id
stringlengths
4
8
struct_in
stringlengths
301
4.09k
table_file
stringlengths
19
21
position
int64
0
7
answer_coordinates
dict
question_and_history
sequence
annotator
int64
0
2
seq_out
stringlengths
1
1.73k
table_header
sequence
question
stringlengths
10
291
table_data
sequence
answer_text
sequence
text_in
stringlengths
19
565
ns-2315
col : operators | named trains | destination | year begun | year discontinued row 1 : baltimore and ohio | capitol limited | chicago, illinois via washington, d.c. and pittsburgh, pennsylvania | 1923 | 1958* row 2 : baltimore and ohio | metropolitan special | st. louis, missouri via washington, d.c. and cincinnati, | ca. 1920 | 1958* row 3 : baltimore and ohio | national limited | st. louis, missouri via washington, d.c. and cincinnati, | 1925 | 1958* row 4 : baltimore and ohio | royal blue | washington, d.c. | 1890 | 1958 row 5 : central railroad of new jersey | blue comet | atlantic city, new jersey | 1929 | 1941 row 6 : reading railroad with the central railroad of new jersey | crusader | philadelphia, pennsylvania | 1937 | 1967 row 7 : reading railroad with the central railroad of new jersey | harrisburg special | harrisburg, pennsylvania | nan | nan row 8 : reading railroad with the central railroad of new jersey | queen of the valley | harrisburg, pennsylvania | nan | 1967 row 9 : reading railroad with the central railroad of new jersey | wall street | philadelphia, pennsylvania | nan | nan row 10 : reading railroad with the central railroad of new jersey | williamsporter | williamsport, pennsylvania | nan | nan
table_csv/204_336.csv
0
{ "column_index": [ 0 ], "row_index": [ 5 ] }
[ "which operator had a destination to philadelphia, pennsylvania?" ]
1
reading railroad with the central railroad of new jersey
[ "Operators", "Named trains", "Destination", "Year begun", "Year discontinued" ]
which operator had a destination to philadelphia, pennsylvania?
[ [ "Baltimore and Ohio", "Capitol Limited", "Chicago, Illinois via Washington, D.C. and Pittsburgh, Pennsylvania", "1923", "1958*" ], [ "Baltimore and Ohio", "Metropolitan Special", "St. Louis, Missouri via Washington, D.C. and Cincinnati,", "ca. 1920", "1958*" ], [ "Baltimore and Ohio", "National Limited", "St. Louis, Missouri via Washington, D.C. and Cincinnati,", "1925", "1958*" ], [ "Baltimore and Ohio", "Royal Blue", "Washington, D.C.", "1890", "1958" ], [ "Central Railroad of New Jersey", "Blue Comet", "Atlantic City, New Jersey", "1929", "1941" ], [ "Reading Railroad with the Central Railroad of New Jersey", "Crusader", "Philadelphia, Pennsylvania", "1937", "1967" ], [ "Reading Railroad with the Central Railroad of New Jersey", "Harrisburg Special", "Harrisburg, Pennsylvania", "nan", "nan" ], [ "Reading Railroad with the Central Railroad of New Jersey", "Queen of the Valley", "Harrisburg, Pennsylvania", "nan", "1967" ], [ "Reading Railroad with the Central Railroad of New Jersey", "Wall Street", "Philadelphia, Pennsylvania", "nan", "nan" ], [ "Reading Railroad with the Central Railroad of New Jersey", "Williamsporter", "Williamsport, Pennsylvania", "nan", "nan" ] ]
[ "Reading Railroad with the Central Railroad of New Jersey" ]
which operator had a destination to philadelphia, pennsylvania? ||
ns-2315
col : operators | named trains | destination | year begun | year discontinued row 1 : baltimore and ohio | capitol limited | chicago, illinois via washington, d.c. and pittsburgh, pennsylvania | 1923 | 1958* row 2 : baltimore and ohio | metropolitan special | st. louis, missouri via washington, d.c. and cincinnati, | ca. 1920 | 1958* row 3 : baltimore and ohio | national limited | st. louis, missouri via washington, d.c. and cincinnati, | 1925 | 1958* row 4 : baltimore and ohio | royal blue | washington, d.c. | 1890 | 1958 row 5 : central railroad of new jersey | blue comet | atlantic city, new jersey | 1929 | 1941 row 6 : reading railroad with the central railroad of new jersey | crusader | philadelphia, pennsylvania | 1937 | 1967 row 7 : reading railroad with the central railroad of new jersey | harrisburg special | harrisburg, pennsylvania | nan | nan row 8 : reading railroad with the central railroad of new jersey | queen of the valley | harrisburg, pennsylvania | nan | 1967 row 9 : reading railroad with the central railroad of new jersey | wall street | philadelphia, pennsylvania | nan | nan row 10 : reading railroad with the central railroad of new jersey | williamsporter | williamsport, pennsylvania | nan | nan
table_csv/204_336.csv
1
{ "column_index": [ 1, 1 ], "row_index": [ 5, 7 ] }
[ "which operator had a destination to philadelphia, pennsylvania?", "from this operator, what are the names of the trains discontinued in 1967?" ]
1
crusader, queen of the valley
[ "Operators", "Named trains", "Destination", "Year begun", "Year discontinued" ]
from this operator, what are the names of the trains discontinued in 1967?
[ [ "Baltimore and Ohio", "Capitol Limited", "Chicago, Illinois via Washington, D.C. and Pittsburgh, Pennsylvania", "1923", "1958*" ], [ "Baltimore and Ohio", "Metropolitan Special", "St. Louis, Missouri via Washington, D.C. and Cincinnati,", "ca. 1920", "1958*" ], [ "Baltimore and Ohio", "National Limited", "St. Louis, Missouri via Washington, D.C. and Cincinnati,", "1925", "1958*" ], [ "Baltimore and Ohio", "Royal Blue", "Washington, D.C.", "1890", "1958" ], [ "Central Railroad of New Jersey", "Blue Comet", "Atlantic City, New Jersey", "1929", "1941" ], [ "Reading Railroad with the Central Railroad of New Jersey", "Crusader", "Philadelphia, Pennsylvania", "1937", "1967" ], [ "Reading Railroad with the Central Railroad of New Jersey", "Harrisburg Special", "Harrisburg, Pennsylvania", "nan", "nan" ], [ "Reading Railroad with the Central Railroad of New Jersey", "Queen of the Valley", "Harrisburg, Pennsylvania", "nan", "1967" ], [ "Reading Railroad with the Central Railroad of New Jersey", "Wall Street", "Philadelphia, Pennsylvania", "nan", "nan" ], [ "Reading Railroad with the Central Railroad of New Jersey", "Williamsporter", "Williamsport, Pennsylvania", "nan", "nan" ] ]
[ "Crusader", "Queen of the Valley" ]
from this operator, what are the names of the trains discontinued in 1967? || which operator had a destination to philadelphia, pennsylvania?
ns-2315
col : operators | named trains | destination | year begun | year discontinued row 1 : baltimore and ohio | capitol limited | chicago, illinois via washington, d.c. and pittsburgh, pennsylvania | 1923 | 1958* row 2 : baltimore and ohio | metropolitan special | st. louis, missouri via washington, d.c. and cincinnati, | ca. 1920 | 1958* row 3 : baltimore and ohio | national limited | st. louis, missouri via washington, d.c. and cincinnati, | 1925 | 1958* row 4 : baltimore and ohio | royal blue | washington, d.c. | 1890 | 1958 row 5 : central railroad of new jersey | blue comet | atlantic city, new jersey | 1929 | 1941 row 6 : reading railroad with the central railroad of new jersey | crusader | philadelphia, pennsylvania | 1937 | 1967 row 7 : reading railroad with the central railroad of new jersey | harrisburg special | harrisburg, pennsylvania | nan | nan row 8 : reading railroad with the central railroad of new jersey | queen of the valley | harrisburg, pennsylvania | nan | 1967 row 9 : reading railroad with the central railroad of new jersey | wall street | philadelphia, pennsylvania | nan | nan row 10 : reading railroad with the central railroad of new jersey | williamsporter | williamsport, pennsylvania | nan | nan
table_csv/204_336.csv
2
{ "column_index": [ 1 ], "row_index": [ 5 ] }
[ "which operator had a destination to philadelphia, pennsylvania?", "from this operator, what are the names of the trains discontinued in 1967?", "of those, which began in the year 1937?" ]
1
crusader
[ "Operators", "Named trains", "Destination", "Year begun", "Year discontinued" ]
of those, which began in the year 1937?
[ [ "Baltimore and Ohio", "Capitol Limited", "Chicago, Illinois via Washington, D.C. and Pittsburgh, Pennsylvania", "1923", "1958*" ], [ "Baltimore and Ohio", "Metropolitan Special", "St. Louis, Missouri via Washington, D.C. and Cincinnati,", "ca. 1920", "1958*" ], [ "Baltimore and Ohio", "National Limited", "St. Louis, Missouri via Washington, D.C. and Cincinnati,", "1925", "1958*" ], [ "Baltimore and Ohio", "Royal Blue", "Washington, D.C.", "1890", "1958" ], [ "Central Railroad of New Jersey", "Blue Comet", "Atlantic City, New Jersey", "1929", "1941" ], [ "Reading Railroad with the Central Railroad of New Jersey", "Crusader", "Philadelphia, Pennsylvania", "1937", "1967" ], [ "Reading Railroad with the Central Railroad of New Jersey", "Harrisburg Special", "Harrisburg, Pennsylvania", "nan", "nan" ], [ "Reading Railroad with the Central Railroad of New Jersey", "Queen of the Valley", "Harrisburg, Pennsylvania", "nan", "1967" ], [ "Reading Railroad with the Central Railroad of New Jersey", "Wall Street", "Philadelphia, Pennsylvania", "nan", "nan" ], [ "Reading Railroad with the Central Railroad of New Jersey", "Williamsporter", "Williamsport, Pennsylvania", "nan", "nan" ] ]
[ "Crusader" ]
of those, which began in the year 1937? || from this operator, what are the names of the trains discontinued in 1967? | which operator had a destination to philadelphia, pennsylvania?
ns-2315
col : operators | named trains | destination | year begun | year discontinued row 1 : baltimore and ohio | capitol limited | chicago, illinois via washington, d.c. and pittsburgh, pennsylvania | 1923 | 1958* row 2 : baltimore and ohio | metropolitan special | st. louis, missouri via washington, d.c. and cincinnati, | ca. 1920 | 1958* row 3 : baltimore and ohio | national limited | st. louis, missouri via washington, d.c. and cincinnati, | 1925 | 1958* row 4 : baltimore and ohio | royal blue | washington, d.c. | 1890 | 1958 row 5 : central railroad of new jersey | blue comet | atlantic city, new jersey | 1929 | 1941 row 6 : reading railroad with the central railroad of new jersey | crusader | philadelphia, pennsylvania | 1937 | 1967 row 7 : reading railroad with the central railroad of new jersey | harrisburg special | harrisburg, pennsylvania | nan | nan row 8 : reading railroad with the central railroad of new jersey | queen of the valley | harrisburg, pennsylvania | nan | 1967 row 9 : reading railroad with the central railroad of new jersey | wall street | philadelphia, pennsylvania | nan | nan row 10 : reading railroad with the central railroad of new jersey | williamsporter | williamsport, pennsylvania | nan | nan
table_csv/204_336.csv
0
{ "column_index": [ 1, 1, 1, 1, 1, 1, 1, 1, 1, 1 ], "row_index": [ 0, 1, 2, 3, 4, 5, 6, 7, 8, 9 ] }
[ "what named trains ran on the central railroad of new jersey terminal?" ]
2
capitol limited, metropolitan special, national limited, royal blue, blue comet, crusader, harrisburg special, queen of the valley, wall street, williamsporter
[ "Operators", "Named trains", "Destination", "Year begun", "Year discontinued" ]
what named trains ran on the central railroad of new jersey terminal?
[ [ "Baltimore and Ohio", "Capitol Limited", "Chicago, Illinois via Washington, D.C. and Pittsburgh, Pennsylvania", "1923", "1958*" ], [ "Baltimore and Ohio", "Metropolitan Special", "St. Louis, Missouri via Washington, D.C. and Cincinnati,", "ca. 1920", "1958*" ], [ "Baltimore and Ohio", "National Limited", "St. Louis, Missouri via Washington, D.C. and Cincinnati,", "1925", "1958*" ], [ "Baltimore and Ohio", "Royal Blue", "Washington, D.C.", "1890", "1958" ], [ "Central Railroad of New Jersey", "Blue Comet", "Atlantic City, New Jersey", "1929", "1941" ], [ "Reading Railroad with the Central Railroad of New Jersey", "Crusader", "Philadelphia, Pennsylvania", "1937", "1967" ], [ "Reading Railroad with the Central Railroad of New Jersey", "Harrisburg Special", "Harrisburg, Pennsylvania", "nan", "nan" ], [ "Reading Railroad with the Central Railroad of New Jersey", "Queen of the Valley", "Harrisburg, Pennsylvania", "nan", "1967" ], [ "Reading Railroad with the Central Railroad of New Jersey", "Wall Street", "Philadelphia, Pennsylvania", "nan", "nan" ], [ "Reading Railroad with the Central Railroad of New Jersey", "Williamsporter", "Williamsport, Pennsylvania", "nan", "nan" ] ]
[ "Capitol Limited", "Metropolitan Special", "National Limited", "Royal Blue", "Blue Comet", "Crusader", "Harrisburg Special", "Queen of the Valley", "Wall Street", "Williamsporter" ]
what named trains ran on the central railroad of new jersey terminal? ||
ns-2315
col : operators | named trains | destination | year begun | year discontinued row 1 : baltimore and ohio | capitol limited | chicago, illinois via washington, d.c. and pittsburgh, pennsylvania | 1923 | 1958* row 2 : baltimore and ohio | metropolitan special | st. louis, missouri via washington, d.c. and cincinnati, | ca. 1920 | 1958* row 3 : baltimore and ohio | national limited | st. louis, missouri via washington, d.c. and cincinnati, | 1925 | 1958* row 4 : baltimore and ohio | royal blue | washington, d.c. | 1890 | 1958 row 5 : central railroad of new jersey | blue comet | atlantic city, new jersey | 1929 | 1941 row 6 : reading railroad with the central railroad of new jersey | crusader | philadelphia, pennsylvania | 1937 | 1967 row 7 : reading railroad with the central railroad of new jersey | harrisburg special | harrisburg, pennsylvania | nan | nan row 8 : reading railroad with the central railroad of new jersey | queen of the valley | harrisburg, pennsylvania | nan | 1967 row 9 : reading railroad with the central railroad of new jersey | wall street | philadelphia, pennsylvania | nan | nan row 10 : reading railroad with the central railroad of new jersey | williamsporter | williamsport, pennsylvania | nan | nan
table_csv/204_336.csv
1
{ "column_index": [ 1, 1, 1, 1, 1, 1, 1 ], "row_index": [ 0, 1, 2, 3, 4, 5, 7 ] }
[ "what named trains ran on the central railroad of new jersey terminal?", "which of these trains have been discontinued?" ]
2
capitol limited, metropolitan special, national limited, royal blue, blue comet, crusader, queen of the valley
[ "Operators", "Named trains", "Destination", "Year begun", "Year discontinued" ]
which of these trains have been discontinued?
[ [ "Baltimore and Ohio", "Capitol Limited", "Chicago, Illinois via Washington, D.C. and Pittsburgh, Pennsylvania", "1923", "1958*" ], [ "Baltimore and Ohio", "Metropolitan Special", "St. Louis, Missouri via Washington, D.C. and Cincinnati,", "ca. 1920", "1958*" ], [ "Baltimore and Ohio", "National Limited", "St. Louis, Missouri via Washington, D.C. and Cincinnati,", "1925", "1958*" ], [ "Baltimore and Ohio", "Royal Blue", "Washington, D.C.", "1890", "1958" ], [ "Central Railroad of New Jersey", "Blue Comet", "Atlantic City, New Jersey", "1929", "1941" ], [ "Reading Railroad with the Central Railroad of New Jersey", "Crusader", "Philadelphia, Pennsylvania", "1937", "1967" ], [ "Reading Railroad with the Central Railroad of New Jersey", "Harrisburg Special", "Harrisburg, Pennsylvania", "nan", "nan" ], [ "Reading Railroad with the Central Railroad of New Jersey", "Queen of the Valley", "Harrisburg, Pennsylvania", "nan", "1967" ], [ "Reading Railroad with the Central Railroad of New Jersey", "Wall Street", "Philadelphia, Pennsylvania", "nan", "nan" ], [ "Reading Railroad with the Central Railroad of New Jersey", "Williamsporter", "Williamsport, Pennsylvania", "nan", "nan" ] ]
[ "Capitol Limited", "Metropolitan Special", "National Limited", "Royal Blue", "Blue Comet", "Crusader", "Queen of the Valley" ]
which of these trains have been discontinued? || what named trains ran on the central railroad of new jersey terminal?
ns-2315
col : operators | named trains | destination | year begun | year discontinued row 1 : baltimore and ohio | capitol limited | chicago, illinois via washington, d.c. and pittsburgh, pennsylvania | 1923 | 1958* row 2 : baltimore and ohio | metropolitan special | st. louis, missouri via washington, d.c. and cincinnati, | ca. 1920 | 1958* row 3 : baltimore and ohio | national limited | st. louis, missouri via washington, d.c. and cincinnati, | 1925 | 1958* row 4 : baltimore and ohio | royal blue | washington, d.c. | 1890 | 1958 row 5 : central railroad of new jersey | blue comet | atlantic city, new jersey | 1929 | 1941 row 6 : reading railroad with the central railroad of new jersey | crusader | philadelphia, pennsylvania | 1937 | 1967 row 7 : reading railroad with the central railroad of new jersey | harrisburg special | harrisburg, pennsylvania | nan | nan row 8 : reading railroad with the central railroad of new jersey | queen of the valley | harrisburg, pennsylvania | nan | 1967 row 9 : reading railroad with the central railroad of new jersey | wall street | philadelphia, pennsylvania | nan | nan row 10 : reading railroad with the central railroad of new jersey | williamsporter | williamsport, pennsylvania | nan | nan
table_csv/204_336.csv
2
{ "column_index": [ 1, 1 ], "row_index": [ 5, 7 ] }
[ "what named trains ran on the central railroad of new jersey terminal?", "which of these trains have been discontinued?", "which of these trains were discontinued after 1960?" ]
2
crusader, queen of the valley
[ "Operators", "Named trains", "Destination", "Year begun", "Year discontinued" ]
which of these trains were discontinued after 1960?
[ [ "Baltimore and Ohio", "Capitol Limited", "Chicago, Illinois via Washington, D.C. and Pittsburgh, Pennsylvania", "1923", "1958*" ], [ "Baltimore and Ohio", "Metropolitan Special", "St. Louis, Missouri via Washington, D.C. and Cincinnati,", "ca. 1920", "1958*" ], [ "Baltimore and Ohio", "National Limited", "St. Louis, Missouri via Washington, D.C. and Cincinnati,", "1925", "1958*" ], [ "Baltimore and Ohio", "Royal Blue", "Washington, D.C.", "1890", "1958" ], [ "Central Railroad of New Jersey", "Blue Comet", "Atlantic City, New Jersey", "1929", "1941" ], [ "Reading Railroad with the Central Railroad of New Jersey", "Crusader", "Philadelphia, Pennsylvania", "1937", "1967" ], [ "Reading Railroad with the Central Railroad of New Jersey", "Harrisburg Special", "Harrisburg, Pennsylvania", "nan", "nan" ], [ "Reading Railroad with the Central Railroad of New Jersey", "Queen of the Valley", "Harrisburg, Pennsylvania", "nan", "1967" ], [ "Reading Railroad with the Central Railroad of New Jersey", "Wall Street", "Philadelphia, Pennsylvania", "nan", "nan" ], [ "Reading Railroad with the Central Railroad of New Jersey", "Williamsporter", "Williamsport, Pennsylvania", "nan", "nan" ] ]
[ "Crusader", "Queen of the Valley" ]
which of these trains were discontinued after 1960? || which of these trains have been discontinued? | what named trains ran on the central railroad of new jersey terminal?
ns-2315
col : operators | named trains | destination | year begun | year discontinued row 1 : baltimore and ohio | capitol limited | chicago, illinois via washington, d.c. and pittsburgh, pennsylvania | 1923 | 1958* row 2 : baltimore and ohio | metropolitan special | st. louis, missouri via washington, d.c. and cincinnati, | ca. 1920 | 1958* row 3 : baltimore and ohio | national limited | st. louis, missouri via washington, d.c. and cincinnati, | 1925 | 1958* row 4 : baltimore and ohio | royal blue | washington, d.c. | 1890 | 1958 row 5 : central railroad of new jersey | blue comet | atlantic city, new jersey | 1929 | 1941 row 6 : reading railroad with the central railroad of new jersey | crusader | philadelphia, pennsylvania | 1937 | 1967 row 7 : reading railroad with the central railroad of new jersey | harrisburg special | harrisburg, pennsylvania | nan | nan row 8 : reading railroad with the central railroad of new jersey | queen of the valley | harrisburg, pennsylvania | nan | 1967 row 9 : reading railroad with the central railroad of new jersey | wall street | philadelphia, pennsylvania | nan | nan row 10 : reading railroad with the central railroad of new jersey | williamsporter | williamsport, pennsylvania | nan | nan
table_csv/204_336.csv
3
{ "column_index": [ 1 ], "row_index": [ 5 ] }
[ "what named trains ran on the central railroad of new jersey terminal?", "which of these trains have been discontinued?", "which of these trains were discontinued after 1960?", "which of these trains are not queen of the valley?" ]
2
crusader
[ "Operators", "Named trains", "Destination", "Year begun", "Year discontinued" ]
which of these trains are not queen of the valley?
[ [ "Baltimore and Ohio", "Capitol Limited", "Chicago, Illinois via Washington, D.C. and Pittsburgh, Pennsylvania", "1923", "1958*" ], [ "Baltimore and Ohio", "Metropolitan Special", "St. Louis, Missouri via Washington, D.C. and Cincinnati,", "ca. 1920", "1958*" ], [ "Baltimore and Ohio", "National Limited", "St. Louis, Missouri via Washington, D.C. and Cincinnati,", "1925", "1958*" ], [ "Baltimore and Ohio", "Royal Blue", "Washington, D.C.", "1890", "1958" ], [ "Central Railroad of New Jersey", "Blue Comet", "Atlantic City, New Jersey", "1929", "1941" ], [ "Reading Railroad with the Central Railroad of New Jersey", "Crusader", "Philadelphia, Pennsylvania", "1937", "1967" ], [ "Reading Railroad with the Central Railroad of New Jersey", "Harrisburg Special", "Harrisburg, Pennsylvania", "nan", "nan" ], [ "Reading Railroad with the Central Railroad of New Jersey", "Queen of the Valley", "Harrisburg, Pennsylvania", "nan", "1967" ], [ "Reading Railroad with the Central Railroad of New Jersey", "Wall Street", "Philadelphia, Pennsylvania", "nan", "nan" ], [ "Reading Railroad with the Central Railroad of New Jersey", "Williamsporter", "Williamsport, Pennsylvania", "nan", "nan" ] ]
[ "Crusader" ]
which of these trains are not queen of the valley? || which of these trains were discontinued after 1960? | which of these trains have been discontinued? | what named trains ran on the central railroad of new jersey terminal?
ns-2312
col : rank | nation | gold | silver | bronze | total row 1 : 1 | united states | 12 | 13 | 6 | 31 row 2 : 2 | russia | 10 | 5 | 6 | 21 row 3 : 3 | australia | 8 | 12 | 6 | 26 row 4 : 4 | china | 7 | 4 | 8 | 19 row 5 : 5 | germany | 5 | 6 | 5 | 16 row 6 : 6 | japan | 3 | 3 | 3 | 9 row 7 : 7 | netherlands | 3 | 2 | 2 | 7 row 8 : 8 | great britain | 2 | 3 | 3 | 8 row 9 : 9 | ukraine | 2 | 3 | 2 | 7 row 10 : 10 | italy | 2 | 2 | 1 | 5 row 11 : 11 | canada | 2 | 0 | 1 | 3 row 12 : 12 | hungary | 1 | 4 | 1 | 6 row 13 : 13 | spain | 1 | 2 | 3 | 6 row 14 : 14 | poland | 1 | 1 | 0 | 2 row 15 : 15 | france | 1 | 0 | 2 | 3 row 16 : 16 | finland | 1 | 0 | 1 | 2 row 17 : 17 | belarus | 1 | 0 | 0 | 1 row 18 : 18 | czech republic | 0 | 2 | 0 | 2 row 19 : 19 | slovakia | 0 | 1 | 1 | 2 row 20 : 20 | denmark | 0 | 1 | 0 | 1 row 21 : 20 | croatia | 0 | 1 | 0 | 1 row 22 : 22 | romania | 0 | 0 | 2 | 2 row 23 : 23 | bulgaria | 0 | 0 | 1 | 1 row 24 : 23 | mexico | 0 | 0 | 1 | 1 row 25 : 23 | serbia and montenegro | 0 | 0 | 1 | 1 row 26 : 23 | south africa | 0 | 0 | 1 | 1 row 27 : 23 | sweden | 0 | 0 | 1 | 1 row 28 : 23 | tunisia | 0 | 0 | 1 | 1 row 29 : total | total | 62 | 65 | 59 | 186
table_csv/203_653.csv
0
{ "column_index": [ 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1 ], "row_index": [ 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27 ] }
[ "what are all the nations that competed?" ]
0
united states, russia, australia, china, germany, japan, netherlands, great britain, ukraine, italy, canada, hungary, spain, poland, france, finland, belarus, czech republic, slovakia, denmark, croatia, romania, bulgaria, mexico, serbia and montenegro, south africa, sweden, tunisia
[ "Rank", "Nation", "Gold", "Silver", "Bronze", "Total" ]
what are all the nations that competed?
[ [ "1", "United States", "12", "13", "6", "31" ], [ "2", "Russia", "10", "5", "6", "21" ], [ "3", "Australia", "8", "12", "6", "26" ], [ "4", "China", "7", "4", "8", "19" ], [ "5", "Germany", "5", "6", "5", "16" ], [ "6", "Japan", "3", "3", "3", "9" ], [ "7", "Netherlands", "3", "2", "2", "7" ], [ "8", "Great Britain", "2", "3", "3", "8" ], [ "9", "Ukraine", "2", "3", "2", "7" ], [ "10", "Italy", "2", "2", "1", "5" ], [ "11", "Canada", "2", "0", "1", "3" ], [ "12", "Hungary", "1", "4", "1", "6" ], [ "13", "Spain", "1", "2", "3", "6" ], [ "14", "Poland", "1", "1", "0", "2" ], [ "15", "France", "1", "0", "2", "3" ], [ "16", "Finland", "1", "0", "1", "2" ], [ "17", "Belarus", "1", "0", "0", "1" ], [ "18", "Czech Republic", "0", "2", "0", "2" ], [ "19", "Slovakia", "0", "1", "1", "2" ], [ "20", "Denmark", "0", "1", "0", "1" ], [ "20", "Croatia", "0", "1", "0", "1" ], [ "22", "Romania", "0", "0", "2", "2" ], [ "23", "Bulgaria", "0", "0", "1", "1" ], [ "23", "Mexico", "0", "0", "1", "1" ], [ "23", "Serbia and Montenegro", "0", "0", "1", "1" ], [ "23", "South Africa", "0", "0", "1", "1" ], [ "23", "Sweden", "0", "0", "1", "1" ], [ "23", "Tunisia", "0", "0", "1", "1" ], [ "Total", "Total", "62", "65", "59", "186" ] ]
[ "United States", "Russia", "Australia", "China", "Germany", "Japan", "Netherlands", "Great Britain", "Ukraine", "Italy", "Canada", "Hungary", "Spain", "Poland", "France", "Finland", "Belarus", "Czech Republic", "Slovakia", "Denmark", "Croatia", "Romania", "Bulgaria", "Mexico", "Serbia and Montenegro", "South Africa", "Sweden", "Tunisia" ]
what are all the nations that competed? ||
ns-2312
col : rank | nation | gold | silver | bronze | total row 1 : 1 | united states | 12 | 13 | 6 | 31 row 2 : 2 | russia | 10 | 5 | 6 | 21 row 3 : 3 | australia | 8 | 12 | 6 | 26 row 4 : 4 | china | 7 | 4 | 8 | 19 row 5 : 5 | germany | 5 | 6 | 5 | 16 row 6 : 6 | japan | 3 | 3 | 3 | 9 row 7 : 7 | netherlands | 3 | 2 | 2 | 7 row 8 : 8 | great britain | 2 | 3 | 3 | 8 row 9 : 9 | ukraine | 2 | 3 | 2 | 7 row 10 : 10 | italy | 2 | 2 | 1 | 5 row 11 : 11 | canada | 2 | 0 | 1 | 3 row 12 : 12 | hungary | 1 | 4 | 1 | 6 row 13 : 13 | spain | 1 | 2 | 3 | 6 row 14 : 14 | poland | 1 | 1 | 0 | 2 row 15 : 15 | france | 1 | 0 | 2 | 3 row 16 : 16 | finland | 1 | 0 | 1 | 2 row 17 : 17 | belarus | 1 | 0 | 0 | 1 row 18 : 18 | czech republic | 0 | 2 | 0 | 2 row 19 : 19 | slovakia | 0 | 1 | 1 | 2 row 20 : 20 | denmark | 0 | 1 | 0 | 1 row 21 : 20 | croatia | 0 | 1 | 0 | 1 row 22 : 22 | romania | 0 | 0 | 2 | 2 row 23 : 23 | bulgaria | 0 | 0 | 1 | 1 row 24 : 23 | mexico | 0 | 0 | 1 | 1 row 25 : 23 | serbia and montenegro | 0 | 0 | 1 | 1 row 26 : 23 | south africa | 0 | 0 | 1 | 1 row 27 : 23 | sweden | 0 | 0 | 1 | 1 row 28 : 23 | tunisia | 0 | 0 | 1 | 1 row 29 : total | total | 62 | 65 | 59 | 186
table_csv/203_653.csv
1
{ "column_index": [ 1, 1, 1, 1, 1 ], "row_index": [ 0, 1, 2, 3, 4 ] }
[ "what are all the nations that competed?", "which of those ranked 1-5?" ]
0
united states, russia, australia, china, germany
[ "Rank", "Nation", "Gold", "Silver", "Bronze", "Total" ]
which of those ranked 1-5?
[ [ "1", "United States", "12", "13", "6", "31" ], [ "2", "Russia", "10", "5", "6", "21" ], [ "3", "Australia", "8", "12", "6", "26" ], [ "4", "China", "7", "4", "8", "19" ], [ "5", "Germany", "5", "6", "5", "16" ], [ "6", "Japan", "3", "3", "3", "9" ], [ "7", "Netherlands", "3", "2", "2", "7" ], [ "8", "Great Britain", "2", "3", "3", "8" ], [ "9", "Ukraine", "2", "3", "2", "7" ], [ "10", "Italy", "2", "2", "1", "5" ], [ "11", "Canada", "2", "0", "1", "3" ], [ "12", "Hungary", "1", "4", "1", "6" ], [ "13", "Spain", "1", "2", "3", "6" ], [ "14", "Poland", "1", "1", "0", "2" ], [ "15", "France", "1", "0", "2", "3" ], [ "16", "Finland", "1", "0", "1", "2" ], [ "17", "Belarus", "1", "0", "0", "1" ], [ "18", "Czech Republic", "0", "2", "0", "2" ], [ "19", "Slovakia", "0", "1", "1", "2" ], [ "20", "Denmark", "0", "1", "0", "1" ], [ "20", "Croatia", "0", "1", "0", "1" ], [ "22", "Romania", "0", "0", "2", "2" ], [ "23", "Bulgaria", "0", "0", "1", "1" ], [ "23", "Mexico", "0", "0", "1", "1" ], [ "23", "Serbia and Montenegro", "0", "0", "1", "1" ], [ "23", "South Africa", "0", "0", "1", "1" ], [ "23", "Sweden", "0", "0", "1", "1" ], [ "23", "Tunisia", "0", "0", "1", "1" ], [ "Total", "Total", "62", "65", "59", "186" ] ]
[ "United States", "Russia", "Australia", "China", "Germany" ]
which of those ranked 1-5? || what are all the nations that competed?
ns-2312
col : rank | nation | gold | silver | bronze | total row 1 : 1 | united states | 12 | 13 | 6 | 31 row 2 : 2 | russia | 10 | 5 | 6 | 21 row 3 : 3 | australia | 8 | 12 | 6 | 26 row 4 : 4 | china | 7 | 4 | 8 | 19 row 5 : 5 | germany | 5 | 6 | 5 | 16 row 6 : 6 | japan | 3 | 3 | 3 | 9 row 7 : 7 | netherlands | 3 | 2 | 2 | 7 row 8 : 8 | great britain | 2 | 3 | 3 | 8 row 9 : 9 | ukraine | 2 | 3 | 2 | 7 row 10 : 10 | italy | 2 | 2 | 1 | 5 row 11 : 11 | canada | 2 | 0 | 1 | 3 row 12 : 12 | hungary | 1 | 4 | 1 | 6 row 13 : 13 | spain | 1 | 2 | 3 | 6 row 14 : 14 | poland | 1 | 1 | 0 | 2 row 15 : 15 | france | 1 | 0 | 2 | 3 row 16 : 16 | finland | 1 | 0 | 1 | 2 row 17 : 17 | belarus | 1 | 0 | 0 | 1 row 18 : 18 | czech republic | 0 | 2 | 0 | 2 row 19 : 19 | slovakia | 0 | 1 | 1 | 2 row 20 : 20 | denmark | 0 | 1 | 0 | 1 row 21 : 20 | croatia | 0 | 1 | 0 | 1 row 22 : 22 | romania | 0 | 0 | 2 | 2 row 23 : 23 | bulgaria | 0 | 0 | 1 | 1 row 24 : 23 | mexico | 0 | 0 | 1 | 1 row 25 : 23 | serbia and montenegro | 0 | 0 | 1 | 1 row 26 : 23 | south africa | 0 | 0 | 1 | 1 row 27 : 23 | sweden | 0 | 0 | 1 | 1 row 28 : 23 | tunisia | 0 | 0 | 1 | 1 row 29 : total | total | 62 | 65 | 59 | 186
table_csv/203_653.csv
2
{ "column_index": [ 1 ], "row_index": [ 3 ] }
[ "what are all the nations that competed?", "which of those ranked 1-5?", "which won the the largest number of bronze medals?" ]
0
china
[ "Rank", "Nation", "Gold", "Silver", "Bronze", "Total" ]
which won the the largest number of bronze medals?
[ [ "1", "United States", "12", "13", "6", "31" ], [ "2", "Russia", "10", "5", "6", "21" ], [ "3", "Australia", "8", "12", "6", "26" ], [ "4", "China", "7", "4", "8", "19" ], [ "5", "Germany", "5", "6", "5", "16" ], [ "6", "Japan", "3", "3", "3", "9" ], [ "7", "Netherlands", "3", "2", "2", "7" ], [ "8", "Great Britain", "2", "3", "3", "8" ], [ "9", "Ukraine", "2", "3", "2", "7" ], [ "10", "Italy", "2", "2", "1", "5" ], [ "11", "Canada", "2", "0", "1", "3" ], [ "12", "Hungary", "1", "4", "1", "6" ], [ "13", "Spain", "1", "2", "3", "6" ], [ "14", "Poland", "1", "1", "0", "2" ], [ "15", "France", "1", "0", "2", "3" ], [ "16", "Finland", "1", "0", "1", "2" ], [ "17", "Belarus", "1", "0", "0", "1" ], [ "18", "Czech Republic", "0", "2", "0", "2" ], [ "19", "Slovakia", "0", "1", "1", "2" ], [ "20", "Denmark", "0", "1", "0", "1" ], [ "20", "Croatia", "0", "1", "0", "1" ], [ "22", "Romania", "0", "0", "2", "2" ], [ "23", "Bulgaria", "0", "0", "1", "1" ], [ "23", "Mexico", "0", "0", "1", "1" ], [ "23", "Serbia and Montenegro", "0", "0", "1", "1" ], [ "23", "South Africa", "0", "0", "1", "1" ], [ "23", "Sweden", "0", "0", "1", "1" ], [ "23", "Tunisia", "0", "0", "1", "1" ], [ "Total", "Total", "62", "65", "59", "186" ] ]
[ "China" ]
which won the the largest number of bronze medals? || which of those ranked 1-5? | what are all the nations that competed?
ns-2312
col : rank | nation | gold | silver | bronze | total row 1 : 1 | united states | 12 | 13 | 6 | 31 row 2 : 2 | russia | 10 | 5 | 6 | 21 row 3 : 3 | australia | 8 | 12 | 6 | 26 row 4 : 4 | china | 7 | 4 | 8 | 19 row 5 : 5 | germany | 5 | 6 | 5 | 16 row 6 : 6 | japan | 3 | 3 | 3 | 9 row 7 : 7 | netherlands | 3 | 2 | 2 | 7 row 8 : 8 | great britain | 2 | 3 | 3 | 8 row 9 : 9 | ukraine | 2 | 3 | 2 | 7 row 10 : 10 | italy | 2 | 2 | 1 | 5 row 11 : 11 | canada | 2 | 0 | 1 | 3 row 12 : 12 | hungary | 1 | 4 | 1 | 6 row 13 : 13 | spain | 1 | 2 | 3 | 6 row 14 : 14 | poland | 1 | 1 | 0 | 2 row 15 : 15 | france | 1 | 0 | 2 | 3 row 16 : 16 | finland | 1 | 0 | 1 | 2 row 17 : 17 | belarus | 1 | 0 | 0 | 1 row 18 : 18 | czech republic | 0 | 2 | 0 | 2 row 19 : 19 | slovakia | 0 | 1 | 1 | 2 row 20 : 20 | denmark | 0 | 1 | 0 | 1 row 21 : 20 | croatia | 0 | 1 | 0 | 1 row 22 : 22 | romania | 0 | 0 | 2 | 2 row 23 : 23 | bulgaria | 0 | 0 | 1 | 1 row 24 : 23 | mexico | 0 | 0 | 1 | 1 row 25 : 23 | serbia and montenegro | 0 | 0 | 1 | 1 row 26 : 23 | south africa | 0 | 0 | 1 | 1 row 27 : 23 | sweden | 0 | 0 | 1 | 1 row 28 : 23 | tunisia | 0 | 0 | 1 | 1 row 29 : total | total | 62 | 65 | 59 | 186
table_csv/203_653.csv
0
{ "column_index": [ 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1 ], "row_index": [ 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27 ] }
[ "what are all of the nations?" ]
1
united states, russia, australia, china, germany, japan, netherlands, great britain, ukraine, italy, canada, hungary, spain, poland, france, finland, belarus, czech republic, slovakia, denmark, croatia, romania, bulgaria, mexico, serbia and montenegro, south africa, sweden, tunisia
[ "Rank", "Nation", "Gold", "Silver", "Bronze", "Total" ]
what are all of the nations?
[ [ "1", "United States", "12", "13", "6", "31" ], [ "2", "Russia", "10", "5", "6", "21" ], [ "3", "Australia", "8", "12", "6", "26" ], [ "4", "China", "7", "4", "8", "19" ], [ "5", "Germany", "5", "6", "5", "16" ], [ "6", "Japan", "3", "3", "3", "9" ], [ "7", "Netherlands", "3", "2", "2", "7" ], [ "8", "Great Britain", "2", "3", "3", "8" ], [ "9", "Ukraine", "2", "3", "2", "7" ], [ "10", "Italy", "2", "2", "1", "5" ], [ "11", "Canada", "2", "0", "1", "3" ], [ "12", "Hungary", "1", "4", "1", "6" ], [ "13", "Spain", "1", "2", "3", "6" ], [ "14", "Poland", "1", "1", "0", "2" ], [ "15", "France", "1", "0", "2", "3" ], [ "16", "Finland", "1", "0", "1", "2" ], [ "17", "Belarus", "1", "0", "0", "1" ], [ "18", "Czech Republic", "0", "2", "0", "2" ], [ "19", "Slovakia", "0", "1", "1", "2" ], [ "20", "Denmark", "0", "1", "0", "1" ], [ "20", "Croatia", "0", "1", "0", "1" ], [ "22", "Romania", "0", "0", "2", "2" ], [ "23", "Bulgaria", "0", "0", "1", "1" ], [ "23", "Mexico", "0", "0", "1", "1" ], [ "23", "Serbia and Montenegro", "0", "0", "1", "1" ], [ "23", "South Africa", "0", "0", "1", "1" ], [ "23", "Sweden", "0", "0", "1", "1" ], [ "23", "Tunisia", "0", "0", "1", "1" ], [ "Total", "Total", "62", "65", "59", "186" ] ]
[ "United States", "Russia", "Australia", "China", "Germany", "Japan", "Netherlands", "Great Britain", "Ukraine", "Italy", "Canada", "Hungary", "Spain", "Poland", "France", "Finland", "Belarus", "Czech Republic", "Slovakia", "Denmark", "Croatia", "Romania", "Bulgaria", "Mexico", "Serbia and Montenegro", "South Africa", "Sweden", "Tunisia" ]
what are all of the nations? ||
ns-2312
col : rank | nation | gold | silver | bronze | total row 1 : 1 | united states | 12 | 13 | 6 | 31 row 2 : 2 | russia | 10 | 5 | 6 | 21 row 3 : 3 | australia | 8 | 12 | 6 | 26 row 4 : 4 | china | 7 | 4 | 8 | 19 row 5 : 5 | germany | 5 | 6 | 5 | 16 row 6 : 6 | japan | 3 | 3 | 3 | 9 row 7 : 7 | netherlands | 3 | 2 | 2 | 7 row 8 : 8 | great britain | 2 | 3 | 3 | 8 row 9 : 9 | ukraine | 2 | 3 | 2 | 7 row 10 : 10 | italy | 2 | 2 | 1 | 5 row 11 : 11 | canada | 2 | 0 | 1 | 3 row 12 : 12 | hungary | 1 | 4 | 1 | 6 row 13 : 13 | spain | 1 | 2 | 3 | 6 row 14 : 14 | poland | 1 | 1 | 0 | 2 row 15 : 15 | france | 1 | 0 | 2 | 3 row 16 : 16 | finland | 1 | 0 | 1 | 2 row 17 : 17 | belarus | 1 | 0 | 0 | 1 row 18 : 18 | czech republic | 0 | 2 | 0 | 2 row 19 : 19 | slovakia | 0 | 1 | 1 | 2 row 20 : 20 | denmark | 0 | 1 | 0 | 1 row 21 : 20 | croatia | 0 | 1 | 0 | 1 row 22 : 22 | romania | 0 | 0 | 2 | 2 row 23 : 23 | bulgaria | 0 | 0 | 1 | 1 row 24 : 23 | mexico | 0 | 0 | 1 | 1 row 25 : 23 | serbia and montenegro | 0 | 0 | 1 | 1 row 26 : 23 | south africa | 0 | 0 | 1 | 1 row 27 : 23 | sweden | 0 | 0 | 1 | 1 row 28 : 23 | tunisia | 0 | 0 | 1 | 1 row 29 : total | total | 62 | 65 | 59 | 186
table_csv/203_653.csv
1
{ "column_index": [ 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4 ], "row_index": [ 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27 ] }
[ "what are all of the nations?", "how many bronze medals did they win?" ]
1
6, 6, 6, 8, 5, 3, 2, 3, 2, 1, 1, 1, 3, 0, 2, 1, 0, 0, 1, 0, 0, 2, 1, 1, 1, 1, 1, 1
[ "Rank", "Nation", "Gold", "Silver", "Bronze", "Total" ]
how many bronze medals did they win?
[ [ "1", "United States", "12", "13", "6", "31" ], [ "2", "Russia", "10", "5", "6", "21" ], [ "3", "Australia", "8", "12", "6", "26" ], [ "4", "China", "7", "4", "8", "19" ], [ "5", "Germany", "5", "6", "5", "16" ], [ "6", "Japan", "3", "3", "3", "9" ], [ "7", "Netherlands", "3", "2", "2", "7" ], [ "8", "Great Britain", "2", "3", "3", "8" ], [ "9", "Ukraine", "2", "3", "2", "7" ], [ "10", "Italy", "2", "2", "1", "5" ], [ "11", "Canada", "2", "0", "1", "3" ], [ "12", "Hungary", "1", "4", "1", "6" ], [ "13", "Spain", "1", "2", "3", "6" ], [ "14", "Poland", "1", "1", "0", "2" ], [ "15", "France", "1", "0", "2", "3" ], [ "16", "Finland", "1", "0", "1", "2" ], [ "17", "Belarus", "1", "0", "0", "1" ], [ "18", "Czech Republic", "0", "2", "0", "2" ], [ "19", "Slovakia", "0", "1", "1", "2" ], [ "20", "Denmark", "0", "1", "0", "1" ], [ "20", "Croatia", "0", "1", "0", "1" ], [ "22", "Romania", "0", "0", "2", "2" ], [ "23", "Bulgaria", "0", "0", "1", "1" ], [ "23", "Mexico", "0", "0", "1", "1" ], [ "23", "Serbia and Montenegro", "0", "0", "1", "1" ], [ "23", "South Africa", "0", "0", "1", "1" ], [ "23", "Sweden", "0", "0", "1", "1" ], [ "23", "Tunisia", "0", "0", "1", "1" ], [ "Total", "Total", "62", "65", "59", "186" ] ]
[ "6", "6", "6", "8", "5", "3", "2", "3", "2", "1", "1", "1", "3", "0", "2", "1", "0", "0", "1", "0", "0", "2", "1", "1", "1", "1", "1", "1" ]
how many bronze medals did they win? || what are all of the nations?
ns-2312
col : rank | nation | gold | silver | bronze | total row 1 : 1 | united states | 12 | 13 | 6 | 31 row 2 : 2 | russia | 10 | 5 | 6 | 21 row 3 : 3 | australia | 8 | 12 | 6 | 26 row 4 : 4 | china | 7 | 4 | 8 | 19 row 5 : 5 | germany | 5 | 6 | 5 | 16 row 6 : 6 | japan | 3 | 3 | 3 | 9 row 7 : 7 | netherlands | 3 | 2 | 2 | 7 row 8 : 8 | great britain | 2 | 3 | 3 | 8 row 9 : 9 | ukraine | 2 | 3 | 2 | 7 row 10 : 10 | italy | 2 | 2 | 1 | 5 row 11 : 11 | canada | 2 | 0 | 1 | 3 row 12 : 12 | hungary | 1 | 4 | 1 | 6 row 13 : 13 | spain | 1 | 2 | 3 | 6 row 14 : 14 | poland | 1 | 1 | 0 | 2 row 15 : 15 | france | 1 | 0 | 2 | 3 row 16 : 16 | finland | 1 | 0 | 1 | 2 row 17 : 17 | belarus | 1 | 0 | 0 | 1 row 18 : 18 | czech republic | 0 | 2 | 0 | 2 row 19 : 19 | slovakia | 0 | 1 | 1 | 2 row 20 : 20 | denmark | 0 | 1 | 0 | 1 row 21 : 20 | croatia | 0 | 1 | 0 | 1 row 22 : 22 | romania | 0 | 0 | 2 | 2 row 23 : 23 | bulgaria | 0 | 0 | 1 | 1 row 24 : 23 | mexico | 0 | 0 | 1 | 1 row 25 : 23 | serbia and montenegro | 0 | 0 | 1 | 1 row 26 : 23 | south africa | 0 | 0 | 1 | 1 row 27 : 23 | sweden | 0 | 0 | 1 | 1 row 28 : 23 | tunisia | 0 | 0 | 1 | 1 row 29 : total | total | 62 | 65 | 59 | 186
table_csv/203_653.csv
2
{ "column_index": [ 1 ], "row_index": [ 3 ] }
[ "what are all of the nations?", "how many bronze medals did they win?", "which nation won the most bronze?" ]
1
china
[ "Rank", "Nation", "Gold", "Silver", "Bronze", "Total" ]
which nation won the most bronze?
[ [ "1", "United States", "12", "13", "6", "31" ], [ "2", "Russia", "10", "5", "6", "21" ], [ "3", "Australia", "8", "12", "6", "26" ], [ "4", "China", "7", "4", "8", "19" ], [ "5", "Germany", "5", "6", "5", "16" ], [ "6", "Japan", "3", "3", "3", "9" ], [ "7", "Netherlands", "3", "2", "2", "7" ], [ "8", "Great Britain", "2", "3", "3", "8" ], [ "9", "Ukraine", "2", "3", "2", "7" ], [ "10", "Italy", "2", "2", "1", "5" ], [ "11", "Canada", "2", "0", "1", "3" ], [ "12", "Hungary", "1", "4", "1", "6" ], [ "13", "Spain", "1", "2", "3", "6" ], [ "14", "Poland", "1", "1", "0", "2" ], [ "15", "France", "1", "0", "2", "3" ], [ "16", "Finland", "1", "0", "1", "2" ], [ "17", "Belarus", "1", "0", "0", "1" ], [ "18", "Czech Republic", "0", "2", "0", "2" ], [ "19", "Slovakia", "0", "1", "1", "2" ], [ "20", "Denmark", "0", "1", "0", "1" ], [ "20", "Croatia", "0", "1", "0", "1" ], [ "22", "Romania", "0", "0", "2", "2" ], [ "23", "Bulgaria", "0", "0", "1", "1" ], [ "23", "Mexico", "0", "0", "1", "1" ], [ "23", "Serbia and Montenegro", "0", "0", "1", "1" ], [ "23", "South Africa", "0", "0", "1", "1" ], [ "23", "Sweden", "0", "0", "1", "1" ], [ "23", "Tunisia", "0", "0", "1", "1" ], [ "Total", "Total", "62", "65", "59", "186" ] ]
[ "China" ]
which nation won the most bronze? || how many bronze medals did they win? | what are all of the nations?
ns-2312
col : rank | nation | gold | silver | bronze | total row 1 : 1 | united states | 12 | 13 | 6 | 31 row 2 : 2 | russia | 10 | 5 | 6 | 21 row 3 : 3 | australia | 8 | 12 | 6 | 26 row 4 : 4 | china | 7 | 4 | 8 | 19 row 5 : 5 | germany | 5 | 6 | 5 | 16 row 6 : 6 | japan | 3 | 3 | 3 | 9 row 7 : 7 | netherlands | 3 | 2 | 2 | 7 row 8 : 8 | great britain | 2 | 3 | 3 | 8 row 9 : 9 | ukraine | 2 | 3 | 2 | 7 row 10 : 10 | italy | 2 | 2 | 1 | 5 row 11 : 11 | canada | 2 | 0 | 1 | 3 row 12 : 12 | hungary | 1 | 4 | 1 | 6 row 13 : 13 | spain | 1 | 2 | 3 | 6 row 14 : 14 | poland | 1 | 1 | 0 | 2 row 15 : 15 | france | 1 | 0 | 2 | 3 row 16 : 16 | finland | 1 | 0 | 1 | 2 row 17 : 17 | belarus | 1 | 0 | 0 | 1 row 18 : 18 | czech republic | 0 | 2 | 0 | 2 row 19 : 19 | slovakia | 0 | 1 | 1 | 2 row 20 : 20 | denmark | 0 | 1 | 0 | 1 row 21 : 20 | croatia | 0 | 1 | 0 | 1 row 22 : 22 | romania | 0 | 0 | 2 | 2 row 23 : 23 | bulgaria | 0 | 0 | 1 | 1 row 24 : 23 | mexico | 0 | 0 | 1 | 1 row 25 : 23 | serbia and montenegro | 0 | 0 | 1 | 1 row 26 : 23 | south africa | 0 | 0 | 1 | 1 row 27 : 23 | sweden | 0 | 0 | 1 | 1 row 28 : 23 | tunisia | 0 | 0 | 1 | 1 row 29 : total | total | 62 | 65 | 59 | 186
table_csv/203_653.csv
0
{ "column_index": [ 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5 ], "row_index": [ 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27 ] }
[ "which totals are less than 20?" ]
2
19, 16, 9, 7, 8, 7, 5, 3, 6, 6, 2, 3, 2, 1, 2, 2, 1, 1, 2, 1, 1, 1, 1, 1, 1
[ "Rank", "Nation", "Gold", "Silver", "Bronze", "Total" ]
which totals are less than 20?
[ [ "1", "United States", "12", "13", "6", "31" ], [ "2", "Russia", "10", "5", "6", "21" ], [ "3", "Australia", "8", "12", "6", "26" ], [ "4", "China", "7", "4", "8", "19" ], [ "5", "Germany", "5", "6", "5", "16" ], [ "6", "Japan", "3", "3", "3", "9" ], [ "7", "Netherlands", "3", "2", "2", "7" ], [ "8", "Great Britain", "2", "3", "3", "8" ], [ "9", "Ukraine", "2", "3", "2", "7" ], [ "10", "Italy", "2", "2", "1", "5" ], [ "11", "Canada", "2", "0", "1", "3" ], [ "12", "Hungary", "1", "4", "1", "6" ], [ "13", "Spain", "1", "2", "3", "6" ], [ "14", "Poland", "1", "1", "0", "2" ], [ "15", "France", "1", "0", "2", "3" ], [ "16", "Finland", "1", "0", "1", "2" ], [ "17", "Belarus", "1", "0", "0", "1" ], [ "18", "Czech Republic", "0", "2", "0", "2" ], [ "19", "Slovakia", "0", "1", "1", "2" ], [ "20", "Denmark", "0", "1", "0", "1" ], [ "20", "Croatia", "0", "1", "0", "1" ], [ "22", "Romania", "0", "0", "2", "2" ], [ "23", "Bulgaria", "0", "0", "1", "1" ], [ "23", "Mexico", "0", "0", "1", "1" ], [ "23", "Serbia and Montenegro", "0", "0", "1", "1" ], [ "23", "South Africa", "0", "0", "1", "1" ], [ "23", "Sweden", "0", "0", "1", "1" ], [ "23", "Tunisia", "0", "0", "1", "1" ], [ "Total", "Total", "62", "65", "59", "186" ] ]
[ "19", "16", "9", "7", "8", "7", "5", "3", "6", "6", "2", "3", "2", "1", "2", "2", "1", "1", "2", "1", "1", "1", "1", "1", "1" ]
which totals are less than 20? ||
ns-2312
col : rank | nation | gold | silver | bronze | total row 1 : 1 | united states | 12 | 13 | 6 | 31 row 2 : 2 | russia | 10 | 5 | 6 | 21 row 3 : 3 | australia | 8 | 12 | 6 | 26 row 4 : 4 | china | 7 | 4 | 8 | 19 row 5 : 5 | germany | 5 | 6 | 5 | 16 row 6 : 6 | japan | 3 | 3 | 3 | 9 row 7 : 7 | netherlands | 3 | 2 | 2 | 7 row 8 : 8 | great britain | 2 | 3 | 3 | 8 row 9 : 9 | ukraine | 2 | 3 | 2 | 7 row 10 : 10 | italy | 2 | 2 | 1 | 5 row 11 : 11 | canada | 2 | 0 | 1 | 3 row 12 : 12 | hungary | 1 | 4 | 1 | 6 row 13 : 13 | spain | 1 | 2 | 3 | 6 row 14 : 14 | poland | 1 | 1 | 0 | 2 row 15 : 15 | france | 1 | 0 | 2 | 3 row 16 : 16 | finland | 1 | 0 | 1 | 2 row 17 : 17 | belarus | 1 | 0 | 0 | 1 row 18 : 18 | czech republic | 0 | 2 | 0 | 2 row 19 : 19 | slovakia | 0 | 1 | 1 | 2 row 20 : 20 | denmark | 0 | 1 | 0 | 1 row 21 : 20 | croatia | 0 | 1 | 0 | 1 row 22 : 22 | romania | 0 | 0 | 2 | 2 row 23 : 23 | bulgaria | 0 | 0 | 1 | 1 row 24 : 23 | mexico | 0 | 0 | 1 | 1 row 25 : 23 | serbia and montenegro | 0 | 0 | 1 | 1 row 26 : 23 | south africa | 0 | 0 | 1 | 1 row 27 : 23 | sweden | 0 | 0 | 1 | 1 row 28 : 23 | tunisia | 0 | 0 | 1 | 1 row 29 : total | total | 62 | 65 | 59 | 186
table_csv/203_653.csv
1
{ "column_index": [ 3, 3 ], "row_index": [ 3, 11 ] }
[ "which totals are less than 20?", "what silver medals equal 4?" ]
2
4, 4
[ "Rank", "Nation", "Gold", "Silver", "Bronze", "Total" ]
what silver medals equal 4?
[ [ "1", "United States", "12", "13", "6", "31" ], [ "2", "Russia", "10", "5", "6", "21" ], [ "3", "Australia", "8", "12", "6", "26" ], [ "4", "China", "7", "4", "8", "19" ], [ "5", "Germany", "5", "6", "5", "16" ], [ "6", "Japan", "3", "3", "3", "9" ], [ "7", "Netherlands", "3", "2", "2", "7" ], [ "8", "Great Britain", "2", "3", "3", "8" ], [ "9", "Ukraine", "2", "3", "2", "7" ], [ "10", "Italy", "2", "2", "1", "5" ], [ "11", "Canada", "2", "0", "1", "3" ], [ "12", "Hungary", "1", "4", "1", "6" ], [ "13", "Spain", "1", "2", "3", "6" ], [ "14", "Poland", "1", "1", "0", "2" ], [ "15", "France", "1", "0", "2", "3" ], [ "16", "Finland", "1", "0", "1", "2" ], [ "17", "Belarus", "1", "0", "0", "1" ], [ "18", "Czech Republic", "0", "2", "0", "2" ], [ "19", "Slovakia", "0", "1", "1", "2" ], [ "20", "Denmark", "0", "1", "0", "1" ], [ "20", "Croatia", "0", "1", "0", "1" ], [ "22", "Romania", "0", "0", "2", "2" ], [ "23", "Bulgaria", "0", "0", "1", "1" ], [ "23", "Mexico", "0", "0", "1", "1" ], [ "23", "Serbia and Montenegro", "0", "0", "1", "1" ], [ "23", "South Africa", "0", "0", "1", "1" ], [ "23", "Sweden", "0", "0", "1", "1" ], [ "23", "Tunisia", "0", "0", "1", "1" ], [ "Total", "Total", "62", "65", "59", "186" ] ]
[ "4", "4" ]
what silver medals equal 4? || which totals are less than 20?
ns-2312
col : rank | nation | gold | silver | bronze | total row 1 : 1 | united states | 12 | 13 | 6 | 31 row 2 : 2 | russia | 10 | 5 | 6 | 21 row 3 : 3 | australia | 8 | 12 | 6 | 26 row 4 : 4 | china | 7 | 4 | 8 | 19 row 5 : 5 | germany | 5 | 6 | 5 | 16 row 6 : 6 | japan | 3 | 3 | 3 | 9 row 7 : 7 | netherlands | 3 | 2 | 2 | 7 row 8 : 8 | great britain | 2 | 3 | 3 | 8 row 9 : 9 | ukraine | 2 | 3 | 2 | 7 row 10 : 10 | italy | 2 | 2 | 1 | 5 row 11 : 11 | canada | 2 | 0 | 1 | 3 row 12 : 12 | hungary | 1 | 4 | 1 | 6 row 13 : 13 | spain | 1 | 2 | 3 | 6 row 14 : 14 | poland | 1 | 1 | 0 | 2 row 15 : 15 | france | 1 | 0 | 2 | 3 row 16 : 16 | finland | 1 | 0 | 1 | 2 row 17 : 17 | belarus | 1 | 0 | 0 | 1 row 18 : 18 | czech republic | 0 | 2 | 0 | 2 row 19 : 19 | slovakia | 0 | 1 | 1 | 2 row 20 : 20 | denmark | 0 | 1 | 0 | 1 row 21 : 20 | croatia | 0 | 1 | 0 | 1 row 22 : 22 | romania | 0 | 0 | 2 | 2 row 23 : 23 | bulgaria | 0 | 0 | 1 | 1 row 24 : 23 | mexico | 0 | 0 | 1 | 1 row 25 : 23 | serbia and montenegro | 0 | 0 | 1 | 1 row 26 : 23 | south africa | 0 | 0 | 1 | 1 row 27 : 23 | sweden | 0 | 0 | 1 | 1 row 28 : 23 | tunisia | 0 | 0 | 1 | 1 row 29 : total | total | 62 | 65 | 59 | 186
table_csv/203_653.csv
2
{ "column_index": [ 2 ], "row_index": [ 3 ] }
[ "which totals are less than 20?", "what silver medals equal 4?", "what gold medals equal 7?" ]
2
7
[ "Rank", "Nation", "Gold", "Silver", "Bronze", "Total" ]
what gold medals equal 7?
[ [ "1", "United States", "12", "13", "6", "31" ], [ "2", "Russia", "10", "5", "6", "21" ], [ "3", "Australia", "8", "12", "6", "26" ], [ "4", "China", "7", "4", "8", "19" ], [ "5", "Germany", "5", "6", "5", "16" ], [ "6", "Japan", "3", "3", "3", "9" ], [ "7", "Netherlands", "3", "2", "2", "7" ], [ "8", "Great Britain", "2", "3", "3", "8" ], [ "9", "Ukraine", "2", "3", "2", "7" ], [ "10", "Italy", "2", "2", "1", "5" ], [ "11", "Canada", "2", "0", "1", "3" ], [ "12", "Hungary", "1", "4", "1", "6" ], [ "13", "Spain", "1", "2", "3", "6" ], [ "14", "Poland", "1", "1", "0", "2" ], [ "15", "France", "1", "0", "2", "3" ], [ "16", "Finland", "1", "0", "1", "2" ], [ "17", "Belarus", "1", "0", "0", "1" ], [ "18", "Czech Republic", "0", "2", "0", "2" ], [ "19", "Slovakia", "0", "1", "1", "2" ], [ "20", "Denmark", "0", "1", "0", "1" ], [ "20", "Croatia", "0", "1", "0", "1" ], [ "22", "Romania", "0", "0", "2", "2" ], [ "23", "Bulgaria", "0", "0", "1", "1" ], [ "23", "Mexico", "0", "0", "1", "1" ], [ "23", "Serbia and Montenegro", "0", "0", "1", "1" ], [ "23", "South Africa", "0", "0", "1", "1" ], [ "23", "Sweden", "0", "0", "1", "1" ], [ "23", "Tunisia", "0", "0", "1", "1" ], [ "Total", "Total", "62", "65", "59", "186" ] ]
[ "7" ]
what gold medals equal 7? || what silver medals equal 4? | which totals are less than 20?
ns-2312
col : rank | nation | gold | silver | bronze | total row 1 : 1 | united states | 12 | 13 | 6 | 31 row 2 : 2 | russia | 10 | 5 | 6 | 21 row 3 : 3 | australia | 8 | 12 | 6 | 26 row 4 : 4 | china | 7 | 4 | 8 | 19 row 5 : 5 | germany | 5 | 6 | 5 | 16 row 6 : 6 | japan | 3 | 3 | 3 | 9 row 7 : 7 | netherlands | 3 | 2 | 2 | 7 row 8 : 8 | great britain | 2 | 3 | 3 | 8 row 9 : 9 | ukraine | 2 | 3 | 2 | 7 row 10 : 10 | italy | 2 | 2 | 1 | 5 row 11 : 11 | canada | 2 | 0 | 1 | 3 row 12 : 12 | hungary | 1 | 4 | 1 | 6 row 13 : 13 | spain | 1 | 2 | 3 | 6 row 14 : 14 | poland | 1 | 1 | 0 | 2 row 15 : 15 | france | 1 | 0 | 2 | 3 row 16 : 16 | finland | 1 | 0 | 1 | 2 row 17 : 17 | belarus | 1 | 0 | 0 | 1 row 18 : 18 | czech republic | 0 | 2 | 0 | 2 row 19 : 19 | slovakia | 0 | 1 | 1 | 2 row 20 : 20 | denmark | 0 | 1 | 0 | 1 row 21 : 20 | croatia | 0 | 1 | 0 | 1 row 22 : 22 | romania | 0 | 0 | 2 | 2 row 23 : 23 | bulgaria | 0 | 0 | 1 | 1 row 24 : 23 | mexico | 0 | 0 | 1 | 1 row 25 : 23 | serbia and montenegro | 0 | 0 | 1 | 1 row 26 : 23 | south africa | 0 | 0 | 1 | 1 row 27 : 23 | sweden | 0 | 0 | 1 | 1 row 28 : 23 | tunisia | 0 | 0 | 1 | 1 row 29 : total | total | 62 | 65 | 59 | 186
table_csv/203_653.csv
3
{ "column_index": [ 1 ], "row_index": [ 3 ] }
[ "which totals are less than 20?", "what silver medals equal 4?", "what gold medals equal 7?", "what nation is that?" ]
2
china
[ "Rank", "Nation", "Gold", "Silver", "Bronze", "Total" ]
what nation is that?
[ [ "1", "United States", "12", "13", "6", "31" ], [ "2", "Russia", "10", "5", "6", "21" ], [ "3", "Australia", "8", "12", "6", "26" ], [ "4", "China", "7", "4", "8", "19" ], [ "5", "Germany", "5", "6", "5", "16" ], [ "6", "Japan", "3", "3", "3", "9" ], [ "7", "Netherlands", "3", "2", "2", "7" ], [ "8", "Great Britain", "2", "3", "3", "8" ], [ "9", "Ukraine", "2", "3", "2", "7" ], [ "10", "Italy", "2", "2", "1", "5" ], [ "11", "Canada", "2", "0", "1", "3" ], [ "12", "Hungary", "1", "4", "1", "6" ], [ "13", "Spain", "1", "2", "3", "6" ], [ "14", "Poland", "1", "1", "0", "2" ], [ "15", "France", "1", "0", "2", "3" ], [ "16", "Finland", "1", "0", "1", "2" ], [ "17", "Belarus", "1", "0", "0", "1" ], [ "18", "Czech Republic", "0", "2", "0", "2" ], [ "19", "Slovakia", "0", "1", "1", "2" ], [ "20", "Denmark", "0", "1", "0", "1" ], [ "20", "Croatia", "0", "1", "0", "1" ], [ "22", "Romania", "0", "0", "2", "2" ], [ "23", "Bulgaria", "0", "0", "1", "1" ], [ "23", "Mexico", "0", "0", "1", "1" ], [ "23", "Serbia and Montenegro", "0", "0", "1", "1" ], [ "23", "South Africa", "0", "0", "1", "1" ], [ "23", "Sweden", "0", "0", "1", "1" ], [ "23", "Tunisia", "0", "0", "1", "1" ], [ "Total", "Total", "62", "65", "59", "186" ] ]
[ "China" ]
what nation is that? || what gold medals equal 7? | what silver medals equal 4? | which totals are less than 20?
nt-12122
col : unnamed: 0 | country | builder | location | ship | class | notes row 1 : 23 january | united states | new york shipbuilding corporation | camden, new jersey | salt lake city | pensacola-class cruiser | nan row 2 : 12 april | france | chantiers de la gironde | gironde | commandant teste | seaplane carrier and tender | nan row 3 : 25 april | united states | new york navy yard | brooklyn, new york | pensacola | pensacola-class cruiser | nan row 4 : 22 may | japan | uraga dock | uraga | itsukushima | minelayer | nan row 5 : 29 june | germany | deschimag werk a.g | bremen | lichtenfels | heavy lift ship | for ddg hansa row 6 : 3 july | united states | new york shipbuilding corporation | camden, new jersey | chester | northampton-class cruiser | nan row 7 : 6 august | united kingdom | harland and wolff | belfast, northern ireland | britannic | ocean liner | for white star line row 8 : 5 september | united states | fore river shipyard | quincy, massachusetts | northampton | northampton-class cruiser | nan row 9 : 7 september | united states | newport news shipbuilding & dry dock company | newport news, virginia | houston | northampton-class cruiser | nan row 10 : date unknown | norway | trondhjems mekaniske vaerksted | trondheim | baroy | passenger/cargo ship | nan row 11 : date unknown | germany | deutsche werft | hamburg | ceuta | cargo ship | for oldenburg-portugiesische dampfschiffs-r row 12 : date unknown | germany | ag weser | bremen | hercules | cargo ship | for dampfschiffahrts-gesellschaft neptun row 13 : date unknown | united kingdom | smiths dock co ltd | middlesbrough | vikingen i | whaler | nan row 14 : date unknown | united kingdom | smiths dock co ltd | middlesbrough | vikingen ii | whaler | nan row 15 : date unknown | united kingdom | smiths dock co ltd | middlesbrough | vikingen iii | whaler | nan row 16 : date unknown | sweden | nan | bjorkenas, sweden | yngve | schooner | nan
table_csv/203_403.csv
0
{ "column_index": [ 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4 ], "row_index": [ 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15 ] }
[ "what are the names of the ships launched in 1929?" ]
0
salt lake city, commandant teste, pensacola, itsukushima, lichtenfels, chester, britannic, northampton, houston, baroy, ceuta, hercules, vikingen i, vikingen ii, vikingen iii, yngve
[ "Unnamed: 0", "Country", "Builder", "Location", "Ship", "Class", "Notes" ]
what are the names of the ships launched in 1929?
[ [ "23 January", "United States", "New York Shipbuilding Corporation", "Camden, New Jersey", "Salt Lake City", "Pensacola-class cruiser", "nan" ], [ "12 April", "France", "Chantiers de la Gironde", "Gironde", "Commandant Teste", "Seaplane carrier and tender", "nan" ], [ "25 April", "United States", "New York Navy Yard", "Brooklyn, New York", "Pensacola", "Pensacola-class cruiser", "nan" ], [ "22 May", "Japan", "Uraga Dock", "Uraga", "Itsukushima", "minelayer", "nan" ], [ "29 June", "Germany", "Deschimag Werk A.G", "Bremen", "Lichtenfels", "heavy lift ship", "For DDG Hansa" ], [ "3 July", "United States", "New York Shipbuilding Corporation", "Camden, New Jersey", "Chester", "Northampton-class cruiser", "nan" ], [ "6 August", "United Kingdom", "Harland and Wolff", "Belfast, Northern Ireland", "Britannic", "Ocean liner", "For White Star Line" ], [ "5 September", "United States", "Fore River Shipyard", "Quincy, Massachusetts", "Northampton", "Northampton-class cruiser", "nan" ], [ "7 September", "United States", "Newport News Shipbuilding & Dry Dock Company", "Newport News, Virginia", "Houston", "Northampton-class cruiser", "nan" ], [ "Date unknown", "Norway", "Trondhjems mekaniske Vaerksted", "Trondheim", "Baroy", "Passenger/cargo ship", "nan" ], [ "Date unknown", "Germany", "Deutsche Werft", "Hamburg", "Ceuta", "Cargo ship", "For Oldenburg-Portugiesische Dampfschiffs-R" ], [ "Date unknown", "Germany", "AG Weser", "Bremen", "Hercules", "Cargo ship", "For Dampfschiffahrts-Gesellschaft Neptun" ], [ "Date unknown", "United Kingdom", "Smiths Dock Co Ltd", "Middlesbrough", "Vikingen I", "Whaler", "nan" ], [ "Date unknown", "United Kingdom", "Smiths Dock Co Ltd", "Middlesbrough", "Vikingen II", "Whaler", "nan" ], [ "Date unknown", "United Kingdom", "Smiths Dock Co Ltd", "Middlesbrough", "Vikingen III", "Whaler", "nan" ], [ "Date unknown", "Sweden", "nan", "Bjorkenas, Sweden", "Yngve", "Schooner", "nan" ] ]
[ "Salt Lake City", "Commandant Teste", "Pensacola", "Itsukushima", "Lichtenfels", "Chester", "Britannic", "Northampton", "Houston", "Baroy", "Ceuta", "Hercules", "Vikingen I", "Vikingen II", "Vikingen III", "Yngve" ]
what are the names of the ships launched in 1929? ||
nt-12122
col : unnamed: 0 | country | builder | location | ship | class | notes row 1 : 23 january | united states | new york shipbuilding corporation | camden, new jersey | salt lake city | pensacola-class cruiser | nan row 2 : 12 april | france | chantiers de la gironde | gironde | commandant teste | seaplane carrier and tender | nan row 3 : 25 april | united states | new york navy yard | brooklyn, new york | pensacola | pensacola-class cruiser | nan row 4 : 22 may | japan | uraga dock | uraga | itsukushima | minelayer | nan row 5 : 29 june | germany | deschimag werk a.g | bremen | lichtenfels | heavy lift ship | for ddg hansa row 6 : 3 july | united states | new york shipbuilding corporation | camden, new jersey | chester | northampton-class cruiser | nan row 7 : 6 august | united kingdom | harland and wolff | belfast, northern ireland | britannic | ocean liner | for white star line row 8 : 5 september | united states | fore river shipyard | quincy, massachusetts | northampton | northampton-class cruiser | nan row 9 : 7 september | united states | newport news shipbuilding & dry dock company | newport news, virginia | houston | northampton-class cruiser | nan row 10 : date unknown | norway | trondhjems mekaniske vaerksted | trondheim | baroy | passenger/cargo ship | nan row 11 : date unknown | germany | deutsche werft | hamburg | ceuta | cargo ship | for oldenburg-portugiesische dampfschiffs-r row 12 : date unknown | germany | ag weser | bremen | hercules | cargo ship | for dampfschiffahrts-gesellschaft neptun row 13 : date unknown | united kingdom | smiths dock co ltd | middlesbrough | vikingen i | whaler | nan row 14 : date unknown | united kingdom | smiths dock co ltd | middlesbrough | vikingen ii | whaler | nan row 15 : date unknown | united kingdom | smiths dock co ltd | middlesbrough | vikingen iii | whaler | nan row 16 : date unknown | sweden | nan | bjorkenas, sweden | yngve | schooner | nan
table_csv/203_403.csv
1
{ "column_index": [ 4 ], "row_index": [ 1 ] }
[ "what are the names of the ships launched in 1929?", "of these which has the longest name?" ]
0
commandant teste
[ "Unnamed: 0", "Country", "Builder", "Location", "Ship", "Class", "Notes" ]
of these which has the longest name?
[ [ "23 January", "United States", "New York Shipbuilding Corporation", "Camden, New Jersey", "Salt Lake City", "Pensacola-class cruiser", "nan" ], [ "12 April", "France", "Chantiers de la Gironde", "Gironde", "Commandant Teste", "Seaplane carrier and tender", "nan" ], [ "25 April", "United States", "New York Navy Yard", "Brooklyn, New York", "Pensacola", "Pensacola-class cruiser", "nan" ], [ "22 May", "Japan", "Uraga Dock", "Uraga", "Itsukushima", "minelayer", "nan" ], [ "29 June", "Germany", "Deschimag Werk A.G", "Bremen", "Lichtenfels", "heavy lift ship", "For DDG Hansa" ], [ "3 July", "United States", "New York Shipbuilding Corporation", "Camden, New Jersey", "Chester", "Northampton-class cruiser", "nan" ], [ "6 August", "United Kingdom", "Harland and Wolff", "Belfast, Northern Ireland", "Britannic", "Ocean liner", "For White Star Line" ], [ "5 September", "United States", "Fore River Shipyard", "Quincy, Massachusetts", "Northampton", "Northampton-class cruiser", "nan" ], [ "7 September", "United States", "Newport News Shipbuilding & Dry Dock Company", "Newport News, Virginia", "Houston", "Northampton-class cruiser", "nan" ], [ "Date unknown", "Norway", "Trondhjems mekaniske Vaerksted", "Trondheim", "Baroy", "Passenger/cargo ship", "nan" ], [ "Date unknown", "Germany", "Deutsche Werft", "Hamburg", "Ceuta", "Cargo ship", "For Oldenburg-Portugiesische Dampfschiffs-R" ], [ "Date unknown", "Germany", "AG Weser", "Bremen", "Hercules", "Cargo ship", "For Dampfschiffahrts-Gesellschaft Neptun" ], [ "Date unknown", "United Kingdom", "Smiths Dock Co Ltd", "Middlesbrough", "Vikingen I", "Whaler", "nan" ], [ "Date unknown", "United Kingdom", "Smiths Dock Co Ltd", "Middlesbrough", "Vikingen II", "Whaler", "nan" ], [ "Date unknown", "United Kingdom", "Smiths Dock Co Ltd", "Middlesbrough", "Vikingen III", "Whaler", "nan" ], [ "Date unknown", "Sweden", "nan", "Bjorkenas, Sweden", "Yngve", "Schooner", "nan" ] ]
[ "Commandant Teste" ]
of these which has the longest name? || what are the names of the ships launched in 1929?
nt-12122
col : unnamed: 0 | country | builder | location | ship | class | notes row 1 : 23 january | united states | new york shipbuilding corporation | camden, new jersey | salt lake city | pensacola-class cruiser | nan row 2 : 12 april | france | chantiers de la gironde | gironde | commandant teste | seaplane carrier and tender | nan row 3 : 25 april | united states | new york navy yard | brooklyn, new york | pensacola | pensacola-class cruiser | nan row 4 : 22 may | japan | uraga dock | uraga | itsukushima | minelayer | nan row 5 : 29 june | germany | deschimag werk a.g | bremen | lichtenfels | heavy lift ship | for ddg hansa row 6 : 3 july | united states | new york shipbuilding corporation | camden, new jersey | chester | northampton-class cruiser | nan row 7 : 6 august | united kingdom | harland and wolff | belfast, northern ireland | britannic | ocean liner | for white star line row 8 : 5 september | united states | fore river shipyard | quincy, massachusetts | northampton | northampton-class cruiser | nan row 9 : 7 september | united states | newport news shipbuilding & dry dock company | newport news, virginia | houston | northampton-class cruiser | nan row 10 : date unknown | norway | trondhjems mekaniske vaerksted | trondheim | baroy | passenger/cargo ship | nan row 11 : date unknown | germany | deutsche werft | hamburg | ceuta | cargo ship | for oldenburg-portugiesische dampfschiffs-r row 12 : date unknown | germany | ag weser | bremen | hercules | cargo ship | for dampfschiffahrts-gesellschaft neptun row 13 : date unknown | united kingdom | smiths dock co ltd | middlesbrough | vikingen i | whaler | nan row 14 : date unknown | united kingdom | smiths dock co ltd | middlesbrough | vikingen ii | whaler | nan row 15 : date unknown | united kingdom | smiths dock co ltd | middlesbrough | vikingen iii | whaler | nan row 16 : date unknown | sweden | nan | bjorkenas, sweden | yngve | schooner | nan
table_csv/203_403.csv
0
{ "column_index": [ 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4 ], "row_index": [ 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15 ] }
[ "what are the names of the different ships?" ]
1
salt lake city, commandant teste, pensacola, itsukushima, lichtenfels, chester, britannic, northampton, houston, baroy, ceuta, hercules, vikingen i, vikingen ii, vikingen iii, yngve
[ "Unnamed: 0", "Country", "Builder", "Location", "Ship", "Class", "Notes" ]
what are the names of the different ships?
[ [ "23 January", "United States", "New York Shipbuilding Corporation", "Camden, New Jersey", "Salt Lake City", "Pensacola-class cruiser", "nan" ], [ "12 April", "France", "Chantiers de la Gironde", "Gironde", "Commandant Teste", "Seaplane carrier and tender", "nan" ], [ "25 April", "United States", "New York Navy Yard", "Brooklyn, New York", "Pensacola", "Pensacola-class cruiser", "nan" ], [ "22 May", "Japan", "Uraga Dock", "Uraga", "Itsukushima", "minelayer", "nan" ], [ "29 June", "Germany", "Deschimag Werk A.G", "Bremen", "Lichtenfels", "heavy lift ship", "For DDG Hansa" ], [ "3 July", "United States", "New York Shipbuilding Corporation", "Camden, New Jersey", "Chester", "Northampton-class cruiser", "nan" ], [ "6 August", "United Kingdom", "Harland and Wolff", "Belfast, Northern Ireland", "Britannic", "Ocean liner", "For White Star Line" ], [ "5 September", "United States", "Fore River Shipyard", "Quincy, Massachusetts", "Northampton", "Northampton-class cruiser", "nan" ], [ "7 September", "United States", "Newport News Shipbuilding & Dry Dock Company", "Newport News, Virginia", "Houston", "Northampton-class cruiser", "nan" ], [ "Date unknown", "Norway", "Trondhjems mekaniske Vaerksted", "Trondheim", "Baroy", "Passenger/cargo ship", "nan" ], [ "Date unknown", "Germany", "Deutsche Werft", "Hamburg", "Ceuta", "Cargo ship", "For Oldenburg-Portugiesische Dampfschiffs-R" ], [ "Date unknown", "Germany", "AG Weser", "Bremen", "Hercules", "Cargo ship", "For Dampfschiffahrts-Gesellschaft Neptun" ], [ "Date unknown", "United Kingdom", "Smiths Dock Co Ltd", "Middlesbrough", "Vikingen I", "Whaler", "nan" ], [ "Date unknown", "United Kingdom", "Smiths Dock Co Ltd", "Middlesbrough", "Vikingen II", "Whaler", "nan" ], [ "Date unknown", "United Kingdom", "Smiths Dock Co Ltd", "Middlesbrough", "Vikingen III", "Whaler", "nan" ], [ "Date unknown", "Sweden", "nan", "Bjorkenas, Sweden", "Yngve", "Schooner", "nan" ] ]
[ "Salt Lake City", "Commandant Teste", "Pensacola", "Itsukushima", "Lichtenfels", "Chester", "Britannic", "Northampton", "Houston", "Baroy", "Ceuta", "Hercules", "Vikingen I", "Vikingen II", "Vikingen III", "Yngve" ]
what are the names of the different ships? ||
nt-12122
col : unnamed: 0 | country | builder | location | ship | class | notes row 1 : 23 january | united states | new york shipbuilding corporation | camden, new jersey | salt lake city | pensacola-class cruiser | nan row 2 : 12 april | france | chantiers de la gironde | gironde | commandant teste | seaplane carrier and tender | nan row 3 : 25 april | united states | new york navy yard | brooklyn, new york | pensacola | pensacola-class cruiser | nan row 4 : 22 may | japan | uraga dock | uraga | itsukushima | minelayer | nan row 5 : 29 june | germany | deschimag werk a.g | bremen | lichtenfels | heavy lift ship | for ddg hansa row 6 : 3 july | united states | new york shipbuilding corporation | camden, new jersey | chester | northampton-class cruiser | nan row 7 : 6 august | united kingdom | harland and wolff | belfast, northern ireland | britannic | ocean liner | for white star line row 8 : 5 september | united states | fore river shipyard | quincy, massachusetts | northampton | northampton-class cruiser | nan row 9 : 7 september | united states | newport news shipbuilding & dry dock company | newport news, virginia | houston | northampton-class cruiser | nan row 10 : date unknown | norway | trondhjems mekaniske vaerksted | trondheim | baroy | passenger/cargo ship | nan row 11 : date unknown | germany | deutsche werft | hamburg | ceuta | cargo ship | for oldenburg-portugiesische dampfschiffs-r row 12 : date unknown | germany | ag weser | bremen | hercules | cargo ship | for dampfschiffahrts-gesellschaft neptun row 13 : date unknown | united kingdom | smiths dock co ltd | middlesbrough | vikingen i | whaler | nan row 14 : date unknown | united kingdom | smiths dock co ltd | middlesbrough | vikingen ii | whaler | nan row 15 : date unknown | united kingdom | smiths dock co ltd | middlesbrough | vikingen iii | whaler | nan row 16 : date unknown | sweden | nan | bjorkenas, sweden | yngve | schooner | nan
table_csv/203_403.csv
1
{ "column_index": [ 4 ], "row_index": [ 1 ] }
[ "what are the names of the different ships?", "what name has the most characters?" ]
1
commandant teste
[ "Unnamed: 0", "Country", "Builder", "Location", "Ship", "Class", "Notes" ]
what name has the most characters?
[ [ "23 January", "United States", "New York Shipbuilding Corporation", "Camden, New Jersey", "Salt Lake City", "Pensacola-class cruiser", "nan" ], [ "12 April", "France", "Chantiers de la Gironde", "Gironde", "Commandant Teste", "Seaplane carrier and tender", "nan" ], [ "25 April", "United States", "New York Navy Yard", "Brooklyn, New York", "Pensacola", "Pensacola-class cruiser", "nan" ], [ "22 May", "Japan", "Uraga Dock", "Uraga", "Itsukushima", "minelayer", "nan" ], [ "29 June", "Germany", "Deschimag Werk A.G", "Bremen", "Lichtenfels", "heavy lift ship", "For DDG Hansa" ], [ "3 July", "United States", "New York Shipbuilding Corporation", "Camden, New Jersey", "Chester", "Northampton-class cruiser", "nan" ], [ "6 August", "United Kingdom", "Harland and Wolff", "Belfast, Northern Ireland", "Britannic", "Ocean liner", "For White Star Line" ], [ "5 September", "United States", "Fore River Shipyard", "Quincy, Massachusetts", "Northampton", "Northampton-class cruiser", "nan" ], [ "7 September", "United States", "Newport News Shipbuilding & Dry Dock Company", "Newport News, Virginia", "Houston", "Northampton-class cruiser", "nan" ], [ "Date unknown", "Norway", "Trondhjems mekaniske Vaerksted", "Trondheim", "Baroy", "Passenger/cargo ship", "nan" ], [ "Date unknown", "Germany", "Deutsche Werft", "Hamburg", "Ceuta", "Cargo ship", "For Oldenburg-Portugiesische Dampfschiffs-R" ], [ "Date unknown", "Germany", "AG Weser", "Bremen", "Hercules", "Cargo ship", "For Dampfschiffahrts-Gesellschaft Neptun" ], [ "Date unknown", "United Kingdom", "Smiths Dock Co Ltd", "Middlesbrough", "Vikingen I", "Whaler", "nan" ], [ "Date unknown", "United Kingdom", "Smiths Dock Co Ltd", "Middlesbrough", "Vikingen II", "Whaler", "nan" ], [ "Date unknown", "United Kingdom", "Smiths Dock Co Ltd", "Middlesbrough", "Vikingen III", "Whaler", "nan" ], [ "Date unknown", "Sweden", "nan", "Bjorkenas, Sweden", "Yngve", "Schooner", "nan" ] ]
[ "Commandant Teste" ]
what name has the most characters? || what are the names of the different ships?
nt-12122
col : unnamed: 0 | country | builder | location | ship | class | notes row 1 : 23 january | united states | new york shipbuilding corporation | camden, new jersey | salt lake city | pensacola-class cruiser | nan row 2 : 12 april | france | chantiers de la gironde | gironde | commandant teste | seaplane carrier and tender | nan row 3 : 25 april | united states | new york navy yard | brooklyn, new york | pensacola | pensacola-class cruiser | nan row 4 : 22 may | japan | uraga dock | uraga | itsukushima | minelayer | nan row 5 : 29 june | germany | deschimag werk a.g | bremen | lichtenfels | heavy lift ship | for ddg hansa row 6 : 3 july | united states | new york shipbuilding corporation | camden, new jersey | chester | northampton-class cruiser | nan row 7 : 6 august | united kingdom | harland and wolff | belfast, northern ireland | britannic | ocean liner | for white star line row 8 : 5 september | united states | fore river shipyard | quincy, massachusetts | northampton | northampton-class cruiser | nan row 9 : 7 september | united states | newport news shipbuilding & dry dock company | newport news, virginia | houston | northampton-class cruiser | nan row 10 : date unknown | norway | trondhjems mekaniske vaerksted | trondheim | baroy | passenger/cargo ship | nan row 11 : date unknown | germany | deutsche werft | hamburg | ceuta | cargo ship | for oldenburg-portugiesische dampfschiffs-r row 12 : date unknown | germany | ag weser | bremen | hercules | cargo ship | for dampfschiffahrts-gesellschaft neptun row 13 : date unknown | united kingdom | smiths dock co ltd | middlesbrough | vikingen i | whaler | nan row 14 : date unknown | united kingdom | smiths dock co ltd | middlesbrough | vikingen ii | whaler | nan row 15 : date unknown | united kingdom | smiths dock co ltd | middlesbrough | vikingen iii | whaler | nan row 16 : date unknown | sweden | nan | bjorkenas, sweden | yngve | schooner | nan
table_csv/203_403.csv
0
{ "column_index": [ 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4 ], "row_index": [ 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15 ] }
[ "what are all the ship names?" ]
2
salt lake city, commandant teste, pensacola, itsukushima, lichtenfels, chester, britannic, northampton, houston, baroy, ceuta, hercules, vikingen i, vikingen ii, vikingen iii, yngve
[ "Unnamed: 0", "Country", "Builder", "Location", "Ship", "Class", "Notes" ]
what are all the ship names?
[ [ "23 January", "United States", "New York Shipbuilding Corporation", "Camden, New Jersey", "Salt Lake City", "Pensacola-class cruiser", "nan" ], [ "12 April", "France", "Chantiers de la Gironde", "Gironde", "Commandant Teste", "Seaplane carrier and tender", "nan" ], [ "25 April", "United States", "New York Navy Yard", "Brooklyn, New York", "Pensacola", "Pensacola-class cruiser", "nan" ], [ "22 May", "Japan", "Uraga Dock", "Uraga", "Itsukushima", "minelayer", "nan" ], [ "29 June", "Germany", "Deschimag Werk A.G", "Bremen", "Lichtenfels", "heavy lift ship", "For DDG Hansa" ], [ "3 July", "United States", "New York Shipbuilding Corporation", "Camden, New Jersey", "Chester", "Northampton-class cruiser", "nan" ], [ "6 August", "United Kingdom", "Harland and Wolff", "Belfast, Northern Ireland", "Britannic", "Ocean liner", "For White Star Line" ], [ "5 September", "United States", "Fore River Shipyard", "Quincy, Massachusetts", "Northampton", "Northampton-class cruiser", "nan" ], [ "7 September", "United States", "Newport News Shipbuilding & Dry Dock Company", "Newport News, Virginia", "Houston", "Northampton-class cruiser", "nan" ], [ "Date unknown", "Norway", "Trondhjems mekaniske Vaerksted", "Trondheim", "Baroy", "Passenger/cargo ship", "nan" ], [ "Date unknown", "Germany", "Deutsche Werft", "Hamburg", "Ceuta", "Cargo ship", "For Oldenburg-Portugiesische Dampfschiffs-R" ], [ "Date unknown", "Germany", "AG Weser", "Bremen", "Hercules", "Cargo ship", "For Dampfschiffahrts-Gesellschaft Neptun" ], [ "Date unknown", "United Kingdom", "Smiths Dock Co Ltd", "Middlesbrough", "Vikingen I", "Whaler", "nan" ], [ "Date unknown", "United Kingdom", "Smiths Dock Co Ltd", "Middlesbrough", "Vikingen II", "Whaler", "nan" ], [ "Date unknown", "United Kingdom", "Smiths Dock Co Ltd", "Middlesbrough", "Vikingen III", "Whaler", "nan" ], [ "Date unknown", "Sweden", "nan", "Bjorkenas, Sweden", "Yngve", "Schooner", "nan" ] ]
[ "Salt Lake City", "Commandant Teste", "Pensacola", "Itsukushima", "Lichtenfels", "Chester", "Britannic", "Northampton", "Houston", "Baroy", "Ceuta", "Hercules", "Vikingen I", "Vikingen II", "Vikingen III", "Yngve" ]
what are all the ship names? ||
nt-12122
col : unnamed: 0 | country | builder | location | ship | class | notes row 1 : 23 january | united states | new york shipbuilding corporation | camden, new jersey | salt lake city | pensacola-class cruiser | nan row 2 : 12 april | france | chantiers de la gironde | gironde | commandant teste | seaplane carrier and tender | nan row 3 : 25 april | united states | new york navy yard | brooklyn, new york | pensacola | pensacola-class cruiser | nan row 4 : 22 may | japan | uraga dock | uraga | itsukushima | minelayer | nan row 5 : 29 june | germany | deschimag werk a.g | bremen | lichtenfels | heavy lift ship | for ddg hansa row 6 : 3 july | united states | new york shipbuilding corporation | camden, new jersey | chester | northampton-class cruiser | nan row 7 : 6 august | united kingdom | harland and wolff | belfast, northern ireland | britannic | ocean liner | for white star line row 8 : 5 september | united states | fore river shipyard | quincy, massachusetts | northampton | northampton-class cruiser | nan row 9 : 7 september | united states | newport news shipbuilding & dry dock company | newport news, virginia | houston | northampton-class cruiser | nan row 10 : date unknown | norway | trondhjems mekaniske vaerksted | trondheim | baroy | passenger/cargo ship | nan row 11 : date unknown | germany | deutsche werft | hamburg | ceuta | cargo ship | for oldenburg-portugiesische dampfschiffs-r row 12 : date unknown | germany | ag weser | bremen | hercules | cargo ship | for dampfschiffahrts-gesellschaft neptun row 13 : date unknown | united kingdom | smiths dock co ltd | middlesbrough | vikingen i | whaler | nan row 14 : date unknown | united kingdom | smiths dock co ltd | middlesbrough | vikingen ii | whaler | nan row 15 : date unknown | united kingdom | smiths dock co ltd | middlesbrough | vikingen iii | whaler | nan row 16 : date unknown | sweden | nan | bjorkenas, sweden | yngve | schooner | nan
table_csv/203_403.csv
1
{ "column_index": [ 4 ], "row_index": [ 1 ] }
[ "what are all the ship names?", "which has the most letters in its name?" ]
2
commandant teste
[ "Unnamed: 0", "Country", "Builder", "Location", "Ship", "Class", "Notes" ]
which has the most letters in its name?
[ [ "23 January", "United States", "New York Shipbuilding Corporation", "Camden, New Jersey", "Salt Lake City", "Pensacola-class cruiser", "nan" ], [ "12 April", "France", "Chantiers de la Gironde", "Gironde", "Commandant Teste", "Seaplane carrier and tender", "nan" ], [ "25 April", "United States", "New York Navy Yard", "Brooklyn, New York", "Pensacola", "Pensacola-class cruiser", "nan" ], [ "22 May", "Japan", "Uraga Dock", "Uraga", "Itsukushima", "minelayer", "nan" ], [ "29 June", "Germany", "Deschimag Werk A.G", "Bremen", "Lichtenfels", "heavy lift ship", "For DDG Hansa" ], [ "3 July", "United States", "New York Shipbuilding Corporation", "Camden, New Jersey", "Chester", "Northampton-class cruiser", "nan" ], [ "6 August", "United Kingdom", "Harland and Wolff", "Belfast, Northern Ireland", "Britannic", "Ocean liner", "For White Star Line" ], [ "5 September", "United States", "Fore River Shipyard", "Quincy, Massachusetts", "Northampton", "Northampton-class cruiser", "nan" ], [ "7 September", "United States", "Newport News Shipbuilding & Dry Dock Company", "Newport News, Virginia", "Houston", "Northampton-class cruiser", "nan" ], [ "Date unknown", "Norway", "Trondhjems mekaniske Vaerksted", "Trondheim", "Baroy", "Passenger/cargo ship", "nan" ], [ "Date unknown", "Germany", "Deutsche Werft", "Hamburg", "Ceuta", "Cargo ship", "For Oldenburg-Portugiesische Dampfschiffs-R" ], [ "Date unknown", "Germany", "AG Weser", "Bremen", "Hercules", "Cargo ship", "For Dampfschiffahrts-Gesellschaft Neptun" ], [ "Date unknown", "United Kingdom", "Smiths Dock Co Ltd", "Middlesbrough", "Vikingen I", "Whaler", "nan" ], [ "Date unknown", "United Kingdom", "Smiths Dock Co Ltd", "Middlesbrough", "Vikingen II", "Whaler", "nan" ], [ "Date unknown", "United Kingdom", "Smiths Dock Co Ltd", "Middlesbrough", "Vikingen III", "Whaler", "nan" ], [ "Date unknown", "Sweden", "nan", "Bjorkenas, Sweden", "Yngve", "Schooner", "nan" ] ]
[ "Commandant Teste" ]
which has the most letters in its name? || what are all the ship names?
nt-11508
col : device | type | iops | interface | notes row 1 : simple slc ssd | ssd | ~400 iops[citation needed] | sata 3 gbit/s | nan row 2 : intel x25-m g2 (mlc) | ssd | ~8,600 iops | sata 3 gbit/s | intel's data sheet claims 6,600/8,600 iops ( row 3 : intel x25-e (slc) | ssd | ~5,000 iops | sata 3 gbit/s | intel's data sheet claims 3,300 iops and 35,000 i row 4 : g.skill phoenix pro | ssd | ~20,000 iops | sata 3 gbit/s | sandforce-1200 based ssd drives with enhanced firmware, states up row 5 : ocz vertex 3 | ssd | up to 60,000 iops | sata 6 gbit/s | random write 4 kb (aligned) row 6 : corsair force series gt | ssd | up to 85,000 iops | sata 6 gbit/s | 240 gb drive, 555 mb/s sequential read row 7 : ocz vertex 4 | ssd | up to 120,000 iops | sata 6 gbit/s | 256 gb drive, 560 mb/s sequential read row 8 : texas memory systems ramsan-20 | ssd | 120,000+ random read/write iops | pcie | includes ram cache row 9 : fusion-io iodrive | ssd | 140,000 read iops, 135,000 write iops | pcie | nan row 10 : virident systems tachion | ssd | 320,000 sustained read iops using 4kb blocks and 200,000 | pcie | nan row 11 : ocz revodrive 3 x2 | ssd | 200,000 random write 4k iops | pcie | nan row 12 : fusion-io iodrive duo | ssd | 250,000+ iops | pcie | nan row 13 : violin memory violin 3200 | ssd | 250,000+ random read/write iops | pcie /fc/infiniband/iscsi | flash memory array row 14 : whiptail, accela | ssd | 250,000/200,000+ write/read iops | fibre channel, iscsi, infiniband/srp | flash based storage array row 15 : ddrdrive x1, | ssd | 300,000+ (512b random read iops) and | pcie | nan row 16 : solidfire sf3010/sf6010 | ssd | 250,000 4kb read/write iops | iscsi | flash based storage array (5ru) row 17 : texas memory systems ramsan-720 appliance | ssd | 500,000 optimal read, 250,000 optimal write 4kb | fc / infiniband | nan row 18 : ocz single superscale z-drive r4 pci | ssd | up to 500,000 iops | pcie | nan row 19 : whiptail, invicta | ssd | 650,000/550,000+ read/write iops | fibre channel, iscsi, infiniband/srp | flash based storage array row 20 : violin memory violin 6000 | 3ru flash memory array | 1,000,000+ random read/write iops | /fc/infiniband/10gb(iscsi) | nan row 21 : texas memory systems ramsan-630 appliance | ssd | 1,000,000+ 4kb random read/write iops | fc / infiniband | nan row 22 : fusion-io iodrive octal (single pc | ssd | 1,180,000+ random read/write iops | pcie | nan row 23 : ocz 2x superscale z-drive r4 pc | ssd | up to 1,200,000 iops | pcie | nan row 24 : texas memory systems ramsan-70 | ssd | 1,200,000 random read/write iops | pcie | includes ram cache
table_csv/204_152.csv
0
{ "column_index": [ 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 ], "row_index": [ 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26 ] }
[ "what are all the devices?" ]
0
simple slc ssd, intel x25-m g2 (mlc), intel x25-e (slc), g.skill phoenix pro, ocz vertex 3, corsair force series gt, ocz vertex 4, texas memory systems ramsan-20, fusion-io iodrive, virident systems tachion, ocz revodrive 3 x2, fusion-io iodrive duo, violin memory violin 3200, whiptail, accela, ddrdrive x1,, solidfire sf3010/sf6010, texas memory systems ramsan-720 appliance, ocz single superscale z-drive r4 pci, whiptail, invicta, violin memory violin 6000, texas memory systems ramsan-630 appliance, fusion-io iodrive octal (single pc, ocz 2x superscale z-drive r4 pc, texas memory systems ramsan-70, kaminario k2, netapp fas6240 cluster, fusion-io iodrive2
[ "Device", "Type", "IOPS", "Interface", "Notes" ]
what are all the devices?
[ [ "Simple SLC SSD", "SSD", "~400 IOPS[citation needed]", "SATA 3 Gbit/s", "nan" ], [ "Intel X25-M G2 (MLC)", "SSD", "~8,600 IOPS", "SATA 3 Gbit/s", "Intel's data sheet claims 6,600/8,600 IOPS (" ], [ "Intel X25-E (SLC)", "SSD", "~5,000 IOPS", "SATA 3 Gbit/s", "Intel's data sheet claims 3,300 IOPS and 35,000 I" ], [ "G.Skill Phoenix Pro", "SSD", "~20,000 IOPS", "SATA 3 Gbit/s", "SandForce-1200 based SSD drives with enhanced firmware, states up" ], [ "OCZ Vertex 3", "SSD", "Up to 60,000 IOPS", "SATA 6 Gbit/s", "Random Write 4 KB (Aligned)" ], [ "Corsair Force Series GT", "SSD", "Up to 85,000 IOPS", "SATA 6 Gbit/s", "240 GB Drive, 555 MB/s sequential read" ], [ "OCZ Vertex 4", "SSD", "Up to 120,000 IOPS", "SATA 6 Gbit/s", "256 GB Drive, 560 MB/s sequential read" ], [ "Texas Memory Systems RamSan-20", "SSD", "120,000+ Random Read/Write IOPS", "PCIe", "Includes RAM cache" ], [ "Fusion-io ioDrive", "SSD", "140,000 Read IOPS, 135,000 Write IOPS", "PCIe", "nan" ], [ "Virident Systems tachIOn", "SSD", "320,000 sustained READ IOPS using 4KB blocks and 200,000", "PCIe", "nan" ], [ "OCZ RevoDrive 3 X2", "SSD", "200,000 Random Write 4K IOPS", "PCIe", "nan" ], [ "Fusion-io ioDrive Duo", "SSD", "250,000+ IOPS", "PCIe", "nan" ], [ "Violin Memory Violin 3200", "SSD", "250,000+ Random Read/Write IOPS", "PCIe /FC/Infiniband/iSCSI", "Flash Memory Array" ], [ "WHIPTAIL, ACCELA", "SSD", "250,000/200,000+ Write/Read IOPS", "Fibre Channel, iSCSI, Infiniband/SRP", "Flash Based Storage Array" ], [ "DDRdrive X1,", "SSD", "300,000+ (512B Random Read IOPS) and", "PCIe", "nan" ], [ "SolidFire SF3010/SF6010", "SSD", "250,000 4KB Read/Write IOPS", "iSCSI", "Flash Based Storage Array (5RU)" ], [ "Texas Memory Systems RamSan-720 Appliance", "SSD", "500,000 Optimal Read, 250,000 Optimal Write 4KB", "FC / InfiniBand", "nan" ], [ "OCZ Single SuperScale Z-Drive R4 PCI", "SSD", "Up to 500,000 IOPS", "PCIe", "nan" ], [ "WHIPTAIL, INVICTA", "SSD", "650,000/550,000+ Read/Write IOPS", "Fibre Channel, iSCSI, Infiniband/SRP", "Flash Based Storage Array" ], [ "Violin Memory Violin 6000", "3RU Flash Memory Array", "1,000,000+ Random Read/Write IOPS", "/FC/Infiniband/10Gb(iSCSI)", "nan" ], [ "Texas Memory Systems RamSan-630 Appliance", "SSD", "1,000,000+ 4KB Random Read/Write IOPS", "FC / InfiniBand", "nan" ], [ "Fusion-io ioDrive Octal (single PC", "SSD", "1,180,000+ Random Read/Write IOPS", "PCIe", "nan" ], [ "OCZ 2x SuperScale Z-Drive R4 PC", "SSD", "Up to 1,200,000 IOPS", "PCIe", "nan" ], [ "Texas Memory Systems RamSan-70", "SSD", "1,200,000 Random Read/Write IOPS", "PCIe", "Includes RAM cache" ] ]
[ "Simple SLC SSD", "Intel X25-M G2 (MLC)", "Intel X25-E (SLC)", "G.Skill Phoenix Pro", "OCZ Vertex 3", "Corsair Force Series GT", "OCZ Vertex 4", "Texas Memory Systems RamSan-20", "Fusion-io ioDrive", "Virident Systems tachIOn", "OCZ RevoDrive 3 X2", "Fusion-io ioDrive Duo", "Violin Memory Violin 3200", "WHIPTAIL, ACCELA", "DDRdrive X1,", "SolidFire SF3010/SF6010", "Texas Memory Systems RamSan-720 Appliance", "OCZ Single SuperScale Z-Drive R4 PCI", "WHIPTAIL, INVICTA", "Violin Memory Violin 6000", "Texas Memory Systems RamSan-630 Appliance", "Fusion-io ioDrive Octal (single PC", "OCZ 2x SuperScale Z-Drive R4 PC", "Texas Memory Systems RamSan-70", "Kaminario K2", "NetApp FAS6240 cluster", "Fusion-io ioDrive2" ]
what are all the devices? ||
nt-11508
col : device | type | iops | interface | notes row 1 : simple slc ssd | ssd | ~400 iops[citation needed] | sata 3 gbit/s | nan row 2 : intel x25-m g2 (mlc) | ssd | ~8,600 iops | sata 3 gbit/s | intel's data sheet claims 6,600/8,600 iops ( row 3 : intel x25-e (slc) | ssd | ~5,000 iops | sata 3 gbit/s | intel's data sheet claims 3,300 iops and 35,000 i row 4 : g.skill phoenix pro | ssd | ~20,000 iops | sata 3 gbit/s | sandforce-1200 based ssd drives with enhanced firmware, states up row 5 : ocz vertex 3 | ssd | up to 60,000 iops | sata 6 gbit/s | random write 4 kb (aligned) row 6 : corsair force series gt | ssd | up to 85,000 iops | sata 6 gbit/s | 240 gb drive, 555 mb/s sequential read row 7 : ocz vertex 4 | ssd | up to 120,000 iops | sata 6 gbit/s | 256 gb drive, 560 mb/s sequential read row 8 : texas memory systems ramsan-20 | ssd | 120,000+ random read/write iops | pcie | includes ram cache row 9 : fusion-io iodrive | ssd | 140,000 read iops, 135,000 write iops | pcie | nan row 10 : virident systems tachion | ssd | 320,000 sustained read iops using 4kb blocks and 200,000 | pcie | nan row 11 : ocz revodrive 3 x2 | ssd | 200,000 random write 4k iops | pcie | nan row 12 : fusion-io iodrive duo | ssd | 250,000+ iops | pcie | nan row 13 : violin memory violin 3200 | ssd | 250,000+ random read/write iops | pcie /fc/infiniband/iscsi | flash memory array row 14 : whiptail, accela | ssd | 250,000/200,000+ write/read iops | fibre channel, iscsi, infiniband/srp | flash based storage array row 15 : ddrdrive x1, | ssd | 300,000+ (512b random read iops) and | pcie | nan row 16 : solidfire sf3010/sf6010 | ssd | 250,000 4kb read/write iops | iscsi | flash based storage array (5ru) row 17 : texas memory systems ramsan-720 appliance | ssd | 500,000 optimal read, 250,000 optimal write 4kb | fc / infiniband | nan row 18 : ocz single superscale z-drive r4 pci | ssd | up to 500,000 iops | pcie | nan row 19 : whiptail, invicta | ssd | 650,000/550,000+ read/write iops | fibre channel, iscsi, infiniband/srp | flash based storage array row 20 : violin memory violin 6000 | 3ru flash memory array | 1,000,000+ random read/write iops | /fc/infiniband/10gb(iscsi) | nan row 21 : texas memory systems ramsan-630 appliance | ssd | 1,000,000+ 4kb random read/write iops | fc / infiniband | nan row 22 : fusion-io iodrive octal (single pc | ssd | 1,180,000+ random read/write iops | pcie | nan row 23 : ocz 2x superscale z-drive r4 pc | ssd | up to 1,200,000 iops | pcie | nan row 24 : texas memory systems ramsan-70 | ssd | 1,200,000 random read/write iops | pcie | includes ram cache
table_csv/204_152.csv
1
{ "column_index": [ 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2 ], "row_index": [ 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26 ] }
[ "what are all the devices?", "how many iops do they utilize?" ]
0
~400 iops[citation needed], ~8,600 iops, ~5,000 iops, ~20,000 iops, up to 60,000 iops, up to 85,000 iops, up to 120,000 iops, 120,000+ random read/write iops, 140,000 read iops, 135,000 write iops, 320,000 sustained read iops using 4kb blocks and 200,000, 200,000 random write 4k iops, 250,000+ iops, 250,000+ random read/write iops, 250,000/200,000+ write/read iops, 300,000+ (512b random read iops) and, 250,000 4kb read/write iops, 500,000 optimal read, 250,000 optimal write 4kb, up to 500,000 iops, 650,000/550,000+ read/write iops, 1,000,000+ random read/write iops, 1,000,000+ 4kb random read/write iops, 1,180,000+ random read/write iops, up to 1,200,000 iops, 1,200,000 random read/write iops, up to 1,200,000 iops spc-1 iops with the, 1,261,145 specsfs2008 nfsv, up to 9,608,000 iops
[ "Device", "Type", "IOPS", "Interface", "Notes" ]
how many iops do they utilize?
[ [ "Simple SLC SSD", "SSD", "~400 IOPS[citation needed]", "SATA 3 Gbit/s", "nan" ], [ "Intel X25-M G2 (MLC)", "SSD", "~8,600 IOPS", "SATA 3 Gbit/s", "Intel's data sheet claims 6,600/8,600 IOPS (" ], [ "Intel X25-E (SLC)", "SSD", "~5,000 IOPS", "SATA 3 Gbit/s", "Intel's data sheet claims 3,300 IOPS and 35,000 I" ], [ "G.Skill Phoenix Pro", "SSD", "~20,000 IOPS", "SATA 3 Gbit/s", "SandForce-1200 based SSD drives with enhanced firmware, states up" ], [ "OCZ Vertex 3", "SSD", "Up to 60,000 IOPS", "SATA 6 Gbit/s", "Random Write 4 KB (Aligned)" ], [ "Corsair Force Series GT", "SSD", "Up to 85,000 IOPS", "SATA 6 Gbit/s", "240 GB Drive, 555 MB/s sequential read" ], [ "OCZ Vertex 4", "SSD", "Up to 120,000 IOPS", "SATA 6 Gbit/s", "256 GB Drive, 560 MB/s sequential read" ], [ "Texas Memory Systems RamSan-20", "SSD", "120,000+ Random Read/Write IOPS", "PCIe", "Includes RAM cache" ], [ "Fusion-io ioDrive", "SSD", "140,000 Read IOPS, 135,000 Write IOPS", "PCIe", "nan" ], [ "Virident Systems tachIOn", "SSD", "320,000 sustained READ IOPS using 4KB blocks and 200,000", "PCIe", "nan" ], [ "OCZ RevoDrive 3 X2", "SSD", "200,000 Random Write 4K IOPS", "PCIe", "nan" ], [ "Fusion-io ioDrive Duo", "SSD", "250,000+ IOPS", "PCIe", "nan" ], [ "Violin Memory Violin 3200", "SSD", "250,000+ Random Read/Write IOPS", "PCIe /FC/Infiniband/iSCSI", "Flash Memory Array" ], [ "WHIPTAIL, ACCELA", "SSD", "250,000/200,000+ Write/Read IOPS", "Fibre Channel, iSCSI, Infiniband/SRP", "Flash Based Storage Array" ], [ "DDRdrive X1,", "SSD", "300,000+ (512B Random Read IOPS) and", "PCIe", "nan" ], [ "SolidFire SF3010/SF6010", "SSD", "250,000 4KB Read/Write IOPS", "iSCSI", "Flash Based Storage Array (5RU)" ], [ "Texas Memory Systems RamSan-720 Appliance", "SSD", "500,000 Optimal Read, 250,000 Optimal Write 4KB", "FC / InfiniBand", "nan" ], [ "OCZ Single SuperScale Z-Drive R4 PCI", "SSD", "Up to 500,000 IOPS", "PCIe", "nan" ], [ "WHIPTAIL, INVICTA", "SSD", "650,000/550,000+ Read/Write IOPS", "Fibre Channel, iSCSI, Infiniband/SRP", "Flash Based Storage Array" ], [ "Violin Memory Violin 6000", "3RU Flash Memory Array", "1,000,000+ Random Read/Write IOPS", "/FC/Infiniband/10Gb(iSCSI)", "nan" ], [ "Texas Memory Systems RamSan-630 Appliance", "SSD", "1,000,000+ 4KB Random Read/Write IOPS", "FC / InfiniBand", "nan" ], [ "Fusion-io ioDrive Octal (single PC", "SSD", "1,180,000+ Random Read/Write IOPS", "PCIe", "nan" ], [ "OCZ 2x SuperScale Z-Drive R4 PC", "SSD", "Up to 1,200,000 IOPS", "PCIe", "nan" ], [ "Texas Memory Systems RamSan-70", "SSD", "1,200,000 Random Read/Write IOPS", "PCIe", "Includes RAM cache" ] ]
[ "~400 IOPS[citation needed]", "~8,600 IOPS", "~5,000 IOPS", "~20,000 IOPS", "Up to 60,000 IOPS", "Up to 85,000 IOPS", "Up to 120,000 IOPS", "120,000+ Random Read/Write IOPS", "140,000 Read IOPS, 135,000 Write IOPS", "320,000 sustained READ IOPS using 4KB blocks and 200,000", "200,000 Random Write 4K IOPS", "250,000+ IOPS", "250,000+ Random Read/Write IOPS", "250,000/200,000+ Write/Read IOPS", "300,000+ (512B Random Read IOPS) and", "250,000 4KB Read/Write IOPS", "500,000 Optimal Read, 250,000 Optimal Write 4KB", "Up to 500,000 IOPS", "650,000/550,000+ Read/Write IOPS", "1,000,000+ Random Read/Write IOPS", "1,000,000+ 4KB Random Read/Write IOPS", "1,180,000+ Random Read/Write IOPS", "Up to 1,200,000 IOPS", "1,200,000 Random Read/Write IOPS", "Up to 1,200,000 IOPS SPC-1 IOPS with the", "1,261,145 SPECsfs2008 nfsv", "Up to 9,608,000 IOPS" ]
how many iops do they utilize? || what are all the devices?
nt-11508
col : device | type | iops | interface | notes row 1 : simple slc ssd | ssd | ~400 iops[citation needed] | sata 3 gbit/s | nan row 2 : intel x25-m g2 (mlc) | ssd | ~8,600 iops | sata 3 gbit/s | intel's data sheet claims 6,600/8,600 iops ( row 3 : intel x25-e (slc) | ssd | ~5,000 iops | sata 3 gbit/s | intel's data sheet claims 3,300 iops and 35,000 i row 4 : g.skill phoenix pro | ssd | ~20,000 iops | sata 3 gbit/s | sandforce-1200 based ssd drives with enhanced firmware, states up row 5 : ocz vertex 3 | ssd | up to 60,000 iops | sata 6 gbit/s | random write 4 kb (aligned) row 6 : corsair force series gt | ssd | up to 85,000 iops | sata 6 gbit/s | 240 gb drive, 555 mb/s sequential read row 7 : ocz vertex 4 | ssd | up to 120,000 iops | sata 6 gbit/s | 256 gb drive, 560 mb/s sequential read row 8 : texas memory systems ramsan-20 | ssd | 120,000+ random read/write iops | pcie | includes ram cache row 9 : fusion-io iodrive | ssd | 140,000 read iops, 135,000 write iops | pcie | nan row 10 : virident systems tachion | ssd | 320,000 sustained read iops using 4kb blocks and 200,000 | pcie | nan row 11 : ocz revodrive 3 x2 | ssd | 200,000 random write 4k iops | pcie | nan row 12 : fusion-io iodrive duo | ssd | 250,000+ iops | pcie | nan row 13 : violin memory violin 3200 | ssd | 250,000+ random read/write iops | pcie /fc/infiniband/iscsi | flash memory array row 14 : whiptail, accela | ssd | 250,000/200,000+ write/read iops | fibre channel, iscsi, infiniband/srp | flash based storage array row 15 : ddrdrive x1, | ssd | 300,000+ (512b random read iops) and | pcie | nan row 16 : solidfire sf3010/sf6010 | ssd | 250,000 4kb read/write iops | iscsi | flash based storage array (5ru) row 17 : texas memory systems ramsan-720 appliance | ssd | 500,000 optimal read, 250,000 optimal write 4kb | fc / infiniband | nan row 18 : ocz single superscale z-drive r4 pci | ssd | up to 500,000 iops | pcie | nan row 19 : whiptail, invicta | ssd | 650,000/550,000+ read/write iops | fibre channel, iscsi, infiniband/srp | flash based storage array row 20 : violin memory violin 6000 | 3ru flash memory array | 1,000,000+ random read/write iops | /fc/infiniband/10gb(iscsi) | nan row 21 : texas memory systems ramsan-630 appliance | ssd | 1,000,000+ 4kb random read/write iops | fc / infiniband | nan row 22 : fusion-io iodrive octal (single pc | ssd | 1,180,000+ random read/write iops | pcie | nan row 23 : ocz 2x superscale z-drive r4 pc | ssd | up to 1,200,000 iops | pcie | nan row 24 : texas memory systems ramsan-70 | ssd | 1,200,000 random read/write iops | pcie | includes ram cache
table_csv/204_152.csv
2
{ "column_index": [ 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1 ], "row_index": [ 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26 ] }
[ "what are all the devices?", "how many iops do they utilize?", "what types are they?" ]
0
ssd, ssd, ssd, ssd, ssd, ssd, ssd, ssd, ssd, ssd, ssd, ssd, ssd, ssd, ssd, ssd, ssd, ssd, ssd, 3ru flash memory array, ssd, ssd, ssd, ssd, flash/dram/hybrid ssd, flash/disk, ssd
[ "Device", "Type", "IOPS", "Interface", "Notes" ]
what types are they?
[ [ "Simple SLC SSD", "SSD", "~400 IOPS[citation needed]", "SATA 3 Gbit/s", "nan" ], [ "Intel X25-M G2 (MLC)", "SSD", "~8,600 IOPS", "SATA 3 Gbit/s", "Intel's data sheet claims 6,600/8,600 IOPS (" ], [ "Intel X25-E (SLC)", "SSD", "~5,000 IOPS", "SATA 3 Gbit/s", "Intel's data sheet claims 3,300 IOPS and 35,000 I" ], [ "G.Skill Phoenix Pro", "SSD", "~20,000 IOPS", "SATA 3 Gbit/s", "SandForce-1200 based SSD drives with enhanced firmware, states up" ], [ "OCZ Vertex 3", "SSD", "Up to 60,000 IOPS", "SATA 6 Gbit/s", "Random Write 4 KB (Aligned)" ], [ "Corsair Force Series GT", "SSD", "Up to 85,000 IOPS", "SATA 6 Gbit/s", "240 GB Drive, 555 MB/s sequential read" ], [ "OCZ Vertex 4", "SSD", "Up to 120,000 IOPS", "SATA 6 Gbit/s", "256 GB Drive, 560 MB/s sequential read" ], [ "Texas Memory Systems RamSan-20", "SSD", "120,000+ Random Read/Write IOPS", "PCIe", "Includes RAM cache" ], [ "Fusion-io ioDrive", "SSD", "140,000 Read IOPS, 135,000 Write IOPS", "PCIe", "nan" ], [ "Virident Systems tachIOn", "SSD", "320,000 sustained READ IOPS using 4KB blocks and 200,000", "PCIe", "nan" ], [ "OCZ RevoDrive 3 X2", "SSD", "200,000 Random Write 4K IOPS", "PCIe", "nan" ], [ "Fusion-io ioDrive Duo", "SSD", "250,000+ IOPS", "PCIe", "nan" ], [ "Violin Memory Violin 3200", "SSD", "250,000+ Random Read/Write IOPS", "PCIe /FC/Infiniband/iSCSI", "Flash Memory Array" ], [ "WHIPTAIL, ACCELA", "SSD", "250,000/200,000+ Write/Read IOPS", "Fibre Channel, iSCSI, Infiniband/SRP", "Flash Based Storage Array" ], [ "DDRdrive X1,", "SSD", "300,000+ (512B Random Read IOPS) and", "PCIe", "nan" ], [ "SolidFire SF3010/SF6010", "SSD", "250,000 4KB Read/Write IOPS", "iSCSI", "Flash Based Storage Array (5RU)" ], [ "Texas Memory Systems RamSan-720 Appliance", "SSD", "500,000 Optimal Read, 250,000 Optimal Write 4KB", "FC / InfiniBand", "nan" ], [ "OCZ Single SuperScale Z-Drive R4 PCI", "SSD", "Up to 500,000 IOPS", "PCIe", "nan" ], [ "WHIPTAIL, INVICTA", "SSD", "650,000/550,000+ Read/Write IOPS", "Fibre Channel, iSCSI, Infiniband/SRP", "Flash Based Storage Array" ], [ "Violin Memory Violin 6000", "3RU Flash Memory Array", "1,000,000+ Random Read/Write IOPS", "/FC/Infiniband/10Gb(iSCSI)", "nan" ], [ "Texas Memory Systems RamSan-630 Appliance", "SSD", "1,000,000+ 4KB Random Read/Write IOPS", "FC / InfiniBand", "nan" ], [ "Fusion-io ioDrive Octal (single PC", "SSD", "1,180,000+ Random Read/Write IOPS", "PCIe", "nan" ], [ "OCZ 2x SuperScale Z-Drive R4 PC", "SSD", "Up to 1,200,000 IOPS", "PCIe", "nan" ], [ "Texas Memory Systems RamSan-70", "SSD", "1,200,000 Random Read/Write IOPS", "PCIe", "Includes RAM cache" ] ]
[ "SSD", "SSD", "SSD", "SSD", "SSD", "SSD", "SSD", "SSD", "SSD", "SSD", "SSD", "SSD", "SSD", "SSD", "SSD", "SSD", "SSD", "SSD", "SSD", "3RU Flash Memory Array", "SSD", "SSD", "SSD", "SSD", "Flash/DRAM/Hybrid SSD", "Flash/Disk", "SSD" ]
what types are they? || how many iops do they utilize? | what are all the devices?
nt-11508
col : device | type | iops | interface | notes row 1 : simple slc ssd | ssd | ~400 iops[citation needed] | sata 3 gbit/s | nan row 2 : intel x25-m g2 (mlc) | ssd | ~8,600 iops | sata 3 gbit/s | intel's data sheet claims 6,600/8,600 iops ( row 3 : g.skill phoenix pro | ssd | ~20,000 iops | sata 3 gbit/s | sandforce-1200 based ssd drives with enhanced firmware, states up row 4 : ocz vertex 3 | ssd | up to 60,000 iops | sata 6 gbit/s | random write 4 kb (aligned) row 5 : corsair force series gt | ssd | up to 85,000 iops | sata 6 gbit/s | 240 gb drive, 555 mb/s sequential read row 6 : ocz vertex 4 | ssd | up to 120,000 iops | sata 6 gbit/s | 256 gb drive, 560 mb/s sequential read row 7 : fusion-io iodrive | ssd | 140,000 read iops, 135,000 write iops | pcie | nan row 8 : virident systems tachion | ssd | 320,000 sustained read iops using 4kb blocks and 200,000 | pcie | nan row 9 : ocz revodrive 3 x2 | ssd | 200,000 random write 4k iops | pcie | nan row 10 : fusion-io iodrive duo | ssd | 250,000+ iops | pcie | nan row 11 : violin memory violin 3200 | ssd | 250,000+ random read/write iops | pcie /fc/infiniband/iscsi | flash memory array row 12 : whiptail, accela | ssd | 250,000/200,000+ write/read iops | fibre channel, iscsi, infiniband/srp | flash based storage array row 13 : solidfire sf3010/sf6010 | ssd | 250,000 4kb read/write iops | iscsi | flash based storage array (5ru) row 14 : texas memory systems ramsan-720 appliance | ssd | 500,000 optimal read, 250,000 optimal write 4kb | fc / infiniband | nan row 15 : ocz single superscale z-drive r4 pci | ssd | up to 500,000 iops | pcie | nan row 16 : whiptail, invicta | ssd | 650,000/550,000+ read/write iops | fibre channel, iscsi, infiniband/srp | flash based storage array row 17 : violin memory violin 6000 | 3ru flash memory array | 1,000,000+ random read/write iops | /fc/infiniband/10gb(iscsi) | nan row 18 : texas memory systems ramsan-630 appliance | ssd | 1,000,000+ 4kb random read/write iops | fc / infiniband | nan row 19 : fusion-io iodrive octal (single pc | ssd | 1,180,000+ random read/write iops | pcie | nan row 20 : ocz 2x superscale z-drive r4 pc | ssd | up to 1,200,000 iops | pcie | nan row 21 : texas memory systems ramsan-70 | ssd | 1,200,000 random read/write iops | pcie | includes ram cache row 22 : kaminario k2 | flash/dram/hybrid ssd | up to 1,200,000 iops spc-1 iops with the | fc | nan row 23 : netapp fas6240 cluster | flash/disk | 1,261,145 specsfs2008 nfsv | nfs, cifs, fc, fcoe, i | specsfs2008 is the latest version of the standard performance evaluation
table_csv/204_152.csv
3
{ "column_index": [ 0, 0, 0 ], "row_index": [ 19, 24, 25 ] }
[ "what are all the devices?", "how many iops do they utilize?", "what types are they?", "and which aren't ssds?" ]
0
violin memory violin 6000, kaminario k2, netapp fas6240 cluster
[ "Device", "Type", "IOPS", "Interface", "Notes" ]
and which aren't ssds?
[ [ "Simple SLC SSD", "SSD", "~400 IOPS[citation needed]", "SATA 3 Gbit/s", "nan" ], [ "Intel X25-M G2 (MLC)", "SSD", "~8,600 IOPS", "SATA 3 Gbit/s", "Intel's data sheet claims 6,600/8,600 IOPS (" ], [ "G.Skill Phoenix Pro", "SSD", "~20,000 IOPS", "SATA 3 Gbit/s", "SandForce-1200 based SSD drives with enhanced firmware, states up" ], [ "OCZ Vertex 3", "SSD", "Up to 60,000 IOPS", "SATA 6 Gbit/s", "Random Write 4 KB (Aligned)" ], [ "Corsair Force Series GT", "SSD", "Up to 85,000 IOPS", "SATA 6 Gbit/s", "240 GB Drive, 555 MB/s sequential read" ], [ "OCZ Vertex 4", "SSD", "Up to 120,000 IOPS", "SATA 6 Gbit/s", "256 GB Drive, 560 MB/s sequential read" ], [ "Fusion-io ioDrive", "SSD", "140,000 Read IOPS, 135,000 Write IOPS", "PCIe", "nan" ], [ "Virident Systems tachIOn", "SSD", "320,000 sustained READ IOPS using 4KB blocks and 200,000", "PCIe", "nan" ], [ "OCZ RevoDrive 3 X2", "SSD", "200,000 Random Write 4K IOPS", "PCIe", "nan" ], [ "Fusion-io ioDrive Duo", "SSD", "250,000+ IOPS", "PCIe", "nan" ], [ "Violin Memory Violin 3200", "SSD", "250,000+ Random Read/Write IOPS", "PCIe /FC/Infiniband/iSCSI", "Flash Memory Array" ], [ "WHIPTAIL, ACCELA", "SSD", "250,000/200,000+ Write/Read IOPS", "Fibre Channel, iSCSI, Infiniband/SRP", "Flash Based Storage Array" ], [ "SolidFire SF3010/SF6010", "SSD", "250,000 4KB Read/Write IOPS", "iSCSI", "Flash Based Storage Array (5RU)" ], [ "Texas Memory Systems RamSan-720 Appliance", "SSD", "500,000 Optimal Read, 250,000 Optimal Write 4KB", "FC / InfiniBand", "nan" ], [ "OCZ Single SuperScale Z-Drive R4 PCI", "SSD", "Up to 500,000 IOPS", "PCIe", "nan" ], [ "WHIPTAIL, INVICTA", "SSD", "650,000/550,000+ Read/Write IOPS", "Fibre Channel, iSCSI, Infiniband/SRP", "Flash Based Storage Array" ], [ "Violin Memory Violin 6000", "3RU Flash Memory Array", "1,000,000+ Random Read/Write IOPS", "/FC/Infiniband/10Gb(iSCSI)", "nan" ], [ "Texas Memory Systems RamSan-630 Appliance", "SSD", "1,000,000+ 4KB Random Read/Write IOPS", "FC / InfiniBand", "nan" ], [ "Fusion-io ioDrive Octal (single PC", "SSD", "1,180,000+ Random Read/Write IOPS", "PCIe", "nan" ], [ "OCZ 2x SuperScale Z-Drive R4 PC", "SSD", "Up to 1,200,000 IOPS", "PCIe", "nan" ], [ "Texas Memory Systems RamSan-70", "SSD", "1,200,000 Random Read/Write IOPS", "PCIe", "Includes RAM cache" ], [ "Kaminario K2", "Flash/DRAM/Hybrid SSD", "Up to 1,200,000 IOPS SPC-1 IOPS with the", "FC", "nan" ], [ "NetApp FAS6240 cluster", "Flash/Disk", "1,261,145 SPECsfs2008 nfsv", "NFS, CIFS, FC, FCoE, i", "SPECsfs2008 is the latest version of the Standard Performance Evaluation" ] ]
[ "Violin Memory Violin 6000", "Kaminario K2", "NetApp FAS6240 cluster" ]
and which aren't ssds? || what types are they? | how many iops do they utilize? | what are all the devices?
nt-11508
col : device | type | iops | interface | notes row 1 : simple slc ssd | ssd | ~400 iops[citation needed] | sata 3 gbit/s | nan row 2 : intel x25-m g2 (mlc) | ssd | ~8,600 iops | sata 3 gbit/s | intel's data sheet claims 6,600/8,600 iops ( row 3 : intel x25-e (slc) | ssd | ~5,000 iops | sata 3 gbit/s | intel's data sheet claims 3,300 iops and 35,000 i row 4 : ocz vertex 3 | ssd | up to 60,000 iops | sata 6 gbit/s | random write 4 kb (aligned) row 5 : corsair force series gt | ssd | up to 85,000 iops | sata 6 gbit/s | 240 gb drive, 555 mb/s sequential read row 6 : ocz vertex 4 | ssd | up to 120,000 iops | sata 6 gbit/s | 256 gb drive, 560 mb/s sequential read row 7 : texas memory systems ramsan-20 | ssd | 120,000+ random read/write iops | pcie | includes ram cache row 8 : fusion-io iodrive | ssd | 140,000 read iops, 135,000 write iops | pcie | nan row 9 : virident systems tachion | ssd | 320,000 sustained read iops using 4kb blocks and 200,000 | pcie | nan row 10 : ocz revodrive 3 x2 | ssd | 200,000 random write 4k iops | pcie | nan row 11 : fusion-io iodrive duo | ssd | 250,000+ iops | pcie | nan row 12 : whiptail, accela | ssd | 250,000/200,000+ write/read iops | fibre channel, iscsi, infiniband/srp | flash based storage array row 13 : ddrdrive x1, | ssd | 300,000+ (512b random read iops) and | pcie | nan row 14 : solidfire sf3010/sf6010 | ssd | 250,000 4kb read/write iops | iscsi | flash based storage array (5ru) row 15 : texas memory systems ramsan-720 appliance | ssd | 500,000 optimal read, 250,000 optimal write 4kb | fc / infiniband | nan row 16 : whiptail, invicta | ssd | 650,000/550,000+ read/write iops | fibre channel, iscsi, infiniband/srp | flash based storage array row 17 : violin memory violin 6000 | 3ru flash memory array | 1,000,000+ random read/write iops | /fc/infiniband/10gb(iscsi) | nan row 18 : texas memory systems ramsan-630 appliance | ssd | 1,000,000+ 4kb random read/write iops | fc / infiniband | nan row 19 : fusion-io iodrive octal (single pc | ssd | 1,180,000+ random read/write iops | pcie | nan row 20 : ocz 2x superscale z-drive r4 pc | ssd | up to 1,200,000 iops | pcie | nan row 21 : texas memory systems ramsan-70 | ssd | 1,200,000 random read/write iops | pcie | includes ram cache row 22 : kaminario k2 | flash/dram/hybrid ssd | up to 1,200,000 iops spc-1 iops with the | fc | nan row 23 : netapp fas6240 cluster | flash/disk | 1,261,145 specsfs2008 nfsv | nfs, cifs, fc, fcoe, i | specsfs2008 is the latest version of the standard performance evaluation
table_csv/204_152.csv
4
{ "column_index": [ 0 ], "row_index": [ 25 ] }
[ "what are all the devices?", "how many iops do they utilize?", "what types are they?", "and which aren't ssds?", "and of those, which has the most iops?" ]
0
netapp fas6240 cluster
[ "Device", "Type", "IOPS", "Interface", "Notes" ]
and of those, which has the most iops?
[ [ "Simple SLC SSD", "SSD", "~400 IOPS[citation needed]", "SATA 3 Gbit/s", "nan" ], [ "Intel X25-M G2 (MLC)", "SSD", "~8,600 IOPS", "SATA 3 Gbit/s", "Intel's data sheet claims 6,600/8,600 IOPS (" ], [ "Intel X25-E (SLC)", "SSD", "~5,000 IOPS", "SATA 3 Gbit/s", "Intel's data sheet claims 3,300 IOPS and 35,000 I" ], [ "OCZ Vertex 3", "SSD", "Up to 60,000 IOPS", "SATA 6 Gbit/s", "Random Write 4 KB (Aligned)" ], [ "Corsair Force Series GT", "SSD", "Up to 85,000 IOPS", "SATA 6 Gbit/s", "240 GB Drive, 555 MB/s sequential read" ], [ "OCZ Vertex 4", "SSD", "Up to 120,000 IOPS", "SATA 6 Gbit/s", "256 GB Drive, 560 MB/s sequential read" ], [ "Texas Memory Systems RamSan-20", "SSD", "120,000+ Random Read/Write IOPS", "PCIe", "Includes RAM cache" ], [ "Fusion-io ioDrive", "SSD", "140,000 Read IOPS, 135,000 Write IOPS", "PCIe", "nan" ], [ "Virident Systems tachIOn", "SSD", "320,000 sustained READ IOPS using 4KB blocks and 200,000", "PCIe", "nan" ], [ "OCZ RevoDrive 3 X2", "SSD", "200,000 Random Write 4K IOPS", "PCIe", "nan" ], [ "Fusion-io ioDrive Duo", "SSD", "250,000+ IOPS", "PCIe", "nan" ], [ "WHIPTAIL, ACCELA", "SSD", "250,000/200,000+ Write/Read IOPS", "Fibre Channel, iSCSI, Infiniband/SRP", "Flash Based Storage Array" ], [ "DDRdrive X1,", "SSD", "300,000+ (512B Random Read IOPS) and", "PCIe", "nan" ], [ "SolidFire SF3010/SF6010", "SSD", "250,000 4KB Read/Write IOPS", "iSCSI", "Flash Based Storage Array (5RU)" ], [ "Texas Memory Systems RamSan-720 Appliance", "SSD", "500,000 Optimal Read, 250,000 Optimal Write 4KB", "FC / InfiniBand", "nan" ], [ "WHIPTAIL, INVICTA", "SSD", "650,000/550,000+ Read/Write IOPS", "Fibre Channel, iSCSI, Infiniband/SRP", "Flash Based Storage Array" ], [ "Violin Memory Violin 6000", "3RU Flash Memory Array", "1,000,000+ Random Read/Write IOPS", "/FC/Infiniband/10Gb(iSCSI)", "nan" ], [ "Texas Memory Systems RamSan-630 Appliance", "SSD", "1,000,000+ 4KB Random Read/Write IOPS", "FC / InfiniBand", "nan" ], [ "Fusion-io ioDrive Octal (single PC", "SSD", "1,180,000+ Random Read/Write IOPS", "PCIe", "nan" ], [ "OCZ 2x SuperScale Z-Drive R4 PC", "SSD", "Up to 1,200,000 IOPS", "PCIe", "nan" ], [ "Texas Memory Systems RamSan-70", "SSD", "1,200,000 Random Read/Write IOPS", "PCIe", "Includes RAM cache" ], [ "Kaminario K2", "Flash/DRAM/Hybrid SSD", "Up to 1,200,000 IOPS SPC-1 IOPS with the", "FC", "nan" ], [ "NetApp FAS6240 cluster", "Flash/Disk", "1,261,145 SPECsfs2008 nfsv", "NFS, CIFS, FC, FCoE, i", "SPECsfs2008 is the latest version of the Standard Performance Evaluation" ] ]
[ "NetApp FAS6240 cluster" ]
and of those, which has the most iops? || and which aren't ssds? | what types are they? | how many iops do they utilize? | what are all the devices?
nt-11508
col : device | type | iops | interface | notes row 1 : simple slc ssd | ssd | ~400 iops[citation needed] | sata 3 gbit/s | nan row 2 : intel x25-m g2 (mlc) | ssd | ~8,600 iops | sata 3 gbit/s | intel's data sheet claims 6,600/8,600 iops ( row 3 : intel x25-e (slc) | ssd | ~5,000 iops | sata 3 gbit/s | intel's data sheet claims 3,300 iops and 35,000 i row 4 : g.skill phoenix pro | ssd | ~20,000 iops | sata 3 gbit/s | sandforce-1200 based ssd drives with enhanced firmware, states up row 5 : ocz vertex 3 | ssd | up to 60,000 iops | sata 6 gbit/s | random write 4 kb (aligned) row 6 : corsair force series gt | ssd | up to 85,000 iops | sata 6 gbit/s | 240 gb drive, 555 mb/s sequential read row 7 : texas memory systems ramsan-20 | ssd | 120,000+ random read/write iops | pcie | includes ram cache row 8 : fusion-io iodrive | ssd | 140,000 read iops, 135,000 write iops | pcie | nan row 9 : virident systems tachion | ssd | 320,000 sustained read iops using 4kb blocks and 200,000 | pcie | nan row 10 : ocz revodrive 3 x2 | ssd | 200,000 random write 4k iops | pcie | nan row 11 : fusion-io iodrive duo | ssd | 250,000+ iops | pcie | nan row 12 : violin memory violin 3200 | ssd | 250,000+ random read/write iops | pcie /fc/infiniband/iscsi | flash memory array row 13 : whiptail, accela | ssd | 250,000/200,000+ write/read iops | fibre channel, iscsi, infiniband/srp | flash based storage array row 14 : ddrdrive x1, | ssd | 300,000+ (512b random read iops) and | pcie | nan row 15 : solidfire sf3010/sf6010 | ssd | 250,000 4kb read/write iops | iscsi | flash based storage array (5ru) row 16 : ocz single superscale z-drive r4 pci | ssd | up to 500,000 iops | pcie | nan row 17 : whiptail, invicta | ssd | 650,000/550,000+ read/write iops | fibre channel, iscsi, infiniband/srp | flash based storage array row 18 : violin memory violin 6000 | 3ru flash memory array | 1,000,000+ random read/write iops | /fc/infiniband/10gb(iscsi) | nan row 19 : texas memory systems ramsan-630 appliance | ssd | 1,000,000+ 4kb random read/write iops | fc / infiniband | nan row 20 : fusion-io iodrive octal (single pc | ssd | 1,180,000+ random read/write iops | pcie | nan row 21 : ocz 2x superscale z-drive r4 pc | ssd | up to 1,200,000 iops | pcie | nan row 22 : texas memory systems ramsan-70 | ssd | 1,200,000 random read/write iops | pcie | includes ram cache row 23 : kaminario k2 | flash/dram/hybrid ssd | up to 1,200,000 iops spc-1 iops with the | fc | nan
table_csv/204_152.csv
0
{ "column_index": [ 0, 0, 0, 0, 0 ], "row_index": [ 22, 23, 24, 25, 26 ] }
[ "which drives have at least up to 1,200,000 iops?" ]
1
ocz 2x superscale z-drive r4 pc, texas memory systems ramsan-70, kaminario k2, netapp fas6240 cluster, fusion-io iodrive2
[ "Device", "Type", "IOPS", "Interface", "Notes" ]
which drives have at least up to 1,200,000 iops?
[ [ "Simple SLC SSD", "SSD", "~400 IOPS[citation needed]", "SATA 3 Gbit/s", "nan" ], [ "Intel X25-M G2 (MLC)", "SSD", "~8,600 IOPS", "SATA 3 Gbit/s", "Intel's data sheet claims 6,600/8,600 IOPS (" ], [ "Intel X25-E (SLC)", "SSD", "~5,000 IOPS", "SATA 3 Gbit/s", "Intel's data sheet claims 3,300 IOPS and 35,000 I" ], [ "G.Skill Phoenix Pro", "SSD", "~20,000 IOPS", "SATA 3 Gbit/s", "SandForce-1200 based SSD drives with enhanced firmware, states up" ], [ "OCZ Vertex 3", "SSD", "Up to 60,000 IOPS", "SATA 6 Gbit/s", "Random Write 4 KB (Aligned)" ], [ "Corsair Force Series GT", "SSD", "Up to 85,000 IOPS", "SATA 6 Gbit/s", "240 GB Drive, 555 MB/s sequential read" ], [ "Texas Memory Systems RamSan-20", "SSD", "120,000+ Random Read/Write IOPS", "PCIe", "Includes RAM cache" ], [ "Fusion-io ioDrive", "SSD", "140,000 Read IOPS, 135,000 Write IOPS", "PCIe", "nan" ], [ "Virident Systems tachIOn", "SSD", "320,000 sustained READ IOPS using 4KB blocks and 200,000", "PCIe", "nan" ], [ "OCZ RevoDrive 3 X2", "SSD", "200,000 Random Write 4K IOPS", "PCIe", "nan" ], [ "Fusion-io ioDrive Duo", "SSD", "250,000+ IOPS", "PCIe", "nan" ], [ "Violin Memory Violin 3200", "SSD", "250,000+ Random Read/Write IOPS", "PCIe /FC/Infiniband/iSCSI", "Flash Memory Array" ], [ "WHIPTAIL, ACCELA", "SSD", "250,000/200,000+ Write/Read IOPS", "Fibre Channel, iSCSI, Infiniband/SRP", "Flash Based Storage Array" ], [ "DDRdrive X1,", "SSD", "300,000+ (512B Random Read IOPS) and", "PCIe", "nan" ], [ "SolidFire SF3010/SF6010", "SSD", "250,000 4KB Read/Write IOPS", "iSCSI", "Flash Based Storage Array (5RU)" ], [ "OCZ Single SuperScale Z-Drive R4 PCI", "SSD", "Up to 500,000 IOPS", "PCIe", "nan" ], [ "WHIPTAIL, INVICTA", "SSD", "650,000/550,000+ Read/Write IOPS", "Fibre Channel, iSCSI, Infiniband/SRP", "Flash Based Storage Array" ], [ "Violin Memory Violin 6000", "3RU Flash Memory Array", "1,000,000+ Random Read/Write IOPS", "/FC/Infiniband/10Gb(iSCSI)", "nan" ], [ "Texas Memory Systems RamSan-630 Appliance", "SSD", "1,000,000+ 4KB Random Read/Write IOPS", "FC / InfiniBand", "nan" ], [ "Fusion-io ioDrive Octal (single PC", "SSD", "1,180,000+ Random Read/Write IOPS", "PCIe", "nan" ], [ "OCZ 2x SuperScale Z-Drive R4 PC", "SSD", "Up to 1,200,000 IOPS", "PCIe", "nan" ], [ "Texas Memory Systems RamSan-70", "SSD", "1,200,000 Random Read/Write IOPS", "PCIe", "Includes RAM cache" ], [ "Kaminario K2", "Flash/DRAM/Hybrid SSD", "Up to 1,200,000 IOPS SPC-1 IOPS with the", "FC", "nan" ] ]
[ "OCZ 2x SuperScale Z-Drive R4 PC", "Texas Memory Systems RamSan-70", "Kaminario K2", "NetApp FAS6240 cluster", "Fusion-io ioDrive2" ]
which drives have at least up to 1,200,000 iops? ||
nt-11508
col : device | type | iops | interface | notes row 1 : simple slc ssd | ssd | ~400 iops[citation needed] | sata 3 gbit/s | nan row 2 : intel x25-m g2 (mlc) | ssd | ~8,600 iops | sata 3 gbit/s | intel's data sheet claims 6,600/8,600 iops ( row 3 : intel x25-e (slc) | ssd | ~5,000 iops | sata 3 gbit/s | intel's data sheet claims 3,300 iops and 35,000 i row 4 : g.skill phoenix pro | ssd | ~20,000 iops | sata 3 gbit/s | sandforce-1200 based ssd drives with enhanced firmware, states up row 5 : ocz vertex 3 | ssd | up to 60,000 iops | sata 6 gbit/s | random write 4 kb (aligned) row 6 : corsair force series gt | ssd | up to 85,000 iops | sata 6 gbit/s | 240 gb drive, 555 mb/s sequential read row 7 : ocz vertex 4 | ssd | up to 120,000 iops | sata 6 gbit/s | 256 gb drive, 560 mb/s sequential read row 8 : texas memory systems ramsan-20 | ssd | 120,000+ random read/write iops | pcie | includes ram cache row 9 : fusion-io iodrive | ssd | 140,000 read iops, 135,000 write iops | pcie | nan row 10 : virident systems tachion | ssd | 320,000 sustained read iops using 4kb blocks and 200,000 | pcie | nan row 11 : ocz revodrive 3 x2 | ssd | 200,000 random write 4k iops | pcie | nan row 12 : fusion-io iodrive duo | ssd | 250,000+ iops | pcie | nan row 13 : violin memory violin 3200 | ssd | 250,000+ random read/write iops | pcie /fc/infiniband/iscsi | flash memory array row 14 : whiptail, accela | ssd | 250,000/200,000+ write/read iops | fibre channel, iscsi, infiniband/srp | flash based storage array row 15 : ddrdrive x1, | ssd | 300,000+ (512b random read iops) and | pcie | nan row 16 : solidfire sf3010/sf6010 | ssd | 250,000 4kb read/write iops | iscsi | flash based storage array (5ru) row 17 : texas memory systems ramsan-720 appliance | ssd | 500,000 optimal read, 250,000 optimal write 4kb | fc / infiniband | nan row 18 : ocz single superscale z-drive r4 pci | ssd | up to 500,000 iops | pcie | nan row 19 : whiptail, invicta | ssd | 650,000/550,000+ read/write iops | fibre channel, iscsi, infiniband/srp | flash based storage array row 20 : violin memory violin 6000 | 3ru flash memory array | 1,000,000+ random read/write iops | /fc/infiniband/10gb(iscsi) | nan row 21 : texas memory systems ramsan-630 appliance | ssd | 1,000,000+ 4kb random read/write iops | fc / infiniband | nan row 22 : fusion-io iodrive octal (single pc | ssd | 1,180,000+ random read/write iops | pcie | nan row 23 : ocz 2x superscale z-drive r4 pc | ssd | up to 1,200,000 iops | pcie | nan row 24 : texas memory systems ramsan-70 | ssd | 1,200,000 random read/write iops | pcie | includes ram cache
table_csv/204_152.csv
1
{ "column_index": [ 0 ], "row_index": [ 25 ] }
[ "which drives have at least up to 1,200,000 iops?", "which of these drives does not list ssd in the type column?" ]
1
netapp fas6240 cluster
[ "Device", "Type", "IOPS", "Interface", "Notes" ]
which of these drives does not list ssd in the type column?
[ [ "Simple SLC SSD", "SSD", "~400 IOPS[citation needed]", "SATA 3 Gbit/s", "nan" ], [ "Intel X25-M G2 (MLC)", "SSD", "~8,600 IOPS", "SATA 3 Gbit/s", "Intel's data sheet claims 6,600/8,600 IOPS (" ], [ "Intel X25-E (SLC)", "SSD", "~5,000 IOPS", "SATA 3 Gbit/s", "Intel's data sheet claims 3,300 IOPS and 35,000 I" ], [ "G.Skill Phoenix Pro", "SSD", "~20,000 IOPS", "SATA 3 Gbit/s", "SandForce-1200 based SSD drives with enhanced firmware, states up" ], [ "OCZ Vertex 3", "SSD", "Up to 60,000 IOPS", "SATA 6 Gbit/s", "Random Write 4 KB (Aligned)" ], [ "Corsair Force Series GT", "SSD", "Up to 85,000 IOPS", "SATA 6 Gbit/s", "240 GB Drive, 555 MB/s sequential read" ], [ "OCZ Vertex 4", "SSD", "Up to 120,000 IOPS", "SATA 6 Gbit/s", "256 GB Drive, 560 MB/s sequential read" ], [ "Texas Memory Systems RamSan-20", "SSD", "120,000+ Random Read/Write IOPS", "PCIe", "Includes RAM cache" ], [ "Fusion-io ioDrive", "SSD", "140,000 Read IOPS, 135,000 Write IOPS", "PCIe", "nan" ], [ "Virident Systems tachIOn", "SSD", "320,000 sustained READ IOPS using 4KB blocks and 200,000", "PCIe", "nan" ], [ "OCZ RevoDrive 3 X2", "SSD", "200,000 Random Write 4K IOPS", "PCIe", "nan" ], [ "Fusion-io ioDrive Duo", "SSD", "250,000+ IOPS", "PCIe", "nan" ], [ "Violin Memory Violin 3200", "SSD", "250,000+ Random Read/Write IOPS", "PCIe /FC/Infiniband/iSCSI", "Flash Memory Array" ], [ "WHIPTAIL, ACCELA", "SSD", "250,000/200,000+ Write/Read IOPS", "Fibre Channel, iSCSI, Infiniband/SRP", "Flash Based Storage Array" ], [ "DDRdrive X1,", "SSD", "300,000+ (512B Random Read IOPS) and", "PCIe", "nan" ], [ "SolidFire SF3010/SF6010", "SSD", "250,000 4KB Read/Write IOPS", "iSCSI", "Flash Based Storage Array (5RU)" ], [ "Texas Memory Systems RamSan-720 Appliance", "SSD", "500,000 Optimal Read, 250,000 Optimal Write 4KB", "FC / InfiniBand", "nan" ], [ "OCZ Single SuperScale Z-Drive R4 PCI", "SSD", "Up to 500,000 IOPS", "PCIe", "nan" ], [ "WHIPTAIL, INVICTA", "SSD", "650,000/550,000+ Read/Write IOPS", "Fibre Channel, iSCSI, Infiniband/SRP", "Flash Based Storage Array" ], [ "Violin Memory Violin 6000", "3RU Flash Memory Array", "1,000,000+ Random Read/Write IOPS", "/FC/Infiniband/10Gb(iSCSI)", "nan" ], [ "Texas Memory Systems RamSan-630 Appliance", "SSD", "1,000,000+ 4KB Random Read/Write IOPS", "FC / InfiniBand", "nan" ], [ "Fusion-io ioDrive Octal (single PC", "SSD", "1,180,000+ Random Read/Write IOPS", "PCIe", "nan" ], [ "OCZ 2x SuperScale Z-Drive R4 PC", "SSD", "Up to 1,200,000 IOPS", "PCIe", "nan" ], [ "Texas Memory Systems RamSan-70", "SSD", "1,200,000 Random Read/Write IOPS", "PCIe", "Includes RAM cache" ] ]
[ "NetApp FAS6240 cluster" ]
which of these drives does not list ssd in the type column? || which drives have at least up to 1,200,000 iops?
nt-11508
col : device | type | iops | interface | notes row 1 : simple slc ssd | ssd | ~400 iops[citation needed] | sata 3 gbit/s | nan row 2 : intel x25-m g2 (mlc) | ssd | ~8,600 iops | sata 3 gbit/s | intel's data sheet claims 6,600/8,600 iops ( row 3 : intel x25-e (slc) | ssd | ~5,000 iops | sata 3 gbit/s | intel's data sheet claims 3,300 iops and 35,000 i row 4 : g.skill phoenix pro | ssd | ~20,000 iops | sata 3 gbit/s | sandforce-1200 based ssd drives with enhanced firmware, states up row 5 : ocz vertex 3 | ssd | up to 60,000 iops | sata 6 gbit/s | random write 4 kb (aligned) row 6 : corsair force series gt | ssd | up to 85,000 iops | sata 6 gbit/s | 240 gb drive, 555 mb/s sequential read row 7 : ocz vertex 4 | ssd | up to 120,000 iops | sata 6 gbit/s | 256 gb drive, 560 mb/s sequential read row 8 : texas memory systems ramsan-20 | ssd | 120,000+ random read/write iops | pcie | includes ram cache row 9 : fusion-io iodrive | ssd | 140,000 read iops, 135,000 write iops | pcie | nan row 10 : virident systems tachion | ssd | 320,000 sustained read iops using 4kb blocks and 200,000 | pcie | nan row 11 : ocz revodrive 3 x2 | ssd | 200,000 random write 4k iops | pcie | nan row 12 : fusion-io iodrive duo | ssd | 250,000+ iops | pcie | nan row 13 : violin memory violin 3200 | ssd | 250,000+ random read/write iops | pcie /fc/infiniband/iscsi | flash memory array row 14 : whiptail, accela | ssd | 250,000/200,000+ write/read iops | fibre channel, iscsi, infiniband/srp | flash based storage array row 15 : ddrdrive x1, | ssd | 300,000+ (512b random read iops) and | pcie | nan row 16 : solidfire sf3010/sf6010 | ssd | 250,000 4kb read/write iops | iscsi | flash based storage array (5ru) row 17 : texas memory systems ramsan-720 appliance | ssd | 500,000 optimal read, 250,000 optimal write 4kb | fc / infiniband | nan row 18 : ocz single superscale z-drive r4 pci | ssd | up to 500,000 iops | pcie | nan row 19 : whiptail, invicta | ssd | 650,000/550,000+ read/write iops | fibre channel, iscsi, infiniband/srp | flash based storage array row 20 : violin memory violin 6000 | 3ru flash memory array | 1,000,000+ random read/write iops | /fc/infiniband/10gb(iscsi) | nan row 21 : texas memory systems ramsan-630 appliance | ssd | 1,000,000+ 4kb random read/write iops | fc / infiniband | nan row 22 : fusion-io iodrive octal (single pc | ssd | 1,180,000+ random read/write iops | pcie | nan row 23 : ocz 2x superscale z-drive r4 pc | ssd | up to 1,200,000 iops | pcie | nan row 24 : texas memory systems ramsan-70 | ssd | 1,200,000 random read/write iops | pcie | includes ram cache
table_csv/204_152.csv
0
{ "column_index": [ 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 ], "row_index": [ 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26 ] }
[ "what are the hard drives?" ]
2
simple slc ssd, intel x25-m g2 (mlc), intel x25-e (slc), g.skill phoenix pro, ocz vertex 3, corsair force series gt, ocz vertex 4, texas memory systems ramsan-20, fusion-io iodrive, virident systems tachion, ocz revodrive 3 x2, fusion-io iodrive duo, violin memory violin 3200, whiptail, accela, ddrdrive x1,, solidfire sf3010/sf6010, texas memory systems ramsan-720 appliance, ocz single superscale z-drive r4 pci, whiptail, invicta, violin memory violin 6000, texas memory systems ramsan-630 appliance, fusion-io iodrive octal (single pc, ocz 2x superscale z-drive r4 pc, texas memory systems ramsan-70, kaminario k2, netapp fas6240 cluster, fusion-io iodrive2
[ "Device", "Type", "IOPS", "Interface", "Notes" ]
what are the hard drives?
[ [ "Simple SLC SSD", "SSD", "~400 IOPS[citation needed]", "SATA 3 Gbit/s", "nan" ], [ "Intel X25-M G2 (MLC)", "SSD", "~8,600 IOPS", "SATA 3 Gbit/s", "Intel's data sheet claims 6,600/8,600 IOPS (" ], [ "Intel X25-E (SLC)", "SSD", "~5,000 IOPS", "SATA 3 Gbit/s", "Intel's data sheet claims 3,300 IOPS and 35,000 I" ], [ "G.Skill Phoenix Pro", "SSD", "~20,000 IOPS", "SATA 3 Gbit/s", "SandForce-1200 based SSD drives with enhanced firmware, states up" ], [ "OCZ Vertex 3", "SSD", "Up to 60,000 IOPS", "SATA 6 Gbit/s", "Random Write 4 KB (Aligned)" ], [ "Corsair Force Series GT", "SSD", "Up to 85,000 IOPS", "SATA 6 Gbit/s", "240 GB Drive, 555 MB/s sequential read" ], [ "OCZ Vertex 4", "SSD", "Up to 120,000 IOPS", "SATA 6 Gbit/s", "256 GB Drive, 560 MB/s sequential read" ], [ "Texas Memory Systems RamSan-20", "SSD", "120,000+ Random Read/Write IOPS", "PCIe", "Includes RAM cache" ], [ "Fusion-io ioDrive", "SSD", "140,000 Read IOPS, 135,000 Write IOPS", "PCIe", "nan" ], [ "Virident Systems tachIOn", "SSD", "320,000 sustained READ IOPS using 4KB blocks and 200,000", "PCIe", "nan" ], [ "OCZ RevoDrive 3 X2", "SSD", "200,000 Random Write 4K IOPS", "PCIe", "nan" ], [ "Fusion-io ioDrive Duo", "SSD", "250,000+ IOPS", "PCIe", "nan" ], [ "Violin Memory Violin 3200", "SSD", "250,000+ Random Read/Write IOPS", "PCIe /FC/Infiniband/iSCSI", "Flash Memory Array" ], [ "WHIPTAIL, ACCELA", "SSD", "250,000/200,000+ Write/Read IOPS", "Fibre Channel, iSCSI, Infiniband/SRP", "Flash Based Storage Array" ], [ "DDRdrive X1,", "SSD", "300,000+ (512B Random Read IOPS) and", "PCIe", "nan" ], [ "SolidFire SF3010/SF6010", "SSD", "250,000 4KB Read/Write IOPS", "iSCSI", "Flash Based Storage Array (5RU)" ], [ "Texas Memory Systems RamSan-720 Appliance", "SSD", "500,000 Optimal Read, 250,000 Optimal Write 4KB", "FC / InfiniBand", "nan" ], [ "OCZ Single SuperScale Z-Drive R4 PCI", "SSD", "Up to 500,000 IOPS", "PCIe", "nan" ], [ "WHIPTAIL, INVICTA", "SSD", "650,000/550,000+ Read/Write IOPS", "Fibre Channel, iSCSI, Infiniband/SRP", "Flash Based Storage Array" ], [ "Violin Memory Violin 6000", "3RU Flash Memory Array", "1,000,000+ Random Read/Write IOPS", "/FC/Infiniband/10Gb(iSCSI)", "nan" ], [ "Texas Memory Systems RamSan-630 Appliance", "SSD", "1,000,000+ 4KB Random Read/Write IOPS", "FC / InfiniBand", "nan" ], [ "Fusion-io ioDrive Octal (single PC", "SSD", "1,180,000+ Random Read/Write IOPS", "PCIe", "nan" ], [ "OCZ 2x SuperScale Z-Drive R4 PC", "SSD", "Up to 1,200,000 IOPS", "PCIe", "nan" ], [ "Texas Memory Systems RamSan-70", "SSD", "1,200,000 Random Read/Write IOPS", "PCIe", "Includes RAM cache" ] ]
[ "Simple SLC SSD", "Intel X25-M G2 (MLC)", "Intel X25-E (SLC)", "G.Skill Phoenix Pro", "OCZ Vertex 3", "Corsair Force Series GT", "OCZ Vertex 4", "Texas Memory Systems RamSan-20", "Fusion-io ioDrive", "Virident Systems tachIOn", "OCZ RevoDrive 3 X2", "Fusion-io ioDrive Duo", "Violin Memory Violin 3200", "WHIPTAIL, ACCELA", "DDRdrive X1,", "SolidFire SF3010/SF6010", "Texas Memory Systems RamSan-720 Appliance", "OCZ Single SuperScale Z-Drive R4 PCI", "WHIPTAIL, INVICTA", "Violin Memory Violin 6000", "Texas Memory Systems RamSan-630 Appliance", "Fusion-io ioDrive Octal (single PC", "OCZ 2x SuperScale Z-Drive R4 PC", "Texas Memory Systems RamSan-70", "Kaminario K2", "NetApp FAS6240 cluster", "Fusion-io ioDrive2" ]
what are the hard drives? ||
nt-11508
col : device | type | iops | interface | notes row 1 : simple slc ssd | ssd | ~400 iops[citation needed] | sata 3 gbit/s | nan row 2 : intel x25-m g2 (mlc) | ssd | ~8,600 iops | sata 3 gbit/s | intel's data sheet claims 6,600/8,600 iops ( row 3 : intel x25-e (slc) | ssd | ~5,000 iops | sata 3 gbit/s | intel's data sheet claims 3,300 iops and 35,000 i row 4 : g.skill phoenix pro | ssd | ~20,000 iops | sata 3 gbit/s | sandforce-1200 based ssd drives with enhanced firmware, states up row 5 : ocz vertex 3 | ssd | up to 60,000 iops | sata 6 gbit/s | random write 4 kb (aligned) row 6 : corsair force series gt | ssd | up to 85,000 iops | sata 6 gbit/s | 240 gb drive, 555 mb/s sequential read row 7 : ocz vertex 4 | ssd | up to 120,000 iops | sata 6 gbit/s | 256 gb drive, 560 mb/s sequential read row 8 : texas memory systems ramsan-20 | ssd | 120,000+ random read/write iops | pcie | includes ram cache row 9 : fusion-io iodrive | ssd | 140,000 read iops, 135,000 write iops | pcie | nan row 10 : virident systems tachion | ssd | 320,000 sustained read iops using 4kb blocks and 200,000 | pcie | nan row 11 : fusion-io iodrive duo | ssd | 250,000+ iops | pcie | nan row 12 : violin memory violin 3200 | ssd | 250,000+ random read/write iops | pcie /fc/infiniband/iscsi | flash memory array row 13 : whiptail, accela | ssd | 250,000/200,000+ write/read iops | fibre channel, iscsi, infiniband/srp | flash based storage array row 14 : solidfire sf3010/sf6010 | ssd | 250,000 4kb read/write iops | iscsi | flash based storage array (5ru) row 15 : ocz single superscale z-drive r4 pci | ssd | up to 500,000 iops | pcie | nan row 16 : whiptail, invicta | ssd | 650,000/550,000+ read/write iops | fibre channel, iscsi, infiniband/srp | flash based storage array row 17 : violin memory violin 6000 | 3ru flash memory array | 1,000,000+ random read/write iops | /fc/infiniband/10gb(iscsi) | nan row 18 : texas memory systems ramsan-630 appliance | ssd | 1,000,000+ 4kb random read/write iops | fc / infiniband | nan row 19 : fusion-io iodrive octal (single pc | ssd | 1,180,000+ random read/write iops | pcie | nan row 20 : ocz 2x superscale z-drive r4 pc | ssd | up to 1,200,000 iops | pcie | nan row 21 : texas memory systems ramsan-70 | ssd | 1,200,000 random read/write iops | pcie | includes ram cache row 22 : kaminario k2 | flash/dram/hybrid ssd | up to 1,200,000 iops spc-1 iops with the | fc | nan row 23 : netapp fas6240 cluster | flash/disk | 1,261,145 specsfs2008 nfsv | nfs, cifs, fc, fcoe, i | specsfs2008 is the latest version of the standard performance evaluation
table_csv/204_152.csv
1
{ "column_index": [ 0, 0, 0, 0, 0 ], "row_index": [ 7, 22, 23, 24, 25 ] }
[ "what are the hard drives?", "which of these state it has up to or close to 1,200,000 iops?" ]
2
texas memory systems ramsan-20, ocz 2x superscale z-drive r4 pc, texas memory systems ramsan-70, kaminario k2, netapp fas6240 cluster
[ "Device", "Type", "IOPS", "Interface", "Notes" ]
which of these state it has up to or close to 1,200,000 iops?
[ [ "Simple SLC SSD", "SSD", "~400 IOPS[citation needed]", "SATA 3 Gbit/s", "nan" ], [ "Intel X25-M G2 (MLC)", "SSD", "~8,600 IOPS", "SATA 3 Gbit/s", "Intel's data sheet claims 6,600/8,600 IOPS (" ], [ "Intel X25-E (SLC)", "SSD", "~5,000 IOPS", "SATA 3 Gbit/s", "Intel's data sheet claims 3,300 IOPS and 35,000 I" ], [ "G.Skill Phoenix Pro", "SSD", "~20,000 IOPS", "SATA 3 Gbit/s", "SandForce-1200 based SSD drives with enhanced firmware, states up" ], [ "OCZ Vertex 3", "SSD", "Up to 60,000 IOPS", "SATA 6 Gbit/s", "Random Write 4 KB (Aligned)" ], [ "Corsair Force Series GT", "SSD", "Up to 85,000 IOPS", "SATA 6 Gbit/s", "240 GB Drive, 555 MB/s sequential read" ], [ "OCZ Vertex 4", "SSD", "Up to 120,000 IOPS", "SATA 6 Gbit/s", "256 GB Drive, 560 MB/s sequential read" ], [ "Texas Memory Systems RamSan-20", "SSD", "120,000+ Random Read/Write IOPS", "PCIe", "Includes RAM cache" ], [ "Fusion-io ioDrive", "SSD", "140,000 Read IOPS, 135,000 Write IOPS", "PCIe", "nan" ], [ "Virident Systems tachIOn", "SSD", "320,000 sustained READ IOPS using 4KB blocks and 200,000", "PCIe", "nan" ], [ "Fusion-io ioDrive Duo", "SSD", "250,000+ IOPS", "PCIe", "nan" ], [ "Violin Memory Violin 3200", "SSD", "250,000+ Random Read/Write IOPS", "PCIe /FC/Infiniband/iSCSI", "Flash Memory Array" ], [ "WHIPTAIL, ACCELA", "SSD", "250,000/200,000+ Write/Read IOPS", "Fibre Channel, iSCSI, Infiniband/SRP", "Flash Based Storage Array" ], [ "SolidFire SF3010/SF6010", "SSD", "250,000 4KB Read/Write IOPS", "iSCSI", "Flash Based Storage Array (5RU)" ], [ "OCZ Single SuperScale Z-Drive R4 PCI", "SSD", "Up to 500,000 IOPS", "PCIe", "nan" ], [ "WHIPTAIL, INVICTA", "SSD", "650,000/550,000+ Read/Write IOPS", "Fibre Channel, iSCSI, Infiniband/SRP", "Flash Based Storage Array" ], [ "Violin Memory Violin 6000", "3RU Flash Memory Array", "1,000,000+ Random Read/Write IOPS", "/FC/Infiniband/10Gb(iSCSI)", "nan" ], [ "Texas Memory Systems RamSan-630 Appliance", "SSD", "1,000,000+ 4KB Random Read/Write IOPS", "FC / InfiniBand", "nan" ], [ "Fusion-io ioDrive Octal (single PC", "SSD", "1,180,000+ Random Read/Write IOPS", "PCIe", "nan" ], [ "OCZ 2x SuperScale Z-Drive R4 PC", "SSD", "Up to 1,200,000 IOPS", "PCIe", "nan" ], [ "Texas Memory Systems RamSan-70", "SSD", "1,200,000 Random Read/Write IOPS", "PCIe", "Includes RAM cache" ], [ "Kaminario K2", "Flash/DRAM/Hybrid SSD", "Up to 1,200,000 IOPS SPC-1 IOPS with the", "FC", "nan" ], [ "NetApp FAS6240 cluster", "Flash/Disk", "1,261,145 SPECsfs2008 nfsv", "NFS, CIFS, FC, FCoE, i", "SPECsfs2008 is the latest version of the Standard Performance Evaluation" ] ]
[ "Texas Memory Systems RamSan-20", "OCZ 2x SuperScale Z-Drive R4 PC", "Texas Memory Systems RamSan-70", "Kaminario K2", "NetApp FAS6240 cluster" ]
which of these state it has up to or close to 1,200,000 iops? || what are the hard drives?
nt-11508
col : device | type | iops | interface | notes row 1 : simple slc ssd | ssd | ~400 iops[citation needed] | sata 3 gbit/s | nan row 2 : intel x25-m g2 (mlc) | ssd | ~8,600 iops | sata 3 gbit/s | intel's data sheet claims 6,600/8,600 iops ( row 3 : intel x25-e (slc) | ssd | ~5,000 iops | sata 3 gbit/s | intel's data sheet claims 3,300 iops and 35,000 i row 4 : g.skill phoenix pro | ssd | ~20,000 iops | sata 3 gbit/s | sandforce-1200 based ssd drives with enhanced firmware, states up row 5 : ocz vertex 3 | ssd | up to 60,000 iops | sata 6 gbit/s | random write 4 kb (aligned) row 6 : corsair force series gt | ssd | up to 85,000 iops | sata 6 gbit/s | 240 gb drive, 555 mb/s sequential read row 7 : ocz vertex 4 | ssd | up to 120,000 iops | sata 6 gbit/s | 256 gb drive, 560 mb/s sequential read row 8 : texas memory systems ramsan-20 | ssd | 120,000+ random read/write iops | pcie | includes ram cache row 9 : fusion-io iodrive | ssd | 140,000 read iops, 135,000 write iops | pcie | nan row 10 : fusion-io iodrive duo | ssd | 250,000+ iops | pcie | nan row 11 : violin memory violin 3200 | ssd | 250,000+ random read/write iops | pcie /fc/infiniband/iscsi | flash memory array row 12 : whiptail, accela | ssd | 250,000/200,000+ write/read iops | fibre channel, iscsi, infiniband/srp | flash based storage array row 13 : ddrdrive x1, | ssd | 300,000+ (512b random read iops) and | pcie | nan row 14 : solidfire sf3010/sf6010 | ssd | 250,000 4kb read/write iops | iscsi | flash based storage array (5ru) row 15 : texas memory systems ramsan-720 appliance | ssd | 500,000 optimal read, 250,000 optimal write 4kb | fc / infiniband | nan row 16 : ocz single superscale z-drive r4 pci | ssd | up to 500,000 iops | pcie | nan row 17 : whiptail, invicta | ssd | 650,000/550,000+ read/write iops | fibre channel, iscsi, infiniband/srp | flash based storage array row 18 : violin memory violin 6000 | 3ru flash memory array | 1,000,000+ random read/write iops | /fc/infiniband/10gb(iscsi) | nan row 19 : texas memory systems ramsan-630 appliance | ssd | 1,000,000+ 4kb random read/write iops | fc / infiniband | nan row 20 : fusion-io iodrive octal (single pc | ssd | 1,180,000+ random read/write iops | pcie | nan row 21 : texas memory systems ramsan-70 | ssd | 1,200,000 random read/write iops | pcie | includes ram cache row 22 : kaminario k2 | flash/dram/hybrid ssd | up to 1,200,000 iops spc-1 iops with the | fc | nan row 23 : netapp fas6240 cluster | flash/disk | 1,261,145 specsfs2008 nfsv | nfs, cifs, fc, fcoe, i | specsfs2008 is the latest version of the standard performance evaluation
table_csv/204_152.csv
2
{ "column_index": [ 0 ], "row_index": [ 25 ] }
[ "what are the hard drives?", "which of these state it has up to or close to 1,200,000 iops?", "which of these are not ssd?" ]
2
netapp fas6240 cluster
[ "Device", "Type", "IOPS", "Interface", "Notes" ]
which of these are not ssd?
[ [ "Simple SLC SSD", "SSD", "~400 IOPS[citation needed]", "SATA 3 Gbit/s", "nan" ], [ "Intel X25-M G2 (MLC)", "SSD", "~8,600 IOPS", "SATA 3 Gbit/s", "Intel's data sheet claims 6,600/8,600 IOPS (" ], [ "Intel X25-E (SLC)", "SSD", "~5,000 IOPS", "SATA 3 Gbit/s", "Intel's data sheet claims 3,300 IOPS and 35,000 I" ], [ "G.Skill Phoenix Pro", "SSD", "~20,000 IOPS", "SATA 3 Gbit/s", "SandForce-1200 based SSD drives with enhanced firmware, states up" ], [ "OCZ Vertex 3", "SSD", "Up to 60,000 IOPS", "SATA 6 Gbit/s", "Random Write 4 KB (Aligned)" ], [ "Corsair Force Series GT", "SSD", "Up to 85,000 IOPS", "SATA 6 Gbit/s", "240 GB Drive, 555 MB/s sequential read" ], [ "OCZ Vertex 4", "SSD", "Up to 120,000 IOPS", "SATA 6 Gbit/s", "256 GB Drive, 560 MB/s sequential read" ], [ "Texas Memory Systems RamSan-20", "SSD", "120,000+ Random Read/Write IOPS", "PCIe", "Includes RAM cache" ], [ "Fusion-io ioDrive", "SSD", "140,000 Read IOPS, 135,000 Write IOPS", "PCIe", "nan" ], [ "Fusion-io ioDrive Duo", "SSD", "250,000+ IOPS", "PCIe", "nan" ], [ "Violin Memory Violin 3200", "SSD", "250,000+ Random Read/Write IOPS", "PCIe /FC/Infiniband/iSCSI", "Flash Memory Array" ], [ "WHIPTAIL, ACCELA", "SSD", "250,000/200,000+ Write/Read IOPS", "Fibre Channel, iSCSI, Infiniband/SRP", "Flash Based Storage Array" ], [ "DDRdrive X1,", "SSD", "300,000+ (512B Random Read IOPS) and", "PCIe", "nan" ], [ "SolidFire SF3010/SF6010", "SSD", "250,000 4KB Read/Write IOPS", "iSCSI", "Flash Based Storage Array (5RU)" ], [ "Texas Memory Systems RamSan-720 Appliance", "SSD", "500,000 Optimal Read, 250,000 Optimal Write 4KB", "FC / InfiniBand", "nan" ], [ "OCZ Single SuperScale Z-Drive R4 PCI", "SSD", "Up to 500,000 IOPS", "PCIe", "nan" ], [ "WHIPTAIL, INVICTA", "SSD", "650,000/550,000+ Read/Write IOPS", "Fibre Channel, iSCSI, Infiniband/SRP", "Flash Based Storage Array" ], [ "Violin Memory Violin 6000", "3RU Flash Memory Array", "1,000,000+ Random Read/Write IOPS", "/FC/Infiniband/10Gb(iSCSI)", "nan" ], [ "Texas Memory Systems RamSan-630 Appliance", "SSD", "1,000,000+ 4KB Random Read/Write IOPS", "FC / InfiniBand", "nan" ], [ "Fusion-io ioDrive Octal (single PC", "SSD", "1,180,000+ Random Read/Write IOPS", "PCIe", "nan" ], [ "Texas Memory Systems RamSan-70", "SSD", "1,200,000 Random Read/Write IOPS", "PCIe", "Includes RAM cache" ], [ "Kaminario K2", "Flash/DRAM/Hybrid SSD", "Up to 1,200,000 IOPS SPC-1 IOPS with the", "FC", "nan" ], [ "NetApp FAS6240 cluster", "Flash/Disk", "1,261,145 SPECsfs2008 nfsv", "NFS, CIFS, FC, FCoE, i", "SPECsfs2008 is the latest version of the Standard Performance Evaluation" ] ]
[ "NetApp FAS6240 cluster" ]
which of these are not ssd? || which of these state it has up to or close to 1,200,000 iops? | what are the hard drives?
ns-1535
col : department | total deputies | uninominal deputies | plurinominal deputies | special indigenous or campesino deputies | senators row 1 : la paz | 29 | 14 | 14 | 1 | 4 row 2 : santa cruz | 28 | 14 | 13 | 1 | 4 row 3 : cochabamba | 19 | 9 | 9 | 1 | 4 row 4 : potosi | 13 | 7 | 6 | 0 | 4 row 5 : chuquisaca | 10 | 5 | 5 | 0 | 4 row 6 : oruro | 9 | 4 | 4 | 1 | 4 row 7 : tarija | 9 | 4 | 4 | 1 | 4 row 8 : beni | 8 | 4 | 3 | 1 | 4 row 9 : pando | 5 | 2 | 2 | 1 | 4 row 10 : total | 130 | 63 | 60 | 7 | 36
table_csv/204_246.csv
0
{ "column_index": [ 0, 0, 0, 0, 0, 0, 0, 0, 0 ], "row_index": [ 0, 1, 2, 3, 4, 5, 6, 7, 8 ] }
[ "which are the departments of the 2014 bolivian general election?" ]
0
la paz, santa cruz, cochabamba, potosi, chuquisaca, oruro, tarija, beni, pando
[ "Department", "Total Deputies", "Uninominal Deputies", "Plurinominal Deputies", "Special Indigenous or Campesino Deputies", "Senators" ]
which are the departments of the 2014 bolivian general election?
[ [ "La Paz", "29", "14", "14", "1", "4" ], [ "Santa Cruz", "28", "14", "13", "1", "4" ], [ "Cochabamba", "19", "9", "9", "1", "4" ], [ "Potosi", "13", "7", "6", "0", "4" ], [ "Chuquisaca", "10", "5", "5", "0", "4" ], [ "Oruro", "9", "4", "4", "1", "4" ], [ "Tarija", "9", "4", "4", "1", "4" ], [ "Beni", "8", "4", "3", "1", "4" ], [ "Pando", "5", "2", "2", "1", "4" ], [ "Total", "130", "63", "60", "7", "36" ] ]
[ "La Paz", "Santa Cruz", "Cochabamba", "Potosi", "Chuquisaca", "Oruro", "Tarija", "Beni", "Pando" ]
which are the departments of the 2014 bolivian general election? ||
ns-1535
col : department | total deputies | uninominal deputies | plurinominal deputies | special indigenous or campesino deputies | senators row 1 : la paz | 29 | 14 | 14 | 1 | 4 row 2 : santa cruz | 28 | 14 | 13 | 1 | 4 row 3 : cochabamba | 19 | 9 | 9 | 1 | 4 row 4 : potosi | 13 | 7 | 6 | 0 | 4 row 5 : chuquisaca | 10 | 5 | 5 | 0 | 4 row 6 : oruro | 9 | 4 | 4 | 1 | 4 row 7 : tarija | 9 | 4 | 4 | 1 | 4 row 8 : beni | 8 | 4 | 3 | 1 | 4 row 9 : pando | 5 | 2 | 2 | 1 | 4 row 10 : total | 130 | 63 | 60 | 7 | 36
table_csv/204_246.csv
1
{ "column_index": [ 1 ], "row_index": [ 8 ] }
[ "which are the departments of the 2014 bolivian general election?", "what are the number of deputies of pando?" ]
0
5
[ "Department", "Total Deputies", "Uninominal Deputies", "Plurinominal Deputies", "Special Indigenous or Campesino Deputies", "Senators" ]
what are the number of deputies of pando?
[ [ "La Paz", "29", "14", "14", "1", "4" ], [ "Santa Cruz", "28", "14", "13", "1", "4" ], [ "Cochabamba", "19", "9", "9", "1", "4" ], [ "Potosi", "13", "7", "6", "0", "4" ], [ "Chuquisaca", "10", "5", "5", "0", "4" ], [ "Oruro", "9", "4", "4", "1", "4" ], [ "Tarija", "9", "4", "4", "1", "4" ], [ "Beni", "8", "4", "3", "1", "4" ], [ "Pando", "5", "2", "2", "1", "4" ], [ "Total", "130", "63", "60", "7", "36" ] ]
[ "5" ]
what are the number of deputies of pando? || which are the departments of the 2014 bolivian general election?
ns-1535
col : department | total deputies | uninominal deputies | plurinominal deputies | special indigenous or campesino deputies | senators row 1 : la paz | 29 | 14 | 14 | 1 | 4 row 2 : santa cruz | 28 | 14 | 13 | 1 | 4 row 3 : cochabamba | 19 | 9 | 9 | 1 | 4 row 4 : potosi | 13 | 7 | 6 | 0 | 4 row 5 : chuquisaca | 10 | 5 | 5 | 0 | 4 row 6 : oruro | 9 | 4 | 4 | 1 | 4 row 7 : tarija | 9 | 4 | 4 | 1 | 4 row 8 : beni | 8 | 4 | 3 | 1 | 4 row 9 : pando | 5 | 2 | 2 | 1 | 4 row 10 : total | 130 | 63 | 60 | 7 | 36
table_csv/204_246.csv
2
{ "column_index": [ 1 ], "row_index": [ 7 ] }
[ "which are the departments of the 2014 bolivian general election?", "what are the number of deputies of pando?", "what are the number of deputies of benji?" ]
0
8
[ "Department", "Total Deputies", "Uninominal Deputies", "Plurinominal Deputies", "Special Indigenous or Campesino Deputies", "Senators" ]
what are the number of deputies of benji?
[ [ "La Paz", "29", "14", "14", "1", "4" ], [ "Santa Cruz", "28", "14", "13", "1", "4" ], [ "Cochabamba", "19", "9", "9", "1", "4" ], [ "Potosi", "13", "7", "6", "0", "4" ], [ "Chuquisaca", "10", "5", "5", "0", "4" ], [ "Oruro", "9", "4", "4", "1", "4" ], [ "Tarija", "9", "4", "4", "1", "4" ], [ "Beni", "8", "4", "3", "1", "4" ], [ "Pando", "5", "2", "2", "1", "4" ], [ "Total", "130", "63", "60", "7", "36" ] ]
[ "8" ]
what are the number of deputies of benji? || what are the number of deputies of pando? | which are the departments of the 2014 bolivian general election?
ns-1535
col : department | total deputies | uninominal deputies | plurinominal deputies | special indigenous or campesino deputies | senators row 1 : la paz | 29 | 14 | 14 | 1 | 4 row 2 : santa cruz | 28 | 14 | 13 | 1 | 4 row 3 : cochabamba | 19 | 9 | 9 | 1 | 4 row 4 : potosi | 13 | 7 | 6 | 0 | 4 row 5 : chuquisaca | 10 | 5 | 5 | 0 | 4 row 6 : oruro | 9 | 4 | 4 | 1 | 4 row 7 : tarija | 9 | 4 | 4 | 1 | 4 row 8 : beni | 8 | 4 | 3 | 1 | 4 row 9 : pando | 5 | 2 | 2 | 1 | 4 row 10 : total | 130 | 63 | 60 | 7 | 36
table_csv/204_246.csv
3
{ "column_index": [ 1 ], "row_index": [ 7 ] }
[ "which are the departments of the 2014 bolivian general election?", "what are the number of deputies of pando?", "what are the number of deputies of benji?", "which number is higher?" ]
0
8
[ "Department", "Total Deputies", "Uninominal Deputies", "Plurinominal Deputies", "Special Indigenous or Campesino Deputies", "Senators" ]
which number is higher?
[ [ "La Paz", "29", "14", "14", "1", "4" ], [ "Santa Cruz", "28", "14", "13", "1", "4" ], [ "Cochabamba", "19", "9", "9", "1", "4" ], [ "Potosi", "13", "7", "6", "0", "4" ], [ "Chuquisaca", "10", "5", "5", "0", "4" ], [ "Oruro", "9", "4", "4", "1", "4" ], [ "Tarija", "9", "4", "4", "1", "4" ], [ "Beni", "8", "4", "3", "1", "4" ], [ "Pando", "5", "2", "2", "1", "4" ], [ "Total", "130", "63", "60", "7", "36" ] ]
[ "8" ]
which number is higher? || what are the number of deputies of benji? | what are the number of deputies of pando? | which are the departments of the 2014 bolivian general election?
ns-1535
col : department | total deputies | uninominal deputies | plurinominal deputies | special indigenous or campesino deputies | senators row 1 : la paz | 29 | 14 | 14 | 1 | 4 row 2 : santa cruz | 28 | 14 | 13 | 1 | 4 row 3 : cochabamba | 19 | 9 | 9 | 1 | 4 row 4 : potosi | 13 | 7 | 6 | 0 | 4 row 5 : chuquisaca | 10 | 5 | 5 | 0 | 4 row 6 : oruro | 9 | 4 | 4 | 1 | 4 row 7 : tarija | 9 | 4 | 4 | 1 | 4 row 8 : beni | 8 | 4 | 3 | 1 | 4 row 9 : pando | 5 | 2 | 2 | 1 | 4 row 10 : total | 130 | 63 | 60 | 7 | 36
table_csv/204_246.csv
4
{ "column_index": [ 0 ], "row_index": [ 7 ] }
[ "which are the departments of the 2014 bolivian general election?", "what are the number of deputies of pando?", "what are the number of deputies of benji?", "which number is higher?", "which department has this number?" ]
0
beni
[ "Department", "Total Deputies", "Uninominal Deputies", "Plurinominal Deputies", "Special Indigenous or Campesino Deputies", "Senators" ]
which department has this number?
[ [ "La Paz", "29", "14", "14", "1", "4" ], [ "Santa Cruz", "28", "14", "13", "1", "4" ], [ "Cochabamba", "19", "9", "9", "1", "4" ], [ "Potosi", "13", "7", "6", "0", "4" ], [ "Chuquisaca", "10", "5", "5", "0", "4" ], [ "Oruro", "9", "4", "4", "1", "4" ], [ "Tarija", "9", "4", "4", "1", "4" ], [ "Beni", "8", "4", "3", "1", "4" ], [ "Pando", "5", "2", "2", "1", "4" ], [ "Total", "130", "63", "60", "7", "36" ] ]
[ "Beni" ]
which department has this number? || which number is higher? | what are the number of deputies of benji? | what are the number of deputies of pando? | which are the departments of the 2014 bolivian general election?
ns-1535
col : department | total deputies | uninominal deputies | plurinominal deputies | special indigenous or campesino deputies | senators row 1 : la paz | 29 | 14 | 14 | 1 | 4 row 2 : santa cruz | 28 | 14 | 13 | 1 | 4 row 3 : cochabamba | 19 | 9 | 9 | 1 | 4 row 4 : potosi | 13 | 7 | 6 | 0 | 4 row 5 : chuquisaca | 10 | 5 | 5 | 0 | 4 row 6 : oruro | 9 | 4 | 4 | 1 | 4 row 7 : tarija | 9 | 4 | 4 | 1 | 4 row 8 : beni | 8 | 4 | 3 | 1 | 4 row 9 : pando | 5 | 2 | 2 | 1 | 4 row 10 : total | 130 | 63 | 60 | 7 | 36
table_csv/204_246.csv
0
{ "column_index": [ 0, 0, 0, 0, 0, 0, 0, 0, 0 ], "row_index": [ 0, 1, 2, 3, 4, 5, 6, 7, 8 ] }
[ "what are all the departments?" ]
1
la paz, santa cruz, cochabamba, potosi, chuquisaca, oruro, tarija, beni, pando
[ "Department", "Total Deputies", "Uninominal Deputies", "Plurinominal Deputies", "Special Indigenous or Campesino Deputies", "Senators" ]
what are all the departments?
[ [ "La Paz", "29", "14", "14", "1", "4" ], [ "Santa Cruz", "28", "14", "13", "1", "4" ], [ "Cochabamba", "19", "9", "9", "1", "4" ], [ "Potosi", "13", "7", "6", "0", "4" ], [ "Chuquisaca", "10", "5", "5", "0", "4" ], [ "Oruro", "9", "4", "4", "1", "4" ], [ "Tarija", "9", "4", "4", "1", "4" ], [ "Beni", "8", "4", "3", "1", "4" ], [ "Pando", "5", "2", "2", "1", "4" ], [ "Total", "130", "63", "60", "7", "36" ] ]
[ "La Paz", "Santa Cruz", "Cochabamba", "Potosi", "Chuquisaca", "Oruro", "Tarija", "Beni", "Pando" ]
what are all the departments? ||
ns-1535
col : department | total deputies | uninominal deputies | plurinominal deputies | special indigenous or campesino deputies | senators row 1 : la paz | 29 | 14 | 14 | 1 | 4 row 2 : santa cruz | 28 | 14 | 13 | 1 | 4 row 3 : cochabamba | 19 | 9 | 9 | 1 | 4 row 4 : potosi | 13 | 7 | 6 | 0 | 4 row 5 : chuquisaca | 10 | 5 | 5 | 0 | 4 row 6 : oruro | 9 | 4 | 4 | 1 | 4 row 7 : tarija | 9 | 4 | 4 | 1 | 4 row 8 : beni | 8 | 4 | 3 | 1 | 4 row 9 : pando | 5 | 2 | 2 | 1 | 4 row 10 : total | 130 | 63 | 60 | 7 | 36
table_csv/204_246.csv
1
{ "column_index": [ 1, 1, 1, 1, 1, 1, 1, 1, 1 ], "row_index": [ 0, 1, 2, 3, 4, 5, 6, 7, 8 ] }
[ "what are all the departments?", "how many deputies do they have?" ]
1
29, 28, 19, 13, 10, 9, 9, 8, 5
[ "Department", "Total Deputies", "Uninominal Deputies", "Plurinominal Deputies", "Special Indigenous or Campesino Deputies", "Senators" ]
how many deputies do they have?
[ [ "La Paz", "29", "14", "14", "1", "4" ], [ "Santa Cruz", "28", "14", "13", "1", "4" ], [ "Cochabamba", "19", "9", "9", "1", "4" ], [ "Potosi", "13", "7", "6", "0", "4" ], [ "Chuquisaca", "10", "5", "5", "0", "4" ], [ "Oruro", "9", "4", "4", "1", "4" ], [ "Tarija", "9", "4", "4", "1", "4" ], [ "Beni", "8", "4", "3", "1", "4" ], [ "Pando", "5", "2", "2", "1", "4" ], [ "Total", "130", "63", "60", "7", "36" ] ]
[ "29", "28", "19", "13", "10", "9", "9", "8", "5" ]
how many deputies do they have? || what are all the departments?
ns-1535
col : department | total deputies | uninominal deputies | plurinominal deputies | special indigenous or campesino deputies | senators row 1 : la paz | 29 | 14 | 14 | 1 | 4 row 2 : santa cruz | 28 | 14 | 13 | 1 | 4 row 3 : cochabamba | 19 | 9 | 9 | 1 | 4 row 4 : potosi | 13 | 7 | 6 | 0 | 4 row 5 : chuquisaca | 10 | 5 | 5 | 0 | 4 row 6 : oruro | 9 | 4 | 4 | 1 | 4 row 7 : tarija | 9 | 4 | 4 | 1 | 4 row 8 : beni | 8 | 4 | 3 | 1 | 4 row 9 : pando | 5 | 2 | 2 | 1 | 4 row 10 : total | 130 | 63 | 60 | 7 | 36
table_csv/204_246.csv
2
{ "column_index": [ 1, 1 ], "row_index": [ 7, 8 ] }
[ "what are all the departments?", "how many deputies do they have?", "what about just between pando and benji?" ]
1
8, 5
[ "Department", "Total Deputies", "Uninominal Deputies", "Plurinominal Deputies", "Special Indigenous or Campesino Deputies", "Senators" ]
what about just between pando and benji?
[ [ "La Paz", "29", "14", "14", "1", "4" ], [ "Santa Cruz", "28", "14", "13", "1", "4" ], [ "Cochabamba", "19", "9", "9", "1", "4" ], [ "Potosi", "13", "7", "6", "0", "4" ], [ "Chuquisaca", "10", "5", "5", "0", "4" ], [ "Oruro", "9", "4", "4", "1", "4" ], [ "Tarija", "9", "4", "4", "1", "4" ], [ "Beni", "8", "4", "3", "1", "4" ], [ "Pando", "5", "2", "2", "1", "4" ], [ "Total", "130", "63", "60", "7", "36" ] ]
[ "8", "5" ]
what about just between pando and benji? || how many deputies do they have? | what are all the departments?
ns-1535
col : department | total deputies | uninominal deputies | plurinominal deputies | special indigenous or campesino deputies | senators row 1 : la paz | 29 | 14 | 14 | 1 | 4 row 2 : santa cruz | 28 | 14 | 13 | 1 | 4 row 3 : cochabamba | 19 | 9 | 9 | 1 | 4 row 4 : potosi | 13 | 7 | 6 | 0 | 4 row 5 : chuquisaca | 10 | 5 | 5 | 0 | 4 row 6 : oruro | 9 | 4 | 4 | 1 | 4 row 7 : tarija | 9 | 4 | 4 | 1 | 4 row 8 : beni | 8 | 4 | 3 | 1 | 4 row 9 : pando | 5 | 2 | 2 | 1 | 4 row 10 : total | 130 | 63 | 60 | 7 | 36
table_csv/204_246.csv
3
{ "column_index": [ 0 ], "row_index": [ 7 ] }
[ "what are all the departments?", "how many deputies do they have?", "what about just between pando and benji?", "and which of the two has the most?" ]
1
beni
[ "Department", "Total Deputies", "Uninominal Deputies", "Plurinominal Deputies", "Special Indigenous or Campesino Deputies", "Senators" ]
and which of the two has the most?
[ [ "La Paz", "29", "14", "14", "1", "4" ], [ "Santa Cruz", "28", "14", "13", "1", "4" ], [ "Cochabamba", "19", "9", "9", "1", "4" ], [ "Potosi", "13", "7", "6", "0", "4" ], [ "Chuquisaca", "10", "5", "5", "0", "4" ], [ "Oruro", "9", "4", "4", "1", "4" ], [ "Tarija", "9", "4", "4", "1", "4" ], [ "Beni", "8", "4", "3", "1", "4" ], [ "Pando", "5", "2", "2", "1", "4" ], [ "Total", "130", "63", "60", "7", "36" ] ]
[ "Beni" ]
and which of the two has the most? || what about just between pando and benji? | how many deputies do they have? | what are all the departments?
ns-1535
col : department | total deputies | uninominal deputies | plurinominal deputies | special indigenous or campesino deputies | senators row 1 : la paz | 29 | 14 | 14 | 1 | 4 row 2 : santa cruz | 28 | 14 | 13 | 1 | 4 row 3 : cochabamba | 19 | 9 | 9 | 1 | 4 row 4 : potosi | 13 | 7 | 6 | 0 | 4 row 5 : chuquisaca | 10 | 5 | 5 | 0 | 4 row 6 : oruro | 9 | 4 | 4 | 1 | 4 row 7 : tarija | 9 | 4 | 4 | 1 | 4 row 8 : beni | 8 | 4 | 3 | 1 | 4 row 9 : pando | 5 | 2 | 2 | 1 | 4 row 10 : total | 130 | 63 | 60 | 7 | 36
table_csv/204_246.csv
0
{ "column_index": [ 0, 0, 0, 0, 0, 0, 0, 0, 0 ], "row_index": [ 0, 1, 2, 3, 4, 5, 6, 7, 8 ] }
[ "what are all the departments?" ]
2
la paz, santa cruz, cochabamba, potosi, chuquisaca, oruro, tarija, beni, pando
[ "Department", "Total Deputies", "Uninominal Deputies", "Plurinominal Deputies", "Special Indigenous or Campesino Deputies", "Senators" ]
what are all the departments?
[ [ "La Paz", "29", "14", "14", "1", "4" ], [ "Santa Cruz", "28", "14", "13", "1", "4" ], [ "Cochabamba", "19", "9", "9", "1", "4" ], [ "Potosi", "13", "7", "6", "0", "4" ], [ "Chuquisaca", "10", "5", "5", "0", "4" ], [ "Oruro", "9", "4", "4", "1", "4" ], [ "Tarija", "9", "4", "4", "1", "4" ], [ "Beni", "8", "4", "3", "1", "4" ], [ "Pando", "5", "2", "2", "1", "4" ], [ "Total", "130", "63", "60", "7", "36" ] ]
[ "La Paz", "Santa Cruz", "Cochabamba", "Potosi", "Chuquisaca", "Oruro", "Tarija", "Beni", "Pando" ]
what are all the departments? ||
ns-1535
col : department | total deputies | uninominal deputies | plurinominal deputies | special indigenous or campesino deputies | senators row 1 : la paz | 29 | 14 | 14 | 1 | 4 row 2 : santa cruz | 28 | 14 | 13 | 1 | 4 row 3 : cochabamba | 19 | 9 | 9 | 1 | 4 row 4 : potosi | 13 | 7 | 6 | 0 | 4 row 5 : chuquisaca | 10 | 5 | 5 | 0 | 4 row 6 : oruro | 9 | 4 | 4 | 1 | 4 row 7 : tarija | 9 | 4 | 4 | 1 | 4 row 8 : beni | 8 | 4 | 3 | 1 | 4 row 9 : pando | 5 | 2 | 2 | 1 | 4 row 10 : total | 130 | 63 | 60 | 7 | 36
table_csv/204_246.csv
1
{ "column_index": [ 0, 0 ], "row_index": [ 7, 8 ] }
[ "what are all the departments?", "which are pando and benji?" ]
2
beni, pando
[ "Department", "Total Deputies", "Uninominal Deputies", "Plurinominal Deputies", "Special Indigenous or Campesino Deputies", "Senators" ]
which are pando and benji?
[ [ "La Paz", "29", "14", "14", "1", "4" ], [ "Santa Cruz", "28", "14", "13", "1", "4" ], [ "Cochabamba", "19", "9", "9", "1", "4" ], [ "Potosi", "13", "7", "6", "0", "4" ], [ "Chuquisaca", "10", "5", "5", "0", "4" ], [ "Oruro", "9", "4", "4", "1", "4" ], [ "Tarija", "9", "4", "4", "1", "4" ], [ "Beni", "8", "4", "3", "1", "4" ], [ "Pando", "5", "2", "2", "1", "4" ], [ "Total", "130", "63", "60", "7", "36" ] ]
[ "Beni", "Pando" ]
which are pando and benji? || what are all the departments?
ns-1535
col : department | total deputies | uninominal deputies | plurinominal deputies | special indigenous or campesino deputies | senators row 1 : la paz | 29 | 14 | 14 | 1 | 4 row 2 : santa cruz | 28 | 14 | 13 | 1 | 4 row 3 : cochabamba | 19 | 9 | 9 | 1 | 4 row 4 : potosi | 13 | 7 | 6 | 0 | 4 row 5 : chuquisaca | 10 | 5 | 5 | 0 | 4 row 6 : oruro | 9 | 4 | 4 | 1 | 4 row 7 : tarija | 9 | 4 | 4 | 1 | 4 row 8 : beni | 8 | 4 | 3 | 1 | 4 row 9 : pando | 5 | 2 | 2 | 1 | 4 row 10 : total | 130 | 63 | 60 | 7 | 36
table_csv/204_246.csv
2
{ "column_index": [ 0 ], "row_index": [ 7 ] }
[ "what are all the departments?", "which are pando and benji?", "of those, which has a larger amount of total deputies?" ]
2
beni
[ "Department", "Total Deputies", "Uninominal Deputies", "Plurinominal Deputies", "Special Indigenous or Campesino Deputies", "Senators" ]
of those, which has a larger amount of total deputies?
[ [ "La Paz", "29", "14", "14", "1", "4" ], [ "Santa Cruz", "28", "14", "13", "1", "4" ], [ "Cochabamba", "19", "9", "9", "1", "4" ], [ "Potosi", "13", "7", "6", "0", "4" ], [ "Chuquisaca", "10", "5", "5", "0", "4" ], [ "Oruro", "9", "4", "4", "1", "4" ], [ "Tarija", "9", "4", "4", "1", "4" ], [ "Beni", "8", "4", "3", "1", "4" ], [ "Pando", "5", "2", "2", "1", "4" ], [ "Total", "130", "63", "60", "7", "36" ] ]
[ "Beni" ]
of those, which has a larger amount of total deputies? || which are pando and benji? | what are all the departments?
nt-11050
col : rank | nation | gold | silver | bronze | total row 1 : 1 | south korea | 7 | 6 | 1 | 14 row 2 : 2 | china | 5 | 5 | 2 | 12 row 3 : 3 | japan | 3 | 1 | 5 | 9 row 4 : 4 | hong kong | 2 | 3 | 5 | 10 row 5 : 5 | chinese taipei | 2 | 0 | 0 | 2 row 6 : 6 | iran | 1 | 3 | 2 | 6 row 7 : 7 | thailand | 1 | 2 | 3 | 6 row 8 : 8 | malaysia | 1 | 1 | 5 | 7 row 9 : 9 | kyrgyzstan | 1 | 0 | 0 | 1 row 10 : 10 | kazakhstan | 0 | 1 | 0 | 1 row 11 : 10 | uzbekistan | 0 | 1 | 0 | 1 row 12 : total | total | 23 | 23 | 23 | 69
table_csv/204_775.csv
0
{ "column_index": [ 5 ], "row_index": [ 0 ] }
[ "what is the greatest total number of medals won by a nation?" ]
0
14
[ "Rank", "Nation", "Gold", "Silver", "Bronze", "Total" ]
what is the greatest total number of medals won by a nation?
[ [ "1", "South Korea", "7", "6", "1", "14" ], [ "2", "China", "5", "5", "2", "12" ], [ "3", "Japan", "3", "1", "5", "9" ], [ "4", "Hong Kong", "2", "3", "5", "10" ], [ "5", "Chinese Taipei", "2", "0", "0", "2" ], [ "6", "Iran", "1", "3", "2", "6" ], [ "7", "Thailand", "1", "2", "3", "6" ], [ "8", "Malaysia", "1", "1", "5", "7" ], [ "9", "Kyrgyzstan", "1", "0", "0", "1" ], [ "10", "Kazakhstan", "0", "1", "0", "1" ], [ "10", "Uzbekistan", "0", "1", "0", "1" ], [ "Total", "Total", "23", "23", "23", "69" ] ]
[ "14" ]
what is the greatest total number of medals won by a nation? ||
nt-11050
col : rank | nation | gold | silver | bronze | total row 1 : 1 | south korea | 7 | 6 | 1 | 14 row 2 : 2 | china | 5 | 5 | 2 | 12 row 3 : 3 | japan | 3 | 1 | 5 | 9 row 4 : 4 | hong kong | 2 | 3 | 5 | 10 row 5 : 5 | chinese taipei | 2 | 0 | 0 | 2 row 6 : 6 | iran | 1 | 3 | 2 | 6 row 7 : 7 | thailand | 1 | 2 | 3 | 6 row 8 : 8 | malaysia | 1 | 1 | 5 | 7 row 9 : 9 | kyrgyzstan | 1 | 0 | 0 | 1 row 10 : 10 | kazakhstan | 0 | 1 | 0 | 1 row 11 : 10 | uzbekistan | 0 | 1 | 0 | 1 row 12 : total | total | 23 | 23 | 23 | 69
table_csv/204_775.csv
1
{ "column_index": [ 1 ], "row_index": [ 0 ] }
[ "what is the greatest total number of medals won by a nation?", "who won those medals?" ]
0
south korea
[ "Rank", "Nation", "Gold", "Silver", "Bronze", "Total" ]
who won those medals?
[ [ "1", "South Korea", "7", "6", "1", "14" ], [ "2", "China", "5", "5", "2", "12" ], [ "3", "Japan", "3", "1", "5", "9" ], [ "4", "Hong Kong", "2", "3", "5", "10" ], [ "5", "Chinese Taipei", "2", "0", "0", "2" ], [ "6", "Iran", "1", "3", "2", "6" ], [ "7", "Thailand", "1", "2", "3", "6" ], [ "8", "Malaysia", "1", "1", "5", "7" ], [ "9", "Kyrgyzstan", "1", "0", "0", "1" ], [ "10", "Kazakhstan", "0", "1", "0", "1" ], [ "10", "Uzbekistan", "0", "1", "0", "1" ], [ "Total", "Total", "23", "23", "23", "69" ] ]
[ "South Korea" ]
who won those medals? || what is the greatest total number of medals won by a nation?
nt-11050
col : rank | nation | gold | silver | bronze | total row 1 : 1 | south korea | 7 | 6 | 1 | 14 row 2 : 2 | china | 5 | 5 | 2 | 12 row 3 : 3 | japan | 3 | 1 | 5 | 9 row 4 : 4 | hong kong | 2 | 3 | 5 | 10 row 5 : 5 | chinese taipei | 2 | 0 | 0 | 2 row 6 : 6 | iran | 1 | 3 | 2 | 6 row 7 : 7 | thailand | 1 | 2 | 3 | 6 row 8 : 8 | malaysia | 1 | 1 | 5 | 7 row 9 : 9 | kyrgyzstan | 1 | 0 | 0 | 1 row 10 : 10 | kazakhstan | 0 | 1 | 0 | 1 row 11 : 10 | uzbekistan | 0 | 1 | 0 | 1 row 12 : total | total | 23 | 23 | 23 | 69
table_csv/204_775.csv
0
{ "column_index": [ 1, 1, 1, 1, 1, 1, 1, 1, 1 ], "row_index": [ 0, 1, 2, 3, 4, 5, 6, 7, 8 ] }
[ "what nation has won at least a gold medal?" ]
1
south korea, china, japan, hong kong, chinese taipei, iran, thailand, malaysia, kyrgyzstan
[ "Rank", "Nation", "Gold", "Silver", "Bronze", "Total" ]
what nation has won at least a gold medal?
[ [ "1", "South Korea", "7", "6", "1", "14" ], [ "2", "China", "5", "5", "2", "12" ], [ "3", "Japan", "3", "1", "5", "9" ], [ "4", "Hong Kong", "2", "3", "5", "10" ], [ "5", "Chinese Taipei", "2", "0", "0", "2" ], [ "6", "Iran", "1", "3", "2", "6" ], [ "7", "Thailand", "1", "2", "3", "6" ], [ "8", "Malaysia", "1", "1", "5", "7" ], [ "9", "Kyrgyzstan", "1", "0", "0", "1" ], [ "10", "Kazakhstan", "0", "1", "0", "1" ], [ "10", "Uzbekistan", "0", "1", "0", "1" ], [ "Total", "Total", "23", "23", "23", "69" ] ]
[ "South Korea", "China", "Japan", "Hong Kong", "Chinese Taipei", "Iran", "Thailand", "Malaysia", "Kyrgyzstan" ]
what nation has won at least a gold medal? ||
nt-11050
col : rank | nation | gold | silver | bronze | total row 1 : 1 | south korea | 7 | 6 | 1 | 14 row 2 : 2 | china | 5 | 5 | 2 | 12 row 3 : 3 | japan | 3 | 1 | 5 | 9 row 4 : 4 | hong kong | 2 | 3 | 5 | 10 row 5 : 5 | chinese taipei | 2 | 0 | 0 | 2 row 6 : 6 | iran | 1 | 3 | 2 | 6 row 7 : 7 | thailand | 1 | 2 | 3 | 6 row 8 : 8 | malaysia | 1 | 1 | 5 | 7 row 9 : 9 | kyrgyzstan | 1 | 0 | 0 | 1 row 10 : 10 | kazakhstan | 0 | 1 | 0 | 1 row 11 : 10 | uzbekistan | 0 | 1 | 0 | 1 row 12 : total | total | 23 | 23 | 23 | 69
table_csv/204_775.csv
1
{ "column_index": [ 1, 1, 1, 1, 1, 1, 1 ], "row_index": [ 0, 1, 2, 3, 5, 6, 7 ] }
[ "what nation has won at least a gold medal?", "of these nations who has won at least a silver medal?" ]
1
south korea, china, japan, hong kong, iran, thailand, malaysia
[ "Rank", "Nation", "Gold", "Silver", "Bronze", "Total" ]
of these nations who has won at least a silver medal?
[ [ "1", "South Korea", "7", "6", "1", "14" ], [ "2", "China", "5", "5", "2", "12" ], [ "3", "Japan", "3", "1", "5", "9" ], [ "4", "Hong Kong", "2", "3", "5", "10" ], [ "5", "Chinese Taipei", "2", "0", "0", "2" ], [ "6", "Iran", "1", "3", "2", "6" ], [ "7", "Thailand", "1", "2", "3", "6" ], [ "8", "Malaysia", "1", "1", "5", "7" ], [ "9", "Kyrgyzstan", "1", "0", "0", "1" ], [ "10", "Kazakhstan", "0", "1", "0", "1" ], [ "10", "Uzbekistan", "0", "1", "0", "1" ], [ "Total", "Total", "23", "23", "23", "69" ] ]
[ "South Korea", "China", "Japan", "Hong Kong", "Iran", "Thailand", "Malaysia" ]
of these nations who has won at least a silver medal? || what nation has won at least a gold medal?
nt-11050
col : rank | nation | gold | silver | bronze | total row 1 : 1 | south korea | 7 | 6 | 1 | 14 row 2 : 2 | china | 5 | 5 | 2 | 12 row 3 : 3 | japan | 3 | 1 | 5 | 9 row 4 : 4 | hong kong | 2 | 3 | 5 | 10 row 5 : 5 | chinese taipei | 2 | 0 | 0 | 2 row 6 : 6 | iran | 1 | 3 | 2 | 6 row 7 : 7 | thailand | 1 | 2 | 3 | 6 row 8 : 8 | malaysia | 1 | 1 | 5 | 7 row 9 : 9 | kyrgyzstan | 1 | 0 | 0 | 1 row 10 : 10 | kazakhstan | 0 | 1 | 0 | 1 row 11 : 10 | uzbekistan | 0 | 1 | 0 | 1 row 12 : total | total | 23 | 23 | 23 | 69
table_csv/204_775.csv
2
{ "column_index": [ 1, 1, 1 ], "row_index": [ 0, 1, 3 ] }
[ "what nation has won at least a gold medal?", "of these nations who has won at least a silver medal?", "of these nations who has won at least 10 medals total?" ]
1
south korea, china, hong kong
[ "Rank", "Nation", "Gold", "Silver", "Bronze", "Total" ]
of these nations who has won at least 10 medals total?
[ [ "1", "South Korea", "7", "6", "1", "14" ], [ "2", "China", "5", "5", "2", "12" ], [ "3", "Japan", "3", "1", "5", "9" ], [ "4", "Hong Kong", "2", "3", "5", "10" ], [ "5", "Chinese Taipei", "2", "0", "0", "2" ], [ "6", "Iran", "1", "3", "2", "6" ], [ "7", "Thailand", "1", "2", "3", "6" ], [ "8", "Malaysia", "1", "1", "5", "7" ], [ "9", "Kyrgyzstan", "1", "0", "0", "1" ], [ "10", "Kazakhstan", "0", "1", "0", "1" ], [ "10", "Uzbekistan", "0", "1", "0", "1" ], [ "Total", "Total", "23", "23", "23", "69" ] ]
[ "South Korea", "China", "Hong Kong" ]
of these nations who has won at least 10 medals total? || of these nations who has won at least a silver medal? | what nation has won at least a gold medal?
nt-11050
col : rank | nation | gold | silver | bronze | total row 1 : 1 | south korea | 7 | 6 | 1 | 14 row 2 : 2 | china | 5 | 5 | 2 | 12 row 3 : 3 | japan | 3 | 1 | 5 | 9 row 4 : 4 | hong kong | 2 | 3 | 5 | 10 row 5 : 5 | chinese taipei | 2 | 0 | 0 | 2 row 6 : 6 | iran | 1 | 3 | 2 | 6 row 7 : 7 | thailand | 1 | 2 | 3 | 6 row 8 : 8 | malaysia | 1 | 1 | 5 | 7 row 9 : 9 | kyrgyzstan | 1 | 0 | 0 | 1 row 10 : 10 | kazakhstan | 0 | 1 | 0 | 1 row 11 : 10 | uzbekistan | 0 | 1 | 0 | 1 row 12 : total | total | 23 | 23 | 23 | 69
table_csv/204_775.csv
3
{ "column_index": [ 1 ], "row_index": [ 0 ] }
[ "what nation has won at least a gold medal?", "of these nations who has won at least a silver medal?", "of these nations who has won at least 10 medals total?", "of these nations who has the most medals?" ]
1
south korea
[ "Rank", "Nation", "Gold", "Silver", "Bronze", "Total" ]
of these nations who has the most medals?
[ [ "1", "South Korea", "7", "6", "1", "14" ], [ "2", "China", "5", "5", "2", "12" ], [ "3", "Japan", "3", "1", "5", "9" ], [ "4", "Hong Kong", "2", "3", "5", "10" ], [ "5", "Chinese Taipei", "2", "0", "0", "2" ], [ "6", "Iran", "1", "3", "2", "6" ], [ "7", "Thailand", "1", "2", "3", "6" ], [ "8", "Malaysia", "1", "1", "5", "7" ], [ "9", "Kyrgyzstan", "1", "0", "0", "1" ], [ "10", "Kazakhstan", "0", "1", "0", "1" ], [ "10", "Uzbekistan", "0", "1", "0", "1" ], [ "Total", "Total", "23", "23", "23", "69" ] ]
[ "South Korea" ]
of these nations who has the most medals? || of these nations who has won at least 10 medals total? | of these nations who has won at least a silver medal? | what nation has won at least a gold medal?
nt-11050
col : rank | nation | gold | silver | bronze | total row 1 : 1 | south korea | 7 | 6 | 1 | 14 row 2 : 2 | china | 5 | 5 | 2 | 12 row 3 : 3 | japan | 3 | 1 | 5 | 9 row 4 : 4 | hong kong | 2 | 3 | 5 | 10 row 5 : 5 | chinese taipei | 2 | 0 | 0 | 2 row 6 : 6 | iran | 1 | 3 | 2 | 6 row 7 : 7 | thailand | 1 | 2 | 3 | 6 row 8 : 8 | malaysia | 1 | 1 | 5 | 7 row 9 : 9 | kyrgyzstan | 1 | 0 | 0 | 1 row 10 : 10 | kazakhstan | 0 | 1 | 0 | 1 row 11 : 10 | uzbekistan | 0 | 1 | 0 | 1 row 12 : total | total | 23 | 23 | 23 | 69
table_csv/204_775.csv
0
{ "column_index": [ 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1 ], "row_index": [ 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10 ] }
[ "what were all the nations at the 2011 asian cycling championships?" ]
2
south korea, china, japan, hong kong, chinese taipei, iran, thailand, malaysia, kyrgyzstan, kazakhstan, uzbekistan
[ "Rank", "Nation", "Gold", "Silver", "Bronze", "Total" ]
what were all the nations at the 2011 asian cycling championships?
[ [ "1", "South Korea", "7", "6", "1", "14" ], [ "2", "China", "5", "5", "2", "12" ], [ "3", "Japan", "3", "1", "5", "9" ], [ "4", "Hong Kong", "2", "3", "5", "10" ], [ "5", "Chinese Taipei", "2", "0", "0", "2" ], [ "6", "Iran", "1", "3", "2", "6" ], [ "7", "Thailand", "1", "2", "3", "6" ], [ "8", "Malaysia", "1", "1", "5", "7" ], [ "9", "Kyrgyzstan", "1", "0", "0", "1" ], [ "10", "Kazakhstan", "0", "1", "0", "1" ], [ "10", "Uzbekistan", "0", "1", "0", "1" ], [ "Total", "Total", "23", "23", "23", "69" ] ]
[ "South Korea", "China", "Japan", "Hong Kong", "Chinese Taipei", "Iran", "Thailand", "Malaysia", "Kyrgyzstan", "Kazakhstan", "Uzbekistan" ]
what were all the nations at the 2011 asian cycling championships? ||
nt-11050
col : rank | nation | gold | silver | bronze | total row 1 : 1 | south korea | 7 | 6 | 1 | 14 row 2 : 2 | china | 5 | 5 | 2 | 12 row 3 : 3 | japan | 3 | 1 | 5 | 9 row 4 : 4 | hong kong | 2 | 3 | 5 | 10 row 5 : 5 | chinese taipei | 2 | 0 | 0 | 2 row 6 : 6 | iran | 1 | 3 | 2 | 6 row 7 : 7 | thailand | 1 | 2 | 3 | 6 row 8 : 8 | malaysia | 1 | 1 | 5 | 7 row 9 : 9 | kyrgyzstan | 1 | 0 | 0 | 1 row 10 : 10 | kazakhstan | 0 | 1 | 0 | 1 row 11 : 10 | uzbekistan | 0 | 1 | 0 | 1 row 12 : total | total | 23 | 23 | 23 | 69
table_csv/204_775.csv
1
{ "column_index": [ 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5 ], "row_index": [ 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10 ] }
[ "what were all the nations at the 2011 asian cycling championships?", "what were the medal totals of these nations?" ]
2
14, 12, 9, 10, 2, 6, 6, 7, 1, 1, 1
[ "Rank", "Nation", "Gold", "Silver", "Bronze", "Total" ]
what were the medal totals of these nations?
[ [ "1", "South Korea", "7", "6", "1", "14" ], [ "2", "China", "5", "5", "2", "12" ], [ "3", "Japan", "3", "1", "5", "9" ], [ "4", "Hong Kong", "2", "3", "5", "10" ], [ "5", "Chinese Taipei", "2", "0", "0", "2" ], [ "6", "Iran", "1", "3", "2", "6" ], [ "7", "Thailand", "1", "2", "3", "6" ], [ "8", "Malaysia", "1", "1", "5", "7" ], [ "9", "Kyrgyzstan", "1", "0", "0", "1" ], [ "10", "Kazakhstan", "0", "1", "0", "1" ], [ "10", "Uzbekistan", "0", "1", "0", "1" ], [ "Total", "Total", "23", "23", "23", "69" ] ]
[ "14", "12", "9", "10", "2", "6", "6", "7", "1", "1", "1" ]
what were the medal totals of these nations? || what were all the nations at the 2011 asian cycling championships?
nt-11050
col : rank | nation | gold | silver | bronze | total row 1 : 1 | south korea | 7 | 6 | 1 | 14 row 2 : 2 | china | 5 | 5 | 2 | 12 row 3 : 3 | japan | 3 | 1 | 5 | 9 row 4 : 4 | hong kong | 2 | 3 | 5 | 10 row 5 : 5 | chinese taipei | 2 | 0 | 0 | 2 row 6 : 6 | iran | 1 | 3 | 2 | 6 row 7 : 7 | thailand | 1 | 2 | 3 | 6 row 8 : 8 | malaysia | 1 | 1 | 5 | 7 row 9 : 9 | kyrgyzstan | 1 | 0 | 0 | 1 row 10 : 10 | kazakhstan | 0 | 1 | 0 | 1 row 11 : 10 | uzbekistan | 0 | 1 | 0 | 1 row 12 : total | total | 23 | 23 | 23 | 69
table_csv/204_775.csv
2
{ "column_index": [ 5 ], "row_index": [ 0 ] }
[ "what were all the nations at the 2011 asian cycling championships?", "what were the medal totals of these nations?", "of these, which is the highest medal total?" ]
2
14
[ "Rank", "Nation", "Gold", "Silver", "Bronze", "Total" ]
of these, which is the highest medal total?
[ [ "1", "South Korea", "7", "6", "1", "14" ], [ "2", "China", "5", "5", "2", "12" ], [ "3", "Japan", "3", "1", "5", "9" ], [ "4", "Hong Kong", "2", "3", "5", "10" ], [ "5", "Chinese Taipei", "2", "0", "0", "2" ], [ "6", "Iran", "1", "3", "2", "6" ], [ "7", "Thailand", "1", "2", "3", "6" ], [ "8", "Malaysia", "1", "1", "5", "7" ], [ "9", "Kyrgyzstan", "1", "0", "0", "1" ], [ "10", "Kazakhstan", "0", "1", "0", "1" ], [ "10", "Uzbekistan", "0", "1", "0", "1" ], [ "Total", "Total", "23", "23", "23", "69" ] ]
[ "14" ]
of these, which is the highest medal total? || what were the medal totals of these nations? | what were all the nations at the 2011 asian cycling championships?
nt-11050
col : rank | nation | gold | silver | bronze | total row 1 : 1 | south korea | 7 | 6 | 1 | 14 row 2 : 2 | china | 5 | 5 | 2 | 12 row 3 : 3 | japan | 3 | 1 | 5 | 9 row 4 : 4 | hong kong | 2 | 3 | 5 | 10 row 5 : 5 | chinese taipei | 2 | 0 | 0 | 2 row 6 : 6 | iran | 1 | 3 | 2 | 6 row 7 : 7 | thailand | 1 | 2 | 3 | 6 row 8 : 8 | malaysia | 1 | 1 | 5 | 7 row 9 : 9 | kyrgyzstan | 1 | 0 | 0 | 1 row 10 : 10 | kazakhstan | 0 | 1 | 0 | 1 row 11 : 10 | uzbekistan | 0 | 1 | 0 | 1 row 12 : total | total | 23 | 23 | 23 | 69
table_csv/204_775.csv
3
{ "column_index": [ 1 ], "row_index": [ 0 ] }
[ "what were all the nations at the 2011 asian cycling championships?", "what were the medal totals of these nations?", "of these, which is the highest medal total?", "which country won this medal total?" ]
2
south korea
[ "Rank", "Nation", "Gold", "Silver", "Bronze", "Total" ]
which country won this medal total?
[ [ "1", "South Korea", "7", "6", "1", "14" ], [ "2", "China", "5", "5", "2", "12" ], [ "3", "Japan", "3", "1", "5", "9" ], [ "4", "Hong Kong", "2", "3", "5", "10" ], [ "5", "Chinese Taipei", "2", "0", "0", "2" ], [ "6", "Iran", "1", "3", "2", "6" ], [ "7", "Thailand", "1", "2", "3", "6" ], [ "8", "Malaysia", "1", "1", "5", "7" ], [ "9", "Kyrgyzstan", "1", "0", "0", "1" ], [ "10", "Kazakhstan", "0", "1", "0", "1" ], [ "10", "Uzbekistan", "0", "1", "0", "1" ], [ "Total", "Total", "23", "23", "23", "69" ] ]
[ "South Korea" ]
which country won this medal total? || of these, which is the highest medal total? | what were the medal totals of these nations? | what were all the nations at the 2011 asian cycling championships?
nt-11507
col : position | club | played | points | wins | draws | losses | goals for | goals against | goal difference row 1 : 1 | cordoba cf | 30 | 40 | 16 | 8 | 6 | 48 | 22 | 26 row 2 : 2 | cd malaga | 30 | 38 | 14 | 10 | 6 | 52 | 36 | 16 row 3 : 3 | granada cf | 30 | 36 | 15 | 6 | 9 | 48 | 34 | 14 row 4 : 4 | ud las palmas | 30 | 35 | 15 | 5 | 10 | 47 | 39 | 8 row 5 : 5 | recreativo de huelva | 30 | 33 | 13 | 7 | 10 | 43 | 42 | 1 row 6 : 6 | levante ud | 30 | 32 | 14 | 4 | 12 | 49 | 42 | 7 row 7 : 7 | hercules cf | 30 | 32 | 14 | 4 | 12 | 55 | 46 | 9 row 8 : 8 | real murcia | 30 | 31 | 12 | 7 | 11 | 40 | 35 | 5 row 9 : 9 | real jaen | 30 | 31 | 14 | 3 | 13 | 58 | 42 | 16 row 10 : 10 | cadiz cf | 30 | 28 | 12 | 4 | 14 | 43 | 52 | -9 row 11 : 11 | cd cartagena | 30 | 28 | 13 | 2 | 15 | 45 | 56 | -11 row 12 : 12 | cd mestalla | 30 | 27 | 11 | 5 | 14 | 50 | 49 | 1 row 13 : 13 | albacete balompie | 30 | 27 | 10 | 7 | 13 | 27 | 32 | -5 row 14 : 14 | cd san fernando | 30 | 27 | 11 | 5 | 14 | 37 | 47 | -10 row 15 : 15 | atletico ceuta | 30 | 23 | 8 | 7 | 15 | 33 | 48 | -15 row 16 : 16 | cd villarrobledo | 30 | 12 | 4 | 4 | 22 | 26 | 79 | -53
table_csv/204_135.csv
0
{ "column_index": [ 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1 ], "row_index": [ 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15 ] }
[ "what where the clubs in the 1961-62 segunda division?" ]
0
cordoba cf, cd malaga, granada cf, ud las palmas, recreativo de huelva, levante ud, hercules cf, real murcia, real jaen, cadiz cf, cd cartagena, cd mestalla, albacete balompie, cd san fernando, atletico ceuta, cd villarrobledo
[ "Position", "Club", "Played", "Points", "Wins", "Draws", "Losses", "Goals for", "Goals against", "Goal Difference" ]
what where the clubs in the 1961-62 segunda division?
[ [ "1", "Cordoba CF", "30", "40", "16", "8", "6", "48", "22", "26" ], [ "2", "CD Malaga", "30", "38", "14", "10", "6", "52", "36", "16" ], [ "3", "Granada CF", "30", "36", "15", "6", "9", "48", "34", "14" ], [ "4", "UD Las Palmas", "30", "35", "15", "5", "10", "47", "39", "8" ], [ "5", "Recreativo de Huelva", "30", "33", "13", "7", "10", "43", "42", "1" ], [ "6", "Levante UD", "30", "32", "14", "4", "12", "49", "42", "7" ], [ "7", "Hercules CF", "30", "32", "14", "4", "12", "55", "46", "9" ], [ "8", "Real Murcia", "30", "31", "12", "7", "11", "40", "35", "5" ], [ "9", "Real Jaen", "30", "31", "14", "3", "13", "58", "42", "16" ], [ "10", "Cadiz CF", "30", "28", "12", "4", "14", "43", "52", "-9" ], [ "11", "CD Cartagena", "30", "28", "13", "2", "15", "45", "56", "-11" ], [ "12", "CD Mestalla", "30", "27", "11", "5", "14", "50", "49", "1" ], [ "13", "Albacete Balompie", "30", "27", "10", "7", "13", "27", "32", "-5" ], [ "14", "CD San Fernando", "30", "27", "11", "5", "14", "37", "47", "-10" ], [ "15", "Atletico Ceuta", "30", "23", "8", "7", "15", "33", "48", "-15" ], [ "16", "CD Villarrobledo", "30", "12", "4", "4", "22", "26", "79", "-53" ] ]
[ "Cordoba CF", "CD Malaga", "Granada CF", "UD Las Palmas", "Recreativo de Huelva", "Levante UD", "Hercules CF", "Real Murcia", "Real Jaen", "Cadiz CF", "CD Cartagena", "CD Mestalla", "Albacete Balompie", "CD San Fernando", "Atletico Ceuta", "CD Villarrobledo" ]
what where the clubs in the 1961-62 segunda division? ||
nt-11507
col : position | club | played | points | wins | draws | losses | goals for | goals against | goal difference row 1 : 1 | cordoba cf | 30 | 40 | 16 | 8 | 6 | 48 | 22 | 26 row 2 : 2 | cd malaga | 30 | 38 | 14 | 10 | 6 | 52 | 36 | 16 row 3 : 3 | granada cf | 30 | 36 | 15 | 6 | 9 | 48 | 34 | 14 row 4 : 4 | ud las palmas | 30 | 35 | 15 | 5 | 10 | 47 | 39 | 8 row 5 : 5 | recreativo de huelva | 30 | 33 | 13 | 7 | 10 | 43 | 42 | 1 row 6 : 6 | levante ud | 30 | 32 | 14 | 4 | 12 | 49 | 42 | 7 row 7 : 7 | hercules cf | 30 | 32 | 14 | 4 | 12 | 55 | 46 | 9 row 8 : 8 | real murcia | 30 | 31 | 12 | 7 | 11 | 40 | 35 | 5 row 9 : 9 | real jaen | 30 | 31 | 14 | 3 | 13 | 58 | 42 | 16 row 10 : 10 | cadiz cf | 30 | 28 | 12 | 4 | 14 | 43 | 52 | -9 row 11 : 11 | cd cartagena | 30 | 28 | 13 | 2 | 15 | 45 | 56 | -11 row 12 : 12 | cd mestalla | 30 | 27 | 11 | 5 | 14 | 50 | 49 | 1 row 13 : 13 | albacete balompie | 30 | 27 | 10 | 7 | 13 | 27 | 32 | -5 row 14 : 14 | cd san fernando | 30 | 27 | 11 | 5 | 14 | 37 | 47 | -10 row 15 : 15 | atletico ceuta | 30 | 23 | 8 | 7 | 15 | 33 | 48 | -15 row 16 : 16 | cd villarrobledo | 30 | 12 | 4 | 4 | 22 | 26 | 79 | -53
table_csv/204_135.csv
1
{ "column_index": [ 1 ], "row_index": [ 15 ] }
[ "what where the clubs in the 1961-62 segunda division?", "which of these teams had the worst goal difference out of all?" ]
0
cd villarrobledo
[ "Position", "Club", "Played", "Points", "Wins", "Draws", "Losses", "Goals for", "Goals against", "Goal Difference" ]
which of these teams had the worst goal difference out of all?
[ [ "1", "Cordoba CF", "30", "40", "16", "8", "6", "48", "22", "26" ], [ "2", "CD Malaga", "30", "38", "14", "10", "6", "52", "36", "16" ], [ "3", "Granada CF", "30", "36", "15", "6", "9", "48", "34", "14" ], [ "4", "UD Las Palmas", "30", "35", "15", "5", "10", "47", "39", "8" ], [ "5", "Recreativo de Huelva", "30", "33", "13", "7", "10", "43", "42", "1" ], [ "6", "Levante UD", "30", "32", "14", "4", "12", "49", "42", "7" ], [ "7", "Hercules CF", "30", "32", "14", "4", "12", "55", "46", "9" ], [ "8", "Real Murcia", "30", "31", "12", "7", "11", "40", "35", "5" ], [ "9", "Real Jaen", "30", "31", "14", "3", "13", "58", "42", "16" ], [ "10", "Cadiz CF", "30", "28", "12", "4", "14", "43", "52", "-9" ], [ "11", "CD Cartagena", "30", "28", "13", "2", "15", "45", "56", "-11" ], [ "12", "CD Mestalla", "30", "27", "11", "5", "14", "50", "49", "1" ], [ "13", "Albacete Balompie", "30", "27", "10", "7", "13", "27", "32", "-5" ], [ "14", "CD San Fernando", "30", "27", "11", "5", "14", "37", "47", "-10" ], [ "15", "Atletico Ceuta", "30", "23", "8", "7", "15", "33", "48", "-15" ], [ "16", "CD Villarrobledo", "30", "12", "4", "4", "22", "26", "79", "-53" ] ]
[ "CD Villarrobledo" ]
which of these teams had the worst goal difference out of all? || what where the clubs in the 1961-62 segunda division?
nt-11507
col : position | club | played | points | wins | draws | losses | goals for | goals against | goal difference row 1 : 1 | cordoba cf | 30 | 40 | 16 | 8 | 6 | 48 | 22 | 26 row 2 : 2 | cd malaga | 30 | 38 | 14 | 10 | 6 | 52 | 36 | 16 row 3 : 3 | granada cf | 30 | 36 | 15 | 6 | 9 | 48 | 34 | 14 row 4 : 4 | ud las palmas | 30 | 35 | 15 | 5 | 10 | 47 | 39 | 8 row 5 : 5 | recreativo de huelva | 30 | 33 | 13 | 7 | 10 | 43 | 42 | 1 row 6 : 6 | levante ud | 30 | 32 | 14 | 4 | 12 | 49 | 42 | 7 row 7 : 7 | hercules cf | 30 | 32 | 14 | 4 | 12 | 55 | 46 | 9 row 8 : 8 | real murcia | 30 | 31 | 12 | 7 | 11 | 40 | 35 | 5 row 9 : 9 | real jaen | 30 | 31 | 14 | 3 | 13 | 58 | 42 | 16 row 10 : 10 | cadiz cf | 30 | 28 | 12 | 4 | 14 | 43 | 52 | -9 row 11 : 11 | cd cartagena | 30 | 28 | 13 | 2 | 15 | 45 | 56 | -11 row 12 : 12 | cd mestalla | 30 | 27 | 11 | 5 | 14 | 50 | 49 | 1 row 13 : 13 | albacete balompie | 30 | 27 | 10 | 7 | 13 | 27 | 32 | -5 row 14 : 14 | cd san fernando | 30 | 27 | 11 | 5 | 14 | 37 | 47 | -10 row 15 : 15 | atletico ceuta | 30 | 23 | 8 | 7 | 15 | 33 | 48 | -15 row 16 : 16 | cd villarrobledo | 30 | 12 | 4 | 4 | 22 | 26 | 79 | -53
table_csv/204_135.csv
0
{ "column_index": [ 1 ], "row_index": [ 0 ] }
[ "who had a goal difference of +28?" ]
1
cordoba cf
[ "Position", "Club", "Played", "Points", "Wins", "Draws", "Losses", "Goals for", "Goals against", "Goal Difference" ]
who had a goal difference of +28?
[ [ "1", "Cordoba CF", "30", "40", "16", "8", "6", "48", "22", "26" ], [ "2", "CD Malaga", "30", "38", "14", "10", "6", "52", "36", "16" ], [ "3", "Granada CF", "30", "36", "15", "6", "9", "48", "34", "14" ], [ "4", "UD Las Palmas", "30", "35", "15", "5", "10", "47", "39", "8" ], [ "5", "Recreativo de Huelva", "30", "33", "13", "7", "10", "43", "42", "1" ], [ "6", "Levante UD", "30", "32", "14", "4", "12", "49", "42", "7" ], [ "7", "Hercules CF", "30", "32", "14", "4", "12", "55", "46", "9" ], [ "8", "Real Murcia", "30", "31", "12", "7", "11", "40", "35", "5" ], [ "9", "Real Jaen", "30", "31", "14", "3", "13", "58", "42", "16" ], [ "10", "Cadiz CF", "30", "28", "12", "4", "14", "43", "52", "-9" ], [ "11", "CD Cartagena", "30", "28", "13", "2", "15", "45", "56", "-11" ], [ "12", "CD Mestalla", "30", "27", "11", "5", "14", "50", "49", "1" ], [ "13", "Albacete Balompie", "30", "27", "10", "7", "13", "27", "32", "-5" ], [ "14", "CD San Fernando", "30", "27", "11", "5", "14", "37", "47", "-10" ], [ "15", "Atletico Ceuta", "30", "23", "8", "7", "15", "33", "48", "-15" ], [ "16", "CD Villarrobledo", "30", "12", "4", "4", "22", "26", "79", "-53" ] ]
[ "Cordoba CF" ]
who had a goal difference of +28? ||
nt-11507
col : position | club | played | points | wins | draws | losses | goals for | goals against | goal difference row 1 : 1 | cordoba cf | 30 | 40 | 16 | 8 | 6 | 48 | 22 | 26 row 2 : 2 | cd malaga | 30 | 38 | 14 | 10 | 6 | 52 | 36 | 16 row 3 : 3 | granada cf | 30 | 36 | 15 | 6 | 9 | 48 | 34 | 14 row 4 : 4 | ud las palmas | 30 | 35 | 15 | 5 | 10 | 47 | 39 | 8 row 5 : 5 | recreativo de huelva | 30 | 33 | 13 | 7 | 10 | 43 | 42 | 1 row 6 : 6 | levante ud | 30 | 32 | 14 | 4 | 12 | 49 | 42 | 7 row 7 : 7 | hercules cf | 30 | 32 | 14 | 4 | 12 | 55 | 46 | 9 row 8 : 8 | real murcia | 30 | 31 | 12 | 7 | 11 | 40 | 35 | 5 row 9 : 9 | real jaen | 30 | 31 | 14 | 3 | 13 | 58 | 42 | 16 row 10 : 10 | cadiz cf | 30 | 28 | 12 | 4 | 14 | 43 | 52 | -9 row 11 : 11 | cd cartagena | 30 | 28 | 13 | 2 | 15 | 45 | 56 | -11 row 12 : 12 | cd mestalla | 30 | 27 | 11 | 5 | 14 | 50 | 49 | 1 row 13 : 13 | albacete balompie | 30 | 27 | 10 | 7 | 13 | 27 | 32 | -5 row 14 : 14 | cd san fernando | 30 | 27 | 11 | 5 | 14 | 37 | 47 | -10 row 15 : 15 | atletico ceuta | 30 | 23 | 8 | 7 | 15 | 33 | 48 | -15 row 16 : 16 | cd villarrobledo | 30 | 12 | 4 | 4 | 22 | 26 | 79 | -53
table_csv/204_135.csv
1
{ "column_index": [ 1 ], "row_index": [ 4 ] }
[ "who had a goal difference of +28?", "who had the best goal difference?" ]
1
recreativo de huelva
[ "Position", "Club", "Played", "Points", "Wins", "Draws", "Losses", "Goals for", "Goals against", "Goal Difference" ]
who had the best goal difference?
[ [ "1", "Cordoba CF", "30", "40", "16", "8", "6", "48", "22", "26" ], [ "2", "CD Malaga", "30", "38", "14", "10", "6", "52", "36", "16" ], [ "3", "Granada CF", "30", "36", "15", "6", "9", "48", "34", "14" ], [ "4", "UD Las Palmas", "30", "35", "15", "5", "10", "47", "39", "8" ], [ "5", "Recreativo de Huelva", "30", "33", "13", "7", "10", "43", "42", "1" ], [ "6", "Levante UD", "30", "32", "14", "4", "12", "49", "42", "7" ], [ "7", "Hercules CF", "30", "32", "14", "4", "12", "55", "46", "9" ], [ "8", "Real Murcia", "30", "31", "12", "7", "11", "40", "35", "5" ], [ "9", "Real Jaen", "30", "31", "14", "3", "13", "58", "42", "16" ], [ "10", "Cadiz CF", "30", "28", "12", "4", "14", "43", "52", "-9" ], [ "11", "CD Cartagena", "30", "28", "13", "2", "15", "45", "56", "-11" ], [ "12", "CD Mestalla", "30", "27", "11", "5", "14", "50", "49", "1" ], [ "13", "Albacete Balompie", "30", "27", "10", "7", "13", "27", "32", "-5" ], [ "14", "CD San Fernando", "30", "27", "11", "5", "14", "37", "47", "-10" ], [ "15", "Atletico Ceuta", "30", "23", "8", "7", "15", "33", "48", "-15" ], [ "16", "CD Villarrobledo", "30", "12", "4", "4", "22", "26", "79", "-53" ] ]
[ "Recreativo de Huelva" ]
who had the best goal difference? || who had a goal difference of +28?
nt-11507
col : position | club | played | points | wins | draws | losses | goals for | goals against | goal difference row 1 : 1 | cordoba cf | 30 | 40 | 16 | 8 | 6 | 48 | 22 | 26 row 2 : 2 | cd malaga | 30 | 38 | 14 | 10 | 6 | 52 | 36 | 16 row 3 : 3 | granada cf | 30 | 36 | 15 | 6 | 9 | 48 | 34 | 14 row 4 : 4 | ud las palmas | 30 | 35 | 15 | 5 | 10 | 47 | 39 | 8 row 5 : 5 | recreativo de huelva | 30 | 33 | 13 | 7 | 10 | 43 | 42 | 1 row 6 : 6 | levante ud | 30 | 32 | 14 | 4 | 12 | 49 | 42 | 7 row 7 : 7 | hercules cf | 30 | 32 | 14 | 4 | 12 | 55 | 46 | 9 row 8 : 8 | real murcia | 30 | 31 | 12 | 7 | 11 | 40 | 35 | 5 row 9 : 9 | real jaen | 30 | 31 | 14 | 3 | 13 | 58 | 42 | 16 row 10 : 10 | cadiz cf | 30 | 28 | 12 | 4 | 14 | 43 | 52 | -9 row 11 : 11 | cd cartagena | 30 | 28 | 13 | 2 | 15 | 45 | 56 | -11 row 12 : 12 | cd mestalla | 30 | 27 | 11 | 5 | 14 | 50 | 49 | 1 row 13 : 13 | albacete balompie | 30 | 27 | 10 | 7 | 13 | 27 | 32 | -5 row 14 : 14 | cd san fernando | 30 | 27 | 11 | 5 | 14 | 37 | 47 | -10 row 15 : 15 | atletico ceuta | 30 | 23 | 8 | 7 | 15 | 33 | 48 | -15 row 16 : 16 | cd villarrobledo | 30 | 12 | 4 | 4 | 22 | 26 | 79 | -53
table_csv/204_135.csv
2
{ "column_index": [ 1 ], "row_index": [ 15 ] }
[ "who had a goal difference of +28?", "who had the best goal difference?", "who had the worse goal difference?" ]
1
cd villarrobledo
[ "Position", "Club", "Played", "Points", "Wins", "Draws", "Losses", "Goals for", "Goals against", "Goal Difference" ]
who had the worse goal difference?
[ [ "1", "Cordoba CF", "30", "40", "16", "8", "6", "48", "22", "26" ], [ "2", "CD Malaga", "30", "38", "14", "10", "6", "52", "36", "16" ], [ "3", "Granada CF", "30", "36", "15", "6", "9", "48", "34", "14" ], [ "4", "UD Las Palmas", "30", "35", "15", "5", "10", "47", "39", "8" ], [ "5", "Recreativo de Huelva", "30", "33", "13", "7", "10", "43", "42", "1" ], [ "6", "Levante UD", "30", "32", "14", "4", "12", "49", "42", "7" ], [ "7", "Hercules CF", "30", "32", "14", "4", "12", "55", "46", "9" ], [ "8", "Real Murcia", "30", "31", "12", "7", "11", "40", "35", "5" ], [ "9", "Real Jaen", "30", "31", "14", "3", "13", "58", "42", "16" ], [ "10", "Cadiz CF", "30", "28", "12", "4", "14", "43", "52", "-9" ], [ "11", "CD Cartagena", "30", "28", "13", "2", "15", "45", "56", "-11" ], [ "12", "CD Mestalla", "30", "27", "11", "5", "14", "50", "49", "1" ], [ "13", "Albacete Balompie", "30", "27", "10", "7", "13", "27", "32", "-5" ], [ "14", "CD San Fernando", "30", "27", "11", "5", "14", "37", "47", "-10" ], [ "15", "Atletico Ceuta", "30", "23", "8", "7", "15", "33", "48", "-15" ], [ "16", "CD Villarrobledo", "30", "12", "4", "4", "22", "26", "79", "-53" ] ]
[ "CD Villarrobledo" ]
who had the worse goal difference? || who had the best goal difference? | who had a goal difference of +28?
nt-11507
col : position | club | played | points | wins | draws | losses | goals for | goals against | goal difference row 1 : 1 | cordoba cf | 30 | 40 | 16 | 8 | 6 | 48 | 22 | 26 row 2 : 2 | cd malaga | 30 | 38 | 14 | 10 | 6 | 52 | 36 | 16 row 3 : 3 | granada cf | 30 | 36 | 15 | 6 | 9 | 48 | 34 | 14 row 4 : 4 | ud las palmas | 30 | 35 | 15 | 5 | 10 | 47 | 39 | 8 row 5 : 5 | recreativo de huelva | 30 | 33 | 13 | 7 | 10 | 43 | 42 | 1 row 6 : 6 | levante ud | 30 | 32 | 14 | 4 | 12 | 49 | 42 | 7 row 7 : 7 | hercules cf | 30 | 32 | 14 | 4 | 12 | 55 | 46 | 9 row 8 : 8 | real murcia | 30 | 31 | 12 | 7 | 11 | 40 | 35 | 5 row 9 : 9 | real jaen | 30 | 31 | 14 | 3 | 13 | 58 | 42 | 16 row 10 : 10 | cadiz cf | 30 | 28 | 12 | 4 | 14 | 43 | 52 | -9 row 11 : 11 | cd cartagena | 30 | 28 | 13 | 2 | 15 | 45 | 56 | -11 row 12 : 12 | cd mestalla | 30 | 27 | 11 | 5 | 14 | 50 | 49 | 1 row 13 : 13 | albacete balompie | 30 | 27 | 10 | 7 | 13 | 27 | 32 | -5 row 14 : 14 | cd san fernando | 30 | 27 | 11 | 5 | 14 | 37 | 47 | -10 row 15 : 15 | atletico ceuta | 30 | 23 | 8 | 7 | 15 | 33 | 48 | -15 row 16 : 16 | cd villarrobledo | 30 | 12 | 4 | 4 | 22 | 26 | 79 | -53
table_csv/204_135.csv
0
{ "column_index": [ 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1 ], "row_index": [ 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15 ] }
[ "what are all the teams in the league?" ]
2
cordoba cf, cd malaga, granada cf, ud las palmas, recreativo de huelva, levante ud, hercules cf, real murcia, real jaen, cadiz cf, cd cartagena, cd mestalla, albacete balompie, cd san fernando, atletico ceuta, cd villarrobledo
[ "Position", "Club", "Played", "Points", "Wins", "Draws", "Losses", "Goals for", "Goals against", "Goal Difference" ]
what are all the teams in the league?
[ [ "1", "Cordoba CF", "30", "40", "16", "8", "6", "48", "22", "26" ], [ "2", "CD Malaga", "30", "38", "14", "10", "6", "52", "36", "16" ], [ "3", "Granada CF", "30", "36", "15", "6", "9", "48", "34", "14" ], [ "4", "UD Las Palmas", "30", "35", "15", "5", "10", "47", "39", "8" ], [ "5", "Recreativo de Huelva", "30", "33", "13", "7", "10", "43", "42", "1" ], [ "6", "Levante UD", "30", "32", "14", "4", "12", "49", "42", "7" ], [ "7", "Hercules CF", "30", "32", "14", "4", "12", "55", "46", "9" ], [ "8", "Real Murcia", "30", "31", "12", "7", "11", "40", "35", "5" ], [ "9", "Real Jaen", "30", "31", "14", "3", "13", "58", "42", "16" ], [ "10", "Cadiz CF", "30", "28", "12", "4", "14", "43", "52", "-9" ], [ "11", "CD Cartagena", "30", "28", "13", "2", "15", "45", "56", "-11" ], [ "12", "CD Mestalla", "30", "27", "11", "5", "14", "50", "49", "1" ], [ "13", "Albacete Balompie", "30", "27", "10", "7", "13", "27", "32", "-5" ], [ "14", "CD San Fernando", "30", "27", "11", "5", "14", "37", "47", "-10" ], [ "15", "Atletico Ceuta", "30", "23", "8", "7", "15", "33", "48", "-15" ], [ "16", "CD Villarrobledo", "30", "12", "4", "4", "22", "26", "79", "-53" ] ]
[ "Cordoba CF", "CD Malaga", "Granada CF", "UD Las Palmas", "Recreativo de Huelva", "Levante UD", "Hercules CF", "Real Murcia", "Real Jaen", "Cadiz CF", "CD Cartagena", "CD Mestalla", "Albacete Balompie", "CD San Fernando", "Atletico Ceuta", "CD Villarrobledo" ]
what are all the teams in the league? ||
nt-11507
col : position | club | played | points | wins | draws | losses | goals for | goals against | goal difference row 1 : 1 | cordoba cf | 30 | 40 | 16 | 8 | 6 | 48 | 22 | 26 row 2 : 2 | cd malaga | 30 | 38 | 14 | 10 | 6 | 52 | 36 | 16 row 3 : 3 | granada cf | 30 | 36 | 15 | 6 | 9 | 48 | 34 | 14 row 4 : 4 | ud las palmas | 30 | 35 | 15 | 5 | 10 | 47 | 39 | 8 row 5 : 5 | recreativo de huelva | 30 | 33 | 13 | 7 | 10 | 43 | 42 | 1 row 6 : 6 | levante ud | 30 | 32 | 14 | 4 | 12 | 49 | 42 | 7 row 7 : 7 | hercules cf | 30 | 32 | 14 | 4 | 12 | 55 | 46 | 9 row 8 : 8 | real murcia | 30 | 31 | 12 | 7 | 11 | 40 | 35 | 5 row 9 : 9 | real jaen | 30 | 31 | 14 | 3 | 13 | 58 | 42 | 16 row 10 : 10 | cadiz cf | 30 | 28 | 12 | 4 | 14 | 43 | 52 | -9 row 11 : 11 | cd cartagena | 30 | 28 | 13 | 2 | 15 | 45 | 56 | -11 row 12 : 12 | cd mestalla | 30 | 27 | 11 | 5 | 14 | 50 | 49 | 1 row 13 : 13 | albacete balompie | 30 | 27 | 10 | 7 | 13 | 27 | 32 | -5 row 14 : 14 | cd san fernando | 30 | 27 | 11 | 5 | 14 | 37 | 47 | -10 row 15 : 15 | atletico ceuta | 30 | 23 | 8 | 7 | 15 | 33 | 48 | -15 row 16 : 16 | cd villarrobledo | 30 | 12 | 4 | 4 | 22 | 26 | 79 | -53
table_csv/204_135.csv
1
{ "column_index": [ 1, 1, 1, 1, 1, 1 ], "row_index": [ 9, 10, 12, 13, 14, 15 ] }
[ "what are all the teams in the league?", "which ones had a negative goal difference?" ]
2
cadiz cf, cd cartagena, albacete balompie, cd san fernando, atletico ceuta, cd villarrobledo
[ "Position", "Club", "Played", "Points", "Wins", "Draws", "Losses", "Goals for", "Goals against", "Goal Difference" ]
which ones had a negative goal difference?
[ [ "1", "Cordoba CF", "30", "40", "16", "8", "6", "48", "22", "26" ], [ "2", "CD Malaga", "30", "38", "14", "10", "6", "52", "36", "16" ], [ "3", "Granada CF", "30", "36", "15", "6", "9", "48", "34", "14" ], [ "4", "UD Las Palmas", "30", "35", "15", "5", "10", "47", "39", "8" ], [ "5", "Recreativo de Huelva", "30", "33", "13", "7", "10", "43", "42", "1" ], [ "6", "Levante UD", "30", "32", "14", "4", "12", "49", "42", "7" ], [ "7", "Hercules CF", "30", "32", "14", "4", "12", "55", "46", "9" ], [ "8", "Real Murcia", "30", "31", "12", "7", "11", "40", "35", "5" ], [ "9", "Real Jaen", "30", "31", "14", "3", "13", "58", "42", "16" ], [ "10", "Cadiz CF", "30", "28", "12", "4", "14", "43", "52", "-9" ], [ "11", "CD Cartagena", "30", "28", "13", "2", "15", "45", "56", "-11" ], [ "12", "CD Mestalla", "30", "27", "11", "5", "14", "50", "49", "1" ], [ "13", "Albacete Balompie", "30", "27", "10", "7", "13", "27", "32", "-5" ], [ "14", "CD San Fernando", "30", "27", "11", "5", "14", "37", "47", "-10" ], [ "15", "Atletico Ceuta", "30", "23", "8", "7", "15", "33", "48", "-15" ], [ "16", "CD Villarrobledo", "30", "12", "4", "4", "22", "26", "79", "-53" ] ]
[ "Cadiz CF", "CD Cartagena", "Albacete Balompie", "CD San Fernando", "Atletico Ceuta", "CD Villarrobledo" ]
which ones had a negative goal difference? || what are all the teams in the league?
nt-11507
col : position | club | played | points | wins | draws | losses | goals for | goals against | goal difference row 1 : 1 | cordoba cf | 30 | 40 | 16 | 8 | 6 | 48 | 22 | 26 row 2 : 2 | cd malaga | 30 | 38 | 14 | 10 | 6 | 52 | 36 | 16 row 3 : 3 | granada cf | 30 | 36 | 15 | 6 | 9 | 48 | 34 | 14 row 4 : 4 | ud las palmas | 30 | 35 | 15 | 5 | 10 | 47 | 39 | 8 row 5 : 5 | recreativo de huelva | 30 | 33 | 13 | 7 | 10 | 43 | 42 | 1 row 6 : 6 | levante ud | 30 | 32 | 14 | 4 | 12 | 49 | 42 | 7 row 7 : 7 | hercules cf | 30 | 32 | 14 | 4 | 12 | 55 | 46 | 9 row 8 : 8 | real murcia | 30 | 31 | 12 | 7 | 11 | 40 | 35 | 5 row 9 : 9 | real jaen | 30 | 31 | 14 | 3 | 13 | 58 | 42 | 16 row 10 : 10 | cadiz cf | 30 | 28 | 12 | 4 | 14 | 43 | 52 | -9 row 11 : 11 | cd cartagena | 30 | 28 | 13 | 2 | 15 | 45 | 56 | -11 row 12 : 12 | cd mestalla | 30 | 27 | 11 | 5 | 14 | 50 | 49 | 1 row 13 : 13 | albacete balompie | 30 | 27 | 10 | 7 | 13 | 27 | 32 | -5 row 14 : 14 | cd san fernando | 30 | 27 | 11 | 5 | 14 | 37 | 47 | -10 row 15 : 15 | atletico ceuta | 30 | 23 | 8 | 7 | 15 | 33 | 48 | -15 row 16 : 16 | cd villarrobledo | 30 | 12 | 4 | 4 | 22 | 26 | 79 | -53
table_csv/204_135.csv
2
{ "column_index": [ 1 ], "row_index": [ 15 ] }
[ "what are all the teams in the league?", "which ones had a negative goal difference?", "of those, which had the worst goal difference?" ]
2
cd villarrobledo
[ "Position", "Club", "Played", "Points", "Wins", "Draws", "Losses", "Goals for", "Goals against", "Goal Difference" ]
of those, which had the worst goal difference?
[ [ "1", "Cordoba CF", "30", "40", "16", "8", "6", "48", "22", "26" ], [ "2", "CD Malaga", "30", "38", "14", "10", "6", "52", "36", "16" ], [ "3", "Granada CF", "30", "36", "15", "6", "9", "48", "34", "14" ], [ "4", "UD Las Palmas", "30", "35", "15", "5", "10", "47", "39", "8" ], [ "5", "Recreativo de Huelva", "30", "33", "13", "7", "10", "43", "42", "1" ], [ "6", "Levante UD", "30", "32", "14", "4", "12", "49", "42", "7" ], [ "7", "Hercules CF", "30", "32", "14", "4", "12", "55", "46", "9" ], [ "8", "Real Murcia", "30", "31", "12", "7", "11", "40", "35", "5" ], [ "9", "Real Jaen", "30", "31", "14", "3", "13", "58", "42", "16" ], [ "10", "Cadiz CF", "30", "28", "12", "4", "14", "43", "52", "-9" ], [ "11", "CD Cartagena", "30", "28", "13", "2", "15", "45", "56", "-11" ], [ "12", "CD Mestalla", "30", "27", "11", "5", "14", "50", "49", "1" ], [ "13", "Albacete Balompie", "30", "27", "10", "7", "13", "27", "32", "-5" ], [ "14", "CD San Fernando", "30", "27", "11", "5", "14", "37", "47", "-10" ], [ "15", "Atletico Ceuta", "30", "23", "8", "7", "15", "33", "48", "-15" ], [ "16", "CD Villarrobledo", "30", "12", "4", "4", "22", "26", "79", "-53" ] ]
[ "CD Villarrobledo" ]
of those, which had the worst goal difference? || which ones had a negative goal difference? | what are all the teams in the league?
nt-2679
col : rank | nation | gold | silver | bronze | total row 1 : 1 | japan | 18 | 8 | 8 | 34 row 2 : 2 | india | 4 | 5 | 6 | 15 row 3 : 3 | philippines | 4 | 3 | 3 | 10 row 4 : 4 | taiwan | 2 | 6 | 7 | 15 row 5 : 5 | south korea | 2 | 3 | 1 | 6 row 6 : 6 | thailand | 2 | 2 | 0 | 4 row 7 : 7 | pakistan | 2 | 1 | 0 | 3 row 8 : 8 | iran | 2 | 0 | 2 | 4 row 9 : 9 | israel | 1 | 0 | 1 | 2 row 10 : 10 | singapore | 0 | 4 | 4 | 8 row 11 : 11 | malaysia | 0 | 3 | 1 | 4 row 12 : 12 | iraq | 0 | 2 | 0 | 2 row 13 : 13 | kampuchea | 0 | 0 | 2 | 2 row 14 : 14 | nepal | 0 | 0 | 1 | 1
table_csv/204_183.csv
0
{ "column_index": [ 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1 ], "row_index": [ 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13 ] }
[ "what are the nations?" ]
0
japan, india, philippines, taiwan, south korea, thailand, pakistan, iran, israel, singapore, malaysia, iraq, kampuchea, nepal
[ "Rank", "Nation", "Gold", "Silver", "Bronze", "Total" ]
what are the nations?
[ [ "1", "Japan", "18", "8", "8", "34" ], [ "2", "India", "4", "5", "6", "15" ], [ "3", "Philippines", "4", "3", "3", "10" ], [ "4", "Taiwan", "2", "6", "7", "15" ], [ "5", "South Korea", "2", "3", "1", "6" ], [ "6", "Thailand", "2", "2", "0", "4" ], [ "7", "Pakistan", "2", "1", "0", "3" ], [ "8", "Iran", "2", "0", "2", "4" ], [ "9", "Israel", "1", "0", "1", "2" ], [ "10", "Singapore", "0", "4", "4", "8" ], [ "11", "Malaysia", "0", "3", "1", "4" ], [ "12", "Iraq", "0", "2", "0", "2" ], [ "13", "Kampuchea", "0", "0", "2", "2" ], [ "14", "Nepal", "0", "0", "1", "1" ] ]
[ "Japan", "India", "Philippines", "Taiwan", "South Korea", "Thailand", "Pakistan", "Iran", "Israel", "Singapore", "Malaysia", "Iraq", "Kampuchea", "Nepal" ]
what are the nations? ||
nt-2679
col : rank | nation | gold | silver | bronze | total row 1 : 1 | japan | 18 | 8 | 8 | 34 row 2 : 2 | india | 4 | 5 | 6 | 15 row 3 : 3 | philippines | 4 | 3 | 3 | 10 row 4 : 4 | taiwan | 2 | 6 | 7 | 15 row 5 : 5 | south korea | 2 | 3 | 1 | 6 row 6 : 6 | thailand | 2 | 2 | 0 | 4 row 7 : 7 | pakistan | 2 | 1 | 0 | 3 row 8 : 8 | iran | 2 | 0 | 2 | 4 row 9 : 9 | israel | 1 | 0 | 1 | 2 row 10 : 10 | singapore | 0 | 4 | 4 | 8 row 11 : 11 | malaysia | 0 | 3 | 1 | 4 row 12 : 12 | iraq | 0 | 2 | 0 | 2 row 13 : 13 | kampuchea | 0 | 0 | 2 | 2 row 14 : 14 | nepal | 0 | 0 | 1 | 1
table_csv/204_183.csv
1
{ "column_index": [ 1, 1, 1 ], "row_index": [ 5, 6, 11 ] }
[ "what are the nations?", "which ones did not receive a bronze medal?" ]
0
thailand, pakistan, iraq
[ "Rank", "Nation", "Gold", "Silver", "Bronze", "Total" ]
which ones did not receive a bronze medal?
[ [ "1", "Japan", "18", "8", "8", "34" ], [ "2", "India", "4", "5", "6", "15" ], [ "3", "Philippines", "4", "3", "3", "10" ], [ "4", "Taiwan", "2", "6", "7", "15" ], [ "5", "South Korea", "2", "3", "1", "6" ], [ "6", "Thailand", "2", "2", "0", "4" ], [ "7", "Pakistan", "2", "1", "0", "3" ], [ "8", "Iran", "2", "0", "2", "4" ], [ "9", "Israel", "1", "0", "1", "2" ], [ "10", "Singapore", "0", "4", "4", "8" ], [ "11", "Malaysia", "0", "3", "1", "4" ], [ "12", "Iraq", "0", "2", "0", "2" ], [ "13", "Kampuchea", "0", "0", "2", "2" ], [ "14", "Nepal", "0", "0", "1", "1" ] ]
[ "Thailand", "Pakistan", "Iraq" ]
which ones did not receive a bronze medal? || what are the nations?
nt-2679
col : rank | nation | gold | silver | bronze | total row 1 : 1 | japan | 18 | 8 | 8 | 34 row 2 : 2 | india | 4 | 5 | 6 | 15 row 3 : 3 | philippines | 4 | 3 | 3 | 10 row 4 : 4 | taiwan | 2 | 6 | 7 | 15 row 5 : 5 | south korea | 2 | 3 | 1 | 6 row 6 : 6 | thailand | 2 | 2 | 0 | 4 row 7 : 7 | pakistan | 2 | 1 | 0 | 3 row 8 : 8 | iran | 2 | 0 | 2 | 4 row 9 : 9 | israel | 1 | 0 | 1 | 2 row 10 : 10 | singapore | 0 | 4 | 4 | 8 row 11 : 11 | malaysia | 0 | 3 | 1 | 4 row 12 : 12 | iraq | 0 | 2 | 0 | 2 row 13 : 13 | kampuchea | 0 | 0 | 2 | 2 row 14 : 14 | nepal | 0 | 0 | 1 | 1
table_csv/204_183.csv
2
{ "column_index": [ 1 ], "row_index": [ 5 ] }
[ "what are the nations?", "which ones did not receive a bronze medal?", "of these, which one is not iraq or pakistan?" ]
0
thailand
[ "Rank", "Nation", "Gold", "Silver", "Bronze", "Total" ]
of these, which one is not iraq or pakistan?
[ [ "1", "Japan", "18", "8", "8", "34" ], [ "2", "India", "4", "5", "6", "15" ], [ "3", "Philippines", "4", "3", "3", "10" ], [ "4", "Taiwan", "2", "6", "7", "15" ], [ "5", "South Korea", "2", "3", "1", "6" ], [ "6", "Thailand", "2", "2", "0", "4" ], [ "7", "Pakistan", "2", "1", "0", "3" ], [ "8", "Iran", "2", "0", "2", "4" ], [ "9", "Israel", "1", "0", "1", "2" ], [ "10", "Singapore", "0", "4", "4", "8" ], [ "11", "Malaysia", "0", "3", "1", "4" ], [ "12", "Iraq", "0", "2", "0", "2" ], [ "13", "Kampuchea", "0", "0", "2", "2" ], [ "14", "Nepal", "0", "0", "1", "1" ] ]
[ "Thailand" ]
of these, which one is not iraq or pakistan? || which ones did not receive a bronze medal? | what are the nations?
nt-2679
col : rank | nation | gold | silver | bronze | total row 1 : 1 | japan | 18 | 8 | 8 | 34 row 2 : 2 | india | 4 | 5 | 6 | 15 row 3 : 3 | philippines | 4 | 3 | 3 | 10 row 4 : 4 | taiwan | 2 | 6 | 7 | 15 row 5 : 5 | south korea | 2 | 3 | 1 | 6 row 6 : 6 | thailand | 2 | 2 | 0 | 4 row 7 : 7 | pakistan | 2 | 1 | 0 | 3 row 8 : 8 | iran | 2 | 0 | 2 | 4 row 9 : 9 | israel | 1 | 0 | 1 | 2 row 10 : 10 | singapore | 0 | 4 | 4 | 8 row 11 : 11 | malaysia | 0 | 3 | 1 | 4 row 12 : 12 | iraq | 0 | 2 | 0 | 2 row 13 : 13 | kampuchea | 0 | 0 | 2 | 2 row 14 : 14 | nepal | 0 | 0 | 1 | 1
table_csv/204_183.csv
0
{ "column_index": [ 1, 1, 1, 1, 1, 1, 1, 1, 1 ], "row_index": [ 5, 6, 7, 8, 9, 10, 11, 12, 13 ] }
[ "which countries did not receive at least one gold, silver, and bronze medal?" ]
1
thailand, pakistan, iran, israel, singapore, malaysia, iraq, kampuchea, nepal
[ "Rank", "Nation", "Gold", "Silver", "Bronze", "Total" ]
which countries did not receive at least one gold, silver, and bronze medal?
[ [ "1", "Japan", "18", "8", "8", "34" ], [ "2", "India", "4", "5", "6", "15" ], [ "3", "Philippines", "4", "3", "3", "10" ], [ "4", "Taiwan", "2", "6", "7", "15" ], [ "5", "South Korea", "2", "3", "1", "6" ], [ "6", "Thailand", "2", "2", "0", "4" ], [ "7", "Pakistan", "2", "1", "0", "3" ], [ "8", "Iran", "2", "0", "2", "4" ], [ "9", "Israel", "1", "0", "1", "2" ], [ "10", "Singapore", "0", "4", "4", "8" ], [ "11", "Malaysia", "0", "3", "1", "4" ], [ "12", "Iraq", "0", "2", "0", "2" ], [ "13", "Kampuchea", "0", "0", "2", "2" ], [ "14", "Nepal", "0", "0", "1", "1" ] ]
[ "Thailand", "Pakistan", "Iran", "Israel", "Singapore", "Malaysia", "Iraq", "Kampuchea", "Nepal" ]
which countries did not receive at least one gold, silver, and bronze medal? ||
nt-2679
col : rank | nation | gold | silver | bronze | total row 1 : 1 | japan | 18 | 8 | 8 | 34 row 2 : 2 | india | 4 | 5 | 6 | 15 row 3 : 3 | philippines | 4 | 3 | 3 | 10 row 4 : 4 | taiwan | 2 | 6 | 7 | 15 row 5 : 5 | south korea | 2 | 3 | 1 | 6 row 6 : 6 | thailand | 2 | 2 | 0 | 4 row 7 : 7 | pakistan | 2 | 1 | 0 | 3 row 8 : 8 | iran | 2 | 0 | 2 | 4 row 9 : 9 | israel | 1 | 0 | 1 | 2 row 10 : 10 | singapore | 0 | 4 | 4 | 8 row 11 : 11 | malaysia | 0 | 3 | 1 | 4 row 12 : 12 | iraq | 0 | 2 | 0 | 2 row 13 : 13 | kampuchea | 0 | 0 | 2 | 2 row 14 : 14 | nepal | 0 | 0 | 1 | 1
table_csv/204_183.csv
1
{ "column_index": [ 1, 1, 1, 1, 1, 1, 1 ], "row_index": [ 5, 6, 7, 8, 11, 12, 13 ] }
[ "which countries did not receive at least one gold, silver, and bronze medal?", "which of those countries did not receive at least one silver and one bronze medal?" ]
1
thailand, pakistan, iran, israel, iraq, kampuchea, nepal
[ "Rank", "Nation", "Gold", "Silver", "Bronze", "Total" ]
which of those countries did not receive at least one silver and one bronze medal?
[ [ "1", "Japan", "18", "8", "8", "34" ], [ "2", "India", "4", "5", "6", "15" ], [ "3", "Philippines", "4", "3", "3", "10" ], [ "4", "Taiwan", "2", "6", "7", "15" ], [ "5", "South Korea", "2", "3", "1", "6" ], [ "6", "Thailand", "2", "2", "0", "4" ], [ "7", "Pakistan", "2", "1", "0", "3" ], [ "8", "Iran", "2", "0", "2", "4" ], [ "9", "Israel", "1", "0", "1", "2" ], [ "10", "Singapore", "0", "4", "4", "8" ], [ "11", "Malaysia", "0", "3", "1", "4" ], [ "12", "Iraq", "0", "2", "0", "2" ], [ "13", "Kampuchea", "0", "0", "2", "2" ], [ "14", "Nepal", "0", "0", "1", "1" ] ]
[ "Thailand", "Pakistan", "Iran", "Israel", "Iraq", "Kampuchea", "Nepal" ]
which of those countries did not receive at least one silver and one bronze medal? || which countries did not receive at least one gold, silver, and bronze medal?
nt-2679
col : rank | nation | gold | silver | bronze | total row 1 : 1 | japan | 18 | 8 | 8 | 34 row 2 : 2 | india | 4 | 5 | 6 | 15 row 3 : 3 | philippines | 4 | 3 | 3 | 10 row 4 : 4 | taiwan | 2 | 6 | 7 | 15 row 5 : 5 | south korea | 2 | 3 | 1 | 6 row 6 : 6 | thailand | 2 | 2 | 0 | 4 row 7 : 7 | pakistan | 2 | 1 | 0 | 3 row 8 : 8 | iran | 2 | 0 | 2 | 4 row 9 : 9 | israel | 1 | 0 | 1 | 2 row 10 : 10 | singapore | 0 | 4 | 4 | 8 row 11 : 11 | malaysia | 0 | 3 | 1 | 4 row 12 : 12 | iraq | 0 | 2 | 0 | 2 row 13 : 13 | kampuchea | 0 | 0 | 2 | 2 row 14 : 14 | nepal | 0 | 0 | 1 | 1
table_csv/204_183.csv
2
{ "column_index": [ 1, 1, 1 ], "row_index": [ 5, 6, 11 ] }
[ "which countries did not receive at least one gold, silver, and bronze medal?", "which of those countries did not receive at least one silver and one bronze medal?", "of those, which countries did not receive at least one bronze medal?" ]
1
thailand, pakistan, iraq
[ "Rank", "Nation", "Gold", "Silver", "Bronze", "Total" ]
of those, which countries did not receive at least one bronze medal?
[ [ "1", "Japan", "18", "8", "8", "34" ], [ "2", "India", "4", "5", "6", "15" ], [ "3", "Philippines", "4", "3", "3", "10" ], [ "4", "Taiwan", "2", "6", "7", "15" ], [ "5", "South Korea", "2", "3", "1", "6" ], [ "6", "Thailand", "2", "2", "0", "4" ], [ "7", "Pakistan", "2", "1", "0", "3" ], [ "8", "Iran", "2", "0", "2", "4" ], [ "9", "Israel", "1", "0", "1", "2" ], [ "10", "Singapore", "0", "4", "4", "8" ], [ "11", "Malaysia", "0", "3", "1", "4" ], [ "12", "Iraq", "0", "2", "0", "2" ], [ "13", "Kampuchea", "0", "0", "2", "2" ], [ "14", "Nepal", "0", "0", "1", "1" ] ]
[ "Thailand", "Pakistan", "Iraq" ]
of those, which countries did not receive at least one bronze medal? || which of those countries did not receive at least one silver and one bronze medal? | which countries did not receive at least one gold, silver, and bronze medal?
nt-2679
col : rank | nation | gold | silver | bronze | total row 1 : 1 | japan | 18 | 8 | 8 | 34 row 2 : 2 | india | 4 | 5 | 6 | 15 row 3 : 3 | philippines | 4 | 3 | 3 | 10 row 4 : 4 | taiwan | 2 | 6 | 7 | 15 row 5 : 5 | south korea | 2 | 3 | 1 | 6 row 6 : 6 | thailand | 2 | 2 | 0 | 4 row 7 : 7 | pakistan | 2 | 1 | 0 | 3 row 8 : 8 | iran | 2 | 0 | 2 | 4 row 9 : 9 | israel | 1 | 0 | 1 | 2 row 10 : 10 | singapore | 0 | 4 | 4 | 8 row 11 : 11 | malaysia | 0 | 3 | 1 | 4 row 12 : 12 | iraq | 0 | 2 | 0 | 2 row 13 : 13 | kampuchea | 0 | 0 | 2 | 2 row 14 : 14 | nepal | 0 | 0 | 1 | 1
table_csv/204_183.csv
3
{ "column_index": [ 1 ], "row_index": [ 5 ] }
[ "which countries did not receive at least one gold, silver, and bronze medal?", "which of those countries did not receive at least one silver and one bronze medal?", "of those, which countries did not receive at least one bronze medal?", "besides iraq and pakistan, which other country did not receive a bronze medal?" ]
1
thailand
[ "Rank", "Nation", "Gold", "Silver", "Bronze", "Total" ]
besides iraq and pakistan, which other country did not receive a bronze medal?
[ [ "1", "Japan", "18", "8", "8", "34" ], [ "2", "India", "4", "5", "6", "15" ], [ "3", "Philippines", "4", "3", "3", "10" ], [ "4", "Taiwan", "2", "6", "7", "15" ], [ "5", "South Korea", "2", "3", "1", "6" ], [ "6", "Thailand", "2", "2", "0", "4" ], [ "7", "Pakistan", "2", "1", "0", "3" ], [ "8", "Iran", "2", "0", "2", "4" ], [ "9", "Israel", "1", "0", "1", "2" ], [ "10", "Singapore", "0", "4", "4", "8" ], [ "11", "Malaysia", "0", "3", "1", "4" ], [ "12", "Iraq", "0", "2", "0", "2" ], [ "13", "Kampuchea", "0", "0", "2", "2" ], [ "14", "Nepal", "0", "0", "1", "1" ] ]
[ "Thailand" ]
besides iraq and pakistan, which other country did not receive a bronze medal? || of those, which countries did not receive at least one bronze medal? | which of those countries did not receive at least one silver and one bronze medal? | which countries did not receive at least one gold, silver, and bronze medal?
nt-2679
col : rank | nation | gold | silver | bronze | total row 1 : 1 | japan | 18 | 8 | 8 | 34 row 2 : 2 | india | 4 | 5 | 6 | 15 row 3 : 3 | philippines | 4 | 3 | 3 | 10 row 4 : 4 | taiwan | 2 | 6 | 7 | 15 row 5 : 5 | south korea | 2 | 3 | 1 | 6 row 6 : 6 | thailand | 2 | 2 | 0 | 4 row 7 : 7 | pakistan | 2 | 1 | 0 | 3 row 8 : 8 | iran | 2 | 0 | 2 | 4 row 9 : 9 | israel | 1 | 0 | 1 | 2 row 10 : 10 | singapore | 0 | 4 | 4 | 8 row 11 : 11 | malaysia | 0 | 3 | 1 | 4 row 12 : 12 | iraq | 0 | 2 | 0 | 2 row 13 : 13 | kampuchea | 0 | 0 | 2 | 2 row 14 : 14 | nepal | 0 | 0 | 1 | 1
table_csv/204_183.csv
0
{ "column_index": [ 1, 1, 1 ], "row_index": [ 5, 6, 11 ] }
[ "what nations received 0 bronze medals?" ]
2
thailand, pakistan, iraq
[ "Rank", "Nation", "Gold", "Silver", "Bronze", "Total" ]
what nations received 0 bronze medals?
[ [ "1", "Japan", "18", "8", "8", "34" ], [ "2", "India", "4", "5", "6", "15" ], [ "3", "Philippines", "4", "3", "3", "10" ], [ "4", "Taiwan", "2", "6", "7", "15" ], [ "5", "South Korea", "2", "3", "1", "6" ], [ "6", "Thailand", "2", "2", "0", "4" ], [ "7", "Pakistan", "2", "1", "0", "3" ], [ "8", "Iran", "2", "0", "2", "4" ], [ "9", "Israel", "1", "0", "1", "2" ], [ "10", "Singapore", "0", "4", "4", "8" ], [ "11", "Malaysia", "0", "3", "1", "4" ], [ "12", "Iraq", "0", "2", "0", "2" ], [ "13", "Kampuchea", "0", "0", "2", "2" ], [ "14", "Nepal", "0", "0", "1", "1" ] ]
[ "Thailand", "Pakistan", "Iraq" ]
what nations received 0 bronze medals? ||
nt-2679
col : rank | nation | gold | silver | bronze | total row 1 : 1 | japan | 18 | 8 | 8 | 34 row 2 : 2 | india | 4 | 5 | 6 | 15 row 3 : 3 | philippines | 4 | 3 | 3 | 10 row 4 : 4 | taiwan | 2 | 6 | 7 | 15 row 5 : 5 | south korea | 2 | 3 | 1 | 6 row 6 : 6 | thailand | 2 | 2 | 0 | 4 row 7 : 7 | pakistan | 2 | 1 | 0 | 3 row 8 : 8 | iran | 2 | 0 | 2 | 4 row 9 : 9 | israel | 1 | 0 | 1 | 2 row 10 : 10 | singapore | 0 | 4 | 4 | 8 row 11 : 11 | malaysia | 0 | 3 | 1 | 4 row 12 : 12 | iraq | 0 | 2 | 0 | 2 row 13 : 13 | kampuchea | 0 | 0 | 2 | 2 row 14 : 14 | nepal | 0 | 0 | 1 | 1
table_csv/204_183.csv
1
{ "column_index": [ 1 ], "row_index": [ 5 ] }
[ "what nations received 0 bronze medals?", "which of these not receiving a bronze medal is an asian nation?" ]
2
thailand
[ "Rank", "Nation", "Gold", "Silver", "Bronze", "Total" ]
which of these not receiving a bronze medal is an asian nation?
[ [ "1", "Japan", "18", "8", "8", "34" ], [ "2", "India", "4", "5", "6", "15" ], [ "3", "Philippines", "4", "3", "3", "10" ], [ "4", "Taiwan", "2", "6", "7", "15" ], [ "5", "South Korea", "2", "3", "1", "6" ], [ "6", "Thailand", "2", "2", "0", "4" ], [ "7", "Pakistan", "2", "1", "0", "3" ], [ "8", "Iran", "2", "0", "2", "4" ], [ "9", "Israel", "1", "0", "1", "2" ], [ "10", "Singapore", "0", "4", "4", "8" ], [ "11", "Malaysia", "0", "3", "1", "4" ], [ "12", "Iraq", "0", "2", "0", "2" ], [ "13", "Kampuchea", "0", "0", "2", "2" ], [ "14", "Nepal", "0", "0", "1", "1" ] ]
[ "Thailand" ]
which of these not receiving a bronze medal is an asian nation? || what nations received 0 bronze medals?
nt-2678
col : week | date | opponent | result | attendance row 1 : 1 | september 1, 1991 | minnesota vikings | w 10-6 | 64,112 row 2 : 2 | september 8, 1991 | at tampa bay buccaneers | w 21-20 | 65,625 row 3 : 3 | september 15, 1991 | new york giants | w 20-17 | 64,829 row 4 : 4 | september 23, 1991 | new york jets | w 19-13 | 65,255 row 5 : 5 | september 29, 1991 | at buffalo bills | l 35-20 | 80,366 row 6 : 6 | october 6, 1991 | washington redskins | l 20-7 | 64,941 row 7 : 7 | bye | bye | bye | bye row 8 : 8 | october 17, 1991 | at green bay packers | w 10-0 | 58,435 row 9 : 9 | october 27, 1991 | at new orleans saints | w 20-17 | 68,591 row 10 : 10 | november 3, 1991 | detroit lions | w 20-10 | 57,281 row 11 : 11 | november 11, 1991 | at minnesota vikings | w 34-17 | 59,001 row 12 : 12 | november 17, 1991 | at indianapolis colts | w 31-17 | 60,519 row 13 : 13 | november 24, 1991 | miami dolphins | l 16-13 | 58,288 row 14 : 14 | november 28, 1991 | at detroit lions | l 16-6 | 78,879 row 15 : 15 | december 8, 1991 | green bay packers | w 27-13 | 62,353 row 16 : 16 | december 14, 1991 | tampa bay buccaneers | w 27-0 | 54,719 row 17 : 17 | december 23, 1991 | at san francisco 49ers | l 52-14 | 60,419
table_csv/204_207.csv
0
{ "column_index": [ 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1 ], "row_index": [ 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16 ] }
[ "when was each game played?" ]
0
september 1, 1991, september 8, 1991, september 15, 1991, september 23, 1991, september 29, 1991, october 6, 1991, bye, october 17, 1991, october 27, 1991, november 3, 1991, november 11, 1991, november 17, 1991, november 24, 1991, november 28, 1991, december 8, 1991, december 14, 1991, december 23, 1991
[ "Week", "Date", "Opponent", "Result", "Attendance" ]
when was each game played?
[ [ "1", "September 1, 1991", "Minnesota Vikings", "W 10-6", "64,112" ], [ "2", "September 8, 1991", "at Tampa Bay Buccaneers", "W 21-20", "65,625" ], [ "3", "September 15, 1991", "New York Giants", "W 20-17", "64,829" ], [ "4", "September 23, 1991", "New York Jets", "W 19-13", "65,255" ], [ "5", "September 29, 1991", "at Buffalo Bills", "L 35-20", "80,366" ], [ "6", "October 6, 1991", "Washington Redskins", "L 20-7", "64,941" ], [ "7", "Bye", "Bye", "Bye", "Bye" ], [ "8", "October 17, 1991", "at Green Bay Packers", "W 10-0", "58,435" ], [ "9", "October 27, 1991", "at New Orleans Saints", "W 20-17", "68,591" ], [ "10", "November 3, 1991", "Detroit Lions", "W 20-10", "57,281" ], [ "11", "November 11, 1991", "at Minnesota Vikings", "W 34-17", "59,001" ], [ "12", "November 17, 1991", "at Indianapolis Colts", "W 31-17", "60,519" ], [ "13", "November 24, 1991", "Miami Dolphins", "L 16-13", "58,288" ], [ "14", "November 28, 1991", "at Detroit Lions", "L 16-6", "78,879" ], [ "15", "December 8, 1991", "Green Bay Packers", "W 27-13", "62,353" ], [ "16", "December 14, 1991", "Tampa Bay Buccaneers", "W 27-0", "54,719" ], [ "17", "December 23, 1991", "at San Francisco 49ers", "L 52-14", "60,419" ] ]
[ "September 1, 1991", "September 8, 1991", "September 15, 1991", "September 23, 1991", "September 29, 1991", "October 6, 1991", "Bye", "October 17, 1991", "October 27, 1991", "November 3, 1991", "November 11, 1991", "November 17, 1991", "November 24, 1991", "November 28, 1991", "December 8, 1991", "December 14, 1991", "December 23, 1991" ]
when was each game played? ||
nt-2678
col : week | date | opponent | result | attendance row 1 : 1 | september 1, 1991 | minnesota vikings | w 10-6 | 64,112 row 2 : 2 | september 8, 1991 | at tampa bay buccaneers | w 21-20 | 65,625 row 3 : 3 | september 15, 1991 | new york giants | w 20-17 | 64,829 row 4 : 4 | september 23, 1991 | new york jets | w 19-13 | 65,255 row 5 : 5 | september 29, 1991 | at buffalo bills | l 35-20 | 80,366 row 6 : 6 | october 6, 1991 | washington redskins | l 20-7 | 64,941 row 7 : 7 | bye | bye | bye | bye row 8 : 8 | october 17, 1991 | at green bay packers | w 10-0 | 58,435 row 9 : 9 | october 27, 1991 | at new orleans saints | w 20-17 | 68,591 row 10 : 10 | november 3, 1991 | detroit lions | w 20-10 | 57,281 row 11 : 11 | november 11, 1991 | at minnesota vikings | w 34-17 | 59,001 row 12 : 12 | november 17, 1991 | at indianapolis colts | w 31-17 | 60,519 row 13 : 13 | november 24, 1991 | miami dolphins | l 16-13 | 58,288 row 14 : 14 | november 28, 1991 | at detroit lions | l 16-6 | 78,879 row 15 : 15 | december 8, 1991 | green bay packers | w 27-13 | 62,353 row 16 : 16 | december 14, 1991 | tampa bay buccaneers | w 27-0 | 54,719 row 17 : 17 | december 23, 1991 | at san francisco 49ers | l 52-14 | 60,419
table_csv/204_207.csv
1
{ "column_index": [ 1 ], "row_index": [ 4 ] }
[ "when was each game played?", "which game had over 80,000 people in attendance?" ]
0
september 29, 1991
[ "Week", "Date", "Opponent", "Result", "Attendance" ]
which game had over 80,000 people in attendance?
[ [ "1", "September 1, 1991", "Minnesota Vikings", "W 10-6", "64,112" ], [ "2", "September 8, 1991", "at Tampa Bay Buccaneers", "W 21-20", "65,625" ], [ "3", "September 15, 1991", "New York Giants", "W 20-17", "64,829" ], [ "4", "September 23, 1991", "New York Jets", "W 19-13", "65,255" ], [ "5", "September 29, 1991", "at Buffalo Bills", "L 35-20", "80,366" ], [ "6", "October 6, 1991", "Washington Redskins", "L 20-7", "64,941" ], [ "7", "Bye", "Bye", "Bye", "Bye" ], [ "8", "October 17, 1991", "at Green Bay Packers", "W 10-0", "58,435" ], [ "9", "October 27, 1991", "at New Orleans Saints", "W 20-17", "68,591" ], [ "10", "November 3, 1991", "Detroit Lions", "W 20-10", "57,281" ], [ "11", "November 11, 1991", "at Minnesota Vikings", "W 34-17", "59,001" ], [ "12", "November 17, 1991", "at Indianapolis Colts", "W 31-17", "60,519" ], [ "13", "November 24, 1991", "Miami Dolphins", "L 16-13", "58,288" ], [ "14", "November 28, 1991", "at Detroit Lions", "L 16-6", "78,879" ], [ "15", "December 8, 1991", "Green Bay Packers", "W 27-13", "62,353" ], [ "16", "December 14, 1991", "Tampa Bay Buccaneers", "W 27-0", "54,719" ], [ "17", "December 23, 1991", "at San Francisco 49ers", "L 52-14", "60,419" ] ]
[ "September 29, 1991" ]
which game had over 80,000 people in attendance? || when was each game played?
nt-2678
col : week | date | opponent | result | attendance row 1 : 1 | september 1, 1991 | minnesota vikings | w 10-6 | 64,112 row 2 : 2 | september 8, 1991 | at tampa bay buccaneers | w 21-20 | 65,625 row 3 : 3 | september 15, 1991 | new york giants | w 20-17 | 64,829 row 4 : 4 | september 23, 1991 | new york jets | w 19-13 | 65,255 row 5 : 5 | september 29, 1991 | at buffalo bills | l 35-20 | 80,366 row 6 : 6 | october 6, 1991 | washington redskins | l 20-7 | 64,941 row 7 : 7 | bye | bye | bye | bye row 8 : 8 | october 17, 1991 | at green bay packers | w 10-0 | 58,435 row 9 : 9 | october 27, 1991 | at new orleans saints | w 20-17 | 68,591 row 10 : 10 | november 3, 1991 | detroit lions | w 20-10 | 57,281 row 11 : 11 | november 11, 1991 | at minnesota vikings | w 34-17 | 59,001 row 12 : 12 | november 17, 1991 | at indianapolis colts | w 31-17 | 60,519 row 13 : 13 | november 24, 1991 | miami dolphins | l 16-13 | 58,288 row 14 : 14 | november 28, 1991 | at detroit lions | l 16-6 | 78,879 row 15 : 15 | december 8, 1991 | green bay packers | w 27-13 | 62,353 row 16 : 16 | december 14, 1991 | tampa bay buccaneers | w 27-0 | 54,719 row 17 : 17 | december 23, 1991 | at san francisco 49ers | l 52-14 | 60,419
table_csv/204_207.csv
0
{ "column_index": [ 4 ], "row_index": [ 4 ] }
[ "what was the attendance against the bills?" ]
1
80,366
[ "Week", "Date", "Opponent", "Result", "Attendance" ]
what was the attendance against the bills?
[ [ "1", "September 1, 1991", "Minnesota Vikings", "W 10-6", "64,112" ], [ "2", "September 8, 1991", "at Tampa Bay Buccaneers", "W 21-20", "65,625" ], [ "3", "September 15, 1991", "New York Giants", "W 20-17", "64,829" ], [ "4", "September 23, 1991", "New York Jets", "W 19-13", "65,255" ], [ "5", "September 29, 1991", "at Buffalo Bills", "L 35-20", "80,366" ], [ "6", "October 6, 1991", "Washington Redskins", "L 20-7", "64,941" ], [ "7", "Bye", "Bye", "Bye", "Bye" ], [ "8", "October 17, 1991", "at Green Bay Packers", "W 10-0", "58,435" ], [ "9", "October 27, 1991", "at New Orleans Saints", "W 20-17", "68,591" ], [ "10", "November 3, 1991", "Detroit Lions", "W 20-10", "57,281" ], [ "11", "November 11, 1991", "at Minnesota Vikings", "W 34-17", "59,001" ], [ "12", "November 17, 1991", "at Indianapolis Colts", "W 31-17", "60,519" ], [ "13", "November 24, 1991", "Miami Dolphins", "L 16-13", "58,288" ], [ "14", "November 28, 1991", "at Detroit Lions", "L 16-6", "78,879" ], [ "15", "December 8, 1991", "Green Bay Packers", "W 27-13", "62,353" ], [ "16", "December 14, 1991", "Tampa Bay Buccaneers", "W 27-0", "54,719" ], [ "17", "December 23, 1991", "at San Francisco 49ers", "L 52-14", "60,419" ] ]
[ "80,366" ]
what was the attendance against the bills? ||
nt-2678
col : week | date | opponent | result | attendance row 1 : 1 | september 1, 1991 | minnesota vikings | w 10-6 | 64,112 row 2 : 2 | september 8, 1991 | at tampa bay buccaneers | w 21-20 | 65,625 row 3 : 3 | september 15, 1991 | new york giants | w 20-17 | 64,829 row 4 : 4 | september 23, 1991 | new york jets | w 19-13 | 65,255 row 5 : 5 | september 29, 1991 | at buffalo bills | l 35-20 | 80,366 row 6 : 6 | october 6, 1991 | washington redskins | l 20-7 | 64,941 row 7 : 7 | bye | bye | bye | bye row 8 : 8 | october 17, 1991 | at green bay packers | w 10-0 | 58,435 row 9 : 9 | october 27, 1991 | at new orleans saints | w 20-17 | 68,591 row 10 : 10 | november 3, 1991 | detroit lions | w 20-10 | 57,281 row 11 : 11 | november 11, 1991 | at minnesota vikings | w 34-17 | 59,001 row 12 : 12 | november 17, 1991 | at indianapolis colts | w 31-17 | 60,519 row 13 : 13 | november 24, 1991 | miami dolphins | l 16-13 | 58,288 row 14 : 14 | november 28, 1991 | at detroit lions | l 16-6 | 78,879 row 15 : 15 | december 8, 1991 | green bay packers | w 27-13 | 62,353 row 16 : 16 | december 14, 1991 | tampa bay buccaneers | w 27-0 | 54,719 row 17 : 17 | december 23, 1991 | at san francisco 49ers | l 52-14 | 60,419
table_csv/204_207.csv
1
{ "column_index": [ 1 ], "row_index": [ 4 ] }
[ "what was the attendance against the bills?", "on what date did the bears play the bills?" ]
1
september 29, 1991
[ "Week", "Date", "Opponent", "Result", "Attendance" ]
on what date did the bears play the bills?
[ [ "1", "September 1, 1991", "Minnesota Vikings", "W 10-6", "64,112" ], [ "2", "September 8, 1991", "at Tampa Bay Buccaneers", "W 21-20", "65,625" ], [ "3", "September 15, 1991", "New York Giants", "W 20-17", "64,829" ], [ "4", "September 23, 1991", "New York Jets", "W 19-13", "65,255" ], [ "5", "September 29, 1991", "at Buffalo Bills", "L 35-20", "80,366" ], [ "6", "October 6, 1991", "Washington Redskins", "L 20-7", "64,941" ], [ "7", "Bye", "Bye", "Bye", "Bye" ], [ "8", "October 17, 1991", "at Green Bay Packers", "W 10-0", "58,435" ], [ "9", "October 27, 1991", "at New Orleans Saints", "W 20-17", "68,591" ], [ "10", "November 3, 1991", "Detroit Lions", "W 20-10", "57,281" ], [ "11", "November 11, 1991", "at Minnesota Vikings", "W 34-17", "59,001" ], [ "12", "November 17, 1991", "at Indianapolis Colts", "W 31-17", "60,519" ], [ "13", "November 24, 1991", "Miami Dolphins", "L 16-13", "58,288" ], [ "14", "November 28, 1991", "at Detroit Lions", "L 16-6", "78,879" ], [ "15", "December 8, 1991", "Green Bay Packers", "W 27-13", "62,353" ], [ "16", "December 14, 1991", "Tampa Bay Buccaneers", "W 27-0", "54,719" ], [ "17", "December 23, 1991", "at San Francisco 49ers", "L 52-14", "60,419" ] ]
[ "September 29, 1991" ]
on what date did the bears play the bills? || what was the attendance against the bills?
nt-2678
col : week | date | opponent | result | attendance row 1 : 1 | september 1, 1991 | minnesota vikings | w 10-6 | 64,112 row 2 : 2 | september 8, 1991 | at tampa bay buccaneers | w 21-20 | 65,625 row 3 : 3 | september 15, 1991 | new york giants | w 20-17 | 64,829 row 4 : 4 | september 23, 1991 | new york jets | w 19-13 | 65,255 row 5 : 5 | september 29, 1991 | at buffalo bills | l 35-20 | 80,366 row 6 : 6 | october 6, 1991 | washington redskins | l 20-7 | 64,941 row 7 : 7 | bye | bye | bye | bye row 8 : 8 | october 17, 1991 | at green bay packers | w 10-0 | 58,435 row 9 : 9 | october 27, 1991 | at new orleans saints | w 20-17 | 68,591 row 10 : 10 | november 3, 1991 | detroit lions | w 20-10 | 57,281 row 11 : 11 | november 11, 1991 | at minnesota vikings | w 34-17 | 59,001 row 12 : 12 | november 17, 1991 | at indianapolis colts | w 31-17 | 60,519 row 13 : 13 | november 24, 1991 | miami dolphins | l 16-13 | 58,288 row 14 : 14 | november 28, 1991 | at detroit lions | l 16-6 | 78,879 row 15 : 15 | december 8, 1991 | green bay packers | w 27-13 | 62,353 row 16 : 16 | december 14, 1991 | tampa bay buccaneers | w 27-0 | 54,719 row 17 : 17 | december 23, 1991 | at san francisco 49ers | l 52-14 | 60,419
table_csv/204_207.csv
0
{ "column_index": [ 2, 2, 2, 2, 2 ], "row_index": [ 4, 5, 12, 13, 16 ] }
[ "in 1991 what teams did the chicago bears lose to?" ]
2
at buffalo bills, washington redskins, miami dolphins, at detroit lions, at san francisco 49ers
[ "Week", "Date", "Opponent", "Result", "Attendance" ]
in 1991 what teams did the chicago bears lose to?
[ [ "1", "September 1, 1991", "Minnesota Vikings", "W 10-6", "64,112" ], [ "2", "September 8, 1991", "at Tampa Bay Buccaneers", "W 21-20", "65,625" ], [ "3", "September 15, 1991", "New York Giants", "W 20-17", "64,829" ], [ "4", "September 23, 1991", "New York Jets", "W 19-13", "65,255" ], [ "5", "September 29, 1991", "at Buffalo Bills", "L 35-20", "80,366" ], [ "6", "October 6, 1991", "Washington Redskins", "L 20-7", "64,941" ], [ "7", "Bye", "Bye", "Bye", "Bye" ], [ "8", "October 17, 1991", "at Green Bay Packers", "W 10-0", "58,435" ], [ "9", "October 27, 1991", "at New Orleans Saints", "W 20-17", "68,591" ], [ "10", "November 3, 1991", "Detroit Lions", "W 20-10", "57,281" ], [ "11", "November 11, 1991", "at Minnesota Vikings", "W 34-17", "59,001" ], [ "12", "November 17, 1991", "at Indianapolis Colts", "W 31-17", "60,519" ], [ "13", "November 24, 1991", "Miami Dolphins", "L 16-13", "58,288" ], [ "14", "November 28, 1991", "at Detroit Lions", "L 16-6", "78,879" ], [ "15", "December 8, 1991", "Green Bay Packers", "W 27-13", "62,353" ], [ "16", "December 14, 1991", "Tampa Bay Buccaneers", "W 27-0", "54,719" ], [ "17", "December 23, 1991", "at San Francisco 49ers", "L 52-14", "60,419" ] ]
[ "at Buffalo Bills", "Washington Redskins", "Miami Dolphins", "at Detroit Lions", "at San Francisco 49ers" ]
in 1991 what teams did the chicago bears lose to? ||
nt-2678
col : week | date | opponent | result | attendance row 1 : 1 | september 1, 1991 | minnesota vikings | w 10-6 | 64,112 row 2 : 2 | september 8, 1991 | at tampa bay buccaneers | w 21-20 | 65,625 row 3 : 3 | september 15, 1991 | new york giants | w 20-17 | 64,829 row 4 : 4 | september 23, 1991 | new york jets | w 19-13 | 65,255 row 5 : 5 | september 29, 1991 | at buffalo bills | l 35-20 | 80,366 row 6 : 6 | october 6, 1991 | washington redskins | l 20-7 | 64,941 row 7 : 7 | bye | bye | bye | bye row 8 : 8 | october 17, 1991 | at green bay packers | w 10-0 | 58,435 row 9 : 9 | october 27, 1991 | at new orleans saints | w 20-17 | 68,591 row 10 : 10 | november 3, 1991 | detroit lions | w 20-10 | 57,281 row 11 : 11 | november 11, 1991 | at minnesota vikings | w 34-17 | 59,001 row 12 : 12 | november 17, 1991 | at indianapolis colts | w 31-17 | 60,519 row 13 : 13 | november 24, 1991 | miami dolphins | l 16-13 | 58,288 row 14 : 14 | november 28, 1991 | at detroit lions | l 16-6 | 78,879 row 15 : 15 | december 8, 1991 | green bay packers | w 27-13 | 62,353 row 16 : 16 | december 14, 1991 | tampa bay buccaneers | w 27-0 | 54,719 row 17 : 17 | december 23, 1991 | at san francisco 49ers | l 52-14 | 60,419
table_csv/204_207.csv
1
{ "column_index": [ 2, 2, 2, 2 ], "row_index": [ 4, 5, 13, 16 ] }
[ "in 1991 what teams did the chicago bears lose to?", "what teams did the chicago bears lose by more then 10 points?" ]
2
at buffalo bills, washington redskins, at detroit lions, at san francisco 49ers
[ "Week", "Date", "Opponent", "Result", "Attendance" ]
what teams did the chicago bears lose by more then 10 points?
[ [ "1", "September 1, 1991", "Minnesota Vikings", "W 10-6", "64,112" ], [ "2", "September 8, 1991", "at Tampa Bay Buccaneers", "W 21-20", "65,625" ], [ "3", "September 15, 1991", "New York Giants", "W 20-17", "64,829" ], [ "4", "September 23, 1991", "New York Jets", "W 19-13", "65,255" ], [ "5", "September 29, 1991", "at Buffalo Bills", "L 35-20", "80,366" ], [ "6", "October 6, 1991", "Washington Redskins", "L 20-7", "64,941" ], [ "7", "Bye", "Bye", "Bye", "Bye" ], [ "8", "October 17, 1991", "at Green Bay Packers", "W 10-0", "58,435" ], [ "9", "October 27, 1991", "at New Orleans Saints", "W 20-17", "68,591" ], [ "10", "November 3, 1991", "Detroit Lions", "W 20-10", "57,281" ], [ "11", "November 11, 1991", "at Minnesota Vikings", "W 34-17", "59,001" ], [ "12", "November 17, 1991", "at Indianapolis Colts", "W 31-17", "60,519" ], [ "13", "November 24, 1991", "Miami Dolphins", "L 16-13", "58,288" ], [ "14", "November 28, 1991", "at Detroit Lions", "L 16-6", "78,879" ], [ "15", "December 8, 1991", "Green Bay Packers", "W 27-13", "62,353" ], [ "16", "December 14, 1991", "Tampa Bay Buccaneers", "W 27-0", "54,719" ], [ "17", "December 23, 1991", "at San Francisco 49ers", "L 52-14", "60,419" ] ]
[ "at Buffalo Bills", "Washington Redskins", "at Detroit Lions", "at San Francisco 49ers" ]
what teams did the chicago bears lose by more then 10 points? || in 1991 what teams did the chicago bears lose to?
nt-2678
col : week | date | opponent | result | attendance row 1 : 1 | september 1, 1991 | minnesota vikings | w 10-6 | 64,112 row 2 : 2 | september 8, 1991 | at tampa bay buccaneers | w 21-20 | 65,625 row 3 : 3 | september 15, 1991 | new york giants | w 20-17 | 64,829 row 4 : 4 | september 23, 1991 | new york jets | w 19-13 | 65,255 row 5 : 5 | september 29, 1991 | at buffalo bills | l 35-20 | 80,366 row 6 : 6 | october 6, 1991 | washington redskins | l 20-7 | 64,941 row 7 : 7 | bye | bye | bye | bye row 8 : 8 | october 17, 1991 | at green bay packers | w 10-0 | 58,435 row 9 : 9 | october 27, 1991 | at new orleans saints | w 20-17 | 68,591 row 10 : 10 | november 3, 1991 | detroit lions | w 20-10 | 57,281 row 11 : 11 | november 11, 1991 | at minnesota vikings | w 34-17 | 59,001 row 12 : 12 | november 17, 1991 | at indianapolis colts | w 31-17 | 60,519 row 13 : 13 | november 24, 1991 | miami dolphins | l 16-13 | 58,288 row 14 : 14 | november 28, 1991 | at detroit lions | l 16-6 | 78,879 row 15 : 15 | december 8, 1991 | green bay packers | w 27-13 | 62,353 row 16 : 16 | december 14, 1991 | tampa bay buccaneers | w 27-0 | 54,719 row 17 : 17 | december 23, 1991 | at san francisco 49ers | l 52-14 | 60,419
table_csv/204_207.csv
2
{ "column_index": [ 2, 2 ], "row_index": [ 4, 16 ] }
[ "in 1991 what teams did the chicago bears lose to?", "what teams did the chicago bears lose by more then 10 points?", "of the games the chicago bears lost by more then 10 points what games lost following a win?" ]
2
at buffalo bills, at san francisco 49ers
[ "Week", "Date", "Opponent", "Result", "Attendance" ]
of the games the chicago bears lost by more then 10 points what games lost following a win?
[ [ "1", "September 1, 1991", "Minnesota Vikings", "W 10-6", "64,112" ], [ "2", "September 8, 1991", "at Tampa Bay Buccaneers", "W 21-20", "65,625" ], [ "3", "September 15, 1991", "New York Giants", "W 20-17", "64,829" ], [ "4", "September 23, 1991", "New York Jets", "W 19-13", "65,255" ], [ "5", "September 29, 1991", "at Buffalo Bills", "L 35-20", "80,366" ], [ "6", "October 6, 1991", "Washington Redskins", "L 20-7", "64,941" ], [ "7", "Bye", "Bye", "Bye", "Bye" ], [ "8", "October 17, 1991", "at Green Bay Packers", "W 10-0", "58,435" ], [ "9", "October 27, 1991", "at New Orleans Saints", "W 20-17", "68,591" ], [ "10", "November 3, 1991", "Detroit Lions", "W 20-10", "57,281" ], [ "11", "November 11, 1991", "at Minnesota Vikings", "W 34-17", "59,001" ], [ "12", "November 17, 1991", "at Indianapolis Colts", "W 31-17", "60,519" ], [ "13", "November 24, 1991", "Miami Dolphins", "L 16-13", "58,288" ], [ "14", "November 28, 1991", "at Detroit Lions", "L 16-6", "78,879" ], [ "15", "December 8, 1991", "Green Bay Packers", "W 27-13", "62,353" ], [ "16", "December 14, 1991", "Tampa Bay Buccaneers", "W 27-0", "54,719" ], [ "17", "December 23, 1991", "at San Francisco 49ers", "L 52-14", "60,419" ] ]
[ "at Buffalo Bills", "at San Francisco 49ers" ]
of the games the chicago bears lost by more then 10 points what games lost following a win? || what teams did the chicago bears lose by more then 10 points? | in 1991 what teams did the chicago bears lose to?
nt-2678
col : week | date | opponent | result | attendance row 1 : 1 | september 1, 1991 | minnesota vikings | w 10-6 | 64,112 row 2 : 2 | september 8, 1991 | at tampa bay buccaneers | w 21-20 | 65,625 row 3 : 3 | september 15, 1991 | new york giants | w 20-17 | 64,829 row 4 : 4 | september 23, 1991 | new york jets | w 19-13 | 65,255 row 5 : 5 | september 29, 1991 | at buffalo bills | l 35-20 | 80,366 row 6 : 6 | october 6, 1991 | washington redskins | l 20-7 | 64,941 row 7 : 7 | bye | bye | bye | bye row 8 : 8 | october 17, 1991 | at green bay packers | w 10-0 | 58,435 row 9 : 9 | october 27, 1991 | at new orleans saints | w 20-17 | 68,591 row 10 : 10 | november 3, 1991 | detroit lions | w 20-10 | 57,281 row 11 : 11 | november 11, 1991 | at minnesota vikings | w 34-17 | 59,001 row 12 : 12 | november 17, 1991 | at indianapolis colts | w 31-17 | 60,519 row 13 : 13 | november 24, 1991 | miami dolphins | l 16-13 | 58,288 row 14 : 14 | november 28, 1991 | at detroit lions | l 16-6 | 78,879 row 15 : 15 | december 8, 1991 | green bay packers | w 27-13 | 62,353 row 16 : 16 | december 14, 1991 | tampa bay buccaneers | w 27-0 | 54,719 row 17 : 17 | december 23, 1991 | at san francisco 49ers | l 52-14 | 60,419
table_csv/204_207.csv
3
{ "column_index": [ 1 ], "row_index": [ 4 ] }
[ "in 1991 what teams did the chicago bears lose to?", "what teams did the chicago bears lose by more then 10 points?", "of the games the chicago bears lost by more then 10 points what games lost following a win?", "of the games lost by more then 10 points following a win, what was the date of the one played in the east coast?" ]
2
september 29, 1991
[ "Week", "Date", "Opponent", "Result", "Attendance" ]
of the games lost by more then 10 points following a win, what was the date of the one played in the east coast?
[ [ "1", "September 1, 1991", "Minnesota Vikings", "W 10-6", "64,112" ], [ "2", "September 8, 1991", "at Tampa Bay Buccaneers", "W 21-20", "65,625" ], [ "3", "September 15, 1991", "New York Giants", "W 20-17", "64,829" ], [ "4", "September 23, 1991", "New York Jets", "W 19-13", "65,255" ], [ "5", "September 29, 1991", "at Buffalo Bills", "L 35-20", "80,366" ], [ "6", "October 6, 1991", "Washington Redskins", "L 20-7", "64,941" ], [ "7", "Bye", "Bye", "Bye", "Bye" ], [ "8", "October 17, 1991", "at Green Bay Packers", "W 10-0", "58,435" ], [ "9", "October 27, 1991", "at New Orleans Saints", "W 20-17", "68,591" ], [ "10", "November 3, 1991", "Detroit Lions", "W 20-10", "57,281" ], [ "11", "November 11, 1991", "at Minnesota Vikings", "W 34-17", "59,001" ], [ "12", "November 17, 1991", "at Indianapolis Colts", "W 31-17", "60,519" ], [ "13", "November 24, 1991", "Miami Dolphins", "L 16-13", "58,288" ], [ "14", "November 28, 1991", "at Detroit Lions", "L 16-6", "78,879" ], [ "15", "December 8, 1991", "Green Bay Packers", "W 27-13", "62,353" ], [ "16", "December 14, 1991", "Tampa Bay Buccaneers", "W 27-0", "54,719" ], [ "17", "December 23, 1991", "at San Francisco 49ers", "L 52-14", "60,419" ] ]
[ "September 29, 1991" ]
of the games lost by more then 10 points following a win, what was the date of the one played in the east coast? || of the games the chicago bears lost by more then 10 points what games lost following a win? | what teams did the chicago bears lose by more then 10 points? | in 1991 what teams did the chicago bears lose to?
nt-2674
col : pos | no | driver | constructor | laps | time/retired | grid row 1 : 1 | 12 | clay regazzoni | ferrari | 60 | 1:01:25.34 | 3 row 2 : 2 | 4 | patrick depailler | tyrrell-ford | 60 | + 0:08.35 | 5 row 3 : 3 | 2 | jochen mass | mclaren-ford | 60 | + 0:15.44 | 4 row 4 : 4 | 5 | ronnie peterson | lotus-ford | 60 | + 0:40.14 | 10 row 5 : 5 | 18 | john watson | surtees-ford | 60 | + 0:45.55 | 6 row 6 : 6 | 8 | carlos pace | brabham-ford | 60 | + 0:45.90 | 7 row 7 : 7 | 16 | tom pryce | shadow-ford | 60 | + 0:46.66 | 8 row 8 : 8 | 24 | james hunt | hesketh-ford | 59 | + 1 lap | 11 row 9 : 9 | 31 | chris amon | ensign-ford | 59 | + 1 lap | 9 row 10 : 10 | 21 | jacques laffite | williams-ford | 59 | + 1 lap | 13 row 11 : 11 | 9 | vittorio brambilla | march-ford | 58 | + 2 laps | 12 row 12 : 12 | 22 | rolf stommelen | hill-ford | 58 | + 2 laps | 14 row 13 : 13 | 35 | tony trimmer | maki-ford | 54 | + 6 laps | 16 row 14 : nc | 20 | jo vonlanthen | williams-ford | 51 | + 9 laps | 15 row 15 : ret | 17 | jean-pierre jarier | shadow-ford | 33 | transmission | 1 row 16 : ret | 1 | emerson fittipaldi | mclaren-ford | 6 | clutch | 2
table_csv/203_804.csv
0
{ "column_index": [ 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1 ], "row_index": [ 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15 ] }
[ "what were the car numbers of the fords that ran in the 1975 swiss grand prix" ]
0
4, 2, 5, 18, 8, 16, 24, 31, 21, 9, 22, 35, 20, 17, 1
[ "Pos", "No", "Driver", "Constructor", "Laps", "Time/Retired", "Grid" ]
what were the car numbers of the fords that ran in the 1975 swiss grand prix
[ [ "1", "12", "Clay Regazzoni", "Ferrari", "60", "1:01:25.34", "3" ], [ "2", "4", "Patrick Depailler", "Tyrrell-Ford", "60", "+ 0:08.35", "5" ], [ "3", "2", "Jochen Mass", "McLaren-Ford", "60", "+ 0:15.44", "4" ], [ "4", "5", "Ronnie Peterson", "Lotus-Ford", "60", "+ 0:40.14", "10" ], [ "5", "18", "John Watson", "Surtees-Ford", "60", "+ 0:45.55", "6" ], [ "6", "8", "Carlos Pace", "Brabham-Ford", "60", "+ 0:45.90", "7" ], [ "7", "16", "Tom Pryce", "Shadow-Ford", "60", "+ 0:46.66", "8" ], [ "8", "24", "James Hunt", "Hesketh-Ford", "59", "+ 1 Lap", "11" ], [ "9", "31", "Chris Amon", "Ensign-Ford", "59", "+ 1 Lap", "9" ], [ "10", "21", "Jacques Laffite", "Williams-Ford", "59", "+ 1 Lap", "13" ], [ "11", "9", "Vittorio Brambilla", "March-Ford", "58", "+ 2 Laps", "12" ], [ "12", "22", "Rolf Stommelen", "Hill-Ford", "58", "+ 2 Laps", "14" ], [ "13", "35", "Tony Trimmer", "Maki-Ford", "54", "+ 6 Laps", "16" ], [ "NC", "20", "Jo Vonlanthen", "Williams-Ford", "51", "+ 9 Laps", "15" ], [ "Ret", "17", "Jean-Pierre Jarier", "Shadow-Ford", "33", "Transmission", "1" ], [ "Ret", "1", "Emerson Fittipaldi", "McLaren-Ford", "6", "Clutch", "2" ] ]
[ "4", "2", "5", "18", "8", "16", "24", "31", "21", "9", "22", "35", "20", "17", "1" ]
what were the car numbers of the fords that ran in the 1975 swiss grand prix ||
nt-2674
col : pos | no | driver | constructor | laps | time/retired | grid row 1 : 1 | 12 | clay regazzoni | ferrari | 60 | 1:01:25.34 | 3 row 2 : 2 | 4 | patrick depailler | tyrrell-ford | 60 | + 0:08.35 | 5 row 3 : 3 | 2 | jochen mass | mclaren-ford | 60 | + 0:15.44 | 4 row 4 : 4 | 5 | ronnie peterson | lotus-ford | 60 | + 0:40.14 | 10 row 5 : 5 | 18 | john watson | surtees-ford | 60 | + 0:45.55 | 6 row 6 : 6 | 8 | carlos pace | brabham-ford | 60 | + 0:45.90 | 7 row 7 : 7 | 16 | tom pryce | shadow-ford | 60 | + 0:46.66 | 8 row 8 : 8 | 24 | james hunt | hesketh-ford | 59 | + 1 lap | 11 row 9 : 9 | 31 | chris amon | ensign-ford | 59 | + 1 lap | 9 row 10 : 10 | 21 | jacques laffite | williams-ford | 59 | + 1 lap | 13 row 11 : 11 | 9 | vittorio brambilla | march-ford | 58 | + 2 laps | 12 row 12 : 12 | 22 | rolf stommelen | hill-ford | 58 | + 2 laps | 14 row 13 : 13 | 35 | tony trimmer | maki-ford | 54 | + 6 laps | 16 row 14 : nc | 20 | jo vonlanthen | williams-ford | 51 | + 9 laps | 15 row 15 : ret | 17 | jean-pierre jarier | shadow-ford | 33 | transmission | 1 row 16 : ret | 1 | emerson fittipaldi | mclaren-ford | 6 | clutch | 2
table_csv/203_804.csv
1
{ "column_index": [ 2, 2, 2, 2 ], "row_index": [ 1, 2, 14, 15 ] }
[ "what were the car numbers of the fords that ran in the 1975 swiss grand prix", "what divers in fords that were in the 1975 swiss grand prix started the grid in the top 5?" ]
0
patrick depailler, jochen mass, jean-pierre jarier, emerson fittipaldi
[ "Pos", "No", "Driver", "Constructor", "Laps", "Time/Retired", "Grid" ]
what divers in fords that were in the 1975 swiss grand prix started the grid in the top 5?
[ [ "1", "12", "Clay Regazzoni", "Ferrari", "60", "1:01:25.34", "3" ], [ "2", "4", "Patrick Depailler", "Tyrrell-Ford", "60", "+ 0:08.35", "5" ], [ "3", "2", "Jochen Mass", "McLaren-Ford", "60", "+ 0:15.44", "4" ], [ "4", "5", "Ronnie Peterson", "Lotus-Ford", "60", "+ 0:40.14", "10" ], [ "5", "18", "John Watson", "Surtees-Ford", "60", "+ 0:45.55", "6" ], [ "6", "8", "Carlos Pace", "Brabham-Ford", "60", "+ 0:45.90", "7" ], [ "7", "16", "Tom Pryce", "Shadow-Ford", "60", "+ 0:46.66", "8" ], [ "8", "24", "James Hunt", "Hesketh-Ford", "59", "+ 1 Lap", "11" ], [ "9", "31", "Chris Amon", "Ensign-Ford", "59", "+ 1 Lap", "9" ], [ "10", "21", "Jacques Laffite", "Williams-Ford", "59", "+ 1 Lap", "13" ], [ "11", "9", "Vittorio Brambilla", "March-Ford", "58", "+ 2 Laps", "12" ], [ "12", "22", "Rolf Stommelen", "Hill-Ford", "58", "+ 2 Laps", "14" ], [ "13", "35", "Tony Trimmer", "Maki-Ford", "54", "+ 6 Laps", "16" ], [ "NC", "20", "Jo Vonlanthen", "Williams-Ford", "51", "+ 9 Laps", "15" ], [ "Ret", "17", "Jean-Pierre Jarier", "Shadow-Ford", "33", "Transmission", "1" ], [ "Ret", "1", "Emerson Fittipaldi", "McLaren-Ford", "6", "Clutch", "2" ] ]
[ "Patrick Depailler", "Jochen Mass", "Jean-Pierre Jarier", "Emerson Fittipaldi" ]
what divers in fords that were in the 1975 swiss grand prix started the grid in the top 5? || what were the car numbers of the fords that ran in the 1975 swiss grand prix
nt-2674
col : pos | no | driver | constructor | laps | time/retired | grid row 1 : 1 | 12 | clay regazzoni | ferrari | 60 | 1:01:25.34 | 3 row 2 : 2 | 4 | patrick depailler | tyrrell-ford | 60 | + 0:08.35 | 5 row 3 : 3 | 2 | jochen mass | mclaren-ford | 60 | + 0:15.44 | 4 row 4 : 4 | 5 | ronnie peterson | lotus-ford | 60 | + 0:40.14 | 10 row 5 : 5 | 18 | john watson | surtees-ford | 60 | + 0:45.55 | 6 row 6 : 6 | 8 | carlos pace | brabham-ford | 60 | + 0:45.90 | 7 row 7 : 7 | 16 | tom pryce | shadow-ford | 60 | + 0:46.66 | 8 row 8 : 8 | 24 | james hunt | hesketh-ford | 59 | + 1 lap | 11 row 9 : 9 | 31 | chris amon | ensign-ford | 59 | + 1 lap | 9 row 10 : 10 | 21 | jacques laffite | williams-ford | 59 | + 1 lap | 13 row 11 : 11 | 9 | vittorio brambilla | march-ford | 58 | + 2 laps | 12 row 12 : 12 | 22 | rolf stommelen | hill-ford | 58 | + 2 laps | 14 row 13 : 13 | 35 | tony trimmer | maki-ford | 54 | + 6 laps | 16 row 14 : nc | 20 | jo vonlanthen | williams-ford | 51 | + 9 laps | 15 row 15 : ret | 17 | jean-pierre jarier | shadow-ford | 33 | transmission | 1 row 16 : ret | 1 | emerson fittipaldi | mclaren-ford | 6 | clutch | 2
table_csv/203_804.csv
2
{ "column_index": [ 2, 2 ], "row_index": [ 14, 15 ] }
[ "what were the car numbers of the fords that ran in the 1975 swiss grand prix", "what divers in fords that were in the 1975 swiss grand prix started the grid in the top 5?", "what ford drivers who started in the top 5 did not complete 60 laps?" ]
0
jean-pierre jarier, emerson fittipaldi
[ "Pos", "No", "Driver", "Constructor", "Laps", "Time/Retired", "Grid" ]
what ford drivers who started in the top 5 did not complete 60 laps?
[ [ "1", "12", "Clay Regazzoni", "Ferrari", "60", "1:01:25.34", "3" ], [ "2", "4", "Patrick Depailler", "Tyrrell-Ford", "60", "+ 0:08.35", "5" ], [ "3", "2", "Jochen Mass", "McLaren-Ford", "60", "+ 0:15.44", "4" ], [ "4", "5", "Ronnie Peterson", "Lotus-Ford", "60", "+ 0:40.14", "10" ], [ "5", "18", "John Watson", "Surtees-Ford", "60", "+ 0:45.55", "6" ], [ "6", "8", "Carlos Pace", "Brabham-Ford", "60", "+ 0:45.90", "7" ], [ "7", "16", "Tom Pryce", "Shadow-Ford", "60", "+ 0:46.66", "8" ], [ "8", "24", "James Hunt", "Hesketh-Ford", "59", "+ 1 Lap", "11" ], [ "9", "31", "Chris Amon", "Ensign-Ford", "59", "+ 1 Lap", "9" ], [ "10", "21", "Jacques Laffite", "Williams-Ford", "59", "+ 1 Lap", "13" ], [ "11", "9", "Vittorio Brambilla", "March-Ford", "58", "+ 2 Laps", "12" ], [ "12", "22", "Rolf Stommelen", "Hill-Ford", "58", "+ 2 Laps", "14" ], [ "13", "35", "Tony Trimmer", "Maki-Ford", "54", "+ 6 Laps", "16" ], [ "NC", "20", "Jo Vonlanthen", "Williams-Ford", "51", "+ 9 Laps", "15" ], [ "Ret", "17", "Jean-Pierre Jarier", "Shadow-Ford", "33", "Transmission", "1" ], [ "Ret", "1", "Emerson Fittipaldi", "McLaren-Ford", "6", "Clutch", "2" ] ]
[ "Jean-Pierre Jarier", "Emerson Fittipaldi" ]
what ford drivers who started in the top 5 did not complete 60 laps? || what divers in fords that were in the 1975 swiss grand prix started the grid in the top 5? | what were the car numbers of the fords that ran in the 1975 swiss grand prix
nt-2674
col : pos | no | driver | constructor | laps | time/retired | grid row 1 : 1 | 12 | clay regazzoni | ferrari | 60 | 1:01:25.34 | 3 row 2 : 2 | 4 | patrick depailler | tyrrell-ford | 60 | + 0:08.35 | 5 row 3 : 3 | 2 | jochen mass | mclaren-ford | 60 | + 0:15.44 | 4 row 4 : 4 | 5 | ronnie peterson | lotus-ford | 60 | + 0:40.14 | 10 row 5 : 5 | 18 | john watson | surtees-ford | 60 | + 0:45.55 | 6 row 6 : 6 | 8 | carlos pace | brabham-ford | 60 | + 0:45.90 | 7 row 7 : 7 | 16 | tom pryce | shadow-ford | 60 | + 0:46.66 | 8 row 8 : 8 | 24 | james hunt | hesketh-ford | 59 | + 1 lap | 11 row 9 : 9 | 31 | chris amon | ensign-ford | 59 | + 1 lap | 9 row 10 : 10 | 21 | jacques laffite | williams-ford | 59 | + 1 lap | 13 row 11 : 11 | 9 | vittorio brambilla | march-ford | 58 | + 2 laps | 12 row 12 : 12 | 22 | rolf stommelen | hill-ford | 58 | + 2 laps | 14 row 13 : 13 | 35 | tony trimmer | maki-ford | 54 | + 6 laps | 16 row 14 : nc | 20 | jo vonlanthen | williams-ford | 51 | + 9 laps | 15 row 15 : ret | 17 | jean-pierre jarier | shadow-ford | 33 | transmission | 1 row 16 : ret | 1 | emerson fittipaldi | mclaren-ford | 6 | clutch | 2
table_csv/203_804.csv
3
{ "column_index": [ 2 ], "row_index": [ 14 ] }
[ "what were the car numbers of the fords that ran in the 1975 swiss grand prix", "what divers in fords that were in the 1975 swiss grand prix started the grid in the top 5?", "what ford drivers who started in the top 5 did not complete 60 laps?", "what ford driver who did not complete 60 laps starting in the top 5 completed the most laps?" ]
0
jean-pierre jarier
[ "Pos", "No", "Driver", "Constructor", "Laps", "Time/Retired", "Grid" ]
what ford driver who did not complete 60 laps starting in the top 5 completed the most laps?
[ [ "1", "12", "Clay Regazzoni", "Ferrari", "60", "1:01:25.34", "3" ], [ "2", "4", "Patrick Depailler", "Tyrrell-Ford", "60", "+ 0:08.35", "5" ], [ "3", "2", "Jochen Mass", "McLaren-Ford", "60", "+ 0:15.44", "4" ], [ "4", "5", "Ronnie Peterson", "Lotus-Ford", "60", "+ 0:40.14", "10" ], [ "5", "18", "John Watson", "Surtees-Ford", "60", "+ 0:45.55", "6" ], [ "6", "8", "Carlos Pace", "Brabham-Ford", "60", "+ 0:45.90", "7" ], [ "7", "16", "Tom Pryce", "Shadow-Ford", "60", "+ 0:46.66", "8" ], [ "8", "24", "James Hunt", "Hesketh-Ford", "59", "+ 1 Lap", "11" ], [ "9", "31", "Chris Amon", "Ensign-Ford", "59", "+ 1 Lap", "9" ], [ "10", "21", "Jacques Laffite", "Williams-Ford", "59", "+ 1 Lap", "13" ], [ "11", "9", "Vittorio Brambilla", "March-Ford", "58", "+ 2 Laps", "12" ], [ "12", "22", "Rolf Stommelen", "Hill-Ford", "58", "+ 2 Laps", "14" ], [ "13", "35", "Tony Trimmer", "Maki-Ford", "54", "+ 6 Laps", "16" ], [ "NC", "20", "Jo Vonlanthen", "Williams-Ford", "51", "+ 9 Laps", "15" ], [ "Ret", "17", "Jean-Pierre Jarier", "Shadow-Ford", "33", "Transmission", "1" ], [ "Ret", "1", "Emerson Fittipaldi", "McLaren-Ford", "6", "Clutch", "2" ] ]
[ "Jean-Pierre Jarier" ]
what ford driver who did not complete 60 laps starting in the top 5 completed the most laps? || what ford drivers who started in the top 5 did not complete 60 laps? | what divers in fords that were in the 1975 swiss grand prix started the grid in the top 5? | what were the car numbers of the fords that ran in the 1975 swiss grand prix
nt-2674
col : pos | no | driver | constructor | laps | time/retired | grid row 1 : 1 | 12 | clay regazzoni | ferrari | 60 | 1:01:25.34 | 3 row 2 : 2 | 4 | patrick depailler | tyrrell-ford | 60 | + 0:08.35 | 5 row 3 : 3 | 2 | jochen mass | mclaren-ford | 60 | + 0:15.44 | 4 row 4 : 4 | 5 | ronnie peterson | lotus-ford | 60 | + 0:40.14 | 10 row 5 : 5 | 18 | john watson | surtees-ford | 60 | + 0:45.55 | 6 row 6 : 6 | 8 | carlos pace | brabham-ford | 60 | + 0:45.90 | 7 row 7 : 7 | 16 | tom pryce | shadow-ford | 60 | + 0:46.66 | 8 row 8 : 8 | 24 | james hunt | hesketh-ford | 59 | + 1 lap | 11 row 9 : 9 | 31 | chris amon | ensign-ford | 59 | + 1 lap | 9 row 10 : 10 | 21 | jacques laffite | williams-ford | 59 | + 1 lap | 13 row 11 : 11 | 9 | vittorio brambilla | march-ford | 58 | + 2 laps | 12 row 12 : 12 | 22 | rolf stommelen | hill-ford | 58 | + 2 laps | 14 row 13 : 13 | 35 | tony trimmer | maki-ford | 54 | + 6 laps | 16 row 14 : nc | 20 | jo vonlanthen | williams-ford | 51 | + 9 laps | 15 row 15 : ret | 17 | jean-pierre jarier | shadow-ford | 33 | transmission | 1 row 16 : ret | 1 | emerson fittipaldi | mclaren-ford | 6 | clutch | 2
table_csv/203_804.csv
0
{ "column_index": [ 2, 2 ], "row_index": [ 14, 15 ] }
[ "which drivers are retired?" ]
1
jean-pierre jarier, emerson fittipaldi
[ "Pos", "No", "Driver", "Constructor", "Laps", "Time/Retired", "Grid" ]
which drivers are retired?
[ [ "1", "12", "Clay Regazzoni", "Ferrari", "60", "1:01:25.34", "3" ], [ "2", "4", "Patrick Depailler", "Tyrrell-Ford", "60", "+ 0:08.35", "5" ], [ "3", "2", "Jochen Mass", "McLaren-Ford", "60", "+ 0:15.44", "4" ], [ "4", "5", "Ronnie Peterson", "Lotus-Ford", "60", "+ 0:40.14", "10" ], [ "5", "18", "John Watson", "Surtees-Ford", "60", "+ 0:45.55", "6" ], [ "6", "8", "Carlos Pace", "Brabham-Ford", "60", "+ 0:45.90", "7" ], [ "7", "16", "Tom Pryce", "Shadow-Ford", "60", "+ 0:46.66", "8" ], [ "8", "24", "James Hunt", "Hesketh-Ford", "59", "+ 1 Lap", "11" ], [ "9", "31", "Chris Amon", "Ensign-Ford", "59", "+ 1 Lap", "9" ], [ "10", "21", "Jacques Laffite", "Williams-Ford", "59", "+ 1 Lap", "13" ], [ "11", "9", "Vittorio Brambilla", "March-Ford", "58", "+ 2 Laps", "12" ], [ "12", "22", "Rolf Stommelen", "Hill-Ford", "58", "+ 2 Laps", "14" ], [ "13", "35", "Tony Trimmer", "Maki-Ford", "54", "+ 6 Laps", "16" ], [ "NC", "20", "Jo Vonlanthen", "Williams-Ford", "51", "+ 9 Laps", "15" ], [ "Ret", "17", "Jean-Pierre Jarier", "Shadow-Ford", "33", "Transmission", "1" ], [ "Ret", "1", "Emerson Fittipaldi", "McLaren-Ford", "6", "Clutch", "2" ] ]
[ "Jean-Pierre Jarier", "Emerson Fittipaldi" ]
which drivers are retired? ||
nt-2674
col : pos | no | driver | constructor | laps | time/retired | grid row 1 : 1 | 12 | clay regazzoni | ferrari | 60 | 1:01:25.34 | 3 row 2 : 2 | 4 | patrick depailler | tyrrell-ford | 60 | + 0:08.35 | 5 row 3 : 3 | 2 | jochen mass | mclaren-ford | 60 | + 0:15.44 | 4 row 4 : 4 | 5 | ronnie peterson | lotus-ford | 60 | + 0:40.14 | 10 row 5 : 5 | 18 | john watson | surtees-ford | 60 | + 0:45.55 | 6 row 6 : 6 | 8 | carlos pace | brabham-ford | 60 | + 0:45.90 | 7 row 7 : 7 | 16 | tom pryce | shadow-ford | 60 | + 0:46.66 | 8 row 8 : 8 | 24 | james hunt | hesketh-ford | 59 | + 1 lap | 11 row 9 : 9 | 31 | chris amon | ensign-ford | 59 | + 1 lap | 9 row 10 : 10 | 21 | jacques laffite | williams-ford | 59 | + 1 lap | 13 row 11 : 11 | 9 | vittorio brambilla | march-ford | 58 | + 2 laps | 12 row 12 : 12 | 22 | rolf stommelen | hill-ford | 58 | + 2 laps | 14 row 13 : 13 | 35 | tony trimmer | maki-ford | 54 | + 6 laps | 16 row 14 : nc | 20 | jo vonlanthen | williams-ford | 51 | + 9 laps | 15 row 15 : ret | 17 | jean-pierre jarier | shadow-ford | 33 | transmission | 1 row 16 : ret | 1 | emerson fittipaldi | mclaren-ford | 6 | clutch | 2
table_csv/203_804.csv
1
{ "column_index": [ 2 ], "row_index": [ 14 ] }
[ "which drivers are retired?", "of those drivers, which one scored the most laps?" ]
1
jean-pierre jarier
[ "Pos", "No", "Driver", "Constructor", "Laps", "Time/Retired", "Grid" ]
of those drivers, which one scored the most laps?
[ [ "1", "12", "Clay Regazzoni", "Ferrari", "60", "1:01:25.34", "3" ], [ "2", "4", "Patrick Depailler", "Tyrrell-Ford", "60", "+ 0:08.35", "5" ], [ "3", "2", "Jochen Mass", "McLaren-Ford", "60", "+ 0:15.44", "4" ], [ "4", "5", "Ronnie Peterson", "Lotus-Ford", "60", "+ 0:40.14", "10" ], [ "5", "18", "John Watson", "Surtees-Ford", "60", "+ 0:45.55", "6" ], [ "6", "8", "Carlos Pace", "Brabham-Ford", "60", "+ 0:45.90", "7" ], [ "7", "16", "Tom Pryce", "Shadow-Ford", "60", "+ 0:46.66", "8" ], [ "8", "24", "James Hunt", "Hesketh-Ford", "59", "+ 1 Lap", "11" ], [ "9", "31", "Chris Amon", "Ensign-Ford", "59", "+ 1 Lap", "9" ], [ "10", "21", "Jacques Laffite", "Williams-Ford", "59", "+ 1 Lap", "13" ], [ "11", "9", "Vittorio Brambilla", "March-Ford", "58", "+ 2 Laps", "12" ], [ "12", "22", "Rolf Stommelen", "Hill-Ford", "58", "+ 2 Laps", "14" ], [ "13", "35", "Tony Trimmer", "Maki-Ford", "54", "+ 6 Laps", "16" ], [ "NC", "20", "Jo Vonlanthen", "Williams-Ford", "51", "+ 9 Laps", "15" ], [ "Ret", "17", "Jean-Pierre Jarier", "Shadow-Ford", "33", "Transmission", "1" ], [ "Ret", "1", "Emerson Fittipaldi", "McLaren-Ford", "6", "Clutch", "2" ] ]
[ "Jean-Pierre Jarier" ]
of those drivers, which one scored the most laps? || which drivers are retired?
nt-2674
col : pos | no | driver | constructor | laps | time/retired | grid row 1 : 1 | 12 | clay regazzoni | ferrari | 60 | 1:01:25.34 | 3 row 2 : 2 | 4 | patrick depailler | tyrrell-ford | 60 | + 0:08.35 | 5 row 3 : 3 | 2 | jochen mass | mclaren-ford | 60 | + 0:15.44 | 4 row 4 : 4 | 5 | ronnie peterson | lotus-ford | 60 | + 0:40.14 | 10 row 5 : 5 | 18 | john watson | surtees-ford | 60 | + 0:45.55 | 6 row 6 : 6 | 8 | carlos pace | brabham-ford | 60 | + 0:45.90 | 7 row 7 : 7 | 16 | tom pryce | shadow-ford | 60 | + 0:46.66 | 8 row 8 : 8 | 24 | james hunt | hesketh-ford | 59 | + 1 lap | 11 row 9 : 9 | 31 | chris amon | ensign-ford | 59 | + 1 lap | 9 row 10 : 10 | 21 | jacques laffite | williams-ford | 59 | + 1 lap | 13 row 11 : 11 | 9 | vittorio brambilla | march-ford | 58 | + 2 laps | 12 row 12 : 12 | 22 | rolf stommelen | hill-ford | 58 | + 2 laps | 14 row 13 : 13 | 35 | tony trimmer | maki-ford | 54 | + 6 laps | 16 row 14 : nc | 20 | jo vonlanthen | williams-ford | 51 | + 9 laps | 15 row 15 : ret | 17 | jean-pierre jarier | shadow-ford | 33 | transmission | 1 row 16 : ret | 1 | emerson fittipaldi | mclaren-ford | 6 | clutch | 2
table_csv/203_804.csv
0
{ "column_index": [ 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2 ], "row_index": [ 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15 ] }
[ "which drivers drove in the 1975 swiss grand prix?" ]
2
clay regazzoni, patrick depailler, jochen mass, ronnie peterson, john watson, carlos pace, tom pryce, james hunt, chris amon, jacques laffite, vittorio brambilla, rolf stommelen, tony trimmer, jo vonlanthen, jean-pierre jarier, emerson fittipaldi
[ "Pos", "No", "Driver", "Constructor", "Laps", "Time/Retired", "Grid" ]
which drivers drove in the 1975 swiss grand prix?
[ [ "1", "12", "Clay Regazzoni", "Ferrari", "60", "1:01:25.34", "3" ], [ "2", "4", "Patrick Depailler", "Tyrrell-Ford", "60", "+ 0:08.35", "5" ], [ "3", "2", "Jochen Mass", "McLaren-Ford", "60", "+ 0:15.44", "4" ], [ "4", "5", "Ronnie Peterson", "Lotus-Ford", "60", "+ 0:40.14", "10" ], [ "5", "18", "John Watson", "Surtees-Ford", "60", "+ 0:45.55", "6" ], [ "6", "8", "Carlos Pace", "Brabham-Ford", "60", "+ 0:45.90", "7" ], [ "7", "16", "Tom Pryce", "Shadow-Ford", "60", "+ 0:46.66", "8" ], [ "8", "24", "James Hunt", "Hesketh-Ford", "59", "+ 1 Lap", "11" ], [ "9", "31", "Chris Amon", "Ensign-Ford", "59", "+ 1 Lap", "9" ], [ "10", "21", "Jacques Laffite", "Williams-Ford", "59", "+ 1 Lap", "13" ], [ "11", "9", "Vittorio Brambilla", "March-Ford", "58", "+ 2 Laps", "12" ], [ "12", "22", "Rolf Stommelen", "Hill-Ford", "58", "+ 2 Laps", "14" ], [ "13", "35", "Tony Trimmer", "Maki-Ford", "54", "+ 6 Laps", "16" ], [ "NC", "20", "Jo Vonlanthen", "Williams-Ford", "51", "+ 9 Laps", "15" ], [ "Ret", "17", "Jean-Pierre Jarier", "Shadow-Ford", "33", "Transmission", "1" ], [ "Ret", "1", "Emerson Fittipaldi", "McLaren-Ford", "6", "Clutch", "2" ] ]
[ "Clay Regazzoni", "Patrick Depailler", "Jochen Mass", "Ronnie Peterson", "John Watson", "Carlos Pace", "Tom Pryce", "James Hunt", "Chris Amon", "Jacques Laffite", "Vittorio Brambilla", "Rolf Stommelen", "Tony Trimmer", "Jo Vonlanthen", "Jean-Pierre Jarier", "Emerson Fittipaldi" ]
which drivers drove in the 1975 swiss grand prix? ||
nt-2674
col : pos | no | driver | constructor | laps | time/retired | grid row 1 : 1 | 12 | clay regazzoni | ferrari | 60 | 1:01:25.34 | 3 row 2 : 2 | 4 | patrick depailler | tyrrell-ford | 60 | + 0:08.35 | 5 row 3 : 3 | 2 | jochen mass | mclaren-ford | 60 | + 0:15.44 | 4 row 4 : 4 | 5 | ronnie peterson | lotus-ford | 60 | + 0:40.14 | 10 row 5 : 5 | 18 | john watson | surtees-ford | 60 | + 0:45.55 | 6 row 6 : 6 | 8 | carlos pace | brabham-ford | 60 | + 0:45.90 | 7 row 7 : 7 | 16 | tom pryce | shadow-ford | 60 | + 0:46.66 | 8 row 8 : 8 | 24 | james hunt | hesketh-ford | 59 | + 1 lap | 11 row 9 : 9 | 31 | chris amon | ensign-ford | 59 | + 1 lap | 9 row 10 : 10 | 21 | jacques laffite | williams-ford | 59 | + 1 lap | 13 row 11 : 11 | 9 | vittorio brambilla | march-ford | 58 | + 2 laps | 12 row 12 : 12 | 22 | rolf stommelen | hill-ford | 58 | + 2 laps | 14 row 13 : 13 | 35 | tony trimmer | maki-ford | 54 | + 6 laps | 16 row 14 : nc | 20 | jo vonlanthen | williams-ford | 51 | + 9 laps | 15 row 15 : ret | 17 | jean-pierre jarier | shadow-ford | 33 | transmission | 1 row 16 : ret | 1 | emerson fittipaldi | mclaren-ford | 6 | clutch | 2
table_csv/203_804.csv
1
{ "column_index": [ 4 ], "row_index": [ 14 ] }
[ "which drivers drove in the 1975 swiss grand prix?", "how many laps did jean-pierre jarier drive?" ]
2
33
[ "Pos", "No", "Driver", "Constructor", "Laps", "Time/Retired", "Grid" ]
how many laps did jean-pierre jarier drive?
[ [ "1", "12", "Clay Regazzoni", "Ferrari", "60", "1:01:25.34", "3" ], [ "2", "4", "Patrick Depailler", "Tyrrell-Ford", "60", "+ 0:08.35", "5" ], [ "3", "2", "Jochen Mass", "McLaren-Ford", "60", "+ 0:15.44", "4" ], [ "4", "5", "Ronnie Peterson", "Lotus-Ford", "60", "+ 0:40.14", "10" ], [ "5", "18", "John Watson", "Surtees-Ford", "60", "+ 0:45.55", "6" ], [ "6", "8", "Carlos Pace", "Brabham-Ford", "60", "+ 0:45.90", "7" ], [ "7", "16", "Tom Pryce", "Shadow-Ford", "60", "+ 0:46.66", "8" ], [ "8", "24", "James Hunt", "Hesketh-Ford", "59", "+ 1 Lap", "11" ], [ "9", "31", "Chris Amon", "Ensign-Ford", "59", "+ 1 Lap", "9" ], [ "10", "21", "Jacques Laffite", "Williams-Ford", "59", "+ 1 Lap", "13" ], [ "11", "9", "Vittorio Brambilla", "March-Ford", "58", "+ 2 Laps", "12" ], [ "12", "22", "Rolf Stommelen", "Hill-Ford", "58", "+ 2 Laps", "14" ], [ "13", "35", "Tony Trimmer", "Maki-Ford", "54", "+ 6 Laps", "16" ], [ "NC", "20", "Jo Vonlanthen", "Williams-Ford", "51", "+ 9 Laps", "15" ], [ "Ret", "17", "Jean-Pierre Jarier", "Shadow-Ford", "33", "Transmission", "1" ], [ "Ret", "1", "Emerson Fittipaldi", "McLaren-Ford", "6", "Clutch", "2" ] ]
[ "33" ]
how many laps did jean-pierre jarier drive? || which drivers drove in the 1975 swiss grand prix?
nt-2673
col : rank | nation | gold | silver | bronze | total row 1 : 1 | venezuela | 5 | 2 | 3 | 10 row 2 : 2 | colombia | 4 | 4 | 9 | 17 row 3 : 3 | dominican republic | 4 | 3 | 4 | 11 row 4 : 4 | peru | 3 | 3 | 8 | 14 row 5 : 5 | ecuador | 2 | 3 | 3 | 8 row 6 : 6 | guatemala | 1 | 1 | 1 | 3 row 7 : 7 | chile | 0 | 3 | 2 | 5 row 8 : 8 | panama | 0 | 0 | 3 | 3 row 9 : 9 | bolivia | 0 | 0 | 1 | 1 row 10 : 9 | paraguay | 0 | 0 | 1 | 1 row 11 : total | total | 19 | 19 | 35 | 73
table_csv/204_922.csv
0
{ "column_index": [ 1, 1, 1, 1, 1, 1, 1, 1, 1, 1 ], "row_index": [ 0, 1, 2, 3, 4, 5, 6, 7, 8, 9 ] }
[ "which countries scored bronze metals in taekwondo at the 2013 bolivian games?" ]
0
venezuela, colombia, dominican republic, peru, ecuador, guatemala, chile, panama, bolivia, paraguay
[ "Rank", "Nation", "Gold", "Silver", "Bronze", "Total" ]
which countries scored bronze metals in taekwondo at the 2013 bolivian games?
[ [ "1", "Venezuela", "5", "2", "3", "10" ], [ "2", "Colombia", "4", "4", "9", "17" ], [ "3", "Dominican Republic", "4", "3", "4", "11" ], [ "4", "Peru", "3", "3", "8", "14" ], [ "5", "Ecuador", "2", "3", "3", "8" ], [ "6", "Guatemala", "1", "1", "1", "3" ], [ "7", "Chile", "0", "3", "2", "5" ], [ "8", "Panama", "0", "0", "3", "3" ], [ "9", "Bolivia", "0", "0", "1", "1" ], [ "9", "Paraguay", "0", "0", "1", "1" ], [ "Total", "Total", "19", "19", "35", "73" ] ]
[ "Venezuela", "Colombia", "Dominican Republic", "Peru", "Ecuador", "Guatemala", "Chile", "Panama", "Bolivia", "Paraguay" ]
which countries scored bronze metals in taekwondo at the 2013 bolivian games? ||
nt-2673
col : rank | nation | gold | silver | bronze | total row 1 : 1 | venezuela | 5 | 2 | 3 | 10 row 2 : 2 | colombia | 4 | 4 | 9 | 17 row 3 : 3 | dominican republic | 4 | 3 | 4 | 11 row 4 : 4 | peru | 3 | 3 | 8 | 14 row 5 : 5 | ecuador | 2 | 3 | 3 | 8 row 6 : 6 | guatemala | 1 | 1 | 1 | 3 row 7 : 7 | chile | 0 | 3 | 2 | 5 row 8 : 8 | panama | 0 | 0 | 3 | 3 row 9 : 9 | bolivia | 0 | 0 | 1 | 1 row 10 : 9 | paraguay | 0 | 0 | 1 | 1 row 11 : total | total | 19 | 19 | 35 | 73
table_csv/204_922.csv
1
{ "column_index": [ 1 ], "row_index": [ 1 ] }
[ "which countries scored bronze metals in taekwondo at the 2013 bolivian games?", "which scored the most points?" ]
0
colombia
[ "Rank", "Nation", "Gold", "Silver", "Bronze", "Total" ]
which scored the most points?
[ [ "1", "Venezuela", "5", "2", "3", "10" ], [ "2", "Colombia", "4", "4", "9", "17" ], [ "3", "Dominican Republic", "4", "3", "4", "11" ], [ "4", "Peru", "3", "3", "8", "14" ], [ "5", "Ecuador", "2", "3", "3", "8" ], [ "6", "Guatemala", "1", "1", "1", "3" ], [ "7", "Chile", "0", "3", "2", "5" ], [ "8", "Panama", "0", "0", "3", "3" ], [ "9", "Bolivia", "0", "0", "1", "1" ], [ "9", "Paraguay", "0", "0", "1", "1" ], [ "Total", "Total", "19", "19", "35", "73" ] ]
[ "Colombia" ]
which scored the most points? || which countries scored bronze metals in taekwondo at the 2013 bolivian games?
nt-2673
col : rank | nation | gold | silver | bronze | total row 1 : 1 | venezuela | 5 | 2 | 3 | 10 row 2 : 2 | colombia | 4 | 4 | 9 | 17 row 3 : 3 | dominican republic | 4 | 3 | 4 | 11 row 4 : 4 | peru | 3 | 3 | 8 | 14 row 5 : 5 | ecuador | 2 | 3 | 3 | 8 row 6 : 6 | guatemala | 1 | 1 | 1 | 3 row 7 : 7 | chile | 0 | 3 | 2 | 5 row 8 : 8 | panama | 0 | 0 | 3 | 3 row 9 : 9 | bolivia | 0 | 0 | 1 | 1 row 10 : 9 | paraguay | 0 | 0 | 1 | 1 row 11 : total | total | 19 | 19 | 35 | 73
table_csv/204_922.csv
0
{ "column_index": [ 4 ], "row_index": [ 1 ] }
[ "how many bronze medals did colombia earn in taekwondo at the 2013 bolivarian games?" ]
1
9
[ "Rank", "Nation", "Gold", "Silver", "Bronze", "Total" ]
how many bronze medals did colombia earn in taekwondo at the 2013 bolivarian games?
[ [ "1", "Venezuela", "5", "2", "3", "10" ], [ "2", "Colombia", "4", "4", "9", "17" ], [ "3", "Dominican Republic", "4", "3", "4", "11" ], [ "4", "Peru", "3", "3", "8", "14" ], [ "5", "Ecuador", "2", "3", "3", "8" ], [ "6", "Guatemala", "1", "1", "1", "3" ], [ "7", "Chile", "0", "3", "2", "5" ], [ "8", "Panama", "0", "0", "3", "3" ], [ "9", "Bolivia", "0", "0", "1", "1" ], [ "9", "Paraguay", "0", "0", "1", "1" ], [ "Total", "Total", "19", "19", "35", "73" ] ]
[ "9" ]
how many bronze medals did colombia earn in taekwondo at the 2013 bolivarian games? ||
nt-2673
col : rank | nation | gold | silver | bronze | total row 1 : 1 | venezuela | 5 | 2 | 3 | 10 row 2 : 2 | colombia | 4 | 4 | 9 | 17 row 3 : 3 | dominican republic | 4 | 3 | 4 | 11 row 4 : 4 | peru | 3 | 3 | 8 | 14 row 5 : 5 | ecuador | 2 | 3 | 3 | 8 row 6 : 6 | guatemala | 1 | 1 | 1 | 3 row 7 : 7 | chile | 0 | 3 | 2 | 5 row 8 : 8 | panama | 0 | 0 | 3 | 3 row 9 : 9 | bolivia | 0 | 0 | 1 | 1 row 10 : 9 | paraguay | 0 | 0 | 1 | 1 row 11 : total | total | 19 | 19 | 35 | 73
table_csv/204_922.csv
1
{ "column_index": [ 4 ], "row_index": [ 3 ] }
[ "how many bronze medals did colombia earn in taekwondo at the 2013 bolivarian games?", "how many bronze medals did peru earn in taekwondo at the 2013 bolivarian games?" ]
1
8
[ "Rank", "Nation", "Gold", "Silver", "Bronze", "Total" ]
how many bronze medals did peru earn in taekwondo at the 2013 bolivarian games?
[ [ "1", "Venezuela", "5", "2", "3", "10" ], [ "2", "Colombia", "4", "4", "9", "17" ], [ "3", "Dominican Republic", "4", "3", "4", "11" ], [ "4", "Peru", "3", "3", "8", "14" ], [ "5", "Ecuador", "2", "3", "3", "8" ], [ "6", "Guatemala", "1", "1", "1", "3" ], [ "7", "Chile", "0", "3", "2", "5" ], [ "8", "Panama", "0", "0", "3", "3" ], [ "9", "Bolivia", "0", "0", "1", "1" ], [ "9", "Paraguay", "0", "0", "1", "1" ], [ "Total", "Total", "19", "19", "35", "73" ] ]
[ "8" ]
how many bronze medals did peru earn in taekwondo at the 2013 bolivarian games? || how many bronze medals did colombia earn in taekwondo at the 2013 bolivarian games?
nt-2673
col : rank | nation | gold | silver | bronze | total row 1 : 1 | venezuela | 5 | 2 | 3 | 10 row 2 : 2 | colombia | 4 | 4 | 9 | 17 row 3 : 3 | dominican republic | 4 | 3 | 4 | 11 row 4 : 4 | peru | 3 | 3 | 8 | 14 row 5 : 5 | ecuador | 2 | 3 | 3 | 8 row 6 : 6 | guatemala | 1 | 1 | 1 | 3 row 7 : 7 | chile | 0 | 3 | 2 | 5 row 8 : 8 | panama | 0 | 0 | 3 | 3 row 9 : 9 | bolivia | 0 | 0 | 1 | 1 row 10 : 9 | paraguay | 0 | 0 | 1 | 1 row 11 : total | total | 19 | 19 | 35 | 73
table_csv/204_922.csv
2
{ "column_index": [ 1 ], "row_index": [ 1 ] }
[ "how many bronze medals did colombia earn in taekwondo at the 2013 bolivarian games?", "how many bronze medals did peru earn in taekwondo at the 2013 bolivarian games?", "of the two countries, which one scored the most bronze medals?" ]
1
colombia
[ "Rank", "Nation", "Gold", "Silver", "Bronze", "Total" ]
of the two countries, which one scored the most bronze medals?
[ [ "1", "Venezuela", "5", "2", "3", "10" ], [ "2", "Colombia", "4", "4", "9", "17" ], [ "3", "Dominican Republic", "4", "3", "4", "11" ], [ "4", "Peru", "3", "3", "8", "14" ], [ "5", "Ecuador", "2", "3", "3", "8" ], [ "6", "Guatemala", "1", "1", "1", "3" ], [ "7", "Chile", "0", "3", "2", "5" ], [ "8", "Panama", "0", "0", "3", "3" ], [ "9", "Bolivia", "0", "0", "1", "1" ], [ "9", "Paraguay", "0", "0", "1", "1" ], [ "Total", "Total", "19", "19", "35", "73" ] ]
[ "Colombia" ]
of the two countries, which one scored the most bronze medals? || how many bronze medals did peru earn in taekwondo at the 2013 bolivarian games? | how many bronze medals did colombia earn in taekwondo at the 2013 bolivarian games?
nt-2673
col : rank | nation | gold | silver | bronze | total row 1 : 1 | venezuela | 5 | 2 | 3 | 10 row 2 : 2 | colombia | 4 | 4 | 9 | 17 row 3 : 3 | dominican republic | 4 | 3 | 4 | 11 row 4 : 4 | peru | 3 | 3 | 8 | 14 row 5 : 5 | ecuador | 2 | 3 | 3 | 8 row 6 : 6 | guatemala | 1 | 1 | 1 | 3 row 7 : 7 | chile | 0 | 3 | 2 | 5 row 8 : 8 | panama | 0 | 0 | 3 | 3 row 9 : 9 | bolivia | 0 | 0 | 1 | 1 row 10 : 9 | paraguay | 0 | 0 | 1 | 1 row 11 : total | total | 19 | 19 | 35 | 73
table_csv/204_922.csv
0
{ "column_index": [ 1, 1, 1, 1, 1, 1 ], "row_index": [ 0, 1, 2, 3, 4, 5 ] }
[ "what countries scored gold medals in taekwondo at the 2013 bolivarian games?" ]
2
venezuela, colombia, dominican republic, peru, ecuador, guatemala
[ "Rank", "Nation", "Gold", "Silver", "Bronze", "Total" ]
what countries scored gold medals in taekwondo at the 2013 bolivarian games?
[ [ "1", "Venezuela", "5", "2", "3", "10" ], [ "2", "Colombia", "4", "4", "9", "17" ], [ "3", "Dominican Republic", "4", "3", "4", "11" ], [ "4", "Peru", "3", "3", "8", "14" ], [ "5", "Ecuador", "2", "3", "3", "8" ], [ "6", "Guatemala", "1", "1", "1", "3" ], [ "7", "Chile", "0", "3", "2", "5" ], [ "8", "Panama", "0", "0", "3", "3" ], [ "9", "Bolivia", "0", "0", "1", "1" ], [ "9", "Paraguay", "0", "0", "1", "1" ], [ "Total", "Total", "19", "19", "35", "73" ] ]
[ "Venezuela", "Colombia", "Dominican Republic", "Peru", "Ecuador", "Guatemala" ]
what countries scored gold medals in taekwondo at the 2013 bolivarian games? ||
nt-2673
col : rank | nation | gold | silver | bronze | total row 1 : 1 | venezuela | 5 | 2 | 3 | 10 row 2 : 2 | colombia | 4 | 4 | 9 | 17 row 3 : 3 | dominican republic | 4 | 3 | 4 | 11 row 4 : 4 | peru | 3 | 3 | 8 | 14 row 5 : 5 | ecuador | 2 | 3 | 3 | 8 row 6 : 6 | guatemala | 1 | 1 | 1 | 3 row 7 : 7 | chile | 0 | 3 | 2 | 5 row 8 : 8 | panama | 0 | 0 | 3 | 3 row 9 : 9 | bolivia | 0 | 0 | 1 | 1 row 10 : 9 | paraguay | 0 | 0 | 1 | 1 row 11 : total | total | 19 | 19 | 35 | 73
table_csv/204_922.csv
1
{ "column_index": [ 1, 1, 1, 1 ], "row_index": [ 1, 3, 4, 5 ] }
[ "what countries scored gold medals in taekwondo at the 2013 bolivarian games?", "what countries who won gold medals won an equal number of silver medals?" ]
2
colombia, peru, ecuador, guatemala
[ "Rank", "Nation", "Gold", "Silver", "Bronze", "Total" ]
what countries who won gold medals won an equal number of silver medals?
[ [ "1", "Venezuela", "5", "2", "3", "10" ], [ "2", "Colombia", "4", "4", "9", "17" ], [ "3", "Dominican Republic", "4", "3", "4", "11" ], [ "4", "Peru", "3", "3", "8", "14" ], [ "5", "Ecuador", "2", "3", "3", "8" ], [ "6", "Guatemala", "1", "1", "1", "3" ], [ "7", "Chile", "0", "3", "2", "5" ], [ "8", "Panama", "0", "0", "3", "3" ], [ "9", "Bolivia", "0", "0", "1", "1" ], [ "9", "Paraguay", "0", "0", "1", "1" ], [ "Total", "Total", "19", "19", "35", "73" ] ]
[ "Colombia", "Peru", "Ecuador", "Guatemala" ]
what countries who won gold medals won an equal number of silver medals? || what countries scored gold medals in taekwondo at the 2013 bolivarian games?
nt-2673
col : rank | nation | gold | silver | bronze | total row 1 : 1 | venezuela | 5 | 2 | 3 | 10 row 2 : 2 | colombia | 4 | 4 | 9 | 17 row 3 : 3 | dominican republic | 4 | 3 | 4 | 11 row 4 : 4 | peru | 3 | 3 | 8 | 14 row 5 : 5 | ecuador | 2 | 3 | 3 | 8 row 6 : 6 | guatemala | 1 | 1 | 1 | 3 row 7 : 7 | chile | 0 | 3 | 2 | 5 row 8 : 8 | panama | 0 | 0 | 3 | 3 row 9 : 9 | bolivia | 0 | 0 | 1 | 1 row 10 : 9 | paraguay | 0 | 0 | 1 | 1 row 11 : total | total | 19 | 19 | 35 | 73
table_csv/204_922.csv
2
{ "column_index": [ 1, 1 ], "row_index": [ 1, 3 ] }
[ "what countries scored gold medals in taekwondo at the 2013 bolivarian games?", "what countries who won gold medals won an equal number of silver medals?", "what countries that won gold medals equal to the number of silver medals won more bronze medals then silver?" ]
2
colombia, peru
[ "Rank", "Nation", "Gold", "Silver", "Bronze", "Total" ]
what countries that won gold medals equal to the number of silver medals won more bronze medals then silver?
[ [ "1", "Venezuela", "5", "2", "3", "10" ], [ "2", "Colombia", "4", "4", "9", "17" ], [ "3", "Dominican Republic", "4", "3", "4", "11" ], [ "4", "Peru", "3", "3", "8", "14" ], [ "5", "Ecuador", "2", "3", "3", "8" ], [ "6", "Guatemala", "1", "1", "1", "3" ], [ "7", "Chile", "0", "3", "2", "5" ], [ "8", "Panama", "0", "0", "3", "3" ], [ "9", "Bolivia", "0", "0", "1", "1" ], [ "9", "Paraguay", "0", "0", "1", "1" ], [ "Total", "Total", "19", "19", "35", "73" ] ]
[ "Colombia", "Peru" ]
what countries that won gold medals equal to the number of silver medals won more bronze medals then silver? || what countries who won gold medals won an equal number of silver medals? | what countries scored gold medals in taekwondo at the 2013 bolivarian games?
nt-2673
col : rank | nation | gold | silver | bronze | total row 1 : 1 | venezuela | 5 | 2 | 3 | 10 row 2 : 2 | colombia | 4 | 4 | 9 | 17 row 3 : 3 | dominican republic | 4 | 3 | 4 | 11 row 4 : 4 | peru | 3 | 3 | 8 | 14 row 5 : 5 | ecuador | 2 | 3 | 3 | 8 row 6 : 6 | guatemala | 1 | 1 | 1 | 3 row 7 : 7 | chile | 0 | 3 | 2 | 5 row 8 : 8 | panama | 0 | 0 | 3 | 3 row 9 : 9 | bolivia | 0 | 0 | 1 | 1 row 10 : 9 | paraguay | 0 | 0 | 1 | 1 row 11 : total | total | 19 | 19 | 35 | 73
table_csv/204_922.csv
3
{ "column_index": [ 1 ], "row_index": [ 1 ] }
[ "what countries scored gold medals in taekwondo at the 2013 bolivarian games?", "what countries who won gold medals won an equal number of silver medals?", "what countries that won gold medals equal to the number of silver medals won more bronze medals then silver?", "of the countries that won more silver then bronze that had an equal number of gold ans silver who won the most gold?" ]
2
colombia
[ "Rank", "Nation", "Gold", "Silver", "Bronze", "Total" ]
of the countries that won more silver then bronze that had an equal number of gold ans silver who won the most gold?
[ [ "1", "Venezuela", "5", "2", "3", "10" ], [ "2", "Colombia", "4", "4", "9", "17" ], [ "3", "Dominican Republic", "4", "3", "4", "11" ], [ "4", "Peru", "3", "3", "8", "14" ], [ "5", "Ecuador", "2", "3", "3", "8" ], [ "6", "Guatemala", "1", "1", "1", "3" ], [ "7", "Chile", "0", "3", "2", "5" ], [ "8", "Panama", "0", "0", "3", "3" ], [ "9", "Bolivia", "0", "0", "1", "1" ], [ "9", "Paraguay", "0", "0", "1", "1" ], [ "Total", "Total", "19", "19", "35", "73" ] ]
[ "Colombia" ]
of the countries that won more silver then bronze that had an equal number of gold ans silver who won the most gold? || what countries that won gold medals equal to the number of silver medals won more bronze medals then silver? | what countries who won gold medals won an equal number of silver medals? | what countries scored gold medals in taekwondo at the 2013 bolivarian games?
nt-803
col : year | album | territory | label | notes row 1 : 1989 | good deeds and dirty rags | uk | capitol records | debut album, reached no. 26 on uk albums chart row 2 : 1989 | fish heads and tails | uk | capitol records | mid-price live and rarities compilation row 3 : 1991 | hammer and tongs | uk | radioactive records/mca | second studio album; reached no. 61 on the uk albums chart row 4 : 1991 | goodbye mr. mackenzie | international | radioactive records/mca | compilation of tracks from both albums, remixed row 5 : 1993 | live on the day of storms | uk | blokshok records | live album row 6 : 1994 | five | uk | blokshok records | third studio album row 7 : 1995 | jezebel | uk | blokshok records | rarities compilation row 8 : 1996 | the glory hole | uk | blokshok records | fourth and final studio album: manson, scobie or duncan do not row 9 : 2005 | the river sessions | uk | river records | double live album row 10 : 2009 | the rattler: live '91' | uk | md music company | live album (digital release)
table_csv/204_928.csv
0
{ "column_index": [ 1, 1, 1, 1, 1, 1, 1, 1, 1, 1 ], "row_index": [ 0, 1, 2, 3, 4, 5, 6, 7, 8, 9 ] }
[ "what were the names of each of goodbye mr. mackenzie's albums?" ]
0
good deeds and dirty rags, fish heads and tails, hammer and tongs, goodbye mr. mackenzie, live on the day of storms, five, jezebel, the glory hole, the river sessions, the rattler: live '91'
[ "Year", "Album", "Territory", "Label", "Notes" ]
what were the names of each of goodbye mr. mackenzie's albums?
[ [ "1989", "Good Deeds and Dirty Rags", "UK", "Capitol Records", "Debut album, reached No. 26 on UK Albums Chart" ], [ "1989", "Fish Heads and Tails", "UK", "Capitol Records", "Mid-price live and rarities compilation" ], [ "1991", "Hammer and Tongs", "UK", "Radioactive Records/MCA", "Second studio album; reached No. 61 on the UK Albums Chart" ], [ "1991", "Goodbye Mr. Mackenzie", "International", "Radioactive Records/MCA", "Compilation of tracks from both albums, remixed" ], [ "1993", "Live on The Day of Storms", "UK", "Blokshok Records", "Live album" ], [ "1994", "Five", "UK", "Blokshok Records", "Third studio album" ], [ "1995", "Jezebel", "UK", "Blokshok Records", "Rarities compilation" ], [ "1996", "The Glory Hole", "UK", "Blokshok Records", "Fourth and final studio album: Manson, Scobie or Duncan do not" ], [ "2005", "The River Sessions", "UK", "River Records", "Double live album" ], [ "2009", "The Rattler: Live '91'", "UK", "MD Music Company", "Live album (Digital release)" ] ]
[ "Good Deeds and Dirty Rags", "Fish Heads and Tails", "Hammer and Tongs", "Goodbye Mr. Mackenzie", "Live on The Day of Storms", "Five", "Jezebel", "The Glory Hole", "The River Sessions", "The Rattler: Live '91'" ]
what were the names of each of goodbye mr. mackenzie's albums? ||
nt-803
col : year | album | territory | label | notes row 1 : 1989 | good deeds and dirty rags | uk | capitol records | debut album, reached no. 26 on uk albums chart row 2 : 1989 | fish heads and tails | uk | capitol records | mid-price live and rarities compilation row 3 : 1991 | hammer and tongs | uk | radioactive records/mca | second studio album; reached no. 61 on the uk albums chart row 4 : 1991 | goodbye mr. mackenzie | international | radioactive records/mca | compilation of tracks from both albums, remixed row 5 : 1993 | live on the day of storms | uk | blokshok records | live album row 6 : 1994 | five | uk | blokshok records | third studio album row 7 : 1995 | jezebel | uk | blokshok records | rarities compilation row 8 : 1996 | the glory hole | uk | blokshok records | fourth and final studio album: manson, scobie or duncan do not row 9 : 2005 | the river sessions | uk | river records | double live album row 10 : 2009 | the rattler: live '91' | uk | md music company | live album (digital release)
table_csv/204_928.csv
1
{ "column_index": [ 1, 1 ], "row_index": [ 0, 1 ] }
[ "what were the names of each of goodbye mr. mackenzie's albums?", "which albums were released in 1989?" ]
0
good deeds and dirty rags, fish heads and tails
[ "Year", "Album", "Territory", "Label", "Notes" ]
which albums were released in 1989?
[ [ "1989", "Good Deeds and Dirty Rags", "UK", "Capitol Records", "Debut album, reached No. 26 on UK Albums Chart" ], [ "1989", "Fish Heads and Tails", "UK", "Capitol Records", "Mid-price live and rarities compilation" ], [ "1991", "Hammer and Tongs", "UK", "Radioactive Records/MCA", "Second studio album; reached No. 61 on the UK Albums Chart" ], [ "1991", "Goodbye Mr. Mackenzie", "International", "Radioactive Records/MCA", "Compilation of tracks from both albums, remixed" ], [ "1993", "Live on The Day of Storms", "UK", "Blokshok Records", "Live album" ], [ "1994", "Five", "UK", "Blokshok Records", "Third studio album" ], [ "1995", "Jezebel", "UK", "Blokshok Records", "Rarities compilation" ], [ "1996", "The Glory Hole", "UK", "Blokshok Records", "Fourth and final studio album: Manson, Scobie or Duncan do not" ], [ "2005", "The River Sessions", "UK", "River Records", "Double live album" ], [ "2009", "The Rattler: Live '91'", "UK", "MD Music Company", "Live album (Digital release)" ] ]
[ "Good Deeds and Dirty Rags", "Fish Heads and Tails" ]
which albums were released in 1989? || what were the names of each of goodbye mr. mackenzie's albums?
nt-803
col : year | album | territory | label | notes row 1 : 1989 | good deeds and dirty rags | uk | capitol records | debut album, reached no. 26 on uk albums chart row 2 : 1989 | fish heads and tails | uk | capitol records | mid-price live and rarities compilation row 3 : 1991 | hammer and tongs | uk | radioactive records/mca | second studio album; reached no. 61 on the uk albums chart row 4 : 1991 | goodbye mr. mackenzie | international | radioactive records/mca | compilation of tracks from both albums, remixed row 5 : 1993 | live on the day of storms | uk | blokshok records | live album row 6 : 1994 | five | uk | blokshok records | third studio album row 7 : 1995 | jezebel | uk | blokshok records | rarities compilation row 8 : 1996 | the glory hole | uk | blokshok records | fourth and final studio album: manson, scobie or duncan do not row 9 : 2005 | the river sessions | uk | river records | double live album row 10 : 2009 | the rattler: live '91' | uk | md music company | live album (digital release)
table_csv/204_928.csv
2
{ "column_index": [ 1 ], "row_index": [ 0 ] }
[ "what were the names of each of goodbye mr. mackenzie's albums?", "which albums were released in 1989?", "of those two albums, which one reached 26 on the uk albums chart?" ]
0
good deeds and dirty rags
[ "Year", "Album", "Territory", "Label", "Notes" ]
of those two albums, which one reached 26 on the uk albums chart?
[ [ "1989", "Good Deeds and Dirty Rags", "UK", "Capitol Records", "Debut album, reached No. 26 on UK Albums Chart" ], [ "1989", "Fish Heads and Tails", "UK", "Capitol Records", "Mid-price live and rarities compilation" ], [ "1991", "Hammer and Tongs", "UK", "Radioactive Records/MCA", "Second studio album; reached No. 61 on the UK Albums Chart" ], [ "1991", "Goodbye Mr. Mackenzie", "International", "Radioactive Records/MCA", "Compilation of tracks from both albums, remixed" ], [ "1993", "Live on The Day of Storms", "UK", "Blokshok Records", "Live album" ], [ "1994", "Five", "UK", "Blokshok Records", "Third studio album" ], [ "1995", "Jezebel", "UK", "Blokshok Records", "Rarities compilation" ], [ "1996", "The Glory Hole", "UK", "Blokshok Records", "Fourth and final studio album: Manson, Scobie or Duncan do not" ], [ "2005", "The River Sessions", "UK", "River Records", "Double live album" ], [ "2009", "The Rattler: Live '91'", "UK", "MD Music Company", "Live album (Digital release)" ] ]
[ "Good Deeds and Dirty Rags" ]
of those two albums, which one reached 26 on the uk albums chart? || which albums were released in 1989? | what were the names of each of goodbye mr. mackenzie's albums?