TNauen commited on
Commit
f59f971
·
verified ·
1 Parent(s): 4c0afec

add classes and eval params back in

Browse files
Files changed (1) hide show
  1. ForNet.py +1036 -7
ForNet.py CHANGED
@@ -8,6 +8,7 @@ import queue
8
  import re
9
  import urllib
10
  import zipfile
 
11
  from math import floor
12
  from typing import Optional
13
 
@@ -22,11 +23,1015 @@ from PIL import Image, ImageFilter
22
  from torchvision import transforms as T
23
  from tqdm import tqdm
24
 
25
- from classes import IMAGENET2012_CLASSES
26
-
27
  logger = datasets.logging.get_logger(__name__)
28
 
29
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
30
  _CITATION = """\
31
  @misc{nauen2025foraug,
32
  title={ForAug: Recombining Foregrounds and Backgrounds to Improve Vision Transformer Training with Bias Mitigation},
@@ -69,6 +1074,8 @@ class RecombineDataset(Dataset):
69
  mask_smoothing_sigma,
70
  rel_jut_out,
71
  orig_img_prob,
 
 
72
  **kwargs,
73
  ):
74
  """Create the ForNet recombination dataset.
@@ -100,6 +1107,7 @@ class RecombineDataset(Dataset):
100
  "max",
101
  "mean",
102
  ], f"Invalid fg_size_mode {fg_size_mode}"
 
103
  self.background_combination = background_combination
104
  self.fg_scale_jitter = fg_scale_jitter
105
  self.pruning_ratio = pruning_ratio
@@ -111,6 +1119,8 @@ class RecombineDataset(Dataset):
111
  self.epochs = 0
112
  self._epoch = 0
113
  self.cls_to_idx = {}
 
 
114
 
115
  bg_rat_indices = super()._getitem(0)["bg_rat_idx_file"]
116
  self.train = "train" in bg_rat_indices.split("/")[-1]
@@ -178,6 +1188,9 @@ class RecombineDataset(Dataset):
178
  bg_img = bg_item["bg"].convert("RGB")
179
  bg_size = bg_img.size
180
  bg_area = bg_size[0] * bg_size[1]
 
 
 
181
  orig_fg_ratio = fg_item["fg/bg_area"]
182
  bg_fg_ratio = bg_item["fg/bg_area"]
183
 
@@ -200,6 +1213,7 @@ class RecombineDataset(Dataset):
200
  goal_fg_ratio_upper * (1 + self.fg_scale_jitter),
201
  )
202
  / fg_size_factor
 
203
  )
204
 
205
  goal_shape_y = round(np.sqrt(bg_area * fg_scale * fg_img.size[1] / fg_img.size[0]))
@@ -233,6 +1247,12 @@ class RecombineDataset(Dataset):
233
  y_min = -self.rel_jut_out * fg_img.size[1]
234
  y_max = bg_size[1] - fg_img.size[1] * (1 - self.rel_jut_out)
235
 
 
 
 
 
 
 
236
  if x_min > x_max:
237
  x_min = x_max = (x_min + x_max) / 2
238
  if y_min > y_max:
@@ -267,6 +1287,8 @@ _CONFIG_HASH_IGNORE_KWARGS = [
267
  "mask_smoothing_sigma",
268
  "rel_jut_out",
269
  "orig_img_prob",
 
 
270
  ]
271
 
272
 
@@ -283,6 +1305,8 @@ class ForNetConfig(datasets.BuilderConfig):
283
  mask_smoothing_sigma,
284
  rel_jut_out,
285
  orig_img_prob,
 
 
286
  **kwargs,
287
  ):
288
  """BuilderConfig for ForNet.
@@ -299,6 +1323,8 @@ class ForNetConfig(datasets.BuilderConfig):
299
  self.mask_smoothing_sigma = mask_smoothing_sigma
300
  self.rel_jut_out = rel_jut_out
301
  self.orig_img_prob = orig_img_prob
 
 
302
 
303
  def __str__(self):
304
  return f"ForNetConfig(name={self.name}, version={self.version}, data_dir={self.data_dir}, data_files={self.data_files}, description={self.description}, background_combination={self.background_combination}, fg_scale_jitter={self.fg_scale_jitter}, pruning_ratio={self.pruning_ratio}, fg_size_mode={self.fg_size_mode}, fg_bates_n={self.fg_bates_n}, mask_smoothing_sigma={self.mask_smoothing_sigma}, rel_jut_out={self.rel_jut_out}, orig_img_prob={self.orig_img_prob})"
@@ -393,6 +1419,8 @@ class ForNet(datasets.GeneratorBasedBuilder):
393
  mask_smoothing_sigma=4.0,
394
  rel_jut_out=0.0,
395
  orig_img_prob=0.0,
 
 
396
  )
397
  ]
398
 
@@ -418,6 +1446,9 @@ class ForNet(datasets.GeneratorBasedBuilder):
418
  )
419
 
420
  def _split_generators(self, dl_manager: datasets.DownloadManager):
 
 
 
421
  urls_to_download = _CONST_URLS + _PATCH_URLS
422
  dl_paths = dl_manager.download(urls_to_download)
423
 
@@ -599,10 +1630,6 @@ class ForNet(datasets.GeneratorBasedBuilder):
599
  )
600
 
601
  fingerprint = self._get_dataset_fingerprint(split)
602
- # print("config", self.config)
603
- # print("rel data dir", self._relative_data_dir())
604
- # print("split", str(split))
605
- # print("fingerprint", fingerprint)
606
 
607
  splitname = str(split)
608
  if splitname == "validation":
@@ -618,6 +1645,8 @@ class ForNet(datasets.GeneratorBasedBuilder):
618
  mask_smoothing_sigma=self.config.mask_smoothing_sigma,
619
  rel_jut_out=self.config.rel_jut_out,
620
  orig_img_prob=self.config.orig_img_prob,
 
 
621
  **dataset_kwargs,
622
  )
623
 
@@ -633,7 +1662,7 @@ class ForNet(datasets.GeneratorBasedBuilder):
633
  def _in_iterator(in_queue, split):
634
  if split == "val":
635
  split = "validation"
636
- imagenet = datasets.load_dataset("ILSVRC/imagenet-1k", split=split)
637
  for idx, ex in enumerate(imagenet):
638
  in_queue.put((idx, ex["image"]))
639
 
 
8
  import re
9
  import urllib
10
  import zipfile
11
+ from collections import OrderedDict
12
  from math import floor
13
  from typing import Optional
14
 
 
23
  from torchvision import transforms as T
24
  from tqdm import tqdm
25
 
 
 
26
  logger = datasets.logging.get_logger(__name__)
27
 
28
 
29
+ IMAGENET2012_CLASSES = OrderedDict(
30
+ {
31
+ "n01440764": "tench, Tinca tinca",
32
+ "n01443537": "goldfish, Carassius auratus",
33
+ "n01484850": "great white shark, white shark, man-eater, man-eating shark, Carcharodon carcharias",
34
+ "n01491361": "tiger shark, Galeocerdo cuvieri",
35
+ "n01494475": "hammerhead, hammerhead shark",
36
+ "n01496331": "electric ray, crampfish, numbfish, torpedo",
37
+ "n01498041": "stingray",
38
+ "n01514668": "cock",
39
+ "n01514859": "hen",
40
+ "n01518878": "ostrich, Struthio camelus",
41
+ "n01530575": "brambling, Fringilla montifringilla",
42
+ "n01531178": "goldfinch, Carduelis carduelis",
43
+ "n01532829": "house finch, linnet, Carpodacus mexicanus",
44
+ "n01534433": "junco, snowbird",
45
+ "n01537544": "indigo bunting, indigo finch, indigo bird, Passerina cyanea",
46
+ "n01558993": "robin, American robin, Turdus migratorius",
47
+ "n01560419": "bulbul",
48
+ "n01580077": "jay",
49
+ "n01582220": "magpie",
50
+ "n01592084": "chickadee",
51
+ "n01601694": "water ouzel, dipper",
52
+ "n01608432": "kite",
53
+ "n01614925": "bald eagle, American eagle, Haliaeetus leucocephalus",
54
+ "n01616318": "vulture",
55
+ "n01622779": "great grey owl, great gray owl, Strix nebulosa",
56
+ "n01629819": "European fire salamander, Salamandra salamandra",
57
+ "n01630670": "common newt, Triturus vulgaris",
58
+ "n01631663": "eft",
59
+ "n01632458": "spotted salamander, Ambystoma maculatum",
60
+ "n01632777": "axolotl, mud puppy, Ambystoma mexicanum",
61
+ "n01641577": "bullfrog, Rana catesbeiana",
62
+ "n01644373": "tree frog, tree-frog",
63
+ "n01644900": "tailed frog, bell toad, ribbed toad, tailed toad, Ascaphus trui",
64
+ "n01664065": "loggerhead, loggerhead turtle, Caretta caretta",
65
+ "n01665541": "leatherback turtle, leatherback, leathery turtle, Dermochelys coriacea",
66
+ "n01667114": "mud turtle",
67
+ "n01667778": "terrapin",
68
+ "n01669191": "box turtle, box tortoise",
69
+ "n01675722": "banded gecko",
70
+ "n01677366": "common iguana, iguana, Iguana iguana",
71
+ "n01682714": "American chameleon, anole, Anolis carolinensis",
72
+ "n01685808": "whiptail, whiptail lizard",
73
+ "n01687978": "agama",
74
+ "n01688243": "frilled lizard, Chlamydosaurus kingi",
75
+ "n01689811": "alligator lizard",
76
+ "n01692333": "Gila monster, Heloderma suspectum",
77
+ "n01693334": "green lizard, Lacerta viridis",
78
+ "n01694178": "African chameleon, Chamaeleo chamaeleon",
79
+ "n01695060": "Komodo dragon, Komodo lizard, dragon lizard, giant lizard, Varanus komodoensis",
80
+ "n01697457": "African crocodile, Nile crocodile, Crocodylus niloticus",
81
+ "n01698640": "American alligator, Alligator mississipiensis",
82
+ "n01704323": "triceratops",
83
+ "n01728572": "thunder snake, worm snake, Carphophis amoenus",
84
+ "n01728920": "ringneck snake, ring-necked snake, ring snake",
85
+ "n01729322": "hognose snake, puff adder, sand viper",
86
+ "n01729977": "green snake, grass snake",
87
+ "n01734418": "king snake, kingsnake",
88
+ "n01735189": "garter snake, grass snake",
89
+ "n01737021": "water snake",
90
+ "n01739381": "vine snake",
91
+ "n01740131": "night snake, Hypsiglena torquata",
92
+ "n01742172": "boa constrictor, Constrictor constrictor",
93
+ "n01744401": "rock python, rock snake, Python sebae",
94
+ "n01748264": "Indian cobra, Naja naja",
95
+ "n01749939": "green mamba",
96
+ "n01751748": "sea snake",
97
+ "n01753488": "horned viper, cerastes, sand viper, horned asp, Cerastes cornutus",
98
+ "n01755581": "diamondback, diamondback rattlesnake, Crotalus adamanteus",
99
+ "n01756291": "sidewinder, horned rattlesnake, Crotalus cerastes",
100
+ "n01768244": "trilobite",
101
+ "n01770081": "harvestman, daddy longlegs, Phalangium opilio",
102
+ "n01770393": "scorpion",
103
+ "n01773157": "black and gold garden spider, Argiope aurantia",
104
+ "n01773549": "barn spider, Araneus cavaticus",
105
+ "n01773797": "garden spider, Aranea diademata",
106
+ "n01774384": "black widow, Latrodectus mactans",
107
+ "n01774750": "tarantula",
108
+ "n01775062": "wolf spider, hunting spider",
109
+ "n01776313": "tick",
110
+ "n01784675": "centipede",
111
+ "n01795545": "black grouse",
112
+ "n01796340": "ptarmigan",
113
+ "n01797886": "ruffed grouse, partridge, Bonasa umbellus",
114
+ "n01798484": "prairie chicken, prairie grouse, prairie fowl",
115
+ "n01806143": "peacock",
116
+ "n01806567": "quail",
117
+ "n01807496": "partridge",
118
+ "n01817953": "African grey, African gray, Psittacus erithacus",
119
+ "n01818515": "macaw",
120
+ "n01819313": "sulphur-crested cockatoo, Kakatoe galerita, Cacatua galerita",
121
+ "n01820546": "lorikeet",
122
+ "n01824575": "coucal",
123
+ "n01828970": "bee eater",
124
+ "n01829413": "hornbill",
125
+ "n01833805": "hummingbird",
126
+ "n01843065": "jacamar",
127
+ "n01843383": "toucan",
128
+ "n01847000": "drake",
129
+ "n01855032": "red-breasted merganser, Mergus serrator",
130
+ "n01855672": "goose",
131
+ "n01860187": "black swan, Cygnus atratus",
132
+ "n01871265": "tusker",
133
+ "n01872401": "echidna, spiny anteater, anteater",
134
+ "n01873310": "platypus, duckbill, duckbilled platypus, duck-billed platypus, Ornithorhynchus anatinus",
135
+ "n01877812": "wallaby, brush kangaroo",
136
+ "n01882714": "koala, koala bear, kangaroo bear, native bear, Phascolarctos cinereus",
137
+ "n01883070": "wombat",
138
+ "n01910747": "jellyfish",
139
+ "n01914609": "sea anemone, anemone",
140
+ "n01917289": "brain coral",
141
+ "n01924916": "flatworm, platyhelminth",
142
+ "n01930112": "nematode, nematode worm, roundworm",
143
+ "n01943899": "conch",
144
+ "n01944390": "snail",
145
+ "n01945685": "slug",
146
+ "n01950731": "sea slug, nudibranch",
147
+ "n01955084": "chiton, coat-of-mail shell, sea cradle, polyplacophore",
148
+ "n01968897": "chambered nautilus, pearly nautilus, nautilus",
149
+ "n01978287": "Dungeness crab, Cancer magister",
150
+ "n01978455": "rock crab, Cancer irroratus",
151
+ "n01980166": "fiddler crab",
152
+ "n01981276": "king crab, Alaska crab, Alaskan king crab, Alaska king crab, Paralithodes camtschatica",
153
+ "n01983481": "American lobster, Northern lobster, Maine lobster, Homarus americanus",
154
+ "n01984695": "spiny lobster, langouste, rock lobster, crawfish, crayfish, sea crawfish",
155
+ "n01985128": "crayfish, crawfish, crawdad, crawdaddy",
156
+ "n01986214": "hermit crab",
157
+ "n01990800": "isopod",
158
+ "n02002556": "white stork, Ciconia ciconia",
159
+ "n02002724": "black stork, Ciconia nigra",
160
+ "n02006656": "spoonbill",
161
+ "n02007558": "flamingo",
162
+ "n02009229": "little blue heron, Egretta caerulea",
163
+ "n02009912": "American egret, great white heron, Egretta albus",
164
+ "n02011460": "bittern",
165
+ "n02012849": "crane",
166
+ "n02013706": "limpkin, Aramus pictus",
167
+ "n02017213": "European gallinule, Porphyrio porphyrio",
168
+ "n02018207": "American coot, marsh hen, mud hen, water hen, Fulica americana",
169
+ "n02018795": "bustard",
170
+ "n02025239": "ruddy turnstone, Arenaria interpres",
171
+ "n02027492": "red-backed sandpiper, dunlin, Erolia alpina",
172
+ "n02028035": "redshank, Tringa totanus",
173
+ "n02033041": "dowitcher",
174
+ "n02037110": "oystercatcher, oyster catcher",
175
+ "n02051845": "pelican",
176
+ "n02056570": "king penguin, Aptenodytes patagonica",
177
+ "n02058221": "albatross, mollymawk",
178
+ "n02066245": "grey whale, gray whale, devilfish, Eschrichtius gibbosus, Eschrichtius robustus",
179
+ "n02071294": "killer whale, killer, orca, grampus, sea wolf, Orcinus orca",
180
+ "n02074367": "dugong, Dugong dugon",
181
+ "n02077923": "sea lion",
182
+ "n02085620": "Chihuahua",
183
+ "n02085782": "Japanese spaniel",
184
+ "n02085936": "Maltese dog, Maltese terrier, Maltese",
185
+ "n02086079": "Pekinese, Pekingese, Peke",
186
+ "n02086240": "Shih-Tzu",
187
+ "n02086646": "Blenheim spaniel",
188
+ "n02086910": "papillon",
189
+ "n02087046": "toy terrier",
190
+ "n02087394": "Rhodesian ridgeback",
191
+ "n02088094": "Afghan hound, Afghan",
192
+ "n02088238": "basset, basset hound",
193
+ "n02088364": "beagle",
194
+ "n02088466": "bloodhound, sleuthhound",
195
+ "n02088632": "bluetick",
196
+ "n02089078": "black-and-tan coonhound",
197
+ "n02089867": "Walker hound, Walker foxhound",
198
+ "n02089973": "English foxhound",
199
+ "n02090379": "redbone",
200
+ "n02090622": "borzoi, Russian wolfhound",
201
+ "n02090721": "Irish wolfhound",
202
+ "n02091032": "Italian greyhound",
203
+ "n02091134": "whippet",
204
+ "n02091244": "Ibizan hound, Ibizan Podenco",
205
+ "n02091467": "Norwegian elkhound, elkhound",
206
+ "n02091635": "otterhound, otter hound",
207
+ "n02091831": "Saluki, gazelle hound",
208
+ "n02092002": "Scottish deerhound, deerhound",
209
+ "n02092339": "Weimaraner",
210
+ "n02093256": "Staffordshire bullterrier, Staffordshire bull terrier",
211
+ "n02093428": "American Staffordshire terrier, Staffordshire terrier, American pit bull terrier, pit bull terrier",
212
+ "n02093647": "Bedlington terrier",
213
+ "n02093754": "Border terrier",
214
+ "n02093859": "Kerry blue terrier",
215
+ "n02093991": "Irish terrier",
216
+ "n02094114": "Norfolk terrier",
217
+ "n02094258": "Norwich terrier",
218
+ "n02094433": "Yorkshire terrier",
219
+ "n02095314": "wire-haired fox terrier",
220
+ "n02095570": "Lakeland terrier",
221
+ "n02095889": "Sealyham terrier, Sealyham",
222
+ "n02096051": "Airedale, Airedale terrier",
223
+ "n02096177": "cairn, cairn terrier",
224
+ "n02096294": "Australian terrier",
225
+ "n02096437": "Dandie Dinmont, Dandie Dinmont terrier",
226
+ "n02096585": "Boston bull, Boston terrier",
227
+ "n02097047": "miniature schnauzer",
228
+ "n02097130": "giant schnauzer",
229
+ "n02097209": "standard schnauzer",
230
+ "n02097298": "Scotch terrier, Scottish terrier, Scottie",
231
+ "n02097474": "Tibetan terrier, chrysanthemum dog",
232
+ "n02097658": "silky terrier, Sydney silky",
233
+ "n02098105": "soft-coated wheaten terrier",
234
+ "n02098286": "West Highland white terrier",
235
+ "n02098413": "Lhasa, Lhasa apso",
236
+ "n02099267": "flat-coated retriever",
237
+ "n02099429": "curly-coated retriever",
238
+ "n02099601": "golden retriever",
239
+ "n02099712": "Labrador retriever",
240
+ "n02099849": "Chesapeake Bay retriever",
241
+ "n02100236": "German short-haired pointer",
242
+ "n02100583": "vizsla, Hungarian pointer",
243
+ "n02100735": "English setter",
244
+ "n02100877": "Irish setter, red setter",
245
+ "n02101006": "Gordon setter",
246
+ "n02101388": "Brittany spaniel",
247
+ "n02101556": "clumber, clumber spaniel",
248
+ "n02102040": "English springer, English springer spaniel",
249
+ "n02102177": "Welsh springer spaniel",
250
+ "n02102318": "cocker spaniel, English cocker spaniel, cocker",
251
+ "n02102480": "Sussex spaniel",
252
+ "n02102973": "Irish water spaniel",
253
+ "n02104029": "kuvasz",
254
+ "n02104365": "schipperke",
255
+ "n02105056": "groenendael",
256
+ "n02105162": "malinois",
257
+ "n02105251": "briard",
258
+ "n02105412": "kelpie",
259
+ "n02105505": "komondor",
260
+ "n02105641": "Old English sheepdog, bobtail",
261
+ "n02105855": "Shetland sheepdog, Shetland sheep dog, Shetland",
262
+ "n02106030": "collie",
263
+ "n02106166": "Border collie",
264
+ "n02106382": "Bouvier des Flandres, Bouviers des Flandres",
265
+ "n02106550": "Rottweiler",
266
+ "n02106662": "German shepherd, German shepherd dog, German police dog, alsatian",
267
+ "n02107142": "Doberman, Doberman pinscher",
268
+ "n02107312": "miniature pinscher",
269
+ "n02107574": "Greater Swiss Mountain dog",
270
+ "n02107683": "Bernese mountain dog",
271
+ "n02107908": "Appenzeller",
272
+ "n02108000": "EntleBucher",
273
+ "n02108089": "boxer",
274
+ "n02108422": "bull mastiff",
275
+ "n02108551": "Tibetan mastiff",
276
+ "n02108915": "French bulldog",
277
+ "n02109047": "Great Dane",
278
+ "n02109525": "Saint Bernard, St Bernard",
279
+ "n02109961": "Eskimo dog, husky",
280
+ "n02110063": "malamute, malemute, Alaskan malamute",
281
+ "n02110185": "Siberian husky",
282
+ "n02110341": "dalmatian, coach dog, carriage dog",
283
+ "n02110627": "affenpinscher, monkey pinscher, monkey dog",
284
+ "n02110806": "basenji",
285
+ "n02110958": "pug, pug-dog",
286
+ "n02111129": "Leonberg",
287
+ "n02111277": "Newfoundland, Newfoundland dog",
288
+ "n02111500": "Great Pyrenees",
289
+ "n02111889": "Samoyed, Samoyede",
290
+ "n02112018": "Pomeranian",
291
+ "n02112137": "chow, chow chow",
292
+ "n02112350": "keeshond",
293
+ "n02112706": "Brabancon griffon",
294
+ "n02113023": "Pembroke, Pembroke Welsh corgi",
295
+ "n02113186": "Cardigan, Cardigan Welsh corgi",
296
+ "n02113624": "toy poodle",
297
+ "n02113712": "miniature poodle",
298
+ "n02113799": "standard poodle",
299
+ "n02113978": "Mexican hairless",
300
+ "n02114367": "timber wolf, grey wolf, gray wolf, Canis lupus",
301
+ "n02114548": "white wolf, Arctic wolf, Canis lupus tundrarum",
302
+ "n02114712": "red wolf, maned wolf, Canis rufus, Canis niger",
303
+ "n02114855": "coyote, prairie wolf, brush wolf, Canis latrans",
304
+ "n02115641": "dingo, warrigal, warragal, Canis dingo",
305
+ "n02115913": "dhole, Cuon alpinus",
306
+ "n02116738": "African hunting dog, hyena dog, Cape hunting dog, Lycaon pictus",
307
+ "n02117135": "hyena, hyaena",
308
+ "n02119022": "red fox, Vulpes vulpes",
309
+ "n02119789": "kit fox, Vulpes macrotis",
310
+ "n02120079": "Arctic fox, white fox, Alopex lagopus",
311
+ "n02120505": "grey fox, gray fox, Urocyon cinereoargenteus",
312
+ "n02123045": "tabby, tabby cat",
313
+ "n02123159": "tiger cat",
314
+ "n02123394": "Persian cat",
315
+ "n02123597": "Siamese cat, Siamese",
316
+ "n02124075": "Egyptian cat",
317
+ "n02125311": "cougar, puma, catamount, mountain lion, painter, panther, Felis concolor",
318
+ "n02127052": "lynx, catamount",
319
+ "n02128385": "leopard, Panthera pardus",
320
+ "n02128757": "snow leopard, ounce, Panthera uncia",
321
+ "n02128925": "jaguar, panther, Panthera onca, Felis onca",
322
+ "n02129165": "lion, king of beasts, Panthera leo",
323
+ "n02129604": "tiger, Panthera tigris",
324
+ "n02130308": "cheetah, chetah, Acinonyx jubatus",
325
+ "n02132136": "brown bear, bruin, Ursus arctos",
326
+ "n02133161": "American black bear, black bear, Ursus americanus, Euarctos americanus",
327
+ "n02134084": "ice bear, polar bear, Ursus Maritimus, Thalarctos maritimus",
328
+ "n02134418": "sloth bear, Melursus ursinus, Ursus ursinus",
329
+ "n02137549": "mongoose",
330
+ "n02138441": "meerkat, mierkat",
331
+ "n02165105": "tiger beetle",
332
+ "n02165456": "ladybug, ladybeetle, lady beetle, ladybird, ladybird beetle",
333
+ "n02167151": "ground beetle, carabid beetle",
334
+ "n02168699": "long-horned beetle, longicorn, longicorn beetle",
335
+ "n02169497": "leaf beetle, chrysomelid",
336
+ "n02172182": "dung beetle",
337
+ "n02174001": "rhinoceros beetle",
338
+ "n02177972": "weevil",
339
+ "n02190166": "fly",
340
+ "n02206856": "bee",
341
+ "n02219486": "ant, emmet, pismire",
342
+ "n02226429": "grasshopper, hopper",
343
+ "n02229544": "cricket",
344
+ "n02231487": "walking stick, walkingstick, stick insect",
345
+ "n02233338": "cockroach, roach",
346
+ "n02236044": "mantis, mantid",
347
+ "n02256656": "cicada, cicala",
348
+ "n02259212": "leafhopper",
349
+ "n02264363": "lacewing, lacewing fly",
350
+ "n02268443": "dragonfly, darning needle, devil's darning needle, sewing needle, snake feeder, snake doctor, mosquito hawk, skeeter hawk",
351
+ "n02268853": "damselfly",
352
+ "n02276258": "admiral",
353
+ "n02277742": "ringlet, ringlet butterfly",
354
+ "n02279972": "monarch, monarch butterfly, milkweed butterfly, Danaus plexippus",
355
+ "n02280649": "cabbage butterfly",
356
+ "n02281406": "sulphur butterfly, sulfur butterfly",
357
+ "n02281787": "lycaenid, lycaenid butterfly",
358
+ "n02317335": "starfish, sea star",
359
+ "n02319095": "sea urchin",
360
+ "n02321529": "sea cucumber, holothurian",
361
+ "n02325366": "wood rabbit, cottontail, cottontail rabbit",
362
+ "n02326432": "hare",
363
+ "n02328150": "Angora, Angora rabbit",
364
+ "n02342885": "hamster",
365
+ "n02346627": "porcupine, hedgehog",
366
+ "n02356798": "fox squirrel, eastern fox squirrel, Sciurus niger",
367
+ "n02361337": "marmot",
368
+ "n02363005": "beaver",
369
+ "n02364673": "guinea pig, Cavia cobaya",
370
+ "n02389026": "sorrel",
371
+ "n02391049": "zebra",
372
+ "n02395406": "hog, pig, grunter, squealer, Sus scrofa",
373
+ "n02396427": "wild boar, boar, Sus scrofa",
374
+ "n02397096": "warthog",
375
+ "n02398521": "hippopotamus, hippo, river horse, Hippopotamus amphibius",
376
+ "n02403003": "ox",
377
+ "n02408429": "water buffalo, water ox, Asiatic buffalo, Bubalus bubalis",
378
+ "n02410509": "bison",
379
+ "n02412080": "ram, tup",
380
+ "n02415577": "bighorn, bighorn sheep, cimarron, Rocky Mountain bighorn, Rocky Mountain sheep, Ovis canadensis",
381
+ "n02417914": "ibex, Capra ibex",
382
+ "n02422106": "hartebeest",
383
+ "n02422699": "impala, Aepyceros melampus",
384
+ "n02423022": "gazelle",
385
+ "n02437312": "Arabian camel, dromedary, Camelus dromedarius",
386
+ "n02437616": "llama",
387
+ "n02441942": "weasel",
388
+ "n02442845": "mink",
389
+ "n02443114": "polecat, fitch, foulmart, foumart, Mustela putorius",
390
+ "n02443484": "black-footed ferret, ferret, Mustela nigripes",
391
+ "n02444819": "otter",
392
+ "n02445715": "skunk, polecat, wood pussy",
393
+ "n02447366": "badger",
394
+ "n02454379": "armadillo",
395
+ "n02457408": "three-toed sloth, ai, Bradypus tridactylus",
396
+ "n02480495": "orangutan, orang, orangutang, Pongo pygmaeus",
397
+ "n02480855": "gorilla, Gorilla gorilla",
398
+ "n02481823": "chimpanzee, chimp, Pan troglodytes",
399
+ "n02483362": "gibbon, Hylobates lar",
400
+ "n02483708": "siamang, Hylobates syndactylus, Symphalangus syndactylus",
401
+ "n02484975": "guenon, guenon monkey",
402
+ "n02486261": "patas, hussar monkey, Erythrocebus patas",
403
+ "n02486410": "baboon",
404
+ "n02487347": "macaque",
405
+ "n02488291": "langur",
406
+ "n02488702": "colobus, colobus monkey",
407
+ "n02489166": "proboscis monkey, Nasalis larvatus",
408
+ "n02490219": "marmoset",
409
+ "n02492035": "capuchin, ringtail, Cebus capucinus",
410
+ "n02492660": "howler monkey, howler",
411
+ "n02493509": "titi, titi monkey",
412
+ "n02493793": "spider monkey, Ateles geoffroyi",
413
+ "n02494079": "squirrel monkey, Saimiri sciureus",
414
+ "n02497673": "Madagascar cat, ring-tailed lemur, Lemur catta",
415
+ "n02500267": "indri, indris, Indri indri, Indri brevicaudatus",
416
+ "n02504013": "Indian elephant, Elephas maximus",
417
+ "n02504458": "African elephant, Loxodonta africana",
418
+ "n02509815": "lesser panda, red panda, panda, bear cat, cat bear, Ailurus fulgens",
419
+ "n02510455": "giant panda, panda, panda bear, coon bear, Ailuropoda melanoleuca",
420
+ "n02514041": "barracouta, snoek",
421
+ "n02526121": "eel",
422
+ "n02536864": "coho, cohoe, coho salmon, blue jack, silver salmon, Oncorhynchus kisutch",
423
+ "n02606052": "rock beauty, Holocanthus tricolor",
424
+ "n02607072": "anemone fish",
425
+ "n02640242": "sturgeon",
426
+ "n02641379": "gar, garfish, garpike, billfish, Lepisosteus osseus",
427
+ "n02643566": "lionfish",
428
+ "n02655020": "puffer, pufferfish, blowfish, globefish",
429
+ "n02666196": "abacus",
430
+ "n02667093": "abaya",
431
+ "n02669723": "academic gown, academic robe, judge's robe",
432
+ "n02672831": "accordion, piano accordion, squeeze box",
433
+ "n02676566": "acoustic guitar",
434
+ "n02687172": "aircraft carrier, carrier, flattop, attack aircraft carrier",
435
+ "n02690373": "airliner",
436
+ "n02692877": "airship, dirigible",
437
+ "n02699494": "altar",
438
+ "n02701002": "ambulance",
439
+ "n02704792": "amphibian, amphibious vehicle",
440
+ "n02708093": "analog clock",
441
+ "n02727426": "apiary, bee house",
442
+ "n02730930": "apron",
443
+ "n02747177": "ashcan, trash can, garbage can, wastebin, ash bin, ash-bin, ashbin, dustbin, trash barrel, trash bin",
444
+ "n02749479": "assault rifle, assault gun",
445
+ "n02769748": "backpack, back pack, knapsack, packsack, rucksack, haversack",
446
+ "n02776631": "bakery, bakeshop, bakehouse",
447
+ "n02777292": "balance beam, beam",
448
+ "n02782093": "balloon",
449
+ "n02783161": "ballpoint, ballpoint pen, ballpen, Biro",
450
+ "n02786058": "Band Aid",
451
+ "n02787622": "banjo",
452
+ "n02788148": "bannister, banister, balustrade, balusters, handrail",
453
+ "n02790996": "barbell",
454
+ "n02791124": "barber chair",
455
+ "n02791270": "barbershop",
456
+ "n02793495": "barn",
457
+ "n02794156": "barometer",
458
+ "n02795169": "barrel, cask",
459
+ "n02797295": "barrow, garden cart, lawn cart, wheelbarrow",
460
+ "n02799071": "baseball",
461
+ "n02802426": "basketball",
462
+ "n02804414": "bassinet",
463
+ "n02804610": "bassoon",
464
+ "n02807133": "bathing cap, swimming cap",
465
+ "n02808304": "bath towel",
466
+ "n02808440": "bathtub, bathing tub, bath, tub",
467
+ "n02814533": "beach wagon, station wagon, wagon, estate car, beach waggon, station waggon, waggon",
468
+ "n02814860": "beacon, lighthouse, beacon light, pharos",
469
+ "n02815834": "beaker",
470
+ "n02817516": "bearskin, busby, shako",
471
+ "n02823428": "beer bottle",
472
+ "n02823750": "beer glass",
473
+ "n02825657": "bell cote, bell cot",
474
+ "n02834397": "bib",
475
+ "n02835271": "bicycle-built-for-two, tandem bicycle, tandem",
476
+ "n02837789": "bikini, two-piece",
477
+ "n02840245": "binder, ring-binder",
478
+ "n02841315": "binoculars, field glasses, opera glasses",
479
+ "n02843684": "birdhouse",
480
+ "n02859443": "boathouse",
481
+ "n02860847": "bobsled, bobsleigh, bob",
482
+ "n02865351": "bolo tie, bolo, bola tie, bola",
483
+ "n02869837": "bonnet, poke bonnet",
484
+ "n02870880": "bookcase",
485
+ "n02871525": "bookshop, bookstore, bookstall",
486
+ "n02877765": "bottlecap",
487
+ "n02879718": "bow",
488
+ "n02883205": "bow tie, bow-tie, bowtie",
489
+ "n02892201": "brass, memorial tablet, plaque",
490
+ "n02892767": "brassiere, bra, bandeau",
491
+ "n02894605": "breakwater, groin, groyne, mole, bulwark, seawall, jetty",
492
+ "n02895154": "breastplate, aegis, egis",
493
+ "n02906734": "broom",
494
+ "n02909870": "bucket, pail",
495
+ "n02910353": "buckle",
496
+ "n02916936": "bulletproof vest",
497
+ "n02917067": "bullet train, bullet",
498
+ "n02927161": "butcher shop, meat market",
499
+ "n02930766": "cab, hack, taxi, taxicab",
500
+ "n02939185": "caldron, cauldron",
501
+ "n02948072": "candle, taper, wax light",
502
+ "n02950826": "cannon",
503
+ "n02951358": "canoe",
504
+ "n02951585": "can opener, tin opener",
505
+ "n02963159": "cardigan",
506
+ "n02965783": "car mirror",
507
+ "n02966193": "carousel, carrousel, merry-go-round, roundabout, whirligig",
508
+ "n02966687": "carpenter's kit, tool kit",
509
+ "n02971356": "carton",
510
+ "n02974003": "car wheel",
511
+ "n02977058": "cash machine, cash dispenser, automated teller machine, automatic teller machine, automated teller, automatic teller, ATM",
512
+ "n02978881": "cassette",
513
+ "n02979186": "cassette player",
514
+ "n02980441": "castle",
515
+ "n02981792": "catamaran",
516
+ "n02988304": "CD player",
517
+ "n02992211": "cello, violoncello",
518
+ "n02992529": "cellular telephone, cellular phone, cellphone, cell, mobile phone",
519
+ "n02999410": "chain",
520
+ "n03000134": "chainlink fence",
521
+ "n03000247": "chain mail, ring mail, mail, chain armor, chain armour, ring armor, ring armour",
522
+ "n03000684": "chain saw, chainsaw",
523
+ "n03014705": "chest",
524
+ "n03016953": "chiffonier, commode",
525
+ "n03017168": "chime, bell, gong",
526
+ "n03018349": "china cabinet, china closet",
527
+ "n03026506": "Christmas stocking",
528
+ "n03028079": "church, church building",
529
+ "n03032252": "cinema, movie theater, movie theatre, movie house, picture palace",
530
+ "n03041632": "cleaver, meat cleaver, chopper",
531
+ "n03042490": "cliff dwelling",
532
+ "n03045698": "cloak",
533
+ "n03047690": "clog, geta, patten, sabot",
534
+ "n03062245": "cocktail shaker",
535
+ "n03063599": "coffee mug",
536
+ "n03063689": "coffeepot",
537
+ "n03065424": "coil, spiral, volute, whorl, helix",
538
+ "n03075370": "combination lock",
539
+ "n03085013": "computer keyboard, keypad",
540
+ "n03089624": "confectionery, confectionary, candy store",
541
+ "n03095699": "container ship, containership, container vessel",
542
+ "n03100240": "convertible",
543
+ "n03109150": "corkscrew, bottle screw",
544
+ "n03110669": "cornet, horn, trumpet, trump",
545
+ "n03124043": "cowboy boot",
546
+ "n03124170": "cowboy hat, ten-gallon hat",
547
+ "n03125729": "cradle",
548
+ "n03126707": "crane2",
549
+ "n03127747": "crash helmet",
550
+ "n03127925": "crate",
551
+ "n03131574": "crib, cot",
552
+ "n03133878": "Crock Pot",
553
+ "n03134739": "croquet ball",
554
+ "n03141823": "crutch",
555
+ "n03146219": "cuirass",
556
+ "n03160309": "dam, dike, dyke",
557
+ "n03179701": "desk",
558
+ "n03180011": "desktop computer",
559
+ "n03187595": "dial telephone, dial phone",
560
+ "n03188531": "diaper, nappy, napkin",
561
+ "n03196217": "digital clock",
562
+ "n03197337": "digital watch",
563
+ "n03201208": "dining table, board",
564
+ "n03207743": "dishrag, dishcloth",
565
+ "n03207941": "dishwasher, dish washer, dishwashing machine",
566
+ "n03208938": "disk brake, disc brake",
567
+ "n03216828": "dock, dockage, docking facility",
568
+ "n03218198": "dogsled, dog sled, dog sleigh",
569
+ "n03220513": "dome",
570
+ "n03223299": "doormat, welcome mat",
571
+ "n03240683": "drilling platform, offshore rig",
572
+ "n03249569": "drum, membranophone, tympan",
573
+ "n03250847": "drumstick",
574
+ "n03255030": "dumbbell",
575
+ "n03259280": "Dutch oven",
576
+ "n03271574": "electric fan, blower",
577
+ "n03272010": "electric guitar",
578
+ "n03272562": "electric locomotive",
579
+ "n03290653": "entertainment center",
580
+ "n03291819": "envelope",
581
+ "n03297495": "espresso maker",
582
+ "n03314780": "face powder",
583
+ "n03325584": "feather boa, boa",
584
+ "n03337140": "file, file cabinet, filing cabinet",
585
+ "n03344393": "fireboat",
586
+ "n03345487": "fire engine, fire truck",
587
+ "n03347037": "fire screen, fireguard",
588
+ "n03355925": "flagpole, flagstaff",
589
+ "n03372029": "flute, transverse flute",
590
+ "n03376595": "folding chair",
591
+ "n03379051": "football helmet",
592
+ "n03384352": "forklift",
593
+ "n03388043": "fountain",
594
+ "n03388183": "fountain pen",
595
+ "n03388549": "four-poster",
596
+ "n03393912": "freight car",
597
+ "n03394916": "French horn, horn",
598
+ "n03400231": "frying pan, frypan, skillet",
599
+ "n03404251": "fur coat",
600
+ "n03417042": "garbage truck, dustcart",
601
+ "n03424325": "gasmask, respirator, gas helmet",
602
+ "n03425413": "gas pump, gasoline pump, petrol pump, island dispenser",
603
+ "n03443371": "goblet",
604
+ "n03444034": "go-kart",
605
+ "n03445777": "golf ball",
606
+ "n03445924": "golfcart, golf cart",
607
+ "n03447447": "gondola",
608
+ "n03447721": "gong, tam-tam",
609
+ "n03450230": "gown",
610
+ "n03452741": "grand piano, grand",
611
+ "n03457902": "greenhouse, nursery, glasshouse",
612
+ "n03459775": "grille, radiator grille",
613
+ "n03461385": "grocery store, grocery, food market, market",
614
+ "n03467068": "guillotine",
615
+ "n03476684": "hair slide",
616
+ "n03476991": "hair spray",
617
+ "n03478589": "half track",
618
+ "n03481172": "hammer",
619
+ "n03482405": "hamper",
620
+ "n03483316": "hand blower, blow dryer, blow drier, hair dryer, hair drier",
621
+ "n03485407": "hand-held computer, hand-held microcomputer",
622
+ "n03485794": "handkerchief, hankie, hanky, hankey",
623
+ "n03492542": "hard disc, hard disk, fixed disk",
624
+ "n03494278": "harmonica, mouth organ, harp, mouth harp",
625
+ "n03495258": "harp",
626
+ "n03496892": "harvester, reaper",
627
+ "n03498962": "hatchet",
628
+ "n03527444": "holster",
629
+ "n03529860": "home theater, home theatre",
630
+ "n03530642": "honeycomb",
631
+ "n03532672": "hook, claw",
632
+ "n03534580": "hoopskirt, crinoline",
633
+ "n03535780": "horizontal bar, high bar",
634
+ "n03538406": "horse cart, horse-cart",
635
+ "n03544143": "hourglass",
636
+ "n03584254": "iPod",
637
+ "n03584829": "iron, smoothing iron",
638
+ "n03590841": "jack-o'-lantern",
639
+ "n03594734": "jean, blue jean, denim",
640
+ "n03594945": "jeep, landrover",
641
+ "n03595614": "jersey, T-shirt, tee shirt",
642
+ "n03598930": "jigsaw puzzle",
643
+ "n03599486": "jinrikisha, ricksha, rickshaw",
644
+ "n03602883": "joystick",
645
+ "n03617480": "kimono",
646
+ "n03623198": "knee pad",
647
+ "n03627232": "knot",
648
+ "n03630383": "lab coat, laboratory coat",
649
+ "n03633091": "ladle",
650
+ "n03637318": "lampshade, lamp shade",
651
+ "n03642806": "laptop, laptop computer",
652
+ "n03649909": "lawn mower, mower",
653
+ "n03657121": "lens cap, lens cover",
654
+ "n03658185": "letter opener, paper knife, paperknife",
655
+ "n03661043": "library",
656
+ "n03662601": "lifeboat",
657
+ "n03666591": "lighter, light, igniter, ignitor",
658
+ "n03670208": "limousine, limo",
659
+ "n03673027": "liner, ocean liner",
660
+ "n03676483": "lipstick, lip rouge",
661
+ "n03680355": "Loafer",
662
+ "n03690938": "lotion",
663
+ "n03691459": "loudspeaker, speaker, speaker unit, loudspeaker system, speaker system",
664
+ "n03692522": "loupe, jeweler's loupe",
665
+ "n03697007": "lumbermill, sawmill",
666
+ "n03706229": "magnetic compass",
667
+ "n03709823": "mailbag, postbag",
668
+ "n03710193": "mailbox, letter box",
669
+ "n03710637": "maillot",
670
+ "n03710721": "maillot, tank suit",
671
+ "n03717622": "manhole cover",
672
+ "n03720891": "maraca",
673
+ "n03721384": "marimba, xylophone",
674
+ "n03724870": "mask",
675
+ "n03729826": "matchstick",
676
+ "n03733131": "maypole",
677
+ "n03733281": "maze, labyrinth",
678
+ "n03733805": "measuring cup",
679
+ "n03742115": "medicine chest, medicine cabinet",
680
+ "n03743016": "megalith, megalithic structure",
681
+ "n03759954": "microphone, mike",
682
+ "n03761084": "microwave, microwave oven",
683
+ "n03763968": "military uniform",
684
+ "n03764736": "milk can",
685
+ "n03769881": "minibus",
686
+ "n03770439": "miniskirt, mini",
687
+ "n03770679": "minivan",
688
+ "n03773504": "missile",
689
+ "n03775071": "mitten",
690
+ "n03775546": "mixing bowl",
691
+ "n03776460": "mobile home, manufactured home",
692
+ "n03777568": "Model T",
693
+ "n03777754": "modem",
694
+ "n03781244": "monastery",
695
+ "n03782006": "monitor",
696
+ "n03785016": "moped",
697
+ "n03786901": "mortar",
698
+ "n03787032": "mortarboard",
699
+ "n03788195": "mosque",
700
+ "n03788365": "mosquito net",
701
+ "n03791053": "motor scooter, scooter",
702
+ "n03792782": "mountain bike, all-terrain bike, off-roader",
703
+ "n03792972": "mountain tent",
704
+ "n03793489": "mouse, computer mouse",
705
+ "n03794056": "mousetrap",
706
+ "n03796401": "moving van",
707
+ "n03803284": "muzzle",
708
+ "n03804744": "nail",
709
+ "n03814639": "neck brace",
710
+ "n03814906": "necklace",
711
+ "n03825788": "nipple",
712
+ "n03832673": "notebook, notebook computer",
713
+ "n03837869": "obelisk",
714
+ "n03838899": "oboe, hautboy, hautbois",
715
+ "n03840681": "ocarina, sweet potato",
716
+ "n03841143": "odometer, hodometer, mileometer, milometer",
717
+ "n03843555": "oil filter",
718
+ "n03854065": "organ, pipe organ",
719
+ "n03857828": "oscilloscope, scope, cathode-ray oscilloscope, CRO",
720
+ "n03866082": "overskirt",
721
+ "n03868242": "oxcart",
722
+ "n03868863": "oxygen mask",
723
+ "n03871628": "packet",
724
+ "n03873416": "paddle, boat paddle",
725
+ "n03874293": "paddlewheel, paddle wheel",
726
+ "n03874599": "padlock",
727
+ "n03876231": "paintbrush",
728
+ "n03877472": "pajama, pyjama, pj's, jammies",
729
+ "n03877845": "palace",
730
+ "n03884397": "panpipe, pandean pipe, syrinx",
731
+ "n03887697": "paper towel",
732
+ "n03888257": "parachute, chute",
733
+ "n03888605": "parallel bars, bars",
734
+ "n03891251": "park bench",
735
+ "n03891332": "parking meter",
736
+ "n03895866": "passenger car, coach, carriage",
737
+ "n03899768": "patio, terrace",
738
+ "n03902125": "pay-phone, pay-station",
739
+ "n03903868": "pedestal, plinth, footstall",
740
+ "n03908618": "pencil box, pencil case",
741
+ "n03908714": "pencil sharpener",
742
+ "n03916031": "perfume, essence",
743
+ "n03920288": "Petri dish",
744
+ "n03924679": "photocopier",
745
+ "n03929660": "pick, plectrum, plectron",
746
+ "n03929855": "pickelhaube",
747
+ "n03930313": "picket fence, paling",
748
+ "n03930630": "pickup, pickup truck",
749
+ "n03933933": "pier",
750
+ "n03935335": "piggy bank, penny bank",
751
+ "n03937543": "pill bottle",
752
+ "n03938244": "pillow",
753
+ "n03942813": "ping-pong ball",
754
+ "n03944341": "pinwheel",
755
+ "n03947888": "pirate, pirate ship",
756
+ "n03950228": "pitcher, ewer",
757
+ "n03954731": "plane, carpenter's plane, woodworking plane",
758
+ "n03956157": "planetarium",
759
+ "n03958227": "plastic bag",
760
+ "n03961711": "plate rack",
761
+ "n03967562": "plow, plough",
762
+ "n03970156": "plunger, plumber's helper",
763
+ "n03976467": "Polaroid camera, Polaroid Land camera",
764
+ "n03976657": "pole",
765
+ "n03977966": "police van, police wagon, paddy wagon, patrol wagon, wagon, black Maria",
766
+ "n03980874": "poncho",
767
+ "n03982430": "pool table, billiard table, snooker table",
768
+ "n03983396": "pop bottle, soda bottle",
769
+ "n03991062": "pot, flowerpot",
770
+ "n03992509": "potter's wheel",
771
+ "n03995372": "power drill",
772
+ "n03998194": "prayer rug, prayer mat",
773
+ "n04004767": "printer",
774
+ "n04005630": "prison, prison house",
775
+ "n04008634": "projectile, missile",
776
+ "n04009552": "projector",
777
+ "n04019541": "puck, hockey puck",
778
+ "n04023962": "punching bag, punch bag, punching ball, punchball",
779
+ "n04026417": "purse",
780
+ "n04033901": "quill, quill pen",
781
+ "n04033995": "quilt, comforter, comfort, puff",
782
+ "n04037443": "racer, race car, racing car",
783
+ "n04039381": "racket, racquet",
784
+ "n04040759": "radiator",
785
+ "n04041544": "radio, wireless",
786
+ "n04044716": "radio telescope, radio reflector",
787
+ "n04049303": "rain barrel",
788
+ "n04065272": "recreational vehicle, RV, R.V.",
789
+ "n04067472": "reel",
790
+ "n04069434": "reflex camera",
791
+ "n04070727": "refrigerator, icebox",
792
+ "n04074963": "remote control, remote",
793
+ "n04081281": "restaurant, eating house, eating place, eatery",
794
+ "n04086273": "revolver, six-gun, six-shooter",
795
+ "n04090263": "rifle",
796
+ "n04099969": "rocking chair, rocker",
797
+ "n04111531": "rotisserie",
798
+ "n04116512": "rubber eraser, rubber, pencil eraser",
799
+ "n04118538": "rugby ball",
800
+ "n04118776": "rule, ruler",
801
+ "n04120489": "running shoe",
802
+ "n04125021": "safe",
803
+ "n04127249": "safety pin",
804
+ "n04131690": "saltshaker, salt shaker",
805
+ "n04133789": "sandal",
806
+ "n04136333": "sarong",
807
+ "n04141076": "sax, saxophone",
808
+ "n04141327": "scabbard",
809
+ "n04141975": "scale, weighing machine",
810
+ "n04146614": "school bus",
811
+ "n04147183": "schooner",
812
+ "n04149813": "scoreboard",
813
+ "n04152593": "screen, CRT screen",
814
+ "n04153751": "screw",
815
+ "n04154565": "screwdriver",
816
+ "n04162706": "seat belt, seatbelt",
817
+ "n04179913": "sewing machine",
818
+ "n04192698": "shield, buckler",
819
+ "n04200800": "shoe shop, shoe-shop, shoe store",
820
+ "n04201297": "shoji",
821
+ "n04204238": "shopping basket",
822
+ "n04204347": "shopping cart",
823
+ "n04208210": "shovel",
824
+ "n04209133": "shower cap",
825
+ "n04209239": "shower curtain",
826
+ "n04228054": "ski",
827
+ "n04229816": "ski mask",
828
+ "n04235860": "sleeping bag",
829
+ "n04238763": "slide rule, slipstick",
830
+ "n04239074": "sliding door",
831
+ "n04243546": "slot, one-armed bandit",
832
+ "n04251144": "snorkel",
833
+ "n04252077": "snowmobile",
834
+ "n04252225": "snowplow, snowplough",
835
+ "n04254120": "soap dispenser",
836
+ "n04254680": "soccer ball",
837
+ "n04254777": "sock",
838
+ "n04258138": "solar dish, solar collector, solar furnace",
839
+ "n04259630": "sombrero",
840
+ "n04263257": "soup bowl",
841
+ "n04264628": "space bar",
842
+ "n04265275": "space heater",
843
+ "n04266014": "space shuttle",
844
+ "n04270147": "spatula",
845
+ "n04273569": "speedboat",
846
+ "n04275548": "spider web, spider's web",
847
+ "n04277352": "spindle",
848
+ "n04285008": "sports car, sport car",
849
+ "n04286575": "spotlight, spot",
850
+ "n04296562": "stage",
851
+ "n04310018": "steam locomotive",
852
+ "n04311004": "steel arch bridge",
853
+ "n04311174": "steel drum",
854
+ "n04317175": "stethoscope",
855
+ "n04325704": "stole",
856
+ "n04326547": "stone wall",
857
+ "n04328186": "stopwatch, stop watch",
858
+ "n04330267": "stove",
859
+ "n04332243": "strainer",
860
+ "n04335435": "streetcar, tram, tramcar, trolley, trolley car",
861
+ "n04336792": "stretcher",
862
+ "n04344873": "studio couch, day bed",
863
+ "n04346328": "stupa, tope",
864
+ "n04347754": "submarine, pigboat, sub, U-boat",
865
+ "n04350905": "suit, suit of clothes",
866
+ "n04355338": "sundial",
867
+ "n04355933": "sunglass",
868
+ "n04356056": "sunglasses, dark glasses, shades",
869
+ "n04357314": "sunscreen, sunblock, sun blocker",
870
+ "n04366367": "suspension bridge",
871
+ "n04367480": "swab, swob, mop",
872
+ "n04370456": "sweatshirt",
873
+ "n04371430": "swimming trunks, bathing trunks",
874
+ "n04371774": "swing",
875
+ "n04372370": "switch, electric switch, electrical switch",
876
+ "n04376876": "syringe",
877
+ "n04380533": "table lamp",
878
+ "n04389033": "tank, army tank, armored combat vehicle, armoured combat vehicle",
879
+ "n04392985": "tape player",
880
+ "n04398044": "teapot",
881
+ "n04399382": "teddy, teddy bear",
882
+ "n04404412": "television, television system",
883
+ "n04409515": "tennis ball",
884
+ "n04417672": "thatch, thatched roof",
885
+ "n04418357": "theater curtain, theatre curtain",
886
+ "n04423845": "thimble",
887
+ "n04428191": "thresher, thrasher, threshing machine",
888
+ "n04429376": "throne",
889
+ "n04435653": "tile roof",
890
+ "n04442312": "toaster",
891
+ "n04443257": "tobacco shop, tobacconist shop, tobacconist",
892
+ "n04447861": "toilet seat",
893
+ "n04456115": "torch",
894
+ "n04458633": "totem pole",
895
+ "n04461696": "tow truck, tow car, wrecker",
896
+ "n04462240": "toyshop",
897
+ "n04465501": "tractor",
898
+ "n04467665": "trailer truck, tractor trailer, trucking rig, rig, articulated lorry, semi",
899
+ "n04476259": "tray",
900
+ "n04479046": "trench coat",
901
+ "n04482393": "tricycle, trike, velocipede",
902
+ "n04483307": "trimaran",
903
+ "n04485082": "tripod",
904
+ "n04486054": "triumphal arch",
905
+ "n04487081": "trolleybus, trolley coach, trackless trolley",
906
+ "n04487394": "trombone",
907
+ "n04493381": "tub, vat",
908
+ "n04501370": "turnstile",
909
+ "n04505470": "typewriter keyboard",
910
+ "n04507155": "umbrella",
911
+ "n04509417": "unicycle, monocycle",
912
+ "n04515003": "upright, upright piano",
913
+ "n04517823": "vacuum, vacuum cleaner",
914
+ "n04522168": "vase",
915
+ "n04523525": "vault",
916
+ "n04525038": "velvet",
917
+ "n04525305": "vending machine",
918
+ "n04532106": "vestment",
919
+ "n04532670": "viaduct",
920
+ "n04536866": "violin, fiddle",
921
+ "n04540053": "volleyball",
922
+ "n04542943": "waffle iron",
923
+ "n04548280": "wall clock",
924
+ "n04548362": "wallet, billfold, notecase, pocketbook",
925
+ "n04550184": "wardrobe, closet, press",
926
+ "n04552348": "warplane, military plane",
927
+ "n04553703": "washbasin, handbasin, washbowl, lavabo, wash-hand basin",
928
+ "n04554684": "washer, automatic washer, washing machine",
929
+ "n04557648": "water bottle",
930
+ "n04560804": "water jug",
931
+ "n04562935": "water tower",
932
+ "n04579145": "whiskey jug",
933
+ "n04579432": "whistle",
934
+ "n04584207": "wig",
935
+ "n04589890": "window screen",
936
+ "n04590129": "window shade",
937
+ "n04591157": "Windsor tie",
938
+ "n04591713": "wine bottle",
939
+ "n04592741": "wing",
940
+ "n04596742": "wok",
941
+ "n04597913": "wooden spoon",
942
+ "n04599235": "wool, woolen, woollen",
943
+ "n04604644": "worm fence, snake fence, snake-rail fence, Virginia fence",
944
+ "n04606251": "wreck",
945
+ "n04612504": "yawl",
946
+ "n04613696": "yurt",
947
+ "n06359193": "web site, website, internet site, site",
948
+ "n06596364": "comic book",
949
+ "n06785654": "crossword puzzle, crossword",
950
+ "n06794110": "street sign",
951
+ "n06874185": "traffic light, traffic signal, stoplight",
952
+ "n07248320": "book jacket, dust cover, dust jacket, dust wrapper",
953
+ "n07565083": "menu",
954
+ "n07579787": "plate",
955
+ "n07583066": "guacamole",
956
+ "n07584110": "consomme",
957
+ "n07590611": "hot pot, hotpot",
958
+ "n07613480": "trifle",
959
+ "n07614500": "ice cream, icecream",
960
+ "n07615774": "ice lolly, lolly, lollipop, popsicle",
961
+ "n07684084": "French loaf",
962
+ "n07693725": "bagel, beigel",
963
+ "n07695742": "pretzel",
964
+ "n07697313": "cheeseburger",
965
+ "n07697537": "hotdog, hot dog, red hot",
966
+ "n07711569": "mashed potato",
967
+ "n07714571": "head cabbage",
968
+ "n07714990": "broccoli",
969
+ "n07715103": "cauliflower",
970
+ "n07716358": "zucchini, courgette",
971
+ "n07716906": "spaghetti squash",
972
+ "n07717410": "acorn squash",
973
+ "n07717556": "butternut squash",
974
+ "n07718472": "cucumber, cuke",
975
+ "n07718747": "artichoke, globe artichoke",
976
+ "n07720875": "bell pepper",
977
+ "n07730033": "cardoon",
978
+ "n07734744": "mushroom",
979
+ "n07742313": "Granny Smith",
980
+ "n07745940": "strawberry",
981
+ "n07747607": "orange",
982
+ "n07749582": "lemon",
983
+ "n07753113": "fig",
984
+ "n07753275": "pineapple, ananas",
985
+ "n07753592": "banana",
986
+ "n07754684": "jackfruit, jak, jack",
987
+ "n07760859": "custard apple",
988
+ "n07768694": "pomegranate",
989
+ "n07802026": "hay",
990
+ "n07831146": "carbonara",
991
+ "n07836838": "chocolate sauce, chocolate syrup",
992
+ "n07860988": "dough",
993
+ "n07871810": "meat loaf, meatloaf",
994
+ "n07873807": "pizza, pizza pie",
995
+ "n07875152": "potpie",
996
+ "n07880968": "burrito",
997
+ "n07892512": "red wine",
998
+ "n07920052": "espresso",
999
+ "n07930864": "cup",
1000
+ "n07932039": "eggnog",
1001
+ "n09193705": "alp",
1002
+ "n09229709": "bubble",
1003
+ "n09246464": "cliff, drop, drop-off",
1004
+ "n09256479": "coral reef",
1005
+ "n09288635": "geyser",
1006
+ "n09332890": "lakeside, lakeshore",
1007
+ "n09399592": "promontory, headland, head, foreland",
1008
+ "n09421951": "sandbar, sand bar",
1009
+ "n09428293": "seashore, coast, seacoast, sea-coast",
1010
+ "n09468604": "valley, vale",
1011
+ "n09472597": "volcano",
1012
+ "n09835506": "ballplayer, baseball player",
1013
+ "n10148035": "groom, bridegroom",
1014
+ "n10565667": "scuba diver",
1015
+ "n11879895": "rapeseed",
1016
+ "n11939491": "daisy",
1017
+ "n12057211": "yellow lady's slipper, yellow lady-slipper, Cypripedium calceolus, Cypripedium parviflorum",
1018
+ "n12144580": "corn",
1019
+ "n12267677": "acorn",
1020
+ "n12620546": "hip, rose hip, rosehip",
1021
+ "n12768682": "buckeye, horse chestnut, conker",
1022
+ "n12985857": "coral fungus",
1023
+ "n12998815": "agaric",
1024
+ "n13037406": "gyromitra",
1025
+ "n13040303": "stinkhorn, carrion fungus",
1026
+ "n13044778": "earthstar",
1027
+ "n13052670": "hen-of-the-woods, hen of the woods, Polyporus frondosus, Grifola frondosa",
1028
+ "n13054560": "bolete",
1029
+ "n13133613": "ear, spike, capitulum",
1030
+ "n15075141": "toilet tissue, toilet paper, bathroom tissue",
1031
+ }
1032
+ )
1033
+
1034
+
1035
  _CITATION = """\
1036
  @misc{nauen2025foraug,
1037
  title={ForAug: Recombining Foregrounds and Backgrounds to Improve Vision Transformer Training with Bias Mitigation},
 
1074
  mask_smoothing_sigma,
1075
  rel_jut_out,
1076
  orig_img_prob,
1077
+ fg_in_nonant=None,
1078
+ size_fact=1.0,
1079
  **kwargs,
1080
  ):
1081
  """Create the ForNet recombination dataset.
 
1107
  "max",
1108
  "mean",
1109
  ], f"Invalid fg_size_mode {fg_size_mode}"
1110
+ assert fg_in_nonant is None or -1 <= fg_in_nonant < 9, f"fg_in_nonant={fg_in_nonant} not in [0, 8] or None"
1111
  self.background_combination = background_combination
1112
  self.fg_scale_jitter = fg_scale_jitter
1113
  self.pruning_ratio = pruning_ratio
 
1119
  self.epochs = 0
1120
  self._epoch = 0
1121
  self.cls_to_idx = {}
1122
+ self.fg_in_nonant = fg_in_nonant
1123
+ self.size_fact = size_fact
1124
 
1125
  bg_rat_indices = super()._getitem(0)["bg_rat_idx_file"]
1126
  self.train = "train" in bg_rat_indices.split("/")[-1]
 
1188
  bg_img = bg_item["bg"].convert("RGB")
1189
  bg_size = bg_img.size
1190
  bg_area = bg_size[0] * bg_size[1]
1191
+ if self.fg_in_nonant is not None:
1192
+ bg_area = bg_area / 9
1193
+
1194
  orig_fg_ratio = fg_item["fg/bg_area"]
1195
  bg_fg_ratio = bg_item["fg/bg_area"]
1196
 
 
1213
  goal_fg_ratio_upper * (1 + self.fg_scale_jitter),
1214
  )
1215
  / fg_size_factor
1216
+ * self.size_fact
1217
  )
1218
 
1219
  goal_shape_y = round(np.sqrt(bg_area * fg_scale * fg_img.size[1] / fg_img.size[0]))
 
1247
  y_min = -self.rel_jut_out * fg_img.size[1]
1248
  y_max = bg_size[1] - fg_img.size[1] * (1 - self.rel_jut_out)
1249
 
1250
+ if self.fg_in_nonant is not None and self.fg_in_nonant >= 0:
1251
+ x_min = (self.fg_in_nonant % 3) * bg_size[0] / 3
1252
+ x_max = ((self.fg_in_nonant % 3) + 1) * bg_size[0] / 3 - fg_img.size[0]
1253
+ y_min = (self.fg_in_nonant // 3) * bg_size[1] / 3
1254
+ y_max = ((self.fg_in_nonant // 3) + 1) * bg_size[1] / 3 - fg_img.size[1]
1255
+
1256
  if x_min > x_max:
1257
  x_min = x_max = (x_min + x_max) / 2
1258
  if y_min > y_max:
 
1287
  "mask_smoothing_sigma",
1288
  "rel_jut_out",
1289
  "orig_img_prob",
1290
+ "fg_in_nonant",
1291
+ "size_fact",
1292
  ]
1293
 
1294
 
 
1305
  mask_smoothing_sigma,
1306
  rel_jut_out,
1307
  orig_img_prob,
1308
+ fg_in_nonant=None,
1309
+ size_fact=1.0,
1310
  **kwargs,
1311
  ):
1312
  """BuilderConfig for ForNet.
 
1323
  self.mask_smoothing_sigma = mask_smoothing_sigma
1324
  self.rel_jut_out = rel_jut_out
1325
  self.orig_img_prob = orig_img_prob
1326
+ self.fg_in_nonant = fg_in_nonant
1327
+ self.size_fact = size_fact
1328
 
1329
  def __str__(self):
1330
  return f"ForNetConfig(name={self.name}, version={self.version}, data_dir={self.data_dir}, data_files={self.data_files}, description={self.description}, background_combination={self.background_combination}, fg_scale_jitter={self.fg_scale_jitter}, pruning_ratio={self.pruning_ratio}, fg_size_mode={self.fg_size_mode}, fg_bates_n={self.fg_bates_n}, mask_smoothing_sigma={self.mask_smoothing_sigma}, rel_jut_out={self.rel_jut_out}, orig_img_prob={self.orig_img_prob})"
 
1419
  mask_smoothing_sigma=4.0,
1420
  rel_jut_out=0.0,
1421
  orig_img_prob=0.0,
1422
+ fg_in_nonant=None,
1423
+ size_fact=1.0,
1424
  )
1425
  ]
1426
 
 
1446
  )
1447
 
1448
  def _split_generators(self, dl_manager: datasets.DownloadManager):
1449
+ # test if we have access to ILSVRC/imagenet-1k
1450
+ _ = datasets.load_dataset("ILSVRC/imagenet-1k", split="train", trust_remote_code=True)
1451
+
1452
  urls_to_download = _CONST_URLS + _PATCH_URLS
1453
  dl_paths = dl_manager.download(urls_to_download)
1454
 
 
1630
  )
1631
 
1632
  fingerprint = self._get_dataset_fingerprint(split)
 
 
 
 
1633
 
1634
  splitname = str(split)
1635
  if splitname == "validation":
 
1645
  mask_smoothing_sigma=self.config.mask_smoothing_sigma,
1646
  rel_jut_out=self.config.rel_jut_out,
1647
  orig_img_prob=self.config.orig_img_prob,
1648
+ fg_in_nonant=self.config.fg_in_nonant,
1649
+ size_fact=self.config.size_fact,
1650
  **dataset_kwargs,
1651
  )
1652
 
 
1662
  def _in_iterator(in_queue, split):
1663
  if split == "val":
1664
  split = "validation"
1665
+ imagenet = datasets.load_dataset("ILSVRC/imagenet-1k", split=split, trust_remote_code=True)
1666
  for idx, ex in enumerate(imagenet):
1667
  in_queue.put((idx, ex["image"]))
1668