Datasets:
Tasks:
Image Classification
Sub-tasks:
multi-class-image-classification
Languages:
English
Size:
1M<n<10M
ArXiv:
License:
import gzip | |
import itertools | |
import json | |
import multiprocessing | |
import os | |
import pickle | |
import queue | |
import re | |
import urllib | |
import zipfile | |
from math import floor | |
from typing import Optional | |
import datasets | |
import numpy as np | |
from datasets import config | |
from datasets.arrow_dataset import Dataset | |
from datasets.arrow_reader import ArrowReader | |
from datasets.features.image import image_to_bytes | |
from datasets.fingerprint import Hasher | |
from PIL import Image, ImageFilter | |
from torchvision import transforms as T | |
from tqdm import tqdm | |
from classes import IMAGENET2012_CLASSES | |
logger = datasets.logging.get_logger(__name__) | |
_CITATION = """\ | |
@misc{nauen2025foraug, | |
title={ForAug: Recombining Foregrounds and Backgrounds to Improve Vision Transformer Training with Bias Mitigation}, | |
author={Tobias Christian Nauen and Brian Moser and Federico Raue and Stanislav Frolov and Andreas Dengel}, | |
year={2025}, | |
eprint={2503.09399}, | |
archivePrefix={arXiv}, | |
primaryClass={cs.CV}, | |
} | |
""" | |
_DESCRIPTION = """\ | |
ForNet is a dataset of foreground objects and backgrounds extracted (and infilled) from ImageNet. \ | |
It's the output of the segmentation phase of the ForAug data augmentation. \ | |
ForNet recombines these foregrounds and backgrounds on the fly to create new samples for training vision transformers. | |
""" | |
_GIT = "https://github.com/tobna/ForAug" | |
_HOMEPAGE = "Coming Soon" | |
_DATASET_URL = "https://huggingface.co/datasets/TNauen/ForNet/resolve/main/" | |
_CONST_URLS = ( | |
[_DATASET_URL + "settings.txt"] | |
+ [_DATASET_URL + f"fg_bg_ratios_{part}.json" for part in ["train", "val"]] | |
+ [_DATASET_URL + f"hf_{part}_indices.json" for part in ["train", "val"]] | |
) | |
_PATCH_URLS = [_DATASET_URL + f"train_{i}.zip" for i in range(20)] + [_DATASET_URL + "val.zip"] | |
class RecombineDataset(Dataset): | |
"""Wrapper for ForNet dataset that recombines foregrounds and backgrounds on the fly.""" | |
def __init__( | |
self, | |
*args, | |
background_combination, | |
fg_scale_jitter, | |
pruning_ratio, | |
fg_size_mode, | |
fg_bates_n, | |
mask_smoothing_sigma, | |
rel_jut_out, | |
orig_img_prob, | |
**kwargs, | |
): | |
"""Create the ForNet recombination dataset. | |
Args: | |
background_combination (str): Which backgrounds to combine with foregrounds. Options: "orig", "same", "all". | |
fg_scale_jitter (tuple[float]): How much should the size of the foreground be changed (random ratio). Example: (0.1, 0.8). | |
pruning_ratio (float): For pruning backgrounds, with (foreground size/background size) >= <pruning_ratio>. Backgrounds from images that contain very large foreground objects are mostly computer generated and therefore relatively unnatural. Full dataset: 1.1 . | |
fg_size_mode (str): How to determine the size of the foreground, based on the foreground sizes of the foreground and background images. Options: "range", "min", "max", "mean". | |
fg_bates_n (int): Bates parameter for the distribution of the object position in the foreground. Uniform Distribution: 1. The higher the value, the more likely the object is in the center. For fg_bates_n = 0, the object is always in the center. | |
mask_smoothing_sigma (float): Sigma for the Gaussian blur of the mask edge. | |
rel_jut_out (float): How much is the foreground allowed to stand/jut out of the background (and then cut off). | |
orig_img_prob (float | str): Probability to use the original image, instead of the fg-bg recombinations. Options: 0.0-1.0, "linear", "revlinear", "cos". | |
""" | |
super().__init__(*args, **kwargs) | |
assert (isinstance(orig_img_prob, float) and 0.0 <= orig_img_prob <= 1.0) or orig_img_prob in [ | |
"linear", | |
"revlinear", | |
"cos", | |
], f"Invalid orig_img_prob {orig_img_prob}" | |
assert background_combination in [ | |
"all", | |
"same", | |
"orig", | |
], f"Invalid background_combination {background_combination}" | |
assert fg_size_mode in [ | |
"range", | |
"min", | |
"max", | |
"mean", | |
], f"Invalid fg_size_mode {fg_size_mode}" | |
self.background_combination = background_combination | |
self.fg_scale_jitter = fg_scale_jitter | |
self.pruning_ratio = pruning_ratio | |
self.fg_size_mode = fg_size_mode | |
self.fg_bates_n = fg_bates_n | |
self.mask_smoothing_sigma = mask_smoothing_sigma | |
self.rel_jut_out = rel_jut_out | |
self.orig_img_prob = orig_img_prob | |
self.epochs = 0 | |
self._epoch = 0 | |
self.cls_to_idx = {} | |
bg_rat_indices = super()._getitem(0)["bg_rat_idx_file"] | |
self.train = "train" in bg_rat_indices.split("/")[-1] | |
with open(bg_rat_indices, "r") as f: | |
bg_rat_indices = json.load(f) | |
for in_cls in bg_rat_indices: | |
if in_cls not in self.cls_to_idx: | |
self.cls_to_idx[in_cls] = [] | |
for idx, rat in bg_rat_indices[in_cls]: | |
if rat < self.pruning_ratio: | |
self.cls_to_idx[in_cls].append(idx) | |
if self.background_combination == "all": | |
self.cls_to_idx["all"] = list(itertools.chain(*self.cls_to_idx.values())) | |
def total_epochs(self): | |
return self.epochs | |
def total_epochs(self, value): | |
self.epochs = value | |
def epoch(self): | |
return self._epoch | |
def epoch(self, value): | |
assert 0 <= value < self.epochs, f"Epoch {value} is out of bounds for range [0, {self.epochs})" | |
self._epoch = value | |
def _getitem(self, key): | |
fg_item = super()._getitem(key) | |
out_dict = {"label": fg_item["label"]} | |
in_cls = fg_item["path"].split("/")[0] | |
if ( | |
(self.orig_img_prob == "linear" and np.random.rand() < self._epoch / self.epochs) | |
or (self.orig_img_prob == "revlinear" and np.random.rand() < (self._epoch - self.epochs) / self.epochs) | |
or (self.orig_img_prob == "cos" and np.random.rand() > np.cos(np.pi * self._epoch / (2 * self.epochs))) | |
or ( | |
isinstance(self.orig_img_prob, float) | |
and self.orig_img_prob > 0.0 | |
and np.random.rand() < self.orig_img_prob | |
) | |
): | |
# return original image | |
out_dict["image"] = fg_item["in"] | |
return out_dict | |
if self.background_combination == "orig": | |
bg_item = fg_item | |
elif self.background_combination == "same": | |
rand_idx = np.random.randint(len(self.cls_to_idx[in_cls])) | |
rand_idx = self.cls_to_idx[in_cls][rand_idx] | |
bg_item = super()._getitem(rand_idx) | |
else: | |
# all | |
rand_idx = np.random.randint(len(self.cls_to_idx["all"])) | |
rand_idx = self.cls_to_idx["all"][rand_idx] | |
bg_item = super()._getitem(rand_idx) | |
fg_img = fg_item["fg"].convert("RGBA") | |
bg_img = bg_item["bg"].convert("RGB") | |
bg_size = bg_img.size | |
bg_area = bg_size[0] * bg_size[1] | |
orig_fg_ratio = fg_item["fg/bg_area"] | |
bg_fg_ratio = bg_item["fg/bg_area"] | |
if self.fg_size_mode == "max": | |
goal_fg_ratio_lower = goal_fg_ratio_upper = max(orig_fg_ratio, bg_fg_ratio) | |
elif self.fg_size_mode == "min": | |
goal_fg_ratio_lower = goal_fg_ratio_upper = min(orig_fg_ratio, bg_fg_ratio) | |
elif self.fg_size_mode == "mean": | |
goal_fg_ratio_lower = goal_fg_ratio_upper = (orig_fg_ratio + bg_fg_ratio) / 2 | |
else: | |
# range | |
goal_fg_ratio_lower = min(orig_fg_ratio, bg_fg_ratio) | |
goal_fg_ratio_upper = max(orig_fg_ratio, bg_fg_ratio) | |
fg_size_factor = T.ToTensor()(fg_img.split()[-1]).mean().item() | |
fg_scale = ( | |
np.random.uniform( | |
goal_fg_ratio_lower * (1 - self.fg_scale_jitter), | |
goal_fg_ratio_upper * (1 + self.fg_scale_jitter), | |
) | |
/ fg_size_factor | |
) | |
goal_shape_y = round(np.sqrt(bg_area * fg_scale * fg_img.size[1] / fg_img.size[0])) | |
goal_shape_x = round(np.sqrt(bg_area * fg_scale * fg_img.size[0] / fg_img.size[1])) | |
fg_img = fg_img.resize((goal_shape_x, goal_shape_y)) | |
if fg_img.size[0] > bg_size[0] or fg_img.size[1] > bg_size[1]: | |
# random crop to fit | |
goal_w, goal_h = ( | |
min(fg_img.size[0], bg_size[0]), | |
min(fg_img.size[1], bg_size[1]), | |
) | |
fg_img = T.RandomCrop((goal_h, goal_w))(fg_img) if self.train else T.CenterCrop((goal_h, goal_w))(fg_img) | |
# paste fg on bg | |
z1, z2 = ( | |
( | |
np.random.uniform(0, 1, abs(self.fg_bates_n)).mean(), # bates distribution n=1 => uniform | |
np.random.uniform(0, 1, abs(self.fg_bates_n)).mean(), | |
) | |
if self.fg_bates_n != 0 | |
else (0.5, 0.5) | |
) | |
if self.fg_bates_n < 0: | |
z1 = z1 + 0.5 - floor(z1 + 0.5) | |
z2 = z2 + 0.5 - floor(z2 + 0.5) | |
x_min = -self.rel_jut_out * fg_img.size[0] | |
x_max = bg_size[0] - fg_img.size[0] * (1 - self.rel_jut_out) | |
y_min = -self.rel_jut_out * fg_img.size[1] | |
y_max = bg_size[1] - fg_img.size[1] * (1 - self.rel_jut_out) | |
if x_min > x_max: | |
x_min = x_max = (x_min + x_max) / 2 | |
if y_min > y_max: | |
y_min = y_max = (y_min + y_max) / 2 | |
offs_x = round(z1 * (x_max - x_min) + x_min) | |
offs_y = round(z2 * (y_max - y_min) + y_min) | |
paste_mask = fg_img.split()[-1] | |
if self.mask_smoothing_sigma > 0.0: | |
sigma = (np.random.rand() * 0.9 + 0.1) * self.mask_smoothing_sigma | |
paste_mask = paste_mask.filter(ImageFilter.GaussianBlur(radius=sigma)) | |
paste_mask = paste_mask.point(lambda p: 2 * p - 255 if p > 128 else 0) | |
bg_img.paste(fg_img.convert("RGB"), (offs_x, offs_y), paste_mask) | |
bg_img = bg_img.convert("RGB") | |
out_dict["image"] = bg_img | |
return out_dict | |
def __str__(self): | |
return f"{self.__class__}(\n\t features: ['image', 'label'],\n\t num_rows: {len(self)},\n\tbackground_combination: {self.background_combination},\n\t pruning_ratio: {self.pruning_ratio},\n\t fg_size_mode: {self.fg_size_mode},\n\t mask_smoothing_sigma: {self.mask_smoothing_sigma},\n\t orig_img_prob: {self.orig_img_prob}\n)" | |
_CONFIG_HASH_IGNORE_KWARGS = [ | |
"background_combination", | |
"fg_scale_jitter", | |
"pruning_ratio", | |
"fg_size_mode", | |
"fg_bates_n", | |
"mask_smoothing_sigma", | |
"rel_jut_out", | |
"orig_img_prob", | |
] | |
class ForNetConfig(datasets.BuilderConfig): | |
"""BuilderConfig for ForNet.""" | |
def __init__( | |
self, | |
background_combination, | |
fg_scale_jitter, | |
pruning_ratio, | |
fg_size_mode, | |
fg_bates_n, | |
mask_smoothing_sigma, | |
rel_jut_out, | |
orig_img_prob, | |
**kwargs, | |
): | |
"""BuilderConfig for ForNet. | |
Args: | |
**kwargs: keyword arguments forwarded to super. | |
""" | |
super(ForNetConfig, self).__init__(**kwargs) | |
self.background_combination = background_combination | |
self.fg_scale_jitter = fg_scale_jitter | |
self.pruning_ratio = pruning_ratio | |
self.fg_size_mode = fg_size_mode | |
self.fg_bates_n = fg_bates_n | |
self.mask_smoothing_sigma = mask_smoothing_sigma | |
self.rel_jut_out = rel_jut_out | |
self.orig_img_prob = orig_img_prob | |
def __str__(self): | |
return f"ForNetConfig(name={self.name}, version={self.version}, data_dir={self.data_dir}, data_files={self.data_files}, description={self.description}, background_combination={self.background_combination}, fg_scale_jitter={self.fg_scale_jitter}, pruning_ratio={self.pruning_ratio}, fg_size_mode={self.fg_size_mode}, fg_bates_n={self.fg_bates_n}, mask_smoothing_sigma={self.mask_smoothing_sigma}, rel_jut_out={self.rel_jut_out}, orig_img_prob={self.orig_img_prob})" | |
def create_config_id( | |
self, | |
config_kwargs: dict, | |
custom_features=None, | |
) -> str: | |
"""The config id is used to build the cache directory. | |
By default it is equal to the config name. | |
However the name of a config is not sufficient to have a unique identifier for the dataset being generated | |
since it doesn't take into account: | |
- the config kwargs that can be used to overwrite attributes | |
- the custom features used to write the dataset | |
- the data_files for json/text/csv/pandas datasets. | |
Therefore the config id is just the config name with an optional suffix based on these. | |
""" | |
# Possibly add a suffix to the name to handle custom features/data_files/config_kwargs | |
suffix: Optional[str] = None | |
config_kwargs_to_add_to_suffix = config_kwargs.copy() | |
# name and version are already used to build the cache directory | |
config_kwargs_to_add_to_suffix.pop("name", None) | |
config_kwargs_to_add_to_suffix.pop("version", None) | |
# remove only recombination-relevant values | |
for k in _CONFIG_HASH_IGNORE_KWARGS: | |
config_kwargs_to_add_to_suffix.pop(k, None) | |
# data dir handling (when specified it points to the manually downloaded data): | |
# it was previously ignored before the introduction of config id because we didn't want | |
# to change the config name. Now it's fine to take it into account for the config id. | |
# config_kwargs_to_add_to_suffix.pop("data_dir", None) | |
if "data_dir" in config_kwargs_to_add_to_suffix: | |
if config_kwargs_to_add_to_suffix["data_dir"] is None: | |
config_kwargs_to_add_to_suffix.pop("data_dir", None) | |
else: | |
# canonicalize the data dir to avoid two paths to the same location having different | |
# hashes | |
data_dir = config_kwargs_to_add_to_suffix["data_dir"] | |
data_dir = os.path.normpath(data_dir) | |
config_kwargs_to_add_to_suffix["data_dir"] = data_dir | |
if config_kwargs_to_add_to_suffix: | |
# we don't care about the order of the kwargs | |
config_kwargs_to_add_to_suffix = { | |
k: config_kwargs_to_add_to_suffix[k] for k in sorted(config_kwargs_to_add_to_suffix) | |
} | |
if all(isinstance(v, (str, bool, int, float)) for v in config_kwargs_to_add_to_suffix.values()): | |
suffix = ",".join( | |
str(k) + "=" + urllib.parse.quote_plus(str(v)) for k, v in config_kwargs_to_add_to_suffix.items() | |
) | |
if len(suffix) > 32: # hash if too long | |
suffix = Hasher.hash(config_kwargs_to_add_to_suffix) | |
else: | |
suffix = Hasher.hash(config_kwargs_to_add_to_suffix) | |
if custom_features is not None: | |
m = Hasher() | |
if suffix: | |
m.update(suffix) | |
m.update(custom_features) | |
suffix = m.hexdigest() | |
if suffix: | |
config_id = self.name + "-" + suffix | |
if len(config_id) > config.MAX_DATASET_CONFIG_ID_READABLE_LENGTH: | |
config_id = self.name + "-" + Hasher.hash(suffix) | |
return config_id | |
return self.name | |
class ForNet(datasets.GeneratorBasedBuilder): | |
"""ForNet dataset.""" | |
def __init__(self, *args, **kwargs): | |
"""Initialize the ForNet Builder.""" | |
super().__init__(*args, **kwargs) | |
self.cls_to_idx_locs = {} | |
BUILDER_CONFIGS = [ | |
ForNetConfig( | |
name="fornet", | |
version=datasets.Version("1.0.0", ""), | |
description="ForNet dataset", | |
background_combination="all", | |
fg_scale_jitter=0.3, | |
pruning_ratio=0.8, | |
fg_size_mode="range", | |
fg_bates_n=1, | |
mask_smoothing_sigma=4.0, | |
rel_jut_out=0.0, | |
orig_img_prob=0.0, | |
) | |
] | |
DEFAULT_WRITER_BATCH_SIZE = 1000 | |
def _info(self): | |
return datasets.DatasetInfo( | |
description=_DESCRIPTION, | |
features=datasets.Features( | |
{ | |
"path": datasets.Value("string"), | |
"bg": datasets.features.Image(), | |
"fg": datasets.features.Image(), | |
"in": datasets.features.Image(), | |
"label": datasets.features.ClassLabel(names=list(IMAGENET2012_CLASSES.values())), | |
"fg/bg_area": datasets.Value("float"), | |
"bg_rat_idx_file": datasets.Value("string"), | |
} | |
), | |
supervised_keys=("image", "label"), | |
homepage=_HOMEPAGE, | |
citation=_CITATION, | |
) | |
def _split_generators(self, dl_manager: datasets.DownloadManager): | |
urls_to_download = _CONST_URLS + _PATCH_URLS | |
dl_paths = dl_manager.download(urls_to_download) | |
train_re = re.compile(r".*/train_(\d+)\.zip$") | |
val_re = re.compile(r".*/val\.zip$") | |
train_patches = [f for f in dl_paths if train_re.match(f)] | |
val_patches = [f for f in dl_paths if val_re.match(f)] | |
hf_train_indices = [f for f in dl_paths if f.endswith("hf_train_indices.json")][0] | |
hf_val_indices = [f for f in dl_paths if f.endswith("hf_val_indices.json")][0] | |
cls_to_idx_locs = { | |
"train": hf_train_indices.replace("hf_train_indices", "train_cls_to_idx"), | |
"val": hf_val_indices.replace("hf_val_indices", "val_cls_to_idx"), | |
} | |
fg_bg_ratios = [ | |
[f for f in dl_paths if f.endswith(f"fg_bg_ratios_{part}.json")][0] for part in ["train", "val"] | |
] | |
return [ | |
datasets.SplitGenerator( | |
name=datasets.Split.TRAIN, | |
gen_kwargs={ | |
"patch_files": train_patches, | |
"split": "train", | |
"hf_indices": hf_train_indices, | |
"cls_to_idx_loc": cls_to_idx_locs["train"], | |
"fg_bg_ratios": fg_bg_ratios[0], | |
}, | |
), | |
datasets.SplitGenerator( | |
name=datasets.Split.VALIDATION, | |
gen_kwargs={ | |
"patch_files": val_patches, | |
"split": "val", | |
"hf_indices": hf_val_indices, | |
"cls_to_idx_loc": cls_to_idx_locs["val"], | |
"fg_bg_ratios": fg_bg_ratios[1], | |
}, | |
), | |
] | |
def _generate_examples(self, patch_files, split, hf_indices, cls_to_idx_loc, fg_bg_ratios): | |
logger.info(f"Generating examples from {len(patch_files)} patch files") | |
logger.info("Opening files") | |
class_to_zipfile = {} | |
for f in patch_files: | |
with zipfile.ZipFile(f, "r") as zf: | |
for name in zf.namelist(): | |
if name.endswith(".pkl") or name.endswith(".pkl.gz"): | |
class_to_zipfile[name.split("/")[-2]] = f | |
file_ending = "pkl" if name.endswith(".pkl") else "pkl.gz" | |
name_start = "/".join(name.split("/")[:-2]) | |
if len(name_start) > 0: | |
name_start += "/" | |
logger.info(f"Loading extra information: {hf_indices}, {fg_bg_ratios}") | |
with open(hf_indices, "r") as f: | |
path_to_in_idx = json.load(f) | |
idx_to_path = {v: k for k, v in path_to_in_idx.items()} | |
# print("idx_to_path", list(idx_to_path.items())[:5]) | |
with open(fg_bg_ratios, "r") as f: | |
fg_bg_ratios = json.load(f) | |
fg_bg_ratios = {"/".join(k.split("/")[-2:]).split(".")[0]: v for k, v in fg_bg_ratios.items()} | |
# print("fg_bg_ratios", list(fg_bg_ratios.items())[:5]) | |
logger.info("Starting extraction with ImageNet") | |
foraug_idx = 0 | |
manager = multiprocessing.Manager() | |
num_workers = multiprocessing.cpu_count() | |
if os.environ.get("MAX_WORKERS", None): | |
num_workers = int(os.environ["MAX_WORKERS"]) | |
in_queue = manager.Queue(maxsize=4 * num_workers) | |
ret_queue = manager.Queue(maxsize=4 * num_workers) | |
comm_dict = manager.dict() | |
comm_dict["running"] = True | |
running = True | |
comm_dict["n_errors"] = 0 | |
if num_workers > 8: | |
num_workers -= 2 # leave some cores for the main process and imagenet iterator | |
in_proc = multiprocessing.Process(target=_in_iterator, args=(in_queue, split)) | |
in_proc.start() | |
zip_procs = [ | |
multiprocessing.Process( | |
target=_zip_loader, | |
args=( | |
in_queue, | |
ret_queue, | |
comm_dict, | |
patch_files, | |
class_to_zipfile, | |
name_start, | |
file_ending, | |
idx_to_path, | |
fg_bg_ratios, | |
), | |
) | |
for _ in range(num_workers) | |
] | |
for proc in zip_procs: | |
proc.start() | |
last_errors = 0 | |
cls_to_idx = {} | |
while running: | |
if not ret_queue.empty(): | |
data = ret_queue.get() | |
in_cls = data["path"].split("/")[0] | |
if in_cls not in cls_to_idx: | |
cls_to_idx[in_cls] = [] | |
cls_to_idx[in_cls].append((foraug_idx, data["fg/bg_area"])) | |
if foraug_idx == 0: | |
data["bg_rat_idx_file"] = cls_to_idx_loc | |
yield foraug_idx, data | |
foraug_idx += 1 | |
else: | |
if in_queue.empty() and not in_proc.is_alive(): | |
comm_dict["running"] = False | |
running = False | |
tqdm.write("Finished imagenet iteration; waiting for zip loaders to finish") | |
if foraug_idx % 10_000 == 0: | |
errors = comm_dict["n_errors"] | |
if errors > last_errors: | |
last_errors = errors | |
tqdm.write( | |
f"@step {foraug_idx}: errors {errors}; error rate {errors / foraug_idx:.2%} (expected {6_610 / 1_274_227:.2%})" | |
) | |
in_proc.join() | |
for proc in zip_procs: | |
proc.join() | |
# tqdm.write("Finished all processes") | |
while not ret_queue.empty(): | |
data = ret_queue.get() | |
in_cls = data["path"].split("/")[0] | |
if in_cls not in cls_to_idx: | |
cls_to_idx[in_cls] = [] | |
cls_to_idx[in_cls].append(foraug_idx) | |
yield foraug_idx, data | |
foraug_idx += 1 | |
tqdm.write("Done") | |
with open(cls_to_idx_loc, "w") as f: | |
json.dump(cls_to_idx, f) | |
def _as_streaming_dataset_single(self, *args, **kwargs): | |
raise NotImplementedError("ForNet does not support streaming datasets") | |
def _as_dataset(self, split=datasets.Split.TRAIN, in_memory=False): | |
"""Constructs a `Dataset`. | |
This is the internal implementation to overwrite called when user calls | |
`as_dataset`. It should read the pre-processed datasets files and generate | |
the `Dataset` object. | |
Args: | |
split (`datasets.Split`): | |
which subset of the data to read. | |
in_memory (`bool`, defaults to `False`): | |
Whether to copy the data in-memory. | |
Returns: | |
`Dataset` | |
""" | |
cache_dir = self._fs._strip_protocol(self._output_dir) | |
dataset_name = self.dataset_name | |
if self._check_legacy_cache(): | |
dataset_name = self.name | |
dataset_kwargs = ArrowReader(cache_dir, self.info).read( | |
name=dataset_name, | |
instructions=split, | |
split_infos=self.info.splits.values(), | |
in_memory=in_memory, | |
) | |
fingerprint = self._get_dataset_fingerprint(split) | |
# print("config", self.config) | |
# print("rel data dir", self._relative_data_dir()) | |
# print("split", str(split)) | |
# print("fingerprint", fingerprint) | |
splitname = str(split) | |
if splitname == "validation": | |
splitname = "val" | |
return RecombineDataset( | |
fingerprint=fingerprint, | |
background_combination=self.config.background_combination, | |
fg_scale_jitter=self.config.fg_scale_jitter, | |
pruning_ratio=self.config.pruning_ratio, | |
fg_size_mode=self.config.fg_size_mode, | |
fg_bates_n=self.config.fg_bates_n, | |
mask_smoothing_sigma=self.config.mask_smoothing_sigma, | |
rel_jut_out=self.config.rel_jut_out, | |
orig_img_prob=self.config.orig_img_prob, | |
**dataset_kwargs, | |
) | |
def _create_builder_config(self, config_name=None, custom_features=None, **config_kwargs): | |
config_hash_kwargs = {k: v for k, v in config_kwargs.items() if k not in _CONFIG_HASH_IGNORE_KWARGS} | |
builder_config, config_id = super()._create_builder_config(config_name, custom_features, **config_hash_kwargs) | |
for k in _CONFIG_HASH_IGNORE_KWARGS: | |
if k in config_kwargs: | |
setattr(builder_config, k, config_kwargs[k]) | |
return builder_config, config_id | |
def _in_iterator(in_queue, split): | |
if split == "val": | |
split = "validation" | |
imagenet = datasets.load_dataset("ILSVRC/imagenet-1k", split=split) | |
for idx, ex in enumerate(imagenet): | |
in_queue.put((idx, ex["image"])) | |
def _zip_loader( | |
in_queue, | |
ret_queue, | |
comm_dict, | |
patch_files, | |
class_to_zipfile, | |
name_start, | |
file_ending, | |
idx_to_path, | |
fg_bg_ratios, | |
): | |
while comm_dict["running"]: | |
if not in_queue.empty(): | |
try: | |
in_idx, in_img = in_queue.get(block=False) | |
except queue.Empty: | |
continue | |
patch_name = idx_to_path[in_idx] | |
in_class, in_file_name = patch_name.split("/") | |
try: | |
with zipfile.ZipFile(class_to_zipfile[in_class], "r") as zf, ( | |
zf.open(f"{name_start}{patch_name}.{file_ending}", "r") | |
if file_ending == "pkl" | |
else gzip.GzipFile( | |
fileobj=zf.open(f"{name_start}{patch_name}.{file_ending}", "r"), | |
mode="r", | |
) | |
) as pklf: | |
patch_data = pickle.load(pklf) | |
except KeyError: | |
comm_dict["n_errors"] += 1 | |
continue | |
in_img = in_img.convert("RGB") | |
if "bg_diff" in patch_data: | |
if in_img.size != ( | |
patch_data["bg_diff"].shape[1], | |
patch_data["bg_diff"].shape[0], | |
): | |
in_img = in_img.resize((patch_data["bg_diff"].shape[1], patch_data["bg_diff"].shape[0])) | |
else: | |
max_size = max(in_img.size) | |
if max_size > 512: | |
goal_size = ( | |
round(in_img.size[0] * 512 / max_size), | |
round(in_img.size[1] * 512 / max_size), | |
) | |
in_img = in_img.resize(goal_size) | |
in_arr = np.array(in_img) | |
if "bg_diff" in patch_data: | |
bg_diff = patch_data["bg_diff"] | |
bg_img = in_arr.astype(np.int64) + bg_diff | |
bg_img = bg_img.clip(0, 255).astype(np.uint8) | |
bg_img = Image.fromarray(bg_img) | |
bg_img = image_to_bytes(bg_img) | |
else: | |
bg_img = None | |
if "fg_mask" in patch_data: | |
x_offs, y_offs = patch_data["fg_off"] | |
fg_mask = patch_data["fg_mask"] | |
fg_crop = in_arr[ | |
y_offs : y_offs + fg_mask.shape[0], | |
x_offs : x_offs + fg_mask.shape[1], | |
] | |
fg_img = np.concatenate([fg_crop, fg_mask * 255], axis=-1).clip(0, 255).astype(np.uint8) | |
fg_img = Image.fromarray(fg_img) | |
fg_img = image_to_bytes(fg_img) | |
else: | |
fg_img = None | |
in_img = image_to_bytes(in_img) | |
ret_queue.put( | |
{ | |
"path": patch_name, | |
"bg": bg_img, | |
"fg": fg_img, | |
"label": IMAGENET2012_CLASSES[in_class], | |
"in": in_img, | |
"fg/bg_area": fg_bg_ratios[patch_name], | |
} | |
) | |