repo
stringlengths
26
115
file
stringlengths
54
212
language
stringclasses
2 values
license
stringclasses
16 values
content
stringlengths
19
1.07M
https://github.com/lxl66566/my-college-files
https://raw.githubusercontent.com/lxl66566/my-college-files/main/ไฟกๆฏ็ง‘ๅญฆไธŽๅทฅ็จ‹ๅญฆ้™ข/ๆœบๅ™จ่ง†่ง‰ๅฎž่ทต/ๆŠฅๅ‘Š/4/4.typ
typst
The Unlicense
#import "../template.typ": * #show: project.with( title: "4", authors: ("absolutex",), ) = ๆœบๅ™จ่ง†่ง‰ๅฎž่ทต ๅ›› == ๅฎž้ชŒ็›ฎ็š„ ๅ›พๅƒ่กฅๅ…‰็ฎ—ๆณ•ไธŽ็•Œ้ข่ฎพ่ฎก + ๅฎž็Žฐๅ›พๅƒ่กฅๅ…‰็ฎ—ๆณ•๏ผˆๅขžๅŠ ๅฑ€้ƒจๅ›พๅƒไบฎๅบฆ๏ผŒไฟๆŒๅฏนๆฏ”ๅบฆ๏ผŒ้ฟๅ…ๅคฑ็œŸ๏ผ‰ + ่ฎพ่ฎกๅ›พๅƒ่กฅๅ…‰็•Œ้ข๏ผŒไปŽๅทฆๅˆฐๅณ่กฅๅ…‰ๅ›พๅƒ้€ๆญฅๆ›ฟๆขๅŽŸๅ›พๅƒ็š„ๅฏ่ง†ๅŒ–ๆ•ˆๆžœใ€‚ == ๅฎž้ชŒไปฃ็  ่ฟ™ๆ˜ฏไธ€ไปฝๅ•ๆ–‡ไปถ html ไปฃ็ ๏ผŒไฝฟ็”จๆ—ถ้œ€่ฆๅœจๆœฌๅœฐๅฏๅŠจไธ€ไธช http server. #include_code("../src/brightness/index.html") ๅ…ทไฝ“็š„ๅŽŸ็†ๆ˜ฏๅฎšไน‰ไบ†ไธ‰ไธช่กฅๅ…‰ๅ› ๅญ๏ผŒๅˆ†ๅˆซๅฏนๅบ”ๆš—้ƒจ๏ผŒไธญ้—ด่‰ฒ่ฐƒ๏ผŒไบฎ้ƒจใ€‚ๅฏนๆฏไธชๅƒ็ด ็š„ๆฏไธช RGB ่ฟ›่กŒ้ๅކ๏ผŒๅนถๅฐ†ๅ…ถไน˜ไปฅๅฏนๅบ”็š„่กฅๅ…‰ๅ› ๅญใ€‚ ็•Œ้ข่ฎพ่ฎกๅฐฑ็›ดๆŽฅ่ฐƒ็”จๅ‰็ซฏ็š„ img-comparison-slider ๅบ“๏ผŒๅฎž็Žฐไบ†ๅฏๆ‹–ๆ‹ฝ็š„ไบฎๆš—ๅฏนๆฏ”ใ€‚ == ๅฎž้ชŒ็ป“ๆžœไธŽๅฟƒๅพ—ไฝ“ไผš #figure( image("result.png", width: 100%), caption: [่กฅๅ…‰็•Œ้ข ๆ•ˆๆžœๅ›พ], ) ๅฏไปฅ็œ‹ๅ‡บ่กฅๅ…‰ๆ•ˆๆžœ่พƒๅฅฝ๏ผŒ็‰นๅˆซๆ˜ฏๅฏน็™ฝ่‰ฒ่ƒŒๆ™ฏ็š„็‰ฉไฝ“ๆœ‰็€ๅทจๅคงๆๅ‡ใ€‚ไธ่ฟ‡ๅฏนไบŽๆœฌ่บซๆ˜ฏ้ป‘่‰ฒ็š„็‰ฉไฝ“๏ผŒๅณไฝฟไน˜ไปฅ่กฅๅ…‰ๅ› ๅญ๏ผŒๅ…ถไบฎๅบฆๅ€ผ่ฟ˜ๆ˜ฏ่ฟ‡ๅฐ๏ผŒๆ— ๆณ•็œ‹ๅˆฐๆ˜Žๆ˜พ็š„ๆ•ˆๆžœใ€‚
https://github.com/MobtgZhang/sues-thesis-typst
https://raw.githubusercontent.com/MobtgZhang/sues-thesis-typst/main/paper/chapters/ch02.typ
typst
MIT License
= ๅ…ฌๅผใ€ๅ›พ่กจ็ญ‰่กจ็คบๆ–นๆณ• == ๅ…ฌๅผ ๆ–นไพฟๅฟซๆทๅ†™ๅ…ฅๅ…ฌๅผๆ˜ฏTypst็›ธๅฏนไบŽWord็ผ–่พ‘ๅ™จๆœ€ไธบไธป่ฆ็š„ไผ˜ๅŠฟไน‹ไธ€๏ผŒ็‰นๅˆซๆ˜ฏ็†Ÿ็ปƒๆŽŒๆกไน‹ๅŽ๏ผŒๅœจ่พ“ๅ…ฅๅ…ฌๅผ็š„ๆ—ถๅ€™ๅ…ทๆœ‰้žๅธธๅคง็š„ๆๅ‡ๆ•ˆๆžœใ€‚ Typst ไธญ็š„ๅ…ฌๅผๅˆ†ไธบไธค็ฑป๏ผŒๅŒ…ๆ‹ฌๆœ‰#text("่กŒๅ†…ๅ…ฌๅผ",fill:rgb(255,0,0))ๅ’Œ#text("่กŒ้—ดๅ…ฌๅผ",fill:rgb(255,0,0))๏ผŒ ไพ‹ๅฆ‚่ฟ™ๆ˜ฏไธ€ไธช่กŒๅ†…ๅ…ฌๅผ $f(x)=1/(sqrt(2pi)sigma)dot exp(-((x-mu)^2)/(2sigma^2))$ใ€‚ ไธ‹้ขไธพไพ‹ๅ‡ ไธช่กŒ้—ดๅ…ฌๅผ $ f(x)&= 1/(sqrt(2pi)sigma)dot exp(-((x-mu)^2)/(2sigma^2)) $ ไพ‹ๅฆ‚๏ผŒๅฎšไน‰ไธ€ไธชๅˆ†ๆฎตๅ‡ฝๆ•ฐ $ f(x)&= cases( -x^3 + x + 8 &"," x<=2 \ 1/2 x^2 &"," 2<x<=10\ x+ 10 &"," x>=10 ) $ ไนŸๅฏไปฅๅฎšไน‰ไธ€ไธชๅคš่กŒ็š„่ฟž็ญ‰็š„็ญ‰ๅผ๏ผŒๅฎšไน‰ๅฆ‚ไธ‹ๆ‰€็คบ $ cos(2x) &= cos^2x - sin^2x &= 2cos^2x - 1 &= 1 - 2 sin^2x $ ๅฏไปฅๅฐ†ๅคšไธช็ญ‰ๅผๅฏน้ฝๅ†™ๅœจๅŒไธ€ไธช่ฏญๅฅๅ—ๅฝ“ไธญ๏ผŒไพ‹ๅฆ‚้บฆๅ…‹ๆ–ฏ้Ÿฆๆ–น็จ‹็ป„็งฏๅˆ†ๅฝขๅผ๏ผš $ cases( integral.cont_l H dot d l &= integral.double_S J dot d S + integral.double_(S)(diff D)/(diff t) dot S \ integral.cont_(l) EE dot d l &= - integral.double_(S)(diff BB)/(diff t) dot d S \ integral.cont_(S) BB dot S &= 0 \ integral.cont_(S) D dot d S &= integral.triple_(V) rho VV ) $ ๅพฎๅˆ†ๅฝขๅผ๏ผš $ cases( nabla times H &= J + (diff D)/(diff t) \ nabla times E &= - (diff B)/(diff t) \ nabla dot B &= 0 \ nabla dot H &= rho ) $ ๅธฆๆœ‰็Ÿฉ้˜ตๅฎšไน‰็š„ๅ…ฌๅผ๏ผš $ H = -mu dot B = -gamma B_(o) S_(z) = (gamma B_(o))/2 mat( 1, dots.h.c ,1 ; dots.h.c , dots.down , dots.h.c ; 1 & dots.h.c & 1 ) $ ๅœจๆฑ‚่งฃๅ‡ธไผ˜ๅŒ–้—ฎ้ข˜็š„ๆ—ถๅ€™๏ผŒ้—ฎ้ข˜็ ”็ฉถๆœ€ๅŽๆฑ‚่งฃๅฝ’็ป“ไธบไปฅไธ‹็š„ๆ–น็จ‹ๅฝขๅผ๏ผš $ arg_(x_(j)) min_(j=1,dots.h.c,N) sum_(j=1)^(N)c_(j)x_(j) $ $ s.t. cases( sum_(j=1)^(N)a_(i j)x_(j)=b_(i) & "," i=1 "," dots.h.c "," m \ x_(j)>=0 ) $ <equ:matrix> ๅœจๆ–‡็ซ ๅฝ“ไธญๆฏไธ€ไธชๅ…ฌๅผ็š„ๅŽ้ขๅ‡ๅฏไปฅๆทปๅŠ ไธ€ไธชlabel็š„ๆ ‡็ญพ๏ผŒ่ฟ™ๆ ทๅฐฑๅฏไปฅๅบ”็”จๅ…ฌๅผไบ†๏ผŒไพ‹ๅฆ‚#ref(<equ:matrix>)ๅฐฑๆ˜ฏๅˆšๅˆšๆˆ‘ไปฌ่กจ่พพ็š„็Ÿฉ้˜ต่กจ่พพๅผใ€‚
https://github.com/ryuryu-ymj/mannot
https://raw.githubusercontent.com/ryuryu-ymj/mannot/main/examples/showcase.typ
typst
MIT License
#import "/src/lib.typ": * #set page(width: auto, height: auto, margin: (x: 2cm, y: 1cm), fill: white) #set text(24pt) #show: mannot-init $ mark(1, tag: #<num>) / mark(x + 1, tag: #<den>, color: #blue) + mark(2, tag: #<quo>, color: #red) #annot(<num>, pos: top)[Numerator] #annot(<den>)[Denominator] #annot(<quo>, pos: right, yshift: 1em)[Quotient] $
https://github.com/figarofuga/Typst-template
https://raw.githubusercontent.com/figarofuga/Typst-template/main/CJD/CJD.typ
typst
= Introduction CJD(Creutz-feldt jacob disease)ใฏRapid progression dementiaใฎไธญใฎไปฃ่กจ็š„็–พๆ‚ฃใงใ‚ใ‚‹ใ€‚ Rapid progression dementiaใฎๅฎš็พฉใฏๆฑบใพใฃใฆใ„ใชใ„ใŒใ€ๅคงไฝ“2ๅนดไปฅๅ†…ใซ้€ฒ่กŒใ™ใ‚‹่ช็Ÿฅ็—‡ใจ่จ€ใ‚ใ‚Œใฆใ„ใ‚‹ใ€‚ ๆœ€ใ‚‚้‡่ฆใชไบ‹ใฏใ€CJDใฏๆ„ŸๆŸ“ๆ€งใŒใ‚ใ‚‹ไธŠใซๆฒป็™‚ๆณ•ใŒ็ขบ็ซ‹ใ—ใฆใ„ใชใ„ไบ‹ใงใ‚ใ‚‹ใ€‚ *ใ„ใ‘ใŸ๏ผ* - ไพ‹ใˆใฐใ€็ตๆ ธใฎไบ‹ - ไพ‹ใˆใฐใ€NTMใฎไบ‹ = ็—‡ไพ‹ = ใ„ใค็–‘ใ†๏ผŸ = ่บซไฝ“ๆ‰€่ฆ‹ใƒปๆ™‚้–“็ตŒ้Ž = ๆคœๆŸป == ้ ญ้ƒจMRI == ่„ณๆณข == ้ซ„ๆถฒๆคœๆŸป === RT-Quick == ๅ…ทไฝ“็š„ใซใฏ๏ผŸ ใƒ‰ใƒฉใ‚คใ‚ขใ‚คใ‚นใ‚’ๅ›บใ‚ใ‚‹ == ็—…็†่งฃๅ‰–ใซใคใ„ใฆ ๅฝ“้™ขใงใฏไธๅฏ่ƒฝ ใƒ–ใƒฌใ‚คใƒณใƒใƒณใ‚ฏ ๆฑไบฌ็ฒพ็ฅž 1. ใ„ใ‚ใ‚“ใชใ“ใจใŒใ‚ใ‚‹ใ€‚ 2. ใใ†ใ„ใ†ใ‚‚ใฎใ ใ€‚ ไพ‹ใˆใฐreferenceใฏใ“ใ†ใ‚„ใ‚‹ใ€‚
https://github.com/michalrzak/muw-typst-template
https://raw.githubusercontent.com/michalrzak/muw-typst-template/main/README.md
markdown
# About The repository contains a **Typst template** for a "_Diplomarbeit_" / "_Masterarbeit_" / "_Master thesis_" at the **Medical University of Vienna** (Meduni Wien). [Typst](https://github.com/typst/typst) is a typesetting system, offering a fun alternative to LaTeX. The template should follow all guidelines outlined in [Leitfaden](https://ub.meduniwien.ac.at/fileadmin/content/OE/ub/dokumente/Leitfaden_Studierende_Hochschulschriften_MedUni_Wien.pdf) provided by the Medical University of Vienna. Even though the template automates most necessary things, allowing you to concentrate on writing the thesis, I still recommend skimming the document before starting to get an overview of all requirements. # Known issues 1. The template is only designed around writing the thesis is English. This can be easily changed by editing the template. If you do the work a PR would be appreciated :). # Acknowledgement Medical University of Vienna logo from: <https://commons.wikimedia.org/wiki/File:Meduni-wien.svg>
https://github.com/SkiFire13/master-thesis
https://raw.githubusercontent.com/SkiFire13/master-thesis/master/chapters/2-background.typ
typst
#import "../config/common.typ": * = Background <section-background> In this chapter we give an overview of the theoretical background used in the rest of this thesis. We will first recap some basic notions on order theory with special focus on (complete) lattices. Then we will define what a system of fixpoint equations over complete lattices is and what is its solution, along with a number of related concepts in order theory. We will then give a brief introduction to parity games and describe how to characterize the solution of a system of fixpoint equations using a parity game, with some care for efficiency issues. Finally we will introduce two algorithms used to solve parity games which we will be exploiting later on. #include "./background/1-lattices.typ" #include "./background/2-tuples.typ" #include "./background/3-fixpoint-system.typ" #include "./background/4-applications.typ" #include "./background/5-parity-games.typ" #include "./background/6-game-characterization.typ" #include "./background/7-strategy-improvement.typ"
https://github.com/jgm/typst-hs
https://raw.githubusercontent.com/jgm/typst-hs/main/test/typ/compiler/import-14.typ
typst
Other
// Unresolved import. // Error: 23-35 unresolved import #import "module.typ": non_existing
https://github.com/GartmannPit/Praxisprojekt-II
https://raw.githubusercontent.com/GartmannPit/Praxisprojekt-II/main/Praxisprojekt%20II/PVA-Templates-typst-pva-2.0/appendix.typ
typst
#let showAppendix() = [ = Anhang // change heading for other languages // Write your appendix after the heading within the block Add your appendix in _appendix.typ_ \ // delete me #lorem(200) // delete me ]
https://github.com/elteammate/typst-compiler
https://raw.githubusercontent.com/elteammate/typst-compiler/main/src/typesystem-parser.typ
typst
#import "typesystem-lexer.typ": * #import "typesystem-def.typ": * #let typesystem_parse = { (tokens) => { let token_mapping = if type(ts_token_kind.punc_colon) == "string" {let res = (:); res.insert(ts_token_kind.punc_colon, 0); res.insert(ts_token_kind.ty_array, 1); res.insert(ts_token_kind.ident, 2); res.insert(ts_token_kind.ty_bool, 3); res.insert(ts_token_kind.punc_gt, 4); res.insert(ts_token_kind.ty_int, 5); res.insert(ts_token_kind.ty_arguments, 6); res.insert(ts_token_kind.punc_comma, 7); res.insert(ts_token_kind.ty_none_, 8); res.insert(ts_token_kind.ty_content, 9); res.insert(ts_token_kind.ty_object, 10); res.insert(ts_token_kind.ty_dictionary, 11); res.insert(ts_token_kind.ty_any, 12); res.insert(ts_token_kind.ty_tuple, 13); res.insert(ts_token_kind.alias, 14); res.insert(ts_token_kind.punc_lt, 15); res.insert(ts_token_kind.ty_string, 16); res.insert(ts_token_kind.ty_float, 17); res.insert(ts_token_kind.ty_function, 18); res} else {let res = range(ts_token_kind.len()); res.at(ts_token_kind.punc_colon) = 0; res.at(ts_token_kind.ty_array) = 1; res.at(ts_token_kind.ident) = 2; res.at(ts_token_kind.ty_bool) = 3; res.at(ts_token_kind.punc_gt) = 4; res.at(ts_token_kind.ty_int) = 5; res.at(ts_token_kind.ty_arguments) = 6; res.at(ts_token_kind.punc_comma) = 7; res.at(ts_token_kind.ty_none_) = 8; res.at(ts_token_kind.ty_content) = 9; res.at(ts_token_kind.ty_object) = 10; res.at(ts_token_kind.ty_dictionary) = 11; res.at(ts_token_kind.ty_any) = 12; res.at(ts_token_kind.ty_tuple) = 13; res.at(ts_token_kind.alias) = 14; res.at(ts_token_kind.punc_lt) = 15; res.at(ts_token_kind.ty_string) = 16; res.at(ts_token_kind.ty_float) = 17; res.at(ts_token_kind.ty_function) = 18; res} let callbacks = (((o,_0,ts,_2)=>mk_type(o,..ts)),((t,_0,ts,_2)=>mk_type(t,..ts)),((f,_0,ret,_1,ts,_2)=>mk_type(f,ret,..ts)),(a => a),((i)=>"any"),(a => a),(a => a),((n,_,t)=>((name:n,ty:t),)),(a => a),((ts,_,t)=>ts+(t,)),((i)=>"tuple"),(()=>()),(a => a),((i)=>"object"),((i)=>"array"),((i)=>"arguments"),((i)=>"none"),((i)=>"float"),((ts,_,n,_1,t)=>ts+((name:n,ty:t),)),(a => a),((d,_1,t,_2)=>mk_type(d,t)),((i)=>"bool"),((i)=>"int"),((i)=>"content"),(a => a),((i)=>"function"),((t)=>(t,)),((a)=>panic("Not implemented (type alias resolution)")),((i)=>i),(a => a),((a,_1,t,_2)=>mk_type(a,t)),((i)=>"string"),(()=>()),(a => a),((i)=>"dictionary"),) let table = ((0,11,0,8,0,6,9,0,2,3,14,10,7,13,15,0,4,5,12,0,0,1,0,0,0,),(0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,57,0,0,0,0,0,),(0,0,0,0,-23,0,0,-23,0,0,0,0,0,0,0,0,0,0,0,-23,0,0,0,0,0,),(0,0,0,0,-27,0,0,-27,0,0,0,0,0,0,0,0,0,0,0,-27,0,0,0,0,0,),(0,0,0,0,-30,0,0,-30,0,0,0,0,0,0,0,0,0,0,0,-30,0,0,0,0,0,),(0,0,0,0,-29,0,0,-29,0,0,0,0,0,0,0,0,0,0,0,-29,0,0,0,0,0,),(0,0,0,0,-2,0,0,-2,0,0,0,0,0,0,0,0,0,0,0,-2,0,0,0,0,0,),(0,0,0,0,-16,0,0,-16,0,0,0,0,0,0,0,0,0,0,0,-16,0,0,0,0,0,),(0,0,0,0,-32,0,0,-32,0,0,0,0,0,0,0,0,0,0,0,-32,0,0,0,0,0,),(0,0,0,0,-6,0,0,-6,0,0,0,0,0,0,0,0,0,0,0,-6,0,0,0,0,0,),(0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,54,0,0,0,0,0,0,0,0,0,),(0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,51,0,0,0,0,0,0,0,0,0,),(0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,46,0,0,0,0,0,0,0,0,0,),(0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,40,0,0,0,0,0,0,0,0,0,),(0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,16,0,0,0,0,0,0,0,0,0,),(0,0,0,0,-8,0,0,-8,0,0,0,0,0,0,0,0,0,0,0,-8,0,0,0,0,0,),(0,30,19,26,-3,24,27,-3,20,21,32,28,25,31,0,0,22,23,29,0,18,0,17,0,0,),(0,0,0,0,35,0,0,36,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,),(33,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,),(-7,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,),(-19,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,),(-12,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,),(-4,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,),(-18,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,),(-13,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,),(-31,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,),(-14,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,),(-20,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,),(-1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,),(-10,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,),(-21,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,),(-25,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,),(-22,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,),(0,11,0,8,0,6,9,0,2,3,14,10,7,13,15,0,4,5,12,0,0,34,0,0,0,),(0,0,0,0,-28,0,0,-28,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,),(0,0,0,0,-35,0,0,-35,0,0,0,0,0,0,0,0,0,0,0,-35,0,0,0,0,0,),(0,0,37,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,),(38,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,),(0,11,0,8,0,6,9,0,2,3,14,10,7,13,15,0,4,5,12,0,0,39,0,0,0,),(0,0,0,0,-17,0,0,-17,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,),(0,11,0,8,-24,6,9,-24,2,3,14,10,7,13,15,0,4,5,12,0,0,42,0,41,0,),(0,0,0,0,43,0,0,44,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,),(0,0,0,0,-9,0,0,-9,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,),(0,0,0,0,-34,0,0,-34,0,0,0,0,0,0,0,0,0,0,0,-34,0,0,0,0,0,),(0,11,0,8,0,6,9,0,2,3,14,10,7,13,15,0,4,5,12,0,0,45,0,0,0,),(0,0,0,0,-26,0,0,-26,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,),(0,11,0,8,0,6,9,0,2,3,14,10,7,13,15,0,4,5,12,0,0,47,0,0,0,),(0,0,0,0,0,0,0,48,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,),(0,11,0,8,-24,6,9,-24,2,3,14,10,7,13,15,0,4,5,12,0,0,42,0,49,0,),(0,0,0,0,50,0,0,44,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,),(0,0,0,0,-33,0,0,-33,0,0,0,0,0,0,0,0,0,0,0,-33,0,0,0,0,0,),(0,11,0,8,0,6,9,0,2,3,14,10,7,13,15,0,4,5,12,0,0,52,0,0,0,),(0,0,0,0,53,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,),(0,0,0,0,-5,0,0,-5,0,0,0,0,0,0,0,0,0,0,0,-5,0,0,0,0,0,),(0,11,0,8,0,6,9,0,2,3,14,10,7,13,15,0,4,5,12,0,0,55,0,0,0,),(0,0,0,0,56,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,),(0,0,0,0,-15,0,0,-15,0,0,0,0,0,0,0,0,0,0,0,-15,0,0,0,0,0,)) let arg_count = (4,4,6,1,1,1,1,3,1,3,1,0,1,1,1,1,1,1,5,1,4,1,1,1,1,1,1,1,1,1,4,1,0,1,1,) let goto_index = (21,21,21,21,20,21,21,22,21,23,20,23,21,20,20,20,20,20,22,21,21,20,20,20,24,20,23,21,20,21,21,20,22,21,20,) let cast_table = (_ => none,_=>ptype.array,x=>x.text,_=>types.bool,_ => none,_=>types.int,_=>types.arguments,_ => none,_=>types.none_,_=>types.content,_=>ptype.object,_=>ptype.dictionary,_=>types.any,_=>ptype.tuple,x=>x.text,_ => none,_=>types.string,_=>types.float,_=>ptype.function,) let stack = (0, ) let ast_stack = () let cur_token = 0 for i in range(9999) { for j in range(9999) { let state = stack.last() let terminal = if cur_token < tokens.len() { token_mapping.at(tokens.at(cur_token).kind) } else { 19 } let action = table.at(state).at(terminal) if action == 57 { assert(ast_stack.len() == 1) return ast_stack.first() } else if action > 0 { stack.push(action) ast_stack.push(cast_table.at(terminal)(tokens.at(cur_token))) cur_token += 1 } else if action < 0 { let rhs = () for _ in range(arg_count.at(action)) { let _ = stack.pop() rhs.push(ast_stack.pop()) } let rule = callbacks.at(action) ast_stack.push(rule(..rhs.rev())) let goto_state = table.at(stack.last()).at(goto_index.at(action)) if goto_state > 0 { stack.push(goto_state) } else { panic("Expected shift action") } } else { panic("Parsing error at state: " + repr(stack) + " and token: " + repr(if cur_token < tokens.len() { tokens.at(cur_token) } else {"EOF"}) + " at: " + repr(cur_token) ) } } } panic("too complex") } }
https://github.com/donghoony/KUPC-2023
https://raw.githubusercontent.com/donghoony/KUPC-2023/master/description.typ
typst
#import "colors.typ" : KUPC_GREEN, PALE_RED #import "problem_info.typ" : constructTitle #import "problems.typ" : contest_problems #import "emoji/lib.typ" : * #let mono(s, color: black) = {text(font: "Inconsolata", fill: color)[#s]} #let bf(s) = {text(weight: "bold")[#s]} // ์ค„๋ฐ”๊ฟˆ์€ #linebreak()๋ฅผ ์ค‘๊ฐ„์— ๋„ฃ์œผ๋ฉด ๋ฉ๋‹ˆ๋‹ค. // ํŽ˜์ด์ง€ ๋„˜๊น€์€ ๋ฌธ์ œ ๋‚ด๋ถ€์—์„œ ()๋ฅผ ์ƒˆ๋กœ ๋งŒ๋“ค์–ด ์ฃผ์„ธ์š”. // monospace ๋ฌธ์ž์—ด์€ #mono("abc")์™€ ๊ฐ™์ด ์“ธ ์ˆ˜ ์žˆ์Šต๋‹ˆ๋‹ค. // ๋ฏธ๋ฆฌ ์ •์˜๋˜์ง€ ์•Š์€ operation์˜ ๊ฒฝ์šฐ์—๋Š” #math.op("MEX")์™€ ๊ฐ™์ด ์“ฐ๋ฉด ๋ฉ๋‹ˆ๋‹ค. ๋Œ€๋ถ€๋ถ„์€ ์ •์˜๋ผ ์žˆ์œผ๋‹ˆ ๊ทธ๋ƒฅ $cos$ ์™€ ๊ฐ™์ด ์“ฐ๋ฉด ๋ฉ๋‹ˆ๋‹ค. // ์‹œ๊ฐ„๋ณต์žก๋„๋Š” $cal(O)(N log N)$ ์™€ ๊ฐ™์ด ์จ์ฃผ์„ธ์š”. log๊ฐ€ ์ž์ฒด์ ์œผ๋กœ ํ•จ์ˆ˜๊ฐ€ ์žˆ์Šต๋‹ˆ๋‹ค. // ์ด๋ชจ์ง€๋Š” ๊ทธ๋ƒฅ ๋„ฃ์œผ๋ฉด ๋ฉ๋‹ˆ๋‹ค. ์ง€์›ํ•˜์ง€ ์•Š๋Š” ์ด๋ชจ์ง€๋Š” ๊นจ์ง‘๋‹ˆ๋‹ค. ์ด๋ชจ์ง€๋Š” https://github.com/polazarus/typst-svg-emoji ๋ฅผ ์‚ฌ์šฉํ–ˆ์Šต๋‹ˆ๋‹ค. // ๊ทธ๋ž˜ํ”„๋„ ์ž‘์„ฑ ๊ฐ€๋Šฅํ•ฉ๋‹ˆ๋‹ค. https://www.graphviz.org/docs/graph/ ๋ฅผ ์ฐธ๊ณ ํ•ด์„œ ```render <์—ฌ๊ธฐ์— ๊ทธ๋ž˜ํ”„๋ฅผ ์ž‘์„ฑํ•˜์„ธ์š”>``` #let cell(num, color: black, fill: none, stroke: none) = { rect( height: 50pt, width: 50pt, stroke: stroke, fill: fill, )[#align(center + horizon)[#text(fill: color)[#num]]]; } #let descriptions = ( // 2A ( ( [- ์ฃผ์–ด์ง„ ๋ฌธ์ž์—ด์—์„œ $1$์ด ์—ฐ์†์œผ๋กœ ๋“ฑ์žฅํ•˜๋Š” ๊ตฌ๊ฐ„์„ ์•Œ์•„๋‚ด๋Š” ๋ฐฉ๋ฒ•์€ ๋ฌด์—‡์ผ๊นŒ์š”?], [- ์—ฌ๋Ÿฌ ๊ฐ€์ง€ ๋ฐฉ๋ฒ•์ด ์žˆ์ง€๋งŒ, ๊ตฌํ˜„์ด ๊ฐ„๋‹จํ•œ ๋ฐฉ๋ฒ•์„ ์†Œ๊ฐœํ•ฉ๋‹ˆ๋‹ค.], [- #mono(1) ์ดํ›„์— #mono(0) ์ด ๋“ฑ์žฅํ•œ๋‹ค๋ฉด, ๊ฒ€์€ ์ค„์˜ ๊ตฌ๊ฐ„์ด ๋๋‚˜๋Š” ๊ฒƒ์„ ์˜๋ฏธํ•ฉ๋‹ˆ๋‹ค.], [- ์ฃผ์–ด์ง„ ๋ฌธ์ž์—ด์„ ํ›‘์œผ๋ฉด์„œ, #mono("s[i] = 1")์ด๋ฉด์„œ #mono("s[i+1] = 0")์ธ #mono("i")์˜ ๊ฐœ์ˆ˜๋ฅผ ์…‰์‹œ๋‹ค.], [- ํŽธ์˜๋ฅผ ์œ„ํ•ด, ์ฃผ์–ด์ง„ ๋ฌธ์ž์—ด์— #mono(0) ์„ ์ถ”๊ฐ€ํ•ด๋„ ๋‹ต์€ ๊ฐ™์Šต๋‹ˆ๋‹ค.], [- ์‹œ๊ฐ„๋ณต์žก๋„๋Š” $cal(O)(N)$ ์ž…๋‹ˆ๋‹ค.], ), ), // 2B/1A ( ( [- ๊ฑด๋•์ด์™€ ๊ฑด๊ตฌ์Šค๋Š” ์ž์‹ ์˜ ์ฐจ๋ก€์— #bf("๋ฐ˜๋“œ์‹œ") ์›€์ง์—ฌ์•ผ ํ•ฉ๋‹ˆ๋‹ค.], [- ๊ฑด๋•์ด์™€ ๊ฑด๊ตฌ์Šค๋Š” ๋‹ค์Œ๊ณผ ๊ฐ™์€ ๋„ค ๊ฐ€์ง€ ์ข…๋ฅ˜๋กœ ์›€์ง์ž…๋‹ˆ๋‹ค: #mono("RR"), #mono("RL"), #mono("LL"), #mono("LR")], [- ์–ด๋–ป๊ฒŒ ์›€์ง์ด๋”๋ผ๋„ ๋‘ ํ”Œ๋ ˆ์ด์–ด ์‚ฌ์ด ๊ฐ„๊ฒฉ์˜ #bf("ํ™€์ง์„ฑ")#sub(mono("parity"))์€ ๋ณ€ํ•˜์ง€ ์•Š์Šต๋‹ˆ๋‹ค.], ), ( [- ์ „์žฅ์˜ ๊ธธ์ด๊ฐ€ ์ฃผ์–ด์ง€๋Š” ์ˆœ๊ฐ„ ์Šน์ž๋Š” ๊ฒฐ์ •๋˜๋ฉฐ, ์Šน์ž๋Š” ์ƒ๋Œ€๋ฅผ ํ–ฅํ•ด ์ „์ง„ํ•ฉ๋‹ˆ๋‹ค.], [- ํŒจ์ž์˜ ๊ฒฝ์šฐ ์•ž์œผ๋กœ ๊ฐ€๋ฉด ํŒจ๋ฐฐ๋กœ ๋” ๋น ๋ฅด๊ฒŒ ๋„๋‹ฌํ•˜๋ฏ€๋กœ, ๊ฐ€๋Šฅํ•˜๋‹ค๋ฉด ๋’ค๋กœ ํ›„ํ‡ดํ•ฉ๋‹ˆ๋‹ค.], [- ์ „์žฅ์„ ๋ฒ—์–ด๋‚˜๋„๋ก ์ด๋™ํ•  ์ˆ˜ ์—†์œผ๋ฏ€๋กœ, #bf("๋‘ ํ”Œ๋ ˆ์ด์–ด๊ฐ„ ๊ฐ„๊ฒฉ์€ ๋‹จ์กฐ๊ฐ์†Œ")ํ•ฉ๋‹ˆ๋‹ค.], ), ( [- ๊ฐ„๊ฒฉ์„ ์ง์ˆ˜๋กœ ๋งŒ๋“œ๋Š” ์‚ฌ๋žŒ์€ ๊ฒฐ๊ตญ ๋‘ ํ”Œ๋ ˆ์ด์–ด ์‚ฌ์ด์˜ ๊ฑฐ๋ฆฌ๋ฅผ $0$์œผ๋กœ ๋งŒ๋“ญ๋‹ˆ๋‹ค.], [- ํ”Œ๋ ˆ์ด์–ด ์‚ฌ์ด์˜ ๊ฑฐ๋ฆฌ๊ฐ€ $0$์ด ๋˜๋Š” ์ˆœ๊ฐ„, ๋‹ค์Œ ์ฐจ๋ก€์˜ ํ”Œ๋ ˆ์ด์–ด๋Š” ๊ณต๊ฒฉํ•  ์ˆ˜ ์žˆ์Šต๋‹ˆ๋‹ค.], [- ์ฃผ์–ด์ง„ ์ „์žฅ์˜ ๊ธธ์ด๊ฐ€ ์ง์ˆ˜๋ผ๋ฉด, ์„ ๊ณต์ด ๋จผ์ € ๋‘˜ ์‚ฌ์ด์˜ ๊ฐ„๊ฒฉ์„ ํ™€์ˆ˜๋กœ ๋งŒ๋“ญ๋‹ˆ๋‹ค.], [- ํ™€์ˆ˜๋ผ๋ฉด, ์„ ๊ณต์ด ๋‘˜ ์‚ฌ์ด์˜ ๊ฐ„๊ฒฉ์„ ์ง์ˆ˜๋กœ ๋งŒ๋“ญ๋‹ˆ๋‹ค.], [- ๋”ฐ๋ผ์„œ ์ „์žฅ์˜ ๊ธธ์ด๊ฐ€ ์ง์ˆ˜์ธ ๊ฒฝ์šฐ, ๊ฑด๋•์ด๊ฐ€ ์Šน๋ฆฌํ•ฉ๋‹ˆ๋‹ค.], [- ์ฃผ์–ด์ง„ ์ „์žฅ์˜ ๊ธธ์ด์˜ ํ™€์ง์„ฑ์„ ํŒ๋‹จํ•˜๋ฏ€๋กœ ์‹œ๊ฐ„๋ณต์žก๋„๋Š” $cal(O)(1)$์ž…๋‹ˆ๋‹ค.], [],[], [#emoji.arm.muscle $N times N$ ์ „์žฅ์—์„œ ๊ฐ ํ”Œ๋ ˆ์ด์–ด๊ฐ€ $(1,1)$, $(N,N)$์—์„œ ์‹œ์ž‘ํ•˜๋ฉด ๋ˆ„๊ฐ€ ์Šน๋ฆฌํ• ๊นŒ์š”?] ), ), // 2C ( ( [- ๋ฐ”๋‹ฅ์ˆ˜ $N$์ด ์ฃผ์–ด์กŒ์„ ๋•Œ, ๋ฐ”๋‹ฅ์ˆ˜๊ฐ€ $N$์ธ ๊ธธ์ด $L$์˜ ์›๋ž˜ ์ˆ˜๋ฅผ ๊ตฌํ•ด์•ผ ํ•ฉ๋‹ˆ๋‹ค.], [- ๊ธธ์ด $L$์˜ ๋ชจ๋“  ์ˆ˜์— ๋Œ€ํ•ด์„œ ๋ฐ”๋‹ฅ์ˆ˜๊ฐ€ ๋˜๋Š”์ง€ ํ™•์ธํ•˜๋Š” ๊ฒƒ์€ ์˜ค๋ž˜ ๊ฑธ๋ฆฝ๋‹ˆ๋‹ค.], [- ๊ณฑ์…ˆ์˜ ์„ฑ์งˆ์„ ํ™œ์šฉํ•ด์„œ ์‰ฝ๊ฒŒ ๋ฌธ์ œ๋ฅผ ํ•ด๊ฒฐํ•ด ๋ด…์‹œ๋‹ค.] ), ( [- ๊ณฑ์…ˆ์˜ ํ•ญ๋“ฑ์›์„ ์ด์šฉํ•ฉ์‹œ๋‹ค. $1$์€ ์—ฌ๋Ÿฌ ๋ฒˆ ๊ณฑํ•ด๋„ $1$์ž…๋‹ˆ๋‹ค.], [- $1$์„ $L-1$๋ฒˆ ์ ์€ ๋’ค, $N$๋ฅผ ๋’ค์— ๋ง๋ถ™์ธ ์ˆ˜์˜ ๋ฐ”๋‹ฅ์ˆ˜๋Š” $N$์ž…๋‹ˆ๋‹ค.], [- ์›๋ž˜ ์ˆ˜๋Š” $0$์œผ๋กœ ์‹œ์ž‘ํ•˜์ง€ ์•Š์Œ์— ์ฃผ์˜ํ•ฉ์‹œ๋‹ค.] ), ), // 2D/1B ( ( [- ํ•™์ƒ์˜ ํ‚ค๊ฐ€ ๊ฐ™์€ ์Œ์ด ์กด์žฌํ•˜์ง€ ์•Š๋Š”๋‹ค๋ฉด, ๋ชจ๋“  ํ•™์ƒ์ด ์ฐธ์—ฌํ•  ์ˆ˜ ์žˆ์Šต๋‹ˆ๋‹ค.], [- ๋ชจ๋‘๊ฐ€ ํ•œ ์ชฝ์„ ๋ฐ”๋ผ๋ณด๊ณ , ๋ฐ”๋ผ๋ณด๋Š” ๋ฐฉํ–ฅ์œผ๋กœ ํ‚ค๊ฐ€ ์ž‘์•„์ง€๋„๋ก ์ค„์„ธ์šฐ๋ฉด ๋ฉ๋‹ˆ๋‹ค.], [- ํ•™์ƒ์˜ ํ‚ค๊ฐ€ ๊ฐ™์€ ์Œ์ด ์กด์žฌํ•˜๋Š” ๊ฒฝ์šฐ์—๋Š” ๋ช‡ ๋ช…๊นŒ์ง€ ์ฐธ์—ฌํ•  ์ˆ˜ ์žˆ์„๊นŒ์š”?], ), ( [- ๋‘ ๋ช…์˜ ํ‚ค๊ฐ€ ์„œ๋กœ ๊ฐ™๋‹ค๋ฉด, ์„œ๋กœ ๋ฐ˜๋Œ€ ๋ฐฉํ–ฅ์„ ๋ณด๊ณ  ์„œ๋ฉด ๋ฉ๋‹ˆ๋‹ค.], [- ์„ธ ๋ช…์˜ ํ‚ค๊ฐ€ ์„œ๋กœ ๊ฐ™๋‹ค๋ฉด, ํ•œ ๋ช…์€ ์–ด๋А ์ชฝ์„ ๋ณด๋“  ์ ํ”„ํ•  ํƒ€์ด๋ฐ์„ ๋†“์น  ์ˆ˜ ์žˆ์Šต๋‹ˆ๋‹ค.], [- ๋”ฐ๋ผ์„œ ํ‚ค๊ฐ€ ๊ฐ™์€ ์‚ฌ๋žŒ์€ #bf("์ตœ๋Œ€ ๋‘ ๋ช…")๊นŒ์ง€๋งŒ ์ฐธ์—ฌํ•  ์ˆ˜ ์žˆ์Šต๋‹ˆ๋‹ค.], [- ์ค„์„ ์„ธ์šธ ์ˆ˜ ์žˆ๋Š”์ง€์˜ ์—ฌ๋ถ€๋ฅผ ๋ฌผ์–ด๋ณด์•˜์œผ๋ฏ€๋กœ, ๊ฐ ์‚ฌ๋žŒ๋“ค์˜ ํ‚ค์— ๋Œ€ํ•ด์„œ ์ฐธ์—ฌํ•  ์ˆ˜ ์žˆ๋Š” ์‚ฌ๋žŒ์˜ ์ˆ˜๋ฅผ ์„ธ์–ด ์ค์‹œ๋‹ค.], [- ์‹œ๊ฐ„๋ณต์žก๋„๋Š” $cal(O)(N)$์ž…๋‹ˆ๋‹ค.], [],[], [#emoji.arm.muscle ์˜ฌ๋ฐ”๋ฅด๊ฒŒ ์ค„ ์„ธ์šฐ๋Š” ๋ฐฉ๋ฒ• ์ค‘ ํ•˜๋‚˜๋ฅผ ๊ตฌํ•  ์ˆ˜ ์žˆ์„๊นŒ์š”?] ), ), // 2E ( ( [- ์™ผ์ชฝ ์ ˆ๋ฐ˜์˜ ๋ฌธ์ž์™€ ์˜ค๋ฅธ์ชฝ ์ ˆ๋ฐ˜์˜ ๋ฌธ์ž์˜ ๊ตํ™˜์„ ํ†ตํ•ด ํŒฐ๋ฆฐ๋“œ๋กฌ์„ ๋งŒ๋“ค์–ด ๋ด…์‹œ๋‹ค.], [- ์—ฐ์‚ฐ์„ ํ†ตํ•ด ์ž„์˜์˜ ์œ„์น˜์— ์กด์žฌํ•˜๋Š” ๋‘ ๋ฌธ์ž๋ฅผ ๊ตํ™˜ํ•  ์ˆ˜ ์žˆ๋‹ค๋ฉด, #linebreak() ๋ชจ๋“  ๋ฌธ์ž๋ฅผ ์›ํ•˜๋Š” ๊ณณ์— ๋ฐฐ์น˜ํ•  ์ˆ˜ ์žˆ์Šต๋‹ˆ๋‹ค. ๊ณผ์—ฐ ๊ฐ€๋Šฅํ• ๊นŒ์š”?#v(0.5em)], [- ํŽธ์˜์ƒ ๋ฐฐ์—ด์˜ ๊ธธ์ด๊ฐ€ ์ง์ˆ˜๋ผ๊ณ  ๊ฐ€์ •ํ•ฉ์‹œ๋‹ค. ๊ตํ™˜ํ•˜๋Š” ๊ฒฝ์šฐ์˜ ์ˆ˜๋Š” ๋‘ ๊ฐ€์ง€์ž…๋‹ˆ๋‹ค. ], [#h(2em) #emoji.ast ๋‘ ๋ฌธ์ž๊ฐ€ ์„œ๋กœ ๋‹ค๋ฅธ ์ ˆ๋ฐ˜์— ์†ํ•˜๋Š” ๊ฒฝ์šฐ], [#h(2em) #emoji.ast ๋‘ ๋ฌธ์ž๊ฐ€ ๊ฐ™์€ ์ ˆ๋ฐ˜์— ์†ํ•˜๋Š” ๊ฒฝ์šฐ], ), ( [- ๋‘ ๋ฌธ์ž๊ฐ€ ์„œ๋กœ ๋‹ค๋ฅธ ์ ˆ๋ฐ˜์— ์†ํ•˜๋Š” ๊ฒฝ์šฐ, ๋‘ ์›์†Œ๋ฅผ ์ง์ ‘ ๊ตํ™˜ํ•  ์ˆ˜ ์žˆ์Šต๋‹ˆ๋‹ค.], [- ๋‘ ๋ฌธ์ž๊ฐ€ ์„œ๋กœ ๊ฐ™์€ ์ ˆ๋ฐ˜์— ์†ํ•˜๋Š” ๊ฒฝ์šฐ์—๋Š” ๋‘ ์›์†Œ๋ฅผ ์ง์ ‘ ๊ตํ™˜ํ•  ์ˆ˜ ์—†์Šต๋‹ˆ๋‹ค.], [- ์ด๋•Œ, ๋ฐ˜๋Œ€์ชฝ ์ ˆ๋ฐ˜์— ์†ํ•˜๋Š” ์›์†Œ ํ•œ ๊ฐœ๋ฅผ ์ž„์‹œ๋กœ ์‚ฌ์šฉํ•ด ๊ตํ™˜ํ•  ์ˆ˜ ์žˆ์Šต๋‹ˆ๋‹ค.], [ #let cell(num, color: black, fill: none) = { rect( height: 50pt, width: 50pt, stroke: none, fill: fill, )[#align(center + horizon)[#text(fill: color)[#num]]]; } #set table(align: center, stroke: gray + 0.5pt, inset: 0pt, columns: 4) #align(center)[ #table( )[#cell(1, color: blue, fill:rgb("ddd"))][#cell(2)][#cell(3, color: PALE_RED)][#cell(4, color: PALE_RED, fill: rgb("ddd"))] ] #v(-0.8em) #align(center)[ #table( )[#cell(4, color: PALE_RED, fill:rgb("ddd"))][#cell(2)][#cell(3, color: PALE_RED, fill:rgb("ddd"))][#cell(1, color: blue)] ] #v(-0.8em) #align(center)[ #table( )[#cell(3, color: PALE_RED, fill:rgb("ddd"))][#cell(2)][#cell(4, color: PALE_RED)][#cell(1, color: blue, fill:rgb("ddd"))] ] #v(-0.8em) #align(center)[ #table( )[#cell(1, color: blue)][#cell(2)][#cell(4, color: PALE_RED)][#cell(3, color: PALE_RED)] ] ] ), ( [- ๋ฌธ์ž์—ด์˜ ๊ธธ์ด๊ฐ€ ํ™€์ˆ˜์ธ ๊ฒฝ์šฐ์—๋Š” ๊ฐ€์šด๋ฐ ๊ธ€์ž๋ฅผ ๊ตํ™˜ํ•  ์ˆ˜ ์—†์Œ์— ์œ ์˜ํ•ฉ์‹œ๋‹ค.], [- ํ•ด๋‹น ๋ฌธ์ž๋ฅผ ์„ธ์ง€ ์•Š๊ณ , ์ง์ˆ˜ ๊ธธ์ด์˜ ๋ฌธ์ž์—ด์ด๋ผ๊ณ  ์ƒ๊ฐํ•˜๋ฉด ๋ฉ๋‹ˆ๋‹ค.], [- ํŒฐ๋ฆฐ๋“œ๋กฌ์ด ๋˜๊ธฐ ์œ„ํ•ด์„œ๋Š” ์–‘ ์ชฝ์— ๊ฐ™์€ ์ˆ˜์˜ ๋ฌธ์ž๊ฐ€ ์กด์žฌํ•ด์•ผ ํ•ฉ๋‹ˆ๋‹ค.], [- ์•ŒํŒŒ๋ฒณ์ด ๋ฌธ์ž์—ด์— ์ง์ˆ˜๋ฒˆ ๋“ฑ์žฅํ•œ๋‹ค๋ฉด ์–‘ ์ชฝ์— ๊ณจ๊ณ ๋ฃจ ๋ถ„๋ฐฐํ•  ์ˆ˜ ์žˆ์Šต๋‹ˆ๋‹ค.], [- ์‹œ๊ฐ„๋ณต์žก๋„๋Š” $cal(O)(N)$์ž…๋‹ˆ๋‹ค.], ), ), ( ( [- ๋‘ ๊ฐœ์˜ ๋ง๋š๊ณผ ๊นƒ๋Œ€ ํ•˜๋‚˜๋ฅผ ๊ณจ๋ผ ๋งŒ๋“ค ์ˆ˜ ์žˆ๋Š” ์‚ผ๊ฐํ˜• ๋„“์ด ์ค‘ ์ตœ๋Œ“๊ฐ’์„ ๊ตฌํ•ฉ์‹œ๋‹ค.], [- ๋‹จ, ๋„“์ด๊ฐ€ $R$ ์ดํ•˜์—ฌ์•ผ ํ•ฉ๋‹ˆ๋‹ค.], [- ๊ฐ„๋‹จํ•œ ๋ฐฉ๋ฒ•์€ ๋ชจ๋“  ๋ง๋š ์Œ์— ๋Œ€ํ•ด์„œ, ๋ชจ๋“  ๊นƒ๋Œ€๋ฅผ ํƒ์ƒ‰ํ•˜๋Š” ๋ฐฉ๋ฒ•์ž…๋‹ˆ๋‹ค.], [- ํ•ด๋‹น ํ’€์ด๋Š” $cal(O)(N^2M)$์œผ๋กœ, ์ œํ•œ ์‹œ๊ฐ„ ์•ˆ์— ํ•ด๊ฒฐํ•  ์ˆ˜ ์—†์Šต๋‹ˆ๋‹ค.], ), ( [- ๋งŒ์•ฝ ๋ฐ‘๋ณ€์„ ๊ณ ์ •ํ•œ๋‹ค๋ฉด, ์ฃผ์–ด์ง„ ๊นƒ๋Œ€๋ฅผ ์ •๋ ฌํ•œ ๋’ค ์ด๋ถ„ํƒ์ƒ‰์„ ์‚ฌ์šฉํ•  ์ˆ˜ ์žˆ์Šต๋‹ˆ๋‹ค.], [- ๊ฐ€๋Šฅํ•œ ๋ชจ๋“  ๋ฐ‘๋ณ€์„ ๊ตฌํ•˜๋Š” ๋ฐ์—๋Š” $cal(O)(N^2)$์ž…๋‹ˆ๋‹ค.], [- ์ด๋ถ„ ํƒ์ƒ‰์— ๊นƒ๋Œ€๋ฅผ ํ™œ์šฉํ•˜๊ธฐ ์œ„ํ•ด ๊นƒ๋Œ€๋ฅผ ์ •๋ ฌํ•˜๋Š” ๋ฐ $cal(O)(M log M)$์ž…๋‹ˆ๋‹ค.], [- ํ•˜๋‚˜์˜ ๋ฐ‘๋ณ€ ๊ธธ์ด์— ๋Œ€ํ•ด์„œ, $R$ ์ดํ•˜์ธ ์ตœ๋Œ€ ๋„“์ด๋ฅผ ๊ตฌํ•˜๋Š” ๋ฐ $cal(O)(log M)$์ด ๋“ญ๋‹ˆ๋‹ค.], [- $cal(O)(M log M + N^2 log M)$ ์€ ์ถฉ๋ถ„ํžˆ ํ†ต๊ณผํ•  ์ˆ˜ ์žˆ์Šต๋‹ˆ๋‹ค.] ), ), ( ( [- ์Šค์œ„์น˜๋ฅผ ๋ˆ„๋ฅด๋ฉด $3$์ดˆ๋™์•ˆ ๋‘ ๋ฐฐ์˜ ์ ์ˆ˜๋ฅผ ์–ป์„ ์ˆ˜ ์žˆ์Šต๋‹ˆ๋‹ค.], [- ์Œ์ˆ˜์˜ ์ ์ˆ˜๋„ ๋‘ ๋ฐฐ๋กœ ๊ณ„์‚ฐ๋จ์— ์œ ์˜ํ•ด์•ผ ํ•ฉ๋‹ˆ๋‹ค.], [- ๊ทธ๋ฆฌ๋””ํ•˜๊ฒŒ ์Šค์œ„์น˜๋ฅผ ๋ˆ„๋ฅด๋Š” ์ „๋žต์€ ์˜ค๋‹ต์„ ๋ฐ›์Šต๋‹ˆ๋‹ค.], [- ์Šค์œ„์น˜๋ฅผ ๋ˆ„๋ฅธ ๋’ค, $i$์ดˆ ์‹œ์ ์— ์Šค์œ„์น˜์˜ ํšจ๊ณผ๊ฐ€ $j$์ดˆ ๋‚จ์•˜๋‹ค๋Š” ๊ฒƒ์„ ํ™œ์šฉํ•ฉ์‹œ๋‹ค.], ), ( [- $i$์ดˆ์— $j=0$์ด๋ผ๋ฉด, $i-1$์ดˆ์— $j=0$์ด๊ฑฐ๋‚˜ $j=1$์ธ ๊ฒฝ์šฐ ์ค‘ ์ตœ๋Œ“๊ฐ’์„ ๊ฐ€์ ธ์˜ต์‹œ๋‹ค.], [- $j=1$์ด๋ผ๋ฉด ์•„์ง ์Šค์œ„์น˜์˜ ํšจ๊ณผ๊ฐ€ ๋‚จ์•„์žˆ์œผ๋ฏ€๋กœ $i-1$์ดˆ์˜ $j=2$๋ฅผ ๊ฐ€์ ธ์˜ต๋‹ˆ๋‹ค.], [- $j=2$์ธ ๊ฒฝ์šฐ๋„ ๋งˆ์ฐฌ๊ฐ€์ง€๋กœ $i-1$์ดˆ์˜ $j=3$์„ ๊ฐ€์ ธ์˜ต๋‹ˆ๋‹ค.], [- $j=3$์€ ์ง€๊ธˆ ์Šค์œ„์น˜๋ฅผ ๋ˆ„๋ฅธ ์ƒํ™ฉ์œผ๋กœ, $i-1$์ดˆ์˜ $j=0$์ด๊ฑฐ๋‚˜ $j=1$์ธ ๊ฒฝ์šฐ์—์„œ ๊ฐ€์ ธ์˜ฌ ์ˆ˜ ์žˆ์Šต๋‹ˆ๋‹ค.], [- ์Šค์œ„์น˜์˜ ํšจ๊ณผ๊ฐ€ ์ ์šฉ๋˜๋Š” ๊ฒฝ์šฐ์—๋Š” ๋ฐฐ์—ด์˜ ๊ฐ’์˜ ๋‘๋ฐฐ๋ฅผ ๋”ํ•ด์ค์‹œ๋‹ค.], [- ์‹œ๊ฐ„๋ณต์žก๋„๋Š” $cal(O)(N)$์ž…๋‹ˆ๋‹ค.] ) ), ( ( [ #let cell(num, color: black, fill: none, stroke: none) = { rect( height: 50pt, width: 50pt, stroke: stroke, fill: fill, )[#align(center + horizon)[#text(fill: color)[#num]]]; } #set table(align: center, stroke: rgb("add8e6") + 1pt, inset: 0pt, columns: 5) #align(center)[ #table()[#cell(1)][#cell(2)][#cell(3, stroke: red)][#cell(4)][#cell(5)][#cell(5)][#cell(2)][#cell(1, stroke: red)][#cell(4)][#cell(6)][#cell(0)][#cell(2)][#cell(4,fill: rgb("ddd"), stroke: red)][#cell(2)][#cell(1)][#cell(0)][#cell(0)][#cell(2)][#cell(1)][#cell(7)] ] ], [- ์ผ๊ฐํ˜ธ์ž…๋‹ˆ๋‹ค. #emoji.fishing], [- ๋ฌด๊ฒŒ์ถ” $3$์„ ๋‹ฌ์•„ $3$์˜ ํž˜์œผ๋กœ ๋‚š์‹ฏ๋Œ€๋ฅผ ํœ˜๋‘๋ฅด๋ฉด ํšŒ์ƒ‰ ์นธ์— ์ฐŒ๊ฐ€ ๋„๋‹ฌํ•ฉ๋‹ˆ๋‹ค.], [- ๋นจ๊ฐ„ ์ƒ‰ ํ…Œ๋‘๋ฆฌ์— ํ•ด๋‹นํ•˜๋Š” ์นธ์— ์กด์žฌํ•˜๋Š” $8$๋งˆ๋ฆฌ์˜ ๋ฌผ๊ณ ๊ธฐ๊ฐ€ ์‚ฌ๋กœ์žกํž™๋‹ˆ๋‹ค.] ), ( [ #set table(align: center, stroke: rgb("add8e6") + 1pt, inset: 0pt, columns: 5) #align(center)[ #table()[#cell(1)][#cell(2, stroke: red)][#cell(3, fill: rgb("add8e6"))][#cell(4)][#cell(5)][#cell(5)][#cell(2, fill: rgb("ddd"), stroke: red)][#cell(1, fill: rgb("add8e6"))][#cell(4)][#cell(6)][#cell(0)][#cell(2)][#cell(4, fill: rgb("add8e6"))][#cell(2)][#cell(1)][#cell(0)][#cell(0)][#cell(2)][#cell(1)][#cell(7)] ] ], [- ๋‚š์‹ฏ์ค„์„ ํ•œ ๋ฐ”ํ€ด ๊ฐ์•„์˜ฌ๋ฆฌ๋ฉด ์ฐŒ์˜ ์œ„์น˜๊ฐ€ ๋ฐ”๋€๋‹ˆ๋‹ค.], [- ๋ฐ”๋€ ์นธ์—์„œ ๋ฌผ๊ณ ๊ธฐ $4$๋งˆ๋ฆฌ๊ฐ€ ์‚ฌ๋กœ์žกํž™๋‹ˆ๋‹ค.], [- ์ด๋ฅผ ๋ฏธ๋ผ๊ฐ€ ์ผ๊ฐํ˜ธ๋ฅผ ๋ฒ—์–ด๋‚  ๋•Œ๊นŒ์ง€ ๋ฐ˜๋ณตํ•ฉ๋‹ˆ๋‹ค.], ), ( [ #let cell(num, color: black, fill: none, stroke: none) = { rect( height: 50pt, width: 50pt, stroke: stroke, fill: fill, )[#align(center + horizon)[#text(fill: color)[#num]]]; } #set table(align: center, stroke: rgb("add8e6") + 1pt, inset: 0pt, columns: 5) #align(center)[ #table()[#cell(1, fill: rgb("add8e6"))][#cell(2, fill: rgb("add8e6"))][#cell(3, fill: rgb("add8e6"))][#cell(4)][#cell(5)][#cell(5)][#cell(2, fill: rgb("add8e6"))][#cell(1, fill: rgb("add8e6"))][#cell(4)][#cell(6)][#cell(0)][#cell(2)][#cell(4, fill: rgb("add8e6"))][#cell(2)][#cell(1)][#cell(0)][#cell(0)][#cell(2)][#cell(1)][#cell(7)] ] ], [- ์ฟผ๋ฆฌ๊ฐ€ ์ฃผ์–ด์งˆ ๋•Œ๋งˆ๋‹ค ๋‹ค์Œ๊ณผ ๊ฐ™์€ ๊ณ„๋‹จ ๋ชจ์–‘์— ์น ํ•ด์ง„ ์ˆ˜์˜ ํ•ฉ์„ ๊ตฌํ•˜๋Š” ๋ฌธ์ œ์ž…๋‹ˆ๋‹ค.], [- ๊ฐ„๋‹จํ•˜๊ฒŒ ์ƒ๊ฐํ•˜๋ฉด, ๋งค ์ฟผ๋ฆฌ๋งˆ๋‹ค ๊ณ„์‚ฐํ•˜๋Š” $cal(O)(N M Q)$ ํ’€์ด๊ฐ€ ์žˆ์Šต๋‹ˆ๋‹ค #emoji.face.explode.], [- ์ด๋Š” ์‹œ๊ฐ„ ์ดˆ๊ณผ์ž…๋‹ˆ๋‹ค. ์–ด๋–ป๊ฒŒ ๋น ๋ฅด๊ฒŒ ํ•ด๊ฒฐํ•  ์ˆ˜ ์žˆ์„๊นŒ์š”?] ), ( [- ์—ฌ๋Ÿฌ ๋ฐฉ๋ฒ• ์ค‘ ํ•˜๋‚˜๋ฅผ ์†Œ๊ฐœํ•ฉ๋‹ˆ๋‹ค.], [- 2์ฐจ์› ๋ฐฐ์—ด์—์„œ ์ง์‚ฌ๊ฐํ˜• ๋ชจ์–‘์˜ ๋ถ€๋ถ„ํ•ฉ์€ $cal(O)(N M + Q)$์— ๊ตฌํ•  ์ˆ˜ ์žˆ์Šต๋‹ˆ๋‹ค.], [- ์ฟผ๋ฆฌ๊ฐ€ ์ง์‚ฌ๊ฐํ˜•์˜ ๋ถ€๋ถ„ํ•ฉ์„ ๊ตฌํ•˜๊ฒŒ๋” ์ผ๊ฐํ˜ธ๋ฅผ ์žฌ๋ฐฐ์น˜ํ•  ์ˆ˜ ์žˆ์„๊นŒ์š”?], ), ( [ #set table(align: center, stroke: rgb("add8e6") + 1pt, inset: 0pt, columns: 3) #align(center)[ #grid(columns: 3)[ #align(center + horizon)[ #table()[#cell(1, fill: rgb("add8e6"))][#cell(2,fill: rgb("add8e6"))][#cell(3,fill: rgb("add8e6"))][#cell(5)][#cell(2,fill: rgb("add8e6"))][#cell(1,fill: rgb("add8e6"))][#cell(0)][#cell(2)][#cell(4,fill: rgb("add8e6"))]] ][#align(center + horizon)[#h(3em)->#h(3em)]][ #align(center + horizon)[ #table()[#cell(0, fill: rgb("add8e6"))][#cell(0, fill: rgb("add8e6"))][#cell(3, fill: rgb("add8e6"), stroke: PALE_RED)][#cell(0,fill: rgb("add8e6"))][#cell(2,fill: rgb("add8e6"), stroke: PALE_RED)][#cell(1,fill: rgb("add8e6"), stroke: PALE_RED)][#cell(1, fill: rgb("add8e6"), stroke: PALE_RED)][#cell(2, fill: rgb("add8e6"), stroke: PALE_RED)][#cell(4,fill: rgb("add8e6"), stroke: PALE_RED)][#cell(5, stroke: PALE_RED)][#cell(2, stroke: PALE_RED)][#cell(0)][#cell(0, stroke: PALE_RED)][#cell(0)][#cell(0)]] ] ] ], [- ๊ฐ€๋Šฅํ•ฉ๋‹ˆ๋‹ค.], [- ์‹œ๊ฐ„๋ณต์žก๋„๋Š” 2์ฐจ์› ๋ถ€๋ถ„ํ•ฉ๊ณผ ๊ฐ™์€ $cal(O)(N M + Q)$์ž…๋‹ˆ๋‹ค.], ), ( [- ์•„๋ž˜์ชฝ์œผ๋กœ ๋ˆ„์ ํ•ฉ์„ ๊ตฌํ•ด์ค€ ๋’ค, ์˜ค๋ฅธ์ชฝ ์•„๋ž˜ ๋Œ€๊ฐ์„  ๋ฐฉํ–ฅ์œผ๋กœ ๋ˆ„์ ํ•ฉ์„ ๊ตฌํ•ด๋‚˜๊ฐ€๋„ ์ •๋‹ต์„ ๊ตฌํ•  ์ˆ˜ ์žˆ์Šต๋‹ˆ๋‹ค.], [],[], [ #let c1 = rgb(240,229,235); #let c2 = rgb(212,236,220) #let c3 = rgb(252,249,218) #let c4 = rgb(252,223,215) #set table(align: center, stroke: rgb("add8e6") + 1pt, inset: 0pt, columns: 3) #align(center)[ #grid(columns: 5)[ #align(center + horizon)[ #table()[#cell(1, fill: c1)][#cell(2,fill: c2)][#cell(3,fill: c3)][#cell(5, fill: c1)][#cell(2,fill: c2)][#cell(1,fill: c3)][#cell(0, fill: c1)][#cell(2, fill: c2)][#cell(4,fill: c3)]] ][#align(center + horizon)[#h(1em)->#h(1em)]][#align(center + horizon)[ #table()[#cell(1, fill: c1)][#cell(2,fill:c2)][#cell(3)][#cell(6,fill:c3)][#cell(4,fill: c1)][#cell(4,fill: c2)][#cell(6)][#cell(6, fill:c3)][#cell(8,fill: c1)]]][#align(center + horizon)[#h(1em)->#h(1em)]][ #table()[#cell(1)][#cell(2)][#cell(3)][#cell(6)][#cell(5)][#cell(6)][#cell(6)][#cell(12)][#cell(13)] ] ] ], ), ), ( ( [- ์ฃผ์–ด์ง„ ๋“ฑ๊ตฃ๊ธธ์„ ๊ทธ๋ž˜ํ”„๋กœ ๋ชจ๋ธ๋งํ•ด ๋ด…์‹œ๋‹ค.], [- ๊ฐ ์นธ์— ์“ฐ์ธ ์ˆ˜๋งŒํผ ์–‘์ชฝ ๋ฐฉํ–ฅ์œผ๋กœ ๋–จ์–ด์ง„ ์นธ์œผ๋กœ ํ–ฅํ•˜๋Š” ๊ฐ„์„ ์„ ๋งŒ๋“ค ์ˆ˜ ์žˆ์Šต๋‹ˆ๋‹ค.], [- ์ตœ๋Œ€ ๋‘ ๋ฒˆ ๋ฐฉํ–ฅ์„ ๋ฐ˜์ „ํ•  ์ˆ˜ ์žˆ์œผ๋ฏ€๋กœ, ๊ฐ™์€ ์นธ์ด๋ผ๋„ $0$๋ฒˆ ๋ฐ˜์ „ํ–ˆ์„ ๋•Œ์™€ $2$๋ฒˆ ๋ฐ˜์ „ํ–ˆ์„ ๋•Œ๋Š” ๋‹ค๋ฅด๊ฒŒ ์ƒ๊ฐํ•ด์•ผ ํ•ฉ๋‹ˆ๋‹ค.], ), ( [- ์ •์ ์„ ์„ธ ๊ฐœ๋กœ ๋‚˜๋ˆ„์–ด ์•„๋ž˜์™€ ๊ฐ™์€ ๊ทธ๋ž˜ํ”„ ๋ชจํ˜•์„ ์ƒ๊ฐํ•  ์ˆ˜ ์žˆ์Šต๋‹ˆ๋‹ค.], [#align(center)[#image("images/time.png", width: 70%)]] ), ( [- ๋ฌธ์ œ์˜ ์ •๋‹ต์€ $1$๋ฒˆ ์ •์ ์—์„œ ํ•™๊ต์— ํ•ด๋‹นํ•˜๋Š” ์ •์ ๋“ค๊นŒ์ง€์˜ ์ตœ์žฅ๊ฑฐ๋ฆฌ์™€ ๊ฐ™์Šต๋‹ˆ๋‹ค.], [- ๊ตฌ์ถ•ํ•œ ๊ทธ๋ž˜ํ”„๋Š” ์‚ฌ์ดํด ์—†๋Š” ๋ฐฉํ–ฅ ๊ทธ๋ž˜ํ”„์ž…๋‹ˆ๋‹ค.], [- $1$๋ฒˆ ์ •์ ์—์„œ ์œ„์ƒ์ •๋ ฌ์„ ์‹œํ–‰ํ•œ ๋’ค, ์ •๋ ฌํ•œ ์ˆœ์„œ๋Œ€๋กœ ์ •๋‹ต์„ ๊ฐฑ์‹ ํ•ด๋‚˜๊ฐ€๋ฉด ๋ฉ๋‹ˆ๋‹ค.], [- ํ•™๊ต์— ์ฒ˜์Œ ๋„์ฐฉํ•œ ์‹œ๊ฐ„์„ ๋Šฆ์ถ”๋Š” ๊ฒƒ์— ์œ ์˜ํ•ฉ์‹œ๋‹ค. ํ•™๊ต์—์„œ ๋˜๋Œ์•„๊ฐ€๋Š” ๊ฐ„์„ ์€ ์กด์žฌํ•  ์ˆ˜ ์—†์Šต๋‹ˆ๋‹ค.], [- ์‹œ๊ฐ„๋ณต์žก๋„๋Š” $cal(O)(N)$์ž…๋‹ˆ๋‹ค.], ), ( [- ๋” ์‰ฌ์šด ํ’€์ด๋กœ, ๋‹จ์ˆœํ•˜๊ฒŒ ์˜ค๋ฅธ์ชฝ์œผ๋กœ ํ•œ ๋ฒˆ, ์™ผ์ชฝ์œผ๋กœ ํ•œ ๋ฒˆ, ๋‹ค์‹œ ์˜ค๋ฅธ์ชฝ์œผ๋กœ ํ•œ ๋ฒˆ DP๋ฅผ ํ›‘์–ด๋„ ํ•ด๊ฒฐํ•  ์ˆ˜ ์žˆ์Šต๋‹ˆ๋‹ค.], [- ์•„์ง ๋‚˜์—๊ฒŒ ์˜ค๋Š” ๊ฒฝ๋กœ๊ฐ€ ์—†๊ฑฐ๋‚˜ ์ด๋ฏธ ํ•™๊ต์— ๋„์ฐฉํ•œ ๊ฒฝ์šฐ, ์นธ์— ์ˆซ์ž๊ฐ€ $0$์ด ์“ฐ์ธ ๊ฒฝ์šฐ ๋“ฑ์„ ์ž˜ ์ฒ˜๋ฆฌํ•ด์•ผ ํ•ฉ๋‹ˆ๋‹ค.], [- ์‹œ๊ฐ„๋ณต์žก๋„๋Š” ์œ„์™€ ๊ฐ™์€ $cal(O)(N)$์ด์ง€๋งŒ, ์ƒ์ˆ˜๊ฐ€ ์ž‘์•„ ๋” ๋น ๋ฅด๊ฒŒ ํ†ต๊ณผํ•ฉ๋‹ˆ๋‹ค.], ) ), ( ( [- ์ฃผ์–ด์ง„ ๋ฌธ์ž์—ด์„ ํ•˜๋‚˜์˜ ์ง‘ํ•ฉ์œผ๋กœ ์ƒ๊ฐํ•ฉ๋‹ˆ๋‹ค.], [- ์˜ˆ๋ฅผ ๋“ค์–ด ๋ฌธ์ž์—ด์ด #mono("0011223344")๋ผ๋ฉด ๋Œ€์‘๋˜๋Š” ์ง‘ํ•ฉ์€ ${0,1,2,3,4}$์ž…๋‹ˆ๋‹ค.], [- ์ˆซ์ž๋Š” $10$๊ฐœ ์ด๋ฏ€๋กœ ๋งŒ๋“ค์–ด์งˆ ์ˆ˜ ์žˆ๋Š” ์ง‘ํ•ฉ์˜ ๊ฐœ์ˆ˜๋Š” $2^10 = 1024$๊ฐœ์ž…๋‹ˆ๋‹ค.], [- ์ด์ œ ์ง‘ํ•ฉ ๋‘ ๊ฐœ๋ฅผ ํ•ฉ์ณ ํฌ๊ธฐ๊ฐ€ $K$์ธ ์ง‘ํ•ฉ์˜ ๊ฐœ์ˆ˜๋ฅผ ์„ธ๋ฉด ๋ฉ๋‹ˆ๋‹ค.], ), ( [- ๊ทธ๋Ÿผ ํฌ๊ธฐ๊ฐ€ $K$์ธ ์ง‘ํ•ฉ์˜ ๊ฐœ์ˆ˜๋Š” ์–ด๋–ป๊ฒŒ ์…€๊นŒ์š”?], [- ๋งŒ๋“ค์–ด์งˆ ์ˆ˜ ์žˆ๋Š” $1024$๊ฐœ์˜ ์ง‘ํ•ฉ ์ค‘ $A union B$์˜ ์›์†Œ์˜ ๊ฐœ์ˆ˜๊ฐ€ $K$๊ฐœ์ธ ๋‘ ์ง‘ํ•ฉ $A$, $B$๋ฅผ ์ˆœ์„œ๋ฅผ ๊ณ ๋ คํ•˜์ง€ ์•Š๊ณ  ๋ฝ‘์Šต๋‹ˆ๋‹ค.], [- $A=B$์ผ ๋•Œ๋Š” ์ •๋‹ต์— $(#math.op("cnt")\(A\) times (#math.op("cnt") (A) - 1))/2$๋ฅผ ๋”ํ•ฉ๋‹ˆ๋‹ค.], [- $A!=B$์ผ ๋•Œ๋Š” ์ •๋‹ต์— $#math.op("cnt") (A) times #math.op("cnt") (B)$๋ฅผ ๋”ํ•ฉ๋‹ˆ๋‹ค.], [- ์‹œ๊ฐ„๋ณต์žก๋„๋Š” $cal(O)(N + 1024^2 times 10)$์ž…๋‹ˆ๋‹ค.], [- ๋น„ํŠธ์ง‘ํ•ฉ์„ ์‚ฌ์šฉํ•˜๋ฉด $cal(O)(N + 1024^2)$์œผ๋กœ ์ค„์ผ ์ˆ˜ ์žˆ์ง€๋งŒ, ์‚ฌ์šฉํ•˜์ง€ ์•Š์•„๋„ ๋ฉ๋‹ˆ๋‹ค.] ), ), ( ( [- ์šฐ์„  ์–ธ์ œ #mono("NO", color:PALE_RED) ๋ฅผ ์ถœ๋ ฅํ•ด์•ผํ•  ์ง€ ์ƒ๊ฐํ•ด๋ด…๋‹ˆ๋‹ค.], [- #math.op("MEX")์˜ ์ •์˜์— ์˜ํ•ด, ๊ธธ์ด๊ฐ€ $N$์ธ ์ˆ˜์—ด์˜ #math.op("MEX")๋Š” $N+1$๋ณด๋‹ค ํด ์ˆ˜ ์—†์Šต๋‹ˆ๋‹ค.], [- $A$๋Š” ์ˆœ์—ด์ด๊ธฐ ๋•Œ๋ฌธ์— $B_N = N+1$์ž…๋‹ˆ๋‹ค.], [- $S_i = {A_1, A_2, dots, A_i}$๋ผ๊ณ  ํ•  ๋•Œ, $S_i subset S_(i+1)$์ด๋ฏ€๋กœ #linebreak() $B_i > B_(i+1) (1 <= i <= N-1)$์ผ ์ˆ˜ ์—†์Šต๋‹ˆ๋‹ค. ์ฆ‰ $B$๋Š” #bf("๋‹จ์กฐ์ฆ๊ฐ€")ํ•ฉ๋‹ˆ๋‹ค.], [- ์œ„ ์„ธ ๊ฐ€์ง€ ๊ทœ์น™์„ ์ง€ํ‚ค์ง€ ์•Š๋Š”๋‹ค๋ฉด #mono("NO", color:PALE_RED)๋ฅผ ์ถœ๋ ฅํ•ด์•ผ ํ•ฉ๋‹ˆ๋‹ค.], [- ๊ทธ ์ด์™ธ์˜ ๊ฒฝ์šฐ์—๋Š” ๋ชจ๋‘ ๊ฐ€๋Šฅํ• ๊นŒ์š”?], ), ( [- ๋ช‡ ๊ฐ€์ง€ ๊ด€์ฐฐ์„ ํ•ด ๋ด…์‹œ๋‹ค.], [- ๋งŒ์•ฝ $A_i = K$๋ผ๋ฉด, $i<=j$์ผ ๋•Œ $B_j = K$์ผ ์ˆ˜ ์—†์Šต๋‹ˆ๋‹ค.], [- $K$๋ฅผ ํฌํ•จํ•˜๋Š” ์ง‘ํ•ฉ์˜ #math.op("MEX")๋Š” ์ •์˜์ƒ $K$์ผ ์ˆ˜ ์—†๊ธฐ ๋•Œ๋ฌธ์ž…๋‹ˆ๋‹ค.], [- ๊ฒฐ๊ตญ $B_j = K$์ผ ๋•Œ, $A_i = K (j<i)$์ž…๋‹ˆ๋‹ค.] ), ( [- $B_i != B_(i+1) (1 <= i <= N-1)$์ธ ๊ฒฝ์šฐ์— ์ฃผ๋ชฉํ•ฉ๋‹ˆ๋‹ค.], [- #math.op("MEX")๊ฐ’์ด $B_(i+1)$์ด๊ธฐ ์œ„ํ•ด์„œ๋Š” ํ•ด๋‹น ์ง‘ํ•ฉ์ด $B_i$๋ฅผ ๊ฐ€์ง€๊ณ  ์žˆ์–ด์•ผ ํ•ฉ๋‹ˆ๋‹ค.], [- ์ด์ „ ๊ด€์ฐฐ๊ณผ ์ข…ํ•ฉํ•˜๋ฉด $B_i != B_(i+1)$์ผ ๋•Œ, $A_(i+1) = B_i$๊ฐ€ ๋จ์„ ์•Œ ์ˆ˜ ์žˆ์Šต๋‹ˆ๋‹ค.], ), ( [- ์ด์ œ ๋‚จ์€ ๊ฐ’์„ ๋ฐฐ์น˜ํ•˜๋Š” ๋ฐฉ๋ฒ•์€ ์—ฌ๋Ÿฌ ๊ฐ€์ง€๊ฐ€ ์žˆ์Šต๋‹ˆ๋‹ค.], [- ๊ทธ ์ค‘ ํ•˜๋‚˜๋Š” ์ž‘์€ ์ˆ˜๋ถ€ํ„ฐ ๋นˆ ๊ณณ์— ์ฑ„์›Œ ๋„ฃ๋Š” ๊ฒƒ์ž…๋‹ˆ๋‹ค.], [- ์™œ ์ด ๋ฐฉ๋ฒ•์ด ๊ฐ€๋Šฅํ• ๊นŒ์š”?], ), ( [- ์ฑ„์›Œ์•ผํ•˜๋Š” ๊ณณ์€ $B_(i-1) = B_i$์ธ $A_i$์ž…๋‹ˆ๋‹ค.], [- ํ•ด๋‹น ๋ฐฉ๋ฒ•์œผ๋กœ ๋นˆ ๊ณณ์„ ๋ฐฐ์น˜ํ•˜๋ฉด $B_i < A_i$์ž…๋‹ˆ๋‹ค.], [- #math.op("MEX")๊ฐ’์ด $B_i$์ธ ๋ฐฐ์—ด์— $B_i$๋ณด๋‹ค ํฐ ๊ฐ’์„ ๋ฐฐ์น˜ํ•˜๋”๋ผ๋„ #math.op("MEX")๊ฐ’์€ ๋ณ€ํ•˜์ง€ ์•Š์Šต๋‹ˆ๋‹ค.], [- ๊ทธ๋ฆฌ๊ณ  $B_(k-1) != B_k$์ธ $k$์— ๋Œ€ํ•ด ์ด $k$๊ฐœ์˜ ๊ณต๊ฐ„์— $B_k$๋ณด๋‹ค ์ž‘์€ $B_k - 1 (<= k)$๊ฐœ์˜ ์ˆ˜๋ฅผ ๋ฐฐ์น˜ํ•˜๋ฏ€๋กœ ์ž‘์€ ์ˆ˜๋ถ€ํ„ฐ ๋ฐฐ์น˜ํ•˜๋ฉด ์›ํ•˜๋Š” ๊ฒฐ๊ณผ๋ฅผ ์–ป์„ ์ˆ˜ ์žˆ์Šต๋‹ˆ๋‹ค.], ), ( [- $B_i != B_(i+1)$์ผ ๋•Œ, $A_(i+1) = B_i$ #v(1em)], [#align(center)[#table(columns:5)[#cell(1)][#cell(2)][#cell(2)][#cell(4)][#cell(6)]]], [#v(-0.5em) $ B $ ], [#align(center)[#table(columns:5)[#cell("?")][#cell(1, color:PALE_RED)][#cell("?")][#cell(2, color:PALE_RED)][#cell(4, color:PALE_RED)]]], [#v(-0.5em) $ A $ ], ), ( [- ๋‚จ์€ ๊ฐ’์„ ์ž‘์€ ์ˆ˜๋ถ€ํ„ฐ ๋นˆ ๊ณณ์— ์ฑ„์›Œ ๋„ฃ์Šต๋‹ˆ๋‹ค. #v(1em)], [#align(center)[#table(columns:5)[#cell(1)][#cell(2)][#cell(2)][#cell(4)][#cell(6)]]], [#v(-0.5em) $ B $ ], [#align(center)[#table(columns:5)[#cell(3, color:PALE_RED)][#cell(1)][#cell(5, color:PALE_RED)][#cell(2)][#cell(4)]]], [#v(-0.5em) $ A $ ], [- ์‹œ๊ฐ„๋ณต์žก๋„๋Š” $cal(O)(N)$์ž…๋‹ˆ๋‹ค.], ) ), ( ( [- ํ•˜๋‚˜์˜ ๋“ฑ๋ถˆ์ด ๋‹ค๋ฅธ ๋“ฑ๋ถˆ์„ ์•ž์ง€๋ฅด๋Š” ํšŸ์ˆ˜๊ฐ€ ๊ณง ์†Œ์›์„ ๋น„๋Š” ํšŸ์ˆ˜์ž…๋‹ˆ๋‹ค.], [- ์ƒ๋Œ€์ ์œผ๋กœ ์˜ค๋ฅธ์ชฝ์˜ ๋“ฑ๋ถˆ์ด ์ƒ์Šนํ•˜๋Š” ์ •๋„๊ฐ€ ๋” ํฌ๋ฉด, #linebreak()์™ผ์ชฝ์˜ ๋“ฑ๋ถˆ์„ ์•ž์ง€๋ฅด๋Š” ์ˆœ๊ฐ„์ด ์กด์žฌํ•ฉ๋‹ˆ๋‹ค.], [- ๊ธธ์ด๊ฐ€ $S$์ธ ๊ตฌ๊ฐ„์—์„œ $i<j$ ์ด๋ฉด์„œ $A_i < A_j$์ธ $(i, j)$ ์Œ์˜ ๊ฐœ์ˆ˜๋ฅผ ๊ตฌํ•ด์•ผ ํ•ฉ๋‹ˆ๋‹ค.], ), ( [- ๊ตฌ๊ฐ„ ๋‚ด ์›์†Œ์— ๋Œ€ํ•ด์„œ ๋ชจ๋“  ์Œ์„ ์ฐพ๋Š” ๋ฐฉ๋ฒ•์„ ๋จผ์ € ์ƒ๊ฐํ•ด ๋ด…์‹œ๋‹ค.], [- ํ•˜๋‚˜์˜ ๊ตฌ๊ฐ„์— ๋Œ€ํ•ด $cal(O)(N^2)$์ด ๊ฑธ๋ฆฌ๋ฏ€๋กœ, ๋ชจ๋“  ๊ตฌ๊ฐ„์—์„œ ๊ณ„์‚ฐํ•œ๋‹ค๋ฉด $cal(O)(N^3)$์œผ๋กœ ์ œํ•œ์‹œ๊ฐ„ ๋‚ด์— ํ’€ ์ˆ˜ ์—†์Šต๋‹ˆ๋‹ค.], [- ์•ž์ง€๋ฅด๋Š” ์Œ์˜ ๊ฐœ์ˆ˜๋ฅผ ๋” ๋น ๋ฅด๊ฒŒ ๊ตฌํ•  ์ˆ˜ ์žˆ์„๊นŒ์š”?], ), ( [- Merge Sort๋ฅผ ์‘์šฉํ•˜๋ฉด ๋ฌธ์ œ๋ฅผ ์กฐ๊ธˆ ๋” ํšจ์œจ์ ์œผ๋กœ ํ’€ ์ˆ˜ ์žˆ์Šต๋‹ˆ๋‹ค.], [- ๋‘ ๋ฐฐ์—ด์„ ํ•ฉ์น˜๋Š” ๊ณผ์ •์—์„œ, ์–‘์ชฝ ๋ฐฐ์—ด์€ ์ •๋ ฌ๋œ ์ƒํƒœ์ž…๋‹ˆ๋‹ค.], [- ์™ผ์ชฝ ์ ˆ๋ฐ˜ ๋ฐฐ์—ด์˜ ์›์†Œ๊ฐ€ ๋” ์ž‘๋‹ค๋ฉด, ํ•ด๋‹น ์›์†Œ๋ณด๋‹ค ๋’ค์— ์กด์žฌํ•˜๋Š” ์›์†Œ ๋ชจ๋‘๊ฐ€ ์˜ค๋ฅธ์ชฝ์—์„œ ๊ณ ๋ฅธ ์›์†Œ๋ณด๋‹ค ์ž‘์Šต๋‹ˆ๋‹ค.], [- ํ•˜๋‚˜์˜ ๊ตฌ๊ฐ„์—์„œ ๋ชจ๋“  ์Œ์˜ ๊ฐœ์ˆ˜๋ฅผ $cal(O)(N log N)$์— ๊ตฌํ•  ์ˆ˜ ์žˆ์Šต๋‹ˆ๋‹ค.], [- ์—ฌ์ „ํžˆ ๋ชจ๋“  ๊ตฌ๊ฐ„์„ ํ™•์ธํ•˜๋Š” ๋ฐ $cal(O)(N^2 log N)$์œผ๋กœ, ๋” ๋น ๋ฅธ ๋ฐฉ๋ฒ•์ด ํ•„์š”ํ•ฉ๋‹ˆ๋‹ค.], ), ( [- ๋ฌธ์ œ์˜ ํŠน์„ฑ์„ ํŒŒ์•…ํ•ด์„œ ๋น ๋ฅด๊ฒŒ ํ’€์–ด ๋ด…์‹œ๋‹ค.], [- $k$๋ฒˆ ๋“ฑ๋ถˆ๋ถ€ํ„ฐ $S$๊ฐœ ๊ณ ๋ฅธ ๊ตฌ๊ฐ„์„ $T_k$๋ผ๊ณ  ํ•ฉ์‹œ๋‹ค.], [- $T_k$ ๊ตฌ๊ฐ„๊ณผ $T_(k+1)$ ๊ตฌ๊ฐ„์˜ ๊ณตํ†ต๋œ ๊ตฌ๊ฐ„์€ $[k+1, k+S-1]$์ž…๋‹ˆ๋‹ค.], [- ๊ณตํ†ต๋œ ๊ตฌ๊ฐ„์—์„œ ๋ฐœ์ƒํ•˜๋Š” ์•ž์ง€๋ฅด๋Š” ์Œ์˜ ๊ฐœ์ˆ˜๋Š” $k$๋ฒˆ์งธ ๋“ฑ๋ถˆ๊ณผ $k+S$๋ฒˆ์งธ ๋“ฑ๋ถˆ์— ์˜ํ–ฅ๋ฐ›์ง€ ์•Š์Šต๋‹ˆ๋‹ค.], [- ํ•ด๋‹น ๊ตฌ๊ฐ„์˜ ์—ฐ์‚ฐ์„ ๋งค ๊ตฌ๊ฐ„๋งˆ๋‹ค ๋ฐ˜๋ณตํ•˜์ง€ ์•Š์œผ๋ฉด ํšจ์œจ์ ์œผ๋กœ ํ’€ ์ˆ˜ ์žˆ์Šต๋‹ˆ๋‹ค.], ), ( [- $T_k $๊ตฌ๊ฐ„์—์„œ ๋‹ค์Œ ๊ตฌ๊ฐ„์œผ๋กœ ๋„˜์–ด๊ฐˆ ๋•Œ ์•„๋ž˜์˜ ๊ฐ’๋“ค์„ ๋นผ๊ณ  ๋”ํ•ด์ค˜์•ผ ํ•ฉ๋‹ˆ๋‹ค.], [#h(2em) #emoji.ast $k$ ๋ฒˆ์งธ ๋“ฑ๋ถˆ์„ ์ œ๊ฑฐํ–ˆ์„ ๋•Œ ๊ฐ์†Œํ•˜๋Š” ์•ž์ง€๋ฅด๋Š” ์Œ์˜ ๊ฐœ์ˆ˜], [#h(2em) #emoji.ast $k+S$ ๋ฒˆ์งธ ๋“ฑ๋ถˆ์„ ์ถ”๊ฐ€ํ•  ๋•Œ ์ฆ๊ฐ€ํ•˜๋Š” ์•ž์ง€๋ฅด๋Š” ์Œ์˜ ๊ฐœ์ˆ˜], [], [- ์„ธ๊ทธ๋จผํŠธ ํŠธ๋ฆฌ๋ฅผ ํ™œ์šฉํ•˜๋ฉด ์•ž์ง€๋ฅด๋Š” ์Œ์˜ ๊ฐœ์ˆ˜๋ฅผ ๋น ๋ฅด๊ฒŒ ๊ตฌํ•  ์ˆ˜ ์žˆ์Šต๋‹ˆ๋‹ค.], [#h(2em)#emoji.ast $k$๋ฒˆ์งธ ๋“ฑ๋ถˆ์„ ์ œ๊ฑฐํ•  ๋•Œ, $A_k$๋ณด๋‹ค ์ƒ์Šนํ•˜๋Š” ์ •๋„๊ฐ€ ํฐ ๋“ฑ๋ถˆ์˜ ๊ฐœ์ˆ˜], [#h(2em)#emoji.ast $k+S$๋ฒˆ์งธ ๋“ฑ๋ถˆ์„ ์ถ”๊ฐ€ํ•  ๋•Œ, $A_(k+S)$๋ณด๋‹ค ์ƒ์Šนํ•˜๋Š” ์ •๋„๊ฐ€ ์ž‘์€ ๋“ฑ๋ถˆ์˜ ๊ฐœ์ˆ˜] ), ( [- ์ฃผ์–ด์ง„ ๋“ฑ๋ถˆ ์ƒ์Šน ์†๋„์˜ ๋ฒ”์œ„๊ฐ€ ์ตœ๋Œ€ $10^9$์ด๋ฏ€๋กœ ์ขŒํ‘œ์••์ถ•์„ ๋จผ์ € ์ง„ํ–‰ํ•ด์•ผ ํ•ฉ๋‹ˆ๋‹ค.], [- ์‹œ๊ฐ„๋ณต์žก๋„๋Š” $cal(O)(N log N)$์ž…๋‹ˆ๋‹ค.], ), ), ( ( [- BFS์˜ ์ˆœํšŒ ์ˆœ์„œ๋Œ€๋กœ ์ •์ ์— ๋ฒˆํ˜ธ๋ฅผ ๋ถ™์ด๊ฒ ์Šต๋‹ˆ๋‹ค. ์ •์ ์„ ์ ์ ˆํžˆ ๋ฐฐ์น˜ํ•ด์„œ ์ˆœํšŒ ์ˆœ์„œ์˜ ์ฐจ๋ฅผ ์ตœ๋Œ€ํ™”ํ•ด์•ผ ํ•ฉ๋‹ˆ๋‹ค.], [- ๋ฃจํŠธ ๋ฐ”๋กœ ์•„๋ž˜์— $k$๊ฐœ์˜ ์ •์ ์ด ์กด์žฌํ•œ๋‹ค๊ณ  ํ•ฉ์‹œ๋‹ค.], [- ํŠธ๋ฆฌ์˜ $i(1 <= i <= N)$๋ฒˆ ์ •์ ์„ ๋ฃจํŠธ๋กœ ํ•˜๋Š” ์„œ๋ธŒํŠธ๋ฆฌ์˜ ํฌ๊ธฐ๋ฅผ $S_i$๋ผ๊ณ  ํ•ฉ์‹œ๋‹ค.], [- $sum_(i=2)^(k+1) S_i$ ๋Š” ๋ฃจํŠธ ๋…ธ๋“œ๋ฅผ ์ œ์™ธํ•œ ํŠธ๋ฆฌ์˜ ํฌ๊ธฐ์ด๋ฏ€๋กœ $N-1$์ž…๋‹ˆ๋‹ค.] ), ( [- $D_2 = B_2 = 2$์ด๊ณ , $2 < i <= k+1$์ธ $i$์— ๋Œ€ํ•œ $D_i$์™€ $B_i$๊ฐ’์€ ์•„๋ž˜์™€ ๊ฐ™์Šต๋‹ˆ๋‹ค.], [#h(2em) #emoji.ast $D_i = sum_(j=2)^(i-1)S_j + 2$], [#h(2em) #emoji.ast $B_i = i$#v(1em)], [- $sum_(i=2)^(k+1)|D_i-B_i|=&|2-2|+|S_2+2-3|+|S_2+S_3+2-4|+dots#linebreak() & + |sum^(k)_(j=2)S_j+2-(k+1)| #linebreak() &=|S_2-1| + |S_2+S_3-2| + dots + |sum^(k)_(j=2)S_j-(k-1)|$], [- ์—ฌ๊ธฐ์—์„œ ์„œ๋ธŒํŠธ๋ฆฌ์˜ ํฌ๊ธฐ๋Š” 1 ์ด์ƒ์ด๋ฏ€๋กœ, ์ ˆ๋Œ“๊ฐ’ ๋‚ด๋ถ€์˜ ์‹์„ ๋นผ๋‚ด์„œ ์‹์„ ์ •๋ฆฌํ•  ์ˆ˜ ์žˆ์Šต๋‹ˆ๋‹ค.] ), ( [- $sum_(i=2)^(k+1)|D_i-B_i| &= (S_2 - 1) + (S_2+S_3-2) + dots + (sum_(j=2)^(k)S_j-(k-1))#linebreak() &= (k-1)S_2 + (k-2)S_3 + ... + S_k - sum_(i=1)^(k-1)\i$], [- ์œ„ ์‹์ด ์ตœ๋Œ€๊ฐ€ ๋˜๋„๋ก $S_i$๋ฅผ ๋ฐฐ๋ถ„ํ•˜๋Š” ๊ฒƒ์€ $S_2=N-k$, ๋‚˜๋จธ์ง€๋Š” $1$๋กœ ๋‘๋Š” ๊ฒƒ์ž…๋‹ˆ๋‹ค.], [- $2$๋ฒˆ ์ •์ ์„ ๋ฃจํŠธ๋กœ ํ•˜๋Š” ์„œ๋ธŒํŠธ๋ฆฌ์—์„œ ๋…ธ๋“œ๋ฅผ ๋ฐฐ์น˜ํ•˜๋Š” ํ˜•ํƒœ๋Š” $sum_(i=1)^N|D_i-B_i|$๋ฅผ ์ตœ๋Œ€ํ™”ํ•˜๋Š” ๋ฐ ์˜ํ–ฅ์„ ๋ฏธ์น˜์ง€ ์•Š์Šต๋‹ˆ๋‹ค.], [- ๋”ฐ๋ผ์„œ $k$๊ฐ’ ์ค‘, ๋ฌธ์ œ์˜ ์ •๋‹ต์„ ์ตœ๋Œ€ํ™”ํ•˜๋Š” ๊ฐ’์„ ์ฐพ์•„์•ผ ํ•ฉ๋‹ˆ๋‹ค.], ), ( [#v(-2em)#align(center)[#image("images/bfsdfs.png", width: 50%)]], [- ์ˆœํšŒ ์ˆœ์„œ์˜ ์ฐจ๋ฅผ ๋ณด๋ฉด, $N-k-1$๊ฐœ์— ํ•ด๋‹นํ•˜๋Š” #math.op("BFS") ์ˆœ์„œ๋Š” $k+1$์”ฉ ๋ฐ€๋ ค๋‚ฉ๋‹ˆ๋‹ค.], [- ๋ฐ˜๋Œ€๋กœ, $k-1$๊ฐœ์˜ #math.op("DFS") ์ˆœ์„œ๋Š” $N-k+1$์”ฉ ๋ฐ€๋ฆฝ๋‹ˆ๋‹ค.], [- ๋”ฐ๋ผ์„œ $(k-1) times (N-k+1) + (k+1) times (N-k-1)$์˜ ์ตœ๋Œ“๊ฐ’์„ ๊ตฌํ•ด์•ผ ํ•ฉ๋‹ˆ๋‹ค.] ), ( [- ์‹์„ ํŽผ์ณ ๊ณ„์‚ฐํ•˜๋ฉด $k=N/2$์ธ ๊ฒฝ์šฐ์— ์ตœ๋Œ€๊ฐ€ ๋˜๋ฉฐ, ์–ธ๊ธ‰ํ•œ ๋Œ€๋กœ ํŠธ๋ฆฌ๋ฅผ ๊ตฌ์ถ•ํ•ด์ฃผ๋ฉด ๋ฉ๋‹ˆ๋‹ค.], ) ), ( ( [- ํŒฐ๋ฆฐ๋“œ๋กฌ ์• ๋„ˆ๊ทธ๋žจ์—์„œ ๋ณด์˜€๋“ฏ, $N$์ด ์ง์ˆ˜์ธ ๊ฒฝ์šฐ ํ•ญ์ƒ ๊ฐ€๋Šฅํ•ฉ๋‹ˆ๋‹ค.], [- ํ™€์ˆ˜์ธ ๊ฒฝ์šฐ์—๋Š” ํ•œ๊ฐ€์šด๋ฐ์˜ ์›์†Œ๊ฐ€ ์ž์‹ ์˜ ์ž๋ฆฌ์— ์žˆ์„ ๋•Œ์—๋งŒ ๊ฐ€๋Šฅํ•ฉ๋‹ˆ๋‹ค.], [- ์–ด๋–ป๊ฒŒ ์ตœ์†Œํ•œ์˜ ์—ฐ์‚ฐ์œผ๋กœ ์›ํ•˜๋Š” ๋ฐฐ์—ด์„ ๋งŒ๋“ค ์ˆ˜ ์žˆ์„๊นŒ์š”?] ), ( [- ๋‹ค์Œ๊ณผ ๊ฐ™์€ ๋ฐฐ์—ด์„ ๋ด…์‹œ๋‹ค.], [#align(center)[#table(columns:6)[#cell(2, color:PALE_RED)][#cell(1,color:PALE_RED)][#cell(5,color:blue)][#cell(3,color:blue)][#cell(6,color:blue)][#cell(4,color:blue)]]], [- ์ด ๋ฐฐ์—ด์ด ์ •๋ ฌ๋˜๊ธฐ ์œ„ํ•ด์„œ๋Š” ์–ด๋–ป๊ฒŒ ํ•ด์•ผ ํ•  ์ง€ ์ƒ๊ฐํ•ด ๋ด…์‹œ๋‹ค.], [- ๊ฐ ์›์†Œ๊ฐ€ ์ž์‹ ์˜ ์ž๋ฆฌ๋กœ ๋Œ์•„๊ฐ€๊ธฐ ์œ„ํ•ด์„œ, ํ˜„์žฌ ์ ํ˜€์žˆ๋Š” ์ˆ˜์— ํ•ด๋‹นํ•˜๋Š” ์นธ์œผ๋กœ ๊ฐ„์„ ์„ ๊ทธ์–ด ๋ด…์‹œ๋‹ค.], [- ๋ฐฐ์—ด์—์„œ ์‚ฌ์ดํด์„ ๋ถ„๋ฆฌํ•ด๋‚ผ ์ˆ˜ ์žˆ์Šต๋‹ˆ๋‹ค. ์‚ฌ์ดํด์˜ ์ข…๋ฅ˜๋Š” ์ด ์„ธ ๊ฐ€์ง€์ž…๋‹ˆ๋‹ค.], [- ์™ผ์ชฝ ์ ˆ๋ฐ˜ ๋˜๋Š” ์˜ค๋ฅธ์ชฝ ์ ˆ๋ฐ˜์œผ๋กœ๋งŒ ์ด๋ฃจ์–ด์ ธ ์žˆ๋Š” ์‚ฌ์ดํด, ๊ต์ฐจํ•˜๋Š” ์‚ฌ์ดํด], [- ๊ฐ๊ฐ์„ $L$, $R$, $M$ ์‚ฌ์ดํด์ด๋ผ๊ณ  ์ •์˜ํ•ฉ์‹œ๋‹ค.] ), ( [- $L$ ์‚ฌ์ดํด๊ณผ $R$ ์‚ฌ์ดํด์€ ๊ทธ ์ž์ฒด๋กœ ๊ตํ™˜์ด ๋ถˆ๊ฐ€ํ•ฉ๋‹ˆ๋‹ค.], [- $M$ ์‚ฌ์ดํด๋กœ ๋งŒ๋“ค์–ด์„œ ์ •๋ ฌํ•˜๋Š” ๊ณผ์ •์ด ํ•„์š”ํ•ฉ๋‹ˆ๋‹ค.], [- $1$ํšŒ ๊ตํ™˜์„ ํ†ตํ•ด์„œ ์›์†Œ๊ฐ€ ํ•œ ๊ฐœ ๋Š˜์–ด๋‚œ $M$ ์‚ฌ์ดํด์„ ๋งŒ๋“ค ์ˆ˜ ์žˆ์Šต๋‹ˆ๋‹ค.], [- ์ด๋•Œ, $L$๊ณผ $R$ ์‚ฌ์ดํด์ด ๋‘˜ ๋‹ค ์กด์žฌํ•œ๋‹ค๋ฉด, ๋‘ ์‚ฌ์ดํด์˜ ์›์†Œ๋ฅผ ์„œ๋กœ ๊ตํ™˜ํ•ด์„œ ํ•˜๋‚˜์˜ $M$ ์‚ฌ์ดํด์„ ๋งŒ๋“ค ์ˆ˜ ์žˆ์Šต๋‹ˆ๋‹ค.], [- ์ด๋Š” ๊ฐ ์‚ฌ์ดํด์„ $M$ ์‚ฌ์ดํด๋กœ ๋งŒ๋“ค์—ˆ์„ ๋•Œ๋ณด๋‹ค ๊ตํ™˜์„ $1$๋ฒˆ ์ ๊ฒŒ ํ•  ์ˆ˜ ์žˆ์œผ๋ฏ€๋กœ, ๊ฐ€๋Šฅํ•˜๋‹ค๋ฉด $L$, $R$ ์‚ฌ์ดํด ๊ฐ„ ๊ตํ™˜์„ ํ†ตํ•ด $M$ ์‚ฌ์ดํด์„ ๋งŒ๋“œ๋Š” ๊ฒƒ์ด ์ด๋“์ž…๋‹ˆ๋‹ค.], ), ( [- ์ด์ œ $M$ ์‚ฌ์ดํด์„ ์˜ฌ๋ฐ”๋ฅด๊ฒŒ ๋ฐฐ์น˜ํ•˜๋Š” ๋ฐ ๋“œ๋Š” ๋น„์šฉ์„ ์•Œ์•„๋ด…์‹œ๋‹ค.], [- ํฌ๊ธฐ๊ฐ€ $2$์ธ $M$ ์‚ฌ์ดํด์„ ์ •๋ ฌํ•˜๋Š” ๋ฐ์—๋Š” $1$๋ฒˆ์˜ ๊ตํ™˜์ด๋ฉด ์ถฉ๋ถ„ํ•ฉ๋‹ˆ๋‹ค.], [- ํฌ๊ธฐ๊ฐ€ $i$์ธ $M$ ์‚ฌ์ดํด์„ ์ •๋ ฌํ•˜๋Š” ๋ฐ ๊ฑธ๋ฆฌ๋Š” ๋น„์šฉ์ด $k$๋ผ๊ณ  ํ•ฉ์‹œ๋‹ค.], [- ํฌ๊ธฐ๊ฐ€ $i+1$์ธ $M$ ์‚ฌ์ดํด์„ ์ •๋ ฌํ•  ๋•Œ, ์„ธ ๊ฐœ ์ด์ƒ์˜ ์›์†Œ๋ฅผ ๋™์‹œ์— ๊ตํ™˜ํ•  ์ˆ˜ ์žˆ๋Š” ๋ฐฉ๋ฒ•์ด ์—†์œผ๋ฏ€๋กœ $1$๋ฒˆ์˜ ๊ตํ™˜์„ ํ†ตํ•ด ํฌ๊ธฐ๊ฐ€ $i$์ธ $M$ ์‚ฌ์ดํด์„ ๋งŒ๋“œ๋Š” ๊ฒƒ์ด ์ตœ์„ ์ž…๋‹ˆ๋‹ค.], [- $i+1$ ๊ฐœ์˜ ์›์†Œ๋ฅผ ๊ฐ€์ง€๋Š” $M$ ์‚ฌ์ดํด์€ $k+1$๋ฒˆ ๊ตํ™˜์„ ํ†ตํ•ด ์ •๋ ฌํ•  ์ˆ˜ ์žˆ์Šต๋‹ˆ๋‹ค.], [- $i=2$์ผ ๋•Œ $k=1$์ด๋ฏ€๋กœ, ํฌ๊ธฐ๊ฐ€ $N$์ธ $M$ ์‚ฌ์ดํด์€ $N-1$๋ฒˆ์˜ ๊ตํ™˜์„ ํ†ตํ•ด ์ •๋ ฌํ•  ์ˆ˜ ์žˆ์Šต๋‹ˆ๋‹ค.] ), ( [- ๋”ฐ๋ผ์„œ $L$, $R$, $M$ ์‚ฌ์ดํด์˜ ๊ฐœ์ˆ˜๋ฅผ ๊ฐ๊ฐ ๊ตฌํ•ด์ค€ ๋’ค, $L$, $R$ ์‚ฌ์ดํด ์Œ๋“ค์„ $M$ ์‚ฌ์ดํด๋“ค๋กœ ๋งŒ๋“ค์–ด ์ค์‹œ๋‹ค.], [- ๋‚จ๋Š” $L$, $R$ ์‚ฌ์ดํด์€ ํฌ๊ธฐ๊ฐ€ $1$ ์ฆ๊ฐ€ํ•œ $M$ ์‚ฌ์ดํด์ด ๋ฉ๋‹ˆ๋‹ค.], [- ๊ธฐ์กด $M$ ์‚ฌ์ดํด์€ ๊ฐ ์‚ฌ์ดํด์˜ ์›์†Œ์˜ ๊ฐœ์ˆ˜๋ณด๋‹ค $1$ ์ž‘์€ ํšŸ์ˆ˜๋กœ ์ •๋ ฌ์ด ๊ฐ€๋Šฅํ•ฉ๋‹ˆ๋‹ค. ], [- $M$ ์‚ฌ์ดํด์„ ๊ตฌ์„ฑํ•˜๋Š” ์™ผ์ชฝ/์˜ค๋ฅธ์ชฝ ์›์†Œ์˜ ๊ฐœ์ˆ˜๊ฐ€ ๊ฐ™์€ ์ชฝ์œผ๋กœ ๊ฐ€๋„๋ก ๊ตํ™˜ํ•˜๋ฉด $M$ ์‚ฌ์ดํด์„ ์œ ์ง€ํ•˜๋ฉด์„œ ํฌ๊ธฐ๋ฅผ $1$์”ฉ ์ค„์—ฌ๋‚˜๊ฐˆ ์ˆ˜ ์žˆ์Šต๋‹ˆ๋‹ค.], [- ์‚ฌ์ดํด์˜ ๊ฐœ์ˆ˜, ์ข…๋ฅ˜, ๊ตฌ์„ฑํ•˜๋Š” ์›์†Œ ๋“ฑ์„ ์กฐํ•ฉํ•ด ์œ„์—์„œ ์„ค๋ช…ํ•œ ๋Œ€๋กœ ๋‹ต์„ ๋„์ถœํ•  ์ˆ˜ ์žˆ์Šต๋‹ˆ๋‹ค.], [- ์‹œ๊ฐ„๋ณต์žก๋„๋Š” $cal(O)(N)$์ž…๋‹ˆ๋‹ค.] ) ), ) #let create_page(index) = { set list(marker: text(fill:KUPC_GREEN)[โœ“]) for pg in descriptions.at(index) { [ #constructTitle(contest_problems.at(index), size: 2em, bookmark:false) #v(5em) ] for desc in pg { set text(size: 2em) pad(left: -1.5em)[#desc] v(0em); } pagebreak(weak: true) } }
https://github.com/connachermurphy/typst-cv
https://raw.githubusercontent.com/connachermurphy/typst-cv/main/works_in_progress.typ
typst
MIT License
#let items = ( [#quote[A project in progress, sure to revolutionize the field.]], ) #list(..items)
https://github.com/goshakowska/Typstdiff
https://raw.githubusercontent.com/goshakowska/Typstdiff/main/tests/test_working_types/super_script/super_script_inserted.typ
typst
First#super[super text] Normal text#super[inserted super text] Second#super[super text]
https://github.com/Ciolv/typst-template-bachelor-thesis
https://raw.githubusercontent.com/Ciolv/typst-template-bachelor-thesis/main/chapter.typ
typst
// Has to be imported wherever acronyms are used #import "acronyms.typ": ac,acl,acs,acsp,acp,aclp,acronyms = This chapter is included from another file <chap:useful-guides> Let's see in @lst:hellew-wรถrld how nicely syntax highlighting works in #link("https://typst.app", "Typst").\ I really like it! #figure( caption: "Rust sample", )[ #set par(leading: 0.75em) #set align(left) // We really don't want our code to be centered line by line... ```rust fn main() { println!("Hello, world!"); } ``` ]<lst:hellew-wรถrld> Awesome, isn't it? \ Well, if you're coming from a nice Markdown editor, there is nothing new with it, but in comparison to L#super(size: 0.8em,baseline: -0.2em)[A]T#sub(size: 0.8em, baseline: 0.2em)[E]X? No extra package required! \ \ By the way, do you like @harry? = Test <chap:test>
https://github.com/kaarmu/splash
https://raw.githubusercontent.com/kaarmu/splash/main/src/palettes/okabe-ito.typ
typst
MIT License
/* Color scheme by <NAME> and <NAME> * * Source: https://jfly.uni-koeln.de/color/ * Accessed: 2023-06-16 */ #let okabe-ito = ( black : rgb("#000000"), orange : rgb("#E69F00"), sky-blue : rgb("#56B4E9"), bluish-green : rgb("#009E73"), yellow : rgb("#F0E442"), blue : rgb("#0072B2"), vermilion : rgb("#D55E00"), reddish-purple : rgb("#CC79A7"), )
https://github.com/jgm/typst-hs
https://raw.githubusercontent.com/jgm/typst-hs/main/test/typ/meta/footnote-01.typ
typst
Other
// Test space collapsing before footnote. A#footnote[A] \ A #footnote[A]
https://github.com/typst/webapp-issues
https://raw.githubusercontent.com/typst/webapp-issues/main/README.md
markdown
# Web App Issues Official issue tracker for [Typst's web app.][app] Here, you can report bugs or send feature requests for the official web app. If you want to report a bug with the Typst language or compiler instead, please [open an issue here][compiler]. ## FAQ - **Will the web app remain free?** \ The web app will always have a free tier. However, there is also a paid plan with additional features like Comments and Git sync. - **Is the web app open source?** \ The web app is not open source. We think open-sourcing the compiler and keeping the app proprietary is a fair division that allows the project to sustain itself long-term. - **Can I self-host the web app?** \ Yes! We offer a paid on-premises version for organizations. If this is interesting for you or your team, please reach out to us at <<EMAIL>>. - **Will there be a desktop app?** \ We plan to provide a desktop version of the web app down the road, but can't give a timeframe for this at the moment. - **Where do you store my data / is my data safe?** \ Your data is stored in a Microsoft Azure data center in Germany and encrypted at rest. We can access your documents, but do so only to fix problems on your request or to enforce our terms of service. Read our [privacy policy] for more details. [app]: https://typst.app [compiler]: https://github.com/typst/typst [privacy policy]: https://typst.app/privacy [paid plan]: https://typst.app/pricing
https://github.com/luiswirth/numpde-slides
https://raw.githubusercontent.com/luiswirth/numpde-slides/main/src/week03.typ
typst
#import "setup.typ": * #show: this-template #let pathemph(a, b) = [ #text(fill: white.darken(60%))[#a]#b ] #titleslide("03") #pagebreak() #githubref #pagebreak() = Setting Hilbert space $V_0$ \ Symmetric Positive-Definite Bilinear form $a: V times V -> RR$ \ Continuous Linear form $l: V -> RR$ \ Gives rise to linear variational problem $ u in V_0: quad a(u, v) = l(v) quad forall v in V_0 $ Notice that here we are considering only the vector space and not the affine space. Meaning that a conversion is needed, if the problem was originally posed on an affine space. Is will be done using the *offset function trick*. $hat(u) = u_0 + tilde(u)$ #pagebreak() Finite dimensional subspace #text(size: 60pt)[$ V_(0, h) subset V_0 \ dim V_(0,h) < oo $] Discrete linear variational problem (DVP) $ u_h in V_(0,h): quad a(u_h, v_h) = l(v_h) quad forall v_h in V_(0,h) $ #pagebreak() #cetz.canvas(length: 3cm, { import cetz.draw: * let box_text_size = 16pt let lvp = text(box_text_size)[$ u in V_0: quad a(u, v) = l(v) quad forall v in V_0 $] let dvp = text(box_text_size)[$ u_h in V_(0,h): quad a(u_h, v_h) = l(v_h) quad forall v_h in V_(0,h) $] let cmin = text(box_text_size)[$ u = argmin_(v in V_0) J(v) $] let dmin = text(box_text_size)[$ u_h = argmin_(v_h in V_(0,h)) J(v_h) $] set-style( mark: (fill: white, scale: 2), line: (stroke: white), circle: (stroke: white), stroke: (thickness: 0.4pt, cap: "round"), content: (padding: 5pt) ) rect((0, 0), (3.0, 1), stroke: (paint: white, thickness: 1pt),name: "rect0") rect((5, 0), (9, 1), stroke: (paint: white, thickness: 1pt),name: "rect1") rect((0, -2), (3.0, -1), stroke: (paint: white, thickness: 1pt),name: "rect2") rect((5, -2), (9, -1), stroke: (paint: white, thickness: 1pt),name: "rect3") content("rect0", lvp) content("rect1", dvp) content("rect2", cmin) content("rect3", dmin) line("rect0", "rect1", mark: (end: "stealth"), name: "line0") line("rect2", "rect3", mark: (end: "stealth"), name: "line1") content(("line0.start", 50%, "line0.end"), align(center)[Galerkin\ Discretization], anchor: "south") content(("line1.start", 50%, "line1.end"), align(center)[Ritz\ Discretization], anchor: "south") content(("rect0", 50%, "rect2"), text(40pt, sym.arrow.t.b.double)) content(("rect1", 50%, "rect3"), text(40pt, sym.arrow.t.b.double)) }) #pagebreak() $ frak(B)_h = {b_h^1, dots, b_h^N} quad N = dim V_(0,h) \ V_(0,h) = "span" frak(B)_h \ u in V_(0,h) ==> u = sum_(i=1)^N mu_i b_h^i quad u tilde.eq vvec(mu) in RR^N \ v in V_(0,h) ==> v = sum_(i=1)^N nu_i b_h^i quad v tilde.eq vvec(nu) in RR^N $ #pagebreak() $ u_h in V_(0,h):&& quad bilf(a)(u_h, v_h) &= linf(l)(v_h) quad &&forall v_h in V_(0,h) \ vvec(mu) in RR^N:&& quad bilf(a)(sum_(j=j)^N mu_j b_h^j, sum_(i=1)^N nu_i b_h^i) &= linf(l)(sum_(i=1)^N nu_i b_h^i) quad &&forall avec(nu) in RR^N \ vvec(mu) in RR^N:&& quad sum_(j=1)^N mu_j sum_(i=1)^N nu_i bilf(a)(b_h^j, b_h^i) &= sum_(i=1)^N nu_i linf(l)(b_h^i) quad &&forall avec(nu) in RR^N \ vvec(mu) in RR^N:&& quad sum_(i=1)^N nu_j (sum_(i=1)^N mu_i bilf(a)(b_h^j, b_h^i) - linf(l)(b_h^i)) &= 0 quad &&forall avec(nu) in RR^N \ vvec(mu) in RR^N:&& quad sum_(i=1)^N mu_i bilf(a)(b_h^j, b_h^i) - linf(l)(b_h^i) &= 0 quad &&forall i in {1,dots,N} \ vvec(mu) in RR^N:&& quad sum_(i=1)^N mu_i bilf(a)(b_h^j, b_h^i) &= linf(l)(b_h^i) quad &&forall i in {1,dots,N} \ vvec(mu) in RR^N:&& quad amat(A) vvec(mu) &= vvec(phi) quad&& $ with $ &vvec(mu) &&= [mu_1, dots, mu_N]^transp &&in RR^N \ &amat(A) &&= [bilf(a)(b_h^j, b_h^i)]_(i,j=1)^N &&in RR^(N times N) \ &vvec(phi) &&= [linf(l)(b_h^i)]_(i,j=1)^N &&in RR^N $ LSE!!! $ amat(A) vvec(mu) = vvec(phi) $ The solution can then be recovered by $ u_h = sum_(i=1)^N mu_i b_h^i $ #pagebreak() Concrete 1D Galerkin Discretization $ u in H^1_0 (]a,b[): quad integral_a^b (dif u)/(dif x)(x) (dif v)/(dif x)(x) dif x = integral_a^b f(x) v(x) dif x quad forall v in H^1_0 (]a,b[) $
https://github.com/soul667/typst
https://raw.githubusercontent.com/soul667/typst/main/PPT/MATLAB/touying/docs/docs/utilities/oop.md
markdown
--- sidebar_position: 1 --- # Object-Oriented Programming Touying provides some convenient utility functions for object-oriented programming. --- ```typst #let empty-object = (methods: (:)) ``` An empty class. --- ```typst #let call-or-display(self, it) = { if type(it) == function { return it(self) } else { return it } } ``` Call or display as-is. --- ```typst #let methods(self) = { .. } ``` Used to bind self to methods and return, very commonly used.
https://github.com/jgm/typst-hs
https://raw.githubusercontent.com/jgm/typst-hs/main/test/typ/math/frac-05.typ
typst
Other
// Test associativity. $ 1/2/3 = (1/2)/3 = 1/(2/3) $
https://github.com/sitandr/typst-examples-book
https://raw.githubusercontent.com/sitandr/typst-examples-book/main/src/snippets/code.md
markdown
MIT License
# Code formatting ## Inline highlighting ```typ #let r = raw.with(lang: "r") This can then be used like: #r("x <- c(10, 42)") ``` ## Tab size ```````typ #set raw(tab-size: 8) ```tsv Year Month Day 2000 2 3 2001 2 1 2002 3 10 ``` ``````` ## Theme See [reference](https://typst.app/docs/reference/text/raw/#parameters-theme) ## Enable ligatures for code ```typ #show raw: set text(ligatures: true, font: "Cascadia Code") Then the code becomes `x <- a` ``` ## Advanced formatting See [packages](../packages/code.md) section.
https://github.com/FriendlyUser/IntroductionToTypst
https://raw.githubusercontent.com/FriendlyUser/IntroductionToTypst/main/README.md
markdown
Apache License 2.0
# IntroductionToTypst Source Code for introduction to Typst Article
https://github.com/mumblingdrunkard/mscs-thesis
https://raw.githubusercontent.com/mumblingdrunkard/mscs-thesis/master/src/computer-architecture-fundamentals/anatomy-of-an-in-order-pipelined-processor.typ
typst
== Anatomy of an In-order Pipelined Processor <sec:pipelined-processor> This first major optimisation of the microarchitecture is based on the observation that all instructions have required steps in common, and that the components used in each step are usually different. This introduces the concept of the _pipelined processor_. A classic processor pipeline may look like: instruction fetch (IF), instruction decode (ID), operand fetch (OF), execute (EXE), memory access (MEM), and writeback (WB). Each stage focuses on a specific stage of performing an instruction, like an assembly line where each step adds a new part to the product. IF fetches the instruction from memory. ID decodes the instruction and determines which control signals to set later in the pipeline. OF fetches the values to be used later in the pipeline. EXE performs the operation on some of the values. MEM performs memory access with an address computed in EXE. WB writes the values back to the register file so that they can be used by later instructions. Between each stage, there is a big register called a _pipeline register_ that holds values and control signals that tells the various stages what work to perform. The values come from outputs of previous stages, and are used as inputs in the current stage. Each stage takes only one cycle to complete This is a form of _instruction-level parallelism_ (ILP): the observation that a processor can work on many instructions at the same time because each instruction requires different parts of the processor at any given time. @fig:pipelined-cpu shows a high-level overview of a pipelined processor. In this version, the ID and OF stages are merged together, meaning values are read out of the register file at the same time the instruction is being decoded. Each stage is separated by a pipeline register. #figure( ```monosketch โ”Œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ” โ”‚ โ”Œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ฌโ”€โ”€โ”€โ”€โ” โ”‚ โ”‚ โ”‚ โ”Œโ”€โ”€โ”€โ” โ”‚ โ”‚ โ”‚ โ”Œโ”€โ”€โ” โ•‘ โ”Œโ”€โ”€โ–ผโ”€โ”€โ” โ•‘ โ”Œโ–ผโ”€โ–ผโ” โ•Ÿโ”˜โ”Œโ”€โ–ผโ”€โ” โ•Ÿโ”˜โ”Œโ”€โ”€โ” โ”‚ โ”‚IFโ”œโ–ถโ•Ÿโ–ถโ”‚ID/OFโ”œโ–ถโ•Ÿโ–ถโ”‚EXEโ”œโ–ถโ•Ÿโ–ถโ”‚MEMโ”œโ–ถโ•Ÿโ–ถโ”‚WBโ”œโ”€โ”˜ โ””โ”€โ–ฒโ”˜ โ•‘ โ””โ”€โ”€โ”€โ”€โ”€โ”˜ โ•‘ โ””โ”€โ”€โ”€โ”˜ โ•Ÿโ”โ””โ”€โ”€โ”€โ”˜ โ•‘ โ””โ”€โ”€โ”˜ โ””โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”˜ ```, caption: [A high-level overview of a pipelined microarchitecture], kind: image, )<fig:pipelined-cpu> The connection from the EXE/MEM pipeline register to IF is to allow branch and jump instructions to change the PC. The connection from WB to OF is there to allow the WB stage to write values back to the register file which is traditionally stored where operand fetch is performed. === Overlapping Execution A simple pipelined processor like this can perform any single instruction in just five cycles, which is a good deal better than the shared bus architecture. However, the real trick is to overlap execution of multiple consecutive instructions. When an instruction moves from IF into ID, the IF stage is freed up and can start fetching the next instruction. This holds for every stage. Because of this, a pipelined processor can finish executing one instruction every cycle. ==== Hazards With overlapping pipelining comes execution _hazards_. Hazards arise when instructions depend on results from older instructions that have not yet completed. For some of these, the results are ready and available in pipeline registers even if they are not yet written to the register file. In this case, the values can be _forwarded_ to the stages where they are needed. The connections from the EXE/MEM and MEM/WB pipeline registers to EXE and from MEM/WB to MEM are there for forwarding. When a stage detects that an instruction in either of these later stages is going to write to one of its own source registers, it will use the value from the pipeline registers instead. Some hazards cannot be dealt with by only forwarding. For example: when one instruction reads from memory, and the following instruction depends on the result in the EXE stage, the procsessor has to _stall_ for a cycle. ==== Branches All instructions that enter IF after a branch have a dependency on the branch. The simplest thing is to stall IF until the branch instruction has left EXE and potentially modified the PC. A possible step up is to assume that the branch condition will resolve to "False" and to keep fetching. If the assumption turns out to be correct, three cycles have been saved. If the assumption turns out to be wrong, the results of the incorrectly fetched instructions must be _squashed_ (ignored). The next step up is to observe patterns in branch instructions and predict the outcome with more accuracy to prevent squashing too often. This is the founding basis of _branch prediction_, a form of _speculation_.
https://github.com/typst/packages
https://raw.githubusercontent.com/typst/packages/main/packages/preview/unichar/0.1.0/ucd/block-1CD0.typ
typst
Apache License 2.0
#let data = ( ("VEDIC TONE KARSHANA", "Mn", 230), ("VEDIC TONE SHARA", "Mn", 230), ("VEDIC TONE PRENKHA", "Mn", 230), ("VEDIC SIGN NIHSHVASA", "Po", 0), ("VEDIC SIGN YAJURVEDIC MIDLINE SVARITA", "Mn", 1), ("VEDIC TONE YAJURVEDIC AGGRAVATED INDEPENDENT SVARITA", "Mn", 220), ("VEDIC TONE YAJURVEDIC INDEPENDENT SVARITA", "Mn", 220), ("VEDIC TONE YAJURVEDIC KATHAKA INDEPENDENT SVARITA", "Mn", 220), ("VEDIC TONE CANDRA BELOW", "Mn", 220), ("VEDIC TONE YAJURVEDIC KATHAKA INDEPENDENT SVARITA SCHROEDER", "Mn", 220), ("VEDIC TONE DOUBLE SVARITA", "Mn", 230), ("VEDIC TONE TRIPLE SVARITA", "Mn", 230), ("VEDIC TONE KATHAKA ANUDATTA", "Mn", 220), ("VEDIC TONE DOT BELOW", "Mn", 220), ("VEDIC TONE TWO DOTS BELOW", "Mn", 220), ("VEDIC TONE THREE DOTS BELOW", "Mn", 220), ("VEDIC TONE RIGVEDIC KASHMIRI INDEPENDENT SVARITA", "Mn", 230), ("VEDIC TONE ATHARVAVEDIC INDEPENDENT SVARITA", "Mc", 0), ("VEDIC SIGN VISARGA SVARITA", "Mn", 1), ("VEDIC SIGN VISARGA UDATTA", "Mn", 1), ("VEDIC SIGN REVERSED VISARGA UDATTA", "Mn", 1), ("VEDIC SIGN VISARGA ANUDATTA", "Mn", 1), ("VEDIC SIGN REVERSED VIS<NAME>", "Mn", 1), ("VEDIC SIGN VISARGA UDATTA WITH TAIL", "Mn", 1), ("VEDIC SIGN VISARGA ANUDATTA WITH TAIL", "Mn", 1), ("VEDIC SIGN ANUSVARA ANTARGOMUKHA", "Lo", 0), ("VEDIC SIGN ANUSVARA BAHIRGOMUKHA", "Lo", 0), ("VEDIC SIGN ANUSVARA VAMAGOMUKHA", "Lo", 0), ("VEDIC SIGN ANUSVARA VAMAGOMUKHA WITH TAIL", "Lo", 0), ("VEDIC SIGN TIRYAK", "Mn", 220), ("VEDIC SIGN HEXIFORM LONG ANUSVARA", "Lo", 0), ("VEDIC SIGN LONG ANUSVARA", "Lo", 0), ("VEDIC SIGN RTHANG LONG ANUSVARA", "Lo", 0), ("VEDIC SIGN ANUSVARA UBHAYATO MUKHA", "Lo", 0), ("VEDIC SIGN ARDHAVISARGA", "Lo", 0), ("VEDIC SIGN ROTATED ARDHAVISARGA", "Lo", 0), ("VEDIC TONE CANDRA ABOVE", "Mn", 230), ("VEDIC SIGN JIHVAMULIYA", "Lo", 0), ("VEDIC SIGN UPADHMANIYA", "Lo", 0), ("VEDIC SIGN ATIKRAMA", "Mc", 0), ("VEDIC TONE RING ABOVE", "Mn", 230), ("VEDIC TONE DOUBLE RING ABOVE", "Mn", 230), ("VEDIC SIGN DOUBLE ANUSVARA ANTARGOMUKHA", "Lo", 0), )
https://github.com/Enter-tainer/typstyle
https://raw.githubusercontent.com/Enter-tainer/typstyle/master/tests/assets/typstfmt/138-non-converge-block-comment.typ
typst
Apache License 2.0
#let test_func() = { ( /* test */ ) }
https://github.com/lyzynec/orr-go-brr
https://raw.githubusercontent.com/lyzynec/orr-go-brr/main/04/main.typ
typst
#import "../lib.typ": * #knowledge[ #question(name: [Give the first-order necessary conditions of optimality for a general optimal control problem for a nonlinear discrete-time system over a finite horizon. Namely, give the general two-point boundary value problem, highlighting the state equation, the co-state equation and a stationarity equation. Do not forget to include general boundary conditions.])[ The augmented cost function is $ J'_i (bold(x)_k, bold(u)_k, bold(lambda)_(k+1)) = phi.alt(bold(x)_N, N) + sum_(k=1)^(N-1) [L_k (bold(x)_k, bold(u)_k) + bold(lambda)_(k+1)^T [bold(f)_k (bold(x)_k, bold(u)_k) - bold(x)_(k+1)]] $ To null the gradient as $gradient J'_i = 0$ we have to satisfy $ x_(k+1) &= gradient_lambda_(k+1) H_k(bold(x)_k, bold(u)_k, bold(lambda)_(k+1)) = f_k (x_k,u_k) "(state equation)"\ lambda_k &= gradient_bold(x)_k H_k(bold(x)_k, bold(u)_k, bold(lambda)_(k+1)) "(costate equation)"\ 0 &= gradient_bold(u)_k H_k(bold(x)_k, bold(u)_k, bold(lambda)_(k+1)) "(stationarity equation)"\ 0 &= gradient_bold(x)_i H_k(bold(x)_k, bold(u)_k, bold(lambda)_(k+1)) dot upright(d) bold(x)_i, "for fixed " bold(x)_i = bold(r)_i => upright(d) bold(x)_i = bold(0) \ 0 &= (gradient_bold(x)_N phi.alt - bold(lambda)_N)^T dot d x_N = cases("fixed " bold(x)_N &=> bold(x)_N = bold(r)_N => upright(d) bold(x)_N = bold(0), "free " bold(x)_N &=> upright(d) bold(x)_N != 0 +> bold(lambda)_N = gradient_(bold(lambda)_N) phi.alt)\ $ where $ H(bold(x)_k, bold(u)_k, bold(lambda)_(k+1)) = L_k (bold(x)_k, bold(u)_k) + bold(lambda)_(k+1)^T bold(f)_k (bold(x)_k, bold(u)_k) $ As starting point is probably given, the boundary condition could be something like $ bold(x)_0 = bold(r)_0\ $ for the end state, it could be given $ bold(x)_N = bold(r)_N $ or could be subject to optimization as $ bold(lambda)_N = gradient phi.alt(bold(x)_N) $ ] #question(name: [Give the first-order necessary conditions of optimality for a linear and time invariant (LTI) discrete-time system and a quadratic cost function over a finite horizon. Namely, give them in the format displaying the state equation, co-state equation and stationarity equation. Show and discuss also two types of boundary conditions.])[ With cost function $ J = 1/2 bold(x)_N^T bold(S)_N bold(x)_N + 1/2 sum_(k=0)^(N-1) [bold(x)_k^T bold(Q) bold(x)_k + bold(u)_k^T R u_k] $ the Hamiltonian $H$ function would be $ H_k = 1/2 (bold(x)_k^T bold(Q) bold(x)_k + bold(u)_k^T bold(R) bold(u)_k) + bold(lambda)_(k+1)^T (bold(A) bold(x)_k + bold(B) bold(u)_k) $ the equations would become #align(center)[#grid(columns: 2, row-gutter: 10pt, column-gutter: 10pt, align: left, [state:], $bold(x)_(k+1) = bold(A) bold(x)_k + bold(B) bold(u)_k$, [costate:], $bold(lambda)_k = bold(Q) bold(x)_k + bold(A)^T bold(lambda)_(k+1)$, [stationarity:], $bold(0) = bold(R) bold(u)_k + bold(B)^T bold(lambda)_(k+1)$, [boundary:], $bold(x)_0 = bold(r)_0$, [boundary:], $bold(0) &= (bold(S)_N bold(x)_N - bold(lambda)_N)^T upright(d) bold(x)_N$, )] There is other type for the last boundary condition, as it could also be given as $ bold(x)_N = bold(r)_N $ From the stationarity equation we can extract optimal control as $ bold(u)_k = - bold(R)^(-1) bold(B)^T bold(lambda)_(k+1) $ Than we can subtitute the optimal control into the rest to obtain state and costate values. ] #question(name: [Give a qualitative characterization of the solution to the fixed final state LQ-optimal control problem over a finite horizon, that is, you do not have to give formulas but you should be able to state among the highlights that the control is open-loop and that reachability of the system is a necessary condition.])[ - the reslt will be offline precalculated control signal, meaining it is open--loop - the control will be proportional to $bold(r)_N - bold(A)^N bold(x)_0$ meaning the difference between desired end--time state and state in which the system would end up without any control (this one is pretty reasonable) - the control will be inversly proportional to _reachability Gramian_ $ bold(G)_(0,N,bold(R)) = sum_(i=0)^(N-1) bold(A)^(N-i-1) bold(B) bold(R)^(-1) bold(B)^T (A^T)^(N-i-1) $ if the _reachability Gramian_ is singular, it means the state is not reachable, barring us from calculating optimal control for reaching it (again pretty reasonable) ] #question(name: [Give a qualitative characterization of the solution to the free final state LQ-optimal control problem over a finite horizon, that is, you do not have to give formulas but you should be able to state among the highlights that the control is closed-loop, namely, a time-varying linear state feedback and that the feedback gains can be computed by solving a difference Riccati equation.])[ - the problem results in time varying linear state feedback, noteworthy is the fact that the state feedback gain increases drasticcaly when nearing the horizon - the Riccati equation looks like this $ bold(S)_k = bold(Q) + bold(A)^T bold(S)_(k+1) (bold(I) + bold(B) bold(R)^(-1) bold(B)^T bold(S)_(k+1))^(-1) bold(A) $ - this Riccati equation was constructed with the assumption that the final state boundary equation $ bold(S)_N bold(x)_N = bold(lambda)_N $ holds for any $k$ not just $N$ $ bold(S)_k bold(x)_k = bold(lambda)_k $ ] #question(name: [Discuss how solution to the free final state LQ problem changes as the horizon is extended to infinity. Emphasize that the optimal solution is given by a constant linear state feedback whose gains are computed by solving a discrete-time algebraic Riccati equation (DARE). What are the conditions under which a stabilizing solution is guaranteed to exist? What are the conditions under which it is guaranteed that there is a unique stabilizing solution of DARE?])[ - the solution is simmilar to the previous one with the exception that, as we never reach the horizon, the state feedback gain remains constant - DARE (discrete time algebraic Riccati equation) assumes that in the steady state (as $k -> oo$) $ bold(S)_(k+1) approx bold(S)_k $ it, works because this assumption is correct - for stabilizing solution to exist, there are two conditions - system $(bold(A), sqrt(bold(Q)))$ is stabilizable #footnote[Non--controllable parts of system are stable] - system $(bold(A), sqrt(bold(Q)))$ is detectable #footnote[Non--observable patrts of system are stable] - unique stablilizing solution requires that in addition to existance of stabilizing solution, the system $(bold(A), sqrt(bold(Q)))$ is detectable ] ] #skills[ #question(name: [Design an LQ--optimal state feedback controller for a discrete--time linear system both for a finite and an infinite horizon, both for regulation and for tracking.])[] ]
https://github.com/LDemetrios/Typst4k
https://raw.githubusercontent.com/LDemetrios/Typst4k/master/src/test/resources/suite/layout/limits.typ
typst
// Test how the layout engine reacts when reaching limits like // zero, infinity or when dealing with NaN. --- issue-1216-clamp-panic --- #set page(height: 20pt, margin: 0pt) #v(22pt) #block(fill: red, width: 100%, height: 10pt, radius: 4pt) --- issue-1918-layout-infinite-length-grid-columns --- // Test that passing infinite lengths to drawing primitives does not crash Typst. #set page(width: auto, height: auto) // Error: 58-59 cannot expand into infinite width #layout(size => grid(columns: (size.width, size.height))[a][b][c][d]) --- issue-1918-layout-infinite-length-grid-rows --- #set page(width: auto, height: auto) // Error: 17-66 cannot create grid with infinite height #layout(size => grid(rows: (size.width, size.height))[a][b][c][d]) --- issue-1918-layout-infinite-length-line --- #set page(width: auto, height: auto) // Error: 17-41 cannot create line with infinite length #layout(size => line(length: size.width)) --- issue-1918-layout-infinite-length-polygon --- #set page(width: auto, height: auto) // Error: 17-54 cannot create polygon with infinite size #layout(size => polygon((0pt,0pt), (0pt, size.width)))
https://github.com/kalxd/morelull
https://raw.githubusercontent.com/kalxd/morelull/master/doc.typ
typst
#import "@local/morelull:0.5.0": * #show: morelull.with(ๆ ‡้ข˜: "่ฟ™้‡Œๅ†™ไธŠไธ€ไธชๆ ‡้ข˜") = ๅคงๅคง็š„ๆ ‡้ข˜ๅ†™ๅœจ่ฟ™้‡Œใ€‚ #t ่ฟ™้‡Œๅˆๆ˜ฏๅฆไธ€ไธช#underline[ๆ•…ไบ‹]ไบ†ใ€‚ #t ไธ€ๅ—็กฌ็›˜,ๅฎน้‡ 1T,ไฝœไธบๅบ”็”จ#underline[ๆ•ฐๆฎ็›˜],ไธ€่ˆฌๆ€ง็š„#underline[็จ‹ๅบ]้ƒฝๆ”พๅœจไธŠ้ข,ๅŒ…ๆ‹ฌๆ‰€ไบง็”Ÿ็š„ๆ•ฐๆฎ;ๅฆไธ€ๅ—ๅฎน้‡ 4T,ไฝœไธบๅช’ไฝ“ๆ•ฐๆฎ็›˜,ๆ•ฐๅญ—ๅช’ไฝ“ใ€ไธชไบบๆ•ฐๆฎ้ƒฝๅœจไธŠ้ขใ€‚ #t ่ฟ™้‡ŒๅˆๅŠ ่ตทๆ–ฐ็š„ๆฎต๏ผŒไฝ ็œ‹็œ‹ๆ•ˆๆžœใ€‚ ```rust fn main() { println!("hello world") } ``` #t ่ฟ™้‡Œๅ†ๅฏๅŠจไธ€ไธชๆ–ฐ็š„ไธœ่ฅฟใ€‚
https://github.com/JunzheShen/SJTU-Resume-Template-in-Typst
https://raw.githubusercontent.com/JunzheShen/SJTU-Resume-Template-in-Typst/main/README.md
markdown
# SJTU Resume Template in Typst This repo provides a Typst version of a SJTU resume template called ่“่‰ฒๆขฆๆƒณ. Note that there are minor differences between this version and the official Microsoft Word version, feel free to adjust some parameters to make make the two versions more alike. This repo is is built upon [OrangeX4/Chinese-Resume-in-Typst](https://github.com/OrangeX4/Chinese-Resume-in-Typst) Detailed instructions to use this repo will be updated when I have some time to kill.
https://github.com/TypstApp-team/typst
https://raw.githubusercontent.com/TypstApp-team/typst/master/tests/typ/meta/figure.typ
typst
Apache License 2.0
// Test figures. --- #set page(width: 150pt) #set figure(numbering: "I") We can clearly see that @fig-cylinder and @tab-complex are relevant in this context. #figure( table(columns: 2)[a][b], caption: [The basic table.], ) <tab-basic> #figure( pad(y: -6pt, image("/files/cylinder.svg", height: 2cm)), caption: [The basic shapes.], numbering: "I", ) <fig-cylinder> #figure( table(columns: 3)[a][b][c][d][e][f], caption: [The complex table.], ) <tab-complex> --- // Testing figures with tables. #figure( table( columns: 2, [Second cylinder], image("/files/cylinder.svg"), ), caption: "A table containing images." ) <fig-image-in-table> --- // Testing show rules with figures with a simple theorem display #show figure.where(kind: "theorem"): it => { let name = none if not it.caption == none { name = [ #emph(it.caption.body)] } else { name = [] } let title = none if not it.numbering == none { title = it.supplement if not it.numbering == none { title += " " + it.counter.display(it.numbering) } } title = strong(title) pad( top: 0em, bottom: 0em, block( fill: green.lighten(90%), stroke: 1pt + green, inset: 10pt, width: 100%, radius: 5pt, breakable: false, [#title#name#h(0.1em):#h(0.2em)#it.body#v(0.5em)] ) ) } #set page(width: 150pt) #figure( $a^2 + b^2 = c^2$, supplement: "Theorem", kind: "theorem", caption: "Pythagoras' theorem.", numbering: "1", ) <fig-formula> #figure( $a^2 + b^2 = c^2$, supplement: "Theorem", kind: "theorem", caption: "Another Pythagoras' theorem.", numbering: none, ) <fig-formula> #figure( ```rust fn main() { println!("Hello!"); } ```, caption: [Hello world in _rust_], ) --- // Test breakable figures #set page(height: 6em) #show figure: set block(breakable: true) #figure(table[a][b][c][d][e], caption: [A table]) --- // Test custom separator for figure caption #set figure.caption(separator: [ --- ]) #figure( table(columns: 2)[a][b], caption: [The table with custom separator.], )
https://github.com/noamzaks/Barvazim
https://raw.githubusercontent.com/noamzaks/Barvazim/main/writeups/bsides-2024/forensics/skibidi.typ
typst
// Category: Forensics #import "../../template.typ": writeup #show: writeup.with(ctf: "BSides", exercise: "Skibidi", date: datetime(day: 29, month: 6, year: 2024)) Every docx file is a ZIP archive. After unzipping the `Skibidi.docx` file, we can go over the different files included. Most seem uninteresting, however, the `img.xml` seems suspicious - why is an image an XML file? And the content is especially suspicious: ```xml <root> <person firstname="<KEY>" lastname="<KEY> city="Haifa" country="Israel" firstname2="<KEY>" lastname2="<KEY> email="<EMAIL>" /> <random>6</random> <random_float>89.838</random_float> <bool>true</bool> <date>1986-09-28</date> <regEx>helloooooooooooooooooooooooooooooooooooooooooooo world</regEx> <enum>generator</enum> <elt>Alyssa</elt><elt>Flory</elt><elt>Ulrike</elt><elt>Teriann</elt><elt>Reeba</elt> <Ulrike> <age>56</age> </Ulrike> </root> ``` Well, the firstname, lastname, firstname2 and lastname2 appear to be Base64 data because they are only letters digits, and they end with the equal signs. By now we have arrived at the solution of this challenge: ```python >>> import base64 >>> base64.b64decode("Qn<KEY>") + base64.b64decode("M2YzNXQzZF90aDNfc2sxYjFkaX0=") b'BsidesTLV2024{w3_d3f35t3d_th3_sk1b1di}' ```
https://github.com/danisltpi/seminar
https://raw.githubusercontent.com/danisltpi/seminar/main/template/ausarbeitung.typ
typst
#import "template.typ": project #import "@preview/cetz:0.2.2" #set text(lang: "de", region: "de") #set par(leading: 1em) // #show outline: set par(leading: 2em) #show heading: it => [#pad(bottom: 1em, top: 1em)[#it]] #show: project.with( title: "Fibonacci Heaps", subtitle: "Seminararbeit", study_program: "Informatik (INFB)", institution: "Hochschule Karlsruhe", date: datetime.today().display("[day].[month].[year]"), examiner: "Prof. Dr. rer. <NAME>", logo: "hka.svg", authors: ((name: "<NAME>", matriculation_number: "79663"),), ) // #show outline.entry.where(level: 1): it => { // strong(it) // } // #outline(indent: auto) #pagebreak(weak: true) = Motivation Ein Fibonacci-Heap ist eine Datenstruktur, die Prioritรคtswarteschlangen implementiert und werden vielfรคltig eingesetzt. Sie besteht aus mehreren Heaps (Binรคrbรคume) \ \ #align(center)[ #cetz.canvas({ import cetz.draw: * rect((-1, -1), (1, 1)) circle((0, 0), fill: yellow, stroke: blue) line((0, 0), (2, 1)) line((0, 0), (1.5, -1)) })] == Dijkstra-Algorithmus = Laufzeit Daraus ergibt sich eine Laufzeit von $O(n log n)$ fรผr das Hinzufรผgen eines Knotens bzw. $Theta(n log n)$ = Das ist ein Test #lorem(100) \ #figure( image("../assets/circle.svg", width: 100%), caption: [Beispielhafte Struktur eines Fibonacci Heaps, bestehend aus 5 Teilbรคumen #lorem(50)], gap: 4em, ) <image> = Erklรคrung Wie man in der vorherigen Abbildung erkennen kann: @image Dies ist besonders gut #lorem(1000) @cormen_introduction_2009 #pagebreak(weak: true) #set page(header: []) #bibliography("literatur.bib", style: "ieee", title: "Literatur")
https://github.com/eLearningHub/resume-typst
https://raw.githubusercontent.com/eLearningHub/resume-typst/main/main.typ
typst
Apache License 2.0
#let portfolio = yaml("portfolio.yaml") #let settings = yaml("settings.yaml") #show link: set text(blue) #show heading: h => [ #set text( size: eval(settings.font.size.heading_large), font: settings.font.general ) #h ] #let sidebarSection = {[ #par(justify: true)[ #par[ #set text( size: eval(settings.font.size.contacts), font: settings.font.minor_highlight, ) Email: #link("mailto:" + portfolio.contacts.email) \ Phone: #link("tel:" + portfolio.contacts.phone) \ LinkedIn: #link(portfolio.contacts.linkedin)[mikhail-liamets] \ GitHub: #link(portfolio.contacts.github)[caffeintazedgaze] \ #portfolio.contacts.address ] #line(length: 100%) ] = Summary #par[ #set text( eval(settings.font.size.education_description), font: settings.font.minor_highlight, ) An experienced *software engineer* with a confident grasp of *infrastructure*, *system design*, and *DevOps*, now seeking opportunities to excel in the realms of solution architecture. Open to roles ranging from *software engineering* to *DevOps/SRE*. ] = Education #{ for place in portfolio.education [ #par[ #set text( size: eval(settings.font.size.heading), font: settings.font.general ) #place.from โ€“ #place.to \ #link(place.university.link)[#place.university.name] ] #par[ #set text( eval(settings.font.size.education_description), font: settings.font.minor_highlight, ) #place.degree #place.major ] ] } = Skills #{ for skill in portfolio.skills [ #par[ #set text( size: eval(settings.font.size.description), ) #set text( // size: eval(settings.font.size.tags), font: settings.font.minor_highlight, ) *#skill.name* #linebreak() #skill.items.join(" โ€ข ") ] ] } ]} #let mainSection = {[ // #par[ // #set align(center) // #figure( // image("images/Kodak 20 Zanvoort Lumi.jpg", width: 6em), // placement: top, // ) // ] #par[ #set text( size: eval(settings.font.size.heading_huge), font: settings.font.general, ) *#portfolio.contacts.name* ] #par[ #set text( size: eval(settings.font.size.heading), font: settings.font.minor_highlight, top-edge: 0pt ) #portfolio.contacts.title ] = Experience #{ for job in portfolio.jobs [ #par(justify: false)[ #set text( size: eval(settings.font.size.heading), font: settings.font.general ) #job.from โ€“ #job.to \ *#job.position* #link(job.company.link)[\@ #job.company.name] ] #par( justify: false, leading: eval(settings.paragraph.leading) )[ #set text( size: eval(settings.font.size.description), font: settings.font.general ) #{ for point in job.description [ #h(0.5cm) โ€ข #point \ ] } ] #par( justify: true, leading: eval(settings.paragraph.leading), )[ #set text( size: eval(settings.font.size.tags), font: settings.font.minor_highlight ) ] ] } ]} #{ grid( columns: (2fr, 5fr), column-gutter: 3em, sidebarSection, mainSection, ) }
https://github.com/typst/packages
https://raw.githubusercontent.com/typst/packages/main/packages/preview/unichar/0.1.0/ucd/block-1D800.typ
typst
Apache License 2.0
#let data = ( ("SIGNWRITING HAND-FIST INDEX", "So", 0), ("SIGNWRITING HAND-CIRCLE INDEX", "So", 0), ("SIGNWRITING HAND-CUP INDEX", "So", 0), ("SIGNWRITING HAND-OVAL INDEX", "So", 0), ("SIGNWRITING HAND-HINGE INDEX", "So", 0), ("SIGNWRITING HAND-ANGLE INDEX", "So", 0), ("SIGNWRITING HAND-FIST INDEX BENT", "So", 0), ("SIGNWRITING HAND-CIRCLE INDEX BENT", "So", 0), ("SIGNWRITING HAND-FIST THUMB UNDER INDEX BENT", "So", 0), ("SIGNWRITING HAND-FIST INDEX RAISED KNUCKLE", "So", 0), ("SIGNWRITING HAND-FIST INDEX CUPPED", "So", 0), ("SIGNWRITING HAND-FIST INDEX HINGED", "So", 0), ("SIGNWRITING HAND-FIST INDEX HINGED LOW", "So", 0), ("SIGNWRITING HAND-CIRCLE INDEX HINGE", "So", 0), ("SIGNWRITING HAND-FIST INDEX MIDDLE", "So", 0), ("SIGNWRITING HAND-CIRCLE INDEX MIDDLE", "So", 0), ("SIGNWRITING HAND-FIST INDEX MIDDLE BENT", "So", 0), ("SIGNWRITING HAND-FIST INDEX MIDDLE RAISED KNUCKLES", "So", 0), ("SIGNWRITING HAND-FIST INDEX MIDDLE HINGED", "So", 0), ("SIGNWRITING HAND-FIST INDEX UP MIDDLE HINGED", "So", 0), ("SIGNWRITING HAND-FIST INDEX HINGED MIDDLE UP", "So", 0), ("SIGNWRITING HAND-FIST INDEX MIDDLE CONJOINED", "So", 0), ("SIGNWRITING HAND-FIST INDEX MIDDLE CONJOINED INDEX BENT", "So", 0), ("SIGNWRITING HAND-FIST INDEX MIDDLE CONJOINED MIDDLE BENT", "So", 0), ("SIGNWRITING HAND-FIST INDEX MIDDLE CONJOINED CUPPED", "So", 0), ("SIGNWRITING HAND-FIST INDEX MIDDLE CONJOINED HINGED", "So", 0), ("SIGNWRITING HAND-FIST INDEX MIDDLE CROSSED", "So", 0), ("SIGNWRITING HAND-CIRCLE INDEX MIDDLE CROSSED", "So", 0), ("SIGNWRITING HAND-FIST MIDDLE BENT OVER INDEX", "So", 0), ("SIGNWRITING HAND-FIST INDEX BENT OVER MIDDLE", "So", 0), ("SIGNWRITING HAND-FIST INDEX MIDDLE THUMB", "So", 0), ("SIGNWRITING HAND-CIRCLE INDEX MIDDLE THUMB", "So", 0), ("SIGNWRITING HAND-FIST INDEX MIDDLE STRAIGHT THUMB BENT", "So", 0), ("SIGNWRITING HAND-FIST INDEX MIDDLE BENT THUMB STRAIGHT", "So", 0), ("SIGNWRITING HAND-FIST INDEX MIDDLE THUMB BENT", "So", 0), ("SIGNWRITING HAND-FIST INDEX MIDDLE HINGED SPREAD THUMB SIDE", "So", 0), ("SIGNWRITING HAND-FIST INDEX UP MIDDLE HINGED THUMB SIDE", "So", 0), ("SIGNWRITING HAND-FIST INDEX UP MIDDLE HINGED THUMB CONJOINED", "So", 0), ("SIGNWRITING HAND-FIST INDEX HINGED MIDDLE UP THUMB SIDE", "So", 0), ("SIGNWRITING HAND-FIST INDEX MIDDLE UP SPREAD THUMB FORWARD", "So", 0), ("SIGNWRITING HAND-FIST INDEX MIDDLE THUMB CUPPED", "So", 0), ("SIGNWRITING HAND-FIST INDEX MIDDLE THUMB CIRCLED", "So", 0), ("SIGNWRITING HAND-FIST INDEX MIDDLE THUMB HOOKED", "So", 0), ("SIGNWRITING HAND-FIST INDEX MIDDLE THUMB HINGED", "So", 0), ("SIGNWRITING HAND-FIST THUMB BETWEEN INDEX MIDDLE STRAIGHT", "So", 0), ("SIGNWRITING HAND-FIST INDEX MIDDLE CONJOINED THUMB SIDE", "So", 0), ("SIGNWRITING HAND-FIST INDEX MIDDLE CONJOINED THUMB SIDE CONJOINED", "So", 0), ("SIGNWRITING HAND-FIST INDEX MIDDLE CONJOINED THUMB SIDE BENT", "So", 0), ("SIGNWRITING HAND-FIST MIDDLE THUMB HOOKED INDEX UP", "So", 0), ("SIGNWRITING HAND-FIST INDEX THUMB HOOKED MIDDLE UP", "So", 0), ("SIGNWRITING HAND-FIST INDEX MIDDLE CONJOINED HINGED THUMB SIDE", "So", 0), ("SIGNWRITING HAND-FIST INDEX MIDDLE CROSSED THUMB SIDE", "So", 0), ("SIGNWRITING HAND-FIST INDEX MIDDLE CONJOINED THUMB FORWARD", "So", 0), ("SIGNWRITING HAND-FIST INDEX MIDDLE CONJOINED CUPPED THUMB FORWARD", "So", 0), ("SIGNWRITING HAND-FIST MIDDLE THUMB CUPPED INDEX UP", "So", 0), ("SIGNWRITING HAND-FIST INDEX THUMB CUPPED MIDDLE UP", "So", 0), ("SIGNWRITING HAND-FIST MIDDLE THUMB CIRCLED INDEX UP", "So", 0), ("SIGNWRITING HAND-FIST MIDDLE THUMB CIRCLED INDEX HINGED", "So", 0), ("SIGNWRITING HAND-FIST INDEX THUMB ANGLED OUT MIDDLE UP", "So", 0), ("SIGNWRITING HAND-FIST INDEX THUMB ANGLED IN MIDDLE UP", "So", 0), ("SIGNWRITING HAND-FIST INDEX THUMB CIRCLED MIDDLE UP", "So", 0), ("SIGNWRITING HAND-FIST INDEX MIDDLE THUMB CONJOINED HINGED", "So", 0), ("SIGNWRITING HAND-FIST INDEX MIDDLE THUMB ANGLED OUT", "So", 0), ("SIGNWRITING HAND-FIST INDEX MIDDLE THUMB ANGLED", "So", 0), ("SIGNWRITING HAND-FIST MIDDLE THUMB ANGLED OUT INDEX UP", "So", 0), ("SIGNWRITING HAND-FIST MIDDLE THUMB ANGLED OUT INDEX CROSSED", "So", 0), ("SIGNWRITING HAND-FIST MIDDLE THUMB ANGLED INDEX UP", "So", 0), ("SIGNWRITING HAND-FIST INDEX THUMB HOOKED MIDDLE HINGED", "So", 0), ("SIGNWRITING HAND-FLAT FOUR FINGERS", "So", 0), ("SIGNWRITING HAND-FLAT FOUR FINGERS BENT", "So", 0), ("SIGNWRITING HAND-FLAT FOUR FINGERS HINGED", "So", 0), ("SIGNWRITING HAND-FLAT FOUR FINGERS CONJOINED", "So", 0), ("SIGNWRITING HAND-FLAT FOUR FINGERS CONJOINED SPLIT", "So", 0), ("SIGNWRITING HAND-CLAW FOUR FINGERS CONJOINED", "So", 0), ("SIGNWRITING HAND-FIST FOUR FINGERS CONJOINED BENT", "So", 0), ("SIGNWRITING HAND-HINGE FOUR FINGERS CONJOINED", "So", 0), ("SIGNWRITING HAND-FLAT FIVE FINGERS SPREAD", "So", 0), ("SIGNWRITING HAND-FLAT HEEL FIVE FINGERS SPREAD", "So", 0), ("SIGNWRITING HAND-FLAT FIVE FINGERS SPREAD FOUR BENT", "So", 0), ("SIGNWRITING HAND-FLAT HEEL FIVE FINGERS SPREAD FOUR BENT", "So", 0), ("SIGNWRITING HAND-FLAT FIVE FINGERS SPREAD BENT", "So", 0), ("SIGNWRITING HAND-FLAT HEEL FIVE FINGERS SPREAD BENT", "So", 0), ("SIGNWRITING HAND-FLAT FIVE FINGERS SPREAD THUMB FORWARD", "So", 0), ("SIGNWRITING HAND-CUP FIVE FINGERS SPREAD", "So", 0), ("SIGNWRITING HAND-CUP FIVE FINGERS SPREAD OPEN", "So", 0), ("SIGNWRITING HAND-HINGE FIVE FINGERS SPREAD OPEN", "So", 0), ("SIGNWRITING HAND-OVAL FIVE FINGERS SPREAD", "So", 0), ("SIGNWRITING HAND-FLAT FIVE FINGERS SPREAD HINGED", "So", 0), ("SIGNWRITING HAND-FLAT FIVE FINGERS SPREAD HINGED THUMB SIDE", "So", 0), ("SIGNWRITING HAND-FLAT FIVE FINGERS SPREAD HINGED NO THUMB", "So", 0), ("SIGNWRITING HAND-FLAT", "So", 0), ("SIGNWRITING HAND-FLAT BETWEEN PALM FACINGS", "So", 0), ("SIGNWRITING HAND-FLAT HEEL", "So", 0), ("SIGNWRITING HAND-FLAT THUMB SIDE", "So", 0), ("SIGNWRITING HAND-FLAT HEEL THUMB SIDE", "So", 0), ("SIGNWRITING HAND-FLAT THUMB BENT", "So", 0), ("SIGNWRITING HAND-FLAT THUMB FORWARD", "So", 0), ("SIGNWRITING HAND-FLAT SPLIT INDEX THUMB SIDE", "So", 0), ("SIGNWRITING HAND-FLAT SPLIT CENTRE", "So", 0), ("SIGNWRITING HAND-FLAT SPLIT CENTRE THUMB SIDE", "So", 0), ("SIGNWRITING HAND-FLAT SPLIT CENTRE THUMB SIDE BENT", "So", 0), ("SIGNWRITING HAND-FLAT SPLIT LITTLE", "So", 0), ("SIGNWRITING HAND-CLAW", "So", 0), ("SIGNWRITING HAND-CLAW THUMB SIDE", "So", 0), ("SIGNWRITING HAND-CLAW NO THUMB", "So", 0), ("SIGNWRITING HAND-CLAW THUMB FORWARD", "So", 0), ("SIGNWRITING HAND-HOOK CURLICUE", "So", 0), ("SIGNWRITING HAND-HOOK", "So", 0), ("SIGNWRITING HAND-CUP OPEN", "So", 0), ("SIGNWRITING HAND-CUP", "So", 0), ("SIGNWRITING HAND-CUP OPEN THUMB SIDE", "So", 0), ("SIGNWRITING HAND-CUP THUMB SIDE", "So", 0), ("SIGNWRITING HAND-CUP OPEN NO THUMB", "So", 0), ("SIGNWRITING HAND-CUP NO THUMB", "So", 0), ("SIGNWRITING HAND-CUP OPEN THUMB FORWARD", "So", 0), ("SIGNWRITING HAND-CUP THUMB FORWARD", "So", 0), ("SIGNWRITING HAND-CURLICUE OPEN", "So", 0), ("SIGNWRITING HAND-CURLICUE", "So", 0), ("SIGNWRITING HAND-CIRCLE", "So", 0), ("SIGNWRITING HAND-OVAL", "So", 0), ("SIGNWRITING HAND-OVAL THUMB SIDE", "So", 0), ("SIGNWRITING HAND-OVAL NO THUMB", "So", 0), ("SIGNWRITING HAND-OVAL THUMB FORWARD", "So", 0), ("SIGNWRITING HAND-HINGE OPEN", "So", 0), ("SIGNWRITING HAND-HINGE OPEN THUMB FORWARD", "So", 0), ("SIGNWRITING HAND-HINGE", "So", 0), ("SIGNWRITING HAND-HINGE SMALL", "So", 0), ("SIGNWRITING HAND-HINGE OPEN THUMB SIDE", "So", 0), ("SIGNWRITING HAND-HINGE THUMB SIDE", "So", 0), ("SIGNWRITING HAND-HINGE OPEN NO THUMB", "So", 0), ("SIGNWRITING HAND-HINGE NO THUMB", "So", 0), ("SIGNWRITING HAND-HINGE THUMB SIDE TOUCHING INDEX", "So", 0), ("SIGNWRITING HAND-HINGE THUMB BETWEEN MIDDLE RING", "So", 0), ("SIGNWRITING HAND-ANGLE", "So", 0), ("SIGNWRITING HAND-FIST INDEX MIDDLE RING", "So", 0), ("SIGNWRITING HAND-CIRCLE INDEX MIDDLE RING", "So", 0), ("SIGNWRITING HAND-HINGE INDEX MIDDLE RING", "So", 0), ("SIGNWRITING HAND-ANGLE INDEX MIDDLE RING", "So", 0), ("SIGNWRITING HAND-HINGE LITTLE", "So", 0), ("SIGNWRITING HAND-FIST INDEX MIDDLE RING BENT", "So", 0), ("SIGNWRITING HAND-FIST INDEX MIDDLE RING CONJOINED", "So", 0), ("SIGNWRITING HAND-HINGE INDEX MIDDLE RING CONJOINED", "So", 0), ("SIGNWRITING HAND-FIST LITTLE DOWN", "So", 0), ("SIGNWRITING HAND-FIST LITTLE DOWN RIPPLE STRAIGHT", "So", 0), ("SIGNWRITING HAND-FIST LITTLE DOWN RIPPLE CURVED", "So", 0), ("SIGNWRITING HAND-FIST LITTLE DOWN OTHERS CIRCLED", "So", 0), ("SIGNWRITING HAND-FIST LITTLE UP", "So", 0), ("SIGNWRITING HAND-FIST THUMB UNDER LITTLE UP", "So", 0), ("SIGNWRITING HAND-CIRCLE LITTLE UP", "So", 0), ("SIGNWRITING HAND-OVAL LITTLE UP", "So", 0), ("SIGNWRITING HAND-ANGLE LITTLE UP", "So", 0), ("SIGNWRITING HAND-FIST LITTLE RAISED KNUCKLE", "So", 0), ("SIGNWRITING HAND-FIST LITTLE BENT", "So", 0), ("SIGNWRITING HAND-FIST LITTLE TOUCHES THUMB", "So", 0), ("SIGNWRITING HAND-FIST LITTLE THUMB", "So", 0), ("SIGNWRITING HAND-HINGE LITTLE THUMB", "So", 0), ("SIGNWRITING HAND-FIST LITTLE INDEX THUMB", "So", 0), ("SIGNWRITING HAND-HINGE LITTLE INDEX THUMB", "So", 0), ("SIGNWRITING HAND-ANGLE LITTLE INDEX THUMB INDEX THUMB OUT", "So", 0), ("SIGNWRITING HAND-ANGLE LITTLE INDEX THUMB INDEX THUMB", "So", 0), ("SIGNWRITING HAND-FIST LITTLE INDEX", "So", 0), ("SIGNWRITING HAND-CIRCLE LITTLE INDEX", "So", 0), ("SIGNWRITING HAND-HINGE LITTLE INDEX", "So", 0), ("SIGNWRITING HAND-ANGLE LITTLE INDEX", "So", 0), ("SIGNWRITING HAND-FIST INDEX MIDDLE LITTLE", "So", 0), ("SIGNWRITING HAND-CIRCLE INDEX MIDDLE LITTLE", "So", 0), ("SIGNWRITING HAND-HINGE INDEX MIDDLE LITTLE", "So", 0), ("SIGNWRITING HAND-HINGE RING", "So", 0), ("SIGNWRITING HAND-ANGLE INDEX MIDDLE LITTLE", "So", 0), ("SIGNWRITING HAND-FIST INDEX MIDDLE CROSS LITTLE", "So", 0), ("SIGNWRITING HAND-CIRCLE INDEX MIDDLE CROSS LITTLE", "So", 0), ("SIGNWRITING HAND-FIST RING DOWN", "So", 0), ("SIGNWRITING HAND-HINGE RING DOWN INDEX THUMB HOOK MIDDLE", "So", 0), ("SIGNWRITING HAND-ANGLE RING DOWN MIDDLE THUMB INDEX CROSS", "So", 0), ("SIGNWRITING HAND-FIST RING UP", "So", 0), ("SIGNWRITING HAND-FIST RING RAISED KNUCKLE", "So", 0), ("SIGNWRITING HAND-FIST RING LITTLE", "So", 0), ("SIGNWRITING HAND-CIRCLE RING LITTLE", "So", 0), ("SIGNWRITING HAND-OVAL RING LITTLE", "So", 0), ("SIGNWRITING HAND-ANGLE RING LITTLE", "So", 0), ("SIGNWRITING HAND-FIST RING MIDDLE", "So", 0), ("SIGNWRITING HAND-FIST RING MIDDLE CONJOINED", "So", 0), ("SIGNWRITING HAND-FIST RING MIDDLE RAISED KNUCKLES", "So", 0), ("SIGNWRITING HAND-FIST RING INDEX", "So", 0), ("SIGNWRITING HAND-FIST RING THUMB", "So", 0), ("SIGNWRITING HAND-HOOK RING THUMB", "So", 0), ("SIGNWRITING HAND-FIST INDEX RING LITTLE", "So", 0), ("SIGNWRITING HAND-CIRCLE INDEX RING LITTLE", "So", 0), ("SIGNWRITING HAND-CURLICUE INDEX RING LITTLE ON", "So", 0), ("SIGNWRITING HAND-HOOK INDEX RING LITTLE OUT", "So", 0), ("SIGNWRITING HAND-HOOK INDEX RING LITTLE IN", "So", 0), ("SIGNWRITING HAND-HOOK INDEX RING LITTLE UNDER", "So", 0), ("SIGNWRITING HAND-CUP INDEX RING LITTLE", "So", 0), ("SIGNWRITING HAND-HINGE INDEX RING LITTLE", "So", 0), ("SIGNWRITING HAND-ANGLE INDEX RING LITTLE OUT", "So", 0), ("SIGNWRITING HAND-ANGLE INDEX RING LITTLE", "So", 0), ("SIGNWRITING HAND-FIST MIDDLE DOWN", "So", 0), ("SIGNWRITING HAND-HINGE MIDDLE", "So", 0), ("SIGNWRITING HAND-FIST MIDDLE UP", "So", 0), ("SIGNWRITING HAND-CIRCLE MIDDLE UP", "So", 0), ("SIGNWRITING HAND-FIST MIDDLE RAISED KNUCKLE", "So", 0), ("SIGNWRITING HAND-FIST MIDDLE UP THUMB SIDE", "So", 0), ("SIGNWRITING HAND-HOOK MIDDLE THUMB", "So", 0), ("SIGNWRITING HAND-FIST MIDDLE THUMB LITTLE", "So", 0), ("SIGNWRITING HAND-FIST MIDDLE LITTLE", "So", 0), ("SIGNWRITING HAND-FIST MIDDLE RING LITTLE", "So", 0), ("SIGNWRITING HAND-CIRCLE MIDDLE RING LITTLE", "So", 0), ("SIGNWRITING HAND-CURLICUE MIDDLE RING LITTLE ON", "So", 0), ("SIGNWRITING HAND-CUP MIDDLE RING LITTLE", "So", 0), ("SIGNWRITING HAND-HINGE MIDDLE RING LITTLE", "So", 0), ("SIGNWRITING HAND-ANGLE MIDDLE RING LITTLE OUT", "So", 0), ("SIGNWRITING HAND-ANGLE MIDDLE RING LITTLE IN", "So", 0), ("SIGNWRITING HAND-ANGLE MIDDLE RING LITTLE", "So", 0), ("SIGNWRITING HAND-CIRCLE MIDDLE RING LITTLE BENT", "So", 0), ("SIGNWRITING HAND-CLAW MIDDLE RING LITTLE CONJOINED", "So", 0), ("SIGNWRITING HAND-CLAW MIDDLE RING LITTLE CONJOINED SIDE", "So", 0), ("SIGNWRITING HAND-HOOK MIDDLE RING LITTLE CONJOINED OUT", "So", 0), ("SIGNWRITING HAND-HOOK MIDDLE RING LITTLE CONJOINED IN", "So", 0), ("SIGNWRITING HAND-HOOK MIDDLE RING LITTLE CONJOINED", "So", 0), ("SIGNWRITING HAND-HINGE INDEX HINGED", "So", 0), ("SIGNWRITING HAND-FIST INDEX THUMB SIDE", "So", 0), ("SIGNWRITING HAND-HINGE INDEX THUMB SIDE", "So", 0), ("SIGNWRITING HAND-FIST INDEX THUMB SIDE THUMB DIAGONAL", "So", 0), ("SIGNWRITING HAND-FIST INDEX THUMB SIDE THUMB CONJOINED", "So", 0), ("SIGNWRITING HAND-FIST INDEX THUMB SIDE THUMB BENT", "So", 0), ("SIGNWRITING HAND-FIST INDEX THUMB SIDE INDEX BENT", "So", 0), ("SIGNWRITING HAND-FIST INDEX THUMB SIDE BOTH BENT", "So", 0), ("SIGNWRITING HAND-FIST INDEX THUMB SIDE INDEX HINGE", "So", 0), ("SIGNWRITING HAND-FIST INDEX THUMB FORWARD INDEX STRAIGHT", "So", 0), ("SIGNWRITING HAND-FIST INDEX THUMB FORWARD INDEX BENT", "So", 0), ("SIGNWRITING HAND-FIST INDEX THUMB HOOK", "So", 0), ("SIGNWRITING HAND-FIST INDEX THUMB CURLICUE", "So", 0), ("SIGNWRITING HAND-FIST INDEX THUMB CURVE THUMB INSIDE", "So", 0), ("SIGNWRITING HAND-CLAW INDEX THUMB CURVE THUMB INSIDE", "So", 0), ("SIGNWRITING HAND-FIST INDEX THUMB CURVE THUMB UNDER", "So", 0), ("SIGNWRITING HAND-FIST INDEX THUMB CIRCLE", "So", 0), ("SIGNWRITING HAND-CUP INDEX THUMB", "So", 0), ("SIGNWRITING HAND-CUP INDEX THUMB OPEN", "So", 0), ("SIGNWRITING HAND-HINGE INDEX THUMB OPEN", "So", 0), ("SIGNWRITING HAND-HINGE INDEX THUMB LARGE", "So", 0), ("SIGNWRITING HAND-HINGE INDEX THUMB", "So", 0), ("SIGNWRITING HAND-HINGE INDEX THUMB SMALL", "So", 0), ("SIGNWRITING HAND-ANGLE INDEX THUMB OUT", "So", 0), ("SIGNWRITING HAND-ANGLE INDEX THUMB IN", "So", 0), ("SIGNWRITING HAND-ANGLE INDEX THUMB", "So", 0), ("SIGNWRITING HAND-FIST THUMB", "So", 0), ("SIGNWRITING HAND-FIST THUMB HEEL", "So", 0), ("SIGNWRITING HAND-FIST THUMB SIDE DIAGONAL", "So", 0), ("SIGNWRITING HAND-FIST THUMB SIDE CONJOINED", "So", 0), ("SIGNWRITING HAND-FIST THUMB SIDE BENT", "So", 0), ("SIGNWRITING HAND-FIST THUMB FORWARD", "So", 0), ("SIGNWRITING HAND-FIST THUMB BETWEEN INDEX MIDDLE", "So", 0), ("SIGNWRITING HAND-FIST THUMB BETWEEN MIDDLE RING", "So", 0), ("SIGNWRITING HAND-FIST THUMB BETWEEN RING LITTLE", "So", 0), ("SIGNWRITING HAND-FIST THUMB UNDER TWO FINGERS", "So", 0), ("SIGNWRITING HAND-FIST THUMB OVER TWO FINGERS", "So", 0), ("SIGNWRITING HAND-FIST THUMB UNDER THREE FINGERS", "So", 0), ("SIGNWRITING HAND-FIST THUMB UNDER FOUR FINGERS", "So", 0), ("SIGNWRITING HAND-FIST THUMB OVER FOUR RAISED KNUCKLES", "So", 0), ("SIGNWRITING HAND-FIST", "So", 0), ("SIGNWRITING HAND-FIST HEEL", "So", 0), ("SIGNWRITING TOUCH SINGLE", "So", 0), ("SIGNWRITING TOUCH MULTIPLE", "So", 0), ("SIGNWRITING TOUCH BETWEEN", "So", 0), ("SIGNWRITING GRASP SINGLE", "So", 0), ("SIGNWRITING GRASP MULTIPLE", "So", 0), ("SIGNWRITING GRASP BETWEEN", "So", 0), ("SIGNWRITING STRIKE SINGLE", "So", 0), ("SIGNWRITING STRIKE MULTIPLE", "So", 0), ("SIGNWRITING STRIKE BETWEEN", "So", 0), ("SIGNWRITING BRUSH SINGLE", "So", 0), ("SIGNWRITING BRUSH MULTIPLE", "So", 0), ("SIGNWRITING BRUSH BETWEEN", "So", 0), ("SIGNWRITING RUB SINGLE", "So", 0), ("SIGNWRITING RUB MULTIPLE", "So", 0), ("SIGNWRITING RUB BETWEEN", "So", 0), ("SIGNWRITING SURFACE SYMBOLS", "So", 0), ("SIGNWRITING SURFACE BETWEEN", "So", 0), ("SIGNWRITING SQUEEZE LARGE SINGLE", "So", 0), ("SIGNWRITING SQUEEZE SMALL SINGLE", "So", 0), ("SIGNWRITING SQUEEZE LARGE MULTIPLE", "So", 0), ("SIGNWRITING SQUEEZE SMALL MULTIPLE", "So", 0), ("SIGNWRITING SQUEEZE SEQUENTIAL", "So", 0), ("SIGNWRITING FLICK LARGE SINGLE", "So", 0), ("SIGNWRITING FLICK SMALL SINGLE", "So", 0), ("SIGNWRITING FLICK LARGE MULTIPLE", "So", 0), ("SIGNWRITING FLICK SMALL MULTIPLE", "So", 0), ("SIGNWRITING FLICK SEQUENTIAL", "So", 0), ("SIGNWRITING SQUEEZE FLICK ALTERNATING", "So", 0), ("SIGNWRITING MOVEMENT-HINGE UP DOWN LARGE", "So", 0), ("SIGNWRITING MOVEMENT-HINGE UP DOWN SMALL", "So", 0), ("SIGNWRITING MOVEMENT-HINGE UP SEQUENTIAL", "So", 0), ("SIGNWRITING MOVEMENT-HINGE DOWN SEQUENTIAL", "So", 0), ("SIGNWRITING MOVEMENT-HINGE UP DOWN ALTERNATING LARGE", "So", 0), ("SIGNWRITING MOVEMENT-HINGE UP DOWN ALTERNATING SMALL", "So", 0), ("SIGNWRITING MOVEMENT-HINGE SIDE TO SIDE SCISSORS", "So", 0), ("SIGNWRITING MOVEMENT-WALLPLANE FINGER CONTACT", "So", 0), ("SIGNWRITING MOVEMENT-FLOORPLANE FINGER CONTACT", "So", 0), ("SIGNWRITING MOVEMENT-WALLPLANE SINGLE STRAIGHT SMALL", "So", 0), ("SIGNWRITING MOVEMENT-WALLPLANE SINGLE STRAIGHT MEDIUM", "So", 0), ("SIGNWRITING MOVEMENT-WALLPLANE SINGLE STRAIGHT LARGE", "So", 0), ("SIGNWRITING MOVEMENT-WALLPLANE SINGLE STRAIGHT LARGEST", "So", 0), ("SIGNWRITING MOVEMENT-WALLPLANE SINGLE WRIST FLEX", "So", 0), ("SIGNWRITING MOVEMENT-WALLPLANE DOUBLE STRAIGHT", "So", 0), ("SIGNWRITING MOVEMENT-WALLPLANE DOUBLE WRIST FLEX", "So", 0), ("SIGNWRITING MOVEMENT-WALLPLANE DOUBLE ALTERNATING", "So", 0), ("SIGNWRITING MOVEMENT-WALLPLANE DOUBLE ALTERNATING WRIST FLEX", "So", 0), ("SIGNWRITING MOVEMENT-WALLPLANE CROSS", "So", 0), ("SIGNWRITING MOVEMENT-WALLPLANE TRIPLE STRAIGHT MOVEMENT", "So", 0), ("SIGNWRITING MOVEMENT-WALLPLANE TRIPLE WRIST FLEX", "So", 0), ("SIGNWRITING MOVEMENT-WALLPLANE TRIPLE ALTERNATING", "So", 0), ("SIGNWRITING MOVEMENT-WALLPLANE TRIPLE ALTERNATING WRIST FLEX", "So", 0), ("SIGNWRITING MOVEMENT-WALLPLANE BEND SMALL", "So", 0), ("SIGNWRITING MOVEMENT-WALLPLANE BEND MEDIUM", "So", 0), ("SIGNWRITING MOVEMENT-WALLPLANE BEND LARGE", "So", 0), ("SIGNWRITING MOVEMENT-WALLPLANE CORNER SMALL", "So", 0), ("SIGNWRITING MOVEMENT-WALLPLANE CORNER MEDIUM", "So", 0), ("SIGNWRITING MOVEMENT-WALLPLANE CORNER LARGE", "So", 0), ("SIGNWRITING MOVEMENT-WALLPLANE CORNER ROTATION", "So", 0), ("SIGNWRITING MOVEMENT-WALLPLANE CHECK SMALL", "So", 0), ("SIGNWRITING MOVEMENT-WALLPLANE CHECK MEDIUM", "So", 0), ("SIGNWRITING MOVEMENT-WALLPLANE CHECK LARGE", "So", 0), ("SIGNWRITING MOVEMENT-WALLPLANE BOX SMALL", "So", 0), ("SIGNWRITING MOVEMENT-WALLPLANE BOX MEDIUM", "So", 0), ("SIGNWRITING MOVEMENT-WALLPLANE BOX LARGE", "So", 0), ("SIGNWRITING MOVEMENT-WALLPLANE ZIGZAG SMALL", "So", 0), ("SIGNWRITING MOVEMENT-WALLPLANE ZIGZAG MEDIUM", "So", 0), ("SIGNWRITING MOVEMENT-WALLPLANE ZIGZAG LARGE", "So", 0), ("SIGNWRITING MOVEMENT-WALLPLANE PEAKS SMALL", "So", 0), ("SIGNWRITING MOVEMENT-WALLPLANE PEAKS MEDIUM", "So", 0), ("SIGNWRITING MOVEMENT-WALLPLANE PEAKS LARGE", "So", 0), ("SIGNWRITING TRAVEL-WALLPLANE ROTATION-WALLPLANE SINGLE", "So", 0), ("SIGNWRITING TRAVEL-WALLPLANE ROTATION-WALLPLANE DOUBLE", "So", 0), ("SIGNWRITING TRAVEL-WALLPLANE ROTATION-WALLPLANE ALTERNATING", "So", 0), ("SIGNWRITING TRAVEL-WALLPLANE ROTATION-FLOORPLANE SINGLE", "So", 0), ("SIGNWRITING TRAVEL-WALLPLANE ROTATION-FLOORPLANE DOUBLE", "So", 0), ("SIGNWRITING TRAVEL-WALLPLANE ROTATION-FLOORPLANE ALTERNATING", "So", 0), ("SIGNWRITING TRAVEL-WALLPLANE SHAKING", "So", 0), ("SIGNWRITING TRAVEL-WALLPLANE ARM SPIRAL SINGLE", "So", 0), ("SIGNWRITING TRAVEL-WALLPLANE ARM SPIRAL DOUBLE", "So", 0), ("SIGNWRITING TRAVEL-WALLPLANE ARM SPIRAL TRIPLE", "So", 0), ("SIGNWRITING MOVEMENT-DIAGONAL AWAY SMALL", "So", 0), ("SIGNWRITING MOVEMENT-DIAGONAL AWAY MEDIUM", "So", 0), ("SIGNWRITING MOVEMENT-DIAGONAL AWAY LARGE", "So", 0), ("SIGNWRITING MOVEMENT-DIAGONAL AWAY LARGEST", "So", 0), ("SIGNWRITING MOVEMENT-DIAGONAL TOWARDS SMALL", "So", 0), ("SIGNWRITING MOVEMENT-DIAGONAL TOWARDS MEDIUM", "So", 0), ("SIGNWRITING MOVEMENT-DIAGONAL TOWARDS LARGE", "So", 0), ("SIGNWRITING MOVEMENT-DIAGONAL TOWARDS LARGEST", "So", 0), ("SIGNWRITING MOVEMENT-DIAGONAL BETWEEN AWAY SMALL", "So", 0), ("SIGNWRITING MOVEMENT-DIAGONAL BETWEEN AWAY MEDIUM", "So", 0), ("SIGNWRITING MOVEMENT-DIAGONAL BETWEEN AWAY LARGE", "So", 0), ("SIGNWRITING MOVEMENT-DIAGONAL BETWEEN AWAY LARGEST", "So", 0), ("SIGNWRITING MOVEMENT-DIAGONAL BETWEEN TOWARDS SMALL", "So", 0), ("SIGNWRITING MOVEMENT-DIAGONAL BETWEEN TOWARDS MEDIUM", "So", 0), ("SIGNWRITING MOVEMENT-DIAGONAL BETWEEN TOWARDS LARGE", "So", 0), ("SIGNWRITING MOVEMENT-DIAGONAL BETWEEN TOWARDS LARGEST", "So", 0), ("SIGNWRITING MOVEMENT-FLOORPLANE SINGLE STRAIGHT SMALL", "So", 0), ("SIGNWRITING MOVEMENT-FLOORPLANE SINGLE STRAIGHT MEDIUM", "So", 0), ("SIGNWRITING MOVEMENT-FLOORPLANE SINGLE STRAIGHT LARGE", "So", 0), ("SIGNWRITING MOVEMENT-FLOORPLANE SINGLE STRAIGHT LARGEST", "So", 0), ("SIGNWRITING MOVEMENT-FLOORPLANE SINGLE WRIST FLEX", "So", 0), ("SIGNWRITING MOVEMENT-FLOORPLANE DOUBLE STRAIGHT", "So", 0), ("SIGNWRITING MOVEMENT-FLOORPLANE DOUBLE WRIST FLEX", "So", 0), ("SIGNWRITING MOVEMENT-FLOORPLANE DOUBLE ALTERNATING", "So", 0), ("SIGNWRITING MOVEMENT-FLOORPLANE DOUBLE ALTERNATING WRIST FLEX", "So", 0), ("SIGNWRITING MOVEMENT-FLOORPLANE CROSS", "So", 0), ("SIGNWRITING MOVEMENT-FLOORPLANE TRIPLE STRAIGHT MOVEMENT", "So", 0), ("SIGNWRITING MOVEMENT-FLOORPLANE TRIPLE WRIST FLEX", "So", 0), ("SIGNWRITING MOVEMENT-FLOORPLANE TRIPLE ALTERNATING MOVEMENT", "So", 0), ("SIGNWRITING MOVEMENT-FLOORPLANE TRIPLE ALTERNATING WRIST FLEX", "So", 0), ("SIGNWRITING MOVEMENT-FLOORPLANE BEND", "So", 0), ("SIGNWRITING MOVEMENT-FLOORPLANE CORNER SMALL", "So", 0), ("SIGNWRITING MOVEMENT-FLOORPLANE CORNER MEDIUM", "So", 0), ("SIGNWRITING MOVEMENT-FLOORPLANE CORNER LARGE", "So", 0), ("SIGNWRITING MOVEMENT-FLOORPLANE CHECK", "So", 0), ("SIGNWRITING MOVEMENT-FLOORPLANE BOX SMALL", "So", 0), ("SIGNWRITING MOVEMENT-FLOORPLANE BOX MEDIUM", "So", 0), ("SIGNWRITING MOVEMENT-FLOORPLANE BOX LARGE", "So", 0), ("SIGNWRITING MOVEMENT-FLOORPLANE ZIGZAG SMALL", "So", 0), ("SIGNWRITING MOVEMENT-FLOORPLANE ZIGZAG MEDIUM", "So", 0), ("SIGNWRITING MOVEMENT-FLOORPLANE ZIGZAG LARGE", "So", 0), ("SIGNWRITING MOVEMENT-FLOORPLANE PEAKS SMALL", "So", 0), ("SIGNWRITING MOVEMENT-FLOORPLANE PEAKS MEDIUM", "So", 0), ("SIGNWRITING MOVEMENT-FLOORPLANE PEAKS LARGE", "So", 0), ("SIGNWRITING TRAVEL-FLOORPLANE ROTATION-FLOORPLANE SINGLE", "So", 0), ("SIGNWRITING TRAVEL-FLOORPLANE ROTATION-FLOORPLANE DOUBLE", "So", 0), ("SIGNWRITING TRAVEL-FLOORPLANE ROTATION-FLOORPLANE ALTERNATING", "So", 0), ("SIGNWRITING TRAVEL-FLOORPLANE ROTATION-WALLPLANE SINGLE", "So", 0), ("SIGNWRITING TRAVEL-FLOORPLANE ROTATION-WALLPLANE DOUBLE", "So", 0), ("SIGNWRITING TRAVEL-FLOORPLANE ROTATION-WALLPLANE ALTERNATING", "So", 0), ("SIGNWRITING TRAVEL-FLOORPLANE SHAKING", "So", 0), ("SIGNWRITING MOVEMENT-WALLPLANE CURVE QUARTER SMALL", "So", 0), ("SIGNWRITING MOVEMENT-WALLPLANE CURVE QUARTER MEDIUM", "So", 0), ("SIGNWRITING MOVEMENT-WALLPLANE CURVE QUARTER LARGE", "So", 0), ("SIGNWRITING MOVEMENT-WALLPLANE CURVE QUARTER LARGEST", "So", 0), ("SIGNWRITING MOVEMENT-WALLPLANE CURVE HALF-CIRCLE SMALL", "So", 0), ("SIGNWRITING MOVEMENT-WALLPLANE CURVE HALF-CIRCLE MEDIUM", "So", 0), ("SIGNWRITING MOVEMENT-WALLPLANE CURVE HALF-CIRCLE LARGE", "So", 0), ("SIGNWRITING MOVEMENT-WALLPLANE CURVE HALF-CIRCLE LARGEST", "So", 0), ("SIGNWRITING MOVEMENT-WALLPLANE CURVE THREE-QUARTER CIRCLE SMALL", "So", 0), ("SIGNWRITING MOVEMENT-WALLPLANE CURVE THREE-QUARTER CIRCLE MEDIUM", "So", 0), ("SIGNWRITING MOVEMENT-WALLPLANE HUMP SMALL", "So", 0), ("SIGNWRITING MOVEMENT-WALLPLANE HUMP MEDIUM", "So", 0), ("SIGNWRITING MOVEMENT-WALLPLANE HUMP LARGE", "So", 0), ("SIGNWRITING MOVEMENT-WALLPLANE LOOP SMALL", "So", 0), ("SIGNWRITING MOVEMENT-WALLPLANE LOOP MEDIUM", "So", 0), ("SIGNWRITING MOVEMENT-WALLPLANE LOOP LARGE", "So", 0), ("SIGNWRITING MOVEMENT-WALLPLANE LOOP SMALL DOUBLE", "So", 0), ("SIGNWRITING MOVEMENT-WALLPLANE WAVE CURVE DOUBLE SMALL", "So", 0), ("SIGNWRITING MOVEMENT-WALLPLANE WAVE CURVE DOUBLE MEDIUM", "So", 0), ("SIGNWRITING MOVEMENT-WALLPLANE WAVE CURVE DOUBLE LARGE", "So", 0), ("SIGNWRITING MOVEMENT-WALLPLANE WAVE CURVE TRIPLE SMALL", "So", 0), ("SIGNWRITING MOVEMENT-WALLPLANE WAVE CURVE TRIPLE MEDIUM", "So", 0), ("SIGNWRITING MOVEMENT-WALLPLANE WAVE CURVE TRIPLE LARGE", "So", 0), ("SIGNWRITING MOVEMENT-WALLPLANE CURVE THEN STRAIGHT", "So", 0), ("SIGNWRITING MOVEMENT-WALLPLANE CURVED CROSS SMALL", "So", 0), ("SIGNWRITING MOVEMENT-WALLPLANE CURVED CROSS MEDIUM", "So", 0), ("SIGNWRITING ROTATION-WALLPLANE SINGLE", "So", 0), ("SIGNWRITING ROTATION-WALLPLANE DOUBLE", "So", 0), ("SIGNWRITING ROTATION-WALLPLANE ALTERNATE", "So", 0), ("SIGNWRITING MOVEMENT-WALLPLANE SHAKING", "So", 0), ("SIGNWRITING MOVEMENT-WALLPLANE CURVE HITTING FRONT WALL", "So", 0), ("SIGNWRITING MOVEMENT-WALLPLANE HUMP HITTING FRONT WALL", "So", 0), ("SIGNWRITING MOVEMENT-WALLPLANE LOOP HITTING FRONT WALL", "So", 0), ("SIGNWRITING MOVEMENT-WALLPLANE WAVE HITTING FRONT WALL", "So", 0), ("SIGNWRITING ROTATION-WALLPLANE SINGLE HITTING FRONT WALL", "So", 0), ("SIGNWRITING ROTATION-WALLPLANE DOUBLE HITTING FRONT WALL", "So", 0), ("SIGNWRITING ROTATION-WALLPLANE ALTERNATING HITTING FRONT WALL", "So", 0), ("SIGNWRITING MOVEMENT-WALLPLANE CURVE HITTING CHEST", "So", 0), ("SIGNWRITING MOVEMENT-WALLPLANE HUMP HITTING CHEST", "So", 0), ("SIGNWRITING MOVEMENT-WALLPLANE LOOP HITTING CHEST", "So", 0), ("SIGNWRITING MOVEMENT-WALLPLANE WAVE HITTING CHEST", "So", 0), ("SIGNWRITING ROTATION-WALLPLANE SINGLE HITTING CHEST", "So", 0), ("SIGNWRITING ROTATION-WALLPLANE DOUBLE HITTING CHEST", "So", 0), ("SIGNWRITING ROTATION-WALLPLANE ALTERNATING HITTING CHEST", "So", 0), ("SIGNWRITING MOVEMENT-WALLPLANE WAVE DIAGONAL PATH SMALL", "So", 0), ("SIGNWRITING MOVEMENT-WALLPLANE WAVE DIAGONAL PATH MEDIUM", "So", 0), ("SIGNWRITING MOVEMENT-WALLPLANE WAVE DIAGONAL PATH LARGE", "So", 0), ("SIGNWRITING MOVEMENT-FLOORPLANE CURVE HITTING CEILING SMALL", "So", 0), ("SIGNWRITING MOVEMENT-FLOORPLANE CURVE HITTING CEILING LARGE", "So", 0), ("SIGNWRITING MOVEMENT-FLOORPLANE HUMP HITTING CEILING SMALL DOUBLE", "So", 0), ("SIGNWRITING MOVEMENT-FLOORPLANE HUMP HITTING CEILING LARGE DOUBLE", "So", 0), ("SIGNWRITING MOVEMENT-FLOORPLANE HUMP HITTING CEILING SMALL TRIPLE", "So", 0), ("SIGNWRITING MOVEMENT-FLOORPLANE HUMP HITTING CEILING LARGE TRIPLE", "So", 0), ("SIGNWRITING MOVEMENT-FLOORPLANE LOOP HITTING CEILING SMALL SINGLE", "So", 0), ("SIGNWRITING MOVEMENT-FLOORPLANE LOOP HITTING CEILING LARGE SINGLE", "So", 0), ("SIGNWRITING MOVEMENT-FLOORPLANE LOOP HITTING CEILING SMALL DOUBLE", "So", 0), ("SIGNWRITING MOVEMENT-FLOORPLANE LOOP HITTING CEILING LARGE DOUBLE", "So", 0), ("SIGNWRITING MOVEMENT-FLOORPLANE WAVE HITTING CEILING SMALL", "So", 0), ("SIGNWRITING MOVEMENT-FLOORPLANE WAVE HITTING CEILING LARGE", "So", 0), ("SIGNWRITING ROTATION-FLOORPLANE SINGLE HITTING CEILING", "So", 0), ("SIGNWRITING ROTATION-FLOORPLANE DOUBLE HITTING CEILING", "So", 0), ("SIGNWRITING ROTATION-FLOORPLANE ALTERNATING HITTING CEILING", "So", 0), ("SIGNWRITING MOVEMENT-FLOORPLANE CURVE HITTING FLOOR SMALL", "So", 0), ("SIGNWRITING MOVEMENT-FLOORPLANE CURVE HITTING FLOOR LARGE", "So", 0), ("SIGNWRITING MOVEMENT-FLOORPLANE HUMP HITTING FLOOR SMALL DOUBLE", "So", 0), ("SIGNWRITING MOVEMENT-FLOORPLANE HUMP HITTING FLOOR LARGE DOUBLE", "So", 0), ("SIGNWRITING MOVEMENT-FLOORPLANE HUMP HITTING FLOOR TRIPLE SMALL TRIPLE", "So", 0), ("SIGNWRITING MOVEMENT-FLOORPLANE HUMP HITTING FLOOR TRIPLE LARGE TRIPLE", "So", 0), ("SIGNWRITING MOVEMENT-FLOORPLANE LOOP HITTING FLOOR SMALL SINGLE", "So", 0), ("SIGNWRITING MOVEMENT-FLOORPLANE LOOP HITTING FLOOR LARGE SINGLE", "So", 0), ("SIGNWRITING MOVEMENT-FLOORPLANE LOOP HITTING FLOOR SMALL DOUBLE", "So", 0), ("SIGNWRITING MOVEMENT-FLOORPLANE LOOP HITTING FLOOR LARGE DOUBLE", "So", 0), ("SIGNWRITING MOVEMENT-FLOORPLANE WAVE HITTING FLOOR SMALL", "So", 0), ("SIGNWRITING MOVEMENT-FLOORPLANE WAVE HITTING FLOOR LARGE", "So", 0), ("SIGNWRITING ROTATION-FLOORPLANE SINGLE HITTING FLOOR", "So", 0), ("SIGNWRITING ROTATION-FLOORPLANE DOUBLE HITTING FLOOR", "So", 0), ("SIGNWRITING ROTATION-FLOORPLANE ALTERNATING HITTING FLOOR", "So", 0), ("SIGNWRITING MOVEMENT-FLOORPLANE CURVE SMALL", "So", 0), ("SIGNWRITING MOVEMENT-FLOORPLANE CURVE MEDIUM", "So", 0), ("SIGNWRITING MOVEMENT-FLOORPLANE CURVE LARGE", "So", 0), ("SIGNWRITING MOVEMENT-FLOORPLANE CURVE LARGEST", "So", 0), ("SIGNWRITING MOVEMENT-FLOORPLANE CURVE COMBINED", "So", 0), ("SIGNWRITING MOVEMENT-FLOORPLANE HUMP SMALL", "So", 0), ("SIGNWRITING MOVEMENT-FLOORPLANE LOOP SMALL", "So", 0), ("SIGNWRITING MOVEMENT-FLOORPLANE WAVE SNAKE", "So", 0), ("SIGNWRITING MOVEMENT-FLOORPLANE WAVE SMALL", "So", 0), ("SIGNWRITING MOVEMENT-FLOORPLANE WAVE LARGE", "So", 0), ("SIGNWRITING ROTATION-FLOORPLANE SINGLE", "So", 0), ("SIGNWRITING ROTATION-FLOORPLANE DOUBLE", "So", 0), ("SIGNWRITING ROTATION-FLOORPLANE ALTERNATING", "So", 0), ("SIGNWRITING MOVEMENT-FLOORPLANE SHAKING PARALLEL", "So", 0), ("SIGNWRITING MOVEMENT-WALLPLANE ARM CIRCLE SMALL SINGLE", "So", 0), ("SIGNWRITING MOVEMENT-WALLPLANE ARM CIRCLE MEDIUM SINGLE", "So", 0), ("SIGNWRITING MOVEMENT-WALLPLANE ARM CIRCLE SMALL DOUBLE", "So", 0), ("SIGNWRITING MOVEMENT-WALLPLANE ARM CIRCLE MEDIUM DOUBLE", "So", 0), ("SIGNWRITING MOVEMENT-FLOORPLANE ARM CIRCLE HITTING WALL SMALL SINGLE", "So", 0), ("SIGNWRITING MOVEMENT-FLOORPLANE ARM CIRCLE HITTING WALL MEDIUM SINGLE", "So", 0), ("SIGNWRITING MOVEMENT-FLOORPLANE ARM CIRCLE HITTING WALL LARGE SINGLE", "So", 0), ("SIGNWRITING MOVEMENT-FLOORPLANE ARM CIRCLE HITTING WALL SMALL DOUBLE", "So", 0), ("SIGNWRITING MOVEMENT-FLOORPLANE ARM CIRCLE HITTING WALL MEDIUM DOUBLE", "So", 0), ("SIGNWRITING MOVEMENT-FLOORPLANE ARM CIRCLE HITTING WALL LARGE DOUBLE", "So", 0), ("SIGNWRITING MOVEMENT-WALLPLANE WRIST CIRCLE FRONT SINGLE", "So", 0), ("SIGNWRITING MOVEMENT-WALLPLANE WRIST CIRCLE FRONT DOUBLE", "So", 0), ("SIGNWRITING MOVEMENT-FLOORPLANE WRIST CIRCLE HITTING WALL SINGLE", "So", 0), ("SIGNWRITING MOVEMENT-FLOORPLANE WRIST CIRCLE HITTING WALL DOUBLE", "So", 0), ("SIGNWRITING MOVEMENT-WALLPLANE FINGER CIRCLES SINGLE", "So", 0), ("SIGNWRITING MOVEMENT-WALLPLANE FINGER CIRCLES DOUBLE", "So", 0), ("SIGNWRITING MOVEMENT-FLOORPLANE FINGER CIRCLES HITTING WALL SINGLE", "So", 0), ("SIGNWRITING MOVEMENT-FLOORPLANE FINGER CIRCLES HITTING WALL DOUBLE", "So", 0), ("SIGNWRITING DYNAMIC ARROWHEAD SMALL", "So", 0), ("SIGNWRITING DYNAMIC ARROWHEAD LARGE", "So", 0), ("SIGNWRITING DYNAMIC FAST", "So", 0), ("SIGNWRITING DYNAMIC SLOW", "So", 0), ("SIGNWRITING DYNAMIC TENSE", "So", 0), ("SIGNWRITING DYNAMIC RELAXED", "So", 0), ("SIGNWRITING DYNAMIC SIMULTANEOUS", "So", 0), ("SIGNWRITING DYNAMIC SIMULTANEOUS ALTERNATING", "So", 0), ("SIGNWRITING DYNAMIC EVERY OTHER TIME", "So", 0), ("SIGNWRITING DYNAMIC GRADUAL", "So", 0), ("SIGNWRITING HEAD", "So", 0), ("SIGNWRITING HEAD RIM", "Mn", 0), ("SIGNWRITING HEAD MOVEMENT-WALLPLANE STRAIGHT", "Mn", 0), ("SIGNWRITING HEAD MOVEMENT-WALLPLANE TILT", "Mn", 0), ("SIGNWRITING HEAD MOVEMENT-FLOORPLANE STRAIGHT", "Mn", 0), ("SIGNWRITING HEAD MOVEMENT-WALLPLANE CURVE", "Mn", 0), ("SIGNWRITING HEAD MOVEMENT-FLOORPLANE CURVE", "Mn", 0), ("SIGNWRITING HEAD MOVEMENT CIRCLE", "Mn", 0), ("SIGNWRITING FACE DIRECTION POSITION NOSE FORWARD TILTING", "Mn", 0), ("SIGNWRITING FACE DIRECTION POSITION NOSE UP OR DOWN", "Mn", 0), ("SIGNWRITING FACE DIRECTION POSITION NOSE UP OR DOWN TILTING", "Mn", 0), ("SIGNWRITING EYEBROWS STRAIGHT UP", "Mn", 0), ("SIGNWRITING EYEBROWS STRAIGHT NEUTRAL", "Mn", 0), ("SIGNWRITING EYEBROWS STRAIGHT DOWN", "Mn", 0), ("SIGNWRITING DREAMY EYEBROWS NEUTRAL DOWN", "Mn", 0), ("SIGNWRITING DREAMY EYEBROWS DOWN NEUTRAL", "Mn", 0), ("SIGNWRITING DREAMY EYEBROWS UP NEUTRAL", "Mn", 0), ("SIGNWRITING DREAMY EYEBROWS NEUTRAL UP", "Mn", 0), ("SIGNWRITING FOREHEAD NEUTRAL", "Mn", 0), ("SIGNWRITING FOREHEAD CONTACT", "Mn", 0), ("SIGNWRITING FOREHEAD WRINKLED", "Mn", 0), ("SIGNWRITING EYES OPEN", "Mn", 0), ("SIGNWRITING EYES SQUEEZED", "Mn", 0), ("SIGNWRITING EYES CLOSED", "Mn", 0), ("SIGNWRITING EYE BLINK SINGLE", "Mn", 0), ("SIGNWRITING EYE BLINK MULTIPLE", "Mn", 0), ("SIGNWRITING EYES HALF OPEN", "Mn", 0), ("SIGNWRITING EYES WIDE OPEN", "Mn", 0), ("SIGNWRITING EYES HALF CLOSED", "Mn", 0), ("SIGNWRITING EYES WIDENING MOVEMENT", "Mn", 0), ("SIGNWRITING EYE WINK", "Mn", 0), ("SIGNWRITING EYELASHES UP", "Mn", 0), ("SIGNWRITING EYELASHES DOWN", "Mn", 0), ("SIGNWRITING EYELASHES FLUTTERING", "Mn", 0), ("SIGNWRITING EYEGAZE-WALLPLANE STRAIGHT", "Mn", 0), ("SIGNWRITING EYEGAZE-WALLPLANE STRAIGHT DOUBLE", "Mn", 0), ("SIGNWRITING EYEGAZE-WALLPLANE STRAIGHT ALTERNATING", "Mn", 0), ("SIGNWRITING EYEGAZE-FLOORPLANE STRAIGHT", "Mn", 0), ("SIGNWRITING EYEGAZE-FLOORPLANE STRAIGHT DOUBLE", "Mn", 0), ("SIGNWRITING EYEGAZE-FLOORPLANE STRAIGHT ALTERNATING", "Mn", 0), ("SIGNWRITING EYEGAZE-WALLPLANE CURVED", "Mn", 0), ("SIGNWRITING EYEGAZE-FLOORPLANE CURVED", "Mn", 0), ("SIGNWRITING EYEGAZE-WALLPLANE CIRCLING", "Mn", 0), ("SIGNWRITING CHEEKS PUFFED", "Mn", 0), ("SIGNWRITING CHEEKS NEUTRAL", "Mn", 0), ("SIGNWRITING CHEEKS SUCKED", "Mn", 0), ("SIGNWRITING TENSE CHEEKS HIGH", "Mn", 0), ("SIGNWRITING TENSE CHEEKS MIDDLE", "Mn", 0), ("SIGNWRITING TENSE CHEEKS LOW", "Mn", 0), ("SIGNWRITING EARS", "Mn", 0), ("SIGNWRITING NOSE NEUTRAL", "Mn", 0), ("SIGNWRITING NOSE CONTACT", "Mn", 0), ("SIGNWRITING NOSE WRINKLES", "Mn", 0), ("SIGNWRITING NOSE WIGGLES", "Mn", 0), ("SIGNWRITING AIR BLOWING OUT", "Mn", 0), ("SIGNWRITING AIR SUCKING IN", "Mn", 0), ("SIGNWRITING AIR BLOW SMALL ROTATIONS", "So", 0), ("SIGNWRITING AIR SUCK SMALL ROTATIONS", "So", 0), ("SIGNWRITING BREATH INHALE", "So", 0), ("SIGNWRITING BREATH EXHALE", "So", 0), ("SIGNWRITING MOUTH CLOSED NEUTRAL", "Mn", 0), ("SIGNWRITING MOUTH CLOSED FORWARD", "Mn", 0), ("SIGNWRITING MOUTH CLOSED CONTACT", "Mn", 0), ("SIGNWRITING MOUTH SMILE", "Mn", 0), ("SIGNWRITING MOUTH SMILE WRINKLED", "Mn", 0), ("SIGNWRITING MOUTH SMILE OPEN", "Mn", 0), ("SIGNWRITING MOUTH FROWN", "Mn", 0), ("SIGNWRITING MOUTH FROWN WRINKLED", "Mn", 0), ("SIGNWRITING MOUTH FROWN OPEN", "Mn", 0), ("SIGNWRITING MOUTH OPEN CIRCLE", "Mn", 0), ("SIGNWRITING MOUTH OPEN FORWARD", "Mn", 0), ("SIGNWRITING MOUTH OPEN WRINKLED", "Mn", 0), ("SIGNWRITING MOUTH OPEN OVAL", "Mn", 0), ("SIGNWRITING MOUTH OPEN OVAL WRINKLED", "Mn", 0), ("SIGNWRITING MOUTH OPEN OVAL YAWN", "Mn", 0), ("SIGNWRITING MOUTH OPEN RECTANGLE", "Mn", 0), ("SIGNWRITING MOUTH OPEN RECTANGLE WRINKLED", "Mn", 0), ("SIGNWRITING MOUTH OPEN RECTANGLE YAWN", "Mn", 0), ("SIGNWRITING MOUTH KISS", "Mn", 0), ("SIGNWRITING MOUTH KISS FORWARD", "Mn", 0), ("SIGNWRITING MOUTH KISS WRINKLED", "Mn", 0), ("SIGNWRITING MOUTH TENSE", "Mn", 0), ("SIGNWRITING MOUTH TENSE FORWARD", "Mn", 0), ("SIGNWRITING MOUTH TENSE SUCKED", "Mn", 0), ("SIGNWRITING LIPS PRESSED TOGETHER", "Mn", 0), ("SIGNWRITING LIP LOWER OVER UPPER", "Mn", 0), ("SIGNWRITING LIP UPPER OVER LOWER", "Mn", 0), ("SIGNWRITING MOUTH CORNERS", "Mn", 0), ("SIGNWRITING MOUTH WRINKLES SINGLE", "Mn", 0), ("SIGNWRITING MOUTH WRINKLES DOUBLE", "Mn", 0), ("SIGNWRITING TONGUE STICKING OUT FAR", "Mn", 0), ("SIGNWRITING TONGUE LICKING LIPS", "Mn", 0), ("SIGNWRITING TONGUE TIP BETWEEN LIPS", "Mn", 0), ("SIGNWRITING TONGUE TIP TOUCHING INSIDE MOUTH", "Mn", 0), ("SIGNWRITING TONGUE INSIDE MOUTH RELAXED", "Mn", 0), ("SIGNWRITING TONGUE MOVES AGAINST CHEEK", "Mn", 0), ("SIGNWRITING TONGUE CENTRE STICKING OUT", "Mn", 0), ("SIGNWRITING TONGUE CENTRE INSIDE MOUTH", "Mn", 0), ("SIGNWRITING TEETH", "Mn", 0), ("SIGNWRITING TEETH MOVEMENT", "Mn", 0), ("SIGNWRITING TEETH ON TONGUE", "Mn", 0), ("SIGNWRITING TEETH ON TONGUE MOVEMENT", "Mn", 0), ("SIGNWRITING TEETH ON LIPS", "Mn", 0), ("SIGNWRITING TEETH ON LIPS MOVEMENT", "Mn", 0), ("SIGNWRITING TEETH BITE LIPS", "Mn", 0), ("SIGNWRITING MOVEMENT-WALLPLANE JAW", "Mn", 0), ("SIGNWRITING MOVEMENT-FLOORPLANE JAW", "Mn", 0), ("SIGNWRITING NECK", "Mn", 0), ("SIGNWRITING HAIR", "Mn", 0), ("SIGNWRITING EXCITEMENT", "Mn", 0), ("SIGNWRITING SHOULDER HIP SPINE", "So", 0), ("SIGNWRITING SHOULDER HIP POSITIONS", "So", 0), ("SIGNWRITING WALLPLANE SHOULDER HIP MOVE", "So", 0), ("SIGNWRITING FLOORPLANE SHOULDER HIP MOVE", "So", 0), ("SIGNWRITING SHOULDER TILTING FROM WAIST", "So", 0), ("SIGNWRITING TORSO-WALLPLANE STRAIGHT STRETCH", "So", 0), ("SIGNWRITING TORSO-WALLPLANE CURVED BEND", "So", 0), ("SIGNWRITING TORSO-FLOORPLANE TWISTING", "So", 0), ("SIGNWRITING UPPER BODY TILTING FROM HIP JOINTS", "Mn", 0), ("SIGNWRITING LIMB COMBINATION", "So", 0), ("SIGNWRITING LIMB LENGTH-1", "So", 0), ("SIGNWRITING LIMB LENGTH-2", "So", 0), ("SIGNWRITING LIMB LENGTH-3", "So", 0), ("SIGNWRITING LIMB LENGTH-4", "So", 0), ("SIGNWRITING LIMB LENGTH-5", "So", 0), ("SIGNWRITING LIMB LENGTH-6", "So", 0), ("SIGNWRITING LIMB LENGTH-7", "So", 0), ("SIGNWRITING FINGER", "So", 0), ("SIGNWRITING LOCATION-WALLPLANE SPACE", "So", 0), ("SIGNWRITING LOCATION-FLOORPLANE SPACE", "So", 0), ("SIGNWRITING LOCATION HEIGHT", "So", 0), ("SIGNWRITING LOCATION WIDTH", "So", 0), ("SIGNWRITING LOCATION DEPTH", "So", 0), ("SIGNWRITING LOCATION HEAD NECK", "Mn", 0), ("SIGNWRITING LOCATION TORSO", "So", 0), ("SIGNWRITING LOCATION LIMBS DIGITS", "So", 0), ("SIGNWRITING COMMA", "Po", 0), ("SIGNWRITING FULL STOP", "Po", 0), ("SIGNWRITING SEMICOLON", "Po", 0), ("SIGNWRITING COLON", "Po", 0), ("SIGNWRITING PARENTHESIS", "Po", 0), (), (), (), (), (), (), (), (), (), (), (), (), (), (), (), ("SIGNWRITING FILL MODIFIER-2", "Mn", 0), ("SIGNWRITING FILL MODIFIER-3", "Mn", 0), ("SIGNWRITING FILL MODIFIER-4", "Mn", 0), ("SIGNWRITING FILL MODIFIER-5", "Mn", 0), ("SIGNWRITING FILL MODIFIER-6", "Mn", 0), (), ("SIGNWRITING ROTATION MODIFIER-2", "Mn", 0), ("SIGNWRITING ROTATION MODIFIER-3", "Mn", 0), ("SIGNWRITING ROTATION MODIFIER-4", "Mn", 0), ("SIGNWRITING ROTATION MODIFIER-5", "Mn", 0), ("SIGNWRITING ROTATION MODIFIER-6", "Mn", 0), ("SIGNWRITING ROTATION MODIFIER-7", "Mn", 0), ("SIGNWRITING ROTATION MODIFIER-8", "Mn", 0), ("SIGNWRITING ROTATION MODIFIER-9", "Mn", 0), ("SIGNWRITING ROTATION MODIFIER-10", "Mn", 0), ("SIGNWRITING ROTATION MODIFIER-11", "Mn", 0), ("SIGNWRITING ROTATION MODIFIER-12", "Mn", 0), ("SIGNWRITING ROTATION MODIFIER-13", "Mn", 0), ("SIGNWRITING ROTATION MODIFIER-14", "Mn", 0), ("SIGNWRITING ROTATION MODIFIER-15", "Mn", 0), ("SIGNWRITING ROTATION MODIFIER-16", "Mn", 0), )
https://github.com/herbhuang/utdallas-thesis-template-typst
https://raw.githubusercontent.com/herbhuang/utdallas-thesis-template-typst/main/content/abstract_de.typ
typst
MIT License
Note: Insert the German translation of the English abstract here.
https://github.com/Zeta611/simplebnf.typ
https://raw.githubusercontent.com/Zeta611/simplebnf.typ/main/examples/system-f.typ
typst
MIT License
#import "../simplebnf.typ": * #set page( width: auto, height: auto, margin: .5cm, fill: white, ) #bnf( Prod( $e$, delim: $โ†’$, { Or[$x$][variable] Or[$ฮป x: ฯ„.e$][abstraction] Or[$e space e$][application] Or[$ฮป ฯ„.e space e$][type abstraction] // @typstyle off Or[$e space [ฯ„]$][type application] }, ), Prod( $ฯ„$, delim: $โ†’$, { Or[$X$][type variable] Or[$ฯ„ โ†’ ฯ„$][type of functions] Or[$โˆ€X.ฯ„$][universal quantification] }, ), )
https://github.com/GYPpro/DS-Course-Report
https://raw.githubusercontent.com/GYPpro/DS-Course-Report/main/Rep/01.typ
typst
#import "@preview/tablex:0.0.6": tablex, hlinex, vlinex, colspanx, rowspanx #import "@preview/codelst:2.0.1": sourcecode // Display inline code in a small box // that retains the correct baseline. #set text(font:("Times New Roman","Source Han Serif SC")) #show raw.where(block: false): box.with( fill: luma(230), inset: (x: 3pt, y: 0pt), outset: (y: 3pt), radius: 2pt, ) // #set raw(align: center) #show raw: set text( font: ("consolas", "Source Han Serif SC") ) #set page( // flipped: true, paper: "a4", // background: [#image("background.png")] ) #set text( font:("Times New Roman","Source Han Serif SC"), style:"normal", weight: "regular", size: 13pt, ) #let nxtIdx(name) = box[ #counter(name).step()#counter(name).display()] #set par( // first-line-indent: 1cm ) #set math.equation(numbering: "(1)") // Display block code in a larger block // with more padding. #show raw.where(block: true): block.with( fill: luma(240), inset: 10pt, radius: 4pt, ) #set math.equation(numbering: "(1)") #set page( paper:"a4", number-align: right, margin: (x:2.54cm,y:4cm), header: [ #set text( size: 25pt, font: "KaiTi", ) #align( bottom + center, [ #strong[ๆšจๅ—ๅคงๅญฆๆœฌ็ง‘ๅฎž้ชŒๆŠฅๅ‘Šไธ“็”จ็บธ(้™„้กต)] ] ) #line(start: (0pt,-5pt),end:(453pt,-5pt)) ] ) /*----*/ = ๅŸบไบŽๅŒๅ‘้“พ่กจ็š„`linkedList` \ #text( font:"KaiTi", size: 15pt )[ ่ฏพ็จ‹ๅ็งฐ#underline[#text(" ๆ•ฐๆฎ็ป“ๆž„ ")]ๆˆ็ปฉ่ฏ„ๅฎš#underline[#text(" ")]\ ๅฎž้ชŒ้กน็›ฎๅ็งฐ#underline[#text(" ") ๅŸบไบŽๅŒๅ‘้“พ่กจ็š„`linkedList` #text(" ")]ๆŒ‡ๅฏผ่€ๅธˆ#underline[#text(" ๅนฒๆ™“่ช ")]\ ๅฎž้ชŒ้กน็›ฎ็ผ–ๅท#underline[#text(" 01 ")]ๅฎž้ชŒ้กน็›ฎ็ฑปๅž‹#underline[#text(" ่ฎพ่ฎกๆ€ง ")]ๅฎž้ชŒๅœฐ็‚น#underline[#text(" ๆ•ฐๅญฆ็ณปๆœบๆˆฟ ")]\ ๅญฆ็”Ÿๅง“ๅ#underline[#text(" ้ƒญๅฝฆๅŸน ")]ๅญฆๅท#underline[#text(" 2022101149 ")]\ ๅญฆ้™ข#underline[#text(" ไฟกๆฏ็ง‘ๅญฆๆŠ€ๆœฏๅญฆ้™ข ")]็ณป#underline[#text(" ๆ•ฐๅญฆ็ณป ")]ไธ“ไธš#underline[#text(" ไฟกๆฏ็ฎก็†ไธŽไฟกๆฏ็ณป็ปŸ ")]\ ๅฎž้ชŒๆ—ถ้—ด#underline[#text(" 2024ๅนด6ๆœˆ13ๆ—ฅไธŠๅˆ ")]#text("~")#underline[#text(" 2024ๅนด7ๆœˆ13ๆ—ฅไธญๅˆ ")]\ ] #set heading( numbering: "1.1." ) = ๅฎž้ชŒ็›ฎ็š„ ๅฎž็Žฐไธ€ไธชๅŒๅ‘ๅˆ—่กจ็ฑป๏ผŒๅœจ็ฑปไธญๅฎž็Žฐๅขžใ€ๅˆ ใ€ๆ”นใ€ๆŸฅ็š„ๆ–นๆณ•ๅนถๅฎŒๆˆๆต‹่ฏ• = ๅฎž้ชŒ็Žฏๅขƒ \ #h(1.8em)่ฎก็ฎ—ๆœบ๏ผšPC X64 ๆ“ไฝœ็ณป็ปŸ๏ผšWindows + Ubuntu20.0LTS ็ผ–็จ‹่ฏญ่จ€๏ผšC++๏ผšGCC std20 IDE๏ผšVisual Studio Code #pagebreak() = ็จ‹ๅบไปฃ็  == `linkedList.h` #sourcecode[```cpp // #define _PRIVATE_DEBUG #ifndef LINKED_LIST_HPP #define LINKED_LIST_HPP #ifdef _PRIVATE_DEBUG #include <iostream> #endif namespace myDS { template<typename VALUE_TYPE> class linkedList{ protected: class linkedNode { public: VALUE_TYPE data = VALUE_TYPE(); linkedNode * next = nullptr; linkedNode * priv = nullptr; linkedNode() { } linkedNode(VALUE_TYPE _data){ next = nullptr; priv = nullptr; data = _data; } linkedNode(VALUE_TYPE _data,linkedNode * priv) { next = nullptr; priv = priv; data = _data; } ~linkedNode() { #ifdef _PRIVATE_DEBUG // if(this->next != nullptr) // std::cout << "Unexpected Delete at :" << this->data // << " with next:" << this->next->data << "\n"; #endif } linkedNode * linkNext(linkedNode * _next) { next = _next; _next->priv = this; return this->next; } linkedNode * linkPriv(linkedNode * _priv) { priv = _priv; _priv->next = this; return this->priv; } void insertNext(linkedNode * _inst){ if(_inst == nullptr) return; if(this->next == nullptr) linkNext(_inst); else { _inst->next = this->next; this->next->priv = _inst; _inst->priv = this; this->next = _inst; } } void deleteNext() { if(this->next == nullptr) return; else { linkedNode * tmp = this->next; this->next = this->next->next; this->next->priv = this; tmp->next = nullptr; delete tmp; } } }; private: class _iterator { private: linkedNode *_ptr; public: enum __iter_dest_type { front, back }; __iter_dest_type _iter_dest; _iterator(linkedNode * _upper ,__iter_dest_type _d) { _ptr = _upper; _iter_dest = _d; } VALUE_TYPE & operator*() { return _ptr->data; } VALUE_TYPE *operator->() { return _ptr; } myDS::linkedList<VALUE_TYPE>::_iterator operator++() { if (_iter_dest == front) _ptr = _ptr->next; else _ptr = _ptr->priv; return *this; } myDS::linkedList<VALUE_TYPE>::_iterator operator++(int) { myDS::linkedList<VALUE_TYPE>::_iterator old = *this; if (_iter_dest == front) _ptr = _ptr->next; else _ptr = _ptr->priv; return old; } // myDS::linkedList<VALUE_TYPE>::_iterator operator+(size_t _n) // { // if (_iter_dest == front) // _upper_idx += _n; // else // _upper_idx -= _n; // _ptr = &((*_upper_pointer)[_upper_idx]); // return *this; // } bool operator==( myDS::linkedList<VALUE_TYPE>::_iterator _b) { if (&(*_b) == _ptr) return 1; else return 0; } bool operator!=( myDS::linkedList<VALUE_TYPE>::_iterator _b) { if (&(*_b) == &(_ptr->data)) return 0; else return 1; } }; linkedNode * head = new linkedNode(); linkedNode * tail = new linkedNode(); int cap = 0; public: linkedList(){ head->linkNext(tail); } ~linkedList(){ clear(); delete head; delete tail; } void push_back(VALUE_TYPE t) { tail->data = t; tail->linkNext(new linkedNode()); tail = tail->next; cap ++; } void push_frount(VALUE_TYPE t) { head->data = t; head = (head->linkPriv(new linkedNode())); cap ++; } void clear() { linkedNode * deletingObject; while(tail->priv != head) { deletingObject = tail; tail = tail->priv; delete deletingObject; } cap = 0; delete head; delete tail; tail = new linkedNode(); head = new linkedNode(); head->linkNext(tail); } std::size_t erase(VALUE_TYPE p) { linkedNode * ptr = head; int ttl = 0; while(ptr->next != tail) { if(ptr->next->data == p){ ptr->deleteNext(); ttl ++; } else ptr = ptr->next; } cap -= ttl; return ttl; } std::size_t size() {return cap;} bool erase(linkedList<VALUE_TYPE>::_iterator p) { myDS::linkedList<VALUE_TYPE>::_iterator ptr = this->begin(); linkedNode * cur = head; while(ptr != p) { cur = cur->next; ptr ++; if(cur == tail) return 0; } cur->deleteNext(); cap --; return 1; } myDS::linkedList<VALUE_TYPE>::_iterator begin() { enum myDS::linkedList<VALUE_TYPE>::_iterator::__iter_dest_type _FRONT = myDS::linkedList<VALUE_TYPE>::_iterator::__iter_dest_type::front; return myDS::linkedList<VALUE_TYPE>::_iterator(head->next,_FRONT); } myDS::linkedList<VALUE_TYPE>::_iterator rbegin() { enum myDS::linkedList<VALUE_TYPE>::_iterator::__iter_dest_type _BACK = myDS::linkedList<VALUE_TYPE>::_iterator::__iter_dest_type::back; return myDS::linkedList<VALUE_TYPE>::_iterator(tail->priv,_BACK); } myDS::linkedList<VALUE_TYPE>::_iterator end() { enum myDS::linkedList<VALUE_TYPE>::_iterator::__iter_dest_type _FRONT = myDS::linkedList<VALUE_TYPE>::_iterator::__iter_dest_type::front; return myDS::linkedList<VALUE_TYPE>::_iterator(tail,_FRONT); } myDS::linkedList<VALUE_TYPE>::_iterator rend() { enum myDS::linkedList<VALUE_TYPE>::_iterator::__iter_dest_type _BACK = myDS::linkedList<VALUE_TYPE>::_iterator::__iter_dest_type::back; return myDS::linkedList<VALUE_TYPE>::_iterator(head,_BACK); } myDS::linkedList<VALUE_TYPE>::_iterator get(std::size_t p) { linkedNode * ptr = head->next; while(p --) ptr = ptr->next; enum myDS::linkedList<VALUE_TYPE>::_iterator::__iter_dest_type _FRONT = myDS::linkedList<VALUE_TYPE>::_iterator::__iter_dest_type::front; return myDS::linkedList<VALUE_TYPE>::_iterator(ptr,_FRONT); } VALUE_TYPE & operator[](std::size_t p) { linkedNode * ptr = head; while(p --) ptr = ptr->next; return ptr->next->data; } #ifdef _PRIVATE_DEBUG void innerPrint() { std::cout << "--Header[" << head << "]: " << head->data << "\n"; std::cout << "--Tail[" << tail << "]: " << tail->data << "\n"; std::cout << "-----------\n"; std::cout << "cur:" << cap<< "\n"; auto ptr = head; do { std::cout << "[" << ptr << "] ->next:" << ptr->next << " ->priv:" << ptr->priv << " ||data:" << ptr->data << "\n"; ptr = ptr->next; }while(ptr != nullptr); } #endif }; } #endif ```] == `_PRIV_TEST.cpp` #sourcecode[```cpp #define DS_TOBE_TEST linkedList #define _PRIVATE_DEBUG #include "Dev\01\linkedList.h" #include <iostream> #include <math.h> #include <vector> using namespace std; using TBT = myDS::DS_TOBE_TEST<int>; void accuracyTest() {//็ป“ๆž„ๆญฃ็กฎๆ€งๆต‹่ฏ• TBT tc = TBT(); for(;;) { string op; cin >> op; if(op == "clr") { //ๆธ…็ฉบ tc.clear(); } else if(op == "q") //้€€ๅ‡บๆต‹่ฏ• { return; } else if(op == "pb")//push_back { int c; cin >> c; tc.push_back(c); } else if(op == "pf")//push_frount { int c; cin >> c; tc.push_frount(c); } else if(op == "at")//้šๆœบ่ฎฟ้—ฎ { int p; cin >> p; cout << tc[p] << "\n"; } else if(op == "delEL")//ๅˆ ้™คๆ‰€ๆœ‰็ญ‰ไบŽๆŸๅ€ผๅ…ƒ็ด  { int p; cin >> p; cout << tc.erase(p) << "\n"; } else if(op == "delPS")//ๅˆ ้™คๆŸไฝ็ฝฎไธŠ็š„ๅ…ƒ็ด  { int p; cin >> p; cout << tc.erase(tc.get(p)) << "\n"; } else if(op == "iterF") //ๆญฃๅบ้ๅކ { tc.innerPrint(); cout << "Iter with index:\n"; for(int i = 0;i < tc.size();i ++) cout << tc[i] << " ";cout << "\n"; cout << "Iter with begin end\n"; for(auto x = tc.begin();x != tc.end();x ++) cout << (*x) << " ";cout << "\n"; cout << "Iter with AUTO&&\n"; for(auto x:tc) cout << x << " ";cout << "\n"; } else if(op == "iterB") //ๆญฃๅบ้ๅކ { tc.innerPrint(); cout << "Iter with index:\n"; for(int i = 0;i < tc.size();i ++) cout << tc[tc.size()-1-i] << " ";cout << "\n"; cout << "Iter with begin end\n"; for(auto x = tc.rbegin();x != tc.rend();x ++) cout << (*x) << " ";cout << "\n"; // cout << "Iter with AUTO&&\n";."\n"; } else if(op == "mv")//ๅ•็‚นไฟฎๆ”น { int p; cin >> p; int tr; cin >> tr; tc[p] = tr; } else if(op == "") { } else { op.clear(); } } } void memLeakTest() {//ๅ†…ๅญ˜ๆณ„ๆผๆต‹่ฏ• TBT tc = TBT(); for(;;){ tc.push_back(1); tc.push_back(1); tc.push_back(1); tc.push_back(1); tc.clear(); } } signed main() { // accuracyTest(); memLeakTest(); } ```] = ๆต‹่ฏ•ๆ•ฐๆฎไธŽ่ฟ่กŒ็ป“ๆžœ ่ฟ่กŒไธŠ่ฟฐ`_PRIV_TEST.cpp`ๆต‹่ฏ•ไปฃ็ ไธญ็š„ๆญฃ็กฎๆ€งๆต‹่ฏ•ๆจกๅ—๏ผŒๅพ—ๅˆฐไปฅไธ‹ๅ†…ๅฎน๏ผš ``` pb 1 pb 2 pb 3 pb 4 pf 3 pb 3 iterF iterB delEL 3 iterF delPS 1 clr pb 1 pb 2 iterF delPS 0 delEL 2 iterF pb 1 pb 2 pb 3 pb 4 pf 3 pb 3 iterF --Header[0x662720]: 0 --Tail[0x662770]: 0 ----------- cur:6 [0x662720] ->next:0x662540 ->priv:0 ||data:0 [0x662540] ->next:0x662590 ->priv:0x662720 ||data:3 [0x662590] ->next:0x6625e0 ->priv:0x662540 ||data:1 [0x6625e0] ->next:0x662630 ->priv:0x662590 ||data:2 [0x662630] ->next:0x662680 ->priv:0x6625e0 ||data:3 [0x662680] ->next:0x6626d0 ->priv:0x662630 ||data:4 [0x6626d0] ->next:0x662770 ->priv:0x662680 ||data:3 [0x662770] ->next:0 ->priv:0x6626d0 ||data:0 Iter with index: 3 1 2 3 4 3 Iter with begin end 3 1 2 3 4 3 Iter with AUTO&& 3 1 2 3 4 3 iterB --Header[0x662720]: 0 --Tail[0x662770]: 0 ----------- cur:6 [0x662720] ->next:0x662540 ->priv:0 ||data:0 [0x662540] ->next:0x662590 ->priv:0x662720 ||data:3 [0x662590] ->next:0x6625e0 ->priv:0x662540 ||data:1 [0x6625e0] ->next:0x662630 ->priv:0x662590 ||data:2 [0x662630] ->next:0x662680 ->priv:0x6625e0 ||data:3 [0x662680] ->next:0x6626d0 ->priv:0x662630 ||data:4 [0x6626d0] ->next:0x662770 ->priv:0x662680 ||data:3 [0x662770] ->next:0 ->priv:0x6626d0 ||data:0 Iter with index: 3 4 3 2 1 3 Iter with begin end 3 4 3 2 1 3 delEL 3 3 iterF --Header[0x662720]: 0 --Tail[0x662770]: 0 ----------- cur:3 [0x662720] ->next:0x662590 ->priv:0 ||data:0 [0x662590] ->next:0x6625e0 ->priv:0x662720 ||data:1 [0x6625e0] ->next:0x662680 ->priv:0x662590 ||data:2 [0x662680] ->next:0x662770 ->priv:0x6625e0 ||data:4 [0x662770] ->next:0 ->priv:0x662680 ||data:0 Iter with index: 1 2 4 Iter with begin end 1 2 4 Iter with AUTO&& 1 2 4 delPS 1 1 clr Unexpected Delete at :4 with next:16187728 pb 1 pb 2 iterF --Header[0x6625e0]: 0 --Tail[0x662680]: 0 ----------- cur:2 [0x6625e0] ->next:0x662540 ->priv:0 ||data:0 [0x662540] ->next:0x662630 ->priv:0x6625e0 ||data:1 [0x662630] ->next:0x662680 ->priv:0x662540 ||data:2 [0x662680] ->next:0 ->priv:0x662630 ||data:0 Iter with index: 1 2 Iter with begin end 1 2 Iter with AUTO&& 1 2 delPS 0 1 delEL 2 1 iterF --Header[0x6625e0]: 0 --Tail[0x662680]: 0 ----------- cur:0 [0x6625e0] ->next:0x662680 ->priv:0 ||data:0 [0x662680] ->next:0 ->priv:0x6625e0 ||data:0 Iter with index: Iter with begin end Iter with AUTO&& ``` ๅฏไปฅ็œ‹ๅ‡บ๏ผŒไปฃ็ ่ฟ่กŒ็ป“ๆžœไธŽ้ข„ๆœŸ็›ธ็ฌฆ๏ผŒๅฏไปฅ่ฎคไธบไปฃ็ ๆญฃ็กฎๆ€งๆ— ่ฏฏใ€‚ ่ฟ่กŒ`_PRIV_TEST.cpp`ไธญ็š„ๅ†…ๅญ˜ๆต‹่ฏ•ๆจกๅ—๏ผŒๅœจไฟๆŒCPU้ซ˜ๅ ็”จ็އ่ฟ่กŒไธ€ๆฎตๆ—ถ้—ดๅŽๅ†…ๅญ˜ๅ˜ๅŒ–็ฌฆๅˆ้ข„ๆœŸ๏ผŒๅฏไปฅ่ฎคไธบไปฃ็ ๅ†…ๅญ˜ๅฎ‰ๅ…จๆ€ง่‰ฏๅฅฝใ€‚ #image("1.png")
https://github.com/lucifer1004/leetcode.typ
https://raw.githubusercontent.com/lucifer1004/leetcode.typ/main/problems/p0015.typ
typst
#import "../helpers.typ": * #import "../solutions/s0015.typ": * = 3Sum Given an integer array nums, return all the triplets `[nums[i], nums[j], nums[k]]` such that `i != j`, `i != k`, and `j != k`, and `nums[i] + nums[j] + nums[k] == 0`. Notice that the solution set must not contain duplicate triplets. #let _3sum(nums) = { // Solve the problem here } #testcases( _3sum, _3sum-ref, ( (nums: (-1, 0, 1, 2, -1, -4)), (nums: (0, 1, 1)), (nums: (0, 0, 0)), (nums: range(-10, 20, step: 3)), (nums: range(-10, 10)) ) )
https://github.com/polarkac/MTG-Stories
https://raw.githubusercontent.com/polarkac/MTG-Stories/master/stories/003_Gatecrash.typ
typst
#import "@local/mtgset:0.1.0": conf #show: doc => conf("Gatecrash", doc) #include "./003 - Gatecrash/001_Gruul Ingenuity.typ" #include "./003 - Gatecrash/002_The Fathom Edict.typ" #include "./003 - Gatecrash/003_The Absolution of the Guildpact.typ" #include "./003 - Gatecrash/004_Persistence of Memory.typ" #include "./003 - Gatecrash/005_The Burying, Part 1.typ" #include "./003 - Gatecrash/006_The Greater Good.typ" #include "./003 - Gatecrash/007_The Guild of Deals.typ" #include "./003 - Gatecrash/008_Experiment One.typ" #include "./003 - Gatecrash/009_Fblthp.typ" #include "./003 - Gatecrash/010_The Burying, Part 2.typ" #include "./003 - Gatecrash/011_Bilagru Will Come for You.typ" #include "./003 - Gatecrash/012_The Hard Sell.typ" #include "./003 - Gatecrash/013_Behind the Black Sun.typ"
https://github.com/Starkillere/TIPE-detection-informations-cachees
https://raw.githubusercontent.com/Starkillere/TIPE-detection-informations-cachees/main/journnaldebord.typ
typst
#align(center)[ = Carnet de recherche _par <NAME> \ Initialisation : 12/03/2024 \ Mร€J : 12/03/2024 _ ] #set heading(numbering: "1.1.1 :") = 12/03/2024 : Dรฉfinition du sujet. == Dรฉfinition du problรจme La stรฉganographie dรฉsigne l'art de dissimler de l'information de maniรจre subtile. Tout la sรฉcuritรฉ de cette mรฉthode de dissimulation rรฉside dans la non connaissance des observateur non averties, de la prรฉsence d'une information cachรฉe. La variante informatique de ce procรฉder consite dans la dissimulation des donnรฉe dans le coprs d'autres donnรฉe. Si la stรฉganographie permet de transfรฉrer des donnรฉe ร  l'abrie du regards des observateurs non averties, nous pouvons toujours nous demander si il n'est pas possible d'affaiblir la sรฉcuritรฉ de cette mรฉthode de dissimulation. *Autrement dit est-il possible de distinguer le bruit d'une information cachรฉe ?* == Idรฉe d'orientation Il existe un champs de recherche ร  part entiere qui s'interresse ร  la distinction entre donnรฉe pur et donnรฉe issue d'une procรฉssuce stรฉganographique qui se nomme #link("https://fr.wikipedia.org/wiki/St%C3%A9ganalyse")[Stรฉganalyse] === Mรฉthodes de distinction - *Analyse statistique :* \ Les donnรฉes qui contiennent simplement du bruit peuvent avoir des caractรฉristiques statistiques diffรฉrentes de celles qui cachent des informations. Vous pourriez รฉtudier des mesures telles que l'entropie, la distribution des valeurs de pixels, les corrรฉlations spatiales, etc. - *Analyse de la frรฉquence :* \ Les images qui cachent d'autres images peuvent avoir des motifs de frรฉquence diffรฉrents de ceux des images contenant seulement du bruit. Les techniques de transformรฉe de Fourier ou d'ondelettes peuvent รชtre utiles pour analyser ces diffรฉrences. - *Analyse visuelle :* \ Mรชme si les donnรฉes semblent similaires visuellement, il peut y avoir des artefacts ou des modรจles non perceptibles ร  l'ล“il nu. Vous pourriez explorer des techniques de traitement d'image avancรฉes pour mettre en รฉvidence ces diffรฉrences. - *Apprentissage automatique :* \ Vous pourriez รฉgalement explorer des approches basรฉes sur l'apprentissage automatique, oรน vous entraรฎnez un modรจle ร  diffรฉrencier les deux types de donnรฉes ร  partir d'un ensemble d'exemples รฉtiquetรฉs. = L'analyse statistique = 02/04/2024 : Phรฉnomรจne alรฉatoire == Entropie de Shannon == Thรฉorie de l'information = 02/04/2024 : Meqsure #line(length: 500pt) = 12/09/2024 - Implรฉmentation Ocaml - Implรฉmentation ocaml des algorithme pour la stรฉganographie image et = 19/09/2024 - git init et recher documentaire. == Dรฉfinition de la problรจmatique *Problรฉmatique* : Est-il possible de crรฉer un algorithme de stรฉganalyse gรฉneraliste, i.e un algorithme qui n'a pas connaissance du mode de dissimulation utilisรฉ ? *Les differents modes de dissimulation :* - Systรจme de substitution : remplacer une partie de la cover (1) par des donnรฉe de l'information ร  dissimulรฉe. - Transformation des paramรจtre de la cover : modification des paramรจtre physique de la cover en fonction de l'information ร  dissimulรฉ (ex: frรฉquence) - Mรชme choses avec le spectre. - Mรฉthode statistique : modifier la distribution statistique de la cover en fonction de la stรฉgo. - Techniques de distortion : stocker des informations par distorsion du signal et mesurer l'รฉcart par rapport ร  la couverture originale lors de l'รฉtape de dรฉcodage - Mรฉthodes de gรฉnรฉration de couverture : encoder les informations de maniรจre ร  cacher un secret la communication se crรฉe. *Objectif :* Trouver un invariant de dissimulation ! = 26/09/2024 : Prolongement par continuitรฉ de la semaine derniรจre (lecture 10) - *problรจmatique : * Est-il possible d'identifier un paternel, une caractรฉristique propre aux donnรฉes issues du processus de stรฉganographie ? == Protocole : - ร‰tudier les differentes mรฉthodes de stรฉganograpbhie (substitution, Transformation, spectre, statistique, distortion, gรฉneration de cover) - ร‰tudier la rรฉponse stรฉganalyse ร  ses algorithmes - Identification d'invariant de dissimulation == 03/10/2024 : Dรฉfinition formelle de l'information : [ \ l1 |(1,0,1) (1,0,1)| \ l2 |(0,0,0) (0,0,0)| \ ] \ Une information est une matrice de tuple de taille n de nombre binaire sur. - *Cas de base :* - *Information vide (null) : * #pad(x:20pt)[ On note $epsilon$ l'information vide de taille $|epsilon| = 0$ \ $epsilon = mat()$] - *Information de base :* #pad(x:20pt)[ $forall space (b_n) in BB^NN$ fini $L = mat((b_0b_1...b_n))$ de taille $|L| = n+1$ ] - *Notation* #pad(x:20pt)[ - On note $cal(M)_(n,p,l) (BB^NN)$ l'ensemble des information de matrice dans $cal(M)_(n,p) (BB^NN)$ dont les tuple sont de $l$ รฉlรฉment. ] - *Operation sur les informations :* - *Taille d'une information :* $"Soit" L in cal(M)_(n,p)(BB^NN) "une information"$, la taille de $L$ est notรฉ $|L| = nร—p$ - *Caractรฉristiques d'une information :* $"Soit" L in cal(M)_(n,p)(BB^NN) "une information" $ - *Union/Intersection :* $"Soit" L_1 "et" L_2 "deux information de taille" n$ - $L_1 union L_2 =$ = 10/10/2024 : Dรฉfinition du repertoir documentation/prototypage == Dรฉfinition formelle de l'information = Vocabulaire (MAJ 12/03/2024) + donnรฉe pur : donnรฉe de cachant pas d'autres donnรฉes issue d'un processuce stรฉganographique. + cover : suport pour la dissimulation d'information cachรฉe. + stego : information ร  cachรฉe. + = Lecture en attente : + #link("https://utt.hal.science/hal-02470070/document")\ + #link("https://fr.wikipedia.org/wiki/Entropie_de_Shannon")\ + #link("https://fr.wikipedia.org/wiki/Th%C3%A9orie_de_l%27information")\ + #link("https://hal.science/hal-00394108/document")\ + #link("https://greenteapress.com/thinkdsp/thinkdsp.pdf")\ + #link(" http://tinyurl.com/thinkdsp08")\ // REP- pour les algo de traitement de signale + #link("https://fr.wikipedia.org/wiki/Algorithme_de_Knuth-Morris-Pratt")\ + #link("https://theses.hal.science/tel-00706171v2/file/RCogranne_soutenance.pdf") + #link("https://repository.root-me.org/St%C3%A9ganographie/FR%20-%20Analyse%20st%C3%A9ganographique%20d%27images%20num%C3%A9riques.pdf") + #link("https://d1wqtxts1xzle7.cloudfront.net/11025045/22359536_lese_1-libre.pdf?1363619886=&response-content-disposition=inline%3B+filename%3DA_survey_of_steganographic_techniques.pdf&Expires=1726758425&Signature=UWNEvv4JIxHsL-iZcX-PzwvRlbmce0~unnnAUFS2lB~tsuJUbrH1Mzt4ZnO~D1Dhn9DKUo0jtG-BZnkuZYYz5iSvTUuJHJJqcZ65yceho5qgmi7Jpv9OnJsNLxnqAjhHp~frVhRI3yYvhmZRsOL0gdCCCy6O5Bb9XcylGMKZA5k8SZq0Jqme~XdEXRGESCvJy69F2bQ5K~X5IF9j5VaYj7WMOj~n-QC8DG2cJBk-1GRz5NbPu5Udq4R1U-pr2GvYZKJJmqnb7MQoutftG~9-jS~WMxnag3IlAe8g~vlz87mWWLxGle-6fbBg1I-EOa63b3fzUVsFY2bLQo0WgwqNMQ__&Key-Pair-Id=<KEY>")
https://github.com/Myriad-Dreamin/typst.ts
https://raw.githubusercontent.com/Myriad-Dreamin/typst.ts/main/fuzzers/corpora/bugs/hide-meta_01.typ
typst
Apache License 2.0
#import "/contrib/templates/std-tests/preset.typ": * #show: test-page #set text(8pt) #outline() #set text(2pt) #hide(block(grid( [= A], [= B], block(grid( [= C], [= D], )) )))
https://github.com/0x1B05/english
https://raw.githubusercontent.com/0x1B05/english/main/grammar/content/ๅ่ฏ.typ
typst
#import "../template.typ": * = ๅ่ฏ ๅ่ฏ็Ÿญ่ฏญ๏ผš ้™ๅฎš่ฏ+ๅฝขๅฎน่ฏ+ๅ่ฏ๏ผŒๆฏไธ€ไธช้ƒจๅˆ†้ƒฝๆœ‰ๅฏ่ƒฝ็ผบๅคฑใ€‚ ้™ๅฎš่ฏ็š„้ƒจๅˆ†๏ผŒๅฆ‚ๆžœๅŽ้ข็š„ๅ่ฏๆ˜ฏๅคๆ•ฐๆˆ–่€…ไธๅฏๆ•ฐ๏ผŒๅฐฑๅฏไปฅ้‡‡็”จ*้›ถๅ† ่ฏ* #tip("Tip")[ ๅฅๅญไธญ็š„ๅ่ฏ๏ผŒๅ“ชๆ€•ๅชๆœ‰ไธ€ไธชๅญ—๏ผŒไนŸ่ฆๅฝ“ไฝœ็”ฑไธ‰ไธช้ƒจๅˆ†็ป„ๆˆ็š„ๅ่ฏ็Ÿญ่ฏญๆฅ็œ‹ใ€‚ ] == ๅ่ฏ === ๅฏๆ•ฐๅ่ฏ ๅบฆ้‡่กกๅ•ไฝ๏ผš - a pound - 20 feet - an hour - ... === ไธๅฏๆ•ฐๅ่ฏ ==== ็‰ฉ่ดจๅ่ฏ ๆฒกๆœ‰ๅ›บๅฎšๅฝข็Šถใ€‚๏ผˆๅ‰้ขๅฏไปฅ้‡‡็”จ้›ถๅ† ่ฏ๏ผ‰ - water(ๆฐด) - air(็ฉบๆฐ”) - gold(้‡‘) - paper(็บธ) #tip("Tip")[ ๅฆ‚ๆžœ็œ‹ๅˆฐ็‰ฉ่ดจๅ่ฏๅ‰้ขๅŠ ไบ†aๆˆ–่€…ๆœซๅฐพๅŠ ไบ†s๏ผŒ้‚ฃๅทฒ็ปไธๆ˜ฏ็‰ฉ่ดจๅ่ฏไบ†๏ผŒๅทฒ็ปๅฝ“ไฝœๅฏๆ•ฐ็š„ๆ™ฎ้€šๅ่ฏๆฅ็”จไบ†ใ€‚ ] #example("Example")[ - I have a _paper_ to write tonight.(ไธ€ไปฝๆŠฅๅ‘Š) - Drinking _a couple of beers_ a day won't do you any harm.(ๅ‡ ็“ถๅ•ค้…’) ] ==== ๆŠฝ่ฑกๅ่ฏ - cowardice - ugliness - wisdom - eternity #tip("Tip")[ ๅฆ‚ๆžœ็œ‹ๅˆฐๆŠฝ่ฑกๅ่ฏๅ‰้ขๅŠ ไบ†aๆˆ–่€…ๆœซๅฐพๅŠ ไบ†s๏ผŒๅทฒ็ปๅฝ“ไฝœๅฏๆ•ฐ็š„ๆ™ฎ้€šๅ่ฏๆฅ็”จไบ†๏ผŒๆ„ไน‰ๅพ€ๅพ€ไธๅŒใ€‚ ] #example("Example")[ - Your sister is _a real beauty._ ] ==== ๅŠจๅ่ฏ ๅฐ‘ๆ•ฐ็š„ๅŠจๅ่ฏๅฏไปฅๅฝ“ๅฏๆ•ฐๅ่ฏไฝฟ็”จ๏ผš - There were _three weddings_ at this restaurant yesterday. ==== ไธ“ๆœ‰ๅ่ฏ ไธ€ไธชๅ่ฏๅชไปฃ่กจๅ•ไธ€็š„ไธ€ไธชๅฏน่ฑก๏ผŒๅฑžไบŽไธๅฏๆ•ฐ๏ผˆๅ› ไธบๅชๆœ‰ไธ€ไธชๅฏน่ฑก๏ผ‰ - London - <NAME> == ๅคๅˆๅ่ฏ ไธ‰็งๅ†™ๆณ•๏ผš - ไธคไธชๅ่ฏๅ†™ๅœจไธ€ๆฌกๆˆไธบไธ€ไธชๅ•ๅญ—ใ€‚๏ผˆthe dishwasher) - ไธคไธชๅ่ฏไน‹้—ดๆœ‰ไธช่ฟžๅญ—็ฌฆใ€‚๏ผˆthe pole-vaulter) - ไธคไธชๅ่ฏๅˆ†ๅผ€ใ€‚๏ผˆthe flower shop๏ผ‰ ๅณไฝฟไฝฟๆฐธ่ฟœๅคๆ•ฐ็š„ๅ่ฏ๏ผˆpants,trousers,glasses,scissors...)ๆ”พๅœจๅคๅˆๅ่ฏๅฝ“ๅฝขๅฎน่ฏไฝฟ็”จ็š„ๆ—ถๅ€™ไนŸ่ฆๆ”นไธบๅ•ๆ•ฐ๏ผŒไพ‹ๅฆ‚_his trouser pocket_ ไฝ†ๆ˜ฏ_a clothes hanger(่กฃๆžถ)_๏ผŒๅฆ‚ๆžœๆ”นๆˆๅ•ๆ•ฐ๏ผŒๅฐฑๆˆไบ†ๅธƒๆžถ๏ผŒๆ‰€ไปฅ่ฟ™ๆ—ถๅ€™ๅฐฑ้œ€่ฆๅคๆ•ฐไบ†ใ€‚ ่ฟ˜ๆœ‰ไธ€ไบ›ไน ๆƒฏ้‡‡็”จๅคๆ•ฐ็š„ๅฝขๅฎน่ฏใ€‚ - a sports car - the admissions office == ๅ‰ฏ่ฏ ๅŠ ๅœจๅฝขๅฎน่ฏๅ‰้ขๅŠ ๅผบ่ฏญๆฐ”๏ผš_that rather old jacket_ == ๅ่ฏ็Ÿญ่ฏญ็š„็œ็•ฅ *็œ็•ฅไน‹ๅŽ่ฆ่ฎฉ่ฏป่€…้žๅธธๆธ…ๆฅšๆƒณ่ฆ่กจ่พพ็š„ๆ„ๆ€ใ€‚*
https://github.com/kaarmu/splash
https://raw.githubusercontent.com/kaarmu/splash/main/doc/util.typ
typst
MIT License
#let code(body) = { set text(weight: "regular") show: box.with( fill: luma(240), inset: 0.4em, radius: 3pt, baseline: 0.4em, ) raw(body) } #let get-color-value(color) = { let s = repr(color) let m = s.match(regex("(.*)\\((.*)\\)")) let p = (name: m.captures.at(0), value: m.captures.at(1).replace("\"", "", count: 2)) text(fill: luma(200))[ #raw(p.name) #h(1fr) #raw(p.value) ] } #let make-title(title: none, author: none, date: none, description: none) = [ #set align(center) = #title #v(1em) #text(style: "italic", description) #v(1em) / Author: #author / Date: #date #v(3em) ] #let section( title: none, description: none, cols: 2, col-gutter: 2em, row-gutter: 2pt, do-page-break: true, name: none, colors, ) = { heading(level: 3, title + if name != none [ --- #code(name); ]) v(.5em) if description != none { description } let arr = () for (name, color) in colors.pairs() { let blk = rect( stroke: none, )[ #set align(horizon) #code(name) #h(1fr) #box( width: 3em, height: 1em, fill: color, stroke: luma(230), radius: 2pt, baseline: 0.25em, ) #linebreak() #get-color-value(color) ] arr.push(blk) } grid( row-gutter: row-gutter, column-gutter: col-gutter, columns: (1fr,) * cols, ..arr, ) if do-page-break { pagebreak(weak:true) } }
https://github.com/jomaway/typst-teacher-templates
https://raw.githubusercontent.com/jomaway/typst-teacher-templates/main/examples/exam/cover.typ
typst
MIT License
#import "@local/ttt-exam:0.1.0": cover-page #let details = toml("details.toml") #let meta = ( class: details.exam.class, subject: details.exam.subject, kind: "sa", dates: ( gehalten: details.exam.date, zurรผckgegeben: none, eingetragen: none, ), comment: none, total_points: 70, ) #set text(lang: "de", font: "Rubik", weight: 300) #set strong(delta: 200) #cover-page(..meta)
https://github.com/liuguangxi/erdos
https://raw.githubusercontent.com/liuguangxi/erdos/master/Problems/typstdoc/figures/p151.typ
typst
#import "@preview/cetz:0.2.1" #cetz.canvas({ import cetz.draw: * let fill-color = blue.lighten(80%) circle((0, 0), radius: 0.5, fill: fill-color, name: "c1") circle((-2, 1.5), radius: 0.5, fill: fill-color, name: "c2") circle((2, 1.5), radius: 0.5, fill: fill-color, name: "c3") circle((-3, 3), radius: 0.5, fill: fill-color, name: "c4") circle((-1, 3), radius: 0.5, fill: fill-color, name: "c5") circle((1, 3), radius: 0.5, fill: fill-color, name: "c6") circle((3, 3), radius: 0.5, fill: fill-color, name: "c7") circle((-2, 4.5), radius: 0.5, fill: fill-color, name: "c8") circle((2, 4.5), radius: 0.5, fill: fill-color, name: "c9") circle((0, 6), radius: 0.5, fill: fill-color, name: "c10") line("c2", "c1", mark: (end: "stealth", fill: black)) line("c3", "c1", mark: (end: "stealth", fill: black)) line("c4", "c2", mark: (end: "stealth", fill: black)) line("c5", "c2", mark: (end: "stealth", fill: black)) line("c6", "c3", mark: (end: "stealth", fill: black)) line("c7", "c3", mark: (end: "stealth", fill: black)) line("c8", "c4", mark: (end: "stealth", fill: black)) line("c8", "c5", mark: (end: "stealth", fill: black)) line("c9", "c6", mark: (end: "stealth", fill: black)) line("c9", "c7", mark: (end: "stealth", fill: black)) line("c10", "c8", mark: (end: "stealth", fill: black)) line("c10", "c9", mark: (end: "stealth", fill: black)) })
https://github.com/TechnoElf/mqt-qcec-diff-presentation
https://raw.githubusercontent.com/TechnoElf/mqt-qcec-diff-presentation/main/content/data.typ
typst
#let unclip(res) = { res.filter(r => not r.clipped).enumerate().map(((i, r)) => { r.i = i r }) } #let sort-by-circuit-size(res) = { res.sorted(key: r => r.total-circuit-size).enumerate().map(((i, r)) => { r.i = i r }) } #let filter(res) = { res.filter(r => r.equivalence-rate > 0.35).enumerate().map(((i, r)) => { r.i = i r }) } #let filter-rev(res) = { res.filter(r => r.equivalence-rate-rev > 0.35).enumerate().map(((i, r)) => { r.i = i r }) } #let results-r1-b5q16-cprop = csv("../resources/results-r1-b5q16-cprop-smc.csv", row-type: dictionary) #let results-r1-b5q16-cmyersrev-pmismc = csv("../resources/results-r1-b5q16-cmyersrev-pmismc-smc.csv", row-type: dictionary) #let results-r1-b5q16-cmyersrev-p = csv("../resources/results-r1-b5q16-cmyersrev-p-smc.csv", row-type: dictionary) #let results-r1-b5q16-cmyers-p = csv("../resources/results-r1-b5q16-cmyers-p-smc.csv", row-type: dictionary) #let results-r1-b5q16-cpatience-p = csv("../resources/results-r1-b5q16-cpatience-p-smc.csv", row-type: dictionary) #let results-r1-b5q16-cmyers-pmismc = csv("../resources/results-r1-b5q16-cmyers-pmismc-smc.csv", row-type: dictionary) #let results-r1-b5q16 = results-r1-b5q16-cprop.enumerate().map(((i, r)) => { let cmyersrev-pmismc = results-r1-b5q16-cmyersrev-pmismc.find(r2 => r2.name == r.name) let cmyersrev-p = results-r1-b5q16-cmyersrev-p.find(r2 => r2.name == r.name) let cmyers-p = results-r1-b5q16-cmyers-p.find(r2 => r2.name == r.name) let cmyers-pmismc = results-r1-b5q16-cmyers-pmismc.find(r2 => r2.name == r.name) let cpatience-p = results-r1-b5q16-cpatience-p.find(r2 => r2.name == r.name) let num-gates-1 = float(r.numGates1) let num-gates-2 = float(r.numGates2) let total-circuit-size = num-gates-1 + num-gates-2 let num-qubits-1 = int(r.numQubits1) let num-qubits-2 = int(r.numQubits2) ( name: r.name, i: i, clipped: not ((r.finished == "true") and (cmyersrev-pmismc.finished == "true") and (cmyersrev-p.finished == "true") and (cmyers-pmismc.finished == "true") and (cmyers-p.finished == "true")), total-circuit-size: total-circuit-size, circuit-size-difference: calc.abs(num-gates-1 - num-gates-2), total-qubit-count: num-qubits-1 + num-qubits-2, qubit-count-difference: calc.abs(num-qubits-1 - num-qubits-2), equivalence-rate: float(cmyers-pmismc.diffEquivalenceCount) / total-circuit-size, equivalence-rate-rev: float(cmyersrev-pmismc.diffEquivalenceCount) / total-circuit-size, cprop: ( mu: float(r.runTimeMean) ), cmyersrev-pmismc: ( mu: float(cmyersrev-pmismc.runTimeMean) ), cmyersrev-p: ( mu: float(cmyersrev-p.runTimeMean) ), cmyers-p: ( mu: float(cmyers-p.runTimeMean) ), cmyers-pmismc: ( mu: float(cmyers-pmismc.runTimeMean) ), cpatience-p: ( mu: float(cpatience-p.runTimeMean) ), ) }) #let results-r1-b5q16-hist = { let min = calc.log(0.001) let max = calc.log(20) let bins = 15 let bins-mu = range(bins + 1).map(x => calc.pow(10, min + x * (max - min) / bins)) let cprop-mu = bins-mu.slice(1).map(_ => 0) let cmyersrev-pmismc-mu = bins-mu.slice(1).map(_ => 0) let cmyersrev-p-mu = bins-mu.slice(1).map(_ => 0) let cmyers-p-mu = bins-mu.slice(1).map(_ => 0) let cmyers-pmismc-mu = bins-mu.slice(1).map(_ => 0) let cpatience-p-mu = bins-mu.slice(1).map(_ => 0) for r in unclip(results-r1-b5q16) { for b in range(bins) { if bins-mu.at(b) <= r.cprop.mu and r.cprop.mu < bins-mu.at(b + 1) { cprop-mu.at(b) += 1 } if bins-mu.at(b) <= r.cmyersrev-pmismc.mu and r.cmyersrev-pmismc.mu < bins-mu.at(b + 1) { cmyersrev-pmismc-mu.at(b) += 1 } if bins-mu.at(b) <= r.cmyersrev-p.mu and r.cmyersrev-p.mu < bins-mu.at(b + 1) { cmyersrev-p-mu.at(b) += 1 } if bins-mu.at(b) <= r.cmyers-p.mu and r.cmyers-p.mu < bins-mu.at(b + 1) { cmyers-p-mu.at(b) += 1 } if bins-mu.at(b) <= r.cmyers-pmismc.mu and r.cmyers-pmismc.mu < bins-mu.at(b + 1) { cmyers-pmismc-mu.at(b) += 1 } if bins-mu.at(b) <= r.cpatience-p.mu and r.cpatience-p.mu < bins-mu.at(b + 1) { cpatience-p-mu.at(b) += 1 } } } let scientific(val) = { let exp = calc.floor(calc.log(val)) [$#(calc.round(val / calc.pow(10, exp), digits: 2)) dot 10 ^ #exp$] } ( bins-mu: bins-mu.slice(0, -1).zip(bins-mu.slice(1)).map(((s, e)) => [$<$ #scientific(e)]), cprop: ( mu: cprop-mu ), cmyersrev-pmismc: ( mu: cmyersrev-pmismc-mu ), cmyersrev-p: ( mu: cmyersrev-p-mu ), cmyers-p: ( mu: cmyers-p-mu ), cmyers-pmismc: ( mu: cmyers-pmismc-mu ), cpatience-p: ( mu: cpatience-p-mu ) ) }
https://github.com/zurgl/typst-resume
https://raw.githubusercontent.com/zurgl/typst-resume/main/templates/main.typ
typst
#import "../metadata.typ": * #import "commun.typ": * #import "letter/main.typ": * #import "resume/section.typ": * #import "resume/entry.typ": * #import "resume/skills.typ": * #import "resume/header.typ": * #import "resume/footer.typ": * #import "@preview/fontawesome:0.1.0": *
https://github.com/Floffah/documents
https://raw.githubusercontent.com/Floffah/documents/main/lib/template.typ
typst
MIT License
// Feature inspiration taken from Ilm (MIT) - https://github.com/talal/ilm // The project function defines how your document looks. // It takes your content and some metadata and formats it. // Go ahead and customize it to your liking! #let project( title: "", authors: (), date: none, logo: none, formal: false, // Whether to display a maroon circle next to external links. external-link-circle: true, // Display an index of figures (images). figure-index: ( enabled: false, title: "", ), body, ) = { // Set the document's basic properties. set document(author: authors.map(a => a.name), title: title) set page(numbering: "1", number-align: center) let font = "Source Sans Pro" if formal { font = "Libertinus Serif" } set text(font: font, lang: "en", size: 12pt) // Set paragraph spacing. set par(spacing: 1.2em) set heading(numbering: "1.a.i") // See ILM (MIT) - https://github.com/talal/ilm/blob/main/lib.typ show link: it => { it // Workaround for ctheorems package so that its labels keep the default link styling. if external-link-circle { if type(it.dest) == str { sym.wj h(1.6pt) sym.wj super(box(height: 3.8pt, circle(radius: 1.2pt, stroke: 0.7pt + rgb("#993333")))) } else if type(it.dest) == label { sym.wj h(0.6pt) sym.wj super(box(height: 3.8pt, text("#", stroke: 0.2pt + rgb("#0284c7")))) } } } // Title page. // The page can contain a logo if you pass one with `logo: "logo.png"`. v(0.6fr) if logo != none { align(right, image(logo, width: 26%)) } v(9.6fr) text(1.1em, date) v(1.2em, weak: true) text(2em, weight: 700, title) // Author information. pad( top: 0.7em, right: 20%, grid( columns: (1fr,) * calc.min(3, authors.len()), gutter: 1em, ..authors.map(author => align(start)[ *#author.name* \ #author.affiliation ]), ), ) v(2.4fr) pagebreak() // Table of contents. outline(depth: 3, indent: true) pagebreak() // Main body. set par(justify: true) set text(hyphenate: false) set list(marker: ([โ€ข], [โ—ฆ], [โ€ฃ], [โƒ])) // Utils let ignore(content) = {} body pagebreak() bibliography(("../references.yml", "../zotero.bib"), style: "institute-of-electrical-and-electronics-engineers") // See ILM (MIT) - https://github.com/talal/ilm/blob/main/lib.typ let fig-t(kind) = figure.where(kind: kind) let has-fig(kind) = counter(fig-t(kind)).get().at(0) > 0 if figure-index.enabled { show outline: set heading(outlined: true) context { let imgs = figure-index.enabled and has-fig(image) if imgs { // Note that we pagebreak only once instead of each each // individual index. This is because for documents that only have a couple of // figures, starting each index on new page would result in superfluous // whitespace. pagebreak() } if imgs { outline(title: figure-index.at("title", default: "Index of Figures"), target: fig-t(image)) } } } }
https://github.com/Yzx7/public_study_files
https://raw.githubusercontent.com/Yzx7/public_study_files/main/Monografรญa FIEE/template.typ
typst
// The project function defines how your document looks. // It takes your content and some metadata and formats it. // Go ahead and customize it to your liking! #let project(title: "",t-tipo:"", t-para:"", authors: (),cursoName:"",docenteName:"", fecha:"",add:(("")),logo: none, body) = { // Set the document's basic properties. set document(author: authors, title: title) set page( margin: (left: 35mm, right: 35mm, top: 30mm, bottom: 30mm), numbering: "1", number-align: end, ) set text(font: "New Computer Modern", lang: "es") show math.equation: set text(weight: 400) set heading(numbering: "1.1.") // Title page. // The page can contain a logo if you pass one with `logo: "logo.png"`. align(center)[ #image("LogoUNMSM icon.png", height: 60pt) #v(10pt) #block(width: 100%)[ #text(size: 16pt, weight: "extrabold")[ Universidad Nacional Mayor de San Marcos ] #text(size: 11pt, weight: "extrabold")[ Universidad del Perรบ. Decana de Amรฉrica ] #text(size: 12pt, weight: "extrabold")[ Facultad de Ingenierรญa Electrรณnica y Elรฉctrica ] #text(size: 10pt, weight: "extrabold")[ // EAP: Ing. Telecomunicaciones ] ] ] v(1fr) align(center)[ #text(1.5em, weight: 700, title) #v(20pt) #text(1.5em, weight: 700, t-tipo) #v(20pt) #text(1.4em, t-para) #v(1fr) // Author information. // #pad( // top: 0.7em, //grid( // columns: (1fr,) * calc.min(3, authors.len()), //gutter: 1em, //..authors.map(author => align(start, strong(author))), // ), //) #text( weight: 700)[Autores:] #pad( bottom: 10pt, grid( columns: (1fr), gutter: 1em, ..authors.map(author => align(center, author)), ) ) ] align(center)[ #grid( gutter: 12pt, ..add.map((ait) => grid(columns: 2, gutter: 4pt, text(weight: 700)[#ait.at(0):], ait.at(1) ) ), ) ] if docenteName != "" { align(center)[ #text( weight: 700)[Docente:] #docenteName ] } if cursoName != "" { align(center)[ #text(weight: 700)[Curso:] #cursoName ] } if fecha != "" { align(center)[ #text( weight: 700)[Fecha:] #fecha ] } align(center)[ #v(1.4fr) #text(size: 1.2em, weight: 700)[Lima, Perรบ] // #text(size: 1.2em, weight: 700)[30 de junio] #text(size: 1.2em, weight: 700)[2024] ] pagebreak() // Table of contents. // outline(depth: 3, indent: true,target: heading.where(outlined: true) ) // pagebreak() // outline(depth: 3, indent: true,target: figure.where(kind: image), title: "รndice de Figuras" ) // pagebreak() // outline(depth: 3, indent: true,target: figure.where(kind: "table"), title: "รndice de tablas" ) // pagebreak() // Main body. set par(justify: true) set text(hyphenate: false) body }
https://github.com/JakMobius/courses
https://raw.githubusercontent.com/JakMobius/courses/main/mipt-os-basic-2024/sem01/utils.typ
typst
#import "@preview/cetz:0.2.2" #let draw-compiler-lifecycle(arr) = { let margin = -1.5 let arrow-top = 5.5 let arrow-bottom = 4.5 let arrow-shortage = 1.4 let anchor-prev = 0 let x = 0 let i = 0 cetz.draw.set-style(mark: (end: ">"), stroke: 3pt + black) for step in arr { let background-color = color.mix((step.color, 20%), (white, 80%)) let stroke-color = color.mix((step.color, 50%), (black, 50%)) let text-color = stroke-color let has-code = step.at("code", default: none) != none let lower-boundary = 0 if has-code { lower-boundary = 1.4 } let y = 0 if calc.rem(i, 2) == 0 { y = 6 } cetz.draw.content( (x, y + 4), (x + step.width, y), padding: 0, )[ #box( fill: background-color, radius: 20pt, width: 100%, height: 100%, stroke: 1pt + stroke-color, ) ] cetz.draw.content( (x, y + 4), (x + step.width, y + lower-boundary), padding: 0, )[ #set text(fill: text-color, size: 18pt) #box( width: 100%, height: 100%, inset: (left: 7pt, top: 7pt, right: 7pt, bottom: 0pt), )[ #align(center + horizon)[ #step.text ] ] ] if has-code { cetz.draw.content( (x, y + lower-boundary), (x + step.width, y), padding: 0, )[ #set text(fill: text-color, font: "Monaco", size: 18pt) #box( width: 100%, height: 100%, inset: (left: 7pt, top: 0pt, right: 7pt, bottom: 7pt), )[ #align(center + horizon)[ #step.code ] ] ] } let anchor = x + step.width / 2 - arrow-shortage if x != 0 { if calc.rem(i, 2) == 0 { cetz.draw.line((anchor-prev, arrow-bottom), (anchor, arrow-top)) } else { cetz.draw.line((anchor-prev, arrow-top), (anchor, arrow-bottom)) } } anchor-prev = x + step.width / 2 + arrow-shortage x = x + margin + step.width i = i + 1 } }
https://github.com/viniciusmuller/ex_typst
https://raw.githubusercontent.com/viniciusmuller/ex_typst/main/README.md
markdown
Apache License 2.0
# ExTypst Elixir bindings and helpers for the [`typst`](https://github.com/typst/typst) typesetting system. Check [Typst's documentation](https://typst.app/docs) for a quick start. # Usage ```elixir # Write typst markup template = """ = Current Employees This is a report showing the company's current employees. #table( columns: (auto, 1fr, auto, auto), [*No*], [*Name*], [*Salary*], [*Age*], <%= employees %> ) """ # Create some data defmodule Helper do @names ["John", "Nathalie", "Joe", "Jane", "Tyler"] @surnames ["Smith", "Johnson", "Williams", "Brown", "Jones", "Davis"] def build_employees(n) do for n <- 1..n do name = "#{Enum.random(@names)} #{Enum.random(@surnames)}" salary = "US$ #{Enum.random(1000..15_000) / 1}" [n, name, salary, Enum.random(16..60)] end end end # Convert it to a nice-looking PDF {:ok, pdf_binary} = ExTypst.render_to_pdf(template, employees: ExTypst.Format.table_content(Helper.build_employees(1_000)) ) # Write to disk File.write!("employees.pdf", pdf_binary) # Or maybe send via email Bamboo.Email.put_attachment(email, %Bamboo.Attachment{data: pdf_binary, filename: "employees.pdf"}) ``` You can see the generated PDF [here](./examples/employees.pdf). ## Security Please note that currently ExTypst is experimental and content added to templates is not escaped. ## Installation If [available in Hex](https://hex.pm/docs/publish), the package can be installed by adding `ex_typst` to your list of dependencies in `mix.exs`: ```elixir def deps do [ {:ex_typst, "~> 0.1"} ] end ``` Documentation can be generated with [ExDoc](https://github.com/elixir-lang/ex_doc) and published on [HexDocs](https://hexdocs.pm). Once published, the docs can be found at <https://hexdocs.pm/ex_typst>.
https://github.com/gianzamboni/cancionero
https://raw.githubusercontent.com/gianzamboni/cancionero/main/wip/cuentamedusa.typ
typst
#import "../theme/project.typ": *; #cancion("Cuentamedusa","Valbรฉ")[ #seccion[A] Pensemos otra vez Si faltara vivir Quizรกs el mundo No termina para ti Despuรฉs de tanto Que se ha hablado de sufrir No tengas tiempo De mirarte sonreรญr Un dรญa caerรกs Un dรญa caerรกs Pero hasta entonces no tendremos la necesidad De respirar mejor Y hablar de la sinceridad Y rescatarnos de la generalidad Y no hablo de traiciรณn Y no hablo de traiciรณn Pero quisiera que la vida la pase mejor Y menos de crueldad Y menos desamor Y menos desarraigo A nuestro corazรณn #seccion[Repetir: A] Cada vez, que pienso en el mar Me sale la voz Cada vez que miro el brillo de tu bien Y de tu mal De tu bien y de tu mal #seccion[C] Cuentame dusa como Has hecho para colorear la sal Cuentame dusa lagrimas de mar Cuentame dusa como Has hecho para colorear la sal Cuentame dusa lagrimas de mar Cuentame dusa Como has aprendido a nadar Como has aprendido a nadar #seccion[Repetir: C] Como has aprendido a nadar ]
https://github.com/teamdailypractice/pdf-tools
https://raw.githubusercontent.com/teamdailypractice/pdf-tools/main/typst-pdf/examples/example-01.typ
typst
In this report, we will explore the various factors that influence fluid dynamics in glaciers and how they contribute to the formation and behaviour of these natural structures.
https://github.com/jgm/typst-hs
https://raw.githubusercontent.com/jgm/typst-hs/main/test/typ/compiler/ops-invalid-16.typ
typst
Other
// Error: 3-28 cannot divide these two relative lengths #((10% + 1pt) / (20% + 1pt))
https://github.com/LEXUGE/typzk
https://raw.githubusercontent.com/LEXUGE/typzk/main/graph.typ
typst
MIT License
#import "@preview/diagraph:0.2.5" #let digraphState = state("typzk_digraphState", (graph: (:), hierarchy: (), labels: (:), clusters: (:))) #let deep-merge-pair(dict1, dict2) = { let final = dict1 for (k, v) in dict2 { if (k in dict1) { if type(v) == "dictionary" { final.insert(k, deep-merge-pair(dict1.at(k), v)) } else { final.insert(k, dict2.at(k)) } } else { final.insert(k, v) } } return final } #let deep-merge(..args) = { let final = args.pos().first() for dict in args.pos() { final = deep-merge-pair(final, dict) } return final } #let node_descend(hierarchy, identity, payload) = { let graph = (:) if hierarchy.len() != 0 { let h = hierarchy.remove(0) graph.insert(h, node_descend(hierarchy, identity, payload)) } else { graph.insert(identity, payload) } return graph } // TODO: Allow setting extra options #let node(identity, prefix: "node_", desc: none, links: (), back_links: (), body) = { let prefixed_identity = prefix + identity let edges = () for dst in links { edges.push(identity + "->" + dst) } for orig in back_links { edges.push(orig + "->" + identity) } digraphState.update(state => { state.graph = deep-merge(state.graph, node_descend(state.hierarchy, identity, edges)) let linked_desc = if type(desc) == content { [#link(label(prefixed_identity), desc)] } else { [#link(label(prefixed_identity), identity)] } let new_label = (:) new_label.insert(identity, linked_desc) state.labels = deep-merge(state.labels, new_label) return state }) [#body #label(prefixed_identity)] } // TODO: Allow setting extra options #let subgraph(identity, desc: none, prefix: "cluster_", body) = { let prefixed_identity = prefix + identity digraphState.update(state => { state.hierarchy.push(prefixed_identity); if type(desc) == content { let new_desc = (:) new_desc.insert(prefixed_identity, [#link(label(prefixed_identity), desc)]) state.clusters = deep-merge(state.clusters, new_desc) } return state }) // This seems to work: link to the first element of the body [#body #label(prefixed_identity)] digraphState.update(state => { state.hierarchy.pop(); return state }) } #let heading_to_label(prefix: "cluster_") = { let prefixed_identity = prefix let lvls = counter(heading).get() for x in lvls { prefixed_identity += str(x) + "_" } return prefixed_identity } // Create subgraph using heading // NOTE: Seems like state update call must be wrapped in a content block, otherwise it will not take effect. #let heading_subgraph(args, prefix: "cluster_") = { let desc = args.body let prefixed_identity = heading_to_label(prefix: prefix) let lvls = counter(heading).get() digraphState.update(state => { assert(lvls.len() - state.hierarchy.len() <= 1, message: "heading levels must only increment by 1 at maximum"); while lvls.len() <= state.hierarchy.len() { state.hierarchy.pop(); } if lvls.len() > state.hierarchy.len() { state.hierarchy.push(prefixed_identity); } if type(desc) == content { let new_desc = (:) new_desc.insert(prefixed_identity, [#link(label(prefixed_identity), desc)]) state.clusters = deep-merge(state.clusters, new_desc) } return state }) } // Assemble our graph state into DOT language // All statements must end with colon #let marshal(graph) = { let s = "" let e = () for (k, v) in graph { if type(v) == "dictionary" { let (nodes, edges) = marshal(v) // This label statement would be overriden when `clusters` has matching identity. // NOTE: This label statement is necessary as somehow otherwise the label replacement will not take effect. // In addition to that, replaced label will be pushed around, so the only workaround is to set all subgraph with empty label and replace using `clusters` later. let label_stmt = "label=\"\";" s += ("subgraph " + k + " {" + label_stmt + nodes + " };") e += edges } else if type(v) == "array" { s += (k + ";") e += v } } return (s, e) } // Generate the final graphviz code #let gen_graphviz(graph, extra: "", path: ()) = { let scoped_graph = if path.len() == 0 { graph } else { let g = graph for name in path { g = g.at("cluster_" + name) } g } let (nodes, edges) = marshal(scoped_graph) let s = "digraph {" + extra s += nodes s += if edges.len()!=0 { edges.join(";") + ";" } s += "}" return s } // Use path to indicate the subgraph to render #let render_graph(extra: "", path: ()) = context { let state = digraphState.final() let s = gen_graphviz(state.graph, extra: extra, path: path) return diagraph.render(s, labels: state.labels, clusters: state.clusters) }
https://github.com/tiankaima/typst-notes
https://raw.githubusercontent.com/tiankaima/typst-notes/master/feebf7-2023_fall_TA/recitations/recitation_1.typ
typst
#import "../utils.typ": * = ไน ้ข˜่ฏพ 1 ```plain Time: Week 1, 09.17 Sun. 19:00 ~ 20:30 ``` ๆ‘˜่ฆ: ๅฝ’็บณ/ๅˆ็ญ‰ไธ็ญ‰ๅผ/ๅฏๆ•ฐ/ไน ้ข˜้€‰่ฎฒ == ๅฝ’็บณๅ…ฌ็† #statement[ $ cases( 0 in S, n in S => n+1 in S ) quad => quad S = NN $ ] === ไพ‹้ข˜ #homework[ $forall n in NN, f(n) = n^4 + 2n^3 + 2n^2 + n$ ่ฏๆ˜Ž $6 | f(n)$ (ใ€Šๆ•ฐๅญฆๅŸบ็ก€้€‰่ฎฒใ€‹ ็จ‹่‰บ P3) ] #homework[ $a_1, a_2, ..., a_n (n>=2)$้ƒฝๆ˜ฏๆญฃๆ•ฐไธ”$a_1 + a_2 + ... + a_n < 1$,ๆฑ‚่ฏ: $ 1 / (1- sum_(k=1)^n a_k) > product_(k=1)^n (1+a_k) > 1 + sum_(k=1)^n a_k $ ] #v(6cm) #pagebreak() == ๅˆ็ญ‰ไธ็ญ‰ๅผ === Cauchy ไธ็ญ‰ๅผ #statement[ $ forall a_1, a_2, ..., a_n, b_1, b_2, ..., b_n in RR quad (sum_(k=1)^n a_k^2)(sum_(k=1)^n b_k^2) >= (sum_(k=1)^n a_k b_k)^2 $ $ <=> x, y in RR^n quad abs(x dot.c y) <= abs(x) abs(y) $ ] #proof[ ่€ƒ่™‘ไบŒๆฌกๅ‡ฝๆ•ฐ: $ (a_1 x + b_1)^2 + (a_2 x + b_2)^2 + ... + (a_n x + b_n)^2 \ = sum_(k=1)^n a_k^2 x^2 + 2 sum_(k=1)^n a_k b_k x + sum_(k=1)^n b_k^2 $ ็”ฑไบŽไบŒๆฌกๅ‡ฝๆ•ฐๆ’ๅคงไบŽ็ญ‰ไบŽ0, ๆ‰€ไปฅๅˆคๅˆซๅผๅฐไบŽ็ญ‰ไบŽ0, ๅณ: $ Delta / 4 = (sum_(k=1)^n a_k b_k)^2 - (sum_(k=1)^n a_k^2)(sum_(k=1)^n b_k^2) <= 0 quad qed $ ] === Bernoulli ไธ็ญ‰ๅผ #statement[ $ forall x in RR, quad x >= -1 quad n in NN, n >= 2\ (1+x)^n >= 1 + n x $ ] #proof[ $n=2$ ๆ—ถ, $ (1+x)^2 = x^2 + 2x + 1 >= 1 + 2x $ ๅ‡่ฎพ $n=k$ ๆ—ถๆˆ็ซ‹, ๅˆ™ $n=k+1$ ๆ—ถ: $ (1+x)^{k+1} = (1+x)^k (1+x) >= (1+k x)(1+x) = 1 + (k+1)x + k x^2 >= 1 + (k+1)x $ ] === HM-GM-AM-QM ไธ็ญ‰ๅผ #statement[ $ forall a_1, a_2, ..., a_n in RR_+\ n / (1 / a_1 + 1 / a_2 + ... + 1 / a_n) <= ( a_1 a_2 ... a_n )^(1 / n) <= (a_1 + a_2 + ... + a_n) / n <= sqrt((a_1^2 + a_2^2 + ... + a_n^2)/n) $ ๅ…ถไธญๅ‡ ไธชๅนณๅ‡ๅ€ผ็š„ๅฎšไน‰ไธบ: - ็ฎ—ๆ•ฐๅนณๅ‡ๅ€ผ(#strong[A]rithmetic #strong[M]ean): $ "AM" = (a_1 + a_2 + ... + a_n)/n $ - ๅ‡ ไฝ•ๅนณๅ‡ๅ€ผ(#strong[G]eometric #strong[M]ean): $ "GM" = (a_1 a_2 ... a_n)^(1/n) $ - ่ฐƒๅ’Œๅนณๅ‡ๅ€ผ(#strong[H]armonic #strong[M]ean): $ "HM" = n/(1/a_1 + 1/a_2 + ... + 1/a_n) $ - ๅนณๆ–นๅนณๅ‡ๅ€ผ(#strong[Q]uadratic #strong[M]ean): $ "QM" = sqrt((a_1^2 + a_2^2 + ... + a_n^2)/n) $ ] #caption[ $"AM"$ๅ’Œ$"GM"$็š„ไธ็ญ‰ๅผๆœ‰็€ๅพˆๆ˜พ็„ถ็š„ๅ‡ ไฝ•ๆ„ไน‰: ๅœจ$RR^2$ไธŠ, $ (a_1+a_2) / 2 >= sqrt(a_1 a_2) quad => quad 2(a_1+a_2) >= 4sqrt(a_1 a_2) $ ๆ„ๅ‘ณ็€, ้ข็งฏ็›ธๅŒ็š„็Ÿฉๅฝข,ๆญฃๆ–นๅฝข็š„ๅ‘จ้•ฟๆœ€ๅฐ.ๆณจๆ„ๅˆฐ็›ธๅŒ็š„็ป“่ฎบๅฏไปฅ็›ดๆŽฅๆŽจๅนฟๅˆฐ$RR^n$ไธŠ. ] #proof[ $"AM"$ๅ’Œ$"GM"$็š„ไธ็ญ‰ๅผ,ๅฏ้€š่ฟ‡ไธŠ้ข่ฟ™็งๆ€ง่ดจๅšไธ€ไธชๅทงๅฆ™็š„่ฏๆ˜Ž: $ alpha = "AM" = 1 / n (a_1 + ... + a_n) $ ่‹ฅ $a_1, a_2, ..., a_n$ ไธๅ…จ็›ธ็ญ‰, ๅˆ™ๅญ˜ๅœจ $a_i < alpha < a_j$, ๅฏน่ฟ™ไธค้กนๅšๅฆ‚ไธ‹ๆ›ฟๆข: $ a_i^prime &= alpha \ a_j^prime &= a_i + a_j - alpha $ ๆ›ฟๆขๅŽๆปก่ถณ: $ "AM"^prime &= "AM" = alpha \ "GM"^prime &= "GM" / (a_i dot.c a_j) * (a_i^prime dot.c a_j^prime) > "GM" $ ๆณจๆ„ๅˆฐ $"GM"^prime > "GM"$ๆ˜ฏไธฅๆ ผ็š„. ้‡ๅคไธŠ่ฟฐ่ฟ‡็จ‹, ็›ดๅˆฐๆ‰€ๆœ‰็š„ $a_i$ ้ƒฝ็ญ‰ไบŽ $alpha$(ๅฎนๆ˜“่ฏดๆ˜Žๅช้œ€่ฆ่‡ณๅคš$n-1$ๆญฅ), ๆญคๆ—ถ: $ "AM" = "GM"^((n)) > "GM"^((n-1)) > ... > "GM"^(prime) > "GM" $ ่ฏๆฏ•. #caption[ ไธŠ่ฟฐ่ฏๆ˜ŽๅŒๆ—ถ่ฏดๆ˜Ž,็ญ‰ๅทๆˆ็ซ‹ๅฝ“ไธ”ไป…ๅฝ“ $a_1 = a_2 = ... = a_n$. ๆญคๆ—ถๆ— ้œ€็ป่ฟ‡ๅ˜ๆข,$"AM" = "GM"$. ๅช่ฆ็ป่ฟ‡ๅ˜ๆข,ๅฐฑๆœ‰ไธฅๆ ผ็š„ไธ็ญ‰ๅผๆˆ็ซ‹. ] #homework[ $"AM"$ๅ’Œ$"GM"$็š„ไธ็ญ‰ๅผ,ไนŸๅฏไปฅ้€š่ฟ‡ๅฝ’็บณๆณ•่ฏๆ˜Ž. ] ] #proof[ ้ฆ–ๅ…ˆ่ฏดๆ˜Ž$"AM"$ๅ’Œ$"QM"$็š„ไธ็ญ‰ๅผ: $ forall a_1, a_2, ..., a_n in RR_+\ (a_1 + a_2 + ... + a_n) / n <= sqrt((a_1^2 + a_2^2 + ... + a_n^2)/n) $ ๆ˜ฏCauchyไธ็ญ‰ๅผ็š„ๆŽจ่ฎบ.ไปค $x = (a_1, a_2, ..., a_n), y = (1, 1, ..., 1)$, ๅˆ™: $ (a_1 + a_2 + ... + a_n) = x dot.c y <= abs(x) abs(y) = sqrt(a_1^2 + a_2^2 + ... + a_n^2) dot.c sqrt(n) $ ็ฎ€ๅ•ๅ˜ๆขๅณๅฏๅพ—ๅˆฐไธŠ่ฟฐไธ็ญ‰ๅผ. #line(length: 100%, stroke: 0.2pt) ๆŽฅไธ‹ๆฅ่ฏดๆ˜Ž$"HM"$ๅ’Œ$"QM"$็š„ไธ็ญ‰ๅผๆ˜ฏ็”ฑ$"AM"$ๅ’Œ$"GM"$็š„ไธ็ญ‰ๅผๆŽจๅ‡บ็š„: $ forall a_1, a_2, ..., a_n in RR_+ quad (a_1 a_2 ... a_n)^(1 / n) <= (a_1 + a_2 + ... + a_n) / n $ ๅœจไธŠ่ฟฐไธ็ญ‰ๅผไธญๅฐ† $a_i$ ๆ›ฟๆขไธบ $1/a_i$, ๅˆ™: $ forall a_1, a_2, ..., a_n in RR_+ quad => quad (1 / a_1 1 / a_2 ... 1 / a_n)^(1 / n) &<= (1 / a_1 + 1 / a_2 + ... + 1 / a_n) / n \ &arrow.b.double \ (a_1 a_2 ... a_n)^(1 / n) &>= n / (1 / a_1 + 1 / a_2 + ... + 1 / a_n) $ ] #pagebreak() == ๅฏๆ•ฐ === ้›†ๅˆ้—ดๆ˜ ๅฐ„ === ้›†ๅˆ็š„ๅŸบๆ•ฐ === ๅฏๆ•ฐ ==== ๆ€ง่ดจ - ๆœ‰้™ไธชๅฏๆ•ฐ้›†็š„ๅนถๆ˜ฏๅฏๆ•ฐ็š„, ๅฏๆ•ฐไธชๅฏๆ•ฐ้›†็š„ๅนถๆ˜ฏๅฏๆ•ฐ็š„ - ๅฆ‚ๆžœ้›†ๅˆAๆ˜ฏๅฏๆ•ฐ็š„, ้›†ๅˆBๆ˜ฏๆœ‰้™็š„, ้‚ฃไนˆA x Bๆ˜ฏๅฏๆ•ฐ็š„: $ A times B := {(a, b) | a in A, b in B} $ - $abs(2^X) = 2^abs(X)$ ==== ไธๅฏๆ•ฐ้›† - $2^NN$, Cantorๅฏน่ง’็บฟๆ–นๆณ• - $RR$, ไนŸ็ฑปไผผไบŽCantorๅฏน่ง’็บฟๆ–นๆณ• #pagebreak() == ไน ้ข˜้€‰่ฎฒ #pagebreak()
https://github.com/AU-Master-Thesis/thesis
https://raw.githubusercontent.com/AU-Master-Thesis/thesis/main/sections/3-methodology/study-1/algorithm.typ
typst
MIT License
#import "../../../lib/mod.typ": * === Algorithm <s.m.algorithm> // #jonas[I do believe all this is new to you?] // This section should explain the GBP inference algorithm as it has been implemented in the simulation tool. // 1. Fixed update schedule // 2. Chained systems // 3. Manual stepping and pausing // Introduce the Robot Mission concept? #[ #show regex("\b(UpdatePrior|CurrentlyConnected|Connect|Disconnect|InternalGBP|ExternalGBP)\b") : set text(theme.mauve, font: "JetBrainsMono NF") As explained in the background section #nameref(<s.b.ecs>, "Entity Component System"), an #acr("ECS") architecture has been used as the foundation for #acr("MAGICS") through the Bevy Engine@bevyengine. The #acr("GBP") inference process has been implemented as a series of 7 systems that are executed in a fixed update schedule. This schedule is one of the default schedules provided by Bevy with a configurable frequency#footnote[This happens in the #acr("MAGICS") source code in the #crates.gbpplanner-rs crate at #source-link("https://github.com/AU-Master-Thesis/gbp-rs/blob/8960686facb7d38c0259141e5b22346c7d745271/crates/gbpplanner-rs/src/simulation_loader.rs#L564", "src/simulation_loader.rs:564")], which is also exposed to #acr("MAGICS") through the `simulation` table in `config.toml`#footnote[Example at #repo(org: "AU-Master-Thesis", repo: "gbp-rs") at #source-link("https://github.com/AU-Master-Thesis/gbp-rs/blob/8960686facb7d38c0259141e5b22346c7d745271/config/simulations/Intersection/config.toml#L79", "config/simulations/Intersection/config.toml:79")] file. These 7 systems are listed here and marked #boxed[*GBP-X*]. #[ #set enum(numbering: box-enum.with(prefix: "GBP-")) #grid( columns: (1fr, 1fr), [ + `update_robot_neighbours` + `delete_interrobot_factors` + `create_interrobot_factors` + `update_failed_comms` ], [ #set enum(start: 5) + `iterate_gbp` + `update_prior_of_horizon_state` + `update_prior_of_current_state` ], ) ] The algorithm is written out in @a.m.algorithm, where `CurrentlyConnected` is a way to retrieve which robots are currently set as being connected to a specific robot, $R_i$. Before the main loop, find which robots are within communication distance at the current timestep, $N(R_i)$. Then in the main loop while the simulation is _running_, create an interrobot factor between all robots within communication distance if it does not already exist with `Connect`, and delete the interrobot factor if the robot is no longer within communication distance with `Disconnect`. After this, the internal and external #acr("GBP") iterations are run with `InternalGBP` and `ExternalGBP`, respectively. #algorithm( caption: [GBP For Robot $R_i$@gbpplanner] )[ #let comment(content) = text(theme.overlay2, content) #show regex("\b(UpdatePrior|CurrentlyConnected|Connect|Disconnect|InternalGBP|ExternalGBP)\b") : set text(size: 0.85em) // #show regex("--(.*?)\b") : set text(theme.crust, font: "JetBrainsMono NF", size: 0.85em) #show regex("(while|for|do|end)") : set text(weight: "bold") // #set par(first-line-indent: 0em) #let ind() = h(2em) *Input:* $R_i$ \ \ #comment[Retrieve the robots that were previously set to be connected to $R_i$] \ $C(R_i) #la "CurrentlyConnected"(R_i)$ \ \ $"UpdatePrior"(#m.x _0, delta_t)$ \ $"UpdatePrior"(#m.x _(K-1), delta_t)$ \ \ $N(R_i) #la {R_j | norm(R_i - R_j) < r_C}$ \ \ while _running_ do \ #ind()for $R_j in N(R_i) \\ C(R_i)$ do \ #ind()#ind()$"Connect"(R_i, R_j)$ \ #ind()end \ #ind()for $R_j in C(R_i) \\ N(R_i)$ do \ #ind()#ind()$"Disconnect"(R_i, R_j)$ \ #ind()end \ #ind()$"InternalGBP"(M_I)$ \ #ind()$"ExternalGBP"(M_E)$ \ #ind()end \ end ]<a.m.algorithm> Following is an explanation of the systems, and their responsibilities, along with which part of the original #gbpplanner implementation they correspond to. Furthermore, each system is related to @a.m.algorithm when relevant: #let space = v(0.5em) #set par(first-line-indent: 0em) #set enum(numbering: box-enum.with(prefix: "GBP-")) + `update_robot_neighbours`#footnote[Found in crate #crates.gbpplanner-rs at #source-link("https://github.com/AU-Master-Thesis/gbp-rs/blob/8960686facb7d38c0259141e5b22346c7d745271/crates/gbpplanner-rs/src/planner/robot.rs#L1247", "src/planner/robot.rs:1247")] utilizes the #acr("ECS") to mutably query for all entities that have a `RobotConnections` component, and then consequently update them with all robots within communication range. #space *Parity* with `Simulator::calculateRobotNeighbours` in #gbpplanner. Corresponds to the setting the internal data of `RobotConnection` to that of $N(R_i)$. + `delete_interrobot_factors`#footnote[Found in crate #crates.gbpplanner-rs at #source-link("https://github.com/AU-Master-Thesis/gbp-rs/blob/8960686facb7d38c0259141e5b22346c7d745271/crates/gbpplanner-rs/src/planner/robot.rs#L1271", "src/planner/robot.rs:1271")] removes all interrobot factors from the factor graph that are no longer relevant due to the updated robot connections. #space *Parity* with half of the responsibility of `Robot::updateInterrobotFactors` in #gbpplanner. This corresponds to the `Disconnect` part of the algorithm. + `create_interrobot_factors`#footnote[Found in crate #crates.gbpplanner-rs at #source-link("https://github.com/AU-Master-Thesis/gbp-rs/blob/8960686facb7d38c0259141e5b22346c7d745271/crates/gbpplanner-rs/src/planner/robot.rs#L1326", "src/planner/robot.rs:1326")] creates new interrobot factors for all robot connections that are not already represented in the factor graph. #space *Parity:* with the other half of the responsibility of `Robot::updateInterrobot``Factors` in #gbpplanner. This corresponds to the `Connect` part of the algorithm. + `update_failed_comms`#footnote[Found in crate #crates.gbpplanner-rs at #source-link("https://github.com/AU-Master-Thesis/gbp-rs/blob/8960686facb7d38c0259141e5b22346c7d745271/crates/gbpplanner-rs/src/planner/robot.rs#L1478", "src/planner/robot.rs:1478")] updates the communication status of all robots, based on the configurable parameter `communication_failure_rate` under the `robot``.communication` table in `config.toml`. #space *Parity* with `Simulator::setCommsFailure` in #gbpplanner. This does not have a correlary in @a.m.algorithm. + `iterate_gbp`#footnote[Found in crate #crates.gbpplanner-rs at #source-link("https://github.com/AU-Master-Thesis/gbp-rs/blob/8960686facb7d38c0259141e5b22346c7d745271/crates/gbpplanner-rs/src/planner/robot.rs#L1654", "src/planner/robot.rs:1654")] iterates the #acr("GBP") algorithm for all robots in the simulation. That is, it has the responsibilitity for the 4 inference steps; _variable update, variable to factor message passing, factor update, and factor to variable message passing_. #space *Parity* with `Simulator::iterateGBP` in #gbpplanner. This corresponds to the `InternalGBP` and `ExternalGBP` part of the algorithm. + `update_prior_of_horizon_state`#footnote[Found in crate #crates.gbpplanner-rs at #source-link("https://github.com/AU-Master-Thesis/gbp-rs/blob/8960686facb7d38c0259141e5b22346c7d745271/crates/gbpplanner-rs/src/planner/robot.rs#L2042", "src/planner/robot.rs:2042")] updates the prior of the horizon state for all robots in the simulation. This is the pose factor anchoring earlier mentioned in @s.m.factors.pose-factor. #space *Parity* with `Robot::updateHorizon` in #gbpplanner. + `update_prior_of_current_state`#footnote[Found in crate #crates.gbpplanner-rs at #source-link("https://github.com/AU-Master-Thesis/gbp-rs/blob/8960686facb7d38c0259141e5b22346c7d745271/crates/gbpplanner-rs/src/planner/robot.rs#L2174", "src/planner/robot.rs:2174")] updates the prior of the current state for all robots in the simulation. Again, this is where the effect of the pose factor anchoring takes place. #space *Parity* with `Robot::updateCurrent` in #gbpplanner. ] #let r = ( A: text(theme.lavender, weight: "bold", "A"), B: text(theme.mauve, weight: "bold", "B") ) Through these steps the lifecycle of the interrobot factors has been allured to. This lifecycle is visualized in @f.interrobot-lifecycle, where two robots #r.A and #r.B approach each other. When they are within communication range, interrobot factors are created. The messaging happens through these factors is the communication that would happen wirelessly in a real-world implementation. Furthermore, when one of the robots' radio fails, the interrobot factors that are maintained by that robot are simply deactivated instead of removed. This has been done as an optimization, instead of deallocating, for then possibly reallocating in the next timestep. Finally, when the robots are no longer within communication range, the interrobot factors are deallocated. To summarize for two robots, $A$ and $B$, with variable $v_n^A$ and $v_n^B$, connected by interrobot factors $f_(i_n)^A (v_n^A, v_n^B)$ and $f_(i_n)^B (v_n^A, v_n^B)$. There are four possible states the pairing between the two can be in. + The communication medium of both $A$ and $B$ are inactive, preventing the factors and variable from exchanging messages. + The communication medium of $A$ is active, preventing $B$ from exchanging messages with $A$ during external message passing. + The communication medium of $B$ is active, preventing $A$ from exchanging messages with $B$ during external message passing. + The communication medium of both $A$ and $B$ are active, allowing the factors and variable to exchange messages between each other during external message passing. These four states correspond to the states shown at timestep $t_(n+1)$ to $t_(n+4)$ in @f.interrobot-lifecycle. #figure( block(breakable: false, include "figure-interrobot-lifecycle.typ", ), caption: [ #let comms = { let l1 = place(dy: -0.35em, line(length: 1em, stroke: (thickness: 2pt, paint: theme.teal, dash: "dashed", cap: "round"))) let l2 = place(dy: -0.35em, line(length: 1em, stroke: (thickness: 2pt, paint: theme.surface0, dash: "dashed", cap: "round"))) box(inset: (x: 2pt), outset: (y: 2pt), l1 + l2 + h(1.6em)) } Interrobot factor, $f_i$, lifecycle. On A) the two robots, #r.A and #r.B, are approaching each other, but not within communication range, shown with dashed circles #inline-line(stroke: (paint: theme.teal, thickness: 2pt, dash: "dashed", cap: "round")) #inline-line(stroke: (paint: theme.overlay0, thickness: 2pt, dash: "dashed", cap: "round")). On B) both robots are within communication range, and interrobot factors are created symmetrically between robots #r.A and #r.B. On C) and D) one of the two robots' radio has failed, resulting in the corresponding interrobot factors being inactive. On E) the robots are no longer within communication range, and the interrobot factors are removed. ] )<f.interrobot-lifecycle>
https://github.com/Rhinemann/mage-hack
https://raw.githubusercontent.com/Rhinemann/mage-hack/main/src/chapters/Talents.typ
typst
#import "../templates/interior_template.typ": * #show: chapter.with(chapter_name: "Talents") = Talents #show: columns.with(2, gutter: 1em) In addition to Hinder each character has a handful of SFX, reflecting special capabilities associated with their many different abilities, these are called talents. These A PC also has at least one Limit. A Limit is a special type of SFX that imposes a disadvantage on your character in order to earn them #spec_c.pp or another reward. Whenever you gain a Talent or Limit, you can rename it to better suit your character. #block(breakable: false)[ == Sample Talents When you create a new character, they gain two of the following SFX of your choice (in addition to the _Hinder_ SFX all characters receive): // TODO write descriptions ] / Adaptable: Step down and double one die of your choice in your pool. / All-Out Attack: Spend a #spec_c.pp to target multiple opponents when you roll to inflict #smallcaps[Hurt]. For each additional target, add #spec_c.d6 and keep an extra effect die. / Brilliant Under Pressure: Spend a #spec_c.pp to add your #smallcaps[Rattled] or #smallcaps[Tired] to your roll to create an asset. If the action succeeds, step down the stress you used. / Combat Veteran: When your roll to inflict #smallcaps[Hurt] or #smallcaps[Rattled] during a battle includes #smallcaps[Firearms] or #smallcaps[Weaponry], step down the largest die in your pool to add #spec_c.d8. If your roll succeeds, step up your effect die. / Distracting Presence: When you roll to inflict #smallcaps[Unsound] by distracting someone, add #spec_c.d6 and step up your effect die. / Strong Empathy: Step up #smallcaps[Empathy] on a roll to create an asset related to trust, reading people, or reassurance. / Energetic: When you would take #smallcaps[Tired] stress, spend a #spec_c.pp to step down the stress you take. If this steps the stress down below #spec_c.d6, you take no stress at all. / Flash of Insight: When you fail a test to obtain information, you may spend a #spec_c.pp or take #smallcaps[Unsound] #spec_c.d6 to obtain that information by other means. / Have a Little Faith: When you would take #smallcaps[Rattled] stress, spend a #spec_c.pp to step down the stress you take. If this steps the stress down below #spec_c.d6, you take no stress at all. / Hinder: Roll #spec_c.d4 instead of #spec_c.d8 for a distinction to earn a #spec_c.pp. / In Harm's Way: When another character near you takes stress, you can step down the stress they would take, then take #spec_c.d6 stress of the same type yourself. / Impossible to Ignore: Spend a #spec_c.pp to target multiple opponents when you roll to inflict #smallcaps[Unsound]. For each additional target, add #spec_c.d6 and keep an extra effect die. / Inspiring Leadership: Add a #spec_c.d6 and step up your effect die when you roll #smallcaps[Social] skills to create assets for allies. / Keen Intellect: Add a #spec_c.d6 and step up your effect die when you roll #smallcaps[Mental] skills to create an asset related to recalling or researching information. / Master Plan: Spend a #spec_c.pp to add a die to your pool equal to the largest complication anyone has in the scene. After the roll fails or succeeds, step down that complication. / Misdirection: When you use #smallcaps[Social] skills on a roll related to escape, deception, or stealth, step down the largest die in your pool to add #spec_c.d8. If your roll succeeds, step up your effect die. / Outmaneuver: When your roll to inflict #smallcaps[Hurt] or #smallcaps[Tired] while outdoors includes #smallcaps[Athletics], step down the largest die in your pool to add #spec_c.d8. If your roll succeeds, step up your effect die. / Peacemaker: If you have #smallcaps[Hurt] stress inflicted by another character in the scene when you roll to de-escalate a conflict, double #smallcaps[Empathy] in your dice pool. If the roll still fails, take #smallcaps[Rattled] #spec_c.d6. / Push Through It: Before you roll a dice pool including a #smallcaps[Physical] skill, spend a #spec_c.pp to recover #smallcaps[Hurt] and step up a #smallcaps[Physical] attribute for that roll. Take #smallcaps[Tired] #spec_c.d6 stress if the roll succeeds, or #spec_c.d8 if it fails. / Reassuring Comrade: Step up or double #smallcaps[Empathy] in your dice pool when helping others recover #smallcaps[Rattled]. You can also spend a #spec_c.pp to step down your own or a nearby character's #smallcaps[Rattled]. / Reckless Gambit: When you roll dice, add a die to your pool equal to the largest stress or complication anyone has in the scene. Take a complication at #spec_c.d6 if the roll succeeds, or #spec_c.d8 if it fails. / Reliable Memory: Spend a #spec_c.pp to reroll a dice pool focused on memory or recall that included #smallcaps[Intelligence]. / Skill Focus: When your pool includes a specialty, you can replace two dice of equal size with one die one step larger. / Sudden Yet Inevitable: When someone betrays you or deceives you, or you betray or deceive someone, spend a #spec_c.pp to create a #spec_c.d8 asset related to having planned for it. / Team Player: When you witness an ally rolling a heroic success, you can step down your own or another witness's #smallcaps[Rattled]. / Tough: When you would take #smallcaps[Hurt] stress, spend a #spec_c.pp to step down the stress you take. If this steps the stress down below #spec_c.d6, you take no stress at all. / Trained Physician: Step up or double #smallcaps[Medicine] in your dice pool when helping others recover #smallcaps[Hurt]. You can also spend a #spec_c.pp to step down your own or a nearby character's #smallcaps[Hurt]. / Undaunted Determination: Step up or double #smallcaps[Stamina] for one roll. If the roll fails, take #smallcaps[Tired] stress equal to the largest die in your pool. / Vicious Contempt: When you roll to inflict #smallcaps[Rattled] with mockery or contempt, add #spec_c.d6 and step up your effect die. / Vigilant Eye: Spend a #spec_c.pp to double #smallcaps[Investigation] in a pool related to following a trail, aiming at a distant target, or spotting something far off. / Watch It All Burn: Add a die to your pool equal to the largest stress or complication anyone has in the scene and step up your effect die. Succeed or fail, take #smallcaps[Unsound] #spec_c.d6. You can spend points to take one or more of these SFX at character creation or later #block(breakable: false)[ === Magick Talents (Supernatural Talents) These are the examples of magick-related and supernatural SFX available to mages to inspire the players and Storytellers. ] / Advanced Necromancy: Spend a #spec_c.pp to use both Matter and Life when your action is related to animating the dead. / Area Effect: When your effect targets an area or a number of creatures, spend a #spec_c.pp to add a #spec_c.d6 and keep an additional effect die for each additional target past the first. / Conjunctional Effects Mastery: When performing a conjunctional effect add two or more Spheres to a dice pool and step each Sphere down by one for each additional Sphere beyond the first. / Destructive Proclivities: When you include a Sphere to destroy an object, spend a #spec_c.pp to step up your effect die. / Enchant Patterns: When your effect includes Prime #spec_c.d6 or higher spend Quintessence to inflict #spec_c.d6 Hurt stress. / Fast Casting: When your action includes a Sphere, you can gain a #spec_c.d6 complication to inflict #spec_c.d6 Hurt stress. / Instrument Arsenal: Spend a #spec_c.pp to create a #spec_c.d8 Instrument asset for a particular type of magick. / Paradox Contaminating: When your action includes Prime #spec_c.d12 or higher, you can inflict Paradox on a target besides yourself. / Paradox Transmitting: When your action includes Prime #spec_c.d12 or higher and you have the Paradox Contaminating SFX you can recover one Paradox die level for each Paradox die inflicted. / Primal Channeling: When your action includes Prime #spec_c.d10 or higher you can recover one Quintessence die for each step of Stress you inflict. / Pushing Through: Whenever you take stress caused by a Sphere, spend a #spec_c.pp to step it down. At the end of the session, if you still have stress on that Sphere, step it up. / Quick Curse: When your action includes a Sphere, you can gain a #spec_c.d6 to keep a second effect die as a complication on a nearby character. / Reckless Casting: Step up or double any Sphere for one roll. If the roll fails, add your Sphere die to the Paradox pool. / Rein In: When you include a #spec_c.d10 or #spec_c.d8 Sphere, gain a #spec_c.pp and step it down. You can recover it by activating an opportunity rolled by the GM. / Swift Warding: When your action includes a Sphere, you can gain a #spec_c.d6 Moving Too Fast complication to keep a second effect die as a Magical Aegis asset. / Talent for Growth: When you succeed at a test including a Sphere, spend a #spec_c.pp to create a Watch And Learn #spec_c.d8 asset. Anyone can use this asset alongside a #spec_c.d4 or #spec_c.d6 Sphere. #block(breakable: false)[ ==== Sphere Talents Sphere talents are a special case of supernatural talents that are unlocked automatically as you advance your understanding of magick. ] / Sphere Perception: Step up your lowest die on any roll to perceive any phenomena under the purview of Sphere or create a related asset. You unlock this talent at Sphere rating #spec_c.d4 for that Sphere. / Sphere Manipulation: On rolls to create an asset that can be produced by a #spec_c.d6 or lower Sphere rating, add #spec_c.d6 and step up your effect die. You unlock this talent at Sphere rating #spec_c.d6 for that Sphere. / Sphere Control: Spend a #spec_c.pp to create a #spec_c.d8 asset that can be produced by a #spec_c.d8 or lower Sphere rating. You unlock this talent at Sphere rating #spec_c.d8 for that Sphere. / Sphere Command: Spend a #spec_c.pp to step up or double your Sphere die on a roll for an effect that can be accomplished by a #spec_c.d10 or lower Sphere rating. You unlock this talent at Sphere rating #spec_c.d10 for that Sphere. / Sphere Mastery: Take #spec_c.d6 appropriate stress or complication to double your Sphere die for for a roll. On a failure, step up the same stress or complication you took to activate. You unlock this talent at Sphere rating #spec_c.d12 for that Sphere.
https://github.com/mem-courses/calculus
https://raw.githubusercontent.com/mem-courses/calculus/main/homework-1/week0.typ
typst
#import "../template.typ": * #show: project.with( title: "ๅพฎ็งฏๅˆ† Homework #0", authors: ( (name: "<NAME>", email: "<EMAIL>", phone: "3230104585"), ), date: "September 15, 2023", ) = Pre Problem 1 #prob[ๅทฒ็Ÿฅๆ•ฐๅˆ— ${x_n}$ ๆปก่ถณ $ cases( x_1 = a, x_(n+1) = 1/2 x_n^2 (3 - x_n), ) quad quad (a "ไธบๅธธๆ•ฐ",quad a in (0,1) union (1,2) union (2,3)) $ ้—ฎๅฝ“ $n>=1$๏ผˆๆˆ– $n>=2$๏ผ‰ๆ—ถ๏ผŒ${x_n}$ ๆ˜ฏๅฆไธบๅ•่ฐƒๆ•ฐๅˆ—๏ผˆ้œ€่ฏดๆ˜Ž็†็”ฑๆˆ–็ป™ๅ‡บ่ฎบ่ฏ่ฟ‡็จ‹๏ผ‰] ่ฎพ $ f(x) = 1/2 x^2 (3-x) $ ๅˆ™ๆœ‰ $ f'(x) = 1/2( 2x(3-x) + (-x^2)) = 3/2x (2 - x) $ = xmr's Problem 1 #prob[่ฎพ $x,y in RR$๏ผŒๆฑ‚ $(x-y)^2 + (2x-5)^2 + 4y^2$ ็š„ๆœ€ๅฐๅ€ผ๏ผŽ]
https://github.com/EpicEricEE/typst-based
https://raw.githubusercontent.com/EpicEricEE/typst-based/master/src/base16.typ
typst
MIT License
/// Encodes the given data as a hex string. /// /// Arguments: /// - data: The data to encode. Must be of type array, bytes, or string. /// /// Returns: The encoded string (lowercase). #let encode(data) = { if data.len() == 0 { return "" } for byte in array(bytes(data)) { if byte < 16 { "0" } str(int(byte), base: 16) } } /// Decodes the given hex string. /// /// Arguments: /// - string: The string to decode (case-insensitive). /// /// Returns: The decoded bytes. #let decode(string) = { let dec(hex-digit) = { let code = str.to-unicode(hex-digit) if code >= 48 and code <= 57 { code - 48 } // 0-9 else if code >= 65 and code <= 70 { code - 55 } // A-F else if code >= 97 and code <= 102 { code - 87 } // a-f else { panic("Invalid hex digit: " + hex-digit) } } let array = range(string.len(), step: 2).map(i => { 16 * dec(string.at(i)) + dec(string.at(i + 1)) }) bytes(array) }
https://github.com/typst/packages
https://raw.githubusercontent.com/typst/packages/main/packages/preview/silky-letter-insa/0.1.0/lib.typ
typst
Apache License 2.0
// SHORT DOCUMENT : #let insa-short( author : none, date : datetime.today(), doc ) = { set text(lang: "fr") set page( "a4", margin: (top: 3.2cm), header-ascent: 0.71cm, header: [ #place(left, image("logo.png", height: 1.28cm), dy: 1.25cm) #place(right + bottom)[ #author\ #if type(date) == datetime [ #date.display("[day]/[month]/[year]") ] else [ #date ] ] ], footer: [ #place( right, dy: -0.6cm, dx: 1.9cm, image("footer.png") ) #place( right, dx: 1.55cm, dy: 0.58cm, text(fill: white, weight: "bold", counter(page).display()) ) ] ) doc }
https://github.com/rxt1077/it610
https://raw.githubusercontent.com/rxt1077/it610/master/markup/slides/git.typ
typst
#import "/templates/slides.typ": * #import "@preview/fletcher:0.5.1" as fletcher: diagram, node, edge #import fletcher.shapes: diamond #show: university-theme.with( short-title: [git], ) #title-slide( title: [git], ) #alternate( title: [What is git?], image: licensed-image( file: "/images/git.svg", license: "FAIRUSE", title: [git logo], url: "https://git-scm.com/downloads/logos", width: 100%, ), text: [ - a version control system - command line based - keeps track of files and changes to them - works locally but can "push" to a remote ] ) #slide(title: [What do people think of git?], align(center, licensed-image( file: "/images/git-bingo.png", license: "CC BY-NC-SA 4.0", title: [git discussion bingo], url: "https://wizardzines.com/comics/git-discussion-bingo/", author: [<NAME>], author-url: "https://wizardzines.com/", )) ) #alternate( title: [Why do we need it?], image: [ #set text(size: 16pt) #diagram( node-shape: rect, node((0, 0), [Collaboration], stroke: red, fill: red.lighten(80%)), node((1, 0), [Open Source], stroke: orange, fill: orange.lighten(80%)), node((2, 0), [Scalable], stroke: yellow, fill: yellow.lighten(80%)), node((0, 1), [Distributed], stroke: green, fill: green.lighten(80%)), node((1, 1), [git], stroke: blue, shape: diamond, fill: blue.lighten(80%)), node((2, 1), [Workflow], stroke: purple, fill: purple.lighten(80%)), node((0, 2), [Integrity], stroke: yellow, fill: yellow.lighten(80%)), node((1, 2), [Branching], stroke: red, fill: red.lighten(80%)), node((2, 2), [History], stroke: orange, fill: orange.lighten(80%)), edge((1, 1), (0.25, 0.25), "->"), edge((1, 1), (1, 0.25), "->"), edge((1, 1), (1.75, 0.25), "->"), edge((1, 1), (0.25, 1), "->"), edge((1, 1), (1.75, 1), "->"), edge((1, 1), (0.25, 1.75), "->"), edge((1, 1), (1, 1.75), "->"), edge((1, 1), (1.75, 1.75), "->"), ) ], text: [ - make things less brittle - keep track of things - find out who changed things ] ) #alternate( title: [How is it used?], image: licensed-image( file: "/images/xkcd-git.png", license: "CC BY-NC 2.5", title: [Git], url: "https://xkcd.com/1597/", author:[<NAME>], author-url: "https://xkcd.com/about/", ), text: [ - create a repo: `git init` (local or remote, GitHub can do this for you) - clone the repo: `git clone` - add files you want tracked: `git add` - commit changes: `git commit` - push changes: `git push` ] ) #slide(title: [How do I collaborate with git?])[ #diagram( node-shape: circle, node-fill: njit-red, edge-stroke: 8pt + njit-blue.lighten(50%), spacing: (4.8em, 4em), label-size: 0.8em, node((0, 0), " "), node((1, 1), " ", fill: njit-blue), node((2, 1), " ", fill: njit-blue), node((3, 1), " ", fill: njit-blue), node((4, 1), " "), node((5, 1), " "), node((6, 0), " "), edge((0, 0), (6, 0), label: [main], stroke: 8pt + njit-red.lighten(50%)), edge((0, 0), (1, 1), label: [fork], bend: -30deg, label-angle: auto), edge((1, 1), (3, 1), label: [user makes changes], label-side: right), edge((3, 1), (4, 0), label: [pull request], stroke: (paint: njit-blue.lighten(50%), thickness: 8pt, dash: ("dot", 0.5em)), bend: -30deg, label-angle: auto, label-side: left, label-sep: 0.7em, ), edge((3, 1), (5, 1), label: [maintainer adds commits], label-side: right), edge((5, 1), (6, 0), label: [merge], bend: -30deg, label-angle: auto), ) \ - fork a repo (create a branch) - make your changes - submit a PR - PR gets merged (hopefully) ] #alternate( title: [Why are we talking about git in a sysadmin class?], image: licensed-image( file: "/images/git-push-git-paid.svg", license: "CC BY-NC 4.0", title: [git-push-git-paid.svg], url: "https://github.com/rxt1077/it610/blob/master/markup/images/git-push-git-paid.svg", author: [<NAME>], author-url: "https://using.tech", ), text: [ - configurations a typically lots of little files we need to track - Docker Compose projects can be tracked in git - Kubernetes projects can be tracked in git - git helps with change management ] ) #alternate( title: [git services], image: block(breakable: false)[ #set align(center) #set text(8pt) #grid(columns: (1fr, 1fr), rows: (40%, 40%), gutter: 40pt, image("/images/github-logo.svg", height: 100%), image("/images/gitlab-logo.svg", height: 100%), image("/images/sourcehut-logo.svg", height: 100%), image("/images/radicle-logo.svg", height: 100%), ) GitHub, GitLab, SourceHut, and Radicle logos are used under fair use. ], text: [ - #link("https://github.com")[GitHub] - #link("https://gitlab.com")[GitLab] - #link("https://sr.ht")[SourceHut] - #link("https://radicle.xyz")[Radicle (p2p, v1.0 just came out!)] ], )
https://github.com/catppuccin/typst
https://raw.githubusercontent.com/catppuccin/typst/main/tests/background/test.typ
typst
MIT License
#import "/src/lib.typ": catppuccin, themes, get-palette #set page(width: auto, height: auto) #let perms = () #for theme in themes.values() { for code-block in (true, false) { for syntax in (true, false) { perms.push((theme: theme, code-block: code-block, syntax: syntax)) } } } #for p in perms [ #pagebreak(weak: true) #show: catppuccin.with(p.theme, code-block: p.code-block, code-syntax: p.syntax) = #get-palette(p.theme).name - Code block: #p.code-block - Code syntax: #p.syntax ```typ #import "/src/lib.typ": catppuccin, themes, get-palette #let perms = () #for theme in themes.values() { for code-block in (true, false) { for syntax in (true, false) { perms.push((theme: theme, code-block: code-block, syntax: syntax)) } } } #for p in perms [ #show: catppuccin.with(p.theme, code-block: p.code-block, code-syntax: p.syntax) = #get-palette(p.theme).name == Code block: #p.code-block == Code syntax: #p.syntax ] ``` ]
https://github.com/SillyFreak/typst-packages-old
https://raw.githubusercontent.com/SillyFreak/typst-packages-old/main/scrutinize/README.md
markdown
MIT License
# Scrutinize Scrutinize is a library for building exams, tests, etc. with Typst. It has three general areas of focus: - It helps with grading information: record the points that can be reached for each question and make them available for creating grading keys. - It provides a selection of question writing utilities, such as multiple choice or true/false questions. - It supports the creation of sample solutions by allowing to switch between the normal and "pre-filled" exam. Right now, providing a styled template is not part of this package's scope. Also, visual customization of the provided question templates is currently nonexistent. See the [manual](docs/manual.pdf) for details. ## Example A rendered version of this example can be found in the [gallery](gallery/). ```typ #import "@preview/scrutinize:0.2.0": grading, question, questions #import question: q #import questions: free-text-answer, single-choice, multiple-choice, set-solution, unset-solution // toggle this comment or pass `--input solution=true` to produce a sample solution // #questions.solution.update(true) #set table(stroke: 0.5pt) #context [ #let total = grading.total-points(question.all()) The candidate achieved #h(3em) out of #total points. ] = Instructions #with-solution(true)[ Use a pen. For multiple choice questions, make a cross in the box, such as in this example: #pad(x: 5%)[ Which of these numbers are prime? #multiple-choice( (([1], false), ([2], true), ([3], true), ([4], false), ([5], true)), ) ] ] #show heading: it => [ #it.body #h(1fr) / #question.current().points ] #q(points: 2)[ = Question 1 Write an answer. #free-text-answer(height: 4cm)[ An answer ] ] #q(points: 1)[ = Question 2 Select the largest number: #single-choice( ([5], [20], [25], [10], [15]), 2, // 0-based index ) ] ```
https://github.com/typst/packages
https://raw.githubusercontent.com/typst/packages/main/packages/preview/fh-joanneum-iit-thesis/1.1.0/template/chapters/4-background.typ
typst
Apache License 2.0
#import "global.typ": * = Background #lorem(45) #todo([ In the background section you might give explanations which are necessary to read the remainder of the thesis. For example define and/or explain the terms used. Optionally, you might provide a glossary (index of terms used with/without explanations). #v(1cm) *Hints for equations in Typst*: The notation used for #textbf([calculating]) of #textit([code performance]) might typically look like the one in @slow and @veryslow, which demonstrates what *(very) slow* algorithms mean. $ O(n) = n^2 $ <slow> $ O(n) = 2^n $ <veryslow> *Hints for footnotes in Typst*: As shown in #footnote[Visit https://typst.app/docs for more details on formatting the document using typst. Note, _typst_ is written in the *Rust* programming language.] we migth discuss the alternatives. *Hints for formatting in Typst*: + You can use built-in styles: + with underscore (\_) to _emphasise_ text + forward dash (\`) for `monospaced` text + asterisk (\*) for *strong* (bold) text You can create and use your own (custom) formatting macros: + check out the custom style (see in file `lib.typ`): + `\#textit` for #textit([italic]) text + `\#textbf` for #textbf([bold face]) text ])
https://github.com/tingerrr/chiral-thesis-fhe
https://raw.githubusercontent.com/tingerrr/chiral-thesis-fhe/main/src/core/component/title-page.typ
typst
#import "/src/core/kinds.typ" as _kinds #import "/src/core/authors.typ" as _authors #import "/src/utils.typ" as _utils // TODO: proper handling of more than one author // TODO: stable positioning // TODO: use subtitle #let make-title-page( title: "Mustertitel", subtitle: none, author: "Mustermann, Max", supervisors: ( "Prof. Dr. <NAME>", "Prof. Dr. <NAME>", ), field: "Angewandte Informatik", date: datetime(year: 1970, month: 01, day: 01), id: "AI-1970-BA-999", kind: _kinds.report, _fonts: (:), ) = { set align(center + top) stack( align(right, image("/assets/images/logo-fhe.svg", width: 45%)), 5em, text(16pt, font: _fonts.sans, strong[ #kind.name \ #field ]), ..if _kinds.is-thesis(kind) { (1em, [Nr. #id]) }, 5em, text(32pt, font: _fonts.sans, strong(title)), 3.4em, text(16pt, strong(_authors.format-author(author, email: false))), 2.5em, text(18pt)[Abgabedatum: #_utils.format-date(date)], ) if _kinds.is-thesis(kind) { place(center + bottom, text( 18pt, supervisors.map(_authors.format-author.with(email: false)).join(linebreak()), )) } pagebreak(weak: true) }
https://github.com/frectonz/the-pg-book
https://raw.githubusercontent.com/frectonz/the-pg-book/main/book/097.%20badeconomy.html.typ
typst
badeconomy.html Why to Start a Startup in a Bad Economy Want to start a startup? Get funded by Y Combinator. October 2008The economic situation is apparently so grim that some experts fear we may be in for a stretch as bad as the mid seventies.When Microsoft and Apple were founded.As those examples suggest, a recession may not be such a bad time to start a startup. I'm not claiming it's a particularly good time either. The truth is more boring: the state of the economy doesn't matter much either way.If we've learned one thing from funding so many startups, it's that they succeed or fail based on the qualities of the founders. The economy has some effect, certainly, but as a predictor of success it's rounding error compared to the founders.Which means that what matters is who you are, not when you do it. If you're the right sort of person, you'll win even in a bad economy. And if you're not, a good economy won't save you. Someone who thinks "I better not start a startup now, because the economy is so bad" is making the same mistake as the people who thought during the Bubble "all I have to do is start a startup, and I'll be rich."So if you want to improve your chances, you should think far more about who you can recruit as a cofounder than the state of the economy. And if you're worried about threats to the survival of your company, don't look for them in the news. Look in the mirror.But for any given team of founders, would it not pay to wait till the economy is better before taking the leap? If you're starting a restaurant, maybe, but not if you're working on technology. Technology progresses more or less independently of the stock market. So for any given idea, the payoff for acting fast in a bad economy will be higher than for waiting. Microsoft's first product was a Basic interpreter for the Altair. That was exactly what the world needed in 1975, but if Gates and Allen had decided to wait a few years, it would have been too late.Of course, the idea you have now won't be the last you have. There are always new ideas. But if you have a specific idea you want to act on, act now.That doesn't mean you can ignore the economy. Both customers and investors will be feeling pinched. It's not necessarily a problem if customers feel pinched: you may even be able to benefit from it, by making things that save money. Startups often make things cheaper, so in that respect they're better positioned to prosper in a recession than big companies.Investors are more of a problem. Startups generally need to raise some amount of external funding, and investors tend to be less willing to invest in bad times. They shouldn't be. Everyone knows you're supposed to buy when times are bad and sell when times are good. But of course what makes investing so counterintuitive is that in equity markets, good times are defined as everyone thinking it's time to buy. You have to be a contrarian to be correct, and by definition only a minority of investors can be.So just as investors in 1999 were tripping over one another trying to buy into lousy startups, investors in 2009 will presumably be reluctant to invest even in good ones.You'll have to adapt to this. But that's nothing new: startups always have to adapt to the whims of investors. Ask any founder in any economy if they'd describe investors as fickle, and watch the face they make. Last year you had to be prepared to explain how your startup was viral. Next year you'll have to explain how it's recession-proof.(Those are both good things to be. The mistake investors make is not the criteria they use but that they always tend to focus on one to the exclusion of the rest.)Fortunately the way to make a startup recession-proof is to do exactly what you should do anyway: run it as cheaply as possible. For years I've been telling founders that the surest route to success is to be the cockroaches of the corporate world. The immediate cause of death in a startup is always running out of money. So the cheaper your company is to operate, the harder it is to kill. And fortunately it has gotten very cheap to run a startup. A recession will if anything make it cheaper still.If nuclear winter really is here, it may be safer to be a cockroach even than to keep your job. Customers may drop off individually if they can no longer afford you, but you're not going to lose them all at once; markets don't "reduce headcount."What if you quit your job to start a startup that fails, and you can't find another? That could be a problem if you work in sales or marketing. In those fields it can take months to find a new job in a bad economy. But hackers seem to be more liquid. Good hackers can always get some kind of job. It might not be your dream job, but you're not going to starve.Another advantage of bad times is that there's less competition. Technology trains leave the station at regular intervals. If everyone else is cowering in a corner, you may have a whole car to yourself.You're an investor too. As a founder, you're buying stock with work: the reason Larry and Sergey are so rich is not so much that they've done work worth tens of billions of dollars, but that they were the first investors in Google. And like any investor you should buy when times are bad.Were you nodding in agreement, thinking "stupid investors" a few paragraphs ago when I was talking about how investors are reluctant to put money into startups in bad markets, even though that's the time they should rationally be most willing to buy? Well, founders aren't much better. When times get bad, hackers go to grad school. And no doubt that will happen this time too. In fact, what makes the preceding paragraph true is that most readers won't believe itโ€”at least to the extent of acting on it.So maybe a recession is a good time to start a startup. It's hard to say whether advantages like lack of competition outweigh disadvantages like reluctant investors. But it doesn't matter much either way. It's the people that matter. And for a given set of people working on a given technology, the time to act is always now.Russian TranslationChinese TranslationJapanese Translation
https://github.com/Myriad-Dreamin/typst.ts
https://raw.githubusercontent.com/Myriad-Dreamin/typst.ts/main/fuzzers/corpora/layout/pagebreak-parity_01.typ
typst
Apache License 2.0
#import "/contrib/templates/std-tests/preset.typ": * #show: test-page #set page(width: auto, height: auto) // Test with auto-sized page. First #pagebreak(to: "odd") Third
https://github.com/yhtq/Notes
https://raw.githubusercontent.com/yhtq/Notes/main/ๅธธๅพฎๅˆ†ๆ–น็จ‹/main.typ
typst
#import "../template.typ": proof, note, corollary, lemma, theorem, definition, example, remark, proposition, der, partialDer #import "../template.typ": * // Take a look at the file `template.typ` in the file panel // to customize this template and discover how it works. #show: note.with( title: "ๅธธๅพฎๅˆ†ๆ–น็จ‹", author: "YHTQ", date: none, logo: none, ) = ๅ‰่จ€ - ๆ•™ๅธˆ๏ผšๆŽไผŸๅ›บ - ไฝœไธš๏ผš็Ž‹ๅญๅบท <EMAIL>๏ผŒๅ•ๅ‘จๅ‘จไธ‰ๅ‰ไบค ๅซๆœ‰ๅ•ไธชๆœช็Ÿฅๅ‡ฝๆ•ฐ็š„ๆ–น็จ‹็งฐไธบๅธธๅพฎๅˆ†ๆ–น็จ‹๏ผŒๅพ€ๅพ€ๅฝขๅฆ‚๏ผš $ f(x, y๏ผŒ y', y'', ..., y^((n))) = 0 $ ๅ…ถไธญ $n$ ไธบๆ–น็จ‹็š„้˜ถๆ•ฐ๏ผŒๅฎƒ็š„ไฝ็ฝฎ็ฑปไผผไบŽไปฃๆ•ฐๆ–น็จ‹ไธญ็š„ๆฌกๆ•ฐใ€‚ๅฝ“็„ถ้˜ถๆ•ฐๆ›ด้ซ˜็š„ๆ–น็จ‹ๆ›ดๅŠ ๅคๆ‚ใ€‚ ่‹ฅ $f(x, y๏ผŒ y', y'', ..., y^((n))) = 0$ ไธญ็š„ $f$ ๆ˜ฏ้™คๅŽป $x$ ็š„ๅคšๅ…ƒ็บฟๆ€งๅ‡ฝๆ•ฐ๏ผˆๆฏไธชๅ˜้‡็š„ๆฌกๆ•ฐ้ƒฝๆ˜ฏ1๏ผ‰๏ผŒๅˆ™็งฐไธบ็บฟๆ€งๅพฎๅˆ†ๆ–น็จ‹๏ผŒๅฆๅˆ™็งฐไธบ้ž็บฟๆ€งๅพฎๅˆ†ๆ–น็จ‹ใ€‚็บฟๆ€งๅพฎๅˆ†ๆ–น็จ‹็š„ๅฝขๅผไธบ๏ผš $ sum_(i=0)^n a_i (x) y^((i)) = 0 $ ่ฟ™็ฑปๆ–น็จ‹ๆœ‰ๆฏ”่พƒๅฎŒๅ–„็š„็†่ฎบใ€‚ + ้€š่งฃไธŽ็‰น่งฃ ๅฝขๅผไธŠ๏ผŒๅฎšไน‰่‹ฅ $y=h(x)$ ไปฃๅ…ฅ $f(x, y๏ผŒ y', y'', ..., y^((n))) = 0$ ๆ˜ฏๆ’็ญ‰ๅผ๏ผŒๅˆ™็งฐ $y=h(x)$ ๆ˜ฏๆ–น็จ‹็š„่งฃใ€‚่ฎธๅคšๆ—ถๅ€™็ ”็ฉถ่งฃ็š„ๅญ˜ๅœจๆ€งไธŽๅ”ฏไธ€ๆ€งๅทฒ็ป่ถณๅคŸๅ›ฐ้šพไบ†ใ€‚ ็งฐๅพฎๅˆ†ๆ–น็จ‹็š„้€š่งฃไธบๅซๆœ‰ $n$ ไธช็‹ฌ็ซ‹ๅธธๆ•ฐ็š„่งฃ๏ผŒๅฏนๅธธๆ•ฐไปปๆ„ๅ–ๅ€ผ้ƒฝๅฏไปฅ่Žทๅพ—ไธ€ไธช่งฃใ€‚็›ธๅฏน็š„๏ผŒ็งฐๆฒกๆœ‰ๆœชๅฎšๅธธๆ•ฐ็š„่งฃไธบ็‰น่งฃ๏ผŒๅฎƒๅฐฑๆ˜ฏๆŸไธชๅ›บๅฎš็š„ๅ‡ฝๆ•ฐใ€‚ไธ€่ˆฌ่€Œ่จ€๏ผŒ$n$ ้˜ถ็š„ๅพฎๅˆ†ๆ–น็จ‹ๅคง็บฆๆœ‰ $n$ ้˜ถ็š„้€š่งฃ๏ผŒ้€š่งฃๅŒ…ๅซไบ†ๅคงๅคšๆ•ฐ็š„่งฃ๏ผŒไฝ†ๅพˆๅคšๆ—ถๅ€™ๅนถไธๆ˜ฏๆ‰€ๆœ‰็š„่งฃใ€‚ #example[][ ๅพฎๅˆ†ๆ–น็จ‹ $y' = y^(1/3)$ ็š„ไธ€ไธช้€š่งฃไธบ๏ผš $ cases((2/3 x + C)^(3/2) quad 2/3x + C >0, 0 quad 2/3x + C <= 0) $ ไฝ† $y = 0$ ๆ˜พ็„ถๆ˜ฏไธ€ไธช่งฃ๏ผŒๅนถไธ่ƒฝ่ขซ้€š่งฃๅŒ…ๅซใ€‚ ] + ๅˆๅ€ผ้—ฎ้ข˜๏ผˆๆŸฏ่ฅฟ้—ฎ้ข˜๏ผ‰ ๅพ€ๅพ€็ป™ๅฎšไธ€ไธชๅˆๅ€ผๆกไปถไพฟๅฏๅœจ้€š่งฃไธญๅ‡ๅฐ‘ไธ€ไธช่‡ช็”ฑๅ˜ๅ…ƒใ€‚ๅฝ“็ป™ๅฎš่ถณๅคŸ็š„ๅˆๅ€ผๆ—ถไปฅๅŠๅˆ็†็š„ๆกไปถๆ—ถ๏ผŒๅพฎๅˆ†ๆ–น็จ‹ไพฟๆœ‰ๅ”ฏไธ€่งฃใ€‚ไปฅๅŽๆˆ‘ไปฌไผš็ ”็ฉถๅœจไฝ•็งๆกไปถไธ‹ๅฎƒ็กฎๅฎžๆœ‰่งฃ/ๆœ‰ๅ”ฏไธ€่งฃใ€‚ + ๅฎšๆ€ง้—ฎ้ข˜ ่‡ช็„ถ็š„๏ผŒ่งฃๅพฎๅˆ†ๆ–น็จ‹ๆ˜ฏ้žๅธธๅคๆ‚็š„๏ผŒ็ฎ€ๅ•ๆ˜“็”จ็š„ๅˆ็ญ‰่งฃๆณ•้žๅธธๆœ‰้™๏ผŒไธ”ๅพ€ๅพ€ๅช่ƒฝ่งฃไธ€ไบ›็‰นๆฎŠ็š„ๆ–น็จ‹ใ€‚ๅคง้ƒจๅˆ†ๅพฎๅˆ†ๆ–น็จ‹็›ธๅ…ณ็š„็ ”็ฉถ้ƒฝๆ˜ฏๅœจ้ฟๅ…่งฃๅ‡บๅ…ทไฝ“็š„่งฃ็š„ๆƒ…ๅ†ตไธ‹่ฟ›่กŒ็š„๏ผŒไพ‹ๅฆ‚็›ดๆŽฅ้€š่ฟ‡ๆ–น็จ‹ๆœฌ่บซๅˆ†ๆžๅฎƒๆ˜ฏๅฆๆœ‰ๅ‘จๆœŸ่งฃ๏ผŒๆœ‰็•Œ่งฃ็ญ‰็ญ‰๏ผŒๆˆ–่€…้€š่ฟ‡ๆ–น็จ‹ๅคง่‡ดๆ่ฟฐ่งฃๅฏนๅบ”ๆ›ฒ็บฟ็š„ๅฝข็Šถใ€‚ ็ฑปไผผ $f(x) + f'(x-1) = 0$ ็š„ๅพฎๅˆ†ๆ–น็จ‹ๆœ‰ๆ—ถ็งฐไธบๆ—ถๆปžๅพฎๅˆ†ๆ–น็จ‹๏ผŒๅฎƒไธŽๅธธๅพฎๅˆ†ๆ–น็จ‹็š„็ ”็ฉถๆ–นๆณ•ๅคงไธ็›ธๅŒใ€‚ = ๅธธๅพฎๅˆ†ๆ–น็จ‹ๅˆ็ญ‰่งฃๆณ• ๅฐฝ็ฎกๅฏไปฅ่ฏๆ˜Ž๏ผŒ็ปๅคงๅคšๆ•ฐๅธธๅพฎๅˆ†ๆ–น็จ‹ๆฒกๆœ‰ๅˆ็ญ‰่งฃ๏ผŒๆ›ดไธๅฏ่ƒฝ่ขซๅˆ็ญ‰ๆ–นๆณ•่งฃๅ‡บ๏ผŒไฝ†่ฟ™ไบ›่งฃๆณ•ไป็„ถๅๅˆ†้‡่ฆใ€‚ == ๆฐๅฝ“ๅฝขๅผไธŽ็งฏๅˆ†ๅ› ๅญ #definition[ๅฏน็งฐๅฝขๅผ][ ่‹ฅ $y$ ๆ˜ฏๅ…ณไบŽ $x$ ็š„ๅ‡ฝๆ•ฐ๏ผŒๅˆ™ไธ€้˜ถๅธธๅพฎๅˆ†ๆ–น็จ‹ๅ‡ๅฏๅŒ–็ฎ€ไธบ๏ผš $ der(y, x) = f(x, y) $ ๅฝขๅผไธŠไธŽ $f(x, y) dif x - dif y = 0$็›ธๅฝ“ใ€‚ไธฅๆ ผๆฅ่ฏด่ฟ™ไธๆ˜ฏๅพฎๅˆ†ๆ–น็จ‹๏ผŒไฝ†ๆ˜ฏๅฎƒไฝฟ็”จ้ข‡ไธบๆ–นไพฟ๏ผŒ่€Œไธ”ๅฏไปฅๅ†™ๆˆๅฏน็งฐ็š„ๅฝขๅผ๏ผš $ p(x, y) dif x + q(x, y) dif y = 0 $<proper> ไปŽ่€Œ็ปŸไธ€็ ”็ฉถไบ† $x, y$ ไฝœไธบ่‡ชๅ˜้‡็š„ๅฝขๅผ๏ผŒๅ› ๆญคไนŸๅฐ†@proper ็งฐไธบๅพฎๅˆ†ๆ–น็จ‹็š„ๅฏน็งฐๅฝขๅผใ€‚ ] #definition[ๆฐๅฝ“ๅฝขๅผ][ ่‹ฅๅญ˜ๅœจไธ€ไธชๅฏๅพฎๅ‡ฝๆ•ฐ $u(x, y)$ ไฝฟๅพ—๏ผš $ dif u = p(x, y) dif x + q(x, y) dif y\ <=> cases( partialDer(u, x) = p(x, y), partialDer(u, y) = q(x, y) ) $ ๅˆ™็งฐ@proper ไธบๆฐๅฝ“ๅฝขๅผใ€‚ ] #theorem[][ ่ฎพ๏ผš $ d u(x, y) = p(x, y) dif x + q(x, y) dif y $ ๅˆ™ $u(x, y) = C$ ไบง็”Ÿ็š„ๅฏๅพฎ้šๅ‡ฝๆ•ฐไธบ@proper ็š„้€š่งฃ ] #proof[ ๅช่ฏๆ˜Ž $x$ ไฝœไธบ่‡ชๅ˜้‡็š„ๆƒ…ๅฝขใ€‚่ฎพ๏ผš $ u(x, y(x)) = c $ ๆฑ‚ๅฏผ็ซ‹ๅพ—๏ผš $ partialDer(u, x) + partialDer(u, y) der(y, x) = 0\ p(x, y) + q(x, y) der(y, x) = 0 $ ่ฟ™ๅฐฑ่กจๆ˜Ž $y(x)$ ๆ˜ฏๅŽŸๆ–น็จ‹็š„่งฃ ] ่ฟ™ๅฏ็คบๆˆ‘ไปฌ๏ผŒๅฝขๅผไธŠๆˆ‘ไปฌ็กฎๅฎžๅฏไปฅๅฐ† $der(y, x)$ ่ง†ไฝœๅˆ†ๅผ่ฟ›่กŒๅค„็† #theorem[][ ่ฎพ $p, q$ ๅœจๅŒบๅŸŸ $D$ ไธŠ $C^1$ ไธ” $ p(x, y) dif x + q(x, y) dif y $ ๆฐๅฝ“๏ผŒๅˆ™๏ผš $ partialDer(p, y) = partialDer(q, x) $ ่‹ฅ $D$ ๆ˜ฏๅ•่ฟž้€šๅŒบๅŸŸ๏ผŒๅˆ™ๅไน‹ไนŸๆˆ็ซ‹ ] #proof[ - ่ฎพ $dif u = p(x, y) dif x + q(x, y) dif y$๏ผŒๅˆ™๏ผš $ partialDer(p, y) = partialDer(partialDer(u, x), y) = partialDer(partialDer(u, y), x) = partialDer(q, x) $ ๏ผˆๆณจๆ„ๅˆฐ $u$ ๆ˜ฏ $C^2$ ็š„๏ผŒๅ› ๆญคๅฏไปฅไบคๆขๅๅฏผๆ•ฐ็š„ๆฌกๅบ๏ผ‰ - ๅไน‹่‹ฅไธŠๅผๆˆ็ซ‹ไธ” $D$ ๅ•่ฟž้€š๏ผŒ่ฟ™ๅฐฑๆ˜ฏๆ ผๆž—ๅ…ฌๅผ็š„็›ดๆŽฅๆŽจ่ฎบ๏ผŒๅ–๏ผˆไธŽ้“่ทฏๆ— ๅ…ณ็š„๏ผ‰ๆ›ฒ็บฟ็งฏๅˆ†๏ผš $ u(x, y) = integral_(x_0, y_0)^(x, y) p(x, y) dif x + q(x, y) dif y $ ๅฎนๆ˜“้ชŒ่ฏ $u$ ๆปก่ถณ่ฆๆฑ‚ ] #example[][ $ (3x^2 + 6 x y^2) dif x + (6 x^2 y + 4 y^3) dif y = 0 $ ๅฏไปฅ้ชŒ่ฏ่ฟ™ๆ˜ฏๆฐๅฝ“ๅฝขๅผ๏ผŒไธ‹้ขๆˆ‘ไปฌๅ…ทไฝ“ๆฑ‚ๅ‡บ $u$ - ็”ฑไบŽ $partialDer(u, x) = 3x^2 + 6 x y^2$๏ผŒๅฏๅพ—๏ผš $ u = integral (3x^2 + 6 x y^2) dif x = x^3 + 3 x^2 y^2 + C(y) $ - ่ฟ›ไธ€ๆญฅ $ partialDer(u, y) = 6 x^2 y + C'(y) = 6 x^2 y + 4 y^3 => C'(y) = 4 y^3 => C(y) = y^4 + C_1 $ - ๅ› ๆญค $u = x^3 + 3 x^2 y^2 + y^4 + C_1$๏ผŒ่ฟ™ๅฐฑๆ˜ฏ้€š่งฃ ] #example[][ $ (x^2 + 2 x y - y^2) dif x + (x^2 - 2 x y - y^2) dif y = 0\ dif (1/3 x^3 - 1/3 y^3) + 2x y dif x + x^2 dif y - (y^2 dif x + 2 x y dif y) = 0\ dif (1/3 x^3 - 1/3 y^3) + dif (x^2 y) - dif (y^2 x) = 0\ dif (1/3 x^3 - 1/3 y^3 + x^2 y - y^2 x) = 0 $ ] ไธ€ๆ—ฆๅพฎๅˆ†ๆ–น็จ‹็š„ๅฝขๅผๆฐๅฝ“๏ผŒ่งฃๅ‡บๅพฎๅˆ†ๆ–น็จ‹ๆ˜ฏๅๅˆ†ๅฎนๆ˜“็š„ใ€‚็„ถ่€Œไบ‹ๅฎžไธŠ๏ผŒไธ€ไธชๅพฎๅˆ†ๆ–น็จ‹ๅฏ่ƒฝๅฏนๅบ”ไผ—ๅคš็š„ๅฏน็งฐๅฝขๅผใ€‚่ฎพ $f(x, y) !=0$๏ผŒๅˆ™๏ผš $ p(x, y) dif x + q(x, y) dif y = 0 <=> p(x, y) f(x, y) dif x + q(x, y) f(x, y) dif y = 0 $ ้€‰ๅ–ไธๅŒ็š„ $f(x, y)$ ๅฏ่ƒฝๆ”นๅ˜ๅฏน็งฐๅฝขๅผ็š„ๆฐๅฝ“ๆ€ง #definition[][ ่ฎพ้ž้›ถๅฏๅพฎๅ‡ฝๆ•ฐ $f(x, y)$ ๆปก่ถณ๏ผš $ p(x, y) f(x, y) dif x + q(x, y) f(x, y) dif y = 0 $ ๆ˜ฏๆฐๅฝ“ๅฝขๅผ๏ผŒๅˆ™็งฐ $f(x, y)$ ไธบ@proper ็š„็งฏๅˆ†ๅ› ๅญ ] #example[][ $ y dif x - x dif y = 0 $ ๅนถไธๆ˜ฏๆฐๅฝ“ๅฝขๅผ๏ผŒไฝ†๏ผš $ mu = 1/x^2, 1/y^2, ... $ ้ƒฝๆ˜ฏๅ…ถ็งฏๅˆ†ๅ› ๅญ\ ไบ‹ๅฎžไธŠ๏ผš $ dif(y/x) = 1/x dif y - y/x^2 dif x = 1/x^2 (y dif x - x dif y) = 0 $ ] ๆˆ‘ไปฌๅฝ“็„ถๅธŒๆœ›ๅฏนไธ€่ˆฌ็š„ๅฏน็งฐๅฝขๅผๆ‰พๅˆฐๅˆ้€‚็š„็งฏๅˆ†ๅ› ๅญ๏ผŒๅ…ทไฝ“่€Œ่จ€๏ผŒๆ˜ฏ่ฆๆฑ‚๏ผš $ partialDer(p f, y) = partialDer(q f, x) <=>\ f (partialDer(p, y) - partialDer(q, x)) = q partialDer(f, x) - p partialDer(f, y) $<int_factor> ่ฟ™ๆ˜ฏไธ€ไธชไธ€้˜ถ็บฟๆ€งๅๅพฎๅˆ†ๆ–น็จ‹๏ผŒไธๅนธ็š„ๆ˜ฏ่ฏฅ็ฑปๅๅพฎๅˆ†ๆ–น็จ‹็š„้€š็”จ่งฃๆณ•ๅช่ƒฝๅฝ’็ป“ไบŽๆฑ‚่งฃๅๆŽจ่ฟ‡็จ‹็š„ๅธธๅพฎๅˆ†ๆ–น็จ‹๏ผŒๅ› ๆญคไธ€่ˆฌ็š„็งฏๅˆ†ๅ› ๅญๆ˜ฏๆฒกๆœ‰้€š็”จ็š„่งฃๆณ•็š„ใ€‚ๆ‰€ๅนธ๏ผŒๅœจไธ€ไบ›็‰นๆฎŠๆƒ…ๅฝขไธ‹๏ผŒๆˆ‘ไปฌๆ˜ฏๅฏไปฅๆฑ‚ๅพ—็งฏๅˆ†ๅ› ๅญ็š„ใ€‚ๆˆ‘ไปฌ็›ดๆŽฅๅฏน $f$ ๆ–ฝๅŠ ้ขๅค–ๆกไปถ๏ผš - $f$ ไธŽ $y$ ๆ— ๅ…ณ๏ผŒๅŽŸๆ–น็จ‹ๅ˜ไธบ๏ผš $ f partialDer(p, y) = f partialDer(q, x) + q partialDer(f, x) $<ori_res> ่ฟ™ๆ˜ฏๅธธๅพฎๅˆ†ๆ–น็จ‹๏ผš $ partialDer(f, x) =f (partialDer(p, y) - partialDer(q, x)) / q $ ่ง‚ๅฏŸๅฏๅพ— $(partialDer(p, y) - partialDer(q, x)) / q$ ๅบ”ไธŽ $y$ ๆ— ๅ…ณใ€‚ๅŒๆ—ถๆญคๆ—ถๆˆ‘ไปฌๅช้œ€่งฃ $f$๏ผŒ$y$ ๅฏไปฅ่ง†ไฝœๅฎšๅ€ผ๏ผŒๅ› ๆญคไธŠ่ฟฐๆ–น็จ‹ๅฏไปฅๅŒ–็ฎ€ไธบ๏ผš $ (dif f) / f = (partialDer(p, y) - partialDer(q, x)) / q dif x\ ln |f| = integral (partialDer(p, y) - partialDer(q, x)) / q dif x + C $<res> ็”ฑไบŽ $f$ ๆ˜ฏ้ž้›ถ็š„๏ผŒๅ› ๆญค $f$ ็š„็ฌฆๅทๆ˜ฏ็กฎๅฎš็š„๏ผŒ่ฟ™ๅฐฑ่งฃๅ‡บไบ† $f$\ ไธ้šพๅ‘็Žฐๅช่ฆ $(partialDer(p, y) - partialDer(q, x)) / q$ ไธŽ $y$ ๆ— ๅ…ณ๏ผŒ@res ไพฟๅฏ็ป™ๅ‡บไธ€ไธชไธŽ $y$ ๆ— ๅ…ณ็š„ $f$ ๆปก่ถณ@ori_res๏ผŒ่ฟ›่€Œไปฃๅ…ฅ@int_factor ๅบ”ๅฝ“ไนŸๆˆ็ซ‹ใ€‚่ฟ™่กจๆ˜Ž $(partialDer(p, y) - partialDer(q, x)) / q$ ไธŽ $y$ ๆ— ๅ…ณๆ˜ฏๅฏไปฅๆ‰พๅˆฐๆญคๅฝขๅผ็š„็งฏๅˆ†ๅ› ๅญ็š„ๅ……่ฆๆกไปถใ€‚ #theorem[ไธ€้˜ถ็บฟๆ€งๅพฎๅˆ†ๆ–น็จ‹][ ไธ€้˜ถ็บฟๆ€งๅพฎๅˆ†ๆ–น็จ‹๏ผš $ y' = p(x) y + q(x) $ ็š„ๅฏน็งฐๅฝขๅผไธบ๏ผš $ (p(x) y + q(x)) dif x - dif y = 0 $ ่ฎก็ฎ—: $ (partialDer(p(x) y + q(x), y) - partialDer(1, x)) / (-1) = - p(x) $ ็งฏๅˆ†ๅ› ๅญ $f$ ๆปก่ถณ๏ผš $ ln |f| = integral - p(x) dif x + C\ |f| = e^C e^(-integral p(x) dif x) = A e^(-integral p(x) dif x) $ ๅ› ๆญคๅ– $f = e^(-integral p(x) dif x)$ ๅณๅฏ๏ผŒ่ฟ›่€ŒๅŽŸๆ–น็จ‹ๅฏ่งฃ ] ไธๅนธ็š„ๆ˜ฏ๏ผŒ่ฟ™ๆ ท่ƒฝๅคŸๆ‰พๅˆฐ็š„็งฏๅˆ†ๅ› ๅญไป็„ถ้žๅธธๆœ‰้™ใ€‚ๅฎž่ทตไธŠๅฏปๆ‰พ็งฏๅˆ†ๅ› ๅญๆ›ดๅคšๅช่ƒฝ้ ็›ดๆŽฅ่ง‚ๅฏŸๅฝขๅผ #example[][ ๅฏปๆ‰พไธ€ไธชๆ›ฒ็บฟไฝฟๅพ—ไปŽๅฎš็‚น $(c, 0)$ ๅฐ„ๅ‡บ็š„ๅ…‰็บฟ็ปๆ›ฒ็บฟๅๅฐ„ๅŽไธŽ $x$ ่ฝดๅนณ่กŒ๏ผš - ้€š่ฟ‡ๅ‡ ไฝ•ๆ–นๆณ•ๅฏไปฅๅˆ—ๅ‡บๆ–น็จ‹ $y/x = (2y)/(1-y'^2)$ - ไธๅฆจ่ฎพ $y' > 0, y> 0$๏ผŒ่งฃๅพ—๏ผš $ y' = - x /y + sqrt(1 + (x/y)^2)\ y dif y = (sqrt(x^2 + y^2)-x)dif x\ x dif x + y dif y = sqrt(x^2 + y^2) dif x\ (x dif x + y dif y)/sqrt(x^2 + y^2) = dif x\ dif(sqrt(x^2 + y^2)) = dif x\ sqrt(x^2 + y^2) = x + C $ - ๅนณๆ–นๅฏๅพ—ๆ–น็จ‹ไธบ๏ผš $ y^2 = 2 x C + C^2 = 2C(x+1/2C) $ ] #theorem[][ ๅ‡่ฎพ $p, q, f, g in C^1$๏ผŒ$f, g$ ้ƒฝๆ˜ฏๅฏน็งฐๅฝขๅผ๏ผš $ 0 = p(x, y) dif x + q(x, y) dif y := w $ ็š„็งฏๅˆ†ๅ› ๅญ๏ผŒไธ” $f/g$ ไธๆ˜ฏๅธธๆ•ฐ๏ผŒๅˆ™ $f/g = C$ ๆ˜ฏๅŽŸๆ–น็จ‹็š„้€š่งฃ๏ผŒๅ…ถไธญ $C$ ไธบๅธธๆ•ฐ ] #proof[ ่ฎพ๏ผš $ f w = d u_1\ g w = d u_2 $ ไธๅฆจ่ฎพ $partialDer(u_2, y) !=0$๏ผŒๅˆ™็”ฑ้šๅ‡ฝๆ•ฐๅฎšไน‰๏ผŒ $u_2 = C$ ๅฏไปฅ่งฃๅ‡บ $y = y(x)$๏ผŒๆญคๆ—ถๆœ‰๏ผš $ 0 = der(u_1(x, y(x)) w(x, y(x)), x)\ = w(x, y)der(u_1(x, y(x)), x) + u_1(x, y)der(w(x, y(x)), x)\ = w(x, y) $ ] ็†่ฎบไธŠ่ฎฒ๏ผŒๆ‰€ๆœ‰ๅธธๅพฎๅˆ†ๆ–น็จ‹็š„ๅˆ็ญ‰่งฃๆณ•้ƒฝๅฏไปฅๅŒ–ไธบๆฐๅฝ“ๆ–น็จ‹ใ€‚ไฝ†ๆ˜ฏๅฎž่ทตไธŠๆˆ‘ไปฌๆ›ดๅคš้‡‡็”จๅ…ทไฝ“็š„ๆ–นๆณ•ๆฑ‚่งฃใ€‚ == ๅˆ†็ฆปๅ˜้‡ๆณ• #theorem[ๅˆ†็ฆปๅ˜้‡ๆณ•][ ่ฎพๅพฎๅˆ†ๆ–น็จ‹ๅฝขๅฆ‚๏ผš $ der(y, x) = f(x)g(y) $ - ่‹ฅ $g(y) = 0$๏ผŒๅˆ™ $f(x) = C$ ๅฐฑๆ˜ฏๅŽŸๆ–น็จ‹็š„่งฃ - ๅฆๅˆ™๏ผŒๅŒ–ไธบ๏ผš $ 1/g(y) der(y, x) = f(x) $ ่ฎพ $G(y) = integral 1/(g(y)) dif y$๏ผŒๅˆ™: $ G'(y) = 1/g(y) der(y, x) = f(x) => G(y) = integral f(x) dif x + C $ ] #example[][ ๆฑ‚่งฃ $der(y, x) = y^2 cos x$: - ้ฆ–ๅ…ˆ $y = 0$ ๆ˜ฏๅฎƒ็š„ไธ€ไธช่งฃ - ๅ…ถๆฌก๏ผŒๅ‡่ฎพ $y$ ไธๆ’ไธบ้›ถ๏ผŒๅˆ™๏ผš $ 1/(y^2) dif y = cos x dif x\ -1/y = sin x + C\ y = -1/(sin x + C) $ ] #remark[][ ่ฟ™็งๅฝขๅผไธ‹ๆˆ‘ไปฌๅทฒ็ป้ป˜่ฎคไบ† $y$ ๆ˜ฏๅ› ๅ˜้‡่€Œ $x$ ๆ˜ฏ่‡ชๅ˜้‡๏ผŒๅ› ๆญคไธ่ƒฝ่ฎฉ $x$ ๆ’็ญ‰ไบŽ $cos x$ ็š„้›ถ็‚นใ€‚ๅฆ‚ๆžœไธ่€ƒ่™‘ๅ‡ฝๆ•ฐๅ…ณ็ณปๅช่€ƒ่™‘่งฃๆ›ฒ็บฟ๏ผŒๅˆ™่ฟ™ไนŸๆ˜ฏไธ€ไธช็‰นๆฎŠ็š„่งฃ ] #example[][ $der(y, x) = y^(1/3)$: - $y = 0$ ๅฝ“็„ถๆ˜ฏ่งฃ - ๅฆๅˆ™๏ผŒๆˆ‘ไปฌๅ…ˆ่ฏๆ˜Ž่‹ฅ $y(x_0) = 0$๏ผŒๅˆ™ๅฝ“ $x < x_0$ ๆ—ถ $y = 0$๏ผš - ๅฆๅˆ™๏ผŒๅ‡่ฎพ $x_1 < x_0, f(x_1) !=0$๏ผŒไธๅฆจ่ฎพๅ…ถๅคงไบŽ้›ถใ€‚ๅ–๏ผš $ x_2 = inf(Inv(y)(0) sect [x_1, x_0]) $ ๆณจๆ„ๅˆฐไธŠๅผๅณไพงๆ˜ฏ้—ญ้›†๏ผŒๅ› ๆญค $y(x_2) = 0 => der(y, x) |_(x = x_2)= 0$\ ๆญคๅค–๏ผŒ$der(y, x)$ ๅœจ $[x_1, x_2]$ ไน‹้—ดๆ’ๆญฃ๏ผŒ่ฟ™ๆ„ๅ‘ณ็€ $y(x)$ ๅœจ $[x_1, x_2]$ ไน‹้—ดๅ•่ฐƒ้€’ๅขž๏ผŒ็Ÿ›็›พ๏ผ - ไน‹ๅŽ๏ผŒๆˆ‘ไปฌๅˆ†็ฆปๅ˜้‡ $ 1/y^(1/3) dif y = dif x\ 3/2 y^(2/3) = x + C\ y = plus.minus (2/3 x + C)^(3/2) $ - ็ปผไธŠ๏ผŒๅŽŸๆ–น็จ‹็š„้€š่งฃไธบ๏ผš $ y = cases((2/3 x + C)^(3/2) quad 2/3x + C >0, 0 quad 2/3x + C <= 0) $ ] #example[][ ไธ‹้ขๆ˜ฏๅ‡ ็งๅธธ่งๅฝขๅผ + $der(y, x) = f(x)y$ - $y = 0$ ๅฝ“็„ถๆ˜ฏ่งฃ - ๅฆๅˆ™๏ผš $ 1/y dif y = f(x) dif x\ ln |y| = integral f(x) dif x + C\ y = A e^(integral f(x) dif x) $ ไบ‹ๅฎžไธŠ๏ผŒๅฏไปฅ่ฏๆ˜Ž่‹ฅ $y(x_0) = 0$๏ผŒๅˆ™ $y = 0$๏ผŒๅ› ๆญคๅฏไปฅๅŽปๆމ็ปๅฏนๅ€ผ + $der(y, x) = g(y/x)$\ ไปค $y = x u$๏ผŒๆ–น็จ‹ๅŒ–ไธบ๏ผš $ der(y, x) = u + x der(u, x) = g(u)\ 1/(g(u) - u) dif u = 1/x dif x\ integral 1/(g(u) - u) dif u = ln |x| + C\ $ + $der(y, x) = (a_1 x + b_1 y + c_1)/(a_2 x + b_2 y + c_2)$\ - ่‹ฅ $c_1 = c_2 = 0$๏ผŒไธŠไธ‹ๅŒๆ—ถ้™คไปฅ $x$ ๅณๅŒ–ไธบไธŠไธ€็งๆƒ…ๅฝข - ๅฆๅˆ™๏ผŒ่ฏ•ๅ›พๅš็บฟๆ€งๆ›ฟๆข๏ผš ่ฎพ $A = mat(a_1, b_1;a_2, b_2), alpha = vec(c_1,c_2)$ $ vec(x, y) = B vec(x', y') + beta $ ๆˆ‘ไปฌๅธŒๆœ›๏ผš $ A vec(x, y) + alpha = A(B vec(x', y') + beta) + alpha = A B vec(x', y') $ ไนŸๅฐฑๆ˜ฏ๏ผš $ A beta + alpha = 0 $ ่ฏฅ็บฟๆ€งๆ–น็จ‹ๆœ‰่งฃๆ—ถ๏ผŒไธ€ๅฎšๅฏไปฅ้€š่ฟ‡็บฟๆ€งๆ›ฟๆขๅŒ–ไธบไธŠไธ€็งๆƒ…ๅฝข\ - ๅฆๅˆ™ $"rank"(A) = 1$๏ผŒไธๅฆจ่ฎพ $(a_2, b_2) = k (a_1, b_1)$๏ผŒไปค๏ผš $ u = a_1 x + b_1 y $ ๅŽŸๆ–น็จ‹ๅŒ–ไธบ๏ผš $ der(u, x) = a_1 + b_1 der(y, x) = a_1 + b_1 (u + c_1)/(k u + c_2) $ ่ฟ™ๆ—ถๅณไพงๅทฒๆ—  $x$๏ผŒ็›ดๆŽฅๅˆ†็ฆปๅ˜้‡็งฏๅˆ†ๅณๅฏ + $y f(x y) dif x + x g(x y) dif y = 0$\ ไปค $x y = u$๏ผŒๆ–น็จ‹ๅŒ–ไธบ๏ผš $ u/x f(u) dif x + g(u)(dif u - u/x dif x) = 0\ $ ่ฟ™ไนŸๆ˜ฏๅˆ†็ฆปๅ˜้‡็š„ๅฝขๅผ ] #example[ๆœ€้€Ÿ้™็บฟ][ ๆฑ‚ $a -> b$ ็š„ไธ€ๆกๆ›ฒ็บฟ๏ผŒไฝฟๅพ—ๅฐ็ƒไปŽ $a$ ๆ— ๆ‘ฉๆ“ฆ็š„ๆป‘ไธ‹็š„ๆ—ถ้—ดๆœ€็Ÿญ\ ไธฅๆ ผๆฅ่ฏด่ฟ™ไธช้—ฎ้ข˜้œ€่ฆ็”จๅˆฐๅ˜ๅˆ†ๆณ•๏ผŒไธ่ฟ‡ๆŠ›ๅผ€้ซ˜็บง็†่ฎบ๏ผŒๅˆฉ็”จๅ…‰็บฟๆŠ˜ๅฐ„ๅฎšๅพ‹็š„็›ธๅ…ณๆƒณๆณ•ไนŸๅฏไปฅไธไธฅๆ ผ็š„ๆฑ‚่งฃใ€‚\ ๅฏไปฅ่ฏๆ˜Ž๏ผŒๅ…‰็บฟไปŽ $a$ ็‚นๅˆฐ $b$ ็‚น็ป่ฟ‡่‹ฅๅนฒ็งไป‹่ดจๆ—ถ๏ผŒๅ…ฅๅฐ„่ง’็š„ๆญฃๅผฆไธŽไป‹่ดจไธญไผ ๆ’ญ็š„้€Ÿๅบฆๆ˜ฏๅฎšๅ€ผใ€‚ๆˆ‘ไปฌไพๆฌกๆฅๅฏนๆ›ฒ็บฟๅปบ็ซ‹ๅพฎๅˆ†ๆ–น็จ‹๏ผš - ๅœจๆ›ฒ็บฟไธŠไปปๆ„ไธ€็‚น $(x, y)$ ็š„้€Ÿๅบฆ่กจ็คบไธบ๏ผš $ v = sqrt(2 g y) $ ๏ผˆ่ƒฝ้‡ๅฎˆๆ’๏ผ‰ - โ€œๅ…ฅๅฐ„่ง’โ€ไนŸๅณไธŽๅž‚็›ดๆ–นๅ‘ๅคน่ง’ๆปก่ถณ $sin alpha = sqrt(1+y'^2)$ ๅ› ๆญคๅฏไปฅๅปบ็ซ‹ๆ–น็จ‹๏ผš $ sqrt(2 g y)/ sqrt(1+y'^2) = C\ 2 g y = C^2 (1+y'^2)\ 1 + y'^2 = 2/C^2 g y\ y' = sqrt(2/C^2 g y - 1)\ 1/sqrt(2/C^2 g y - 1) dif y = dif x\ integral 1/sqrt(2/C^2 g y - 1) dif y = x + C\ $ ] == ไธ€้˜ถ็บฟๆ€งๅพฎๅˆ†ๆ–น็จ‹ #theorem[ๅธธๆ•ฐๅ˜ๆ˜“ๆณ•][ ๅฏนไบŽไธ€้˜ถ็บฟๆ€งๅพฎๅˆ†ๆ–น็จ‹๏ผš $ der(y, x) + p(x) y = q(x) $ ไธ€่ˆฌๅ‡่ฎพ $p, q$ ้ƒฝ่ฟž็ปญไธ” $p(x)$ ไธๆ’ไธบ้›ถ ๆˆ‘ไปฌๅฏไปฅๅ…ˆ่งฃๅ‡บ้ฝๆฌกๆ–น็จ‹๏ผš $ der(y, x) + p(x) y = 0 $ ๅฎƒ็š„่งฃไธบ๏ผš $ y = C e^(-integral p(x) dif x) := C v(x) $ ๅšๅ˜้‡ๆ›ฟๆข๏ผš $ y = u(x) v(x) $ ไปฃๅ…ฅๅ‘็Žฐ๏ผš $ q(x) - p(x) u(x) v(x) = der(u(x) v(x), x) = v(x) der(u(x), x) + u(x) der(v(x), x) $ ไฝ†ๆ˜ฏๆณจๆ„ๅˆฐ๏ผš $ der(v(x), x) + p(x) v(x) = 0 $ ไธŠๅผๅŒ–็ฎ€ไธบ๏ผš $ q(x) = v(x) der(u(x), x)\ $ ๅพ…่งฃ็š„ๅ‡ฝๆ•ฐๆ˜ฏ $u(x)$๏ผŒ่ฟ™ๆ˜ฏๅฏๅˆ†็ฆปๅ˜้‡็š„ ] #example[่ดๅŠชๅˆฉๆ–น็จ‹][ ๅฝขๅฆ‚๏ผš $ der(y, x) = p(x) y + q(x) y^n $ ็š„ๆ–น็จ‹็งฐไธบ่ดๅŠชๅˆฉๆ–น็จ‹ใ€‚้™คๅŽป $y = 0$ ็š„่งฃๅค–๏ผŒๅฏไปฅๅšๅ˜้‡ๆ›ฟๆข๏ผš $ t = y^(1-n)\ dif t = -(1-n) y^(-n) dif y\ dif y = -1/(1-n) y^(n) dif t\ $ ไธŠๅผๅŒ–็ฎ€ไธบ๏ผš $ y^(-n)der(y, x) = p(x) y^(-n+1) + q(x)\ -1/(1-n) der(t, x) = p(x) t + q(x)\ $ ่ฟ™ๅฐฑๅŒ–ไธบไบ†ไธ€้˜ถ็บฟๆ€งๅพฎๅˆ†ๆ–น็จ‹ ] #example[][ ๅฏนไบŽๅฝขๅฆ‚๏ผš $ der(y, x) = p(x)y^2+q(x)y+r(x) $ ็š„ๅพฎๅˆ†ๆ–น็จ‹๏ผŒไธ€่ˆฌๆฒกๆœ‰ๅˆ็ญ‰่งฃๆณ•ใ€‚ไฝ†ๆ˜ฏๅ‡่ฎพๆˆ‘ไปฌ็Œœๅ‡บไบ†ไธ€ไธช่งฃ $y = f(x)$๏ผŒๅฏไปฅๅšๅ˜้‡ๆ›ฟๆข๏ผš $ y = u + f(x)\ dif y = dif u + f'(x) dif x\ $ ไปฃๅ…ฅๅŽŸๆ–น็จ‹ๅŽ๏ผŒไป็„ถๆ˜ฏ่ฏฅๆ–น็จ‹็š„ๅฝขๅผใ€‚็„ถ่€Œๆณจๆ„ๅˆฐ $u = 0$ ไธ€ๅฎšๆ˜ฏไธ€ไธช่งฃ๏ผŒๆœ€ๅŽไธ€ๅฎšไผšๆถˆๆމ้›ถๆฌก้กนใ€‚ไปฃๅ…ฅๅ‘็Žฐ๏ผš $ dif u + f'(x) dif x = (p(x)(u+f(x))^2+q(x)(u+f(x))+r(x))dif x\ dif u = (p(x)(u^2 + 2u f(x)) + q(x) u ) dif x\ der(u, x) = p(x)u^2 + (2 p(x) f(x) + q(x))u $ ่ฟ™ๆ˜ฏ่ดๅŠชๅˆฉๆ–น็จ‹๏ผŒ่ฟ›่€Œๅฏ่งฃ ] #theorem[][ ่ฎพ $a, b in RR, a != 0$๏ผŒๆ–น็จ‹๏ผš $ der(y, x) = a y^2 + b x^m $ ๅฝ“ไธ”ไป…ๅฝ“ $m = 0, - 2, - (4k)/(2k plus.minus 1)$ ๆ—ถๅฏ็งฏๅˆ†ๆฑ‚่งฃ ] #proof[ ๆ— ๅฆจๅ‡่ฎพ $a = 1$\ - $m = 0$ ๆ—ถๆ˜พ็„ถๅฏ่งฃ - $m = -2$ ๆ—ถ๏ผŒๅšๅ˜้‡ๆ›ฟๆข๏ผš $ z = x y\ dif z = x dif y + y dif x\ dif y = 1/x dif z - y/x dif x\ $ ไปฃๅ…ฅๅพ—๏ผš $ 1/x dif z - y/x dif x = (y^2 + b x^(-2)) dif x\ x dif z - x y dif x = ((x y)^2 + b) dif x\ x dif z -z dif x = (z^2 + b) dif x $ ่ฟ™ๆ˜ฏๅฏๅˆ†็ฆปๅ˜้‡็š„ - $m = -(4k)/(2k plus.minus 1)$ ๅฟ…่ฆๆ€ง็”ฑๅˆ˜็ปดๅฐ”็ป™ๅ‡บ๏ผŒ้ข‡ไธบๅคๆ‚ ] ็‰นๅˆซ็š„๏ผŒ$der(y, x) = x^2 + y^2$ ๆ˜ฏไธๅฏ็งฏๅˆ†ๆฑ‚่งฃ็š„๏ผŒ่ฟ™ไนŸ่ฏดๆ˜Žไบ†ๆฑ‚่งฃๅพฎๅˆ†ๆ–น็จ‹ๆ˜ฏ้žๅธธไน‹ๅ›ฐ้šพ็š„ใ€‚ == ไธ€้˜ถ้šๆ–น็จ‹ #definition[][ ๅฝขๅฆ‚๏ผš $ F(x, y, y') = 0 $ ็š„ๆ–น็จ‹็งฐไธบไธ€้˜ถ้šๆ–น็จ‹ ] ไธ€่ˆฌ่€Œ่จ€ๅฎƒ็š„ๆฑ‚่งฃๅฝ“็„ถๆ˜ฏ้žๅธธๅ›ฐ้šพ็š„๏ผŒไฝ†ๆ˜ฏๅฏนไบŽ็‰นๅฎš็š„ๅ‡ ็ฑป๏ผŒๆˆ‘ไปฌๅฏไปฅๅฐ่ฏ•ๆฑ‚่งฃ๏ผš #theorem[][ ๅฏนไบŽไปฅไธ‹ๅ‡ ็ฑป้šๆ–น็จ‹ๆˆ‘ไปฌ็ป™ๅ‡บไธ€ไบ›ๆ€่ทฏ๏ผš - ๅฏไปฅๅŒ–ไธบ๏ผš $ y = f(x, y') $<ori> ็š„ๆ–น็จ‹ใ€‚\ ๆญคๆ—ถไธค่พนๅฏน $x$ ๆฑ‚ๅฏผๅพ—๏ผš $ y' = partialDer(f(x, y'), x) = f'_1(x, y') + f'_2(x, y')y'' $ ่ฟ™ๆ˜ฏๅ…ณไบŽ $y', x$ ็š„ๆ˜พๅผๅพฎๅˆ†ๆ–น็จ‹ใ€‚\ ่‹ฅ่ƒฝ่งฃๅ‡บ $y' = p(x)$๏ผŒไปฃๅ…ฅ@ori ๅฐฑๆ˜ฏๅŽŸๆ–น็จ‹็š„่งฃ\ ่‹ฅๅช่ƒฝ่งฃๅ‡บ $x = q(y')$๏ผŒไปฃๅ…ฅ@ori ๅฐฑๆ˜ฏๅŽŸๆ–น็จ‹ไปฅ $y'$ ไธบๅ‚ๆ•ฐ็š„ๅ‚ๆ•ฐ่กจ่พพ\ ๅฆๅˆ™๏ผŒ่‹ฅๅช่ƒฝ่งฃๅ‡บ $g(x, y') = 0$๏ผŒๆ–น็จ‹็š„่งฃๅช่ƒฝ่กจ่พพไธบ๏ผš $ cases( y = f(x, y'), g(x, y') = 0 ) $ - ๅฏไปฅๅŒ–ไธบ๏ผš $ x = f(y, y') $ ไธค่พนๅฏน $y$ ๆฑ‚ๅฏผๅพ—๏ผš $ 1/y' = partialDer(f(y, y'), y) = f'_1(y, y') + f'_2(y, y')der(y', y) = f'_1(y, y') + f'_2(y, y') y''/y' $ ๅš็ฑปไผผ่ฎจ่ฎบๅณๅฏ - ๅฏไปฅๅŒ–ไธบ $f(x, y') = 0$๏ผŒๅช้œ€่ฆ่€ƒ่™‘ๅฎƒ็š„ๅ‚ๆ•ฐๅฝขๅผ๏ผš $ x = u(t)\ y' = v(t) $ ๅˆ™๏ผš $ dif y = v(t) dif x = v(t) u'(t) dif t $ ไธค่พน็งฏๅˆ†ๅณๅพ— $y$ - ๅฏไปฅๅŒ–ไธบ $f(y, y') = 0$ ็š„ๅฝขๅผใ€‚็ฑปไผผ็š„๏ผŒๅฆ‚ๆžœ่ƒฝๆ‰พๅˆฐๅ‚ๆ•ฐๆ–น็จ‹๏ผš $ y = u(t)\ y' = v(t) $ ๅˆ™๏ผš $ dif y = u'(t) dif t\ dif y = v(t) dif x\ v(t) dif x = u'(t) dif t\ dif x = (u'(t))/v(t) dif t $ ็งฏๅˆ†ๅณๅฏ\ ๆณจๆ„้œ€่ฆ่กฅๅ…… $v(t) = 0$ ็š„่งฃ ] #example[][ $y'^3+2x y' - y = 0$ ไธค่พน็›ดๆŽฅๅฏน $y$ ๆฑ‚ๅฏผๅพ—๏ผš $ 3y'^2 y'' + 2y'+ 2x y'' - y' = 0\ (3y'^2 + 2x)y'' = -y'\ (3P^2 + 2x)P' = -P\ der(P, x) =- P/(3P^2+2x)\ 2P der(P, x) = -(2P^2)/(3P^2+2x)\ der(P^2, x) = -(2P^2)/(3P^2+2x)\ $ ่ฟ™ๆ˜ฏๆ–น็จ‹ๅณไพงๅฏนไบŽ $P^2$ ๆ˜ฏ้ฝไธ€ๆฌก็š„๏ผŒๆ˜ฏๆˆ‘ไปฌๅฏ่งฃ็š„ๆ–น็จ‹\ $ der(x, P^2) = -3/2 - x/P^2 $ ไปค $u = x/P^2, dif u = (P^2 dif x - x dif P^2)/P^4$ $ der(u, P^2) = 1/P^2 der(x, P^2) - u/P^2 = -1/P^2(3/2+u) -u/P^2\ (dif u)/(3/2 + 2u) = - 1/P^2 dif P^2\ ln |3/2 + 2u| = - ln 1/P^2 + C\ 3/2 + 2u = C P^2\ $ ] #example[Clairaut][ $y = x y' + f(y')$\ ๆฑ‚ๅฏผๅพ—: $ y' = y' + x y'' + f'(y') y''\ x y'' + f'(y') y'' = 0\ $ ่ฎจ่ฎบ๏ผš - $y'' = 0$๏ผŒๆญคๆ—ถๅŽŸๆ–น็จ‹ๆ˜ฏไธ€ๆ—็›ด็บฟ $y = x c + f(c)$ - $x = - f'(y')$๏ผŒๆญคๆ—ถไปฃๅ›žๅพ— $y = - y' f'(y') + f(y')$๏ผŒ่ฟ™ๆ˜ฏไปฅ $y'$ ไธบๅ‚ๆ•ฐ็š„็‰น่งฃ ๅฝ“ $f'' != 0$ ๆ—ถ๏ผŒ็›ด็บฟๆ—ๆฐๅฅฝๆ˜ฏ็‰น่งฃ็š„ๅˆ‡็บฟๆ—๏ผŒ่ฟ™ๆ˜ฏๅ› ไธบๆญคๆ—ถ $f'$ ๆœ‰ๅๅ‡ฝๆ•ฐ๏ผŒๅœจ็‰น่งฃไธญๅฏไปฅ่งฃๅ‡บ๏ผš $ y' = u(x)\ y = x u(x) + f(u(x)) $ ๆญคๆ—ถ๏ผŒ็›ด็บฟ๏ผš $ y = x u(x_0) + f(u(x_0)) $ ๆฐๅฅฝๅฐฑๆ˜ฏ็‰น่งฃไบŽ $(x_0, y_0)$ ็‚น็š„ๅˆ‡็บฟ๏ผˆๆ˜พ็„ถ็›ด็บฟ่ฟ‡ $(x_0, y_0)$ ไธ”ๆ–œ็އ $u(x)$ ๅฝ“็„ถๅฐฑๆ˜ฏ่ฏฅ็‚นๅค„็š„ๅฏผๆ•ฐ๏ผ‰ ไบ‹ๅฎžไธŠ๏ผŒๆˆ‘ไปฌๅนถๆฒกๆœ‰่ฏดๆ˜Ž่ฟ™ไบ›ๅฐฑๆ˜ฏๅŽŸๆ–น็จ‹็š„ๆ‰€ๆœ‰่งฃใ€‚ๅŽ็ปญๆˆ‘ไปฌไผš่ฏๆ˜Žๅœจ $f'' != 0$ ็š„ๆƒ…ๅ†ตไธ‹๏ผŒ็กฎๅฎž่ฟ™ไบ›ๅ›Šๆ‹ฌไบ†ๅŽŸๆ–น็จ‹่งฃ็š„ๆ‰€ๆœ‰ๆƒ…ๅ†ต๏ผˆไฝ†ๅฏไปฅๆž„้€ ๅ‡บๅ…ถไป–็š„่งฃ๏ผŒไพ‹ๅฆ‚ๅฐ†ๅˆ‡็บฟ-็‰น่งฃ-ๅˆ‡็บฟๆ‹ผๆŽฅ่ตทๆฅไนŸๆ˜ฏไธ€ไธช่งฃ๏ผ‰ ] == ๅบ”็”จไธพไพ‹ ่‡ณๆญค๏ผŒๆˆ‘ไปฌๅทฒ็ป็ป™ๅ‡บไบ†ๆ‰€ๆœ‰ไธ€้˜ถๅพฎๅˆ†ๆ–น็จ‹็š„ๅˆ็ญ‰่งฃๆณ•ใ€‚ๅฐฝ็ฎกๆ–นๆณ•ๆœ‰้™๏ผŒไฝ†ๆ˜ฏๅฎƒไปฌๅทฒ็ป่ƒฝๅคŸ่งฃๅ‡บไบ†่ฎธๅคš้‡่ฆ็š„ๆ–น็จ‹ #example[ไธคไธช็‰ฉ็ง็š„็”Ÿๆ€ๆ–น็จ‹][ ไธ€ๆˆ˜ๆœŸ้—ด๏ผŒ็”Ÿๆ€ๅญฆๅฎถๅ‘็Žฐ้š็€ไบบ็ฑปๆ•้ฑผ้‡ไธ‹้™๏ผŒไธค็ฑป้ฑผไธญไปฅๅ…ถไป–้ฑผไธบ้ฃŸ็š„้ฑผ็š„ๆฏ”ไพ‹ไธŠๅ‡๏ผŒ่€Œไปฅๆค็‰ฉไธบ้ฃŸ็š„้ฑผ็š„ๆฏ”ไพ‹ไธ‹้™ใ€‚ไป–ไปฌๆๅ‡บไบ†ไธ€ไธชๆจกๅž‹๏ผš\ ่ฎพไปฅ้ฑผไธบ้ฃŸ็š„้ฑผ็š„ๆ•ฐ้‡ไธบ $x = x(t)$, ไปฅๆค็‰ฉไธบ้ฃŸ็š„้ฑผ็š„ๆ•ฐ้‡ไธบ $y = y(t)$๏ผŒไปค $r_x, r_y$ ๆ˜ฏไธค่€…็š„ๅขž้•ฟ็އใ€‚ๆ˜พ็„ถ $r_x$ ๅบ”่ฏฅ้š $y$ ้€’ๅขž๏ผŒ่€Œๅฝ“ $y$ ่พƒๅฐๆ—ถๅบ”่ฏฅๆœ‰ $r_x < 0$๏ผŒ่ฟ›่€Œ่ฎพ๏ผš $ r_x = sigma y - lambda $ ็ฑปไผผ็š„ๅŽŸๅ› ๏ผŒ่ฎพ๏ผš $ r_y = mu - delta x $ ๏ผˆไธŠ้ข็š„ๅธธๆ•ฐๅบ”่ฏฅ้ƒฝๆ˜ฏๆญฃๆ•ฐ๏ผ‰\ ่ฟ™็ป™ๅ‡บไบ†ๅพฎๅˆ†ๆ–น็จ‹็ป„๏ผš $ x'/x = sigma y - lambda\ y'/y = mu - delta x $ ไธคๅผ็›ธๆฏ”๏ผš $ y'/x' x/y = (mu - delta x)/(sigma y - lambda) $ ๆณจๆ„ๅˆฐ $y'/x' = der(y, x)$๏ผŒ่ฟ™ๅฐฑๆถˆๆމไบ† $t$ $ y' (sigma y - lambda)/y = (mu - delta x)/x\ sigma y - lambda ln y = mu ln x - delta x + C\ sigma y + delta x - lambda ln y - mu ln x = C\ $ ่™ฝ็„ถๆˆ‘ไปฌ้šพไปฅ็ปง็ปญ่ฎก็ฎ—๏ผŒไฝ†ๆˆ‘ไปฌๅฏไปฅๅšๅฎšๆ€ง็ ”็ฉถ๏ผŒๅฏไปฅๅ‘็Žฐๅฎƒ็š„่งฃ้ƒฝๆ˜ฏๅ‘จๆœŸ่งฃใ€‚\ ๅŒๆ—ถ๏ผŒๆˆ‘ไปฌ่ฟ˜ๅฏไปฅๆฑ‚ๅ‡บๅนณๅ‡ๅ€ผ๏ผš $ (dif x)/x = (-lambda + sigma y) dif t\ integral_T (dif x)/x = integral_T (-lambda + sigma y) dif t\ integral_T (dif ln(x)) = integral_T (-lambda + sigma y) dif t\ 0 = integral_T (-lambda + sigma y) dif t\ 0 = -lambda T + sigma integral_T y dif t\ (lambda)/sigma = 1/T integral_T y dif t $ ่ฟ™ๅฐฑๆ˜ฏ $y$ ๅœจไธ€ไธชๅ‘จๆœŸๅ†…็š„ๅนณๅ‡ๅ€ผ\ ๅฝ“ๆ•ๆž้‡ๅ‡ๅฐ‘ๆ—ถ๏ผŒไธคไธช็‰ฉ็ง็š„ๅขž้•ฟ็އ้ƒฝๅขžๅŠ ๏ผŒ็›ธๅฝ“ไบŽ $mu$ ๅขžๅคง่€Œ $lambda$ ๅ‡ๅฐ‘๏ผŒๅฏไปฅ็œ‹ๅˆฐ $x$ ็š„ๅนณๅ‡ๅ€ผไผšๅขžๅŠ ๏ผŒ่€Œ $y$ ็š„ๅนณๅ‡ๅ€ผไผšๅ‡ๅฐ‘ ] #example[$n$ ไฝ“้—ฎ้ข˜][ $n$ ไฝ“้—ฎ้ข˜ๆ˜ฏๆŒ‡ไธ‡ๆœ‰ๅผ•ๅŠ›ไธ‹ $n$ ไธชๅคง่ดจ้‡่ดจ็‚น็›ธไบ’ไฝœ็”จ็š„้—ฎ้ข˜ใ€‚่ฎพๆœ‰ $n$ ไธช่ดจ็‚น $p_i$๏ผŒๅˆ†ๅˆซๆœ‰๏ผš - ๅๆ ‡ $P_i = (x_i, y_i, z_i)$ - ่ดจ้‡ $m_i$ - ็‰›้กฟ็ฌฌไบŒๅฎšๅพ‹ๅ’Œไธ‡ๆœ‰ๅผ•ๅŠ›ๅฎšๅพ‹๏ผš $ m_i (dif^2 P_i)/(dif t^2) = sum_(j != i) G m_i m_j (P_j - P_i)/norm(P_j - P_i)^3 $ ไธๅฆจ่ฎพ $G = 1$๏ผŒๅŒ–็ฎ€ไธบ๏ผš $ m_i (dif^2 P_i)/(dif t^2) = sum_(j != i) G m_i m_j (P_j - P_i)/(sqrt((x_i - x_j)^2 + (y_i - y_j)^2 + (z_i - z_j)^2)^3) $ ่ฎฐ $U = sum_(i != j)( m_i m_j )/norm(P_i -P_j)$๏ผŒๅŒ–็ฎ€ไธบ๏ผš $ m_i (dif^2 P_i)/(dif t^2) = partialDer(U, P_i) $ ่ฎฐ $q_i = der(P_i, t)$๏ผˆ้€Ÿๅบฆ๏ผ‰๏ผŒๅˆ™๏ผš $ m_i der(q_i, t) = partialDer(U, P_i) $ ไปค $p = autoVecN(p, n), q = autoVecN(q, n)$๏ผŒๅˆ™๏ผš $ dif /(dif t) vec(p, q) = vec(q, m partialDer(U, p)) $ ๅฏไปฅๅ‘็Žฐ๏ผš $ sum_i m_i der(q_i, t) = sum_i partialDer(U, q_i) = sum_i (sum_(j != i) m_i m_j (P_i - P_j)/norm(P_i - P_j)^3) = 0 $ ่ฟ™ๅฐฑๆ˜ฏๅœจ่ฏด่ดจๅฟƒไธๅŠจ๏ผŒไนŸๅฐฑๆ˜ฏๅŠจ้‡ๅฎˆๆ’๏ผŒ่ฟ›่€Œ๏ผš $ sum_i m_i q_i = C_1\ integral sum_i m_i q_i dif t = C_1 t + C_2\ sum_i m_i p_i = C_1 t + C_2 $ ่ดจๅฟƒไปฅๅŒ€้€Ÿ็›ด็บฟ่ฟๅŠจ ็ฑปไผผ็š„๏ผŒๅฏไปฅ้ชŒ่ฏ่ง’ๅŠจ้‡ๅฎˆๆ’๏ผŒ่ƒฝ้‡ๅฎˆๆ’\ ็„ถ่€Œๅฏไปฅ่ฏๆ˜Ž๏ผŒ้™คไบ†่ฟ™ไบ›ไปฅๅค–ไธๅ†ๆœ‰ไธŽไน‹็‹ฌ็ซ‹็š„ไปฃๆ•ฐ็š„้ฆ–ๆฌก็งฏๅˆ†๏ผŒๅ› ๆญคไปฃๆ•ฐ็š„้ฆ–ๆฌก็งฏๅˆ†ๅฐฑๆ˜ฏ่ฟ™ไบ› ๆŽฅไธ‹ๆฅๆˆ‘ไปฌ่งฃไบŒไฝ“้—ฎ้ข˜๏ผŒ็”ฑไน‹ๅ‰ๆๅˆฐ็š„ๅฎˆๆ’้‡ๅฏ่ฎพ่ดจๅฟƒๆ’ๅฎšๅœจๅŽŸ็‚น๏ผŒ่ฟๅŠจ้ƒฝๅœจๅนณ้ขไธŠ๏ผŒๅฏไปฅๅŒ–็ฎ€ๅˆฐ๏ผš $ cases( (dif^2 x)/(dif t^2) = -m x/(x^2 + y^2)^(3/2), (dif^2 y)/(dif t^2) = -m y/(x^2 + y^2)^(3/2) ) $ ๅ…ถไธญ๏ผŒ1 ๅฏนๅบ” $ m = (m_2^3)/(m_1 + m_2)^2 $ 2 ๅฏนๅบ” $ m = (m_1^3)/(m_1 + m_2)^2 $ ่ง’ๅŠจ้‡ๅฎˆๆ’็ป™ๅ‡บ๏ผš $ x der(y, t) - y der(x, t) = c_1\ $ ่ƒฝ้‡ๅฎˆๆ’็ป™ๅ‡บ๏ผš $ (der(x, t))^2 + (der(y, t))^2 - (2m)/(sqrt(x^2 + y^2)) = c_2 $ ๅšๆžๅๆ ‡ๆขๅ…ƒ๏ผš $ x = r cos theta\ y = r sin theta $ ไปฃๅ…ฅ่ง’ๅŠจ้‡ๅฎˆๆ’ๅŒ–็ฎ€ๅพ—๏ผš $ c_1 = r^2 der(theta, t)\ c_1 (t_2 - t_1) = integral_(t_1)^(t_2) r^2 dif theta\ $ ไธŠๅผๅณไพงๆ˜ฏๆ‰ซ่ฟ‡็š„ๆ‰‡ๅฝข้ข็งฏ๏ผŒ่ฟ™ๅฎž้™…ไธŠๅฐฑๆ˜ฏๅผ€ๆ™ฎๅ‹’็ฌฌไบŒๅฎšๅพ‹\ ไปฃๅ…ฅ่ƒฝ้‡ๅฎˆๆ’ๅŒ–็ฎ€ๅพ—๏ผš $ (der(r, t))^2 = c_1 + 2 m Inv(r) - c_1^2 r^(-2) \ der(r, t) = sqrt(c_2 + m^2/c_1^2 - (c_1/r - m/c_1)^2)\ der(theta, t) = c_1/r^2\ der(r, theta) = r^2/c_1 sqrt(c_2 + m^2/c_1^2 - sqrt(c_1/r - m/c_1)^2) $ ่ฟ™ๆ˜ฏๅฏๅˆ†็ฆปๅ˜้‡็š„๏ผŒๆœ€็ปˆๅฏไปฅๅŒ–็ฎ€ๅพ—ๅˆฐ๏ผš $ r = p/(1 + e cos (theta - theta_0)) $ ๅ…ถไธญ $e = c_1/m sqrt(c_2 + m^2/c_1^2), p = c_1^2/m$\ ่ฟ™ไธ€ๅฎšๆ˜ฏไธ€ๆกๅœ†้”ฅๆ›ฒ็บฟ๏ผŒ่ฟ™ๅฐฑๆ˜ฏๅผ€ๆ™ฎๅ‹’็ฌฌไธ€ๅฎšๅพ‹\ ๅ†ๆฌกๅธฆๅ›ž๏ผš $ (p/(1 + e cos (theta - theta_0)))^2 dif theta = c_1 dif t\ c_1 T = integral_(0)^(2pi) p^2/(1 + e cos (theta - theta_0))^2 dif theta\ = (2p^2 pi)/sqrt((1 - e^2)^3) $ ่ฎก็ฎ—ๅฏๅพ—๏ผš $ T^2/(p^3 /(1-e^2)^3) = (4 pi^2)/m $ ๅฝ“ $m_1$ ๅพˆๅคงๆ—ถ๏ผŒ$m$ ๅ‡ ไนŽๅฐฑๆ˜ฏ $m_2$๏ผŒ่ฟ™ไนŸๅฐฑๆ˜ฏๅคช้˜ณ็ณปไธญ็š„ๅผ€ๆ™ฎๅ‹’็ฌฌไธ‰ๅฎšๅพ‹ ไบŒไฝ“้—ฎ้ข˜่ฟ˜ๆœ‰่‘—ๅ็š„ๅ้—ฎ้ข˜๏ผŒๅ‡่ฎพไปปไฝ•ๆ˜Ÿ็ƒๅ›ด็ป•ๅคช้˜ณ็š„ๆœ‰็•Œ่ฝจ้“้ƒฝๆ˜ฏๆคญๅœ†๏ผŒไธ”ไธ‡ๆœ‰ๅผ•ๅŠ›ๅฝขๅฆ‚๏ผš $ f = m_1 m_2 f(norm(p_1 - p_2))(p_1 - p_2) $ ้‚ฃไนˆๆ•ฐๅญฆไธŠๅฏไปฅ่ฏๆ˜Žไธ‡ๆœ‰ๅผ•ๅŠ›ๅช่ƒฝๆ˜ฏๆญฃๆฏ”ไบŽ่ท็ฆปๆˆ–่€…ๅๆฏ”ไบŽ่ท็ฆป็š„ๅนณๆ–น๏ผŒๅ‰่€…ไผšๅฏผ่‡ดๅคช้˜ณไฝไบŽ่ฝจ้“ไธญๅฟƒ๏ผŒๅŽ่€…ๅคช้˜ณๅฐ†ไฝไบŽ็„ฆ็‚น ] == ไบŒ้˜ถ่‡ชๆดฝๅพฎๅˆ†ๆ–น็จ‹ #theorem[ไบŒ้˜ถ่‡ชๆดฝๅพฎๅˆ†ๆ–น็จ‹็š„่งฃๆณ•][ ็งฐๅฝขๅฆ‚ $ (dif^2 x)/(dif t^2) + f(x) = 0 $ ไธบไบŒ้˜ถ่‡ชๆดฝๆ–น็จ‹๏ผŒๅผ•่ฟ› $F(x)$ ไฝฟๅพ— $F'(x) = f(x)$๏ผŒไปค $y = x', H(x, y) = y^2/2 + F(x)$๏ผŒๆœ‰๏ผš $ der(H, t) = y der(y, t) + F'(x) der(x, t) = y (dif^2 x)/(dif t^2) + f(x) der(x, t) = 0 $ ๆข่จ€ไน‹๏ผŒๅ‚ๆ•ฐๆ–น็จ‹ $(x(t), y(t))$ ่กจ็คบ็š„ๅ‡ฝๆ•ฐๅฐฑๆ˜ฏ $H$ ็š„็ญ‰้ซ˜็บฟ๏ผŒๅฏไปฅ่งฃๅพ—๏ผš $ y = plus.minus sqrt(2(C - F(x)))\ (dif x)/(dif t) = plus.minus sqrt(2(C - F(x)))\ plus.minus 1/(sqrt(2(C - F(x)))) dif x = dif t $ ไธค่พน็›ดๆŽฅ็งฏๅˆ†ๅŠๅพ—ๅŽŸๆ–น็จ‹็š„่งฃ ] #example[ๅผน็ฐง][ ๅผน็ฐงๆ–น็จ‹ $(dif^2 x)/(dif t^2) + a x = 0, a > 0$ ๅฐฑๆ˜ฏไธŠ้ข็š„ๅฝขๅผ๏ผŒๅ› ๆญคๅฏไปฅ่งฃๅพ—๏ผš $ t + C' = plus.minus integral 1/sqrt(2(C - 1/2 a x^2)) dif x $ ่ฎก็ฎ—ๅŒ–็ฎ€ๅพ—ๅˆฐ $ x = C_1 cos a t + C_2 sin a t\ y = - a C_1 sin a t + a C_2 cos a t $ ๅฎนๆ˜“ๅ‘็Žฐๆ‰€ๆœ‰่งฃ้ƒฝไปฅ $(2 pi)/a$ ไธบๅ‘จๆœŸ๏ผŒไธ” $(0, 0)$ ไธบๆ‰€ๆœ‰่ฝจ้“็š„ไธญๅฟƒใ€‚็”ฑไบŽๆ‰€ๆœ‰่ฝจ้“้ƒฝๆ˜ฏ็›ธๅŒๅ‘จๆœŸ็š„๏ผŒๅ› ๆญคไนŸ็งฐไธบ็ญ‰ๆ—ถไธญๅฟƒใ€‚็บฟๆ€ง็ณป็ปŸไธญไธ€ๅฎšๆ˜ฏ็ญ‰ๆ—ถ็š„ ] #example[ๅ•ๆ‘†ๆ–น็จ‹][ ๅ•ๆ‘†ๆ–น็จ‹ $(dif^2 x)/(dif t^2) + a sin x = 0, a > 0$ ไนŸๆ˜ฏไธŠ้ข็š„ๅฝขๅผ๏ผŒๅ› ๆญคๅฏไปฅ่งฃๅพ—๏ผš $ dif t = 1/sqrt(2(C - a cos x)) dif x $ ่ฟ™ๆ˜ฏๆคญๅœ†็งฏๅˆ†๏ผŒๆˆ‘ไปฌๆ— ๆณ•ๅ†™ๅ‡บๅฎƒ็š„ๅˆ็ญ‰ๅฝขๅผ\ ่ฝฌ่€Œ่€ƒ่™‘๏ผš $ H(x, y) = y^2/2 - a cos x + a $ ็š„็ญ‰้ซ˜็บฟใ€‚ๆณจๆ„ๅˆฐ $H$ ๅ…ณไบŽ $x$ ไปฅ $2 pi$ ไธบๅ‘จๆœŸ๏ผŒๅฏไปฅๆŠŠๅฎƒๆƒณ่ฑกๆˆๅฎšไน‰ๅœจๅœ†ๆŸฑ้ขไธŠ็š„ๅ‡ฝๆ•ฐใ€‚ๅฎนๆ˜“ๅ‘็Žฐ่ฟ™้‡Œ $(0, 0)$ ไนŸๆ˜ฏไธญๅฟƒ๏ผŒไฝ†ไธๆ˜ฏ็ญ‰ๆ—ถไธญๅฟƒ๏ผŒไบ‹ๅฎžไธŠ๏ผŒๅœจ็ญ‰้ซ˜็บฟ๏ผš $ y^2 - a cos x = C $ ไธŠ๏ผŒๆœ‰๏ผš $ 1/4 T = integral_0^(pi/2) der(t, x) dif x = integral_0^(pi/2) 1/sqrt(2(C - a cos x)) dif x $ ๆ˜พ็„ถไธๅฏ่ƒฝไธŽ $C$ ๆ— ๅ…ณ ] #theorem[][ ่ฎพไบŒ้˜ถ่‡ชๆดฝๅพฎๅˆ†ๆ–น็จ‹ๆปก่ถณ $f(x)$ ่ฟž็ปญไธ” $x f(x) > 0$๏ผŒๅผ•่ฟ› $F(x)$ ๅนถไธๅฆจ่ฎพ $F(0) = 0$๏ผŒๅˆ™ๅฏน๏ผš $ H(x, y) = y^2/2 + F(x) $ + $H(0, 0)$ ๆ˜ฏ $H$ ็š„ๆœ€ๅฐๅ€ผ็‚น + ๅœจ $(0, 0)$ ้™„่ฟ‘๏ผŒ$H(x, y) = C$ ็ป™ๅ‡บไธ€ไธช้—ญๅˆๆ›ฒ็บฟ + $H = h$ ไบค $x$ ่ฝดไบŽ $x_1(h), x_2(h)$ ไธค็‚น๏ผŒ$x_1 < x_2$ + ๅŽŸ็‚นๆ˜ฏ็ญ‰ๆ—ถไธญๅฟƒๅฝ“ไธ”ไป…ๅฝ“ $(x_2(h) - x_1(h))/sqrt(h)$ ๆ˜ฏไธŽ $h$ ๆ— ๅ…ณ็š„ๅธธๆ•ฐ ] #proof[ + ็”ฑ้ข˜่ฎพๅฐ†ๆœ‰ $F(x) >= 0$ ๅ› ๆญคๆ˜พ็„ถ + ็›ดๆŽฅ่งฃๅ‡บ $y$ ๅณๅฏ + ็”ฑ $F(x)$ ็š„ๅ•่ฐƒๆ€งๅŠ $F(0) = 0$ ๆ˜พ็„ถ + ่ฟ™ไธช่ฏๆ˜Žๅนถไธ็”จๅˆฐ้ซ˜็บง็š„็Ÿฅ่ฏ†๏ผŒไฝ†ๆžๅ…ทๆŠ€ๅทงๆ€ง\ ไปค $s = F(x)$๏ผŒๅˆ™ $f(x) dif x = dif s$๏ผŒๆœ‰๏ผš $ 1/2 T_h = integral_(x_1)^(x_2) der(t, x) dif x = integral_(x_1)^(x_2) 1/sqrt(2(h - F(x))) dif x\ = integral_0^(h) 1/sqrt(2(h - s)) 1/(f_+(x)) dif s - integral_0^(h) 1/sqrt(2(h - s)) 1/(f_-(x)) dif s\ 1/2 integral_0^H T_h/sqrt(H-h) dif h = integral_0^H ( integral_0^(h) 1/sqrt(2(H - h)(h - s)) 1/(f_+(x)) dif s)dif h - integral_0^H ( integral_0^(h) 1/sqrt(2(H - h) (h - s)) 1/(f_-(x)) dif s)dif h\ = integral_0^H ( integral_s^H 1/sqrt(2(H - h)(h - s)) 1/(f_+(x)) - 1/sqrt(2(H - h) (h - s)) 1/(f_-(x)) dif h)dif s\ = pi/(sqrt(2)) (integral_0^H 1/(f_+(x)) - 1/(f_-(x)) )dif s\ = pi/(sqrt(2)) (integral_0^H 1/(f_+(x)) - 1/(f_-(x)) )dif F(x)\ = pi/(sqrt(2)) (integral_0^H f(x)/(f_+(x)) - f(x)/(f_-(x)) )dif x\ = pi/(sqrt(2)) (x_2(H) - x_1(H))\ $ - ๅ‡่ฎพๅ‘จๆœŸไธŽ $H$ ๆ— ๅ…ณ๏ผŒๅˆ™ๆœ‰๏ผš $ T_0 sqrt(H) = pi/sqrt(2) (x_2(H) - x_1(H))\ T_0 = pi/sqrt(2) (x_2(H) - x_1(H))/sqrt(H) $ ่กจๆ˜ŽไธŠๅผๅณไพงไธŽ $H$ ๆ— ๅ…ณ๏ผŒ่ฟ™ไนŸ็ป™ๅ‡บไบ†ๅ‘จๆœŸ็š„่ฎก็ฎ—ๅ…ฌๅผ ] #corollary[][ ่‹ฅๅŽŸ็‚นๆ˜ฏ็ญ‰ๆ—ถไธญๅฟƒไธ” $f(x)$ ๆ˜ฏๅฅ‡ๅ‡ฝๆ•ฐ๏ผŒๅˆ™ $f(x)$ ไธ€ๅฎš็บฟๆ€ง ] = ๅพฎๅˆ†ๆ–น็จ‹็š„่งฃ็†่ฎบ == Peano ๅฎš็† #theorem[Peano][ ่ฎพ๏ผš $ f(x, y) in C(DD), DD = {abs(x - x_0) <= a, abs(y -y_0) <= b} $ ๆ–น็จ‹๏ผš $ cases( der(y, x) = f(x, y), y(x_0) = y_0 ) $ ๅœจ $[x_0 - h, x_0 + h]$ ไธŠๆœ‰่งฃ๏ผŒๅ…ถไธญ๏ผš $ h = min{a, b/(max_DD abs(f))} $ ่‹ฅ $y, f$ ๆ˜ฏๅ‘้‡ๅ€ผๅ‡ฝๆ•ฐ๏ผŒ็ป“่ฎบไนŸๆ˜ฏ็ฑปไผผ็š„ ]<peano> ๆœฌ่Š‚็š„็›ฎๆ ‡ๅฐฑๆ˜ฏ่ฏๆ˜Žๅฎƒใ€‚\ #lemma[][ ๆœ‰็•ŒๅŒบ้—ดไธŠ็ญ‰ๅบฆ่ฟž็ปญ็š„ไธ€่‡ดๆœ‰็•Œ็š„ๅ‡ฝๆ•ฐๅˆ—ๆœ‰ไธ€่‡ดๆ”ถๆ•›็š„ๅญๅˆ— ] #proof[ #lemmaLinear[][ ่ฎพ $f_n: I -> RR$ ๅฏนไบŽๆฏไธช $x in I, f_n (x)$ ้ƒฝๆœ‰็•Œ $M_x$๏ผŒ$I$ ๆ˜ฏๆœ‰้™ๅŒบ้—ด๏ผŒๅˆ™ไปปๅ– $I$ ็š„ไธ€ไธชๅฏๆ•ฐๅญ้›† $E$๏ผŒๅญ˜ๅœจ $f_n$ ็š„ๅญๅˆ—ไฝฟๅพ—่ฟ™ไธชๅญๅˆ—ๅœจ $E$ ไธŠๆ”ถๆ•› ] #proof[ ่ฎพ $E = {x_1, x_2, ..., x_n}$๏ผŒๆณจๆ„ๅˆฐ $f_n (x_1)$ ๆ˜ฏๆœ‰็•Œๅบๅˆ—๏ผŒๆœ‰ๆ”ถๆ•›ๅญๅˆ— $f_(n_1) (x_1)$\ ๅ†่€ƒ่™‘ $f_(n_1) (x_2)$ ๏ผŒๅฎƒๅฝ“็„ถไนŸๆœ‰ๆ”ถๆ•›ๅญๅˆ—๏ผŒ่ฎฐไธบ $f_(n_2) (x_2)$\ ไธๆ–ญ่ฟ›่กŒไธ‹ๅŽป๏ผŒๆˆ‘ไปฌๅพ—ๅˆฐไบ†่‹ฅๅนฒๅญๅˆ— $f_(n_k) (x_k)$ใ€‚\ ็”จๅฏน่ง’็บฟๆณ•๏ผŒๅ‘็Žฐ๏ผš $ f_(n_n) (x_n), n = 1, 2, 3, ... $ ๅœจๆฏไธช $x_k$ ไธŠ้ƒฝๆ”ถๆ•›๏ผŒ่ฏๆฏ• ] #lemmaLinear[][ ่ฎพ $I$ ๆ˜ฏๆœ‰้™ๅŒบ้—ด๏ผŒ$f_n : I -> RR$ ็ญ‰ๅบฆ่ฟž็ปญ๏ผŒไธ”ๅœจ $I$ ็š„็จ ๅฏ†ๅญ้›†ไธŠๆ”ถๆ•›๏ผŒ้‚ฃไนˆๅฎƒๅœจ $I$ ไธŠไธ€่‡ดๆ”ถๆ•› ] #proof[ ๅˆฉ็”จๆŸฏ่ฅฟๆ”ถๆ•›ๅŽŸ็†๏ผŒไปปๅ– $epsilon > 0$๏ผŒๅญ˜ๅœจ $delta >0$๏ผŒไฝฟๅพ—๏ผš $ forall n in NN, forall x_1, x_2, abs(x_1 - x_2) < delta => abs(f_n (x_1) - f_n (x_2)) < epsilon $ ๅฏนไบŽ่ฟ™ไธช $delta$๏ผŒๆˆ‘ไปฌๅฏไปฅๅ–ๅ‡บ $E$ ไธญๆœ‰้™ไธช็‚น $E'$ ไฝฟๅพ—๏ผš $ union_(x in E') B(x, delta) = I $ ็”ฑไบŽ่ฟ™้‡Œๅชๆœ‰ๆœ‰้™ไธช $x$๏ผŒๅฝ“็„ถ $f_n|_E'$ ๅฐ†ไธ€่‡ดๆ”ถๆ•›๏ผŒๅ› ๆญคๅฏ่ฎพๅญ˜ๅœจ $N$ ไฝฟๅพ—๏ผš $ forall m, n > N, forall x in E', abs(f_m (x) - f_n (x)) < epsilon $ ๅ› ๆญค๏ผŒๆœ‰๏ผš $ forall m, n > N, forall x in I, exists x' in E'\ abs(x - x') < delta &=> abs(f_m (x) - f_n (x)) \ &< abs(f_m (x) - f_m (x')) + abs(f_m (x') - f_n (x')) + abs(f_n (x') - f_n (x)) < 3 epsilon $ ] ๅœจๅผ•็†ไธญๅ– $E = QQ sect I$๏ผŒๅฎƒๆ˜ฏ $I$ ็š„็จ ๅฏ†ๅญ้›†๏ผŒๅ› ๆญค็ป“่ฎบๆˆ็ซ‹ ] ๅ›žๅˆฐ @peano ็š„่ฏๆ˜Ž๏ผŒ่ฟ™ไธชๆ–นๆณ•ๆ˜ฏๆ‰€่ฐ“็š„ๆฌงๆ‹‰ๆŠ˜็บฟๆณ• #proof[ ๅพฎๅˆ†ๆ–น็จ‹ๅฏไปฅ่ฝฌๅŒ–ไธบ็งฏๅˆ†ๆ–น็จ‹: $ y(x) = y_0 + integral_(x_0)^(x) f(t, y(t)) dif t $ ๅช้œ€่ฏๆ˜Žๅฎƒๅœจ $[x_0, x_0 + h]$ ไธŠๆœ‰่งฃ๏ผŒๅฆไธ€ไพง็ฑปไผผใ€‚\ ๅฐ†ๅ…ถ $n$ ็ญ‰ๅˆ†๏ผŒ่ฎพๅˆ†็‚นไธบ $x_0, x_1, ..., x_n$๏ผŒๆŒ‰็…งไปฅไธ‹ๅฎšไน‰ๅˆ†ๆฎต็บฟๆ€งๅ‡ฝๆ•ฐ๏ผš $ (x_(i-1), y_(i-1)) ๅˆฐ (x_i, y_i) "็š„ๆ–œ็އ็”ฑ" f(x_(i-1), y_(i-1)) "็ป™ๅ‡บ" $ ้œ€่ฆ้ชŒ่ฏ่ฟ™ไบ›็‚น่ฝๅœจ $DD$ ไธญ๏ผŒๆ˜พๆœ‰๏ผš $ y_k - y_(k-1) = f(x_(k-1), y_(k-1)) (x_k - x_(k-1)) $ ไธค่พนๆฑ‚ๅ’Œ๏ผš $ y_k - y_0 &= sum_(i = 1)^(k) f(x_(i-1), y_(i-1)) (x_i - x_(i-1))\ abs(y_k -y_0) &<= sum_(i = 1)^(k) abs(f(x_(i-1), y_(i-1)) (x_i - x_(i-1))) \ &<= max_DD abs(f) sum_(i = 1)^(k) (x_i - x_(i-1)) <= max_DD abs(f) abs(x_k - x_0) \ &<= h max_DD abs(f) <= b $ ่ฟ™ไนŸไฝ“็Žฐไบ† $h$ ไธบไฝ•ๅฆ‚ๆญคๅฎšไน‰\ ่ฎพๅพ—ๅˆฐ็š„ๅ‡ฝๆ•ฐไธบ $g_n (x)$๏ผŒ้ชŒ่ฏๅฎƒไปฌ๏ผš - ไธ€่‡ดๆœ‰็•Œ๏ผšๆ˜พ็„ถ - ็ญ‰ๅบฆ่ฟž็ปญ๏ผšๆณจๆ„ๅˆฐๆ‰€ๆœ‰ $g_n (x)$ ๅ‡ๆปก่ถณ๏ผš $ abs(g_n (x) - g_n (y)) <= max_DD abs(f) abs(x - y) $ ๅ› ๆญคไนŸๆˆ็ซ‹ ็”ฑๅผ•็†๏ผŒๅฎƒๆœ‰ไธ€่‡ดๆ”ถๆ•›ๅญๅˆ—ใ€‚ไธๅฆจ่ฎพๅ…ถๆ”ถๆ•›๏ผŒๅช้œ€่ฏๆ˜Žๆž้™ๅ‡ฝๆ•ฐ $g(x)$ ๆปก่ถณ็งฏๅˆ†ๆ–น็จ‹\ ไบ‹ๅฎžไธŠ๏ผˆๆณจๆ„ๅˆฐ $f$ ๆ˜ฏๆœ‰็•Œ้—ญ้›†ไธŠ็š„่ฟž็ปญๅ‡ฝๆ•ฐ๏ผŒ่ฟ›่€Œไธ€่‡ด่ฟž็ปญ๏ผŒไปŽ่€Œ $f(t, g_n (x))$ ไนŸไธ€่‡ดๆ”ถๆ•›๏ผ‰๏ผš $ g(x) - integral_(x_0)^x f(t, g(t)) dif t = lim_(n->+infinity) g_n (x) - integral_(x_0)^x f(t, g_n (t)) dif t $ ๆœ‰๏ผš $ g_n (x_0 + k/(n h)) &= sum_(i = 1)^(k) f(x_i, y_i) (x_i - x_(i-1))\ integral_(x_0)^(x_0 + k/(n h)) f(t, g_n (t)) dif t = sum_(i = 1)^(k) integral_(x_(i-1))^(x_i) f(t, g_n (t)) dif t &= sum_(i = 1)^(k) f(xi_i, g_n (xi_i)) (x_i - x_(i-1))\ g_n (x_0 + k/(n h)) - integral_(x_0)^(x_0 + k/(n h)) f(t, g_n (t)) dif t &= sum_(i = 1)^(k) (f(x_i, y_i) - f(xi_i, g_n (xi_i))) (x_i - x_(i-1))\ &=sum_(i = 1)^(k) (f(x_i, g_n (x_i)) - f(xi_i, g_n (xi_i))) (x_i - x_(i-1)) $ ไปปๆ„ $epsilon > 0$ ๏ผŒไปค $delta, delta'$ ๆปก่ถณ๏ผš - $abs(x-x') < delta, abs(y-y') < delta => abs(f(x, y) - f(x', y')) < epsilon$ - $abs(x-x') < delta' => abs(g_n (x) - g_n (x')) < min(delta, epsilon), forall x, forall n$ ๅ– $N$ ๅ……ๅˆ†ๅคงไฝฟๅพ— $forall n > N$๏ผš - $1/(n h) < delta' => abs(g_n (x) - g_n (x_0 + k/(n h))) < epsilon, g_n (x_i) - g_n (xi_i) < delta$ - $1/(n h) < delta => abs(x_i - xi_i) < delta$ - $1/(n h) $ ] #lemma[Gronwall][ ่ฎพ $f, g in C[a, b], g(x) >= 0$๏ผŒๅˆ™ๆœ‰๏ผš $ f(x) <= C + integral_a^x f(t) g(t) dif t => f(x) <= C e^(integral_a^x g(t) dif t) $ ] #proof[ ไปค $Phi(x) = integral_a^x f(t) g(t) dif t$๏ผŒๅˆ™ๆœ‰๏ผš $ Phi' <= (C + Phi)g(x) $ ่ฎพ $h = e^(integral_a^x g(s) dif s), Phi = u h$๏ผŒๆœ‰๏ผš $ u' h + u h' <= (C + u h)g\ u' h <= C g\ u' <= C g/h\ u(x) - u(a) <= C integral_a^x g(s)/h(s) dif s\ (Phi(a) = 0 => u(a) = 0)\ u(x) <= C integral_a^x g(s)/h(s) dif s = C integral_a^x g(s) e^(-integral_a^x g(s) dif s) dif s = C (1 - 1/h(x))\ $ ไปŽ่€Œ๏ผš $ f(x) <= C + Phi(x) = C + u h <= C h $ ่ฏๆฏ• ] #corollary[][ ่‹ฅๅœจ Gronwall ไธ็ญ‰ๅผไธญ๏ผŒๆœ‰ $C <= 0, f(x) >= 0$๏ผŒๅˆ™ $f(x) = 0$ ] #theorem[][ ๅœจ@peano ไธญ๏ผŒ่‹ฅ $f$ ๆ˜ฏ Lipschitz ่ฟž็ปญ็š„๏ผŒๅˆ™่งฃๆ˜ฏๅ”ฏไธ€็š„ใ€‚ๆ›ด่ฟ›ไธ€ๆญฅ๏ผŒๆž„้€ ๅ‡บ็š„ๆŠ˜็บฟๅˆ— $g_n (x)$ ๆœฌ่บซๅณไธ€่‡ดๆ”ถๆ•› ] #proof[ ๅ‡่ฎพ $y = phi(x), y= psi(x)$ ๆ˜ฏไธคไธช่งฃ๏ผŒๅˆ™๏ผš $ abs(phi(x) - psi(x)) = abs(integral_(x_0)^x f(t, phi(t)) dif t - integral_(x_0)^x f(t, psi(t)) dif t) <= L abs(integral_(x_0)^x abs(phi(t) - psi(t)) dif t) $ - ๅฝ“ $x > x_0$ ๆ—ถ๏ผŒไธŠๅผๅณไธบ๏ผš $ abs(phi(x) - psi(x)) <= L integral_(x_0)^x abs(phi(t) - psi(t)) dif t $ ็›ดๆŽฅๅˆฉ็”จ Gronwall ไธ็ญ‰ๅผๅฏๅพ— $abs(phi(x) - psi(x)) <= 0 => abs(phi(x) - psi(x)) = 0$ - ๅฝ“ $x < x_0$ ๆ—ถ๏ผŒ็ฑปไผผๅฏไปฅ่ฏๆ˜Ž็ป“่ฎบๆˆ็ซ‹ ็ปผไธŠ๏ผŒ$phi(x) = psi(x)$ ] ไบ‹ๅฎžไธŠ๏ผŒๅœจไธ€็ปด็š„ๆƒ…ๅฝขไธ‹๏ผŒๆˆ‘ไปฌๅฏไปฅๆ‰พๅˆฐๆ›ดๅผฑ็š„ๆกไปถ #theorem[][ ่ฎพ $f$ ๆปก่ถณ Osgoad ๆกไปถ๏ผŒไนŸๅณ๏ผš $ exists F: [0, +infinity] -> [0, +infinity)\ integral_(0)^(t) 1/F(r) dif r = +infinity\ abs(f(x, y) - f(x, z)) <= F(abs(y - z)) $ ๅˆ™ไธŠ่ฟฐๆ–น็จ‹็š„่งฃๅญ˜ๅœจไธ”ๅ”ฏไธ€ ] #proof[ ่ฎพ $y_1, y_2$ ๆ˜ฏไธคไธชไธๅŒ็š„่งฃ๏ผŒไปค $r(x) = y_1 (x) - y_2(x)$\ ๆณจๆ„ๅˆฐ $r(x_0) = 0$๏ผŒ่‹ฅ $r$ ไธๆ’ไธบ้›ถ๏ผŒไธๅฆจ่ฎพ $x_1$ ๆ˜ฏ้›ถ็‚นไธ” $r(x) > 0 ,forall x in (x_1, x_2]$\ ๆญคๆ—ถ๏ผš $ der(r, x) = y'_1 - y'_2 = f(x, y_1) - f(x, y_2) <= F(abs(y_1 - y_2)) = F(r(x))\ => r'/F(r(x)) <= 1\ => integral_(s)^(t) r'/F(r(x)) dif x <= t -s\ => integral_(r(s))^(r(t)) 1/F(r) dif r <= t - s $ ไปค $s -> x_1$๏ผŒไธŠๅผๅทฆไพง่ถ‹ไบŽๆ— ็ฉท๏ผŒ่€Œๅณไพงๆœ‰้™๏ผŒ็Ÿ›็›พ๏ผ ] #theorem[][ ่ฎพ $f(x, y)$ ๆปก่ถณ $f(x, y)$ ๅ…ณไบŽ $y$ ๅ•่ฐƒไธ‹้™๏ผŒๅˆ™่งฃไนŸๅญ˜ๅœจๅนถๅ”ฏไธ€ ] #proof[ ่ฎพ $y_1, y_2$ ๆ˜ฏไธคไธชไธๅŒ็š„่งฃ๏ผŒไปค $r(x) = y_1 (x) - y_2(x)$\ ๆณจๆ„ๅˆฐ $r(x_0) = 0$๏ผŒ่‹ฅ $r$ ไธๆ’ไธบ้›ถ๏ผŒไธๅฆจ่ฎพ $x_1$ ๆ˜ฏ้›ถ็‚นไธ” $r(x) > 0 ,forall x in (x_1, x_2]$\ ๆญคๆ—ถ๏ผš $ der(r, x) = y'_1 - y'_2 = f(x, y_1) - f(x, y_2) <= 0 $ ่€Œ $r(x_1) = 0$๏ผŒไธŠๅผ่กจๆ˜Ž $r$ ๅ•่ฐƒไธ‹้™๏ผŒ่ฟ›่€Œ $r(x) <= 0$๏ผŒๅ› ๆญคๅช่ƒฝ $= 0$๏ผŒ็Ÿ›็›พ๏ผ ] ๆœฌ่Š‚ๅˆฉ็”จ็š„ๆฌงๆ‹‰ๆŠ˜็บฟไธไป…ๅœจ็†่ฎบไธŠๅพˆ้‡่ฆ๏ผŒๅœจๆ•ฐๅ€ผ่ฎก็ฎ—ไธŠไนŸๅนฟๆณ›็”จไบŽๆ•ฐๅ€ผๆฑ‚่งฃๅพฎๅˆ†ๆ–น็จ‹๏ผŒ็†่ฎบไพๆฎๅฐฑๆ˜ฏๆœฌ่Š‚็š„ๅฎš็† == Picard ๅฎš็† Picard ๅฎš็†่กจ้ขไธŠๅ’Œ Peano ๅฎš็†็š„็ป“่ฎบ็ฑปไผผไฝ†ๆกไปถๆ›ดๅผบ๏ผŒไฝ†ๆ˜ฏๅฎƒ็š„ๆ–นๆณ•้žๅธธ้‡่ฆ๏ผŒๅ› ๆญคไปๆœ‰ๅฟ…่ฆไธ“้—จๅญฆไน  #theorem[Picard][ ๅœจ @peano ไธญ๏ผŒๅ†่กฅๅ…… $f$ Lipschitz ่ฟž็ปญ๏ผŒๅˆ™ๆ–น็จ‹็š„่งฃๅญ˜ๅœจ ] #proof[ ไป็„ถ่ฝฌๅŒ–ไธบ็งฏๅˆ†ๆ–น็จ‹: $ y(x) = y_0 + integral_(x_0)^(x) f(t, y(t)) dif t $ ๆ€ปไฝ“ๆ€ๆƒณๆ˜ฏๆ‰€่ฐ“็š„ไธๅŠจ็‚นๆณ•๏ผŒ้€’ๅฝ’ๅฎšไน‰๏ผš - $phi_0 (x) = y_0$ - $phi_n (x) = y_0 + integral_(x_0)^(x) f(t, phi_(n-1) (t)) dif t$ + ้ฆ–ๅ…ˆ้ชŒ่ฏๅฎšไน‰ๅˆ็†๏ผŒ้œ€่ฆไฟ่ฏๆ‰€ๆœ‰็š„ๅ€ผไธ่ถ…ๅ‡บๅŒบๅŸŸใ€‚ - $x$ ็š„ๅˆ็†ๆ€งๆ˜ฏๆ˜พ็„ถ็š„ - ๅ‡่ฎพ $phi_(n - 1) subset overline(U(y_0, b))$๏ผŒๅˆ™๏ผš $ abs(phi_n (y_1) - y_0) <= integral_(x_0)^(x) abs(f(t, phi_(n-1) (t))) dif t\ <= max_DD abs(f) h <= b $ ่ฟ™ๅฐฑ้ชŒ่ฏไบ† $phi_(n) subset overline(U(y_0, b))$ + ๆŽฅไธ‹ๆฅ่ฏๆ˜Žๅฎƒไธ€่‡ดๆ”ถๆ•› - ้ฆ–ๅ…ˆๅฝ’็บณ่ฏๆ˜Ž $abs(phi_n (x) - phi_(n-1)(x)) <= (M L^(n-1))/(n!) abs(x -x_0)^n$ $ abs(phi_n (x) - phi_(n-1)(x)) = abs(integral_(x_0)^(x) f(t, phi_(n-1) (t)) - f(t, phi_(n-2) (t)) dif t)\ <= integral_(x_0)^(x) abs(f(t, phi_(n-1) (t)) - f(t, phi_(n-2) (t))) dif t\ <= integral_(x_0)^(x) L abs(phi_(n-1) (t) - phi_(n-2) (t)) dif t $ ๅˆฉ็”จๅฝ’็บณๆกไปถ่ฎก็ฎ—ๅณๅฏ - ๅ…ถๆฌก๏ผš $ (M L^(n-1))/(n!) abs(x -x_0)^n <= (M L^(n-1))/(n!) h^n $ ไธŠๅผๅณไพงๅช้œ€ๅˆฉ็”จๆฏ”่พƒๅˆคๅˆซๆณ•็Ÿฅๆฑ‚ๅ’Œๆ”ถๆ•›๏ผŒไปŽ่€Œๅฎนๆ˜“ๅˆฉ็”จ็ปดๅฐ”ๆ–ฏ็‰นๆ‹‰ๆ–ฏๅˆคๅˆซๆณ•็Ÿฅ้“ๅŽŸ็บงๆ•ฐ $sum (phi_n (x) - phi_(n-1)(x))$ ไธ€่‡ดๆ”ถๆ•› + ๆœ€ๅŽๆˆ‘ไปฌๅพ—ๅˆฐไบ†ๆž้™ๅ‡ฝๆ•ฐ $phi(x)$๏ผŒๆ˜พ็„ถๅบ”ๅฝ“ๆปก่ถณ๏ผš $ phi(x) = y_0 + integral_(x_0)^(x) f(t, phi(t)) dif t $ ่ฟ™ๅฐฑๆ˜ฏๅŽŸๆ–น็จ‹ ] #remark[][ ่ฟ™ไธชๅฎš็†็š„่ฏๆ˜Žๆœ‰ไปฅไธ‹ไผ˜็‚น๏ผš - ๅฏไปฅๆŽจๅนฟๅˆฐๆŠฝ่ฑก็š„ๅ‡ฝๆ•ฐ็ฉบ้—ด๏ผŒไพ‹ๅฆ‚ Banach ็ฉบ้—ด - ๅ‡่ฎพ $f$ ๆ˜ฏ่งฃๆžๅ‡ฝๆ•ฐ๏ผŒๅˆ™ๆž„้€ ็š„ $phi_n$ ้ƒฝๆ˜ฏ่งฃๆžๅ‡ฝๆ•ฐ๏ผŒ่ฟ›่€Œๅฏไปฅ่ฏๆ˜Ž $phi$ ไนŸๆ˜ฏ่งฃๆž็š„ ] == ่งฃ็š„ๅปถๆ‹“ ไน‹ๅ‰ๆˆ‘ไปฌ็ป™ๅ‡บไบ†่‡ณๅฐ‘ๅœจๆŸไธชๅฑ€้ƒจ๏ผŒๆ ‡ๅ‡†ๅฝขๅผ็š„ๅพฎๅˆ†ๆ–น็จ‹ๆ˜ฏๆœ‰่งฃ็š„ใ€‚็„ถ่€Œๆˆ‘ไปฌๅพ€ๅพ€้œ€่ฆๅœจๆ›ดๅคง็š„ๅฎšไน‰ๅŸŸไธŠๆ‰พๅˆฐ่งฃ #theorem[][ ่ฎพ $G$ ๆ˜ฏๅผ€ๅŒบๅŸŸ๏ผŒ$f(x, y)$ ๅœจ $G$ ไธŠ่ฟž็ปญ๏ผŒ$(x_0, y_0) in G$\ ๅฏนๅซ $(x_0, y_0)$ ็š„ไปปๆ„ๆœ‰็•Œ้—ญๅŒบๅŸŸ $G_1 subset G$๏ผŒ่ฟ‡ $(x_0, y_0)$ ็‚น็š„ๅพฎๅˆ†ๆ–น็จ‹็š„่งฃ $y=f(x)$ ้ƒฝๅฏไปฅๅปถๆ‹“ๅˆฐ $G_1$ ็š„่พน็•ŒไธŠ ] #proof[ ็”ฑ้ข˜่ฎพ๏ผŒ$G_1$ ไธญ็š„็‚นๅˆฐ $G$ ็š„่พน็•Œ็š„่ท็ฆปๆœ‰ๆญฃไธ‹็•Œ $d$\ ๅ› ๆญคๅฏไปฅๆ‰พๅˆฐ้—ญ้›†๏ผš $ G_2 = {(x, y) | abs(x - x') <= delta, abs(y - y') <= delta, exists (x, y) in G_1} subset G $ ๅ†ไปค๏ผš $ M = max_(f in G_2) abs(f) +1\ delta'_0 = delta_0 / M $ ๅˆฉ็”จไน‹ๅ‰็š„ๅญ˜ๅœจๆ€งๅฎš็†๏ผŒๅฏไปฅๆ‰พๅˆฐ $U(x_0, delta'_0)$ ๅ†…็š„่งฃใ€‚ๅ†ๆฌกๅˆฉ็”จๅญ˜ๅœจๆ€งๅฎš็†ๅฏไปฅ็ปง็ปญๅ‰่ฟ›๏ผŒไธ”ๆญฅ้•ฟไธบ $delta'_0$ ไธๅ˜๏ผŒๅ› ๆญค็ป่ฟ‡ๆœ‰้™ๆญฅไน‹ๅŽ๏ผŒๆˆ‘ไปฌๅฐฑๅพ—ๅˆฐไบ†็›ดๅˆฐ $G_1$ ็š„่พน็•ŒไธŠ็š„่งฃ ] #example[][ - ่ฎพๅพฎๅˆ†ๆ–น็จ‹ $der(y, x) = x^2 + y^2$ ๅฎนๆ˜“้ชŒ่ฏ่ฟ‡ไปปไฝ•ไธ€็‚น็š„่งฃๅญ˜ๅœจไธ”ๅ”ฏไธ€ใ€‚็„ถ่€Œ๏ผŒๅฏไปฅ่ฏๆ˜Žไปปไฝ•ไธ€ไธช่งฃ้ƒฝๅชๅœจๆœ‰็•ŒๅŒบ้—ดไธŠๆˆ็ซ‹ ไบ‹ๅฎžไธŠ๏ผŒไปปๅ– $y(x)$ ๅœจๅŒบ้—ด $I$ ไธŠๆ˜ฏๆ–น็จ‹็š„ไธ€ไธช่งฃ๏ผŒๅ‡่ฎพ $I$ ๆ— ็•Œ๏ผŒไธๅฆจๅ–ไธบ $[0, +infinity]$๏ผŒๅˆ™๏ผš $ y' = x^2 + y^2 >= 1 + y^2\ y'/(1+y^2) >= 1\ integral_(1)^(t) y'/(1+y^2) dif x >= x - 1\ integral_(1)^(y(t)) 1/(1+y^2) dif y >= x - 1\ $ ็„ถ่€Œไปค $t -> +infinity$๏ผŒไธŠๅผๅทฆไพงๆœ‰็•Œ่€Œๅณไพงๆ— ็•Œ๏ผŒ็Ÿ›็›พ๏ผ ่ฟ™ไธไธŽ่งฃ็š„ๅปถๆ‹“ๅฎš็†็Ÿ›็›พ๏ผŒๅฎนๆ˜“ๆƒณๅˆฐๅฎƒๅœจ $x$ ๆ–นๅ‘ๆœ‰ๅž‚็›ดๆธ่ฟ‘็บฟ๏ผŒ่€Œๅœจ $y$ ๆ–นๅ‘ๅฏไปฅ่ฟ›่กŒๆ— ้™ๅปถไผธ - ็ป™ๅฎšๅพฎๅˆ†ๆ–น็จ‹๏ผš $ der(y, x) = (x^2 + y^2 +1) sin (pi y) $ ๅฏไปฅ้ชŒ่ฏๅฎƒไนŸๆปก่ถณๅญ˜ๅœจๅ”ฏไธ€็š„ๆกไปถ๏ผŒๅนถไธ” - $y = k, k in ZZ$ ๅฝ“็„ถๆ˜ฏไธ€ไธช่งฃ - ๅฏนไบŽๅ…ถไป–็š„่งฃ๏ผŒๆ˜พ็„ถๅฟ…้กปๅคนๅœจไธŠไธ‹ไธคไธชๆฐดๅนณ็›ด็บฟไน‹้—ด๏ผˆๅฆๅˆ™่‹ฅ็›ธไบค๏ผŒๅˆ™ไบค็‚นๅค„่งฃๅฐ†ไธๅ”ฏไธ€๏ผ‰๏ผŒๅ› ๆญคๅœจ $x$ ๆ–นๅ‘ๅฟ…ๅฐ†ๅฏไปฅๆ— ้™ๅปถไผธ - ็ป™ๅฎšๅพฎๅˆ†ๆ–น็จ‹๏ผš $ der(y, x) = (y-3)(y+1) e^(x+y)^2 $ ๅฎนๆ˜“้ชŒ่ฏๆปก่ถณๅญ˜ๅœจๅ”ฏไธ€็š„ๆกไปถ - ๆ˜พ็„ถ $y = 3, -1$ ๆ˜ฏไธคไธช่งฃ - ่‹ฅ $y_0 in [-1, 3]$๏ผŒ่ฟ‡่ฏฅ็‚น็š„่งฃๅŒๆ ทไธŽ $y = 3, -1$ ไธ็›ธไบค๏ผŒ่ฟ›่€Œๅฏผๆ•ฐๆ€ปไธบ่ดŸๆ•ฐ๏ผŒๅ•่ฐƒไธ‹้™๏ผŒๅ› ๆญคๅœจ $-infinity, +infinity$ ๆ–นๅ‘้ƒฝๆœ‰ๆž้™ใ€‚่ง‚ๅฏŸ็ญ‰ๅผๅฏ็Ÿฅๆž้™ๅช่ƒฝๅˆ†ๅˆซไธบ $3, -1$ - ่‹ฅ $y_0 in [3, +infinity]$ ๏ผŒ่ดŸๅ‘ไป็„ถๆœ‰ๆฐดๅนณๆธ่ฟ‘็บฟ๏ผŒ่€Œๆญฃๅ‘็ฑปไผผๅˆšๆ‰็š„ๅฐ†ไผšๅญ˜ๅœจๅž‚็›ดๆธ่ฟ‘็บฟ ่ฟ™ไบ›ไพ‹ๅญ้ƒฝ่ฏดๆ˜Ž๏ผŒๅช่ฆๅปถๆ‹“ๅฎš็†็š„ๆกไปถๆˆ็ซ‹๏ผŒๆœ€็ปˆๅพ—ๅˆฐ็š„่งฃไธ€ๅฎšๅœจๆŸไธชๆ–นๅ‘ไธŠๆ— ็•Œ ] == ๆฏ”่พƒๅฎš็† ็ป™ๅฎšไธคไธชๅพฎๅˆ†ๆ–น็จ‹๏ผŒๆˆ‘ไปฌๅธŒๆœ›ไปŽๅฝขๅผ็œ‹ๅ‡บ่งฃ็š„ๅคงๅฐๅ…ณ็ณป๏ผŒ็”ฑๅฆ‚ไธ‹ๅฎš็†๏ผš #theorem[็ฌฌไธ€ๆฏ”่พƒๅฎš็†][ ่ฎพ $f, F$ ้ƒฝ่ฟž็ปญ๏ผŒไธ” $f < F$๏ผŒไธคไธชๅพฎๅˆ†ๆ–น็จ‹๏ผš $ cases( der(y, x) = f(x, y), y(x_0) = y_0 )\ cases( der(Y, X) = F(X, Y), Y(X_0) = Y_0 ) $ ๅœจๅŒบ้—ด $I$ ไธŠๅ„ๆœ‰่งฃ $y, Y$๏ผŒๅˆ™ๆœ‰๏ผš $ y < Y, forall x > x_0\ y > Y, forall x < x_0 $ ] #proof[ ๆ˜พ็„ถ $Y'(x_0) = F(x_0, y_0) > y'(x_0)$๏ผŒ่€Œ $Y(x_0) = y(x_0)$๏ผŒๅ› ๆญคๅฏๅ– $delta$ ไฝฟๅพ—๏ผš $ forall x in (x_0, x_0 + delta), Y(x) > y(x)\ forall x in (x_0 - delta, x_0), Y(x) < y(x) $ ่ฎพ $S = {x in I | Y(x) = y(x) }$๏ผŒไปฟ็…งไน‹ๅ‰็š„่ฟ‡็จ‹ๅฏไปฅ็œ‹ๅ‡บ $S$ ไธญๆฏไธช็‚น้ƒฝๅญค็ซ‹๏ผŒ็„ถ่€Œไปปๅ– $x_1 > x_2 in S$๏ผŒ่ฎพ $g(x) = Y(x) - y(x)$๏ผŒๆ—ข็„ถ๏ผš $ g(x_1) = g(x_2) = 0 $ ไธ” $g$ ๅœจ $x_2$ ๅณไพงไธฅๆ ผๅ•ๅขž๏ผŒๅœจ $x_1$ ๅทฆไพงไธฅๆ ผๅ•ๅ‡๏ผŒๅ› ๆญคๅ…ถ้—ดไธ€ๅฎšๆœ‰ $S$ ไธญ็š„็‚นใ€‚ๅๅค่ฟ›่กŒ๏ผŒ่ฟ™ๅฐ†ไธŽ $S$ ไธญๆฏไธช็‚น้ƒฝๅญค็ซ‹็Ÿ›็›พ\ ่ฟ™ๆ„ๅ‘ณ็€ $S$ ไธญๆฐๆœ‰ไธ€็‚น๏ผŒๅช่ƒฝๆ˜ฏ $x_0$๏ผŒๆ•…็ป“่ฎบๅฝ“็„ถๆˆ็ซ‹ ] #corollary[][ ่ฎพ $f in C(a, b), abs(f) <= A(x) abs(y) + B(x), forall x in (a, b)$๏ผŒๅˆ™ๅพฎๅˆ†ๆ–น็จ‹๏ผš $ cases( der(y, x) = f(x, y), y(x_0) = y_0 ) $ ๆ‰€ๆœ‰็š„่งฃ้ƒฝๅฏไปฅๅปถๆ‹“ๅˆฐ $(a, b)$ ] #proof[ #lemma[][ ไธคไธชๅพฎๅˆ†ๆ–น็จ‹๏ผš $ der(y, x) = A(x) abs(y) + B(x)\ der(y, x) = - A(x) abs(y) - B(x) $ ่ฟ‡ไปปๆ„็‚น็š„่งฃๅญ˜ๅœจๅ”ฏไธ€๏ผŒไธ”่งฃ็š„ๅญ˜ๅœจๅŒบ้—ด้ƒฝๆ˜ฏ $(a, b)$ ]<linear_all_range> #proof[ ๅญ˜ๅœจๅ”ฏไธ€ๆ€งๆ˜ฏๅฎนๆ˜“็š„ใ€‚ๅฏนไบŽๅญ˜ๅœจๅŒบ้—ด๏ผŒๅช่ฏๆ˜Ž็ฌฌไธ€ไธชๆ–น็จ‹\ ๆ˜พ็„ถๅฎƒ็š„่งฃๅ•่ฐƒ้€’ๅขž๏ผŒ่‹ฅ่งฃ็š„ๅญ˜ๅœจๅŒบ้—ดไธๆ˜ฏ $(a, b)$ ๏ผŒๅˆ™ๅฟ…็„ถๅœจๆŸ็‚น $x_0 in (a, b)$ ๅค„็š„ๅทฆ/ๅณๆž้™ไธบ $+\/minus infinity$๏ผŒไธๅฆจ่ฎพไธบๅทฆๆž้™ไธบๆญฃๆ— ็ฉท\ ่ฟ™ๆ„ๅ‘ณ็€ๅญ˜ๅœจ $delta, (x_0 - delta, delta)$ ไธŠๆ—ถๆœ‰๏ผš $ der(y, x) = A(x) abs(y) + B(x) = A(x) y + B(x) < M_1 y + M_2 $ ไฝ†็จๅŠ ่ฎก็ฎ—ๅฏๅพ— $der(y, x) = M_1 y + M_2$ ็š„่งฃไธๅฏ่ƒฝๅœจๆœ‰็•ŒๅŒบ้—ดๅ†…่ถ‹ไบŽๆ— ็ฉท๏ผŒ่ฟ›่€Œ่ฏฅๆ–น็จ‹็š„่งฃ็”ฑๆฏ”่พƒๅฎš็†่ขซๆŽงๅˆถๅœจๆœ‰็•ŒๅŒบ้—ด๏ผŒ็Ÿ›็›พ๏ผ ] ๅ›žๅˆฐๅŽŸ้ข˜๏ผŒๆ˜พ็„ถๆœ‰๏ผš $ -(A(x) abs(y) + B(x) + 1)<= der(y, x) = f < A(x) abs(y) + B(x) + 1 $ ็”ฑๆฏ”่พƒๅฎš็†๏ผŒๆฏไธชๆœ‰้™ๅŒบ้—ดไธŠ็š„่งฃๅฝ“็„ถ่ขซๆŽงๅˆถๅœจๆœ‰็•ŒๅŒบ้—ด๏ผŒ่ฏๆฏ• ] #definition[][ ็ป™ๅฎšๅพฎๅˆ†ๆ–น็จ‹ $ cases( der(y, x) = f(x, y), y(x_0) = y_0 ) $ ็งฐๅ…ถ่งฃ $f, g$ ไธบๆœ€ๅคง่งฃ๏ผŒๆœ€ๅฐ่งฃ๏ผŒ่‹ฅไปปๅ– $y$ ไธบไธ€ไธช่งฃ๏ผŒ้ƒฝๆœ‰๏ผš $ g <= y <= f $ ] #theorem[][ ่ฎพ $D = {abs(x-x_0) < delta_x, abs(y - y_0) < delta_y}$๏ผŒๅˆ™ๅญ˜ๅœจ $tau > 0$ ไฝฟๅพ—ๆ–น็จ‹ $ cases( der(y, x) = f(x, y), y(x_0) = y_0 ) $ ๅœจ $x in [x_0 , x_0 + tau]$ ไธŠๆœ‰ๆœ€ๅคง/ๆœ€ๅฐ่งฃ ] #proof[ ่ฎพ $y_n$ ๆ˜ฏๅพฎๅˆ†ๆ–น็จ‹๏ผš $ cases( der(y, x) = f(x, y) + 1/n, y(x_0) = y_0 ) $ ็”ฑ @peano๏ผŒๆฏไธชๆ–น็จ‹็š„่งฃ้ƒฝๅœจ๏ผš $ [x_0 - h_n, x_0 + h_n] "where" h_n = min{delta_x, delta_y/(max_DD abs(f_n))} $ ๅญ˜ๅœจ๏ผŒๆ˜พ็„ถ $h_n$ ๆœ‰ๅ…ฌๅ…ฑๆญฃไธ‹็•Œ๏ผŒๅ– $tau$ ๆ˜ฏไธ€ไธชๆญฃไธ‹็•Œ๏ผŒๅˆ™่ฟ™ไบ›ๆ–น็จ‹้ƒฝๅœจ $[x_0 - tau, x_0 + tau]$ ไธŠๆœ‰็•Œ\ // ๆˆ‘ไปฌๅธŒๆœ›ๆ‰พๅˆฐไธ€ไบ›ไธ€่‡ดๆ”ถๆ•›ๆ€งใ€‚ไบ‹ๅฎžไธŠ๏ผŒ่ฟ™ไบ›ๅ‡ฝๆ•ฐ๏ผš // - ็ญ‰ๅบฆ่ฟž็ปญ๏ผŒๆ—ข็„ถ๏ผš // $ // y'_n (x) <= max_DD abs(f) + 1.n <= max_DD abs(f) + 1 // $ // - ไธ€่‡ดๆœ‰็•Œ๏ผŒๆ—ข็„ถๅฏผๆ•ฐๆœ‰ไธ€่‡ด็•Œไธ”้ƒฝๅฎšไน‰ๅœจๆœ‰้™ๅŒบ้—ดไธŠ ไบ‹ๅฎžไธŠ๏ผŒ่ฟ™ไบ›่งฃไธ€่‡ดๆ”ถๆ•›ใ€‚่ฟ™ๆ˜ฏๅ› ไธบ่‹ฅ่ฎพ $forall n, m > N, phi(x) = y_n (x) - y_m (x) $๏ผŒๅˆ™๏ผš $ abs(der(phi, x)) = abs(1/n - 1/m) < 1/N\ abs(phi(x) - phi(0)) = abs(integral_(x_0)^(x) der(y, x) dif s) <= integral_(x_0)^(x) abs(der(y, x)) dif s <= (x - x_0)/N <= tau/N $ ๆŸฏ่ฅฟๅŽŸ็†็ป™ๅ‡บไบ†ไธ€่‡ดๆ”ถๆ•›ๆ€ง๏ผŒๅ› ๆญคๆˆ‘ไปฌๅฏไปฅๅ–ๆž้™๏ผŒ่€Œ่ฝฌๅŒ–ไธบ็งฏๅˆ†ๆ–น็จ‹๏ผŒๅฎƒไปฌ็š„ๆž้™ๅฐฑๆ˜ฏๅŽŸๆ–น็จ‹็š„่งฃ๏ผŒ่€Œๅฎนๆ˜“้ชŒ่ฏ่ฟ™ไธช่งฃไธ€ๅฎšๆ˜ฏๅŽŸๆ–น็จ‹็š„ๆœ€ๅคง่งฃ ] #remark[][ ๆˆ‘ไปฌๅฝ“็„ถๅฏไปฅๅฐ†ไธค็ซฏ็š„ๆœ€ๅคง่งฃๆ‹ผๆŽฅ๏ผŒๅพ—ๅˆฐๅŒ่พน็š„ๆœ€ๅคง่งฃ ] #theorem[][ ่ฎพ $f, g$ ๆ˜ฏๅพฎๅˆ†ๆ–น็จ‹๏ผš $ cases( der(y, x) = f(x, y) , y(x_0) = y_0 ) $ ๅœจ $I$ ไธŠ็š„ๆœ€ๅคง/ๆœ€ๅฐ่งฃ๏ผŒๅˆ™ไปปๅ– $x_1 in I, y_1 in [g(x_1), f(x_1)]$๏ผŒๅญ˜ๅœจๆ–น็จ‹็š„่งฃ $h$ ไฝฟๅพ— $h(x_1) = y_1$ ] #proof[ #lemmaLinear[][ ่ฎพ $g_1, g_2$ ๅœจๅŒบ้—ด $I$ ไธŠๅ‡ๆปก่ถณ $g'_i (x) = f(x, g_i (x))$๏ผŒๅˆ™ $max(g_1, g_2), min(g_1, g_2)$ ไนŸๆปก่ถณ ] #proof[ ๅช่ฏ $max$๏ผŒ$min$ ็ฑปไผผ\ ่ฎพ $h = max(g_1, g_2)$๏ผŒ้ชŒ่ฏไธŠ้ข็š„็ญ‰ๅผๅช้œ€้€็‚น้ชŒ่ฏๅณๅฏ๏ผš - ไปปๅ– $x in I$๏ผŒ่ฎจ่ฎบ๏ผš - ่‹ฅ $g_1(x) > g_2(x)$๏ผŒๅˆ™ๆœ‰ $g_1, g_2$ ่ฟž็ปญๆ€ง็Ÿฅๅญ˜ๅœจ $x$ ็š„ๅผ€้‚ปๅŸŸ $B$ ไฝฟๅพ—๏ผš $ h|_B = g_1 $ ๆญคๆ—ถ็”ฑไบŽ $g_1$ ๅœจ่ฏฅ็‚นๆ˜ฏๅพฎๅˆ†ๆ–น็จ‹็š„่งฃ๏ผŒ$h$ ๅฝ“็„ถไนŸๆ˜ฏ - ่‹ฅ $g_1(x) < g_2(x)$๏ผŒๅŒ็† - ่‹ฅ $g_1(x) = g_2(x)$๏ผŒๆณจๆ„ๅˆฐ๏ผš $ g'_1(x) = f(x, g_1(x)) = f(x, g_2(x)) = g'_2(x) := d $ ๅ› ๆญค๏ผš $ abs((h(x + Delta x) - h(x))/(Delta x) - d) &<= abs((h(x + Delta x) - g_1 (x + Delta x))/(Delta x)) + abs((g_1 (x + Delta x) - g_1 (x))/(Delta x) - g'_1 (x))\ &<= abs((g_2(x + Delta x) - g_1 (x + Delta x))/(Delta x)) + abs((g_1 (x + Delta x) - g_1 (x))/(Delta x) - g'_1 (x))\ &<= abs(((g_2(x + Delta x) - g_1 (x + Delta x)) - (g_2 (x) - g_1 (x)))/(Delta x)) + abs((g_1 (x + Delta x) - g_1 (x))/(Delta x) - g'_1 (x))\ &<= abs(g'_2 (xi) - g'_1 (xi)) + abs((g_1 (x + Delta x) - g_1 (x))/(Delta x) - g'_1 (x))\ &"๏ผˆๅฏน" g_2(x) - g_1(x) ๅœจ x, x + Delta x "ไธŠๅˆฉ็”จๅพฎๅˆ†ไธญๅ€ผๅฎš็†๏ผ‰" $ ๅ…ถไธญ $xi$ ๅœจ $x, x + Delta x$ ไน‹้—ดใ€‚ๆณจๆ„ๅˆฐ็”ฑๅพฎๅˆ†ๆ–น็จ‹๏ผŒ$g_1, g_2$ ๅฝ“็„ถ่ฟž็ปญๅฏๅฏผ๏ผŒ่ฟ›่€Œๅฝ“ $Delta x -> 0$ ๆ—ถไธŠๅผ $-> 0$๏ผŒ่ฟ™ๅฐฑไฟ่ฏไบ†๏ผš $ h'(x) = d = f(x, h(x)) $ ไนŸๅณ $h$ ๅœจ่ฏฅ็‚นๆปก่ถณๅพฎๅˆ†ๆ–น็จ‹ ๅพ—่ฏ ] ่€ƒ่™‘ๅพฎๅˆ†ๆ–น็จ‹๏ผš $ cases( y' = f(x, y) , y(x_1) = y_1 ) $ ๅฎƒๅœจ $x_1$ ็š„ๆŸไธช้‚ปๅŸŸๅ†…ๆœ‰่งฃ $h$๏ผŒๅˆๅฏไธๅฆจ่ฎพ $h$ ๅœจ $I$ ๅ†…ๆŸไธชๆžๅคง็š„ๅŒบ้—ด $I_1$๏ผˆไนŸๅณๆ‰€ๆœ‰ๅฏๅปถๆ‹“้—ญๅŒบ้—ด็š„ๅนถ๏ผ‰ไธŠๆ˜ฏๅŽŸๆ–น็จ‹็š„่งฃ๏ผŒๅนถ่ฎพ๏ผš $ h_1 = max(min(h, Z), W), x in I_1 $ ๅฐ†ๆปก่ถณ $h'_1 (x) = f(x, h_1 (x))$๏ผŒๅŒๆ—ถไนŸไธ้šพ้ชŒ่ฏ $h_1(x_1) = y_1$๏ผŒๅ› ๆญคๆ˜ฏ่ฟ‡่ฏฅ็‚น็š„ๅพฎๅˆ†ๆ–น็จ‹็š„่งฃ\ ๅฆไธ€ๆ–น้ข๏ผŒๆ˜พ็„ถๆœ‰๏ผš $ max(min(h, Z), W) >= W\ max(min(h, Z), W) <= max(Z, W) = Z $ ๅ› ๆญค $h_1$ ๆ˜ฏๅŒบ้—ดไธŠๆœ‰็•Œ็š„ๅพฎๅˆ†ๆ–น็จ‹็š„่งฃ ไปŽ่€Œ๏ผš - ่‹ฅ $x_0 in I_1$๏ผŒ็”ฑไธŠ้ข็š„ๆกไปถๅ’Œๅผ•็†็Ÿฅ $h_1$ ๅฐฑๆ˜ฏ่ฆๆ‰พ็š„่งฃ - ๅฆๅˆ™๏ผŒ่ฎพ $I_1$ ้—ญๅŒ…ไธญ่ท $x_0$ ๆœ€่ฟ‘็š„็‚นไธบ $x_2$๏ผŒๆณจๆ„ๅˆฐ $h_1$ ๅœจ $I_1$ ไธŠๆœ‰็•Œ๏ผŒๅ› ๆญค็”ฑๅปถๆ‹“ๅฎš็†่ฆไนˆๆ„ๅ‘ณ็€ๅญ˜ๅœจ $x'$ ไฝฟๅพ— $abs(h_1(x') - y_0) = b$๏ผŒ่ฆไนˆ $h_1$ ไธ€ๅฎšๅฏไปฅ่‡ณๅฐ‘ๅปถๆ‹“ๅˆฐ $x_2 := x'$๏ผŒ็„ถ่€Œๅทฒ็ปๅ‡่ฎพ $h$ ไธ่ƒฝๅ†ๅปถๆ‹“๏ผŒๅ› ๆญค่ฏฅ็‚น้™„่ฟ‘ไธ€ๅฎšๅ– $Z$ ๆˆ– $W$ ๏ผŒๆ— ่ฎบๅฆ‚ไฝ•ไธ€ๅฎšๆœ‰๏ผš $ exists x', h_1(x') = Z(x') ๆˆ– W(x') $ ๆ— ่ฎบไฝ•่€…๏ผŒ้ƒฝๆ„ๅ‘ณ็€ $h_1$ ๅฏไปฅไธŽ $Z$ ๆˆ– $W$ ็š„ๅ…ถไธญไน‹ไธ€ๆ‹ผๆŽฅ่ตทๆฅ๏ผŒ่ฟ™ๅฐฑๆ˜ฏๆ‰€่ฆๆ‰พ็š„่งฃใ€‚ ] #corollary[][ ่‹ฅๅพฎๅˆ†ๆ–น็จ‹็š„ๅ•ไพง็š„ๆœ€ๅคง่งฃ๏ผŒๆœ€ๅฐ่งฃๅ‡ๅญ˜ๅœจไธ”ไธ็›ธ็ญ‰๏ผŒๅˆ™่ฏฅไพงๅพฎๅˆ†ๆ–น็จ‹ๆœ‰ๆ— ็ฉทๅคš่งฃ๏ผŒ่ฟ™ๆ— ็ฉทๅคš่งฃ่ขซๆŽงๅˆถๅœจๆœ€ๅคง/ๆœ€ๅฐ่งฃไน‹้—ด ] #example[][ - ๅพฎๅˆ†ๆ–น็จ‹๏ผš $ cases( der(y, x) = y^(1/3), y(0) = 0 ) $ ้€š่งฃไธบ๏ผš $ y = cases( 0 quad x <= -C\ plus.minus (2/3 x + C)^(3/2) quad x > C ) $ ๅœจ $0$ ๅณไพง็š„ๆœ€ๅคง่งฃไธบ $y = (2/3 x)^(3/2)$๏ผŒๆœ€ๅฐ่งฃไธบ $y = -(2/3 x)^(3/2)$ - ๅพฎๅˆ†ๆ–น็จ‹๏ผš $ cases( der(y, x) = abs(y)^(1/2), y(0) = 0 ) $ ้€š่งฃไธบ๏ผš $ y = cases( 1/4(C_1 - x)^2 quad x <= C_1, 0 quad C_1 <= x <= C_2, 1/4(x - C_2)^2 quad x >= C_2 ) $ ] #theorem[็ฌฌไบŒๆฏ”่พƒๅฎš็†][ ่ฎพ $f, F$ ้ƒฝ่ฟž็ปญ๏ผŒไธ” $f <= F$๏ผŒไธคไธชๅพฎๅˆ†ๆ–น็จ‹๏ผš $ cases( der(y, x) = f(x, y), y(x_0) = y_0 )\ cases( der(Y, X) = F(X, Y), Y(X_0) = Y_0 ) $ ๅˆ™๏ผš - ๅœจๅˆๅ€ผๅณไพง๏ผŒๅ‰่€…็š„ๆœ€ๅฐ่งฃๅฐไบŽ็ญ‰ไบŽๅŽ่€…็š„ไปปๆ„่งฃ;ๅœจๅˆๅ€ผๅทฆไพง๏ผŒๅ‰่€…็š„ๆœ€ๅคง่งฃๅคงไบŽ็ญ‰ไบŽๅŽ่€…็š„ไปปๆ„่งฃ - ๅœจๅˆๅ€ผๅณไพง๏ผŒๅŽ่€…็š„ๆœ€ๅคง่งฃๅคงไบŽ็ญ‰ไบŽๅ‰่€…็š„ไปปๆ„่งฃ;ๅœจๅˆๅ€ผๅทฆไพง๏ผŒๅŽ่€…็š„ๆœ€ๅฐ่งฃๅฐไบŽ็ญ‰ไบŽๅ‰่€…็š„ไปปๆ„่งฃ ] #proof[ ไปฟ็…งไธŠ้ข็š„้€ผ่ฟ‘่ฟ‡็จ‹ๅ†ไฝฟ็”จ็ฌฌไธ€ๆฏ”่พƒๅฎš็†ๅณๅฏ ] == ๅฅ‡่งฃ #definition[ๅฅ‡่งฃ][ ่ฎพ $Gamma = {(x, y) | y = f(x)}$ ๆ˜ฏๅพฎๅˆ†ๆ–น็จ‹ $F(x, y') = 0$ ็š„ไธ€ไธช่งฃ๏ผŒ่‹ฅๅฏนไปปๆ„็š„ $(x_, y) in Gamma$๏ผŒๅœจ่ฏฅ็‚น็š„ไปปไฝ•ไธ€ไธช้‚ปๅŸŸ้‡Œๅญ˜ๅœจ่ฟ‡ $(x_0, y_0)$ ็š„ไธๅŒไบŽ $Gamma$ ็š„่งฃ๏ผŒไธ”่ฏฅ่งฃไธŽ $Gamma$ ๅœจ่ฏฅ็‚น็›ธๅˆ‡๏ผŒๅˆ™็งฐ $Gamma$ ๆ˜ฏๅฅ‡่งฃ ] #example[][ - $y = x y' - 1/2 y'^2$๏ผŒๅฎƒ็š„่งฃไธบ๏ผš $ y = 1/2 x^2\ y = c x - c^2/2 $ ๆณจๆ„ๅˆฐไธ‹้ข็š„็›ด็บฟๆ—ๆฐๅฅฝๆ˜ฏไธŠ้ขๆŠ›็‰ฉ็บฟ็š„ๆ‰€ๆœ‰ๅˆ‡็บฟ๏ผŒๅ› ๆญคๆŠ›็‰ฉ็บฟๅฝ“็„ถๅฐฑๆ˜ฏไธ€ไธชๅฅ‡่งฃ - $y^2 + y'^2 = 1$\ ไปค $y = cos theta, y' = sin theta, x = u(theta)$๏ผŒๆœ‰๏ผš $ (-sin theta)/(u') = sin theta\ sin theta = 0 ๆˆ– u' = -1 $ ๅ› ๆญค่งฃไธบ๏ผš $ y' = 0 => y = plus.minus 1\ u' = -1 => x = -theta + C => y = cos(x - C) $ ๅฏไปฅ็œ‹ๅ‡บ $y = plus.minus 1$ ๆ˜ฏๅฅ‡่งฃ ] #theorem[ๅฅ‡่งฃ็š„ๅฟ…่ฆๆกไปถ][ ่ฎพ $G subset RR^3, F(x, y, y') in C^0, partialDer(F, y), partialDer(F, y')$ ๅญ˜ๅœจไธ”่ฟž็ปญใ€‚ๅ‡่ฎพ $y = phi(x)$ ๆ˜ฏๅฅ‡่งฃ๏ผŒๅˆ™๏ผš $ cases( F(x, phi(x), phi'(x)) = 0, partialDer(F, y') (x, phi(x), phi'(x)) = 0 ) $ ] #proof[ ็ฌฌไธ€ไธชๅผๅญๆ˜ฏๆ˜พ็„ถ็š„ใ€‚ๅฏนไบŽ็ฌฌไบŒไธชๅผๅญ๏ผŒๅ‡่ฎพๅญ˜ๅœจ $x_0$ ไฝฟๅพ— $partialDer(F, y) (x_0, phi(x_0), phi'(x_0)) != 0$๏ผŒ่ฎพ $(x_0, y_0, P_0) = (x_0, phi(x_0), phi'(x_0))$๏ผŒๅœจ่ฏฅ็‚นๅฏน $F$ ๅˆฉ็”จ้šๅ‡ฝๆ•ฐๅฎš็†๏ผŒๅญ˜ๅœจๆŸไธชๅผ€้‚ปๅŸŸไฝฟๅพ—๏ผš $ F(x, y, P) = 0 <=> P = f(x, y) $ ไธ” $f$ ๆ˜ฏ่ฟž็ปญๅ‡ฝๆ•ฐไธ”ๅ…ณไบŽ $y$ ่ฟž็ปญๅฏๅฏผ๏ผŒๅฐ†ๅœจ $(x_0, y_0)$ ็š„ๆŸไธช้‚ปๅŸŸๅ†… Lipschitz ่ฟž็ปญ๏ผŒๅฏไปฅๅˆฉ็”จ่งฃ็š„ๅญ˜ๅœจๅ”ฏไธ€ๆ€งๅฎš็†ๅฏ็Ÿฅ่ฏฅ้‚ปๅŸŸๅ†…ๅพฎๅˆ†ๆ–น็จ‹็š„่งฃๅญ˜ๅœจๅ”ฏไธ€๏ผŒไธŽ $phi$ ๆ˜ฏๅฅ‡่งฃๆ˜พ็„ถ็Ÿ›็›พ ] ไธŠ้ข็š„ๅฎš็†็ป™ๅ‡บไบ†ๅฅ‡่งฃ็š„ไธ€ไธชๅฟ…่ฆๆกไปถใ€‚่ฟ™้‡Œๆœ‰ไธคไธช็ญ‰ๅผ๏ผŒ่‹ฅๅฏไปฅๅŒ–็ฎ€็›ดๅˆฐๅฏ่งฃๅ‡บ $y$๏ผŒไพฟๅฏ่ƒฝๆฑ‚ๅ‡บๅŽŸๆ–น็จ‹็š„ๅฅ‡่งฃใ€‚ๆ›ด่ฟ›ไธ€ๆญฅ๏ผŒ่‹ฅ่ƒฝๆถˆๅŽป $y'$ ๅพ—ๅˆฐ๏ผš $ Delta (x, y) = 0 $ ๅˆ™ๅฅ‡่งฃๅฐฑๅœจ่ฏฅๆ›ฒ็บฟไน‹ไธญ๏ผŒ่ฟ™ๆกๆ›ฒ็บฟ่ขซ็งฐไธบๅˆคๅˆซๆ›ฒ็บฟ #example[][ - $ y = P x ln x + (x p)^2 - y\ $ ๅฏไปฅ่งฃๅพ—ๅˆคๅˆซๆ›ฒ็บฟไธบ $y = -1/4 (ln x)^2$๏ผŒๅฎนๆ˜“้ชŒ่ฏๅฎƒๆ˜ฏไธ€ไธช่งฃ๏ผŒ็จๅŽไผšๅˆคๆ–ญๅฎƒๆ˜ฏๅฆๆ˜ฏๅฅ‡่งฃ - $y'^2 + y - x = 0$\ ๅฏไปฅ่งฃๅพ—ๅˆคๅˆซๆ›ฒ็บฟไธบ $y = x$๏ผŒไฝ†ไธๆ˜ฏๅŽŸๆ–น็จ‹็š„่งฃ๏ผŒๅ› ๆญคๅŽŸๆ–น็จ‹ๆฒกๆœ‰ๅฅ‡่งฃ - $y'^2 - y'^2 = 0$๏ผŒๅฎƒ็š„ๅˆคๅˆซๆ›ฒ็บฟๆ˜ฏ $y = 0$ ๆ˜ฏ่งฃ๏ผŒ็„ถ่€Œๅฎนๆ˜“็œ‹ๅ‡บๅฎƒ็š„ๆ‰€ๆœ‰่งฃๆ˜ฏ: $ y = C e^(plus.minus x) $ ไปฅๅŠๅฎƒไปฌๅฏ่ƒฝ็š„ๆ‹ผๆŽฅ๏ผŒ็„ถ่€Œไป…ๆœ‰ $y = 0$ ๅ”ฏไธ€ไธ€ไธช่งฃๅฏ่ƒฝ็ป่ฟ‡ $x$ ่ฝด๏ผŒๅ› ๆญค่ฟ‡ $(x_0, 0)$ ็š„่งฃ้ƒฝๆ˜ฏๅญ˜ๅœจไธ”ๅ”ฏไธ€็š„ ] #theorem[ๅฅ‡่งฃ็š„ๅ……ๅˆ†ๆกไปถ][ ่ฎพ $F(x, y, y') in C^infinity$๏ผŒๅ‡่ฎพ๏ผš $ cases( F(x, phi(x), phi'(x)) = 0, partialDer(F, y') (x, phi(x), phi'(x)) = 0 ) <=> y = psi(x) $ ๏ผˆไบ‹ๅฎžไธŠ๏ผŒไนŸๅฐฑๆ˜ฏ $Delta(x, y)$ ๆ˜ฏๅŽŸๆ–น็จ‹็š„่งฃ๏ผ‰\ ่‹ฅ๏ผš $ cases( (diff^(k+l) F)/(diff y^k diff p^l) (x, psi(x), psi'(x)) = 0\, forall 0 <=k <= m-1\, 0 <= l <= n-1, (diff^m F)/(diff y^m) (x, psi(x), psi'(x)) != 0, (diff^n F)/(diff p^n) (x, psi(x), psi'(x)) != 0 ) $ ๅ…ถไธญ $n, m in NN, n > m$ใ€‚ๅฆ‚ๆžœ๏ผš - $m, n$ ไน‹ไธ€ไธบๅฅ‡ๆ•ฐ๏ผŒๆˆ– - $m, n$ ๅ‡ไธบๅถๆ•ฐ๏ผŒไธ” $(diff^m F)/(diff y^m) (diff^n F)/(diff p^n) < 0$ ๅˆ™ $psi$ ๆ˜ฏๅฅ‡่งฃ ] #proof[ #lemma[][ ่ฎพ $f(x, y) : C^infinity (RR^n times RR -> RR)$๏ผŒ่ฎพ๏ผš $ f(x, y) = sum_(k=0)^n f_k (x) y^k + R_(n+1) (x, y) y^n $ ๆ˜ฏๅ…ณไบŽ $y$ ็š„ๆณฐๅ‹’ๅฑ•ๅผ€๏ผŒๅˆ™ $R_n (x)$ ไนŸๆ˜ฏ $C^infinity$ ] #proof[ ๅˆฉ็”จ็งฏๅˆ†ไฝ™้กน๏ผš $ f(x, y) - sum_(k=0)^n f_k (x) y^k = y^n/n! integral_0^1 (1-t)^n (diff^n f(x, y t))/(diff t^n) dif t $ ๅฎนๆ˜“็œ‹ๅ‡บ็ป“่ฎบๆˆ็ซ‹ ] #lemma[][ ่€ƒ่™‘ๅพฎๅˆ†ๆ–น็จ‹ $u' = plus.minus A(x, u) abs(u)^alpha, 0< alpha <1 $ ๅ…ถไธญๆœ‰๏ผš - $A$ ่ฟž็ปญไธ”ๅœจ $u !=0$ ๆ—ถ่ฟž็ปญๅฏๅฏผ - $A$ ๆœ‰ๆญฃไธ‹็•Œ $c_0$๏ผŒๆญฃไธŠ็•Œ $c_1$ ๅˆ™ $u = 0$ ๆ˜ฏๅฅ‡่งฃ ]<lemma0_is_odd> #proof[ ไธๅฆจ่ฎพ็ฌฆๅทๅ–ๆญฃ๏ผŒๆญคๆ—ถๆ–น็จ‹็š„่งฃๅฝ“็„ถ้€’ๅขžใ€‚\ ๆˆ‘ไปฌ็š„็›ฎๆ ‡ๆ˜ฏๅœจ $x_0$ ๅค„ๆž„้€ ไธ€ไธชๅŽŸๆ–น็จ‹็š„้žๅนณๅ‡ก่งฃใ€‚ๅ…ˆ่€ƒ่™‘ๅณไพง๏ผŒๆณจๆ„ๅˆฐ๏ผš $ u' = A(x, u)u^alpha\ u^(-alpha) u' = A(x, u)\ $ ่ฎพ $v = u^(1 - alpha), v' = (1-alpha) u^(-alpha) u'$๏ผŒๅˆ™๏ผš $ 1/(1-alpha) v' = A(x, v^(1/(1-alpha))) $ ] ๅ›žๅˆฐๅŽŸๆ–น็จ‹๏ผŒๅšๆขๅ…ƒ $y = psi(x) + u$๏ผŒๆ–น็จ‹ๅ˜ๆˆ๏ผš $ H(x, u, u') = F(x, psi(x) + u, psi'(x) + u') = 0 $ ๅช้œ€่ฏๆ˜Ž $u = 0$ ๆ˜ฏๅฅ‡่งฃๅณๅฏใ€‚ไบ‹ๅฎžไธŠ๏ผŒ$H$ ๆปก่ถณๅฆ‚ไธ‹ๆกไปถ๏ผš $ cases( (diff^(k+l) F)/(diff y^k diff p^l) (x, 0, 0) = 0\, forall 0 <=k <= m-1\, 0 <= l <= n-1, (diff^m F)/(diff y^m) (x, 0, 0) != 0, (diff^n F)/(diff p^n) (x, 0, 0) != 0 ) $ ๅฏไปฅๆƒณ่ฑก๏ผŒ$H$ ๆณฐๅ‹’ๅฑ•ๅผ€ๅŽ็š„ๅฝขๅผ้žๅธธ็ฎ€ๅ•ใ€‚ไบ‹ๅฎžไธŠ๏ผŒๆœ‰๏ผš $ H(x, u, u') = u^m H_1 (x, u, u') + u'^n H_2 (x, u, u') $ ๅ…ถไธญ $H_1, H_2$ ้ƒฝๆ— ็ฉท้˜ถๅฏๅฏผ๏ผŒไธ”๏ผš $ H_1 (x, 0, 0) = (diff^m F)/(diff y^m) (x, psi(x), psi'(x)) != 0\ H_2 (x, 0, 0) = (diff^n F)/(diff p^n) (x, psi(x), psi'(x)) != 0 $ ๅ› ๆญคๅฏไปฅ๏ผˆๅœจๆŸไธชๅฐ้‚ปๅŸŸๅ†…๏ผ‰ไธๅฆจ่ฎพ $H_1, H_2 !=0 $๏ผŒๆ–น็จ‹ๅŒ–ไธบ๏ผš $ u^m H_1 (x, u, u') + u'^n H_2 (x, u, u') = 0 $ ๆˆ‘ไปฌๅฝ“็„ถๅธŒๆœ›่ฟ›่กŒๅผ€ๆ–น๏ผŒๅฏไปฅ้ชŒ่ฏๅœจๅ‡่ฎพ็š„ๆกไปถไธ‹๏ผˆๅณ $m, n$ ไน‹ไธ€ไธบๅฅ‡ๆ•ฐ๏ผŒๆˆ– $m, n$ ๅ‡ไธบๅถๆ•ฐ๏ผŒไธ” $(diff^m F)/(diff y^m) (diff^n F)/(diff p^n) < 0$๏ผ‰๏ผŒๆˆ‘ไปฌๅฐ†็กฎๅฎžๅฏไปฅๅผ€ๆ–น๏ผŒๅฏนๅผ€ๆ–นๅŽ็š„ๅ‡ฝๆ•ฐๅˆฉ็”จ @lemma0_is_odd ๅณๅฏ ] #corollary[][ ่ฎพ $F(x, y, y') in C^2$๏ผŒไธ”๏ผš $ cases( F(x, phi(x), phi'(x)) = 0, partialDer(F, y') (x, phi(x), phi'(x)) = 0 ) <=> y = psi(x) $ ่‹ฅ๏ผš $ (diff^2 F)/(diff p^2) (x, psi(x), psi'(x)) != 0\ partialDer(F, y) (x, phi(x), phi'(x)) != 0 $ ๅˆ™ $psi$ ๆ˜ฏๅฅ‡่งฃ ] #proof[ ๅฐฑๆ˜ฏๅœจไธŠ้ข็š„ๅฎš็†ไธญๅ– $n = 2, m = 1$ ็š„็ป“ๆžœ๏ผŒ่‡ณไบŽๆกไปถๅฏไปฅๆ”พๆพ็š„ๅŽŸๅ› ๅฏไปฅๅœจไธŠ้ข็š„่ฏๆ˜Ž่ฟ‡็จ‹ไธญไป”็ป†้ชŒ่ฏ ] == ๅŒ…็ปœ #definition[ๅŒ…็ปœ][ ่ฎพ $k_c, c in C$ ๆ˜ฏๅ…‰ๆป‘ๆ›ฒ็บฟๆ—๏ผŒ็งฐๅ…‰ๆป‘ๆ›ฒ็บฟ $gamma$ ไธบ $k_c$ ็š„ๅŒ…็ปœ๏ผŒๅฆ‚ๆžœ $forall (x, y) in gamma, exists k_c$ ไฝฟๅพ— $k_c$ ไธŽ $gamma$ ็›ธๅˆ‡๏ผŒไธ”ๅœจ่ฏฅ็‚น็š„ไปปๆ„ๅผ€้‚ปๅŸŸๅ†… $k_c != gamma$ ] #example[][ - ็ป™ๅฎšไธ€ๆ—ๆ›ฒ็บฟ $y = (x-c)^2 + 1$๏ผŒๅฝ“็„ถ $y = 1$ ๆ˜ฏๅ…ถไธ€ไธชๅŒ…็ปœ - ็ป™ๅฎšไธ€ๆ—็›ด็บฟ $y = c x - c^2 / 4$๏ผŒๅฎƒๅฐฑๆ˜ฏ $y = x^2$ ็š„ๅˆ‡็บฟๆ—๏ผŒ่‡ช็„ถ $y = x^2$ ๆ˜ฏๅŒ…็ปœ ] #theorem[][ ๅ‡่ฎพ $F(x, y, y') = 0$ ๆœ‰้€š่งฃ $u(x, y, c) = 0$๏ผŒๅ‡่ฎพ $partialDer(u, y) != 0$ใ€‚่ฎพ $u(x, y, c) = 0$ ๅ…ณไบŽ $c$ ๆž„ๆˆ็š„ๆ›ฒ็บฟๆ—ๆœ‰ๅŒ…็ปœ $gamma := y = phi(x)$๏ผŒๅˆ™ $y = phi(x)$ ๆ˜ฏๅฅ‡่งฃ ] #proof[ - ้ฆ–ๅ…ˆ่ฏๆ˜Ž $gamma$ ๆ˜ฏ่งฃใ€‚ๅฝ“็„ถ $gamma$ ไธŠๆฏ็‚น้ƒฝๅฏไปฅๆ‰พๅˆฐ่งฃ $u(x, y, c_0) = 0$ ไธŽไน‹ๅœจ่ฏฅ็‚น็›ธๅˆ‡ใ€‚็”ฑๅ‡่ฎพๆกไปถๅ’Œ้šๅ‡ฝๆ•ฐๅฎš็†๏ผŒๅฏไปฅๅ่งฃๅ‡บ๏ผš $ u(x, y, c_0) = 0<=> y = psi(x) $ ๅฝ“็„ถ $phi(x)$ ไธŽ $psi(x)$ ็›ธๅˆ‡ไฝ†ไธ็›ธๅŒ๏ผŒ่ฟ™่กจๆ˜Ž่ฏฅ็‚นๅค„ $gamma$ ็š„ๅ‡ฝๆ•ฐๅ€ผๅ’Œๅฏผๆ•ฐๅ€ผๆปก่ถณๅพฎๅˆ†ๆ–น็จ‹๏ผŒๅ› ๆญค $gamma$ ๆ˜ฏ่งฃ - ๅ…ถๆฌก๏ผŒ่ฟ‡ $gamma$ ๆฏ็‚น้ƒฝๅฏไปฅๆ‰พๅˆฐไธŽไน‹็›ธๅˆ‡็š„ไธๅŒ่งฃ๏ผŒ่ฟ™ๅฐฑ่กจๆ˜Žๅฎƒๆ˜ฏๅฅ‡่งฃ ] #theorem[][ ๅ‡่ฎพ $Gamma$ ๆ˜ฏๆ›ฒ็บฟๆ— $k_c: v(x, y, c) = 0$ ็š„ๅŒ…็ปœ๏ผŒๅนถไธ” $Gamma$ ไธŽ $k_C$ ๅˆ‡ไบŽ $(f(c), g(c))$๏ผŒๅ…ถไธญ $f, g in C^1$๏ผŒๅˆ™ $Gamma$ ๆปก่ถณๆ–น็จ‹๏ผš $ cases( v(x, y, c) = 0, v'_c (x, y, c) = 0 ) $ ๅฆ‚ๆžœ่ฟ™ไธชๆ–น็จ‹็ป„ไธญ่ƒฝๆถˆๅŽป $c$๏ผŒๅˆ™็งฐๆถˆๅŽปๅŽ็š„ๆ›ฒ็บฟไธบ $C$ ๅˆคๅˆซๆ›ฒ็บฟ ] #proof[ ไปปๅ– $(x_0, y_0) in Gamma sect k_c$๏ผŒๅˆ™้ฆ–ๅ…ˆ็ฌฌไธ€ไธชๆ–น็จ‹ๅฝ“็„ถๆˆ็ซ‹\ ๅœจ $v(f(c), g(c), c) = 0$ ไธญ๏ผŒไธค่พนๅฏน $c$ ๆฑ‚ๅฏผๅพ—๏ผš $ v'_x (f(c), g(c), c) f'(c) + v'_y (f(c), g(c), c) g'(c) + v'_c (f(c), g(c), c) = 0 $ ๅช้œ€่ฏๆ˜Ž $vec(v'_x (f(c), g(c), c), v'_y (f(c), g(c), c) ) dot vec(f'(c), g'(c)) = 0$๏ผŒไธๅฆจ่ฎพไป–ไปฌ้ƒฝไธไธบ้›ถ\ ็„ถ่€Œๆณจๆ„ๅˆฐ $vec(f(c), g(c))$ ไบ‹ๅฎžไธŠๆ˜ฏ $Gamma$ ๅœจๅฑ€้ƒจไธŠ็š„ไธ€ไธชๅ‚ๆ•ฐๆ–น็จ‹๏ผŒ$vec(f'(c), g'(c))$ ๅฐ†ๆˆไธบ $Gamma$ ็š„ๅˆ‡ๅ‘้‡ใ€‚\ ๅŒๆ—ถ๏ผŒ$vec(v'_x (f(c), g(c), c), v'_y (f(c), g(c), c) )$ ไบ‹ๅฎžไธŠๆ˜ฏ $v(x, y, c) = 0$ ๅœจ $(f(c), g(c))$ ๅค„็š„ๆณ•ๅ‘้‡๏ผŒ็”ฑไบŽ $Gamma$ ๆ˜ฏๅŒ…็ปœๅฝ“็„ถไธค่€…ๆญฃไบค ] #theorem[][ ๅ‡่ฎพ ๆ›ฒ็บฟๆ— $k_c: v(x, y, c) = 0$ ็š„ $C$ ๅˆคๅˆซๆ›ฒ็บฟ็กฎๅฎšไบ†ไธ€ๆก $C^1$ ๆ›ฒ็บฟ $x = x(c), y = y(c)$๏ผŒไธ”ๆปก่ถณ้ž้€€ๅŒ–ๆกไปถ๏ผš $ (x'(c), y'(c)) != (0, 0)\ (partialDer(v,y)(x(c), y(c), c), partialDer(v,x)(x(c), y(c), c)) != (0, 0) $ ๅนถไธ”่ฏฅๆ›ฒ็บฟๅœจๆ›ฒ็บฟไธŠไปปๆ„ไธ€็‚น็š„ๅฑ€้ƒจ้ƒฝไธๅœจๅŽŸๆ›ฒ็บฟๆ—ไธญ๏ผŒๅˆ™ๅฎƒๆ˜ฏๅŒ…็ปœ ] #proof[ ไปปๅ– $c$๏ผŒๅœจ $P(c) = (x(c), y(c))$ ็š„ๅฑ€้ƒจ้ƒฝๅฏไปฅๅˆฉ็”จ้šๅ‡ฝๆ•ฐๅฎš็†ๅ่งฃๅ‡บ $v(x, y, c) = 0$ ็š„่งฃ๏ผŒๅฏไปฅ้ชŒ่ฏ่ฟ™ไธช่งฃไธŽ $Gamma$ ๅœจ่ฏฅ็‚น็›ธๅˆ‡๏ผŒๅ› ๆญคๆ˜ฏๅŒ…็ปœ ] #example[][ ๆฑ‚ไธ€ๆกๆ›ฒ็บฟ๏ผŒๆปก่ถณๅ…ถไปปๆ„ไธ€็‚น็š„ๅˆ‡็บฟไธคไธชๆˆช่ท็š„ๅ€’ๆ•ฐๅนณๆ–นๅ’Œไธบ $1$ ไบ‹ๅฎžไธŠ๏ผŒๅฎนๆ˜“ๆƒณๅˆฐๆปก่ถณ่ฟ™ไธชๆกไปถ็š„ๆ›ฒ็บฟไธ€ๅฎšๆ˜ฏไธ€ๆ—็›ด็บฟ็š„ๅŒ…็ปœ๏ผŒ่ฟ™ๆ—็›ด็บฟๆปก่ถณๆˆช่ท็š„ๅ€’ๆ•ฐๅนณๆ–นๅ’Œไธบ $1$๏ผŒ่ฟ›่€Œๅฝขๅฆ‚ $ a x plus.minus sqrt(1 - a^2) y = 1 $ ๅช้œ€ๆ‰พๅˆฐ๏ผš $ v(x, y, c) = c x plus.minus sqrt(1 - c^2) y - 1 = 0 $ ็š„ๅŒ…็ปœ๏ผŒ่ฎก็ฎ—๏ผš $ partialDer(v, x) = c\ partialDer(v, y) = plus.minus sqrt(1 - c^2)\ partialDer(v, c) = x minus.plus y c/sqrt(1 - c^2) $ ่ฎก็ฎ—ๅ…ถ $c$ ๅˆคๅˆซๅผ๏ผŒๅ‘็Žฐๅฐฑๆ˜ฏๅ•ไฝๅœ† $x^2 + y^2 = 1$\ ๅฝ“็„ถ๏ผŒๅ•ไฝๅœ†ๅ’Œๆปก่ถณ่ฆๆฑ‚็š„็›ด็บฟ็š„ไปปๆ„ๅ…‰ๆป‘ๆ‹ผๆŽฅ้ƒฝๆปก่ถณ่ฆๆฑ‚ ] = ่งฃๅฏนๅ‚ๆ•ฐๅ’Œๅˆๅ€ผ็š„ไพ่ต–ๆ€ง == $n$ ็ปดๆฌงๅผ็ฉบ้—ด็š„ๅพฎๅˆ†ๆ–น็จ‹ ้ฆ–ๅ…ˆ๏ผŒๅ™่ฟฐ้ซ˜็ปด็š„ๅธธ็”จๅฎš็†๏ผŒ่ฎพ $R: abs(x - x_0) <= a, norm(y - y_0) <= b$ #theorem[Picard][ ่ฎพ $f in C(R, RR^n), abs(f(x, y) - f(x, z)) <= L norm(y - z)$๏ผŒๅˆ™ๅพฎๅˆ†ๆ–น็จ‹๏ผš $ cases( der(y, x) = f(x, y), y(x_0) = y_0 ) $ ๅœจ $[x_0 - h, x_0 + h]$ ไธŠๆœ‰ๅ”ฏไธ€่งฃ๏ผŒๅ…ถไธญ $h = min{a, b/(max_R norm(f))}$ ] #theorem[Peano][ ่ฎพ $f in C(R, RR^n)$๏ผŒๅˆ™ๅพฎๅˆ†ๆ–น็จ‹๏ผš $ cases( der(y, x) = f(x, y), y(x_0) = y_0 ) $ ๅœจ $[x_0 - h, x_0 + h]$ ไธŠๆœ‰่งฃ๏ผŒๅ…ถไธญ $h = min{a, b/(max_R norm(f))}$ ] #definition[$n$ ็ปด็บฟๆ€งๆ–น็จ‹็ป„][ ่ฎพๅพฎๅˆ†ๆ–น็จ‹็ป„๏ผš $ cases( der(y, x) = A(x) y + B(x), y(x_0) = y_0 ) $ ๆปก่ถณ $A, B$ ้ƒฝๅœจ $(a, b)$ ไธŠๆ˜ฏ่ฟž็ปญๅ‡ฝๆ•ฐ๏ผŒๅˆ™็งฐๅ…ถไธบ $n$ ็ปด็บฟๆ€งๆ–น็จ‹็ป„ ] #proposition[][ ๅฏนไบŽไปปๆ„ๅˆๅ€ผ๏ผŒ$n$ ็ปด็บฟๆ€งๆ–น็จ‹็ป„็š„่งฃๅœจ $(a, b)$ ๅ†…ๅญ˜ๅœจๅ”ฏไธ€ ] == ่งฃๅฏนๅˆๅ€ผๅ’Œๅ‚ๆ•ฐ็š„ไพ่ต–ๆ€ง ๅพฎๅˆ†ๆ–น็จ‹็š„ๅˆๅ€ผๅฝ“็„ถไพ่ต–ไบŽๅˆๅ€ผใ€‚ๅ‡บไบŽๅคš็ง่€ƒ่™‘๏ผŒๆˆ‘ไปฌๅฝ“็„ถๅธŒๆœ›่ฟ™็งไพ่ต–ๆœ‰ๆŸ็ง่ฟž็ปญๆ€ง๏ผŒ่ฟ™ๅฐฑๆ˜ฏๆœฌ็ซ ็š„ๆ ธๅฟƒๅ†…ๅฎนใ€‚ #example[][ ่€ƒ่™‘ๅพฎๅˆ†ๆ–น็จ‹๏ผš $ y' = y^(1/3), y(0) = epsilon(epsilon < 0) $ ็š„ๆœ€ๅคง่งฃไธบ๏ผš $ cases( -(2/3 x + epsilon^(2/3))^(3/2) quad x >= 0, 0 quad x < 0 ) $ ็„ถ่€Œไปค $epsilon -> 0$๏ผŒๅฎƒไธŽ $0$ ๅค„็š„ๆœ€ๅคง่งฃ็›ธๅŽป็”š่ฟœ ] ่ฟ™ไธชไพ‹ๅญ่กจๆ˜Žๆœ€ๅคง/ๆœ€ๅฐ่งฃ็š„่ฟž็ปญไพ่ต–ๆ€งๅพ€ๅพ€ๅนถไธๆˆ็ซ‹๏ผŒๆˆ‘ไปฌๅพ€ๅพ€ๅช็ ”็ฉถๅพฎๅˆ†ๆ–น็จ‹่งฃๅ”ฏไธ€ๆ—ถ็š„ๅˆๅ€ผไพ่ต–ๆ€ง\ ๆญคๅค–๏ผŒๆˆ‘ไปฌ่ฏดๆ˜Žๅˆๅ€ผไพ่ต–ๆ€งไธŽๅ‚ๆ•ฐไพ่ต–ๆ€งไน‹้—ดๆ˜ฏไธ€่‡ด็š„ใ€‚ไบ‹ๅฎžไธŠ๏ผŒ็ป™ๅฎšๅ‚ๆ•ฐๆ–น็จ‹๏ผš $ cases( y' = f(x, y, lambda), y(x_0) = y_0(lambda) ) $ ไปค $Y = vec(y, lambda)$๏ผŒๅฎƒ็ญ‰ไปทไบŽ๏ผš $ cases( Y' = vec(f, 0), Y(x_0) = vec(y_0(lambda), lambda) ) $ ๅ่ฟ‡ๆฅ๏ผŒไนŸๅฏไปฅ้€š่ฟ‡ๅนณ็งปๅฐ†ๅˆๅ€ผๅธๆ”ถ่ฟ›ๅ‚ๆ•ฐ #theorem[่ฟž็ปญไพ่ต–ๆ€ง][ ็ป™ๅฎšไธ€ๆ—ๅพฎๅˆ†ๆ–น็จ‹๏ผš $ cases( y' = f(x, y), y(x_0) = y_0 ) $<ori-equation> ๏ผˆๅ…ถไธญ $f$ ่ฟž็ปญ๏ผ‰็š„่งฃๅญ˜ๅœจๅ”ฏไธ€๏ผŒๅนถ่ฎพๅ…ถ่งฃ็š„ๅญ˜ๅœจๅŒบ้—ดไธบ้—ญๅŒบ้—ด $I$ \ ่ฎพ $phi(x, xi, eta)$ ๆปก่ถณ๏ผš $ cases( partialDer(phi, x) = f(x, phi(x, xi, eta)), y(xi) = eta ) $ ๅˆ™๏ผš $ lim_((s, xi, eta) ->(x, x_0, y_0)) phi(s, xi, eta) = phi(x, x_0, y_0), forall x in I $ ] #proof[ ็”จๅ่ฏๆณ•ใ€‚ๅฆ‚่‹ฅไธ็„ถ๏ผŒๅˆ™ๅˆ™ๅญ˜ๅœจ็‚นๅˆ—ไฝฟๅพ—๏ผš $ (s_n, xi_n, eta_n) -> (x, x_0, y_0)\ d(phi(s_n, xi_n, eta_n), phi(x, x_0, y_0)) > epsilon $ ๆณจๆ„ๅˆฐๆœ‰็งฏๅˆ†ๆ–น็จ‹๏ผš $ phi(x, xi_n, eta_n) = eta_n + integral_(xi_0)^(x) f(s, phi(s, xi_n, eta_n)) dif s $ ๅ› ๆญค่ฟ™ๆ—ๅ…ณไบŽ $x$ ็š„ๅ‡ฝๆ•ฐ็ญ‰ๅบฆๆ”ถๆ•›ไธ€่‡ดๆœ‰็•Œ๏ผŒไธๅฆจๅฐฑๅ‡่ฎพไธ€่‡ดๆ”ถๆ•›ๅˆฐ $psi(x)$๏ผŒไธค่พนๅ–ๆž้™ๅฐ†ๆœ‰๏ผš $ lim_(n -> infinity) phi(x, xi_n, eta_n) = y_0 + integral_(x_0)^(x) f(s, lim_(n -> infinity) phi(x, xi_n, eta_n)) dif s $ ๏ผˆ่ฟ˜่ฆๅˆฉ็”จ $f$ ไธ€่‡ด่ฟž็ปญ/ๆœ‰็•Œ๏ผ‰\ ่กจๆ˜Ž $lim_(n -> infinity) phi(x, xi_n, eta_n)$ ๅฐฑๆ˜ฏ@ori-equation ็š„ๅ”ฏไธ€ไธ€ไธช่งฃ $phi(x, x_0, y_0)$๏ผŒไธŽๅ‡่ฎพ็Ÿ›็›พ๏ผ ] #corollary[][ ็ป™ๅฎšไธ€ๆ—ๅพฎๅˆ†ๆ–น็จ‹๏ผš $ cases( y' = f(x, y, lambda), y(x_0) = y_0 ) $ ๅฏนไบŽไปปๆ„ $x_0, y_0, lambda$ ็š„่งฃ้ƒฝๅญ˜ๅœจๅ”ฏไธ€๏ผŒๅˆ™่ฎพ $phi(x, x_0, y_0, lambda)$ ๆ˜ฏไธŠ่ฟฐๆ–น็จ‹็š„่งฃ๏ผŒๅฎƒๅฐ†ๆ˜ฏ่ฟž็ปญๅ‡ฝๆ•ฐ ] #theorem[ๅ…‰ๆป‘ไพ่ต–ๆ€ง][ $ cases( y' = f(x, y, lambda), y(x_0) = y_0 ) $ ๅ…ถไธญ $f$ ่ฟž็ปญ๏ผŒๅฏน $y, lambda$ ๆ˜ฏ $C^1$ ็š„๏ผŒไธ”ๅฏนไบŽไปปๆ„ $x_0, y_0, lambda$ ็š„่งฃ้ƒฝๅญ˜ๅœจๅ”ฏไธ€๏ผŒๅˆ™่ฎพ $phi(x, x_0, y_0, lambda)$ ๆ˜ฏไธŠ่ฟฐๆ–น็จ‹็š„่งฃ๏ผŒๅฎƒๅฐ†ๆ˜ฏ $C^1$ ็š„ ] #proof[ ็”ฑๅฎšไน‰๏ผŒ$phi$ ๅ…ณไบŽ $x space C^1$ ๆ˜ฏๆ˜พ็„ถ็š„ใ€‚ๅฏนไบŽ $y, lambda$๏ผŒๅ‰้ขๅ™่ฟฐไบ† $lambda, y_0$ ไบ’็›ธ่ฝฌๆข๏ผŒๅช้œ€่ฏๆ˜Žๅ…ณไบŽ $lambda$ ่ฟž็ปญๅฏๅฏผๅฐฑๅฅฝ๏ผŒ่ฟ›ไธ€ๆญฅ๏ผŒไธๅฆจๅ‡่ฎพๆ–น็จ‹ๅฐฑๆ˜ฏ๏ผš $ cases( y' = f(x, y, lambda), y(0) = 0 ) $ ไธบไบ†่ฏๆ˜Ž็ป“่ฎบ๏ผŒๆž„้€  Picard ๅบๅˆ—๏ผš $ phi_0 = 0\ phi_(n) (x) = integral_(0)^(x) f(s, phi_(n-1), lambda) dif s $ ็”ฑไบŽ่ฟ™้‡Œๅ…ณไบŽ $y$ ๅทฒ็ป $C^1$๏ผŒLipschitz ๆกไปถๅฝ“็„ถๆˆ็ซ‹๏ผŒๅ› ๆญคๅฎƒไธ€่‡ดๆ”ถๆ•›ๅˆฐๅŽŸๆ–น็จ‹็š„่งฃใ€‚ๅŒๆ—ถ๏ผŒๅฎนๆ˜“ๅฝ’็บณๅพ—ๅˆฐ $phi_n$ ๅ…ณไบŽ $lambda$ ้ƒฝๆ˜ฏ $C^1$ ็š„๏ผŒ่ฎก็ฎ—ๅฏผๆ•ฐ๏ผš $ partialDer(phi_n (x), lambda) = integral_(0)^(x) partialDer(f, y) (s, phi_(n-1), lambda) partialDer(phi_(n-1), lambda) + partialDer(f, lambda) (s, phi_(n-1), lambda) dif s $ ่ฟ™้‡Œๅฆ‚ๆžœ $lambda, y$ ๆ˜ฏ้ซ˜็ปด็š„๏ผŒๆ— ้ž้‡‡็”จๆขฏๅบฆ/ๅ‘้‡ๅฏผๆ•ฐๅณๅฏใ€‚\ ็”ฑๅˆ†ๆžๅญฆ็ป“่ฎบ๏ผŒๅช้œ€่ฏๆ˜ŽไธŠ้ข็š„ๅบๅˆ—ไธ€่‡ดๆ”ถๆ•›ใ€‚ไธๅฆจ่ฎพ๏ผš $ norm(partialDer(f, y)), norm(partialDer(f, lambda)) <= M $ ๅฐ†ๆœ‰๏ผš $ norm(partialDer(phi_1 (x), lambda)) <= integral_(0)^(x) norm(partialDer(f, lambda) (s, phi_(n-1), lambda)) dif s <= alpha norm(x)\ norm(partialDer(phi_2 (x), lambda)) <= integral_(0)^(x) alpha^2 norm(x) + alpha dif s <= alpha^2 norm(x)^2/2 + alpha norm(x)\ $ ๅฏไปฅๅฝ’็บณ่ฏๆ˜Žๅฎƒไธ€่‡ดๆœ‰็•Œ\ ่ฎพ๏ผš $ V_(k, n) = norm(partialDer(phi_(k+n) (x), lambda) - partialDer(phi_(k) (x), lambda)) $ ๅฐ†ๆœ‰๏ผš $ V_(k+1, n) = norm(integral_(0)^(x) (partialDer(f, lambda) (s, phi_(k+n), lambda) - partialDer(f, lambda) (s, phi_(k+1), lambda)) \ + (partialDer(f, y) (s, phi_(k+n), lambda)partialDer(phi_(k+n), lambda) - partialDer(f, y) (s, phi_(k+1), lambda)partialDer(phi_(k+1), lambda) )dif s)\ <= integral_(0)^(x_0) norm(partialDer(f, y) (s, phi, lambda)) v_(k, k+1) dif s\ + d_(k, n) $ ๅ…ถไธญ $d_(k, n)$ ๅœจ $k$ ๅ……ๅˆ†ๅคงๆ—ถไธ€่‡ดๆ”ถๆ•›ไบŽ้›ถ๏ผŒๅ› ๆญค $exists E_n$ ๅ•่ฐƒไธ‹้™ไฝฟๅพ— $d_(k, n) <= E_n$๏ผŒๅŽŸๅผๅŒ–ไธบ๏ผš $ V_(k+1, n) <= alpha integral_(0)^(x_0) V_(k, k+1) dif s + E_n $ ๅฝ’็บณ่ฎก็ฎ—ๅฐ†ๅฏๅพ—ๅˆฐ $V_(k, n)$ ๅ…ณไบŽ $k$ ไธ€่‡ดๆ”ถๆ•›ไบŽ้›ถ๏ผŒ็”ฑๆŸฏ่ฅฟๆณ•ๅˆ™็Ÿฅ็ป“่ฎบๆˆ็ซ‹ ๆœ€ๅŽ๏ผŒๆˆ‘ไปฌ่ฟ˜่ฆ่€ƒๅฏŸๅ…ณไบŽ $x_0$ ็š„ๅๅฏผๆ•ฐใ€‚่ฟ™้‡Œๆˆ‘ไปฌๆ— ๆณ•็›ดๆŽฅๅธๆ”ถ๏ผŒๅ› ไธบๆˆ‘ไปฌๆฒกๆœ‰ๅ‡่ฎพ $f$ ๅ…ณไบŽ $x$ ๅฏๆฑ‚ๅๅฏผ๏ผŒ่ฟ™้‡Œ $lambda,y_0$ ๆ— ๅ…ณ็ดง่ฆ๏ผŒไธๅฆจ่ฎพๆ–น็จ‹ไธบ๏ผš $ cases( y' = f(x, y), y(x_0) = 0 ) $ ไป็„ถๆž„้€  Picard ๅบๅˆ—๏ผš $ phi_0 = 0\ phi_(n) (x) = integral_(x_0)^(x) f(s, phi_(n-1)) dif s $ ็ฑปไผผ็š„๏ผŒ่ฎก็ฎ—๏ผš $ partialDer(phi_n, x_0) = -f(x_0, phi_(n-1)) + integral_(x_0)^(x) partialDer(f, y) partialDer(phi_(n-1), x_0) dif s $ ๆŽฅไธ‹ๆฅ็š„่ฎก็ฎ—ๆ˜ฏๅฎŒๅ…จ็ฑปไผผ็š„ ] #remark[][ ่ฟ™้‡Œๆˆ‘ไปฌไธๅฏนๅ…ณไบŽ $x$ ็š„ๅ…‰ๆป‘ๆ€งๆœ‰ๅพˆ้ซ˜่ฆๆฑ‚๏ผŒๅฝ“็„ถๆ˜ฏๅ› ไธบๅพฎๅˆ†ๆ–น็จ‹็š„่งฃ็›ธๅฝ“ไบŽ $x$ ็š„็งฏๅˆ†๏ผŒๅฝ“็„ถไผšๆ้ซ˜ๅ…‰ๆป‘ๆ€งใ€‚ ] #corollary[][ $ cases( y' = f(x, y, lambda), y(x_0) = y_0 ) $ ๅ…ถไธญ $f$ ่ฟž็ปญ๏ผŒๅฏน $y, lambda$ ๆ˜ฏ $C^k$ ็š„๏ผˆ$k$ ๅฏ่ƒฝไธบๆ— ็ฉท๏ผ‰๏ผŒไธ”ๅฏนไบŽไปปๆ„ $x_0, y_0, lambda$ ็š„่งฃ้ƒฝๅญ˜ๅœจๅ”ฏไธ€๏ผŒๅˆ™่ฎพ $phi(x, x_0, y_0, lambda)$ ๆ˜ฏไธŠ่ฟฐๆ–น็จ‹็š„่งฃ๏ผŒๅฎƒๅฐ†ๆ˜ฏๅ…ณไบŽ $y_0, lambda$ ๆ˜ฏ $C^k$ ็š„๏ผŒๅ…ณไบŽ $x, x_0$ ๆ˜ฏ $C^1$ ็š„ ] #proof[ $C^1$ ๅˆšๅˆšๅทฒ็ป่ฏๆ˜Ž๏ผŒๅŒๆ—ถไนŸๅฏไปฅๅฐ† $y_0$ ๅธๆ”ถ๏ผŒๅŒ–ไธบ๏ผš $ cases( y' = f(x, y, lambda), y(0) = 0 ) $ ๅŒ–ไธบ็งฏๅˆ†ๆ–น็จ‹๏ผš $ y = integral_(0)^(x) f(s, y, lambda) dif s $ ๅฏไปฅ็›ดๆŽฅๆฑ‚ๅฏผ๏ผš $ partialDer(y, lambda) = integral_(0)^(x) partialDer(f, y) (s, y, lambda) partialDer(y, lambda) + partialDer(f, lambda) (s, y, lambda) dif s $ ่ฎพ $p = partialDer(y, lambda)$๏ผŒๅฐ†ๆœ‰๏ผš $ p' = partialDer(f, y) (x, y, lambda) p + partialDer(f, lambda) (x, y, lambda) $ ่ฟ™ๆ˜ฏๅ…ณไบŽ $p$ ็š„็บฟๆ€งๅพฎๅˆ†ๆ–น็จ‹๏ผŒ่€Œๅณไพงๅ…ณไบŽ $lambda$ ๆ˜ฏ $C^(k-1)$๏ผŒๅ…ณไบŽ $y$ ๆ˜ฏ $C^infinity$ ็š„๏ผŒไธๆ–ญๅˆฉ็”จๅฎš็†ๅณๅฏ ] #remark[][ ไธŠ้ข็š„ๅฎš็†ๆขๆˆๅ…ณไบŽ $y, lambda$ ่งฃๆžไนŸๅฏน๏ผŒๆ—ข็„ถ Picard ๅบๅˆ—ไธญๆฏไธ€้กน็š„่งฃๆž๏ผŒ่€Œ่งฃๆžๅ‡ฝๆ•ฐ็š„ไธ€่‡ดๆ”ถๆ•›ๆž้™ไนŸๆ˜ฏ่งฃๆž็š„ ] #corollary[][ ๅœจไธŠ้ข็š„ๅฎš็†ไธญๅฐ†ๆกไปถๆขๆˆ $f$ ๅฏนๆ‰€ๆœ‰ๅ‚ๆ•ฐ้ƒฝ $C^k$๏ผŒๅˆ™ $phi$ ๅฐฑๆ˜ฏ $C^k$ ็š„ ] #proof[ ๆญคๆ—ถไธๅฆจๅฐ†ๆ‰€ๆœ‰็ณปๆ•ฐๅธๆ”ถ่ฟ›ๅ‚ๆ•ฐ๏ผŒๅช้œ€็ ”็ฉถๆ–น็จ‹๏ผš $ cases( der(y, x) = f(x, y, x_0, y_0, lambda), y(0) = 0 ) $ ๅ‰้ขๅทฒ็ป่ฏๆ˜Žๅ…ณไบŽ $x_0, y_0, lambda$ ้ƒฝๆ˜ฏ $C^k$ ็š„๏ผŒๅช้œ€่€ƒ่™‘ๅ…ณไบŽ $x$ ็š„๏ผŒ็„ถ่€Œ๏ผš $ partialDer(phi, x) = f(x, phi, x_0, y_0, lambda) $ ๅ‰้ขๅทฒ็ป่ฏๆ˜Ž $phi$ ๆ˜ฏ $C^1$ ็š„๏ผŒไธŠๅผ่กจๆ˜Ž $phi$ ๅฐ†ๆ˜ฏ $C^2$ ็š„๏ผŒ็ปง่€Œๅฝ’็บณๅฏๅพ— $phi$ ๆ˜ฏ $C^k$ ็š„ ] #corollary[่งฃๅฏนๅˆๅ€ผๅ’Œๅ‚ๆ•ฐ็š„ๅ…‰ๆป‘ไพ่ต–ๆ€ง ๆœ€็ปˆ็‰ˆๆœฌ][ ๅœจไธŠ้ข็š„ๅฎš็†ไธญๅฐ†ๆกไปถๆขๆˆ $f$ ๅฏนๆ‰€ๆœ‰ๅ‚ๆ•ฐ้ƒฝ $C^(k-1)$๏ผŒไธ”ๅฏน $y, lambda$ ๆ˜ฏ $C^k$ ็š„๏ผŒๅˆ™ $phi$ ๅฐฑๆ˜ฏ $C^k$ ็š„ ] #proof[ ๅทฒ็ป่ฏๆ˜Žไบ† $k = 1$ ๆ—ถๆƒ…ๆ™ฏ๏ผŒๅŒๆ—ถ $phi in C^(k-1)$ ไนŸๅทฒ็ปๆˆ็ซ‹๏ผŒๅŒๆ ทๅฏไปฅ็›ดๆŽฅ็œ‹ๅˆฐๅ…ณไบŽ $x$ ๆ˜ฏ $C^k$ ็š„๏ผŒๅนถไธ”ๆณจๆ„ๅˆฐ๏ผš $ partialDer(phi, x) = f(x, phi, lambda)\ partialDer(partialDer(phi, x), x_0) = partialDer(f, y) partialDer(phi, x_0) $ ไปค $Y = partialDer(phi, x_0)$ ๏ผŒๅฐ†ๆœ‰ๅพฎๅˆ†ๆ–น็จ‹๏ผš $ Y' = partialDer(f, y) Y $ ไธŠๅผๅณ็ซฏๅ…ณไบŽๆ‰€ๆœ‰ๅ‚ๆ•ฐ้ƒฝๆ˜ฏ $C^(k-1)$ ็š„๏ผŒๅ› ๆญค $Y$ ๅ…ณไบŽ $x_0$ ไนŸๆ˜ฏ $C^(k-1)$๏ผŒ่ฟ™ๅฐฑ่ฏๆ˜Žไบ†ๅฏน $x_0$ ็š„ๅฏๅพฎๆ€ง\ ] #example[][ $ cases( y' = y + mu (x^2 + y^2), y(0) = 1 ) $ ่ฏ•ๆฑ‚ $partialDer(phi, mu)|_(mu = 0)$ ไบ‹ๅฎžไธŠ๏ผŒๅฎนๆ˜“็œ‹ๅ‡บ $f$ ๆ˜ฏ่งฃๆžๅ‡ฝๆ•ฐ๏ผŒ็ปง่€Œๅฎƒ็š„่งฃ้ƒฝ่งฃๆž๏ผŒๆˆ‘ไปฌ็›ดๆŽฅๆฑ‚ๅๅฏผๅนถไบคๆข้กบๅบ๏ผš $ partialDer(partialDer(phi, x), mu) = partialDer(phi, mu) + (x^2 + phi^2) + 2 mu phi partialDer(phi, mu) $ ่ฎพ $u = partialDer(phi, mu)$๏ผŒๅฎƒๆปก่ถณๅพฎๅˆ†ๆ–น็จ‹๏ผš $ u' = u + (x^2 + phi^2) + 2 phi u mu = (1 + 2 phi mu) u+ x^2 + phi^2 $ ่ฟ™ๆ˜ฏๅ…ณไบŽ $u$ ็š„ไธ€้˜ถ็บฟๆ€งๅพฎๅˆ†ๆ–น็จ‹\ ๅŒๆ—ถ๏ผŒๆณจๆ„ๅˆฐ $mu = 0$ ๆ—ถๆ–น็จ‹ๆ˜ฏๅฅฝ่งฃ็š„๏ผŒๅ› ๆญค๏ผš $ phi(x, 0) = e^x $ ไปฃๅ…ฅๅพ—๏ผš $ u' = u + x^2 + e^(2 x) $ ่งฃๅ‡บ $u(x, 0) = e^(2 x) - x - 1$ ] == ๅฑ€้ƒจๅ˜ๆข ๆœฌ็ซ ็š„ๅ†…ๅฎนๆ˜ฏไปŽ็†่ฎบไธŠ็ ”็ฉถๅพฎๅˆ†ๆ–น็จ‹ใ€‚ #definition[่‡ชๆฒป็ณป็ปŸ][ ่‡ชๆฒป็ณป็ปŸๆ˜ฏๆŒ‡ๅฝขๅฆ‚๏ผš $ cases( der(x, t) = f(x), x(t_0) = x_0 ) $ ] ๅฑ€้ƒจๅ˜ๆขๆ˜ฏๅธŒๆœ›ๅฐ†ไธ€ไธช่‡ชๆฒป็ณป็ปŸ็š„่งฃๅœจๅฑ€้ƒจๅ˜ๆขไธบๅฆไธ€ไธชๅธธๅพฎๅˆ†ๆ–น็จ‹็š„่งฃใ€‚ #definition[][ - ็งฐ $x_0$ ๆ˜ฏๅธธ็‚น๏ผŒๅฆ‚ๆžœ $f(x_0) != 0$ - ็งฐ $x_0$ ๆ˜ฏๅฅ‡็‚น/ๅนณ่กก็‚น๏ผŒๅฆ‚ๆžœ $f(x_0) = 0$ ] #theorem[][ ่ฎพ $U$ ๆ˜ฏๅพฎๅˆ†ๅŒ่ƒš๏ผŒ$x = U(y)$๏ผŒๅฐ†ๅพฎๅˆ†ๆ–น็จ‹๏ผš $ der(x, t) = f(x) $ ๅ˜ๆˆ $ der(y, t) = g(y) $ ๅˆ™๏ผš $ g(y) = Inv((U')) f(x) $<local-transform> ่ฟ™้‡Œ $U$ ๆŒ‡ๅพฎๅˆ†ๅŒ่ƒš็š„้›…ๅฏๆฏ”็Ÿฉ้˜ต ] #proof[ $ der(U y, t) = f(x)\ U' der(y, t) = f(x)\ U' g(y) = f(x) $ ] #definition[][ ่ฎพไธคไธชๅพฎๅˆ†ๆ–น็จ‹๏ผš $ der(x, t) = f(x)\ der(y, t) = g(y) $ ไน‹้—ด๏ผŒๅญ˜ๅœจ $C^k$ ็š„ๅพฎๅˆ†ๅŒ่ƒšไฝฟๅพ—ๆปก่ถณ@local-transform ๏ผŒๅˆ™็งฐไธคไธชๆ–น็จ‹ $C^k$ ็ญ‰ไปทใ€‚\ ็ฑปไผผ็š„๏ผŒ่‹ฅๅœจ $x_0$ ๅค„็š„ๆŸไธช้‚ปๅŸŸๅญ˜ๅœจ $C^k$ ็š„ๅพฎๅˆ†ๅŒ่ƒšไฝฟๅพ—ๆปก่ถณ@local-transform ๏ผŒๅˆ™็งฐไธคไธชๆ–น็จ‹ๅœจ $x_0$ ๅค„ๅฑ€้ƒจ $C^k$ ็ญ‰ไปทใ€‚ ] #theorem[ๅธธ็‚น็š„ $C^k$ ๅˆ†็ฑป/ๆ‹‰็›ดๅฎš็†][ ่ฎพๅพฎๅˆ†ๆ–น็จ‹ $der(x, t) = f(x)$ ๆปก่ถณ $f(0) != 0$๏ผŒๅˆ™ๆ–น็จ‹ๅœจ $0$ ๅค„ๅฑ€้ƒจ $C^k$ ็ญ‰ไปทไบŽ๏ผš $ der(y, t) = Y(y), Y(y) = vec(1, 0, dots.v, 0) $ ] #proof[ #let vc = $vec(1, 0, dots.v, 0)$ ่ฎพ $f_i (x)$ ๆ˜ฏๅˆ†้‡๏ผŒไธๅฆจ่ฎพ $f_1 (0) != 0$\ ๆ˜พ็„ถ็ฌฌไบŒไธชๆ–น็จ‹็š„่งฃๅฐฑๆ˜ฏ๏ผš $ psi = y_0 + t vc $ ่ฎพ $phi(t, x_0)$ ๆ˜ฏๅŽŸๆ–น็จ‹็š„่งฃ๏ผŒไปค: $ U(0) = 0\ U(y) = phi(y_1, 0, y_2, dots, y_(n)) $ ไธบไบ†้ชŒ่ฏๅพฎๅˆ†ๅŒ่ƒš๏ผŒ่ฎก็ฎ—๏ผš $ abs(der(U, y)) = abs(partialDer(phi, t) der(y_1, y) + partialDer(phi, x_0) der((0, y_2, ..., y_n)^T, y))\ = abs(f(phi) der(y_1, y) + partialDer(phi, x_0) der((0, y_2, ..., y_n)^T, y)) $ ๆญคๅค–๏ผŒๅฐ†ๆœ‰๏ผš $ U(psi(t, y)) = U(t+y_1, y_2, ..., y_n) = phi(t+y_1, 0, y_2, ..., y_n) $ ๆฑ‚ๅฏผๅ†ไปค $t = 0$ ๅฏๅพ—๏ผš $ U'(y) Y(y) = f(phi(y_1, 0, y_2, ... y_n)) = f(U(y)) $ ่ฏๆฏ• ] ่ฏดๆ˜Žๅธธ็‚น็š„ๅฑ€้ƒจ็ญ‰ไปทๅˆ†็ฑปๆ˜ฏ้žๅธธ็ฎ€ๅ•็š„๏ผŒๆŽฅไธ‹ๆฅๆˆ‘ไปฌ่€ƒ่™‘ๅฅ‡็‚นๅค„็š„ๅฑ€้ƒจ็ญ‰ไปทๅˆ†็ฑป #theorem[][ ็บฟๆ€งๅพฎๅˆ†ๆ–น็จ‹ $x' = A x, x' = B x$ ๅœจ $0$ ๅค„ๅฑ€้ƒจ $C^k$ ็ญ‰ไปทๅฝ“ไธ”ไป…ๅฝ“ $A, B$ ็›ธไผผ ] #proof[ ไปปๅ–ๅพฎๅˆ†ๅŒ่ƒš $U$ ๅœจ $0$ ๅค„ๆณฐๅ‹’ๅฑ•ๅผ€่ฎก็ฎ—ๅณๅฏ ] ๅฏนไบŽไธ€่ˆฌ็š„ๆ–น็จ‹๏ผŒๆˆ‘ไปฌๅฝ“็„ถๅธŒๆœ›้€š่ฟ‡ๆณฐๅ‹’ๅฑ•ๅผ€ๅฐ†ๅ…ถๅŒ–ไธบ็บฟๆ€งๆ–น็จ‹ใ€‚็„ถ่€Œๆ–น็จ‹ $x' = A x + o(x)$ ๅฝ“็„ถไธๆ€ปๆ˜ฏไธŽ $x' = A x$ ็ญ‰ไปท๏ผŒ่‡ณๅฐ‘ๆˆ‘ไปฌ้œ€่ฆ $A$ ้ž้€€ๅŒ–ใ€‚ๅœจไป€ไนˆๆกไปถไธ‹ๅฏไปฅๅฐ†ๅ…ถๅŒ–ไธบ็บฟๆ€งๆ–น็จ‹ๆ˜ฏไธŠไธชไธ–็บชๅธธๅพฎๅˆ†ๆ–น็จ‹็ ”็ฉถ็š„้‡่ฆ่ฏพ้ข˜ไน‹ไธ€ #theorem[][ ่ฎพ $f(x) = A x + o(x)$ ๆ˜ฏ $C^infinity$ ็š„๏ผŒ่€Œ $A$ ็š„็‰นๅพๆ นๆปก่ถณ้žๅ…ฑๆŒฏๆกไปถ๏ผš $ sum_(i = 1)^n m_i lambda_i != 0, (m_i) in ZZ^n - {0} $ ๅˆ™ๆ–น็จ‹ $x' = f(x)$ ๅœจ $0$ ๅค„ๅฑ€้ƒจ $C^infinity$ ็ญ‰ไปทไบŽ $x' = A x$ ] = ็บฟๆ€งๅพฎๅˆ†ๆ–น็จ‹ == ไธ€่ˆฌ็บฟๆ€งๅพฎๅˆ†ๆ–น็จ‹ ๆ–นไพฟ่ตท่ง๏ผŒ่ฟ™้‡Œ็บฆๅฎšๅฏนๅ‘้‡/็Ÿฉ้˜ต็š„ๆฑ‚ๅฏผ/็งฏๅˆ†้ƒฝๆ˜ฏ้€ๅ…ƒ็ด ่ฟ›่กŒ็š„ #definition[][ ่ฎพ $x in RR^n, t in RR$\ ็งฐๅพฎๅˆ†ๆ–น็จ‹๏ผš $ der(x, t) = A(t) x + B(t) $<linear-equation> ไธบไธ€่ˆฌ็บฟๆ€งๅพฎๅˆ†ๆ–น็จ‹๏ผŒๅฆ‚ๆžœ $A, B$ ้ƒฝๅ…ณไบŽ $t$ ่ฟž็ปญ ] #proposition[][ - ไธ€่ˆฌ็บฟๆ€งๅพฎๅˆ†ๆ–น็จ‹ๅœจไปปไฝ•็‚นๅค„็š„่งฃ้ƒฝๅญ˜ๅœจๅ”ฏไธ€ - ๆฏไธช่งฃๆ€ปๆ˜ฏๅœจๅคง่Œƒๅ›ดๅญ˜ๅœจ ] #proof[ - ๅฐฑๆ˜ฏ @peano - ๅฐฑๆ˜ฏ @linear_all_range ] ไธ€่ˆฌ่€Œ่จ€๏ผŒๅฝ“ $A(t)$ ไธๆ˜ฏๅธธๆ•ฐๆ—ถ๏ผŒๆ–น็จ‹ๆ˜ฏๆ— ๆณ•ๅ†™ๅ‡บ่งฃ็š„ใ€‚ๆˆ‘ไปฌ็š„็›ฎๆ ‡ๆ˜ฏ็ ”็ฉถ่งฃ็ฉบ้—ด็š„ๆ€ง่ดจใ€‚ == ้ฝๆฌก็บฟๆ€งๅพฎๅˆ†ๆ–น็จ‹ #definition[][ ๅœจ @linear-equation ไธญ๏ผŒ่‹ฅ $B(t) = 0$๏ผŒๅˆ™็งฐไน‹ไธบ้ฝๆฌกๅพฎๅˆ†ๆ–น็จ‹ ] #proposition[][ - ้ฝๆฌก็บฟๆ€งๆ–น็จ‹็š„่งฃๆž„ๆˆ็บฟๆ€ง็ฉบ้—ด - ้ฝๆฌก็บฟๆ€งๆ–น็จ‹็š„่งฃ่ฆไนˆๆ’ไธบ้›ถ๏ผŒ่ฆไนˆๆ’ไธไธบ้›ถ - ้ฝๆฌก็บฟๆ€งๆ–น็จ‹็š„่‹ฅๅนฒ่งฃ็บฟๆ€ง็›ธๅ…ณๅฝ“ไธ”ไป…ๅฝ“ๅœจๅญ˜ๅœจๆŸ็‚น๏ผŒๅฎƒไปฌๅœจ่ฏฅ็‚น็บฟๆ€ง็›ธๅ…ณ ]<homogeneous-linear> #proof[ - ็ฎ€ๅ•้ชŒ่ฏๅณๅฏ - ๆณจๆ„ๅˆฐ $x = 0$ ๆ˜ฏๅนณๅ‡ก่งฃ๏ผŒ็ป“ๅˆ่งฃ็š„ๅ”ฏไธ€ๆ€ง็ซ‹ๅพ— - ๆณจๆ„ๅˆฐ่‹ฅๅนฒ่งฃ็š„็บฟๆ€ง็ป„ๅˆ่ฟ˜ๆ˜ฏ่งฃ๏ผŒๅˆฉ็”จไธŠไธ€ๆกๆ€ง่ดจ็ซ‹ๅพ— ] #theorem[][ $n$ ็ปด้ฝๆฌก็บฟๆ€งๅพฎๅˆ†ๆ–น็จ‹็š„่งฃ็ฉบ้—ดๆฐไธบ $n$ ็ปด็บฟๆ€ง็ฉบ้—ดใ€‚ๆข่จ€ไน‹๏ผŒ่‹ฅๅฏไปฅๆ‰พๅˆฐ $n$ ไธช็บฟๆ€งๆ— ๅ…ณ็š„่งฃ๏ผŒๅˆ™ๅฎƒไปฌ็”Ÿๆˆ็š„็บฟๆ€ง็ฉบ้—ดๆฐไธบ่งฃ็ฉบ้—ด๏ผŒ่ฟ™็งฐไธบๆ–น็จ‹็š„้€š่งฃ ] #proof[ ไปค $e_i$ ๆ˜ฏ $RR^n$ ไธญไธ€็ป„ๆ ‡ๅ‡†ๅŸบ๏ผŒไปค $x_i (t)$ ๆ˜ฏๆ–น็จ‹๏ผš $ cases( der(x, t) = A(t) x, x(t_0) = e_i ) $ ็š„ไธ€ไธช่งฃ๏ผŒๆ–ญ่จ€ๅฎƒไปฌๅฐฑๆ˜ฏๅŽŸๆ–น็จ‹่งฃ็š„ๅŸบ - ้ฆ–ๅ…ˆ๏ผŒๅฎƒไปฌ็บฟๆ€งๆ— ๅ…ณ๏ผŒๆ—ข็„ถๅฎƒไปฌๅœจ $t_0$ ๅค„็บฟๆ€งๆ— ๅ…ณ๏ผŒๅˆฉ็”จ @homogeneous-linear ๅณๅฏ - ๅ…ถๆฌก๏ผŒไปปๅ–ๅŽŸๆ–น็จ‹็š„ๅˆๅ€ผไธบ $x(t_0) = x_0$๏ผŒไปค๏ผš $ x(t) = sum_i x_0^i x_i (t) $ ๅฎนๆ˜“็œ‹ๅ‡บ $x(t)$ ไนŸๆ˜ฏ็ฌฆๅˆ่ฏฅๅˆๅ€ผ็š„่งฃ๏ผŒ็”ฑๅ”ฏไธ€ๆ€ง่ฟ™ๅฐฑๆ˜ฏๅ”ฏไธ€ไธ€ไธช่งฃ ่ฏๆฏ• ] #definition[][ ่‹ฅ็Ÿฉ้˜ต $X$ ๆ˜ฏ้ฝๆฌก็บฟๆ€งๅพฎๅˆ†ๆ–น็จ‹็š„่งฃ๏ผŒไนŸๅณ๏ผš $ der(X, t) = A(t) X $ ๅˆ™็งฐไน‹ไธบ็Ÿฉ้˜ต่งฃใ€‚ๆ˜พ็„ถ็Ÿฉ้˜ตๆ˜ฏ่งฃๅฝ“ไธ”ไป…ๅฝ“ๆฏไธ€ๅˆ—้ƒฝๆ˜ฏๅŽŸๆ–น็จ‹็š„ไธ€ไธช่งฃ๏ผŒ็ปง่€Œ่ฏฅ็Ÿฉ้˜ต็š„ๅˆ—็งฉ่‡ณๅคšไธบ $n$๏ผŒๆฐไธบ $n$ ๆ—ถ็งฐไน‹ไธบๅŸบๆœฌ่งฃ็Ÿฉ้˜ตๆˆ–่€…ๅŸบ่งฃ้˜ต ] #proposition[][ ็Ÿฉ้˜ต่งฃ $X$ ๆ˜ฏๅŸบ็ก€่งฃ็Ÿฉ้˜ตๅฝ“ไธ”ไป…ๅฝ“ๅœจๆŸไธช็‚นไธŠๆœ‰ $det(X) != 0$ ] #proof[ ๅฐฑๆ˜ฏ @homogeneous-linear ] #theorem()[][ ่ฎพ $Phi(t)$ ๆ˜ฏๅŸบ่งฃ้˜ต๏ผŒๅˆ™ $X(t)$ ๆ˜ฏๅŸบ่งฃ้˜ตๅฝ“ไธ”ไป…ๅฝ“ๅญ˜ๅœจๅฏ้€†็Ÿฉ้˜ต $C$ ไฝฟๅพ—๏ผš $ Phi(t) C = X(t) $ ] #proof[ ๆณจๆ„ๅˆฐๆฑ‚ๅฏผๆ˜ฏ็บฟๆ€ง็š„๏ผŒๅ› ๆญค๏ผš $ der(Phi(t) C, t) = der(Phi(t), t) C = A(t) Phi(t) C $ ๅ› ๆญค $Phi(t) C$ ็กฎๅฎžๆ˜ฏ่งฃ๏ผŒ่ฎก็ฎ—่กŒๅˆ—ๅผๅฏๅพ—ๅฎƒๆ˜ฏๅŸบ็ก€่งฃ็Ÿฉ้˜ต ๅฆไธ€ๆ–น้ข๏ผŒ่ฎพ $X(t)$ ๆ˜ฏๅŸบ็ก€่งฃ็Ÿฉ้˜ต๏ผŒไปปๅ– $t_0$ ๅนถ่ฎพๆœ‰๏ผš $ Phi(t_0) C = X(t_0) $ ๆณจๆ„ๅˆฐ $ Phi(t_0), X(t_0)$ ้ƒฝๆ˜ฏๅฏ้€†็Ÿฉ้˜ต๏ผŒ$C$ ๅฝ“็„ถๅญ˜ๅœจ\ ๆญคๆ—ถ $X(t) - Phi(t) C$ ๆ˜ฏๅŽŸๆ–น็จ‹ๆœ‰้›ถ็‚น็š„่งฃ๏ผŒๅฐฑๆ˜ฏ้›ถ ] #proposition()[Liouville][ ่ฎพ $x_i$ ๆ˜ฏ $n$ ไธช่งฃ๏ผŒ่ฎพ $det(x_1, x_2, ..., x_n) := W(t)$๏ผŒๅˆ™๏ผš $ W'(t) = tr(A(t)) W(t) $ ] #proof[ ๅฎนๆ˜“ๅ‘็Žฐ๏ผš $ W'(t) = sum_i det(x_1, x_2, ..., x'_i, ..., x_n) = sum_i det(x_1, x_2, ..., A x_i, ..., x_n) $ #lemmaLinear[][ $ sum_i det(x_1, x_2, ..., A x_i, ..., x_n) = tr(A) det(x_1, x_2, ..., x_n) $ ] ] == ้ž้ฝๆฌก็บฟๆ€งๅพฎๅˆ†ๆ–น็จ‹ #proposition[][ ่ฎพ็บฟๆ€งๅพฎๅˆ†ๆ–น็จ‹๏ผš $ x' = A(t) x + B(t) $ ๅˆ™๏ผš - ไปปๆ„ไธคไธช่งฃ็š„ๅทฎๆ˜ฏๅฏนๅบ”้ฝๆฌก็บฟๆ€งๅพฎๅˆ†ๆ–น็จ‹ $x' = A(t) x$ ็š„่งฃ - ่ฎพ $gamma(t)$ ๆ˜ฏไธ€ไธช็‰น่งฃ๏ผˆไปปๆ„ไธ€ไธช่งฃ๏ผ‰๏ผŒ$X$ ๆ˜ฏๅฏนๅบ”้ฝๆฌกๅพฎๅˆ†ๆ–น็จ‹็š„่งฃ็ฉบ้—ด๏ผŒๅˆ™ๅŽŸๆ–น็จ‹็š„ๆ‰€ๆœ‰่งฃไธบ $gamma(t) + X$ ] #proposition[ๅธธๆ•ฐๅ˜ๆ˜“ๆณ•][ ่ฎพ $Phi(t)$ ๆ˜ฏ $x' = A(t) x$ ็š„ๅŸบๆœฌ่งฃ็Ÿฉ้˜ต๏ผŒๅˆ™ $x' = A(t) x + f(t)$ ็š„่งฃๅฏไปฅ้€š่ฟ‡ๅธธๆ•ฐๅ˜ๆ˜“๏ผš $ x = Phi(t) C(t)\ Phi'(t) C(t) + Phi(t) C'(t) = A(t) Phi(t) C(t) + f(t)\ Phi(t) C'(t) = f(t)\ C'(t) = Inv(Phi(t)) f(t)\ C(t) = integral_(t_0)^(t) Inv(Phi(s)) f(s) dif s $ ่ฟ™็ป™ๅ‡บไบ†ๅฏ่กŒ็š„ $C$ ]<constant-variation> ไธŠ่ฟฐๅ‘ฝ้ข˜่กจๆ˜Ž๏ผŒ่งฃไธ€่ˆฌ็บฟๆ€งๅพฎๅˆ†ๆ–น็จ‹็š„ๅ›ฐ้šพๆ นๆœฌไธŠๆฅๆบไบŽๆฑ‚้ฝๆฌก็บฟๆ€งๅพฎๅˆ†ๆ–น็จ‹ๅŸบ็ก€่งฃ็Ÿฉ้˜ต็š„ๅ›ฐ้šพ == ๅธธ็ณปๆ•ฐ็บฟๆ€งๅพฎๅˆ†ๆ–น็จ‹ ไธบไบ†ๅ™่ฟฐๆ–นไพฟ๏ผŒๆˆ‘ไปฌๅ…ˆ็ป™ๅ‡บ็Ÿฉ้˜ตๅน‚็บงๆ•ฐ๏ผŒๆŒ‡ๆ•ฐ็ญ‰ๅฎšไน‰ #definition[][ - ๆœฌ่Š‚ไธญๅฎšไน‰็Ÿฉ้˜ต็š„ๆจกไธบ $sum_(i, j) abs(a_(i j))$ ๆˆ– $max_(abs(x) = 1) abs(A x)$๏ผŒๅฎƒไปฌ้ƒฝๆปก่ถณ $abs(A B) <= abs(A) abs(B)$ - ๅฝขๅผๅฎšไน‰๏ผš $ e^A = sum_(n = 0)^infinity A^n/n! $ ๆณจๆ„ๅˆฐ็Ÿฉ้˜ต็ปๅฏนๆ”ถๆ•›ๅช้œ€่ฆๆฏไธชๅˆ†้‡็ปๅฏนๆ”ถๆ•›๏ผŒๅŒๆ—ถ $ sum_(n = 0)^infinity abs(A^n/n!) <= sum_(n = 0)^infinity abs(A)^n/n! = e^(abs(A)) < +infinity $ ๆปก่ถณๆ€ง่ดจ๏ผš - ่‹ฅ $A B = B A$ ๅˆ™ $e^(A + B) = e^A e^B$ - $det(e^A) = e^(tr(A)) > 0$๏ผˆ่ฏๆ˜Ž้œ€่ฆ่‹ฅๅฝ“ๆ ‡ๅ‡†ๅž‹๏ผ‰ ] #theorem[][ ็ป™ๅฎšๅธธ็ณปๆ•ฐๅพฎๅˆ†ๆ–น็จ‹ $y' = A y + f(x)$ ๏ผŒๅˆ™ $e^(A x)$ ๆ˜ฏๆ–น็จ‹็š„ๅŸบ็ก€่งฃ็Ÿฉ้˜ต ] ไปฅไธŠ็ป“่ฎบ้žๅธธๆผ‚ไบฎ๏ผŒ็ป“ๅˆไน‹ๅ‰็š„็†่ฎบๆˆ‘ไปฌๅฏไปฅๆฑ‚่งฃๅ‡บๆ–น็จ‹็š„้€š่งฃใ€‚ๅ”ฏไธ€็š„้—ฎ้ข˜ๆ˜ฏๆŒ‰็…งๅฎšไน‰ๆฑ‚ๅ‡บ $e^(A x)$ ๅนถไธๅฎนๆ˜“ใ€‚ #example[][ ็”ฑ็บฆๅฝ“ๆ ‡ๅ‡†ๅž‹๏ผŒๅฏ่ฎพ๏ผš $ A = P D P^(-1)\ D = sum_(d=1)^(d_max) sum_(lambda in Lambda) sum_s lambda I + J_(d s) $ ๅ…ถไธญ $d$ ๆ˜ฏ็บฆๅฝ“ๅ—็ปดๅบฆ๏ผŒ$s$ ไปฃ่กจไธๅŒ็š„ๅ—ใ€‚่ฟ™ไบ›ๅ—้ƒฝๅœจไธๅŒ็š„ไฝ็ฝฎไธŠ๏ผŒไน˜็งฏไธบ้›ถ๏ผŒๅ› ๆญค๏ผš $ D^n = (sum_(d) sum_(lambda in Lambda) sum_s lambda I + J_(d s))^n\ = sum_(d) sum_(lambda in Lambda) sum_s (lambda I + J_(d s))^n\ = sum_(d) sum_(lambda in Lambda) sum_s sum_(i=0)^n C_n^i lambda^(n-i) J_(d s)^i\ = sum_(d) sum_(lambda in Lambda) sum_s sum_(i=0)^(min {d, n}) C_n^i lambda^(n-i) J_(d s)^i\ $ ๆณจๆ„ๅˆฐ $n > d$ ๆ—ถไธŠๅผ็š„ๆฑ‚ๅ’Œ้กนๆ•ฐๅทฒไธŽ $n$ ๆ— ๅ…ณ๏ผŒ$n < d$ ไป…ๆœ‰ๆœ‰้™ไธช๏ผŒๅ› ๆญคๅฏไปฅๆฑ‚ๅ‡บ $D^n$ ็š„้€šๅผ๏ผŒๅˆฉ็”จ๏ผš $ e^(A x) = sum_(k=0)^infinity A^k/k! x^k = P (sum_(k=0)^infinity D^k/k! x^k) Inv(P)\ = P (sum_(k=0)^infinity 1/k! (sum_(d) sum_(lambda in Lambda) sum_s sum_(i=0)^(min {d, k}) C_k^i lambda^(k-i) J_(d s)^i x^k)) Inv(P)\ = P (sum_(k=0)^infinity 1/k! (sum_(d) sum_(lambda in Lambda) sum_s sum_(i=0)^(min {d_max, k}) C_k^i lambda^(k-i) J_(d s)^i x^k)) Inv(P)\ = P (sum_(k=0)^d_max 1/k! (sum_(d) sum_(lambda in Lambda) sum_s sum_(i=0)^(n) C_k^i lambda^(k-i) J_(d s)^i x^k) + sum_(k=d_max + 1)^infinity 1/k! (sum_(d) sum_(lambda in Lambda) sum_s sum_(i=0)^(d_max) C_k^i lambda^(k-i) J_(d s)^i x^k)) Inv(P)\ = P (sum_(k=0)^d_max 1/k! (sum_(d) sum_(lambda in Lambda) sum_s sum_(i=0)^(k) C_k^i lambda^(k-i) J_(d s)^i x^k) + sum_(d) sum_(lambda in Lambda) sum_s sum_(i=0)^(d_max) J_(d s)^i sum_(k=d_max + 1)^infinity 1/k! C_k^i lambda^(k-i) x^k ) Inv(P)\ $ ไธŠๅผ็ฌฌไบŒ้กนๅฏไปฅๆฑ‚ๅพ—๏ผŒ็ฌฌไธ€้กนไป…ๆœ‰ๆœ‰้™้กน ๅฝ“็„ถ๏ผŒ่ฟ™้‡Œ็š„่ฎก็ฎ—ๆ˜ฏๆžๅ…ถ้บป็ƒฆ็š„ใ€‚ๆœ‰ไบ›ๆ—ถๅ€™๏ผŒๆˆ‘ไปฌๅฏไปฅ็”จๆŠ€ๅทงๅคงๅคง็ฎ€ๅŒ–๏ผŒไพ‹ๅฆ‚๏ผš - ่‹ฅ $A$ ๅฏๅฏน่ง’ๅŒ–๏ผŒๅˆ™ $d_(max) = 0$ ไธŠๅผ็ฎ€ๅŒ–ไธบ๏ผš $ P (sum_(lambda in Lambda) sum_s sum_(k=0)^infinity 1/k! lambda^(k) x^k J_(0 s) ) Inv(P) = P e^(D x) Inv(P) $ - ่‹ฅๅฏๆฑ‚ๅพ— $A$ ็š„้›ถๅŒ–ๅคš้กนๅผ๏ผŒๅฏไปฅๅฐ่ฏ•้™ๆฌก - ่‹ฅ $A$ ไป…ๆœ‰ไธ€ไธช็‰นๅพๅ€ผ $lambda$ ๅˆ™ๆœ‰๏ผš $ e^(A x) = e^(lambda x) e^((A - lambda) x) $ ๅŽ่€…็ฌฌไบŒ้กนๆ˜ฏๅน‚้›ถ็Ÿฉ้˜ต๏ผŒๅฏไปฅ็›ดๆŽฅๆฑ‚ๅ‡บ ] #example[][ ๅคง้ƒจๅˆ†ๆ—ถๅ€™ๅฆ‚ๆžœๅชไธบไบ†ๆฑ‚ๆ–น็จ‹็š„่งฃ๏ผŒๆฒกๅฟ…่ฆๅฎŒๆ•ด็ฎ—ๅ‡บ $e^(A x)$ ๏ผŒๆ—ข็„ถ่‹ฅ่ฎพ๏ผš $ e^(A x) = P e^(D x) Inv(P) $ ๅˆ™ $e^(A x) P = P e^(D x)$ ไนŸๆ˜ฏๅŸบ็ก€่งฃ็Ÿฉ้˜ต๏ผŒๅฎƒไผšๆ›ดๅŠ ๅฅฝๆฑ‚๏ผŒๆ—ข็„ถ $D$ ๆ˜ฏๅฏน่ง’/็บฆๅฝ“็Ÿฉ้˜ต๏ผŒ$e^(D x)$ ๆ˜ฏๅฎนๆ˜“ๆฑ‚็š„๏ผŒ่€Œ $P$ ๆฐ็”ฑ็‰นๅพๅ‘้‡/ๅพช็Žฏๅญ็ฉบ้—ด็š„ๅŸบๆž„ๆˆใ€‚ ] #example[][ ๆœ‰ไบ›ๅฝขๅผ่พƒๅฅฝ็š„ๆ–น็จ‹ๅนถไธ็”จไฝฟ็”จไธŠ้ข็š„ไธ€่ˆฌๆ–นๆณ•ๆฑ‚่งฃ๏ผŒไพ‹ๅฆ‚๏ผš $ cases( x' = y + z, y' = x + y, z' = x + z ) $ ไธ‰ๅผ็›ธๅŠ ๏ผŒ็ซ‹ๅพ— $(x + y + z)' = x' + y' + z' = 2 (x + y + z), x+ y + z = C_1 e^(2t)$๏ผŒไปฃๅ›žๅพ— $x' = e^(2 t) - x$ ่งฃๅ‡บๅณๅฏ ] == ้ซ˜้˜ถ็บฟๆ€งๅพฎๅˆ†ๆ–น็จ‹ #theorem[][ ็ป™ๅฎš้ซ˜้˜ถ็บฟๆ€งๅพฎๅˆ†ๆ–น็จ‹๏ผš $ x^((n)) + a_(n-1)(t) x^((n-1)) + dots + a_1(t) x' + a_0(t) x = f(t) $ ๅฏๅšๆขๅ…ƒ๏ผŒไปค๏ผš $ x_0 = x\ x_1 = x'\ ...\ x_n = x^((n)) $ ๆ–น็จ‹ๅ˜ไธบๅคšๅ…ƒ็บฟๆ€งๅพฎๅˆ†ๆ–น็จ‹๏ผš $ vec(x_0, x_1, dots.v, x_(n-1), x_n)' = mat(0, 1, ...,0, 0; 0, 0, ...,0, 0; dots.v, dots.v, ..., dots.v, dots.v; 0, 0, ..., 0, 1; -a_0 (t), -a_1 (t), ..., -a_(n-1) (t), 1) vec(x_0, x_1, dots.v, x_(n-1), x_n) + vec(0, 0, dots.v, 0, f(t)) $ ๅ› ๆญค๏ผŒๅฏไปฅๅˆฉ็”จ็บฟๆ€งๆ–น็จ‹็ป„็š„็†่ฎบ็Ÿฅ้“๏ผš - ๆ–น็จ‹็š„่งฃๆ˜ฏ้ฝๆฌก็บฟๆ€งๆ–น็จ‹็š„่งฃ็ฉบ้—ด $n$ ็ปด็บฟๆ€ง็ฉบ้—ดๅŠ ไธŠไธ€ไธช็‰น่งฃ - ็ป™ๅฎšๅˆๅ€ผ $x(0), x'(0), ..., x^((n))(0)$ ๅˆ™ๆ–น็จ‹็š„่งฃๅ”ฏไธ€ๅญ˜ๅœจ๏ผŒไธ”่งฃๆ˜ฏๅคง่Œƒๅ›ด็š„ ] #lemma[Wronskian][ ๅ‡่ฎพ $x_1 (t), x_2 (t), ..., x_n (t)$ ้ƒฝ $n-1$ ้˜ถๅฏๅฏผ๏ผŒๅˆ™็งฐ๏ผš $ Det(x_1, x_2, ..., x_n; x'_1, x'_2, ..., x'_n; dots.v, dots.v, ..., dots.v; x_1^((n-1)), x_2^((n-1)), ..., x_n^((n-1))) = W(t) $ ไธบๆœ—ๆ–ฏๅŸบ่กŒๅˆ—ๅผใ€‚่‹ฅ่ฟ™ไบ›ๅ‡ฝๆ•ฐ็บฟๆ€ง็›ธๅ…ณ๏ผŒๅˆ™ๆœ—ๆ–ฏๅŸบ่กŒๅˆ—ๅผๆ’ไธบ้›ถใ€‚ๅไน‹็ป“่ฎบไธ€่ˆฌๆ˜ฏไธๆˆ็ซ‹็š„๏ผŒไฝ†่‹ฅ่ฟ™ไบ›ๅ‡ฝๆ•ฐๆ˜ฏ้ฝๆฌก็บฟๆ€งๅพฎๅˆ†ๆ–น็จ‹็š„่งฃ๏ผŒๅˆ™ๅๅ‘ฝ้ข˜ไนŸๆˆ็ซ‹ใ€‚ ] #proof[ ่ฎพ $sum_i c_i x_i (t) = 0$๏ผŒๅฏนไบŽไปปๆ„ $t$ ๅๅคๆฑ‚ๅฏผๅฏๅพ—๏ผš $ mat(x_1, x_2, ..., x_n; x'_1, x'_2, ..., x'_n; dots.v, dots.v, ..., dots.v; x_1^((n-1)), x_2^((n-1)), ..., x_n^((n-1)))vec(c_1, c_2, dots.v, c_n) = 0 $ ็บฟๆ€ง็›ธๅ…ณๆ€ง็›ธๅฝ“ไบŽไธŠ้ข็š„้ฝๆฌก็บฟๆ€งๆ–น็จ‹ๆœ‰้ž้›ถ่งฃ๏ผŒๅ› ๆญค่กŒๅˆ—ๅผไธบ้›ถ๏ผŒ่ฏๆฏ•ใ€‚ ่‡ณไบŽๅๅ‘ฝ้ข˜๏ผŒไธ€ไธช็ฎ€ๅ•็š„ๅไพ‹ๆ˜ฏ $x^2, x abs(x)$๏ผŒ่€Œ้ƒฝๆ˜ฏๅŒไธ€ไธช้ฝๆฌกๆ–น็จ‹็š„่งฃ็š„ๆƒ…ๅฝขๅฐฑๆ˜ฏ @homogeneous-linear ] #example[][ ๅ‡่ฎพๆˆ‘ไปฌๅทฒๆฑ‚ๅ‡บ้ฝๆฌกๆ–น็จ‹็š„่งฃ๏ผŒๆ นๆฎ @constant-variation ๅฝ“็„ถๅฏไปฅ้€š่ฟ‡ๅธธๆ•ฐๅ˜ๆ˜“ๆฑ‚ๅ‡บ็บฟๆ€งๆ–น็จ‹็š„่งฃใ€‚ๅฎž้™…่ฟ™ไนˆๅšๆ—ถ๏ผŒๆˆ‘ไปฌ่ฆ้‡ๅˆฐๅฏน๏ผš $ sum_i c_i (t) x_i (t) $ ๆฑ‚ $n$ ้˜ถๅฏผ็š„้—ฎ้ข˜๏ผŒ็”ฑไบŽๆˆ‘ไปฌๅช้œ€่ฆไธ€ไธช่งฃๅณๅฏ๏ผŒไธๅฆจๆทปๅŠ ๆกไปถ๏ผš $ sum_i c'_i (t) x_i (t) = 0\ sum_i c'_i (t) x'_i (t) = 0\ ...\ sum_i c'_i (t) x_i^((n-1)) (t) = 0 $ ่ฟ™ๆ ทๆฑ‚ๅฏผ็š„ๅฝขๅผๅฐฑๅพˆ็ฎ€ๅ•๏ผš $ (sum_i c_i (t) x_i (t)) ' = sum_i c_i (t) x'_i (t) \ (sum_i c_i (t) x_i (t)) '' = sum_i c_i (t) x''_i (t) \ ...\ (sum_i c_i (t) x_i (t)) ^((n-1)) = sum_i c_i (t) x^((n-1))_i (t)\ (sum_i c_i (t) x_i (t)) ^((n)) = sum_i c_i (t) x^((n))_i (t) + sum_i c'_i (t) x^((n-1))_i (t) $ ๆœ€็ปˆๆ–น็จ‹ๅ˜ๆˆ๏ผš $ sum_i a_i (sum_i c_i (t) x_i (t)) ^((i)) = f(t)\ a_n sum_j c'_i (t) x^((n-1))_i (t) + sum_i a_i (sum_j c_j (t) x^((i))_j (t)) = f(t)\ a_n sum_j c'_i (t) x^((n-1))_i (t) = f(t) $ ่ฟ™ๆ˜ฏๅ› ไธบไธญ้—ดๅ‡‘ๅ‡บไบ†้ฝๆฌกๆ–น็จ‹็š„่งฃ๏ผŒๅ› ๆญคๅฏไปฅ็›ดๆŽฅๆถˆๅŽปใ€‚ๅŠ ไธŠไน‹ๅ‰็š„ๅ‡่ฎพๆ–น็จ‹ๅ˜ๆˆๅ…ณไบŽ $c'_i$ ็š„็บฟๆ€งๆ–น็จ‹็ป„๏ผŒๆฑ‚่งฃๅณๅฏ ใ€‚ ] #lemma[][ ๅฏนไบŽไบŒ้˜ถ้ฝๆฌก็บฟๆ€งๅพฎๅˆ†ๆ–น็จ‹๏ผš $ x'' + a(t) x' + b(t) x = 0 $ ่ฎพๆœ‰ไธคๆ— ๅ…ณ่งฃ $x_1, x_2$ ไธ้šพ้ชŒ่ฏ่‹ฅไปค๏ผš $ W = Det(x_1, x_2; x'_1, x'_2) = x_1 x'_2 - x'_1 x_2 $ ๅˆ™ๆœ‰๏ผš $ W' &= x'_1 x'_2 + x_1 x''_2 - x''_1 x_2 - x'_1 x'_2 = x_1 x''_2 - x''_1 x_2 \ &= - x_1 (a(t) x'_2 + x_2) + x_2 (a(t) x'_1 + x_1) \ &= - a(t) (x_1 x'_2 - x'_1 x_2) \ &= - a(t) W $ ๅฏไปฅ็›ดๆŽฅ่งฃๅ‡บ $W$๏ผŒๆญคๆ—ถๅ‡่ฎพ $x_1$ ๅทฒ็Ÿฅ๏ผŒๆ–น็จ‹ๅ˜ๆˆไบ†ๅ…ณไบŽ $x_2$ ็š„ไธ€้˜ถ็บฟๆ€งๅพฎๅˆ†ๆ–น็จ‹๏ผŒๆ˜ฏๅฏ่งฃ็š„ใ€‚่ฟ™่กจๆ˜ŽๅฏนไบŽไบŒ้˜ถ้ฝๆฌก็บฟๆ€งๅพฎๅˆ†ๆ–น็จ‹๏ผŒ่‹ฅๅทฒ็Ÿฅไธ€ไธช่งฃ๏ผŒๅฆไธ€ไธช่งฃๅฏไปฅ้€š่ฟ‡ไธ€้˜ถ็บฟๆ€งๅพฎๅˆ†ๆ–น็จ‹ๆฑ‚ๅ‡บใ€‚ ] #theorem[][ ๅฏนไบŽไบŒ้˜ถๅธธ็ณปๆ•ฐ้ฝๆฌก็บฟๆ€งๅพฎๅˆ†ๆ–น็จ‹๏ผš $ x^((n)) + a_(n-1)(t) x^((n-1)) + dots + a_1(t) x' + a_0(t) x = 0 $ ่ฎพ๏ผš $ p(lambda) = lambda^n + a_(n-1) lambda^(n-1) + dots + a_1 lambda + a_0 $ ๆœ‰ $s$ ไธชไธๅŒๆ น $lambda_i$ ๏ผŒ้‡ๆ•ฐๅˆ†ๅˆซไธบ $m_1, m_2, ..., m_s$๏ผŒๅˆ™๏ผš $ x^k e^(lambda_i x) forall k <= m_i, forall i = 1, 2, ..., s $ ๆฐๆž„ๆˆไธ€็ป„ๅŸบ็ก€่งฃ ] #proof[ ่ฎพ $L(x) = x^((n)) + a_(n-1)(t) x^((n-1)) + dots + a_1(t) x' + a_0(t) x$๏ผŒๅˆ™ๆœ‰๏ผš $ L(e^(lambda x)) = p(lambda) e^(lambda x) $ ๅ› ๆญคๅฝ“็„ถ $p(lambda) = 0$ ๆ—ถ $e^(lambda x)$ ๆ˜ฏ่งฃใ€‚่ฟ›ไธ€ๆญฅ๏ผŒไธค่พนๅฏน $lambda$ ๆฑ‚ๅฏผๅพ—๏ผš $ L(x e^(lambda x)) = (lambda p(lambda) + p'(lambda)) e^(lambda x) $ ่‹ฅ $lambda$ ๆ˜ฏ่‡ณๅฐ‘ไบŒ้‡ๆ น๏ผŒไธŠๅผไนŸๆ˜ฏ้›ถ๏ผŒๅๅค่ฟ›่กŒๅณๅพ—็ป“่ฎบใ€‚ ๅฎƒไปฌ็š„็บฟๆ€งๆ— ๅ…ณๆ€งๆ˜ฏๆ˜พ็„ถ็š„ ] = ๅน‚็บงๆ•ฐ่งฃๆณ• == ไธ€่ˆฌๅน‚็บงๆ•ฐ ๆœฌ็ซ ไธญ $y$ ๅ…่ฎธๅคšๅ…ƒๅ‡ฝๆ•ฐ #lemma[][ ่ฎพๅพฎๅˆ†ๆ–น็จ‹๏ผš $ cases( der(y, x) = f(x, y), y(x_0) = y_0 ) $ ๅ…ถไธญ $f$ ๅœจ $x_0$ ้™„่ฟ‘่งฃๆž๏ผŒๅˆ™ๅฎƒ็š„่งฃๅญ˜ๅœจๅ”ฏไธ€๏ผŒไธ”ๆ˜ฏ่งฃๆžๅ‡ฝๆ•ฐใ€‚ ] #proof[ ๅ‰้ข Picard ๅบๅˆ—็š„่ฏๆ˜Žไธญ็ป™ๅ‡บไบ†่ฟ™ไธชๆŽจ่ฎบ ] ็†่ฎบไธŠๆฅ่ฏด๏ผŒๅน‚็บงๆ•ฐๅฑ•ๅผ€ๅนถๆฏ”ๅฏน็ณปๆ•ฐๅฏไปฅๅฐ†ไธ€่ˆฌ็š„ๅพฎๅˆ†ๆ–น็จ‹ๅŒ–ไธบไปฃๆ•ฐๆ–น็จ‹ใ€‚็„ถ่€Œไธ€่ˆฌ็š„ๆƒ…ๅฝขไป็„ถ้šพไปฅ่ฎก็ฎ—๏ผŒๆœ€ๅธธ่ง็š„ๆƒ…ๅฝขๆ˜ฏๅฏน็บฟๆ€งๆ–น็จ‹ๅšๅฑ•ๅผ€ใ€‚ #example[][ - $der(y, x) = y - x$๏ผŒไปค $y = sum_i a_i x^i$๏ผŒ่ฎก็ฎ—ๅพ—๏ผš $ sum_(i >= 1) i a_i x^(i-1) = sum_i a_i x^i - x $ ๆœ‰๏ผš $ a_1 = a_0\ 2 a_2 = a_1 - 1\ (i+1) a_(i+1) = a_i\ $ ๅฏไปฅ้€’ๆŽจ่งฃๅพ— $a_i$ - $y'' - 2 x y' + 4 y = 0$๏ผŒไปค $y = sum_i a_i x^i$๏ผŒ่ฎก็ฎ—ๅพ—๏ผš $ sum_i (i+1)(i+2)a_(i+2)x^i - 2 sum_i i a_(i) x^i - 4 sum_i a_i x^i = 0 $ ๅพ—ๅˆฐไธ€่ˆฌ็š„้€’ๆŽจๅ…ณ็ณป๏ผš $ (i+1)(i+2)a_(i+2) = 2 i a_i + 4 a_i\ (i+1) a_(i+2) = 2 a_i $ - $y'' = x y$๏ผŒ่ฎก็ฎ—ๅพ—๏ผš $ sum_i (i+1)(i+2)a_(i+2)x^i = sum_i a_(i-1) x^i $ ๆœ‰๏ผš $ a_2 = 0\ (i+1)(i+2)a_(i+2) = a_(i-1) $ ๅฏไปฅ่งฃๅพ—๏ผš $ a_(3 k + 2) = 0\ a_(3 k) = ((3k - 3)!!!)/((3k) !) a_0 $ ] #remark[][ ๅฏนไบŽๅฝขๅฆ‚๏ผš $ u(x) der(y, x) = v(x, y) $ ็š„ๅพฎๅˆ†ๆ–น็จ‹๏ผŒๅฆ‚ๆžœ $u(x) > 0$๏ผŒๅฐ†ๅ…ถ้™คๆމๅณๅฏๅพ—ๅˆฐ่งฃ็š„่งฃๆžๆ€งใ€‚ไฝ†่‹ฅ $u(x)$ ๆœ‰้›ถ็‚นๆƒ…ๅฝขๆœชๅฟ…ใ€‚ไพ‹ๅฆ‚๏ผš $ cases( x^2 der(y, x) = y - x, y(0) = 0 ) $ ่‹ฅๅ…ถๆœ‰่งฃๆž่งฃ๏ผŒๆฏ”ๅฏน็ณปๆ•ฐๅ‘็Žฐไธ€ๅฎšๆœ‰ $a_n = n!$๏ผŒไฝ†ๆ˜ฏ่ฟ™ไธชๅน‚็บงๆ•ฐไธๆ”ถๆ•›๏ผŒๅ› ๆญคๆ˜ฏ่’่ฐฌ็š„ใ€‚ไธ‹่Š‚็š„็›ฎๆ ‡ไพฟๆ˜ฏๅค„็†่ฟ™็งๆ–น็จ‹ใ€‚ ] == ๅนฟไน‰ๅน‚็บงๆ•ฐ #definition[ๅนฟไน‰ๅน‚็บงๆ•ฐ][ ็งฐ๏ผš $ sum_(n=0)^(+infinity) a_n x^(n + alpha), alpha in RR $ ไธบๅนฟไน‰ๅน‚็บงๆ•ฐใ€‚ ] #theorem[][ ่ฎพไบŒ้˜ถๅพฎๅˆ†ๆ–น็จ‹๏ผš $ y'' + p(x) y' + q(x) y = 0 $ ๅ…ถไธญ $p, q$ ๅฏ่ƒฝไปฅ $0$ ไธบๅฅ‡็‚น๏ผŒไฝ† $x p, x^2 q$ ้ƒฝๅœจ $0$ ๅค„่งฃๆžไธ”ไธๅ…จไธบ้›ถ๏ผŒๅˆ™ๅฎƒๅœจ $0$ ้™„่ฟ‘ๆœ‰ๅนฟไน‰ๅน‚็บงๆ•ฐ่งฃ ] #proof[ ๆ–น็จ‹็ญ‰ไปทไบŽ๏ผš $ x^2 y'' + x (sum_i a_i x^i) y' + (sum_i b_i x^i) y = 0 $ ่ฎพ $y = sum_(n=0)^(+infinity) c_n x^(n + alpha)$๏ผŒไปฃๅ…ฅๅพ—๏ผš $ x^(alpha)(sum_(n=2)^(+infinity) c_n (n+alpha)(n+alpha-1) x^(n) \ + (sum_(n=1)^(+infinity) c_n (n+alpha) x^(n))(sum_(i=0)^infinity a_i x^i) \ + (sum_(n=0)^(+infinity) c_n x^(n))(sum_(i=0)^infinity a_i x^i)) = 0 $ ] #example[่ดๅกžๅฐ”ๆ–น็จ‹][ ๆ–น็จ‹๏ผš $ y'' + 1/x y' + (x^2 - n^2) / x^2 y = 0 $ ็งฐไธบ่ดๅกžๅฐ”ๆ–น็จ‹๏ผŒ็”ฑไธŠ้ข็š„ๅฎš็†ๅฎƒๅœจ $0$ ้™„่ฟ‘ๆœ‰ๅนฟไน‰ๅน‚็บงๆ•ฐ่งฃ๏ผŒๅนถไธ”่ฎก็ฎ—ๅฏๅพ— $n$ ๆ˜ฏๆญฃๆ•ดๆ•ฐๆ—ถ่งฃๆ˜ฏๆ•ดๅ‡ฝๆ•ฐใ€‚ ] = ๅพฎๅˆ†ๆ–น็จ‹ๅฎšๆ€ง็†่ฎบ๏ผš่พนๅ€ผ้—ฎ้ข˜ == Sturm ๆฏ”่พƒๅฎš็† ๆœฌ่Š‚ๆˆ‘ไปฌ็š„็ ”็ฉถ็š„ๆ˜ฏๅฝขๅฆ‚๏ผš $ y'' + p(x) y' + q(x) y = 0 $<obj-def> ๅ…ถไธญ $p, q$ ๆ˜ฏๆŸไธชๅŒบ้—ด $J$ ไธŠ็š„่ฟž็ปญๅ‡ฝๆ•ฐ #lemma[][ @obj-def ็š„้ž้›ถ่งฃ้ƒฝๆ˜ฏ็ฎ€ๅ•้›ถ็‚น๏ผˆๅฏผๆ•ฐ้ž้›ถ๏ผ‰๏ผŒ่ฟ›ไธ€ๆญฅ้ƒฝๆ˜ฏๅญค็ซ‹้›ถ็‚น ] #proof[ ๅฆ‚่‹ฅไธ็„ถ๏ผŒ่ฎพ $x_0$ ๅค„ๅ‡ฝๆ•ฐๅ€ผๅ’Œๅฏผๆ•ฐๅ€ผๅ‡ไธบ้›ถ๏ผŒ็”ฑๅญ˜ๅœจๅ”ฏไธ€ๆ€ง่ฟ™ๅฐ†ๅฏผ่‡ด่งฃๆ’ไธบ้›ถ๏ผŒ็Ÿ›็›พ๏ผ ] #lemma[][ ่ฎพ $f, g$ ๆ˜ฏ @obj-def ็š„ไธคไธช้ž้›ถ่งฃ๏ผŒไธ”้ƒฝๆœ‰้›ถ็‚น๏ผš - $f, g$ ็บฟๆ€ง็›ธๅ…ณๅฝ“ไธ”ไป…ๅฝ“ๆœ‰็›ธๅŒ็š„้›ถ็‚น้›† - $f, g$ ็บฟๆ€งๆ— ๅ…ณๅฝ“ไธ”ไป…ๅฝ“้›ถ็‚น็›ธ้—ด๏ผŒไนŸๅณๆฏไธคไธช็›ธ้‚ป้›ถ็‚นๆž„ๆˆ็š„ๅผ€ๅŒบ้—ดๅ†…ๆœ‰ๅฏนๆ–น็š„้›ถ็‚น ] #proof[ - - ่‹ฅ $f, g$ ็›ธๅ…ณๅˆ™ $lambda f + mu g = 0$๏ผŒไธ้šพๅ‘็Žฐ $lambda, mu$ ้ž้›ถ๏ผŒๅ› ๆญค้›ถ็‚น้›†็›ธๅŒ - ่‹ฅ้›ถ็‚น้›†็›ธๅŒ๏ผŒ่€ƒ่™‘ Wronskian ่กŒๅˆ—ๅผ๏ผš $ W(x) = Det(f, g; f', g') $ ็”ฑๆกไปถๅฏ็Ÿฅๅญ˜ๅœจไธ€ไธชๅ…ฑๅŒ้›ถ็‚น๏ผŒๅˆ™ๅœจ่ฏฅ็‚นๅค„ $W(x) = 0$๏ผŒไน‹ๅ‰็š„็ป“่ฎบ่กจๆ˜Ž $f, g$ ็บฟๆ€ง็›ธๅ…ณ - ่ฎพ $x_1, x_2$ ๆ˜ฏ $f$ ็š„็›ธ้‚ป้›ถ็‚น๏ผŒไธๅฆจๅ‡่ฎพๅœจ $(x_1, x_2)$ ไธŠๆœ‰ $f > 0$ - ่ฎพ $f, g$ ๆ— ๅ…ณ๏ผŒๅˆ™๏ผš $ W(x) = Det(f, g; f', g') $ ๅฎšๅท๏ผŒ่ฟ›่€Œ $W(x_1) W(x_2) > 0$๏ผŒ่€Œ๏ผš $ W(x_1) = -g(x_1) f'(x_1)\ W(x_2) = -g(x_2) f'(x_2) $ ไน‹ๅ‰่ฏๆ˜Žไบ† $f'(x_1), f'(x_2) != 0$๏ผŒไธ้šพๅ‘็Žฐไธ€ๅฎšๆœ‰ $f'(x_1) > 0, f'(x_1) < 0$๏ผŒไธŠๅผ่กจๆ˜Ž $g(x_1), g(x_2)$ ๅผ‚ๅท๏ผŒๅฝ“็„ถๅฐฑๆœ‰ไป‹่ดจๅฎš็†ใ€‚ๅŒๆ—ถๅ…ถ้—ดๅช่ƒฝๆœ‰ไธ€ไธช้›ถ็‚น๏ผŒๅฆๅˆ™่‹ฅๆœ‰ไธคไธชๅฏไปฅๅ่ฟ‡ๆฅๆ‰พๅˆฐ $f$ ็š„้›ถ็‚น๏ผŒไธŽ $x_1, x_2$ ็›ธ้‚ป็Ÿ›็›พ๏ผ - ๅไน‹๏ผŒ่‹ฅ้›ถ็‚น็›ธ้—ด็ป“่ฎบ็”ฑๅ‰ไธ€ๆก็ป“่ฎบ็Ÿฅ้›ถ็‚น้›†ไธๅŒ๏ผŒๅฝ“็„ถๆ— ๅ…ณ ] #remark[][ ไธŠ้ข็š„ๅผ•็†ไธญ้œ€่ฆ็•™ๆ„้›ถ็‚น็š„ๅญ˜ๅœจๆ€ง๏ผŒไพ‹ๅฆ‚ $f, g$ ๆ— ๅ…ณ่€Œ $f$ ไป…ๆœ‰ไธ€ไธช้›ถ็‚น๏ผŒๆญคๆ—ถ $g$ ็š„้›ถ็‚นไธชๆ•ฐๅฏ่ƒฝๆ˜ฏ $0, 1, 2$๏ผŒไธŽๅฎš็†้ƒฝไธ็Ÿ›็›พ ] #theorem[ๆฏ”่พƒๅฎš็†][ ่ฎพๆœ‰ไธคไธชๅพฎๅˆ†ๆ–น็จ‹๏ผš $ y'' + p(x) y' + q(x) y = 0 $<eq-1> $ y'' + p(x) y' + r(x) y = 0 $<eq-2> ไธ”ๆปก่ถณ๏ผš $ r(x) >= q(x) $ ่ฎพ $f, g$ ๅˆ†ๅˆซๆ˜ฏ@eq-1 ๅ’Œ@eq-2 ็š„ไธคไธช้ž้›ถ่งฃ๏ผŒ$x_1, x_2$ ๆ˜ฏ $f$ ็š„ไธคไธช็›ธ้‚ป้›ถ็‚น๏ผŒๅˆ™ $g$ ๅœจ $[x_1, x_2]$ ไธŠๆœ‰้›ถ็‚นใ€‚ ]<compare-two> #proof[ ไธๅฆจๅ‡่ฎพ $f$ ๅœจ $(x_1, x_2)$ ไธŠๆ’ๆญฃ๏ผŒๆœ‰๏ผš $ f'(x_1) > 0, f'(x_2) < 0 $ ๅ‡่ฎพ $g(x)$ ๅœจ $[x_1, x_2]$ ไธŠๆ— ้›ถ็‚น๏ผŒไธๅฆจ่ฎพๅ…ถๆ’ๆญฃใ€‚ไปค๏ผš $ W(x) = Det(f, g;f', g') = f g' - f' g\ W'(x) = Det(f, g;f'', g'') = Det(f, g;-p(x)f' - q(x) f, -p(x) g' - r(x) g)\ =Det(f, g;-p(x)f', -p(x) g' - (r(x) - p(x)) g)\ = - p(x) W(x) - f g (r(x) - p(x)) $ ๆณจๆ„ๅˆฐไธ€ๅฎšๆœ‰๏ผš $ f g(r(x) - p(x)) >= 0 $ ็”ฑไธ€้˜ถๆ–น็จ‹็š„ๆฏ”่พƒๅฎš็†๏ผŒๆœ‰๏ผš $ B e^(-p(x))<= W(x) <= A e^(-p(x)) $ ๅ…ถไธญ $A e^(-p(x))$ ๆ˜ฏ๏ผš $ cases( W'(x) = -p(x) W(x), W(x_1) = - g(x_1) f'(x_1) ) $ ็š„่งฃ๏ผŒ่€Œ $B e^(-p(x))$ ๆ˜ฏ๏ผš $ cases( W'(x) = -p(x) W(x), W(x_1) = - g(x_2) f'(x_2) ) $ ็š„่งฃ๏ผŒ็„ถ่€Œไธ้šพๅ‘็Žฐ $- g(x_1) f'(x_1) < 0, - g(x_2) f'(x_2) > 0$ ๅฏผ่‡ด $A < 0, B > 0$๏ผŒ่ฟ™ๆ˜ฏ่’่ฐฌ็š„๏ผ ] #remark[][ ไธŠ้ข็š„ๅฎš็†ๅฎž้™…ไธŠๆ˜ฏ่ฏด $y$ ๅ‰้ข็š„็ณปๆ•ฐ่กจ็คบ่งฃๆŒฏ่ก็š„้ข‘็އ๏ผŒ็ณปๆ•ฐ่ถŠๅคงๆŒฏ่ก่ถŠๅฟซใ€‚ๅ› ๆญคๆœ‰ๅฆ‚ไธ‹ๅฏนไบŽๆŒฏๅŠจ็š„็ ”็ฉถ๏ผš ] #definition[][ ่ฎพ@obj-def ็š„ๆœ‰่‡ณๅฐ‘ไธคไธช้›ถ็‚น็š„้ž้›ถ่งฃไธบๆŒฏๅŠจ่งฃ๏ผŒๆœ‰ๆ— ็ฉทๅคšไธช้›ถ็‚น็š„้ž้›ถ่งฃไธบๆ— ็ฉท่งฃ ] #example[][ - ่€ƒ่™‘ๆ–น็จ‹๏ผš $ y'' + p(x) y' + r(x) = 0 $<eq-3> ๅ…ถไธญ $r(x) <= 0$๏ผŒๆณจๆ„ๅˆฐๅฎƒๅฏไปฅๅฏน๏ผš $ y'' + p(x) y' = 0 $<eq-4> ๅˆฉ็”จๆฏ”่พƒๅฎš็†ใ€‚ๅ‡ๅฆ‚@eq-3 ๆœ‰ๆŒฏๅŠจ่งฃ๏ผŒๅˆ™็”ฑ @compare-two ๅฏ็Ÿฅ@eq-4 ็š„ไปปๆ„ไธ€ไธช่งฃ้ƒฝๆœ‰้›ถ็‚น๏ผŒ็„ถ่€Œ@eq-4 ๆœ‰่งฃ $y = 1$ ๆ— ้›ถ็‚น๏ผŒ็Ÿ›็›พ๏ผๅ› ๆญค@eq-3 ไธๅฏ่ƒฝๆœ‰ๆŒฏๅŠจ่งฃ - ่€ƒ่™‘ๆ–น็จ‹๏ผš $ y'' + q(x) y = 0 $ ๅ…ถไธญ $q(x) >= m > 0$๏ผŒๅˆ™ๅฎƒไปปๆ„้ž้›ถ่งฃๆ— ้™ๆŒฏๅŠจ๏ผŒไธ”็›ธ้‚ป้›ถ็‚น้—ด่ท็ฆปไธ่ถ…่ฟ‡ $pi / sqrt(m)$\ ้ฆ–ๅ…ˆ่ฏๆ˜ŽๅฏนไบŽไปปไฝ• $a$, $[a, a + pi / sqrt(m)]$ ็š„ๅŒบ้—ด้ƒฝๆœ‰ๆ–น็จ‹็š„่งฃๅณๅฏใ€‚่€ƒ่™‘ๆ–น็จ‹๏ผš $ y'' + m y = 0 $ ๅŽ้ข็š„ๆ–น็จ‹ๆœ‰่งฃ๏ผš $ y = sin (sqrt(m) (x - a)) $ ไปฅ $a, a + pi / sqrt(m)$ ไธบ้›ถ็‚น๏ผŒๅˆฉ็”จ @compare-two ็ซ‹ๅพ—็ป“่ฎบใ€‚ๅฝ“็„ถ่ฟ™ๆ ท็š„ๅŒบ้—ดๆœ‰ๆ— ็ฉทๅคš๏ผŒๅ› ๆญคๆ–น็จ‹็š„่งฃๆœ‰ๆ— ็ฉทๅคšไธช้›ถ็‚นใ€‚\ ๆณจๆ„่ฟ™ไธช็ป“่ฎบไธ่ƒฝๅŠ ๅผบๅˆฐ $q(x) > 0$๏ผŒไพ‹ๅฆ‚๏ผš $ y'' + 1/(4 x^2) y = 0, x in [1, +infinity] $ ่ฟ™ๆ˜ฏๆฌงๆ‹‰ๆ–น็จ‹๏ผŒๅฏไปฅ่งฃๅพ—๏ผš $ y = sqrt(x) (c_1 + c_2 ln x) $ ๅฝ“็„ถ่‡ณๅคšๅชๆœ‰ไธ€ไธช้›ถ็‚น - ่€ƒ่™‘ๅพฎๅˆ†ๆ–น็จ‹๏ผš $ y'' + q(x) y = 0 $ ไธ”ๅญ˜ๅœจ้ž่ดŸๆ•ดๆ•ฐ $n$ ไฝฟๅพ—๏ผš $ n^2 < q(x) < (n+1)^2 $ ๅˆ™ๆ–น็จ‹็š„ไปปๆ„้ž้›ถ่งฃไธๆ˜ฏ $2 pi$ ๅ‘จๆœŸ็š„ใ€‚\ ๅฆ‚่‹ฅไธ็„ถ๏ผŒ่ฎพ $f$ ๆ˜ฏ้ž้›ถ็š„ $2 pi$ ๅ‘จๆœŸ่งฃ๏ผŒไปฃๅ…ฅๆ–น็จ‹ไธ้šพๅ‘็Žฐ $q(x) f$ ไนŸๆ˜ฏไปฅ $2 pi$ ๅ‘จๆœŸ็š„๏ผŒ่€Œ $f$ ็š„้›ถ็‚นๅญค็ซ‹๏ผŒ็”ฑ $q$ ็š„่ฟž็ปญๆ€ง็Ÿฅๅฎƒๅบ”่ฏฅไปฅ $2 pi$ ไธบๅ‘จๆœŸ๏ผŒๅ› ๆญคๆœ‰ๆœ€ๅคงๆœ€ๅฐๅ€ผใ€‚่ฎพ๏ผš $ m^2 <= q(x) <= M^2 $ ไปฟ็…งไธŠ้ข็š„ไพ‹ๅญ๏ผŒๅˆฉ็”จ @compare-two ๅฏไปฅๅฏผๅ‡บ $f$ ็š„ไธคไธช็›ธ้‚ป้›ถ็‚น้—ด็š„่ท็ฆปๅœจ $pi/M, pi/m$ ไน‹้—ด\ ่ฎพ $f$ ๅœจไธ€ไธชๅ‘จๆœŸไธŠๆœ‰ $2n$ ไธช้›ถ็‚น๏ผŒ้›ถ็‚นๅˆ†ๅˆซไธบ๏ผš $ t_0 < t_1 < ... < t_(2 n) = t_0 + 2 pi $ ๅฏน่ท็ฆปๆฑ‚ๅ’Œ๏ผŒๅฏๅพ—๏ผš $ 2n/M pi <= 2 pi <= 2n/m pi\ m <= n <= M $ ็„ถ่€Œ็”ฑๆกไปถ $m, M$ ๅคนๅœจไธคไธช่ฟž็ปญๆ•ดๆ•ฐไน‹้—ด๏ผŒไธŽ $n$ ๆ˜ฏๆ•ดๆ•ฐ็Ÿ›็›พ๏ผ - ่€ƒ่™‘ๅพฎๅˆ†ๆ–น็จ‹๏ผš $ y'' + q(y) = f(x) $ ไธ”ๅญ˜ๅœจ้ž่ดŸๆ•ดๆ•ฐ $n$ ไฝฟๅพ—๏ผš $ n^2 < q'(y) < (n+1)^2 $ ๅˆ™ๆ–น็จ‹่‡ณๅคšๆœ‰ไธ€ไธช $2 pi$ ๅ‘จๆœŸ่งฃ๏ผŒๅฆๅˆ™่ฎพ $y_1, y_2$ ๆ˜ฏไธคไธช $2 pi$ ๅ‘จๆœŸ่งฃ๏ผŒๅฎนๆ˜“ๅพ—ๅˆฐ๏ผš $ (y_1 - y_2)' + q(y_1) - q(y_2) = 0 $ ไปค $p(x) = (q(y_1) - q(y_2))/(y_1 - y_2)$๏ผŒๅˆ™ $y_1 - y_2$ ๆˆไธบๅพฎๅˆ†ๆ–น็จ‹๏ผš $ y'' + p(x) y = 0 $ ็š„ $2 pi$ ๅ‘จๆœŸ่งฃ๏ผŒ็„ถ่€ŒไธŠ้ข็š„็ป“่ฎบ่กจๆ˜Ž่ฟ™ๆ ท็š„ๆ–น็จ‹ๆฒกๆœ‰ $2 pi$ ๅ‘จๆœŸ่งฃ๏ผŒ็Ÿ›็›พ๏ผ ] == ่พนๅ€ผ้—ฎ้ข˜ #definition[][ ่ฎพๆœ‰ๅพฎๅˆ†ๆ–น็จ‹๏ผš $ cases( (p(x) y')' + (lambda r(x) + q(x)) y = 0, k y(a) + l y'(a) = M y(b) + N y'(b) = 0 ) $ ๅ…ถไธญ $p, q, r in C[a, b], p, r > 0, (K, L) != 0, (M, N) != 0$ ่ฏฅๅพฎๅˆ†ๆ–น็จ‹้žๅนณๅ‡ก่งฃ็š„ๅญ˜ๅœจๆ€ง็งฐไธบไบŒ้˜ถๅพฎๅˆ†ๆ–น็จ‹็š„่พนๅ€ผ้—ฎ้ข˜ใ€‚่‹ฅๅฏน $lambda = lambda_0$ ๆ–น็จ‹ๆœ‰้ž้›ถ่งฃ $phi$๏ผŒๅˆ™็งฐ $lambda_0$ ไธบไธ€ไธช็‰นๅพๅ€ผ๏ผŒ$phi$ ไธบๅฏนๅบ”็š„็‰นๅพๅ‡ฝๆ•ฐใ€‚ ]<boundary-value> #remark[][ ่ฟ™ไธชๅซๆณ•ๆ˜ฏๅ› ไธบ่‹ฅ่ฎพ๏ผš $ A y = ((p y')' + q y)/(-r) $ ๅˆ™ๅฎƒๆ˜ฏ็บฟๆ€ง็ฎ—ๅญ๏ผŒ่€Œ่พนๅ€ผ้—ฎ้ข˜ๅฎž้™…ไธŠๆ˜ฏๆฑ‚่งฃ $A y = lambda y$ ็š„้—ฎ้ข˜ ] #example[][ - ่€ƒ่™‘ๆ–น็จ‹๏ผš $ cases( y'' + lambda y = 0, y'(0) = y'(l) = 0 ) $ - ๅฝ“ $lambda = -a^2 < 0$ ๆ—ถ๏ผŒๆ–น็จ‹็š„้€š่งฃไธบ๏ผš $ y = linearCombinationC(e^(a x), e^(-a x)) $ ่ฎก็ฎ—ๅ‘็Žฐ่‹ฅ่ฆ็ฌฆๅˆ่พนๅ€ผ๏ผŒๅฐ†ๆœ‰๏ผš $ cases( C_1 = C_2, C_1 = -C_2 ) $ ๅฏผๅ‡บ้›ถ่งฃ - ๅฝ“ $lambda = 0$ ๆ—ถๆ–น็จ‹็š„่งฃๆ˜ฏ็บฟๆ€งๅ‡ฝๆ•ฐ๏ผŒๅ› ๆญคๆฏไธชๅธธๅ‡ฝๆ•ฐ้ƒฝๆ˜ฏ็‰นๅพๅ‡ฝๆ•ฐ - ๅฝ“ $lambda = a^2 > 0$๏ผŒ้€š่งฃไธบ๏ผš $ linearCombinationC(cos a x, sin a x) $ ่ฎก็ฎ—ๅพ—๏ผš $ cases( C_2 = 0, - C_1 sin a l + C_2 cos a l = 0 ) $ ๅฝ“ไธ”ไป…ๅฝ“ $a$ ไธบ $(n pi)/l$ ๆ—ถๆœ‰้ž้›ถ่งฃ ็ปผไธŠ๏ผŒ็‰นๅพๅ€ผไธบ $(n^2 pi^2)/l^2, forall n in NN$ ]<sin-cos-example> @boundary-value ไธญ็š„ๅฝขๅผๅฝ“็„ถๅฏไปฅๅ†็ฎ€ๅŒ–๏ผŒ้€š่ฟ‡ไธ€ไบ›็ฎ€ๅ•็š„็บฟๆ€งๅ˜ๆข๏ผŒๅฏ่ฎพ $a = 0, b = 1$๏ผŒ่ฟ›ไธ€ๆญฅ็”ฑ $p > 0$๏ผŒ่ฎพ๏ผš $ t = 1/(c_0) integral_(0)^(x) 1/(p(s)) dif s \ tilde(y) (t) = y(x(t)) $ $x(t)$ ๅญ˜ๅœจๆ˜ฏๅ› ไธบ $t$ ๅ…ณไบŽ $x$ ๅ•่ฐƒไธŠๅ‡๏ผŒๆœ‰ๅๅ‡ฝๆ•ฐใ€‚ไธ้šพ่ฎก็ฎ—ๅพ—๏ผš $ p(x) der(y, x) = 1/(c_0) der(tilde(y), t)\ der(p(x) der(y, x) , x) = 1/(c_0^2 p(x)) tilde(y)'' $ ๆ€ปไน‹๏ผŒๆ–น็จ‹ๅŒ–ไธบไบ† $ cases( y'' + (lambda c_0^2 p(x(t))r(x(t)) + c_0^2 p(x(t)) q(x(t))) y = 0, K y(0) + L /(c_0 p(a)) y'(0) = M y(1) + N /(c_0 p(b)) y'(1) = 0) $ #lemma[][ @boundary-value ไธญ็š„้—ฎ้ข˜ๅฏไปฅๅŒ–ๅฝ’ไธบไปฅไธ‹ๆ ‡ๅ‡†ๅฝขๅผ๏ผš $ cases( y'' + (lambda r(x) + q(x)) y = 0, y(0) cos alpha - y'(0) sin alpha = y(1) cos beta - y'(1) sin beta = 0 ) $<standard-form-boundary-value> ๅ…ถไธญ $r, q$ ่ฟž็ปญ๏ผŒ$r > 0, alpha, beta in [0, pi)$ ] #theorem[Sturm-Liouville][ @standard-form-boundary-value ็ป™ๅ‡บ็š„่พนๅ€ผ้—ฎ้ข˜ๆœ‰ๅฏๆ•ฐๅคšไธช็‰นๅพๅ€ผ๏ผŒไธ”ๆ‰€ๆœ‰็‰นๅพๅ€ผๅฝขๆˆ้“พ๏ผš $ lambda_0 < lambda_1 < ... < lambda_n < ... $ ๅ…ถไธญ $lambda_n -> +infinity$\ ่ฎพ $phi_n (x)$ ๆ˜ฏ $lambda_n$ ๅฏนๅบ”็š„็‰นๅพๅ‡ฝๆ•ฐ๏ผŒๅˆ™ $phi_n$ ๆฐๆœ‰ $n$ ไธช้›ถ็‚น ]<sturm-liouville-theorem> #proof[ ไปค $y = phi(x, lambda)$ ๆ˜ฏๆปก่ถณ๏ผš $ y(0) = sin alpha, y'(0) = cos alpha $ ็š„่งฃใ€‚@standard-form-boundary-value ไธญ็ฌฌไธ€ไธช่พนๅ€ผๆกไปถๅทฒ็ปๆปก่ถณ๏ผŒๅช้œ€ๆ‰พๅˆฐ $lambda$ ๆปก่ถณ็ฌฌไบŒไธชๆ–น็จ‹ใ€‚ๆ˜พ็„ถ $y$ ไธๆ˜ฏ้›ถ่งฃ๏ผŒ$y, y'$ ไธๅŒๆ—ถไธบ้›ถ๏ผŒๅ› ๆญคๅฏๅšๆžๅๆ ‡ๅ˜ๆข๏ผš $ cases( phi = rho cos theta, phi' = rho sin theta ) $ ๆญคๆ—ถ๏ผŒ็ฌฌไบŒไธช่พนๅ€ผๆกไปถ็ญ‰ไปทไบŽ $theta(1) = beta + 2 k pi$\ ่ฎก็ฎ—๏ผš $ der(theta, x) = der(arctan phi/phi', x) = (phi'^2 - phi phi'' )/(phi^2 + phi'^2) = (phi'^2 + (lambda r + q) phi^2 )/(phi^2 + phi'^2)\ = cos^2 theta + (lambda r + q) sin^2 theta $<eq-order1> ็ป“ๅˆ $theta(0, lambda) = 0$๏ผŒ่ฟ™ๆ˜ฏๅ…ณไบŽ $theta$ ็š„ไธ€้˜ถๅพฎๅˆ†ๆ–น็จ‹๏ผŒๆŽฅไธ‹ๆฅ็š„่ฎจ่ฎบ้ƒฝๆ˜ฏๅ…ณไบŽ่ฟ™ไธชๆ–น็จ‹็š„ใ€‚ - ไธŠๅผๅฏน $lambda$ ๆฑ‚ๅๅฏผๅพ—ๅˆฐ็š„ๆ˜ฏๅ…ณไบŽ $lambda$ ็š„ไธ€้˜ถ็บฟๆ€งๅพฎๅˆ†ๆ–น็จ‹๏ผŒๅฏไปฅ่งฃๅพ—๏ผš $ partialDer(theta, lambda) = integral_(0)^(x) e^(integral_(t)^(x) E(s, lambda) dif x) r(t) sin^2 theta dif t $ ๏ผˆๅ…ถไธญ $E(s, lambda) = (lambda r(s) + q(x) - 1) sin(2 theta)$๏ผ‰ ็”ฑๆกไปถ็Ÿฅ่ขซ็งฏๅ‡ฝๆ•ฐๆ’ๆญฃ๏ผŒไปŽ่€Œ $theta$ ๅ…ณไบŽ $lambda$ ไธฅๆ ผ้€’ๅขž - ่ง‚ๅฏŸๆ–น็จ‹ๅฏไปฅๅ‘็Žฐ $theta = 0$ ๆ—ถ $theta' = 1$๏ผŒไธ”ๅฝ“ $lambda$ ๅ……ๅˆ†ๅฐๆ—ถ๏ผŒๅช่ฆ $theta$ ไธๅคชๅฐ๏ผŒๅฐฑๆœ‰ $theta' < 0$๏ผŒๆˆ‘ไปฌ็Œœๆต‹ๅนถ่ฏๆ˜Žไปฅไธ‹็ป“่ฎบ๏ผš - $theta(x) > 0$\ ๅฆ‚่‹ฅไธ็„ถ๏ผŒๅ‡่ฎพ $x_0$ ๆ˜ฏๆœ€ๅฐ็š„้›ถ็‚น๏ผŒไน‹ๅ‰็š„่ฎบ่ฟฐ่กจๆ˜Ž $theta'(x_0) = 1 > 0$๏ผŒ่€Œ $theta(0) = alpha > 0$๏ผŒๅˆฉ็”จไป‹่ดจๅฎš็†ๅฐ†ๅฏๆž„้€ ๅ‡บๆ›ดๅฐ็š„้›ถ็‚น๏ผŒ็Ÿ›็›พ๏ผ - $ lim_(lambda -> +infinity) theta(x) = +infinity, forall x_0 $ ่ฎพ $h = min r > 0$๏ผŒๅฐ†ๆœ‰๏ผš $ theta' >= (lambda h + q) sin^2 theta + cos^2 theta $ ๅ– $lambda$ ๅ……ๅˆ†ๅคง๏ผŒๅฏ่ฎพ $lambda h + q > n + 1$๏ผŒๅฐ†ๆœ‰๏ผš $ theta' >= 1 + n sin^2 theta $ ็”ฑๆฏ”่พƒๅฎš็†๏ผŒๅช้œ€่ฏๆ˜Ž $theta' = 1 + n sin^2 theta$ ็š„่งฃๅ……ๅˆ†ๅคงๅณๅฏใ€‚ไบ‹ๅฎžไธŠ๏ผš $ x = integral_(alpha)^(theta) 1/(1 + n sin^2 t) dif t $ ่ง‚ๅฏŸไธ้šพๅ‘็Žฐ $n$ ๅ……ๅˆ†ๅคงๆ—ถ $theta$ ไนŸๅบ”่ฏฅๅ……ๅˆ†ๅคง - $ lim_(lambda -> -infinity) theta(x) = 0, forall x_0 $ ไปปๅ– $epsilon > 0$๏ผŒๅฝ“ $lambda$ ๅ……ๅˆ†ๅฐๆ—ถๅฏไปฅ่ฏๆ˜Ž๏ผŒ$theta$ ่ฝๅœจ็บฟๆฎต $(0, alpha) -> (1, epsilon)$ ๆ—ถ๏ผŒไธ€ๅฎšๆœ‰ $theta' < 0$๏ผŒๅ› ๆญค $theta$ ่ขซ้™ๅˆถๅœจ่ฏฅๆŠ˜็บฟๅ’Œ $y = 0$ ไน‹้—ด๏ผŒๅฝ“็„ถๆ„ๅ‘ณ็€ $theta(1) < epsilon$๏ผŒ่ฏๆฏ• ไปฅไธŠ่ฎบๆ–ญ่กจๆ˜Ž๏ผŒ$theta(1, lambda) = beta + 2 k pi$ ๅฏนไบŽๆฏไธช $k in NN$ ้ƒฝๆฐๆœ‰ไธ€่งฃ๏ผŒไธ”ๆฏไธช่งฃ้ƒฝ้€ไธชๅขžๅคงใ€‚ๆญคๅค–๏ผŒ็‰นๅพๅ‡ฝๆ•ฐไธบ๏ผš $ phi(x) = rho(x) sin (theta_(lambda_k) (x)) $ ็”ฑไป‹่ดจๅฎš็†๏ผŒ่‡ณๅฐ‘๏ผš $ theta_(lambda_k) (x) = j pi $ ๅฏนไบŽ $j = 1, 2, ..., k$ ้ƒฝๆœ‰ไธ€ไธช่งฃ $x_k$๏ผŒๅนถไธ”ๆณจๆ„ๅˆฐ $forall x with theta(x) = i pi, i in ZZ$๏ผŒ้ƒฝๆœ‰๏ผš $ phi'(x) = cos^2 theta(x) + (lambda r(x) + q(x)) sin^2 theta(x) = 1 $ ๆข่จ€ไน‹๏ผš $ theta_(lambda_k) (x) = j pi $ ๅช่ƒฝๆœ‰ไธ€ไธช่งฃ๏ผˆๅฆๅˆ™ไธคไธช็›ธ้‚ป่งฃ็š„ๅฏผๆ•ฐๅ€ผๅฟ…็„ถๅๅท๏ผ‰\ ๅŒๆ—ถ๏ผŒๅฏนไบŽ $j > k$๏ผŒ $theta_(lambda_k) (x) = j pi$ ๅฐ†ๆ— ่งฃ๏ผŒๅฆๅˆ™็”ฑไบŽ $theta(0), theta(1) < j pi$๏ผŒ่‡ณๅฐ‘ไบง็”Ÿไธค่งฃ๏ผŒไธŽไธŠ้ข็š„่ฎบ่ฟฐ็Ÿ›็›พ๏ผ ] == ็‰นๅพๅ‡ฝๆ•ฐ็ณป็š„ๆญฃไบคๆ€ง #lemma[][ ๅœจ @sturm-liouville-theorem ไธญ๏ผŒๆฏไธช็‰นๅพๅ€ผๅฏนๅบ”็š„็‰นๅพๅ‡ฝๆ•ฐๅฝผๆญค็›ธๅ…ณ๏ผˆ็‰นๅพ็ฉบ้—ดๅชๆœ‰ไธ€็ปด๏ผ‰ ] #proof[ ๅ‡่ฎพ $phi, psi$ ๆ˜ฏ $lambda_n$ ็š„็‰นๅพๅ‡ฝๆ•ฐ๏ผŒๅฐ†ๆœ‰๏ผš $ Det(phi(0), phi'(0);psi(0), psi'(0)) = 0 $ ็”ฑ Wronskian ่กŒๅˆ—ๅผ็š„็ป“่ฎบ๏ผŒ่ฟ™ๆ„ๅ‘ณ็€ $phi, psi$ ็บฟๆ€ง็›ธๅ…ณ ] #theorem[][ ๅœจ @sturm-liouville-theorem ไธญ๏ผŒๆฏไธช็‰นๅพๅ€ผๅฏนๅบ”็š„็‰นๅพๅ‡ฝๆ•ฐๅฝผๆญคๆญฃไบค๏ผŒไนŸๅณ๏ผš $ integral_(0)^(1) r(x) phi_m phi_n dif x = 0, m != n $ ] #proof[ ๆœ‰ไธคไธชๆ–น็จ‹๏ผš $ cases( phi''_n + (lambda_n r + q)phi_n = 0, phi''_m + (lambda_m r + q)phi_m = 0 ) $ ไธคๅผๅˆ†ๅˆซไน˜ไปฅ $phi_m, phi_n$ ๅนถ็›ธๅ‡๏ผŒๅพ—ๅˆฐ๏ผš $ phi''_n phi_m - phi''_m phi_n + (lambda_n - lambda_m) r phi_m phi_n = 0 $ ๅช้œ€่ฎก็ฎ—๏ผš $ &integral_(0)^(1) phi''_n phi_m - phi''_m phi_n dif x \ &= integral_(0)^(1) (phi'_n phi_m - phi_n phi'_m)' dif x\ &= (phi'_n phi_m - phi_n phi'_m)|_0^1\ &= 0 $ ่ฏๆฏ• ] #remark[][ ๆœ‰ไบ†ๆญฃไบคๆ€ง๏ผŒๅฏนไบŽไปปๆ„็š„ไปฅไธŠๅฝขๅผ็š„ไบŒ้˜ถ็บฟๆ€งๅพฎๅˆ†ๆ–น็จ‹๏ผŒๆˆ‘ไปฌ้ƒฝๅฏไปฅ่€ƒ่™‘ๅœจ็‰นๅพๅ‡ฝๆ•ฐ็ณปไธŠๅšๅ‚…้‡Œๅถๅฑ•ๅผ€ใ€‚ไบ‹ๅฎžไธŠ๏ผŒ@sin-cos-example ่ฏดๆ˜Žไบ†้€šๅธธ $sin, cos$ ไบง็”Ÿ็š„ๅ‚…้‡Œๅถๅฑ•ๅผ€ๆ˜ฏๆœฌ็ซ ๅฎš็†็š„ไธ€็ง็‰นๆฎŠๆƒ…ๅ†ตใ€‚ ] = ไธ€้˜ถๅๅพฎๅˆ†ๆ–น็จ‹ == ้ฆ–ๆฌก็งฏๅˆ† #let yv = $bold(y)$ #let xv = $bold(x)$ #definition[][ ๅœจๅพฎๅˆ†ๆ–น็จ‹๏ผš $ der(yv, x) = f(x, yv), f in C^1 $ ไธญ๏ผŒ็งฐ $H(xv, yv)$ ไธบ้ฆ–ๆฌก็งฏๅˆ†๏ผŒ่‹ฅ $H$ ไธๆ˜ฏๅธธๆ•ฐไธ”ๅœจๆ–น็จ‹็š„ไปปๆ„่งฃๆ›ฒ็บฟไธŠๅ–ๅธธๅ€ผ ] #example[][ - ่€ƒ่™‘ๆ–น็จ‹๏ผš $ cases( der(x,t) = -y, der(y, t) = x ) $ ๅˆ™ $x^2 + y^2$ ๅฐฑๆ˜ฏไธ€ไธช้ฆ–ๆฌก็งฏๅˆ†๏ผŒๆ—ข็„ถ่ฎพ $x, y$ ๆ˜ฏไธ€ๆ—่งฃ๏ผŒๅฐ†ๆœ‰๏ผš $ (x^2 + y^2)' = 2 x x' + 2 y y' = 0 $ - ไธ€่ˆฌ็š„๏ผŒๆ–น็จ‹๏ผš $ cases( der(x,t) = f(y), der(y, t) = g(x) ) $ ๅˆ™ $integral f(y) - integral g(x)$ ๅฐฑๆ˜ฏไธ€ไธช้ฆ–ๆฌก็งฏๅˆ†๏ผŒๆ—ข็„ถ๏ผš $ (integral f(y) - integral g(x))' = f(y)y' - g(x)x' = 0 $ - ่€ƒ่™‘ๆ–น็จ‹๏ผš $ cases( der(x,t) = y - x(x^2 + y^2 - 1), der(y, t) = -x - y(x^2 + y^2 - 1) ) $ ๆณจๆ„ๅˆฐ๏ผš $ (x^2 + y^2)' = 2 x' x + 2 y' y = -x^2 (x^2 + y^2 - 1) - y^2 (x^2 + y^2 - 1) \ = (x^2 + y^2) - (x^2 + y^2)^2 $ ๅฏไปฅ่งฃๅ‡บ $x^2 + y^2$ ่ฟ›่€Œไบง็”Ÿไธ€ไธช้ฆ–ๆฌก็งฏๅˆ†\ ๅŒๆ—ถ๏ผš $ x y' - y x' = -x^2 - y^2\ (y/x)' = -1 - (y/x)^2 $ ไนŸๅฏไปฅ่งฃๅ‡บ $y/x$ ไบง็”Ÿไธ€ไธช้ฆ–ๆฌก็งฏๅˆ†ใ€‚ไบ‹ๅฎžไธŠ๏ผŒๅฏไปฅๅ‘็Žฐๆ–น็จ‹ๆœ‰ๅ”ฏไธ€็š„ๅนณ่กก็‚น $(0, 0)$ ๅ’Œๅญค็ซ‹็š„ๆœ‰็•Œ้—ญ่งฃๆ›ฒ็บฟ๏ผˆ็งฐไธบๆž้™็Žฏ๏ผ‰ใ€‚ๅฏนไบŽๅฝขๅฆ‚๏ผš $ cases( x' = f(x, y), y' = g(x, y) ) $ ๅ…ถไธญ $f, g$ ๆ˜ฏไธ่ถ…่ฟ‡ $n$ ๆฌก็š„ๅคš้กนๅผ๏ผŒ่ฟ™ไธช็ณป็ปŸ็งฐไธบ $n$ ๆฌก็ณป็ปŸใ€‚$n$ ๆฌก็ณป็ปŸๆž้™็Žฏไธชๆ•ฐ็š„ไธŠ็•ŒๅŠๆž้™็Žฏ็š„ๅˆ†ๅธƒๆƒ…ๅ†ตๆ˜ฏๅธŒๅฐ”ไผฏ็‰น็ฌฌๅๅ…ญ้—ฎ้ข˜็š„้‡่ฆ้ƒจๅˆ†๏ผŒ่‡ณไปŠไบŒๆฌก็ณป็ปŸ็š„ๆƒ…ๅ†ต้ƒฝไปๆœช่งฃๅ†ณ๏ผŒ็›ฎๅ‰ๆœ€ๅคšไธพๅ‡บไบ†ๅ››ไธชๆž้™็Žฏ็š„ไพ‹ๅญ๏ผŒๅนถไธ”่ฏๆ˜Žไบ†ๆฏไธชไบŒๆฌก็ณป็ปŸ็š„ๆž้™็Žฏไธชๆ•ฐ้ƒฝๆ˜ฏๆœ‰้™็š„ใ€‚ ] #lemma[][ $H(x, yv)$ ๆ˜ฏ $yv' = f(x, yv)$ ็š„้ฆ–ๆฌก็งฏๅˆ†ๅฝ“ไธ”ไป…ๅฝ“๏ผš $ partialDer(H, x) + partialDer(H, yv) dot der(yv, x) = partialDer(H, x) + partialDer(H, yv) dot f(x, yv) = 0 $ ] #proof[ ็”ฑๅฎšไน‰ๆ˜พ็„ถๅฏๅพ— ] ้ชŒ่ฏ้ฆ–ๆฌก็งฏๅˆ†ๆ˜ฏ้žๅธธ็ฎ€ๅ•็š„๏ผŒ็„ถ่€Œๆ‰พๅˆฐไธ€ไธช้ฆ–ๆฌก็งฏๅˆ†ๆ˜ฏๆžๅ…ถๅ›ฐ้šพ็š„ใ€‚ #theorem[][ ้ฆ–ๆฌก็งฏๅˆ†ๅฏไปฅๅฐ†ๅŽŸๆ–น็จ‹้™็ปดใ€‚ๅ…ทไฝ“่€Œ่จ€๏ผŒๅ‡่ฎพ้ฆ–ๆฌก็งฏๅˆ†ๅฝขๅฆ‚๏ผš $ phi(yv) $ ็”ฑไบŽ $phi(yv) !=0$๏ผŒ่‹ฅ่ฟ˜ๆœ‰ $der(phi(yv), yv) != 0$๏ผŒไพฟๅฏๅœจๅฑ€้ƒจๆ‰พๅˆฐ้šๅ‡ฝๆ•ฐๆถˆๅŽป่‹ฅๅนฒๅ˜้‡ ] #definition[][ ่ฎพ $phi_i$ ๆ˜ฏ $n$ ไธช้ฆ–ๆฌก็งฏๅˆ†๏ผŒๅฆ‚ๆžœ๏ผš $ abs(partialDer((phi_1, phi_2, ..., phi_n), (yv_1, yv_2, ..., yv_n))) != 0 $ ๅˆ™็งฐ $phi_1, phi_2, ..., phi_n$ ไธบ็›ธไบ’็‹ฌ็ซ‹็š„้ฆ–ๆฌก็งฏๅˆ† ] #theorem[][ $n$ ็ปด่‡ชๆฒป็ณป็ปŸ่‡ณๅคš $n$ ไธช็‹ฌ็ซ‹็š„้ฆ–ๆฌก็งฏๅˆ†๏ผŒไธ”ๅœจๅฑ€้ƒจๆฐๆœ‰ $n$ ไธช็‹ฌ็ซ‹็š„้ฆ–ๆฌก็งฏๅˆ†ใ€‚่ฎพ $phi_i$ ๆ˜ฏ $n$ ไธช็‹ฌ็ซ‹็š„้ฆ–ๆฌก็งฏๅˆ†๏ผŒๅˆ™ไปปไฝ•้ฆ–ๆฌก็งฏๅˆ†ๅœจๅฑ€้ƒจ้ƒฝๅฝขๅฆ‚ $h(phi_1, ..., phi_n), H in C^1$ ]<first-integral> #proof[ ็ฌฌไธ€้ƒจๅˆ†ๆˆ‘ไปฌไธ่ฏๆ˜Ž๏ผŒๅฏไปฅๅ‚่€ƒๆ•™ๆ ๅฏนไบŽ็ฌฌไบŒไธช็ป“่ฎบ๏ผŒ่ฎพ $c = vec(c_1, dots.v, c_n)$๏ผŒๅœจไปปไฝ•ไธ€ไธช็‚น $(x_0, c)$ ็”ฑๅญ˜ๅœจๅ”ฏไธ€ๆ€งๅฏไปฅๆ‰พๅˆฐ่งฃ $y = phi(x, c)$๏ผŒๆ˜พ็„ถๆœ‰๏ผš $ partialDer(phi, c)|_(x = x_0) = id $ ๅ› ๆญค็”ฑ้šๅ‡ฝๆ•ฐๅฎš็†๏ผŒๅฏไปฅๅ่งฃๅ‡บ๏ผš $ c = psi(x, y) $ ๅนถๆœ‰๏ผš $ der(y, c) = partialDer(phi, c)\ der(c, y) = Inv((partialDer(phi, c))) $ ่ฟ™ไธช $psi$ ๅฝ“็„ถๅฐฑๆ˜ฏๅฑ€้ƒจ็š„้ฆ–ๆฌก็งฏๅˆ†๏ผŒๆฐๆœ‰ $n$ ไธช็‹ฌ็ซ‹็š„ๅˆ†้‡๏ผˆๆ—ข็„ถๅœจ $x_0$ ๅค„ไธŠๅผ่กจๆ˜Žๅๅฏผๆ˜ฏ $id$๏ผ‰ไนŸๅณ $n$ ไธช้ฆ–ๆฌก็งฏๅˆ†ใ€‚ ็ฌฌไธ‰้ƒจๅˆ†ๆ˜ฏ็ฑปไผผ็š„๏ผŒไนŸไธ่ฏๆ˜Žใ€‚ ] == ไธ€้˜ถ็บฟๆ€ง้ฝๆฌกๅๅพฎๅˆ†ๆ–น็จ‹ #definition[ไธ€้˜ถ็บฟๆ€ง้ฝๆฌกๅๅพฎๅˆ†ๆ–น็จ‹][ ็งฐ๏ผš $ A(xv) der(u, xv) = f(xv) $ ๆ˜ฏไธ€้˜ถ็บฟๆ€ง้ฝๆฌกๅๅพฎๅˆ†ๆ–น็จ‹ ] #definition[็‰นๅพๆ–น็จ‹][ ็งฐ๏ผš $ der(x_i, A_i (xv)) = der(x_j, A_j (xv)) $ ไธบ้ฝๆฌกไธ€้˜ถ็บฟๆ€งๅๅพฎๅˆ†ๆ–น็จ‹็š„็‰นๅพๆ–น็จ‹๏ผŒๅฎƒๅฏไปฅ็œ‹ๆˆๅ…ณไบŽๆŸไธชๅˆ†้‡็š„ $n-1$ ้˜ถๅธธๅพฎๅˆ†ๆ–น็จ‹ ] #theorem[][ ่ฎพ็‰นๅพๆ–น็จ‹ๆœ‰ $n-1$ ไธช็‹ฌ็ซ‹็š„้ฆ–ๆฌก็งฏๅˆ† $phi_i$ ๏ผŒๅˆ™ๅŽŸๅๅพฎๅˆ†ๆ–น็จ‹็š„้€š่งฃๆฐไธบ๏ผš $ Phi(phi_1, phi_2, ..., phi_(n-1)) $ ๅ…ถไธญ $Phi$ ๆ˜ฏไปปไฝ• $C^1$ ๅ‡ฝๆ•ฐ ] #proof[ ่ฎพ $A_1 (xv) != 0$๏ผŒ็‰นๅพๆ–น็จ‹ๅฎž้™…ไธŠๅฝขๅฆ‚๏ผš $ der(x_i, x_1) = (A_i (x))/(A_1 (x)) $ ไธ้šพๅ‘็Žฐ $u$ ๆ˜ฏๅๅพฎๅˆ†ๆ–น็จ‹็š„่งฃๅฝ“ไธ”ไป…ๅฝ“ $u$ ๆ˜ฏๅธธๆ•ฐๆˆ–่€…ๆ˜ฏ็‰นๅพๆ–น็จ‹็š„ไธ€ไธช้ฆ–ๆฌก็งฏๅˆ†๏ผŒ็”ฑ @first-integral ็ซ‹ๅพ—็ป“่ฎบใ€‚ ] #example[][ - ่€ƒ่™‘ๆ–น็จ‹๏ผš $ (x + y) partialDer(u, x) - (x - y) partialDer(u, y) = 0 $ ๅ…ถ็‰นๅพๆ–น็จ‹ไธบ๏ผš $ der(y, x) = (y - x)/(y + x) $ ๅฏไปฅ่งฃๅ‡บไธ€ไธช้ฆ–ๆฌก็งฏๅˆ†๏ผš $ (x^2 + y^2)e^(2 arctan y/x) $ ๅ› ๆญคๅŽŸๆ–น็จ‹็š„้€š่งฃไธบ๏ผš $ phi((x^2 + y^2)e^(2 arctan y/x) ) $ - $ sqrt(x) partialDer(f, x) + sqrt(y) partialDer(f, y) + z partialDer(f, z) = 0 $ ไธ” $f(x, y, 1) = x y$๏ผŒๆฑ‚ $f$\ ็ฑปไผผ็š„ๅฏไปฅ่งฃๅ‡บ๏ผš $ f = phi(sqrt(x) - sqrt(y), sqrt(y) - ln z)\ $ ไปฃๅ…ฅๅฏๅพ—๏ผš $ x y = f(x, y, 1) = phi(sqrt(x) - sqrt(y), sqrt(y) ) $ ๅšๅ˜้‡ๆ›ฟๆข๏ผš $ cases( u = sqrt(x) - sqrt(y), v = sqrt(y) ) $ ๅฏๅ่งฃๅ‡บ $phi$ ] == ไธ€้˜ถๆ‹Ÿ็บฟๆ€งๅๅพฎๅˆ†ๆ–น็จ‹ #definition[ไธ€้˜ถๆ‹Ÿ็บฟๆ€งๅๅพฎๅˆ†ๆ–น็จ‹][ ็งฐ๏ผš $ A(xv, u) der(u, xv) = B(xv, u) $ ๆ˜ฏไธ€้˜ถๆ‹Ÿ็บฟๆ€งๅๅพฎๅˆ†ๆ–น็จ‹ ] #theorem[][ #let sumf = sumf.with(lower: $1$, upper: $n$) ๅฏนไบŽไธ€้˜ถๆ‹Ÿ็บฟๆ€งๅๅพฎๅˆ†ๆ–น็จ‹๏ผŒ่€ƒ่™‘ๅพฎๅˆ†ๆ–น็จ‹๏ผš $ sumf() A_i (xv, u) der(Phi, x_i) + B(xv, u) der(Phi, u) = 0 $<eq-t> ่ฟ™ๆ˜ฏๅ…ณไบŽ $xv, u$ ็š„ไธ€้˜ถ็บฟๆ€ง้ฝๆฌกๅๅพฎๅˆ†ๆ–น็จ‹๏ผŒ่ฎพๅ…ถ่งฃไธบ๏ผš $ Phi(xv, u) $ ๅˆ™ $Phi(xv, u) = 0$ ๅฏนๅบ”็š„ $u$ ๅฐฑๆ˜ฏๅŽŸๆ–น็จ‹็š„่งฃใ€‚ๅไน‹๏ผŒไปปๆ„ๅŽŸๆ–น็จ‹็š„่งฃ $u = phi(xv)$ ้ƒฝๆœ‰๏ผš $ Phi = phi(xv) - u $ ๆ˜ฏ@eq-t ็š„่งฃ ] #theorem[][ ่‹ฅ็งฐ๏ผš $ der(x_i, A_i (xv)) = der(x_j, A_j (xv)) = der(u, B (xv, u)) $ ไธบๆ‹Ÿ็บฟๆ€งๆ–น็จ‹็š„็‰นๅพๆ–น็จ‹๏ผŒไธ”ๆœ‰ $n$ ไธช็‹ฌ็ซ‹็š„้ฆ–ๆฌก็งฏๅˆ†๏ผŒๅˆ™ๅŽŸๆ–น็จ‹็š„้€š่งฃๆฐไธบ๏ผš $ Phi(phi_1, phi_2, ..., phi_n) = 0 $ ]
https://github.com/jgm/typst-hs
https://raw.githubusercontent.com/jgm/typst-hs/main/test/typ/compute/calc-12.typ
typst
Other
// Test the `quo` function. #test(calc.quo(1, 1), 1) #test(calc.quo(5, 3), 1) #test(calc.quo(5, -3), -1) #test(calc.quo(22.5, 10), 2) #test(calc.quo(9, 4.5), 2)
https://github.com/herbhuang/utdallas-thesis-template-typst
https://raw.githubusercontent.com/herbhuang/utdallas-thesis-template-typst/main/layout/proposal_template.typ
typst
MIT License
#import "/layout/titlepage.typ": * #import "/layout/transparency_ai_tools.typ": transparency_ai_tools as transparency_ai_tools_layout #import "/utils/print_page_break.typ": * // The project function defines how your document looks. // It takes your content and some metadata and formats it. // Go ahead and customize it to your liking! #let proposal( title: "", titleGerman: "", degree: "", program: "", supervisor: "", advisors: (), author: "", startDate: datetime, submissionDate: datetime, transparency_ai_tools: "", is_print: false, body, ) = { titlepage( title: title, titleGerman: titleGerman, degree: degree, program: program, supervisor: supervisor, advisors: advisors, author: author, startDate: startDate, submissionDate: submissionDate ) print_page_break(print: is_print) // Set the document's basic properties. set page( margin: (left: 30mm, right: 30mm, top: 40mm, bottom: 40mm), numbering: "1", number-align: center, ) // Save heading and body font families in variables. let body-font = "New Computer Modern" let sans-font = "New Computer Modern Sans" // Set body font family. set text( font: body-font, size: 12pt, lang: "en" ) show math.equation: set text(weight: 400) // --- Headings --- show heading: set block(below: 0.85em, above: 1.75em) show heading: set text(font: body-font) set heading(numbering: "1.1") // --- Paragraphs --- let firstParagraphIndent = 1.45em show heading: it => { it h(firstParagraphIndent) } set par(leading: 1em, justify: true, first-line-indent: 2em) // --- Citation Style --- set cite(style: "alphanumeric") // --- Figures --- show figure: set text(size: 0.85em) body pagebreak() bibliography("/thesis.bib") pagebreak() transparency_ai_tools_layout(transparency_ai_tools) }
https://github.com/fenjalien/metro
https://raw.githubusercontent.com/fenjalien/metro/main/tests/num/rounding/round-pad/test.typ
typst
Apache License 2.0
#import "/src/lib.typ": * #set page(width: auto, height: auto, margin: 1cm) #metro-setup(round-mode: "figures", round-precision: 4) #num(12.3) #num(12.3, round-pad: false)
https://github.com/ymgyt/techbook
https://raw.githubusercontent.com/ymgyt/techbook/master/programmings/js/typescript/specification/literal_type.md
markdown
# literal type * primitiveๅž‹ใฎ็‰นๅฎšใฎๅ€คใ ใ‘ใ‚’ไปฃๅ…ฅใซใ™ใ‚‹ๅž‹ใ‚’่กจ็พใงใใ‚‹ใ€‚ ```typescript // xใซใฏใชใ‚“ใงใ‚‚assigneใงใใ‚‹ let x: number; x = 1; ``` ```typescript // xใซใฏ1ใ ใ‘ใ‚’ไปฃๅ…ฅใงใใ‚‹ let x: 1 x = 1; // compile error // x = 2; ``` ## literal typeใŒๅˆฉ็”จใงใใ‚‹primitiveๅž‹ * bool * number * string ```typescript let status: 1 | 2 | 3 = 1; ```
https://github.com/bamboovir/typst-resume-template
https://raw.githubusercontent.com/bamboovir/typst-resume-template/main/README.md
markdown
MIT License
# Typst Resume Template A simple resume template for [typst.app](https://typst.app/). Aesthetic style inspired by the following project: - [Awesome-CV](https://github.com/posquit0/Awesome-CV) - [LaTeX Resume](https://github.com/billryan/resume) This is not a perfect clone, the main purpose of this project is to explore and experiment with Typst's typography features. ## [Sample](./resume.pdf) ![awesome-sample](./assets/image/awesome-sample.png) ![latex-sample](./assets/image/latex-sample.png) ## Declaration If you want to see a more realistic example rendered using this template, check [this](https://github.com/bamboovir/typst-resume-template/blob/main/huiming-sun-sde-resume.pdf). This is the resume I built in 2022, may be somewhat out of date and not actively maintained, and is not intended to be an accurate description of any of my current experiences but is intended solely to demonstrate the aesthetics of this template. You are free to take my .typ template and modify it to create your own resume. **Please don't use my resume for anything else without my permission, though!** ## Development Environment - Install [Typst](https://github.com/typst/typst) - Install [Just](https://github.com/casey/just) ## Build Resume ```bash just build ``` ## Interactive Development Resume ```bash just dev ``` ## Containerized Build ```bash just containerized-build ``` ## GitHub Action for resume build automation - [Resume Build CI Pipeline](https://github.com/bamboovir/typst-resume-template/actions/workflows/build-resume.yml) ## Credit [**Typst**](https://github.com/typst/typst) is a new markup-based typesetting system that is designed to be as powerful as LaTeX while being much easier to learn and use. [**FontAwesome**](https://fontawesome.com/) is the Internet's icon library and toolkit, used by millions of designers, developers, and content creators. [**Roboto**](https://github.com/google/roboto) is the default font on Android and ChromeOS, and the recommended font for Googleโ€™s visual language, Material Design. [**Source Sans Pro**](https://github.com/adobe-fonts/source-sans-pro) is a set of OpenType fonts that have been designed to work well in user interface (UI) environments.
https://github.com/jgm/typst-hs
https://raw.githubusercontent.com/jgm/typst-hs/main/test/typ/compiler/recursion-02.typ
typst
Other
// Test capturing with named function. #let f = 10 #let f() = f #test(type(f()), "function")
https://github.com/ParaN3xus/tex2typ
https://raw.githubusercontent.com/ParaN3xus/tex2typ/main/README.md
markdown
MIT License
# tex2typ A tool to rebuild [Typst](https://typst.app/) mathematical formulas from [KaTeX](https://katex.org/) syntax tree. ## Features - Convert LaTeX mathematical formulas to Typst mathematical formulas. - Extremely useful for building Typst formula datasets. ## Differences from [MiTeX](https://github.com/mitex-rs/mitex) - Focuses on ensuring a generally similar visual effect rather than an identical one, aiming to make the formulas look like they were written by a human. - The generated formulas do not rely on any special Typst environments or packages and can be compiled directly with the standard Typst. - We didn't provide any Typst package. ## TODO - [ ] Improve the handling of spaces in TeX formulas. - [ ] Refactor and optimize the code logic to reduce redundancy. - [x] Fix the issue with incorrect delimiter passing when reconstructing functions like `cases` and `vec`. ## Credits This project makes use of the following open-source projects: - [KaTeX](https://github.com/KaTeX/KaTeX): Fast math typesetting for the web. - [mitex](https://github.com/mitex-rs/mitex): LaTeX support for Typst, powered by Rust and WASM. - [im2markup](https://github.com/harvardnlp/im2markup/): Neural model for converting Image-to-Markup. Thanks to the developers and contributors of these projects for their hard work and dedication. ## LICENSE MIT
https://github.com/typst/packages
https://raw.githubusercontent.com/typst/packages/main/packages/preview/outrageous/0.1.0/examples/basic.typ
typst
Apache License 2.0
#import "../outrageous.typ" #set heading(numbering: "1.") #set outline(indent: auto) #page(height: auto, width: 15cm, margin: 1cm)[ #show outline.entry: outrageous.show-entry #outline() ] #page(height: auto, width: 15cm, margin: 1cm)[ #show outline.entry: outrageous.show-entry.with( // the typst preset retains the normal Typst appearance ..outrageous.presets.typst, // we only override a few things: // level-1 entries are italic, all others keep their font style font-style: ("italic", auto), // no fill for level-1 entries, a thin gray line for all deeper levels fill: (none, line(length: 100%, stroke: gray + .5pt)), ) #outline() ] = Introduction #lorem(400) #lorem(400) == What is this About? #lorem(400) #lorem(400) == Why am I Here? #lorem(400) #lorem(400) = The Backstory #lorem(400) #lorem(400) == How it all Started #lorem(400) #lorem(400) === Early Beginnings #lorem(400) #lorem(400) === First Settlements #lorem(400) #lorem(400) = The Consequences #lorem(400) #lorem(400) = Happy Ending #lorem(400) #lorem(400)
https://github.com/HezelTm/TypstDocuments
https://raw.githubusercontent.com/HezelTm/TypstDocuments/main/README.md
markdown
MIT License
# TypstDocuments Repository to store all Typst Documents
https://github.com/lee-flower/Sn-nCr
https://raw.githubusercontent.com/lee-flower/Sn-nCr/main/main.typ
typst
Apache License 2.0
#import "template.typ": * #show: project.with( title: "็ญ‰ๅทฎๆ•ฐๅˆ—็š„r้˜ถๅ‰n้กนๅ’ŒไธŽ็ป„ๅˆๆ•ฐ็š„่”็ณป", authors: ( ( name: "ๆฑŸๆž—้”", organization: [ๆข…ๅทžๅธ‚ๆข…ๅŽฟๅŒบ้ซ˜็บงไธญๅญฆ], email: "<EMAIL>" ), ), abstract: "ๆœฌๆ–‡็š„็›ฎ็š„ๅœจไบŽ๏ผš็”จๆ•ฐๅญฆๅฝ’็บณๆณ•่ฏๆ˜Žไบ†็ญ‰ๅทฎๆ•ฐๅˆ—็š„r้˜ถๅ‰n้กนๅ’ŒไธŽ็ป„ๅˆๆ•ฐไน‹้—ด็š„่”็ณปใ€‚", keywords: ( "็ญ‰ๅทฎๆ•ฐๅˆ—r้˜ถๅ‰n้กนๅ’Œ", "็ป„ๅˆๆ•ฐ", "ๆ•ฐๅญฆๅฝ’็บณๆณ•" ), ) = ๅฎšไน‰ == ็ญ‰ๅทฎๆ•ฐๅˆ—${a_n}$็š„r้˜ถๅ‰n้กนๅ’Œ ่ฎพๆ•ฐๅˆ—${a_n}$ไธบ็ญ‰ๅทฎๆ•ฐๅˆ—๏ผŒๅ…ถ้€š้กนๅ…ฌๅผไธบ$a_n = n$๏ผŒ ็Žฐๅฎšไน‰$S_n^(\(r\))$ไธบๆ•ฐๅˆ—${a_n}$็š„*r ้˜ถๅ‰ n ้กนๅ’Œ*๏ผŒๅ…ถไธญ $r in NN$. ่€Œไธ”ๅฏนไบŽ$forall r >= 1$๏ผŒ้ƒฝๆœ‰๏ผš $ display(S_n^(\(r\)) = sum_(i=1)^(n) S_i^(\(r-1\))) $ ๅฆๅค–๏ผŒๆˆ‘ไปฌ่ง„ๅฎš๏ผš$S_n^(\(0\)) = a_n$. == ๆŽ’ๅˆ—ใ€ๆŽ’ๅˆ—ๆ•ฐๅŠๅ…ถ่ฎก็ฎ—ๅ…ฌๅผ ๅ…ณไบŽ*ๆŽ’ๅˆ—*ๅŠ*ๆŽ’ๅˆ—ๆ•ฐ*็š„ๅฎšไน‰๏ผŒ่ฏฆ่ง@pailie . ็Žฐ็ป™ๅ‡บ*ๆŽ’ๅˆ—ๆ•ฐ*็š„่ฎก็ฎ—ๅ…ฌๅผ๏ผš $ A_n^m = n(n-1)(n-2) dots.h.c (n-m+1) = n!/(n-m)! $ ๅ…ถไธญ๏ผŒ$n, m in NN$ไธ”$m <= n$. == ็ป„ๅˆใ€็ป„ๅˆๆ•ฐๅŠๅ…ถ่ฎก็ฎ—ๅ…ฌๅผ ๅ…ณไบŽ*็ป„ๅˆ*ๅŠ*็ป„ๅˆๆ•ฐ*็š„ๅฎšไน‰๏ผŒ่ฏฆ่ง@zuhe . ็Žฐ็ป™ๅ‡บ*็ป„ๅˆๆ•ฐ*็š„่ฎก็ฎ—ๅ…ฌๅผ๏ผš $ binom(n,m) = (A_n^m)/(A_m^m) = n!/(m!(n-m)!) $ ๅ…ถไธญ๏ผŒ$n, m in NN$ไธ”$m <= n$. === ็ป„ๅˆๆ•ฐ็š„ไธ€ไธชๆŽจ่ฎบไธŽไธ€ไธชๆ€ง่ดจ ็Žฐ็ป™ๅ‡บ็”จไบŽๆœฌๆ–‡่ฏๆ˜Ž็š„*็ป„ๅˆๆ•ฐ*็š„ไธ€ไธชๆŽจ่ฎบๅ’Œไธ€ไธชๆ€ง่ดจ๏ผš *ๆŽจ่ฎบ1*๏ผšๅฏนไบŽไปปๆ„็š„$n in NN$๏ผŒๆœ‰$binom(n,n)=1$. *ๆ€ง่ดจ1*๏ผšๅฏนไบŽไปปๆ„็š„$n, m in NN_(+)$ไธ”$m <= n$๏ผŒๆœ‰$binom(n,m) + binom(n,m-1) = binom(n+1,m)$. ๅฏนไบŽไธŠ่ฟฐ*็ป„ๅˆๆ•ฐ*็š„ๆŽจ่ฎบๅ’Œๆ€ง่ดจ็š„่ฏๆ˜Ž๏ผŒ่ฏฆ่ง@xingzhi . = ็Œœๆƒณ == ไธพไพ‹ ็”ฑๅฎšไน‰*1.1*ๅฏ็Ÿฅ๏ผŒ ๅฝ“$r=1$ๆ—ถ๏ผŒ$S_(n)^(\(1\))$ๅณ$S_(n) = sum_(i=1)^(n) a_i = 1/2 n (n + 1)$๏ผ› ๅˆๅฆ‚๏ผŒๅฝ“$r=2$ๆ—ถ๏ผŒ$S_(n)^(\(2\)) = sum_(i=1)^(n) S_i = 1/6 n(n+1)(n+2)$. #figure( image("f1.svg", width:76%), caption: [ ็ปฟ็‚นใ€็ดซ็‚นใ€่“็‚นๅˆ†ๅˆซ่กจ็คบๆ•ฐๅˆ—${a_n}$ใ€${S_n}$ๅŠ${S_n^(\(2\))}$ ] ) == ็Œœๆƒณ็ญ‰ๅทฎๆ•ฐๅˆ—${a_n}$็š„r้˜ถๅ‰n้กนๅ’Œ็š„่กจ่พพๅผ ๆฎ*2.1*ๆ‰€ไธพไพ‹ๅญ๏ผŒๅฏๅพ—ๅฆ‚ไธ‹็Œœๆƒณ๏ผš #set math.equation(numbering: "(1)") $ S_n^(\(r\)) = 1/(r+1)! product_(i=0)^(r) (n+i) = (n+r)!/((r+1)!(n-1)!) = binom(n+r,r+1) $<chaixiang> = ่ฏๆ˜Ž ็Žฐๅฏนๆ‰€ๅš็Œœๆƒณ็ป™ๅ‡บ่ฏๆ˜Ž๏ผš *่ฏ*. (1) ๅฝ“$r=0$ๆˆ–$r=1$ๆ—ถ๏ผŒๆ˜พ็„ถๆœ‰ @chaixiang ๆˆ็ซ‹. (2) ๅ‡่ฎพๅฝ“$r=k (k in NN_(+))$ๆ—ถ๏ผŒ@chaixiang ๆˆ็ซ‹๏ผŒๅณ $ S_n^(\(k\)) = binom(n+k,k+1) $ ๅˆ™ๆฎๅฎšไน‰*1.1*๏ผŒๆœ‰๏ผŒ $ S_n^(\(k+1\)) & = sum_(i=1)^(n) S_i^(\(k\)) \ & = S_1^(\(k\)) + S_2^(\(k\)) + S_3^(\(k\)) + dots.h.c + S_n^(\(k\)) \ & = binom(1+k,k+1) + binom(2+k,k+1) + binom(3+k,k+1) + dots.h.c + binom(n+k,k+1) $<tuidao3> ็”ฑ*็ป„ๅˆๆ•ฐ*็š„*ๆŽจ่ฎบ1*ๅฏ็Ÿฅ๏ผŒ@tuidao3 ็ญ‰ไปทไบŽ $ S_n^(\(k+1\)) = binom(2+k,k+2) + binom(2+k,k+1) + binom(3+k,k+1) + dots.h.c + binom(n+k,k+1) $<tuidao4> ๅˆ็”ฑ*็ป„ๅˆๆ•ฐ*็š„*ๆ€ง่ดจ1*ๅฏ็Ÿฅ๏ผŒ@tuidao4 ็ญ‰ไปทไบŽ $ S_n^(\(k+1\)) & = binom(3+k,k+2) + binom(3+k,k+1) + dots.h.c + binom(n+k,k+1) \ & = binom(4+k,k+2) + binom(4+k,k+1) + dots.h.c + binom(n+k,k+1) \ & dots.h \ & = binom(n+k,k+2) + binom(n+k,k+1) \ & = binom(n+k+1,k+2) = binom(n+(k+1),(k+1)+1) $ ๅณๅฝ“$n=k+1$ๆ—ถ๏ผŒ @chaixiang ไนŸๆˆ็ซ‹.\ ็”ฑ(1)(2)ๅฏ็Ÿฅ๏ผŒ @chaixiang ๅฏนไปปไฝ•$r in NN$้ƒฝๆˆ็ซ‹. *่ฏๆฏ•* ๆ•…็Œœๆƒณๆˆ็ซ‹. = ้™„ๅฝ• == ๆŽ’ๅˆ—ๅŠๆŽ’ๅˆ—ๆ•ฐ<pailie> *ๆŽ’ๅˆ—*๏ผŒไธ€่ˆฌๅœฐ๏ผŒไปŽ$n$ไธชไธๅŒ็š„ๅ…ƒ็ด ไธญๅ–ๅ‡บ$m(m<=n)$ไธชๅ…ƒ็ด ๏ผŒ ๆŒ‰็…งไธ€ๅฎš็š„้กบๅบๆŽ’ๆˆไธ€ๅˆ—๏ผŒๅซๅšไปŽ$n$ไธชๅ…ƒ็ด ไธญๅ–ๅ‡บ$m$ไธชๅ…ƒ็ด ็š„ไธ€ไธชๆŽ’ๅˆ—. ็‰นๅˆซๅœฐ๏ผŒๅฝ“$m=n$ๆ—ถ๏ผŒ่ฟ™ไธชๆŽ’ๅˆ—่ขซ็งฐไฝœ_ๅ…จๆŽ’ๅˆ—_. *ๆŽ’ๅˆ—ๆ•ฐ*๏ผŒๆŽ’ๅˆ—ๆ•ฐๆŒ‡็š„ๆ˜ฏไปŽ$n$ไธชไธๅŒๅ…ƒ็ด ไธญไปปๅ–$m(m <= n)$ไธชๅ…ƒ็ด ๆŽ’ๆˆไธ€ๅˆ—๏ผˆ่€ƒ่™‘ๅ…ƒ็ด ๅ…ˆๅŽๅ‡บ็Žฐๆฌกๅบ๏ผ‰็งฐๆญคไธบไธ€ไธชๆŽ’ๅˆ—๏ผŒ ๆญค็งๆŽ’ๅˆ—็š„ๆ€ปๆ•ฐๅณไธบๆŽ’ๅˆ—ๆ•ฐ๏ผŒๅณๅซๅšไปŽ$n$ไธชไธๅŒๅ…ƒ็ด ไธญๅ–ๅ‡บ$m$ไธชๅ…ƒ็ด ็š„ๆŽ’ๅˆ—ๆ•ฐ๏ผŒ่ฎฐไฝœ$A_n^m$. == ็ป„ๅˆๅŠ็ป„ๅˆๆ•ฐ<zuhe> *็ป„ๅˆ*๏ผŒไธ€่ˆฌๅœฐ๏ผŒไปŽnไธชไธๅŒ็š„ๅ…ƒ็ด ไธญ๏ผŒไปปๅ–$m(m<=n)$ไธชๅ…ƒ็ด ไธบไธ€็ป„๏ผŒ ๅซไฝœ$n$ไธชไธๅŒๅ…ƒ็ด ไธญๅ–ๅ‡บ$m$ไธชๅ…ƒ็ด ็š„ไธ€ไธช็ป„ๅˆ. *็ป„ๅˆๆ•ฐ*๏ผŒไปŽ$n$ไธชไธๅŒๅ…ƒ็ด ไธญๅ–ๅ‡บ$m(m<=n)$ไธชๅ…ƒ็ด ็š„ๆ‰€ๆœ‰็ป„ๅˆ็š„ไธชๆ•ฐ๏ผŒ ๅซๅšไปŽ$n$ไธชไธๅŒๅ…ƒ็ด ไธญๅ–ๅ‡บ$m$ไธชๅ…ƒ็ด ็š„็ป„ๅˆๆ•ฐ๏ผŒ่ฎฐไฝœ$binom(n,m)$. === ็ป„ๅˆๆ•ฐ็š„ไธ€ไธชๆŽจ่ฎบไธŽไธ€ไธชๆ€ง่ดจ็š„่ฏๆ˜Ž<xingzhi> ็Žฐ็ป™ๅ‡บๅฏน*ๆŽจ่ฎบ1*ๅ’Œ*ๆ€ง่ดจ1*็š„่ฏๆ˜Ž. ==== ๆŽจ่ฎบ1็š„่ฏๆ˜Ž #set math.equation(numbering: none) ่ฎพ$n,m in NN$ไธ”$m <= n$๏ผŒ ๅˆ™็”ฑ*็ป„ๅˆๆ•ฐ*็š„่ฎก็ฎ—ๅ…ฌๅผ$ binom(n,m) = A_m^n / A_m^m $็Ÿฅ๏ผŒ\ ๅฝ“$m=n$ๆ—ถ๏ผŒไธŠๅผไธบ$ binom(n,n) = A_n^n / A_n^n = 1 $. ๆ•…*ๆŽจ่ฎบ1*ๅพ—่ฏ. ==== ๆ€ง่ดจ1็š„่ฏๆ˜Ž ่ฎพ$n,m in NN_(+)$ไธ”$m <= n$๏ผŒ ๅˆ™ $ binom(n,m) + binom(n,m-1) & = n!/(m!(n-m)!) + n!/((m-1)!(n-m+1)!) \ & = n!(1/(m(m-1)!(n-m)!) + 1/((n-m+1)(m-1)!(n-m)!)) \ & = n!/((m-1)!(n-m)!) (1/m + 1/(n-m+1)) \ & = n!/((m-1)!(n-m)!) dot.op (n-m+1+m)/(m(n-m+1)) \ & = (n!(n+1))/(m(m-1)!(n-m+1)(n-m)!) \ & = ((n+1)!)/(m!(n-m+1)!) \ & = binom(n+1,m) $ ๆ•…*ๆ€ง่ดจ1*ๅพ—่ฏ. == ไธ€ไธชๆœ‰่ถฃ็š„ๆ•ฐ ๅฝ“$n=4,r=20$ๆ—ถ๏ผŒ$S_n^(\(r\)) = S_4^(\(20\)) = binom(24,5) = 2024$๏ผŒๆฐๅฅฝๆ˜ฏๆœฌๆ–‡็š„ๅ†™ไฝœๅนดไปฝ. ๅœจๆญค๏ผŒๆœฌๆ–‡ไฝœ่€…ไนŸ็ฅๅคงๅฎถ2024ๆ–ฐๅนดๅฟซไน๏ผˆ่™ฝ็„ถๅทฒ็ป่ฟ‡ๅŽปๅฟซ4ไธชๆœˆไบ†๏ผ‰๏ผ ๆœฌๆ–‡ๅ†™ไบŽ*2024*ๅนด*3*ๆœˆ*31*ๆ—ฅ. == ่‡ด่ฐข ๅœจๆญคๆ„Ÿ่ฐข*้’Ÿ่ฟ่พ‰*่€ๅธˆใ€*ๆŽๅ˜‰ๆ‰*ๅŒๅญฆใ€*็Ž‹ๅฏŒๅนณ*ๅŒๅญฆๅœจๆœฌๆ–‡ๅ†™ไฝœ่ฟ‡็จ‹ไธญ็ป™ไบˆ็š„ๅธฎๅŠฉ.
https://github.com/7sDream/fonts-and-layout-zhCN
https://raw.githubusercontent.com/7sDream/fonts-and-layout-zhCN/master/chapters/02-concepts/dimension/dim-3.typ
typst
Other
#import "/lib/draw.typ": * #import "/lib/glossary.typ": tr #let start = (0, 0) #let end = (250, 220) #let base = (100, 70) #let up = 150 #let down = 35 #let width = 74 #let lt = (base.at(0), base.at(1) + up) #let rb = (base.at(0) + width, base.at(1) - down) #let bbox-lt = (93, 178) #let bbox-width = 74 #let bbox-height = 111 #let bbox-ct = (bbox-lt.at(0) + bbox-width / 2, bbox-lt.at(1)) #let line-color = gray.darken(30%) #let graph = with-unit((ux, uy) => { // mesh(start, end, (50, 50), stroke: 1 * ux + gray) rect( lt, end: rb, stroke: 1.4 * ux + line-color, ) let line-stroke = 1 * ux + line-color segment( (0, base.at(1)), (end.at(0), base.at(1)), stroke: line-stroke, ) let arrow-y = base.at(1) - down - 20 let arrow-length = 12 arrow( (base.at(0) + width - arrow-length, arrow-y), (base.at(0) + width, arrow-y), stroke: line-stroke, head-scale: 3, ) arrow( (base.at(0) + arrow-length, arrow-y), (base.at(0), arrow-y), stroke: line-stroke, head-scale: 3, ) txt(tr[horizontal advance], (base.at(0) + width / 2, arrow-y), size: 12 * ux) txt([#tr[baseline]], (0, base.at(1)), size: 12 * ux, anchor: "lb", dy: 2) rect( bbox-lt, width: bbox-width, height: bbox-height, stroke: 1.2 * ux + line-color, ) txt(text(fill: line-color)[#tr[outline]#tr[bounding box]], bbox-ct, size: 12 * ux, anchor: "cb", dy: 2) txt(text(font: ("Fresca",))[b], base, size: 150 * ux, anchor: "lb", dx: -5, dy: -2) }) #canvas(end, start: start, width: 50%, graph)
https://github.com/VisualFP/docs
https://raw.githubusercontent.com/VisualFP/docs/main/SA/design_concept/content/poc/ui.typ
typst
#import "../../../acronyms.typ": * = User Interface <ui> This section describes the features of the #ac("PoC") application #ac("UI"), the high-level implementation, and how functional reactive programming could be applied to VisualFP. == Features The #ac("UI") for the #ac("PoC") application includes two main components, as shown in @ui-empty-editor: A sidebar with pre-defined value blocks and the function editor. #figure( image("../../static/ui_empty_editor.png"), caption: "Undefined function value in the VisualFP UI" ) <ui-empty-editor> The #ac("PoC") allows the construction of a value, the "userDefinedFunction", which starts with a generic type hole. Starting with a generic function type allows more flexible testing. In a completed application version, the user can define the function name and type when creating it. #grid( columns: (60%, 40%), gutter: 5pt, [#figure( image("../../static/ui_editor_drag_lambda.png"), caption: "Dragging lambda block into value definition" ) <ui-dragging-lambda>], [#figure( image("../../static/ui_editor_dropped_lambda.png"), caption: "Updated function definition including a lambda block" ) <ui-dropped-lambda>] ) @ui-dragging-lambda and @ui-dropped-lambda show how a lambda block is inserted into the value definition. To build the value definition, the user drags the lambda block from the sidebar into the type hole. The drop event then triggers the application to insert the lambda block into the function definition and infer the types of the new function definition. This process can be repeated with suiting value blocks until no type hole is left. As the #ac("PoC") is intended to test the concept, only a reset button exists to return to the initial empty definition. In a full version, this would be replaced with the possibility to remove specific blocks from the definition. Finally, the user-built function definitions can be viewed as Haskell code by clicking the "View Haskell" button. @ui-view-haskell shows the Haskell code for the `mapAdd5` function. #figure( image("../../static/ui_view_haskell.png"), caption: "Haskell defintion of mapAdd5 function in VisualFP" ) <ui-view-haskell> == Implementation The #ac("UI") implementation consists of an Electron.js app hosting a Threepenny #ac("UI"). The Electron app is packaged with an executable of the Threepenny #ac("UI") and all #ac("UI") related static files, i.e. #ac("CSS") & JavaScript files. When starting the Threepenny #ac("UI"), the Electron app passes a usable port for the local web server and the file path of the static #ac("UI") files to the Threepenny #ac("UI"). The function editor is the most significant part of the Threepenny #ac("UI") and has two primary responsibilities: - Rendering of function value blocks - Reacting to value block drop events The rendering part creates an #ac("HTML") representation of each block in the value definition and annotates it with #ac("CSS") classes according to its block type. Reacting to the drop events is a bit more complicated. The block values in the application's sidebar carry their names as data transfer data. When the user drops a block value into a type hole, the data transfer data is included in the event data. Unfortunately, the drop events cannot be registered when creating the type hole elements in the rendering part. So, to register the drop event listeners, the IDs of type holes need to be collected upfront. With these IDs, the #ac("HTML") elements added to the #ac("DOM") can be loaded, and the event handlers registered. The drop event handlers always do the same, regardless of the block value that was dropped: 1. Replace the type hole with the dropped value 2. Infer the updated function definition 3. Clear all elements from the function editor 4. Render the inferred function definition == Functional Reactive Programming Threepenny includes an #ac("FRP") library, which follows the concepts described by <NAME> and <NAME>. #ac("FRP") has two main concepts: Events and Behaviors. An Event is defined as a list of occurrences in time. A Behavior represents a value that changes over time. @frp_elliott_hudak While the first intention was to build the #ac("PoC") with an #ac("FRP") architecture, it became clear over time that Threepenny's #ac("FRP") library is not yet ready for more complex use-cases like VisualFP's function editor. The main problem is that no function allows it to merge multiple events. Implementing the #ac("FRP") architecture through Threepenny could be considered again once the #ac("FRP") library is replaced by reactive-banana #footnote("https://github.com/HeinrichApfelmus/reactive-banana"). The author of Threepenny, <NAME>, plans to do that in a future release @threepenny-frp-replacement. Generally, there is no reason why VisualFP couldn't be implemented using #ac("FRP"). In such an implementation, there would be three kinds of events: - "Reset Editor" button is clicked - "View Haskell" button is clicked - A block value is dropped into a type hole. This event combines all events from every type hole in the function definition. The value definition of the user-defined function is a behavior that changes every time a block value is dropped into the value definition. When the value definition changes, the elements displayed in the function editor must also be updated.
https://github.com/justmejulian/typst-documentation-template
https://raw.githubusercontent.com/justmejulian/typst-documentation-template/main/README.md
markdown
# ZHAW typst-documentation-template Typst documentation template for a ZHAW thesis, based on [ZHAW guidelines](https://gpmpublic.zhaw.ch/GPMDocProdDPublic/Vorgabedokumente_ZHAW/Z_RL_Richtlinie_Corporate_Design_Markengrundelemente.pdf). Learn more about Typst [here](https://github.com/typst/typst). This template is based on the [School of TUM thesis-template-typst](https://github.com/ls1intum/thesis-template-typst). ## Installation Install typst. ```bash brew install typst ``` Once you have installed Typst, you can use it like this: ```bash # Creates `main.pdf` in working directory. typst compile main.typ # Watches source files and recompiles on changes. typst watch main.typ ``` I recommend using the skim pdf viewer, which can be installed via brew. Skim automatically reloads the pdf when it changes. ```bash brew install --cask skim ``` ## neovim todo: add how to setup typst-lsp / Treesitter. ## Todo Github action to build https://github.com/marketplace/actions/github-action-for-typst
https://github.com/jgm/typst-hs
https://raw.githubusercontent.com/jgm/typst-hs/main/test/typ/visualize/image-08.typ
typst
Other
// Error: 8-18 failed to parse svg: found closing tag 'g' instead of 'style' in line 4 #image("test/assets/files/bad.svg")
https://github.com/yaoyuanArtemis/resume
https://raw.githubusercontent.com/yaoyuanArtemis/resume/main/README-zh.md
markdown
Do What The F*ck You Want To Public License
# typst-cv-miku ่ฟ™ๆ˜ฏไธ€ไธช็ฎ€ๅ•ใ€ไผ˜้›…ใ€ๅญฆๆœฏ้ฃŽๆ ผ็š„ [typst](https://typst.app/) ไธชไบบ็ฎ€ๅކ๏ผˆCV๏ผ‰ๆจกๆฟใ€‚ๆ”ฏๆŒไธญ่‹ฑๆ–‡๏ผˆไปฅๅŠๆ›ดๅคš๏ผ‰ใ€‚ ไฝ ๅฏไปฅๅœจ [่ฟ™้‡Œ](https://typst.app/project/rbxGsQC-tEkDq0mnNIuxkv) ๆŸฅ็œ‹ๅœจ็บฟๆผ”็คบใ€‚ ## ็คบไพ‹ ![cv_1](./assets/cv_1.webp) ![cv_2](./assets/cv_2.webp) ## ไฝฟ็”จ่ฏดๆ˜Ž 1. ้˜…่ฏป [typst](https://typst.app/docs/) ๆ–‡ๆกฃใ€‚ 2. ๅฎ‰่ฃ…ๆญคๆจกๆฟ้œ€่ฆ็š„ๅญ—ไฝ“๏ผš - [kpfonts](https://ctan.org/pkg/kpfonts) - [Source Han Sans](https://github.com/adobe-fonts/source-han-sans) - [Source Han Serif](https://source.typekit.com/source-han-serif/cn/) 3. ๆ นๆฎ้œ€่ฆไฟฎๆ”น `.typ` ๆ–‡ไปถ. ไฝ ๅฏ่ƒฝ้œ€่ฆไบ†่งฃ typst ็š„ไธ€ไบ›ๅŸบๆœฌ่ฏญๆณ•ใ€‚ ## ๆญคๅค– Typst ็›ฎๅ‰ๅœจ Emoji ่พ“ๅ‡บไธŠๆœ‰ไธ€ไบ› [bugs](https://github.com/typst/typst/issues/144)๏ผŒๆ‰€ไปฅๆš‚ๆ—ถ็”จ SVG ๆ›ฟไปฃ๏ผŒไฝ ๅฏไปฅๅœจ [twemoji utils](https://twemoji.godi.se/) ๆ‰พๅˆฐๆ›ดๅคšใ€‚ ๅฐๅ›พๆ ‡ๆฅ่‡ช Material Icons (Community). ## License Licensed under [WTFPL](http://www.wtfpl.net/).
https://github.com/protohaven/printed_materials
https://raw.githubusercontent.com/protohaven/printed_materials/main/meta-environments/env-branding.typ
typst
// Branding #let color = ( tablegrey: rgb(95%,95%,95%), lightgrey: rgb(65%,65%,65%), midgrey: rgb(50%,50%,50%), darkgrey: rgb(38%,38%,38%), warning: rgb("#900000"), accent: rgb("#6EC7E2"), link: blue, ) #let font = ( title: "Noto Sans", sans: "Noto Sans", link: "Fira Mono", )
https://github.com/Toniolo-Marco/git-for-dummies
https://raw.githubusercontent.com/Toniolo-Marco/git-for-dummies/main/book/roles-duties.typ
typst
= Ruoli e mansioni #let wgc = "Working group coordinator" #let gl = "Group leader" #let gm = "GitHub maintainer" Uno degli aspetti principali del corso รจ che il progetto viene strutturato per assomigliare il piรน possibile alla realtร  lavorativa, questo si riflette in una struttura gerarchica ben definita dove ognuno ha un ruolo e dei compiti associati, nel 2023 la struttura era: - #wgc - #gl - #gm - Tester - Reporter - Member == #wgc il #wgc รจ il responsabile di tutta la parte comune del progetto, รจ lui che ha l'ultima parola su come interpretare le specifiche fornite dal prof, gestire le riunioni, accettare o rifiutare le proposte (anche se รจ comune indirre delle votazioni), fissare le scadenze e scrivere i report sullo stato del progetto dopo ogni riunione. Viene eletto a maggioranza dai membri presenti durante una delle lezioni, il professore vi dirร  in anticipo quando sarร  il giorno, solitamente poco dopo la presentazione del progetto. Il primo compito del #wgc รจ quello di scegliere i suoi collaboratori, ovvero i *#gl* (solitamente 2), i *Tester* (solitamente 2/3) e i *Reporter* (solitamente 2), fatto questo il assieme ai #gm, deve creare l'organizzazione e dare ad essi tutti i permessi cosรฌ che possano gestirla. == #gl Ogni gruppo ha un responsabile, questo va scelto tra i membri e comunicato al docente entro la data stabilita assieme al nome del gruppo e all'elenco dei partecipanti. Il suo compito รจ quello di partecipare alle riunione generali con #wgc e di rappresentare gli interessi del gruppo, votando le varie sulle questioni. == #gm Si consiglia di scegliere qualcuno che ha dimestichezza con git e GitHub, meglio se ha la possibilitร  di hostare delle applicazioni e dimestichezza con Docker. Si occuperร  di gestire il repository, l'organizzazione su GitHub, effettuare il setup dell'inviter (o in alternativa aggiungere a mano tutte le persone), creare le action e cosa piรน importante gestire le issue, le milestones e le pull requests che verranno create, lavorerร  in stretto contatto con i principali sviluppatori del *Common Crate* e coi testers. รˆ compito suo accertarsi che una pr non rompa tutto il codice giร  presente o in caso contrario, che ci sia un valido motivo, deve controllare che il codice rispetti gli standard decisi e che sia ben documentato. == Tester Solitamente 2/3 persone, si occupano di scrivere i test che il Common Crate deve superare quando si implementa una nuova feature, oltre a scrivere i test che le applicazioni dei gruppi devono superare per verificare che stiano usando il Common Crate nel modo corretto, forzando gli standard decisi dalle specifiche. L'idea รจ che ad ogni pull request vengano eseguiti i test e in base all'esito, si procede con la revisione manuale. == Reporter Sono coloro che partecipano ad ogni riunione col compito di stilare un resoconto degli eventi, utile per tracciare i progressi e la direzione del progetto, basandosi su esso il #wgc, stilerร  il suo report da inviare al docente. Hanno inoltre il compito di scrivere le specifiche man mano che vengono corrette e definite. == Member Sono tutti i membri dei vari gruppi, il loro compito รจ partecipare all'implementazione del Common Crate, proporre feature e aprire pull requests con i cambiamenti proposti. Il #wgc potrebbe apportare delle modifiche, come decidere di avere piรน o meno persone per ruolo, oppure crearne di nuovi, quello che possiamo dirvi รจ che noi ci siamo trovati bene con questa struttura.
https://github.com/Mufanc/hnuslides-typst
https://raw.githubusercontent.com/Mufanc/hnuslides-typst/master/configs.typ
typst
#let slide = ( width: 640pt, height: 360pt, margin: (x: 3em, top: 2em, bottom: 0em), )
https://github.com/DrGo/typst-tips
https://raw.githubusercontent.com/DrGo/typst-tips/main/refs/samples/typst-uwthesis-master/README.md
markdown
# typst-uwthesis This is a [typst](https://typst.app/) template that should (almost) satisfy the [University of Waterloo's thesis formatting requirements](https://uwaterloo.ca/graduate-studies-postdoctoral-affairs/current-students/thesis/thesis-formatting). The resulted document is similar to, but not exactly the same as the [LaTeX template](https://uwaterloo.atlassian.net/wiki/spaces/ISTKB/pages/2666037269/LaTeX+Software+for+Thesis+and+Document+Preparation+and+the+Overleaf+Cloud+Service). I wrote this template for my thesis proposal. At this moment, `project`, `appendix` and `gls` are only documented using the code itself. ## Limitations 1. Equations are not labeled in `section.equ` format. We would either need to "hack" using `set equ` or wait for typst to implement this. 2. Some duplicated headings appear in PDF's outline (not in TOC). This [issue](https://github.com/typst/typst/pull/1566) has been addressed by typst's developer. If you compile from GitHub's `main` branch, instead of using the pre-compiled package, the problem will disappear. We expect the problem will also disappear in the next release of typst. 3. Limited reverse link from bibliography. This needs to be addressed by typst. 3. No reverse link from list of abbreviations. I might find a way to hack this later. ## License Placeholders in the example file might contain copyrighted example texts obtained from UW's IST. By the time you complete you thesis, all copyrighted texts will have been removed. Currently, there should be no legal problem for a UW student to use this template. We have plan to release the template under an Apache license similar to [simple-typst-thesis's](https://github.com/zagoli/simple-typst-thesis) after getting rid of the potentially copyrighted texts. If you need this template soon, feel free to replace the text by non-copyrighted material and submit a pull request.
https://github.com/davystrong/umbra
https://raw.githubusercontent.com/davystrong/umbra/main/src/lib.typ
typst
MIT License
#let version = version((0, 1, 0)) #import "shadow-path.typ": shadow-path
https://github.com/Maso03/Bachelor
https://raw.githubusercontent.com/Maso03/Bachelor/main/Bachelorarbeit/chapters/VR.typ
typst
MIT License
== Virtual Reality (VR) Virtual Reality (VR) ist eine Technologie, die es Benutzern ermรถglicht, in eine computergenerierte, dreidimensionale Umgebung einzutauchen. Diese Umgebung kann mit Hilfe von VR-Headsets und anderen Peripheriegerรคten erlebt werden. VR findet Anwendung in Bereichen wie Gaming, Ausbildung, Medizin und Architektur. Durch die Schaffung immersiver Erlebnisse kann VR das Lernen und die Interaktion mit digitalen Inhalten erheblich verbessern.
https://github.com/PA055/5839B-Notebook
https://raw.githubusercontent.com/PA055/5839B-Notebook/main/appendix.typ
typst
#import "./packages.typ": notebookinator #import notebookinator: * #import themes.radial.components #import "./utils.typ": get-page-number #import "./glossary.typ" #create-appendix-entry(title: "Glossary")[ #components.glossary() ]
https://github.com/Enter-tainer/typstyle
https://raw.githubusercontent.com/Enter-tainer/typstyle/master/tests/assets/unit/code/param-len.typ
typst
Apache License 2.0
#let get-page-dim-writer() = locate(w_loc => {}) #let get-page-dim-writer(a) = locate(w_loc => {}) #let get-page-dim-writer(a, b) = locate(w_loc => {}) #let get-page-dim-writer(a, b, c) = locate(w_loc => {}) #let get-page-dim-writer( a, b, c) = locate(w_loc => {})
https://github.com/VaranTavers/vspct
https://raw.githubusercontent.com/VaranTavers/vspct/main/vspct.typ
typst
MIT License
// Varan's simple Pseudocode for Typst #let lang = "en" #let pkeywords = ( en: ( if_pre: "if", if_post: "", while_pre: "while", while_post: "", do_start: "repeat", do_end_pre: "until", do_end_post: "", end_pre: "end", end_post: "", else_pre: "else", return_pre: "return", for_pre: "for", for_post: "", in_pre: "In", out_pre: "Out", algorithm_pre: "Algorithm", algorithm_post: "", ), hu: ( if_pre: "Ha", if_post: "akkor", while_pre: "Amรญg", while_post: "vรฉgezd el", do_start: "Ismรฉteld", do_end_pre: "Ameddig", do_end_post: "", end_pre: "", end_post: "vรฉge", else_pre: "kรผlรถnben", return_pre: "tรฉrรญt", for_pre: "Minden", for_post: "vรฉgezd el", in_pre: "Be", out_pre: "Ki", algorithm_pre: "Algoritmus", algorithm_post: "", ) ) #let gets = sym.arrow.l.long #let algCounter = counter("alg") #let pseudo(body, caption: "") = { block( breakable: false, { set align(left) strong[ #pkeywords.at(lang).at("algorithm_pre") #algCounter.display()#pkeywords.at(lang).at("algorithm_post") ] ": " + caption algCounter.step() block( breakable: false, stroke: (top: black, bottom: black), above: 0.4em, inset: (top: 0.5em, left: 1em, right: 1em, bottom:0.5em), par( leading: 0.5em, body ) ) } ) } #let pblock(fname_pre, fname_post, f, body) = { text(weight: "bold", fname_pre)+" "+f+" "+text(weight: "bold",fname_post) block( above: 0.7em, below: 0.5em, inset: (top: 0em, left: 1em), par( leading: 0.5em, body ) ) text(weight: "bold", pkeywords.at(lang).at("end_pre") + " " + fname_pre + " " + pkeywords.at(lang).at("end_post")) } #let pfor(iterator, start, end, cumul: "", body) = { text(weight: "bold", pkeywords.at(lang).at("for_pre"))+" "+iterator+" "+gets+" "+start+", "+end if cumul != "" { ", " + cumul } " " text(weight: "bold", pkeywords.at(lang).at("for_post")) block( above: 0.7em, below: 0.5em, inset: (top: 0em, left: 1em), par( leading: 0.5em, body ) ) text(weight: "bold", pkeywords.at(lang).at("end_pre") + " " + pkeywords.at(lang).at("for_pre") + " " + pkeywords.at(lang).at("end_post")) } #let prepeat(f, body) = { text(weight: "bold", pkeywords.at(lang).at("do_start")) block( above: 0.7em, below: 0.5em, inset: (top: 0em, left: 1em), par( leading: 0.5em, body ) ) text(weight: "bold", pkeywords.at(lang).at("do_end_pre")+ " " + f + " " + pkeywords.at(lang).at("do_end_post")) } #let pwhile(f, body) = pblock(pkeywords.at(lang).at("while_pre"), pkeywords.at(lang).at("while_post"), f, body) #let pif(f, body) = pblock(pkeywords.at(lang).at("if_pre"), pkeywords.at(lang).at("if_post"), f, body) #let pifelse(f, body1, body2) = { text(weight: "bold", pkeywords.at(lang).at("if_pre"))+" "+f+text(weight: "bold",pkeywords.at(lang).at("if_post")) block( above: 0.7em, below: 0.5em, inset: (top: 0em, left: 1em), par( leading: 0.5em, body1 ) ) text(weight: "bold", pkeywords.at(lang).at("else_pre")) block( above: 0.7em, below: 0.5em, inset: (top: 0em, left: 1em), par( leading: 0.5em, body2 ) ) text(weight: "bold", pkeywords.at(lang).at("end_pre")+" "+pkeywords.at(lang).at("if_pre")) + " " + pkeywords.at(lang).at("end_post") } #let preturn(body) = { text(weight: "bold", pkeywords.at(lang).at("return_pre")) + " " + body } #let pin(body) = { text(weight: "bold", pkeywords.at(lang).at("in_pre")) + " " + body } #let pout(body) = { text(weight: "bold", pkeywords.at(lang).at("out_pre")) + " " + body } #let pref(label) = pkeywords.at(lang).at("algorithm_pre") + " " + locate(loc => { algCounter.at( query(label, loc).first().location() ).at(0) }) + " " + pkeywords.at(lang).at("algorithm_post") /* #show figure: it => if rev [ #set align(left) #strong[ #it.supplement #it.counter.display(it.numbering) ]: #it.caption #it.body ] else [ #set align(center) #it.body #emph[ #it.supplement #it.counter.display(it.numbering) ]: #it.caption ] */
https://github.com/LDemetrios/Typst4k
https://raw.githubusercontent.com/LDemetrios/Typst4k/master/src/test/resources/suite/foundations/panic.typ
typst
--- panic --- // Test panic. // Error: 2-9 panicked #panic() --- panic-with-int --- // Test panic. // Error: 2-12 panicked with: 123 #panic(123) --- panic-with-str --- // Test panic. // Error: 2-24 panicked with: "this is wrong" #panic("this is wrong")
https://github.com/VZkxr/Typst
https://raw.githubusercontent.com/VZkxr/Typst/master/Tests/document.typ
typst
Sea $\{X_n\}_{n in NN}$ una cadena de Markov con espacio de estados $EE=\{0,1,2,3,4\}$, distribuciรณn inicial $pi^0 = (1,0,0,0,0)$ y matriz de probabilidades de transiciรณn $ PP= mat( 0 , 1 , 0 , 0 , 0; frac(1, 4), 0, frac(3, 4), 0, 0; 0, frac(1, 2), 0, frac(1, 2), 0; 0, 0, frac(3, 4), 0, frac(1, 4); 0, 0, 0, 1, 0; ) $ Calcula la distribuciรณn estacionaria de $X_n_{n in NN}$ para $n$ par, es decir, utilizando $PP$. #let ofi = [Office] #let rem = [_Remote_] #let lea = [*On leave*] #table( columns: 6 * (1fr,), table.header( [Team member], [Monday], [Tuesday], [Wednesday], [Thursday], [Friday] ), [<NAME>], table.cell(colspan: 2, ofi), table.cell(colspan: 2, rem), ofi, [<NAME>], table.cell(colspan: 5, lea), [<NAME>], rem, table.cell(colspan: 2, ofi), rem, ofi, ) #table( columns: 5 * (1fr,), table.header( [], table.cell(colspan:2, [Blue chip]), [Fresh IPO], [Penny st'k], ), table.cell( rowspan: 4, align: horizon, [ USD/day ], ), [0.20], [104], [5], [3.17], [108], [4], [1.59], [84], [1], [0.26], [98], [15], [0.01], [195], [4], [7], [ USD/hr ], [57], [2], [3], [6.7] ) #table( columns: (auto, 1fr, auto, auto), table.header( table.cell(colspan:4, align: center, [*รndice temรกtico*]), ), table.cell(rowspan: 2,[]), table.cell(rowspan: 2, align: center + horizon, [*Tema*]), table.cell(colspan: 2, align: center, [*Horas de curso*]), [*Teorรญas*], [*Prรกcticas*], [*1*], [*Conjuntos de nรบmeros*], [*1*], [], [*2*], [*La recta real*], [*1*], [*1*], [*3*], [*Potencias*], [*1*], [*1*], [*4*], [*Raรญces*], [*1*], [*1*], [*5*], [*Porcentajes*], [*1*], [*1*], table.cell(colspan: 2, align: right, [*Subtotal*]), [*5*], [*4*], table.cell(colspan: 2, align: right, [*Total*]), table.cell(colspan: 2, align: center, [*9 hrs*]) ) #pagebreak() #table( columns: (auto, 1fr), table.header( table.cell(colspan:2, align: center, [*Contenido temรกtico*]), ), table.cell(rowspan: 2,[]), table.cell(rowspan: 2, align: center + horizon, [*Temas y subtemas*]), [*1*], [*Conjuntos de nรบmeros* \ #v(.07cm) 1.1 #h(.4cm)Nรบmeros naturales \ #v(.07cm) 1.2 #h(.4cm)Nรบmeros enteros \ #v(.07cm) 1.3 #h(.4cm)Nรบmeros racionales \ #v(.07cm) 1.4 #h(.4cm)Nรบmeros irracionales \ #v(.15cm)], [*2*], [*La recta real* \ #v(.07cm) 2.1 #h(.4cm)Propiedades de los signos \ #v(.07cm) 2.2 #h(.4cm)Suma y resta \ #v(.07cm) 2.3 #h(.4cm)Multiplicaciรณn y divisiรณn \ #v(.07cm) 2.4 #h(.4cm)Jerarquรญa de operaciones \ #v(.07cm) 2.5 #h(.4cm)Operaciones con fracciones \ #v(.15cm)], [*3*], [*Potencias* \ #v(.07cm) 3.1 #h(.4cm)Nociรณn intuitiva de la potencia \ #v(.07cm) 3.2 #h(.4cm)Operaciones con potencias \ #v(.15cm)], [*4*], [*Raรญces* \ #v(.07cm) 4.1 #h(.4cm)Raรญces exactas \ #v(.07cm) 4.2 #h(.4cm)Raรญces no exactas \ #v(.15cm)], [*5*], [*Porcentajes* \ #v(.07cm) 5.1 #h(.4cm)Representaciones \ #v(.07cm) 5.2 #h(.4cm)Conversiones \ #v(.07cm) 5.3 #h(.4cm)Problemas de aplicaciรณn \ #v(.15cm)] ) #pagebreak() #table( columns: (1fr, 1fr), table.header(align(center)[*Estrategias didรกcticas*], align(center)[*Evaluaciรณn de aprendizaje*]), [Exposiciรณn #h(1fr) (X)], [Exรกmenes parciales #h(1fr) (X)], [Trabajo en equipo #h(1fr) (#h(.2cm))], [Examen final #h(1fr) (X)], [Lecturas #h(1fr) (#h(.2cm))], [Trabajos y tareas #h(1fr) (#h(.2cm))], [Trabajo de investigaciรณn #h(1fr) (#h(.2cm))], [Presentaciรณn del tema #h(1fr) (#h(.2cm))], [Prรกcticas (taller o laboratorio) #h(1fr) (#h(.2cm))], [Participaciรณn en clase #h(1fr) (#h(.2cm))], [Prรกcticas de campo #h(1fr) (#h(.2cm))],[Asistencia #h(1fr) (#h(.2cm))], [Aprendizaje por proyectos #h(1fr) (#h(.2cm))],[Rรบbricas #h(1fr) (#h(.2cm))], [Aprendizaje basado en problemas #h(1fr) (#h(.2cm))],[Portafolios #h(1fr) (#h(.2cm))], [Casos de enseรฑanza #h(1fr) (#h(.2cm))],[Listas de cotejo #h(1fr) (#h(.2cm))], [Otras (especificar) #h(1fr) (#h(.2cm))],[Otras (especificar) #h(1fr) (#h(.2cm))] )
https://github.com/typst/packages
https://raw.githubusercontent.com/typst/packages/main/packages/preview/cetz/0.1.2/src/aabb.typ
typst
Apache License 2.0
#import "vector.typ" /// Compute an axis aligned bounding box (aabb) /// for a list of vectors. /// /// An aabb dictionary has the following keys: /// - low (vector) Min. bounds vector /// - high (vector) Max. bounds vector /// /// - pts (array): List of vectors/points /// - init (dictionary): Initial aabb /// -> dictionary AABB object #let aabb(pts, init: none) = { let bounds = init if type(pts) == array { for (i, pt) in pts.enumerate() { if bounds == none and i == 0 { bounds = (low: pt, high: pt) } else { let (x, y, z) = pt let (lo-x, lo-y, lo-z) = bounds.low bounds.low = (calc.min(lo-x, x), calc.min(lo-y, y), calc.min(lo-z, z)) let (hi-x, hi-y, hi-z) = bounds.high bounds.high = (calc.max(hi-x, x), calc.max(hi-y, y), calc.max(hi-z, z)) } } return bounds } else if type(pts) == dictionary { if init == none { return pts } else { return aabb((pts.low, pts.high,), init: bounds) } } panic("Expected array of vectors or bbox dictionary, got: " + repr(pts)) } /// Get the mid-point of an aabb as vector. /// /// - bounds (AABB): AABB /// -> vector #let mid(bounds) = { return vector.scale(vector.add(bounds.low, bounds.high), .5) } /// Get the size of an aabb as vector /// this is a vector from the aabb's low to high. /// /// - bounds (AABB): AABB /// -> vector #let size(bounds) = { return vector.sub(bounds.high, bounds.low) }
https://github.com/thomasschuiki/thomasschuiki
https://raw.githubusercontent.com/thomasschuiki/thomasschuiki/main/cv/fontawesome.typ
typst
//! typst-fontawesome //! //! https://github.com/duskmoon314/typst-fontawesome // Implementation of `fa-icon` #import "lib-impl.typ": fa-icon // Generated icons #import "lib-gen.typ": *
https://github.com/Vaskozlov/Lectures
https://raw.githubusercontent.com/Vaskozlov/Lectures/main/ะะปะณะตะฑั€ะฐ (ะผะฝะพะณะพั‡ะปะตะฝั‹).typ
typst
= ะœะฝะพะณะพั‡ะปะตะฝั‹ == ะŸั€ะพะธะทะฒะพะดะฝะฐั ะผะฝะพะณะพั‡ะปะตะฝะฐ $ f(x) = product_(i = 1)^(n)(x - x_i) $ $ f'(x) = sum_(i = 1)^(n) frac(f(x), x - x_i) = f(x) sum_(i = 1)^(n) frac(1, x - x_i) $ $ f'(x) = f(x) sum_(i = 1)^(n) frac(1, x - x_i) => frac(f'(x), f(x)) = sum_(i = 1)^(n)frac(1, x - x_i) $ ะ•ัะปะธ ะผะฝะพะณะพั‡ะปะตะฝ f(x) ะธะผะตะตั‚ ะบะพั€ะตะฝัŒ ะบั€ะฐั‚ะฝะพัั‚ะธ n, ั‚ะพ ัั‚ะพ ะทะฝะฐั‡ะธั‚, ั‡ั‚ะพ + $f(alpha) = 0$ + $f^((i))(alpha) = 0 "ะดะปั" forall i in [1,n - 1]$ === ะŸั€ะธะผะตั€ (ัะฒัะทัŒ ะฟั€ะพะธะทะฒะพะดะฝะพะน ั ั„ัƒะฝะบั†ะธะตะน ะธ ะตะต ะบะพั€ะฝัะผะธ) $ f(x) = x^2 - 3x + 2 = (x - 2)(x - 1) $ $ f'(x) = f(x) dot frac(1, x - 1) + frac(1, x - 2) = f(x) dot frac(2x - 3, x ^ 2 - 3x + 2) = f(x) dot frac(2x - 3, f(x)) = 2x - 3 $ $ f'(x) = 2x - 3 $ === ะŸั€ะธะผะตั€ (ะทะฐะดะฐั‡ะธ ะฝะฐ ะฝะฐั…ะพะถะดะตะฝะธะต ััƒะผะผั‹) == ะŸั€ะพัั‚ะตะนัˆะธะต ะดั€ะพะฑะธ ะ”ั€ะพะฑัŒ $frac(f, g) in K[t]$ - ะฟั€ะพัั‚ะตะนัˆะฐั, ะตัะปะธ $g = p^k$, ะณะดะต $p in K[t]$ โ€“ ะฝะตะฟั€ะธะฒะพะดะธะผั‹ะน ะผะฝะพะณะพั‡ะปะตะฝ ะธ $"deg"(f) < "deg"(g)$. == ะกะฒัะทัŒ ั€ะฐะทะปะพะถะตะฝะธั ะฝะฐ ะฟั€ะพัั‚ะตะนัˆะธะต ะดั€ะพะฑะธ ั ะธะฝั‚ะตั€ะฟะพะปัั†ะธะตะน === ะะปะณะพั€ะธั‚ะผ, ะบะพะณะดะฐ ะฒัะต ะบะพั€ะฝะธ ะฟะตั€ะฒะพะน ัั‚ะตะฟะตะฝะธ $ g(x) = (x - a_1) dots (x - a_n) $ $ frac(f(x), g(x)) = sum_(i = 1)^(n) frac(f(a_i), g'(a_i) dot (x - a_i)) $ #pagebreak() == ะะปะณะพั€ะธั‚ะผ ะธะฝั‚ะตั€ะฟะพะปัั†ะธะธ ะ›ะฐะณั€ะฐะฝะถะฐ $ f(x) = product_(i = 1)^(n)(x - x_i) $ $ L(X) = sum_(i = 0)^(n)y_i dot l_(i)(x) = sum_(i = 0)^(n) y_i dot frac(f(x), f'(x_i) dot (x - x_i)) $ $ l_i(x) = product_(j = 0, j != i)frac(x - x_j, x_i - x_j) $ === ะŸั€ะธะผะตั€ #columns(2)[ #align(right)[ $ l_0(x) = frac((x - x_1)(x - x_2)(x - x_3), (x_0 - x_1)(x_0 - x_2)(x_0 - x_3)) = \ = frac((x - 2)(x - 3)(x - 5), -30) $ $ l_1(x) = frac((x - x_0)(x - x_2)(x - x_3), (x_1 - x_0)(x_1 - x_2)(x_1 - x_3)) = \ = frac((x - 0)(x - 3)(x - 5), 6) $ ] #colbreak() #table( columns: 3, [*i*], [*x*], [*y*], [0], [0], [0], [1], [2], [1], [2], [3], [3], [3], [5], [2]) ] $ L(x) = y_0 dot l_0(x) + y_1 dot l_1(x) + y_2 dot l_2(x) + y_3 dot l_3(x) = 0 dot l_0(x) + 1 dot l_1(x) + 3 dot l_2(x) + 2 dot l_3(x) $ == ะะปะณะพั€ะธั‚ะผ ะธะฝั‚ะตั€ะฟะพะปัั†ะธะธ ะฟะพ ะัŒัŽั‚ะพะฝัƒ $ N = a_0 + a_1 dot (x - x_0) + a_2 dot (x - x_0)(x - x_1) + dots $ ะงั‚ะพะฑั‹ ะฝะฐะนั‚ะธ ะผะฝะพะณะพั‡ะปะตะฝ ะฟะพ ั‚ะพั‡ะบะฐะผ, ะฝัƒะถะฝะพ ะฟะพัั‚ะตะฟะตะฝะฝะพ ะฟะพะดัั‚ะฐะฒะปัั‚ัŒ ะทะฝะฐั‡ะตะฝะธั x, ั‚ะพะณะดะฐ ะตัะปะธ ะฟะพะดัั‚ะฐะฒะปัะตะผ $x_i$, ั‚ะพ ะฝะฐั‡ะธะฝะฐั ั i ะฑัƒะดัƒั‚ ะฝัƒะปะธ. === ะŸั€ะธะผะตั€ #columns(2)[ #align(right)[ $ 2 = a_0 + a_1(1 - 1) + a_2(1 - 1)(2 - 1) + dots $ $ 3 = a_0 + a_1(2 - 1) + a_2 (2 - 1)(2 - 2) + dots $ ] #colbreak() #table( columns: 3, [*i*], [*x*], [*y*], [0], [1], [3], [1], [2], [-10], [2], [3], [5]) ] === ะฃะฟั€ะพั‰ะตะฝะธะต ะฐะปะณะพั€ะธั‚ะผะฐ ะธะฝั‚ะตั€ะฟะพะปัั†ะธะธ ะัŒัŽะตั‚ะพะฝะฐ ะฟั€ะธ $Delta x = "const"$ ะŸัƒัั‚ัŒ $h = Delta x$, ั‚ะพะณะดะฐ ะฟะพัั‚ั€ะพะธะผ ั‚ะฐะฑะปะธั‡ะบัƒ, ะณะดะต $Delta^k y_i = Delta^(k - 1)y_(i + 1) - Delta^(k - 1)y_i$, ะณะดะต i - ัั‚ั€ะพั‡ะบะฐ ะฒ ั‚ะฐะฑะปะธั†ะต. #table( columns: 5, align: (center, center, center , center, center), [*i*], [*x*], [*y = $Delta^0$y*], [*$Delta^1$y*], [*$Delta^2$y*], [0], [1], [3], [-13], [28], [1], [2], [-10], [15], [], [2], [3], [5], [], [] ) ะขะพะณะดะฐ ะบะพัั„ั„ะธั†ะธะตะฝั‚ $a_k = frac(Delta^k y_0, k! dot h^k)$
https://github.com/jiamingluuu/mata35-notes
https://raw.githubusercontent.com/jiamingluuu/mata35-notes/main/diff-eqn.typ
typst
#set text(size: 13pt) #set math.equation(numbering: "(1)") #set rect(width: 100%, radius: 8pt, fill: rgb("#f2f2f2"), stroke: 1pt, inset: 12pt) = Differential Equations == Introduction *Definition.* _Differential equation (DE)_ is an equation involving functions and their derivatives. The study of differntial equations plays a significant role in the modern study of physics, engineering, economics, and etc. To dive deep in the mathematically rigorous dicussion of differnetial equation, it is inevitable to introduce a diverse branches of mathematics, for instance, analysis and numerical methods. In light of the limitation to the person who made the note, we are only going to talk about the most fundamental part of differneitlal equation. == First Order Differential Equations *Definition.* The _order_ of a differential equation is defined by the highest degree of derivative of the differential equation has. *Definition.* let $y: RR -> RR$ be a function with variable $t$, and $f: RR^2 -> RR$. A _first order differential equatoin_ has the the form $ (dif y)/(dif t) = f(y, t) $ *Example.* _Acceleration_ describes the rate of change of velocity of an object. Suppose a ball is dropped from air and undergoes a free fall, that is, only gravity is acting on the ball, its acceleration $a(t) = (dif v)/(dif t)$ is characterized by a first order DE $ (dif v)/(dif t) = g. $ Where $g$ is the _gravitational constant_ There is a special class of DE we are interested to study: separable DE. *Definition.* A _separable differential equation_ can be written as $ (dif y)/(dif t) = M(y) N(t). $ To solve a separable, we follows the following strategy in general: 1. Re-write the given DE into the form given in (3). 2. Separable varable, so each side of equation only contains one type of variable $ 1/(M(y))(dif y)/(dif t) = N(t). $ 3. Then integrate both sides of the equation at the same time. $ integral 1/(M(y)) (dif y)/(dif t) dif t = integral N(t) dif t. $ *Example* (Newton's Law of Cooling). Let $T(t)$ be the temperature of an object at time $t$, and $T_s$ be the temperature of surrounding environment. The rate of change of temperature of $T(t)$ is described as $ (dif T)/ (dif t) = k(T(t) - T_s), $ where both $k, T_s$ are a constant in real number. To solve (6), we are going to follow the strategy stated before: $ 1/(T(t) - T_s) (dif T)/(dif t) &= k\ integral 1/(T(t) - T_s) (dif T)/cancel(dif t) cancel(dif t) &= integral k dif t\ integral 1/(T(t) - T_s) dif T &= integral k dif t\ ln abs(T(t) - T_s) &= k t + c\ T(t) - T_s &= e^(k t + c)\ T(t) - T_s = e^(k t) times e^c\ T(t) = A e^(k t) + T_s\ $ #rect[ _Remark._ Notice that it is irrigorous to treat the derivative $(dif T)/(dif t)$ as a fraction and cancel it with the term $dif t$. The definition of derivative involving limit, and is to find the flactuation of the original function in the infidecimal change in $t$, that is $ (dif T)/(dif t) equiv lim_(h -> 0) (T(t + h) - T(t))/(h), $ which is a unity becuase the limit is not gaurantee to be congervent. Whereas when we write the whole term $ 1/(T(t) - T_s) (dif T)/(dif t) dif t, $ it is a 1-form of differential form, which is a smooth section of the co-tangent bundle on a manifold. Under no circumstance should those two notion to be inter-changibly used. ] However, what if the DE is not separable? For instace, how can we solve for a differenial equation has the form $ A(x)(dif y)/(dif x) + B(x) y = C(x), $ where function $A, B, C$ functions over real. In this senario, we need introduce some prior knowledge. *Definition.* Let $f: RR^n -> RR$ be a differentiable function over $RR$ with respect to variable $x_1, x_2, ..., x_n$. The _total derivative_ $dif f$ can be written as $ dif f = sum^n_(i = 1) (diff f)/(diff x_i) dif x_i $ *Example.* The total derivative of $f(x, y) = x^2 + y^2$ is given by $ dif f &= (diff f)/(diff x)dif x + (diff f)/(diff y)dif y\ &= diff/(diff x)(x^2 + y^2)dif x + diff/(diff y)(x^2 + y^2)dif y\ &= 2x dif x + 2y dif y\ $ *Definition.* A differential form $alpha$ is _exact_ if there exists some differential form $beta$ such that $ dif beta = alpha $ *Proposition.* Let $P, Q: RR^2 -> RR$ be multi-variable functions with respect to variable $x$ and $y$. Then the differential form $ P dif x + Q dif y $ is exact if and only if $ (diff P)/ (diff y) = (diff y)/ (diff x) $ #rect[ _Remark._ The notion of exactness is telling us, if a differential form $alpha$ is exact, then it can be obtained by computing the total derivative of another differential form $beta$. Furthermore, the proposition above provides us an easy, swift way of verifying if a given differential form is exact. The intuition behinds the proposition is the following: if equation (12) were exact, then $P$ and $Q$ are the derivative of same function but with respect to different variable. That is $ P = (diff f)/(diff x), quad Q = (diff f)/(diff y). $ Therefore, $ (diff P)/(diff y) = (diff^2 f)/(diff y diff x) "and" (diff Q)/(diff x) = (diff^2 f)/(diff x diff y), $ which are essentially equal. ] In light the the introductory of differential form and exactness, we can take their advantages in the discussion of solving DEs. Given a first order differential equation with the form: $ A (dif y)/(dif x) + B y = C, $ where $A, B, C: RR -> RR$ are functions over real with respect to variable $x$, we can re-write it by using differential forms $ underbrace(A dif y + B y dif x, alpha) = C dif x. $ Hence, if $alpha$ were exact, then by equation (11) there exists some other form $beta$ such that $ dif beta = alpha. $ It implies that (17) is equivalent to $ dif beta = C dif x. $ And by integrating both sides of (19), we can obtain the solution of our DE (16) in implicit form: $ integral dif beta &= integral C dif x\ beta &= integral C dif x $ *Example.* Solve the following differential equation $ (4 + t^2) (dif y)/(dif t) + 2 t y = 4t. $ Let's firstly write it using differential form and check if it is exact: $ underbrace((4 + t^2) dif y, P) + underbrace(2t y dif t, Q) = 4t dif t. $ $ (diff P)/(diff t) &= diff/(diff t) (4 + t^2)\ &= 2t\ (diff Q)/ (diff y) &= diff/(diff y)(2t y)\ &= 2t. $ So we can see the left part of (22) is an exact differential form, which is implying that $ P = (diff f)/(diff y), quad Q = (diff f)/(diff y). $ Hence $ f &= integral P dif y\ &= integral 4 + t^2 dif y\ &= 4y + t^2 y + h(t) $ And we can solve the unknown function $h(t)$ by computing the derivative of $f$ with respect to $t$: $ (diff f)/(diff t) &= diff/(diff t)(4y + t^2 y + h(t))\ &= 2t y + h'(t)\ $ Therefore, by using the fact that $ (diff f)/(diff t) &= Q\ 2t y + h'(t) &= 2t y\ h'(t) &= 0 $ And it follows that $h(t) = c$, where $c$ is an aribitrary constant in $RR$. Hence, we have the final answer: $ f = 2y + t^2 y + c $ However, what if the given DE is not exact? Then we need to develop some trick to modify the DE and change to exact. *Definition.* Given a DE of the from $ A dif y + B y dif x = C $ A _integrating factor_ is an auxiliary function $I(x)$ such that when we multiply it to the both sides of the eqaution, making $ I A dif y + I B dif x $ to be an exact differential form. *Proposition.* If a DE has the form $ A dif y + B y dif x = C, $ where $A, B, C: RR -> RR$ are function with respect to variable $x$, and $A$ is non-zero over its domain. Then the DE has an integrating factor $ I(x) = e^(integral P(x) dif x), $ where $P(x) = B(x)/A(x)$. *Example.* Solve the following DE $ x dif y + 2y dif x = 4x^3 dif x $ As you can verify, this DE is not exact, so we are going to find the integrating factor $ I(x) &= e^(integral P(x) dif x)\ &= e^(integral 2/x dif x)\ &= e^(2ln(x))\ &= x^2 $ By multiplying both sides by the integrating factor, we have $ x dif y + 2y dif x &= 4x^3 dif x\ dif y + (2y)/x dif x &= 4x^4 dif x\ x^2 (dif y + (2y)/x dif x) &= x^2 dot 4x^4 dif x\ x^2 dif y + 2y x dif x &= 4x^6 dif x\ d(x^2 y) &= 4x^6 dif x\ integral d(x^2 y) &= integral 4x^6 dif x\ x^2 y &= 4/7 x^7 + c $
https://github.com/flechonn/interface-typst
https://raw.githubusercontent.com/flechonn/interface-typst/main/BD/TYPST/exo4.typ
typst
#show terms: it => { let title = label("Mon Exercice de Traitement du Signal") let duration = label("1h30") let difficulty = label("Facile") let solution = label("0") let figures = label("") let points = label("5") let bonus = label("0") let author = label("Moi") let references = label("") let language = label("Franรงais") let material = label("") let name = label("exo4") } = Exercice 1 Considรฉrez un signal sinusoรฏdal x(t)=$Aโ‹…sin(2ฯ€*f*t+ฯ•)$, oรน AA est l'amplitude, ff est la frรฉquence en Hz et ฯ•ฯ• est la phase en radians. ร‰crivez une fonction en Python pour calculer la valeur efficace (RMS) de ce signal sur une pรฉriode donnรฉe. Testez votre fonction avec $A=3$, $f=50$Hz et $ฯ•=ฯ€*4$ sur une pรฉriode de T=$1/f$. = Solution Solution de l'exercice: Pour calculer la valeur efficace (RMS) d'un signal sinusoรฏdal $x(t)=Aโ‹…sin(2*ฯ€*f*t+ฯ•)$ nous pouvons utiliser la formule suivante : $"RMS"=sqrt(1/T*integral_(0)^T x^2 dif x)$ oรน $A$ est l'amplitude, $f$ est la frรฉquence en Hz, $ฯ•$ est la phase en radians, et $T$ est la pรฉriode du signal ($T=1/f$). Dans notre cas, avec $A=3$, $f=50$ Hz et $ฯ•=4ฯ€$ la formule devient : $"RMS"=sqrt(1/T*integral_(0)^T (3โ‹…sin(2ฯ€โ‹…50โ‹…t+4ฯ€))ยฒ dif x)$ Aprรจs rรฉsolution numรฉrique de cette intรฉgrale sur une pรฉriode T, nous obtenons la valeur efficace du signal.
https://github.com/jujimeizuo/ZJSU-typst-template
https://raw.githubusercontent.com/jujimeizuo/ZJSU-typst-template/master/template/toc.typ
typst
Apache License 2.0
#import "font.typ": * #import "utils.typ": * #show heading : it => { set align(center) set text(font:heiti, size: font_size.sanhao) it par(leading: 1.5em)[#text(size:0.0em)[#h(0.0em)]] } #set page(footer: [ #set align(center) #set text(size: 10pt, baseline: -3pt) #counter(page).display( "I", ) ] ) // ๅ›พ็›ฎๅฝ• #heading(level: 1, outlined: false)[ๅ›พ็›ฎๅฝ•] #v(2em) #show outline: it => { set heading(numbering: "1.1") set text(font: songti, size: font_size.xiaosi) set par(leading: 1em ) it } #outline( title: none, target: figure.where(kind: image), indent : true, ) #pagebreak() #heading(level: 1, outlined: false)[่กจ็›ฎๅฝ•] #v(2em) #show outline: it => { set text(font: songti, size: font_size.xiaosi) set par(leading: 1em ) it } #outline( title: none, target: figure.where(kind: table), indent : true, ) #pagebreak() // ็›ฎๅฝ• #heading(level: 1, outlined: false)[็›ฎ ๅฝ•] #v(2em) #{ set align(right) set text(font: songti, size: font_size.xiaosi) set par(first-line-indent: 0pt) [ๆ‘˜่ฆ ] + [.] * 144 + [ I] set par(leading: 1em) [Abstract ] + [.] * 137 + [ II] set par(leading: 1em) [ๅ›พ็›ฎๅฝ• ] + [.] * 137 + [ III] set par(leading: 1em) [่กจ็›ฎๅฝ• ] + [.] * 137 + [ IV] set par(leading: 1em) [็›ฎๅฝ• ] + [.] * 143 + [ V] } #show outline: it => { set text(font: songti, size: font_size.xiaosi) set par(leading: 1em ) it } #outline( title: none, indent : true, )