Datasets:
Tasks:
Image Classification
Sub-tasks:
multi-class-image-classification
Languages:
English
Size:
1M<n<10M
ArXiv:
License:
add epochs arg
Browse files
ForNet.py
CHANGED
@@ -1076,6 +1076,7 @@ class RecombineDataset(Dataset):
|
|
1076 |
orig_img_prob,
|
1077 |
fg_in_nonant=None,
|
1078 |
size_fact=1.0,
|
|
|
1079 |
**kwargs,
|
1080 |
):
|
1081 |
"""Create the ForNet recombination dataset.
|
@@ -1116,7 +1117,7 @@ class RecombineDataset(Dataset):
|
|
1116 |
self.mask_smoothing_sigma = mask_smoothing_sigma
|
1117 |
self.rel_jut_out = rel_jut_out
|
1118 |
self.orig_img_prob = orig_img_prob
|
1119 |
-
self.epochs =
|
1120 |
self._epoch = 0
|
1121 |
self.cls_to_idx = {}
|
1122 |
self.fg_in_nonant = fg_in_nonant
|
@@ -1307,6 +1308,7 @@ class ForNetConfig(datasets.BuilderConfig):
|
|
1307 |
orig_img_prob,
|
1308 |
fg_in_nonant=None,
|
1309 |
size_fact=1.0,
|
|
|
1310 |
**kwargs,
|
1311 |
):
|
1312 |
"""BuilderConfig for ForNet.
|
@@ -1325,6 +1327,7 @@ class ForNetConfig(datasets.BuilderConfig):
|
|
1325 |
self.orig_img_prob = orig_img_prob
|
1326 |
self.fg_in_nonant = fg_in_nonant
|
1327 |
self.size_fact = size_fact
|
|
|
1328 |
|
1329 |
def __str__(self):
|
1330 |
return f"ForNetConfig(name={self.name}, version={self.version}, data_dir={self.data_dir}, data_files={self.data_files}, description={self.description}, background_combination={self.background_combination}, fg_scale_jitter={self.fg_scale_jitter}, pruning_ratio={self.pruning_ratio}, fg_size_mode={self.fg_size_mode}, fg_bates_n={self.fg_bates_n}, mask_smoothing_sigma={self.mask_smoothing_sigma}, rel_jut_out={self.rel_jut_out}, orig_img_prob={self.orig_img_prob})"
|
@@ -1421,6 +1424,7 @@ class ForNet(datasets.GeneratorBasedBuilder):
|
|
1421 |
orig_img_prob=0.0,
|
1422 |
fg_in_nonant=None,
|
1423 |
size_fact=1.0,
|
|
|
1424 |
)
|
1425 |
]
|
1426 |
|
@@ -1647,6 +1651,7 @@ class ForNet(datasets.GeneratorBasedBuilder):
|
|
1647 |
orig_img_prob=self.config.orig_img_prob,
|
1648 |
fg_in_nonant=self.config.fg_in_nonant,
|
1649 |
size_fact=self.config.size_fact,
|
|
|
1650 |
**dataset_kwargs,
|
1651 |
)
|
1652 |
|
|
|
1076 |
orig_img_prob,
|
1077 |
fg_in_nonant=None,
|
1078 |
size_fact=1.0,
|
1079 |
+
epochs=0,
|
1080 |
**kwargs,
|
1081 |
):
|
1082 |
"""Create the ForNet recombination dataset.
|
|
|
1117 |
self.mask_smoothing_sigma = mask_smoothing_sigma
|
1118 |
self.rel_jut_out = rel_jut_out
|
1119 |
self.orig_img_prob = orig_img_prob
|
1120 |
+
self.epochs = epochs
|
1121 |
self._epoch = 0
|
1122 |
self.cls_to_idx = {}
|
1123 |
self.fg_in_nonant = fg_in_nonant
|
|
|
1308 |
orig_img_prob,
|
1309 |
fg_in_nonant=None,
|
1310 |
size_fact=1.0,
|
1311 |
+
epochs=0,
|
1312 |
**kwargs,
|
1313 |
):
|
1314 |
"""BuilderConfig for ForNet.
|
|
|
1327 |
self.orig_img_prob = orig_img_prob
|
1328 |
self.fg_in_nonant = fg_in_nonant
|
1329 |
self.size_fact = size_fact
|
1330 |
+
self.epochs = epochs
|
1331 |
|
1332 |
def __str__(self):
|
1333 |
return f"ForNetConfig(name={self.name}, version={self.version}, data_dir={self.data_dir}, data_files={self.data_files}, description={self.description}, background_combination={self.background_combination}, fg_scale_jitter={self.fg_scale_jitter}, pruning_ratio={self.pruning_ratio}, fg_size_mode={self.fg_size_mode}, fg_bates_n={self.fg_bates_n}, mask_smoothing_sigma={self.mask_smoothing_sigma}, rel_jut_out={self.rel_jut_out}, orig_img_prob={self.orig_img_prob})"
|
|
|
1424 |
orig_img_prob=0.0,
|
1425 |
fg_in_nonant=None,
|
1426 |
size_fact=1.0,
|
1427 |
+
epochs=0,
|
1428 |
)
|
1429 |
]
|
1430 |
|
|
|
1651 |
orig_img_prob=self.config.orig_img_prob,
|
1652 |
fg_in_nonant=self.config.fg_in_nonant,
|
1653 |
size_fact=self.config.size_fact,
|
1654 |
+
epochs=self.config.epochs,
|
1655 |
**dataset_kwargs,
|
1656 |
)
|
1657 |
|