Datasets:
Tasks:
Image Classification
Sub-tasks:
multi-class-image-classification
Languages:
English
Size:
1M<n<10M
ArXiv:
License:
File size: 28,844 Bytes
57e1c5c 68625b4 57e1c5c 68625b4 57e1c5c 68625b4 57e1c5c 68625b4 57e1c5c 68625b4 57e1c5c 68625b4 57e1c5c 68625b4 57e1c5c 01ce0b4 57e1c5c 01ce0b4 57e1c5c 01ce0b4 57e1c5c 68625b4 57e1c5c 68625b4 57e1c5c 68625b4 57e1c5c 68625b4 57e1c5c 68625b4 57e1c5c 68625b4 57e1c5c 68625b4 57e1c5c 68625b4 57e1c5c 68625b4 57e1c5c 68625b4 57e1c5c 68625b4 57e1c5c 68625b4 57e1c5c 68625b4 57e1c5c 68625b4 57e1c5c 68625b4 57e1c5c |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 |
import gzip
import itertools
import json
import multiprocessing
import os
import pickle
import queue
import re
import urllib
import zipfile
from math import floor
from typing import Optional
import datasets
import numpy as np
from datasets import config
from datasets.arrow_dataset import Dataset
from datasets.arrow_reader import ArrowReader
from datasets.features.image import image_to_bytes
from datasets.fingerprint import Hasher
from PIL import Image, ImageFilter
from torchvision import transforms as T
from tqdm import tqdm
from classes import IMAGENET2012_CLASSES
logger = datasets.logging.get_logger(__name__)
_CITATION = """\
@misc{nauen2025foraug,
title={ForAug: Recombining Foregrounds and Backgrounds to Improve Vision Transformer Training with Bias Mitigation},
author={Tobias Christian Nauen and Brian Moser and Federico Raue and Stanislav Frolov and Andreas Dengel},
year={2025},
eprint={2503.09399},
archivePrefix={arXiv},
primaryClass={cs.CV},
}
"""
_DESCRIPTION = """\
ForNet is a dataset of foreground objects and backgrounds extracted (and infilled) from ImageNet. \
It's the output of the segmentation phase of the ForAug data augmentation. \
ForNet recombines these foregrounds and backgrounds on the fly to create new samples for training vision transformers.
"""
_GIT = "https://github.com/tobna/ForAug"
_HOMEPAGE = "Coming Soon"
_DATASET_URL = "https://huggingface.co/datasets/TNauen/ForNet/resolve/main/"
_CONST_URLS = (
[_DATASET_URL + "settings.txt"]
+ [_DATASET_URL + f"fg_bg_ratios_{part}.json" for part in ["train", "val"]]
+ [_DATASET_URL + f"hf_{part}_indices.json" for part in ["train", "val"]]
)
_PATCH_URLS = [_DATASET_URL + f"train_{i}.zip" for i in range(20)] + [_DATASET_URL + "val.zip"]
class RecombineDataset(Dataset):
"""Wrapper for ForNet dataset that recombines foregrounds and backgrounds on the fly."""
def __init__(
self,
*args,
background_combination,
fg_scale_jitter,
pruning_ratio,
fg_size_mode,
fg_bates_n,
mask_smoothing_sigma,
rel_jut_out,
orig_img_prob,
**kwargs,
):
"""Create the ForNet recombination dataset.
Args:
background_combination (str): Which backgrounds to combine with foregrounds. Options: "orig", "same", "all".
fg_scale_jitter (tuple[float]): How much should the size of the foreground be changed (random ratio). Example: (0.1, 0.8).
pruning_ratio (float): For pruning backgrounds, with (foreground size/background size) >= <pruning_ratio>. Backgrounds from images that contain very large foreground objects are mostly computer generated and therefore relatively unnatural. Full dataset: 1.1 .
fg_size_mode (str): How to determine the size of the foreground, based on the foreground sizes of the foreground and background images. Options: "range", "min", "max", "mean".
fg_bates_n (int): Bates parameter for the distribution of the object position in the foreground. Uniform Distribution: 1. The higher the value, the more likely the object is in the center. For fg_bates_n = 0, the object is always in the center.
mask_smoothing_sigma (float): Sigma for the Gaussian blur of the mask edge.
rel_jut_out (float): How much is the foreground allowed to stand/jut out of the background (and then cut off).
orig_img_prob (float | str): Probability to use the original image, instead of the fg-bg recombinations. Options: 0.0-1.0, "linear", "revlinear", "cos".
"""
super().__init__(*args, **kwargs)
assert (isinstance(orig_img_prob, float) and 0.0 <= orig_img_prob <= 1.0) or orig_img_prob in [
"linear",
"revlinear",
"cos",
], f"Invalid orig_img_prob {orig_img_prob}"
assert background_combination in [
"all",
"same",
"orig",
], f"Invalid background_combination {background_combination}"
assert fg_size_mode in [
"range",
"min",
"max",
"mean",
], f"Invalid fg_size_mode {fg_size_mode}"
self.background_combination = background_combination
self.fg_scale_jitter = fg_scale_jitter
self.pruning_ratio = pruning_ratio
self.fg_size_mode = fg_size_mode
self.fg_bates_n = fg_bates_n
self.mask_smoothing_sigma = mask_smoothing_sigma
self.rel_jut_out = rel_jut_out
self.orig_img_prob = orig_img_prob
self.epochs = 0
self._epoch = 0
self.cls_to_idx = {}
bg_rat_indices = super()._getitem(0)["bg_rat_idx_file"]
self.train = "train" in bg_rat_indices.split("/")[-1]
with open(bg_rat_indices, "r") as f:
bg_rat_indices = json.load(f)
for in_cls in bg_rat_indices:
if in_cls not in self.cls_to_idx:
self.cls_to_idx[in_cls] = []
for idx, rat in bg_rat_indices[in_cls]:
if rat < self.pruning_ratio:
self.cls_to_idx[in_cls].append(idx)
if self.background_combination == "all":
self.cls_to_idx["all"] = list(itertools.chain(*self.cls_to_idx.values()))
@property
def total_epochs(self):
return self.epochs
@total_epochs.setter
def total_epochs(self, value):
self.epochs = value
@property
def epoch(self):
return self._epoch
@epoch.setter
def epoch(self, value):
assert 0 <= value < self.epochs, f"Epoch {value} is out of bounds for range [0, {self.epochs})"
self._epoch = value
def _getitem(self, key):
fg_item = super()._getitem(key)
out_dict = {"label": fg_item["label"]}
in_cls = fg_item["path"].split("/")[0]
if (
(self.orig_img_prob == "linear" and np.random.rand() < self._epoch / self.epochs)
or (self.orig_img_prob == "revlinear" and np.random.rand() < (self._epoch - self.epochs) / self.epochs)
or (self.orig_img_prob == "cos" and np.random.rand() > np.cos(np.pi * self._epoch / (2 * self.epochs)))
or (
isinstance(self.orig_img_prob, float)
and self.orig_img_prob > 0.0
and np.random.rand() < self.orig_img_prob
)
):
# return original image
out_dict["image"] = fg_item["in"]
return out_dict
if self.background_combination == "orig":
bg_item = fg_item
elif self.background_combination == "same":
rand_idx = np.random.randint(len(self.cls_to_idx[in_cls]))
rand_idx = self.cls_to_idx[in_cls][rand_idx]
bg_item = super()._getitem(rand_idx)
else:
# all
rand_idx = np.random.randint(len(self.cls_to_idx["all"]))
rand_idx = self.cls_to_idx["all"][rand_idx]
bg_item = super()._getitem(rand_idx)
fg_img = fg_item["fg"].convert("RGBA")
bg_img = bg_item["bg"].convert("RGB")
bg_size = bg_img.size
bg_area = bg_size[0] * bg_size[1]
orig_fg_ratio = fg_item["fg/bg_area"]
bg_fg_ratio = bg_item["fg/bg_area"]
if self.fg_size_mode == "max":
goal_fg_ratio_lower = goal_fg_ratio_upper = max(orig_fg_ratio, bg_fg_ratio)
elif self.fg_size_mode == "min":
goal_fg_ratio_lower = goal_fg_ratio_upper = min(orig_fg_ratio, bg_fg_ratio)
elif self.fg_size_mode == "mean":
goal_fg_ratio_lower = goal_fg_ratio_upper = (orig_fg_ratio + bg_fg_ratio) / 2
else:
# range
goal_fg_ratio_lower = min(orig_fg_ratio, bg_fg_ratio)
goal_fg_ratio_upper = max(orig_fg_ratio, bg_fg_ratio)
fg_size_factor = T.ToTensor()(fg_img.split()[-1]).mean().item()
fg_scale = (
np.random.uniform(
goal_fg_ratio_lower * (1 - self.fg_scale_jitter),
goal_fg_ratio_upper * (1 + self.fg_scale_jitter),
)
/ fg_size_factor
)
goal_shape_y = round(np.sqrt(bg_area * fg_scale * fg_img.size[1] / fg_img.size[0]))
goal_shape_x = round(np.sqrt(bg_area * fg_scale * fg_img.size[0] / fg_img.size[1]))
fg_img = fg_img.resize((goal_shape_x, goal_shape_y))
if fg_img.size[0] > bg_size[0] or fg_img.size[1] > bg_size[1]:
# random crop to fit
goal_w, goal_h = (
min(fg_img.size[0], bg_size[0]),
min(fg_img.size[1], bg_size[1]),
)
fg_img = T.RandomCrop((goal_h, goal_w))(fg_img) if self.train else T.CenterCrop((goal_h, goal_w))(fg_img)
# paste fg on bg
z1, z2 = (
(
np.random.uniform(0, 1, abs(self.fg_bates_n)).mean(), # bates distribution n=1 => uniform
np.random.uniform(0, 1, abs(self.fg_bates_n)).mean(),
)
if self.fg_bates_n != 0
else (0.5, 0.5)
)
if self.fg_bates_n < 0:
z1 = z1 + 0.5 - floor(z1 + 0.5)
z2 = z2 + 0.5 - floor(z2 + 0.5)
x_min = -self.rel_jut_out * fg_img.size[0]
x_max = bg_size[0] - fg_img.size[0] * (1 - self.rel_jut_out)
y_min = -self.rel_jut_out * fg_img.size[1]
y_max = bg_size[1] - fg_img.size[1] * (1 - self.rel_jut_out)
if x_min > x_max:
x_min = x_max = (x_min + x_max) / 2
if y_min > y_max:
y_min = y_max = (y_min + y_max) / 2
offs_x = round(z1 * (x_max - x_min) + x_min)
offs_y = round(z2 * (y_max - y_min) + y_min)
paste_mask = fg_img.split()[-1]
if self.mask_smoothing_sigma > 0.0:
sigma = (np.random.rand() * 0.9 + 0.1) * self.mask_smoothing_sigma
paste_mask = paste_mask.filter(ImageFilter.GaussianBlur(radius=sigma))
paste_mask = paste_mask.point(lambda p: 2 * p - 255 if p > 128 else 0)
bg_img.paste(fg_img.convert("RGB"), (offs_x, offs_y), paste_mask)
bg_img = bg_img.convert("RGB")
out_dict["image"] = bg_img
return out_dict
def __str__(self):
return f"{self.__class__}(\n\t features: ['image', 'label'],\n\t num_rows: {len(self)},\n\tbackground_combination: {self.background_combination},\n\t pruning_ratio: {self.pruning_ratio},\n\t fg_size_mode: {self.fg_size_mode},\n\t mask_smoothing_sigma: {self.mask_smoothing_sigma},\n\t orig_img_prob: {self.orig_img_prob}\n)"
_CONFIG_HASH_IGNORE_KWARGS = [
"background_combination",
"fg_scale_jitter",
"pruning_ratio",
"fg_size_mode",
"fg_bates_n",
"mask_smoothing_sigma",
"rel_jut_out",
"orig_img_prob",
]
class ForNetConfig(datasets.BuilderConfig):
"""BuilderConfig for ForNet."""
def __init__(
self,
background_combination,
fg_scale_jitter,
pruning_ratio,
fg_size_mode,
fg_bates_n,
mask_smoothing_sigma,
rel_jut_out,
orig_img_prob,
**kwargs,
):
"""BuilderConfig for ForNet.
Args:
**kwargs: keyword arguments forwarded to super.
"""
super(ForNetConfig, self).__init__(**kwargs)
self.background_combination = background_combination
self.fg_scale_jitter = fg_scale_jitter
self.pruning_ratio = pruning_ratio
self.fg_size_mode = fg_size_mode
self.fg_bates_n = fg_bates_n
self.mask_smoothing_sigma = mask_smoothing_sigma
self.rel_jut_out = rel_jut_out
self.orig_img_prob = orig_img_prob
def __str__(self):
return f"ForNetConfig(name={self.name}, version={self.version}, data_dir={self.data_dir}, data_files={self.data_files}, description={self.description}, background_combination={self.background_combination}, fg_scale_jitter={self.fg_scale_jitter}, pruning_ratio={self.pruning_ratio}, fg_size_mode={self.fg_size_mode}, fg_bates_n={self.fg_bates_n}, mask_smoothing_sigma={self.mask_smoothing_sigma}, rel_jut_out={self.rel_jut_out}, orig_img_prob={self.orig_img_prob})"
def create_config_id(
self,
config_kwargs: dict,
custom_features=None,
) -> str:
"""The config id is used to build the cache directory.
By default it is equal to the config name.
However the name of a config is not sufficient to have a unique identifier for the dataset being generated
since it doesn't take into account:
- the config kwargs that can be used to overwrite attributes
- the custom features used to write the dataset
- the data_files for json/text/csv/pandas datasets.
Therefore the config id is just the config name with an optional suffix based on these.
"""
# Possibly add a suffix to the name to handle custom features/data_files/config_kwargs
suffix: Optional[str] = None
config_kwargs_to_add_to_suffix = config_kwargs.copy()
# name and version are already used to build the cache directory
config_kwargs_to_add_to_suffix.pop("name", None)
config_kwargs_to_add_to_suffix.pop("version", None)
# remove only recombination-relevant values
for k in _CONFIG_HASH_IGNORE_KWARGS:
config_kwargs_to_add_to_suffix.pop(k, None)
# data dir handling (when specified it points to the manually downloaded data):
# it was previously ignored before the introduction of config id because we didn't want
# to change the config name. Now it's fine to take it into account for the config id.
# config_kwargs_to_add_to_suffix.pop("data_dir", None)
if "data_dir" in config_kwargs_to_add_to_suffix:
if config_kwargs_to_add_to_suffix["data_dir"] is None:
config_kwargs_to_add_to_suffix.pop("data_dir", None)
else:
# canonicalize the data dir to avoid two paths to the same location having different
# hashes
data_dir = config_kwargs_to_add_to_suffix["data_dir"]
data_dir = os.path.normpath(data_dir)
config_kwargs_to_add_to_suffix["data_dir"] = data_dir
if config_kwargs_to_add_to_suffix:
# we don't care about the order of the kwargs
config_kwargs_to_add_to_suffix = {
k: config_kwargs_to_add_to_suffix[k] for k in sorted(config_kwargs_to_add_to_suffix)
}
if all(isinstance(v, (str, bool, int, float)) for v in config_kwargs_to_add_to_suffix.values()):
suffix = ",".join(
str(k) + "=" + urllib.parse.quote_plus(str(v)) for k, v in config_kwargs_to_add_to_suffix.items()
)
if len(suffix) > 32: # hash if too long
suffix = Hasher.hash(config_kwargs_to_add_to_suffix)
else:
suffix = Hasher.hash(config_kwargs_to_add_to_suffix)
if custom_features is not None:
m = Hasher()
if suffix:
m.update(suffix)
m.update(custom_features)
suffix = m.hexdigest()
if suffix:
config_id = self.name + "-" + suffix
if len(config_id) > config.MAX_DATASET_CONFIG_ID_READABLE_LENGTH:
config_id = self.name + "-" + Hasher.hash(suffix)
return config_id
return self.name
class ForNet(datasets.GeneratorBasedBuilder):
"""ForNet dataset."""
def __init__(self, *args, **kwargs):
"""Initialize the ForNet Builder."""
super().__init__(*args, **kwargs)
self.cls_to_idx_locs = {}
BUILDER_CONFIGS = [
ForNetConfig(
name="fornet",
version=datasets.Version("1.0.0", ""),
description="ForNet dataset",
background_combination="all",
fg_scale_jitter=0.3,
pruning_ratio=0.8,
fg_size_mode="range",
fg_bates_n=1,
mask_smoothing_sigma=4.0,
rel_jut_out=0.0,
orig_img_prob=0.0,
)
]
DEFAULT_WRITER_BATCH_SIZE = 1000
def _info(self):
return datasets.DatasetInfo(
description=_DESCRIPTION,
features=datasets.Features(
{
"path": datasets.Value("string"),
"bg": datasets.features.Image(),
"fg": datasets.features.Image(),
"in": datasets.features.Image(),
"label": datasets.features.ClassLabel(names=list(IMAGENET2012_CLASSES.values())),
"fg/bg_area": datasets.Value("float"),
"bg_rat_idx_file": datasets.Value("string"),
}
),
supervised_keys=("image", "label"),
homepage=_HOMEPAGE,
citation=_CITATION,
)
def _split_generators(self, dl_manager: datasets.DownloadManager):
urls_to_download = _CONST_URLS + _PATCH_URLS
dl_paths = dl_manager.download(urls_to_download)
train_re = re.compile(r".*/train_(\d+)\.zip$")
val_re = re.compile(r".*/val\.zip$")
train_patches = [f for f in dl_paths if train_re.match(f)]
val_patches = [f for f in dl_paths if val_re.match(f)]
hf_train_indices = [f for f in dl_paths if f.endswith("hf_train_indices.json")][0]
hf_val_indices = [f for f in dl_paths if f.endswith("hf_val_indices.json")][0]
cls_to_idx_locs = {
"train": hf_train_indices.replace("hf_train_indices", "train_cls_to_idx"),
"val": hf_val_indices.replace("hf_val_indices", "val_cls_to_idx"),
}
fg_bg_ratios = [
[f for f in dl_paths if f.endswith(f"fg_bg_ratios_{part}.json")][0] for part in ["train", "val"]
]
return [
datasets.SplitGenerator(
name=datasets.Split.TRAIN,
gen_kwargs={
"patch_files": train_patches,
"split": "train",
"hf_indices": hf_train_indices,
"cls_to_idx_loc": cls_to_idx_locs["train"],
"fg_bg_ratios": fg_bg_ratios[0],
},
),
datasets.SplitGenerator(
name=datasets.Split.VALIDATION,
gen_kwargs={
"patch_files": val_patches,
"split": "val",
"hf_indices": hf_val_indices,
"cls_to_idx_loc": cls_to_idx_locs["val"],
"fg_bg_ratios": fg_bg_ratios[1],
},
),
]
def _generate_examples(self, patch_files, split, hf_indices, cls_to_idx_loc, fg_bg_ratios):
logger.info(f"Generating examples from {len(patch_files)} patch files")
logger.info("Opening files")
class_to_zipfile = {}
for f in patch_files:
with zipfile.ZipFile(f, "r") as zf:
for name in zf.namelist():
if name.endswith(".pkl") or name.endswith(".pkl.gz"):
class_to_zipfile[name.split("/")[-2]] = f
file_ending = "pkl" if name.endswith(".pkl") else "pkl.gz"
name_start = "/".join(name.split("/")[:-2])
if len(name_start) > 0:
name_start += "/"
logger.info(f"Loading extra information: {hf_indices}, {fg_bg_ratios}")
with open(hf_indices, "r") as f:
path_to_in_idx = json.load(f)
idx_to_path = {v: k for k, v in path_to_in_idx.items()}
# print("idx_to_path", list(idx_to_path.items())[:5])
with open(fg_bg_ratios, "r") as f:
fg_bg_ratios = json.load(f)
fg_bg_ratios = {"/".join(k.split("/")[-2:]).split(".")[0]: v for k, v in fg_bg_ratios.items()}
# print("fg_bg_ratios", list(fg_bg_ratios.items())[:5])
logger.info("Starting extraction with ImageNet")
foraug_idx = 0
manager = multiprocessing.Manager()
num_workers = multiprocessing.cpu_count()
if os.environ.get("MAX_WORKERS", None):
num_workers = int(os.environ["MAX_WORKERS"])
in_queue = manager.Queue(maxsize=4 * num_workers)
ret_queue = manager.Queue(maxsize=4 * num_workers)
comm_dict = manager.dict()
comm_dict["running"] = True
running = True
comm_dict["n_errors"] = 0
if num_workers > 8:
num_workers -= 2 # leave some cores for the main process and imagenet iterator
in_proc = multiprocessing.Process(target=_in_iterator, args=(in_queue, split))
in_proc.start()
zip_procs = [
multiprocessing.Process(
target=_zip_loader,
args=(
in_queue,
ret_queue,
comm_dict,
patch_files,
class_to_zipfile,
name_start,
file_ending,
idx_to_path,
fg_bg_ratios,
),
)
for _ in range(num_workers)
]
for proc in zip_procs:
proc.start()
last_errors = 0
cls_to_idx = {}
while running:
if not ret_queue.empty():
data = ret_queue.get()
in_cls = data["path"].split("/")[0]
if in_cls not in cls_to_idx:
cls_to_idx[in_cls] = []
cls_to_idx[in_cls].append((foraug_idx, data["fg/bg_area"]))
if foraug_idx == 0:
data["bg_rat_idx_file"] = cls_to_idx_loc
yield foraug_idx, data
foraug_idx += 1
else:
if in_queue.empty() and not in_proc.is_alive():
comm_dict["running"] = False
running = False
tqdm.write("Finished imagenet iteration; waiting for zip loaders to finish")
if foraug_idx % 10_000 == 0:
errors = comm_dict["n_errors"]
if errors > last_errors:
last_errors = errors
tqdm.write(
f"@step {foraug_idx}: errors {errors}; error rate {errors / foraug_idx:.2%} (expected {6_610 / 1_274_227:.2%})"
)
in_proc.join()
for proc in zip_procs:
proc.join()
# tqdm.write("Finished all processes")
while not ret_queue.empty():
data = ret_queue.get()
in_cls = data["path"].split("/")[0]
if in_cls not in cls_to_idx:
cls_to_idx[in_cls] = []
cls_to_idx[in_cls].append(foraug_idx)
yield foraug_idx, data
foraug_idx += 1
tqdm.write("Done")
with open(cls_to_idx_loc, "w") as f:
json.dump(cls_to_idx, f)
def _as_streaming_dataset_single(self, *args, **kwargs):
raise NotImplementedError("ForNet does not support streaming datasets")
def _as_dataset(self, split=datasets.Split.TRAIN, in_memory=False):
"""Constructs a `Dataset`.
This is the internal implementation to overwrite called when user calls
`as_dataset`. It should read the pre-processed datasets files and generate
the `Dataset` object.
Args:
split (`datasets.Split`):
which subset of the data to read.
in_memory (`bool`, defaults to `False`):
Whether to copy the data in-memory.
Returns:
`Dataset`
"""
cache_dir = self._fs._strip_protocol(self._output_dir)
dataset_name = self.dataset_name
if self._check_legacy_cache():
dataset_name = self.name
dataset_kwargs = ArrowReader(cache_dir, self.info).read(
name=dataset_name,
instructions=split,
split_infos=self.info.splits.values(),
in_memory=in_memory,
)
fingerprint = self._get_dataset_fingerprint(split)
# print("config", self.config)
# print("rel data dir", self._relative_data_dir())
# print("split", str(split))
# print("fingerprint", fingerprint)
splitname = str(split)
if splitname == "validation":
splitname = "val"
return RecombineDataset(
fingerprint=fingerprint,
background_combination=self.config.background_combination,
fg_scale_jitter=self.config.fg_scale_jitter,
pruning_ratio=self.config.pruning_ratio,
fg_size_mode=self.config.fg_size_mode,
fg_bates_n=self.config.fg_bates_n,
mask_smoothing_sigma=self.config.mask_smoothing_sigma,
rel_jut_out=self.config.rel_jut_out,
orig_img_prob=self.config.orig_img_prob,
**dataset_kwargs,
)
def _create_builder_config(self, config_name=None, custom_features=None, **config_kwargs):
config_hash_kwargs = {k: v for k, v in config_kwargs.items() if k not in _CONFIG_HASH_IGNORE_KWARGS}
builder_config, config_id = super()._create_builder_config(config_name, custom_features, **config_hash_kwargs)
for k in _CONFIG_HASH_IGNORE_KWARGS:
if k in config_kwargs:
setattr(builder_config, k, config_kwargs[k])
return builder_config, config_id
def _in_iterator(in_queue, split):
if split == "val":
split = "validation"
imagenet = datasets.load_dataset("ILSVRC/imagenet-1k", split=split)
for idx, ex in enumerate(imagenet):
in_queue.put((idx, ex["image"]))
def _zip_loader(
in_queue,
ret_queue,
comm_dict,
patch_files,
class_to_zipfile,
name_start,
file_ending,
idx_to_path,
fg_bg_ratios,
):
while comm_dict["running"]:
if not in_queue.empty():
try:
in_idx, in_img = in_queue.get(block=False)
except queue.Empty:
continue
patch_name = idx_to_path[in_idx]
in_class, in_file_name = patch_name.split("/")
try:
with zipfile.ZipFile(class_to_zipfile[in_class], "r") as zf, (
zf.open(f"{name_start}{patch_name}.{file_ending}", "r")
if file_ending == "pkl"
else gzip.GzipFile(
fileobj=zf.open(f"{name_start}{patch_name}.{file_ending}", "r"),
mode="r",
)
) as pklf:
patch_data = pickle.load(pklf)
except KeyError:
comm_dict["n_errors"] += 1
continue
in_img = in_img.convert("RGB")
if "bg_diff" in patch_data:
if in_img.size != (
patch_data["bg_diff"].shape[1],
patch_data["bg_diff"].shape[0],
):
in_img = in_img.resize((patch_data["bg_diff"].shape[1], patch_data["bg_diff"].shape[0]))
else:
max_size = max(in_img.size)
if max_size > 512:
goal_size = (
round(in_img.size[0] * 512 / max_size),
round(in_img.size[1] * 512 / max_size),
)
in_img = in_img.resize(goal_size)
in_arr = np.array(in_img)
if "bg_diff" in patch_data:
bg_diff = patch_data["bg_diff"]
bg_img = in_arr.astype(np.int64) + bg_diff
bg_img = bg_img.clip(0, 255).astype(np.uint8)
bg_img = Image.fromarray(bg_img)
bg_img = image_to_bytes(bg_img)
else:
bg_img = None
if "fg_mask" in patch_data:
x_offs, y_offs = patch_data["fg_off"]
fg_mask = patch_data["fg_mask"]
fg_crop = in_arr[
y_offs : y_offs + fg_mask.shape[0],
x_offs : x_offs + fg_mask.shape[1],
]
fg_img = np.concatenate([fg_crop, fg_mask * 255], axis=-1).clip(0, 255).astype(np.uint8)
fg_img = Image.fromarray(fg_img)
fg_img = image_to_bytes(fg_img)
else:
fg_img = None
in_img = image_to_bytes(in_img)
ret_queue.put(
{
"path": patch_name,
"bg": bg_img,
"fg": fg_img,
"label": IMAGENET2012_CLASSES[in_class],
"in": in_img,
"fg/bg_area": fg_bg_ratios[patch_name],
}
)
|