repo
stringlengths 26
115
| file
stringlengths 54
212
| language
stringclasses 2
values | license
stringclasses 16
values | content
stringlengths 19
1.07M
|
---|---|---|---|---|
https://github.com/lxl66566/my-college-files | https://raw.githubusercontent.com/lxl66566/my-college-files/main/ไฟกๆฏ็งๅญฆไธๅทฅ็จๅญฆ้ข/ๆบๅจ่ง่งๅฎ่ทต/ๆฅๅ/4/4.typ | typst | The Unlicense | #import "../template.typ": *
#show: project.with(
title: "4",
authors: ("absolutex",),
)
= ๆบๅจ่ง่งๅฎ่ทต ๅ
== ๅฎ้ช็ฎ็
ๅพๅ่กฅๅ
็ฎๆณไธ็้ข่ฎพ่ฎก
+ ๅฎ็ฐๅพๅ่กฅๅ
็ฎๆณ๏ผๅขๅ ๅฑ้จๅพๅไบฎๅบฆ๏ผไฟๆๅฏนๆฏๅบฆ๏ผ้ฟๅ
ๅคฑ็๏ผ
+ ่ฎพ่ฎกๅพๅ่กฅๅ
็้ข๏ผไปๅทฆๅฐๅณ่กฅๅ
ๅพๅ้ๆญฅๆฟๆขๅๅพๅ็ๅฏ่งๅๆๆใ
== ๅฎ้ชไปฃ็
่ฟๆฏไธไปฝๅๆไปถ html ไปฃ็ ๏ผไฝฟ็จๆถ้่ฆๅจๆฌๅฐๅฏๅจไธไธช http server.
#include_code("../src/brightness/index.html")
ๅ
ทไฝ็ๅ็ๆฏๅฎไนไบไธไธช่กฅๅ
ๅ ๅญ๏ผๅๅซๅฏนๅบๆ้จ๏ผไธญ้ด่ฒ่ฐ๏ผไบฎ้จใๅฏนๆฏไธชๅ็ด ็ๆฏไธช RGB ่ฟ่ก้ๅ๏ผๅนถๅฐๅ
ถไนไปฅๅฏนๅบ็่กฅๅ
ๅ ๅญใ
็้ข่ฎพ่ฎกๅฐฑ็ดๆฅ่ฐ็จๅ็ซฏ็ img-comparison-slider ๅบ๏ผๅฎ็ฐไบๅฏๆๆฝ็ไบฎๆๅฏนๆฏใ
== ๅฎ้ช็ปๆไธๅฟๅพไฝไผ
#figure(
image("result.png", width: 100%),
caption: [่กฅๅ
็้ข ๆๆๅพ],
)
ๅฏไปฅ็ๅบ่กฅๅ
ๆๆ่พๅฅฝ๏ผ็นๅซๆฏๅฏน็ฝ่ฒ่ๆฏ็็ฉไฝๆ็ๅทจๅคงๆๅใไธ่ฟๅฏนไบๆฌ่บซๆฏ้ป่ฒ็็ฉไฝ๏ผๅณไฝฟไนไปฅ่กฅๅ
ๅ ๅญ๏ผๅ
ถไบฎๅบฆๅผ่ฟๆฏ่ฟๅฐ๏ผๆ ๆณ็ๅฐๆๆพ็ๆๆใ
|
https://github.com/MobtgZhang/sues-thesis-typst | https://raw.githubusercontent.com/MobtgZhang/sues-thesis-typst/main/paper/chapters/ch02.typ | typst | MIT License | = ๅ
ฌๅผใๅพ่กจ็ญ่กจ็คบๆนๆณ
== ๅ
ฌๅผ
ๆนไพฟๅฟซๆทๅๅ
ฅๅ
ฌๅผๆฏTypst็ธๅฏนไบWord็ผ่พๅจๆไธบไธป่ฆ็ไผๅฟไนไธ๏ผ็นๅซๆฏ็็ปๆๆกไนๅ๏ผๅจ่พๅ
ฅๅ
ฌๅผ็ๆถๅๅ
ทๆ้ๅธธๅคง็ๆๅๆๆใ
Typst ไธญ็ๅ
ฌๅผๅไธบไธค็ฑป๏ผๅ
ๆฌๆ#text("่กๅ
ๅ
ฌๅผ",fill:rgb(255,0,0))ๅ#text("่ก้ดๅ
ฌๅผ",fill:rgb(255,0,0))๏ผ
ไพๅฆ่ฟๆฏไธไธช่กๅ
ๅ
ฌๅผ
$f(x)=1/(sqrt(2pi)sigma)dot exp(-((x-mu)^2)/(2sigma^2))$ใ
ไธ้ขไธพไพๅ ไธช่ก้ดๅ
ฌๅผ
$ f(x)&= 1/(sqrt(2pi)sigma)dot exp(-((x-mu)^2)/(2sigma^2)) $
ไพๅฆ๏ผๅฎไนไธไธชๅๆฎตๅฝๆฐ
$ f(x)&= cases(
-x^3 + x + 8 &"," x<=2 \
1/2 x^2 &"," 2<x<=10\
x+ 10 &"," x>=10
) $
ไนๅฏไปฅๅฎไนไธไธชๅค่ก็่ฟ็ญ็็ญๅผ๏ผๅฎไนๅฆไธๆ็คบ
$ cos(2x) &= cos^2x - sin^2x
&= 2cos^2x - 1
&= 1 - 2 sin^2x $
ๅฏไปฅๅฐๅคไธช็ญๅผๅฏน้ฝๅๅจๅไธไธช่ฏญๅฅๅๅฝไธญ๏ผไพๅฆ้บฆๅ
ๆฏ้ฆๆน็จ็ป็งฏๅๅฝขๅผ๏ผ
$ cases(
integral.cont_l H dot d l &= integral.double_S J dot d S + integral.double_(S)(diff D)/(diff t) dot S \
integral.cont_(l) EE dot d l &= - integral.double_(S)(diff BB)/(diff t) dot d S \
integral.cont_(S) BB dot S &= 0 \
integral.cont_(S) D dot d S &= integral.triple_(V) rho VV
) $
ๅพฎๅๅฝขๅผ๏ผ
$ cases(
nabla times H &= J + (diff D)/(diff t) \
nabla times E &= - (diff B)/(diff t) \
nabla dot B &= 0 \
nabla dot H &= rho
) $
ๅธฆๆ็ฉ้ตๅฎไน็ๅ
ฌๅผ๏ผ
$ H = -mu dot B = -gamma B_(o) S_(z) = (gamma B_(o))/2 mat(
1, dots.h.c ,1 ;
dots.h.c , dots.down , dots.h.c ;
1 & dots.h.c & 1
) $
ๅจๆฑ่งฃๅธไผๅ้ฎ้ข็ๆถๅ๏ผ้ฎ้ข็ ็ฉถๆๅๆฑ่งฃๅฝ็ปไธบไปฅไธ็ๆน็จๅฝขๅผ๏ผ
$ arg_(x_(j)) min_(j=1,dots.h.c,N) sum_(j=1)^(N)c_(j)x_(j) $
$ s.t. cases(
sum_(j=1)^(N)a_(i j)x_(j)=b_(i) & "," i=1 "," dots.h.c "," m \
x_(j)>=0
) $ <equ:matrix>
ๅจๆ็ซ ๅฝไธญๆฏไธไธชๅ
ฌๅผ็ๅ้ขๅๅฏไปฅๆทปๅ ไธไธชlabel็ๆ ็ญพ๏ผ่ฟๆ ทๅฐฑๅฏไปฅๅบ็จๅ
ฌๅผไบ๏ผไพๅฆ#ref(<equ:matrix>)ๅฐฑๆฏๅๅๆไปฌ่กจ่พพ็็ฉ้ต่กจ่พพๅผใ
|
https://github.com/ryuryu-ymj/mannot | https://raw.githubusercontent.com/ryuryu-ymj/mannot/main/examples/showcase.typ | typst | MIT License | #import "/src/lib.typ": *
#set page(width: auto, height: auto, margin: (x: 2cm, y: 1cm), fill: white)
#set text(24pt)
#show: mannot-init
$
mark(1, tag: #<num>) / mark(x + 1, tag: #<den>, color: #blue)
+ mark(2, tag: #<quo>, color: #red)
#annot(<num>, pos: top)[Numerator]
#annot(<den>)[Denominator]
#annot(<quo>, pos: right, yshift: 1em)[Quotient]
$
|
https://github.com/figarofuga/Typst-template | https://raw.githubusercontent.com/figarofuga/Typst-template/main/CJD/CJD.typ | typst | = Introduction
CJD(Creutz-feldt jacob disease)ใฏRapid progression dementiaใฎไธญใฎไปฃ่กจ็็พๆฃใงใใใ
Rapid progression dementiaใฎๅฎ็พฉใฏๆฑบใพใฃใฆใใชใใใๅคงไฝ2ๅนดไปฅๅ
ใซ้ฒ่กใใ่ช็ฅ็ใจ่จใใใฆใใใ
ๆใ้่ฆใชไบใฏใCJDใฏๆๆๆงใใใไธใซๆฒป็ๆณใ็ขบ็ซใใฆใใชใไบใงใใใ
*ใใใ๏ผ*
- ไพใใฐใ็ตๆ ธใฎไบ
- ไพใใฐใNTMใฎไบ
= ็ไพ
= ใใค็ใ๏ผ
= ่บซไฝๆ่ฆใปๆ้็ต้
= ๆคๆป
== ้ ญ้จMRI
== ่ณๆณข
== ้ซๆถฒๆคๆป
=== RT-Quick
== ๅ
ทไฝ็ใซใฏ๏ผ
ใใฉใคใขใคในใๅบใใ
== ็
็่งฃๅใซใคใใฆ
ๅฝ้ขใงใฏไธๅฏ่ฝ
ใใฌใคใณใใณใฏ
ๆฑไบฌ็ฒพ็ฅ
1. ใใใใชใใจใใใใ
2. ใใใใใใฎใ ใ
ไพใใฐreferenceใฏใใใใใ
|
|
https://github.com/michalrzak/muw-typst-template | https://raw.githubusercontent.com/michalrzak/muw-typst-template/main/README.md | markdown | # About
The repository contains a **Typst template** for a "_Diplomarbeit_" / "_Masterarbeit_" / "_Master thesis_" at the **Medical University of Vienna** (Meduni Wien).
[Typst](https://github.com/typst/typst) is a typesetting system, offering a fun alternative to LaTeX.
The template should follow all guidelines outlined in [Leitfaden](https://ub.meduniwien.ac.at/fileadmin/content/OE/ub/dokumente/Leitfaden_Studierende_Hochschulschriften_MedUni_Wien.pdf) provided by the Medical University of Vienna. Even though the template automates most necessary things, allowing you to concentrate on writing the thesis, I still recommend skimming the document before starting to get an overview of all requirements.
# Known issues
1. The template is only designed around writing the thesis is English. This can be easily changed by editing the template. If you do the work a PR would be appreciated :).
# Acknowledgement
Medical University of Vienna logo from: <https://commons.wikimedia.org/wiki/File:Meduni-wien.svg>
|
|
https://github.com/SkiFire13/master-thesis | https://raw.githubusercontent.com/SkiFire13/master-thesis/master/chapters/2-background.typ | typst | #import "../config/common.typ": *
= Background <section-background>
In this chapter we give an overview of the theoretical background used in the rest of this thesis. We will first recap some basic notions on order theory with special focus on (complete) lattices. Then we will define what a system of fixpoint equations over complete lattices is and what is its solution, along with a number of related concepts in order theory. We will then give a brief introduction to parity games and describe how to characterize the solution of a system of fixpoint equations using a parity game, with some care for efficiency issues. Finally we will introduce two algorithms used to solve parity games which we will be exploiting later on.
#include "./background/1-lattices.typ"
#include "./background/2-tuples.typ"
#include "./background/3-fixpoint-system.typ"
#include "./background/4-applications.typ"
#include "./background/5-parity-games.typ"
#include "./background/6-game-characterization.typ"
#include "./background/7-strategy-improvement.typ"
|
|
https://github.com/jgm/typst-hs | https://raw.githubusercontent.com/jgm/typst-hs/main/test/typ/compiler/import-14.typ | typst | Other | // Unresolved import.
// Error: 23-35 unresolved import
#import "module.typ": non_existing
|
https://github.com/GartmannPit/Praxisprojekt-II | https://raw.githubusercontent.com/GartmannPit/Praxisprojekt-II/main/Praxisprojekt%20II/PVA-Templates-typst-pva-2.0/appendix.typ | typst | #let showAppendix() = [
= Anhang // change heading for other languages
// Write your appendix after the heading within the block
Add your appendix in _appendix.typ_ \ // delete me
#lorem(200) // delete me
] |
|
https://github.com/elteammate/typst-compiler | https://raw.githubusercontent.com/elteammate/typst-compiler/main/src/typesystem-parser.typ | typst | #import "typesystem-lexer.typ": *
#import "typesystem-def.typ": *
#let typesystem_parse = {
(tokens) => {
let token_mapping = if type(ts_token_kind.punc_colon) == "string" {let res = (:); res.insert(ts_token_kind.punc_colon, 0); res.insert(ts_token_kind.ty_array, 1); res.insert(ts_token_kind.ident, 2); res.insert(ts_token_kind.ty_bool, 3); res.insert(ts_token_kind.punc_gt, 4); res.insert(ts_token_kind.ty_int, 5); res.insert(ts_token_kind.ty_arguments, 6); res.insert(ts_token_kind.punc_comma, 7); res.insert(ts_token_kind.ty_none_, 8); res.insert(ts_token_kind.ty_content, 9); res.insert(ts_token_kind.ty_object, 10); res.insert(ts_token_kind.ty_dictionary, 11); res.insert(ts_token_kind.ty_any, 12); res.insert(ts_token_kind.ty_tuple, 13); res.insert(ts_token_kind.alias, 14); res.insert(ts_token_kind.punc_lt, 15); res.insert(ts_token_kind.ty_string, 16); res.insert(ts_token_kind.ty_float, 17); res.insert(ts_token_kind.ty_function, 18); res} else {let res = range(ts_token_kind.len()); res.at(ts_token_kind.punc_colon) = 0; res.at(ts_token_kind.ty_array) = 1; res.at(ts_token_kind.ident) = 2; res.at(ts_token_kind.ty_bool) = 3; res.at(ts_token_kind.punc_gt) = 4; res.at(ts_token_kind.ty_int) = 5; res.at(ts_token_kind.ty_arguments) = 6; res.at(ts_token_kind.punc_comma) = 7; res.at(ts_token_kind.ty_none_) = 8; res.at(ts_token_kind.ty_content) = 9; res.at(ts_token_kind.ty_object) = 10; res.at(ts_token_kind.ty_dictionary) = 11; res.at(ts_token_kind.ty_any) = 12; res.at(ts_token_kind.ty_tuple) = 13; res.at(ts_token_kind.alias) = 14; res.at(ts_token_kind.punc_lt) = 15; res.at(ts_token_kind.ty_string) = 16; res.at(ts_token_kind.ty_float) = 17; res.at(ts_token_kind.ty_function) = 18; res}
let callbacks = (((o,_0,ts,_2)=>mk_type(o,..ts)),((t,_0,ts,_2)=>mk_type(t,..ts)),((f,_0,ret,_1,ts,_2)=>mk_type(f,ret,..ts)),(a => a),((i)=>"any"),(a => a),(a => a),((n,_,t)=>((name:n,ty:t),)),(a => a),((ts,_,t)=>ts+(t,)),((i)=>"tuple"),(()=>()),(a => a),((i)=>"object"),((i)=>"array"),((i)=>"arguments"),((i)=>"none"),((i)=>"float"),((ts,_,n,_1,t)=>ts+((name:n,ty:t),)),(a => a),((d,_1,t,_2)=>mk_type(d,t)),((i)=>"bool"),((i)=>"int"),((i)=>"content"),(a => a),((i)=>"function"),((t)=>(t,)),((a)=>panic("Not implemented (type alias resolution)")),((i)=>i),(a => a),((a,_1,t,_2)=>mk_type(a,t)),((i)=>"string"),(()=>()),(a => a),((i)=>"dictionary"),)
let table = ((0,11,0,8,0,6,9,0,2,3,14,10,7,13,15,0,4,5,12,0,0,1,0,0,0,),(0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,57,0,0,0,0,0,),(0,0,0,0,-23,0,0,-23,0,0,0,0,0,0,0,0,0,0,0,-23,0,0,0,0,0,),(0,0,0,0,-27,0,0,-27,0,0,0,0,0,0,0,0,0,0,0,-27,0,0,0,0,0,),(0,0,0,0,-30,0,0,-30,0,0,0,0,0,0,0,0,0,0,0,-30,0,0,0,0,0,),(0,0,0,0,-29,0,0,-29,0,0,0,0,0,0,0,0,0,0,0,-29,0,0,0,0,0,),(0,0,0,0,-2,0,0,-2,0,0,0,0,0,0,0,0,0,0,0,-2,0,0,0,0,0,),(0,0,0,0,-16,0,0,-16,0,0,0,0,0,0,0,0,0,0,0,-16,0,0,0,0,0,),(0,0,0,0,-32,0,0,-32,0,0,0,0,0,0,0,0,0,0,0,-32,0,0,0,0,0,),(0,0,0,0,-6,0,0,-6,0,0,0,0,0,0,0,0,0,0,0,-6,0,0,0,0,0,),(0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,54,0,0,0,0,0,0,0,0,0,),(0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,51,0,0,0,0,0,0,0,0,0,),(0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,46,0,0,0,0,0,0,0,0,0,),(0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,40,0,0,0,0,0,0,0,0,0,),(0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,16,0,0,0,0,0,0,0,0,0,),(0,0,0,0,-8,0,0,-8,0,0,0,0,0,0,0,0,0,0,0,-8,0,0,0,0,0,),(0,30,19,26,-3,24,27,-3,20,21,32,28,25,31,0,0,22,23,29,0,18,0,17,0,0,),(0,0,0,0,35,0,0,36,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,),(33,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,),(-7,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,),(-19,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,),(-12,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,),(-4,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,),(-18,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,),(-13,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,),(-31,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,),(-14,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,),(-20,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,),(-1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,),(-10,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,),(-21,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,),(-25,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,),(-22,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,),(0,11,0,8,0,6,9,0,2,3,14,10,7,13,15,0,4,5,12,0,0,34,0,0,0,),(0,0,0,0,-28,0,0,-28,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,),(0,0,0,0,-35,0,0,-35,0,0,0,0,0,0,0,0,0,0,0,-35,0,0,0,0,0,),(0,0,37,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,),(38,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,),(0,11,0,8,0,6,9,0,2,3,14,10,7,13,15,0,4,5,12,0,0,39,0,0,0,),(0,0,0,0,-17,0,0,-17,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,),(0,11,0,8,-24,6,9,-24,2,3,14,10,7,13,15,0,4,5,12,0,0,42,0,41,0,),(0,0,0,0,43,0,0,44,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,),(0,0,0,0,-9,0,0,-9,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,),(0,0,0,0,-34,0,0,-34,0,0,0,0,0,0,0,0,0,0,0,-34,0,0,0,0,0,),(0,11,0,8,0,6,9,0,2,3,14,10,7,13,15,0,4,5,12,0,0,45,0,0,0,),(0,0,0,0,-26,0,0,-26,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,),(0,11,0,8,0,6,9,0,2,3,14,10,7,13,15,0,4,5,12,0,0,47,0,0,0,),(0,0,0,0,0,0,0,48,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,),(0,11,0,8,-24,6,9,-24,2,3,14,10,7,13,15,0,4,5,12,0,0,42,0,49,0,),(0,0,0,0,50,0,0,44,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,),(0,0,0,0,-33,0,0,-33,0,0,0,0,0,0,0,0,0,0,0,-33,0,0,0,0,0,),(0,11,0,8,0,6,9,0,2,3,14,10,7,13,15,0,4,5,12,0,0,52,0,0,0,),(0,0,0,0,53,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,),(0,0,0,0,-5,0,0,-5,0,0,0,0,0,0,0,0,0,0,0,-5,0,0,0,0,0,),(0,11,0,8,0,6,9,0,2,3,14,10,7,13,15,0,4,5,12,0,0,55,0,0,0,),(0,0,0,0,56,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,),(0,0,0,0,-15,0,0,-15,0,0,0,0,0,0,0,0,0,0,0,-15,0,0,0,0,0,))
let arg_count = (4,4,6,1,1,1,1,3,1,3,1,0,1,1,1,1,1,1,5,1,4,1,1,1,1,1,1,1,1,1,4,1,0,1,1,)
let goto_index = (21,21,21,21,20,21,21,22,21,23,20,23,21,20,20,20,20,20,22,21,21,20,20,20,24,20,23,21,20,21,21,20,22,21,20,)
let cast_table = (_ => none,_=>ptype.array,x=>x.text,_=>types.bool,_ => none,_=>types.int,_=>types.arguments,_ => none,_=>types.none_,_=>types.content,_=>ptype.object,_=>ptype.dictionary,_=>types.any,_=>ptype.tuple,x=>x.text,_ => none,_=>types.string,_=>types.float,_=>ptype.function,)
let stack = (0, )
let ast_stack = ()
let cur_token = 0
for i in range(9999) { for j in range(9999) {
let state = stack.last()
let terminal = if cur_token < tokens.len() {
token_mapping.at(tokens.at(cur_token).kind)
} else {
19
}
let action = table.at(state).at(terminal)
if action == 57 {
assert(ast_stack.len() == 1)
return ast_stack.first()
} else if action > 0 {
stack.push(action)
ast_stack.push(cast_table.at(terminal)(tokens.at(cur_token)))
cur_token += 1
} else if action < 0 {
let rhs = ()
for _ in range(arg_count.at(action)) {
let _ = stack.pop()
rhs.push(ast_stack.pop())
}
let rule = callbacks.at(action)
ast_stack.push(rule(..rhs.rev()))
let goto_state = table.at(stack.last()).at(goto_index.at(action))
if goto_state > 0 {
stack.push(goto_state)
} else {
panic("Expected shift action")
}
} else {
panic("Parsing error at state: " + repr(stack) + " and token: " +
repr(if cur_token < tokens.len() { tokens.at(cur_token) } else {"EOF"})
+ " at: " + repr(cur_token)
)
}
} }
panic("too complex")
}
} |
|
https://github.com/donghoony/KUPC-2023 | https://raw.githubusercontent.com/donghoony/KUPC-2023/master/description.typ | typst | #import "colors.typ" : KUPC_GREEN, PALE_RED
#import "problem_info.typ" : constructTitle
#import "problems.typ" : contest_problems
#import "emoji/lib.typ" : *
#let mono(s, color: black) = {text(font: "Inconsolata", fill: color)[#s]}
#let bf(s) = {text(weight: "bold")[#s]}
// ์ค๋ฐ๊ฟ์ #linebreak()๋ฅผ ์ค๊ฐ์ ๋ฃ์ผ๋ฉด ๋ฉ๋๋ค.
// ํ์ด์ง ๋๊น์ ๋ฌธ์ ๋ด๋ถ์์ ()๋ฅผ ์๋ก ๋ง๋ค์ด ์ฃผ์ธ์.
// monospace ๋ฌธ์์ด์ #mono("abc")์ ๊ฐ์ด ์ธ ์ ์์ต๋๋ค.
// ๋ฏธ๋ฆฌ ์ ์๋์ง ์์ operation์ ๊ฒฝ์ฐ์๋ #math.op("MEX")์ ๊ฐ์ด ์ฐ๋ฉด ๋ฉ๋๋ค. ๋๋ถ๋ถ์ ์ ์๋ผ ์์ผ๋ ๊ทธ๋ฅ $cos$ ์ ๊ฐ์ด ์ฐ๋ฉด ๋ฉ๋๋ค.
// ์๊ฐ๋ณต์ก๋๋ $cal(O)(N log N)$ ์ ๊ฐ์ด ์จ์ฃผ์ธ์. log๊ฐ ์์ฒด์ ์ผ๋ก ํจ์๊ฐ ์์ต๋๋ค.
// ์ด๋ชจ์ง๋ ๊ทธ๋ฅ ๋ฃ์ผ๋ฉด ๋ฉ๋๋ค. ์ง์ํ์ง ์๋ ์ด๋ชจ์ง๋ ๊นจ์ง๋๋ค. ์ด๋ชจ์ง๋ https://github.com/polazarus/typst-svg-emoji ๋ฅผ ์ฌ์ฉํ์ต๋๋ค.
// ๊ทธ๋ํ๋ ์์ฑ ๊ฐ๋ฅํฉ๋๋ค. https://www.graphviz.org/docs/graph/ ๋ฅผ ์ฐธ๊ณ ํด์ ```render <์ฌ๊ธฐ์ ๊ทธ๋ํ๋ฅผ ์์ฑํ์ธ์>```
#let cell(num, color: black, fill: none, stroke: none) = {
rect(
height: 50pt, width: 50pt,
stroke: stroke,
fill: fill,
)[#align(center + horizon)[#text(fill: color)[#num]]];
}
#let descriptions = (
// 2A
(
(
[- ์ฃผ์ด์ง ๋ฌธ์์ด์์ $1$์ด ์ฐ์์ผ๋ก ๋ฑ์ฅํ๋ ๊ตฌ๊ฐ์ ์์๋ด๋ ๋ฐฉ๋ฒ์ ๋ฌด์์ผ๊น์?],
[- ์ฌ๋ฌ ๊ฐ์ง ๋ฐฉ๋ฒ์ด ์์ง๋ง, ๊ตฌํ์ด ๊ฐ๋จํ ๋ฐฉ๋ฒ์ ์๊ฐํฉ๋๋ค.],
[- #mono(1) ์ดํ์ #mono(0) ์ด ๋ฑ์ฅํ๋ค๋ฉด, ๊ฒ์ ์ค์ ๊ตฌ๊ฐ์ด ๋๋๋ ๊ฒ์ ์๋ฏธํฉ๋๋ค.],
[- ์ฃผ์ด์ง ๋ฌธ์์ด์ ํ์ผ๋ฉด์, #mono("s[i] = 1")์ด๋ฉด์ #mono("s[i+1] = 0")์ธ #mono("i")์ ๊ฐ์๋ฅผ ์
์๋ค.],
[- ํธ์๋ฅผ ์ํด, ์ฃผ์ด์ง ๋ฌธ์์ด์ #mono(0) ์ ์ถ๊ฐํด๋ ๋ต์ ๊ฐ์ต๋๋ค.],
[- ์๊ฐ๋ณต์ก๋๋ $cal(O)(N)$ ์
๋๋ค.],
),
),
// 2B/1A
(
(
[- ๊ฑด๋์ด์ ๊ฑด๊ตฌ์ค๋ ์์ ์ ์ฐจ๋ก์ #bf("๋ฐ๋์") ์์ง์ฌ์ผ ํฉ๋๋ค.],
[- ๊ฑด๋์ด์ ๊ฑด๊ตฌ์ค๋ ๋ค์๊ณผ ๊ฐ์ ๋ค ๊ฐ์ง ์ข
๋ฅ๋ก ์์ง์
๋๋ค: #mono("RR"), #mono("RL"), #mono("LL"), #mono("LR")],
[- ์ด๋ป๊ฒ ์์ง์ด๋๋ผ๋ ๋ ํ๋ ์ด์ด ์ฌ์ด ๊ฐ๊ฒฉ์ #bf("ํ์ง์ฑ")#sub(mono("parity"))์ ๋ณํ์ง ์์ต๋๋ค.],
),
(
[- ์ ์ฅ์ ๊ธธ์ด๊ฐ ์ฃผ์ด์ง๋ ์๊ฐ ์น์๋ ๊ฒฐ์ ๋๋ฉฐ, ์น์๋ ์๋๋ฅผ ํฅํด ์ ์งํฉ๋๋ค.],
[- ํจ์์ ๊ฒฝ์ฐ ์์ผ๋ก ๊ฐ๋ฉด ํจ๋ฐฐ๋ก ๋ ๋น ๋ฅด๊ฒ ๋๋ฌํ๋ฏ๋ก, ๊ฐ๋ฅํ๋ค๋ฉด ๋ค๋ก ํํดํฉ๋๋ค.],
[- ์ ์ฅ์ ๋ฒ์ด๋๋๋ก ์ด๋ํ ์ ์์ผ๋ฏ๋ก, #bf("๋ ํ๋ ์ด์ด๊ฐ ๊ฐ๊ฒฉ์ ๋จ์กฐ๊ฐ์")ํฉ๋๋ค.],
),
(
[- ๊ฐ๊ฒฉ์ ์ง์๋ก ๋ง๋๋ ์ฌ๋์ ๊ฒฐ๊ตญ ๋ ํ๋ ์ด์ด ์ฌ์ด์ ๊ฑฐ๋ฆฌ๋ฅผ $0$์ผ๋ก ๋ง๋ญ๋๋ค.],
[- ํ๋ ์ด์ด ์ฌ์ด์ ๊ฑฐ๋ฆฌ๊ฐ $0$์ด ๋๋ ์๊ฐ, ๋ค์ ์ฐจ๋ก์ ํ๋ ์ด์ด๋ ๊ณต๊ฒฉํ ์ ์์ต๋๋ค.],
[- ์ฃผ์ด์ง ์ ์ฅ์ ๊ธธ์ด๊ฐ ์ง์๋ผ๋ฉด, ์ ๊ณต์ด ๋จผ์ ๋ ์ฌ์ด์ ๊ฐ๊ฒฉ์ ํ์๋ก ๋ง๋ญ๋๋ค.],
[- ํ์๋ผ๋ฉด, ์ ๊ณต์ด ๋ ์ฌ์ด์ ๊ฐ๊ฒฉ์ ์ง์๋ก ๋ง๋ญ๋๋ค.],
[- ๋ฐ๋ผ์ ์ ์ฅ์ ๊ธธ์ด๊ฐ ์ง์์ธ ๊ฒฝ์ฐ, ๊ฑด๋์ด๊ฐ ์น๋ฆฌํฉ๋๋ค.],
[- ์ฃผ์ด์ง ์ ์ฅ์ ๊ธธ์ด์ ํ์ง์ฑ์ ํ๋จํ๋ฏ๋ก ์๊ฐ๋ณต์ก๋๋ $cal(O)(1)$์
๋๋ค.],
[],[],
[#emoji.arm.muscle $N times N$ ์ ์ฅ์์ ๊ฐ ํ๋ ์ด์ด๊ฐ $(1,1)$, $(N,N)$์์ ์์ํ๋ฉด ๋๊ฐ ์น๋ฆฌํ ๊น์?]
),
),
// 2C
(
(
[- ๋ฐ๋ฅ์ $N$์ด ์ฃผ์ด์ก์ ๋, ๋ฐ๋ฅ์๊ฐ $N$์ธ ๊ธธ์ด $L$์ ์๋ ์๋ฅผ ๊ตฌํด์ผ ํฉ๋๋ค.],
[- ๊ธธ์ด $L$์ ๋ชจ๋ ์์ ๋ํด์ ๋ฐ๋ฅ์๊ฐ ๋๋์ง ํ์ธํ๋ ๊ฒ์ ์ค๋ ๊ฑธ๋ฆฝ๋๋ค.],
[- ๊ณฑ์
์ ์ฑ์ง์ ํ์ฉํด์ ์ฝ๊ฒ ๋ฌธ์ ๋ฅผ ํด๊ฒฐํด ๋ด
์๋ค.]
),
(
[- ๊ณฑ์
์ ํญ๋ฑ์์ ์ด์ฉํฉ์๋ค. $1$์ ์ฌ๋ฌ ๋ฒ ๊ณฑํด๋ $1$์
๋๋ค.],
[- $1$์ $L-1$๋ฒ ์ ์ ๋ค, $N$๋ฅผ ๋ค์ ๋ง๋ถ์ธ ์์ ๋ฐ๋ฅ์๋ $N$์
๋๋ค.],
[- ์๋ ์๋ $0$์ผ๋ก ์์ํ์ง ์์์ ์ฃผ์ํฉ์๋ค.]
),
),
// 2D/1B
(
(
[- ํ์์ ํค๊ฐ ๊ฐ์ ์์ด ์กด์ฌํ์ง ์๋๋ค๋ฉด, ๋ชจ๋ ํ์์ด ์ฐธ์ฌํ ์ ์์ต๋๋ค.],
[- ๋ชจ๋๊ฐ ํ ์ชฝ์ ๋ฐ๋ผ๋ณด๊ณ , ๋ฐ๋ผ๋ณด๋ ๋ฐฉํฅ์ผ๋ก ํค๊ฐ ์์์ง๋๋ก ์ค์ธ์ฐ๋ฉด ๋ฉ๋๋ค.],
[- ํ์์ ํค๊ฐ ๊ฐ์ ์์ด ์กด์ฌํ๋ ๊ฒฝ์ฐ์๋ ๋ช ๋ช
๊น์ง ์ฐธ์ฌํ ์ ์์๊น์?],
),
(
[- ๋ ๋ช
์ ํค๊ฐ ์๋ก ๊ฐ๋ค๋ฉด, ์๋ก ๋ฐ๋ ๋ฐฉํฅ์ ๋ณด๊ณ ์๋ฉด ๋ฉ๋๋ค.],
[- ์ธ ๋ช
์ ํค๊ฐ ์๋ก ๊ฐ๋ค๋ฉด, ํ ๋ช
์ ์ด๋ ์ชฝ์ ๋ณด๋ ์ ํํ ํ์ด๋ฐ์ ๋์น ์ ์์ต๋๋ค.],
[- ๋ฐ๋ผ์ ํค๊ฐ ๊ฐ์ ์ฌ๋์ #bf("์ต๋ ๋ ๋ช
")๊น์ง๋ง ์ฐธ์ฌํ ์ ์์ต๋๋ค.],
[- ์ค์ ์ธ์ธ ์ ์๋์ง์ ์ฌ๋ถ๋ฅผ ๋ฌผ์ด๋ณด์์ผ๋ฏ๋ก, ๊ฐ ์ฌ๋๋ค์ ํค์ ๋ํด์ ์ฐธ์ฌํ ์ ์๋ ์ฌ๋์ ์๋ฅผ ์ธ์ด ์ค์๋ค.],
[- ์๊ฐ๋ณต์ก๋๋ $cal(O)(N)$์
๋๋ค.],
[],[],
[#emoji.arm.muscle ์ฌ๋ฐ๋ฅด๊ฒ ์ค ์ธ์ฐ๋ ๋ฐฉ๋ฒ ์ค ํ๋๋ฅผ ๊ตฌํ ์ ์์๊น์?]
),
),
// 2E
(
(
[- ์ผ์ชฝ ์ ๋ฐ์ ๋ฌธ์์ ์ค๋ฅธ์ชฝ ์ ๋ฐ์ ๋ฌธ์์ ๊ตํ์ ํตํด ํฐ๋ฆฐ๋๋กฌ์ ๋ง๋ค์ด ๋ด
์๋ค.],
[- ์ฐ์ฐ์ ํตํด ์์์ ์์น์ ์กด์ฌํ๋ ๋ ๋ฌธ์๋ฅผ ๊ตํํ ์ ์๋ค๋ฉด, #linebreak() ๋ชจ๋ ๋ฌธ์๋ฅผ ์ํ๋ ๊ณณ์ ๋ฐฐ์นํ ์ ์์ต๋๋ค. ๊ณผ์ฐ ๊ฐ๋ฅํ ๊น์?#v(0.5em)],
[- ํธ์์ ๋ฐฐ์ด์ ๊ธธ์ด๊ฐ ์ง์๋ผ๊ณ ๊ฐ์ ํฉ์๋ค. ๊ตํํ๋ ๊ฒฝ์ฐ์ ์๋ ๋ ๊ฐ์ง์
๋๋ค. ],
[#h(2em) #emoji.ast ๋ ๋ฌธ์๊ฐ ์๋ก ๋ค๋ฅธ ์ ๋ฐ์ ์ํ๋ ๊ฒฝ์ฐ],
[#h(2em) #emoji.ast ๋ ๋ฌธ์๊ฐ ๊ฐ์ ์ ๋ฐ์ ์ํ๋ ๊ฒฝ์ฐ],
),
(
[- ๋ ๋ฌธ์๊ฐ ์๋ก ๋ค๋ฅธ ์ ๋ฐ์ ์ํ๋ ๊ฒฝ์ฐ, ๋ ์์๋ฅผ ์ง์ ๊ตํํ ์ ์์ต๋๋ค.],
[- ๋ ๋ฌธ์๊ฐ ์๋ก ๊ฐ์ ์ ๋ฐ์ ์ํ๋ ๊ฒฝ์ฐ์๋ ๋ ์์๋ฅผ ์ง์ ๊ตํํ ์ ์์ต๋๋ค.],
[- ์ด๋, ๋ฐ๋์ชฝ ์ ๋ฐ์ ์ํ๋ ์์ ํ ๊ฐ๋ฅผ ์์๋ก ์ฌ์ฉํด ๊ตํํ ์ ์์ต๋๋ค.],
[
#let cell(num, color: black, fill: none) = {
rect(
height: 50pt, width: 50pt,
stroke: none,
fill: fill,
)[#align(center + horizon)[#text(fill: color)[#num]]];
}
#set table(align: center, stroke: gray + 0.5pt, inset: 0pt, columns: 4)
#align(center)[
#table(
)[#cell(1, color: blue, fill:rgb("ddd"))][#cell(2)][#cell(3, color: PALE_RED)][#cell(4, color: PALE_RED, fill: rgb("ddd"))]
]
#v(-0.8em)
#align(center)[
#table(
)[#cell(4, color: PALE_RED, fill:rgb("ddd"))][#cell(2)][#cell(3, color: PALE_RED, fill:rgb("ddd"))][#cell(1, color: blue)]
]
#v(-0.8em)
#align(center)[
#table(
)[#cell(3, color: PALE_RED, fill:rgb("ddd"))][#cell(2)][#cell(4, color: PALE_RED)][#cell(1, color: blue, fill:rgb("ddd"))]
]
#v(-0.8em)
#align(center)[
#table(
)[#cell(1, color: blue)][#cell(2)][#cell(4, color: PALE_RED)][#cell(3, color: PALE_RED)]
]
]
),
(
[- ๋ฌธ์์ด์ ๊ธธ์ด๊ฐ ํ์์ธ ๊ฒฝ์ฐ์๋ ๊ฐ์ด๋ฐ ๊ธ์๋ฅผ ๊ตํํ ์ ์์์ ์ ์ํฉ์๋ค.],
[- ํด๋น ๋ฌธ์๋ฅผ ์ธ์ง ์๊ณ , ์ง์ ๊ธธ์ด์ ๋ฌธ์์ด์ด๋ผ๊ณ ์๊ฐํ๋ฉด ๋ฉ๋๋ค.],
[- ํฐ๋ฆฐ๋๋กฌ์ด ๋๊ธฐ ์ํด์๋ ์ ์ชฝ์ ๊ฐ์ ์์ ๋ฌธ์๊ฐ ์กด์ฌํด์ผ ํฉ๋๋ค.],
[- ์ํ๋ฒณ์ด ๋ฌธ์์ด์ ์ง์๋ฒ ๋ฑ์ฅํ๋ค๋ฉด ์ ์ชฝ์ ๊ณจ๊ณ ๋ฃจ ๋ถ๋ฐฐํ ์ ์์ต๋๋ค.],
[- ์๊ฐ๋ณต์ก๋๋ $cal(O)(N)$์
๋๋ค.],
),
),
(
(
[- ๋ ๊ฐ์ ๋ง๋๊ณผ ๊น๋ ํ๋๋ฅผ ๊ณจ๋ผ ๋ง๋ค ์ ์๋ ์ผ๊ฐํ ๋์ด ์ค ์ต๋๊ฐ์ ๊ตฌํฉ์๋ค.],
[- ๋จ, ๋์ด๊ฐ $R$ ์ดํ์ฌ์ผ ํฉ๋๋ค.],
[- ๊ฐ๋จํ ๋ฐฉ๋ฒ์ ๋ชจ๋ ๋ง๋ ์์ ๋ํด์, ๋ชจ๋ ๊น๋๋ฅผ ํ์ํ๋ ๋ฐฉ๋ฒ์
๋๋ค.],
[- ํด๋น ํ์ด๋ $cal(O)(N^2M)$์ผ๋ก, ์ ํ ์๊ฐ ์์ ํด๊ฒฐํ ์ ์์ต๋๋ค.],
),
(
[- ๋ง์ฝ ๋ฐ๋ณ์ ๊ณ ์ ํ๋ค๋ฉด, ์ฃผ์ด์ง ๊น๋๋ฅผ ์ ๋ ฌํ ๋ค ์ด๋ถํ์์ ์ฌ์ฉํ ์ ์์ต๋๋ค.],
[- ๊ฐ๋ฅํ ๋ชจ๋ ๋ฐ๋ณ์ ๊ตฌํ๋ ๋ฐ์๋ $cal(O)(N^2)$์
๋๋ค.],
[- ์ด๋ถ ํ์์ ๊น๋๋ฅผ ํ์ฉํ๊ธฐ ์ํด ๊น๋๋ฅผ ์ ๋ ฌํ๋ ๋ฐ $cal(O)(M log M)$์
๋๋ค.],
[- ํ๋์ ๋ฐ๋ณ ๊ธธ์ด์ ๋ํด์, $R$ ์ดํ์ธ ์ต๋ ๋์ด๋ฅผ ๊ตฌํ๋ ๋ฐ $cal(O)(log M)$์ด ๋ญ๋๋ค.],
[- $cal(O)(M log M + N^2 log M)$ ์ ์ถฉ๋ถํ ํต๊ณผํ ์ ์์ต๋๋ค.]
),
),
(
(
[- ์ค์์น๋ฅผ ๋๋ฅด๋ฉด $3$์ด๋์ ๋ ๋ฐฐ์ ์ ์๋ฅผ ์ป์ ์ ์์ต๋๋ค.],
[- ์์์ ์ ์๋ ๋ ๋ฐฐ๋ก ๊ณ์ฐ๋จ์ ์ ์ํด์ผ ํฉ๋๋ค.],
[- ๊ทธ๋ฆฌ๋ํ๊ฒ ์ค์์น๋ฅผ ๋๋ฅด๋ ์ ๋ต์ ์ค๋ต์ ๋ฐ์ต๋๋ค.],
[- ์ค์์น๋ฅผ ๋๋ฅธ ๋ค, $i$์ด ์์ ์ ์ค์์น์ ํจ๊ณผ๊ฐ $j$์ด ๋จ์๋ค๋ ๊ฒ์ ํ์ฉํฉ์๋ค.],
),
(
[- $i$์ด์ $j=0$์ด๋ผ๋ฉด, $i-1$์ด์ $j=0$์ด๊ฑฐ๋ $j=1$์ธ ๊ฒฝ์ฐ ์ค ์ต๋๊ฐ์ ๊ฐ์ ธ์ต์๋ค.],
[- $j=1$์ด๋ผ๋ฉด ์์ง ์ค์์น์ ํจ๊ณผ๊ฐ ๋จ์์์ผ๋ฏ๋ก $i-1$์ด์ $j=2$๋ฅผ ๊ฐ์ ธ์ต๋๋ค.],
[- $j=2$์ธ ๊ฒฝ์ฐ๋ ๋ง์ฐฌ๊ฐ์ง๋ก $i-1$์ด์ $j=3$์ ๊ฐ์ ธ์ต๋๋ค.],
[- $j=3$์ ์ง๊ธ ์ค์์น๋ฅผ ๋๋ฅธ ์ํฉ์ผ๋ก, $i-1$์ด์ $j=0$์ด๊ฑฐ๋ $j=1$์ธ ๊ฒฝ์ฐ์์ ๊ฐ์ ธ์ฌ ์ ์์ต๋๋ค.],
[- ์ค์์น์ ํจ๊ณผ๊ฐ ์ ์ฉ๋๋ ๊ฒฝ์ฐ์๋ ๋ฐฐ์ด์ ๊ฐ์ ๋๋ฐฐ๋ฅผ ๋ํด์ค์๋ค.],
[- ์๊ฐ๋ณต์ก๋๋ $cal(O)(N)$์
๋๋ค.]
)
),
(
(
[ #let cell(num, color: black, fill: none, stroke: none) = {
rect(
height: 50pt, width: 50pt,
stroke: stroke,
fill: fill,
)[#align(center + horizon)[#text(fill: color)[#num]]];
}
#set table(align: center, stroke: rgb("add8e6") + 1pt, inset: 0pt, columns: 5)
#align(center)[
#table()[#cell(1)][#cell(2)][#cell(3, stroke: red)][#cell(4)][#cell(5)][#cell(5)][#cell(2)][#cell(1, stroke: red)][#cell(4)][#cell(6)][#cell(0)][#cell(2)][#cell(4,fill: rgb("ddd"), stroke: red)][#cell(2)][#cell(1)][#cell(0)][#cell(0)][#cell(2)][#cell(1)][#cell(7)]
]
],
[- ์ผ๊ฐํธ์
๋๋ค. #emoji.fishing],
[- ๋ฌด๊ฒ์ถ $3$์ ๋ฌ์ $3$์ ํ์ผ๋ก ๋์ฏ๋๋ฅผ ํ๋๋ฅด๋ฉด ํ์ ์นธ์ ์ฐ๊ฐ ๋๋ฌํฉ๋๋ค.],
[- ๋นจ๊ฐ ์ ํ
๋๋ฆฌ์ ํด๋นํ๋ ์นธ์ ์กด์ฌํ๋ $8$๋ง๋ฆฌ์ ๋ฌผ๊ณ ๊ธฐ๊ฐ ์ฌ๋ก์กํ๋๋ค.]
),
(
[ #set table(align: center, stroke: rgb("add8e6") + 1pt, inset: 0pt, columns: 5)
#align(center)[
#table()[#cell(1)][#cell(2, stroke: red)][#cell(3, fill: rgb("add8e6"))][#cell(4)][#cell(5)][#cell(5)][#cell(2, fill: rgb("ddd"), stroke: red)][#cell(1, fill: rgb("add8e6"))][#cell(4)][#cell(6)][#cell(0)][#cell(2)][#cell(4, fill: rgb("add8e6"))][#cell(2)][#cell(1)][#cell(0)][#cell(0)][#cell(2)][#cell(1)][#cell(7)]
]
],
[- ๋์ฏ์ค์ ํ ๋ฐํด ๊ฐ์์ฌ๋ฆฌ๋ฉด ์ฐ์ ์์น๊ฐ ๋ฐ๋๋๋ค.],
[- ๋ฐ๋ ์นธ์์ ๋ฌผ๊ณ ๊ธฐ $4$๋ง๋ฆฌ๊ฐ ์ฌ๋ก์กํ๋๋ค.],
[- ์ด๋ฅผ ๋ฏธ๋ผ๊ฐ ์ผ๊ฐํธ๋ฅผ ๋ฒ์ด๋ ๋๊น์ง ๋ฐ๋ณตํฉ๋๋ค.],
),
(
[ #let cell(num, color: black, fill: none, stroke: none) = {
rect(
height: 50pt, width: 50pt,
stroke: stroke,
fill: fill,
)[#align(center + horizon)[#text(fill: color)[#num]]];
}
#set table(align: center, stroke: rgb("add8e6") + 1pt, inset: 0pt, columns: 5)
#align(center)[
#table()[#cell(1, fill: rgb("add8e6"))][#cell(2, fill: rgb("add8e6"))][#cell(3, fill: rgb("add8e6"))][#cell(4)][#cell(5)][#cell(5)][#cell(2, fill: rgb("add8e6"))][#cell(1, fill: rgb("add8e6"))][#cell(4)][#cell(6)][#cell(0)][#cell(2)][#cell(4, fill: rgb("add8e6"))][#cell(2)][#cell(1)][#cell(0)][#cell(0)][#cell(2)][#cell(1)][#cell(7)]
]
],
[- ์ฟผ๋ฆฌ๊ฐ ์ฃผ์ด์ง ๋๋ง๋ค ๋ค์๊ณผ ๊ฐ์ ๊ณ๋จ ๋ชจ์์ ์น ํด์ง ์์ ํฉ์ ๊ตฌํ๋ ๋ฌธ์ ์
๋๋ค.],
[- ๊ฐ๋จํ๊ฒ ์๊ฐํ๋ฉด, ๋งค ์ฟผ๋ฆฌ๋ง๋ค ๊ณ์ฐํ๋ $cal(O)(N M Q)$ ํ์ด๊ฐ ์์ต๋๋ค #emoji.face.explode.],
[- ์ด๋ ์๊ฐ ์ด๊ณผ์
๋๋ค. ์ด๋ป๊ฒ ๋น ๋ฅด๊ฒ ํด๊ฒฐํ ์ ์์๊น์?]
),
(
[- ์ฌ๋ฌ ๋ฐฉ๋ฒ ์ค ํ๋๋ฅผ ์๊ฐํฉ๋๋ค.],
[- 2์ฐจ์ ๋ฐฐ์ด์์ ์ง์ฌ๊ฐํ ๋ชจ์์ ๋ถ๋ถํฉ์ $cal(O)(N M + Q)$์ ๊ตฌํ ์ ์์ต๋๋ค.],
[- ์ฟผ๋ฆฌ๊ฐ ์ง์ฌ๊ฐํ์ ๋ถ๋ถํฉ์ ๊ตฌํ๊ฒ๋ ์ผ๊ฐํธ๋ฅผ ์ฌ๋ฐฐ์นํ ์ ์์๊น์?],
),
(
[
#set table(align: center, stroke: rgb("add8e6") + 1pt, inset: 0pt, columns: 3)
#align(center)[
#grid(columns: 3)[
#align(center + horizon)[
#table()[#cell(1, fill: rgb("add8e6"))][#cell(2,fill: rgb("add8e6"))][#cell(3,fill: rgb("add8e6"))][#cell(5)][#cell(2,fill: rgb("add8e6"))][#cell(1,fill: rgb("add8e6"))][#cell(0)][#cell(2)][#cell(4,fill: rgb("add8e6"))]]
][#align(center + horizon)[#h(3em)->#h(3em)]][
#align(center + horizon)[
#table()[#cell(0, fill: rgb("add8e6"))][#cell(0, fill: rgb("add8e6"))][#cell(3, fill: rgb("add8e6"), stroke: PALE_RED)][#cell(0,fill: rgb("add8e6"))][#cell(2,fill: rgb("add8e6"), stroke: PALE_RED)][#cell(1,fill: rgb("add8e6"), stroke: PALE_RED)][#cell(1, fill: rgb("add8e6"), stroke: PALE_RED)][#cell(2, fill: rgb("add8e6"), stroke: PALE_RED)][#cell(4,fill: rgb("add8e6"), stroke: PALE_RED)][#cell(5, stroke: PALE_RED)][#cell(2, stroke: PALE_RED)][#cell(0)][#cell(0, stroke: PALE_RED)][#cell(0)][#cell(0)]]
]
]
],
[- ๊ฐ๋ฅํฉ๋๋ค.],
[- ์๊ฐ๋ณต์ก๋๋ 2์ฐจ์ ๋ถ๋ถํฉ๊ณผ ๊ฐ์ $cal(O)(N M + Q)$์
๋๋ค.],
),
(
[- ์๋์ชฝ์ผ๋ก ๋์ ํฉ์ ๊ตฌํด์ค ๋ค, ์ค๋ฅธ์ชฝ ์๋ ๋๊ฐ์ ๋ฐฉํฅ์ผ๋ก ๋์ ํฉ์ ๊ตฌํด๋๊ฐ๋ ์ ๋ต์ ๊ตฌํ ์ ์์ต๋๋ค.],
[],[],
[
#let c1 = rgb(240,229,235);
#let c2 = rgb(212,236,220)
#let c3 = rgb(252,249,218)
#let c4 = rgb(252,223,215)
#set table(align: center, stroke: rgb("add8e6") + 1pt, inset: 0pt, columns: 3)
#align(center)[
#grid(columns: 5)[
#align(center + horizon)[
#table()[#cell(1, fill: c1)][#cell(2,fill: c2)][#cell(3,fill: c3)][#cell(5, fill: c1)][#cell(2,fill: c2)][#cell(1,fill: c3)][#cell(0, fill: c1)][#cell(2, fill: c2)][#cell(4,fill: c3)]]
][#align(center + horizon)[#h(1em)->#h(1em)]][#align(center + horizon)[
#table()[#cell(1, fill: c1)][#cell(2,fill:c2)][#cell(3)][#cell(6,fill:c3)][#cell(4,fill: c1)][#cell(4,fill: c2)][#cell(6)][#cell(6, fill:c3)][#cell(8,fill: c1)]]][#align(center + horizon)[#h(1em)->#h(1em)]][
#table()[#cell(1)][#cell(2)][#cell(3)][#cell(6)][#cell(5)][#cell(6)][#cell(6)][#cell(12)][#cell(13)]
]
]
],
),
),
(
(
[- ์ฃผ์ด์ง ๋ฑ๊ตฃ๊ธธ์ ๊ทธ๋ํ๋ก ๋ชจ๋ธ๋งํด ๋ด
์๋ค.],
[- ๊ฐ ์นธ์ ์ฐ์ธ ์๋งํผ ์์ชฝ ๋ฐฉํฅ์ผ๋ก ๋จ์ด์ง ์นธ์ผ๋ก ํฅํ๋ ๊ฐ์ ์ ๋ง๋ค ์ ์์ต๋๋ค.],
[- ์ต๋ ๋ ๋ฒ ๋ฐฉํฅ์ ๋ฐ์ ํ ์ ์์ผ๋ฏ๋ก, ๊ฐ์ ์นธ์ด๋ผ๋ $0$๋ฒ ๋ฐ์ ํ์ ๋์ $2$๋ฒ ๋ฐ์ ํ์ ๋๋ ๋ค๋ฅด๊ฒ ์๊ฐํด์ผ ํฉ๋๋ค.],
),
(
[- ์ ์ ์ ์ธ ๊ฐ๋ก ๋๋์ด ์๋์ ๊ฐ์ ๊ทธ๋ํ ๋ชจํ์ ์๊ฐํ ์ ์์ต๋๋ค.],
[#align(center)[#image("images/time.png", width: 70%)]]
),
(
[- ๋ฌธ์ ์ ์ ๋ต์ $1$๋ฒ ์ ์ ์์ ํ๊ต์ ํด๋นํ๋ ์ ์ ๋ค๊น์ง์ ์ต์ฅ๊ฑฐ๋ฆฌ์ ๊ฐ์ต๋๋ค.],
[- ๊ตฌ์ถํ ๊ทธ๋ํ๋ ์ฌ์ดํด ์๋ ๋ฐฉํฅ ๊ทธ๋ํ์
๋๋ค.],
[- $1$๋ฒ ์ ์ ์์ ์์์ ๋ ฌ์ ์ํํ ๋ค, ์ ๋ ฌํ ์์๋๋ก ์ ๋ต์ ๊ฐฑ์ ํด๋๊ฐ๋ฉด ๋ฉ๋๋ค.],
[- ํ๊ต์ ์ฒ์ ๋์ฐฉํ ์๊ฐ์ ๋ฆ์ถ๋ ๊ฒ์ ์ ์ํฉ์๋ค. ํ๊ต์์ ๋๋์๊ฐ๋ ๊ฐ์ ์ ์กด์ฌํ ์ ์์ต๋๋ค.],
[- ์๊ฐ๋ณต์ก๋๋ $cal(O)(N)$์
๋๋ค.],
),
(
[- ๋ ์ฌ์ด ํ์ด๋ก, ๋จ์ํ๊ฒ ์ค๋ฅธ์ชฝ์ผ๋ก ํ ๋ฒ, ์ผ์ชฝ์ผ๋ก ํ ๋ฒ, ๋ค์ ์ค๋ฅธ์ชฝ์ผ๋ก ํ ๋ฒ DP๋ฅผ ํ์ด๋ ํด๊ฒฐํ ์ ์์ต๋๋ค.],
[- ์์ง ๋์๊ฒ ์ค๋ ๊ฒฝ๋ก๊ฐ ์๊ฑฐ๋ ์ด๋ฏธ ํ๊ต์ ๋์ฐฉํ ๊ฒฝ์ฐ, ์นธ์ ์ซ์๊ฐ $0$์ด ์ฐ์ธ ๊ฒฝ์ฐ ๋ฑ์ ์ ์ฒ๋ฆฌํด์ผ ํฉ๋๋ค.],
[- ์๊ฐ๋ณต์ก๋๋ ์์ ๊ฐ์ $cal(O)(N)$์ด์ง๋ง, ์์๊ฐ ์์ ๋ ๋น ๋ฅด๊ฒ ํต๊ณผํฉ๋๋ค.],
)
),
(
(
[- ์ฃผ์ด์ง ๋ฌธ์์ด์ ํ๋์ ์งํฉ์ผ๋ก ์๊ฐํฉ๋๋ค.],
[- ์๋ฅผ ๋ค์ด ๋ฌธ์์ด์ด #mono("0011223344")๋ผ๋ฉด ๋์๋๋ ์งํฉ์ ${0,1,2,3,4}$์
๋๋ค.],
[- ์ซ์๋ $10$๊ฐ ์ด๋ฏ๋ก ๋ง๋ค์ด์ง ์ ์๋ ์งํฉ์ ๊ฐ์๋ $2^10 = 1024$๊ฐ์
๋๋ค.],
[- ์ด์ ์งํฉ ๋ ๊ฐ๋ฅผ ํฉ์ณ ํฌ๊ธฐ๊ฐ $K$์ธ ์งํฉ์ ๊ฐ์๋ฅผ ์ธ๋ฉด ๋ฉ๋๋ค.],
),
(
[- ๊ทธ๋ผ ํฌ๊ธฐ๊ฐ $K$์ธ ์งํฉ์ ๊ฐ์๋ ์ด๋ป๊ฒ ์
๊น์?],
[- ๋ง๋ค์ด์ง ์ ์๋ $1024$๊ฐ์ ์งํฉ ์ค $A union B$์ ์์์ ๊ฐ์๊ฐ $K$๊ฐ์ธ ๋ ์งํฉ $A$, $B$๋ฅผ ์์๋ฅผ ๊ณ ๋ คํ์ง ์๊ณ ๋ฝ์ต๋๋ค.],
[- $A=B$์ผ ๋๋ ์ ๋ต์ $(#math.op("cnt")\(A\) times (#math.op("cnt") (A) - 1))/2$๋ฅผ ๋ํฉ๋๋ค.],
[- $A!=B$์ผ ๋๋ ์ ๋ต์ $#math.op("cnt") (A) times #math.op("cnt") (B)$๋ฅผ ๋ํฉ๋๋ค.],
[- ์๊ฐ๋ณต์ก๋๋ $cal(O)(N + 1024^2 times 10)$์
๋๋ค.],
[- ๋นํธ์งํฉ์ ์ฌ์ฉํ๋ฉด $cal(O)(N + 1024^2)$์ผ๋ก ์ค์ผ ์ ์์ง๋ง, ์ฌ์ฉํ์ง ์์๋ ๋ฉ๋๋ค.]
),
),
(
(
[- ์ฐ์ ์ธ์ #mono("NO", color:PALE_RED) ๋ฅผ ์ถ๋ ฅํด์ผํ ์ง ์๊ฐํด๋ด
๋๋ค.],
[- #math.op("MEX")์ ์ ์์ ์ํด, ๊ธธ์ด๊ฐ $N$์ธ ์์ด์ #math.op("MEX")๋ $N+1$๋ณด๋ค ํด ์ ์์ต๋๋ค.],
[- $A$๋ ์์ด์ด๊ธฐ ๋๋ฌธ์ $B_N = N+1$์
๋๋ค.],
[- $S_i = {A_1, A_2, dots, A_i}$๋ผ๊ณ ํ ๋, $S_i subset S_(i+1)$์ด๋ฏ๋ก #linebreak() $B_i > B_(i+1) (1 <= i <= N-1)$์ผ ์ ์์ต๋๋ค. ์ฆ $B$๋ #bf("๋จ์กฐ์ฆ๊ฐ")ํฉ๋๋ค.],
[- ์ ์ธ ๊ฐ์ง ๊ท์น์ ์งํค์ง ์๋๋ค๋ฉด #mono("NO", color:PALE_RED)๋ฅผ ์ถ๋ ฅํด์ผ ํฉ๋๋ค.],
[- ๊ทธ ์ด์ธ์ ๊ฒฝ์ฐ์๋ ๋ชจ๋ ๊ฐ๋ฅํ ๊น์?],
),
(
[- ๋ช ๊ฐ์ง ๊ด์ฐฐ์ ํด ๋ด
์๋ค.],
[- ๋ง์ฝ $A_i = K$๋ผ๋ฉด, $i<=j$์ผ ๋ $B_j = K$์ผ ์ ์์ต๋๋ค.],
[- $K$๋ฅผ ํฌํจํ๋ ์งํฉ์ #math.op("MEX")๋ ์ ์์ $K$์ผ ์ ์๊ธฐ ๋๋ฌธ์
๋๋ค.],
[- ๊ฒฐ๊ตญ $B_j = K$์ผ ๋, $A_i = K (j<i)$์
๋๋ค.]
),
(
[- $B_i != B_(i+1) (1 <= i <= N-1)$์ธ ๊ฒฝ์ฐ์ ์ฃผ๋ชฉํฉ๋๋ค.],
[- #math.op("MEX")๊ฐ์ด $B_(i+1)$์ด๊ธฐ ์ํด์๋ ํด๋น ์งํฉ์ด $B_i$๋ฅผ ๊ฐ์ง๊ณ ์์ด์ผ ํฉ๋๋ค.],
[- ์ด์ ๊ด์ฐฐ๊ณผ ์ข
ํฉํ๋ฉด $B_i != B_(i+1)$์ผ ๋, $A_(i+1) = B_i$๊ฐ ๋จ์ ์ ์ ์์ต๋๋ค.],
),
(
[- ์ด์ ๋จ์ ๊ฐ์ ๋ฐฐ์นํ๋ ๋ฐฉ๋ฒ์ ์ฌ๋ฌ ๊ฐ์ง๊ฐ ์์ต๋๋ค.],
[- ๊ทธ ์ค ํ๋๋ ์์ ์๋ถํฐ ๋น ๊ณณ์ ์ฑ์ ๋ฃ๋ ๊ฒ์
๋๋ค.],
[- ์ ์ด ๋ฐฉ๋ฒ์ด ๊ฐ๋ฅํ ๊น์?],
),
(
[- ์ฑ์์ผํ๋ ๊ณณ์ $B_(i-1) = B_i$์ธ $A_i$์
๋๋ค.],
[- ํด๋น ๋ฐฉ๋ฒ์ผ๋ก ๋น ๊ณณ์ ๋ฐฐ์นํ๋ฉด $B_i < A_i$์
๋๋ค.],
[- #math.op("MEX")๊ฐ์ด $B_i$์ธ ๋ฐฐ์ด์ $B_i$๋ณด๋ค ํฐ ๊ฐ์ ๋ฐฐ์นํ๋๋ผ๋ #math.op("MEX")๊ฐ์ ๋ณํ์ง ์์ต๋๋ค.],
[- ๊ทธ๋ฆฌ๊ณ $B_(k-1) != B_k$์ธ $k$์ ๋ํด ์ด $k$๊ฐ์ ๊ณต๊ฐ์ $B_k$๋ณด๋ค ์์ $B_k - 1 (<= k)$๊ฐ์ ์๋ฅผ ๋ฐฐ์นํ๋ฏ๋ก ์์ ์๋ถํฐ ๋ฐฐ์นํ๋ฉด ์ํ๋ ๊ฒฐ๊ณผ๋ฅผ ์ป์ ์ ์์ต๋๋ค.],
),
(
[- $B_i != B_(i+1)$์ผ ๋, $A_(i+1) = B_i$ #v(1em)],
[#align(center)[#table(columns:5)[#cell(1)][#cell(2)][#cell(2)][#cell(4)][#cell(6)]]],
[#v(-0.5em) $ B $ ],
[#align(center)[#table(columns:5)[#cell("?")][#cell(1, color:PALE_RED)][#cell("?")][#cell(2, color:PALE_RED)][#cell(4, color:PALE_RED)]]],
[#v(-0.5em) $ A $ ],
),
(
[- ๋จ์ ๊ฐ์ ์์ ์๋ถํฐ ๋น ๊ณณ์ ์ฑ์ ๋ฃ์ต๋๋ค. #v(1em)],
[#align(center)[#table(columns:5)[#cell(1)][#cell(2)][#cell(2)][#cell(4)][#cell(6)]]],
[#v(-0.5em) $ B $ ],
[#align(center)[#table(columns:5)[#cell(3, color:PALE_RED)][#cell(1)][#cell(5, color:PALE_RED)][#cell(2)][#cell(4)]]],
[#v(-0.5em) $ A $ ],
[- ์๊ฐ๋ณต์ก๋๋ $cal(O)(N)$์
๋๋ค.],
)
),
(
(
[- ํ๋์ ๋ฑ๋ถ์ด ๋ค๋ฅธ ๋ฑ๋ถ์ ์์ง๋ฅด๋ ํ์๊ฐ ๊ณง ์์์ ๋น๋ ํ์์
๋๋ค.],
[- ์๋์ ์ผ๋ก ์ค๋ฅธ์ชฝ์ ๋ฑ๋ถ์ด ์์นํ๋ ์ ๋๊ฐ ๋ ํฌ๋ฉด, #linebreak()์ผ์ชฝ์ ๋ฑ๋ถ์ ์์ง๋ฅด๋ ์๊ฐ์ด ์กด์ฌํฉ๋๋ค.],
[- ๊ธธ์ด๊ฐ $S$์ธ ๊ตฌ๊ฐ์์ $i<j$ ์ด๋ฉด์ $A_i < A_j$์ธ $(i, j)$ ์์ ๊ฐ์๋ฅผ ๊ตฌํด์ผ ํฉ๋๋ค.],
),
(
[- ๊ตฌ๊ฐ ๋ด ์์์ ๋ํด์ ๋ชจ๋ ์์ ์ฐพ๋ ๋ฐฉ๋ฒ์ ๋จผ์ ์๊ฐํด ๋ด
์๋ค.],
[- ํ๋์ ๊ตฌ๊ฐ์ ๋ํด $cal(O)(N^2)$์ด ๊ฑธ๋ฆฌ๋ฏ๋ก, ๋ชจ๋ ๊ตฌ๊ฐ์์ ๊ณ์ฐํ๋ค๋ฉด $cal(O)(N^3)$์ผ๋ก ์ ํ์๊ฐ ๋ด์ ํ ์ ์์ต๋๋ค.],
[- ์์ง๋ฅด๋ ์์ ๊ฐ์๋ฅผ ๋ ๋น ๋ฅด๊ฒ ๊ตฌํ ์ ์์๊น์?],
),
(
[- Merge Sort๋ฅผ ์์ฉํ๋ฉด ๋ฌธ์ ๋ฅผ ์กฐ๊ธ ๋ ํจ์จ์ ์ผ๋ก ํ ์ ์์ต๋๋ค.],
[- ๋ ๋ฐฐ์ด์ ํฉ์น๋ ๊ณผ์ ์์, ์์ชฝ ๋ฐฐ์ด์ ์ ๋ ฌ๋ ์ํ์
๋๋ค.],
[- ์ผ์ชฝ ์ ๋ฐ ๋ฐฐ์ด์ ์์๊ฐ ๋ ์๋ค๋ฉด, ํด๋น ์์๋ณด๋ค ๋ค์ ์กด์ฌํ๋ ์์ ๋ชจ๋๊ฐ ์ค๋ฅธ์ชฝ์์ ๊ณ ๋ฅธ ์์๋ณด๋ค ์์ต๋๋ค.],
[- ํ๋์ ๊ตฌ๊ฐ์์ ๋ชจ๋ ์์ ๊ฐ์๋ฅผ $cal(O)(N log N)$์ ๊ตฌํ ์ ์์ต๋๋ค.],
[- ์ฌ์ ํ ๋ชจ๋ ๊ตฌ๊ฐ์ ํ์ธํ๋ ๋ฐ $cal(O)(N^2 log N)$์ผ๋ก, ๋ ๋น ๋ฅธ ๋ฐฉ๋ฒ์ด ํ์ํฉ๋๋ค.],
),
(
[- ๋ฌธ์ ์ ํน์ฑ์ ํ์
ํด์ ๋น ๋ฅด๊ฒ ํ์ด ๋ด
์๋ค.],
[- $k$๋ฒ ๋ฑ๋ถ๋ถํฐ $S$๊ฐ ๊ณ ๋ฅธ ๊ตฌ๊ฐ์ $T_k$๋ผ๊ณ ํฉ์๋ค.],
[- $T_k$ ๊ตฌ๊ฐ๊ณผ $T_(k+1)$ ๊ตฌ๊ฐ์ ๊ณตํต๋ ๊ตฌ๊ฐ์ $[k+1, k+S-1]$์
๋๋ค.],
[- ๊ณตํต๋ ๊ตฌ๊ฐ์์ ๋ฐ์ํ๋ ์์ง๋ฅด๋ ์์ ๊ฐ์๋ $k$๋ฒ์งธ ๋ฑ๋ถ๊ณผ $k+S$๋ฒ์งธ ๋ฑ๋ถ์ ์ํฅ๋ฐ์ง ์์ต๋๋ค.],
[- ํด๋น ๊ตฌ๊ฐ์ ์ฐ์ฐ์ ๋งค ๊ตฌ๊ฐ๋ง๋ค ๋ฐ๋ณตํ์ง ์์ผ๋ฉด ํจ์จ์ ์ผ๋ก ํ ์ ์์ต๋๋ค.],
),
(
[- $T_k $๊ตฌ๊ฐ์์ ๋ค์ ๊ตฌ๊ฐ์ผ๋ก ๋์ด๊ฐ ๋ ์๋์ ๊ฐ๋ค์ ๋นผ๊ณ ๋ํด์ค์ผ ํฉ๋๋ค.],
[#h(2em) #emoji.ast $k$ ๋ฒ์งธ ๋ฑ๋ถ์ ์ ๊ฑฐํ์ ๋ ๊ฐ์ํ๋ ์์ง๋ฅด๋ ์์ ๊ฐ์],
[#h(2em) #emoji.ast $k+S$ ๋ฒ์งธ ๋ฑ๋ถ์ ์ถ๊ฐํ ๋ ์ฆ๊ฐํ๋ ์์ง๋ฅด๋ ์์ ๊ฐ์],
[],
[- ์ธ๊ทธ๋จผํธ ํธ๋ฆฌ๋ฅผ ํ์ฉํ๋ฉด ์์ง๋ฅด๋ ์์ ๊ฐ์๋ฅผ ๋น ๋ฅด๊ฒ ๊ตฌํ ์ ์์ต๋๋ค.],
[#h(2em)#emoji.ast $k$๋ฒ์งธ ๋ฑ๋ถ์ ์ ๊ฑฐํ ๋, $A_k$๋ณด๋ค ์์นํ๋ ์ ๋๊ฐ ํฐ ๋ฑ๋ถ์ ๊ฐ์],
[#h(2em)#emoji.ast $k+S$๋ฒ์งธ ๋ฑ๋ถ์ ์ถ๊ฐํ ๋, $A_(k+S)$๋ณด๋ค ์์นํ๋ ์ ๋๊ฐ ์์ ๋ฑ๋ถ์ ๊ฐ์]
),
(
[- ์ฃผ์ด์ง ๋ฑ๋ถ ์์น ์๋์ ๋ฒ์๊ฐ ์ต๋ $10^9$์ด๋ฏ๋ก ์ขํ์์ถ์ ๋จผ์ ์งํํด์ผ ํฉ๋๋ค.],
[- ์๊ฐ๋ณต์ก๋๋ $cal(O)(N log N)$์
๋๋ค.],
),
),
(
(
[- BFS์ ์ํ ์์๋๋ก ์ ์ ์ ๋ฒํธ๋ฅผ ๋ถ์ด๊ฒ ์ต๋๋ค. ์ ์ ์ ์ ์ ํ ๋ฐฐ์นํด์ ์ํ ์์์ ์ฐจ๋ฅผ ์ต๋ํํด์ผ ํฉ๋๋ค.],
[- ๋ฃจํธ ๋ฐ๋ก ์๋์ $k$๊ฐ์ ์ ์ ์ด ์กด์ฌํ๋ค๊ณ ํฉ์๋ค.],
[- ํธ๋ฆฌ์ $i(1 <= i <= N)$๋ฒ ์ ์ ์ ๋ฃจํธ๋ก ํ๋ ์๋ธํธ๋ฆฌ์ ํฌ๊ธฐ๋ฅผ $S_i$๋ผ๊ณ ํฉ์๋ค.],
[- $sum_(i=2)^(k+1) S_i$ ๋ ๋ฃจํธ ๋
ธ๋๋ฅผ ์ ์ธํ ํธ๋ฆฌ์ ํฌ๊ธฐ์ด๋ฏ๋ก $N-1$์
๋๋ค.]
),
(
[- $D_2 = B_2 = 2$์ด๊ณ , $2 < i <= k+1$์ธ $i$์ ๋ํ $D_i$์ $B_i$๊ฐ์ ์๋์ ๊ฐ์ต๋๋ค.],
[#h(2em) #emoji.ast $D_i = sum_(j=2)^(i-1)S_j + 2$],
[#h(2em) #emoji.ast $B_i = i$#v(1em)],
[- $sum_(i=2)^(k+1)|D_i-B_i|=&|2-2|+|S_2+2-3|+|S_2+S_3+2-4|+dots#linebreak()
& + |sum^(k)_(j=2)S_j+2-(k+1)| #linebreak() &=|S_2-1| + |S_2+S_3-2| + dots + |sum^(k)_(j=2)S_j-(k-1)|$],
[- ์ฌ๊ธฐ์์ ์๋ธํธ๋ฆฌ์ ํฌ๊ธฐ๋ 1 ์ด์์ด๋ฏ๋ก, ์ ๋๊ฐ ๋ด๋ถ์ ์์ ๋นผ๋ด์ ์์ ์ ๋ฆฌํ ์ ์์ต๋๋ค.]
),
(
[- $sum_(i=2)^(k+1)|D_i-B_i| &= (S_2 - 1) + (S_2+S_3-2) + dots + (sum_(j=2)^(k)S_j-(k-1))#linebreak() &= (k-1)S_2 + (k-2)S_3 + ... + S_k - sum_(i=1)^(k-1)\i$],
[- ์ ์์ด ์ต๋๊ฐ ๋๋๋ก $S_i$๋ฅผ ๋ฐฐ๋ถํ๋ ๊ฒ์ $S_2=N-k$, ๋๋จธ์ง๋ $1$๋ก ๋๋ ๊ฒ์
๋๋ค.],
[- $2$๋ฒ ์ ์ ์ ๋ฃจํธ๋ก ํ๋ ์๋ธํธ๋ฆฌ์์ ๋
ธ๋๋ฅผ ๋ฐฐ์นํ๋ ํํ๋ $sum_(i=1)^N|D_i-B_i|$๋ฅผ ์ต๋ํํ๋ ๋ฐ ์ํฅ์ ๋ฏธ์น์ง ์์ต๋๋ค.],
[- ๋ฐ๋ผ์ $k$๊ฐ ์ค, ๋ฌธ์ ์ ์ ๋ต์ ์ต๋ํํ๋ ๊ฐ์ ์ฐพ์์ผ ํฉ๋๋ค.],
),
(
[#v(-2em)#align(center)[#image("images/bfsdfs.png", width: 50%)]],
[- ์ํ ์์์ ์ฐจ๋ฅผ ๋ณด๋ฉด, $N-k-1$๊ฐ์ ํด๋นํ๋ #math.op("BFS") ์์๋ $k+1$์ฉ ๋ฐ๋ ค๋ฉ๋๋ค.],
[- ๋ฐ๋๋ก, $k-1$๊ฐ์ #math.op("DFS") ์์๋ $N-k+1$์ฉ ๋ฐ๋ฆฝ๋๋ค.],
[- ๋ฐ๋ผ์ $(k-1) times (N-k+1) + (k+1) times (N-k-1)$์ ์ต๋๊ฐ์ ๊ตฌํด์ผ ํฉ๋๋ค.]
),
(
[- ์์ ํผ์ณ ๊ณ์ฐํ๋ฉด $k=N/2$์ธ ๊ฒฝ์ฐ์ ์ต๋๊ฐ ๋๋ฉฐ, ์ธ๊ธํ ๋๋ก ํธ๋ฆฌ๋ฅผ ๊ตฌ์ถํด์ฃผ๋ฉด ๋ฉ๋๋ค.],
)
),
(
(
[- ํฐ๋ฆฐ๋๋กฌ ์ ๋๊ทธ๋จ์์ ๋ณด์๋ฏ, $N$์ด ์ง์์ธ ๊ฒฝ์ฐ ํญ์ ๊ฐ๋ฅํฉ๋๋ค.],
[- ํ์์ธ ๊ฒฝ์ฐ์๋ ํ๊ฐ์ด๋ฐ์ ์์๊ฐ ์์ ์ ์๋ฆฌ์ ์์ ๋์๋ง ๊ฐ๋ฅํฉ๋๋ค.],
[- ์ด๋ป๊ฒ ์ต์ํ์ ์ฐ์ฐ์ผ๋ก ์ํ๋ ๋ฐฐ์ด์ ๋ง๋ค ์ ์์๊น์?]
),
(
[- ๋ค์๊ณผ ๊ฐ์ ๋ฐฐ์ด์ ๋ด
์๋ค.],
[#align(center)[#table(columns:6)[#cell(2, color:PALE_RED)][#cell(1,color:PALE_RED)][#cell(5,color:blue)][#cell(3,color:blue)][#cell(6,color:blue)][#cell(4,color:blue)]]],
[- ์ด ๋ฐฐ์ด์ด ์ ๋ ฌ๋๊ธฐ ์ํด์๋ ์ด๋ป๊ฒ ํด์ผ ํ ์ง ์๊ฐํด ๋ด
์๋ค.],
[- ๊ฐ ์์๊ฐ ์์ ์ ์๋ฆฌ๋ก ๋์๊ฐ๊ธฐ ์ํด์, ํ์ฌ ์ ํ์๋ ์์ ํด๋นํ๋ ์นธ์ผ๋ก ๊ฐ์ ์ ๊ทธ์ด ๋ด
์๋ค.],
[- ๋ฐฐ์ด์์ ์ฌ์ดํด์ ๋ถ๋ฆฌํด๋ผ ์ ์์ต๋๋ค. ์ฌ์ดํด์ ์ข
๋ฅ๋ ์ด ์ธ ๊ฐ์ง์
๋๋ค.],
[- ์ผ์ชฝ ์ ๋ฐ ๋๋ ์ค๋ฅธ์ชฝ ์ ๋ฐ์ผ๋ก๋ง ์ด๋ฃจ์ด์ ธ ์๋ ์ฌ์ดํด, ๊ต์ฐจํ๋ ์ฌ์ดํด],
[- ๊ฐ๊ฐ์ $L$, $R$, $M$ ์ฌ์ดํด์ด๋ผ๊ณ ์ ์ํฉ์๋ค.]
),
(
[- $L$ ์ฌ์ดํด๊ณผ $R$ ์ฌ์ดํด์ ๊ทธ ์์ฒด๋ก ๊ตํ์ด ๋ถ๊ฐํฉ๋๋ค.],
[- $M$ ์ฌ์ดํด๋ก ๋ง๋ค์ด์ ์ ๋ ฌํ๋ ๊ณผ์ ์ด ํ์ํฉ๋๋ค.],
[- $1$ํ ๊ตํ์ ํตํด์ ์์๊ฐ ํ ๊ฐ ๋์ด๋ $M$ ์ฌ์ดํด์ ๋ง๋ค ์ ์์ต๋๋ค.],
[- ์ด๋, $L$๊ณผ $R$ ์ฌ์ดํด์ด ๋ ๋ค ์กด์ฌํ๋ค๋ฉด, ๋ ์ฌ์ดํด์ ์์๋ฅผ ์๋ก ๊ตํํด์ ํ๋์ $M$ ์ฌ์ดํด์ ๋ง๋ค ์ ์์ต๋๋ค.],
[- ์ด๋ ๊ฐ ์ฌ์ดํด์ $M$ ์ฌ์ดํด๋ก ๋ง๋ค์์ ๋๋ณด๋ค ๊ตํ์ $1$๋ฒ ์ ๊ฒ ํ ์ ์์ผ๋ฏ๋ก, ๊ฐ๋ฅํ๋ค๋ฉด $L$, $R$ ์ฌ์ดํด ๊ฐ ๊ตํ์ ํตํด $M$ ์ฌ์ดํด์ ๋ง๋๋ ๊ฒ์ด ์ด๋์
๋๋ค.],
),
(
[- ์ด์ $M$ ์ฌ์ดํด์ ์ฌ๋ฐ๋ฅด๊ฒ ๋ฐฐ์นํ๋ ๋ฐ ๋๋ ๋น์ฉ์ ์์๋ด
์๋ค.],
[- ํฌ๊ธฐ๊ฐ $2$์ธ $M$ ์ฌ์ดํด์ ์ ๋ ฌํ๋ ๋ฐ์๋ $1$๋ฒ์ ๊ตํ์ด๋ฉด ์ถฉ๋ถํฉ๋๋ค.],
[- ํฌ๊ธฐ๊ฐ $i$์ธ $M$ ์ฌ์ดํด์ ์ ๋ ฌํ๋ ๋ฐ ๊ฑธ๋ฆฌ๋ ๋น์ฉ์ด $k$๋ผ๊ณ ํฉ์๋ค.],
[- ํฌ๊ธฐ๊ฐ $i+1$์ธ $M$ ์ฌ์ดํด์ ์ ๋ ฌํ ๋, ์ธ ๊ฐ ์ด์์ ์์๋ฅผ ๋์์ ๊ตํํ ์ ์๋ ๋ฐฉ๋ฒ์ด ์์ผ๋ฏ๋ก $1$๋ฒ์ ๊ตํ์ ํตํด ํฌ๊ธฐ๊ฐ $i$์ธ $M$ ์ฌ์ดํด์ ๋ง๋๋ ๊ฒ์ด ์ต์ ์
๋๋ค.],
[- $i+1$ ๊ฐ์ ์์๋ฅผ ๊ฐ์ง๋ $M$ ์ฌ์ดํด์ $k+1$๋ฒ ๊ตํ์ ํตํด ์ ๋ ฌํ ์ ์์ต๋๋ค.],
[- $i=2$์ผ ๋ $k=1$์ด๋ฏ๋ก, ํฌ๊ธฐ๊ฐ $N$์ธ $M$ ์ฌ์ดํด์ $N-1$๋ฒ์ ๊ตํ์ ํตํด ์ ๋ ฌํ ์ ์์ต๋๋ค.]
),
(
[- ๋ฐ๋ผ์ $L$, $R$, $M$ ์ฌ์ดํด์ ๊ฐ์๋ฅผ ๊ฐ๊ฐ ๊ตฌํด์ค ๋ค, $L$, $R$ ์ฌ์ดํด ์๋ค์ $M$ ์ฌ์ดํด๋ค๋ก ๋ง๋ค์ด ์ค์๋ค.],
[- ๋จ๋ $L$, $R$ ์ฌ์ดํด์ ํฌ๊ธฐ๊ฐ $1$ ์ฆ๊ฐํ $M$ ์ฌ์ดํด์ด ๋ฉ๋๋ค.],
[- ๊ธฐ์กด $M$ ์ฌ์ดํด์ ๊ฐ ์ฌ์ดํด์ ์์์ ๊ฐ์๋ณด๋ค $1$ ์์ ํ์๋ก ์ ๋ ฌ์ด ๊ฐ๋ฅํฉ๋๋ค. ],
[- $M$ ์ฌ์ดํด์ ๊ตฌ์ฑํ๋ ์ผ์ชฝ/์ค๋ฅธ์ชฝ ์์์ ๊ฐ์๊ฐ ๊ฐ์ ์ชฝ์ผ๋ก ๊ฐ๋๋ก ๊ตํํ๋ฉด $M$ ์ฌ์ดํด์ ์ ์งํ๋ฉด์ ํฌ๊ธฐ๋ฅผ $1$์ฉ ์ค์ฌ๋๊ฐ ์ ์์ต๋๋ค.],
[- ์ฌ์ดํด์ ๊ฐ์, ์ข
๋ฅ, ๊ตฌ์ฑํ๋ ์์ ๋ฑ์ ์กฐํฉํด ์์์ ์ค๋ช
ํ ๋๋ก ๋ต์ ๋์ถํ ์ ์์ต๋๋ค.],
[- ์๊ฐ๋ณต์ก๋๋ $cal(O)(N)$์
๋๋ค.]
)
),
)
#let create_page(index) = {
set list(marker: text(fill:KUPC_GREEN)[โ])
for pg in descriptions.at(index) {
[
#constructTitle(contest_problems.at(index), size: 2em, bookmark:false)
#v(5em)
]
for desc in pg {
set text(size: 2em)
pad(left: -1.5em)[#desc]
v(0em);
}
pagebreak(weak: true)
}
}
|
|
https://github.com/connachermurphy/typst-cv | https://raw.githubusercontent.com/connachermurphy/typst-cv/main/works_in_progress.typ | typst | MIT License | #let items = (
[#quote[A project in progress, sure to revolutionize the field.]],
)
#list(..items) |
https://github.com/goshakowska/Typstdiff | https://raw.githubusercontent.com/goshakowska/Typstdiff/main/tests/test_working_types/super_script/super_script_inserted.typ | typst | First#super[super text]
Normal text#super[inserted super text]
Second#super[super text] |
|
https://github.com/Ciolv/typst-template-bachelor-thesis | https://raw.githubusercontent.com/Ciolv/typst-template-bachelor-thesis/main/chapter.typ | typst | // Has to be imported wherever acronyms are used
#import "acronyms.typ": ac,acl,acs,acsp,acp,aclp,acronyms
= This chapter is included from another file <chap:useful-guides>
Let's see in @lst:hellew-wรถrld how nicely syntax highlighting works in #link("https://typst.app", "Typst").\
I really like it!
#figure(
caption: "Rust sample",
)[
#set par(leading: 0.75em)
#set align(left) // We really don't want our code to be centered line by line...
```rust
fn main() {
println!("Hello, world!");
}
```
]<lst:hellew-wรถrld>
Awesome, isn't it? \
Well, if you're coming from a nice Markdown editor, there is nothing new with it, but in comparison to L#super(size: 0.8em,baseline: -0.2em)[A]T#sub(size: 0.8em, baseline: 0.2em)[E]X? No extra package required!
\ \
By the way, do you like @harry?
= Test <chap:test> |
|
https://github.com/kaarmu/splash | https://raw.githubusercontent.com/kaarmu/splash/main/src/palettes/okabe-ito.typ | typst | MIT License | /* Color scheme by <NAME> and <NAME>
*
* Source: https://jfly.uni-koeln.de/color/
* Accessed: 2023-06-16
*/
#let okabe-ito = (
black : rgb("#000000"),
orange : rgb("#E69F00"),
sky-blue : rgb("#56B4E9"),
bluish-green : rgb("#009E73"),
yellow : rgb("#F0E442"),
blue : rgb("#0072B2"),
vermilion : rgb("#D55E00"),
reddish-purple : rgb("#CC79A7"),
) |
https://github.com/jgm/typst-hs | https://raw.githubusercontent.com/jgm/typst-hs/main/test/typ/meta/footnote-01.typ | typst | Other | // Test space collapsing before footnote.
A#footnote[A] \
A #footnote[A]
|
https://github.com/typst/webapp-issues | https://raw.githubusercontent.com/typst/webapp-issues/main/README.md | markdown | # Web App Issues
Official issue tracker for [Typst's web app.][app] Here, you can report bugs or
send feature requests for the official web app. If you want to report a bug with
the Typst language or compiler instead, please [open an issue here][compiler].
## FAQ
- **Will the web app remain free?** \
The web app will always have a free tier. However, there is also a paid plan
with additional features like Comments and Git sync.
- **Is the web app open source?** \
The web app is not open source. We think open-sourcing the compiler and
keeping the app proprietary is a fair division that allows the project to
sustain itself long-term.
- **Can I self-host the web app?** \
Yes! We offer a paid on-premises version for organizations. If this is
interesting for you or your team, please reach out to us at <<EMAIL>>.
- **Will there be a desktop app?** \
We plan to provide a desktop version of the web app down the road, but can't
give a timeframe for this at the moment.
- **Where do you store my data / is my data safe?** \
Your data is stored in a Microsoft Azure data center in Germany and encrypted
at rest. We can access your documents, but do so only to fix problems on your
request or to enforce our terms of service. Read our [privacy policy] for more
details.
[app]: https://typst.app
[compiler]: https://github.com/typst/typst
[privacy policy]: https://typst.app/privacy
[paid plan]: https://typst.app/pricing
|
|
https://github.com/luiswirth/numpde-slides | https://raw.githubusercontent.com/luiswirth/numpde-slides/main/src/week03.typ | typst | #import "setup.typ": *
#show: this-template
#let pathemph(a, b) = [
#text(fill: white.darken(60%))[#a]#b
]
#titleslide("03")
#pagebreak()
#githubref
#pagebreak()
= Setting
Hilbert space $V_0$ \
Symmetric Positive-Definite Bilinear form $a: V times V -> RR$ \
Continuous Linear form $l: V -> RR$ \
Gives rise to linear variational problem
$
u in V_0: quad
a(u, v) = l(v)
quad forall v in V_0
$
Notice that here we are considering only the vector space and not the affine space.
Meaning that a conversion is needed, if the problem was originally posed on an affine space.
Is will be done using the *offset function trick*. $hat(u) = u_0 + tilde(u)$
#pagebreak()
Finite dimensional subspace
#text(size: 60pt)[$
V_(0, h) subset V_0
\
dim V_(0,h) < oo
$]
Discrete linear variational problem (DVP)
$
u_h in V_(0,h): quad
a(u_h, v_h) = l(v_h)
quad forall v_h in V_(0,h)
$
#pagebreak()
#cetz.canvas(length: 3cm, {
import cetz.draw: *
let box_text_size = 16pt
let lvp = text(box_text_size)[$
u in V_0: quad
a(u, v) = l(v)
quad forall v in V_0
$]
let dvp = text(box_text_size)[$
u_h in V_(0,h): quad
a(u_h, v_h) = l(v_h)
quad forall v_h in V_(0,h)
$]
let cmin = text(box_text_size)[$
u = argmin_(v in V_0) J(v)
$]
let dmin = text(box_text_size)[$
u_h = argmin_(v_h in V_(0,h)) J(v_h)
$]
set-style(
mark: (fill: white, scale: 2),
line: (stroke: white),
circle: (stroke: white),
stroke: (thickness: 0.4pt, cap: "round"),
content: (padding: 5pt)
)
rect((0, 0), (3.0, 1), stroke: (paint: white, thickness: 1pt),name: "rect0")
rect((5, 0), (9, 1), stroke: (paint: white, thickness: 1pt),name: "rect1")
rect((0, -2), (3.0, -1), stroke: (paint: white, thickness: 1pt),name: "rect2")
rect((5, -2), (9, -1), stroke: (paint: white, thickness: 1pt),name: "rect3")
content("rect0", lvp)
content("rect1", dvp)
content("rect2", cmin)
content("rect3", dmin)
line("rect0", "rect1", mark: (end: "stealth"), name: "line0")
line("rect2", "rect3", mark: (end: "stealth"), name: "line1")
content(("line0.start", 50%, "line0.end"), align(center)[Galerkin\ Discretization], anchor: "south")
content(("line1.start", 50%, "line1.end"), align(center)[Ritz\ Discretization], anchor: "south")
content(("rect0", 50%, "rect2"), text(40pt, sym.arrow.t.b.double))
content(("rect1", 50%, "rect3"), text(40pt, sym.arrow.t.b.double))
})
#pagebreak()
$
frak(B)_h = {b_h^1, dots, b_h^N}
quad
N = dim V_(0,h)
\
V_(0,h) = "span" frak(B)_h
\
u in V_(0,h) ==> u = sum_(i=1)^N mu_i b_h^i
quad
u tilde.eq vvec(mu) in RR^N
\
v in V_(0,h) ==> v = sum_(i=1)^N nu_i b_h^i
quad
v tilde.eq vvec(nu) in RR^N
$
#pagebreak()
$
u_h in V_(0,h):&& quad
bilf(a)(u_h, v_h) &= linf(l)(v_h)
quad &&forall v_h in V_(0,h)
\
vvec(mu) in RR^N:&& quad
bilf(a)(sum_(j=j)^N mu_j b_h^j, sum_(i=1)^N nu_i b_h^i) &= linf(l)(sum_(i=1)^N nu_i b_h^i)
quad &&forall avec(nu) in RR^N
\
vvec(mu) in RR^N:&& quad
sum_(j=1)^N mu_j sum_(i=1)^N nu_i bilf(a)(b_h^j, b_h^i) &= sum_(i=1)^N nu_i linf(l)(b_h^i)
quad &&forall avec(nu) in RR^N
\
vvec(mu) in RR^N:&& quad
sum_(i=1)^N nu_j (sum_(i=1)^N mu_i bilf(a)(b_h^j, b_h^i) - linf(l)(b_h^i)) &= 0
quad &&forall avec(nu) in RR^N
\
vvec(mu) in RR^N:&& quad
sum_(i=1)^N mu_i bilf(a)(b_h^j, b_h^i) - linf(l)(b_h^i) &= 0
quad &&forall i in {1,dots,N}
\
vvec(mu) in RR^N:&& quad
sum_(i=1)^N mu_i bilf(a)(b_h^j, b_h^i) &= linf(l)(b_h^i)
quad &&forall i in {1,dots,N}
\
vvec(mu) in RR^N:&& quad
amat(A) vvec(mu) &= vvec(phi)
quad&&
$
with
$
&vvec(mu) &&= [mu_1, dots, mu_N]^transp &&in RR^N
\
&amat(A) &&= [bilf(a)(b_h^j, b_h^i)]_(i,j=1)^N &&in RR^(N times N)
\
&vvec(phi) &&= [linf(l)(b_h^i)]_(i,j=1)^N &&in RR^N
$
LSE!!!
$
amat(A) vvec(mu) = vvec(phi)
$
The solution can then be recovered by
$
u_h = sum_(i=1)^N mu_i b_h^i
$
#pagebreak()
Concrete 1D Galerkin Discretization
$
u in H^1_0 (]a,b[): quad
integral_a^b
(dif u)/(dif x)(x) (dif v)/(dif x)(x) dif x
=
integral_a^b
f(x) v(x) dif x
quad forall v in H^1_0 (]a,b[)
$
|
|
https://github.com/soul667/typst | https://raw.githubusercontent.com/soul667/typst/main/PPT/MATLAB/touying/docs/docs/utilities/oop.md | markdown | ---
sidebar_position: 1
---
# Object-Oriented Programming
Touying provides some convenient utility functions for object-oriented programming.
---
```typst
#let empty-object = (methods: (:))
```
An empty class.
---
```typst
#let call-or-display(self, it) = {
if type(it) == function {
return it(self)
} else {
return it
}
}
```
Call or display as-is.
---
```typst
#let methods(self) = { .. }
```
Used to bind self to methods and return, very commonly used. |
|
https://github.com/jgm/typst-hs | https://raw.githubusercontent.com/jgm/typst-hs/main/test/typ/math/frac-05.typ | typst | Other | // Test associativity.
$ 1/2/3 = (1/2)/3 = 1/(2/3) $
|
https://github.com/sitandr/typst-examples-book | https://raw.githubusercontent.com/sitandr/typst-examples-book/main/src/snippets/code.md | markdown | MIT License | # Code formatting
## Inline highlighting
```typ
#let r = raw.with(lang: "r")
This can then be used like: #r("x <- c(10, 42)")
```
## Tab size
```````typ
#set raw(tab-size: 8)
```tsv
Year Month Day
2000 2 3
2001 2 1
2002 3 10
```
```````
## Theme
See [reference](https://typst.app/docs/reference/text/raw/#parameters-theme)
## Enable ligatures for code
```typ
#show raw: set text(ligatures: true, font: "Cascadia Code")
Then the code becomes `x <- a`
```
## Advanced formatting
See [packages](../packages/code.md) section.
|
https://github.com/FriendlyUser/IntroductionToTypst | https://raw.githubusercontent.com/FriendlyUser/IntroductionToTypst/main/README.md | markdown | Apache License 2.0 | # IntroductionToTypst
Source Code for introduction to Typst Article
|
https://github.com/mumblingdrunkard/mscs-thesis | https://raw.githubusercontent.com/mumblingdrunkard/mscs-thesis/master/src/computer-architecture-fundamentals/anatomy-of-an-in-order-pipelined-processor.typ | typst | == Anatomy of an In-order Pipelined Processor <sec:pipelined-processor>
This first major optimisation of the microarchitecture is based on the observation that all instructions have required steps in common, and that the components used in each step are usually different.
This introduces the concept of the _pipelined processor_.
A classic processor pipeline may look like: instruction fetch (IF), instruction decode (ID), operand fetch (OF), execute (EXE), memory access (MEM), and writeback (WB).
Each stage focuses on a specific stage of performing an instruction, like an assembly line where each step adds a new part to the product.
IF fetches the instruction from memory.
ID decodes the instruction and determines which control signals to set later in the pipeline.
OF fetches the values to be used later in the pipeline.
EXE performs the operation on some of the values.
MEM performs memory access with an address computed in EXE.
WB writes the values back to the register file so that they can be used by later instructions.
Between each stage, there is a big register called a _pipeline register_ that holds values and control signals that tells the various stages what work to perform.
The values come from outputs of previous stages, and are used as inputs in the current stage.
Each stage takes only one cycle to complete
This is a form of _instruction-level parallelism_ (ILP): the observation that a processor can work on many instructions at the same time because each instruction requires different parts of the processor at any given time.
@fig:pipelined-cpu shows a high-level overview of a pipelined processor.
In this version, the ID and OF stages are merged together, meaning values are read out of the register file at the same time the instruction is being decoded.
Each stage is separated by a pipeline register.
#figure(
```monosketch
โโโโโโโโโโโโโโโโโโโโโโโโโโโโโ
โ โโโโโโโโโโฌโโโโโ โ
โ โ โโโโโ โ โ โ
โโโโ โ โโโโผโโโ โ โโผโโผโ โโโโโผโโ โโโโโโ โ
โIFโโถโโถโID/OFโโถโโถโEXEโโถโโถโMEMโโถโโถโWBโโโ
โโโฒโ โ โโโโโโโ โ โโโโโ โโโโโโโ โ โโโโ
โโโโโโโโโโโโโโโโโโโโโโโ
```,
caption: [A high-level overview of a pipelined microarchitecture],
kind: image,
)<fig:pipelined-cpu>
The connection from the EXE/MEM pipeline register to IF is to allow branch and jump instructions to change the PC.
The connection from WB to OF is there to allow the WB stage to write values back to the register file which is traditionally stored where operand fetch is performed.
=== Overlapping Execution
A simple pipelined processor like this can perform any single instruction in just five cycles, which is a good deal better than the shared bus architecture.
However, the real trick is to overlap execution of multiple consecutive instructions.
When an instruction moves from IF into ID, the IF stage is freed up and can start fetching the next instruction.
This holds for every stage.
Because of this, a pipelined processor can finish executing one instruction every cycle.
==== Hazards
With overlapping pipelining comes execution _hazards_.
Hazards arise when instructions depend on results from older instructions that have not yet completed.
For some of these, the results are ready and available in pipeline registers even if they are not yet written to the register file.
In this case, the values can be _forwarded_ to the stages where they are needed.
The connections from the EXE/MEM and MEM/WB pipeline registers to EXE and from MEM/WB to MEM are there for forwarding.
When a stage detects that an instruction in either of these later stages is going to write to one of its own source registers, it will use the value from the pipeline registers instead.
Some hazards cannot be dealt with by only forwarding.
For example: when one instruction reads from memory, and the following instruction depends on the result in the EXE stage, the procsessor has to _stall_ for a cycle.
==== Branches
All instructions that enter IF after a branch have a dependency on the branch.
The simplest thing is to stall IF until the branch instruction has left EXE and potentially modified the PC.
A possible step up is to assume that the branch condition will resolve to "False" and to keep fetching.
If the assumption turns out to be correct, three cycles have been saved.
If the assumption turns out to be wrong, the results of the incorrectly fetched instructions must be _squashed_ (ignored).
The next step up is to observe patterns in branch instructions and predict the outcome with more accuracy to prevent squashing too often.
This is the founding basis of _branch prediction_, a form of _speculation_.
|
|
https://github.com/typst/packages | https://raw.githubusercontent.com/typst/packages/main/packages/preview/unichar/0.1.0/ucd/block-1CD0.typ | typst | Apache License 2.0 | #let data = (
("VEDIC TONE KARSHANA", "Mn", 230),
("VEDIC TONE SHARA", "Mn", 230),
("VEDIC TONE PRENKHA", "Mn", 230),
("VEDIC SIGN NIHSHVASA", "Po", 0),
("VEDIC SIGN YAJURVEDIC MIDLINE SVARITA", "Mn", 1),
("VEDIC TONE YAJURVEDIC AGGRAVATED INDEPENDENT SVARITA", "Mn", 220),
("VEDIC TONE YAJURVEDIC INDEPENDENT SVARITA", "Mn", 220),
("VEDIC TONE YAJURVEDIC KATHAKA INDEPENDENT SVARITA", "Mn", 220),
("VEDIC TONE CANDRA BELOW", "Mn", 220),
("VEDIC TONE YAJURVEDIC KATHAKA INDEPENDENT SVARITA SCHROEDER", "Mn", 220),
("VEDIC TONE DOUBLE SVARITA", "Mn", 230),
("VEDIC TONE TRIPLE SVARITA", "Mn", 230),
("VEDIC TONE KATHAKA ANUDATTA", "Mn", 220),
("VEDIC TONE DOT BELOW", "Mn", 220),
("VEDIC TONE TWO DOTS BELOW", "Mn", 220),
("VEDIC TONE THREE DOTS BELOW", "Mn", 220),
("VEDIC TONE RIGVEDIC KASHMIRI INDEPENDENT SVARITA", "Mn", 230),
("VEDIC TONE ATHARVAVEDIC INDEPENDENT SVARITA", "Mc", 0),
("VEDIC SIGN VISARGA SVARITA", "Mn", 1),
("VEDIC SIGN VISARGA UDATTA", "Mn", 1),
("VEDIC SIGN REVERSED VISARGA UDATTA", "Mn", 1),
("VEDIC SIGN VISARGA ANUDATTA", "Mn", 1),
("VEDIC SIGN REVERSED VIS<NAME>", "Mn", 1),
("VEDIC SIGN VISARGA UDATTA WITH TAIL", "Mn", 1),
("VEDIC SIGN VISARGA ANUDATTA WITH TAIL", "Mn", 1),
("VEDIC SIGN ANUSVARA ANTARGOMUKHA", "Lo", 0),
("VEDIC SIGN ANUSVARA BAHIRGOMUKHA", "Lo", 0),
("VEDIC SIGN ANUSVARA VAMAGOMUKHA", "Lo", 0),
("VEDIC SIGN ANUSVARA VAMAGOMUKHA WITH TAIL", "Lo", 0),
("VEDIC SIGN TIRYAK", "Mn", 220),
("VEDIC SIGN HEXIFORM LONG ANUSVARA", "Lo", 0),
("VEDIC SIGN LONG ANUSVARA", "Lo", 0),
("VEDIC SIGN RTHANG LONG ANUSVARA", "Lo", 0),
("VEDIC SIGN ANUSVARA UBHAYATO MUKHA", "Lo", 0),
("VEDIC SIGN ARDHAVISARGA", "Lo", 0),
("VEDIC SIGN ROTATED ARDHAVISARGA", "Lo", 0),
("VEDIC TONE CANDRA ABOVE", "Mn", 230),
("VEDIC SIGN JIHVAMULIYA", "Lo", 0),
("VEDIC SIGN UPADHMANIYA", "Lo", 0),
("VEDIC SIGN ATIKRAMA", "Mc", 0),
("VEDIC TONE RING ABOVE", "Mn", 230),
("VEDIC TONE DOUBLE RING ABOVE", "Mn", 230),
("VEDIC SIGN DOUBLE ANUSVARA ANTARGOMUKHA", "Lo", 0),
)
|
https://github.com/Enter-tainer/typstyle | https://raw.githubusercontent.com/Enter-tainer/typstyle/master/tests/assets/typstfmt/138-non-converge-block-comment.typ | typst | Apache License 2.0 | #let test_func() = {
(
/*
test
*/
)
}
|
https://github.com/lyzynec/orr-go-brr | https://raw.githubusercontent.com/lyzynec/orr-go-brr/main/04/main.typ | typst | #import "../lib.typ": *
#knowledge[
#question(name: [Give the first-order necessary conditions of optimality for
a general optimal control problem for a nonlinear discrete-time system over
a finite horizon. Namely, give the general two-point boundary value problem,
highlighting the state equation, the co-state equation and a stationarity
equation. Do not forget to include general boundary conditions.])[
The augmented cost function is
$
J'_i (bold(x)_k, bold(u)_k, bold(lambda)_(k+1)) =
phi.alt(bold(x)_N, N) + sum_(k=1)^(N-1) [L_k (bold(x)_k, bold(u)_k) +
bold(lambda)_(k+1)^T [bold(f)_k (bold(x)_k, bold(u)_k) - bold(x)_(k+1)]]
$
To null the gradient as $gradient J'_i = 0$ we have to satisfy
$
x_(k+1) &= gradient_lambda_(k+1)
H_k(bold(x)_k, bold(u)_k, bold(lambda)_(k+1)) = f_k (x_k,u_k)
"(state equation)"\
lambda_k &= gradient_bold(x)_k
H_k(bold(x)_k, bold(u)_k, bold(lambda)_(k+1))
"(costate equation)"\
0 &= gradient_bold(u)_k H_k(bold(x)_k, bold(u)_k, bold(lambda)_(k+1))
"(stationarity equation)"\
0 &= gradient_bold(x)_i H_k(bold(x)_k, bold(u)_k, bold(lambda)_(k+1))
dot upright(d) bold(x)_i, "for fixed " bold(x)_i = bold(r)_i =>
upright(d) bold(x)_i = bold(0) \
0 &= (gradient_bold(x)_N phi.alt - bold(lambda)_N)^T dot d x_N
= cases("fixed " bold(x)_N &=> bold(x)_N = bold(r)_N =>
upright(d) bold(x)_N = bold(0), "free " bold(x)_N
&=> upright(d) bold(x)_N != 0 +> bold(lambda)_N
= gradient_(bold(lambda)_N) phi.alt)\
$
where
$
H(bold(x)_k, bold(u)_k, bold(lambda)_(k+1))
= L_k (bold(x)_k, bold(u)_k) + bold(lambda)_(k+1)^T
bold(f)_k (bold(x)_k, bold(u)_k)
$
As starting point is probably given, the boundary condition could be
something like
$
bold(x)_0 = bold(r)_0\
$
for the end state, it could be given
$
bold(x)_N = bold(r)_N
$
or could be subject to optimization as
$
bold(lambda)_N = gradient phi.alt(bold(x)_N)
$
]
#question(name: [Give the first-order necessary conditions of optimality for
a linear and time invariant (LTI) discrete-time system and a quadratic cost
function over a finite horizon. Namely, give them in the format displaying
the state equation, co-state equation and stationarity equation. Show and
discuss also two types of boundary conditions.])[
With cost function
$
J = 1/2 bold(x)_N^T bold(S)_N bold(x)_N + 1/2 sum_(k=0)^(N-1)
[bold(x)_k^T bold(Q) bold(x)_k + bold(u)_k^T R u_k]
$
the Hamiltonian $H$ function would be
$
H_k = 1/2
(bold(x)_k^T bold(Q) bold(x)_k + bold(u)_k^T bold(R) bold(u)_k)
+ bold(lambda)_(k+1)^T (bold(A) bold(x)_k + bold(B) bold(u)_k)
$
the equations would become
#align(center)[#grid(columns: 2,
row-gutter: 10pt, column-gutter: 10pt, align: left,
[state:], $bold(x)_(k+1) = bold(A) bold(x)_k + bold(B) bold(u)_k$,
[costate:], $bold(lambda)_k =
bold(Q) bold(x)_k + bold(A)^T bold(lambda)_(k+1)$,
[stationarity:], $bold(0) = bold(R) bold(u)_k
+ bold(B)^T bold(lambda)_(k+1)$,
[boundary:], $bold(x)_0 = bold(r)_0$,
[boundary:], $bold(0) &= (bold(S)_N bold(x)_N
- bold(lambda)_N)^T upright(d) bold(x)_N$,
)]
There is other type for the last boundary condition, as it could also be
given as
$
bold(x)_N = bold(r)_N
$
From the stationarity equation we can extract optimal control as
$
bold(u)_k = - bold(R)^(-1) bold(B)^T bold(lambda)_(k+1)
$
Than we can subtitute the optimal control into the rest to obtain state
and costate values.
]
#question(name: [Give a qualitative characterization of the solution to the
fixed final state LQ-optimal control problem over a finite horizon, that is,
you do not have to give formulas but you should be able to state among the
highlights that the control is open-loop and that reachability of the system
is a necessary condition.])[
- the reslt will be offline precalculated control signal, meaining
it is open--loop
- the control will be proportional to $bold(r)_N - bold(A)^N bold(x)_0$
meaning the difference between desired end--time state and state in
which the system would end up without any control (this one is
pretty reasonable)
- the control will be inversly proportional to _reachability Gramian_
$
bold(G)_(0,N,bold(R)) = sum_(i=0)^(N-1) bold(A)^(N-i-1) bold(B)
bold(R)^(-1) bold(B)^T (A^T)^(N-i-1)
$
if the _reachability Gramian_ is singular, it means the state is
not reachable, barring us from calculating optimal control for
reaching it (again pretty reasonable)
]
#question(name: [Give a qualitative characterization of the solution to the
free final state LQ-optimal control problem over a finite horizon, that is,
you do not have to give formulas but you should be able to state among the
highlights that the control is closed-loop, namely, a time-varying linear
state feedback and that the feedback gains can be computed by solving a
difference Riccati equation.])[
- the problem results in time varying linear state feedback, noteworthy
is the fact that the state feedback gain increases drasticcaly
when nearing the horizon
- the Riccati equation looks like this
$
bold(S)_k = bold(Q) + bold(A)^T bold(S)_(k+1) (bold(I) + bold(B)
bold(R)^(-1) bold(B)^T bold(S)_(k+1))^(-1) bold(A)
$
- this Riccati equation was constructed with the assumption that the
final state boundary equation
$
bold(S)_N bold(x)_N = bold(lambda)_N
$
holds for any $k$ not just $N$
$
bold(S)_k bold(x)_k = bold(lambda)_k
$
]
#question(name: [Discuss how solution to the free final state LQ problem
changes as the horizon is extended to infinity. Emphasize that the optimal
solution is given by a constant linear state feedback whose gains are
computed by solving a discrete-time algebraic Riccati equation (DARE). What
are the conditions under which a stabilizing solution is guaranteed to
exist? What are the conditions under which it is guaranteed that there is a
unique stabilizing solution of DARE?])[
- the solution is simmilar to the previous one with the exception that,
as we never reach the horizon, the state feedback gain remains
constant
- DARE (discrete time algebraic Riccati equation) assumes that in the
steady state (as $k -> oo$)
$
bold(S)_(k+1) approx bold(S)_k
$
it, works because this assumption is correct
- for stabilizing solution to exist, there are two conditions
- system $(bold(A), sqrt(bold(Q)))$ is stabilizable
#footnote[Non--controllable parts of system are stable]
- system $(bold(A), sqrt(bold(Q)))$ is detectable
#footnote[Non--observable patrts of system are stable]
- unique stablilizing solution requires that in addition to existance
of stabilizing solution, the system $(bold(A), sqrt(bold(Q)))$
is detectable
]
]
#skills[
#question(name: [Design an LQ--optimal state feedback controller for a
discrete--time linear system both for a finite and an infinite horizon, both
for regulation and for tracking.])[]
]
|
|
https://github.com/LDemetrios/Typst4k | https://raw.githubusercontent.com/LDemetrios/Typst4k/master/src/test/resources/suite/layout/limits.typ | typst | // Test how the layout engine reacts when reaching limits like
// zero, infinity or when dealing with NaN.
--- issue-1216-clamp-panic ---
#set page(height: 20pt, margin: 0pt)
#v(22pt)
#block(fill: red, width: 100%, height: 10pt, radius: 4pt)
--- issue-1918-layout-infinite-length-grid-columns ---
// Test that passing infinite lengths to drawing primitives does not crash Typst.
#set page(width: auto, height: auto)
// Error: 58-59 cannot expand into infinite width
#layout(size => grid(columns: (size.width, size.height))[a][b][c][d])
--- issue-1918-layout-infinite-length-grid-rows ---
#set page(width: auto, height: auto)
// Error: 17-66 cannot create grid with infinite height
#layout(size => grid(rows: (size.width, size.height))[a][b][c][d])
--- issue-1918-layout-infinite-length-line ---
#set page(width: auto, height: auto)
// Error: 17-41 cannot create line with infinite length
#layout(size => line(length: size.width))
--- issue-1918-layout-infinite-length-polygon ---
#set page(width: auto, height: auto)
// Error: 17-54 cannot create polygon with infinite size
#layout(size => polygon((0pt,0pt), (0pt, size.width)))
|
|
https://github.com/kalxd/morelull | https://raw.githubusercontent.com/kalxd/morelull/master/doc.typ | typst | #import "@local/morelull:0.5.0": *
#show: morelull.with(ๆ ้ข: "่ฟ้ๅไธไธไธชๆ ้ข")
= ๅคงๅคง็ๆ ้ขๅๅจ่ฟ้ใ
#t ่ฟ้ๅๆฏๅฆไธไธช#underline[ๆ
ไบ]ไบใ
#t ไธๅ็กฌ็,ๅฎน้ 1T,ไฝไธบๅบ็จ#underline[ๆฐๆฎ็],ไธ่ฌๆง็#underline[็จๅบ]้ฝๆพๅจไธ้ข,ๅ
ๆฌๆไบง็็ๆฐๆฎ;ๅฆไธๅๅฎน้
4T,ไฝไธบๅชไฝๆฐๆฎ็,ๆฐๅญๅชไฝใไธชไบบๆฐๆฎ้ฝๅจไธ้ขใ
#t ่ฟ้ๅๅ ่ตทๆฐ็ๆฎต๏ผไฝ ็็ๆๆใ
```rust
fn main() {
println!("hello world")
}
```
#t ่ฟ้ๅๅฏๅจไธไธชๆฐ็ไธ่ฅฟใ
|
|
https://github.com/JunzheShen/SJTU-Resume-Template-in-Typst | https://raw.githubusercontent.com/JunzheShen/SJTU-Resume-Template-in-Typst/main/README.md | markdown | # SJTU Resume Template in Typst
This repo provides a Typst version of a SJTU resume template called ่่ฒๆขฆๆณ. Note that there are minor differences between this version and the official Microsoft Word version, feel free to adjust some parameters to make make the two versions more alike.
This repo is is built upon [OrangeX4/Chinese-Resume-in-Typst](https://github.com/OrangeX4/Chinese-Resume-in-Typst)
Detailed instructions to use this repo will be updated when I have some time to kill.
|
|
https://github.com/TypstApp-team/typst | https://raw.githubusercontent.com/TypstApp-team/typst/master/tests/typ/meta/figure.typ | typst | Apache License 2.0 | // Test figures.
---
#set page(width: 150pt)
#set figure(numbering: "I")
We can clearly see that @fig-cylinder and
@tab-complex are relevant in this context.
#figure(
table(columns: 2)[a][b],
caption: [The basic table.],
) <tab-basic>
#figure(
pad(y: -6pt, image("/files/cylinder.svg", height: 2cm)),
caption: [The basic shapes.],
numbering: "I",
) <fig-cylinder>
#figure(
table(columns: 3)[a][b][c][d][e][f],
caption: [The complex table.],
) <tab-complex>
---
// Testing figures with tables.
#figure(
table(
columns: 2,
[Second cylinder],
image("/files/cylinder.svg"),
),
caption: "A table containing images."
) <fig-image-in-table>
---
// Testing show rules with figures with a simple theorem display
#show figure.where(kind: "theorem"): it => {
let name = none
if not it.caption == none {
name = [ #emph(it.caption.body)]
} else {
name = []
}
let title = none
if not it.numbering == none {
title = it.supplement
if not it.numbering == none {
title += " " + it.counter.display(it.numbering)
}
}
title = strong(title)
pad(
top: 0em, bottom: 0em,
block(
fill: green.lighten(90%),
stroke: 1pt + green,
inset: 10pt,
width: 100%,
radius: 5pt,
breakable: false,
[#title#name#h(0.1em):#h(0.2em)#it.body#v(0.5em)]
)
)
}
#set page(width: 150pt)
#figure(
$a^2 + b^2 = c^2$,
supplement: "Theorem",
kind: "theorem",
caption: "Pythagoras' theorem.",
numbering: "1",
) <fig-formula>
#figure(
$a^2 + b^2 = c^2$,
supplement: "Theorem",
kind: "theorem",
caption: "Another Pythagoras' theorem.",
numbering: none,
) <fig-formula>
#figure(
```rust
fn main() {
println!("Hello!");
}
```,
caption: [Hello world in _rust_],
)
---
// Test breakable figures
#set page(height: 6em)
#show figure: set block(breakable: true)
#figure(table[a][b][c][d][e], caption: [A table])
---
// Test custom separator for figure caption
#set figure.caption(separator: [ --- ])
#figure(
table(columns: 2)[a][b],
caption: [The table with custom separator.],
)
|
https://github.com/noamzaks/Barvazim | https://raw.githubusercontent.com/noamzaks/Barvazim/main/writeups/bsides-2024/forensics/skibidi.typ | typst | // Category: Forensics
#import "../../template.typ": writeup
#show: writeup.with(ctf: "BSides", exercise: "Skibidi", date: datetime(day: 29, month: 6, year: 2024))
Every docx file is a ZIP archive. After unzipping the `Skibidi.docx` file, we can go over the different files included.
Most seem uninteresting, however, the `img.xml` seems suspicious - why is an image an XML file? And the content is especially suspicious:
```xml
<root>
<person
firstname="<KEY>"
lastname="<KEY>
city="Haifa"
country="Israel"
firstname2="<KEY>"
lastname2="<KEY>
email="<EMAIL>"
/>
<random>6</random>
<random_float>89.838</random_float>
<bool>true</bool>
<date>1986-09-28</date>
<regEx>helloooooooooooooooooooooooooooooooooooooooooooo world</regEx>
<enum>generator</enum>
<elt>Alyssa</elt><elt>Flory</elt><elt>Ulrike</elt><elt>Teriann</elt><elt>Reeba</elt>
<Ulrike>
<age>56</age>
</Ulrike>
</root>
```
Well, the firstname, lastname, firstname2 and lastname2 appear to be Base64 data because they are only letters digits, and they end with the equal signs.
By now we have arrived at the solution of this challenge:
```python
>>> import base64
>>> base64.b64decode("Qn<KEY>") + base64.b64decode("M2YzNXQzZF90aDNfc2sxYjFkaX0=")
b'BsidesTLV2024{w3_d3f35t3d_th3_sk1b1di}'
``` |
|
https://github.com/danisltpi/seminar | https://raw.githubusercontent.com/danisltpi/seminar/main/template/ausarbeitung.typ | typst | #import "template.typ": project
#import "@preview/cetz:0.2.2"
#set text(lang: "de", region: "de")
#set par(leading: 1em)
// #show outline: set par(leading: 2em)
#show heading: it => [#pad(bottom: 1em, top: 1em)[#it]]
#show: project.with(
title: "Fibonacci Heaps",
subtitle: "Seminararbeit",
study_program: "Informatik (INFB)",
institution: "Hochschule Karlsruhe",
date: datetime.today().display("[day].[month].[year]"),
examiner: "Prof. Dr. rer. <NAME>",
logo: "hka.svg",
authors: ((name: "<NAME>", matriculation_number: "79663"),),
)
// #show outline.entry.where(level: 1): it => {
// strong(it)
// }
// #outline(indent: auto)
#pagebreak(weak: true)
= Motivation
Ein Fibonacci-Heap ist eine Datenstruktur, die Prioritรคtswarteschlangen implementiert und werden vielfรคltig eingesetzt.
Sie besteht aus mehreren Heaps (Binรคrbรคume)
\
\
#align(center)[
#cetz.canvas({
import cetz.draw: *
rect((-1, -1), (1, 1))
circle((0, 0), fill: yellow, stroke: blue)
line((0, 0), (2, 1))
line((0, 0), (1.5, -1))
})]
== Dijkstra-Algorithmus
= Laufzeit
Daraus ergibt sich eine Laufzeit von $O(n log n)$ fรผr das Hinzufรผgen eines Knotens bzw. $Theta(n log n)$
= Das ist ein Test
#lorem(100)
\
#figure(
image("../assets/circle.svg", width: 100%),
caption: [Beispielhafte Struktur eines Fibonacci Heaps, bestehend aus 5 Teilbรคumen #lorem(50)],
gap: 4em,
) <image>
= Erklรคrung
Wie man in der vorherigen Abbildung erkennen kann: @image
Dies ist besonders gut
#lorem(1000) @cormen_introduction_2009
#pagebreak(weak: true)
#set page(header: [])
#bibliography("literatur.bib", style: "ieee", title: "Literatur")
|
|
https://github.com/eLearningHub/resume-typst | https://raw.githubusercontent.com/eLearningHub/resume-typst/main/main.typ | typst | Apache License 2.0 | #let portfolio = yaml("portfolio.yaml")
#let settings = yaml("settings.yaml")
#show link: set text(blue)
#show heading: h => [
#set text(
size: eval(settings.font.size.heading_large),
font: settings.font.general
)
#h
]
#let sidebarSection = {[
#par(justify: true)[
#par[
#set text(
size: eval(settings.font.size.contacts),
font: settings.font.minor_highlight,
)
Email: #link("mailto:" + portfolio.contacts.email) \
Phone: #link("tel:" + portfolio.contacts.phone) \
LinkedIn: #link(portfolio.contacts.linkedin)[mikhail-liamets] \
GitHub: #link(portfolio.contacts.github)[caffeintazedgaze] \
#portfolio.contacts.address
]
#line(length: 100%)
]
= Summary
#par[
#set text(
eval(settings.font.size.education_description),
font: settings.font.minor_highlight,
)
An experienced *software engineer* with a confident grasp of *infrastructure*, *system design*, and *DevOps*, now seeking opportunities to excel in the realms of solution architecture.
Open to roles ranging from *software engineering* to *DevOps/SRE*.
]
= Education
#{
for place in portfolio.education [
#par[
#set text(
size: eval(settings.font.size.heading),
font: settings.font.general
)
#place.from โ #place.to \
#link(place.university.link)[#place.university.name]
]
#par[
#set text(
eval(settings.font.size.education_description),
font: settings.font.minor_highlight,
)
#place.degree #place.major
]
]
}
= Skills
#{
for skill in portfolio.skills [
#par[
#set text(
size: eval(settings.font.size.description),
)
#set text(
// size: eval(settings.font.size.tags),
font: settings.font.minor_highlight,
)
*#skill.name*
#linebreak()
#skill.items.join(" โข ")
]
]
}
]}
#let mainSection = {[
// #par[
// #set align(center)
// #figure(
// image("images/Kodak 20 Zanvoort Lumi.jpg", width: 6em),
// placement: top,
// )
// ]
#par[
#set text(
size: eval(settings.font.size.heading_huge),
font: settings.font.general,
)
*#portfolio.contacts.name*
]
#par[
#set text(
size: eval(settings.font.size.heading),
font: settings.font.minor_highlight,
top-edge: 0pt
)
#portfolio.contacts.title
]
= Experience
#{
for job in portfolio.jobs [
#par(justify: false)[
#set text(
size: eval(settings.font.size.heading),
font: settings.font.general
)
#job.from โ #job.to \
*#job.position*
#link(job.company.link)[\@ #job.company.name]
]
#par(
justify: false,
leading: eval(settings.paragraph.leading)
)[
#set text(
size: eval(settings.font.size.description),
font: settings.font.general
)
#{
for point in job.description [
#h(0.5cm) โข #point \
]
}
]
#par(
justify: true,
leading: eval(settings.paragraph.leading),
)[
#set text(
size: eval(settings.font.size.tags),
font: settings.font.minor_highlight
)
]
]
}
]}
#{
grid(
columns: (2fr, 5fr),
column-gutter: 3em,
sidebarSection,
mainSection,
)
}
|
https://github.com/typst/packages | https://raw.githubusercontent.com/typst/packages/main/packages/preview/unichar/0.1.0/ucd/block-1D800.typ | typst | Apache License 2.0 | #let data = (
("SIGNWRITING HAND-FIST INDEX", "So", 0),
("SIGNWRITING HAND-CIRCLE INDEX", "So", 0),
("SIGNWRITING HAND-CUP INDEX", "So", 0),
("SIGNWRITING HAND-OVAL INDEX", "So", 0),
("SIGNWRITING HAND-HINGE INDEX", "So", 0),
("SIGNWRITING HAND-ANGLE INDEX", "So", 0),
("SIGNWRITING HAND-FIST INDEX BENT", "So", 0),
("SIGNWRITING HAND-CIRCLE INDEX BENT", "So", 0),
("SIGNWRITING HAND-FIST THUMB UNDER INDEX BENT", "So", 0),
("SIGNWRITING HAND-FIST INDEX RAISED KNUCKLE", "So", 0),
("SIGNWRITING HAND-FIST INDEX CUPPED", "So", 0),
("SIGNWRITING HAND-FIST INDEX HINGED", "So", 0),
("SIGNWRITING HAND-FIST INDEX HINGED LOW", "So", 0),
("SIGNWRITING HAND-CIRCLE INDEX HINGE", "So", 0),
("SIGNWRITING HAND-FIST INDEX MIDDLE", "So", 0),
("SIGNWRITING HAND-CIRCLE INDEX MIDDLE", "So", 0),
("SIGNWRITING HAND-FIST INDEX MIDDLE BENT", "So", 0),
("SIGNWRITING HAND-FIST INDEX MIDDLE RAISED KNUCKLES", "So", 0),
("SIGNWRITING HAND-FIST INDEX MIDDLE HINGED", "So", 0),
("SIGNWRITING HAND-FIST INDEX UP MIDDLE HINGED", "So", 0),
("SIGNWRITING HAND-FIST INDEX HINGED MIDDLE UP", "So", 0),
("SIGNWRITING HAND-FIST INDEX MIDDLE CONJOINED", "So", 0),
("SIGNWRITING HAND-FIST INDEX MIDDLE CONJOINED INDEX BENT", "So", 0),
("SIGNWRITING HAND-FIST INDEX MIDDLE CONJOINED MIDDLE BENT", "So", 0),
("SIGNWRITING HAND-FIST INDEX MIDDLE CONJOINED CUPPED", "So", 0),
("SIGNWRITING HAND-FIST INDEX MIDDLE CONJOINED HINGED", "So", 0),
("SIGNWRITING HAND-FIST INDEX MIDDLE CROSSED", "So", 0),
("SIGNWRITING HAND-CIRCLE INDEX MIDDLE CROSSED", "So", 0),
("SIGNWRITING HAND-FIST MIDDLE BENT OVER INDEX", "So", 0),
("SIGNWRITING HAND-FIST INDEX BENT OVER MIDDLE", "So", 0),
("SIGNWRITING HAND-FIST INDEX MIDDLE THUMB", "So", 0),
("SIGNWRITING HAND-CIRCLE INDEX MIDDLE THUMB", "So", 0),
("SIGNWRITING HAND-FIST INDEX MIDDLE STRAIGHT THUMB BENT", "So", 0),
("SIGNWRITING HAND-FIST INDEX MIDDLE BENT THUMB STRAIGHT", "So", 0),
("SIGNWRITING HAND-FIST INDEX MIDDLE THUMB BENT", "So", 0),
("SIGNWRITING HAND-FIST INDEX MIDDLE HINGED SPREAD THUMB SIDE", "So", 0),
("SIGNWRITING HAND-FIST INDEX UP MIDDLE HINGED THUMB SIDE", "So", 0),
("SIGNWRITING HAND-FIST INDEX UP MIDDLE HINGED THUMB CONJOINED", "So", 0),
("SIGNWRITING HAND-FIST INDEX HINGED MIDDLE UP THUMB SIDE", "So", 0),
("SIGNWRITING HAND-FIST INDEX MIDDLE UP SPREAD THUMB FORWARD", "So", 0),
("SIGNWRITING HAND-FIST INDEX MIDDLE THUMB CUPPED", "So", 0),
("SIGNWRITING HAND-FIST INDEX MIDDLE THUMB CIRCLED", "So", 0),
("SIGNWRITING HAND-FIST INDEX MIDDLE THUMB HOOKED", "So", 0),
("SIGNWRITING HAND-FIST INDEX MIDDLE THUMB HINGED", "So", 0),
("SIGNWRITING HAND-FIST THUMB BETWEEN INDEX MIDDLE STRAIGHT", "So", 0),
("SIGNWRITING HAND-FIST INDEX MIDDLE CONJOINED THUMB SIDE", "So", 0),
("SIGNWRITING HAND-FIST INDEX MIDDLE CONJOINED THUMB SIDE CONJOINED", "So", 0),
("SIGNWRITING HAND-FIST INDEX MIDDLE CONJOINED THUMB SIDE BENT", "So", 0),
("SIGNWRITING HAND-FIST MIDDLE THUMB HOOKED INDEX UP", "So", 0),
("SIGNWRITING HAND-FIST INDEX THUMB HOOKED MIDDLE UP", "So", 0),
("SIGNWRITING HAND-FIST INDEX MIDDLE CONJOINED HINGED THUMB SIDE", "So", 0),
("SIGNWRITING HAND-FIST INDEX MIDDLE CROSSED THUMB SIDE", "So", 0),
("SIGNWRITING HAND-FIST INDEX MIDDLE CONJOINED THUMB FORWARD", "So", 0),
("SIGNWRITING HAND-FIST INDEX MIDDLE CONJOINED CUPPED THUMB FORWARD", "So", 0),
("SIGNWRITING HAND-FIST MIDDLE THUMB CUPPED INDEX UP", "So", 0),
("SIGNWRITING HAND-FIST INDEX THUMB CUPPED MIDDLE UP", "So", 0),
("SIGNWRITING HAND-FIST MIDDLE THUMB CIRCLED INDEX UP", "So", 0),
("SIGNWRITING HAND-FIST MIDDLE THUMB CIRCLED INDEX HINGED", "So", 0),
("SIGNWRITING HAND-FIST INDEX THUMB ANGLED OUT MIDDLE UP", "So", 0),
("SIGNWRITING HAND-FIST INDEX THUMB ANGLED IN MIDDLE UP", "So", 0),
("SIGNWRITING HAND-FIST INDEX THUMB CIRCLED MIDDLE UP", "So", 0),
("SIGNWRITING HAND-FIST INDEX MIDDLE THUMB CONJOINED HINGED", "So", 0),
("SIGNWRITING HAND-FIST INDEX MIDDLE THUMB ANGLED OUT", "So", 0),
("SIGNWRITING HAND-FIST INDEX MIDDLE THUMB ANGLED", "So", 0),
("SIGNWRITING HAND-FIST MIDDLE THUMB ANGLED OUT INDEX UP", "So", 0),
("SIGNWRITING HAND-FIST MIDDLE THUMB ANGLED OUT INDEX CROSSED", "So", 0),
("SIGNWRITING HAND-FIST MIDDLE THUMB ANGLED INDEX UP", "So", 0),
("SIGNWRITING HAND-FIST INDEX THUMB HOOKED MIDDLE HINGED", "So", 0),
("SIGNWRITING HAND-FLAT FOUR FINGERS", "So", 0),
("SIGNWRITING HAND-FLAT FOUR FINGERS BENT", "So", 0),
("SIGNWRITING HAND-FLAT FOUR FINGERS HINGED", "So", 0),
("SIGNWRITING HAND-FLAT FOUR FINGERS CONJOINED", "So", 0),
("SIGNWRITING HAND-FLAT FOUR FINGERS CONJOINED SPLIT", "So", 0),
("SIGNWRITING HAND-CLAW FOUR FINGERS CONJOINED", "So", 0),
("SIGNWRITING HAND-FIST FOUR FINGERS CONJOINED BENT", "So", 0),
("SIGNWRITING HAND-HINGE FOUR FINGERS CONJOINED", "So", 0),
("SIGNWRITING HAND-FLAT FIVE FINGERS SPREAD", "So", 0),
("SIGNWRITING HAND-FLAT HEEL FIVE FINGERS SPREAD", "So", 0),
("SIGNWRITING HAND-FLAT FIVE FINGERS SPREAD FOUR BENT", "So", 0),
("SIGNWRITING HAND-FLAT HEEL FIVE FINGERS SPREAD FOUR BENT", "So", 0),
("SIGNWRITING HAND-FLAT FIVE FINGERS SPREAD BENT", "So", 0),
("SIGNWRITING HAND-FLAT HEEL FIVE FINGERS SPREAD BENT", "So", 0),
("SIGNWRITING HAND-FLAT FIVE FINGERS SPREAD THUMB FORWARD", "So", 0),
("SIGNWRITING HAND-CUP FIVE FINGERS SPREAD", "So", 0),
("SIGNWRITING HAND-CUP FIVE FINGERS SPREAD OPEN", "So", 0),
("SIGNWRITING HAND-HINGE FIVE FINGERS SPREAD OPEN", "So", 0),
("SIGNWRITING HAND-OVAL FIVE FINGERS SPREAD", "So", 0),
("SIGNWRITING HAND-FLAT FIVE FINGERS SPREAD HINGED", "So", 0),
("SIGNWRITING HAND-FLAT FIVE FINGERS SPREAD HINGED THUMB SIDE", "So", 0),
("SIGNWRITING HAND-FLAT FIVE FINGERS SPREAD HINGED NO THUMB", "So", 0),
("SIGNWRITING HAND-FLAT", "So", 0),
("SIGNWRITING HAND-FLAT BETWEEN PALM FACINGS", "So", 0),
("SIGNWRITING HAND-FLAT HEEL", "So", 0),
("SIGNWRITING HAND-FLAT THUMB SIDE", "So", 0),
("SIGNWRITING HAND-FLAT HEEL THUMB SIDE", "So", 0),
("SIGNWRITING HAND-FLAT THUMB BENT", "So", 0),
("SIGNWRITING HAND-FLAT THUMB FORWARD", "So", 0),
("SIGNWRITING HAND-FLAT SPLIT INDEX THUMB SIDE", "So", 0),
("SIGNWRITING HAND-FLAT SPLIT CENTRE", "So", 0),
("SIGNWRITING HAND-FLAT SPLIT CENTRE THUMB SIDE", "So", 0),
("SIGNWRITING HAND-FLAT SPLIT CENTRE THUMB SIDE BENT", "So", 0),
("SIGNWRITING HAND-FLAT SPLIT LITTLE", "So", 0),
("SIGNWRITING HAND-CLAW", "So", 0),
("SIGNWRITING HAND-CLAW THUMB SIDE", "So", 0),
("SIGNWRITING HAND-CLAW NO THUMB", "So", 0),
("SIGNWRITING HAND-CLAW THUMB FORWARD", "So", 0),
("SIGNWRITING HAND-HOOK CURLICUE", "So", 0),
("SIGNWRITING HAND-HOOK", "So", 0),
("SIGNWRITING HAND-CUP OPEN", "So", 0),
("SIGNWRITING HAND-CUP", "So", 0),
("SIGNWRITING HAND-CUP OPEN THUMB SIDE", "So", 0),
("SIGNWRITING HAND-CUP THUMB SIDE", "So", 0),
("SIGNWRITING HAND-CUP OPEN NO THUMB", "So", 0),
("SIGNWRITING HAND-CUP NO THUMB", "So", 0),
("SIGNWRITING HAND-CUP OPEN THUMB FORWARD", "So", 0),
("SIGNWRITING HAND-CUP THUMB FORWARD", "So", 0),
("SIGNWRITING HAND-CURLICUE OPEN", "So", 0),
("SIGNWRITING HAND-CURLICUE", "So", 0),
("SIGNWRITING HAND-CIRCLE", "So", 0),
("SIGNWRITING HAND-OVAL", "So", 0),
("SIGNWRITING HAND-OVAL THUMB SIDE", "So", 0),
("SIGNWRITING HAND-OVAL NO THUMB", "So", 0),
("SIGNWRITING HAND-OVAL THUMB FORWARD", "So", 0),
("SIGNWRITING HAND-HINGE OPEN", "So", 0),
("SIGNWRITING HAND-HINGE OPEN THUMB FORWARD", "So", 0),
("SIGNWRITING HAND-HINGE", "So", 0),
("SIGNWRITING HAND-HINGE SMALL", "So", 0),
("SIGNWRITING HAND-HINGE OPEN THUMB SIDE", "So", 0),
("SIGNWRITING HAND-HINGE THUMB SIDE", "So", 0),
("SIGNWRITING HAND-HINGE OPEN NO THUMB", "So", 0),
("SIGNWRITING HAND-HINGE NO THUMB", "So", 0),
("SIGNWRITING HAND-HINGE THUMB SIDE TOUCHING INDEX", "So", 0),
("SIGNWRITING HAND-HINGE THUMB BETWEEN MIDDLE RING", "So", 0),
("SIGNWRITING HAND-ANGLE", "So", 0),
("SIGNWRITING HAND-FIST INDEX MIDDLE RING", "So", 0),
("SIGNWRITING HAND-CIRCLE INDEX MIDDLE RING", "So", 0),
("SIGNWRITING HAND-HINGE INDEX MIDDLE RING", "So", 0),
("SIGNWRITING HAND-ANGLE INDEX MIDDLE RING", "So", 0),
("SIGNWRITING HAND-HINGE LITTLE", "So", 0),
("SIGNWRITING HAND-FIST INDEX MIDDLE RING BENT", "So", 0),
("SIGNWRITING HAND-FIST INDEX MIDDLE RING CONJOINED", "So", 0),
("SIGNWRITING HAND-HINGE INDEX MIDDLE RING CONJOINED", "So", 0),
("SIGNWRITING HAND-FIST LITTLE DOWN", "So", 0),
("SIGNWRITING HAND-FIST LITTLE DOWN RIPPLE STRAIGHT", "So", 0),
("SIGNWRITING HAND-FIST LITTLE DOWN RIPPLE CURVED", "So", 0),
("SIGNWRITING HAND-FIST LITTLE DOWN OTHERS CIRCLED", "So", 0),
("SIGNWRITING HAND-FIST LITTLE UP", "So", 0),
("SIGNWRITING HAND-FIST THUMB UNDER LITTLE UP", "So", 0),
("SIGNWRITING HAND-CIRCLE LITTLE UP", "So", 0),
("SIGNWRITING HAND-OVAL LITTLE UP", "So", 0),
("SIGNWRITING HAND-ANGLE LITTLE UP", "So", 0),
("SIGNWRITING HAND-FIST LITTLE RAISED KNUCKLE", "So", 0),
("SIGNWRITING HAND-FIST LITTLE BENT", "So", 0),
("SIGNWRITING HAND-FIST LITTLE TOUCHES THUMB", "So", 0),
("SIGNWRITING HAND-FIST LITTLE THUMB", "So", 0),
("SIGNWRITING HAND-HINGE LITTLE THUMB", "So", 0),
("SIGNWRITING HAND-FIST LITTLE INDEX THUMB", "So", 0),
("SIGNWRITING HAND-HINGE LITTLE INDEX THUMB", "So", 0),
("SIGNWRITING HAND-ANGLE LITTLE INDEX THUMB INDEX THUMB OUT", "So", 0),
("SIGNWRITING HAND-ANGLE LITTLE INDEX THUMB INDEX THUMB", "So", 0),
("SIGNWRITING HAND-FIST LITTLE INDEX", "So", 0),
("SIGNWRITING HAND-CIRCLE LITTLE INDEX", "So", 0),
("SIGNWRITING HAND-HINGE LITTLE INDEX", "So", 0),
("SIGNWRITING HAND-ANGLE LITTLE INDEX", "So", 0),
("SIGNWRITING HAND-FIST INDEX MIDDLE LITTLE", "So", 0),
("SIGNWRITING HAND-CIRCLE INDEX MIDDLE LITTLE", "So", 0),
("SIGNWRITING HAND-HINGE INDEX MIDDLE LITTLE", "So", 0),
("SIGNWRITING HAND-HINGE RING", "So", 0),
("SIGNWRITING HAND-ANGLE INDEX MIDDLE LITTLE", "So", 0),
("SIGNWRITING HAND-FIST INDEX MIDDLE CROSS LITTLE", "So", 0),
("SIGNWRITING HAND-CIRCLE INDEX MIDDLE CROSS LITTLE", "So", 0),
("SIGNWRITING HAND-FIST RING DOWN", "So", 0),
("SIGNWRITING HAND-HINGE RING DOWN INDEX THUMB HOOK MIDDLE", "So", 0),
("SIGNWRITING HAND-ANGLE RING DOWN MIDDLE THUMB INDEX CROSS", "So", 0),
("SIGNWRITING HAND-FIST RING UP", "So", 0),
("SIGNWRITING HAND-FIST RING RAISED KNUCKLE", "So", 0),
("SIGNWRITING HAND-FIST RING LITTLE", "So", 0),
("SIGNWRITING HAND-CIRCLE RING LITTLE", "So", 0),
("SIGNWRITING HAND-OVAL RING LITTLE", "So", 0),
("SIGNWRITING HAND-ANGLE RING LITTLE", "So", 0),
("SIGNWRITING HAND-FIST RING MIDDLE", "So", 0),
("SIGNWRITING HAND-FIST RING MIDDLE CONJOINED", "So", 0),
("SIGNWRITING HAND-FIST RING MIDDLE RAISED KNUCKLES", "So", 0),
("SIGNWRITING HAND-FIST RING INDEX", "So", 0),
("SIGNWRITING HAND-FIST RING THUMB", "So", 0),
("SIGNWRITING HAND-HOOK RING THUMB", "So", 0),
("SIGNWRITING HAND-FIST INDEX RING LITTLE", "So", 0),
("SIGNWRITING HAND-CIRCLE INDEX RING LITTLE", "So", 0),
("SIGNWRITING HAND-CURLICUE INDEX RING LITTLE ON", "So", 0),
("SIGNWRITING HAND-HOOK INDEX RING LITTLE OUT", "So", 0),
("SIGNWRITING HAND-HOOK INDEX RING LITTLE IN", "So", 0),
("SIGNWRITING HAND-HOOK INDEX RING LITTLE UNDER", "So", 0),
("SIGNWRITING HAND-CUP INDEX RING LITTLE", "So", 0),
("SIGNWRITING HAND-HINGE INDEX RING LITTLE", "So", 0),
("SIGNWRITING HAND-ANGLE INDEX RING LITTLE OUT", "So", 0),
("SIGNWRITING HAND-ANGLE INDEX RING LITTLE", "So", 0),
("SIGNWRITING HAND-FIST MIDDLE DOWN", "So", 0),
("SIGNWRITING HAND-HINGE MIDDLE", "So", 0),
("SIGNWRITING HAND-FIST MIDDLE UP", "So", 0),
("SIGNWRITING HAND-CIRCLE MIDDLE UP", "So", 0),
("SIGNWRITING HAND-FIST MIDDLE RAISED KNUCKLE", "So", 0),
("SIGNWRITING HAND-FIST MIDDLE UP THUMB SIDE", "So", 0),
("SIGNWRITING HAND-HOOK MIDDLE THUMB", "So", 0),
("SIGNWRITING HAND-FIST MIDDLE THUMB LITTLE", "So", 0),
("SIGNWRITING HAND-FIST MIDDLE LITTLE", "So", 0),
("SIGNWRITING HAND-FIST MIDDLE RING LITTLE", "So", 0),
("SIGNWRITING HAND-CIRCLE MIDDLE RING LITTLE", "So", 0),
("SIGNWRITING HAND-CURLICUE MIDDLE RING LITTLE ON", "So", 0),
("SIGNWRITING HAND-CUP MIDDLE RING LITTLE", "So", 0),
("SIGNWRITING HAND-HINGE MIDDLE RING LITTLE", "So", 0),
("SIGNWRITING HAND-ANGLE MIDDLE RING LITTLE OUT", "So", 0),
("SIGNWRITING HAND-ANGLE MIDDLE RING LITTLE IN", "So", 0),
("SIGNWRITING HAND-ANGLE MIDDLE RING LITTLE", "So", 0),
("SIGNWRITING HAND-CIRCLE MIDDLE RING LITTLE BENT", "So", 0),
("SIGNWRITING HAND-CLAW MIDDLE RING LITTLE CONJOINED", "So", 0),
("SIGNWRITING HAND-CLAW MIDDLE RING LITTLE CONJOINED SIDE", "So", 0),
("SIGNWRITING HAND-HOOK MIDDLE RING LITTLE CONJOINED OUT", "So", 0),
("SIGNWRITING HAND-HOOK MIDDLE RING LITTLE CONJOINED IN", "So", 0),
("SIGNWRITING HAND-HOOK MIDDLE RING LITTLE CONJOINED", "So", 0),
("SIGNWRITING HAND-HINGE INDEX HINGED", "So", 0),
("SIGNWRITING HAND-FIST INDEX THUMB SIDE", "So", 0),
("SIGNWRITING HAND-HINGE INDEX THUMB SIDE", "So", 0),
("SIGNWRITING HAND-FIST INDEX THUMB SIDE THUMB DIAGONAL", "So", 0),
("SIGNWRITING HAND-FIST INDEX THUMB SIDE THUMB CONJOINED", "So", 0),
("SIGNWRITING HAND-FIST INDEX THUMB SIDE THUMB BENT", "So", 0),
("SIGNWRITING HAND-FIST INDEX THUMB SIDE INDEX BENT", "So", 0),
("SIGNWRITING HAND-FIST INDEX THUMB SIDE BOTH BENT", "So", 0),
("SIGNWRITING HAND-FIST INDEX THUMB SIDE INDEX HINGE", "So", 0),
("SIGNWRITING HAND-FIST INDEX THUMB FORWARD INDEX STRAIGHT", "So", 0),
("SIGNWRITING HAND-FIST INDEX THUMB FORWARD INDEX BENT", "So", 0),
("SIGNWRITING HAND-FIST INDEX THUMB HOOK", "So", 0),
("SIGNWRITING HAND-FIST INDEX THUMB CURLICUE", "So", 0),
("SIGNWRITING HAND-FIST INDEX THUMB CURVE THUMB INSIDE", "So", 0),
("SIGNWRITING HAND-CLAW INDEX THUMB CURVE THUMB INSIDE", "So", 0),
("SIGNWRITING HAND-FIST INDEX THUMB CURVE THUMB UNDER", "So", 0),
("SIGNWRITING HAND-FIST INDEX THUMB CIRCLE", "So", 0),
("SIGNWRITING HAND-CUP INDEX THUMB", "So", 0),
("SIGNWRITING HAND-CUP INDEX THUMB OPEN", "So", 0),
("SIGNWRITING HAND-HINGE INDEX THUMB OPEN", "So", 0),
("SIGNWRITING HAND-HINGE INDEX THUMB LARGE", "So", 0),
("SIGNWRITING HAND-HINGE INDEX THUMB", "So", 0),
("SIGNWRITING HAND-HINGE INDEX THUMB SMALL", "So", 0),
("SIGNWRITING HAND-ANGLE INDEX THUMB OUT", "So", 0),
("SIGNWRITING HAND-ANGLE INDEX THUMB IN", "So", 0),
("SIGNWRITING HAND-ANGLE INDEX THUMB", "So", 0),
("SIGNWRITING HAND-FIST THUMB", "So", 0),
("SIGNWRITING HAND-FIST THUMB HEEL", "So", 0),
("SIGNWRITING HAND-FIST THUMB SIDE DIAGONAL", "So", 0),
("SIGNWRITING HAND-FIST THUMB SIDE CONJOINED", "So", 0),
("SIGNWRITING HAND-FIST THUMB SIDE BENT", "So", 0),
("SIGNWRITING HAND-FIST THUMB FORWARD", "So", 0),
("SIGNWRITING HAND-FIST THUMB BETWEEN INDEX MIDDLE", "So", 0),
("SIGNWRITING HAND-FIST THUMB BETWEEN MIDDLE RING", "So", 0),
("SIGNWRITING HAND-FIST THUMB BETWEEN RING LITTLE", "So", 0),
("SIGNWRITING HAND-FIST THUMB UNDER TWO FINGERS", "So", 0),
("SIGNWRITING HAND-FIST THUMB OVER TWO FINGERS", "So", 0),
("SIGNWRITING HAND-FIST THUMB UNDER THREE FINGERS", "So", 0),
("SIGNWRITING HAND-FIST THUMB UNDER FOUR FINGERS", "So", 0),
("SIGNWRITING HAND-FIST THUMB OVER FOUR RAISED KNUCKLES", "So", 0),
("SIGNWRITING HAND-FIST", "So", 0),
("SIGNWRITING HAND-FIST HEEL", "So", 0),
("SIGNWRITING TOUCH SINGLE", "So", 0),
("SIGNWRITING TOUCH MULTIPLE", "So", 0),
("SIGNWRITING TOUCH BETWEEN", "So", 0),
("SIGNWRITING GRASP SINGLE", "So", 0),
("SIGNWRITING GRASP MULTIPLE", "So", 0),
("SIGNWRITING GRASP BETWEEN", "So", 0),
("SIGNWRITING STRIKE SINGLE", "So", 0),
("SIGNWRITING STRIKE MULTIPLE", "So", 0),
("SIGNWRITING STRIKE BETWEEN", "So", 0),
("SIGNWRITING BRUSH SINGLE", "So", 0),
("SIGNWRITING BRUSH MULTIPLE", "So", 0),
("SIGNWRITING BRUSH BETWEEN", "So", 0),
("SIGNWRITING RUB SINGLE", "So", 0),
("SIGNWRITING RUB MULTIPLE", "So", 0),
("SIGNWRITING RUB BETWEEN", "So", 0),
("SIGNWRITING SURFACE SYMBOLS", "So", 0),
("SIGNWRITING SURFACE BETWEEN", "So", 0),
("SIGNWRITING SQUEEZE LARGE SINGLE", "So", 0),
("SIGNWRITING SQUEEZE SMALL SINGLE", "So", 0),
("SIGNWRITING SQUEEZE LARGE MULTIPLE", "So", 0),
("SIGNWRITING SQUEEZE SMALL MULTIPLE", "So", 0),
("SIGNWRITING SQUEEZE SEQUENTIAL", "So", 0),
("SIGNWRITING FLICK LARGE SINGLE", "So", 0),
("SIGNWRITING FLICK SMALL SINGLE", "So", 0),
("SIGNWRITING FLICK LARGE MULTIPLE", "So", 0),
("SIGNWRITING FLICK SMALL MULTIPLE", "So", 0),
("SIGNWRITING FLICK SEQUENTIAL", "So", 0),
("SIGNWRITING SQUEEZE FLICK ALTERNATING", "So", 0),
("SIGNWRITING MOVEMENT-HINGE UP DOWN LARGE", "So", 0),
("SIGNWRITING MOVEMENT-HINGE UP DOWN SMALL", "So", 0),
("SIGNWRITING MOVEMENT-HINGE UP SEQUENTIAL", "So", 0),
("SIGNWRITING MOVEMENT-HINGE DOWN SEQUENTIAL", "So", 0),
("SIGNWRITING MOVEMENT-HINGE UP DOWN ALTERNATING LARGE", "So", 0),
("SIGNWRITING MOVEMENT-HINGE UP DOWN ALTERNATING SMALL", "So", 0),
("SIGNWRITING MOVEMENT-HINGE SIDE TO SIDE SCISSORS", "So", 0),
("SIGNWRITING MOVEMENT-WALLPLANE FINGER CONTACT", "So", 0),
("SIGNWRITING MOVEMENT-FLOORPLANE FINGER CONTACT", "So", 0),
("SIGNWRITING MOVEMENT-WALLPLANE SINGLE STRAIGHT SMALL", "So", 0),
("SIGNWRITING MOVEMENT-WALLPLANE SINGLE STRAIGHT MEDIUM", "So", 0),
("SIGNWRITING MOVEMENT-WALLPLANE SINGLE STRAIGHT LARGE", "So", 0),
("SIGNWRITING MOVEMENT-WALLPLANE SINGLE STRAIGHT LARGEST", "So", 0),
("SIGNWRITING MOVEMENT-WALLPLANE SINGLE WRIST FLEX", "So", 0),
("SIGNWRITING MOVEMENT-WALLPLANE DOUBLE STRAIGHT", "So", 0),
("SIGNWRITING MOVEMENT-WALLPLANE DOUBLE WRIST FLEX", "So", 0),
("SIGNWRITING MOVEMENT-WALLPLANE DOUBLE ALTERNATING", "So", 0),
("SIGNWRITING MOVEMENT-WALLPLANE DOUBLE ALTERNATING WRIST FLEX", "So", 0),
("SIGNWRITING MOVEMENT-WALLPLANE CROSS", "So", 0),
("SIGNWRITING MOVEMENT-WALLPLANE TRIPLE STRAIGHT MOVEMENT", "So", 0),
("SIGNWRITING MOVEMENT-WALLPLANE TRIPLE WRIST FLEX", "So", 0),
("SIGNWRITING MOVEMENT-WALLPLANE TRIPLE ALTERNATING", "So", 0),
("SIGNWRITING MOVEMENT-WALLPLANE TRIPLE ALTERNATING WRIST FLEX", "So", 0),
("SIGNWRITING MOVEMENT-WALLPLANE BEND SMALL", "So", 0),
("SIGNWRITING MOVEMENT-WALLPLANE BEND MEDIUM", "So", 0),
("SIGNWRITING MOVEMENT-WALLPLANE BEND LARGE", "So", 0),
("SIGNWRITING MOVEMENT-WALLPLANE CORNER SMALL", "So", 0),
("SIGNWRITING MOVEMENT-WALLPLANE CORNER MEDIUM", "So", 0),
("SIGNWRITING MOVEMENT-WALLPLANE CORNER LARGE", "So", 0),
("SIGNWRITING MOVEMENT-WALLPLANE CORNER ROTATION", "So", 0),
("SIGNWRITING MOVEMENT-WALLPLANE CHECK SMALL", "So", 0),
("SIGNWRITING MOVEMENT-WALLPLANE CHECK MEDIUM", "So", 0),
("SIGNWRITING MOVEMENT-WALLPLANE CHECK LARGE", "So", 0),
("SIGNWRITING MOVEMENT-WALLPLANE BOX SMALL", "So", 0),
("SIGNWRITING MOVEMENT-WALLPLANE BOX MEDIUM", "So", 0),
("SIGNWRITING MOVEMENT-WALLPLANE BOX LARGE", "So", 0),
("SIGNWRITING MOVEMENT-WALLPLANE ZIGZAG SMALL", "So", 0),
("SIGNWRITING MOVEMENT-WALLPLANE ZIGZAG MEDIUM", "So", 0),
("SIGNWRITING MOVEMENT-WALLPLANE ZIGZAG LARGE", "So", 0),
("SIGNWRITING MOVEMENT-WALLPLANE PEAKS SMALL", "So", 0),
("SIGNWRITING MOVEMENT-WALLPLANE PEAKS MEDIUM", "So", 0),
("SIGNWRITING MOVEMENT-WALLPLANE PEAKS LARGE", "So", 0),
("SIGNWRITING TRAVEL-WALLPLANE ROTATION-WALLPLANE SINGLE", "So", 0),
("SIGNWRITING TRAVEL-WALLPLANE ROTATION-WALLPLANE DOUBLE", "So", 0),
("SIGNWRITING TRAVEL-WALLPLANE ROTATION-WALLPLANE ALTERNATING", "So", 0),
("SIGNWRITING TRAVEL-WALLPLANE ROTATION-FLOORPLANE SINGLE", "So", 0),
("SIGNWRITING TRAVEL-WALLPLANE ROTATION-FLOORPLANE DOUBLE", "So", 0),
("SIGNWRITING TRAVEL-WALLPLANE ROTATION-FLOORPLANE ALTERNATING", "So", 0),
("SIGNWRITING TRAVEL-WALLPLANE SHAKING", "So", 0),
("SIGNWRITING TRAVEL-WALLPLANE ARM SPIRAL SINGLE", "So", 0),
("SIGNWRITING TRAVEL-WALLPLANE ARM SPIRAL DOUBLE", "So", 0),
("SIGNWRITING TRAVEL-WALLPLANE ARM SPIRAL TRIPLE", "So", 0),
("SIGNWRITING MOVEMENT-DIAGONAL AWAY SMALL", "So", 0),
("SIGNWRITING MOVEMENT-DIAGONAL AWAY MEDIUM", "So", 0),
("SIGNWRITING MOVEMENT-DIAGONAL AWAY LARGE", "So", 0),
("SIGNWRITING MOVEMENT-DIAGONAL AWAY LARGEST", "So", 0),
("SIGNWRITING MOVEMENT-DIAGONAL TOWARDS SMALL", "So", 0),
("SIGNWRITING MOVEMENT-DIAGONAL TOWARDS MEDIUM", "So", 0),
("SIGNWRITING MOVEMENT-DIAGONAL TOWARDS LARGE", "So", 0),
("SIGNWRITING MOVEMENT-DIAGONAL TOWARDS LARGEST", "So", 0),
("SIGNWRITING MOVEMENT-DIAGONAL BETWEEN AWAY SMALL", "So", 0),
("SIGNWRITING MOVEMENT-DIAGONAL BETWEEN AWAY MEDIUM", "So", 0),
("SIGNWRITING MOVEMENT-DIAGONAL BETWEEN AWAY LARGE", "So", 0),
("SIGNWRITING MOVEMENT-DIAGONAL BETWEEN AWAY LARGEST", "So", 0),
("SIGNWRITING MOVEMENT-DIAGONAL BETWEEN TOWARDS SMALL", "So", 0),
("SIGNWRITING MOVEMENT-DIAGONAL BETWEEN TOWARDS MEDIUM", "So", 0),
("SIGNWRITING MOVEMENT-DIAGONAL BETWEEN TOWARDS LARGE", "So", 0),
("SIGNWRITING MOVEMENT-DIAGONAL BETWEEN TOWARDS LARGEST", "So", 0),
("SIGNWRITING MOVEMENT-FLOORPLANE SINGLE STRAIGHT SMALL", "So", 0),
("SIGNWRITING MOVEMENT-FLOORPLANE SINGLE STRAIGHT MEDIUM", "So", 0),
("SIGNWRITING MOVEMENT-FLOORPLANE SINGLE STRAIGHT LARGE", "So", 0),
("SIGNWRITING MOVEMENT-FLOORPLANE SINGLE STRAIGHT LARGEST", "So", 0),
("SIGNWRITING MOVEMENT-FLOORPLANE SINGLE WRIST FLEX", "So", 0),
("SIGNWRITING MOVEMENT-FLOORPLANE DOUBLE STRAIGHT", "So", 0),
("SIGNWRITING MOVEMENT-FLOORPLANE DOUBLE WRIST FLEX", "So", 0),
("SIGNWRITING MOVEMENT-FLOORPLANE DOUBLE ALTERNATING", "So", 0),
("SIGNWRITING MOVEMENT-FLOORPLANE DOUBLE ALTERNATING WRIST FLEX", "So", 0),
("SIGNWRITING MOVEMENT-FLOORPLANE CROSS", "So", 0),
("SIGNWRITING MOVEMENT-FLOORPLANE TRIPLE STRAIGHT MOVEMENT", "So", 0),
("SIGNWRITING MOVEMENT-FLOORPLANE TRIPLE WRIST FLEX", "So", 0),
("SIGNWRITING MOVEMENT-FLOORPLANE TRIPLE ALTERNATING MOVEMENT", "So", 0),
("SIGNWRITING MOVEMENT-FLOORPLANE TRIPLE ALTERNATING WRIST FLEX", "So", 0),
("SIGNWRITING MOVEMENT-FLOORPLANE BEND", "So", 0),
("SIGNWRITING MOVEMENT-FLOORPLANE CORNER SMALL", "So", 0),
("SIGNWRITING MOVEMENT-FLOORPLANE CORNER MEDIUM", "So", 0),
("SIGNWRITING MOVEMENT-FLOORPLANE CORNER LARGE", "So", 0),
("SIGNWRITING MOVEMENT-FLOORPLANE CHECK", "So", 0),
("SIGNWRITING MOVEMENT-FLOORPLANE BOX SMALL", "So", 0),
("SIGNWRITING MOVEMENT-FLOORPLANE BOX MEDIUM", "So", 0),
("SIGNWRITING MOVEMENT-FLOORPLANE BOX LARGE", "So", 0),
("SIGNWRITING MOVEMENT-FLOORPLANE ZIGZAG SMALL", "So", 0),
("SIGNWRITING MOVEMENT-FLOORPLANE ZIGZAG MEDIUM", "So", 0),
("SIGNWRITING MOVEMENT-FLOORPLANE ZIGZAG LARGE", "So", 0),
("SIGNWRITING MOVEMENT-FLOORPLANE PEAKS SMALL", "So", 0),
("SIGNWRITING MOVEMENT-FLOORPLANE PEAKS MEDIUM", "So", 0),
("SIGNWRITING MOVEMENT-FLOORPLANE PEAKS LARGE", "So", 0),
("SIGNWRITING TRAVEL-FLOORPLANE ROTATION-FLOORPLANE SINGLE", "So", 0),
("SIGNWRITING TRAVEL-FLOORPLANE ROTATION-FLOORPLANE DOUBLE", "So", 0),
("SIGNWRITING TRAVEL-FLOORPLANE ROTATION-FLOORPLANE ALTERNATING", "So", 0),
("SIGNWRITING TRAVEL-FLOORPLANE ROTATION-WALLPLANE SINGLE", "So", 0),
("SIGNWRITING TRAVEL-FLOORPLANE ROTATION-WALLPLANE DOUBLE", "So", 0),
("SIGNWRITING TRAVEL-FLOORPLANE ROTATION-WALLPLANE ALTERNATING", "So", 0),
("SIGNWRITING TRAVEL-FLOORPLANE SHAKING", "So", 0),
("SIGNWRITING MOVEMENT-WALLPLANE CURVE QUARTER SMALL", "So", 0),
("SIGNWRITING MOVEMENT-WALLPLANE CURVE QUARTER MEDIUM", "So", 0),
("SIGNWRITING MOVEMENT-WALLPLANE CURVE QUARTER LARGE", "So", 0),
("SIGNWRITING MOVEMENT-WALLPLANE CURVE QUARTER LARGEST", "So", 0),
("SIGNWRITING MOVEMENT-WALLPLANE CURVE HALF-CIRCLE SMALL", "So", 0),
("SIGNWRITING MOVEMENT-WALLPLANE CURVE HALF-CIRCLE MEDIUM", "So", 0),
("SIGNWRITING MOVEMENT-WALLPLANE CURVE HALF-CIRCLE LARGE", "So", 0),
("SIGNWRITING MOVEMENT-WALLPLANE CURVE HALF-CIRCLE LARGEST", "So", 0),
("SIGNWRITING MOVEMENT-WALLPLANE CURVE THREE-QUARTER CIRCLE SMALL", "So", 0),
("SIGNWRITING MOVEMENT-WALLPLANE CURVE THREE-QUARTER CIRCLE MEDIUM", "So", 0),
("SIGNWRITING MOVEMENT-WALLPLANE HUMP SMALL", "So", 0),
("SIGNWRITING MOVEMENT-WALLPLANE HUMP MEDIUM", "So", 0),
("SIGNWRITING MOVEMENT-WALLPLANE HUMP LARGE", "So", 0),
("SIGNWRITING MOVEMENT-WALLPLANE LOOP SMALL", "So", 0),
("SIGNWRITING MOVEMENT-WALLPLANE LOOP MEDIUM", "So", 0),
("SIGNWRITING MOVEMENT-WALLPLANE LOOP LARGE", "So", 0),
("SIGNWRITING MOVEMENT-WALLPLANE LOOP SMALL DOUBLE", "So", 0),
("SIGNWRITING MOVEMENT-WALLPLANE WAVE CURVE DOUBLE SMALL", "So", 0),
("SIGNWRITING MOVEMENT-WALLPLANE WAVE CURVE DOUBLE MEDIUM", "So", 0),
("SIGNWRITING MOVEMENT-WALLPLANE WAVE CURVE DOUBLE LARGE", "So", 0),
("SIGNWRITING MOVEMENT-WALLPLANE WAVE CURVE TRIPLE SMALL", "So", 0),
("SIGNWRITING MOVEMENT-WALLPLANE WAVE CURVE TRIPLE MEDIUM", "So", 0),
("SIGNWRITING MOVEMENT-WALLPLANE WAVE CURVE TRIPLE LARGE", "So", 0),
("SIGNWRITING MOVEMENT-WALLPLANE CURVE THEN STRAIGHT", "So", 0),
("SIGNWRITING MOVEMENT-WALLPLANE CURVED CROSS SMALL", "So", 0),
("SIGNWRITING MOVEMENT-WALLPLANE CURVED CROSS MEDIUM", "So", 0),
("SIGNWRITING ROTATION-WALLPLANE SINGLE", "So", 0),
("SIGNWRITING ROTATION-WALLPLANE DOUBLE", "So", 0),
("SIGNWRITING ROTATION-WALLPLANE ALTERNATE", "So", 0),
("SIGNWRITING MOVEMENT-WALLPLANE SHAKING", "So", 0),
("SIGNWRITING MOVEMENT-WALLPLANE CURVE HITTING FRONT WALL", "So", 0),
("SIGNWRITING MOVEMENT-WALLPLANE HUMP HITTING FRONT WALL", "So", 0),
("SIGNWRITING MOVEMENT-WALLPLANE LOOP HITTING FRONT WALL", "So", 0),
("SIGNWRITING MOVEMENT-WALLPLANE WAVE HITTING FRONT WALL", "So", 0),
("SIGNWRITING ROTATION-WALLPLANE SINGLE HITTING FRONT WALL", "So", 0),
("SIGNWRITING ROTATION-WALLPLANE DOUBLE HITTING FRONT WALL", "So", 0),
("SIGNWRITING ROTATION-WALLPLANE ALTERNATING HITTING FRONT WALL", "So", 0),
("SIGNWRITING MOVEMENT-WALLPLANE CURVE HITTING CHEST", "So", 0),
("SIGNWRITING MOVEMENT-WALLPLANE HUMP HITTING CHEST", "So", 0),
("SIGNWRITING MOVEMENT-WALLPLANE LOOP HITTING CHEST", "So", 0),
("SIGNWRITING MOVEMENT-WALLPLANE WAVE HITTING CHEST", "So", 0),
("SIGNWRITING ROTATION-WALLPLANE SINGLE HITTING CHEST", "So", 0),
("SIGNWRITING ROTATION-WALLPLANE DOUBLE HITTING CHEST", "So", 0),
("SIGNWRITING ROTATION-WALLPLANE ALTERNATING HITTING CHEST", "So", 0),
("SIGNWRITING MOVEMENT-WALLPLANE WAVE DIAGONAL PATH SMALL", "So", 0),
("SIGNWRITING MOVEMENT-WALLPLANE WAVE DIAGONAL PATH MEDIUM", "So", 0),
("SIGNWRITING MOVEMENT-WALLPLANE WAVE DIAGONAL PATH LARGE", "So", 0),
("SIGNWRITING MOVEMENT-FLOORPLANE CURVE HITTING CEILING SMALL", "So", 0),
("SIGNWRITING MOVEMENT-FLOORPLANE CURVE HITTING CEILING LARGE", "So", 0),
("SIGNWRITING MOVEMENT-FLOORPLANE HUMP HITTING CEILING SMALL DOUBLE", "So", 0),
("SIGNWRITING MOVEMENT-FLOORPLANE HUMP HITTING CEILING LARGE DOUBLE", "So", 0),
("SIGNWRITING MOVEMENT-FLOORPLANE HUMP HITTING CEILING SMALL TRIPLE", "So", 0),
("SIGNWRITING MOVEMENT-FLOORPLANE HUMP HITTING CEILING LARGE TRIPLE", "So", 0),
("SIGNWRITING MOVEMENT-FLOORPLANE LOOP HITTING CEILING SMALL SINGLE", "So", 0),
("SIGNWRITING MOVEMENT-FLOORPLANE LOOP HITTING CEILING LARGE SINGLE", "So", 0),
("SIGNWRITING MOVEMENT-FLOORPLANE LOOP HITTING CEILING SMALL DOUBLE", "So", 0),
("SIGNWRITING MOVEMENT-FLOORPLANE LOOP HITTING CEILING LARGE DOUBLE", "So", 0),
("SIGNWRITING MOVEMENT-FLOORPLANE WAVE HITTING CEILING SMALL", "So", 0),
("SIGNWRITING MOVEMENT-FLOORPLANE WAVE HITTING CEILING LARGE", "So", 0),
("SIGNWRITING ROTATION-FLOORPLANE SINGLE HITTING CEILING", "So", 0),
("SIGNWRITING ROTATION-FLOORPLANE DOUBLE HITTING CEILING", "So", 0),
("SIGNWRITING ROTATION-FLOORPLANE ALTERNATING HITTING CEILING", "So", 0),
("SIGNWRITING MOVEMENT-FLOORPLANE CURVE HITTING FLOOR SMALL", "So", 0),
("SIGNWRITING MOVEMENT-FLOORPLANE CURVE HITTING FLOOR LARGE", "So", 0),
("SIGNWRITING MOVEMENT-FLOORPLANE HUMP HITTING FLOOR SMALL DOUBLE", "So", 0),
("SIGNWRITING MOVEMENT-FLOORPLANE HUMP HITTING FLOOR LARGE DOUBLE", "So", 0),
("SIGNWRITING MOVEMENT-FLOORPLANE HUMP HITTING FLOOR TRIPLE SMALL TRIPLE", "So", 0),
("SIGNWRITING MOVEMENT-FLOORPLANE HUMP HITTING FLOOR TRIPLE LARGE TRIPLE", "So", 0),
("SIGNWRITING MOVEMENT-FLOORPLANE LOOP HITTING FLOOR SMALL SINGLE", "So", 0),
("SIGNWRITING MOVEMENT-FLOORPLANE LOOP HITTING FLOOR LARGE SINGLE", "So", 0),
("SIGNWRITING MOVEMENT-FLOORPLANE LOOP HITTING FLOOR SMALL DOUBLE", "So", 0),
("SIGNWRITING MOVEMENT-FLOORPLANE LOOP HITTING FLOOR LARGE DOUBLE", "So", 0),
("SIGNWRITING MOVEMENT-FLOORPLANE WAVE HITTING FLOOR SMALL", "So", 0),
("SIGNWRITING MOVEMENT-FLOORPLANE WAVE HITTING FLOOR LARGE", "So", 0),
("SIGNWRITING ROTATION-FLOORPLANE SINGLE HITTING FLOOR", "So", 0),
("SIGNWRITING ROTATION-FLOORPLANE DOUBLE HITTING FLOOR", "So", 0),
("SIGNWRITING ROTATION-FLOORPLANE ALTERNATING HITTING FLOOR", "So", 0),
("SIGNWRITING MOVEMENT-FLOORPLANE CURVE SMALL", "So", 0),
("SIGNWRITING MOVEMENT-FLOORPLANE CURVE MEDIUM", "So", 0),
("SIGNWRITING MOVEMENT-FLOORPLANE CURVE LARGE", "So", 0),
("SIGNWRITING MOVEMENT-FLOORPLANE CURVE LARGEST", "So", 0),
("SIGNWRITING MOVEMENT-FLOORPLANE CURVE COMBINED", "So", 0),
("SIGNWRITING MOVEMENT-FLOORPLANE HUMP SMALL", "So", 0),
("SIGNWRITING MOVEMENT-FLOORPLANE LOOP SMALL", "So", 0),
("SIGNWRITING MOVEMENT-FLOORPLANE WAVE SNAKE", "So", 0),
("SIGNWRITING MOVEMENT-FLOORPLANE WAVE SMALL", "So", 0),
("SIGNWRITING MOVEMENT-FLOORPLANE WAVE LARGE", "So", 0),
("SIGNWRITING ROTATION-FLOORPLANE SINGLE", "So", 0),
("SIGNWRITING ROTATION-FLOORPLANE DOUBLE", "So", 0),
("SIGNWRITING ROTATION-FLOORPLANE ALTERNATING", "So", 0),
("SIGNWRITING MOVEMENT-FLOORPLANE SHAKING PARALLEL", "So", 0),
("SIGNWRITING MOVEMENT-WALLPLANE ARM CIRCLE SMALL SINGLE", "So", 0),
("SIGNWRITING MOVEMENT-WALLPLANE ARM CIRCLE MEDIUM SINGLE", "So", 0),
("SIGNWRITING MOVEMENT-WALLPLANE ARM CIRCLE SMALL DOUBLE", "So", 0),
("SIGNWRITING MOVEMENT-WALLPLANE ARM CIRCLE MEDIUM DOUBLE", "So", 0),
("SIGNWRITING MOVEMENT-FLOORPLANE ARM CIRCLE HITTING WALL SMALL SINGLE", "So", 0),
("SIGNWRITING MOVEMENT-FLOORPLANE ARM CIRCLE HITTING WALL MEDIUM SINGLE", "So", 0),
("SIGNWRITING MOVEMENT-FLOORPLANE ARM CIRCLE HITTING WALL LARGE SINGLE", "So", 0),
("SIGNWRITING MOVEMENT-FLOORPLANE ARM CIRCLE HITTING WALL SMALL DOUBLE", "So", 0),
("SIGNWRITING MOVEMENT-FLOORPLANE ARM CIRCLE HITTING WALL MEDIUM DOUBLE", "So", 0),
("SIGNWRITING MOVEMENT-FLOORPLANE ARM CIRCLE HITTING WALL LARGE DOUBLE", "So", 0),
("SIGNWRITING MOVEMENT-WALLPLANE WRIST CIRCLE FRONT SINGLE", "So", 0),
("SIGNWRITING MOVEMENT-WALLPLANE WRIST CIRCLE FRONT DOUBLE", "So", 0),
("SIGNWRITING MOVEMENT-FLOORPLANE WRIST CIRCLE HITTING WALL SINGLE", "So", 0),
("SIGNWRITING MOVEMENT-FLOORPLANE WRIST CIRCLE HITTING WALL DOUBLE", "So", 0),
("SIGNWRITING MOVEMENT-WALLPLANE FINGER CIRCLES SINGLE", "So", 0),
("SIGNWRITING MOVEMENT-WALLPLANE FINGER CIRCLES DOUBLE", "So", 0),
("SIGNWRITING MOVEMENT-FLOORPLANE FINGER CIRCLES HITTING WALL SINGLE", "So", 0),
("SIGNWRITING MOVEMENT-FLOORPLANE FINGER CIRCLES HITTING WALL DOUBLE", "So", 0),
("SIGNWRITING DYNAMIC ARROWHEAD SMALL", "So", 0),
("SIGNWRITING DYNAMIC ARROWHEAD LARGE", "So", 0),
("SIGNWRITING DYNAMIC FAST", "So", 0),
("SIGNWRITING DYNAMIC SLOW", "So", 0),
("SIGNWRITING DYNAMIC TENSE", "So", 0),
("SIGNWRITING DYNAMIC RELAXED", "So", 0),
("SIGNWRITING DYNAMIC SIMULTANEOUS", "So", 0),
("SIGNWRITING DYNAMIC SIMULTANEOUS ALTERNATING", "So", 0),
("SIGNWRITING DYNAMIC EVERY OTHER TIME", "So", 0),
("SIGNWRITING DYNAMIC GRADUAL", "So", 0),
("SIGNWRITING HEAD", "So", 0),
("SIGNWRITING HEAD RIM", "Mn", 0),
("SIGNWRITING HEAD MOVEMENT-WALLPLANE STRAIGHT", "Mn", 0),
("SIGNWRITING HEAD MOVEMENT-WALLPLANE TILT", "Mn", 0),
("SIGNWRITING HEAD MOVEMENT-FLOORPLANE STRAIGHT", "Mn", 0),
("SIGNWRITING HEAD MOVEMENT-WALLPLANE CURVE", "Mn", 0),
("SIGNWRITING HEAD MOVEMENT-FLOORPLANE CURVE", "Mn", 0),
("SIGNWRITING HEAD MOVEMENT CIRCLE", "Mn", 0),
("SIGNWRITING FACE DIRECTION POSITION NOSE FORWARD TILTING", "Mn", 0),
("SIGNWRITING FACE DIRECTION POSITION NOSE UP OR DOWN", "Mn", 0),
("SIGNWRITING FACE DIRECTION POSITION NOSE UP OR DOWN TILTING", "Mn", 0),
("SIGNWRITING EYEBROWS STRAIGHT UP", "Mn", 0),
("SIGNWRITING EYEBROWS STRAIGHT NEUTRAL", "Mn", 0),
("SIGNWRITING EYEBROWS STRAIGHT DOWN", "Mn", 0),
("SIGNWRITING DREAMY EYEBROWS NEUTRAL DOWN", "Mn", 0),
("SIGNWRITING DREAMY EYEBROWS DOWN NEUTRAL", "Mn", 0),
("SIGNWRITING DREAMY EYEBROWS UP NEUTRAL", "Mn", 0),
("SIGNWRITING DREAMY EYEBROWS NEUTRAL UP", "Mn", 0),
("SIGNWRITING FOREHEAD NEUTRAL", "Mn", 0),
("SIGNWRITING FOREHEAD CONTACT", "Mn", 0),
("SIGNWRITING FOREHEAD WRINKLED", "Mn", 0),
("SIGNWRITING EYES OPEN", "Mn", 0),
("SIGNWRITING EYES SQUEEZED", "Mn", 0),
("SIGNWRITING EYES CLOSED", "Mn", 0),
("SIGNWRITING EYE BLINK SINGLE", "Mn", 0),
("SIGNWRITING EYE BLINK MULTIPLE", "Mn", 0),
("SIGNWRITING EYES HALF OPEN", "Mn", 0),
("SIGNWRITING EYES WIDE OPEN", "Mn", 0),
("SIGNWRITING EYES HALF CLOSED", "Mn", 0),
("SIGNWRITING EYES WIDENING MOVEMENT", "Mn", 0),
("SIGNWRITING EYE WINK", "Mn", 0),
("SIGNWRITING EYELASHES UP", "Mn", 0),
("SIGNWRITING EYELASHES DOWN", "Mn", 0),
("SIGNWRITING EYELASHES FLUTTERING", "Mn", 0),
("SIGNWRITING EYEGAZE-WALLPLANE STRAIGHT", "Mn", 0),
("SIGNWRITING EYEGAZE-WALLPLANE STRAIGHT DOUBLE", "Mn", 0),
("SIGNWRITING EYEGAZE-WALLPLANE STRAIGHT ALTERNATING", "Mn", 0),
("SIGNWRITING EYEGAZE-FLOORPLANE STRAIGHT", "Mn", 0),
("SIGNWRITING EYEGAZE-FLOORPLANE STRAIGHT DOUBLE", "Mn", 0),
("SIGNWRITING EYEGAZE-FLOORPLANE STRAIGHT ALTERNATING", "Mn", 0),
("SIGNWRITING EYEGAZE-WALLPLANE CURVED", "Mn", 0),
("SIGNWRITING EYEGAZE-FLOORPLANE CURVED", "Mn", 0),
("SIGNWRITING EYEGAZE-WALLPLANE CIRCLING", "Mn", 0),
("SIGNWRITING CHEEKS PUFFED", "Mn", 0),
("SIGNWRITING CHEEKS NEUTRAL", "Mn", 0),
("SIGNWRITING CHEEKS SUCKED", "Mn", 0),
("SIGNWRITING TENSE CHEEKS HIGH", "Mn", 0),
("SIGNWRITING TENSE CHEEKS MIDDLE", "Mn", 0),
("SIGNWRITING TENSE CHEEKS LOW", "Mn", 0),
("SIGNWRITING EARS", "Mn", 0),
("SIGNWRITING NOSE NEUTRAL", "Mn", 0),
("SIGNWRITING NOSE CONTACT", "Mn", 0),
("SIGNWRITING NOSE WRINKLES", "Mn", 0),
("SIGNWRITING NOSE WIGGLES", "Mn", 0),
("SIGNWRITING AIR BLOWING OUT", "Mn", 0),
("SIGNWRITING AIR SUCKING IN", "Mn", 0),
("SIGNWRITING AIR BLOW SMALL ROTATIONS", "So", 0),
("SIGNWRITING AIR SUCK SMALL ROTATIONS", "So", 0),
("SIGNWRITING BREATH INHALE", "So", 0),
("SIGNWRITING BREATH EXHALE", "So", 0),
("SIGNWRITING MOUTH CLOSED NEUTRAL", "Mn", 0),
("SIGNWRITING MOUTH CLOSED FORWARD", "Mn", 0),
("SIGNWRITING MOUTH CLOSED CONTACT", "Mn", 0),
("SIGNWRITING MOUTH SMILE", "Mn", 0),
("SIGNWRITING MOUTH SMILE WRINKLED", "Mn", 0),
("SIGNWRITING MOUTH SMILE OPEN", "Mn", 0),
("SIGNWRITING MOUTH FROWN", "Mn", 0),
("SIGNWRITING MOUTH FROWN WRINKLED", "Mn", 0),
("SIGNWRITING MOUTH FROWN OPEN", "Mn", 0),
("SIGNWRITING MOUTH OPEN CIRCLE", "Mn", 0),
("SIGNWRITING MOUTH OPEN FORWARD", "Mn", 0),
("SIGNWRITING MOUTH OPEN WRINKLED", "Mn", 0),
("SIGNWRITING MOUTH OPEN OVAL", "Mn", 0),
("SIGNWRITING MOUTH OPEN OVAL WRINKLED", "Mn", 0),
("SIGNWRITING MOUTH OPEN OVAL YAWN", "Mn", 0),
("SIGNWRITING MOUTH OPEN RECTANGLE", "Mn", 0),
("SIGNWRITING MOUTH OPEN RECTANGLE WRINKLED", "Mn", 0),
("SIGNWRITING MOUTH OPEN RECTANGLE YAWN", "Mn", 0),
("SIGNWRITING MOUTH KISS", "Mn", 0),
("SIGNWRITING MOUTH KISS FORWARD", "Mn", 0),
("SIGNWRITING MOUTH KISS WRINKLED", "Mn", 0),
("SIGNWRITING MOUTH TENSE", "Mn", 0),
("SIGNWRITING MOUTH TENSE FORWARD", "Mn", 0),
("SIGNWRITING MOUTH TENSE SUCKED", "Mn", 0),
("SIGNWRITING LIPS PRESSED TOGETHER", "Mn", 0),
("SIGNWRITING LIP LOWER OVER UPPER", "Mn", 0),
("SIGNWRITING LIP UPPER OVER LOWER", "Mn", 0),
("SIGNWRITING MOUTH CORNERS", "Mn", 0),
("SIGNWRITING MOUTH WRINKLES SINGLE", "Mn", 0),
("SIGNWRITING MOUTH WRINKLES DOUBLE", "Mn", 0),
("SIGNWRITING TONGUE STICKING OUT FAR", "Mn", 0),
("SIGNWRITING TONGUE LICKING LIPS", "Mn", 0),
("SIGNWRITING TONGUE TIP BETWEEN LIPS", "Mn", 0),
("SIGNWRITING TONGUE TIP TOUCHING INSIDE MOUTH", "Mn", 0),
("SIGNWRITING TONGUE INSIDE MOUTH RELAXED", "Mn", 0),
("SIGNWRITING TONGUE MOVES AGAINST CHEEK", "Mn", 0),
("SIGNWRITING TONGUE CENTRE STICKING OUT", "Mn", 0),
("SIGNWRITING TONGUE CENTRE INSIDE MOUTH", "Mn", 0),
("SIGNWRITING TEETH", "Mn", 0),
("SIGNWRITING TEETH MOVEMENT", "Mn", 0),
("SIGNWRITING TEETH ON TONGUE", "Mn", 0),
("SIGNWRITING TEETH ON TONGUE MOVEMENT", "Mn", 0),
("SIGNWRITING TEETH ON LIPS", "Mn", 0),
("SIGNWRITING TEETH ON LIPS MOVEMENT", "Mn", 0),
("SIGNWRITING TEETH BITE LIPS", "Mn", 0),
("SIGNWRITING MOVEMENT-WALLPLANE JAW", "Mn", 0),
("SIGNWRITING MOVEMENT-FLOORPLANE JAW", "Mn", 0),
("SIGNWRITING NECK", "Mn", 0),
("SIGNWRITING HAIR", "Mn", 0),
("SIGNWRITING EXCITEMENT", "Mn", 0),
("SIGNWRITING SHOULDER HIP SPINE", "So", 0),
("SIGNWRITING SHOULDER HIP POSITIONS", "So", 0),
("SIGNWRITING WALLPLANE SHOULDER HIP MOVE", "So", 0),
("SIGNWRITING FLOORPLANE SHOULDER HIP MOVE", "So", 0),
("SIGNWRITING SHOULDER TILTING FROM WAIST", "So", 0),
("SIGNWRITING TORSO-WALLPLANE STRAIGHT STRETCH", "So", 0),
("SIGNWRITING TORSO-WALLPLANE CURVED BEND", "So", 0),
("SIGNWRITING TORSO-FLOORPLANE TWISTING", "So", 0),
("SIGNWRITING UPPER BODY TILTING FROM HIP JOINTS", "Mn", 0),
("SIGNWRITING LIMB COMBINATION", "So", 0),
("SIGNWRITING LIMB LENGTH-1", "So", 0),
("SIGNWRITING LIMB LENGTH-2", "So", 0),
("SIGNWRITING LIMB LENGTH-3", "So", 0),
("SIGNWRITING LIMB LENGTH-4", "So", 0),
("SIGNWRITING LIMB LENGTH-5", "So", 0),
("SIGNWRITING LIMB LENGTH-6", "So", 0),
("SIGNWRITING LIMB LENGTH-7", "So", 0),
("SIGNWRITING FINGER", "So", 0),
("SIGNWRITING LOCATION-WALLPLANE SPACE", "So", 0),
("SIGNWRITING LOCATION-FLOORPLANE SPACE", "So", 0),
("SIGNWRITING LOCATION HEIGHT", "So", 0),
("SIGNWRITING LOCATION WIDTH", "So", 0),
("SIGNWRITING LOCATION DEPTH", "So", 0),
("SIGNWRITING LOCATION HEAD NECK", "Mn", 0),
("SIGNWRITING LOCATION TORSO", "So", 0),
("SIGNWRITING LOCATION LIMBS DIGITS", "So", 0),
("SIGNWRITING COMMA", "Po", 0),
("SIGNWRITING FULL STOP", "Po", 0),
("SIGNWRITING SEMICOLON", "Po", 0),
("SIGNWRITING COLON", "Po", 0),
("SIGNWRITING PARENTHESIS", "Po", 0),
(),
(),
(),
(),
(),
(),
(),
(),
(),
(),
(),
(),
(),
(),
(),
("SIGNWRITING FILL MODIFIER-2", "Mn", 0),
("SIGNWRITING FILL MODIFIER-3", "Mn", 0),
("SIGNWRITING FILL MODIFIER-4", "Mn", 0),
("SIGNWRITING FILL MODIFIER-5", "Mn", 0),
("SIGNWRITING FILL MODIFIER-6", "Mn", 0),
(),
("SIGNWRITING ROTATION MODIFIER-2", "Mn", 0),
("SIGNWRITING ROTATION MODIFIER-3", "Mn", 0),
("SIGNWRITING ROTATION MODIFIER-4", "Mn", 0),
("SIGNWRITING ROTATION MODIFIER-5", "Mn", 0),
("SIGNWRITING ROTATION MODIFIER-6", "Mn", 0),
("SIGNWRITING ROTATION MODIFIER-7", "Mn", 0),
("SIGNWRITING ROTATION MODIFIER-8", "Mn", 0),
("SIGNWRITING ROTATION MODIFIER-9", "Mn", 0),
("SIGNWRITING ROTATION MODIFIER-10", "Mn", 0),
("SIGNWRITING ROTATION MODIFIER-11", "Mn", 0),
("SIGNWRITING ROTATION MODIFIER-12", "Mn", 0),
("SIGNWRITING ROTATION MODIFIER-13", "Mn", 0),
("SIGNWRITING ROTATION MODIFIER-14", "Mn", 0),
("SIGNWRITING ROTATION MODIFIER-15", "Mn", 0),
("SIGNWRITING ROTATION MODIFIER-16", "Mn", 0),
)
|
https://github.com/herbhuang/utdallas-thesis-template-typst | https://raw.githubusercontent.com/herbhuang/utdallas-thesis-template-typst/main/content/abstract_de.typ | typst | MIT License | Note: Insert the German translation of the English abstract here. |
https://github.com/Zeta611/simplebnf.typ | https://raw.githubusercontent.com/Zeta611/simplebnf.typ/main/examples/system-f.typ | typst | MIT License | #import "../simplebnf.typ": *
#set page(
width: auto,
height: auto,
margin: .5cm,
fill: white,
)
#bnf(
Prod(
$e$,
delim: $โ$,
{
Or[$x$][variable]
Or[$ฮป x: ฯ.e$][abstraction]
Or[$e space e$][application]
Or[$ฮป ฯ.e space e$][type abstraction]
// @typstyle off
Or[$e space [ฯ]$][type application]
},
),
Prod(
$ฯ$,
delim: $โ$,
{
Or[$X$][type variable]
Or[$ฯ โ ฯ$][type of functions]
Or[$โX.ฯ$][universal quantification]
},
),
)
|
https://github.com/GYPpro/DS-Course-Report | https://raw.githubusercontent.com/GYPpro/DS-Course-Report/main/Rep/01.typ | typst | #import "@preview/tablex:0.0.6": tablex, hlinex, vlinex, colspanx, rowspanx
#import "@preview/codelst:2.0.1": sourcecode
// Display inline code in a small box
// that retains the correct baseline.
#set text(font:("Times New Roman","Source Han Serif SC"))
#show raw.where(block: false): box.with(
fill: luma(230),
inset: (x: 3pt, y: 0pt),
outset: (y: 3pt),
radius: 2pt,
)
// #set raw(align: center)
#show raw: set text(
font: ("consolas", "Source Han Serif SC")
)
#set page(
// flipped: true,
paper: "a4",
// background: [#image("background.png")]
)
#set text(
font:("Times New Roman","Source Han Serif SC"),
style:"normal",
weight: "regular",
size: 13pt,
)
#let nxtIdx(name) = box[ #counter(name).step()#counter(name).display()]
#set par(
// first-line-indent: 1cm
)
#set math.equation(numbering: "(1)")
// Display block code in a larger block
// with more padding.
#show raw.where(block: true): block.with(
fill: luma(240),
inset: 10pt,
radius: 4pt,
)
#set math.equation(numbering: "(1)")
#set page(
paper:"a4",
number-align: right,
margin: (x:2.54cm,y:4cm),
header: [
#set text(
size: 25pt,
font: "KaiTi",
)
#align(
bottom + center,
[ #strong[ๆจๅๅคงๅญฆๆฌ็งๅฎ้ชๆฅๅไธ็จ็บธ(้้กต)] ]
)
#line(start: (0pt,-5pt),end:(453pt,-5pt))
]
)
/*----*/
= ๅบไบๅๅ้พ่กจ็`linkedList`
\
#text(
font:"KaiTi",
size: 15pt
)[
่ฏพ็จๅ็งฐ#underline[#text(" ๆฐๆฎ็ปๆ ")]ๆ็ปฉ่ฏๅฎ#underline[#text(" ")]\
ๅฎ้ช้กน็ฎๅ็งฐ#underline[#text(" ") ๅบไบๅๅ้พ่กจ็`linkedList` #text(" ")]ๆๅฏผ่ๅธ#underline[#text(" ๅนฒๆ่ช ")]\
ๅฎ้ช้กน็ฎ็ผๅท#underline[#text(" 01 ")]ๅฎ้ช้กน็ฎ็ฑปๅ#underline[#text(" ่ฎพ่ฎกๆง ")]ๅฎ้ชๅฐ็น#underline[#text(" ๆฐๅญฆ็ณปๆบๆฟ ")]\
ๅญฆ็ๅงๅ#underline[#text(" ้ญๅฝฆๅน ")]ๅญฆๅท#underline[#text(" 2022101149 ")]\
ๅญฆ้ข#underline[#text(" ไฟกๆฏ็งๅญฆๆๆฏๅญฆ้ข ")]็ณป#underline[#text(" ๆฐๅญฆ็ณป ")]ไธไธ#underline[#text(" ไฟกๆฏ็ฎก็ไธไฟกๆฏ็ณป็ป ")]\
ๅฎ้ชๆถ้ด#underline[#text(" 2024ๅนด6ๆ13ๆฅไธๅ ")]#text("~")#underline[#text(" 2024ๅนด7ๆ13ๆฅไธญๅ ")]\
]
#set heading(
numbering: "1.1."
)
= ๅฎ้ช็ฎ็
ๅฎ็ฐไธไธชๅๅๅ่กจ็ฑป๏ผๅจ็ฑปไธญๅฎ็ฐๅขใๅ ใๆนใๆฅ็ๆนๆณๅนถๅฎๆๆต่ฏ
= ๅฎ้ช็ฏๅข
\
#h(1.8em)่ฎก็ฎๆบ๏ผPC X64
ๆไฝ็ณป็ป๏ผWindows + Ubuntu20.0LTS
็ผ็จ่ฏญ่จ๏ผC++๏ผGCC std20
IDE๏ผVisual Studio Code
#pagebreak()
= ็จๅบไปฃ็
== `linkedList.h`
#sourcecode[```cpp
// #define _PRIVATE_DEBUG
#ifndef LINKED_LIST_HPP
#define LINKED_LIST_HPP
#ifdef _PRIVATE_DEBUG
#include <iostream>
#endif
namespace myDS
{
template<typename VALUE_TYPE>
class linkedList{
protected:
class linkedNode {
public:
VALUE_TYPE data = VALUE_TYPE();
linkedNode * next = nullptr;
linkedNode * priv = nullptr;
linkedNode() { }
linkedNode(VALUE_TYPE _data){
next = nullptr;
priv = nullptr;
data = _data;
}
linkedNode(VALUE_TYPE _data,linkedNode * priv)
{
next = nullptr;
priv = priv;
data = _data;
}
~linkedNode() {
#ifdef _PRIVATE_DEBUG
// if(this->next != nullptr)
// std::cout << "Unexpected Delete at :" << this->data
// << " with next:" << this->next->data << "\n";
#endif
}
linkedNode * linkNext(linkedNode * _next)
{
next = _next;
_next->priv = this;
return this->next;
}
linkedNode * linkPriv(linkedNode * _priv)
{
priv = _priv;
_priv->next = this;
return this->priv;
}
void insertNext(linkedNode * _inst){
if(_inst == nullptr) return;
if(this->next == nullptr) linkNext(_inst);
else {
_inst->next = this->next;
this->next->priv = _inst;
_inst->priv = this;
this->next = _inst;
}
}
void deleteNext()
{
if(this->next == nullptr) return;
else {
linkedNode * tmp = this->next;
this->next = this->next->next;
this->next->priv = this;
tmp->next = nullptr;
delete tmp;
}
}
};
private:
class _iterator
{
private:
linkedNode *_ptr;
public:
enum __iter_dest_type
{
front,
back
};
__iter_dest_type _iter_dest;
_iterator(linkedNode * _upper ,__iter_dest_type _d)
{
_ptr = _upper;
_iter_dest = _d;
}
VALUE_TYPE & operator*()
{
return _ptr->data;
}
VALUE_TYPE *operator->()
{
return _ptr;
}
myDS::linkedList<VALUE_TYPE>::_iterator operator++()
{
if (_iter_dest == front)
_ptr = _ptr->next;
else
_ptr = _ptr->priv;
return *this;
}
myDS::linkedList<VALUE_TYPE>::_iterator operator++(int)
{
myDS::linkedList<VALUE_TYPE>::_iterator old = *this;
if (_iter_dest == front)
_ptr = _ptr->next;
else
_ptr = _ptr->priv;
return old;
}
// myDS::linkedList<VALUE_TYPE>::_iterator operator+(size_t _n)
// {
// if (_iter_dest == front)
// _upper_idx += _n;
// else
// _upper_idx -= _n;
// _ptr = &((*_upper_pointer)[_upper_idx]);
// return *this;
// }
bool operator==( myDS::linkedList<VALUE_TYPE>::_iterator _b)
{
if (&(*_b) == _ptr)
return 1;
else
return 0;
}
bool operator!=( myDS::linkedList<VALUE_TYPE>::_iterator _b)
{
if (&(*_b) == &(_ptr->data))
return 0;
else
return 1;
}
};
linkedNode * head = new linkedNode();
linkedNode * tail = new linkedNode();
int cap = 0;
public:
linkedList(){
head->linkNext(tail);
}
~linkedList(){
clear();
delete head;
delete tail;
}
void push_back(VALUE_TYPE t) {
tail->data = t;
tail->linkNext(new linkedNode());
tail = tail->next;
cap ++;
}
void push_frount(VALUE_TYPE t) {
head->data = t;
head = (head->linkPriv(new linkedNode()));
cap ++;
}
void clear() {
linkedNode * deletingObject;
while(tail->priv != head) {
deletingObject = tail;
tail = tail->priv;
delete deletingObject;
}
cap = 0;
delete head;
delete tail;
tail = new linkedNode();
head = new linkedNode();
head->linkNext(tail);
}
std::size_t erase(VALUE_TYPE p) {
linkedNode * ptr = head;
int ttl = 0;
while(ptr->next != tail) {
if(ptr->next->data == p){
ptr->deleteNext();
ttl ++;
} else ptr = ptr->next;
}
cap -= ttl;
return ttl;
}
std::size_t size() {return cap;}
bool erase(linkedList<VALUE_TYPE>::_iterator p) {
myDS::linkedList<VALUE_TYPE>::_iterator ptr = this->begin();
linkedNode * cur = head;
while(ptr != p) {
cur = cur->next;
ptr ++;
if(cur == tail) return 0;
}
cur->deleteNext();
cap --;
return 1;
}
myDS::linkedList<VALUE_TYPE>::_iterator begin() {
enum myDS::linkedList<VALUE_TYPE>::_iterator::__iter_dest_type _FRONT = myDS::linkedList<VALUE_TYPE>::_iterator::__iter_dest_type::front;
return myDS::linkedList<VALUE_TYPE>::_iterator(head->next,_FRONT);
}
myDS::linkedList<VALUE_TYPE>::_iterator rbegin() {
enum myDS::linkedList<VALUE_TYPE>::_iterator::__iter_dest_type _BACK = myDS::linkedList<VALUE_TYPE>::_iterator::__iter_dest_type::back;
return myDS::linkedList<VALUE_TYPE>::_iterator(tail->priv,_BACK);
}
myDS::linkedList<VALUE_TYPE>::_iterator end() {
enum myDS::linkedList<VALUE_TYPE>::_iterator::__iter_dest_type _FRONT = myDS::linkedList<VALUE_TYPE>::_iterator::__iter_dest_type::front;
return myDS::linkedList<VALUE_TYPE>::_iterator(tail,_FRONT);
}
myDS::linkedList<VALUE_TYPE>::_iterator rend() {
enum myDS::linkedList<VALUE_TYPE>::_iterator::__iter_dest_type _BACK = myDS::linkedList<VALUE_TYPE>::_iterator::__iter_dest_type::back;
return myDS::linkedList<VALUE_TYPE>::_iterator(head,_BACK);
}
myDS::linkedList<VALUE_TYPE>::_iterator get(std::size_t p) {
linkedNode * ptr = head->next;
while(p --) ptr = ptr->next;
enum myDS::linkedList<VALUE_TYPE>::_iterator::__iter_dest_type _FRONT = myDS::linkedList<VALUE_TYPE>::_iterator::__iter_dest_type::front;
return myDS::linkedList<VALUE_TYPE>::_iterator(ptr,_FRONT);
}
VALUE_TYPE & operator[](std::size_t p) {
linkedNode * ptr = head;
while(p --) ptr = ptr->next;
return ptr->next->data;
}
#ifdef _PRIVATE_DEBUG
void innerPrint()
{
std::cout << "--Header[" << head << "]: " << head->data << "\n";
std::cout << "--Tail[" << tail << "]: " << tail->data << "\n";
std::cout << "-----------\n";
std::cout << "cur:" << cap<< "\n";
auto ptr = head;
do {
std::cout << "[" << ptr << "] ->next:" << ptr->next << " ->priv:" << ptr->priv << " ||data:" << ptr->data << "\n";
ptr = ptr->next;
}while(ptr != nullptr);
}
#endif
};
}
#endif
```]
== `_PRIV_TEST.cpp`
#sourcecode[```cpp
#define DS_TOBE_TEST linkedList
#define _PRIVATE_DEBUG
#include "Dev\01\linkedList.h"
#include <iostream>
#include <math.h>
#include <vector>
using namespace std;
using TBT = myDS::DS_TOBE_TEST<int>;
void accuracyTest() {//็ปๆๆญฃ็กฎๆงๆต่ฏ
TBT tc = TBT();
for(;;)
{
string op;
cin >> op;
if(op == "clr") { //ๆธ
็ฉบ
tc.clear();
} else if(op == "q") //้ๅบๆต่ฏ
{
return;
} else if(op == "pb")//push_back
{
int c;
cin >> c;
tc.push_back(c);
} else if(op == "pf")//push_frount
{
int c;
cin >> c;
tc.push_frount(c);
} else if(op == "at")//้ๆบ่ฎฟ้ฎ
{
int p;
cin >> p;
cout << tc[p] << "\n";
} else if(op == "delEL")//ๅ ้คๆๆ็ญไบๆๅผๅ
็ด
{
int p;
cin >> p;
cout << tc.erase(p) << "\n";
} else if(op == "delPS")//ๅ ้คๆไฝ็ฝฎไธ็ๅ
็ด
{
int p;
cin >> p;
cout << tc.erase(tc.get(p)) << "\n";
} else if(op == "iterF") //ๆญฃๅบ้ๅ
{
tc.innerPrint();
cout << "Iter with index:\n";
for(int i = 0;i < tc.size();i ++) cout << tc[i] << " ";cout << "\n";
cout << "Iter with begin end\n";
for(auto x = tc.begin();x != tc.end();x ++) cout << (*x) << " ";cout << "\n";
cout << "Iter with AUTO&&\n";
for(auto x:tc) cout << x << " ";cout << "\n";
} else if(op == "iterB") //ๆญฃๅบ้ๅ
{
tc.innerPrint();
cout << "Iter with index:\n";
for(int i = 0;i < tc.size();i ++) cout << tc[tc.size()-1-i] << " ";cout << "\n";
cout << "Iter with begin end\n";
for(auto x = tc.rbegin();x != tc.rend();x ++) cout << (*x) << " ";cout << "\n";
// cout << "Iter with AUTO&&\n";."\n";
} else if(op == "mv")//ๅ็นไฟฎๆน
{
int p;
cin >> p;
int tr;
cin >> tr;
tc[p] = tr;
} else if(op == "")
{
} else {
op.clear();
}
}
}
void memLeakTest() {//ๅ
ๅญๆณๆผๆต่ฏ
TBT tc = TBT();
for(;;){
tc.push_back(1);
tc.push_back(1);
tc.push_back(1);
tc.push_back(1);
tc.clear();
}
}
signed main()
{
// accuracyTest();
memLeakTest();
}
```]
= ๆต่ฏๆฐๆฎไธ่ฟ่ก็ปๆ
่ฟ่กไธ่ฟฐ`_PRIV_TEST.cpp`ๆต่ฏไปฃ็ ไธญ็ๆญฃ็กฎๆงๆต่ฏๆจกๅ๏ผๅพๅฐไปฅไธๅ
ๅฎน๏ผ
```
pb 1
pb 2
pb 3
pb 4
pf 3
pb 3
iterF
iterB
delEL 3
iterF
delPS 1
clr
pb 1
pb 2
iterF
delPS 0
delEL 2
iterF
pb 1
pb 2
pb 3
pb 4
pf 3
pb 3
iterF
--Header[0x662720]: 0
--Tail[0x662770]: 0
-----------
cur:6
[0x662720] ->next:0x662540 ->priv:0 ||data:0
[0x662540] ->next:0x662590 ->priv:0x662720 ||data:3
[0x662590] ->next:0x6625e0 ->priv:0x662540 ||data:1
[0x6625e0] ->next:0x662630 ->priv:0x662590 ||data:2
[0x662630] ->next:0x662680 ->priv:0x6625e0 ||data:3
[0x662680] ->next:0x6626d0 ->priv:0x662630 ||data:4
[0x6626d0] ->next:0x662770 ->priv:0x662680 ||data:3
[0x662770] ->next:0 ->priv:0x6626d0 ||data:0
Iter with index:
3 1 2 3 4 3
Iter with begin end
3 1 2 3 4 3
Iter with AUTO&&
3 1 2 3 4 3
iterB
--Header[0x662720]: 0
--Tail[0x662770]: 0
-----------
cur:6
[0x662720] ->next:0x662540 ->priv:0 ||data:0
[0x662540] ->next:0x662590 ->priv:0x662720 ||data:3
[0x662590] ->next:0x6625e0 ->priv:0x662540 ||data:1
[0x6625e0] ->next:0x662630 ->priv:0x662590 ||data:2
[0x662630] ->next:0x662680 ->priv:0x6625e0 ||data:3
[0x662680] ->next:0x6626d0 ->priv:0x662630 ||data:4
[0x6626d0] ->next:0x662770 ->priv:0x662680 ||data:3
[0x662770] ->next:0 ->priv:0x6626d0 ||data:0
Iter with index:
3 4 3 2 1 3
Iter with begin end
3 4 3 2 1 3
delEL 3
3
iterF
--Header[0x662720]: 0
--Tail[0x662770]: 0
-----------
cur:3
[0x662720] ->next:0x662590 ->priv:0 ||data:0
[0x662590] ->next:0x6625e0 ->priv:0x662720 ||data:1
[0x6625e0] ->next:0x662680 ->priv:0x662590 ||data:2
[0x662680] ->next:0x662770 ->priv:0x6625e0 ||data:4
[0x662770] ->next:0 ->priv:0x662680 ||data:0
Iter with index:
1 2 4
Iter with begin end
1 2 4
Iter with AUTO&&
1 2 4
delPS 1
1
clr
Unexpected Delete at :4 with next:16187728
pb 1
pb 2
iterF
--Header[0x6625e0]: 0
--Tail[0x662680]: 0
-----------
cur:2
[0x6625e0] ->next:0x662540 ->priv:0 ||data:0
[0x662540] ->next:0x662630 ->priv:0x6625e0 ||data:1
[0x662630] ->next:0x662680 ->priv:0x662540 ||data:2
[0x662680] ->next:0 ->priv:0x662630 ||data:0
Iter with index:
1 2
Iter with begin end
1 2
Iter with AUTO&&
1 2
delPS 0
1
delEL 2
1
iterF
--Header[0x6625e0]: 0
--Tail[0x662680]: 0
-----------
cur:0
[0x6625e0] ->next:0x662680 ->priv:0 ||data:0
[0x662680] ->next:0 ->priv:0x6625e0 ||data:0
Iter with index:
Iter with begin end
Iter with AUTO&&
```
ๅฏไปฅ็ๅบ๏ผไปฃ็ ่ฟ่ก็ปๆไธ้ขๆ็ธ็ฌฆ๏ผๅฏไปฅ่ฎคไธบไปฃ็ ๆญฃ็กฎๆงๆ ่ฏฏใ
่ฟ่ก`_PRIV_TEST.cpp`ไธญ็ๅ
ๅญๆต่ฏๆจกๅ๏ผๅจไฟๆCPU้ซๅ ็จ็่ฟ่กไธๆฎตๆถ้ดๅๅ
ๅญๅๅ็ฌฆๅ้ขๆ๏ผๅฏไปฅ่ฎคไธบไปฃ็ ๅ
ๅญๅฎๅ
จๆง่ฏๅฅฝใ
#image("1.png")
|
|
https://github.com/lucifer1004/leetcode.typ | https://raw.githubusercontent.com/lucifer1004/leetcode.typ/main/problems/p0015.typ | typst | #import "../helpers.typ": *
#import "../solutions/s0015.typ": *
= 3Sum
Given an integer array nums, return all the triplets `[nums[i], nums[j], nums[k]]` such that `i != j`, `i != k`, and `j != k`, and `nums[i] + nums[j] + nums[k] == 0`.
Notice that the solution set must not contain duplicate triplets.
#let _3sum(nums) = {
// Solve the problem here
}
#testcases(
_3sum,
_3sum-ref, (
(nums: (-1, 0, 1, 2, -1, -4)),
(nums: (0, 1, 1)),
(nums: (0, 0, 0)),
(nums: range(-10, 20, step: 3)),
(nums: range(-10, 10))
)
)
|
|
https://github.com/polarkac/MTG-Stories | https://raw.githubusercontent.com/polarkac/MTG-Stories/master/stories/003_Gatecrash.typ | typst | #import "@local/mtgset:0.1.0": conf
#show: doc => conf("Gatecrash", doc)
#include "./003 - Gatecrash/001_Gruul Ingenuity.typ"
#include "./003 - Gatecrash/002_The Fathom Edict.typ"
#include "./003 - Gatecrash/003_The Absolution of the Guildpact.typ"
#include "./003 - Gatecrash/004_Persistence of Memory.typ"
#include "./003 - Gatecrash/005_The Burying, Part 1.typ"
#include "./003 - Gatecrash/006_The Greater Good.typ"
#include "./003 - Gatecrash/007_The Guild of Deals.typ"
#include "./003 - Gatecrash/008_Experiment One.typ"
#include "./003 - Gatecrash/009_Fblthp.typ"
#include "./003 - Gatecrash/010_The Burying, Part 2.typ"
#include "./003 - Gatecrash/011_Bilagru Will Come for You.typ"
#include "./003 - Gatecrash/012_The Hard Sell.typ"
#include "./003 - Gatecrash/013_Behind the Black Sun.typ"
|
|
https://github.com/Starkillere/TIPE-detection-informations-cachees | https://raw.githubusercontent.com/Starkillere/TIPE-detection-informations-cachees/main/journnaldebord.typ | typst | #align(center)[
= Carnet de recherche
_par <NAME> \ Initialisation : 12/03/2024 \ MรJ : 12/03/2024 _
]
#set heading(numbering: "1.1.1 :")
= 12/03/2024 : Dรฉfinition du sujet.
== Dรฉfinition du problรจme
La stรฉganographie dรฉsigne l'art de dissimler de l'information de maniรจre subtile.
Tout la sรฉcuritรฉ de cette mรฉthode de dissimulation rรฉside dans la non connaissance des observateur non averties,
de la prรฉsence d'une information cachรฉe. La variante informatique de ce procรฉder consite dans la dissimulation des donnรฉe dans le coprs d'autres donnรฉe.
Si la stรฉganographie permet de transfรฉrer des donnรฉe ร l'abrie du regards des observateurs non averties, nous pouvons toujours nous demander si
il n'est pas possible d'affaiblir la sรฉcuritรฉ de cette mรฉthode de dissimulation. *Autrement dit est-il possible de distinguer le bruit d'une information cachรฉe ?*
== Idรฉe d'orientation
Il existe un champs de recherche ร part entiere qui s'interresse ร la distinction entre donnรฉe pur et donnรฉe issue d'une procรฉssuce stรฉganographique qui se nomme #link("https://fr.wikipedia.org/wiki/St%C3%A9ganalyse")[Stรฉganalyse]
=== Mรฉthodes de distinction
- *Analyse statistique :* \ Les donnรฉes qui contiennent simplement du bruit peuvent avoir des caractรฉristiques statistiques diffรฉrentes de celles qui cachent des informations. Vous pourriez รฉtudier des mesures telles que l'entropie, la distribution des valeurs de pixels, les corrรฉlations spatiales, etc.
- *Analyse de la frรฉquence :* \ Les images qui cachent d'autres images peuvent avoir des motifs de frรฉquence diffรฉrents de ceux des images contenant seulement du bruit. Les techniques de transformรฉe de Fourier ou d'ondelettes peuvent รชtre utiles pour analyser ces diffรฉrences.
- *Analyse visuelle :* \ Mรชme si les donnรฉes semblent similaires visuellement, il peut y avoir des artefacts ou des modรจles non perceptibles ร l'ลil nu. Vous pourriez explorer des techniques de traitement d'image avancรฉes pour mettre en รฉvidence ces diffรฉrences.
- *Apprentissage automatique :* \ Vous pourriez รฉgalement explorer des approches basรฉes sur l'apprentissage automatique, oรน vous entraรฎnez un modรจle ร diffรฉrencier les deux types de donnรฉes ร partir d'un ensemble d'exemples รฉtiquetรฉs.
= L'analyse statistique
= 02/04/2024 : Phรฉnomรจne alรฉatoire
== Entropie de Shannon
== Thรฉorie de l'information
= 02/04/2024 : Meqsure
#line(length: 500pt)
= 12/09/2024 - Implรฉmentation Ocaml
- Implรฉmentation ocaml des algorithme pour la stรฉganographie image et
= 19/09/2024 - git init et recher documentaire.
== Dรฉfinition de la problรจmatique
*Problรฉmatique* : Est-il possible de crรฉer un algorithme de stรฉganalyse gรฉneraliste, i.e un algorithme qui n'a pas connaissance du mode de dissimulation utilisรฉ ?
*Les differents modes de dissimulation :*
- Systรจme de substitution : remplacer une partie de la cover (1) par des donnรฉe de l'information ร dissimulรฉe.
- Transformation des paramรจtre de la cover : modification des paramรจtre physique de la cover en fonction de l'information ร dissimulรฉ (ex: frรฉquence)
- Mรชme choses avec le spectre.
- Mรฉthode statistique : modifier la distribution statistique de la cover en fonction de la stรฉgo.
- Techniques de distortion : stocker des informations par distorsion du signal et mesurer l'รฉcart par rapport ร la couverture originale lors de l'รฉtape de dรฉcodage
- Mรฉthodes de gรฉnรฉration de couverture : encoder les informations de maniรจre ร cacher un secret la communication se crรฉe.
*Objectif :* Trouver un invariant de dissimulation !
= 26/09/2024 : Prolongement par continuitรฉ de la semaine derniรจre (lecture 10)
- *problรจmatique : * Est-il possible d'identifier un paternel, une caractรฉristique propre aux donnรฉes issues du processus de stรฉganographie ?
== Protocole :
- รtudier les differentes mรฉthodes de stรฉganograpbhie (substitution, Transformation, spectre, statistique, distortion, gรฉneration de cover)
- รtudier la rรฉponse stรฉganalyse ร ses algorithmes
- Identification d'invariant de dissimulation
== 03/10/2024 : Dรฉfinition formelle de l'information :
[ \
l1 |(1,0,1) (1,0,1)| \
l2 |(0,0,0) (0,0,0)| \
] \
Une information est une matrice de tuple de taille n de nombre binaire sur.
- *Cas de base :*
- *Information vide (null) : * #pad(x:20pt)[
On note $epsilon$ l'information vide de taille $|epsilon| = 0$ \
$epsilon = mat()$]
- *Information de base :* #pad(x:20pt)[
$forall space (b_n) in BB^NN$ fini $L = mat((b_0b_1...b_n))$ de taille $|L| = n+1$
]
- *Notation* #pad(x:20pt)[
- On note $cal(M)_(n,p,l) (BB^NN)$ l'ensemble des information de matrice dans $cal(M)_(n,p) (BB^NN)$ dont les tuple sont de $l$ รฉlรฉment.
]
- *Operation sur les informations :*
- *Taille d'une information :* $"Soit" L in cal(M)_(n,p)(BB^NN) "une information"$, la taille de $L$ est notรฉ $|L| = nรp$
- *Caractรฉristiques d'une information :* $"Soit" L in cal(M)_(n,p)(BB^NN) "une information" $
- *Union/Intersection :* $"Soit" L_1 "et" L_2 "deux information de taille" n$
- $L_1 union L_2 =$
= 10/10/2024 : Dรฉfinition du repertoir documentation/prototypage
== Dรฉfinition formelle de l'information
= Vocabulaire (MAJ 12/03/2024)
+ donnรฉe pur : donnรฉe de cachant pas d'autres donnรฉes issue d'un processuce stรฉganographique.
+ cover : suport pour la dissimulation d'information cachรฉe.
+ stego : information ร cachรฉe.
+
= Lecture en attente :
+ #link("https://utt.hal.science/hal-02470070/document")\
+ #link("https://fr.wikipedia.org/wiki/Entropie_de_Shannon")\
+ #link("https://fr.wikipedia.org/wiki/Th%C3%A9orie_de_l%27information")\
+ #link("https://hal.science/hal-00394108/document")\
+ #link("https://greenteapress.com/thinkdsp/thinkdsp.pdf")\
+ #link(" http://tinyurl.com/thinkdsp08")\ // REP- pour les algo de traitement de signale
+ #link("https://fr.wikipedia.org/wiki/Algorithme_de_Knuth-Morris-Pratt")\
+ #link("https://theses.hal.science/tel-00706171v2/file/RCogranne_soutenance.pdf")
+ #link("https://repository.root-me.org/St%C3%A9ganographie/FR%20-%20Analyse%20st%C3%A9ganographique%20d%27images%20num%C3%A9riques.pdf")
+ #link("https://d1wqtxts1xzle7.cloudfront.net/11025045/22359536_lese_1-libre.pdf?1363619886=&response-content-disposition=inline%3B+filename%3DA_survey_of_steganographic_techniques.pdf&Expires=1726758425&Signature=UWNEvv4JIxHsL-iZcX-PzwvRlbmce0~unnnAUFS2lB~tsuJUbrH1Mzt4ZnO~D1Dhn9DKUo0jtG-BZnkuZYYz5iSvTUuJHJJqcZ65yceho5qgmi7Jpv9OnJsNLxnqAjhHp~frVhRI3yYvhmZRsOL0gdCCCy6O5Bb9XcylGMKZA5k8SZq0Jqme~XdEXRGESCvJy69F2bQ5K~X5IF9j5VaYj7WMOj~n-QC8DG2cJBk-1GRz5NbPu5Udq4R1U-pr2GvYZKJJmqnb7MQoutftG~9-jS~WMxnag3IlAe8g~vlz87mWWLxGle-6fbBg1I-EOa63b3fzUVsFY2bLQo0WgwqNMQ__&Key-Pair-Id=<KEY>") |
|
https://github.com/Myriad-Dreamin/typst.ts | https://raw.githubusercontent.com/Myriad-Dreamin/typst.ts/main/fuzzers/corpora/bugs/hide-meta_01.typ | typst | Apache License 2.0 |
#import "/contrib/templates/std-tests/preset.typ": *
#show: test-page
#set text(8pt)
#outline()
#set text(2pt)
#hide(block(grid(
[= A],
[= B],
block(grid(
[= C],
[= D],
))
)))
|
https://github.com/0x1B05/english | https://raw.githubusercontent.com/0x1B05/english/main/grammar/content/ๅ่ฏ.typ | typst | #import "../template.typ": *
= ๅ่ฏ
ๅ่ฏ็ญ่ฏญ๏ผ ้ๅฎ่ฏ+ๅฝขๅฎน่ฏ+ๅ่ฏ๏ผๆฏไธไธช้จๅ้ฝๆๅฏ่ฝ็ผบๅคฑใ
้ๅฎ่ฏ็้จๅ๏ผๅฆๆๅ้ข็ๅ่ฏๆฏๅคๆฐๆ่
ไธๅฏๆฐ๏ผๅฐฑๅฏไปฅ้็จ*้ถๅ ่ฏ*
#tip("Tip")[
ๅฅๅญไธญ็ๅ่ฏ๏ผๅชๆๅชๆไธไธชๅญ๏ผไน่ฆๅฝไฝ็ฑไธไธช้จๅ็ปๆ็ๅ่ฏ็ญ่ฏญๆฅ็ใ
]
== ๅ่ฏ
=== ๅฏๆฐๅ่ฏ
ๅบฆ้่กกๅไฝ๏ผ
- a pound
- 20 feet
- an hour
- ...
=== ไธๅฏๆฐๅ่ฏ
==== ็ฉ่ดจๅ่ฏ
ๆฒกๆๅบๅฎๅฝข็ถใ๏ผๅ้ขๅฏไปฅ้็จ้ถๅ ่ฏ๏ผ
- water(ๆฐด)
- air(็ฉบๆฐ)
- gold(้)
- paper(็บธ)
#tip("Tip")[
ๅฆๆ็ๅฐ็ฉ่ดจๅ่ฏๅ้ขๅ ไบaๆ่
ๆซๅฐพๅ ไบs๏ผ้ฃๅทฒ็ปไธๆฏ็ฉ่ดจๅ่ฏไบ๏ผๅทฒ็ปๅฝไฝๅฏๆฐ็ๆฎ้ๅ่ฏๆฅ็จไบใ
]
#example("Example")[
- I have a _paper_ to write tonight.(ไธไปฝๆฅๅ)
- Drinking _a couple of beers_ a day won't do you any harm.(ๅ ็ถๅค้
)
]
==== ๆฝ่ฑกๅ่ฏ
- cowardice
- ugliness
- wisdom
- eternity
#tip("Tip")[
ๅฆๆ็ๅฐๆฝ่ฑกๅ่ฏๅ้ขๅ ไบaๆ่
ๆซๅฐพๅ ไบs๏ผๅทฒ็ปๅฝไฝๅฏๆฐ็ๆฎ้ๅ่ฏๆฅ็จไบ๏ผๆไนๅพๅพไธๅใ
]
#example("Example")[
- Your sister is _a real beauty._
]
==== ๅจๅ่ฏ
ๅฐๆฐ็ๅจๅ่ฏๅฏไปฅๅฝๅฏๆฐๅ่ฏไฝฟ็จ๏ผ
- There were _three weddings_ at this restaurant yesterday.
==== ไธๆๅ่ฏ
ไธไธชๅ่ฏๅชไปฃ่กจๅไธ็ไธไธชๅฏน่ฑก๏ผๅฑไบไธๅฏๆฐ๏ผๅ ไธบๅชๆไธไธชๅฏน่ฑก๏ผ
- London
- <NAME>
== ๅคๅๅ่ฏ
ไธ็งๅๆณ๏ผ
- ไธคไธชๅ่ฏๅๅจไธๆฌกๆไธบไธไธชๅๅญใ๏ผthe dishwasher)
- ไธคไธชๅ่ฏไน้ดๆไธช่ฟๅญ็ฌฆใ๏ผthe pole-vaulter)
- ไธคไธชๅ่ฏๅๅผใ๏ผthe flower shop๏ผ
ๅณไฝฟไฝฟๆฐธ่ฟๅคๆฐ็ๅ่ฏ๏ผpants,trousers,glasses,scissors...)ๆพๅจๅคๅๅ่ฏๅฝๅฝขๅฎน่ฏไฝฟ็จ็ๆถๅไน่ฆๆนไธบๅๆฐ๏ผไพๅฆ_his trouser pocket_
ไฝๆฏ_a clothes hanger(่กฃๆถ)_๏ผๅฆๆๆนๆๅๆฐ๏ผๅฐฑๆไบๅธๆถ๏ผๆไปฅ่ฟๆถๅๅฐฑ้่ฆๅคๆฐไบใ
่ฟๆไธไบไน ๆฏ้็จๅคๆฐ็ๅฝขๅฎน่ฏใ
- a sports car
- the admissions office
== ๅฏ่ฏ
ๅ ๅจๅฝขๅฎน่ฏๅ้ขๅ ๅผบ่ฏญๆฐ๏ผ_that rather old jacket_
== ๅ่ฏ็ญ่ฏญ็็็ฅ
*็็ฅไนๅ่ฆ่ฎฉ่ฏป่
้ๅธธๆธ
ๆฅๆณ่ฆ่กจ่พพ็ๆๆใ*
|
|
https://github.com/kaarmu/splash | https://raw.githubusercontent.com/kaarmu/splash/main/doc/util.typ | typst | MIT License | #let code(body) = {
set text(weight: "regular")
show: box.with(
fill: luma(240),
inset: 0.4em,
radius: 3pt,
baseline: 0.4em,
)
raw(body)
}
#let get-color-value(color) = {
let s = repr(color)
let m = s.match(regex("(.*)\\((.*)\\)"))
let p = (name: m.captures.at(0), value: m.captures.at(1).replace("\"", "", count: 2))
text(fill: luma(200))[
#raw(p.name)
#h(1fr)
#raw(p.value)
]
}
#let make-title(title: none, author: none, date: none, description: none) = [
#set align(center)
= #title
#v(1em)
#text(style: "italic", description)
#v(1em)
/ Author: #author
/ Date: #date
#v(3em)
]
#let section(
title: none,
description: none,
cols: 2,
col-gutter: 2em,
row-gutter: 2pt,
do-page-break: true,
name: none,
colors,
) = {
heading(level: 3, title + if name != none [ --- #code(name); ])
v(.5em)
if description != none {
description
}
let arr = ()
for (name, color) in colors.pairs() {
let blk = rect(
stroke: none,
)[
#set align(horizon)
#code(name)
#h(1fr)
#box(
width: 3em,
height: 1em,
fill: color,
stroke: luma(230),
radius: 2pt,
baseline: 0.25em,
)
#linebreak()
#get-color-value(color)
]
arr.push(blk)
}
grid(
row-gutter: row-gutter,
column-gutter: col-gutter,
columns: (1fr,) * cols,
..arr,
)
if do-page-break { pagebreak(weak:true) }
}
|
https://github.com/jomaway/typst-teacher-templates | https://raw.githubusercontent.com/jomaway/typst-teacher-templates/main/examples/exam/cover.typ | typst | MIT License | #import "@local/ttt-exam:0.1.0": cover-page
#let details = toml("details.toml")
#let meta = (
class: details.exam.class,
subject: details.exam.subject,
kind: "sa",
dates: (
gehalten: details.exam.date,
zurรผckgegeben: none,
eingetragen: none,
),
comment: none,
total_points: 70,
)
#set text(lang: "de", font: "Rubik", weight: 300)
#set strong(delta: 200)
#cover-page(..meta) |
https://github.com/liuguangxi/erdos | https://raw.githubusercontent.com/liuguangxi/erdos/master/Problems/typstdoc/figures/p151.typ | typst | #import "@preview/cetz:0.2.1"
#cetz.canvas({
import cetz.draw: *
let fill-color = blue.lighten(80%)
circle((0, 0), radius: 0.5, fill: fill-color, name: "c1")
circle((-2, 1.5), radius: 0.5, fill: fill-color, name: "c2")
circle((2, 1.5), radius: 0.5, fill: fill-color, name: "c3")
circle((-3, 3), radius: 0.5, fill: fill-color, name: "c4")
circle((-1, 3), radius: 0.5, fill: fill-color, name: "c5")
circle((1, 3), radius: 0.5, fill: fill-color, name: "c6")
circle((3, 3), radius: 0.5, fill: fill-color, name: "c7")
circle((-2, 4.5), radius: 0.5, fill: fill-color, name: "c8")
circle((2, 4.5), radius: 0.5, fill: fill-color, name: "c9")
circle((0, 6), radius: 0.5, fill: fill-color, name: "c10")
line("c2", "c1", mark: (end: "stealth", fill: black))
line("c3", "c1", mark: (end: "stealth", fill: black))
line("c4", "c2", mark: (end: "stealth", fill: black))
line("c5", "c2", mark: (end: "stealth", fill: black))
line("c6", "c3", mark: (end: "stealth", fill: black))
line("c7", "c3", mark: (end: "stealth", fill: black))
line("c8", "c4", mark: (end: "stealth", fill: black))
line("c8", "c5", mark: (end: "stealth", fill: black))
line("c9", "c6", mark: (end: "stealth", fill: black))
line("c9", "c7", mark: (end: "stealth", fill: black))
line("c10", "c8", mark: (end: "stealth", fill: black))
line("c10", "c9", mark: (end: "stealth", fill: black))
})
|
|
https://github.com/TechnoElf/mqt-qcec-diff-presentation | https://raw.githubusercontent.com/TechnoElf/mqt-qcec-diff-presentation/main/content/data.typ | typst | #let unclip(res) = {
res.filter(r => not r.clipped).enumerate().map(((i, r)) => {
r.i = i
r
})
}
#let sort-by-circuit-size(res) = {
res.sorted(key: r => r.total-circuit-size).enumerate().map(((i, r)) => {
r.i = i
r
})
}
#let filter(res) = {
res.filter(r => r.equivalence-rate > 0.35).enumerate().map(((i, r)) => {
r.i = i
r
})
}
#let filter-rev(res) = {
res.filter(r => r.equivalence-rate-rev > 0.35).enumerate().map(((i, r)) => {
r.i = i
r
})
}
#let results-r1-b5q16-cprop = csv("../resources/results-r1-b5q16-cprop-smc.csv", row-type: dictionary)
#let results-r1-b5q16-cmyersrev-pmismc = csv("../resources/results-r1-b5q16-cmyersrev-pmismc-smc.csv", row-type: dictionary)
#let results-r1-b5q16-cmyersrev-p = csv("../resources/results-r1-b5q16-cmyersrev-p-smc.csv", row-type: dictionary)
#let results-r1-b5q16-cmyers-p = csv("../resources/results-r1-b5q16-cmyers-p-smc.csv", row-type: dictionary)
#let results-r1-b5q16-cpatience-p = csv("../resources/results-r1-b5q16-cpatience-p-smc.csv", row-type: dictionary)
#let results-r1-b5q16-cmyers-pmismc = csv("../resources/results-r1-b5q16-cmyers-pmismc-smc.csv", row-type: dictionary)
#let results-r1-b5q16 = results-r1-b5q16-cprop.enumerate().map(((i, r)) => {
let cmyersrev-pmismc = results-r1-b5q16-cmyersrev-pmismc.find(r2 => r2.name == r.name)
let cmyersrev-p = results-r1-b5q16-cmyersrev-p.find(r2 => r2.name == r.name)
let cmyers-p = results-r1-b5q16-cmyers-p.find(r2 => r2.name == r.name)
let cmyers-pmismc = results-r1-b5q16-cmyers-pmismc.find(r2 => r2.name == r.name)
let cpatience-p = results-r1-b5q16-cpatience-p.find(r2 => r2.name == r.name)
let num-gates-1 = float(r.numGates1)
let num-gates-2 = float(r.numGates2)
let total-circuit-size = num-gates-1 + num-gates-2
let num-qubits-1 = int(r.numQubits1)
let num-qubits-2 = int(r.numQubits2)
(
name: r.name,
i: i,
clipped: not ((r.finished == "true") and (cmyersrev-pmismc.finished == "true") and (cmyersrev-p.finished == "true") and (cmyers-pmismc.finished == "true") and (cmyers-p.finished == "true")),
total-circuit-size: total-circuit-size,
circuit-size-difference: calc.abs(num-gates-1 - num-gates-2),
total-qubit-count: num-qubits-1 + num-qubits-2,
qubit-count-difference: calc.abs(num-qubits-1 - num-qubits-2),
equivalence-rate: float(cmyers-pmismc.diffEquivalenceCount) / total-circuit-size,
equivalence-rate-rev: float(cmyersrev-pmismc.diffEquivalenceCount) / total-circuit-size,
cprop: (
mu: float(r.runTimeMean)
),
cmyersrev-pmismc: (
mu: float(cmyersrev-pmismc.runTimeMean)
),
cmyersrev-p: (
mu: float(cmyersrev-p.runTimeMean)
),
cmyers-p: (
mu: float(cmyers-p.runTimeMean)
),
cmyers-pmismc: (
mu: float(cmyers-pmismc.runTimeMean)
),
cpatience-p: (
mu: float(cpatience-p.runTimeMean)
),
)
})
#let results-r1-b5q16-hist = {
let min = calc.log(0.001)
let max = calc.log(20)
let bins = 15
let bins-mu = range(bins + 1).map(x => calc.pow(10, min + x * (max - min) / bins))
let cprop-mu = bins-mu.slice(1).map(_ => 0)
let cmyersrev-pmismc-mu = bins-mu.slice(1).map(_ => 0)
let cmyersrev-p-mu = bins-mu.slice(1).map(_ => 0)
let cmyers-p-mu = bins-mu.slice(1).map(_ => 0)
let cmyers-pmismc-mu = bins-mu.slice(1).map(_ => 0)
let cpatience-p-mu = bins-mu.slice(1).map(_ => 0)
for r in unclip(results-r1-b5q16) {
for b in range(bins) {
if bins-mu.at(b) <= r.cprop.mu and r.cprop.mu < bins-mu.at(b + 1) {
cprop-mu.at(b) += 1
}
if bins-mu.at(b) <= r.cmyersrev-pmismc.mu and r.cmyersrev-pmismc.mu < bins-mu.at(b + 1) {
cmyersrev-pmismc-mu.at(b) += 1
}
if bins-mu.at(b) <= r.cmyersrev-p.mu and r.cmyersrev-p.mu < bins-mu.at(b + 1) {
cmyersrev-p-mu.at(b) += 1
}
if bins-mu.at(b) <= r.cmyers-p.mu and r.cmyers-p.mu < bins-mu.at(b + 1) {
cmyers-p-mu.at(b) += 1
}
if bins-mu.at(b) <= r.cmyers-pmismc.mu and r.cmyers-pmismc.mu < bins-mu.at(b + 1) {
cmyers-pmismc-mu.at(b) += 1
}
if bins-mu.at(b) <= r.cpatience-p.mu and r.cpatience-p.mu < bins-mu.at(b + 1) {
cpatience-p-mu.at(b) += 1
}
}
}
let scientific(val) = {
let exp = calc.floor(calc.log(val))
[$#(calc.round(val / calc.pow(10, exp), digits: 2)) dot 10 ^ #exp$]
}
(
bins-mu: bins-mu.slice(0, -1).zip(bins-mu.slice(1)).map(((s, e)) => [$<$ #scientific(e)]),
cprop: (
mu: cprop-mu
),
cmyersrev-pmismc: (
mu: cmyersrev-pmismc-mu
),
cmyersrev-p: (
mu: cmyersrev-p-mu
),
cmyers-p: (
mu: cmyers-p-mu
),
cmyers-pmismc: (
mu: cmyers-pmismc-mu
),
cpatience-p: (
mu: cpatience-p-mu
)
)
}
|
|
https://github.com/zurgl/typst-resume | https://raw.githubusercontent.com/zurgl/typst-resume/main/templates/main.typ | typst | #import "../metadata.typ": *
#import "commun.typ": *
#import "letter/main.typ": *
#import "resume/section.typ": *
#import "resume/entry.typ": *
#import "resume/skills.typ": *
#import "resume/header.typ": *
#import "resume/footer.typ": *
#import "@preview/fontawesome:0.1.0": *
|
|
https://github.com/Floffah/documents | https://raw.githubusercontent.com/Floffah/documents/main/lib/template.typ | typst | MIT License | // Feature inspiration taken from Ilm (MIT) - https://github.com/talal/ilm
// The project function defines how your document looks.
// It takes your content and some metadata and formats it.
// Go ahead and customize it to your liking!
#let project(
title: "",
authors: (),
date: none,
logo: none,
formal: false,
// Whether to display a maroon circle next to external links.
external-link-circle: true,
// Display an index of figures (images).
figure-index: (
enabled: false,
title: "",
),
body,
) = {
// Set the document's basic properties.
set document(author: authors.map(a => a.name), title: title)
set page(numbering: "1", number-align: center)
let font = "Source Sans Pro"
if formal {
font = "Libertinus Serif"
}
set text(font: font, lang: "en", size: 12pt)
// Set paragraph spacing.
set par(spacing: 1.2em)
set heading(numbering: "1.a.i")
// See ILM (MIT) - https://github.com/talal/ilm/blob/main/lib.typ
show link: it => {
it
// Workaround for ctheorems package so that its labels keep the default link styling.
if external-link-circle {
if type(it.dest) == str {
sym.wj
h(1.6pt)
sym.wj
super(box(height: 3.8pt, circle(radius: 1.2pt, stroke: 0.7pt + rgb("#993333"))))
} else if type(it.dest) == label {
sym.wj
h(0.6pt)
sym.wj
super(box(height: 3.8pt, text("#", stroke: 0.2pt + rgb("#0284c7"))))
}
}
}
// Title page.
// The page can contain a logo if you pass one with `logo: "logo.png"`.
v(0.6fr)
if logo != none {
align(right, image(logo, width: 26%))
}
v(9.6fr)
text(1.1em, date)
v(1.2em, weak: true)
text(2em, weight: 700, title)
// Author information.
pad(
top: 0.7em,
right: 20%,
grid(
columns: (1fr,) * calc.min(3, authors.len()),
gutter: 1em,
..authors.map(author => align(start)[
*#author.name* \
#author.affiliation
]),
),
)
v(2.4fr)
pagebreak()
// Table of contents.
outline(depth: 3, indent: true)
pagebreak()
// Main body.
set par(justify: true)
set text(hyphenate: false)
set list(marker: ([โข], [โฆ], [โฃ], [โ]))
// Utils
let ignore(content) = {}
body
pagebreak()
bibliography(("../references.yml", "../zotero.bib"), style: "institute-of-electrical-and-electronics-engineers")
// See ILM (MIT) - https://github.com/talal/ilm/blob/main/lib.typ
let fig-t(kind) = figure.where(kind: kind)
let has-fig(kind) = counter(fig-t(kind)).get().at(0) > 0
if figure-index.enabled {
show outline: set heading(outlined: true)
context {
let imgs = figure-index.enabled and has-fig(image)
if imgs {
// Note that we pagebreak only once instead of each each
// individual index. This is because for documents that only have a couple of
// figures, starting each index on new page would result in superfluous
// whitespace.
pagebreak()
}
if imgs { outline(title: figure-index.at("title", default: "Index of Figures"), target: fig-t(image)) }
}
}
}
|
https://github.com/Yzx7/public_study_files | https://raw.githubusercontent.com/Yzx7/public_study_files/main/Monografรญa FIEE/template.typ | typst | // The project function defines how your document looks.
// It takes your content and some metadata and formats it.
// Go ahead and customize it to your liking!
#let project(title: "",t-tipo:"", t-para:"", authors: (),cursoName:"",docenteName:"", fecha:"",add:(("")),logo: none, body) = {
// Set the document's basic properties.
set document(author: authors, title: title)
set page(
margin: (left: 35mm, right: 35mm, top: 30mm, bottom: 30mm),
numbering: "1",
number-align: end,
)
set text(font: "New Computer Modern", lang: "es")
show math.equation: set text(weight: 400)
set heading(numbering: "1.1.")
// Title page.
// The page can contain a logo if you pass one with `logo: "logo.png"`.
align(center)[
#image("LogoUNMSM icon.png", height: 60pt)
#v(10pt)
#block(width: 100%)[
#text(size: 16pt, weight: "extrabold")[
Universidad Nacional Mayor de San Marcos
]
#text(size: 11pt, weight: "extrabold")[
Universidad del Perรบ. Decana de Amรฉrica
]
#text(size: 12pt, weight: "extrabold")[
Facultad de Ingenierรญa Electrรณnica y Elรฉctrica
]
#text(size: 10pt, weight: "extrabold")[
// EAP: Ing. Telecomunicaciones
]
]
]
v(1fr)
align(center)[
#text(1.5em, weight: 700, title)
#v(20pt)
#text(1.5em, weight: 700, t-tipo)
#v(20pt)
#text(1.4em, t-para)
#v(1fr)
// Author information.
// #pad(
// top: 0.7em,
//grid(
// columns: (1fr,) * calc.min(3, authors.len()),
//gutter: 1em,
//..authors.map(author => align(start, strong(author))),
// ),
//)
#text( weight: 700)[Autores:]
#pad(
bottom: 10pt,
grid(
columns: (1fr),
gutter: 1em,
..authors.map(author => align(center, author)),
)
)
]
align(center)[
#grid(
gutter: 12pt,
..add.map((ait) =>
grid(columns: 2,
gutter: 4pt,
text(weight: 700)[#ait.at(0):],
ait.at(1)
) ), )
]
if docenteName != "" {
align(center)[
#text( weight: 700)[Docente:]
#docenteName
]
}
if cursoName != "" {
align(center)[
#text(weight: 700)[Curso:]
#cursoName
]
}
if fecha != "" {
align(center)[
#text( weight: 700)[Fecha:]
#fecha
]
}
align(center)[
#v(1.4fr)
#text(size: 1.2em, weight: 700)[Lima, Perรบ]
// #text(size: 1.2em, weight: 700)[30 de junio]
#text(size: 1.2em, weight: 700)[2024]
]
pagebreak()
// Table of contents.
// outline(depth: 3, indent: true,target: heading.where(outlined: true) )
// pagebreak()
// outline(depth: 3, indent: true,target: figure.where(kind: image), title: "รndice de Figuras" )
// pagebreak()
// outline(depth: 3, indent: true,target: figure.where(kind: "table"), title: "รndice de tablas" )
// pagebreak()
// Main body.
set par(justify: true)
set text(hyphenate: false)
body
} |
|
https://github.com/JakMobius/courses | https://raw.githubusercontent.com/JakMobius/courses/main/mipt-os-basic-2024/sem01/utils.typ | typst |
#import "@preview/cetz:0.2.2"
#let draw-compiler-lifecycle(arr) = {
let margin = -1.5
let arrow-top = 5.5
let arrow-bottom = 4.5
let arrow-shortage = 1.4
let anchor-prev = 0
let x = 0
let i = 0
cetz.draw.set-style(mark: (end: ">"), stroke: 3pt + black)
for step in arr {
let background-color = color.mix((step.color, 20%), (white, 80%))
let stroke-color = color.mix((step.color, 50%), (black, 50%))
let text-color = stroke-color
let has-code = step.at("code", default: none) != none
let lower-boundary = 0
if has-code {
lower-boundary = 1.4
}
let y = 0
if calc.rem(i, 2) == 0 {
y = 6
}
cetz.draw.content(
(x, y + 4), (x + step.width, y), padding: 0,
)[
#box(
fill: background-color, radius: 20pt, width: 100%, height: 100%, stroke: 1pt + stroke-color,
)
]
cetz.draw.content(
(x, y + 4), (x + step.width, y + lower-boundary), padding: 0,
)[
#set text(fill: text-color, size: 18pt)
#box(
width: 100%, height: 100%, inset: (left: 7pt, top: 7pt, right: 7pt, bottom: 0pt),
)[
#align(center + horizon)[
#step.text
]
]
]
if has-code {
cetz.draw.content(
(x, y + lower-boundary), (x + step.width, y), padding: 0,
)[
#set text(fill: text-color, font: "Monaco", size: 18pt)
#box(
width: 100%, height: 100%, inset: (left: 7pt, top: 0pt, right: 7pt, bottom: 7pt),
)[
#align(center + horizon)[
#step.code
]
]
]
}
let anchor = x + step.width / 2 - arrow-shortage
if x != 0 {
if calc.rem(i, 2) == 0 {
cetz.draw.line((anchor-prev, arrow-bottom), (anchor, arrow-top))
} else {
cetz.draw.line((anchor-prev, arrow-top), (anchor, arrow-bottom))
}
}
anchor-prev = x + step.width / 2 + arrow-shortage
x = x + margin + step.width
i = i + 1
}
} |
|
https://github.com/viniciusmuller/ex_typst | https://raw.githubusercontent.com/viniciusmuller/ex_typst/main/README.md | markdown | Apache License 2.0 | # ExTypst
Elixir bindings and helpers for the [`typst`](https://github.com/typst/typst)
typesetting system.
Check [Typst's documentation](https://typst.app/docs) for a quick start.
# Usage
```elixir
# Write typst markup
template = """
= Current Employees
This is a report showing the company's current employees.
#table(
columns: (auto, 1fr, auto, auto),
[*No*], [*Name*], [*Salary*], [*Age*],
<%= employees %>
)
"""
# Create some data
defmodule Helper do
@names ["John", "Nathalie", "Joe", "Jane", "Tyler"]
@surnames ["Smith", "Johnson", "Williams", "Brown", "Jones", "Davis"]
def build_employees(n) do
for n <- 1..n do
name = "#{Enum.random(@names)} #{Enum.random(@surnames)}"
salary = "US$ #{Enum.random(1000..15_000) / 1}"
[n, name, salary, Enum.random(16..60)]
end
end
end
# Convert it to a nice-looking PDF
{:ok, pdf_binary} = ExTypst.render_to_pdf(template,
employees: ExTypst.Format.table_content(Helper.build_employees(1_000))
)
# Write to disk
File.write!("employees.pdf", pdf_binary)
# Or maybe send via email
Bamboo.Email.put_attachment(email, %Bamboo.Attachment{data: pdf_binary, filename: "employees.pdf"})
```
You can see the generated PDF [here](./examples/employees.pdf).
## Security
Please note that currently ExTypst is experimental and content added to
templates is not escaped.
## Installation
If [available in Hex](https://hex.pm/docs/publish), the package can be installed
by adding `ex_typst` to your list of dependencies in `mix.exs`:
```elixir
def deps do
[
{:ex_typst, "~> 0.1"}
]
end
```
Documentation can be generated with [ExDoc](https://github.com/elixir-lang/ex_doc)
and published on [HexDocs](https://hexdocs.pm). Once published, the docs can
be found at <https://hexdocs.pm/ex_typst>.
|
https://github.com/gianzamboni/cancionero | https://raw.githubusercontent.com/gianzamboni/cancionero/main/wip/cuentamedusa.typ | typst | #import "../theme/project.typ": *;
#cancion("Cuentamedusa","Valbรฉ")[
#seccion[A]
Pensemos otra vez
Si faltara vivir
Quizรกs el mundo
No termina para ti
Despuรฉs de tanto
Que se ha hablado de sufrir
No tengas tiempo
De mirarte sonreรญr
Un dรญa caerรกs
Un dรญa caerรกs
Pero hasta entonces
no tendremos la necesidad
De respirar mejor
Y hablar de la sinceridad
Y rescatarnos de la generalidad
Y no hablo de traiciรณn
Y no hablo de traiciรณn
Pero quisiera que la vida la pase mejor
Y menos de crueldad
Y menos desamor
Y menos desarraigo
A nuestro corazรณn
#seccion[Repetir: A]
Cada vez, que pienso en el mar
Me sale la voz
Cada vez que miro el brillo de tu bien
Y de tu mal
De tu bien y de tu mal
#seccion[C]
Cuentame dusa como
Has hecho para colorear la sal
Cuentame dusa lagrimas de mar
Cuentame dusa como
Has hecho para colorear la sal
Cuentame dusa lagrimas de mar
Cuentame dusa
Como has aprendido a nadar
Como has aprendido a nadar
#seccion[Repetir: C]
Como has aprendido a nadar
]
|
|
https://github.com/teamdailypractice/pdf-tools | https://raw.githubusercontent.com/teamdailypractice/pdf-tools/main/typst-pdf/examples/example-01.typ | typst | In this report, we will explore the
various factors that influence fluid
dynamics in glaciers and how they
contribute to the formation and
behaviour of these natural structures. |
|
https://github.com/jgm/typst-hs | https://raw.githubusercontent.com/jgm/typst-hs/main/test/typ/compiler/ops-invalid-16.typ | typst | Other | // Error: 3-28 cannot divide these two relative lengths
#((10% + 1pt) / (20% + 1pt))
|
https://github.com/LEXUGE/typzk | https://raw.githubusercontent.com/LEXUGE/typzk/main/graph.typ | typst | MIT License | #import "@preview/diagraph:0.2.5"
#let digraphState = state("typzk_digraphState", (graph: (:), hierarchy: (), labels: (:), clusters: (:)))
#let deep-merge-pair(dict1, dict2) = {
let final = dict1
for (k, v) in dict2 {
if (k in dict1) {
if type(v) == "dictionary" {
final.insert(k, deep-merge-pair(dict1.at(k), v))
} else {
final.insert(k, dict2.at(k))
}
} else {
final.insert(k, v)
}
}
return final
}
#let deep-merge(..args) = {
let final = args.pos().first()
for dict in args.pos() {
final = deep-merge-pair(final, dict)
}
return final
}
#let node_descend(hierarchy, identity, payload) = {
let graph = (:)
if hierarchy.len() != 0 {
let h = hierarchy.remove(0)
graph.insert(h, node_descend(hierarchy, identity, payload))
} else {
graph.insert(identity, payload)
}
return graph
}
// TODO: Allow setting extra options
#let node(identity, prefix: "node_", desc: none, links: (), back_links: (), body) = {
let prefixed_identity = prefix + identity
let edges = ()
for dst in links {
edges.push(identity + "->" + dst)
}
for orig in back_links {
edges.push(orig + "->" + identity)
}
digraphState.update(state => {
state.graph = deep-merge(state.graph, node_descend(state.hierarchy, identity, edges))
let linked_desc = if type(desc) == content {
[#link(label(prefixed_identity), desc)]
} else {
[#link(label(prefixed_identity), identity)]
}
let new_label = (:)
new_label.insert(identity, linked_desc)
state.labels = deep-merge(state.labels, new_label)
return state
})
[#body #label(prefixed_identity)]
}
// TODO: Allow setting extra options
#let subgraph(identity, desc: none, prefix: "cluster_", body) = {
let prefixed_identity = prefix + identity
digraphState.update(state => {
state.hierarchy.push(prefixed_identity);
if type(desc) == content {
let new_desc = (:)
new_desc.insert(prefixed_identity, [#link(label(prefixed_identity), desc)])
state.clusters = deep-merge(state.clusters, new_desc)
}
return state
})
// This seems to work: link to the first element of the body
[#body #label(prefixed_identity)]
digraphState.update(state => {
state.hierarchy.pop();
return state
})
}
#let heading_to_label(prefix: "cluster_") = {
let prefixed_identity = prefix
let lvls = counter(heading).get()
for x in lvls {
prefixed_identity += str(x) + "_"
}
return prefixed_identity
}
// Create subgraph using heading
// NOTE: Seems like state update call must be wrapped in a content block, otherwise it will not take effect.
#let heading_subgraph(args, prefix: "cluster_") = {
let desc = args.body
let prefixed_identity = heading_to_label(prefix: prefix)
let lvls = counter(heading).get()
digraphState.update(state => {
assert(lvls.len() - state.hierarchy.len() <= 1, message: "heading levels must only increment by 1 at maximum");
while lvls.len() <= state.hierarchy.len() {
state.hierarchy.pop();
}
if lvls.len() > state.hierarchy.len() {
state.hierarchy.push(prefixed_identity);
}
if type(desc) == content {
let new_desc = (:)
new_desc.insert(prefixed_identity, [#link(label(prefixed_identity), desc)])
state.clusters = deep-merge(state.clusters, new_desc)
}
return state
})
}
// Assemble our graph state into DOT language
// All statements must end with colon
#let marshal(graph) = {
let s = ""
let e = ()
for (k, v) in graph {
if type(v) == "dictionary" {
let (nodes, edges) = marshal(v)
// This label statement would be overriden when `clusters` has matching identity.
// NOTE: This label statement is necessary as somehow otherwise the label replacement will not take effect.
// In addition to that, replaced label will be pushed around, so the only workaround is to set all subgraph with empty label and replace using `clusters` later.
let label_stmt = "label=\"\";"
s += ("subgraph " + k + " {" + label_stmt + nodes + " };")
e += edges
} else if type(v) == "array" {
s += (k + ";")
e += v
}
}
return (s, e)
}
// Generate the final graphviz code
#let gen_graphviz(graph, extra: "", path: ()) = {
let scoped_graph = if path.len() == 0 {
graph
} else {
let g = graph
for name in path {
g = g.at("cluster_" + name)
}
g
}
let (nodes, edges) = marshal(scoped_graph)
let s = "digraph {" + extra
s += nodes
s += if edges.len()!=0 { edges.join(";") + ";" }
s += "}"
return s
}
// Use path to indicate the subgraph to render
#let render_graph(extra: "", path: ()) = context {
let state = digraphState.final()
let s = gen_graphviz(state.graph, extra: extra, path: path)
return diagraph.render(s, labels: state.labels, clusters: state.clusters)
}
|
https://github.com/tiankaima/typst-notes | https://raw.githubusercontent.com/tiankaima/typst-notes/master/feebf7-2023_fall_TA/recitations/recitation_1.typ | typst | #import "../utils.typ": *
= ไน ้ข่ฏพ 1
```plain
Time: Week 1, 09.17 Sun. 19:00 ~ 20:30
```
ๆ่ฆ: ๅฝ็บณ/ๅ็ญไธ็ญๅผ/ๅฏๆฐ/ไน ้ข้่ฎฒ
== ๅฝ็บณๅ
ฌ็
#statement[
$
cases(
0 in S,
n in S => n+1 in S
)
quad => quad S = NN
$
]
=== ไพ้ข
#homework[
$forall n in NN, f(n) = n^4 + 2n^3 + 2n^2 + n$ ่ฏๆ $6 | f(n)$ (ใๆฐๅญฆๅบ็ก้่ฎฒใ ็จ่บ P3)
]
#homework[
$a_1, a_2, ..., a_n (n>=2)$้ฝๆฏๆญฃๆฐไธ$a_1 + a_2 + ... + a_n < 1$,ๆฑ่ฏ:
$
1 / (1- sum_(k=1)^n a_k) > product_(k=1)^n (1+a_k) > 1 + sum_(k=1)^n a_k
$
]
#v(6cm)
#pagebreak()
== ๅ็ญไธ็ญๅผ
=== Cauchy ไธ็ญๅผ
#statement[
$
forall a_1, a_2, ..., a_n, b_1, b_2, ..., b_n in RR
quad
(sum_(k=1)^n a_k^2)(sum_(k=1)^n b_k^2) >= (sum_(k=1)^n a_k b_k)^2
$
$
<=> x, y in RR^n quad abs(x dot.c y) <= abs(x) abs(y)
$
]
#proof[
่่ไบๆฌกๅฝๆฐ:
$
(a_1 x + b_1)^2 + (a_2 x + b_2)^2 + ... + (a_n x + b_n)^2 \
= sum_(k=1)^n a_k^2 x^2 + 2 sum_(k=1)^n a_k b_k x + sum_(k=1)^n b_k^2
$
็ฑไบไบๆฌกๅฝๆฐๆๅคงไบ็ญไบ0, ๆไปฅๅคๅซๅผๅฐไบ็ญไบ0, ๅณ:
$
Delta / 4 = (sum_(k=1)^n a_k b_k)^2 - (sum_(k=1)^n a_k^2)(sum_(k=1)^n b_k^2) <= 0 quad qed
$
]
=== Bernoulli ไธ็ญๅผ
#statement[
$
forall x in RR, quad x >= -1 quad n in NN, n >= 2\
(1+x)^n >= 1 + n x
$
]
#proof[
$n=2$ ๆถ,
$
(1+x)^2 = x^2 + 2x + 1 >= 1 + 2x
$
ๅ่ฎพ $n=k$ ๆถๆ็ซ, ๅ $n=k+1$ ๆถ:
$
(1+x)^{k+1} = (1+x)^k (1+x) >= (1+k x)(1+x) = 1 + (k+1)x + k x^2 >= 1 + (k+1)x
$
]
=== HM-GM-AM-QM ไธ็ญๅผ
#statement[
$
forall a_1, a_2, ..., a_n in RR_+\
n / (1 / a_1 + 1 / a_2 + ... + 1 / a_n) <= (
a_1 a_2 ... a_n
)^(1 / n) <= (a_1 + a_2 + ... + a_n) / n <= sqrt((a_1^2 + a_2^2 + ... + a_n^2)/n)
$
ๅ
ถไธญๅ ไธชๅนณๅๅผ็ๅฎไนไธบ:
- ็ฎๆฐๅนณๅๅผ(#strong[A]rithmetic #strong[M]ean): $ "AM" = (a_1 + a_2 + ... + a_n)/n $
- ๅ ไฝๅนณๅๅผ(#strong[G]eometric #strong[M]ean): $ "GM" = (a_1 a_2 ... a_n)^(1/n) $
- ่ฐๅๅนณๅๅผ(#strong[H]armonic #strong[M]ean): $ "HM" = n/(1/a_1 + 1/a_2 + ... + 1/a_n) $
- ๅนณๆนๅนณๅๅผ(#strong[Q]uadratic #strong[M]ean): $ "QM" = sqrt((a_1^2 + a_2^2 + ... + a_n^2)/n) $
]
#caption[
$"AM"$ๅ$"GM"$็ไธ็ญๅผๆ็ๅพๆพ็ถ็ๅ ไฝๆไน:
ๅจ$RR^2$ไธ,
$
(a_1+a_2) / 2 >= sqrt(a_1 a_2)
quad => quad
2(a_1+a_2) >= 4sqrt(a_1 a_2)
$
ๆๅณ็, ้ข็งฏ็ธๅ็็ฉๅฝข,ๆญฃๆนๅฝข็ๅจ้ฟๆๅฐ.ๆณจๆๅฐ็ธๅ็็ป่ฎบๅฏไปฅ็ดๆฅๆจๅนฟๅฐ$RR^n$ไธ.
]
#proof[
$"AM"$ๅ$"GM"$็ไธ็ญๅผ,ๅฏ้่ฟไธ้ข่ฟ็งๆง่ดจๅไธไธชๅทงๅฆ็่ฏๆ:
$ alpha = "AM" = 1 / n (a_1 + ... + a_n) $
่ฅ $a_1, a_2, ..., a_n$ ไธๅ
จ็ธ็ญ, ๅๅญๅจ $a_i < alpha < a_j$, ๅฏน่ฟไธค้กนๅๅฆไธๆฟๆข:
$
a_i^prime &= alpha \
a_j^prime &= a_i + a_j - alpha
$
ๆฟๆขๅๆปก่ถณ:
$
"AM"^prime &= "AM" = alpha \
"GM"^prime &= "GM" / (a_i dot.c a_j) * (a_i^prime dot.c a_j^prime) > "GM"
$
ๆณจๆๅฐ $"GM"^prime > "GM"$ๆฏไธฅๆ ผ็.
้ๅคไธ่ฟฐ่ฟ็จ, ็ดๅฐๆๆ็ $a_i$ ้ฝ็ญไบ $alpha$(ๅฎนๆ่ฏดๆๅช้่ฆ่ณๅค$n-1$ๆญฅ), ๆญคๆถ:
$
"AM" = "GM"^((n)) > "GM"^((n-1)) > ... > "GM"^(prime) > "GM"
$
่ฏๆฏ.
#caption[
ไธ่ฟฐ่ฏๆๅๆถ่ฏดๆ,็ญๅทๆ็ซๅฝไธไป
ๅฝ $a_1 = a_2 = ... = a_n$. ๆญคๆถๆ ้็ป่ฟๅๆข,$"AM" = "GM"$.
ๅช่ฆ็ป่ฟๅๆข,ๅฐฑๆไธฅๆ ผ็ไธ็ญๅผๆ็ซ.
]
#homework[
$"AM"$ๅ$"GM"$็ไธ็ญๅผ,ไนๅฏไปฅ้่ฟๅฝ็บณๆณ่ฏๆ.
]
]
#proof[
้ฆๅ
่ฏดๆ$"AM"$ๅ$"QM"$็ไธ็ญๅผ:
$
forall a_1, a_2, ..., a_n in RR_+\
(a_1 + a_2 + ... + a_n) / n <= sqrt((a_1^2 + a_2^2 + ... + a_n^2)/n)
$
ๆฏCauchyไธ็ญๅผ็ๆจ่ฎบ.ไปค $x = (a_1, a_2, ..., a_n), y = (1, 1, ..., 1)$, ๅ:
$
(a_1 + a_2 + ... + a_n) = x dot.c y <= abs(x) abs(y) = sqrt(a_1^2 + a_2^2 + ... + a_n^2) dot.c sqrt(n)
$
็ฎๅๅๆขๅณๅฏๅพๅฐไธ่ฟฐไธ็ญๅผ.
#line(length: 100%, stroke: 0.2pt)
ๆฅไธๆฅ่ฏดๆ$"HM"$ๅ$"QM"$็ไธ็ญๅผๆฏ็ฑ$"AM"$ๅ$"GM"$็ไธ็ญๅผๆจๅบ็:
$
forall a_1, a_2, ..., a_n in RR_+ quad
(a_1 a_2 ... a_n)^(1 / n) <= (a_1 + a_2 + ... + a_n) / n
$
ๅจไธ่ฟฐไธ็ญๅผไธญๅฐ $a_i$ ๆฟๆขไธบ $1/a_i$, ๅ:
$
forall a_1, a_2, ..., a_n in RR_+
quad => quad
(1 / a_1 1 / a_2 ... 1 / a_n)^(1 / n) &<= (1 / a_1 + 1 / a_2 + ... + 1 / a_n) / n \
&arrow.b.double \
(a_1 a_2 ... a_n)^(1 / n) &>= n / (1 / a_1 + 1 / a_2 + ... + 1 / a_n)
$
]
#pagebreak()
== ๅฏๆฐ
=== ้ๅ้ดๆ ๅฐ
=== ้ๅ็ๅบๆฐ
=== ๅฏๆฐ
==== ๆง่ดจ
- ๆ้ไธชๅฏๆฐ้็ๅนถๆฏๅฏๆฐ็, ๅฏๆฐไธชๅฏๆฐ้็ๅนถๆฏๅฏๆฐ็
- ๅฆๆ้ๅAๆฏๅฏๆฐ็, ้ๅBๆฏๆ้็, ้ฃไนA x Bๆฏๅฏๆฐ็:
$
A times B := {(a, b) | a in A, b in B}
$
- $abs(2^X) = 2^abs(X)$
==== ไธๅฏๆฐ้
- $2^NN$, Cantorๅฏน่ง็บฟๆนๆณ
- $RR$, ไน็ฑปไผผไบCantorๅฏน่ง็บฟๆนๆณ
#pagebreak()
== ไน ้ข้่ฎฒ
#pagebreak()
|
|
https://github.com/AU-Master-Thesis/thesis | https://raw.githubusercontent.com/AU-Master-Thesis/thesis/main/sections/3-methodology/study-1/algorithm.typ | typst | MIT License | #import "../../../lib/mod.typ": *
=== Algorithm <s.m.algorithm>
// #jonas[I do believe all this is new to you?]
// This section should explain the GBP inference algorithm as it has been implemented in the simulation tool.
// 1. Fixed update schedule
// 2. Chained systems
// 3. Manual stepping and pausing
// Introduce the Robot Mission concept?
#[
#show regex("\b(UpdatePrior|CurrentlyConnected|Connect|Disconnect|InternalGBP|ExternalGBP)\b") : set text(theme.mauve, font: "JetBrainsMono NF")
As explained in the background section #nameref(<s.b.ecs>, "Entity Component System"), an #acr("ECS") architecture has been used as the foundation for #acr("MAGICS") through the Bevy Engine@bevyengine. The #acr("GBP") inference process has been implemented as a series of 7 systems that are executed in a fixed update schedule. This schedule is one of the default schedules provided by Bevy with a configurable frequency#footnote[This happens in the #acr("MAGICS") source code in the #crates.gbpplanner-rs crate at #source-link("https://github.com/AU-Master-Thesis/gbp-rs/blob/8960686facb7d38c0259141e5b22346c7d745271/crates/gbpplanner-rs/src/simulation_loader.rs#L564", "src/simulation_loader.rs:564")], which is also exposed to #acr("MAGICS") through the `simulation` table in `config.toml`#footnote[Example at #repo(org: "AU-Master-Thesis", repo: "gbp-rs") at #source-link("https://github.com/AU-Master-Thesis/gbp-rs/blob/8960686facb7d38c0259141e5b22346c7d745271/config/simulations/Intersection/config.toml#L79", "config/simulations/Intersection/config.toml:79")] file. These 7 systems are listed here and marked #boxed[*GBP-X*].
#[
#set enum(numbering: box-enum.with(prefix: "GBP-"))
#grid(
columns: (1fr, 1fr),
[
+ `update_robot_neighbours`
+ `delete_interrobot_factors`
+ `create_interrobot_factors`
+ `update_failed_comms`
],
[
#set enum(start: 5)
+ `iterate_gbp`
+ `update_prior_of_horizon_state`
+ `update_prior_of_current_state`
],
)
]
The algorithm is written out in @a.m.algorithm, where `CurrentlyConnected` is a way to retrieve which robots are currently set as being connected to a specific robot, $R_i$. Before the main loop, find which robots are within communication distance at the current timestep, $N(R_i)$. Then in the main loop while the simulation is _running_, create an interrobot factor between all robots within communication distance if it does not already exist with `Connect`, and delete the interrobot factor if the robot is no longer within communication distance with `Disconnect`. After this, the internal and external #acr("GBP") iterations are run with `InternalGBP` and `ExternalGBP`, respectively.
#algorithm(
caption: [GBP For Robot $R_i$@gbpplanner]
)[
#let comment(content) = text(theme.overlay2, content)
#show regex("\b(UpdatePrior|CurrentlyConnected|Connect|Disconnect|InternalGBP|ExternalGBP)\b") : set text(size: 0.85em)
// #show regex("--(.*?)\b") : set text(theme.crust, font: "JetBrainsMono NF", size: 0.85em)
#show regex("(while|for|do|end)") : set text(weight: "bold")
// #set par(first-line-indent: 0em)
#let ind() = h(2em)
*Input:* $R_i$ \ \
#comment[Retrieve the robots that were previously set to be connected to $R_i$] \
$C(R_i) #la "CurrentlyConnected"(R_i)$ \ \
$"UpdatePrior"(#m.x _0, delta_t)$ \
$"UpdatePrior"(#m.x _(K-1), delta_t)$ \ \
$N(R_i) #la {R_j | norm(R_i - R_j) < r_C}$ \ \
while _running_ do \
#ind()for $R_j in N(R_i) \\ C(R_i)$ do \
#ind()#ind()$"Connect"(R_i, R_j)$ \
#ind()end \
#ind()for $R_j in C(R_i) \\ N(R_i)$ do \
#ind()#ind()$"Disconnect"(R_i, R_j)$ \
#ind()end \
#ind()$"InternalGBP"(M_I)$ \
#ind()$"ExternalGBP"(M_E)$ \
#ind()end \
end
]<a.m.algorithm>
Following is an explanation of the systems, and their responsibilities, along with which part of the original #gbpplanner implementation they correspond to. Furthermore, each system is related to @a.m.algorithm when relevant:
#let space = v(0.5em)
#set par(first-line-indent: 0em)
#set enum(numbering: box-enum.with(prefix: "GBP-"))
+ `update_robot_neighbours`#footnote[Found in crate #crates.gbpplanner-rs at #source-link("https://github.com/AU-Master-Thesis/gbp-rs/blob/8960686facb7d38c0259141e5b22346c7d745271/crates/gbpplanner-rs/src/planner/robot.rs#L1247", "src/planner/robot.rs:1247")] utilizes the #acr("ECS") to mutably query for all entities that have a `RobotConnections` component, and then consequently update them with all robots within communication range.
#space
*Parity* with `Simulator::calculateRobotNeighbours` in #gbpplanner. Corresponds to the setting the internal data of `RobotConnection` to that of $N(R_i)$.
+ `delete_interrobot_factors`#footnote[Found in crate #crates.gbpplanner-rs at #source-link("https://github.com/AU-Master-Thesis/gbp-rs/blob/8960686facb7d38c0259141e5b22346c7d745271/crates/gbpplanner-rs/src/planner/robot.rs#L1271", "src/planner/robot.rs:1271")] removes all interrobot factors from the factor graph that are no longer relevant due to the updated robot connections.
#space
*Parity* with half of the responsibility of `Robot::updateInterrobotFactors` in #gbpplanner. This corresponds to the `Disconnect` part of the algorithm.
+ `create_interrobot_factors`#footnote[Found in crate #crates.gbpplanner-rs at #source-link("https://github.com/AU-Master-Thesis/gbp-rs/blob/8960686facb7d38c0259141e5b22346c7d745271/crates/gbpplanner-rs/src/planner/robot.rs#L1326", "src/planner/robot.rs:1326")] creates new interrobot factors for all robot connections that are not already represented in the factor graph.
#space
*Parity:* with the other half of the responsibility of `Robot::updateInterrobot``Factors` in #gbpplanner. This corresponds to the `Connect` part of the algorithm.
+ `update_failed_comms`#footnote[Found in crate #crates.gbpplanner-rs at #source-link("https://github.com/AU-Master-Thesis/gbp-rs/blob/8960686facb7d38c0259141e5b22346c7d745271/crates/gbpplanner-rs/src/planner/robot.rs#L1478", "src/planner/robot.rs:1478")] updates the communication status of all robots, based on the configurable parameter `communication_failure_rate` under the `robot``.communication` table in `config.toml`.
#space
*Parity* with `Simulator::setCommsFailure` in #gbpplanner. This does not have a correlary in @a.m.algorithm.
+ `iterate_gbp`#footnote[Found in crate #crates.gbpplanner-rs at #source-link("https://github.com/AU-Master-Thesis/gbp-rs/blob/8960686facb7d38c0259141e5b22346c7d745271/crates/gbpplanner-rs/src/planner/robot.rs#L1654", "src/planner/robot.rs:1654")] iterates the #acr("GBP") algorithm for all robots in the simulation. That is, it has the responsibilitity for the 4 inference steps; _variable update, variable to factor message passing, factor update, and factor to variable message passing_.
#space
*Parity* with `Simulator::iterateGBP` in #gbpplanner. This corresponds to the `InternalGBP` and `ExternalGBP` part of the algorithm.
+ `update_prior_of_horizon_state`#footnote[Found in crate #crates.gbpplanner-rs at #source-link("https://github.com/AU-Master-Thesis/gbp-rs/blob/8960686facb7d38c0259141e5b22346c7d745271/crates/gbpplanner-rs/src/planner/robot.rs#L2042", "src/planner/robot.rs:2042")] updates the prior of the horizon state for all robots in the simulation. This is the pose factor anchoring earlier mentioned in @s.m.factors.pose-factor.
#space
*Parity* with `Robot::updateHorizon` in #gbpplanner.
+ `update_prior_of_current_state`#footnote[Found in crate #crates.gbpplanner-rs at #source-link("https://github.com/AU-Master-Thesis/gbp-rs/blob/8960686facb7d38c0259141e5b22346c7d745271/crates/gbpplanner-rs/src/planner/robot.rs#L2174", "src/planner/robot.rs:2174")] updates the prior of the current state for all robots in the simulation. Again, this is where the effect of the pose factor anchoring takes place.
#space
*Parity* with `Robot::updateCurrent` in #gbpplanner.
]
#let r = (
A: text(theme.lavender, weight: "bold", "A"),
B: text(theme.mauve, weight: "bold", "B")
)
Through these steps the lifecycle of the interrobot factors has been allured to. This lifecycle is visualized in @f.interrobot-lifecycle, where two robots #r.A and #r.B approach each other. When they are within communication range, interrobot factors are created. The messaging happens through these factors is the communication that would happen wirelessly in a real-world implementation. Furthermore, when one of the robots' radio fails, the interrobot factors that are maintained by that robot are simply deactivated instead of removed. This has been done as an optimization, instead of deallocating, for then possibly reallocating in the next timestep. Finally, when the robots are no longer within communication range, the interrobot factors are deallocated.
To summarize for two robots, $A$ and $B$, with variable $v_n^A$ and $v_n^B$, connected by interrobot factors $f_(i_n)^A (v_n^A, v_n^B)$ and $f_(i_n)^B (v_n^A, v_n^B)$. There are four possible states the pairing between the two can be in.
+ The communication medium of both $A$ and $B$ are inactive, preventing the factors and variable from exchanging messages.
+ The communication medium of $A$ is active, preventing $B$ from exchanging messages with $A$ during external message passing.
+ The communication medium of $B$ is active, preventing $A$ from exchanging messages with $B$ during external message passing.
+ The communication medium of both $A$ and $B$ are active, allowing the factors and variable to exchange messages between each other during external message passing.
These four states correspond to the states shown at timestep $t_(n+1)$ to $t_(n+4)$ in @f.interrobot-lifecycle.
#figure(
block(breakable: false,
include "figure-interrobot-lifecycle.typ",
),
caption: [
#let comms = {
let l1 = place(dy: -0.35em, line(length: 1em, stroke: (thickness: 2pt, paint: theme.teal, dash: "dashed", cap: "round")))
let l2 = place(dy: -0.35em, line(length: 1em, stroke: (thickness: 2pt, paint: theme.surface0, dash: "dashed", cap: "round")))
box(inset: (x: 2pt), outset: (y: 2pt), l1 + l2 + h(1.6em))
}
Interrobot factor, $f_i$, lifecycle. On A) the two robots, #r.A and #r.B, are approaching each other, but not within communication range, shown with dashed circles #inline-line(stroke: (paint: theme.teal, thickness: 2pt, dash: "dashed", cap: "round")) #inline-line(stroke: (paint: theme.overlay0, thickness: 2pt, dash: "dashed", cap: "round")). On B) both robots are within communication range, and interrobot factors are created symmetrically between robots #r.A and #r.B. On C) and D) one of the two robots' radio has failed, resulting in the corresponding interrobot factors being inactive. On E) the robots are no longer within communication range, and the interrobot factors are removed.
]
)<f.interrobot-lifecycle>
|
https://github.com/Rhinemann/mage-hack | https://raw.githubusercontent.com/Rhinemann/mage-hack/main/src/chapters/Talents.typ | typst | #import "../templates/interior_template.typ": *
#show: chapter.with(chapter_name: "Talents")
= Talents
#show: columns.with(2, gutter: 1em)
In addition to Hinder each character has a handful of SFX, reflecting special capabilities associated with their many different abilities, these are called talents. These A PC also has at least one Limit. A Limit is a special type of SFX that imposes a disadvantage on your character in order to earn them #spec_c.pp or another reward. Whenever you gain a Talent or Limit, you can rename it to better suit your character.
#block(breakable: false)[
== Sample Talents
When you create a new character, they gain two of the following SFX of your choice (in addition to the _Hinder_ SFX all characters receive):
// TODO write descriptions
]
/ Adaptable: Step down and double one die of your choice in your pool.
/ All-Out Attack: Spend a #spec_c.pp to target multiple opponents when you roll to inflict #smallcaps[Hurt]. For each additional target, add #spec_c.d6 and keep an extra effect die.
/ Brilliant Under Pressure: Spend a #spec_c.pp to add your #smallcaps[Rattled] or #smallcaps[Tired] to your roll to create an asset. If the action succeeds, step down the stress you used.
/ Combat Veteran: When your roll to inflict #smallcaps[Hurt] or #smallcaps[Rattled] during a battle includes #smallcaps[Firearms] or #smallcaps[Weaponry], step down the largest die in your pool to add #spec_c.d8. If your roll succeeds, step up your effect die.
/ Distracting Presence: When you roll to inflict #smallcaps[Unsound] by distracting someone, add #spec_c.d6 and step up your effect die.
/ Strong Empathy: Step up #smallcaps[Empathy] on a roll to create an asset related to trust, reading people, or reassurance.
/ Energetic: When you would take #smallcaps[Tired] stress, spend a #spec_c.pp to step down the stress you take. If this steps the stress down below #spec_c.d6, you take no stress at all.
/ Flash of Insight: When you fail a test to obtain information, you may spend a #spec_c.pp or take #smallcaps[Unsound] #spec_c.d6 to obtain that information by other means.
/ Have a Little Faith: When you would take #smallcaps[Rattled] stress, spend a #spec_c.pp to step down the stress you take. If this steps the stress down below #spec_c.d6, you take no stress at all.
/ Hinder: Roll #spec_c.d4 instead of #spec_c.d8 for a distinction to earn a #spec_c.pp.
/ In Harm's Way: When another character near you takes stress, you can step down the stress they would take, then take #spec_c.d6 stress of the same type yourself.
/ Impossible to Ignore: Spend a #spec_c.pp to target multiple opponents when you roll to inflict #smallcaps[Unsound]. For each additional target, add #spec_c.d6 and keep an extra effect die.
/ Inspiring Leadership: Add a #spec_c.d6 and step up your effect die when you roll #smallcaps[Social] skills to create assets for allies.
/ Keen Intellect: Add a #spec_c.d6 and step up your effect die when you roll #smallcaps[Mental] skills to create an asset related to recalling or researching information.
/ Master Plan: Spend a #spec_c.pp to add a die to your pool equal to the largest complication anyone has in the scene. After the roll fails or succeeds, step down that complication.
/ Misdirection: When you use #smallcaps[Social] skills on a roll related to escape, deception, or stealth, step down the largest die in your pool to add #spec_c.d8. If your roll succeeds, step up your effect die.
/ Outmaneuver: When your roll to inflict #smallcaps[Hurt] or #smallcaps[Tired] while outdoors includes #smallcaps[Athletics], step down the largest die in your pool to add #spec_c.d8. If your roll succeeds, step up your effect die.
/ Peacemaker: If you have #smallcaps[Hurt] stress inflicted by another character in the scene when you roll to de-escalate a conflict, double #smallcaps[Empathy] in your dice pool. If the roll still fails, take #smallcaps[Rattled] #spec_c.d6.
/ Push Through It: Before you roll a dice pool including a #smallcaps[Physical] skill, spend a #spec_c.pp to recover #smallcaps[Hurt] and step up a #smallcaps[Physical] attribute for that roll. Take #smallcaps[Tired] #spec_c.d6 stress if the roll succeeds, or #spec_c.d8 if it fails.
/ Reassuring Comrade: Step up or double #smallcaps[Empathy] in your dice pool when helping others recover #smallcaps[Rattled]. You can also spend a #spec_c.pp to step down your own or a nearby character's #smallcaps[Rattled].
/ Reckless Gambit: When you roll dice, add a die to your pool equal to the largest stress or complication anyone has in the scene. Take a complication at #spec_c.d6 if the roll succeeds, or #spec_c.d8 if it fails.
/ Reliable Memory: Spend a #spec_c.pp to reroll a dice pool focused on memory or recall that included #smallcaps[Intelligence].
/ Skill Focus: When your pool includes a specialty, you can replace two dice of equal size with one die one step larger.
/ Sudden Yet Inevitable: When someone betrays you or deceives you, or you betray or deceive someone, spend a #spec_c.pp to create a #spec_c.d8 asset related to having planned for it.
/ Team Player: When you witness an ally rolling a heroic success, you can step down your own or another witness's #smallcaps[Rattled].
/ Tough: When you would take #smallcaps[Hurt] stress, spend a #spec_c.pp to step down the stress you take. If this steps the stress down below #spec_c.d6, you take no stress at all.
/ Trained Physician: Step up or double #smallcaps[Medicine] in your dice pool when helping others recover #smallcaps[Hurt]. You can also spend a #spec_c.pp to step down your own or a nearby character's #smallcaps[Hurt].
/ Undaunted Determination: Step up or double #smallcaps[Stamina] for one roll. If the roll fails, take #smallcaps[Tired] stress equal to the largest die in your pool.
/ Vicious Contempt: When you roll to inflict #smallcaps[Rattled] with mockery or contempt, add #spec_c.d6 and step up your effect die.
/ Vigilant Eye: Spend a #spec_c.pp to double #smallcaps[Investigation] in a pool related to following a trail, aiming at a distant target, or spotting something far off.
/ Watch It All Burn: Add a die to your pool equal to the largest stress or complication anyone has in the scene and step up your effect die. Succeed or fail, take #smallcaps[Unsound] #spec_c.d6.
You can spend points to take one or more of these SFX at character creation or later
#block(breakable: false)[
=== Magick Talents (Supernatural Talents)
These are the examples of magick-related and supernatural SFX available to mages to inspire the players and Storytellers.
]
/ Advanced Necromancy: Spend a #spec_c.pp to use both Matter and Life when your action is related to animating the dead.
/ Area Effect: When your effect targets an area or a number of creatures, spend a #spec_c.pp to add a #spec_c.d6 and keep an additional effect die for each additional target past the first.
/ Conjunctional Effects Mastery: When performing a conjunctional effect add two or more Spheres to a dice pool and step each Sphere down by one for each additional Sphere beyond the first.
/ Destructive Proclivities: When you include a Sphere to destroy an object, spend a #spec_c.pp to step up your effect die.
/ Enchant Patterns: When your effect includes Prime #spec_c.d6 or higher spend Quintessence to inflict #spec_c.d6 Hurt stress.
/ Fast Casting: When your action includes a Sphere, you can gain a #spec_c.d6 complication to inflict #spec_c.d6 Hurt stress.
/ Instrument Arsenal: Spend a #spec_c.pp to create a #spec_c.d8 Instrument asset for a particular type of magick.
/ Paradox Contaminating: When your action includes Prime #spec_c.d12 or higher, you can inflict Paradox on a target besides yourself.
/ Paradox Transmitting: When your action includes Prime #spec_c.d12 or higher and you have the Paradox Contaminating SFX you can recover one Paradox die level for each Paradox die inflicted.
/ Primal Channeling: When your action includes Prime #spec_c.d10 or higher you can recover one Quintessence die for each step of Stress you inflict.
/ Pushing Through: Whenever you take stress caused by a Sphere, spend a #spec_c.pp to step it down. At the end of the session, if you still have stress on that Sphere, step it up.
/ Quick Curse: When your action includes a Sphere, you can gain a #spec_c.d6 to keep a second effect die as a complication on a nearby character.
/ Reckless Casting: Step up or double any Sphere for one roll. If the roll fails, add your Sphere die to the Paradox pool.
/ Rein In: When you include a #spec_c.d10 or #spec_c.d8 Sphere, gain a #spec_c.pp and step it down. You can recover it by activating an opportunity rolled by the GM.
/ Swift Warding: When your action includes a Sphere, you can gain a #spec_c.d6 Moving Too Fast complication to keep a second effect die as a Magical Aegis asset.
/ Talent for Growth: When you succeed at a test including a Sphere, spend a #spec_c.pp to create a Watch And Learn #spec_c.d8 asset. Anyone can use this asset alongside a #spec_c.d4 or #spec_c.d6 Sphere.
#block(breakable: false)[
==== Sphere Talents
Sphere talents are a special case of supernatural talents that are unlocked automatically as you advance your understanding of magick.
]
/ Sphere Perception: Step up your lowest die on any roll to perceive any phenomena under the purview of Sphere or create a related asset.
You unlock this talent at Sphere rating #spec_c.d4 for that Sphere.
/ Sphere Manipulation: On rolls to create an asset that can be produced by a #spec_c.d6 or lower Sphere rating, add #spec_c.d6 and step up your effect die.
You unlock this talent at Sphere rating #spec_c.d6 for that Sphere.
/ Sphere Control: Spend a #spec_c.pp to create a #spec_c.d8 asset that can be produced by a #spec_c.d8 or lower Sphere rating.
You unlock this talent at Sphere rating #spec_c.d8 for that Sphere.
/ Sphere Command: Spend a #spec_c.pp to step up or double your Sphere die on a roll for an effect that can be accomplished by a #spec_c.d10 or lower Sphere rating.
You unlock this talent at Sphere rating #spec_c.d10 for that Sphere.
/ Sphere Mastery: Take #spec_c.d6 appropriate stress or complication to double your Sphere die for for a roll. On a failure, step up the same stress or complication you took to activate.
You unlock this talent at Sphere rating #spec_c.d12 for that Sphere.
|
|
https://github.com/mem-courses/calculus | https://raw.githubusercontent.com/mem-courses/calculus/main/homework-1/week0.typ | typst | #import "../template.typ": *
#show: project.with(
title: "ๅพฎ็งฏๅ Homework #0",
authors: (
(name: "<NAME>", email: "<EMAIL>", phone: "3230104585"),
),
date: "September 15, 2023",
)
= Pre Problem 1
#prob[ๅทฒ็ฅๆฐๅ ${x_n}$ ๆปก่ถณ $ cases(
x_1 = a,
x_(n+1) = 1/2 x_n^2 (3 - x_n),
) quad quad (a "ไธบๅธธๆฐ",quad a in (0,1) union (1,2) union (2,3)) $
้ฎๅฝ $n>=1$๏ผๆ $n>=2$๏ผๆถ๏ผ${x_n}$ ๆฏๅฆไธบๅ่ฐๆฐๅ๏ผ้่ฏดๆ็็ฑๆ็ปๅบ่ฎบ่ฏ่ฟ็จ๏ผ]
่ฎพ $ f(x) = 1/2 x^2 (3-x) $
ๅๆ $ f'(x) = 1/2( 2x(3-x) + (-x^2)) = 3/2x (2 - x) $
= xmr's Problem 1
#prob[่ฎพ $x,y in RR$๏ผๆฑ $(x-y)^2 + (2x-5)^2 + 4y^2$ ็ๆๅฐๅผ๏ผ]
|
|
https://github.com/EpicEricEE/typst-based | https://raw.githubusercontent.com/EpicEricEE/typst-based/master/src/base16.typ | typst | MIT License | /// Encodes the given data as a hex string.
///
/// Arguments:
/// - data: The data to encode. Must be of type array, bytes, or string.
///
/// Returns: The encoded string (lowercase).
#let encode(data) = {
if data.len() == 0 { return "" }
for byte in array(bytes(data)) {
if byte < 16 { "0" }
str(int(byte), base: 16)
}
}
/// Decodes the given hex string.
///
/// Arguments:
/// - string: The string to decode (case-insensitive).
///
/// Returns: The decoded bytes.
#let decode(string) = {
let dec(hex-digit) = {
let code = str.to-unicode(hex-digit)
if code >= 48 and code <= 57 { code - 48 } // 0-9
else if code >= 65 and code <= 70 { code - 55 } // A-F
else if code >= 97 and code <= 102 { code - 87 } // a-f
else { panic("Invalid hex digit: " + hex-digit) }
}
let array = range(string.len(), step: 2).map(i => {
16 * dec(string.at(i)) + dec(string.at(i + 1))
})
bytes(array)
}
|
https://github.com/typst/packages | https://raw.githubusercontent.com/typst/packages/main/packages/preview/silky-letter-insa/0.1.0/lib.typ | typst | Apache License 2.0 | // SHORT DOCUMENT :
#let insa-short(
author : none,
date : datetime.today(),
doc
) = {
set text(lang: "fr")
set page(
"a4",
margin: (top: 3.2cm),
header-ascent: 0.71cm,
header: [
#place(left, image("logo.png", height: 1.28cm), dy: 1.25cm)
#place(right + bottom)[
#author\
#if type(date) == datetime [
#date.display("[day]/[month]/[year]")
] else [
#date
]
]
],
footer: [
#place(
right,
dy: -0.6cm,
dx: 1.9cm,
image("footer.png")
)
#place(
right,
dx: 1.55cm,
dy: 0.58cm,
text(fill: white, weight: "bold", counter(page).display())
)
]
)
doc
}
|
https://github.com/rxt1077/it610 | https://raw.githubusercontent.com/rxt1077/it610/master/markup/slides/git.typ | typst | #import "/templates/slides.typ": *
#import "@preview/fletcher:0.5.1" as fletcher: diagram, node, edge
#import fletcher.shapes: diamond
#show: university-theme.with(
short-title: [git],
)
#title-slide(
title: [git],
)
#alternate(
title: [What is git?],
image: licensed-image(
file: "/images/git.svg",
license: "FAIRUSE",
title: [git logo],
url: "https://git-scm.com/downloads/logos",
width: 100%,
),
text: [
- a version control system
- command line based
- keeps track of files and changes to them
- works locally but can "push" to a remote
]
)
#slide(title: [What do people think of git?],
align(center, licensed-image(
file: "/images/git-bingo.png",
license: "CC BY-NC-SA 4.0",
title: [git discussion bingo],
url: "https://wizardzines.com/comics/git-discussion-bingo/",
author: [<NAME>],
author-url: "https://wizardzines.com/",
))
)
#alternate(
title: [Why do we need it?],
image: [
#set text(size: 16pt)
#diagram(
node-shape: rect,
node((0, 0), [Collaboration], stroke: red, fill: red.lighten(80%)),
node((1, 0), [Open Source], stroke: orange, fill: orange.lighten(80%)),
node((2, 0), [Scalable], stroke: yellow, fill: yellow.lighten(80%)),
node((0, 1), [Distributed], stroke: green, fill: green.lighten(80%)),
node((1, 1), [git], stroke: blue, shape: diamond, fill: blue.lighten(80%)),
node((2, 1), [Workflow], stroke: purple, fill: purple.lighten(80%)),
node((0, 2), [Integrity], stroke: yellow, fill: yellow.lighten(80%)),
node((1, 2), [Branching], stroke: red, fill: red.lighten(80%)),
node((2, 2), [History], stroke: orange, fill: orange.lighten(80%)),
edge((1, 1), (0.25, 0.25), "->"),
edge((1, 1), (1, 0.25), "->"),
edge((1, 1), (1.75, 0.25), "->"),
edge((1, 1), (0.25, 1), "->"),
edge((1, 1), (1.75, 1), "->"),
edge((1, 1), (0.25, 1.75), "->"),
edge((1, 1), (1, 1.75), "->"),
edge((1, 1), (1.75, 1.75), "->"),
)
],
text: [
- make things less brittle
- keep track of things
- find out who changed things
]
)
#alternate(
title: [How is it used?],
image: licensed-image(
file: "/images/xkcd-git.png",
license: "CC BY-NC 2.5",
title: [Git],
url: "https://xkcd.com/1597/",
author:[<NAME>],
author-url: "https://xkcd.com/about/",
),
text: [
- create a repo: `git init` (local or remote, GitHub can do this for you)
- clone the repo: `git clone`
- add files you want tracked: `git add`
- commit changes: `git commit`
- push changes: `git push`
]
)
#slide(title: [How do I collaborate with git?])[
#diagram(
node-shape: circle,
node-fill: njit-red,
edge-stroke: 8pt + njit-blue.lighten(50%),
spacing: (4.8em, 4em),
label-size: 0.8em,
node((0, 0), " "),
node((1, 1), " ", fill: njit-blue),
node((2, 1), " ", fill: njit-blue),
node((3, 1), " ", fill: njit-blue),
node((4, 1), " "),
node((5, 1), " "),
node((6, 0), " "),
edge((0, 0), (6, 0), label: [main], stroke: 8pt + njit-red.lighten(50%)),
edge((0, 0), (1, 1), label: [fork], bend: -30deg, label-angle: auto),
edge((1, 1), (3, 1), label: [user makes changes], label-side: right),
edge((3, 1), (4, 0),
label: [pull request],
stroke: (paint: njit-blue.lighten(50%), thickness: 8pt, dash: ("dot", 0.5em)),
bend: -30deg,
label-angle: auto,
label-side: left,
label-sep: 0.7em,
),
edge((3, 1), (5, 1), label: [maintainer adds commits], label-side: right),
edge((5, 1), (6, 0), label: [merge], bend: -30deg, label-angle: auto),
)
\
- fork a repo (create a branch)
- make your changes
- submit a PR
- PR gets merged (hopefully)
]
#alternate(
title: [Why are we talking about git in a sysadmin class?],
image: licensed-image(
file: "/images/git-push-git-paid.svg",
license: "CC BY-NC 4.0",
title: [git-push-git-paid.svg],
url: "https://github.com/rxt1077/it610/blob/master/markup/images/git-push-git-paid.svg",
author: [<NAME>],
author-url: "https://using.tech",
),
text: [
- configurations a typically lots of little files we need to track
- Docker Compose projects can be tracked in git
- Kubernetes projects can be tracked in git
- git helps with change management
]
)
#alternate(
title: [git services],
image: block(breakable: false)[
#set align(center)
#set text(8pt)
#grid(columns: (1fr, 1fr), rows: (40%, 40%), gutter: 40pt,
image("/images/github-logo.svg", height: 100%),
image("/images/gitlab-logo.svg", height: 100%),
image("/images/sourcehut-logo.svg", height: 100%),
image("/images/radicle-logo.svg", height: 100%),
)
GitHub, GitLab, SourceHut, and Radicle logos are used under fair use.
],
text: [
- #link("https://github.com")[GitHub]
- #link("https://gitlab.com")[GitLab]
- #link("https://sr.ht")[SourceHut]
- #link("https://radicle.xyz")[Radicle (p2p, v1.0 just came out!)]
],
)
|
|
https://github.com/catppuccin/typst | https://raw.githubusercontent.com/catppuccin/typst/main/tests/background/test.typ | typst | MIT License | #import "/src/lib.typ": catppuccin, themes, get-palette
#set page(width: auto, height: auto)
#let perms = ()
#for theme in themes.values() {
for code-block in (true, false) {
for syntax in (true, false) {
perms.push((theme: theme, code-block: code-block, syntax: syntax))
}
}
}
#for p in perms [
#pagebreak(weak: true)
#show: catppuccin.with(p.theme, code-block: p.code-block, code-syntax: p.syntax)
= #get-palette(p.theme).name
- Code block: #p.code-block
- Code syntax: #p.syntax
```typ
#import "/src/lib.typ": catppuccin, themes, get-palette
#let perms = ()
#for theme in themes.values() {
for code-block in (true, false) {
for syntax in (true, false) {
perms.push((theme: theme, code-block: code-block, syntax: syntax))
}
}
}
#for p in perms [
#show: catppuccin.with(p.theme, code-block: p.code-block, code-syntax: p.syntax)
= #get-palette(p.theme).name
== Code block: #p.code-block
== Code syntax: #p.syntax
]
```
]
|
https://github.com/SillyFreak/typst-packages-old | https://raw.githubusercontent.com/SillyFreak/typst-packages-old/main/scrutinize/README.md | markdown | MIT License | # Scrutinize
Scrutinize is a library for building exams, tests, etc. with Typst.
It has three general areas of focus:
- It helps with grading information: record the points that can be reached for each question and make them available for creating grading keys.
- It provides a selection of question writing utilities, such as multiple choice or true/false questions.
- It supports the creation of sample solutions by allowing to switch between the normal and "pre-filled" exam.
Right now, providing a styled template is not part of this package's scope.
Also, visual customization of the provided question templates is currently nonexistent.
See the [manual](docs/manual.pdf) for details.
## Example
A rendered version of this example can be found in the [gallery](gallery/).
```typ
#import "@preview/scrutinize:0.2.0": grading, question, questions
#import question: q
#import questions: free-text-answer, single-choice, multiple-choice, set-solution, unset-solution
// toggle this comment or pass `--input solution=true` to produce a sample solution
// #questions.solution.update(true)
#set table(stroke: 0.5pt)
#context [
#let total = grading.total-points(question.all())
The candidate achieved #h(3em) out of #total points.
]
= Instructions
#with-solution(true)[
Use a pen. For multiple choice questions, make a cross in the box, such as in this example:
#pad(x: 5%)[
Which of these numbers are prime?
#multiple-choice(
(([1], false), ([2], true), ([3], true), ([4], false), ([5], true)),
)
]
]
#show heading: it => [
#it.body #h(1fr) / #question.current().points
]
#q(points: 2)[
= Question 1
Write an answer.
#free-text-answer(height: 4cm)[
An answer
]
]
#q(points: 1)[
= Question 2
Select the largest number:
#single-choice(
([5], [20], [25], [10], [15]),
2, // 0-based index
)
]
```
|
https://github.com/typst/packages | https://raw.githubusercontent.com/typst/packages/main/packages/preview/fh-joanneum-iit-thesis/1.1.0/template/chapters/4-background.typ | typst | Apache License 2.0 | #import "global.typ": *
= Background
#lorem(45)
#todo([
In the background section you might give explanations which are necessary to read the remainder of the thesis.
For example define and/or explain the terms used. Optionally, you might provide a glossary (index of terms used with/without explanations).
#v(1cm)
*Hints for equations in Typst*:
The notation used for #textbf([calculating]) of #textit([code performance]) might typically look like the one in @slow and @veryslow, which demonstrates what *(very) slow*
algorithms mean.
$ O(n) = n^2 $ <slow>
$ O(n) = 2^n $ <veryslow>
*Hints for footnotes in Typst*:
As shown in #footnote[Visit https://typst.app/docs for more details on formatting the document using typst. Note, _typst_ is written in the *Rust* programming language.] we migth discuss the alternatives.
*Hints for formatting in Typst*:
+ You can use built-in styles:
+ with underscore (\_) to _emphasise_ text
+ forward dash (\`) for `monospaced` text
+ asterisk (\*) for *strong* (bold) text
You can create and use your own (custom) formatting macros:
+ check out the custom style (see in file `lib.typ`):
+ `\#textit` for #textit([italic]) text
+ `\#textbf` for #textbf([bold face]) text
])
|
https://github.com/tingerrr/chiral-thesis-fhe | https://raw.githubusercontent.com/tingerrr/chiral-thesis-fhe/main/src/core/component/title-page.typ | typst | #import "/src/core/kinds.typ" as _kinds
#import "/src/core/authors.typ" as _authors
#import "/src/utils.typ" as _utils
// TODO: proper handling of more than one author
// TODO: stable positioning
// TODO: use subtitle
#let make-title-page(
title: "Mustertitel",
subtitle: none,
author: "Mustermann, Max",
supervisors: (
"Prof. Dr. <NAME>",
"Prof. Dr. <NAME>",
),
field: "Angewandte Informatik",
date: datetime(year: 1970, month: 01, day: 01),
id: "AI-1970-BA-999",
kind: _kinds.report,
_fonts: (:),
) = {
set align(center + top)
stack(
align(right, image("/assets/images/logo-fhe.svg", width: 45%)),
5em,
text(16pt, font: _fonts.sans, strong[
#kind.name \
#field
]),
..if _kinds.is-thesis(kind) { (1em, [Nr. #id]) },
5em,
text(32pt, font: _fonts.sans, strong(title)),
3.4em,
text(16pt, strong(_authors.format-author(author, email: false))),
2.5em,
text(18pt)[Abgabedatum: #_utils.format-date(date)],
)
if _kinds.is-thesis(kind) {
place(center + bottom, text(
18pt,
supervisors.map(_authors.format-author.with(email: false)).join(linebreak()),
))
}
pagebreak(weak: true)
}
|
|
https://github.com/frectonz/the-pg-book | https://raw.githubusercontent.com/frectonz/the-pg-book/main/book/097.%20badeconomy.html.typ | typst | badeconomy.html
Why to Start a Startup in a Bad Economy
Want to start a startup? Get funded by
Y Combinator.
October 2008The economic situation is apparently so grim that some experts fear
we may be in for a stretch as bad as the mid seventies.When Microsoft and Apple were founded.As those examples suggest, a recession may not be such a bad time
to start a startup. I'm not claiming it's a particularly good time
either. The truth is more boring: the state of the economy doesn't
matter much either way.If we've learned one thing from funding so many startups, it's that
they succeed or fail based on the qualities of the founders. The
economy has some effect, certainly, but as a predictor of success
it's rounding error compared to the founders.Which means that what matters is who you are, not when you do it.
If you're the right sort of person, you'll win even in a bad economy.
And if you're not, a good economy won't save you. Someone who
thinks "I better not start a startup now, because the economy is
so bad" is making the same mistake as the people who thought during
the Bubble "all I have to do is start a startup, and I'll be rich."So if you want to improve your chances, you should think far more
about who you can recruit as a cofounder than the state of the
economy. And if you're worried about threats to the survival of
your company, don't look for them in the news. Look in the mirror.But for any given team of founders, would it not pay to wait till
the economy is better before taking the leap? If you're starting
a restaurant, maybe, but not if you're working on technology.
Technology progresses more or less independently of the stock market.
So for any given idea, the payoff for acting fast in a bad economy
will be higher than for waiting. Microsoft's first product was a
Basic interpreter for the Altair. That was exactly what the world
needed in 1975, but if Gates and Allen had decided to wait a few
years, it would have been too late.Of course, the idea you have now won't be the last you have. There
are always new ideas. But if you have a specific idea you want to
act on, act now.That doesn't mean you can ignore the economy. Both customers and investors
will be feeling pinched. It's not necessarily a problem if customers
feel pinched: you may even be able to benefit from it, by making
things that save money.
Startups often make things cheaper, so in
that respect they're better positioned to prosper in a recession
than big companies.Investors are more of a problem. Startups generally need to raise
some amount of external funding, and investors tend to be less
willing to invest in bad times. They shouldn't be. Everyone knows
you're supposed to buy when times are bad and sell when times are
good. But of course what makes investing so counterintuitive is
that in equity markets, good times are defined as everyone thinking
it's time to buy. You have to be a contrarian to be correct, and
by definition only a minority of investors can be.So just as investors in 1999 were tripping over one another trying
to buy into lousy startups, investors in 2009 will presumably be
reluctant to invest even in good ones.You'll have to adapt to this. But that's nothing new: startups
always have to adapt to the whims of investors. Ask any founder
in any economy if they'd describe investors as fickle, and watch
the face they make. Last year you had to be prepared to explain
how your startup was viral. Next year you'll have to explain how
it's recession-proof.(Those are both good things to be. The mistake investors make is
not the criteria they use but that they always tend to focus on one
to the exclusion of the rest.)Fortunately the way to make a startup recession-proof is to do
exactly what you should do anyway: run it as cheaply as possible.
For years I've been telling founders that the surest route to success
is to be the cockroaches of the corporate world. The immediate
cause of death in a startup is always running out of money. So the
cheaper your company is to operate, the harder it is to kill.
And fortunately it has gotten very cheap to run a startup. A recession
will if anything make it cheaper still.If nuclear winter really is here, it may be safer to be a cockroach
even than to keep your job. Customers may drop off individually
if they can no longer afford you, but you're not going to lose them
all at once; markets don't "reduce headcount."What if you quit your job to start a startup that fails, and you
can't find another? That could be a problem if you work in sales or
marketing. In those fields it can take months to find a new
job in a bad economy. But hackers seem to be more liquid. Good
hackers can always get some kind of job. It might not be your dream
job, but you're not going to starve.Another advantage of bad times is that there's less competition.
Technology trains leave the station at regular intervals. If
everyone else is cowering in a corner, you may have a whole car to
yourself.You're an investor too. As a founder, you're buying stock with
work: the reason Larry and Sergey are so rich is not so much that
they've done work worth tens of billions of dollars, but that they
were the first investors in Google. And like any investor you
should buy when times are bad.Were you nodding in agreement, thinking "stupid investors" a few
paragraphs ago when I was talking about how investors are reluctant
to put money into startups in bad markets, even though that's the
time they should rationally be most willing to buy? Well, founders
aren't much better. When times get bad, hackers go to grad school.
And no doubt that will happen this time too. In fact, what makes
the preceding paragraph true is that most readers won't believe
itโat least to the extent of acting on it.So maybe a recession is a good time to start a startup. It's hard
to say whether advantages like lack of competition outweigh
disadvantages like reluctant investors. But it doesn't matter much
either way. It's the people that matter. And for a given set of
people working on a given technology, the time to act is always
now.Russian TranslationChinese TranslationJapanese Translation
|
|
https://github.com/Myriad-Dreamin/typst.ts | https://raw.githubusercontent.com/Myriad-Dreamin/typst.ts/main/fuzzers/corpora/layout/pagebreak-parity_01.typ | typst | Apache License 2.0 |
#import "/contrib/templates/std-tests/preset.typ": *
#show: test-page
#set page(width: auto, height: auto)
// Test with auto-sized page.
First
#pagebreak(to: "odd")
Third
|
https://github.com/yhtq/Notes | https://raw.githubusercontent.com/yhtq/Notes/main/ๅธธๅพฎๅๆน็จ/main.typ | typst | #import "../template.typ": proof, note, corollary, lemma, theorem, definition, example, remark, proposition, der, partialDer
#import "../template.typ": *
// Take a look at the file `template.typ` in the file panel
// to customize this template and discover how it works.
#show: note.with(
title: "ๅธธๅพฎๅๆน็จ",
author: "YHTQ",
date: none,
logo: none,
)
= ๅ่จ
- ๆๅธ๏ผๆไผๅบ
- ไฝไธ๏ผ็ๅญๅบท <EMAIL>๏ผๅๅจๅจไธๅไบค
ๅซๆๅไธชๆช็ฅๅฝๆฐ็ๆน็จ็งฐไธบๅธธๅพฎๅๆน็จ๏ผๅพๅพๅฝขๅฆ๏ผ
$
f(x, y๏ผ y', y'', ..., y^((n))) = 0
$
ๅ
ถไธญ $n$ ไธบๆน็จ็้ถๆฐ๏ผๅฎ็ไฝ็ฝฎ็ฑปไผผไบไปฃๆฐๆน็จไธญ็ๆฌกๆฐใๅฝ็ถ้ถๆฐๆด้ซ็ๆน็จๆดๅ ๅคๆใ
่ฅ $f(x, y๏ผ y', y'', ..., y^((n))) = 0$ ไธญ็ $f$ ๆฏ้คๅป $x$ ็ๅคๅ
็บฟๆงๅฝๆฐ๏ผๆฏไธชๅ้็ๆฌกๆฐ้ฝๆฏ1๏ผ๏ผๅ็งฐไธบ็บฟๆงๅพฎๅๆน็จ๏ผๅฆๅ็งฐไธบ้็บฟๆงๅพฎๅๆน็จใ็บฟๆงๅพฎๅๆน็จ็ๅฝขๅผไธบ๏ผ
$
sum_(i=0)^n a_i (x) y^((i)) = 0
$
่ฟ็ฑปๆน็จๆๆฏ่พๅฎๅ็็่ฎบใ
+ ้่งฃไธ็น่งฃ
ๅฝขๅผไธ๏ผๅฎไน่ฅ $y=h(x)$ ไปฃๅ
ฅ $f(x, y๏ผ y', y'', ..., y^((n))) = 0$ ๆฏๆ็ญๅผ๏ผๅ็งฐ $y=h(x)$ ๆฏๆน็จ็่งฃใ่ฎธๅคๆถๅ็ ็ฉถ่งฃ็ๅญๅจๆงไธๅฏไธๆงๅทฒ็ป่ถณๅคๅฐ้พไบใ
็งฐๅพฎๅๆน็จ็้่งฃไธบๅซๆ $n$ ไธช็ฌ็ซๅธธๆฐ็่งฃ๏ผๅฏนๅธธๆฐไปปๆๅๅผ้ฝๅฏไปฅ่ทๅพไธไธช่งฃใ็ธๅฏน็๏ผ็งฐๆฒกๆๆชๅฎๅธธๆฐ็่งฃไธบ็น่งฃ๏ผๅฎๅฐฑๆฏๆไธชๅบๅฎ็ๅฝๆฐใไธ่ฌ่่จ๏ผ$n$ ้ถ็ๅพฎๅๆน็จๅคง็บฆๆ $n$ ้ถ็้่งฃ๏ผ้่งฃๅ
ๅซไบๅคงๅคๆฐ็่งฃ๏ผไฝๅพๅคๆถๅๅนถไธๆฏๆๆ็่งฃใ
#example[][
ๅพฎๅๆน็จ $y' = y^(1/3)$ ็ไธไธช้่งฃไธบ๏ผ
$
cases((2/3 x + C)^(3/2) quad 2/3x + C >0,
0 quad 2/3x + C <= 0)
$
ไฝ $y = 0$ ๆพ็ถๆฏไธไธช่งฃ๏ผๅนถไธ่ฝ่ขซ้่งฃๅ
ๅซใ
]
+ ๅๅผ้ฎ้ข๏ผๆฏ่ฅฟ้ฎ้ข๏ผ
ๅพๅพ็ปๅฎไธไธชๅๅผๆกไปถไพฟๅฏๅจ้่งฃไธญๅๅฐไธไธช่ช็ฑๅๅ
ใๅฝ็ปๅฎ่ถณๅค็ๅๅผๆถไปฅๅๅ็็ๆกไปถๆถ๏ผๅพฎๅๆน็จไพฟๆๅฏไธ่งฃใไปฅๅๆไปฌไผ็ ็ฉถๅจไฝ็งๆกไปถไธๅฎ็กฎๅฎๆ่งฃ/ๆๅฏไธ่งฃใ
+ ๅฎๆง้ฎ้ข
่ช็ถ็๏ผ่งฃๅพฎๅๆน็จๆฏ้ๅธธๅคๆ็๏ผ็ฎๅๆ็จ็ๅ็ญ่งฃๆณ้ๅธธๆ้๏ผไธๅพๅพๅช่ฝ่งฃไธไบ็นๆฎ็ๆน็จใๅคง้จๅๅพฎๅๆน็จ็ธๅ
ณ็็ ็ฉถ้ฝๆฏๅจ้ฟๅ
่งฃๅบๅ
ทไฝ็่งฃ็ๆ
ๅตไธ่ฟ่ก็๏ผไพๅฆ็ดๆฅ้่ฟๆน็จๆฌ่บซๅๆๅฎๆฏๅฆๆๅจๆ่งฃ๏ผๆ็่งฃ็ญ็ญ๏ผๆ่
้่ฟๆน็จๅคง่ดๆ่ฟฐ่งฃๅฏนๅบๆฒ็บฟ็ๅฝข็ถใ
็ฑปไผผ $f(x) + f'(x-1) = 0$ ็ๅพฎๅๆน็จๆๆถ็งฐไธบๆถๆปๅพฎๅๆน็จ๏ผๅฎไธๅธธๅพฎๅๆน็จ็็ ็ฉถๆนๆณๅคงไธ็ธๅใ
= ๅธธๅพฎๅๆน็จๅ็ญ่งฃๆณ
ๅฐฝ็ฎกๅฏไปฅ่ฏๆ๏ผ็ปๅคงๅคๆฐๅธธๅพฎๅๆน็จๆฒกๆๅ็ญ่งฃ๏ผๆดไธๅฏ่ฝ่ขซๅ็ญๆนๆณ่งฃๅบ๏ผไฝ่ฟไบ่งฃๆณไป็ถๅๅ้่ฆใ
== ๆฐๅฝๅฝขๅผไธ็งฏๅๅ ๅญ
#definition[ๅฏน็งฐๅฝขๅผ][
่ฅ $y$ ๆฏๅ
ณไบ $x$ ็ๅฝๆฐ๏ผๅไธ้ถๅธธๅพฎๅๆน็จๅๅฏๅ็ฎไธบ๏ผ
$
der(y, x) = f(x, y)
$
ๅฝขๅผไธไธ $f(x, y) dif x - dif y = 0$็ธๅฝใไธฅๆ ผๆฅ่ฏด่ฟไธๆฏๅพฎๅๆน็จ๏ผไฝๆฏๅฎไฝฟ็จ้ขไธบๆนไพฟ๏ผ่ไธๅฏไปฅๅๆๅฏน็งฐ็ๅฝขๅผ๏ผ
$
p(x, y) dif x + q(x, y) dif y = 0
$<proper>
ไป่็ปไธ็ ็ฉถไบ $x, y$ ไฝไธบ่ชๅ้็ๅฝขๅผ๏ผๅ ๆญคไนๅฐ@proper ็งฐไธบๅพฎๅๆน็จ็ๅฏน็งฐๅฝขๅผใ
]
#definition[ๆฐๅฝๅฝขๅผ][
่ฅๅญๅจไธไธชๅฏๅพฎๅฝๆฐ $u(x, y)$ ไฝฟๅพ๏ผ
$
dif u = p(x, y) dif x + q(x, y) dif y\
<=> cases(
partialDer(u, x) = p(x, y),
partialDer(u, y) = q(x, y)
)
$
ๅ็งฐ@proper ไธบๆฐๅฝๅฝขๅผใ
]
#theorem[][
่ฎพ๏ผ
$
d u(x, y) = p(x, y) dif x + q(x, y) dif y
$
ๅ $u(x, y) = C$ ไบง็็ๅฏๅพฎ้ๅฝๆฐไธบ@proper ็้่งฃ
]
#proof[
ๅช่ฏๆ $x$ ไฝไธบ่ชๅ้็ๆ
ๅฝขใ่ฎพ๏ผ
$
u(x, y(x)) = c
$
ๆฑๅฏผ็ซๅพ๏ผ
$
partialDer(u, x) + partialDer(u, y) der(y, x) = 0\
p(x, y) + q(x, y) der(y, x) = 0
$
่ฟๅฐฑ่กจๆ $y(x)$ ๆฏๅๆน็จ็่งฃ
]
่ฟๅฏ็คบๆไปฌ๏ผๅฝขๅผไธๆไปฌ็กฎๅฎๅฏไปฅๅฐ $der(y, x)$ ่งไฝๅๅผ่ฟ่กๅค็
#theorem[][
่ฎพ $p, q$ ๅจๅบๅ $D$ ไธ $C^1$ ไธ
$
p(x, y) dif x + q(x, y) dif y
$
ๆฐๅฝ๏ผๅ๏ผ
$
partialDer(p, y) = partialDer(q, x)
$
่ฅ $D$ ๆฏๅ่ฟ้ๅบๅ๏ผๅๅไนไนๆ็ซ
]
#proof[
- ่ฎพ $dif u = p(x, y) dif x + q(x, y) dif y$๏ผๅ๏ผ
$
partialDer(p, y) = partialDer(partialDer(u, x), y) = partialDer(partialDer(u, y), x) = partialDer(q, x)
$
๏ผๆณจๆๅฐ $u$ ๆฏ $C^2$ ็๏ผๅ ๆญคๅฏไปฅไบคๆขๅๅฏผๆฐ็ๆฌกๅบ๏ผ
- ๅไน่ฅไธๅผๆ็ซไธ $D$ ๅ่ฟ้๏ผ่ฟๅฐฑๆฏๆ ผๆๅ
ฌๅผ็็ดๆฅๆจ่ฎบ๏ผๅ๏ผไธ้่ทฏๆ ๅ
ณ็๏ผๆฒ็บฟ็งฏๅ๏ผ
$
u(x, y) = integral_(x_0, y_0)^(x, y) p(x, y) dif x + q(x, y) dif y
$
ๅฎนๆ้ช่ฏ $u$ ๆปก่ถณ่ฆๆฑ
]
#example[][
$
(3x^2 + 6 x y^2) dif x + (6 x^2 y + 4 y^3) dif y = 0
$
ๅฏไปฅ้ช่ฏ่ฟๆฏๆฐๅฝๅฝขๅผ๏ผไธ้ขๆไปฌๅ
ทไฝๆฑๅบ $u$
- ็ฑไบ $partialDer(u, x) = 3x^2 + 6 x y^2$๏ผๅฏๅพ๏ผ
$
u = integral (3x^2 + 6 x y^2) dif x = x^3 + 3 x^2 y^2 + C(y)
$
- ่ฟไธๆญฅ
$
partialDer(u, y) = 6 x^2 y + C'(y) = 6 x^2 y + 4 y^3 => C'(y) = 4 y^3 => C(y) = y^4 + C_1
$
- ๅ ๆญค $u = x^3 + 3 x^2 y^2 + y^4 + C_1$๏ผ่ฟๅฐฑๆฏ้่งฃ
]
#example[][
$
(x^2 + 2 x y - y^2) dif x + (x^2 - 2 x y - y^2) dif y = 0\
dif (1/3 x^3 - 1/3 y^3) + 2x y dif x + x^2 dif y - (y^2 dif x + 2 x y dif y) = 0\
dif (1/3 x^3 - 1/3 y^3) + dif (x^2 y) - dif (y^2 x) = 0\
dif (1/3 x^3 - 1/3 y^3 + x^2 y - y^2 x) = 0
$
]
ไธๆฆๅพฎๅๆน็จ็ๅฝขๅผๆฐๅฝ๏ผ่งฃๅบๅพฎๅๆน็จๆฏๅๅๅฎนๆ็ใ็ถ่ไบๅฎไธ๏ผไธไธชๅพฎๅๆน็จๅฏ่ฝๅฏนๅบไผๅค็ๅฏน็งฐๅฝขๅผใ่ฎพ $f(x, y) !=0$๏ผๅ๏ผ
$
p(x, y) dif x + q(x, y) dif y = 0 <=> p(x, y) f(x, y) dif x + q(x, y) f(x, y) dif y = 0
$
้ๅไธๅ็ $f(x, y)$ ๅฏ่ฝๆนๅๅฏน็งฐๅฝขๅผ็ๆฐๅฝๆง
#definition[][
่ฎพ้้ถๅฏๅพฎๅฝๆฐ $f(x, y)$ ๆปก่ถณ๏ผ
$
p(x, y) f(x, y) dif x + q(x, y) f(x, y) dif y = 0
$
ๆฏๆฐๅฝๅฝขๅผ๏ผๅ็งฐ $f(x, y)$ ไธบ@proper ็็งฏๅๅ ๅญ
]
#example[][
$
y dif x - x dif y = 0
$
ๅนถไธๆฏๆฐๅฝๅฝขๅผ๏ผไฝ๏ผ
$
mu = 1/x^2, 1/y^2, ...
$
้ฝๆฏๅ
ถ็งฏๅๅ ๅญ\
ไบๅฎไธ๏ผ
$
dif(y/x) = 1/x dif y - y/x^2 dif x = 1/x^2 (y dif x - x dif y) = 0
$
]
ๆไปฌๅฝ็ถๅธๆๅฏนไธ่ฌ็ๅฏน็งฐๅฝขๅผๆพๅฐๅ้็็งฏๅๅ ๅญ๏ผๅ
ทไฝ่่จ๏ผๆฏ่ฆๆฑ๏ผ
$
partialDer(p f, y) = partialDer(q f, x) <=>\
f (partialDer(p, y) - partialDer(q, x)) = q partialDer(f, x) - p partialDer(f, y)
$<int_factor>
่ฟๆฏไธไธชไธ้ถ็บฟๆงๅๅพฎๅๆน็จ๏ผไธๅนธ็ๆฏ่ฏฅ็ฑปๅๅพฎๅๆน็จ็้็จ่งฃๆณๅช่ฝๅฝ็ปไบๆฑ่งฃๅๆจ่ฟ็จ็ๅธธๅพฎๅๆน็จ๏ผๅ ๆญคไธ่ฌ็็งฏๅๅ ๅญๆฏๆฒกๆ้็จ็่งฃๆณ็ใๆๅนธ๏ผๅจไธไบ็นๆฎๆ
ๅฝขไธ๏ผๆไปฌๆฏๅฏไปฅๆฑๅพ็งฏๅๅ ๅญ็ใๆไปฌ็ดๆฅๅฏน $f$ ๆฝๅ ้ขๅคๆกไปถ๏ผ
- $f$ ไธ $y$ ๆ ๅ
ณ๏ผๅๆน็จๅไธบ๏ผ
$
f partialDer(p, y) = f partialDer(q, x) + q partialDer(f, x)
$<ori_res>
่ฟๆฏๅธธๅพฎๅๆน็จ๏ผ
$
partialDer(f, x) =f (partialDer(p, y) - partialDer(q, x)) / q
$
่งๅฏๅฏๅพ $(partialDer(p, y) - partialDer(q, x)) / q$ ๅบไธ $y$ ๆ ๅ
ณใๅๆถๆญคๆถๆไปฌๅช้่งฃ $f$๏ผ$y$ ๅฏไปฅ่งไฝๅฎๅผ๏ผๅ ๆญคไธ่ฟฐๆน็จๅฏไปฅๅ็ฎไธบ๏ผ
$
(dif f) / f = (partialDer(p, y) - partialDer(q, x)) / q dif x\
ln |f| = integral (partialDer(p, y) - partialDer(q, x)) / q dif x + C
$<res>
็ฑไบ $f$ ๆฏ้้ถ็๏ผๅ ๆญค $f$ ็็ฌฆๅทๆฏ็กฎๅฎ็๏ผ่ฟๅฐฑ่งฃๅบไบ $f$\
ไธ้พๅ็ฐๅช่ฆ $(partialDer(p, y) - partialDer(q, x)) / q$ ไธ $y$ ๆ ๅ
ณ๏ผ@res ไพฟๅฏ็ปๅบไธไธชไธ $y$ ๆ ๅ
ณ็ $f$ ๆปก่ถณ@ori_res๏ผ่ฟ่ไปฃๅ
ฅ@int_factor ๅบๅฝไนๆ็ซใ่ฟ่กจๆ $(partialDer(p, y) - partialDer(q, x)) / q$ ไธ $y$ ๆ ๅ
ณๆฏๅฏไปฅๆพๅฐๆญคๅฝขๅผ็็งฏๅๅ ๅญ็ๅ
่ฆๆกไปถใ
#theorem[ไธ้ถ็บฟๆงๅพฎๅๆน็จ][
ไธ้ถ็บฟๆงๅพฎๅๆน็จ๏ผ
$
y' = p(x) y + q(x)
$
็ๅฏน็งฐๅฝขๅผไธบ๏ผ
$
(p(x) y + q(x)) dif x - dif y = 0
$
่ฎก็ฎ:
$
(partialDer(p(x) y + q(x), y) - partialDer(1, x)) / (-1) = - p(x)
$
็งฏๅๅ ๅญ $f$ ๆปก่ถณ๏ผ
$
ln |f| = integral - p(x) dif x + C\
|f| = e^C e^(-integral p(x) dif x) = A e^(-integral p(x) dif x)
$
ๅ ๆญคๅ $f = e^(-integral p(x) dif x)$ ๅณๅฏ๏ผ่ฟ่ๅๆน็จๅฏ่งฃ
]
ไธๅนธ็ๆฏ๏ผ่ฟๆ ท่ฝๅคๆพๅฐ็็งฏๅๅ ๅญไป็ถ้ๅธธๆ้ใๅฎ่ทตไธๅฏปๆพ็งฏๅๅ ๅญๆดๅคๅช่ฝ้ ็ดๆฅ่งๅฏๅฝขๅผ
#example[][
ๅฏปๆพไธไธชๆฒ็บฟไฝฟๅพไปๅฎ็น $(c, 0)$ ๅฐๅบ็ๅ
็บฟ็ปๆฒ็บฟๅๅฐๅไธ $x$ ่ฝดๅนณ่ก๏ผ
- ้่ฟๅ ไฝๆนๆณๅฏไปฅๅๅบๆน็จ $y/x = (2y)/(1-y'^2)$
- ไธๅฆจ่ฎพ $y' > 0, y> 0$๏ผ่งฃๅพ๏ผ
$
y' = - x /y + sqrt(1 + (x/y)^2)\
y dif y = (sqrt(x^2 + y^2)-x)dif x\
x dif x + y dif y = sqrt(x^2 + y^2) dif x\
(x dif x + y dif y)/sqrt(x^2 + y^2) = dif x\
dif(sqrt(x^2 + y^2)) = dif x\
sqrt(x^2 + y^2) = x + C
$
- ๅนณๆนๅฏๅพๆน็จไธบ๏ผ
$
y^2 = 2 x C + C^2 = 2C(x+1/2C)
$
]
#theorem[][
ๅ่ฎพ $p, q, f, g in C^1$๏ผ$f, g$ ้ฝๆฏๅฏน็งฐๅฝขๅผ๏ผ
$
0 = p(x, y) dif x + q(x, y) dif y := w
$
็็งฏๅๅ ๅญ๏ผไธ $f/g$ ไธๆฏๅธธๆฐ๏ผๅ $f/g = C$ ๆฏๅๆน็จ็้่งฃ๏ผๅ
ถไธญ $C$ ไธบๅธธๆฐ
]
#proof[
่ฎพ๏ผ
$
f w = d u_1\
g w = d u_2
$
ไธๅฆจ่ฎพ $partialDer(u_2, y) !=0$๏ผๅ็ฑ้ๅฝๆฐๅฎไน๏ผ $u_2 = C$ ๅฏไปฅ่งฃๅบ $y = y(x)$๏ผๆญคๆถๆ๏ผ
$
0 = der(u_1(x, y(x)) w(x, y(x)), x)\
= w(x, y)der(u_1(x, y(x)), x) + u_1(x, y)der(w(x, y(x)), x)\
= w(x, y)
$
]
็่ฎบไธ่ฎฒ๏ผๆๆๅธธๅพฎๅๆน็จ็ๅ็ญ่งฃๆณ้ฝๅฏไปฅๅไธบๆฐๅฝๆน็จใไฝๆฏๅฎ่ทตไธๆไปฌๆดๅค้็จๅ
ทไฝ็ๆนๆณๆฑ่งฃใ
== ๅ็ฆปๅ้ๆณ
#theorem[ๅ็ฆปๅ้ๆณ][
่ฎพๅพฎๅๆน็จๅฝขๅฆ๏ผ
$
der(y, x) = f(x)g(y)
$
- ่ฅ $g(y) = 0$๏ผๅ $f(x) = C$ ๅฐฑๆฏๅๆน็จ็่งฃ
- ๅฆๅ๏ผๅไธบ๏ผ
$
1/g(y) der(y, x) = f(x)
$
่ฎพ $G(y) = integral 1/(g(y)) dif y$๏ผๅ:
$
G'(y) = 1/g(y) der(y, x) = f(x) => G(y) = integral f(x) dif x + C
$
]
#example[][
ๆฑ่งฃ $der(y, x) = y^2 cos x$:
- ้ฆๅ
$y = 0$ ๆฏๅฎ็ไธไธช่งฃ
- ๅ
ถๆฌก๏ผๅ่ฎพ $y$ ไธๆไธบ้ถ๏ผๅ๏ผ
$
1/(y^2) dif y = cos x dif x\
-1/y = sin x + C\
y = -1/(sin x + C)
$
]
#remark[][
่ฟ็งๅฝขๅผไธๆไปฌๅทฒ็ป้ป่ฎคไบ $y$ ๆฏๅ ๅ้่ $x$ ๆฏ่ชๅ้๏ผๅ ๆญคไธ่ฝ่ฎฉ $x$ ๆ็ญไบ $cos x$ ็้ถ็นใๅฆๆไธ่่ๅฝๆฐๅ
ณ็ณปๅช่่่งฃๆฒ็บฟ๏ผๅ่ฟไนๆฏไธไธช็นๆฎ็่งฃ
]
#example[][
$der(y, x) = y^(1/3)$:
- $y = 0$ ๅฝ็ถๆฏ่งฃ
- ๅฆๅ๏ผๆไปฌๅ
่ฏๆ่ฅ $y(x_0) = 0$๏ผๅๅฝ $x < x_0$ ๆถ $y = 0$๏ผ
- ๅฆๅ๏ผๅ่ฎพ $x_1 < x_0, f(x_1) !=0$๏ผไธๅฆจ่ฎพๅ
ถๅคงไบ้ถใๅ๏ผ
$
x_2 = inf(Inv(y)(0) sect [x_1, x_0])
$
ๆณจๆๅฐไธๅผๅณไพงๆฏ้ญ้๏ผๅ ๆญค $y(x_2) = 0 => der(y, x) |_(x = x_2)= 0$\
ๆญคๅค๏ผ$der(y, x)$ ๅจ $[x_1, x_2]$ ไน้ดๆๆญฃ๏ผ่ฟๆๅณ็ $y(x)$ ๅจ $[x_1, x_2]$ ไน้ดๅ่ฐ้ๅข๏ผ็็พ๏ผ
- ไนๅ๏ผๆไปฌๅ็ฆปๅ้
$
1/y^(1/3) dif y = dif x\
3/2 y^(2/3) = x + C\
y = plus.minus (2/3 x + C)^(3/2)
$
- ็ปผไธ๏ผๅๆน็จ็้่งฃไธบ๏ผ
$
y = cases((2/3 x + C)^(3/2) quad 2/3x + C >0,
0 quad 2/3x + C <= 0)
$
]
#example[][
ไธ้ขๆฏๅ ็งๅธธ่งๅฝขๅผ
+ $der(y, x) = f(x)y$
- $y = 0$ ๅฝ็ถๆฏ่งฃ
- ๅฆๅ๏ผ
$
1/y dif y = f(x) dif x\
ln |y| = integral f(x) dif x + C\
y = A e^(integral f(x) dif x)
$
ไบๅฎไธ๏ผๅฏไปฅ่ฏๆ่ฅ $y(x_0) = 0$๏ผๅ $y = 0$๏ผๅ ๆญคๅฏไปฅๅปๆ็ปๅฏนๅผ
+ $der(y, x) = g(y/x)$\
ไปค $y = x u$๏ผๆน็จๅไธบ๏ผ
$
der(y, x) = u + x der(u, x) = g(u)\
1/(g(u) - u) dif u = 1/x dif x\
integral 1/(g(u) - u) dif u = ln |x| + C\
$
+ $der(y, x) = (a_1 x + b_1 y + c_1)/(a_2 x + b_2 y + c_2)$\
- ่ฅ $c_1 = c_2 = 0$๏ผไธไธๅๆถ้คไปฅ $x$ ๅณๅไธบไธไธ็งๆ
ๅฝข
- ๅฆๅ๏ผ่ฏๅพๅ็บฟๆงๆฟๆข๏ผ
่ฎพ $A = mat(a_1, b_1;a_2, b_2), alpha = vec(c_1,c_2)$
$
vec(x, y) = B vec(x', y') + beta
$
ๆไปฌๅธๆ๏ผ
$
A vec(x, y) + alpha = A(B vec(x', y') + beta) + alpha = A B vec(x', y')
$
ไนๅฐฑๆฏ๏ผ
$
A beta + alpha = 0
$
่ฏฅ็บฟๆงๆน็จๆ่งฃๆถ๏ผไธๅฎๅฏไปฅ้่ฟ็บฟๆงๆฟๆขๅไธบไธไธ็งๆ
ๅฝข\
- ๅฆๅ $"rank"(A) = 1$๏ผไธๅฆจ่ฎพ $(a_2, b_2) = k (a_1, b_1)$๏ผไปค๏ผ
$
u = a_1 x + b_1 y
$
ๅๆน็จๅไธบ๏ผ
$
der(u, x) = a_1 + b_1 der(y, x) = a_1 + b_1 (u + c_1)/(k u + c_2)
$
่ฟๆถๅณไพงๅทฒๆ $x$๏ผ็ดๆฅๅ็ฆปๅ้็งฏๅๅณๅฏ
+ $y f(x y) dif x + x g(x y) dif y = 0$\
ไปค $x y = u$๏ผๆน็จๅไธบ๏ผ
$
u/x f(u) dif x + g(u)(dif u - u/x dif x) = 0\
$
่ฟไนๆฏๅ็ฆปๅ้็ๅฝขๅผ
]
#example[ๆ้้็บฟ][
ๆฑ $a -> b$ ็ไธๆกๆฒ็บฟ๏ผไฝฟๅพๅฐ็ไป $a$ ๆ ๆฉๆฆ็ๆปไธ็ๆถ้ดๆ็ญ\
ไธฅๆ ผๆฅ่ฏด่ฟไธช้ฎ้ข้่ฆ็จๅฐๅๅๆณ๏ผไธ่ฟๆๅผ้ซ็บง็่ฎบ๏ผๅฉ็จๅ
็บฟๆๅฐๅฎๅพ็็ธๅ
ณๆณๆณไนๅฏไปฅไธไธฅๆ ผ็ๆฑ่งฃใ\
ๅฏไปฅ่ฏๆ๏ผๅ
็บฟไป $a$ ็นๅฐ $b$ ็น็ป่ฟ่ฅๅนฒ็งไป่ดจๆถ๏ผๅ
ฅๅฐ่ง็ๆญฃๅผฆไธไป่ดจไธญไผ ๆญ็้ๅบฆๆฏๅฎๅผใๆไปฌไพๆฌกๆฅๅฏนๆฒ็บฟๅปบ็ซๅพฎๅๆน็จ๏ผ
- ๅจๆฒ็บฟไธไปปๆไธ็น $(x, y)$ ็้ๅบฆ่กจ็คบไธบ๏ผ
$
v = sqrt(2 g y)
$
๏ผ่ฝ้ๅฎๆ๏ผ
- โๅ
ฅๅฐ่งโไนๅณไธๅ็ดๆนๅๅคน่งๆปก่ถณ $sin alpha = sqrt(1+y'^2)$
ๅ ๆญคๅฏไปฅๅปบ็ซๆน็จ๏ผ
$
sqrt(2 g y)/ sqrt(1+y'^2) = C\
2 g y = C^2 (1+y'^2)\
1 + y'^2 = 2/C^2 g y\
y' = sqrt(2/C^2 g y - 1)\
1/sqrt(2/C^2 g y - 1) dif y = dif x\
integral 1/sqrt(2/C^2 g y - 1) dif y = x + C\
$
]
== ไธ้ถ็บฟๆงๅพฎๅๆน็จ
#theorem[ๅธธๆฐๅๆๆณ][
ๅฏนไบไธ้ถ็บฟๆงๅพฎๅๆน็จ๏ผ
$
der(y, x) + p(x) y = q(x)
$
ไธ่ฌๅ่ฎพ $p, q$ ้ฝ่ฟ็ปญไธ $p(x)$ ไธๆไธบ้ถ
ๆไปฌๅฏไปฅๅ
่งฃๅบ้ฝๆฌกๆน็จ๏ผ
$
der(y, x) + p(x) y = 0
$
ๅฎ็่งฃไธบ๏ผ
$
y = C e^(-integral p(x) dif x) := C v(x)
$
ๅๅ้ๆฟๆข๏ผ
$
y = u(x) v(x)
$
ไปฃๅ
ฅๅ็ฐ๏ผ
$
q(x) - p(x) u(x) v(x) = der(u(x) v(x), x) = v(x) der(u(x), x) + u(x) der(v(x), x)
$
ไฝๆฏๆณจๆๅฐ๏ผ
$
der(v(x), x) + p(x) v(x) = 0
$
ไธๅผๅ็ฎไธบ๏ผ
$
q(x) = v(x) der(u(x), x)\
$
ๅพ
่งฃ็ๅฝๆฐๆฏ $u(x)$๏ผ่ฟๆฏๅฏๅ็ฆปๅ้็
]
#example[่ดๅชๅฉๆน็จ][
ๅฝขๅฆ๏ผ
$
der(y, x) = p(x) y + q(x) y^n
$
็ๆน็จ็งฐไธบ่ดๅชๅฉๆน็จใ้คๅป $y = 0$ ็่งฃๅค๏ผๅฏไปฅๅๅ้ๆฟๆข๏ผ
$
t = y^(1-n)\
dif t = -(1-n) y^(-n) dif y\
dif y = -1/(1-n) y^(n) dif t\
$
ไธๅผๅ็ฎไธบ๏ผ
$
y^(-n)der(y, x) = p(x) y^(-n+1) + q(x)\
-1/(1-n) der(t, x) = p(x) t + q(x)\
$
่ฟๅฐฑๅไธบไบไธ้ถ็บฟๆงๅพฎๅๆน็จ
]
#example[][
ๅฏนไบๅฝขๅฆ๏ผ
$
der(y, x) = p(x)y^2+q(x)y+r(x)
$
็ๅพฎๅๆน็จ๏ผไธ่ฌๆฒกๆๅ็ญ่งฃๆณใไฝๆฏๅ่ฎพๆไปฌ็ๅบไบไธไธช่งฃ $y = f(x)$๏ผๅฏไปฅๅๅ้ๆฟๆข๏ผ
$
y = u + f(x)\
dif y = dif u + f'(x) dif x\
$
ไปฃๅ
ฅๅๆน็จๅ๏ผไป็ถๆฏ่ฏฅๆน็จ็ๅฝขๅผใ็ถ่ๆณจๆๅฐ $u = 0$ ไธๅฎๆฏไธไธช่งฃ๏ผๆๅไธๅฎไผๆถๆ้ถๆฌก้กนใไปฃๅ
ฅๅ็ฐ๏ผ
$
dif u + f'(x) dif x = (p(x)(u+f(x))^2+q(x)(u+f(x))+r(x))dif x\
dif u = (p(x)(u^2 + 2u f(x)) + q(x) u ) dif x\
der(u, x) = p(x)u^2 + (2 p(x) f(x) + q(x))u
$
่ฟๆฏ่ดๅชๅฉๆน็จ๏ผ่ฟ่ๅฏ่งฃ
]
#theorem[][
่ฎพ $a, b in RR, a != 0$๏ผๆน็จ๏ผ
$
der(y, x) = a y^2 + b x^m
$
ๅฝไธไป
ๅฝ $m = 0, - 2, - (4k)/(2k plus.minus 1)$ ๆถๅฏ็งฏๅๆฑ่งฃ
]
#proof[
ๆ ๅฆจๅ่ฎพ $a = 1$\
- $m = 0$ ๆถๆพ็ถๅฏ่งฃ
- $m = -2$ ๆถ๏ผๅๅ้ๆฟๆข๏ผ
$
z = x y\
dif z = x dif y + y dif x\
dif y = 1/x dif z - y/x dif x\
$
ไปฃๅ
ฅๅพ๏ผ
$
1/x dif z - y/x dif x = (y^2 + b x^(-2)) dif x\
x dif z - x y dif x = ((x y)^2 + b) dif x\
x dif z -z dif x = (z^2 + b) dif x
$
่ฟๆฏๅฏๅ็ฆปๅ้็
- $m = -(4k)/(2k plus.minus 1)$
ๅฟ
่ฆๆง็ฑๅ็ปดๅฐ็ปๅบ๏ผ้ขไธบๅคๆ
]
็นๅซ็๏ผ$der(y, x) = x^2 + y^2$ ๆฏไธๅฏ็งฏๅๆฑ่งฃ็๏ผ่ฟไน่ฏดๆไบๆฑ่งฃๅพฎๅๆน็จๆฏ้ๅธธไนๅฐ้พ็ใ
== ไธ้ถ้ๆน็จ
#definition[][
ๅฝขๅฆ๏ผ
$
F(x, y, y') = 0
$
็ๆน็จ็งฐไธบไธ้ถ้ๆน็จ
]
ไธ่ฌ่่จๅฎ็ๆฑ่งฃๅฝ็ถๆฏ้ๅธธๅฐ้พ็๏ผไฝๆฏๅฏนไบ็นๅฎ็ๅ ็ฑป๏ผๆไปฌๅฏไปฅๅฐ่ฏๆฑ่งฃ๏ผ
#theorem[][
ๅฏนไบไปฅไธๅ ็ฑป้ๆน็จๆไปฌ็ปๅบไธไบๆ่ทฏ๏ผ
- ๅฏไปฅๅไธบ๏ผ
$
y = f(x, y')
$<ori>
็ๆน็จใ\
ๆญคๆถไธค่พนๅฏน $x$ ๆฑๅฏผๅพ๏ผ
$
y' = partialDer(f(x, y'), x) = f'_1(x, y') + f'_2(x, y')y''
$
่ฟๆฏๅ
ณไบ $y', x$ ็ๆพๅผๅพฎๅๆน็จใ\
่ฅ่ฝ่งฃๅบ $y' = p(x)$๏ผไปฃๅ
ฅ@ori ๅฐฑๆฏๅๆน็จ็่งฃ\
่ฅๅช่ฝ่งฃๅบ $x = q(y')$๏ผไปฃๅ
ฅ@ori ๅฐฑๆฏๅๆน็จไปฅ $y'$ ไธบๅๆฐ็ๅๆฐ่กจ่พพ\
ๅฆๅ๏ผ่ฅๅช่ฝ่งฃๅบ $g(x, y') = 0$๏ผๆน็จ็่งฃๅช่ฝ่กจ่พพไธบ๏ผ
$
cases(
y = f(x, y'),
g(x, y') = 0
)
$
- ๅฏไปฅๅไธบ๏ผ
$
x = f(y, y')
$
ไธค่พนๅฏน $y$ ๆฑๅฏผๅพ๏ผ
$
1/y' = partialDer(f(y, y'), y) = f'_1(y, y') + f'_2(y, y')der(y', y) = f'_1(y, y') + f'_2(y, y') y''/y'
$
ๅ็ฑปไผผ่ฎจ่ฎบๅณๅฏ
- ๅฏไปฅๅไธบ $f(x, y') = 0$๏ผๅช้่ฆ่่ๅฎ็ๅๆฐๅฝขๅผ๏ผ
$
x = u(t)\
y' = v(t)
$
ๅ๏ผ
$
dif y = v(t) dif x = v(t) u'(t) dif t
$
ไธค่พน็งฏๅๅณๅพ $y$
- ๅฏไปฅๅไธบ $f(y, y') = 0$ ็ๅฝขๅผใ็ฑปไผผ็๏ผๅฆๆ่ฝๆพๅฐๅๆฐๆน็จ๏ผ
$
y = u(t)\
y' = v(t)
$
ๅ๏ผ
$
dif y = u'(t) dif t\
dif y = v(t) dif x\
v(t) dif x = u'(t) dif t\
dif x = (u'(t))/v(t) dif t
$
็งฏๅๅณๅฏ\
ๆณจๆ้่ฆ่กฅๅ
$v(t) = 0$ ็่งฃ
]
#example[][
$y'^3+2x y' - y = 0$
ไธค่พน็ดๆฅๅฏน $y$ ๆฑๅฏผๅพ๏ผ
$
3y'^2 y'' + 2y'+ 2x y'' - y' = 0\
(3y'^2 + 2x)y'' = -y'\
(3P^2 + 2x)P' = -P\
der(P, x) =- P/(3P^2+2x)\
2P der(P, x) = -(2P^2)/(3P^2+2x)\
der(P^2, x) = -(2P^2)/(3P^2+2x)\
$
่ฟๆฏๆน็จๅณไพงๅฏนไบ $P^2$ ๆฏ้ฝไธๆฌก็๏ผๆฏๆไปฌๅฏ่งฃ็ๆน็จ\
$
der(x, P^2) = -3/2 - x/P^2
$
ไปค $u = x/P^2, dif u = (P^2 dif x - x dif P^2)/P^4$
$
der(u, P^2) = 1/P^2 der(x, P^2) - u/P^2 = -1/P^2(3/2+u) -u/P^2\
(dif u)/(3/2 + 2u) = - 1/P^2 dif P^2\
ln |3/2 + 2u| = - ln 1/P^2 + C\
3/2 + 2u = C P^2\
$
]
#example[Clairaut][
$y = x y' + f(y')$\
ๆฑๅฏผๅพ:
$
y' = y' + x y'' + f'(y') y''\
x y'' + f'(y') y'' = 0\
$
่ฎจ่ฎบ๏ผ
- $y'' = 0$๏ผๆญคๆถๅๆน็จๆฏไธๆ็ด็บฟ $y = x c + f(c)$
- $x = - f'(y')$๏ผๆญคๆถไปฃๅๅพ $y = - y' f'(y') + f(y')$๏ผ่ฟๆฏไปฅ $y'$ ไธบๅๆฐ็็น่งฃ
ๅฝ $f'' != 0$ ๆถ๏ผ็ด็บฟๆๆฐๅฅฝๆฏ็น่งฃ็ๅ็บฟๆ๏ผ่ฟๆฏๅ ไธบๆญคๆถ $f'$ ๆๅๅฝๆฐ๏ผๅจ็น่งฃไธญๅฏไปฅ่งฃๅบ๏ผ
$
y' = u(x)\
y = x u(x) + f(u(x))
$
ๆญคๆถ๏ผ็ด็บฟ๏ผ
$
y = x u(x_0) + f(u(x_0))
$
ๆฐๅฅฝๅฐฑๆฏ็น่งฃไบ $(x_0, y_0)$ ็น็ๅ็บฟ๏ผๆพ็ถ็ด็บฟ่ฟ $(x_0, y_0)$ ไธๆ็ $u(x)$ ๅฝ็ถๅฐฑๆฏ่ฏฅ็นๅค็ๅฏผๆฐ๏ผ
ไบๅฎไธ๏ผๆไปฌๅนถๆฒกๆ่ฏดๆ่ฟไบๅฐฑๆฏๅๆน็จ็ๆๆ่งฃใๅ็ปญๆไปฌไผ่ฏๆๅจ $f'' != 0$ ็ๆ
ๅตไธ๏ผ็กฎๅฎ่ฟไบๅๆฌไบๅๆน็จ่งฃ็ๆๆๆ
ๅต๏ผไฝๅฏไปฅๆ้ ๅบๅ
ถไป็่งฃ๏ผไพๅฆๅฐๅ็บฟ-็น่งฃ-ๅ็บฟๆผๆฅ่ตทๆฅไนๆฏไธไธช่งฃ๏ผ
]
== ๅบ็จไธพไพ
่ณๆญค๏ผๆไปฌๅทฒ็ป็ปๅบไบๆๆไธ้ถๅพฎๅๆน็จ็ๅ็ญ่งฃๆณใๅฐฝ็ฎกๆนๆณๆ้๏ผไฝๆฏๅฎไปฌๅทฒ็ป่ฝๅค่งฃๅบไบ่ฎธๅค้่ฆ็ๆน็จ
#example[ไธคไธช็ฉ็ง็็ๆๆน็จ][
ไธๆๆ้ด๏ผ็ๆๅญฆๅฎถๅ็ฐ้็ไบบ็ฑปๆ้ฑผ้ไธ้๏ผไธค็ฑป้ฑผไธญไปฅๅ
ถไป้ฑผไธบ้ฃ็้ฑผ็ๆฏไพไธๅ๏ผ่ไปฅๆค็ฉไธบ้ฃ็้ฑผ็ๆฏไพไธ้ใไปไปฌๆๅบไบไธไธชๆจกๅ๏ผ\
่ฎพไปฅ้ฑผไธบ้ฃ็้ฑผ็ๆฐ้ไธบ $x = x(t)$, ไปฅๆค็ฉไธบ้ฃ็้ฑผ็ๆฐ้ไธบ $y = y(t)$๏ผไปค $r_x, r_y$ ๆฏไธค่
็ๅข้ฟ็ใๆพ็ถ $r_x$ ๅบ่ฏฅ้ $y$ ้ๅข๏ผ่ๅฝ $y$ ่พๅฐๆถๅบ่ฏฅๆ $r_x < 0$๏ผ่ฟ่่ฎพ๏ผ
$
r_x = sigma y - lambda
$
็ฑปไผผ็ๅๅ ๏ผ่ฎพ๏ผ
$
r_y = mu - delta x
$
๏ผไธ้ข็ๅธธๆฐๅบ่ฏฅ้ฝๆฏๆญฃๆฐ๏ผ\
่ฟ็ปๅบไบๅพฎๅๆน็จ็ป๏ผ
$
x'/x = sigma y - lambda\
y'/y = mu - delta x
$
ไธคๅผ็ธๆฏ๏ผ
$
y'/x' x/y = (mu - delta x)/(sigma y - lambda)
$
ๆณจๆๅฐ $y'/x' = der(y, x)$๏ผ่ฟๅฐฑๆถๆไบ $t$
$
y' (sigma y - lambda)/y = (mu - delta x)/x\
sigma y - lambda ln y = mu ln x - delta x + C\
sigma y + delta x - lambda ln y - mu ln x = C\
$
่ฝ็ถๆไปฌ้พไปฅ็ปง็ปญ่ฎก็ฎ๏ผไฝๆไปฌๅฏไปฅๅๅฎๆง็ ็ฉถ๏ผๅฏไปฅๅ็ฐๅฎ็่งฃ้ฝๆฏๅจๆ่งฃใ\
ๅๆถ๏ผๆไปฌ่ฟๅฏไปฅๆฑๅบๅนณๅๅผ๏ผ
$
(dif x)/x = (-lambda + sigma y) dif t\
integral_T (dif x)/x = integral_T (-lambda + sigma y) dif t\
integral_T (dif ln(x)) = integral_T (-lambda + sigma y) dif t\
0 = integral_T (-lambda + sigma y) dif t\
0 = -lambda T + sigma integral_T y dif t\
(lambda)/sigma = 1/T integral_T y dif t
$
่ฟๅฐฑๆฏ $y$ ๅจไธไธชๅจๆๅ
็ๅนณๅๅผ\
ๅฝๆๆ้ๅๅฐๆถ๏ผไธคไธช็ฉ็ง็ๅข้ฟ็้ฝๅขๅ ๏ผ็ธๅฝไบ $mu$ ๅขๅคง่ $lambda$ ๅๅฐ๏ผๅฏไปฅ็ๅฐ $x$ ็ๅนณๅๅผไผๅขๅ ๏ผ่ $y$ ็ๅนณๅๅผไผๅๅฐ
]
#example[$n$ ไฝ้ฎ้ข][
$n$ ไฝ้ฎ้ขๆฏๆไธๆๅผๅไธ $n$ ไธชๅคง่ดจ้่ดจ็น็ธไบไฝ็จ็้ฎ้ขใ่ฎพๆ $n$ ไธช่ดจ็น $p_i$๏ผๅๅซๆ๏ผ
- ๅๆ $P_i = (x_i, y_i, z_i)$
- ่ดจ้ $m_i$
- ็้กฟ็ฌฌไบๅฎๅพๅไธๆๅผๅๅฎๅพ๏ผ
$
m_i (dif^2 P_i)/(dif t^2) = sum_(j != i) G m_i m_j (P_j - P_i)/norm(P_j - P_i)^3
$
ไธๅฆจ่ฎพ $G = 1$๏ผๅ็ฎไธบ๏ผ
$
m_i (dif^2 P_i)/(dif t^2) = sum_(j != i) G m_i m_j (P_j - P_i)/(sqrt((x_i - x_j)^2 + (y_i - y_j)^2 + (z_i - z_j)^2)^3)
$
่ฎฐ $U = sum_(i != j)( m_i m_j )/norm(P_i -P_j)$๏ผๅ็ฎไธบ๏ผ
$
m_i (dif^2 P_i)/(dif t^2) = partialDer(U, P_i)
$
่ฎฐ $q_i = der(P_i, t)$๏ผ้ๅบฆ๏ผ๏ผๅ๏ผ
$
m_i der(q_i, t) = partialDer(U, P_i)
$
ไปค $p = autoVecN(p, n), q = autoVecN(q, n)$๏ผๅ๏ผ
$
dif /(dif t) vec(p, q) = vec(q, m partialDer(U, p))
$
ๅฏไปฅๅ็ฐ๏ผ
$
sum_i m_i der(q_i, t) = sum_i partialDer(U, q_i) = sum_i (sum_(j != i) m_i m_j (P_i - P_j)/norm(P_i - P_j)^3) = 0
$
่ฟๅฐฑๆฏๅจ่ฏด่ดจๅฟไธๅจ๏ผไนๅฐฑๆฏๅจ้ๅฎๆ๏ผ่ฟ่๏ผ
$
sum_i m_i q_i = C_1\
integral sum_i m_i q_i dif t = C_1 t + C_2\
sum_i m_i p_i = C_1 t + C_2
$
่ดจๅฟไปฅๅ้็ด็บฟ่ฟๅจ
็ฑปไผผ็๏ผๅฏไปฅ้ช่ฏ่งๅจ้ๅฎๆ๏ผ่ฝ้ๅฎๆ\
็ถ่ๅฏไปฅ่ฏๆ๏ผ้คไบ่ฟไบไปฅๅคไธๅๆไธไน็ฌ็ซ็ไปฃๆฐ็้ฆๆฌก็งฏๅ๏ผๅ ๆญคไปฃๆฐ็้ฆๆฌก็งฏๅๅฐฑๆฏ่ฟไบ
ๆฅไธๆฅๆไปฌ่งฃไบไฝ้ฎ้ข๏ผ็ฑไนๅๆๅฐ็ๅฎๆ้ๅฏ่ฎพ่ดจๅฟๆๅฎๅจๅ็น๏ผ่ฟๅจ้ฝๅจๅนณ้ขไธ๏ผๅฏไปฅๅ็ฎๅฐ๏ผ
$
cases(
(dif^2 x)/(dif t^2) = -m x/(x^2 + y^2)^(3/2),
(dif^2 y)/(dif t^2) = -m y/(x^2 + y^2)^(3/2)
)
$
ๅ
ถไธญ๏ผ1 ๅฏนๅบ $ m = (m_2^3)/(m_1 + m_2)^2 $
2 ๅฏนๅบ $ m = (m_1^3)/(m_1 + m_2)^2 $
่งๅจ้ๅฎๆ็ปๅบ๏ผ
$
x der(y, t) - y der(x, t) = c_1\
$
่ฝ้ๅฎๆ็ปๅบ๏ผ
$
(der(x, t))^2 + (der(y, t))^2 - (2m)/(sqrt(x^2 + y^2)) = c_2
$
ๅๆๅๆ ๆขๅ
๏ผ
$
x = r cos theta\
y = r sin theta
$
ไปฃๅ
ฅ่งๅจ้ๅฎๆๅ็ฎๅพ๏ผ
$
c_1 = r^2 der(theta, t)\
c_1 (t_2 - t_1) = integral_(t_1)^(t_2) r^2 dif theta\
$
ไธๅผๅณไพงๆฏๆซ่ฟ็ๆๅฝข้ข็งฏ๏ผ่ฟๅฎ้
ไธๅฐฑๆฏๅผๆฎๅ็ฌฌไบๅฎๅพ\
ไปฃๅ
ฅ่ฝ้ๅฎๆๅ็ฎๅพ๏ผ
$
(der(r, t))^2 = c_1 + 2 m Inv(r) - c_1^2 r^(-2) \
der(r, t) = sqrt(c_2 + m^2/c_1^2 - (c_1/r - m/c_1)^2)\
der(theta, t) = c_1/r^2\
der(r, theta) = r^2/c_1 sqrt(c_2 + m^2/c_1^2 - sqrt(c_1/r - m/c_1)^2)
$
่ฟๆฏๅฏๅ็ฆปๅ้็๏ผๆ็ปๅฏไปฅๅ็ฎๅพๅฐ๏ผ
$
r = p/(1 + e cos (theta - theta_0))
$
ๅ
ถไธญ $e = c_1/m sqrt(c_2 + m^2/c_1^2), p = c_1^2/m$\
่ฟไธๅฎๆฏไธๆกๅ้ฅๆฒ็บฟ๏ผ่ฟๅฐฑๆฏๅผๆฎๅ็ฌฌไธๅฎๅพ\
ๅๆฌกๅธฆๅ๏ผ
$
(p/(1 + e cos (theta - theta_0)))^2 dif theta = c_1 dif t\
c_1 T = integral_(0)^(2pi) p^2/(1 + e cos (theta - theta_0))^2 dif theta\
= (2p^2 pi)/sqrt((1 - e^2)^3)
$
่ฎก็ฎๅฏๅพ๏ผ
$
T^2/(p^3 /(1-e^2)^3) = (4 pi^2)/m
$
ๅฝ $m_1$ ๅพๅคงๆถ๏ผ$m$ ๅ ไนๅฐฑๆฏ $m_2$๏ผ่ฟไนๅฐฑๆฏๅคช้ณ็ณปไธญ็ๅผๆฎๅ็ฌฌไธๅฎๅพ
ไบไฝ้ฎ้ข่ฟๆ่ๅ็ๅ้ฎ้ข๏ผๅ่ฎพไปปไฝๆ็ๅด็ปๅคช้ณ็ๆ็่ฝจ้้ฝๆฏๆคญๅ๏ผไธไธๆๅผๅๅฝขๅฆ๏ผ
$
f = m_1 m_2 f(norm(p_1 - p_2))(p_1 - p_2)
$
้ฃไนๆฐๅญฆไธๅฏไปฅ่ฏๆไธๆๅผๅๅช่ฝๆฏๆญฃๆฏไบ่ท็ฆปๆ่
ๅๆฏไบ่ท็ฆป็ๅนณๆน๏ผๅ่
ไผๅฏผ่ดๅคช้ณไฝไบ่ฝจ้ไธญๅฟ๏ผๅ่
ๅคช้ณๅฐไฝไบ็ฆ็น
]
== ไบ้ถ่ชๆดฝๅพฎๅๆน็จ
#theorem[ไบ้ถ่ชๆดฝๅพฎๅๆน็จ็่งฃๆณ][
็งฐๅฝขๅฆ
$
(dif^2 x)/(dif t^2) + f(x) = 0
$
ไธบไบ้ถ่ชๆดฝๆน็จ๏ผๅผ่ฟ $F(x)$ ไฝฟๅพ $F'(x) = f(x)$๏ผไปค $y = x', H(x, y) = y^2/2 + F(x)$๏ผๆ๏ผ
$
der(H, t) = y der(y, t) + F'(x) der(x, t) = y (dif^2 x)/(dif t^2) + f(x) der(x, t) = 0
$
ๆข่จไน๏ผๅๆฐๆน็จ $(x(t), y(t))$ ่กจ็คบ็ๅฝๆฐๅฐฑๆฏ $H$ ็็ญ้ซ็บฟ๏ผๅฏไปฅ่งฃๅพ๏ผ
$
y = plus.minus sqrt(2(C - F(x)))\
(dif x)/(dif t) = plus.minus sqrt(2(C - F(x)))\
plus.minus 1/(sqrt(2(C - F(x)))) dif x = dif t
$
ไธค่พน็ดๆฅ็งฏๅๅๅพๅๆน็จ็่งฃ
]
#example[ๅผน็ฐง][
ๅผน็ฐงๆน็จ $(dif^2 x)/(dif t^2) + a x = 0, a > 0$ ๅฐฑๆฏไธ้ข็ๅฝขๅผ๏ผๅ ๆญคๅฏไปฅ่งฃๅพ๏ผ
$
t + C' = plus.minus integral 1/sqrt(2(C - 1/2 a x^2)) dif x
$
่ฎก็ฎๅ็ฎๅพๅฐ
$
x = C_1 cos a t + C_2 sin a t\
y = - a C_1 sin a t + a C_2 cos a t
$
ๅฎนๆๅ็ฐๆๆ่งฃ้ฝไปฅ $(2 pi)/a$ ไธบๅจๆ๏ผไธ $(0, 0)$ ไธบๆๆ่ฝจ้็ไธญๅฟใ็ฑไบๆๆ่ฝจ้้ฝๆฏ็ธๅๅจๆ็๏ผๅ ๆญคไน็งฐไธบ็ญๆถไธญๅฟใ็บฟๆง็ณป็ปไธญไธๅฎๆฏ็ญๆถ็
]
#example[ๅๆๆน็จ][
ๅๆๆน็จ $(dif^2 x)/(dif t^2) + a sin x = 0, a > 0$ ไนๆฏไธ้ข็ๅฝขๅผ๏ผๅ ๆญคๅฏไปฅ่งฃๅพ๏ผ
$
dif t = 1/sqrt(2(C - a cos x)) dif x
$
่ฟๆฏๆคญๅ็งฏๅ๏ผๆไปฌๆ ๆณๅๅบๅฎ็ๅ็ญๅฝขๅผ\
่ฝฌ่่่๏ผ
$
H(x, y) = y^2/2 - a cos x + a
$
็็ญ้ซ็บฟใๆณจๆๅฐ $H$ ๅ
ณไบ $x$ ไปฅ $2 pi$ ไธบๅจๆ๏ผๅฏไปฅๆๅฎๆณ่ฑกๆๅฎไนๅจๅๆฑ้ขไธ็ๅฝๆฐใๅฎนๆๅ็ฐ่ฟ้ $(0, 0)$ ไนๆฏไธญๅฟ๏ผไฝไธๆฏ็ญๆถไธญๅฟ๏ผไบๅฎไธ๏ผๅจ็ญ้ซ็บฟ๏ผ
$
y^2 - a cos x = C
$
ไธ๏ผๆ๏ผ
$
1/4 T = integral_0^(pi/2) der(t, x) dif x = integral_0^(pi/2) 1/sqrt(2(C - a cos x)) dif x
$
ๆพ็ถไธๅฏ่ฝไธ $C$ ๆ ๅ
ณ
]
#theorem[][
่ฎพไบ้ถ่ชๆดฝๅพฎๅๆน็จๆปก่ถณ $f(x)$ ่ฟ็ปญไธ $x f(x) > 0$๏ผๅผ่ฟ $F(x)$ ๅนถไธๅฆจ่ฎพ $F(0) = 0$๏ผๅๅฏน๏ผ
$
H(x, y) = y^2/2 + F(x)
$
+ $H(0, 0)$ ๆฏ $H$ ็ๆๅฐๅผ็น
+ ๅจ $(0, 0)$ ้่ฟ๏ผ$H(x, y) = C$ ็ปๅบไธไธช้ญๅๆฒ็บฟ
+ $H = h$ ไบค $x$ ่ฝดไบ $x_1(h), x_2(h)$ ไธค็น๏ผ$x_1 < x_2$
+ ๅ็นๆฏ็ญๆถไธญๅฟๅฝไธไป
ๅฝ $(x_2(h) - x_1(h))/sqrt(h)$ ๆฏไธ $h$ ๆ ๅ
ณ็ๅธธๆฐ
]
#proof[
+ ็ฑ้ข่ฎพๅฐๆ $F(x) >= 0$ ๅ ๆญคๆพ็ถ
+ ็ดๆฅ่งฃๅบ $y$ ๅณๅฏ
+ ็ฑ $F(x)$ ็ๅ่ฐๆงๅ $F(0) = 0$ ๆพ็ถ
+ ่ฟไธช่ฏๆๅนถไธ็จๅฐ้ซ็บง็็ฅ่ฏ๏ผไฝๆๅ
ทๆๅทงๆง\
ไปค $s = F(x)$๏ผๅ $f(x) dif x = dif s$๏ผๆ๏ผ
$
1/2 T_h = integral_(x_1)^(x_2) der(t, x) dif x = integral_(x_1)^(x_2) 1/sqrt(2(h - F(x))) dif x\
= integral_0^(h) 1/sqrt(2(h - s)) 1/(f_+(x)) dif s - integral_0^(h) 1/sqrt(2(h - s)) 1/(f_-(x)) dif s\
1/2 integral_0^H T_h/sqrt(H-h) dif h = integral_0^H ( integral_0^(h) 1/sqrt(2(H - h)(h - s)) 1/(f_+(x)) dif s)dif h - integral_0^H ( integral_0^(h) 1/sqrt(2(H - h) (h - s)) 1/(f_-(x)) dif s)dif h\
= integral_0^H ( integral_s^H 1/sqrt(2(H - h)(h - s)) 1/(f_+(x)) - 1/sqrt(2(H - h) (h - s)) 1/(f_-(x)) dif h)dif s\
= pi/(sqrt(2)) (integral_0^H 1/(f_+(x)) - 1/(f_-(x)) )dif s\
= pi/(sqrt(2)) (integral_0^H 1/(f_+(x)) - 1/(f_-(x)) )dif F(x)\
= pi/(sqrt(2)) (integral_0^H f(x)/(f_+(x)) - f(x)/(f_-(x)) )dif x\
= pi/(sqrt(2)) (x_2(H) - x_1(H))\
$
- ๅ่ฎพๅจๆไธ $H$ ๆ ๅ
ณ๏ผๅๆ๏ผ
$
T_0 sqrt(H) = pi/sqrt(2) (x_2(H) - x_1(H))\
T_0 = pi/sqrt(2) (x_2(H) - x_1(H))/sqrt(H)
$
่กจๆไธๅผๅณไพงไธ $H$ ๆ ๅ
ณ๏ผ่ฟไน็ปๅบไบๅจๆ็่ฎก็ฎๅ
ฌๅผ
]
#corollary[][
่ฅๅ็นๆฏ็ญๆถไธญๅฟไธ $f(x)$ ๆฏๅฅๅฝๆฐ๏ผๅ $f(x)$ ไธๅฎ็บฟๆง
]
= ๅพฎๅๆน็จ็่งฃ็่ฎบ
== Peano ๅฎ็
#theorem[Peano][
่ฎพ๏ผ
$
f(x, y) in C(DD), DD = {abs(x - x_0) <= a, abs(y -y_0) <= b}
$
ๆน็จ๏ผ
$
cases(
der(y, x) = f(x, y),
y(x_0) = y_0
)
$
ๅจ $[x_0 - h, x_0 + h]$ ไธๆ่งฃ๏ผๅ
ถไธญ๏ผ
$
h = min{a, b/(max_DD abs(f))}
$
่ฅ $y, f$ ๆฏๅ้ๅผๅฝๆฐ๏ผ็ป่ฎบไนๆฏ็ฑปไผผ็
]<peano>
ๆฌ่็็ฎๆ ๅฐฑๆฏ่ฏๆๅฎใ\
#lemma[][
ๆ็ๅบ้ดไธ็ญๅบฆ่ฟ็ปญ็ไธ่ดๆ็็ๅฝๆฐๅๆไธ่ดๆถๆ็ๅญๅ
]
#proof[
#lemmaLinear[][
่ฎพ $f_n: I -> RR$ ๅฏนไบๆฏไธช $x in I, f_n (x)$ ้ฝๆ็ $M_x$๏ผ$I$ ๆฏๆ้ๅบ้ด๏ผๅไปปๅ $I$ ็ไธไธชๅฏๆฐๅญ้ $E$๏ผๅญๅจ $f_n$ ็ๅญๅไฝฟๅพ่ฟไธชๅญๅๅจ $E$ ไธๆถๆ
]
#proof[
่ฎพ $E = {x_1, x_2, ..., x_n}$๏ผๆณจๆๅฐ $f_n (x_1)$ ๆฏๆ็ๅบๅ๏ผๆๆถๆๅญๅ $f_(n_1) (x_1)$\
ๅ่่ $f_(n_1) (x_2)$ ๏ผๅฎๅฝ็ถไนๆๆถๆๅญๅ๏ผ่ฎฐไธบ $f_(n_2) (x_2)$\
ไธๆญ่ฟ่กไธๅป๏ผๆไปฌๅพๅฐไบ่ฅๅนฒๅญๅ $f_(n_k) (x_k)$ใ\
็จๅฏน่ง็บฟๆณ๏ผๅ็ฐ๏ผ
$
f_(n_n) (x_n), n = 1, 2, 3, ...
$
ๅจๆฏไธช $x_k$ ไธ้ฝๆถๆ๏ผ่ฏๆฏ
]
#lemmaLinear[][
่ฎพ $I$ ๆฏๆ้ๅบ้ด๏ผ$f_n : I -> RR$ ็ญๅบฆ่ฟ็ปญ๏ผไธๅจ $I$ ็็จ ๅฏๅญ้ไธๆถๆ๏ผ้ฃไนๅฎๅจ $I$ ไธไธ่ดๆถๆ
]
#proof[
ๅฉ็จๆฏ่ฅฟๆถๆๅ็๏ผไปปๅ $epsilon > 0$๏ผๅญๅจ $delta >0$๏ผไฝฟๅพ๏ผ
$
forall n in NN, forall x_1, x_2, abs(x_1 - x_2) < delta => abs(f_n (x_1) - f_n (x_2)) < epsilon
$
ๅฏนไบ่ฟไธช $delta$๏ผๆไปฌๅฏไปฅๅๅบ $E$ ไธญๆ้ไธช็น $E'$ ไฝฟๅพ๏ผ
$
union_(x in E') B(x, delta) = I
$
็ฑไบ่ฟ้ๅชๆๆ้ไธช $x$๏ผๅฝ็ถ $f_n|_E'$ ๅฐไธ่ดๆถๆ๏ผๅ ๆญคๅฏ่ฎพๅญๅจ $N$ ไฝฟๅพ๏ผ
$
forall m, n > N, forall x in E', abs(f_m (x) - f_n (x)) < epsilon
$
ๅ ๆญค๏ผๆ๏ผ
$
forall m, n > N, forall x in I, exists x' in E'\
abs(x - x') < delta &=> abs(f_m (x) - f_n (x)) \
&< abs(f_m (x) - f_m (x')) + abs(f_m (x') - f_n (x')) + abs(f_n (x') - f_n (x)) < 3 epsilon
$
]
ๅจๅผ็ไธญๅ $E = QQ sect I$๏ผๅฎๆฏ $I$ ็็จ ๅฏๅญ้๏ผๅ ๆญค็ป่ฎบๆ็ซ
]
ๅๅฐ @peano ็่ฏๆ๏ผ่ฟไธชๆนๆณๆฏๆ่ฐ็ๆฌงๆๆ็บฟๆณ
#proof[
ๅพฎๅๆน็จๅฏไปฅ่ฝฌๅไธบ็งฏๅๆน็จ:
$
y(x) = y_0 + integral_(x_0)^(x) f(t, y(t)) dif t
$
ๅช้่ฏๆๅฎๅจ $[x_0, x_0 + h]$ ไธๆ่งฃ๏ผๅฆไธไพง็ฑปไผผใ\
ๅฐๅ
ถ $n$ ็ญๅ๏ผ่ฎพๅ็นไธบ $x_0, x_1, ..., x_n$๏ผๆ็
งไปฅไธๅฎไนๅๆฎต็บฟๆงๅฝๆฐ๏ผ
$
(x_(i-1), y_(i-1)) ๅฐ (x_i, y_i) "็ๆ็็ฑ" f(x_(i-1), y_(i-1)) "็ปๅบ"
$
้่ฆ้ช่ฏ่ฟไบ็น่ฝๅจ $DD$ ไธญ๏ผๆพๆ๏ผ
$
y_k - y_(k-1) = f(x_(k-1), y_(k-1)) (x_k - x_(k-1))
$
ไธค่พนๆฑๅ๏ผ
$
y_k - y_0 &= sum_(i = 1)^(k) f(x_(i-1), y_(i-1)) (x_i - x_(i-1))\
abs(y_k -y_0) &<= sum_(i = 1)^(k) abs(f(x_(i-1), y_(i-1)) (x_i - x_(i-1))) \
&<= max_DD abs(f) sum_(i = 1)^(k) (x_i - x_(i-1)) <= max_DD abs(f) abs(x_k - x_0) \
&<= h max_DD abs(f) <= b
$
่ฟไนไฝ็ฐไบ $h$ ไธบไฝๅฆๆญคๅฎไน\
่ฎพๅพๅฐ็ๅฝๆฐไธบ $g_n (x)$๏ผ้ช่ฏๅฎไปฌ๏ผ
- ไธ่ดๆ็๏ผๆพ็ถ
- ็ญๅบฆ่ฟ็ปญ๏ผๆณจๆๅฐๆๆ $g_n (x)$ ๅๆปก่ถณ๏ผ
$
abs(g_n (x) - g_n (y)) <= max_DD abs(f) abs(x - y)
$
ๅ ๆญคไนๆ็ซ
็ฑๅผ็๏ผๅฎๆไธ่ดๆถๆๅญๅใไธๅฆจ่ฎพๅ
ถๆถๆ๏ผๅช้่ฏๆๆ้ๅฝๆฐ $g(x)$ ๆปก่ถณ็งฏๅๆน็จ\
ไบๅฎไธ๏ผๆณจๆๅฐ $f$ ๆฏๆ็้ญ้ไธ็่ฟ็ปญๅฝๆฐ๏ผ่ฟ่ไธ่ด่ฟ็ปญ๏ผไป่ $f(t, g_n (x))$ ไนไธ่ดๆถๆ๏ผ๏ผ
$
g(x) - integral_(x_0)^x f(t, g(t)) dif t = lim_(n->+infinity) g_n (x) - integral_(x_0)^x f(t, g_n (t)) dif t
$
ๆ๏ผ
$
g_n (x_0 + k/(n h)) &= sum_(i = 1)^(k) f(x_i, y_i) (x_i - x_(i-1))\
integral_(x_0)^(x_0 + k/(n h)) f(t, g_n (t)) dif t = sum_(i = 1)^(k) integral_(x_(i-1))^(x_i) f(t, g_n (t)) dif t &= sum_(i = 1)^(k) f(xi_i, g_n (xi_i)) (x_i - x_(i-1))\
g_n (x_0 + k/(n h)) - integral_(x_0)^(x_0 + k/(n h)) f(t, g_n (t)) dif t &= sum_(i = 1)^(k) (f(x_i, y_i) - f(xi_i, g_n (xi_i))) (x_i - x_(i-1))\
&=sum_(i = 1)^(k) (f(x_i, g_n (x_i)) - f(xi_i, g_n (xi_i))) (x_i - x_(i-1))
$
ไปปๆ $epsilon > 0$ ๏ผไปค $delta, delta'$ ๆปก่ถณ๏ผ
- $abs(x-x') < delta, abs(y-y') < delta => abs(f(x, y) - f(x', y')) < epsilon$
- $abs(x-x') < delta' => abs(g_n (x) - g_n (x')) < min(delta, epsilon), forall x, forall n$
ๅ $N$ ๅ
ๅๅคงไฝฟๅพ $forall n > N$๏ผ
- $1/(n h) < delta' => abs(g_n (x) - g_n (x_0 + k/(n h))) < epsilon, g_n (x_i) - g_n (xi_i) < delta$
- $1/(n h) < delta => abs(x_i - xi_i) < delta$
- $1/(n h) $
]
#lemma[Gronwall][
่ฎพ $f, g in C[a, b], g(x) >= 0$๏ผๅๆ๏ผ
$
f(x) <= C + integral_a^x f(t) g(t) dif t => f(x) <= C e^(integral_a^x g(t) dif t)
$
]
#proof[
ไปค $Phi(x) = integral_a^x f(t) g(t) dif t$๏ผๅๆ๏ผ
$
Phi' <= (C + Phi)g(x)
$
่ฎพ $h = e^(integral_a^x g(s) dif s), Phi = u h$๏ผๆ๏ผ
$
u' h + u h' <= (C + u h)g\
u' h <= C g\
u' <= C g/h\
u(x) - u(a) <= C integral_a^x g(s)/h(s) dif s\
(Phi(a) = 0 => u(a) = 0)\
u(x) <= C integral_a^x g(s)/h(s) dif s = C integral_a^x g(s) e^(-integral_a^x g(s) dif s) dif s = C (1 - 1/h(x))\
$
ไป่๏ผ
$
f(x) <= C + Phi(x) = C + u h <= C h
$
่ฏๆฏ
]
#corollary[][
่ฅๅจ Gronwall ไธ็ญๅผไธญ๏ผๆ $C <= 0, f(x) >= 0$๏ผๅ $f(x) = 0$
]
#theorem[][
ๅจ@peano ไธญ๏ผ่ฅ $f$ ๆฏ Lipschitz ่ฟ็ปญ็๏ผๅ่งฃๆฏๅฏไธ็ใๆด่ฟไธๆญฅ๏ผๆ้ ๅบ็ๆ็บฟๅ $g_n (x)$ ๆฌ่บซๅณไธ่ดๆถๆ
]
#proof[
ๅ่ฎพ $y = phi(x), y= psi(x)$ ๆฏไธคไธช่งฃ๏ผๅ๏ผ
$
abs(phi(x) - psi(x)) = abs(integral_(x_0)^x f(t, phi(t)) dif t - integral_(x_0)^x f(t, psi(t)) dif t) <= L abs(integral_(x_0)^x abs(phi(t) - psi(t)) dif t)
$
- ๅฝ $x > x_0$ ๆถ๏ผไธๅผๅณไธบ๏ผ
$
abs(phi(x) - psi(x)) <= L integral_(x_0)^x abs(phi(t) - psi(t)) dif t
$
็ดๆฅๅฉ็จ Gronwall ไธ็ญๅผๅฏๅพ $abs(phi(x) - psi(x)) <= 0 => abs(phi(x) - psi(x)) = 0$
- ๅฝ $x < x_0$ ๆถ๏ผ็ฑปไผผๅฏไปฅ่ฏๆ็ป่ฎบๆ็ซ
็ปผไธ๏ผ$phi(x) = psi(x)$
]
ไบๅฎไธ๏ผๅจไธ็ปด็ๆ
ๅฝขไธ๏ผๆไปฌๅฏไปฅๆพๅฐๆดๅผฑ็ๆกไปถ
#theorem[][
่ฎพ $f$ ๆปก่ถณ Osgoad ๆกไปถ๏ผไนๅณ๏ผ
$
exists F: [0, +infinity] -> [0, +infinity)\
integral_(0)^(t) 1/F(r) dif r = +infinity\
abs(f(x, y) - f(x, z)) <= F(abs(y - z))
$
ๅไธ่ฟฐๆน็จ็่งฃๅญๅจไธๅฏไธ
]
#proof[
่ฎพ $y_1, y_2$ ๆฏไธคไธชไธๅ็่งฃ๏ผไปค $r(x) = y_1 (x) - y_2(x)$\
ๆณจๆๅฐ $r(x_0) = 0$๏ผ่ฅ $r$ ไธๆไธบ้ถ๏ผไธๅฆจ่ฎพ $x_1$ ๆฏ้ถ็นไธ $r(x) > 0 ,forall x in (x_1, x_2]$\
ๆญคๆถ๏ผ
$
der(r, x) = y'_1 - y'_2 = f(x, y_1) - f(x, y_2) <= F(abs(y_1 - y_2)) = F(r(x))\
=> r'/F(r(x)) <= 1\
=> integral_(s)^(t) r'/F(r(x)) dif x <= t -s\
=> integral_(r(s))^(r(t)) 1/F(r) dif r <= t - s
$
ไปค $s -> x_1$๏ผไธๅผๅทฆไพง่ถไบๆ ็ฉท๏ผ่ๅณไพงๆ้๏ผ็็พ๏ผ
]
#theorem[][
่ฎพ $f(x, y)$ ๆปก่ถณ $f(x, y)$ ๅ
ณไบ $y$ ๅ่ฐไธ้๏ผๅ่งฃไนๅญๅจๅนถๅฏไธ
]
#proof[
่ฎพ $y_1, y_2$ ๆฏไธคไธชไธๅ็่งฃ๏ผไปค $r(x) = y_1 (x) - y_2(x)$\
ๆณจๆๅฐ $r(x_0) = 0$๏ผ่ฅ $r$ ไธๆไธบ้ถ๏ผไธๅฆจ่ฎพ $x_1$ ๆฏ้ถ็นไธ $r(x) > 0 ,forall x in (x_1, x_2]$\
ๆญคๆถ๏ผ
$
der(r, x) = y'_1 - y'_2 = f(x, y_1) - f(x, y_2) <= 0
$
่ $r(x_1) = 0$๏ผไธๅผ่กจๆ $r$ ๅ่ฐไธ้๏ผ่ฟ่ $r(x) <= 0$๏ผๅ ๆญคๅช่ฝ $= 0$๏ผ็็พ๏ผ
]
ๆฌ่ๅฉ็จ็ๆฌงๆๆ็บฟไธไป
ๅจ็่ฎบไธๅพ้่ฆ๏ผๅจๆฐๅผ่ฎก็ฎไธไนๅนฟๆณ็จไบๆฐๅผๆฑ่งฃๅพฎๅๆน็จ๏ผ็่ฎบไพๆฎๅฐฑๆฏๆฌ่็ๅฎ็
== Picard ๅฎ็
Picard ๅฎ็่กจ้ขไธๅ Peano ๅฎ็็็ป่ฎบ็ฑปไผผไฝๆกไปถๆดๅผบ๏ผไฝๆฏๅฎ็ๆนๆณ้ๅธธ้่ฆ๏ผๅ ๆญคไปๆๅฟ
่ฆไธ้จๅญฆไน
#theorem[Picard][
ๅจ @peano ไธญ๏ผๅ่กฅๅ
$f$ Lipschitz ่ฟ็ปญ๏ผๅๆน็จ็่งฃๅญๅจ
]
#proof[
ไป็ถ่ฝฌๅไธบ็งฏๅๆน็จ:
$
y(x) = y_0 + integral_(x_0)^(x) f(t, y(t)) dif t
$
ๆปไฝๆๆณๆฏๆ่ฐ็ไธๅจ็นๆณ๏ผ้ๅฝๅฎไน๏ผ
- $phi_0 (x) = y_0$
- $phi_n (x) = y_0 + integral_(x_0)^(x) f(t, phi_(n-1) (t)) dif t$
+ ้ฆๅ
้ช่ฏๅฎไนๅ็๏ผ้่ฆไฟ่ฏๆๆ็ๅผไธ่ถ
ๅบๅบๅใ
- $x$ ็ๅ็ๆงๆฏๆพ็ถ็
- ๅ่ฎพ $phi_(n - 1) subset overline(U(y_0, b))$๏ผๅ๏ผ
$
abs(phi_n (y_1) - y_0) <= integral_(x_0)^(x) abs(f(t, phi_(n-1) (t))) dif t\
<= max_DD abs(f) h <= b
$
่ฟๅฐฑ้ช่ฏไบ $phi_(n) subset overline(U(y_0, b))$
+ ๆฅไธๆฅ่ฏๆๅฎไธ่ดๆถๆ
- ้ฆๅ
ๅฝ็บณ่ฏๆ $abs(phi_n (x) - phi_(n-1)(x)) <= (M L^(n-1))/(n!) abs(x -x_0)^n$
$
abs(phi_n (x) - phi_(n-1)(x)) = abs(integral_(x_0)^(x) f(t, phi_(n-1) (t)) - f(t, phi_(n-2) (t)) dif t)\
<= integral_(x_0)^(x) abs(f(t, phi_(n-1) (t)) - f(t, phi_(n-2) (t))) dif t\
<= integral_(x_0)^(x) L abs(phi_(n-1) (t) - phi_(n-2) (t)) dif t
$
ๅฉ็จๅฝ็บณๆกไปถ่ฎก็ฎๅณๅฏ
- ๅ
ถๆฌก๏ผ
$
(M L^(n-1))/(n!) abs(x -x_0)^n <= (M L^(n-1))/(n!) h^n
$
ไธๅผๅณไพงๅช้ๅฉ็จๆฏ่พๅคๅซๆณ็ฅๆฑๅๆถๆ๏ผไป่ๅฎนๆๅฉ็จ็ปดๅฐๆฏ็นๆๆฏๅคๅซๆณ็ฅ้ๅ็บงๆฐ $sum (phi_n (x) - phi_(n-1)(x))$ ไธ่ดๆถๆ
+ ๆๅๆไปฌๅพๅฐไบๆ้ๅฝๆฐ $phi(x)$๏ผๆพ็ถๅบๅฝๆปก่ถณ๏ผ
$
phi(x) = y_0 + integral_(x_0)^(x) f(t, phi(t)) dif t
$
่ฟๅฐฑๆฏๅๆน็จ
]
#remark[][
่ฟไธชๅฎ็็่ฏๆๆไปฅไธไผ็น๏ผ
- ๅฏไปฅๆจๅนฟๅฐๆฝ่ฑก็ๅฝๆฐ็ฉบ้ด๏ผไพๅฆ Banach ็ฉบ้ด
- ๅ่ฎพ $f$ ๆฏ่งฃๆๅฝๆฐ๏ผๅๆ้ ็ $phi_n$ ้ฝๆฏ่งฃๆๅฝๆฐ๏ผ่ฟ่ๅฏไปฅ่ฏๆ $phi$ ไนๆฏ่งฃๆ็
]
== ่งฃ็ๅปถๆ
ไนๅๆไปฌ็ปๅบไบ่ณๅฐๅจๆไธชๅฑ้จ๏ผๆ ๅๅฝขๅผ็ๅพฎๅๆน็จๆฏๆ่งฃ็ใ็ถ่ๆไปฌๅพๅพ้่ฆๅจๆดๅคง็ๅฎไนๅไธๆพๅฐ่งฃ
#theorem[][
่ฎพ $G$ ๆฏๅผๅบๅ๏ผ$f(x, y)$ ๅจ $G$ ไธ่ฟ็ปญ๏ผ$(x_0, y_0) in G$\
ๅฏนๅซ $(x_0, y_0)$ ็ไปปๆๆ็้ญๅบๅ $G_1 subset G$๏ผ่ฟ $(x_0, y_0)$ ็น็ๅพฎๅๆน็จ็่งฃ $y=f(x)$ ้ฝๅฏไปฅๅปถๆๅฐ $G_1$ ็่พน็ไธ
]
#proof[
็ฑ้ข่ฎพ๏ผ$G_1$ ไธญ็็นๅฐ $G$ ็่พน็็่ท็ฆปๆๆญฃไธ็ $d$\
ๅ ๆญคๅฏไปฅๆพๅฐ้ญ้๏ผ
$
G_2 = {(x, y) | abs(x - x') <= delta, abs(y - y') <= delta, exists (x, y) in G_1} subset G
$
ๅไปค๏ผ
$
M = max_(f in G_2) abs(f) +1\
delta'_0 = delta_0 / M
$
ๅฉ็จไนๅ็ๅญๅจๆงๅฎ็๏ผๅฏไปฅๆพๅฐ $U(x_0, delta'_0)$ ๅ
็่งฃใๅๆฌกๅฉ็จๅญๅจๆงๅฎ็ๅฏไปฅ็ปง็ปญๅ่ฟ๏ผไธๆญฅ้ฟไธบ $delta'_0$ ไธๅ๏ผๅ ๆญค็ป่ฟๆ้ๆญฅไนๅ๏ผๆไปฌๅฐฑๅพๅฐไบ็ดๅฐ $G_1$ ็่พน็ไธ็่งฃ
]
#example[][
-
่ฎพๅพฎๅๆน็จ $der(y, x) = x^2 + y^2$ ๅฎนๆ้ช่ฏ่ฟไปปไฝไธ็น็่งฃๅญๅจไธๅฏไธใ็ถ่๏ผๅฏไปฅ่ฏๆไปปไฝไธไธช่งฃ้ฝๅชๅจๆ็ๅบ้ดไธๆ็ซ
ไบๅฎไธ๏ผไปปๅ $y(x)$ ๅจๅบ้ด $I$ ไธๆฏๆน็จ็ไธไธช่งฃ๏ผๅ่ฎพ $I$ ๆ ็๏ผไธๅฆจๅไธบ $[0, +infinity]$๏ผๅ๏ผ
$
y' = x^2 + y^2 >= 1 + y^2\
y'/(1+y^2) >= 1\
integral_(1)^(t) y'/(1+y^2) dif x >= x - 1\
integral_(1)^(y(t)) 1/(1+y^2) dif y >= x - 1\
$
็ถ่ไปค $t -> +infinity$๏ผไธๅผๅทฆไพงๆ็่ๅณไพงๆ ็๏ผ็็พ๏ผ
่ฟไธไธ่งฃ็ๅปถๆๅฎ็็็พ๏ผๅฎนๆๆณๅฐๅฎๅจ $x$ ๆนๅๆๅ็ดๆธ่ฟ็บฟ๏ผ่ๅจ $y$ ๆนๅๅฏไปฅ่ฟ่กๆ ้ๅปถไผธ
- ็ปๅฎๅพฎๅๆน็จ๏ผ
$
der(y, x) = (x^2 + y^2 +1) sin (pi y)
$
ๅฏไปฅ้ช่ฏๅฎไนๆปก่ถณๅญๅจๅฏไธ็ๆกไปถ๏ผๅนถไธ
- $y = k, k in ZZ$ ๅฝ็ถๆฏไธไธช่งฃ
- ๅฏนไบๅ
ถไป็่งฃ๏ผๆพ็ถๅฟ
้กปๅคนๅจไธไธไธคไธชๆฐดๅนณ็ด็บฟไน้ด๏ผๅฆๅ่ฅ็ธไบค๏ผๅไบค็นๅค่งฃๅฐไธๅฏไธ๏ผ๏ผๅ ๆญคๅจ $x$ ๆนๅๅฟ
ๅฐๅฏไปฅๆ ้ๅปถไผธ
- ็ปๅฎๅพฎๅๆน็จ๏ผ
$
der(y, x) = (y-3)(y+1) e^(x+y)^2
$
ๅฎนๆ้ช่ฏๆปก่ถณๅญๅจๅฏไธ็ๆกไปถ
- ๆพ็ถ $y = 3, -1$ ๆฏไธคไธช่งฃ
- ่ฅ $y_0 in [-1, 3]$๏ผ่ฟ่ฏฅ็น็่งฃๅๆ ทไธ $y = 3, -1$ ไธ็ธไบค๏ผ่ฟ่ๅฏผๆฐๆปไธบ่ดๆฐ๏ผๅ่ฐไธ้๏ผๅ ๆญคๅจ $-infinity, +infinity$ ๆนๅ้ฝๆๆ้ใ่งๅฏ็ญๅผๅฏ็ฅๆ้ๅช่ฝๅๅซไธบ $3, -1$
- ่ฅ $y_0 in [3, +infinity]$ ๏ผ่ดๅไป็ถๆๆฐดๅนณๆธ่ฟ็บฟ๏ผ่ๆญฃๅ็ฑปไผผๅๆ็ๅฐไผๅญๅจๅ็ดๆธ่ฟ็บฟ
่ฟไบไพๅญ้ฝ่ฏดๆ๏ผๅช่ฆๅปถๆๅฎ็็ๆกไปถๆ็ซ๏ผๆ็ปๅพๅฐ็่งฃไธๅฎๅจๆไธชๆนๅไธๆ ็
]
== ๆฏ่พๅฎ็
็ปๅฎไธคไธชๅพฎๅๆน็จ๏ผๆไปฌๅธๆไปๅฝขๅผ็ๅบ่งฃ็ๅคงๅฐๅ
ณ็ณป๏ผ็ฑๅฆไธๅฎ็๏ผ
#theorem[็ฌฌไธๆฏ่พๅฎ็][
่ฎพ $f, F$ ้ฝ่ฟ็ปญ๏ผไธ $f < F$๏ผไธคไธชๅพฎๅๆน็จ๏ผ
$
cases(
der(y, x) = f(x, y),
y(x_0) = y_0
)\
cases(
der(Y, X) = F(X, Y),
Y(X_0) = Y_0
)
$
ๅจๅบ้ด $I$ ไธๅๆ่งฃ $y, Y$๏ผๅๆ๏ผ
$
y < Y, forall x > x_0\
y > Y, forall x < x_0
$
]
#proof[
ๆพ็ถ $Y'(x_0) = F(x_0, y_0) > y'(x_0)$๏ผ่ $Y(x_0) = y(x_0)$๏ผๅ ๆญคๅฏๅ $delta$ ไฝฟๅพ๏ผ
$
forall x in (x_0, x_0 + delta), Y(x) > y(x)\
forall x in (x_0 - delta, x_0), Y(x) < y(x)
$
่ฎพ $S = {x in I | Y(x) = y(x) }$๏ผไปฟ็
งไนๅ็่ฟ็จๅฏไปฅ็ๅบ $S$ ไธญๆฏไธช็น้ฝๅญค็ซ๏ผ็ถ่ไปปๅ $x_1 > x_2 in S$๏ผ่ฎพ $g(x) = Y(x) - y(x)$๏ผๆข็ถ๏ผ
$
g(x_1) = g(x_2) = 0
$
ไธ $g$ ๅจ $x_2$ ๅณไพงไธฅๆ ผๅๅข๏ผๅจ $x_1$ ๅทฆไพงไธฅๆ ผๅๅ๏ผๅ ๆญคๅ
ถ้ดไธๅฎๆ $S$ ไธญ็็นใๅๅค่ฟ่ก๏ผ่ฟๅฐไธ $S$ ไธญๆฏไธช็น้ฝๅญค็ซ็็พ\
่ฟๆๅณ็ $S$ ไธญๆฐๆไธ็น๏ผๅช่ฝๆฏ $x_0$๏ผๆ
็ป่ฎบๅฝ็ถๆ็ซ
]
#corollary[][
่ฎพ $f in C(a, b), abs(f) <= A(x) abs(y) + B(x), forall x in (a, b)$๏ผๅๅพฎๅๆน็จ๏ผ
$
cases(
der(y, x) = f(x, y),
y(x_0) = y_0
)
$
ๆๆ็่งฃ้ฝๅฏไปฅๅปถๆๅฐ $(a, b)$
]
#proof[
#lemma[][
ไธคไธชๅพฎๅๆน็จ๏ผ
$
der(y, x) = A(x) abs(y) + B(x)\
der(y, x) = - A(x) abs(y) - B(x)
$
่ฟไปปๆ็น็่งฃๅญๅจๅฏไธ๏ผไธ่งฃ็ๅญๅจๅบ้ด้ฝๆฏ $(a, b)$
]<linear_all_range>
#proof[
ๅญๅจๅฏไธๆงๆฏๅฎนๆ็ใๅฏนไบๅญๅจๅบ้ด๏ผๅช่ฏๆ็ฌฌไธไธชๆน็จ\
ๆพ็ถๅฎ็่งฃๅ่ฐ้ๅข๏ผ่ฅ่งฃ็ๅญๅจๅบ้ดไธๆฏ $(a, b)$ ๏ผๅๅฟ
็ถๅจๆ็น $x_0 in (a, b)$ ๅค็ๅทฆ/ๅณๆ้ไธบ $+\/minus infinity$๏ผไธๅฆจ่ฎพไธบๅทฆๆ้ไธบๆญฃๆ ็ฉท\
่ฟๆๅณ็ๅญๅจ $delta, (x_0 - delta, delta)$ ไธๆถๆ๏ผ
$
der(y, x) = A(x) abs(y) + B(x) = A(x) y + B(x) < M_1 y + M_2
$
ไฝ็จๅ ่ฎก็ฎๅฏๅพ $der(y, x) = M_1 y + M_2$ ็่งฃไธๅฏ่ฝๅจๆ็ๅบ้ดๅ
่ถไบๆ ็ฉท๏ผ่ฟ่่ฏฅๆน็จ็่งฃ็ฑๆฏ่พๅฎ็่ขซๆงๅถๅจๆ็ๅบ้ด๏ผ็็พ๏ผ
]
ๅๅฐๅ้ข๏ผๆพ็ถๆ๏ผ
$
-(A(x) abs(y) + B(x) + 1)<= der(y, x) = f < A(x) abs(y) + B(x) + 1
$
็ฑๆฏ่พๅฎ็๏ผๆฏไธชๆ้ๅบ้ดไธ็่งฃๅฝ็ถ่ขซๆงๅถๅจๆ็ๅบ้ด๏ผ่ฏๆฏ
]
#definition[][
็ปๅฎๅพฎๅๆน็จ
$
cases(
der(y, x) = f(x, y),
y(x_0) = y_0
)
$
็งฐๅ
ถ่งฃ $f, g$ ไธบๆๅคง่งฃ๏ผๆๅฐ่งฃ๏ผ่ฅไปปๅ $y$ ไธบไธไธช่งฃ๏ผ้ฝๆ๏ผ
$
g <= y <= f
$
]
#theorem[][
่ฎพ $D = {abs(x-x_0) < delta_x, abs(y - y_0) < delta_y}$๏ผๅๅญๅจ $tau > 0$ ไฝฟๅพๆน็จ
$
cases(
der(y, x) = f(x, y),
y(x_0) = y_0
)
$
ๅจ $x in [x_0 , x_0 + tau]$ ไธๆๆๅคง/ๆๅฐ่งฃ
]
#proof[
่ฎพ $y_n$ ๆฏๅพฎๅๆน็จ๏ผ
$
cases(
der(y, x) = f(x, y) + 1/n,
y(x_0) = y_0
)
$
็ฑ @peano๏ผๆฏไธชๆน็จ็่งฃ้ฝๅจ๏ผ
$
[x_0 - h_n, x_0 + h_n] "where"
h_n = min{delta_x, delta_y/(max_DD abs(f_n))}
$
ๅญๅจ๏ผๆพ็ถ $h_n$ ๆๅ
ฌๅ
ฑๆญฃไธ็๏ผๅ $tau$ ๆฏไธไธชๆญฃไธ็๏ผๅ่ฟไบๆน็จ้ฝๅจ $[x_0 - tau, x_0 + tau]$ ไธๆ็\
// ๆไปฌๅธๆๆพๅฐไธไบไธ่ดๆถๆๆงใไบๅฎไธ๏ผ่ฟไบๅฝๆฐ๏ผ
// - ็ญๅบฆ่ฟ็ปญ๏ผๆข็ถ๏ผ
// $
// y'_n (x) <= max_DD abs(f) + 1.n <= max_DD abs(f) + 1
// $
// - ไธ่ดๆ็๏ผๆข็ถๅฏผๆฐๆไธ่ด็ไธ้ฝๅฎไนๅจๆ้ๅบ้ดไธ
ไบๅฎไธ๏ผ่ฟไบ่งฃไธ่ดๆถๆใ่ฟๆฏๅ ไธบ่ฅ่ฎพ $forall n, m > N, phi(x) = y_n (x) - y_m (x) $๏ผๅ๏ผ
$
abs(der(phi, x)) = abs(1/n - 1/m) < 1/N\
abs(phi(x) - phi(0)) = abs(integral_(x_0)^(x) der(y, x) dif s) <= integral_(x_0)^(x) abs(der(y, x)) dif s <= (x - x_0)/N <= tau/N
$
ๆฏ่ฅฟๅ็็ปๅบไบไธ่ดๆถๆๆง๏ผๅ ๆญคๆไปฌๅฏไปฅๅๆ้๏ผ่่ฝฌๅไธบ็งฏๅๆน็จ๏ผๅฎไปฌ็ๆ้ๅฐฑๆฏๅๆน็จ็่งฃ๏ผ่ๅฎนๆ้ช่ฏ่ฟไธช่งฃไธๅฎๆฏๅๆน็จ็ๆๅคง่งฃ
]
#remark[][
ๆไปฌๅฝ็ถๅฏไปฅๅฐไธค็ซฏ็ๆๅคง่งฃๆผๆฅ๏ผๅพๅฐๅ่พน็ๆๅคง่งฃ
]
#theorem[][
่ฎพ $f, g$ ๆฏๅพฎๅๆน็จ๏ผ
$
cases(
der(y, x) = f(x, y) ,
y(x_0) = y_0
)
$
ๅจ $I$ ไธ็ๆๅคง/ๆๅฐ่งฃ๏ผๅไปปๅ $x_1 in I, y_1 in [g(x_1), f(x_1)]$๏ผๅญๅจๆน็จ็่งฃ $h$ ไฝฟๅพ $h(x_1) = y_1$
]
#proof[
#lemmaLinear[][
่ฎพ $g_1, g_2$ ๅจๅบ้ด $I$ ไธๅๆปก่ถณ $g'_i (x) = f(x, g_i (x))$๏ผๅ $max(g_1, g_2), min(g_1, g_2)$ ไนๆปก่ถณ
]
#proof[
ๅช่ฏ $max$๏ผ$min$ ็ฑปไผผ\
่ฎพ $h = max(g_1, g_2)$๏ผ้ช่ฏไธ้ข็็ญๅผๅช้้็น้ช่ฏๅณๅฏ๏ผ
- ไปปๅ $x in I$๏ผ่ฎจ่ฎบ๏ผ
- ่ฅ $g_1(x) > g_2(x)$๏ผๅๆ $g_1, g_2$ ่ฟ็ปญๆง็ฅๅญๅจ $x$ ็ๅผ้ปๅ $B$ ไฝฟๅพ๏ผ
$
h|_B = g_1
$
ๆญคๆถ็ฑไบ $g_1$ ๅจ่ฏฅ็นๆฏๅพฎๅๆน็จ็่งฃ๏ผ$h$ ๅฝ็ถไนๆฏ
- ่ฅ $g_1(x) < g_2(x)$๏ผๅ็
- ่ฅ $g_1(x) = g_2(x)$๏ผๆณจๆๅฐ๏ผ
$
g'_1(x) = f(x, g_1(x)) = f(x, g_2(x)) = g'_2(x) := d
$
ๅ ๆญค๏ผ
$
abs((h(x + Delta x) - h(x))/(Delta x) - d) &<= abs((h(x + Delta x) - g_1 (x + Delta x))/(Delta x)) + abs((g_1 (x + Delta x) - g_1 (x))/(Delta x) - g'_1 (x))\
&<= abs((g_2(x + Delta x) - g_1 (x + Delta x))/(Delta x)) + abs((g_1 (x + Delta x) - g_1 (x))/(Delta x) - g'_1 (x))\
&<= abs(((g_2(x + Delta x) - g_1 (x + Delta x)) - (g_2 (x) - g_1 (x)))/(Delta x)) + abs((g_1 (x + Delta x) - g_1 (x))/(Delta x) - g'_1 (x))\
&<= abs(g'_2 (xi) - g'_1 (xi)) + abs((g_1 (x + Delta x) - g_1 (x))/(Delta x) - g'_1 (x))\
&"๏ผๅฏน" g_2(x) - g_1(x) ๅจ x, x + Delta x "ไธๅฉ็จๅพฎๅไธญๅผๅฎ็๏ผ"
$
ๅ
ถไธญ $xi$ ๅจ $x, x + Delta x$ ไน้ดใๆณจๆๅฐ็ฑๅพฎๅๆน็จ๏ผ$g_1, g_2$ ๅฝ็ถ่ฟ็ปญๅฏๅฏผ๏ผ่ฟ่ๅฝ $Delta x -> 0$ ๆถไธๅผ $-> 0$๏ผ่ฟๅฐฑไฟ่ฏไบ๏ผ
$
h'(x) = d = f(x, h(x))
$
ไนๅณ $h$ ๅจ่ฏฅ็นๆปก่ถณๅพฎๅๆน็จ
ๅพ่ฏ
]
่่ๅพฎๅๆน็จ๏ผ
$
cases(
y' = f(x, y) ,
y(x_1) = y_1
)
$
ๅฎๅจ $x_1$ ็ๆไธช้ปๅๅ
ๆ่งฃ $h$๏ผๅๅฏไธๅฆจ่ฎพ $h$ ๅจ $I$ ๅ
ๆไธชๆๅคง็ๅบ้ด $I_1$๏ผไนๅณๆๆๅฏๅปถๆ้ญๅบ้ด็ๅนถ๏ผไธๆฏๅๆน็จ็่งฃ๏ผๅนถ่ฎพ๏ผ
$
h_1 = max(min(h, Z), W), x in I_1
$
ๅฐๆปก่ถณ $h'_1 (x) = f(x, h_1 (x))$๏ผๅๆถไนไธ้พ้ช่ฏ $h_1(x_1) = y_1$๏ผๅ ๆญคๆฏ่ฟ่ฏฅ็น็ๅพฎๅๆน็จ็่งฃ\
ๅฆไธๆน้ข๏ผๆพ็ถๆ๏ผ
$
max(min(h, Z), W) >= W\
max(min(h, Z), W) <= max(Z, W) = Z
$
ๅ ๆญค $h_1$ ๆฏๅบ้ดไธๆ็็ๅพฎๅๆน็จ็่งฃ
ไป่๏ผ
- ่ฅ $x_0 in I_1$๏ผ็ฑไธ้ข็ๆกไปถๅๅผ็็ฅ $h_1$ ๅฐฑๆฏ่ฆๆพ็่งฃ
- ๅฆๅ๏ผ่ฎพ $I_1$ ้ญๅ
ไธญ่ท $x_0$ ๆ่ฟ็็นไธบ $x_2$๏ผๆณจๆๅฐ $h_1$ ๅจ $I_1$ ไธๆ็๏ผๅ ๆญค็ฑๅปถๆๅฎ็่ฆไนๆๅณ็ๅญๅจ $x'$ ไฝฟๅพ $abs(h_1(x') - y_0) = b$๏ผ่ฆไน $h_1$ ไธๅฎๅฏไปฅ่ณๅฐๅปถๆๅฐ $x_2 := x'$๏ผ็ถ่ๅทฒ็ปๅ่ฎพ $h$ ไธ่ฝๅๅปถๆ๏ผๅ ๆญค่ฏฅ็น้่ฟไธๅฎๅ $Z$ ๆ $W$ ๏ผๆ ่ฎบๅฆไฝไธๅฎๆ๏ผ
$
exists x', h_1(x') = Z(x') ๆ W(x')
$
ๆ ่ฎบไฝ่
๏ผ้ฝๆๅณ็ $h_1$ ๅฏไปฅไธ $Z$ ๆ $W$ ็ๅ
ถไธญไนไธๆผๆฅ่ตทๆฅ๏ผ่ฟๅฐฑๆฏๆ่ฆๆพ็่งฃใ
]
#corollary[][
่ฅๅพฎๅๆน็จ็ๅไพง็ๆๅคง่งฃ๏ผๆๅฐ่งฃๅๅญๅจไธไธ็ธ็ญ๏ผๅ่ฏฅไพงๅพฎๅๆน็จๆๆ ็ฉทๅค่งฃ๏ผ่ฟๆ ็ฉทๅค่งฃ่ขซๆงๅถๅจๆๅคง/ๆๅฐ่งฃไน้ด
]
#example[][
- ๅพฎๅๆน็จ๏ผ
$
cases(
der(y, x) = y^(1/3),
y(0) = 0
)
$
้่งฃไธบ๏ผ
$
y = cases(
0 quad x <= -C\
plus.minus (2/3 x + C)^(3/2) quad x > C
)
$
ๅจ $0$ ๅณไพง็ๆๅคง่งฃไธบ $y = (2/3 x)^(3/2)$๏ผๆๅฐ่งฃไธบ $y = -(2/3 x)^(3/2)$
- ๅพฎๅๆน็จ๏ผ
$
cases(
der(y, x) = abs(y)^(1/2),
y(0) = 0
)
$
้่งฃไธบ๏ผ
$
y = cases(
1/4(C_1 - x)^2 quad x <= C_1,
0 quad C_1 <= x <= C_2,
1/4(x - C_2)^2 quad x >= C_2
)
$
]
#theorem[็ฌฌไบๆฏ่พๅฎ็][
่ฎพ $f, F$ ้ฝ่ฟ็ปญ๏ผไธ $f <= F$๏ผไธคไธชๅพฎๅๆน็จ๏ผ
$
cases(
der(y, x) = f(x, y),
y(x_0) = y_0
)\
cases(
der(Y, X) = F(X, Y),
Y(X_0) = Y_0
)
$
ๅ๏ผ
- ๅจๅๅผๅณไพง๏ผๅ่
็ๆๅฐ่งฃๅฐไบ็ญไบๅ่
็ไปปๆ่งฃ;ๅจๅๅผๅทฆไพง๏ผๅ่
็ๆๅคง่งฃๅคงไบ็ญไบๅ่
็ไปปๆ่งฃ
- ๅจๅๅผๅณไพง๏ผๅ่
็ๆๅคง่งฃๅคงไบ็ญไบๅ่
็ไปปๆ่งฃ;ๅจๅๅผๅทฆไพง๏ผๅ่
็ๆๅฐ่งฃๅฐไบ็ญไบๅ่
็ไปปๆ่งฃ
]
#proof[
ไปฟ็
งไธ้ข็้ผ่ฟ่ฟ็จๅไฝฟ็จ็ฌฌไธๆฏ่พๅฎ็ๅณๅฏ
]
== ๅฅ่งฃ
#definition[ๅฅ่งฃ][
่ฎพ $Gamma = {(x, y) | y = f(x)}$ ๆฏๅพฎๅๆน็จ $F(x, y') = 0$ ็ไธไธช่งฃ๏ผ่ฅๅฏนไปปๆ็ $(x_, y) in Gamma$๏ผๅจ่ฏฅ็น็ไปปไฝไธไธช้ปๅ้ๅญๅจ่ฟ $(x_0, y_0)$ ็ไธๅไบ $Gamma$ ็่งฃ๏ผไธ่ฏฅ่งฃไธ $Gamma$ ๅจ่ฏฅ็น็ธๅ๏ผๅ็งฐ $Gamma$ ๆฏๅฅ่งฃ
]
#example[][
- $y = x y' - 1/2 y'^2$๏ผๅฎ็่งฃไธบ๏ผ
$
y = 1/2 x^2\
y = c x - c^2/2
$
ๆณจๆๅฐไธ้ข็็ด็บฟๆๆฐๅฅฝๆฏไธ้ขๆ็ฉ็บฟ็ๆๆๅ็บฟ๏ผๅ ๆญคๆ็ฉ็บฟๅฝ็ถๅฐฑๆฏไธไธชๅฅ่งฃ
- $y^2 + y'^2 = 1$\
ไปค $y = cos theta, y' = sin theta, x = u(theta)$๏ผๆ๏ผ
$
(-sin theta)/(u') = sin theta\
sin theta = 0 ๆ u' = -1
$
ๅ ๆญค่งฃไธบ๏ผ
$
y' = 0 => y = plus.minus 1\
u' = -1 => x = -theta + C => y = cos(x - C)
$
ๅฏไปฅ็ๅบ $y = plus.minus 1$ ๆฏๅฅ่งฃ
]
#theorem[ๅฅ่งฃ็ๅฟ
่ฆๆกไปถ][
่ฎพ $G subset RR^3, F(x, y, y') in C^0, partialDer(F, y), partialDer(F, y')$ ๅญๅจไธ่ฟ็ปญใๅ่ฎพ $y = phi(x)$ ๆฏๅฅ่งฃ๏ผๅ๏ผ
$
cases(
F(x, phi(x), phi'(x)) = 0,
partialDer(F, y') (x, phi(x), phi'(x)) = 0
)
$
]
#proof[
็ฌฌไธไธชๅผๅญๆฏๆพ็ถ็ใๅฏนไบ็ฌฌไบไธชๅผๅญ๏ผๅ่ฎพๅญๅจ $x_0$ ไฝฟๅพ $partialDer(F, y) (x_0, phi(x_0), phi'(x_0)) != 0$๏ผ่ฎพ $(x_0, y_0, P_0) = (x_0, phi(x_0), phi'(x_0))$๏ผๅจ่ฏฅ็นๅฏน $F$ ๅฉ็จ้ๅฝๆฐๅฎ็๏ผๅญๅจๆไธชๅผ้ปๅไฝฟๅพ๏ผ
$
F(x, y, P) = 0 <=> P = f(x, y)
$
ไธ $f$ ๆฏ่ฟ็ปญๅฝๆฐไธๅ
ณไบ $y$ ่ฟ็ปญๅฏๅฏผ๏ผๅฐๅจ $(x_0, y_0)$ ็ๆไธช้ปๅๅ
Lipschitz ่ฟ็ปญ๏ผๅฏไปฅๅฉ็จ่งฃ็ๅญๅจๅฏไธๆงๅฎ็ๅฏ็ฅ่ฏฅ้ปๅๅ
ๅพฎๅๆน็จ็่งฃๅญๅจๅฏไธ๏ผไธ $phi$ ๆฏๅฅ่งฃๆพ็ถ็็พ
]
ไธ้ข็ๅฎ็็ปๅบไบๅฅ่งฃ็ไธไธชๅฟ
่ฆๆกไปถใ่ฟ้ๆไธคไธช็ญๅผ๏ผ่ฅๅฏไปฅๅ็ฎ็ดๅฐๅฏ่งฃๅบ $y$๏ผไพฟๅฏ่ฝๆฑๅบๅๆน็จ็ๅฅ่งฃใๆด่ฟไธๆญฅ๏ผ่ฅ่ฝๆถๅป $y'$ ๅพๅฐ๏ผ
$
Delta (x, y) = 0
$
ๅๅฅ่งฃๅฐฑๅจ่ฏฅๆฒ็บฟไนไธญ๏ผ่ฟๆกๆฒ็บฟ่ขซ็งฐไธบๅคๅซๆฒ็บฟ
#example[][
-
$
y = P x ln x + (x p)^2 - y\
$
ๅฏไปฅ่งฃๅพๅคๅซๆฒ็บฟไธบ
$y = -1/4 (ln x)^2$๏ผๅฎนๆ้ช่ฏๅฎๆฏไธไธช่งฃ๏ผ็จๅไผๅคๆญๅฎๆฏๅฆๆฏๅฅ่งฃ
- $y'^2 + y - x = 0$\
ๅฏไปฅ่งฃๅพๅคๅซๆฒ็บฟไธบ $y = x$๏ผไฝไธๆฏๅๆน็จ็่งฃ๏ผๅ ๆญคๅๆน็จๆฒกๆๅฅ่งฃ
- $y'^2 - y'^2 = 0$๏ผๅฎ็ๅคๅซๆฒ็บฟๆฏ $y = 0$ ๆฏ่งฃ๏ผ็ถ่ๅฎนๆ็ๅบๅฎ็ๆๆ่งฃๆฏ:
$
y = C e^(plus.minus x)
$
ไปฅๅๅฎไปฌๅฏ่ฝ็ๆผๆฅ๏ผ็ถ่ไป
ๆ $y = 0$ ๅฏไธไธไธช่งฃๅฏ่ฝ็ป่ฟ $x$ ่ฝด๏ผๅ ๆญค่ฟ $(x_0, 0)$ ็่งฃ้ฝๆฏๅญๅจไธๅฏไธ็
]
#theorem[ๅฅ่งฃ็ๅ
ๅๆกไปถ][
่ฎพ $F(x, y, y') in C^infinity$๏ผๅ่ฎพ๏ผ
$
cases(
F(x, phi(x), phi'(x)) = 0,
partialDer(F, y') (x, phi(x), phi'(x)) = 0
) <=> y = psi(x)
$
๏ผไบๅฎไธ๏ผไนๅฐฑๆฏ $Delta(x, y)$ ๆฏๅๆน็จ็่งฃ๏ผ\
่ฅ๏ผ
$
cases(
(diff^(k+l) F)/(diff y^k diff p^l) (x, psi(x), psi'(x)) = 0\, forall 0 <=k <= m-1\, 0 <= l <= n-1,
(diff^m F)/(diff y^m) (x, psi(x), psi'(x)) != 0,
(diff^n F)/(diff p^n) (x, psi(x), psi'(x)) != 0
)
$
ๅ
ถไธญ $n, m in NN, n > m$ใๅฆๆ๏ผ
- $m, n$ ไนไธไธบๅฅๆฐ๏ผๆ
- $m, n$ ๅไธบๅถๆฐ๏ผไธ $(diff^m F)/(diff y^m) (diff^n F)/(diff p^n) < 0$
ๅ $psi$ ๆฏๅฅ่งฃ
]
#proof[
#lemma[][
่ฎพ $f(x, y) : C^infinity (RR^n times RR -> RR)$๏ผ่ฎพ๏ผ
$
f(x, y) = sum_(k=0)^n f_k (x) y^k + R_(n+1) (x, y) y^n
$
ๆฏๅ
ณไบ $y$ ็ๆณฐๅๅฑๅผ๏ผๅ $R_n (x)$ ไนๆฏ $C^infinity$
]
#proof[
ๅฉ็จ็งฏๅไฝ้กน๏ผ
$
f(x, y) - sum_(k=0)^n f_k (x) y^k = y^n/n! integral_0^1 (1-t)^n (diff^n f(x, y t))/(diff t^n) dif t
$
ๅฎนๆ็ๅบ็ป่ฎบๆ็ซ
]
#lemma[][
่่ๅพฎๅๆน็จ $u' = plus.minus A(x, u) abs(u)^alpha, 0< alpha <1 $ ๅ
ถไธญๆ๏ผ
- $A$ ่ฟ็ปญไธๅจ $u !=0$ ๆถ่ฟ็ปญๅฏๅฏผ
- $A$ ๆๆญฃไธ็ $c_0$๏ผๆญฃไธ็ $c_1$
ๅ $u = 0$ ๆฏๅฅ่งฃ
]<lemma0_is_odd>
#proof[
ไธๅฆจ่ฎพ็ฌฆๅทๅๆญฃ๏ผๆญคๆถๆน็จ็่งฃๅฝ็ถ้ๅขใ\
ๆไปฌ็็ฎๆ ๆฏๅจ $x_0$ ๅคๆ้ ไธไธชๅๆน็จ็้ๅนณๅก่งฃใๅ
่่ๅณไพง๏ผๆณจๆๅฐ๏ผ
$
u' = A(x, u)u^alpha\
u^(-alpha) u' = A(x, u)\
$
่ฎพ $v = u^(1 - alpha), v' = (1-alpha) u^(-alpha) u'$๏ผๅ๏ผ
$
1/(1-alpha) v' = A(x, v^(1/(1-alpha)))
$
]
ๅๅฐๅๆน็จ๏ผๅๆขๅ
$y = psi(x) + u$๏ผๆน็จๅๆ๏ผ
$
H(x, u, u') = F(x, psi(x) + u, psi'(x) + u') = 0
$
ๅช้่ฏๆ $u = 0$ ๆฏๅฅ่งฃๅณๅฏใไบๅฎไธ๏ผ$H$ ๆปก่ถณๅฆไธๆกไปถ๏ผ
$
cases(
(diff^(k+l) F)/(diff y^k diff p^l) (x, 0, 0) = 0\, forall 0 <=k <= m-1\, 0 <= l <= n-1,
(diff^m F)/(diff y^m) (x, 0, 0) != 0,
(diff^n F)/(diff p^n) (x, 0, 0) != 0
)
$
ๅฏไปฅๆณ่ฑก๏ผ$H$ ๆณฐๅๅฑๅผๅ็ๅฝขๅผ้ๅธธ็ฎๅใไบๅฎไธ๏ผๆ๏ผ
$
H(x, u, u') = u^m H_1 (x, u, u') + u'^n H_2 (x, u, u')
$
ๅ
ถไธญ $H_1, H_2$ ้ฝๆ ็ฉท้ถๅฏๅฏผ๏ผไธ๏ผ
$
H_1 (x, 0, 0) = (diff^m F)/(diff y^m) (x, psi(x), psi'(x)) != 0\
H_2 (x, 0, 0) = (diff^n F)/(diff p^n) (x, psi(x), psi'(x)) != 0
$
ๅ ๆญคๅฏไปฅ๏ผๅจๆไธชๅฐ้ปๅๅ
๏ผไธๅฆจ่ฎพ $H_1, H_2 !=0 $๏ผๆน็จๅไธบ๏ผ
$
u^m H_1 (x, u, u') + u'^n H_2 (x, u, u') = 0
$
ๆไปฌๅฝ็ถๅธๆ่ฟ่กๅผๆน๏ผๅฏไปฅ้ช่ฏๅจๅ่ฎพ็ๆกไปถไธ๏ผๅณ $m, n$ ไนไธไธบๅฅๆฐ๏ผๆ $m, n$ ๅไธบๅถๆฐ๏ผไธ $(diff^m F)/(diff y^m) (diff^n F)/(diff p^n) < 0$๏ผ๏ผๆไปฌๅฐ็กฎๅฎๅฏไปฅๅผๆน๏ผๅฏนๅผๆนๅ็ๅฝๆฐๅฉ็จ @lemma0_is_odd ๅณๅฏ
]
#corollary[][
่ฎพ $F(x, y, y') in C^2$๏ผไธ๏ผ
$
cases(
F(x, phi(x), phi'(x)) = 0,
partialDer(F, y') (x, phi(x), phi'(x)) = 0
) <=> y = psi(x)
$
่ฅ๏ผ
$
(diff^2 F)/(diff p^2) (x, psi(x), psi'(x)) != 0\
partialDer(F, y) (x, phi(x), phi'(x)) != 0
$
ๅ $psi$ ๆฏๅฅ่งฃ
]
#proof[
ๅฐฑๆฏๅจไธ้ข็ๅฎ็ไธญๅ $n = 2, m = 1$ ็็ปๆ๏ผ่ณไบๆกไปถๅฏไปฅๆพๆพ็ๅๅ ๅฏไปฅๅจไธ้ข็่ฏๆ่ฟ็จไธญไป็ป้ช่ฏ
]
== ๅ
็ป
#definition[ๅ
็ป][
่ฎพ $k_c, c in C$ ๆฏๅ
ๆปๆฒ็บฟๆ๏ผ็งฐๅ
ๆปๆฒ็บฟ $gamma$ ไธบ $k_c$ ็ๅ
็ป๏ผๅฆๆ $forall (x, y) in gamma, exists k_c$ ไฝฟๅพ $k_c$ ไธ $gamma$ ็ธๅ๏ผไธๅจ่ฏฅ็น็ไปปๆๅผ้ปๅๅ
$k_c != gamma$
]
#example[][
- ็ปๅฎไธๆๆฒ็บฟ $y = (x-c)^2 + 1$๏ผๅฝ็ถ $y = 1$ ๆฏๅ
ถไธไธชๅ
็ป
- ็ปๅฎไธๆ็ด็บฟ $y = c x - c^2 / 4$๏ผๅฎๅฐฑๆฏ $y = x^2$ ็ๅ็บฟๆ๏ผ่ช็ถ $y = x^2$ ๆฏๅ
็ป
]
#theorem[][
ๅ่ฎพ $F(x, y, y') = 0$ ๆ้่งฃ $u(x, y, c) = 0$๏ผๅ่ฎพ $partialDer(u, y) != 0$ใ่ฎพ $u(x, y, c) = 0$ ๅ
ณไบ $c$ ๆๆ็ๆฒ็บฟๆๆๅ
็ป $gamma := y = phi(x)$๏ผๅ $y = phi(x)$ ๆฏๅฅ่งฃ
]
#proof[
- ้ฆๅ
่ฏๆ $gamma$ ๆฏ่งฃใๅฝ็ถ $gamma$ ไธๆฏ็น้ฝๅฏไปฅๆพๅฐ่งฃ $u(x, y, c_0) = 0$ ไธไนๅจ่ฏฅ็น็ธๅใ็ฑๅ่ฎพๆกไปถๅ้ๅฝๆฐๅฎ็๏ผๅฏไปฅๅ่งฃๅบ๏ผ
$
u(x, y, c_0) = 0<=> y = psi(x)
$
ๅฝ็ถ $phi(x)$ ไธ $psi(x)$ ็ธๅไฝไธ็ธๅ๏ผ่ฟ่กจๆ่ฏฅ็นๅค $gamma$ ็ๅฝๆฐๅผๅๅฏผๆฐๅผๆปก่ถณๅพฎๅๆน็จ๏ผๅ ๆญค $gamma$ ๆฏ่งฃ
- ๅ
ถๆฌก๏ผ่ฟ $gamma$ ๆฏ็น้ฝๅฏไปฅๆพๅฐไธไน็ธๅ็ไธๅ่งฃ๏ผ่ฟๅฐฑ่กจๆๅฎๆฏๅฅ่งฃ
]
#theorem[][
ๅ่ฎพ $Gamma$ ๆฏๆฒ็บฟๆ $k_c: v(x, y, c) = 0$ ็ๅ
็ป๏ผๅนถไธ $Gamma$ ไธ $k_C$ ๅไบ $(f(c), g(c))$๏ผๅ
ถไธญ $f, g in C^1$๏ผๅ $Gamma$ ๆปก่ถณๆน็จ๏ผ
$
cases(
v(x, y, c) = 0,
v'_c (x, y, c) = 0
)
$
ๅฆๆ่ฟไธชๆน็จ็ปไธญ่ฝๆถๅป $c$๏ผๅ็งฐๆถๅปๅ็ๆฒ็บฟไธบ $C$ ๅคๅซๆฒ็บฟ
]
#proof[
ไปปๅ $(x_0, y_0) in Gamma sect k_c$๏ผๅ้ฆๅ
็ฌฌไธไธชๆน็จๅฝ็ถๆ็ซ\
ๅจ $v(f(c), g(c), c) = 0$ ไธญ๏ผไธค่พนๅฏน $c$ ๆฑๅฏผๅพ๏ผ
$
v'_x (f(c), g(c), c) f'(c) + v'_y (f(c), g(c), c) g'(c) + v'_c (f(c), g(c), c) = 0
$
ๅช้่ฏๆ $vec(v'_x (f(c), g(c), c), v'_y (f(c), g(c), c) ) dot vec(f'(c), g'(c)) = 0$๏ผไธๅฆจ่ฎพไปไปฌ้ฝไธไธบ้ถ\
็ถ่ๆณจๆๅฐ $vec(f(c), g(c))$ ไบๅฎไธๆฏ $Gamma$ ๅจๅฑ้จไธ็ไธไธชๅๆฐๆน็จ๏ผ$vec(f'(c), g'(c))$ ๅฐๆไธบ $Gamma$ ็ๅๅ้ใ\
ๅๆถ๏ผ$vec(v'_x (f(c), g(c), c), v'_y (f(c), g(c), c) )$ ไบๅฎไธๆฏ $v(x, y, c) = 0$ ๅจ $(f(c), g(c))$ ๅค็ๆณๅ้๏ผ็ฑไบ $Gamma$ ๆฏๅ
็ปๅฝ็ถไธค่
ๆญฃไบค
]
#theorem[][
ๅ่ฎพ ๆฒ็บฟๆ $k_c: v(x, y, c) = 0$ ็ $C$ ๅคๅซๆฒ็บฟ็กฎๅฎไบไธๆก $C^1$ ๆฒ็บฟ $x = x(c), y = y(c)$๏ผไธๆปก่ถณ้้ๅๆกไปถ๏ผ
$
(x'(c), y'(c)) != (0, 0)\
(partialDer(v,y)(x(c), y(c), c), partialDer(v,x)(x(c), y(c), c)) != (0, 0)
$
ๅนถไธ่ฏฅๆฒ็บฟๅจๆฒ็บฟไธไปปๆไธ็น็ๅฑ้จ้ฝไธๅจๅๆฒ็บฟๆไธญ๏ผๅๅฎๆฏๅ
็ป
]
#proof[
ไปปๅ $c$๏ผๅจ $P(c) = (x(c), y(c))$ ็ๅฑ้จ้ฝๅฏไปฅๅฉ็จ้ๅฝๆฐๅฎ็ๅ่งฃๅบ $v(x, y, c) = 0$ ็่งฃ๏ผๅฏไปฅ้ช่ฏ่ฟไธช่งฃไธ $Gamma$ ๅจ่ฏฅ็น็ธๅ๏ผๅ ๆญคๆฏๅ
็ป
]
#example[][
ๆฑไธๆกๆฒ็บฟ๏ผๆปก่ถณๅ
ถไปปๆไธ็น็ๅ็บฟไธคไธชๆช่ท็ๅๆฐๅนณๆนๅไธบ $1$
ไบๅฎไธ๏ผๅฎนๆๆณๅฐๆปก่ถณ่ฟไธชๆกไปถ็ๆฒ็บฟไธๅฎๆฏไธๆ็ด็บฟ็ๅ
็ป๏ผ่ฟๆ็ด็บฟๆปก่ถณๆช่ท็ๅๆฐๅนณๆนๅไธบ $1$๏ผ่ฟ่ๅฝขๅฆ
$
a x plus.minus sqrt(1 - a^2) y = 1
$
ๅช้ๆพๅฐ๏ผ
$
v(x, y, c) = c x plus.minus sqrt(1 - c^2) y - 1 = 0
$
็ๅ
็ป๏ผ่ฎก็ฎ๏ผ
$
partialDer(v, x) = c\
partialDer(v, y) = plus.minus sqrt(1 - c^2)\
partialDer(v, c) = x minus.plus y c/sqrt(1 - c^2)
$
่ฎก็ฎๅ
ถ $c$ ๅคๅซๅผ๏ผๅ็ฐๅฐฑๆฏๅไฝๅ $x^2 + y^2 = 1$\
ๅฝ็ถ๏ผๅไฝๅๅๆปก่ถณ่ฆๆฑ็็ด็บฟ็ไปปๆๅ
ๆปๆผๆฅ้ฝๆปก่ถณ่ฆๆฑ
]
= ่งฃๅฏนๅๆฐๅๅๅผ็ไพ่ตๆง
== $n$ ็ปดๆฌงๅผ็ฉบ้ด็ๅพฎๅๆน็จ
้ฆๅ
๏ผๅ่ฟฐ้ซ็ปด็ๅธธ็จๅฎ็๏ผ่ฎพ $R: abs(x - x_0) <= a, norm(y - y_0) <= b$
#theorem[Picard][
่ฎพ $f in C(R, RR^n), abs(f(x, y) - f(x, z)) <= L norm(y - z)$๏ผๅๅพฎๅๆน็จ๏ผ
$
cases(
der(y, x) = f(x, y),
y(x_0) = y_0
)
$
ๅจ $[x_0 - h, x_0 + h]$ ไธๆๅฏไธ่งฃ๏ผๅ
ถไธญ $h = min{a, b/(max_R norm(f))}$
]
#theorem[Peano][
่ฎพ $f in C(R, RR^n)$๏ผๅๅพฎๅๆน็จ๏ผ
$
cases(
der(y, x) = f(x, y),
y(x_0) = y_0
)
$
ๅจ $[x_0 - h, x_0 + h]$ ไธๆ่งฃ๏ผๅ
ถไธญ $h = min{a, b/(max_R norm(f))}$
]
#definition[$n$ ็ปด็บฟๆงๆน็จ็ป][
่ฎพๅพฎๅๆน็จ็ป๏ผ
$
cases(
der(y, x) = A(x) y + B(x),
y(x_0) = y_0
)
$
ๆปก่ถณ $A, B$ ้ฝๅจ $(a, b)$ ไธๆฏ่ฟ็ปญๅฝๆฐ๏ผๅ็งฐๅ
ถไธบ $n$ ็ปด็บฟๆงๆน็จ็ป
]
#proposition[][
ๅฏนไบไปปๆๅๅผ๏ผ$n$ ็ปด็บฟๆงๆน็จ็ป็่งฃๅจ $(a, b)$ ๅ
ๅญๅจๅฏไธ
]
== ่งฃๅฏนๅๅผๅๅๆฐ็ไพ่ตๆง
ๅพฎๅๆน็จ็ๅๅผๅฝ็ถไพ่ตไบๅๅผใๅบไบๅค็ง่่๏ผๆไปฌๅฝ็ถๅธๆ่ฟ็งไพ่ตๆๆ็ง่ฟ็ปญๆง๏ผ่ฟๅฐฑๆฏๆฌ็ซ ็ๆ ธๅฟๅ
ๅฎนใ
#example[][
่่ๅพฎๅๆน็จ๏ผ
$
y' = y^(1/3),
y(0) = epsilon(epsilon < 0)
$
็ๆๅคง่งฃไธบ๏ผ
$
cases(
-(2/3 x + epsilon^(2/3))^(3/2) quad x >= 0,
0 quad x < 0
)
$
็ถ่ไปค $epsilon -> 0$๏ผๅฎไธ $0$ ๅค็ๆๅคง่งฃ็ธๅป็่ฟ
]
่ฟไธชไพๅญ่กจๆๆๅคง/ๆๅฐ่งฃ็่ฟ็ปญไพ่ตๆงๅพๅพๅนถไธๆ็ซ๏ผๆไปฌๅพๅพๅช็ ็ฉถๅพฎๅๆน็จ่งฃๅฏไธๆถ็ๅๅผไพ่ตๆง\
ๆญคๅค๏ผๆไปฌ่ฏดๆๅๅผไพ่ตๆงไธๅๆฐไพ่ตๆงไน้ดๆฏไธ่ด็ใไบๅฎไธ๏ผ็ปๅฎๅๆฐๆน็จ๏ผ
$
cases(
y' = f(x, y, lambda),
y(x_0) = y_0(lambda)
)
$
ไปค $Y = vec(y, lambda)$๏ผๅฎ็ญไปทไบ๏ผ
$
cases(
Y' = vec(f, 0),
Y(x_0) = vec(y_0(lambda), lambda)
)
$
ๅ่ฟๆฅ๏ผไนๅฏไปฅ้่ฟๅนณ็งปๅฐๅๅผๅธๆถ่ฟๅๆฐ
#theorem[่ฟ็ปญไพ่ตๆง][
็ปๅฎไธๆๅพฎๅๆน็จ๏ผ
$
cases(
y' = f(x, y),
y(x_0) = y_0
)
$<ori-equation>
๏ผๅ
ถไธญ $f$ ่ฟ็ปญ๏ผ็่งฃๅญๅจๅฏไธ๏ผๅนถ่ฎพๅ
ถ่งฃ็ๅญๅจๅบ้ดไธบ้ญๅบ้ด $I$ \
่ฎพ $phi(x, xi, eta)$ ๆปก่ถณ๏ผ
$
cases(
partialDer(phi, x) = f(x, phi(x, xi, eta)),
y(xi) = eta
)
$
ๅ๏ผ
$
lim_((s, xi, eta) ->(x, x_0, y_0)) phi(s, xi, eta) = phi(x, x_0, y_0), forall x in I
$
]
#proof[
็จๅ่ฏๆณใๅฆ่ฅไธ็ถ๏ผๅๅๅญๅจ็นๅไฝฟๅพ๏ผ
$
(s_n, xi_n, eta_n) -> (x, x_0, y_0)\
d(phi(s_n, xi_n, eta_n), phi(x, x_0, y_0)) > epsilon
$
ๆณจๆๅฐๆ็งฏๅๆน็จ๏ผ
$
phi(x, xi_n, eta_n) = eta_n + integral_(xi_0)^(x) f(s, phi(s, xi_n, eta_n)) dif s
$
ๅ ๆญค่ฟๆๅ
ณไบ $x$ ็ๅฝๆฐ็ญๅบฆๆถๆไธ่ดๆ็๏ผไธๅฆจๅฐฑๅ่ฎพไธ่ดๆถๆๅฐ $psi(x)$๏ผไธค่พนๅๆ้ๅฐๆ๏ผ
$
lim_(n -> infinity) phi(x, xi_n, eta_n) = y_0 + integral_(x_0)^(x) f(s, lim_(n -> infinity) phi(x, xi_n, eta_n)) dif s
$
๏ผ่ฟ่ฆๅฉ็จ $f$ ไธ่ด่ฟ็ปญ/ๆ็๏ผ\
่กจๆ $lim_(n -> infinity) phi(x, xi_n, eta_n)$ ๅฐฑๆฏ@ori-equation ็ๅฏไธไธไธช่งฃ $phi(x, x_0, y_0)$๏ผไธๅ่ฎพ็็พ๏ผ
]
#corollary[][
็ปๅฎไธๆๅพฎๅๆน็จ๏ผ
$
cases(
y' = f(x, y, lambda),
y(x_0) = y_0
)
$
ๅฏนไบไปปๆ $x_0, y_0, lambda$ ็่งฃ้ฝๅญๅจๅฏไธ๏ผๅ่ฎพ $phi(x, x_0, y_0, lambda)$ ๆฏไธ่ฟฐๆน็จ็่งฃ๏ผๅฎๅฐๆฏ่ฟ็ปญๅฝๆฐ
]
#theorem[ๅ
ๆปไพ่ตๆง][
$
cases(
y' = f(x, y, lambda),
y(x_0) = y_0
)
$
ๅ
ถไธญ $f$ ่ฟ็ปญ๏ผๅฏน $y, lambda$ ๆฏ $C^1$ ็๏ผไธๅฏนไบไปปๆ $x_0, y_0, lambda$ ็่งฃ้ฝๅญๅจๅฏไธ๏ผๅ่ฎพ $phi(x, x_0, y_0, lambda)$ ๆฏไธ่ฟฐๆน็จ็่งฃ๏ผๅฎๅฐๆฏ $C^1$ ็
]
#proof[
็ฑๅฎไน๏ผ$phi$ ๅ
ณไบ $x space C^1$ ๆฏๆพ็ถ็ใๅฏนไบ $y, lambda$๏ผๅ้ขๅ่ฟฐไบ $lambda, y_0$ ไบ็ธ่ฝฌๆข๏ผๅช้่ฏๆๅ
ณไบ $lambda$ ่ฟ็ปญๅฏๅฏผๅฐฑๅฅฝ๏ผ่ฟไธๆญฅ๏ผไธๅฆจๅ่ฎพๆน็จๅฐฑๆฏ๏ผ
$
cases(
y' = f(x, y, lambda),
y(0) = 0
)
$
ไธบไบ่ฏๆ็ป่ฎบ๏ผๆ้ Picard ๅบๅ๏ผ
$
phi_0 = 0\
phi_(n) (x) = integral_(0)^(x) f(s, phi_(n-1), lambda) dif s
$
็ฑไบ่ฟ้ๅ
ณไบ $y$ ๅทฒ็ป $C^1$๏ผLipschitz ๆกไปถๅฝ็ถๆ็ซ๏ผๅ ๆญคๅฎไธ่ดๆถๆๅฐๅๆน็จ็่งฃใๅๆถ๏ผๅฎนๆๅฝ็บณๅพๅฐ $phi_n$ ๅ
ณไบ $lambda$ ้ฝๆฏ $C^1$ ็๏ผ่ฎก็ฎๅฏผๆฐ๏ผ
$
partialDer(phi_n (x), lambda) = integral_(0)^(x) partialDer(f, y) (s, phi_(n-1), lambda) partialDer(phi_(n-1), lambda) + partialDer(f, lambda) (s, phi_(n-1), lambda) dif s
$
่ฟ้ๅฆๆ $lambda, y$ ๆฏ้ซ็ปด็๏ผๆ ้้็จๆขฏๅบฆ/ๅ้ๅฏผๆฐๅณๅฏใ\
็ฑๅๆๅญฆ็ป่ฎบ๏ผๅช้่ฏๆไธ้ข็ๅบๅไธ่ดๆถๆใไธๅฆจ่ฎพ๏ผ
$
norm(partialDer(f, y)), norm(partialDer(f, lambda)) <= M
$
ๅฐๆ๏ผ
$
norm(partialDer(phi_1 (x), lambda)) <= integral_(0)^(x) norm(partialDer(f, lambda) (s, phi_(n-1), lambda)) dif s <= alpha norm(x)\
norm(partialDer(phi_2 (x), lambda)) <= integral_(0)^(x) alpha^2 norm(x) + alpha dif s <= alpha^2 norm(x)^2/2 + alpha norm(x)\
$
ๅฏไปฅๅฝ็บณ่ฏๆๅฎไธ่ดๆ็\
่ฎพ๏ผ
$
V_(k, n) = norm(partialDer(phi_(k+n) (x), lambda) - partialDer(phi_(k) (x), lambda))
$
ๅฐๆ๏ผ
$
V_(k+1, n) = norm(integral_(0)^(x) (partialDer(f, lambda) (s, phi_(k+n), lambda) - partialDer(f, lambda) (s, phi_(k+1), lambda)) \
+ (partialDer(f, y) (s, phi_(k+n), lambda)partialDer(phi_(k+n), lambda) - partialDer(f, y) (s, phi_(k+1), lambda)partialDer(phi_(k+1), lambda) )dif s)\
<= integral_(0)^(x_0) norm(partialDer(f, y) (s, phi, lambda)) v_(k, k+1) dif s\
+ d_(k, n)
$
ๅ
ถไธญ $d_(k, n)$ ๅจ $k$ ๅ
ๅๅคงๆถไธ่ดๆถๆไบ้ถ๏ผๅ ๆญค $exists E_n$ ๅ่ฐไธ้ไฝฟๅพ $d_(k, n) <= E_n$๏ผๅๅผๅไธบ๏ผ
$
V_(k+1, n) <= alpha integral_(0)^(x_0) V_(k, k+1) dif s + E_n
$
ๅฝ็บณ่ฎก็ฎๅฐๅฏๅพๅฐ $V_(k, n)$ ๅ
ณไบ $k$ ไธ่ดๆถๆไบ้ถ๏ผ็ฑๆฏ่ฅฟๆณๅ็ฅ็ป่ฎบๆ็ซ
ๆๅ๏ผๆไปฌ่ฟ่ฆ่ๅฏๅ
ณไบ $x_0$ ็ๅๅฏผๆฐใ่ฟ้ๆไปฌๆ ๆณ็ดๆฅๅธๆถ๏ผๅ ไธบๆไปฌๆฒกๆๅ่ฎพ $f$ ๅ
ณไบ $x$ ๅฏๆฑๅๅฏผ๏ผ่ฟ้ $lambda,y_0$ ๆ ๅ
ณ็ดง่ฆ๏ผไธๅฆจ่ฎพๆน็จไธบ๏ผ
$
cases(
y' = f(x, y),
y(x_0) = 0
)
$
ไป็ถๆ้ Picard ๅบๅ๏ผ
$
phi_0 = 0\
phi_(n) (x) = integral_(x_0)^(x) f(s, phi_(n-1)) dif s
$
็ฑปไผผ็๏ผ่ฎก็ฎ๏ผ
$
partialDer(phi_n, x_0) = -f(x_0, phi_(n-1)) + integral_(x_0)^(x) partialDer(f, y) partialDer(phi_(n-1), x_0) dif s
$
ๆฅไธๆฅ็่ฎก็ฎๆฏๅฎๅ
จ็ฑปไผผ็
]
#remark[][
่ฟ้ๆไปฌไธๅฏนๅ
ณไบ $x$ ็ๅ
ๆปๆงๆๅพ้ซ่ฆๆฑ๏ผๅฝ็ถๆฏๅ ไธบๅพฎๅๆน็จ็่งฃ็ธๅฝไบ $x$ ็็งฏๅ๏ผๅฝ็ถไผๆ้ซๅ
ๆปๆงใ
]
#corollary[][
$
cases(
y' = f(x, y, lambda),
y(x_0) = y_0
)
$
ๅ
ถไธญ $f$ ่ฟ็ปญ๏ผๅฏน $y, lambda$ ๆฏ $C^k$ ็๏ผ$k$ ๅฏ่ฝไธบๆ ็ฉท๏ผ๏ผไธๅฏนไบไปปๆ $x_0, y_0, lambda$ ็่งฃ้ฝๅญๅจๅฏไธ๏ผๅ่ฎพ $phi(x, x_0, y_0, lambda)$ ๆฏไธ่ฟฐๆน็จ็่งฃ๏ผๅฎๅฐๆฏๅ
ณไบ $y_0, lambda$ ๆฏ $C^k$ ็๏ผๅ
ณไบ $x, x_0$ ๆฏ $C^1$ ็
]
#proof[
$C^1$ ๅๅๅทฒ็ป่ฏๆ๏ผๅๆถไนๅฏไปฅๅฐ $y_0$ ๅธๆถ๏ผๅไธบ๏ผ
$
cases(
y' = f(x, y, lambda),
y(0) = 0
)
$
ๅไธบ็งฏๅๆน็จ๏ผ
$
y = integral_(0)^(x) f(s, y, lambda) dif s
$
ๅฏไปฅ็ดๆฅๆฑๅฏผ๏ผ
$
partialDer(y, lambda) = integral_(0)^(x) partialDer(f, y) (s, y, lambda) partialDer(y, lambda) + partialDer(f, lambda) (s, y, lambda) dif s
$
่ฎพ $p = partialDer(y, lambda)$๏ผๅฐๆ๏ผ
$
p' = partialDer(f, y) (x, y, lambda) p + partialDer(f, lambda) (x, y, lambda)
$
่ฟๆฏๅ
ณไบ $p$ ็็บฟๆงๅพฎๅๆน็จ๏ผ่ๅณไพงๅ
ณไบ $lambda$ ๆฏ $C^(k-1)$๏ผๅ
ณไบ $y$ ๆฏ $C^infinity$ ็๏ผไธๆญๅฉ็จๅฎ็ๅณๅฏ
]
#remark[][
ไธ้ข็ๅฎ็ๆขๆๅ
ณไบ $y, lambda$ ่งฃๆไนๅฏน๏ผๆข็ถ Picard ๅบๅไธญๆฏไธ้กน็่งฃๆ๏ผ่่งฃๆๅฝๆฐ็ไธ่ดๆถๆๆ้ไนๆฏ่งฃๆ็
]
#corollary[][
ๅจไธ้ข็ๅฎ็ไธญๅฐๆกไปถๆขๆ $f$ ๅฏนๆๆๅๆฐ้ฝ $C^k$๏ผๅ $phi$ ๅฐฑๆฏ $C^k$ ็
]
#proof[
ๆญคๆถไธๅฆจๅฐๆๆ็ณปๆฐๅธๆถ่ฟๅๆฐ๏ผๅช้็ ็ฉถๆน็จ๏ผ
$
cases(
der(y, x) = f(x, y, x_0, y_0, lambda),
y(0) = 0
)
$
ๅ้ขๅทฒ็ป่ฏๆๅ
ณไบ $x_0, y_0, lambda$ ้ฝๆฏ $C^k$ ็๏ผๅช้่่ๅ
ณไบ $x$ ็๏ผ็ถ่๏ผ
$
partialDer(phi, x) = f(x, phi, x_0, y_0, lambda)
$
ๅ้ขๅทฒ็ป่ฏๆ $phi$ ๆฏ $C^1$ ็๏ผไธๅผ่กจๆ $phi$ ๅฐๆฏ $C^2$ ็๏ผ็ปง่ๅฝ็บณๅฏๅพ $phi$ ๆฏ $C^k$ ็
]
#corollary[่งฃๅฏนๅๅผๅๅๆฐ็ๅ
ๆปไพ่ตๆง ๆ็ป็ๆฌ][
ๅจไธ้ข็ๅฎ็ไธญๅฐๆกไปถๆขๆ $f$ ๅฏนๆๆๅๆฐ้ฝ $C^(k-1)$๏ผไธๅฏน $y, lambda$ ๆฏ $C^k$ ็๏ผๅ $phi$ ๅฐฑๆฏ $C^k$ ็
]
#proof[
ๅทฒ็ป่ฏๆไบ $k = 1$ ๆถๆ
ๆฏ๏ผๅๆถ $phi in C^(k-1)$ ไนๅทฒ็ปๆ็ซ๏ผๅๆ ทๅฏไปฅ็ดๆฅ็ๅฐๅ
ณไบ $x$ ๆฏ $C^k$ ็๏ผๅนถไธๆณจๆๅฐ๏ผ
$
partialDer(phi, x) = f(x, phi, lambda)\
partialDer(partialDer(phi, x), x_0) = partialDer(f, y) partialDer(phi, x_0)
$
ไปค $Y = partialDer(phi, x_0)$ ๏ผๅฐๆๅพฎๅๆน็จ๏ผ
$
Y' = partialDer(f, y) Y
$
ไธๅผๅณ็ซฏๅ
ณไบๆๆๅๆฐ้ฝๆฏ $C^(k-1)$ ็๏ผๅ ๆญค $Y$ ๅ
ณไบ $x_0$ ไนๆฏ $C^(k-1)$๏ผ่ฟๅฐฑ่ฏๆไบๅฏน $x_0$ ็ๅฏๅพฎๆง\
]
#example[][
$
cases(
y' = y + mu (x^2 + y^2),
y(0) = 1
)
$
่ฏๆฑ $partialDer(phi, mu)|_(mu = 0)$
ไบๅฎไธ๏ผๅฎนๆ็ๅบ $f$ ๆฏ่งฃๆๅฝๆฐ๏ผ็ปง่ๅฎ็่งฃ้ฝ่งฃๆ๏ผๆไปฌ็ดๆฅๆฑๅๅฏผๅนถไบคๆข้กบๅบ๏ผ
$
partialDer(partialDer(phi, x), mu) = partialDer(phi, mu) + (x^2 + phi^2) + 2 mu phi partialDer(phi, mu)
$
่ฎพ $u = partialDer(phi, mu)$๏ผๅฎๆปก่ถณๅพฎๅๆน็จ๏ผ
$
u' = u + (x^2 + phi^2) + 2 phi u mu = (1 + 2 phi mu) u+ x^2 + phi^2
$
่ฟๆฏๅ
ณไบ $u$ ็ไธ้ถ็บฟๆงๅพฎๅๆน็จ\
ๅๆถ๏ผๆณจๆๅฐ $mu = 0$ ๆถๆน็จๆฏๅฅฝ่งฃ็๏ผๅ ๆญค๏ผ
$
phi(x, 0) = e^x
$
ไปฃๅ
ฅๅพ๏ผ
$
u' = u + x^2 + e^(2 x)
$
่งฃๅบ $u(x, 0) = e^(2 x) - x - 1$
]
== ๅฑ้จๅๆข
ๆฌ็ซ ็ๅ
ๅฎนๆฏไป็่ฎบไธ็ ็ฉถๅพฎๅๆน็จใ
#definition[่ชๆฒป็ณป็ป][
่ชๆฒป็ณป็ปๆฏๆๅฝขๅฆ๏ผ
$
cases(
der(x, t) = f(x),
x(t_0) = x_0
)
$
]
ๅฑ้จๅๆขๆฏๅธๆๅฐไธไธช่ชๆฒป็ณป็ป็่งฃๅจๅฑ้จๅๆขไธบๅฆไธไธชๅธธๅพฎๅๆน็จ็่งฃใ
#definition[][
- ็งฐ $x_0$ ๆฏๅธธ็น๏ผๅฆๆ $f(x_0) != 0$
- ็งฐ $x_0$ ๆฏๅฅ็น/ๅนณ่กก็น๏ผๅฆๆ $f(x_0) = 0$
]
#theorem[][
่ฎพ $U$ ๆฏๅพฎๅๅ่๏ผ$x = U(y)$๏ผๅฐๅพฎๅๆน็จ๏ผ
$
der(x, t) = f(x)
$
ๅๆ
$
der(y, t) = g(y)
$
ๅ๏ผ
$
g(y) = Inv((U')) f(x)
$<local-transform>
่ฟ้ $U$ ๆๅพฎๅๅ่็้
ๅฏๆฏ็ฉ้ต
]
#proof[
$
der(U y, t) = f(x)\
U' der(y, t) = f(x)\
U' g(y) = f(x)
$
]
#definition[][
่ฎพไธคไธชๅพฎๅๆน็จ๏ผ
$
der(x, t) = f(x)\
der(y, t) = g(y)
$
ไน้ด๏ผๅญๅจ $C^k$ ็ๅพฎๅๅ่ไฝฟๅพๆปก่ถณ@local-transform ๏ผๅ็งฐไธคไธชๆน็จ $C^k$ ็ญไปทใ\
็ฑปไผผ็๏ผ่ฅๅจ $x_0$ ๅค็ๆไธช้ปๅๅญๅจ $C^k$ ็ๅพฎๅๅ่ไฝฟๅพๆปก่ถณ@local-transform ๏ผๅ็งฐไธคไธชๆน็จๅจ $x_0$ ๅคๅฑ้จ $C^k$ ็ญไปทใ
]
#theorem[ๅธธ็น็ $C^k$ ๅ็ฑป/ๆ็ดๅฎ็][
่ฎพๅพฎๅๆน็จ $der(x, t) = f(x)$ ๆปก่ถณ $f(0) != 0$๏ผๅๆน็จๅจ $0$ ๅคๅฑ้จ $C^k$ ็ญไปทไบ๏ผ
$
der(y, t) = Y(y), Y(y) = vec(1, 0, dots.v, 0)
$
]
#proof[
#let vc = $vec(1, 0, dots.v, 0)$
่ฎพ $f_i (x)$ ๆฏๅ้๏ผไธๅฆจ่ฎพ $f_1 (0) != 0$\
ๆพ็ถ็ฌฌไบไธชๆน็จ็่งฃๅฐฑๆฏ๏ผ
$
psi = y_0 + t vc
$
่ฎพ $phi(t, x_0)$ ๆฏๅๆน็จ็่งฃ๏ผไปค:
$
U(0) = 0\
U(y) = phi(y_1, 0, y_2, dots, y_(n))
$
ไธบไบ้ช่ฏๅพฎๅๅ่๏ผ่ฎก็ฎ๏ผ
$
abs(der(U, y)) = abs(partialDer(phi, t) der(y_1, y) + partialDer(phi, x_0) der((0, y_2, ..., y_n)^T, y))\
= abs(f(phi) der(y_1, y) + partialDer(phi, x_0) der((0, y_2, ..., y_n)^T, y))
$
ๆญคๅค๏ผๅฐๆ๏ผ
$
U(psi(t, y)) = U(t+y_1, y_2, ..., y_n) = phi(t+y_1, 0, y_2, ..., y_n)
$
ๆฑๅฏผๅไปค $t = 0$ ๅฏๅพ๏ผ
$
U'(y) Y(y) = f(phi(y_1, 0, y_2, ... y_n)) = f(U(y))
$
่ฏๆฏ
]
่ฏดๆๅธธ็น็ๅฑ้จ็ญไปทๅ็ฑปๆฏ้ๅธธ็ฎๅ็๏ผๆฅไธๆฅๆไปฌ่่ๅฅ็นๅค็ๅฑ้จ็ญไปทๅ็ฑป
#theorem[][
็บฟๆงๅพฎๅๆน็จ $x' = A x, x' = B x$ ๅจ $0$ ๅคๅฑ้จ $C^k$ ็ญไปทๅฝไธไป
ๅฝ $A, B$ ็ธไผผ
]
#proof[
ไปปๅๅพฎๅๅ่ $U$ ๅจ $0$ ๅคๆณฐๅๅฑๅผ่ฎก็ฎๅณๅฏ
]
ๅฏนไบไธ่ฌ็ๆน็จ๏ผๆไปฌๅฝ็ถๅธๆ้่ฟๆณฐๅๅฑๅผๅฐๅ
ถๅไธบ็บฟๆงๆน็จใ็ถ่ๆน็จ $x' = A x + o(x)$ ๅฝ็ถไธๆปๆฏไธ $x' = A x$ ็ญไปท๏ผ่ณๅฐๆไปฌ้่ฆ $A$ ้้ๅใๅจไปไนๆกไปถไธๅฏไปฅๅฐๅ
ถๅไธบ็บฟๆงๆน็จๆฏไธไธชไธ็บชๅธธๅพฎๅๆน็จ็ ็ฉถ็้่ฆ่ฏพ้ขไนไธ
#theorem[][
่ฎพ $f(x) = A x + o(x)$ ๆฏ $C^infinity$ ็๏ผ่ $A$ ็็นๅพๆ นๆปก่ถณ้ๅ
ฑๆฏๆกไปถ๏ผ
$
sum_(i = 1)^n m_i lambda_i != 0, (m_i) in ZZ^n - {0}
$
ๅๆน็จ $x' = f(x)$ ๅจ $0$ ๅคๅฑ้จ $C^infinity$ ็ญไปทไบ $x' = A x$
]
= ็บฟๆงๅพฎๅๆน็จ
== ไธ่ฌ็บฟๆงๅพฎๅๆน็จ
ๆนไพฟ่ตท่ง๏ผ่ฟ้็บฆๅฎๅฏนๅ้/็ฉ้ต็ๆฑๅฏผ/็งฏๅ้ฝๆฏ้ๅ
็ด ่ฟ่ก็
#definition[][
่ฎพ $x in RR^n, t in RR$\
็งฐๅพฎๅๆน็จ๏ผ
$
der(x, t) = A(t) x + B(t)
$<linear-equation>
ไธบไธ่ฌ็บฟๆงๅพฎๅๆน็จ๏ผๅฆๆ $A, B$ ้ฝๅ
ณไบ $t$ ่ฟ็ปญ
]
#proposition[][
- ไธ่ฌ็บฟๆงๅพฎๅๆน็จๅจไปปไฝ็นๅค็่งฃ้ฝๅญๅจๅฏไธ
- ๆฏไธช่งฃๆปๆฏๅจๅคง่ๅดๅญๅจ
]
#proof[
- ๅฐฑๆฏ @peano
- ๅฐฑๆฏ @linear_all_range
]
ไธ่ฌ่่จ๏ผๅฝ $A(t)$ ไธๆฏๅธธๆฐๆถ๏ผๆน็จๆฏๆ ๆณๅๅบ่งฃ็ใๆไปฌ็็ฎๆ ๆฏ็ ็ฉถ่งฃ็ฉบ้ด็ๆง่ดจใ
== ้ฝๆฌก็บฟๆงๅพฎๅๆน็จ
#definition[][
ๅจ @linear-equation ไธญ๏ผ่ฅ $B(t) = 0$๏ผๅ็งฐไนไธบ้ฝๆฌกๅพฎๅๆน็จ
]
#proposition[][
- ้ฝๆฌก็บฟๆงๆน็จ็่งฃๆๆ็บฟๆง็ฉบ้ด
- ้ฝๆฌก็บฟๆงๆน็จ็่งฃ่ฆไนๆไธบ้ถ๏ผ่ฆไนๆไธไธบ้ถ
- ้ฝๆฌก็บฟๆงๆน็จ็่ฅๅนฒ่งฃ็บฟๆง็ธๅ
ณๅฝไธไป
ๅฝๅจๅญๅจๆ็น๏ผๅฎไปฌๅจ่ฏฅ็น็บฟๆง็ธๅ
ณ
]<homogeneous-linear>
#proof[
- ็ฎๅ้ช่ฏๅณๅฏ
- ๆณจๆๅฐ $x = 0$ ๆฏๅนณๅก่งฃ๏ผ็ปๅ่งฃ็ๅฏไธๆง็ซๅพ
- ๆณจๆๅฐ่ฅๅนฒ่งฃ็็บฟๆง็ปๅ่ฟๆฏ่งฃ๏ผๅฉ็จไธไธๆกๆง่ดจ็ซๅพ
]
#theorem[][
$n$ ็ปด้ฝๆฌก็บฟๆงๅพฎๅๆน็จ็่งฃ็ฉบ้ดๆฐไธบ $n$ ็ปด็บฟๆง็ฉบ้ดใๆข่จไน๏ผ่ฅๅฏไปฅๆพๅฐ $n$ ไธช็บฟๆงๆ ๅ
ณ็่งฃ๏ผๅๅฎไปฌ็ๆ็็บฟๆง็ฉบ้ดๆฐไธบ่งฃ็ฉบ้ด๏ผ่ฟ็งฐไธบๆน็จ็้่งฃ
]
#proof[
ไปค $e_i$ ๆฏ $RR^n$ ไธญไธ็ปๆ ๅๅบ๏ผไปค $x_i (t)$ ๆฏๆน็จ๏ผ
$
cases(
der(x, t) = A(t) x,
x(t_0) = e_i
)
$
็ไธไธช่งฃ๏ผๆญ่จๅฎไปฌๅฐฑๆฏๅๆน็จ่งฃ็ๅบ
- ้ฆๅ
๏ผๅฎไปฌ็บฟๆงๆ ๅ
ณ๏ผๆข็ถๅฎไปฌๅจ $t_0$ ๅค็บฟๆงๆ ๅ
ณ๏ผๅฉ็จ @homogeneous-linear ๅณๅฏ
- ๅ
ถๆฌก๏ผไปปๅๅๆน็จ็ๅๅผไธบ $x(t_0) = x_0$๏ผไปค๏ผ
$
x(t) = sum_i x_0^i x_i (t)
$
ๅฎนๆ็ๅบ $x(t)$ ไนๆฏ็ฌฆๅ่ฏฅๅๅผ็่งฃ๏ผ็ฑๅฏไธๆง่ฟๅฐฑๆฏๅฏไธไธไธช่งฃ
่ฏๆฏ
]
#definition[][
่ฅ็ฉ้ต $X$ ๆฏ้ฝๆฌก็บฟๆงๅพฎๅๆน็จ็่งฃ๏ผไนๅณ๏ผ
$
der(X, t) = A(t) X
$
ๅ็งฐไนไธบ็ฉ้ต่งฃใๆพ็ถ็ฉ้ตๆฏ่งฃๅฝไธไป
ๅฝๆฏไธๅ้ฝๆฏๅๆน็จ็ไธไธช่งฃ๏ผ็ปง่่ฏฅ็ฉ้ต็ๅ็งฉ่ณๅคไธบ $n$๏ผๆฐไธบ $n$ ๆถ็งฐไนไธบๅบๆฌ่งฃ็ฉ้ตๆ่
ๅบ่งฃ้ต
]
#proposition[][
็ฉ้ต่งฃ $X$ ๆฏๅบ็ก่งฃ็ฉ้ตๅฝไธไป
ๅฝๅจๆไธช็นไธๆ $det(X) != 0$
]
#proof[
ๅฐฑๆฏ @homogeneous-linear
]
#theorem()[][
่ฎพ $Phi(t)$ ๆฏๅบ่งฃ้ต๏ผๅ $X(t)$ ๆฏๅบ่งฃ้ตๅฝไธไป
ๅฝๅญๅจๅฏ้็ฉ้ต $C$ ไฝฟๅพ๏ผ
$
Phi(t) C = X(t)
$
]
#proof[
ๆณจๆๅฐๆฑๅฏผๆฏ็บฟๆง็๏ผๅ ๆญค๏ผ
$
der(Phi(t) C, t) = der(Phi(t), t) C = A(t) Phi(t) C
$
ๅ ๆญค $Phi(t) C$ ็กฎๅฎๆฏ่งฃ๏ผ่ฎก็ฎ่กๅๅผๅฏๅพๅฎๆฏๅบ็ก่งฃ็ฉ้ต
ๅฆไธๆน้ข๏ผ่ฎพ $X(t)$ ๆฏๅบ็ก่งฃ็ฉ้ต๏ผไปปๅ $t_0$ ๅนถ่ฎพๆ๏ผ
$
Phi(t_0) C = X(t_0)
$
ๆณจๆๅฐ $ Phi(t_0), X(t_0)$ ้ฝๆฏๅฏ้็ฉ้ต๏ผ$C$ ๅฝ็ถๅญๅจ\
ๆญคๆถ $X(t) - Phi(t) C$ ๆฏๅๆน็จๆ้ถ็น็่งฃ๏ผๅฐฑๆฏ้ถ
]
#proposition()[Liouville][
่ฎพ $x_i$ ๆฏ $n$ ไธช่งฃ๏ผ่ฎพ $det(x_1, x_2, ..., x_n) := W(t)$๏ผๅ๏ผ
$
W'(t) = tr(A(t)) W(t)
$
]
#proof[
ๅฎนๆๅ็ฐ๏ผ
$
W'(t) = sum_i det(x_1, x_2, ..., x'_i, ..., x_n) = sum_i det(x_1, x_2, ..., A x_i, ..., x_n)
$
#lemmaLinear[][
$
sum_i det(x_1, x_2, ..., A x_i, ..., x_n) = tr(A) det(x_1, x_2, ..., x_n)
$
]
]
== ้้ฝๆฌก็บฟๆงๅพฎๅๆน็จ
#proposition[][
่ฎพ็บฟๆงๅพฎๅๆน็จ๏ผ
$
x' = A(t) x + B(t)
$
ๅ๏ผ
- ไปปๆไธคไธช่งฃ็ๅทฎๆฏๅฏนๅบ้ฝๆฌก็บฟๆงๅพฎๅๆน็จ $x' = A(t) x$ ็่งฃ
- ่ฎพ $gamma(t)$ ๆฏไธไธช็น่งฃ๏ผไปปๆไธไธช่งฃ๏ผ๏ผ$X$ ๆฏๅฏนๅบ้ฝๆฌกๅพฎๅๆน็จ็่งฃ็ฉบ้ด๏ผๅๅๆน็จ็ๆๆ่งฃไธบ $gamma(t) + X$
]
#proposition[ๅธธๆฐๅๆๆณ][
่ฎพ $Phi(t)$ ๆฏ $x' = A(t) x$ ็ๅบๆฌ่งฃ็ฉ้ต๏ผๅ $x' = A(t) x + f(t)$ ็่งฃๅฏไปฅ้่ฟๅธธๆฐๅๆ๏ผ
$
x = Phi(t) C(t)\
Phi'(t) C(t) + Phi(t) C'(t) = A(t) Phi(t) C(t) + f(t)\
Phi(t) C'(t) = f(t)\
C'(t) = Inv(Phi(t)) f(t)\
C(t) = integral_(t_0)^(t) Inv(Phi(s)) f(s) dif s
$
่ฟ็ปๅบไบๅฏ่ก็ $C$
]<constant-variation>
ไธ่ฟฐๅฝ้ข่กจๆ๏ผ่งฃไธ่ฌ็บฟๆงๅพฎๅๆน็จ็ๅฐ้พๆ นๆฌไธๆฅๆบไบๆฑ้ฝๆฌก็บฟๆงๅพฎๅๆน็จๅบ็ก่งฃ็ฉ้ต็ๅฐ้พ
== ๅธธ็ณปๆฐ็บฟๆงๅพฎๅๆน็จ
ไธบไบๅ่ฟฐๆนไพฟ๏ผๆไปฌๅ
็ปๅบ็ฉ้ตๅน็บงๆฐ๏ผๆๆฐ็ญๅฎไน
#definition[][
- ๆฌ่ไธญๅฎไน็ฉ้ต็ๆจกไธบ $sum_(i, j) abs(a_(i j))$ ๆ $max_(abs(x) = 1) abs(A x)$๏ผๅฎไปฌ้ฝๆปก่ถณ $abs(A B) <= abs(A) abs(B)$
- ๅฝขๅผๅฎไน๏ผ
$
e^A = sum_(n = 0)^infinity A^n/n!
$
ๆณจๆๅฐ็ฉ้ต็ปๅฏนๆถๆๅช้่ฆๆฏไธชๅ้็ปๅฏนๆถๆ๏ผๅๆถ
$
sum_(n = 0)^infinity abs(A^n/n!) <= sum_(n = 0)^infinity abs(A)^n/n! = e^(abs(A)) < +infinity
$
ๆปก่ถณๆง่ดจ๏ผ
- ่ฅ $A B = B A$ ๅ $e^(A + B) = e^A e^B$
- $det(e^A) = e^(tr(A)) > 0$๏ผ่ฏๆ้่ฆ่ฅๅฝๆ ๅๅ๏ผ
]
#theorem[][
็ปๅฎๅธธ็ณปๆฐๅพฎๅๆน็จ $y' = A y + f(x)$ ๏ผๅ $e^(A x)$ ๆฏๆน็จ็ๅบ็ก่งฃ็ฉ้ต
]
ไปฅไธ็ป่ฎบ้ๅธธๆผไบฎ๏ผ็ปๅไนๅ็็่ฎบๆไปฌๅฏไปฅๆฑ่งฃๅบๆน็จ็้่งฃใๅฏไธ็้ฎ้ขๆฏๆ็
งๅฎไนๆฑๅบ $e^(A x)$ ๅนถไธๅฎนๆใ
#example[][
็ฑ็บฆๅฝๆ ๅๅ๏ผๅฏ่ฎพ๏ผ
$
A = P D P^(-1)\
D = sum_(d=1)^(d_max) sum_(lambda in Lambda) sum_s lambda I + J_(d s)
$
ๅ
ถไธญ $d$ ๆฏ็บฆๅฝๅ็ปดๅบฆ๏ผ$s$ ไปฃ่กจไธๅ็ๅใ่ฟไบๅ้ฝๅจไธๅ็ไฝ็ฝฎไธ๏ผไน็งฏไธบ้ถ๏ผๅ ๆญค๏ผ
$
D^n = (sum_(d) sum_(lambda in Lambda) sum_s lambda I + J_(d s))^n\
= sum_(d) sum_(lambda in Lambda) sum_s (lambda I + J_(d s))^n\
= sum_(d) sum_(lambda in Lambda) sum_s sum_(i=0)^n C_n^i lambda^(n-i) J_(d s)^i\
= sum_(d) sum_(lambda in Lambda) sum_s sum_(i=0)^(min {d, n}) C_n^i lambda^(n-i) J_(d s)^i\
$
ๆณจๆๅฐ $n > d$ ๆถไธๅผ็ๆฑๅ้กนๆฐๅทฒไธ $n$ ๆ ๅ
ณ๏ผ$n < d$ ไป
ๆๆ้ไธช๏ผๅ ๆญคๅฏไปฅๆฑๅบ $D^n$ ็้ๅผ๏ผๅฉ็จ๏ผ
$
e^(A x) = sum_(k=0)^infinity A^k/k! x^k = P (sum_(k=0)^infinity D^k/k! x^k) Inv(P)\
= P (sum_(k=0)^infinity 1/k! (sum_(d) sum_(lambda in Lambda) sum_s sum_(i=0)^(min {d, k}) C_k^i lambda^(k-i) J_(d s)^i x^k)) Inv(P)\
= P (sum_(k=0)^infinity 1/k! (sum_(d) sum_(lambda in Lambda) sum_s sum_(i=0)^(min {d_max, k}) C_k^i lambda^(k-i) J_(d s)^i x^k)) Inv(P)\
= P (sum_(k=0)^d_max 1/k! (sum_(d) sum_(lambda in Lambda) sum_s sum_(i=0)^(n) C_k^i lambda^(k-i) J_(d s)^i x^k) + sum_(k=d_max + 1)^infinity 1/k! (sum_(d) sum_(lambda in Lambda) sum_s sum_(i=0)^(d_max) C_k^i lambda^(k-i) J_(d s)^i x^k)) Inv(P)\
= P (sum_(k=0)^d_max 1/k! (sum_(d) sum_(lambda in Lambda) sum_s sum_(i=0)^(k) C_k^i lambda^(k-i) J_(d s)^i x^k) + sum_(d) sum_(lambda in Lambda) sum_s sum_(i=0)^(d_max) J_(d s)^i sum_(k=d_max + 1)^infinity 1/k! C_k^i lambda^(k-i) x^k ) Inv(P)\
$
ไธๅผ็ฌฌไบ้กนๅฏไปฅๆฑๅพ๏ผ็ฌฌไธ้กนไป
ๆๆ้้กน
ๅฝ็ถ๏ผ่ฟ้็่ฎก็ฎๆฏๆๅ
ถ้บป็ฆ็ใๆไบๆถๅ๏ผๆไปฌๅฏไปฅ็จๆๅทงๅคงๅคง็ฎๅ๏ผไพๅฆ๏ผ
- ่ฅ $A$ ๅฏๅฏน่งๅ๏ผๅ $d_(max) = 0$ ไธๅผ็ฎๅไธบ๏ผ
$
P (sum_(lambda in Lambda) sum_s sum_(k=0)^infinity 1/k! lambda^(k) x^k J_(0 s) ) Inv(P) = P e^(D x) Inv(P)
$
- ่ฅๅฏๆฑๅพ $A$ ็้ถๅๅค้กนๅผ๏ผๅฏไปฅๅฐ่ฏ้ๆฌก
- ่ฅ $A$ ไป
ๆไธไธช็นๅพๅผ $lambda$ ๅๆ๏ผ
$
e^(A x) = e^(lambda x) e^((A - lambda) x)
$
ๅ่
็ฌฌไบ้กนๆฏๅน้ถ็ฉ้ต๏ผๅฏไปฅ็ดๆฅๆฑๅบ
]
#example[][
ๅคง้จๅๆถๅๅฆๆๅชไธบไบๆฑๆน็จ็่งฃ๏ผๆฒกๅฟ
่ฆๅฎๆด็ฎๅบ $e^(A x)$ ๏ผๆข็ถ่ฅ่ฎพ๏ผ
$
e^(A x) = P e^(D x) Inv(P)
$
ๅ $e^(A x) P = P e^(D x)$ ไนๆฏๅบ็ก่งฃ็ฉ้ต๏ผๅฎไผๆดๅ ๅฅฝๆฑ๏ผๆข็ถ $D$ ๆฏๅฏน่ง/็บฆๅฝ็ฉ้ต๏ผ$e^(D x)$ ๆฏๅฎนๆๆฑ็๏ผ่ $P$ ๆฐ็ฑ็นๅพๅ้/ๅพช็ฏๅญ็ฉบ้ด็ๅบๆๆใ
]
#example[][
ๆไบๅฝขๅผ่พๅฅฝ็ๆน็จๅนถไธ็จไฝฟ็จไธ้ข็ไธ่ฌๆนๆณๆฑ่งฃ๏ผไพๅฆ๏ผ
$
cases(
x' = y + z,
y' = x + y,
z' = x + z
)
$
ไธๅผ็ธๅ ๏ผ็ซๅพ $(x + y + z)' = x' + y' + z' = 2 (x + y + z), x+ y + z = C_1 e^(2t)$๏ผไปฃๅๅพ $x' = e^(2 t) - x$ ่งฃๅบๅณๅฏ
]
== ้ซ้ถ็บฟๆงๅพฎๅๆน็จ
#theorem[][
็ปๅฎ้ซ้ถ็บฟๆงๅพฎๅๆน็จ๏ผ
$
x^((n)) + a_(n-1)(t) x^((n-1)) + dots + a_1(t) x' + a_0(t) x = f(t)
$
ๅฏๅๆขๅ
๏ผไปค๏ผ
$
x_0 = x\
x_1 = x'\
...\
x_n = x^((n))
$
ๆน็จๅไธบๅคๅ
็บฟๆงๅพฎๅๆน็จ๏ผ
$
vec(x_0, x_1, dots.v, x_(n-1), x_n)' =
mat(0, 1, ...,0, 0;
0, 0, ...,0, 0;
dots.v, dots.v, ..., dots.v, dots.v;
0, 0, ..., 0, 1;
-a_0 (t), -a_1 (t), ..., -a_(n-1) (t), 1) vec(x_0, x_1, dots.v, x_(n-1), x_n) + vec(0, 0, dots.v, 0, f(t))
$
ๅ ๆญค๏ผๅฏไปฅๅฉ็จ็บฟๆงๆน็จ็ป็็่ฎบ็ฅ้๏ผ
- ๆน็จ็่งฃๆฏ้ฝๆฌก็บฟๆงๆน็จ็่งฃ็ฉบ้ด $n$ ็ปด็บฟๆง็ฉบ้ดๅ ไธไธไธช็น่งฃ
- ็ปๅฎๅๅผ $x(0), x'(0), ..., x^((n))(0)$ ๅๆน็จ็่งฃๅฏไธๅญๅจ๏ผไธ่งฃๆฏๅคง่ๅด็
]
#lemma[Wronskian][
ๅ่ฎพ $x_1 (t), x_2 (t), ..., x_n (t)$ ้ฝ $n-1$ ้ถๅฏๅฏผ๏ผๅ็งฐ๏ผ
$
Det(x_1, x_2, ..., x_n;
x'_1, x'_2, ..., x'_n;
dots.v, dots.v, ..., dots.v;
x_1^((n-1)), x_2^((n-1)), ..., x_n^((n-1))) = W(t)
$
ไธบๆๆฏๅบ่กๅๅผใ่ฅ่ฟไบๅฝๆฐ็บฟๆง็ธๅ
ณ๏ผๅๆๆฏๅบ่กๅๅผๆไธบ้ถใๅไน็ป่ฎบไธ่ฌๆฏไธๆ็ซ็๏ผไฝ่ฅ่ฟไบๅฝๆฐๆฏ้ฝๆฌก็บฟๆงๅพฎๅๆน็จ็่งฃ๏ผๅๅๅฝ้ขไนๆ็ซใ
]
#proof[
่ฎพ $sum_i c_i x_i (t) = 0$๏ผๅฏนไบไปปๆ $t$ ๅๅคๆฑๅฏผๅฏๅพ๏ผ
$
mat(x_1, x_2, ..., x_n;
x'_1, x'_2, ..., x'_n;
dots.v, dots.v, ..., dots.v;
x_1^((n-1)), x_2^((n-1)), ..., x_n^((n-1)))vec(c_1, c_2, dots.v, c_n) = 0
$
็บฟๆง็ธๅ
ณๆง็ธๅฝไบไธ้ข็้ฝๆฌก็บฟๆงๆน็จๆ้้ถ่งฃ๏ผๅ ๆญค่กๅๅผไธบ้ถ๏ผ่ฏๆฏใ
่ณไบๅๅฝ้ข๏ผไธไธช็ฎๅ็ๅไพๆฏ $x^2, x abs(x)$๏ผ่้ฝๆฏๅไธไธช้ฝๆฌกๆน็จ็่งฃ็ๆ
ๅฝขๅฐฑๆฏ @homogeneous-linear
]
#example[][
ๅ่ฎพๆไปฌๅทฒๆฑๅบ้ฝๆฌกๆน็จ็่งฃ๏ผๆ นๆฎ @constant-variation ๅฝ็ถๅฏไปฅ้่ฟๅธธๆฐๅๆๆฑๅบ็บฟๆงๆน็จ็่งฃใๅฎ้
่ฟไนๅๆถ๏ผๆไปฌ่ฆ้ๅฐๅฏน๏ผ
$
sum_i c_i (t) x_i (t)
$
ๆฑ $n$ ้ถๅฏผ็้ฎ้ข๏ผ็ฑไบๆไปฌๅช้่ฆไธไธช่งฃๅณๅฏ๏ผไธๅฆจๆทปๅ ๆกไปถ๏ผ
$
sum_i c'_i (t) x_i (t) = 0\
sum_i c'_i (t) x'_i (t) = 0\
...\
sum_i c'_i (t) x_i^((n-1)) (t) = 0
$
่ฟๆ ทๆฑๅฏผ็ๅฝขๅผๅฐฑๅพ็ฎๅ๏ผ
$
(sum_i c_i (t) x_i (t)) ' = sum_i c_i (t) x'_i (t) \
(sum_i c_i (t) x_i (t)) '' = sum_i c_i (t) x''_i (t) \
...\
(sum_i c_i (t) x_i (t)) ^((n-1)) = sum_i c_i (t) x^((n-1))_i (t)\
(sum_i c_i (t) x_i (t)) ^((n)) = sum_i c_i (t) x^((n))_i (t) + sum_i c'_i (t) x^((n-1))_i (t)
$
ๆ็ปๆน็จๅๆ๏ผ
$
sum_i a_i (sum_i c_i (t) x_i (t)) ^((i)) = f(t)\
a_n sum_j c'_i (t) x^((n-1))_i (t) + sum_i a_i (sum_j c_j (t) x^((i))_j (t)) = f(t)\
a_n sum_j c'_i (t) x^((n-1))_i (t) = f(t)
$
่ฟๆฏๅ ไธบไธญ้ดๅๅบไบ้ฝๆฌกๆน็จ็่งฃ๏ผๅ ๆญคๅฏไปฅ็ดๆฅๆถๅปใๅ ไธไนๅ็ๅ่ฎพๆน็จๅๆๅ
ณไบ $c'_i$ ็็บฟๆงๆน็จ็ป๏ผๆฑ่งฃๅณๅฏ ใ
]
#lemma[][
ๅฏนไบไบ้ถ้ฝๆฌก็บฟๆงๅพฎๅๆน็จ๏ผ
$
x'' + a(t) x' + b(t) x = 0
$
่ฎพๆไธคๆ ๅ
ณ่งฃ $x_1, x_2$ ไธ้พ้ช่ฏ่ฅไปค๏ผ
$
W = Det(x_1, x_2; x'_1, x'_2) = x_1 x'_2 - x'_1 x_2
$
ๅๆ๏ผ
$
W'
&= x'_1 x'_2 + x_1 x''_2 - x''_1 x_2 - x'_1 x'_2 = x_1 x''_2 - x''_1 x_2 \
&= - x_1 (a(t) x'_2 + x_2) + x_2 (a(t) x'_1 + x_1) \
&= - a(t) (x_1 x'_2 - x'_1 x_2) \
&= - a(t) W
$
ๅฏไปฅ็ดๆฅ่งฃๅบ $W$๏ผๆญคๆถๅ่ฎพ $x_1$ ๅทฒ็ฅ๏ผๆน็จๅๆไบๅ
ณไบ $x_2$ ็ไธ้ถ็บฟๆงๅพฎๅๆน็จ๏ผๆฏๅฏ่งฃ็ใ่ฟ่กจๆๅฏนไบไบ้ถ้ฝๆฌก็บฟๆงๅพฎๅๆน็จ๏ผ่ฅๅทฒ็ฅไธไธช่งฃ๏ผๅฆไธไธช่งฃๅฏไปฅ้่ฟไธ้ถ็บฟๆงๅพฎๅๆน็จๆฑๅบใ
]
#theorem[][
ๅฏนไบไบ้ถๅธธ็ณปๆฐ้ฝๆฌก็บฟๆงๅพฎๅๆน็จ๏ผ
$
x^((n)) + a_(n-1)(t) x^((n-1)) + dots + a_1(t) x' + a_0(t) x = 0
$
่ฎพ๏ผ
$
p(lambda) = lambda^n + a_(n-1) lambda^(n-1) + dots + a_1 lambda + a_0
$
ๆ $s$ ไธชไธๅๆ น $lambda_i$ ๏ผ้ๆฐๅๅซไธบ $m_1, m_2, ..., m_s$๏ผๅ๏ผ
$
x^k e^(lambda_i x) forall k <= m_i, forall i = 1, 2, ..., s
$
ๆฐๆๆไธ็ปๅบ็ก่งฃ
]
#proof[
่ฎพ $L(x) = x^((n)) + a_(n-1)(t) x^((n-1)) + dots + a_1(t) x' + a_0(t) x$๏ผๅๆ๏ผ
$
L(e^(lambda x)) = p(lambda) e^(lambda x)
$
ๅ ๆญคๅฝ็ถ $p(lambda) = 0$ ๆถ $e^(lambda x)$ ๆฏ่งฃใ่ฟไธๆญฅ๏ผไธค่พนๅฏน $lambda$ ๆฑๅฏผๅพ๏ผ
$
L(x e^(lambda x)) = (lambda p(lambda) + p'(lambda)) e^(lambda x)
$
่ฅ $lambda$ ๆฏ่ณๅฐไบ้ๆ น๏ผไธๅผไนๆฏ้ถ๏ผๅๅค่ฟ่กๅณๅพ็ป่ฎบใ
ๅฎไปฌ็็บฟๆงๆ ๅ
ณๆงๆฏๆพ็ถ็
]
= ๅน็บงๆฐ่งฃๆณ
== ไธ่ฌๅน็บงๆฐ
ๆฌ็ซ ไธญ $y$ ๅ
่ฎธๅคๅ
ๅฝๆฐ
#lemma[][
่ฎพๅพฎๅๆน็จ๏ผ
$
cases(
der(y, x) = f(x, y),
y(x_0) = y_0
)
$
ๅ
ถไธญ $f$ ๅจ $x_0$ ้่ฟ่งฃๆ๏ผๅๅฎ็่งฃๅญๅจๅฏไธ๏ผไธๆฏ่งฃๆๅฝๆฐใ
]
#proof[
ๅ้ข Picard ๅบๅ็่ฏๆไธญ็ปๅบไบ่ฟไธชๆจ่ฎบ
]
็่ฎบไธๆฅ่ฏด๏ผๅน็บงๆฐๅฑๅผๅนถๆฏๅฏน็ณปๆฐๅฏไปฅๅฐไธ่ฌ็ๅพฎๅๆน็จๅไธบไปฃๆฐๆน็จใ็ถ่ไธ่ฌ็ๆ
ๅฝขไป็ถ้พไปฅ่ฎก็ฎ๏ผๆๅธธ่ง็ๆ
ๅฝขๆฏๅฏน็บฟๆงๆน็จๅๅฑๅผใ
#example[][
- $der(y, x) = y - x$๏ผไปค $y = sum_i a_i x^i$๏ผ่ฎก็ฎๅพ๏ผ
$
sum_(i >= 1) i a_i x^(i-1) = sum_i a_i x^i - x
$
ๆ๏ผ
$
a_1 = a_0\
2 a_2 = a_1 - 1\
(i+1) a_(i+1) = a_i\
$
ๅฏไปฅ้ๆจ่งฃๅพ $a_i$
- $y'' - 2 x y' + 4 y = 0$๏ผไปค $y = sum_i a_i x^i$๏ผ่ฎก็ฎๅพ๏ผ
$
sum_i (i+1)(i+2)a_(i+2)x^i - 2 sum_i i a_(i) x^i - 4 sum_i a_i x^i = 0
$
ๅพๅฐไธ่ฌ็้ๆจๅ
ณ็ณป๏ผ
$
(i+1)(i+2)a_(i+2) = 2 i a_i + 4 a_i\
(i+1) a_(i+2) = 2 a_i
$
- $y'' = x y$๏ผ่ฎก็ฎๅพ๏ผ
$
sum_i (i+1)(i+2)a_(i+2)x^i = sum_i a_(i-1) x^i
$
ๆ๏ผ
$
a_2 = 0\
(i+1)(i+2)a_(i+2) = a_(i-1)
$
ๅฏไปฅ่งฃๅพ๏ผ
$
a_(3 k + 2) = 0\
a_(3 k) = ((3k - 3)!!!)/((3k) !) a_0
$
]
#remark[][
ๅฏนไบๅฝขๅฆ๏ผ
$
u(x) der(y, x) = v(x, y)
$
็ๅพฎๅๆน็จ๏ผๅฆๆ $u(x) > 0$๏ผๅฐๅ
ถ้คๆๅณๅฏๅพๅฐ่งฃ็่งฃๆๆงใไฝ่ฅ $u(x)$ ๆ้ถ็นๆ
ๅฝขๆชๅฟ
ใไพๅฆ๏ผ
$
cases(
x^2 der(y, x) = y - x,
y(0) = 0
)
$
่ฅๅ
ถๆ่งฃๆ่งฃ๏ผๆฏๅฏน็ณปๆฐๅ็ฐไธๅฎๆ $a_n = n!$๏ผไฝๆฏ่ฟไธชๅน็บงๆฐไธๆถๆ๏ผๅ ๆญคๆฏ่่ฐฌ็ใไธ่็็ฎๆ ไพฟๆฏๅค็่ฟ็งๆน็จใ
]
== ๅนฟไนๅน็บงๆฐ
#definition[ๅนฟไนๅน็บงๆฐ][
็งฐ๏ผ
$
sum_(n=0)^(+infinity) a_n x^(n + alpha), alpha in RR
$
ไธบๅนฟไนๅน็บงๆฐใ
]
#theorem[][
่ฎพไบ้ถๅพฎๅๆน็จ๏ผ
$
y'' + p(x) y' + q(x) y = 0
$
ๅ
ถไธญ $p, q$ ๅฏ่ฝไปฅ $0$ ไธบๅฅ็น๏ผไฝ $x p, x^2 q$ ้ฝๅจ $0$ ๅค่งฃๆไธไธๅ
จไธบ้ถ๏ผๅๅฎๅจ $0$ ้่ฟๆๅนฟไนๅน็บงๆฐ่งฃ
]
#proof[
ๆน็จ็ญไปทไบ๏ผ
$
x^2 y'' + x (sum_i a_i x^i) y' + (sum_i b_i x^i) y = 0
$
่ฎพ $y = sum_(n=0)^(+infinity) c_n x^(n + alpha)$๏ผไปฃๅ
ฅๅพ๏ผ
$
x^(alpha)(sum_(n=2)^(+infinity) c_n (n+alpha)(n+alpha-1) x^(n) \
+ (sum_(n=1)^(+infinity) c_n (n+alpha) x^(n))(sum_(i=0)^infinity a_i x^i) \
+ (sum_(n=0)^(+infinity) c_n x^(n))(sum_(i=0)^infinity a_i x^i)) = 0
$
]
#example[่ดๅกๅฐๆน็จ][
ๆน็จ๏ผ
$
y'' + 1/x y' + (x^2 - n^2) / x^2 y = 0
$
็งฐไธบ่ดๅกๅฐๆน็จ๏ผ็ฑไธ้ข็ๅฎ็ๅฎๅจ $0$ ้่ฟๆๅนฟไนๅน็บงๆฐ่งฃ๏ผๅนถไธ่ฎก็ฎๅฏๅพ $n$ ๆฏๆญฃๆดๆฐๆถ่งฃๆฏๆดๅฝๆฐใ
]
= ๅพฎๅๆน็จๅฎๆง็่ฎบ๏ผ่พนๅผ้ฎ้ข
== Sturm ๆฏ่พๅฎ็
ๆฌ่ๆไปฌ็็ ็ฉถ็ๆฏๅฝขๅฆ๏ผ
$
y'' + p(x) y' + q(x) y = 0
$<obj-def>
ๅ
ถไธญ $p, q$ ๆฏๆไธชๅบ้ด $J$ ไธ็่ฟ็ปญๅฝๆฐ
#lemma[][
@obj-def ็้้ถ่งฃ้ฝๆฏ็ฎๅ้ถ็น๏ผๅฏผๆฐ้้ถ๏ผ๏ผ่ฟไธๆญฅ้ฝๆฏๅญค็ซ้ถ็น
]
#proof[
ๅฆ่ฅไธ็ถ๏ผ่ฎพ $x_0$ ๅคๅฝๆฐๅผๅๅฏผๆฐๅผๅไธบ้ถ๏ผ็ฑๅญๅจๅฏไธๆง่ฟๅฐๅฏผ่ด่งฃๆไธบ้ถ๏ผ็็พ๏ผ
]
#lemma[][
่ฎพ $f, g$ ๆฏ @obj-def ็ไธคไธช้้ถ่งฃ๏ผไธ้ฝๆ้ถ็น๏ผ
- $f, g$ ็บฟๆง็ธๅ
ณๅฝไธไป
ๅฝๆ็ธๅ็้ถ็น้
- $f, g$ ็บฟๆงๆ ๅ
ณๅฝไธไป
ๅฝ้ถ็น็ธ้ด๏ผไนๅณๆฏไธคไธช็ธ้ป้ถ็นๆๆ็ๅผๅบ้ดๅ
ๆๅฏนๆน็้ถ็น
]
#proof[
-
- ่ฅ $f, g$ ็ธๅ
ณๅ $lambda f + mu g = 0$๏ผไธ้พๅ็ฐ $lambda, mu$ ้้ถ๏ผๅ ๆญค้ถ็น้็ธๅ
- ่ฅ้ถ็น้็ธๅ๏ผ่่ Wronskian ่กๅๅผ๏ผ
$
W(x) = Det(f, g; f', g')
$
็ฑๆกไปถๅฏ็ฅๅญๅจไธไธชๅ
ฑๅ้ถ็น๏ผๅๅจ่ฏฅ็นๅค $W(x) = 0$๏ผไนๅ็็ป่ฎบ่กจๆ $f, g$ ็บฟๆง็ธๅ
ณ
- ่ฎพ $x_1, x_2$ ๆฏ $f$ ็็ธ้ป้ถ็น๏ผไธๅฆจๅ่ฎพๅจ $(x_1, x_2)$ ไธๆ $f > 0$
- ่ฎพ $f, g$ ๆ ๅ
ณ๏ผๅ๏ผ
$
W(x) = Det(f, g; f', g')
$
ๅฎๅท๏ผ่ฟ่ $W(x_1) W(x_2) > 0$๏ผ่๏ผ
$
W(x_1) = -g(x_1) f'(x_1)\
W(x_2) = -g(x_2) f'(x_2)
$
ไนๅ่ฏๆไบ $f'(x_1), f'(x_2) != 0$๏ผไธ้พๅ็ฐไธๅฎๆ $f'(x_1) > 0, f'(x_1) < 0$๏ผไธๅผ่กจๆ $g(x_1), g(x_2)$ ๅผๅท๏ผๅฝ็ถๅฐฑๆไป่ดจๅฎ็ใๅๆถๅ
ถ้ดๅช่ฝๆไธไธช้ถ็น๏ผๅฆๅ่ฅๆไธคไธชๅฏไปฅๅ่ฟๆฅๆพๅฐ $f$ ็้ถ็น๏ผไธ $x_1, x_2$ ็ธ้ป็็พ๏ผ
- ๅไน๏ผ่ฅ้ถ็น็ธ้ด็ป่ฎบ็ฑๅไธๆก็ป่ฎบ็ฅ้ถ็น้ไธๅ๏ผๅฝ็ถๆ ๅ
ณ
]
#remark[][
ไธ้ข็ๅผ็ไธญ้่ฆ็ๆ้ถ็น็ๅญๅจๆง๏ผไพๅฆ $f, g$ ๆ ๅ
ณ่ $f$ ไป
ๆไธไธช้ถ็น๏ผๆญคๆถ $g$ ็้ถ็นไธชๆฐๅฏ่ฝๆฏ $0, 1, 2$๏ผไธๅฎ็้ฝไธ็็พ
]
#theorem[ๆฏ่พๅฎ็][
่ฎพๆไธคไธชๅพฎๅๆน็จ๏ผ
$
y'' + p(x) y' + q(x) y = 0
$<eq-1>
$
y'' + p(x) y' + r(x) y = 0
$<eq-2>
ไธๆปก่ถณ๏ผ
$
r(x) >= q(x)
$
่ฎพ $f, g$ ๅๅซๆฏ@eq-1 ๅ@eq-2 ็ไธคไธช้้ถ่งฃ๏ผ$x_1, x_2$ ๆฏ $f$ ็ไธคไธช็ธ้ป้ถ็น๏ผๅ $g$ ๅจ $[x_1, x_2]$ ไธๆ้ถ็นใ
]<compare-two>
#proof[
ไธๅฆจๅ่ฎพ $f$ ๅจ $(x_1, x_2)$ ไธๆๆญฃ๏ผๆ๏ผ
$
f'(x_1) > 0, f'(x_2) < 0
$
ๅ่ฎพ $g(x)$ ๅจ $[x_1, x_2]$ ไธๆ ้ถ็น๏ผไธๅฆจ่ฎพๅ
ถๆๆญฃใไปค๏ผ
$
W(x) = Det(f, g;f', g') = f g' - f' g\
W'(x) = Det(f, g;f'', g'') = Det(f, g;-p(x)f' - q(x) f, -p(x) g' - r(x) g)\
=Det(f, g;-p(x)f', -p(x) g' - (r(x) - p(x)) g)\
= - p(x) W(x) - f g (r(x) - p(x))
$
ๆณจๆๅฐไธๅฎๆ๏ผ
$
f g(r(x) - p(x)) >= 0
$
็ฑไธ้ถๆน็จ็ๆฏ่พๅฎ็๏ผๆ๏ผ
$
B e^(-p(x))<= W(x) <= A e^(-p(x))
$
ๅ
ถไธญ $A e^(-p(x))$ ๆฏ๏ผ
$
cases(
W'(x) = -p(x) W(x),
W(x_1) = - g(x_1) f'(x_1)
)
$
็่งฃ๏ผ่ $B e^(-p(x))$ ๆฏ๏ผ
$
cases(
W'(x) = -p(x) W(x),
W(x_1) = - g(x_2) f'(x_2)
)
$
็่งฃ๏ผ็ถ่ไธ้พๅ็ฐ $- g(x_1) f'(x_1) < 0, - g(x_2) f'(x_2) > 0$ ๅฏผ่ด $A < 0, B > 0$๏ผ่ฟๆฏ่่ฐฌ็๏ผ
]
#remark[][
ไธ้ข็ๅฎ็ๅฎ้
ไธๆฏ่ฏด $y$ ๅ้ข็็ณปๆฐ่กจ็คบ่งฃๆฏ่ก็้ข็๏ผ็ณปๆฐ่ถๅคงๆฏ่ก่ถๅฟซใๅ ๆญคๆๅฆไธๅฏนไบๆฏๅจ็็ ็ฉถ๏ผ
]
#definition[][
่ฎพ@obj-def ็ๆ่ณๅฐไธคไธช้ถ็น็้้ถ่งฃไธบๆฏๅจ่งฃ๏ผๆๆ ็ฉทๅคไธช้ถ็น็้้ถ่งฃไธบๆ ็ฉท่งฃ
]
#example[][
- ่่ๆน็จ๏ผ
$
y'' + p(x) y' + r(x) = 0
$<eq-3>
ๅ
ถไธญ $r(x) <= 0$๏ผๆณจๆๅฐๅฎๅฏไปฅๅฏน๏ผ
$
y'' + p(x) y' = 0
$<eq-4>
ๅฉ็จๆฏ่พๅฎ็ใๅๅฆ@eq-3 ๆๆฏๅจ่งฃ๏ผๅ็ฑ @compare-two ๅฏ็ฅ@eq-4 ็ไปปๆไธไธช่งฃ้ฝๆ้ถ็น๏ผ็ถ่@eq-4 ๆ่งฃ $y = 1$ ๆ ้ถ็น๏ผ็็พ๏ผๅ ๆญค@eq-3 ไธๅฏ่ฝๆๆฏๅจ่งฃ
- ่่ๆน็จ๏ผ
$
y'' + q(x) y = 0
$
ๅ
ถไธญ $q(x) >= m > 0$๏ผๅๅฎไปปๆ้้ถ่งฃๆ ้ๆฏๅจ๏ผไธ็ธ้ป้ถ็น้ด่ท็ฆปไธ่ถ
่ฟ $pi / sqrt(m)$\
้ฆๅ
่ฏๆๅฏนไบไปปไฝ $a$, $[a, a + pi / sqrt(m)]$ ็ๅบ้ด้ฝๆๆน็จ็่งฃๅณๅฏใ่่ๆน็จ๏ผ
$
y'' + m y = 0
$
ๅ้ข็ๆน็จๆ่งฃ๏ผ
$
y = sin (sqrt(m) (x - a))
$
ไปฅ $a, a + pi / sqrt(m)$ ไธบ้ถ็น๏ผๅฉ็จ @compare-two ็ซๅพ็ป่ฎบใๅฝ็ถ่ฟๆ ท็ๅบ้ดๆๆ ็ฉทๅค๏ผๅ ๆญคๆน็จ็่งฃๆๆ ็ฉทๅคไธช้ถ็นใ\
ๆณจๆ่ฟไธช็ป่ฎบไธ่ฝๅ ๅผบๅฐ $q(x) > 0$๏ผไพๅฆ๏ผ
$
y'' + 1/(4 x^2) y = 0, x in [1, +infinity]
$
่ฟๆฏๆฌงๆๆน็จ๏ผๅฏไปฅ่งฃๅพ๏ผ
$
y = sqrt(x) (c_1 + c_2 ln x)
$
ๅฝ็ถ่ณๅคๅชๆไธไธช้ถ็น
- ่่ๅพฎๅๆน็จ๏ผ
$
y'' + q(x) y = 0
$
ไธๅญๅจ้่ดๆดๆฐ $n$ ไฝฟๅพ๏ผ
$
n^2 < q(x) < (n+1)^2
$
ๅๆน็จ็ไปปๆ้้ถ่งฃไธๆฏ $2 pi$ ๅจๆ็ใ\
ๅฆ่ฅไธ็ถ๏ผ่ฎพ $f$ ๆฏ้้ถ็ $2 pi$ ๅจๆ่งฃ๏ผไปฃๅ
ฅๆน็จไธ้พๅ็ฐ $q(x) f$ ไนๆฏไปฅ $2 pi$ ๅจๆ็๏ผ่ $f$ ็้ถ็นๅญค็ซ๏ผ็ฑ $q$ ็่ฟ็ปญๆง็ฅๅฎๅบ่ฏฅไปฅ $2 pi$ ไธบๅจๆ๏ผๅ ๆญคๆๆๅคงๆๅฐๅผใ่ฎพ๏ผ
$
m^2 <= q(x) <= M^2
$
ไปฟ็
งไธ้ข็ไพๅญ๏ผๅฉ็จ @compare-two ๅฏไปฅๅฏผๅบ $f$ ็ไธคไธช็ธ้ป้ถ็น้ด็่ท็ฆปๅจ $pi/M, pi/m$ ไน้ด\
่ฎพ $f$ ๅจไธไธชๅจๆไธๆ $2n$ ไธช้ถ็น๏ผ้ถ็นๅๅซไธบ๏ผ
$
t_0 < t_1 < ... < t_(2 n) = t_0 + 2 pi
$
ๅฏน่ท็ฆปๆฑๅ๏ผๅฏๅพ๏ผ
$
2n/M pi <= 2 pi <= 2n/m pi\
m <= n <= M
$
็ถ่็ฑๆกไปถ $m, M$ ๅคนๅจไธคไธช่ฟ็ปญๆดๆฐไน้ด๏ผไธ $n$ ๆฏๆดๆฐ็็พ๏ผ
- ่่ๅพฎๅๆน็จ๏ผ
$
y'' + q(y) = f(x)
$
ไธๅญๅจ้่ดๆดๆฐ $n$ ไฝฟๅพ๏ผ
$
n^2 < q'(y) < (n+1)^2
$
ๅๆน็จ่ณๅคๆไธไธช $2 pi$ ๅจๆ่งฃ๏ผๅฆๅ่ฎพ $y_1, y_2$ ๆฏไธคไธช $2 pi$ ๅจๆ่งฃ๏ผๅฎนๆๅพๅฐ๏ผ
$
(y_1 - y_2)' + q(y_1) - q(y_2) = 0
$
ไปค $p(x) = (q(y_1) - q(y_2))/(y_1 - y_2)$๏ผๅ $y_1 - y_2$ ๆไธบๅพฎๅๆน็จ๏ผ
$
y'' + p(x) y = 0
$
็ $2 pi$ ๅจๆ่งฃ๏ผ็ถ่ไธ้ข็็ป่ฎบ่กจๆ่ฟๆ ท็ๆน็จๆฒกๆ $2 pi$ ๅจๆ่งฃ๏ผ็็พ๏ผ
]
== ่พนๅผ้ฎ้ข
#definition[][
่ฎพๆๅพฎๅๆน็จ๏ผ
$
cases(
(p(x) y')' + (lambda r(x) + q(x)) y = 0,
k y(a) + l y'(a) = M y(b) + N y'(b) = 0
)
$
ๅ
ถไธญ $p, q, r in C[a, b], p, r > 0, (K, L) != 0, (M, N) != 0$
่ฏฅๅพฎๅๆน็จ้ๅนณๅก่งฃ็ๅญๅจๆง็งฐไธบไบ้ถๅพฎๅๆน็จ็่พนๅผ้ฎ้ขใ่ฅๅฏน $lambda = lambda_0$ ๆน็จๆ้้ถ่งฃ $phi$๏ผๅ็งฐ $lambda_0$ ไธบไธไธช็นๅพๅผ๏ผ$phi$ ไธบๅฏนๅบ็็นๅพๅฝๆฐใ
]<boundary-value>
#remark[][
่ฟไธชๅซๆณๆฏๅ ไธบ่ฅ่ฎพ๏ผ
$
A y = ((p y')' + q y)/(-r)
$
ๅๅฎๆฏ็บฟๆง็ฎๅญ๏ผ่่พนๅผ้ฎ้ขๅฎ้
ไธๆฏๆฑ่งฃ $A y = lambda y$ ็้ฎ้ข
]
#example[][
- ่่ๆน็จ๏ผ
$
cases(
y'' + lambda y = 0,
y'(0) = y'(l) = 0
)
$
- ๅฝ $lambda = -a^2 < 0$ ๆถ๏ผๆน็จ็้่งฃไธบ๏ผ
$
y = linearCombinationC(e^(a x), e^(-a x))
$
่ฎก็ฎๅ็ฐ่ฅ่ฆ็ฌฆๅ่พนๅผ๏ผๅฐๆ๏ผ
$
cases(
C_1 = C_2,
C_1 = -C_2
)
$
ๅฏผๅบ้ถ่งฃ
- ๅฝ $lambda = 0$ ๆถๆน็จ็่งฃๆฏ็บฟๆงๅฝๆฐ๏ผๅ ๆญคๆฏไธชๅธธๅฝๆฐ้ฝๆฏ็นๅพๅฝๆฐ
- ๅฝ $lambda = a^2 > 0$๏ผ้่งฃไธบ๏ผ
$
linearCombinationC(cos a x, sin a x)
$
่ฎก็ฎๅพ๏ผ
$
cases(
C_2 = 0,
- C_1 sin a l + C_2 cos a l = 0
)
$
ๅฝไธไป
ๅฝ $a$ ไธบ $(n pi)/l$ ๆถๆ้้ถ่งฃ
็ปผไธ๏ผ็นๅพๅผไธบ $(n^2 pi^2)/l^2, forall n in NN$
]<sin-cos-example>
@boundary-value ไธญ็ๅฝขๅผๅฝ็ถๅฏไปฅๅ็ฎๅ๏ผ้่ฟไธไบ็ฎๅ็็บฟๆงๅๆข๏ผๅฏ่ฎพ $a = 0, b = 1$๏ผ่ฟไธๆญฅ็ฑ $p > 0$๏ผ่ฎพ๏ผ
$
t = 1/(c_0) integral_(0)^(x) 1/(p(s)) dif s \
tilde(y) (t) = y(x(t))
$
$x(t)$ ๅญๅจๆฏๅ ไธบ $t$ ๅ
ณไบ $x$ ๅ่ฐไธๅ๏ผๆๅๅฝๆฐใไธ้พ่ฎก็ฎๅพ๏ผ
$
p(x) der(y, x) = 1/(c_0) der(tilde(y), t)\
der(p(x) der(y, x) , x) = 1/(c_0^2 p(x)) tilde(y)''
$
ๆปไน๏ผๆน็จๅไธบไบ
$
cases(
y'' + (lambda c_0^2 p(x(t))r(x(t)) + c_0^2 p(x(t)) q(x(t))) y = 0,
K y(0) + L /(c_0 p(a)) y'(0) = M y(1) + N /(c_0 p(b)) y'(1) = 0)
$
#lemma[][
@boundary-value ไธญ็้ฎ้ขๅฏไปฅๅๅฝไธบไปฅไธๆ ๅๅฝขๅผ๏ผ
$
cases(
y'' + (lambda r(x) + q(x)) y = 0,
y(0) cos alpha - y'(0) sin alpha = y(1) cos beta - y'(1) sin beta = 0
)
$<standard-form-boundary-value>
ๅ
ถไธญ $r, q$ ่ฟ็ปญ๏ผ$r > 0, alpha, beta in [0, pi)$
]
#theorem[Sturm-Liouville][
@standard-form-boundary-value ็ปๅบ็่พนๅผ้ฎ้ขๆๅฏๆฐๅคไธช็นๅพๅผ๏ผไธๆๆ็นๅพๅผๅฝขๆ้พ๏ผ
$
lambda_0 < lambda_1 < ... < lambda_n < ...
$
ๅ
ถไธญ $lambda_n -> +infinity$\
่ฎพ $phi_n (x)$ ๆฏ $lambda_n$ ๅฏนๅบ็็นๅพๅฝๆฐ๏ผๅ $phi_n$ ๆฐๆ $n$ ไธช้ถ็น
]<sturm-liouville-theorem>
#proof[
ไปค $y = phi(x, lambda)$ ๆฏๆปก่ถณ๏ผ
$
y(0) = sin alpha, y'(0) = cos alpha
$
็่งฃใ@standard-form-boundary-value ไธญ็ฌฌไธไธช่พนๅผๆกไปถๅทฒ็ปๆปก่ถณ๏ผๅช้ๆพๅฐ $lambda$ ๆปก่ถณ็ฌฌไบไธชๆน็จใๆพ็ถ $y$ ไธๆฏ้ถ่งฃ๏ผ$y, y'$ ไธๅๆถไธบ้ถ๏ผๅ ๆญคๅฏๅๆๅๆ ๅๆข๏ผ
$
cases(
phi = rho cos theta,
phi' = rho sin theta
)
$
ๆญคๆถ๏ผ็ฌฌไบไธช่พนๅผๆกไปถ็ญไปทไบ $theta(1) = beta + 2 k pi$\
่ฎก็ฎ๏ผ
$
der(theta, x) = der(arctan phi/phi', x) = (phi'^2 - phi phi'' )/(phi^2 + phi'^2) = (phi'^2 + (lambda r + q) phi^2 )/(phi^2 + phi'^2)\
= cos^2 theta + (lambda r + q) sin^2 theta
$<eq-order1>
็ปๅ $theta(0, lambda) = 0$๏ผ่ฟๆฏๅ
ณไบ $theta$ ็ไธ้ถๅพฎๅๆน็จ๏ผๆฅไธๆฅ็่ฎจ่ฎบ้ฝๆฏๅ
ณไบ่ฟไธชๆน็จ็ใ
- ไธๅผๅฏน $lambda$ ๆฑๅๅฏผๅพๅฐ็ๆฏๅ
ณไบ $lambda$ ็ไธ้ถ็บฟๆงๅพฎๅๆน็จ๏ผๅฏไปฅ่งฃๅพ๏ผ
$
partialDer(theta, lambda) = integral_(0)^(x) e^(integral_(t)^(x) E(s, lambda) dif x) r(t) sin^2 theta dif t
$
๏ผๅ
ถไธญ $E(s, lambda) = (lambda r(s) + q(x) - 1) sin(2 theta)$๏ผ
็ฑๆกไปถ็ฅ่ขซ็งฏๅฝๆฐๆๆญฃ๏ผไป่ $theta$ ๅ
ณไบ $lambda$ ไธฅๆ ผ้ๅข
- ่งๅฏๆน็จๅฏไปฅๅ็ฐ $theta = 0$ ๆถ $theta' = 1$๏ผไธๅฝ $lambda$ ๅ
ๅๅฐๆถ๏ผๅช่ฆ $theta$ ไธๅคชๅฐ๏ผๅฐฑๆ $theta' < 0$๏ผๆไปฌ็ๆตๅนถ่ฏๆไปฅไธ็ป่ฎบ๏ผ
- $theta(x) > 0$\
ๅฆ่ฅไธ็ถ๏ผๅ่ฎพ $x_0$ ๆฏๆๅฐ็้ถ็น๏ผไนๅ็่ฎบ่ฟฐ่กจๆ $theta'(x_0) = 1 > 0$๏ผ่ $theta(0) = alpha > 0$๏ผๅฉ็จไป่ดจๅฎ็ๅฐๅฏๆ้ ๅบๆดๅฐ็้ถ็น๏ผ็็พ๏ผ
-
$
lim_(lambda -> +infinity) theta(x) = +infinity, forall x_0
$
่ฎพ $h = min r > 0$๏ผๅฐๆ๏ผ
$
theta' >= (lambda h + q) sin^2 theta + cos^2 theta
$
ๅ $lambda$ ๅ
ๅๅคง๏ผๅฏ่ฎพ $lambda h + q > n + 1$๏ผๅฐๆ๏ผ
$
theta' >= 1 + n sin^2 theta
$
็ฑๆฏ่พๅฎ็๏ผๅช้่ฏๆ $theta' = 1 + n sin^2 theta$ ็่งฃๅ
ๅๅคงๅณๅฏใไบๅฎไธ๏ผ
$
x = integral_(alpha)^(theta) 1/(1 + n sin^2 t) dif t
$
่งๅฏไธ้พๅ็ฐ $n$ ๅ
ๅๅคงๆถ $theta$ ไนๅบ่ฏฅๅ
ๅๅคง
-
$
lim_(lambda -> -infinity) theta(x) = 0, forall x_0
$
ไปปๅ $epsilon > 0$๏ผๅฝ $lambda$ ๅ
ๅๅฐๆถๅฏไปฅ่ฏๆ๏ผ$theta$ ่ฝๅจ็บฟๆฎต $(0, alpha) -> (1, epsilon)$ ๆถ๏ผไธๅฎๆ $theta' < 0$๏ผๅ ๆญค $theta$ ่ขซ้ๅถๅจ่ฏฅๆ็บฟๅ $y = 0$ ไน้ด๏ผๅฝ็ถๆๅณ็ $theta(1) < epsilon$๏ผ่ฏๆฏ
ไปฅไธ่ฎบๆญ่กจๆ๏ผ$theta(1, lambda) = beta + 2 k pi$ ๅฏนไบๆฏไธช $k in NN$ ้ฝๆฐๆไธ่งฃ๏ผไธๆฏไธช่งฃ้ฝ้ไธชๅขๅคงใๆญคๅค๏ผ็นๅพๅฝๆฐไธบ๏ผ
$
phi(x) = rho(x) sin (theta_(lambda_k) (x))
$
็ฑไป่ดจๅฎ็๏ผ่ณๅฐ๏ผ
$
theta_(lambda_k) (x) = j pi
$
ๅฏนไบ $j = 1, 2, ..., k$ ้ฝๆไธไธช่งฃ $x_k$๏ผๅนถไธๆณจๆๅฐ $forall x with theta(x) = i pi, i in ZZ$๏ผ้ฝๆ๏ผ
$
phi'(x) = cos^2 theta(x) + (lambda r(x) + q(x)) sin^2 theta(x) = 1
$
ๆข่จไน๏ผ
$
theta_(lambda_k) (x) = j pi
$
ๅช่ฝๆไธไธช่งฃ๏ผๅฆๅไธคไธช็ธ้ป่งฃ็ๅฏผๆฐๅผๅฟ
็ถๅๅท๏ผ\
ๅๆถ๏ผๅฏนไบ $j > k$๏ผ $theta_(lambda_k) (x) = j pi$ ๅฐๆ ่งฃ๏ผๅฆๅ็ฑไบ $theta(0), theta(1) < j pi$๏ผ่ณๅฐไบง็ไธค่งฃ๏ผไธไธ้ข็่ฎบ่ฟฐ็็พ๏ผ
]
== ็นๅพๅฝๆฐ็ณป็ๆญฃไบคๆง
#lemma[][
ๅจ @sturm-liouville-theorem ไธญ๏ผๆฏไธช็นๅพๅผๅฏนๅบ็็นๅพๅฝๆฐๅฝผๆญค็ธๅ
ณ๏ผ็นๅพ็ฉบ้ดๅชๆไธ็ปด๏ผ
]
#proof[
ๅ่ฎพ $phi, psi$ ๆฏ $lambda_n$ ็็นๅพๅฝๆฐ๏ผๅฐๆ๏ผ
$
Det(phi(0), phi'(0);psi(0), psi'(0)) = 0
$
็ฑ Wronskian ่กๅๅผ็็ป่ฎบ๏ผ่ฟๆๅณ็ $phi, psi$ ็บฟๆง็ธๅ
ณ
]
#theorem[][
ๅจ @sturm-liouville-theorem ไธญ๏ผๆฏไธช็นๅพๅผๅฏนๅบ็็นๅพๅฝๆฐๅฝผๆญคๆญฃไบค๏ผไนๅณ๏ผ
$
integral_(0)^(1) r(x) phi_m phi_n dif x = 0, m != n
$
]
#proof[
ๆไธคไธชๆน็จ๏ผ
$
cases(
phi''_n + (lambda_n r + q)phi_n = 0,
phi''_m + (lambda_m r + q)phi_m = 0
)
$
ไธคๅผๅๅซไนไปฅ $phi_m, phi_n$ ๅนถ็ธๅ๏ผๅพๅฐ๏ผ
$
phi''_n phi_m - phi''_m phi_n + (lambda_n - lambda_m) r phi_m phi_n = 0
$
ๅช้่ฎก็ฎ๏ผ
$
&integral_(0)^(1) phi''_n phi_m - phi''_m phi_n dif x \
&= integral_(0)^(1) (phi'_n phi_m - phi_n phi'_m)' dif x\
&= (phi'_n phi_m - phi_n phi'_m)|_0^1\
&= 0
$
่ฏๆฏ
]
#remark[][
ๆไบๆญฃไบคๆง๏ผๅฏนไบไปปๆ็ไปฅไธๅฝขๅผ็ไบ้ถ็บฟๆงๅพฎๅๆน็จ๏ผๆไปฌ้ฝๅฏไปฅ่่ๅจ็นๅพๅฝๆฐ็ณปไธๅๅ
้ๅถๅฑๅผใไบๅฎไธ๏ผ@sin-cos-example ่ฏดๆไบ้ๅธธ $sin, cos$ ไบง็็ๅ
้ๅถๅฑๅผๆฏๆฌ็ซ ๅฎ็็ไธ็ง็นๆฎๆ
ๅตใ
]
= ไธ้ถๅๅพฎๅๆน็จ
== ้ฆๆฌก็งฏๅ
#let yv = $bold(y)$
#let xv = $bold(x)$
#definition[][
ๅจๅพฎๅๆน็จ๏ผ
$
der(yv, x) = f(x, yv), f in C^1
$
ไธญ๏ผ็งฐ $H(xv, yv)$ ไธบ้ฆๆฌก็งฏๅ๏ผ่ฅ $H$ ไธๆฏๅธธๆฐไธๅจๆน็จ็ไปปๆ่งฃๆฒ็บฟไธๅๅธธๅผ
]
#example[][
- ่่ๆน็จ๏ผ
$
cases(
der(x,t) = -y,
der(y, t) = x
)
$
ๅ $x^2 + y^2$ ๅฐฑๆฏไธไธช้ฆๆฌก็งฏๅ๏ผๆข็ถ่ฎพ $x, y$ ๆฏไธๆ่งฃ๏ผๅฐๆ๏ผ
$
(x^2 + y^2)' = 2 x x' + 2 y y' = 0
$
- ไธ่ฌ็๏ผๆน็จ๏ผ
$
cases(
der(x,t) = f(y),
der(y, t) = g(x)
)
$
ๅ $integral f(y) - integral g(x)$ ๅฐฑๆฏไธไธช้ฆๆฌก็งฏๅ๏ผๆข็ถ๏ผ
$
(integral f(y) - integral g(x))' = f(y)y' - g(x)x' = 0
$
- ่่ๆน็จ๏ผ
$
cases(
der(x,t) = y - x(x^2 + y^2 - 1),
der(y, t) = -x - y(x^2 + y^2 - 1)
)
$
ๆณจๆๅฐ๏ผ
$
(x^2 + y^2)' = 2 x' x + 2 y' y = -x^2 (x^2 + y^2 - 1) - y^2 (x^2 + y^2 - 1) \
= (x^2 + y^2) - (x^2 + y^2)^2
$
ๅฏไปฅ่งฃๅบ $x^2 + y^2$ ่ฟ่ไบง็ไธไธช้ฆๆฌก็งฏๅ\
ๅๆถ๏ผ
$
x y' - y x' = -x^2 - y^2\
(y/x)' = -1 - (y/x)^2
$
ไนๅฏไปฅ่งฃๅบ $y/x$ ไบง็ไธไธช้ฆๆฌก็งฏๅใไบๅฎไธ๏ผๅฏไปฅๅ็ฐๆน็จๆๅฏไธ็ๅนณ่กก็น $(0, 0)$ ๅๅญค็ซ็ๆ็้ญ่งฃๆฒ็บฟ๏ผ็งฐไธบๆ้็ฏ๏ผใๅฏนไบๅฝขๅฆ๏ผ
$
cases(
x' = f(x, y),
y' = g(x, y)
)
$
ๅ
ถไธญ $f, g$ ๆฏไธ่ถ
่ฟ $n$ ๆฌก็ๅค้กนๅผ๏ผ่ฟไธช็ณป็ป็งฐไธบ $n$ ๆฌก็ณป็ปใ$n$ ๆฌก็ณป็ปๆ้็ฏไธชๆฐ็ไธ็ๅๆ้็ฏ็ๅๅธๆ
ๅตๆฏๅธๅฐไผฏ็น็ฌฌๅๅ
ญ้ฎ้ข็้่ฆ้จๅ๏ผ่ณไปไบๆฌก็ณป็ป็ๆ
ๅต้ฝไปๆช่งฃๅณ๏ผ็ฎๅๆๅคไธพๅบไบๅไธชๆ้็ฏ็ไพๅญ๏ผๅนถไธ่ฏๆไบๆฏไธชไบๆฌก็ณป็ป็ๆ้็ฏไธชๆฐ้ฝๆฏๆ้็ใ
]
#lemma[][
$H(x, yv)$ ๆฏ $yv' = f(x, yv)$ ็้ฆๆฌก็งฏๅๅฝไธไป
ๅฝ๏ผ
$
partialDer(H, x) + partialDer(H, yv) dot der(yv, x) = partialDer(H, x) + partialDer(H, yv) dot f(x, yv) = 0
$
]
#proof[
็ฑๅฎไนๆพ็ถๅฏๅพ
]
้ช่ฏ้ฆๆฌก็งฏๅๆฏ้ๅธธ็ฎๅ็๏ผ็ถ่ๆพๅฐไธไธช้ฆๆฌก็งฏๅๆฏๆๅ
ถๅฐ้พ็ใ
#theorem[][
้ฆๆฌก็งฏๅๅฏไปฅๅฐๅๆน็จ้็ปดใๅ
ทไฝ่่จ๏ผๅ่ฎพ้ฆๆฌก็งฏๅๅฝขๅฆ๏ผ
$
phi(yv)
$
็ฑไบ $phi(yv) !=0$๏ผ่ฅ่ฟๆ $der(phi(yv), yv) != 0$๏ผไพฟๅฏๅจๅฑ้จๆพๅฐ้ๅฝๆฐๆถๅป่ฅๅนฒๅ้
]
#definition[][
่ฎพ $phi_i$ ๆฏ $n$ ไธช้ฆๆฌก็งฏๅ๏ผๅฆๆ๏ผ
$
abs(partialDer((phi_1, phi_2, ..., phi_n), (yv_1, yv_2, ..., yv_n))) != 0
$
ๅ็งฐ $phi_1, phi_2, ..., phi_n$ ไธบ็ธไบ็ฌ็ซ็้ฆๆฌก็งฏๅ
]
#theorem[][
$n$ ็ปด่ชๆฒป็ณป็ป่ณๅค $n$ ไธช็ฌ็ซ็้ฆๆฌก็งฏๅ๏ผไธๅจๅฑ้จๆฐๆ $n$ ไธช็ฌ็ซ็้ฆๆฌก็งฏๅใ่ฎพ $phi_i$ ๆฏ $n$ ไธช็ฌ็ซ็้ฆๆฌก็งฏๅ๏ผๅไปปไฝ้ฆๆฌก็งฏๅๅจๅฑ้จ้ฝๅฝขๅฆ $h(phi_1, ..., phi_n), H in C^1$
]<first-integral>
#proof[
็ฌฌไธ้จๅๆไปฌไธ่ฏๆ๏ผๅฏไปฅๅ่ๆๆ
ๅฏนไบ็ฌฌไบไธช็ป่ฎบ๏ผ่ฎพ $c = vec(c_1, dots.v, c_n)$๏ผๅจไปปไฝไธไธช็น $(x_0, c)$ ็ฑๅญๅจๅฏไธๆงๅฏไปฅๆพๅฐ่งฃ $y = phi(x, c)$๏ผๆพ็ถๆ๏ผ
$
partialDer(phi, c)|_(x = x_0) = id
$
ๅ ๆญค็ฑ้ๅฝๆฐๅฎ็๏ผๅฏไปฅๅ่งฃๅบ๏ผ
$
c = psi(x, y)
$
ๅนถๆ๏ผ
$
der(y, c) = partialDer(phi, c)\
der(c, y) = Inv((partialDer(phi, c)))
$
่ฟไธช $psi$ ๅฝ็ถๅฐฑๆฏๅฑ้จ็้ฆๆฌก็งฏๅ๏ผๆฐๆ $n$ ไธช็ฌ็ซ็ๅ้๏ผๆข็ถๅจ $x_0$ ๅคไธๅผ่กจๆๅๅฏผๆฏ $id$๏ผไนๅณ $n$ ไธช้ฆๆฌก็งฏๅใ
็ฌฌไธ้จๅๆฏ็ฑปไผผ็๏ผไนไธ่ฏๆใ
]
== ไธ้ถ็บฟๆง้ฝๆฌกๅๅพฎๅๆน็จ
#definition[ไธ้ถ็บฟๆง้ฝๆฌกๅๅพฎๅๆน็จ][
็งฐ๏ผ
$
A(xv) der(u, xv) = f(xv)
$
ๆฏไธ้ถ็บฟๆง้ฝๆฌกๅๅพฎๅๆน็จ
]
#definition[็นๅพๆน็จ][
็งฐ๏ผ
$
der(x_i, A_i (xv)) = der(x_j, A_j (xv))
$
ไธบ้ฝๆฌกไธ้ถ็บฟๆงๅๅพฎๅๆน็จ็็นๅพๆน็จ๏ผๅฎๅฏไปฅ็ๆๅ
ณไบๆไธชๅ้็ $n-1$ ้ถๅธธๅพฎๅๆน็จ
]
#theorem[][
่ฎพ็นๅพๆน็จๆ $n-1$ ไธช็ฌ็ซ็้ฆๆฌก็งฏๅ $phi_i$ ๏ผๅๅๅๅพฎๅๆน็จ็้่งฃๆฐไธบ๏ผ
$
Phi(phi_1, phi_2, ..., phi_(n-1))
$
ๅ
ถไธญ $Phi$ ๆฏไปปไฝ $C^1$ ๅฝๆฐ
]
#proof[
่ฎพ $A_1 (xv) != 0$๏ผ็นๅพๆน็จๅฎ้
ไธๅฝขๅฆ๏ผ
$
der(x_i, x_1) = (A_i (x))/(A_1 (x))
$
ไธ้พๅ็ฐ $u$ ๆฏๅๅพฎๅๆน็จ็่งฃๅฝไธไป
ๅฝ $u$ ๆฏๅธธๆฐๆ่
ๆฏ็นๅพๆน็จ็ไธไธช้ฆๆฌก็งฏๅ๏ผ็ฑ @first-integral ็ซๅพ็ป่ฎบใ
]
#example[][
- ่่ๆน็จ๏ผ
$
(x + y) partialDer(u, x) - (x - y) partialDer(u, y) = 0
$
ๅ
ถ็นๅพๆน็จไธบ๏ผ
$
der(y, x) = (y - x)/(y + x)
$
ๅฏไปฅ่งฃๅบไธไธช้ฆๆฌก็งฏๅ๏ผ
$
(x^2 + y^2)e^(2 arctan y/x)
$
ๅ ๆญคๅๆน็จ็้่งฃไธบ๏ผ
$
phi((x^2 + y^2)e^(2 arctan y/x) )
$
-
$
sqrt(x) partialDer(f, x) + sqrt(y) partialDer(f, y) + z partialDer(f, z) = 0
$
ไธ $f(x, y, 1) = x y$๏ผๆฑ $f$\
็ฑปไผผ็ๅฏไปฅ่งฃๅบ๏ผ
$
f = phi(sqrt(x) - sqrt(y), sqrt(y) - ln z)\
$
ไปฃๅ
ฅๅฏๅพ๏ผ
$
x y = f(x, y, 1) = phi(sqrt(x) - sqrt(y), sqrt(y) )
$
ๅๅ้ๆฟๆข๏ผ
$
cases(
u = sqrt(x) - sqrt(y),
v = sqrt(y)
)
$
ๅฏๅ่งฃๅบ $phi$
]
== ไธ้ถๆ็บฟๆงๅๅพฎๅๆน็จ
#definition[ไธ้ถๆ็บฟๆงๅๅพฎๅๆน็จ][
็งฐ๏ผ
$
A(xv, u) der(u, xv) = B(xv, u)
$
ๆฏไธ้ถๆ็บฟๆงๅๅพฎๅๆน็จ
]
#theorem[][
#let sumf = sumf.with(lower: $1$, upper: $n$)
ๅฏนไบไธ้ถๆ็บฟๆงๅๅพฎๅๆน็จ๏ผ่่ๅพฎๅๆน็จ๏ผ
$
sumf() A_i (xv, u) der(Phi, x_i) + B(xv, u) der(Phi, u) = 0
$<eq-t>
่ฟๆฏๅ
ณไบ $xv, u$ ็ไธ้ถ็บฟๆง้ฝๆฌกๅๅพฎๅๆน็จ๏ผ่ฎพๅ
ถ่งฃไธบ๏ผ
$
Phi(xv, u)
$
ๅ $Phi(xv, u) = 0$ ๅฏนๅบ็ $u$ ๅฐฑๆฏๅๆน็จ็่งฃใๅไน๏ผไปปๆๅๆน็จ็่งฃ $u = phi(xv)$ ้ฝๆ๏ผ
$
Phi = phi(xv) - u
$
ๆฏ@eq-t ็่งฃ
]
#theorem[][
่ฅ็งฐ๏ผ
$
der(x_i, A_i (xv)) = der(x_j, A_j (xv)) = der(u, B (xv, u))
$
ไธบๆ็บฟๆงๆน็จ็็นๅพๆน็จ๏ผไธๆ $n$ ไธช็ฌ็ซ็้ฆๆฌก็งฏๅ๏ผๅๅๆน็จ็้่งฃๆฐไธบ๏ผ
$
Phi(phi_1, phi_2, ..., phi_n) = 0
$
] |
|
https://github.com/jgm/typst-hs | https://raw.githubusercontent.com/jgm/typst-hs/main/test/typ/compute/calc-12.typ | typst | Other | // Test the `quo` function.
#test(calc.quo(1, 1), 1)
#test(calc.quo(5, 3), 1)
#test(calc.quo(5, -3), -1)
#test(calc.quo(22.5, 10), 2)
#test(calc.quo(9, 4.5), 2)
|
https://github.com/herbhuang/utdallas-thesis-template-typst | https://raw.githubusercontent.com/herbhuang/utdallas-thesis-template-typst/main/layout/proposal_template.typ | typst | MIT License | #import "/layout/titlepage.typ": *
#import "/layout/transparency_ai_tools.typ": transparency_ai_tools as transparency_ai_tools_layout
#import "/utils/print_page_break.typ": *
// The project function defines how your document looks.
// It takes your content and some metadata and formats it.
// Go ahead and customize it to your liking!
#let proposal(
title: "",
titleGerman: "",
degree: "",
program: "",
supervisor: "",
advisors: (),
author: "",
startDate: datetime,
submissionDate: datetime,
transparency_ai_tools: "",
is_print: false,
body,
) = {
titlepage(
title: title,
titleGerman: titleGerman,
degree: degree,
program: program,
supervisor: supervisor,
advisors: advisors,
author: author,
startDate: startDate,
submissionDate: submissionDate
)
print_page_break(print: is_print)
// Set the document's basic properties.
set page(
margin: (left: 30mm, right: 30mm, top: 40mm, bottom: 40mm),
numbering: "1",
number-align: center,
)
// Save heading and body font families in variables.
let body-font = "New Computer Modern"
let sans-font = "New Computer Modern Sans"
// Set body font family.
set text(
font: body-font,
size: 12pt,
lang: "en"
)
show math.equation: set text(weight: 400)
// --- Headings ---
show heading: set block(below: 0.85em, above: 1.75em)
show heading: set text(font: body-font)
set heading(numbering: "1.1")
// --- Paragraphs ---
let firstParagraphIndent = 1.45em
show heading: it => {
it
h(firstParagraphIndent)
}
set par(leading: 1em, justify: true, first-line-indent: 2em)
// --- Citation Style ---
set cite(style: "alphanumeric")
// --- Figures ---
show figure: set text(size: 0.85em)
body
pagebreak()
bibliography("/thesis.bib")
pagebreak()
transparency_ai_tools_layout(transparency_ai_tools)
}
|
https://github.com/fenjalien/metro | https://raw.githubusercontent.com/fenjalien/metro/main/tests/num/rounding/round-pad/test.typ | typst | Apache License 2.0 | #import "/src/lib.typ": *
#set page(width: auto, height: auto, margin: 1cm)
#metro-setup(round-mode: "figures", round-precision: 4)
#num(12.3)
#num(12.3, round-pad: false)
|
https://github.com/ymgyt/techbook | https://raw.githubusercontent.com/ymgyt/techbook/master/programmings/js/typescript/specification/literal_type.md | markdown | # literal type
* primitiveๅใฎ็นๅฎใฎๅคใ ใใไปฃๅ
ฅใซใใๅใ่กจ็พใงใใใ
```typescript
// xใซใฏใชใใงใassigneใงใใ
let x: number;
x = 1;
```
```typescript
// xใซใฏ1ใ ใใไปฃๅ
ฅใงใใ
let x: 1
x = 1;
// compile error
// x = 2;
```
## literal typeใๅฉ็จใงใใprimitiveๅ
* bool
* number
* string
```typescript
let status: 1 | 2 | 3 = 1;
```
|
|
https://github.com/bamboovir/typst-resume-template | https://raw.githubusercontent.com/bamboovir/typst-resume-template/main/README.md | markdown | MIT License | # Typst Resume Template
A simple resume template for [typst.app](https://typst.app/).
Aesthetic style inspired by the following project:
- [Awesome-CV](https://github.com/posquit0/Awesome-CV)
- [LaTeX Resume](https://github.com/billryan/resume)
This is not a perfect clone, the main purpose of this project is to explore and experiment with Typst's typography features.
## [Sample](./resume.pdf)


## Declaration
If you want to see a more realistic example rendered using this template, check [this](https://github.com/bamboovir/typst-resume-template/blob/main/huiming-sun-sde-resume.pdf). This is the resume I built in 2022, may be somewhat out of date and not actively maintained, and is not intended to be an accurate description of any of my current experiences but is intended solely to demonstrate the aesthetics of this template.
You are free to take my .typ template and modify it to create your own resume. **Please don't use my resume for anything else without my permission, though!**
## Development Environment
- Install [Typst](https://github.com/typst/typst)
- Install [Just](https://github.com/casey/just)
## Build Resume
```bash
just build
```
## Interactive Development Resume
```bash
just dev
```
## Containerized Build
```bash
just containerized-build
```
## GitHub Action for resume build automation
- [Resume Build CI Pipeline](https://github.com/bamboovir/typst-resume-template/actions/workflows/build-resume.yml)
## Credit
[**Typst**](https://github.com/typst/typst) is a new markup-based typesetting system that is designed to be as powerful as LaTeX while being much easier to learn and use.
[**FontAwesome**](https://fontawesome.com/) is the Internet's icon library and toolkit, used by millions of designers, developers, and content creators.
[**Roboto**](https://github.com/google/roboto) is the default font on Android and ChromeOS, and the recommended font for Googleโs visual language, Material Design.
[**Source Sans Pro**](https://github.com/adobe-fonts/source-sans-pro) is a set of OpenType fonts that have been designed to work well in user interface (UI) environments.
|
https://github.com/jgm/typst-hs | https://raw.githubusercontent.com/jgm/typst-hs/main/test/typ/compiler/recursion-02.typ | typst | Other | // Test capturing with named function.
#let f = 10
#let f() = f
#test(type(f()), "function")
|
https://github.com/ParaN3xus/tex2typ | https://raw.githubusercontent.com/ParaN3xus/tex2typ/main/README.md | markdown | MIT License | # tex2typ
A tool to rebuild [Typst](https://typst.app/) mathematical formulas from [KaTeX](https://katex.org/) syntax tree.
## Features
- Convert LaTeX mathematical formulas to Typst mathematical formulas.
- Extremely useful for building Typst formula datasets.
## Differences from [MiTeX](https://github.com/mitex-rs/mitex)
- Focuses on ensuring a generally similar visual effect rather than an identical one, aiming to make the formulas look like they were written by a human.
- The generated formulas do not rely on any special Typst environments or packages and can be compiled directly with the standard Typst.
- We didn't provide any Typst package.
## TODO
- [ ] Improve the handling of spaces in TeX formulas.
- [ ] Refactor and optimize the code logic to reduce redundancy.
- [x] Fix the issue with incorrect delimiter passing when reconstructing functions like `cases` and `vec`.
## Credits
This project makes use of the following open-source projects:
- [KaTeX](https://github.com/KaTeX/KaTeX): Fast math typesetting for the web.
- [mitex](https://github.com/mitex-rs/mitex): LaTeX support for Typst, powered by Rust and WASM.
- [im2markup](https://github.com/harvardnlp/im2markup/): Neural model for converting Image-to-Markup.
Thanks to the developers and contributors of these projects for their hard work and dedication.
## LICENSE
MIT
|
https://github.com/typst/packages | https://raw.githubusercontent.com/typst/packages/main/packages/preview/outrageous/0.1.0/examples/basic.typ | typst | Apache License 2.0 | #import "../outrageous.typ"
#set heading(numbering: "1.")
#set outline(indent: auto)
#page(height: auto, width: 15cm, margin: 1cm)[
#show outline.entry: outrageous.show-entry
#outline()
]
#page(height: auto, width: 15cm, margin: 1cm)[
#show outline.entry: outrageous.show-entry.with(
// the typst preset retains the normal Typst appearance
..outrageous.presets.typst,
// we only override a few things:
// level-1 entries are italic, all others keep their font style
font-style: ("italic", auto),
// no fill for level-1 entries, a thin gray line for all deeper levels
fill: (none, line(length: 100%, stroke: gray + .5pt)),
)
#outline()
]
= Introduction
#lorem(400)
#lorem(400)
== What is this About?
#lorem(400)
#lorem(400)
== Why am I Here?
#lorem(400)
#lorem(400)
= The Backstory
#lorem(400)
#lorem(400)
== How it all Started
#lorem(400)
#lorem(400)
=== Early Beginnings
#lorem(400)
#lorem(400)
=== First Settlements
#lorem(400)
#lorem(400)
= The Consequences
#lorem(400)
#lorem(400)
= Happy Ending
#lorem(400)
#lorem(400)
|
https://github.com/HezelTm/TypstDocuments | https://raw.githubusercontent.com/HezelTm/TypstDocuments/main/README.md | markdown | MIT License | # TypstDocuments
Repository to store all Typst Documents
|
https://github.com/lee-flower/Sn-nCr | https://raw.githubusercontent.com/lee-flower/Sn-nCr/main/main.typ | typst | Apache License 2.0 | #import "template.typ": *
#show: project.with(
title: "็ญๅทฎๆฐๅ็r้ถๅn้กนๅไธ็ปๅๆฐ็่็ณป",
authors: (
(
name: "ๆฑๆ้",
organization: [ๆข
ๅทๅธๆข
ๅฟๅบ้ซ็บงไธญๅญฆ],
email: "<EMAIL>"
),
),
abstract: "ๆฌๆ็็ฎ็ๅจไบ๏ผ็จๆฐๅญฆๅฝ็บณๆณ่ฏๆไบ็ญๅทฎๆฐๅ็r้ถๅn้กนๅไธ็ปๅๆฐไน้ด็่็ณปใ",
keywords: (
"็ญๅทฎๆฐๅr้ถๅn้กนๅ",
"็ปๅๆฐ",
"ๆฐๅญฆๅฝ็บณๆณ"
),
)
= ๅฎไน
== ็ญๅทฎๆฐๅ${a_n}$็r้ถๅn้กนๅ
่ฎพๆฐๅ${a_n}$ไธบ็ญๅทฎๆฐๅ๏ผๅ
ถ้้กนๅ
ฌๅผไธบ$a_n = n$๏ผ
็ฐๅฎไน$S_n^(\(r\))$ไธบๆฐๅ${a_n}$็*r ้ถๅ n ้กนๅ*๏ผๅ
ถไธญ $r in NN$.
่ไธๅฏนไบ$forall r >= 1$๏ผ้ฝๆ๏ผ
$ display(S_n^(\(r\)) = sum_(i=1)^(n) S_i^(\(r-1\))) $
ๅฆๅค๏ผๆไปฌ่งๅฎ๏ผ$S_n^(\(0\)) = a_n$.
== ๆๅใๆๅๆฐๅๅ
ถ่ฎก็ฎๅ
ฌๅผ
ๅ
ณไบ*ๆๅ*ๅ*ๆๅๆฐ*็ๅฎไน๏ผ่ฏฆ่ง@pailie .
็ฐ็ปๅบ*ๆๅๆฐ*็่ฎก็ฎๅ
ฌๅผ๏ผ
$ A_n^m = n(n-1)(n-2) dots.h.c (n-m+1) = n!/(n-m)! $
ๅ
ถไธญ๏ผ$n, m in NN$ไธ$m <= n$.
== ็ปๅใ็ปๅๆฐๅๅ
ถ่ฎก็ฎๅ
ฌๅผ
ๅ
ณไบ*็ปๅ*ๅ*็ปๅๆฐ*็ๅฎไน๏ผ่ฏฆ่ง@zuhe .
็ฐ็ปๅบ*็ปๅๆฐ*็่ฎก็ฎๅ
ฌๅผ๏ผ
$ binom(n,m) = (A_n^m)/(A_m^m) = n!/(m!(n-m)!) $
ๅ
ถไธญ๏ผ$n, m in NN$ไธ$m <= n$.
=== ็ปๅๆฐ็ไธไธชๆจ่ฎบไธไธไธชๆง่ดจ
็ฐ็ปๅบ็จไบๆฌๆ่ฏๆ็*็ปๅๆฐ*็ไธไธชๆจ่ฎบๅไธไธชๆง่ดจ๏ผ
*ๆจ่ฎบ1*๏ผๅฏนไบไปปๆ็$n in NN$๏ผๆ$binom(n,n)=1$.
*ๆง่ดจ1*๏ผๅฏนไบไปปๆ็$n, m in NN_(+)$ไธ$m <= n$๏ผๆ$binom(n,m) + binom(n,m-1) = binom(n+1,m)$.
ๅฏนไบไธ่ฟฐ*็ปๅๆฐ*็ๆจ่ฎบๅๆง่ดจ็่ฏๆ๏ผ่ฏฆ่ง@xingzhi .
= ็ๆณ
== ไธพไพ
็ฑๅฎไน*1.1*ๅฏ็ฅ๏ผ
ๅฝ$r=1$ๆถ๏ผ$S_(n)^(\(1\))$ๅณ$S_(n) = sum_(i=1)^(n) a_i = 1/2 n (n + 1)$๏ผ
ๅๅฆ๏ผๅฝ$r=2$ๆถ๏ผ$S_(n)^(\(2\)) = sum_(i=1)^(n) S_i = 1/6 n(n+1)(n+2)$.
#figure(
image("f1.svg", width:76%),
caption: [
็ปฟ็นใ็ดซ็นใ่็นๅๅซ่กจ็คบๆฐๅ${a_n}$ใ${S_n}$ๅ${S_n^(\(2\))}$
]
)
== ็ๆณ็ญๅทฎๆฐๅ${a_n}$็r้ถๅn้กนๅ็่กจ่พพๅผ
ๆฎ*2.1*ๆไธพไพๅญ๏ผๅฏๅพๅฆไธ็ๆณ๏ผ
#set math.equation(numbering: "(1)")
$ S_n^(\(r\)) = 1/(r+1)! product_(i=0)^(r) (n+i)
= (n+r)!/((r+1)!(n-1)!) = binom(n+r,r+1) $<chaixiang>
= ่ฏๆ
็ฐๅฏนๆๅ็ๆณ็ปๅบ่ฏๆ๏ผ
*่ฏ*.
(1) ๅฝ$r=0$ๆ$r=1$ๆถ๏ผๆพ็ถๆ @chaixiang ๆ็ซ.
(2) ๅ่ฎพๅฝ$r=k (k in NN_(+))$ๆถ๏ผ@chaixiang ๆ็ซ๏ผๅณ
$ S_n^(\(k\)) = binom(n+k,k+1) $
ๅๆฎๅฎไน*1.1*๏ผๆ๏ผ
$ S_n^(\(k+1\)) & = sum_(i=1)^(n) S_i^(\(k\)) \
& = S_1^(\(k\)) + S_2^(\(k\)) + S_3^(\(k\)) + dots.h.c + S_n^(\(k\)) \
& = binom(1+k,k+1) + binom(2+k,k+1) + binom(3+k,k+1) + dots.h.c + binom(n+k,k+1) $<tuidao3>
็ฑ*็ปๅๆฐ*็*ๆจ่ฎบ1*ๅฏ็ฅ๏ผ@tuidao3 ็ญไปทไบ
$ S_n^(\(k+1\)) = binom(2+k,k+2) + binom(2+k,k+1) + binom(3+k,k+1) + dots.h.c + binom(n+k,k+1) $<tuidao4>
ๅ็ฑ*็ปๅๆฐ*็*ๆง่ดจ1*ๅฏ็ฅ๏ผ@tuidao4 ็ญไปทไบ
$ S_n^(\(k+1\)) & = binom(3+k,k+2) + binom(3+k,k+1) + dots.h.c + binom(n+k,k+1) \
& = binom(4+k,k+2) + binom(4+k,k+1) + dots.h.c + binom(n+k,k+1) \
& dots.h \
& = binom(n+k,k+2) + binom(n+k,k+1) \
& = binom(n+k+1,k+2) = binom(n+(k+1),(k+1)+1) $
ๅณๅฝ$n=k+1$ๆถ๏ผ @chaixiang ไนๆ็ซ.\
็ฑ(1)(2)ๅฏ็ฅ๏ผ @chaixiang ๅฏนไปปไฝ$r in NN$้ฝๆ็ซ.
*่ฏๆฏ*
ๆ
็ๆณๆ็ซ.
= ้ๅฝ
== ๆๅๅๆๅๆฐ<pailie>
*ๆๅ*๏ผไธ่ฌๅฐ๏ผไป$n$ไธชไธๅ็ๅ
็ด ไธญๅๅบ$m(m<=n)$ไธชๅ
็ด ๏ผ
ๆ็
งไธๅฎ็้กบๅบๆๆไธๅ๏ผๅซๅไป$n$ไธชๅ
็ด ไธญๅๅบ$m$ไธชๅ
็ด ็ไธไธชๆๅ.
็นๅซๅฐ๏ผๅฝ$m=n$ๆถ๏ผ่ฟไธชๆๅ่ขซ็งฐไฝ_ๅ
จๆๅ_.
*ๆๅๆฐ*๏ผๆๅๆฐๆ็ๆฏไป$n$ไธชไธๅๅ
็ด ไธญไปปๅ$m(m <= n)$ไธชๅ
็ด ๆๆไธๅ๏ผ่่ๅ
็ด ๅ
ๅๅบ็ฐๆฌกๅบ๏ผ็งฐๆญคไธบไธไธชๆๅ๏ผ
ๆญค็งๆๅ็ๆปๆฐๅณไธบๆๅๆฐ๏ผๅณๅซๅไป$n$ไธชไธๅๅ
็ด ไธญๅๅบ$m$ไธชๅ
็ด ็ๆๅๆฐ๏ผ่ฎฐไฝ$A_n^m$.
== ็ปๅๅ็ปๅๆฐ<zuhe>
*็ปๅ*๏ผไธ่ฌๅฐ๏ผไปnไธชไธๅ็ๅ
็ด ไธญ๏ผไปปๅ$m(m<=n)$ไธชๅ
็ด ไธบไธ็ป๏ผ
ๅซไฝ$n$ไธชไธๅๅ
็ด ไธญๅๅบ$m$ไธชๅ
็ด ็ไธไธช็ปๅ.
*็ปๅๆฐ*๏ผไป$n$ไธชไธๅๅ
็ด ไธญๅๅบ$m(m<=n)$ไธชๅ
็ด ็ๆๆ็ปๅ็ไธชๆฐ๏ผ
ๅซๅไป$n$ไธชไธๅๅ
็ด ไธญๅๅบ$m$ไธชๅ
็ด ็็ปๅๆฐ๏ผ่ฎฐไฝ$binom(n,m)$.
=== ็ปๅๆฐ็ไธไธชๆจ่ฎบไธไธไธชๆง่ดจ็่ฏๆ<xingzhi>
็ฐ็ปๅบๅฏน*ๆจ่ฎบ1*ๅ*ๆง่ดจ1*็่ฏๆ.
==== ๆจ่ฎบ1็่ฏๆ
#set math.equation(numbering: none)
่ฎพ$n,m in NN$ไธ$m <= n$๏ผ
ๅ็ฑ*็ปๅๆฐ*็่ฎก็ฎๅ
ฌๅผ$ binom(n,m) = A_m^n / A_m^m $็ฅ๏ผ\
ๅฝ$m=n$ๆถ๏ผไธๅผไธบ$ binom(n,n) = A_n^n / A_n^n = 1 $.
ๆ
*ๆจ่ฎบ1*ๅพ่ฏ.
==== ๆง่ดจ1็่ฏๆ
่ฎพ$n,m in NN_(+)$ไธ$m <= n$๏ผ
ๅ
$ binom(n,m) + binom(n,m-1) & = n!/(m!(n-m)!) + n!/((m-1)!(n-m+1)!) \
& = n!(1/(m(m-1)!(n-m)!) + 1/((n-m+1)(m-1)!(n-m)!)) \
& = n!/((m-1)!(n-m)!) (1/m + 1/(n-m+1)) \
& = n!/((m-1)!(n-m)!) dot.op (n-m+1+m)/(m(n-m+1)) \
& = (n!(n+1))/(m(m-1)!(n-m+1)(n-m)!) \
& = ((n+1)!)/(m!(n-m+1)!) \
& = binom(n+1,m) $
ๆ
*ๆง่ดจ1*ๅพ่ฏ.
== ไธไธชๆ่ถฃ็ๆฐ
ๅฝ$n=4,r=20$ๆถ๏ผ$S_n^(\(r\)) = S_4^(\(20\)) = binom(24,5) = 2024$๏ผๆฐๅฅฝๆฏๆฌๆ็ๅไฝๅนดไปฝ.
ๅจๆญค๏ผๆฌๆไฝ่
ไน็ฅๅคงๅฎถ2024ๆฐๅนดๅฟซไน๏ผ่ฝ็ถๅทฒ็ป่ฟๅปๅฟซ4ไธชๆไบ๏ผ๏ผ
ๆฌๆๅไบ*2024*ๅนด*3*ๆ*31*ๆฅ.
== ่ด่ฐข
ๅจๆญคๆ่ฐข*้่ฟ่พ*่ๅธใ*ๆๅๆ*ๅๅญฆใ*็ๅฏๅนณ*ๅๅญฆๅจๆฌๆๅไฝ่ฟ็จไธญ็ปไบ็ๅธฎๅฉ.
|
https://github.com/7sDream/fonts-and-layout-zhCN | https://raw.githubusercontent.com/7sDream/fonts-and-layout-zhCN/master/chapters/02-concepts/dimension/dim-3.typ | typst | Other | #import "/lib/draw.typ": *
#import "/lib/glossary.typ": tr
#let start = (0, 0)
#let end = (250, 220)
#let base = (100, 70)
#let up = 150
#let down = 35
#let width = 74
#let lt = (base.at(0), base.at(1) + up)
#let rb = (base.at(0) + width, base.at(1) - down)
#let bbox-lt = (93, 178)
#let bbox-width = 74
#let bbox-height = 111
#let bbox-ct = (bbox-lt.at(0) + bbox-width / 2, bbox-lt.at(1))
#let line-color = gray.darken(30%)
#let graph = with-unit((ux, uy) => {
// mesh(start, end, (50, 50), stroke: 1 * ux + gray)
rect(
lt, end: rb,
stroke: 1.4 * ux + line-color,
)
let line-stroke = 1 * ux + line-color
segment(
(0, base.at(1)), (end.at(0), base.at(1)),
stroke: line-stroke,
)
let arrow-y = base.at(1) - down - 20
let arrow-length = 12
arrow(
(base.at(0) + width - arrow-length, arrow-y),
(base.at(0) + width, arrow-y),
stroke: line-stroke,
head-scale: 3,
)
arrow(
(base.at(0) + arrow-length, arrow-y),
(base.at(0), arrow-y),
stroke: line-stroke,
head-scale: 3,
)
txt(tr[horizontal advance], (base.at(0) + width / 2, arrow-y), size: 12 * ux)
txt([#tr[baseline]], (0, base.at(1)), size: 12 * ux, anchor: "lb", dy: 2)
rect(
bbox-lt, width: bbox-width, height: bbox-height,
stroke: 1.2 * ux + line-color,
)
txt(text(fill: line-color)[#tr[outline]#tr[bounding box]], bbox-ct, size: 12 * ux, anchor: "cb", dy: 2)
txt(text(font: ("Fresca",))[b], base, size: 150 * ux, anchor: "lb", dx: -5, dy: -2)
})
#canvas(end, start: start, width: 50%, graph)
|
https://github.com/VisualFP/docs | https://raw.githubusercontent.com/VisualFP/docs/main/SA/design_concept/content/poc/ui.typ | typst | #import "../../../acronyms.typ": *
= User Interface <ui>
This section describes the features of the #ac("PoC") application #ac("UI"), the high-level implementation, and how functional reactive programming could be applied to VisualFP.
== Features
The #ac("UI") for the #ac("PoC") application includes two main components, as shown in @ui-empty-editor: A sidebar with pre-defined value blocks and the function editor.
#figure(
image("../../static/ui_empty_editor.png"),
caption: "Undefined function value in the VisualFP UI"
) <ui-empty-editor>
The #ac("PoC") allows the construction of a value, the "userDefinedFunction", which starts with a generic type hole.
Starting with a generic function type allows more flexible testing.
In a completed application version, the user can define the function name and type when creating it.
#grid(
columns: (60%, 40%),
gutter: 5pt,
[#figure(
image("../../static/ui_editor_drag_lambda.png"),
caption: "Dragging lambda block into value definition"
) <ui-dragging-lambda>],
[#figure(
image("../../static/ui_editor_dropped_lambda.png"),
caption: "Updated function definition including a lambda block"
) <ui-dropped-lambda>]
)
@ui-dragging-lambda and @ui-dropped-lambda show how a lambda block is inserted into the value definition.
To build the value definition, the user drags the lambda block from the sidebar into the type hole.
The drop event then triggers the application to insert the lambda block into the function definition and infer the types of the new function definition.
This process can be repeated with suiting value blocks until no type hole is left.
As the #ac("PoC") is intended to test the concept, only a reset button exists to return to the initial empty definition.
In a full version, this would be replaced with the possibility to remove specific blocks from the definition.
Finally, the user-built function definitions can be viewed as Haskell code by clicking the "View Haskell" button.
@ui-view-haskell shows the Haskell code for the `mapAdd5` function.
#figure(
image("../../static/ui_view_haskell.png"),
caption: "Haskell defintion of mapAdd5 function in VisualFP"
) <ui-view-haskell>
== Implementation
The #ac("UI") implementation consists of an Electron.js app hosting a Threepenny #ac("UI").
The Electron app is packaged with an executable of the Threepenny #ac("UI") and all #ac("UI") related static files, i.e. #ac("CSS") & JavaScript files.
When starting the Threepenny #ac("UI"), the Electron app passes a usable port for the local web server and the file path of the static #ac("UI") files to the Threepenny #ac("UI").
The function editor is the most significant part of the Threepenny #ac("UI") and has two primary responsibilities:
- Rendering of function value blocks
- Reacting to value block drop events
The rendering part creates an #ac("HTML") representation of each block in the value definition and annotates it with #ac("CSS") classes according to its block type.
Reacting to the drop events is a bit more complicated.
The block values in the application's sidebar carry their names as data transfer data.
When the user drops a block value into a type hole, the data transfer data is included in the event data.
Unfortunately, the drop events cannot be registered when creating the type hole elements in the rendering part.
So, to register the drop event listeners, the IDs of type holes need to be collected upfront.
With these IDs, the #ac("HTML") elements added to the #ac("DOM") can be loaded, and the event handlers registered.
The drop event handlers always do the same, regardless of the block value that was dropped:
1. Replace the type hole with the dropped value
2. Infer the updated function definition
3. Clear all elements from the function editor
4. Render the inferred function definition
== Functional Reactive Programming
Threepenny includes an #ac("FRP") library, which follows the concepts described by <NAME> and <NAME>.
#ac("FRP") has two main concepts: Events and Behaviors.
An Event is defined as a list of occurrences in time.
A Behavior represents a value that changes over time.
@frp_elliott_hudak
While the first intention was to build the #ac("PoC") with an #ac("FRP") architecture, it became clear over time that Threepenny's #ac("FRP") library is not yet ready for more complex use-cases like VisualFP's function editor.
The main problem is that no function allows it to merge multiple events.
Implementing the #ac("FRP") architecture through Threepenny could be considered again once the #ac("FRP") library is replaced by reactive-banana #footnote("https://github.com/HeinrichApfelmus/reactive-banana").
The author of Threepenny, <NAME>, plans to do that in a future release @threepenny-frp-replacement.
Generally, there is no reason why VisualFP couldn't be implemented using #ac("FRP").
In such an implementation, there would be three kinds of events:
- "Reset Editor" button is clicked
- "View Haskell" button is clicked
- A block value is dropped into a type hole. This event combines all events from every type hole in the function definition.
The value definition of the user-defined function is a behavior that changes every time a block value is dropped into the value definition.
When the value definition changes, the elements displayed in the function editor must also be updated.
|
|
https://github.com/justmejulian/typst-documentation-template | https://raw.githubusercontent.com/justmejulian/typst-documentation-template/main/README.md | markdown | # ZHAW typst-documentation-template
Typst documentation template for a ZHAW thesis, based on [ZHAW guidelines](https://gpmpublic.zhaw.ch/GPMDocProdDPublic/Vorgabedokumente_ZHAW/Z_RL_Richtlinie_Corporate_Design_Markengrundelemente.pdf).
Learn more about Typst [here](https://github.com/typst/typst).
This template is based on the [School of TUM thesis-template-typst](https://github.com/ls1intum/thesis-template-typst).
## Installation
Install typst.
```bash
brew install typst
```
Once you have installed Typst, you can use it like this:
```bash
# Creates `main.pdf` in working directory.
typst compile main.typ
# Watches source files and recompiles on changes.
typst watch main.typ
```
I recommend using the skim pdf viewer, which can be installed via brew.
Skim automatically reloads the pdf when it changes.
```bash
brew install --cask skim
```
## neovim
todo: add how to setup typst-lsp / Treesitter.
## Todo
Github action to build
https://github.com/marketplace/actions/github-action-for-typst
|
|
https://github.com/jgm/typst-hs | https://raw.githubusercontent.com/jgm/typst-hs/main/test/typ/visualize/image-08.typ | typst | Other | // Error: 8-18 failed to parse svg: found closing tag 'g' instead of 'style' in line 4
#image("test/assets/files/bad.svg")
|
https://github.com/yaoyuanArtemis/resume | https://raw.githubusercontent.com/yaoyuanArtemis/resume/main/README-zh.md | markdown | Do What The F*ck You Want To Public License | # typst-cv-miku
่ฟๆฏไธไธช็ฎๅใไผ้
ใๅญฆๆฏ้ฃๆ ผ็ [typst](https://typst.app/) ไธชไบบ็ฎๅ๏ผCV๏ผๆจกๆฟใๆฏๆไธญ่ฑๆ๏ผไปฅๅๆดๅค๏ผใ
ไฝ ๅฏไปฅๅจ [่ฟ้](https://typst.app/project/rbxGsQC-tEkDq0mnNIuxkv) ๆฅ็ๅจ็บฟๆผ็คบใ
## ็คบไพ


## ไฝฟ็จ่ฏดๆ
1. ้
่ฏป [typst](https://typst.app/docs/) ๆๆกฃใ
2. ๅฎ่ฃ
ๆญคๆจกๆฟ้่ฆ็ๅญไฝ๏ผ
- [kpfonts](https://ctan.org/pkg/kpfonts)
- [Source Han Sans](https://github.com/adobe-fonts/source-han-sans)
- [Source Han Serif](https://source.typekit.com/source-han-serif/cn/)
3. ๆ นๆฎ้่ฆไฟฎๆน `.typ` ๆไปถ. ไฝ ๅฏ่ฝ้่ฆไบ่งฃ typst ็ไธไบๅบๆฌ่ฏญๆณใ
## ๆญคๅค
Typst ็ฎๅๅจ Emoji ่พๅบไธๆไธไบ [bugs](https://github.com/typst/typst/issues/144)๏ผๆไปฅๆๆถ็จ SVG ๆฟไปฃ๏ผไฝ ๅฏไปฅๅจ [twemoji utils](https://twemoji.godi.se/) ๆพๅฐๆดๅคใ
ๅฐๅพๆ ๆฅ่ช Material Icons (Community).
## License
Licensed under [WTFPL](http://www.wtfpl.net/).
|
https://github.com/protohaven/printed_materials | https://raw.githubusercontent.com/protohaven/printed_materials/main/meta-environments/env-branding.typ | typst | // Branding
#let color = (
tablegrey: rgb(95%,95%,95%),
lightgrey: rgb(65%,65%,65%),
midgrey: rgb(50%,50%,50%),
darkgrey: rgb(38%,38%,38%),
warning: rgb("#900000"),
accent: rgb("#6EC7E2"),
link: blue,
)
#let font = (
title: "Noto Sans",
sans: "Noto Sans",
link: "Fira Mono",
) |
|
https://github.com/Toniolo-Marco/git-for-dummies | https://raw.githubusercontent.com/Toniolo-Marco/git-for-dummies/main/book/roles-duties.typ | typst | = Ruoli e mansioni
#let wgc = "Working group coordinator"
#let gl = "Group leader"
#let gm = "GitHub maintainer"
Uno degli aspetti principali del corso รจ che il progetto viene strutturato per assomigliare il piรน possibile alla realtร lavorativa, questo si riflette in una struttura gerarchica ben definita dove ognuno ha un ruolo e dei compiti associati, nel 2023 la struttura era:
- #wgc
- #gl
- #gm
- Tester
- Reporter
- Member
== #wgc
il #wgc รจ il responsabile di tutta la parte comune del progetto, รจ lui che ha l'ultima parola su come interpretare le specifiche fornite dal prof, gestire le riunioni,
accettare o rifiutare le proposte (anche se รจ comune indirre delle votazioni), fissare le scadenze e scrivere i report sullo stato del progetto dopo ogni riunione.
Viene eletto a maggioranza dai membri presenti durante una delle lezioni, il professore vi dirร in anticipo quando sarร il giorno, solitamente poco dopo la presentazione del progetto.
Il primo compito del #wgc รจ quello di scegliere i suoi collaboratori, ovvero i *#gl* (solitamente 2), i *Tester* (solitamente 2/3) e i *Reporter* (solitamente 2), fatto questo il assieme ai #gm, deve creare l'organizzazione e dare ad essi tutti i permessi cosรฌ che possano gestirla.
== #gl
Ogni gruppo ha un responsabile, questo va scelto tra i membri e comunicato al docente entro la data stabilita assieme al nome del gruppo e all'elenco dei
partecipanti. Il suo compito รจ quello di partecipare alle riunione generali con #wgc e di rappresentare gli interessi del gruppo, votando le varie sulle questioni.
== #gm
Si consiglia di scegliere qualcuno che ha dimestichezza con git e GitHub, meglio se ha la possibilitร di hostare delle applicazioni e dimestichezza con Docker. Si occuperร di gestire il repository, l'organizzazione su GitHub, effettuare il setup dell'inviter (o in alternativa aggiungere a mano tutte le persone), creare le action e cosa piรน importante gestire le issue, le milestones e le pull requests che verranno create, lavorerร in stretto contatto con i principali sviluppatori del *Common Crate* e coi testers. ร compito suo accertarsi che una pr non rompa tutto il codice giร presente o in caso contrario, che ci sia un valido motivo, deve controllare che il codice rispetti gli standard decisi e che sia ben documentato.
== Tester
Solitamente 2/3 persone, si occupano di scrivere i test che il Common Crate deve superare quando si implementa una nuova feature, oltre a scrivere i test che le applicazioni dei gruppi devono superare per verificare che stiano usando il Common Crate nel modo corretto, forzando gli standard decisi dalle specifiche.
L'idea รจ che ad ogni pull request vengano eseguiti i test e in base all'esito, si procede con la revisione manuale.
== Reporter
Sono coloro che partecipano ad ogni riunione col compito di stilare un resoconto degli eventi, utile per tracciare i progressi e la direzione del progetto, basandosi su esso il #wgc, stilerร il suo report da inviare al docente. Hanno inoltre il compito di scrivere le specifiche man mano che vengono corrette e definite.
== Member
Sono tutti i membri dei vari gruppi, il loro compito รจ partecipare all'implementazione del Common Crate, proporre feature e aprire pull requests con i cambiamenti proposti.
Il #wgc potrebbe apportare delle modifiche, come decidere di avere piรน o meno persone per ruolo, oppure crearne di nuovi, quello che possiamo dirvi รจ che noi ci siamo trovati bene con questa struttura. |
|
https://github.com/Mufanc/hnuslides-typst | https://raw.githubusercontent.com/Mufanc/hnuslides-typst/master/configs.typ | typst | #let slide = (
width: 640pt,
height: 360pt,
margin: (x: 3em, top: 2em, bottom: 0em),
)
|
|
https://github.com/DrGo/typst-tips | https://raw.githubusercontent.com/DrGo/typst-tips/main/refs/samples/typst-uwthesis-master/README.md | markdown | # typst-uwthesis
This is a [typst](https://typst.app/) template that should (almost) satisfy the [University of Waterloo's thesis formatting requirements](https://uwaterloo.ca/graduate-studies-postdoctoral-affairs/current-students/thesis/thesis-formatting). The resulted document is similar to, but not exactly the same as the [LaTeX template](https://uwaterloo.atlassian.net/wiki/spaces/ISTKB/pages/2666037269/LaTeX+Software+for+Thesis+and+Document+Preparation+and+the+Overleaf+Cloud+Service).
I wrote this template for my thesis proposal.
At this moment, `project`, `appendix` and `gls` are only documented using the code itself.
## Limitations
1. Equations are not labeled in `section.equ` format. We would either need to "hack" using `set equ` or wait for typst to implement this.
2. Some duplicated headings appear in PDF's outline (not in TOC). This [issue](https://github.com/typst/typst/pull/1566) has been addressed by typst's developer. If you compile from GitHub's `main` branch, instead of using the pre-compiled package, the problem will disappear. We expect the problem will also disappear in the next release of typst.
3. Limited reverse link from bibliography. This needs to be addressed by typst.
3. No reverse link from list of abbreviations. I might find a way to hack this later.
## License
Placeholders in the example file might contain copyrighted example texts obtained from UW's IST. By the time you complete you thesis, all copyrighted texts will have been removed.
Currently, there should be no legal problem for a UW student to use this template. We have plan to release the template under an Apache license similar to [simple-typst-thesis's](https://github.com/zagoli/simple-typst-thesis) after getting rid of the potentially copyrighted texts. If you need this template soon, feel free to replace the text by non-copyrighted material and submit a pull request.
|
|
https://github.com/davystrong/umbra | https://raw.githubusercontent.com/davystrong/umbra/main/src/lib.typ | typst | MIT License | #let version = version((0, 1, 0))
#import "shadow-path.typ": shadow-path
|
https://github.com/Maso03/Bachelor | https://raw.githubusercontent.com/Maso03/Bachelor/main/Bachelorarbeit/chapters/VR.typ | typst | MIT License | == Virtual Reality (VR)
Virtual Reality (VR) ist eine Technologie, die es Benutzern ermรถglicht, in eine computergenerierte, dreidimensionale Umgebung einzutauchen. Diese Umgebung kann mit Hilfe von VR-Headsets und anderen Peripheriegerรคten erlebt werden. VR findet Anwendung in Bereichen wie Gaming, Ausbildung, Medizin und Architektur. Durch die Schaffung immersiver Erlebnisse kann VR das Lernen und die Interaktion mit digitalen Inhalten erheblich verbessern. |
https://github.com/PA055/5839B-Notebook | https://raw.githubusercontent.com/PA055/5839B-Notebook/main/appendix.typ | typst | #import "./packages.typ": notebookinator
#import notebookinator: *
#import themes.radial.components
#import "./utils.typ": get-page-number
#import "./glossary.typ"
#create-appendix-entry(title: "Glossary")[
#components.glossary()
] |
|
https://github.com/Enter-tainer/typstyle | https://raw.githubusercontent.com/Enter-tainer/typstyle/master/tests/assets/unit/code/param-len.typ | typst | Apache License 2.0 | #let get-page-dim-writer() = locate(w_loc => {})
#let get-page-dim-writer(a) = locate(w_loc => {})
#let get-page-dim-writer(a, b) = locate(w_loc => {})
#let get-page-dim-writer(a, b, c) = locate(w_loc => {})
#let get-page-dim-writer(
a, b, c) = locate(w_loc => {}) |
https://github.com/VaranTavers/vspct | https://raw.githubusercontent.com/VaranTavers/vspct/main/vspct.typ | typst | MIT License | // Varan's simple Pseudocode for Typst
#let lang = "en"
#let pkeywords = (
en: (
if_pre: "if",
if_post: "",
while_pre: "while",
while_post: "",
do_start: "repeat",
do_end_pre: "until",
do_end_post: "",
end_pre: "end",
end_post: "",
else_pre: "else",
return_pre: "return",
for_pre: "for",
for_post: "",
in_pre: "In",
out_pre: "Out",
algorithm_pre: "Algorithm",
algorithm_post: "",
),
hu: (
if_pre: "Ha",
if_post: "akkor",
while_pre: "Amรญg",
while_post: "vรฉgezd el",
do_start: "Ismรฉteld",
do_end_pre: "Ameddig",
do_end_post: "",
end_pre: "",
end_post: "vรฉge",
else_pre: "kรผlรถnben",
return_pre: "tรฉrรญt",
for_pre: "Minden",
for_post: "vรฉgezd el",
in_pre: "Be",
out_pre: "Ki",
algorithm_pre: "Algoritmus",
algorithm_post: "",
)
)
#let gets = sym.arrow.l.long
#let algCounter = counter("alg")
#let pseudo(body, caption: "") = {
block(
breakable: false,
{
set align(left)
strong[
#pkeywords.at(lang).at("algorithm_pre") #algCounter.display()#pkeywords.at(lang).at("algorithm_post")
]
": " + caption
algCounter.step()
block(
breakable: false,
stroke: (top: black, bottom: black),
above: 0.4em,
inset: (top: 0.5em, left: 1em, right: 1em, bottom:0.5em),
par(
leading: 0.5em,
body
)
)
}
)
}
#let pblock(fname_pre, fname_post, f, body) = {
text(weight: "bold", fname_pre)+" "+f+" "+text(weight: "bold",fname_post)
block(
above: 0.7em,
below: 0.5em,
inset: (top: 0em, left: 1em),
par(
leading: 0.5em,
body
)
)
text(weight: "bold", pkeywords.at(lang).at("end_pre") + " " + fname_pre + " " + pkeywords.at(lang).at("end_post"))
}
#let pfor(iterator, start, end, cumul: "", body) = {
text(weight: "bold", pkeywords.at(lang).at("for_pre"))+" "+iterator+" "+gets+" "+start+", "+end
if cumul != "" {
", " + cumul
}
" "
text(weight: "bold", pkeywords.at(lang).at("for_post"))
block(
above: 0.7em,
below: 0.5em,
inset: (top: 0em, left: 1em),
par(
leading: 0.5em,
body
)
)
text(weight: "bold", pkeywords.at(lang).at("end_pre") + " " + pkeywords.at(lang).at("for_pre") + " " + pkeywords.at(lang).at("end_post"))
}
#let prepeat(f, body) = {
text(weight: "bold", pkeywords.at(lang).at("do_start"))
block(
above: 0.7em,
below: 0.5em,
inset: (top: 0em, left: 1em),
par(
leading: 0.5em,
body
)
)
text(weight: "bold", pkeywords.at(lang).at("do_end_pre")+ " " + f + " " + pkeywords.at(lang).at("do_end_post"))
}
#let pwhile(f, body) = pblock(pkeywords.at(lang).at("while_pre"), pkeywords.at(lang).at("while_post"), f, body)
#let pif(f, body) = pblock(pkeywords.at(lang).at("if_pre"), pkeywords.at(lang).at("if_post"), f, body)
#let pifelse(f, body1, body2) = {
text(weight: "bold", pkeywords.at(lang).at("if_pre"))+" "+f+text(weight: "bold",pkeywords.at(lang).at("if_post"))
block(
above: 0.7em,
below: 0.5em,
inset: (top: 0em, left: 1em),
par(
leading: 0.5em,
body1
)
)
text(weight: "bold", pkeywords.at(lang).at("else_pre"))
block(
above: 0.7em,
below: 0.5em,
inset: (top: 0em, left: 1em),
par(
leading: 0.5em,
body2
)
)
text(weight: "bold", pkeywords.at(lang).at("end_pre")+" "+pkeywords.at(lang).at("if_pre")) + " " + pkeywords.at(lang).at("end_post")
}
#let preturn(body) = {
text(weight: "bold", pkeywords.at(lang).at("return_pre")) + " " + body
}
#let pin(body) = {
text(weight: "bold", pkeywords.at(lang).at("in_pre")) + " " + body
}
#let pout(body) = {
text(weight: "bold", pkeywords.at(lang).at("out_pre")) + " " + body
}
#let pref(label) = pkeywords.at(lang).at("algorithm_pre") + " " + locate(loc => {
algCounter.at(
query(label, loc).first().location()
).at(0)
}) + " " + pkeywords.at(lang).at("algorithm_post")
/*
#show figure: it => if rev [
#set align(left)
#strong[
#it.supplement
#it.counter.display(it.numbering)
]:
#it.caption
#it.body
] else [
#set align(center)
#it.body
#emph[
#it.supplement
#it.counter.display(it.numbering)
]: #it.caption
]
*/ |
https://github.com/LDemetrios/Typst4k | https://raw.githubusercontent.com/LDemetrios/Typst4k/master/src/test/resources/suite/foundations/panic.typ | typst | --- panic ---
// Test panic.
// Error: 2-9 panicked
#panic()
--- panic-with-int ---
// Test panic.
// Error: 2-12 panicked with: 123
#panic(123)
--- panic-with-str ---
// Test panic.
// Error: 2-24 panicked with: "this is wrong"
#panic("this is wrong")
|
|
https://github.com/VZkxr/Typst | https://raw.githubusercontent.com/VZkxr/Typst/master/Tests/document.typ | typst | Sea $\{X_n\}_{n in NN}$ una cadena de Markov con espacio de estados $EE=\{0,1,2,3,4\}$, distribuciรณn inicial $pi^0 = (1,0,0,0,0)$ y matriz de probabilidades de transiciรณn
$ PP=
mat(
0 , 1 , 0 , 0 , 0;
frac(1, 4), 0, frac(3, 4), 0, 0;
0, frac(1, 2), 0, frac(1, 2), 0;
0, 0, frac(3, 4), 0, frac(1, 4);
0, 0, 0, 1, 0;
) $
Calcula la distribuciรณn estacionaria de $X_n_{n in NN}$ para $n$ par, es decir, utilizando $PP$.
#let ofi = [Office]
#let rem = [_Remote_]
#let lea = [*On leave*]
#table(
columns: 6 * (1fr,),
table.header(
[Team member],
[Monday],
[Tuesday],
[Wednesday],
[Thursday],
[Friday]
),
[<NAME>],
table.cell(colspan: 2, ofi),
table.cell(colspan: 2, rem),
ofi,
[<NAME>],
table.cell(colspan: 5, lea),
[<NAME>],
rem,
table.cell(colspan: 2, ofi),
rem,
ofi,
)
#table(
columns: 5 * (1fr,),
table.header(
[], table.cell(colspan:2, [Blue chip]),
[Fresh IPO], [Penny st'k],
),
table.cell(
rowspan: 4,
align: horizon,
[
USD/day
],
),
[0.20], [104], [5], [3.17],
[108], [4], [1.59], [84],
[1], [0.26], [98], [15],
[0.01], [195], [4], [7],
[
USD/hr
],
[57], [2], [3], [6.7]
)
#table(
columns: (auto, 1fr, auto, auto),
table.header(
table.cell(colspan:4, align: center, [*รndice temรกtico*]),
),
table.cell(rowspan: 2,[]),
table.cell(rowspan: 2, align: center + horizon, [*Tema*]),
table.cell(colspan: 2, align: center, [*Horas de curso*]), [*Teorรญas*], [*Prรกcticas*],
[*1*], [*Conjuntos de nรบmeros*], [*1*], [],
[*2*], [*La recta real*], [*1*], [*1*],
[*3*], [*Potencias*], [*1*], [*1*],
[*4*], [*Raรญces*], [*1*], [*1*],
[*5*], [*Porcentajes*], [*1*], [*1*],
table.cell(colspan: 2, align: right, [*Subtotal*]), [*5*], [*4*],
table.cell(colspan: 2, align: right, [*Total*]),
table.cell(colspan: 2, align: center, [*9 hrs*])
)
#pagebreak()
#table(
columns: (auto, 1fr),
table.header(
table.cell(colspan:2, align: center, [*Contenido temรกtico*]),
),
table.cell(rowspan: 2,[]),
table.cell(rowspan: 2, align: center + horizon, [*Temas y subtemas*]),
[*1*], [*Conjuntos de nรบmeros* \ #v(.07cm)
1.1 #h(.4cm)Nรบmeros naturales \ #v(.07cm)
1.2 #h(.4cm)Nรบmeros enteros \ #v(.07cm)
1.3 #h(.4cm)Nรบmeros racionales \ #v(.07cm)
1.4 #h(.4cm)Nรบmeros irracionales \ #v(.15cm)],
[*2*], [*La recta real* \ #v(.07cm)
2.1 #h(.4cm)Propiedades de los signos \ #v(.07cm)
2.2 #h(.4cm)Suma y resta \ #v(.07cm)
2.3 #h(.4cm)Multiplicaciรณn y divisiรณn \ #v(.07cm)
2.4 #h(.4cm)Jerarquรญa de operaciones \ #v(.07cm)
2.5 #h(.4cm)Operaciones con fracciones \ #v(.15cm)],
[*3*], [*Potencias* \ #v(.07cm)
3.1 #h(.4cm)Nociรณn intuitiva de la potencia \ #v(.07cm)
3.2 #h(.4cm)Operaciones con potencias \ #v(.15cm)],
[*4*], [*Raรญces* \ #v(.07cm)
4.1 #h(.4cm)Raรญces exactas \ #v(.07cm)
4.2 #h(.4cm)Raรญces no exactas \ #v(.15cm)],
[*5*], [*Porcentajes* \ #v(.07cm)
5.1 #h(.4cm)Representaciones \ #v(.07cm)
5.2 #h(.4cm)Conversiones \ #v(.07cm)
5.3 #h(.4cm)Problemas de aplicaciรณn \ #v(.15cm)]
)
#pagebreak()
#table(
columns: (1fr, 1fr),
table.header(align(center)[*Estrategias didรกcticas*],
align(center)[*Evaluaciรณn de aprendizaje*]),
[Exposiciรณn #h(1fr) (X)], [Exรกmenes parciales #h(1fr) (X)],
[Trabajo en equipo #h(1fr) (#h(.2cm))], [Examen final #h(1fr) (X)],
[Lecturas #h(1fr) (#h(.2cm))], [Trabajos y tareas #h(1fr) (#h(.2cm))],
[Trabajo de investigaciรณn #h(1fr) (#h(.2cm))], [Presentaciรณn del tema #h(1fr) (#h(.2cm))],
[Prรกcticas (taller o laboratorio) #h(1fr) (#h(.2cm))], [Participaciรณn en clase #h(1fr) (#h(.2cm))],
[Prรกcticas de campo #h(1fr) (#h(.2cm))],[Asistencia #h(1fr) (#h(.2cm))],
[Aprendizaje por proyectos #h(1fr) (#h(.2cm))],[Rรบbricas #h(1fr) (#h(.2cm))],
[Aprendizaje basado en problemas #h(1fr) (#h(.2cm))],[Portafolios #h(1fr) (#h(.2cm))],
[Casos de enseรฑanza #h(1fr) (#h(.2cm))],[Listas de cotejo #h(1fr) (#h(.2cm))],
[Otras (especificar) #h(1fr) (#h(.2cm))],[Otras (especificar) #h(1fr) (#h(.2cm))]
) |
|
https://github.com/typst/packages | https://raw.githubusercontent.com/typst/packages/main/packages/preview/cetz/0.1.2/src/aabb.typ | typst | Apache License 2.0 | #import "vector.typ"
/// Compute an axis aligned bounding box (aabb)
/// for a list of vectors.
///
/// An aabb dictionary has the following keys:
/// - low (vector) Min. bounds vector
/// - high (vector) Max. bounds vector
///
/// - pts (array): List of vectors/points
/// - init (dictionary): Initial aabb
/// -> dictionary AABB object
#let aabb(pts, init: none) = {
let bounds = init
if type(pts) == array {
for (i, pt) in pts.enumerate() {
if bounds == none and i == 0 {
bounds = (low: pt, high: pt)
} else {
let (x, y, z) = pt
let (lo-x, lo-y, lo-z) = bounds.low
bounds.low = (calc.min(lo-x, x), calc.min(lo-y, y), calc.min(lo-z, z))
let (hi-x, hi-y, hi-z) = bounds.high
bounds.high = (calc.max(hi-x, x), calc.max(hi-y, y), calc.max(hi-z, z))
}
}
return bounds
} else if type(pts) == dictionary {
if init == none {
return pts
} else {
return aabb((pts.low, pts.high,), init: bounds)
}
}
panic("Expected array of vectors or bbox dictionary, got: " + repr(pts))
}
/// Get the mid-point of an aabb as vector.
///
/// - bounds (AABB): AABB
/// -> vector
#let mid(bounds) = {
return vector.scale(vector.add(bounds.low, bounds.high), .5)
}
/// Get the size of an aabb as vector
/// this is a vector from the aabb's low to high.
///
/// - bounds (AABB): AABB
/// -> vector
#let size(bounds) = {
return vector.sub(bounds.high, bounds.low)
}
|
https://github.com/thomasschuiki/thomasschuiki | https://raw.githubusercontent.com/thomasschuiki/thomasschuiki/main/cv/fontawesome.typ | typst | //! typst-fontawesome
//!
//! https://github.com/duskmoon314/typst-fontawesome
// Implementation of `fa-icon`
#import "lib-impl.typ": fa-icon
// Generated icons
#import "lib-gen.typ": * |
|
https://github.com/Vaskozlov/Lectures | https://raw.githubusercontent.com/Vaskozlov/Lectures/main/ะะปะณะตะฑัะฐ (ะผะฝะพะณะพัะปะตะฝั).typ | typst | = ะะฝะพะณะพัะปะตะฝั
== ะัะพะธะทะฒะพะดะฝะฐั ะผะฝะพะณะพัะปะตะฝะฐ
$ f(x) = product_(i = 1)^(n)(x - x_i) $
$ f'(x) = sum_(i = 1)^(n) frac(f(x), x - x_i) = f(x) sum_(i = 1)^(n) frac(1, x - x_i) $
$ f'(x) = f(x) sum_(i = 1)^(n) frac(1, x - x_i) => frac(f'(x), f(x)) = sum_(i = 1)^(n)frac(1, x - x_i) $
ะัะปะธ ะผะฝะพะณะพัะปะตะฝ f(x) ะธะผะตะตั ะบะพัะตะฝั ะบัะฐัะฝะพััะธ n, ัะพ ััะพ ะทะฝะฐัะธั, ััะพ
+ $f(alpha) = 0$
+ $f^((i))(alpha) = 0 "ะดะปั" forall i in [1,n - 1]$
=== ะัะธะผะตั (ัะฒัะทั ะฟัะพะธะทะฒะพะดะฝะพะน ั ััะฝะบัะธะตะน ะธ ะตะต ะบะพัะฝัะผะธ)
$ f(x) = x^2 - 3x + 2 = (x - 2)(x - 1) $
$ f'(x) = f(x) dot frac(1, x - 1) + frac(1, x - 2) = f(x) dot frac(2x - 3, x ^ 2 - 3x + 2) = f(x) dot frac(2x - 3, f(x)) = 2x - 3 $
$ f'(x) = 2x - 3 $
=== ะัะธะผะตั (ะทะฐะดะฐัะธ ะฝะฐ ะฝะฐั
ะพะถะดะตะฝะธะต ััะผะผั)
== ะัะพััะตะนัะธะต ะดัะพะฑะธ
ะัะพะฑั $frac(f, g) in K[t]$ - ะฟัะพััะตะนัะฐั, ะตัะปะธ $g = p^k$, ะณะดะต $p in K[t]$ โ ะฝะตะฟัะธะฒะพะดะธะผัะน ะผะฝะพะณะพัะปะตะฝ ะธ $"deg"(f) < "deg"(g)$.
== ะกะฒัะทั ัะฐะทะปะพะถะตะฝะธั ะฝะฐ ะฟัะพััะตะนัะธะต ะดัะพะฑะธ ั ะธะฝัะตัะฟะพะปััะธะตะน
=== ะะปะณะพัะธัะผ, ะบะพะณะดะฐ ะฒัะต ะบะพัะฝะธ ะฟะตัะฒะพะน ััะตะฟะตะฝะธ
$ g(x) = (x - a_1) dots (x - a_n) $
$ frac(f(x), g(x)) = sum_(i = 1)^(n) frac(f(a_i), g'(a_i) dot (x - a_i)) $
#pagebreak()
== ะะปะณะพัะธัะผ ะธะฝัะตัะฟะพะปััะธะธ ะะฐะณัะฐะฝะถะฐ
$ f(x) = product_(i = 1)^(n)(x - x_i) $
$ L(X) = sum_(i = 0)^(n)y_i dot l_(i)(x) = sum_(i = 0)^(n) y_i dot frac(f(x), f'(x_i) dot (x - x_i)) $
$ l_i(x) = product_(j = 0, j != i)frac(x - x_j, x_i - x_j) $
=== ะัะธะผะตั
#columns(2)[
#align(right)[
$ l_0(x) = frac((x - x_1)(x - x_2)(x - x_3), (x_0 - x_1)(x_0 - x_2)(x_0 - x_3)) = \ = frac((x - 2)(x - 3)(x - 5), -30) $
$ l_1(x) = frac((x - x_0)(x - x_2)(x - x_3), (x_1 - x_0)(x_1 - x_2)(x_1 - x_3)) = \ = frac((x - 0)(x - 3)(x - 5), 6) $
]
#colbreak()
#table(
columns: 3,
[*i*], [*x*], [*y*],
[0], [0], [0],
[1], [2], [1],
[2], [3], [3],
[3], [5], [2])
]
$ L(x) = y_0 dot l_0(x) + y_1 dot l_1(x) + y_2 dot l_2(x) + y_3 dot l_3(x) = 0 dot l_0(x) + 1 dot l_1(x) + 3 dot l_2(x) + 2 dot l_3(x) $
== ะะปะณะพัะธัะผ ะธะฝัะตัะฟะพะปััะธะธ ะฟะพ ะัััะพะฝั
$ N = a_0 + a_1 dot (x - x_0) + a_2 dot (x - x_0)(x - x_1) + dots $
ะงัะพะฑั ะฝะฐะนัะธ ะผะฝะพะณะพัะปะตะฝ ะฟะพ ัะพัะบะฐะผ, ะฝัะถะฝะพ ะฟะพััะตะฟะตะฝะฝะพ ะฟะพะดััะฐะฒะปััั ะทะฝะฐัะตะฝะธั x, ัะพะณะดะฐ ะตัะปะธ ะฟะพะดััะฐะฒะปัะตะผ $x_i$, ัะพ ะฝะฐัะธะฝะฐั ั i ะฑัะดัั ะฝัะปะธ.
=== ะัะธะผะตั
#columns(2)[
#align(right)[
$ 2 = a_0 + a_1(1 - 1) + a_2(1 - 1)(2 - 1) + dots $
$ 3 = a_0 + a_1(2 - 1) + a_2 (2 - 1)(2 - 2) + dots $
]
#colbreak()
#table(
columns: 3,
[*i*], [*x*], [*y*],
[0], [1], [3],
[1], [2], [-10],
[2], [3], [5])
]
=== ะฃะฟัะพัะตะฝะธะต ะฐะปะณะพัะธัะผะฐ ะธะฝัะตัะฟะพะปััะธะธ ะััะตัะพะฝะฐ ะฟัะธ $Delta x = "const"$
ะัััั $h = Delta x$, ัะพะณะดะฐ ะฟะพัััะพะธะผ ัะฐะฑะปะธัะบั, ะณะดะต $Delta^k y_i = Delta^(k - 1)y_(i + 1) - Delta^(k - 1)y_i$, ะณะดะต i - ัััะพัะบะฐ ะฒ ัะฐะฑะปะธัะต.
#table(
columns: 5, align: (center, center, center , center, center),
[*i*], [*x*], [*y = $Delta^0$y*], [*$Delta^1$y*], [*$Delta^2$y*],
[0], [1], [3], [-13], [28],
[1], [2], [-10], [15], [],
[2], [3], [5], [], []
)
ะขะพะณะดะฐ ะบะพัััะธัะธะตะฝั $a_k = frac(Delta^k y_0, k! dot h^k)$
|
|
https://github.com/jiamingluuu/mata35-notes | https://raw.githubusercontent.com/jiamingluuu/mata35-notes/main/diff-eqn.typ | typst | #set text(size: 13pt)
#set math.equation(numbering: "(1)")
#set rect(width: 100%, radius: 8pt, fill: rgb("#f2f2f2"), stroke: 1pt,
inset: 12pt)
= Differential Equations
== Introduction
*Definition.* _Differential equation (DE)_ is an equation involving functions
and their derivatives.
The study of differntial equations plays a significant role in the modern study
of physics, engineering, economics, and etc. To dive deep in the mathematically
rigorous dicussion of differnetial equation, it is inevitable to introduce a
diverse branches of mathematics, for instance, analysis and numerical methods.
In light of the limitation to the person who made the note, we are only going
to talk about the most fundamental part of differneitlal equation.
== First Order Differential Equations
*Definition.* The _order_ of a differential equation is defined by the highest
degree of derivative of the differential equation has.
*Definition.* let $y: RR -> RR$ be a function with variable $t$, and
$f: RR^2 -> RR$. A _first order differential equatoin_ has the the form
$ (dif y)/(dif t) = f(y, t) $
*Example.* _Acceleration_ describes the rate of change of velocity of an object.
Suppose a ball is dropped from air and undergoes a free fall, that is, only
gravity is acting on the ball, its acceleration $a(t) = (dif v)/(dif t)$ is
characterized by a first order DE
$ (dif v)/(dif t) = g. $
Where $g$ is the _gravitational constant_
There is a special class of DE we are interested to study: separable DE.
*Definition.* A _separable differential equation_ can be written as
$ (dif y)/(dif t) = M(y) N(t). $
To solve a separable, we follows the following strategy in general:
1. Re-write the given DE into the form given in (3).
2. Separable varable, so each side of equation only contains one type of variable $ 1/(M(y))(dif y)/(dif t) = N(t). $
3. Then integrate both sides of the equation at the same time. $ integral 1/(M(y)) (dif y)/(dif t) dif t = integral N(t) dif t. $
*Example* (Newton's Law of Cooling). Let $T(t)$ be the temperature of an object
at time $t$, and $T_s$ be the temperature of surrounding environment. The
rate of change of temperature of $T(t)$ is described as
$ (dif T)/ (dif t) = k(T(t) - T_s), $
where both $k, T_s$ are a constant in real number.
To solve (6), we are going to follow the strategy stated before:
$
1/(T(t) - T_s) (dif T)/(dif t) &= k\
integral 1/(T(t) - T_s) (dif T)/cancel(dif t) cancel(dif t) &= integral k dif t\
integral 1/(T(t) - T_s) dif T &= integral k dif t\
ln abs(T(t) - T_s) &= k t + c\
T(t) - T_s &= e^(k t + c)\
T(t) - T_s = e^(k t) times e^c\
T(t) = A e^(k t) + T_s\
$
#rect[
_Remark._ Notice that it is irrigorous to treat the derivative
$(dif T)/(dif t)$ as a fraction and cancel it with the term $dif t$. The
definition of derivative involving limit, and is to find the flactuation of
the original function in the infidecimal change in $t$, that is
$ (dif T)/(dif t) equiv lim_(h -> 0) (T(t + h) - T(t))/(h), $
which is a unity becuase the limit is not gaurantee to be congervent. Whereas when we write the whole term
$ 1/(T(t) - T_s) (dif T)/(dif t) dif t, $
it is a 1-form of differential form, which is a smooth section of the
co-tangent bundle on a manifold. Under no circumstance should those two
notion to be inter-changibly used.
]
However, what if the DE is not separable? For instace, how can we solve for
a differenial equation has the form
$ A(x)(dif y)/(dif x) + B(x) y = C(x), $
where function $A, B, C$ functions over real. In this senario, we need
introduce some prior knowledge.
*Definition.* Let $f: RR^n -> RR$ be a differentiable function over $RR$ with
respect to variable $x_1, x_2, ..., x_n$. The _total derivative_ $dif f$ can be
written as
$ dif f = sum^n_(i = 1) (diff f)/(diff x_i) dif x_i $
*Example.* The total derivative of $f(x, y) = x^2 + y^2$ is given by
$
dif f
&= (diff f)/(diff x)dif x + (diff f)/(diff y)dif y\
&= diff/(diff x)(x^2 + y^2)dif x + diff/(diff y)(x^2 + y^2)dif y\
&= 2x dif x + 2y dif y\
$
*Definition.* A differential form $alpha$ is _exact_ if there exists some
differential form $beta$ such that
$ dif beta = alpha $
*Proposition.* Let $P, Q: RR^2 -> RR$ be multi-variable functions with respect
to variable $x$ and $y$. Then the differential form
$ P dif x + Q dif y $
is exact if and only if
$ (diff P)/ (diff y) = (diff y)/ (diff x) $
#rect[
_Remark._ The notion of exactness is telling us, if a differential form
$alpha$ is exact, then it can be obtained by computing the total derivative
of another differential form $beta$.
Furthermore, the proposition above provides us an easy, swift way of verifying
if a given differential form is exact. The intuition behinds the proposition
is the following: if equation (12) were exact, then $P$ and $Q$ are the
derivative of same function but with respect to different variable. That is
$ P = (diff f)/(diff x), quad Q = (diff f)/(diff y). $
Therefore,
$ (diff P)/(diff y) = (diff^2 f)/(diff y diff x) "and"
(diff Q)/(diff x) = (diff^2 f)/(diff x diff y), $
which are essentially equal.
]
In light the the introductory of differential form and exactness, we can take
their advantages in the discussion of solving DEs. Given a first order
differential equation with the form:
$ A (dif y)/(dif x) + B y = C, $
where $A, B, C: RR -> RR$ are functions over real with respect to variable $x$,
we can re-write it by using differential forms
$ underbrace(A dif y + B y dif x, alpha) = C dif x. $
Hence, if $alpha$ were exact, then by equation (11) there exists some other form
$beta$ such that
$ dif beta = alpha. $
It implies that (17) is equivalent to
$ dif beta = C dif x. $
And by integrating both sides of (19), we can obtain the solution of our DE
(16) in implicit form:
$
integral dif beta &= integral C dif x\
beta &= integral C dif x
$
*Example.* Solve the following differential equation
$ (4 + t^2) (dif y)/(dif t) + 2 t y = 4t. $
Let's firstly write it using differential form and check if it is exact:
$ underbrace((4 + t^2) dif y, P) + underbrace(2t y dif t, Q) = 4t dif t. $
$
(diff P)/(diff t)
&= diff/(diff t) (4 + t^2)\
&= 2t\
(diff Q)/ (diff y)
&= diff/(diff y)(2t y)\
&= 2t.
$
So we can see the left part of (22) is an exact differential form, which is
implying that
$ P = (diff f)/(diff y), quad Q = (diff f)/(diff y). $
Hence
$
f
&= integral P dif y\
&= integral 4 + t^2 dif y\
&= 4y + t^2 y + h(t)
$
And we can solve the unknown function $h(t)$ by computing the derivative of
$f$ with respect to $t$:
$
(diff f)/(diff t)
&= diff/(diff t)(4y + t^2 y + h(t))\
&= 2t y + h'(t)\
$
Therefore, by using the fact that
$
(diff f)/(diff t) &= Q\
2t y + h'(t) &= 2t y\
h'(t) &= 0
$
And it follows that $h(t) = c$, where $c$ is an aribitrary constant in $RR$.
Hence, we have the final answer:
$ f = 2y + t^2 y + c $
However, what if the given DE is not exact? Then we need to develop some trick
to modify the DE and change to exact.
*Definition.* Given a DE of the from
$ A dif y + B y dif x = C $
A _integrating factor_ is an auxiliary function $I(x)$ such that when we
multiply it to the both sides of the eqaution, making
$ I A dif y + I B dif x $
to be an exact differential form.
*Proposition.* If a DE has the form
$ A dif y + B y dif x = C, $
where $A, B, C: RR -> RR$ are function with respect to variable $x$, and $A$ is
non-zero over its domain. Then the DE has an integrating factor
$ I(x) = e^(integral P(x) dif x), $
where $P(x) = B(x)/A(x)$.
*Example.* Solve the following DE
$ x dif y + 2y dif x = 4x^3 dif x $
As you can verify, this DE is not exact, so we are going to find the
integrating factor
$
I(x)
&= e^(integral P(x) dif x)\
&= e^(integral 2/x dif x)\
&= e^(2ln(x))\
&= x^2
$
By multiplying both sides by the integrating factor, we have
$
x dif y + 2y dif x &= 4x^3 dif x\
dif y + (2y)/x dif x &= 4x^4 dif x\
x^2 (dif y + (2y)/x dif x) &= x^2 dot 4x^4 dif x\
x^2 dif y + 2y x dif x &= 4x^6 dif x\
d(x^2 y) &= 4x^6 dif x\
integral d(x^2 y) &= integral 4x^6 dif x\
x^2 y &= 4/7 x^7 + c
$ |
|
https://github.com/flechonn/interface-typst | https://raw.githubusercontent.com/flechonn/interface-typst/main/BD/TYPST/exo4.typ | typst | #show terms: it => {
let title = label("Mon Exercice de Traitement du Signal")
let duration = label("1h30")
let difficulty = label("Facile")
let solution = label("0")
let figures = label("")
let points = label("5")
let bonus = label("0")
let author = label("Moi")
let references = label("")
let language = label("Franรงais")
let material = label("")
let name = label("exo4")
}
= Exercice 1
Considรฉrez un signal sinusoรฏdal x(t)=$Aโ
sin(2ฯ*f*t+ฯ)$, oรน AA est l'amplitude, ff est la frรฉquence en Hz et ฯฯ est la phase en radians. รcrivez une fonction en Python pour calculer la valeur efficace (RMS) de ce signal sur une pรฉriode donnรฉe. Testez votre fonction avec $A=3$, $f=50$Hz et $ฯ=ฯ*4$ sur une pรฉriode de T=$1/f$.
= Solution
Solution de l'exercice:
Pour calculer la valeur efficace (RMS) d'un signal sinusoรฏdal $x(t)=Aโ
sin(2*ฯ*f*t+ฯ)$ nous pouvons utiliser la formule suivante :
$"RMS"=sqrt(1/T*integral_(0)^T x^2 dif x)$
oรน $A$ est l'amplitude, $f$ est la frรฉquence en Hz, $ฯ$ est la phase en radians, et $T$ est la pรฉriode du signal ($T=1/f$).
Dans notre cas, avec $A=3$, $f=50$ Hz et $ฯ=4ฯ$ la formule devient :
$"RMS"=sqrt(1/T*integral_(0)^T (3โ
sin(2ฯโ
50โ
t+4ฯ))ยฒ dif x)$
Aprรจs rรฉsolution numรฉrique de cette intรฉgrale sur une pรฉriode T, nous obtenons la valeur efficace du signal.
|
|
https://github.com/jujimeizuo/ZJSU-typst-template | https://raw.githubusercontent.com/jujimeizuo/ZJSU-typst-template/master/template/toc.typ | typst | Apache License 2.0 | #import "font.typ": *
#import "utils.typ": *
#show heading : it => {
set align(center)
set text(font:heiti, size: font_size.sanhao)
it
par(leading: 1.5em)[#text(size:0.0em)[#h(0.0em)]]
}
#set page(footer: [
#set align(center)
#set text(size: 10pt, baseline: -3pt)
#counter(page).display(
"I",
)
] )
// ๅพ็ฎๅฝ
#heading(level: 1, outlined: false)[ๅพ็ฎๅฝ]
#v(2em)
#show outline: it => {
set heading(numbering: "1.1")
set text(font: songti, size: font_size.xiaosi)
set par(leading: 1em )
it
}
#outline(
title: none,
target: figure.where(kind: image),
indent : true,
)
#pagebreak()
#heading(level: 1, outlined: false)[่กจ็ฎๅฝ]
#v(2em)
#show outline: it => {
set text(font: songti, size: font_size.xiaosi)
set par(leading: 1em )
it
}
#outline(
title: none,
target: figure.where(kind: table),
indent : true,
)
#pagebreak()
// ็ฎๅฝ
#heading(level: 1, outlined: false)[็ฎ ๅฝ]
#v(2em)
#{
set align(right)
set text(font: songti, size: font_size.xiaosi)
set par(first-line-indent: 0pt)
[ๆ่ฆ ] + [.] * 144 + [ I]
set par(leading: 1em)
[Abstract ] + [.] * 137 + [ II]
set par(leading: 1em)
[ๅพ็ฎๅฝ ] + [.] * 137 + [ III]
set par(leading: 1em)
[่กจ็ฎๅฝ ] + [.] * 137 + [ IV]
set par(leading: 1em)
[็ฎๅฝ ] + [.] * 143 + [ V]
}
#show outline: it => {
set text(font: songti, size: font_size.xiaosi)
set par(leading: 1em )
it
}
#outline(
title: none,
indent : true,
)
|
Subsets and Splits
No saved queries yet
Save your SQL queries to embed, download, and access them later. Queries will appear here once saved.