The full dataset viewer is not available (click to read why). Only showing a preview of the rows.
Error code: DatasetGenerationCastError Exception: DatasetGenerationCastError Message: An error occurred while generating the dataset All the data files must have the same columns, but at some point there are 70 new columns ({'Fwd_IAT_Min', 'Flow_IAT_Std', 'Idle_Std', 'Flow_Byts/s', 'Pkt_Len_Min', 'Pkt_Len_Max', 'Fwd_IAT_Std', 'Bwd_Pkt_Len_Max', 'URG_Flag_Cnt', 'Bwd_Pkts/b_Avg', 'Init_Fwd_Win_Byts', 'Fwd_URG_Flags', 'Fwd_Seg_Size_Min', 'Bwd_IAT_Tot', 'Protocol', 'Flow_IAT_Min', 'Idle_Min', 'Bwd_IAT_Min', 'Fwd_IAT_Tot', 'Dst_Port', 'Fwd_Pkts/b_Avg', 'Active_Std', 'Pkt_Len_Mean', 'Bwd_Pkt_Len_Std', 'Pkt_Len_Std', 'Bwd_Byts/b_Avg', 'Bwd_IAT_Std', 'Dst_IP', 'Flow_Duration', 'Fwd_Pkts/s', 'Bwd_Pkt_Len_Mean', 'Fwd_Header_Len', 'Idle_Mean', 'TotLen_Fwd_Pkts', 'Bwd_URG_Flags', 'RST_Flag_Cnt', 'Src_Port', 'ACK_Flag_Cnt', 'SYN_Flag_Cnt', 'Fwd_Act_Data_Pkts', 'Down/Up_Ratio', 'Fwd_PSH_Flags', 'Fwd_Pkt_Len_Std', 'Flow_IAT_Max', 'Flow_IAT_Mean', 'Bwd_Pkts/s', 'Bwd_IAT_Mean', 'Fwd_Pkt_Len_Min', 'Fwd_Byts/b_Avg', 'Bwd_Blk_Rate_Avg', 'Bwd_Header_Len', 'Tot_Fwd_Pkts', 'Bwd_PSH_Flags', 'Bwd_Pkt_Len_Min', 'Fwd_Pkt_Len_Mean', 'Src_IP', 'Fwd_Pkt_Len_Max', 'ECE_Flag_Cnt', 'FIN_Flag_Cnt', 'Tot_Bwd_Pkts', 'Active_Min', 'Init_Bwd_Win_Byts', 'Active_Mean', 'Flow_Pkts/s', 'Flow_ID', 'Fwd_Blk_Rate_Avg', 'Fwd_IAT_Mean', 'TotLen_Bwd_Pkts', 'CWE_Flag_Count', 'Pkt_Len_Var'}) and 3 missing columns ({'DLC', 'Data', 'Arbitration_ID'}). This happened while the csv dataset builder was generating data using hf://datasets/Thi-Thu-Huong/resampled_IDS_datasets/resampled_train_IoTID20.csv (at revision 0320877d48042b3ec0b83e09f05e4d12db5ad6a5) Please either edit the data files to have matching columns, or separate them into different configurations (see docs at https://hf.co/docs/hub/datasets-manual-configuration#multiple-configurations) Traceback: Traceback (most recent call last): File "/src/services/worker/.venv/lib/python3.9/site-packages/datasets/builder.py", line 1871, in _prepare_split_single writer.write_table(table) File "/src/services/worker/.venv/lib/python3.9/site-packages/datasets/arrow_writer.py", line 623, in write_table pa_table = table_cast(pa_table, self._schema) File "/src/services/worker/.venv/lib/python3.9/site-packages/datasets/table.py", line 2293, in table_cast return cast_table_to_schema(table, schema) File "/src/services/worker/.venv/lib/python3.9/site-packages/datasets/table.py", line 2241, in cast_table_to_schema raise CastError( datasets.table.CastError: Couldn't cast Tot_Fwd_Pkts: int64 Fwd_Pkts/b_Avg: int64 Pkt_Len_Mean: double Flow_IAT_Min: double Fwd_PSH_Flags: int64 Active_Std: double Protocol: int64 Fwd_Pkts/s: double Bwd_Byts/b_Avg: int64 Fwd_Pkt_Len_Min: double Fwd_IAT_Std: double Idle_Mean: double Flow_IAT_Mean: double Pkt_Len_Max: double Src_IP: double Dst_Port: int64 Bwd_IAT_Min: double Flow_ID: double TotLen_Fwd_Pkts: double Init_Fwd_Win_Byts: int64 Bwd_Pkt_Len_Min: double Fwd_Pkt_Len_Std: double Bwd_Pkt_Len_Max: double Fwd_Byts/b_Avg: int64 Active_Mean: double Bwd_Pkt_Len_Std: double Flow_Duration: int64 TotLen_Bwd_Pkts: double Active_Min: double Tot_Bwd_Pkts: int64 Flow_Byts/s: double Fwd_Pkt_Len_Mean: double Bwd_Pkts/s: double Pkt_Len_Var: double Fwd_Pkt_Len_Max: double Bwd_URG_Flags: int64 Fwd_Header_Len: int64 Bwd_IAT_Std: double Dst_IP: double Flow_IAT_Std: double ECE_Flag_Cnt: int64 Pkt_Len_Std: double Fwd_URG_Flags: int64 Flow_IAT_Max: double CWE_Flag_Count: int64 ACK_Flag_Cnt: int64 Flow_Pkts/s: double Bwd_Blk_Rate_Avg: int64 Idle_Std: double Bwd_Header_Len: int64 Init_Bwd_Win_Byts: int64 FIN_Flag_Cnt: int64 Bwd_PSH_Flags: int64 Fwd_Seg_Size_Min: int64 Bwd_IAT_Tot: double Bwd_Pkt_Len_Mean: double URG_Flag_Cnt: int64 Fwd_Blk_Rate_Avg: int64 Src_Port: int64 RST_Flag_Cnt: int64 Fwd_Act_Data_Pkts: int64 Down/Up_Ratio: double Bwd_Pkts/b_Avg: int64 Fwd_IAT_Min: double Fwd_IAT_Mean: double SYN_Flag_Cnt: int64 Timestamp: double Idle_Min: double Fwd_IAT_Tot: double Pkt_Len_Min: double Bwd_IAT_Mean: double Classes: int64 -- schema metadata -- pandas: '{"index_columns": [{"kind": "range", "name": null, "start": 0, "' + 9165 to {'Timestamp': Value(dtype='float64', id=None), 'Arbitration_ID': Value(dtype='float64', id=None), 'DLC': Value(dtype='int64', id=None), 'Data': Value(dtype='float64', id=None), 'Classes': Value(dtype='int64', id=None)} because column names don't match During handling of the above exception, another exception occurred: Traceback (most recent call last): File "/src/services/worker/src/worker/job_runners/config/parquet_and_info.py", line 1438, in compute_config_parquet_and_info_response parquet_operations = convert_to_parquet(builder) File "/src/services/worker/src/worker/job_runners/config/parquet_and_info.py", line 1050, in convert_to_parquet builder.download_and_prepare( File "/src/services/worker/.venv/lib/python3.9/site-packages/datasets/builder.py", line 925, in download_and_prepare self._download_and_prepare( File "/src/services/worker/.venv/lib/python3.9/site-packages/datasets/builder.py", line 1001, in _download_and_prepare self._prepare_split(split_generator, **prepare_split_kwargs) File "/src/services/worker/.venv/lib/python3.9/site-packages/datasets/builder.py", line 1742, in _prepare_split for job_id, done, content in self._prepare_split_single( File "/src/services/worker/.venv/lib/python3.9/site-packages/datasets/builder.py", line 1873, in _prepare_split_single raise DatasetGenerationCastError.from_cast_error( datasets.exceptions.DatasetGenerationCastError: An error occurred while generating the dataset All the data files must have the same columns, but at some point there are 70 new columns ({'Fwd_IAT_Min', 'Flow_IAT_Std', 'Idle_Std', 'Flow_Byts/s', 'Pkt_Len_Min', 'Pkt_Len_Max', 'Fwd_IAT_Std', 'Bwd_Pkt_Len_Max', 'URG_Flag_Cnt', 'Bwd_Pkts/b_Avg', 'Init_Fwd_Win_Byts', 'Fwd_URG_Flags', 'Fwd_Seg_Size_Min', 'Bwd_IAT_Tot', 'Protocol', 'Flow_IAT_Min', 'Idle_Min', 'Bwd_IAT_Min', 'Fwd_IAT_Tot', 'Dst_Port', 'Fwd_Pkts/b_Avg', 'Active_Std', 'Pkt_Len_Mean', 'Bwd_Pkt_Len_Std', 'Pkt_Len_Std', 'Bwd_Byts/b_Avg', 'Bwd_IAT_Std', 'Dst_IP', 'Flow_Duration', 'Fwd_Pkts/s', 'Bwd_Pkt_Len_Mean', 'Fwd_Header_Len', 'Idle_Mean', 'TotLen_Fwd_Pkts', 'Bwd_URG_Flags', 'RST_Flag_Cnt', 'Src_Port', 'ACK_Flag_Cnt', 'SYN_Flag_Cnt', 'Fwd_Act_Data_Pkts', 'Down/Up_Ratio', 'Fwd_PSH_Flags', 'Fwd_Pkt_Len_Std', 'Flow_IAT_Max', 'Flow_IAT_Mean', 'Bwd_Pkts/s', 'Bwd_IAT_Mean', 'Fwd_Pkt_Len_Min', 'Fwd_Byts/b_Avg', 'Bwd_Blk_Rate_Avg', 'Bwd_Header_Len', 'Tot_Fwd_Pkts', 'Bwd_PSH_Flags', 'Bwd_Pkt_Len_Min', 'Fwd_Pkt_Len_Mean', 'Src_IP', 'Fwd_Pkt_Len_Max', 'ECE_Flag_Cnt', 'FIN_Flag_Cnt', 'Tot_Bwd_Pkts', 'Active_Min', 'Init_Bwd_Win_Byts', 'Active_Mean', 'Flow_Pkts/s', 'Flow_ID', 'Fwd_Blk_Rate_Avg', 'Fwd_IAT_Mean', 'TotLen_Bwd_Pkts', 'CWE_Flag_Count', 'Pkt_Len_Var'}) and 3 missing columns ({'DLC', 'Data', 'Arbitration_ID'}). This happened while the csv dataset builder was generating data using hf://datasets/Thi-Thu-Huong/resampled_IDS_datasets/resampled_train_IoTID20.csv (at revision 0320877d48042b3ec0b83e09f05e4d12db5ad6a5) Please either edit the data files to have matching columns, or separate them into different configurations (see docs at https://hf.co/docs/hub/datasets-manual-configuration#multiple-configurations)
Need help to make the dataset viewer work? Make sure to review how to configure the dataset viewer, and open a discussion for direct support.
Timestamp
float64 | Arbitration_ID
float64 | DLC
int64 | Data
float64 | Classes
int64 |
---|---|---|---|---|
564,420 | 50 | 4 | 238,335 | 2 |
371,275 | 12 | 8 | 9,932 | 2 |
507,895 | 41 | 8 | 146,403 | 2 |
784,621 | 8 | 8 | 156,220 | 2 |
367,796 | 9 | 8 | 204,292 | 1 |
119,756 | 0 | 8 | 0 | 0 |
756,528 | 23 | 8 | 43,774 | 2 |
301,321 | 18 | 8 | 227,055 | 2 |
97,732 | 9 | 8 | 57,819 | 2 |
253,840 | 14 | 7 | 127,830 | 2 |
74,425 | 34 | 8 | 47,064 | 2 |
368,335 | 56 | 8 | 0 | 2 |
134,724 | 57 | 8 | 67,603 | 2 |
217,778 | 50 | 4 | 169,231 | 2 |
272,312 | 19 | 8 | 57,315 | 2 |
309,282 | 23 | 8 | 44,357 | 2 |
250,613 | 12 | 8 | 275,407 | 2 |
40,489 | 8 | 8 | 218,938 | 2 |
328,542 | 13 | 8 | 10,191 | 2 |
709,494 | 27 | 8 | 277,738 | 2 |
37,804 | 10 | 6 | 206,774 | 2 |
13,871 | 17 | 8 | 194,625 | 2 |
575,221 | 13 | 8 | 10,169 | 2 |
115,269 | 31 | 5 | 42,573 | 2 |
146,732 | 16 | 8 | 13,614 | 2 |
443,417 | 71 | 8 | 0 | 2 |
309,522 | 4 | 8 | 150,174 | 2 |
298,386 | 26 | 8 | 144,793 | 2 |
704,472 | 19 | 8 | 174,890 | 2 |
588,505 | 9 | 8 | 60,129 | 2 |
11,834 | 34 | 8 | 48,719 | 2 |
664,808 | 3 | 8 | 153,263 | 2 |
528,830 | 34 | 8 | 47,533 | 2 |
767,058 | 5 | 8 | 106,350 | 2 |
764,218 | 10 | 6 | 128,823 | 2 |
139,080 | 15 | 8 | 1,962 | 2 |
132,697 | 26 | 8 | 238,257 | 2 |
625,986 | 22 | 8 | 11 | 2 |
470,542 | 38 | 8 | 10,955 | 2 |
667,701 | 3 | 8 | 213,944 | 2 |
437,216 | 28 | 8 | 81 | 2 |
297,912 | 42 | 8 | 10,912 | 2 |
3,745 | 5 | 8 | 106,353 | 2 |
797,743 | 50 | 4 | 144,613 | 2 |
87,090 | 10 | 6 | 84,040 | 2 |
67,276 | 22 | 8 | 14 | 2 |
754,948 | 9 | 8 | 56,798 | 2 |
270,237 | 6 | 4 | 18,387 | 2 |
472,343 | 0 | 8 | 0 | 0 |
684,690 | 12 | 8 | 275,407 | 2 |
179,189 | 10 | 6 | 89,228 | 2 |
332,398 | 69 | 8 | 0 | 2 |
806,226 | 9 | 8 | 49,527 | 2 |
465,103 | 13 | 8 | 10,187 | 2 |
21,404 | 27 | 8 | 277,684 | 2 |
481,467 | 0 | 8 | 0 | 0 |
389,988 | 14 | 7 | 142,359 | 2 |
670,152 | 13 | 8 | 10,218 | 2 |
722,826 | 9 | 8 | 51,492 | 2 |
291,657 | 11 | 8 | 81,724 | 2 |
465,324 | 10 | 6 | 208,493 | 2 |
586,205 | 10 | 6 | 152,819 | 2 |
588,139 | 31 | 5 | 42,849 | 2 |
553,959 | 18 | 8 | 97,426 | 2 |
491,585 | 0 | 8 | 0 | 0 |
736,866 | 3 | 8 | 115,767 | 2 |
115,436 | 12 | 8 | 275,410 | 2 |
796,084 | 27 | 8 | 277,683 | 2 |
420,253 | 26 | 8 | 256,571 | 2 |
641,661 | 14 | 7 | 128,462 | 2 |
408,776 | 27 | 8 | 277,739 | 2 |
543,362 | 13 | 8 | 10,171 | 2 |
37,349 | 7 | 8 | 75,852 | 2 |
204,119 | 63 | 8 | 11,203 | 2 |
78,253 | 6 | 4 | 18,660 | 2 |
495,833 | 0 | 8 | 0 | 0 |
795,186 | 4 | 8 | 120,088 | 2 |
758,286 | 8 | 8 | 72,121 | 2 |
483,813 | 0 | 8 | 0 | 0 |
580,338 | 20 | 8 | 9,936 | 2 |
120,770 | 0 | 8 | 0 | 0 |
193,501 | 34 | 8 | 47,344 | 2 |
707,219 | 15 | 8 | 5,825 | 2 |
444,697 | 16 | 8 | 16,925 | 2 |
432,845 | 9 | 8 | 63,331 | 2 |
4,797 | 50 | 4 | 104,376 | 2 |
472,678 | 11 | 8 | 205,429 | 2 |
572,300 | 16 | 8 | 30,756 | 2 |
50,095 | 3 | 8 | 257,258 | 2 |
155,951 | 14 | 7 | 147,194 | 2 |
672,976 | 32 | 8 | 89,894 | 2 |
532,962 | 13 | 8 | 10,199 | 2 |
549,797 | 19 | 8 | 210,808 | 2 |
68,001 | 50 | 4 | 238,151 | 2 |
3,253 | 23 | 8 | 43,459 | 2 |
776,466 | 5 | 8 | 106,352 | 2 |
330,263 | 5 | 8 | 106,351 | 2 |
101,244 | 0 | 8 | 0 | 0 |
409,774 | 12 | 8 | 275,399 | 2 |
466,091 | 6 | 4 | 18,520 | 2 |
Dataset Card for resampled_IDS_datasets
Intrusion Detection Systems (IDS) play a crucial role in securing computer networks against malicious activities. However, their efficacy is consistently hindered by the persistent challenge of class imbalance in real-world datasets. While various methods, such as resampling techniques, ensemble methods, cost-sensitive learning, data augmentation, and so on, have individually addressed imbalance classification issues, there exists a notable gap in the literature for effective hybrid methodologies aimed at enhancing IDS performance. To bridge this gap, our research introduces an innovative methodology that integrates hybrid undersampling and oversampling strategies within an ensemble classification framework. This novel approach is designed to harmonize dataset distributions and optimize IDS performance, particularly in intricate multi-class scenarios. In-depth evaluations were conducted using well-established intrusion detection datasets, including the Car Hacking: Attack and Defense Challenge 2020 (CHADC2020) and IoTID20. Our results showcase the remarkable efficacy of the proposed methodology, revealing significant improvements in precision, recall, and F1-score metrics. Notably, the hybrid-ensemble method demonstrated an exemplary average F1 score exceeding 98% for both datasets, underscoring its exceptional capability to substantially enhance intrusion detection accuracy. In summary, this research represents a significant contribution to the field of IDS, providing a robust solution to the pervasive challenge of class imbalance. The hybrid framework not only strengthens IDS efficacy but also illuminates the seamless integration of undersampling and oversampling within ensemble classifiers, paving the way for fortified network defenses.
Dataset Description
We provide resampled datasets based on BorderlineSMOTE method from a part of public dataset Car_Hacking_Challenge_Dataset and IoT Network Intrusion Dataset (IoTID20)
In the Car_Hacking_Challenge_Dataset, we labelled output classes as 'Flooding' as 0 , 'Fuzzing' as 1, 'Normal' as 2, 'Replay' as 3,'Spoofing' as 4.
In the IoTID20 dataset, we labelled output classes as 'DoS-Synflooding' as 0 , 'MITM ARP Spoofing' as 1, 'Mirai ARP Spoofing' as 2, 'Mirai-Hostbruteforceg' as 3, 'Mirai HTTP Flooding' as 4 , 'Mirai UDP Flooding' as 5, 'Scan Host Port' as 6, 'Scan Port OS' as 7, 'Normal' as 8.
Citation
Le, T.T.H, Shin, Y., Kim, M., & Kim, H. (2024). Towards unbalanced multiclass intrusion detection with hybrid sampling methods and ensemble classification. Applied Soft Computing, 157, 111517.
BibTeX:
@article{le2024towards, title={Towards unbalanced multiclass intrusion detection with hybrid sampling methods and ensemble classification}, author={Le, Thi Thu Huong and Shin, Yeongjae and Kim, Myeongkil and Kim, Howon and others}, journal={Applied Soft Computing}, volume={157}, pages={111517}, year={2024}, publisher={Elsevier} }
@misc {le_2025, author = { {Le} }, title = { resampled_IDS_datasets (Revision 45a8285) }, year = 2025, url = { https://huggingface.co/datasets/Thi-Thu-Huong/resampled_IDS_datasets }, doi = { 10.57967/hf/4961 }, publisher = { Hugging Face } }
Dataset Card Contact
Email: [email protected]
- Downloads last month
- 53