(self.postings.keys()).union(set(other.postings.keys())) # Sort lexically keys_both = sorted(keys_both) # Iterate as if these are two vectors of the same large dimensional vector sparse for key in keys_both: lhs_val = 0 rhs_val = 0 try: lhs_val = self.postings[key] except KeyError: pass try: rhs_val = other.postings[key] except KeyError: pass if lhs_val < rhs_val: return True elif lhs_val > rhs_val: return False else: continue return False def __le__(self, other): return self < other or self == other def __gt__(self, other): return not (self < other) and self != other def __hash__(self): return hash(json.dumps(self.postings, sort_keys=True)) class TermsDtype(ExtensionDtype): """Pandas dtype for terms.""" name = 'tokenized_text' type = Terms kind = 'O' @classmethod def construct_from_string(cls, string): if not isinstance(string, str): raise TypeError( "'construct_from_string' expects a string, got {}".format(type(string)) ) elif string == cls.name: return cls() else: raise TypeError( "Cannot construct a '{}' from '{}'".format(cls.__name__, string) ) @classmethod def construct_array_type(cls): return SearchArray def __repr__(self): return 'TermsDtype()' @property def na_value(self): return Terms({}) def valid_value(self, value): return isinstance(value, dict) or pd.isna(value) or isinstance(value, Terms) register_extension_dtype(TermsDtype) def ws_tokenizer(string): if pd.isna(string): return [] if not isinstance(string, str): raise ValueError("Expected a string") return string.split() def _row_to_postings_row(doc_id, row, doc_len, term_dict, posns: PosnBitArray): tfs = {} labeled_posns = {} for term_idx in row.cols: term = term_dict.get_term(term_idx) tfs[term] = 1 enc_term_posns = posns.doc_encoded_posns(term_idx, doc_id=doc_id) labeled_posns[term] = enc_term_posns result = Terms(tfs, posns=labeled_posns, doc_len=doc_len, encoded=True) return result class SearchArray(ExtensionArray): """An array of tokenized text (Termss).""" dtype = TermsDtype() def __init__(self, postings, tokenizer=ws_tokenizer, avoid_copies=True): # Check dtype, raise TypeError if not is_list_like(postings): raise TypeError("Expected list-like object, got {}".format(type(postings))) self.avoid_copies = avoid_copies self.tokenizer = tokenizer self.term_mat, self.posns, \ self.term_dict, self.avg_doc_length, \ self.doc_lens = build_index_from_terms_list(postings, Terms) @classmethod def index(cls, array: Iterable, tokenizer=ws_tokenizer, truncate=False, batch_size=100000, avoid_copies=True) -> 'SearchArray': """Index an array of strings using tokenizer.""" if not is_list_like(array): raise TypeError("Expected list-like object, got {}".format(type(array))) term_mat, posns, term_dict, avg_doc_length, doc_lens =\ build_index_from_tokenizer(array, tokenizer, batch_size=batch_size, truncate=truncate) postings = cls([], tokenizer=tokenizer, avoid_copies=avoid_copies) postings.term_mat = term_mat postings.posns = posns postings.term_dict = term_dict postings.avg_doc_length = avg_doc_length postings.doc_lens = doc_lens return postings @classmethod def _from_sequence(cls, scalars, dtype=None, copy=False): """Construct a new SearchArray from a sequence of scalars (PostingRow or convertible into).""" if dtype is not None: if not isinstance(dtype, TermsDtype): return scalars if isinstance(scalars, np.ndarray) and scalars.dtype == TermsDtype(): return cls(scalars) # String types elif isinstance(scalars, np.ndarray) and scalars.dtype.kind in 'US': return cls(scalars) # Other objects elif isinstance(scalars, np.ndarray) and scalars.dtype != object: return scalars return cls(scalars) def memory_usage(self, deep=False): """Return memory usage of this array in bytes.""" return self.nbytes @property def nbytes(self): return self.term_mat.nbytes + self.posns.nbytes + self.doc_lens.nbytes + self.term_dict.nbytes def __getitem__(self, key): key = pd.api.indexers.check_array_indexer(self, key) # Want to take rows of term freqs if isinstance(key, numbers.Integral): try: rows = self.term_mat[key] doc_len = self.doc_lens[key] doc_id = key if doc_id < 0: doc_id += len(self) return _row_to_postings_row(doc_id, rows[0], doc_len, self.term_dict, self.posns) except IndexError: raise IndexError("index out of bounds") else: # Construct a sliced view of this array sliced_tfs = self.term_mat.slice(key) sliced_posns = self.posns.slice(sliced_tfs.rows) if not self.avoid_copies else self.posns arr = SearchArray([], tokenizer=self.tokenizer) arr.term_mat = sliced_tfs arr.doc_lens = self.doc_lens[key] arr.posns = sliced_posns arr.term_dict = self.term_dict arr.avg_doc_length = self.avg_doc_length return arr def __setitem__(self, key, value): """Set an item in the array.""" key = pd.api.indexers.check_array_indexer(self, key) if isinstance(value, pd.Series): value = value.values if isinstance(value, pd.DataFrame): value = value.values.flatten() if isinstance(value, SearchArray): value = value.to_numpy() if isinstance(value, list): value = np.asarray(value, dtype=object) if not isinstance(value, np.ndarray) and not self.dtype.valid_value(value): raise ValueError(f"Cannot set non-object array to SearchArray -- you passed type:{type(value)} -- {value}") # Cant set a single value to an array if isinstance(key, numbers.Integral) and isinstance(value, np.ndarray): raise ValueError("Cannot set a single value to an array") try: is_encoded = False posns = None term_mat = np.asarray([]) doc_lens = np.asarray([]) if isinstance(value, float): term_mat = np.asarray([value]) doc_lens = np.asarray([0]) elif isinstance(value, Terms): term_mat = np.asarray([value.tf_to_dense(self.term_dict)]) doc_lens = np.asarray([value.doc_len]) is_encoded = value.encoded posns = [value.raw_positions(self.term_dict)] elif isinstance(value, np.ndarray): term_mat = np.asarray([x.tf_to_dense(self.term_dict) for x in value]) doc_lens = np.asarray([x.doc_len for x in value]) is_encoded = value[0].encoded if len(value) > 0 else False posns = [x.raw_positions(self.term_dict) for x in value] np.nan_to_num(term_mat, copy=False, nan=0) self.term_mat[key] = term_mat self.doc_lens[key] = doc_lens if posns is not None: self.posns.insert(key, posns, is_encoded) # Assume we have a positions for each term, doc pair. We can just update it. # Otherwise we would have added new terms except TermMissingError: self._add_new_terms(key, value) def _add_new_terms(self, key, value): msg = """Adding new terms! This might not be good if you tokenized this new text with a different tokenizer. Also. This is slow.""" warnings.warn(msg) scan_value = value if isinstance(value, Terms): scan_value = np.asarray([value]) for row in scan_value: for term in row.terms(): self.term_dict.add_term(term[0]) self.term_mat.resize((self.term_mat.shape[0], len(self.term_dict))) # Ensure posns_lookup has at least max self.posns self[key] = value def value_counts( self, dropna: bool = True, ): if dropna: counts = Counter(self[:]) counts.pop(Terms({}), None) else: counts = Counter(self[:]) return pd.Series(counts) def __len__(self): len_rval = len(self.term_mat.rows) return len_rval def __ne__(self, other): if isinstance(other, pd.DataFrame) or isinstance(other, pd.Series) or isinstance(other, pd.Index): return NotImplemented return ~(self == other) def __eq__(self, other): """Return a boolean numpy array indicating elementwise equality.""" # When other is a dataframe or series, not implemented if isinstance(other, pd.DataFrame) or isinstance(other, pd.Series) or isinstance(other, pd.Index): return NotImplemented # When other is an ExtensionArray if isinstance(other, SearchArray): if len(self) != len(other): return False elif len(other) == 0: return np.array([], dtype=bool) else: # Compatible term dicts, and same term freqs # (not looking at positions, maybe we should?) if self.term_dict.compatible(other.term_dict): return (self.term_mat == other.term_mat) & (self.doc_lens == other.doc_lens) else: return np.zeros(len(self), dtype=bool) # return np.array(self[:]) == np.array(other[:]) # When other is a scalar value elif isinstance(other, Terms): other = SearchArray([other], tokenizer=self.tokenizer) warnings.warn("Comparing a scalar value to a SearchArray. This is slow.") return np.array(self[:]) == np.array(other[:]) # When other is a sequence but not an ExtensionArray # its an array of dicts elif is_list_like(other): if len(self) != len(other): return False elif len(other) == 0: return np.array([], dtype=bool) # We actually don't know how it was tokenized other = SearchArray(other, tokenizer=self.tokenizer) return np.array(self[:]) == np.array(other[:]) # Return False where 'other' is neither the same length nor a scalar else: return np.full(len(self), False) def isna(self): # Every row with all 0s empties = self.doc_lens == 0 return empties def take(self, indices, allow_fill=False, fill_value=None): # Want to take rows of term freqs row_indices = np.arange(len(self.term_mat.rows)) # Take within the row indices themselves result_indices = take(row_indices, indices, allow_fill=allow_fill, fill_value=-1) if allow_fill and -1 in result_indices: if fill_value is None or pd.isna(fill_value): fill_value = Terms({}, encoded=True) to_fill_mask = result_indices == -1 # This is slow as it rebuilds all the term dictionaries # on the subsequent assignment lines # However, this case tends to be the exception for # most dataframe operations taken = SearchArray([fill_value] * len(result_indices)) taken[~to_fill_mask] = self[result_indices[~to_fill_mask]].copy() return taken else: taken = self[result_indices].copy() return taken def copy(self): postings_arr = SearchArray([], tokenizer=self.tokenizer) postings_arr.doc_lens = self.doc_lens.copy() postings_arr.term_mat = self.term_mat.copy() postings_arr.posns = self.posns postings_arr.term_dict = self.term_dict postings_arr.avg_doc_length = self.avg_doc_length if not self.avoid_copies: postings_arr.posns = self.posns.copy() postings_arr.term_dict = self.term_dict.copy() return postings_arr @classmethod def _concat_same_type(cls, to_concat): concatenated_data = np.concatenate([ea[:] for ea in to_concat]) return SearchArray(concatenated_data, tokenizer=to_concat[0].tokenizer) @classmethod def _from_factorized(cls, values, original): return cls(values) def _values_for_factorize(self): """Return an array and missing value suitable for factorization (ie grouping).""" arr = np.asarray(self[:], dtype=object) return arr, Terms({}) def _check_token_arg(self, token): if isinstance(token, str)<fim_suffix>: return token elif isinstance(token, list) and len(token) == 1: return token[0] elif isinstance(token, list): return token else: raise TypeError("Expected a string or list of strings for phrases") # *********************************************************** # Search functionality # *********************************************************** def termfreqs(self, token: Union[List[str], str]) -> np.ndarray: token = self._check_token_arg(token) if isinstance(token, list): return self.phrase_freq(token) try: term_id = self.term_dict.get_term_id(token) matches = np.zeros(len(self), dtype=int) slice_of_rows = None if self.term_mat.subset: slice_of_rows = self.term_mat.rows doc_ids, termfreqs = self.posns.termfreqs(term_id, doc_ids=slice_of_rows) mask = np.isin(self.term_mat.rows, doc_ids) matches[mask] = termfreqs return matches else: doc_ids, termfreqs = self.posns.termfreqs(term_id, doc_ids=slice_of_rows) matches[doc_ids] = termfreqs return matches except TermMissingError: return np.zeros(len(self), dtype=int) def docfreq(self, token: str) -> int: if not isinstance(token, str): raise TypeError("Expected a string") # Count number of rows where the term appears try: return self.posns.docfreq(self.term_dict.get_term_id(token)) except TermMissingError: return 0 def doclengths(self) -> np.ndarray: return self.doc_lens def match(self, token: Union[List[str], str], slop: int = 1) -> np.ndarray: """Return a boolean numpy array indicating which elements contain the given term.""" token = self._check_token_arg(token) if isinstance(token, list): term_freq = self.phrase_freq(token) else: term_freq = self.termfreqs(token) return term_freq > 0 def score(self, token: Union[str, List[str]], similarity: Similarity = default_bm25) -> np.ndarray: """Score each doc using a similarity function. Parameters ---------- token : str or list of str of what to search (already tokenized) similarity : How to score the documents. Default is BM25. """ # Get term freqs per token token = self._check_token_arg(token) # For expensive toknes, we compute doc freq first, so we # cache them in the DF cache, to let TF cache know it should be cached tokens_l = [token] if isinstance(token, str) else token all_dfs = np.asarray([self.docfreq(token) for token in tokens_l]) tfs = self.termfreqs(token) token = self._check_token_arg(token) doc_lens = self.doclengths() scores = similarity(term_freqs=tfs, doc_freqs=all_dfs, doc_lens=doc_lens, avg_doc_lens=self.avg_doc_length, num_docs=len(self)) return scores def positions(self, token: str, key=None) -> List[np.ndarray]: """Return a list of lists of positions of the given term.""" term_id = self.term_dict.get_term_id(token) key = self.term_mat.rows[key] if key is not None else self.term_mat.rows posns = self.posns.positions(term_id, doc_ids=key) return posns def and_query(self, tokens: Union[List[str], List[List[str]]]) -> np.ndarray: """Return a mask on the postings array indicating which elements contain all terms.""" masks = [self.match(term) for term in tokens] mask = np.ones(len(self), dtype=bool) for curr_mask in masks: mask = mask & curr_mask return mask def or_query(self, tokens: Union[List[str], List[List[str]]], min_should_match: int = 1) -> np.ndarray: """Return a mask on the postings array indicating which elements contain all terms.""" masks = [self.match(term) for term in tokens] mask = np.sum(masks, axis=0) >= min_should_match return mask def phrase_freq(self, tokens: List[str], slop=1) -> np.ndarray: if slop == 1 and len(tokens) == len(set(tokens)): phrase_freqs = np.zeros(len(self)) try: doc_ids = self.term_mat.rows term_ids = [self.term_dict.get_term_id(token) for token in tokens] return self.posns.phrase_freqs(term_ids, doc_ids=doc_ids, phrase_freqs=phrase_freqs) except TermMissingError: return phrase_freqs else: return self.phrase_freq_every_diff(tokens, slop=slop) def phrase_freq_scan(self, tokens: List[str], mask=None, slop=1) -> np.ndarray: if mask is None: mask = self.and_query(tokens) if np.sum(mask) == 0: return mask # Gather positions posns = [self.positions(token, mask) for token in tokens] phrase_freqs = np.zeros(len(self)) phrase_freqs[mask] = scan_merge_ins(posns, phrase_freqs[mask], slop=slop) return phrase_freqs def phrase_freq_every_diff(self, tokens: List[str], slop=1) -> np.ndarray: phrase_freqs = -np.ones(len(self)) mask = self.and_query(tokens) phrase_freqs[~mask] = 0 if np.sum(mask) == 0: return phrase_freqs term_posns = [self.positions(term, mask) for term in tokens] for width in [10, 20, 30, 40]: phrase_freqs[mask] = compute_phrase_freqs(term_posns, phrase_freqs[mask], slop=slop, width=width) remaining_mask = phrase_freqs == -1 if np.any(remaining_mask): remainder_freqs = self.phrase_freq_scan(tokens, mask=remaining_mask, slop=slop) phrase_freqs[remaining_mask] = remainder_freqs[remaining_mask] return phrase_freqs <fim_middle>
null
IF
complete_current_header_empty_completion
<filename>searcharray/searcharray/solr.py<fim_prefix>"""Utility functions for Solr users of searcharray.""" import re import pandas as pd import numpy as np from typing import List, Optional, Dict, Tuple from searcharray.postings import SearchArray from searcharray.similarity import Similarity, default_bm25 def parse_min_should_match(num_clauses: int, spec: str) -> int: """Parse Solr's min should match (ie mm) spec. See this ChatGPT translation of mm code from Solr's Java code for parsing this https://chat.openai.com/share/76642aec-7e05-420f-a53a-83b8e2eea8fb Parameters ---------- num_clauses : int spec : str Returns ------- int : the number of clauses that must match """ def checked_parse_int(value, error_message): try: return int(value) except ValueError: raise ValueError(error_message) result = num_clauses spec = spec.strip() if '<' in spec: # we have conditional spec(s) space_around_less_than_pattern = re.compile(r'\s*<\s*') spec = space_around_less_than_pattern.sub('<', spec) for s in spec.split(): parts = s.split('<', 1) if len(parts) < 2: raise ValueError("Invalid 'mm' spec: '" + s + "'. Expecting values before and after '<'") upper_bound = checked_parse_int(parts[0], "Invalid 'mm' spec. Expecting an integer.") if num_clauses<fim_suffix> <= upper_bound: return result else: result = parse_min_should_match(num_clauses, parts[1]) return result # otherwise, simple expression if '%' in spec: # percentage - assume the % was the last char. If not, let int() fail. spec = spec[:-1] percent = checked_parse_int(spec, "Invalid 'mm' spec. Expecting an integer.") calc = (result * percent) * (1 / 100) result = result + int(calc) if calc < 0 else int(calc) else: calc = checked_parse_int(spec, "Invalid 'mm' spec. Expecting an integer.") result = result + calc if calc < 0 else calc return min(num_clauses, max(result, 0)) def parse_field_boosts(field_lists: List[str]) -> dict: """Parse Solr's qf, pf, pf2, pf3 field boosts.""" if not field_lists: return {} out = {} carat_pattern = re.compile(r'\^') for field in field_lists: parts = carat_pattern.split(field) out[parts[0]] = None if len(parts) == 1 else float(parts[1]) return out def get_field(frame, field) -> SearchArray: if field not in frame.columns: raise ValueError(f"Field {field} not in dataframe") if not isinstance(frame[field].array, SearchArray): raise ValueError(f"Field {field} is not a searcharray field") return frame[field].array def parse_query_terms(frame: pd.DataFrame, query: str, query_fields: List[str]): search_terms: Dict[str, List[str]] = {} num_search_terms = 0 term_centric = True for field in query_fields: arr = get_field(frame, field) tokenizer = arr.tokenizer search_terms[field] = [] field_num_search_terms = 0 for posn, term in enumerate(tokenizer(query)): search_terms[field].append(term) field_num_search_terms += 1 if num_search_terms == 0: num_search_terms = field_num_search_terms elif field_num_search_terms != num_search_terms: term_centric = False return num_search_terms, search_terms, term_centric def _edismax_term_centric(frame: pd.DataFrame, query_fields: Dict[str, float], num_search_terms: int, search_terms: Dict[str, List[str]], mm: str, similarity: Similarity) -> Tuple[np.ndarray, str]: explain = [] term_scores = [] for term_posn in range(num_search_terms): max_scores = np.zeros(len(frame)) term_explain = [] for field, boost in query_fields.items(): term = search_terms[field][term_posn] post_arr = get_field(frame, field) field_term_score = post_arr.score(term, similarity=similarity) * (1 if boost is None else boost) boost_exp = f"{boost}" if boost is not None else "1" term_explain.append(f"{field}:{term}^{boost_exp}") max_scores = np.maximum(max_scores, field_term_score) term_scores.append(max_scores) explain.append("(" + " | ".join(term_explain) + ")") min_should_match = parse_min_should_match(num_search_terms, spec=mm) qf_scores = np.asarray(term_scores) matches_gt_mm = np.sum(qf_scores > 0, axis=0) >= min_should_match qf_scores = np.sum(term_scores, axis=0) qf_scores[~matches_gt_mm] = 0 return qf_scores, "(" + " ".join(explain) + f")~{min_should_match}" def _edismax_field_centric(frame: pd.DataFrame, query_fields: Dict[str, float], num_search_terms: int, search_terms: Dict[str, List[str]], mm: str, similarity: Similarity = default_bm25) -> Tuple[np.ndarray, str]: field_scores = [] explain = [] for field, boost in query_fields.items(): post_arr = get_field(frame, field) term_scores = np.array([post_arr.score(term, similarity=similarity) for term in search_terms[field]]) min_should_match = parse_min_should_match(len(search_terms[field]), spec=mm) exp = " ".join([f"{field}:{term}" for term in search_terms[field]]) boost_exp = f"{boost}" if boost is not None else "1" exp = "(" + exp + f")~{min(min_should_match, len(search_terms[field]))}" exp = "(" + exp + f")^{boost_exp}" matches_gt_mm = np.sum(term_scores > 0, axis=0) >= min(min_should_match, len(search_terms[field])) sum_terms_bm25 = np.sum(term_scores, axis=0) sum_terms_bm25[~matches_gt_mm] = 0 field_scores.append(sum_terms_bm25 * (1 if boost is None else boost)) explain.append(exp) # Take maximum field scores as qf qf_scores = np.asarray(field_scores) qf_scores = np.max(qf_scores, axis=0) return qf_scores, " | ".join(explain) def edismax(frame: pd.DataFrame, q: str, qf: List[str], mm: Optional[str] = None, pf: Optional[List[str]] = None, pf2: Optional[List[str]] = None, pf3: Optional[List[str]] = None, q_op: str = "OR", similarity: Similarity = default_bm25) -> Tuple[np.ndarray, str]: """Run edismax search over dataframe with searcharray fields. Parameters ---------- q : str The query string mm : str The minimum should match spec qf : list The fields to search pf : list The fields to search for phrase matches pf2 : list The fields to search for bigram matches pf3 : list The fields to search for trigram matches q_op : str, optional The default operator, by default "OR" Returns ------- np.ndarray The search results """ def listify(x): return x if isinstance(x, list) else [x] query_fields = parse_field_boosts(listify(qf)) phrase_fields = parse_field_boosts(listify(pf)) if pf else {} if mm is None: mm = "1" if q_op == "AND": mm = "100%" # bigram_fields = parse_field_boosts(pf2) if pf2 else {} # trigram_fields = parse_field_boosts(pf3) if pf3 else {} num_search_terms, search_terms, term_centric = parse_query_terms(frame, q, list(query_fields.keys())) if term_centric: qf_scores, explain = _edismax_term_centric(frame, query_fields, num_search_terms, search_terms, mm, similarity=similarity) else: qf_scores, explain = _edismax_field_centric(frame, query_fields, num_search_terms, search_terms, mm, similarity=similarity) phrase_scores = [] for field, boost in phrase_fields.items(): arr = get_field(frame, field) terms = search_terms[field] field_phrase_score = arr.score(terms, similarity=similarity) * (1 if boost is None else boost) boost_exp = f"{boost}" if boost is not None else "1" explain += f" ({field}:\"{' '.join(terms)}\")^{boost_exp}" phrase_scores.append(field_phrase_score) if len(phrase_scores) > 0: phrase_scores = np.sum(phrase_scores, axis=0) # Add where term_scores > 0 term_match_idx = np.where(qf_scores)[0] qf_scores[term_match_idx] += phrase_scores[term_match_idx] return qf_scores, explain <fim_middle>
null
IF
complete_current_header_empty_completion
<filename>searcharray/searcharray/solr.py<fim_prefix>"""Utility functions for Solr users of searcharray.""" import re import pandas as pd import numpy as np from typing import List, Optional, Dict, Tuple from searcharray.postings import SearchArray from searcharray.similarity import Similarity, default_bm25 def parse_min_should_match(num_clauses: int, spec: str) -> int: """Parse Solr's min should match (ie mm) spec. See this ChatGPT translation of mm code from Solr's Java code for parsing this https://chat.openai.com/share/76642aec-7e05-420f-a53a-83b8e2eea8fb Parameters ---------- num_clauses : int spec : str Returns ------- int : the number of clauses that must match """ def checked_parse_int(value, error_message): try: return int(value) except ValueError: raise ValueError(error_message) result = num_clauses spec = spec.strip() if '<' in spec: # we have conditional spec(s) space_around_less_than_pattern = re.compile(r'\s*<\s*') spec = space_around_less_than_pattern.sub('<', spec) for s in spec.split(): parts = s.split('<', 1) if len(parts) < 2: raise ValueError("Invalid 'mm' spec: '" + s + "'. Expecting values before and after '<'") upper_bound = checked_parse_int(parts[0], "Invalid 'mm' spec. Expecting an integer.") if num_clauses <= upper_bound: return result else: result = parse_min_should_match(num_clauses, parts[1]) return result # otherwise, simple expression if '%' in spec: # percentage - assume the % was the last char. If not, let int() fail. spec = spec[:-1] percent = checked_parse_int(spec, "Invalid 'mm' spec. Expecting an integer.") calc = (result * percent) * (1 / 100) result = result + int(calc) if calc < 0 else int(calc) else: calc = checked_parse_int(spec, "Invalid 'mm' spec. Expecting an integer.") result = result + calc if calc < 0 else calc return min(num_clauses, max(result, 0)) def parse_field_boosts(field_lists: List[str]) -> dict: """Parse Solr's qf, pf, pf2, pf3 field boosts.""" if not field_lists: return {} out = {} carat_pattern = re.compile(r'\^') for field in field_lists: parts = carat_pattern.split(field) out[parts[0]] = None if len(parts) == 1 else float(parts[1]) return out def get_field(frame, field) -> SearchArray: if field not in frame.columns: raise ValueError(f"Field {field} not in dataframe") if not isinstance(frame[field].array, SearchArray): raise ValueError(f"Field {field} is not a searcharray field") return frame[field].array def parse_query_terms(frame: pd.DataFrame, query: str, query_fields: List[str]): search_terms: Dict[str, List[str]] = {} num_search_terms = 0 term_centric = True for field in query_fields: arr = get_field(frame, field) tokenizer = arr.tokenizer search_terms[field] = [] field_num_search_terms = 0 for posn, term in enumerate(tokenizer(query)): search_terms[field].append(term) field_num_search_terms += 1 if num_search_terms == 0: num_search_terms = field_num_search_terms elif field_num_search_terms != num_search_terms: term_centric = False return num_search_terms, search_terms, term_centric def _edismax_term_centric(frame: pd.DataFrame, query_fields: Dict[str, float], num_search_terms: int, search_terms: Dict[str, List[str]], mm: str, similarity: Similarity) -> Tuple[np.ndarray, str]: explain = [] term_scores = [] for term_posn in range(num_search_terms): max_scores = np.zeros(len(frame)) term_explain = [] for field, boost in query_fields.items(): term = search_terms[field][term_posn] post_arr = get_field(frame, field) field_term_score = post_arr.score(term, similarity=similarity) * (1 if boost is None else boost) boost_exp = f"{boost}" if boost is not None else "1" term_explain.append(f"{field}:{term}^{boost_exp}") max_scores = np.maximum(max_scores, field_term_score) term_scores.append(max_scores) explain.append("(" + " | ".join(term_explain) + ")") min_should_match = parse_min_should_match(num_search_terms, spec=mm) qf_scores = np.asarray(term_scores) matches_gt_mm = np.sum(qf_scores > 0, axis=0) >= min_should_match qf_scores = np.sum(term_scores, axis=0) qf_scores[~matches_gt_mm] = 0 return qf_scores, "(" + " ".join(explain) + f")~{min_should_match}" def _edismax_field_centric(frame: pd.DataFrame, query_fields: Dict[str, float], num_search_terms: int, search_terms: Dict[str, List[str]], mm: str, similarity: Similarity = default_bm25) -> Tuple[np.ndarray, str]: field_scores = [] explain = [] for field, boost in query_fields.items(): post_arr = get_field(frame, field) term_scores = np.array([post_arr.score(term, similarity=similarity) for term in search_terms[field]]) min_should_match = parse_min_should_match(len(search_terms[field]), spec=mm) exp = " ".join([f"{field}:{term}" for term in search_terms[field]]) boost_exp = f"{boost}" if boost is not None else "1" exp = "(" + exp + f")~{min(min_should_match, len(search_terms[field]))}" exp = "(" + exp + f")^{boost_exp}" matches_gt_mm = np.sum(term_scores > 0, axis=0) >= min(min_should_match, len(search_terms[field])) sum_terms_bm25 = np.sum(term_scores, axis=0) sum_terms_bm25[~matches_gt_mm] = 0 field_scores.append(sum_terms_bm25 * (1 if boost is None else boost)) explain.append(exp) # Take maximum field scores as qf qf_scores = np.asarray(field_scores) qf_scores = np.max(qf_scores, axis=0) return qf_scores, " | ".join(explain) def edismax(frame: pd.DataFrame, q: str, qf: List[str], mm: Optional[str] = None, pf: Optional[List[str]] = None, pf2: Optional[List[str]] = None, pf3: Optional[List[str]] = None, q_op: str = "OR", similarity: Similarity = default_bm25) -> Tuple[np.ndarray, str]: """Run edismax search over dataframe with searcharray fields. Parameters ---------- q : str The query string mm : str The minimum should match spec qf : list The fields to search pf : list The fields to search for phrase matches pf2 : list The fields to search for bigram matches pf3 : list The fields to search for trigram matches q_op : str, optional The default operator, by default "OR" Returns ------- np.ndarray The search results """ def listify(x): return x if isinstance(x, list) else [x] query_fields = parse_field_boosts(listify(qf)) phrase_fields = parse_field_boosts(listify(pf)) if pf else {} if mm is N<fim_suffix>one: mm = "1" if q_op == "AND": mm = "100%" # bigram_fields = parse_field_boosts(pf2) if pf2 else {} # trigram_fields = parse_field_boosts(pf3) if pf3 else {} num_search_terms, search_terms, term_centric = parse_query_terms(frame, q, list(query_fields.keys())) if term_centric: qf_scores, explain = _edismax_term_centric(frame, query_fields, num_search_terms, search_terms, mm, similarity=similarity) else: qf_scores, explain = _edismax_field_centric(frame, query_fields, num_search_terms, search_terms, mm, similarity=similarity) phrase_scores = [] for field, boost in phrase_fields.items(): arr = get_field(frame, field) terms = search_terms[field] field_phrase_score = arr.score(terms, similarity=similarity) * (1 if boost is None else boost) boost_exp = f"{boost}" if boost is not None else "1" explain += f" ({field}:\"{' '.join(terms)}\")^{boost_exp}" phrase_scores.append(field_phrase_score) if len(phrase_scores) > 0: phrase_scores = np.sum(phrase_scores, axis=0) # Add where term_scores > 0 term_match_idx = np.where(qf_scores)[0] qf_scores[term_match_idx] += phrase_scores[term_match_idx] return qf_scores, explain <fim_middle>
null
IF
complete_current_header_empty_completion
<filename>searcharray/searcharray/postings.py<fim_prefix>"""Tokenized, searchable text as a pandas dtype.""" import pandas as pd import numbers from pandas.api.extensions import ExtensionDtype, ExtensionArray, register_extension_dtype from pandas.api.types import is_list_like from pandas.api.extensions import take import json from collections import Counter import warnings import logging from typing import List, Union, Optional, Iterable import numpy as np from searcharray.phrase.scan_merge import scan_merge_ins from searcharray.phrase.posn_diffs import compute_phrase_freqs from searcharray.phrase.middle_out import PosnBitArray from searcharray.similarity import Similarity, default_bm25 from searcharray.indexing import build_index_from_tokenizer, build_index_from_terms_list from searcharray.term_dict import TermMissingError logger = logging.getLogger(__name__) # When running in pytest import sys # noqa handler = logging.StreamHandler(sys.stdout) handler.setLevel(logging.ERROR) formatter = logging.Formatter("[%(filename)s:%(lineno)s - %(funcName)20s() ] %(message)s") handler.setFormatter(formatter) logger.addHandler(handler) logger.setLevel(logging.ERROR) class Terms: """An indexed search doc - a single bag of tokenized words and positions.""" def __init__(self, postings, doc_len: int = 0, posns: Optional[dict] = None, encoded=False): self.postings = postings self.posns = None self.encoded = encoded self.doc_len = doc_len self.posns = posns def _validate_posns(self): # (For testing/assertions) - Confirm every term in positions also in postings if self.posns is None: return for term in self.posns: if term not in self.postings: raise ValueError(f"Term {term} in positions but not in postings. ") def termfreq(self, token): return self.postings[token] def terms(self): return self.postings.items() def positions(self, term=None): if self.posns is None: return {} if term is None: posns = self.posns.items() else: posns = self.posns[term] return posns def raw_positions(self, term_dict, term=None): if self.posns is None: return {} if term is None: posns = [(term_dict.get_term_id(term), posns) for term, posns in self.posns.items()] else: posns = [(term_dict.get_term_id(term), self.posns[term])] return posns def tf_to_dense(self, term_dict): """Convert to a dense vector of term frequencies.""" dense = np.zeros(len(term_dict)) for term, freq in self.terms(): dense[term_dict.get_term_id(term)] = freq return dense def __len__(self): return len(self.postings) def __repr__(self): posting_keys = set(self.postings.keys()) rval = f"Terms({posting_keys})" return rval def __str__(self): return repr(self) def __eq__(self, other): # Flip to the other implementation if we're comparing to a SearchArray # to get a boolean array back if isinstance(other, SearchArray): return other == self same_postings = isinstance(other, Terms) and self.postings == other.postings if same_postings and self.doc_len == other.doc_len: return True def __lt__(self, other): # return isinstance(other, Terms) and hash(self) < hash(other) keys_both = set(self.postings.keys()).union(set(other.postings.keys())) # Sort lexically keys_both = sorted(keys_both) # Iterate as if these are two vectors of the same large dimensional vector sparse for key in keys_both: lhs_val = 0 rhs_val = 0 try: lhs_val = self.postings[key] except KeyError: pass try: rhs_val = other.postings[key] except KeyError: pass if lhs_val < rhs_val: return True elif lhs_val > rhs_val: return False else: continue return False def __le__(self, other): return self < other or self == other def __gt__(self, other): return not (self < other) and self != other def __hash__(self): return hash(json.dumps(self.postings, sort_keys=True)) class TermsDtype(ExtensionDtype): """Pandas dtype for terms.""" name = 'tokenized_text' type = Terms kind = 'O' @classmethod def construct_from_string(cls, string): if not isinstance(string, str): raise TypeError( "'construct_from_string' expects a string, got {}".format(type(string)) ) elif string == cls.name: return cls() else: raise TypeError( "Cannot construct a '{}' from '{}'".format(cls.__name__, string) ) @classmethod def construct_array_type(cls): return SearchArray def __repr__(self): return 'TermsDtype()' @property def na_value(self): return Terms({}) def valid_value(self, value): return isinstance(value, dict) or pd.isna(value) or isinstance(value, Terms) register_extension_dtype(TermsDtype) def ws_tokenizer(string): if pd.isna(string): return [] if not isinstance(string, str): raise ValueError("Expected a string") return string.split() def _row_to_postings_row(doc_id, row, doc_len, term_dict, posns: PosnBitArray): tfs = {} labeled_posns = {} for term_idx in row.cols: term = term_dict.get_term(term_idx) tfs[term] = 1 enc_term_posns = posns.doc_encoded_posns(term_idx, doc_id=doc_id) labeled_posns[term] = enc_term_posns result = Terms(tfs, posns=labeled_posns, doc_len=doc_len, encoded=True) return result class SearchArray(ExtensionArray): """An array of tokenized text (Termss).""" dtype = TermsDtype() def __init__(self, postings, tokenizer=ws_tokenizer, avoid_copies=True): # Check dtype, raise TypeError if not is_list_like(postings): raise TypeError("Expected list-like object, got {}".format(type(postings))) self.avoid_copies = avoid_copies self.tokenizer = tokenizer self.term_mat, self.posns, \ self.term_dict, self.avg_doc_length, \ self.doc_lens = build_index_from_terms_list(postings, Terms) @classmethod def index(cls, array: Iterable, tokenizer=ws_tokenizer, truncate=False, batch_size=100000, avoid_copies=True) -> 'SearchArray': """Index an array of strings using tokenizer.""" if not is_list_like(array): raise TypeError("Expected list-like object, got {}".format(type(array))) term_mat, posns, term_dict, avg_doc_length, doc_lens =\ build_index_from_tokenizer(array, tokenizer, batch_size=batch_size, truncate=truncate) postings = cls([], tokenizer=tokenizer, avoid_copies=avoid_copies) postings.term_mat = term_mat postings.posns = posns postings.term_dict = term_dict postings.avg_doc_length = avg_doc_length postings.doc_lens = doc_lens return postings @classmethod def _from_sequence(cls, scalars, dtype=None, copy=False): """Construct a new SearchArray from a sequence of scalars (PostingRow or convertible into).""" if dtype is not None: if not isinstance(dtype, TermsDtype): return scalars if isinstance(scalars, np.ndarray) and scalars.dtype == TermsDtype(): return cls(scalars) # String types elif isinstance(scalars, np.ndarray) and scalars.dtype.kind in 'US': return cls(scalars) # Other objects elif isinstance(scalars, np.ndarray) and scalars.dtype != object: return scalars return cls(scalars) def memory_usage(self, deep=False): """Return memory usage of this array in bytes.""" return self.nbytes @property def nbytes(self): return self.term_mat.nbytes + self.posns.nbytes + self.doc_lens.nbytes + self.term_dict.nbytes def __getitem__(self, key): key = pd.api.indexers.check_array_indexer(self, key) # Want to take rows of term freqs if isinstance(key, numbers.Integral): try: rows = self.term_mat[key] doc_len = self.doc_lens[key] doc_id = key if doc_id < 0: doc_id += len(self) return _row_to_postings_row(doc_id, rows[0], doc_len, self.term_dict, self.posns) except IndexError: raise IndexError("index out of bounds") else: # Construct a sliced view of this array sliced_tfs = self.term_mat.slice(key) sliced_posns = self.posns.slice(sliced_tfs.rows) if not self.avoid_copies else self.posns arr = SearchArray([], tokenizer=self.tokenizer) arr.term_mat = sliced_tfs arr.doc_lens = self.doc_lens[key] arr.posns = sliced_posns arr.term_dict = self.term_dict arr.avg_doc_length = self.avg_doc_length return arr def __setitem__(self, key, value): """Set an item in the array.""" key = pd.api.indexers.check_array_indexer(self, key) if isinstance(value, pd.Series): value = value.values if isinstance(value, pd.DataFrame): value = value.values.flatten() if isinstance(value, SearchArray): value = value.to_numpy() if isinstance(value, list): value = np.asarray(value, dtype=object) if not isinstance(value, np.ndarray) and not self.dtype.valid_value(value): raise ValueError(f"Cannot set non-object array to SearchArray -- you passed type:{type(value)} -- {value}") # Cant set a single value to an array if isinstance(key, numbers.Integral) and isinstance(value, np.ndarray): raise ValueError("Cannot set a single value to an array") try: is_encoded = False posns = None term_mat = np.asarray([]) doc_lens = np.asarray([]) if isinstance(value, float): term_mat = np.asarray([value]) doc_lens = np.asarray([0]) elif isinstance(value, Terms): term_mat = np.asarray([value.tf_to_dense(self.term_dict)]) doc_lens = np.asarray([value.doc_len]) is_encoded = value.encoded posns = [value.raw_positions(self.term_dict)] elif isinstance(value, np.ndarray): term_mat = np.asarray([x.tf_to_dense(self.term_dict) for x in value]) doc_lens = np.asarray([x.doc_len for x in value]) is_encoded = value[0].encoded if len(value) > 0 else False posns = [x.raw_positions(self.term_dict) for x in value] np.nan_to_num(term_mat, copy=False, nan=0) self.term_mat[key] = term_mat self.doc_lens[key] = doc_lens if posns is not None: self.posns.insert(key, posns, is_encoded) # Assume we have a positions for each term, doc pair. We can just update it. # Otherwise we would have added new terms except TermMissingError: self._add_new_terms(key, value) def _add_new_terms(self, key, value): msg = """Adding new terms! This might not be good if you tokenized this new text with a different tokenizer. Also. This is slow.""" warnings.warn(msg) scan_value = value if isinstance(value, Terms): scan_value = np.asarray([value]) for row in scan_value: for term in row.terms(): self.term_dict.add_term(term[0]) self.term_mat.resize((self.term_mat.shape[0], len(self.term_dict))) # Ensure posns_lookup has at least max self.posns self[key] = value def value_counts( self, dropna: bool = True, ): if dropna: counts = Counter(self[:]) counts.pop(Terms({}), None) else: counts = Counter(self[:]) return pd.Series(counts) def __len__(self): len_rval = len(self.term_mat.rows) return len_rval def __ne__(self, other): if isinstance(other, pd.DataFrame) or isinstance(other, pd.Series) or isinstance(other, pd.Index): return NotImplemented return ~(self == other) def __eq__(self, other): """Return a boolean numpy array indicating elementwise equality.""" # When other is a dataframe or series, not implemented if isinstance(other, pd.DataFrame) or isinstance(other, pd.Series) or isinstance(other, pd.Index): return NotImplemented # When other is an ExtensionArray if isinstance(other, SearchArray): if len(self) != len(other): return False elif len(other) == 0: return np.array([], dtype=bool) else: # Compatible term dicts, and same term freqs # (not looking at positions, maybe we should?) if self.term_dict.compatible(other.term_dict): return (self.term_mat == other.term_mat) & (self.doc_lens == other.doc_lens) else: return np.zeros(len(self), dtype=bool) # return np.array(self[:]) == np.array(other[:]) # When other is a scalar value elif isinstance(other, Terms): other = SearchArray([other], tokenizer=self.tokenizer) warnings.warn("Comparing a scalar value to a SearchArray. This is slow.") return np.array(self[:]) == np.array(other[:]) # When other is a sequence but not an ExtensionArray # its an array of dicts elif is_list_like(other): if len(self) != len(other): return False elif len(other) == 0: return np.array([], dtype=bool) # We actually don't know how it was tokenized other = SearchArray(other, tokenizer=self.tokenizer) return np.array(self[:]) == np.array(other[:]) # Return False where 'other' is neither the same length nor a scalar else: return np.full(len(self), False) def isna(self): # Every row with all 0s empties = self.doc_lens == 0 return empties def take(self, indices, allow_fill=False, fill_value=None): # Want to take rows of term freqs row_indices = np.arange(len(self.term_mat.rows)) # Take within the row indices themselves result_indices = take(row_indices, indices, allow_fill=allow_fill, fill_value=-1) if allow_fill and -1 in result_indices: if fill_value is None or pd.isna(fill_value): fill_value = Terms({}, encoded=True) to_fill_mask = result_indices == -1 # This is slow as it rebuilds all the term dictionaries # on the subsequent assignment lines # However, this case tends to be the exception for # most dataframe operations taken = SearchArray([fill_value] * len(result_indices)) taken[~to_fill_mask] = self[result_indices[~to_fill_mask]].copy() return taken else: taken = self[result_indices].copy() return taken def copy(self): postings_arr = SearchArray([], tokenizer=self.tokenizer) postings_arr.doc_lens = self.doc_lens.copy() postings_arr.term_mat = self.term_mat.copy() postings_arr.posns = self.posns postings_arr.term_dict = self.term_dict postings_arr.avg_doc_length = self.avg_doc_length if not self.avoid_copies: postings_arr.posns = self.posns.copy() postings_arr.term_dict = self.term_dict.copy() return postings_arr @classmethod def _concat_same_type(cls, to_concat): concatenated_data = np.concatenate([ea[:] for ea in to_concat]) return SearchArray(concatenated_data, tokenizer=to_concat[0].tokenizer) @classmethod def _from_factorized(cls, values, original): return cls(values) def _values_for_factorize(self): """Return an array and missing value suitable for factorization (ie grouping).""" arr = np.asarray(self[:], dtype=object) return arr, Terms({}) def _check_token_arg(self, token): if isinstance(token, str): return token elif isinstance(token, list) and len(token) == 1: return token[0] elif isinstance(token, list): return token else: raise TypeError("Expected a string or list of strings for phrases") # *********************************************************** # Search functionality # *********************************************************** def termfreqs(self, token: Union[List[str], str]) -> np.ndarray: token = self._check_token_arg(token) if isinstance(token, list): return self.phrase_freq(token) try: term_id = self.term_dict.get_term_id(token) matches = np.zeros(len(self), dtype=int) slice_of_rows = None if self.term_ma<fim_suffix>t.subset: slice_of_rows = self.term_mat.rows doc_ids, termfreqs = self.posns.termfreqs(term_id, doc_ids=slice_of_rows) mask = np.isin(self.term_mat.rows, doc_ids) matches[mask] = termfreqs return matches else: doc_ids, termfreqs = self.posns.termfreqs(term_id, doc_ids=slice_of_rows) matches[doc_ids] = termfreqs return matches except TermMissingError: return np.zeros(len(self), dtype=int) def docfreq(self, token: str) -> int: if not isinstance(token, str): raise TypeError("Expected a string") # Count number of rows where the term appears try: return self.posns.docfreq(self.term_dict.get_term_id(token)) except TermMissingError: return 0 def doclengths(self) -> np.ndarray: return self.doc_lens def match(self, token: Union[List[str], str], slop: int = 1) -> np.ndarray: """Return a boolean numpy array indicating which elements contain the given term.""" token = self._check_token_arg(token) if isinstance(token, list): term_freq = self.phrase_freq(token) else: term_freq = self.termfreqs(token) return term_freq > 0 def score(self, token: Union[str, List[str]], similarity: Similarity = default_bm25) -> np.ndarray: """Score each doc using a similarity function. Parameters ---------- token : str or list of str of what to search (already tokenized) similarity : How to score the documents. Default is BM25. """ # Get term freqs per token token = self._check_token_arg(token) # For expensive toknes, we compute doc freq first, so we # cache them in the DF cache, to let TF cache know it should be cached tokens_l = [token] if isinstance(token, str) else token all_dfs = np.asarray([self.docfreq(token) for token in tokens_l]) tfs = self.termfreqs(token) token = self._check_token_arg(token) doc_lens = self.doclengths() scores = similarity(term_freqs=tfs, doc_freqs=all_dfs, doc_lens=doc_lens, avg_doc_lens=self.avg_doc_length, num_docs=len(self)) return scores def positions(self, token: str, key=None) -> List[np.ndarray]: """Return a list of lists of positions of the given term.""" term_id = self.term_dict.get_term_id(token) key = self.term_mat.rows[key] if key is not None else self.term_mat.rows posns = self.posns.positions(term_id, doc_ids=key) return posns def and_query(self, tokens: Union[List[str], List[List[str]]]) -> np.ndarray: """Return a mask on the postings array indicating which elements contain all terms.""" masks = [self.match(term) for term in tokens] mask = np.ones(len(self), dtype=bool) for curr_mask in masks: mask = mask & curr_mask return mask def or_query(self, tokens: Union[List[str], List[List[str]]], min_should_match: int = 1) -> np.ndarray: """Return a mask on the postings array indicating which elements contain all terms.""" masks = [self.match(term) for term in tokens] mask = np.sum(masks, axis=0) >= min_should_match return mask def phrase_freq(self, tokens: List[str], slop=1) -> np.ndarray: if slop == 1 and len(tokens) == len(set(tokens)): phrase_freqs = np.zeros(len(self)) try: doc_ids = self.term_mat.rows term_ids = [self.term_dict.get_term_id(token) for token in tokens] return self.posns.phrase_freqs(term_ids, doc_ids=doc_ids, phrase_freqs=phrase_freqs) except TermMissingError: return phrase_freqs else: return self.phrase_freq_every_diff(tokens, slop=slop) def phrase_freq_scan(self, tokens: List[str], mask=None, slop=1) -> np.ndarray: if mask is None: mask = self.and_query(tokens) if np.sum(mask) == 0: return mask # Gather positions posns = [self.positions(token, mask) for token in tokens] phrase_freqs = np.zeros(len(self)) phrase_freqs[mask] = scan_merge_ins(posns, phrase_freqs[mask], slop=slop) return phrase_freqs def phrase_freq_every_diff(self, tokens: List[str], slop=1) -> np.ndarray: phrase_freqs = -np.ones(len(self)) mask = self.and_query(tokens) phrase_freqs[~mask] = 0 if np.sum(mask) == 0: return phrase_freqs term_posns = [self.positions(term, mask) for term in tokens] for width in [10, 20, 30, 40]: phrase_freqs[mask] = compute_phrase_freqs(term_posns, phrase_freqs[mask], slop=slop, width=width) remaining_mask = phrase_freqs == -1 if np.any(remaining_mask): remainder_freqs = self.phrase_freq_scan(tokens, mask=remaining_mask, slop=slop) phrase_freqs[remaining_mask] = remainder_freqs[remaining_mask] return phrase_freqs <fim_middle>
null
IF
complete_current_header_empty_completion
<filename>searcharray/searcharray/solr.py<fim_prefix>"""Utility functions for Solr users of searcharray.""" import re import pandas as pd import numpy as np from typing import List, Optional, Dict, Tuple from searcharray.postings import SearchArray from searcharray.similarity import Similarity, default_bm25 def parse_min_should_match(num_clauses: int, spec: str) -> int: """Parse Solr's min should match (ie mm) spec. See this ChatGPT translation of mm code from Solr's Java code for parsing this https://chat.openai.com/share/76642aec-7e05-420f-a53a-83b8e2eea8fb Parameters ---------- num_clauses : int spec : str Returns ------- int : the number of clauses that must match """ def checked_parse_int(value, error_message): try: return int(value) except ValueError: raise ValueError(error_message) result = num_clauses spec = spec.strip() if '<' in spec: # we have conditional spec(s) space_around_less_than_pattern = re.compile(r'\s*<\s*') spec = space_around_less_than_pattern.sub('<', spec) for s in spec.split(): parts = s.split('<', 1) if len(parts) < 2: raise ValueError("Invalid 'mm' spec: '" + s + "'. Expecting values before and after '<'") upper_bound = checked_parse_int(parts[0], "Invalid 'mm' spec. Expecting an integer.") if num_clauses <= upper_bound: return result else: result = parse_min_should_match(num_clauses, parts[1]) return result # otherwise, simple expression if '%' in spec: # percentage - assume the % was the last char. If not, let int() fail. spec = spec[:-1] percent = checked_parse_int(spec, "Invalid 'mm' spec. Expecting an integer.") calc = (result * percent) * (1 / 100) result = result + int(calc) if calc < 0 else int(calc) else: calc = checked_parse_int(spec, "Invalid 'mm' spec. Expecting an integer.") result = result + calc if calc < 0 else calc return min(num_clauses, max(result, 0)) def parse_field_boosts(field_lists: List[str]) -> dict: """Parse Solr's qf, pf, pf2, pf3 field boosts.""" if not field_lists: return {} out = {} carat_pattern = re.compile(r'\^') for field in field_lists: parts = carat_pattern.split(field) out[parts[0]] = None if len(parts) == 1 else float(parts[1]) return out def get_field(frame, field) -> SearchArray: if field not in frame.columns: raise ValueError(f"Field {field} not in dataframe") if not isinstance(frame[field].array, SearchArray): raise ValueError(f"Field {field} is not a searcharray field") return frame[field].array def parse_query_terms(frame: pd.DataFrame, query: str, query_fields: List[str]): search_terms: Dict[str, List[str]] = {} num_search_terms = 0 term_centric = True for field in query_fields: arr = get_field(frame, field) tokenizer = arr.tokenizer search_terms[field] = [] field_num_search_terms = 0 for posn, term in enumerate(tokenizer(query)): search_terms[field].append(term) field_num_search_terms += 1 if num_search_terms == 0: num_search_terms = field_num_search_terms elif field_num_search_terms != num_search_terms: term_centric = False return num_search_terms, search_terms, term_centric def _edismax_term_centric(frame: pd.DataFrame, query_fields: Dict[str, float], num_search_terms: int, search_terms: Dict[str, List[str]], mm: str, similarity: Similarity) -> Tuple[np.ndarray, str]: explain = [] term_scores = [] for term_posn in range(num_search_terms): max_scores = np.zeros(len(frame)) term_explain = [] for field, boost in query_fields.items(): term = search_terms[field][term_posn] post_arr = get_field(frame, field) field_term_score = post_arr.score(term, similarity=similarity) * (1 if boost is None else boost) boost_exp = f"{boost}" if boost is not None else "1" term_explain.append(f"{field}:{term}^{boost_exp}") max_scores = np.maximum(max_scores, field_term_score) term_scores.append(max_scores) explain.append("(" + " | ".join(term_explain) + ")") min_should_match = parse_min_should_match(num_search_terms, spec=mm) qf_scores = np.asarray(term_scores) matches_gt_mm = np.sum(qf_scores > 0, axis=0) >= min_should_match qf_scores = np.sum(term_scores, axis=0) qf_scores[~matches_gt_mm] = 0 return qf_scores, "(" + " ".join(explain) + f")~{min_should_match}" def _edismax_field_centric(frame: pd.DataFrame, query_fields: Dict[str, float], num_search_terms: int, search_terms: Dict[str, List[str]], mm: str, similarity: Similarity = default_bm25) -> Tuple[np.ndarray, str]: field_scores = [] explain = [] for field, boost in query_fields.items(): post_arr = get_field(frame, field) term_scores = np.array([post_arr.score(term, similarity=similarity) for term in search_terms[field]]) min_should_match = parse_min_should_match(len(search_terms[field]), spec=mm) exp = " ".join([f"{field}:{term}" for term in search_terms[field]]) boost_exp = f"{boost}" if boost is not None else "1" exp = "(" + exp + f")~{min(min_should_match, len(search_terms[field]))}" exp = "(" + exp + f")^{boost_exp}" matches_gt_mm = np.sum(term_scores > 0, axis=0) >= min(min_should_match, len(search_terms[field])) sum_terms_bm25 = np.sum(term_scores, axis=0) sum_terms_bm25[~matches_gt_mm] = 0 field_scores.append(sum_terms_bm25 * (1 if boost is None else boost)) explain.append(exp) # Take maximum field scores as qf qf_scores = np.asarray(field_scores) qf_scores = np.max(qf_scores, axis=0) return qf_scores, " | ".join(explain) def edismax(frame: pd.DataFrame, q: str, qf: List[str], mm: Optional[str] = None, pf: Optional[List[str]] = None, pf2: Optional[List[str]] = None, pf3: Optional[List[str]] = None, q_op: str = "OR", similarity: Similarity = default_bm25) -> Tuple[np.ndarray, str]: """Run edismax search over dataframe with searcharray fields. Parameters ---------- q : str The query string mm : str The minimum should match spec qf : list The fields to search pf : list The fields to search for phrase matches pf2 : list The fields to search for bigram matches pf3 : list The fields to search for trigram matches q_op : str, optional The default operator, by default "OR" Returns ------- np.ndarray The search results """ def listify(x): return x if isinstance(x, list) else [x] query_fields = parse_field_boosts(listify(qf)) phrase_fields = parse_field_boosts(listify(pf)) if pf else {} if mm is None: mm = "1" if q_op == "AND": mm = "100%" # bigram_fields = parse_field_boosts(pf2) if pf2 else {} # trigram_fields = parse_field_boosts(pf3) if pf3 else {} num_search_terms, search_terms, term_centric = parse_query_terms(frame, q, list(query_fields.keys())) if term_centric: qf_scores, explain = _edismax_term_centric(frame, query_fields, num_search_terms, search_terms, mm, similarity=similarity) else: qf_scores, explain = _edismax_field_centric(frame, query_fields, num_search_terms, search_terms, mm, similarity=similarity) phrase_scores = [] for field, boost in phrase_fields.items(): arr = get_field(frame, field) terms = search_terms[field] field_phrase_score = arr.score(terms, similarity=similarity) * (1 if boost is None else boost) boost_exp = f"{boost}" if boost is not None else "1" explain += f" ({field}:\"{' '.join(terms)}\")^{boost_exp}" phrase_scores.append(field_phrase_score) i<fim_suffix>f len(phrase_scores) > 0: phrase_scores = np.sum(phrase_scores, axis=0) # Add where term_scores > 0 term_match_idx = np.where(qf_scores)[0] qf_scores[term_match_idx] += phrase_scores[term_match_idx] return qf_scores, explain <fim_middle>
null
IF
complete_current_header_empty_completion
<filename>searcharray/searcharray/solr.py<fim_prefix>"""Utility functions for Solr users of searcharray.""" import re import pandas as pd import numpy as np from typing import List, Optional, Dict, Tuple from searcharray.postings import SearchArray from searcharray.similarity import Similarity, default_bm25 def parse_min_should_match(num_clauses: int, spec: str) -> int: """Parse Solr's min should match (ie mm) spec. See this ChatGPT translation of mm code from Solr's Java code for parsing this https://chat.openai.com/share/76642aec-7e05-420f-a53a-83b8e2eea8fb Parameters ---------- num_clauses : int spec : str Returns ------- int : the number of clauses that must match """ def checked_parse_int(value, error_message): try: return int(value) except ValueError: raise ValueError(error_message) result = num_clauses spec = spec.strip() i<fim_suffix>f '<' in spec: # we have conditional spec(s) space_around_less_than_pattern = re.compile(r'\s*<\s*') spec = space_around_less_than_pattern.sub('<', spec) for s in spec.split(): parts = s.split('<', 1) if len(parts) < 2: raise ValueError("Invalid 'mm' spec: '" + s + "'. Expecting values before and after '<'") upper_bound = checked_parse_int(parts[0], "Invalid 'mm' spec. Expecting an integer.") if num_clauses <= upper_bound: return result else: result = parse_min_should_match(num_clauses, parts[1]) return result # otherwise, simple expression if '%' in spec: # percentage - assume the % was the last char. If not, let int() fail. spec = spec[:-1] percent = checked_parse_int(spec, "Invalid 'mm' spec. Expecting an integer.") calc = (result * percent) * (1 / 100) result = result + int(calc) if calc < 0 else int(calc) else: calc = checked_parse_int(spec, "Invalid 'mm' spec. Expecting an integer.") result = result + calc if calc < 0 else calc return min(num_clauses, max(result, 0)) def parse_field_boosts(field_lists: List[str]) -> dict: """Parse Solr's qf, pf, pf2, pf3 field boosts.""" if not field_lists: return {} out = {} carat_pattern = re.compile(r'\^') for field in field_lists: parts = carat_pattern.split(field) out[parts[0]] = None if len(parts) == 1 else float(parts[1]) return out def get_field(frame, field) -> SearchArray: if field not in frame.columns: raise ValueError(f"Field {field} not in dataframe") if not isinstance(frame[field].array, SearchArray): raise ValueError(f"Field {field} is not a searcharray field") return frame[field].array def parse_query_terms(frame: pd.DataFrame, query: str, query_fields: List[str]): search_terms: Dict[str, List[str]] = {} num_search_terms = 0 term_centric = True for field in query_fields: arr = get_field(frame, field) tokenizer = arr.tokenizer search_terms[field] = [] field_num_search_terms = 0 for posn, term in enumerate(tokenizer(query)): search_terms[field].append(term) field_num_search_terms += 1 if num_search_terms == 0: num_search_terms = field_num_search_terms elif field_num_search_terms != num_search_terms: term_centric = False return num_search_terms, search_terms, term_centric def _edismax_term_centric(frame: pd.DataFrame, query_fields: Dict[str, float], num_search_terms: int, search_terms: Dict[str, List[str]], mm: str, similarity: Similarity) -> Tuple[np.ndarray, str]: explain = [] term_scores = [] for term_posn in range(num_search_terms): max_scores = np.zeros(len(frame)) term_explain = [] for field, boost in query_fields.items(): term = search_terms[field][term_posn] post_arr = get_field(frame, field) field_term_score = post_arr.score(term, similarity=similarity) * (1 if boost is None else boost) boost_exp = f"{boost}" if boost is not None else "1" term_explain.append(f"{field}:{term}^{boost_exp}") max_scores = np.maximum(max_scores, field_term_score) term_scores.append(max_scores) explain.append("(" + " | ".join(term_explain) + ")") min_should_match = parse_min_should_match(num_search_terms, spec=mm) qf_scores = np.asarray(term_scores) matches_gt_mm = np.sum(qf_scores > 0, axis=0) >= min_should_match qf_scores = np.sum(term_scores, axis=0) qf_scores[~matches_gt_mm] = 0 return qf_scores, "(" + " ".join(explain) + f")~{min_should_match}" def _edismax_field_centric(frame: pd.DataFrame, query_fields: Dict[str, float], num_search_terms: int, search_terms: Dict[str, List[str]], mm: str, similarity: Similarity = default_bm25) -> Tuple[np.ndarray, str]: field_scores = [] explain = [] for field, boost in query_fields.items(): post_arr = get_field(frame, field) term_scores = np.array([post_arr.score(term, similarity=similarity) for term in search_terms[field]]) min_should_match = parse_min_should_match(len(search_terms[field]), spec=mm) exp = " ".join([f"{field}:{term}" for term in search_terms[field]]) boost_exp = f"{boost}" if boost is not None else "1" exp = "(" + exp + f")~{min(min_should_match, len(search_terms[field]))}" exp = "(" + exp + f")^{boost_exp}" matches_gt_mm = np.sum(term_scores > 0, axis=0) >= min(min_should_match, len(search_terms[field])) sum_terms_bm25 = np.sum(term_scores, axis=0) sum_terms_bm25[~matches_gt_mm] = 0 field_scores.append(sum_terms_bm25 * (1 if boost is None else boost)) explain.append(exp) # Take maximum field scores as qf qf_scores = np.asarray(field_scores) qf_scores = np.max(qf_scores, axis=0) return qf_scores, " | ".join(explain) def edismax(frame: pd.DataFrame, q: str, qf: List[str], mm: Optional[str] = None, pf: Optional[List[str]] = None, pf2: Optional[List[str]] = None, pf3: Optional[List[str]] = None, q_op: str = "OR", similarity: Similarity = default_bm25) -> Tuple[np.ndarray, str]: """Run edismax search over dataframe with searcharray fields. Parameters ---------- q : str The query string mm : str The minimum should match spec qf : list The fields to search pf : list The fields to search for phrase matches pf2 : list The fields to search for bigram matches pf3 : list The fields to search for trigram matches q_op : str, optional The default operator, by default "OR" Returns ------- np.ndarray The search results """ def listify(x): return x if isinstance(x, list) else [x] query_fields = parse_field_boosts(listify(qf)) phrase_fields = parse_field_boosts(listify(pf)) if pf else {} if mm is None: mm = "1" if q_op == "AND": mm = "100%" # bigram_fields = parse_field_boosts(pf2) if pf2 else {} # trigram_fields = parse_field_boosts(pf3) if pf3 else {} num_search_terms, search_terms, term_centric = parse_query_terms(frame, q, list(query_fields.keys())) if term_centric: qf_scores, explain = _edismax_term_centric(frame, query_fields, num_search_terms, search_terms, mm, similarity=similarity) else: qf_scores, explain = _edismax_field_centric(frame, query_fields, num_search_terms, search_terms, mm, similarity=similarity) phrase_scores = [] for field, boost in phrase_fields.items(): arr = get_field(frame, field) terms = search_terms[field] field_phrase_score = arr.score(terms, similarity=similarity) * (1 if boost is None else boost) boost_exp = f"{boost}" if boost is not None else "1" explain += f" ({field}:\"{' '.join(terms)}\")^{boost_exp}" phrase_scores.append(field_phrase_score) if len(phrase_scores) > 0: phrase_scores = np.sum(phrase_scores, axis=0) # Add where term_scores > 0 term_match_idx = np.where(qf_scores)[0] qf_scores[term_match_idx] += phrase_scores[term_match_idx] return qf_scores, explain <fim_middle>
null
IF
complete_current_header_empty_completion
<filename>searcharray/searcharray/phrase/middle_out.py<fim_prefix>"""Encode positions in bits along with some neighboring information for wrapping. See this notebook for motivation: https://colab.research.google.com/drive/10tIEkdlCE_1J_CcgEcV0jkLfBc-0H4am?authuser=1#scrollTo=XWzy-n9dF3PG """ import numpy as np import sortednp as snp from copy import deepcopy from typing import List, Tuple, Dict, Union, cast, Optional from searcharray.utils.roaringish import RoaringishEncoder, convert_keys, sorted_unique import numbers import logging from collections import defaultdict from searcharray.utils.bitcount import bit_count64 logger = logging.getLogger(__name__) # When running in pytest import sys # noqa handler = logging.StreamHandler(sys.stdout) handler.setLevel(logging.ERROR) formatter = logging.Formatter("[%(filename)s:%(lineno)s - %(funcName)20s() ] %(message)s") handler.setFormatter(formatter) logger.addHandler(handler) logger.setLevel(logging.ERROR) encoder = RoaringishEncoder() # To not constantly type coerce _64 = np.uint64(64) _2 = np.uint64(2) _1 = np.uint64(1) _0 = np.uint64(0) _neg1 = np.int64(-1) MAX_POSN = encoder.max_payload def inner_bigram_freqs(lhs: np.ndarray, rhs: np.ndarray, phrase_freqs: np.ndarray) -> Tuple[np.ndarray, np.ndarray]: """Count bigram matches between two encoded arrays, within a 64 bit word with same MSBs. Returns: -------- count: number of matches per doc rhs_next: the next rhs array to continue matching """ lhs_int, rhs_int = encoder.intersect(lhs, rhs) lhs_doc_ids = encoder.keys(lhs_int) if len(lhs_int) != len(rhs_int): raise ValueError("Encoding error, MSBs apparently are duplicated among your encoded posn arrays.") if len(lhs_int) == 0: return phrase_freqs, rhs_int same_term = (len(lhs_int) == len(rhs_int) and lhs_int[0] == rhs_int[0]) if same_term: # Find adjacent matches rhs_shift = rhs_int << _1 overlap = lhs_int & rhs_shift overlap = encoder.payload_lsb(overlap) adjacents = bit_count64(overlap).astype(np.int64) adjacents -= -np.floor_divide(adjacents, -2) # ceiling divide phrase_freqs[lhs_doc_ids] += adjacents return phrase_freqs, rhs_int overlap_bits = (lhs_int & encoder.payload_lsb_mask) & ((rhs_int & encoder.payload_lsb_mask) >> _1) rhs_next2 = (overlap_bits << _1) & encoder.payload_lsb_mask rhs_next2 |= (rhs_int & (encoder.key_mask | encoder.payload_msb_mask)) phrase_freqs2 = phrase_freqs.copy() matches2 = overlap_bits > 0 if np.any(matches2): transitions = np.argwhere(np.diff(lhs_doc_ids[matches2]) != 0).flatten() + 1 transitions = np.insert(transitions, 0, 0) counted_bits = bit_count64(overlap_bits[matches2]) reduced = np.add.reduceat(counted_bits, transitions) phrase_freqs2[np.unique(lhs_doc_ids[matches2])] += reduced return phrase_freqs2, rhs_next2 def adjacent_bigram_freqs(lhs: np.ndarray, rhs: np.ndarray, phrase_freqs: np.ndarray) -> Tuple[np.ndarray, np.ndarray]: """Count bigram matches between two encoded arrays where they occur in adjacent 64 bit words. Returns: -------- count: number of matches per doc rhs_next: the next rhs array to continue matching """ lhs_int, rhs_int = encoder.intersect_rshift(lhs, rhs, rshift=_neg1) lhs_doc_ids = encoder.keys(lhs_int) # lhs lsb set and rhs lsb's most significant bit set upper_bit = _1 << (encoder.payload_lsb_bits - _1) matches = ((lhs_int & upper_bit) != 0) & ((rhs_int & _1) != 0) unique, counts = np.unique(lhs_doc_ids[matches], return_counts=True) phrase_freqs[unique] += counts rhs_next = rhs_int rhs_next[~matches] |= ~encoder.payload_lsb_mask rhs_next[matches] |= (encoder.payload_lsb_mask & _1) return phrase_freqs, rhs_next def bigram_freqs(lhs: np.ndarray, rhs: np.ndarray, phrase_freqs: np.ndarray) -> Tuple[np.ndarray, np.ndarray]: """Count bigram matches between two encoded arrays. Returns: -------- count: number of matches per doc rhs_next: the next rhs array to continue matching """ # Combine lhs and rhs matches from two strategies phrase_freqs, rhs_next_inner = inner_bigram_freqs(lhs, rhs, phrase_freqs) phrase_freqs, rhs_next_adj = adjacent_bigram_freqs(lhs, rhs, phrase_freqs) rhs_next = np.sort(np.concatenate([rhs_next_inner, rhs_next_adj])) # Combine return phrase_freqs, rhs_next def trim_phrase_search(encoded_posns: List[np.ndarray], phrase_freqs: np.ndarray) -> List[np.ndarray]: """Trim long phrases by searching the rarest terms first.""" # Start with rarest term shortest_keys = None shortest_idx = None min_len = 1e100 max_len = 0 for idx, enc_posn in enumerate(encoded_posns): if len(enc_posn) < min_len: shortest_keys = encoder.keys(enc_posn) shortest_idx = idx min_len = len(enc_posn) if len(enc_posn) > max_len: max_len = len(enc_posn) if shortest_keys is None: return encoded_posns for enc_posn_idx in range(len(encoded_posns)): if enc_posn_idx == shortest_idx: continue if len(encoded_posns[enc_posn_idx]) > (10 * min_len): encoded_posns[enc_posn_idx] = encoder.slice(encoded_posns[enc_posn_idx], shortest_keys) return encoded_posns def compute_phrase_freqs(encoded_posns: List[np.ndarray], phrase_freqs: np.ndarray) -> np.ndarray: if len(encoded_posns) < 2: raise ValueError("phrase must have at least two terms") # Trim long phrases by searching the rarest terms first if len(encoded_posns) > 3: encoded_posns = trim_phrase_search(encoded_posns, phrase_freqs) mask = np.ones(len(phrase_freqs), dtype=bool) lhs = encoded_posns[0] for rhs in encoded_posns[1:]: # Only count the count of the last bigram (ignoring the ones where priors did not match) phrase_freqs[mask] = 0 phrase_freqs, lhs = bigram_freqs(lhs, rhs, phrase_freqs) mask &= (phrase_freqs > 0) phrase_freqs[~mask] = 0 return phrase_freqs class PosnBitArrayFromFlatBuilder: """ Build from sorted array shape num terms x 3. 0th is term id 1st is doc id 2nd is posn Sorted by term id then posns """ def __init__(self, flat_array: np.ndarray): self.flat_array = flat_array def build(self): """Slice the flat array into a 2d array of doc ids and posns.""" term_boundaries = np.argwhere(np.diff(self.flat_array[0]) > 0).flatten() + 1 term_boundaries = np.concatenate([[0], term_boundaries, [len(self.flat_array[1])]]) encoded, enc_term_boundaries = encoder.encode(keys=self.flat_array[1].view(np.uint64), boundaries=term_boundaries[:-1], payload=self.flat_array[2].view(np.uint64)) term_ids = self.flat_array[0][term_boundaries[:-1]] encoded_term_posns = {} for into_terms, (beg_idx, end_idx) in enumerate(zip(enc_term_boundaries[:-1], enc_term_boundaries[1:])): sliced = encoded[beg_idx:end_idx] encoded_term_posns[term_ids[into_terms]] = sliced return PosnBitArray(encoded_term_posns, self.flat_array[1].max()) class PosnBitArrayBuilder: def __init__(self): self.term_posns = defaultdict(list) self.term_posn_doc_ids = defaultdict(list) self.max_doc_id = 0 def add_posns(self, doc_id: int, term_id: int, posns: List[int]): doc_ids = [doc_id] * len(posns) self.term_posns[term_id].extend(posns) self.term_posn_doc_ids[term_id].extend(doc_ids) def ensure_capacity(self, doc_id): self.max_doc_id = max(self.max_doc_id, doc_id) def build(self, check=False): encoded_term_posns = {} for term_id, posns in self.term_posns.items(): if len(posns) == 0: posns = np.asarray([], dtype=np.uint32).flatten() elif isinstance(posns, list): posns_arr = np.asarray(posns, dtype=np.uint32).flatten() posns = posns_arr doc_ids = self.term_posn_doc_ids[term_id] if isinstance(doc_ids, list): doc_ids = np.asarray(doc_ids, dtype=np.uint32) encoded = encoder.encode(keys=doc_ids, payload=posns) if check: decode_again = encoder.decode(encoded) docs_to_posns = dict(decode_again) doc_ids_again = [] posns_again = [] for doc_id, posns_dec in docs_to_posns.items(): for posn in posns_dec: doc_ids_again.append(doc_id) posns_again.append(posn) assert np.array_equal(doc_ids_again, doc_ids) assert np.array_equal(posns, posns_again) encoded_term_posns[term_id] = encoded return PosnBitArray(encoded_term_posns, self.max_doc_id) class PosnBitArrayAlreadyEncBuilder: def __init__(self): self.encoded_term_posns = {} self.max_doc_id = 0 def add_posns(self, doc_id: int, term_id: int, posns): self.encoded_term_posns[term_id] = posns def ensure_capacity(self, doc_id): self.max_doc_id = max(self.max_doc_id, doc_id) def build(self, check=False): return PosnBitArray(self.encoded_term_posns, self.max_doc_id) def index_range(rng, key): if key is None: return rng if isinstance(rng, np.ndarray): return rng[key] if isinstance(key, slice): return rng[key] elif isinstance(key, numbers.Number): return rng[key] elif isinstance(key, np.ndarray): try: # UNFORTUNATE COPY r_val = np.asarray(list(rng))[key] return r_val except IndexError as e: raise e # Last resort # UNFORTUNATE COPY # Here probably elipses or a tuple of various things return np.asarray(list(rng))[key] class PosnBitArray: def __init__(self, encoded_term_posns, max_doc_id: int): self.encoded_term_posns = encoded_term_posns self.max_doc_id = max_doc_id self.docfreq_cache : Dict[int, np.uint64] = {} self.termfreq_cache : Dict[int, Tuple[np.ndarray, np.ndarray]] = {} def copy(self): new = PosnBitArray(deepcopy(self.encoded_term_posns), self.max_doc_id) return new def concat(self, other): """Merge other into self. Assumes other's doc ids are not overlapping with self's doc ids. """ # Shared terms shared_terms = set(self.encoded_term_posns.keys()).intersection(set(other.encoded_term_posns.keys())) for term_id in shared_terms: # Append then sort self.encoded_term_posns[term_id] = np.concatenate([self.encoded_term_posns[term_id], other.encoded_term_posns[term_id]]) self.encoded_term_posns[term_id].sort() only_other_terms = set(other.encoded_term_posns.keys()).difference(set(self.encoded_term_posns.keys())) for term_id in only_other_terms: self.encoded_term_posns[term_id] = other.encoded_term_posns[term_id] self.max_doc_id = max(self.max_doc_id, other.max_doc_id) # Empty caches self.termfreq_cache = {} self.docfreq_cache = {} def slice(self, key): sliced_term_posns = {} doc_ids = convert_keys(key) max_doc_id = np.max(doc_ids) for term_id, posns in self.encoded_term_posns.items(): encoded = self.encoded_term_posns[term_id] assert len(encoded.shape) == 1 sliced_term_posns[term_id] = encoder.slice(encoded, keys=doc_ids) return PosnBitArray(sliced_term_posns, max_doc_id) def __getitem__(self, key): return self.slice(key) def merge(self, other): # Unique terms unique_terms = set(self.encoded_term_posns.keys()).union(set(other.encoded_term_posns.keys())) for term_id in unique_terms: if term_id not in other.encoded_term_posns: continue elif term_id not in self.encoded_term_posns: self.encoded_term_posns[term_id] = other.encoded_term_posns[term_id] else: posns_self = self.encoded_term_posns[term_id] posns_other = other.encoded_term_posns[term_id] self.encoded_term_posns[term_id] = snp.merge(posns_self, posns_other) self.max_doc_id = self.max_doc_id + other.max_doc_id # Empty caches self.termfreq_cache = {} self.docfreq_cache = {} def doc_encoded_posns(self, term_id: int, doc_id: int) -> np.ndarray: term_posns = encoder.slice(self.encoded_term_posns[term_id], keys=np.asarray([doc_id], dtype=np.uint64)) return term_posns def phrase_freqs(self, term_ids: List[int], phrase_freqs: np.ndarray, doc_ids: np.ndarray) -> np.ndarray: if len(term_ids) < 2: raise ValueError("Must have at least two terms") if ph<fim_suffix>rase_freqs.shape[0] == self.max_doc_id + 1: enc_term_posns = [self.encoded_term_posns[term_id] for term_id in term_ids] else: enc_term_posns = [encoder.slice(self.encoded_term_posns[term_id], keys=doc_ids.view(np.uint64)) for term_id in term_ids] return compute_phrase_freqs(enc_term_posns, phrase_freqs) def positions(self, term_id: int, doc_ids) -> Union[List[np.ndarray], np.ndarray]: if isinstance(doc_ids, numbers.Number): doc_ids = np.asarray([doc_ids]) try: np_doc_ids = convert_keys(doc_ids) term_posns = encoder.slice(self.encoded_term_posns[term_id], keys=np_doc_ids) except KeyError: r_val = [np.array([], dtype=np.uint32) for doc_id in doc_ids] if len(r_val) == 1 and len(doc_ids) == 1 and isinstance(doc_ids[0], numbers.Number): return [r_val[0]] return r_val decoded = encoder.decode(encoded=term_posns, get_keys=True) if len(decoded) == 0: return [np.array([], dtype=np.uint32)] if len(decoded) != len(doc_ids): # Fill non matches decoded = cast(List[Tuple[np.uint64, np.ndarray]], decoded) as_dict: Dict[np.uint64, np.ndarray] = dict(decoded) decs = [] for doc_id in doc_ids: if doc_id in as_dict: decs.append(as_dict[doc_id]) else: decs.append(np.array([], dtype=np.uint32)) return decs else: decs = [dec[1] for dec in decoded] return decs def termfreqs(self, term_id: int, doc_ids: Optional[np.ndarray] = None) -> Tuple[np.ndarray, np.ndarray]: """Count term freqs using unique positions.""" if doc_ids is None: return self._termfreqs_with_cache(term_id) encoded = self.encoded_term_posns[term_id] term_posns = encoded term_posns = encoder.slice(encoded, keys=doc_ids.astype(np.uint64)) return self._computed_term_freqs(term_posns) def _computed_term_freqs(self, term_posns) -> Tuple[np.ndarray, np.ndarray]: doc_ids = encoder.keys(term_posns) change_indices = np.nonzero(np.diff(doc_ids))[0] change_indices = np.concatenate((np.asarray([0]), change_indices + 1)) posns = term_posns & encoder.payload_lsb_mask bit_counts = bit_count64(posns) term_freqs = np.add.reduceat(bit_counts, change_indices) return sorted_unique(doc_ids), term_freqs def _termfreqs_with_cache(self, term_id: int) -> Tuple[np.ndarray, np.ndarray]: try: return self.termfreq_cache[term_id] except KeyError: term_posns = self.encoded_term_posns[term_id] doc_ids, term_freqs = self._computed_term_freqs(term_posns) if self._is_cached(term_id): self.termfreq_cache[term_id] = (doc_ids, term_freqs) return doc_ids, term_freqs def _is_cached(self, term_id: int) -> bool: return term_id in self.docfreq_cache def _docfreq_from_cache(self, term_id: int) -> np.uint64: return self.docfreq_cache[term_id] def _maybe_cache_docfreq(self, term_id: int, docfreq: np.uint64): if self.max_doc_id >= 100000 and docfreq > (self.max_doc_id // 100): self.docfreq_cache[term_id] = docfreq def docfreq(self, term_id: int) -> np.uint64: try: return self.docfreq_cache[term_id] except KeyError: encoded = self.encoded_term_posns[term_id] docfreq = np.uint64(encoder.keys_unique(encoded).size) self._maybe_cache_docfreq(term_id, docfreq) return docfreq def insert(self, key, term_ids_to_posns, is_encoded=False): new_posns = PosnBitArrayBuilder() if is_encoded: new_posns = PosnBitArrayAlreadyEncBuilder() max_doc_id = 0 for doc_id, new_posns_row in enumerate(term_ids_to_posns): for term_id, positions in new_posns_row: new_posns.add_posns(doc_id, term_id, positions) max_doc_id = max(doc_id, max_doc_id) new_posns.max_doc_id = max_doc_id ins_arr = new_posns.build() self.merge(ins_arr) @property def nbytes(self): arr_bytes = 0 for doc_id, posn in self.encoded_term_posns.items(): arr_bytes += posn.nbytes for term_id, (doc_ids, term_freqs) in self.termfreq_cache.items(): arr_bytes += doc_ids.nbytes arr_bytes += term_freqs.nbytes for term_id, docfreq in self.docfreq_cache.items(): arr_bytes += docfreq.nbytes return arr_bytes <fim_middle>
null
IF
complete_current_header_empty_completion
<filename>searcharray/searcharray/postings.py<fim_prefix>"""Tokenized, searchable text as a pandas dtype.""" import pandas as pd import numbers from pandas.api.extensions import ExtensionDtype, ExtensionArray, register_extension_dtype from pandas.api.types import is_list_like from pandas.api.extensions import take import json from collections import Counter import warnings import logging from typing import List, Union, Optional, Iterable import numpy as np from searcharray.phrase.scan_merge import scan_merge_ins from searcharray.phrase.posn_diffs import compute_phrase_freqs from searcharray.phrase.middle_out import PosnBitArray from searcharray.similarity import Similarity, default_bm25 from searcharray.indexing import build_index_from_tokenizer, build_index_from_terms_list from searcharray.term_dict import TermMissingError logger = logging.getLogger(__name__) # When running in pytest import sys # noqa handler = logging.StreamHandler(sys.stdout) handler.setLevel(logging.ERROR) formatter = logging.Formatter("[%(filename)s:%(lineno)s - %(funcName)20s() ] %(message)s") handler.setFormatter(formatter) logger.addHandler(handler) logger.setLevel(logging.ERROR) class Terms: """An indexed search doc - a single bag of tokenized words and positions.""" def __init__(self, postings, doc_len: int = 0, posns: Optional[dict] = None, encoded=False): self.postings = postings self.posns = None self.encoded = encoded self.doc_len = doc_len self.posns = posns def _validate_posns(self): # (For testing/assertions) - Confirm every term in positions also in postings if self.posns is None: return for term in self.posns: if term not in self.postings: raise ValueError(f"Term {term} in positions but not in postings. ") def termfreq(self, token): return self.postings[token] def terms(self): return self.postings.items() def positions(self, term=None): if self.posns is None: return {} if term is None: posns = self.posns.items() else: posns = self.posns[term] return posns def raw_positions(self, term_dict, term=None): if self.posns is None: return {} if term is None: posns = [(term_dict.get_term_id(term), posns) for term, posns in self.posns.items()] else: posns = [(term_dict.get_term_id(term), self.posns[term])] return posns def tf_to_dense(self, term_dict): """Convert to a dense vector of term frequencies.""" dense = np.zeros(len(term_dict)) for term, freq in self.terms(): dense[term_dict.get_term_id(term)] = freq return dense def __len__(self): return len(self.postings) def __repr__(self): posting_keys = set(self.postings.keys()) rval = f"Terms({posting_keys})" return rval def __str__(self): return repr(self) def __eq__(self, other): # Flip to the other implementation if we're comparing to a SearchArray # to get a boolean array back if isinstance(other, SearchArray): return other == self same_postings = isinstance(other, Terms) and self.postings == other.postings if same_postings and self.doc_len == other.doc_len: return True def __lt__(self, other): # return isinstance(other, Terms) and hash(self) < hash(other) keys_both = set(self.postings.keys()).union(set(other.postings.keys())) # Sort lexically keys_both = sorted(keys_both) # Iterate as if these are two vectors of the same large dimensional vector sparse for key in keys_both: lhs_val = 0 rhs_val = 0 try: lhs_val = self.postings[key] except KeyError: pass try: rhs_val = other.postings[key] except KeyError: pass if lhs_val < rhs_val: return True elif lhs_val > rhs_val: return False else: continue return False def __le__(self, other): return self < other or self == other def __gt__(self, other): return not (self < other) and self != other def __hash__(self): return hash(json.dumps(self.postings, sort_keys=True)) class TermsDtype(ExtensionDtype): """Pandas dtype for terms.""" name = 'tokenized_text' type = Terms kind = 'O' @classmethod def construct_from_string(cls, string): if not isinstance(string, str): raise TypeError( "'construct_from_string' expects a string, got {}".format(type(string)) ) elif string == cls.name: return cls() else: raise TypeError( "Cannot construct a '{}' from '{}'".format(cls.__name__, string) ) @classmethod def construct_array_type(cls): return SearchArray def __repr__(self): return 'TermsDtype()' @property def na_value(self): return Terms({}) def valid_value(self, value): return isinstance(value, dict) or pd.isna(value) or isinstance(value, Terms) register_extension_dtype(TermsDtype) def ws_tokenizer(string): if pd.isna(string): return [] if not isinstance(string, str): raise ValueError("Expected a string") return string.split() def _row_to_postings_row(doc_id, row, doc_len, term_dict, posns: PosnBitArray): tfs = {} labeled_posns = {} for term_idx in row.cols: term = term_dict.get_term(term_idx) tfs[term] = 1 enc_term_posns = posns.doc_encoded_posns(term_idx, doc_id=doc_id) labeled_posns[term] = enc_term_posns result = Terms(tfs, posns=labeled_posns, doc_len=doc_len, encoded=True) return result class SearchArray(ExtensionArray): """An array of tokenized text (Termss).""" dtype = TermsDtype() def __init__(self, postings, tokenizer=ws_tokenizer, avoid_copies=True): # Check dtype, raise TypeError if not is_list_like(postings): raise TypeError("Expected list-like object, got {}".format(type(postings))) self.avoid_copies = avoid_copies self.tokenizer = tokenizer self.term_mat, self.posns, \ self.term_dict, self.avg_doc_length, \ self.doc_lens = build_index_from_terms_list(postings, Terms) @classmethod def index(cls, array: Iterable, tokenizer=ws_tokenizer, truncate=False, batch_size=100000, avoid_copies=True) -> 'SearchArray': """Index an array of strings using tokenizer.""" if not is_list_like(array): raise TypeError("Expected list-like object, got {}".format(type(array))) term_mat, posns, term_dict, avg_doc_length, doc_lens =\ build_index_from_tokenizer(array, tokenizer, batch_size=batch_size, truncate=truncate) postings = cls([], tokenizer=tokenizer, avoid_copies=avoid_copies) postings.term_mat = term_mat postings.posns = posns postings.term_dict = term_dict postings.avg_doc_length = avg_doc_length postings.doc_lens = doc_lens return postings @classmethod def _from_sequence(cls, scalars, dtype=None, copy=False): """Construct a new SearchArray from a sequence of scalars (PostingRow or convertible into).""" if dtype is not None: if not isinstance(dtype, TermsDtype): return scalars if isinstance(scalars, np.ndarray) and scalars.dtype == TermsDtype(): return cls(scalars) # String types elif isinstance(scalars, np.ndarray) and scalars.dtype.kind in 'US': return cls(scalars) # Other objects elif isinstance(scalars, np.ndarray) and scalars.dtype != object: return scalars return cls(scalars) def memory_usage(self, deep=False): """Return memory usage of this array in bytes.""" return self.nbytes @property def nbytes(self): return self.term_mat.nbytes + self.posns.nbytes + self.doc_lens.nbytes + self.term_dict.nbytes def __getitem__(self, key): key = pd.api.indexers.check_array_indexer(self, key) # Want to take rows of term freqs if isinstance(key, numbers.Integral): try: rows = self.term_mat[key] doc_len = self.doc_lens[key] doc_id = key if doc_id < 0: doc_id += len(self) return _row_to_postings_row(doc_id, rows[0], doc_len, self.term_dict, self.posns) except IndexError: raise IndexError("index out of bounds") else: # Construct a sliced view of this array sliced_tfs = self.term_mat.slice(key) sliced_posns = self.posns.slice(sliced_tfs.rows) if not self.avoid_copies else self.posns arr = SearchArray([], tokenizer=self.tokenizer) arr.term_mat = sliced_tfs arr.doc_lens = self.doc_lens[key] arr.posns = sliced_posns arr.term_dict = self.term_dict arr.avg_doc_length = self.avg_doc_length return arr def __setitem__(self, key, value): """Set an item in the array.""" key = pd.api.indexers.check_array_indexer(self, key) if isinstance(value, pd.Series): value = value.values if isinstance(value, pd.DataFrame): value = value.values.flatten() if isinstance(value, SearchArray): value = value.to_numpy() if isinstance(value, list): value = np.asarray(value, dtype=object) if not isinstance(value, np.ndarray) and not self.dtype.valid_value(value): raise ValueError(f"Cannot set non-object array to SearchArray -- you passed type:{type(value)} -- {value}") # Cant set a single value to an array if isinstance(key, numbers.Integral) and isinstance(value, np.ndarray): raise ValueError("Cannot set a single value to an array") try: is_encoded = False posns = None term_mat = np.asarray([]) doc_lens = np.asarray([]) if isinstance(value, float): term_mat = np.asarray([value]) doc_lens = np.asarray([0]) elif isinstance(value, Terms): term_mat = np.asarray([value.tf_to_dense(self.term_dict)]) doc_lens = np.asarray([value.doc_len]) is_encoded = value.encoded posns = [value.raw_positions(self.term_dict)] elif isinstance(value, np.ndarray): term_mat = np.asarray([x.tf_to_dense(self.term_dict) for x in value]) doc_lens = np.asarray([x.doc_len for x in value]) is_encoded = value[0].encoded if len(value) > 0 else False posns = [x.raw_positions(self.term_dict) for x in value] np.nan_to_num(term_mat, copy=False, nan=0) self.term_mat[key] = term_mat self.doc_lens[key] = doc_lens if posns is not None: self.posns.insert(key, posns, is_encoded) # Assume we have a positions for each term, doc pair. We can just update it. # Otherwise we would have added new terms except TermMissingError: self._add_new_terms(key, value) def _add_new_terms(self, key, value): msg = """Adding new terms! This might not be good if you tokenized this new text with a different tokenizer. Also. This is slow.""" warnings.warn(msg) scan_value = value if isinstance(value, Terms): scan_value = np.asarray([value]) for row in scan_value: for term in row.terms(): self.term_dict.add_term(term[0]) self.term_mat.resize((self.term_mat.shape[0], len(self.term_dict))) # Ensure posns_lookup has at least max self.posns self[key] = value def value_counts( self, dropna: bool = True, ): if dropna: counts = Counter(self[:]) counts.pop(Terms({}), None) else: counts = Counter(self[:]) return pd.Series(counts) def __len__(self): len_rval = len(self.term_mat.rows) return len_rval def __ne__(self, other): if isinstance(other, pd.DataFrame) or isinstance(other, pd.Series) or isinstance(other, pd.Index): return NotImplemented return ~(self == other) def __eq__(self, other): """Return a boolean numpy array indicating elementwise equality.""" # When other is a dataframe or series, not implemented if isinstance(other, pd.DataFrame) or isinstance(other, pd.Series) or isinstance(other, pd.Index): return NotImplemented # When other is an ExtensionArray if isinstance(other, SearchArray): if len(self) != len(other): return False elif len(other) == 0: return np.array([], dtype=bool) else: # Compatible term dicts, and same term freqs # (not looking at positions, maybe we should?) if self.term_dict.compatible(other.term_dict): return (self.term_mat == other.term_mat) & (self.doc_lens == other.doc_lens) else: return np.zeros(len(self), dtype=bool) # return np.array(self[:]) == np.array(other[:]) # When other is a scalar value elif isinstance(other, Terms): other = SearchArray([other], tokenizer=self.tokenizer) warnings.warn("Comparing a scalar value to a SearchArray. This is slow.") return np.array(self[:]) == np.array(other[:]) # When other is a sequence but not an ExtensionArray # its an array of dicts elif is_list_like(other): if len(self) != len(other): return False elif len(other) == 0: return np.array([], dtype=bool<fim_suffix>) # We actually don't know how it was tokenized other = SearchArray(other, tokenizer=self.tokenizer) return np.array(self[:]) == np.array(other[:]) # Return False where 'other' is neither the same length nor a scalar else: return np.full(len(self), False) def isna(self): # Every row with all 0s empties = self.doc_lens == 0 return empties def take(self, indices, allow_fill=False, fill_value=None): # Want to take rows of term freqs row_indices = np.arange(len(self.term_mat.rows)) # Take within the row indices themselves result_indices = take(row_indices, indices, allow_fill=allow_fill, fill_value=-1) if allow_fill and -1 in result_indices: if fill_value is None or pd.isna(fill_value): fill_value = Terms({}, encoded=True) to_fill_mask = result_indices == -1 # This is slow as it rebuilds all the term dictionaries # on the subsequent assignment lines # However, this case tends to be the exception for # most dataframe operations taken = SearchArray([fill_value] * len(result_indices)) taken[~to_fill_mask] = self[result_indices[~to_fill_mask]].copy() return taken else: taken = self[result_indices].copy() return taken def copy(self): postings_arr = SearchArray([], tokenizer=self.tokenizer) postings_arr.doc_lens = self.doc_lens.copy() postings_arr.term_mat = self.term_mat.copy() postings_arr.posns = self.posns postings_arr.term_dict = self.term_dict postings_arr.avg_doc_length = self.avg_doc_length if not self.avoid_copies: postings_arr.posns = self.posns.copy() postings_arr.term_dict = self.term_dict.copy() return postings_arr @classmethod def _concat_same_type(cls, to_concat): concatenated_data = np.concatenate([ea[:] for ea in to_concat]) return SearchArray(concatenated_data, tokenizer=to_concat[0].tokenizer) @classmethod def _from_factorized(cls, values, original): return cls(values) def _values_for_factorize(self): """Return an array and missing value suitable for factorization (ie grouping).""" arr = np.asarray(self[:], dtype=object) return arr, Terms({}) def _check_token_arg(self, token): if isinstance(token, str): return token elif isinstance(token, list) and len(token) == 1: return token[0] elif isinstance(token, list): return token else: raise TypeError("Expected a string or list of strings for phrases") # *********************************************************** # Search functionality # *********************************************************** def termfreqs(self, token: Union[List[str], str]) -> np.ndarray: token = self._check_token_arg(token) if isinstance(token, list): return self.phrase_freq(token) try: term_id = self.term_dict.get_term_id(token) matches = np.zeros(len(self), dtype=int) slice_of_rows = None if self.term_mat.subset: slice_of_rows = self.term_mat.rows doc_ids, termfreqs = self.posns.termfreqs(term_id, doc_ids=slice_of_rows) mask = np.isin(self.term_mat.rows, doc_ids) matches[mask] = termfreqs return matches else: doc_ids, termfreqs = self.posns.termfreqs(term_id, doc_ids=slice_of_rows) matches[doc_ids] = termfreqs return matches except TermMissingError: return np.zeros(len(self), dtype=int) def docfreq(self, token: str) -> int: if not isinstance(token, str): raise TypeError("Expected a string") # Count number of rows where the term appears try: return self.posns.docfreq(self.term_dict.get_term_id(token)) except TermMissingError: return 0 def doclengths(self) -> np.ndarray: return self.doc_lens def match(self, token: Union[List[str], str], slop: int = 1) -> np.ndarray: """Return a boolean numpy array indicating which elements contain the given term.""" token = self._check_token_arg(token) if isinstance(token, list): term_freq = self.phrase_freq(token) else: term_freq = self.termfreqs(token) return term_freq > 0 def score(self, token: Union[str, List[str]], similarity: Similarity = default_bm25) -> np.ndarray: """Score each doc using a similarity function. Parameters ---------- token : str or list of str of what to search (already tokenized) similarity : How to score the documents. Default is BM25. """ # Get term freqs per token token = self._check_token_arg(token) # For expensive toknes, we compute doc freq first, so we # cache them in the DF cache, to let TF cache know it should be cached tokens_l = [token] if isinstance(token, str) else token all_dfs = np.asarray([self.docfreq(token) for token in tokens_l]) tfs = self.termfreqs(token) token = self._check_token_arg(token) doc_lens = self.doclengths() scores = similarity(term_freqs=tfs, doc_freqs=all_dfs, doc_lens=doc_lens, avg_doc_lens=self.avg_doc_length, num_docs=len(self)) return scores def positions(self, token: str, key=None) -> List[np.ndarray]: """Return a list of lists of positions of the given term.""" term_id = self.term_dict.get_term_id(token) key = self.term_mat.rows[key] if key is not None else self.term_mat.rows posns = self.posns.positions(term_id, doc_ids=key) return posns def and_query(self, tokens: Union[List[str], List[List[str]]]) -> np.ndarray: """Return a mask on the postings array indicating which elements contain all terms.""" masks = [self.match(term) for term in tokens] mask = np.ones(len(self), dtype=bool) for curr_mask in masks: mask = mask & curr_mask return mask def or_query(self, tokens: Union[List[str], List[List[str]]], min_should_match: int = 1) -> np.ndarray: """Return a mask on the postings array indicating which elements contain all terms.""" masks = [self.match(term) for term in tokens] mask = np.sum(masks, axis=0) >= min_should_match return mask def phrase_freq(self, tokens: List[str], slop=1) -> np.ndarray: if slop == 1 and len(tokens) == len(set(tokens)): phrase_freqs = np.zeros(len(self)) try: doc_ids = self.term_mat.rows term_ids = [self.term_dict.get_term_id(token) for token in tokens] return self.posns.phrase_freqs(term_ids, doc_ids=doc_ids, phrase_freqs=phrase_freqs) except TermMissingError: return phrase_freqs else: return self.phrase_freq_every_diff(tokens, slop=slop) def phrase_freq_scan(self, tokens: List[str], mask=None, slop=1) -> np.ndarray: if mask is None: mask = self.and_query(tokens) if np.sum(mask) == 0: return mask # Gather positions posns = [self.positions(token, mask) for token in tokens] phrase_freqs = np.zeros(len(self)) phrase_freqs[mask] = scan_merge_ins(posns, phrase_freqs[mask], slop=slop) return phrase_freqs def phrase_freq_every_diff(self, tokens: List[str], slop=1) -> np.ndarray: phrase_freqs = -np.ones(len(self)) mask = self.and_query(tokens) phrase_freqs[~mask] = 0 if np.sum(mask) == 0: return phrase_freqs term_posns = [self.positions(term, mask) for term in tokens] for width in [10, 20, 30, 40]: phrase_freqs[mask] = compute_phrase_freqs(term_posns, phrase_freqs[mask], slop=slop, width=width) remaining_mask = phrase_freqs == -1 if np.any(remaining_mask): remainder_freqs = self.phrase_freq_scan(tokens, mask=remaining_mask, slop=slop) phrase_freqs[remaining_mask] = remainder_freqs[remaining_mask] return phrase_freqs <fim_middle>
null
STATEMENT
complete_current_header_empty_completion
<filename>searcharray/searcharray/solr.py<fim_prefix>"""Utility functions for Solr users of searcharray.""" import re import pandas as pd import numpy as np from typing import List, Optional, Dict, Tuple from searcharray.postings import SearchArray from searcharray.similarity import Similarity, default_bm25 def parse_min_should_match(num_clauses: int, spec: str) -> int: """Parse Solr's min should match (ie mm) spec. See this ChatGPT translation of mm code from Solr's Java code for parsing this https://chat.openai.com/share/76642aec-7e05-420f-a53a-83b8e2eea8fb Parameters ---------- num_clauses : int spec : str Returns ------- int : the number of clauses that must match """ def checked_parse_int(value, error_message): try: return int(value) except ValueError: raise ValueError(error_message) result = num_clauses spec = spec.strip() if '<' in spec: # we have conditional spec(s) space_around_less_than_pattern = re.compile(r'\s*<\s*') spec = space_around_less_than_pattern.sub('<', spec) for s in spec.split(): parts = s.split('<', 1) if len(parts) < 2: raise ValueError("Invalid 'mm' spec: '" + s + "'. Expecting values before and after '<'") upper_bound = checked_parse_int(parts[0], "Invalid 'mm' spec. Expecting an integer.") if num_clauses <= upper_bound: return result else: result = parse_min_should_match(num_clauses, parts[1]) return result # otherwise, simple expression if '%' in spec: # percentage - assume the % was the last char. If not, let int() fail. spec = spec[:-1] percent = checked_parse_int(spec, "Invalid 'mm' spec. Expecting an integer.") calc = (result * percent) * (1 / 100) result = result + int(calc) if calc < 0 else int(calc) else: calc = checked_parse_int(spec, "Invalid 'mm' spec. Expecting an integer.") result = result + calc if calc < 0 else calc return min(num_clauses, max(result, 0)) def parse_field_boosts(field_lists: List[str]) -> dict: """Parse Solr's qf, pf, pf2, pf3 field boosts.""" if not field_lists: return {} out = {} carat_pattern = re.compile(r'\^') for field in field_lists: parts = carat_pattern.split(field) out[parts[0]] = None if len(parts) == 1 else float(parts[1]) return out def get_field(frame, field) -> SearchArray: if field not in frame.columns: raise ValueError(f"Field {field} not in dataframe") if not isinstance(frame[field].array, SearchArray): raise ValueError(f"Field {field} is not a searcharray field") return frame[field].array def parse_query_terms(frame: pd.DataFrame, query: str, query_fields: List[str]): search_terms: Dict[str, List[str]] = {} num_search_terms = 0 term_centric = True for field in query_fields: arr = get_field(frame, field) tokenizer = arr.tokenizer search_terms[field] = [] field_num_search_terms = 0 for posn, term in enumerate(tokenizer(query)): search_terms[field].append(term) field_num_search_terms += 1 if num_search_terms == 0: num_search_terms = field_num_search_terms elif field_num_search_terms != num_search_terms: term_centric = False return num_search_terms, search_terms, term_centric def _edismax_term_centric(frame: pd.DataFrame, query_fields: Dict[str, float], num_search_terms: int, search_terms: Dict[str, List[str]], mm: str, similarity: Similarity) -> Tuple[np.ndarray, str]: explain = [] term_scores = [] for term_posn in range(num_search_terms): max_scores = np.<fim_suffix>zeros(len(frame)) term_explain = [] for field, boost in query_fields.items(): term = search_terms[field][term_posn] post_arr = get_field(frame, field) field_term_score = post_arr.score(term, similarity=similarity) * (1 if boost is None else boost) boost_exp = f"{boost}" if boost is not None else "1" term_explain.append(f"{field}:{term}^{boost_exp}") max_scores = np.maximum(max_scores, field_term_score) term_scores.append(max_scores) explain.append("(" + " | ".join(term_explain) + ")") min_should_match = parse_min_should_match(num_search_terms, spec=mm) qf_scores = np.asarray(term_scores) matches_gt_mm = np.sum(qf_scores > 0, axis=0) >= min_should_match qf_scores = np.sum(term_scores, axis=0) qf_scores[~matches_gt_mm] = 0 return qf_scores, "(" + " ".join(explain) + f")~{min_should_match}" def _edismax_field_centric(frame: pd.DataFrame, query_fields: Dict[str, float], num_search_terms: int, search_terms: Dict[str, List[str]], mm: str, similarity: Similarity = default_bm25) -> Tuple[np.ndarray, str]: field_scores = [] explain = [] for field, boost in query_fields.items(): post_arr = get_field(frame, field) term_scores = np.array([post_arr.score(term, similarity=similarity) for term in search_terms[field]]) min_should_match = parse_min_should_match(len(search_terms[field]), spec=mm) exp = " ".join([f"{field}:{term}" for term in search_terms[field]]) boost_exp = f"{boost}" if boost is not None else "1" exp = "(" + exp + f")~{min(min_should_match, len(search_terms[field]))}" exp = "(" + exp + f")^{boost_exp}" matches_gt_mm = np.sum(term_scores > 0, axis=0) >= min(min_should_match, len(search_terms[field])) sum_terms_bm25 = np.sum(term_scores, axis=0) sum_terms_bm25[~matches_gt_mm] = 0 field_scores.append(sum_terms_bm25 * (1 if boost is None else boost)) explain.append(exp) # Take maximum field scores as qf qf_scores = np.asarray(field_scores) qf_scores = np.max(qf_scores, axis=0) return qf_scores, " | ".join(explain) def edismax(frame: pd.DataFrame, q: str, qf: List[str], mm: Optional[str] = None, pf: Optional[List[str]] = None, pf2: Optional[List[str]] = None, pf3: Optional[List[str]] = None, q_op: str = "OR", similarity: Similarity = default_bm25) -> Tuple[np.ndarray, str]: """Run edismax search over dataframe with searcharray fields. Parameters ---------- q : str The query string mm : str The minimum should match spec qf : list The fields to search pf : list The fields to search for phrase matches pf2 : list The fields to search for bigram matches pf3 : list The fields to search for trigram matches q_op : str, optional The default operator, by default "OR" Returns ------- np.ndarray The search results """ def listify(x): return x if isinstance(x, list) else [x] query_fields = parse_field_boosts(listify(qf)) phrase_fields = parse_field_boosts(listify(pf)) if pf else {} if mm is None: mm = "1" if q_op == "AND": mm = "100%" # bigram_fields = parse_field_boosts(pf2) if pf2 else {} # trigram_fields = parse_field_boosts(pf3) if pf3 else {} num_search_terms, search_terms, term_centric = parse_query_terms(frame, q, list(query_fields.keys())) if term_centric: qf_scores, explain = _edismax_term_centric(frame, query_fields, num_search_terms, search_terms, mm, similarity=similarity) else: qf_scores, explain = _edismax_field_centric(frame, query_fields, num_search_terms, search_terms, mm, similarity=similarity) phrase_scores = [] for field, boost in phrase_fields.items(): arr = get_field(frame, field) terms = search_terms[field] field_phrase_score = arr.score(terms, similarity=similarity) * (1 if boost is None else boost) boost_exp = f"{boost}" if boost is not None else "1" explain += f" ({field}:\"{' '.join(terms)}\")^{boost_exp}" phrase_scores.append(field_phrase_score) if len(phrase_scores) > 0: phrase_scores = np.sum(phrase_scores, axis=0) # Add where term_scores > 0 term_match_idx = np.where(qf_scores)[0] qf_scores[term_match_idx] += phrase_scores[term_match_idx] return qf_scores, explain <fim_middle>
null
STATEMENT
complete_current_header_empty_completion
<filename>searcharray/searcharray/postings.py<fim_prefix>"""Tokenized, searchable text as a pandas dtype.""" import pandas as pd import numbers from pandas.api.extensions import ExtensionDtype, ExtensionArray, register_extension_dtype from pandas.api.types import is_list_like from pandas.api.extensions import take import json from collections import Counter import warnings import logging from typing import List, Union, Optional, Iterable import numpy as np from searcharray.phrase.scan_merge import scan_merge_ins from searcharray.phrase.posn_diffs import compute_phrase_freqs from searcharray.phrase.middle_out import PosnBitArray from searcharray.similarity import Similarity, default_bm25 from searcharray.indexing import build_index_from_tokenizer, build_index_from_terms_list from searcharray.term_dict import TermMissingError logger = logging.getLogger(__name__) # When running in pytest import sys # noqa handler = logging.StreamHandler(sys.stdout) handler.setLevel(logging.ERROR) formatter = logging.Formatter("[%(filename)s:%(lineno)s - %(funcName)20s() ] %(message)s") handler.setFormatter(formatter) logger.addHandler(handler) logger.setLevel(logging.ERROR) class Terms: """An indexed search doc - a single bag of tokenized words and positions.""" def __init__(self, postings, doc_len: int = 0, posns: Optional[dict] = None, encoded=False): self.postings = postings self.posns = None self.encoded = encoded self.doc_len = doc_len self.posns = posns def _validate_posns(self): # (For testing/assertions) - Confirm every term in positions also in postings if self.posns is None: return for term in self.posns: if term not in self.postings: raise ValueError(f"Term {term} in positions but not in postings. ") def termfreq(self, token): return self.postings[token] def terms(self): return self.postings.items() def positions(self, term=None): if self.posns is None: return {} if term is None: posns = self.posns.items() else: posns = self.posns[term] return posns def raw_positions(self, term_dict, term=None): if self.posns is None: return {} if term is None: posns = [(term_dict.get_term_id(term), posns) for term, posns in self.posns.items()] else: posns = [(term_dict.get_term_id(term), self.posns[term])] return posns def tf_to_dense(self, term_dict): """Convert to a dense vector of term frequencies.""" dense = np.zeros(len(term_dict)) for term, freq in self.terms(): dense[term_dict.get_term_id(term)] = freq return dense def __len__(self): return len(self.postings) def __repr__(self): posting_keys = set(self.postings.keys()) rval = f"Terms({posting_keys})" return rval def __str__(self): return repr(self) def __eq__(self, other): # Flip to the other implementation if we're comparing to a SearchArray # to get a boolean array back if isinstance(other, SearchArray): return other == self same_postings = isinstance(other, Terms) and self.postings == other.postings if same_postings and self.doc_len == other.doc_len: return True def __lt__(self, other): # return isinstance(other, Terms) and hash(self) < hash(other) keys_both = set(self.postings.keys()).union(set(other.postings.keys())) # Sort lexically keys_both = sorted(keys_both) # Iterate as if these are two vectors of the same large dimensional vector sparse for key in keys_both: lhs_val = 0 rhs_val = 0 try: lhs_val = self.postings[key] except KeyError: pass try: rhs_val = other.postings[key] except KeyError: pass if lhs_val < rhs_val: return True elif lhs_val > rhs_val: return False else: continue return False def __le__(self, other): return self < other or self == other def __gt__(self, other): return not (self < other) and self != other def __hash__(self): return hash(json.dumps(self.postings, sort_keys=True)) class TermsDtype(ExtensionDtype): """Pandas dtype for terms.""" name = 'tokenized_text' type = Terms kind = 'O' @classmethod def construct_from_string(cls, string): if not isinstance(string, str): raise TypeError( "'construct_from_string' expects a string, got {}".format(type(string)) ) elif string == cls.name: return cls() else: raise TypeError( "Cannot construct a '{}' from '{}'".format(cls.__name__, string) ) @classmethod def construct_array_type(cls): return SearchArray def __repr__(self): return 'TermsDtype()' @property def na_value(self): return Terms({}) def valid_value(self, value): return isinstance(value, dict) or pd.isna(value) or isinstance(value, Terms) register_extension_dtype(TermsDtype) def ws_tokenizer(string): if pd.isna(string): return [] if not isinstance(string, str): raise ValueError("Expected a string") return string.split() def _row_to_postings_row(doc_id, row, doc_len, term_dict, posns: PosnBitArray): tfs = {} labeled_posns = {} for term_idx in row.cols: term = term_dict.get_term(term_idx) tfs[term] = 1 enc_term_posns = posns.doc_encoded_posns(term_idx, doc_id=doc_id) labeled_posns[term] = enc_term_posns result = Terms(tfs, posns=labeled_posns, doc_len=doc_len, encoded=True) return result class SearchArray(ExtensionArray): """An array of tokenized text (Termss).""" dtype = TermsDtype() def __init__(self, postings, tokenizer=ws_tokenizer, avoid_copies=True): # Check dtype, raise TypeError if not is_list_like(postings): raise TypeError("Expected list-like object, got {}".format(type(postings))) self.avoid_copies = avoid_copies self.tokenizer = tokenizer self.term_mat, self.posns, \ self.term_dict, self.avg_doc_length, \ self.doc_lens = build_index_from_terms_list(postings, Terms) @classmethod def index(cls, array: Iterable, tokenizer=ws_tokenizer, truncate=False, batch_size=100000, avoid_copies=True) -> 'SearchArray': """Index an array of strings using tokenizer.""" if not is_list_like(array): raise TypeError("Expected list-like object, got {}".format(type(array))) term_mat, posns, term_dict, avg_doc_length, doc_lens =\ build_index_from_tokenizer(array, tokenizer, batch_size=batch_size, truncate=truncate) postings = cls([], tokenizer=tokenizer, avoid_copies=avoid_copies) postings.term_mat = term_mat postings.posns = posns postings.term_dict = term_dict postings.avg_doc_length = avg_doc_length postings.doc_lens = doc_lens return postings @classmethod def _from_sequence(cls, scalars, dtype=None, copy=False): """Construct a new SearchArray from a sequence of scalars (PostingRow or convertible into).""" if dtype is not None: if not isinstance(dtype, TermsDtype): return scalars if isinstance(scalars, np.ndarray) and scalars.dtype == TermsDtype(): return cls(scalars) # String types elif isinstance(scalars, np.ndarray) and scalars.dtype.kind in 'US': return cls(scalars) # Other objects elif isinstance(scalars, np.ndarray) and scalars.dtype != object: return scalars return cls(scalars) def memory_usage(self, deep=False): """Return memory usage of this array in bytes.""" return self.nbytes @property def nbytes(self): return self.term_mat.nbytes + self.posns.nbytes + self.doc_lens.nbytes + self.term_dict.nbytes def __getitem__(self, key): key = pd.api.indexers.check_array_indexer(self, key) # Want to take rows of term freqs if isinstance(key, numbers.Integral): try: rows = self.term_mat[key] doc_len = self.doc_lens[key] doc_id = key if doc_id < 0: doc_id += len(self) return _row_to_postings_row(doc_id, rows[0], doc_len, self.term_dict, self.posns) except IndexError: raise IndexError("index out of bounds") else: # Construct a sliced view of this array sliced_tfs = self.term_mat.slice(key) sliced_posns = self.posns.slice(sliced_tfs.rows) if not self.avoid_copies else self.posns arr = SearchArray([], tokenizer=self.tokenizer) arr.term_mat = sliced_tfs arr.doc_lens = self.doc_lens[key] arr.posns = sliced_posns arr.term_dict = self.term_dict arr.avg_doc_length = self.avg_doc_length return arr def __setitem__(self, key, value): """Set an item in the array.""" key = pd.api.indexers.check_array_indexer(self, key) if isinstance(value, pd.Series): value = value.values if isinstance(value, pd.DataFrame): value = value.values.flatten() if isinstance(value, SearchArray): value = value.to_numpy() if isinstance(value, list): value = np.asarray(value, dtype=object) if not isinstance(value, np.ndarray) and not self.dtype.valid_value(value): raise ValueError(f"Cannot set non-object array to SearchArray -- you passed type:{type(value)} -- {value}") # Cant set a single value to an array if isinstance(key, numbers.Integral) and isinstance(value, np.ndarray): raise ValueError("Cannot set a single value to an array") try: is_encoded = False posns = None term_mat = np.asarray([]) doc_lens = np.asarray([]) if isinstance(value, float): term_mat = np.asarray([value]) doc_lens = np.asarray([0]) elif isinstance(value, Terms): term_mat = np.asarray([value.tf_to_dense(self.term_dict)]) doc_lens = np.asarray([value.doc_len]) is_encoded = value.encoded posns = [value.raw_positions(self.term_dict)] elif isinstance(value, np.ndarray): term_mat = np.asarray([x.tf_to_dense(self.term_dict) for x in value]) doc_lens = np.asarray([x.doc_len for x in value]) is_encoded = value[0].encoded if len(value) > 0 else False posns = [x.raw_positions(self.term_dict) for x in value] np.nan_to_num(term_mat, copy=False, nan=0) self.term_mat[key] = term_mat self.doc_lens[key] = doc_lens if posns is not None: self.posns.insert(key, posns, is_encoded) # Assume we have a positions for each term, doc pair. We can just update it. # Otherwise we would have added new terms except TermMissingError: self._add_new_terms(key, value) def _add_new_terms(self, key, value): msg = """Adding new terms! This might not be good if you tokenized this new text with a different tokenizer. Also. This is slow.""" warnings.warn(msg) scan_value = value if isinstance(value, Terms): scan_value = np.asarray([value]) for row in scan_value: for term in row.terms(): self.term_dict.add_term(term[0]) self.term_mat.resize((self.term_mat.shape[0], len(self.term_dict))) # Ensure posns_lookup has at least max self.posns self[key] = value def value_counts( self, dropna: bool = True, ): if dropna: counts = Counter(self[:]) counts.pop(Terms({}), None) else: counts = Counter(self[:]) return pd.Series(counts) def __len__(self): len_rval = len(self.term_mat.rows) return len_rval def __ne__(self, other): if isinstance(other, pd.DataFrame) or isinstance(other, pd.Series) or isinstance(other, pd.Index): return NotImplemented return ~(self == other) def __eq__(self, other): """Return a boolean numpy array indicating elementwise equality.""" # When other is a dataframe or series, not implemented if isinstance(other, pd.DataFrame) or isinstance(other, pd.Series) or isinstance(other, pd.Index): return NotImplemented # When other is an ExtensionArray if isinstance(other, SearchArray): if len(self) != len(other): return False elif len(other) == 0: return np.array([], dtype=bool) else: # Compatible term dicts, and same term freqs # (not looking at positions, maybe we should?) if self.term_dict.compatible(other.term_dict): return (self.term_mat == other.term_mat) & (self.doc_lens == other.doc_lens) else: return np.zeros(len(self), dtype=bool) # return np.array(self[:]) == np.array(other[:]) # When other is a scalar value elif isinstance(other, Terms): other = SearchArray([other], tokenizer=self.tokenizer) warnings.warn("Comparing a scalar value to a SearchArray. This is slow.") return np.array(self[:]) == np.array(other[:]) # When other is a sequence but not an ExtensionArray # its an array of dicts elif is_list_like(other): if len(self) != len(other): return False elif len(other) == 0: return np.array([], dtype=bool) # We actually don't know how it was tokenized other = SearchArray(other, tokenizer=self.tokenizer) return np.array(self[:]) == np.array(other[:]) # Return False where 'other' is neither the same length nor a scalar else: return np.full(len(self), False) def isna(self): # Every row with all 0s empties = self.doc_lens == 0 return empties def take(self, indices, allow_fill=False, fill_value=None): # Want to take rows of term freqs row_indices = np.arange(len(self.term_mat.rows)) # Take within the row indices themselves result_indices = take(row_indices, indices, allow_fill=allow_fill, fill_value=-1) if allow_fill and -1 in result_indices: if fill_value is None or pd.isna(fill_value): fill_value = Terms({}, encoded=True) to_fill_mask = result_indices == -1 # This is slow as it rebuilds all the term dictionaries # on the subsequent assignment lines # However, this case tends to be the exception for # most dataframe operations taken = SearchArray([fill_value] * len(result_indices)) taken[~to_fill_mask] = self[result_indices[~to_fill_mask]].copy() return taken else: taken = self[result_indices].copy() return taken def copy(self): postings_arr = SearchArray([], tokenizer=self.tokenizer) postings_arr.doc_lens = self.doc_lens.copy() postings_arr.term_mat = self.term_mat.copy() postings_arr.posns = self.posns postings_arr.term_dict = self.term_dict postings_arr.avg_doc_length = self.avg_doc_length if not self.avoid_copies: postings_arr.posns = self.posns.copy() postings_arr.term_dict = self.term_dict.copy() return postings_arr @classmethod def _concat_same_type(cls, to_concat): concatenated_data = np.concatenate([ea[:] for ea in to_concat]) return SearchArray(concatenated_data, tokenizer=to_concat[0].tokenizer) @classmethod def _from_factorized(cls, values, original): return cls(values) def _values_for_factorize(self): """Return an array and missing value suitable for factorization (ie grouping).""" arr = np.asarray(self[:], dtype=object) return arr, Terms({}) def _check_token_arg(self, token): if isinstance(token, str): return token elif isinstance(token, list) and len(token) == 1: return token[0] elif isinstance(token, list): return token else: raise TypeError("Expected a string or list of strings for phrases") # *********************************************************** # Search functionality # *********************************************************** def termfreqs(self, token: Union[List[str], str]) -> np.ndarray: token = self._check_token_arg(token) if isinstance(token, list): return self.phrase_freq(token) try: term_id = self.term_dict.get_term_id(token) matches = np.zeros(len(self), dtype=int) slice_of_rows = None if self.term_mat.subset: slice_of_rows = self.term_mat.rows doc_ids, termfreqs = self.posns.termfreqs(term_id, doc_ids=slice_of_rows) mask = np.isin(self.term_mat.rows, doc_ids) matches[mask] = termfreqs return matches else: doc_ids, termfreqs = self.posns.termfreqs(term_id, doc_ids=slice_of_rows) matches[doc_ids] = termfreqs return matches except TermMissingError: return np.zeros(len(self), dtype=int) def docfreq(self, token: str) -> int: if not isinstance(token, str): raise TypeError("Expected a string") # Count number of rows where the term appears try: return self.posns.docfreq(self.term_dict.get_term_id(token)) except TermMissingError: return 0 def doclengths(self) -> np.ndarray: return self.doc_lens def match(self, token: Union[List[str], str], slop: int = 1) -> np.ndarray: """Return a boolean numpy array indicating which elements contain the given term.""" token = self._check_token_arg(token) if isinstance(token, list): term_freq = self.phrase_freq(token) else: term_freq = self.termfreqs(token) return term_freq > 0 def score(self, token: Union[str, List[str]], similarity: Similarity = default_bm25) -> np.ndarray: """Score each doc using a similarity function. Parameters ---------- token : str or list of str of what to search (already tokenized) similarity : How to score the documents. Default is BM25. """ # Get term freqs per token token = self._check_token_arg(token) # For expensive toknes, we compute doc freq first, so we # cache them in the DF cache, to let TF cache know it should be cached tokens_l = [token] if isinstance(token, str) else token all_dfs = np.asarray([self.docfreq(token) for token in tokens_l]) tfs = self.termfreqs(token) token = self._check_token_arg(token) doc_lens = self.doclengths() scores = similarity(term_freqs=tfs, doc_freqs=all_dfs, doc_lens=doc_lens, avg_doc_lens=self.avg_doc_length, num_docs=len(self)) return scores def positions(self, token: str, key=None) -> List[np.ndarray]: """Return a list of lists of positions of the given term.""" term_id = self.term_dict.get_term_id(token) key = self.term_mat.rows[key] if key is not None else self.term_mat.rows posns = self.posns.positions(term_id, doc_ids=key) return posns def and_query(self, tokens: Union[List[str], List[List[str]]]) -> np.ndarray: """Return a mask on the postings array indicating which elements contain all terms.""" masks = [self.match(term) for term in tokens] mask = np.ones(len(self), dtype=bool) for curr_mask in masks: mask = mas<fim_suffix>k & curr_mask return mask def or_query(self, tokens: Union[List[str], List[List[str]]], min_should_match: int = 1) -> np.ndarray: """Return a mask on the postings array indicating which elements contain all terms.""" masks = [self.match(term) for term in tokens] mask = np.sum(masks, axis=0) >= min_should_match return mask def phrase_freq(self, tokens: List[str], slop=1) -> np.ndarray: if slop == 1 and len(tokens) == len(set(tokens)): phrase_freqs = np.zeros(len(self)) try: doc_ids = self.term_mat.rows term_ids = [self.term_dict.get_term_id(token) for token in tokens] return self.posns.phrase_freqs(term_ids, doc_ids=doc_ids, phrase_freqs=phrase_freqs) except TermMissingError: return phrase_freqs else: return self.phrase_freq_every_diff(tokens, slop=slop) def phrase_freq_scan(self, tokens: List[str], mask=None, slop=1) -> np.ndarray: if mask is None: mask = self.and_query(tokens) if np.sum(mask) == 0: return mask # Gather positions posns = [self.positions(token, mask) for token in tokens] phrase_freqs = np.zeros(len(self)) phrase_freqs[mask] = scan_merge_ins(posns, phrase_freqs[mask], slop=slop) return phrase_freqs def phrase_freq_every_diff(self, tokens: List[str], slop=1) -> np.ndarray: phrase_freqs = -np.ones(len(self)) mask = self.and_query(tokens) phrase_freqs[~mask] = 0 if np.sum(mask) == 0: return phrase_freqs term_posns = [self.positions(term, mask) for term in tokens] for width in [10, 20, 30, 40]: phrase_freqs[mask] = compute_phrase_freqs(term_posns, phrase_freqs[mask], slop=slop, width=width) remaining_mask = phrase_freqs == -1 if np.any(remaining_mask): remainder_freqs = self.phrase_freq_scan(tokens, mask=remaining_mask, slop=slop) phrase_freqs[remaining_mask] = remainder_freqs[remaining_mask] return phrase_freqs <fim_middle>
null
STATEMENT
complete_current_header_empty_completion
<filename>searcharray/searcharray/postings.py<fim_prefix>"""Tokenized, searchable text as a pandas dtype.""" import pandas as pd import numbers from pandas.api.extensions import ExtensionDtype, ExtensionArray, register_extension_dtype from pandas.api.types import is_list_like from pandas.api.extensions import take import json from collections import Counter import warnings import logging from typing import List, Union, Optional, Iterable import numpy as np from searcharray.phrase.scan_merge import scan_merge_ins from searcharray.phrase.posn_diffs import compute_phrase_freqs from searcharray.phrase.middle_out import PosnBitArray from searcharray.similarity import Similarity, default_bm25 from searcharray.indexing import build_index_from_tokenizer, build_index_from_terms_list from searcharray.term_dict import TermMissingError logger = logging.getLogger(__name__) # When running in pytest import sys # noqa handler = logging.StreamHandler(sys.stdout) handler.setLevel(logging.ERROR) formatter = logging.Formatter("[%(filename)s:%(lineno)s - %(funcName)20s() ] %(message)s") handler.setFormatter(formatter) logger.addHandler(handler) logger.setLevel(logging.ERROR) class Terms: """An indexed search doc - a single bag of tokenized words and positions.""" def __init__(self, postings, doc_len: int = 0, posns: Optional[dict] = None, encoded=False): self.postings = postings self.posns = None self.encoded = encoded self.doc_len = doc_len self.posns = posns def _validate_posns(self): # (For testing/assertions) - Confirm every term in positions also in postings if self.posns is None: return for term in self.posns: if term not in self.postings: raise ValueError(f"Term {term} in positions but not in postings. ") def termfreq(self, token): return self.postings[token] def terms(self): return self.postings.items() def positions(self, term=None): if self.posns is None: return {} if term is None: posns = self.posns.items() else: posns = self.posns[term] return posns def raw_positions(self, term_dict, term=None): if self.posns is None: return {} if term is None: posns = [(term_dict.get_term_id(term), posns) for term, posns in self.posns.items()] else: posns = [(term_dict.get_term_id(term), self.posns[term])] return posns def tf_to_dense(self, term_dict): """Convert to a dense vector of term frequencies.""" dense = np.zeros(len(term_dict)) for term, freq in self.terms(): dense[term_dict.get_term_id(term)] = freq return dense def __len__(self): return len(self.postings) def __repr__(self): posting_keys = set(self.postings.keys()) rval = f"Terms({posting_keys})" return rval def __str__(self): return repr(self) def __eq__(self, other): # Flip to the other implementation if we're comparing to a SearchArray # to get a boolean array back if isinstance(other, SearchArray): return other == self same_postings = isinstance(other, Terms) and self.postings == other.postings if same_postings and self.doc_len == other.doc_len: return True def __lt__(self, other): # return isinstance(other, Terms) and hash(self) < hash(other) keys_both = set(self.postings.keys()).union(set(other.postings.keys())) # Sort lexically keys_both = sorted(keys_both) # Iterate as if these are two vectors of the same large dimensional vector sparse for key in keys_both: lhs_val = 0 rhs_val = 0 try: lhs_val = self.postings[key] except KeyError: pass try: rhs_val = other.postings[key] except KeyError: pass if lhs_val < rhs_val: return True elif lhs_val > rhs_val: return False else: continue return False def __le__(self, other): return self < other or self == other def __gt__(self, other): return not (self < other) and self != other def __hash__(self): return hash(json.dumps(self.postings, sort_keys=True)) class TermsDtype(ExtensionDtype): """Pandas dtype for terms.""" name = 'tokenized_text' type = Terms kind = 'O' @classmethod def construct_from_string(cls, string): if not isinstance(string, str): raise TypeError( "'construct_from_string' expects a string, got {}".format(type(string)) ) elif string == cls.name: return cls() else: raise TypeError( "Cannot construct a '{}' from '{}'".format(cls.__name__, string) ) @classmethod def construct_array_type(cls): return SearchArray def __repr__(self): return 'TermsDtype()' @property def na_value(self): return Terms({}) def valid_value(self, value): return isinstance(value, dict) or pd.isna(value) or isinstance(value, Terms) register_extension_dtype(TermsDtype) def ws_tokenizer(string): if pd.isna(string): return [] if not isinstance(string, str): raise ValueError("Expected a string") return string.split() def _row_to_postings_row(doc_id, row, doc_len, term_dict, posns: PosnBitArray): tfs = {} labeled_posns = {} for term_idx in row.cols: term = term_dict.get_term(term_idx) tfs[term] = 1 enc_term_posns = posns.doc_encoded_posns(term_idx, doc_id=doc_id) labeled_posns[term] = enc_term_posns result = Terms(tfs, posns=labeled_posns, doc_len=doc_len, encoded=True) return result class SearchArray(ExtensionArray): """An array of tokenized text (Termss).""" dtype = TermsDtype() def __init__(self, postings, tokenizer=ws_tokenizer, avoid_copies=True): # Check dtype, raise TypeError if not is_list_like(postings): raise TypeError("Expected list-like object, got {}".format(type(postings))) self.avoid_copies = avoid_copies self.tokenizer = tokenizer self.term_mat, self.posns, \ self.term_dict, self.avg_doc_length, \ self.doc_lens = build_index_from_terms_list(postings, Terms) @classmethod def index(cls, array: Iterable, tokenizer=ws_tokenizer, truncate=False, batch_size=100000, avoid_copies=True) -> 'SearchArray': """Index an array of strings using tokenizer.""" if not is_list_like(array): raise TypeError("Expected list-like object, got {}".format(type(array))) term_mat, posns, term_dict, avg_doc_length, doc_lens =\ build_index_from_tokenizer(array, tokenizer, batch_size=batch_size, truncate=truncate) postings = cls([], tokenizer=tokenizer, avoid_copies=avoid_copies) postings.term_mat = term_mat postings.posns = posns postings.term_dict = term_dict postings.avg_doc_length = avg_doc_length postings.doc_lens = doc_lens return postings @classmethod def _from_sequence(cls, scalars, dtype=None, copy=False): """Construct a new SearchArray from a sequence of scalars (PostingRow or convertible into).""" if dtype is not None: if not isinstance(dtype, TermsDtype): return scalars if isinstance(scalars, np.ndarray) and scalars.dtype == TermsDtype(): return cls(scalars) # String types elif isinstance(scalars, np.ndarray) and scalars.dtype.kind in 'US': return cls(scalars) # Other objects elif isinstance(scalars, np.ndarray) and scalars.dtype != object: return scalars return cls(scalars) def memory_usage(self, deep=False): """Return memory usage of this array in bytes.""" return self.nbytes @property def nbytes(self): return self.term_mat.nbytes + self.posns.nbytes + self.doc_lens.nbytes + self.term_dict.nbytes def __getitem__(self, key): key = pd.api.indexers.check_array_indexer(self, key) # Want to take rows of term freqs if isinstance(key, numbers.Integral): try: rows = self.term_mat[key] doc_len = self.doc_lens[key] doc_id = key if doc_id < 0: doc_id += len(self) return _row_to_postings_row(doc_id, rows[0], doc_len, self.term_dict, self.posns) except IndexError: raise IndexError("index out of bounds") else: # Construct a sliced view of this array sliced_tfs = self.term_mat.slice(key) sliced_posns = self.posns.slice(sliced_tfs.rows) if not self.avoid_copies else self.posns arr = SearchArray([], tokenizer=self.tokenizer) arr.term_mat = sliced_tfs arr.doc_lens = self.doc_lens[key] arr.posns = sliced_posns arr.term_dict = self.term_dict arr.avg_doc_length = self.avg_doc_length return arr def __setitem__(self, key, value): """Set an item in the array.""" key = pd.api.indexers.check_array_indexer(self, key) if isinstance(value, pd.Series): value = value.values if isinstance(value, pd.DataFrame): value = value.values.flatten() if isinstance(value, SearchArray): value = value.to_numpy() if isinstance(value, list): value = np.asarray(value, dtype=object) if not isinstance(value, np.ndarray) and not self.dtype.valid_value(value): raise ValueError(f"Cannot set non-object array to SearchArray -- you passed type:{type(value)} -- {value}") # Cant set a single value to an array if isinstance(key, numbers.Integral) and isinstance(value, np.ndarray): raise ValueError("Cannot set a single value to an array") try: is_encoded = False posns = None term_mat = np.asarray([]) doc_lens = np.asarray([]) if isinstance(value, float): term_mat = np.asarray([value]) doc_lens = np.asarray([0]) elif isinstance(value, Terms): term_mat = np.asarray([value.tf_to_dense(self.term_dict)]) doc_lens = np.asarray([value.doc_len]) is_encoded = value.encoded posns = [value.raw_positions(self.term_dict)] elif isinstance(value, np.ndarray): term_mat = np.asarray([x.tf_to_dense(self.term_dict) for x in value]) doc_lens = np.asarray([x.doc_len for x in value]) is_encoded = value[0].encoded if len(value) > 0 else False posns = [x.raw_positions(self.term_dict) for x in value] np.nan_to_num(term_mat, copy=False, nan=0) self.term_mat[key] = term_mat self.doc_lens[key] = doc_lens if posns is not None: self.posns.insert(key, posns, is_encoded) # Assume we have a positions for each term, doc pair. We can just update it. # Otherwise we would have added new terms except TermMissingError: self._add_new_terms(key, value) def _add_new_terms(self, key, value): msg = """Adding new terms! This might not be good if you tokenized this new text with a different tokenizer. Also. This is slow.""" warnings.warn(msg) scan_value = value if isinstance(value, Terms): scan_value = np.asarray([value]) for row in scan_value: for term in row.terms(): self.term_dict.add_term(term[0]) self.term_mat.resize((self.term_mat.shape[0], len(self.term_dict))) # Ensure posns_lookup has at least max self.posns self[key] = value def value_counts( self, dropna: bool = True, ): if dropna: counts = Counter(self[:]) counts.pop(Terms({}), None) else: counts = Counter(self[:]) return pd.Series(counts) def __len__(self): len_rval = len(self.term_mat.rows) return len_rval def __ne__(self, other): if isinstance(other, pd.DataFrame) or isinstance(other, pd.Series) or isinstance(other, pd.Index): return NotImplemented return ~(self == other) def __eq__(self, other): """Return a boolean numpy array indicating elementwise equality.""" # When other is a dataframe or series, not implemented if isinstance(other, pd.DataFrame) or isinstance(other, pd.Series) or isinstance(other, pd.Index): return NotImplemented # When other is an ExtensionArray if isinstance(other, SearchArray): if len(self) != len(other): return False elif len(other) == 0: return np.array([], dtype=bool) else: # Compatible term dicts, and same term freqs # (not looking at positions, maybe we should?) if self.term_dict.compatible(other.term_dict): return (self.term_mat == other.term_mat) & (self.doc_lens == other.doc_lens) else: return np.zeros(len(self), dtype=bool) # return np.array(self[:]) == np.array(other[:]) # When other is a scalar value elif isinstance(other, Terms): other = SearchArray([other], tokenizer=self.tokenizer) warnings.warn("Comparing a scalar value to a SearchArray. This is slow.") return np.array(self[:]) == np.array(other[:]) # When other is a sequence but not an ExtensionArray # its an array of dicts elif is_list_like(other): if len(self) != len(other): return False elif len(other) == 0: return np.array([], dtype=bool) # We actually don't know how it was tokenized other = SearchArray(other, tokenizer=self.tokenizer) return np.array(self[:]) == np.array(other[:]) # Return False where 'other' is neither the same length nor a scalar else: return np.full(len(self), False) def isna(self): # Every row with all 0s empties = self.doc_lens == 0 return empties def take(self, indices, allow_fill=False, fill_value=None): # Want to take rows of term freqs row_indices = np.arange(len(self.term_mat.rows)) # Take within the row indices themselves result_indices = take(row_indices, indices, allow_fill=allow_fill, fill_value=-1) if allow_fill and -1 in result_indices: if fill_value is None or pd.isna(fill_value): fill_value = Terms({}, encoded=True) to_fill_mask = result_indices == -1 # This is slow as it rebuilds all the term dictionaries # on the subsequent assignment lines # However, this case tends to be the exception for # most dataframe operations taken = SearchArray([fill_value] * len(result_indices)) taken[~to_fill_mask] = self[result_indices[~to_fill_mask]].copy() return taken else: taken = self[result_indices].copy() return taken def copy(self): postings_arr = SearchArray([], tokenizer=self.tokenizer) postings_arr.doc_lens = self.doc_lens.copy() postings_arr.term_mat = self.term_mat.copy() postings_arr.posns = self.posns postings_arr.term_dict = self.term_dict postings_arr.avg_doc_length = self.avg_doc_length if not self.avoid_copies: postings_arr.posns = self.posns.copy() postings_arr.term_dict = self.term_dict.copy() return postings_arr @classmethod def _concat_same_type(cls, to_concat): concatenated_data = np.concatenate([ea[:] for ea in to_concat]) return SearchArray(concatenated_data, tokenizer=to_concat[0].tokenizer) @classmethod def _from_factorized(cls, values, original): return cls(values) def _values_for_factorize(self): """Return an array and missing value suitable for factorization (ie grouping).""" arr = np.asarray(self[:], dtype=object) return arr, Terms({}) def _check_token_arg(self, token): if isinstance(token, str): return token elif isinstance(token, list) and len(token) == 1: return token[0] elif isinstance(token, list): return token else: raise TypeError("Expected a string or list of strings for phrases") # *********************************************************** # Search functionality # *********************************************************** def termfreqs(self, token: Union[List[str], str]) -> np.ndarray: token = self._check_token_arg(token) if isinstance(token, list): return self.phrase_freq(token) try: term_id = self.term_dict.get_term_id(token) matches = np.zeros(len(self), dtype=int) slice_of_rows = None if self.term_mat.subset: slice_of_rows = self.term_mat.rows doc_ids, termfreqs = self.posns.termfreqs(term_id, doc_ids=slice_of_rows) mask = np.isin(self.term_mat.rows, doc_ids) matches[mask] = termfreqs return matches else: doc_ids, termfreqs = self.posns.termfreqs(term_id, doc_ids=slice_of_rows) matches[doc_ids] = termfreqs ret<fim_suffix>urn matches except TermMissingError: return np.zeros(len(self), dtype=int) def docfreq(self, token: str) -> int: if not isinstance(token, str): raise TypeError("Expected a string") # Count number of rows where the term appears try: return self.posns.docfreq(self.term_dict.get_term_id(token)) except TermMissingError: return 0 def doclengths(self) -> np.ndarray: return self.doc_lens def match(self, token: Union[List[str], str], slop: int = 1) -> np.ndarray: """Return a boolean numpy array indicating which elements contain the given term.""" token = self._check_token_arg(token) if isinstance(token, list): term_freq = self.phrase_freq(token) else: term_freq = self.termfreqs(token) return term_freq > 0 def score(self, token: Union[str, List[str]], similarity: Similarity = default_bm25) -> np.ndarray: """Score each doc using a similarity function. Parameters ---------- token : str or list of str of what to search (already tokenized) similarity : How to score the documents. Default is BM25. """ # Get term freqs per token token = self._check_token_arg(token) # For expensive toknes, we compute doc freq first, so we # cache them in the DF cache, to let TF cache know it should be cached tokens_l = [token] if isinstance(token, str) else token all_dfs = np.asarray([self.docfreq(token) for token in tokens_l]) tfs = self.termfreqs(token) token = self._check_token_arg(token) doc_lens = self.doclengths() scores = similarity(term_freqs=tfs, doc_freqs=all_dfs, doc_lens=doc_lens, avg_doc_lens=self.avg_doc_length, num_docs=len(self)) return scores def positions(self, token: str, key=None) -> List[np.ndarray]: """Return a list of lists of positions of the given term.""" term_id = self.term_dict.get_term_id(token) key = self.term_mat.rows[key] if key is not None else self.term_mat.rows posns = self.posns.positions(term_id, doc_ids=key) return posns def and_query(self, tokens: Union[List[str], List[List[str]]]) -> np.ndarray: """Return a mask on the postings array indicating which elements contain all terms.""" masks = [self.match(term) for term in tokens] mask = np.ones(len(self), dtype=bool) for curr_mask in masks: mask = mask & curr_mask return mask def or_query(self, tokens: Union[List[str], List[List[str]]], min_should_match: int = 1) -> np.ndarray: """Return a mask on the postings array indicating which elements contain all terms.""" masks = [self.match(term) for term in tokens] mask = np.sum(masks, axis=0) >= min_should_match return mask def phrase_freq(self, tokens: List[str], slop=1) -> np.ndarray: if slop == 1 and len(tokens) == len(set(tokens)): phrase_freqs = np.zeros(len(self)) try: doc_ids = self.term_mat.rows term_ids = [self.term_dict.get_term_id(token) for token in tokens] return self.posns.phrase_freqs(term_ids, doc_ids=doc_ids, phrase_freqs=phrase_freqs) except TermMissingError: return phrase_freqs else: return self.phrase_freq_every_diff(tokens, slop=slop) def phrase_freq_scan(self, tokens: List[str], mask=None, slop=1) -> np.ndarray: if mask is None: mask = self.and_query(tokens) if np.sum(mask) == 0: return mask # Gather positions posns = [self.positions(token, mask) for token in tokens] phrase_freqs = np.zeros(len(self)) phrase_freqs[mask] = scan_merge_ins(posns, phrase_freqs[mask], slop=slop) return phrase_freqs def phrase_freq_every_diff(self, tokens: List[str], slop=1) -> np.ndarray: phrase_freqs = -np.ones(len(self)) mask = self.and_query(tokens) phrase_freqs[~mask] = 0 if np.sum(mask) == 0: return phrase_freqs term_posns = [self.positions(term, mask) for term in tokens] for width in [10, 20, 30, 40]: phrase_freqs[mask] = compute_phrase_freqs(term_posns, phrase_freqs[mask], slop=slop, width=width) remaining_mask = phrase_freqs == -1 if np.any(remaining_mask): remainder_freqs = self.phrase_freq_scan(tokens, mask=remaining_mask, slop=slop) phrase_freqs[remaining_mask] = remainder_freqs[remaining_mask] return phrase_freqs <fim_middle>
null
STATEMENT
complete_current_header_empty_completion
<filename>searcharray/searcharray/solr.py<fim_prefix>"""Utility functions for Solr users of searcharray.""" import re import pandas as pd import numpy as np from typing import List, Optional, Dict, Tuple from searcharray.postings import SearchArray from searcharray.similarity import Similarity, default_bm25 def parse_min_should_match(num_clauses: int, spec: str) -> int: """Parse Solr's min should match (ie mm) spec. See this ChatGPT translation of mm code from Solr's Java code for parsing this https://chat.openai.com/share/76642aec-7e05-420f-a53a-83b8e2eea8fb Parameters ---------- num_clauses : int spec : str Returns ------- int : the number of clauses that must match """ def checked_parse_int(value, error_message): try: return int(value) except ValueError: raise ValueError(error_message) result = num_clauses spec = spec.strip() if '<' in spec: # we have conditional spec(s) space_around_less_than_pattern = re.compile(r'\s*<\s*') spec = space_around_less_than_pattern.sub('<', spec) for s in spec.split(): parts = s.split('<', 1) if len(parts) < 2: raise ValueError("Invalid 'mm' spec: '" + s + "'. Expecting values before and after '<'") upper_bound = checked_parse_int(parts[0], "Invalid 'mm' spec. Expecting an integer.") if num_clauses <= upper_bound: return result else: result = parse_min_should_match(num_clauses, parts[1]) return result # otherwise, simple expression if '%' in spec: # percentage - assume the % was the last char. If not, let int() fail. spec = spec[:-1] percent = checked_parse_int(spec, "Invalid 'mm' spec. Expecting an integer.") calc = (result * percent) * (1 / 100) result = result + int(calc) if calc < 0 else int(calc) else: calc = checked_parse_int(spec, "Invalid 'mm' spec. Expecting an integer.") result = result + calc if calc < 0 else calc return min(num_clauses, max(result, 0)) def parse_field_boosts(field_lists: List[str]) -> dict: """Parse Solr's qf, pf, pf2, pf3 field boosts.""" if not field_lists: return {} out = {} carat_pattern = re.compile(r'\^') for field in field_lists: parts = carat_pattern.split(field) out[parts[0]] = None if len(parts) == 1 else float(parts[1]) return out def get_field(frame, field) -> SearchArray: if field not in frame.columns: raise ValueError(f"Field {field} not in dataframe") if not isinstance(frame[field].array, SearchArray): raise ValueError(f"Field {field} is not a searcharray field") return frame[field].array def parse_query_terms(frame: pd.DataFrame, query: str, query_fields: List[str]): search_terms: Dict[str, List[str]] = {} num_search_terms = 0 term_centric = True for field in query_fields: arr = get_field(frame, field) tokenizer = arr.tokenizer search_terms[field] = [] field_num_search_terms = 0 for posn, term in enumerate(tokenizer(query)): search_terms[field].append(term) field_num_search_terms += 1 if num_search_terms == 0: num_search_terms = field_num_search_terms elif field_num_search_terms != num_search_terms: term_centric = False return num_search_terms, search_terms, term_centric def _edismax_term_centric(frame: pd.DataFrame, query_fields: Dict[str, float], num_search_terms: int, search_terms: Dict[str, List[str]], mm: str, similarity: Similarity) -> Tuple[np.ndarray, str]: explain = [] term_score<fim_suffix>s = [] for term_posn in range(num_search_terms): max_scores = np.zeros(len(frame)) term_explain = [] for field, boost in query_fields.items(): term = search_terms[field][term_posn] post_arr = get_field(frame, field) field_term_score = post_arr.score(term, similarity=similarity) * (1 if boost is None else boost) boost_exp = f"{boost}" if boost is not None else "1" term_explain.append(f"{field}:{term}^{boost_exp}") max_scores = np.maximum(max_scores, field_term_score) term_scores.append(max_scores) explain.append("(" + " | ".join(term_explain) + ")") min_should_match = parse_min_should_match(num_search_terms, spec=mm) qf_scores = np.asarray(term_scores) matches_gt_mm = np.sum(qf_scores > 0, axis=0) >= min_should_match qf_scores = np.sum(term_scores, axis=0) qf_scores[~matches_gt_mm] = 0 return qf_scores, "(" + " ".join(explain) + f")~{min_should_match}" def _edismax_field_centric(frame: pd.DataFrame, query_fields: Dict[str, float], num_search_terms: int, search_terms: Dict[str, List[str]], mm: str, similarity: Similarity = default_bm25) -> Tuple[np.ndarray, str]: field_scores = [] explain = [] for field, boost in query_fields.items(): post_arr = get_field(frame, field) term_scores = np.array([post_arr.score(term, similarity=similarity) for term in search_terms[field]]) min_should_match = parse_min_should_match(len(search_terms[field]), spec=mm) exp = " ".join([f"{field}:{term}" for term in search_terms[field]]) boost_exp = f"{boost}" if boost is not None else "1" exp = "(" + exp + f")~{min(min_should_match, len(search_terms[field]))}" exp = "(" + exp + f")^{boost_exp}" matches_gt_mm = np.sum(term_scores > 0, axis=0) >= min(min_should_match, len(search_terms[field])) sum_terms_bm25 = np.sum(term_scores, axis=0) sum_terms_bm25[~matches_gt_mm] = 0 field_scores.append(sum_terms_bm25 * (1 if boost is None else boost)) explain.append(exp) # Take maximum field scores as qf qf_scores = np.asarray(field_scores) qf_scores = np.max(qf_scores, axis=0) return qf_scores, " | ".join(explain) def edismax(frame: pd.DataFrame, q: str, qf: List[str], mm: Optional[str] = None, pf: Optional[List[str]] = None, pf2: Optional[List[str]] = None, pf3: Optional[List[str]] = None, q_op: str = "OR", similarity: Similarity = default_bm25) -> Tuple[np.ndarray, str]: """Run edismax search over dataframe with searcharray fields. Parameters ---------- q : str The query string mm : str The minimum should match spec qf : list The fields to search pf : list The fields to search for phrase matches pf2 : list The fields to search for bigram matches pf3 : list The fields to search for trigram matches q_op : str, optional The default operator, by default "OR" Returns ------- np.ndarray The search results """ def listify(x): return x if isinstance(x, list) else [x] query_fields = parse_field_boosts(listify(qf)) phrase_fields = parse_field_boosts(listify(pf)) if pf else {} if mm is None: mm = "1" if q_op == "AND": mm = "100%" # bigram_fields = parse_field_boosts(pf2) if pf2 else {} # trigram_fields = parse_field_boosts(pf3) if pf3 else {} num_search_terms, search_terms, term_centric = parse_query_terms(frame, q, list(query_fields.keys())) if term_centric: qf_scores, explain = _edismax_term_centric(frame, query_fields, num_search_terms, search_terms, mm, similarity=similarity) else: qf_scores, explain = _edismax_field_centric(frame, query_fields, num_search_terms, search_terms, mm, similarity=similarity) phrase_scores = [] for field, boost in phrase_fields.items(): arr = get_field(frame, field) terms = search_terms[field] field_phrase_score = arr.score(terms, similarity=similarity) * (1 if boost is None else boost) boost_exp = f"{boost}" if boost is not None else "1" explain += f" ({field}:\"{' '.join(terms)}\")^{boost_exp}" phrase_scores.append(field_phrase_score) if len(phrase_scores) > 0: phrase_scores = np.sum(phrase_scores, axis=0) # Add where term_scores > 0 term_match_idx = np.where(qf_scores)[0] qf_scores[term_match_idx] += phrase_scores[term_match_idx] return qf_scores, explain <fim_middle>
null
STATEMENT
complete_current_header_empty_completion
<filename>searcharray/searcharray/postings.py<fim_prefix>"""Tokenized, searchable text as a pandas dtype.""" import pandas as pd import numbers from pandas.api.extensions import ExtensionDtype, ExtensionArray, register_extension_dtype from pandas.api.types import is_list_like from pandas.api.extensions import take import json from collections import Counter import warnings import logging from typing import List, Union, Optional, Iterable import numpy as np from searcharray.phrase.scan_merge import scan_merge_ins from searcharray.phrase.posn_diffs import compute_phrase_freqs from searcharray.phrase.middle_out import PosnBitArray from searcharray.similarity import Similarity, default_bm25 from searcharray.indexing import build_index_from_tokenizer, build_index_from_terms_list from searcharray.term_dict import TermMissingError logger = logging.getLogger(__name__) # When running in pytest import sys # noqa handler = logging.StreamHandler(sys.stdout) handler.setLevel(logging.ERROR) formatter = logging.Formatter("[%(filename)s:%(lineno)s - %(funcName)20s() ] %(message)s") handler.setFormatter(formatter) logger.addHandler(handler) logger.setLevel(logging.ERROR) class Terms: """An indexed search doc - a single bag of tokenized words and positions.""" def __init__(self, postings, doc_len: int = 0, posns: Optional[dict] = None, encoded=False): self.postings = postings self.posns = None self.encoded = encoded self.doc_len = doc_len self.posns = posns def _validate_posns(self): # (For testing/assertions) - Confirm every term in positions also in postings if self.posns is None: return for term in self.posns: if term not in self.postings: raise ValueError(f"Term {term} in positions but not in postings. ") def termfreq(self, token): return self.postings[token] def terms(self): return self.postings.items() def positions(self, term=None): if self.posns is None: return {} if term is None: posns = self.posns.items() else: posns = self.posns[term] return posns def raw_positions(self, term_dict, term=None): if self.posns is None: return {} if term is None: posns = [(term_dict.get_term_id(term), posns) for term, posns in self.posns.items()] else: posns = [(term_dict.get_term_id(term), self.posns[term])] return posns def tf_to_dense(self, term_dict): """Convert to a dense vector of term frequencies.""" dense = np.zeros(len(term_dict)) for term, freq in self.terms(): dense[term_dict.get_term_id(term)] = freq return dense def __len__(self): return len(self.postings) def __repr__(self): posting_keys = set(self.postings.keys()) rval = f"Terms({posting_keys})" return rval def __str__(self): return repr(self) def __eq__(self, other): # Flip to the other implementation if we're comparing to a SearchArray # to get a boolean array back if isinstance(other, SearchArray): return other == self same_postings = isinstance(other, Terms) and self.postings == other.postings if same_postings and self.doc_len == other.doc_len: return True def __lt__(self, other): # return isinstance(other, Terms) and hash(self) < hash(other) keys_both = set(self.postings.keys()).union(set(other.postings.keys())) # Sort lexically keys_both = sorted(keys_both) # Iterate as if these are two vectors of the same large dimensional vector sparse for key in keys_both: lhs_val = 0 rhs_val = 0 try: lhs_val = self.postings[key] except KeyError: pass try: rhs_val = other.postings[key] except KeyError: pass if lhs_val < rhs_val: return True elif lhs_val > rhs_val: return False else: continue return False def __le__(self, other): return self < other or self == other def __gt__(self, other): return not (self < other) and self != other def __hash__(self): return hash(json.dumps(self.postings, sort_keys=True)) class TermsDtype(ExtensionDtype): """Pandas dtype for terms.""" name = 'tokenized_text' type = Terms kind = 'O' @classmethod def construct_from_string(cls, string): if not isinstance(string, str): raise TypeError( "'construct_from_string' expects a string, got {}".format(type(string)) ) elif string == cls.name: return cls() else: raise TypeError( "Cannot construct a '{}' from '{}'".format(cls.__name__, string) ) @classmethod def construct_array_type(cls): return SearchArray def __repr__(self): return 'TermsDtype()' @property def na_value(self): return Terms({}) def valid_value(self, value): return isinstance(value, dict) or pd.isna(value) or isinstance(value, Terms) register_extension_dtype(TermsDtype) def ws_tokenizer(string): if pd.isna(string): return [] if not isinstance(string, str): raise ValueError("Expected a string") return string.split() def _row_to_postings_row(doc_id, row, doc_len, term_dict, posns: PosnBitArray): tfs = {} labeled_posns = {} for term_idx in row.cols: term = term_dict.get_term(term_idx) tfs[term] = 1 enc_term_posns = posns.doc_encoded_posns(term_idx, doc_id=doc_id) labeled_posns[term] = enc_term_posns result = Terms(tfs, posns=labeled_posns, doc_len=doc_len, encoded=True) return result class SearchArray(ExtensionArray): """An array of tokenized text (Termss).""" dtype = TermsDtype() def __init__(self, postings, tokenizer=ws_tokenizer, avoid_copies=True): # Check dtype, raise TypeError if not is_list_like(postings): raise TypeError("Expected list-like object, got {}".format(type(postings))) self.avoid_copies = avoid_copies self.tokenizer = tokenizer self.term_mat, self.posns, \ self.term_dict, self.avg_doc_length, \ self.doc_lens = build_index_from_terms_list(postings, Terms) @classmethod def index(cls, array: Iterable, tokenizer=ws_tokenizer, truncate=False, batch_size=100000, avoid_copies=True) -> 'SearchArray': """Index an array of strings using tokenizer.""" if not is_list_like(array): raise TypeError("Expected list-like object, got {}".format(type(array))) term_mat, posns, term_dict, avg_doc_length, doc_lens =\ build_index_from_tokenizer(array, tokenizer, batch_size=batch_size, truncate=truncate) postings = cls([], tokenizer=tokenizer, avoid_copies=avoid_copies) postings.term_mat = term_mat postings.posns = posns postings.term_dict = term_dict postings.avg_doc_length = avg_doc_length postings.doc_lens = doc_lens return postings @classmethod def _from_sequence(cls, scalars, dtype=None, copy=False): """Construct a new SearchArray from a sequence of scalars (PostingRow or convertible into).""" if dtype is not None: if not isinstance(dtype, TermsDtype): return scalars if isinstance(scalars, np.ndarray) and scalars.dtype == TermsDtype(): return cls(scalars) # String types elif isinstance(scalars, np.ndarray) and scalars.dtype.kind in 'US': return cls(scalars) # Other objects elif isinstance(scalars, np.ndarray) and scalars.dtype != object: return scalars return cls(scalars) def memory_usage(self, deep=False): """Return memory usage of this array in bytes.""" return self.nbytes @property def nbytes(self): return self.term_mat.nbytes + self.posns.nbytes + self.doc_lens.nbytes + self.term_dict.nbytes def __getitem__(self, key): key = pd.api.indexers.check_array_indexer(self, key) # Want to take rows of term freqs if isinstance(key, numbers.Integral): try: rows = self.term_mat[key] doc_len = self.doc_lens[key] doc_id = key if doc_id < 0: doc_id += len(self) return _row_to_postings_row(doc_id, rows[0], doc_len, self.term_dict, self.posns) except IndexError: raise IndexError("index out of bounds") else: # Construct a sliced view of this array sliced_tfs = self.term_mat.slice(key) sliced_posns = self.posns.slice(sliced_tfs.rows) if not self.avoid_copies else self.posns arr = SearchArray([], tokenizer=self.tokenizer) arr.term_mat = sliced_tfs arr.doc_lens = self.doc_lens[key] arr.posns = sliced_posns arr.term_dict = self.term_dict arr.avg_doc_length = self.avg_doc_length return arr def __setitem__(self, key, value): """Set an item in the array.""" key = pd.api.indexers.check_array_indexer(self, key) if isinstance(value, pd.Series): value = value.values if isinstance(value, pd.DataFrame): value = value.values.flatten() if isinstance(value, SearchArray): value = value.to_numpy() if isinstance(value, list): value = np.asarray(value, dtype=object) if not isinstance(value, np.ndarray) and not self.dtype.valid_value(value): raise ValueError(f"Cannot set non-object array to SearchArray -- you passed type:{type(value)} -- {value}") # Cant set a single value to an array if isinstance(key, numbers.Integral) and isinstance(value, np.ndarray): raise ValueError("Cannot set a single value to an array") try: is_encoded = False posns = None term_mat = np.asarray([]) doc_lens = np.asarray([]) if isinstance(value, float): term_mat = np.asarray([value]) doc_lens = np.asarray([0]) elif isinstance(value, Terms): term_mat = np.asarray([value.tf_to_dense(self.term_dict)]) doc_lens = np.asarray([value.doc_len]) is_encoded = value.encoded posns = [value.raw_positions(self.term_dict)] elif isinstance(value, np.ndarray): term_mat = np.asarray([x.tf_to_dense(self.term_dict) for x in value]) doc_lens = np.asarray([x.doc_len for x in value]) is_encoded = value[0].encoded if len(value) > 0 else False posns = [x.raw_positions(self.term_dict) for x in value] np.nan_to_num(term_mat, copy=False, nan=0) self.term_mat[key] = term_mat self.doc_lens[key] = doc_lens if posns is not None: self.posns.insert(key, posns, is_encoded) # Assume we have a positions for each term, doc pair. We can just update it. # Otherwise we would have added new terms except TermMissingError: self._add_new_terms(key, value) def _add_new_terms(self, key, value): msg = """Adding new terms! This might not be good if you tokenized this new text with a different tokenizer. Also. This is slow.""" warnings.warn(msg) scan_value = value if isinstance(value, Terms): scan_value = np.asarray([value]) for row in scan_value: for term in row.terms(): self.term_dict.add_term(term[0]) self.term_mat.resize((self.term_mat.shape[0], len(self.term_dict))) # Ensure posns_lookup has at least max self.posns self[key] = value def value_counts( self, dropna: bool = True, ): if dropna: counts = Counter(self[:]) counts.pop(Terms({}), None) else: counts = Counter(self[:]) return pd.Series(counts) def __len__(self): len_rval = len(self.term_mat.rows) return len_rval def __ne__(self, other): if isinstance(other, pd.DataFrame) or isinstance(other, pd.Series) or isinstance(other, pd.Index): return NotImplemented return ~(self == other) def __eq__(self, other): """Return a boolean numpy array indicating elementwise equality.""" # When other is a dataframe or series, not implemented if isinstance(other, pd.DataFrame) or isinstance(other, pd.Series) or isinstance(other, pd.Index): return NotImplemented # When other is an ExtensionArray if isinstance(other, SearchArray): if len(self) != len(other): return False elif len(other) == 0: return np.array([], dtype=bool) else: # Compatible term dicts, and same term freqs # (not looking at positions, maybe we should?) if self.term_dict.compatible(other.term_dict): return (self.term_mat == other.term_mat) & (self.doc_lens == other.doc_lens) else: return np.zeros(len(self), dtype=bool) # return np.array(self[:]) == np.array(other[:]) # When other is a scalar value elif isinstance(other, Terms): other = SearchArray([other], tokenizer=self.tokenizer) warnings.warn("Comparing a scalar value to a SearchArray. This is slow.") return np.array(self[:]) == np.array(other[:]) # When other is a sequence but not an ExtensionArray # its an array of dicts elif is_list_like(other): if len(self) != len(other): return False elif len(other) == 0: return np.array([], dtype=bool) # We actually don't know how it was tokenized other = SearchArray(other, tokenizer=self.tokenizer) return np.array(self[:]) == np.array(other[:]) # Return False where 'other' is neither the same length nor a scalar else: return np.full(len(self), False) def isna(self): # Every row with all 0s empties = self.doc_lens == 0 return empties def take(self, indices, allow_fill=False, fill_value=None): # Want to take rows of term freqs row_indices = np.arange(len(self.term_mat.rows)) # Take within the row indices themselves result_indices = take(row_indices, indices, allow_fill=allow_fill, fill_value=-1) if allow_fill and -1 in result_indices: if fill_value is None or pd.isna(fill_value): fill_value = Terms({}, encoded=True) to_fill_mask = result_indices == -1 # This is slow as it rebuilds all the term dictionaries # on the subsequent assignment lines # However, this case tends to be the exception for # most dataframe operations taken = SearchArray([fill_value] * len(result_indices)) taken[~to_fill_mask] = self[result_indices[~to_fill_mask]].copy() return taken else: taken = self[result_indices].copy() return taken def copy(self): postings_arr = SearchArray([], tokenizer=self.tokenizer) postings_arr.doc_lens = self.doc_lens.copy() postings_arr.term_mat = self.term_mat.copy() postings_arr.posns = self.posns postings_arr.term_dict = self.term_dict postings_arr.avg_doc_length = self.avg_doc_length if not self.avoid_copies: postings_arr.posns = self.posns.copy() postings_arr.term_dict = self.term_dict.copy() return postings_arr @classmethod def _concat_same_type(cls, to_concat): concatenated_data = np.concatenate([ea[:] for ea in to_concat]) return SearchArray(concatenated_data, tokenizer=to_concat[0].tokenizer) @classmethod def _from_factorized(cls, values, original): return cls(values) def _values_for_factorize(self): """Return an array and missing value suitable for factorization (ie grouping).""" arr = np.asarray(self[:], dtype=object) return arr, Terms({}) def _check_token_arg(self, token): if isinstance(token, str): return token elif isinstance(token, list) and len(token) == 1: return token[0] elif isinstance(token, list): return token else: raise TypeError("Expected a string or list of strings for phrases") # *********************************************************** # Search functionality # *********************************************************** def termfreqs(self, token: Union[List[str], str]) -> np.ndarray: token = self._check_token_arg(token) if isinstance(token, list): return self.phrase_freq(token) try: term_id = self.term_dict.get_term_id(token) matches = np.zeros(len(self), dtype=int) slice_of_rows = None if self.term_mat.subset: slice_of_rows = self.term_mat.rows doc_ids, termfreqs = self.posns.termfreqs(term_id, doc_ids=slice_of_rows) mask = np.isin(self.term_mat.rows, doc_ids) matches[mask] = termfreqs return matches else: doc_ids, termfreqs = self.posns.termfreqs(term_id, doc_ids=slice_of_rows) matches[doc_ids] = termfreqs return matches except TermMissingError: return np.zeros(len(self), dtype=int) def docfreq(self, token: str) -> int: if not isinstance(token, str): raise TypeError("Expected a string") # Count number of rows where the term appears try: return self.posns.docfreq(self.term_dict.get_ter<fim_suffix>m_id(token)) except TermMissingError: return 0 def doclengths(self) -> np.ndarray: return self.doc_lens def match(self, token: Union[List[str], str], slop: int = 1) -> np.ndarray: """Return a boolean numpy array indicating which elements contain the given term.""" token = self._check_token_arg(token) if isinstance(token, list): term_freq = self.phrase_freq(token) else: term_freq = self.termfreqs(token) return term_freq > 0 def score(self, token: Union[str, List[str]], similarity: Similarity = default_bm25) -> np.ndarray: """Score each doc using a similarity function. Parameters ---------- token : str or list of str of what to search (already tokenized) similarity : How to score the documents. Default is BM25. """ # Get term freqs per token token = self._check_token_arg(token) # For expensive toknes, we compute doc freq first, so we # cache them in the DF cache, to let TF cache know it should be cached tokens_l = [token] if isinstance(token, str) else token all_dfs = np.asarray([self.docfreq(token) for token in tokens_l]) tfs = self.termfreqs(token) token = self._check_token_arg(token) doc_lens = self.doclengths() scores = similarity(term_freqs=tfs, doc_freqs=all_dfs, doc_lens=doc_lens, avg_doc_lens=self.avg_doc_length, num_docs=len(self)) return scores def positions(self, token: str, key=None) -> List[np.ndarray]: """Return a list of lists of positions of the given term.""" term_id = self.term_dict.get_term_id(token) key = self.term_mat.rows[key] if key is not None else self.term_mat.rows posns = self.posns.positions(term_id, doc_ids=key) return posns def and_query(self, tokens: Union[List[str], List[List[str]]]) -> np.ndarray: """Return a mask on the postings array indicating which elements contain all terms.""" masks = [self.match(term) for term in tokens] mask = np.ones(len(self), dtype=bool) for curr_mask in masks: mask = mask & curr_mask return mask def or_query(self, tokens: Union[List[str], List[List[str]]], min_should_match: int = 1) -> np.ndarray: """Return a mask on the postings array indicating which elements contain all terms.""" masks = [self.match(term) for term in tokens] mask = np.sum(masks, axis=0) >= min_should_match return mask def phrase_freq(self, tokens: List[str], slop=1) -> np.ndarray: if slop == 1 and len(tokens) == len(set(tokens)): phrase_freqs = np.zeros(len(self)) try: doc_ids = self.term_mat.rows term_ids = [self.term_dict.get_term_id(token) for token in tokens] return self.posns.phrase_freqs(term_ids, doc_ids=doc_ids, phrase_freqs=phrase_freqs) except TermMissingError: return phrase_freqs else: return self.phrase_freq_every_diff(tokens, slop=slop) def phrase_freq_scan(self, tokens: List[str], mask=None, slop=1) -> np.ndarray: if mask is None: mask = self.and_query(tokens) if np.sum(mask) == 0: return mask # Gather positions posns = [self.positions(token, mask) for token in tokens] phrase_freqs = np.zeros(len(self)) phrase_freqs[mask] = scan_merge_ins(posns, phrase_freqs[mask], slop=slop) return phrase_freqs def phrase_freq_every_diff(self, tokens: List[str], slop=1) -> np.ndarray: phrase_freqs = -np.ones(len(self)) mask = self.and_query(tokens) phrase_freqs[~mask] = 0 if np.sum(mask) == 0: return phrase_freqs term_posns = [self.positions(term, mask) for term in tokens] for width in [10, 20, 30, 40]: phrase_freqs[mask] = compute_phrase_freqs(term_posns, phrase_freqs[mask], slop=slop, width=width) remaining_mask = phrase_freqs == -1 if np.any(remaining_mask): remainder_freqs = self.phrase_freq_scan(tokens, mask=remaining_mask, slop=slop) phrase_freqs[remaining_mask] = remainder_freqs[remaining_mask] return phrase_freqs <fim_middle>
null
STATEMENT
complete_current_header_empty_completion
<filename>searcharray/searcharray/utils/roaringish.py<fim_prefix>"""Roaring-ish bit array for storing sorted integers in numpy array. See - https://softwaredoug.com/blog/2024/01/21/search-array-phrase-algorithm """ import numpy as np import sortednp as snp import logging import numbers from typing import Optional, Tuple, List, Union logger = logging.getLogger(__name__) # When running in pytest import sys # noqa handler = logging.StreamHandler(sys.stdout) handler.setLevel(logging.ERROR) formatter = logging.Formatter("[%(filename)s:%(lineno)s - %(funcName)20s() ] %(message)s") handler.setFormatter(formatter) logger.addHandler(handler) logger.setLevel(logging.ERROR) DEFAULT_KEY_MASK = np.uint64(0xFFFFFFF000000000) DEFAULT_KEY_BITS = np.uint64(28) DEFAULT_PAYLOAD_MSB_MASK = np.uint64(0x0000000FFFFC0000) DEFAULT_PAYLOAD_MSB_BITS = np.uint64(18) DEFAULT_PAYLOAD_LSB_MASK = np.uint64(0x000000000003FFFF) DEFAULT_PAYLOAD_LSB_BITS = np.uint64(18) # To not constantly type coerce _64 = np.uint64(64) _2 = np.uint64(2) _1 = np.uint64(1) _0 = np.uint64(0) _neg1 = np.int64(-1) _algorithm = snp.GALLOPING_SEARCH def n_msb_mask(n: np.uint64) -> np.uint64: """Return the n most significant bits of num.""" return np.uint64(~(np.uint64(_1 << (_64 - n))) + _1) def sorted_unique(arr: np.ndarray) -> np.ndarray: return snp.intersect(arr, arr, duplicates=snp.DROP) class RoaringishEncoder: """An encoder for key->integer sets as a numpy array. Each returned array represents a single term, with key as MSBS, ie: | 32 MSBs | 16 LSBs | 16 LSBs | key | bits msbs | payload (different number of MSBs / payload bits can be specified) """ def __init__(self, key_bits: np.uint64 = DEFAULT_KEY_BITS): payload_bits = _64 - key_bits self.payload_msb_bits = payload_bits // _2 self.payload_lsb_bits = np.uint64(payload_bits - self.payload_msb_bits) self.key_bits = key_bits assert self.key_bits.dtype == np.uint64 # key bits MSB of 64 bits self.key_mask = n_msb_mask(key_bits) self.payload_msb_mask = n_msb_mask(np.uint64(self.payload_msb_bits + key_bits)) & ~self.key_mask assert self.payload_msb_bits.dtype == np.uint64, f"MSB bits dtype was {self.payload_msb_bits.dtype}" assert self.payload_msb_mask.dtype == np.uint64, f"MSB mask dtype was {self.payload_msb_mask.dtype}" self.payload_lsb_mask = (_1 << self.payload_lsb_bits) - np.uint64(1) assert self.payload_lsb_bits.dtype == np.uint64, f"LSB bits dtype was {self.payload_lsb_bits.dtype}" assert self.payload_lsb_mask.dtype == np.uint64, f"LSB mask dtype was {self.payload_lsb_mask.dtype}" if key_bits == DEFAULT_KEY_BITS: assert self.key_mask == DEFAULT_KEY_MASK assert self.payload_msb_mask == DEFAULT_PAYLOAD_MSB_MASK assert self.payload_lsb_mask == DEFAULT_PAYLOAD_LSB_MASK self.max_payload = np.uint64(2**self.payload_lsb_bits - 1) def validate_payload(self, payload: np.ndarray): """Optional validation of payload.""" if np.any(payload > self.max_payload): raise ValueError(f"Positions must be less than {2**self.payload_lsb_bits}") def encode(self, payload: np.ndarray, keys: Optional[np.ndarray] = None, boundaries: Optional[np.ndarray] = None) -> Tuple[np.ndarray, Optional[np.ndarray]]: """Pack a sorted array of integers into compact bit numpy array. each returned array represents a single term, with key as MSBS, ie: | 32 MSBs | 16 LSBs | 16 LSBs | key | bits msbs| payload for later easy intersection of 32+16 msbs, then checking for adjacent positions If boundaries are provided, then we consider multiple distinct payloads being encoded simultaneously, and we return the boundaries of each """ cols = np.floor_divide(payload, self.payload_lsb_bits, dtype=np.uint64) # Header of bit to use cols <<= self.payload_msb_bits if keys is not None: cols |= keys.astype(np.uint64) << (_64 - self.key_bits) values = payload % self.payload_lsb_bits # Value to encode change_indices_one_doc = np.nonzero(np.diff(cols))[0] + 1 change_indices_one_doc = np.concatenate([[0], change_indices_one_doc]) if boundaries is not None: change_indices = snp.merge(change_indices_one_doc, boundaries, duplicates=snp.DROP) new_boundaries = snp.intersect(boundaries, change_indices, indices=True)[1][1] new_boundaries = np.concatenate([new_boundaries, [len(change_indices)]]) else: change_indices = change_indices_one_doc new_boundaries = None # 0 as a position, goes in bit 1, # 1 as a position, goes in bit 2, etc values = _1 << values cols |= values encoded = cols if len(encoded) == 0: return encoded, new_boundaries reduced = np.bitwise_or.reduceat(encoded, change_indices) return reduced, new_boundaries def decode(self, encoded: np.ndarray, get_keys: bool = True) -> Union[List[Tuple[np.uint64, np.ndarray]], List[np.ndarray]]: """Decode an encoded bit array into keys / payloads.""" keys = (encoded & self.key_mask) >> (_64 - self.key_bits) msbs = (encoded & self.payload_msb_mask) >> self.payload_msb_bits to_concat = [] for bit in range(self.payload_lsb_bits): mask = 1 << bit lsbs = encoded & mask set_lsbs = (lsbs != 0) this_keys = keys[set_lsbs] payload = bit + (msbs[set_lsbs] * self.payload_lsb_bits) doc_with_posn = np.dstack([this_keys, payload])[0] to_concat.append(doc_with_posn) stacked = np.vstack(to_concat) # Sort by doc_id, then posn sorted_payload = stacked[np.lexsort((stacked[:, 1], stacked[:, 0]))] keys, idx = np.unique(sorted_payload[:, 0], return_index=True) grouped = np.split(sorted_payload[:, 1], idx[1:]) if get_keys: return list(zip(keys, grouped)) else: return grouped def keys(self, encoded: np.ndarray) -> np.ndarray: """Return keys from encoded.""" return (encoded & self.key_mask) >> (_64 - self.key_bits) def keys_unique(self, encoded: np.ndarray) -> np.ndarray: """Return keys from encoded.""" keys = self.keys(encoded) intersected = sorted_unique(keys) return intersected def payload_msb(self, encoded: np.ndarray) -> np.ndarray: """Return payload MSBs from encoded.""" return (encoded & self.payload_msb_mask) >> self.payload_msb_bits def payload_lsb(self, encoded: np.ndarray) -> np.ndarray: """Return payload LSBs from encoded.""" return encoded & self.payload_lsb_mask def intersect_rshift(self, lhs: np.ndarray, rhs: np.ndarray, rshift: np.int64 = _neg1) -> Tuple[np.ndarray, np.ndarray]: """Return the MSBs that are common to both lhs and rhs (same keys, same MSBs) Parameters ---------- lhs : np.ndarray of uint64 (encoded) values rhs : np.ndarray of uint64 (encoded) values rshift : int how much to shift rhs by to the right """ rhs_int = rhs assert rshift < 0, "rshift must be negative" rhs_int = rhs[self.payload_msb(rhs) >= np.abs(rshift)] rshft = rshift.view(np.uint64) rhs_shifted = (rhs_int >> self.payload_lsb_bits) + rshft # assert np.all(np.diff(rhs_shifted) >= 0), "not sorted" _, (lh<fim_suffix>s_idx, rhs_idx) = snp.intersect(lhs >> self.payload_lsb_bits, rhs_shifted, indices=True, algorithm=_algorithm) return lhs[lhs_idx], rhs_int[rhs_idx] def intersect(self, lhs: np.ndarray, rhs: np.ndarray) -> Tuple[np.ndarray, np.ndarray]: """Return the MSBs that are common to both lhs and rhs (same keys, same MSBs) Parameters ---------- lhs : np.ndarray of uint64 (encoded) values rhs : np.ndarray of uint64 (encoded) values """ # assert np.all(np.diff(rhs_shifted) >= 0), "not sorted" _, (lhs_idx, rhs_idx) = snp.intersect(lhs >> self.payload_lsb_bits, rhs >> self.payload_lsb_bits, indices=True, algorithm=_algorithm) return lhs[lhs_idx], rhs[rhs_idx] def slice(self, encoded: np.ndarray, keys: np.ndarray) -> np.ndarray: """Get list of encoded that have values in keys.""" assert len(keys.shape) == 1 assert len(encoded.shape) == 1 encoded_keys = encoded.view(np.uint64) >> (_64 - self.key_bits) _, (idx_docs, idx_enc) = snp.intersect(keys, encoded_keys, indices=True, duplicates=snp.KEEP_MAX_N, algorithm=_algorithm) return encoded[idx_enc] def convert_keys(keys) -> np.ndarray: """Convert keys to range or np.ndarray of uint64.""" if isinstance(keys, numbers.Number): return np.asarray([keys], dtype=np.uint64) elif isinstance(keys, list): return np.asarray(keys, dtype=np.uint64) elif isinstance(keys, np.ndarray): return keys.astype(np.uint64) elif isinstance(keys, range) and len(keys) > 0: # UNFORTUNATE COPY return np.arange(keys[0], keys[-1] + 1, dtype=np.uint64) + keys[0] elif isinstance(keys, range): return np.asarray([], dtype=np.uint64) raise ValueError(f"Unknown type for keys: {type(keys)}") <fim_middle>
null
STATEMENT
complete_current_header_empty_completion
<filename>searcharray/searcharray/utils/roaringish.py<fim_prefix>"""Roaring-ish bit array for storing sorted integers in numpy array. See - https://softwaredoug.com/blog/2024/01/21/search-array-phrase-algorithm """ import numpy as np import sortednp as snp import logging import numbers from typing import Optional, Tuple, List, Union logger = logging.getLogger(__name__) # When running in pytest import sys # noqa handler = logging.StreamHandler(sys.stdout) handler.setLevel(logging.ERROR) formatter = logging.Formatter("[%(filename)s:%(lineno)s - %(funcName)20s() ] %(message)s") handler.setFormatter(formatter) logger.addHandler(handler) logger.setLevel(logging.ERROR) DEFAULT_KEY_MASK = np.uint64(0xFFFFFFF000000000) DEFAULT_KEY_BITS = np.uint64(28) DEFAULT_PAYLOAD_MSB_MASK = np.uint64(0x0000000FFFFC0000) DEFAULT_PAYLOAD_MSB_BITS = np.uint64(18) DEFAULT_PAYLOAD_LSB_MASK = np.uint64(0x000000000003FFFF) DEFAULT_PAYLOAD_LSB_BITS = np.uint64(18) # To not constantly type coerce _64 = np.uint64(64) _2 = np.uint64(2) _1 = np.uint64(1) _0 = np.uint64(0) _neg1 = np.int64(-1) _algorithm = snp.GALLOPING_SEARCH def n_msb_mask(n: np.uint64) -> np.uint64: """Return the n most significant bits of num.""" return np.uint64(~(np.uint64(_1 << (_64 - n))) + _1) def sorted_unique(arr: np.ndarray) -> np.ndarray: return snp.intersect(arr, arr, duplicates=snp.DROP) class RoaringishEncoder: """An encoder for key->integer sets as a numpy array. Each returned array represents a single term, with key as MSBS, ie: | 32 MSBs | 16 LSBs | 16 LSBs | key | bits msbs | payload (different number of MSBs / payload bits can be specified) """ def __init__(self, key_bits: np.uint64 = DEFAULT_KEY_BITS): payload_bits = _64 - key_bits self.payload_msb_bits = payload_bits // _2 self.payload_lsb_bits = np.uint64(payload_bits - self.payload_msb_bits) self.key_bits = key_bits assert self.key_bits.dtype == np.uint64 # key bits MSB of 64 bits self.key_mask = n_msb_mask(key_bits) self.payload_msb_mask = n_msb_mask(np.uint64(self.payload_msb_bits + key_bits)) & ~self.key_mask assert self.payload_msb_bits.dtype == np.uint64, f"MSB bits dtype was {self.payload_msb_bits.dtype}" assert self.payload_msb_mask.dtype == np.uint64, f"MSB mask dtype was {self.payload_msb_mask.dtype}" self.payload_lsb_mask = (_1 << self.payload_lsb_bits) - np.uint64(1) assert self.payload_lsb_bits.dtype == np.uint64, f"LSB bits dtype was {self.payload_lsb_bits.dtype}" assert self.payload_lsb_mask.dtype == np.uint64, f"LSB mask dtype was {self.payload_lsb_mask.dtype}" if key_bits == DEFAULT_KEY_BITS: assert self.key_mask == DEFAULT_KEY_MASK assert self.payload_msb_mask == DEFAULT_PAYLOAD_MSB_MASK assert self.payload_lsb_mask == DEFAULT_PAYLOAD_LSB_MASK self.max_payload = np.uint64(2**self.payload_lsb_bits - 1) def validate_payload(self, payload: np.ndarray): """Optional validation of payload.""" if np.any(payload > self.max_payload): raise ValueError(f"Positions must be less than {2**self.payload_lsb_bits}") def encode(self, payload: np.ndarray, keys: Optional[np.ndarray] = None, boundaries: Optional[np.ndarray] = None) -> Tuple[np.ndarray, Optional[np.ndarray]]: """Pack a sorted array of integers into compact bit numpy array. each returned array represents a single term, with key as MSBS, ie: | 32 MSBs | 16 LSBs | 16 LSBs | key | bits msbs| payload for later easy intersection of 32+16 msbs, then checking for adjacent positions If boundaries are provided, then we consider multiple distinct payloads being encoded simultaneously, and we return the boundaries of each """ cols = np.floor_divide(payload, self.payload_lsb_bits, dtype=np.uint64) # Header of bit to use cols <<= self.payload_msb_bits if keys is not None: cols |= keys.astype(np.uint64) << (_64 - self.key_bits) values = payload % self.payload_lsb_bits # Value to encode change_indices_one_doc = np.nonzero(np.diff(cols))[0] + 1 change_indices_one_doc = np.concatenate([[0], change_indices_one_doc]) if boundaries is not None: change_indices = snp.merge(change_indices_one_doc, boundaries, duplicates=snp.DROP) new_boundaries = snp.intersect(boundaries, change_indices, indices=True)[1][1] new_boundaries = np.concatenate([new_boundaries, [len(change_indices)]]) else: change_indices = change_indices_one_doc new_boundaries = None # 0 as a position, goes in bit 1, # 1 as a position, goes in bit 2, etc values = _1 << values cols |= values encoded = cols if len(encoded) == 0: return encoded, new_boundaries reduced = np.bitwise_or.reduceat(encoded, change_indices) return reduced, new_boundaries def decode(self, encoded: np.ndarray, get_keys: bool = True) -> Union[List[Tuple[np.uint64, np.ndarray]], List[np.ndarray]]: """Decode an encoded bit array into keys / payloads.""" keys = (encoded & self.key_mask) >> (_64 - self.key_bits) msbs = (encod<fim_suffix>ed & self.payload_msb_mask) >> self.payload_msb_bits to_concat = [] for bit in range(self.payload_lsb_bits): mask = 1 << bit lsbs = encoded & mask set_lsbs = (lsbs != 0) this_keys = keys[set_lsbs] payload = bit + (msbs[set_lsbs] * self.payload_lsb_bits) doc_with_posn = np.dstack([this_keys, payload])[0] to_concat.append(doc_with_posn) stacked = np.vstack(to_concat) # Sort by doc_id, then posn sorted_payload = stacked[np.lexsort((stacked[:, 1], stacked[:, 0]))] keys, idx = np.unique(sorted_payload[:, 0], return_index=True) grouped = np.split(sorted_payload[:, 1], idx[1:]) if get_keys: return list(zip(keys, grouped)) else: return grouped def keys(self, encoded: np.ndarray) -> np.ndarray: """Return keys from encoded.""" return (encoded & self.key_mask) >> (_64 - self.key_bits) def keys_unique(self, encoded: np.ndarray) -> np.ndarray: """Return keys from encoded.""" keys = self.keys(encoded) intersected = sorted_unique(keys) return intersected def payload_msb(self, encoded: np.ndarray) -> np.ndarray: """Return payload MSBs from encoded.""" return (encoded & self.payload_msb_mask) >> self.payload_msb_bits def payload_lsb(self, encoded: np.ndarray) -> np.ndarray: """Return payload LSBs from encoded.""" return encoded & self.payload_lsb_mask def intersect_rshift(self, lhs: np.ndarray, rhs: np.ndarray, rshift: np.int64 = _neg1) -> Tuple[np.ndarray, np.ndarray]: """Return the MSBs that are common to both lhs and rhs (same keys, same MSBs) Parameters ---------- lhs : np.ndarray of uint64 (encoded) values rhs : np.ndarray of uint64 (encoded) values rshift : int how much to shift rhs by to the right """ rhs_int = rhs assert rshift < 0, "rshift must be negative" rhs_int = rhs[self.payload_msb(rhs) >= np.abs(rshift)] rshft = rshift.view(np.uint64) rhs_shifted = (rhs_int >> self.payload_lsb_bits) + rshft # assert np.all(np.diff(rhs_shifted) >= 0), "not sorted" _, (lhs_idx, rhs_idx) = snp.intersect(lhs >> self.payload_lsb_bits, rhs_shifted, indices=True, algorithm=_algorithm) return lhs[lhs_idx], rhs_int[rhs_idx] def intersect(self, lhs: np.ndarray, rhs: np.ndarray) -> Tuple[np.ndarray, np.ndarray]: """Return the MSBs that are common to both lhs and rhs (same keys, same MSBs) Parameters ---------- lhs : np.ndarray of uint64 (encoded) values rhs : np.ndarray of uint64 (encoded) values """ # assert np.all(np.diff(rhs_shifted) >= 0), "not sorted" _, (lhs_idx, rhs_idx) = snp.intersect(lhs >> self.payload_lsb_bits, rhs >> self.payload_lsb_bits, indices=True, algorithm=_algorithm) return lhs[lhs_idx], rhs[rhs_idx] def slice(self, encoded: np.ndarray, keys: np.ndarray) -> np.ndarray: """Get list of encoded that have values in keys.""" assert len(keys.shape) == 1 assert len(encoded.shape) == 1 encoded_keys = encoded.view(np.uint64) >> (_64 - self.key_bits) _, (idx_docs, idx_enc) = snp.intersect(keys, encoded_keys, indices=True, duplicates=snp.KEEP_MAX_N, algorithm=_algorithm) return encoded[idx_enc] def convert_keys(keys) -> np.ndarray: """Convert keys to range or np.ndarray of uint64.""" if isinstance(keys, numbers.Number): return np.asarray([keys], dtype=np.uint64) elif isinstance(keys, list): return np.asarray(keys, dtype=np.uint64) elif isinstance(keys, np.ndarray): return keys.astype(np.uint64) elif isinstance(keys, range) and len(keys) > 0: # UNFORTUNATE COPY return np.arange(keys[0], keys[-1] + 1, dtype=np.uint64) + keys[0] elif isinstance(keys, range): return np.asarray([], dtype=np.uint64) raise ValueError(f"Unknown type for keys: {type(keys)}") <fim_middle>
null
STATEMENT
complete_current_header_empty_completion
<filename>searcharray/searcharray/phrase/middle_out.py<fim_prefix>"""Encode positions in bits along with some neighboring information for wrapping. See this notebook for motivation: https://colab.research.google.com/drive/10tIEkdlCE_1J_CcgEcV0jkLfBc-0H4am?authuser=1#scrollTo=XWzy-n9dF3PG """ import numpy as np import sortednp as snp from copy import deepcopy from typing import List, Tuple, Dict, Union, cast, Optional from searcharray.utils.roaringish import RoaringishEncoder, convert_keys, sorted_unique import numbers import logging from collections import defaultdict from searcharray.utils.bitcount import bit_count64 logger = logging.getLogger(__name__) # When running in pytest import sys # noqa handler = logging.StreamHandler(sys.stdout) handler.setLevel(logging.ERROR) formatter = logging.Formatter("[%(filename)s:%(lineno)s - %(funcName)20s() ] %(message)s") handler.setFormatter(formatter) logger.addHandler(handler) logger.setLevel(logging.ERROR) encoder = RoaringishEncoder() # To not constantly type coerce _64 = np.uint64(64) _2 = np.uint64(2) _1 = np.uint64(1) _0 = np.uint64(0) _neg1 = np.int64(-1) MAX_POSN = encoder.max_payload def inner_bigram_freqs(lhs: np.ndarray, rhs: np.ndarray, phrase_freqs: np.ndarray) -> Tuple[np.ndarray, np.ndarray]: """Count bigram matches between two encoded arrays, within a 64 bit word with same MSBs. Returns: -------- count: number of matches per doc rhs_next: the next rhs array to continue matching """ lhs_int, rhs_int = encoder.intersect(lhs, rhs) lhs_doc_ids = encoder.keys(lhs_int) if len(lhs_int) != len(rhs_int): raise ValueError("Encoding error, MSBs apparently are duplicated among your encoded posn arrays.") if len(lhs_int) == 0: return phrase_freqs, rhs_int same_term = (len(lhs_int) == len(rhs_int) and lhs_int[0] == rhs_int[0]) if same_term: # Find adjacent matches rhs_shift = rhs_int << _1 overlap = lhs_int & rhs_shift overlap = encoder.payload_lsb(overlap) adjacents = bit_count64(overlap).astype(np.int64) adjacents -= -np.floor_divide(adjacents, -2) # ceiling divide phrase_freqs[lhs_doc_ids] += adjacents return phrase_freqs, rhs_int overlap_bits = (lhs_int & encoder.payload_lsb_mask) & ((rhs_int & encoder.payload_lsb_mask) >> _1) rhs_next2 = (overlap_bits << _1) & encoder.payload_lsb_mask rhs_next2 |= (rhs_int & (encoder.key_mask | encoder.payload_msb_mask)) phrase_freqs2 = phrase_freqs.copy() matches2 = overlap_bits > 0 if np.any(matches2): transitions = np.argwhere(np.diff(lhs_doc_ids[matches2]) != 0).flatten() + 1 transitions = np.insert(transitions, 0, 0) counted_bits = bit_count64(overlap_bits[matches2]) reduced = np.add.reduceat(counted_bits, transitions) phrase_freqs2[np.unique(lhs_doc_ids[matches2])] += reduced return phrase_freqs2, rhs_next2 def adjacent_bigram_freqs(lhs: np.ndarray, rhs: np.ndarray, phrase_freqs: np.ndarray) -> Tuple[np.ndarray, np.ndarray]: """Count bigram matches between two encoded arrays where they occur in adjacent 64 bit words. Returns: -------- count: number of matches per doc rhs_next: the next rhs array to continue matching """ lhs_int, rhs_int = encoder.intersect_rshift(lhs, rhs, rshift=_neg1) lhs_doc_ids = encoder.keys(lhs_int) # lhs lsb set and rhs lsb's most significant bit set upper_bit = _1 << (encoder.payload_lsb_bits - _1) matches = ((lhs_int & upper_bit) != 0) & ((rhs_int & _1) != 0) unique, counts = np.unique(lhs_doc_ids[matches], return_counts=True) phrase_freqs[unique] += counts rhs_next = rhs_int rhs_next[~matches] |= ~encoder.payload_lsb_mask rhs_next[matches] |= (encoder.payload_lsb_mask & _1) return phrase_freqs, rhs_next def bigram_freqs(lhs: np.ndarray, rhs: np.ndarray, phrase_freqs: np.ndarray) -> Tuple[np.ndarray, np.ndarray]: """Count bigram matches between two encoded arrays. Returns: -------- count: number of matches per doc rhs_next: the next rhs array to continue matching """ # Combine lhs and rhs matches from two strategies phrase_freqs, rhs_next_inner = inner_bigram_freqs(lhs, rhs, phrase_freqs) phrase_freqs, rhs_next_adj = adjacent_bigram_freqs(lhs, rhs, phrase_freqs) rhs_next = np.sort(np.concatenate([rhs_next_inner, rhs_next_adj])) # Combine return phrase_freqs, rhs_next def trim_phrase_search(encoded_posns: List[np.ndarray], phrase_freqs: np.ndarray) -> List[np.ndarray]: """Trim long phrases by searching the rarest terms first.""" # Start with rarest term shortest_keys = None shortest_idx = None min_len = 1e100 max_len = 0 for idx, enc_posn in enumerate(encoded_posns): if len(enc_posn) < min_len: shortest_keys = encoder.keys(enc_posn) shortest_idx = idx min_len = len(enc_posn) if len(enc_posn) > max_len: max_len = len(enc_posn) if shortest_keys is None: return encoded_posns for enc_posn_idx in range(len(encoded_posns)): if enc_posn_idx == shortest_idx: continue if len(encoded_posns[enc_posn_idx]) > (10 * min_len): encoded_posns[enc_posn_idx] = encoder.slice(encoded_posns[enc_posn_idx], shortest_keys) return encoded_posns def compute_phrase_freqs(encoded_posns: List[np.ndarray], phrase_freqs: np.ndarray) -> np.ndarray: if len(encoded_posns) < 2: raise ValueError("phrase must have at least two terms") # Trim long phrases by searching the rarest terms first if len(encoded_posns) > 3: encoded_posns = trim_phrase_search(encoded_posns, phrase_freqs) mask = np.ones(len(phrase_freqs), dtype=bool) lhs = encoded_posns[0] for rhs in encoded_posns[1:]: # Only count the count of the last bigram (ignoring the ones where priors did not match) phrase_freqs[mask] = 0 phrase_freqs, lhs = bigram_freqs(lhs, rhs, phrase_freqs) mask &= (phrase_freqs > 0) phrase_freqs[~mask] = 0 return phrase_freqs class PosnBitArrayFromFlatBuilder: """ Build from sorted array shape num terms x 3. 0th is term id 1st is doc id 2nd is posn Sorted by term id then posns """ def __init__(self, flat_array: np.ndarray): self.flat_array = flat_array def build(self): """Slice the flat array into a 2d array of doc ids and posns.""" term_boundaries = np.argwhere(np.diff(self.flat_array[0]) > 0).flatten() + 1 term_boundaries = np.concatenate([[0], term_boundaries, [len(self.flat_array[1])]]) encoded, enc_term_boundaries = encoder.encode(keys=self.flat_array[1].view(np.uint64), boundaries=term_boundaries[:-1], payload=self.flat_array[2].view(np.uint64)) term_ids = self.flat_array[0][term_boundaries[:-1]] encoded_term_posns = {} for into_terms, (beg_idx, end_idx) in enumerate(zip(enc_term_boundaries[:-1], enc_term_boundaries[1:])): sliced = encoded[beg_idx:end_idx] encoded_term_posns[term_ids[into_terms]] = sliced return PosnBitArray(encoded_term_posns, self.flat_array[1].max()) class PosnBitArrayBuilder: def __init__(self): self.term_posns = defaultdict(list) self.term_posn_doc_ids = defaultdict(list) self.max_doc_id = 0 def add_posns(self, doc_id: int, term_id: int, posns: List[int]): doc_ids = [doc_id] * len(posns) self.term_posns[term_id].extend(posns) self.term_posn_doc_ids[term_id].extend(doc_ids) def ensure_capacity(self, doc_id): self.max_doc_id = max(self.max_doc_id, doc_id) def build(self, check=False): encoded_term_posns = {} for term_id, posns in self.term_posns.items(): if len(posns) == 0: posns = np.asarray([], dtype=np.uint32).flatten() elif isinstance(posns, list): posns_arr = np.asarray(posns, dtype=np.uint32).flatten() posns = posns_arr doc_ids = self.term_posn_doc_ids[term_id] if isinstance(doc_ids, list): doc_ids = np.asarray(doc_ids, dtype=np.uint32) encoded = encoder.encode(keys=doc_ids, payload=posns) if check: decode_again = encoder.decode(encoded) docs_to_posns = dict(decode_again) doc_ids_again = [] posns_again = [] for doc_id, posns_dec in docs_to_posns.items(): for posn in posns_dec: doc_ids_again.append(doc_id) posns_again.append(posn) assert np.array_equal(doc_ids_again, doc_ids) assert np.array_equal(posns, posns_again) encoded_term_posns[term_id] = encoded return PosnBitArray(encoded_term_posns, self.max_doc_id) class PosnBitArrayAlreadyEncBuilder: def __init__(self): self.encoded_term_posns = {} self.max_doc_id = 0 def add_posns(self, doc_id: int, term_id: int, posns): self.encoded_term_posns[term_id] = posns def ensure_capacity(self, doc_id): self.max_doc_id = max(self.max_doc_id, doc_id) def build(self, check=False): return PosnBitArray(self.encoded_term_posns, self.max_doc_id) def index_range(rng, key): if key is None: return rng if isinstance(rng, np.ndarray): return rng[key] if isinstance(key, slice): return rng[key] elif isinstance(key, numbers.Number): return rng[key] elif isinstance(key, np.ndarray): try: # UNFORTUNATE COPY r_val = np.asarray(list(rng))[key] return r_val except IndexError as e: raise e # Last resort # UNFORTUNATE COPY # Here probably elipses or a tuple of various things return np.asarray(list(rng))[key] class PosnBitArray: def __init__(self, encoded_term_posns, max_doc_id: int): self.encoded_term_posns = encoded_term_posns self.max_doc_id = max_doc_id self.docfreq_cache : Dict[int, np.uint64] = {} self.termfreq_cache : Dict[int, Tuple[np.ndarray, np.ndarray]] = {} def copy(self): new = PosnBitArray(deepcopy(self.encoded_term_posns), self.max_doc_id) return new def concat(self, other): """Merge other into self. Assumes other's doc ids are not overlapping with self's doc ids. """ # Shared terms shared_terms = set(self.encoded_term_posns.keys()).intersection(set(other.encoded_term_posns.keys())) for term_id in shared_terms: # Append then sort self.encoded_term_posns[term_id] = np.concatenate([self.encoded_term_posns[term_id], other.encoded_term_posns[term_id]]) self.encoded_term_posns[term_id].sort() only_other_terms = set(other.encoded_term_posns.keys()).difference(set(self.encoded_term_posns.keys())) for term_id in only_other_terms: self.encoded_term_posns[term_id] = other.encoded_term_posns[term_id] self.max_doc_id = max(self.max_doc_id, other.max_doc_id) # Empty caches self.termfreq_cache = {} self.docfreq_cache = {} def slice(self, key): sliced_term_posns = {} doc_ids = convert_keys(key) max_doc_id = np.max(doc_ids) for term_id, posns in self.encoded_term_posns.items(): encoded = self.encoded_term_posns[term_id] assert len(encoded.shape) == 1 sliced_term_posns[term_id] = encoder.slice(encoded, keys=doc_ids) return PosnBitArray(sliced_term_posns, max_doc_id) def __getitem__(self, key): return self.slice(key) def merge(self, other): # Unique terms unique_terms = set(self.encoded_term_posns.keys()).union(set(other.encoded_term_posns.keys())) for term_id in unique_terms: if term_id not in other.encoded_term_posns: continue elif term_id not in self.encoded_term_posns: self.encoded_term_posns[term_id] = other.encoded_term_posns[term_id] else: posns_self = self.encoded_term_posns[term_id] posns_other = other.encoded_term_posns[term_id] self.encoded_term_posns[term_id] = snp.merge(posns_self, posns_other) self.max_doc_id = self.max_doc_id + other.max_doc_id # Empty caches self.termfreq_cache = {} self.docfreq_cache = {} def doc_encoded_posns(self, term_id: int, doc_id: int) -> np.ndarray: term_posns = encoder.slice(self.encoded_term_posns[term_id], keys=np.asarray([doc_id], dtype=np.uint64)) return term_posns def phrase_freqs(self, term_ids: List[int], phrase_freqs: np.ndarray, doc_ids: np.ndarray) -> np.ndarray: if len(term_ids) < 2: raise ValueError("Must have at least two terms") if phrase_freqs.shape[0] == self.max_doc_id + 1: enc_term_posns = [self.encoded_term_posns[term_id] for term_id in term_ids] else: enc_term_posns = [encoder.slice(self.encoded_term_posns[term_id], keys=doc_ids.view(np.uint64)) for term_id in term_ids] return compute_phrase_freqs(enc_term_posns, phrase_freqs) def positions(self, term_id: int, doc_ids) -> Union[List[np.ndarray], np.ndarray]: if isinstance(doc_ids, numbers.Number): doc_ids = np.asarray([doc_ids]) try: np_doc_ids = convert_keys(doc_ids) term_posns = encoder.slice(self.encoded_term_posns[term_id], keys=np_doc_ids) except KeyError: r_val = [np.array([], dtype=np.uint32) for doc_id in doc_ids] if len(r_val) == 1 and len(doc_ids) == 1 and isinstance(doc_ids[0], numbers.Number): return [r_val[0]] return r_val decoded = encoder.decode(encoded=term_posns, get_keys=True) if len(decoded) == 0: return [np.a<fim_suffix>rray([], dtype=np.uint32)] if len(decoded) != len(doc_ids): # Fill non matches decoded = cast(List[Tuple[np.uint64, np.ndarray]], decoded) as_dict: Dict[np.uint64, np.ndarray] = dict(decoded) decs = [] for doc_id in doc_ids: if doc_id in as_dict: decs.append(as_dict[doc_id]) else: decs.append(np.array([], dtype=np.uint32)) return decs else: decs = [dec[1] for dec in decoded] return decs def termfreqs(self, term_id: int, doc_ids: Optional[np.ndarray] = None) -> Tuple[np.ndarray, np.ndarray]: """Count term freqs using unique positions.""" if doc_ids is None: return self._termfreqs_with_cache(term_id) encoded = self.encoded_term_posns[term_id] term_posns = encoded term_posns = encoder.slice(encoded, keys=doc_ids.astype(np.uint64)) return self._computed_term_freqs(term_posns) def _computed_term_freqs(self, term_posns) -> Tuple[np.ndarray, np.ndarray]: doc_ids = encoder.keys(term_posns) change_indices = np.nonzero(np.diff(doc_ids))[0] change_indices = np.concatenate((np.asarray([0]), change_indices + 1)) posns = term_posns & encoder.payload_lsb_mask bit_counts = bit_count64(posns) term_freqs = np.add.reduceat(bit_counts, change_indices) return sorted_unique(doc_ids), term_freqs def _termfreqs_with_cache(self, term_id: int) -> Tuple[np.ndarray, np.ndarray]: try: return self.termfreq_cache[term_id] except KeyError: term_posns = self.encoded_term_posns[term_id] doc_ids, term_freqs = self._computed_term_freqs(term_posns) if self._is_cached(term_id): self.termfreq_cache[term_id] = (doc_ids, term_freqs) return doc_ids, term_freqs def _is_cached(self, term_id: int) -> bool: return term_id in self.docfreq_cache def _docfreq_from_cache(self, term_id: int) -> np.uint64: return self.docfreq_cache[term_id] def _maybe_cache_docfreq(self, term_id: int, docfreq: np.uint64): if self.max_doc_id >= 100000 and docfreq > (self.max_doc_id // 100): self.docfreq_cache[term_id] = docfreq def docfreq(self, term_id: int) -> np.uint64: try: return self.docfreq_cache[term_id] except KeyError: encoded = self.encoded_term_posns[term_id] docfreq = np.uint64(encoder.keys_unique(encoded).size) self._maybe_cache_docfreq(term_id, docfreq) return docfreq def insert(self, key, term_ids_to_posns, is_encoded=False): new_posns = PosnBitArrayBuilder() if is_encoded: new_posns = PosnBitArrayAlreadyEncBuilder() max_doc_id = 0 for doc_id, new_posns_row in enumerate(term_ids_to_posns): for term_id, positions in new_posns_row: new_posns.add_posns(doc_id, term_id, positions) max_doc_id = max(doc_id, max_doc_id) new_posns.max_doc_id = max_doc_id ins_arr = new_posns.build() self.merge(ins_arr) @property def nbytes(self): arr_bytes = 0 for doc_id, posn in self.encoded_term_posns.items(): arr_bytes += posn.nbytes for term_id, (doc_ids, term_freqs) in self.termfreq_cache.items(): arr_bytes += doc_ids.nbytes arr_bytes += term_freqs.nbytes for term_id, docfreq in self.docfreq_cache.items(): arr_bytes += docfreq.nbytes return arr_bytes <fim_middle>
null
STATEMENT
complete_current_header_empty_completion
<filename>searcharray/searcharray/phrase/middle_out.py<fim_prefix>"""Encode positions in bits along with some neighboring information for wrapping. See this notebook for motivation: https://colab.research.google.com/drive/10tIEkdlCE_1J_CcgEcV0jkLfBc-0H4am?authuser=1#scrollTo=XWzy-n9dF3PG """ import numpy as np import sortednp as snp from copy import deepcopy from typing import List, Tuple, Dict, Union, cast, Optional from searcharray.utils.roaringish import RoaringishEncoder, convert_keys, sorted_unique import numbers import logging from collections import defaultdict from searcharray.utils.bitcount import bit_count64 logger = logging.getLogger(__name__) # When running in pytest import sys # noqa handler = logging.StreamHandler(sys.stdout) handler.setLevel(logging.ERROR) formatter = logging.Formatter("[%(filename)s:%(lineno)s - %(funcName)20s() ] %(message)s") handler.setFormatter(formatter) logger.addHandler(handler) logger.setLevel(logging.ERROR) encoder = RoaringishEncoder() # To not constantly type coerce _64 = np.uint64(64) _2 = np.uint64(2) _1 = np.uint64(1) _0 = np.uint64(0) _neg1 = np.int64(-1) MAX_POSN = encoder.max_payload def inner_bigram_freqs(lhs: np.ndarray, rhs: np.ndarray, phrase_freqs: np.ndarray) -> Tuple[np.ndarray, np.ndarray]: """Count bigram matches between two encoded arrays, within a 64 bit word with same MSBs. Returns: -------- count: number of matches per doc rhs_next: the next rhs array to continue matching """ lhs_int, rhs_int = encoder.intersect(lhs, rhs) lhs_doc_ids = encoder.keys(lhs_int) if len(lhs_int) != len(rhs_int): raise ValueError("Encoding error, MSBs apparently are duplicated among your encoded posn arrays.") if len(lhs_int) == 0: return phrase_freqs, rhs_int same_term = (len(lhs_int) == len(rhs_int) and lhs_int[0] == rhs_int[0]) if same_term: # Find adjacent matches rhs_shift = rhs_int << _1 overlap = lhs_int & rhs_shift overlap = encoder.payload_lsb(overlap) adjacents = bit_count64(overlap).astype(np.int64) adjacents -= -np.floor_divide(adjacents, -2) # ceiling divide phrase_freqs[lhs_doc_ids] += adjacents return phrase_freqs, rhs_int overlap_bits = (lhs_int & encoder.payload_lsb_mask) & ((rhs_int & encoder.payload_lsb_mask) >> _1) rhs_next2 = (overlap_bits << _1) & encoder.payload_lsb_mask rhs_next2 |= (rhs_int & (encoder.key_mask | encoder.payload_msb_mask)) phrase_freqs2 = phrase_freqs.copy() matches2 = overlap_bits > 0 if np.any(matches2): transitions = np.argwhere(np.diff(lhs_doc_ids[matches2]) != 0).flatten() + 1 transitions = np.insert(transitions, 0, 0) counted_bits = bit_count64(overlap_bits[matches2]) reduced = np.add.reduceat(counted_bits, transitions) phrase_freqs2[np.unique(lhs_doc_ids[matches2])] += reduced return phrase_freqs2, rhs_next2 def adjacent_bigram_freqs(lhs: np.ndarray, rhs: np.ndarray, phrase_freqs: np.ndarray) -> Tuple[np.ndarray, np.ndarray]: """Count bigram matches between two encoded arrays where they occur in adjacent 64 bit words. Returns: -------- count: number of matches per doc rhs_next: the next rhs array to continue matching """ lhs_int, rhs_int = encoder.intersect_rshift(lhs, rhs, rshift=_neg1) lhs_doc_ids = encoder.keys(lhs_int) # lhs lsb set and rhs lsb's most significant bit set upper_bit = _1 << (encoder.payload_lsb_bits - _1) matches = ((lhs_int & upper_bit) != 0) & ((rhs_int & _1) != 0) unique, counts = np.unique(lhs_doc_ids[matches], return_counts=True) phrase_freqs[unique] += counts rhs_next = rhs_int rhs_next[~matches] |= ~encoder.payload_lsb_mask rhs_next[matches] |= (encoder.payload_lsb_mask & _1) return phrase_freqs, rhs_next def bigram_freqs(lhs: np.ndarray, rhs: np.ndarray, phrase_freqs: np.ndarray) -> Tuple[np.ndarray, np.ndarray]: """Count bigram matches between two encoded arrays. Returns: -------- count: number of matches per doc rhs_next: the next rhs array to continue matching """ # Combine lhs and rhs matches from two strategies phrase_freqs, rhs_next_inner = inner_bigram_freqs(lhs, rhs, phrase_freqs) phrase_freqs, rhs_next_adj = adjacent_bigram_freqs(lhs, rhs, phrase_freqs) rhs_next = np.sort(np.concatenate([rhs_next_inner, rhs_next_adj])) # Combine return phrase_freqs, rhs_next def trim_phrase_search(encoded_posns: List[np.ndarray], phrase_freqs: np.ndarray) -> List[np.ndarray]: """Trim long phrases by searching the rarest terms first.""" # Start with rarest term shortest_keys = None shortest_idx = None min_len = 1e100 max_len = 0 for idx, enc_posn in enumerate(encoded_posns): if len(enc_posn) < min_len: shortest_keys = encoder.keys(enc_posn) shortest_idx = idx min_len = len(enc_posn) if len(enc_posn) > max_len: max_len = len(enc_posn) if shortest_keys is None: return encoded_posns for enc_posn_idx in range(len(encoded_posns)): if enc_posn_idx == shortest_idx: continue if len(encoded_posns[enc_posn_idx]) > (10 * min_len): encoded_posns[enc_posn_idx] = encoder.slice(encoded_posns[enc_posn_idx], shortest_keys) return encoded_posns def compute_phrase_freqs(encoded_posns: List[np.ndarray], phrase_freqs: np.ndarray) -> np.ndarray: if len(encoded_posns) < 2: raise ValueError("phrase must have at least two terms") # Trim long phrases by searching the rarest terms first if len(encoded_posns) > 3: encoded_posns = trim_phrase_search(encoded_posns, phrase_freqs) mask = np.ones(len(phrase_freqs), dtype=bool) lhs = encoded_posns[0] for rhs in encoded_posns[1:]: # Only count the count of the last bigram (ignoring the ones where priors did not match) phrase_freqs[mask] = 0 phrase_freqs, lhs = bigram_freqs(lhs, rhs, phrase_freqs) mask &= (phrase_freqs > 0) phrase_freqs[~mask] = 0 return phrase_freqs class PosnBitArrayFromFlatBuilder: """ Build from sorted array shape num terms x 3. 0th is term id 1st is doc id 2nd is posn Sorted by term id then posns """ def __init__(self, flat_array: np.ndarray): self.flat_array = flat_array def build(self): """Slice the flat array into a 2d array of doc ids and posns.""" term_boundaries = np.argwhere(np.diff(self.flat_array[0]) > 0).flatten() + 1 term_boundaries = np.concatenate([[0], term_boundaries, [len(self.flat_array[1])]]) encoded, enc_term_boundaries = encoder.encode(keys=self.flat_array[1].view(np.uint64), boundaries=term_boundaries[:-1], payload=self.flat_array[2].view(np.uint64)) term_ids = self.flat_array[0][term_boundaries[:-1]] encoded_term_posns = {} for into_terms, (beg_idx, end_idx) in enumerate(zip(enc_term_boundaries[:-1], enc_term_boundaries[1:])): sliced = encoded[beg_idx:end_idx] encoded_term_posns[term_ids[into_terms]] = sliced return PosnBitArray(encoded_term_posns, self.flat_array[1].max()) class PosnBitArrayBuilder: def __init__(self): self.term_posns = defaultdict(list) self.term_posn_doc_ids = defaultdict(list) self.max_doc_id = 0 def add_posns(self, doc_id: int, term_id: int, posns: List[int]): doc_ids = [doc_id] * len(posns) self.term_posns[term_id].extend(posns) self.term_posn_doc_ids[term_id].extend(doc_ids) def ensure_capacity(self, doc_id): self.max_doc_id = max(self.max_doc_id, doc_id) def build(self, check=False): encoded_term_posns = {} for term_id, posns in self.term_posns.items(): if len(posns) == 0: posns = np.asarray([], dtype=np.uint32).flatten() elif isinstance(posns, list): posns_arr = np.asarray(posns, dtype=np.uint32).flatten() posns = posns_arr doc_ids = self.term_posn_doc_ids[term_id] if isinstance(doc_ids, list): doc_ids = np.asarray(doc_ids, dtype=np.uint32) encoded = encoder.encode(keys=doc_ids, payload=posns) if check: decode_again = encoder.decode(encoded) docs_to_posns = dict(decode_again) doc_ids_again = [] posns_again = [] for doc_id, posns_dec in docs_to_posns.items(): for posn in posns_dec: doc_ids_again.append(doc_id) posns_again.append(posn) assert np.array_equal(doc_ids_again, doc_ids) assert np.array_equal(posns, posns_again) encoded_term_posns[term_id] = encoded return PosnBitArray(encoded_term_posns, self.max_doc_id) class PosnBitArrayAlreadyEncBuilder: def __init__(self): self.encoded_term_posns = {} self.max_doc_id = 0 def add_posns(self, doc_id: int, term_id: int, posns): self.encoded_term_posns[term_id] = posns def ensure_capacity(self, doc_id): self.max_doc_id = max(self.max_doc_id, doc_id) def build(self, check=False): return PosnBitArray(self.encoded_term_posns, self.max_doc_id) def index_range(rng, key): if key is None: return rng if isinstance(rng, np.ndarray): return rng[key] if isinstance(key, slice): return rng[key] elif isinstance(key, numbers.Number): return rng[key] elif isinstance(key, np.ndarray): try: # UNFORTUNATE COPY r_val = np.asarray(list(rng))[key] return r_val except IndexError as e: raise e # Last resort # UNFORTUNATE COPY # Here probably elipses or a tuple of various things return np.asarray(list(rng))[key] class PosnBitArray: def __init__(self, encoded_term_posns, max_doc_id: int): self.encoded_term_posns = encoded_term_posns self.max_doc_id = max_doc_id self.docfreq_cache : Dict[int, np.uint64] = {} self.termfreq_cache : Dict[int, Tuple[np.ndarray, np.ndarray]] = {} def copy(self): new = PosnBitArray(deepcopy(self.encoded_term_posns), self.max_doc_id) return new def concat(self, other): """Merge other into self. Assumes other's doc ids are not overlapping with self's doc ids. """ # Shared terms shared_terms = set(self.encoded_term_posns.keys()).intersection(set(other.encoded_term_posns.keys())) for term_id in shared_terms: # Append then sort self.encoded_term_posns[term_id] = np.concatenate([self.encoded_term_posns[term_id], other.encoded_term_posns[term_id]]) self.encoded_term_posns[term_id].sort() only_other_terms = set(other.encoded_term_posns.keys()).difference(set(self.encoded_term_posns.keys())) for term_id in only_other_terms: self.encoded_term_posns[term_id] = other.encoded_term_posns[term_id] self.max_doc_id = max(self.max_doc_id, other.max_doc_id) # Empty caches self.termfreq_cache = {} self.docfreq_cache = {} def slice(self, key): sliced_term_posns = {} doc_ids = convert_keys(key) max_doc_id = np.max(doc_ids) for term_id, posns in self.encoded_term_posns.items(): encoded = self.encoded_term_posns[term_id] assert len(encoded.shape) == 1 sliced_term_posns[term_id] = encoder.slice(encoded, keys=doc_ids) return PosnBitArray(sliced_term_posns, max_doc_id) def __getitem__(self, key): return self.slice(key) def merge(self, other): # Unique terms unique_terms = set(self.encoded_term_posns.keys()).union(set(other.encoded_term_posns.keys())) for term_id in unique_terms: if term_id not in other.encoded_term_posns: continue elif term_id not in self.encoded_term_posns: self.encoded_term_posns[term_id] = other.encoded_term_posns[term_id] else: posns_self = self.encoded_term_posns[term_id] posns_other = other.encoded_term_posns[term_id] self.encoded_term_posns[term_id] = snp.merge(posns_self, posns_other) self.max_doc_id = self.max_doc_id + other.max_doc_id # Empty caches self.termfreq_cache = {} self.docfreq_cache = {} def doc_encoded_posns(self, term_id: int, doc_id: int) -> np.ndarray: term_posns = encoder.slice(self.encoded_term_posns[term_id], keys=np.asarray([doc_id], dtype=np.uint64)) return term_posns def phrase_freqs(self, term_ids: List[int], phrase_freqs: np.ndarray, doc_ids: np.ndarray) -> np.ndarray: if len(term_ids) < 2: raise ValueError("Must have at least two terms") if phrase_freqs.shape[0] == self.max_doc_id + 1: enc_term_posns = [self.encoded_term_posns[term_id] for term_id in term_ids] else: enc_term_posns = [encoder.slice(self.encoded_term_posns[term_id], keys=doc_ids.view(np.uint64)) for term_id in term_ids] return compute_phrase_freqs(enc_term_posns, phrase_freqs) def positions(self, term_id: int, doc_ids) -> Union[List[np.ndarray], np.ndarray]: if isinstance(doc_ids, numbers.Number): doc_ids = np.asarray([doc_ids]) try: np_doc_ids = convert_keys(doc_ids) term_posns = encoder.slice(self.encoded_term_posns[term_id], keys=np_doc_ids) except KeyError: r_val = [np.array([], dtype=np.uint32) for doc_id in doc_ids] if len(r_val) == 1 and len(doc_ids) == 1 and isinstance(doc_ids[0], numbers.Number): return [r_val[0]] return r_val decoded = encoder.decode(encoded=term_posns, get_keys=True) if len(decoded) == 0: return [np.array([], dtype=np.uint32)] if len(decoded) != len(doc_ids): # Fill non matches decoded = cast(List[Tuple[np.uint64, np.ndarray]], decoded) as_dict: Dict[np.uint64, np.ndarray] = dict(decoded) decs = [] for doc_id in doc_ids: if doc_id in as_dict: decs.append(as_dict[doc_id]) else: decs.append(np.array([], dtype=np.uint32)) retu<fim_suffix>rn decs else: decs = [dec[1] for dec in decoded] return decs def termfreqs(self, term_id: int, doc_ids: Optional[np.ndarray] = None) -> Tuple[np.ndarray, np.ndarray]: """Count term freqs using unique positions.""" if doc_ids is None: return self._termfreqs_with_cache(term_id) encoded = self.encoded_term_posns[term_id] term_posns = encoded term_posns = encoder.slice(encoded, keys=doc_ids.astype(np.uint64)) return self._computed_term_freqs(term_posns) def _computed_term_freqs(self, term_posns) -> Tuple[np.ndarray, np.ndarray]: doc_ids = encoder.keys(term_posns) change_indices = np.nonzero(np.diff(doc_ids))[0] change_indices = np.concatenate((np.asarray([0]), change_indices + 1)) posns = term_posns & encoder.payload_lsb_mask bit_counts = bit_count64(posns) term_freqs = np.add.reduceat(bit_counts, change_indices) return sorted_unique(doc_ids), term_freqs def _termfreqs_with_cache(self, term_id: int) -> Tuple[np.ndarray, np.ndarray]: try: return self.termfreq_cache[term_id] except KeyError: term_posns = self.encoded_term_posns[term_id] doc_ids, term_freqs = self._computed_term_freqs(term_posns) if self._is_cached(term_id): self.termfreq_cache[term_id] = (doc_ids, term_freqs) return doc_ids, term_freqs def _is_cached(self, term_id: int) -> bool: return term_id in self.docfreq_cache def _docfreq_from_cache(self, term_id: int) -> np.uint64: return self.docfreq_cache[term_id] def _maybe_cache_docfreq(self, term_id: int, docfreq: np.uint64): if self.max_doc_id >= 100000 and docfreq > (self.max_doc_id // 100): self.docfreq_cache[term_id] = docfreq def docfreq(self, term_id: int) -> np.uint64: try: return self.docfreq_cache[term_id] except KeyError: encoded = self.encoded_term_posns[term_id] docfreq = np.uint64(encoder.keys_unique(encoded).size) self._maybe_cache_docfreq(term_id, docfreq) return docfreq def insert(self, key, term_ids_to_posns, is_encoded=False): new_posns = PosnBitArrayBuilder() if is_encoded: new_posns = PosnBitArrayAlreadyEncBuilder() max_doc_id = 0 for doc_id, new_posns_row in enumerate(term_ids_to_posns): for term_id, positions in new_posns_row: new_posns.add_posns(doc_id, term_id, positions) max_doc_id = max(doc_id, max_doc_id) new_posns.max_doc_id = max_doc_id ins_arr = new_posns.build() self.merge(ins_arr) @property def nbytes(self): arr_bytes = 0 for doc_id, posn in self.encoded_term_posns.items(): arr_bytes += posn.nbytes for term_id, (doc_ids, term_freqs) in self.termfreq_cache.items(): arr_bytes += doc_ids.nbytes arr_bytes += term_freqs.nbytes for term_id, docfreq in self.docfreq_cache.items(): arr_bytes += docfreq.nbytes return arr_bytes <fim_middle>
null
STATEMENT
complete_current_header_empty_completion
<filename>searcharray/searcharray/solr.py<fim_prefix>"""Utility functions for Solr users of searcharray.""" import re import pandas as pd import numpy as np from typing import List, Optional, Dict, Tuple from searcharray.postings import SearchArray from searcharray.similarity import Similarity, default_bm25 def parse_min_should_match(num_clauses: int, spec: str) -> int: """Parse Solr's min should match (ie mm) spec. See this ChatGPT translation of mm code from Solr's Java code for parsing this https://chat.openai.com/share/76642aec-7e05-420f-a53a-83b8e2eea8fb Parameters ---------- num_clauses : int spec : str Returns ------- int : the number of clauses that must match """ def checked_parse_int(value, error_message): try: return int(value) except ValueError: raise ValueError(error_message) result = num_clauses spec = spec.strip() if '<' in spec: # we have conditional spec(s) space_around_less_than_pattern = re.compile(r'\s*<\s*') spec = space_around_less_than_pattern.sub('<', spec) for s in spec.split(): parts = s.split('<', 1) if len(parts) < 2: raise ValueError("Invalid 'mm' spec: '" + s + "'. Expecting values before and after '<'") upper_bound = checked_parse_int(parts[0], "Invalid 'mm' spec. Expecting an integer.") if num_clauses <= upper_bound: return result else: result = parse_min_should_match(num_clauses, parts[1]) return result # otherwise, simple expression if '%' in spec: # percentage - assume the % was the last char. If not, let int() fail. spec = spec[:-1] percent = checked_parse_int(spec, "Invalid 'mm' spec. Expecting an integer.") calc = (result * percent) * (1 / 100) result = result + int(calc) if calc < 0 else int(calc) else: calc = checked_parse_int(spec, "Invalid 'mm' spec. Expecting an integer.") result = result + calc if calc < 0 else calc return min(num_clauses, max(result, 0)) def parse_field_boosts(field_lists: List[str]) -> dict: """Parse Solr's qf, pf, pf2, pf3 field boosts.""" if not field_lists: return {} out = {} carat_pattern = re.compile(r'\^') for field in field_lists: parts = carat_pattern.split(field) out[parts[0]] = None if len(parts) == 1 else float(parts[1]) return out def get_field(frame, field) -> SearchArray: if field not in frame.columns: raise ValueError(f"Field {field} not in dataframe") if not isinstance(frame[field].array, SearchArray): raise ValueError(f"Field {field} is not a searcharray field") return frame[field].array def parse_query_terms(frame: pd.DataFrame, query: str, query_fields: List[str]): search_terms: Dict[str, List[str]] = {} num_search_terms = 0 term_centric = True for field in query_fields: arr = get_field(frame, field) tokenizer = arr.tokenizer search_terms[field] = [] field_num_search_terms = 0 for posn, term in enumerate(tokenizer(query)): search_terms[field].append(term) field_num_search_terms += 1 if num_search_terms == 0: num_search_terms = field_num_search_terms elif field_num_search_terms != num_search_terms: term_centric = False return num_search_terms, search_terms, term_centric def _edismax_term_centric(frame: pd.DataFrame, query_fields: Dict[str, float], num_search_terms: int, search_terms: Dict[str, List[str]], mm: str, similarity: Similarity) -> Tuple[np.ndarray, str]: explain = [] term_scores = [] for term_posn in range(num_search_terms): max_scores = np.zeros(len(frame)) term_explain = [] for field, boost in query_fi<fim_suffix>elds.items(): term = search_terms[field][term_posn] post_arr = get_field(frame, field) field_term_score = post_arr.score(term, similarity=similarity) * (1 if boost is None else boost) boost_exp = f"{boost}" if boost is not None else "1" term_explain.append(f"{field}:{term}^{boost_exp}") max_scores = np.maximum(max_scores, field_term_score) term_scores.append(max_scores) explain.append("(" + " | ".join(term_explain) + ")") min_should_match = parse_min_should_match(num_search_terms, spec=mm) qf_scores = np.asarray(term_scores) matches_gt_mm = np.sum(qf_scores > 0, axis=0) >= min_should_match qf_scores = np.sum(term_scores, axis=0) qf_scores[~matches_gt_mm] = 0 return qf_scores, "(" + " ".join(explain) + f")~{min_should_match}" def _edismax_field_centric(frame: pd.DataFrame, query_fields: Dict[str, float], num_search_terms: int, search_terms: Dict[str, List[str]], mm: str, similarity: Similarity = default_bm25) -> Tuple[np.ndarray, str]: field_scores = [] explain = [] for field, boost in query_fields.items(): post_arr = get_field(frame, field) term_scores = np.array([post_arr.score(term, similarity=similarity) for term in search_terms[field]]) min_should_match = parse_min_should_match(len(search_terms[field]), spec=mm) exp = " ".join([f"{field}:{term}" for term in search_terms[field]]) boost_exp = f"{boost}" if boost is not None else "1" exp = "(" + exp + f")~{min(min_should_match, len(search_terms[field]))}" exp = "(" + exp + f")^{boost_exp}" matches_gt_mm = np.sum(term_scores > 0, axis=0) >= min(min_should_match, len(search_terms[field])) sum_terms_bm25 = np.sum(term_scores, axis=0) sum_terms_bm25[~matches_gt_mm] = 0 field_scores.append(sum_terms_bm25 * (1 if boost is None else boost)) explain.append(exp) # Take maximum field scores as qf qf_scores = np.asarray(field_scores) qf_scores = np.max(qf_scores, axis=0) return qf_scores, " | ".join(explain) def edismax(frame: pd.DataFrame, q: str, qf: List[str], mm: Optional[str] = None, pf: Optional[List[str]] = None, pf2: Optional[List[str]] = None, pf3: Optional[List[str]] = None, q_op: str = "OR", similarity: Similarity = default_bm25) -> Tuple[np.ndarray, str]: """Run edismax search over dataframe with searcharray fields. Parameters ---------- q : str The query string mm : str The minimum should match spec qf : list The fields to search pf : list The fields to search for phrase matches pf2 : list The fields to search for bigram matches pf3 : list The fields to search for trigram matches q_op : str, optional The default operator, by default "OR" Returns ------- np.ndarray The search results """ def listify(x): return x if isinstance(x, list) else [x] query_fields = parse_field_boosts(listify(qf)) phrase_fields = parse_field_boosts(listify(pf)) if pf else {} if mm is None: mm = "1" if q_op == "AND": mm = "100%" # bigram_fields = parse_field_boosts(pf2) if pf2 else {} # trigram_fields = parse_field_boosts(pf3) if pf3 else {} num_search_terms, search_terms, term_centric = parse_query_terms(frame, q, list(query_fields.keys())) if term_centric: qf_scores, explain = _edismax_term_centric(frame, query_fields, num_search_terms, search_terms, mm, similarity=similarity) else: qf_scores, explain = _edismax_field_centric(frame, query_fields, num_search_terms, search_terms, mm, similarity=similarity) phrase_scores = [] for field, boost in phrase_fields.items(): arr = get_field(frame, field) terms = search_terms[field] field_phrase_score = arr.score(terms, similarity=similarity) * (1 if boost is None else boost) boost_exp = f"{boost}" if boost is not None else "1" explain += f" ({field}:\"{' '.join(terms)}\")^{boost_exp}" phrase_scores.append(field_phrase_score) if len(phrase_scores) > 0: phrase_scores = np.sum(phrase_scores, axis=0) # Add where term_scores > 0 term_match_idx = np.where(qf_scores)[0] qf_scores[term_match_idx] += phrase_scores[term_match_idx] return qf_scores, explain <fim_middle>
null
FOR
complete_current_header_empty_completion
<filename>searcharray/searcharray/solr.py<fim_prefix>"""Utility functions for Solr users of searcharray.""" import re import pandas as pd import numpy as np from typing import List, Optional, Dict, Tuple from searcharray.postings import SearchArray from searcharray.similarity import Similarity, default_bm25 def parse_min_should_match(num_clauses: int, spec: str) -> int: """Parse Solr's min should match (ie mm) spec. See this ChatGPT translation of mm code from Solr's Java code for parsing this https://chat.openai.com/share/76642aec-7e05-420f-a53a-83b8e2eea8fb Parameters ---------- num_clauses : int spec : str Returns ------- int : the number of clauses that must match """ def checked_parse_int(value, error_message): try: return int(value) except ValueError: raise ValueError(error_message) result = num_clauses spec = spec.strip() if '<' in spec: # we have conditional spec(s) space_around_less_than_pattern = re.compile(r'\s*<\s*') spec = space_around_less_than_pattern.sub('<', spec) for s in spec.split(): parts = s.split('<', 1) if len(parts) < 2: raise ValueError("Invalid 'mm' spec: '" + s + "'. Expecting values before and after '<'") upper_bound = checked_parse_int(parts[0], "Invalid 'mm' spec. Expecting an integer.") if num_clauses <= upper_bound: return result else: result = parse_min_should_match(num_clauses, parts[1]) return result # otherwise, simple expression if '%' in spec: # percentage - assume the % was the last char. If not, let int() fail. spec = spec[:-1] percent = checked_parse_int(spec, "Invalid 'mm' spec. Expecting an integer.") calc = (result * percent) * (1 / 100) result = result + int(calc) if calc < 0 else int(calc) else: calc = checked_parse_int(spec, "Invalid 'mm' spec. Expecting an integer.") result = result + calc if calc < 0 else calc return min(num_clauses, max(result, 0)) def parse_field_boosts(field_lists: List[str]) -> dict: """Parse Solr's qf, pf, pf2, pf3 field boosts.""" if not field_lists: return {} out = {} carat_pattern = re.compile(r'\^') for field in field_lists: parts = carat_pattern.split(field) out[parts[0]] = None if len(parts) == 1 else float(parts[1]) return out def get_field(frame, field) -> SearchArray: if field not in frame.columns: raise ValueError(f"Field {field} not in dataframe") if not isinstance(frame[field].array, SearchArray): raise ValueError(f"Field {field} is not a searcharray field") return frame[field].array def parse_query_terms(frame: pd.DataFrame, query: str, query_fields: List[str]): search_terms: Dict[str, List[str]] = {} num_search_terms = 0 term_centric = True for field in que<fim_suffix>ry_fields: arr = get_field(frame, field) tokenizer = arr.tokenizer search_terms[field] = [] field_num_search_terms = 0 for posn, term in enumerate(tokenizer(query)): search_terms[field].append(term) field_num_search_terms += 1 if num_search_terms == 0: num_search_terms = field_num_search_terms elif field_num_search_terms != num_search_terms: term_centric = False return num_search_terms, search_terms, term_centric def _edismax_term_centric(frame: pd.DataFrame, query_fields: Dict[str, float], num_search_terms: int, search_terms: Dict[str, List[str]], mm: str, similarity: Similarity) -> Tuple[np.ndarray, str]: explain = [] term_scores = [] for term_posn in range(num_search_terms): max_scores = np.zeros(len(frame)) term_explain = [] for field, boost in query_fields.items(): term = search_terms[field][term_posn] post_arr = get_field(frame, field) field_term_score = post_arr.score(term, similarity=similarity) * (1 if boost is None else boost) boost_exp = f"{boost}" if boost is not None else "1" term_explain.append(f"{field}:{term}^{boost_exp}") max_scores = np.maximum(max_scores, field_term_score) term_scores.append(max_scores) explain.append("(" + " | ".join(term_explain) + ")") min_should_match = parse_min_should_match(num_search_terms, spec=mm) qf_scores = np.asarray(term_scores) matches_gt_mm = np.sum(qf_scores > 0, axis=0) >= min_should_match qf_scores = np.sum(term_scores, axis=0) qf_scores[~matches_gt_mm] = 0 return qf_scores, "(" + " ".join(explain) + f")~{min_should_match}" def _edismax_field_centric(frame: pd.DataFrame, query_fields: Dict[str, float], num_search_terms: int, search_terms: Dict[str, List[str]], mm: str, similarity: Similarity = default_bm25) -> Tuple[np.ndarray, str]: field_scores = [] explain = [] for field, boost in query_fields.items(): post_arr = get_field(frame, field) term_scores = np.array([post_arr.score(term, similarity=similarity) for term in search_terms[field]]) min_should_match = parse_min_should_match(len(search_terms[field]), spec=mm) exp = " ".join([f"{field}:{term}" for term in search_terms[field]]) boost_exp = f"{boost}" if boost is not None else "1" exp = "(" + exp + f")~{min(min_should_match, len(search_terms[field]))}" exp = "(" + exp + f")^{boost_exp}" matches_gt_mm = np.sum(term_scores > 0, axis=0) >= min(min_should_match, len(search_terms[field])) sum_terms_bm25 = np.sum(term_scores, axis=0) sum_terms_bm25[~matches_gt_mm] = 0 field_scores.append(sum_terms_bm25 * (1 if boost is None else boost)) explain.append(exp) # Take maximum field scores as qf qf_scores = np.asarray(field_scores) qf_scores = np.max(qf_scores, axis=0) return qf_scores, " | ".join(explain) def edismax(frame: pd.DataFrame, q: str, qf: List[str], mm: Optional[str] = None, pf: Optional[List[str]] = None, pf2: Optional[List[str]] = None, pf3: Optional[List[str]] = None, q_op: str = "OR", similarity: Similarity = default_bm25) -> Tuple[np.ndarray, str]: """Run edismax search over dataframe with searcharray fields. Parameters ---------- q : str The query string mm : str The minimum should match spec qf : list The fields to search pf : list The fields to search for phrase matches pf2 : list The fields to search for bigram matches pf3 : list The fields to search for trigram matches q_op : str, optional The default operator, by default "OR" Returns ------- np.ndarray The search results """ def listify(x): return x if isinstance(x, list) else [x] query_fields = parse_field_boosts(listify(qf)) phrase_fields = parse_field_boosts(listify(pf)) if pf else {} if mm is None: mm = "1" if q_op == "AND": mm = "100%" # bigram_fields = parse_field_boosts(pf2) if pf2 else {} # trigram_fields = parse_field_boosts(pf3) if pf3 else {} num_search_terms, search_terms, term_centric = parse_query_terms(frame, q, list(query_fields.keys())) if term_centric: qf_scores, explain = _edismax_term_centric(frame, query_fields, num_search_terms, search_terms, mm, similarity=similarity) else: qf_scores, explain = _edismax_field_centric(frame, query_fields, num_search_terms, search_terms, mm, similarity=similarity) phrase_scores = [] for field, boost in phrase_fields.items(): arr = get_field(frame, field) terms = search_terms[field] field_phrase_score = arr.score(terms, similarity=similarity) * (1 if boost is None else boost) boost_exp = f"{boost}" if boost is not None else "1" explain += f" ({field}:\"{' '.join(terms)}\")^{boost_exp}" phrase_scores.append(field_phrase_score) if len(phrase_scores) > 0: phrase_scores = np.sum(phrase_scores, axis=0) # Add where term_scores > 0 term_match_idx = np.where(qf_scores)[0] qf_scores[term_match_idx] += phrase_scores[term_match_idx] return qf_scores, explain <fim_middle>
null
FOR
complete_current_header_empty_completion
<filename>searcharray/searcharray/solr.py<fim_prefix>"""Utility functions for Solr users of searcharray.""" import re import pandas as pd import numpy as np from typing import List, Optional, Dict, Tuple from searcharray.postings import SearchArray from searcharray.similarity import Similarity, default_bm25 def parse_min_should_match(num_clauses: int, spec: str) -> int: """Parse Solr's min should match (ie mm) spec. See this ChatGPT translation of mm code from Solr's Java code for parsing this https://chat.openai.com/share/76642aec-7e05-420f-a53a-83b8e2eea8fb Parameters ---------- num_clauses : int spec : str Returns ------- int : the number of clauses that must match """ def checked_parse_int(value, error_message): try: return int(value) except ValueError: raise ValueError(error_message) result = num_clauses spec = spec.strip() if '<' in spec: # we have conditional spec(s) space_around_less_than_pattern = re.compile(r'\s*<\s*') spec = space_around_less_than_pattern.sub('<', spec) for s in spec.split(): parts = s.split('<', 1) if len(parts) < 2: raise ValueError("Invalid 'mm' spec: '" + s + "'. Expecting values before and after '<'") upper_bound = checked_parse_int(parts[0], "Invalid 'mm' spec. Expecting an integer.") if num_clauses <= upper_bound: return result else: result = parse_min_should_match(num_clauses, parts[1]) return result # otherwise, simple expression if '%' in spec: # percentage - assume the % was the last char. If not, let int() fail. spec = spec[:-1] percent = checked_parse_int(spec, "Invalid 'mm' spec. Expecting an integer.") calc = (result * percent) * (1 / 100) result = result + int(calc) if calc < 0 else int(calc) else: calc = checked_parse_int(spec, "Invalid 'mm' spec. Expecting an integer.") result = result + calc if calc < 0 else calc return min(num_clauses, max(result, 0)) def parse_field_boosts(field_lists: List[str]) -> dict: """Parse Solr's qf, pf, pf2, pf3 field boosts.""" if not field_lists: return {} out = {} carat_pattern = re.compile(r'\^') for field in field_lists: parts = carat_pattern.split(field) out[parts[0]] = None if len(parts) == 1 else float(parts[1]) return out def get_field(frame, field) -> SearchArray: if field not in frame.columns: raise ValueError(f"Field {field} not in dataframe") if not isinstance(frame[field].array, SearchArray): raise ValueError(f"Field {field} is not a searcharray field") return frame[field].array def parse_query_terms(frame: pd.DataFrame, query: str, query_fields: List[str]): search_terms: Dict[str, List[str]] = {} num_search_terms = 0 term_centric = True for field in query_fields: arr = get_field(frame, field) tokenizer = arr.tokenizer search_terms[field] = [] field_num_search_terms = 0 for posn, term in enumerate(tokenizer(query)): search_terms[field].append(term) field_num_search_terms += 1 if num_search_terms == 0: num_search_terms = field_num_search_terms elif field_num_search_terms != num_search_terms: term_centric = False return num_search_terms, search_terms, term_centric def _edismax_term_centric(frame: pd.DataFrame, query_fields: Dict[str, float], num_search_terms: int, search_terms: Dict[str, List[str]], mm: str, similarity: Similarity) -> Tuple[np.ndarray, str]: explain = [] term_scores = [] for term_posn in range(num_search_terms): max_scores = np.zeros(len(frame)) term_explain = [] for field, boost in query_fields.items(): term = search_terms[field][term_posn] post_arr = get_field(frame, field) field_term_score = post_arr.score(term, similarity=similarity) * (1 if boost is None else boost) boost_exp = f"{boost}" if boost is not None else "1" term_explain.append(f"{field}:{term}^{boost_exp}") max_scores = np.maximum(max_scores, field_term_score) term_scores.append(max_scores) explain.append("(" + " | ".join(term_explain) + ")") min_should_match = parse_min_should_match(num_search_terms, spec=mm) qf_scores = np.asarray(term_scores) matches_gt_mm = np.sum(qf_scores > 0, axis=0) >= min_should_match qf_scores = np.sum(term_scores, axis=0) qf_scores[~matches_gt_mm] = 0 return qf_scores, "(" + " ".join(explain) + f")~{min_should_match}" def _edismax_field_centric(frame: pd.DataFrame, query_fields: Dict[str, float], num_search_terms: int, search_terms: Dict[str, List[str]], mm: str, similarity: Similarity = default_bm25) -> Tuple[np.ndarray, str]: field_scores = [] explain = [] for field, boost in query_fields.items(): post_arr = get_field(frame, field) term_scores = np.array([post_arr.score(term, similarity=similarity) for term in search_terms[field]]) min_should_match = parse_min_should_match(len(search_terms[field]), spec=mm) exp = " ".join([f"{field}:{term}" for term in search_terms[field]]) boost_exp = f"{boost}" if boost is not None else "1" exp = "(" + exp + f")~{min(min_should_match, len(search_terms[field]))}" exp = "(" + exp + f")^{boost_exp}" matches_gt_mm = np.sum(term_scores > 0, axis=0) >= min(min_should_match, len(search_terms[field])) sum_terms_bm25 = np.sum(term_scores, axis=0) sum_terms_bm25[~matches_gt_mm] = 0 field_scores.append(sum_terms_bm25 * (1 if boost is None else boost)) explain.append(exp) # Take maximum field scores as qf qf_scores = np.asarray(field_scores) qf_scores = np.max(qf_scores, axis=0) return qf_scores, " | ".join(explain) def edismax(frame: pd.DataFrame, q: str, qf: List[str], mm: Optional[str] = None, pf: Optional[List[str]] = None, pf2: Optional[List[str]] = None, pf3: Optional[List[str]] = None, q_op: str = "OR", similarity: Similarity = default_bm25) -> Tuple[np.ndarray, str]: """Run edismax search over dataframe with searcharray fields. Parameters ---------- q : str The query string mm : str The minimum should match spec qf : list The fields to search pf : list The fields to search for phrase matches pf2 : list The fields to search for bigram matches pf3 : list The fields to search for trigram matches q_op : str, optional The default operator, by default "OR" Returns ------- np.ndarray The search results """ def listify(x): return x if isinstance(x, list) else [x] query_fields = parse_field_boosts(listify(qf)) phrase_fields = parse_field_boosts(listify(pf)) if pf else {} if mm is None: mm = "1" if q_op == "AND": mm = "100%" # bigram_fields = parse_field_boosts(pf2) if pf2 else {} # trigram_fields = parse_field_boosts(pf3) if pf3 else {} num_search_terms, search_terms, term_centric = parse_query_terms(frame, q, list(query_fields.keys())) if term_centric: qf_scores, explain = _edismax_term_centric(frame, query_fields, num_search_terms, search_terms, mm, similarity=similarity) else: qf_scores, explain = _edismax_field_centric(frame, query_fields, num_search_terms, search_terms, mm, similarity=similarity) phrase_scores = [] for field, boost in phrase_fields.ite<fim_suffix>ms(): arr = get_field(frame, field) terms = search_terms[field] field_phrase_score = arr.score(terms, similarity=similarity) * (1 if boost is None else boost) boost_exp = f"{boost}" if boost is not None else "1" explain += f" ({field}:\"{' '.join(terms)}\")^{boost_exp}" phrase_scores.append(field_phrase_score) if len(phrase_scores) > 0: phrase_scores = np.sum(phrase_scores, axis=0) # Add where term_scores > 0 term_match_idx = np.where(qf_scores)[0] qf_scores[term_match_idx] += phrase_scores[term_match_idx] return qf_scores, explain <fim_middle>
null
FOR
complete_current_header_empty_completion
<filename>searcharray/searcharray/solr.py<fim_prefix>"""Utility functions for Solr users of searcharray.""" import re import pandas as pd import numpy as np from typing import List, Optional, Dict, Tuple from searcharray.postings import SearchArray from searcharray.similarity import Similarity, default_bm25 def parse_min_should_match(num_clauses: int, spec: str) -> int: """Parse Solr's min should match (ie mm) spec. See this ChatGPT translation of mm code from Solr's Java code for parsing this https://chat.openai.com/share/76642aec-7e05-420f-a53a-83b8e2eea8fb Parameters ---------- num_clauses : int spec : str Returns ------- int : the number of clauses that must match """ def checked_parse_int(value, error_message): try: return int(value) except ValueError: raise ValueError(error_message) result = num_clauses spec = spec.strip() if '<' in spec: # we have conditional spec(s) space_around_less_than_pattern = re.compile(r'\s*<\s*') spec = space_around_less_than_pattern.sub('<', spec) for s in spec.split(): parts = s.split('<', 1) if len(parts) < 2: raise ValueError("Invalid 'mm' spec: '" + s + "'. Expecting values before and after '<'") upper_bound = checked_parse_int(parts[0], "Invalid 'mm' spec. Expecting an integer.") if num_clauses <= upper_bound: return result else: result = parse_min_should_match(num_clauses, parts[1]) return result # otherwise, simple expression if '%' in spec: # percentage - assume the % was the last char. If not, let int() fail. spec = spec[:-1] percent = checked_parse_int(spec, "Invalid 'mm' spec. Expecting an integer.") calc = (result * percent) * (1 / 100) result = result + int(calc) if calc < 0 else int(calc) else: calc = checked_parse_int(spec, "Invalid 'mm' spec. Expecting an integer.") result = result + calc if calc < 0 else calc return min(num_clauses, max(result, 0)) def parse_field_boosts(field_lists: List[str]) -> dict: """Parse Solr's qf, pf, pf2, pf3 field boosts.""" if not field_lists: return {} out = {} carat_pattern = re.compile(r'\^') for field in field_lists: parts = carat_pattern.split(field) out[parts[0]] = None if len(parts) == 1 else float(parts[1]) return out def get_field(frame, field) -> SearchArray: if field not in frame.columns: raise ValueError(f"Field {field} not in dataframe") if not isinstance(frame[field].array, SearchArray): raise ValueError(f"Field {field} is not a searcharray field") return frame[field].array def parse_query_terms(frame: pd.DataFrame, query: str, query_fields: List[str]): search_terms: Dict[str, List[str]] = {} num_search_terms = 0 term_centric = True for field in query_fields: arr = get_field(frame, field) tokenizer = arr.tokenizer search_terms[field] = [] field_num_search_terms = 0 for po<fim_suffix>sn, term in enumerate(tokenizer(query)): search_terms[field].append(term) field_num_search_terms += 1 if num_search_terms == 0: num_search_terms = field_num_search_terms elif field_num_search_terms != num_search_terms: term_centric = False return num_search_terms, search_terms, term_centric def _edismax_term_centric(frame: pd.DataFrame, query_fields: Dict[str, float], num_search_terms: int, search_terms: Dict[str, List[str]], mm: str, similarity: Similarity) -> Tuple[np.ndarray, str]: explain = [] term_scores = [] for term_posn in range(num_search_terms): max_scores = np.zeros(len(frame)) term_explain = [] for field, boost in query_fields.items(): term = search_terms[field][term_posn] post_arr = get_field(frame, field) field_term_score = post_arr.score(term, similarity=similarity) * (1 if boost is None else boost) boost_exp = f"{boost}" if boost is not None else "1" term_explain.append(f"{field}:{term}^{boost_exp}") max_scores = np.maximum(max_scores, field_term_score) term_scores.append(max_scores) explain.append("(" + " | ".join(term_explain) + ")") min_should_match = parse_min_should_match(num_search_terms, spec=mm) qf_scores = np.asarray(term_scores) matches_gt_mm = np.sum(qf_scores > 0, axis=0) >= min_should_match qf_scores = np.sum(term_scores, axis=0) qf_scores[~matches_gt_mm] = 0 return qf_scores, "(" + " ".join(explain) + f")~{min_should_match}" def _edismax_field_centric(frame: pd.DataFrame, query_fields: Dict[str, float], num_search_terms: int, search_terms: Dict[str, List[str]], mm: str, similarity: Similarity = default_bm25) -> Tuple[np.ndarray, str]: field_scores = [] explain = [] for field, boost in query_fields.items(): post_arr = get_field(frame, field) term_scores = np.array([post_arr.score(term, similarity=similarity) for term in search_terms[field]]) min_should_match = parse_min_should_match(len(search_terms[field]), spec=mm) exp = " ".join([f"{field}:{term}" for term in search_terms[field]]) boost_exp = f"{boost}" if boost is not None else "1" exp = "(" + exp + f")~{min(min_should_match, len(search_terms[field]))}" exp = "(" + exp + f")^{boost_exp}" matches_gt_mm = np.sum(term_scores > 0, axis=0) >= min(min_should_match, len(search_terms[field])) sum_terms_bm25 = np.sum(term_scores, axis=0) sum_terms_bm25[~matches_gt_mm] = 0 field_scores.append(sum_terms_bm25 * (1 if boost is None else boost)) explain.append(exp) # Take maximum field scores as qf qf_scores = np.asarray(field_scores) qf_scores = np.max(qf_scores, axis=0) return qf_scores, " | ".join(explain) def edismax(frame: pd.DataFrame, q: str, qf: List[str], mm: Optional[str] = None, pf: Optional[List[str]] = None, pf2: Optional[List[str]] = None, pf3: Optional[List[str]] = None, q_op: str = "OR", similarity: Similarity = default_bm25) -> Tuple[np.ndarray, str]: """Run edismax search over dataframe with searcharray fields. Parameters ---------- q : str The query string mm : str The minimum should match spec qf : list The fields to search pf : list The fields to search for phrase matches pf2 : list The fields to search for bigram matches pf3 : list The fields to search for trigram matches q_op : str, optional The default operator, by default "OR" Returns ------- np.ndarray The search results """ def listify(x): return x if isinstance(x, list) else [x] query_fields = parse_field_boosts(listify(qf)) phrase_fields = parse_field_boosts(listify(pf)) if pf else {} if mm is None: mm = "1" if q_op == "AND": mm = "100%" # bigram_fields = parse_field_boosts(pf2) if pf2 else {} # trigram_fields = parse_field_boosts(pf3) if pf3 else {} num_search_terms, search_terms, term_centric = parse_query_terms(frame, q, list(query_fields.keys())) if term_centric: qf_scores, explain = _edismax_term_centric(frame, query_fields, num_search_terms, search_terms, mm, similarity=similarity) else: qf_scores, explain = _edismax_field_centric(frame, query_fields, num_search_terms, search_terms, mm, similarity=similarity) phrase_scores = [] for field, boost in phrase_fields.items(): arr = get_field(frame, field) terms = search_terms[field] field_phrase_score = arr.score(terms, similarity=similarity) * (1 if boost is None else boost) boost_exp = f"{boost}" if boost is not None else "1" explain += f" ({field}:\"{' '.join(terms)}\")^{boost_exp}" phrase_scores.append(field_phrase_score) if len(phrase_scores) > 0: phrase_scores = np.sum(phrase_scores, axis=0) # Add where term_scores > 0 term_match_idx = np.where(qf_scores)[0] qf_scores[term_match_idx] += phrase_scores[term_match_idx] return qf_scores, explain <fim_middle>
null
FOR
complete_current_header_empty_completion
<filename>searcharray/searcharray/solr.py<fim_prefix>"""Utility functions for Solr users of searcharray.""" import re import pandas as pd import numpy as np from typing import List, Optional, Dict, Tuple from searcharray.postings import SearchArray from searcharray.similarity import Similarity, default_bm25 def parse_min_should_match(num_clauses: int, spec: str) -> int: """Parse Solr's min should match (ie mm) spec. See this ChatGPT translation of mm code from Solr's Java code for parsing this https://chat.openai.com/share/76642aec-7e05-420f-a53a-83b8e2eea8fb Parameters ---------- num_clauses : int spec : str Returns ------- int : the number of clauses that must match """ def checked_parse_int(value, error_message): try: return int(value) except ValueError: raise ValueError(error_message) result = num_clauses spec = spec.strip() if '<' in spec: # we have conditional spec(s) space_around_less_than_pattern = re.compile(r'\s*<\s*') spec = space_around_less_than_pattern.sub('<', spec) for s <fim_suffix>in spec.split(): parts = s.split('<', 1) if len(parts) < 2: raise ValueError("Invalid 'mm' spec: '" + s + "'. Expecting values before and after '<'") upper_bound = checked_parse_int(parts[0], "Invalid 'mm' spec. Expecting an integer.") if num_clauses <= upper_bound: return result else: result = parse_min_should_match(num_clauses, parts[1]) return result # otherwise, simple expression if '%' in spec: # percentage - assume the % was the last char. If not, let int() fail. spec = spec[:-1] percent = checked_parse_int(spec, "Invalid 'mm' spec. Expecting an integer.") calc = (result * percent) * (1 / 100) result = result + int(calc) if calc < 0 else int(calc) else: calc = checked_parse_int(spec, "Invalid 'mm' spec. Expecting an integer.") result = result + calc if calc < 0 else calc return min(num_clauses, max(result, 0)) def parse_field_boosts(field_lists: List[str]) -> dict: """Parse Solr's qf, pf, pf2, pf3 field boosts.""" if not field_lists: return {} out = {} carat_pattern = re.compile(r'\^') for field in field_lists: parts = carat_pattern.split(field) out[parts[0]] = None if len(parts) == 1 else float(parts[1]) return out def get_field(frame, field) -> SearchArray: if field not in frame.columns: raise ValueError(f"Field {field} not in dataframe") if not isinstance(frame[field].array, SearchArray): raise ValueError(f"Field {field} is not a searcharray field") return frame[field].array def parse_query_terms(frame: pd.DataFrame, query: str, query_fields: List[str]): search_terms: Dict[str, List[str]] = {} num_search_terms = 0 term_centric = True for field in query_fields: arr = get_field(frame, field) tokenizer = arr.tokenizer search_terms[field] = [] field_num_search_terms = 0 for posn, term in enumerate(tokenizer(query)): search_terms[field].append(term) field_num_search_terms += 1 if num_search_terms == 0: num_search_terms = field_num_search_terms elif field_num_search_terms != num_search_terms: term_centric = False return num_search_terms, search_terms, term_centric def _edismax_term_centric(frame: pd.DataFrame, query_fields: Dict[str, float], num_search_terms: int, search_terms: Dict[str, List[str]], mm: str, similarity: Similarity) -> Tuple[np.ndarray, str]: explain = [] term_scores = [] for term_posn in range(num_search_terms): max_scores = np.zeros(len(frame)) term_explain = [] for field, boost in query_fields.items(): term = search_terms[field][term_posn] post_arr = get_field(frame, field) field_term_score = post_arr.score(term, similarity=similarity) * (1 if boost is None else boost) boost_exp = f"{boost}" if boost is not None else "1" term_explain.append(f"{field}:{term}^{boost_exp}") max_scores = np.maximum(max_scores, field_term_score) term_scores.append(max_scores) explain.append("(" + " | ".join(term_explain) + ")") min_should_match = parse_min_should_match(num_search_terms, spec=mm) qf_scores = np.asarray(term_scores) matches_gt_mm = np.sum(qf_scores > 0, axis=0) >= min_should_match qf_scores = np.sum(term_scores, axis=0) qf_scores[~matches_gt_mm] = 0 return qf_scores, "(" + " ".join(explain) + f")~{min_should_match}" def _edismax_field_centric(frame: pd.DataFrame, query_fields: Dict[str, float], num_search_terms: int, search_terms: Dict[str, List[str]], mm: str, similarity: Similarity = default_bm25) -> Tuple[np.ndarray, str]: field_scores = [] explain = [] for field, boost in query_fields.items(): post_arr = get_field(frame, field) term_scores = np.array([post_arr.score(term, similarity=similarity) for term in search_terms[field]]) min_should_match = parse_min_should_match(len(search_terms[field]), spec=mm) exp = " ".join([f"{field}:{term}" for term in search_terms[field]]) boost_exp = f"{boost}" if boost is not None else "1" exp = "(" + exp + f")~{min(min_should_match, len(search_terms[field]))}" exp = "(" + exp + f")^{boost_exp}" matches_gt_mm = np.sum(term_scores > 0, axis=0) >= min(min_should_match, len(search_terms[field])) sum_terms_bm25 = np.sum(term_scores, axis=0) sum_terms_bm25[~matches_gt_mm] = 0 field_scores.append(sum_terms_bm25 * (1 if boost is None else boost)) explain.append(exp) # Take maximum field scores as qf qf_scores = np.asarray(field_scores) qf_scores = np.max(qf_scores, axis=0) return qf_scores, " | ".join(explain) def edismax(frame: pd.DataFrame, q: str, qf: List[str], mm: Optional[str] = None, pf: Optional[List[str]] = None, pf2: Optional[List[str]] = None, pf3: Optional[List[str]] = None, q_op: str = "OR", similarity: Similarity = default_bm25) -> Tuple[np.ndarray, str]: """Run edismax search over dataframe with searcharray fields. Parameters ---------- q : str The query string mm : str The minimum should match spec qf : list The fields to search pf : list The fields to search for phrase matches pf2 : list The fields to search for bigram matches pf3 : list The fields to search for trigram matches q_op : str, optional The default operator, by default "OR" Returns ------- np.ndarray The search results """ def listify(x): return x if isinstance(x, list) else [x] query_fields = parse_field_boosts(listify(qf)) phrase_fields = parse_field_boosts(listify(pf)) if pf else {} if mm is None: mm = "1" if q_op == "AND": mm = "100%" # bigram_fields = parse_field_boosts(pf2) if pf2 else {} # trigram_fields = parse_field_boosts(pf3) if pf3 else {} num_search_terms, search_terms, term_centric = parse_query_terms(frame, q, list(query_fields.keys())) if term_centric: qf_scores, explain = _edismax_term_centric(frame, query_fields, num_search_terms, search_terms, mm, similarity=similarity) else: qf_scores, explain = _edismax_field_centric(frame, query_fields, num_search_terms, search_terms, mm, similarity=similarity) phrase_scores = [] for field, boost in phrase_fields.items(): arr = get_field(frame, field) terms = search_terms[field] field_phrase_score = arr.score(terms, similarity=similarity) * (1 if boost is None else boost) boost_exp = f"{boost}" if boost is not None else "1" explain += f" ({field}:\"{' '.join(terms)}\")^{boost_exp}" phrase_scores.append(field_phrase_score) if len(phrase_scores) > 0: phrase_scores = np.sum(phrase_scores, axis=0) # Add where term_scores > 0 term_match_idx = np.where(qf_scores)[0] qf_scores[term_match_idx] += phrase_scores[term_match_idx] return qf_scores, explain <fim_middle>
null
FOR
complete_current_header_empty_completion
<filename>searcharray/searcharray/solr.py<fim_prefix>"""Utility functions for Solr users of searcharray.""" import re import pandas as pd import numpy as np from typing import List, Optional, Dict, Tuple from searcharray.postings import SearchArray from searcharray.similarity import Similarity, default_bm25 def parse_min_should_match(num_clauses: int, spec: str) -> int: """Parse Solr's min should match (ie mm) spec. See this ChatGPT translation of mm code from Solr's Java code for parsing this https://chat.openai.com/share/76642aec-7e05-420f-a53a-83b8e2eea8fb Parameters ---------- num_clauses : int spec : str Returns ------- int : the number of clauses that must match """ def checked_parse_int(value, error_message): try: return int(value) except ValueError: raise ValueError(error_message) result = num_clauses spec = spec.strip() if '<' in spec: # we have conditional spec(s) space_around_less_than_pattern = re.compile(r'\s*<\s*') spec = space_around_less_than_pattern.sub('<', spec) for s in spec.split(): parts = s.split('<', 1) if len(parts) < 2: raise ValueError("Invalid 'mm' spec: '" + s + "'. Expecting values before and after '<'") upper_bound = checked_parse_int(parts[0], "Invalid 'mm' spec. Expecting an integer.") if num_clauses <= upper_bound: return result else: result = parse_min_should_match(num_clauses, parts[1]) return result # otherwise, simple expression if '%' in spec: # percentage - assume the % was the last char. If not, let int() fail. spec = spec[:-1] percent = checked_parse_int(spec, "Invalid 'mm' spec. Expecting an integer.") calc = (result * percent) * (1 / 100) result = result + int(calc) if calc < 0 else int(calc) else: calc = checked_parse_int(spec, "Invalid 'mm' spec. Expecting an integer.") result = result + calc if calc < 0 else calc return min(num_clauses, max(result, 0)) def parse_field_boosts(field_lists: List[str]) -> dict: """Parse Solr's qf, pf, pf2, pf3 field boosts.""" if not field_lists: return {} out = {} carat_pattern = re.compile(r'\^') for field in field_lists: parts = carat_pattern.split(field) out[parts[0]] = None if len(parts) == 1 else float(parts[1]) return out def get_field(frame, field) -> SearchArray: if field not in frame.columns: raise ValueError(f"Field {field} not in dataframe") if not isinstance(frame[field].array, SearchArray): raise ValueError(f"Field {field} is not a searcharray field") return frame[field].array def parse_query_terms(frame: pd.DataFrame, query: str, query_fields: List[str]): search_terms: Dict[str, List[str]] = {} num_search_terms = 0 term_centric = True for field in query_fields: arr = get_field(frame, field) tokenizer = arr.tokenizer search_terms[field] = [] field_num_search_terms = 0 for posn, term in enumerate(tokenizer(query)): search_terms[field].append(term) field_num_search_terms += 1 if num_search_terms == 0: num_search_terms = field_num_search_terms elif field_num_search_terms != num_search_terms: term_centric = False return num_search_terms, search_terms, term_centric def _edismax_term_centric(frame: pd.DataFrame, query_fields: Dict[str, float], num_search_terms: int, search_terms: Dict[str, List[str]], mm: str, similarity: Similarity) -> Tuple[np.ndarray, str]: explain = [] term_scores = [] for term_posn in range(num_<fim_suffix>search_terms): max_scores = np.zeros(len(frame)) term_explain = [] for field, boost in query_fields.items(): term = search_terms[field][term_posn] post_arr = get_field(frame, field) field_term_score = post_arr.score(term, similarity=similarity) * (1 if boost is None else boost) boost_exp = f"{boost}" if boost is not None else "1" term_explain.append(f"{field}:{term}^{boost_exp}") max_scores = np.maximum(max_scores, field_term_score) term_scores.append(max_scores) explain.append("(" + " | ".join(term_explain) + ")") min_should_match = parse_min_should_match(num_search_terms, spec=mm) qf_scores = np.asarray(term_scores) matches_gt_mm = np.sum(qf_scores > 0, axis=0) >= min_should_match qf_scores = np.sum(term_scores, axis=0) qf_scores[~matches_gt_mm] = 0 return qf_scores, "(" + " ".join(explain) + f")~{min_should_match}" def _edismax_field_centric(frame: pd.DataFrame, query_fields: Dict[str, float], num_search_terms: int, search_terms: Dict[str, List[str]], mm: str, similarity: Similarity = default_bm25) -> Tuple[np.ndarray, str]: field_scores = [] explain = [] for field, boost in query_fields.items(): post_arr = get_field(frame, field) term_scores = np.array([post_arr.score(term, similarity=similarity) for term in search_terms[field]]) min_should_match = parse_min_should_match(len(search_terms[field]), spec=mm) exp = " ".join([f"{field}:{term}" for term in search_terms[field]]) boost_exp = f"{boost}" if boost is not None else "1" exp = "(" + exp + f")~{min(min_should_match, len(search_terms[field]))}" exp = "(" + exp + f")^{boost_exp}" matches_gt_mm = np.sum(term_scores > 0, axis=0) >= min(min_should_match, len(search_terms[field])) sum_terms_bm25 = np.sum(term_scores, axis=0) sum_terms_bm25[~matches_gt_mm] = 0 field_scores.append(sum_terms_bm25 * (1 if boost is None else boost)) explain.append(exp) # Take maximum field scores as qf qf_scores = np.asarray(field_scores) qf_scores = np.max(qf_scores, axis=0) return qf_scores, " | ".join(explain) def edismax(frame: pd.DataFrame, q: str, qf: List[str], mm: Optional[str] = None, pf: Optional[List[str]] = None, pf2: Optional[List[str]] = None, pf3: Optional[List[str]] = None, q_op: str = "OR", similarity: Similarity = default_bm25) -> Tuple[np.ndarray, str]: """Run edismax search over dataframe with searcharray fields. Parameters ---------- q : str The query string mm : str The minimum should match spec qf : list The fields to search pf : list The fields to search for phrase matches pf2 : list The fields to search for bigram matches pf3 : list The fields to search for trigram matches q_op : str, optional The default operator, by default "OR" Returns ------- np.ndarray The search results """ def listify(x): return x if isinstance(x, list) else [x] query_fields = parse_field_boosts(listify(qf)) phrase_fields = parse_field_boosts(listify(pf)) if pf else {} if mm is None: mm = "1" if q_op == "AND": mm = "100%" # bigram_fields = parse_field_boosts(pf2) if pf2 else {} # trigram_fields = parse_field_boosts(pf3) if pf3 else {} num_search_terms, search_terms, term_centric = parse_query_terms(frame, q, list(query_fields.keys())) if term_centric: qf_scores, explain = _edismax_term_centric(frame, query_fields, num_search_terms, search_terms, mm, similarity=similarity) else: qf_scores, explain = _edismax_field_centric(frame, query_fields, num_search_terms, search_terms, mm, similarity=similarity) phrase_scores = [] for field, boost in phrase_fields.items(): arr = get_field(frame, field) terms = search_terms[field] field_phrase_score = arr.score(terms, similarity=similarity) * (1 if boost is None else boost) boost_exp = f"{boost}" if boost is not None else "1" explain += f" ({field}:\"{' '.join(terms)}\")^{boost_exp}" phrase_scores.append(field_phrase_score) if len(phrase_scores) > 0: phrase_scores = np.sum(phrase_scores, axis=0) # Add where term_scores > 0 term_match_idx = np.where(qf_scores)[0] qf_scores[term_match_idx] += phrase_scores[term_match_idx] return qf_scores, explain <fim_middle>
null
FOR
complete_current_header_empty_completion
<filename>searcharray/searcharray/utils/roaringish.py<fim_prefix>"""Roaring-ish bit array for storing sorted integers in numpy array. See - https://softwaredoug.com/blog/2024/01/21/search-array-phrase-algorithm """ import numpy as np import sortednp as snp import logging import numbers from typing import Optional, Tuple, List, Union logger = logging.getLogger(__name__) # When running in pytest import sys # noqa handler = logging.StreamHandler(sys.stdout) handler.setLevel(logging.ERROR) formatter = logging.Formatter("[%(filename)s:%(lineno)s - %(funcName)20s() ] %(message)s") handler.setFormatter(formatter) logger.addHandler(handler) logger.setLevel(logging.ERROR) DEFAULT_KEY_MASK = np.uint64(0xFFFFFFF000000000) DEFAULT_KEY_BITS = np.uint64(28) DEFAULT_PAYLOAD_MSB_MASK = np.uint64(0x0000000FFFFC0000) DEFAULT_PAYLOAD_MSB_BITS = np.uint64(18) DEFAULT_PAYLOAD_LSB_MASK = np.uint64(0x000000000003FFFF) DEFAULT_PAYLOAD_LSB_BITS = np.uint64(18) # To not constantly type coerce _64 = np.uint64(64) _2 = np.uint64(2) _1 = np.uint64(1) _0 = np.uint64(0) _neg1 = np.int64(-1) _algorithm = snp.GALLOPING_SEARCH def n_msb_mask(n: np.uint64) -> np.uint64: """Return the n most significant bits of num.""" return np.uint64(~(np.uint64(_1 << (_64 - n))) + _1) def sorted_unique(arr: np.ndarray) -> np.ndarray: return snp.intersect(arr, arr, duplicates=snp.DROP) class RoaringishEncoder: """An encoder for key->integer sets as a numpy array. Each returned array represents a single term, with key as MSBS, ie: | 32 MSBs | 16 LSBs | 16 LSBs | key | bits msbs | payload (different number of MSBs / payload bits can be specified) """ def __init__(self, key_bits: np.uint64 = DEFAULT_KEY_BITS): payload_bits = _64 - key_bits self.payload_msb_bits = payload_bits // _2 self.payload_lsb_bits = np.uint64(payload_bits - self.payload_msb_bits) self.key_bits = key_bits assert self.key_bits.dtype == np.uint64 # key bits MSB of 64 bits self.key_mask = n_msb_mask(key_bits) self.payload_msb_mask = n_msb_mask(np.uint64(self.payload_msb_bits + key_bits)) & ~self.key_mask assert self.payload_msb_bits.dtype == np.uint64, f"MSB bits dtype was {self.payload_msb_bits.dtype}" assert self.payload_msb_mask.dtype == np.uint64, f"MSB mask dtype was {self.payload_msb_mask.dtype}" self.payload_lsb_mask = (_1 << self.payload_lsb_bits) - np.uint64(1) assert self.payload_lsb_bits.dtype == np.uint64, f"LSB bits dtype was {self.payload_lsb_bits.dtype}" assert self.payload_lsb_mask.dtype == np.uint64, f"LSB mask dtype was {self.payload_lsb_mask.dtype}" if key_bits == DEFAULT_KEY_BITS: assert self.key_mask == DEFAULT_KEY_MASK assert self.payload_msb_mask == DEFAULT_PAYLOAD_MSB_MASK assert self.payload_lsb_mask == DEFAULT_PAYLOAD_LSB_MASK self.max_payload = np.uint64(2**self.payload_lsb_bits - 1) def validate_payload(self, payload: np.ndarray): """Optional validation of payload.""" if np.any(payload > self.max_payload): raise ValueError(f"Positions must be less than {2**self.payload_lsb_bits}") def encode(self, payload: np.ndarray, keys: Optional[np.ndarray] = None, boundaries: Optional[np.ndarray] = None) -> Tuple[np.ndarray, Optional[np.ndarray]]: """Pack a sorted array of integers into compact bit numpy array. each returned array represents a single term, with key as MSBS, ie: | 32 MSBs | 16 LSBs | 16 LSBs | key | bits msbs| payload for later easy intersection of 32+16 msbs, then checking for adjacent positions If boundaries are provided, then we consider multiple distinct payloads being encoded simultaneously, and we return the boundaries of each """ cols = np.floor_divide(payload, self.payload_lsb_bits, dtype=np.uint64) # Header of bit to use cols <<= self.payload_msb_bits if keys is not None: cols |= keys.astype(np.uint64) << (_64 - self.key_bits) values = payload % self.payload_lsb_bits # Value to encode change_indices_one_doc = np.nonzero(np.diff(cols))[0] + 1 change_indices_one_doc = np.concatenate([[0], change_indices_one_doc]) if boundaries is not None: change_indices = snp.merge(change_indices_one_doc, boundaries, duplicates=snp.DROP) new_boundaries = snp.intersect(boundaries, change_indices, indices=True)[1][1] new_boundaries = np.concatenate([new_boundaries, [len(change_indices)]]) else: change_indices = change_indices_one_doc new_boundaries = None # 0 as a position, goes in bit 1, # 1 as a position, goes in bit 2, etc values = _1 << values cols |= values encoded = cols if len(encoded) == 0: return encoded, new_boundaries reduced = np.bitwise_or.reduceat(encoded, change_indices) return reduced, new_boundaries def decode(self, encoded: np.ndarray, get_keys: bool = True) -> Union[List[Tuple[np.uint64, np.ndarray]], List[np.ndarray]]: """Decode an encoded bit array into keys / payloads.""" keys = (encoded & self.key_mask) >> (_64 - self.key_bits) msbs = (encoded & self.payload_msb_mask) >> self.payload_msb_bits to_concat = [] for bit in range(self.payload_<fim_suffix>lsb_bits): mask = 1 << bit lsbs = encoded & mask set_lsbs = (lsbs != 0) this_keys = keys[set_lsbs] payload = bit + (msbs[set_lsbs] * self.payload_lsb_bits) doc_with_posn = np.dstack([this_keys, payload])[0] to_concat.append(doc_with_posn) stacked = np.vstack(to_concat) # Sort by doc_id, then posn sorted_payload = stacked[np.lexsort((stacked[:, 1], stacked[:, 0]))] keys, idx = np.unique(sorted_payload[:, 0], return_index=True) grouped = np.split(sorted_payload[:, 1], idx[1:]) if get_keys: return list(zip(keys, grouped)) else: return grouped def keys(self, encoded: np.ndarray) -> np.ndarray: """Return keys from encoded.""" return (encoded & self.key_mask) >> (_64 - self.key_bits) def keys_unique(self, encoded: np.ndarray) -> np.ndarray: """Return keys from encoded.""" keys = self.keys(encoded) intersected = sorted_unique(keys) return intersected def payload_msb(self, encoded: np.ndarray) -> np.ndarray: """Return payload MSBs from encoded.""" return (encoded & self.payload_msb_mask) >> self.payload_msb_bits def payload_lsb(self, encoded: np.ndarray) -> np.ndarray: """Return payload LSBs from encoded.""" return encoded & self.payload_lsb_mask def intersect_rshift(self, lhs: np.ndarray, rhs: np.ndarray, rshift: np.int64 = _neg1) -> Tuple[np.ndarray, np.ndarray]: """Return the MSBs that are common to both lhs and rhs (same keys, same MSBs) Parameters ---------- lhs : np.ndarray of uint64 (encoded) values rhs : np.ndarray of uint64 (encoded) values rshift : int how much to shift rhs by to the right """ rhs_int = rhs assert rshift < 0, "rshift must be negative" rhs_int = rhs[self.payload_msb(rhs) >= np.abs(rshift)] rshft = rshift.view(np.uint64) rhs_shifted = (rhs_int >> self.payload_lsb_bits) + rshft # assert np.all(np.diff(rhs_shifted) >= 0), "not sorted" _, (lhs_idx, rhs_idx) = snp.intersect(lhs >> self.payload_lsb_bits, rhs_shifted, indices=True, algorithm=_algorithm) return lhs[lhs_idx], rhs_int[rhs_idx] def intersect(self, lhs: np.ndarray, rhs: np.ndarray) -> Tuple[np.ndarray, np.ndarray]: """Return the MSBs that are common to both lhs and rhs (same keys, same MSBs) Parameters ---------- lhs : np.ndarray of uint64 (encoded) values rhs : np.ndarray of uint64 (encoded) values """ # assert np.all(np.diff(rhs_shifted) >= 0), "not sorted" _, (lhs_idx, rhs_idx) = snp.intersect(lhs >> self.payload_lsb_bits, rhs >> self.payload_lsb_bits, indices=True, algorithm=_algorithm) return lhs[lhs_idx], rhs[rhs_idx] def slice(self, encoded: np.ndarray, keys: np.ndarray) -> np.ndarray: """Get list of encoded that have values in keys.""" assert len(keys.shape) == 1 assert len(encoded.shape) == 1 encoded_keys = encoded.view(np.uint64) >> (_64 - self.key_bits) _, (idx_docs, idx_enc) = snp.intersect(keys, encoded_keys, indices=True, duplicates=snp.KEEP_MAX_N, algorithm=_algorithm) return encoded[idx_enc] def convert_keys(keys) -> np.ndarray: """Convert keys to range or np.ndarray of uint64.""" if isinstance(keys, numbers.Number): return np.asarray([keys], dtype=np.uint64) elif isinstance(keys, list): return np.asarray(keys, dtype=np.uint64) elif isinstance(keys, np.ndarray): return keys.astype(np.uint64) elif isinstance(keys, range) and len(keys) > 0: # UNFORTUNATE COPY return np.arange(keys[0], keys[-1] + 1, dtype=np.uint64) + keys[0] elif isinstance(keys, range): return np.asarray([], dtype=np.uint64) raise ValueError(f"Unknown type for keys: {type(keys)}") <fim_middle>
null
FOR
complete_current_header_empty_completion
<filename>searcharray/searcharray/postings.py<fim_prefix>"""Tokenized, searchable text as a pandas dtype.""" import pandas as pd import numbers from pandas.api.extensions import ExtensionDtype, ExtensionArray, register_extension_dtype from pandas.api.types import is_list_like from pandas.api.extensions import take import json from collections import Counter import warnings import logging from typing import List, Union, Optional, Iterable import numpy as np from searcharray.phrase.scan_merge import scan_merge_ins from searcharray.phrase.posn_diffs import compute_phrase_freqs from searcharray.phrase.middle_out import PosnBitArray from searcharray.similarity import Similarity, default_bm25 from searcharray.indexing import build_index_from_tokenizer, build_index_from_terms_list from searcharray.term_dict import TermMissingError logger = logging.getLogger(__name__) # When running in pytest import sys # noqa handler = logging.StreamHandler(sys.stdout) handler.setLevel(logging.ERROR) formatter = logging.Formatter("[%(filename)s:%(lineno)s - %(funcName)20s() ] %(message)s") handler.setFormatter(formatter) logger.addHandler(handler) logger.setLevel(logging.ERROR) class Terms: """An indexed search doc - a single bag of tokenized words and positions.""" def __init__(self, postings, doc_len: int = 0, posns: Optional[dict] = None, encoded=False): self.postings = postings self.posns = None self.encoded = encoded self.doc_len = doc_len self.posns = posns def _validate_posns(self): # (For testing/assertions) - Confirm every term in positions also in postings if self.posns is None: return for term in self.posns: if term not in self.postings: raise ValueError(f"Term {term} in positions but not in postings. ") def termfreq(self, token): return self.postings[token] def terms(self): return self.postings.items() def positions(self, term=None): if self.posns is None: return {} if term is None: posns = self.posns.items() else: posns = self.posns[term] return posns def raw_positions(self, term_dict, term=None): if self.posns is None: return {} if term is None: posns = [(term_dict.get_term_id(term), posns) for term, posns in self.posns.items()] else: posns = [(term_dict.get_term_id(term), self.posns[term])] return posns def tf_to_dense(self, term_dict): """Convert to a dense vector of term frequencies.""" dense = np.zeros(len(term_dict)) for term, freq in self.terms(): dense[term_dict.get_term_id(term)] = freq return dense def __len__(self): return len(self.postings) def __repr__(self): posting_keys = set(self.postings.keys()) rval = f"Terms({posting_keys})" return rval def __str__(self): return repr(self) def __eq__(self, other): # Flip to the other implementation if we're comparing to a SearchArray # to get a boolean array back if isinstance(other, SearchArray): return other == self same_postings = isinstance(other, Terms) and self.postings == other.postings if same_postings and self.doc_len == other.doc_len: return True def __lt__(self, other): # return isinstance(other, Terms) and hash(self) < hash(other) keys_both = set(self.postings.keys()).union(set(other.postings.keys())) # Sort lexically keys_both = sorted(keys_both) # Iterate as if these are two vectors of the same large dimensional vector sparse for key in keys_both: lhs_val = 0 rhs_val = 0 try: lhs_val = self.postings[key] except KeyError: pass try: rhs_val = other.postings[key] except KeyError: pass if lhs_val < rhs_val: return True elif lhs_val > rhs_val: return False else: continue return False def __le__(self, other): return self < other or self == other def __gt__(self, other): return not (self < other) and self != other def __hash__(self): return hash(json.dumps(self.postings, sort_keys=True)) class TermsDtype(ExtensionDtype): """Pandas dtype for terms.""" name = 'tokenized_text' type = Terms kind = 'O' @classmethod def construct_from_string(cls, string): if not isinstance(string, str): raise TypeError( "'construct_from_string' expects a string, got {}".format(type(string)) ) elif string == cls.name: return cls() else: raise TypeError( "Cannot construct a '{}' from '{}'".format(cls.__name__, string) ) @classmethod def construct_array_type(cls): return SearchArray def __repr__(self): return 'TermsDtype()' @property def na_value(self): return Terms({}) def valid_value(self, value): return isinstance(value, dict) or pd.isna(value) or isinstance(value, Terms) register_extension_dtype(TermsDtype) def ws_tokenizer(string): if pd.isna(string): return [] if not isinstance(string, str): raise ValueError("Expected a string") return string.split() def _row_to_postings_row(doc_id, row, doc_len, term_dict, posns: PosnBitArray): tfs = {} labeled_posns = {} for term_idx in row.cols: term = term_dict.get_term(term_idx) tfs[term] = 1 enc_term_posns = posns.doc_encoded_posns(term_idx, doc_id=doc_id) labeled_posns[term] = enc_term_posns result = Terms(tfs, posns=labeled_posns, doc_len=doc_len, encoded=True) return result class SearchArray(ExtensionArray): """An array of tokenized text (Termss).""" dtype = TermsDtype() def __init__(self, postings, tokenizer=ws_tokenizer, avoid_copies=True): # Check dtype, raise TypeError if not is_list_like(postings): raise TypeError("Expected list-like object, got {}".format(type(postings))) self.avoid_copies = avoid_copies self.tokenizer = tokenizer self.term_mat, self.posns, \ self.term_dict, self.avg_doc_length, \ self.doc_lens = build_index_from_terms_list(postings, Terms) @classmethod def index(cls, array: Iterable, tokenizer=ws_tokenizer, truncate=False, batch_size=100000, avoid_copies=True) -> 'SearchArray': """Index an array of strings using tokenizer.""" if not is_list_like(array): raise TypeError("Expected list-like object, got {}".format(type(array))) term_mat, posns, term_dict, avg_doc_length, doc_lens =\ build_index_from_tokenizer(array, tokenizer, batch_size=batch_size, truncate=truncate) postings = cls([], tokenizer=tokenizer, avoid_copies=avoid_copies) postings.term_mat = term_mat postings.posns = posns postings.term_dict = term_dict postings.avg_doc_length = avg_doc_length postings.doc_lens = doc_lens return postings @classmethod def _from_sequence(cls, scalars, dtype=None, copy=False): """Construct a new SearchArray from a sequence of scalars (PostingRow or convertible into).""" if dtype is not None: if not isinstance(dtype, TermsDtype): return scalars if isinstance(scalars, np.ndarray) and scalars.dtype == TermsDtype(): return cls(scalars) # String types elif isinstance(scalars, np.ndarray) and scalars.dtype.kind in 'US': return cls(scalars) # Other objects elif isinstance(scalars, np.ndarray) and scalars.dtype != object: return scalars return cls(scalars) def memory_usage(self, deep=False): """Return memory usage of this array in bytes.""" return self.nbytes @property def nbytes(self): return self.term_mat.nbytes + self.posns.nbytes + self.doc_lens.nbytes + self.term_dict.nbytes def __getitem__(self, key): key = pd.api.indexers.check_array_indexer(self, key) # Want to take rows of term freqs if isinstance(key, numbers.Integral): try: rows = self.term_mat[key] doc_len = self.doc_lens[key] doc_id = key if doc_id < 0: doc_id += len(self) return _row_to_postings_row(doc_id, rows[0], doc_len, self.term_dict, self.posns) except IndexError: raise IndexError("index out of bounds") else: # Construct a sliced view of this array sliced_tfs = self.term_mat.slice(key) sliced_posns = self.posns.slice(sliced_tfs.rows) if not self.avoid_copies else self.posns arr = SearchArray([], tokenizer=self.tokenizer) arr.term_mat = sliced_tfs arr.doc_lens = self.doc_lens[key] arr.posns = sliced_posns arr.term_dict = self.term_dict arr.avg_doc_length = self.avg_doc_length return arr def __setitem__(self, key, value): """Set an item in the array.""" key = pd.api.indexers.check_array_indexer(self, key) if isinstance(value, pd.Series): value = value.values if isinstance(value, pd.DataFrame): value = value.values.flatten() if isinstance(value, SearchArray): value = value.to_numpy() if isinstance(value, list): value = np.asarray(value, dtype=object) if not isinstance(value, np.ndarray) and not self.dtype.valid_value(value): raise ValueError(f"Cannot set non-object array to SearchArray -- you passed type:{type(value)} -- {value}") # Cant set a single value to an array if isinstance(key, numbers.Integral) and isinstance(value, np.ndarray): raise ValueError("Cannot set a single value to an array") try: is_encoded = False posns = None term_mat = np.asarray([]) doc_lens = np.asarray([]) if isinstance(value, float): term_mat = np.asarray([value]) doc_lens = np.asarray([0]) elif isinstance(value, Terms): term_mat = np.asarray([value.tf_to_dense(self.term_dict)]) doc_lens = np.asarray([value.doc_len]) is_encoded = value.encoded posns = [value.raw_positions(self.term_dict)] elif isinstance(value, np.ndarray): term_mat = np.asarray([x.tf_to_dense(self.term_dict) for x in value]) doc_lens = np.asarray([x.doc_len for x in value]) is_encoded = value[0].encoded if len(value) > 0 else False posns = [x.raw_positions(self.term_dict) for x in value] np.nan_to_num(term_mat, copy=False, nan=0) self.term_mat[key] = term_mat self.doc_lens[key] = doc_lens if posns is not None: self.posns.insert(key, posns, is_encoded) # Assume we have a positions for each term, doc pair. We can just update it. # Otherwise we would have added new terms except TermMissingError: self._add_new_terms(key, value) def _add_new_terms(self, key, value): msg = """Adding new terms! This might not be good if you tokenized this new text with a different tokenizer. Also. This is slow.""" warnings.warn(msg) scan_value = value if isinstance(value, Terms): scan_value = np.asarray([value]) for row in scan_value: for term in row.terms(): self.term_dict.add_term(term[0]) self.term_mat.resize((self.term_mat.shape[0], len(self.term_dict))) # Ensure posns_lookup has at least max self.posns self[key] = value def value_counts( self, dropna: bool = True, ): if dropna: counts = Counter(self[:]) counts.pop(Terms({}), None) else: counts = Counter(self[:]) return pd.Series(counts) def __len__(self): len_rval = len(self.term_mat.rows) return len_rval def __ne__(self, other): if isinstance(other, pd.DataFrame) or isinstance(other, pd.Series) or isinstance(other, pd.Index): return NotImplemented return ~(self == other) def __eq__(self, other): """Return a boolean numpy array indicating elementwise equality.""" # When other is a dataframe or series, not implemented if isinstance(other, pd.DataFrame) or isinstance(other, pd.Series) or isinstance(other, pd.Index): return NotImplemented # When other is an ExtensionArray if isinstance(other, SearchArray): if len(self) != len(other): return False elif len(other) == 0: return np.array([], dtype=bool) else: # Compatible term dicts, and same term freqs # (not looking at positions, maybe we should?) if self.term_dict.compatible(other.term_dict): return (self.term_mat == other.term_mat) & (self.doc_lens == other.doc_lens) else: return np.zeros(len(self), dtype=bool) # return np.array(self[:]) == np.array(other[:]) # When other is a scalar value elif isinstance(other, Terms): other = SearchArray([other], tokenizer=self.tokenizer) warnings.warn("Comparing a scalar value to a SearchArray. This is slow.") return np.array(self[:]) == np.array(other[:]) # When other is a sequence but not an ExtensionArray # its an array of dicts elif is_list_like(other): if len(self) != len(other): return False elif len(other) == 0: return np.array([], dtype=bool) # We actually don't know how it was tokenized other = SearchArray(other, tokenizer=self.tokenizer) return np.array(self[:]) == np.array(other[:]) # Return False where 'other' is neither the same length nor a scalar else: return np.full(len(self), False) def isna(self): # Every row with all 0s empties = self.doc_lens == 0 return empties def take(self, indices, allow_fill=False, fill_value=None): # Want to take rows of term freqs row_indices = np.arange(len(self.term_mat.rows)) # Take within the row indices themselves result_indices = take(row_indices, indices, allow_fill=allow_fill, fill_value=-1) if allow_fill and -1 in result_indices: if fill_value is None or pd.isna(fill_value): fill_value = Terms({}, encoded=True) to_fill_mask = result_indices == -1 # This is slow as it rebuilds all the term dictionaries # on the subsequent assignment lines # However, this case tends to be the exception for # most dataframe operations taken = SearchArray([fill_value] * len(result_indices)) taken[~to_fill_mask] = self[result_indices[~to_fill_mask]].copy() return taken else: taken = self[result_indices].copy() return taken def copy(self): postings_arr = SearchArray([], tokenizer=self.tokenizer) postings_arr.doc_lens = self.doc_lens.copy() postings_arr.term_mat = self.term_mat.copy() postings_arr.posns = self.posns postings_arr.term_dict = self.term_dict postings_arr.avg_doc_length = self.avg_doc_length if not self.avoid_copies: postings_arr.posns = self.posns.copy() postings_arr.term_dict = self.term_dict.copy() return postings_arr @classmethod def _concat_same_type(cls, to_concat): concatenated_data = np.concatenate([ea[:] for ea in to_concat]) return SearchArray(concatenated_data, tokenizer=to_concat[0].tokenizer) @classmethod def _from_factorized(cls, values, original): return cls(values) def _values_for_factorize(self): """Return an array and missing value suitable for factorization (ie grouping).""" arr = np.asarray(self[:], dtype=object) return arr, Terms({}) def _check_token_arg(self, token): if isinstance(token, str): return token elif isinstance(token, list) and len(token) == 1: return token[0] elif isinstance(token, list): return token else: raise TypeError("Expected a string or list of strings for phrases") # *********************************************************** # Search functionality # *********************************************************** def termfreqs(self, token: Union[List[str], str]) -> np.ndarray: token = self._check_token_arg(token) if isinstance(token, list): return self.phrase_freq(token) try: term_id = self.term_dict.get_term_id(token) matches = np.zeros(len(self), dtype=int) slice_of_rows = None if self.term_mat.subset: slice_of_rows = self.term_mat.rows doc_ids, termfreqs = self.posns.termfreqs(term_id, doc_ids=slice_of_rows) mask = np.isin(self.term_mat.rows, doc_ids) matches[mask] = termfreqs return matches else: doc_ids, termfreqs = self.posns.termfreqs(term_id, doc_ids=slice_of_rows) matches[doc_ids] = termfreqs return matches except TermMissingError: return np.zeros(len(self), dtype=int) def docfreq(self, token: str) -> int: if not isinstance(token, str): raise TypeError("Expected a string") # Count number of rows where the term appears try: return self.posns.docfreq(self.term_dict.get_term_id(token)) except TermMissingError: return 0 def doclengths(self) -> np.ndarray: return self.doc_lens def match(self, token: Union[List[str], str], slop: int = 1) -> np.ndarray: """Return a boolean numpy array indicating which elements contain the given term.""" token = self._check_token_arg(token) if isinstance(token, list): term_freq = self.phrase_freq(token) else: term_freq = self.termfreqs(token) return term_freq > 0 def score(self, token: Union[str, List[str]], similarity: Similarity = default_bm25) -> np.ndarray: """Score each doc using a similarity function. Parameters ---------- token : str or list of str of what to search (already tokenized) similarity : How to score the documents. Default is BM25. """ # Get term freqs per token token = self._check_token_arg(token) # For expensive toknes, we compute doc freq first, so we # cache them in the DF cache, to let TF cache know it should be cached tokens_l = [token] if isinstance(token, str) else token all_dfs = np.asarray([self.docfreq(token) for token in tokens_l]) tfs = self.termfreqs(token) token = self._check_token_arg(token) doc_lens = self.doclengths() scores = similarity(term_freqs=tfs, doc_freqs=all_dfs, doc_lens=doc_lens, avg_doc_lens=self.avg_doc_length, num_docs=len(self)) return scores def positions(self, token: str, key=None) -> List[np.ndarray]: """Return a list of lists of positions of the given term.""" term_id = self.term_dict.get_term_id(token) key = self.term_mat.rows[key] if key is not None else self.term_mat.rows posns = self.posns.positions(term_id, doc_ids=key) return posns def and_query(self, tokens: Union[List[str], List[List[str]]]) -> np.ndarray: """Return a mask on the postings array indicating which elements contain all terms.""" masks = [self.match(term) for term in tokens] mask = np.ones(len(self), dtype=bool) for curr_mask <fim_suffix>in masks: mask = mask & curr_mask return mask def or_query(self, tokens: Union[List[str], List[List[str]]], min_should_match: int = 1) -> np.ndarray: """Return a mask on the postings array indicating which elements contain all terms.""" masks = [self.match(term) for term in tokens] mask = np.sum(masks, axis=0) >= min_should_match return mask def phrase_freq(self, tokens: List[str], slop=1) -> np.ndarray: if slop == 1 and len(tokens) == len(set(tokens)): phrase_freqs = np.zeros(len(self)) try: doc_ids = self.term_mat.rows term_ids = [self.term_dict.get_term_id(token) for token in tokens] return self.posns.phrase_freqs(term_ids, doc_ids=doc_ids, phrase_freqs=phrase_freqs) except TermMissingError: return phrase_freqs else: return self.phrase_freq_every_diff(tokens, slop=slop) def phrase_freq_scan(self, tokens: List[str], mask=None, slop=1) -> np.ndarray: if mask is None: mask = self.and_query(tokens) if np.sum(mask) == 0: return mask # Gather positions posns = [self.positions(token, mask) for token in tokens] phrase_freqs = np.zeros(len(self)) phrase_freqs[mask] = scan_merge_ins(posns, phrase_freqs[mask], slop=slop) return phrase_freqs def phrase_freq_every_diff(self, tokens: List[str], slop=1) -> np.ndarray: phrase_freqs = -np.ones(len(self)) mask = self.and_query(tokens) phrase_freqs[~mask] = 0 if np.sum(mask) == 0: return phrase_freqs term_posns = [self.positions(term, mask) for term in tokens] for width in [10, 20, 30, 40]: phrase_freqs[mask] = compute_phrase_freqs(term_posns, phrase_freqs[mask], slop=slop, width=width) remaining_mask = phrase_freqs == -1 if np.any(remaining_mask): remainder_freqs = self.phrase_freq_scan(tokens, mask=remaining_mask, slop=slop) phrase_freqs[remaining_mask] = remainder_freqs[remaining_mask] return phrase_freqs <fim_middle>
null
FOR
complete_current_header_empty_completion
<filename>searcharray/searcharray/phrase/middle_out.py<fim_prefix>"""Encode positions in bits along with some neighboring information for wrapping. See this notebook for motivation: https://colab.research.google.com/drive/10tIEkdlCE_1J_CcgEcV0jkLfBc-0H4am?authuser=1#scrollTo=XWzy-n9dF3PG """ import numpy as np import sortednp as snp from copy import deepcopy from typing import List, Tuple, Dict, Union, cast, Optional from searcharray.utils.roaringish import RoaringishEncoder, convert_keys, sorted_unique import numbers import logging from collections import defaultdict from searcharray.utils.bitcount import bit_count64 logger = logging.getLogger(__name__) # When running in pytest import sys # noqa handler = logging.StreamHandler(sys.stdout) handler.setLevel(logging.ERROR) formatter = logging.Formatter("[%(filename)s:%(lineno)s - %(funcName)20s() ] %(message)s") handler.setFormatter(formatter) logger.addHandler(handler) logger.setLevel(logging.ERROR) encoder = RoaringishEncoder() # To not constantly type coerce _64 = np.uint64(64) _2 = np.uint64(2) _1 = np.uint64(1) _0 = np.uint64(0) _neg1 = np.int64(-1) MAX_POSN = encoder.max_payload def inner_bigram_freqs(lhs: np.ndarray, rhs: np.ndarray, phrase_freqs: np.ndarray) -> Tuple[np.ndarray, np.ndarray]: """Count bigram matches between two encoded arrays, within a 64 bit word with same MSBs. Returns: -------- count: number of matches per doc rhs_next: the next rhs array to continue matching """ lhs_int, rhs_int = encoder.intersect(lhs, rhs) lhs_doc_ids = encoder.keys(lhs_int) if len(lhs_int) != len(rhs_int): raise ValueError("Encoding error, MSBs apparently are duplicated among your encoded posn arrays.") if len(lhs_int) == 0: return phrase_freqs, rhs_int same_term = (len(lhs_int) == len(rhs_int) and lhs_int[0] == rhs_int[0]) if same_term: # Find adjacent matches rhs_shift = rhs_int << _1 overlap = lhs_int & rhs_shift overlap = encoder.payload_lsb(overlap) adjacents = bit_count64(overlap).astype(np.int64) adjacents -= -np.floor_divide(adjacents, -2) # ceiling divide phrase_freqs[lhs_doc_ids] += adjacents return phrase_freqs, rhs_int overlap_bits = (lhs_int & encoder.payload_lsb_mask) & ((rhs_int & encoder.payload_lsb_mask) >> _1) rhs_next2 = (overlap_bits << _1) & encoder.payload_lsb_mask rhs_next2 |= (rhs_int & (encoder.key_mask | encoder.payload_msb_mask)) phrase_freqs2 = phrase_freqs.copy() matches2 = overlap_bits > 0 if np.any(matches2): transitions = np.argwhere(np.diff(lhs_doc_ids[matches2]) != 0).flatten() + 1 transitions = np.insert(transitions, 0, 0) counted_bits = bit_count64(overlap_bits[matches2]) reduced = np.add.reduceat(counted_bits, transitions) phrase_freqs2[np.unique(lhs_doc_ids[matches2])] += reduced return phrase_freqs2, rhs_next2 def adjacent_bigram_freqs(lhs: np.ndarray, rhs: np.ndarray, phrase_freqs: np.ndarray) -> Tuple[np.ndarray, np.ndarray]: """Count bigram matches between two encoded arrays where they occur in adjacent 64 bit words. Returns: -------- count: number of matches per doc rhs_next: the next rhs array to continue matching """ lhs_int, rhs_int = encoder.intersect_rshift(lhs, rhs, rshift=_neg1) lhs_doc_ids = encoder.keys(lhs_int) # lhs lsb set and rhs lsb's most significant bit set upper_bit = _1 << (encoder.payload_lsb_bits - _1) matches = ((lhs_int & upper_bit) != 0) & ((rhs_int & _1) != 0) unique, counts = np.unique(lhs_doc_ids[matches], return_counts=True) phrase_freqs[unique] += counts rhs_next = rhs_int rhs_next[~matches] |= ~encoder.payload_lsb_mask rhs_next[matches] |= (encoder.payload_lsb_mask & _1) return phrase_freqs, rhs_next def bigram_freqs(lhs: np.ndarray, rhs: np.ndarray, phrase_freqs: np.ndarray) -> Tuple[np.ndarray, np.ndarray]: """Count bigram matches between two encoded arrays. Returns: -------- count: number of matches per doc rhs_next: the next rhs array to continue matching """ # Combine lhs and rhs matches from two strategies phrase_freqs, rhs_next_inner = inner_bigram_freqs(lhs, rhs, phrase_freqs) phrase_freqs, rhs_next_adj = adjacent_bigram_freqs(lhs, rhs, phrase_freqs) rhs_next = np.sort(np.concatenate([rhs_next_inner, rhs_next_adj])) # Combine return phrase_freqs, rhs_next def trim_phrase_search(encoded_posns: List[np.ndarray], phrase_freqs: np.ndarray) -> List[np.ndarray]: """Trim long phrases by searching the rarest terms first.""" # Start with rarest term shortest_keys = None shortest_idx = None min_len = 1e100 max_len = 0 for idx, enc_posn in enumerate(encoded_posns): if len(enc_posn) < min_len: shortest_keys = encoder.keys(enc_posn) shortest_idx = idx min_len = len(enc_posn) if len(enc_posn) > max_len: max_len = len(enc_posn) if shortest_keys is None: return encoded_posns for enc_posn_idx in range(len(encoded_posns)): if enc_posn_idx == shortest_idx: continue if len(encoded_posns[enc_posn_idx]) > (10 * min_len): encoded_posns[enc_posn_idx] = encoder.slice(encoded_posns[enc_posn_idx], shortest_keys) return encoded_posns def compute_phrase_freqs(encoded_posns: List[np.ndarray], phrase_freqs: np.ndarray) -> np.ndarray: if len(encoded_posns) < 2: raise ValueError("phrase must have at least two terms") # Trim long phrases by searching the rarest terms first if len(encoded_posns) > 3: encoded_posns = trim_phrase_search(encoded_posns, phrase_freqs) mask = np.ones(len(phrase_freqs), dtype=bool) lhs = encoded_posns[0] for rhs in encod<fim_suffix>ed_posns[1:]: # Only count the count of the last bigram (ignoring the ones where priors did not match) phrase_freqs[mask] = 0 phrase_freqs, lhs = bigram_freqs(lhs, rhs, phrase_freqs) mask &= (phrase_freqs > 0) phrase_freqs[~mask] = 0 return phrase_freqs class PosnBitArrayFromFlatBuilder: """ Build from sorted array shape num terms x 3. 0th is term id 1st is doc id 2nd is posn Sorted by term id then posns """ def __init__(self, flat_array: np.ndarray): self.flat_array = flat_array def build(self): """Slice the flat array into a 2d array of doc ids and posns.""" term_boundaries = np.argwhere(np.diff(self.flat_array[0]) > 0).flatten() + 1 term_boundaries = np.concatenate([[0], term_boundaries, [len(self.flat_array[1])]]) encoded, enc_term_boundaries = encoder.encode(keys=self.flat_array[1].view(np.uint64), boundaries=term_boundaries[:-1], payload=self.flat_array[2].view(np.uint64)) term_ids = self.flat_array[0][term_boundaries[:-1]] encoded_term_posns = {} for into_terms, (beg_idx, end_idx) in enumerate(zip(enc_term_boundaries[:-1], enc_term_boundaries[1:])): sliced = encoded[beg_idx:end_idx] encoded_term_posns[term_ids[into_terms]] = sliced return PosnBitArray(encoded_term_posns, self.flat_array[1].max()) class PosnBitArrayBuilder: def __init__(self): self.term_posns = defaultdict(list) self.term_posn_doc_ids = defaultdict(list) self.max_doc_id = 0 def add_posns(self, doc_id: int, term_id: int, posns: List[int]): doc_ids = [doc_id] * len(posns) self.term_posns[term_id].extend(posns) self.term_posn_doc_ids[term_id].extend(doc_ids) def ensure_capacity(self, doc_id): self.max_doc_id = max(self.max_doc_id, doc_id) def build(self, check=False): encoded_term_posns = {} for term_id, posns in self.term_posns.items(): if len(posns) == 0: posns = np.asarray([], dtype=np.uint32).flatten() elif isinstance(posns, list): posns_arr = np.asarray(posns, dtype=np.uint32).flatten() posns = posns_arr doc_ids = self.term_posn_doc_ids[term_id] if isinstance(doc_ids, list): doc_ids = np.asarray(doc_ids, dtype=np.uint32) encoded = encoder.encode(keys=doc_ids, payload=posns) if check: decode_again = encoder.decode(encoded) docs_to_posns = dict(decode_again) doc_ids_again = [] posns_again = [] for doc_id, posns_dec in docs_to_posns.items(): for posn in posns_dec: doc_ids_again.append(doc_id) posns_again.append(posn) assert np.array_equal(doc_ids_again, doc_ids) assert np.array_equal(posns, posns_again) encoded_term_posns[term_id] = encoded return PosnBitArray(encoded_term_posns, self.max_doc_id) class PosnBitArrayAlreadyEncBuilder: def __init__(self): self.encoded_term_posns = {} self.max_doc_id = 0 def add_posns(self, doc_id: int, term_id: int, posns): self.encoded_term_posns[term_id] = posns def ensure_capacity(self, doc_id): self.max_doc_id = max(self.max_doc_id, doc_id) def build(self, check=False): return PosnBitArray(self.encoded_term_posns, self.max_doc_id) def index_range(rng, key): if key is None: return rng if isinstance(rng, np.ndarray): return rng[key] if isinstance(key, slice): return rng[key] elif isinstance(key, numbers.Number): return rng[key] elif isinstance(key, np.ndarray): try: # UNFORTUNATE COPY r_val = np.asarray(list(rng))[key] return r_val except IndexError as e: raise e # Last resort # UNFORTUNATE COPY # Here probably elipses or a tuple of various things return np.asarray(list(rng))[key] class PosnBitArray: def __init__(self, encoded_term_posns, max_doc_id: int): self.encoded_term_posns = encoded_term_posns self.max_doc_id = max_doc_id self.docfreq_cache : Dict[int, np.uint64] = {} self.termfreq_cache : Dict[int, Tuple[np.ndarray, np.ndarray]] = {} def copy(self): new = PosnBitArray(deepcopy(self.encoded_term_posns), self.max_doc_id) return new def concat(self, other): """Merge other into self. Assumes other's doc ids are not overlapping with self's doc ids. """ # Shared terms shared_terms = set(self.encoded_term_posns.keys()).intersection(set(other.encoded_term_posns.keys())) for term_id in shared_terms: # Append then sort self.encoded_term_posns[term_id] = np.concatenate([self.encoded_term_posns[term_id], other.encoded_term_posns[term_id]]) self.encoded_term_posns[term_id].sort() only_other_terms = set(other.encoded_term_posns.keys()).difference(set(self.encoded_term_posns.keys())) for term_id in only_other_terms: self.encoded_term_posns[term_id] = other.encoded_term_posns[term_id] self.max_doc_id = max(self.max_doc_id, other.max_doc_id) # Empty caches self.termfreq_cache = {} self.docfreq_cache = {} def slice(self, key): sliced_term_posns = {} doc_ids = convert_keys(key) max_doc_id = np.max(doc_ids) for term_id, posns in self.encoded_term_posns.items(): encoded = self.encoded_term_posns[term_id] assert len(encoded.shape) == 1 sliced_term_posns[term_id] = encoder.slice(encoded, keys=doc_ids) return PosnBitArray(sliced_term_posns, max_doc_id) def __getitem__(self, key): return self.slice(key) def merge(self, other): # Unique terms unique_terms = set(self.encoded_term_posns.keys()).union(set(other.encoded_term_posns.keys())) for term_id in unique_terms: if term_id not in other.encoded_term_posns: continue elif term_id not in self.encoded_term_posns: self.encoded_term_posns[term_id] = other.encoded_term_posns[term_id] else: posns_self = self.encoded_term_posns[term_id] posns_other = other.encoded_term_posns[term_id] self.encoded_term_posns[term_id] = snp.merge(posns_self, posns_other) self.max_doc_id = self.max_doc_id + other.max_doc_id # Empty caches self.termfreq_cache = {} self.docfreq_cache = {} def doc_encoded_posns(self, term_id: int, doc_id: int) -> np.ndarray: term_posns = encoder.slice(self.encoded_term_posns[term_id], keys=np.asarray([doc_id], dtype=np.uint64)) return term_posns def phrase_freqs(self, term_ids: List[int], phrase_freqs: np.ndarray, doc_ids: np.ndarray) -> np.ndarray: if len(term_ids) < 2: raise ValueError("Must have at least two terms") if phrase_freqs.shape[0] == self.max_doc_id + 1: enc_term_posns = [self.encoded_term_posns[term_id] for term_id in term_ids] else: enc_term_posns = [encoder.slice(self.encoded_term_posns[term_id], keys=doc_ids.view(np.uint64)) for term_id in term_ids] return compute_phrase_freqs(enc_term_posns, phrase_freqs) def positions(self, term_id: int, doc_ids) -> Union[List[np.ndarray], np.ndarray]: if isinstance(doc_ids, numbers.Number): doc_ids = np.asarray([doc_ids]) try: np_doc_ids = convert_keys(doc_ids) term_posns = encoder.slice(self.encoded_term_posns[term_id], keys=np_doc_ids) except KeyError: r_val = [np.array([], dtype=np.uint32) for doc_id in doc_ids] if len(r_val) == 1 and len(doc_ids) == 1 and isinstance(doc_ids[0], numbers.Number): return [r_val[0]] return r_val decoded = encoder.decode(encoded=term_posns, get_keys=True) if len(decoded) == 0: return [np.array([], dtype=np.uint32)] if len(decoded) != len(doc_ids): # Fill non matches decoded = cast(List[Tuple[np.uint64, np.ndarray]], decoded) as_dict: Dict[np.uint64, np.ndarray] = dict(decoded) decs = [] for doc_id in doc_ids: if doc_id in as_dict: decs.append(as_dict[doc_id]) else: decs.append(np.array([], dtype=np.uint32)) return decs else: decs = [dec[1] for dec in decoded] return decs def termfreqs(self, term_id: int, doc_ids: Optional[np.ndarray] = None) -> Tuple[np.ndarray, np.ndarray]: """Count term freqs using unique positions.""" if doc_ids is None: return self._termfreqs_with_cache(term_id) encoded = self.encoded_term_posns[term_id] term_posns = encoded term_posns = encoder.slice(encoded, keys=doc_ids.astype(np.uint64)) return self._computed_term_freqs(term_posns) def _computed_term_freqs(self, term_posns) -> Tuple[np.ndarray, np.ndarray]: doc_ids = encoder.keys(term_posns) change_indices = np.nonzero(np.diff(doc_ids))[0] change_indices = np.concatenate((np.asarray([0]), change_indices + 1)) posns = term_posns & encoder.payload_lsb_mask bit_counts = bit_count64(posns) term_freqs = np.add.reduceat(bit_counts, change_indices) return sorted_unique(doc_ids), term_freqs def _termfreqs_with_cache(self, term_id: int) -> Tuple[np.ndarray, np.ndarray]: try: return self.termfreq_cache[term_id] except KeyError: term_posns = self.encoded_term_posns[term_id] doc_ids, term_freqs = self._computed_term_freqs(term_posns) if self._is_cached(term_id): self.termfreq_cache[term_id] = (doc_ids, term_freqs) return doc_ids, term_freqs def _is_cached(self, term_id: int) -> bool: return term_id in self.docfreq_cache def _docfreq_from_cache(self, term_id: int) -> np.uint64: return self.docfreq_cache[term_id] def _maybe_cache_docfreq(self, term_id: int, docfreq: np.uint64): if self.max_doc_id >= 100000 and docfreq > (self.max_doc_id // 100): self.docfreq_cache[term_id] = docfreq def docfreq(self, term_id: int) -> np.uint64: try: return self.docfreq_cache[term_id] except KeyError: encoded = self.encoded_term_posns[term_id] docfreq = np.uint64(encoder.keys_unique(encoded).size) self._maybe_cache_docfreq(term_id, docfreq) return docfreq def insert(self, key, term_ids_to_posns, is_encoded=False): new_posns = PosnBitArrayBuilder() if is_encoded: new_posns = PosnBitArrayAlreadyEncBuilder() max_doc_id = 0 for doc_id, new_posns_row in enumerate(term_ids_to_posns): for term_id, positions in new_posns_row: new_posns.add_posns(doc_id, term_id, positions) max_doc_id = max(doc_id, max_doc_id) new_posns.max_doc_id = max_doc_id ins_arr = new_posns.build() self.merge(ins_arr) @property def nbytes(self): arr_bytes = 0 for doc_id, posn in self.encoded_term_posns.items(): arr_bytes += posn.nbytes for term_id, (doc_ids, term_freqs) in self.termfreq_cache.items(): arr_bytes += doc_ids.nbytes arr_bytes += term_freqs.nbytes for term_id, docfreq in self.docfreq_cache.items(): arr_bytes += docfreq.nbytes return arr_bytes <fim_middle>
null
FOR
complete_current_header_empty_completion
<filename>searcharray/searcharray/solr.py<fim_prefix>"""Utility functions for Solr users of searcharray.""" import re import pandas as pd import numpy as np from typing import List, Optional, Dict, Tuple from searcharray.postings import SearchArray from searcharray.similarity import Similarity, default_bm25 def parse_min_should_match(num_clauses: int, spec: str) -> int: """Parse Solr's min should match (ie mm) spec. See this ChatGPT translation of mm code from Solr's Java code for parsing this https://chat.openai.com/share/76642aec-7e05-420f-a53a-83b8e2eea8fb Parameters ---------- num_clauses : int spec : str Returns ------- int : the number of clauses that must match """ def checked_parse_int(value, error_message): try: return int(value) except ValueError: raise ValueError(error_message) result = num_clauses spec = spec.strip() if '<' in spec: # we have conditional spec(s) space_around_less_than_pattern = re.compile(r'\s*<\s*') spec = space_around_less_than_pattern.sub('<', spec) for s in spec.split(): parts = s.split('<', 1) if len(parts) < 2: raise ValueError("Invalid 'mm' spec: '" + s + "'. Expecting values before and after '<'") upper_bound = checked_parse_int(parts[0], "Invalid 'mm' spec. Expecting an integer.") if num_clauses <= upper_bound: return result else: result = parse_min_should_match(num_clauses, parts[1]) return result # otherwise, simple expression if '%' in spec: # percentage - assume the % was the last char. If not, let int() fail. spec = spec[:-1] percent = checked_parse_int(spec, "Invalid 'mm' spec. Expecting an integer.") calc = (result * percent) * (1 / 100) result = result + int(calc) if calc < 0 else int(calc) else: calc = checked_parse_int(spec, "Invalid 'mm' spec. Expecting an integer.") result = result + calc if calc < 0 else calc return min(num_clauses, max(result, 0)) def parse_field_boosts(field_lists: List[str]) -> dict: """Parse Solr's qf, pf, pf2, pf3 field boosts.""" if not field_lists: return {} out = {} carat_pattern = re.compile(r'\^') for<fim_suffix> field in field_lists: parts = carat_pattern.split(field) out[parts[0]] = None if len(parts) == 1 else float(parts[1]) return out def get_field(frame, field) -> SearchArray: if field not in frame.columns: raise ValueError(f"Field {field} not in dataframe") if not isinstance(frame[field].array, SearchArray): raise ValueError(f"Field {field} is not a searcharray field") return frame[field].array def parse_query_terms(frame: pd.DataFrame, query: str, query_fields: List[str]): search_terms: Dict[str, List[str]] = {} num_search_terms = 0 term_centric = True for field in query_fields: arr = get_field(frame, field) tokenizer = arr.tokenizer search_terms[field] = [] field_num_search_terms = 0 for posn, term in enumerate(tokenizer(query)): search_terms[field].append(term) field_num_search_terms += 1 if num_search_terms == 0: num_search_terms = field_num_search_terms elif field_num_search_terms != num_search_terms: term_centric = False return num_search_terms, search_terms, term_centric def _edismax_term_centric(frame: pd.DataFrame, query_fields: Dict[str, float], num_search_terms: int, search_terms: Dict[str, List[str]], mm: str, similarity: Similarity) -> Tuple[np.ndarray, str]: explain = [] term_scores = [] for term_posn in range(num_search_terms): max_scores = np.zeros(len(frame)) term_explain = [] for field, boost in query_fields.items(): term = search_terms[field][term_posn] post_arr = get_field(frame, field) field_term_score = post_arr.score(term, similarity=similarity) * (1 if boost is None else boost) boost_exp = f"{boost}" if boost is not None else "1" term_explain.append(f"{field}:{term}^{boost_exp}") max_scores = np.maximum(max_scores, field_term_score) term_scores.append(max_scores) explain.append("(" + " | ".join(term_explain) + ")") min_should_match = parse_min_should_match(num_search_terms, spec=mm) qf_scores = np.asarray(term_scores) matches_gt_mm = np.sum(qf_scores > 0, axis=0) >= min_should_match qf_scores = np.sum(term_scores, axis=0) qf_scores[~matches_gt_mm] = 0 return qf_scores, "(" + " ".join(explain) + f")~{min_should_match}" def _edismax_field_centric(frame: pd.DataFrame, query_fields: Dict[str, float], num_search_terms: int, search_terms: Dict[str, List[str]], mm: str, similarity: Similarity = default_bm25) -> Tuple[np.ndarray, str]: field_scores = [] explain = [] for field, boost in query_fields.items(): post_arr = get_field(frame, field) term_scores = np.array([post_arr.score(term, similarity=similarity) for term in search_terms[field]]) min_should_match = parse_min_should_match(len(search_terms[field]), spec=mm) exp = " ".join([f"{field}:{term}" for term in search_terms[field]]) boost_exp = f"{boost}" if boost is not None else "1" exp = "(" + exp + f")~{min(min_should_match, len(search_terms[field]))}" exp = "(" + exp + f")^{boost_exp}" matches_gt_mm = np.sum(term_scores > 0, axis=0) >= min(min_should_match, len(search_terms[field])) sum_terms_bm25 = np.sum(term_scores, axis=0) sum_terms_bm25[~matches_gt_mm] = 0 field_scores.append(sum_terms_bm25 * (1 if boost is None else boost)) explain.append(exp) # Take maximum field scores as qf qf_scores = np.asarray(field_scores) qf_scores = np.max(qf_scores, axis=0) return qf_scores, " | ".join(explain) def edismax(frame: pd.DataFrame, q: str, qf: List[str], mm: Optional[str] = None, pf: Optional[List[str]] = None, pf2: Optional[List[str]] = None, pf3: Optional[List[str]] = None, q_op: str = "OR", similarity: Similarity = default_bm25) -> Tuple[np.ndarray, str]: """Run edismax search over dataframe with searcharray fields. Parameters ---------- q : str The query string mm : str The minimum should match spec qf : list The fields to search pf : list The fields to search for phrase matches pf2 : list The fields to search for bigram matches pf3 : list The fields to search for trigram matches q_op : str, optional The default operator, by default "OR" Returns ------- np.ndarray The search results """ def listify(x): return x if isinstance(x, list) else [x] query_fields = parse_field_boosts(listify(qf)) phrase_fields = parse_field_boosts(listify(pf)) if pf else {} if mm is None: mm = "1" if q_op == "AND": mm = "100%" # bigram_fields = parse_field_boosts(pf2) if pf2 else {} # trigram_fields = parse_field_boosts(pf3) if pf3 else {} num_search_terms, search_terms, term_centric = parse_query_terms(frame, q, list(query_fields.keys())) if term_centric: qf_scores, explain = _edismax_term_centric(frame, query_fields, num_search_terms, search_terms, mm, similarity=similarity) else: qf_scores, explain = _edismax_field_centric(frame, query_fields, num_search_terms, search_terms, mm, similarity=similarity) phrase_scores = [] for field, boost in phrase_fields.items(): arr = get_field(frame, field) terms = search_terms[field] field_phrase_score = arr.score(terms, similarity=similarity) * (1 if boost is None else boost) boost_exp = f"{boost}" if boost is not None else "1" explain += f" ({field}:\"{' '.join(terms)}\")^{boost_exp}" phrase_scores.append(field_phrase_score) if len(phrase_scores) > 0: phrase_scores = np.sum(phrase_scores, axis=0) # Add where term_scores > 0 term_match_idx = np.where(qf_scores)[0] qf_scores[term_match_idx] += phrase_scores[term_match_idx] return qf_scores, explain <fim_middle>
null
FOR
complete_current_header_empty_completion
<filename>searcharray/searcharray/term_dict.py<fim_prefix>import sys class TermMissingError(KeyError): def __init__(self, msg): super().__init__(msg) class TermDict: def __init__(self): self.term_to_ids = {} self.id_to_terms = {} def add_term(self, term): if term in self.term_to_ids: return self.term_to_ids[term] term_id = len(self.term_to_ids) self.term_to_ids[term] = term_id self.id_to_terms[term_id] = term return term_id def copy(self): new_dict = TermDict() new_dict.term_to_ids = dict(self.term_to_ids) new_dict.id_to_terms = dict(self.id_to_terms.copy()) return new_dict def get_term_id(self, term): try<fim_suffix>: return self.term_to_ids[term] except KeyError: raise TermMissingError(f"Term {term} not present in dictionary. Reindex to add.") def get_term(self, term_id): try: return self.id_to_terms[term_id] except KeyError: raise TermMissingError(f"Term at {term_id} not present in dictionary. Reindex to add.") def compatible(self, other) -> bool: # Intersect the terms in both dictionaries terms_self = list(self.term_to_ids.keys()) terms_other = list(other.term_to_ids.keys()) shortest = min(len(terms_self), len(terms_other)) return terms_self[:shortest] == terms_other[:shortest] # If the intersection is empty, the dictionaries are not compatible def __len__(self): return len(self.term_to_ids) def __repr__(self): return repr(self.term_to_ids) @property def nbytes(self): bytes_used = sys.getsizeof(self.term_to_ids) + sys.getsizeof(self.id_to_terms) return bytes_used <fim_middle>
null
TRY
complete_current_header_empty_completion
<filename>searcharray/searcharray/solr.py<fim_prefix>"""Utility functions for Solr users of searcharray.""" import re import pandas as pd import numpy as np from typing import List, Optional, Dict, Tuple from searcharray.postings import SearchArray from searcharray.similarity import Similarity, default_bm25 def parse_min_should_match(num_clauses: int, spec: str) -> int: """Parse Solr's min should match (ie mm) spec. See this ChatGPT translation of mm code from Solr's Java code for parsing this https://chat.openai.com/share/76642aec-7e05-420f-a53a-83b8e2eea8fb Parameters ---------- num_clauses : int spec : str Returns ------- int : the number of clauses that must match """ def checked_parse_int(value, error_message): try<fim_suffix>: return int(value) except ValueError: raise ValueError(error_message) result = num_clauses spec = spec.strip() if '<' in spec: # we have conditional spec(s) space_around_less_than_pattern = re.compile(r'\s*<\s*') spec = space_around_less_than_pattern.sub('<', spec) for s in spec.split(): parts = s.split('<', 1) if len(parts) < 2: raise ValueError("Invalid 'mm' spec: '" + s + "'. Expecting values before and after '<'") upper_bound = checked_parse_int(parts[0], "Invalid 'mm' spec. Expecting an integer.") if num_clauses <= upper_bound: return result else: result = parse_min_should_match(num_clauses, parts[1]) return result # otherwise, simple expression if '%' in spec: # percentage - assume the % was the last char. If not, let int() fail. spec = spec[:-1] percent = checked_parse_int(spec, "Invalid 'mm' spec. Expecting an integer.") calc = (result * percent) * (1 / 100) result = result + int(calc) if calc < 0 else int(calc) else: calc = checked_parse_int(spec, "Invalid 'mm' spec. Expecting an integer.") result = result + calc if calc < 0 else calc return min(num_clauses, max(result, 0)) def parse_field_boosts(field_lists: List[str]) -> dict: """Parse Solr's qf, pf, pf2, pf3 field boosts.""" if not field_lists: return {} out = {} carat_pattern = re.compile(r'\^') for field in field_lists: parts = carat_pattern.split(field) out[parts[0]] = None if len(parts) == 1 else float(parts[1]) return out def get_field(frame, field) -> SearchArray: if field not in frame.columns: raise ValueError(f"Field {field} not in dataframe") if not isinstance(frame[field].array, SearchArray): raise ValueError(f"Field {field} is not a searcharray field") return frame[field].array def parse_query_terms(frame: pd.DataFrame, query: str, query_fields: List[str]): search_terms: Dict[str, List[str]] = {} num_search_terms = 0 term_centric = True for field in query_fields: arr = get_field(frame, field) tokenizer = arr.tokenizer search_terms[field] = [] field_num_search_terms = 0 for posn, term in enumerate(tokenizer(query)): search_terms[field].append(term) field_num_search_terms += 1 if num_search_terms == 0: num_search_terms = field_num_search_terms elif field_num_search_terms != num_search_terms: term_centric = False return num_search_terms, search_terms, term_centric def _edismax_term_centric(frame: pd.DataFrame, query_fields: Dict[str, float], num_search_terms: int, search_terms: Dict[str, List[str]], mm: str, similarity: Similarity) -> Tuple[np.ndarray, str]: explain = [] term_scores = [] for term_posn in range(num_search_terms): max_scores = np.zeros(len(frame)) term_explain = [] for field, boost in query_fields.items(): term = search_terms[field][term_posn] post_arr = get_field(frame, field) field_term_score = post_arr.score(term, similarity=similarity) * (1 if boost is None else boost) boost_exp = f"{boost}" if boost is not None else "1" term_explain.append(f"{field}:{term}^{boost_exp}") max_scores = np.maximum(max_scores, field_term_score) term_scores.append(max_scores) explain.append("(" + " | ".join(term_explain) + ")") min_should_match = parse_min_should_match(num_search_terms, spec=mm) qf_scores = np.asarray(term_scores) matches_gt_mm = np.sum(qf_scores > 0, axis=0) >= min_should_match qf_scores = np.sum(term_scores, axis=0) qf_scores[~matches_gt_mm] = 0 return qf_scores, "(" + " ".join(explain) + f")~{min_should_match}" def _edismax_field_centric(frame: pd.DataFrame, query_fields: Dict[str, float], num_search_terms: int, search_terms: Dict[str, List[str]], mm: str, similarity: Similarity = default_bm25) -> Tuple[np.ndarray, str]: field_scores = [] explain = [] for field, boost in query_fields.items(): post_arr = get_field(frame, field) term_scores = np.array([post_arr.score(term, similarity=similarity) for term in search_terms[field]]) min_should_match = parse_min_should_match(len(search_terms[field]), spec=mm) exp = " ".join([f"{field}:{term}" for term in search_terms[field]]) boost_exp = f"{boost}" if boost is not None else "1" exp = "(" + exp + f")~{min(min_should_match, len(search_terms[field]))}" exp = "(" + exp + f")^{boost_exp}" matches_gt_mm = np.sum(term_scores > 0, axis=0) >= min(min_should_match, len(search_terms[field])) sum_terms_bm25 = np.sum(term_scores, axis=0) sum_terms_bm25[~matches_gt_mm] = 0 field_scores.append(sum_terms_bm25 * (1 if boost is None else boost)) explain.append(exp) # Take maximum field scores as qf qf_scores = np.asarray(field_scores) qf_scores = np.max(qf_scores, axis=0) return qf_scores, " | ".join(explain) def edismax(frame: pd.DataFrame, q: str, qf: List[str], mm: Optional[str] = None, pf: Optional[List[str]] = None, pf2: Optional[List[str]] = None, pf3: Optional[List[str]] = None, q_op: str = "OR", similarity: Similarity = default_bm25) -> Tuple[np.ndarray, str]: """Run edismax search over dataframe with searcharray fields. Parameters ---------- q : str The query string mm : str The minimum should match spec qf : list The fields to search pf : list The fields to search for phrase matches pf2 : list The fields to search for bigram matches pf3 : list The fields to search for trigram matches q_op : str, optional The default operator, by default "OR" Returns ------- np.ndarray The search results """ def listify(x): return x if isinstance(x, list) else [x] query_fields = parse_field_boosts(listify(qf)) phrase_fields = parse_field_boosts(listify(pf)) if pf else {} if mm is None: mm = "1" if q_op == "AND": mm = "100%" # bigram_fields = parse_field_boosts(pf2) if pf2 else {} # trigram_fields = parse_field_boosts(pf3) if pf3 else {} num_search_terms, search_terms, term_centric = parse_query_terms(frame, q, list(query_fields.keys())) if term_centric: qf_scores, explain = _edismax_term_centric(frame, query_fields, num_search_terms, search_terms, mm, similarity=similarity) else: qf_scores, explain = _edismax_field_centric(frame, query_fields, num_search_terms, search_terms, mm, similarity=similarity) phrase_scores = [] for field, boost in phrase_fields.items(): arr = get_field(frame, field) terms = search_terms[field] field_phrase_score = arr.score(terms, similarity=similarity) * (1 if boost is None else boost) boost_exp = f"{boost}" if boost is not None else "1" explain += f" ({field}:\"{' '.join(terms)}\")^{boost_exp}" phrase_scores.append(field_phrase_score) if len(phrase_scores) > 0: phrase_scores = np.sum(phrase_scores, axis=0) # Add where term_scores > 0 term_match_idx = np.where(qf_scores)[0] qf_scores[term_match_idx] += phrase_scores[term_match_idx] return qf_scores, explain <fim_middle>
null
TRY
complete_current_header_empty_completion
<filename>searcharray/searcharray/postings.py<fim_prefix>"""Tokenized, searchable text as a pandas dtype.""" import pandas as pd import numbers from pandas.api.extensions import ExtensionDtype, ExtensionArray, register_extension_dtype from pandas.api.types import is_list_like from pandas.api.extensions import take import json from collections import Counter import warnings import logging from typing import List, Union, Optional, Iterable import numpy as np from searcharray.phrase.scan_merge import scan_merge_ins from searcharray.phrase.posn_diffs import compute_phrase_freqs from searcharray.phrase.middle_out import PosnBitArray from searcharray.similarity import Similarity, default_bm25 from searcharray.indexing import build_index_from_tokenizer, build_index_from_terms_list from searcharray.term_dict import TermMissingError logger = logging.getLogger(__name__) # When running in pytest import sys # noqa handler = logging.StreamHandler(sys.stdout) handler.setLevel(logging.ERROR) formatter = logging.Formatter("[%(filename)s:%(lineno)s - %(funcName)20s() ] %(message)s") handler.setFormatter(formatter) logger.addHandler(handler) logger.setLevel(logging.ERROR) class Terms: """An indexed search doc - a single bag of tokenized words and positions.""" def __init__(self, postings, doc_len: int = 0, posns: Optional[dict] = None, encoded=False): self.postings = postings self.posns = None self.encoded = encoded self.doc_len = doc_len self.posns = posns def _validate_posns(self): # (For testing/assertions) - Confirm every term in positions also in postings if self.posns is None: return for term in self.posns: if term not in self.postings: raise ValueError(f"Term {term} in positions but not in postings. ") def termfreq(self, token): return self.postings[token] def terms(self): return self.postings.items() def positions(self, term=None): if self.posns is None: return {} if term is None: posns = self.posns.items() else: posns = self.posns[term] return posns def raw_positions(self, term_dict, term=None): if self.posns is None: return {} if term is None: posns = [(term_dict.get_term_id(term), posns) for term, posns in self.posns.items()] else: posns = [(term_dict.get_term_id(term), self.posns[term])] return posns def tf_to_dense(self, term_dict): """Convert to a dense vector of term frequencies.""" dense = np.zeros(len(term_dict)) for term, freq in self.terms(): dense[term_dict.get_term_id(term)] = freq return dense def __len__(self): return len(self.postings) def __repr__(self): posting_keys = set(self.postings.keys()) rval = f"Terms({posting_keys})" return rval def __str__(self): return repr(self) def __eq__(self, other): # Flip to the other implementation if we're comparing to a SearchArray # to get a boolean array back if isinstance(other, SearchArray): return other == self same_postings = isinstance(other, Terms) and self.postings == other.postings if same_postings and self.doc_len == other.doc_len: return True def __lt__(self, other): # return isinstance(other, Terms) and hash(self) < hash(other) keys_both = set(self.postings.keys()).union(set(other.postings.keys())) # Sort lexically keys_both = sorted(keys_both) # Iterate as if these are two vectors of the same large dimensional vector sparse for key in keys_both: lhs_val = 0 rhs_val = 0 try: lhs_val = self.postings[key] except KeyError: pass try: rhs_val = other.postings[key] except KeyError: pass if lhs_val < rhs_val: return True elif lhs_val > rhs_val: return False else: continue return False def __le__(self, other): return self < other or self == other def __gt__(self, other): return not (self < other) and self != other def __hash__(self): return hash(json.dumps(self.postings, sort_keys=True)) class TermsDtype(ExtensionDtype): """Pandas dtype for terms.""" name = 'tokenized_text' type = Terms kind = 'O' @classmethod def construct_from_string(cls, string): if not isinstance(string, str): raise TypeError( "'construct_from_string' expects a string, got {}".format(type(string)) ) elif string == cls.name: return cls() else: raise TypeError( "Cannot construct a '{}' from '{}'".format(cls.__name__, string) ) @classmethod def construct_array_type(cls): return SearchArray def __repr__(self): return 'TermsDtype()' @property def na_value(self): return Terms({}) def valid_value(self, value): return isinstance(value, dict) or pd.isna(value) or isinstance(value, Terms) register_extension_dtype(TermsDtype) def ws_tokenizer(string): if pd.isna(string): return [] if not isinstance(string, str): raise ValueError("Expected a string") return string.split() def _row_to_postings_row(doc_id, row, doc_len, term_dict, posns: PosnBitArray): tfs = {} labeled_posns = {} for term_idx in row.cols: term = term_dict.get_term(term_idx) tfs[term] = 1 enc_term_posns = posns.doc_encoded_posns(term_idx, doc_id=doc_id) labeled_posns[term] = enc_term_posns result = Terms(tfs, posns=labeled_posns, doc_len=doc_len, encoded=True) return result class SearchArray(ExtensionArray): """An array of tokenized text (Termss).""" dtype = TermsDtype() def __init__(self, postings, tokenizer=ws_tokenizer, avoid_copies=True): # Check dtype, raise TypeError if not is_list_like(postings): raise TypeError("Expected list-like object, got {}".format(type(postings))) self.avoid_copies = avoid_copies self.tokenizer = tokenizer self.term_mat, self.posns, \ self.term_dict, self.avg_doc_length, \ self.doc_lens = build_index_from_terms_list(postings, Terms) @classmethod def index(cls, array: Iterable, tokenizer=ws_tokenizer, truncate=False, batch_size=100000, avoid_copies=True) -> 'SearchArray': """Index an array of strings using tokenizer.""" if not is_list_like(array): raise TypeError("Expected list-like object, got {}".format(type(array))) term_mat, posns, term_dict, avg_doc_length, doc_lens =\ build_index_from_tokenizer(array, tokenizer, batch_size=batch_size, truncate=truncate) postings = cls([], tokenizer=tokenizer, avoid_copies=avoid_copies) postings.term_mat = term_mat postings.posns = posns postings.term_dict = term_dict postings.avg_doc_length = avg_doc_length postings.doc_lens = doc_lens return postings @classmethod def _from_sequence(cls, scalars, dtype=None, copy=False): """Construct a new SearchArray from a sequence of scalars (PostingRow or convertible into).""" if dtype is not None: if not isinstance(dtype, TermsDtype): return scalars if isinstance(scalars, np.ndarray) and scalars.dtype == TermsDtype(): return cls(scalars) # String types elif isinstance(scalars, np.ndarray) and scalars.dtype.kind in 'US': return cls(scalars) # Other objects elif isinstance(scalars, np.ndarray) and scalars.dtype != object: return scalars return cls(scalars) def memory_usage(self, deep=False): """Return memory usage of this array in bytes.""" return self.nbytes @property def nbytes(self): return self.term_mat.nbytes + self.posns.nbytes + self.doc_lens.nbytes + self.term_dict.nbytes def __getitem__(self, key): key = pd.api.indexers.check_array_indexer(self, key) # Want to take rows of term freqs if isinstance(key, numbers.Integral): try: rows = self.term_mat[key] doc_len = self.doc_lens[key] doc_id = key if doc_id < 0: doc_id += len(self) return _row_to_postings_row(doc_id, rows[0], doc_len, self.term_dict, self.posns) except IndexError: raise IndexError("index out of bounds") else: # Construct a sliced view of this array sliced_tfs = self.term_mat.slice(key) sliced_posns = self.posns.slice(sliced_tfs.rows) if not self.avoid_copies else self.posns arr = SearchArray([], tokenizer=self.tokenizer) arr.term_mat = sliced_tfs arr.doc_lens = self.doc_lens[key] arr.posns = sliced_posns arr.term_dict = self.term_dict arr.avg_doc_length = self.avg_doc_length return arr def __setitem__(self, key, value): """Set an item in the array.""" key = pd.api.indexers.check_array_indexer(self, key) if isinstance(value, pd.Series): value = value.values if isinstance(value, pd.DataFrame): value = value.values.flatten() if isinstance(value, SearchArray): value = value.to_numpy() if isinstance(value, list): value = np.asarray(value, dtype=object) if not isinstance(value, np.ndarray) and not self.dtype.valid_value(value): raise ValueError(f"Cannot set non-object array to SearchArray -- you passed type:{type(value)} -- {value}") # Cant set a single value to an array if isinstance(key, numbers.Integral) and isinstance(value, np.ndarray): raise ValueError("Cannot set a single value to an array") try: is_encoded = False posns = None term_mat = np.asarray([]) doc_lens = np.asarray([]) if isinstance(value, float): term_mat = np.asarray([value]) doc_lens = np.asarray([0]) elif isinstance(value, Terms): term_mat = np.asarray([value.tf_to_dense(self.term_dict)]) doc_lens = np.asarray([value.doc_len]) is_encoded = value.encoded posns = [value.raw_positions(self.term_dict)] elif isinstance(value, np.ndarray): term_mat = np.asarray([x.tf_to_dense(self.term_dict) for x in value]) doc_lens = np.asarray([x.doc_len for x in value]) is_encoded = value[0].encoded if len(value) > 0 else False posns = [x.raw_positions(self.term_dict) for x in value] np.nan_to_num(term_mat, copy=False, nan=0) self.term_mat[key] = term_mat self.doc_lens[key] = doc_lens if posns is not None: self.posns.insert(key, posns, is_encoded) # Assume we have a positions for each term, doc pair. We can just update it. # Otherwise we would have added new terms except TermMissingError: self._add_new_terms(key, value) def _add_new_terms(self, key, value): msg = """Adding new terms! This might not be good if you tokenized this new text with a different tokenizer. Also. This is slow.""" warnings.warn(msg) scan_value = value if isinstance(value, Terms): scan_value = np.asarray([value]) for row in scan_value: for term in row.terms(): self.term_dict.add_term(term[0]) self.term_mat.resize((self.term_mat.shape[0], len(self.term_dict))) # Ensure posns_lookup has at least max self.posns self[key] = value def value_counts( self, dropna: bool = True, ): if dropna: counts = Counter(self[:]) counts.pop(Terms({}), None) else: counts = Counter(self[:]) return pd.Series(counts) def __len__(self): len_rval = len(self.term_mat.rows) return len_rval def __ne__(self, other): if isinstance(other, pd.DataFrame) or isinstance(other, pd.Series) or isinstance(other, pd.Index): return NotImplemented return ~(self == other) def __eq__(self, other): """Return a boolean numpy array indicating elementwise equality.""" # When other is a dataframe or series, not implemented if isinstance(other, pd.DataFrame) or isinstance(other, pd.Series) or isinstance(other, pd.Index): return NotImplemented # When other is an ExtensionArray if isinstance(other, SearchArray): if len(self) != len(other): return False elif len(other) == 0: return np.array([], dtype=bool) else: # Compatible term dicts, and same term freqs # (not looking at positions, maybe we should?) if self.term_dict.compatible(other.term_dict): return (self.term_mat == other.term_mat) & (self.doc_lens == other.doc_lens) else: return np.zeros(len(self), dtype=bool) # return np.array(self[:]) == np.array(other[:]) # When other is a scalar value elif isinstance(other, Terms): other = SearchArray([other], tokenizer=self.tokenizer) warnings.warn("Comparing a scalar value to a SearchArray. This is slow.") return np.array(self[:]) == np.array(other[:]) # When other is a sequence but not an ExtensionArray # its an array of dicts elif is_list_like(other): if len(self) != len(other): return False elif len(other) == 0: return np.array([], dtype=bool) # We actually don't know how it was tokenized other = SearchArray(other, tokenizer=self.tokenizer) return np.array(self[:]) == np.array(other[:]) # Return False where 'other' is neither the same length nor a scalar else: return np.full(len(self), False) def isna(self): # Every row with all 0s empties = self.doc_lens == 0 return empties def take(self, indices, allow_fill=False, fill_value=None): # Want to take rows of term freqs row_indices = np.arange(len(self.term_mat.rows)) # Take within the row indices themselves result_indices = take(row_indices, indices, allow_fill=allow_fill, fill_value=-1) if allow_fill and -1 in result_indices: if fill_value is None or pd.isna(fill_value): fill_value = Terms({}, encoded=True) to_fill_mask = result_indices == -1 # This is slow as it rebuilds all the term dictionaries # on the subsequent assignment lines # However, this case tends to be the exception for # most dataframe operations taken = SearchArray([fill_value] * len(result_indices)) taken[~to_fill_mask] = self[result_indices[~to_fill_mask]].copy() return taken else: taken = self[result_indices].copy() return taken def copy(self): postings_arr = SearchArray([], tokenizer=self.tokenizer) postings_arr.doc_lens = self.doc_lens.copy() postings_arr.term_mat = self.term_mat.copy() postings_arr.posns = self.posns postings_arr.term_dict = self.term_dict postings_arr.avg_doc_length = self.avg_doc_length if not self.avoid_copies: postings_arr.posns = self.posns.copy() postings_arr.term_dict = self.term_dict.copy() return postings_arr @classmethod def _concat_same_type(cls, to_concat): concatenated_data = np.concatenate([ea[:] for ea in to_concat]) return SearchArray(concatenated_data, tokenizer=to_concat[0].tokenizer) @classmethod def _from_factorized(cls, values, original): return cls(values) def _values_for_factorize(self): """Return an array and missing value suitable for factorization (ie grouping).""" arr = np.asarray(self[:], dtype=object) return arr, Terms({}) def _check_token_arg(self, token): if isinstance(token, str): return token elif isinstance(token, list) and len(token) == 1: return token[0] elif isinstance(token, list): return token else: raise TypeError("Expected a string or list of strings for phrases") # *********************************************************** # Search functionality # *********************************************************** def termfreqs(self, token: Union[List[str], str]) -> np.ndarray: token = self._check_token_arg(token) if isinstance(token, list): return self.phrase_freq(token) try: term_id = self.term_dict.get_term_id(token) matches = np.zeros(len(self), dtype=int) slice_of_rows = None if self.term_mat.subset: slice_of_rows = self.term_mat.rows doc_ids, termfreqs = self.posns.termfreqs(term_id, doc_ids=slice_of_rows) mask = np.isin(self.term_mat.rows, doc_ids) matches[mask] = termfreqs return matches else: doc_ids, termfreqs = self.posns.termfreqs(term_id, doc_ids=slice_of_rows) matches[doc_ids] = termfreqs return matches except TermMissingError: return np.zeros(len(self), dtype=int) def docfreq(self, token: str) -> int: if not isinstance(token, str): raise TypeError("Expected a string") # Count number of rows where the term appears try: return self.posns.docfreq(self.term_dict.get_term_id(token)) except TermMissingError: return 0 def doclengths(self) -> np.ndarray: return self.doc_lens def match(self, token: Union[List[str], str], slop: int = 1) -> np.ndarray: """Return a boolean numpy array indicating which elements contain the given term.""" token = self._check_token_arg(token) if isinstance(token, list): term_freq = self.phrase_freq(token) else: term_freq = self.termfreqs(token) return term_freq > 0 def score(self, token: Union[str, List[str]], similarity: Similarity = default_bm25) -> np.ndarray: """Score each doc using a similarity function. Parameters ---------- token : str or list of str of what to search (already tokenized) similarity : How to score the documents. Default is BM25. """ # Get term freqs per token token = self._check_token_arg(token) # For expensive toknes, we compute doc freq first, so we # cache them in the DF cache, to let TF cache know it should be cached tokens_l = [token] if isinstance(token, str) else token all_dfs = np.asarray([self.docfreq(token) for token in tokens_l]) tfs = self.termfreqs(token) token = self._check_token_arg(token) doc_lens = self.doclengths() scores = similarity(term_freqs=tfs, doc_freqs=all_dfs, doc_lens=doc_lens, avg_doc_lens=self.avg_doc_length, num_docs=len(self)) return scores def positions(self, token: str, key=None) -> List[np.ndarray]: """Return a list of lists of positions of the given term.""" term_id = self.term_dict.get_term_id(token) key = self.term_mat.rows[key] if key is not None else self.term_mat.rows posns = self.posns.positions(term_id, doc_ids=key) return posns def and_query(self, tokens: Union[List[str], List[List[str]]]) -> np.ndarray: """Return a mask on the postings array indicating which elements contain all terms.""" masks = [self.match(term) for term in tokens] mask = np.ones(len(self), dtype=bool) for curr_mask in masks: mask = mask & curr_mask return mask def or_query(self, tokens: Union[List[str], List[List[str]]], min_should_match: int = 1) -> np.ndarray: """Return a mask on the postings array indicating which elements contain all terms.""" masks = [self.match(term) for term in tokens] mask = np.sum(masks, axis=0) >= min_should_match return mask def phrase_freq(self, tokens: List[str], slop=1) -> np.ndarray: if slop == 1 and len(tokens) == len(set(tokens)): phrase_freqs = np.zeros(len(self)) t<fim_suffix>ry: doc_ids = self.term_mat.rows term_ids = [self.term_dict.get_term_id(token) for token in tokens] return self.posns.phrase_freqs(term_ids, doc_ids=doc_ids, phrase_freqs=phrase_freqs) except TermMissingError: return phrase_freqs else: return self.phrase_freq_every_diff(tokens, slop=slop) def phrase_freq_scan(self, tokens: List[str], mask=None, slop=1) -> np.ndarray: if mask is None: mask = self.and_query(tokens) if np.sum(mask) == 0: return mask # Gather positions posns = [self.positions(token, mask) for token in tokens] phrase_freqs = np.zeros(len(self)) phrase_freqs[mask] = scan_merge_ins(posns, phrase_freqs[mask], slop=slop) return phrase_freqs def phrase_freq_every_diff(self, tokens: List[str], slop=1) -> np.ndarray: phrase_freqs = -np.ones(len(self)) mask = self.and_query(tokens) phrase_freqs[~mask] = 0 if np.sum(mask) == 0: return phrase_freqs term_posns = [self.positions(term, mask) for term in tokens] for width in [10, 20, 30, 40]: phrase_freqs[mask] = compute_phrase_freqs(term_posns, phrase_freqs[mask], slop=slop, width=width) remaining_mask = phrase_freqs == -1 if np.any(remaining_mask): remainder_freqs = self.phrase_freq_scan(tokens, mask=remaining_mask, slop=slop) phrase_freqs[remaining_mask] = remainder_freqs[remaining_mask] return phrase_freqs <fim_middle>
null
TRY
complete_current_header_empty_completion
<filename>searcharray/searcharray/postings.py<fim_prefix>"""Tokenized, searchable text as a pandas dtype.""" import pandas as pd import numbers from pandas.api.extensions import ExtensionDtype, ExtensionArray, register_extension_dtype from pandas.api.types import is_list_like from pandas.api.extensions import take import json from collections import Counter import warnings import logging from typing import List, Union, Optional, Iterable import numpy as np from searcharray.phrase.scan_merge import scan_merge_ins from searcharray.phrase.posn_diffs import compute_phrase_freqs from searcharray.phrase.middle_out import PosnBitArray from searcharray.similarity import Similarity, default_bm25 from searcharray.indexing import build_index_from_tokenizer, build_index_from_terms_list from searcharray.term_dict import TermMissingError logger = logging.getLogger(__name__) # When running in pytest import sys # noqa handler = logging.StreamHandler(sys.stdout) handler.setLevel(logging.ERROR) formatter = logging.Formatter("[%(filename)s:%(lineno)s - %(funcName)20s() ] %(message)s") handler.setFormatter(formatter) logger.addHandler(handler) logger.setLevel(logging.ERROR) class Terms: """An indexed search doc - a single bag of tokenized words and positions.""" def __init__(self, postings, doc_len: int = 0, posns: Optional[dict] = None, encoded=False): self.postings = postings self.posns = None self.encoded = encoded self.doc_len = doc_len self.posns = posns def _validate_posns(self): # (For testing/assertions) - Confirm every term in positions also in postings if self.posns is None: return for term in self.posns: if term not in self.postings: raise ValueError(f"Term {term} in positions but not in postings. ") def termfreq(self, token): return self.postings[token] def terms(self): return self.postings.items() def positions(self, term=None): if self.posns is None: return {} if term is None: posns = self.posns.items() else: posns = self.posns[term] return posns def raw_positions(self, term_dict, term=None): if self.posns is None: return {} if term is None: posns = [(term_dict.get_term_id(term), posns) for term, posns in self.posns.items()] else: posns = [(term_dict.get_term_id(term), self.posns[term])] return posns def tf_to_dense(self, term_dict): """Convert to a dense vector of term frequencies.""" dense = np.zeros(len(term_dict)) for term, freq in self.terms(): dense[term_dict.get_term_id(term)] = freq return dense def __len__(self): return len(self.postings) def __repr__(self): posting_keys = set(self.postings.keys()) rval = f"Terms({posting_keys})" return rval def __str__(self): return repr(self) def __eq__(self, other): # Flip to the other implementation if we're comparing to a SearchArray # to get a boolean array back if isinstance(other, SearchArray): return other == self same_postings = isinstance(other, Terms) and self.postings == other.postings if same_postings and self.doc_len == other.doc_len: return True def __lt__(self, other): # return isinstance(other, Terms) and hash(self) < hash(other) keys_both = set(self.postings.keys()).union(set(other.postings.keys())) # Sort lexically keys_both = sorted(keys_both) # Iterate as if these are two vectors of the same large dimensional vector sparse for key in keys_both: lhs_val = 0 rhs_val = 0 try: lhs_val = self.postings[key] except KeyError: pass try: rhs_val = other.postings[key] except KeyError: pass if lhs_val < rhs_val: return True elif lhs_val > rhs_val: return False else: continue return False def __le__(self, other): return self < other or self == other def __gt__(self, other): return not (self < other) and self != other def __hash__(self): return hash(json.dumps(self.postings, sort_keys=True)) class TermsDtype(ExtensionDtype): """Pandas dtype for terms.""" name = 'tokenized_text' type = Terms kind = 'O' @classmethod def construct_from_string(cls, string): if not isinstance(string, str): raise TypeError( "'construct_from_string' expects a string, got {}".format(type(string)) ) elif string == cls.name: return cls() else: raise TypeError( "Cannot construct a '{}' from '{}'".format(cls.__name__, string) ) @classmethod def construct_array_type(cls): return SearchArray def __repr__(self): return 'TermsDtype()' @property def na_value(self): return Terms({}) def valid_value(self, value): return isinstance(value, dict) or pd.isna(value) or isinstance(value, Terms) register_extension_dtype(TermsDtype) def ws_tokenizer(string): if pd.isna(string): return [] if not isinstance(string, str): raise ValueError("Expected a string") return string.split() def _row_to_postings_row(doc_id, row, doc_len, term_dict, posns: PosnBitArray): tfs = {} labeled_posns = {} for term_idx in row.cols: term = term_dict.get_term(term_idx) tfs[term] = 1 enc_term_posns = posns.doc_encoded_posns(term_idx, doc_id=doc_id) labeled_posns[term] = enc_term_posns result = Terms(tfs, posns=labeled_posns, doc_len=doc_len, encoded=True) return result class SearchArray(ExtensionArray): """An array of tokenized text (Termss).""" dtype = TermsDtype() def __init__(self, postings, tokenizer=ws_tokenizer, avoid_copies=True): # Check dtype, raise TypeError if not is_list_like(postings): raise TypeError("Expected list-like object, got {}".format(type(postings))) self.avoid_copies = avoid_copies self.tokenizer = tokenizer self.term_mat, self.posns, \ self.term_dict, self.avg_doc_length, \ self.doc_lens = build_index_from_terms_list(postings, Terms) @classmethod def index(cls, array: Iterable, tokenizer=ws_tokenizer, truncate=False, batch_size=100000, avoid_copies=True) -> 'SearchArray': """Index an array of strings using tokenizer.""" if not is_list_like(array): raise TypeError("Expected list-like object, got {}".format(type(array))) term_mat, posns, term_dict, avg_doc_length, doc_lens =\ build_index_from_tokenizer(array, tokenizer, batch_size=batch_size, truncate=truncate) postings = cls([], tokenizer=tokenizer, avoid_copies=avoid_copies) postings.term_mat = term_mat postings.posns = posns postings.term_dict = term_dict postings.avg_doc_length = avg_doc_length postings.doc_lens = doc_lens return postings @classmethod def _from_sequence(cls, scalars, dtype=None, copy=False): """Construct a new SearchArray from a sequence of scalars (PostingRow or convertible into).""" if dtype is not None: if not isinstance(dtype, TermsDtype): return scalars if isinstance(scalars, np.ndarray) and scalars.dtype == TermsDtype(): return cls(scalars) # String types elif isinstance(scalars, np.ndarray) and scalars.dtype.kind in 'US': return cls(scalars) # Other objects elif isinstance(scalars, np.ndarray) and scalars.dtype != object: return scalars return cls(scalars) def memory_usage(self, deep=False): """Return memory usage of this array in bytes.""" return self.nbytes @property def nbytes(self): return self.term_mat.nbytes + self.posns.nbytes + self.doc_lens.nbytes + self.term_dict.nbytes def __getitem__(self, key): key = pd.api.indexers.check_array_indexer(self, key) # Want to take rows of term freqs if isinstance(key, numbers.Integral): tr<fim_suffix>y: rows = self.term_mat[key] doc_len = self.doc_lens[key] doc_id = key if doc_id < 0: doc_id += len(self) return _row_to_postings_row(doc_id, rows[0], doc_len, self.term_dict, self.posns) except IndexError: raise IndexError("index out of bounds") else: # Construct a sliced view of this array sliced_tfs = self.term_mat.slice(key) sliced_posns = self.posns.slice(sliced_tfs.rows) if not self.avoid_copies else self.posns arr = SearchArray([], tokenizer=self.tokenizer) arr.term_mat = sliced_tfs arr.doc_lens = self.doc_lens[key] arr.posns = sliced_posns arr.term_dict = self.term_dict arr.avg_doc_length = self.avg_doc_length return arr def __setitem__(self, key, value): """Set an item in the array.""" key = pd.api.indexers.check_array_indexer(self, key) if isinstance(value, pd.Series): value = value.values if isinstance(value, pd.DataFrame): value = value.values.flatten() if isinstance(value, SearchArray): value = value.to_numpy() if isinstance(value, list): value = np.asarray(value, dtype=object) if not isinstance(value, np.ndarray) and not self.dtype.valid_value(value): raise ValueError(f"Cannot set non-object array to SearchArray -- you passed type:{type(value)} -- {value}") # Cant set a single value to an array if isinstance(key, numbers.Integral) and isinstance(value, np.ndarray): raise ValueError("Cannot set a single value to an array") try: is_encoded = False posns = None term_mat = np.asarray([]) doc_lens = np.asarray([]) if isinstance(value, float): term_mat = np.asarray([value]) doc_lens = np.asarray([0]) elif isinstance(value, Terms): term_mat = np.asarray([value.tf_to_dense(self.term_dict)]) doc_lens = np.asarray([value.doc_len]) is_encoded = value.encoded posns = [value.raw_positions(self.term_dict)] elif isinstance(value, np.ndarray): term_mat = np.asarray([x.tf_to_dense(self.term_dict) for x in value]) doc_lens = np.asarray([x.doc_len for x in value]) is_encoded = value[0].encoded if len(value) > 0 else False posns = [x.raw_positions(self.term_dict) for x in value] np.nan_to_num(term_mat, copy=False, nan=0) self.term_mat[key] = term_mat self.doc_lens[key] = doc_lens if posns is not None: self.posns.insert(key, posns, is_encoded) # Assume we have a positions for each term, doc pair. We can just update it. # Otherwise we would have added new terms except TermMissingError: self._add_new_terms(key, value) def _add_new_terms(self, key, value): msg = """Adding new terms! This might not be good if you tokenized this new text with a different tokenizer. Also. This is slow.""" warnings.warn(msg) scan_value = value if isinstance(value, Terms): scan_value = np.asarray([value]) for row in scan_value: for term in row.terms(): self.term_dict.add_term(term[0]) self.term_mat.resize((self.term_mat.shape[0], len(self.term_dict))) # Ensure posns_lookup has at least max self.posns self[key] = value def value_counts( self, dropna: bool = True, ): if dropna: counts = Counter(self[:]) counts.pop(Terms({}), None) else: counts = Counter(self[:]) return pd.Series(counts) def __len__(self): len_rval = len(self.term_mat.rows) return len_rval def __ne__(self, other): if isinstance(other, pd.DataFrame) or isinstance(other, pd.Series) or isinstance(other, pd.Index): return NotImplemented return ~(self == other) def __eq__(self, other): """Return a boolean numpy array indicating elementwise equality.""" # When other is a dataframe or series, not implemented if isinstance(other, pd.DataFrame) or isinstance(other, pd.Series) or isinstance(other, pd.Index): return NotImplemented # When other is an ExtensionArray if isinstance(other, SearchArray): if len(self) != len(other): return False elif len(other) == 0: return np.array([], dtype=bool) else: # Compatible term dicts, and same term freqs # (not looking at positions, maybe we should?) if self.term_dict.compatible(other.term_dict): return (self.term_mat == other.term_mat) & (self.doc_lens == other.doc_lens) else: return np.zeros(len(self), dtype=bool) # return np.array(self[:]) == np.array(other[:]) # When other is a scalar value elif isinstance(other, Terms): other = SearchArray([other], tokenizer=self.tokenizer) warnings.warn("Comparing a scalar value to a SearchArray. This is slow.") return np.array(self[:]) == np.array(other[:]) # When other is a sequence but not an ExtensionArray # its an array of dicts elif is_list_like(other): if len(self) != len(other): return False elif len(other) == 0: return np.array([], dtype=bool) # We actually don't know how it was tokenized other = SearchArray(other, tokenizer=self.tokenizer) return np.array(self[:]) == np.array(other[:]) # Return False where 'other' is neither the same length nor a scalar else: return np.full(len(self), False) def isna(self): # Every row with all 0s empties = self.doc_lens == 0 return empties def take(self, indices, allow_fill=False, fill_value=None): # Want to take rows of term freqs row_indices = np.arange(len(self.term_mat.rows)) # Take within the row indices themselves result_indices = take(row_indices, indices, allow_fill=allow_fill, fill_value=-1) if allow_fill and -1 in result_indices: if fill_value is None or pd.isna(fill_value): fill_value = Terms({}, encoded=True) to_fill_mask = result_indices == -1 # This is slow as it rebuilds all the term dictionaries # on the subsequent assignment lines # However, this case tends to be the exception for # most dataframe operations taken = SearchArray([fill_value] * len(result_indices)) taken[~to_fill_mask] = self[result_indices[~to_fill_mask]].copy() return taken else: taken = self[result_indices].copy() return taken def copy(self): postings_arr = SearchArray([], tokenizer=self.tokenizer) postings_arr.doc_lens = self.doc_lens.copy() postings_arr.term_mat = self.term_mat.copy() postings_arr.posns = self.posns postings_arr.term_dict = self.term_dict postings_arr.avg_doc_length = self.avg_doc_length if not self.avoid_copies: postings_arr.posns = self.posns.copy() postings_arr.term_dict = self.term_dict.copy() return postings_arr @classmethod def _concat_same_type(cls, to_concat): concatenated_data = np.concatenate([ea[:] for ea in to_concat]) return SearchArray(concatenated_data, tokenizer=to_concat[0].tokenizer) @classmethod def _from_factorized(cls, values, original): return cls(values) def _values_for_factorize(self): """Return an array and missing value suitable for factorization (ie grouping).""" arr = np.asarray(self[:], dtype=object) return arr, Terms({}) def _check_token_arg(self, token): if isinstance(token, str): return token elif isinstance(token, list) and len(token) == 1: return token[0] elif isinstance(token, list): return token else: raise TypeError("Expected a string or list of strings for phrases") # *********************************************************** # Search functionality # *********************************************************** def termfreqs(self, token: Union[List[str], str]) -> np.ndarray: token = self._check_token_arg(token) if isinstance(token, list): return self.phrase_freq(token) try: term_id = self.term_dict.get_term_id(token) matches = np.zeros(len(self), dtype=int) slice_of_rows = None if self.term_mat.subset: slice_of_rows = self.term_mat.rows doc_ids, termfreqs = self.posns.termfreqs(term_id, doc_ids=slice_of_rows) mask = np.isin(self.term_mat.rows, doc_ids) matches[mask] = termfreqs return matches else: doc_ids, termfreqs = self.posns.termfreqs(term_id, doc_ids=slice_of_rows) matches[doc_ids] = termfreqs return matches except TermMissingError: return np.zeros(len(self), dtype=int) def docfreq(self, token: str) -> int: if not isinstance(token, str): raise TypeError("Expected a string") # Count number of rows where the term appears try: return self.posns.docfreq(self.term_dict.get_term_id(token)) except TermMissingError: return 0 def doclengths(self) -> np.ndarray: return self.doc_lens def match(self, token: Union[List[str], str], slop: int = 1) -> np.ndarray: """Return a boolean numpy array indicating which elements contain the given term.""" token = self._check_token_arg(token) if isinstance(token, list): term_freq = self.phrase_freq(token) else: term_freq = self.termfreqs(token) return term_freq > 0 def score(self, token: Union[str, List[str]], similarity: Similarity = default_bm25) -> np.ndarray: """Score each doc using a similarity function. Parameters ---------- token : str or list of str of what to search (already tokenized) similarity : How to score the documents. Default is BM25. """ # Get term freqs per token token = self._check_token_arg(token) # For expensive toknes, we compute doc freq first, so we # cache them in the DF cache, to let TF cache know it should be cached tokens_l = [token] if isinstance(token, str) else token all_dfs = np.asarray([self.docfreq(token) for token in tokens_l]) tfs = self.termfreqs(token) token = self._check_token_arg(token) doc_lens = self.doclengths() scores = similarity(term_freqs=tfs, doc_freqs=all_dfs, doc_lens=doc_lens, avg_doc_lens=self.avg_doc_length, num_docs=len(self)) return scores def positions(self, token: str, key=None) -> List[np.ndarray]: """Return a list of lists of positions of the given term.""" term_id = self.term_dict.get_term_id(token) key = self.term_mat.rows[key] if key is not None else self.term_mat.rows posns = self.posns.positions(term_id, doc_ids=key) return posns def and_query(self, tokens: Union[List[str], List[List[str]]]) -> np.ndarray: """Return a mask on the postings array indicating which elements contain all terms.""" masks = [self.match(term) for term in tokens] mask = np.ones(len(self), dtype=bool) for curr_mask in masks: mask = mask & curr_mask return mask def or_query(self, tokens: Union[List[str], List[List[str]]], min_should_match: int = 1) -> np.ndarray: """Return a mask on the postings array indicating which elements contain all terms.""" masks = [self.match(term) for term in tokens] mask = np.sum(masks, axis=0) >= min_should_match return mask def phrase_freq(self, tokens: List[str], slop=1) -> np.ndarray: if slop == 1 and len(tokens) == len(set(tokens)): phrase_freqs = np.zeros(len(self)) try: doc_ids = self.term_mat.rows term_ids = [self.term_dict.get_term_id(token) for token in tokens] return self.posns.phrase_freqs(term_ids, doc_ids=doc_ids, phrase_freqs=phrase_freqs) except TermMissingError: return phrase_freqs else: return self.phrase_freq_every_diff(tokens, slop=slop) def phrase_freq_scan(self, tokens: List[str], mask=None, slop=1) -> np.ndarray: if mask is None: mask = self.and_query(tokens) if np.sum(mask) == 0: return mask # Gather positions posns = [self.positions(token, mask) for token in tokens] phrase_freqs = np.zeros(len(self)) phrase_freqs[mask] = scan_merge_ins(posns, phrase_freqs[mask], slop=slop) return phrase_freqs def phrase_freq_every_diff(self, tokens: List[str], slop=1) -> np.ndarray: phrase_freqs = -np.ones(len(self)) mask = self.and_query(tokens) phrase_freqs[~mask] = 0 if np.sum(mask) == 0: return phrase_freqs term_posns = [self.positions(term, mask) for term in tokens] for width in [10, 20, 30, 40]: phrase_freqs[mask] = compute_phrase_freqs(term_posns, phrase_freqs[mask], slop=slop, width=width) remaining_mask = phrase_freqs == -1 if np.any(remaining_mask): remainder_freqs = self.phrase_freq_scan(tokens, mask=remaining_mask, slop=slop) phrase_freqs[remaining_mask] = remainder_freqs[remaining_mask] return phrase_freqs <fim_middle>
null
TRY
complete_current_header_empty_completion
<filename>searcharray/searcharray/postings.py<fim_prefix>"""Tokenized, searchable text as a pandas dtype.""" import pandas as pd import numbers from pandas.api.extensions import ExtensionDtype, ExtensionArray, register_extension_dtype from pandas.api.types import is_list_like from pandas.api.extensions import take import json from collections import Counter import warnings import logging from typing import List, Union, Optional, Iterable import numpy as np from searcharray.phrase.scan_merge import scan_merge_ins from searcharray.phrase.posn_diffs import compute_phrase_freqs from searcharray.phrase.middle_out import PosnBitArray from searcharray.similarity import Similarity, default_bm25 from searcharray.indexing import build_index_from_tokenizer, build_index_from_terms_list from searcharray.term_dict import TermMissingError logger = logging.getLogger(__name__) # When running in pytest import sys # noqa handler = logging.StreamHandler(sys.stdout) handler.setLevel(logging.ERROR) formatter = logging.Formatter("[%(filename)s:%(lineno)s - %(funcName)20s() ] %(message)s") handler.setFormatter(formatter) logger.addHandler(handler) logger.setLevel(logging.ERROR) class Terms: """An indexed search doc - a single bag of tokenized words and positions.""" def __init__(self, postings, doc_len: int = 0, posns: Optional[dict] = None, encoded=False): self.postings = postings self.posns = None self.encoded = encoded self.doc_len = doc_len self.posns = posns def _validate_posns(self): # (For testing/assertions) - Confirm every term in positions also in postings if self.posns is None: return for term in self.posns: if term not in self.postings: raise ValueError(f"Term {term} in positions but not in postings. ") def termfreq(self, token): return self.postings[token] def terms(self): return self.postings.items() def positions(self, term=None): if self.posns is None: return {} if term is None: posns = self.posns.items() else: posns = self.posns[term] return posns def raw_positions(self, term_dict, term=None): if self.posns is None: return {} if term is None: posns = [(term_dict.get_term_id(term), posns) for term, posns in self.posns.items()] else: posns = [(term_dict.get_term_id(term), self.posns[term])] return posns def tf_to_dense(self, term_dict): """Convert to a dense vector of term frequencies.""" dense = np.zeros(len(term_dict)) for term, freq in self.terms(): dense[term_dict.get_term_id(term)] = freq return dense def __len__(self): return len(self.postings) def __repr__(self): posting_keys = set(self.postings.keys()) rval = f"Terms({posting_keys})" return rval def __str__(self): return repr(self) def __eq__(self, other): # Flip to the other implementation if we're comparing to a SearchArray # to get a boolean array back if isinstance(other, SearchArray): return other == self same_postings = isinstance(other, Terms) and self.postings == other.postings if same_postings and self.doc_len == other.doc_len: return True def __lt__(self, other): # return isinstance(other, Terms) and hash(self) < hash(other) keys_both = set(self.postings.keys()).union(set(other.postings.keys())) # Sort lexically keys_both = sorted(keys_both) # Iterate as if these are two vectors of the same large dimensional vector sparse for key in keys_both: lhs_val = 0 rhs_val = 0 try: lhs_val = self.postings[key] except KeyError: pass try: rhs_val = other.postings[key] except KeyError: pass if lhs_val < rhs_val: return True elif lhs_val > rhs_val: return False else: continue return False def __le__(self, other): return self < other or self == other def __gt__(self, other): return not (self < other) and self != other def __hash__(self): return hash(json.dumps(self.postings, sort_keys=True)) class TermsDtype(ExtensionDtype): """Pandas dtype for terms.""" name = 'tokenized_text' type = Terms kind = 'O' @classmethod def construct_from_string(cls, string): if not isinstance(string, str): raise TypeError( "'construct_from_string' expects a string, got {}".format(type(string)) ) elif string == cls.name: return cls() else: raise TypeError( "Cannot construct a '{}' from '{}'".format(cls.__name__, string) ) @classmethod def construct_array_type(cls): return SearchArray def __repr__(self): return 'TermsDtype()' @property def na_value(self): return Terms({}) def valid_value(self, value): return isinstance(value, dict) or pd.isna(value) or isinstance(value, Terms) register_extension_dtype(TermsDtype) def ws_tokenizer(string): if pd.isna(string): return [] if not isinstance(string, str): raise ValueError("Expected a string") return string.split() def _row_to_postings_row(doc_id, row, doc_len, term_dict, posns: PosnBitArray): tfs = {} labeled_posns = {} for term_idx in row.cols: term = term_dict.get_term(term_idx) tfs[term] = 1 enc_term_posns = posns.doc_encoded_posns(term_idx, doc_id=doc_id) labeled_posns[term] = enc_term_posns result = Terms(tfs, posns=labeled_posns, doc_len=doc_len, encoded=True) return result class SearchArray(ExtensionArray): """An array of tokenized text (Termss).""" dtype = TermsDtype() def __init__(self, postings, tokenizer=ws_tokenizer, avoid_copies=True): # Check dtype, raise TypeError if not is_list_like(postings): raise TypeError("Expected list-like object, got {}".format(type(postings))) self.avoid_copies = avoid_copies self.tokenizer = tokenizer self.term_mat, self.posns, \ self.term_dict, self.avg_doc_length, \ self.doc_lens = build_index_from_terms_list(postings, Terms) @classmethod def index(cls, array: Iterable, tokenizer=ws_tokenizer, truncate=False, batch_size=100000, avoid_copies=True) -> 'SearchArray': """Index an array of strings using tokenizer.""" if not is_list_like(array): raise TypeError("Expected list-like object, got {}".format(type(array))) term_mat, posns, term_dict, avg_doc_length, doc_lens =\ build_index_from_tokenizer(array, tokenizer, batch_size=batch_size, truncate=truncate) postings = cls([], tokenizer=tokenizer, avoid_copies=avoid_copies) postings.term_mat = term_mat postings.posns = posns postings.term_dict = term_dict postings.avg_doc_length = avg_doc_length postings.doc_lens = doc_lens return postings @classmethod def _from_sequence(cls, scalars, dtype=None, copy=False): """Construct a new SearchArray from a sequence of scalars (PostingRow or convertible into).""" if dtype is not None: if not isinstance(dtype, TermsDtype): return scalars if isinstance(scalars, np.ndarray) and scalars.dtype == TermsDtype(): return cls(scalars) # String types elif isinstance(scalars, np.ndarray) and scalars.dtype.kind in 'US': return cls(scalars) # Other objects elif isinstance(scalars, np.ndarray) and scalars.dtype != object: return scalars return cls(scalars) def memory_usage(self, deep=False): """Return memory usage of this array in bytes.""" return self.nbytes @property def nbytes(self): return self.term_mat.nbytes + self.posns.nbytes + self.doc_lens.nbytes + self.term_dict.nbytes def __getitem__(self, key): key = pd.api.indexers.check_array_indexer(self, key) # Want to take rows of term freqs if isinstance(key, numbers.Integral): try: rows = self.term_mat[key] doc_len = self.doc_lens[key] doc_id = key if doc_id < 0: doc_id += len(self) return _row_to_postings_row(doc_id, rows[0], doc_len, self.term_dict, self.posns) except IndexError: raise IndexError("index out of bounds") else: # Construct a sliced view of this array sliced_tfs = self.term_mat.slice(key) sliced_posns = self.posns.slice(sliced_tfs.rows) if not self.avoid_copies else self.posns arr = SearchArray([], tokenizer=self.tokenizer) arr.term_mat = sliced_tfs arr.doc_lens = self.doc_lens[key] arr.posns = sliced_posns arr.term_dict = self.term_dict arr.avg_doc_length = self.avg_doc_length return arr def __setitem__(self, key, value): """Set an item in the array.""" key = pd.api.indexers.check_array_indexer(self, key) if isinstance(value, pd.Series): value = value.values if isinstance(value, pd.DataFrame): value = value.values.flatten() if isinstance(value, SearchArray): value = value.to_numpy() if isinstance(value, list): value = np.asarray(value, dtype=object) if not isinstance(value, np.ndarray) and not self.dtype.valid_value(value): raise ValueError(f"Cannot set non-object array to SearchArray -- you passed type:{type(value)} -- {value}") # Cant set a single value to an array if isinstance(key, numbers.Integral) and isinstance(value, np.ndarray): raise ValueError("Cannot set a single value to an array") try: is_encoded = False posns = None term_mat = np.asarray([]) doc_lens = np.asarray([]) if isinstance(value, float): term_mat = np.asarray([value]) doc_lens = np.asarray([0]) elif isinstance(value, Terms): term_mat = np.asarray([value.tf_to_dense(self.term_dict)]) doc_lens = np.asarray([value.doc_len]) is_encoded = value.encoded posns = [value.raw_positions(self.term_dict)] elif isinstance(value, np.ndarray): term_mat = np.asarray([x.tf_to_dense(self.term_dict) for x in value]) doc_lens = np.asarray([x.doc_len for x in value]) is_encoded = value[0].encoded if len(value) > 0 else False posns = [x.raw_positions(self.term_dict) for x in value] np.nan_to_num(term_mat, copy=False, nan=0) self.term_mat[key] = term_mat self.doc_lens[key] = doc_lens if posns is not None: self.posns.insert(key, posns, is_encoded) # Assume we have a positions for each term, doc pair. We can just update it. # Otherwise we would have added new terms except TermMissingError: self._add_new_terms(key, value) def _add_new_terms(self, key, value): msg = """Adding new terms! This might not be good if you tokenized this new text with a different tokenizer. Also. This is slow.""" warnings.warn(msg) scan_value = value if isinstance(value, Terms): scan_value = np.asarray([value]) for row in scan_value: for term in row.terms(): self.term_dict.add_term(term[0]) self.term_mat.resize((self.term_mat.shape[0], len(self.term_dict))) # Ensure posns_lookup has at least max self.posns self[key] = value def value_counts( self, dropna: bool = True, ): if dropna: counts = Counter(self[:]) counts.pop(Terms({}), None) else: counts = Counter(self[:]) return pd.Series(counts) def __len__(self): len_rval = len(self.term_mat.rows) return len_rval def __ne__(self, other): if isinstance(other, pd.DataFrame) or isinstance(other, pd.Series) or isinstance(other, pd.Index): return NotImplemented return ~(self == other) def __eq__(self, other): """Return a boolean numpy array indicating elementwise equality.""" # When other is a dataframe or series, not implemented if isinstance(other, pd.DataFrame) or isinstance(other, pd.Series) or isinstance(other, pd.Index): return NotImplemented # When other is an ExtensionArray if isinstance(other, SearchArray): if len(self) != len(other): return False elif len(other) == 0: return np.array([], dtype=bool) else: # Compatible term dicts, and same term freqs # (not looking at positions, maybe we should?) if self.term_dict.compatible(other.term_dict): return (self.term_mat == other.term_mat) & (self.doc_lens == other.doc_lens) else: return np.zeros(len(self), dtype=bool) # return np.array(self[:]) == np.array(other[:]) # When other is a scalar value elif isinstance(other, Terms): other = SearchArray([other], tokenizer=self.tokenizer) warnings.warn("Comparing a scalar value to a SearchArray. This is slow.") return np.array(self[:]) == np.array(other[:]) # When other is a sequence but not an ExtensionArray # its an array of dicts elif is_list_like(other): if len(self) != len(other): return False elif len(other) == 0: return np.array([], dtype=bool) # We actually don't know how it was tokenized other = SearchArray(other, tokenizer=self.tokenizer) return np.array(self[:]) == np.array(other[:]) # Return False where 'other' is neither the same length nor a scalar else: return np.full(len(self), False) def isna(self): # Every row with all 0s empties = self.doc_lens == 0 return empties def take(self, indices, allow_fill=False, fill_value=None): # Want to take rows of term freqs row_indices = np.arange(len(self.term_mat.rows)) # Take within the row indices themselves result_indices = take(row_indices, indices, allow_fill=allow_fill, fill_value=-1) if allow_fill and -1 in result_indices: if fill_value is None or pd.isna(fill_value): fill_value = Terms({}, encoded=True) to_fill_mask = result_indices == -1 # This is slow as it rebuilds all the term dictionaries # on the subsequent assignment lines # However, this case tends to be the exception for # most dataframe operations taken = SearchArray([fill_value] * len(result_indices)) taken[~to_fill_mask] = self[result_indices[~to_fill_mask]].copy() return taken else: taken = self[result_indices].copy() return taken def copy(self): postings_arr = SearchArray([], tokenizer=self.tokenizer) postings_arr.doc_lens = self.doc_lens.copy() postings_arr.term_mat = self.term_mat.copy() postings_arr.posns = self.posns postings_arr.term_dict = self.term_dict postings_arr.avg_doc_length = self.avg_doc_length if not self.avoid_copies: postings_arr.posns = self.posns.copy() postings_arr.term_dict = self.term_dict.copy() return postings_arr @classmethod def _concat_same_type(cls, to_concat): concatenated_data = np.concatenate([ea[:] for ea in to_concat]) return SearchArray(concatenated_data, tokenizer=to_concat[0].tokenizer) @classmethod def _from_factorized(cls, values, original): return cls(values) def _values_for_factorize(self): """Return an array and missing value suitable for factorization (ie grouping).""" arr = np.asarray(self[:], dtype=object) return arr, Terms({}) def _check_token_arg(self, token): if isinstance(token, str): return token elif isinstance(token, list) and len(token) == 1: return token[0] elif isinstance(token, list): return token else: raise TypeError("Expected a string or list of strings for phrases") # *********************************************************** # Search functionality # *********************************************************** def termfreqs(self, token: Union[List[str], str]) -> np.ndarray: token = self._check_token_arg(token) if isinstance(token, list): return self.phrase_freq(token) try: term_id = self.term_dict.get_term_id(token) matches = np.zeros(len(self), dtype=int) slice_of_rows = None if self.term_mat.subset: slice_of_rows = self.term_mat.rows doc_ids, termfreqs = self.posns.termfreqs(term_id, doc_ids=slice_of_rows) mask = np.isin(self.term_mat.rows, doc_ids) matches[mask] = termfreqs return matches else: doc_ids, termfreqs = self.posns.termfreqs(term_id, doc_ids=slice_of_rows) matches[doc_ids] = termfreqs return matches except TermMissingError: return np.zeros(len(self), dtype=int) def docfreq(self, token: str) -> int: if not isinstance(token, str): raise TypeError("Expected a string") # Count number of rows where the term appears try<fim_suffix>: return self.posns.docfreq(self.term_dict.get_term_id(token)) except TermMissingError: return 0 def doclengths(self) -> np.ndarray: return self.doc_lens def match(self, token: Union[List[str], str], slop: int = 1) -> np.ndarray: """Return a boolean numpy array indicating which elements contain the given term.""" token = self._check_token_arg(token) if isinstance(token, list): term_freq = self.phrase_freq(token) else: term_freq = self.termfreqs(token) return term_freq > 0 def score(self, token: Union[str, List[str]], similarity: Similarity = default_bm25) -> np.ndarray: """Score each doc using a similarity function. Parameters ---------- token : str or list of str of what to search (already tokenized) similarity : How to score the documents. Default is BM25. """ # Get term freqs per token token = self._check_token_arg(token) # For expensive toknes, we compute doc freq first, so we # cache them in the DF cache, to let TF cache know it should be cached tokens_l = [token] if isinstance(token, str) else token all_dfs = np.asarray([self.docfreq(token) for token in tokens_l]) tfs = self.termfreqs(token) token = self._check_token_arg(token) doc_lens = self.doclengths() scores = similarity(term_freqs=tfs, doc_freqs=all_dfs, doc_lens=doc_lens, avg_doc_lens=self.avg_doc_length, num_docs=len(self)) return scores def positions(self, token: str, key=None) -> List[np.ndarray]: """Return a list of lists of positions of the given term.""" term_id = self.term_dict.get_term_id(token) key = self.term_mat.rows[key] if key is not None else self.term_mat.rows posns = self.posns.positions(term_id, doc_ids=key) return posns def and_query(self, tokens: Union[List[str], List[List[str]]]) -> np.ndarray: """Return a mask on the postings array indicating which elements contain all terms.""" masks = [self.match(term) for term in tokens] mask = np.ones(len(self), dtype=bool) for curr_mask in masks: mask = mask & curr_mask return mask def or_query(self, tokens: Union[List[str], List[List[str]]], min_should_match: int = 1) -> np.ndarray: """Return a mask on the postings array indicating which elements contain all terms.""" masks = [self.match(term) for term in tokens] mask = np.sum(masks, axis=0) >= min_should_match return mask def phrase_freq(self, tokens: List[str], slop=1) -> np.ndarray: if slop == 1 and len(tokens) == len(set(tokens)): phrase_freqs = np.zeros(len(self)) try: doc_ids = self.term_mat.rows term_ids = [self.term_dict.get_term_id(token) for token in tokens] return self.posns.phrase_freqs(term_ids, doc_ids=doc_ids, phrase_freqs=phrase_freqs) except TermMissingError: return phrase_freqs else: return self.phrase_freq_every_diff(tokens, slop=slop) def phrase_freq_scan(self, tokens: List[str], mask=None, slop=1) -> np.ndarray: if mask is None: mask = self.and_query(tokens) if np.sum(mask) == 0: return mask # Gather positions posns = [self.positions(token, mask) for token in tokens] phrase_freqs = np.zeros(len(self)) phrase_freqs[mask] = scan_merge_ins(posns, phrase_freqs[mask], slop=slop) return phrase_freqs def phrase_freq_every_diff(self, tokens: List[str], slop=1) -> np.ndarray: phrase_freqs = -np.ones(len(self)) mask = self.and_query(tokens) phrase_freqs[~mask] = 0 if np.sum(mask) == 0: return phrase_freqs term_posns = [self.positions(term, mask) for term in tokens] for width in [10, 20, 30, 40]: phrase_freqs[mask] = compute_phrase_freqs(term_posns, phrase_freqs[mask], slop=slop, width=width) remaining_mask = phrase_freqs == -1 if np.any(remaining_mask): remainder_freqs = self.phrase_freq_scan(tokens, mask=remaining_mask, slop=slop) phrase_freqs[remaining_mask] = remainder_freqs[remaining_mask] return phrase_freqs <fim_middle>
null
TRY
complete_current_header_empty_completion
<filename>searcharray/searcharray/phrase/middle_out.py<fim_prefix>"""Encode positions in bits along with some neighboring information for wrapping. See this notebook for motivation: https://colab.research.google.com/drive/10tIEkdlCE_1J_CcgEcV0jkLfBc-0H4am?authuser=1#scrollTo=XWzy-n9dF3PG """ import numpy as np import sortednp as snp from copy import deepcopy from typing import List, Tuple, Dict, Union, cast, Optional from searcharray.utils.roaringish import RoaringishEncoder, convert_keys, sorted_unique import numbers import logging from collections import defaultdict from searcharray.utils.bitcount import bit_count64 logger = logging.getLogger(__name__) # When running in pytest import sys # noqa handler = logging.StreamHandler(sys.stdout) handler.setLevel(logging.ERROR) formatter = logging.Formatter("[%(filename)s:%(lineno)s - %(funcName)20s() ] %(message)s") handler.setFormatter(formatter) logger.addHandler(handler) logger.setLevel(logging.ERROR) encoder = RoaringishEncoder() # To not constantly type coerce _64 = np.uint64(64) _2 = np.uint64(2) _1 = np.uint64(1) _0 = np.uint64(0) _neg1 = np.int64(-1) MAX_POSN = encoder.max_payload def inner_bigram_freqs(lhs: np.ndarray, rhs: np.ndarray, phrase_freqs: np.ndarray) -> Tuple[np.ndarray, np.ndarray]: """Count bigram matches between two encoded arrays, within a 64 bit word with same MSBs. Returns: -------- count: number of matches per doc rhs_next: the next rhs array to continue matching """ lhs_int, rhs_int = encoder.intersect(lhs, rhs) lhs_doc_ids = encoder.keys(lhs_int) if len(lhs_int) != len(rhs_int): raise ValueError("Encoding error, MSBs apparently are duplicated among your encoded posn arrays.") if len(lhs_int) == 0: return phrase_freqs, rhs_int same_term = (len(lhs_int) == len(rhs_int) and lhs_int[0] == rhs_int[0]) if same_term: # Find adjacent matches rhs_shift = rhs_int << _1 overlap = lhs_int & rhs_shift overlap = encoder.payload_lsb(overlap) adjacents = bit_count64(overlap).astype(np.int64) adjacents -= -np.floor_divide(adjacents, -2) # ceiling divide phrase_freqs[lhs_doc_ids] += adjacents return phrase_freqs, rhs_int overlap_bits = (lhs_int & encoder.payload_lsb_mask) & ((rhs_int & encoder.payload_lsb_mask) >> _1) rhs_next2 = (overlap_bits << _1) & encoder.payload_lsb_mask rhs_next2 |= (rhs_int & (encoder.key_mask | encoder.payload_msb_mask)) phrase_freqs2 = phrase_freqs.copy() matches2 = overlap_bits > 0 if np.any(matches2): transitions = np.argwhere(np.diff(lhs_doc_ids[matches2]) != 0).flatten() + 1 transitions = np.insert(transitions, 0, 0) counted_bits = bit_count64(overlap_bits[matches2]) reduced = np.add.reduceat(counted_bits, transitions) phrase_freqs2[np.unique(lhs_doc_ids[matches2])] += reduced return phrase_freqs2, rhs_next2 def adjacent_bigram_freqs(lhs: np.ndarray, rhs: np.ndarray, phrase_freqs: np.ndarray) -> Tuple[np.ndarray, np.ndarray]: """Count bigram matches between two encoded arrays where they occur in adjacent 64 bit words. Returns: -------- count: number of matches per doc rhs_next: the next rhs array to continue matching """ lhs_int, rhs_int = encoder.intersect_rshift(lhs, rhs, rshift=_neg1) lhs_doc_ids = encoder.keys(lhs_int) # lhs lsb set and rhs lsb's most significant bit set upper_bit = _1 << (encoder.payload_lsb_bits - _1) matches = ((lhs_int & upper_bit) != 0) & ((rhs_int & _1) != 0) unique, counts = np.unique(lhs_doc_ids[matches], return_counts=True) phrase_freqs[unique] += counts rhs_next = rhs_int rhs_next[~matches] |= ~encoder.payload_lsb_mask rhs_next[matches] |= (encoder.payload_lsb_mask & _1) return phrase_freqs, rhs_next def bigram_freqs(lhs: np.ndarray, rhs: np.ndarray, phrase_freqs: np.ndarray) -> Tuple[np.ndarray, np.ndarray]: """Count bigram matches between two encoded arrays. Returns: -------- count: number of matches per doc rhs_next: the next rhs array to continue matching """ # Combine lhs and rhs matches from two strategies phrase_freqs, rhs_next_inner = inner_bigram_freqs(lhs, rhs, phrase_freqs) phrase_freqs, rhs_next_adj = adjacent_bigram_freqs(lhs, rhs, phrase_freqs) rhs_next = np.sort(np.concatenate([rhs_next_inner, rhs_next_adj])) # Combine return phrase_freqs, rhs_next def trim_phrase_search(encoded_posns: List[np.ndarray], phrase_freqs: np.ndarray) -> List[np.ndarray]: """Trim long phrases by searching the rarest terms first.""" # Start with rarest term shortest_keys = None shortest_idx = None min_len = 1e100 max_len = 0 for idx, enc_posn in enumerate(encoded_posns): if len(enc_posn) < min_len: shortest_keys = encoder.keys(enc_posn) shortest_idx = idx min_len = len(enc_posn) if len(enc_posn) > max_len: max_len = len(enc_posn) if shortest_keys is None: return encoded_posns for enc_posn_idx in range(len(encoded_posns)): if enc_posn_idx == shortest_idx: continue if len(encoded_posns[enc_posn_idx]) > (10 * min_len): encoded_posns[enc_posn_idx] = encoder.slice(encoded_posns[enc_posn_idx], shortest_keys) return encoded_posns def compute_phrase_freqs(encoded_posns: List[np.ndarray], phrase_freqs: np.ndarray) -> np.ndarray: if len(encoded_posns) < 2: raise ValueError("phrase must have at least two terms") # Trim long phrases by searching the rarest terms first if len(encoded_posns) > 3: encoded_posns = trim_phrase_search(encoded_posns, phrase_freqs) mask = np.ones(len(phrase_freqs), dtype=bool) lhs = encoded_posns[0] for rhs in encoded_posns[1:]: # Only count the count of the last bigram (ignoring the ones where priors did not match) phrase_freqs[mask] = 0 phrase_freqs, lhs = bigram_freqs(lhs, rhs, phrase_freqs) mask &= (phrase_freqs > 0) phrase_freqs[~mask] = 0 return phrase_freqs class PosnBitArrayFromFlatBuilder: """ Build from sorted array shape num terms x 3. 0th is term id 1st is doc id 2nd is posn Sorted by term id then posns """ def __init__(self, flat_array: np.ndarray): self.flat_array = flat_array def build(self): """Slice the flat array into a 2d array of doc ids and posns.""" term_boundaries = np.argwhere(np.diff(self.flat_array[0]) > 0).flatten() + 1 term_boundaries = np.concatenate([[0], term_boundaries, [len(self.flat_array[1])]]) encoded, enc_term_boundaries = encoder.encode(keys=self.flat_array[1].view(np.uint64), boundaries=term_boundaries[:-1], payload=self.flat_array[2].view(np.uint64)) term_ids = self.flat_array[0][term_boundaries[:-1]] encoded_term_posns = {} for into_terms, (beg_idx, end_idx) in enumerate(zip(enc_term_boundaries[:-1], enc_term_boundaries[1:])): sliced = encoded[beg_idx:end_idx] encoded_term_posns[term_ids[into_terms]] = sliced return PosnBitArray(encoded_term_posns, self.flat_array[1].max()) class PosnBitArrayBuilder: def __init__(self): self.term_posns = defaultdict(list) self.term_posn_doc_ids = defaultdict(list) self.max_doc_id = 0 def add_posns(self, doc_id: int, term_id: int, posns: List[int]): doc_ids = [doc_id] * len(posns) self.term_posns[term_id].extend(posns) self.term_posn_doc_ids[term_id].extend(doc_ids) def ensure_capacity(self, doc_id): self.max_doc_id = max(self.max_doc_id, doc_id) def build(self, check=False): encoded_term_posns = {} for term_id, posns in self.term_posns.items(): if len(posns) == 0: posns = np.asarray([], dtype=np.uint32).flatten() elif isinstance(posns, list): posns_arr = np.asarray(posns, dtype=np.uint32).flatten() posns = posns_arr doc_ids = self.term_posn_doc_ids[term_id] if isinstance(doc_ids, list): doc_ids = np.asarray(doc_ids, dtype=np.uint32) encoded = encoder.encode(keys=doc_ids, payload=posns) if check: decode_again = encoder.decode(encoded) docs_to_posns = dict(decode_again) doc_ids_again = [] posns_again = [] for doc_id, posns_dec in docs_to_posns.items(): for posn in posns_dec: doc_ids_again.append(doc_id) posns_again.append(posn) assert np.array_equal(doc_ids_again, doc_ids) assert np.array_equal(posns, posns_again) encoded_term_posns[term_id] = encoded return PosnBitArray(encoded_term_posns, self.max_doc_id) class PosnBitArrayAlreadyEncBuilder: def __init__(self): self.encoded_term_posns = {} self.max_doc_id = 0 def add_posns(self, doc_id: int, term_id: int, posns): self.encoded_term_posns[term_id] = posns def ensure_capacity(self, doc_id): self.max_doc_id = max(self.max_doc_id, doc_id) def build(self, check=False): return PosnBitArray(self.encoded_term_posns, self.max_doc_id) def index_range(rng, key): if key is None: return rng if isinstance(rng, np.ndarray): return rng[key] if isinstance(key, slice): return rng[key] elif isinstance(key, numbers.Number): return rng[key] elif isinstance(key, np.ndarray): try: # UNFORTUNATE COPY r_val = np.asarray(list(rng))[key] return r_val except IndexError as e: raise e # Last resort # UNFORTUNATE COPY # Here probably elipses or a tuple of various things return np.asarray(list(rng))[key] class PosnBitArray: def __init__(self, encoded_term_posns, max_doc_id: int): self.encoded_term_posns = encoded_term_posns self.max_doc_id = max_doc_id self.docfreq_cache : Dict[int, np.uint64] = {} self.termfreq_cache : Dict[int, Tuple[np.ndarray, np.ndarray]] = {} def copy(self): new = PosnBitArray(deepcopy(self.encoded_term_posns), self.max_doc_id) return new def concat(self, other): """Merge other into self. Assumes other's doc ids are not overlapping with self's doc ids. """ # Shared terms shared_terms = set(self.encoded_term_posns.keys()).intersection(set(other.encoded_term_posns.keys())) for term_id in shared_terms: # Append then sort self.encoded_term_posns[term_id] = np.concatenate([self.encoded_term_posns[term_id], other.encoded_term_posns[term_id]]) self.encoded_term_posns[term_id].sort() only_other_terms = set(other.encoded_term_posns.keys()).difference(set(self.encoded_term_posns.keys())) for term_id in only_other_terms: self.encoded_term_posns[term_id] = other.encoded_term_posns[term_id] self.max_doc_id = max(self.max_doc_id, other.max_doc_id) # Empty caches self.termfreq_cache = {} self.docfreq_cache = {} def slice(self, key): sliced_term_posns = {} doc_ids = convert_keys(key) max_doc_id = np.max(doc_ids) for term_id, posns in self.encoded_term_posns.items(): encoded = self.encoded_term_posns[term_id] assert len(encoded.shape) == 1 sliced_term_posns[term_id] = encoder.slice(encoded, keys=doc_ids) return PosnBitArray(sliced_term_posns, max_doc_id) def __getitem__(self, key): return self.slice(key) def merge(self, other): # Unique terms unique_terms = set(self.encoded_term_posns.keys()).union(set(other.encoded_term_posns.keys())) for term_id in unique_terms: if term_id not in other.encoded_term_posns: continue elif term_id not in self.encoded_term_posns: self.encoded_term_posns[term_id] = other.encoded_term_posns[term_id] else: posns_self = self.encoded_term_posns[term_id] posns_other = other.encoded_term_posns[term_id] self.encoded_term_posns[term_id] = snp.merge(posns_self, posns_other) self.max_doc_id = self.max_doc_id + other.max_doc_id # Empty caches self.termfreq_cache = {} self.docfreq_cache = {} def doc_encoded_posns(self, term_id: int, doc_id: int) -> np.ndarray: term_posns = encoder.slice(self.encoded_term_posns[term_id], keys=np.asarray([doc_id], dtype=np.uint64)) return term_posns def phrase_freqs(self, term_ids: List[int], phrase_freqs: np.ndarray, doc_ids: np.ndarray) -> np.ndarray: if len(term_ids) < 2: raise ValueError("Must have at least two terms") if phrase_freqs.shape[0] == self.max_doc_id + 1: enc_term_posns = [self.encoded_term_posns[term_id] for term_id in term_ids] else: enc_term_posns = [encoder.slice(self.encoded_term_posns[term_id], keys=doc_ids.view(np.uint64)) for term_id in term_ids] return compute_phrase_freqs(enc_term_posns, phrase_freqs) def positions(self, term_id: int, doc_ids) -> Union[List[np.ndarray], np.ndarray]: if isinstance(doc_ids, numbers.Number): doc_ids = np.asarray([doc_ids]) try: np_doc_ids = convert_keys(doc_ids) term_posns = encoder.slice(self.encoded_term_posns[term_id], keys=np_doc_ids) except KeyError: r_val = [np.array([], dtype=np.uint32) for doc_id in doc_ids] if len(r_val) == 1 and len(doc_ids) == 1 and isinstance(doc_ids[0], numbers.Number): return [r_val[0]] return r_val decoded = encoder.decode(encoded=term_posns, get_keys=True) if len(decoded) == 0: return [np.array([], dtype=np.uint32)] if len(decoded) != len(doc_ids): # Fill non matches decoded = cast(List[Tuple[np.uint64, np.ndarray]], decoded) as_dict: Dict[np.uint64, np.ndarray] = dict(decoded) decs = [] for doc_id in doc_ids: if doc_id in as_dict: decs.append(as_dict[doc_id]) else: decs.append(np.array([], dtype=np.uint32)) return decs else: decs = [dec[1] for dec in decoded] return decs def termfreqs(self, term_id: int, doc_ids: Optional[np.ndarray] = None) -> Tuple[np.ndarray, np.ndarray]: """Count term freqs using unique positions.""" if doc_ids is None: return self._termfreqs_with_cache(term_id) encoded = self.encoded_term_posns[term_id] term_posns = encoded term_posns = encoder.slice(encoded, keys=doc_ids.astype(np.uint64)) return self._computed_term_freqs(term_posns) def _computed_term_freqs(self, term_posns) -> Tuple[np.ndarray, np.ndarray]: doc_ids = encoder.keys(term_posns) change_indices = np.nonzero(np.diff(doc_ids))[0] change_indices = np.concatenate((np.asarray([0]), change_indices + 1)) posns = term_posns & encoder.payload_lsb_mask bit_counts = bit_count64(posns) term_freqs = np.add.reduceat(bit_counts, change_indices) return sorted_unique(doc_ids), term_freqs def _termfreqs_with_cache(self, term_id: int) -> Tuple[np.ndarray, np.ndarray]: try: return self.termfreq_cache[term_id] except KeyError: term_posns = self.encoded_term_posns[term_id] doc_ids, term_freqs = self._computed_term_freqs(term_posns) if self._is_cached(term_id): self.termfreq_cache[term_id] = (doc_ids, term_freqs) return doc_ids, term_freqs def _is_cached(self, term_id: int) -> bool: return term_id in self.docfreq_cache def _docfreq_from_cache(self, term_id: int) -> np.uint64: return self.docfreq_cache[term_id] def _maybe_cache_docfreq(self, term_id: int, docfreq: np.uint64): if self.max_doc_id >= 100000 and docfreq > (self.max_doc_id // 100): self.docfreq_cache[term_id] = docfreq def docfreq(self, term_id: int) -> np.uint64: try<fim_suffix>: return self.docfreq_cache[term_id] except KeyError: encoded = self.encoded_term_posns[term_id] docfreq = np.uint64(encoder.keys_unique(encoded).size) self._maybe_cache_docfreq(term_id, docfreq) return docfreq def insert(self, key, term_ids_to_posns, is_encoded=False): new_posns = PosnBitArrayBuilder() if is_encoded: new_posns = PosnBitArrayAlreadyEncBuilder() max_doc_id = 0 for doc_id, new_posns_row in enumerate(term_ids_to_posns): for term_id, positions in new_posns_row: new_posns.add_posns(doc_id, term_id, positions) max_doc_id = max(doc_id, max_doc_id) new_posns.max_doc_id = max_doc_id ins_arr = new_posns.build() self.merge(ins_arr) @property def nbytes(self): arr_bytes = 0 for doc_id, posn in self.encoded_term_posns.items(): arr_bytes += posn.nbytes for term_id, (doc_ids, term_freqs) in self.termfreq_cache.items(): arr_bytes += doc_ids.nbytes arr_bytes += term_freqs.nbytes for term_id, docfreq in self.docfreq_cache.items(): arr_bytes += docfreq.nbytes return arr_bytes <fim_middle>
null
TRY
complete_current_header_empty_completion
<filename>searcharray/searcharray/postings.py<fim_prefix>"""Tokenized, searchable text as a pandas dtype.""" import pandas as pd import numbers from pandas.api.extensions import ExtensionDtype, ExtensionArray, register_extension_dtype from pandas.api.types import is_list_like from pandas.api.extensions import take import json from collections import Counter import warnings import logging from typing import List, Union, Optional, Iterable import numpy as np from searcharray.phrase.scan_merge import scan_merge_ins from searcharray.phrase.posn_diffs import compute_phrase_freqs from searcharray.phrase.middle_out import PosnBitArray from searcharray.similarity import Similarity, default_bm25 from searcharray.indexing import build_index_from_tokenizer, build_index_from_terms_list from searcharray.term_dict import TermMissingError logger = logging.getLogger(__name__) # When running in pytest import sys # noqa handler = logging.StreamHandler(sys.stdout) handler.setLevel(logging.ERROR) formatter = logging.Formatter("[%(filename)s:%(lineno)s - %(funcName)20s() ] %(message)s") handler.setFormatter(formatter) logger.addHandler(handler) logger.setLevel(logging.ERROR) class Terms: """An indexed search doc - a single bag of tokenized words and positions.""" def __init__(self, postings, doc_len: int = 0, posns: Optional[dict] = None, encoded=False): self.postings = postings self.posns = None self.encoded = encoded self.doc_len = doc_len self.posns = posns def _validate_posns(self): # (For testing/assertions) - Confirm every term in positions also in postings if self.posns is None: return for term in self.posns: if term not in self.postings: raise ValueError(f"Term {term} in positions but not in postings. ") def termfreq(self, token): return self.postings[token] def terms(self): return self.postings.items() def positions(self, term=None): if self.posns is None: return {} if term is None: posns = self.posns.items() else: posns = self.posns[term] return posns def raw_positions(self, term_dict, term=None): if self.posns is None: return {} if term is None: posns = [(term_dict.get_term_id(term), posns) for term, posns in self.posns.items()] else: posns = [(term_dict.get_term_id(term), self.posns[term])] return posns def tf_to_dense(self, term_dict): """Convert to a dense vector of term frequencies.""" dense = np.zeros(len(term_dict)) for term, freq in self.terms(): dense[term_dict.get_term_id(term)] = freq return dense def __len__(self): return len(self.postings) def __repr__(self): posting_keys = set(self.postings.keys()) rval = f"Terms({posting_keys})" return rval def __str__(self): return repr(self) def __eq__(self, other): # Flip to the other implementation if we're comparing to a SearchArray # to get a boolean array back if isinstance(other, SearchArray): return other == self same_postings = isinstance(other, Terms) and self.postings == other.postings if same_postings and self.doc_len == other.doc_len: return True def __lt__(self, other): # return isinstance(other, Terms) and hash(self) < hash(other) keys_both = set(self.postings.keys()).union(set(other.postings.keys())) # Sort lexically keys_both = sorted(keys_both) # Iterate as if these are two vectors of the same large dimensional vector sparse for key in keys_both: lhs_val = 0 rhs_val = 0 try: lhs_val = self.postings[key] except KeyError: pass try: rhs_val = other.postings[key] except KeyError: pass if lhs_val < rhs_val: return True elif lhs_val > rhs_val: return False else: continue return False def __le__(self, other): return self < other or self == other def __gt__(self, other): return not (self < other) and self != other def __hash__(self): return hash(json.dumps(self.postings, sort_keys=True)) class TermsDtype(ExtensionDtype): """Pandas dtype for terms.""" name = 'tokenized_text' type = Terms kind = 'O' @classmethod def construct_from_string(cls, string): if not isinstance(string, str): raise TypeError( "'construct_from_string' expects a string, got {}".format(type(string)) ) elif string == cls.name: return cls() else: raise TypeError( "Cannot construct a '{}' from '{}'".format(cls.__name__, string) ) @classmethod def construct_array_type(cls): return SearchArray def __repr__(self): return 'TermsDtype()' @property def na_value(self): return Terms({}) def valid_value(self, value): return isinstance(value, dict) or pd.isna(value) or isinstance(value, Terms) register_extension_dtype(TermsDtype) def ws_tokenizer(string): if pd.isna(string): return [] if not isinstance(string, str): raise ValueError("Expected a string") return string.split() def _row_to_postings_row(doc_id, row, doc_len, term_dict, posns: PosnBitArray): tfs = {} labeled_posns = {} for term_idx in row.cols: term = term_dict.get_term(term_idx) tfs[term] = 1 enc_term_posns = posns.doc_encoded_posns(term_idx, doc_id=doc_id) labeled_posns[term] = enc_term_posns result = Terms(tfs, posns=labeled_posns, doc_len=doc_len, encoded=True) return result class SearchArray(ExtensionArray): """An array of tokenized text (Termss).""" dtype = TermsDtype() def __init__(self, postings, tokenizer=ws_tokenizer, avoid_copies=True): # Check dtype, raise TypeError if not is_list_like(postings): raise TypeError("Expected list-like object, got {}".format(type(postings))) self.avoid_copies = avoid_copies self.tokenizer = tokenizer self.term_mat, self.posns, \ self.term_dict, self.avg_doc_length, \ self.doc_lens = build_index_from_terms_list(postings, Terms) @classmethod def index(cls, array: Iterable, tokenizer=ws_tokenizer, truncate=False, batch_size=100000, avoid_copies=True) -> 'SearchArray': """Index an array of strings using tokenizer.""" if not is_list_like(array): raise TypeError("Expected list-like object, got {}".format(type(array))) term_mat, posns, term_dict, avg_doc_length, doc_lens =\ build_index_from_tokenizer(array, tokenizer, batch_size=batch_size, truncate=truncate) postings = cls([], tokenizer=tokenizer, avoid_copies=avoid_copies) postings.term_mat = term_mat postings.posns = posns postings.term_dict = term_dict postings.avg_doc_length = avg_doc_length postings.doc_lens = doc_lens return postings @classmethod def _from_sequence(cls, scalars, dtype=None, copy=False): """Construct a new SearchArray from a sequence of scalars (PostingRow or convertible into).""" if dtype is not None: if not isinstance(dtype, TermsDtype): return scalars if isinstance(scalars, np.ndarray) and scalars.dtype == TermsDtype(): return cls(scalars) # String types elif isinstance(scalars, np.ndarray) and scalars.dtype.kind in 'US': return cls(scalars) # Other objects elif isinstance(scalars, np.ndarray) and scalars.dtype != object: return scalars return cls(scalars) def memory_usage(self, deep=False): """Return memory usage of this array in bytes.""" return self.nbytes @property def nbytes(self): return self.term_mat.nbytes + self.posns.nbytes + self.doc_lens.nbytes + self.term_dict.nbytes def __getitem__(self, key): key = pd.api.indexers.check_array_indexer(self, key) # Want to take rows of term freqs if isinstance(key, numbers.Integral): try: rows = self.term_mat[key] doc_len = self.doc_lens[key] doc_id = key if doc_id < 0: doc_id += len(self) return _row_to_postings_row(doc_id, rows[0], doc_len, self.term_dict, self.posns) except IndexError: raise IndexError("index out of bounds") else: # Construct a sliced view of this array sliced_tfs = self.term_mat.slice(key) sliced_posns = self.posns.slice(sliced_tfs.rows) if not self.avoid_copies else self.posns arr = SearchArray([], tokenizer=self.tokenizer) arr.term_mat = sliced_tfs arr.doc_lens = self.doc_lens[key] arr.posns = sliced_posns arr.term_dict = self.term_dict arr.avg_doc_length = self.avg_doc_length return arr def __setitem__(self, key, value): """Set an item in the array.""" key = pd.api.indexers.check_array_indexer(self, key) if isinstance(value, pd.Series): value = value.values if isinstance(value, pd.DataFrame): value = value.values.flatten() if isinstance(value, SearchArray): value = value.to_numpy() if isinstance(value, list): value = np.asarray(value, dtype=object) if not isinstance(value, np.ndarray) and not self.dtype.valid_value(value): raise ValueError(f"Cannot set non-object array to SearchArray -- you passed type:{type(value)} -- {value}") # Cant set a single value to an array if isinstance(key, numbers.Integral) and isinstance(value, np.ndarray): raise ValueError("Cannot set a single value to an array") try: is_encoded = False posns = None term_mat = np.asarray([]) doc_lens = np.asarray([]) if isinstance(value, float): term_mat = np.asarray([value]) doc_lens = np.asarray([0]) elif isinstance(value, Terms): term_mat = np.asarray([value.tf_to_dense(self.term_dict)]) doc_lens = np.asarray([value.doc_len]) is_encoded = value.encoded posns = [value.raw_positions(self.term_dict)] elif isinstance(value, np.ndarray): term_mat = np.asarray([x.tf_to_dense(self.term_dict) for x in value]) doc_lens = np.asarray([x.doc_len for x in value]) is_encoded = value[0].encoded if len(value) > 0 else False posns = [x.raw_positions(self.term_dict) for x in value] np.nan_to_num(term_mat, copy=False, nan=0) self.term_mat[key] = term_mat self.doc_lens[key] = doc_lens if posns is not None: self.posns.insert(key, posns, is_encoded) # Assume we have a positions for each term, doc pair. We can just update it. # Otherwise we would have added new terms except TermMissingError: self._add_new_terms(key, value) def _add_new_terms(self, key, value): msg = """Adding new terms! This might not be good if you tokenized this new text with a different tokenizer. Also. This is slow.""" warnings.warn(msg) scan_value = value if isinstance(value, Terms): scan_value = np.asarray([value]) for row in scan_value: for term in row.terms(): self.term_dict.add_term(term[0]) self.term_mat.resize((self.term_mat.shape[0], len(self.term_dict))) # Ensure posns_lookup has at least max self.posns self[key] = value def value_counts( self, dropna: bool = True, ): if dropna: counts = Counter(self[:]) counts.pop(Terms({}), None) else: counts = Counter(self[:]) return pd.Series(counts) def __len__(self): len_rval = len(self.term_mat.rows) return len_rval def __ne__(self, other): if isinstance(other, pd.DataFrame) or isinstance(other, pd.Series) or isinstance(other, pd.Index): return NotImplemented return ~(self == other) def __eq__(self, other): """Return a boolean numpy array indicating elementwise equality.""" # When other is a dataframe or series, not implemented if isinstance(other, pd.DataFrame) or isinstance(other, pd.Series) or isinstance(other, pd.Index): return NotImplemented # When other is an ExtensionArray if isinstance(other, SearchArray): if len(self) != len(other): return False elif len(other) == 0: return np.array([], dtype=bool) else: # Compatible term dicts, and same term freqs # (not looking at positions, maybe we should?) if self.term_dict.compatible(other.term_dict): return (self.term_mat == other.term_mat) & (self.doc_lens == other.doc_lens) else: return np.zeros(len(self), dtype=bool) # return np.array(self[:]) == np.array(other[:]) # When other is a scalar value elif isinstance(other, Terms): other = SearchArray([other], tokenizer=self.tokenizer) warnings.warn("Comparing a scalar value to a SearchArray. This is slow.") return np.array(self[:]) == np.array(other[:]) # When other is a sequence but not an ExtensionArray # its an array of dicts elif is_list_like(other): if len(self) != len(other): return False elif len(other) == 0: return np.array([], dtype=bool) # We actually don't know how it was tokenized other = SearchArray(other, tokenizer=self.tokenizer) return np.array(self[:]) == np.array(other[:]) # Return False where 'other' is neither the same length nor a scalar else: return np.full(len(self), False) def isna(self): # Every row with all 0s empties = self.doc_lens == 0 return empties def take(self, indices, allow_fill=False, fill_value=None): # Want to take rows of term freqs row_indices = np.arange(len(self.term_mat.rows)) # Take within the row indices themselves result_indices = take(row_indices, indices, allow_fill=allow_fill, fill_value=-1) if allow_fill and -1 in result_indices: if fill_value is None or pd.isna(fill_value): fill_value = Terms({}, encoded=True) to_fill_mask = result_indices == -1 # This is slow as it rebuilds all the term dictionaries # on the subsequent assignment lines # However, this case tends to be the exception for # most dataframe operations taken = SearchArray([fill_value] * len(result_indices)) taken[~to_fill_mask] = self[result_indices[~to_fill_mask]].copy() return taken else: taken = self[result_indices].copy() return taken def copy(self): postings_arr = SearchArray([], tokenizer=self.tokenizer) postings_arr.doc_lens = self.doc_lens.copy() postings_arr.term_mat = self.term_mat.copy() postings_arr.posns = self.posns postings_arr.term_dict = self.term_dict postings_arr.avg_doc_length = self.avg_doc_length if not self.avoid_copies: postings_arr.posns = self.posns.copy() postings_arr.term_dict = self.term_dict.copy() return postings_arr @classmethod def _concat_same_type(cls, to_concat): concatenated_data = np.concatenate([ea[:] for ea in to_concat]) return SearchArray(concatenated_data, tokenizer=to_concat[0].tokenizer) @classmethod def _from_factorized(cls, values, original): return cls(values) def _values_for_factorize(self): """Return an array and missing value suitable for factorization (ie grouping).""" arr = np.asarray(self[:], dtype=object) return arr, Terms({}) def _check_token_arg(self, token): if isinstance(token, str): return token elif isinstance(token, list) and len(token) == 1: return token[0] elif isinstance(token, list): return token else: raise TypeError("Expected a string or list of strings for phrases") # *********************************************************** # Search functionality # *********************************************************** def termfreqs(self, token: Union[List[str], str]) -> np.ndarray: token = self._check_token_arg(token) if isinstance(token, list): return self.phrase_freq(token) tr<fim_suffix>y: term_id = self.term_dict.get_term_id(token) matches = np.zeros(len(self), dtype=int) slice_of_rows = None if self.term_mat.subset: slice_of_rows = self.term_mat.rows doc_ids, termfreqs = self.posns.termfreqs(term_id, doc_ids=slice_of_rows) mask = np.isin(self.term_mat.rows, doc_ids) matches[mask] = termfreqs return matches else: doc_ids, termfreqs = self.posns.termfreqs(term_id, doc_ids=slice_of_rows) matches[doc_ids] = termfreqs return matches except TermMissingError: return np.zeros(len(self), dtype=int) def docfreq(self, token: str) -> int: if not isinstance(token, str): raise TypeError("Expected a string") # Count number of rows where the term appears try: return self.posns.docfreq(self.term_dict.get_term_id(token)) except TermMissingError: return 0 def doclengths(self) -> np.ndarray: return self.doc_lens def match(self, token: Union[List[str], str], slop: int = 1) -> np.ndarray: """Return a boolean numpy array indicating which elements contain the given term.""" token = self._check_token_arg(token) if isinstance(token, list): term_freq = self.phrase_freq(token) else: term_freq = self.termfreqs(token) return term_freq > 0 def score(self, token: Union[str, List[str]], similarity: Similarity = default_bm25) -> np.ndarray: """Score each doc using a similarity function. Parameters ---------- token : str or list of str of what to search (already tokenized) similarity : How to score the documents. Default is BM25. """ # Get term freqs per token token = self._check_token_arg(token) # For expensive toknes, we compute doc freq first, so we # cache them in the DF cache, to let TF cache know it should be cached tokens_l = [token] if isinstance(token, str) else token all_dfs = np.asarray([self.docfreq(token) for token in tokens_l]) tfs = self.termfreqs(token) token = self._check_token_arg(token) doc_lens = self.doclengths() scores = similarity(term_freqs=tfs, doc_freqs=all_dfs, doc_lens=doc_lens, avg_doc_lens=self.avg_doc_length, num_docs=len(self)) return scores def positions(self, token: str, key=None) -> List[np.ndarray]: """Return a list of lists of positions of the given term.""" term_id = self.term_dict.get_term_id(token) key = self.term_mat.rows[key] if key is not None else self.term_mat.rows posns = self.posns.positions(term_id, doc_ids=key) return posns def and_query(self, tokens: Union[List[str], List[List[str]]]) -> np.ndarray: """Return a mask on the postings array indicating which elements contain all terms.""" masks = [self.match(term) for term in tokens] mask = np.ones(len(self), dtype=bool) for curr_mask in masks: mask = mask & curr_mask return mask def or_query(self, tokens: Union[List[str], List[List[str]]], min_should_match: int = 1) -> np.ndarray: """Return a mask on the postings array indicating which elements contain all terms.""" masks = [self.match(term) for term in tokens] mask = np.sum(masks, axis=0) >= min_should_match return mask def phrase_freq(self, tokens: List[str], slop=1) -> np.ndarray: if slop == 1 and len(tokens) == len(set(tokens)): phrase_freqs = np.zeros(len(self)) try: doc_ids = self.term_mat.rows term_ids = [self.term_dict.get_term_id(token) for token in tokens] return self.posns.phrase_freqs(term_ids, doc_ids=doc_ids, phrase_freqs=phrase_freqs) except TermMissingError: return phrase_freqs else: return self.phrase_freq_every_diff(tokens, slop=slop) def phrase_freq_scan(self, tokens: List[str], mask=None, slop=1) -> np.ndarray: if mask is None: mask = self.and_query(tokens) if np.sum(mask) == 0: return mask # Gather positions posns = [self.positions(token, mask) for token in tokens] phrase_freqs = np.zeros(len(self)) phrase_freqs[mask] = scan_merge_ins(posns, phrase_freqs[mask], slop=slop) return phrase_freqs def phrase_freq_every_diff(self, tokens: List[str], slop=1) -> np.ndarray: phrase_freqs = -np.ones(len(self)) mask = self.and_query(tokens) phrase_freqs[~mask] = 0 if np.sum(mask) == 0: return phrase_freqs term_posns = [self.positions(term, mask) for term in tokens] for width in [10, 20, 30, 40]: phrase_freqs[mask] = compute_phrase_freqs(term_posns, phrase_freqs[mask], slop=slop, width=width) remaining_mask = phrase_freqs == -1 if np.any(remaining_mask): remainder_freqs = self.phrase_freq_scan(tokens, mask=remaining_mask, slop=slop) phrase_freqs[remaining_mask] = remainder_freqs[remaining_mask] return phrase_freqs <fim_middle>
null
TRY
complete_current_header_empty_completion
<filename>searcharray/searcharray/phrase/middle_out.py<fim_prefix>"""Encode positions in bits along with some neighboring information for wrapping. See this notebook for motivation: https://colab.research.google.com/drive/10tIEkdlCE_1J_CcgEcV0jkLfBc-0H4am?authuser=1#scrollTo=XWzy-n9dF3PG """ import numpy as np import sortednp as snp from copy import deepcopy from typing import List, Tuple, Dict, Union, cast, Optional from searcharray.utils.roaringish import RoaringishEncoder, convert_keys, sorted_unique import numbers import logging from collections import defaultdict from searcharray.utils.bitcount import bit_count64 logger = logging.getLogger(__name__) # When running in pytest import sys # noqa handler = logging.StreamHandler(sys.stdout) handler.setLevel(logging.ERROR) formatter = logging.Formatter("[%(filename)s:%(lineno)s - %(funcName)20s() ] %(message)s") handler.setFormatter(formatter) logger.addHandler(handler) logger.setLevel(logging.ERROR) encoder = RoaringishEncoder() # To not constantly type coerce _64 = np.uint64(64) _2 = np.uint64(2) _1 = np.uint64(1) _0 = np.uint64(0) _neg1 = np.int64(-1) MAX_POSN = encoder.max_payload def inner_bigram_freqs(lhs: np.ndarray, rhs: np.ndarray, phrase_freqs: np.ndarray) -> Tuple[np.ndarray, np.ndarray]: """Count bigram matches between two encoded arrays, within a 64 bit word with same MSBs. Returns: -------- count: number of matches per doc rhs_next: the next rhs array to continue matching """ lhs_int, rhs_int = encoder.intersect(lhs, rhs) lhs_doc_ids = encoder.keys(lhs_int) if len(lhs_int) != len(rhs_int): raise ValueError("Encoding error, MSBs apparently are duplicated among your encoded posn arrays.") if len(lhs_int) == 0: return phrase_freqs, rhs_int same_term = (len(lhs_int) == len(rhs_int) and lhs_int[0] == rhs_int[0]) if same_term: # Find adjacent matches rhs_shift = rhs_int << _1 overlap = lhs_int & rhs_shift overlap = encoder.payload_lsb(overlap) adjacents = bit_count64(overlap).astype(np.int64) adjacents -= -np.floor_divide(adjacents, -2) # ceiling divide phrase_freqs[lhs_doc_ids] += adjacents return phrase_freqs, rhs_int overlap_bits = (lhs_int & encoder.payload_lsb_mask) & ((rhs_int & encoder.payload_lsb_mask) >> _1) rhs_next2 = (overlap_bits << _1) & encoder.payload_lsb_mask rhs_next2 |= (rhs_int & (encoder.key_mask | encoder.payload_msb_mask)) phrase_freqs2 = phrase_freqs.copy() matches2 = overlap_bits > 0 if np.any(matches2): transitions = np.argwhere(np.diff(lhs_doc_ids[matches2]) != 0).flatten() + 1 transitions = np.insert(transitions, 0, 0) counted_bits = bit_count64(overlap_bits[matches2]) reduced = np.add.reduceat(counted_bits, transitions) phrase_freqs2[np.unique(lhs_doc_ids[matches2])] += reduced return phrase_freqs2, rhs_next2 def adjacent_bigram_freqs(lhs: np.ndarray, rhs: np.ndarray, phrase_freqs: np.ndarray) -> Tuple[np.ndarray, np.ndarray]: """Count bigram matches between two encoded arrays where they occur in adjacent 64 bit words. Returns: -------- count: number of matches per doc rhs_next: the next rhs array to continue matching """ lhs_int, rhs_int = encoder.intersect_rshift(lhs, rhs, rshift=_neg1) lhs_doc_ids = encoder.keys(lhs_int) # lhs lsb set and rhs lsb's most significant bit set upper_bit = _1 << (encoder.payload_lsb_bits - _1) matches = ((lhs_int & upper_bit) != 0) & ((rhs_int & _1) != 0) unique, counts = np.unique(lhs_doc_ids[matches], return_counts=True) phrase_freqs[unique] += counts rhs_next = rhs_int rhs_next[~matches] |= ~encoder.payload_lsb_mask rhs_next[matches] |= (encoder.payload_lsb_mask & _1) return phrase_freqs, rhs_next def bigram_freqs(lhs: np.ndarray, rhs: np.ndarray, phrase_freqs: np.ndarray) -> Tuple[np.ndarray, np.ndarray]: """Count bigram matches between two encoded arrays. Returns: -------- count: number of matches per doc rhs_next: the next rhs array to continue matching """ # Combine lhs and rhs matches from two strategies phrase_freqs, rhs_next_inner = inner_bigram_freqs(lhs, rhs, phrase_freqs) phrase_freqs, rhs_next_adj = adjacent_bigram_freqs(lhs, rhs, phrase_freqs) rhs_next = np.sort(np.concatenate([rhs_next_inner, rhs_next_adj])) # Combine return phrase_freqs, rhs_next def trim_phrase_search(encoded_posns: List[np.ndarray], phrase_freqs: np.ndarray) -> List[np.ndarray]: """Trim long phrases by searching the rarest terms first.""" # Start with rarest term shortest_keys = None shortest_idx = None min_len = 1e100 max_len = 0 for idx, enc_posn in enumerate(encoded_posns): if len(enc_posn) < min_len: shortest_keys = encoder.keys(enc_posn) shortest_idx = idx min_len = len(enc_posn) if len(enc_posn) > max_len: max_len = len(enc_posn) if shortest_keys is None: return encoded_posns for enc_posn_idx in range(len(encoded_posns)): if enc_posn_idx == shortest_idx: continue if len(encoded_posns[enc_posn_idx]) > (10 * min_len): encoded_posns[enc_posn_idx] = encoder.slice(encoded_posns[enc_posn_idx], shortest_keys) return encoded_posns def compute_phrase_freqs(encoded_posns: List[np.ndarray], phrase_freqs: np.ndarray) -> np.ndarray: if len(encoded_posns) < 2: raise ValueError("phrase must have at least two terms") # Trim long phrases by searching the rarest terms first if len(encoded_posns) > 3: encoded_posns = trim_phrase_search(encoded_posns, phrase_freqs) mask = np.ones(len(phrase_freqs), dtype=bool) lhs = encoded_posns[0] for rhs in encoded_posns[1:]: # Only count the count of the last bigram (ignoring the ones where priors did not match) phrase_freqs[mask] = 0 phrase_freqs, lhs = bigram_freqs(lhs, rhs, phrase_freqs) mask &= (phrase_freqs > 0) phrase_freqs[~mask] = 0 return phrase_freqs class PosnBitArrayFromFlatBuilder: """ Build from sorted array shape num terms x 3. 0th is term id 1st is doc id 2nd is posn Sorted by term id then posns """ def __init__(self, flat_array: np.ndarray): self.flat_array = flat_array def build(self): """Slice the flat array into a 2d array of doc ids and posns.""" term_boundaries = np.argwhere(np.diff(self.flat_array[0]) > 0).flatten() + 1 term_boundaries = np.concatenate([[0], term_boundaries, [len(self.flat_array[1])]]) encoded, enc_term_boundaries = encoder.encode(keys=self.flat_array[1].view(np.uint64), boundaries=term_boundaries[:-1], payload=self.flat_array[2].view(np.uint64)) term_ids = self.flat_array[0][term_boundaries[:-1]] encoded_term_posns = {} for into_terms, (beg_idx, end_idx) in enumerate(zip(enc_term_boundaries[:-1], enc_term_boundaries[1:])): sliced = encoded[beg_idx:end_idx] encoded_term_posns[term_ids[into_terms]] = sliced return PosnBitArray(encoded_term_posns, self.flat_array[1].max()) class PosnBitArrayBuilder: def __init__(self): self.term_posns = defaultdict(list) self.term_posn_doc_ids = defaultdict(list) self.max_doc_id = 0 def add_posns(self, doc_id: int, term_id: int, posns: List[int]): doc_ids = [doc_id] * len(posns) self.term_posns[term_id].extend(posns) self.term_posn_doc_ids[term_id].extend(doc_ids) def ensure_capacity(self, doc_id): self.max_doc_id = max(self.max_doc_id, doc_id) def build(self, check=False): encoded_term_posns = {} for term_id, posns in self.term_posns.items(): if len(posns) == 0: posns = np.asarray([], dtype=np.uint32).flatten() elif isinstance(posns, list): posns_arr = np.asarray(posns, dtype=np.uint32).flatten() posns = posns_arr doc_ids = self.term_posn_doc_ids[term_id] if isinstance(doc_ids, list): doc_ids = np.asarray(doc_ids, dtype=np.uint32) encoded = encoder.encode(keys=doc_ids, payload=posns) if check: decode_again = encoder.decode(encoded) docs_to_posns = dict(decode_again) doc_ids_again = [] posns_again = [] for doc_id, posns_dec in docs_to_posns.items(): for posn in posns_dec: doc_ids_again.append(doc_id) posns_again.append(posn) assert np.array_equal(doc_ids_again, doc_ids) assert np.array_equal(posns, posns_again) encoded_term_posns[term_id] = encoded return PosnBitArray(encoded_term_posns, self.max_doc_id) class PosnBitArrayAlreadyEncBuilder: def __init__(self): self.encoded_term_posns = {} self.max_doc_id = 0 def add_posns(self, doc_id: int, term_id: int, posns): self.encoded_term_posns[term_id] = posns def ensure_capacity(self, doc_id): self.max_doc_id = max(self.max_doc_id, doc_id) def build(self, check=False): return PosnBitArray(self.encoded_term_posns, self.max_doc_id) def index_range(rng, key): if key is None: return rng if isinstance(rng, np.ndarray): return rng[key] if isinstance(key, slice): return rng[key] elif isinstance(key, numbers.Number): return rng[key] elif isinstance(key, np.ndarray): try: # UNFORTUNATE COPY r_val = np.asarray(list(rng))[key] return r_val except IndexError as e: raise e # Last resort # UNFORTUNATE COPY # Here probably elipses or a tuple of various things return np.asarray(list(rng))[key] class PosnBitArray: def __init__(self, encoded_term_posns, max_doc_id: int): self.encoded_term_posns = encoded_term_posns self.max_doc_id = max_doc_id self.docfreq_cache : Dict[int, np.uint64] = {} self.termfreq_cache : Dict[int, Tuple[np.ndarray, np.ndarray]] = {} def copy(self): new = PosnBitArray(deepcopy(self.encoded_term_posns), self.max_doc_id) return new def concat(self, other): """Merge other into self. Assumes other's doc ids are not overlapping with self's doc ids. """ # Shared terms shared_terms = set(self.encoded_term_posns.keys()).intersection(set(other.encoded_term_posns.keys())) for term_id in shared_terms: # Append then sort self.encoded_term_posns[term_id] = np.concatenate([self.encoded_term_posns[term_id], other.encoded_term_posns[term_id]]) self.encoded_term_posns[term_id].sort() only_other_terms = set(other.encoded_term_posns.keys()).difference(set(self.encoded_term_posns.keys())) for term_id in only_other_terms: self.encoded_term_posns[term_id] = other.encoded_term_posns[term_id] self.max_doc_id = max(self.max_doc_id, other.max_doc_id) # Empty caches self.termfreq_cache = {} self.docfreq_cache = {} def slice(self, key): sliced_term_posns = {} doc_ids = convert_keys(key) max_doc_id = np.max(doc_ids) for term_id, posns in self.encoded_term_posns.items(): encoded = self.encoded_term_posns[term_id] assert len(encoded.shape) == 1 sliced_term_posns[term_id] = encoder.slice(encoded, keys=doc_ids) return PosnBitArray(sliced_term_posns, max_doc_id) def __getitem__(self, key): return self.slice(key) def merge(self, other): # Unique terms unique_terms = set(self.encoded_term_posns.keys()).union(set(other.encoded_term_posns.keys())) for term_id in unique_terms: if term_id not in other.encoded_term_posns: continue elif term_id not in self.encoded_term_posns: self.encoded_term_posns[term_id] = other.encoded_term_posns[term_id] else: posns_self = self.encoded_term_posns[term_id] posns_other = other.encoded_term_posns[term_id] self.encoded_term_posns[term_id] = snp.merge(posns_self, posns_other) self.max_doc_id = self.max_doc_id + other.max_doc_id # Empty caches self.termfreq_cache = {} self.docfreq_cache = {} def doc_encoded_posns(self, term_id: int, doc_id: int) -> np.ndarray: term_posns = encoder.slice(self.encoded_term_posns[term_id], keys=np.asarray([doc_id], dtype=np.uint64)) return term_posns def phrase_freqs(self, term_ids: List[int], phrase_freqs: np.ndarray, doc_ids: np.ndarray) -> np.ndarray: if len(term_ids) < 2: raise ValueError("Must have at least two terms") if phrase_freqs.shape[0] == self.max_doc_id + 1: enc_term_posns = [self.encoded_term_posns[term_id] for term_id in term_ids] else: enc_term_posns = [encoder.slice(self.encoded_term_posns[term_id], keys=doc_ids.view(np.uint64)) for term_id in term_ids] return compute_phrase_freqs(enc_term_posns, phrase_freqs) def positions(self, term_id: int, doc_ids) -> Union[List[np.ndarray], np.ndarray]: if isinstance(doc_ids, numbers.Number): doc_ids = np.asarray([doc_ids]) try: np_doc_ids = convert_keys(doc_ids) term_posns = encoder.slice(self.encoded_term_posns[term_id], keys=np_doc_ids) except KeyError: r_val = [np.array([], dtype=np.uint32) for doc_id in doc_ids] if len(r_val) == 1 and len(doc_ids) == 1 and isinstance(doc_ids[0], numbers.Number): return [r_val[0]] return r_val decoded = encoder.decode(encoded=term_posns, get_keys=True) if len(decoded) == 0: return [np.array([], dtype=np.uint32)] if len(decoded) != len(doc_ids): # Fill non matches decoded = cast(List[Tuple[np.uint64, np.ndarray]], decoded) as_dict: Dict[np.uint64, np.ndarray] = dict(decoded) decs = [] for doc_id in doc_ids: if doc_id in as_dict: decs.append(as_dict[doc_id]) else: decs.append(np.array([], dtype=np.uint32)) return decs else: decs = [dec[1] for dec in decoded] return decs def termfreqs(self, term_id: int, doc_ids: Optional[np.ndarray] = None) -> Tuple[np.ndarray, np.ndarray]: """Count term freqs using unique positions.""" if doc_ids is None: return self._termfreqs_with_cache(term_id) encoded = self.encoded_term_posns[term_id] term_posns = encoded term_posns = encoder.slice(encoded, keys=doc_ids.astype(np.uint64)) return self._computed_term_freqs(term_posns) def _computed_term_freqs(self, term_posns) -> Tuple[np.ndarray, np.ndarray]: doc_ids = encoder.keys(term_posns) change_indices = np.nonzero(np.diff(doc_ids))[0] change_indices = np.concatenate((np.asarray([0]), change_indices + 1)) posns = term_posns & encoder.payload_lsb_mask bit_counts = bit_count64(posns) term_freqs = np.add.reduceat(bit_counts, change_indices) return sorted_unique(doc_ids), term_freqs def _termfreqs_with_cache(self, term_id: int) -> Tuple[np.ndarray, np.ndarray]: t<fim_suffix>ry: return self.termfreq_cache[term_id] except KeyError: term_posns = self.encoded_term_posns[term_id] doc_ids, term_freqs = self._computed_term_freqs(term_posns) if self._is_cached(term_id): self.termfreq_cache[term_id] = (doc_ids, term_freqs) return doc_ids, term_freqs def _is_cached(self, term_id: int) -> bool: return term_id in self.docfreq_cache def _docfreq_from_cache(self, term_id: int) -> np.uint64: return self.docfreq_cache[term_id] def _maybe_cache_docfreq(self, term_id: int, docfreq: np.uint64): if self.max_doc_id >= 100000 and docfreq > (self.max_doc_id // 100): self.docfreq_cache[term_id] = docfreq def docfreq(self, term_id: int) -> np.uint64: try: return self.docfreq_cache[term_id] except KeyError: encoded = self.encoded_term_posns[term_id] docfreq = np.uint64(encoder.keys_unique(encoded).size) self._maybe_cache_docfreq(term_id, docfreq) return docfreq def insert(self, key, term_ids_to_posns, is_encoded=False): new_posns = PosnBitArrayBuilder() if is_encoded: new_posns = PosnBitArrayAlreadyEncBuilder() max_doc_id = 0 for doc_id, new_posns_row in enumerate(term_ids_to_posns): for term_id, positions in new_posns_row: new_posns.add_posns(doc_id, term_id, positions) max_doc_id = max(doc_id, max_doc_id) new_posns.max_doc_id = max_doc_id ins_arr = new_posns.build() self.merge(ins_arr) @property def nbytes(self): arr_bytes = 0 for doc_id, posn in self.encoded_term_posns.items(): arr_bytes += posn.nbytes for term_id, (doc_ids, term_freqs) in self.termfreq_cache.items(): arr_bytes += doc_ids.nbytes arr_bytes += term_freqs.nbytes for term_id, docfreq in self.docfreq_cache.items(): arr_bytes += docfreq.nbytes return arr_bytes <fim_middle>
null
TRY
complete_current_header_empty_completion
<filename>searcharray/searcharray/solr.py<fim_prefix>"""Utility functions for Solr users of searcharray.""" import re import pandas as pd import numpy as np from typing import List, Optional, Dict, Tuple from searcharray.postings import SearchArray from searcharray.similarity import Similarity, default_bm25 def parse_min_should_match(num_clauses: int, spec: str) -> int: """Parse Solr's min should match (ie mm) spec. See this ChatGPT translation of mm code from Solr's Java code for parsing this https://chat.openai.com/share/76642aec-7e05-420f-a53a-83b8e2eea8fb Parameters ---------- num_clauses : int spec : str Returns ------- int : the number of clauses that must match """ def checked_parse_int(value, error_message): t<fim_suffix>ry: return int(value) except ValueError: raise ValueError(error_message) result = num_clauses spec = spec.strip() if '<' in spec: # we have conditional spec(s) space_around_less_than_pattern = re.compile(r'\s*<\s*') spec = space_around_less_than_pattern.sub('<', spec) for s in spec.split(): parts = s.split('<', 1) if len(parts) < 2: raise ValueError("Invalid 'mm' spec: '" + s + "'. Expecting values before and after '<'") upper_bound = checked_parse_int(parts[0], "Invalid 'mm' spec. Expecting an integer.") if num_clauses <= upper_bound: return result else: result = parse_min_should_match(num_clauses, parts[1]) return result # otherwise, simple expression if '%' in spec: # percentage - assume the % was the last char. If not, let int() fail. spec = spec[:-1] percent = checked_parse_int(spec, "Invalid 'mm' spec. Expecting an integer.") calc = (result * percent) * (1 / 100) result = result + int(calc) if calc < 0 else int(calc) else: calc = checked_parse_int(spec, "Invalid 'mm' spec. Expecting an integer.") result = result + calc if calc < 0 else calc return min(num_clauses, max(result, 0)) def parse_field_boosts(field_lists: List[str]) -> dict: """Parse Solr's qf, pf, pf2, pf3 field boosts.""" if not field_lists: return {} out = {} carat_pattern = re.compile(r'\^') for field in field_lists: parts = carat_pattern.split(field) out[parts[0]] = None if len(parts) == 1 else float(parts[1]) return out def get_field(frame, field) -> SearchArray: if field not in frame.columns: raise ValueError(f"Field {field} not in dataframe") if not isinstance(frame[field].array, SearchArray): raise ValueError(f"Field {field} is not a searcharray field") return frame[field].array def parse_query_terms(frame: pd.DataFrame, query: str, query_fields: List[str]): search_terms: Dict[str, List[str]] = {} num_search_terms = 0 term_centric = True for field in query_fields: arr = get_field(frame, field) tokenizer = arr.tokenizer search_terms[field] = [] field_num_search_terms = 0 for posn, term in enumerate(tokenizer(query)): search_terms[field].append(term) field_num_search_terms += 1 if num_search_terms == 0: num_search_terms = field_num_search_terms elif field_num_search_terms != num_search_terms: term_centric = False return num_search_terms, search_terms, term_centric def _edismax_term_centric(frame: pd.DataFrame, query_fields: Dict[str, float], num_search_terms: int, search_terms: Dict[str, List[str]], mm: str, similarity: Similarity) -> Tuple[np.ndarray, str]: explain = [] term_scores = [] for term_posn in range(num_search_terms): max_scores = np.zeros(len(frame)) term_explain = [] for field, boost in query_fields.items(): term = search_terms[field][term_posn] post_arr = get_field(frame, field) field_term_score = post_arr.score(term, similarity=similarity) * (1 if boost is None else boost) boost_exp = f"{boost}" if boost is not None else "1" term_explain.append(f"{field}:{term}^{boost_exp}") max_scores = np.maximum(max_scores, field_term_score) term_scores.append(max_scores) explain.append("(" + " | ".join(term_explain) + ")") min_should_match = parse_min_should_match(num_search_terms, spec=mm) qf_scores = np.asarray(term_scores) matches_gt_mm = np.sum(qf_scores > 0, axis=0) >= min_should_match qf_scores = np.sum(term_scores, axis=0) qf_scores[~matches_gt_mm] = 0 return qf_scores, "(" + " ".join(explain) + f")~{min_should_match}" def _edismax_field_centric(frame: pd.DataFrame, query_fields: Dict[str, float], num_search_terms: int, search_terms: Dict[str, List[str]], mm: str, similarity: Similarity = default_bm25) -> Tuple[np.ndarray, str]: field_scores = [] explain = [] for field, boost in query_fields.items(): post_arr = get_field(frame, field) term_scores = np.array([post_arr.score(term, similarity=similarity) for term in search_terms[field]]) min_should_match = parse_min_should_match(len(search_terms[field]), spec=mm) exp = " ".join([f"{field}:{term}" for term in search_terms[field]]) boost_exp = f"{boost}" if boost is not None else "1" exp = "(" + exp + f")~{min(min_should_match, len(search_terms[field]))}" exp = "(" + exp + f")^{boost_exp}" matches_gt_mm = np.sum(term_scores > 0, axis=0) >= min(min_should_match, len(search_terms[field])) sum_terms_bm25 = np.sum(term_scores, axis=0) sum_terms_bm25[~matches_gt_mm] = 0 field_scores.append(sum_terms_bm25 * (1 if boost is None else boost)) explain.append(exp) # Take maximum field scores as qf qf_scores = np.asarray(field_scores) qf_scores = np.max(qf_scores, axis=0) return qf_scores, " | ".join(explain) def edismax(frame: pd.DataFrame, q: str, qf: List[str], mm: Optional[str] = None, pf: Optional[List[str]] = None, pf2: Optional[List[str]] = None, pf3: Optional[List[str]] = None, q_op: str = "OR", similarity: Similarity = default_bm25) -> Tuple[np.ndarray, str]: """Run edismax search over dataframe with searcharray fields. Parameters ---------- q : str The query string mm : str The minimum should match spec qf : list The fields to search pf : list The fields to search for phrase matches pf2 : list The fields to search for bigram matches pf3 : list The fields to search for trigram matches q_op : str, optional The default operator, by default "OR" Returns ------- np.ndarray The search results """ def listify(x): return x if isinstance(x, list) else [x] query_fields = parse_field_boosts(listify(qf)) phrase_fields = parse_field_boosts(listify(pf)) if pf else {} if mm is None: mm = "1" if q_op == "AND": mm = "100%" # bigram_fields = parse_field_boosts(pf2) if pf2 else {} # trigram_fields = parse_field_boosts(pf3) if pf3 else {} num_search_terms, search_terms, term_centric = parse_query_terms(frame, q, list(query_fields.keys())) if term_centric: qf_scores, explain = _edismax_term_centric(frame, query_fields, num_search_terms, search_terms, mm, similarity=similarity) else: qf_scores, explain = _edismax_field_centric(frame, query_fields, num_search_terms, search_terms, mm, similarity=similarity) phrase_scores = [] for field, boost in phrase_fields.items(): arr = get_field(frame, field) terms = search_terms[field] field_phrase_score = arr.score(terms, similarity=similarity) * (1 if boost is None else boost) boost_exp = f"{boost}" if boost is not None else "1" explain += f" ({field}:\"{' '.join(terms)}\")^{boost_exp}" phrase_scores.append(field_phrase_score) if len(phrase_scores) > 0: phrase_scores = np.sum(phrase_scores, axis=0) # Add where term_scores > 0 term_match_idx = np.where(qf_scores)[0] qf_scores[term_match_idx] += phrase_scores[term_match_idx] return qf_scores, explain <fim_middle>
null
TRY
complete_current_header_empty_completion
<filename>searcharray/searcharray/phrase/middle_out.py<fim_prefix>"""Encode positions in bits along with some neighboring information for wrapping. See this notebook for motivation: https://colab.research.google.com/drive/10tIEkdlCE_1J_CcgEcV0jkLfBc-0H4am?authuser=1#scrollTo=XWzy-n9dF3PG """ import numpy as np import sortednp as snp from copy import deepcopy from typing import List, Tuple, Dict, Union, cast, Optional from searcharray.utils.roaringish import RoaringishEncoder, convert_keys, sorted_unique import numbers import logging from collections import defaultdict from searcharray.utils.bitcount import bit_count64 logger = logging.getLogger(__name__) # When running in pytest import sys # noqa handler = logging.StreamHandler(sys.stdout) handler.setLevel(logging.ERROR) formatter = logging.Formatter("[%(filename)s:%(lineno)s - %(funcName)20s() ] %(message)s") handler.setFormatter(formatter) logger.addHandler(handler) logger.setLevel(logging.ERROR) encoder = RoaringishEncoder() # To not constantly type coerce _64 = np.uint64(64) _2 = np.uint64(2) _1 = np.uint64(1) _0 = np.uint64(0) _neg1 = np.int64(-1) MAX_POSN = encoder.max_payload def inner_bigram_freqs(lhs: np.ndarray, rhs: np.ndarray, phrase_freqs: np.ndarray) -> Tuple[np.ndarray, np.ndarray]: """Count bigram matches between two encoded arrays, within a 64 bit word with same MSBs. Returns: -------- count: number of matches per doc rhs_next: the next rhs array to continue matching """ lhs_int, rhs_int = encoder.intersect(lhs, rhs) lhs_doc_ids = encoder.keys(lhs_int) if len(lhs_int) != len(rhs_int): raise ValueError("Encoding error, MSBs apparently are duplicated among your encoded posn arrays.") if len(lhs_int) == 0: return phrase_freqs, rhs_int same_term = (len(lhs_int) == len(rhs_int) and lhs_int[0] == rhs_int[0]) if same_term: # Find adjacent matches rhs_shift = rhs_int << _1 overlap = lhs_int & rhs_shift overlap = encoder.payload_lsb(overlap) adjacents = bit_count64(overlap).astype(np.int64) adjacents -= -np.floor_divide(adjacents, -2) # ceiling divide phrase_freqs[lhs_doc_ids] += adjacents return phrase_freqs, rhs_int overlap_bits = (lhs_int & encoder.payload_lsb_mask) & ((rhs_int & encoder.payload_lsb_mask) >> _1) rhs_next2 = (overlap_bits << _1) & encoder.payload_lsb_mask rhs_next2 |= (rhs_int & (encoder.key_mask | encoder.payload_msb_mask)) phrase_freqs2 = phrase_freqs.copy() matches2 = overlap_bits > 0 if np.any(matches2): transitions = np.argwhere(np.diff(lhs_doc_ids[matches2]) != 0).flatten() + 1 transitions = np.insert(transitions, 0, 0) counted_bits = bit_count64(overlap_bits[matches2]) reduced = np.add.reduceat(counted_bits, transitions) phrase_freqs2[np.unique(lhs_doc_ids[matches2])] += reduced return phrase_freqs2, rhs_next2 def adjacent_bigram_freqs(lhs: np.ndarray, rhs: np.ndarray, phrase_freqs: np.ndarray) -> Tuple[np.ndarray, np.ndarray]: """Count bigram matches between two encoded arrays where they occur in adjacent 64 bit words. Returns: -------- count: number of matches per doc rhs_next: the next rhs array to continue matching """ lhs_int, rhs_int = encoder.intersect_rshift(lhs, rhs, rshift=_neg1) lhs_doc_ids = encoder.keys(lhs_int) # lhs lsb set and rhs lsb's most significant bit set upper_bit = _1 << (encoder.payload_lsb_bits - _1) matches = ((lhs_int & upper_bit) != 0) & ((rhs_int & _1) != 0) unique, counts = np.unique(lhs_doc_ids[matches], return_counts=True) phrase_freqs[unique] += counts rhs_next = rhs_int rhs_next[~matches] |= ~encoder.payload_lsb_mask rhs_next[matches] |= (encoder.payload_lsb_mask & _1) return phrase_freqs, rhs_next def bigram_freqs(lhs: np.ndarray, rhs: np.ndarray, phrase_freqs: np.ndarray) -> Tuple[np.ndarray, np.ndarray]: """Count bigram matches between two encoded arrays. Returns: -------- count: number of matches per doc rhs_next: the next rhs array to continue matching """ # Combine lhs and rhs matches from two strategies phrase_freqs, rhs_next_inner = inner_bigram_freqs(lhs, rhs, phrase_freqs) phrase_freqs, rhs_next_adj = adjacent_bigram_freqs(lhs, rhs, phrase_freqs) rhs_next = np.sort(np.concatenate([rhs_next_inner, rhs_next_adj])) # Combine return phrase_freqs, rhs_next def trim_phrase_search(encoded_posns: List[np.ndarray], phrase_freqs: np.ndarray) -> List[np.ndarray]: """Trim long phrases by searching the rarest terms first.""" # Start with rarest term shortest_keys = None shortest_idx = None min_len = 1e100 max_len = 0 for idx, enc_posn in enumerate(encoded_posns): if len(enc_posn) < min_len: shortest_keys = encoder.keys(enc_posn) shortest_idx = idx min_len = len(enc_posn) if len(enc_posn) > max_len: max_len = len(enc_posn) if shortest_keys is None: return encoded_posns for enc_posn_idx in range(len(encoded_posns)): if enc_posn_idx == shortest_idx: continue if len(encoded_posns[enc_posn_idx]) > (10 * min_len): encoded_posns[enc_posn_idx] = encoder.slice(encoded_posns[enc_posn_idx], shortest_keys) return encoded_posns def compute_phrase_freqs(encoded_posns: List[np.ndarray], phrase_freqs: np.ndarray) -> np.ndarray: if len(encoded_posns) < 2: raise ValueError("phrase must have at least two terms") # Trim long phrases by searching the rarest terms first if len(encoded_posns) > 3: encoded_posns = trim_phrase_search(encoded_posns, phrase_freqs) mask = np.ones(len(phrase_freqs), dtype=bool) lhs = encoded_posns[0] for rhs in encoded_posns[1:]: # Only count the count of the last bigram (ignoring the ones where priors did not match) phrase_freqs[mask] = 0 phrase_freqs, lhs = bigram_freqs(lhs, rhs, phrase_freqs) mask &= (phrase_freqs > 0) phrase_freqs[~mask] = 0 return phrase_freqs class PosnBitArrayFromFlatBuilder: """ Build from sorted array shape num terms x 3. 0th is term id 1st is doc id 2nd is posn Sorted by term id then posns """ def __init__(self, flat_array: np.ndarray): self.flat_array = flat_array def build(self): """Slice the flat array into a 2d array of doc ids and posns.""" term_boundaries = np.argwhere(np.diff(self.flat_array[0]) > 0).flatten() + 1 term_boundaries = np.concatenate([[0], term_boundaries, [len(self.flat_array[1])]]) encoded, enc_term_boundaries = encoder.encode(keys=self.flat_array[1].view(np.uint64), boundaries=term_boundaries[:-1], payload=self.flat_array[2].view(np.uint64)) term_ids = self.flat_array[0][term_boundaries[:-1]] encoded_term_posns = {} for into_terms, (beg_idx, end_idx) in enumerate(zip(enc_term_boundaries[:-1], enc_term_boundaries[1:])): sliced = encoded[beg_idx:end_idx] encoded_term_posns[term_ids[into_terms]] = sliced return PosnBitArray(encoded_term_posns, self.flat_array[1].max()) class PosnBitArrayBuilder: def __init__(self): self.term_posns = defaultdict(list) self.term_posn_doc_ids = defaultdict(list) self.max_doc_id = 0 def add_posns(self, doc_id: int, term_id: int, posns: List[int]): doc_ids = [doc_id] * len(posns) self.term_posns[term_id].extend(posns) self.term_posn_doc_ids[term_id].extend(doc_ids) def ensure_capacity(self, doc_id): self.max_doc_id = max(self.max_doc_id, doc_id) def build(self, check=False): encoded_term_posns = {} for term_id, posns in self.term_posns.items(): if len(posns) == 0: posns = np.asarray([], dtype=np.uint32).flatten() elif isinstance(posns, list): posns_arr = np.asarray(posns, dtype=np.uint32).flatten() posns = posns_arr doc_ids = self.term_posn_doc_ids[term_id] if isinstance(doc_ids, list): doc_ids = np.asarray(doc_ids, dtype=np.uint32) encoded = encoder.encode(keys=doc_ids, payload=posns) if check: decode_again = encoder.decode(encoded) docs_to_posns = dict(decode_again) doc_ids_again = [] posns_again = [] for doc_id, posns_dec in docs_to_posns.items(): for posn in posns_dec: doc_ids_again.append(doc_id) posns_again.append(posn) assert np.array_equal(doc_ids_again, doc_ids) assert np.array_equal(posns, posns_again) encoded_term_posns[term_id] = encoded return PosnBitArray(encoded_term_posns, self.max_doc_id) class PosnBitArrayAlreadyEncBuilder: def __init__(self): self.encoded_term_posns = {} self.max_doc_id = 0 def add_posns(self, doc_id: int, term_id: int, posns): self.encoded_term_posns[term_id] = posns def ensure_capacity(self, doc_id): self.max_doc_id = max(self.max_doc_id, doc_id) def build(self, check=False): return PosnBitArray(self.encoded_term_posns, self.max_doc_id) def index_range(rng, key): if key is None: return rng if isinstance(rng, np.ndarray): return rng[key] if isinstance(key, slice): return rng[key] elif isinstance(key, numbers.Number): return rng[key] elif isinstance(key, np.ndarray): try: # UNFORTUNATE COPY r_val = np.asarray(list(rng))[key] return r_val except IndexError as e: raise e # Last resort # UNFORTUNATE COPY # Here probably elipses or a tuple of various things return np.asarray(list(rng))[key] class PosnBitArray: def __init__(self, encoded_term_posns, max_doc_id: int): self.encoded_term_posns = encoded_term_posns self.max_doc_id = max_doc_id self.docfreq_cache : Dict[int, np.uint64] = {} self.termfreq_cache : Dict[int, Tuple[np.ndarray, np.ndarray]] = {} def copy(self): new = PosnBitArray(deepcopy(self.encoded_term_posns), self.max_doc_id) return new def concat(self, other): """Merge other into self. Assumes other's doc ids are not overlapping with self's doc ids. """ # Shared terms shared_terms = set(self.encoded_term_posns.keys()).intersection(set(other.encoded_term_posns.keys())) for term_id in shared_terms: # Append then sort self.encoded_term_posns[term_id] = np.concatenate([self.encoded_term_posns[term_id], other.encoded_term_posns[term_id]]) self.encoded_term_posns[term_id].sort() only_other_terms = set(other.encoded_term_posns.keys()).difference(set(self.encoded_term_posns.keys())) for term_id in only_other_terms: self.encoded_term_posns[term_id] = other.encoded_term_posns[term_id] self.max_doc_id = max(self.max_doc_id, other.max_doc_id) # Empty caches self.termfreq_cache = {} self.docfreq_cache = {} def slice(self, key): sliced_term_posns = {} doc_ids = convert_keys(key) max_doc_id = np.max(doc_ids) for term_id, posns in self.encoded_term_posns.items(): encoded = self.encoded_term_posns[term_id] assert len(encoded.shape) == 1 sliced_term_posns[term_id] = encoder.slice(encoded, keys=doc_ids) return PosnBitArray(sliced_term_posns, max_doc_id) def __getitem__(self, key): return self.slice(key) def merge(self, other): # Unique terms unique_terms = set(self.encoded_term_posns.keys()).union(set(other.encoded_term_posns.keys())) for term_id in unique_terms: if term_id not in other.encoded_term_posns: continue elif term_id not in self.encoded_term_posns: self.encoded_term_posns[term_id] = other.encoded_term_posns[term_id] else: posns_self = self.encoded_term_posns[term_id] posns_other = other.encoded_term_posns[term_id] self.encoded_term_posns[term_id] = snp.merge(posns_self, posns_other) self.max_doc_id = self.max_doc_id + other.max_doc_id # Empty caches self.termfreq_cache = {} self.docfreq_cache = {} def doc_encoded_posns(self, term_id: int, doc_id: int) -> np.ndarray: term_posns = encoder.slice(self.encoded_term_posns[term_id], keys=np.asarray([doc_id], dtype=np.uint64)) return term_posns def phrase_freqs(self, term_ids: List[int], phrase_freqs: np.ndarray, doc_ids: np.ndarray) -> np.ndarray: if len(term_ids) < 2: raise ValueError("Must have at least two terms") if phrase_freqs.shape[0] == self.max_doc_id + 1: enc_term_posns = [self.encoded_term_posns[term_id] for term_id in term_ids] else: enc_term_posns = [encoder.slice(self.encoded_term_posns[term_id], keys=doc_ids.view(np.uint64)) for term_id in term_ids] return compute_phrase_freqs(enc_term_posns, phrase_freqs) def positions(self, term_id: int, doc_ids) -> Union[List[np.ndarray], np.ndarray]: if isinstance(doc_ids, numbers.Number): doc_ids = np.asarray([doc_ids]) tr<fim_suffix>y: np_doc_ids = convert_keys(doc_ids) term_posns = encoder.slice(self.encoded_term_posns[term_id], keys=np_doc_ids) except KeyError: r_val = [np.array([], dtype=np.uint32) for doc_id in doc_ids] if len(r_val) == 1 and len(doc_ids) == 1 and isinstance(doc_ids[0], numbers.Number): return [r_val[0]] return r_val decoded = encoder.decode(encoded=term_posns, get_keys=True) if len(decoded) == 0: return [np.array([], dtype=np.uint32)] if len(decoded) != len(doc_ids): # Fill non matches decoded = cast(List[Tuple[np.uint64, np.ndarray]], decoded) as_dict: Dict[np.uint64, np.ndarray] = dict(decoded) decs = [] for doc_id in doc_ids: if doc_id in as_dict: decs.append(as_dict[doc_id]) else: decs.append(np.array([], dtype=np.uint32)) return decs else: decs = [dec[1] for dec in decoded] return decs def termfreqs(self, term_id: int, doc_ids: Optional[np.ndarray] = None) -> Tuple[np.ndarray, np.ndarray]: """Count term freqs using unique positions.""" if doc_ids is None: return self._termfreqs_with_cache(term_id) encoded = self.encoded_term_posns[term_id] term_posns = encoded term_posns = encoder.slice(encoded, keys=doc_ids.astype(np.uint64)) return self._computed_term_freqs(term_posns) def _computed_term_freqs(self, term_posns) -> Tuple[np.ndarray, np.ndarray]: doc_ids = encoder.keys(term_posns) change_indices = np.nonzero(np.diff(doc_ids))[0] change_indices = np.concatenate((np.asarray([0]), change_indices + 1)) posns = term_posns & encoder.payload_lsb_mask bit_counts = bit_count64(posns) term_freqs = np.add.reduceat(bit_counts, change_indices) return sorted_unique(doc_ids), term_freqs def _termfreqs_with_cache(self, term_id: int) -> Tuple[np.ndarray, np.ndarray]: try: return self.termfreq_cache[term_id] except KeyError: term_posns = self.encoded_term_posns[term_id] doc_ids, term_freqs = self._computed_term_freqs(term_posns) if self._is_cached(term_id): self.termfreq_cache[term_id] = (doc_ids, term_freqs) return doc_ids, term_freqs def _is_cached(self, term_id: int) -> bool: return term_id in self.docfreq_cache def _docfreq_from_cache(self, term_id: int) -> np.uint64: return self.docfreq_cache[term_id] def _maybe_cache_docfreq(self, term_id: int, docfreq: np.uint64): if self.max_doc_id >= 100000 and docfreq > (self.max_doc_id // 100): self.docfreq_cache[term_id] = docfreq def docfreq(self, term_id: int) -> np.uint64: try: return self.docfreq_cache[term_id] except KeyError: encoded = self.encoded_term_posns[term_id] docfreq = np.uint64(encoder.keys_unique(encoded).size) self._maybe_cache_docfreq(term_id, docfreq) return docfreq def insert(self, key, term_ids_to_posns, is_encoded=False): new_posns = PosnBitArrayBuilder() if is_encoded: new_posns = PosnBitArrayAlreadyEncBuilder() max_doc_id = 0 for doc_id, new_posns_row in enumerate(term_ids_to_posns): for term_id, positions in new_posns_row: new_posns.add_posns(doc_id, term_id, positions) max_doc_id = max(doc_id, max_doc_id) new_posns.max_doc_id = max_doc_id ins_arr = new_posns.build() self.merge(ins_arr) @property def nbytes(self): arr_bytes = 0 for doc_id, posn in self.encoded_term_posns.items(): arr_bytes += posn.nbytes for term_id, (doc_ids, term_freqs) in self.termfreq_cache.items(): arr_bytes += doc_ids.nbytes arr_bytes += term_freqs.nbytes for term_id, docfreq in self.docfreq_cache.items(): arr_bytes += docfreq.nbytes return arr_bytes <fim_middle>
null
TRY
complete_current_header_empty_completion
<filename>searcharray/searcharray/postings.py<fim_prefix>"""Tokenized, searchable text as a pandas dtype.""" import pandas as pd import numbers from pandas.api.extensions import ExtensionDtype, ExtensionArray, register_extension_dtype from pandas.api.types import is_list_like from pandas.api.extensions import take import json from collections import Counter import warnings import logging from typing import List, Union, Optional, Iterable import numpy as np from searcharray.phrase.scan_merge import scan_merge_ins from searcharray.phrase.posn_diffs import compute_phrase_freqs from searcharray.phrase.middle_out import PosnBitArray from searcharray.similarity import Similarity, default_bm25 from searcharray.indexing import build_index_from_tokenizer, build_index_from_terms_list from searcharray.term_dict import TermMissingError logger = logging.getLogger(__name__) # When running in pytest import sys # noqa handler = logging.StreamHandler(sys.stdout) handler.setLevel(logging.ERROR) formatter = logging.Formatter("[%(filename)s:%(lineno)s - %(funcName)20s() ] %(message)s") handler.setFormatter(formatter) logger.addHandler(handler) logger.setLevel(logging.ERROR) class Terms: """An indexed search doc - a single bag of tokenized words and positions.""" def __init__(self, postings, doc_len: int = 0, posns: Optional[dict] = None, encoded=False): self.postings = postings self.posns = None self.encoded = encoded self.doc_len = doc_len self.posns = posns def _validate_posns(self): # (For testing/assertions) - Confirm every term in positions also in postings if self.posns is None: return for term in self.posns: if term not in self.postings: raise ValueError(f"Term {term} in positions but not in postings. ") def termfreq(self, token): return self.postings[token] def terms(self): return self.postings.items() def positions(self, term=None): if self.posns is None: return {} if term is None: posns = self.posns.items() else: posns = self.posns[term] return posns def raw_positions(self, term_dict, term=None): if self.posns is None: return {} if term is None: posns = [(term_dict.get_term_id(term), posns) for term, posns in self.posns.items()] else: posns = [(term_dict.get_term_id(term), self.posns[term])] return posns def tf_to_dense(self, term_dict): """Convert to a dense vector of term frequencies.""" dense = np.zeros(len(term_dict)) for term, freq in self.terms(): dense[term_dict.get_term_id(term)] = freq return dense def __len__(self): return len(self.postings) def __repr__(self): posting_keys = set(self.postings.keys()) rval = f"Terms({posting_keys})" return rval def __str__(self): return repr(self) def __eq__(self, other): # Flip to the other implementation if we're comparing to a SearchArray # to get a boolean array back if isinstance(other, SearchArray): return other == self same_postings = isinstance(other, Terms) and self.postings == other.postings if same_postings and self.doc_len == other.doc_len: return True def __lt__(self, other): # return isinstance(other, Terms) and hash(self) < hash(other) keys_both = set(self.postings.keys()).union(set(other.postings.keys())) # Sort lexically keys_both = sorted(keys_both) # Iterate as if these are two vectors of the same large dimensional vector sparse for key in keys_both: lhs_val = 0 rhs_val = 0 try: lhs_val = self.postings[key] except KeyError: pass try: rhs_val = other.postings[key] except KeyError: pass if lhs_val < rhs_val: return True elif lhs_val > rhs_val: return False else: continue return False def __le__(self, other): return self < other or self == other def __gt__(self, other): return not (self < other) and self != other def __hash__(self): return hash(json.dumps(self.postings, sort_keys=True)) class TermsDtype(ExtensionDtype): """Pandas dtype for terms.""" name = 'tokenized_text' type = Terms kind = 'O' @classmethod def construct_from_string(cls, string): if not isinstance(string, str): raise TypeError( "'construct_from_string' expects a string, got {}".format(type(string)) ) elif string == cls.name: return cls() else: raise TypeError( "Cannot construct a '{}' from '{}'".format(cls.__name__, string) ) @classmethod def construct_array_type(cls): return SearchArray def __repr__(self): return 'TermsDtype()' @property def na_value(self): return Terms({}) def valid_value(self, value): return isinstance(value, dict) or pd.isna(value) or isinstance(value, Terms) register_extension_dtype(TermsDtype) def ws_tokenizer(string): if pd.isna(string): return [] if not isinstance(string, str): raise ValueError("Expected a string") return string.split() def _row_to_postings_row(doc_id, row, doc_len, term_dict, posns: PosnBitArray): tfs = {} labeled_posns = {} for term_idx in row.cols: term = term_dict.get_term(term_idx) tfs[term] = 1 enc_term_posns = posns.doc_encoded_posns(term_idx, doc_id=doc_id) labeled_posns[term] = enc_term_posns result = Terms(tfs, posns=labeled_posns, doc_len=doc_len, encoded=True) return result class SearchArray(ExtensionArray): """An array of tokenized text (Termss).""" dtype = TermsDtype() def __init__(self, postings, tokenizer=ws_tokenizer, avoid_copies=True): # Check dtype, raise TypeError if not is_list_like(postings): raise TypeError("Expected list-like object, got {}".format(type(postings))) self.avoid_copies = avoid_copies self.tokenizer = tokenizer self.term_mat, self.posns, \ self.term_dict, self.avg_doc_length, \ self.doc_lens = build_index_from_terms_list(postings, Terms) @classmethod def index(cls, array: Iterable, tokenizer=ws_tokenizer, truncate=False, batch_size=100000, avoid_copies=True) -> 'SearchArray': """Index an array of strings using tokenizer.""" if not is_list_like(array): raise TypeError("Expected list-like object, got {}".format(type(array))) term_mat, posns, term_dict, avg_doc_length, doc_lens =\ build_index_from_tokenizer(array, tokenizer, batch_size=batch_size, truncate=truncate) postings = cls([], tokenizer=tokenizer, avoid_copies=avoid_copies) postings.term_mat = term_mat postings.posns = posns postings.term_dict = term_dict postings.avg_doc_length = avg_doc_length postings.doc_lens = doc_lens return postings @classmethod def _from_sequence(cls, scalars, dtype=None, copy=False): """Construct a new SearchArray from a sequence of scalars (PostingRow or convertible into).""" if dtype is not None: if not isinstance(dtype, TermsDtype): return scalars if isinstance(scalars, np.ndarray) and scalars.dtype == TermsDtype(): return cls(scalars) # String types elif isinstance(scalars, np.ndarray) and scalars.dtype.kind in 'US': return cls(scalars) # Other objects elif isinstance(scalars, np.ndarray) and scalars.dtype != object: return scalars return cls(scalars) def memory_usage(self, deep=False): """Return memory usage of this array in bytes.""" return self.nbytes @property def nbytes(self): return self.term_mat.nbytes + self.posns.nbytes + self.doc_lens.nbytes + self.term_dict.nbytes def __getitem__(self, key): key = pd.api.indexers.check_array_indexer(self, key) # Want to take rows of term freqs if isinstance(key, numbers.Integral): try: rows = self.term_mat[key] doc_len = self.doc_lens[key] doc_id = key if doc_id < 0: doc_id += len(self) return _row_to_postings_row(doc_id, rows[0], doc_len, self.term_dict, self.posns) except IndexError: raise IndexError("index out of bounds") else: # Construct a sliced view of this array sliced_tfs = self.term_mat.slice(key) sliced_posns = self.posns.slice(sliced_tfs.rows) if not self.avoid_copies else self.posns arr = SearchArray([], tokenizer=self.tokenizer) arr.term_mat = sliced_tfs arr.doc_lens = self.doc_lens[key] arr.posns = sliced_posns arr.term_dict = self.term_dict arr.avg_doc_length = self.avg_doc_length return arr def __setitem__(self, key, value): """Set an item in the array.""" key = pd.api.indexers.check_array_indexer(self, key) if isinstance(value, pd.Series): value = value.values if isinstance(value, pd.DataFrame): value = value.values.flatten() if isinstance(value, SearchArray): value = value.to_numpy() if isinstance(value, list): value = np.asarray(value, dtype=object) if not isinstance(value, np.ndarray) and not self.dtype.valid_value(value): raise ValueError(f"Cannot set non-object array to SearchArray -- you passed type:{type(value)} -- {value}") # Cant set a single value to an array if isinstance(key, numbers.Integral) and isinstance(value, np.ndarray): raise ValueError("Cannot set a single value to an array") try: is_encoded = False posns = None term_mat = np.asarray([]) doc_lens = np.asarray([]) if isinstance(value, float): term_mat = np.asarray([value]) doc_lens = np.asarray([0]) elif isinstance(value, Terms): term_mat = np.asarray([value.tf_to_dense(self.term_dict)]) doc_lens = np.asarray([value.doc_len]) is_encoded = value.encoded posns = [value.raw_positions(self.term_dict)] elif isinstance(value, np.ndarray): term_mat = np.asarray([x.tf_to_dense(self.term_dict) for x in value]) doc_lens = np.asarray([x.doc_len for x in value]) is_encoded = value[0].encoded if len(value) > 0 else False posns = [x.raw_positions(self.term_dict) for x in value] np.nan_to_num(term_mat, copy=False, nan=0) self.term_mat[key] = term_mat self.doc_lens[key] = doc_lens if posns is not None: self.posns.insert(key, posns, is_encoded) # Assume we have a positions for each term, doc pair. We can just update it. # Otherwise we would have added new terms except TermMissingError: self._add_new_terms(key, value) def _add_new_terms(self, key, value): msg = """Adding new terms! This might not be good if you tokenized this new text with a different tokenizer. Also. This is slow.""" warnings.warn(msg) scan_value = value if isinstance(value, Terms): scan_value = np.asarray([value]) for row in scan_value: for term in row.terms(): self.term_dict.add_term(term[0]) self.term_mat.resize((self.term_mat.shape[0], len(self.term_dict))) # Ensure posns_lookup has at least max self.posns self[key] = value def value_counts( self, dropna: bool = True, ): if dropna: counts = Counter(self[:]) counts.pop(Terms({}), None) else: counts = Counter(self[:]) return pd.Series(counts) def __len__(self): len_rval = len(self.term_mat.rows) return len_rval def __ne__(self, other): if isinstance(other, pd.DataFrame) or isinstance(other, pd.Series) or isinstance(other, pd.Index): return NotImplemented return ~(self == other) def __eq__(self, other): """Return a boolean numpy array indicating elementwise equality.""" # When other is a dataframe or series, not implemented if isinstance(other, pd.DataFrame) or isinstance(other, pd.Series) or isinstance(other, pd.Index): return NotImplemented # When other is an ExtensionArray if isinstance(other, SearchArray): if len(self) != len(other): return False elif len(other) == 0: return np.array([], dtype=bool) else: # Compatible term dicts, and same term freqs # (not looking at positions, maybe we should?) if self.term_dict.compatible(other.term_dict): return (self.term_mat == other.term_mat) & (self.doc_lens == other.doc_lens) else: return np.zeros(len(self), dtype=bool) # return np.array(self[:]) == np.array(other[:]) # When other is a scalar value elif isinstance(other, Terms): other = SearchArray([other], tokenizer=self.tokenizer) warnings.warn("Comparing a scalar value to a SearchArray. This is slow.") return np.array(self[:]) == np.array(other[:]) # When other is a sequence but not an ExtensionArray # its an array of dicts elif is_list_like(other): if len(self) != len(other): return False elif len(other) == 0: return np.array([], dtype=bool) # We actually don't know how it was tokenized other = SearchArray(other, tokenizer=self.tokenizer) return np.array(self[:]) == np.array(other[:]) # Return False where 'other' is neither the same length nor a scalar else: return np.full(len(self), False) def isna(self): # Every row with all 0s empties = self.doc_lens == 0 return empties def take(self, indices, allow_fill=False, fill_value=None): # Want to take rows of term freqs row_indices = np.arange(len(self.term_mat.rows)) # Take within the row indices themselves result_indices = take(row_indices, indices, allow_fill=allow_fill, fill_value=-1) if allow_fill and -1 in result_indices: if fill_value is None or pd.isna(fill_value): fill_value = Terms({}, encoded=True) to_fill_mask = result_indices == -1 # This is slow as it rebuilds all the term dictionaries # on the subsequent assignment lines # However, this case tends to be the exception for # most dataframe operations taken = SearchArray([fill_value] * len(result_indices)) taken[~to_fill_mask] = self[result_indices[~to_fill_mask]].copy() return taken else: taken = self[result_indices].copy() return taken def copy(self): postings_arr = SearchArray([], tokenizer=self.tokenizer) postings_arr.doc_lens = self.doc_lens.copy() postings_arr.term_mat = self.term_mat.copy() postings_arr.posns = self.posns postings_arr.term_dict = self.term_dict postings_arr.avg_doc_length = self.avg_doc_length if not self.avoid_copies: postings_arr.posns = self.posns.copy() postings_arr.term_dict = self.term_dict.copy() return postings_arr @classmethod def _concat_same_type(cls, to_concat): concatenated_data = np.concatenate([ea[:] for ea in to_concat]) return SearchArray(concatenated_data, tokenizer=to_concat[0].tokenizer) @classmethod def _from_factorized(cls, values, original): return cls(values) def _values_for_factorize(self): """Return an array and missing value suitable for factorization (ie grouping).""" arr = np.asarray(self[:], dtype=object) return arr, Terms({}) def _check_token_arg(self, token): if isinstance(token, str): return token elif isinstance(token, list) and len(token) == 1: return token[0] elif isinstance(token, list): return token else: raise TypeError("Expected a string or list of strings for phrases") # *********************************************************** # Search functionality # *********************************************************** def termfreqs(self, token: Union[List[str], str]) -> np.ndarray: token = self._check_token_arg(token) if isinstance(token, list): return self.phrase_freq(token) try: term_id = self.term_dict.get_term_id(token) matches = np.zeros(len(self), dtype=int) slice_of_rows = None if self.term_mat.subset: slice_of_rows = self.term_mat.rows doc_ids, termfreqs = self.posns.termfreqs(term_id, doc_ids=slice_of_rows) mask = np.isin(self.term_mat.rows, doc_ids) matches[mask] = termfreqs return matches else: doc_ids, termfreqs = self.posns.termfreqs(term_id, doc_ids=slice_of_rows) matches[doc_ids] = termfreqs return matches except TermMissingError: return np.zeros(len(self), dtype=int) def docfreq(self, token: str) -> int: if not isinstance(token, str): raise TypeError("Expected a string") # Count number of rows where the term appears try: return self.posns.docfreq(self.term_dict.get_term_id(token)) except TermMissingError: return 0 def doclengths(self) -> np.ndarray: return self.doc_lens def match(self, token: Union[List[str], str], slop: int = 1) -> np.ndarray: """Return a boolean numpy array indicating which elements contain the given term.""" token = self._check_token_arg(token) if isinstance(token, list): term_freq = self.phrase_freq(token) else: term_freq = self.termfreqs(token) return term_freq > 0 def score(self, token: Union[str, List[str]], similarity: Similarity = default_bm25) -> np.ndarray: """Score each doc using a similarity function. Parameters ---------- token : str or list of str of what to search (already tokenized) similarity : How to score the documents. Default is BM25. """ # Get term freqs per token token = self._check_token_arg(token) # For expensive toknes, we compute doc freq first, so we # cache them in the DF cache, to let TF cache know it should be cached tokens_l = [token] if isinstance(token, str) else token all_dfs = np.asarray([self.docfreq(token) for token in tokens_l]) tfs = self.termfreqs(token) token = self._check_token_arg(token) doc_lens = self.doclengths() scores = similarity(term_freqs=tfs, doc_freqs=all_dfs, doc_lens=doc_lens, avg_doc_lens=self.avg_doc_length, num_docs=len(self)) return scores def positions(self, token: str, key=None) -> List[np.ndarray]: """Return a list of lists of positions of the given term.""" term_id = self.term_dict.get_term_id(token) key = self.term_mat.rows[key] if key is not None else self.term_mat.rows posns = self.posns.positions(term_id, doc_ids=key) return posns def and_query(self, tokens: Union[List[str], List[List[str]]]) -> np.ndarray: """Return a mask on the postings array indicating which elements contain all terms.""" masks = [self.match(term) for term in tokens] mask = np.ones(len(self), dtype=bool) for curr_mask in masks: mask = mask & curr_mask return mask def or_query(self, tokens: Union[List[str], List[List[str]]], min_should_match: int = 1) -> np.ndarray: """Return a mask on the postings array indicating which elements contain all terms.""" masks = [self.match(term) for term in tokens] mask = np.sum(masks, axis=0) >= min_should_match return mask def phrase_freq(self, tokens: List[str], slop=1) -> np.ndarray: if slop == 1 and len(tokens) == len(set(tokens)): phrase_freqs = np.zeros(len(self)) try: doc_ids = self.term_mat.rows term_ids = [self.term_dict.get_term_id(token) for token in tokens] return self.posns.phrase_freqs(term_ids, doc_ids=doc_ids, phrase_freqs=phrase_freqs) except TermMi<fim_suffix>ssingError: return phrase_freqs else: return self.phrase_freq_every_diff(tokens, slop=slop) def phrase_freq_scan(self, tokens: List[str], mask=None, slop=1) -> np.ndarray: if mask is None: mask = self.and_query(tokens) if np.sum(mask) == 0: return mask # Gather positions posns = [self.positions(token, mask) for token in tokens] phrase_freqs = np.zeros(len(self)) phrase_freqs[mask] = scan_merge_ins(posns, phrase_freqs[mask], slop=slop) return phrase_freqs def phrase_freq_every_diff(self, tokens: List[str], slop=1) -> np.ndarray: phrase_freqs = -np.ones(len(self)) mask = self.and_query(tokens) phrase_freqs[~mask] = 0 if np.sum(mask) == 0: return phrase_freqs term_posns = [self.positions(term, mask) for term in tokens] for width in [10, 20, 30, 40]: phrase_freqs[mask] = compute_phrase_freqs(term_posns, phrase_freqs[mask], slop=slop, width=width) remaining_mask = phrase_freqs == -1 if np.any(remaining_mask): remainder_freqs = self.phrase_freq_scan(tokens, mask=remaining_mask, slop=slop) phrase_freqs[remaining_mask] = remainder_freqs[remaining_mask] return phrase_freqs <fim_middle>
null
CATCH
complete_current_header_empty_completion
<filename>searcharray/searcharray/solr.py<fim_prefix>"""Utility functions for Solr users of searcharray.""" import re import pandas as pd import numpy as np from typing import List, Optional, Dict, Tuple from searcharray.postings import SearchArray from searcharray.similarity import Similarity, default_bm25 def parse_min_should_match(num_clauses: int, spec: str) -> int: """Parse Solr's min should match (ie mm) spec. See this ChatGPT translation of mm code from Solr's Java code for parsing this https://chat.openai.com/share/76642aec-7e05-420f-a53a-83b8e2eea8fb Parameters ---------- num_clauses : int spec : str Returns ------- int : the number of clauses that must match """ def checked_parse_int(value, error_message): try: return int(value) except Va<fim_suffix>lueError: raise ValueError(error_message) result = num_clauses spec = spec.strip() if '<' in spec: # we have conditional spec(s) space_around_less_than_pattern = re.compile(r'\s*<\s*') spec = space_around_less_than_pattern.sub('<', spec) for s in spec.split(): parts = s.split('<', 1) if len(parts) < 2: raise ValueError("Invalid 'mm' spec: '" + s + "'. Expecting values before and after '<'") upper_bound = checked_parse_int(parts[0], "Invalid 'mm' spec. Expecting an integer.") if num_clauses <= upper_bound: return result else: result = parse_min_should_match(num_clauses, parts[1]) return result # otherwise, simple expression if '%' in spec: # percentage - assume the % was the last char. If not, let int() fail. spec = spec[:-1] percent = checked_parse_int(spec, "Invalid 'mm' spec. Expecting an integer.") calc = (result * percent) * (1 / 100) result = result + int(calc) if calc < 0 else int(calc) else: calc = checked_parse_int(spec, "Invalid 'mm' spec. Expecting an integer.") result = result + calc if calc < 0 else calc return min(num_clauses, max(result, 0)) def parse_field_boosts(field_lists: List[str]) -> dict: """Parse Solr's qf, pf, pf2, pf3 field boosts.""" if not field_lists: return {} out = {} carat_pattern = re.compile(r'\^') for field in field_lists: parts = carat_pattern.split(field) out[parts[0]] = None if len(parts) == 1 else float(parts[1]) return out def get_field(frame, field) -> SearchArray: if field not in frame.columns: raise ValueError(f"Field {field} not in dataframe") if not isinstance(frame[field].array, SearchArray): raise ValueError(f"Field {field} is not a searcharray field") return frame[field].array def parse_query_terms(frame: pd.DataFrame, query: str, query_fields: List[str]): search_terms: Dict[str, List[str]] = {} num_search_terms = 0 term_centric = True for field in query_fields: arr = get_field(frame, field) tokenizer = arr.tokenizer search_terms[field] = [] field_num_search_terms = 0 for posn, term in enumerate(tokenizer(query)): search_terms[field].append(term) field_num_search_terms += 1 if num_search_terms == 0: num_search_terms = field_num_search_terms elif field_num_search_terms != num_search_terms: term_centric = False return num_search_terms, search_terms, term_centric def _edismax_term_centric(frame: pd.DataFrame, query_fields: Dict[str, float], num_search_terms: int, search_terms: Dict[str, List[str]], mm: str, similarity: Similarity) -> Tuple[np.ndarray, str]: explain = [] term_scores = [] for term_posn in range(num_search_terms): max_scores = np.zeros(len(frame)) term_explain = [] for field, boost in query_fields.items(): term = search_terms[field][term_posn] post_arr = get_field(frame, field) field_term_score = post_arr.score(term, similarity=similarity) * (1 if boost is None else boost) boost_exp = f"{boost}" if boost is not None else "1" term_explain.append(f"{field}:{term}^{boost_exp}") max_scores = np.maximum(max_scores, field_term_score) term_scores.append(max_scores) explain.append("(" + " | ".join(term_explain) + ")") min_should_match = parse_min_should_match(num_search_terms, spec=mm) qf_scores = np.asarray(term_scores) matches_gt_mm = np.sum(qf_scores > 0, axis=0) >= min_should_match qf_scores = np.sum(term_scores, axis=0) qf_scores[~matches_gt_mm] = 0 return qf_scores, "(" + " ".join(explain) + f")~{min_should_match}" def _edismax_field_centric(frame: pd.DataFrame, query_fields: Dict[str, float], num_search_terms: int, search_terms: Dict[str, List[str]], mm: str, similarity: Similarity = default_bm25) -> Tuple[np.ndarray, str]: field_scores = [] explain = [] for field, boost in query_fields.items(): post_arr = get_field(frame, field) term_scores = np.array([post_arr.score(term, similarity=similarity) for term in search_terms[field]]) min_should_match = parse_min_should_match(len(search_terms[field]), spec=mm) exp = " ".join([f"{field}:{term}" for term in search_terms[field]]) boost_exp = f"{boost}" if boost is not None else "1" exp = "(" + exp + f")~{min(min_should_match, len(search_terms[field]))}" exp = "(" + exp + f")^{boost_exp}" matches_gt_mm = np.sum(term_scores > 0, axis=0) >= min(min_should_match, len(search_terms[field])) sum_terms_bm25 = np.sum(term_scores, axis=0) sum_terms_bm25[~matches_gt_mm] = 0 field_scores.append(sum_terms_bm25 * (1 if boost is None else boost)) explain.append(exp) # Take maximum field scores as qf qf_scores = np.asarray(field_scores) qf_scores = np.max(qf_scores, axis=0) return qf_scores, " | ".join(explain) def edismax(frame: pd.DataFrame, q: str, qf: List[str], mm: Optional[str] = None, pf: Optional[List[str]] = None, pf2: Optional[List[str]] = None, pf3: Optional[List[str]] = None, q_op: str = "OR", similarity: Similarity = default_bm25) -> Tuple[np.ndarray, str]: """Run edismax search over dataframe with searcharray fields. Parameters ---------- q : str The query string mm : str The minimum should match spec qf : list The fields to search pf : list The fields to search for phrase matches pf2 : list The fields to search for bigram matches pf3 : list The fields to search for trigram matches q_op : str, optional The default operator, by default "OR" Returns ------- np.ndarray The search results """ def listify(x): return x if isinstance(x, list) else [x] query_fields = parse_field_boosts(listify(qf)) phrase_fields = parse_field_boosts(listify(pf)) if pf else {} if mm is None: mm = "1" if q_op == "AND": mm = "100%" # bigram_fields = parse_field_boosts(pf2) if pf2 else {} # trigram_fields = parse_field_boosts(pf3) if pf3 else {} num_search_terms, search_terms, term_centric = parse_query_terms(frame, q, list(query_fields.keys())) if term_centric: qf_scores, explain = _edismax_term_centric(frame, query_fields, num_search_terms, search_terms, mm, similarity=similarity) else: qf_scores, explain = _edismax_field_centric(frame, query_fields, num_search_terms, search_terms, mm, similarity=similarity) phrase_scores = [] for field, boost in phrase_fields.items(): arr = get_field(frame, field) terms = search_terms[field] field_phrase_score = arr.score(terms, similarity=similarity) * (1 if boost is None else boost) boost_exp = f"{boost}" if boost is not None else "1" explain += f" ({field}:\"{' '.join(terms)}\")^{boost_exp}" phrase_scores.append(field_phrase_score) if len(phrase_scores) > 0: phrase_scores = np.sum(phrase_scores, axis=0) # Add where term_scores > 0 term_match_idx = np.where(qf_scores)[0] qf_scores[term_match_idx] += phrase_scores[term_match_idx] return qf_scores, explain <fim_middle>
null
CATCH
complete_current_header_empty_completion
<filename>searcharray/searcharray/postings.py<fim_prefix>"""Tokenized, searchable text as a pandas dtype.""" import pandas as pd import numbers from pandas.api.extensions import ExtensionDtype, ExtensionArray, register_extension_dtype from pandas.api.types import is_list_like from pandas.api.extensions import take import json from collections import Counter import warnings import logging from typing import List, Union, Optional, Iterable import numpy as np from searcharray.phrase.scan_merge import scan_merge_ins from searcharray.phrase.posn_diffs import compute_phrase_freqs from searcharray.phrase.middle_out import PosnBitArray from searcharray.similarity import Similarity, default_bm25 from searcharray.indexing import build_index_from_tokenizer, build_index_from_terms_list from searcharray.term_dict import TermMissingError logger = logging.getLogger(__name__) # When running in pytest import sys # noqa handler = logging.StreamHandler(sys.stdout) handler.setLevel(logging.ERROR) formatter = logging.Formatter("[%(filename)s:%(lineno)s - %(funcName)20s() ] %(message)s") handler.setFormatter(formatter) logger.addHandler(handler) logger.setLevel(logging.ERROR) class Terms: """An indexed search doc - a single bag of tokenized words and positions.""" def __init__(self, postings, doc_len: int = 0, posns: Optional[dict] = None, encoded=False): self.postings = postings self.posns = None self.encoded = encoded self.doc_len = doc_len self.posns = posns def _validate_posns(self): # (For testing/assertions) - Confirm every term in positions also in postings if self.posns is None: return for term in self.posns: if term not in self.postings: raise ValueError(f"Term {term} in positions but not in postings. ") def termfreq(self, token): return self.postings[token] def terms(self): return self.postings.items() def positions(self, term=None): if self.posns is None: return {} if term is None: posns = self.posns.items() else: posns = self.posns[term] return posns def raw_positions(self, term_dict, term=None): if self.posns is None: return {} if term is None: posns = [(term_dict.get_term_id(term), posns) for term, posns in self.posns.items()] else: posns = [(term_dict.get_term_id(term), self.posns[term])] return posns def tf_to_dense(self, term_dict): """Convert to a dense vector of term frequencies.""" dense = np.zeros(len(term_dict)) for term, freq in self.terms(): dense[term_dict.get_term_id(term)] = freq return dense def __len__(self): return len(self.postings) def __repr__(self): posting_keys = set(self.postings.keys()) rval = f"Terms({posting_keys})" return rval def __str__(self): return repr(self) def __eq__(self, other): # Flip to the other implementation if we're comparing to a SearchArray # to get a boolean array back if isinstance(other, SearchArray): return other == self same_postings = isinstance(other, Terms) and self.postings == other.postings if same_postings and self.doc_len == other.doc_len: return True def __lt__(self, other): # return isinstance(other, Terms) and hash(self) < hash(other) keys_both = set(self.postings.keys()).union(set(other.postings.keys())) # Sort lexically keys_both = sorted(keys_both) # Iterate as if these are two vectors of the same large dimensional vector sparse for key in keys_both: lhs_val = 0 rhs_val = 0 try: lhs_val = self.postings[key] except KeyError: pass try: rhs_val = other.postings[key] except KeyError: pass if lhs_val < rhs_val: return True elif lhs_val > rhs_val: return False else: continue return False def __le__(self, other): return self < other or self == other def __gt__(self, other): return not (self < other) and self != other def __hash__(self): return hash(json.dumps(self.postings, sort_keys=True)) class TermsDtype(ExtensionDtype): """Pandas dtype for terms.""" name = 'tokenized_text' type = Terms kind = 'O' @classmethod def construct_from_string(cls, string): if not isinstance(string, str): raise TypeError( "'construct_from_string' expects a string, got {}".format(type(string)) ) elif string == cls.name: return cls() else: raise TypeError( "Cannot construct a '{}' from '{}'".format(cls.__name__, string) ) @classmethod def construct_array_type(cls): return SearchArray def __repr__(self): return 'TermsDtype()' @property def na_value(self): return Terms({}) def valid_value(self, value): return isinstance(value, dict) or pd.isna(value) or isinstance(value, Terms) register_extension_dtype(TermsDtype) def ws_tokenizer(string): if pd.isna(string): return [] if not isinstance(string, str): raise ValueError("Expected a string") return string.split() def _row_to_postings_row(doc_id, row, doc_len, term_dict, posns: PosnBitArray): tfs = {} labeled_posns = {} for term_idx in row.cols: term = term_dict.get_term(term_idx) tfs[term] = 1 enc_term_posns = posns.doc_encoded_posns(term_idx, doc_id=doc_id) labeled_posns[term] = enc_term_posns result = Terms(tfs, posns=labeled_posns, doc_len=doc_len, encoded=True) return result class SearchArray(ExtensionArray): """An array of tokenized text (Termss).""" dtype = TermsDtype() def __init__(self, postings, tokenizer=ws_tokenizer, avoid_copies=True): # Check dtype, raise TypeError if not is_list_like(postings): raise TypeError("Expected list-like object, got {}".format(type(postings))) self.avoid_copies = avoid_copies self.tokenizer = tokenizer self.term_mat, self.posns, \ self.term_dict, self.avg_doc_length, \ self.doc_lens = build_index_from_terms_list(postings, Terms) @classmethod def index(cls, array: Iterable, tokenizer=ws_tokenizer, truncate=False, batch_size=100000, avoid_copies=True) -> 'SearchArray': """Index an array of strings using tokenizer.""" if not is_list_like(array): raise TypeError("Expected list-like object, got {}".format(type(array))) term_mat, posns, term_dict, avg_doc_length, doc_lens =\ build_index_from_tokenizer(array, tokenizer, batch_size=batch_size, truncate=truncate) postings = cls([], tokenizer=tokenizer, avoid_copies=avoid_copies) postings.term_mat = term_mat postings.posns = posns postings.term_dict = term_dict postings.avg_doc_length = avg_doc_length postings.doc_lens = doc_lens return postings @classmethod def _from_sequence(cls, scalars, dtype=None, copy=False): """Construct a new SearchArray from a sequence of scalars (PostingRow or convertible into).""" if dtype is not None: if not isinstance(dtype, TermsDtype): return scalars if isinstance(scalars, np.ndarray) and scalars.dtype == TermsDtype(): return cls(scalars) # String types elif isinstance(scalars, np.ndarray) and scalars.dtype.kind in 'US': return cls(scalars) # Other objects elif isinstance(scalars, np.ndarray) and scalars.dtype != object: return scalars return cls(scalars) def memory_usage(self, deep=False): """Return memory usage of this array in bytes.""" return self.nbytes @property def nbytes(self): return self.term_mat.nbytes + self.posns.nbytes + self.doc_lens.nbytes + self.term_dict.nbytes def __getitem__(self, key): key = pd.api.indexers.check_array_indexer(self, key) # Want to take rows of term freqs if isinstance(key, numbers.Integral): try: rows = self.term_mat[key] doc_len = self.doc_lens[key] doc_id = key if doc_id < 0: doc_id += len(self) return _row_to_postings_row(doc_id, rows[0], doc_len, self.term_dict, self.posns) except IndexErr<fim_suffix>or: raise IndexError("index out of bounds") else: # Construct a sliced view of this array sliced_tfs = self.term_mat.slice(key) sliced_posns = self.posns.slice(sliced_tfs.rows) if not self.avoid_copies else self.posns arr = SearchArray([], tokenizer=self.tokenizer) arr.term_mat = sliced_tfs arr.doc_lens = self.doc_lens[key] arr.posns = sliced_posns arr.term_dict = self.term_dict arr.avg_doc_length = self.avg_doc_length return arr def __setitem__(self, key, value): """Set an item in the array.""" key = pd.api.indexers.check_array_indexer(self, key) if isinstance(value, pd.Series): value = value.values if isinstance(value, pd.DataFrame): value = value.values.flatten() if isinstance(value, SearchArray): value = value.to_numpy() if isinstance(value, list): value = np.asarray(value, dtype=object) if not isinstance(value, np.ndarray) and not self.dtype.valid_value(value): raise ValueError(f"Cannot set non-object array to SearchArray -- you passed type:{type(value)} -- {value}") # Cant set a single value to an array if isinstance(key, numbers.Integral) and isinstance(value, np.ndarray): raise ValueError("Cannot set a single value to an array") try: is_encoded = False posns = None term_mat = np.asarray([]) doc_lens = np.asarray([]) if isinstance(value, float): term_mat = np.asarray([value]) doc_lens = np.asarray([0]) elif isinstance(value, Terms): term_mat = np.asarray([value.tf_to_dense(self.term_dict)]) doc_lens = np.asarray([value.doc_len]) is_encoded = value.encoded posns = [value.raw_positions(self.term_dict)] elif isinstance(value, np.ndarray): term_mat = np.asarray([x.tf_to_dense(self.term_dict) for x in value]) doc_lens = np.asarray([x.doc_len for x in value]) is_encoded = value[0].encoded if len(value) > 0 else False posns = [x.raw_positions(self.term_dict) for x in value] np.nan_to_num(term_mat, copy=False, nan=0) self.term_mat[key] = term_mat self.doc_lens[key] = doc_lens if posns is not None: self.posns.insert(key, posns, is_encoded) # Assume we have a positions for each term, doc pair. We can just update it. # Otherwise we would have added new terms except TermMissingError: self._add_new_terms(key, value) def _add_new_terms(self, key, value): msg = """Adding new terms! This might not be good if you tokenized this new text with a different tokenizer. Also. This is slow.""" warnings.warn(msg) scan_value = value if isinstance(value, Terms): scan_value = np.asarray([value]) for row in scan_value: for term in row.terms(): self.term_dict.add_term(term[0]) self.term_mat.resize((self.term_mat.shape[0], len(self.term_dict))) # Ensure posns_lookup has at least max self.posns self[key] = value def value_counts( self, dropna: bool = True, ): if dropna: counts = Counter(self[:]) counts.pop(Terms({}), None) else: counts = Counter(self[:]) return pd.Series(counts) def __len__(self): len_rval = len(self.term_mat.rows) return len_rval def __ne__(self, other): if isinstance(other, pd.DataFrame) or isinstance(other, pd.Series) or isinstance(other, pd.Index): return NotImplemented return ~(self == other) def __eq__(self, other): """Return a boolean numpy array indicating elementwise equality.""" # When other is a dataframe or series, not implemented if isinstance(other, pd.DataFrame) or isinstance(other, pd.Series) or isinstance(other, pd.Index): return NotImplemented # When other is an ExtensionArray if isinstance(other, SearchArray): if len(self) != len(other): return False elif len(other) == 0: return np.array([], dtype=bool) else: # Compatible term dicts, and same term freqs # (not looking at positions, maybe we should?) if self.term_dict.compatible(other.term_dict): return (self.term_mat == other.term_mat) & (self.doc_lens == other.doc_lens) else: return np.zeros(len(self), dtype=bool) # return np.array(self[:]) == np.array(other[:]) # When other is a scalar value elif isinstance(other, Terms): other = SearchArray([other], tokenizer=self.tokenizer) warnings.warn("Comparing a scalar value to a SearchArray. This is slow.") return np.array(self[:]) == np.array(other[:]) # When other is a sequence but not an ExtensionArray # its an array of dicts elif is_list_like(other): if len(self) != len(other): return False elif len(other) == 0: return np.array([], dtype=bool) # We actually don't know how it was tokenized other = SearchArray(other, tokenizer=self.tokenizer) return np.array(self[:]) == np.array(other[:]) # Return False where 'other' is neither the same length nor a scalar else: return np.full(len(self), False) def isna(self): # Every row with all 0s empties = self.doc_lens == 0 return empties def take(self, indices, allow_fill=False, fill_value=None): # Want to take rows of term freqs row_indices = np.arange(len(self.term_mat.rows)) # Take within the row indices themselves result_indices = take(row_indices, indices, allow_fill=allow_fill, fill_value=-1) if allow_fill and -1 in result_indices: if fill_value is None or pd.isna(fill_value): fill_value = Terms({}, encoded=True) to_fill_mask = result_indices == -1 # This is slow as it rebuilds all the term dictionaries # on the subsequent assignment lines # However, this case tends to be the exception for # most dataframe operations taken = SearchArray([fill_value] * len(result_indices)) taken[~to_fill_mask] = self[result_indices[~to_fill_mask]].copy() return taken else: taken = self[result_indices].copy() return taken def copy(self): postings_arr = SearchArray([], tokenizer=self.tokenizer) postings_arr.doc_lens = self.doc_lens.copy() postings_arr.term_mat = self.term_mat.copy() postings_arr.posns = self.posns postings_arr.term_dict = self.term_dict postings_arr.avg_doc_length = self.avg_doc_length if not self.avoid_copies: postings_arr.posns = self.posns.copy() postings_arr.term_dict = self.term_dict.copy() return postings_arr @classmethod def _concat_same_type(cls, to_concat): concatenated_data = np.concatenate([ea[:] for ea in to_concat]) return SearchArray(concatenated_data, tokenizer=to_concat[0].tokenizer) @classmethod def _from_factorized(cls, values, original): return cls(values) def _values_for_factorize(self): """Return an array and missing value suitable for factorization (ie grouping).""" arr = np.asarray(self[:], dtype=object) return arr, Terms({}) def _check_token_arg(self, token): if isinstance(token, str): return token elif isinstance(token, list) and len(token) == 1: return token[0] elif isinstance(token, list): return token else: raise TypeError("Expected a string or list of strings for phrases") # *********************************************************** # Search functionality # *********************************************************** def termfreqs(self, token: Union[List[str], str]) -> np.ndarray: token = self._check_token_arg(token) if isinstance(token, list): return self.phrase_freq(token) try: term_id = self.term_dict.get_term_id(token) matches = np.zeros(len(self), dtype=int) slice_of_rows = None if self.term_mat.subset: slice_of_rows = self.term_mat.rows doc_ids, termfreqs = self.posns.termfreqs(term_id, doc_ids=slice_of_rows) mask = np.isin(self.term_mat.rows, doc_ids) matches[mask] = termfreqs return matches else: doc_ids, termfreqs = self.posns.termfreqs(term_id, doc_ids=slice_of_rows) matches[doc_ids] = termfreqs return matches except TermMissingError: return np.zeros(len(self), dtype=int) def docfreq(self, token: str) -> int: if not isinstance(token, str): raise TypeError("Expected a string") # Count number of rows where the term appears try: return self.posns.docfreq(self.term_dict.get_term_id(token)) except TermMissingError: return 0 def doclengths(self) -> np.ndarray: return self.doc_lens def match(self, token: Union[List[str], str], slop: int = 1) -> np.ndarray: """Return a boolean numpy array indicating which elements contain the given term.""" token = self._check_token_arg(token) if isinstance(token, list): term_freq = self.phrase_freq(token) else: term_freq = self.termfreqs(token) return term_freq > 0 def score(self, token: Union[str, List[str]], similarity: Similarity = default_bm25) -> np.ndarray: """Score each doc using a similarity function. Parameters ---------- token : str or list of str of what to search (already tokenized) similarity : How to score the documents. Default is BM25. """ # Get term freqs per token token = self._check_token_arg(token) # For expensive toknes, we compute doc freq first, so we # cache them in the DF cache, to let TF cache know it should be cached tokens_l = [token] if isinstance(token, str) else token all_dfs = np.asarray([self.docfreq(token) for token in tokens_l]) tfs = self.termfreqs(token) token = self._check_token_arg(token) doc_lens = self.doclengths() scores = similarity(term_freqs=tfs, doc_freqs=all_dfs, doc_lens=doc_lens, avg_doc_lens=self.avg_doc_length, num_docs=len(self)) return scores def positions(self, token: str, key=None) -> List[np.ndarray]: """Return a list of lists of positions of the given term.""" term_id = self.term_dict.get_term_id(token) key = self.term_mat.rows[key] if key is not None else self.term_mat.rows posns = self.posns.positions(term_id, doc_ids=key) return posns def and_query(self, tokens: Union[List[str], List[List[str]]]) -> np.ndarray: """Return a mask on the postings array indicating which elements contain all terms.""" masks = [self.match(term) for term in tokens] mask = np.ones(len(self), dtype=bool) for curr_mask in masks: mask = mask & curr_mask return mask def or_query(self, tokens: Union[List[str], List[List[str]]], min_should_match: int = 1) -> np.ndarray: """Return a mask on the postings array indicating which elements contain all terms.""" masks = [self.match(term) for term in tokens] mask = np.sum(masks, axis=0) >= min_should_match return mask def phrase_freq(self, tokens: List[str], slop=1) -> np.ndarray: if slop == 1 and len(tokens) == len(set(tokens)): phrase_freqs = np.zeros(len(self)) try: doc_ids = self.term_mat.rows term_ids = [self.term_dict.get_term_id(token) for token in tokens] return self.posns.phrase_freqs(term_ids, doc_ids=doc_ids, phrase_freqs=phrase_freqs) except TermMissingError: return phrase_freqs else: return self.phrase_freq_every_diff(tokens, slop=slop) def phrase_freq_scan(self, tokens: List[str], mask=None, slop=1) -> np.ndarray: if mask is None: mask = self.and_query(tokens) if np.sum(mask) == 0: return mask # Gather positions posns = [self.positions(token, mask) for token in tokens] phrase_freqs = np.zeros(len(self)) phrase_freqs[mask] = scan_merge_ins(posns, phrase_freqs[mask], slop=slop) return phrase_freqs def phrase_freq_every_diff(self, tokens: List[str], slop=1) -> np.ndarray: phrase_freqs = -np.ones(len(self)) mask = self.and_query(tokens) phrase_freqs[~mask] = 0 if np.sum(mask) == 0: return phrase_freqs term_posns = [self.positions(term, mask) for term in tokens] for width in [10, 20, 30, 40]: phrase_freqs[mask] = compute_phrase_freqs(term_posns, phrase_freqs[mask], slop=slop, width=width) remaining_mask = phrase_freqs == -1 if np.any(remaining_mask): remainder_freqs = self.phrase_freq_scan(tokens, mask=remaining_mask, slop=slop) phrase_freqs[remaining_mask] = remainder_freqs[remaining_mask] return phrase_freqs <fim_middle>
null
CATCH
complete_current_header_empty_completion
<filename>searcharray/searcharray/phrase/middle_out.py<fim_prefix>"""Encode positions in bits along with some neighboring information for wrapping. See this notebook for motivation: https://colab.research.google.com/drive/10tIEkdlCE_1J_CcgEcV0jkLfBc-0H4am?authuser=1#scrollTo=XWzy-n9dF3PG """ import numpy as np import sortednp as snp from copy import deepcopy from typing import List, Tuple, Dict, Union, cast, Optional from searcharray.utils.roaringish import RoaringishEncoder, convert_keys, sorted_unique import numbers import logging from collections import defaultdict from searcharray.utils.bitcount import bit_count64 logger = logging.getLogger(__name__) # When running in pytest import sys # noqa handler = logging.StreamHandler(sys.stdout) handler.setLevel(logging.ERROR) formatter = logging.Formatter("[%(filename)s:%(lineno)s - %(funcName)20s() ] %(message)s") handler.setFormatter(formatter) logger.addHandler(handler) logger.setLevel(logging.ERROR) encoder = RoaringishEncoder() # To not constantly type coerce _64 = np.uint64(64) _2 = np.uint64(2) _1 = np.uint64(1) _0 = np.uint64(0) _neg1 = np.int64(-1) MAX_POSN = encoder.max_payload def inner_bigram_freqs(lhs: np.ndarray, rhs: np.ndarray, phrase_freqs: np.ndarray) -> Tuple[np.ndarray, np.ndarray]: """Count bigram matches between two encoded arrays, within a 64 bit word with same MSBs. Returns: -------- count: number of matches per doc rhs_next: the next rhs array to continue matching """ lhs_int, rhs_int = encoder.intersect(lhs, rhs) lhs_doc_ids = encoder.keys(lhs_int) if len(lhs_int) != len(rhs_int): raise ValueError("Encoding error, MSBs apparently are duplicated among your encoded posn arrays.") if len(lhs_int) == 0: return phrase_freqs, rhs_int same_term = (len(lhs_int) == len(rhs_int) and lhs_int[0] == rhs_int[0]) if same_term: # Find adjacent matches rhs_shift = rhs_int << _1 overlap = lhs_int & rhs_shift overlap = encoder.payload_lsb(overlap) adjacents = bit_count64(overlap).astype(np.int64) adjacents -= -np.floor_divide(adjacents, -2) # ceiling divide phrase_freqs[lhs_doc_ids] += adjacents return phrase_freqs, rhs_int overlap_bits = (lhs_int & encoder.payload_lsb_mask) & ((rhs_int & encoder.payload_lsb_mask) >> _1) rhs_next2 = (overlap_bits << _1) & encoder.payload_lsb_mask rhs_next2 |= (rhs_int & (encoder.key_mask | encoder.payload_msb_mask)) phrase_freqs2 = phrase_freqs.copy() matches2 = overlap_bits > 0 if np.any(matches2): transitions = np.argwhere(np.diff(lhs_doc_ids[matches2]) != 0).flatten() + 1 transitions = np.insert(transitions, 0, 0) counted_bits = bit_count64(overlap_bits[matches2]) reduced = np.add.reduceat(counted_bits, transitions) phrase_freqs2[np.unique(lhs_doc_ids[matches2])] += reduced return phrase_freqs2, rhs_next2 def adjacent_bigram_freqs(lhs: np.ndarray, rhs: np.ndarray, phrase_freqs: np.ndarray) -> Tuple[np.ndarray, np.ndarray]: """Count bigram matches between two encoded arrays where they occur in adjacent 64 bit words. Returns: -------- count: number of matches per doc rhs_next: the next rhs array to continue matching """ lhs_int, rhs_int = encoder.intersect_rshift(lhs, rhs, rshift=_neg1) lhs_doc_ids = encoder.keys(lhs_int) # lhs lsb set and rhs lsb's most significant bit set upper_bit = _1 << (encoder.payload_lsb_bits - _1) matches = ((lhs_int & upper_bit) != 0) & ((rhs_int & _1) != 0) unique, counts = np.unique(lhs_doc_ids[matches], return_counts=True) phrase_freqs[unique] += counts rhs_next = rhs_int rhs_next[~matches] |= ~encoder.payload_lsb_mask rhs_next[matches] |= (encoder.payload_lsb_mask & _1) return phrase_freqs, rhs_next def bigram_freqs(lhs: np.ndarray, rhs: np.ndarray, phrase_freqs: np.ndarray) -> Tuple[np.ndarray, np.ndarray]: """Count bigram matches between two encoded arrays. Returns: -------- count: number of matches per doc rhs_next: the next rhs array to continue matching """ # Combine lhs and rhs matches from two strategies phrase_freqs, rhs_next_inner = inner_bigram_freqs(lhs, rhs, phrase_freqs) phrase_freqs, rhs_next_adj = adjacent_bigram_freqs(lhs, rhs, phrase_freqs) rhs_next = np.sort(np.concatenate([rhs_next_inner, rhs_next_adj])) # Combine return phrase_freqs, rhs_next def trim_phrase_search(encoded_posns: List[np.ndarray], phrase_freqs: np.ndarray) -> List[np.ndarray]: """Trim long phrases by searching the rarest terms first.""" # Start with rarest term shortest_keys = None shortest_idx = None min_len = 1e100 max_len = 0 for idx, enc_posn in enumerate(encoded_posns): if len(enc_posn) < min_len: shortest_keys = encoder.keys(enc_posn) shortest_idx = idx min_len = len(enc_posn) if len(enc_posn) > max_len: max_len = len(enc_posn) if shortest_keys is None: return encoded_posns for enc_posn_idx in range(len(encoded_posns)): if enc_posn_idx == shortest_idx: continue if len(encoded_posns[enc_posn_idx]) > (10 * min_len): encoded_posns[enc_posn_idx] = encoder.slice(encoded_posns[enc_posn_idx], shortest_keys) return encoded_posns def compute_phrase_freqs(encoded_posns: List[np.ndarray], phrase_freqs: np.ndarray) -> np.ndarray: if len(encoded_posns) < 2: raise ValueError("phrase must have at least two terms") # Trim long phrases by searching the rarest terms first if len(encoded_posns) > 3: encoded_posns = trim_phrase_search(encoded_posns, phrase_freqs) mask = np.ones(len(phrase_freqs), dtype=bool) lhs = encoded_posns[0] for rhs in encoded_posns[1:]: # Only count the count of the last bigram (ignoring the ones where priors did not match) phrase_freqs[mask] = 0 phrase_freqs, lhs = bigram_freqs(lhs, rhs, phrase_freqs) mask &= (phrase_freqs > 0) phrase_freqs[~mask] = 0 return phrase_freqs class PosnBitArrayFromFlatBuilder: """ Build from sorted array shape num terms x 3. 0th is term id 1st is doc id 2nd is posn Sorted by term id then posns """ def __init__(self, flat_array: np.ndarray): self.flat_array = flat_array def build(self): """Slice the flat array into a 2d array of doc ids and posns.""" term_boundaries = np.argwhere(np.diff(self.flat_array[0]) > 0).flatten() + 1 term_boundaries = np.concatenate([[0], term_boundaries, [len(self.flat_array[1])]]) encoded, enc_term_boundaries = encoder.encode(keys=self.flat_array[1].view(np.uint64), boundaries=term_boundaries[:-1], payload=self.flat_array[2].view(np.uint64)) term_ids = self.flat_array[0][term_boundaries[:-1]] encoded_term_posns = {} for into_terms, (beg_idx, end_idx) in enumerate(zip(enc_term_boundaries[:-1], enc_term_boundaries[1:])): sliced = encoded[beg_idx:end_idx] encoded_term_posns[term_ids[into_terms]] = sliced return PosnBitArray(encoded_term_posns, self.flat_array[1].max()) class PosnBitArrayBuilder: def __init__(self): self.term_posns = defaultdict(list) self.term_posn_doc_ids = defaultdict(list) self.max_doc_id = 0 def add_posns(self, doc_id: int, term_id: int, posns: List[int]): doc_ids = [doc_id] * len(posns) self.term_posns[term_id].extend(posns) self.term_posn_doc_ids[term_id].extend(doc_ids) def ensure_capacity(self, doc_id): self.max_doc_id = max(self.max_doc_id, doc_id) def build(self, check=False): encoded_term_posns = {} for term_id, posns in self.term_posns.items(): if len(posns) == 0: posns = np.asarray([], dtype=np.uint32).flatten() elif isinstance(posns, list): posns_arr = np.asarray(posns, dtype=np.uint32).flatten() posns = posns_arr doc_ids = self.term_posn_doc_ids[term_id] if isinstance(doc_ids, list): doc_ids = np.asarray(doc_ids, dtype=np.uint32) encoded = encoder.encode(keys=doc_ids, payload=posns) if check: decode_again = encoder.decode(encoded) docs_to_posns = dict(decode_again) doc_ids_again = [] posns_again = [] for doc_id, posns_dec in docs_to_posns.items(): for posn in posns_dec: doc_ids_again.append(doc_id) posns_again.append(posn) assert np.array_equal(doc_ids_again, doc_ids) assert np.array_equal(posns, posns_again) encoded_term_posns[term_id] = encoded return PosnBitArray(encoded_term_posns, self.max_doc_id) class PosnBitArrayAlreadyEncBuilder: def __init__(self): self.encoded_term_posns = {} self.max_doc_id = 0 def add_posns(self, doc_id: int, term_id: int, posns): self.encoded_term_posns[term_id] = posns def ensure_capacity(self, doc_id): self.max_doc_id = max(self.max_doc_id, doc_id) def build(self, check=False): return PosnBitArray(self.encoded_term_posns, self.max_doc_id) def index_range(rng, key): if key is None: return rng if isinstance(rng, np.ndarray): return rng[key] if isinstance(key, slice): return rng[key] elif isinstance(key, numbers.Number): return rng[key] elif isinstance(key, np.ndarray): try: # UNFORTUNATE COPY r_val = np.asarray(list(rng))[key] return r_val except IndexError as e: raise e # Last resort # UNFORTUNATE COPY # Here probably elipses or a tuple of various things return np.asarray(list(rng))[key] class PosnBitArray: def __init__(self, encoded_term_posns, max_doc_id: int): self.encoded_term_posns = encoded_term_posns self.max_doc_id = max_doc_id self.docfreq_cache : Dict[int, np.uint64] = {} self.termfreq_cache : Dict[int, Tuple[np.ndarray, np.ndarray]] = {} def copy(self): new = PosnBitArray(deepcopy(self.encoded_term_posns), self.max_doc_id) return new def concat(self, other): """Merge other into self. Assumes other's doc ids are not overlapping with self's doc ids. """ # Shared terms shared_terms = set(self.encoded_term_posns.keys()).intersection(set(other.encoded_term_posns.keys())) for term_id in shared_terms: # Append then sort self.encoded_term_posns[term_id] = np.concatenate([self.encoded_term_posns[term_id], other.encoded_term_posns[term_id]]) self.encoded_term_posns[term_id].sort() only_other_terms = set(other.encoded_term_posns.keys()).difference(set(self.encoded_term_posns.keys())) for term_id in only_other_terms: self.encoded_term_posns[term_id] = other.encoded_term_posns[term_id] self.max_doc_id = max(self.max_doc_id, other.max_doc_id) # Empty caches self.termfreq_cache = {} self.docfreq_cache = {} def slice(self, key): sliced_term_posns = {} doc_ids = convert_keys(key) max_doc_id = np.max(doc_ids) for term_id, posns in self.encoded_term_posns.items(): encoded = self.encoded_term_posns[term_id] assert len(encoded.shape) == 1 sliced_term_posns[term_id] = encoder.slice(encoded, keys=doc_ids) return PosnBitArray(sliced_term_posns, max_doc_id) def __getitem__(self, key): return self.slice(key) def merge(self, other): # Unique terms unique_terms = set(self.encoded_term_posns.keys()).union(set(other.encoded_term_posns.keys())) for term_id in unique_terms: if term_id not in other.encoded_term_posns: continue elif term_id not in self.encoded_term_posns: self.encoded_term_posns[term_id] = other.encoded_term_posns[term_id] else: posns_self = self.encoded_term_posns[term_id] posns_other = other.encoded_term_posns[term_id] self.encoded_term_posns[term_id] = snp.merge(posns_self, posns_other) self.max_doc_id = self.max_doc_id + other.max_doc_id # Empty caches self.termfreq_cache = {} self.docfreq_cache = {} def doc_encoded_posns(self, term_id: int, doc_id: int) -> np.ndarray: term_posns = encoder.slice(self.encoded_term_posns[term_id], keys=np.asarray([doc_id], dtype=np.uint64)) return term_posns def phrase_freqs(self, term_ids: List[int], phrase_freqs: np.ndarray, doc_ids: np.ndarray) -> np.ndarray: if len(term_ids) < 2: raise ValueError("Must have at least two terms") if phrase_freqs.shape[0] == self.max_doc_id + 1: enc_term_posns = [self.encoded_term_posns[term_id] for term_id in term_ids] else: enc_term_posns = [encoder.slice(self.encoded_term_posns[term_id], keys=doc_ids.view(np.uint64)) for term_id in term_ids] return compute_phrase_freqs(enc_term_posns, phrase_freqs) def positions(self, term_id: int, doc_ids) -> Union[List[np.ndarray], np.ndarray]: if isinstance(doc_ids, numbers.Number): doc_ids = np.asarray([doc_ids]) try: np_doc_ids = convert_keys(doc_ids) term_posns = encoder.slice(self.encoded_term_posns[term_id], keys=np_doc_ids) except KeyError: r_val = [np.array([], dtype=np.uint32) for doc_id in doc_ids] if len(r_val) == 1 and len(doc_ids) == 1 and isinstance(doc_ids[0], numbers.Number): return [r_val[0]] return r_val decoded = encoder.decode(encoded=term_posns, get_keys=True) if len(decoded) == 0: return [np.array([], dtype=np.uint32)] if len(decoded) != len(doc_ids): # Fill non matches decoded = cast(List[Tuple[np.uint64, np.ndarray]], decoded) as_dict: Dict[np.uint64, np.ndarray] = dict(decoded) decs = [] for doc_id in doc_ids: if doc_id in as_dict: decs.append(as_dict[doc_id]) else: decs.append(np.array([], dtype=np.uint32)) return decs else: decs = [dec[1] for dec in decoded] return decs def termfreqs(self, term_id: int, doc_ids: Optional[np.ndarray] = None) -> Tuple[np.ndarray, np.ndarray]: """Count term freqs using unique positions.""" if doc_ids is None: return self._termfreqs_with_cache(term_id) encoded = self.encoded_term_posns[term_id] term_posns = encoded term_posns = encoder.slice(encoded, keys=doc_ids.astype(np.uint64)) return self._computed_term_freqs(term_posns) def _computed_term_freqs(self, term_posns) -> Tuple[np.ndarray, np.ndarray]: doc_ids = encoder.keys(term_posns) change_indices = np.nonzero(np.diff(doc_ids))[0] change_indices = np.concatenate((np.asarray([0]), change_indices + 1)) posns = term_posns & encoder.payload_lsb_mask bit_counts = bit_count64(posns) term_freqs = np.add.reduceat(bit_counts, change_indices) return sorted_unique(doc_ids), term_freqs def _termfreqs_with_cache(self, term_id: int) -> Tuple[np.ndarray, np.ndarray]: try: return self.termfreq_cache[term_id] except KeyError: term_posns = self.encoded_term_posns[term_id] doc_ids, term_freqs = self._computed_term_freqs(term_posns) if self._is_cached(term_id): self.termfreq_cache[term_id] = (doc_ids, term_freqs) return doc_ids, term_freqs def _is_cached(self, term_id: int) -> bool: return term_id in self.docfreq_cache def _docfreq_from_cache(self, term_id: int) -> np.uint64: return self.docfreq_cache[term_id] def _maybe_cache_docfreq(self, term_id: int, docfreq: np.uint64): if self.max_doc_id >= 100000 and docfreq > (self.max_doc_id // 100): self.docfreq_cache[term_id] = docfreq def docfreq(self, term_id: int) -> np.uint64: try: return self.docfreq_cache[term_id] except<fim_suffix> KeyError: encoded = self.encoded_term_posns[term_id] docfreq = np.uint64(encoder.keys_unique(encoded).size) self._maybe_cache_docfreq(term_id, docfreq) return docfreq def insert(self, key, term_ids_to_posns, is_encoded=False): new_posns = PosnBitArrayBuilder() if is_encoded: new_posns = PosnBitArrayAlreadyEncBuilder() max_doc_id = 0 for doc_id, new_posns_row in enumerate(term_ids_to_posns): for term_id, positions in new_posns_row: new_posns.add_posns(doc_id, term_id, positions) max_doc_id = max(doc_id, max_doc_id) new_posns.max_doc_id = max_doc_id ins_arr = new_posns.build() self.merge(ins_arr) @property def nbytes(self): arr_bytes = 0 for doc_id, posn in self.encoded_term_posns.items(): arr_bytes += posn.nbytes for term_id, (doc_ids, term_freqs) in self.termfreq_cache.items(): arr_bytes += doc_ids.nbytes arr_bytes += term_freqs.nbytes for term_id, docfreq in self.docfreq_cache.items(): arr_bytes += docfreq.nbytes return arr_bytes <fim_middle>
null
CATCH
complete_current_header_empty_completion
<filename>searcharray/searcharray/postings.py<fim_prefix>"""Tokenized, searchable text as a pandas dtype.""" import pandas as pd import numbers from pandas.api.extensions import ExtensionDtype, ExtensionArray, register_extension_dtype from pandas.api.types import is_list_like from pandas.api.extensions import take import json from collections import Counter import warnings import logging from typing import List, Union, Optional, Iterable import numpy as np from searcharray.phrase.scan_merge import scan_merge_ins from searcharray.phrase.posn_diffs import compute_phrase_freqs from searcharray.phrase.middle_out import PosnBitArray from searcharray.similarity import Similarity, default_bm25 from searcharray.indexing import build_index_from_tokenizer, build_index_from_terms_list from searcharray.term_dict import TermMissingError logger = logging.getLogger(__name__) # When running in pytest import sys # noqa handler = logging.StreamHandler(sys.stdout) handler.setLevel(logging.ERROR) formatter = logging.Formatter("[%(filename)s:%(lineno)s - %(funcName)20s() ] %(message)s") handler.setFormatter(formatter) logger.addHandler(handler) logger.setLevel(logging.ERROR) class Terms: """An indexed search doc - a single bag of tokenized words and positions.""" def __init__(self, postings, doc_len: int = 0, posns: Optional[dict] = None, encoded=False): self.postings = postings self.posns = None self.encoded = encoded self.doc_len = doc_len self.posns = posns def _validate_posns(self): # (For testing/assertions) - Confirm every term in positions also in postings if self.posns is None: return for term in self.posns: if term not in self.postings: raise ValueError(f"Term {term} in positions but not in postings. ") def termfreq(self, token): return self.postings[token] def terms(self): return self.postings.items() def positions(self, term=None): if self.posns is None: return {} if term is None: posns = self.posns.items() else: posns = self.posns[term] return posns def raw_positions(self, term_dict, term=None): if self.posns is None: return {} if term is None: posns = [(term_dict.get_term_id(term), posns) for term, posns in self.posns.items()] else: posns = [(term_dict.get_term_id(term), self.posns[term])] return posns def tf_to_dense(self, term_dict): """Convert to a dense vector of term frequencies.""" dense = np.zeros(len(term_dict)) for term, freq in self.terms(): dense[term_dict.get_term_id(term)] = freq return dense def __len__(self): return len(self.postings) def __repr__(self): posting_keys = set(self.postings.keys()) rval = f"Terms({posting_keys})" return rval def __str__(self): return repr(self) def __eq__(self, other): # Flip to the other implementation if we're comparing to a SearchArray # to get a boolean array back if isinstance(other, SearchArray): return other == self same_postings = isinstance(other, Terms) and self.postings == other.postings if same_postings and self.doc_len == other.doc_len: return True def __lt__(self, other): # return isinstance(other, Terms) and hash(self) < hash(other) keys_both = set(self.postings.keys()).union(set(other.postings.keys())) # Sort lexically keys_both = sorted(keys_both) # Iterate as if these are two vectors of the same large dimensional vector sparse for key in keys_both: lhs_val = 0 rhs_val = 0 try: lhs_val = self.postings[key] except KeyError: pass try: rhs_val = other.postings[key] except KeyError: pass if lhs_val < rhs_val: return True elif lhs_val > rhs_val: return False else: continue return False def __le__(self, other): return self < other or self == other def __gt__(self, other): return not (self < other) and self != other def __hash__(self): return hash(json.dumps(self.postings, sort_keys=True)) class TermsDtype(ExtensionDtype): """Pandas dtype for terms.""" name = 'tokenized_text' type = Terms kind = 'O' @classmethod def construct_from_string(cls, string): if not isinstance(string, str): raise TypeError( "'construct_from_string' expects a string, got {}".format(type(string)) ) elif string == cls.name: return cls() else: raise TypeError( "Cannot construct a '{}' from '{}'".format(cls.__name__, string) ) @classmethod def construct_array_type(cls): return SearchArray def __repr__(self): return 'TermsDtype()' @property def na_value(self): return Terms({}) def valid_value(self, value): return isinstance(value, dict) or pd.isna(value) or isinstance(value, Terms) register_extension_dtype(TermsDtype) def ws_tokenizer(string): if pd.isna(string): return [] if not isinstance(string, str): raise ValueError("Expected a string") return string.split() def _row_to_postings_row(doc_id, row, doc_len, term_dict, posns: PosnBitArray): tfs = {} labeled_posns = {} for term_idx in row.cols: term = term_dict.get_term(term_idx) tfs[term] = 1 enc_term_posns = posns.doc_encoded_posns(term_idx, doc_id=doc_id) labeled_posns[term] = enc_term_posns result = Terms(tfs, posns=labeled_posns, doc_len=doc_len, encoded=True) return result class SearchArray(ExtensionArray): """An array of tokenized text (Termss).""" dtype = TermsDtype() def __init__(self, postings, tokenizer=ws_tokenizer, avoid_copies=True): # Check dtype, raise TypeError if not is_list_like(postings): raise TypeError("Expected list-like object, got {}".format(type(postings))) self.avoid_copies = avoid_copies self.tokenizer = tokenizer self.term_mat, self.posns, \ self.term_dict, self.avg_doc_length, \ self.doc_lens = build_index_from_terms_list(postings, Terms) @classmethod def index(cls, array: Iterable, tokenizer=ws_tokenizer, truncate=False, batch_size=100000, avoid_copies=True) -> 'SearchArray': """Index an array of strings using tokenizer.""" if not is_list_like(array): raise TypeError("Expected list-like object, got {}".format(type(array))) term_mat, posns, term_dict, avg_doc_length, doc_lens =\ build_index_from_tokenizer(array, tokenizer, batch_size=batch_size, truncate=truncate) postings = cls([], tokenizer=tokenizer, avoid_copies=avoid_copies) postings.term_mat = term_mat postings.posns = posns postings.term_dict = term_dict postings.avg_doc_length = avg_doc_length postings.doc_lens = doc_lens return postings @classmethod def _from_sequence(cls, scalars, dtype=None, copy=False): """Construct a new SearchArray from a sequence of scalars (PostingRow or convertible into).""" if dtype is not None: if not isinstance(dtype, TermsDtype): return scalars if isinstance(scalars, np.ndarray) and scalars.dtype == TermsDtype(): return cls(scalars) # String types elif isinstance(scalars, np.ndarray) and scalars.dtype.kind in 'US': return cls(scalars) # Other objects elif isinstance(scalars, np.ndarray) and scalars.dtype != object: return scalars return cls(scalars) def memory_usage(self, deep=False): """Return memory usage of this array in bytes.""" return self.nbytes @property def nbytes(self): return self.term_mat.nbytes + self.posns.nbytes + self.doc_lens.nbytes + self.term_dict.nbytes def __getitem__(self, key): key = pd.api.indexers.check_array_indexer(self, key) # Want to take rows of term freqs if isinstance(key, numbers.Integral): try: rows = self.term_mat[key] doc_len = self.doc_lens[key] doc_id = key if doc_id < 0: doc_id += len(self) return _row_to_postings_row(doc_id, rows[0], doc_len, self.term_dict, self.posns) except IndexError: raise IndexError("index out of bounds") else: # Construct a sliced view of this array sliced_tfs = self.term_mat.slice(key) sliced_posns = self.posns.slice(sliced_tfs.rows) if not self.avoid_copies else self.posns arr = SearchArray([], tokenizer=self.tokenizer) arr.term_mat = sliced_tfs arr.doc_lens = self.doc_lens[key] arr.posns = sliced_posns arr.term_dict = self.term_dict arr.avg_doc_length = self.avg_doc_length return arr def __setitem__(self, key, value): """Set an item in the array.""" key = pd.api.indexers.check_array_indexer(self, key) if isinstance(value, pd.Series): value = value.values if isinstance(value, pd.DataFrame): value = value.values.flatten() if isinstance(value, SearchArray): value = value.to_numpy() if isinstance(value, list): value = np.asarray(value, dtype=object) if not isinstance(value, np.ndarray) and not self.dtype.valid_value(value): raise ValueError(f"Cannot set non-object array to SearchArray -- you passed type:{type(value)} -- {value}") # Cant set a single value to an array if isinstance(key, numbers.Integral) and isinstance(value, np.ndarray): raise ValueError("Cannot set a single value to an array") try: is_encoded = False posns = None term_mat = np.asarray([]) doc_lens = np.asarray([]) if isinstance(value, float): term_mat = np.asarray([value]) doc_lens = np.asarray([0]) elif isinstance(value, Terms): term_mat = np.asarray([value.tf_to_dense(self.term_dict)]) doc_lens = np.asarray([value.doc_len]) is_encoded = value.encoded posns = [value.raw_positions(self.term_dict)] elif isinstance(value, np.ndarray): term_mat = np.asarray([x.tf_to_dense(self.term_dict) for x in value]) doc_lens = np.asarray([x.doc_len for x in value]) is_encoded = value[0].encoded if len(value) > 0 else False posns = [x.raw_positions(self.term_dict) for x in value] np.nan_to_num(term_mat, copy=False, nan=0) self.term_mat[key] = term_mat self.doc_lens[key] = doc_lens if posns is not None: self.posns.insert(key, posns, is_encoded) # Assume we have a positions for each term, doc pair. We can just update it. # Otherwise we would have added new terms except TermMissingError: self._add_new_terms(key, value) def _add_new_terms(self, key, value): msg = """Adding new terms! This might not be good if you tokenized this new text with a different tokenizer. Also. This is slow.""" warnings.warn(msg) scan_value = value if isinstance(value, Terms): scan_value = np.asarray([value]) for row in scan_value: for term in row.terms(): self.term_dict.add_term(term[0]) self.term_mat.resize((self.term_mat.shape[0], len(self.term_dict))) # Ensure posns_lookup has at least max self.posns self[key] = value def value_counts( self, dropna: bool = True, ): if dropna: counts = Counter(self[:]) counts.pop(Terms({}), None) else: counts = Counter(self[:]) return pd.Series(counts) def __len__(self): len_rval = len(self.term_mat.rows) return len_rval def __ne__(self, other): if isinstance(other, pd.DataFrame) or isinstance(other, pd.Series) or isinstance(other, pd.Index): return NotImplemented return ~(self == other) def __eq__(self, other): """Return a boolean numpy array indicating elementwise equality.""" # When other is a dataframe or series, not implemented if isinstance(other, pd.DataFrame) or isinstance(other, pd.Series) or isinstance(other, pd.Index): return NotImplemented # When other is an ExtensionArray if isinstance(other, SearchArray): if len(self) != len(other): return False elif len(other) == 0: return np.array([], dtype=bool) else: # Compatible term dicts, and same term freqs # (not looking at positions, maybe we should?) if self.term_dict.compatible(other.term_dict): return (self.term_mat == other.term_mat) & (self.doc_lens == other.doc_lens) else: return np.zeros(len(self), dtype=bool) # return np.array(self[:]) == np.array(other[:]) # When other is a scalar value elif isinstance(other, Terms): other = SearchArray([other], tokenizer=self.tokenizer) warnings.warn("Comparing a scalar value to a SearchArray. This is slow.") return np.array(self[:]) == np.array(other[:]) # When other is a sequence but not an ExtensionArray # its an array of dicts elif is_list_like(other): if len(self) != len(other): return False elif len(other) == 0: return np.array([], dtype=bool) # We actually don't know how it was tokenized other = SearchArray(other, tokenizer=self.tokenizer) return np.array(self[:]) == np.array(other[:]) # Return False where 'other' is neither the same length nor a scalar else: return np.full(len(self), False) def isna(self): # Every row with all 0s empties = self.doc_lens == 0 return empties def take(self, indices, allow_fill=False, fill_value=None): # Want to take rows of term freqs row_indices = np.arange(len(self.term_mat.rows)) # Take within the row indices themselves result_indices = take(row_indices, indices, allow_fill=allow_fill, fill_value=-1) if allow_fill and -1 in result_indices: if fill_value is None or pd.isna(fill_value): fill_value = Terms({}, encoded=True) to_fill_mask = result_indices == -1 # This is slow as it rebuilds all the term dictionaries # on the subsequent assignment lines # However, this case tends to be the exception for # most dataframe operations taken = SearchArray([fill_value] * len(result_indices)) taken[~to_fill_mask] = self[result_indices[~to_fill_mask]].copy() return taken else: taken = self[result_indices].copy() return taken def copy(self): postings_arr = SearchArray([], tokenizer=self.tokenizer) postings_arr.doc_lens = self.doc_lens.copy() postings_arr.term_mat = self.term_mat.copy() postings_arr.posns = self.posns postings_arr.term_dict = self.term_dict postings_arr.avg_doc_length = self.avg_doc_length if not self.avoid_copies: postings_arr.posns = self.posns.copy() postings_arr.term_dict = self.term_dict.copy() return postings_arr @classmethod def _concat_same_type(cls, to_concat): concatenated_data = np.concatenate([ea[:] for ea in to_concat]) return SearchArray(concatenated_data, tokenizer=to_concat[0].tokenizer) @classmethod def _from_factorized(cls, values, original): return cls(values) def _values_for_factorize(self): """Return an array and missing value suitable for factorization (ie grouping).""" arr = np.asarray(self[:], dtype=object) return arr, Terms({}) def _check_token_arg(self, token): if isinstance(token, str): return token elif isinstance(token, list) and len(token) == 1: return token[0] elif isinstance(token, list): return token else: raise TypeError("Expected a string or list of strings for phrases") # *********************************************************** # Search functionality # *********************************************************** def termfreqs(self, token: Union[List[str], str]) -> np.ndarray: token = self._check_token_arg(token) if isinstance(token, list): return self.phrase_freq(token) try: term_id = self.term_dict.get_term_id(token) matches = np.zeros(len(self), dtype=int) slice_of_rows = None if self.term_mat.subset: slice_of_rows = self.term_mat.rows doc_ids, termfreqs = self.posns.termfreqs(term_id, doc_ids=slice_of_rows) mask = np.isin(self.term_mat.rows, doc_ids) matches[mask] = termfreqs return matches else: doc_ids, termfreqs = self.posns.termfreqs(term_id, doc_ids=slice_of_rows) matches[doc_ids] = termfreqs return matches except TermMissingError: return np.zeros(len(self), dtype=int) def docfreq(self, token: str) -> int: if not isinstance(token, str): raise TypeError("Expected a string") # Count number of rows where the term appears try: return self.posns.docfreq(self.term_dict.get_term_id(token)) except TermMissingE<fim_suffix>rror: return 0 def doclengths(self) -> np.ndarray: return self.doc_lens def match(self, token: Union[List[str], str], slop: int = 1) -> np.ndarray: """Return a boolean numpy array indicating which elements contain the given term.""" token = self._check_token_arg(token) if isinstance(token, list): term_freq = self.phrase_freq(token) else: term_freq = self.termfreqs(token) return term_freq > 0 def score(self, token: Union[str, List[str]], similarity: Similarity = default_bm25) -> np.ndarray: """Score each doc using a similarity function. Parameters ---------- token : str or list of str of what to search (already tokenized) similarity : How to score the documents. Default is BM25. """ # Get term freqs per token token = self._check_token_arg(token) # For expensive toknes, we compute doc freq first, so we # cache them in the DF cache, to let TF cache know it should be cached tokens_l = [token] if isinstance(token, str) else token all_dfs = np.asarray([self.docfreq(token) for token in tokens_l]) tfs = self.termfreqs(token) token = self._check_token_arg(token) doc_lens = self.doclengths() scores = similarity(term_freqs=tfs, doc_freqs=all_dfs, doc_lens=doc_lens, avg_doc_lens=self.avg_doc_length, num_docs=len(self)) return scores def positions(self, token: str, key=None) -> List[np.ndarray]: """Return a list of lists of positions of the given term.""" term_id = self.term_dict.get_term_id(token) key = self.term_mat.rows[key] if key is not None else self.term_mat.rows posns = self.posns.positions(term_id, doc_ids=key) return posns def and_query(self, tokens: Union[List[str], List[List[str]]]) -> np.ndarray: """Return a mask on the postings array indicating which elements contain all terms.""" masks = [self.match(term) for term in tokens] mask = np.ones(len(self), dtype=bool) for curr_mask in masks: mask = mask & curr_mask return mask def or_query(self, tokens: Union[List[str], List[List[str]]], min_should_match: int = 1) -> np.ndarray: """Return a mask on the postings array indicating which elements contain all terms.""" masks = [self.match(term) for term in tokens] mask = np.sum(masks, axis=0) >= min_should_match return mask def phrase_freq(self, tokens: List[str], slop=1) -> np.ndarray: if slop == 1 and len(tokens) == len(set(tokens)): phrase_freqs = np.zeros(len(self)) try: doc_ids = self.term_mat.rows term_ids = [self.term_dict.get_term_id(token) for token in tokens] return self.posns.phrase_freqs(term_ids, doc_ids=doc_ids, phrase_freqs=phrase_freqs) except TermMissingError: return phrase_freqs else: return self.phrase_freq_every_diff(tokens, slop=slop) def phrase_freq_scan(self, tokens: List[str], mask=None, slop=1) -> np.ndarray: if mask is None: mask = self.and_query(tokens) if np.sum(mask) == 0: return mask # Gather positions posns = [self.positions(token, mask) for token in tokens] phrase_freqs = np.zeros(len(self)) phrase_freqs[mask] = scan_merge_ins(posns, phrase_freqs[mask], slop=slop) return phrase_freqs def phrase_freq_every_diff(self, tokens: List[str], slop=1) -> np.ndarray: phrase_freqs = -np.ones(len(self)) mask = self.and_query(tokens) phrase_freqs[~mask] = 0 if np.sum(mask) == 0: return phrase_freqs term_posns = [self.positions(term, mask) for term in tokens] for width in [10, 20, 30, 40]: phrase_freqs[mask] = compute_phrase_freqs(term_posns, phrase_freqs[mask], slop=slop, width=width) remaining_mask = phrase_freqs == -1 if np.any(remaining_mask): remainder_freqs = self.phrase_freq_scan(tokens, mask=remaining_mask, slop=slop) phrase_freqs[remaining_mask] = remainder_freqs[remaining_mask] return phrase_freqs <fim_middle>
null
CATCH
complete_current_header_empty_completion
<filename>searcharray/searcharray/phrase/middle_out.py<fim_prefix>"""Encode positions in bits along with some neighboring information for wrapping. See this notebook for motivation: https://colab.research.google.com/drive/10tIEkdlCE_1J_CcgEcV0jkLfBc-0H4am?authuser=1#scrollTo=XWzy-n9dF3PG """ import numpy as np import sortednp as snp from copy import deepcopy from typing import List, Tuple, Dict, Union, cast, Optional from searcharray.utils.roaringish import RoaringishEncoder, convert_keys, sorted_unique import numbers import logging from collections import defaultdict from searcharray.utils.bitcount import bit_count64 logger = logging.getLogger(__name__) # When running in pytest import sys # noqa handler = logging.StreamHandler(sys.stdout) handler.setLevel(logging.ERROR) formatter = logging.Formatter("[%(filename)s:%(lineno)s - %(funcName)20s() ] %(message)s") handler.setFormatter(formatter) logger.addHandler(handler) logger.setLevel(logging.ERROR) encoder = RoaringishEncoder() # To not constantly type coerce _64 = np.uint64(64) _2 = np.uint64(2) _1 = np.uint64(1) _0 = np.uint64(0) _neg1 = np.int64(-1) MAX_POSN = encoder.max_payload def inner_bigram_freqs(lhs: np.ndarray, rhs: np.ndarray, phrase_freqs: np.ndarray) -> Tuple[np.ndarray, np.ndarray]: """Count bigram matches between two encoded arrays, within a 64 bit word with same MSBs. Returns: -------- count: number of matches per doc rhs_next: the next rhs array to continue matching """ lhs_int, rhs_int = encoder.intersect(lhs, rhs) lhs_doc_ids = encoder.keys(lhs_int) if len(lhs_int) != len(rhs_int): raise ValueError("Encoding error, MSBs apparently are duplicated among your encoded posn arrays.") if len(lhs_int) == 0: return phrase_freqs, rhs_int same_term = (len(lhs_int) == len(rhs_int) and lhs_int[0] == rhs_int[0]) if same_term: # Find adjacent matches rhs_shift = rhs_int << _1 overlap = lhs_int & rhs_shift overlap = encoder.payload_lsb(overlap) adjacents = bit_count64(overlap).astype(np.int64) adjacents -= -np.floor_divide(adjacents, -2) # ceiling divide phrase_freqs[lhs_doc_ids] += adjacents return phrase_freqs, rhs_int overlap_bits = (lhs_int & encoder.payload_lsb_mask) & ((rhs_int & encoder.payload_lsb_mask) >> _1) rhs_next2 = (overlap_bits << _1) & encoder.payload_lsb_mask rhs_next2 |= (rhs_int & (encoder.key_mask | encoder.payload_msb_mask)) phrase_freqs2 = phrase_freqs.copy() matches2 = overlap_bits > 0 if np.any(matches2): transitions = np.argwhere(np.diff(lhs_doc_ids[matches2]) != 0).flatten() + 1 transitions = np.insert(transitions, 0, 0) counted_bits = bit_count64(overlap_bits[matches2]) reduced = np.add.reduceat(counted_bits, transitions) phrase_freqs2[np.unique(lhs_doc_ids[matches2])] += reduced return phrase_freqs2, rhs_next2 def adjacent_bigram_freqs(lhs: np.ndarray, rhs: np.ndarray, phrase_freqs: np.ndarray) -> Tuple[np.ndarray, np.ndarray]: """Count bigram matches between two encoded arrays where they occur in adjacent 64 bit words. Returns: -------- count: number of matches per doc rhs_next: the next rhs array to continue matching """ lhs_int, rhs_int = encoder.intersect_rshift(lhs, rhs, rshift=_neg1) lhs_doc_ids = encoder.keys(lhs_int) # lhs lsb set and rhs lsb's most significant bit set upper_bit = _1 << (encoder.payload_lsb_bits - _1) matches = ((lhs_int & upper_bit) != 0) & ((rhs_int & _1) != 0) unique, counts = np.unique(lhs_doc_ids[matches], return_counts=True) phrase_freqs[unique] += counts rhs_next = rhs_int rhs_next[~matches] |= ~encoder.payload_lsb_mask rhs_next[matches] |= (encoder.payload_lsb_mask & _1) return phrase_freqs, rhs_next def bigram_freqs(lhs: np.ndarray, rhs: np.ndarray, phrase_freqs: np.ndarray) -> Tuple[np.ndarray, np.ndarray]: """Count bigram matches between two encoded arrays. Returns: -------- count: number of matches per doc rhs_next: the next rhs array to continue matching """ # Combine lhs and rhs matches from two strategies phrase_freqs, rhs_next_inner = inner_bigram_freqs(lhs, rhs, phrase_freqs) phrase_freqs, rhs_next_adj = adjacent_bigram_freqs(lhs, rhs, phrase_freqs) rhs_next = np.sort(np.concatenate([rhs_next_inner, rhs_next_adj])) # Combine return phrase_freqs, rhs_next def trim_phrase_search(encoded_posns: List[np.ndarray], phrase_freqs: np.ndarray) -> List[np.ndarray]: """Trim long phrases by searching the rarest terms first.""" # Start with rarest term shortest_keys = None shortest_idx = None min_len = 1e100 max_len = 0 for idx, enc_posn in enumerate(encoded_posns): if len(enc_posn) < min_len: shortest_keys = encoder.keys(enc_posn) shortest_idx = idx min_len = len(enc_posn) if len(enc_posn) > max_len: max_len = len(enc_posn) if shortest_keys is None: return encoded_posns for enc_posn_idx in range(len(encoded_posns)): if enc_posn_idx == shortest_idx: continue if len(encoded_posns[enc_posn_idx]) > (10 * min_len): encoded_posns[enc_posn_idx] = encoder.slice(encoded_posns[enc_posn_idx], shortest_keys) return encoded_posns def compute_phrase_freqs(encoded_posns: List[np.ndarray], phrase_freqs: np.ndarray) -> np.ndarray: if len(encoded_posns) < 2: raise ValueError("phrase must have at least two terms") # Trim long phrases by searching the rarest terms first if len(encoded_posns) > 3: encoded_posns = trim_phrase_search(encoded_posns, phrase_freqs) mask = np.ones(len(phrase_freqs), dtype=bool) lhs = encoded_posns[0] for rhs in encoded_posns[1:]: # Only count the count of the last bigram (ignoring the ones where priors did not match) phrase_freqs[mask] = 0 phrase_freqs, lhs = bigram_freqs(lhs, rhs, phrase_freqs) mask &= (phrase_freqs > 0) phrase_freqs[~mask] = 0 return phrase_freqs class PosnBitArrayFromFlatBuilder: """ Build from sorted array shape num terms x 3. 0th is term id 1st is doc id 2nd is posn Sorted by term id then posns """ def __init__(self, flat_array: np.ndarray): self.flat_array = flat_array def build(self): """Slice the flat array into a 2d array of doc ids and posns.""" term_boundaries = np.argwhere(np.diff(self.flat_array[0]) > 0).flatten() + 1 term_boundaries = np.concatenate([[0], term_boundaries, [len(self.flat_array[1])]]) encoded, enc_term_boundaries = encoder.encode(keys=self.flat_array[1].view(np.uint64), boundaries=term_boundaries[:-1], payload=self.flat_array[2].view(np.uint64)) term_ids = self.flat_array[0][term_boundaries[:-1]] encoded_term_posns = {} for into_terms, (beg_idx, end_idx) in enumerate(zip(enc_term_boundaries[:-1], enc_term_boundaries[1:])): sliced = encoded[beg_idx:end_idx] encoded_term_posns[term_ids[into_terms]] = sliced return PosnBitArray(encoded_term_posns, self.flat_array[1].max()) class PosnBitArrayBuilder: def __init__(self): self.term_posns = defaultdict(list) self.term_posn_doc_ids = defaultdict(list) self.max_doc_id = 0 def add_posns(self, doc_id: int, term_id: int, posns: List[int]): doc_ids = [doc_id] * len(posns) self.term_posns[term_id].extend(posns) self.term_posn_doc_ids[term_id].extend(doc_ids) def ensure_capacity(self, doc_id): self.max_doc_id = max(self.max_doc_id, doc_id) def build(self, check=False): encoded_term_posns = {} for term_id, posns in self.term_posns.items(): if len(posns) == 0: posns = np.asarray([], dtype=np.uint32).flatten() elif isinstance(posns, list): posns_arr = np.asarray(posns, dtype=np.uint32).flatten() posns = posns_arr doc_ids = self.term_posn_doc_ids[term_id] if isinstance(doc_ids, list): doc_ids = np.asarray(doc_ids, dtype=np.uint32) encoded = encoder.encode(keys=doc_ids, payload=posns) if check: decode_again = encoder.decode(encoded) docs_to_posns = dict(decode_again) doc_ids_again = [] posns_again = [] for doc_id, posns_dec in docs_to_posns.items(): for posn in posns_dec: doc_ids_again.append(doc_id) posns_again.append(posn) assert np.array_equal(doc_ids_again, doc_ids) assert np.array_equal(posns, posns_again) encoded_term_posns[term_id] = encoded return PosnBitArray(encoded_term_posns, self.max_doc_id) class PosnBitArrayAlreadyEncBuilder: def __init__(self): self.encoded_term_posns = {} self.max_doc_id = 0 def add_posns(self, doc_id: int, term_id: int, posns): self.encoded_term_posns[term_id] = posns def ensure_capacity(self, doc_id): self.max_doc_id = max(self.max_doc_id, doc_id) def build(self, check=False): return PosnBitArray(self.encoded_term_posns, self.max_doc_id) def index_range(rng, key): if key is None: return rng if isinstance(rng, np.ndarray): return rng[key] if isinstance(key, slice): return rng[key] elif isinstance(key, numbers.Number): return rng[key] elif isinstance(key, np.ndarray): try: # UNFORTUNATE COPY r_val = np.asarray(list(rng))[key] return r_val except IndexError as e: raise e # Last resort # UNFORTUNATE COPY # Here probably elipses or a tuple of various things return np.asarray(list(rng))[key] class PosnBitArray: def __init__(self, encoded_term_posns, max_doc_id: int): self.encoded_term_posns = encoded_term_posns self.max_doc_id = max_doc_id self.docfreq_cache : Dict[int, np.uint64] = {} self.termfreq_cache : Dict[int, Tuple[np.ndarray, np.ndarray]] = {} def copy(self): new = PosnBitArray(deepcopy(self.encoded_term_posns), self.max_doc_id) return new def concat(self, other): """Merge other into self. Assumes other's doc ids are not overlapping with self's doc ids. """ # Shared terms shared_terms = set(self.encoded_term_posns.keys()).intersection(set(other.encoded_term_posns.keys())) for term_id in shared_terms: # Append then sort self.encoded_term_posns[term_id] = np.concatenate([self.encoded_term_posns[term_id], other.encoded_term_posns[term_id]]) self.encoded_term_posns[term_id].sort() only_other_terms = set(other.encoded_term_posns.keys()).difference(set(self.encoded_term_posns.keys())) for term_id in only_other_terms: self.encoded_term_posns[term_id] = other.encoded_term_posns[term_id] self.max_doc_id = max(self.max_doc_id, other.max_doc_id) # Empty caches self.termfreq_cache = {} self.docfreq_cache = {} def slice(self, key): sliced_term_posns = {} doc_ids = convert_keys(key) max_doc_id = np.max(doc_ids) for term_id, posns in self.encoded_term_posns.items(): encoded = self.encoded_term_posns[term_id] assert len(encoded.shape) == 1 sliced_term_posns[term_id] = encoder.slice(encoded, keys=doc_ids) return PosnBitArray(sliced_term_posns, max_doc_id) def __getitem__(self, key): return self.slice(key) def merge(self, other): # Unique terms unique_terms = set(self.encoded_term_posns.keys()).union(set(other.encoded_term_posns.keys())) for term_id in unique_terms: if term_id not in other.encoded_term_posns: continue elif term_id not in self.encoded_term_posns: self.encoded_term_posns[term_id] = other.encoded_term_posns[term_id] else: posns_self = self.encoded_term_posns[term_id] posns_other = other.encoded_term_posns[term_id] self.encoded_term_posns[term_id] = snp.merge(posns_self, posns_other) self.max_doc_id = self.max_doc_id + other.max_doc_id # Empty caches self.termfreq_cache = {} self.docfreq_cache = {} def doc_encoded_posns(self, term_id: int, doc_id: int) -> np.ndarray: term_posns = encoder.slice(self.encoded_term_posns[term_id], keys=np.asarray([doc_id], dtype=np.uint64)) return term_posns def phrase_freqs(self, term_ids: List[int], phrase_freqs: np.ndarray, doc_ids: np.ndarray) -> np.ndarray: if len(term_ids) < 2: raise ValueError("Must have at least two terms") if phrase_freqs.shape[0] == self.max_doc_id + 1: enc_term_posns = [self.encoded_term_posns[term_id] for term_id in term_ids] else: enc_term_posns = [encoder.slice(self.encoded_term_posns[term_id], keys=doc_ids.view(np.uint64)) for term_id in term_ids] return compute_phrase_freqs(enc_term_posns, phrase_freqs) def positions(self, term_id: int, doc_ids) -> Union[List[np.ndarray], np.ndarray]: if isinstance(doc_ids, numbers.Number): doc_ids = np.asarray([doc_ids]) try: np_doc_ids = convert_keys(doc_ids) term_posns = encoder.slice(self.encoded_term_posns[term_id], keys=np_doc_ids) except KeyError: r_val = [np.array([], dtype=np.uint32) for doc_id in doc_ids] if len(r_val) == 1 and len(doc_ids) == 1 and isinstance(doc_ids[0], numbers.Number): return [r_val[0]] return r_val decoded = encoder.decode(encoded=term_posns, get_keys=True) if len(decoded) == 0: return [np.array([], dtype=np.uint32)] if len(decoded) != len(doc_ids): # Fill non matches decoded = cast(List[Tuple[np.uint64, np.ndarray]], decoded) as_dict: Dict[np.uint64, np.ndarray] = dict(decoded) decs = [] for doc_id in doc_ids: if doc_id in as_dict: decs.append(as_dict[doc_id]) else: decs.append(np.array([], dtype=np.uint32)) return decs else: decs = [dec[1] for dec in decoded] return decs def termfreqs(self, term_id: int, doc_ids: Optional[np.ndarray] = None) -> Tuple[np.ndarray, np.ndarray]: """Count term freqs using unique positions.""" if doc_ids is None: return self._termfreqs_with_cache(term_id) encoded = self.encoded_term_posns[term_id] term_posns = encoded term_posns = encoder.slice(encoded, keys=doc_ids.astype(np.uint64)) return self._computed_term_freqs(term_posns) def _computed_term_freqs(self, term_posns) -> Tuple[np.ndarray, np.ndarray]: doc_ids = encoder.keys(term_posns) change_indices = np.nonzero(np.diff(doc_ids))[0] change_indices = np.concatenate((np.asarray([0]), change_indices + 1)) posns = term_posns & encoder.payload_lsb_mask bit_counts = bit_count64(posns) term_freqs = np.add.reduceat(bit_counts, change_indices) return sorted_unique(doc_ids), term_freqs def _termfreqs_with_cache(self, term_id: int) -> Tuple[np.ndarray, np.ndarray]: try: return self.termfreq_cache[term_id] except <fim_suffix>KeyError: term_posns = self.encoded_term_posns[term_id] doc_ids, term_freqs = self._computed_term_freqs(term_posns) if self._is_cached(term_id): self.termfreq_cache[term_id] = (doc_ids, term_freqs) return doc_ids, term_freqs def _is_cached(self, term_id: int) -> bool: return term_id in self.docfreq_cache def _docfreq_from_cache(self, term_id: int) -> np.uint64: return self.docfreq_cache[term_id] def _maybe_cache_docfreq(self, term_id: int, docfreq: np.uint64): if self.max_doc_id >= 100000 and docfreq > (self.max_doc_id // 100): self.docfreq_cache[term_id] = docfreq def docfreq(self, term_id: int) -> np.uint64: try: return self.docfreq_cache[term_id] except KeyError: encoded = self.encoded_term_posns[term_id] docfreq = np.uint64(encoder.keys_unique(encoded).size) self._maybe_cache_docfreq(term_id, docfreq) return docfreq def insert(self, key, term_ids_to_posns, is_encoded=False): new_posns = PosnBitArrayBuilder() if is_encoded: new_posns = PosnBitArrayAlreadyEncBuilder() max_doc_id = 0 for doc_id, new_posns_row in enumerate(term_ids_to_posns): for term_id, positions in new_posns_row: new_posns.add_posns(doc_id, term_id, positions) max_doc_id = max(doc_id, max_doc_id) new_posns.max_doc_id = max_doc_id ins_arr = new_posns.build() self.merge(ins_arr) @property def nbytes(self): arr_bytes = 0 for doc_id, posn in self.encoded_term_posns.items(): arr_bytes += posn.nbytes for term_id, (doc_ids, term_freqs) in self.termfreq_cache.items(): arr_bytes += doc_ids.nbytes arr_bytes += term_freqs.nbytes for term_id, docfreq in self.docfreq_cache.items(): arr_bytes += docfreq.nbytes return arr_bytes <fim_middle>
null
CATCH
complete_current_header_empty_completion
<filename>searcharray/searcharray/phrase/middle_out.py<fim_prefix>"""Encode positions in bits along with some neighboring information for wrapping. See this notebook for motivation: https://colab.research.google.com/drive/10tIEkdlCE_1J_CcgEcV0jkLfBc-0H4am?authuser=1#scrollTo=XWzy-n9dF3PG """ import numpy as np import sortednp as snp from copy import deepcopy from typing import List, Tuple, Dict, Union, cast, Optional from searcharray.utils.roaringish import RoaringishEncoder, convert_keys, sorted_unique import numbers import logging from collections import defaultdict from searcharray.utils.bitcount import bit_count64 logger = logging.getLogger(__name__) # When running in pytest import sys # noqa handler = logging.StreamHandler(sys.stdout) handler.setLevel(logging.ERROR) formatter = logging.Formatter("[%(filename)s:%(lineno)s - %(funcName)20s() ] %(message)s") handler.setFormatter(formatter) logger.addHandler(handler) logger.setLevel(logging.ERROR) encoder = RoaringishEncoder() # To not constantly type coerce _64 = np.uint64(64) _2 = np.uint64(2) _1 = np.uint64(1) _0 = np.uint64(0) _neg1 = np.int64(-1) MAX_POSN = encoder.max_payload def inner_bigram_freqs(lhs: np.ndarray, rhs: np.ndarray, phrase_freqs: np.ndarray) -> Tuple[np.ndarray, np.ndarray]: """Count bigram matches between two encoded arrays, within a 64 bit word with same MSBs. Returns: -------- count: number of matches per doc rhs_next: the next rhs array to continue matching """ lhs_int, rhs_int = encoder.intersect(lhs, rhs) lhs_doc_ids = encoder.keys(lhs_int) if len(lhs_int) != len(rhs_int): raise ValueError("Encoding error, MSBs apparently are duplicated among your encoded posn arrays.") if len(lhs_int) == 0: return phrase_freqs, rhs_int same_term = (len(lhs_int) == len(rhs_int) and lhs_int[0] == rhs_int[0]) if same_term: # Find adjacent matches rhs_shift = rhs_int << _1 overlap = lhs_int & rhs_shift overlap = encoder.payload_lsb(overlap) adjacents = bit_count64(overlap).astype(np.int64) adjacents -= -np.floor_divide(adjacents, -2) # ceiling divide phrase_freqs[lhs_doc_ids] += adjacents return phrase_freqs, rhs_int overlap_bits = (lhs_int & encoder.payload_lsb_mask) & ((rhs_int & encoder.payload_lsb_mask) >> _1) rhs_next2 = (overlap_bits << _1) & encoder.payload_lsb_mask rhs_next2 |= (rhs_int & (encoder.key_mask | encoder.payload_msb_mask)) phrase_freqs2 = phrase_freqs.copy() matches2 = overlap_bits > 0 if np.any(matches2): transitions = np.argwhere(np.diff(lhs_doc_ids[matches2]) != 0).flatten() + 1 transitions = np.insert(transitions, 0, 0) counted_bits = bit_count64(overlap_bits[matches2]) reduced = np.add.reduceat(counted_bits, transitions) phrase_freqs2[np.unique(lhs_doc_ids[matches2])] += reduced return phrase_freqs2, rhs_next2 def adjacent_bigram_freqs(lhs: np.ndarray, rhs: np.ndarray, phrase_freqs: np.ndarray) -> Tuple[np.ndarray, np.ndarray]: """Count bigram matches between two encoded arrays where they occur in adjacent 64 bit words. Returns: -------- count: number of matches per doc rhs_next: the next rhs array to continue matching """ lhs_int, rhs_int = encoder.intersect_rshift(lhs, rhs, rshift=_neg1) lhs_doc_ids = encoder.keys(lhs_int) # lhs lsb set and rhs lsb's most significant bit set upper_bit = _1 << (encoder.payload_lsb_bits - _1) matches = ((lhs_int & upper_bit) != 0) & ((rhs_int & _1) != 0) unique, counts = np.unique(lhs_doc_ids[matches], return_counts=True) phrase_freqs[unique] += counts rhs_next = rhs_int rhs_next[~matches] |= ~encoder.payload_lsb_mask rhs_next[matches] |= (encoder.payload_lsb_mask & _1) return phrase_freqs, rhs_next def bigram_freqs(lhs: np.ndarray, rhs: np.ndarray, phrase_freqs: np.ndarray) -> Tuple[np.ndarray, np.ndarray]: """Count bigram matches between two encoded arrays. Returns: -------- count: number of matches per doc rhs_next: the next rhs array to continue matching """ # Combine lhs and rhs matches from two strategies phrase_freqs, rhs_next_inner = inner_bigram_freqs(lhs, rhs, phrase_freqs) phrase_freqs, rhs_next_adj = adjacent_bigram_freqs(lhs, rhs, phrase_freqs) rhs_next = np.sort(np.concatenate([rhs_next_inner, rhs_next_adj])) # Combine return phrase_freqs, rhs_next def trim_phrase_search(encoded_posns: List[np.ndarray], phrase_freqs: np.ndarray) -> List[np.ndarray]: """Trim long phrases by searching the rarest terms first.""" # Start with rarest term shortest_keys = None shortest_idx = None min_len = 1e100 max_len = 0 for idx, enc_posn in enumerate(encoded_posns): if len(enc_posn) < min_len: shortest_keys = encoder.keys(enc_posn) shortest_idx = idx min_len = len(enc_posn) if len(enc_posn) > max_len: max_len = len(enc_posn) if shortest_keys is None: return encoded_posns for enc_posn_idx in range(len(encoded_posns)): if enc_posn_idx == shortest_idx: continue if len(encoded_posns[enc_posn_idx]) > (10 * min_len): encoded_posns[enc_posn_idx] = encoder.slice(encoded_posns[enc_posn_idx], shortest_keys) return encoded_posns def compute_phrase_freqs(encoded_posns: List[np.ndarray], phrase_freqs: np.ndarray) -> np.ndarray: if len(encoded_posns) < 2: raise ValueError("phrase must have at least two terms") # Trim long phrases by searching the rarest terms first if len(encoded_posns) > 3: encoded_posns = trim_phrase_search(encoded_posns, phrase_freqs) mask = np.ones(len(phrase_freqs), dtype=bool) lhs = encoded_posns[0] for rhs in encoded_posns[1:]: # Only count the count of the last bigram (ignoring the ones where priors did not match) phrase_freqs[mask] = 0 phrase_freqs, lhs = bigram_freqs(lhs, rhs, phrase_freqs) mask &= (phrase_freqs > 0) phrase_freqs[~mask] = 0 return phrase_freqs class PosnBitArrayFromFlatBuilder: """ Build from sorted array shape num terms x 3. 0th is term id 1st is doc id 2nd is posn Sorted by term id then posns """ def __init__(self, flat_array: np.ndarray): self.flat_array = flat_array def build(self): """Slice the flat array into a 2d array of doc ids and posns.""" term_boundaries = np.argwhere(np.diff(self.flat_array[0]) > 0).flatten() + 1 term_boundaries = np.concatenate([[0], term_boundaries, [len(self.flat_array[1])]]) encoded, enc_term_boundaries = encoder.encode(keys=self.flat_array[1].view(np.uint64), boundaries=term_boundaries[:-1], payload=self.flat_array[2].view(np.uint64)) term_ids = self.flat_array[0][term_boundaries[:-1]] encoded_term_posns = {} for into_terms, (beg_idx, end_idx) in enumerate(zip(enc_term_boundaries[:-1], enc_term_boundaries[1:])): sliced = encoded[beg_idx:end_idx] encoded_term_posns[term_ids[into_terms]] = sliced return PosnBitArray(encoded_term_posns, self.flat_array[1].max()) class PosnBitArrayBuilder: def __init__(self): self.term_posns = defaultdict(list) self.term_posn_doc_ids = defaultdict(list) self.max_doc_id = 0 def add_posns(self, doc_id: int, term_id: int, posns: List[int]): doc_ids = [doc_id] * len(posns) self.term_posns[term_id].extend(posns) self.term_posn_doc_ids[term_id].extend(doc_ids) def ensure_capacity(self, doc_id): self.max_doc_id = max(self.max_doc_id, doc_id) def build(self, check=False): encoded_term_posns = {} for term_id, posns in self.term_posns.items(): if len(posns) == 0: posns = np.asarray([], dtype=np.uint32).flatten() elif isinstance(posns, list): posns_arr = np.asarray(posns, dtype=np.uint32).flatten() posns = posns_arr doc_ids = self.term_posn_doc_ids[term_id] if isinstance(doc_ids, list): doc_ids = np.asarray(doc_ids, dtype=np.uint32) encoded = encoder.encode(keys=doc_ids, payload=posns) if check: decode_again = encoder.decode(encoded) docs_to_posns = dict(decode_again) doc_ids_again = [] posns_again = [] for doc_id, posns_dec in docs_to_posns.items(): for posn in posns_dec: doc_ids_again.append(doc_id) posns_again.append(posn) assert np.array_equal(doc_ids_again, doc_ids) assert np.array_equal(posns, posns_again) encoded_term_posns[term_id] = encoded return PosnBitArray(encoded_term_posns, self.max_doc_id) class PosnBitArrayAlreadyEncBuilder: def __init__(self): self.encoded_term_posns = {} self.max_doc_id = 0 def add_posns(self, doc_id: int, term_id: int, posns): self.encoded_term_posns[term_id] = posns def ensure_capacity(self, doc_id): self.max_doc_id = max(self.max_doc_id, doc_id) def build(self, check=False): return PosnBitArray(self.encoded_term_posns, self.max_doc_id) def index_range(rng, key): if key is None: return rng if isinstance(rng, np.ndarray): return rng[key] if isinstance(key, slice): return rng[key] elif isinstance(key, numbers.Number): return rng[key] elif isinstance(key, np.ndarray): try: # UNFORTUNATE COPY r_val = np.asarray(list(rng))[key] return r_val except IndexError as e: raise e # Last resort # UNFORTUNATE COPY # Here probably elipses or a tuple of various things return np.asarray(list(rng))[key] class PosnBitArray: def __init__(self, encoded_term_posns, max_doc_id: int): self.encoded_term_posns = encoded_term_posns self.max_doc_id = max_doc_id self.docfreq_cache : Dict[int, np.uint64] = {} self.termfreq_cache : Dict[int, Tuple[np.ndarray, np.ndarray]] = {} def copy(self): new = PosnBitArray(deepcopy(self.encoded_term_posns), self.max_doc_id) return new def concat(self, other): """Merge other into self. Assumes other's doc ids are not overlapping with self's doc ids. """ # Shared terms shared_terms = set(self.encoded_term_posns.keys()).intersection(set(other.encoded_term_posns.keys())) for term_id in shared_terms: # Append then sort self.encoded_term_posns[term_id] = np.concatenate([self.encoded_term_posns[term_id], other.encoded_term_posns[term_id]]) self.encoded_term_posns[term_id].sort() only_other_terms = set(other.encoded_term_posns.keys()).difference(set(self.encoded_term_posns.keys())) for term_id in only_other_terms: self.encoded_term_posns[term_id] = other.encoded_term_posns[term_id] self.max_doc_id = max(self.max_doc_id, other.max_doc_id) # Empty caches self.termfreq_cache = {} self.docfreq_cache = {} def slice(self, key): sliced_term_posns = {} doc_ids = convert_keys(key) max_doc_id = np.max(doc_ids) for term_id, posns in self.encoded_term_posns.items(): encoded = self.encoded_term_posns[term_id] assert len(encoded.shape) == 1 sliced_term_posns[term_id] = encoder.slice(encoded, keys=doc_ids) return PosnBitArray(sliced_term_posns, max_doc_id) def __getitem__(self, key): return self.slice(key) def merge(self, other): # Unique terms unique_terms = set(self.encoded_term_posns.keys()).union(set(other.encoded_term_posns.keys())) for term_id in unique_terms: if term_id not in other.encoded_term_posns: continue elif term_id not in self.encoded_term_posns: self.encoded_term_posns[term_id] = other.encoded_term_posns[term_id] else: posns_self = self.encoded_term_posns[term_id] posns_other = other.encoded_term_posns[term_id] self.encoded_term_posns[term_id] = snp.merge(posns_self, posns_other) self.max_doc_id = self.max_doc_id + other.max_doc_id # Empty caches self.termfreq_cache = {} self.docfreq_cache = {} def doc_encoded_posns(self, term_id: int, doc_id: int) -> np.ndarray: term_posns = encoder.slice(self.encoded_term_posns[term_id], keys=np.asarray([doc_id], dtype=np.uint64)) return term_posns def phrase_freqs(self, term_ids: List[int], phrase_freqs: np.ndarray, doc_ids: np.ndarray) -> np.ndarray: if len(term_ids) < 2: raise ValueError("Must have at least two terms") if phrase_freqs.shape[0] == self.max_doc_id + 1: enc_term_posns = [self.encoded_term_posns[term_id] for term_id in term_ids] else: enc_term_posns = [encoder.slice(self.encoded_term_posns[term_id], keys=doc_ids.view(np.uint64)) for term_id in term_ids] return compute_phrase_freqs(enc_term_posns, phrase_freqs) def positions(self, term_id: int, doc_ids) -> Union[List[np.ndarray], np.ndarray]: if isinstance(doc_ids, numbers.Number): doc_ids = np.asarray([doc_ids]) try: np_doc_ids = convert_keys(doc_ids) term_posns = encoder.slice(self.encoded_term_posns[term_id], keys=np_doc_ids) e<fim_suffix>xcept KeyError: r_val = [np.array([], dtype=np.uint32) for doc_id in doc_ids] if len(r_val) == 1 and len(doc_ids) == 1 and isinstance(doc_ids[0], numbers.Number): return [r_val[0]] return r_val decoded = encoder.decode(encoded=term_posns, get_keys=True) if len(decoded) == 0: return [np.array([], dtype=np.uint32)] if len(decoded) != len(doc_ids): # Fill non matches decoded = cast(List[Tuple[np.uint64, np.ndarray]], decoded) as_dict: Dict[np.uint64, np.ndarray] = dict(decoded) decs = [] for doc_id in doc_ids: if doc_id in as_dict: decs.append(as_dict[doc_id]) else: decs.append(np.array([], dtype=np.uint32)) return decs else: decs = [dec[1] for dec in decoded] return decs def termfreqs(self, term_id: int, doc_ids: Optional[np.ndarray] = None) -> Tuple[np.ndarray, np.ndarray]: """Count term freqs using unique positions.""" if doc_ids is None: return self._termfreqs_with_cache(term_id) encoded = self.encoded_term_posns[term_id] term_posns = encoded term_posns = encoder.slice(encoded, keys=doc_ids.astype(np.uint64)) return self._computed_term_freqs(term_posns) def _computed_term_freqs(self, term_posns) -> Tuple[np.ndarray, np.ndarray]: doc_ids = encoder.keys(term_posns) change_indices = np.nonzero(np.diff(doc_ids))[0] change_indices = np.concatenate((np.asarray([0]), change_indices + 1)) posns = term_posns & encoder.payload_lsb_mask bit_counts = bit_count64(posns) term_freqs = np.add.reduceat(bit_counts, change_indices) return sorted_unique(doc_ids), term_freqs def _termfreqs_with_cache(self, term_id: int) -> Tuple[np.ndarray, np.ndarray]: try: return self.termfreq_cache[term_id] except KeyError: term_posns = self.encoded_term_posns[term_id] doc_ids, term_freqs = self._computed_term_freqs(term_posns) if self._is_cached(term_id): self.termfreq_cache[term_id] = (doc_ids, term_freqs) return doc_ids, term_freqs def _is_cached(self, term_id: int) -> bool: return term_id in self.docfreq_cache def _docfreq_from_cache(self, term_id: int) -> np.uint64: return self.docfreq_cache[term_id] def _maybe_cache_docfreq(self, term_id: int, docfreq: np.uint64): if self.max_doc_id >= 100000 and docfreq > (self.max_doc_id // 100): self.docfreq_cache[term_id] = docfreq def docfreq(self, term_id: int) -> np.uint64: try: return self.docfreq_cache[term_id] except KeyError: encoded = self.encoded_term_posns[term_id] docfreq = np.uint64(encoder.keys_unique(encoded).size) self._maybe_cache_docfreq(term_id, docfreq) return docfreq def insert(self, key, term_ids_to_posns, is_encoded=False): new_posns = PosnBitArrayBuilder() if is_encoded: new_posns = PosnBitArrayAlreadyEncBuilder() max_doc_id = 0 for doc_id, new_posns_row in enumerate(term_ids_to_posns): for term_id, positions in new_posns_row: new_posns.add_posns(doc_id, term_id, positions) max_doc_id = max(doc_id, max_doc_id) new_posns.max_doc_id = max_doc_id ins_arr = new_posns.build() self.merge(ins_arr) @property def nbytes(self): arr_bytes = 0 for doc_id, posn in self.encoded_term_posns.items(): arr_bytes += posn.nbytes for term_id, (doc_ids, term_freqs) in self.termfreq_cache.items(): arr_bytes += doc_ids.nbytes arr_bytes += term_freqs.nbytes for term_id, docfreq in self.docfreq_cache.items(): arr_bytes += docfreq.nbytes return arr_bytes <fim_middle>
null
CATCH
complete_current_header_empty_completion
<filename>searcharray/searcharray/postings.py<fim_prefix>"""Tokenized, searchable text as a pandas dtype.""" import pandas as pd import numbers from pandas.api.extensions import ExtensionDtype, ExtensionArray, register_extension_dtype from pandas.api.types import is_list_like from pandas.api.extensions import take import json from collections import Counter import warnings import logging from typing import List, Union, Optional, Iterable import numpy as np from searcharray.phrase.scan_merge import scan_merge_ins from searcharray.phrase.posn_diffs import compute_phrase_freqs from searcharray.phrase.middle_out import PosnBitArray from searcharray.similarity import Similarity, default_bm25 from searcharray.indexing import build_index_from_tokenizer, build_index_from_terms_list from searcharray.term_dict import TermMissingError logger = logging.getLogger(__name__) # When running in pytest import sys # noqa handler = logging.StreamHandler(sys.stdout) handler.setLevel(logging.ERROR) formatter = logging.Formatter("[%(filename)s:%(lineno)s - %(funcName)20s() ] %(message)s") handler.setFormatter(formatter) logger.addHandler(handler) logger.setLevel(logging.ERROR) class Terms: """An indexed search doc - a single bag of tokenized words and positions.""" def __init__(self, postings, doc_len: int = 0, posns: Optional[dict] = None, encoded=False): self.postings = postings self.posns = None self.encoded = encoded self.doc_len = doc_len self.posns = posns def _validate_posns(self): # (For testing/assertions) - Confirm every term in positions also in postings if self.posns is None: return for term in self.posns: if term not in self.postings: raise ValueError(f"Term {term} in positions but not in postings. ") def termfreq(self, token): return self.postings[token] def terms(self): return self.postings.items() def positions(self, term=None): if self.posns is None: return {} if term is None: posns = self.posns.items() else: posns = self.posns[term] return posns def raw_positions(self, term_dict, term=None): if self.posns is None: return {} if term is None: posns = [(term_dict.get_term_id(term), posns) for term, posns in self.posns.items()] else: posns = [(term_dict.get_term_id(term), self.posns[term])] return posns def tf_to_dense(self, term_dict): """Convert to a dense vector of term frequencies.""" dense = np.zeros(len(term_dict)) for term, freq in self.terms(): dense[term_dict.get_term_id(term)] = freq return dense def __len__(self): return len(self.postings) def __repr__(self): posting_keys = set(self.postings.keys()) rval = f"Terms({posting_keys})" return rval def __str__(self): return repr(self) def __eq__(self, other): # Flip to the other implementation if we're comparing to a SearchArray # to get a boolean array back if isinstance(other, SearchArray): return other == self same_postings = isinstance(other, Terms) and self.postings == other.postings if same_postings and self.doc_len == other.doc_len: return True def __lt__(self, other): # return isinstance(other, Terms) and hash(self) < hash(other) keys_both = set(self.postings.keys()).union(set(other.postings.keys())) # Sort lexically keys_both = sorted(keys_both) # Iterate as if these are two vectors of the same large dimensional vector sparse for key in keys_both: lhs_val = 0 rhs_val = 0 try: lhs_val = self.postings[key] except KeyError: pass try: rhs_val = other.postings[key] except KeyError: pass if lhs_val < rhs_val: return True elif lhs_val > rhs_val: return False else: continue return False def __le__(self, other): return self < other or self == other def __gt__(self, other): return not (self < other) and self != other def __hash__(self): return hash(json.dumps(self.postings, sort_keys=True)) class TermsDtype(ExtensionDtype): """Pandas dtype for terms.""" name = 'tokenized_text' type = Terms kind = 'O' @classmethod def construct_from_string(cls, string): if not isinstance(string, str): raise TypeError( "'construct_from_string' expects a string, got {}".format(type(string)) ) elif string == cls.name: return cls() else: raise TypeError( "Cannot construct a '{}' from '{}'".format(cls.__name__, string) ) @classmethod def construct_array_type(cls): return SearchArray def __repr__(self): return 'TermsDtype()' @property def na_value(self): return Terms({}) def valid_value(self, value): return isinstance(value, dict) or pd.isna(value) or isinstance(value, Terms) register_extension_dtype(TermsDtype) def ws_tokenizer(string): if pd.isna(string): return [] if not isinstance(string, str): raise ValueError("Expected a string") return string.split() def _row_to_postings_row(doc_id, row, doc_len, term_dict, posns: PosnBitArray): tfs = {} labeled_posns = {} for term_idx in row.cols: term = term_dict.get_term(term_idx) tfs[term] = 1 enc_term_posns = posns.doc_encoded_posns(term_idx, doc_id=doc_id) labeled_posns[term] = enc_term_posns result = Terms(tfs, posns=labeled_posns, doc_len=doc_len, encoded=True) return result class SearchArray(ExtensionArray): """An array of tokenized text (Termss).""" dtype = TermsDtype() def __init__(self, postings, tokenizer=ws_tokenizer, avoid_copies=True): # Check dtype, raise TypeError if not is_list_like(postings): raise TypeError("Expected list-like object, got {}".format(type(postings))) self.avoid_copies = avoid_copies self.tokenizer = tokenizer self.term_mat, self.posns, \ self.term_dict, self.avg_doc_length, \ self.doc_lens = build_index_from_terms_list(postings, Terms) @classmethod def index(cls, array: Iterable, tokenizer=ws_tokenizer, truncate=False, batch_size=100000, avoid_copies=True) -> 'SearchArray': """Index an array of strings using tokenizer.""" if not is_list_like(array): raise TypeError("Expected list-like object, got {}".format(type(array))) term_mat, posns, term_dict, avg_doc_length, doc_lens =\ build_index_from_tokenizer(array, tokenizer, batch_size=batch_size, truncate=truncate) postings = cls([], tokenizer=tokenizer, avoid_copies=avoid_copies) postings.term_mat = term_mat postings.posns = posns postings.term_dict = term_dict postings.avg_doc_length = avg_doc_length postings.doc_lens = doc_lens return postings @classmethod def _from_sequence(cls, scalars, dtype=None, copy=False): """Construct a new SearchArray from a sequence of scalars (PostingRow or convertible into).""" if dtype is not None: if not isinstance(dtype, TermsDtype): return scalars if isinstance(scalars, np.ndarray) and scalars.dtype == TermsDtype(): return cls(scalars) # String types elif isinstance(scalars, np.ndarray) and scalars.dtype.kind in 'US': return cls(scalars) # Other objects elif isinstance(scalars, np.ndarray) and scalars.dtype != object: return scalars return cls(scalars) def memory_usage(self, deep=False): """Return memory usage of this array in bytes.""" return self.nbytes @property def nbytes(self): return self.term_mat.nbytes + self.posns.nbytes + self.doc_lens.nbytes + self.term_dict.nbytes def __getitem__(self, key): key = pd.api.indexers.check_array_indexer(self, key) # Want to take rows of term freqs if isinstance(key, numbers.Integral): try: rows = self.term_mat[key] doc_len = self.doc_lens[key] doc_id = key if doc_id < 0: doc_id += len(self) return _row_to_postings_row(doc_id, rows[0], doc_len, self.term_dict, self.posns) except IndexError: raise IndexError("index out of bounds") else: # Construct a sliced view of this array sliced_tfs = self.term_mat.slice(key) sliced_posns = self.posns.slice(sliced_tfs.rows) if not self.avoid_copies else self.posns arr = SearchArray([], tokenizer=self.tokenizer) arr.term_mat = sliced_tfs arr.doc_lens = self.doc_lens[key] arr.posns = sliced_posns arr.term_dict = self.term_dict arr.avg_doc_length = self.avg_doc_length return arr def __setitem__(self, key, value): """Set an item in the array.""" key = pd.api.indexers.check_array_indexer(self, key) if isinstance(value, pd.Series): value = value.values if isinstance(value, pd.DataFrame): value = value.values.flatten() if isinstance(value, SearchArray): value = value.to_numpy() if isinstance(value, list): value = np.asarray(value, dtype=object) if not isinstance(value, np.ndarray) and not self.dtype.valid_value(value): raise ValueError(f"Cannot set non-object array to SearchArray -- you passed type:{type(value)} -- {value}") # Cant set a single value to an array if isinstance(key, numbers.Integral) and isinstance(value, np.ndarray): raise ValueError("Cannot set a single value to an array") try: is_encoded = False posns = None term_mat = np.asarray([]) doc_lens = np.asarray([]) if isinstance(value, float): term_mat = np.asarray([value]) doc_lens = np.asarray([0]) elif isinstance(value, Terms): term_mat = np.asarray([value.tf_to_dense(self.term_dict)]) doc_lens = np.asarray([value.doc_len]) is_encoded = value.encoded posns = [value.raw_positions(self.term_dict)] elif isinstance(value, np.ndarray): term_mat = np.asarray([x.tf_to_dense(self.term_dict) for x in value]) doc_lens = np.asarray([x.doc_len for x in value]) is_encoded = value[0].encoded if len(value) > 0 else False posns = [x.raw_positions(self.term_dict) for x in value] np.nan_to_num(term_mat, copy=False, nan=0) self.term_mat[key] = term_mat self.doc_lens[key] = doc_lens if posns is not None: self.posns.insert(key, posns, is_encoded) # Assume we have a positions for each term, doc pair. We can just update it. # Otherwise we would have added new terms except TermMissingError: self._add_new_terms(key, value) def _add_new_terms(self, key, value): msg = """Adding new terms! This might not be good if you tokenized this new text with a different tokenizer. Also. This is slow.""" warnings.warn(msg) scan_value = value if isinstance(value, Terms): scan_value = np.asarray([value]) for row in scan_value: for term in row.terms(): self.term_dict.add_term(term[0]) self.term_mat.resize((self.term_mat.shape[0], len(self.term_dict))) # Ensure posns_lookup has at least max self.posns self[key] = value def value_counts( self, dropna: bool = True, ): if dropna: counts = Counter(self[:]) counts.pop(Terms({}), None) else: counts = Counter(self[:]) return pd.Series(counts) def __len__(self): len_rval = len(self.term_mat.rows) return len_rval def __ne__(self, other): if isinstance(other, pd.DataFrame) or isinstance(other, pd.Series) or isinstance(other, pd.Index): return NotImplemented return ~(self == other) def __eq__(self, other): """Return a boolean numpy array indicating elementwise equality.""" # When other is a dataframe or series, not implemented if isinstance(other, pd.DataFrame) or isinstance(other, pd.Series) or isinstance(other, pd.Index): return NotImplemented # When other is an ExtensionArray if isinstance(other, SearchArray): if len(self) != len(other): return False elif len(other) == 0: return np.array([], dtype=bool) else: # Compatible term dicts, and same term freqs # (not looking at positions, maybe we should?) if self.term_dict.compatible(other.term_dict): return (self.term_mat == other.term_mat) & (self.doc_lens == other.doc_lens) else: return np.zeros(len(self), dtype=bool) # return np.array(self[:]) == np.array(other[:]) # When other is a scalar value elif isinstance(other, Terms): other = SearchArray([other], tokenizer=self.tokenizer) warnings.warn("Comparing a scalar value to a SearchArray. This is slow.") return np.array(self[:]) == np.array(other[:]) # When other is a sequence but not an ExtensionArray # its an array of dicts elif is_list_like(other): if len(self) != len(other): return False elif len(other) == 0: return np.array([], dtype=bool) # We actually don't know how it was tokenized other = SearchArray(other, tokenizer=self.tokenizer) return np.array(self[:]) == np.array(other[:]) # Return False where 'other' is neither the same length nor a scalar else: return np.full(len(self), False) def isna(self): # Every row with all 0s empties = self.doc_lens == 0 return empties def take(self, indices, allow_fill=False, fill_value=None): # Want to take rows of term freqs row_indices = np.arange(len(self.term_mat.rows)) # Take within the row indices themselves result_indices = take(row_indices, indices, allow_fill=allow_fill, fill_value=-1) if allow_fill and -1 in result_indices: if fill_value is None or pd.isna(fill_value): fill_value = Terms({}, encoded=True) to_fill_mask = result_indices == -1 # This is slow as it rebuilds all the term dictionaries # on the subsequent assignment lines # However, this case tends to be the exception for # most dataframe operations taken = SearchArray([fill_value] * len(result_indices)) taken[~to_fill_mask] = self[result_indices[~to_fill_mask]].copy() return taken else: taken = self[result_indices].copy() return taken def copy(self): postings_arr = SearchArray([], tokenizer=self.tokenizer) postings_arr.doc_lens = self.doc_lens.copy() postings_arr.term_mat = self.term_mat.copy() postings_arr.posns = self.posns postings_arr.term_dict = self.term_dict postings_arr.avg_doc_length = self.avg_doc_length if not self.avoid_copies: postings_arr.posns = self.posns.copy() postings_arr.term_dict = self.term_dict.copy() return postings_arr @classmethod def _concat_same_type(cls, to_concat): concatenated_data = np.concatenate([ea[:] for ea in to_concat]) return SearchArray(concatenated_data, tokenizer=to_concat[0].tokenizer) @classmethod def _from_factorized(cls, values, original): return cls(values) def _values_for_factorize(self): """Return an array and missing value suitable for factorization (ie grouping).""" arr = np.asarray(self[:], dtype=object) return arr, Terms({}) def _check_token_arg(self, token): if isinstance(token, str): return token elif isinstance(token, list) and len(token) == 1: return token[0] elif isinstance(token, list): return token else: raise TypeError("Expected a string or list of strings for phrases") # *********************************************************** # Search functionality # *********************************************************** def termfreqs(self, token: Union[List[str], str]) -> np.ndarray: token = self._check_token_arg(token) if isinstance(token, list): return self.phrase_freq(token) try: term_id = self.term_dict.get_term_id(token) matches = np.zeros(len(self), dtype=int) slice_of_rows = None if self.term_mat.subset: slice_of_rows = self.term_mat.rows doc_ids, termfreqs = self.posns.termfreqs(term_id, doc_ids=slice_of_rows) mask = np.isin(self.term_mat.rows, doc_ids) matches[mask] = termfreqs return matches else: doc_ids, termfreqs = self.posns.termfreqs(term_id, doc_ids=slice_of_rows) matches[doc_ids] = termfreqs return matches except Te<fim_suffix>rmMissingError: return np.zeros(len(self), dtype=int) def docfreq(self, token: str) -> int: if not isinstance(token, str): raise TypeError("Expected a string") # Count number of rows where the term appears try: return self.posns.docfreq(self.term_dict.get_term_id(token)) except TermMissingError: return 0 def doclengths(self) -> np.ndarray: return self.doc_lens def match(self, token: Union[List[str], str], slop: int = 1) -> np.ndarray: """Return a boolean numpy array indicating which elements contain the given term.""" token = self._check_token_arg(token) if isinstance(token, list): term_freq = self.phrase_freq(token) else: term_freq = self.termfreqs(token) return term_freq > 0 def score(self, token: Union[str, List[str]], similarity: Similarity = default_bm25) -> np.ndarray: """Score each doc using a similarity function. Parameters ---------- token : str or list of str of what to search (already tokenized) similarity : How to score the documents. Default is BM25. """ # Get term freqs per token token = self._check_token_arg(token) # For expensive toknes, we compute doc freq first, so we # cache them in the DF cache, to let TF cache know it should be cached tokens_l = [token] if isinstance(token, str) else token all_dfs = np.asarray([self.docfreq(token) for token in tokens_l]) tfs = self.termfreqs(token) token = self._check_token_arg(token) doc_lens = self.doclengths() scores = similarity(term_freqs=tfs, doc_freqs=all_dfs, doc_lens=doc_lens, avg_doc_lens=self.avg_doc_length, num_docs=len(self)) return scores def positions(self, token: str, key=None) -> List[np.ndarray]: """Return a list of lists of positions of the given term.""" term_id = self.term_dict.get_term_id(token) key = self.term_mat.rows[key] if key is not None else self.term_mat.rows posns = self.posns.positions(term_id, doc_ids=key) return posns def and_query(self, tokens: Union[List[str], List[List[str]]]) -> np.ndarray: """Return a mask on the postings array indicating which elements contain all terms.""" masks = [self.match(term) for term in tokens] mask = np.ones(len(self), dtype=bool) for curr_mask in masks: mask = mask & curr_mask return mask def or_query(self, tokens: Union[List[str], List[List[str]]], min_should_match: int = 1) -> np.ndarray: """Return a mask on the postings array indicating which elements contain all terms.""" masks = [self.match(term) for term in tokens] mask = np.sum(masks, axis=0) >= min_should_match return mask def phrase_freq(self, tokens: List[str], slop=1) -> np.ndarray: if slop == 1 and len(tokens) == len(set(tokens)): phrase_freqs = np.zeros(len(self)) try: doc_ids = self.term_mat.rows term_ids = [self.term_dict.get_term_id(token) for token in tokens] return self.posns.phrase_freqs(term_ids, doc_ids=doc_ids, phrase_freqs=phrase_freqs) except TermMissingError: return phrase_freqs else: return self.phrase_freq_every_diff(tokens, slop=slop) def phrase_freq_scan(self, tokens: List[str], mask=None, slop=1) -> np.ndarray: if mask is None: mask = self.and_query(tokens) if np.sum(mask) == 0: return mask # Gather positions posns = [self.positions(token, mask) for token in tokens] phrase_freqs = np.zeros(len(self)) phrase_freqs[mask] = scan_merge_ins(posns, phrase_freqs[mask], slop=slop) return phrase_freqs def phrase_freq_every_diff(self, tokens: List[str], slop=1) -> np.ndarray: phrase_freqs = -np.ones(len(self)) mask = self.and_query(tokens) phrase_freqs[~mask] = 0 if np.sum(mask) == 0: return phrase_freqs term_posns = [self.positions(term, mask) for term in tokens] for width in [10, 20, 30, 40]: phrase_freqs[mask] = compute_phrase_freqs(term_posns, phrase_freqs[mask], slop=slop, width=width) remaining_mask = phrase_freqs == -1 if np.any(remaining_mask): remainder_freqs = self.phrase_freq_scan(tokens, mask=remaining_mask, slop=slop) phrase_freqs[remaining_mask] = remainder_freqs[remaining_mask] return phrase_freqs <fim_middle>
null
CATCH
complete_current_header_empty_completion
<filename>searcharray/searcharray/solr.py<fim_prefix>"""Utility functions for Solr users of searcharray.""" import re import pandas as pd import numpy as np from typing import List, Optional, Dict, Tuple from searcharray.postings import SearchArray from searcharray.similarity import Similarity, default_bm25 def parse_min_should_match(num_clauses: int, spec: str) -> int: """Parse Solr's min should match (ie mm) spec. See this ChatGPT translation of mm code from Solr's Java code for parsing this https://chat.openai.com/share/76642aec-7e05-420f-a53a-83b8e2eea8fb Parameters ---------- num_clauses : int spec : str Returns ------- int : the number of clauses that must match """ def checked_parse_int(value, error_message): try: return int(value) except Va<fim_suffix>lueError: raise ValueError(error_message) result = num_clauses spec = spec.strip() if '<' in spec: # we have conditional spec(s) space_around_less_than_pattern = re.compile(r'\s*<\s*') spec = space_around_less_than_pattern.sub('<', spec) for s in spec.split(): parts = s.split('<', 1) if len(parts) < 2: raise ValueError("Invalid 'mm' spec: '" + s + "'. Expecting values before and after '<'") upper_bound = checked_parse_int(parts[0], "Invalid 'mm' spec. Expecting an integer.") if num_clauses <= upper_bound: return result else: result = parse_min_should_match(num_clauses, parts[1]) return result # otherwise, simple expression if '%' in spec: # percentage - assume the % was the last char. If not, let int() fail. spec = spec[:-1] percent = checked_parse_int(spec, "Invalid 'mm' spec. Expecting an integer.") calc = (result * percent) * (1 / 100) result = result + int(calc) if calc < 0 else int(calc) else: calc = checked_parse_int(spec, "Invalid 'mm' spec. Expecting an integer.") result = result + calc if calc < 0 else calc return min(num_clauses, max(result, 0)) def parse_field_boosts(field_lists: List[str]) -> dict: """Parse Solr's qf, pf, pf2, pf3 field boosts.""" if not field_lists: return {} out = {} carat_pattern = re.compile(r'\^') for field in field_lists: parts = carat_pattern.split(field) out[parts[0]] = None if len(parts) == 1 else float(parts[1]) return out def get_field(frame, field) -> SearchArray: if field not in frame.columns: raise ValueError(f"Field {field} not in dataframe") if not isinstance(frame[field].array, SearchArray): raise ValueError(f"Field {field} is not a searcharray field") return frame[field].array def parse_query_terms(frame: pd.DataFrame, query: str, query_fields: List[str]): search_terms: Dict[str, List[str]] = {} num_search_terms = 0 term_centric = True for field in query_fields: arr = get_field(frame, field) tokenizer = arr.tokenizer search_terms[field] = [] field_num_search_terms = 0 for posn, term in enumerate(tokenizer(query)): search_terms[field].append(term) field_num_search_terms += 1 if num_search_terms == 0: num_search_terms = field_num_search_terms elif field_num_search_terms != num_search_terms: term_centric = False return num_search_terms, search_terms, term_centric def _edismax_term_centric(frame: pd.DataFrame, query_fields: Dict[str, float], num_search_terms: int, search_terms: Dict[str, List[str]], mm: str, similarity: Similarity) -> Tuple[np.ndarray, str]: explain = [] term_scores = [] for term_posn in range(num_search_terms): max_scores = np.zeros(len(frame)) term_explain = [] for field, boost in query_fields.items(): term = search_terms[field][term_posn] post_arr = get_field(frame, field) field_term_score = post_arr.score(term, similarity=similarity) * (1 if boost is None else boost) boost_exp = f"{boost}" if boost is not None else "1" term_explain.append(f"{field}:{term}^{boost_exp}") max_scores = np.maximum(max_scores, field_term_score) term_scores.append(max_scores) explain.append("(" + " | ".join(term_explain) + ")") min_should_match = parse_min_should_match(num_search_terms, spec=mm) qf_scores = np.asarray(term_scores) matches_gt_mm = np.sum(qf_scores > 0, axis=0) >= min_should_match qf_scores = np.sum(term_scores, axis=0) qf_scores[~matches_gt_mm] = 0 return qf_scores, "(" + " ".join(explain) + f")~{min_should_match}" def _edismax_field_centric(frame: pd.DataFrame, query_fields: Dict[str, float], num_search_terms: int, search_terms: Dict[str, List[str]], mm: str, similarity: Similarity = default_bm25) -> Tuple[np.ndarray, str]: field_scores = [] explain = [] for field, boost in query_fields.items(): post_arr = get_field(frame, field) term_scores = np.array([post_arr.score(term, similarity=similarity) for term in search_terms[field]]) min_should_match = parse_min_should_match(len(search_terms[field]), spec=mm) exp = " ".join([f"{field}:{term}" for term in search_terms[field]]) boost_exp = f"{boost}" if boost is not None else "1" exp = "(" + exp + f")~{min(min_should_match, len(search_terms[field]))}" exp = "(" + exp + f")^{boost_exp}" matches_gt_mm = np.sum(term_scores > 0, axis=0) >= min(min_should_match, len(search_terms[field])) sum_terms_bm25 = np.sum(term_scores, axis=0) sum_terms_bm25[~matches_gt_mm] = 0 field_scores.append(sum_terms_bm25 * (1 if boost is None else boost)) explain.append(exp) # Take maximum field scores as qf qf_scores = np.asarray(field_scores) qf_scores = np.max(qf_scores, axis=0) return qf_scores, " | ".join(explain) def edismax(frame: pd.DataFrame, q: str, qf: List[str], mm: Optional[str] = None, pf: Optional[List[str]] = None, pf2: Optional[List[str]] = None, pf3: Optional[List[str]] = None, q_op: str = "OR", similarity: Similarity = default_bm25) -> Tuple[np.ndarray, str]: """Run edismax search over dataframe with searcharray fields. Parameters ---------- q : str The query string mm : str The minimum should match spec qf : list The fields to search pf : list The fields to search for phrase matches pf2 : list The fields to search for bigram matches pf3 : list The fields to search for trigram matches q_op : str, optional The default operator, by default "OR" Returns ------- np.ndarray The search results """ def listify(x): return x if isinstance(x, list) else [x] query_fields = parse_field_boosts(listify(qf)) phrase_fields = parse_field_boosts(listify(pf)) if pf else {} if mm is None: mm = "1" if q_op == "AND": mm = "100%" # bigram_fields = parse_field_boosts(pf2) if pf2 else {} # trigram_fields = parse_field_boosts(pf3) if pf3 else {} num_search_terms, search_terms, term_centric = parse_query_terms(frame, q, list(query_fields.keys())) if term_centric: qf_scores, explain = _edismax_term_centric(frame, query_fields, num_search_terms, search_terms, mm, similarity=similarity) else: qf_scores, explain = _edismax_field_centric(frame, query_fields, num_search_terms, search_terms, mm, similarity=similarity) phrase_scores = [] for field, boost in phrase_fields.items(): arr = get_field(frame, field) terms = search_terms[field] field_phrase_score = arr.score(terms, similarity=similarity) * (1 if boost is None else boost) boost_exp = f"{boost}" if boost is not None else "1" explain += f" ({field}:\"{' '.join(terms)}\")^{boost_exp}" phrase_scores.append(field_phrase_score) if len(phrase_scores) > 0: phrase_scores = np.sum(phrase_scores, axis=0) # Add where term_scores > 0 term_match_idx = np.where(qf_scores)[0] qf_scores[term_match_idx] += phrase_scores[term_match_idx] return qf_scores, explain <fim_middle>
null
CATCH
complete_current_header_empty_completion
<filename>searcharray/searcharray/term_dict.py<fim_prefix>import sys class TermMissingError(KeyError): def __init__(self, msg): super().__init__(msg) class TermDict: def __init__(self): self.term_to_ids = {} self.id_to_terms = {} def add_term(self, term): if term in self.term_to_ids: return self.term_to_ids[term] term_id = len(self.term_to_ids) self.term_to_ids[term] = term_id self.id_to_terms[term_id] = term return term_id def copy(self): new_dict = TermDict() new_dict.term_to_ids = dict(self.term_to_ids) new_dict.id_to_terms = dict(self.id_to_terms.copy()) return new_dict def get_term_id(self, term): try: return self.term_to_ids[term] ex<fim_suffix>cept KeyError: raise TermMissingError(f"Term {term} not present in dictionary. Reindex to add.") def get_term(self, term_id): try: return self.id_to_terms[term_id] except KeyError: raise TermMissingError(f"Term at {term_id} not present in dictionary. Reindex to add.") def compatible(self, other) -> bool: # Intersect the terms in both dictionaries terms_self = list(self.term_to_ids.keys()) terms_other = list(other.term_to_ids.keys()) shortest = min(len(terms_self), len(terms_other)) return terms_self[:shortest] == terms_other[:shortest] # If the intersection is empty, the dictionaries are not compatible def __len__(self): return len(self.term_to_ids) def __repr__(self): return repr(self.term_to_ids) @property def nbytes(self): bytes_used = sys.getsizeof(self.term_to_ids) + sys.getsizeof(self.id_to_terms) return bytes_used <fim_middle>
null
CATCH
complete_current_header_empty_completion
<filename>searcharray/searcharray/solr.py<fim_prefix>"""Utility functions for Solr users of searcharray.""" import re import pandas as pd import numpy as np from typing import List, Optional, Dict, Tuple from searcharray.postings import SearchArray from searcharray.similarity import Similarity, default_bm25 def parse_min_should_match(num_clauses: int, spec: str) -> int: """Parse Solr's min should match (ie mm) spec. See this ChatGPT translation of mm code from Solr's Java code for parsing this https://chat.openai.com/share/76642aec-7e05-420f-a53a-83b8e2eea8fb Parameters ---------- num_clauses : int spec : str Returns ------- int : the number of clauses that must match """ def checked_parse_int(value, error_message): try: return int(value) except ValueError: raise ValueError(error_message) result = num_clauses spec = spec.strip() if '<' in spec: # we have conditional spec(s) space_around_less_than_pattern = re.compile(r'\s*<\s*') spec = space_around_less_than_pattern.sub('<', spec) for s in spec.split(): parts = s.split('<', 1) if len(parts) < 2: raise ValueError("Invalid 'mm' spec: '" + s + "'. Expecting values before and after '<'") upper_bound = checked_parse_int(parts[0], "Invalid 'mm' spec. Expecting an integer.") if num_clauses <= upper_bound: return result else: result = parse_min_should_match(num_clauses, parts[1]) return result # otherwise, simple expression if '%' in spec: # percentage - assume the % was the last char. If not, let int() fail. spec = spec[:-1] percent = checked_parse_int(spec, "Invalid 'mm' spec. Expecting an integer.") calc = (result * percent) * (1 / 100) result = result + int(calc) if calc < 0 else int(calc) else: calc = checked_parse_int(spec, "Invalid 'mm' spec. Expecting an integer.") result = result + calc if calc < 0 else calc return min(num_clauses, max(result, 0)) def parse_field_boosts(field_lists: List[str]) -> dict: """Parse Solr's qf, pf, pf2, pf3 field boosts.""" if not field_lists: return {} out = {} carat_pattern = re.compile(r'\^') for field in field_lists: parts = carat_pattern.split(field) out[parts[0]] = None if len(parts) == 1 else float(parts[1]) return out def get_field(frame, field) -> SearchArray: if field not in frame.columns: raise ValueError(f"Field {field} not in dataframe") if not isinstance(frame[field].array, SearchArray): raise ValueError(f"Field {field} is not a searcharray field") return frame[field].array def parse_query_terms(frame: pd.DataFrame, query: str, query_fields: List[str]): search_terms: Dict[str, List[str]] = {} num_search_terms = 0 term_centric = True for field in query_fields: arr = get_field(frame, field) tokenizer = arr.tokenizer search_terms[field] = [] field_num_search_terms = 0 for posn, term in enumerate(tokenizer(query)): search_terms[field].append(term) field_num_search_terms += 1 if num_search_terms == 0: num_search_terms = field_num_search_terms elif field_num_search_terms != num_search_terms: term_centric = False return num_search_terms, search_terms, term_centric def _edismax_term_centric(frame: pd.DataFrame, query_fields: Dict[str, float], num_search_terms: int, search_terms: Dict[str, List[str]], mm: str, similarity: Similarity) -> Tuple[np.ndarray, str]: explain = [] term_scores = [] for term_posn in range(num_search_terms): max_scores = np.zeros(len(frame)) term_explain = [] for field, boost in query_fields.items(): term = search_terms[field][term_posn] post_arr = get_field(frame, field) field_term_score = post_arr.score(term, similarity=similarity) * (1 if boost is None else boost) boost_exp = f"{boost}" if boost is not None else "1" term_explain.append(f"{field}:{term}^{boost_exp}") max_scores = np.maximum(max_scores, field_term_score) term_scores.append(max_scores) explain.append("(" + " | ".join(term_explain) + ")") min_should_match = parse_min_should_match(num_search_terms, spec=mm) qf_scores = np.asarray(term_scores) matches_gt_mm = np.sum(qf_scores > 0, axis=0) >= min_should_match qf_scores = np.sum(term_scores, axis=0) qf_scores[~matches_gt_mm] = 0 return qf_scores, "(" + " ".join(explain) + f")~{min_should_match}" def _edismax_field_centric(frame: pd.DataFrame, query_fields: Dict[str, float], num_search_terms: int, search_terms: Dict[str, List[str]], mm: str, similarity: Similarity = default_bm25) -> Tuple[np.ndarray, str]: field_scores = [] explain = [] for field, boost in query_fields.items(): post_arr = get_field(frame, field) term_scores = np.array([post_arr.score(term, similarity=similarity) for term in search_terms[field]]) min_should_match = parse_min_should_match(len(search_terms[field]), spec=mm) exp = " ".join([f"{field}:{term}" for term in search_terms[field]]) boost_exp = f"{boost}" if boost is not None else "1" exp = "(" + exp + f")~{min(min_should_match, len(search_terms[field]))}" exp = "(" + exp + f")^{boost_exp}" matches_gt_mm = np.sum(term_scores > 0, axis=0) >= min(min_should_match, len(search_terms[field])) sum_terms_bm25 = np.sum(term_scores, axis=0) sum_terms_bm25[~matches_gt_mm] = 0 field_scores.append(sum_terms_bm25 * (1 if boost is None else boost)) explain.append(exp) # Take maximum field scores as qf qf_scores = np.asarray(field_scores) qf_scores = np.max(qf_scores, axis=0) return qf_scores, " | ".join(explain) def edismax(frame: pd.DataFrame, q: str, qf: List[str], mm: Optional[str] = None, pf: Optional[List[str]] = None, pf2: Optional[List[str]] = None, pf3: Optional[List[str]] = None, q_op: str = "OR", similarity: Similarity = default_bm25) -> Tuple[np.ndarray, str]: """Run edismax search over dataframe with searcharray fields. Parameters ---------- q : str The query string mm : str The minimum should match spec qf : list The fields to search pf : list The fields to search for phrase matches pf2 : list The fields to search for bigram matches pf3 : list The fields to search for trigram matches q_op : str, optional The default operator, by default "OR" Returns ------- np.ndarray The search results """ d<fim_suffix>ef listify(x): return x if isinstance(x, list) else [x] query_fields = parse_field_boosts(listify(qf)) phrase_fields = parse_field_boosts(listify(pf)) if pf else {} if mm is None: mm = "1" if q_op == "AND": mm = "100%" # bigram_fields = parse_field_boosts(pf2) if pf2 else {} # trigram_fields = parse_field_boosts(pf3) if pf3 else {} num_search_terms, search_terms, term_centric = parse_query_terms(frame, q, list(query_fields.keys())) if term_centric: qf_scores, explain = _edismax_term_centric(frame, query_fields, num_search_terms, search_terms, mm, similarity=similarity) else: qf_scores, explain = _edismax_field_centric(frame, query_fields, num_search_terms, search_terms, mm, similarity=similarity) phrase_scores = [] for field, boost in phrase_fields.items(): arr = get_field(frame, field) terms = search_terms[field] field_phrase_score = arr.score(terms, similarity=similarity) * (1 if boost is None else boost) boost_exp = f"{boost}" if boost is not None else "1" explain += f" ({field}:\"{' '.join(terms)}\")^{boost_exp}" phrase_scores.append(field_phrase_score) if len(phrase_scores) > 0: phrase_scores = np.sum(phrase_scores, axis=0) # Add where term_scores > 0 term_match_idx = np.where(qf_scores)[0] qf_scores[term_match_idx] += phrase_scores[term_match_idx] return qf_scores, explain <fim_middle>
null
METHOD
complete_current_header_empty_completion
<filename>searcharray/searcharray/solr.py<fim_prefix>"""Utility functions for Solr users of searcharray.""" import re import pandas as pd import numpy as np from typing import List, Optional, Dict, Tuple from searcharray.postings import SearchArray from searcharray.similarity import Similarity, default_bm25 def parse_min_should_match(num_clauses: int, spec: str) -> int: """Parse Solr's min should match (ie mm) spec. See this ChatGPT translation of mm code from Solr's Java code for parsing this https://chat.openai.com/share/76642aec-7e05-420f-a53a-83b8e2eea8fb Parameters ---------- num_clauses : int spec : str Returns ------- int : the number of clauses that must match """ def c<fim_suffix>hecked_parse_int(value, error_message): try: return int(value) except ValueError: raise ValueError(error_message) result = num_clauses spec = spec.strip() if '<' in spec: # we have conditional spec(s) space_around_less_than_pattern = re.compile(r'\s*<\s*') spec = space_around_less_than_pattern.sub('<', spec) for s in spec.split(): parts = s.split('<', 1) if len(parts) < 2: raise ValueError("Invalid 'mm' spec: '" + s + "'. Expecting values before and after '<'") upper_bound = checked_parse_int(parts[0], "Invalid 'mm' spec. Expecting an integer.") if num_clauses <= upper_bound: return result else: result = parse_min_should_match(num_clauses, parts[1]) return result # otherwise, simple expression if '%' in spec: # percentage - assume the % was the last char. If not, let int() fail. spec = spec[:-1] percent = checked_parse_int(spec, "Invalid 'mm' spec. Expecting an integer.") calc = (result * percent) * (1 / 100) result = result + int(calc) if calc < 0 else int(calc) else: calc = checked_parse_int(spec, "Invalid 'mm' spec. Expecting an integer.") result = result + calc if calc < 0 else calc return min(num_clauses, max(result, 0)) def parse_field_boosts(field_lists: List[str]) -> dict: """Parse Solr's qf, pf, pf2, pf3 field boosts.""" if not field_lists: return {} out = {} carat_pattern = re.compile(r'\^') for field in field_lists: parts = carat_pattern.split(field) out[parts[0]] = None if len(parts) == 1 else float(parts[1]) return out def get_field(frame, field) -> SearchArray: if field not in frame.columns: raise ValueError(f"Field {field} not in dataframe") if not isinstance(frame[field].array, SearchArray): raise ValueError(f"Field {field} is not a searcharray field") return frame[field].array def parse_query_terms(frame: pd.DataFrame, query: str, query_fields: List[str]): search_terms: Dict[str, List[str]] = {} num_search_terms = 0 term_centric = True for field in query_fields: arr = get_field(frame, field) tokenizer = arr.tokenizer search_terms[field] = [] field_num_search_terms = 0 for posn, term in enumerate(tokenizer(query)): search_terms[field].append(term) field_num_search_terms += 1 if num_search_terms == 0: num_search_terms = field_num_search_terms elif field_num_search_terms != num_search_terms: term_centric = False return num_search_terms, search_terms, term_centric def _edismax_term_centric(frame: pd.DataFrame, query_fields: Dict[str, float], num_search_terms: int, search_terms: Dict[str, List[str]], mm: str, similarity: Similarity) -> Tuple[np.ndarray, str]: explain = [] term_scores = [] for term_posn in range(num_search_terms): max_scores = np.zeros(len(frame)) term_explain = [] for field, boost in query_fields.items(): term = search_terms[field][term_posn] post_arr = get_field(frame, field) field_term_score = post_arr.score(term, similarity=similarity) * (1 if boost is None else boost) boost_exp = f"{boost}" if boost is not None else "1" term_explain.append(f"{field}:{term}^{boost_exp}") max_scores = np.maximum(max_scores, field_term_score) term_scores.append(max_scores) explain.append("(" + " | ".join(term_explain) + ")") min_should_match = parse_min_should_match(num_search_terms, spec=mm) qf_scores = np.asarray(term_scores) matches_gt_mm = np.sum(qf_scores > 0, axis=0) >= min_should_match qf_scores = np.sum(term_scores, axis=0) qf_scores[~matches_gt_mm] = 0 return qf_scores, "(" + " ".join(explain) + f")~{min_should_match}" def _edismax_field_centric(frame: pd.DataFrame, query_fields: Dict[str, float], num_search_terms: int, search_terms: Dict[str, List[str]], mm: str, similarity: Similarity = default_bm25) -> Tuple[np.ndarray, str]: field_scores = [] explain = [] for field, boost in query_fields.items(): post_arr = get_field(frame, field) term_scores = np.array([post_arr.score(term, similarity=similarity) for term in search_terms[field]]) min_should_match = parse_min_should_match(len(search_terms[field]), spec=mm) exp = " ".join([f"{field}:{term}" for term in search_terms[field]]) boost_exp = f"{boost}" if boost is not None else "1" exp = "(" + exp + f")~{min(min_should_match, len(search_terms[field]))}" exp = "(" + exp + f")^{boost_exp}" matches_gt_mm = np.sum(term_scores > 0, axis=0) >= min(min_should_match, len(search_terms[field])) sum_terms_bm25 = np.sum(term_scores, axis=0) sum_terms_bm25[~matches_gt_mm] = 0 field_scores.append(sum_terms_bm25 * (1 if boost is None else boost)) explain.append(exp) # Take maximum field scores as qf qf_scores = np.asarray(field_scores) qf_scores = np.max(qf_scores, axis=0) return qf_scores, " | ".join(explain) def edismax(frame: pd.DataFrame, q: str, qf: List[str], mm: Optional[str] = None, pf: Optional[List[str]] = None, pf2: Optional[List[str]] = None, pf3: Optional[List[str]] = None, q_op: str = "OR", similarity: Similarity = default_bm25) -> Tuple[np.ndarray, str]: """Run edismax search over dataframe with searcharray fields. Parameters ---------- q : str The query string mm : str The minimum should match spec qf : list The fields to search pf : list The fields to search for phrase matches pf2 : list The fields to search for bigram matches pf3 : list The fields to search for trigram matches q_op : str, optional The default operator, by default "OR" Returns ------- np.ndarray The search results """ def listify(x): return x if isinstance(x, list) else [x] query_fields = parse_field_boosts(listify(qf)) phrase_fields = parse_field_boosts(listify(pf)) if pf else {} if mm is None: mm = "1" if q_op == "AND": mm = "100%" # bigram_fields = parse_field_boosts(pf2) if pf2 else {} # trigram_fields = parse_field_boosts(pf3) if pf3 else {} num_search_terms, search_terms, term_centric = parse_query_terms(frame, q, list(query_fields.keys())) if term_centric: qf_scores, explain = _edismax_term_centric(frame, query_fields, num_search_terms, search_terms, mm, similarity=similarity) else: qf_scores, explain = _edismax_field_centric(frame, query_fields, num_search_terms, search_terms, mm, similarity=similarity) phrase_scores = [] for field, boost in phrase_fields.items(): arr = get_field(frame, field) terms = search_terms[field] field_phrase_score = arr.score(terms, similarity=similarity) * (1 if boost is None else boost) boost_exp = f"{boost}" if boost is not None else "1" explain += f" ({field}:\"{' '.join(terms)}\")^{boost_exp}" phrase_scores.append(field_phrase_score) if len(phrase_scores) > 0: phrase_scores = np.sum(phrase_scores, axis=0) # Add where term_scores > 0 term_match_idx = np.where(qf_scores)[0] qf_scores[term_match_idx] += phrase_scores[term_match_idx] return qf_scores, explain <fim_middle>
null
METHOD
complete_current_header_empty_completion
<filename>tanuki_py/src/tanuki/language_models/language_model_manager.py<fim_prefix>import json from typing import Any, Dict from tanuki.function_modeler import FunctionModeler from tanuki.language_models.llm_api_abc import LLM_API from tanuki.models.function_description import FunctionDescription from tanuki.models.function_example import FunctionExample from tanuki.models.language_model_output import LanguageModelOutput from tanuki.utils import approximate_token_count from tanuki.validator import Validator from tanuki.models.api_manager import APIManager from tanuki.language_models.llm_configs.abc_base_config import BaseModelConfig import logging class LanguageModelManager(object): """ The LanguageModelManager is responsible for managing the language models and their outputs operationally, this includes: - Generating outputs from the language models - Repairing outputs from the language models - Saving outputs from the language models - Finetuning the language models from the saved outputs """ def __init__(self, function_modeler: FunctionModeler, api_provider: APIManager, generation_token_limit=512,) -> None: self.api_provider = api_provider self.function_modeler = function_modeler self.default_generation_length = generation_token_limit self.initialized_functions = {} self.token_counts = {} def __call__(self, args, function_description: FunctionDescription, kwargs, validator: Validator, generation_parameters: dict) -> Any: # add the generation length if not there if "max_new_tokens" not in generation_parameters: generation_parameters["max_new_tokens"] = self.default_generation_length output = self.generate(args, kwargs, function_description, generation_parameters) # start parsing the object, very hacky way for the time being choice_parsed = self._parse_choice(output) valid = validator.check_type(choice_parsed, function_description.output_type_hint) if not valid: choice, choice_parsed, successful_repair = self.repair_output(args, kwargs, function_description, output.generated_response, validator, generation_parameters) if not successful_repair: raise TypeError( f"Output type was not valid. Expected an object of type {function_description.output_type_hint}, got '{output.generated_response}'") output.generated_response = choice output.distilled_model = False datapoint = FunctionExample(args, kwargs, output.generated_response) if output.suitable_for_finetuning and not output.distilled_model: self.function_modeler.postprocess_symbolic_datapoint(function_description.__hash__(), function_description, datapoint, repaired=not valid) instantiated = validator.instantiate(choice_parsed, function_description.output_type_hint) return instantiated def _parse_choice(self, output): try: # json load choice_parsed = json.loads(output.generated_response) except: # if it fails, it's not a json object, try eval try: choice_parsed = eval(output.generated_response) except: choice_parsed = output.generated_response return choice_parsed def generate(self, args, kwargs, function_description, llm_parameters={}): """ The main generation function, given the args, kwargs, function description and model type, generate a response and check if the datapoint can be saved to the finetune dataset """ func_hash = function_description.__hash__() prompt, model, save_to_finetune, is_distilled_model = self.get_generation_case(args, kwargs, function_description, llm_parameters, func_hash) # loggings current_function_setup = self.initialized_functions.get(func_hash, None) # getting the current function setup - model and align statements if current_function_setup: generator_model = current_function_setup["model"] if is_distilled_model: logging.info(f"Generating function outputs for {function_description.name} with a finetuned model: {model.model_name}.") self.initialized_functions[func_hash]["model"] = model.model_name elif generator_model == "": logging.info(f"Found {len(current_function_setup['examples'])} align statements for {function_description.name}. Generating function outputs with {model.model_name}.") self.initialized_functions[func_hash]["model"] = model.model_name elif generator_model != model.model_name: logging.info(f"Switching output generation from {generator_model} to {model.model_name} for function {function_description.name}.") self.initialized_functions[func_hash]["model"] = model.model_name choice = self._synthesise_answer(prompt, model, llm_parameters) output = LanguageModelOutput(choice, save_to_finetune, is_distilled_model) return output def _synthesise_answer(self, prompt, model, llm_parameters): """ Synthesise an answer given the prompt, model, model_type and llm_parameters Args: prompt (str): The prompt to send to the model model (BaseModelConfig): The model to use for generation llm_parameters (dict): The parameters to use for generation return: choice (str): The generated response """ system_message = model.system_message return self.api_provider[model.provider].generate(model, system_message, prompt, **llm_parameters) def get_generation_case(self, args, kwargs, function_description, llm_parameters, func_hash): """ Get the generation case with the correct prompt and model First get the current model, then if distilled model, do zero-shot prompt and return False as suitable_for_finetune If not distilled model, check if suitable for finetuning, create the prompt and return the correct model given the token count """ f = str(function_description.__dict__.__repr__()) distilled_model, teacher_models = self.function_modeler.get_models(function_description) is_distilled_model = distilled_model.model_name != "" suitable_for_distillation, input_prompt_token_count = self.suitable_for_finetuning_token_check(args, kwargs, f, distilled_model) if func_hash not in self.initialized_functions: # initialise the initialized_functions dict self.initialized_functions[func_hash] = {"model": "", "examples": []} # no examples needed, using a finetuned model. Dont save to finetune dataset if is_distilled_model and suitable_for_distillation: prompt = self.construct_prompt(f, args, kwargs, [], distilled_model) return prompt, distilled_model, suitable_for_distillation, True else: aligns = self.function_modeler.get_symbolic_alignments(function_description.__hash__(), max=16) examples = [f"Inputs:\nArgs: {align['args']}\nKwargs: {align['kwargs']}\nOutput: {align['output']}" for align in aligns] # update the examples in the initialized_functions dict self.initialized_functions[func_hash]["examples"] = examples examples_token_count = sum([approximate_token_count(example) for example in examples]) generation_tokens = llm_parameters.get("max_new_tokens", self.default_generation_length) model = self.choose_model_from_tokens(teacher_models, examples_token_count + input_prompt_token_count + generation_tokens, len(examples)) if model: examples_with_parsing_tokens = [f"Inputs:\nArgs: {align['args']}\nKwargs: {align['kwargs']}\nOutput:{model.parsing_helper_tokens['start_token']}{align['output']}{model.parsing_helper_tokens['end_token']}" for align in aligns] prompt = self.construct_prompt(f, args, kwargs, examples_with_parsing_tokens, model) return prompt, model, suitable_for_distillation, False else: raise ValueError( "The input content and align statements combined are too long, please shorten it. The maximum currently allowed token limit is 32000") def suitable_for_finetuning_token_check(self, args, kwargs, f, distilled_model: BaseModelConfig): "<fim_suffix>"" Check if the inputs are suitable for finetuning, i.e are below the finetuning token count """ # check if finetunable finetuning_prompt = f"Function: {f}\n---\nInputs:\nArgs: {args}\nKwargs: {kwargs}\nOutput:" input_prompt_token_count = approximate_token_count(finetuning_prompt) if distilled_model.system_message_token_count < 0: distilled_model.system_message_token_count = approximate_token_count(distilled_model.system_message) if distilled_model.instruction_token_count < 0: distilled_model.instruction_token_count = approximate_token_count(distilled_model.instructions) suitable_for_finetune = input_prompt_token_count + distilled_model.instruction_token_count + distilled_model.system_message_token_count < distilled_model.context_length return suitable_for_finetune, input_prompt_token_count def construct_prompt(self, f, args, kwargs, examples, model): """ Construct a prompt given the model, function description, args, kwargs and examples Args: model (BaseModelConfig): The model to use for generation f (str): The function description args (tuple): The args of the function kwargs (tuple): The kwargs of the function examples (list): The examples of the function Returns: content (str): The prompt to send to the model """ if examples: final_examples = "\n".join( [f"{align}" for align in examples]) example_input = f"Examples:{final_examples}\n" else: example_input = "" instruction_prompt = model.instructions content = f"{instruction_prompt}\nFunction: {f}\n{example_input}---\nInputs:\nArgs: {args}\nKwargs: {kwargs}\nOutput:" return content def repair_generate(self, args, kwargs, f, failed_outputs_list, aligns, models, llm_parameters): """ Repair the output given the input, function description, failed outputs list, examples and models """ # get the token counts examples = [f"Inputs:\nArgs: {align['args']}\nKwargs: {align['kwargs']}\nOutput: {align['output']}" for align in aligns] examples_token_count = sum([approximate_token_count(example) for example in examples]) failed_examples_token_count = sum([approximate_token_count(failed_output[0]) + approximate_token_count(failed_output[1]) for failed_output in failed_outputs_list]) input_prompt_token_count = approximate_token_count(f"Function: {f}\n---\nInputs:\nArgs: {args}\nKwargs: {kwargs}\nOutput:") generation_tokens = llm_parameters.get("max_new_tokens", self.default_generation_length) model = self.choose_model_from_tokens(models, examples_token_count+input_prompt_token_count+generation_tokens+failed_examples_token_count, len(examples)) if model: prompt = self.generate_repair_prompt(args, kwargs, f, failed_outputs_list, examples, model) logging.info(f"Previous output failed type validation, attempting to repair with {model.model_name}") choice = self._synthesise_answer(prompt, model, llm_parameters) return choice else: return None def generate_repair_prompt(self, args, kwargs, f, failed_outputs_list, examples, model): """ Generate a repair prompt given the args, kwargs, function description, failed outputs list and examples """ if examples: final_examples = "\n".join( [f"{model.parsing_helper_tokens['start_token']}{align}{model.parsing_helper_tokens['end_token']}" for align in examples]) successful_examples = f"Examples:{final_examples}\n" else: successful_examples = "" failed_examples = "" for failed_output in failed_outputs_list: failed_examples += f"Output: {failed_output[0]}\nError: {failed_output[1]}\n\n" end_token_addition = "" if model.parsing_helper_tokens["end_token"]: end_token_addition = f"Make sure to add the {model.parsing_helper_tokens['end_token']} token at the end of the output." prompt = f"{model.repair_instruction}{end_token_addition}\nFUNCTION DESCRIPTION: {f}\n{successful_examples}---{model.parsing_helper_tokens['start_token']}Inputs:\nArgs: {args}\nKwargs: {kwargs}\nFAILED EXAMPLES: {failed_examples}Correct output:" return prompt def choose_model_from_tokens(self, models, input_token_count, nr_of_examples=0): """ Choose a model from the models given the token count and number of examples Args: models (list): The models to choose from input_token_count (int): The token count of the input nr_of_examples (int): The number of examples Returns: model (BaseModelConfig): The chosen model """ for model in models: # check if input token count is less than the context length # If the model config has custom messages, then use those, otherwise use the default ones if model.system_message_token_count < 0: model.system_message_token_count = approximate_token_count(model.system_message) if model.instruction_token_count < 0: model.instruction_token_count = approximate_token_count(model.instructions) if model.parsing_helper_tokens["start_token"]: input_token_count += 2*nr_of_examples if model.parsing_helper_tokens["end_token"]: input_token_count += 2*nr_of_examples total_token_count = input_token_count + model.instruction_token_count + model.system_message_token_count if total_token_count < model.context_length: return model return None def repair_output(self, args: tuple, kwargs: dict, function_description: FunctionDescription, choice, validator: Validator, generation_parameters: dict) -> tuple: """ Repair an output, that failed type validation by generating a new output using the teacher model and the error Args: args (tuple): The args of the function kwargs (dict): The kwargs of the function function_description (FunctionDescription): The function description choice: The output that failed type validation, type is arbitrary validator (Validator): The validator object Returns: choice (str): The choice that was generated by the language model choice_parsed: The parsed choice, type is arbitrary valid (bool): Whether the output was correctly repaired was valid """ # get the teacher models teacher_models = self.function_modeler.get_models(function_description)[1] valid = False retry_index = 5 f = str(function_description.__dict__.__repr__() + "\n") error = f"Output type was not valid. Expected an valid object of type {function_description.output_type_hint}, got '{choice}'" # instantiate the failed outputs list failed_outputs_list = [(choice, error)] while retry_index > 0 and not valid: # get the alignments aligns = self.function_modeler.get_symbolic_alignments(function_description.__hash__(), max=5) # Generate the reparied LLM output choice = self.repair_generate(args, kwargs, f, failed_outputs_list, aligns, teacher_models, generation_parameters) if not choice: # if no choice then the input was too long for the model # no specific error but the retry index goes down retry_index -= 1 continue # start parsing the object try: # json load choice_parsed = json.loads(choice) except: # if it fails, it's not a json object, try eval try: choice_parsed = eval(choice) except: choice_parsed = choice valid = validator.check_type(choice_parsed, function_description.output_type_hint) if not valid: # if it's not valid, add it to the failed outputs list error = f"Output type was not valid. Expected an object of type {function_description.output_type_hint}, got '{choice}'" failed_outputs_list.append((choice, error)) retry_index -= 1 if valid: logging.info(f"Successfully repaired output.") return choice, choice_parsed, valid <fim_middle>
null
BLOCK_COMMENT
complete_current_header_empty_completion
<filename>tanuki_py/src/tanuki/validator.py<fim_prefix>import abc from collections import defaultdict import collections import typing from collections import deque import dataclasses import inspect import json from dataclasses import is_dataclass from typing import get_origin, get_args, Any, Mapping, MutableMapping, OrderedDict, Literal, Union, get_type_hints, \ Type, Sequence, Tuple, Optional from pydantic import BaseModel, create_model import datetime class Validator: def __init__(self): # Extract types from collections and collections.abc collection_types = {cls for name, cls in collections.__dict__.items() if isinstance(cls, type)} abc_collection_types = {cls for name, cls in collections.abc.__dict__.items() if isinstance(cls, type)} # Filter out types that have dictionary-like methods self.dict_like_types = { cls for cls in collection_types.union(abc_collection_types) if hasattr(cls, 'keys') and hasattr(cls, 'items') } self.list_like_types = { cls for cls in collection_types.union(abc_collection_types) if hasattr(cls, 'append') and hasattr(cls, 'pop') } self.set_like_types = { cls for cls in collection_types.union(abc_collection_types) if hasattr(cls, 'add') and hasattr(cls, 'discard') } # Add the general Sequence to list-like types # if python version is 3.9 or above, use collections.abc.Sequence if hasattr(collections.abc, 'Sequence'): self.list_like_types.add(collections.abc.Sequence) else: self.list_like_types.add(collections.Sequence) self.list_like_types.add(typing.List) # Add the general Mapping to dict-like types if hasattr(collections.abc, 'Mapping'): self.dict_like_types.add(collections.abc.Mapping) else: self.dict_like_types.add(collections.Mapping) self.dict_like_types.add(typing.Dict) # Add the general Set to set-like types if hasattr(collections.abc, 'Set'): self.set_like_types.add(collections.abc.Set) else: self.set_like_types.add(collections.Set) self.set_like_types.add(typing.Set) # Add the general Tuple to tuple-like types self.tuple_like_types = { cls for cls in collection_types.union(abc_collection_types) if hasattr(cls, '__getitem__') and hasattr(cls, '__len__') } self.tuple_like_types.add(typing.Tuple) def is_base_type(self, _type: Any) -> bool: """Determine if a type is a base type.""" return _type in {int, float, str, bool, None} def validate_base_type(self, value: Any, typ: Any) -> bool: """Validate base types.""" if typ is None: return value is None return isinstance(value, typ) def validate_output(self, output: str, type_definition: Any) -> bool: try: deserialized_output = json.loads(output) except json.JSONDecodeError: return False return self.check_type(deserialized_output, type_definition) def check_type(self, value: Any, type_definition: Any) -> bool: ""<fim_suffix>" Validate a value against a type definition. Args: value: Any object or primitive value type_definition: The type definition to validate against Returns: Whether the value is valid for the type definition """ if type_definition is Any: return True if self.is_base_type(type_definition): return self.validate_base_type(value, type_definition) origin = get_origin(type_definition) or type_definition args = get_args(type_definition) # Handle base types if self.is_base_type(origin): return self.validate_base_type(value, origin) if origin == Literal: return value in args if origin == Union: return any(self.check_type(value, union_type) for union_type in args) # Handle tuples if origin == tuple: if not isinstance(value, tuple): return False item_type = args[0] if args else Any return all(self.check_type(v, item_type) for v in value) # Handle lists if origin == list: if not isinstance(value, list): return False item_type = args[0] if args else Any return all(self.check_type(v, item_type) for v in value) # Handle more complex types that are collections and list-like if origin is list or issubclass(origin, tuple(self.list_like_types)): if not any(isinstance(value, t) for t in self.list_like_types): return False item_type = args[0] if args else Any return all(self.check_type(v, item_type) for v in value) # Handle sets if origin == set: if not isinstance(value, set): return False item_type = args[0] if args else Any return all(self.check_type(v, item_type) for v in value) # Handle datetime if origin in [datetime.datetime, datetime.date, datetime.time]: # try to instantiate datetime try: obj = origin(**value) return True except: return False # Handle dictionaries if origin is dict or issubclass(origin, tuple(self.dict_like_types)): if not isinstance(value, (dict, Mapping)):#, MutableMapping, OrderedDict)): return False if args: if len(args) == 1: key_type = args[0] value_type = Any # General assumption; specific dict-like types might differ elif len(args) == 2: key_type, value_type = args else: key_type = value_type = Any else: key_type = value_type = Any return all( self.check_type(k, key_type) and self.check_type(v, value_type) for k, v in value.items() ) # Handle pydantic models if self.is_pydantic_model(origin): try: #temp_model = create_model('TempModel', **value) if isinstance(value, origin): return True #return isinstance(temp_model, origin) # check if value is dict if not isinstance(value, dict): return False # get all required init arguments for origin # required arguments are the ones withouyt default values required_fields = [field for field, field_type in origin.__annotations__.items() if not (typing.get_origin(field_type) is Union and type(None) in typing.get_args(field_type))] # check that all required arguments are in value and do type checking for arg in required_fields: # check if it is in value if arg not in value: return False # get the type of the argument arg_type = origin.__annotations__[arg] if not self.check_type(value[arg], arg_type): return False # check that all arguments in value are correct type # this is additional check, because the above check only checks required arguments for arg, obj in value.items(): if arg in required_fields: continue arg_type = origin.__annotations__[arg] if not self.check_type(value[arg], arg_type): return False #origin.parse_obj(value) return True except Exception as e: print(e) return False # Handle dataclasses if self.is_dataclass_instance(origin): try: # for field in dataclasses.fields(origin): # field_name = field.name # field_type = field.type # if field_name not in value or not self.check_type(value[field_name], field_type): # return False # return True obj = origin(**value) return dataclasses.asdict(obj) == value except: return False # Handle dataclasses and arbitrary class types if inspect.isclass(origin) and not self.is_base_type(origin): # Ensure the value is an instance of the class if not isinstance(value, origin): return False # Gather type hints from the class and its bases type_hints = {} for cls in reversed(origin.__mro__): type_hints.update(get_type_hints(cls)) # Validate each attribute of the class for attr, attr_type in type_hints.items(): attr_value = getattr(value, attr, None) if not self.check_type(attr_value, attr_type): return False return True return False @staticmethod def is_pydantic_model(cls): return hasattr(cls, 'parse_obj') @staticmethod def is_dataclass_instance(cls): return hasattr(cls, '__annotations__') and hasattr(cls, '__dataclass_fields__') @staticmethod def _is_subclass_of_generic(cls: Type, generic: Type) -> bool: """Determine if the class is a subclass of a generic type.""" try: return issubclass(cls, generic) and cls is not generic except TypeError: if not hasattr(cls, '__origin__'): return False return cls.__origin__ is generic @staticmethod def _is_generic(cls: Type) -> bool: """Check if the provided type is a generic.""" return hasattr(cls, "__origin__") def _get_recursive_args(self, target_type: Type) -> Tuple[Type, ...]: """ Recursively check the base classes (i.e., the superclass chain) of the target type until we find one that retains the type arguments. :return: Type chain """ if get_args(target_type): return get_args(target_type) for base in target_type.__bases__: args = self._get_recursive_args(base) if args: return args return () def _find_generic_base_and_args(self, target_type: Type) -> Tuple[Type, Tuple[Type, ...]]: """ Navigate up the MRO to find the first generic base and its arguments. """ # First, check if target_type is a type annotation. # If so, directly return its origin and arguments. origin = get_origin(target_type) args = get_args(target_type) if origin and args: return origin, args # If target_type is a real class, then navigate its MRO. if hasattr(target_type, '__mro__'): if hasattr(target_type, '__orig_bases__'): for base in target_type.__orig_bases__: if get_args(base): return base, get_args(base) for base in target_type.__mro__: if get_args(base): return base, get_args(base) return None, () def _is_list_like(self, target_type: Type) -> bool: """Determine if the target type is list-like.""" if target_type in {list, typing.List}: return True if hasattr(target_type, "__origin__") and target_type.__origin__ in {list, typing.List}: return True return False def _is_tuple_like(self, target_type: Type) -> bool: """Determine if the target type is tuple-like.""" if target_type in {tuple, typing.Tuple}: return True if hasattr(target_type, "__origin__") and target_type.__origin__ in {tuple, typing.Tuple}: return True return False def _is_dict_like(self, target_type: Type) -> bool: """Determine if the target type is dict-like.""" if target_type in {dict, typing.Dict}: return True if hasattr(target_type, "__origin__") and target_type.__origin__ in {dict, typing.Dict}: return True return False def _is_set_like(self, target_type: Type) -> bool: """Determine if the target type is set-like.""" if target_type in {set, typing.Set}: return True if hasattr(target_type, "__origin__") and target_type.__origin__ in {set, typing.Set}: return True return False def instantiate(self, data: Any, target_type: Type) -> Any: """ Attempts to convert a JSON-compatible data structure into an instance of the specified type. Args: data: JSON-compatible data structure to instantiate the target type. target_type: The type to instantiate from the given data. Returns: An instance of the target type initialized with the data. """ # Handle None type if data is None: return None origin = get_origin(target_type) or target_type # If the target type is a built-in, attempt to instantiate and return if self.is_base_type(target_type) or target_type is Any: # If the parsed data is a string and target type is str, return it directly if isinstance(data, str) and target_type is str: return data # If any, return the data directly if target_type is Any: return data try: return target_type(data) except (ValueError, TypeError): # Handle the special case where the string represents a float but we want an integer if target_type is int: try: return int(float(data)) except (ValueError, TypeError): pass if target_type is float: try: return int(float(data)) except (ValueError, TypeError): pass raise TypeError(f"Failed to instantiate {target_type} from provided data.") # special handling for datetime if origin == datetime.datetime: # try to instantiate datetime try: return datetime.datetime(**data) except: raise TypeError(f"Failed to instantiate {target_type} from provided data.") # check if origin is Union, if so, instantiate the first type that works if origin == Union: for arg in get_args(target_type): try: return self.instantiate(data, arg) except: continue raise TypeError(f"Failed to instantiate {target_type} from provided data.") # If the data is a dictionary and the target is a custom class that can be instantiated from a dictionary. if isinstance(data, dict): if inspect.isclass(target_type) and not self.is_base_type(target_type): # Special handling for dataclasses if is_dataclass(target_type): fields = [f.name for f in dataclasses.fields(target_type)] type_hints = get_type_hints(target_type) filtered_data = {k: self.instantiate(v, type_hints.get(k, Any)) for k, v in data.items() if k in fields} return target_type(**filtered_data) # Special handling for Pydantic models if issubclass(target_type, BaseModel): # instantiate the sub attributes for attr, attr_type in target_type.__annotations__.items(): if attr in data: data[attr] = self.instantiate(data[attr], attr_type) try: return target_type.model_validate(data) except AttributeError as e: # backwards compatibility with pydantic < 2 return target_type.parse_obj(data) # For general classes, attempt instantiation try: return target_type(**data) except TypeError: raise TypeError(f"Failed to instantiate {target_type.__name__} from dictionary.") # Handle dictionary-like types # Check if the target type is or inherits from defaultdict if origin is defaultdict or (isinstance(origin, type) and issubclass(origin, defaultdict)): key_type, value_type = get_args(target_type) if get_args(target_type) else (Any, Any) instantiated_items = {self.instantiate(k, key_type): self.instantiate(v, value_type) for k, v in data.items()} # For defaultdict, you'll need a default factory. Here, I'm using `int` for simplicity, # but you might want to adapt this based on your needs. return defaultdict(int, instantiated_items) # Handle set-like dict types like OrderedDict # the first check needs to be done to ensure origin has the __mro__ attribute elif inspect.isclass(origin)and any(issubclass(base, dict) for base in origin.__mro__): key_type, value_type = get_args(target_type) if get_args(target_type) else (Any, Any) instantiated_items = {self.instantiate(k, key_type): self.instantiate(v, value_type) for k, v in data.items()} return origin(instantiated_items) # Handle other dictionary-like types elif origin is dict or self._is_subclass_of_generic(origin, dict): key_type, value_type = get_args(target_type) if get_args(target_type) else (Any, Any) instantiated_dict = {self.instantiate(k, key_type): self.instantiate(v, value_type) for k, v in data.items()} # If the target_type is a subclass of dict, return an instance of target_type if self._is_subclass_of_generic(target_type, dict) and not self._is_generic(target_type): return target_type(instantiated_dict) else: return dict(instantiated_dict) # Tuples aren't supported in JSONable types, so we look for lists instead if isinstance(data, list): try: # If the origin or target type is a list-like type, or if it implements a list-like collections type # e.g Sequence[int] if origin is list or self._is_subclass_of_generic(origin, list): base, item_types = self._find_generic_base_and_args(target_type) item_type = item_types[0] if item_types else Any instantiated_items = [] for item in data: # For each item, validate and instantiate it try: instantiated_item = self.instantiate(item, item_type) except ValueError: raise TypeError( f"Item of type {type(item).__name__} does not match expected type {item_type[0].__name__}.") safe = self.check_type(instantiated_item, item_type) if not safe: raise TypeError( f"Item of type {type(item).__name__} does not match expected type {item_type[0].__name__}.") instantiated_items.append(instantiated_item) # If target_type is a subclass of list, return an instance of target_type if self._is_subclass_of_generic(target_type, list) and not self._is_generic(target_type): return target_type(instantiated_items) return instantiated_items # Handle tuples if self._is_tuple_like(target_type) or (isinstance(origin, type) and issubclass(origin, tuple)): base, item_types = self._find_generic_base_and_args(target_type) instantiated_items = [] # If there are no subscripted types, assume Any if not item_types: item_types = (Any,) * len(data) for i, item in enumerate(data): # For each item, validate and instantiate it instantiated_item = self.instantiate(item, item_types[i]) instantiated_items.append(instantiated_item) # If the instantiated item does not match the expected type, raise an exception _type = item_types[i] if not isinstance(instantiated_item, _type): raise TypeError( f"Item {i} of type {type(item).__name__} does not match expected type {item_types[i].__name__}.") # Convert the list of instantiated items to a tuple instantiated_tuple = tuple(instantiated_items) # If target_type is a subclass of tuple, return an instance of target_type if self._is_subclass_of_generic(target_type, tuple): return target_type(instantiated_tuple) return instantiated_tuple # Handle sets if self._is_set_like(target_type) or (isinstance(origin, type) and issubclass(origin, set)): base, item_type = self._find_generic_base_and_args(target_type) if not item_type: item_type = Any instantiated_items = set() for item in data: # For each item, validate and instantiate it instantiated_item = self.instantiate(item, item_type[0]) instantiated_items.add(instantiated_item) # If the instantiated item does not match the expected type, raise an exception if not isinstance(instantiated_item, item_type[0]): raise TypeError( f"Item of type {type(item).__name__} does not match expected type {item_type[0].__name__}.") # If target_type is a subclass of set, return an instance of target_type if self._is_subclass_of_generic(target_type, set): return target_type(instantiated_items) return instantiated_items # Handle deques if origin is deque or (isinstance(origin, type) and issubclass(origin, set)): item_type = get_args(target_type)[0] if get_args(target_type) else Any return deque(self.instantiate(item, item_type) for item in data) if origin is frozenset or (isinstance(origin, type) and issubclass(origin, frozenset)): item_type = get_args(target_type)[0] if get_args(target_type) else Any return frozenset(self.instantiate(item, item_type) for item in data) except TypeError as e: print(e) raise TypeError(f"Failed to instantiate {target_type} from list. {e}") # If none of the above, return the data as-is return data <fim_middle>
null
BLOCK_COMMENT
complete_current_header_empty_completion
<filename>tanuki_py/src/tanuki/utils.py<fim_prefix>import dataclasses import datetime import inspect import json import typing from typing import get_args, Literal import string import types def json_default(thing): try: return dataclasses.asdict(thing) except TypeError: pass if isinstance(thing, datetime.datetime): return thing.isoformat(timespec='microseconds') if isinstance(thing, type): return thing.__name__ #if hasattr(typing, "_GenericAlias") and isinstance(thing, typing._GenericAlias): if hasattr(typing, "_UnionGenericAlias"): if isinstance(thing, typing._UnionGenericAlias): return { "Union": [json_default(arg) for arg in get_args(thing)] } if thing == Literal[...]: return { "Literal": thing.__args__ } if isinstance(thing, type(None)): return "None" if isinstance(thing, typing._SpecialForm): return thing._name if isinstance(thing, typing._GenericAlias) or isinstance(thing, types.GenericAlias): return { "GenericAlias": [json_default(arg) for arg in get_args(thing)] } if isinstance(thing, str): return thing if isinstance(thing, list) or isinstance(thing, tuple) or isinstance(thing, set): return [json_default(item) for item in thing] if isinstance(thing, dict): return {json_default(key): json_default(value) for key, value in thing.items()} raise TypeError(f"object of type {type(thing).__name__} not serializable") def json_dumps(thing): return json.dumps( thing, default=json_default, ensure_ascii=False, sort_keys=True, indent=None, separators=(',', ':'), ) def get_model(content, logger, func_hash): """ Get the model from the content and the logger. Decide on model depending on the length of the content. if is finetunable, return model, true, otherwise return model, false Args: content (str): the content to be aligned logger (buffered logger): the logger func_hash (str): the function hash Returns: model (str): the model to be used finetunable (bool): whether the model is finetunable """ num_tokens = approximate_token_count(content) finetune_limit = logger.finetune_token_limit finetune_model, teacher_models = logger.get_models(func_hash) if num_tokens < finetune_limit: return finetune_model, True else: # this is just for backwards compatibility currently if len(teacher_models) == 0 or isinstance(teacher_models[0], str): teacher_models = [("gpt-4", 7000),("gpt-4-32k", 31000)] for model, token_limit in teacher_models: if num_tokens < token_limit: return model, False raise ValueError("The input content and align statements combined are too long, please shorten it. The maximum currently allowed token limit is 32000") def approximate_token_count(content): """ Approximate the token count of input Number of tokens is word tokens (nr of words * 1.33) + nr of special characters (which are usually their own tokens) Args: content (str, bytes): the content to be approximated Returns: number_of_tokens (int): the number of tokens """ common_special_characters = r"\/(){}[]<>|`~@#$%^&*+=-_:;\"" # check if input type is string if isinstance(content, str): number_of_word_tokens = int(len(content.split(" "))*1.333) nr_of_special_characters = sum([content.count(char) for char in common_special_characters]) return number_of_word_tokens + nr_of_special_characters # check if input is a byte string if isinstance(content, bytes): number_of_word_tokens = int(len(content.split(b" "))*1.333) nr_of_special_characters = sum([content.count(char.encode("utf-8")) for char in common_special_characters]) return number_of_word_tokens + nr_of_special_characters def _deep_tuple(obj): """ Convert a list or dict to a tuple recursively to allow for hashing and becoming a key for mock_behaviors :param obj: :return: """ # transform pydantic objects into dicts if hasattr(obj, "__dict__"): obj = obj.__dict__ if isinstance(obj, list) or isinstance(obj, tuple): return tuple(_deep_tuple(e) for e in obj) elif isinstance(obj, dict): return tuple((k, _deep_tuple(v)) for k, v in sorted(obj.items())) else: return obj def get_key(args, kwargs) -> tuple: args_tuple = _deep_tuple(args) kwargs_tuple = _deep_tuple(kwargs) return args_tuple, kwargs_tuple def prepare_object_for_saving(input_object): ""<fim_suffix>" Get a dictionary representation of the object """ # check if list if isinstance(input_object, list): return [prepare_object_for_saving(item) for item in input_object] # check if tuple elif isinstance(input_object, tuple): return tuple([prepare_object_for_saving(item) for item in input_object]) # check if dict elif isinstance(input_object, dict): return {key: prepare_object_for_saving(value) for key, value in input_object.items()} # check if pydantic object if hasattr(input_object, "__dict__"): attributes = input_object.__dict__ for key, value in attributes.items(): attributes[key] = prepare_object_for_saving(value) return attributes # # check if datetime for custom logic elif isinstance(input_object, datetime.datetime) or isinstance(input_object, datetime.date) or isinstance(input_object, datetime.time): attrs = ['year', 'month', 'day', 'hour', 'minute', 'second', 'microsecond', 'tzinfo'] attributes = {attr: getattr(input_object, attr, None) for attr in attrs if getattr(input_object, attr, None) is not None} return attributes return input_object def encode_int(n): # Define the character set for encoding charset = string.ascii_lowercase + string.digits + "_" return charset[n] def decode_int(s): # Define the character set for encoding charset = string.ascii_lowercase + string.digits + "_" return charset.index(s) def _get_source_ipython(func) -> str: """ Get the source code of a function from IPython (to support Colab and Jupyter notebooks) :param func: The function to get the source code from :return: The source code of the function """ # Get the IPython instance from IPython import get_ipython ipython = get_ipython() # Get the input history input_cells = ipython.history_manager.input_hist_parsed class_name = func.__name__ source_code = None for cell in input_cells: if f"class {class_name}" in cell: source_code = cell break # If found, print the source code return source_code def get_source(func) -> str: """ Get the source code of a function Args: func (function): the function to get the source code from Returns: source (str): the source code of the function """ try: return inspect.getsource(func) except Exception: return _get_source_ipython(func)<fim_middle>
null
BLOCK_COMMENT
complete_current_header_empty_completion
<filename>tanuki_py/src/tanuki/trackers/abc_buffered_logger.py<fim_prefix>import json from abc import abstractmethod from typing import Dict, Any, Literal from tanuki.bloom_filter import BloomFilter from tanuki.constants import EXPECTED_ITEMS, FALSE_POSITIVE_RATE, ALIGN_FILE_EXTENSION, \ POSITIVE_FILE_EXTENSION, NEGATIVE_FILE_EXTENSION, PATCH_FILE_EXTENSION from tanuki.persistence.filter.bloom_interface import IBloomFilterPersistence from tanuki.trackers.dataset_worker import DatasetWorker from tanuki.models.function_config import FunctionConfig # PATCH_FILE_EXTENSION_TYPE = Literal[".patches"] # ALIGN_FILE_EXTENSION_TYPE = Literal[".alignments"] # POSITIVE_EMBEDDING_FILE_EXTENSION_TYPE = Literal[".positive_embedding"] # NEGATIVE_EMBEDDING_FILE_EXTENSION_TYPE = Literal[".negative_embedding"] # # PATCH_FILE_EXTENSION: PATCH_FILE_EXTENSION_TYPE = ".patches" # ALIGN_FILE_EXTENSION: ALIGN_FILE_EXTENSION_TYPE = ".alignments" # POSITIVE_EMBEDDING_FILE_EXTENSION: POSITIVE_EMBEDDING_FILE_EXTENSION_TYPE = ".contrastive_positives" # NEGATIVE_EMBEDDING_FILE_EXTENSION: NEGATIVE_EMBEDDING_FILE_EXTENSION_TYPE = ".contrastive_negatives" # # EXPECTED_ITEMS = 10000 # FALSE_POSITIVE_RATE = 0.01 # LIB_NAME = "tanuki" # ENVVAR = "TANUKI_LOG_DIR" class ABCBufferedLogger(DatasetWorker): def __init__(self, name, level=15): self.buffers = {} self.mapped_files = {} self.miss_count = 0 self.hit_count = 0 self.flush_limit = {} self.buffer_rolling_size = {} self.write_count = 0 self.write_limit = 1000 # Save the Bloom filter every 1000 writes super().__init__(name, level) self.bloom_filter = self.create_bloom_filter() self.load_bloom_filter() self.default_function_config = FunctionConfig() @abstractmethod def get_bloom_filter_persistence(self) -> IBloomFilterPersistence: """ Get an instance of the bloom filter persistence provider. This exposes some persistent file storage, that must support reading and writing raw byte streams. :return: """ pass @abstractmethod def load_existing_datasets(self) -> Dict[str, Dict[str, Any]]: """ Get the lengths of all datasets backing the registered functions, including aligns. :return: """ pass @abstractmethod def ensure_persistence_location_exists(self): """ Ensure that the place we will be writing to actually exists. If not, create it. """ pass @abstractmethod def get_patch_location_for_function(self, func_hash, extension="") -> str: """ Get the address of the function patch file. :param func_hash: The representation of the function :param extension: Whether this is a patch or an alignment :return: """ pass @abstractmethod def write(self, path, data, mode="a") -> None: pass @abstractmethod def read(self, path) -> str: pass @abstractmethod def get_hash_from_path(self, path) -> str: pass @abstractmethod def does_object_exist(self, path) -> bool: pass def create_bloom_filter(self): bloom_filter_persistence = self.get_bloom_filter_persistence() bloom_filter = BloomFilter( bloom_filter_persistence, expected_number_of_elements=EXPECTED_ITEMS, false_positive_probability=FALSE_POSITIVE_RATE) return bloom_filter def load_bloom_filter(self): try: self.bloom_filter.load() except FileNotFoundError: self.debug("No Bloom filter found. Creating a new one.") def write_symbolic_align_call(self, func_hash, example) -> bool: log_file_path = self.get_patch_location_for_function(func_hash, extension=ALIGN_FILE_EXTENSION) try: # Now, write to the file dumpable_object = str(example.__dict__) self.write(log_file_path, dumpable_object + "\n", mode="a") return True except Exception as e: return False def write_embeddable_align_call(self, func_hash, example, positive=True) -> bool: if positive: log_file_path = self.get_patch_location_for_function(func_hash, extension=POSITIVE_FILE_EXTENSION) else: log_file_path = self.get_patch_location_for_function(func_hash, extension=NEGATIVE_FILE_EXTENSION) try: # Now, write to the file dumpable_object = str(example.__dict__) self.write(log_file_path, dumpable_object + "\n", mode="a") return True except Exception as e: return False def log_embeddable_align(self, func_hash, example, positive=True, **kws): """ Log a contrastive function invocation Args: func_hash: A string representation of the function signature and input parameters example: The example object positive: Whether the example is positive or negative **kws: """ successfully_saved, new_datapoint = False, False try: self.ensure_persistence_location_exists() except Exception as e: return successfully_saved, new_datapoint # prepend the function hash to the example bloom_filter_representation = func_hash + '_' + str(example.__dict__) + '\n' # Check Bloom Filter if self.bloom_filter.lookup(bloom_filter_representation): return successfully_saved, new_datapoint new_datapoint = True # add to bloom filter self.bloom_filter.add(bloom_filter_representation) self.save_bloom_filter() successfully_saved = self.write_embeddable_align_call(func_hash, example, positive) return successfully_saved, new_datapoint def log_symbolic_align(self, func_hash, *args, **kws): """ Log an align function invocation to the file system :param func_hash: A string representation of the function signature and input parameters :param args: Example objects :param kws: :return: """ successfully_saved, new_datapoint = False, False try: self.ensure_persistence_location_exists() except Exception as e: return successfully_saved, new_datapoint example = args[0] # prepend the function hash to the example bloom_filter_representation = func_hash + '_' + str(example.__dict__) + '\n' # Check Bloom Filter if self.bloom_filter.lookup(bloom_filter_representation): return successfully_saved, new_datapoint new_datapoint = True # add to bloom filter self.bloom_filter.add(bloom_filter_representation) self.save_bloom_filter() successfully_saved = self.write_symbolic_align_call(func_hash, example) return successfully_saved, new_datapoint def log_symbolic_patch(self, func_hash, example): "<fim_suffix>"" Log a patched function invocation to the file system :param func_hash: A string representation of the function signature and input parameters :param example: :return: """ if not isinstance(func_hash, str): func_hash = str(func_hash) example_data = str(example.__dict__).encode('utf-8') + b'\n' bloom_filter_representation = func_hash + '_' + example_data.decode('utf-8') # Check Bloom Filter if self.bloom_filter.lookup(bloom_filter_representation): self.hit_count += 1 return {} self.miss_count += 1 # Add to Bloom Filter self.bloom_filter.add(bloom_filter_representation) try: self.ensure_persistence_location_exists() except Exception as e: return {} log_file_path = self.get_patch_location_for_function(func_hash, extension=PATCH_FILE_EXTENSION) if log_file_path not in self.buffers: self.buffers[log_file_path] = bytearray() if log_file_path not in self.flush_limit: self.flush_limit[log_file_path] = 1 self.buffers[log_file_path].extend(example_data) self.write_count += 1 if log_file_path not in self.buffer_rolling_size: self.buffer_rolling_size[log_file_path] = 1 else: self.buffer_rolling_size[log_file_path] += 1 if self.write_count >= self.write_limit: written_datapoints = self.flush() self.save_bloom_filter() self.write_count = 0 # Reset counter return written_datapoints if len(self.buffers[log_file_path]) >= min(self.flush_limit[log_file_path], 4096): # Flush after reaching 4KB written_datapoints = {} try: self.write(log_file_path, self.buffers[log_file_path], mode="a+b") # update buffers written_datapoints[func_hash] = self.buffer_rolling_size[log_file_path] self.buffers[log_file_path].clear() self.buffer_rolling_size[log_file_path] = 0 self.flush_limit[log_file_path] = 2 * self.flush_limit[log_file_path] self.save_bloom_filter() except Exception as e: pass return written_datapoints return {} def save_bloom_filter(self): try: self.bloom_filter.save() except Exception as e: self.warning("Could not save Bloom filter: {}".format(e)) def flush(self): # get log directory written_datapoints = {} for log_file_path, buffer in self.buffers.items(): if len(buffer) > 0: try: self.write(log_file_path, buffer, mode="a+b") written_datapoints[self.get_hash_from_path(log_file_path)] = self.buffer_rolling_size[log_file_path] self.buffer_rolling_size[log_file_path] = 0 buffer.clear() except Exception as e: pass return written_datapoints def load_function_config(self, func_hash): """ Get the config file for the function. Uses the message and log directory Config file has to be in .json """ default = False try: # try to get the config from the disk. If inaccessible, create a new default one self.ensure_persistence_location_exists() log_file_path = self.get_patch_location_for_function(func_hash) config_path = f"{log_file_path}.json" if not self.does_object_exist(config_path): function_config = self.default_function_config default = True func_config_dict = function_config.to_dict() # remove teacher_models from the config func_config_dict.pop("teacher_models") self.write_json(config_path, func_config_dict) else: function_config = FunctionConfig().load_from_dict(self.read_json(config_path)) except Exception as e: function_config = self.default_function_config default = True return function_config, default def update_function_config(self, func_hash, config_to_be_saved): """ Save the config file """ log_file_path = self.get_patch_location_for_function(func_hash) config_path = f"{log_file_path}.json" try: func_config_dict = config_to_be_saved.to_dict() # remove teacher_models from the config func_config_dict.pop("teacher_models") self.write_json(config_path, func_config_dict) except Exception as e: pass def write_json(self, path, data): self.write(path, json.dumps(data)) def read_json(self, path): return json.loads(self.read(path)) <fim_middle>
null
BLOCK_COMMENT
complete_current_header_empty_completion
<filename>tanuki_py/src/tanuki/persistence/filter/filesystem_bloom.py<fim_prefix>import os from bitarray._bitarray import bitarray from tanuki.persistence.filter.bloom_interface import IBloomFilterPersistence class BloomFilterFileSystemDriver(IBloomFilterPersistence): """ This is a Filesystem implementation of a Bloom Filter persistence layer. """ def __init__(self, log_directory: str): self.log_directory = log_directory def save(self, bit_array: bitarray) -> None: """ Write a bloom filter array of bits to the local filesystem. :param bloom_filter: A bloom filter which tracks unique function invocations """ bloom_filter_path = os.path.join(self.log_directory, 'bloom_filter_state.bin') # Append 0 bits to make the length a multiple of 8 while len(bit_array) % 8 != 0: bit_array.append(0) with open(bloom_filter_path, 'wb') as f: f.write(bit_array.tobytes()) def load(self) -> bitarray: "<fim_suffix>"" Load a bloom filter from the local filesystem. :return: A bloom filter object containing the state of unique function invocations """ bloom_filter_path = os.path.join(self.log_directory, 'bloom_filter_state.bin') with open(bloom_filter_path, 'rb') as f: bit_array = bitarray() bit_array.frombytes(f.read()) while len(bit_array) % 8 != 0: bit_array.append(0) return bit_array<fim_middle>
null
BLOCK_COMMENT
complete_current_header_empty_completion
<filename>tanuki_py/src/tanuki/models/function_config.py<fim_prefix>from pydantic import BaseModel from typing import Dict, List from tanuki.language_models.llm_configs.abc_base_config import BaseModelConfig from tanuki.language_models.llm_configs import DEFAULT_TEACHER_MODELS, DEFAULT_STUDENT_MODELS from tanuki.constants import DEFAULT_TEACHER_MODEL_NAMES, DEFAULT_DISTILLED_MODEL_NAME, \ DISTILLED_MODEL, TEACHER_MODEL from tanuki.language_models.llm_configs.model_config_factory import ModelConfigFactory config_factory = ModelConfigFactory() class FunctionConfig(BaseModel): """ The function config to execute the inference for the function and distillation. Parameters ---------- distilled_model : BaseModelConfig -- the distilled model config current_model_stats : Dict -- the current model stats last_training_run : Dict -- the last training run current_training_run : Dict -- the current training run teacher_models : List[BaseModelConfig] -- the teacher models nr_of_training_runs : int -- the number of training runs """ distilled_model: BaseModelConfig = DEFAULT_STUDENT_MODELS[DEFAULT_DISTILLED_MODEL_NAME] current_model_stats : Dict = { "trained_on_datapoints": 0, "running_faults": []} last_training_run : Dict = {"trained_on_datapoints": 0} current_training_run : Dict = {} teacher_models : List[BaseModelConfig] = [DEFAULT_TEACHER_MODELS[teacher_model_name] for teacher_model_name in DEFAULT_TEACHER_MODEL_NAMES] nr_of_training_runs : int = 0 def load_from_dict(self, json_dict): """ Load the function config from a dict Args: json_dict: The dict to load the function config from Returns: The function config """ self.distilled_model = config_factory.create_config(json_dict["distilled_model"], DISTILLED_MODEL) self.current_model_stats = json_dict["current_model_stats"] self.last_training_run = json_dict["last_training_run"] self.current_training_run = json_dict["current_training_run"] self.nr_of_training_runs = json_dict["nr_of_training_runs"] if "teacher_models" in json_dict and len(json_dict["teacher_models"]) > 0: self.teacher_models = [config_factory.create_config(teacher_model, TEACHER_MODEL) for teacher_model in json_dict["teacher_models"]] return self def to_dict(self): """ Convert the function config to a dict Returns: The dict """ try: config_dictionary = self.model_dump() except AttributeError as e: config_dictionary = self.dict() return config_dictionary def update_with_finetuned_response(self, response): "<fim_suffix>"" Update the function config with the finetuned response Args: response: The finetuned response """ if response.status == "failed": self.current_training_run = {} else: self.distilled_model = response.fine_tuned_model self.last_training_run = self.current_training_run self.current_model_stats = { "trained_on_datapoints": self.current_training_run[ "trained_on_datapoints"], "running_faults": []} self.nr_of_training_runs += 1 self.current_training_run = {} <fim_middle>
null
BLOCK_COMMENT
complete_current_header_empty_completion