Ratchada-STT / README.md
zoon-patcharawiwatpong
Upload dataset
5bc8afe verified
---
language:
- en
- th
license: mit
size_categories:
- 10K<n<100K
task_categories:
- automatic-speech-recognition
dataset_info:
features:
- name: name
dtype: string
- name: audio
dtype: audio
- name: label
dtype: string
- name: start
dtype: float64
- name: end
dtype: float64
splits:
- name: train
num_bytes: 1068060017.248
num_examples: 10137
- name: test
num_bytes: 184950411.426
num_examples: 2791
download_size: 1037733018
dataset_size: 1253010428.674
configs:
- config_name: default
data_files:
- split: train
path: data/train-*
- split: test
path: data/test-*
tags:
- finance
---
# RATCHADA-STT Dataset
## Overview
The dataset includes recordings from earnings calls of publicly traded companies in Thailand. Each audio file is accompanied by a transcription and metadata such as company name, reporting period, and other relevant details.
### Dataset Info
- **Total Duration:**
- Train: 26507.87 seconds (~ 7.36 hours)
- Test: 8376.28 seconds (~ 2.33 hours)
- **File Count:**
- Train: 10912 files
- Test: 2804 files
### Dataset Structure
The dataset consists of recordings from various financial presentations categorized into different subfolders based on event and company.
#### Metadata
- **Features:**
- path: string
- array: sequence of float32
- label: string
- start: float64
- end: float64
- **Dataset Size:** 2.11 GB
### Example Usage
#### Load the Ratchada-STT dataset
```python
from datasets import load_dataset
dataset = load_dataset("ThinkingMachinesDataScience/Ratchada-STT")
```
#### Access train and test splits
```python
train = dataset['train']
test = dataset['test']
```
#### Example usage with first sample
```python
print(train[0])
```
### License
This dataset is distributed under the `MIT` License.
### Citation
If you use this dataset in your research or work, please cite it as:
```
@dataset{thinkingmachinesdatascience/ratchada-stt,
title = {Ratchada-STT Dataset},
publisher = {Hugging Face},
year = {2024},
author = {Thinking Machines Data Science},
license = {MIT},
}
```
### Contribution Guidelines
- Ensure your PR adheres to the repository's coding standards.
- Include relevant tests and ensure they pass.
- Update documentation if your contribution changes any functionality.
- Follow the Hugging Face Community Code of Conduct.