entry_point
stringlengths 1
65
| original_triton_python_code
stringlengths 208
619k
| optimised_triton_code
stringlengths 1.15k
275k
| repo_name
stringlengths 7
115
| module_name
stringlengths 1
65
| synthetic
bool 1
class | uuid
int64 0
18.5k
| licenses
listlengths 1
6
| stars
int64 0
19.8k
| sha
stringlengths 40
40
| repo_link
stringlengths 72
180
|
---|---|---|---|---|---|---|---|---|---|---|
EuclideanComparator_1
|
# AOT ID: ['0_inference']
from ctypes import c_void_p, c_long, c_int
import torch
import math
import random
import os
import tempfile
from math import inf, nan
from torch._inductor.hooks import run_intermediate_hooks
from torch._inductor.utils import maybe_profile
from torch._inductor.codegen.memory_planning import _align as align
from torch import device, empty_strided
from torch._inductor.async_compile import AsyncCompile
from torch._inductor.select_algorithm import extern_kernels
from torch._inductor.codegen.multi_kernel import MultiKernelCall
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
aten = torch.ops.aten
inductor_ops = torch.ops.inductor
_quantized = torch.ops._quantized
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
alloc_from_pool = torch.ops.inductor._alloc_from_pool
async_compile = AsyncCompile()
# kernel path: runs/run_shard_8/inductor_cache/kf/ckf5m3mk5oxwljoolseccy4i3hna4r2zdcsgb4fkgn7aaawvw5zq.py
# Topologically Sorted Source Nodes: [dist, truediv], Original ATen: [aten.dist, aten.div]
# Source node to ATen node mapping:
# dist => pow_1, pow_2, sub, sum_1
# truediv => div
# Graph fragment:
# %sub : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (%arg1_1, %arg0_1), kwargs = {})
# %pow_1 : [num_users=1] = call_function[target=torch.ops.aten.pow.Tensor_Scalar](args = (%sub, 2), kwargs = {})
# %sum_1 : [num_users=1] = call_function[target=torch.ops.aten.sum.dim_IntList](args = (%pow_1, None), kwargs = {})
# %pow_2 : [num_users=1] = call_function[target=torch.ops.aten.pow.Tensor_Scalar](args = (%sum_1, 0.5), kwargs = {})
# %div : [num_users=1] = call_function[target=torch.ops.aten.div.Tensor](args = (%pow_2, 4), kwargs = {})
triton_per_fused_dist_div_0 = async_compile.triton('triton_per_fused_dist_div_0', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.persistent_reduction(
size_hints=[1, 256],
reduction_hint=ReductionHint.INNER,
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: 'i32', 4: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {3: 1}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 4), equal_to_1=(3,))]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_per_fused_dist_div_0', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': True, 'num_load': 2, 'num_reduction': 1, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}
)
@triton.jit
def triton_per_fused_dist_div_0(in_out_ptr0, in_ptr0, in_ptr1, xnumel, rnumel):
xnumel = 1
XBLOCK: tl.constexpr = 1
rnumel = 256
RBLOCK: tl.constexpr = 256
xoffset = tl.program_id(0) * XBLOCK
xindex = tl.full([1], xoffset, tl.int32)
xmask = tl.full([RBLOCK], True, tl.int1)
rindex = tl.arange(0, RBLOCK)[:]
roffset = 0
rmask = tl.full([RBLOCK], True, tl.int1)
r0 = rindex
tmp0 = tl.load(in_ptr0 + (r0), None)
tmp1 = tl.load(in_ptr1 + (r0), None)
tmp2 = tmp0 - tmp1
tmp3 = tmp2 * tmp2
tmp4 = tl.broadcast_to(tmp3, [RBLOCK])
tmp6 = triton_helpers.promote_to_tensor(tl.sum(tmp4, 0))
tmp7 = libdevice.sqrt(tmp6)
tmp8 = 0.25
tmp9 = tmp7 * tmp8
tl.debug_barrier()
tl.store(in_out_ptr0 + (tl.full([1], 0, tl.int32)), tmp9, None)
''', device_str='cuda')
async_compile.wait(globals())
del async_compile
def call(args):
arg0_1, arg1_1 = args
args.clear()
assert_size_stride(arg0_1, (4, 4, 4, 4), (64, 16, 4, 1))
assert_size_stride(arg1_1, (4, 4, 4, 4), (64, 16, 4, 1))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((), (), torch.float32)
buf1 = buf0; del buf0 # reuse
# Topologically Sorted Source Nodes: [dist, truediv], Original ATen: [aten.dist, aten.div]
stream0 = get_raw_stream(0)
triton_per_fused_dist_div_0.run(buf1, arg1_1, arg0_1, 1, 256, grid=grid(1), stream=stream0)
del arg0_1
del arg1_1
return (buf1, )
def benchmark_compiled_module(times=10, repeat=10):
from torch._dynamo.testing import rand_strided
from torch._inductor.utils import print_performance
arg0_1 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32)
arg1_1 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32)
fn = lambda: call([arg0_1, arg1_1])
return print_performance(fn, times=times, repeat=repeat)
if __name__ == "__main__":
from torch._inductor.wrapper_benchmark import compiled_module_main
compiled_module_main('None', benchmark_compiled_module)
|
import torch
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
from torch._inductor.runtime import triton_helpers
from torch._inductor.runtime.triton_helpers import libdevice
from dataclasses import dataclass
from collections import defaultdict
import torch.optim
from torch import nn
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
@triton.jit
def triton_per_fused_dist_div_0(in_out_ptr0, in_ptr0, in_ptr1, xnumel, rnumel):
XBLOCK: tl.constexpr = 1
RBLOCK: tl.constexpr = 256
xoffset = tl.program_id(0) * XBLOCK
tl.full([1], xoffset, tl.int32)
tl.full([RBLOCK], True, tl.int1)
rindex = tl.arange(0, RBLOCK)[:]
tl.full([RBLOCK], True, tl.int1)
r0 = rindex
tmp0 = tl.load(in_ptr0 + r0, None)
tmp1 = tl.load(in_ptr1 + r0, None)
tmp2 = tmp0 - tmp1
tmp3 = tmp2 * tmp2
tmp4 = tl.broadcast_to(tmp3, [RBLOCK])
tmp6 = triton_helpers.promote_to_tensor(tl.sum(tmp4, 0))
tmp7 = libdevice.sqrt(tmp6)
tmp8 = 0.25
tmp9 = tmp7 * tmp8
tl.debug_barrier()
tl.store(in_out_ptr0 + tl.full([1], 0, tl.int32), tmp9, None)
def call(args):
arg0_1, arg1_1 = args
args.clear()
assert_size_stride(arg0_1, (4, 4, 4, 4), (64, 16, 4, 1))
assert_size_stride(arg1_1, (4, 4, 4, 4), (64, 16, 4, 1))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((), (), torch.float32)
buf1 = buf0
del buf0
get_raw_stream(0)
triton_per_fused_dist_div_0[grid(1)](buf1, arg1_1, arg0_1, 1, 256,
num_warps=2, num_stages=1)
del arg0_1
del arg1_1
return buf1,
class Base(nn.Module):
registered = defaultdict(dict)
@dataclass
class Config:
pass
@property
def config(self):
return self._config
def __init__(self, *args, config: Config=None, **kwargs):
super().__init__(*args, **kwargs)
self._config = config
def __str__(self) ->str:
return self.__name__
@classmethod
def module(Child, Impl):
try:
Impl.name
except AttributeError:
msg = 'Class {Impl} has no attribute .name'
raise irtm.IRTMError(msg)
Base.registered[Child.__name__][Impl.name] = Impl
return Impl
@classmethod
def init(Child, *, name: str=None, **kwargs):
try:
if name is None:
name = 'noop'
A = Base.registered[Child.__name__][name]
except KeyError:
dicrep = yaml.dump(Base.registered, default_flow_style=False)
msg = (
f'could not find module "{name}"\n\navailable modules:\n{dicrep}'
)
raise irtm.IRTMError(msg)
config = A.Config(**kwargs)
log.info(f'! initializing {A.__name__} with {config}')
return A(config=config)
class Comparator(Base):
pass
@Comparator.module
class EuclideanComparator_1New(Comparator):
name = 'euclidean 1'
def forward(self, input_0, input_1):
arg0_1 = input_0
arg1_1 = input_1
output = call([arg0_1, arg1_1])
return output[0]
|
lavis-nlp/irtm
|
EuclideanComparator_1
| false | 10,407 |
[
"MIT"
] | 0 |
e6c96519918795cfaa0c09ef2d4164f451265518
|
https://github.com/lavis-nlp/irtm/tree/e6c96519918795cfaa0c09ef2d4164f451265518
|
RegLoss
|
# AOT ID: ['0_inference']
from ctypes import c_void_p, c_long, c_int
import torch
import math
import random
import os
import tempfile
from math import inf, nan
from torch._inductor.hooks import run_intermediate_hooks
from torch._inductor.utils import maybe_profile
from torch._inductor.codegen.memory_planning import _align as align
from torch import device, empty_strided
from torch._inductor.async_compile import AsyncCompile
from torch._inductor.select_algorithm import extern_kernels
from torch._inductor.codegen.multi_kernel import MultiKernelCall
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
aten = torch.ops.aten
inductor_ops = torch.ops.inductor
_quantized = torch.ops._quantized
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
alloc_from_pool = torch.ops.inductor._alloc_from_pool
async_compile = AsyncCompile()
# kernel path: runs/run_shard_7/inductor_cache/ft/cftna6aefrj2tfodmmc3kcwp7a6w2rj3uw3zfu2aa7nsg6bgu3xb.py
# Topologically Sorted Source Nodes: [feat_2, regr, gt_regr, regr_loss], Original ATen: [aten.gather, aten.mul, aten.smooth_l1_loss]
# Source node to ATen node mapping:
# feat_2 => gather
# gt_regr => mul_1
# regr => mul
# regr_loss => abs_1, div, lt, mul_2, pow_1, sub, sub_1, sum_2, where
# Graph fragment:
# %gather : [num_users=1] = call_function[target=torch.ops.aten.gather.default](args = (%view, 1, %expand), kwargs = {})
# %mul : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%gather, %expand_1), kwargs = {})
# %mul_1 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%arg3_1, %expand_1), kwargs = {})
# %sub : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (%mul, %mul_1), kwargs = {})
# %abs_1 : [num_users=3] = call_function[target=torch.ops.aten.abs.default](args = (%sub,), kwargs = {})
# %lt : [num_users=1] = call_function[target=torch.ops.aten.lt.Scalar](args = (%abs_1, 1.0), kwargs = {})
# %pow_1 : [num_users=1] = call_function[target=torch.ops.aten.pow.Tensor_Scalar](args = (%abs_1, 2), kwargs = {})
# %mul_2 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%pow_1, 0.5), kwargs = {})
# %div : [num_users=1] = call_function[target=torch.ops.aten.div.Tensor](args = (%mul_2, 1.0), kwargs = {})
# %sub_1 : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (%abs_1, 0.5), kwargs = {})
# %where : [num_users=1] = call_function[target=torch.ops.aten.where.self](args = (%lt, %div, %sub_1), kwargs = {})
# %sum_2 : [num_users=1] = call_function[target=torch.ops.aten.sum.default](args = (%where,), kwargs = {})
triton_per_fused_gather_mul_smooth_l1_loss_0 = async_compile.triton('triton_per_fused_gather_mul_smooth_l1_loss_0', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.persistent_reduction(
size_hints=[1, 256],
reduction_hint=ReductionHint.INNER,
filename=__file__,
triton_meta={'signature': {0: '*i64', 1: '*fp32', 2: '*fp32', 3: '*fp32', 4: '*fp32', 5: 'i32', 6: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {5: 1}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3, 4, 6), equal_to_1=(5,))]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_per_fused_gather_mul_smooth_l1_loss_0', 'mutated_arg_names': [], 'no_x_dim': True, 'num_load': 3, 'num_reduction': 1, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}
)
@triton.jit
def triton_per_fused_gather_mul_smooth_l1_loss_0(in_ptr0, in_ptr1, in_ptr2, in_ptr3, out_ptr0, xnumel, rnumel):
xnumel = 1
XBLOCK: tl.constexpr = 1
rnumel = 256
RBLOCK: tl.constexpr = 256
xoffset = tl.program_id(0) * XBLOCK
xindex = tl.full([1], xoffset, tl.int32)
xmask = tl.full([RBLOCK], True, tl.int1)
rindex = tl.arange(0, RBLOCK)[:]
roffset = 0
rmask = tl.full([RBLOCK], True, tl.int1)
r4 = (rindex // 4) % 16
r0 = rindex % 4
r2 = (rindex // 16) % 4
r5 = (rindex // 16)
r6 = rindex
tmp0 = tl.load(in_ptr0 + (r4), None, eviction_policy='evict_last')
tmp7 = tl.load(in_ptr2 + (r0 + (4*r5)), None, eviction_policy='evict_last')
tmp9 = tl.load(in_ptr3 + (r6), None)
tmp1 = tl.full([RBLOCK], 16, tl.int32)
tmp2 = tmp0 + tmp1
tmp3 = tmp0 < 0
tmp4 = tl.where(tmp3, tmp2, tmp0)
tl.device_assert((0 <= tmp4) & (tmp4 < 16), "index out of bounds: 0 <= tmp4 < 16")
tmp6 = tl.load(in_ptr1 + ((16*r0) + (64*r2) + (tmp4 % 16)), None, eviction_policy='evict_last')
tmp8 = tmp6 * tmp7
tmp10 = tmp9 * tmp7
tmp11 = tmp8 - tmp10
tmp12 = tl_math.abs(tmp11)
tmp13 = 1.0
tmp14 = tmp12 < tmp13
tmp15 = tmp12 * tmp12
tmp16 = 0.5
tmp17 = tmp15 * tmp16
tmp18 = tmp17 * tmp13
tmp19 = tmp12 - tmp16
tmp20 = tl.where(tmp14, tmp18, tmp19)
tmp21 = tl.broadcast_to(tmp20, [RBLOCK])
tmp23 = triton_helpers.promote_to_tensor(tl.sum(tmp21, 0))
tl.store(out_ptr0 + (tl.full([1], 0, tl.int32)), tmp23, None)
''', device_str='cuda')
# kernel path: runs/run_shard_7/inductor_cache/ob/cob2grz7alvzwl7r4j3xyhalhmisr6ugrqntlztlbaz72vi7aaxw.py
# Topologically Sorted Source Nodes: [num, add, regr_loss_1], Original ATen: [aten.sum, aten.add, aten.div]
# Source node to ATen node mapping:
# add => add
# num => sum_1
# regr_loss_1 => div_1
# Graph fragment:
# %sum_1 : [num_users=1] = call_function[target=torch.ops.aten.sum.default](args = (%arg2_1,), kwargs = {})
# %add : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%sum_1, 0.0001), kwargs = {})
# %div_1 : [num_users=1] = call_function[target=torch.ops.aten.div.Tensor](args = (%sum_2, %add), kwargs = {})
triton_per_fused_add_div_sum_1 = async_compile.triton('triton_per_fused_add_div_sum_1', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.persistent_reduction(
size_hints=[1, 64],
reduction_hint=ReductionHint.INNER,
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {2: 1}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 3), equal_to_1=(2,))]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_per_fused_add_div_sum_1', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 1, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}
)
@triton.jit
def triton_per_fused_add_div_sum_1(in_out_ptr0, in_ptr0, xnumel, rnumel, XBLOCK : tl.constexpr):
xnumel = 1
rnumel = 64
RBLOCK: tl.constexpr = 64
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:, None]
xmask = tl.full([XBLOCK, RBLOCK], True, tl.int1)
rindex = tl.arange(0, RBLOCK)[None, :]
roffset = 0
rmask = tl.full([XBLOCK, RBLOCK], True, tl.int1)
r0 = rindex
tmp0 = tl.load(in_ptr0 + (r0), None)
tmp4 = tl.load(in_out_ptr0 + (0))
tmp5 = tl.broadcast_to(tmp4, [XBLOCK, 1])
tmp1 = tl.broadcast_to(tmp0, [XBLOCK, RBLOCK])
tmp3 = tl.sum(tmp1, 1)[:, None]
tmp6 = 0.0001
tmp7 = tmp3 + tmp6
tmp8 = tmp5 / tmp7
tl.debug_barrier()
tl.store(in_out_ptr0 + (tl.full([XBLOCK, 1], 0, tl.int32)), tmp8, None)
''', device_str='cuda')
async_compile.wait(globals())
del async_compile
def call(args):
arg0_1, arg1_1, arg2_1, arg3_1 = args
args.clear()
assert_size_stride(arg0_1, (4, 4, 4, 4), (64, 16, 4, 1))
assert_size_stride(arg1_1, (4, 4), (4, 1))
assert_size_stride(arg2_1, (4, 4, 4), (16, 4, 1))
assert_size_stride(arg3_1, (4, 4, 4, 4), (64, 16, 4, 1))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((), (), torch.float32)
# Topologically Sorted Source Nodes: [feat_2, regr, gt_regr, regr_loss], Original ATen: [aten.gather, aten.mul, aten.smooth_l1_loss]
stream0 = get_raw_stream(0)
triton_per_fused_gather_mul_smooth_l1_loss_0.run(arg1_1, arg0_1, arg2_1, arg3_1, buf0, 1, 256, grid=grid(1), stream=stream0)
del arg0_1
del arg1_1
del arg3_1
buf2 = buf0; del buf0 # reuse
# Topologically Sorted Source Nodes: [num, add, regr_loss_1], Original ATen: [aten.sum, aten.add, aten.div]
triton_per_fused_add_div_sum_1.run(buf2, arg2_1, 1, 64, grid=grid(1), stream=stream0)
del arg2_1
return (buf2, )
def benchmark_compiled_module(times=10, repeat=10):
from torch._dynamo.testing import rand_strided
from torch._inductor.utils import print_performance
arg0_1 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32)
arg1_1 = rand_strided((4, 4), (4, 1), device='cuda:0', dtype=torch.int64)
arg2_1 = rand_strided((4, 4, 4), (16, 4, 1), device='cuda:0', dtype=torch.float32)
arg3_1 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32)
fn = lambda: call([arg0_1, arg1_1, arg2_1, arg3_1])
return print_performance(fn, times=times, repeat=repeat)
if __name__ == "__main__":
from torch._inductor.wrapper_benchmark import compiled_module_main
compiled_module_main('None', benchmark_compiled_module)
|
import torch
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
from torch._inductor.runtime import triton_helpers
from torch._inductor.runtime.triton_helpers import math as tl_math
import torch.nn as nn
import torch.utils.data
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
@triton.jit
def triton_per_fused_gather_mul_smooth_l1_loss_0(in_ptr0, in_ptr1, in_ptr2,
in_ptr3, out_ptr0, xnumel, rnumel):
XBLOCK: tl.constexpr = 1
RBLOCK: tl.constexpr = 256
xoffset = tl.program_id(0) * XBLOCK
tl.full([1], xoffset, tl.int32)
tl.full([RBLOCK], True, tl.int1)
rindex = tl.arange(0, RBLOCK)[:]
tl.full([RBLOCK], True, tl.int1)
r4 = rindex // 4 % 16
r0 = rindex % 4
r2 = rindex // 16 % 4
r5 = rindex // 16
r6 = rindex
tmp0 = tl.load(in_ptr0 + r4, None, eviction_policy='evict_last')
tmp7 = tl.load(in_ptr2 + (r0 + 4 * r5), None, eviction_policy='evict_last')
tmp9 = tl.load(in_ptr3 + r6, None)
tmp1 = tl.full([RBLOCK], 16, tl.int32)
tmp2 = tmp0 + tmp1
tmp3 = tmp0 < 0
tmp4 = tl.where(tmp3, tmp2, tmp0)
tl.device_assert((0 <= tmp4) & (tmp4 < 16),
'index out of bounds: 0 <= tmp4 < 16')
tmp6 = tl.load(in_ptr1 + (16 * r0 + 64 * r2 + tmp4 % 16), None,
eviction_policy='evict_last')
tmp8 = tmp6 * tmp7
tmp10 = tmp9 * tmp7
tmp11 = tmp8 - tmp10
tmp12 = tl_math.abs(tmp11)
tmp13 = 1.0
tmp14 = tmp12 < tmp13
tmp15 = tmp12 * tmp12
tmp16 = 0.5
tmp17 = tmp15 * tmp16
tmp18 = tmp17 * tmp13
tmp19 = tmp12 - tmp16
tmp20 = tl.where(tmp14, tmp18, tmp19)
tmp21 = tl.broadcast_to(tmp20, [RBLOCK])
tmp23 = triton_helpers.promote_to_tensor(tl.sum(tmp21, 0))
tl.store(out_ptr0 + tl.full([1], 0, tl.int32), tmp23, None)
@triton.jit
def triton_per_fused_add_div_sum_1(in_out_ptr0, in_ptr0, xnumel, rnumel,
XBLOCK: tl.constexpr):
RBLOCK: tl.constexpr = 64
xoffset = tl.program_id(0) * XBLOCK
xoffset + tl.arange(0, XBLOCK)[:, None]
tl.full([XBLOCK, RBLOCK], True, tl.int1)
rindex = tl.arange(0, RBLOCK)[None, :]
tl.full([XBLOCK, RBLOCK], True, tl.int1)
r0 = rindex
tmp0 = tl.load(in_ptr0 + r0, None)
tmp4 = tl.load(in_out_ptr0 + 0)
tmp5 = tl.broadcast_to(tmp4, [XBLOCK, 1])
tmp1 = tl.broadcast_to(tmp0, [XBLOCK, RBLOCK])
tmp3 = tl.sum(tmp1, 1)[:, None]
tmp6 = 0.0001
tmp7 = tmp3 + tmp6
tmp8 = tmp5 / tmp7
tl.debug_barrier()
tl.store(in_out_ptr0 + tl.full([XBLOCK, 1], 0, tl.int32), tmp8, None)
def call(args):
arg0_1, arg1_1, arg2_1, arg3_1 = args
args.clear()
assert_size_stride(arg0_1, (4, 4, 4, 4), (64, 16, 4, 1))
assert_size_stride(arg1_1, (4, 4), (4, 1))
assert_size_stride(arg2_1, (4, 4, 4), (16, 4, 1))
assert_size_stride(arg3_1, (4, 4, 4, 4), (64, 16, 4, 1))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((), (), torch.float32)
get_raw_stream(0)
triton_per_fused_gather_mul_smooth_l1_loss_0[grid(1)](arg1_1,
arg0_1, arg2_1, arg3_1, buf0, 1, 256, num_warps=2, num_stages=1)
del arg0_1
del arg1_1
del arg3_1
buf2 = buf0
del buf0
triton_per_fused_add_div_sum_1[grid(1)](buf2, arg2_1, 1, 64, XBLOCK
=1, num_warps=2, num_stages=1)
del arg2_1
return buf2,
def _gather_feat(feat, ind, mask=None):
dim = feat.size(2)
ind = ind.unsqueeze(2).expand(ind.size(0), ind.size(1), dim)
feat = feat.gather(1, ind)
if mask is not None:
mask = mask.unsqueeze(2).expand_as(feat)
feat = feat[mask]
feat = feat.view(-1, dim)
return feat
def _tranpose_and_gather_feat(feat, ind):
feat = feat.permute(0, 2, 3, 1).contiguous()
feat = feat.view(feat.size(0), -1, feat.size(3))
feat = _gather_feat(feat, ind)
return feat
def _reg_loss(regr, gt_regr, mask):
""" L1 regression loss
Arguments:
regr (batch x max_objects x dim)
gt_regr (batch x max_objects x dim)
mask (batch x max_objects)
"""
num = mask.float().sum()
mask = mask.unsqueeze(2).expand_as(gt_regr).float()
regr = regr * mask
gt_regr = gt_regr * mask
regr_loss = nn.functional.smooth_l1_loss(regr, gt_regr, size_average=False)
regr_loss = regr_loss / (num + 0.0001)
return regr_loss
class RegLossNew(nn.Module):
"""Regression loss for an output tensor
Arguments:
output (batch x dim x h x w)
mask (batch x max_objects)
ind (batch x max_objects)
target (batch x max_objects x dim)
"""
def __init__(self):
super(RegLossNew, self).__init__()
def forward(self, input_0, input_1, input_2, input_3):
arg0_1 = input_0
arg2_1 = input_1
arg1_1 = input_2
arg3_1 = input_3
output = call([arg0_1, arg1_1, arg2_1, arg3_1])
return output[0]
|
leobean/CenterNet_simple
|
RegLoss
| false | 3,967 |
[
"MIT"
] | 0 |
13e2eab2c049563afde5defdf90434a310a32d02
|
https://github.com/leobean/CenterNet_simple/tree/13e2eab2c049563afde5defdf90434a310a32d02
|
OutputTransition
|
# AOT ID: ['0_forward']
from ctypes import c_void_p, c_long, c_int
import torch
import math
import random
import os
import tempfile
from math import inf, nan
from torch._inductor.hooks import run_intermediate_hooks
from torch._inductor.utils import maybe_profile
from torch._inductor.codegen.memory_planning import _align as align
from torch import device, empty_strided
from torch._inductor.async_compile import AsyncCompile
from torch._inductor.select_algorithm import extern_kernels
from torch._inductor.codegen.multi_kernel import MultiKernelCall
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
aten = torch.ops.aten
inductor_ops = torch.ops.inductor
_quantized = torch.ops._quantized
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
alloc_from_pool = torch.ops.inductor._alloc_from_pool
async_compile = AsyncCompile()
# kernel path: runs/run_shard_4/inductor_cache/nc/cncyyp5w7ugisohxqkosctv5wc5f7u7cfra24vd6r5vixoiwmbl6.py
# Topologically Sorted Source Nodes: [sigmoid], Original ATen: [aten.sigmoid]
# Source node to ATen node mapping:
# sigmoid => sigmoid
# Graph fragment:
# %sigmoid : [num_users=1] = call_function[target=torch.ops.aten.sigmoid.default](args = (%squeeze,), kwargs = {})
triton_poi_fused_sigmoid_0 = async_compile.triton('triton_poi_fused_sigmoid_0', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[256],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_sigmoid_0', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_sigmoid_0(in_out_ptr0, in_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 256
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x2 = xindex
x1 = (xindex // 64)
tmp0 = tl.load(in_out_ptr0 + (x2), xmask)
tmp1 = tl.load(in_ptr0 + (x1), xmask, eviction_policy='evict_last')
tmp2 = tmp0 + tmp1
tmp3 = tl.sigmoid(tmp2)
tl.store(in_out_ptr0 + (x2), tmp3, xmask)
''', device_str='cuda')
async_compile.wait(globals())
del async_compile
def call(args):
primals_1, primals_2, primals_3 = args
args.clear()
assert_size_stride(primals_1, (4, 4, 1, 1, 1), (4, 1, 1, 1, 1))
assert_size_stride(primals_2, (4, ), (1, ))
assert_size_stride(primals_3, (4, 4, 4, 4), (64, 16, 4, 1))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
# Topologically Sorted Source Nodes: [conv3d], Original ATen: [aten.convolution]
buf0 = extern_kernels.convolution(reinterpret_tensor(primals_3, (1, 4, 4, 4, 4), (256, 64, 16, 4, 1), 0), primals_1, stride=(1, 1, 1), padding=(0, 0, 0), dilation=(1, 1, 1), transposed=False, output_padding=(0, 0, 0), groups=1, bias=None)
assert_size_stride(buf0, (1, 4, 4, 4, 4), (256, 64, 16, 4, 1))
buf1 = reinterpret_tensor(buf0, (4, 4, 4, 4), (64, 16, 4, 1), 0); del buf0 # reuse
# Topologically Sorted Source Nodes: [sigmoid], Original ATen: [aten.sigmoid]
stream0 = get_raw_stream(0)
triton_poi_fused_sigmoid_0.run(buf1, primals_2, 256, grid=grid(256), stream=stream0)
del primals_2
return (buf1, primals_1, reinterpret_tensor(primals_3, (1, 4, 4, 4, 4), (256, 64, 16, 4, 1), 0), buf1, )
def benchmark_compiled_module(times=10, repeat=10):
from torch._dynamo.testing import rand_strided
from torch._inductor.utils import print_performance
primals_1 = rand_strided((4, 4, 1, 1, 1), (4, 1, 1, 1, 1), device='cuda:0', dtype=torch.float32)
primals_2 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32)
primals_3 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32)
fn = lambda: call([primals_1, primals_2, primals_3])
return print_performance(fn, times=times, repeat=repeat)
if __name__ == "__main__":
from torch._inductor.wrapper_benchmark import compiled_module_main
compiled_module_main('None', benchmark_compiled_module)
|
import torch
from torch._inductor.select_algorithm import extern_kernels
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
from torch import nn
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
@triton.jit
def triton_poi_fused_sigmoid_0(in_out_ptr0, in_ptr0, xnumel, XBLOCK: tl.
constexpr):
xnumel = 256
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x2 = xindex
x1 = xindex // 64
tmp0 = tl.load(in_out_ptr0 + x2, xmask)
tmp1 = tl.load(in_ptr0 + x1, xmask, eviction_policy='evict_last')
tmp2 = tmp0 + tmp1
tmp3 = tl.sigmoid(tmp2)
tl.store(in_out_ptr0 + x2, tmp3, xmask)
def call(args):
primals_1, primals_2, primals_3 = args
args.clear()
assert_size_stride(primals_1, (4, 4, 1, 1, 1), (4, 1, 1, 1, 1))
assert_size_stride(primals_2, (4,), (1,))
assert_size_stride(primals_3, (4, 4, 4, 4), (64, 16, 4, 1))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = extern_kernels.convolution(reinterpret_tensor(primals_3, (1,
4, 4, 4, 4), (256, 64, 16, 4, 1), 0), primals_1, stride=(1, 1,
1), padding=(0, 0, 0), dilation=(1, 1, 1), transposed=False,
output_padding=(0, 0, 0), groups=1, bias=None)
assert_size_stride(buf0, (1, 4, 4, 4, 4), (256, 64, 16, 4, 1))
buf1 = reinterpret_tensor(buf0, (4, 4, 4, 4), (64, 16, 4, 1), 0)
del buf0
get_raw_stream(0)
triton_poi_fused_sigmoid_0[grid(256)](buf1, primals_2, 256, XBLOCK=
256, num_warps=4, num_stages=1)
del primals_2
return buf1, primals_1, reinterpret_tensor(primals_3, (1, 4, 4, 4, 4),
(256, 64, 16, 4, 1), 0), buf1
class OutputTransitionNew(nn.Module):
"""
Decoder output layer
output the prediction of segmentation result
"""
def __init__(self, inChans, outChans):
super(OutputTransitionNew, self).__init__()
self.conv1 = nn.Conv3d(in_channels=inChans, out_channels=outChans,
kernel_size=1)
self.actv1 = torch.sigmoid
def forward(self, input_0):
primals_1 = self.conv1.weight
primals_2 = self.conv1.bias
primals_3 = input_0
output = call([primals_1, primals_2, primals_3])
return output[0]
|
WdBlink/AugMix-3DOCUNet-Brats2019
|
OutputTransition
| false | 5,966 |
[
"MIT"
] | 1 |
125c6c8682b51a550eeac9173d13d0a211576abc
|
https://github.com/WdBlink/AugMix-3DOCUNet-Brats2019/tree/125c6c8682b51a550eeac9173d13d0a211576abc
|
CuboidPoseHead
|
# AOT ID: ['0_inference']
from ctypes import c_void_p, c_long, c_int
import torch
import math
import random
import os
import tempfile
from math import inf, nan
from torch._inductor.hooks import run_intermediate_hooks
from torch._inductor.utils import maybe_profile
from torch._inductor.codegen.memory_planning import _align as align
from torch import device, empty_strided
from torch._inductor.async_compile import AsyncCompile
from torch._inductor.select_algorithm import extern_kernels
from torch._inductor.codegen.multi_kernel import MultiKernelCall
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
aten = torch.ops.aten
inductor_ops = torch.ops.inductor
_quantized = torch.ops._quantized
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
alloc_from_pool = torch.ops.inductor._alloc_from_pool
async_compile = AsyncCompile()
# kernel path: runs/run_shard_7/inductor_cache/wy/cwye4gfk4ug6fholrtujqkcyckps5nmpvc74fhtecqjpl343zhyh.py
# Topologically Sorted Source Nodes: [x_1, x_2, human_poses], Original ATen: [aten._softmax, aten.mul, aten.sum]
# Source node to ATen node mapping:
# human_poses => sum_2
# x_1 => div, exp, sum_1
# x_2 => mul_1
# Graph fragment:
# %mul_tensor : [num_users=2] = call_function[target=torch.ops.aten.mul.Tensor](args = (%view, 1), kwargs = {})
# %amax_default : [num_users=1] = call_function[target=torch.ops.aten.amax.default](args = (%mul_tensor, [2], True), kwargs = {})
# %sub_tensor : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (%mul_tensor, %amax_default), kwargs = {})
# %mul_tensor_1 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%sub_tensor, 4), kwargs = {})
# %exp : [num_users=2] = call_function[target=torch.ops.aten.exp.default](args = (%mul_tensor_1,), kwargs = {})
# %sum_1 : [num_users=1] = call_function[target=torch.ops.aten.sum.dim_IntList](args = (%exp, [2], True), kwargs = {})
# %div : [num_users=1] = call_function[target=torch.ops.aten.div.Tensor](args = (%exp, %sum_1), kwargs = {})
# %mul_1 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%div, %unsqueeze), kwargs = {})
# %sum_2 : [num_users=1] = call_function[target=torch.ops.aten.sum.dim_IntList](args = (%mul_1, [2]), kwargs = {})
triton_poi_fused__softmax_mul_sum_0 = async_compile.triton('triton_poi_fused__softmax_mul_sum_0', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[64],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused__softmax_mul_sum_0', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused__softmax_mul_sum_0(in_ptr0, in_ptr1, out_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 64
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x3 = (xindex // 4)
x4 = xindex % 16
x5 = xindex
tmp0 = tl.load(in_ptr0 + (x3), xmask, eviction_policy='evict_last')
tmp8 = tl.load(in_ptr1 + (x4), xmask, eviction_policy='evict_last')
tmp1 = 1.0
tmp2 = tmp0 * tmp1
tmp3 = tmp2 - tmp2
tmp4 = 4.0
tmp5 = tmp3 * tmp4
tmp6 = tl_math.exp(tmp5)
tmp7 = tmp6 / tmp6
tmp9 = tmp7 * tmp8
tl.store(out_ptr0 + (x5), tmp9, xmask)
''', device_str='cuda')
async_compile.wait(globals())
del async_compile
def call(args):
arg0_1, arg1_1 = args
args.clear()
assert_size_stride(arg0_1, (4, 4), (4, 1))
assert_size_stride(arg1_1, (4, 4), (4, 1))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((4, 4, 4), (16, 4, 1), torch.float32)
# Topologically Sorted Source Nodes: [x_1, x_2, human_poses], Original ATen: [aten._softmax, aten.mul, aten.sum]
stream0 = get_raw_stream(0)
triton_poi_fused__softmax_mul_sum_0.run(arg0_1, arg1_1, buf0, 64, grid=grid(64), stream=stream0)
del arg0_1
del arg1_1
return (buf0, )
def benchmark_compiled_module(times=10, repeat=10):
from torch._dynamo.testing import rand_strided
from torch._inductor.utils import print_performance
arg0_1 = rand_strided((4, 4), (4, 1), device='cuda:0', dtype=torch.float32)
arg1_1 = rand_strided((4, 4), (4, 1), device='cuda:0', dtype=torch.float32)
fn = lambda: call([arg0_1, arg1_1])
return print_performance(fn, times=times, repeat=repeat)
if __name__ == "__main__":
from torch._inductor.wrapper_benchmark import compiled_module_main
compiled_module_main('None', benchmark_compiled_module)
|
import torch
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
from torch._inductor.runtime.triton_helpers import math as tl_math
import torch.nn as nn
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
@triton.jit
def triton_poi_fused__softmax_mul_sum_0(in_ptr0, in_ptr1, out_ptr0, xnumel,
XBLOCK: tl.constexpr):
xnumel = 64
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x3 = xindex // 4
x4 = xindex % 16
x5 = xindex
tmp0 = tl.load(in_ptr0 + x3, xmask, eviction_policy='evict_last')
tmp8 = tl.load(in_ptr1 + x4, xmask, eviction_policy='evict_last')
tmp1 = 1.0
tmp2 = tmp0 * tmp1
tmp3 = tmp2 - tmp2
tmp4 = 4.0
tmp5 = tmp3 * tmp4
tmp6 = tl_math.exp(tmp5)
tmp7 = tmp6 / tmp6
tmp9 = tmp7 * tmp8
tl.store(out_ptr0 + x5, tmp9, xmask)
def call(args):
arg0_1, arg1_1 = args
args.clear()
assert_size_stride(arg0_1, (4, 4), (4, 1))
assert_size_stride(arg1_1, (4, 4), (4, 1))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((4, 4, 4), (16, 4, 1), torch.float32)
get_raw_stream(0)
triton_poi_fused__softmax_mul_sum_0[grid(64)](arg0_1, arg1_1, buf0,
64, XBLOCK=64, num_warps=1, num_stages=1)
del arg0_1
del arg1_1
return buf0,
class CuboidPoseHeadNew(nn.Module):
def __init__(self, beta):
"""Get results from the 3D human pose heatmap. Instead of obtaining
maximums on the heatmap, this module regresses the coordinates of
keypoints via integral pose regression. Refer to `paper.
<https://arxiv.org/abs/2004.06239>` for more details.
Args:
beta: Constant to adjust the magnification of soft-maxed heatmap.
"""
super(CuboidPoseHeadNew, self).__init__()
self.beta = beta
self.loss = nn.L1Loss()
def get_loss(self, preds, targets, weights):
return dict(loss_pose=self.loss(preds * weights, targets * weights))
def forward(self, input_0, input_1):
arg0_1 = input_0
arg1_1 = input_1
output = call([arg0_1, arg1_1])
return output[0]
|
ALISCIFP/mmpose
|
CuboidPoseHead
| false | 2,037 |
[
"Apache-2.0"
] | 0 |
2433e3dbcc44baa2253e2a7c748ba0216937933e
|
https://github.com/ALISCIFP/mmpose/tree/2433e3dbcc44baa2253e2a7c748ba0216937933e
|
HSigmoid
|
import torch
import torch.nn as nn
import torch.nn.functional
import torch.nn.parallel
import torch.utils.data.distributed
class HSigmoid(nn.Module):
""" Applies the Hard-Sigmoid function element-wise.
`"Searching for MobileNetV3" <https://arxiv.org/pdf/1905.02244.pdf>`_
Examples:
>>> m = Mish()
>>> x = torch.randn(2)
>>> output = m(x)
"""
@staticmethod
def forward(x: 'torch.Tensor') ->torch.Tensor:
out = torch.nn.functional.relu6(x + 3, inplace=True) / 6.0
return out
def get_inputs():
return [torch.rand([4, 4, 4, 4])]
def get_init_inputs():
return [[], {}]
|
import torch
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
from torch._inductor.runtime import triton_helpers
import torch.nn as nn
import torch.nn.functional
import torch.nn.parallel
import torch.utils.data.distributed
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
@triton.jit
def triton_poi_fused_add_div_hardtanh_0(in_ptr0, out_ptr0, xnumel, XBLOCK:
tl.constexpr):
xnumel = 256
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex
tmp0 = tl.load(in_ptr0 + x0, xmask)
tmp1 = 3.0
tmp2 = tmp0 + tmp1
tmp3 = 0.0
tmp4 = triton_helpers.maximum(tmp2, tmp3)
tmp5 = 6.0
tmp6 = triton_helpers.minimum(tmp4, tmp5)
tmp7 = 0.16666666666666666
tmp8 = tmp6 * tmp7
tl.store(out_ptr0 + x0, tmp8, xmask)
def call(args):
arg0_1, = args
args.clear()
assert_size_stride(arg0_1, (4, 4, 4, 4), (64, 16, 4, 1))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32)
get_raw_stream(0)
triton_poi_fused_add_div_hardtanh_0[grid(256)](arg0_1, buf0, 256,
XBLOCK=256, num_warps=4, num_stages=1)
del arg0_1
return buf0,
class HSigmoidNew(nn.Module):
""" Applies the Hard-Sigmoid function element-wise.
`"Searching for MobileNetV3" <https://arxiv.org/pdf/1905.02244.pdf>`_
Examples:
>>> m = Mish()
>>> x = torch.randn(2)
>>> output = m(x)
"""
def forward(self, input_0):
arg0_1 = input_0
output = call([arg0_1])
return output[0]
|
ardianumam/Vanilla-GAN
|
HSigmoid
| false | 12,104 |
[
"Apache-2.0"
] | 0 |
3fce9b60dca4609aad1d4e5eb834a2cc72cf07b3
|
https://github.com/ardianumam/Vanilla-GAN/tree/3fce9b60dca4609aad1d4e5eb834a2cc72cf07b3
|
MulScalarNegative
|
# AOT ID: ['0_inference']
from ctypes import c_void_p, c_long, c_int
import torch
import math
import random
import os
import tempfile
from math import inf, nan
from torch._inductor.hooks import run_intermediate_hooks
from torch._inductor.utils import maybe_profile
from torch._inductor.codegen.memory_planning import _align as align
from torch import device, empty_strided
from torch._inductor.async_compile import AsyncCompile
from torch._inductor.select_algorithm import extern_kernels
from torch._inductor.codegen.multi_kernel import MultiKernelCall
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
aten = torch.ops.aten
inductor_ops = torch.ops.inductor
_quantized = torch.ops._quantized
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
alloc_from_pool = torch.ops.inductor._alloc_from_pool
async_compile = AsyncCompile()
# kernel path: runs/run_shard_8/inductor_cache/d6/cd6aldxdtlmqftm5zvb732qk3cauwsvlsspuuvtshsn26uk42ekp.py
# Topologically Sorted Source Nodes: [r], Original ATen: [aten.mul]
# Source node to ATen node mapping:
# r => mul
# Graph fragment:
# %mul : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%arg0_1, -0.3), kwargs = {})
triton_poi_fused_mul_0 = async_compile.triton('triton_poi_fused_mul_0', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[256],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_mul_0', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 1, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_mul_0(in_ptr0, out_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 256
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex
tmp0 = tl.load(in_ptr0 + (x0), xmask)
tmp1 = -0.3
tmp2 = tmp0 * tmp1
tl.store(out_ptr0 + (x0), tmp2, xmask)
''', device_str='cuda')
async_compile.wait(globals())
del async_compile
def call(args):
arg0_1, = args
args.clear()
assert_size_stride(arg0_1, (4, 4, 4, 4), (64, 16, 4, 1))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32)
# Topologically Sorted Source Nodes: [r], Original ATen: [aten.mul]
stream0 = get_raw_stream(0)
triton_poi_fused_mul_0.run(arg0_1, buf0, 256, grid=grid(256), stream=stream0)
del arg0_1
return (buf0, )
def benchmark_compiled_module(times=10, repeat=10):
from torch._dynamo.testing import rand_strided
from torch._inductor.utils import print_performance
arg0_1 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32)
fn = lambda: call([arg0_1])
return print_performance(fn, times=times, repeat=repeat)
if __name__ == "__main__":
from torch._inductor.wrapper_benchmark import compiled_module_main
compiled_module_main('None', benchmark_compiled_module)
|
import torch
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
import torch.nn as nn
from torch.quantization import QuantStub
from torch.quantization import DeQuantStub
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
@triton.jit
def triton_poi_fused_mul_0(in_ptr0, out_ptr0, xnumel, XBLOCK: tl.constexpr):
xnumel = 256
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex
tmp0 = tl.load(in_ptr0 + x0, xmask)
tmp1 = -0.3
tmp2 = tmp0 * tmp1
tl.store(out_ptr0 + x0, tmp2, xmask)
def call(args):
arg0_1, = args
args.clear()
assert_size_stride(arg0_1, (4, 4, 4, 4), (64, 16, 4, 1))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32)
get_raw_stream(0)
triton_poi_fused_mul_0[grid(256)](arg0_1, buf0, 256, XBLOCK=256,
num_warps=4, num_stages=1)
del arg0_1
return buf0,
class MulScalarNegativeNew(nn.Module):
def __init__(self):
super().__init__()
self.float_op = nn.quantized.FloatFunctional()
self.quant = QuantStub()
self.dequant = DeQuantStub()
def fuse_model(self):
pass
def forward(self, input_0):
arg0_1 = input_0
output = call([arg0_1])
return output[0]
|
Leslie-Fang/incubator-tvm
|
MulScalarNegative
| false | 9,290 |
[
"Apache-2.0"
] | 0 |
aa035f4650926f5e714b02cbab6d974f0a17352f
|
https://github.com/Leslie-Fang/incubator-tvm/tree/aa035f4650926f5e714b02cbab6d974f0a17352f
|
SeparableConv2d_same
|
# AOT ID: ['0_forward']
from ctypes import c_void_p, c_long, c_int
import torch
import math
import random
import os
import tempfile
from math import inf, nan
from torch._inductor.hooks import run_intermediate_hooks
from torch._inductor.utils import maybe_profile
from torch._inductor.codegen.memory_planning import _align as align
from torch import device, empty_strided
from torch._inductor.async_compile import AsyncCompile
from torch._inductor.select_algorithm import extern_kernels
from torch._inductor.codegen.multi_kernel import MultiKernelCall
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
aten = torch.ops.aten
inductor_ops = torch.ops.inductor
_quantized = torch.ops._quantized
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
alloc_from_pool = torch.ops.inductor._alloc_from_pool
async_compile = AsyncCompile()
# kernel path: runs/run_shard_8/inductor_cache/td/ctdv3m5a33kovvtng5iilth4k6mtnyfcota6hhwoiqm34iumu7wi.py
# Topologically Sorted Source Nodes: [padded_inputs], Original ATen: [aten.constant_pad_nd]
# Source node to ATen node mapping:
# padded_inputs => constant_pad_nd
# Graph fragment:
# %constant_pad_nd : [num_users=2] = call_function[target=torch.ops.aten.constant_pad_nd.default](args = (%primals_1, [1, 1, 1, 1], 0.0), kwargs = {})
triton_poi_fused_constant_pad_nd_0 = async_compile.triton('triton_poi_fused_constant_pad_nd_0', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[1024],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_constant_pad_nd_0', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 1, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_constant_pad_nd_0(in_ptr0, out_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 576
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x1 = (xindex // 6) % 6
x0 = xindex % 6
x2 = (xindex // 36)
x4 = xindex
tmp0 = (-1) + x1
tmp1 = tl.full([1], 0, tl.int64)
tmp2 = tmp0 >= tmp1
tmp3 = tl.full([1], 4, tl.int64)
tmp4 = tmp0 < tmp3
tmp5 = (-1) + x0
tmp6 = tmp5 >= tmp1
tmp7 = tmp5 < tmp3
tmp8 = tmp2 & tmp4
tmp9 = tmp8 & tmp6
tmp10 = tmp9 & tmp7
tmp11 = tl.load(in_ptr0 + ((-5) + x0 + (4*x1) + (16*x2)), tmp10 & xmask, other=0.0)
tl.store(out_ptr0 + (x4), tmp11, xmask)
''', device_str='cuda')
async_compile.wait(globals())
del async_compile
def call(args):
primals_1, primals_2, primals_3 = args
args.clear()
assert_size_stride(primals_1, (4, 4, 4, 4), (64, 16, 4, 1))
assert_size_stride(primals_2, (4, 1, 3, 3), (9, 9, 3, 1))
assert_size_stride(primals_3, (4, 4, 1, 1), (4, 1, 1, 1))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((4, 4, 6, 6), (144, 36, 6, 1), torch.float32)
# Topologically Sorted Source Nodes: [padded_inputs], Original ATen: [aten.constant_pad_nd]
stream0 = get_raw_stream(0)
triton_poi_fused_constant_pad_nd_0.run(primals_1, buf0, 576, grid=grid(576), stream=stream0)
del primals_1
# Topologically Sorted Source Nodes: [x], Original ATen: [aten.convolution]
buf1 = extern_kernels.convolution(buf0, primals_2, stride=(1, 1), padding=(0, 0), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=4, bias=None)
assert_size_stride(buf1, (4, 4, 4, 4), (64, 16, 4, 1))
# Topologically Sorted Source Nodes: [x_1], Original ATen: [aten.convolution]
buf2 = extern_kernels.convolution(buf1, primals_3, stride=(1, 1), padding=(0, 0), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None)
assert_size_stride(buf2, (4, 4, 4, 4), (64, 16, 4, 1))
return (buf2, primals_2, primals_3, buf0, buf1, )
def benchmark_compiled_module(times=10, repeat=10):
from torch._dynamo.testing import rand_strided
from torch._inductor.utils import print_performance
primals_1 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32)
primals_2 = rand_strided((4, 1, 3, 3), (9, 9, 3, 1), device='cuda:0', dtype=torch.float32)
primals_3 = rand_strided((4, 4, 1, 1), (4, 1, 1, 1), device='cuda:0', dtype=torch.float32)
fn = lambda: call([primals_1, primals_2, primals_3])
return print_performance(fn, times=times, repeat=repeat)
if __name__ == "__main__":
from torch._inductor.wrapper_benchmark import compiled_module_main
compiled_module_main('None', benchmark_compiled_module)
|
import torch
from torch._inductor.select_algorithm import extern_kernels
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
import torch.nn as nn
import torch.nn.functional as F
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
@triton.jit
def triton_poi_fused_constant_pad_nd_0(in_ptr0, out_ptr0, xnumel, XBLOCK:
tl.constexpr):
xnumel = 576
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x1 = xindex // 6 % 6
x0 = xindex % 6
x2 = xindex // 36
x4 = xindex
tmp0 = -1 + x1
tmp1 = tl.full([1], 0, tl.int64)
tmp2 = tmp0 >= tmp1
tmp3 = tl.full([1], 4, tl.int64)
tmp4 = tmp0 < tmp3
tmp5 = -1 + x0
tmp6 = tmp5 >= tmp1
tmp7 = tmp5 < tmp3
tmp8 = tmp2 & tmp4
tmp9 = tmp8 & tmp6
tmp10 = tmp9 & tmp7
tmp11 = tl.load(in_ptr0 + (-5 + x0 + 4 * x1 + 16 * x2), tmp10 & xmask,
other=0.0)
tl.store(out_ptr0 + x4, tmp11, xmask)
def call(args):
primals_1, primals_2, primals_3 = args
args.clear()
assert_size_stride(primals_1, (4, 4, 4, 4), (64, 16, 4, 1))
assert_size_stride(primals_2, (4, 1, 3, 3), (9, 9, 3, 1))
assert_size_stride(primals_3, (4, 4, 1, 1), (4, 1, 1, 1))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((4, 4, 6, 6), (144, 36, 6, 1), torch.float32)
get_raw_stream(0)
triton_poi_fused_constant_pad_nd_0[grid(576)](primals_1, buf0, 576,
XBLOCK=256, num_warps=4, num_stages=1)
del primals_1
buf1 = extern_kernels.convolution(buf0, primals_2, stride=(1, 1),
padding=(0, 0), dilation=(1, 1), transposed=False,
output_padding=(0, 0), groups=4, bias=None)
assert_size_stride(buf1, (4, 4, 4, 4), (64, 16, 4, 1))
buf2 = extern_kernels.convolution(buf1, primals_3, stride=(1, 1),
padding=(0, 0), dilation=(1, 1), transposed=False,
output_padding=(0, 0), groups=1, bias=None)
assert_size_stride(buf2, (4, 4, 4, 4), (64, 16, 4, 1))
return buf2, primals_2, primals_3, buf0, buf1
def fixed_padding(inputs, kernel_size, dilation):
kernel_size_effective = kernel_size + (kernel_size - 1) * (dilation - 1)
pad_total = kernel_size_effective - 1
pad_beg = pad_total // 2
pad_end = pad_total - pad_beg
padded_inputs = F.pad(inputs, (pad_beg, pad_end, pad_beg, pad_end))
return padded_inputs
class SeparableConv2d_sameNew(nn.Module):
def __init__(self, inplanes, planes, kernel_size=3, stride=1, dilation=
1, bias=False):
super(SeparableConv2d_sameNew, self).__init__()
self.conv1 = nn.Conv2d(inplanes, inplanes, kernel_size, stride, 0,
dilation, groups=inplanes, bias=bias)
self.pointwise = nn.Conv2d(inplanes, planes, 1, 1, 0, 1, 1, bias=bias)
def forward(self, input_0):
primals_2 = self.conv1.weight
primals_3 = self.pointwise.weight
primals_1 = input_0
output = call([primals_1, primals_2, primals_3])
return output[0]
|
lutbook/pytorch-segmentation-pipeline
|
SeparableConv2d_same
| false | 10,587 |
[
"MIT"
] | 0 |
eb29d1bf240c158c64d81177e9be93cd958c0026
|
https://github.com/lutbook/pytorch-segmentation-pipeline/tree/eb29d1bf240c158c64d81177e9be93cd958c0026
|
InnerProductDecoder
|
import torch
import torch.nn as nn
import torch.nn.functional as F
import torch.nn.modules.loss
class InnerProductDecoder(nn.Module):
"""Decoder for using inner product for prediction."""
def __init__(self, dropout, act=torch.sigmoid):
super(InnerProductDecoder, self).__init__()
self.dropout = dropout
self.act = act
def forward(self, z):
z = F.dropout(z, self.dropout, training=self.training)
adj = self.act(torch.mm(z, z.t()))
return adj
def get_inputs():
return [torch.rand([4, 4])]
def get_init_inputs():
return [[], {'dropout': 0.5}]
|
import torch
from torch._inductor.select_algorithm import extern_kernels
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
import torch.nn as nn
import torch.nn.modules.loss
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
@triton.jit
def triton_poi_fused_sigmoid_0(in_out_ptr0, xnumel, XBLOCK: tl.constexpr):
xnumel = 16
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex
tmp0 = tl.load(in_out_ptr0 + x0, xmask)
tmp1 = tl.sigmoid(tmp0)
tl.store(in_out_ptr0 + x0, tmp1, xmask)
def call(args):
arg0_1, = args
args.clear()
assert_size_stride(arg0_1, (4, 4), (4, 1))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((4, 4), (4, 1), torch.float32)
extern_kernels.mm(arg0_1, reinterpret_tensor(arg0_1, (4, 4), (1, 4),
0), out=buf0)
del arg0_1
buf1 = buf0
del buf0
get_raw_stream(0)
triton_poi_fused_sigmoid_0[grid(16)](buf1, 16, XBLOCK=16, num_warps
=1, num_stages=1)
return buf1,
class InnerProductDecoderNew(nn.Module):
"""Decoder for using inner product for prediction."""
def __init__(self, dropout, act=torch.sigmoid):
super(InnerProductDecoderNew, self).__init__()
self.dropout = dropout
self.act = act
def forward(self, input_0):
arg0_1 = input_0
output = call([arg0_1])
return output[0]
|
HongyiZhu/EHI
|
InnerProductDecoder
| false | 540 |
[
"MIT"
] | 0 |
9fbbc6046546dd7fc6de5d831b4c941bc4404e02
|
https://github.com/HongyiZhu/EHI/tree/9fbbc6046546dd7fc6de5d831b4c941bc4404e02
|
MegatronGelu
|
import torch
import torch.nn
import torch.onnx
class MegatronGelu(torch.nn.Module):
def forward(self, x):
return x * 0.5 * (torch.erf(x / 1.41421) + 1.0)
def get_inputs():
return [torch.rand([4, 4, 4, 4])]
def get_init_inputs():
return [[], {}]
|
import torch
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
from torch._inductor.runtime.triton_helpers import libdevice
import torch.nn
import torch.onnx
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
@triton.jit
def triton_poi_fused_add_div_erf_mul_0(in_ptr0, out_ptr0, xnumel, XBLOCK:
tl.constexpr):
xnumel = 256
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex
tmp0 = tl.load(in_ptr0 + x0, xmask)
tmp1 = 0.5
tmp2 = tmp0 * tmp1
tmp3 = 0.7071085623775818
tmp4 = tmp0 * tmp3
tmp5 = libdevice.erf(tmp4)
tmp6 = 1.0
tmp7 = tmp5 + tmp6
tmp8 = tmp2 * tmp7
tl.store(out_ptr0 + x0, tmp8, xmask)
def call(args):
arg0_1, = args
args.clear()
assert_size_stride(arg0_1, (4, 4, 4, 4), (64, 16, 4, 1))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32)
get_raw_stream(0)
triton_poi_fused_add_div_erf_mul_0[grid(256)](arg0_1, buf0, 256,
XBLOCK=256, num_warps=4, num_stages=1)
del arg0_1
return buf0,
class MegatronGeluNew(torch.nn.Module):
def forward(self, input_0):
arg0_1 = input_0
output = call([arg0_1])
return output[0]
|
carefreekk/onnxruntime
|
MegatronGelu
| false | 3,255 |
[
"MIT"
] | 0 |
484e9de55c109dadbeb552cd6ede21bbdd63b830
|
https://github.com/carefreekk/onnxruntime/tree/484e9de55c109dadbeb552cd6ede21bbdd63b830
|
GramMatrix
|
# AOT ID: ['0_inference']
from ctypes import c_void_p, c_long, c_int
import torch
import math
import random
import os
import tempfile
from math import inf, nan
from torch._inductor.hooks import run_intermediate_hooks
from torch._inductor.utils import maybe_profile
from torch._inductor.codegen.memory_planning import _align as align
from torch import device, empty_strided
from torch._inductor.async_compile import AsyncCompile
from torch._inductor.select_algorithm import extern_kernels
from torch._inductor.codegen.multi_kernel import MultiKernelCall
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
aten = torch.ops.aten
inductor_ops = torch.ops.inductor
_quantized = torch.ops._quantized
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
alloc_from_pool = torch.ops.inductor._alloc_from_pool
async_compile = AsyncCompile()
# kernel path: runs/run_shard_6/inductor_cache/r5/cr52v5yotzudnablrrwmfpcsyvq37jz2x7fx3mcszdca66xahvgc.py
# Topologically Sorted Source Nodes: [div_], Original ATen: [aten.div]
# Source node to ATen node mapping:
# div_ => div
# Graph fragment:
# %div : [num_users=1] = call_function[target=torch.ops.aten.div.Tensor](args = (%bmm, 16), kwargs = {})
triton_poi_fused_div_0 = async_compile.triton('triton_poi_fused_div_0', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[64],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_div_0', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 1, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_div_0(in_out_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 64
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex
tmp0 = tl.load(in_out_ptr0 + (x0), xmask)
tmp1 = 0.0625
tmp2 = tmp0 * tmp1
tl.store(in_out_ptr0 + (x0), tmp2, xmask)
''', device_str='cuda')
async_compile.wait(globals())
del async_compile
def call(args):
arg0_1, = args
args.clear()
assert_size_stride(arg0_1, (4, 4, 4, 4), (64, 16, 4, 1))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((4, 4, 4), (16, 4, 1), torch.float32)
# Topologically Sorted Source Nodes: [bmm], Original ATen: [aten.bmm]
extern_kernels.bmm(reinterpret_tensor(arg0_1, (4, 4, 16), (64, 16, 1), 0), reinterpret_tensor(arg0_1, (4, 16, 4), (64, 1, 16), 0), out=buf0)
del arg0_1
buf1 = buf0; del buf0 # reuse
# Topologically Sorted Source Nodes: [div_], Original ATen: [aten.div]
stream0 = get_raw_stream(0)
triton_poi_fused_div_0.run(buf1, 64, grid=grid(64), stream=stream0)
return (buf1, )
def benchmark_compiled_module(times=10, repeat=10):
from torch._dynamo.testing import rand_strided
from torch._inductor.utils import print_performance
arg0_1 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32)
fn = lambda: call([arg0_1])
return print_performance(fn, times=times, repeat=repeat)
if __name__ == "__main__":
from torch._inductor.wrapper_benchmark import compiled_module_main
compiled_module_main('None', benchmark_compiled_module)
|
import torch
from torch._inductor.select_algorithm import extern_kernels
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
import torch.nn as nn
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
@triton.jit
def triton_poi_fused_div_0(in_out_ptr0, xnumel, XBLOCK: tl.constexpr):
xnumel = 64
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex
tmp0 = tl.load(in_out_ptr0 + x0, xmask)
tmp1 = 0.0625
tmp2 = tmp0 * tmp1
tl.store(in_out_ptr0 + x0, tmp2, xmask)
def call(args):
arg0_1, = args
args.clear()
assert_size_stride(arg0_1, (4, 4, 4, 4), (64, 16, 4, 1))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((4, 4, 4), (16, 4, 1), torch.float32)
extern_kernels.bmm(reinterpret_tensor(arg0_1, (4, 4, 16), (64, 16,
1), 0), reinterpret_tensor(arg0_1, (4, 16, 4), (64, 1, 16), 0),
out=buf0)
del arg0_1
buf1 = buf0
del buf0
get_raw_stream(0)
triton_poi_fused_div_0[grid(64)](buf1, 64, XBLOCK=64, num_warps=1,
num_stages=1)
return buf1,
class GramMatrixNew(nn.Module):
def forward(self, input_0):
arg0_1 = input_0
output = call([arg0_1])
return output[0]
|
andreweskeclarke/style-transfer
|
GramMatrix
| false | 1,462 |
[
"MIT"
] | 0 |
e4b18f4cdb3f473bf946f12cc39447b2f6bb15ca
|
https://github.com/andreweskeclarke/style-transfer/tree/e4b18f4cdb3f473bf946f12cc39447b2f6bb15ca
|
CrossEntropyLoss
|
# AOT ID: ['0_inference']
from ctypes import c_void_p, c_long, c_int
import torch
import math
import random
import os
import tempfile
from math import inf, nan
from torch._inductor.hooks import run_intermediate_hooks
from torch._inductor.utils import maybe_profile
from torch._inductor.codegen.memory_planning import _align as align
from torch import device, empty_strided
from torch._inductor.async_compile import AsyncCompile
from torch._inductor.select_algorithm import extern_kernels
from torch._inductor.codegen.multi_kernel import MultiKernelCall
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
aten = torch.ops.aten
inductor_ops = torch.ops.inductor
_quantized = torch.ops._quantized
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
alloc_from_pool = torch.ops.inductor._alloc_from_pool
async_compile = AsyncCompile()
# kernel path: runs/run_shard_9/inductor_cache/td/ctdj5kazgiki6gdaadhqtp2x7tq2ee5ey5hqqdcoqmp54jyhf74f.py
# Topologically Sorted Source Nodes: [loss], Original ATen: [aten._log_softmax]
# Source node to ATen node mapping:
# loss => amax, sub
# Graph fragment:
# %amax : [num_users=1] = call_function[target=torch.ops.aten.amax.default](args = (%arg0_1, [1], True), kwargs = {})
# %sub : [num_users=2] = call_function[target=torch.ops.aten.sub.Tensor](args = (%arg0_1, %amax), kwargs = {})
triton_poi_fused__log_softmax_0 = async_compile.triton('triton_poi_fused__log_softmax_0', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[256],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused__log_softmax_0', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 5, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused__log_softmax_0(in_ptr0, out_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 256
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x3 = xindex
x0 = xindex % 16
x2 = (xindex // 64)
tmp0 = tl.load(in_ptr0 + (x3), xmask)
tmp1 = tl.load(in_ptr0 + (x0 + (64*x2)), xmask, eviction_policy='evict_last')
tmp2 = tl.load(in_ptr0 + (16 + x0 + (64*x2)), xmask, eviction_policy='evict_last')
tmp4 = tl.load(in_ptr0 + (32 + x0 + (64*x2)), xmask, eviction_policy='evict_last')
tmp6 = tl.load(in_ptr0 + (48 + x0 + (64*x2)), xmask, eviction_policy='evict_last')
tmp3 = triton_helpers.maximum(tmp1, tmp2)
tmp5 = triton_helpers.maximum(tmp3, tmp4)
tmp7 = triton_helpers.maximum(tmp5, tmp6)
tmp8 = tmp0 - tmp7
tl.store(out_ptr0 + (x3), tmp8, xmask)
''', device_str='cuda')
# kernel path: runs/run_shard_9/inductor_cache/57/c572rujtphach6djeurlg5nv3rt5e37ifechqsganatcxbygg5m5.py
# Topologically Sorted Source Nodes: [loss, loss_1, loss_cls], Original ATen: [aten._log_softmax, aten.mul, aten.sum, aten.neg, aten.mean]
# Source node to ATen node mapping:
# loss => exp, log, mul, neg, sub_1, sum_1, sum_2
# loss_1 => mean
# loss_cls => mul_1
# Graph fragment:
# %exp : [num_users=1] = call_function[target=torch.ops.aten.exp.default](args = (%sub,), kwargs = {})
# %sum_1 : [num_users=1] = call_function[target=torch.ops.aten.sum.dim_IntList](args = (%exp, [1], True), kwargs = {})
# %log : [num_users=1] = call_function[target=torch.ops.aten.log.default](args = (%sum_1,), kwargs = {})
# %sub_1 : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (%sub, %log), kwargs = {})
# %mul : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%sub_1, %arg1_1), kwargs = {})
# %sum_2 : [num_users=1] = call_function[target=torch.ops.aten.sum.dim_IntList](args = (%mul, [1]), kwargs = {})
# %neg : [num_users=1] = call_function[target=torch.ops.aten.neg.default](args = (%sum_2,), kwargs = {})
# %mean : [num_users=1] = call_function[target=torch.ops.aten.mean.default](args = (%neg,), kwargs = {})
# %mul_1 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%mean, 1.0), kwargs = {})
triton_per_fused__log_softmax_mean_mul_neg_sum_1 = async_compile.triton('triton_per_fused__log_softmax_mean_mul_neg_sum_1', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.persistent_reduction(
size_hints=[1, 64],
reduction_hint=ReductionHint.INNER,
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: 'i32', 4: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {3: 1}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 4), equal_to_1=(3,))]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_per_fused__log_softmax_mean_mul_neg_sum_1', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 8, 'num_reduction': 1, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}
)
@triton.jit
def triton_per_fused__log_softmax_mean_mul_neg_sum_1(in_out_ptr0, in_ptr0, in_ptr1, xnumel, rnumel, XBLOCK : tl.constexpr):
xnumel = 1
rnumel = 64
RBLOCK: tl.constexpr = 64
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:, None]
xmask = tl.full([XBLOCK, RBLOCK], True, tl.int1)
rindex = tl.arange(0, RBLOCK)[None, :]
roffset = 0
rmask = tl.full([XBLOCK, RBLOCK], True, tl.int1)
r0 = rindex % 16
r1 = (rindex // 16)
tmp0 = tl.load(in_ptr0 + (r0 + (64*r1)), None)
tmp2 = tl.load(in_ptr0 + (16 + r0 + (64*r1)), None)
tmp5 = tl.load(in_ptr0 + (32 + r0 + (64*r1)), None)
tmp8 = tl.load(in_ptr0 + (48 + r0 + (64*r1)), None)
tmp13 = tl.load(in_ptr1 + (r0 + (64*r1)), None)
tmp16 = tl.load(in_ptr1 + (16 + r0 + (64*r1)), None)
tmp20 = tl.load(in_ptr1 + (32 + r0 + (64*r1)), None)
tmp24 = tl.load(in_ptr1 + (48 + r0 + (64*r1)), None)
tmp1 = tl_math.exp(tmp0)
tmp3 = tl_math.exp(tmp2)
tmp4 = tmp1 + tmp3
tmp6 = tl_math.exp(tmp5)
tmp7 = tmp4 + tmp6
tmp9 = tl_math.exp(tmp8)
tmp10 = tmp7 + tmp9
tmp11 = tl_math.log(tmp10)
tmp12 = tmp0 - tmp11
tmp14 = tmp12 * tmp13
tmp15 = tmp2 - tmp11
tmp17 = tmp15 * tmp16
tmp18 = tmp14 + tmp17
tmp19 = tmp5 - tmp11
tmp21 = tmp19 * tmp20
tmp22 = tmp18 + tmp21
tmp23 = tmp8 - tmp11
tmp25 = tmp23 * tmp24
tmp26 = tmp22 + tmp25
tmp27 = -tmp26
tmp28 = tl.broadcast_to(tmp27, [XBLOCK, RBLOCK])
tmp30 = tl.sum(tmp28, 1)[:, None]
tmp31 = 64.0
tmp32 = tmp30 / tmp31
tmp33 = 1.0
tmp34 = tmp32 * tmp33
tl.debug_barrier()
tl.store(in_out_ptr0 + (tl.full([XBLOCK, 1], 0, tl.int32)), tmp34, None)
''', device_str='cuda')
async_compile.wait(globals())
del async_compile
def call(args):
arg0_1, arg1_1 = args
args.clear()
assert_size_stride(arg0_1, (4, 4, 4, 4), (64, 16, 4, 1))
assert_size_stride(arg1_1, (4, 4, 4, 4), (64, 16, 4, 1))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32)
# Topologically Sorted Source Nodes: [loss], Original ATen: [aten._log_softmax]
stream0 = get_raw_stream(0)
triton_poi_fused__log_softmax_0.run(arg0_1, buf0, 256, grid=grid(256), stream=stream0)
del arg0_1
buf1 = empty_strided_cuda((), (), torch.float32)
buf2 = buf1; del buf1 # reuse
# Topologically Sorted Source Nodes: [loss, loss_1, loss_cls], Original ATen: [aten._log_softmax, aten.mul, aten.sum, aten.neg, aten.mean]
triton_per_fused__log_softmax_mean_mul_neg_sum_1.run(buf2, buf0, arg1_1, 1, 64, grid=grid(1), stream=stream0)
del arg1_1
del buf0
return (buf2, )
def benchmark_compiled_module(times=10, repeat=10):
from torch._dynamo.testing import rand_strided
from torch._inductor.utils import print_performance
arg0_1 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32)
arg1_1 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32)
fn = lambda: call([arg0_1, arg1_1])
return print_performance(fn, times=times, repeat=repeat)
if __name__ == "__main__":
from torch._inductor.wrapper_benchmark import compiled_module_main
compiled_module_main('None', benchmark_compiled_module)
|
import torch
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
from torch._inductor.runtime import triton_helpers
from torch._inductor.runtime.triton_helpers import math as tl_math
import torch.nn as nn
import torch.nn.functional as F
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
@triton.jit
def triton_poi_fused__log_softmax_0(in_ptr0, out_ptr0, xnumel, XBLOCK: tl.
constexpr):
xnumel = 256
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x3 = xindex
x0 = xindex % 16
x2 = xindex // 64
tmp0 = tl.load(in_ptr0 + x3, xmask)
tmp1 = tl.load(in_ptr0 + (x0 + 64 * x2), xmask, eviction_policy=
'evict_last')
tmp2 = tl.load(in_ptr0 + (16 + x0 + 64 * x2), xmask, eviction_policy=
'evict_last')
tmp4 = tl.load(in_ptr0 + (32 + x0 + 64 * x2), xmask, eviction_policy=
'evict_last')
tmp6 = tl.load(in_ptr0 + (48 + x0 + 64 * x2), xmask, eviction_policy=
'evict_last')
tmp3 = triton_helpers.maximum(tmp1, tmp2)
tmp5 = triton_helpers.maximum(tmp3, tmp4)
tmp7 = triton_helpers.maximum(tmp5, tmp6)
tmp8 = tmp0 - tmp7
tl.store(out_ptr0 + x3, tmp8, xmask)
@triton.jit
def triton_per_fused__log_softmax_mean_mul_neg_sum_1(in_out_ptr0, in_ptr0,
in_ptr1, xnumel, rnumel, XBLOCK: tl.constexpr):
RBLOCK: tl.constexpr = 64
xoffset = tl.program_id(0) * XBLOCK
xoffset + tl.arange(0, XBLOCK)[:, None]
tl.full([XBLOCK, RBLOCK], True, tl.int1)
rindex = tl.arange(0, RBLOCK)[None, :]
tl.full([XBLOCK, RBLOCK], True, tl.int1)
r0 = rindex % 16
r1 = rindex // 16
tmp0 = tl.load(in_ptr0 + (r0 + 64 * r1), None)
tmp2 = tl.load(in_ptr0 + (16 + r0 + 64 * r1), None)
tmp5 = tl.load(in_ptr0 + (32 + r0 + 64 * r1), None)
tmp8 = tl.load(in_ptr0 + (48 + r0 + 64 * r1), None)
tmp13 = tl.load(in_ptr1 + (r0 + 64 * r1), None)
tmp16 = tl.load(in_ptr1 + (16 + r0 + 64 * r1), None)
tmp20 = tl.load(in_ptr1 + (32 + r0 + 64 * r1), None)
tmp24 = tl.load(in_ptr1 + (48 + r0 + 64 * r1), None)
tmp1 = tl_math.exp(tmp0)
tmp3 = tl_math.exp(tmp2)
tmp4 = tmp1 + tmp3
tmp6 = tl_math.exp(tmp5)
tmp7 = tmp4 + tmp6
tmp9 = tl_math.exp(tmp8)
tmp10 = tmp7 + tmp9
tmp11 = tl_math.log(tmp10)
tmp12 = tmp0 - tmp11
tmp14 = tmp12 * tmp13
tmp15 = tmp2 - tmp11
tmp17 = tmp15 * tmp16
tmp18 = tmp14 + tmp17
tmp19 = tmp5 - tmp11
tmp21 = tmp19 * tmp20
tmp22 = tmp18 + tmp21
tmp23 = tmp8 - tmp11
tmp25 = tmp23 * tmp24
tmp26 = tmp22 + tmp25
tmp27 = -tmp26
tmp28 = tl.broadcast_to(tmp27, [XBLOCK, RBLOCK])
tmp30 = tl.sum(tmp28, 1)[:, None]
tmp31 = 64.0
tmp32 = tmp30 / tmp31
tmp33 = 1.0
tmp34 = tmp32 * tmp33
tl.debug_barrier()
tl.store(in_out_ptr0 + tl.full([XBLOCK, 1], 0, tl.int32), tmp34, None)
def call(args):
arg0_1, arg1_1 = args
args.clear()
assert_size_stride(arg0_1, (4, 4, 4, 4), (64, 16, 4, 1))
assert_size_stride(arg1_1, (4, 4, 4, 4), (64, 16, 4, 1))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32)
get_raw_stream(0)
triton_poi_fused__log_softmax_0[grid(256)](arg0_1, buf0, 256,
XBLOCK=256, num_warps=4, num_stages=1)
del arg0_1
buf1 = empty_strided_cuda((), (), torch.float32)
buf2 = buf1
del buf1
triton_per_fused__log_softmax_mean_mul_neg_sum_1[grid(1)](buf2,
buf0, arg1_1, 1, 64, XBLOCK=1, num_warps=2, num_stages=1)
del arg1_1
del buf0
return buf2,
def reduce_loss(loss, reduction):
"""Reduce loss as specified.
Args:
loss (Tensor): Elementwise loss tensor.
reduction (str): Options are "none", "mean" and "sum".
Return:
Tensor: Reduced loss tensor.
"""
reduction_enum = F._Reduction.get_enum(reduction)
if reduction_enum == 0:
return loss
elif reduction_enum == 1:
return loss.mean()
elif reduction_enum == 2:
return loss.sum()
def weight_reduce_loss(loss, weight=None, reduction='mean', avg_factor=None):
"""Apply element-wise weight and reduce loss.
Args:
loss (Tensor): Element-wise loss.
weight (Tensor): Element-wise weights.
reduction (str): Same as built-in losses of PyTorch.
avg_factor (float): Avarage factor when computing the mean of losses.
Returns:
Tensor: Processed loss values.
"""
if weight is not None:
loss = loss * weight
if avg_factor is None:
loss = reduce_loss(loss, reduction)
elif reduction == 'mean':
loss = loss.sum() / avg_factor
elif reduction != 'none':
raise ValueError('avg_factor can not be used with reduction="sum"')
return loss
def _expand_binary_labels(labels, label_weights, label_channels):
bin_labels = labels.new_full((labels.size(0), label_channels), 0)
inds = torch.nonzero(labels >= 1, as_tuple=False).squeeze()
if inds.numel() > 0:
bin_labels[inds, labels[inds] - 1] = 1
if label_weights is None:
bin_label_weights = None
else:
bin_label_weights = label_weights.view(-1, 1).expand(label_weights.
size(0), label_channels)
return bin_labels, bin_label_weights
def binary_cross_entropy(pred, label, weight=None, reduction='mean',
avg_factor=None):
if pred.dim() != label.dim():
label, weight = _expand_binary_labels(label, weight, pred.size(-1))
if weight is not None:
weight = weight.float()
loss = F.binary_cross_entropy_with_logits(pred, label.float(), weight,
reduction='none')
loss = weight_reduce_loss(loss, reduction=reduction, avg_factor=avg_factor)
return loss
def cross_entropy(pred, label, weight=None, reduction='mean', avg_factor=None):
loss = F.cross_entropy(pred, label, reduction='none')
if weight is not None:
weight = weight.float()
loss = weight_reduce_loss(loss, weight=weight, reduction=reduction,
avg_factor=avg_factor)
return loss
def mask_cross_entropy(pred, target, label, reduction='mean', avg_factor=None):
assert reduction == 'mean' and avg_factor is None
num_rois = pred.size()[0]
inds = torch.arange(0, num_rois, dtype=torch.long, device=pred.device)
pred_slice = pred[inds, label].squeeze(1)
return F.binary_cross_entropy_with_logits(pred_slice, target, reduction
='mean')[None]
class CrossEntropyLossNew(nn.Module):
def __init__(self, use_sigmoid=False, use_mask=False, reduction='mean',
loss_weight=1.0):
super(CrossEntropyLossNew, self).__init__()
assert use_sigmoid is False or use_mask is False
self.use_sigmoid = use_sigmoid
self.use_mask = use_mask
self.reduction = reduction
self.loss_weight = loss_weight
if self.use_sigmoid:
self.cls_criterion = binary_cross_entropy
elif self.use_mask:
self.cls_criterion = mask_cross_entropy
else:
self.cls_criterion = cross_entropy
def forward(self, input_0, input_1):
arg0_1 = input_0
arg1_1 = input_1
output = call([arg0_1, arg1_1])
return output[0]
|
AtticusJohnson/mmdetection
|
CrossEntropyLoss
| false | 11,211 |
[
"Apache-2.0"
] | 0 |
d8d89bafcce13d3b32b1fb3366be3bb9830546c2
|
https://github.com/AtticusJohnson/mmdetection/tree/d8d89bafcce13d3b32b1fb3366be3bb9830546c2
|
GCN
|
from torch.nn import Module
import math
import torch
import torch.nn as nn
import torch.nn.functional as F
from torch.nn.parameter import Parameter
from torch.nn.modules.module import Module
class GraphConvolution(Module):
"""
Simple GCN layer, similar to https://arxiv.org/abs/1609.02907
"""
def __init__(self, in_features, out_features, bias=True):
super(GraphConvolution, self).__init__()
self.in_features = in_features
self.out_features = out_features
self.weight = Parameter(torch.FloatTensor(in_features, out_features))
if bias:
self.bias = Parameter(torch.FloatTensor(out_features))
else:
self.register_parameter('bias', None)
self.reset_parameters()
def reset_parameters(self):
stdv = 1.0 / math.sqrt(self.weight.size(1))
self.weight.data.uniform_(-stdv, stdv)
if self.bias is not None:
self.bias.data.uniform_(-stdv, stdv)
def forward(self, input, adj):
support = torch.mm(input, self.weight)
output = torch.spmm(adj, support)
if self.bias is not None:
return output + self.bias
else:
return output
def __repr__(self):
return self.__class__.__name__ + ' (' + str(self.in_features
) + ' -> ' + str(self.out_features) + ')'
class GCN(nn.Module):
def __init__(self, nfeat, nhid, nclass, dropout):
super(GCN, self).__init__()
self.gc1 = GraphConvolution(nfeat, nhid)
self.gc2 = GraphConvolution(nhid, nclass)
self.gcx = GraphConvolution(nhid, nhid)
self.dropout = dropout
def forward(self, x, adj):
nlayers = 8
x = F.dropout(F.relu(self.gc1(x, adj)), self.dropout, training=self
.training)
for i in range(nlayers):
x = F.dropout(F.relu(self.gcx(x, adj)), self.dropout, training=
self.training)
x = self.gc2(x, adj)
return F.log_softmax(x, dim=1)
def get_inputs():
return [torch.rand([4, 4]), torch.rand([4, 4])]
def get_init_inputs():
return [[], {'nfeat': 4, 'nhid': 4, 'nclass': 4, 'dropout': 0.5}]
|
import torch
from torch._inductor.select_algorithm import extern_kernels
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
from torch._inductor.runtime import triton_helpers
from torch._inductor.runtime.triton_helpers import math as tl_math
from torch.nn import Module
import math
import torch.nn as nn
from torch.nn.parameter import Parameter
from torch.nn.modules.module import Module
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
@triton.jit
def triton_poi_fused_add_relu_0(in_out_ptr0, in_ptr0, xnumel, XBLOCK: tl.
constexpr):
xnumel = 16
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x2 = xindex
x0 = xindex % 4
tmp0 = tl.load(in_out_ptr0 + x2, xmask)
tmp1 = tl.load(in_ptr0 + x0, xmask, eviction_policy='evict_last')
tmp2 = tmp0 + tmp1
tmp3 = tl.full([1], 0, tl.int32)
tmp4 = triton_helpers.maximum(tmp3, tmp2)
tl.store(in_out_ptr0 + x2, tmp4, xmask)
@triton.jit
def triton_poi_fused__log_softmax_1(in_ptr0, out_ptr0, xnumel, XBLOCK: tl.
constexpr):
xnumel = 16
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x2 = xindex
x1 = xindex // 4
tmp0 = tl.load(in_ptr0 + x2, xmask)
tmp1 = tl.load(in_ptr0 + 4 * x1, xmask, eviction_policy='evict_last')
tmp2 = tl.load(in_ptr0 + (1 + 4 * x1), xmask, eviction_policy='evict_last')
tmp4 = tl.load(in_ptr0 + (2 + 4 * x1), xmask, eviction_policy='evict_last')
tmp6 = tl.load(in_ptr0 + (3 + 4 * x1), xmask, eviction_policy='evict_last')
tmp3 = triton_helpers.maximum(tmp1, tmp2)
tmp5 = triton_helpers.maximum(tmp3, tmp4)
tmp7 = triton_helpers.maximum(tmp5, tmp6)
tmp8 = tmp0 - tmp7
tl.store(out_ptr0 + x2, tmp8, xmask)
@triton.jit
def triton_poi_fused__log_softmax_2(in_ptr0, out_ptr0, xnumel, XBLOCK: tl.
constexpr):
xnumel = 16
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x2 = xindex
x1 = xindex // 4
tmp0 = tl.load(in_ptr0 + x2, xmask)
tmp1 = tl.load(in_ptr0 + 4 * x1, xmask, eviction_policy='evict_last')
tmp3 = tl.load(in_ptr0 + (1 + 4 * x1), xmask, eviction_policy='evict_last')
tmp6 = tl.load(in_ptr0 + (2 + 4 * x1), xmask, eviction_policy='evict_last')
tmp9 = tl.load(in_ptr0 + (3 + 4 * x1), xmask, eviction_policy='evict_last')
tmp2 = tl_math.exp(tmp1)
tmp4 = tl_math.exp(tmp3)
tmp5 = tmp2 + tmp4
tmp7 = tl_math.exp(tmp6)
tmp8 = tmp5 + tmp7
tmp10 = tl_math.exp(tmp9)
tmp11 = tmp8 + tmp10
tmp12 = tl_math.log(tmp11)
tmp13 = tmp0 - tmp12
tl.store(out_ptr0 + x2, tmp13, xmask)
def call(args):
(primals_1, primals_2, primals_3, primals_4, primals_5, primals_6,
primals_7, primals_8) = args
args.clear()
assert_size_stride(primals_1, (4, 4), (4, 1))
assert_size_stride(primals_2, (4, 4), (4, 1))
assert_size_stride(primals_3, (4, 4), (4, 1))
assert_size_stride(primals_4, (4,), (1,))
assert_size_stride(primals_5, (4, 4), (4, 1))
assert_size_stride(primals_6, (4,), (1,))
assert_size_stride(primals_7, (4, 4), (4, 1))
assert_size_stride(primals_8, (4,), (1,))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((4, 4), (4, 1), torch.float32)
extern_kernels.mm(primals_2, primals_1, out=buf0)
del primals_1
buf1 = empty_strided_cuda((4, 4), (4, 1), torch.float32)
extern_kernels.mm(primals_3, buf0, out=buf1)
buf2 = buf1
del buf1
get_raw_stream(0)
triton_poi_fused_add_relu_0[grid(16)](buf2, primals_4, 16, XBLOCK=
16, num_warps=1, num_stages=1)
del primals_4
buf3 = buf0
del buf0
extern_kernels.mm(buf2, primals_5, out=buf3)
buf4 = empty_strided_cuda((4, 4), (4, 1), torch.float32)
extern_kernels.mm(primals_3, buf3, out=buf4)
buf5 = buf4
del buf4
triton_poi_fused_add_relu_0[grid(16)](buf5, primals_6, 16, XBLOCK=
16, num_warps=1, num_stages=1)
buf6 = buf3
del buf3
extern_kernels.mm(buf5, primals_5, out=buf6)
buf7 = empty_strided_cuda((4, 4), (4, 1), torch.float32)
extern_kernels.mm(primals_3, buf6, out=buf7)
buf8 = buf7
del buf7
triton_poi_fused_add_relu_0[grid(16)](buf8, primals_6, 16, XBLOCK=
16, num_warps=1, num_stages=1)
buf9 = buf6
del buf6
extern_kernels.mm(buf8, primals_5, out=buf9)
buf10 = empty_strided_cuda((4, 4), (4, 1), torch.float32)
extern_kernels.mm(primals_3, buf9, out=buf10)
buf11 = buf10
del buf10
triton_poi_fused_add_relu_0[grid(16)](buf11, primals_6, 16, XBLOCK=
16, num_warps=1, num_stages=1)
buf12 = buf9
del buf9
extern_kernels.mm(buf11, primals_5, out=buf12)
buf13 = empty_strided_cuda((4, 4), (4, 1), torch.float32)
extern_kernels.mm(primals_3, buf12, out=buf13)
buf14 = buf13
del buf13
triton_poi_fused_add_relu_0[grid(16)](buf14, primals_6, 16, XBLOCK=
16, num_warps=1, num_stages=1)
buf15 = buf12
del buf12
extern_kernels.mm(buf14, primals_5, out=buf15)
buf16 = empty_strided_cuda((4, 4), (4, 1), torch.float32)
extern_kernels.mm(primals_3, buf15, out=buf16)
buf17 = buf16
del buf16
triton_poi_fused_add_relu_0[grid(16)](buf17, primals_6, 16, XBLOCK=
16, num_warps=1, num_stages=1)
buf18 = buf15
del buf15
extern_kernels.mm(buf17, primals_5, out=buf18)
buf19 = empty_strided_cuda((4, 4), (4, 1), torch.float32)
extern_kernels.mm(primals_3, buf18, out=buf19)
buf20 = buf19
del buf19
triton_poi_fused_add_relu_0[grid(16)](buf20, primals_6, 16, XBLOCK=
16, num_warps=1, num_stages=1)
buf21 = buf18
del buf18
extern_kernels.mm(buf20, primals_5, out=buf21)
buf22 = empty_strided_cuda((4, 4), (4, 1), torch.float32)
extern_kernels.mm(primals_3, buf21, out=buf22)
buf23 = buf22
del buf22
triton_poi_fused_add_relu_0[grid(16)](buf23, primals_6, 16, XBLOCK=
16, num_warps=1, num_stages=1)
buf24 = buf21
del buf21
extern_kernels.mm(buf23, primals_5, out=buf24)
buf25 = empty_strided_cuda((4, 4), (4, 1), torch.float32)
extern_kernels.mm(primals_3, buf24, out=buf25)
buf26 = buf25
del buf25
triton_poi_fused_add_relu_0[grid(16)](buf26, primals_6, 16, XBLOCK=
16, num_warps=1, num_stages=1)
del primals_6
buf27 = buf24
del buf24
extern_kernels.mm(buf26, primals_7, out=buf27)
buf28 = empty_strided_cuda((4, 4), (4, 1), torch.float32)
extern_kernels.addmm(primals_8, primals_3, buf27, alpha=1, beta=1,
out=buf28)
del primals_8
buf29 = buf27
del buf27
triton_poi_fused__log_softmax_1[grid(16)](buf28, buf29, 16, XBLOCK=
16, num_warps=1, num_stages=1)
buf30 = buf28
del buf28
triton_poi_fused__log_softmax_2[grid(16)](buf29, buf30, 16, XBLOCK=
16, num_warps=1, num_stages=1)
del buf29
return (buf30, buf2, buf5, buf8, buf11, buf14, buf17, buf20, buf23,
buf26, buf30, reinterpret_tensor(primals_3, (4, 4), (1, 4), 0),
reinterpret_tensor(primals_7, (4, 4), (1, 4), 0),
reinterpret_tensor(primals_5, (4, 4), (1, 4), 0),
reinterpret_tensor(primals_2, (4, 4), (1, 4), 0))
class GraphConvolution(Module):
"""
Simple GCN layer, similar to https://arxiv.org/abs/1609.02907
"""
def __init__(self, in_features, out_features, bias=True):
super(GraphConvolution, self).__init__()
self.in_features = in_features
self.out_features = out_features
self.weight = Parameter(torch.FloatTensor(in_features, out_features))
if bias:
self.bias = Parameter(torch.FloatTensor(out_features))
else:
self.register_parameter('bias', None)
self.reset_parameters()
def reset_parameters(self):
stdv = 1.0 / math.sqrt(self.weight.size(1))
self.weight.data.uniform_(-stdv, stdv)
if self.bias is not None:
self.bias.data.uniform_(-stdv, stdv)
def forward(self, input, adj):
support = torch.mm(input, self.weight)
output = torch.spmm(adj, support)
if self.bias is not None:
return output + self.bias
else:
return output
def __repr__(self):
return self.__class__.__name__ + ' (' + str(self.in_features
) + ' -> ' + str(self.out_features) + ')'
class GCNNew(nn.Module):
def __init__(self, nfeat, nhid, nclass, dropout):
super(GCNNew, self).__init__()
self.gc1 = GraphConvolution(nfeat, nhid)
self.gc2 = GraphConvolution(nhid, nclass)
self.gcx = GraphConvolution(nhid, nhid)
self.dropout = dropout
def forward(self, input_0, input_1):
primals_1 = self.gc1.weight
primals_4 = self.gc1.bias
primals_2 = self.gc2.weight
primals_6 = self.gc2.bias
primals_3 = self.gcx.weight
primals_8 = self.gcx.bias
primals_5 = input_0
primals_7 = input_1
output = call([primals_1, primals_2, primals_3, primals_4,
primals_5, primals_6, primals_7, primals_8])
return output[0]
|
d222nguy/gcn_research
|
GCN
| false | 3,372 |
[
"MIT"
] | 0 |
83ced4f7d9f7840e48900e62c1eabec0444c5fa2
|
https://github.com/d222nguy/gcn_research/tree/83ced4f7d9f7840e48900e62c1eabec0444c5fa2
|
FCLayer
|
import torch
import torch.nn as nn
class FCLayer(nn.Module):
def __init__(self, input_dim, output_dim, dropout_rate=0.0,
use_activation=True):
super(FCLayer, self).__init__()
self.use_activation = use_activation
self.dropout = nn.Dropout(dropout_rate)
self.linear = nn.Linear(input_dim, output_dim)
self.tanh = nn.Tanh()
def forward(self, x):
x = self.dropout(x)
if self.use_activation:
x = self.tanh(x)
return self.linear(x)
def get_inputs():
return [torch.rand([4, 4, 4, 4])]
def get_init_inputs():
return [[], {'input_dim': 4, 'output_dim': 4}]
|
import torch
from torch._inductor.select_algorithm import extern_kernels
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
from torch._inductor.runtime.triton_helpers import libdevice
import torch.nn as nn
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
@triton.jit
def triton_poi_fused_tanh_0(in_ptr0, out_ptr0, xnumel, XBLOCK: tl.constexpr):
xnumel = 256
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex
tmp0 = tl.load(in_ptr0 + x0, xmask)
tmp1 = libdevice.tanh(tmp0)
tl.store(out_ptr0 + x0, tmp1, xmask)
def call(args):
primals_1, primals_2, primals_3 = args
args.clear()
assert_size_stride(primals_1, (4, 4, 4, 4), (64, 16, 4, 1))
assert_size_stride(primals_2, (4, 4), (4, 1))
assert_size_stride(primals_3, (4,), (1,))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32)
get_raw_stream(0)
triton_poi_fused_tanh_0[grid(256)](primals_1, buf0, 256, XBLOCK=128,
num_warps=4, num_stages=1)
del primals_1
buf1 = empty_strided_cuda((64, 4), (4, 1), torch.float32)
extern_kernels.addmm(primals_3, reinterpret_tensor(buf0, (64, 4), (
4, 1), 0), reinterpret_tensor(primals_2, (4, 4), (1, 4), 0),
alpha=1, beta=1, out=buf1)
del primals_2
del primals_3
return reinterpret_tensor(buf1, (4, 4, 4, 4), (64, 16, 4, 1), 0
), reinterpret_tensor(buf0, (64, 4), (4, 1), 0)
class FCLayerNew(nn.Module):
def __init__(self, input_dim, output_dim, dropout_rate=0.0,
use_activation=True):
super(FCLayerNew, self).__init__()
self.use_activation = use_activation
self.dropout = nn.Dropout(dropout_rate)
self.linear = nn.Linear(input_dim, output_dim)
self.tanh = nn.Tanh()
def forward(self, input_0):
primals_2 = self.linear.weight
primals_3 = self.linear.bias
primals_1 = input_0
output = call([primals_1, primals_2, primals_3])
return output[0]
|
Raiselimit/TorchBlocks
|
FCLayer
| false | 5,730 |
[
"MIT"
] | 1 |
a5baecb9a2470ff175087475630f2b7db3f7ef51
|
https://github.com/Raiselimit/TorchBlocks/tree/a5baecb9a2470ff175087475630f2b7db3f7ef51
|
EntropyLoss
|
# AOT ID: ['0_inference']
from ctypes import c_void_p, c_long, c_int
import torch
import math
import random
import os
import tempfile
from math import inf, nan
from torch._inductor.hooks import run_intermediate_hooks
from torch._inductor.utils import maybe_profile
from torch._inductor.codegen.memory_planning import _align as align
from torch import device, empty_strided
from torch._inductor.async_compile import AsyncCompile
from torch._inductor.select_algorithm import extern_kernels
from torch._inductor.codegen.multi_kernel import MultiKernelCall
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
aten = torch.ops.aten
inductor_ops = torch.ops.inductor
_quantized = torch.ops._quantized
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
alloc_from_pool = torch.ops.inductor._alloc_from_pool
async_compile = AsyncCompile()
# kernel path: runs/run_shard_2/inductor_cache/qo/cqoh4afn5kxzejklujkbfvbp3g3q3ukcjhuwrrdn232jcq7vqtnt.py
# Topologically Sorted Source Nodes: [softmax, log_softmax], Original ATen: [aten._softmax, aten._log_softmax]
# Source node to ATen node mapping:
# log_softmax => amax_1, sub_1
# softmax => amax, exp, sub
# Graph fragment:
# %amax : [num_users=1] = call_function[target=torch.ops.aten.amax.default](args = (%arg0_1, [1], True), kwargs = {})
# %sub : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (%arg0_1, %amax), kwargs = {})
# %exp : [num_users=2] = call_function[target=torch.ops.aten.exp.default](args = (%sub,), kwargs = {})
# %amax_1 : [num_users=1] = call_function[target=torch.ops.aten.amax.default](args = (%arg0_1, [1], True), kwargs = {})
# %sub_1 : [num_users=2] = call_function[target=torch.ops.aten.sub.Tensor](args = (%arg0_1, %amax_1), kwargs = {})
triton_poi_fused__log_softmax__softmax_0 = async_compile.triton('triton_poi_fused__log_softmax__softmax_0', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[256],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=90, major=9, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=132), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused__log_softmax__softmax_0', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 5, 'num_reduction': 0, 'backend_hash': 'B098E03CDA7B8ADC90DAFFDF24A2956451D1B13F297756A5DCC209498AA53705', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused__log_softmax__softmax_0(in_ptr0, out_ptr0, out_ptr1, xnumel, XBLOCK : tl.constexpr):
xnumel = 256
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x3 = xindex
x0 = xindex % 16
x2 = (xindex // 64)
tmp0 = tl.load(in_ptr0 + (x3), xmask)
tmp1 = tl.load(in_ptr0 + (x0 + (64*x2)), xmask, eviction_policy='evict_last')
tmp2 = tl.load(in_ptr0 + (16 + x0 + (64*x2)), xmask, eviction_policy='evict_last')
tmp4 = tl.load(in_ptr0 + (32 + x0 + (64*x2)), xmask, eviction_policy='evict_last')
tmp6 = tl.load(in_ptr0 + (48 + x0 + (64*x2)), xmask, eviction_policy='evict_last')
tmp3 = triton_helpers.maximum(tmp1, tmp2)
tmp5 = triton_helpers.maximum(tmp3, tmp4)
tmp7 = triton_helpers.maximum(tmp5, tmp6)
tmp8 = tmp0 - tmp7
tmp9 = tl_math.exp(tmp8)
tl.store(out_ptr0 + (x3), tmp9, xmask)
tl.store(out_ptr1 + (x3), tmp8, xmask)
''', device_str='cuda')
# kernel path: runs/run_shard_2/inductor_cache/g6/cg6dq64ze6cejhpo74pwm7n6rf6kk5kowywbctyd56hd2j3sl3kh.py
# Topologically Sorted Source Nodes: [softmax, log_softmax, out], Original ATen: [aten._softmax, aten._log_softmax, aten.mul]
# Source node to ATen node mapping:
# log_softmax => exp_1, log, sub_2, sum_2
# out => mul
# softmax => div, sum_1
# Graph fragment:
# %sum_1 : [num_users=1] = call_function[target=torch.ops.aten.sum.dim_IntList](args = (%exp, [1], True), kwargs = {})
# %div : [num_users=1] = call_function[target=torch.ops.aten.div.Tensor](args = (%exp, %sum_1), kwargs = {})
# %exp_1 : [num_users=1] = call_function[target=torch.ops.aten.exp.default](args = (%sub_1,), kwargs = {})
# %sum_2 : [num_users=1] = call_function[target=torch.ops.aten.sum.dim_IntList](args = (%exp_1, [1], True), kwargs = {})
# %log : [num_users=1] = call_function[target=torch.ops.aten.log.default](args = (%sum_2,), kwargs = {})
# %sub_2 : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (%sub_1, %log), kwargs = {})
# %mul : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%div, %sub_2), kwargs = {})
triton_poi_fused__log_softmax__softmax_mul_1 = async_compile.triton('triton_poi_fused__log_softmax__softmax_mul_1', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[256],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=90, major=9, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=132), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused__log_softmax__softmax_mul_1', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 10, 'num_reduction': 0, 'backend_hash': 'B098E03CDA7B8ADC90DAFFDF24A2956451D1B13F297756A5DCC209498AA53705', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused__log_softmax__softmax_mul_1(in_ptr0, in_ptr1, out_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 256
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x3 = xindex
x0 = xindex % 16
x2 = (xindex // 64)
tmp0 = tl.load(in_ptr0 + (x3), xmask)
tmp1 = tl.load(in_ptr0 + (x0 + (64*x2)), xmask, eviction_policy='evict_last')
tmp2 = tl.load(in_ptr0 + (16 + x0 + (64*x2)), xmask, eviction_policy='evict_last')
tmp4 = tl.load(in_ptr0 + (32 + x0 + (64*x2)), xmask, eviction_policy='evict_last')
tmp6 = tl.load(in_ptr0 + (48 + x0 + (64*x2)), xmask, eviction_policy='evict_last')
tmp9 = tl.load(in_ptr1 + (x3), xmask)
tmp10 = tl.load(in_ptr1 + (x0 + (64*x2)), xmask, eviction_policy='evict_last')
tmp12 = tl.load(in_ptr1 + (16 + x0 + (64*x2)), xmask, eviction_policy='evict_last')
tmp15 = tl.load(in_ptr1 + (32 + x0 + (64*x2)), xmask, eviction_policy='evict_last')
tmp18 = tl.load(in_ptr1 + (48 + x0 + (64*x2)), xmask, eviction_policy='evict_last')
tmp3 = tmp1 + tmp2
tmp5 = tmp3 + tmp4
tmp7 = tmp5 + tmp6
tmp8 = tmp0 / tmp7
tmp11 = tl_math.exp(tmp10)
tmp13 = tl_math.exp(tmp12)
tmp14 = tmp11 + tmp13
tmp16 = tl_math.exp(tmp15)
tmp17 = tmp14 + tmp16
tmp19 = tl_math.exp(tmp18)
tmp20 = tmp17 + tmp19
tmp21 = tl_math.log(tmp20)
tmp22 = tmp9 - tmp21
tmp23 = tmp8 * tmp22
tl.store(out_ptr0 + (x3), tmp23, xmask)
''', device_str='cuda')
# kernel path: runs/run_shard_2/inductor_cache/rp/crpw4ijsx4fber7pdo7oczaq4v4ei726xatupis4rzqp2xepf53o.py
# Topologically Sorted Source Nodes: [sum_1, out_1, mean], Original ATen: [aten.sum, aten.mul, aten.mean]
# Source node to ATen node mapping:
# mean => mean
# out_1 => mul_1
# sum_1 => sum_3
# Graph fragment:
# %sum_3 : [num_users=1] = call_function[target=torch.ops.aten.sum.dim_IntList](args = (%mul, [1]), kwargs = {})
# %mul_1 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%sum_3, -1.0), kwargs = {})
# %mean : [num_users=1] = call_function[target=torch.ops.aten.mean.default](args = (%mul_1,), kwargs = {})
triton_per_fused_mean_mul_sum_2 = async_compile.triton('triton_per_fused_mean_mul_sum_2', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.persistent_reduction(
size_hints=[1, 64],
reduction_hint=ReductionHint.INNER,
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=90, major=9, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=132), 'constants': {2: 1}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 3), equal_to_1=(2,))]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_per_fused_mean_mul_sum_2', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 4, 'num_reduction': 1, 'backend_hash': 'B098E03CDA7B8ADC90DAFFDF24A2956451D1B13F297756A5DCC209498AA53705', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}
)
@triton.jit
def triton_per_fused_mean_mul_sum_2(in_out_ptr0, in_ptr0, xnumel, rnumel, XBLOCK : tl.constexpr):
xnumel = 1
rnumel = 64
RBLOCK: tl.constexpr = 64
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:, None]
xmask = tl.full([XBLOCK, RBLOCK], True, tl.int1)
rindex = tl.arange(0, RBLOCK)[None, :]
roffset = 0
rmask = tl.full([XBLOCK, RBLOCK], True, tl.int1)
r0 = rindex % 16
r1 = (rindex // 16)
tmp0 = tl.load(in_ptr0 + (r0 + (64*r1)), None)
tmp1 = tl.load(in_ptr0 + (16 + r0 + (64*r1)), None)
tmp3 = tl.load(in_ptr0 + (32 + r0 + (64*r1)), None)
tmp5 = tl.load(in_ptr0 + (48 + r0 + (64*r1)), None)
tmp2 = tmp0 + tmp1
tmp4 = tmp2 + tmp3
tmp6 = tmp4 + tmp5
tmp7 = -1.0
tmp8 = tmp6 * tmp7
tmp9 = tl.broadcast_to(tmp8, [XBLOCK, RBLOCK])
tmp11 = tl.sum(tmp9, 1)[:, None]
tmp12 = 64.0
tmp13 = tmp11 / tmp12
tl.debug_barrier()
tl.store(in_out_ptr0 + (tl.full([XBLOCK, 1], 0, tl.int32)), tmp13, None)
''', device_str='cuda')
async_compile.wait(globals())
del async_compile
def call(args):
arg0_1, = args
args.clear()
assert_size_stride(arg0_1, (4, 4, 4, 4), (64, 16, 4, 1))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32)
buf1 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32)
# Topologically Sorted Source Nodes: [softmax, log_softmax], Original ATen: [aten._softmax, aten._log_softmax]
stream0 = get_raw_stream(0)
triton_poi_fused__log_softmax__softmax_0.run(arg0_1, buf0, buf1, 256, grid=grid(256), stream=stream0)
del arg0_1
buf2 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32)
# Topologically Sorted Source Nodes: [softmax, log_softmax, out], Original ATen: [aten._softmax, aten._log_softmax, aten.mul]
triton_poi_fused__log_softmax__softmax_mul_1.run(buf0, buf1, buf2, 256, grid=grid(256), stream=stream0)
del buf0
del buf1
buf3 = empty_strided_cuda((), (), torch.float32)
buf4 = buf3; del buf3 # reuse
# Topologically Sorted Source Nodes: [sum_1, out_1, mean], Original ATen: [aten.sum, aten.mul, aten.mean]
triton_per_fused_mean_mul_sum_2.run(buf4, buf2, 1, 64, grid=grid(1), stream=stream0)
del buf2
return (buf4, )
def benchmark_compiled_module(times=10, repeat=10):
from torch._dynamo.testing import rand_strided
from torch._inductor.utils import print_performance
arg0_1 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32)
fn = lambda: call([arg0_1])
return print_performance(fn, times=times, repeat=repeat)
if __name__ == "__main__":
from torch._inductor.wrapper_benchmark import compiled_module_main
compiled_module_main('None', benchmark_compiled_module)
|
import torch
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
from torch._inductor.runtime import triton_helpers
from torch._inductor.runtime.triton_helpers import math as tl_math
import torch.nn as nn
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
@triton.jit
def triton_poi_fused__log_softmax__softmax_0(in_ptr0, out_ptr0, out_ptr1,
xnumel, XBLOCK: tl.constexpr):
xnumel = 256
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x3 = xindex
x0 = xindex % 16
x2 = xindex // 64
tmp0 = tl.load(in_ptr0 + x3, xmask)
tmp1 = tl.load(in_ptr0 + (x0 + 64 * x2), xmask, eviction_policy=
'evict_last')
tmp2 = tl.load(in_ptr0 + (16 + x0 + 64 * x2), xmask, eviction_policy=
'evict_last')
tmp4 = tl.load(in_ptr0 + (32 + x0 + 64 * x2), xmask, eviction_policy=
'evict_last')
tmp6 = tl.load(in_ptr0 + (48 + x0 + 64 * x2), xmask, eviction_policy=
'evict_last')
tmp3 = triton_helpers.maximum(tmp1, tmp2)
tmp5 = triton_helpers.maximum(tmp3, tmp4)
tmp7 = triton_helpers.maximum(tmp5, tmp6)
tmp8 = tmp0 - tmp7
tmp9 = tl_math.exp(tmp8)
tl.store(out_ptr0 + x3, tmp9, xmask)
tl.store(out_ptr1 + x3, tmp8, xmask)
@triton.jit
def triton_poi_fused__log_softmax__softmax_mul_1(in_ptr0, in_ptr1, out_ptr0,
xnumel, XBLOCK: tl.constexpr):
xnumel = 256
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x3 = xindex
x0 = xindex % 16
x2 = xindex // 64
tmp0 = tl.load(in_ptr0 + x3, xmask)
tmp1 = tl.load(in_ptr0 + (x0 + 64 * x2), xmask, eviction_policy=
'evict_last')
tmp2 = tl.load(in_ptr0 + (16 + x0 + 64 * x2), xmask, eviction_policy=
'evict_last')
tmp4 = tl.load(in_ptr0 + (32 + x0 + 64 * x2), xmask, eviction_policy=
'evict_last')
tmp6 = tl.load(in_ptr0 + (48 + x0 + 64 * x2), xmask, eviction_policy=
'evict_last')
tmp9 = tl.load(in_ptr1 + x3, xmask)
tmp10 = tl.load(in_ptr1 + (x0 + 64 * x2), xmask, eviction_policy=
'evict_last')
tmp12 = tl.load(in_ptr1 + (16 + x0 + 64 * x2), xmask, eviction_policy=
'evict_last')
tmp15 = tl.load(in_ptr1 + (32 + x0 + 64 * x2), xmask, eviction_policy=
'evict_last')
tmp18 = tl.load(in_ptr1 + (48 + x0 + 64 * x2), xmask, eviction_policy=
'evict_last')
tmp3 = tmp1 + tmp2
tmp5 = tmp3 + tmp4
tmp7 = tmp5 + tmp6
tmp8 = tmp0 / tmp7
tmp11 = tl_math.exp(tmp10)
tmp13 = tl_math.exp(tmp12)
tmp14 = tmp11 + tmp13
tmp16 = tl_math.exp(tmp15)
tmp17 = tmp14 + tmp16
tmp19 = tl_math.exp(tmp18)
tmp20 = tmp17 + tmp19
tmp21 = tl_math.log(tmp20)
tmp22 = tmp9 - tmp21
tmp23 = tmp8 * tmp22
tl.store(out_ptr0 + x3, tmp23, xmask)
@triton.jit
def triton_per_fused_mean_mul_sum_2(in_out_ptr0, in_ptr0, xnumel, rnumel,
XBLOCK: tl.constexpr):
RBLOCK: tl.constexpr = 64
xoffset = tl.program_id(0) * XBLOCK
xoffset + tl.arange(0, XBLOCK)[:, None]
tl.full([XBLOCK, RBLOCK], True, tl.int1)
rindex = tl.arange(0, RBLOCK)[None, :]
tl.full([XBLOCK, RBLOCK], True, tl.int1)
r0 = rindex % 16
r1 = rindex // 16
tmp0 = tl.load(in_ptr0 + (r0 + 64 * r1), None)
tmp1 = tl.load(in_ptr0 + (16 + r0 + 64 * r1), None)
tmp3 = tl.load(in_ptr0 + (32 + r0 + 64 * r1), None)
tmp5 = tl.load(in_ptr0 + (48 + r0 + 64 * r1), None)
tmp2 = tmp0 + tmp1
tmp4 = tmp2 + tmp3
tmp6 = tmp4 + tmp5
tmp7 = -1.0
tmp8 = tmp6 * tmp7
tmp9 = tl.broadcast_to(tmp8, [XBLOCK, RBLOCK])
tmp11 = tl.sum(tmp9, 1)[:, None]
tmp12 = 64.0
tmp13 = tmp11 / tmp12
tl.debug_barrier()
tl.store(in_out_ptr0 + tl.full([XBLOCK, 1], 0, tl.int32), tmp13, None)
def call(args):
arg0_1, = args
args.clear()
assert_size_stride(arg0_1, (4, 4, 4, 4), (64, 16, 4, 1))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32)
buf1 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32)
get_raw_stream(0)
triton_poi_fused__log_softmax__softmax_0[grid(256)](arg0_1, buf0,
buf1, 256, XBLOCK=128, num_warps=4, num_stages=1)
del arg0_1
buf2 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32)
triton_poi_fused__log_softmax__softmax_mul_1[grid(256)](buf0, buf1,
buf2, 256, XBLOCK=256, num_warps=4, num_stages=1)
del buf0
del buf1
buf3 = empty_strided_cuda((), (), torch.float32)
buf4 = buf3
del buf3
triton_per_fused_mean_mul_sum_2[grid(1)](buf4, buf2, 1, 64, XBLOCK=
1, num_warps=2, num_stages=1)
del buf2
return buf4,
class EntropyLossNew(nn.Module):
def __init__(self):
super(EntropyLossNew, self).__init__()
def forward(self, input_0):
arg0_1 = input_0
output = call([arg0_1])
return output[0]
|
NYCU-MLLab/Strategic-Optimization-for-Worst-case-Augmentation
|
EntropyLoss
| false | 17,737 |
[
"MIT"
] | 3 |
fd0feab42151c0bae60712480301ea26f627a81d
|
https://github.com/NYCU-MLLab/Strategic-Optimization-for-Worst-case-Augmentation/tree/fd0feab42151c0bae60712480301ea26f627a81d
|
Bilinear
|
import torch
import torch.nn as nn
class Bilinear(nn.Module):
def __init__(self, size):
super(Bilinear, self).__init__()
self.size = size
self.mat = nn.Parameter(torch.FloatTensor(self.size, self.size))
self.reset_parameters()
def reset_parameters(self):
params = [p for p in self.parameters() if p.requires_grad]
for i, param in enumerate(params):
param.data.normal_()
def forward(self, vector1, vector2):
bma = torch.matmul(vector1, self.mat).unsqueeze(1)
ba = torch.matmul(bma, vector2.unsqueeze(2)).view(-1, 1)
return ba
def get_inputs():
return [torch.rand([4, 4, 4, 4]), torch.rand([4, 4, 4, 4])]
def get_init_inputs():
return [[], {'size': 4}]
|
import torch
from torch._inductor.select_algorithm import extern_kernels
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
import torch.nn as nn
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
@triton.jit
def triton_poi_fused_clone_0(in_ptr0, out_ptr0, xnumel, XBLOCK: tl.constexpr):
xnumel = 1024
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex % 64
x2 = xindex // 256
x3 = xindex
tmp0 = tl.load(in_ptr0 + (x0 + 64 * x2), xmask, eviction_policy=
'evict_last')
tl.store(out_ptr0 + x3, tmp0, xmask)
@triton.jit
def triton_poi_fused_clone_1(in_ptr0, out_ptr0, xnumel, XBLOCK: tl.constexpr):
xnumel = 1024
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex % 16
x2 = xindex // 64
x3 = xindex
tmp0 = tl.load(in_ptr0 + (x0 + 16 * x2), xmask, eviction_policy=
'evict_last')
tl.store(out_ptr0 + x3, tmp0, xmask)
def call(args):
primals_1, primals_2, primals_3 = args
args.clear()
assert_size_stride(primals_1, (4, 4), (4, 1))
assert_size_stride(primals_2, (4, 4, 4, 4), (64, 16, 4, 1))
assert_size_stride(primals_3, (4, 4, 4, 4), (64, 16, 4, 1))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((64, 4), (4, 1), torch.float32)
extern_kernels.mm(reinterpret_tensor(primals_2, (64, 4), (4, 1), 0),
primals_1, out=buf0)
del primals_1
buf1 = empty_strided_cuda((4, 4, 4, 4, 4), (256, 64, 16, 4, 1),
torch.float32)
get_raw_stream(0)
triton_poi_fused_clone_0[grid(1024)](buf0, buf1, 1024, XBLOCK=128,
num_warps=4, num_stages=1)
del buf0
buf2 = empty_strided_cuda((4, 4, 4, 4, 4), (256, 64, 16, 4, 1),
torch.float32)
triton_poi_fused_clone_1[grid(1024)](primals_3, buf2, 1024, XBLOCK=
256, num_warps=4, num_stages=1)
del primals_3
buf3 = empty_strided_cuda((64, 4, 4), (16, 4, 1), torch.float32)
extern_kernels.bmm(reinterpret_tensor(buf1, (64, 4, 4), (16, 4, 1),
0), reinterpret_tensor(buf2, (64, 4, 4), (16, 4, 1), 0), out=buf3)
del buf1
return reinterpret_tensor(buf3, (1024, 1), (1, 1), 0), reinterpret_tensor(
buf2, (64, 4, 4), (16, 1, 4), 0), reinterpret_tensor(primals_2, (4,
64), (1, 4), 0)
class BilinearNew(nn.Module):
def __init__(self, size):
super(BilinearNew, self).__init__()
self.size = size
self.mat = nn.Parameter(torch.FloatTensor(self.size, self.size))
self.reset_parameters()
def reset_parameters(self):
params = [p for p in self.parameters() if p.requires_grad]
for i, param in enumerate(params):
param.data.normal_()
def forward(self, input_0, input_1):
primals_1 = self.mat
primals_2 = input_0
primals_3 = input_1
output = call([primals_1, primals_2, primals_3])
return output[0]
|
jalshr21/diora-1
|
Bilinear
| false | 6,914 |
[
"Apache-2.0"
] | 1 |
a9b680fde6a840707340e9e8232643b0f0e637bd
|
https://github.com/jalshr21/diora-1/tree/a9b680fde6a840707340e9e8232643b0f0e637bd
|
EqualConv2d
|
# AOT ID: ['0_forward']
from ctypes import c_void_p, c_long, c_int
import torch
import math
import random
import os
import tempfile
from math import inf, nan
from torch._inductor.hooks import run_intermediate_hooks
from torch._inductor.utils import maybe_profile
from torch._inductor.codegen.memory_planning import _align as align
from torch import device, empty_strided
from torch._inductor.async_compile import AsyncCompile
from torch._inductor.select_algorithm import extern_kernels
from torch._inductor.codegen.multi_kernel import MultiKernelCall
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
aten = torch.ops.aten
inductor_ops = torch.ops.inductor
_quantized = torch.ops._quantized
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
alloc_from_pool = torch.ops.inductor._alloc_from_pool
async_compile = AsyncCompile()
# kernel path: runs/run_shard_2/inductor_cache/ol/coljqhqn2ngky5ed74qawwhwl656ahahxt5nc7rr3rlliikrfrsw.py
# Topologically Sorted Source Nodes: [weight], Original ATen: [aten.mul]
# Source node to ATen node mapping:
# weight => mul
# Graph fragment:
# %mul : [num_users=2] = call_function[target=torch.ops.aten.mul.Tensor](args = (%primals_1, 0.1767766952966369), kwargs = {})
triton_poi_fused_mul_0 = async_compile.triton('triton_poi_fused_mul_0', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[256],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=90, major=9, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=132), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_mul_0', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 1, 'num_reduction': 0, 'backend_hash': 'B098E03CDA7B8ADC90DAFFDF24A2956451D1B13F297756A5DCC209498AA53705', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_mul_0(in_ptr0, out_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 256
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex
tmp0 = tl.load(in_ptr0 + (x0), xmask)
tmp1 = 0.1767766952966369
tmp2 = tmp0 * tmp1
tl.store(out_ptr0 + (x0), tmp2, xmask)
''', device_str='cuda')
# kernel path: runs/run_shard_2/inductor_cache/vb/cvbno3dccglzmlbisnwicoai3aocrgweun3buh6avsdqdjjhjczh.py
# Topologically Sorted Source Nodes: [conv2d], Original ATen: [aten.convolution]
# Source node to ATen node mapping:
# conv2d => convolution
# Graph fragment:
# %convolution : [num_users=1] = call_function[target=torch.ops.aten.convolution.default](args = (%primals_3, %mul, %primals_2, [1, 1], [0, 0], [1, 1], False, [0, 0], 1), kwargs = {})
triton_poi_fused_convolution_1 = async_compile.triton('triton_poi_fused_convolution_1', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[16],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=90, major=9, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=132), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_convolution_1', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'B098E03CDA7B8ADC90DAFFDF24A2956451D1B13F297756A5DCC209498AA53705', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_convolution_1(in_out_ptr0, in_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 16
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x2 = xindex
x0 = xindex % 4
tmp0 = tl.load(in_out_ptr0 + (x2), xmask)
tmp1 = tl.load(in_ptr0 + (x0), xmask, eviction_policy='evict_last')
tmp2 = tmp0 + tmp1
tl.store(in_out_ptr0 + (x2), tmp2, xmask)
''', device_str='cuda')
async_compile.wait(globals())
del async_compile
def call(args):
primals_1, primals_2, primals_3 = args
args.clear()
assert_size_stride(primals_1, (4, 4, 4, 4), (64, 16, 4, 1))
assert_size_stride(primals_2, (4, ), (1, ))
assert_size_stride(primals_3, (4, 4, 4, 4), (64, 16, 4, 1))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32)
# Topologically Sorted Source Nodes: [weight], Original ATen: [aten.mul]
stream0 = get_raw_stream(0)
triton_poi_fused_mul_0.run(primals_1, buf0, 256, grid=grid(256), stream=stream0)
del primals_1
# Topologically Sorted Source Nodes: [conv2d], Original ATen: [aten.convolution]
buf1 = extern_kernels.convolution(primals_3, buf0, stride=(1, 1), padding=(0, 0), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None)
assert_size_stride(buf1, (4, 4, 1, 1), (4, 1, 1, 1))
buf2 = buf1; del buf1 # reuse
# Topologically Sorted Source Nodes: [conv2d], Original ATen: [aten.convolution]
triton_poi_fused_convolution_1.run(buf2, primals_2, 16, grid=grid(16), stream=stream0)
del primals_2
return (buf2, buf0, primals_3, buf0, )
def benchmark_compiled_module(times=10, repeat=10):
from torch._dynamo.testing import rand_strided
from torch._inductor.utils import print_performance
primals_1 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32)
primals_2 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32)
primals_3 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32)
fn = lambda: call([primals_1, primals_2, primals_3])
return print_performance(fn, times=times, repeat=repeat)
if __name__ == "__main__":
from torch._inductor.wrapper_benchmark import compiled_module_main
compiled_module_main('None', benchmark_compiled_module)
|
import torch
from torch._inductor.select_algorithm import extern_kernels
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
from torch import nn
from math import sqrt
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
@triton.jit
def triton_poi_fused_mul_0(in_ptr0, out_ptr0, xnumel, XBLOCK: tl.constexpr):
xnumel = 256
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex
tmp0 = tl.load(in_ptr0 + x0, xmask)
tmp1 = 0.1767766952966369
tmp2 = tmp0 * tmp1
tl.store(out_ptr0 + x0, tmp2, xmask)
@triton.jit
def triton_poi_fused_convolution_1(in_out_ptr0, in_ptr0, xnumel, XBLOCK: tl
.constexpr):
xnumel = 16
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x2 = xindex
x0 = xindex % 4
tmp0 = tl.load(in_out_ptr0 + x2, xmask)
tmp1 = tl.load(in_ptr0 + x0, xmask, eviction_policy='evict_last')
tmp2 = tmp0 + tmp1
tl.store(in_out_ptr0 + x2, tmp2, xmask)
def call(args):
primals_1, primals_2, primals_3 = args
args.clear()
assert_size_stride(primals_1, (4, 4, 4, 4), (64, 16, 4, 1))
assert_size_stride(primals_2, (4,), (1,))
assert_size_stride(primals_3, (4, 4, 4, 4), (64, 16, 4, 1))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32)
get_raw_stream(0)
triton_poi_fused_mul_0[grid(256)](primals_1, buf0, 256, XBLOCK=128,
num_warps=4, num_stages=1)
del primals_1
buf1 = extern_kernels.convolution(primals_3, buf0, stride=(1, 1),
padding=(0, 0), dilation=(1, 1), transposed=False,
output_padding=(0, 0), groups=1, bias=None)
assert_size_stride(buf1, (4, 4, 1, 1), (4, 1, 1, 1))
buf2 = buf1
del buf1
triton_poi_fused_convolution_1[grid(16)](buf2, primals_2, 16,
XBLOCK=16, num_warps=1, num_stages=1)
del primals_2
return buf2, buf0, primals_3, buf0
def equal_lr(module, name='weight'):
EqualLR.apply(module, name)
return module
class EqualLR:
def __init__(self, name):
self.name = name
def compute_weight(self, module):
weight = getattr(module, self.name + '_orig')
fan_in = weight.data.size(1) * weight.data[0][0].numel()
return weight * sqrt(2 / fan_in)
@staticmethod
def apply(module, name):
fn = EqualLR(name)
weight = getattr(module, name)
del module._parameters[name]
module.register_parameter(name + '_orig', nn.Parameter(weight.data))
module.register_forward_pre_hook(fn)
return fn
def __call__(self, module, input):
weight = self.compute_weight(module)
setattr(module, self.name, weight)
class EqualConv2dNew(nn.Module):
def __init__(self, *args, **kwargs):
super().__init__()
conv = nn.Conv2d(*args, **kwargs)
conv.weight.data.normal_()
conv.bias.data.zero_()
self.conv = equal_lr(conv)
def forward(self, input_0):
primals_2 = self.conv.bias
primals_1 = self.conv.weight_orig
primals_3 = input_0
output = call([primals_1, primals_2, primals_3])
return output[0]
|
AaltoVision/balanced-pioneer
|
EqualConv2d
| false | 16,869 |
[
"MIT"
] | 5 |
51f58080fd2db3159de3e1ccb47f38e03220faf0
|
https://github.com/AaltoVision/balanced-pioneer/tree/51f58080fd2db3159de3e1ccb47f38e03220faf0
|
ResidualBlock
|
import torch
import torch.nn as nn
from functools import partial
def ncsn_conv3x3(in_planes, out_planes, stride=1, bias=True, dilation=1,
init_scale=1.0, padding=1):
"""3x3 convolution with PyTorch initialization. Same as NCSNv1/NCSNv2."""
init_scale = 1e-10 if init_scale == 0 else init_scale
conv = nn.Conv2d(in_planes, out_planes, stride=stride, bias=bias,
dilation=dilation, padding=padding, kernel_size=3)
conv.weight.data *= init_scale
conv.bias.data *= init_scale
return conv
def ncsn_conv1x1(in_planes, out_planes, stride=1, bias=True, dilation=1,
init_scale=1.0, padding=0):
"""1x1 convolution. Same as NCSNv1/v2."""
conv = nn.Conv2d(in_planes, out_planes, kernel_size=1, stride=stride,
bias=bias, dilation=dilation, padding=padding)
init_scale = 1e-10 if init_scale == 0 else init_scale
conv.weight.data *= init_scale
conv.bias.data *= init_scale
return conv
class ConvMeanPool(nn.Module):
def __init__(self, input_dim, output_dim, kernel_size=3, biases=True,
adjust_padding=False):
super().__init__()
if not adjust_padding:
conv = nn.Conv2d(input_dim, output_dim, kernel_size, stride=1,
padding=kernel_size // 2, bias=biases)
self.conv = conv
else:
conv = nn.Conv2d(input_dim, output_dim, kernel_size, stride=1,
padding=kernel_size // 2, bias=biases)
self.conv = nn.Sequential(nn.ZeroPad2d((1, 0, 1, 0)), conv)
def forward(self, inputs):
output = self.conv(inputs)
output = sum([output[:, :, ::2, ::2], output[:, :, 1::2, ::2],
output[:, :, ::2, 1::2], output[:, :, 1::2, 1::2]]) / 4.0
return output
class ResidualBlock(nn.Module):
def __init__(self, input_dim, output_dim, resample=None, act=nn.ELU(),
normalization=nn.InstanceNorm2d, adjust_padding=False, dilation=1):
super().__init__()
self.non_linearity = act
self.input_dim = input_dim
self.output_dim = output_dim
self.resample = resample
self.normalization = normalization
if resample == 'down':
if dilation > 1:
self.conv1 = ncsn_conv3x3(input_dim, input_dim, dilation=
dilation)
self.normalize2 = normalization(input_dim)
self.conv2 = ncsn_conv3x3(input_dim, output_dim, dilation=
dilation)
conv_shortcut = partial(ncsn_conv3x3, dilation=dilation)
else:
self.conv1 = ncsn_conv3x3(input_dim, input_dim)
self.normalize2 = normalization(input_dim)
self.conv2 = ConvMeanPool(input_dim, output_dim, 3,
adjust_padding=adjust_padding)
conv_shortcut = partial(ConvMeanPool, kernel_size=1,
adjust_padding=adjust_padding)
elif resample is None:
if dilation > 1:
conv_shortcut = partial(ncsn_conv3x3, dilation=dilation)
self.conv1 = ncsn_conv3x3(input_dim, output_dim, dilation=
dilation)
self.normalize2 = normalization(output_dim)
self.conv2 = ncsn_conv3x3(output_dim, output_dim, dilation=
dilation)
else:
conv_shortcut = partial(ncsn_conv1x1)
self.conv1 = ncsn_conv3x3(input_dim, output_dim)
self.normalize2 = normalization(output_dim)
self.conv2 = ncsn_conv3x3(output_dim, output_dim)
else:
raise Exception('invalid resample value')
if output_dim != input_dim or resample is not None:
self.shortcut = conv_shortcut(input_dim, output_dim)
self.normalize1 = normalization(input_dim)
def forward(self, x):
output = self.normalize1(x)
output = self.non_linearity(output)
output = self.conv1(output)
output = self.normalize2(output)
output = self.non_linearity(output)
output = self.conv2(output)
if self.output_dim == self.input_dim and self.resample is None:
shortcut = x
else:
shortcut = self.shortcut(x)
return shortcut + output
def get_inputs():
return [torch.rand([4, 4, 4, 4])]
def get_init_inputs():
return [[], {'input_dim': 4, 'output_dim': 4}]
|
import torch
from torch._inductor.select_algorithm import extern_kernels
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
from torch._inductor.runtime.triton_helpers import libdevice
import torch.nn as nn
from functools import partial
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
@triton.jit
def triton_per_fused__native_batch_norm_legit_elu_0(in_ptr0, out_ptr2,
xnumel, rnumel, XBLOCK: tl.constexpr):
xnumel = 16
RBLOCK: tl.constexpr = 16
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:, None]
xmask = xindex < xnumel
rindex = tl.arange(0, RBLOCK)[None, :]
tl.full([XBLOCK, RBLOCK], True, tl.int1)
r1 = rindex
x0 = xindex
tmp0 = tl.load(in_ptr0 + (r1 + 16 * x0), xmask, other=0.0)
tmp1 = tl.broadcast_to(tmp0, [XBLOCK, RBLOCK])
tl.where(xmask, tmp1, 0)
tmp4 = tl.broadcast_to(tmp1, [XBLOCK, RBLOCK])
tmp6 = tl.where(xmask, tmp4, 0)
tmp7 = tl.sum(tmp6, 1)[:, None]
tmp8 = tl.full([XBLOCK, 1], 16, tl.int32)
tmp9 = tmp8.to(tl.float32)
tmp10 = tmp7 / tmp9
tmp11 = tmp1 - tmp10
tmp12 = tmp11 * tmp11
tmp13 = tl.broadcast_to(tmp12, [XBLOCK, RBLOCK])
tmp15 = tl.where(xmask, tmp13, 0)
tmp16 = tl.sum(tmp15, 1)[:, None]
tmp17 = tmp0 - tmp10
tmp18 = 16.0
tmp19 = tmp16 / tmp18
tmp20 = 1e-05
tmp21 = tmp19 + tmp20
tmp22 = libdevice.rsqrt(tmp21)
tmp23 = tmp17 * tmp22
tmp24 = 0.0
tmp25 = tmp23 > tmp24
tmp26 = 1.0
tmp27 = tmp23 * tmp26
tmp28 = libdevice.expm1(tmp27)
tmp29 = tmp28 * tmp26
tmp30 = tl.where(tmp25, tmp27, tmp29)
tl.store(out_ptr2 + (r1 + 16 * x0), tmp30, xmask)
@triton.jit
def triton_per_fused__native_batch_norm_legit_convolution_elu_1(in_out_ptr0,
in_out_ptr1, in_ptr0, out_ptr0, out_ptr1, xnumel, rnumel, XBLOCK: tl.
constexpr):
xnumel = 16
RBLOCK: tl.constexpr = 16
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:, None]
xmask = xindex < xnumel
rindex = tl.arange(0, RBLOCK)[None, :]
tl.full([XBLOCK, RBLOCK], True, tl.int1)
r2 = rindex
x3 = xindex
x0 = xindex % 4
tmp0 = tl.load(in_out_ptr0 + (r2 + 16 * x3), xmask, other=0.0)
tmp1 = tl.load(in_ptr0 + x0, xmask, eviction_policy='evict_last')
tmp2 = tmp0 + tmp1
tmp3 = tl.broadcast_to(tmp2, [XBLOCK, RBLOCK])
tl.where(xmask, tmp3, 0)
tmp6 = tl.broadcast_to(tmp3, [XBLOCK, RBLOCK])
tmp8 = tl.where(xmask, tmp6, 0)
tmp9 = tl.sum(tmp8, 1)[:, None]
tmp10 = tl.full([XBLOCK, 1], 16, tl.int32)
tmp11 = tmp10.to(tl.float32)
tmp12 = tmp9 / tmp11
tmp13 = tmp3 - tmp12
tmp14 = tmp13 * tmp13
tmp15 = tl.broadcast_to(tmp14, [XBLOCK, RBLOCK])
tmp17 = tl.where(xmask, tmp15, 0)
tmp18 = tl.sum(tmp17, 1)[:, None]
tmp19 = 16.0
tmp20 = tmp18 / tmp19
tmp21 = 1e-05
tmp22 = tmp20 + tmp21
tmp23 = libdevice.rsqrt(tmp22)
tmp24 = tmp2 - tmp12
tmp25 = tmp24 * tmp23
tmp26 = 0.0
tmp27 = tmp25 > tmp26
tmp28 = 1.0
tmp29 = tmp25 * tmp28
tmp30 = libdevice.expm1(tmp29)
tmp31 = tmp30 * tmp28
tmp32 = tl.where(tmp27, tmp29, tmp31)
tl.store(in_out_ptr0 + (r2 + 16 * x3), tmp2, xmask)
tl.debug_barrier()
tl.store(in_out_ptr1 + x3, tmp23, xmask)
tl.store(out_ptr1 + (r2 + 16 * x3), tmp32, xmask)
tl.store(out_ptr0 + x3, tmp12, xmask)
@triton.jit
def triton_poi_fused_add_convolution_2(in_out_ptr0, in_ptr0, in_ptr1,
xnumel, XBLOCK: tl.constexpr):
xnumel = 256
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x3 = xindex
x1 = xindex // 16 % 4
tmp0 = tl.load(in_ptr0 + x3, xmask)
tmp1 = tl.load(in_out_ptr0 + x3, xmask)
tmp2 = tl.load(in_ptr1 + x1, xmask, eviction_policy='evict_last')
tmp3 = tmp1 + tmp2
tmp4 = tmp0 + tmp3
tl.store(in_out_ptr0 + x3, tmp4, xmask)
def call(args):
primals_1, primals_2, primals_3, primals_4, primals_5 = args
args.clear()
assert_size_stride(primals_1, (4, 4, 4, 4), (64, 16, 4, 1))
assert_size_stride(primals_2, (4, 4, 3, 3), (36, 9, 3, 1))
assert_size_stride(primals_3, (4,), (1,))
assert_size_stride(primals_4, (4, 4, 3, 3), (36, 9, 3, 1))
assert_size_stride(primals_5, (4,), (1,))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf3 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32)
get_raw_stream(0)
triton_per_fused__native_batch_norm_legit_elu_0[grid(16)](primals_1,
buf3, 16, 16, XBLOCK=1, num_warps=2, num_stages=1)
buf4 = extern_kernels.convolution(buf3, primals_2, stride=(1, 1),
padding=(1, 1), dilation=(1, 1), transposed=False,
output_padding=(0, 0), groups=1, bias=None)
assert_size_stride(buf4, (4, 4, 4, 4), (64, 16, 4, 1))
buf5 = buf4
del buf4
buf6 = empty_strided_cuda((1, 16, 1, 1), (16, 1, 1, 1), torch.float32)
buf7 = empty_strided_cuda((1, 16, 1, 1), (16, 1, 16, 16), torch.float32
)
buf9 = reinterpret_tensor(buf7, (1, 16, 1, 1), (16, 1, 1, 1), 0)
del buf7
buf10 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32)
triton_per_fused__native_batch_norm_legit_convolution_elu_1[grid(16)](
buf5, buf9, primals_3, buf6, buf10, 16, 16, XBLOCK=1, num_warps
=2, num_stages=1)
del primals_3
buf11 = extern_kernels.convolution(buf10, primals_4, stride=(1, 1),
padding=(1, 1), dilation=(1, 1), transposed=False,
output_padding=(0, 0), groups=1, bias=None)
assert_size_stride(buf11, (4, 4, 4, 4), (64, 16, 4, 1))
buf12 = buf11
del buf11
triton_poi_fused_add_convolution_2[grid(256)](buf12, primals_1,
primals_5, 256, XBLOCK=128, num_warps=4, num_stages=1)
del primals_1
del primals_5
return buf12, primals_2, primals_4, buf3, buf5, buf6, buf9, buf10
def ncsn_conv3x3(in_planes, out_planes, stride=1, bias=True, dilation=1,
init_scale=1.0, padding=1):
"""3x3 convolution with PyTorch initialization. Same as NCSNv1/NCSNv2."""
init_scale = 1e-10 if init_scale == 0 else init_scale
conv = nn.Conv2d(in_planes, out_planes, stride=stride, bias=bias,
dilation=dilation, padding=padding, kernel_size=3)
conv.weight.data *= init_scale
conv.bias.data *= init_scale
return conv
def ncsn_conv1x1(in_planes, out_planes, stride=1, bias=True, dilation=1,
init_scale=1.0, padding=0):
"""1x1 convolution. Same as NCSNv1/v2."""
conv = nn.Conv2d(in_planes, out_planes, kernel_size=1, stride=stride,
bias=bias, dilation=dilation, padding=padding)
init_scale = 1e-10 if init_scale == 0 else init_scale
conv.weight.data *= init_scale
conv.bias.data *= init_scale
return conv
class ConvMeanPool(nn.Module):
def __init__(self, input_dim, output_dim, kernel_size=3, biases=True,
adjust_padding=False):
super().__init__()
if not adjust_padding:
conv = nn.Conv2d(input_dim, output_dim, kernel_size, stride=1,
padding=kernel_size // 2, bias=biases)
self.conv = conv
else:
conv = nn.Conv2d(input_dim, output_dim, kernel_size, stride=1,
padding=kernel_size // 2, bias=biases)
self.conv = nn.Sequential(nn.ZeroPad2d((1, 0, 1, 0)), conv)
def forward(self, inputs):
output = self.conv(inputs)
output = sum([output[:, :, ::2, ::2], output[:, :, 1::2, ::2],
output[:, :, ::2, 1::2], output[:, :, 1::2, 1::2]]) / 4.0
return output
class ResidualBlockNew(nn.Module):
def __init__(self, input_dim, output_dim, resample=None, act=nn.ELU(),
normalization=nn.InstanceNorm2d, adjust_padding=False, dilation=1):
super().__init__()
self.non_linearity = act
self.input_dim = input_dim
self.output_dim = output_dim
self.resample = resample
self.normalization = normalization
if resample == 'down':
if dilation > 1:
self.conv1 = ncsn_conv3x3(input_dim, input_dim, dilation=
dilation)
self.normalize2 = normalization(input_dim)
self.conv2 = ncsn_conv3x3(input_dim, output_dim, dilation=
dilation)
conv_shortcut = partial(ncsn_conv3x3, dilation=dilation)
else:
self.conv1 = ncsn_conv3x3(input_dim, input_dim)
self.normalize2 = normalization(input_dim)
self.conv2 = ConvMeanPool(input_dim, output_dim, 3,
adjust_padding=adjust_padding)
conv_shortcut = partial(ConvMeanPool, kernel_size=1,
adjust_padding=adjust_padding)
elif resample is None:
if dilation > 1:
conv_shortcut = partial(ncsn_conv3x3, dilation=dilation)
self.conv1 = ncsn_conv3x3(input_dim, output_dim, dilation=
dilation)
self.normalize2 = normalization(output_dim)
self.conv2 = ncsn_conv3x3(output_dim, output_dim, dilation=
dilation)
else:
conv_shortcut = partial(ncsn_conv1x1)
self.conv1 = ncsn_conv3x3(input_dim, output_dim)
self.normalize2 = normalization(output_dim)
self.conv2 = ncsn_conv3x3(output_dim, output_dim)
else:
raise Exception('invalid resample value')
if output_dim != input_dim or resample is not None:
self.shortcut = conv_shortcut(input_dim, output_dim)
self.normalize1 = normalization(input_dim)
def forward(self, input_0):
primals_2 = self.conv1.weight
primals_3 = self.conv1.bias
primals_4 = self.conv2.weight
primals_5 = self.conv2.bias
primals_1 = input_0
output = call([primals_1, primals_2, primals_3, primals_4, primals_5])
return output[0]
|
henryaddison/score_sde_pytorch
|
ResidualBlock
| false | 12,507 |
[
"Apache-2.0"
] | 0 |
be07c3a3346bf8ceadabf6a3b436db5d5c3d0252
|
https://github.com/henryaddison/score_sde_pytorch/tree/be07c3a3346bf8ceadabf6a3b436db5d5c3d0252
|
RMSLELoss
|
import torch
import torch.nn as nn
class RMSLELoss(nn.Module):
def __init__(self):
super().__init__()
self.mse = nn.MSELoss()
def forward(self, pred, actual):
return torch.sqrt(self.mse(torch.log(pred + 1), torch.log(actual + 1)))
def get_inputs():
return [torch.rand([4, 4, 4, 4]), torch.rand([4, 4, 4, 4])]
def get_init_inputs():
return [[], {}]
|
import torch
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
from torch._inductor.runtime import triton_helpers
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
import torch.nn as nn
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
@triton.jit
def triton_per_fused_add_log_mse_loss_sqrt_0(in_out_ptr0, in_ptr0, in_ptr1,
xnumel, rnumel):
XBLOCK: tl.constexpr = 1
RBLOCK: tl.constexpr = 256
xoffset = tl.program_id(0) * XBLOCK
tl.full([1], xoffset, tl.int32)
tl.full([RBLOCK], True, tl.int1)
rindex = tl.arange(0, RBLOCK)[:]
tl.full([RBLOCK], True, tl.int1)
r0 = rindex
tmp0 = tl.load(in_ptr0 + r0, None)
tmp4 = tl.load(in_ptr1 + r0, None)
tmp1 = 1.0
tmp2 = tmp0 + tmp1
tmp3 = tl_math.log(tmp2)
tmp5 = tmp4 + tmp1
tmp6 = tl_math.log(tmp5)
tmp7 = tmp3 - tmp6
tmp8 = tmp7 * tmp7
tmp9 = tl.broadcast_to(tmp8, [RBLOCK])
tmp11 = triton_helpers.promote_to_tensor(tl.sum(tmp9, 0))
tmp12 = 256.0
tmp13 = tmp11 / tmp12
tmp14 = libdevice.sqrt(tmp13)
tl.debug_barrier()
tl.store(in_out_ptr0 + tl.full([1], 0, tl.int32), tmp14, None)
def call(args):
arg0_1, arg1_1 = args
args.clear()
assert_size_stride(arg0_1, (4, 4, 4, 4), (64, 16, 4, 1))
assert_size_stride(arg1_1, (4, 4, 4, 4), (64, 16, 4, 1))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((), (), torch.float32)
buf1 = buf0
del buf0
get_raw_stream(0)
triton_per_fused_add_log_mse_loss_sqrt_0[grid(1)](buf1, arg0_1,
arg1_1, 1, 256, num_warps=2, num_stages=1)
del arg0_1
del arg1_1
return buf1,
class RMSLELossNew(nn.Module):
def __init__(self):
super().__init__()
self.mse = nn.MSELoss()
def forward(self, input_0, input_1):
arg0_1 = input_0
arg1_1 = input_1
output = call([arg0_1, arg1_1])
return output[0]
|
RosarioAndolina/psychXRF
|
RMSLELoss
| false | 988 |
[
"MIT"
] | 0 |
e2adadbd17664d7f74c10304f84b3751c571226e
|
https://github.com/RosarioAndolina/psychXRF/tree/e2adadbd17664d7f74c10304f84b3751c571226e
|
TinyCnn
|
import torch
import torch.nn as nn
class TinyCnn(nn.Module):
def __init__(self, feature_extraction=False) ->None:
super().__init__()
self.feature_extraction = feature_extraction
self.conv1 = nn.Conv2d(3, 3, 5)
self.relu1 = nn.ReLU()
self.pool1 = nn.MaxPool2d(2, 2)
if not self.feature_extraction:
self.conv2 = nn.Conv2d(3, 10, 2)
def forward(self, x):
x = self.pool1(self.relu1(self.conv1(x)))
if not self.feature_extraction:
x = self.conv2(x)
x = x.view(-1, 10)
else:
x = x.view(-1, 12)
return x
def get_inputs():
return [torch.rand([4, 3, 64, 64])]
def get_init_inputs():
return [[], {}]
|
import torch
from torch._inductor.select_algorithm import extern_kernels
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
from torch._inductor.runtime import triton_helpers
import torch.nn as nn
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
@triton.jit
def triton_poi_fused_convolution_relu_0(in_ptr0, in_ptr1, out_ptr0, xnumel,
XBLOCK: tl.constexpr):
xnumel = 43200
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x3 = xindex
x1 = xindex // 3600 % 3
x0 = xindex % 3600
x4 = xindex // 3600
tmp0 = tl.load(in_ptr0 + x3, xmask)
tmp1 = tl.load(in_ptr1 + x1, xmask, eviction_policy='evict_last')
tmp2 = tmp0 + tmp1
tmp3 = tl.full([1], 0, tl.int32)
tmp4 = triton_helpers.maximum(tmp3, tmp2)
tl.store(out_ptr0 + (x0 + 3616 * x4), tmp4, xmask)
@triton.jit
def triton_poi_fused_max_pool2d_with_indices_1(in_ptr0, out_ptr0, out_ptr1,
xnumel, XBLOCK: tl.constexpr):
xnumel = 10800
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex % 30
x1 = xindex // 30 % 30
x4 = xindex // 900
x3 = xindex // 2700
x5 = xindex % 2700
tmp0 = tl.load(in_ptr0 + (2 * x0 + 120 * x1 + 3616 * x4), xmask,
eviction_policy='evict_last')
tmp1 = tl.load(in_ptr0 + (1 + 2 * x0 + 120 * x1 + 3616 * x4), xmask,
eviction_policy='evict_last')
tmp3 = tl.load(in_ptr0 + (60 + 2 * x0 + 120 * x1 + 3616 * x4), xmask,
eviction_policy='evict_last')
tmp5 = tl.load(in_ptr0 + (61 + 2 * x0 + 120 * x1 + 3616 * x4), xmask,
eviction_policy='evict_last')
tmp2 = triton_helpers.maximum(tmp1, tmp0)
tmp4 = triton_helpers.maximum(tmp3, tmp2)
tmp6 = triton_helpers.maximum(tmp5, tmp4)
tmp7 = tmp1 > tmp0
tmp8 = tl.full([1], 1, tl.int8)
tmp9 = tl.full([1], 0, tl.int8)
tmp10 = tl.where(tmp7, tmp8, tmp9)
tmp11 = tmp3 > tmp2
tmp12 = tl.full([1], 2, tl.int8)
tmp13 = tl.where(tmp11, tmp12, tmp10)
tmp14 = tmp5 > tmp4
tmp15 = tl.full([1], 3, tl.int8)
tmp16 = tl.where(tmp14, tmp15, tmp13)
tl.store(out_ptr0 + (x5 + 2720 * x3), tmp6, xmask)
tl.store(out_ptr1 + (x5 + 2816 * x3), tmp16, xmask)
@triton.jit
def triton_poi_fused_convolution_2(in_out_ptr0, in_ptr0, xnumel, XBLOCK: tl
.constexpr):
xnumel = 33640
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x3 = xindex
x1 = xindex // 841 % 10
tmp0 = tl.load(in_out_ptr0 + x3, xmask)
tmp1 = tl.load(in_ptr0 + x1, xmask, eviction_policy='evict_last')
tmp2 = tmp0 + tmp1
tl.store(in_out_ptr0 + x3, tmp2, xmask)
def call(args):
primals_1, primals_2, primals_3, primals_4, primals_5 = args
args.clear()
assert_size_stride(primals_1, (3, 3, 5, 5), (75, 25, 5, 1))
assert_size_stride(primals_2, (3,), (1,))
assert_size_stride(primals_3, (4, 3, 64, 64), (12288, 4096, 64, 1))
assert_size_stride(primals_4, (10, 3, 2, 2), (12, 4, 2, 1))
assert_size_stride(primals_5, (10,), (1,))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = extern_kernels.convolution(primals_3, primals_1, stride=(1,
1), padding=(0, 0), dilation=(1, 1), transposed=False,
output_padding=(0, 0), groups=1, bias=None)
assert_size_stride(buf0, (4, 3, 60, 60), (10800, 3600, 60, 1))
buf1 = empty_strided_cuda((4, 3, 60, 60), (10848, 3616, 60, 1),
torch.float32)
get_raw_stream(0)
triton_poi_fused_convolution_relu_0[grid(43200)](buf0, primals_2,
buf1, 43200, XBLOCK=512, num_warps=4, num_stages=1)
del buf0
del primals_2
buf2 = empty_strided_cuda((4, 3, 30, 30), (2720, 900, 30, 1), torch
.float32)
buf3 = empty_strided_cuda((4, 3, 30, 30), (2816, 900, 30, 1), torch
.int8)
triton_poi_fused_max_pool2d_with_indices_1[grid(10800)](buf1, buf2,
buf3, 10800, XBLOCK=128, num_warps=4, num_stages=1)
buf4 = extern_kernels.convolution(buf2, primals_4, stride=(1, 1),
padding=(0, 0), dilation=(1, 1), transposed=False,
output_padding=(0, 0), groups=1, bias=None)
assert_size_stride(buf4, (4, 10, 29, 29), (8410, 841, 29, 1))
buf5 = buf4
del buf4
triton_poi_fused_convolution_2[grid(33640)](buf5, primals_5, 33640,
XBLOCK=512, num_warps=4, num_stages=1)
del primals_5
return reinterpret_tensor(buf5, (3364, 10), (10, 1), 0
), primals_1, primals_3, primals_4, buf1, buf2, buf3
class TinyCnnNew(nn.Module):
def __init__(self, feature_extraction=False) ->None:
super().__init__()
self.feature_extraction = feature_extraction
self.conv1 = nn.Conv2d(3, 3, 5)
self.relu1 = nn.ReLU()
self.pool1 = nn.MaxPool2d(2, 2)
if not self.feature_extraction:
self.conv2 = nn.Conv2d(3, 10, 2)
def forward(self, input_0):
primals_1 = self.conv1.weight
primals_2 = self.conv1.bias
primals_4 = self.conv2.weight
primals_5 = self.conv2.bias
primals_3 = input_0
output = call([primals_1, primals_2, primals_3, primals_4, primals_5])
return output[0]
|
YNNEKUW/captum
|
TinyCnn
| false | 12,003 |
[
"BSD-3-Clause"
] | 0 |
c8b5357b21f2ddf440e5f0ce25635977292aa5d1
|
https://github.com/YNNEKUW/captum/tree/c8b5357b21f2ddf440e5f0ce25635977292aa5d1
|
LayerNorm
|
# AOT ID: ['0_inference']
from ctypes import c_void_p, c_long, c_int
import torch
import math
import random
import os
import tempfile
from math import inf, nan
from torch._inductor.hooks import run_intermediate_hooks
from torch._inductor.utils import maybe_profile
from torch._inductor.codegen.memory_planning import _align as align
from torch import device, empty_strided
from torch._inductor.async_compile import AsyncCompile
from torch._inductor.select_algorithm import extern_kernels
from torch._inductor.codegen.multi_kernel import MultiKernelCall
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
aten = torch.ops.aten
inductor_ops = torch.ops.inductor
_quantized = torch.ops._quantized
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
alloc_from_pool = torch.ops.inductor._alloc_from_pool
async_compile = AsyncCompile()
# kernel path: runs/run_shard_7/inductor_cache/hm/chmguiko7olkc2jornwq2r5upocnkz3x3wp75lbdsdsrp7szyzy7.py
# Topologically Sorted Source Nodes: [means, sub, stds, activation], Original ATen: [aten.mean, aten.sub, aten.std, aten.div]
# Source node to ATen node mapping:
# activation => div
# means => mean
# stds => sqrt, var
# sub => sub
# Graph fragment:
# %mean : [num_users=1] = call_function[target=torch.ops.aten.mean.dim](args = (%arg0_1, [1], True), kwargs = {})
# %sub : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (%arg0_1, %mean), kwargs = {})
# %var : [num_users=1] = call_function[target=torch.ops.aten.var.correction](args = (%arg0_1, [1]), kwargs = {correction: 1.0, keepdim: True})
# %sqrt : [num_users=1] = call_function[target=torch.ops.aten.sqrt.default](args = (%var,), kwargs = {})
# %div : [num_users=1] = call_function[target=torch.ops.aten.div.Tensor](args = (%sub, %sqrt), kwargs = {})
triton_poi_fused_div_mean_std_sub_0 = async_compile.triton('triton_poi_fused_div_mean_std_sub_0', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[256],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_div_mean_std_sub_0', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 5, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_div_mean_std_sub_0(in_ptr0, out_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 256
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x3 = xindex
x0 = xindex % 16
x2 = (xindex // 64)
tmp0 = tl.load(in_ptr0 + (x3), xmask)
tmp1 = tl.load(in_ptr0 + (x0 + (64*x2)), xmask, eviction_policy='evict_last')
tmp2 = tl.load(in_ptr0 + (16 + x0 + (64*x2)), xmask, eviction_policy='evict_last')
tmp4 = tl.load(in_ptr0 + (32 + x0 + (64*x2)), xmask, eviction_policy='evict_last')
tmp6 = tl.load(in_ptr0 + (48 + x0 + (64*x2)), xmask, eviction_policy='evict_last')
tmp3 = tmp1 + tmp2
tmp5 = tmp3 + tmp4
tmp7 = tmp5 + tmp6
tmp8 = 4.0
tmp9 = tmp7 / tmp8
tmp10 = tmp0 - tmp9
tmp11 = tmp1 - tmp9
tmp12 = tmp11 * tmp11
tmp13 = tmp2 - tmp9
tmp14 = tmp13 * tmp13
tmp15 = tmp12 + tmp14
tmp16 = tmp4 - tmp9
tmp17 = tmp16 * tmp16
tmp18 = tmp15 + tmp17
tmp19 = tmp6 - tmp9
tmp20 = tmp19 * tmp19
tmp21 = tmp18 + tmp20
tmp22 = 3.0
tmp23 = tmp21 / tmp22
tmp24 = libdevice.sqrt(tmp23)
tmp25 = tmp10 / tmp24
tl.store(out_ptr0 + (x3), tmp25, xmask)
''', device_str='cuda')
async_compile.wait(globals())
del async_compile
def call(args):
arg0_1, = args
args.clear()
assert_size_stride(arg0_1, (4, 4, 4, 4), (64, 16, 4, 1))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32)
# Topologically Sorted Source Nodes: [means, sub, stds, activation], Original ATen: [aten.mean, aten.sub, aten.std, aten.div]
stream0 = get_raw_stream(0)
triton_poi_fused_div_mean_std_sub_0.run(arg0_1, buf0, 256, grid=grid(256), stream=stream0)
del arg0_1
return (buf0, )
def benchmark_compiled_module(times=10, repeat=10):
from torch._dynamo.testing import rand_strided
from torch._inductor.utils import print_performance
arg0_1 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32)
fn = lambda: call([arg0_1])
return print_performance(fn, times=times, repeat=repeat)
if __name__ == "__main__":
from torch._inductor.wrapper_benchmark import compiled_module_main
compiled_module_main('None', benchmark_compiled_module)
|
import torch
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
from torch._inductor.runtime.triton_helpers import libdevice
import torch.nn as nn
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
@triton.jit
def triton_poi_fused_div_mean_std_sub_0(in_ptr0, out_ptr0, xnumel, XBLOCK:
tl.constexpr):
xnumel = 256
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x3 = xindex
x0 = xindex % 16
x2 = xindex // 64
tmp0 = tl.load(in_ptr0 + x3, xmask)
tmp1 = tl.load(in_ptr0 + (x0 + 64 * x2), xmask, eviction_policy=
'evict_last')
tmp2 = tl.load(in_ptr0 + (16 + x0 + 64 * x2), xmask, eviction_policy=
'evict_last')
tmp4 = tl.load(in_ptr0 + (32 + x0 + 64 * x2), xmask, eviction_policy=
'evict_last')
tmp6 = tl.load(in_ptr0 + (48 + x0 + 64 * x2), xmask, eviction_policy=
'evict_last')
tmp3 = tmp1 + tmp2
tmp5 = tmp3 + tmp4
tmp7 = tmp5 + tmp6
tmp8 = 4.0
tmp9 = tmp7 / tmp8
tmp10 = tmp0 - tmp9
tmp11 = tmp1 - tmp9
tmp12 = tmp11 * tmp11
tmp13 = tmp2 - tmp9
tmp14 = tmp13 * tmp13
tmp15 = tmp12 + tmp14
tmp16 = tmp4 - tmp9
tmp17 = tmp16 * tmp16
tmp18 = tmp15 + tmp17
tmp19 = tmp6 - tmp9
tmp20 = tmp19 * tmp19
tmp21 = tmp18 + tmp20
tmp22 = 3.0
tmp23 = tmp21 / tmp22
tmp24 = libdevice.sqrt(tmp23)
tmp25 = tmp10 / tmp24
tl.store(out_ptr0 + x3, tmp25, xmask)
def call(args):
arg0_1, = args
args.clear()
assert_size_stride(arg0_1, (4, 4, 4, 4), (64, 16, 4, 1))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32)
get_raw_stream(0)
triton_poi_fused_div_mean_std_sub_0[grid(256)](arg0_1, buf0, 256,
XBLOCK=256, num_warps=4, num_stages=1)
del arg0_1
return buf0,
class LayerNormNew(nn.Module):
def __init__(self, *args):
super().__init__()
def forward(self, input_0):
arg0_1 = input_0
output = call([arg0_1])
return output[0]
|
BaiYuhaoSpiceeYJ/SEGAN_denoise
|
LayerNorm
| false | 2,011 |
[
"MIT"
] | 0 |
5bf65ae72b9f0a996ae338c53c68c4967e08cd59
|
https://github.com/BaiYuhaoSpiceeYJ/SEGAN_denoise/tree/5bf65ae72b9f0a996ae338c53c68c4967e08cd59
|
LinearAttention
|
# AOT ID: ['0_inference']
from ctypes import c_void_p, c_long, c_int
import torch
import math
import random
import os
import tempfile
from math import inf, nan
from torch._inductor.hooks import run_intermediate_hooks
from torch._inductor.utils import maybe_profile
from torch._inductor.codegen.memory_planning import _align as align
from torch import device, empty_strided
from torch._inductor.async_compile import AsyncCompile
from torch._inductor.select_algorithm import extern_kernels
from torch._inductor.codegen.multi_kernel import MultiKernelCall
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
aten = torch.ops.aten
inductor_ops = torch.ops.inductor
_quantized = torch.ops._quantized
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
alloc_from_pool = torch.ops.inductor._alloc_from_pool
async_compile = AsyncCompile()
# kernel path: runs/run_shard_9/inductor_cache/og/cogo4pfcy56l7ulvsx6und2vmih3qojwpvkiazyzh7hsptmp4vos.py
# Topologically Sorted Source Nodes: [elu_1, K, sum_1], Original ATen: [aten.elu, aten.add, aten.sum]
# Source node to ATen node mapping:
# K => add_1
# elu_1 => expm1_1, gt_1, mul_3, mul_4, mul_5, where_1
# sum_1 => sum_1
# Graph fragment:
# %gt_1 : [num_users=1] = call_function[target=torch.ops.aten.gt.Scalar](args = (%arg1_1, 0), kwargs = {})
# %mul_3 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%arg1_1, 1.0), kwargs = {})
# %mul_4 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%arg1_1, 1.0), kwargs = {})
# %expm1_1 : [num_users=1] = call_function[target=torch.ops.aten.expm1.default](args = (%mul_4,), kwargs = {})
# %mul_5 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%expm1_1, 1.0), kwargs = {})
# %where_1 : [num_users=1] = call_function[target=torch.ops.aten.where.self](args = (%gt_1, %mul_3, %mul_5), kwargs = {})
# %add_1 : [num_users=2] = call_function[target=torch.ops.aten.add.Tensor](args = (%where_1, 1), kwargs = {})
# %sum_1 : [num_users=1] = call_function[target=torch.ops.aten.sum.dim_IntList](args = (%add_1, [1]), kwargs = {})
triton_poi_fused_add_elu_sum_0 = async_compile.triton('triton_poi_fused_add_elu_sum_0', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[64],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_add_elu_sum_0', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 4, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_add_elu_sum_0(in_ptr0, out_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 64
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex % 16
x1 = (xindex // 16)
x2 = xindex
tmp0 = tl.load(in_ptr0 + (x0 + (64*x1)), xmask)
tmp9 = tl.load(in_ptr0 + (16 + x0 + (64*x1)), xmask)
tmp17 = tl.load(in_ptr0 + (32 + x0 + (64*x1)), xmask)
tmp25 = tl.load(in_ptr0 + (48 + x0 + (64*x1)), xmask)
tmp1 = 0.0
tmp2 = tmp0 > tmp1
tmp3 = 1.0
tmp4 = tmp0 * tmp3
tmp5 = libdevice.expm1(tmp4)
tmp6 = tmp5 * tmp3
tmp7 = tl.where(tmp2, tmp4, tmp6)
tmp8 = tmp7 + tmp3
tmp10 = tmp9 > tmp1
tmp11 = tmp9 * tmp3
tmp12 = libdevice.expm1(tmp11)
tmp13 = tmp12 * tmp3
tmp14 = tl.where(tmp10, tmp11, tmp13)
tmp15 = tmp14 + tmp3
tmp16 = tmp8 + tmp15
tmp18 = tmp17 > tmp1
tmp19 = tmp17 * tmp3
tmp20 = libdevice.expm1(tmp19)
tmp21 = tmp20 * tmp3
tmp22 = tl.where(tmp18, tmp19, tmp21)
tmp23 = tmp22 + tmp3
tmp24 = tmp16 + tmp23
tmp26 = tmp25 > tmp1
tmp27 = tmp25 * tmp3
tmp28 = libdevice.expm1(tmp27)
tmp29 = tmp28 * tmp3
tmp30 = tl.where(tmp26, tmp27, tmp29)
tmp31 = tmp30 + tmp3
tmp32 = tmp24 + tmp31
tl.store(out_ptr0 + (x2), tmp32, xmask)
''', device_str='cuda')
# kernel path: runs/run_shard_9/inductor_cache/ui/cuicp7lcen5tosk4olu3x3oaa7yz6cvucka5zwp4hr2qbvjrvvxh.py
# Topologically Sorted Source Nodes: [einsum_1, einsum_2], Original ATen: [aten.clone]
# Source node to ATen node mapping:
# einsum_1 => clone_2
# einsum_2 => clone_3
# Graph fragment:
# %clone_2 : [num_users=1] = call_function[target=torch.ops.aten.clone.default](args = (%permute_7,), kwargs = {memory_format: torch.contiguous_format})
# %clone_3 : [num_users=1] = call_function[target=torch.ops.aten.clone.default](args = (%permute_13,), kwargs = {memory_format: torch.contiguous_format})
triton_poi_fused_clone_1 = async_compile.triton('triton_poi_fused_clone_1', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[256],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_clone_1', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 1, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_clone_1(in_ptr0, out_ptr0, out_ptr1, xnumel, XBLOCK : tl.constexpr):
xnumel = 256
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x4 = xindex
x0 = xindex % 4
x1 = (xindex // 4) % 4
x2 = (xindex // 16) % 4
x3 = (xindex // 64)
tmp0 = tl.load(in_ptr0 + (x4), xmask)
tmp1 = 0.0
tmp2 = tmp0 > tmp1
tmp3 = 1.0
tmp4 = tmp0 * tmp3
tmp5 = libdevice.expm1(tmp4)
tmp6 = tmp5 * tmp3
tmp7 = tl.where(tmp2, tmp4, tmp6)
tmp8 = tmp7 + tmp3
tl.store(out_ptr0 + (x0 + (4*x2) + (16*x1) + (64*x3)), tmp8, xmask)
tl.store(out_ptr1 + (x0 + (4*x2) + (16*x1) + (64*x3)), tmp8, xmask)
''', device_str='cuda')
# kernel path: runs/run_shard_9/inductor_cache/ds/cdscs66baluy2qjp2egcmspwpssho6a6gwzskgkoo4xnrapvrluw.py
# Topologically Sorted Source Nodes: [KV], Original ATen: [aten.clone]
# Source node to ATen node mapping:
# KV => clone
# Graph fragment:
# %clone : [num_users=1] = call_function[target=torch.ops.aten.clone.default](args = (%permute_2,), kwargs = {memory_format: torch.contiguous_format})
triton_poi_fused_clone_2 = async_compile.triton('triton_poi_fused_clone_2', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[16, 16], tile_hint=TileHint.SQUARE,
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_clone_2', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 1, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_clone_2(in_ptr0, out_ptr0, ynumel, xnumel, YBLOCK : tl.constexpr, XBLOCK : tl.constexpr):
ynumel = 16
xnumel = 16
yoffset = tl.program_id(1) * YBLOCK
yindex = yoffset + tl.arange(0, YBLOCK)[None, :]
ymask = yindex < ynumel
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:, None]
xmask = xindex < xnumel
x2 = xindex
y3 = yindex
y0 = yindex % 4
y1 = (yindex // 4)
tmp0 = tl.load(in_ptr0 + (x2 + (16*y3)), xmask & ymask)
tmp1 = 0.0
tmp2 = tmp0 > tmp1
tmp3 = 1.0
tmp4 = tmp0 * tmp3
tmp5 = libdevice.expm1(tmp4)
tmp6 = tmp5 * tmp3
tmp7 = tl.where(tmp2, tmp4, tmp6)
tmp8 = tmp7 + tmp3
tl.store(out_ptr0 + (y0 + (4*x2) + (64*y1)), tmp8, xmask & ymask)
''', device_str='cuda')
# kernel path: runs/run_shard_9/inductor_cache/mf/cmffnm5icoqilxjyfgljttokrgpbt5d2oz7xydx6dxdlysmdthuj.py
# Topologically Sorted Source Nodes: [KV], Original ATen: [aten.clone]
# Source node to ATen node mapping:
# KV => clone_1
# Graph fragment:
# %clone_1 : [num_users=1] = call_function[target=torch.ops.aten.clone.default](args = (%permute_3,), kwargs = {memory_format: torch.contiguous_format})
triton_poi_fused_clone_3 = async_compile.triton('triton_poi_fused_clone_3', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[256],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_clone_3', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 1, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_clone_3(in_ptr0, out_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 256
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex % 4
x1 = (xindex // 4) % 4
x2 = (xindex // 16) % 4
x3 = (xindex // 64)
x4 = xindex
tmp0 = tl.load(in_ptr0 + (x0 + (4*x2) + (16*x1) + (64*x3)), xmask)
tmp1 = 0.25
tmp2 = tmp0 * tmp1
tl.store(out_ptr0 + (x4), tmp2, xmask)
''', device_str='cuda')
# kernel path: runs/run_shard_9/inductor_cache/kd/ckd25s7vujyv5hxcsgrxyfy25zilz32mxdkf3yx2dqm3ovvchilg.py
# Topologically Sorted Source Nodes: [queried_values, contiguous], Original ATen: [aten.mul, aten.clone]
# Source node to ATen node mapping:
# contiguous => clone_4
# queried_values => mul_8
# Graph fragment:
# %mul_8 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%view_11, 4), kwargs = {})
# %clone_4 : [num_users=1] = call_function[target=torch.ops.aten.clone.default](args = (%mul_8,), kwargs = {memory_format: torch.contiguous_format})
triton_poi_fused_clone_mul_4 = async_compile.triton('triton_poi_fused_clone_mul_4', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[256],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_clone_mul_4', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_clone_mul_4(in_ptr0, in_ptr1, out_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 256
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x4 = (xindex // 4)
x5 = xindex
x0 = xindex % 4
x1 = (xindex // 4) % 4
x2 = (xindex // 16) % 4
x3 = (xindex // 64)
tmp0 = tl.load(in_ptr0 + (x4), xmask, eviction_policy='evict_last')
tmp7 = tl.load(in_ptr1 + (x5), xmask)
tmp1 = 1e-06
tmp2 = tmp0 + tmp1
tmp3 = tl.full([1], 1, tl.int32)
tmp4 = tmp3 / tmp2
tmp5 = 1.0
tmp6 = tmp4 * tmp5
tmp8 = tmp6 * tmp7
tmp9 = 4.0
tmp10 = tmp8 * tmp9
tl.store(out_ptr0 + (x0 + (4*x2) + (16*x1) + (64*x3)), tmp10, xmask)
''', device_str='cuda')
async_compile.wait(globals())
del async_compile
def call(args):
arg0_1, arg1_1, arg2_1 = args
args.clear()
assert_size_stride(arg0_1, (4, 4, 4, 4), (64, 16, 4, 1))
assert_size_stride(arg1_1, (4, 4, 4, 4), (64, 16, 4, 1))
assert_size_stride(arg2_1, (4, 4, 4, 4), (64, 16, 4, 1))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((4, 4, 4), (16, 4, 1), torch.float32)
# Topologically Sorted Source Nodes: [elu_1, K, sum_1], Original ATen: [aten.elu, aten.add, aten.sum]
stream0 = get_raw_stream(0)
triton_poi_fused_add_elu_sum_0.run(arg1_1, buf0, 64, grid=grid(64), stream=stream0)
buf1 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32)
buf6 = empty_strided_cuda((4, 4, 4, 4, 1), (64, 16, 4, 1, 1), torch.float32)
# Topologically Sorted Source Nodes: [einsum_1, einsum_2], Original ATen: [aten.clone]
triton_poi_fused_clone_1.run(arg0_1, buf1, buf6, 256, grid=grid(256), stream=stream0)
del arg0_1
buf2 = empty_strided_cuda((16, 4, 1), (4, 1, 1), torch.float32)
# Topologically Sorted Source Nodes: [einsum_1], Original ATen: [aten.bmm]
extern_kernels.bmm(reinterpret_tensor(buf1, (16, 4, 4), (16, 4, 1), 0), reinterpret_tensor(buf0, (16, 4, 1), (4, 1, 1), 0), out=buf2)
del buf0
buf3 = reinterpret_tensor(buf1, (4, 4, 4, 4, 1), (64, 16, 4, 1, 1), 0); del buf1 # reuse
# Topologically Sorted Source Nodes: [KV], Original ATen: [aten.clone]
triton_poi_fused_clone_2.run(arg1_1, buf3, 16, 16, grid=grid(16, 16), stream=stream0)
del arg1_1
buf4 = empty_strided_cuda((4, 4, 4, 4, 1), (64, 16, 4, 1, 1), torch.float32)
# Topologically Sorted Source Nodes: [KV], Original ATen: [aten.clone]
triton_poi_fused_clone_3.run(arg2_1, buf4, 256, grid=grid(256), stream=stream0)
del arg2_1
buf5 = empty_strided_cuda((16, 4, 4), (16, 4, 1), torch.float32)
# Topologically Sorted Source Nodes: [KV], Original ATen: [aten.bmm]
extern_kernels.bmm(reinterpret_tensor(buf3, (16, 4, 4), (16, 4, 1), 0), reinterpret_tensor(buf4, (16, 4, 4), (16, 4, 1), 0), out=buf5)
del buf3
buf7 = reinterpret_tensor(buf4, (16, 4, 4), (16, 4, 1), 0); del buf4 # reuse
# Topologically Sorted Source Nodes: [einsum_2], Original ATen: [aten.bmm]
extern_kernels.bmm(reinterpret_tensor(buf6, (16, 4, 4), (16, 4, 1), 0), buf5, out=buf7)
del buf5
buf8 = reinterpret_tensor(buf6, (4, 4, 4, 4), (64, 16, 4, 1), 0); del buf6 # reuse
# Topologically Sorted Source Nodes: [queried_values, contiguous], Original ATen: [aten.mul, aten.clone]
triton_poi_fused_clone_mul_4.run(buf2, buf7, buf8, 256, grid=grid(256), stream=stream0)
del buf2
del buf7
return (buf8, )
def benchmark_compiled_module(times=10, repeat=10):
from torch._dynamo.testing import rand_strided
from torch._inductor.utils import print_performance
arg0_1 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32)
arg1_1 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32)
arg2_1 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32)
fn = lambda: call([arg0_1, arg1_1, arg2_1])
return print_performance(fn, times=times, repeat=repeat)
if __name__ == "__main__":
from torch._inductor.wrapper_benchmark import compiled_module_main
compiled_module_main('None', benchmark_compiled_module)
|
import torch
from torch._inductor.select_algorithm import extern_kernels
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
from torch._inductor.runtime.triton_helpers import libdevice
from torch.nn import Module
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
@triton.jit
def triton_poi_fused_add_elu_sum_0(in_ptr0, out_ptr0, xnumel, XBLOCK: tl.
constexpr):
xnumel = 64
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex % 16
x1 = xindex // 16
x2 = xindex
tmp0 = tl.load(in_ptr0 + (x0 + 64 * x1), xmask)
tmp9 = tl.load(in_ptr0 + (16 + x0 + 64 * x1), xmask)
tmp17 = tl.load(in_ptr0 + (32 + x0 + 64 * x1), xmask)
tmp25 = tl.load(in_ptr0 + (48 + x0 + 64 * x1), xmask)
tmp1 = 0.0
tmp2 = tmp0 > tmp1
tmp3 = 1.0
tmp4 = tmp0 * tmp3
tmp5 = libdevice.expm1(tmp4)
tmp6 = tmp5 * tmp3
tmp7 = tl.where(tmp2, tmp4, tmp6)
tmp8 = tmp7 + tmp3
tmp10 = tmp9 > tmp1
tmp11 = tmp9 * tmp3
tmp12 = libdevice.expm1(tmp11)
tmp13 = tmp12 * tmp3
tmp14 = tl.where(tmp10, tmp11, tmp13)
tmp15 = tmp14 + tmp3
tmp16 = tmp8 + tmp15
tmp18 = tmp17 > tmp1
tmp19 = tmp17 * tmp3
tmp20 = libdevice.expm1(tmp19)
tmp21 = tmp20 * tmp3
tmp22 = tl.where(tmp18, tmp19, tmp21)
tmp23 = tmp22 + tmp3
tmp24 = tmp16 + tmp23
tmp26 = tmp25 > tmp1
tmp27 = tmp25 * tmp3
tmp28 = libdevice.expm1(tmp27)
tmp29 = tmp28 * tmp3
tmp30 = tl.where(tmp26, tmp27, tmp29)
tmp31 = tmp30 + tmp3
tmp32 = tmp24 + tmp31
tl.store(out_ptr0 + x2, tmp32, xmask)
@triton.jit
def triton_poi_fused_clone_1(in_ptr0, out_ptr0, out_ptr1, xnumel, XBLOCK:
tl.constexpr):
xnumel = 256
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x4 = xindex
x0 = xindex % 4
x1 = xindex // 4 % 4
x2 = xindex // 16 % 4
x3 = xindex // 64
tmp0 = tl.load(in_ptr0 + x4, xmask)
tmp1 = 0.0
tmp2 = tmp0 > tmp1
tmp3 = 1.0
tmp4 = tmp0 * tmp3
tmp5 = libdevice.expm1(tmp4)
tmp6 = tmp5 * tmp3
tmp7 = tl.where(tmp2, tmp4, tmp6)
tmp8 = tmp7 + tmp3
tl.store(out_ptr0 + (x0 + 4 * x2 + 16 * x1 + 64 * x3), tmp8, xmask)
tl.store(out_ptr1 + (x0 + 4 * x2 + 16 * x1 + 64 * x3), tmp8, xmask)
@triton.jit
def triton_poi_fused_clone_2(in_ptr0, out_ptr0, ynumel, xnumel, YBLOCK: tl.
constexpr, XBLOCK: tl.constexpr):
ynumel = 16
xnumel = 16
yoffset = tl.program_id(1) * YBLOCK
yindex = yoffset + tl.arange(0, YBLOCK)[None, :]
ymask = yindex < ynumel
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:, None]
xmask = xindex < xnumel
x2 = xindex
y3 = yindex
y0 = yindex % 4
y1 = yindex // 4
tmp0 = tl.load(in_ptr0 + (x2 + 16 * y3), xmask & ymask)
tmp1 = 0.0
tmp2 = tmp0 > tmp1
tmp3 = 1.0
tmp4 = tmp0 * tmp3
tmp5 = libdevice.expm1(tmp4)
tmp6 = tmp5 * tmp3
tmp7 = tl.where(tmp2, tmp4, tmp6)
tmp8 = tmp7 + tmp3
tl.store(out_ptr0 + (y0 + 4 * x2 + 64 * y1), tmp8, xmask & ymask)
@triton.jit
def triton_poi_fused_clone_3(in_ptr0, out_ptr0, xnumel, XBLOCK: tl.constexpr):
xnumel = 256
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex % 4
x1 = xindex // 4 % 4
x2 = xindex // 16 % 4
x3 = xindex // 64
x4 = xindex
tmp0 = tl.load(in_ptr0 + (x0 + 4 * x2 + 16 * x1 + 64 * x3), xmask)
tmp1 = 0.25
tmp2 = tmp0 * tmp1
tl.store(out_ptr0 + x4, tmp2, xmask)
@triton.jit
def triton_poi_fused_clone_mul_4(in_ptr0, in_ptr1, out_ptr0, xnumel, XBLOCK:
tl.constexpr):
xnumel = 256
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x4 = xindex // 4
x5 = xindex
x0 = xindex % 4
x1 = xindex // 4 % 4
x2 = xindex // 16 % 4
x3 = xindex // 64
tmp0 = tl.load(in_ptr0 + x4, xmask, eviction_policy='evict_last')
tmp7 = tl.load(in_ptr1 + x5, xmask)
tmp1 = 1e-06
tmp2 = tmp0 + tmp1
tmp3 = tl.full([1], 1, tl.int32)
tmp4 = tmp3 / tmp2
tmp5 = 1.0
tmp6 = tmp4 * tmp5
tmp8 = tmp6 * tmp7
tmp9 = 4.0
tmp10 = tmp8 * tmp9
tl.store(out_ptr0 + (x0 + 4 * x2 + 16 * x1 + 64 * x3), tmp10, xmask)
def call(args):
arg0_1, arg1_1, arg2_1 = args
args.clear()
assert_size_stride(arg0_1, (4, 4, 4, 4), (64, 16, 4, 1))
assert_size_stride(arg1_1, (4, 4, 4, 4), (64, 16, 4, 1))
assert_size_stride(arg2_1, (4, 4, 4, 4), (64, 16, 4, 1))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((4, 4, 4), (16, 4, 1), torch.float32)
get_raw_stream(0)
triton_poi_fused_add_elu_sum_0[grid(64)](arg1_1, buf0, 64, XBLOCK=
64, num_warps=1, num_stages=1)
buf1 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32)
buf6 = empty_strided_cuda((4, 4, 4, 4, 1), (64, 16, 4, 1, 1), torch
.float32)
triton_poi_fused_clone_1[grid(256)](arg0_1, buf1, buf6, 256, XBLOCK
=128, num_warps=4, num_stages=1)
del arg0_1
buf2 = empty_strided_cuda((16, 4, 1), (4, 1, 1), torch.float32)
extern_kernels.bmm(reinterpret_tensor(buf1, (16, 4, 4), (16, 4, 1),
0), reinterpret_tensor(buf0, (16, 4, 1), (4, 1, 1), 0), out=buf2)
del buf0
buf3 = reinterpret_tensor(buf1, (4, 4, 4, 4, 1), (64, 16, 4, 1, 1), 0)
del buf1
triton_poi_fused_clone_2[grid(16, 16)](arg1_1, buf3, 16, 16, XBLOCK
=16, YBLOCK=16, num_warps=4, num_stages=1)
del arg1_1
buf4 = empty_strided_cuda((4, 4, 4, 4, 1), (64, 16, 4, 1, 1), torch
.float32)
triton_poi_fused_clone_3[grid(256)](arg2_1, buf4, 256, XBLOCK=256,
num_warps=4, num_stages=1)
del arg2_1
buf5 = empty_strided_cuda((16, 4, 4), (16, 4, 1), torch.float32)
extern_kernels.bmm(reinterpret_tensor(buf3, (16, 4, 4), (16, 4, 1),
0), reinterpret_tensor(buf4, (16, 4, 4), (16, 4, 1), 0), out=buf5)
del buf3
buf7 = reinterpret_tensor(buf4, (16, 4, 4), (16, 4, 1), 0)
del buf4
extern_kernels.bmm(reinterpret_tensor(buf6, (16, 4, 4), (16, 4, 1),
0), buf5, out=buf7)
del buf5
buf8 = reinterpret_tensor(buf6, (4, 4, 4, 4), (64, 16, 4, 1), 0)
del buf6
triton_poi_fused_clone_mul_4[grid(256)](buf2, buf7, buf8, 256,
XBLOCK=128, num_warps=4, num_stages=1)
del buf2
del buf7
return buf8,
def elu_feature_map(x):
return torch.nn.functional.elu(x) + 1
class LinearAttentionNew(Module):
def __init__(self, eps=1e-06):
super().__init__()
self.feature_map = elu_feature_map
self.eps = eps
def forward(self, input_0, input_1, input_2):
arg0_1 = input_0
arg1_1 = input_1
arg2_1 = input_2
output = call([arg0_1, arg1_1, arg2_1])
return output[0]
|
francescodisalvo05/LoFTR
|
LinearAttention
| false | 12,406 |
[
"Apache-2.0"
] | 0 |
66372ebbe1ea97d57fe6cb8b5acf5cd92a87ef8d
|
https://github.com/francescodisalvo05/LoFTR/tree/66372ebbe1ea97d57fe6cb8b5acf5cd92a87ef8d
|
ConvGRUCell
|
# AOT ID: ['0_forward']
from ctypes import c_void_p, c_long, c_int
import torch
import math
import random
import os
import tempfile
from math import inf, nan
from torch._inductor.hooks import run_intermediate_hooks
from torch._inductor.utils import maybe_profile
from torch._inductor.codegen.memory_planning import _align as align
from torch import device, empty_strided
from torch._inductor.async_compile import AsyncCompile
from torch._inductor.select_algorithm import extern_kernels
from torch._inductor.codegen.multi_kernel import MultiKernelCall
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
aten = torch.ops.aten
inductor_ops = torch.ops.inductor
_quantized = torch.ops._quantized
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
alloc_from_pool = torch.ops.inductor._alloc_from_pool
async_compile = AsyncCompile()
# kernel path: runs/run_shard_4/inductor_cache/yr/cyrsfiqcqep5ianv6lfxy43inavacsrots2hnf6qyokhutlu5ocy.py
# Topologically Sorted Source Nodes: [h_prev], Original ATen: [aten.new_zeros]
# Source node to ATen node mapping:
# h_prev => full_default
# Graph fragment:
# %full_default : [num_users=4] = call_function[target=torch.ops.aten.full.default](args = ([4, 4, 4, 4], 0), kwargs = {dtype: torch.float32, layout: torch.strided, device: cuda:0, pin_memory: False})
triton_poi_fused_new_zeros_0 = async_compile.triton('triton_poi_fused_new_zeros_0', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[256],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_new_zeros_0', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 0, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_new_zeros_0(out_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 256
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex
tmp0 = 0.0
tl.store(out_ptr0 + (x0), tmp0, xmask)
''', device_str='cuda')
# kernel path: runs/run_shard_4/inductor_cache/qv/cqvqoxzqwduraftvkpveor26twbksdy4eroiqe5gkhhcqhmp4fly.py
# Topologically Sorted Source Nodes: [combined], Original ATen: [aten.cat]
# Source node to ATen node mapping:
# combined => cat
# Graph fragment:
# %cat : [num_users=2] = call_function[target=torch.ops.aten.cat.default](args = ([%primals_1, %full_default], 1), kwargs = {})
triton_poi_fused_cat_1 = async_compile.triton('triton_poi_fused_cat_1', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[512],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_cat_1', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 1, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_cat_1(in_ptr0, out_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 512
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x1 = (xindex // 16) % 8
x0 = xindex % 16
x2 = (xindex // 128)
x3 = xindex
tmp0 = x1
tmp1 = tl.full([1], 0, tl.int64)
tmp2 = tmp0 >= tmp1
tmp3 = tl.full([1], 4, tl.int64)
tmp4 = tmp0 < tmp3
tmp5 = tl.load(in_ptr0 + (x0 + (16*x1) + (64*x2)), tmp4 & xmask, other=0.0)
tmp6 = tmp0 >= tmp3
tmp7 = tl.full([1], 8, tl.int64)
tmp8 = tmp0 < tmp7
tmp9 = 0.0
tmp10 = tl.full(tmp9.shape, 0.0, tmp9.dtype)
tmp11 = tl.where(tmp6, tmp9, tmp10)
tmp12 = tl.where(tmp4, tmp5, tmp11)
tl.store(out_ptr0 + (x3), tmp12, xmask)
''', device_str='cuda')
# kernel path: runs/run_shard_4/inductor_cache/cx/ccxv3djgp4azaupyxj6k27iatx6fdzs4dd65zqaoeei7no4esmab.py
# Topologically Sorted Source Nodes: [conv2d, combined_conv], Original ATen: [aten.convolution, aten.sigmoid]
# Source node to ATen node mapping:
# combined_conv => sigmoid
# conv2d => convolution
# Graph fragment:
# %convolution : [num_users=1] = call_function[target=torch.ops.aten.convolution.default](args = (%cat, %primals_2, %primals_3, [1, 1], [1, 1], [1, 1], False, [0, 0], 1), kwargs = {})
# %sigmoid : [num_users=2] = call_function[target=torch.ops.aten.sigmoid.default](args = (%convolution,), kwargs = {})
triton_poi_fused_convolution_sigmoid_2 = async_compile.triton('triton_poi_fused_convolution_sigmoid_2', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[512],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_convolution_sigmoid_2', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_convolution_sigmoid_2(in_out_ptr0, in_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 512
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x3 = xindex
x1 = (xindex // 16) % 8
tmp0 = tl.load(in_out_ptr0 + (x3), xmask)
tmp1 = tl.load(in_ptr0 + (x1), xmask, eviction_policy='evict_last')
tmp2 = tmp0 + tmp1
tmp3 = tl.sigmoid(tmp2)
tl.store(in_out_ptr0 + (x3), tmp3, xmask)
''', device_str='cuda')
# kernel path: runs/run_shard_4/inductor_cache/nn/cnn7cjpchplaegvrmuuug4x3kbotklqczshw3hbasnx2ijtf4yn3.py
# Topologically Sorted Source Nodes: [conv2d_1, conv2d_2, mul, add, h_, sub, mul_1, mul_2, h_cur], Original ATen: [aten.convolution, aten.mul, aten.add, aten.tanh, aten.rsub]
# Source node to ATen node mapping:
# add => add
# conv2d_1 => convolution_1
# conv2d_2 => convolution_2
# h_ => tanh
# h_cur => add_1
# mul => mul
# mul_1 => mul_1
# mul_2 => mul_2
# sub => sub
# Graph fragment:
# %convolution_1 : [num_users=2] = call_function[target=torch.ops.aten.convolution.default](args = (%primals_1, %primals_4, %primals_5, [1, 1], [1, 1], [1, 1], False, [0, 0], 1), kwargs = {})
# %convolution_2 : [num_users=2] = call_function[target=torch.ops.aten.convolution.default](args = (%full_default, %primals_6, %primals_7, [1, 1], [1, 1], [1, 1], False, [0, 0], 1), kwargs = {})
# %mul : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%getitem_1, %convolution_2), kwargs = {})
# %add : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%convolution_1, %mul), kwargs = {})
# %tanh : [num_users=1] = call_function[target=torch.ops.aten.tanh.default](args = (%add,), kwargs = {})
# %sub : [num_users=2] = call_function[target=torch.ops.aten.sub.Tensor](args = (1, %getitem), kwargs = {})
# %mul_1 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%sub, %tanh), kwargs = {})
# %mul_2 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%getitem, %full_default), kwargs = {})
# %add_1 : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%mul_1, %mul_2), kwargs = {})
triton_poi_fused_add_convolution_mul_rsub_tanh_3 = async_compile.triton('triton_poi_fused_add_convolution_mul_rsub_tanh_3', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[256],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: '*fp32', 4: '*fp32', 5: '*fp32', 6: '*fp32', 7: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3, 4, 5, 6, 7), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_add_convolution_mul_rsub_tanh_3', 'mutated_arg_names': ['in_out_ptr0', 'in_out_ptr1'], 'no_x_dim': False, 'num_load': 6, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_add_convolution_mul_rsub_tanh_3(in_out_ptr0, in_out_ptr1, in_ptr0, in_ptr1, in_ptr2, out_ptr0, out_ptr1, xnumel, XBLOCK : tl.constexpr):
xnumel = 256
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x4 = xindex
x1 = (xindex // 16) % 4
x2 = (xindex // 64)
x3 = xindex % 64
tmp0 = tl.load(in_out_ptr0 + (x4), xmask)
tmp1 = tl.load(in_ptr0 + (x1), xmask, eviction_policy='evict_last')
tmp3 = tl.load(in_out_ptr1 + (x4), xmask)
tmp4 = tl.load(in_ptr1 + (x1), xmask, eviction_policy='evict_last')
tmp6 = tl.load(in_ptr2 + (x3 + (128*x2)), xmask)
tmp9 = tl.load(in_ptr2 + (64 + x3 + (128*x2)), xmask)
tmp2 = tmp0 + tmp1
tmp5 = tmp3 + tmp4
tmp7 = 1.0
tmp8 = tmp7 - tmp6
tmp10 = tmp9 * tmp5
tmp11 = tmp2 + tmp10
tmp12 = libdevice.tanh(tmp11)
tmp13 = tmp8 * tmp12
tmp14 = 0.0
tmp15 = tmp6 * tmp14
tmp16 = tmp13 + tmp15
tl.store(in_out_ptr0 + (x4), tmp2, xmask)
tl.store(in_out_ptr1 + (x4), tmp5, xmask)
tl.store(out_ptr0 + (x4), tmp8, xmask)
tl.store(out_ptr1 + (x4), tmp16, xmask)
''', device_str='cuda')
async_compile.wait(globals())
del async_compile
def call(args):
primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7 = args
args.clear()
assert_size_stride(primals_1, (4, 4, 4, 4), (64, 16, 4, 1))
assert_size_stride(primals_2, (8, 8, 3, 3), (72, 9, 3, 1))
assert_size_stride(primals_3, (8, ), (1, ))
assert_size_stride(primals_4, (4, 4, 3, 3), (36, 9, 3, 1))
assert_size_stride(primals_5, (4, ), (1, ))
assert_size_stride(primals_6, (4, 4, 3, 3), (36, 9, 3, 1))
assert_size_stride(primals_7, (4, ), (1, ))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32)
# Topologically Sorted Source Nodes: [h_prev], Original ATen: [aten.new_zeros]
stream0 = get_raw_stream(0)
triton_poi_fused_new_zeros_0.run(buf0, 256, grid=grid(256), stream=stream0)
buf1 = empty_strided_cuda((4, 8, 4, 4), (128, 16, 4, 1), torch.float32)
# Topologically Sorted Source Nodes: [combined], Original ATen: [aten.cat]
triton_poi_fused_cat_1.run(primals_1, buf1, 512, grid=grid(512), stream=stream0)
# Topologically Sorted Source Nodes: [conv2d], Original ATen: [aten.convolution]
buf2 = extern_kernels.convolution(buf1, primals_2, stride=(1, 1), padding=(1, 1), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None)
assert_size_stride(buf2, (4, 8, 4, 4), (128, 16, 4, 1))
buf3 = buf2; del buf2 # reuse
# Topologically Sorted Source Nodes: [conv2d, combined_conv], Original ATen: [aten.convolution, aten.sigmoid]
triton_poi_fused_convolution_sigmoid_2.run(buf3, primals_3, 512, grid=grid(512), stream=stream0)
del primals_3
# Topologically Sorted Source Nodes: [conv2d_1], Original ATen: [aten.convolution]
buf4 = extern_kernels.convolution(primals_1, primals_4, stride=(1, 1), padding=(1, 1), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None)
assert_size_stride(buf4, (4, 4, 4, 4), (64, 16, 4, 1))
# Topologically Sorted Source Nodes: [conv2d_2], Original ATen: [aten.convolution]
buf6 = extern_kernels.convolution(buf0, primals_6, stride=(1, 1), padding=(1, 1), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None)
assert_size_stride(buf6, (4, 4, 4, 4), (64, 16, 4, 1))
buf5 = buf4; del buf4 # reuse
buf7 = buf6; del buf6 # reuse
buf8 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32)
buf9 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32)
# Topologically Sorted Source Nodes: [conv2d_1, conv2d_2, mul, add, h_, sub, mul_1, mul_2, h_cur], Original ATen: [aten.convolution, aten.mul, aten.add, aten.tanh, aten.rsub]
triton_poi_fused_add_convolution_mul_rsub_tanh_3.run(buf5, buf7, primals_5, primals_7, buf3, buf8, buf9, 256, grid=grid(256), stream=stream0)
del primals_5
del primals_7
return (buf9, primals_1, primals_2, primals_4, primals_6, buf0, buf1, buf3, reinterpret_tensor(buf3, (4, 4, 4, 4), (128, 16, 4, 1), 64), buf5, buf7, buf8, )
def benchmark_compiled_module(times=10, repeat=10):
from torch._dynamo.testing import rand_strided
from torch._inductor.utils import print_performance
primals_1 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32)
primals_2 = rand_strided((8, 8, 3, 3), (72, 9, 3, 1), device='cuda:0', dtype=torch.float32)
primals_3 = rand_strided((8, ), (1, ), device='cuda:0', dtype=torch.float32)
primals_4 = rand_strided((4, 4, 3, 3), (36, 9, 3, 1), device='cuda:0', dtype=torch.float32)
primals_5 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32)
primals_6 = rand_strided((4, 4, 3, 3), (36, 9, 3, 1), device='cuda:0', dtype=torch.float32)
primals_7 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32)
fn = lambda: call([primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7])
return print_performance(fn, times=times, repeat=repeat)
if __name__ == "__main__":
from torch._inductor.wrapper_benchmark import compiled_module_main
compiled_module_main('None', benchmark_compiled_module)
|
import torch
from torch._inductor.select_algorithm import extern_kernels
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
from torch._inductor.runtime.triton_helpers import libdevice
from torch import nn as nn
import torch.nn.functional as F
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
@triton.jit
def triton_poi_fused_new_zeros_0(out_ptr0, xnumel, XBLOCK: tl.constexpr):
xnumel = 256
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex
tmp0 = 0.0
tl.store(out_ptr0 + x0, tmp0, xmask)
@triton.jit
def triton_poi_fused_cat_1(in_ptr0, out_ptr0, xnumel, XBLOCK: tl.constexpr):
xnumel = 512
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x1 = xindex // 16 % 8
x0 = xindex % 16
x2 = xindex // 128
x3 = xindex
tmp0 = x1
tl.full([1], 0, tl.int64)
tmp3 = tl.full([1], 4, tl.int64)
tmp4 = tmp0 < tmp3
tmp5 = tl.load(in_ptr0 + (x0 + 16 * x1 + 64 * x2), tmp4 & xmask, other=0.0)
tmp6 = tmp0 >= tmp3
tl.full([1], 8, tl.int64)
tmp9 = 0.0
tmp10 = tl.full(tmp9.shape, 0.0, tmp9.dtype)
tmp11 = tl.where(tmp6, tmp9, tmp10)
tmp12 = tl.where(tmp4, tmp5, tmp11)
tl.store(out_ptr0 + x3, tmp12, xmask)
@triton.jit
def triton_poi_fused_convolution_sigmoid_2(in_out_ptr0, in_ptr0, xnumel,
XBLOCK: tl.constexpr):
xnumel = 512
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x3 = xindex
x1 = xindex // 16 % 8
tmp0 = tl.load(in_out_ptr0 + x3, xmask)
tmp1 = tl.load(in_ptr0 + x1, xmask, eviction_policy='evict_last')
tmp2 = tmp0 + tmp1
tmp3 = tl.sigmoid(tmp2)
tl.store(in_out_ptr0 + x3, tmp3, xmask)
@triton.jit
def triton_poi_fused_add_convolution_mul_rsub_tanh_3(in_out_ptr0,
in_out_ptr1, in_ptr0, in_ptr1, in_ptr2, out_ptr0, out_ptr1, xnumel,
XBLOCK: tl.constexpr):
xnumel = 256
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x4 = xindex
x1 = xindex // 16 % 4
x2 = xindex // 64
x3 = xindex % 64
tmp0 = tl.load(in_out_ptr0 + x4, xmask)
tmp1 = tl.load(in_ptr0 + x1, xmask, eviction_policy='evict_last')
tmp3 = tl.load(in_out_ptr1 + x4, xmask)
tmp4 = tl.load(in_ptr1 + x1, xmask, eviction_policy='evict_last')
tmp6 = tl.load(in_ptr2 + (x3 + 128 * x2), xmask)
tmp9 = tl.load(in_ptr2 + (64 + x3 + 128 * x2), xmask)
tmp2 = tmp0 + tmp1
tmp5 = tmp3 + tmp4
tmp7 = 1.0
tmp8 = tmp7 - tmp6
tmp10 = tmp9 * tmp5
tmp11 = tmp2 + tmp10
tmp12 = libdevice.tanh(tmp11)
tmp13 = tmp8 * tmp12
tmp14 = 0.0
tmp15 = tmp6 * tmp14
tmp16 = tmp13 + tmp15
tl.store(in_out_ptr0 + x4, tmp2, xmask)
tl.store(in_out_ptr1 + x4, tmp5, xmask)
tl.store(out_ptr0 + x4, tmp8, xmask)
tl.store(out_ptr1 + x4, tmp16, xmask)
def call(args):
(primals_1, primals_2, primals_3, primals_4, primals_5, primals_6,
primals_7) = args
args.clear()
assert_size_stride(primals_1, (4, 4, 4, 4), (64, 16, 4, 1))
assert_size_stride(primals_2, (8, 8, 3, 3), (72, 9, 3, 1))
assert_size_stride(primals_3, (8,), (1,))
assert_size_stride(primals_4, (4, 4, 3, 3), (36, 9, 3, 1))
assert_size_stride(primals_5, (4,), (1,))
assert_size_stride(primals_6, (4, 4, 3, 3), (36, 9, 3, 1))
assert_size_stride(primals_7, (4,), (1,))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32)
get_raw_stream(0)
triton_poi_fused_new_zeros_0[grid(256)](buf0, 256, XBLOCK=128,
num_warps=4, num_stages=1)
buf1 = empty_strided_cuda((4, 8, 4, 4), (128, 16, 4, 1), torch.float32)
triton_poi_fused_cat_1[grid(512)](primals_1, buf1, 512, XBLOCK=256,
num_warps=4, num_stages=1)
buf2 = extern_kernels.convolution(buf1, primals_2, stride=(1, 1),
padding=(1, 1), dilation=(1, 1), transposed=False,
output_padding=(0, 0), groups=1, bias=None)
assert_size_stride(buf2, (4, 8, 4, 4), (128, 16, 4, 1))
buf3 = buf2
del buf2
triton_poi_fused_convolution_sigmoid_2[grid(512)](buf3, primals_3,
512, XBLOCK=256, num_warps=4, num_stages=1)
del primals_3
buf4 = extern_kernels.convolution(primals_1, primals_4, stride=(1,
1), padding=(1, 1), dilation=(1, 1), transposed=False,
output_padding=(0, 0), groups=1, bias=None)
assert_size_stride(buf4, (4, 4, 4, 4), (64, 16, 4, 1))
buf6 = extern_kernels.convolution(buf0, primals_6, stride=(1, 1),
padding=(1, 1), dilation=(1, 1), transposed=False,
output_padding=(0, 0), groups=1, bias=None)
assert_size_stride(buf6, (4, 4, 4, 4), (64, 16, 4, 1))
buf5 = buf4
del buf4
buf7 = buf6
del buf6
buf8 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32)
buf9 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32)
triton_poi_fused_add_convolution_mul_rsub_tanh_3[grid(256)](buf5,
buf7, primals_5, primals_7, buf3, buf8, buf9, 256, XBLOCK=128,
num_warps=4, num_stages=1)
del primals_5
del primals_7
return (buf9, primals_1, primals_2, primals_4, primals_6, buf0, buf1,
buf3, reinterpret_tensor(buf3, (4, 4, 4, 4), (128, 16, 4, 1), 64),
buf5, buf7, buf8)
def one_param(m):
"""First parameter in `m`"""
return next(m.parameters())
class ConvGRUCellNew(nn.Module):
def __init__(self, input_dim, hidden_dim, kernel_size=(3, 3), bias=True,
activation=F.tanh, batchnorm=False):
"""
Initialize ConvGRU cell.
Parameters
----------
input_dim: int
Number of channels of input tensor.
hidden_dim: int
Number of channels of hidden state.
kernel_size: (int, int)
Size of the convolutional kernel.
bias: bool
Whether or not to add the bias.
"""
super().__init__()
self.input_dim = input_dim
self.hidden_dim = hidden_dim
self.kernel_size = kernel_size if isinstance(kernel_size, (tuple, list)
) else [kernel_size] * 2
self.padding = self.kernel_size[0] // 2, self.kernel_size[1] // 2
self.bias = bias
self.activation = activation
self.batchnorm = batchnorm
self.conv_zr = nn.Conv2d(in_channels=self.input_dim + self.
hidden_dim, out_channels=2 * self.hidden_dim, kernel_size=self.
kernel_size, padding=self.padding, bias=self.bias)
self.conv_h1 = nn.Conv2d(in_channels=self.input_dim, out_channels=
self.hidden_dim, kernel_size=self.kernel_size, padding=self.
padding, bias=self.bias)
self.conv_h2 = nn.Conv2d(in_channels=self.hidden_dim, out_channels=
self.hidden_dim, kernel_size=self.kernel_size, padding=self.
padding, bias=self.bias)
self.reset_parameters()
def init_hidden(self, input):
bs, _ch, h, w = input.shape
return one_param(self).new_zeros(bs, self.hidden_dim, h, w)
def reset_parameters(self):
nn.init.xavier_uniform_(self.conv_zr.weight, gain=nn.init.
calculate_gain('tanh'))
self.conv_zr.bias.data.zero_()
nn.init.xavier_uniform_(self.conv_h1.weight, gain=nn.init.
calculate_gain('tanh'))
self.conv_h1.bias.data.zero_()
nn.init.xavier_uniform_(self.conv_h2.weight, gain=nn.init.
calculate_gain('tanh'))
self.conv_h2.bias.data.zero_()
if self.batchnorm:
self.bn1.reset_parameters()
self.bn2.reset_parameters()
def forward(self, input_0):
primals_2 = self.conv_zr.weight
primals_3 = self.conv_zr.bias
primals_4 = self.conv_h1.weight
primals_5 = self.conv_h1.bias
primals_6 = self.conv_h2.weight
primals_7 = self.conv_h2.bias
primals_1 = input_0
output = call([primals_1, primals_2, primals_3, primals_4,
primals_5, primals_6, primals_7])
return output[0]
|
openclimatefix/MetNet
|
ConvGRUCell
| false | 7,388 |
[
"MIT"
] | 1 |
06eed550e93da6325641958b0d36c15adde1d928
|
https://github.com/openclimatefix/MetNet/tree/06eed550e93da6325641958b0d36c15adde1d928
|
Foo
|
import torch
import torch.nn.parallel
import torch.utils.data
import torch.onnx
import torch.fx
import torch.optim
import torch.utils.data.distributed
def add_lowp(a: 'torch.Tensor', b: 'torch.Tensor'):
a, b = a.float(), b.float()
c = a + b
return c.half()
def sigmoid_lowp(x: 'torch.Tensor'):
x = x.float()
x = x.sigmoid()
return x.half()
class Foo(torch.nn.Module):
def forward(self, x, y):
x = sigmoid_lowp(x)
y = sigmoid_lowp(y)
return add_lowp(x, y)
def get_inputs():
return [torch.rand([4, 4, 4, 4]), torch.rand([4, 4, 4, 4])]
def get_init_inputs():
return [[], {}]
|
import torch
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
import torch.nn.parallel
import torch.utils.data
import torch.onnx
import torch.fx
import torch.optim
import torch.utils.data.distributed
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
@triton.jit
def triton_poi_fused__to_copy_add_sigmoid_0(in_ptr0, in_ptr1, out_ptr0,
xnumel, XBLOCK: tl.constexpr):
xnumel = 256
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex
tmp0 = tl.load(in_ptr0 + x0, xmask)
tmp2 = tl.load(in_ptr1 + x0, xmask)
tmp1 = tl.sigmoid(tmp0)
tmp3 = tl.sigmoid(tmp2)
tmp4 = tmp1 + tmp3
tmp5 = tmp4.to(tl.float32)
tl.store(out_ptr0 + x0, tmp5, xmask)
def call(args):
arg0_1, arg1_1 = args
args.clear()
assert_size_stride(arg0_1, (4, 4, 4, 4), (64, 16, 4, 1))
assert_size_stride(arg1_1, (4, 4, 4, 4), (64, 16, 4, 1))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float16)
get_raw_stream(0)
triton_poi_fused__to_copy_add_sigmoid_0[grid(256)](arg0_1, arg1_1,
buf0, 256, XBLOCK=256, num_warps=4, num_stages=1)
del arg0_1
del arg1_1
return buf0,
def add_lowp(a: 'torch.Tensor', b: 'torch.Tensor'):
a, b = a.float(), b.float()
c = a + b
return c.half()
def sigmoid_lowp(x: 'torch.Tensor'):
x = x.float()
x = x.sigmoid()
return x.half()
class FooNew(torch.nn.Module):
def forward(self, input_0, input_1):
arg0_1 = input_0
arg1_1 = input_1
output = call([arg0_1, arg1_1])
return output[0]
|
goytoom/examples
|
Foo
| false | 12,460 |
[
"BSD-3-Clause"
] | 0 |
50b2a74dba897a1a98c8276043a3f5c6910c453a
|
https://github.com/goytoom/examples/tree/50b2a74dba897a1a98c8276043a3f5c6910c453a
|
ImageLinearAttention
|
import torch
import torch.nn as nn
import torch.utils.data
import torch.onnx.operators
import torch.optim
import torch.optim.lr_scheduler
class ImageLinearAttention(nn.Module):
def __init__(self, chan, chan_out=None, kernel_size=1, padding=0,
stride=1, key_dim=64, value_dim=64, heads=8):
super().__init__()
self.chan = chan
chan_out = chan if chan_out is None else chan_out
self.key_dim = key_dim
self.value_dim = value_dim
self.heads = heads
conv_kwargs = {'padding': padding, 'stride': stride}
self.to_q = nn.Conv2d(chan, key_dim * heads, kernel_size, **conv_kwargs
)
self.to_k = nn.Conv2d(chan, key_dim * heads, kernel_size, **conv_kwargs
)
self.to_v = nn.Conv2d(chan, value_dim * heads, kernel_size, **
conv_kwargs)
out_conv_kwargs = {'padding': padding}
self.to_out = nn.Conv2d(value_dim * heads, chan_out, kernel_size,
**out_conv_kwargs)
def forward(self, x, context=None):
b, c, h, w, k_dim, heads = *x.shape, self.key_dim, self.heads
q, k, v = self.to_q(x), self.to_k(x), self.to_v(x)
q, k, v = map(lambda t: t.reshape(b, heads, -1, h * w), (q, k, v))
q, k = map(lambda x: x * self.key_dim ** -0.25, (q, k))
if context is not None:
context = context.reshape(b, c, 1, -1)
ck, cv = self.to_k(context), self.to_v(context)
ck, cv = map(lambda t: t.reshape(b, heads, k_dim, -1), (ck, cv))
k = torch.cat((k, ck), dim=3)
v = torch.cat((v, cv), dim=3)
k = k.softmax(dim=2)
q = q.softmax(dim=2)
context = torch.einsum('bhdn,bhen->bhde', k, v)
out = torch.einsum('bhdn,bhde->bhen', q, context)
out = out.reshape(b, -1, h, w)
out = self.to_out(out)
return out
def get_inputs():
return [torch.rand([4, 4, 4, 4])]
def get_init_inputs():
return [[], {'chan': 4}]
|
import torch
from torch._inductor.select_algorithm import extern_kernels
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
from torch._inductor.runtime import triton_helpers
from torch._inductor.runtime.triton_helpers import math as tl_math
import torch.nn as nn
import torch.utils.data
import torch.onnx.operators
import torch.optim
import torch.optim.lr_scheduler
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
@triton.jit
def triton_poi_fused_0(in_ptr0, out_ptr0, ynumel, xnumel, YBLOCK: tl.
constexpr, XBLOCK: tl.constexpr):
ynumel = 16
xnumel = 16
yoffset = tl.program_id(1) * YBLOCK
yindex = yoffset + tl.arange(0, YBLOCK)[None, :]
ymask = yindex < ynumel
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:, None]
xmask = xindex < xnumel
x2 = xindex
y3 = yindex
y0 = yindex % 4
y1 = yindex // 4
tmp0 = tl.load(in_ptr0 + (x2 + 16 * y3), xmask & ymask)
tl.store(out_ptr0 + (y0 + 4 * x2 + 64 * y1), tmp0, xmask & ymask)
@triton.jit
def triton_per_fused__softmax_1(in_ptr0, in_ptr1, out_ptr0, out_ptr1,
xnumel, rnumel, XBLOCK: tl.constexpr):
xnumel = 512
RBLOCK: tl.constexpr = 64
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:, None]
xmask = xindex < xnumel
rindex = tl.arange(0, RBLOCK)[None, :]
tl.full([XBLOCK, RBLOCK], True, tl.int1)
r2 = rindex
x3 = xindex
x0 = xindex % 8
tmp0 = tl.load(in_ptr0 + (r2 + 64 * x3), xmask, other=0.0)
tmp1 = tl.load(in_ptr1 + (r2 + 64 * x0), xmask, eviction_policy=
'evict_last', other=0.0)
tmp2 = tmp0 + tmp1
tmp3 = 1.0
tmp4 = tmp2 * tmp3
tmp5 = tl.broadcast_to(tmp4, [XBLOCK, RBLOCK])
tmp7 = tl.where(xmask, tmp5, float('-inf'))
tmp8 = triton_helpers.max2(tmp7, 1)[:, None]
tmp9 = tmp4 - tmp8
tmp10 = 0.3535533905932738
tmp11 = tmp9 * tmp10
tmp12 = tl_math.exp(tmp11)
tmp13 = tl.broadcast_to(tmp12, [XBLOCK, RBLOCK])
tmp15 = tl.where(xmask, tmp13, 0)
tmp16 = tl.sum(tmp15, 1)[:, None]
tl.store(out_ptr0 + x3, tmp8, xmask)
tl.store(out_ptr1 + x3, tmp16, xmask)
@triton.jit
def triton_poi_fused__softmax_2(in_ptr0, in_ptr1, in_ptr2, in_ptr3,
out_ptr0, ynumel, xnumel, YBLOCK: tl.constexpr, XBLOCK: tl.constexpr):
ynumel = 32
xnumel = 1024
yoffset = tl.program_id(1) * YBLOCK
yindex = yoffset + tl.arange(0, YBLOCK)[None, :]
ymask = yindex < ynumel
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:, None]
xmask = xindex < xnumel
x2 = xindex % 16
x3 = xindex // 16
y0 = yindex % 8
y1 = yindex // 8
x4 = xindex
tmp0 = tl.load(in_ptr0 + (x3 + 64 * y0 + 512 * x2 + 8192 * y1), xmask &
ymask, eviction_policy='evict_last')
tmp1 = tl.load(in_ptr1 + (x3 + 64 * y0), xmask & ymask, eviction_policy
='evict_last')
tmp5 = tl.load(in_ptr2 + (y0 + 8 * x2 + 128 * y1), xmask & ymask,
eviction_policy='evict_last')
tmp10 = tl.load(in_ptr3 + (y0 + 8 * x2 + 128 * y1), xmask & ymask,
eviction_policy='evict_last')
tmp2 = tmp0 + tmp1
tmp3 = 1.0
tmp4 = tmp2 * tmp3
tmp6 = tmp4 - tmp5
tmp7 = 0.3535533905932738
tmp8 = tmp6 * tmp7
tmp9 = tl_math.exp(tmp8)
tmp11 = tmp9 / tmp10
tl.store(out_ptr0 + (y0 + 8 * x4 + 8192 * y1), tmp11, xmask & ymask)
@triton.jit
def triton_poi_fused_convolution_3(in_ptr0, in_ptr1, out_ptr0, ynumel,
xnumel, YBLOCK: tl.constexpr, XBLOCK: tl.constexpr):
xnumel = 16
yoffset = tl.program_id(1) * YBLOCK
yindex = yoffset + tl.arange(0, YBLOCK)[None, :]
tl.full([XBLOCK, YBLOCK], True, tl.int1)
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:, None]
xmask = xindex < xnumel
x2 = xindex
y0 = yindex % 512
y1 = yindex // 512
y3 = yindex
tmp0 = tl.load(in_ptr0 + (y0 + 512 * x2 + 8192 * y1), xmask,
eviction_policy='evict_last')
tmp1 = tl.load(in_ptr1 + y0, None, eviction_policy='evict_last')
tmp2 = tmp0 + tmp1
tl.store(out_ptr0 + (x2 + 16 * y3), tmp2, xmask)
@triton.jit
def triton_poi_fused_bmm_4(in_ptr0, out_ptr0, xnumel, XBLOCK: tl.constexpr):
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
tl.full([XBLOCK], True, tl.int1)
x0 = xindex % 32
x1 = xindex // 32
x2 = xindex
tmp0 = tl.load(in_ptr0 + (8 * x1 + 8192 * (x0 // 8) + x0 % 8), None)
tl.store(out_ptr0 + x2, tmp0, None)
@triton.jit
def triton_poi_fused__unsafe_view_clone_5(in_ptr0, out_ptr1, ynumel, xnumel,
YBLOCK: tl.constexpr, XBLOCK: tl.constexpr):
xnumel = 16
yoffset = tl.program_id(1) * YBLOCK
yindex = yoffset + tl.arange(0, YBLOCK)[None, :]
tl.full([XBLOCK, YBLOCK], True, tl.int1)
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:, None]
xmask = xindex < xnumel
x2 = xindex
y0 = yindex % 64
y1 = yindex // 64
y3 = yindex % 512
y4 = yindex // 512
tmp0 = tl.load(in_ptr0 + (y0 + 64 * x2 + 1024 * y1), xmask,
eviction_policy='evict_last')
tl.store(out_ptr1 + (y3 + 512 * x2 + 8192 * y4), tmp0, xmask)
@triton.jit
def triton_poi_fused_convolution_6(in_ptr0, in_ptr1, out_ptr0, ynumel,
xnumel, YBLOCK: tl.constexpr, XBLOCK: tl.constexpr):
ynumel = 16
xnumel = 16
yoffset = tl.program_id(1) * YBLOCK
yindex = yoffset + tl.arange(0, YBLOCK)[None, :]
ymask = yindex < ynumel
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:, None]
xmask = xindex < xnumel
x2 = xindex
y0 = yindex % 4
y1 = yindex // 4
y3 = yindex
tmp0 = tl.load(in_ptr0 + (y0 + 4 * x2 + 64 * y1), xmask & ymask)
tmp1 = tl.load(in_ptr1 + y0, ymask, eviction_policy='evict_last')
tmp2 = tmp0 + tmp1
tl.store(out_ptr0 + (x2 + 16 * y3), tmp2, xmask & ymask)
def call(args):
(primals_1, primals_2, primals_3, primals_4, primals_5, primals_6,
primals_7, primals_8, primals_9) = args
args.clear()
assert_size_stride(primals_1, (4, 4, 4, 4), (64, 16, 4, 1))
assert_size_stride(primals_2, (512, 4, 1, 1), (4, 1, 1, 1))
assert_size_stride(primals_3, (512,), (1,))
assert_size_stride(primals_4, (512, 4, 1, 1), (4, 1, 1, 1))
assert_size_stride(primals_5, (512,), (1,))
assert_size_stride(primals_6, (512, 4, 1, 1), (4, 1, 1, 1))
assert_size_stride(primals_7, (512,), (1,))
assert_size_stride(primals_8, (4, 512, 1, 1), (512, 1, 1, 1))
assert_size_stride(primals_9, (4,), (1,))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((4, 4, 4, 4), (64, 1, 16, 4), torch.float32)
get_raw_stream(0)
triton_poi_fused_0[grid(16, 16)](primals_1, buf0, 16, 16, XBLOCK=16,
YBLOCK=16, num_warps=4, num_stages=1)
del primals_1
buf1 = extern_kernels.convolution(buf0, primals_2, stride=(1, 1),
padding=(0, 0), dilation=(1, 1), transposed=False,
output_padding=(0, 0), groups=1, bias=None)
assert_size_stride(buf1, (4, 512, 4, 4), (8192, 1, 2048, 512))
buf2 = extern_kernels.convolution(buf0, primals_4, stride=(1, 1),
padding=(0, 0), dilation=(1, 1), transposed=False,
output_padding=(0, 0), groups=1, bias=None)
assert_size_stride(buf2, (4, 512, 4, 4), (8192, 1, 2048, 512))
buf3 = extern_kernels.convolution(buf0, primals_6, stride=(1, 1),
padding=(0, 0), dilation=(1, 1), transposed=False,
output_padding=(0, 0), groups=1, bias=None)
assert_size_stride(buf3, (4, 512, 4, 4), (8192, 1, 2048, 512))
buf4 = empty_strided_cuda((4, 8, 1, 16), (128, 1, 512, 8), torch.
float32)
buf5 = empty_strided_cuda((4, 8, 1, 16), (128, 1, 512, 8), torch.
float32)
triton_per_fused__softmax_1[grid(512)](buf2, primals_5, buf4, buf5,
512, 64, XBLOCK=8, num_warps=4, num_stages=1)
buf6 = empty_strided_cuda((4, 8, 64, 16), (8192, 1, 128, 8), torch.
float32)
triton_poi_fused__softmax_2[grid(32, 1024)](buf2, primals_5, buf4,
buf5, buf6, 32, 1024, XBLOCK=256, YBLOCK=1, num_warps=4,
num_stages=1)
del primals_5
buf7 = buf5
del buf5
buf8 = buf4
del buf4
triton_per_fused__softmax_1[grid(512)](buf1, primals_3, buf7, buf8,
512, 64, XBLOCK=8, num_warps=4, num_stages=1)
buf9 = reinterpret_tensor(buf2, (4, 8, 64, 16), (8192, 1, 128, 8), 0)
del buf2
triton_poi_fused__softmax_2[grid(32, 1024)](buf1, primals_3, buf7,
buf8, buf9, 32, 1024, XBLOCK=256, YBLOCK=1, num_warps=4,
num_stages=1)
del buf7
del buf8
del primals_3
buf10 = reinterpret_tensor(buf1, (4, 512, 4, 4), (8192, 16, 4, 1), 0)
del buf1
triton_poi_fused_convolution_3[grid(2048, 16)](buf3, primals_7,
buf10, 2048, 16, XBLOCK=1, YBLOCK=256, num_warps=4, num_stages=1)
del primals_7
buf11 = reinterpret_tensor(buf3, (32, 64, 16), (1, 512, 32), 0)
del buf3
triton_poi_fused_bmm_4[grid(32768)](buf6, buf11, 32768, XBLOCK=256,
num_warps=4, num_stages=1)
buf12 = empty_strided_cuda((32, 64, 64), (4096, 64, 1), torch.float32)
extern_kernels.bmm(buf11, reinterpret_tensor(buf10, (32, 16, 64), (
1024, 1, 16), 0), out=buf12)
buf13 = reinterpret_tensor(buf11, (32, 16, 64), (1, 32, 512), 0)
del buf11
triton_poi_fused_bmm_4[grid(32768)](buf9, buf13, 32768, XBLOCK=256,
num_warps=4, num_stages=1)
buf14 = empty_strided_cuda((32, 16, 64), (1024, 64, 1), torch.float32)
extern_kernels.bmm(buf13, buf12, out=buf14)
buf16 = reinterpret_tensor(buf13, (4, 512, 4, 4), (8192, 1, 2048,
512), 0)
del buf13
triton_poi_fused__unsafe_view_clone_5[grid(2048, 16)](buf14, buf16,
2048, 16, XBLOCK=16, YBLOCK=64, num_warps=4, num_stages=1)
del buf14
buf17 = extern_kernels.convolution(buf16, primals_8, stride=(1, 1),
padding=(0, 0), dilation=(1, 1), transposed=False,
output_padding=(0, 0), groups=1, bias=None)
assert_size_stride(buf17, (4, 4, 4, 4), (64, 1, 16, 4))
buf18 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32)
triton_poi_fused_convolution_6[grid(16, 16)](buf17, primals_9,
buf18, 16, 16, XBLOCK=16, YBLOCK=16, num_warps=4, num_stages=1)
del buf17
del primals_9
return (buf18, buf0, primals_2, primals_4, primals_6, primals_8, buf6,
buf9, buf16, reinterpret_tensor(buf12, (32, 64, 64), (4096, 1, 64),
0), reinterpret_tensor(buf10, (32, 64, 16), (1024, 16, 1), 0))
class ImageLinearAttentionNew(nn.Module):
def __init__(self, chan, chan_out=None, kernel_size=1, padding=0,
stride=1, key_dim=64, value_dim=64, heads=8):
super().__init__()
self.chan = chan
chan_out = chan if chan_out is None else chan_out
self.key_dim = key_dim
self.value_dim = value_dim
self.heads = heads
conv_kwargs = {'padding': padding, 'stride': stride}
self.to_q = nn.Conv2d(chan, key_dim * heads, kernel_size, **conv_kwargs
)
self.to_k = nn.Conv2d(chan, key_dim * heads, kernel_size, **conv_kwargs
)
self.to_v = nn.Conv2d(chan, value_dim * heads, kernel_size, **
conv_kwargs)
out_conv_kwargs = {'padding': padding}
self.to_out = nn.Conv2d(value_dim * heads, chan_out, kernel_size,
**out_conv_kwargs)
def forward(self, input_0):
primals_2 = self.to_q.weight
primals_3 = self.to_q.bias
primals_4 = self.to_k.weight
primals_5 = self.to_k.bias
primals_6 = self.to_v.weight
primals_7 = self.to_v.bias
primals_8 = self.to_out.weight
primals_9 = self.to_out.bias
primals_1 = input_0
output = call([primals_1, primals_2, primals_3, primals_4,
primals_5, primals_6, primals_7, primals_8, primals_9])
return output[0]
|
CUMLSec/stateformer
|
ImageLinearAttention
| false | 7,916 |
[
"MIT"
] | 41 |
87cb3c906c43fcff42b2ca820eb6e7fd918d0a1c
|
https://github.com/CUMLSec/stateformer/tree/87cb3c906c43fcff42b2ca820eb6e7fd918d0a1c
|
SyntacticGCN
|
# AOT ID: ['0_forward']
from ctypes import c_void_p, c_long, c_int
import torch
import math
import random
import os
import tempfile
from math import inf, nan
from torch._inductor.hooks import run_intermediate_hooks
from torch._inductor.utils import maybe_profile
from torch._inductor.codegen.memory_planning import _align as align
from torch import device, empty_strided
from torch._inductor.async_compile import AsyncCompile
from torch._inductor.select_algorithm import extern_kernels
from torch._inductor.codegen.multi_kernel import MultiKernelCall
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
aten = torch.ops.aten
inductor_ops = torch.ops.inductor
_quantized = torch.ops._quantized
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
alloc_from_pool = torch.ops.inductor._alloc_from_pool
async_compile = AsyncCompile()
# kernel path: runs/run_shard_2/inductor_cache/qo/cqohgshabkxbfecv5yze7hpj7fgq55zcx3d52r5tyzac2rqzwjbv.py
# Topologically Sorted Source Nodes: [contiguous], Original ATen: [aten.clone]
# Source node to ATen node mapping:
# contiguous => clone
# Graph fragment:
# %clone : [num_users=1] = call_function[target=torch.ops.aten.clone.default](args = (%permute,), kwargs = {memory_format: torch.contiguous_format})
triton_poi_fused_clone_0 = async_compile.triton('triton_poi_fused_clone_0', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[64, 4], tile_hint=TileHint.SQUARE,
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=90, major=9, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=132), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_clone_0', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 1, 'num_reduction': 0, 'backend_hash': 'B098E03CDA7B8ADC90DAFFDF24A2956451D1B13F297756A5DCC209498AA53705', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_clone_0(in_ptr0, out_ptr0, ynumel, xnumel, YBLOCK : tl.constexpr, XBLOCK : tl.constexpr):
ynumel = 64
xnumel = 4
yoffset = tl.program_id(1) * YBLOCK
yindex = yoffset + tl.arange(0, YBLOCK)[None, :]
ymask = yindex < ynumel
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:, None]
xmask = xindex < xnumel
x2 = xindex
y0 = yindex % 4
y1 = (yindex // 4)
y3 = yindex
tmp0 = tl.load(in_ptr0 + (y0 + (4*x2) + (16*y1)), xmask & ymask, eviction_policy='evict_last')
tl.store(out_ptr0 + (x2 + (4*y3)), tmp0, xmask & ymask)
''', device_str='cuda')
# kernel path: runs/run_shard_2/inductor_cache/bh/cbhyigir27j5v2tnx3qq34bwa24y7wh5kkfpnzwvmhjhqulidgaf.py
# Topologically Sorted Source Nodes: [sum_2, norm], Original ATen: [aten.sum, aten.add]
# Source node to ATen node mapping:
# norm => add_1
# sum_2 => sum_2
# Graph fragment:
# %sum_2 : [num_users=1] = call_function[target=torch.ops.aten.sum.dim_IntList](args = (%view_7, [-1]), kwargs = {})
# %add_1 : [num_users=2] = call_function[target=torch.ops.aten.add.Tensor](args = (%unsqueeze, 1e-10), kwargs = {})
triton_per_fused_add_sum_1 = async_compile.triton('triton_per_fused_add_sum_1', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.persistent_reduction(
size_hints=[16, 16],
reduction_hint=ReductionHint.INNER,
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=90, major=9, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=132), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_per_fused_add_sum_1', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 1, 'num_reduction': 1, 'backend_hash': 'B098E03CDA7B8ADC90DAFFDF24A2956451D1B13F297756A5DCC209498AA53705', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}
)
@triton.jit
def triton_per_fused_add_sum_1(in_out_ptr0, in_ptr0, xnumel, rnumel, XBLOCK : tl.constexpr):
xnumel = 16
rnumel = 16
RBLOCK: tl.constexpr = 16
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:, None]
xmask = xindex < xnumel
rindex = tl.arange(0, RBLOCK)[None, :]
roffset = 0
rmask = tl.full([XBLOCK, RBLOCK], True, tl.int1)
r1 = rindex
x0 = xindex
tmp0 = tl.load(in_ptr0 + (r1 + (16*x0)), xmask, other=0.0)
tmp1 = tl.broadcast_to(tmp0, [XBLOCK, RBLOCK])
tmp3 = tl.where(xmask, tmp1, 0)
tmp4 = tl.sum(tmp3, 1)[:, None]
tmp5 = 1e-10
tmp6 = tmp4 + tmp5
tl.debug_barrier()
tl.store(in_out_ptr0 + (x0), tmp6, xmask)
''', device_str='cuda')
# kernel path: runs/run_shard_2/inductor_cache/d4/cd4udfz5j26t4dw5ohy7dvtv73kki7w32xe7bu7y5ptiuidlojz6.py
# Topologically Sorted Source Nodes: [bias_1, h_1, truediv, hidden], Original ATen: [aten.sum, aten.add, aten.div, aten.relu, aten.threshold_backward]
# Source node to ATen node mapping:
# bias_1 => sum_1
# h_1 => add
# hidden => relu
# truediv => div
# Graph fragment:
# %sum_1 : [num_users=1] = call_function[target=torch.ops.aten.sum.dim_IntList](args = (%view_6, [2]), kwargs = {})
# %add : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%view_4, %sum_1), kwargs = {})
# %div : [num_users=1] = call_function[target=torch.ops.aten.div.Tensor](args = (%add, %add_1), kwargs = {})
# %relu : [num_users=2] = call_function[target=torch.ops.aten.relu.default](args = (%div,), kwargs = {})
# %le : [num_users=1] = call_function[target=torch.ops.aten.le.Scalar](args = (%relu, 0), kwargs = {})
triton_poi_fused_add_div_relu_sum_threshold_backward_2 = async_compile.triton('triton_poi_fused_add_div_relu_sum_threshold_backward_2', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[64],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: '*i1', 4: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=90, major=9, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=132), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3, 4), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_add_div_relu_sum_threshold_backward_2', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 6, 'num_reduction': 0, 'backend_hash': 'B098E03CDA7B8ADC90DAFFDF24A2956451D1B13F297756A5DCC209498AA53705', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_add_div_relu_sum_threshold_backward_2(in_out_ptr0, in_ptr0, in_ptr1, out_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 64
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x2 = xindex
x0 = xindex % 4
x1 = (xindex // 4)
tmp0 = tl.load(in_out_ptr0 + (x2), xmask)
tmp1 = tl.load(in_ptr0 + (x0 + (16*x1)), xmask)
tmp2 = tl.load(in_ptr0 + (4 + x0 + (16*x1)), xmask)
tmp4 = tl.load(in_ptr0 + (8 + x0 + (16*x1)), xmask)
tmp6 = tl.load(in_ptr0 + (12 + x0 + (16*x1)), xmask)
tmp9 = tl.load(in_ptr1 + (x1), xmask, eviction_policy='evict_last')
tmp3 = tmp1 + tmp2
tmp5 = tmp3 + tmp4
tmp7 = tmp5 + tmp6
tmp8 = tmp0 + tmp7
tmp10 = tmp8 / tmp9
tmp11 = tl.full([1], 0, tl.int32)
tmp12 = triton_helpers.maximum(tmp11, tmp10)
tmp13 = 0.0
tmp14 = tmp12 <= tmp13
tl.store(in_out_ptr0 + (x2), tmp12, xmask)
tl.store(out_ptr0 + (x2), tmp14, xmask)
''', device_str='cuda')
async_compile.wait(globals())
del async_compile
def call(args):
primals_1, primals_2, primals_3, primals_4 = args
args.clear()
assert_size_stride(primals_1, (4, 4, 4), (16, 4, 1))
assert_size_stride(primals_2, (4, 4, 4, 4), (64, 16, 4, 1))
assert_size_stride(primals_3, (4, 4, 4), (16, 4, 1))
assert_size_stride(primals_4, (4, 4), (4, 1))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32)
# Topologically Sorted Source Nodes: [contiguous], Original ATen: [aten.clone]
stream0 = get_raw_stream(0)
triton_poi_fused_clone_0.run(primals_2, buf0, 64, 4, grid=grid(64, 4), stream=stream0)
buf1 = empty_strided_cuda((4, 16, 4), (64, 4, 1), torch.float32)
# Topologically Sorted Source Nodes: [bmm], Original ATen: [aten.bmm]
extern_kernels.bmm(reinterpret_tensor(buf0, (4, 16, 4), (64, 4, 1), 0), primals_1, out=buf1)
del primals_1
buf2 = empty_strided_cuda((16, 4), (4, 1), torch.float32)
# Topologically Sorted Source Nodes: [h], Original ATen: [aten.mm]
extern_kernels.mm(reinterpret_tensor(buf1, (16, 16), (16, 1), 0), reinterpret_tensor(primals_3, (16, 4), (4, 1), 0), out=buf2)
del primals_3
buf3 = reinterpret_tensor(buf0, (64, 4), (4, 1), 0); del buf0 # reuse
# Topologically Sorted Source Nodes: [matmul_1], Original ATen: [aten.mm]
extern_kernels.mm(reinterpret_tensor(primals_2, (64, 4), (4, 1), 0), primals_4, out=buf3)
del primals_4
buf4 = empty_strided_cuda((4, 4), (4, 1), torch.float32)
buf5 = reinterpret_tensor(buf4, (4, 4, 1), (4, 1, 1), 0); del buf4 # reuse
# Topologically Sorted Source Nodes: [sum_2, norm], Original ATen: [aten.sum, aten.add]
triton_per_fused_add_sum_1.run(buf5, primals_2, 16, 16, grid=grid(16), stream=stream0)
buf6 = reinterpret_tensor(buf2, (4, 4, 4), (16, 4, 1), 0); del buf2 # reuse
buf7 = empty_strided_cuda((4, 4, 4), (16, 4, 1), torch.bool)
# Topologically Sorted Source Nodes: [bias_1, h_1, truediv, hidden], Original ATen: [aten.sum, aten.add, aten.div, aten.relu, aten.threshold_backward]
triton_poi_fused_add_div_relu_sum_threshold_backward_2.run(buf6, buf3, buf5, buf7, 64, grid=grid(64), stream=stream0)
del buf3
return (buf6, buf5, buf7, reinterpret_tensor(primals_2, (4, 64), (1, 4), 0), reinterpret_tensor(buf1, (16, 16), (1, 16), 0), )
def benchmark_compiled_module(times=10, repeat=10):
from torch._dynamo.testing import rand_strided
from torch._inductor.utils import print_performance
primals_1 = rand_strided((4, 4, 4), (16, 4, 1), device='cuda:0', dtype=torch.float32)
primals_2 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32)
primals_3 = rand_strided((4, 4, 4), (16, 4, 1), device='cuda:0', dtype=torch.float32)
primals_4 = rand_strided((4, 4), (4, 1), device='cuda:0', dtype=torch.float32)
fn = lambda: call([primals_1, primals_2, primals_3, primals_4])
return print_performance(fn, times=times, repeat=repeat)
if __name__ == "__main__":
from torch._inductor.wrapper_benchmark import compiled_module_main
compiled_module_main('None', benchmark_compiled_module)
|
import torch
from torch._inductor.select_algorithm import extern_kernels
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
from torch._inductor.runtime import triton_helpers
import torch.nn as nn
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
@triton.jit
def triton_poi_fused_clone_0(in_ptr0, out_ptr0, ynumel, xnumel, YBLOCK: tl.
constexpr, XBLOCK: tl.constexpr):
ynumel = 64
xnumel = 4
yoffset = tl.program_id(1) * YBLOCK
yindex = yoffset + tl.arange(0, YBLOCK)[None, :]
ymask = yindex < ynumel
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:, None]
xmask = xindex < xnumel
x2 = xindex
y0 = yindex % 4
y1 = yindex // 4
y3 = yindex
tmp0 = tl.load(in_ptr0 + (y0 + 4 * x2 + 16 * y1), xmask & ymask,
eviction_policy='evict_last')
tl.store(out_ptr0 + (x2 + 4 * y3), tmp0, xmask & ymask)
@triton.jit
def triton_per_fused_add_sum_1(in_out_ptr0, in_ptr0, xnumel, rnumel, XBLOCK:
tl.constexpr):
xnumel = 16
RBLOCK: tl.constexpr = 16
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:, None]
xmask = xindex < xnumel
rindex = tl.arange(0, RBLOCK)[None, :]
tl.full([XBLOCK, RBLOCK], True, tl.int1)
r1 = rindex
x0 = xindex
tmp0 = tl.load(in_ptr0 + (r1 + 16 * x0), xmask, other=0.0)
tmp1 = tl.broadcast_to(tmp0, [XBLOCK, RBLOCK])
tmp3 = tl.where(xmask, tmp1, 0)
tmp4 = tl.sum(tmp3, 1)[:, None]
tmp5 = 1e-10
tmp6 = tmp4 + tmp5
tl.debug_barrier()
tl.store(in_out_ptr0 + x0, tmp6, xmask)
@triton.jit
def triton_poi_fused_add_div_relu_sum_threshold_backward_2(in_out_ptr0,
in_ptr0, in_ptr1, out_ptr0, xnumel, XBLOCK: tl.constexpr):
xnumel = 64
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x2 = xindex
x0 = xindex % 4
x1 = xindex // 4
tmp0 = tl.load(in_out_ptr0 + x2, xmask)
tmp1 = tl.load(in_ptr0 + (x0 + 16 * x1), xmask)
tmp2 = tl.load(in_ptr0 + (4 + x0 + 16 * x1), xmask)
tmp4 = tl.load(in_ptr0 + (8 + x0 + 16 * x1), xmask)
tmp6 = tl.load(in_ptr0 + (12 + x0 + 16 * x1), xmask)
tmp9 = tl.load(in_ptr1 + x1, xmask, eviction_policy='evict_last')
tmp3 = tmp1 + tmp2
tmp5 = tmp3 + tmp4
tmp7 = tmp5 + tmp6
tmp8 = tmp0 + tmp7
tmp10 = tmp8 / tmp9
tmp11 = tl.full([1], 0, tl.int32)
tmp12 = triton_helpers.maximum(tmp11, tmp10)
tmp13 = 0.0
tmp14 = tmp12 <= tmp13
tl.store(in_out_ptr0 + x2, tmp12, xmask)
tl.store(out_ptr0 + x2, tmp14, xmask)
def call(args):
primals_1, primals_2, primals_3, primals_4 = args
args.clear()
assert_size_stride(primals_1, (4, 4, 4), (16, 4, 1))
assert_size_stride(primals_2, (4, 4, 4, 4), (64, 16, 4, 1))
assert_size_stride(primals_3, (4, 4, 4), (16, 4, 1))
assert_size_stride(primals_4, (4, 4), (4, 1))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32)
get_raw_stream(0)
triton_poi_fused_clone_0[grid(64, 4)](primals_2, buf0, 64, 4,
XBLOCK=4, YBLOCK=32, num_warps=4, num_stages=1)
buf1 = empty_strided_cuda((4, 16, 4), (64, 4, 1), torch.float32)
extern_kernels.bmm(reinterpret_tensor(buf0, (4, 16, 4), (64, 4, 1),
0), primals_1, out=buf1)
del primals_1
buf2 = empty_strided_cuda((16, 4), (4, 1), torch.float32)
extern_kernels.mm(reinterpret_tensor(buf1, (16, 16), (16, 1), 0),
reinterpret_tensor(primals_3, (16, 4), (4, 1), 0), out=buf2)
del primals_3
buf3 = reinterpret_tensor(buf0, (64, 4), (4, 1), 0)
del buf0
extern_kernels.mm(reinterpret_tensor(primals_2, (64, 4), (4, 1), 0),
primals_4, out=buf3)
del primals_4
buf4 = empty_strided_cuda((4, 4), (4, 1), torch.float32)
buf5 = reinterpret_tensor(buf4, (4, 4, 1), (4, 1, 1), 0)
del buf4
triton_per_fused_add_sum_1[grid(16)](buf5, primals_2, 16, 16,
XBLOCK=8, num_warps=2, num_stages=1)
buf6 = reinterpret_tensor(buf2, (4, 4, 4), (16, 4, 1), 0)
del buf2
buf7 = empty_strided_cuda((4, 4, 4), (16, 4, 1), torch.bool)
triton_poi_fused_add_div_relu_sum_threshold_backward_2[grid(64)](buf6,
buf3, buf5, buf7, 64, XBLOCK=64, num_warps=1, num_stages=1)
del buf3
return buf6, buf5, buf7, reinterpret_tensor(primals_2, (4, 64), (1, 4), 0
), reinterpret_tensor(buf1, (16, 16), (1, 16), 0)
class SyntacticGCNNew(nn.Module):
def __init__(self, input_size, hidden_size, num_labels, bias=True):
super(SyntacticGCNNew, self).__init__()
self.input_size = input_size
self.hidden_size = hidden_size
self.num_labels = num_labels
self.W = nn.Parameter(torch.empty(num_labels, input_size,
hidden_size, dtype=torch.float))
nn.init.xavier_normal_(self.W)
if bias:
self.bias = True
self.b = nn.Parameter(torch.empty(num_labels, hidden_size,
dtype=torch.float))
nn.init.xavier_normal_(self.b)
def forward(self, input_0, input_1):
primals_1 = self.W
primals_4 = self.b
primals_2 = input_0
primals_3 = input_1
output = call([primals_1, primals_2, primals_3, primals_4])
return output[0]
|
NLP-Discourse-SoochowU/TDDiscourseParser
|
SyntacticGCN
| false | 17,732 |
[
"Apache-2.0"
] | 9 |
2f9c7cef85c564c47b368ee4935caf1fad7c598d
|
https://github.com/NLP-Discourse-SoochowU/TDDiscourseParser/tree/2f9c7cef85c564c47b368ee4935caf1fad7c598d
|
AvgReducePool1d
|
# AOT ID: ['0_inference']
from ctypes import c_void_p, c_long, c_int
import torch
import math
import random
import os
import tempfile
from math import inf, nan
from torch._inductor.hooks import run_intermediate_hooks
from torch._inductor.utils import maybe_profile
from torch._inductor.codegen.memory_planning import _align as align
from torch import device, empty_strided
from torch._inductor.async_compile import AsyncCompile
from torch._inductor.select_algorithm import extern_kernels
from torch._inductor.codegen.multi_kernel import MultiKernelCall
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
aten = torch.ops.aten
inductor_ops = torch.ops.inductor
_quantized = torch.ops._quantized
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
alloc_from_pool = torch.ops.inductor._alloc_from_pool
async_compile = AsyncCompile()
# kernel path: runs/run_shard_4/inductor_cache/jn/cjnv5uptstyk4xaisuiw5kf5lbz3m33meejxhbfbsta5ozps7ijn.py
# Topologically Sorted Source Nodes: [mean], Original ATen: [aten.mean]
# Source node to ATen node mapping:
# mean => mean
# Graph fragment:
# %mean : [num_users=1] = call_function[target=torch.ops.aten.mean.dim](args = (%arg0_1, [2]), kwargs = {})
triton_poi_fused_mean_0 = async_compile.triton('triton_poi_fused_mean_0', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[64],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_mean_0', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 4, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_mean_0(in_ptr0, out_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 64
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex % 4
x1 = (xindex // 4)
x2 = xindex
tmp0 = tl.load(in_ptr0 + (x0 + (16*x1)), xmask)
tmp1 = tl.load(in_ptr0 + (4 + x0 + (16*x1)), xmask)
tmp3 = tl.load(in_ptr0 + (8 + x0 + (16*x1)), xmask)
tmp5 = tl.load(in_ptr0 + (12 + x0 + (16*x1)), xmask)
tmp2 = tmp0 + tmp1
tmp4 = tmp2 + tmp3
tmp6 = tmp4 + tmp5
tmp7 = 4.0
tmp8 = tmp6 / tmp7
tl.store(out_ptr0 + (x2), tmp8, xmask)
''', device_str='cuda')
async_compile.wait(globals())
del async_compile
def call(args):
arg0_1, = args
args.clear()
assert_size_stride(arg0_1, (4, 4, 4, 4), (64, 16, 4, 1))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((4, 4, 4), (16, 4, 1), torch.float32)
# Topologically Sorted Source Nodes: [mean], Original ATen: [aten.mean]
stream0 = get_raw_stream(0)
triton_poi_fused_mean_0.run(arg0_1, buf0, 64, grid=grid(64), stream=stream0)
del arg0_1
return (buf0, )
def benchmark_compiled_module(times=10, repeat=10):
from torch._dynamo.testing import rand_strided
from torch._inductor.utils import print_performance
arg0_1 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32)
fn = lambda: call([arg0_1])
return print_performance(fn, times=times, repeat=repeat)
if __name__ == "__main__":
from torch._inductor.wrapper_benchmark import compiled_module_main
compiled_module_main('None', benchmark_compiled_module)
|
import torch
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
from torch import nn
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
@triton.jit
def triton_poi_fused_mean_0(in_ptr0, out_ptr0, xnumel, XBLOCK: tl.constexpr):
xnumel = 64
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex % 4
x1 = xindex // 4
x2 = xindex
tmp0 = tl.load(in_ptr0 + (x0 + 16 * x1), xmask)
tmp1 = tl.load(in_ptr0 + (4 + x0 + 16 * x1), xmask)
tmp3 = tl.load(in_ptr0 + (8 + x0 + 16 * x1), xmask)
tmp5 = tl.load(in_ptr0 + (12 + x0 + 16 * x1), xmask)
tmp2 = tmp0 + tmp1
tmp4 = tmp2 + tmp3
tmp6 = tmp4 + tmp5
tmp7 = 4.0
tmp8 = tmp6 / tmp7
tl.store(out_ptr0 + x2, tmp8, xmask)
def call(args):
arg0_1, = args
args.clear()
assert_size_stride(arg0_1, (4, 4, 4, 4), (64, 16, 4, 1))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((4, 4, 4), (16, 4, 1), torch.float32)
get_raw_stream(0)
triton_poi_fused_mean_0[grid(64)](arg0_1, buf0, 64, XBLOCK=64,
num_warps=1, num_stages=1)
del arg0_1
return buf0,
class AvgReducePool1dNew(nn.Module):
"""A subclass of :torch_nn:`Module`.
Avg Pool layer for 1D inputs. The same as :torch_nn:`AvgPool1d` except that
the pooling dimension is entirely reduced (i.e., `pool_size=input_length`).
"""
def forward(self, input_0):
arg0_1 = input_0
output = call([arg0_1])
return output[0]
|
atif93/texar-pytorch
|
AvgReducePool1d
| false | 6,256 |
[
"Apache-2.0"
] | 1 |
88163619ec69382e1bbe57fa8bce06260bfc76a2
|
https://github.com/atif93/texar-pytorch/tree/88163619ec69382e1bbe57fa8bce06260bfc76a2
|
Pow
|
import torch
import torch.nn as nn
class Pow(nn.Module):
def __init__(self):
super(Pow, self).__init__()
def forward(self, x):
x = torch.pow(x, 2)
return x
def get_inputs():
return [torch.rand([4, 4, 4, 4])]
def get_init_inputs():
return [[], {}]
|
import torch
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
import torch.nn as nn
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
@triton.jit
def triton_poi_fused_pow_0(in_ptr0, out_ptr0, xnumel, XBLOCK: tl.constexpr):
xnumel = 256
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex
tmp0 = tl.load(in_ptr0 + x0, xmask)
tmp1 = tmp0 * tmp0
tl.store(out_ptr0 + x0, tmp1, xmask)
def call(args):
arg0_1, = args
args.clear()
assert_size_stride(arg0_1, (4, 4, 4, 4), (64, 16, 4, 1))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32)
get_raw_stream(0)
triton_poi_fused_pow_0[grid(256)](arg0_1, buf0, 256, XBLOCK=256,
num_warps=4, num_stages=1)
del arg0_1
return buf0,
class PowNew(nn.Module):
def __init__(self):
super(PowNew, self).__init__()
def forward(self, input_0):
arg0_1 = input_0
output = call([arg0_1])
return output[0]
|
yifanpu001/PytorchToCaffe
|
Pow
| false | 4,706 |
[
"MIT"
] | 0 |
37c1ebfc3547e93b1c174721036d03c831c60e48
|
https://github.com/yifanpu001/PytorchToCaffe/tree/37c1ebfc3547e93b1c174721036d03c831c60e48
|
FFN
|
# AOT ID: ['0_forward']
from ctypes import c_void_p, c_long, c_int
import torch
import math
import random
import os
import tempfile
from math import inf, nan
from torch._inductor.hooks import run_intermediate_hooks
from torch._inductor.utils import maybe_profile
from torch._inductor.codegen.memory_planning import _align as align
from torch import device, empty_strided
from torch._inductor.async_compile import AsyncCompile
from torch._inductor.select_algorithm import extern_kernels
from torch._inductor.codegen.multi_kernel import MultiKernelCall
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
aten = torch.ops.aten
inductor_ops = torch.ops.inductor
_quantized = torch.ops._quantized
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
alloc_from_pool = torch.ops.inductor._alloc_from_pool
async_compile = AsyncCompile()
# kernel path: runs/run_shard_1/inductor_cache/bd/cbduotww6g26wdmt5yfjwhvuxzgqdj5iruwl7243lu6a6n3zngvd.py
# Topologically Sorted Source Nodes: [x], Original ATen: [aten.relu, aten.threshold_backward]
# Source node to ATen node mapping:
# x => relu
# Graph fragment:
# %relu : [num_users=2] = call_function[target=torch.ops.aten.relu.default](args = (%view_1,), kwargs = {})
# %le : [num_users=1] = call_function[target=torch.ops.aten.le.Scalar](args = (%relu, 0), kwargs = {})
triton_poi_fused_relu_threshold_backward_0 = async_compile.triton('triton_poi_fused_relu_threshold_backward_0', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[65536],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*i1', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=90, major=9, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=132), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_relu_threshold_backward_0', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'B098E03CDA7B8ADC90DAFFDF24A2956451D1B13F297756A5DCC209498AA53705', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_relu_threshold_backward_0(in_out_ptr0, in_ptr0, out_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 65536
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = tl.full([XBLOCK], True, tl.int1)
x2 = xindex
x0 = xindex % 1024
tmp0 = tl.load(in_out_ptr0 + (x2), None)
tmp1 = tl.load(in_ptr0 + (x0), None, eviction_policy='evict_last')
tmp2 = tmp0 + tmp1
tmp3 = tl.full([1], 0, tl.int32)
tmp4 = triton_helpers.maximum(tmp3, tmp2)
tmp5 = 0.0
tmp6 = tmp4 <= tmp5
tl.store(in_out_ptr0 + (x2), tmp4, None)
tl.store(out_ptr0 + (x2), tmp6, None)
''', device_str='cuda')
# kernel path: runs/run_shard_1/inductor_cache/73/c73p25bg4gzolv74it3pjxyaghcte7isngnfh2aepp2b2edipdaa.py
# Topologically Sorted Source Nodes: [mul], Original ATen: [aten.mul]
# Source node to ATen node mapping:
# mul => mul
# Graph fragment:
# %mul : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%view_3, %primals_6), kwargs = {})
triton_poi_fused_mul_1 = async_compile.triton('triton_poi_fused_mul_1', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[256],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=90, major=9, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=132), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_mul_1', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 3, 'num_reduction': 0, 'backend_hash': 'B098E03CDA7B8ADC90DAFFDF24A2956451D1B13F297756A5DCC209498AA53705', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_mul_1(in_out_ptr0, in_ptr0, in_ptr1, xnumel, XBLOCK : tl.constexpr):
xnumel = 256
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x2 = xindex
x0 = xindex % 4
tmp0 = tl.load(in_out_ptr0 + (x2), xmask)
tmp1 = tl.load(in_ptr0 + (x0), xmask, eviction_policy='evict_last')
tmp3 = tl.load(in_ptr1 + (x2), xmask)
tmp2 = tmp0 + tmp1
tmp4 = tmp2 * tmp3
tl.store(in_out_ptr0 + (x2), tmp4, xmask)
''', device_str='cuda')
async_compile.wait(globals())
del async_compile
def call(args):
primals_1, primals_2, primals_3, primals_4, primals_5, primals_6 = args
args.clear()
assert_size_stride(primals_1, (1024, 4), (4, 1))
assert_size_stride(primals_2, (1024, ), (1, ))
assert_size_stride(primals_3, (4, 4, 4, 4), (64, 16, 4, 1))
assert_size_stride(primals_4, (4, 1024), (1024, 1))
assert_size_stride(primals_5, (4, ), (1, ))
assert_size_stride(primals_6, (4, 4, 4, 4), (64, 16, 4, 1))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((64, 1024), (1024, 1), torch.float32)
# Topologically Sorted Source Nodes: [], Original ATen: []
extern_kernels.mm(reinterpret_tensor(primals_3, (64, 4), (4, 1), 0), reinterpret_tensor(primals_1, (4, 1024), (1, 4), 0), out=buf0)
del primals_1
buf1 = reinterpret_tensor(buf0, (4, 4, 4, 1024), (16384, 4096, 1024, 1), 0); del buf0 # reuse
buf4 = empty_strided_cuda((4, 4, 4, 1024), (16384, 4096, 1024, 1), torch.bool)
# Topologically Sorted Source Nodes: [x], Original ATen: [aten.relu, aten.threshold_backward]
stream0 = get_raw_stream(0)
triton_poi_fused_relu_threshold_backward_0.run(buf1, primals_2, buf4, 65536, grid=grid(65536), stream=stream0)
del primals_2
buf2 = empty_strided_cuda((64, 4), (4, 1), torch.float32)
# Topologically Sorted Source Nodes: [], Original ATen: []
extern_kernels.mm(reinterpret_tensor(buf1, (64, 1024), (1024, 1), 0), reinterpret_tensor(primals_4, (1024, 4), (1, 1024), 0), out=buf2)
buf3 = reinterpret_tensor(buf2, (4, 4, 4, 4), (64, 16, 4, 1), 0); del buf2 # reuse
# Topologically Sorted Source Nodes: [mul], Original ATen: [aten.mul]
triton_poi_fused_mul_1.run(buf3, primals_5, primals_6, 256, grid=grid(256), stream=stream0)
del primals_5
return (buf3, primals_6, reinterpret_tensor(primals_3, (64, 4), (4, 1), 0), reinterpret_tensor(buf1, (64, 1024), (1024, 1), 0), primals_4, buf4, )
def benchmark_compiled_module(times=10, repeat=10):
from torch._dynamo.testing import rand_strided
from torch._inductor.utils import print_performance
primals_1 = rand_strided((1024, 4), (4, 1), device='cuda:0', dtype=torch.float32)
primals_2 = rand_strided((1024, ), (1, ), device='cuda:0', dtype=torch.float32)
primals_3 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32)
primals_4 = rand_strided((4, 1024), (1024, 1), device='cuda:0', dtype=torch.float32)
primals_5 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32)
primals_6 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32)
fn = lambda: call([primals_1, primals_2, primals_3, primals_4, primals_5, primals_6])
return print_performance(fn, times=times, repeat=repeat)
if __name__ == "__main__":
from torch._inductor.wrapper_benchmark import compiled_module_main
compiled_module_main('None', benchmark_compiled_module)
|
import torch
from torch._inductor.select_algorithm import extern_kernels
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
from torch._inductor.runtime import triton_helpers
from torch import nn as nn
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
@triton.jit
def triton_poi_fused_relu_threshold_backward_0(in_out_ptr0, in_ptr0,
out_ptr0, xnumel, XBLOCK: tl.constexpr):
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
tl.full([XBLOCK], True, tl.int1)
x2 = xindex
x0 = xindex % 1024
tmp0 = tl.load(in_out_ptr0 + x2, None)
tmp1 = tl.load(in_ptr0 + x0, None, eviction_policy='evict_last')
tmp2 = tmp0 + tmp1
tmp3 = tl.full([1], 0, tl.int32)
tmp4 = triton_helpers.maximum(tmp3, tmp2)
tmp5 = 0.0
tmp6 = tmp4 <= tmp5
tl.store(in_out_ptr0 + x2, tmp4, None)
tl.store(out_ptr0 + x2, tmp6, None)
@triton.jit
def triton_poi_fused_mul_1(in_out_ptr0, in_ptr0, in_ptr1, xnumel, XBLOCK:
tl.constexpr):
xnumel = 256
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x2 = xindex
x0 = xindex % 4
tmp0 = tl.load(in_out_ptr0 + x2, xmask)
tmp1 = tl.load(in_ptr0 + x0, xmask, eviction_policy='evict_last')
tmp3 = tl.load(in_ptr1 + x2, xmask)
tmp2 = tmp0 + tmp1
tmp4 = tmp2 * tmp3
tl.store(in_out_ptr0 + x2, tmp4, xmask)
def call(args):
primals_1, primals_2, primals_3, primals_4, primals_5, primals_6 = args
args.clear()
assert_size_stride(primals_1, (1024, 4), (4, 1))
assert_size_stride(primals_2, (1024,), (1,))
assert_size_stride(primals_3, (4, 4, 4, 4), (64, 16, 4, 1))
assert_size_stride(primals_4, (4, 1024), (1024, 1))
assert_size_stride(primals_5, (4,), (1,))
assert_size_stride(primals_6, (4, 4, 4, 4), (64, 16, 4, 1))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((64, 1024), (1024, 1), torch.float32)
extern_kernels.mm(reinterpret_tensor(primals_3, (64, 4), (4, 1), 0),
reinterpret_tensor(primals_1, (4, 1024), (1, 4), 0), out=buf0)
del primals_1
buf1 = reinterpret_tensor(buf0, (4, 4, 4, 1024), (16384, 4096, 1024,
1), 0)
del buf0
buf4 = empty_strided_cuda((4, 4, 4, 1024), (16384, 4096, 1024, 1),
torch.bool)
get_raw_stream(0)
triton_poi_fused_relu_threshold_backward_0[grid(65536)](buf1,
primals_2, buf4, 65536, XBLOCK=256, num_warps=4, num_stages=1)
del primals_2
buf2 = empty_strided_cuda((64, 4), (4, 1), torch.float32)
extern_kernels.mm(reinterpret_tensor(buf1, (64, 1024), (1024, 1), 0
), reinterpret_tensor(primals_4, (1024, 4), (1, 1024), 0), out=buf2
)
buf3 = reinterpret_tensor(buf2, (4, 4, 4, 4), (64, 16, 4, 1), 0)
del buf2
triton_poi_fused_mul_1[grid(256)](buf3, primals_5, primals_6, 256,
XBLOCK=256, num_warps=4, num_stages=1)
del primals_5
return buf3, primals_6, reinterpret_tensor(primals_3, (64, 4), (4, 1), 0
), reinterpret_tensor(buf1, (64, 1024), (1024, 1), 0), primals_4, buf4
class FFNNew(nn.Module):
def __init__(self, d_model, hidden_size=1024):
super().__init__()
self.ln1 = nn.Linear(d_model, hidden_size)
self.ln2 = nn.Linear(hidden_size, d_model)
def reset_params(self):
nn.init.xavier_normal_(self.ln1.weight.data)
nn.init.xavier_normal_(self.ln2.weight.data)
nn.init.constant_(self.ln1.bias.data, 0)
nn.init.constant_(self.ln2.bias.data, 0)
def forward(self, input_0, input_1):
primals_1 = self.ln1.weight
primals_2 = self.ln1.bias
primals_4 = self.ln2.weight
primals_5 = self.ln2.bias
primals_3 = input_0
primals_6 = input_1
output = call([primals_1, primals_2, primals_3, primals_4,
primals_5, primals_6])
return output[0]
|
FFTYYY/RoR_relation_extraction
|
FFN
| false | 8,077 |
[
"MIT"
] | 25 |
a099e98f3708a39debeed4dc522ff57c4f6b960d
|
https://github.com/FFTYYY/RoR_relation_extraction/tree/a099e98f3708a39debeed4dc522ff57c4f6b960d
|
TorchFloorDiv
|
# AOT ID: ['0_inference']
from ctypes import c_void_p, c_long, c_int
import torch
import math
import random
import os
import tempfile
from math import inf, nan
from torch._inductor.hooks import run_intermediate_hooks
from torch._inductor.utils import maybe_profile
from torch._inductor.codegen.memory_planning import _align as align
from torch import device, empty_strided
from torch._inductor.async_compile import AsyncCompile
from torch._inductor.select_algorithm import extern_kernels
from torch._inductor.codegen.multi_kernel import MultiKernelCall
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
aten = torch.ops.aten
inductor_ops = torch.ops.inductor
_quantized = torch.ops._quantized
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
alloc_from_pool = torch.ops.inductor._alloc_from_pool
async_compile = AsyncCompile()
# kernel path: runs/run_shard_7/inductor_cache/y3/cy3bepoxjelvaqyj7nv3ki5rbi3sxvykydr7xjuzv3izweyzvfi7.py
# Topologically Sorted Source Nodes: [floor_divide], Original ATen: [aten.floor_divide]
# Source node to ATen node mapping:
# floor_divide => div
# Graph fragment:
# %div : [num_users=1] = call_function[target=torch.ops.aten.div.Tensor_mode](args = (%arg1_1, %arg0_1), kwargs = {rounding_mode: floor})
triton_poi_fused_floor_divide_0 = async_compile.triton('triton_poi_fused_floor_divide_0', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[256],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_floor_divide_0', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_floor_divide_0(in_ptr0, in_ptr1, out_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 256
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex
tmp0 = tl.load(in_ptr0 + (x0), xmask)
tmp1 = tl.load(in_ptr1 + (x0), xmask)
tmp2 = tmp0 / tmp1
tmp3 = libdevice.floor(tmp2)
tl.store(out_ptr0 + (x0), tmp3, xmask)
''', device_str='cuda')
async_compile.wait(globals())
del async_compile
def call(args):
arg0_1, arg1_1 = args
args.clear()
assert_size_stride(arg0_1, (4, 4, 4, 4), (64, 16, 4, 1))
assert_size_stride(arg1_1, (4, 4, 4, 4), (64, 16, 4, 1))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32)
# Topologically Sorted Source Nodes: [floor_divide], Original ATen: [aten.floor_divide]
stream0 = get_raw_stream(0)
triton_poi_fused_floor_divide_0.run(arg1_1, arg0_1, buf0, 256, grid=grid(256), stream=stream0)
del arg0_1
del arg1_1
return (buf0, )
def benchmark_compiled_module(times=10, repeat=10):
from torch._dynamo.testing import rand_strided
from torch._inductor.utils import print_performance
arg0_1 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32)
arg1_1 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32)
fn = lambda: call([arg0_1, arg1_1])
return print_performance(fn, times=times, repeat=repeat)
if __name__ == "__main__":
from torch._inductor.wrapper_benchmark import compiled_module_main
compiled_module_main('None', benchmark_compiled_module)
|
import torch
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
from torch._inductor.runtime.triton_helpers import libdevice
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
@triton.jit
def triton_poi_fused_floor_divide_0(in_ptr0, in_ptr1, out_ptr0, xnumel,
XBLOCK: tl.constexpr):
xnumel = 256
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex
tmp0 = tl.load(in_ptr0 + x0, xmask)
tmp1 = tl.load(in_ptr1 + x0, xmask)
tmp2 = tmp0 / tmp1
tmp3 = libdevice.floor(tmp2)
tl.store(out_ptr0 + x0, tmp3, xmask)
def call(args):
arg0_1, arg1_1 = args
args.clear()
assert_size_stride(arg0_1, (4, 4, 4, 4), (64, 16, 4, 1))
assert_size_stride(arg1_1, (4, 4, 4, 4), (64, 16, 4, 1))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32)
get_raw_stream(0)
triton_poi_fused_floor_divide_0[grid(256)](arg1_1, arg0_1, buf0,
256, XBLOCK=256, num_warps=4, num_stages=1)
del arg0_1
del arg1_1
return buf0,
class TorchFloorDivNew(torch.nn.Module):
def __init__(self):
super(TorchFloorDivNew, self).__init__()
def forward(self, input_0, input_1):
arg0_1 = input_0
arg1_1 = input_1
output = call([arg0_1, arg1_1])
return output[0]
|
Ilyabasharov/torch2trt
|
TorchFloorDiv
| false | 2,558 |
[
"MIT"
] | 0 |
76bf298b3da408509665e23e2494922b131afb10
|
https://github.com/Ilyabasharov/torch2trt/tree/76bf298b3da408509665e23e2494922b131afb10
|
InformedSender
|
import torch
import torch.nn as nn
import torch.nn.functional as F
import torch.nn.parallel
import torch.utils.data
import torch.distributions
class InformedSender(nn.Module):
def __init__(self, game_size, feat_size, embedding_size, hidden_size,
vocab_size=100, temp=1.0):
super(InformedSender, self).__init__()
self.game_size = game_size
self.embedding_size = embedding_size
self.hidden_size = hidden_size
self.vocab_size = vocab_size
self.temp = temp
self.lin1 = nn.Linear(feat_size, embedding_size, bias=False)
self.conv2 = nn.Conv2d(1, hidden_size, kernel_size=(game_size, 1),
stride=(game_size, 1), bias=False)
self.conv3 = nn.Conv2d(1, 1, kernel_size=(hidden_size, 1), stride=(
hidden_size, 1), bias=False)
self.lin4 = nn.Linear(embedding_size, vocab_size, bias=False)
def forward(self, x, return_embeddings=False):
emb = self.return_embeddings(x)
h = self.conv2(emb)
h = torch.sigmoid(h)
h = h.transpose(1, 2)
h = self.conv3(h)
h = torch.sigmoid(h)
h = h.squeeze(dim=1)
h = h.squeeze(dim=1)
h = self.lin4(h)
h = h.mul(1.0 / self.temp)
logits = F.log_softmax(h, dim=1)
return logits
def return_embeddings(self, x):
embs = []
for i in range(self.game_size):
h = x[i]
if len(h.size()) == 3:
h = h.squeeze(dim=-1)
h_i = self.lin1(h)
h_i = h_i.unsqueeze(dim=1)
h_i = h_i.unsqueeze(dim=1)
embs.append(h_i)
h = torch.cat(embs, dim=2)
return h
def get_inputs():
return [torch.rand([4, 4, 4])]
def get_init_inputs():
return [[], {'game_size': 4, 'feat_size': 4, 'embedding_size': 4,
'hidden_size': 4}]
|
import torch
from torch._inductor.select_algorithm import extern_kernels
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
from torch._inductor.runtime import triton_helpers
from torch._inductor.runtime.triton_helpers import math as tl_math
import torch.nn as nn
import torch.nn.parallel
import torch.utils.data
import torch.distributions
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
@triton.jit
def triton_poi_fused_cat_0(in_ptr0, in_ptr1, in_ptr2, in_ptr3, out_ptr0,
xnumel, XBLOCK: tl.constexpr):
xnumel = 64
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x1 = xindex // 4 % 4
x0 = xindex % 4
x2 = xindex // 16
x3 = xindex
tmp0 = x1
tl.full([1], 0, tl.int64)
tmp3 = tl.full([1], 1, tl.int64)
tmp4 = tmp0 < tmp3
tmp5 = tl.load(in_ptr0 + (x0 + 4 * x2), tmp4 & xmask, eviction_policy=
'evict_last', other=0.0)
tmp6 = tmp0 >= tmp3
tmp7 = tl.full([1], 2, tl.int64)
tmp8 = tmp0 < tmp7
tmp9 = tmp6 & tmp8
tmp10 = tl.load(in_ptr1 + (x0 + 4 * x2), tmp9 & xmask, eviction_policy=
'evict_last', other=0.0)
tmp11 = tmp0 >= tmp7
tmp12 = tl.full([1], 3, tl.int64)
tmp13 = tmp0 < tmp12
tmp14 = tmp11 & tmp13
tmp15 = tl.load(in_ptr2 + (x0 + 4 * x2), tmp14 & xmask, eviction_policy
='evict_last', other=0.0)
tmp16 = tmp0 >= tmp12
tl.full([1], 4, tl.int64)
tmp19 = tl.load(in_ptr3 + (x0 + 4 * x2), tmp16 & xmask, eviction_policy
='evict_last', other=0.0)
tmp20 = tl.where(tmp14, tmp15, tmp19)
tmp21 = tl.where(tmp9, tmp10, tmp20)
tmp22 = tl.where(tmp4, tmp5, tmp21)
tl.store(out_ptr0 + x3, tmp22, xmask)
@triton.jit
def triton_poi_fused_sigmoid_1(in_out_ptr0, xnumel, XBLOCK: tl.constexpr):
xnumel = 64
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex
tmp0 = tl.load(in_out_ptr0 + x0, xmask)
tmp1 = tl.sigmoid(tmp0)
tl.store(in_out_ptr0 + x0, tmp1, xmask)
@triton.jit
def triton_poi_fused_sigmoid_2(in_out_ptr0, xnumel, XBLOCK: tl.constexpr):
xnumel = 16
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex
tmp0 = tl.load(in_out_ptr0 + x0, xmask)
tmp1 = tl.sigmoid(tmp0)
tl.store(in_out_ptr0 + x0, tmp1, xmask)
@triton.jit
def triton_per_fused__log_softmax_3(in_ptr0, out_ptr2, xnumel, rnumel,
XBLOCK: tl.constexpr):
xnumel = 4
rnumel = 100
RBLOCK: tl.constexpr = 128
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:, None]
xmask = xindex < xnumel
rindex = tl.arange(0, RBLOCK)[None, :]
rmask = rindex < rnumel
r1 = rindex
x0 = xindex
tmp0 = tl.load(in_ptr0 + (r1 + 100 * x0), rmask & xmask, other=0.0)
tmp1 = 1.0
tmp2 = tmp0 * tmp1
tmp3 = tl.broadcast_to(tmp2, [XBLOCK, RBLOCK])
tmp5 = tl.where(rmask & xmask, tmp3, float('-inf'))
tmp6 = triton_helpers.max2(tmp5, 1)[:, None]
tmp7 = tmp2 - tmp6
tmp8 = tmp7 * tmp1
tmp9 = tl_math.exp(tmp8)
tmp10 = tl.broadcast_to(tmp9, [XBLOCK, RBLOCK])
tmp12 = tl.where(rmask & xmask, tmp10, 0)
tmp13 = tl.sum(tmp12, 1)[:, None]
tmp14 = tl_math.log(tmp13)
tmp15 = tmp8 - tmp14
tl.store(out_ptr2 + (r1 + 100 * x0), tmp15, rmask & xmask)
def call(args):
primals_1, primals_2, primals_3, primals_4, primals_5 = args
args.clear()
assert_size_stride(primals_1, (4, 4, 4), (16, 4, 1))
assert_size_stride(primals_2, (4, 4), (4, 1))
assert_size_stride(primals_3, (4, 1, 4, 1), (4, 4, 1, 1))
assert_size_stride(primals_4, (1, 1, 4, 1), (4, 4, 1, 1))
assert_size_stride(primals_5, (100, 4), (4, 1))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((4, 4), (4, 1), torch.float32)
extern_kernels.mm(reinterpret_tensor(primals_1, (4, 4), (4, 1), 0),
reinterpret_tensor(primals_2, (4, 4), (1, 4), 0), out=buf0)
buf1 = empty_strided_cuda((4, 4), (4, 1), torch.float32)
extern_kernels.mm(reinterpret_tensor(primals_1, (4, 4), (4, 1), 16),
reinterpret_tensor(primals_2, (4, 4), (1, 4), 0), out=buf1)
buf2 = empty_strided_cuda((4, 4), (4, 1), torch.float32)
extern_kernels.mm(reinterpret_tensor(primals_1, (4, 4), (4, 1), 32),
reinterpret_tensor(primals_2, (4, 4), (1, 4), 0), out=buf2)
buf3 = empty_strided_cuda((4, 4), (4, 1), torch.float32)
extern_kernels.mm(reinterpret_tensor(primals_1, (4, 4), (4, 1), 48),
reinterpret_tensor(primals_2, (4, 4), (1, 4), 0), out=buf3)
del primals_2
buf4 = empty_strided_cuda((4, 1, 4, 4), (16, 16, 4, 1), torch.float32)
get_raw_stream(0)
triton_poi_fused_cat_0[grid(64)](buf0, buf1, buf2, buf3, buf4, 64,
XBLOCK=64, num_warps=1, num_stages=1)
del buf0
del buf1
del buf2
del buf3
buf5 = extern_kernels.convolution(buf4, primals_3, stride=(4, 1),
padding=(0, 0), dilation=(1, 1), transposed=False,
output_padding=(0, 0), groups=1, bias=None)
assert_size_stride(buf5, (4, 4, 1, 4), (16, 4, 4, 1))
buf6 = buf5
del buf5
triton_poi_fused_sigmoid_1[grid(64)](buf6, 64, XBLOCK=64, num_warps
=1, num_stages=1)
buf7 = extern_kernels.convolution(reinterpret_tensor(buf6, (4, 1, 4,
4), (16, 4, 4, 1), 0), primals_4, stride=(4, 1), padding=(0, 0),
dilation=(1, 1), transposed=False, output_padding=(0, 0),
groups=1, bias=None)
assert_size_stride(buf7, (4, 1, 1, 4), (4, 4, 4, 1))
buf8 = buf7
del buf7
triton_poi_fused_sigmoid_2[grid(16)](buf8, 16, XBLOCK=16, num_warps
=1, num_stages=1)
buf9 = empty_strided_cuda((4, 100), (100, 1), torch.float32)
extern_kernels.mm(reinterpret_tensor(buf8, (4, 4), (4, 1), 0),
reinterpret_tensor(primals_5, (4, 100), (1, 4), 0), out=buf9)
buf12 = empty_strided_cuda((4, 100), (100, 1), torch.float32)
triton_per_fused__log_softmax_3[grid(4)](buf9, buf12, 4, 100,
XBLOCK=1, num_warps=2, num_stages=1)
del buf9
return buf12, primals_3, primals_4, reinterpret_tensor(primals_1, (4, 4
), (4, 1), 0), reinterpret_tensor(primals_1, (4, 4), (4, 1), 16
), reinterpret_tensor(primals_1, (4, 4), (4, 1), 32
), reinterpret_tensor(primals_1, (4, 4), (4, 1), 48
), buf4, buf6, buf8, buf12, primals_5
class InformedSenderNew(nn.Module):
def __init__(self, game_size, feat_size, embedding_size, hidden_size,
vocab_size=100, temp=1.0):
super(InformedSenderNew, self).__init__()
self.game_size = game_size
self.embedding_size = embedding_size
self.hidden_size = hidden_size
self.vocab_size = vocab_size
self.temp = temp
self.lin1 = nn.Linear(feat_size, embedding_size, bias=False)
self.conv2 = nn.Conv2d(1, hidden_size, kernel_size=(game_size, 1),
stride=(game_size, 1), bias=False)
self.conv3 = nn.Conv2d(1, 1, kernel_size=(hidden_size, 1), stride=(
hidden_size, 1), bias=False)
self.lin4 = nn.Linear(embedding_size, vocab_size, bias=False)
def return_embeddings(self, x):
embs = []
for i in range(self.game_size):
h = x[i]
if len(h.size()) == 3:
h = h.squeeze(dim=-1)
h_i = self.lin1(h)
h_i = h_i.unsqueeze(dim=1)
h_i = h_i.unsqueeze(dim=1)
embs.append(h_i)
h = torch.cat(embs, dim=2)
return h
def forward(self, input_0):
primals_2 = self.lin1.weight
primals_3 = self.conv2.weight
primals_4 = self.conv3.weight
primals_5 = self.lin4.weight
primals_1 = input_0
output = call([primals_1, primals_2, primals_3, primals_4, primals_5])
return output[0]
|
Slowika/GameBias-EmeCom2020
|
InformedSender
| false | 17,968 |
[
"MIT"
] | 5 |
5b94c47559f8202bca99c26fc1bcb078dd0509a6
|
https://github.com/Slowika/GameBias-EmeCom2020/tree/5b94c47559f8202bca99c26fc1bcb078dd0509a6
|
DiceCELoss
|
import torch
import warnings
from typing import Callable
from typing import Union
from typing import Optional
from enum import Enum
import torch.nn as nn
from torch.nn.modules.loss import _Loss
import torch.multiprocessing
class LossReduction(Enum):
"""
See also:
- :py:class:`monai.losses.dice.DiceLoss`
- :py:class:`monai.losses.dice.GeneralizedDiceLoss`
- :py:class:`monai.losses.focal_loss.FocalLoss`
- :py:class:`monai.losses.tversky.TverskyLoss`
"""
NONE = 'none'
MEAN = 'mean'
SUM = 'sum'
SUM_MEAN = 'sum_mean'
class DiceLoss(_Loss):
"""
Compute average Dice loss between two tensors. It can support both multi-classes and multi-labels tasks.
Input logits `input` (BNHW[D] where N is number of classes) is compared with ground truth `target` (BNHW[D]).
Axis N of `input` is expected to have logit predictions for each class rather than being image channels,
while the same axis of `target` can be 1 or N (one-hot format). The `smooth_nr` and `smooth_dr` parameters are
values added to the intersection and union components of the inter-over-union calculation to smooth results
respectively, these values should be small. The `include_background` class attribute can be set to False for
an instance of DiceLoss to exclude the first category (channel index 0) which is by convention assumed to be
background. If the non-background segmentations are small compared to the total image size they can get
overwhelmed by the signal from the background so excluding it in such cases helps convergence.
Milletari, F. et. al. (2016) V-Net: Fully Convolutional Neural Networks forVolumetric Medical Image Segmentation, 3DV, 2016.
"""
def __init__(self, include_background: 'bool'=True, to_onehot_y: 'bool'
=False, sigmoid: 'bool'=False, softmax: 'bool'=False, other_act:
'Optional[Callable]'=None, squared_pred: 'bool'=False, jaccard:
'bool'=False, reduction: 'Union[LossReduction, str]'=LossReduction.
MEAN, smooth_nr: 'float'=1e-05, smooth_dr: 'float'=1e-05, batch:
'bool'=False, my_dice: 'bool'=False) ->None:
"""
Args:
include_background: if False channel index 0 (background category) is excluded from the calculation.
to_onehot_y: whether to convert `y` into the one-hot format. Defaults to False.
sigmoid: if True, apply a sigmoid function to the prediction.
softmax: if True, apply a softmax function to the prediction.
other_act: if don't want to use `sigmoid` or `softmax`, use other callable function to execute
other activation layers, Defaults to ``None``. for example:
`other_act = torch.tanh`.
squared_pred: use squared versions of targets and predictions in the denominator or not.
jaccard: compute Jaccard Index (soft IoU) instead of dice or not.
reduction: {``"none"``, ``"mean"``, ``"sum"``}
Specifies the reduction to apply to the output. Defaults to ``"mean"``.
- ``"none"``: no reduction will be applied.
- ``"mean"``: the sum of the output will be divided by the number of elements in the output.
- ``"sum"``: the output will be summed.
smooth_nr: a small constant added to the numerator to avoid zero.
smooth_dr: a small constant added to the denominator to avoid nan.
batch: whether to sum the intersection and union areas over the batch dimension before the dividing.
Defaults to False, a Dice loss value is computed independently from each item in the batch
before any `reduction`.
Raises:
TypeError: When ``other_act`` is not an ``Optional[Callable]``.
ValueError: When more than 1 of [``sigmoid=True``, ``softmax=True``, ``other_act is not None``].
Incompatible values.
"""
super().__init__(reduction=LossReduction(reduction).value)
if other_act is not None and not callable(other_act):
raise TypeError(
f'other_act must be None or callable but is {type(other_act).__name__}.'
)
if int(sigmoid) + int(softmax) + int(other_act is not None) > 1:
raise ValueError(
'Incompatible values: more than 1 of [sigmoid=True, softmax=True, other_act is not None].'
)
self.include_background = include_background
self.to_onehot_y = to_onehot_y
self.sigmoid = sigmoid
self.softmax = softmax
self.other_act = other_act
self.squared_pred = squared_pred
self.jaccard = jaccard
self.smooth_nr = float(smooth_nr)
self.smooth_dr = float(smooth_dr)
self.batch = batch
self.my_dice = my_dice
def forward(self, input: 'torch.Tensor', target: 'torch.Tensor'
) ->torch.Tensor:
"""
Args:
input: the shape should be BNH[WD].
target: the shape should be BNH[WD].
Raises:
ValueError: When ``self.reduction`` is not one of ["mean", "sum", "none"].
"""
if self.sigmoid:
input = torch.sigmoid(input)
n_pred_ch = input.shape[1]
if self.softmax:
if n_pred_ch == 1:
warnings.warn(
'single channel prediction, `softmax=True` ignored.')
else:
input = torch.softmax(input, 1)
if self.other_act is not None:
input = self.other_act(input)
if self.to_onehot_y:
if n_pred_ch == 1:
warnings.warn(
'single channel prediction, `to_onehot_y=True` ignored.')
else:
target = one_hot(target, num_classes=n_pred_ch)
assert target.shape == input.shape, f'ground truth has differing shape ({target.shape}) from input ({input.shape})'
reduce_axis = list(range(2, len(input.shape)))
if self.batch:
reduce_axis = [0] + reduce_axis
intersection = torch.sum(target * input, dim=reduce_axis)
if self.squared_pred:
target = torch.pow(target, 2)
input = torch.pow(input, 2)
ground_o = torch.sum(target, dim=reduce_axis)
pred_o = torch.sum(input, dim=reduce_axis)
denominator = ground_o + pred_o
if self.jaccard:
denominator = 2.0 * (denominator - intersection)
if self.my_dice:
def count_nonzeros(input, dim):
mask = input != 0.0
return torch.sum(mask, dim)
f: 'torch.Tensor' = 2.0 * intersection / (denominator + self.
smooth_nr)
if not self.include_background:
if self.batch:
f = f[1:]
ground_o = ground_o[1:]
else:
f = f[:, 1:]
ground_o = ground_o[:, 1:]
f = -(torch.sum(f, dim=-1) / count_nonzeros(ground_o, dim=-1))
else:
f: 'torch.Tensor' = -(2.0 * intersection + self.smooth_nr) / (
denominator + self.smooth_dr)
if not self.include_background:
if self.batch:
f = f[1:]
else:
f = f[:, 1:]
if self.reduction == LossReduction.MEAN.value:
f = torch.mean(f)
elif self.reduction == LossReduction.SUM.value:
f = torch.sum(f)
elif self.reduction == LossReduction.NONE.value:
pass
else:
raise ValueError(
f'Unsupported reduction: {self.reduction}, available options are ["mean", "sum", "none"].'
)
return f
class DiceCELoss(_Loss):
"""
Compute both Dice loss and Cross Entropy Loss, and return the sum of these two losses.
Input logits `input` (BNHW[D] where N is number of classes) is compared with ground truth `target` (BNHW[D]).
Axis N of `input` is expected to have logit predictions for each class rather than being image channels,
while the same axis of `target` can be 1 or N (one-hot format). The `smooth_nr` and `smooth_dr` parameters are
values added for dice loss part to the intersection and union components of the inter-over-union calculation
to smooth results respectively, these values should be small. The `include_background` class attribute can be
set to False for an instance of the loss to exclude the first category (channel index 0) which is by convention
assumed to be background. If the non-background segmentations are small compared to the total image size they can get
overwhelmed by the signal from the background so excluding it in such cases helps convergence.
"""
def __init__(self, include_background: 'bool'=True, to_onehot_y: 'bool'
=False, sigmoid: 'bool'=False, softmax: 'bool'=False, other_act:
'Optional[Callable]'=None, squared_pred: 'bool'=False, jaccard:
'bool'=False, reduction: 'str'='mean', smooth_nr: 'float'=1e-05,
smooth_dr: 'float'=1e-05, batch: 'bool'=False, ce_weight:
'Optional[torch.Tensor]'=None, negate_dice: 'bool'=False, my_dice:
'bool'=False) ->None:
"""
Args:
``ce_weight`` is only used for cross entropy loss, ``reduction`` is used for both losses and other
parameters are only used for dice loss.
include_background: if False channel index 0 (background category) is excluded from the calculation.
to_onehot_y: whether to convert `y` into the one-hot format. Defaults to False.
sigmoid: if True, apply a sigmoid function to the prediction.
softmax: if True, apply a softmax function to the prediction.
other_act: if don't want to use `sigmoid` or `softmax`, use other callable function to execute
other activation layers, Defaults to ``None``. for example:
`other_act = torch.tanh`.
squared_pred: use squared versions of targets and predictions in the denominator or not.
jaccard: compute Jaccard Index (soft IoU) instead of dice or not.
reduction: {``"mean"``, ``"sum"``}
Specifies the reduction to apply to the output. Defaults to ``"mean"``. The dice loss should
as least reduce the spatial dimensions, which is different from cross entropy loss, thus here
the ``none`` option cannot be used.
- ``"mean"``: the sum of the output will be divided by the number of elements in the output.
- ``"sum"``: the output will be summed.
smooth_nr: a small constant added to the numerator to avoid zero.
smooth_dr: a small constant added to the denominator to avoid nan.
batch: whether to sum the intersection and union areas over the batch dimension before the dividing.
Defaults to False, a Dice loss value is computed independently from each item in the batch
before any `reduction`.
ce_weight: a rescaling weight given to each class for cross entropy loss.
See ``torch.nn.CrossEntropyLoss()`` for more information.
"""
super().__init__()
self.dice = DiceLoss(include_background=include_background,
to_onehot_y=to_onehot_y, sigmoid=sigmoid, softmax=softmax,
other_act=other_act, squared_pred=squared_pred, jaccard=jaccard,
reduction=reduction, smooth_nr=smooth_nr, smooth_dr=smooth_dr,
batch=batch, my_dice=my_dice)
self.cross_entropy = nn.CrossEntropyLoss(weight=ce_weight,
reduction=reduction)
self.negate_dice = negate_dice
def forward(self, input: 'torch.Tensor', target: 'torch.Tensor'
) ->torch.Tensor:
"""
Args:
input: the shape should be BNH[WD].
target: the shape should be BNH[WD] or B1H[WD].
Raises:
ValueError: When number of dimensions for input and target are different.
ValueError: When number of channels for target is nither 1 or the same as input.
"""
if len(input.shape) != len(target.shape):
raise ValueError(
'the number of dimensions for input and target should be the same.'
)
dice_loss = self.dice(input, target)
if self.negate_dice:
dice_loss = dice_loss * -1
n_pred_ch, n_target_ch = input.shape[1], target.shape[1]
if n_pred_ch == n_target_ch:
target = torch.argmax(target, dim=1)
else:
target = torch.squeeze(target, dim=1)
target = target.long()
ce_loss = self.cross_entropy(input, target)
total_loss: 'torch.Tensor' = dice_loss + ce_loss
return total_loss
def get_inputs():
return [torch.rand([4, 4, 4, 4]), torch.rand([4, 4, 4, 4])]
def get_init_inputs():
return [[], {}]
|
import torch
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
from torch._inductor.runtime import triton_helpers
from torch._inductor.runtime.triton_helpers import math as tl_math
import warnings
from typing import Callable
from typing import Union
from typing import Optional
from enum import Enum
import torch.nn as nn
from torch.nn.modules.loss import _Loss
import torch.multiprocessing
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
@triton.jit
def triton_per_fused__log_softmax_mul_sum_0(in_ptr0, in_ptr1, out_ptr0,
out_ptr1, out_ptr2, out_ptr3, xnumel, rnumel, XBLOCK: tl.constexpr):
xnumel = 16
RBLOCK: tl.constexpr = 16
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:, None]
xmask = xindex < xnumel
rindex = tl.arange(0, RBLOCK)[None, :]
tl.full([XBLOCK, RBLOCK], True, tl.int1)
r1 = rindex
x0 = xindex
x3 = xindex // 4
tmp0 = tl.load(in_ptr0 + (r1 + 16 * x0), xmask, other=0.0)
tmp1 = tl.load(in_ptr1 + (r1 + 16 * x0), xmask, other=0.0)
tmp15 = tl.load(in_ptr1 + (r1 + 64 * x3), xmask, eviction_policy=
'evict_last', other=0.0)
tmp16 = tl.load(in_ptr1 + (16 + r1 + 64 * x3), xmask, eviction_policy=
'evict_last', other=0.0)
tmp18 = tl.load(in_ptr1 + (32 + r1 + 64 * x3), xmask, eviction_policy=
'evict_last', other=0.0)
tmp20 = tl.load(in_ptr1 + (48 + r1 + 64 * x3), xmask, eviction_policy=
'evict_last', other=0.0)
tmp2 = tmp0 * tmp1
tmp3 = tl.broadcast_to(tmp2, [XBLOCK, RBLOCK])
tmp5 = tl.where(xmask, tmp3, 0)
tmp6 = tl.sum(tmp5, 1)[:, None]
tmp7 = tl.broadcast_to(tmp0, [XBLOCK, RBLOCK])
tmp9 = tl.where(xmask, tmp7, 0)
tmp10 = tl.sum(tmp9, 1)[:, None]
tmp11 = tl.broadcast_to(tmp1, [XBLOCK, RBLOCK])
tmp13 = tl.where(xmask, tmp11, 0)
tmp14 = tl.sum(tmp13, 1)[:, None]
tmp17 = triton_helpers.maximum(tmp15, tmp16)
tmp19 = triton_helpers.maximum(tmp17, tmp18)
tmp21 = triton_helpers.maximum(tmp19, tmp20)
tmp22 = tmp1 - tmp21
tl.store(out_ptr3 + (r1 + 16 * x0), tmp22, xmask)
tl.store(out_ptr0 + x0, tmp6, xmask)
tl.store(out_ptr1 + x0, tmp10, xmask)
tl.store(out_ptr2 + x0, tmp14, xmask)
@triton.jit
def triton_per_fused_add_div_mean_mul_neg_1(in_ptr0, in_ptr1, in_ptr2,
out_ptr0, xnumel, rnumel, XBLOCK: tl.constexpr):
RBLOCK: tl.constexpr = 16
xoffset = tl.program_id(0) * XBLOCK
xoffset + tl.arange(0, XBLOCK)[:, None]
tl.full([XBLOCK, RBLOCK], True, tl.int1)
rindex = tl.arange(0, RBLOCK)[None, :]
tl.full([XBLOCK, RBLOCK], True, tl.int1)
r0 = rindex
tmp0 = tl.load(in_ptr0 + r0, None)
tmp6 = tl.load(in_ptr1 + r0, None)
tmp7 = tl.load(in_ptr2 + r0, None)
tmp1 = 2.0
tmp2 = tmp0 * tmp1
tmp3 = 1e-05
tmp4 = tmp2 + tmp3
tmp5 = -tmp4
tmp8 = tmp6 + tmp7
tmp9 = tmp8 + tmp3
tmp10 = tmp5 / tmp9
tmp11 = tl.broadcast_to(tmp10, [XBLOCK, RBLOCK])
tmp13 = tl.sum(tmp11, 1)[:, None]
tl.store(out_ptr0 + tl.full([XBLOCK, 1], 0, tl.int32), tmp13, None)
@triton.jit
def triton_per_fused_add_argmax_div_mean_mul_neg_nll_loss2d_forward_2(
in_out_ptr0, in_ptr0, in_ptr1, xnumel, rnumel, XBLOCK: tl.constexpr):
RBLOCK: tl.constexpr = 64
xoffset = tl.program_id(0) * XBLOCK
xoffset + tl.arange(0, XBLOCK)[:, None]
tl.full([XBLOCK, RBLOCK], True, tl.int1)
rindex = tl.arange(0, RBLOCK)[None, :]
tl.full([XBLOCK, RBLOCK], True, tl.int1)
r0 = rindex % 16
r1 = rindex // 16
tmp0 = tl.load(in_ptr0 + (r0 + 64 * r1), None)
tmp1 = tl.load(in_ptr0 + (16 + r0 + 64 * r1), None)
tmp17 = tl.load(in_ptr0 + (32 + r0 + 64 * r1), None)
tmp32 = tl.load(in_ptr0 + (48 + r0 + 64 * r1), None)
tmp56 = tl.load(in_ptr1 + (r0 + 64 * r1), None)
tmp58 = tl.load(in_ptr1 + (16 + r0 + 64 * r1), None)
tmp61 = tl.load(in_ptr1 + (32 + r0 + 64 * r1), None)
tmp64 = tl.load(in_ptr1 + (48 + r0 + 64 * r1), None)
tmp79 = tl.load(in_out_ptr0 + 0)
tmp80 = tl.broadcast_to(tmp79, [XBLOCK, 1])
tmp2 = tmp0 > tmp1
tmp3 = tmp0 == tmp1
tmp4 = tmp0 != tmp0
tmp5 = tmp1 != tmp1
tmp6 = tmp4 > tmp5
tmp7 = tmp2 | tmp6
tmp8 = tmp4 & tmp5
tmp9 = tmp3 | tmp8
tmp10 = tl.full([1, 1], 0, tl.int64)
tmp11 = tl.full([1, 1], 1, tl.int64)
tmp12 = tmp10 < tmp11
tmp13 = tmp9 & tmp12
tmp14 = tmp7 | tmp13
tmp15 = tl.where(tmp14, tmp0, tmp1)
tmp16 = tl.where(tmp14, tmp10, tmp11)
tmp18 = tmp15 > tmp17
tmp19 = tmp15 == tmp17
tmp20 = tmp15 != tmp15
tmp21 = tmp17 != tmp17
tmp22 = tmp20 > tmp21
tmp23 = tmp18 | tmp22
tmp24 = tmp20 & tmp21
tmp25 = tmp19 | tmp24
tmp26 = tl.full([1, 1], 2, tl.int64)
tmp27 = tmp16 < tmp26
tmp28 = tmp25 & tmp27
tmp29 = tmp23 | tmp28
tmp30 = tl.where(tmp29, tmp15, tmp17)
tmp31 = tl.where(tmp29, tmp16, tmp26)
tmp33 = tmp30 > tmp32
tmp34 = tmp30 == tmp32
tmp35 = tmp30 != tmp30
tmp36 = tmp32 != tmp32
tmp37 = tmp35 > tmp36
tmp38 = tmp33 | tmp37
tmp39 = tmp35 & tmp36
tmp40 = tmp34 | tmp39
tmp41 = tl.full([1, 1], 3, tl.int64)
tmp42 = tmp31 < tmp41
tmp43 = tmp40 & tmp42
tmp44 = tmp38 | tmp43
tl.where(tmp44, tmp30, tmp32)
tmp46 = tl.where(tmp44, tmp31, tmp41)
tmp47 = tl.full([1, 1], -100, tl.int64)
tmp48 = tmp46 != tmp47
tmp49 = tl.where(tmp48, tmp46, tmp10)
tmp50 = tl.full([XBLOCK, RBLOCK], 4, tl.int32)
tmp51 = tmp49 + tmp50
tmp52 = tmp49 < 0
tmp53 = tl.where(tmp52, tmp51, tmp49)
tl.device_assert((0 <= tmp53) & (tmp53 < 4),
'index out of bounds: 0 <= tmp53 < 4')
tmp55 = tl.load(in_ptr1 + (r0 + 16 * tmp53 + 64 * r1), None)
tmp57 = tl_math.exp(tmp56)
tmp59 = tl_math.exp(tmp58)
tmp60 = tmp57 + tmp59
tmp62 = tl_math.exp(tmp61)
tmp63 = tmp60 + tmp62
tmp65 = tl_math.exp(tmp64)
tmp66 = tmp63 + tmp65
tmp67 = tl_math.log(tmp66)
tmp68 = tmp55 - tmp67
tmp69 = -tmp68
tmp70 = 0.0
tmp71 = tl.where(tmp48, tmp69, tmp70)
tmp72 = tl.broadcast_to(tmp71, [XBLOCK, RBLOCK])
tmp74 = tl.sum(tmp72, 1)[:, None]
tmp75 = tmp48.to(tl.int64)
tmp76 = tl.broadcast_to(tmp75, [XBLOCK, RBLOCK])
tmp78 = tl.sum(tmp76, 1)[:, None]
tmp81 = 16.0
tmp82 = tmp80 / tmp81
tmp83 = tmp78.to(tl.float32)
tmp84 = tmp74 / tmp83
tmp85 = tmp82 + tmp84
tl.debug_barrier()
tl.store(in_out_ptr0 + tl.full([XBLOCK, 1], 0, tl.int32), tmp85, None)
def call(args):
arg0_1, arg1_1 = args
args.clear()
assert_size_stride(arg0_1, (4, 4, 4, 4), (64, 16, 4, 1))
assert_size_stride(arg1_1, (4, 4, 4, 4), (64, 16, 4, 1))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((4, 4), (4, 1), torch.float32)
buf1 = empty_strided_cuda((4, 4), (4, 1), torch.float32)
buf2 = empty_strided_cuda((4, 4), (4, 1), torch.float32)
buf5 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32)
get_raw_stream(0)
triton_per_fused__log_softmax_mul_sum_0[grid(16)](arg1_1, arg0_1,
buf0, buf1, buf2, buf5, 16, 16, XBLOCK=1, num_warps=2, num_stages=1
)
del arg0_1
buf3 = empty_strided_cuda((), (), torch.float32)
triton_per_fused_add_div_mean_mul_neg_1[grid(1)](buf0, buf1, buf2,
buf3, 1, 16, XBLOCK=1, num_warps=2, num_stages=1)
del buf0
del buf1
del buf2
buf8 = buf3
del buf3
triton_per_fused_add_argmax_div_mean_mul_neg_nll_loss2d_forward_2[grid
(1)](buf8, arg1_1, buf5, 1, 64, XBLOCK=1, num_warps=2, num_stages=1
)
del arg1_1
del buf5
return buf8,
class LossReduction(Enum):
"""
See also:
- :py:class:`monai.losses.dice.DiceLoss`
- :py:class:`monai.losses.dice.GeneralizedDiceLoss`
- :py:class:`monai.losses.focal_loss.FocalLoss`
- :py:class:`monai.losses.tversky.TverskyLoss`
"""
NONE = 'none'
MEAN = 'mean'
SUM = 'sum'
SUM_MEAN = 'sum_mean'
class DiceLoss(_Loss):
"""
Compute average Dice loss between two tensors. It can support both multi-classes and multi-labels tasks.
Input logits `input` (BNHW[D] where N is number of classes) is compared with ground truth `target` (BNHW[D]).
Axis N of `input` is expected to have logit predictions for each class rather than being image channels,
while the same axis of `target` can be 1 or N (one-hot format). The `smooth_nr` and `smooth_dr` parameters are
values added to the intersection and union components of the inter-over-union calculation to smooth results
respectively, these values should be small. The `include_background` class attribute can be set to False for
an instance of DiceLoss to exclude the first category (channel index 0) which is by convention assumed to be
background. If the non-background segmentations are small compared to the total image size they can get
overwhelmed by the signal from the background so excluding it in such cases helps convergence.
Milletari, F. et. al. (2016) V-Net: Fully Convolutional Neural Networks forVolumetric Medical Image Segmentation, 3DV, 2016.
"""
def __init__(self, include_background: 'bool'=True, to_onehot_y: 'bool'
=False, sigmoid: 'bool'=False, softmax: 'bool'=False, other_act:
'Optional[Callable]'=None, squared_pred: 'bool'=False, jaccard:
'bool'=False, reduction: 'Union[LossReduction, str]'=LossReduction.
MEAN, smooth_nr: 'float'=1e-05, smooth_dr: 'float'=1e-05, batch:
'bool'=False, my_dice: 'bool'=False) ->None:
"""
Args:
include_background: if False channel index 0 (background category) is excluded from the calculation.
to_onehot_y: whether to convert `y` into the one-hot format. Defaults to False.
sigmoid: if True, apply a sigmoid function to the prediction.
softmax: if True, apply a softmax function to the prediction.
other_act: if don't want to use `sigmoid` or `softmax`, use other callable function to execute
other activation layers, Defaults to ``None``. for example:
`other_act = torch.tanh`.
squared_pred: use squared versions of targets and predictions in the denominator or not.
jaccard: compute Jaccard Index (soft IoU) instead of dice or not.
reduction: {``"none"``, ``"mean"``, ``"sum"``}
Specifies the reduction to apply to the output. Defaults to ``"mean"``.
- ``"none"``: no reduction will be applied.
- ``"mean"``: the sum of the output will be divided by the number of elements in the output.
- ``"sum"``: the output will be summed.
smooth_nr: a small constant added to the numerator to avoid zero.
smooth_dr: a small constant added to the denominator to avoid nan.
batch: whether to sum the intersection and union areas over the batch dimension before the dividing.
Defaults to False, a Dice loss value is computed independently from each item in the batch
before any `reduction`.
Raises:
TypeError: When ``other_act`` is not an ``Optional[Callable]``.
ValueError: When more than 1 of [``sigmoid=True``, ``softmax=True``, ``other_act is not None``].
Incompatible values.
"""
super().__init__(reduction=LossReduction(reduction).value)
if other_act is not None and not callable(other_act):
raise TypeError(
f'other_act must be None or callable but is {type(other_act).__name__}.'
)
if int(sigmoid) + int(softmax) + int(other_act is not None) > 1:
raise ValueError(
'Incompatible values: more than 1 of [sigmoid=True, softmax=True, other_act is not None].'
)
self.include_background = include_background
self.to_onehot_y = to_onehot_y
self.sigmoid = sigmoid
self.softmax = softmax
self.other_act = other_act
self.squared_pred = squared_pred
self.jaccard = jaccard
self.smooth_nr = float(smooth_nr)
self.smooth_dr = float(smooth_dr)
self.batch = batch
self.my_dice = my_dice
def forward(self, input: 'torch.Tensor', target: 'torch.Tensor'
) ->torch.Tensor:
"""
Args:
input: the shape should be BNH[WD].
target: the shape should be BNH[WD].
Raises:
ValueError: When ``self.reduction`` is not one of ["mean", "sum", "none"].
"""
if self.sigmoid:
input = torch.sigmoid(input)
n_pred_ch = input.shape[1]
if self.softmax:
if n_pred_ch == 1:
warnings.warn(
'single channel prediction, `softmax=True` ignored.')
else:
input = torch.softmax(input, 1)
if self.other_act is not None:
input = self.other_act(input)
if self.to_onehot_y:
if n_pred_ch == 1:
warnings.warn(
'single channel prediction, `to_onehot_y=True` ignored.')
else:
target = one_hot(target, num_classes=n_pred_ch)
assert target.shape == input.shape, f'ground truth has differing shape ({target.shape}) from input ({input.shape})'
reduce_axis = list(range(2, len(input.shape)))
if self.batch:
reduce_axis = [0] + reduce_axis
intersection = torch.sum(target * input, dim=reduce_axis)
if self.squared_pred:
target = torch.pow(target, 2)
input = torch.pow(input, 2)
ground_o = torch.sum(target, dim=reduce_axis)
pred_o = torch.sum(input, dim=reduce_axis)
denominator = ground_o + pred_o
if self.jaccard:
denominator = 2.0 * (denominator - intersection)
if self.my_dice:
def count_nonzeros(input, dim):
mask = input != 0.0
return torch.sum(mask, dim)
f: 'torch.Tensor' = 2.0 * intersection / (denominator + self.
smooth_nr)
if not self.include_background:
if self.batch:
f = f[1:]
ground_o = ground_o[1:]
else:
f = f[:, 1:]
ground_o = ground_o[:, 1:]
f = -(torch.sum(f, dim=-1) / count_nonzeros(ground_o, dim=-1))
else:
f: 'torch.Tensor' = -(2.0 * intersection + self.smooth_nr) / (
denominator + self.smooth_dr)
if not self.include_background:
if self.batch:
f = f[1:]
else:
f = f[:, 1:]
if self.reduction == LossReduction.MEAN.value:
f = torch.mean(f)
elif self.reduction == LossReduction.SUM.value:
f = torch.sum(f)
elif self.reduction == LossReduction.NONE.value:
pass
else:
raise ValueError(
f'Unsupported reduction: {self.reduction}, available options are ["mean", "sum", "none"].'
)
return f
class DiceCELossNew(_Loss):
"""
Compute both Dice loss and Cross Entropy Loss, and return the sum of these two losses.
Input logits `input` (BNHW[D] where N is number of classes) is compared with ground truth `target` (BNHW[D]).
Axis N of `input` is expected to have logit predictions for each class rather than being image channels,
while the same axis of `target` can be 1 or N (one-hot format). The `smooth_nr` and `smooth_dr` parameters are
values added for dice loss part to the intersection and union components of the inter-over-union calculation
to smooth results respectively, these values should be small. The `include_background` class attribute can be
set to False for an instance of the loss to exclude the first category (channel index 0) which is by convention
assumed to be background. If the non-background segmentations are small compared to the total image size they can get
overwhelmed by the signal from the background so excluding it in such cases helps convergence.
"""
def __init__(self, include_background: 'bool'=True, to_onehot_y: 'bool'
=False, sigmoid: 'bool'=False, softmax: 'bool'=False, other_act:
'Optional[Callable]'=None, squared_pred: 'bool'=False, jaccard:
'bool'=False, reduction: 'str'='mean', smooth_nr: 'float'=1e-05,
smooth_dr: 'float'=1e-05, batch: 'bool'=False, ce_weight:
'Optional[torch.Tensor]'=None, negate_dice: 'bool'=False, my_dice:
'bool'=False) ->None:
"""
Args:
``ce_weight`` is only used for cross entropy loss, ``reduction`` is used for both losses and other
parameters are only used for dice loss.
include_background: if False channel index 0 (background category) is excluded from the calculation.
to_onehot_y: whether to convert `y` into the one-hot format. Defaults to False.
sigmoid: if True, apply a sigmoid function to the prediction.
softmax: if True, apply a softmax function to the prediction.
other_act: if don't want to use `sigmoid` or `softmax`, use other callable function to execute
other activation layers, Defaults to ``None``. for example:
`other_act = torch.tanh`.
squared_pred: use squared versions of targets and predictions in the denominator or not.
jaccard: compute Jaccard Index (soft IoU) instead of dice or not.
reduction: {``"mean"``, ``"sum"``}
Specifies the reduction to apply to the output. Defaults to ``"mean"``. The dice loss should
as least reduce the spatial dimensions, which is different from cross entropy loss, thus here
the ``none`` option cannot be used.
- ``"mean"``: the sum of the output will be divided by the number of elements in the output.
- ``"sum"``: the output will be summed.
smooth_nr: a small constant added to the numerator to avoid zero.
smooth_dr: a small constant added to the denominator to avoid nan.
batch: whether to sum the intersection and union areas over the batch dimension before the dividing.
Defaults to False, a Dice loss value is computed independently from each item in the batch
before any `reduction`.
ce_weight: a rescaling weight given to each class for cross entropy loss.
See ``torch.nn.CrossEntropyLoss()`` for more information.
"""
super().__init__()
self.dice = DiceLoss(include_background=include_background,
to_onehot_y=to_onehot_y, sigmoid=sigmoid, softmax=softmax,
other_act=other_act, squared_pred=squared_pred, jaccard=jaccard,
reduction=reduction, smooth_nr=smooth_nr, smooth_dr=smooth_dr,
batch=batch, my_dice=my_dice)
self.cross_entropy = nn.CrossEntropyLoss(weight=ce_weight,
reduction=reduction)
self.negate_dice = negate_dice
def forward(self, input_0, input_1):
arg0_1 = input_0
arg1_1 = input_1
output = call([arg0_1, arg1_1])
return output[0]
|
elitap/classimbalance
|
DiceCELoss
| false | 6,669 |
[
"Apache-2.0"
] | 1 |
ae807ec533da5eef18f4180b29383399bc57696a
|
https://github.com/elitap/classimbalance/tree/ae807ec533da5eef18f4180b29383399bc57696a
|
Sub
|
# AOT ID: ['0_inference']
from ctypes import c_void_p, c_long, c_int
import torch
import math
import random
import os
import tempfile
from math import inf, nan
from torch._inductor.hooks import run_intermediate_hooks
from torch._inductor.utils import maybe_profile
from torch._inductor.codegen.memory_planning import _align as align
from torch import device, empty_strided
from torch._inductor.async_compile import AsyncCompile
from torch._inductor.select_algorithm import extern_kernels
from torch._inductor.codegen.multi_kernel import MultiKernelCall
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
aten = torch.ops.aten
inductor_ops = torch.ops.inductor
_quantized = torch.ops._quantized
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
alloc_from_pool = torch.ops.inductor._alloc_from_pool
async_compile = AsyncCompile()
# kernel path: runs/run_shard_8/inductor_cache/2x/c2xnwzkmtsschsc4kip66bb4tudxm35hzl4lx5aabvhr6szhgwdb.py
# Topologically Sorted Source Nodes: [sub], Original ATen: [aten.sub]
# Source node to ATen node mapping:
# sub => sub
# Graph fragment:
# %sub : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (%arg0_1, %arg1_1), kwargs = {})
triton_poi_fused_sub_0 = async_compile.triton('triton_poi_fused_sub_0', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[256],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_sub_0', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_sub_0(in_ptr0, in_ptr1, out_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 256
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex
tmp0 = tl.load(in_ptr0 + (x0), xmask)
tmp1 = tl.load(in_ptr1 + (x0), xmask)
tmp2 = tmp0 - tmp1
tl.store(out_ptr0 + (x0), tmp2, xmask)
''', device_str='cuda')
async_compile.wait(globals())
del async_compile
def call(args):
arg0_1, arg1_1 = args
args.clear()
assert_size_stride(arg0_1, (4, 4, 4, 4), (64, 16, 4, 1))
assert_size_stride(arg1_1, (4, 4, 4, 4), (64, 16, 4, 1))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32)
# Topologically Sorted Source Nodes: [sub], Original ATen: [aten.sub]
stream0 = get_raw_stream(0)
triton_poi_fused_sub_0.run(arg0_1, arg1_1, buf0, 256, grid=grid(256), stream=stream0)
del arg0_1
del arg1_1
return (buf0, )
def benchmark_compiled_module(times=10, repeat=10):
from torch._dynamo.testing import rand_strided
from torch._inductor.utils import print_performance
arg0_1 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32)
arg1_1 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32)
fn = lambda: call([arg0_1, arg1_1])
return print_performance(fn, times=times, repeat=repeat)
if __name__ == "__main__":
from torch._inductor.wrapper_benchmark import compiled_module_main
compiled_module_main('None', benchmark_compiled_module)
|
import torch
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
@triton.jit
def triton_poi_fused_sub_0(in_ptr0, in_ptr1, out_ptr0, xnumel, XBLOCK: tl.
constexpr):
xnumel = 256
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex
tmp0 = tl.load(in_ptr0 + x0, xmask)
tmp1 = tl.load(in_ptr1 + x0, xmask)
tmp2 = tmp0 - tmp1
tl.store(out_ptr0 + x0, tmp2, xmask)
def call(args):
arg0_1, arg1_1 = args
args.clear()
assert_size_stride(arg0_1, (4, 4, 4, 4), (64, 16, 4, 1))
assert_size_stride(arg1_1, (4, 4, 4, 4), (64, 16, 4, 1))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32)
get_raw_stream(0)
triton_poi_fused_sub_0[grid(256)](arg0_1, arg1_1, buf0, 256, XBLOCK
=256, num_warps=4, num_stages=1)
del arg0_1
del arg1_1
return buf0,
class SubNew(torch.nn.Module):
def __init__(self):
super(SubNew, self).__init__()
def forward(self, input_0, input_1):
arg0_1 = input_0
arg1_1 = input_1
output = call([arg0_1, arg1_1])
return output[0]
|
NVIDIA-AI-IOT-private/torch2trt
|
Sub
| false | 10,541 |
[
"MIT"
] | 0 |
953d60039e0c81e90eea467c3df2e6e3f7040242
|
https://github.com/NVIDIA-AI-IOT-private/torch2trt/tree/953d60039e0c81e90eea467c3df2e6e3f7040242
|
ResBlock
|
import torch
import torch.nn as nn
class ResBlock(nn.Module):
def __init__(self, in_c):
super(ResBlock, self).__init__()
self.conv1 = nn.Conv2d(in_c, in_c, kernel_size=3, stride=1, padding
=1, bias=True)
self.relu = nn.ReLU(inplace=True)
self.conv2 = nn.Conv2d(in_c, in_c, kernel_size=3, stride=1, padding
=1, bias=True)
def forward(self, x):
identity = x
out = self.conv1(x)
out = self.relu(out)
out = self.conv2(out)
out = out + identity
return out
def get_inputs():
return [torch.rand([4, 4, 4, 4])]
def get_init_inputs():
return [[], {'in_c': 4}]
|
import torch
from torch._inductor.select_algorithm import extern_kernels
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
from torch._inductor.runtime import triton_helpers
import torch.nn as nn
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
@triton.jit
def triton_poi_fused_convolution_relu_0(in_out_ptr0, in_ptr0, xnumel,
XBLOCK: tl.constexpr):
xnumel = 256
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x3 = xindex
x1 = xindex // 16 % 4
tmp0 = tl.load(in_out_ptr0 + x3, xmask)
tmp1 = tl.load(in_ptr0 + x1, xmask, eviction_policy='evict_last')
tmp2 = tmp0 + tmp1
tmp3 = tl.full([1], 0, tl.int32)
tmp4 = triton_helpers.maximum(tmp3, tmp2)
tl.store(in_out_ptr0 + x3, tmp4, xmask)
@triton.jit
def triton_poi_fused_add_convolution_1(in_out_ptr0, in_ptr0, in_ptr1,
xnumel, XBLOCK: tl.constexpr):
xnumel = 256
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x3 = xindex
x1 = xindex // 16 % 4
tmp0 = tl.load(in_out_ptr0 + x3, xmask)
tmp1 = tl.load(in_ptr0 + x1, xmask, eviction_policy='evict_last')
tmp3 = tl.load(in_ptr1 + x3, xmask)
tmp2 = tmp0 + tmp1
tmp4 = tmp2 + tmp3
tl.store(in_out_ptr0 + x3, tmp4, xmask)
def call(args):
primals_1, primals_2, primals_3, primals_4, primals_5 = args
args.clear()
assert_size_stride(primals_1, (4, 4, 4, 4), (64, 16, 4, 1))
assert_size_stride(primals_2, (4, 4, 3, 3), (36, 9, 3, 1))
assert_size_stride(primals_3, (4,), (1,))
assert_size_stride(primals_4, (4, 4, 3, 3), (36, 9, 3, 1))
assert_size_stride(primals_5, (4,), (1,))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = extern_kernels.convolution(primals_1, primals_2, stride=(1,
1), padding=(1, 1), dilation=(1, 1), transposed=False,
output_padding=(0, 0), groups=1, bias=None)
assert_size_stride(buf0, (4, 4, 4, 4), (64, 16, 4, 1))
buf1 = buf0
del buf0
get_raw_stream(0)
triton_poi_fused_convolution_relu_0[grid(256)](buf1, primals_3, 256,
XBLOCK=128, num_warps=4, num_stages=1)
del primals_3
buf2 = extern_kernels.convolution(buf1, primals_4, stride=(1, 1),
padding=(1, 1), dilation=(1, 1), transposed=False,
output_padding=(0, 0), groups=1, bias=None)
assert_size_stride(buf2, (4, 4, 4, 4), (64, 16, 4, 1))
buf3 = buf2
del buf2
triton_poi_fused_add_convolution_1[grid(256)](buf3, primals_5,
primals_1, 256, XBLOCK=256, num_warps=4, num_stages=1)
del primals_5
return buf3, primals_1, primals_2, primals_4, buf1
class ResBlockNew(nn.Module):
def __init__(self, in_c):
super(ResBlockNew, self).__init__()
self.conv1 = nn.Conv2d(in_c, in_c, kernel_size=3, stride=1, padding
=1, bias=True)
self.relu = nn.ReLU(inplace=True)
self.conv2 = nn.Conv2d(in_c, in_c, kernel_size=3, stride=1, padding
=1, bias=True)
def forward(self, input_0):
primals_2 = self.conv1.weight
primals_3 = self.conv1.bias
primals_4 = self.conv2.weight
primals_5 = self.conv2.bias
primals_1 = input_0
output = call([primals_1, primals_2, primals_3, primals_4, primals_5])
return output[0]
|
MohitLamba94/LLPackNet
|
ResBlock
| false | 8,561 |
[
"MIT"
] | 15 |
440e20ac48aed0beca5f473358ec85d24d477575
|
https://github.com/MohitLamba94/LLPackNet/tree/440e20ac48aed0beca5f473358ec85d24d477575
|
L2LossWithLogit
|
import torch
import torch.utils.data
import torch
from torch import nn
class L2LossWithLogit(nn.Module):
def __init__(self):
super(L2LossWithLogit, self).__init__()
self.mse = nn.MSELoss(reduction='sum')
def forward(self, logits, targets):
p = torch.sigmoid(logits)
return self.mse(p, targets)
def get_inputs():
return [torch.rand([4, 4, 4, 4]), torch.rand([4, 4, 4, 4])]
def get_init_inputs():
return [[], {}]
|
import torch
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
from torch._inductor.runtime import triton_helpers
import torch.utils.data
import torch
from torch import nn
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
@triton.jit
def triton_per_fused_mse_loss_sigmoid_0(in_ptr0, in_ptr1, out_ptr0, xnumel,
rnumel):
XBLOCK: tl.constexpr = 1
RBLOCK: tl.constexpr = 256
xoffset = tl.program_id(0) * XBLOCK
tl.full([1], xoffset, tl.int32)
tl.full([RBLOCK], True, tl.int1)
rindex = tl.arange(0, RBLOCK)[:]
tl.full([RBLOCK], True, tl.int1)
r0 = rindex
tmp0 = tl.load(in_ptr0 + r0, None)
tmp2 = tl.load(in_ptr1 + r0, None)
tmp1 = tl.sigmoid(tmp0)
tmp3 = tmp1 - tmp2
tmp4 = tmp3 * tmp3
tmp5 = tl.broadcast_to(tmp4, [RBLOCK])
tmp7 = triton_helpers.promote_to_tensor(tl.sum(tmp5, 0))
tl.store(out_ptr0 + tl.full([1], 0, tl.int32), tmp7, None)
def call(args):
arg0_1, arg1_1 = args
args.clear()
assert_size_stride(arg0_1, (4, 4, 4, 4), (64, 16, 4, 1))
assert_size_stride(arg1_1, (4, 4, 4, 4), (64, 16, 4, 1))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((), (), torch.float32)
get_raw_stream(0)
triton_per_fused_mse_loss_sigmoid_0[grid(1)](arg0_1, arg1_1, buf0,
1, 256, num_warps=2, num_stages=1)
del arg0_1
del arg1_1
return buf0,
class L2LossWithLogitNew(nn.Module):
def __init__(self):
super(L2LossWithLogitNew, self).__init__()
self.mse = nn.MSELoss(reduction='sum')
def forward(self, input_0, input_1):
arg0_1 = input_0
arg1_1 = input_1
output = call([arg0_1, arg1_1])
return output[0]
|
ucas-vg/TinyBenchmark
|
L2LossWithLogit
| false | 16,638 |
[
"MIT"
] | 495 |
36436df3716d842b6148fb6f6bc7715a2fbdfd92
|
https://github.com/ucas-vg/TinyBenchmark/tree/36436df3716d842b6148fb6f6bc7715a2fbdfd92
|
SoftArgmax
|
# AOT ID: ['0_inference']
from ctypes import c_void_p, c_long, c_int
import torch
import math
import random
import os
import tempfile
from math import inf, nan
from torch._inductor.hooks import run_intermediate_hooks
from torch._inductor.utils import maybe_profile
from torch._inductor.codegen.memory_planning import _align as align
from torch import device, empty_strided
from torch._inductor.async_compile import AsyncCompile
from torch._inductor.select_algorithm import extern_kernels
from torch._inductor.codegen.multi_kernel import MultiKernelCall
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
aten = torch.ops.aten
inductor_ops = torch.ops.inductor
_quantized = torch.ops._quantized
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
alloc_from_pool = torch.ops.inductor._alloc_from_pool
async_compile = AsyncCompile()
# kernel path: runs/run_shard_2/inductor_cache/ya/cyahnmmwtr6uhmebpexpdek4x4mqbocnio5ujuyhld7v4lub73jr.py
# Topologically Sorted Source Nodes: [input_2], Original ATen: [aten._softmax]
# Source node to ATen node mapping:
# input_2 => exp
# Graph fragment:
# %mul_tensor : [num_users=2] = call_function[target=torch.ops.aten.mul.Tensor](args = (%view, 1), kwargs = {})
# %amax_default : [num_users=1] = call_function[target=torch.ops.aten.amax.default](args = (%mul_tensor, [1], True), kwargs = {})
# %sub_tensor : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (%mul_tensor, %amax_default), kwargs = {})
# %div_tensor : [num_users=1] = call_function[target=torch.ops.aten.div.Tensor](args = (%sub_tensor, 0.001), kwargs = {})
# %exp : [num_users=2] = call_function[target=torch.ops.aten.exp.default](args = (%div_tensor,), kwargs = {})
triton_poi_fused__softmax_0 = async_compile.triton('triton_poi_fused__softmax_0', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[256],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=90, major=9, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=132), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused__softmax_0', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 5, 'num_reduction': 0, 'backend_hash': 'B098E03CDA7B8ADC90DAFFDF24A2956451D1B13F297756A5DCC209498AA53705', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused__softmax_0(in_ptr0, out_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 256
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x2 = xindex
x1 = (xindex // 4)
tmp0 = tl.load(in_ptr0 + (x2), xmask)
tmp3 = tl.load(in_ptr0 + (4*x1), xmask, eviction_policy='evict_last')
tmp5 = tl.load(in_ptr0 + (1 + (4*x1)), xmask, eviction_policy='evict_last')
tmp8 = tl.load(in_ptr0 + (2 + (4*x1)), xmask, eviction_policy='evict_last')
tmp11 = tl.load(in_ptr0 + (3 + (4*x1)), xmask, eviction_policy='evict_last')
tmp1 = 1.0
tmp2 = tmp0 * tmp1
tmp4 = tmp3 * tmp1
tmp6 = tmp5 * tmp1
tmp7 = triton_helpers.maximum(tmp4, tmp6)
tmp9 = tmp8 * tmp1
tmp10 = triton_helpers.maximum(tmp7, tmp9)
tmp12 = tmp11 * tmp1
tmp13 = triton_helpers.maximum(tmp10, tmp12)
tmp14 = tmp2 - tmp13
tmp15 = 1000.0
tmp16 = tmp14 * tmp15
tmp17 = tl_math.exp(tmp16)
tl.store(out_ptr0 + (x2), tmp17, xmask)
''', device_str='cuda')
# kernel path: runs/run_shard_2/inductor_cache/ox/coxkl4lswvjhcblub7r44rspxs2kf77xsvukahpgknphsndzxxog.py
# Topologically Sorted Source Nodes: [input_2], Original ATen: [aten._softmax]
# Source node to ATen node mapping:
# input_2 => div_1, sum_1
# Graph fragment:
# %sum_1 : [num_users=1] = call_function[target=torch.ops.aten.sum.dim_IntList](args = (%exp, [1], True), kwargs = {})
# %div_1 : [num_users=1] = call_function[target=torch.ops.aten.div.Tensor](args = (%exp, %sum_1), kwargs = {})
triton_poi_fused__softmax_1 = async_compile.triton('triton_poi_fused__softmax_1', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[256],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=90, major=9, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=132), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused__softmax_1', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 5, 'num_reduction': 0, 'backend_hash': 'B098E03CDA7B8ADC90DAFFDF24A2956451D1B13F297756A5DCC209498AA53705', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused__softmax_1(in_ptr0, out_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 256
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x2 = xindex
x1 = (xindex // 4)
tmp0 = tl.load(in_ptr0 + (x2), xmask)
tmp1 = tl.load(in_ptr0 + (4*x1), xmask, eviction_policy='evict_last')
tmp2 = tl.load(in_ptr0 + (1 + (4*x1)), xmask, eviction_policy='evict_last')
tmp4 = tl.load(in_ptr0 + (2 + (4*x1)), xmask, eviction_policy='evict_last')
tmp6 = tl.load(in_ptr0 + (3 + (4*x1)), xmask, eviction_policy='evict_last')
tmp3 = tmp1 + tmp2
tmp5 = tmp3 + tmp4
tmp7 = tmp5 + tmp6
tmp8 = tmp0 / tmp7
tl.store(out_ptr0 + (x2), tmp8, xmask)
''', device_str='cuda')
async_compile.wait(globals())
del async_compile
def call(args):
arg0_1, = args
args.clear()
assert_size_stride(arg0_1, (4, 4, 4, 4), (64, 16, 4, 1))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((64, 4), (4, 1), torch.float32)
# Topologically Sorted Source Nodes: [input_2], Original ATen: [aten._softmax]
stream0 = get_raw_stream(0)
triton_poi_fused__softmax_0.run(arg0_1, buf0, 256, grid=grid(256), stream=stream0)
del arg0_1
buf1 = empty_strided_cuda((64, 4), (4, 1), torch.float32)
# Topologically Sorted Source Nodes: [input_2], Original ATen: [aten._softmax]
triton_poi_fused__softmax_1.run(buf0, buf1, 256, grid=grid(256), stream=stream0)
del buf0
return (reinterpret_tensor(buf1, (4, 4, 4, 4), (64, 16, 4, 1), 0), )
def benchmark_compiled_module(times=10, repeat=10):
from torch._dynamo.testing import rand_strided
from torch._inductor.utils import print_performance
arg0_1 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32)
fn = lambda: call([arg0_1])
return print_performance(fn, times=times, repeat=repeat)
if __name__ == "__main__":
from torch._inductor.wrapper_benchmark import compiled_module_main
compiled_module_main('None', benchmark_compiled_module)
|
import torch
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
from torch._inductor.runtime import triton_helpers
from torch._inductor.runtime.triton_helpers import math as tl_math
import torch as t
import torch.nn as nn
from torch.autograd import Variable
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
@triton.jit
def triton_poi_fused__softmax_0(in_ptr0, out_ptr0, xnumel, XBLOCK: tl.constexpr
):
xnumel = 256
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x2 = xindex
x1 = xindex // 4
tmp0 = tl.load(in_ptr0 + x2, xmask)
tmp3 = tl.load(in_ptr0 + 4 * x1, xmask, eviction_policy='evict_last')
tmp5 = tl.load(in_ptr0 + (1 + 4 * x1), xmask, eviction_policy='evict_last')
tmp8 = tl.load(in_ptr0 + (2 + 4 * x1), xmask, eviction_policy='evict_last')
tmp11 = tl.load(in_ptr0 + (3 + 4 * x1), xmask, eviction_policy='evict_last'
)
tmp1 = 1.0
tmp2 = tmp0 * tmp1
tmp4 = tmp3 * tmp1
tmp6 = tmp5 * tmp1
tmp7 = triton_helpers.maximum(tmp4, tmp6)
tmp9 = tmp8 * tmp1
tmp10 = triton_helpers.maximum(tmp7, tmp9)
tmp12 = tmp11 * tmp1
tmp13 = triton_helpers.maximum(tmp10, tmp12)
tmp14 = tmp2 - tmp13
tmp15 = 1000.0
tmp16 = tmp14 * tmp15
tmp17 = tl_math.exp(tmp16)
tl.store(out_ptr0 + x2, tmp17, xmask)
@triton.jit
def triton_poi_fused__softmax_1(in_ptr0, out_ptr0, xnumel, XBLOCK: tl.constexpr
):
xnumel = 256
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x2 = xindex
x1 = xindex // 4
tmp0 = tl.load(in_ptr0 + x2, xmask)
tmp1 = tl.load(in_ptr0 + 4 * x1, xmask, eviction_policy='evict_last')
tmp2 = tl.load(in_ptr0 + (1 + 4 * x1), xmask, eviction_policy='evict_last')
tmp4 = tl.load(in_ptr0 + (2 + 4 * x1), xmask, eviction_policy='evict_last')
tmp6 = tl.load(in_ptr0 + (3 + 4 * x1), xmask, eviction_policy='evict_last')
tmp3 = tmp1 + tmp2
tmp5 = tmp3 + tmp4
tmp7 = tmp5 + tmp6
tmp8 = tmp0 / tmp7
tl.store(out_ptr0 + x2, tmp8, xmask)
def call(args):
arg0_1, = args
args.clear()
assert_size_stride(arg0_1, (4, 4, 4, 4), (64, 16, 4, 1))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((64, 4), (4, 1), torch.float32)
get_raw_stream(0)
triton_poi_fused__softmax_0[grid(256)](arg0_1, buf0, 256, XBLOCK=
128, num_warps=4, num_stages=1)
del arg0_1
buf1 = empty_strided_cuda((64, 4), (4, 1), torch.float32)
triton_poi_fused__softmax_1[grid(256)](buf0, buf1, 256, XBLOCK=256,
num_warps=4, num_stages=1)
del buf0
return reinterpret_tensor(buf1, (4, 4, 4, 4), (64, 16, 4, 1), 0),
class SoftArgmaxNew(nn.Module):
def __init__(self, temperature=0.001):
super(SoftArgmaxNew, self).__init__()
self.temperature = temperature
@staticmethod
def _sample_gumbel(shape, eps=1e-20):
unif = Variable(t.Tensor(*shape).uniform_(0, 1))
return ((unif + eps).log().neg() + eps).log().neg()
def forward(self, input_0):
arg0_1 = input_0
output = call([arg0_1])
return output[0]
|
analvikingur/RGAN
|
SoftArgmax
| false | 18,313 |
[
"MIT"
] | 8 |
b1893c2f53d11c9173c7a30f63f6d93d72232493
|
https://github.com/analvikingur/RGAN/tree/b1893c2f53d11c9173c7a30f63f6d93d72232493
|
GaussianSmoothing
|
# AOT ID: ['0_inference']
from ctypes import c_void_p, c_long, c_int
import torch
import math
import random
import os
import tempfile
from math import inf, nan
from torch._inductor.hooks import run_intermediate_hooks
from torch._inductor.utils import maybe_profile
from torch._inductor.codegen.memory_planning import _align as align
from torch import device, empty_strided
from torch._inductor.async_compile import AsyncCompile
from torch._inductor.select_algorithm import extern_kernels
from torch._inductor.codegen.multi_kernel import MultiKernelCall
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
aten = torch.ops.aten
inductor_ops = torch.ops.inductor
_quantized = torch.ops._quantized
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
alloc_from_pool = torch.ops.inductor._alloc_from_pool
async_compile = AsyncCompile()
# kernel path: runs/run_shard_4/inductor_cache/qq/cqq5lsnh6vt6557bounpfgnl6t7pzf7kp656kgxbydvrgd35lsd3.py
# Topologically Sorted Source Nodes: [conv2d], Original ATen: [aten.convolution]
# Source node to ATen node mapping:
# conv2d => convolution
# Graph fragment:
# %convolution : [num_users=1] = call_function[target=torch.ops.aten.convolution.default](args = (%arg1_1, %arg0_1, None, [1, 1], [1, 1], [1, 1], False, [0, 0], 3), kwargs = {})
triton_poi_fused_convolution_0 = async_compile.triton('triton_poi_fused_convolution_0', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[16, 4096], tile_hint=TileHint.SQUARE,
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 3), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_convolution_0', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 1, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_convolution_0(in_ptr0, out_ptr0, ynumel, xnumel, YBLOCK : tl.constexpr, XBLOCK : tl.constexpr):
ynumel = 12
xnumel = 4096
yoffset = tl.program_id(1) * YBLOCK
yindex = yoffset + tl.arange(0, YBLOCK)[None, :]
ymask = yindex < ynumel
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:, None]
xmask = tl.full([XBLOCK, YBLOCK], True, tl.int1)
x2 = xindex
y3 = yindex
y0 = yindex % 3
y1 = (yindex // 3)
tmp0 = tl.load(in_ptr0 + (x2 + (4096*y3)), ymask, eviction_policy='evict_last')
tl.store(out_ptr0 + (y0 + (3*x2) + (12288*y1)), tmp0, ymask)
''', device_str='cuda')
# kernel path: runs/run_shard_4/inductor_cache/t2/ct25onnj2rrutfldwxrd2wns25gwitfsqxfoxgr5j3xsf2pxdzv5.py
# Topologically Sorted Source Nodes: [conv2d], Original ATen: [aten.convolution]
# Source node to ATen node mapping:
# conv2d => convolution
# Graph fragment:
# %convolution : [num_users=1] = call_function[target=torch.ops.aten.convolution.default](args = (%arg1_1, %arg0_1, None, [1, 1], [1, 1], [1, 1], False, [0, 0], 3), kwargs = {})
triton_poi_fused_convolution_1 = async_compile.triton('triton_poi_fused_convolution_1', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[16, 4096], tile_hint=TileHint.SQUARE,
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 3), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_convolution_1', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 1, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_convolution_1(in_ptr0, out_ptr0, ynumel, xnumel, YBLOCK : tl.constexpr, XBLOCK : tl.constexpr):
ynumel = 12
xnumel = 4096
yoffset = tl.program_id(1) * YBLOCK
yindex = yoffset + tl.arange(0, YBLOCK)[None, :]
ymask = yindex < ynumel
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:, None]
xmask = tl.full([XBLOCK, YBLOCK], True, tl.int1)
x2 = xindex
y0 = yindex % 3
y1 = (yindex // 3)
y3 = yindex
tmp0 = tl.load(in_ptr0 + (y0 + (3*x2) + (12288*y1)), ymask, eviction_policy='evict_last')
tl.store(out_ptr0 + (x2 + (4096*y3)), tmp0, ymask)
''', device_str='cuda')
async_compile.wait(globals())
del async_compile
def call(args):
arg0_1, arg1_1 = args
args.clear()
assert_size_stride(arg0_1, (3, 1, 3, 3), (9, 9, 3, 1))
assert_size_stride(arg1_1, (4, 3, 64, 64), (12288, 4096, 64, 1))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((4, 3, 64, 64), (12288, 1, 192, 3), torch.float32)
# Topologically Sorted Source Nodes: [conv2d], Original ATen: [aten.convolution]
stream0 = get_raw_stream(0)
triton_poi_fused_convolution_0.run(arg1_1, buf0, 12, 4096, grid=grid(12, 4096), stream=stream0)
del arg1_1
# Topologically Sorted Source Nodes: [conv2d], Original ATen: [aten.convolution]
buf1 = extern_kernels.convolution(buf0, arg0_1, stride=(1, 1), padding=(1, 1), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=3, bias=None)
assert_size_stride(buf1, (4, 3, 64, 64), (12288, 1, 192, 3))
del arg0_1
buf2 = reinterpret_tensor(buf0, (4, 3, 64, 64), (12288, 4096, 64, 1), 0); del buf0 # reuse
# Topologically Sorted Source Nodes: [conv2d], Original ATen: [aten.convolution]
triton_poi_fused_convolution_1.run(buf1, buf2, 12, 4096, grid=grid(12, 4096), stream=stream0)
del buf1
return (buf2, )
def benchmark_compiled_module(times=10, repeat=10):
from torch._dynamo.testing import rand_strided
from torch._inductor.utils import print_performance
arg0_1 = rand_strided((3, 1, 3, 3), (9, 9, 3, 1), device='cuda:0', dtype=torch.float32)
arg1_1 = rand_strided((4, 3, 64, 64), (12288, 4096, 64, 1), device='cuda:0', dtype=torch.float32)
fn = lambda: call([arg0_1, arg1_1])
return print_performance(fn, times=times, repeat=repeat)
if __name__ == "__main__":
from torch._inductor.wrapper_benchmark import compiled_module_main
compiled_module_main('None', benchmark_compiled_module)
|
import torch
from torch._inductor.select_algorithm import extern_kernels
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
import math
import torch.nn as nn
import torch.nn.parallel
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
@triton.jit
def triton_poi_fused_convolution_0(in_ptr0, out_ptr0, ynumel, xnumel,
YBLOCK: tl.constexpr, XBLOCK: tl.constexpr):
ynumel = 12
yoffset = tl.program_id(1) * YBLOCK
yindex = yoffset + tl.arange(0, YBLOCK)[None, :]
ymask = yindex < ynumel
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:, None]
tl.full([XBLOCK, YBLOCK], True, tl.int1)
x2 = xindex
y3 = yindex
y0 = yindex % 3
y1 = yindex // 3
tmp0 = tl.load(in_ptr0 + (x2 + 4096 * y3), ymask, eviction_policy=
'evict_last')
tl.store(out_ptr0 + (y0 + 3 * x2 + 12288 * y1), tmp0, ymask)
@triton.jit
def triton_poi_fused_convolution_1(in_ptr0, out_ptr0, ynumel, xnumel,
YBLOCK: tl.constexpr, XBLOCK: tl.constexpr):
ynumel = 12
yoffset = tl.program_id(1) * YBLOCK
yindex = yoffset + tl.arange(0, YBLOCK)[None, :]
ymask = yindex < ynumel
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:, None]
tl.full([XBLOCK, YBLOCK], True, tl.int1)
x2 = xindex
y0 = yindex % 3
y1 = yindex // 3
y3 = yindex
tmp0 = tl.load(in_ptr0 + (y0 + 3 * x2 + 12288 * y1), ymask,
eviction_policy='evict_last')
tl.store(out_ptr0 + (x2 + 4096 * y3), tmp0, ymask)
def call(args):
arg0_1, arg1_1 = args
args.clear()
assert_size_stride(arg0_1, (3, 1, 3, 3), (9, 9, 3, 1))
assert_size_stride(arg1_1, (4, 3, 64, 64), (12288, 4096, 64, 1))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((4, 3, 64, 64), (12288, 1, 192, 3), torch
.float32)
get_raw_stream(0)
triton_poi_fused_convolution_0[grid(12, 4096)](arg1_1, buf0, 12,
4096, XBLOCK=64, YBLOCK=16, num_warps=4, num_stages=1)
del arg1_1
buf1 = extern_kernels.convolution(buf0, arg0_1, stride=(1, 1),
padding=(1, 1), dilation=(1, 1), transposed=False,
output_padding=(0, 0), groups=3, bias=None)
assert_size_stride(buf1, (4, 3, 64, 64), (12288, 1, 192, 3))
del arg0_1
buf2 = reinterpret_tensor(buf0, (4, 3, 64, 64), (12288, 4096, 64, 1), 0
)
del buf0
triton_poi_fused_convolution_1[grid(12, 4096)](buf1, buf2, 12, 4096,
XBLOCK=64, YBLOCK=16, num_warps=4, num_stages=1)
del buf1
return buf2,
class GaussianSmoothingNew(nn.Module):
"""
Apply gaussian smoothing on a
1d, 2d or 3d tensor. Filtering is performed seperately for each channel
in the input using a depthwise convolution.
Arguments:
channels (int, sequence): Number of channels of the input tensors. Output will
have this number of channels as well.
kernel_size (int, sequence): Size of the gaussian kernel.
sigma (float, sequence): Standard deviation of the gaussian kernel.
dim (int, optional): The number of dimensions of the data.
Default value is 2 (spatial).
"""
def __init__(self, channels=3, kernel_size=3, sigma=3, dim=2):
super(GaussianSmoothingNew, self).__init__()
x_coord = torch.arange(kernel_size)
x_grid = x_coord.repeat(kernel_size).view(kernel_size, kernel_size)
y_grid = x_grid.t()
xy_grid = torch.stack([x_grid, y_grid], dim=-1).float()
mean = (kernel_size - 1) / 2.0
variance = sigma ** 2.0
gaussian_kernel = 1.0 / (2.0 * math.pi * variance) * torch.exp(-
torch.sum((xy_grid - mean) ** 2.0, dim=-1) / (2 * variance))
gaussian_kernel = gaussian_kernel / torch.sum(gaussian_kernel)
gaussian_kernel = gaussian_kernel.view(1, 1, kernel_size, kernel_size)
gaussian_kernel = gaussian_kernel.repeat(channels, 1, 1, 1)
self.gaussian_filter = nn.Conv2d(in_channels=channels, out_channels
=channels, kernel_size=kernel_size, groups=channels, bias=False,
padding=(kernel_size - 1) // 2)
self.gaussian_filter.weight.data = gaussian_kernel
self.gaussian_filter.weight.requires_grad = False
def forward(self, input_0):
arg0_1 = self.gaussian_filter.weight
arg1_1 = input_0
output = call([arg0_1, arg1_1])
return output[0]
|
rakshithShetty/SemanticAdversary
|
GaussianSmoothing
| false | 7,528 |
[
"MIT"
] | 1 |
e6d50f00af6f7d847cba4210613afea4be773254
|
https://github.com/rakshithShetty/SemanticAdversary/tree/e6d50f00af6f7d847cba4210613afea4be773254
|
BERTNextSentence
|
import torch
import torch.nn as nn
class BERTNextSentence(nn.Module):
def __init__(self, hidden):
super().__init__()
self.linear = nn.Linear(hidden, 2)
self.softmax = nn.LogSoftmax(dim=-1)
def forward(self, x):
return self.softmax(self.linear(x[:, 0]))
def get_inputs():
return [torch.rand([4, 4, 4, 4])]
def get_init_inputs():
return [[], {'hidden': 4}]
|
import torch
from torch._inductor.select_algorithm import extern_kernels
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
from torch._inductor.runtime import triton_helpers
from torch._inductor.runtime.triton_helpers import math as tl_math
import torch.nn as nn
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
@triton.jit
def triton_poi_fused_clone_0(in_ptr0, out_ptr0, xnumel, XBLOCK: tl.constexpr):
xnumel = 64
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex % 16
x1 = xindex // 16
x2 = xindex
tmp0 = tl.load(in_ptr0 + (x0 + 64 * x1), xmask)
tl.store(out_ptr0 + x2, tmp0, xmask)
@triton.jit
def triton_poi_fused__log_softmax_add_1(in_ptr0, in_ptr1, out_ptr0, xnumel,
XBLOCK: tl.constexpr):
xnumel = 32
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x2 = xindex
x0 = xindex % 2
x1 = xindex // 2
tmp0 = tl.load(in_ptr0 + x2, xmask)
tmp1 = tl.load(in_ptr1 + x0, xmask, eviction_policy='evict_last')
tmp3 = tl.load(in_ptr0 + 2 * x1, xmask, eviction_policy='evict_last')
tmp4 = tl.load(in_ptr1 + 0)
tmp5 = tl.broadcast_to(tmp4, [XBLOCK])
tmp7 = tl.load(in_ptr0 + (1 + 2 * x1), xmask, eviction_policy='evict_last')
tmp8 = tl.load(in_ptr1 + 1)
tmp9 = tl.broadcast_to(tmp8, [XBLOCK])
tmp2 = tmp0 + tmp1
tmp6 = tmp3 + tmp5
tmp10 = tmp7 + tmp9
tmp11 = triton_helpers.maximum(tmp6, tmp10)
tmp12 = tmp2 - tmp11
tl.store(out_ptr0 + x2, tmp12, xmask)
@triton.jit
def triton_poi_fused__log_softmax_2(in_ptr0, out_ptr0, xnumel, XBLOCK: tl.
constexpr):
xnumel = 32
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x2 = xindex
x1 = xindex // 2
tmp0 = tl.load(in_ptr0 + x2, xmask)
tmp1 = tl.load(in_ptr0 + 2 * x1, xmask, eviction_policy='evict_last')
tmp3 = tl.load(in_ptr0 + (1 + 2 * x1), xmask, eviction_policy='evict_last')
tmp2 = tl_math.exp(tmp1)
tmp4 = tl_math.exp(tmp3)
tmp5 = tmp2 + tmp4
tmp6 = tl_math.log(tmp5)
tmp7 = tmp0 - tmp6
tl.store(out_ptr0 + x2, tmp7, xmask)
def call(args):
primals_1, primals_2, primals_3 = args
args.clear()
assert_size_stride(primals_1, (4, 4, 4, 4), (64, 16, 4, 1))
assert_size_stride(primals_2, (2, 4), (4, 1))
assert_size_stride(primals_3, (2,), (1,))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((4, 4, 4), (16, 4, 1), torch.float32)
get_raw_stream(0)
triton_poi_fused_clone_0[grid(64)](primals_1, buf0, 64, XBLOCK=64,
num_warps=1, num_stages=1)
del primals_1
buf1 = empty_strided_cuda((16, 2), (2, 1), torch.float32)
extern_kernels.mm(reinterpret_tensor(buf0, (16, 4), (4, 1), 0),
reinterpret_tensor(primals_2, (4, 2), (1, 4), 0), out=buf1)
del primals_2
buf2 = empty_strided_cuda((4, 4, 2), (8, 2, 1), torch.float32)
triton_poi_fused__log_softmax_add_1[grid(32)](buf1, primals_3, buf2,
32, XBLOCK=32, num_warps=1, num_stages=1)
del primals_3
buf3 = reinterpret_tensor(buf1, (4, 4, 2), (8, 2, 1), 0)
del buf1
triton_poi_fused__log_softmax_2[grid(32)](buf2, buf3, 32, XBLOCK=32,
num_warps=1, num_stages=1)
del buf2
return buf3, reinterpret_tensor(buf0, (16, 4), (4, 1), 0), buf3
class BERTNextSentenceNew(nn.Module):
def __init__(self, hidden):
super().__init__()
self.linear = nn.Linear(hidden, 2)
self.softmax = nn.LogSoftmax(dim=-1)
def forward(self, input_0):
primals_2 = self.linear.weight
primals_3 = self.linear.bias
primals_1 = input_0
output = call([primals_1, primals_2, primals_3])
return output[0]
|
Moymix/BERT-pytorch
|
BERTNextSentence
| false | 5,616 |
[
"Apache-2.0"
] | 1 |
f0b9c3ae53e05c00adcc761e0422e4222d8b5619
|
https://github.com/Moymix/BERT-pytorch/tree/f0b9c3ae53e05c00adcc761e0422e4222d8b5619
|
NegativeScaledDotProduct
|
import torch
import torch.utils.data.dataloader
import torch.nn
def dot_product(a: 'torch.Tensor', b: 'torch.Tensor', normalize=False):
"""
Computes dot product for pairs of vectors.
:param normalize: Vectors are normalized (leads to cosine similarity)
:return: Matrix with res[i][j] = dot_product(a[i], b[j])
"""
if len(a.shape) == 1:
a = a.unsqueeze(0)
if len(b.shape) == 1:
b = b.unsqueeze(0)
if normalize:
a = torch.nn.functional.normalize(a, p=2, dim=1)
b = torch.nn.functional.normalize(b, p=2, dim=1)
return torch.mm(a, b.transpose(0, 1))
class NegativeScaledDotProduct(torch.nn.Module):
def forward(self, a, b):
sqrt_d = torch.sqrt(torch.tensor(a.size(-1)))
return -dot_product(a, b, normalize=False) / sqrt_d
def get_inputs():
return [torch.rand([4, 4]), torch.rand([4, 4])]
def get_init_inputs():
return [[], {}]
|
import torch
from torch._inductor.select_algorithm import extern_kernels
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
import torch.utils.data.dataloader
import torch.nn
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
@triton.jit
def triton_poi_fused_div_neg_sqrt_0(in_out_ptr0, xnumel, XBLOCK: tl.constexpr):
xnumel = 16
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex
tmp0 = tl.load(in_out_ptr0 + x0, xmask)
tmp1 = -tmp0
tmp2 = 0.5
tmp3 = tmp1 * tmp2
tl.store(in_out_ptr0 + x0, tmp3, xmask)
def call(args):
arg0_1, arg1_1 = args
args.clear()
assert_size_stride(arg0_1, (4, 4), (4, 1))
assert_size_stride(arg1_1, (4, 4), (4, 1))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((4, 4), (4, 1), torch.float32)
extern_kernels.mm(arg0_1, reinterpret_tensor(arg1_1, (4, 4), (1, 4),
0), out=buf0)
del arg0_1
del arg1_1
buf1 = buf0
del buf0
get_raw_stream(0)
triton_poi_fused_div_neg_sqrt_0[grid(16)](buf1, 16, XBLOCK=16,
num_warps=1, num_stages=1)
return buf1,
def dot_product(a: 'torch.Tensor', b: 'torch.Tensor', normalize=False):
"""
Computes dot product for pairs of vectors.
:param normalize: Vectors are normalized (leads to cosine similarity)
:return: Matrix with res[i][j] = dot_product(a[i], b[j])
"""
if len(a.shape) == 1:
a = a.unsqueeze(0)
if len(b.shape) == 1:
b = b.unsqueeze(0)
if normalize:
a = torch.nn.functional.normalize(a, p=2, dim=1)
b = torch.nn.functional.normalize(b, p=2, dim=1)
return torch.mm(a, b.transpose(0, 1))
class NegativeScaledDotProductNew(torch.nn.Module):
def forward(self, input_0, input_1):
arg0_1 = input_0
arg1_1 = input_1
output = call([arg0_1, arg1_1])
return output[0]
|
adriensas/flair
|
NegativeScaledDotProduct
| false | 9,742 |
[
"MIT"
] | 0 |
f01b0e7ff9a87d3862acae50aeaffdc8e8b8ac21
|
https://github.com/adriensas/flair/tree/f01b0e7ff9a87d3862acae50aeaffdc8e8b8ac21
|
HLoss
|
import torch
from torch.autograd.gradcheck import *
import torch.nn as nn
import torch.nn
class HLoss(nn.Module):
def __init__(self):
super(HLoss, self).__init__()
def forward(self, x, spacing):
volumeElement = spacing.prod()
b = x * torch.log(x)
b = -1.0 * b.sum() * volumeElement
return b
def get_inputs():
return [torch.rand([4, 4, 4, 4]), torch.rand([4, 4, 4, 4])]
def get_init_inputs():
return [[], {}]
|
import torch
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
from torch._inductor.runtime import triton_helpers
from torch._inductor.runtime.triton_helpers import math as tl_math
from torch.autograd.gradcheck import *
import torch.nn as nn
import torch.nn
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
@triton.jit
def triton_per_fused_log_mul_prod_sum_0(in_out_ptr0, in_ptr0, in_ptr1,
xnumel, rnumel):
XBLOCK: tl.constexpr = 1
RBLOCK: tl.constexpr = 256
xoffset = tl.program_id(0) * XBLOCK
tl.full([1], xoffset, tl.int32)
tl.full([RBLOCK], True, tl.int1)
rindex = tl.arange(0, RBLOCK)[:]
tl.full([RBLOCK], True, tl.int1)
r0 = rindex
tmp0 = tl.load(in_ptr0 + r0, None)
tmp6 = tl.load(in_ptr1 + r0, None)
tmp1 = tl_math.log(tmp0)
tmp2 = tmp0 * tmp1
tmp3 = tl.broadcast_to(tmp2, [RBLOCK])
tmp5 = triton_helpers.promote_to_tensor(tl.sum(tmp3, 0))
tmp7 = tl.broadcast_to(tmp6, [RBLOCK])
tmp9 = triton_helpers.promote_to_tensor(triton_helpers.prod(tmp7, 0))
tmp10 = -1.0
tmp11 = tmp5 * tmp10
tmp12 = tmp11 * tmp9
tl.debug_barrier()
tl.store(in_out_ptr0 + tl.full([1], 0, tl.int32), tmp12, None)
def call(args):
arg0_1, arg1_1 = args
args.clear()
assert_size_stride(arg0_1, (4, 4, 4, 4), (64, 16, 4, 1))
assert_size_stride(arg1_1, (4, 4, 4, 4), (64, 16, 4, 1))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((), (), torch.float32)
buf2 = buf0
del buf0
get_raw_stream(0)
triton_per_fused_log_mul_prod_sum_0[grid(1)](buf2, arg1_1, arg0_1,
1, 256, num_warps=2, num_stages=1)
del arg0_1
del arg1_1
return buf2,
class HLossNew(nn.Module):
def __init__(self):
super(HLossNew, self).__init__()
def forward(self, input_0, input_1):
arg0_1 = input_0
arg1_1 = input_1
output = call([arg0_1, arg1_1])
return output[0]
|
HastingsGreer/mermaid
|
HLoss
| false | 13,760 |
[
"Apache-2.0"
] | 120 |
bd13c5fc427eb8cd9054973a8eaaeb302078182d
|
https://github.com/HastingsGreer/mermaid/tree/bd13c5fc427eb8cd9054973a8eaaeb302078182d
|
outconv
|
import torch
import torch.nn as nn
class outconv(nn.Module):
def __init__(self, in_ch, out_ch):
super(outconv, self).__init__()
self.conv = nn.Conv2d(in_ch, out_ch, 1)
self.sig = nn.Sigmoid()
def forward(self, x):
x_conv = self.conv(x)
x = self.sig(x_conv)
return x[:, :, :101, :101].squeeze()
def get_inputs():
return [torch.rand([4, 4, 4, 4])]
def get_init_inputs():
return [[], {'in_ch': 4, 'out_ch': 4}]
|
import torch
from torch._inductor.select_algorithm import extern_kernels
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
import torch.nn as nn
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
@triton.jit
def triton_poi_fused_convolution_sigmoid_sigmoid_backward_0(in_out_ptr0,
in_ptr0, out_ptr0, xnumel, XBLOCK: tl.constexpr):
xnumel = 256
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x3 = xindex
x1 = xindex // 16 % 4
tmp0 = tl.load(in_out_ptr0 + x3, xmask)
tmp1 = tl.load(in_ptr0 + x1, xmask, eviction_policy='evict_last')
tmp2 = tmp0 + tmp1
tmp3 = tl.sigmoid(tmp2)
tmp4 = 1.0
tmp5 = tmp4 - tmp3
tmp6 = tmp3 * tmp5
tl.store(in_out_ptr0 + x3, tmp3, xmask)
tl.store(out_ptr0 + x3, tmp6, xmask)
def call(args):
primals_1, primals_2, primals_3 = args
args.clear()
assert_size_stride(primals_1, (4, 4, 1, 1), (4, 1, 1, 1))
assert_size_stride(primals_2, (4,), (1,))
assert_size_stride(primals_3, (4, 4, 4, 4), (64, 16, 4, 1))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = extern_kernels.convolution(primals_3, primals_1, stride=(1,
1), padding=(0, 0), dilation=(1, 1), transposed=False,
output_padding=(0, 0), groups=1, bias=None)
assert_size_stride(buf0, (4, 4, 4, 4), (64, 16, 4, 1))
buf1 = buf0
del buf0
buf2 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32)
get_raw_stream(0)
triton_poi_fused_convolution_sigmoid_sigmoid_backward_0[grid(256)](buf1
, primals_2, buf2, 256, XBLOCK=256, num_warps=4, num_stages=1)
del primals_2
return buf1, primals_1, primals_3, buf2
class outconvNew(nn.Module):
def __init__(self, in_ch, out_ch):
super(outconvNew, self).__init__()
self.conv = nn.Conv2d(in_ch, out_ch, 1)
self.sig = nn.Sigmoid()
def forward(self, input_0):
primals_1 = self.conv.weight
primals_2 = self.conv.bias
primals_3 = input_0
output = call([primals_1, primals_2, primals_3])
return output[0]
|
allen-q/pytorch
|
outconv
| false | 3,085 |
[
"MIT"
] | 0 |
76947f8d6f0bcee04425ad69f93b9a5e3a5060ae
|
https://github.com/allen-q/pytorch/tree/76947f8d6f0bcee04425ad69f93b9a5e3a5060ae
|
Tanh2
|
import torch
import torch.utils.data
import torch.nn as nn
import torch.nn.parallel
import torch.optim
class Tanh2(nn.Module):
def __init__(self):
super(Tanh2, self).__init__()
self.tanh = nn.Tanh()
def forward(self, x):
return (self.tanh(x) + 1) / 2
def get_inputs():
return [torch.rand([4, 4, 4, 4])]
def get_init_inputs():
return [[], {}]
|
import torch
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
from torch._inductor.runtime.triton_helpers import libdevice
import torch.utils.data
import torch.nn as nn
import torch.nn.parallel
import torch.optim
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
@triton.jit
def triton_poi_fused_add_div_tanh_0(in_ptr0, out_ptr0, xnumel, XBLOCK: tl.
constexpr):
xnumel = 256
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex
tmp0 = tl.load(in_ptr0 + x0, xmask)
tmp1 = libdevice.tanh(tmp0)
tmp2 = 1.0
tmp3 = tmp1 + tmp2
tmp4 = 0.5
tmp5 = tmp3 * tmp4
tl.store(out_ptr0 + x0, tmp5, xmask)
def call(args):
arg0_1, = args
args.clear()
assert_size_stride(arg0_1, (4, 4, 4, 4), (64, 16, 4, 1))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32)
get_raw_stream(0)
triton_poi_fused_add_div_tanh_0[grid(256)](arg0_1, buf0, 256,
XBLOCK=256, num_warps=4, num_stages=1)
del arg0_1
return buf0,
class Tanh2New(nn.Module):
def __init__(self):
super(Tanh2New, self).__init__()
self.tanh = nn.Tanh()
def forward(self, input_0):
arg0_1 = input_0
output = call([arg0_1])
return output[0]
|
csyxwei/FFWM
|
Tanh2
| false | 15,077 |
[
"MIT"
] | 83 |
d42c578cabe1b81c6b1bb0c3cb707b190fca3c68
|
https://github.com/csyxwei/FFWM/tree/d42c578cabe1b81c6b1bb0c3cb707b190fca3c68
|
Sine
|
# AOT ID: ['0_inference']
from ctypes import c_void_p, c_long, c_int
import torch
import math
import random
import os
import tempfile
from math import inf, nan
from torch._inductor.hooks import run_intermediate_hooks
from torch._inductor.utils import maybe_profile
from torch._inductor.codegen.memory_planning import _align as align
from torch import device, empty_strided
from torch._inductor.async_compile import AsyncCompile
from torch._inductor.select_algorithm import extern_kernels
from torch._inductor.codegen.multi_kernel import MultiKernelCall
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
aten = torch.ops.aten
inductor_ops = torch.ops.inductor
_quantized = torch.ops._quantized
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
alloc_from_pool = torch.ops.inductor._alloc_from_pool
async_compile = AsyncCompile()
# kernel path: runs/run_shard_6/inductor_cache/ej/cejzhnnynxtkiot2qt7feea4bkwhxo5g2qmtwe2jbyvjefkkzt6m.py
# Topologically Sorted Source Nodes: [mul, sin], Original ATen: [aten.mul, aten.sin]
# Source node to ATen node mapping:
# mul => mul
# sin => sin
# Graph fragment:
# %mul : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%arg0_1, 30.0), kwargs = {})
# %sin : [num_users=1] = call_function[target=torch.ops.aten.sin.default](args = (%mul,), kwargs = {})
triton_poi_fused_mul_sin_0 = async_compile.triton('triton_poi_fused_mul_sin_0', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[256],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_mul_sin_0', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 1, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_mul_sin_0(in_ptr0, out_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 256
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex
tmp0 = tl.load(in_ptr0 + (x0), xmask)
tmp1 = 30.0
tmp2 = tmp0 * tmp1
tmp3 = tl_math.sin(tmp2)
tl.store(out_ptr0 + (x0), tmp3, xmask)
''', device_str='cuda')
async_compile.wait(globals())
del async_compile
def call(args):
arg0_1, = args
args.clear()
assert_size_stride(arg0_1, (4, 4, 4, 4), (64, 16, 4, 1))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32)
# Topologically Sorted Source Nodes: [mul, sin], Original ATen: [aten.mul, aten.sin]
stream0 = get_raw_stream(0)
triton_poi_fused_mul_sin_0.run(arg0_1, buf0, 256, grid=grid(256), stream=stream0)
del arg0_1
return (buf0, )
def benchmark_compiled_module(times=10, repeat=10):
from torch._dynamo.testing import rand_strided
from torch._inductor.utils import print_performance
arg0_1 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32)
fn = lambda: call([arg0_1])
return print_performance(fn, times=times, repeat=repeat)
if __name__ == "__main__":
from torch._inductor.wrapper_benchmark import compiled_module_main
compiled_module_main('None', benchmark_compiled_module)
|
import torch
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
from torch._inductor.runtime.triton_helpers import math as tl_math
import torch.nn as nn
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
@triton.jit
def triton_poi_fused_mul_sin_0(in_ptr0, out_ptr0, xnumel, XBLOCK: tl.constexpr
):
xnumel = 256
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex
tmp0 = tl.load(in_ptr0 + x0, xmask)
tmp1 = 30.0
tmp2 = tmp0 * tmp1
tmp3 = tl_math.sin(tmp2)
tl.store(out_ptr0 + x0, tmp3, xmask)
def call(args):
arg0_1, = args
args.clear()
assert_size_stride(arg0_1, (4, 4, 4, 4), (64, 16, 4, 1))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32)
get_raw_stream(0)
triton_poi_fused_mul_sin_0[grid(256)](arg0_1, buf0, 256, XBLOCK=256,
num_warps=4, num_stages=1)
del arg0_1
return buf0,
class SineNew(nn.Module):
def __init__(self, w0: 'float'=30.0):
super(SineNew, self).__init__()
self.w0 = w0
def forward(self, input_0):
arg0_1 = input_0
output = call([arg0_1])
return output[0]
|
chris-price19/ocp
|
Sine
| false | 1,699 |
[
"MIT",
"BSD-3-Clause"
] | 0 |
0175c5a11dd3aaccd4f4780c8cb559401f1ca15e
|
https://github.com/chris-price19/ocp/tree/0175c5a11dd3aaccd4f4780c8cb559401f1ca15e
|
Network
|
# AOT ID: ['0_forward']
from ctypes import c_void_p, c_long, c_int
import torch
import math
import random
import os
import tempfile
from math import inf, nan
from torch._inductor.hooks import run_intermediate_hooks
from torch._inductor.utils import maybe_profile
from torch._inductor.codegen.memory_planning import _align as align
from torch import device, empty_strided
from torch._inductor.async_compile import AsyncCompile
from torch._inductor.select_algorithm import extern_kernels
from torch._inductor.codegen.multi_kernel import MultiKernelCall
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
aten = torch.ops.aten
inductor_ops = torch.ops.inductor
_quantized = torch.ops._quantized
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
alloc_from_pool = torch.ops.inductor._alloc_from_pool
async_compile = AsyncCompile()
# kernel path: runs/run_shard_7/inductor_cache/lg/clgnkdclmu24adiu7cbx7ybrhsind74uypy3cvuihzwv4hxzyjlf.py
# Topologically Sorted Source Nodes: [conv2d, x], Original ATen: [aten.convolution, aten.relu]
# Source node to ATen node mapping:
# conv2d => convolution
# x => relu
# Graph fragment:
# %convolution : [num_users=1] = call_function[target=torch.ops.aten.convolution.default](args = (%primals_3, %primals_1, %primals_2, [1, 1], [0, 0], [1, 1], False, [0, 0], 1), kwargs = {})
# %relu : [num_users=2] = call_function[target=torch.ops.aten.relu.default](args = (%convolution,), kwargs = {})
triton_poi_fused_convolution_relu_0 = async_compile.triton('triton_poi_fused_convolution_relu_0', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[524288],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_convolution_relu_0', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_convolution_relu_0(in_out_ptr0, in_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 492032
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x3 = xindex
x1 = (xindex // 3844) % 32
tmp0 = tl.load(in_out_ptr0 + (x3), xmask)
tmp1 = tl.load(in_ptr0 + (x1), xmask, eviction_policy='evict_last')
tmp2 = tmp0 + tmp1
tmp3 = tl.full([1], 0, tl.int32)
tmp4 = triton_helpers.maximum(tmp3, tmp2)
tl.store(in_out_ptr0 + (x3), tmp4, xmask)
''', device_str='cuda')
# kernel path: runs/run_shard_7/inductor_cache/s6/cs6oowloxihsa2iqf677aggor4dgxx3q4fq7upsksc3m7rf4j6xb.py
# Topologically Sorted Source Nodes: [conv2d_1, relu_1], Original ATen: [aten.convolution, aten.relu]
# Source node to ATen node mapping:
# conv2d_1 => convolution_1
# relu_1 => relu_1
# Graph fragment:
# %convolution_1 : [num_users=1] = call_function[target=torch.ops.aten.convolution.default](args = (%relu, %primals_4, %primals_5, [1, 1], [0, 0], [1, 1], False, [0, 0], 1), kwargs = {})
# %relu_1 : [num_users=2] = call_function[target=torch.ops.aten.relu.default](args = (%convolution_1,), kwargs = {})
triton_poi_fused_convolution_relu_1 = async_compile.triton('triton_poi_fused_convolution_relu_1', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[1048576],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_convolution_relu_1', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_convolution_relu_1(in_ptr0, in_ptr1, out_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 921600
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = tl.full([XBLOCK], True, tl.int1)
x3 = xindex
x1 = (xindex // 3600) % 64
x0 = xindex % 3600
x4 = (xindex // 3600)
tmp0 = tl.load(in_ptr0 + (x3), None)
tmp1 = tl.load(in_ptr1 + (x1), None, eviction_policy='evict_last')
tmp2 = tmp0 + tmp1
tmp3 = tl.full([1], 0, tl.int32)
tmp4 = triton_helpers.maximum(tmp3, tmp2)
tl.store(out_ptr0 + (x0 + (3616*x4)), tmp4, None)
''', device_str='cuda')
# kernel path: runs/run_shard_7/inductor_cache/6v/c6votzbefolf4fzzmnc4okxekuuh37ajyccnmrjo4ze3cvigljbw.py
# Topologically Sorted Source Nodes: [x_1], Original ATen: [aten.max_pool2d_with_indices]
# Source node to ATen node mapping:
# x_1 => _low_memory_max_pool2d_with_offsets, getitem_1
# Graph fragment:
# %_low_memory_max_pool2d_with_offsets : [num_users=2] = call_function[target=torch.ops.prims._low_memory_max_pool2d_with_offsets.default](args = (%relu_1, [2, 2], [2, 2], [0, 0], [1, 1], False), kwargs = {})
# %getitem_1 : [num_users=1] = call_function[target=operator.getitem](args = (%_low_memory_max_pool2d_with_offsets, 1), kwargs = {})
triton_poi_fused_max_pool2d_with_indices_2 = async_compile.triton('triton_poi_fused_max_pool2d_with_indices_2', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[262144],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*i8', 2: '*fp32', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_max_pool2d_with_indices_2', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 4, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_max_pool2d_with_indices_2(in_ptr0, out_ptr0, out_ptr1, xnumel, XBLOCK : tl.constexpr):
xnumel = 230400
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex % 30
x1 = (xindex // 30) % 30
x2 = (xindex // 900)
x3 = xindex
tmp0 = tl.load(in_ptr0 + ((2*x0) + (120*x1) + (3616*x2)), xmask, eviction_policy='evict_last')
tmp1 = tl.load(in_ptr0 + (1 + (2*x0) + (120*x1) + (3616*x2)), xmask, eviction_policy='evict_last')
tmp7 = tl.load(in_ptr0 + (60 + (2*x0) + (120*x1) + (3616*x2)), xmask, eviction_policy='evict_last')
tmp12 = tl.load(in_ptr0 + (61 + (2*x0) + (120*x1) + (3616*x2)), xmask, eviction_policy='evict_last')
tmp2 = tmp1 > tmp0
tmp3 = tl.full([1], 1, tl.int8)
tmp4 = tl.full([1], 0, tl.int8)
tmp5 = tl.where(tmp2, tmp3, tmp4)
tmp6 = triton_helpers.maximum(tmp1, tmp0)
tmp8 = tmp7 > tmp6
tmp9 = tl.full([1], 2, tl.int8)
tmp10 = tl.where(tmp8, tmp9, tmp5)
tmp11 = triton_helpers.maximum(tmp7, tmp6)
tmp13 = tmp12 > tmp11
tmp14 = tl.full([1], 3, tl.int8)
tmp15 = tl.where(tmp13, tmp14, tmp10)
tmp16 = triton_helpers.maximum(tmp12, tmp11)
tl.store(out_ptr0 + (x3), tmp15, xmask)
tl.store(out_ptr1 + (x3), tmp16, xmask)
''', device_str='cuda')
# kernel path: runs/run_shard_7/inductor_cache/kt/cktxfkxh3rleqymbpyxah5tmounfpxpy7z74qhnkovajvfjb2v6x.py
# Topologically Sorted Source Nodes: [x_4], Original ATen: [aten.relu]
# Source node to ATen node mapping:
# x_4 => relu_2
# Graph fragment:
# %add_tensor : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%mm_default, %primals_7), kwargs = {})
# %relu_2 : [num_users=2] = call_function[target=torch.ops.aten.relu.default](args = (%add_tensor,), kwargs = {})
triton_poi_fused_relu_3 = async_compile.triton('triton_poi_fused_relu_3', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[4096],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_relu_3', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_relu_3(in_out_ptr0, in_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 3200
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x2 = xindex
x0 = xindex % 128
tmp0 = tl.load(in_out_ptr0 + (x2), xmask)
tmp1 = tl.load(in_ptr0 + (x0), xmask, eviction_policy='evict_last')
tmp2 = tmp0 + tmp1
tmp3 = tl.full([1], 0, tl.int32)
tmp4 = triton_helpers.maximum(tmp3, tmp2)
tl.store(in_out_ptr0 + (x2), tmp4, xmask)
''', device_str='cuda')
# kernel path: runs/run_shard_7/inductor_cache/fv/cfvhzoybuteyp2v7i42ueuubj5zp2fq3wmahe3pihs75wkl7a2ct.py
# Topologically Sorted Source Nodes: [log_softmax], Original ATen: [aten._log_softmax]
# Source node to ATen node mapping:
# log_softmax => amax, sub
# Graph fragment:
# %amax : [num_users=1] = call_function[target=torch.ops.aten.amax.default](args = (%addmm_1, [1], True), kwargs = {})
# %sub : [num_users=2] = call_function[target=torch.ops.aten.sub.Tensor](args = (%addmm_1, %amax), kwargs = {})
triton_poi_fused__log_softmax_4 = async_compile.triton('triton_poi_fused__log_softmax_4', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[128],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused__log_softmax_4', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 5, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused__log_softmax_4(in_ptr0, out_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 100
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x2 = xindex
x1 = (xindex // 4)
tmp0 = tl.load(in_ptr0 + (x2), xmask)
tmp1 = tl.load(in_ptr0 + (4*x1), xmask, eviction_policy='evict_last')
tmp2 = tl.load(in_ptr0 + (1 + (4*x1)), xmask, eviction_policy='evict_last')
tmp4 = tl.load(in_ptr0 + (2 + (4*x1)), xmask, eviction_policy='evict_last')
tmp6 = tl.load(in_ptr0 + (3 + (4*x1)), xmask, eviction_policy='evict_last')
tmp3 = triton_helpers.maximum(tmp1, tmp2)
tmp5 = triton_helpers.maximum(tmp3, tmp4)
tmp7 = triton_helpers.maximum(tmp5, tmp6)
tmp8 = tmp0 - tmp7
tl.store(out_ptr0 + (x2), tmp8, xmask)
''', device_str='cuda')
# kernel path: runs/run_shard_7/inductor_cache/ln/clnxgnp6buvbt7pheaax5coswwe5iy4ym4euiueqnni4dznuetvf.py
# Topologically Sorted Source Nodes: [log_softmax], Original ATen: [aten._log_softmax]
# Source node to ATen node mapping:
# log_softmax => exp, log, sub_1, sum_1
# Graph fragment:
# %exp : [num_users=1] = call_function[target=torch.ops.aten.exp.default](args = (%sub,), kwargs = {})
# %sum_1 : [num_users=1] = call_function[target=torch.ops.aten.sum.dim_IntList](args = (%exp, [1], True), kwargs = {})
# %log : [num_users=1] = call_function[target=torch.ops.aten.log.default](args = (%sum_1,), kwargs = {})
# %sub_1 : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (%sub, %log), kwargs = {})
triton_poi_fused__log_softmax_5 = async_compile.triton('triton_poi_fused__log_softmax_5', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[128],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused__log_softmax_5', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 5, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused__log_softmax_5(in_ptr0, out_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 100
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x2 = xindex
x1 = (xindex // 4)
tmp0 = tl.load(in_ptr0 + (x2), xmask)
tmp1 = tl.load(in_ptr0 + (4*x1), xmask, eviction_policy='evict_last')
tmp3 = tl.load(in_ptr0 + (1 + (4*x1)), xmask, eviction_policy='evict_last')
tmp6 = tl.load(in_ptr0 + (2 + (4*x1)), xmask, eviction_policy='evict_last')
tmp9 = tl.load(in_ptr0 + (3 + (4*x1)), xmask, eviction_policy='evict_last')
tmp2 = tl_math.exp(tmp1)
tmp4 = tl_math.exp(tmp3)
tmp5 = tmp2 + tmp4
tmp7 = tl_math.exp(tmp6)
tmp8 = tmp5 + tmp7
tmp10 = tl_math.exp(tmp9)
tmp11 = tmp8 + tmp10
tmp12 = tl_math.log(tmp11)
tmp13 = tmp0 - tmp12
tl.store(out_ptr0 + (x2), tmp13, xmask)
''', device_str='cuda')
async_compile.wait(globals())
del async_compile
def call(args):
primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7, primals_8, primals_9 = args
args.clear()
assert_size_stride(primals_1, (32, 1, 3, 3), (9, 9, 3, 1))
assert_size_stride(primals_2, (32, ), (1, ))
assert_size_stride(primals_3, (4, 1, 64, 64), (4096, 4096, 64, 1))
assert_size_stride(primals_4, (64, 32, 3, 3), (288, 9, 3, 1))
assert_size_stride(primals_5, (64, ), (1, ))
assert_size_stride(primals_6, (128, 9216), (9216, 1))
assert_size_stride(primals_7, (128, ), (1, ))
assert_size_stride(primals_8, (4, 128), (128, 1))
assert_size_stride(primals_9, (4, ), (1, ))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
# Topologically Sorted Source Nodes: [conv2d], Original ATen: [aten.convolution]
buf0 = extern_kernels.convolution(primals_3, primals_1, stride=(1, 1), padding=(0, 0), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None)
assert_size_stride(buf0, (4, 32, 62, 62), (123008, 3844, 62, 1))
buf1 = buf0; del buf0 # reuse
# Topologically Sorted Source Nodes: [conv2d, x], Original ATen: [aten.convolution, aten.relu]
stream0 = get_raw_stream(0)
triton_poi_fused_convolution_relu_0.run(buf1, primals_2, 492032, grid=grid(492032), stream=stream0)
del primals_2
# Topologically Sorted Source Nodes: [conv2d_1], Original ATen: [aten.convolution]
buf2 = extern_kernels.convolution(buf1, primals_4, stride=(1, 1), padding=(0, 0), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None)
assert_size_stride(buf2, (4, 64, 60, 60), (230400, 3600, 60, 1))
buf3 = empty_strided_cuda((4, 64, 60, 60), (231424, 3616, 60, 1), torch.float32)
# Topologically Sorted Source Nodes: [conv2d_1, relu_1], Original ATen: [aten.convolution, aten.relu]
triton_poi_fused_convolution_relu_1.run(buf2, primals_5, buf3, 921600, grid=grid(921600), stream=stream0)
del buf2
del primals_5
buf4 = empty_strided_cuda((4, 64, 30, 30), (57600, 900, 30, 1), torch.int8)
buf5 = empty_strided_cuda((4, 64, 30, 30), (57600, 900, 30, 1), torch.float32)
# Topologically Sorted Source Nodes: [x_1], Original ATen: [aten.max_pool2d_with_indices]
triton_poi_fused_max_pool2d_with_indices_2.run(buf3, buf4, buf5, 230400, grid=grid(230400), stream=stream0)
buf6 = empty_strided_cuda((25, 128), (128, 1), torch.float32)
# Topologically Sorted Source Nodes: [], Original ATen: []
extern_kernels.mm(reinterpret_tensor(buf5, (25, 9216), (9216, 1), 0), reinterpret_tensor(primals_6, (9216, 128), (1, 9216), 0), out=buf6)
buf7 = buf6; del buf6 # reuse
# Topologically Sorted Source Nodes: [x_4], Original ATen: [aten.relu]
triton_poi_fused_relu_3.run(buf7, primals_7, 3200, grid=grid(3200), stream=stream0)
del primals_7
buf8 = empty_strided_cuda((25, 4), (4, 1), torch.float32)
# Topologically Sorted Source Nodes: [x_6], Original ATen: [aten.addmm]
extern_kernels.addmm(primals_9, buf7, reinterpret_tensor(primals_8, (128, 4), (1, 128), 0), alpha=1, beta=1, out=buf8)
del primals_9
buf9 = empty_strided_cuda((25, 4), (4, 1), torch.float32)
# Topologically Sorted Source Nodes: [log_softmax], Original ATen: [aten._log_softmax]
triton_poi_fused__log_softmax_4.run(buf8, buf9, 100, grid=grid(100), stream=stream0)
buf10 = buf8; del buf8 # reuse
# Topologically Sorted Source Nodes: [log_softmax], Original ATen: [aten._log_softmax]
triton_poi_fused__log_softmax_5.run(buf9, buf10, 100, grid=grid(100), stream=stream0)
del buf9
return (buf10, primals_1, primals_3, primals_4, buf1, buf3, buf4, reinterpret_tensor(buf5, (25, 9216), (9216, 1), 0), buf7, buf10, primals_8, primals_6, )
def benchmark_compiled_module(times=10, repeat=10):
from torch._dynamo.testing import rand_strided
from torch._inductor.utils import print_performance
primals_1 = rand_strided((32, 1, 3, 3), (9, 9, 3, 1), device='cuda:0', dtype=torch.float32)
primals_2 = rand_strided((32, ), (1, ), device='cuda:0', dtype=torch.float32)
primals_3 = rand_strided((4, 1, 64, 64), (4096, 4096, 64, 1), device='cuda:0', dtype=torch.float32)
primals_4 = rand_strided((64, 32, 3, 3), (288, 9, 3, 1), device='cuda:0', dtype=torch.float32)
primals_5 = rand_strided((64, ), (1, ), device='cuda:0', dtype=torch.float32)
primals_6 = rand_strided((128, 9216), (9216, 1), device='cuda:0', dtype=torch.float32)
primals_7 = rand_strided((128, ), (1, ), device='cuda:0', dtype=torch.float32)
primals_8 = rand_strided((4, 128), (128, 1), device='cuda:0', dtype=torch.float32)
primals_9 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32)
fn = lambda: call([primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7, primals_8, primals_9])
return print_performance(fn, times=times, repeat=repeat)
if __name__ == "__main__":
from torch._inductor.wrapper_benchmark import compiled_module_main
compiled_module_main('None', benchmark_compiled_module)
|
import torch
from torch._inductor.select_algorithm import extern_kernels
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
from torch._inductor.runtime import triton_helpers
from torch._inductor.runtime.triton_helpers import math as tl_math
import torch.nn as nn
import torch.utils.data.distributed
import torch
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
@triton.jit
def triton_poi_fused_convolution_relu_0(in_out_ptr0, in_ptr0, xnumel,
XBLOCK: tl.constexpr):
xnumel = 492032
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x3 = xindex
x1 = xindex // 3844 % 32
tmp0 = tl.load(in_out_ptr0 + x3, xmask)
tmp1 = tl.load(in_ptr0 + x1, xmask, eviction_policy='evict_last')
tmp2 = tmp0 + tmp1
tmp3 = tl.full([1], 0, tl.int32)
tmp4 = triton_helpers.maximum(tmp3, tmp2)
tl.store(in_out_ptr0 + x3, tmp4, xmask)
@triton.jit
def triton_poi_fused_convolution_relu_1(in_ptr0, in_ptr1, out_ptr0, xnumel,
XBLOCK: tl.constexpr):
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
tl.full([XBLOCK], True, tl.int1)
x3 = xindex
x1 = xindex // 3600 % 64
x0 = xindex % 3600
x4 = xindex // 3600
tmp0 = tl.load(in_ptr0 + x3, None)
tmp1 = tl.load(in_ptr1 + x1, None, eviction_policy='evict_last')
tmp2 = tmp0 + tmp1
tmp3 = tl.full([1], 0, tl.int32)
tmp4 = triton_helpers.maximum(tmp3, tmp2)
tl.store(out_ptr0 + (x0 + 3616 * x4), tmp4, None)
@triton.jit
def triton_poi_fused_max_pool2d_with_indices_2(in_ptr0, out_ptr0, out_ptr1,
xnumel, XBLOCK: tl.constexpr):
xnumel = 230400
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex % 30
x1 = xindex // 30 % 30
x2 = xindex // 900
x3 = xindex
tmp0 = tl.load(in_ptr0 + (2 * x0 + 120 * x1 + 3616 * x2), xmask,
eviction_policy='evict_last')
tmp1 = tl.load(in_ptr0 + (1 + 2 * x0 + 120 * x1 + 3616 * x2), xmask,
eviction_policy='evict_last')
tmp7 = tl.load(in_ptr0 + (60 + 2 * x0 + 120 * x1 + 3616 * x2), xmask,
eviction_policy='evict_last')
tmp12 = tl.load(in_ptr0 + (61 + 2 * x0 + 120 * x1 + 3616 * x2), xmask,
eviction_policy='evict_last')
tmp2 = tmp1 > tmp0
tmp3 = tl.full([1], 1, tl.int8)
tmp4 = tl.full([1], 0, tl.int8)
tmp5 = tl.where(tmp2, tmp3, tmp4)
tmp6 = triton_helpers.maximum(tmp1, tmp0)
tmp8 = tmp7 > tmp6
tmp9 = tl.full([1], 2, tl.int8)
tmp10 = tl.where(tmp8, tmp9, tmp5)
tmp11 = triton_helpers.maximum(tmp7, tmp6)
tmp13 = tmp12 > tmp11
tmp14 = tl.full([1], 3, tl.int8)
tmp15 = tl.where(tmp13, tmp14, tmp10)
tmp16 = triton_helpers.maximum(tmp12, tmp11)
tl.store(out_ptr0 + x3, tmp15, xmask)
tl.store(out_ptr1 + x3, tmp16, xmask)
@triton.jit
def triton_poi_fused_relu_3(in_out_ptr0, in_ptr0, xnumel, XBLOCK: tl.constexpr
):
xnumel = 3200
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x2 = xindex
x0 = xindex % 128
tmp0 = tl.load(in_out_ptr0 + x2, xmask)
tmp1 = tl.load(in_ptr0 + x0, xmask, eviction_policy='evict_last')
tmp2 = tmp0 + tmp1
tmp3 = tl.full([1], 0, tl.int32)
tmp4 = triton_helpers.maximum(tmp3, tmp2)
tl.store(in_out_ptr0 + x2, tmp4, xmask)
@triton.jit
def triton_poi_fused__log_softmax_4(in_ptr0, out_ptr0, xnumel, XBLOCK: tl.
constexpr):
xnumel = 100
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x2 = xindex
x1 = xindex // 4
tmp0 = tl.load(in_ptr0 + x2, xmask)
tmp1 = tl.load(in_ptr0 + 4 * x1, xmask, eviction_policy='evict_last')
tmp2 = tl.load(in_ptr0 + (1 + 4 * x1), xmask, eviction_policy='evict_last')
tmp4 = tl.load(in_ptr0 + (2 + 4 * x1), xmask, eviction_policy='evict_last')
tmp6 = tl.load(in_ptr0 + (3 + 4 * x1), xmask, eviction_policy='evict_last')
tmp3 = triton_helpers.maximum(tmp1, tmp2)
tmp5 = triton_helpers.maximum(tmp3, tmp4)
tmp7 = triton_helpers.maximum(tmp5, tmp6)
tmp8 = tmp0 - tmp7
tl.store(out_ptr0 + x2, tmp8, xmask)
@triton.jit
def triton_poi_fused__log_softmax_5(in_ptr0, out_ptr0, xnumel, XBLOCK: tl.
constexpr):
xnumel = 100
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x2 = xindex
x1 = xindex // 4
tmp0 = tl.load(in_ptr0 + x2, xmask)
tmp1 = tl.load(in_ptr0 + 4 * x1, xmask, eviction_policy='evict_last')
tmp3 = tl.load(in_ptr0 + (1 + 4 * x1), xmask, eviction_policy='evict_last')
tmp6 = tl.load(in_ptr0 + (2 + 4 * x1), xmask, eviction_policy='evict_last')
tmp9 = tl.load(in_ptr0 + (3 + 4 * x1), xmask, eviction_policy='evict_last')
tmp2 = tl_math.exp(tmp1)
tmp4 = tl_math.exp(tmp3)
tmp5 = tmp2 + tmp4
tmp7 = tl_math.exp(tmp6)
tmp8 = tmp5 + tmp7
tmp10 = tl_math.exp(tmp9)
tmp11 = tmp8 + tmp10
tmp12 = tl_math.log(tmp11)
tmp13 = tmp0 - tmp12
tl.store(out_ptr0 + x2, tmp13, xmask)
def call(args):
(primals_1, primals_2, primals_3, primals_4, primals_5, primals_6,
primals_7, primals_8, primals_9) = args
args.clear()
assert_size_stride(primals_1, (32, 1, 3, 3), (9, 9, 3, 1))
assert_size_stride(primals_2, (32,), (1,))
assert_size_stride(primals_3, (4, 1, 64, 64), (4096, 4096, 64, 1))
assert_size_stride(primals_4, (64, 32, 3, 3), (288, 9, 3, 1))
assert_size_stride(primals_5, (64,), (1,))
assert_size_stride(primals_6, (128, 9216), (9216, 1))
assert_size_stride(primals_7, (128,), (1,))
assert_size_stride(primals_8, (4, 128), (128, 1))
assert_size_stride(primals_9, (4,), (1,))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = extern_kernels.convolution(primals_3, primals_1, stride=(1,
1), padding=(0, 0), dilation=(1, 1), transposed=False,
output_padding=(0, 0), groups=1, bias=None)
assert_size_stride(buf0, (4, 32, 62, 62), (123008, 3844, 62, 1))
buf1 = buf0
del buf0
get_raw_stream(0)
triton_poi_fused_convolution_relu_0[grid(492032)](buf1, primals_2,
492032, XBLOCK=1024, num_warps=4, num_stages=1)
del primals_2
buf2 = extern_kernels.convolution(buf1, primals_4, stride=(1, 1),
padding=(0, 0), dilation=(1, 1), transposed=False,
output_padding=(0, 0), groups=1, bias=None)
assert_size_stride(buf2, (4, 64, 60, 60), (230400, 3600, 60, 1))
buf3 = empty_strided_cuda((4, 64, 60, 60), (231424, 3616, 60, 1),
torch.float32)
triton_poi_fused_convolution_relu_1[grid(921600)](buf2, primals_5,
buf3, 921600, XBLOCK=1024, num_warps=4, num_stages=1)
del buf2
del primals_5
buf4 = empty_strided_cuda((4, 64, 30, 30), (57600, 900, 30, 1),
torch.int8)
buf5 = empty_strided_cuda((4, 64, 30, 30), (57600, 900, 30, 1),
torch.float32)
triton_poi_fused_max_pool2d_with_indices_2[grid(230400)](buf3, buf4,
buf5, 230400, XBLOCK=512, num_warps=8, num_stages=1)
buf6 = empty_strided_cuda((25, 128), (128, 1), torch.float32)
extern_kernels.mm(reinterpret_tensor(buf5, (25, 9216), (9216, 1), 0
), reinterpret_tensor(primals_6, (9216, 128), (1, 9216), 0),
out=buf6)
buf7 = buf6
del buf6
triton_poi_fused_relu_3[grid(3200)](buf7, primals_7, 3200, XBLOCK=
256, num_warps=4, num_stages=1)
del primals_7
buf8 = empty_strided_cuda((25, 4), (4, 1), torch.float32)
extern_kernels.addmm(primals_9, buf7, reinterpret_tensor(primals_8,
(128, 4), (1, 128), 0), alpha=1, beta=1, out=buf8)
del primals_9
buf9 = empty_strided_cuda((25, 4), (4, 1), torch.float32)
triton_poi_fused__log_softmax_4[grid(100)](buf8, buf9, 100, XBLOCK=
128, num_warps=4, num_stages=1)
buf10 = buf8
del buf8
triton_poi_fused__log_softmax_5[grid(100)](buf9, buf10, 100, XBLOCK
=128, num_warps=4, num_stages=1)
del buf9
return (buf10, primals_1, primals_3, primals_4, buf1, buf3, buf4,
reinterpret_tensor(buf5, (25, 9216), (9216, 1), 0), buf7, buf10,
primals_8, primals_6)
class NetworkNew(nn.Module):
def __init__(self, num_classes):
super(NetworkNew, self).__init__()
self.conv1 = nn.Conv2d(1, 32, kernel_size=3)
self.conv2 = nn.Conv2d(32, 64, kernel_size=3)
self.drop1 = nn.Dropout2d(p=0.25)
self.fc1 = nn.Linear(9216, 128)
self.drop2 = nn.Dropout2d(p=0.5)
self.fc2 = nn.Linear(128, num_classes)
def forward(self, input_0):
primals_1 = self.conv1.weight
primals_2 = self.conv1.bias
primals_4 = self.conv2.weight
primals_5 = self.conv2.bias
primals_6 = self.fc1.weight
primals_7 = self.fc1.bias
primals_8 = self.fc2.weight
primals_9 = self.fc2.bias
primals_3 = input_0
output = call([primals_1, primals_2, primals_3, primals_4,
primals_5, primals_6, primals_7, primals_8, primals_9])
return output[0]
|
gregmbi/polyaxon
|
Network
| false | 3,559 |
[
"Apache-2.0"
] | 0 |
8f24089fa9cb5df28fc7b70aec27d6d23ee81e8d
|
https://github.com/gregmbi/polyaxon/tree/8f24089fa9cb5df28fc7b70aec27d6d23ee81e8d
|
TransformerDecoderLayer
|
# AOT ID: ['0_forward']
from ctypes import c_void_p, c_long, c_int
import torch
import math
import random
import os
import tempfile
from math import inf, nan
from torch._inductor.hooks import run_intermediate_hooks
from torch._inductor.utils import maybe_profile
from torch._inductor.codegen.memory_planning import _align as align
from torch import device, empty_strided
from torch._inductor.async_compile import AsyncCompile
from torch._inductor.select_algorithm import extern_kernels
from torch._inductor.codegen.multi_kernel import MultiKernelCall
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
aten = torch.ops.aten
inductor_ops = torch.ops.inductor
_quantized = torch.ops._quantized
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
alloc_from_pool = torch.ops.inductor._alloc_from_pool
async_compile = AsyncCompile()
# kernel path: runs/run_shard_6/inductor_cache/6s/c6sstbvcita246hkfqwdeatnmsh3e6vlcncrzcwlsoqg7dmxvabp.py
# Topologically Sorted Source Nodes: [tgt], Original ATen: [aten.native_layer_norm]
# Source node to ATen node mapping:
# tgt => add, rsqrt, var_mean
# Graph fragment:
# %var_mean : [num_users=2] = call_function[target=torch.ops.aten.var_mean.correction](args = (%primals_1, [1]), kwargs = {correction: 0, keepdim: True})
# %add : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%getitem, 1e-05), kwargs = {})
# %rsqrt : [num_users=1] = call_function[target=torch.ops.aten.rsqrt.default](args = (%add,), kwargs = {})
triton_poi_fused_native_layer_norm_0 = async_compile.triton('triton_poi_fused_native_layer_norm_0', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[4],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_native_layer_norm_0', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 4, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_native_layer_norm_0(in_ptr0, out_ptr0, out_ptr1, xnumel, XBLOCK : tl.constexpr):
xnumel = 4
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex
tmp0 = tl.load(in_ptr0 + (4*x0), xmask, eviction_policy='evict_last')
tmp1 = tl.load(in_ptr0 + (1 + (4*x0)), xmask, eviction_policy='evict_last')
tmp3 = tl.load(in_ptr0 + (2 + (4*x0)), xmask, eviction_policy='evict_last')
tmp5 = tl.load(in_ptr0 + (3 + (4*x0)), xmask, eviction_policy='evict_last')
tmp2 = tmp0 + tmp1
tmp4 = tmp2 + tmp3
tmp6 = tmp4 + tmp5
tmp7 = 4.0
tmp8 = tmp6 / tmp7
tmp9 = tmp0 - tmp8
tmp10 = tmp9 * tmp9
tmp11 = tmp1 - tmp8
tmp12 = tmp11 * tmp11
tmp13 = tmp10 + tmp12
tmp14 = tmp3 - tmp8
tmp15 = tmp14 * tmp14
tmp16 = tmp13 + tmp15
tmp17 = tmp5 - tmp8
tmp18 = tmp17 * tmp17
tmp19 = tmp16 + tmp18
tmp20 = tmp19 / tmp7
tmp21 = 1e-05
tmp22 = tmp20 + tmp21
tmp23 = libdevice.rsqrt(tmp22)
tl.store(out_ptr0 + (x0), tmp8, xmask)
tl.store(out_ptr1 + (x0), tmp23, xmask)
''', device_str='cuda')
# kernel path: runs/run_shard_6/inductor_cache/zv/czv3tzezwxkylzsgkrivaldxprnr7tvjr5iihe4mbc7bzdev5lsj.py
# Topologically Sorted Source Nodes: [tgt], Original ATen: [aten.native_layer_norm]
# Source node to ATen node mapping:
# tgt => add, add_1, mul, mul_1, rsqrt, sub, var_mean
# Graph fragment:
# %var_mean : [num_users=2] = call_function[target=torch.ops.aten.var_mean.correction](args = (%primals_1, [1]), kwargs = {correction: 0, keepdim: True})
# %add : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%getitem, 1e-05), kwargs = {})
# %rsqrt : [num_users=1] = call_function[target=torch.ops.aten.rsqrt.default](args = (%add,), kwargs = {})
# %sub : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (%primals_1, %getitem_1), kwargs = {})
# %mul : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%sub, %rsqrt), kwargs = {})
# %mul_1 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%mul, %primals_2), kwargs = {})
# %add_1 : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%mul_1, %primals_3), kwargs = {})
triton_poi_fused_native_layer_norm_1 = async_compile.triton('triton_poi_fused_native_layer_norm_1', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[16],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: '*fp32', 4: '*fp32', 5: '*fp32', 6: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3, 4, 5, 6), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_native_layer_norm_1', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 5, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_native_layer_norm_1(in_ptr0, in_ptr1, in_ptr2, in_ptr3, in_ptr4, out_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 16
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x2 = xindex
x1 = (xindex // 4)
x0 = xindex % 4
tmp0 = tl.load(in_ptr0 + (x2), xmask)
tmp1 = tl.load(in_ptr1 + (x1), xmask, eviction_policy='evict_last')
tmp3 = tl.load(in_ptr2 + (x1), xmask, eviction_policy='evict_last')
tmp5 = tl.load(in_ptr3 + (x0), xmask, eviction_policy='evict_last')
tmp7 = tl.load(in_ptr4 + (x0), xmask, eviction_policy='evict_last')
tmp2 = tmp0 - tmp1
tmp4 = tmp2 * tmp3
tmp6 = tmp4 * tmp5
tmp8 = tmp6 + tmp7
tl.store(out_ptr0 + (x2), tmp8, xmask)
''', device_str='cuda')
# kernel path: runs/run_shard_6/inductor_cache/ah/cahpqo3o7hv3q647n5lretlqvfljlubj4ic7gscxws4yvkm5jzff.py
# Topologically Sorted Source Nodes: [multi_head_attention_forward], Original ATen: [aten.mul]
# Source node to ATen node mapping:
# multi_head_attention_forward => mul_2
# Graph fragment:
# %mul_2 : [num_users=2] = call_function[target=torch.ops.aten.mul.Tensor](args = (%permute_3, 1.0), kwargs = {})
triton_poi_fused_mul_2 = async_compile.triton('triton_poi_fused_mul_2', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[16],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_mul_2', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_mul_2(in_out_ptr0, in_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 16
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x2 = xindex
x0 = xindex % 4
tmp0 = tl.load(in_out_ptr0 + (x2), xmask)
tmp1 = tl.load(in_ptr0 + (x0), xmask, eviction_policy='evict_last')
tmp2 = tmp0 + tmp1
tmp3 = 1.0
tmp4 = tmp2 * tmp3
tl.store(in_out_ptr0 + (x2), tmp4, xmask)
''', device_str='cuda')
# kernel path: runs/run_shard_6/inductor_cache/7s/c7spagnqvsgjrukyw5jujzjmswxuigeuvpyhxgdob766q2gfvgzr.py
# Topologically Sorted Source Nodes: [multi_head_attention_forward], Original ATen: [aten._softmax]
# Source node to ATen node mapping:
# multi_head_attention_forward => amax, exp, sub_1
# Graph fragment:
# %amax : [num_users=1] = call_function[target=torch.ops.aten.amax.default](args = (%bmm, [-1], True), kwargs = {})
# %sub_1 : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (%bmm, %amax), kwargs = {})
# %exp : [num_users=2] = call_function[target=torch.ops.aten.exp.default](args = (%sub_1,), kwargs = {})
triton_poi_fused__softmax_3 = async_compile.triton('triton_poi_fused__softmax_3', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[64],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused__softmax_3', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 5, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused__softmax_3(in_ptr0, out_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 64
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x2 = xindex
x1 = (xindex // 4)
tmp0 = tl.load(in_ptr0 + (x2), xmask)
tmp1 = tl.load(in_ptr0 + (4*x1), xmask, eviction_policy='evict_last')
tmp2 = tl.load(in_ptr0 + (1 + (4*x1)), xmask, eviction_policy='evict_last')
tmp4 = tl.load(in_ptr0 + (2 + (4*x1)), xmask, eviction_policy='evict_last')
tmp6 = tl.load(in_ptr0 + (3 + (4*x1)), xmask, eviction_policy='evict_last')
tmp3 = triton_helpers.maximum(tmp1, tmp2)
tmp5 = triton_helpers.maximum(tmp3, tmp4)
tmp7 = triton_helpers.maximum(tmp5, tmp6)
tmp8 = tmp0 - tmp7
tmp9 = tl_math.exp(tmp8)
tl.store(out_ptr0 + (x2), tmp9, xmask)
''', device_str='cuda')
# kernel path: runs/run_shard_6/inductor_cache/dw/cdwqsjnh2osfmjr2utzzaqdg2vrfivzkuhareq3urgidllj2bsvr.py
# Topologically Sorted Source Nodes: [multi_head_attention_forward], Original ATen: [aten._softmax]
# Source node to ATen node mapping:
# multi_head_attention_forward => div, sum_1
# Graph fragment:
# %sum_1 : [num_users=1] = call_function[target=torch.ops.aten.sum.dim_IntList](args = (%exp, [-1], True), kwargs = {})
# %div : [num_users=2] = call_function[target=torch.ops.aten.div.Tensor](args = (%exp, %sum_1), kwargs = {})
triton_poi_fused__softmax_4 = async_compile.triton('triton_poi_fused__softmax_4', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[64],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused__softmax_4', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 5, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused__softmax_4(in_ptr0, out_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 64
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x2 = xindex
x1 = (xindex // 4)
tmp0 = tl.load(in_ptr0 + (x2), xmask)
tmp1 = tl.load(in_ptr0 + (4*x1), xmask, eviction_policy='evict_last')
tmp2 = tl.load(in_ptr0 + (1 + (4*x1)), xmask, eviction_policy='evict_last')
tmp4 = tl.load(in_ptr0 + (2 + (4*x1)), xmask, eviction_policy='evict_last')
tmp6 = tl.load(in_ptr0 + (3 + (4*x1)), xmask, eviction_policy='evict_last')
tmp3 = tmp1 + tmp2
tmp5 = tmp3 + tmp4
tmp7 = tmp5 + tmp6
tmp8 = tmp0 / tmp7
tl.store(out_ptr0 + (x2), tmp8, xmask)
''', device_str='cuda')
# kernel path: runs/run_shard_6/inductor_cache/y5/cy5gjrtl7netbzcjhig66pdorub2vbq2qvwmv3tamld2ehimmlz7.py
# Topologically Sorted Source Nodes: [multi_head_attention_forward], Original ATen: [aten.clone]
# Source node to ATen node mapping:
# multi_head_attention_forward => clone
# Graph fragment:
# %clone : [num_users=1] = call_function[target=torch.ops.aten.clone.default](args = (%permute_7,), kwargs = {memory_format: torch.contiguous_format})
triton_poi_fused_clone_5 = async_compile.triton('triton_poi_fused_clone_5', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[4, 4], tile_hint=TileHint.SQUARE,
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_clone_5', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 1, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_clone_5(in_ptr0, out_ptr0, ynumel, xnumel, YBLOCK : tl.constexpr, XBLOCK : tl.constexpr):
ynumel = 4
xnumel = 4
yoffset = tl.program_id(1) * YBLOCK
yindex = yoffset + tl.arange(0, YBLOCK)[None, :]
ymask = yindex < ynumel
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:, None]
xmask = xindex < xnumel
x1 = xindex
y0 = yindex
tmp0 = tl.load(in_ptr0 + (y0 + (4*x1)), xmask & ymask)
tl.store(out_ptr0 + (x1 + (4*y0)), tmp0, xmask & ymask)
''', device_str='cuda')
# kernel path: runs/run_shard_6/inductor_cache/ji/cjikooh3unjvssdwbmc5bbgrf7argvwkpdjikzfpajfrzpotlkhf.py
# Topologically Sorted Source Nodes: [tgt_1, tgt_2], Original ATen: [aten.add, aten.native_layer_norm]
# Source node to ATen node mapping:
# tgt_1 => add_2
# tgt_2 => var_mean_1
# Graph fragment:
# %add_2 : [num_users=3] = call_function[target=torch.ops.aten.add.Tensor](args = (%primals_1, %squeeze), kwargs = {})
# %var_mean_1 : [num_users=2] = call_function[target=torch.ops.aten.var_mean.correction](args = (%add_2, [1]), kwargs = {correction: 0, keepdim: True})
triton_poi_fused_add_native_layer_norm_6 = async_compile.triton('triton_poi_fused_add_native_layer_norm_6', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[4],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: '*fp32', 4: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_add_native_layer_norm_6', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 8, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_add_native_layer_norm_6(in_ptr0, in_ptr1, out_ptr0, out_ptr1, xnumel, XBLOCK : tl.constexpr):
xnumel = 4
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex
tmp0 = tl.load(in_ptr0 + (4*x0), xmask, eviction_policy='evict_last')
tmp1 = tl.load(in_ptr1 + (4*x0), xmask, eviction_policy='evict_last')
tmp3 = tl.load(in_ptr0 + (1 + (4*x0)), xmask, eviction_policy='evict_last')
tmp4 = tl.load(in_ptr1 + (1 + (4*x0)), xmask, eviction_policy='evict_last')
tmp7 = tl.load(in_ptr0 + (2 + (4*x0)), xmask, eviction_policy='evict_last')
tmp8 = tl.load(in_ptr1 + (2 + (4*x0)), xmask, eviction_policy='evict_last')
tmp11 = tl.load(in_ptr0 + (3 + (4*x0)), xmask, eviction_policy='evict_last')
tmp12 = tl.load(in_ptr1 + (3 + (4*x0)), xmask, eviction_policy='evict_last')
tmp2 = tmp0 + tmp1
tmp5 = tmp3 + tmp4
tmp6 = tmp2 + tmp5
tmp9 = tmp7 + tmp8
tmp10 = tmp6 + tmp9
tmp13 = tmp11 + tmp12
tmp14 = tmp10 + tmp13
tmp15 = 4.0
tmp16 = tmp14 / tmp15
tmp17 = tmp2 - tmp16
tmp18 = tmp17 * tmp17
tmp19 = tmp5 - tmp16
tmp20 = tmp19 * tmp19
tmp21 = tmp18 + tmp20
tmp22 = tmp9 - tmp16
tmp23 = tmp22 * tmp22
tmp24 = tmp21 + tmp23
tmp25 = tmp13 - tmp16
tmp26 = tmp25 * tmp25
tmp27 = tmp24 + tmp26
tmp28 = tmp27 / tmp15
tl.store(out_ptr0 + (x0), tmp16, xmask)
tl.store(out_ptr1 + (x0), tmp28, xmask)
''', device_str='cuda')
# kernel path: runs/run_shard_6/inductor_cache/j4/cj4vucbv6vxdldbfg73k3ixw2brnd6f754oxugjq3s7syrcrb4qe.py
# Topologically Sorted Source Nodes: [tgt_1, tgt_2], Original ATen: [aten.add, aten.native_layer_norm]
# Source node to ATen node mapping:
# tgt_1 => add_2
# tgt_2 => add_3, add_4, mul_3, mul_4, rsqrt_1, sub_2
# Graph fragment:
# %add_2 : [num_users=3] = call_function[target=torch.ops.aten.add.Tensor](args = (%primals_1, %squeeze), kwargs = {})
# %add_3 : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%getitem_8, 1e-05), kwargs = {})
# %rsqrt_1 : [num_users=1] = call_function[target=torch.ops.aten.rsqrt.default](args = (%add_3,), kwargs = {})
# %sub_2 : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (%add_2, %getitem_9), kwargs = {})
# %mul_3 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%sub_2, %rsqrt_1), kwargs = {})
# %mul_4 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%mul_3, %primals_8), kwargs = {})
# %add_4 : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%mul_4, %primals_9), kwargs = {})
triton_poi_fused_add_native_layer_norm_7 = async_compile.triton('triton_poi_fused_add_native_layer_norm_7', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[16],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: '*fp32', 4: '*fp32', 5: '*fp32', 6: '*fp32', 7: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3, 4, 5, 6, 7), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_add_native_layer_norm_7', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 6, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_add_native_layer_norm_7(in_ptr0, in_ptr1, in_ptr2, in_ptr3, in_ptr4, in_ptr5, out_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 16
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x2 = xindex
x1 = (xindex // 4)
x0 = xindex % 4
tmp0 = tl.load(in_ptr0 + (x2), xmask)
tmp1 = tl.load(in_ptr1 + (x2), xmask)
tmp3 = tl.load(in_ptr2 + (x1), xmask, eviction_policy='evict_last')
tmp5 = tl.load(in_ptr3 + (x1), xmask, eviction_policy='evict_last')
tmp10 = tl.load(in_ptr4 + (x0), xmask, eviction_policy='evict_last')
tmp12 = tl.load(in_ptr5 + (x0), xmask, eviction_policy='evict_last')
tmp2 = tmp0 + tmp1
tmp4 = tmp2 - tmp3
tmp6 = 1e-05
tmp7 = tmp5 + tmp6
tmp8 = libdevice.rsqrt(tmp7)
tmp9 = tmp4 * tmp8
tmp11 = tmp9 * tmp10
tmp13 = tmp11 + tmp12
tl.store(out_ptr0 + (x2), tmp13, xmask)
''', device_str='cuda')
# kernel path: runs/run_shard_6/inductor_cache/7u/c7up5iv73h2zidaszkmsx5lcplapb2eule6rqadg4siq5zdaoo5m.py
# Topologically Sorted Source Nodes: [tgt_1, tgt_3], Original ATen: [aten.add]
# Source node to ATen node mapping:
# tgt_1 => add_2
# tgt_3 => add_5
# Graph fragment:
# %add_2 : [num_users=3] = call_function[target=torch.ops.aten.add.Tensor](args = (%primals_1, %squeeze), kwargs = {})
# %add_5 : [num_users=4] = call_function[target=torch.ops.aten.add.Tensor](args = (%add_2, %squeeze_2), kwargs = {})
triton_poi_fused_add_8 = async_compile.triton('triton_poi_fused_add_8', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[16],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: '*fp32', 4: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3, 4), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_add_8', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 4, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_add_8(in_out_ptr0, in_ptr0, in_ptr1, in_ptr2, xnumel, XBLOCK : tl.constexpr):
xnumel = 16
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x2 = xindex
x0 = xindex % 4
tmp0 = tl.load(in_ptr0 + (x2), xmask)
tmp1 = tl.load(in_ptr1 + (x2), xmask)
tmp3 = tl.load(in_out_ptr0 + (x2), xmask)
tmp4 = tl.load(in_ptr2 + (x0), xmask, eviction_policy='evict_last')
tmp2 = tmp0 + tmp1
tmp5 = tmp3 + tmp4
tmp6 = tmp2 + tmp5
tl.store(in_out_ptr0 + (x2), tmp6, xmask)
''', device_str='cuda')
# kernel path: runs/run_shard_6/inductor_cache/72/c72dbqgy5xkloy2rcp3rynir3hrgprnoecgmcynn3qr6522vq72l.py
# Topologically Sorted Source Nodes: [tgt_5], Original ATen: [aten.relu]
# Source node to ATen node mapping:
# tgt_5 => relu
# Graph fragment:
# %add_tensor_1 : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%mm_default_1, %primals_18), kwargs = {})
# %relu : [num_users=2] = call_function[target=torch.ops.aten.relu.default](args = (%add_tensor_1,), kwargs = {})
triton_poi_fused_relu_9 = async_compile.triton('triton_poi_fused_relu_9', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[8192],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_relu_9', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_relu_9(in_out_ptr0, in_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 8192
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = tl.full([XBLOCK], True, tl.int1)
x2 = xindex
x0 = xindex % 2048
tmp0 = tl.load(in_out_ptr0 + (x2), None)
tmp1 = tl.load(in_ptr0 + (x0), None, eviction_policy='evict_last')
tmp2 = tmp0 + tmp1
tmp3 = tl.full([1], 0, tl.int32)
tmp4 = triton_helpers.maximum(tmp3, tmp2)
tl.store(in_out_ptr0 + (x2), tmp4, None)
''', device_str='cuda')
# kernel path: runs/run_shard_6/inductor_cache/4e/c4escp7v3hikmzkxuyjmzdj3juzy4ty3yheqrkztwu2gvsteirte.py
# Topologically Sorted Source Nodes: [tgt_8], Original ATen: [aten.add]
# Source node to ATen node mapping:
# tgt_8 => add_8
# Graph fragment:
# %add_tensor : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%mm_default, %primals_20), kwargs = {})
# %add_8 : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%add_5, %add_tensor), kwargs = {})
triton_poi_fused_add_10 = async_compile.triton('triton_poi_fused_add_10', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[16],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_add_10', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 3, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_add_10(in_out_ptr0, in_ptr0, in_ptr1, xnumel, XBLOCK : tl.constexpr):
xnumel = 16
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x2 = xindex
x0 = xindex % 4
tmp0 = tl.load(in_ptr0 + (x2), xmask)
tmp1 = tl.load(in_out_ptr0 + (x2), xmask)
tmp2 = tl.load(in_ptr1 + (x0), xmask, eviction_policy='evict_last')
tmp3 = tmp1 + tmp2
tmp4 = tmp0 + tmp3
tl.store(in_out_ptr0 + (x2), tmp4, xmask)
''', device_str='cuda')
async_compile.wait(globals())
del async_compile
def call(args):
primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7, primals_8, primals_9, primals_10, primals_11, primals_12, primals_13, primals_14, primals_15, primals_16, primals_17, primals_18, primals_19, primals_20 = args
args.clear()
assert_size_stride(primals_1, (4, 4), (4, 1))
assert_size_stride(primals_2, (4, ), (1, ))
assert_size_stride(primals_3, (4, ), (1, ))
assert_size_stride(primals_4, (12, 4), (4, 1))
assert_size_stride(primals_5, (12, ), (1, ))
assert_size_stride(primals_6, (4, 4), (4, 1))
assert_size_stride(primals_7, (4, ), (1, ))
assert_size_stride(primals_8, (4, ), (1, ))
assert_size_stride(primals_9, (4, ), (1, ))
assert_size_stride(primals_10, (4, 4), (4, 1))
assert_size_stride(primals_11, (12, 4), (4, 1))
assert_size_stride(primals_12, (12, ), (1, ))
assert_size_stride(primals_13, (4, 4), (4, 1))
assert_size_stride(primals_14, (4, ), (1, ))
assert_size_stride(primals_15, (4, ), (1, ))
assert_size_stride(primals_16, (4, ), (1, ))
assert_size_stride(primals_17, (2048, 4), (4, 1))
assert_size_stride(primals_18, (2048, ), (1, ))
assert_size_stride(primals_19, (4, 2048), (2048, 1))
assert_size_stride(primals_20, (4, ), (1, ))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((4, 1), (1, 4), torch.float32)
buf1 = empty_strided_cuda((4, 1), (1, 4), torch.float32)
# Topologically Sorted Source Nodes: [tgt], Original ATen: [aten.native_layer_norm]
stream0 = get_raw_stream(0)
triton_poi_fused_native_layer_norm_0.run(primals_1, buf0, buf1, 4, grid=grid(4), stream=stream0)
buf2 = empty_strided_cuda((4, 4), (4, 1), torch.float32)
# Topologically Sorted Source Nodes: [tgt], Original ATen: [aten.native_layer_norm]
triton_poi_fused_native_layer_norm_1.run(primals_1, buf0, buf1, primals_2, primals_3, buf2, 16, grid=grid(16), stream=stream0)
del primals_2
del primals_3
buf3 = empty_strided_cuda((4, 4), (4, 1), torch.float32)
# Topologically Sorted Source Nodes: [], Original ATen: []
extern_kernels.mm(buf2, reinterpret_tensor(primals_4, (4, 4), (1, 4), 0), out=buf3)
buf4 = empty_strided_cuda((4, 4), (4, 1), torch.float32)
# Topologically Sorted Source Nodes: [multi_head_attention_forward], Original ATen: [aten.addmm]
extern_kernels.addmm(reinterpret_tensor(primals_5, (4, ), (1, ), 4), buf2, reinterpret_tensor(primals_4, (4, 4), (1, 4), 16), alpha=1, beta=1, out=buf4)
buf5 = empty_strided_cuda((4, 4), (4, 1), torch.float32)
# Topologically Sorted Source Nodes: [multi_head_attention_forward], Original ATen: [aten.addmm]
extern_kernels.addmm(reinterpret_tensor(primals_5, (4, ), (1, ), 8), buf2, reinterpret_tensor(primals_4, (4, 4), (1, 4), 32), alpha=1, beta=1, out=buf5)
buf6 = reinterpret_tensor(buf3, (4, 4, 1), (1, 4, 16), 0); del buf3 # reuse
# Topologically Sorted Source Nodes: [multi_head_attention_forward], Original ATen: [aten.mul]
triton_poi_fused_mul_2.run(buf6, primals_5, 16, grid=grid(16), stream=stream0)
del primals_5
buf7 = empty_strided_cuda((4, 4, 4), (16, 4, 1), torch.float32)
# Topologically Sorted Source Nodes: [multi_head_attention_forward], Original ATen: [aten.bmm]
extern_kernels.bmm(buf6, reinterpret_tensor(buf4, (4, 1, 4), (1, 1, 4), 0), out=buf7)
buf8 = empty_strided_cuda((4, 4, 4), (16, 4, 1), torch.float32)
# Topologically Sorted Source Nodes: [multi_head_attention_forward], Original ATen: [aten._softmax]
triton_poi_fused__softmax_3.run(buf7, buf8, 64, grid=grid(64), stream=stream0)
buf9 = buf7; del buf7 # reuse
# Topologically Sorted Source Nodes: [multi_head_attention_forward], Original ATen: [aten._softmax]
triton_poi_fused__softmax_4.run(buf8, buf9, 64, grid=grid(64), stream=stream0)
buf10 = empty_strided_cuda((4, 4, 1), (4, 1, 1), torch.float32)
# Topologically Sorted Source Nodes: [multi_head_attention_forward], Original ATen: [aten.bmm]
extern_kernels.bmm(buf9, reinterpret_tensor(buf5, (4, 4, 1), (1, 4, 1), 0), out=buf10)
buf11 = empty_strided_cuda((4, 4, 1), (4, 1, 1), torch.float32)
# Topologically Sorted Source Nodes: [multi_head_attention_forward], Original ATen: [aten.clone]
triton_poi_fused_clone_5.run(buf10, buf11, 4, 4, grid=grid(4, 4), stream=stream0)
buf12 = reinterpret_tensor(buf10, (4, 4), (4, 1), 0); del buf10 # reuse
# Topologically Sorted Source Nodes: [multi_head_attention_forward], Original ATen: [aten.addmm]
extern_kernels.addmm(primals_7, reinterpret_tensor(buf11, (4, 4), (4, 1), 0), reinterpret_tensor(primals_6, (4, 4), (1, 4), 0), alpha=1, beta=1, out=buf12)
del primals_7
buf13 = buf1; del buf1 # reuse
buf14 = buf0; del buf0 # reuse
# Topologically Sorted Source Nodes: [tgt_1, tgt_2], Original ATen: [aten.add, aten.native_layer_norm]
triton_poi_fused_add_native_layer_norm_6.run(primals_1, buf12, buf13, buf14, 4, grid=grid(4), stream=stream0)
buf15 = empty_strided_cuda((4, 4), (4, 1), torch.float32)
# Topologically Sorted Source Nodes: [tgt_1, tgt_2], Original ATen: [aten.add, aten.native_layer_norm]
triton_poi_fused_add_native_layer_norm_7.run(primals_1, buf12, buf13, buf14, primals_8, primals_9, buf15, 16, grid=grid(16), stream=stream0)
del primals_9
buf16 = empty_strided_cuda((4, 4), (4, 1), torch.float32)
# Topologically Sorted Source Nodes: [], Original ATen: []
extern_kernels.mm(buf15, reinterpret_tensor(primals_11, (4, 4), (1, 4), 0), out=buf16)
buf17 = empty_strided_cuda((4, 4), (4, 1), torch.float32)
# Topologically Sorted Source Nodes: [multi_head_attention_forward_1], Original ATen: [aten.addmm]
extern_kernels.addmm(reinterpret_tensor(primals_12, (4, ), (1, ), 4), primals_10, reinterpret_tensor(primals_11, (4, 4), (1, 4), 16), alpha=1, beta=1, out=buf17)
buf18 = empty_strided_cuda((4, 4), (4, 1), torch.float32)
# Topologically Sorted Source Nodes: [multi_head_attention_forward_1], Original ATen: [aten.addmm]
extern_kernels.addmm(reinterpret_tensor(primals_12, (4, ), (1, ), 8), primals_10, reinterpret_tensor(primals_11, (4, 4), (1, 4), 32), alpha=1, beta=1, out=buf18)
buf19 = reinterpret_tensor(buf16, (4, 4, 1), (1, 4, 16), 0); del buf16 # reuse
# Topologically Sorted Source Nodes: [multi_head_attention_forward_1], Original ATen: [aten.mul]
triton_poi_fused_mul_2.run(buf19, primals_12, 16, grid=grid(16), stream=stream0)
del primals_12
buf20 = buf8; del buf8 # reuse
# Topologically Sorted Source Nodes: [multi_head_attention_forward_1], Original ATen: [aten.bmm]
extern_kernels.bmm(buf19, reinterpret_tensor(buf17, (4, 1, 4), (1, 1, 4), 0), out=buf20)
buf21 = empty_strided_cuda((4, 4, 4), (16, 4, 1), torch.float32)
# Topologically Sorted Source Nodes: [multi_head_attention_forward_1], Original ATen: [aten._softmax]
triton_poi_fused__softmax_3.run(buf20, buf21, 64, grid=grid(64), stream=stream0)
buf22 = buf20; del buf20 # reuse
# Topologically Sorted Source Nodes: [multi_head_attention_forward_1], Original ATen: [aten._softmax]
triton_poi_fused__softmax_4.run(buf21, buf22, 64, grid=grid(64), stream=stream0)
del buf21
buf23 = empty_strided_cuda((4, 4, 1), (4, 1, 1), torch.float32)
# Topologically Sorted Source Nodes: [multi_head_attention_forward_1], Original ATen: [aten.bmm]
extern_kernels.bmm(buf22, reinterpret_tensor(buf18, (4, 4, 1), (1, 4, 1), 0), out=buf23)
buf24 = empty_strided_cuda((4, 4, 1), (4, 1, 1), torch.float32)
# Topologically Sorted Source Nodes: [multi_head_attention_forward_1], Original ATen: [aten.clone]
triton_poi_fused_clone_5.run(buf23, buf24, 4, 4, grid=grid(4, 4), stream=stream0)
buf25 = reinterpret_tensor(buf23, (4, 4), (4, 1), 0); del buf23 # reuse
# Topologically Sorted Source Nodes: [], Original ATen: []
extern_kernels.mm(reinterpret_tensor(buf24, (4, 4), (4, 1), 0), reinterpret_tensor(primals_13, (4, 4), (1, 4), 0), out=buf25)
buf26 = buf25; del buf25 # reuse
# Topologically Sorted Source Nodes: [tgt_1, tgt_3], Original ATen: [aten.add]
triton_poi_fused_add_8.run(buf26, primals_1, buf12, primals_14, 16, grid=grid(16), stream=stream0)
del primals_14
buf27 = buf14; del buf14 # reuse
buf28 = buf13; del buf13 # reuse
# Topologically Sorted Source Nodes: [tgt_4], Original ATen: [aten.native_layer_norm]
triton_poi_fused_native_layer_norm_0.run(buf26, buf27, buf28, 4, grid=grid(4), stream=stream0)
buf29 = empty_strided_cuda((4, 4), (4, 1), torch.float32)
# Topologically Sorted Source Nodes: [tgt_4], Original ATen: [aten.native_layer_norm]
triton_poi_fused_native_layer_norm_1.run(buf26, buf27, buf28, primals_15, primals_16, buf29, 16, grid=grid(16), stream=stream0)
del buf27
del buf28
del primals_16
buf30 = empty_strided_cuda((4, 2048), (2048, 1), torch.float32)
# Topologically Sorted Source Nodes: [], Original ATen: []
extern_kernels.mm(buf29, reinterpret_tensor(primals_17, (4, 2048), (1, 4), 0), out=buf30)
buf31 = buf30; del buf30 # reuse
# Topologically Sorted Source Nodes: [tgt_5], Original ATen: [aten.relu]
triton_poi_fused_relu_9.run(buf31, primals_18, 8192, grid=grid(8192), stream=stream0)
del primals_18
buf32 = empty_strided_cuda((4, 4), (4, 1), torch.float32)
# Topologically Sorted Source Nodes: [], Original ATen: []
extern_kernels.mm(buf31, reinterpret_tensor(primals_19, (2048, 4), (1, 2048), 0), out=buf32)
buf33 = buf32; del buf32 # reuse
# Topologically Sorted Source Nodes: [tgt_8], Original ATen: [aten.add]
triton_poi_fused_add_10.run(buf33, buf26, primals_20, 16, grid=grid(16), stream=stream0)
del primals_20
return (buf33, primals_1, primals_8, primals_15, buf2, buf9, reinterpret_tensor(buf11, (4, 4), (4, 1), 0), buf12, buf15, primals_10, buf22, reinterpret_tensor(buf24, (4, 4), (4, 1), 0), buf26, buf29, buf31, primals_19, primals_17, primals_13, reinterpret_tensor(buf18, (4, 1, 4), (1, 1, 4), 0), reinterpret_tensor(buf19, (4, 1, 4), (1, 1, 4), 0), reinterpret_tensor(buf17, (4, 4, 1), (1, 4, 1), 0), reinterpret_tensor(primals_11, (4, 4), (4, 1), 0), primals_6, reinterpret_tensor(buf5, (4, 1, 4), (1, 1, 4), 0), reinterpret_tensor(buf6, (4, 1, 4), (1, 1, 4), 0), reinterpret_tensor(buf4, (4, 4, 1), (1, 4, 1), 0), reinterpret_tensor(primals_4, (4, 4), (4, 1), 32), reinterpret_tensor(primals_4, (4, 4), (4, 1), 16), reinterpret_tensor(primals_4, (4, 4), (4, 1), 0), )
def benchmark_compiled_module(times=10, repeat=10):
from torch._dynamo.testing import rand_strided
from torch._inductor.utils import print_performance
primals_1 = rand_strided((4, 4), (4, 1), device='cuda:0', dtype=torch.float32)
primals_2 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32)
primals_3 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32)
primals_4 = rand_strided((12, 4), (4, 1), device='cuda:0', dtype=torch.float32)
primals_5 = rand_strided((12, ), (1, ), device='cuda:0', dtype=torch.float32)
primals_6 = rand_strided((4, 4), (4, 1), device='cuda:0', dtype=torch.float32)
primals_7 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32)
primals_8 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32)
primals_9 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32)
primals_10 = rand_strided((4, 4), (4, 1), device='cuda:0', dtype=torch.float32)
primals_11 = rand_strided((12, 4), (4, 1), device='cuda:0', dtype=torch.float32)
primals_12 = rand_strided((12, ), (1, ), device='cuda:0', dtype=torch.float32)
primals_13 = rand_strided((4, 4), (4, 1), device='cuda:0', dtype=torch.float32)
primals_14 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32)
primals_15 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32)
primals_16 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32)
primals_17 = rand_strided((2048, 4), (4, 1), device='cuda:0', dtype=torch.float32)
primals_18 = rand_strided((2048, ), (1, ), device='cuda:0', dtype=torch.float32)
primals_19 = rand_strided((4, 2048), (2048, 1), device='cuda:0', dtype=torch.float32)
primals_20 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32)
fn = lambda: call([primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7, primals_8, primals_9, primals_10, primals_11, primals_12, primals_13, primals_14, primals_15, primals_16, primals_17, primals_18, primals_19, primals_20])
return print_performance(fn, times=times, repeat=repeat)
if __name__ == "__main__":
from torch._inductor.wrapper_benchmark import compiled_module_main
compiled_module_main('None', benchmark_compiled_module)
|
import torch
from torch._inductor.select_algorithm import extern_kernels
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
from torch._inductor.runtime import triton_helpers
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
import torch.nn as nn
import torch.nn.functional as F
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
@triton.jit
def triton_poi_fused_native_layer_norm_0(in_ptr0, out_ptr0, out_ptr1,
xnumel, XBLOCK: tl.constexpr):
xnumel = 4
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex
tmp0 = tl.load(in_ptr0 + 4 * x0, xmask, eviction_policy='evict_last')
tmp1 = tl.load(in_ptr0 + (1 + 4 * x0), xmask, eviction_policy='evict_last')
tmp3 = tl.load(in_ptr0 + (2 + 4 * x0), xmask, eviction_policy='evict_last')
tmp5 = tl.load(in_ptr0 + (3 + 4 * x0), xmask, eviction_policy='evict_last')
tmp2 = tmp0 + tmp1
tmp4 = tmp2 + tmp3
tmp6 = tmp4 + tmp5
tmp7 = 4.0
tmp8 = tmp6 / tmp7
tmp9 = tmp0 - tmp8
tmp10 = tmp9 * tmp9
tmp11 = tmp1 - tmp8
tmp12 = tmp11 * tmp11
tmp13 = tmp10 + tmp12
tmp14 = tmp3 - tmp8
tmp15 = tmp14 * tmp14
tmp16 = tmp13 + tmp15
tmp17 = tmp5 - tmp8
tmp18 = tmp17 * tmp17
tmp19 = tmp16 + tmp18
tmp20 = tmp19 / tmp7
tmp21 = 1e-05
tmp22 = tmp20 + tmp21
tmp23 = libdevice.rsqrt(tmp22)
tl.store(out_ptr0 + x0, tmp8, xmask)
tl.store(out_ptr1 + x0, tmp23, xmask)
@triton.jit
def triton_poi_fused_native_layer_norm_1(in_ptr0, in_ptr1, in_ptr2, in_ptr3,
in_ptr4, out_ptr0, xnumel, XBLOCK: tl.constexpr):
xnumel = 16
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x2 = xindex
x1 = xindex // 4
x0 = xindex % 4
tmp0 = tl.load(in_ptr0 + x2, xmask)
tmp1 = tl.load(in_ptr1 + x1, xmask, eviction_policy='evict_last')
tmp3 = tl.load(in_ptr2 + x1, xmask, eviction_policy='evict_last')
tmp5 = tl.load(in_ptr3 + x0, xmask, eviction_policy='evict_last')
tmp7 = tl.load(in_ptr4 + x0, xmask, eviction_policy='evict_last')
tmp2 = tmp0 - tmp1
tmp4 = tmp2 * tmp3
tmp6 = tmp4 * tmp5
tmp8 = tmp6 + tmp7
tl.store(out_ptr0 + x2, tmp8, xmask)
@triton.jit
def triton_poi_fused_mul_2(in_out_ptr0, in_ptr0, xnumel, XBLOCK: tl.constexpr):
xnumel = 16
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x2 = xindex
x0 = xindex % 4
tmp0 = tl.load(in_out_ptr0 + x2, xmask)
tmp1 = tl.load(in_ptr0 + x0, xmask, eviction_policy='evict_last')
tmp2 = tmp0 + tmp1
tmp3 = 1.0
tmp4 = tmp2 * tmp3
tl.store(in_out_ptr0 + x2, tmp4, xmask)
@triton.jit
def triton_poi_fused__softmax_3(in_ptr0, out_ptr0, xnumel, XBLOCK: tl.constexpr
):
xnumel = 64
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x2 = xindex
x1 = xindex // 4
tmp0 = tl.load(in_ptr0 + x2, xmask)
tmp1 = tl.load(in_ptr0 + 4 * x1, xmask, eviction_policy='evict_last')
tmp2 = tl.load(in_ptr0 + (1 + 4 * x1), xmask, eviction_policy='evict_last')
tmp4 = tl.load(in_ptr0 + (2 + 4 * x1), xmask, eviction_policy='evict_last')
tmp6 = tl.load(in_ptr0 + (3 + 4 * x1), xmask, eviction_policy='evict_last')
tmp3 = triton_helpers.maximum(tmp1, tmp2)
tmp5 = triton_helpers.maximum(tmp3, tmp4)
tmp7 = triton_helpers.maximum(tmp5, tmp6)
tmp8 = tmp0 - tmp7
tmp9 = tl_math.exp(tmp8)
tl.store(out_ptr0 + x2, tmp9, xmask)
@triton.jit
def triton_poi_fused__softmax_4(in_ptr0, out_ptr0, xnumel, XBLOCK: tl.constexpr
):
xnumel = 64
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x2 = xindex
x1 = xindex // 4
tmp0 = tl.load(in_ptr0 + x2, xmask)
tmp1 = tl.load(in_ptr0 + 4 * x1, xmask, eviction_policy='evict_last')
tmp2 = tl.load(in_ptr0 + (1 + 4 * x1), xmask, eviction_policy='evict_last')
tmp4 = tl.load(in_ptr0 + (2 + 4 * x1), xmask, eviction_policy='evict_last')
tmp6 = tl.load(in_ptr0 + (3 + 4 * x1), xmask, eviction_policy='evict_last')
tmp3 = tmp1 + tmp2
tmp5 = tmp3 + tmp4
tmp7 = tmp5 + tmp6
tmp8 = tmp0 / tmp7
tl.store(out_ptr0 + x2, tmp8, xmask)
@triton.jit
def triton_poi_fused_clone_5(in_ptr0, out_ptr0, ynumel, xnumel, YBLOCK: tl.
constexpr, XBLOCK: tl.constexpr):
ynumel = 4
xnumel = 4
yoffset = tl.program_id(1) * YBLOCK
yindex = yoffset + tl.arange(0, YBLOCK)[None, :]
ymask = yindex < ynumel
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:, None]
xmask = xindex < xnumel
x1 = xindex
y0 = yindex
tmp0 = tl.load(in_ptr0 + (y0 + 4 * x1), xmask & ymask)
tl.store(out_ptr0 + (x1 + 4 * y0), tmp0, xmask & ymask)
@triton.jit
def triton_poi_fused_add_native_layer_norm_6(in_ptr0, in_ptr1, out_ptr0,
out_ptr1, xnumel, XBLOCK: tl.constexpr):
xnumel = 4
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex
tmp0 = tl.load(in_ptr0 + 4 * x0, xmask, eviction_policy='evict_last')
tmp1 = tl.load(in_ptr1 + 4 * x0, xmask, eviction_policy='evict_last')
tmp3 = tl.load(in_ptr0 + (1 + 4 * x0), xmask, eviction_policy='evict_last')
tmp4 = tl.load(in_ptr1 + (1 + 4 * x0), xmask, eviction_policy='evict_last')
tmp7 = tl.load(in_ptr0 + (2 + 4 * x0), xmask, eviction_policy='evict_last')
tmp8 = tl.load(in_ptr1 + (2 + 4 * x0), xmask, eviction_policy='evict_last')
tmp11 = tl.load(in_ptr0 + (3 + 4 * x0), xmask, eviction_policy='evict_last'
)
tmp12 = tl.load(in_ptr1 + (3 + 4 * x0), xmask, eviction_policy='evict_last'
)
tmp2 = tmp0 + tmp1
tmp5 = tmp3 + tmp4
tmp6 = tmp2 + tmp5
tmp9 = tmp7 + tmp8
tmp10 = tmp6 + tmp9
tmp13 = tmp11 + tmp12
tmp14 = tmp10 + tmp13
tmp15 = 4.0
tmp16 = tmp14 / tmp15
tmp17 = tmp2 - tmp16
tmp18 = tmp17 * tmp17
tmp19 = tmp5 - tmp16
tmp20 = tmp19 * tmp19
tmp21 = tmp18 + tmp20
tmp22 = tmp9 - tmp16
tmp23 = tmp22 * tmp22
tmp24 = tmp21 + tmp23
tmp25 = tmp13 - tmp16
tmp26 = tmp25 * tmp25
tmp27 = tmp24 + tmp26
tmp28 = tmp27 / tmp15
tl.store(out_ptr0 + x0, tmp16, xmask)
tl.store(out_ptr1 + x0, tmp28, xmask)
@triton.jit
def triton_poi_fused_add_native_layer_norm_7(in_ptr0, in_ptr1, in_ptr2,
in_ptr3, in_ptr4, in_ptr5, out_ptr0, xnumel, XBLOCK: tl.constexpr):
xnumel = 16
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x2 = xindex
x1 = xindex // 4
x0 = xindex % 4
tmp0 = tl.load(in_ptr0 + x2, xmask)
tmp1 = tl.load(in_ptr1 + x2, xmask)
tmp3 = tl.load(in_ptr2 + x1, xmask, eviction_policy='evict_last')
tmp5 = tl.load(in_ptr3 + x1, xmask, eviction_policy='evict_last')
tmp10 = tl.load(in_ptr4 + x0, xmask, eviction_policy='evict_last')
tmp12 = tl.load(in_ptr5 + x0, xmask, eviction_policy='evict_last')
tmp2 = tmp0 + tmp1
tmp4 = tmp2 - tmp3
tmp6 = 1e-05
tmp7 = tmp5 + tmp6
tmp8 = libdevice.rsqrt(tmp7)
tmp9 = tmp4 * tmp8
tmp11 = tmp9 * tmp10
tmp13 = tmp11 + tmp12
tl.store(out_ptr0 + x2, tmp13, xmask)
@triton.jit
def triton_poi_fused_add_8(in_out_ptr0, in_ptr0, in_ptr1, in_ptr2, xnumel,
XBLOCK: tl.constexpr):
xnumel = 16
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x2 = xindex
x0 = xindex % 4
tmp0 = tl.load(in_ptr0 + x2, xmask)
tmp1 = tl.load(in_ptr1 + x2, xmask)
tmp3 = tl.load(in_out_ptr0 + x2, xmask)
tmp4 = tl.load(in_ptr2 + x0, xmask, eviction_policy='evict_last')
tmp2 = tmp0 + tmp1
tmp5 = tmp3 + tmp4
tmp6 = tmp2 + tmp5
tl.store(in_out_ptr0 + x2, tmp6, xmask)
@triton.jit
def triton_poi_fused_relu_9(in_out_ptr0, in_ptr0, xnumel, XBLOCK: tl.constexpr
):
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
tl.full([XBLOCK], True, tl.int1)
x2 = xindex
x0 = xindex % 2048
tmp0 = tl.load(in_out_ptr0 + x2, None)
tmp1 = tl.load(in_ptr0 + x0, None, eviction_policy='evict_last')
tmp2 = tmp0 + tmp1
tmp3 = tl.full([1], 0, tl.int32)
tmp4 = triton_helpers.maximum(tmp3, tmp2)
tl.store(in_out_ptr0 + x2, tmp4, None)
@triton.jit
def triton_poi_fused_add_10(in_out_ptr0, in_ptr0, in_ptr1, xnumel, XBLOCK:
tl.constexpr):
xnumel = 16
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x2 = xindex
x0 = xindex % 4
tmp0 = tl.load(in_ptr0 + x2, xmask)
tmp1 = tl.load(in_out_ptr0 + x2, xmask)
tmp2 = tl.load(in_ptr1 + x0, xmask, eviction_policy='evict_last')
tmp3 = tmp1 + tmp2
tmp4 = tmp0 + tmp3
tl.store(in_out_ptr0 + x2, tmp4, xmask)
def call(args):
(primals_1, primals_2, primals_3, primals_4, primals_5, primals_6,
primals_7, primals_8, primals_9, primals_10, primals_11, primals_12,
primals_13, primals_14, primals_15, primals_16, primals_17,
primals_18, primals_19, primals_20) = args
args.clear()
assert_size_stride(primals_1, (4, 4), (4, 1))
assert_size_stride(primals_2, (4,), (1,))
assert_size_stride(primals_3, (4,), (1,))
assert_size_stride(primals_4, (12, 4), (4, 1))
assert_size_stride(primals_5, (12,), (1,))
assert_size_stride(primals_6, (4, 4), (4, 1))
assert_size_stride(primals_7, (4,), (1,))
assert_size_stride(primals_8, (4,), (1,))
assert_size_stride(primals_9, (4,), (1,))
assert_size_stride(primals_10, (4, 4), (4, 1))
assert_size_stride(primals_11, (12, 4), (4, 1))
assert_size_stride(primals_12, (12,), (1,))
assert_size_stride(primals_13, (4, 4), (4, 1))
assert_size_stride(primals_14, (4,), (1,))
assert_size_stride(primals_15, (4,), (1,))
assert_size_stride(primals_16, (4,), (1,))
assert_size_stride(primals_17, (2048, 4), (4, 1))
assert_size_stride(primals_18, (2048,), (1,))
assert_size_stride(primals_19, (4, 2048), (2048, 1))
assert_size_stride(primals_20, (4,), (1,))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((4, 1), (1, 4), torch.float32)
buf1 = empty_strided_cuda((4, 1), (1, 4), torch.float32)
get_raw_stream(0)
triton_poi_fused_native_layer_norm_0[grid(4)](primals_1, buf0, buf1,
4, XBLOCK=4, num_warps=1, num_stages=1)
buf2 = empty_strided_cuda((4, 4), (4, 1), torch.float32)
triton_poi_fused_native_layer_norm_1[grid(16)](primals_1, buf0,
buf1, primals_2, primals_3, buf2, 16, XBLOCK=16, num_warps=1,
num_stages=1)
del primals_2
del primals_3
buf3 = empty_strided_cuda((4, 4), (4, 1), torch.float32)
extern_kernels.mm(buf2, reinterpret_tensor(primals_4, (4, 4), (1, 4
), 0), out=buf3)
buf4 = empty_strided_cuda((4, 4), (4, 1), torch.float32)
extern_kernels.addmm(reinterpret_tensor(primals_5, (4,), (1,), 4),
buf2, reinterpret_tensor(primals_4, (4, 4), (1, 4), 16), alpha=
1, beta=1, out=buf4)
buf5 = empty_strided_cuda((4, 4), (4, 1), torch.float32)
extern_kernels.addmm(reinterpret_tensor(primals_5, (4,), (1,), 8),
buf2, reinterpret_tensor(primals_4, (4, 4), (1, 4), 32), alpha=
1, beta=1, out=buf5)
buf6 = reinterpret_tensor(buf3, (4, 4, 1), (1, 4, 16), 0)
del buf3
triton_poi_fused_mul_2[grid(16)](buf6, primals_5, 16, XBLOCK=16,
num_warps=1, num_stages=1)
del primals_5
buf7 = empty_strided_cuda((4, 4, 4), (16, 4, 1), torch.float32)
extern_kernels.bmm(buf6, reinterpret_tensor(buf4, (4, 1, 4), (1, 1,
4), 0), out=buf7)
buf8 = empty_strided_cuda((4, 4, 4), (16, 4, 1), torch.float32)
triton_poi_fused__softmax_3[grid(64)](buf7, buf8, 64, XBLOCK=64,
num_warps=1, num_stages=1)
buf9 = buf7
del buf7
triton_poi_fused__softmax_4[grid(64)](buf8, buf9, 64, XBLOCK=64,
num_warps=1, num_stages=1)
buf10 = empty_strided_cuda((4, 4, 1), (4, 1, 1), torch.float32)
extern_kernels.bmm(buf9, reinterpret_tensor(buf5, (4, 4, 1), (1, 4,
1), 0), out=buf10)
buf11 = empty_strided_cuda((4, 4, 1), (4, 1, 1), torch.float32)
triton_poi_fused_clone_5[grid(4, 4)](buf10, buf11, 4, 4, XBLOCK=4,
YBLOCK=4, num_warps=1, num_stages=1)
buf12 = reinterpret_tensor(buf10, (4, 4), (4, 1), 0)
del buf10
extern_kernels.addmm(primals_7, reinterpret_tensor(buf11, (4, 4), (
4, 1), 0), reinterpret_tensor(primals_6, (4, 4), (1, 4), 0),
alpha=1, beta=1, out=buf12)
del primals_7
buf13 = buf1
del buf1
buf14 = buf0
del buf0
triton_poi_fused_add_native_layer_norm_6[grid(4)](primals_1, buf12,
buf13, buf14, 4, XBLOCK=4, num_warps=1, num_stages=1)
buf15 = empty_strided_cuda((4, 4), (4, 1), torch.float32)
triton_poi_fused_add_native_layer_norm_7[grid(16)](primals_1, buf12,
buf13, buf14, primals_8, primals_9, buf15, 16, XBLOCK=16,
num_warps=1, num_stages=1)
del primals_9
buf16 = empty_strided_cuda((4, 4), (4, 1), torch.float32)
extern_kernels.mm(buf15, reinterpret_tensor(primals_11, (4, 4), (1,
4), 0), out=buf16)
buf17 = empty_strided_cuda((4, 4), (4, 1), torch.float32)
extern_kernels.addmm(reinterpret_tensor(primals_12, (4,), (1,), 4),
primals_10, reinterpret_tensor(primals_11, (4, 4), (1, 4), 16),
alpha=1, beta=1, out=buf17)
buf18 = empty_strided_cuda((4, 4), (4, 1), torch.float32)
extern_kernels.addmm(reinterpret_tensor(primals_12, (4,), (1,), 8),
primals_10, reinterpret_tensor(primals_11, (4, 4), (1, 4), 32),
alpha=1, beta=1, out=buf18)
buf19 = reinterpret_tensor(buf16, (4, 4, 1), (1, 4, 16), 0)
del buf16
triton_poi_fused_mul_2[grid(16)](buf19, primals_12, 16, XBLOCK=16,
num_warps=1, num_stages=1)
del primals_12
buf20 = buf8
del buf8
extern_kernels.bmm(buf19, reinterpret_tensor(buf17, (4, 1, 4), (1,
1, 4), 0), out=buf20)
buf21 = empty_strided_cuda((4, 4, 4), (16, 4, 1), torch.float32)
triton_poi_fused__softmax_3[grid(64)](buf20, buf21, 64, XBLOCK=64,
num_warps=1, num_stages=1)
buf22 = buf20
del buf20
triton_poi_fused__softmax_4[grid(64)](buf21, buf22, 64, XBLOCK=64,
num_warps=1, num_stages=1)
del buf21
buf23 = empty_strided_cuda((4, 4, 1), (4, 1, 1), torch.float32)
extern_kernels.bmm(buf22, reinterpret_tensor(buf18, (4, 4, 1), (1,
4, 1), 0), out=buf23)
buf24 = empty_strided_cuda((4, 4, 1), (4, 1, 1), torch.float32)
triton_poi_fused_clone_5[grid(4, 4)](buf23, buf24, 4, 4, XBLOCK=4,
YBLOCK=4, num_warps=1, num_stages=1)
buf25 = reinterpret_tensor(buf23, (4, 4), (4, 1), 0)
del buf23
extern_kernels.mm(reinterpret_tensor(buf24, (4, 4), (4, 1), 0),
reinterpret_tensor(primals_13, (4, 4), (1, 4), 0), out=buf25)
buf26 = buf25
del buf25
triton_poi_fused_add_8[grid(16)](buf26, primals_1, buf12,
primals_14, 16, XBLOCK=16, num_warps=1, num_stages=1)
del primals_14
buf27 = buf14
del buf14
buf28 = buf13
del buf13
triton_poi_fused_native_layer_norm_0[grid(4)](buf26, buf27, buf28,
4, XBLOCK=4, num_warps=1, num_stages=1)
buf29 = empty_strided_cuda((4, 4), (4, 1), torch.float32)
triton_poi_fused_native_layer_norm_1[grid(16)](buf26, buf27, buf28,
primals_15, primals_16, buf29, 16, XBLOCK=16, num_warps=1,
num_stages=1)
del buf27
del buf28
del primals_16
buf30 = empty_strided_cuda((4, 2048), (2048, 1), torch.float32)
extern_kernels.mm(buf29, reinterpret_tensor(primals_17, (4, 2048),
(1, 4), 0), out=buf30)
buf31 = buf30
del buf30
triton_poi_fused_relu_9[grid(8192)](buf31, primals_18, 8192, XBLOCK
=256, num_warps=4, num_stages=1)
del primals_18
buf32 = empty_strided_cuda((4, 4), (4, 1), torch.float32)
extern_kernels.mm(buf31, reinterpret_tensor(primals_19, (2048, 4),
(1, 2048), 0), out=buf32)
buf33 = buf32
del buf32
triton_poi_fused_add_10[grid(16)](buf33, buf26, primals_20, 16,
XBLOCK=16, num_warps=1, num_stages=1)
del primals_20
return (buf33, primals_1, primals_8, primals_15, buf2, buf9,
reinterpret_tensor(buf11, (4, 4), (4, 1), 0), buf12, buf15,
primals_10, buf22, reinterpret_tensor(buf24, (4, 4), (4, 1), 0),
buf26, buf29, buf31, primals_19, primals_17, primals_13,
reinterpret_tensor(buf18, (4, 1, 4), (1, 1, 4), 0),
reinterpret_tensor(buf19, (4, 1, 4), (1, 1, 4), 0),
reinterpret_tensor(buf17, (4, 4, 1), (1, 4, 1), 0),
reinterpret_tensor(primals_11, (4, 4), (4, 1), 0), primals_6,
reinterpret_tensor(buf5, (4, 1, 4), (1, 1, 4), 0),
reinterpret_tensor(buf6, (4, 1, 4), (1, 1, 4), 0),
reinterpret_tensor(buf4, (4, 4, 1), (1, 4, 1), 0),
reinterpret_tensor(primals_4, (4, 4), (4, 1), 32),
reinterpret_tensor(primals_4, (4, 4), (4, 1), 16),
reinterpret_tensor(primals_4, (4, 4), (4, 1), 0))
def Linear(in_features, out_features, bias=True):
m = nn.Linear(in_features, out_features, bias)
nn.init.xavier_uniform_(m.weight)
if bias:
nn.init.constant_(m.bias, 0.0)
return m
class TransformerDecoderLayerNew(nn.Module):
def __init__(self, d_model, nhead, dim_feedforward=2048, dropout=0.1,
attention_dropout=0.1, activation_dropout=0.1, activation='relu',
normalize_before=True):
super(TransformerDecoderLayerNew, self).__init__()
self.normalize_before = normalize_before
self.self_attn = nn.MultiheadAttention(d_model, nhead, dropout=
attention_dropout)
self.multihead_attn = nn.MultiheadAttention(d_model, nhead, dropout
=dropout)
self.linear1 = Linear(d_model, dim_feedforward)
self.dropout = nn.Dropout(dropout)
self.linear2 = Linear(dim_feedforward, d_model)
self.norm1 = nn.LayerNorm(d_model)
self.norm2 = nn.LayerNorm(d_model)
self.norm3 = nn.LayerNorm(d_model)
self.activation_dropout = nn.Dropout(activation_dropout)
self.activation = {'relu': F.relu, 'gelu': F.gelu}[activation]
def forward(self, input_0, input_1):
primals_4 = self.self_attn.in_proj_weight
primals_5 = self.self_attn.in_proj_bias
primals_1 = self.self_attn.out_proj.weight
primals_2 = self.self_attn.out_proj.bias
primals_11 = self.multihead_attn.in_proj_weight
primals_12 = self.multihead_attn.in_proj_bias
primals_6 = self.multihead_attn.out_proj.weight
primals_3 = self.multihead_attn.out_proj.bias
primals_17 = self.linear1.weight
primals_18 = self.linear1.bias
primals_19 = self.linear2.weight
primals_7 = self.linear2.bias
primals_8 = self.norm1.weight
primals_9 = self.norm1.bias
primals_14 = self.norm2.weight
primals_15 = self.norm2.bias
primals_16 = self.norm3.weight
primals_20 = self.norm3.bias
primals_10 = input_0
primals_13 = input_1
output = call([primals_1, primals_2, primals_3, primals_4,
primals_5, primals_6, primals_7, primals_8, primals_9,
primals_10, primals_11, primals_12, primals_13, primals_14,
primals_15, primals_16, primals_17, primals_18, primals_19,
primals_20])
return output[0]
|
cimeister/neural-transducer
|
TransformerDecoderLayer
| false | 1,746 |
[
"MIT"
] | 0 |
e4dfc718bbcf93254ce23750e5428c5131ddfb98
|
https://github.com/cimeister/neural-transducer/tree/e4dfc718bbcf93254ce23750e5428c5131ddfb98
|
MultiHeadAttention
|
# AOT ID: ['0_forward']
from ctypes import c_void_p, c_long, c_int
import torch
import math
import random
import os
import tempfile
from math import inf, nan
from torch._inductor.hooks import run_intermediate_hooks
from torch._inductor.utils import maybe_profile
from torch._inductor.codegen.memory_planning import _align as align
from torch import device, empty_strided
from torch._inductor.async_compile import AsyncCompile
from torch._inductor.select_algorithm import extern_kernels
from torch._inductor.codegen.multi_kernel import MultiKernelCall
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
aten = torch.ops.aten
inductor_ops = torch.ops.inductor
_quantized = torch.ops._quantized
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
alloc_from_pool = torch.ops.inductor._alloc_from_pool
async_compile = AsyncCompile()
# kernel path: runs/run_shard_0/inductor_cache/74/c74v7pw3ewucs6uyfyas6jj3smeip3jdxrfqskzmtslaejs2rcdu.py
# Topologically Sorted Source Nodes: [], Original ATen: []
# Source node to ATen node mapping:
# Graph fragment:
# %mul_scalar : [num_users=1] = call_function[target=torch.ops.aten.mul.Scalar](args = (%permute_default, 1.0), kwargs = {})
# %clone_default : [num_users=1] = call_function[target=torch.ops.aten.clone.default](args = (%expand_default,), kwargs = {memory_format: torch.contiguous_format})
triton_poi_fused_0 = async_compile.triton('triton_poi_fused_0', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[16, 4], tile_hint=TileHint.SQUARE,
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_0', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 1, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_0(in_ptr0, out_ptr0, ynumel, xnumel, YBLOCK : tl.constexpr, XBLOCK : tl.constexpr):
ynumel = 16
xnumel = 4
yoffset = tl.program_id(1) * YBLOCK
yindex = yoffset + tl.arange(0, YBLOCK)[None, :]
ymask = yindex < ynumel
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:, None]
xmask = xindex < xnumel
x2 = xindex
y0 = yindex % 4
y1 = (yindex // 4)
y3 = yindex
tmp0 = tl.load(in_ptr0 + (y0 + (4*x2) + (16*y1)), xmask & ymask, eviction_policy='evict_last')
tmp1 = 1.0
tmp2 = tmp0 * tmp1
tl.store(out_ptr0 + (x2 + (4*y3)), tmp2, xmask & ymask)
''', device_str='cuda')
# kernel path: runs/run_shard_0/inductor_cache/5j/c5jll3kxtd32cl7pwubrb5oky2mtzckfgip2xbwad7crvvp4zk4r.py
# Topologically Sorted Source Nodes: [], Original ATen: []
# Source node to ATen node mapping:
# Graph fragment:
# %amax_default : [num_users=1] = call_function[target=torch.ops.aten.amax.default](args = (%view_default_2, [-1], True), kwargs = {})
# %sub_tensor : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (%view_default_2, %amax_default), kwargs = {})
# %exp_default : [num_users=2] = call_function[target=torch.ops.aten.exp.default](args = (%sub_tensor,), kwargs = {})
triton_poi_fused_1 = async_compile.triton('triton_poi_fused_1', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[256],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_1', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 5, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_1(in_ptr0, out_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 256
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x2 = xindex
x1 = (xindex // 4)
tmp0 = tl.load(in_ptr0 + (x2), xmask)
tmp1 = tl.load(in_ptr0 + (4*x1), xmask, eviction_policy='evict_last')
tmp2 = tl.load(in_ptr0 + (1 + (4*x1)), xmask, eviction_policy='evict_last')
tmp4 = tl.load(in_ptr0 + (2 + (4*x1)), xmask, eviction_policy='evict_last')
tmp6 = tl.load(in_ptr0 + (3 + (4*x1)), xmask, eviction_policy='evict_last')
tmp3 = triton_helpers.maximum(tmp1, tmp2)
tmp5 = triton_helpers.maximum(tmp3, tmp4)
tmp7 = triton_helpers.maximum(tmp5, tmp6)
tmp8 = tmp0 - tmp7
tmp9 = tl_math.exp(tmp8)
tl.store(out_ptr0 + (x2), tmp9, xmask)
''', device_str='cuda')
# kernel path: runs/run_shard_0/inductor_cache/kt/cktnex5febczl2ac6zugjmcksgsd5kjdufazv65vtepuwob3cb7a.py
# Topologically Sorted Source Nodes: [], Original ATen: []
# Source node to ATen node mapping:
# Graph fragment:
# %sum_dim_int_list : [num_users=1] = call_function[target=torch.ops.aten.sum.dim_IntList](args = (%exp_default, [-1], True), kwargs = {})
# %div_tensor : [num_users=1] = call_function[target=torch.ops.aten.div.Tensor](args = (%exp_default, %sum_dim_int_list), kwargs = {})
# %eq_scalar : [num_users=1] = call_function[target=torch.ops.aten.eq.Scalar](args = (%view_default_2, -inf), kwargs = {})
# %logical_not_default : [num_users=1] = call_function[target=torch.ops.aten.logical_not.default](args = (%eq_scalar,), kwargs = {})
# %any_dim : [num_users=1] = call_function[target=torch.ops.aten.any.dim](args = (%logical_not_default, -1, True), kwargs = {})
# %logical_not_default_1 : [num_users=1] = call_function[target=torch.ops.aten.logical_not.default](args = (%any_dim,), kwargs = {})
# %full_default : [num_users=1] = call_function[target=torch.ops.aten.full.default](args = ([4, 4, 4, 4], 0), kwargs = {dtype: torch.float32, layout: torch.strided, device: cuda:0, pin_memory: False})
# %where_self : [num_users=1] = call_function[target=torch.ops.aten.where.self](args = (%logical_not_default_1, %full_default, %div_tensor), kwargs = {})
triton_poi_fused_2 = async_compile.triton('triton_poi_fused_2', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[256],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_2', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 9, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_2(in_ptr0, in_ptr1, out_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 256
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x1 = (xindex // 4)
x2 = xindex
tmp0 = tl.load(in_ptr0 + (4*x1), xmask, eviction_policy='evict_last')
tmp6 = tl.load(in_ptr0 + (1 + (4*x1)), xmask, eviction_policy='evict_last')
tmp12 = tl.load(in_ptr0 + (2 + (4*x1)), xmask, eviction_policy='evict_last')
tmp18 = tl.load(in_ptr0 + (3 + (4*x1)), xmask, eviction_policy='evict_last')
tmp25 = tl.load(in_ptr1 + (x2), xmask)
tmp26 = tl.load(in_ptr1 + (4*x1), xmask, eviction_policy='evict_last')
tmp27 = tl.load(in_ptr1 + (1 + (4*x1)), xmask, eviction_policy='evict_last')
tmp29 = tl.load(in_ptr1 + (2 + (4*x1)), xmask, eviction_policy='evict_last')
tmp31 = tl.load(in_ptr1 + (3 + (4*x1)), xmask, eviction_policy='evict_last')
tmp1 = float("-inf")
tmp2 = tmp0 == tmp1
tmp3 = tmp2 == 0
tmp4 = tmp3.to(tl.int64)
tmp5 = (tmp4 != 0)
tmp7 = tmp6 == tmp1
tmp8 = tmp7 == 0
tmp9 = tmp8.to(tl.int64)
tmp10 = (tmp9 != 0)
tmp11 = tmp5 | tmp10
tmp13 = tmp12 == tmp1
tmp14 = tmp13 == 0
tmp15 = tmp14.to(tl.int64)
tmp16 = (tmp15 != 0)
tmp17 = tmp11 | tmp16
tmp19 = tmp18 == tmp1
tmp20 = tmp19 == 0
tmp21 = tmp20.to(tl.int64)
tmp22 = (tmp21 != 0)
tmp23 = tmp17 | tmp22
tmp24 = tmp23 == 0
tmp28 = tmp26 + tmp27
tmp30 = tmp28 + tmp29
tmp32 = tmp30 + tmp31
tmp33 = tmp25 / tmp32
tmp34 = 0.0
tmp35 = tl.where(tmp24, tmp34, tmp33)
tl.store(out_ptr0 + (x2), tmp35, xmask)
''', device_str='cuda')
# kernel path: runs/run_shard_0/inductor_cache/nt/cntsccyp35ridrbw5aqmwfrugkskxdz2e5qgs65dfgng226m2a6s.py
# Topologically Sorted Source Nodes: [], Original ATen: []
# Source node to ATen node mapping:
# Graph fragment:
# %clone_default_2 : [num_users=1] = call_function[target=torch.ops.aten.clone.default](args = (%expand_default_3,), kwargs = {memory_format: torch.contiguous_format})
triton_poi_fused_3 = async_compile.triton('triton_poi_fused_3', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[16, 4], tile_hint=TileHint.SQUARE,
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_3', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 1, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_3(in_ptr0, out_ptr0, ynumel, xnumel, YBLOCK : tl.constexpr, XBLOCK : tl.constexpr):
ynumel = 16
xnumel = 4
yoffset = tl.program_id(1) * YBLOCK
yindex = yoffset + tl.arange(0, YBLOCK)[None, :]
ymask = yindex < ynumel
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:, None]
xmask = xindex < xnumel
x2 = xindex
y0 = yindex % 4
y1 = (yindex // 4)
y3 = yindex
tmp0 = tl.load(in_ptr0 + (y0 + (4*x2) + (16*y1)), xmask & ymask, eviction_policy='evict_last')
tl.store(out_ptr0 + (x2 + (4*y3)), tmp0, xmask & ymask)
''', device_str='cuda')
async_compile.wait(globals())
del async_compile
def call(args):
primals_1, primals_2, primals_3, primals_4, primals_5 = args
args.clear()
assert_size_stride(primals_1, (4, 4, 4, 1), (16, 4, 1, 1))
assert_size_stride(primals_2, (4, 4, 4, 1), (16, 4, 1, 1))
assert_size_stride(primals_3, (4, 4, 4, 1), (16, 4, 1, 1))
assert_size_stride(primals_4, (4, 4), (4, 1))
assert_size_stride(primals_5, (4, ), (1, ))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((4, 4, 4, 1), (16, 4, 1, 1), torch.float32)
# Topologically Sorted Source Nodes: [], Original ATen: []
stream0 = get_raw_stream(0)
triton_poi_fused_0.run(primals_1, buf0, 16, 4, grid=grid(16, 4), stream=stream0)
del primals_1
buf1 = empty_strided_cuda((4, 4, 1, 4), (16, 4, 4, 1), torch.float32)
# Topologically Sorted Source Nodes: [], Original ATen: []
triton_poi_fused_0.run(primals_2, buf1, 16, 4, grid=grid(16, 4), stream=stream0)
del primals_2
buf2 = empty_strided_cuda((16, 4, 4), (16, 4, 1), torch.float32)
# Topologically Sorted Source Nodes: [], Original ATen: []
extern_kernels.bmm(reinterpret_tensor(buf0, (16, 4, 1), (4, 1, 0), 0), reinterpret_tensor(buf1, (16, 1, 4), (4, 0, 1), 0), out=buf2)
buf3 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32)
# Topologically Sorted Source Nodes: [], Original ATen: []
triton_poi_fused_1.run(buf2, buf3, 256, grid=grid(256), stream=stream0)
buf4 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32)
# Topologically Sorted Source Nodes: [], Original ATen: []
triton_poi_fused_2.run(buf2, buf3, buf4, 256, grid=grid(256), stream=stream0)
del buf2
del buf3
buf5 = reinterpret_tensor(buf1, (4, 4, 4, 1), (16, 4, 1, 1), 0); del buf1 # reuse
# Topologically Sorted Source Nodes: [], Original ATen: []
triton_poi_fused_3.run(primals_3, buf5, 16, 4, grid=grid(16, 4), stream=stream0)
del primals_3
buf6 = reinterpret_tensor(buf0, (16, 4, 1), (4, 1, 1), 0); del buf0 # reuse
# Topologically Sorted Source Nodes: [], Original ATen: []
extern_kernels.bmm(reinterpret_tensor(buf4, (16, 4, 4), (16, 4, 1), 0), reinterpret_tensor(buf5, (16, 4, 1), (4, 1, 0), 0), out=buf6)
del buf4
buf7 = buf5; del buf5 # reuse
# Topologically Sorted Source Nodes: [attention_output], Original ATen: [aten.clone]
triton_poi_fused_3.run(buf6, buf7, 16, 4, grid=grid(16, 4), stream=stream0)
buf8 = reinterpret_tensor(buf6, (16, 4), (4, 1), 0); del buf6 # reuse
# Topologically Sorted Source Nodes: [attention_output_2], Original ATen: [aten.addmm]
extern_kernels.addmm(primals_5, reinterpret_tensor(buf7, (16, 4), (4, 1), 0), reinterpret_tensor(primals_4, (4, 4), (1, 4), 0), alpha=1, beta=1, out=buf8)
del primals_4
del primals_5
return (reinterpret_tensor(buf8, (4, 4, 4), (16, 4, 1), 0), reinterpret_tensor(buf7, (16, 4), (4, 1), 0), )
def benchmark_compiled_module(times=10, repeat=10):
from torch._dynamo.testing import rand_strided
from torch._inductor.utils import print_performance
primals_1 = rand_strided((4, 4, 4, 1), (16, 4, 1, 1), device='cuda:0', dtype=torch.float32)
primals_2 = rand_strided((4, 4, 4, 1), (16, 4, 1, 1), device='cuda:0', dtype=torch.float32)
primals_3 = rand_strided((4, 4, 4, 1), (16, 4, 1, 1), device='cuda:0', dtype=torch.float32)
primals_4 = rand_strided((4, 4), (4, 1), device='cuda:0', dtype=torch.float32)
primals_5 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32)
fn = lambda: call([primals_1, primals_2, primals_3, primals_4, primals_5])
return print_performance(fn, times=times, repeat=repeat)
if __name__ == "__main__":
from torch._inductor.wrapper_benchmark import compiled_module_main
compiled_module_main('None', benchmark_compiled_module)
|
import torch
from torch._inductor.select_algorithm import extern_kernels
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
from torch._inductor.runtime import triton_helpers
from torch._inductor.runtime.triton_helpers import math as tl_math
import math
import torch.nn as nn
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
@triton.jit
def triton_poi_fused_0(in_ptr0, out_ptr0, ynumel, xnumel, YBLOCK: tl.
constexpr, XBLOCK: tl.constexpr):
ynumel = 16
xnumel = 4
yoffset = tl.program_id(1) * YBLOCK
yindex = yoffset + tl.arange(0, YBLOCK)[None, :]
ymask = yindex < ynumel
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:, None]
xmask = xindex < xnumel
x2 = xindex
y0 = yindex % 4
y1 = yindex // 4
y3 = yindex
tmp0 = tl.load(in_ptr0 + (y0 + 4 * x2 + 16 * y1), xmask & ymask,
eviction_policy='evict_last')
tmp1 = 1.0
tmp2 = tmp0 * tmp1
tl.store(out_ptr0 + (x2 + 4 * y3), tmp2, xmask & ymask)
@triton.jit
def triton_poi_fused_1(in_ptr0, out_ptr0, xnumel, XBLOCK: tl.constexpr):
xnumel = 256
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x2 = xindex
x1 = xindex // 4
tmp0 = tl.load(in_ptr0 + x2, xmask)
tmp1 = tl.load(in_ptr0 + 4 * x1, xmask, eviction_policy='evict_last')
tmp2 = tl.load(in_ptr0 + (1 + 4 * x1), xmask, eviction_policy='evict_last')
tmp4 = tl.load(in_ptr0 + (2 + 4 * x1), xmask, eviction_policy='evict_last')
tmp6 = tl.load(in_ptr0 + (3 + 4 * x1), xmask, eviction_policy='evict_last')
tmp3 = triton_helpers.maximum(tmp1, tmp2)
tmp5 = triton_helpers.maximum(tmp3, tmp4)
tmp7 = triton_helpers.maximum(tmp5, tmp6)
tmp8 = tmp0 - tmp7
tmp9 = tl_math.exp(tmp8)
tl.store(out_ptr0 + x2, tmp9, xmask)
@triton.jit
def triton_poi_fused_2(in_ptr0, in_ptr1, out_ptr0, xnumel, XBLOCK: tl.constexpr
):
xnumel = 256
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x1 = xindex // 4
x2 = xindex
tmp0 = tl.load(in_ptr0 + 4 * x1, xmask, eviction_policy='evict_last')
tmp6 = tl.load(in_ptr0 + (1 + 4 * x1), xmask, eviction_policy='evict_last')
tmp12 = tl.load(in_ptr0 + (2 + 4 * x1), xmask, eviction_policy='evict_last'
)
tmp18 = tl.load(in_ptr0 + (3 + 4 * x1), xmask, eviction_policy='evict_last'
)
tmp25 = tl.load(in_ptr1 + x2, xmask)
tmp26 = tl.load(in_ptr1 + 4 * x1, xmask, eviction_policy='evict_last')
tmp27 = tl.load(in_ptr1 + (1 + 4 * x1), xmask, eviction_policy='evict_last'
)
tmp29 = tl.load(in_ptr1 + (2 + 4 * x1), xmask, eviction_policy='evict_last'
)
tmp31 = tl.load(in_ptr1 + (3 + 4 * x1), xmask, eviction_policy='evict_last'
)
tmp1 = float('-inf')
tmp2 = tmp0 == tmp1
tmp3 = tmp2 == 0
tmp4 = tmp3.to(tl.int64)
tmp5 = tmp4 != 0
tmp7 = tmp6 == tmp1
tmp8 = tmp7 == 0
tmp9 = tmp8.to(tl.int64)
tmp10 = tmp9 != 0
tmp11 = tmp5 | tmp10
tmp13 = tmp12 == tmp1
tmp14 = tmp13 == 0
tmp15 = tmp14.to(tl.int64)
tmp16 = tmp15 != 0
tmp17 = tmp11 | tmp16
tmp19 = tmp18 == tmp1
tmp20 = tmp19 == 0
tmp21 = tmp20.to(tl.int64)
tmp22 = tmp21 != 0
tmp23 = tmp17 | tmp22
tmp24 = tmp23 == 0
tmp28 = tmp26 + tmp27
tmp30 = tmp28 + tmp29
tmp32 = tmp30 + tmp31
tmp33 = tmp25 / tmp32
tmp34 = 0.0
tmp35 = tl.where(tmp24, tmp34, tmp33)
tl.store(out_ptr0 + x2, tmp35, xmask)
@triton.jit
def triton_poi_fused_3(in_ptr0, out_ptr0, ynumel, xnumel, YBLOCK: tl.
constexpr, XBLOCK: tl.constexpr):
ynumel = 16
xnumel = 4
yoffset = tl.program_id(1) * YBLOCK
yindex = yoffset + tl.arange(0, YBLOCK)[None, :]
ymask = yindex < ynumel
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:, None]
xmask = xindex < xnumel
x2 = xindex
y0 = yindex % 4
y1 = yindex // 4
y3 = yindex
tmp0 = tl.load(in_ptr0 + (y0 + 4 * x2 + 16 * y1), xmask & ymask,
eviction_policy='evict_last')
tl.store(out_ptr0 + (x2 + 4 * y3), tmp0, xmask & ymask)
def call(args):
primals_1, primals_2, primals_3, primals_4, primals_5 = args
args.clear()
assert_size_stride(primals_1, (4, 4, 4, 1), (16, 4, 1, 1))
assert_size_stride(primals_2, (4, 4, 4, 1), (16, 4, 1, 1))
assert_size_stride(primals_3, (4, 4, 4, 1), (16, 4, 1, 1))
assert_size_stride(primals_4, (4, 4), (4, 1))
assert_size_stride(primals_5, (4,), (1,))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((4, 4, 4, 1), (16, 4, 1, 1), torch.float32)
get_raw_stream(0)
triton_poi_fused_0[grid(16, 4)](primals_1, buf0, 16, 4, XBLOCK=4,
YBLOCK=16, num_warps=1, num_stages=1)
del primals_1
buf1 = empty_strided_cuda((4, 4, 1, 4), (16, 4, 4, 1), torch.float32)
triton_poi_fused_0[grid(16, 4)](primals_2, buf1, 16, 4, XBLOCK=4,
YBLOCK=16, num_warps=1, num_stages=1)
del primals_2
buf2 = empty_strided_cuda((16, 4, 4), (16, 4, 1), torch.float32)
extern_kernels.bmm(reinterpret_tensor(buf0, (16, 4, 1), (4, 1, 0),
0), reinterpret_tensor(buf1, (16, 1, 4), (4, 0, 1), 0), out=buf2)
buf3 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32)
triton_poi_fused_1[grid(256)](buf2, buf3, 256, XBLOCK=128,
num_warps=4, num_stages=1)
buf4 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32)
triton_poi_fused_2[grid(256)](buf2, buf3, buf4, 256, XBLOCK=256,
num_warps=4, num_stages=1)
del buf2
del buf3
buf5 = reinterpret_tensor(buf1, (4, 4, 4, 1), (16, 4, 1, 1), 0)
del buf1
triton_poi_fused_3[grid(16, 4)](primals_3, buf5, 16, 4, XBLOCK=4,
YBLOCK=16, num_warps=1, num_stages=1)
del primals_3
buf6 = reinterpret_tensor(buf0, (16, 4, 1), (4, 1, 1), 0)
del buf0
extern_kernels.bmm(reinterpret_tensor(buf4, (16, 4, 4), (16, 4, 1),
0), reinterpret_tensor(buf5, (16, 4, 1), (4, 1, 0), 0), out=buf6)
del buf4
buf7 = buf5
del buf5
triton_poi_fused_3[grid(16, 4)](buf6, buf7, 16, 4, XBLOCK=4, YBLOCK
=16, num_warps=1, num_stages=1)
buf8 = reinterpret_tensor(buf6, (16, 4), (4, 1), 0)
del buf6
extern_kernels.addmm(primals_5, reinterpret_tensor(buf7, (16, 4), (
4, 1), 0), reinterpret_tensor(primals_4, (4, 4), (1, 4), 0),
alpha=1, beta=1, out=buf8)
del primals_4
del primals_5
return reinterpret_tensor(buf8, (4, 4, 4), (16, 4, 1), 0
), reinterpret_tensor(buf7, (16, 4), (4, 1), 0)
class ScaledDotProductAttention(nn.Module):
def __init__(self, d_head):
super(ScaledDotProductAttention, self).__init__()
self.d_head = d_head
self.attention_dropout = nn.Dropout(p=0.1)
def forward(self, q, k, v, mask=None):
attention_weights = torch.matmul(q, k.transpose(-2, -1))
scaled_attention_weights = attention_weights / math.sqrt(self.d_head)
if mask is not None:
scaled_attention_weights = scaled_attention_weights.masked_fill(
mask == 0, float('-inf'))
scaled_attention_weights = nn.functional.softmax(
scaled_attention_weights, dim=-1)
scaled_attention_weights = self.attention_dropout(
scaled_attention_weights)
weighted_v = torch.matmul(scaled_attention_weights, v)
return weighted_v
class MultiHeadAttentionNew(nn.Module):
def __init__(self, d_model, n_heads):
super(MultiHeadAttentionNew, self).__init__()
self.n_heads = n_heads
assert d_model % n_heads == 0
self.d_head = d_model // n_heads
self.dot_product_attention_layer = ScaledDotProductAttention(self.
d_head)
self.W_0 = nn.Linear(d_model, d_model)
def _split_into_heads(self, q, k, v):
q = q.view(q.size(0), q.size(1), self.n_heads, self.d_head)
k = k.view(k.size(0), k.size(1), self.n_heads, self.d_head)
v = v.view(v.size(0), v.size(1), self.n_heads, self.d_head)
q = q.transpose(1, 2)
k = k.transpose(1, 2)
v = v.transpose(1, 2)
return q, k, v
def _concatenate_heads(self, attention_output):
attention_output = attention_output.transpose(1, 2).contiguous()
attention_output = attention_output.view(attention_output.size(0),
attention_output.size(1), -1)
return attention_output
def forward(self, input_0, input_1, input_2):
primals_4 = self.W_0.weight
primals_5 = self.W_0.bias
primals_1 = input_0
primals_2 = input_1
primals_3 = input_2
output = call([primals_1, primals_2, primals_3, primals_4, primals_5])
return output[0]
|
francismontalbo/attention-is-all-you-need-paper
|
MultiHeadAttention
| false | 15,377 |
[
"MIT"
] | 167 |
21ba3e48917da0c6808126d183bece6a9969cfd2
|
https://github.com/francismontalbo/attention-is-all-you-need-paper/tree/21ba3e48917da0c6808126d183bece6a9969cfd2
|
OneMinusCosThetaByThetaSq
|
import torch
from torch import cos
from torch import sin
def get_small_and_large_angle_inds(theta: 'torch.Tensor', eps: 'float'=0.001):
"""Returns the indices of small and non-small (large) angles, given
a tensor of angles, and the threshold below (exclusive) which angles
are considered 'small'.
Args:
theta (torch.Tensor): Angle (magnitude of axis-angle vector).
eps (float): Threshold (exclusive) below which an angle is
considered 'small'.
"""
small_inds = torch.abs(theta) < eps
large_inds = small_inds == 0
return small_inds, large_inds
def grad_one_minus_cos_theta_by_theta_sq(theta: 'torch.Tensor', eps:
'float'=0.001):
"""Computes :math:`\\frac{\\partial}{\\partial \\theta}\\frac{1 - cos \\theta}{\\theta^2}`.
Args:
theta (torch.Tensor): Angle (magnitude of axis-angle vector).
eps (float): Threshold (exclusive) below which an angle is
considered 'small'.
"""
result = torch.zeros_like(theta)
s, l = get_small_and_large_angle_inds(theta, eps)
theta_sq = theta ** 2
result[s] = -theta[s] / 12 * (1 - theta_sq[s] / 5 * (1 / 3 - theta_sq[s
] / 56 * (1 / 2 - theta_sq[s] / 135)))
result[l] = sin(theta[l]) / theta_sq[l] - 2 * (1 - cos(theta[l])) / (
theta_sq[l] * theta[l])
return result
def one_minus_cos_theta_by_theta_sq(theta: 'torch.Tensor', eps: 'float'=0.001):
"""Computes :math:`\\frac{1 - cos \\theta}{\\theta^2}`.
Args:
theta (torch.Tensor): Angle (magnitude of axis-angle vector).
eps (float): Threshold (exclusive) below which an angle is
considered 'small'.
"""
result = torch.zeros_like(theta)
s, l = get_small_and_large_angle_inds(theta, eps)
theta_sq = theta ** 2
result[s] = 1 / 2 * (1 - theta_sq[s] / 12 * (1 - theta_sq[s] / 30 * (1 -
theta_sq[s] / 56)))
result[l] = (1 - cos(theta[l])) / theta_sq[l]
return result
class OneMinusCosThetaByThetaSq_Function(torch.autograd.Function):
@staticmethod
def forward(ctx, theta):
ctx.save_for_backward(theta)
return one_minus_cos_theta_by_theta_sq(theta)
@staticmethod
def backward(ctx, grad_output):
theta, = ctx.saved_tensors
grad_theta = None
if ctx.needs_input_grad[0]:
grad_theta = grad_output * grad_one_minus_cos_theta_by_theta_sq(
theta)
return grad_theta
class OneMinusCosThetaByThetaSq(torch.nn.Module):
def __init__(self):
super(OneMinusCosThetaByThetaSq, self).__init__()
def forward(self, x):
return OneMinusCosThetaByThetaSq_Function.apply(x)
def get_inputs():
return [torch.rand([4, 4, 4, 4])]
def get_init_inputs():
return [[], {}]
|
import torch
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
from torch._inductor.runtime.triton_helpers import math as tl_math
from torch import cos
from torch import sin
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
@triton.jit
def triton_poi_fused_abs_eq_lt_pow_0(in_ptr0, out_ptr0, out_ptr1, out_ptr2,
xnumel, XBLOCK: tl.constexpr):
xnumel = 256
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex
tmp0 = tl.load(in_ptr0 + x0, xmask)
tmp1 = tmp0 * tmp0
tmp2 = tl_math.abs(tmp0)
tmp3 = 0.001
tmp4 = tmp2 < tmp3
tmp5 = tmp4.to(tl.int64)
tmp6 = tl.full([1], 0, tl.int64)
tmp7 = tmp5 == tmp6
tl.store(out_ptr0 + x0, tmp1, xmask)
tl.store(out_ptr1 + x0, tmp4, xmask)
tl.store(out_ptr2 + x0, tmp7, xmask)
@triton.jit
def triton_poi_fused_zeros_like_1(out_ptr0, xnumel, XBLOCK: tl.constexpr):
xnumel = 256
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex
tmp0 = 0.0
tl.store(out_ptr0 + x0, tmp0, xmask)
def call(args):
arg0_1, = args
args.clear()
assert_size_stride(arg0_1, (4, 4, 4, 4), (64, 16, 4, 1))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32)
buf2 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.bool)
buf3 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.bool)
get_raw_stream(0)
triton_poi_fused_abs_eq_lt_pow_0[grid(256)](arg0_1, buf0, buf2,
buf3, 256, XBLOCK=256, num_warps=4, num_stages=1)
del arg0_1
buf1 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32)
triton_poi_fused_zeros_like_1[grid(256)](buf1, 256, XBLOCK=256,
num_warps=4, num_stages=1)
return buf0, buf2, buf1, buf3
def get_small_and_large_angle_inds(theta: 'torch.Tensor', eps: 'float'=0.001):
"""Returns the indices of small and non-small (large) angles, given
a tensor of angles, and the threshold below (exclusive) which angles
are considered 'small'.
Args:
theta (torch.Tensor): Angle (magnitude of axis-angle vector).
eps (float): Threshold (exclusive) below which an angle is
considered 'small'.
"""
small_inds = torch.abs(theta) < eps
large_inds = small_inds == 0
return small_inds, large_inds
def grad_one_minus_cos_theta_by_theta_sq(theta: 'torch.Tensor', eps:
'float'=0.001):
"""Computes :math:`\\frac{\\partial}{\\partial \\theta}\\frac{1 - cos \\theta}{\\theta^2}`.
Args:
theta (torch.Tensor): Angle (magnitude of axis-angle vector).
eps (float): Threshold (exclusive) below which an angle is
considered 'small'.
"""
result = torch.zeros_like(theta)
s, l = get_small_and_large_angle_inds(theta, eps)
theta_sq = theta ** 2
result[s] = -theta[s] / 12 * (1 - theta_sq[s] / 5 * (1 / 3 - theta_sq[s
] / 56 * (1 / 2 - theta_sq[s] / 135)))
result[l] = sin(theta[l]) / theta_sq[l] - 2 * (1 - cos(theta[l])) / (
theta_sq[l] * theta[l])
return result
def one_minus_cos_theta_by_theta_sq(theta: 'torch.Tensor', eps: 'float'=0.001):
"""Computes :math:`\\frac{1 - cos \\theta}{\\theta^2}`.
Args:
theta (torch.Tensor): Angle (magnitude of axis-angle vector).
eps (float): Threshold (exclusive) below which an angle is
considered 'small'.
"""
result = torch.zeros_like(theta)
s, l = get_small_and_large_angle_inds(theta, eps)
theta_sq = theta ** 2
result[s] = 1 / 2 * (1 - theta_sq[s] / 12 * (1 - theta_sq[s] / 30 * (1 -
theta_sq[s] / 56)))
result[l] = (1 - cos(theta[l])) / theta_sq[l]
return result
class OneMinusCosThetaByThetaSq_Function(torch.autograd.Function):
@staticmethod
def forward(ctx, theta):
ctx.save_for_backward(theta)
return one_minus_cos_theta_by_theta_sq(theta)
@staticmethod
def backward(ctx, grad_output):
theta, = ctx.saved_tensors
grad_theta = None
if ctx.needs_input_grad[0]:
grad_theta = grad_output * grad_one_minus_cos_theta_by_theta_sq(
theta)
return grad_theta
class OneMinusCosThetaByThetaSqNew(torch.nn.Module):
def __init__(self):
super(OneMinusCosThetaByThetaSqNew, self).__init__()
def forward(self, input_0):
arg0_1 = input_0
output = call([arg0_1])
return output[0]
|
darkmatter08/dfa-scales-to-modern-deep-learning
|
OneMinusCosThetaByThetaSq
| false | 6,522 |
[
"MIT"
] | 1 |
72bf8a045b4bb7eb81736d8ec1d671c4949fb01e
|
https://github.com/darkmatter08/dfa-scales-to-modern-deep-learning/tree/72bf8a045b4bb7eb81736d8ec1d671c4949fb01e
|
AttDot
|
import torch
import torch.nn.functional as F
class AttDot(torch.nn.Module):
"""
AttDot: Dot attention that can be used by the Alignment module.
"""
def __init__(self, softmax=True):
super().__init__()
self.softmax = softmax
def forward(self, query, y):
att = torch.bmm(query, y.transpose(2, 1))
sim = att.max(2)[0].unsqueeze(1)
if self.softmax:
att = F.softmax(att, dim=2)
return att, sim
def get_inputs():
return [torch.rand([4, 4, 4]), torch.rand([4, 4, 4])]
def get_init_inputs():
return [[], {}]
|
import torch
from torch._inductor.select_algorithm import extern_kernels
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
from torch._inductor.runtime import triton_helpers
from torch._inductor.runtime.triton_helpers import math as tl_math
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
@triton.jit
def triton_poi_fused__softmax_0(in_ptr0, out_ptr0, xnumel, XBLOCK: tl.constexpr
):
xnumel = 64
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x2 = xindex
x1 = xindex // 4
tmp0 = tl.load(in_ptr0 + x2, xmask)
tmp1 = tl.load(in_ptr0 + 4 * x1, xmask, eviction_policy='evict_last')
tmp2 = tl.load(in_ptr0 + (1 + 4 * x1), xmask, eviction_policy='evict_last')
tmp4 = tl.load(in_ptr0 + (2 + 4 * x1), xmask, eviction_policy='evict_last')
tmp6 = tl.load(in_ptr0 + (3 + 4 * x1), xmask, eviction_policy='evict_last')
tmp3 = triton_helpers.maximum(tmp1, tmp2)
tmp5 = triton_helpers.maximum(tmp3, tmp4)
tmp7 = triton_helpers.maximum(tmp5, tmp6)
tmp8 = tmp0 - tmp7
tmp9 = tl_math.exp(tmp8)
tl.store(out_ptr0 + x2, tmp9, xmask)
@triton.jit
def triton_poi_fused__softmax_1(in_ptr0, out_ptr0, xnumel, XBLOCK: tl.constexpr
):
xnumel = 64
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x2 = xindex
x1 = xindex // 4
tmp0 = tl.load(in_ptr0 + x2, xmask)
tmp1 = tl.load(in_ptr0 + 4 * x1, xmask, eviction_policy='evict_last')
tmp2 = tl.load(in_ptr0 + (1 + 4 * x1), xmask, eviction_policy='evict_last')
tmp4 = tl.load(in_ptr0 + (2 + 4 * x1), xmask, eviction_policy='evict_last')
tmp6 = tl.load(in_ptr0 + (3 + 4 * x1), xmask, eviction_policy='evict_last')
tmp3 = tmp1 + tmp2
tmp5 = tmp3 + tmp4
tmp7 = tmp5 + tmp6
tmp8 = tmp0 / tmp7
tl.store(out_ptr0 + x2, tmp8, xmask)
@triton.jit
def triton_poi_fused_max_2(in_ptr0, out_ptr0, xnumel, XBLOCK: tl.constexpr):
xnumel = 16
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex
tmp0 = tl.load(in_ptr0 + 4 * x0, xmask, eviction_policy='evict_last')
tmp1 = tl.load(in_ptr0 + (1 + 4 * x0), xmask, eviction_policy='evict_last')
tmp3 = tl.load(in_ptr0 + (2 + 4 * x0), xmask, eviction_policy='evict_last')
tmp5 = tl.load(in_ptr0 + (3 + 4 * x0), xmask, eviction_policy='evict_last')
tmp2 = triton_helpers.maximum(tmp0, tmp1)
tmp4 = triton_helpers.maximum(tmp2, tmp3)
tmp6 = triton_helpers.maximum(tmp4, tmp5)
tl.store(out_ptr0 + x0, tmp6, xmask)
def call(args):
arg0_1, arg1_1 = args
args.clear()
assert_size_stride(arg0_1, (4, 4, 4), (16, 4, 1))
assert_size_stride(arg1_1, (4, 4, 4), (16, 4, 1))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((4, 4, 4), (16, 4, 1), torch.float32)
extern_kernels.bmm(arg1_1, reinterpret_tensor(arg0_1, (4, 4, 4), (
16, 1, 4), 0), out=buf0)
del arg0_1
del arg1_1
buf1 = empty_strided_cuda((4, 4, 4), (16, 4, 1), torch.float32)
get_raw_stream(0)
triton_poi_fused__softmax_0[grid(64)](buf0, buf1, 64, XBLOCK=64,
num_warps=1, num_stages=1)
buf2 = empty_strided_cuda((4, 4, 4), (16, 4, 1), torch.float32)
triton_poi_fused__softmax_1[grid(64)](buf1, buf2, 64, XBLOCK=64,
num_warps=1, num_stages=1)
del buf1
buf3 = empty_strided_cuda((4, 4), (4, 1), torch.float32)
triton_poi_fused_max_2[grid(16)](buf0, buf3, 16, XBLOCK=16,
num_warps=1, num_stages=1)
del buf0
return buf2, reinterpret_tensor(buf3, (4, 1, 4), (4, 4, 1), 0)
class AttDotNew(torch.nn.Module):
"""
AttDot: Dot attention that can be used by the Alignment module.
"""
def __init__(self, softmax=True):
super().__init__()
self.softmax = softmax
def forward(self, input_0, input_1):
arg0_1 = input_0
arg1_1 = input_1
output = call([arg0_1, arg1_1])
return output[0], output[1]
|
ishine/NISQA
|
AttDot
| false | 15,615 |
[
"MIT"
] | 223 |
2c8917f30c4e4bbca3a48e9852301f1e2480a741
|
https://github.com/ishine/NISQA/tree/2c8917f30c4e4bbca3a48e9852301f1e2480a741
|
FourierFeatures
|
# AOT ID: ['0_forward']
from ctypes import c_void_p, c_long, c_int
import torch
import math
import random
import os
import tempfile
from math import inf, nan
from torch._inductor.hooks import run_intermediate_hooks
from torch._inductor.utils import maybe_profile
from torch._inductor.codegen.memory_planning import _align as align
from torch import device, empty_strided
from torch._inductor.async_compile import AsyncCompile
from torch._inductor.select_algorithm import extern_kernels
from torch._inductor.codegen.multi_kernel import MultiKernelCall
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
aten = torch.ops.aten
inductor_ops = torch.ops.inductor
_quantized = torch.ops._quantized
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
alloc_from_pool = torch.ops.inductor._alloc_from_pool
async_compile = AsyncCompile()
# kernel path: runs/run_shard_8/inductor_cache/4n/c4nzpnmnxnddegpx57hh6jact2tympwu7veza5bsp5ut7t35yaq2.py
# Topologically Sorted Source Nodes: [mul], Original ATen: [aten.mul]
# Source node to ATen node mapping:
# mul => mul
# Graph fragment:
# %mul : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%primals_1, 6.283185307179586), kwargs = {})
triton_poi_fused_mul_0 = async_compile.triton('triton_poi_fused_mul_0', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[256],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_mul_0', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 1, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_mul_0(in_ptr0, out_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 256
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex
tmp0 = tl.load(in_ptr0 + (x0), xmask)
tmp1 = 6.283185307179586
tmp2 = tmp0 * tmp1
tl.store(out_ptr0 + (x0), tmp2, xmask)
''', device_str='cuda')
# kernel path: runs/run_shard_8/inductor_cache/v4/cv4pft4jyhaxps3kfatrvu4flmf2zjqqsfush3cniwijnyyxmmmn.py
# Topologically Sorted Source Nodes: [cat], Original ATen: [aten.cat]
# Source node to ATen node mapping:
# cat => cat
# Graph fragment:
# %cat : [num_users=1] = call_function[target=torch.ops.aten.cat.default](args = ([%cos, %sin], -1), kwargs = {})
triton_poi_fused_cat_1 = async_compile.triton('triton_poi_fused_cat_1', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[256],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_cat_1', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_cat_1(in_ptr0, out_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 256
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex % 4
x1 = (xindex // 4)
x2 = xindex
tmp0 = x0
tmp1 = tl.full([1], 0, tl.int64)
tmp2 = tmp0 >= tmp1
tmp3 = tl.full([1], 2, tl.int64)
tmp4 = tmp0 < tmp3
tmp5 = tl.load(in_ptr0 + ((2*x1) + x0), tmp4 & xmask, eviction_policy='evict_last', other=0.0)
tmp6 = tl_math.cos(tmp5)
tmp7 = tl.full(tmp6.shape, 0.0, tmp6.dtype)
tmp8 = tl.where(tmp4, tmp6, tmp7)
tmp9 = tmp0 >= tmp3
tmp10 = tl.full([1], 4, tl.int64)
tmp11 = tmp0 < tmp10
tmp12 = tl.load(in_ptr0 + ((2*x1) + ((-2) + x0)), tmp9 & xmask, eviction_policy='evict_last', other=0.0)
tmp13 = tl_math.sin(tmp12)
tmp14 = tl.full(tmp13.shape, 0.0, tmp13.dtype)
tmp15 = tl.where(tmp9, tmp13, tmp14)
tmp16 = tl.where(tmp4, tmp8, tmp15)
tl.store(out_ptr0 + (x2), tmp16, xmask)
''', device_str='cuda')
async_compile.wait(globals())
del async_compile
def call(args):
primals_1, primals_2 = args
args.clear()
assert_size_stride(primals_1, (4, 4, 4, 4), (64, 16, 4, 1))
assert_size_stride(primals_2, (2, 4), (4, 1))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32)
# Topologically Sorted Source Nodes: [mul], Original ATen: [aten.mul]
stream0 = get_raw_stream(0)
triton_poi_fused_mul_0.run(primals_1, buf0, 256, grid=grid(256), stream=stream0)
del primals_1
buf1 = empty_strided_cuda((64, 2), (2, 1), torch.float32)
# Topologically Sorted Source Nodes: [f], Original ATen: [aten.mm]
extern_kernels.mm(reinterpret_tensor(buf0, (64, 4), (4, 1), 0), reinterpret_tensor(primals_2, (4, 2), (1, 4), 0), out=buf1)
del primals_2
buf2 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32)
# Topologically Sorted Source Nodes: [cat], Original ATen: [aten.cat]
triton_poi_fused_cat_1.run(buf1, buf2, 256, grid=grid(256), stream=stream0)
return (buf2, reinterpret_tensor(buf0, (64, 4), (4, 1), 0), buf1, )
def benchmark_compiled_module(times=10, repeat=10):
from torch._dynamo.testing import rand_strided
from torch._inductor.utils import print_performance
primals_1 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32)
primals_2 = rand_strided((2, 4), (4, 1), device='cuda:0', dtype=torch.float32)
fn = lambda: call([primals_1, primals_2])
return print_performance(fn, times=times, repeat=repeat)
if __name__ == "__main__":
from torch._inductor.wrapper_benchmark import compiled_module_main
compiled_module_main('None', benchmark_compiled_module)
|
import torch
from torch._inductor.select_algorithm import extern_kernels
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
from torch._inductor.runtime.triton_helpers import math as tl_math
from torch import nn
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
@triton.jit
def triton_poi_fused_mul_0(in_ptr0, out_ptr0, xnumel, XBLOCK: tl.constexpr):
xnumel = 256
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex
tmp0 = tl.load(in_ptr0 + x0, xmask)
tmp1 = 6.283185307179586
tmp2 = tmp0 * tmp1
tl.store(out_ptr0 + x0, tmp2, xmask)
@triton.jit
def triton_poi_fused_cat_1(in_ptr0, out_ptr0, xnumel, XBLOCK: tl.constexpr):
xnumel = 256
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex % 4
x1 = xindex // 4
x2 = xindex
tmp0 = x0
tl.full([1], 0, tl.int64)
tmp3 = tl.full([1], 2, tl.int64)
tmp4 = tmp0 < tmp3
tmp5 = tl.load(in_ptr0 + (2 * x1 + x0), tmp4 & xmask, eviction_policy=
'evict_last', other=0.0)
tmp6 = tl_math.cos(tmp5)
tmp7 = tl.full(tmp6.shape, 0.0, tmp6.dtype)
tmp8 = tl.where(tmp4, tmp6, tmp7)
tmp9 = tmp0 >= tmp3
tl.full([1], 4, tl.int64)
tmp12 = tl.load(in_ptr0 + (2 * x1 + (-2 + x0)), tmp9 & xmask,
eviction_policy='evict_last', other=0.0)
tmp13 = tl_math.sin(tmp12)
tmp14 = tl.full(tmp13.shape, 0.0, tmp13.dtype)
tmp15 = tl.where(tmp9, tmp13, tmp14)
tmp16 = tl.where(tmp4, tmp8, tmp15)
tl.store(out_ptr0 + x2, tmp16, xmask)
def call(args):
primals_1, primals_2 = args
args.clear()
assert_size_stride(primals_1, (4, 4, 4, 4), (64, 16, 4, 1))
assert_size_stride(primals_2, (2, 4), (4, 1))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32)
get_raw_stream(0)
triton_poi_fused_mul_0[grid(256)](primals_1, buf0, 256, XBLOCK=256,
num_warps=4, num_stages=1)
del primals_1
buf1 = empty_strided_cuda((64, 2), (2, 1), torch.float32)
extern_kernels.mm(reinterpret_tensor(buf0, (64, 4), (4, 1), 0),
reinterpret_tensor(primals_2, (4, 2), (1, 4), 0), out=buf1)
del primals_2
buf2 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32)
triton_poi_fused_cat_1[grid(256)](buf1, buf2, 256, XBLOCK=256,
num_warps=4, num_stages=1)
return buf2, reinterpret_tensor(buf0, (64, 4), (4, 1), 0), buf1
class FourierFeaturesNew(nn.Module):
def __init__(self, in_features, out_features, std=1.0):
super().__init__()
assert out_features % 2 == 0
self.weight = nn.Parameter(torch.randn([out_features // 2,
in_features]) * std)
def forward(self, input_0):
primals_2 = self.weight
primals_1 = input_0
output = call([primals_1, primals_2])
return output[0]
|
DeepTitan/v-diffusion-pytorch
|
FourierFeatures
| false | 9,032 |
[
"MIT"
] | 0 |
857b6f2a4519973f9a8dc0b6c93f0134cebc3a8d
|
https://github.com/DeepTitan/v-diffusion-pytorch/tree/857b6f2a4519973f9a8dc0b6c93f0134cebc3a8d
|
MultiheadSimilarity
|
import torch
import torch.utils.data
from torch import nn
class MultiheadSimilarity(nn.Module):
def __init__(self, d_model, num_head, seq_len, in_proj=True):
super().__init__()
self.num_head = num_head
self.seq_len = seq_len
self.d_head = d_model // num_head
self.in_proj = in_proj
if self.in_proj:
self.q_in_proj = nn.Linear(d_model, seq_len * d_model, bias=True)
self.q_proj = nn.Linear(d_model, d_model, bias=True)
self.k_proj = nn.Linear(d_model, d_model, bias=True)
self.v_proj = nn.Linear(d_model, d_model, bias=True)
self.out_proj = nn.Linear(seq_len * d_model, d_model, bias=True)
def forward(self, q, kv):
bs, d_model = q.shape
nbs = bs * self.num_head
if self.in_proj:
q_ = self.q_in_proj(q)
q_ = q_.contiguous().view(bs, self.seq_len, d_model).transpose(0, 1
)
kv = q_ + kv
q = self.q_proj(q)
q = q.contiguous().view(nbs, self.d_head).unsqueeze(-1)
k = self.k_proj(kv)
k = k.contiguous().view(self.seq_len, nbs, self.d_head).transpose(0, 1)
similarity = torch.bmm(k, q) * float(self.d_head) ** -0.5
v = self.v_proj(kv)
v = v.contiguous().view(self.seq_len, nbs, self.d_head).transpose(0, 1)
v = (v * similarity).view(bs, self.num_head, self.seq_len, self.d_head)
output = self.out_proj(v.flatten(1))
return output
def get_inputs():
return [torch.rand([4, 4]), torch.rand([4, 4, 1])]
def get_init_inputs():
return [[], {'d_model': 4, 'num_head': 4, 'seq_len': 4}]
|
import torch
from torch._inductor.select_algorithm import extern_kernels
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
import torch.utils.data
from torch import nn
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
@triton.jit
def triton_poi_fused_add_clone_0(in_ptr0, in_ptr1, in_ptr2, out_ptr0,
xnumel, XBLOCK: tl.constexpr):
xnumel = 64
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex % 4
x1 = xindex // 4 % 4
x2 = xindex // 16
x3 = xindex // 4
x4 = xindex
tmp0 = tl.load(in_ptr0 + (x0 + 4 * x2 + 16 * x1), xmask)
tmp1 = tl.load(in_ptr1 + (x0 + 4 * x2), xmask, eviction_policy='evict_last'
)
tmp3 = tl.load(in_ptr2 + x3, xmask, eviction_policy='evict_last')
tmp2 = tmp0 + tmp1
tmp4 = tmp2 + tmp3
tl.store(out_ptr0 + x4, tmp4, xmask)
@triton.jit
def triton_poi_fused_add_1(in_out_ptr0, in_ptr0, xnumel, XBLOCK: tl.constexpr):
xnumel = 64
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x2 = xindex
x0 = xindex % 4
tmp0 = tl.load(in_out_ptr0 + x2, xmask)
tmp1 = tl.load(in_ptr0 + x0, xmask, eviction_policy='evict_last')
tmp2 = tmp0 + tmp1
tl.store(in_out_ptr0 + x2, tmp2, xmask)
@triton.jit
def triton_poi_fused_clone_2(in_ptr0, in_ptr1, in_ptr2, out_ptr0, ynumel,
xnumel, YBLOCK: tl.constexpr, XBLOCK: tl.constexpr):
ynumel = 16
xnumel = 4
yoffset = tl.program_id(1) * YBLOCK
yindex = yoffset + tl.arange(0, YBLOCK)[None, :]
ymask = yindex < ynumel
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:, None]
xmask = xindex < xnumel
x2 = xindex
y3 = yindex
y0 = yindex % 4
tmp0 = tl.load(in_ptr0 + (y3 + 16 * x2), xmask & ymask, eviction_policy
='evict_last')
tmp1 = tl.load(in_ptr1 + y0, ymask, eviction_policy='evict_last')
tmp3 = tl.load(in_ptr2 + (x2 + 4 * y3), xmask & ymask, eviction_policy=
'evict_last')
tmp2 = tmp0 + tmp1
tmp4 = 1.0
tmp5 = tmp3 * tmp4
tmp6 = tmp2 * tmp5
tl.store(out_ptr0 + (x2 + 4 * y3), tmp6, xmask & ymask)
def call(args):
(primals_1, primals_2, primals_3, primals_4, primals_5, primals_6,
primals_7, primals_8, primals_9, primals_10, primals_11, primals_12
) = args
args.clear()
assert_size_stride(primals_1, (4, 4), (4, 1))
assert_size_stride(primals_2, (16, 4), (4, 1))
assert_size_stride(primals_3, (16,), (1,))
assert_size_stride(primals_4, (4, 4, 1), (4, 1, 1))
assert_size_stride(primals_5, (4, 4), (4, 1))
assert_size_stride(primals_6, (4,), (1,))
assert_size_stride(primals_7, (4, 4), (4, 1))
assert_size_stride(primals_8, (4,), (1,))
assert_size_stride(primals_9, (4, 4), (4, 1))
assert_size_stride(primals_10, (4,), (1,))
assert_size_stride(primals_11, (4, 16), (16, 1))
assert_size_stride(primals_12, (4,), (1,))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((4, 16), (16, 1), torch.float32)
extern_kernels.mm(primals_1, reinterpret_tensor(primals_2, (4, 16),
(1, 4), 0), out=buf0)
del primals_2
buf1 = empty_strided_cuda((4, 4), (4, 1), torch.float32)
extern_kernels.addmm(primals_6, primals_1, reinterpret_tensor(
primals_5, (4, 4), (1, 4), 0), alpha=1, beta=1, out=buf1)
del primals_5
del primals_6
buf2 = empty_strided_cuda((4, 4, 4), (16, 4, 1), torch.float32)
get_raw_stream(0)
triton_poi_fused_add_clone_0[grid(64)](buf0, primals_3, primals_4,
buf2, 64, XBLOCK=64, num_warps=1, num_stages=1)
del primals_3
del primals_4
buf3 = reinterpret_tensor(buf0, (16, 4), (4, 1), 0)
del buf0
extern_kernels.mm(reinterpret_tensor(buf2, (16, 4), (4, 1), 0),
reinterpret_tensor(primals_7, (4, 4), (1, 4), 0), out=buf3)
buf4 = reinterpret_tensor(buf3, (4, 4, 4), (16, 4, 1), 0)
del buf3
triton_poi_fused_add_1[grid(64)](buf4, primals_8, 64, XBLOCK=64,
num_warps=1, num_stages=1)
del primals_8
buf5 = empty_strided_cuda((16, 4, 1), (4, 1, 1), torch.float32)
extern_kernels.bmm(reinterpret_tensor(buf4, (16, 4, 1), (1, 16, 0),
0), reinterpret_tensor(buf1, (16, 1, 1), (1, 1, 1), 0), out=buf5)
buf6 = empty_strided_cuda((16, 4), (4, 1), torch.float32)
extern_kernels.mm(reinterpret_tensor(buf2, (16, 4), (4, 1), 0),
reinterpret_tensor(primals_9, (4, 4), (1, 4), 0), out=buf6)
buf7 = empty_strided_cuda((4, 4, 4, 1), (16, 4, 1, 1), torch.float32)
triton_poi_fused_clone_2[grid(16, 4)](buf6, primals_10, buf5, buf7,
16, 4, XBLOCK=4, YBLOCK=16, num_warps=1, num_stages=1)
buf8 = empty_strided_cuda((4, 4), (4, 1), torch.float32)
extern_kernels.addmm(primals_12, reinterpret_tensor(buf7, (4, 16),
(16, 1), 0), reinterpret_tensor(primals_11, (16, 4), (1, 16), 0
), alpha=1, beta=1, out=buf8)
del primals_12
return buf8, primals_1, primals_10, reinterpret_tensor(buf2, (16, 4), (
4, 1), 0), buf5, buf6, reinterpret_tensor(buf7, (4, 16), (16, 1), 0
), primals_11, primals_9, reinterpret_tensor(buf4, (16, 1, 4), (1,
1, 16), 0), reinterpret_tensor(buf1, (16, 1, 1), (1, 1, 1), 0
), primals_7
class MultiheadSimilarityNew(nn.Module):
def __init__(self, d_model, num_head, seq_len, in_proj=True):
super().__init__()
self.num_head = num_head
self.seq_len = seq_len
self.d_head = d_model // num_head
self.in_proj = in_proj
if self.in_proj:
self.q_in_proj = nn.Linear(d_model, seq_len * d_model, bias=True)
self.q_proj = nn.Linear(d_model, d_model, bias=True)
self.k_proj = nn.Linear(d_model, d_model, bias=True)
self.v_proj = nn.Linear(d_model, d_model, bias=True)
self.out_proj = nn.Linear(seq_len * d_model, d_model, bias=True)
def forward(self, input_0, input_1):
primals_2 = self.q_in_proj.weight
primals_3 = self.q_in_proj.bias
primals_1 = self.q_proj.weight
primals_6 = self.q_proj.bias
primals_5 = self.k_proj.weight
primals_8 = self.k_proj.bias
primals_7 = self.v_proj.weight
primals_10 = self.v_proj.bias
primals_11 = self.out_proj.weight
primals_12 = self.out_proj.bias
primals_9 = input_0
primals_4 = input_1
output = call([primals_1, primals_2, primals_3, primals_4,
primals_5, primals_6, primals_7, primals_8, primals_9,
primals_10, primals_11, primals_12])
return output[0]
|
bladewaltz1/clipvid-tmp
|
MultiheadSimilarity
| false | 1,564 |
[
"MIT"
] | 0 |
8a4a990c318fdfbf6dac443abd3bc16637abba3d
|
https://github.com/bladewaltz1/clipvid-tmp/tree/8a4a990c318fdfbf6dac443abd3bc16637abba3d
|
PredictionHead
|
import torch
import torch.nn as nn
from torchvision.models.quantization import *
class PredictionHead(nn.Module):
def __init__(self, in_channels, num_classes, num_anchors):
super(PredictionHead, self).__init__()
self.classification = nn.Conv2d(in_channels, num_classes *
num_anchors, kernel_size=1)
self.regression = nn.Conv2d(in_channels, num_anchors * 4, kernel_size=1
)
self.num_classes = num_classes
self.num_anchors = num_anchors
def forward(self, x):
bs = x.shape[0]
class_logits = self.classification(x)
box_regression = self.regression(x)
class_logits = class_logits.permute(0, 2, 3, 1).reshape(bs, -1,
self.num_classes)
box_regression = box_regression.permute(0, 2, 3, 1).reshape(bs, -1, 4)
return class_logits, box_regression
def get_inputs():
return [torch.rand([4, 4, 4, 4])]
def get_init_inputs():
return [[], {'in_channels': 4, 'num_classes': 4, 'num_anchors': 4}]
|
import torch
from torch._inductor.select_algorithm import extern_kernels
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
import torch.nn as nn
from torchvision.models.quantization import *
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
@triton.jit
def triton_poi_fused__unsafe_view_clone_0(in_out_ptr0, in_ptr0, in_ptr1,
ynumel, xnumel, YBLOCK: tl.constexpr, XBLOCK: tl.constexpr):
ynumel = 64
xnumel = 16
yoffset = tl.program_id(1) * YBLOCK
yindex = yoffset + tl.arange(0, YBLOCK)[None, :]
ymask = yindex < ynumel
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:, None]
xmask = xindex < xnumel
x2 = xindex
y0 = yindex % 16
y1 = yindex // 16
y3 = yindex
tmp0 = tl.load(in_ptr0 + (y0 + 16 * x2 + 256 * y1), xmask & ymask,
eviction_policy='evict_last')
tmp1 = tl.load(in_ptr1 + x2, xmask, eviction_policy='evict_last')
tmp2 = tmp0 + tmp1
tl.debug_barrier()
tl.store(in_out_ptr0 + (x2 + 16 * y3), tmp2, xmask & ymask)
def call(args):
primals_1, primals_2, primals_3, primals_4, primals_5 = args
args.clear()
assert_size_stride(primals_1, (4, 4, 4, 4), (64, 16, 4, 1))
assert_size_stride(primals_2, (16, 4, 1, 1), (4, 1, 1, 1))
assert_size_stride(primals_3, (16,), (1,))
assert_size_stride(primals_4, (16, 4, 1, 1), (4, 1, 1, 1))
assert_size_stride(primals_5, (16,), (1,))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = extern_kernels.convolution(primals_1, primals_2, stride=(1,
1), padding=(0, 0), dilation=(1, 1), transposed=False,
output_padding=(0, 0), groups=1, bias=None)
assert_size_stride(buf0, (4, 16, 4, 4), (256, 16, 4, 1))
buf1 = extern_kernels.convolution(primals_1, primals_4, stride=(1,
1), padding=(0, 0), dilation=(1, 1), transposed=False,
output_padding=(0, 0), groups=1, bias=None)
assert_size_stride(buf1, (4, 16, 4, 4), (256, 16, 4, 1))
buf2 = empty_strided_cuda((4, 4, 4, 16), (256, 64, 16, 1), torch.
float32)
buf3 = reinterpret_tensor(buf2, (4, 64, 4), (256, 4, 1), 0)
del buf2
get_raw_stream(0)
triton_poi_fused__unsafe_view_clone_0[grid(64, 16)](buf3, buf0,
primals_3, 64, 16, XBLOCK=16, YBLOCK=32, num_warps=4, num_stages=1)
del primals_3
buf4 = reinterpret_tensor(buf0, (4, 4, 4, 16), (256, 64, 16, 1), 0)
del buf0
buf5 = reinterpret_tensor(buf4, (4, 64, 4), (256, 4, 1), 0)
del buf4
triton_poi_fused__unsafe_view_clone_0[grid(64, 16)](buf5, buf1,
primals_5, 64, 16, XBLOCK=16, YBLOCK=32, num_warps=4, num_stages=1)
del buf1
del primals_5
return buf3, buf5, primals_1, primals_2, primals_4
class PredictionHeadNew(nn.Module):
def __init__(self, in_channels, num_classes, num_anchors):
super(PredictionHeadNew, self).__init__()
self.classification = nn.Conv2d(in_channels, num_classes *
num_anchors, kernel_size=1)
self.regression = nn.Conv2d(in_channels, num_anchors * 4, kernel_size=1
)
self.num_classes = num_classes
self.num_anchors = num_anchors
def forward(self, input_0):
primals_2 = self.classification.weight
primals_3 = self.classification.bias
primals_4 = self.regression.weight
primals_5 = self.regression.bias
primals_1 = input_0
output = call([primals_1, primals_2, primals_3, primals_4, primals_5])
return output[0], output[1]
|
CaoZhongZ/inference
|
PredictionHead
| false | 13,859 |
[
"Apache-2.0"
] | 388 |
58025f8fde679ea864d34f96ecc9f14bf70ece53
|
https://github.com/CaoZhongZ/inference/tree/58025f8fde679ea864d34f96ecc9f14bf70ece53
|
encoder3
|
import torch
import torch.nn as nn
class encoder3(nn.Module):
def __init__(self):
super(encoder3, self).__init__()
self.conv1 = nn.Conv2d(3, 3, 1, 1, 0)
self.reflecPad1 = nn.ReflectionPad2d((1, 1, 1, 1))
self.conv2 = nn.Conv2d(3, 64, 3, 1, 0)
self.relu2 = nn.ReLU(inplace=True)
self.reflecPad3 = nn.ReflectionPad2d((1, 1, 1, 1))
self.conv3 = nn.Conv2d(64, 64, 3, 1, 0)
self.relu3 = nn.ReLU(inplace=True)
self.maxPool = nn.MaxPool2d(kernel_size=2, stride=2, return_indices
=True)
self.reflecPad4 = nn.ReflectionPad2d((1, 1, 1, 1))
self.conv4 = nn.Conv2d(64, 128, 3, 1, 0)
self.relu4 = nn.ReLU(inplace=True)
self.reflecPad5 = nn.ReflectionPad2d((1, 1, 1, 1))
self.conv5 = nn.Conv2d(128, 128, 3, 1, 0)
self.relu5 = nn.ReLU(inplace=True)
self.maxPool2 = nn.MaxPool2d(kernel_size=2, stride=2,
return_indices=True)
self.reflecPad6 = nn.ReflectionPad2d((1, 1, 1, 1))
self.conv6 = nn.Conv2d(128, 256, 3, 1, 0)
self.relu6 = nn.ReLU(inplace=True)
def forward(self, x):
out = self.conv1(x)
out = self.reflecPad1(out)
out = self.conv2(out)
out = self.relu2(out)
out = self.reflecPad3(out)
out = self.conv3(out)
pool1 = self.relu3(out)
out, _pool_idx = self.maxPool(pool1)
out = self.reflecPad4(out)
out = self.conv4(out)
out = self.relu4(out)
out = self.reflecPad5(out)
out = self.conv5(out)
pool2 = self.relu5(out)
out, _pool_idx2 = self.maxPool2(pool2)
out = self.reflecPad6(out)
out = self.conv6(out)
out = self.relu6(out)
return out
def get_inputs():
return [torch.rand([4, 3, 64, 64])]
def get_init_inputs():
return [[], {}]
|
import torch
from torch._inductor.select_algorithm import extern_kernels
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
from torch._inductor.runtime import triton_helpers
from torch._inductor.runtime.triton_helpers import math as tl_math
import torch.nn as nn
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
@triton.jit
def triton_poi_fused_0(in_ptr0, out_ptr0, ynumel, xnumel, YBLOCK: tl.
constexpr, XBLOCK: tl.constexpr):
ynumel = 12
yoffset = tl.program_id(1) * YBLOCK
yindex = yoffset + tl.arange(0, YBLOCK)[None, :]
ymask = yindex < ynumel
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:, None]
tl.full([XBLOCK, YBLOCK], True, tl.int1)
x2 = xindex
y3 = yindex
y0 = yindex % 3
y1 = yindex // 3
tmp0 = tl.load(in_ptr0 + (x2 + 4096 * y3), ymask, eviction_policy=
'evict_last')
tl.store(out_ptr0 + (y0 + 3 * x2 + 12288 * y1), tmp0, ymask)
@triton.jit
def triton_poi_fused_1(in_ptr0, out_ptr0, ynumel, xnumel, YBLOCK: tl.
constexpr, XBLOCK: tl.constexpr):
ynumel = 192
xnumel = 9
yoffset = tl.program_id(1) * YBLOCK
yindex = yoffset + tl.arange(0, YBLOCK)[None, :]
ymask = yindex < ynumel
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:, None]
xmask = xindex < xnumel
x2 = xindex
y3 = yindex
y0 = yindex % 3
y1 = yindex // 3
tmp0 = tl.load(in_ptr0 + (x2 + 9 * y3), xmask & ymask, eviction_policy=
'evict_last')
tl.store(out_ptr0 + (y0 + 3 * x2 + 27 * y1), tmp0, xmask & ymask)
@triton.jit
def triton_poi_fused_2(in_ptr0, out_ptr0, ynumel, xnumel, YBLOCK: tl.
constexpr, XBLOCK: tl.constexpr):
xnumel = 9
yoffset = tl.program_id(1) * YBLOCK
yindex = yoffset + tl.arange(0, YBLOCK)[None, :]
tl.full([XBLOCK, YBLOCK], True, tl.int1)
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:, None]
xmask = xindex < xnumel
x2 = xindex
y3 = yindex
y0 = yindex % 64
y1 = yindex // 64
tmp0 = tl.load(in_ptr0 + (x2 + 9 * y3), xmask, eviction_policy='evict_last'
)
tl.store(out_ptr0 + (y0 + 64 * x2 + 576 * y1), tmp0, xmask)
@triton.jit
def triton_poi_fused_3(in_ptr0, out_ptr0, ynumel, xnumel, YBLOCK: tl.
constexpr, XBLOCK: tl.constexpr):
xnumel = 9
yoffset = tl.program_id(1) * YBLOCK
yindex = yoffset + tl.arange(0, YBLOCK)[None, :]
tl.full([XBLOCK, YBLOCK], True, tl.int1)
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:, None]
xmask = xindex < xnumel
x2 = xindex
y3 = yindex
y0 = yindex % 64
y1 = yindex // 64
tmp0 = tl.load(in_ptr0 + (x2 + 9 * y3), xmask, eviction_policy='evict_last'
)
tl.store(out_ptr0 + (y0 + 64 * x2 + 576 * y1), tmp0, xmask)
@triton.jit
def triton_poi_fused_4(in_ptr0, out_ptr0, ynumel, xnumel, YBLOCK: tl.
constexpr, XBLOCK: tl.constexpr):
xnumel = 9
yoffset = tl.program_id(1) * YBLOCK
yindex = yoffset + tl.arange(0, YBLOCK)[None, :]
tl.full([XBLOCK, YBLOCK], True, tl.int1)
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:, None]
xmask = xindex < xnumel
x2 = xindex
y3 = yindex
y0 = yindex % 128
y1 = yindex // 128
tmp0 = tl.load(in_ptr0 + (x2 + 9 * y3), xmask, eviction_policy='evict_last'
)
tl.store(out_ptr0 + (y0 + 128 * x2 + 1152 * y1), tmp0, xmask)
@triton.jit
def triton_poi_fused_5(in_ptr0, out_ptr0, ynumel, xnumel, YBLOCK: tl.
constexpr, XBLOCK: tl.constexpr):
xnumel = 9
yoffset = tl.program_id(1) * YBLOCK
yindex = yoffset + tl.arange(0, YBLOCK)[None, :]
tl.full([XBLOCK, YBLOCK], True, tl.int1)
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:, None]
xmask = xindex < xnumel
x2 = xindex
y3 = yindex
y0 = yindex % 128
y1 = yindex // 128
tmp0 = tl.load(in_ptr0 + (x2 + 9 * y3), xmask, eviction_policy='evict_last'
)
tl.store(out_ptr0 + (y0 + 128 * x2 + 1152 * y1), tmp0, xmask)
@triton.jit
def triton_poi_fused_convolution_reflection_pad2d_6(in_ptr0, in_ptr1,
out_ptr0, xnumel, XBLOCK: tl.constexpr):
xnumel = 52272
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex % 3
x1 = xindex // 3 % 66
x2 = xindex // 198 % 66
x3 = xindex // 13068
x4 = xindex
tmp0 = tl.load(in_ptr0 + (12285 + x0 + -192 * tl_math.abs(-63 + tl_math
.abs(-1 + x2)) + -3 * tl_math.abs(-63 + tl_math.abs(-1 + x1)) +
12288 * x3), xmask)
tmp1 = tl.load(in_ptr1 + x0, xmask, eviction_policy='evict_last')
tmp2 = tmp0 + tmp1
tl.store(out_ptr0 + x4, tmp2, xmask)
@triton.jit
def triton_poi_fused_convolution_reflection_pad2d_relu_7(in_ptr0, in_ptr1,
out_ptr0, xnumel, XBLOCK: tl.constexpr):
xnumel = 1115136
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex % 64
x1 = xindex // 64 % 66
x2 = xindex // 4224 % 66
x3 = xindex // 278784
x4 = xindex
tmp0 = tl.load(in_ptr0 + (262080 + x0 + -4096 * tl_math.abs(-63 +
tl_math.abs(-1 + x2)) + -64 * tl_math.abs(-63 + tl_math.abs(-1 + x1
)) + 262144 * x3), xmask)
tmp1 = tl.load(in_ptr1 + x0, xmask, eviction_policy='evict_last')
tmp2 = tmp0 + tmp1
tmp3 = tl.full([1], 0, tl.int32)
tmp4 = triton_helpers.maximum(tmp3, tmp2)
tl.store(out_ptr0 + x4, tmp4, xmask)
@triton.jit
def triton_poi_fused_convolution_relu_8(in_out_ptr0, in_ptr0, xnumel,
XBLOCK: tl.constexpr):
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
tl.full([XBLOCK], True, tl.int1)
x2 = xindex
x0 = xindex % 64
tmp0 = tl.load(in_out_ptr0 + x2, None)
tmp1 = tl.load(in_ptr0 + x0, None, eviction_policy='evict_last')
tmp2 = tmp0 + tmp1
tmp3 = tl.full([1], 0, tl.int32)
tmp4 = triton_helpers.maximum(tmp3, tmp2)
tl.store(in_out_ptr0 + x2, tmp4, None)
@triton.jit
def triton_poi_fused_max_pool2d_with_indices_9(in_ptr0, out_ptr0, xnumel,
XBLOCK: tl.constexpr):
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
tl.full([XBLOCK], True, tl.int1)
x0 = xindex % 64
x1 = xindex // 64 % 32
x2 = xindex // 2048
x3 = xindex
tmp0 = tl.load(in_ptr0 + (x0 + 128 * x1 + 8192 * x2), None)
tmp1 = tl.load(in_ptr0 + (64 + x0 + 128 * x1 + 8192 * x2), None)
tmp7 = tl.load(in_ptr0 + (4096 + x0 + 128 * x1 + 8192 * x2), None)
tmp12 = tl.load(in_ptr0 + (4160 + x0 + 128 * x1 + 8192 * x2), None)
tmp2 = tmp1 > tmp0
tmp3 = tl.full([1], 1, tl.int8)
tmp4 = tl.full([1], 0, tl.int8)
tmp5 = tl.where(tmp2, tmp3, tmp4)
tmp6 = triton_helpers.maximum(tmp1, tmp0)
tmp8 = tmp7 > tmp6
tmp9 = tl.full([1], 2, tl.int8)
tmp10 = tl.where(tmp8, tmp9, tmp5)
tmp11 = triton_helpers.maximum(tmp7, tmp6)
tmp13 = tmp12 > tmp11
tmp14 = tl.full([1], 3, tl.int8)
tmp15 = tl.where(tmp13, tmp14, tmp10)
triton_helpers.maximum(tmp12, tmp11)
tl.store(out_ptr0 + x3, tmp15, None)
@triton.jit
def triton_poi_fused_max_pool2d_with_indices_reflection_pad2d_10(in_ptr0,
out_ptr0, xnumel, XBLOCK: tl.constexpr):
xnumel = 295936
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex % 64
x1 = xindex // 64 % 34
x2 = xindex // 2176 % 34
x3 = xindex // 73984
x4 = xindex
tmp0 = tl.load(in_ptr0 + (257920 + x0 + -8192 * tl_math.abs(-31 +
tl_math.abs(-1 + x2)) + -128 * tl_math.abs(-31 + tl_math.abs(-1 +
x1)) + 262144 * x3), xmask)
tmp1 = tl.load(in_ptr0 + (257984 + x0 + -8192 * tl_math.abs(-31 +
tl_math.abs(-1 + x2)) + -128 * tl_math.abs(-31 + tl_math.abs(-1 +
x1)) + 262144 * x3), xmask)
tmp3 = tl.load(in_ptr0 + (262016 + x0 + -8192 * tl_math.abs(-31 +
tl_math.abs(-1 + x2)) + -128 * tl_math.abs(-31 + tl_math.abs(-1 +
x1)) + 262144 * x3), xmask)
tmp5 = tl.load(in_ptr0 + (262080 + x0 + -8192 * tl_math.abs(-31 +
tl_math.abs(-1 + x2)) + -128 * tl_math.abs(-31 + tl_math.abs(-1 +
x1)) + 262144 * x3), xmask)
tmp2 = triton_helpers.maximum(tmp1, tmp0)
tmp4 = triton_helpers.maximum(tmp3, tmp2)
tmp6 = triton_helpers.maximum(tmp5, tmp4)
tl.store(out_ptr0 + x4, tmp6, xmask)
@triton.jit
def triton_poi_fused_convolution_reflection_pad2d_relu_11(in_ptr0, in_ptr1,
out_ptr0, xnumel, XBLOCK: tl.constexpr):
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
tl.full([XBLOCK], True, tl.int1)
x0 = xindex % 128
x1 = xindex // 128 % 34
x2 = xindex // 4352 % 34
x3 = xindex // 147968
x4 = xindex
tmp0 = tl.load(in_ptr0 + (130944 + x0 + -4096 * tl_math.abs(-31 +
tl_math.abs(-1 + x2)) + -128 * tl_math.abs(-31 + tl_math.abs(-1 +
x1)) + 131072 * x3), None)
tmp1 = tl.load(in_ptr1 + x0, None, eviction_policy='evict_last')
tmp2 = tmp0 + tmp1
tmp3 = tl.full([1], 0, tl.int32)
tmp4 = triton_helpers.maximum(tmp3, tmp2)
tl.store(out_ptr0 + x4, tmp4, None)
@triton.jit
def triton_poi_fused_convolution_relu_12(in_out_ptr0, in_ptr0, xnumel,
XBLOCK: tl.constexpr):
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
tl.full([XBLOCK], True, tl.int1)
x2 = xindex
x0 = xindex % 128
tmp0 = tl.load(in_out_ptr0 + x2, None)
tmp1 = tl.load(in_ptr0 + x0, None, eviction_policy='evict_last')
tmp2 = tmp0 + tmp1
tmp3 = tl.full([1], 0, tl.int32)
tmp4 = triton_helpers.maximum(tmp3, tmp2)
tl.store(in_out_ptr0 + x2, tmp4, None)
@triton.jit
def triton_poi_fused_max_pool2d_with_indices_13(in_ptr0, out_ptr0, xnumel,
XBLOCK: tl.constexpr):
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
tl.full([XBLOCK], True, tl.int1)
x0 = xindex % 128
x1 = xindex // 128 % 16
x2 = xindex // 2048
x3 = xindex
tmp0 = tl.load(in_ptr0 + (x0 + 256 * x1 + 8192 * x2), None)
tmp1 = tl.load(in_ptr0 + (128 + x0 + 256 * x1 + 8192 * x2), None)
tmp7 = tl.load(in_ptr0 + (4096 + x0 + 256 * x1 + 8192 * x2), None)
tmp12 = tl.load(in_ptr0 + (4224 + x0 + 256 * x1 + 8192 * x2), None)
tmp2 = tmp1 > tmp0
tmp3 = tl.full([1], 1, tl.int8)
tmp4 = tl.full([1], 0, tl.int8)
tmp5 = tl.where(tmp2, tmp3, tmp4)
tmp6 = triton_helpers.maximum(tmp1, tmp0)
tmp8 = tmp7 > tmp6
tmp9 = tl.full([1], 2, tl.int8)
tmp10 = tl.where(tmp8, tmp9, tmp5)
tmp11 = triton_helpers.maximum(tmp7, tmp6)
tmp13 = tmp12 > tmp11
tmp14 = tl.full([1], 3, tl.int8)
tmp15 = tl.where(tmp13, tmp14, tmp10)
triton_helpers.maximum(tmp12, tmp11)
tl.store(out_ptr0 + x3, tmp15, None)
@triton.jit
def triton_poi_fused_max_pool2d_with_indices_reflection_pad2d_14(in_ptr0,
out_ptr0, xnumel, XBLOCK: tl.constexpr):
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
tl.full([XBLOCK], True, tl.int1)
x0 = xindex % 128
x1 = xindex // 128 % 18
x2 = xindex // 2304 % 18
x3 = xindex // 41472
x4 = xindex
tmp0 = tl.load(in_ptr0 + (126720 + x0 + -8192 * tl_math.abs(-15 +
tl_math.abs(-1 + x2)) + -256 * tl_math.abs(-15 + tl_math.abs(-1 +
x1)) + 131072 * x3), None)
tmp1 = tl.load(in_ptr0 + (126848 + x0 + -8192 * tl_math.abs(-15 +
tl_math.abs(-1 + x2)) + -256 * tl_math.abs(-15 + tl_math.abs(-1 +
x1)) + 131072 * x3), None)
tmp3 = tl.load(in_ptr0 + (130816 + x0 + -8192 * tl_math.abs(-15 +
tl_math.abs(-1 + x2)) + -256 * tl_math.abs(-15 + tl_math.abs(-1 +
x1)) + 131072 * x3), None)
tmp5 = tl.load(in_ptr0 + (130944 + x0 + -8192 * tl_math.abs(-15 +
tl_math.abs(-1 + x2)) + -256 * tl_math.abs(-15 + tl_math.abs(-1 +
x1)) + 131072 * x3), None)
tmp2 = triton_helpers.maximum(tmp1, tmp0)
tmp4 = triton_helpers.maximum(tmp3, tmp2)
tmp6 = triton_helpers.maximum(tmp5, tmp4)
tl.store(out_ptr0 + x4, tmp6, None)
@triton.jit
def triton_poi_fused_convolution_relu_threshold_backward_15(in_ptr0,
in_ptr1, out_ptr0, out_ptr1, ynumel, xnumel, YBLOCK: tl.constexpr,
XBLOCK: tl.constexpr):
xnumel = 256
yoffset = tl.program_id(1) * YBLOCK
yindex = yoffset + tl.arange(0, YBLOCK)[None, :]
tl.full([XBLOCK, YBLOCK], True, tl.int1)
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:, None]
xmask = xindex < xnumel
x2 = xindex
y0 = yindex % 256
y1 = yindex // 256
y3 = yindex
tmp0 = tl.load(in_ptr0 + (y0 + 256 * x2 + 65536 * y1), xmask,
eviction_policy='evict_last')
tmp1 = tl.load(in_ptr1 + y0, None, eviction_policy='evict_last')
tmp2 = tmp0 + tmp1
tmp3 = tl.full([1, 1], 0, tl.int32)
tmp4 = triton_helpers.maximum(tmp3, tmp2)
tmp5 = 0.0
tmp6 = tmp4 <= tmp5
tl.store(out_ptr0 + (x2 + 256 * y3), tmp4, xmask)
tl.store(out_ptr1 + (y0 + 256 * x2 + 65536 * y1), tmp6, xmask)
@triton.jit
def triton_poi_fused_convolution_relu_threshold_backward_16(in_ptr0,
in_ptr1, out_ptr0, xnumel, XBLOCK: tl.constexpr):
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
tl.full([XBLOCK], True, tl.int1)
x2 = xindex
x0 = xindex % 128
tmp0 = tl.load(in_ptr0 + x2, None)
tmp1 = tl.load(in_ptr1 + x0, None, eviction_policy='evict_last')
tmp2 = tmp0 + tmp1
tmp3 = tl.full([1], 0, tl.int32)
tmp4 = triton_helpers.maximum(tmp3, tmp2)
tmp5 = 0.0
tmp6 = tmp4 <= tmp5
tl.store(out_ptr0 + x2, tmp6, None)
@triton.jit
def triton_poi_fused_convolution_relu_threshold_backward_17(in_ptr0,
in_ptr1, out_ptr0, xnumel, XBLOCK: tl.constexpr):
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
tl.full([XBLOCK], True, tl.int1)
x2 = xindex
x0 = xindex % 64
tmp0 = tl.load(in_ptr0 + x2, None)
tmp1 = tl.load(in_ptr1 + x0, None, eviction_policy='evict_last')
tmp2 = tmp0 + tmp1
tmp3 = tl.full([1], 0, tl.int32)
tmp4 = triton_helpers.maximum(tmp3, tmp2)
tmp5 = 0.0
tmp6 = tmp4 <= tmp5
tl.store(out_ptr0 + x2, tmp6, None)
def call(args):
(primals_1, primals_2, primals_3, primals_4, primals_5, primals_6,
primals_7, primals_8, primals_9, primals_10, primals_11, primals_12,
primals_13) = args
args.clear()
assert_size_stride(primals_1, (3, 3, 1, 1), (3, 1, 1, 1))
assert_size_stride(primals_2, (3,), (1,))
assert_size_stride(primals_3, (4, 3, 64, 64), (12288, 4096, 64, 1))
assert_size_stride(primals_4, (64, 3, 3, 3), (27, 9, 3, 1))
assert_size_stride(primals_5, (64,), (1,))
assert_size_stride(primals_6, (64, 64, 3, 3), (576, 9, 3, 1))
assert_size_stride(primals_7, (64,), (1,))
assert_size_stride(primals_8, (128, 64, 3, 3), (576, 9, 3, 1))
assert_size_stride(primals_9, (128,), (1,))
assert_size_stride(primals_10, (128, 128, 3, 3), (1152, 9, 3, 1))
assert_size_stride(primals_11, (128,), (1,))
assert_size_stride(primals_12, (256, 128, 3, 3), (1152, 9, 3, 1))
assert_size_stride(primals_13, (256,), (1,))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((4, 3, 64, 64), (12288, 1, 192, 3), torch
.float32)
get_raw_stream(0)
triton_poi_fused_0[grid(12, 4096)](primals_3, buf0, 12, 4096,
XBLOCK=64, YBLOCK=16, num_warps=4, num_stages=1)
del primals_3
buf1 = empty_strided_cuda((64, 3, 3, 3), (27, 1, 9, 3), torch.float32)
triton_poi_fused_1[grid(192, 9)](primals_4, buf1, 192, 9, XBLOCK=16,
YBLOCK=64, num_warps=4, num_stages=1)
del primals_4
buf2 = empty_strided_cuda((64, 64, 3, 3), (576, 1, 192, 64), torch.
float32)
triton_poi_fused_2[grid(4096, 9)](primals_6, buf2, 4096, 9, XBLOCK=
16, YBLOCK=64, num_warps=4, num_stages=1)
del primals_6
buf3 = empty_strided_cuda((128, 64, 3, 3), (576, 1, 192, 64), torch
.float32)
triton_poi_fused_3[grid(8192, 9)](primals_8, buf3, 8192, 9, XBLOCK=
16, YBLOCK=64, num_warps=4, num_stages=1)
del primals_8
buf4 = empty_strided_cuda((128, 128, 3, 3), (1152, 1, 384, 128),
torch.float32)
triton_poi_fused_4[grid(16384, 9)](primals_10, buf4, 16384, 9,
XBLOCK=16, YBLOCK=64, num_warps=4, num_stages=1)
del primals_10
buf5 = empty_strided_cuda((256, 128, 3, 3), (1152, 1, 384, 128),
torch.float32)
triton_poi_fused_5[grid(32768, 9)](primals_12, buf5, 32768, 9,
XBLOCK=16, YBLOCK=64, num_warps=4, num_stages=1)
del primals_12
buf6 = extern_kernels.convolution(buf0, primals_1, stride=(1, 1),
padding=(0, 0), dilation=(1, 1), transposed=False,
output_padding=(0, 0), groups=1, bias=None)
assert_size_stride(buf6, (4, 3, 64, 64), (12288, 1, 192, 3))
buf7 = empty_strided_cuda((4, 3, 66, 66), (13068, 1, 198, 3), torch
.float32)
triton_poi_fused_convolution_reflection_pad2d_6[grid(52272)](buf6,
primals_2, buf7, 52272, XBLOCK=512, num_warps=4, num_stages=1)
del buf6
del primals_2
buf8 = extern_kernels.convolution(buf7, buf1, stride=(1, 1),
padding=(0, 0), dilation=(1, 1), transposed=False,
output_padding=(0, 0), groups=1, bias=None)
assert_size_stride(buf8, (4, 64, 64, 64), (262144, 1, 4096, 64))
buf9 = empty_strided_cuda((4, 64, 66, 66), (278784, 1, 4224, 64),
torch.float32)
triton_poi_fused_convolution_reflection_pad2d_relu_7[grid(1115136)](
buf8, primals_5, buf9, 1115136, XBLOCK=1024, num_warps=4,
num_stages=1)
buf10 = extern_kernels.convolution(buf9, buf2, stride=(1, 1),
padding=(0, 0), dilation=(1, 1), transposed=False,
output_padding=(0, 0), groups=1, bias=None)
assert_size_stride(buf10, (4, 64, 64, 64), (262144, 1, 4096, 64))
buf11 = buf10
del buf10
triton_poi_fused_convolution_relu_8[grid(1048576)](buf11, primals_7,
1048576, XBLOCK=1024, num_warps=4, num_stages=1)
del primals_7
buf12 = empty_strided_cuda((4, 64, 32, 32), (65536, 1, 2048, 64),
torch.int8)
triton_poi_fused_max_pool2d_with_indices_9[grid(262144)](buf11,
buf12, 262144, XBLOCK=512, num_warps=8, num_stages=1)
buf13 = empty_strided_cuda((4, 64, 34, 34), (73984, 1, 2176, 64),
torch.float32)
triton_poi_fused_max_pool2d_with_indices_reflection_pad2d_10[grid(
295936)](buf11, buf13, 295936, XBLOCK=1024, num_warps=4,
num_stages=1)
buf14 = extern_kernels.convolution(buf13, buf3, stride=(1, 1),
padding=(0, 0), dilation=(1, 1), transposed=False,
output_padding=(0, 0), groups=1, bias=None)
assert_size_stride(buf14, (4, 128, 32, 32), (131072, 1, 4096, 128))
buf15 = empty_strided_cuda((4, 128, 34, 34), (147968, 1, 4352, 128),
torch.float32)
triton_poi_fused_convolution_reflection_pad2d_relu_11[grid(591872)](
buf14, primals_9, buf15, 591872, XBLOCK=1024, num_warps=4,
num_stages=1)
buf16 = extern_kernels.convolution(buf15, buf4, stride=(1, 1),
padding=(0, 0), dilation=(1, 1), transposed=False,
output_padding=(0, 0), groups=1, bias=None)
assert_size_stride(buf16, (4, 128, 32, 32), (131072, 1, 4096, 128))
buf17 = buf16
del buf16
triton_poi_fused_convolution_relu_12[grid(524288)](buf17,
primals_11, 524288, XBLOCK=1024, num_warps=4, num_stages=1)
del primals_11
buf18 = empty_strided_cuda((4, 128, 16, 16), (32768, 1, 2048, 128),
torch.int8)
triton_poi_fused_max_pool2d_with_indices_13[grid(131072)](buf17,
buf18, 131072, XBLOCK=1024, num_warps=4, num_stages=1)
buf19 = empty_strided_cuda((4, 128, 18, 18), (41472, 1, 2304, 128),
torch.float32)
triton_poi_fused_max_pool2d_with_indices_reflection_pad2d_14[grid(
165888)](buf17, buf19, 165888, XBLOCK=512, num_warps=8,
num_stages=1)
buf20 = extern_kernels.convolution(buf19, buf5, stride=(1, 1),
padding=(0, 0), dilation=(1, 1), transposed=False,
output_padding=(0, 0), groups=1, bias=None)
assert_size_stride(buf20, (4, 256, 16, 16), (65536, 1, 4096, 256))
buf21 = empty_strided_cuda((4, 256, 16, 16), (65536, 256, 16, 1),
torch.float32)
buf22 = empty_strided_cuda((4, 256, 16, 16), (65536, 1, 4096, 256),
torch.bool)
triton_poi_fused_convolution_relu_threshold_backward_15[grid(1024, 256)
](buf20, primals_13, buf21, buf22, 1024, 256, XBLOCK=32, YBLOCK
=32, num_warps=4, num_stages=1)
del buf20
del primals_13
buf23 = empty_strided_cuda((4, 128, 32, 32), (131072, 1, 4096, 128),
torch.bool)
triton_poi_fused_convolution_relu_threshold_backward_16[grid(524288)](
buf14, primals_9, buf23, 524288, XBLOCK=512, num_warps=8,
num_stages=1)
del buf14
del primals_9
buf24 = empty_strided_cuda((4, 64, 64, 64), (262144, 1, 4096, 64),
torch.bool)
triton_poi_fused_convolution_relu_threshold_backward_17[grid(1048576)](
buf8, primals_5, buf24, 1048576, XBLOCK=1024, num_warps=4,
num_stages=1)
del buf8
del primals_5
return (buf21, primals_1, buf0, buf1, buf2, buf3, buf4, buf5, buf7,
buf9, buf11, buf12, buf13, buf15, buf17, buf18, buf19, buf22, buf23,
buf24)
class encoder3New(nn.Module):
def __init__(self):
super(encoder3New, self).__init__()
self.conv1 = nn.Conv2d(3, 3, 1, 1, 0)
self.reflecPad1 = nn.ReflectionPad2d((1, 1, 1, 1))
self.conv2 = nn.Conv2d(3, 64, 3, 1, 0)
self.relu2 = nn.ReLU(inplace=True)
self.reflecPad3 = nn.ReflectionPad2d((1, 1, 1, 1))
self.conv3 = nn.Conv2d(64, 64, 3, 1, 0)
self.relu3 = nn.ReLU(inplace=True)
self.maxPool = nn.MaxPool2d(kernel_size=2, stride=2, return_indices
=True)
self.reflecPad4 = nn.ReflectionPad2d((1, 1, 1, 1))
self.conv4 = nn.Conv2d(64, 128, 3, 1, 0)
self.relu4 = nn.ReLU(inplace=True)
self.reflecPad5 = nn.ReflectionPad2d((1, 1, 1, 1))
self.conv5 = nn.Conv2d(128, 128, 3, 1, 0)
self.relu5 = nn.ReLU(inplace=True)
self.maxPool2 = nn.MaxPool2d(kernel_size=2, stride=2,
return_indices=True)
self.reflecPad6 = nn.ReflectionPad2d((1, 1, 1, 1))
self.conv6 = nn.Conv2d(128, 256, 3, 1, 0)
self.relu6 = nn.ReLU(inplace=True)
def forward(self, input_0):
primals_1 = self.conv1.weight
primals_2 = self.conv1.bias
primals_4 = self.conv2.weight
primals_5 = self.conv2.bias
primals_6 = self.conv3.weight
primals_7 = self.conv3.bias
primals_8 = self.conv4.weight
primals_9 = self.conv4.bias
primals_10 = self.conv5.weight
primals_11 = self.conv5.bias
primals_12 = self.conv6.weight
primals_13 = self.conv6.bias
primals_3 = input_0
output = call([primals_1, primals_2, primals_3, primals_4,
primals_5, primals_6, primals_7, primals_8, primals_9,
primals_10, primals_11, primals_12, primals_13])
return output[0]
|
guswl8033/ARtists
|
encoder3
| false | 3,570 |
[
"Apache-2.0"
] | 0 |
d353195872c1ef1a1aa68659a32fb47779a416fc
|
https://github.com/guswl8033/ARtists/tree/d353195872c1ef1a1aa68659a32fb47779a416fc
|
SelfAttention
|
import torch
import torch.nn as nn
class SelfAttention(nn.Module):
"""A simple self-attention solution."""
def __init__(self, data_dim, dim_q):
super(SelfAttention, self).__init__()
self._layers = []
self._fc_q = nn.Linear(data_dim, dim_q)
self._layers.append(self._fc_q)
self._fc_k = nn.Linear(data_dim, dim_q)
self._layers.append(self._fc_k)
def forward(self, input_data):
_b, _t, k = input_data.size()
queries = self._fc_q(input=input_data)
keys = self._fc_k(input=input_data)
dot = torch.bmm(queries, keys.transpose(1, 2))
scaled_dot = torch.div(dot, torch.sqrt(torch.tensor(k).float()))
return scaled_dot
@property
def layers(self):
return self._layers
def get_inputs():
return [torch.rand([4, 4, 4])]
def get_init_inputs():
return [[], {'data_dim': 4, 'dim_q': 4}]
|
import torch
from torch._inductor.select_algorithm import extern_kernels
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
import torch.nn as nn
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
@triton.jit
def triton_poi_fused_div_sqrt_0(in_out_ptr0, xnumel, XBLOCK: tl.constexpr):
xnumel = 64
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex
tmp0 = tl.load(in_out_ptr0 + x0, xmask)
tmp1 = 0.5
tmp2 = tmp0 * tmp1
tl.store(in_out_ptr0 + x0, tmp2, xmask)
def call(args):
primals_1, primals_2, primals_3, primals_4, primals_5 = args
args.clear()
assert_size_stride(primals_1, (4, 4, 4), (16, 4, 1))
assert_size_stride(primals_2, (4, 4), (4, 1))
assert_size_stride(primals_3, (4,), (1,))
assert_size_stride(primals_4, (4, 4), (4, 1))
assert_size_stride(primals_5, (4,), (1,))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((16, 4), (4, 1), torch.float32)
extern_kernels.addmm(primals_3, reinterpret_tensor(primals_1, (16,
4), (4, 1), 0), reinterpret_tensor(primals_2, (4, 4), (1, 4), 0
), alpha=1, beta=1, out=buf0)
del primals_2
del primals_3
buf1 = empty_strided_cuda((16, 4), (4, 1), torch.float32)
extern_kernels.addmm(primals_5, reinterpret_tensor(primals_1, (16,
4), (4, 1), 0), reinterpret_tensor(primals_4, (4, 4), (1, 4), 0
), alpha=1, beta=1, out=buf1)
del primals_4
del primals_5
buf2 = empty_strided_cuda((4, 4, 4), (16, 4, 1), torch.float32)
extern_kernels.bmm(reinterpret_tensor(buf0, (4, 4, 4), (16, 4, 1),
0), reinterpret_tensor(buf1, (4, 4, 4), (16, 1, 4), 0), out=buf2)
buf3 = buf2
del buf2
get_raw_stream(0)
triton_poi_fused_div_sqrt_0[grid(64)](buf3, 64, XBLOCK=64,
num_warps=1, num_stages=1)
return buf3, reinterpret_tensor(primals_1, (16, 4), (4, 1), 0
), reinterpret_tensor(buf0, (4, 4, 4), (16, 1, 4), 0
), reinterpret_tensor(buf1, (4, 4, 4), (16, 4, 1), 0)
class SelfAttentionNew(nn.Module):
"""A simple self-attention solution."""
def __init__(self, data_dim, dim_q):
super(SelfAttentionNew, self).__init__()
self._layers = []
self._fc_q = nn.Linear(data_dim, dim_q)
self._layers.append(self._fc_q)
self._fc_k = nn.Linear(data_dim, dim_q)
self._layers.append(self._fc_k)
@property
def layers(self):
return self._layers
def forward(self, input_0):
primals_2 = self._fc_q.weight
primals_3 = self._fc_q.bias
primals_4 = self._fc_k.weight
primals_5 = self._fc_k.bias
primals_1 = input_0
output = call([primals_1, primals_2, primals_3, primals_4, primals_5])
return output[0]
|
daia99/brain-tokyo-workshop
|
SelfAttention
| false | 15,111 |
[
"Apache-2.0"
] | 1,097 |
cd470255230afddba2b80d99a9641b682f4d0762
|
https://github.com/daia99/brain-tokyo-workshop/tree/cd470255230afddba2b80d99a9641b682f4d0762
|
Conv_Blocks
|
import torch
import torch.nn as nn
class Conv_Blocks(nn.Module):
def __init__(self, input_dim, output_dim, filter_size=3, batch_norm=
False, non_lin='tanh', dropout=0.0, first_block=False, last_block=
False, skip_connection=False):
super(Conv_Blocks, self).__init__()
self.skip_connection = skip_connection
self.last_block = last_block
self.first_block = first_block
self.Block = nn.Sequential()
self.Block.add_module('Conv_1', nn.Conv2d(input_dim, output_dim,
filter_size, 1, 1))
if batch_norm:
self.Block.add_module('BN_1', nn.BatchNorm2d(output_dim))
if non_lin == 'tanh':
self.Block.add_module('NonLin_1', nn.Tanh())
elif non_lin == 'relu':
self.Block.add_module('NonLin_1', nn.ReLU())
elif non_lin == 'leakyrelu':
self.Block.add_module('NonLin_1', nn.LeakyReLU())
else:
assert False, "non_lin = {} not valid: 'tanh', 'relu', 'leakyrelu'".format(
non_lin)
self.Block.add_module('Pool', nn.MaxPool2d(kernel_size=(2, 2),
stride=(2, 2), dilation=(1, 1), ceil_mode=False))
if dropout > 0:
self.Block.add_module('Drop', nn.Dropout2d(dropout))
def forward(self, x):
if self.skip_connection:
if not self.first_block:
x, skip_con_list = x
else:
skip_con_list = []
x = self.Block(x)
if self.skip_connection:
if not self.last_block:
skip_con_list.append(x)
x = [x, skip_con_list]
return x
def get_inputs():
return [torch.rand([4, 4, 4, 4])]
def get_init_inputs():
return [[], {'input_dim': 4, 'output_dim': 4}]
|
import torch
from torch._inductor.select_algorithm import extern_kernels
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
from torch._inductor.runtime import triton_helpers
from torch._inductor.runtime.triton_helpers import libdevice
import torch.nn as nn
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
@triton.jit
def triton_poi_fused_convolution_tanh_0(in_out_ptr0, in_ptr0, xnumel,
XBLOCK: tl.constexpr):
xnumel = 256
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x3 = xindex
x1 = xindex // 16 % 4
tmp0 = tl.load(in_out_ptr0 + x3, xmask)
tmp1 = tl.load(in_ptr0 + x1, xmask, eviction_policy='evict_last')
tmp2 = tmp0 + tmp1
tmp3 = libdevice.tanh(tmp2)
tl.store(in_out_ptr0 + x3, tmp3, xmask)
@triton.jit
def triton_poi_fused_max_pool2d_with_indices_1(in_ptr0, out_ptr0, out_ptr1,
xnumel, XBLOCK: tl.constexpr):
xnumel = 64
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex % 2
x1 = xindex // 2
x2 = xindex
tmp0 = tl.load(in_ptr0 + (2 * x0 + 8 * x1), xmask, eviction_policy=
'evict_last')
tmp1 = tl.load(in_ptr0 + (1 + 2 * x0 + 8 * x1), xmask, eviction_policy=
'evict_last')
tmp3 = tl.load(in_ptr0 + (4 + 2 * x0 + 8 * x1), xmask, eviction_policy=
'evict_last')
tmp5 = tl.load(in_ptr0 + (5 + 2 * x0 + 8 * x1), xmask, eviction_policy=
'evict_last')
tmp2 = triton_helpers.maximum(tmp1, tmp0)
tmp4 = triton_helpers.maximum(tmp3, tmp2)
tmp6 = triton_helpers.maximum(tmp5, tmp4)
tmp7 = tmp1 > tmp0
tmp8 = tl.full([1], 1, tl.int8)
tmp9 = tl.full([1], 0, tl.int8)
tmp10 = tl.where(tmp7, tmp8, tmp9)
tmp11 = tmp3 > tmp2
tmp12 = tl.full([1], 2, tl.int8)
tmp13 = tl.where(tmp11, tmp12, tmp10)
tmp14 = tmp5 > tmp4
tmp15 = tl.full([1], 3, tl.int8)
tmp16 = tl.where(tmp14, tmp15, tmp13)
tl.store(out_ptr0 + x2, tmp6, xmask)
tl.store(out_ptr1 + x2, tmp16, xmask)
def call(args):
primals_1, primals_2, primals_3 = args
args.clear()
assert_size_stride(primals_1, (4, 4, 3, 3), (36, 9, 3, 1))
assert_size_stride(primals_2, (4,), (1,))
assert_size_stride(primals_3, (4, 4, 4, 4), (64, 16, 4, 1))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = extern_kernels.convolution(primals_3, primals_1, stride=(1,
1), padding=(1, 1), dilation=(1, 1), transposed=False,
output_padding=(0, 0), groups=1, bias=None)
assert_size_stride(buf0, (4, 4, 4, 4), (64, 16, 4, 1))
buf1 = buf0
del buf0
get_raw_stream(0)
triton_poi_fused_convolution_tanh_0[grid(256)](buf1, primals_2, 256,
XBLOCK=256, num_warps=4, num_stages=1)
del primals_2
buf2 = empty_strided_cuda((4, 4, 2, 2), (16, 4, 2, 1), torch.float32)
buf3 = empty_strided_cuda((4, 4, 2, 2), (16, 4, 2, 1), torch.int8)
triton_poi_fused_max_pool2d_with_indices_1[grid(64)](buf1, buf2,
buf3, 64, XBLOCK=64, num_warps=1, num_stages=1)
return buf2, primals_1, primals_3, buf1, buf3
class Conv_BlocksNew(nn.Module):
def __init__(self, input_dim, output_dim, filter_size=3, batch_norm=
False, non_lin='tanh', dropout=0.0, first_block=False, last_block=
False, skip_connection=False):
super(Conv_BlocksNew, self).__init__()
self.skip_connection = skip_connection
self.last_block = last_block
self.first_block = first_block
self.Block = nn.Sequential()
self.Block.add_module('Conv_1', nn.Conv2d(input_dim, output_dim,
filter_size, 1, 1))
if batch_norm:
self.Block.add_module('BN_1', nn.BatchNorm2d(output_dim))
if non_lin == 'tanh':
self.Block.add_module('NonLin_1', nn.Tanh())
elif non_lin == 'relu':
self.Block.add_module('NonLin_1', nn.ReLU())
elif non_lin == 'leakyrelu':
self.Block.add_module('NonLin_1', nn.LeakyReLU())
else:
assert False, "non_lin = {} not valid: 'tanh', 'relu', 'leakyrelu'".format(
non_lin)
self.Block.add_module('Pool', nn.MaxPool2d(kernel_size=(2, 2),
stride=(2, 2), dilation=(1, 1), ceil_mode=False))
if dropout > 0:
self.Block.add_module('Drop', nn.Dropout2d(dropout))
def forward(self, input_0):
primals_1 = self.Block.Conv_1.weight
primals_2 = self.Block.Conv_1.bias
primals_3 = input_0
output = call([primals_1, primals_2, primals_3])
return output[0]
|
HRHLALALA/GoalGAN
|
Conv_Blocks
| false | 9,098 |
[
"MIT"
] | 0 |
01443f2a578333a0d5ab3a449bc7da69f5023190
|
https://github.com/HRHLALALA/GoalGAN/tree/01443f2a578333a0d5ab3a449bc7da69f5023190
|
ReduceMax
|
# AOT ID: ['0_inference']
from ctypes import c_void_p, c_long, c_int
import torch
import math
import random
import os
import tempfile
from math import inf, nan
from torch._inductor.hooks import run_intermediate_hooks
from torch._inductor.utils import maybe_profile
from torch._inductor.codegen.memory_planning import _align as align
from torch import device, empty_strided
from torch._inductor.async_compile import AsyncCompile
from torch._inductor.select_algorithm import extern_kernels
from torch._inductor.codegen.multi_kernel import MultiKernelCall
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
aten = torch.ops.aten
inductor_ops = torch.ops.inductor
_quantized = torch.ops._quantized
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
alloc_from_pool = torch.ops.inductor._alloc_from_pool
async_compile = AsyncCompile()
# kernel path: runs/run_shard_6/inductor_cache/y7/cy7jkncvgqkch7rp5inkpciskf4ausuosjdvipi55vmji2a4yndh.py
# Topologically Sorted Source Nodes: [amax], Original ATen: [aten.amax]
# Source node to ATen node mapping:
# amax => amax
# Graph fragment:
# %amax : [num_users=1] = call_function[target=torch.ops.aten.amax.default](args = (%arg0_1, [1]), kwargs = {})
triton_poi_fused_amax_0 = async_compile.triton('triton_poi_fused_amax_0', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[64],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_amax_0', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 4, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_amax_0(in_ptr0, out_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 64
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex % 16
x1 = (xindex // 16)
x2 = xindex
tmp0 = tl.load(in_ptr0 + (x0 + (64*x1)), xmask)
tmp1 = tl.load(in_ptr0 + (16 + x0 + (64*x1)), xmask)
tmp3 = tl.load(in_ptr0 + (32 + x0 + (64*x1)), xmask)
tmp5 = tl.load(in_ptr0 + (48 + x0 + (64*x1)), xmask)
tmp2 = triton_helpers.maximum(tmp0, tmp1)
tmp4 = triton_helpers.maximum(tmp2, tmp3)
tmp6 = triton_helpers.maximum(tmp4, tmp5)
tl.store(out_ptr0 + (x2), tmp6, xmask)
''', device_str='cuda')
async_compile.wait(globals())
del async_compile
def call(args):
arg0_1, = args
args.clear()
assert_size_stride(arg0_1, (4, 4, 4, 4), (64, 16, 4, 1))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((4, 4, 4), (16, 4, 1), torch.float32)
# Topologically Sorted Source Nodes: [amax], Original ATen: [aten.amax]
stream0 = get_raw_stream(0)
triton_poi_fused_amax_0.run(arg0_1, buf0, 64, grid=grid(64), stream=stream0)
del arg0_1
return (buf0, )
def benchmark_compiled_module(times=10, repeat=10):
from torch._dynamo.testing import rand_strided
from torch._inductor.utils import print_performance
arg0_1 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32)
fn = lambda: call([arg0_1])
return print_performance(fn, times=times, repeat=repeat)
if __name__ == "__main__":
from torch._inductor.wrapper_benchmark import compiled_module_main
compiled_module_main('None', benchmark_compiled_module)
|
import torch
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
from torch._inductor.runtime import triton_helpers
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
@triton.jit
def triton_poi_fused_amax_0(in_ptr0, out_ptr0, xnumel, XBLOCK: tl.constexpr):
xnumel = 64
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex % 16
x1 = xindex // 16
x2 = xindex
tmp0 = tl.load(in_ptr0 + (x0 + 64 * x1), xmask)
tmp1 = tl.load(in_ptr0 + (16 + x0 + 64 * x1), xmask)
tmp3 = tl.load(in_ptr0 + (32 + x0 + 64 * x1), xmask)
tmp5 = tl.load(in_ptr0 + (48 + x0 + 64 * x1), xmask)
tmp2 = triton_helpers.maximum(tmp0, tmp1)
tmp4 = triton_helpers.maximum(tmp2, tmp3)
tmp6 = triton_helpers.maximum(tmp4, tmp5)
tl.store(out_ptr0 + x2, tmp6, xmask)
def call(args):
arg0_1, = args
args.clear()
assert_size_stride(arg0_1, (4, 4, 4, 4), (64, 16, 4, 1))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((4, 4, 4), (16, 4, 1), torch.float32)
get_raw_stream(0)
triton_poi_fused_amax_0[grid(64)](arg0_1, buf0, 64, XBLOCK=64,
num_warps=1, num_stages=1)
del arg0_1
return buf0,
class ReduceMaxNew(torch.nn.Module):
def forward(self, input_0):
arg0_1 = input_0
output = call([arg0_1])
return output[0]
|
carlogrisetti/ludwig
|
ReduceMax
| false | 1,632 |
[
"Apache-2.0"
] | 0 |
5c0887f14867e1577e0ddc3806c5cf7a781fb665
|
https://github.com/carlogrisetti/ludwig/tree/5c0887f14867e1577e0ddc3806c5cf7a781fb665
|
Encoder
|
# AOT ID: ['0_forward']
from ctypes import c_void_p, c_long, c_int
import torch
import math
import random
import os
import tempfile
from math import inf, nan
from torch._inductor.hooks import run_intermediate_hooks
from torch._inductor.utils import maybe_profile
from torch._inductor.codegen.memory_planning import _align as align
from torch import device, empty_strided
from torch._inductor.async_compile import AsyncCompile
from torch._inductor.select_algorithm import extern_kernels
from torch._inductor.codegen.multi_kernel import MultiKernelCall
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
aten = torch.ops.aten
inductor_ops = torch.ops.inductor
_quantized = torch.ops._quantized
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
alloc_from_pool = torch.ops.inductor._alloc_from_pool
async_compile = AsyncCompile()
# kernel path: runs/run_shard_9/inductor_cache/lp/clp5td7lbqtje3pt7v6xbcp766swgazqemomz2nzsxtdtmjesxht.py
# Topologically Sorted Source Nodes: [x, x_1], Original ATen: [aten.convolution, aten.relu]
# Source node to ATen node mapping:
# x => convolution
# x_1 => relu
# Graph fragment:
# %convolution : [num_users=1] = call_function[target=torch.ops.aten.convolution.default](args = (%primals_3, %primals_1, %primals_2, [1, 1], [1, 1], [1, 1], False, [0, 0], 1), kwargs = {})
# %relu : [num_users=2] = call_function[target=torch.ops.aten.relu.default](args = (%convolution,), kwargs = {})
triton_poi_fused_convolution_relu_0 = async_compile.triton('triton_poi_fused_convolution_relu_0', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[262144],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_convolution_relu_0', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_convolution_relu_0(in_out_ptr0, in_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 262144
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = tl.full([XBLOCK], True, tl.int1)
x3 = xindex
x1 = (xindex // 4096) % 16
tmp0 = tl.load(in_out_ptr0 + (x3), None)
tmp1 = tl.load(in_ptr0 + (x1), None, eviction_policy='evict_last')
tmp2 = tmp0 + tmp1
tmp3 = tl.full([1], 0, tl.int32)
tmp4 = triton_helpers.maximum(tmp3, tmp2)
tl.store(in_out_ptr0 + (x3), tmp4, None)
''', device_str='cuda')
# kernel path: runs/run_shard_9/inductor_cache/wy/cwyx3wa4jndgnwzcjpr33hhlviahccyeckxfax46ztwjbjc22gd7.py
# Topologically Sorted Source Nodes: [x_2], Original ATen: [aten.max_pool2d_with_indices]
# Source node to ATen node mapping:
# x_2 => getitem, getitem_1
# Graph fragment:
# %getitem : [num_users=2] = call_function[target=operator.getitem](args = (%_low_memory_max_pool2d_with_offsets, 0), kwargs = {})
# %getitem_1 : [num_users=1] = call_function[target=operator.getitem](args = (%_low_memory_max_pool2d_with_offsets, 1), kwargs = {})
triton_poi_fused_max_pool2d_with_indices_1 = async_compile.triton('triton_poi_fused_max_pool2d_with_indices_1', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[65536],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*i8', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_max_pool2d_with_indices_1', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 4, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_max_pool2d_with_indices_1(in_ptr0, out_ptr0, out_ptr1, xnumel, XBLOCK : tl.constexpr):
xnumel = 65536
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = tl.full([XBLOCK], True, tl.int1)
x0 = xindex % 32
x1 = (xindex // 32)
x2 = xindex
tmp0 = tl.load(in_ptr0 + ((2*x0) + (128*x1)), None, eviction_policy='evict_last')
tmp1 = tl.load(in_ptr0 + (1 + (2*x0) + (128*x1)), None, eviction_policy='evict_last')
tmp3 = tl.load(in_ptr0 + (64 + (2*x0) + (128*x1)), None, eviction_policy='evict_last')
tmp5 = tl.load(in_ptr0 + (65 + (2*x0) + (128*x1)), None, eviction_policy='evict_last')
tmp2 = triton_helpers.maximum(tmp1, tmp0)
tmp4 = triton_helpers.maximum(tmp3, tmp2)
tmp6 = triton_helpers.maximum(tmp5, tmp4)
tmp7 = tmp1 > tmp0
tmp8 = tl.full([1], 1, tl.int8)
tmp9 = tl.full([1], 0, tl.int8)
tmp10 = tl.where(tmp7, tmp8, tmp9)
tmp11 = tmp3 > tmp2
tmp12 = tl.full([1], 2, tl.int8)
tmp13 = tl.where(tmp11, tmp12, tmp10)
tmp14 = tmp5 > tmp4
tmp15 = tl.full([1], 3, tl.int8)
tmp16 = tl.where(tmp14, tmp15, tmp13)
tl.store(out_ptr0 + (x2), tmp6, None)
tl.store(out_ptr1 + (x2), tmp16, None)
''', device_str='cuda')
# kernel path: runs/run_shard_9/inductor_cache/j6/cj6faeofhfnxsh5iuwazughjlau4igyajnmvjequyelq7apzs4qm.py
# Topologically Sorted Source Nodes: [x_3, x_4], Original ATen: [aten.convolution, aten.relu]
# Source node to ATen node mapping:
# x_3 => convolution_1
# x_4 => relu_1
# Graph fragment:
# %convolution_1 : [num_users=1] = call_function[target=torch.ops.aten.convolution.default](args = (%getitem, %primals_4, %primals_5, [1, 1], [1, 1], [1, 1], False, [0, 0], 1), kwargs = {})
# %relu_1 : [num_users=2] = call_function[target=torch.ops.aten.relu.default](args = (%convolution_1,), kwargs = {})
triton_poi_fused_convolution_relu_2 = async_compile.triton('triton_poi_fused_convolution_relu_2', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[131072],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_convolution_relu_2', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_convolution_relu_2(in_out_ptr0, in_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 131072
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = tl.full([XBLOCK], True, tl.int1)
x3 = xindex
x1 = (xindex // 1024) % 32
tmp0 = tl.load(in_out_ptr0 + (x3), None)
tmp1 = tl.load(in_ptr0 + (x1), None, eviction_policy='evict_last')
tmp2 = tmp0 + tmp1
tmp3 = tl.full([1], 0, tl.int32)
tmp4 = triton_helpers.maximum(tmp3, tmp2)
tl.store(in_out_ptr0 + (x3), tmp4, None)
''', device_str='cuda')
# kernel path: runs/run_shard_9/inductor_cache/6y/c6yx6oq7oo2cwoaop3iwu5iqfdckg6lycdtu4jjuiv3wdcf2o6p7.py
# Topologically Sorted Source Nodes: [x_5], Original ATen: [aten.max_pool2d_with_indices]
# Source node to ATen node mapping:
# x_5 => getitem_2, getitem_3
# Graph fragment:
# %getitem_2 : [num_users=2] = call_function[target=operator.getitem](args = (%_low_memory_max_pool2d_with_offsets_1, 0), kwargs = {})
# %getitem_3 : [num_users=1] = call_function[target=operator.getitem](args = (%_low_memory_max_pool2d_with_offsets_1, 1), kwargs = {})
triton_poi_fused_max_pool2d_with_indices_3 = async_compile.triton('triton_poi_fused_max_pool2d_with_indices_3', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[32768],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*i8', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_max_pool2d_with_indices_3', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 4, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_max_pool2d_with_indices_3(in_ptr0, out_ptr0, out_ptr1, xnumel, XBLOCK : tl.constexpr):
xnumel = 32768
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = tl.full([XBLOCK], True, tl.int1)
x0 = xindex % 16
x1 = (xindex // 16)
x2 = xindex
tmp0 = tl.load(in_ptr0 + ((2*x0) + (64*x1)), None, eviction_policy='evict_last')
tmp1 = tl.load(in_ptr0 + (1 + (2*x0) + (64*x1)), None, eviction_policy='evict_last')
tmp3 = tl.load(in_ptr0 + (32 + (2*x0) + (64*x1)), None, eviction_policy='evict_last')
tmp5 = tl.load(in_ptr0 + (33 + (2*x0) + (64*x1)), None, eviction_policy='evict_last')
tmp2 = triton_helpers.maximum(tmp1, tmp0)
tmp4 = triton_helpers.maximum(tmp3, tmp2)
tmp6 = triton_helpers.maximum(tmp5, tmp4)
tmp7 = tmp1 > tmp0
tmp8 = tl.full([1], 1, tl.int8)
tmp9 = tl.full([1], 0, tl.int8)
tmp10 = tl.where(tmp7, tmp8, tmp9)
tmp11 = tmp3 > tmp2
tmp12 = tl.full([1], 2, tl.int8)
tmp13 = tl.where(tmp11, tmp12, tmp10)
tmp14 = tmp5 > tmp4
tmp15 = tl.full([1], 3, tl.int8)
tmp16 = tl.where(tmp14, tmp15, tmp13)
tl.store(out_ptr0 + (x2), tmp6, None)
tl.store(out_ptr1 + (x2), tmp16, None)
''', device_str='cuda')
# kernel path: runs/run_shard_9/inductor_cache/d4/cd4s5ogbgu46xbdaa3oicwxi7l6pnddrap26pxiqzcpei77ta53h.py
# Topologically Sorted Source Nodes: [x_6, x_7], Original ATen: [aten.convolution, aten.relu]
# Source node to ATen node mapping:
# x_6 => convolution_2
# x_7 => relu_2
# Graph fragment:
# %convolution_2 : [num_users=1] = call_function[target=torch.ops.aten.convolution.default](args = (%getitem_2, %primals_6, %primals_7, [1, 1], [1, 1], [1, 1], False, [0, 0], 1), kwargs = {})
# %relu_2 : [num_users=2] = call_function[target=torch.ops.aten.relu.default](args = (%convolution_2,), kwargs = {})
triton_poi_fused_convolution_relu_4 = async_compile.triton('triton_poi_fused_convolution_relu_4', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[65536],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_convolution_relu_4', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_convolution_relu_4(in_out_ptr0, in_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 65536
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = tl.full([XBLOCK], True, tl.int1)
x3 = xindex
x1 = (xindex // 256) % 64
tmp0 = tl.load(in_out_ptr0 + (x3), None)
tmp1 = tl.load(in_ptr0 + (x1), None, eviction_policy='evict_last')
tmp2 = tmp0 + tmp1
tmp3 = tl.full([1], 0, tl.int32)
tmp4 = triton_helpers.maximum(tmp3, tmp2)
tl.store(in_out_ptr0 + (x3), tmp4, None)
''', device_str='cuda')
# kernel path: runs/run_shard_9/inductor_cache/a4/ca43wvja2n3mesrfuj54dcwx324bk23dhpnatmpi7kjryanvrx2z.py
# Topologically Sorted Source Nodes: [x_8], Original ATen: [aten.max_pool2d_with_indices]
# Source node to ATen node mapping:
# x_8 => getitem_4, getitem_5
# Graph fragment:
# %getitem_4 : [num_users=2] = call_function[target=operator.getitem](args = (%_low_memory_max_pool2d_with_offsets_2, 0), kwargs = {})
# %getitem_5 : [num_users=1] = call_function[target=operator.getitem](args = (%_low_memory_max_pool2d_with_offsets_2, 1), kwargs = {})
triton_poi_fused_max_pool2d_with_indices_5 = async_compile.triton('triton_poi_fused_max_pool2d_with_indices_5', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[16384],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*i8', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_max_pool2d_with_indices_5', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 4, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_max_pool2d_with_indices_5(in_ptr0, out_ptr0, out_ptr1, xnumel, XBLOCK : tl.constexpr):
xnumel = 16384
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = tl.full([XBLOCK], True, tl.int1)
x0 = xindex % 8
x1 = (xindex // 8)
x2 = xindex
tmp0 = tl.load(in_ptr0 + ((2*x0) + (32*x1)), None, eviction_policy='evict_last')
tmp1 = tl.load(in_ptr0 + (1 + (2*x0) + (32*x1)), None, eviction_policy='evict_last')
tmp3 = tl.load(in_ptr0 + (16 + (2*x0) + (32*x1)), None, eviction_policy='evict_last')
tmp5 = tl.load(in_ptr0 + (17 + (2*x0) + (32*x1)), None, eviction_policy='evict_last')
tmp2 = triton_helpers.maximum(tmp1, tmp0)
tmp4 = triton_helpers.maximum(tmp3, tmp2)
tmp6 = triton_helpers.maximum(tmp5, tmp4)
tmp7 = tmp1 > tmp0
tmp8 = tl.full([1], 1, tl.int8)
tmp9 = tl.full([1], 0, tl.int8)
tmp10 = tl.where(tmp7, tmp8, tmp9)
tmp11 = tmp3 > tmp2
tmp12 = tl.full([1], 2, tl.int8)
tmp13 = tl.where(tmp11, tmp12, tmp10)
tmp14 = tmp5 > tmp4
tmp15 = tl.full([1], 3, tl.int8)
tmp16 = tl.where(tmp14, tmp15, tmp13)
tl.store(out_ptr0 + (x2), tmp6, None)
tl.store(out_ptr1 + (x2), tmp16, None)
''', device_str='cuda')
# kernel path: runs/run_shard_9/inductor_cache/pw/cpwsgxngvwi42czirdy5mqcvlzqz5ddbdn3ytrocy4pgt7bp7hcr.py
# Topologically Sorted Source Nodes: [x_9, x_10], Original ATen: [aten.convolution, aten.relu]
# Source node to ATen node mapping:
# x_10 => relu_3
# x_9 => convolution_3
# Graph fragment:
# %convolution_3 : [num_users=1] = call_function[target=torch.ops.aten.convolution.default](args = (%getitem_4, %primals_8, %primals_9, [1, 1], [1, 1], [1, 1], False, [0, 0], 1), kwargs = {})
# %relu_3 : [num_users=2] = call_function[target=torch.ops.aten.relu.default](args = (%convolution_3,), kwargs = {})
triton_poi_fused_convolution_relu_6 = async_compile.triton('triton_poi_fused_convolution_relu_6', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[16384],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_convolution_relu_6', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_convolution_relu_6(in_out_ptr0, in_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 16384
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = tl.full([XBLOCK], True, tl.int1)
x3 = xindex
x1 = (xindex // 64) % 64
tmp0 = tl.load(in_out_ptr0 + (x3), None)
tmp1 = tl.load(in_ptr0 + (x1), None, eviction_policy='evict_last')
tmp2 = tmp0 + tmp1
tmp3 = tl.full([1], 0, tl.int32)
tmp4 = triton_helpers.maximum(tmp3, tmp2)
tl.store(in_out_ptr0 + (x3), tmp4, None)
''', device_str='cuda')
# kernel path: runs/run_shard_9/inductor_cache/nk/cnkzs5jmhhmrcpvb6zj5jqdidguxoz45pd7jrl3rxado6v5daf6k.py
# Topologically Sorted Source Nodes: [x_11, h], Original ATen: [aten.max_pool2d_with_indices, aten.mean]
# Source node to ATen node mapping:
# h => mean
# x_11 => _low_memory_max_pool2d_with_offsets_3, getitem_7
# Graph fragment:
# %_low_memory_max_pool2d_with_offsets_3 : [num_users=2] = call_function[target=torch.ops.prims._low_memory_max_pool2d_with_offsets.default](args = (%relu_3, [2, 2], [2, 2], [0, 0], [1, 1], False), kwargs = {})
# %getitem_7 : [num_users=1] = call_function[target=operator.getitem](args = (%_low_memory_max_pool2d_with_offsets_3, 1), kwargs = {})
# %mean : [num_users=2] = call_function[target=torch.ops.aten.mean.dim](args = (%getitem_6, [2, 3]), kwargs = {})
triton_per_fused_max_pool2d_with_indices_mean_7 = async_compile.triton('triton_per_fused_max_pool2d_with_indices_mean_7', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.persistent_reduction(
size_hints=[256, 16],
reduction_hint=ReductionHint.DEFAULT,
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*i8', 3: 'i32', 4: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3, 4), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_per_fused_max_pool2d_with_indices_mean_7', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 4, 'num_reduction': 1, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}
)
@triton.jit
def triton_per_fused_max_pool2d_with_indices_mean_7(in_out_ptr0, in_ptr0, out_ptr0, xnumel, rnumel, XBLOCK : tl.constexpr):
xnumel = 256
rnumel = 16
RBLOCK: tl.constexpr = 16
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:, None]
xmask = xindex < xnumel
rindex = tl.arange(0, RBLOCK)[None, :]
roffset = 0
rmask = tl.full([XBLOCK, RBLOCK], True, tl.int1)
r1 = rindex % 4
r2 = (rindex // 4)
x0 = xindex
r3 = rindex
tmp0 = tl.load(in_ptr0 + ((2*r1) + (16*r2) + (64*x0)), xmask, eviction_policy='evict_last', other=0.0)
tmp1 = tl.load(in_ptr0 + (1 + (2*r1) + (16*r2) + (64*x0)), xmask, eviction_policy='evict_last', other=0.0)
tmp7 = tl.load(in_ptr0 + (8 + (2*r1) + (16*r2) + (64*x0)), xmask, eviction_policy='evict_last', other=0.0)
tmp12 = tl.load(in_ptr0 + (9 + (2*r1) + (16*r2) + (64*x0)), xmask, eviction_policy='evict_last', other=0.0)
tmp2 = tmp1 > tmp0
tmp3 = tl.full([1, 1], 1, tl.int8)
tmp4 = tl.full([1, 1], 0, tl.int8)
tmp5 = tl.where(tmp2, tmp3, tmp4)
tmp6 = triton_helpers.maximum(tmp1, tmp0)
tmp8 = tmp7 > tmp6
tmp9 = tl.full([1, 1], 2, tl.int8)
tmp10 = tl.where(tmp8, tmp9, tmp5)
tmp11 = triton_helpers.maximum(tmp7, tmp6)
tmp13 = tmp12 > tmp11
tmp14 = tl.full([1, 1], 3, tl.int8)
tmp15 = tl.where(tmp13, tmp14, tmp10)
tmp16 = triton_helpers.maximum(tmp12, tmp11)
tmp17 = tl.broadcast_to(tmp16, [XBLOCK, RBLOCK])
tmp19 = tl.where(xmask, tmp17, 0)
tmp20 = tl.sum(tmp19, 1)[:, None]
tmp21 = 16.0
tmp22 = tmp20 / tmp21
tl.store(out_ptr0 + (r3 + (16*x0)), tmp15, xmask)
tl.debug_barrier()
tl.store(in_out_ptr0 + (x0), tmp22, xmask)
''', device_str='cuda')
# kernel path: runs/run_shard_9/inductor_cache/nx/cnxa3vlwdljrqxm7y6obufkshm4wnjkxynv7ec3urwiscpmwzsfe.py
# Topologically Sorted Source Nodes: [x_13], Original ATen: [aten.relu]
# Source node to ATen node mapping:
# x_13 => relu_4
# Graph fragment:
# %add_tensor : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%mm_default, %primals_11), kwargs = {})
# %relu_4 : [num_users=2] = call_function[target=torch.ops.aten.relu.default](args = (%add_tensor,), kwargs = {})
triton_poi_fused_relu_8 = async_compile.triton('triton_poi_fused_relu_8', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[256],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_relu_8', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_relu_8(in_out_ptr0, in_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 256
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x2 = xindex
x0 = xindex % 64
tmp0 = tl.load(in_out_ptr0 + (x2), xmask)
tmp1 = tl.load(in_ptr0 + (x0), xmask, eviction_policy='evict_last')
tmp2 = tmp0 + tmp1
tmp3 = tl.full([1], 0, tl.int32)
tmp4 = triton_helpers.maximum(tmp3, tmp2)
tl.store(in_out_ptr0 + (x2), tmp4, xmask)
''', device_str='cuda')
async_compile.wait(globals())
del async_compile
def call(args):
primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7, primals_8, primals_9, primals_10, primals_11, primals_12, primals_13 = args
args.clear()
assert_size_stride(primals_1, (16, 3, 3, 3), (27, 9, 3, 1))
assert_size_stride(primals_2, (16, ), (1, ))
assert_size_stride(primals_3, (4, 3, 64, 64), (12288, 4096, 64, 1))
assert_size_stride(primals_4, (32, 16, 3, 3), (144, 9, 3, 1))
assert_size_stride(primals_5, (32, ), (1, ))
assert_size_stride(primals_6, (64, 32, 3, 3), (288, 9, 3, 1))
assert_size_stride(primals_7, (64, ), (1, ))
assert_size_stride(primals_8, (64, 64, 3, 3), (576, 9, 3, 1))
assert_size_stride(primals_9, (64, ), (1, ))
assert_size_stride(primals_10, (64, 64), (64, 1))
assert_size_stride(primals_11, (64, ), (1, ))
assert_size_stride(primals_12, (64, 64), (64, 1))
assert_size_stride(primals_13, (64, ), (1, ))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
# Topologically Sorted Source Nodes: [x], Original ATen: [aten.convolution]
buf0 = extern_kernels.convolution(primals_3, primals_1, stride=(1, 1), padding=(1, 1), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None)
assert_size_stride(buf0, (4, 16, 64, 64), (65536, 4096, 64, 1))
buf1 = buf0; del buf0 # reuse
# Topologically Sorted Source Nodes: [x, x_1], Original ATen: [aten.convolution, aten.relu]
stream0 = get_raw_stream(0)
triton_poi_fused_convolution_relu_0.run(buf1, primals_2, 262144, grid=grid(262144), stream=stream0)
del primals_2
buf2 = empty_strided_cuda((4, 16, 32, 32), (16384, 1024, 32, 1), torch.float32)
buf3 = empty_strided_cuda((4, 16, 32, 32), (16384, 1024, 32, 1), torch.int8)
# Topologically Sorted Source Nodes: [x_2], Original ATen: [aten.max_pool2d_with_indices]
triton_poi_fused_max_pool2d_with_indices_1.run(buf1, buf2, buf3, 65536, grid=grid(65536), stream=stream0)
# Topologically Sorted Source Nodes: [x_3], Original ATen: [aten.convolution]
buf4 = extern_kernels.convolution(buf2, primals_4, stride=(1, 1), padding=(1, 1), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None)
assert_size_stride(buf4, (4, 32, 32, 32), (32768, 1024, 32, 1))
buf5 = buf4; del buf4 # reuse
# Topologically Sorted Source Nodes: [x_3, x_4], Original ATen: [aten.convolution, aten.relu]
triton_poi_fused_convolution_relu_2.run(buf5, primals_5, 131072, grid=grid(131072), stream=stream0)
del primals_5
buf6 = empty_strided_cuda((4, 32, 16, 16), (8192, 256, 16, 1), torch.float32)
buf7 = empty_strided_cuda((4, 32, 16, 16), (8192, 256, 16, 1), torch.int8)
# Topologically Sorted Source Nodes: [x_5], Original ATen: [aten.max_pool2d_with_indices]
triton_poi_fused_max_pool2d_with_indices_3.run(buf5, buf6, buf7, 32768, grid=grid(32768), stream=stream0)
# Topologically Sorted Source Nodes: [x_6], Original ATen: [aten.convolution]
buf8 = extern_kernels.convolution(buf6, primals_6, stride=(1, 1), padding=(1, 1), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None)
assert_size_stride(buf8, (4, 64, 16, 16), (16384, 256, 16, 1))
buf9 = buf8; del buf8 # reuse
# Topologically Sorted Source Nodes: [x_6, x_7], Original ATen: [aten.convolution, aten.relu]
triton_poi_fused_convolution_relu_4.run(buf9, primals_7, 65536, grid=grid(65536), stream=stream0)
del primals_7
buf10 = empty_strided_cuda((4, 64, 8, 8), (4096, 64, 8, 1), torch.float32)
buf11 = empty_strided_cuda((4, 64, 8, 8), (4096, 64, 8, 1), torch.int8)
# Topologically Sorted Source Nodes: [x_8], Original ATen: [aten.max_pool2d_with_indices]
triton_poi_fused_max_pool2d_with_indices_5.run(buf9, buf10, buf11, 16384, grid=grid(16384), stream=stream0)
# Topologically Sorted Source Nodes: [x_9], Original ATen: [aten.convolution]
buf12 = extern_kernels.convolution(buf10, primals_8, stride=(1, 1), padding=(1, 1), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None)
assert_size_stride(buf12, (4, 64, 8, 8), (4096, 64, 8, 1))
buf13 = buf12; del buf12 # reuse
# Topologically Sorted Source Nodes: [x_9, x_10], Original ATen: [aten.convolution, aten.relu]
triton_poi_fused_convolution_relu_6.run(buf13, primals_9, 16384, grid=grid(16384), stream=stream0)
del primals_9
buf14 = empty_strided_cuda((4, 64, 4, 4), (1024, 16, 4, 1), torch.int8)
buf15 = empty_strided_cuda((4, 64), (64, 1), torch.float32)
buf16 = buf15; del buf15 # reuse
# Topologically Sorted Source Nodes: [x_11, h], Original ATen: [aten.max_pool2d_with_indices, aten.mean]
triton_per_fused_max_pool2d_with_indices_mean_7.run(buf16, buf13, buf14, 256, 16, grid=grid(256), stream=stream0)
buf17 = empty_strided_cuda((4, 64), (64, 1), torch.float32)
# Topologically Sorted Source Nodes: [], Original ATen: []
extern_kernels.mm(buf16, reinterpret_tensor(primals_10, (64, 64), (1, 64), 0), out=buf17)
buf18 = buf17; del buf17 # reuse
# Topologically Sorted Source Nodes: [x_13], Original ATen: [aten.relu]
triton_poi_fused_relu_8.run(buf18, primals_11, 256, grid=grid(256), stream=stream0)
del primals_11
buf19 = empty_strided_cuda((4, 64), (64, 1), torch.float32)
# Topologically Sorted Source Nodes: [x_14], Original ATen: [aten.addmm]
extern_kernels.addmm(primals_13, buf18, reinterpret_tensor(primals_12, (64, 64), (1, 64), 0), alpha=1, beta=1, out=buf19)
del primals_13
return (buf16, buf19, primals_1, primals_3, primals_4, primals_6, primals_8, buf1, buf2, buf3, buf5, buf6, buf7, buf9, buf10, buf11, buf13, buf14, buf16, buf18, primals_12, primals_10, )
def benchmark_compiled_module(times=10, repeat=10):
from torch._dynamo.testing import rand_strided
from torch._inductor.utils import print_performance
primals_1 = rand_strided((16, 3, 3, 3), (27, 9, 3, 1), device='cuda:0', dtype=torch.float32)
primals_2 = rand_strided((16, ), (1, ), device='cuda:0', dtype=torch.float32)
primals_3 = rand_strided((4, 3, 64, 64), (12288, 4096, 64, 1), device='cuda:0', dtype=torch.float32)
primals_4 = rand_strided((32, 16, 3, 3), (144, 9, 3, 1), device='cuda:0', dtype=torch.float32)
primals_5 = rand_strided((32, ), (1, ), device='cuda:0', dtype=torch.float32)
primals_6 = rand_strided((64, 32, 3, 3), (288, 9, 3, 1), device='cuda:0', dtype=torch.float32)
primals_7 = rand_strided((64, ), (1, ), device='cuda:0', dtype=torch.float32)
primals_8 = rand_strided((64, 64, 3, 3), (576, 9, 3, 1), device='cuda:0', dtype=torch.float32)
primals_9 = rand_strided((64, ), (1, ), device='cuda:0', dtype=torch.float32)
primals_10 = rand_strided((64, 64), (64, 1), device='cuda:0', dtype=torch.float32)
primals_11 = rand_strided((64, ), (1, ), device='cuda:0', dtype=torch.float32)
primals_12 = rand_strided((64, 64), (64, 1), device='cuda:0', dtype=torch.float32)
primals_13 = rand_strided((64, ), (1, ), device='cuda:0', dtype=torch.float32)
fn = lambda: call([primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7, primals_8, primals_9, primals_10, primals_11, primals_12, primals_13])
return print_performance(fn, times=times, repeat=repeat)
if __name__ == "__main__":
from torch._inductor.wrapper_benchmark import compiled_module_main
compiled_module_main('None', benchmark_compiled_module)
|
import torch
from torch._inductor.select_algorithm import extern_kernels
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
from torch._inductor.runtime import triton_helpers
import torch.nn as nn
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
@triton.jit
def triton_poi_fused_convolution_relu_0(in_out_ptr0, in_ptr0, xnumel,
XBLOCK: tl.constexpr):
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
tl.full([XBLOCK], True, tl.int1)
x3 = xindex
x1 = xindex // 4096 % 16
tmp0 = tl.load(in_out_ptr0 + x3, None)
tmp1 = tl.load(in_ptr0 + x1, None, eviction_policy='evict_last')
tmp2 = tmp0 + tmp1
tmp3 = tl.full([1], 0, tl.int32)
tmp4 = triton_helpers.maximum(tmp3, tmp2)
tl.store(in_out_ptr0 + x3, tmp4, None)
@triton.jit
def triton_poi_fused_max_pool2d_with_indices_1(in_ptr0, out_ptr0, out_ptr1,
xnumel, XBLOCK: tl.constexpr):
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
tl.full([XBLOCK], True, tl.int1)
x0 = xindex % 32
x1 = xindex // 32
x2 = xindex
tmp0 = tl.load(in_ptr0 + (2 * x0 + 128 * x1), None, eviction_policy=
'evict_last')
tmp1 = tl.load(in_ptr0 + (1 + 2 * x0 + 128 * x1), None, eviction_policy
='evict_last')
tmp3 = tl.load(in_ptr0 + (64 + 2 * x0 + 128 * x1), None,
eviction_policy='evict_last')
tmp5 = tl.load(in_ptr0 + (65 + 2 * x0 + 128 * x1), None,
eviction_policy='evict_last')
tmp2 = triton_helpers.maximum(tmp1, tmp0)
tmp4 = triton_helpers.maximum(tmp3, tmp2)
tmp6 = triton_helpers.maximum(tmp5, tmp4)
tmp7 = tmp1 > tmp0
tmp8 = tl.full([1], 1, tl.int8)
tmp9 = tl.full([1], 0, tl.int8)
tmp10 = tl.where(tmp7, tmp8, tmp9)
tmp11 = tmp3 > tmp2
tmp12 = tl.full([1], 2, tl.int8)
tmp13 = tl.where(tmp11, tmp12, tmp10)
tmp14 = tmp5 > tmp4
tmp15 = tl.full([1], 3, tl.int8)
tmp16 = tl.where(tmp14, tmp15, tmp13)
tl.store(out_ptr0 + x2, tmp6, None)
tl.store(out_ptr1 + x2, tmp16, None)
@triton.jit
def triton_poi_fused_convolution_relu_2(in_out_ptr0, in_ptr0, xnumel,
XBLOCK: tl.constexpr):
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
tl.full([XBLOCK], True, tl.int1)
x3 = xindex
x1 = xindex // 1024 % 32
tmp0 = tl.load(in_out_ptr0 + x3, None)
tmp1 = tl.load(in_ptr0 + x1, None, eviction_policy='evict_last')
tmp2 = tmp0 + tmp1
tmp3 = tl.full([1], 0, tl.int32)
tmp4 = triton_helpers.maximum(tmp3, tmp2)
tl.store(in_out_ptr0 + x3, tmp4, None)
@triton.jit
def triton_poi_fused_max_pool2d_with_indices_3(in_ptr0, out_ptr0, out_ptr1,
xnumel, XBLOCK: tl.constexpr):
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
tl.full([XBLOCK], True, tl.int1)
x0 = xindex % 16
x1 = xindex // 16
x2 = xindex
tmp0 = tl.load(in_ptr0 + (2 * x0 + 64 * x1), None, eviction_policy=
'evict_last')
tmp1 = tl.load(in_ptr0 + (1 + 2 * x0 + 64 * x1), None, eviction_policy=
'evict_last')
tmp3 = tl.load(in_ptr0 + (32 + 2 * x0 + 64 * x1), None, eviction_policy
='evict_last')
tmp5 = tl.load(in_ptr0 + (33 + 2 * x0 + 64 * x1), None, eviction_policy
='evict_last')
tmp2 = triton_helpers.maximum(tmp1, tmp0)
tmp4 = triton_helpers.maximum(tmp3, tmp2)
tmp6 = triton_helpers.maximum(tmp5, tmp4)
tmp7 = tmp1 > tmp0
tmp8 = tl.full([1], 1, tl.int8)
tmp9 = tl.full([1], 0, tl.int8)
tmp10 = tl.where(tmp7, tmp8, tmp9)
tmp11 = tmp3 > tmp2
tmp12 = tl.full([1], 2, tl.int8)
tmp13 = tl.where(tmp11, tmp12, tmp10)
tmp14 = tmp5 > tmp4
tmp15 = tl.full([1], 3, tl.int8)
tmp16 = tl.where(tmp14, tmp15, tmp13)
tl.store(out_ptr0 + x2, tmp6, None)
tl.store(out_ptr1 + x2, tmp16, None)
@triton.jit
def triton_poi_fused_convolution_relu_4(in_out_ptr0, in_ptr0, xnumel,
XBLOCK: tl.constexpr):
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
tl.full([XBLOCK], True, tl.int1)
x3 = xindex
x1 = xindex // 256 % 64
tmp0 = tl.load(in_out_ptr0 + x3, None)
tmp1 = tl.load(in_ptr0 + x1, None, eviction_policy='evict_last')
tmp2 = tmp0 + tmp1
tmp3 = tl.full([1], 0, tl.int32)
tmp4 = triton_helpers.maximum(tmp3, tmp2)
tl.store(in_out_ptr0 + x3, tmp4, None)
@triton.jit
def triton_poi_fused_max_pool2d_with_indices_5(in_ptr0, out_ptr0, out_ptr1,
xnumel, XBLOCK: tl.constexpr):
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
tl.full([XBLOCK], True, tl.int1)
x0 = xindex % 8
x1 = xindex // 8
x2 = xindex
tmp0 = tl.load(in_ptr0 + (2 * x0 + 32 * x1), None, eviction_policy=
'evict_last')
tmp1 = tl.load(in_ptr0 + (1 + 2 * x0 + 32 * x1), None, eviction_policy=
'evict_last')
tmp3 = tl.load(in_ptr0 + (16 + 2 * x0 + 32 * x1), None, eviction_policy
='evict_last')
tmp5 = tl.load(in_ptr0 + (17 + 2 * x0 + 32 * x1), None, eviction_policy
='evict_last')
tmp2 = triton_helpers.maximum(tmp1, tmp0)
tmp4 = triton_helpers.maximum(tmp3, tmp2)
tmp6 = triton_helpers.maximum(tmp5, tmp4)
tmp7 = tmp1 > tmp0
tmp8 = tl.full([1], 1, tl.int8)
tmp9 = tl.full([1], 0, tl.int8)
tmp10 = tl.where(tmp7, tmp8, tmp9)
tmp11 = tmp3 > tmp2
tmp12 = tl.full([1], 2, tl.int8)
tmp13 = tl.where(tmp11, tmp12, tmp10)
tmp14 = tmp5 > tmp4
tmp15 = tl.full([1], 3, tl.int8)
tmp16 = tl.where(tmp14, tmp15, tmp13)
tl.store(out_ptr0 + x2, tmp6, None)
tl.store(out_ptr1 + x2, tmp16, None)
@triton.jit
def triton_poi_fused_convolution_relu_6(in_out_ptr0, in_ptr0, xnumel,
XBLOCK: tl.constexpr):
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
tl.full([XBLOCK], True, tl.int1)
x3 = xindex
x1 = xindex // 64 % 64
tmp0 = tl.load(in_out_ptr0 + x3, None)
tmp1 = tl.load(in_ptr0 + x1, None, eviction_policy='evict_last')
tmp2 = tmp0 + tmp1
tmp3 = tl.full([1], 0, tl.int32)
tmp4 = triton_helpers.maximum(tmp3, tmp2)
tl.store(in_out_ptr0 + x3, tmp4, None)
@triton.jit
def triton_per_fused_max_pool2d_with_indices_mean_7(in_out_ptr0, in_ptr0,
out_ptr0, xnumel, rnumel, XBLOCK: tl.constexpr):
xnumel = 256
RBLOCK: tl.constexpr = 16
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:, None]
xmask = xindex < xnumel
rindex = tl.arange(0, RBLOCK)[None, :]
tl.full([XBLOCK, RBLOCK], True, tl.int1)
r1 = rindex % 4
r2 = rindex // 4
x0 = xindex
r3 = rindex
tmp0 = tl.load(in_ptr0 + (2 * r1 + 16 * r2 + 64 * x0), xmask,
eviction_policy='evict_last', other=0.0)
tmp1 = tl.load(in_ptr0 + (1 + 2 * r1 + 16 * r2 + 64 * x0), xmask,
eviction_policy='evict_last', other=0.0)
tmp7 = tl.load(in_ptr0 + (8 + 2 * r1 + 16 * r2 + 64 * x0), xmask,
eviction_policy='evict_last', other=0.0)
tmp12 = tl.load(in_ptr0 + (9 + 2 * r1 + 16 * r2 + 64 * x0), xmask,
eviction_policy='evict_last', other=0.0)
tmp2 = tmp1 > tmp0
tmp3 = tl.full([1, 1], 1, tl.int8)
tmp4 = tl.full([1, 1], 0, tl.int8)
tmp5 = tl.where(tmp2, tmp3, tmp4)
tmp6 = triton_helpers.maximum(tmp1, tmp0)
tmp8 = tmp7 > tmp6
tmp9 = tl.full([1, 1], 2, tl.int8)
tmp10 = tl.where(tmp8, tmp9, tmp5)
tmp11 = triton_helpers.maximum(tmp7, tmp6)
tmp13 = tmp12 > tmp11
tmp14 = tl.full([1, 1], 3, tl.int8)
tmp15 = tl.where(tmp13, tmp14, tmp10)
tmp16 = triton_helpers.maximum(tmp12, tmp11)
tmp17 = tl.broadcast_to(tmp16, [XBLOCK, RBLOCK])
tmp19 = tl.where(xmask, tmp17, 0)
tmp20 = tl.sum(tmp19, 1)[:, None]
tmp21 = 16.0
tmp22 = tmp20 / tmp21
tl.store(out_ptr0 + (r3 + 16 * x0), tmp15, xmask)
tl.debug_barrier()
tl.store(in_out_ptr0 + x0, tmp22, xmask)
@triton.jit
def triton_poi_fused_relu_8(in_out_ptr0, in_ptr0, xnumel, XBLOCK: tl.constexpr
):
xnumel = 256
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x2 = xindex
x0 = xindex % 64
tmp0 = tl.load(in_out_ptr0 + x2, xmask)
tmp1 = tl.load(in_ptr0 + x0, xmask, eviction_policy='evict_last')
tmp2 = tmp0 + tmp1
tmp3 = tl.full([1], 0, tl.int32)
tmp4 = triton_helpers.maximum(tmp3, tmp2)
tl.store(in_out_ptr0 + x2, tmp4, xmask)
def call(args):
(primals_1, primals_2, primals_3, primals_4, primals_5, primals_6,
primals_7, primals_8, primals_9, primals_10, primals_11, primals_12,
primals_13) = args
args.clear()
assert_size_stride(primals_1, (16, 3, 3, 3), (27, 9, 3, 1))
assert_size_stride(primals_2, (16,), (1,))
assert_size_stride(primals_3, (4, 3, 64, 64), (12288, 4096, 64, 1))
assert_size_stride(primals_4, (32, 16, 3, 3), (144, 9, 3, 1))
assert_size_stride(primals_5, (32,), (1,))
assert_size_stride(primals_6, (64, 32, 3, 3), (288, 9, 3, 1))
assert_size_stride(primals_7, (64,), (1,))
assert_size_stride(primals_8, (64, 64, 3, 3), (576, 9, 3, 1))
assert_size_stride(primals_9, (64,), (1,))
assert_size_stride(primals_10, (64, 64), (64, 1))
assert_size_stride(primals_11, (64,), (1,))
assert_size_stride(primals_12, (64, 64), (64, 1))
assert_size_stride(primals_13, (64,), (1,))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = extern_kernels.convolution(primals_3, primals_1, stride=(1,
1), padding=(1, 1), dilation=(1, 1), transposed=False,
output_padding=(0, 0), groups=1, bias=None)
assert_size_stride(buf0, (4, 16, 64, 64), (65536, 4096, 64, 1))
buf1 = buf0
del buf0
get_raw_stream(0)
triton_poi_fused_convolution_relu_0[grid(262144)](buf1, primals_2,
262144, XBLOCK=1024, num_warps=4, num_stages=1)
del primals_2
buf2 = empty_strided_cuda((4, 16, 32, 32), (16384, 1024, 32, 1),
torch.float32)
buf3 = empty_strided_cuda((4, 16, 32, 32), (16384, 1024, 32, 1),
torch.int8)
triton_poi_fused_max_pool2d_with_indices_1[grid(65536)](buf1, buf2,
buf3, 65536, XBLOCK=256, num_warps=4, num_stages=1)
buf4 = extern_kernels.convolution(buf2, primals_4, stride=(1, 1),
padding=(1, 1), dilation=(1, 1), transposed=False,
output_padding=(0, 0), groups=1, bias=None)
assert_size_stride(buf4, (4, 32, 32, 32), (32768, 1024, 32, 1))
buf5 = buf4
del buf4
triton_poi_fused_convolution_relu_2[grid(131072)](buf5, primals_5,
131072, XBLOCK=512, num_warps=8, num_stages=1)
del primals_5
buf6 = empty_strided_cuda((4, 32, 16, 16), (8192, 256, 16, 1),
torch.float32)
buf7 = empty_strided_cuda((4, 32, 16, 16), (8192, 256, 16, 1),
torch.int8)
triton_poi_fused_max_pool2d_with_indices_3[grid(32768)](buf5, buf6,
buf7, 32768, XBLOCK=256, num_warps=4, num_stages=1)
buf8 = extern_kernels.convolution(buf6, primals_6, stride=(1, 1),
padding=(1, 1), dilation=(1, 1), transposed=False,
output_padding=(0, 0), groups=1, bias=None)
assert_size_stride(buf8, (4, 64, 16, 16), (16384, 256, 16, 1))
buf9 = buf8
del buf8
triton_poi_fused_convolution_relu_4[grid(65536)](buf9, primals_7,
65536, XBLOCK=512, num_warps=4, num_stages=1)
del primals_7
buf10 = empty_strided_cuda((4, 64, 8, 8), (4096, 64, 8, 1), torch.
float32)
buf11 = empty_strided_cuda((4, 64, 8, 8), (4096, 64, 8, 1), torch.int8)
triton_poi_fused_max_pool2d_with_indices_5[grid(16384)](buf9, buf10,
buf11, 16384, XBLOCK=256, num_warps=4, num_stages=1)
buf12 = extern_kernels.convolution(buf10, primals_8, stride=(1, 1),
padding=(1, 1), dilation=(1, 1), transposed=False,
output_padding=(0, 0), groups=1, bias=None)
assert_size_stride(buf12, (4, 64, 8, 8), (4096, 64, 8, 1))
buf13 = buf12
del buf12
triton_poi_fused_convolution_relu_6[grid(16384)](buf13, primals_9,
16384, XBLOCK=256, num_warps=4, num_stages=1)
del primals_9
buf14 = empty_strided_cuda((4, 64, 4, 4), (1024, 16, 4, 1), torch.int8)
buf15 = empty_strided_cuda((4, 64), (64, 1), torch.float32)
buf16 = buf15
del buf15
triton_per_fused_max_pool2d_with_indices_mean_7[grid(256)](buf16,
buf13, buf14, 256, 16, XBLOCK=8, num_warps=2, num_stages=1)
buf17 = empty_strided_cuda((4, 64), (64, 1), torch.float32)
extern_kernels.mm(buf16, reinterpret_tensor(primals_10, (64, 64), (
1, 64), 0), out=buf17)
buf18 = buf17
del buf17
triton_poi_fused_relu_8[grid(256)](buf18, primals_11, 256, XBLOCK=
128, num_warps=4, num_stages=1)
del primals_11
buf19 = empty_strided_cuda((4, 64), (64, 1), torch.float32)
extern_kernels.addmm(primals_13, buf18, reinterpret_tensor(
primals_12, (64, 64), (1, 64), 0), alpha=1, beta=1, out=buf19)
del primals_13
return (buf16, buf19, primals_1, primals_3, primals_4, primals_6,
primals_8, buf1, buf2, buf3, buf5, buf6, buf7, buf9, buf10, buf11,
buf13, buf14, buf16, buf18, primals_12, primals_10)
class EncoderNew(nn.Module):
def __init__(self, out_dim=64):
super(EncoderNew, self).__init__()
self.conv1 = nn.Conv2d(3, 16, kernel_size=3, stride=1, padding=1)
self.conv2 = nn.Conv2d(16, 32, kernel_size=3, stride=1, padding=1)
self.conv3 = nn.Conv2d(32, 64, kernel_size=3, stride=1, padding=1)
self.conv4 = nn.Conv2d(64, 64, kernel_size=3, stride=1, padding=1)
self.pool = nn.MaxPool2d(2, 2)
self.l1 = nn.Linear(64, 64)
self.l2 = nn.Linear(64, out_dim)
def forward(self, input_0):
primals_1 = self.conv1.weight
primals_2 = self.conv1.bias
primals_4 = self.conv2.weight
primals_5 = self.conv2.bias
primals_6 = self.conv3.weight
primals_7 = self.conv3.bias
primals_8 = self.conv4.weight
primals_9 = self.conv4.bias
primals_10 = self.l1.weight
primals_11 = self.l1.bias
primals_12 = self.l2.weight
primals_13 = self.l2.bias
primals_3 = input_0
output = call([primals_1, primals_2, primals_3, primals_4,
primals_5, primals_6, primals_7, primals_8, primals_9,
primals_10, primals_11, primals_12, primals_13])
return output[0], output[1]
|
JanSoltysik/SimCLR
|
Encoder
| false | 11,553 |
[
"MIT"
] | 0 |
34ea6d17a630382b65a00aa445d82876754ee679
|
https://github.com/JanSoltysik/SimCLR/tree/34ea6d17a630382b65a00aa445d82876754ee679
|
RPNHead
|
# AOT ID: ['0_forward']
from ctypes import c_void_p, c_long, c_int
import torch
import math
import random
import os
import tempfile
from math import inf, nan
from torch._inductor.hooks import run_intermediate_hooks
from torch._inductor.utils import maybe_profile
from torch._inductor.codegen.memory_planning import _align as align
from torch import device, empty_strided
from torch._inductor.async_compile import AsyncCompile
from torch._inductor.select_algorithm import extern_kernels
from torch._inductor.codegen.multi_kernel import MultiKernelCall
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
aten = torch.ops.aten
inductor_ops = torch.ops.inductor
_quantized = torch.ops._quantized
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
alloc_from_pool = torch.ops.inductor._alloc_from_pool
async_compile = AsyncCompile()
# kernel path: runs/run_shard_4/inductor_cache/td/ctdybbibnws4d7ukbk3fpn35zkgapxylowdhzwx7vgsllncbdrxa.py
# Topologically Sorted Source Nodes: [conv2d, x], Original ATen: [aten.convolution, aten.relu]
# Source node to ATen node mapping:
# conv2d => convolution
# x => relu
# Graph fragment:
# %convolution : [num_users=1] = call_function[target=torch.ops.aten.convolution.default](args = (%primals_3, %primals_1, %primals_2, [1, 1], [1, 1], [1, 1], False, [0, 0], 1), kwargs = {})
# %relu : [num_users=3] = call_function[target=torch.ops.aten.relu.default](args = (%convolution,), kwargs = {})
triton_poi_fused_convolution_relu_0 = async_compile.triton('triton_poi_fused_convolution_relu_0', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[256],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_convolution_relu_0', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_convolution_relu_0(in_out_ptr0, in_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 256
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x3 = xindex
x1 = (xindex // 16) % 4
tmp0 = tl.load(in_out_ptr0 + (x3), xmask)
tmp1 = tl.load(in_ptr0 + (x1), xmask, eviction_policy='evict_last')
tmp2 = tmp0 + tmp1
tmp3 = tl.full([1], 0, tl.int32)
tmp4 = triton_helpers.maximum(tmp3, tmp2)
tl.store(in_out_ptr0 + (x3), tmp4, xmask)
''', device_str='cuda')
# kernel path: runs/run_shard_4/inductor_cache/32/c32v7egt4mupqssam3gmac2qgv3ujprjybthsgweflmot256qqw7.py
# Topologically Sorted Source Nodes: [logits], Original ATen: [aten.convolution]
# Source node to ATen node mapping:
# logits => convolution_1
# Graph fragment:
# %convolution_1 : [num_users=1] = call_function[target=torch.ops.aten.convolution.default](args = (%relu, %primals_4, %primals_5, [1, 1], [0, 0], [1, 1], False, [0, 0], 1), kwargs = {})
triton_poi_fused_convolution_1 = async_compile.triton('triton_poi_fused_convolution_1', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[256],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_convolution_1', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_convolution_1(in_out_ptr0, in_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 256
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x3 = xindex
x1 = (xindex // 16) % 4
tmp0 = tl.load(in_out_ptr0 + (x3), xmask)
tmp1 = tl.load(in_ptr0 + (x1), xmask, eviction_policy='evict_last')
tmp2 = tmp0 + tmp1
tl.store(in_out_ptr0 + (x3), tmp2, xmask)
''', device_str='cuda')
# kernel path: runs/run_shard_4/inductor_cache/ce/cce4eqfnjrkjabnwsgsb2usrigptngwve65kohgxy7tghysxb3yw.py
# Topologically Sorted Source Nodes: [bbox_reg], Original ATen: [aten.convolution]
# Source node to ATen node mapping:
# bbox_reg => convolution_2
# Graph fragment:
# %convolution_2 : [num_users=1] = call_function[target=torch.ops.aten.convolution.default](args = (%relu, %primals_6, %primals_7, [1, 1], [0, 0], [1, 1], False, [0, 0], 1), kwargs = {})
triton_poi_fused_convolution_2 = async_compile.triton('triton_poi_fused_convolution_2', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[1024],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_convolution_2', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_convolution_2(in_out_ptr0, in_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 1024
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x3 = xindex
x1 = (xindex // 16) % 16
tmp0 = tl.load(in_out_ptr0 + (x3), xmask)
tmp1 = tl.load(in_ptr0 + (x1), xmask, eviction_policy='evict_last')
tmp2 = tmp0 + tmp1
tl.store(in_out_ptr0 + (x3), tmp2, xmask)
''', device_str='cuda')
async_compile.wait(globals())
del async_compile
def call(args):
primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7 = args
args.clear()
assert_size_stride(primals_1, (4, 4, 3, 3), (36, 9, 3, 1))
assert_size_stride(primals_2, (4, ), (1, ))
assert_size_stride(primals_3, (4, 4, 4, 4), (64, 16, 4, 1))
assert_size_stride(primals_4, (4, 4, 1, 1), (4, 1, 1, 1))
assert_size_stride(primals_5, (4, ), (1, ))
assert_size_stride(primals_6, (16, 4, 1, 1), (4, 1, 1, 1))
assert_size_stride(primals_7, (16, ), (1, ))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
# Topologically Sorted Source Nodes: [conv2d], Original ATen: [aten.convolution]
buf0 = extern_kernels.convolution(primals_3, primals_1, stride=(1, 1), padding=(1, 1), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None)
assert_size_stride(buf0, (4, 4, 4, 4), (64, 16, 4, 1))
buf1 = buf0; del buf0 # reuse
# Topologically Sorted Source Nodes: [conv2d, x], Original ATen: [aten.convolution, aten.relu]
stream0 = get_raw_stream(0)
triton_poi_fused_convolution_relu_0.run(buf1, primals_2, 256, grid=grid(256), stream=stream0)
del primals_2
# Topologically Sorted Source Nodes: [logits], Original ATen: [aten.convolution]
buf2 = extern_kernels.convolution(buf1, primals_4, stride=(1, 1), padding=(0, 0), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None)
assert_size_stride(buf2, (4, 4, 4, 4), (64, 16, 4, 1))
buf3 = buf2; del buf2 # reuse
# Topologically Sorted Source Nodes: [logits], Original ATen: [aten.convolution]
triton_poi_fused_convolution_1.run(buf3, primals_5, 256, grid=grid(256), stream=stream0)
del primals_5
# Topologically Sorted Source Nodes: [bbox_reg], Original ATen: [aten.convolution]
buf4 = extern_kernels.convolution(buf1, primals_6, stride=(1, 1), padding=(0, 0), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None)
assert_size_stride(buf4, (4, 16, 4, 4), (256, 16, 4, 1))
buf5 = buf4; del buf4 # reuse
# Topologically Sorted Source Nodes: [bbox_reg], Original ATen: [aten.convolution]
triton_poi_fused_convolution_2.run(buf5, primals_7, 1024, grid=grid(1024), stream=stream0)
del primals_7
return (buf3, buf5, primals_1, primals_3, primals_4, primals_6, buf1, )
def benchmark_compiled_module(times=10, repeat=10):
from torch._dynamo.testing import rand_strided
from torch._inductor.utils import print_performance
primals_1 = rand_strided((4, 4, 3, 3), (36, 9, 3, 1), device='cuda:0', dtype=torch.float32)
primals_2 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32)
primals_3 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32)
primals_4 = rand_strided((4, 4, 1, 1), (4, 1, 1, 1), device='cuda:0', dtype=torch.float32)
primals_5 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32)
primals_6 = rand_strided((16, 4, 1, 1), (4, 1, 1, 1), device='cuda:0', dtype=torch.float32)
primals_7 = rand_strided((16, ), (1, ), device='cuda:0', dtype=torch.float32)
fn = lambda: call([primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7])
return print_performance(fn, times=times, repeat=repeat)
if __name__ == "__main__":
from torch._inductor.wrapper_benchmark import compiled_module_main
compiled_module_main('None', benchmark_compiled_module)
|
import torch
from torch._inductor.select_algorithm import extern_kernels
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
from torch._inductor.runtime import triton_helpers
from torch import nn
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
@triton.jit
def triton_poi_fused_convolution_relu_0(in_out_ptr0, in_ptr0, xnumel,
XBLOCK: tl.constexpr):
xnumel = 256
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x3 = xindex
x1 = xindex // 16 % 4
tmp0 = tl.load(in_out_ptr0 + x3, xmask)
tmp1 = tl.load(in_ptr0 + x1, xmask, eviction_policy='evict_last')
tmp2 = tmp0 + tmp1
tmp3 = tl.full([1], 0, tl.int32)
tmp4 = triton_helpers.maximum(tmp3, tmp2)
tl.store(in_out_ptr0 + x3, tmp4, xmask)
@triton.jit
def triton_poi_fused_convolution_1(in_out_ptr0, in_ptr0, xnumel, XBLOCK: tl
.constexpr):
xnumel = 256
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x3 = xindex
x1 = xindex // 16 % 4
tmp0 = tl.load(in_out_ptr0 + x3, xmask)
tmp1 = tl.load(in_ptr0 + x1, xmask, eviction_policy='evict_last')
tmp2 = tmp0 + tmp1
tl.store(in_out_ptr0 + x3, tmp2, xmask)
@triton.jit
def triton_poi_fused_convolution_2(in_out_ptr0, in_ptr0, xnumel, XBLOCK: tl
.constexpr):
xnumel = 1024
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x3 = xindex
x1 = xindex // 16 % 16
tmp0 = tl.load(in_out_ptr0 + x3, xmask)
tmp1 = tl.load(in_ptr0 + x1, xmask, eviction_policy='evict_last')
tmp2 = tmp0 + tmp1
tl.store(in_out_ptr0 + x3, tmp2, xmask)
def call(args):
(primals_1, primals_2, primals_3, primals_4, primals_5, primals_6,
primals_7) = args
args.clear()
assert_size_stride(primals_1, (4, 4, 3, 3), (36, 9, 3, 1))
assert_size_stride(primals_2, (4,), (1,))
assert_size_stride(primals_3, (4, 4, 4, 4), (64, 16, 4, 1))
assert_size_stride(primals_4, (4, 4, 1, 1), (4, 1, 1, 1))
assert_size_stride(primals_5, (4,), (1,))
assert_size_stride(primals_6, (16, 4, 1, 1), (4, 1, 1, 1))
assert_size_stride(primals_7, (16,), (1,))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = extern_kernels.convolution(primals_3, primals_1, stride=(1,
1), padding=(1, 1), dilation=(1, 1), transposed=False,
output_padding=(0, 0), groups=1, bias=None)
assert_size_stride(buf0, (4, 4, 4, 4), (64, 16, 4, 1))
buf1 = buf0
del buf0
get_raw_stream(0)
triton_poi_fused_convolution_relu_0[grid(256)](buf1, primals_2, 256,
XBLOCK=128, num_warps=4, num_stages=1)
del primals_2
buf2 = extern_kernels.convolution(buf1, primals_4, stride=(1, 1),
padding=(0, 0), dilation=(1, 1), transposed=False,
output_padding=(0, 0), groups=1, bias=None)
assert_size_stride(buf2, (4, 4, 4, 4), (64, 16, 4, 1))
buf3 = buf2
del buf2
triton_poi_fused_convolution_1[grid(256)](buf3, primals_5, 256,
XBLOCK=256, num_warps=4, num_stages=1)
del primals_5
buf4 = extern_kernels.convolution(buf1, primals_6, stride=(1, 1),
padding=(0, 0), dilation=(1, 1), transposed=False,
output_padding=(0, 0), groups=1, bias=None)
assert_size_stride(buf4, (4, 16, 4, 4), (256, 16, 4, 1))
buf5 = buf4
del buf4
triton_poi_fused_convolution_2[grid(1024)](buf5, primals_7, 1024,
XBLOCK=256, num_warps=4, num_stages=1)
del primals_7
return buf3, buf5, primals_1, primals_3, primals_4, primals_6, buf1
class RPNHeadNew(nn.Module):
def __init__(self, in_channels, num_anchors):
super().__init__()
self.conv = nn.Conv2d(in_channels, in_channels, 3, 1, 1)
self.cls_logits = nn.Conv2d(in_channels, num_anchors, 1)
self.bbox_pred = nn.Conv2d(in_channels, 4 * num_anchors, 1)
for l in self.children():
nn.init.normal_(l.weight, std=0.01)
nn.init.constant_(l.bias, 0)
def forward(self, input_0):
primals_1 = self.conv.weight
primals_2 = self.conv.bias
primals_4 = self.cls_logits.weight
primals_5 = self.cls_logits.bias
primals_6 = self.bbox_pred.weight
primals_7 = self.bbox_pred.bias
primals_3 = input_0
output = call([primals_1, primals_2, primals_3, primals_4,
primals_5, primals_6, primals_7])
return output[0], output[1]
|
Jaramies/PyTorch-Simple-MaskRCNN
|
RPNHead
| false | 5,371 |
[
"MIT"
] | 1 |
21e6c6983b34061800280573ebe705ae17212972
|
https://github.com/Jaramies/PyTorch-Simple-MaskRCNN/tree/21e6c6983b34061800280573ebe705ae17212972
|
PixelShuffle
|
# AOT ID: ['0_inference']
from ctypes import c_void_p, c_long, c_int
import torch
import math
import random
import os
import tempfile
from math import inf, nan
from torch._inductor.hooks import run_intermediate_hooks
from torch._inductor.utils import maybe_profile
from torch._inductor.codegen.memory_planning import _align as align
from torch import device, empty_strided
from torch._inductor.async_compile import AsyncCompile
from torch._inductor.select_algorithm import extern_kernels
from torch._inductor.codegen.multi_kernel import MultiKernelCall
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
aten = torch.ops.aten
inductor_ops = torch.ops.inductor
_quantized = torch.ops._quantized
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
alloc_from_pool = torch.ops.inductor._alloc_from_pool
async_compile = AsyncCompile()
# kernel path: runs/run_shard_7/inductor_cache/hd/chdczdfwoeph362wur27ffhsorgcehnjtoyqyws4eeeneunwakso.py
# Topologically Sorted Source Nodes: [x_2], Original ATen: [aten.clone]
# Source node to ATen node mapping:
# x_2 => clone
# Graph fragment:
# %clone : [num_users=1] = call_function[target=torch.ops.aten.clone.default](args = (%permute,), kwargs = {memory_format: torch.contiguous_format})
triton_poi_fused_clone_0 = async_compile.triton('triton_poi_fused_clone_0', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[128, 2], tile_hint=TileHint.SQUARE,
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_clone_0', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 1, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_clone_0(in_ptr0, out_ptr0, ynumel, xnumel, YBLOCK : tl.constexpr, XBLOCK : tl.constexpr):
ynumel = 128
xnumel = 2
yoffset = tl.program_id(1) * YBLOCK
yindex = yoffset + tl.arange(0, YBLOCK)[None, :]
ymask = yindex < ynumel
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:, None]
xmask = xindex < xnumel
x4 = xindex
y0 = yindex % 4
y1 = (yindex // 4) % 2
y2 = (yindex // 8) % 4
y3 = (yindex // 32)
y5 = yindex
tmp0 = tl.load(in_ptr0 + (y0 + (4*y2) + (16*x4) + (32*y1) + (64*y3)), xmask & ymask, eviction_policy='evict_last')
tl.store(out_ptr0 + (x4 + (2*y5)), tmp0, xmask & ymask)
''', device_str='cuda')
async_compile.wait(globals())
del async_compile
def call(args):
arg0_1, = args
args.clear()
assert_size_stride(arg0_1, (4, 4, 4, 4), (64, 16, 4, 1))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((4, 1, 4, 2, 4, 2), (64, 64, 16, 8, 2, 1), torch.float32)
# Topologically Sorted Source Nodes: [x_2], Original ATen: [aten.clone]
stream0 = get_raw_stream(0)
triton_poi_fused_clone_0.run(arg0_1, buf0, 128, 2, grid=grid(128, 2), stream=stream0)
del arg0_1
return (reinterpret_tensor(buf0, (4, 1, 8, 8), (64, 64, 8, 1), 0), )
def benchmark_compiled_module(times=10, repeat=10):
from torch._dynamo.testing import rand_strided
from torch._inductor.utils import print_performance
arg0_1 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32)
fn = lambda: call([arg0_1])
return print_performance(fn, times=times, repeat=repeat)
if __name__ == "__main__":
from torch._inductor.wrapper_benchmark import compiled_module_main
compiled_module_main('None', benchmark_compiled_module)
|
import torch
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
import torch.nn as nn
import torch.nn.parallel
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
@triton.jit
def triton_poi_fused_clone_0(in_ptr0, out_ptr0, ynumel, xnumel, YBLOCK: tl.
constexpr, XBLOCK: tl.constexpr):
ynumel = 128
xnumel = 2
yoffset = tl.program_id(1) * YBLOCK
yindex = yoffset + tl.arange(0, YBLOCK)[None, :]
ymask = yindex < ynumel
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:, None]
xmask = xindex < xnumel
x4 = xindex
y0 = yindex % 4
y1 = yindex // 4 % 2
y2 = yindex // 8 % 4
y3 = yindex // 32
y5 = yindex
tmp0 = tl.load(in_ptr0 + (y0 + 4 * y2 + 16 * x4 + 32 * y1 + 64 * y3),
xmask & ymask, eviction_policy='evict_last')
tl.store(out_ptr0 + (x4 + 2 * y5), tmp0, xmask & ymask)
def call(args):
arg0_1, = args
args.clear()
assert_size_stride(arg0_1, (4, 4, 4, 4), (64, 16, 4, 1))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((4, 1, 4, 2, 4, 2), (64, 64, 16, 8, 2, 1),
torch.float32)
get_raw_stream(0)
triton_poi_fused_clone_0[grid(128, 2)](arg0_1, buf0, 128, 2, XBLOCK
=2, YBLOCK=64, num_warps=4, num_stages=1)
del arg0_1
return reinterpret_tensor(buf0, (4, 1, 8, 8), (64, 64, 8, 1), 0),
class PixelShuffleNew(nn.Module):
def __init__(self, ry=2, rx=2):
super().__init__()
self.ry = ry
self.rx = rx
def forward(self, input_0):
arg0_1 = input_0
output = call([arg0_1])
return output[0]
|
LonglifeHyun/GANda_text-to-image
|
PixelShuffle
| false | 2,567 |
[
"MIT"
] | 0 |
095ded617e4df7d7ff7f4954381dde77db6d6883
|
https://github.com/LonglifeHyun/GANda_text-to-image/tree/095ded617e4df7d7ff7f4954381dde77db6d6883
|
ResidualBlock
|
import torch
import torch.nn as nn
class ResidualBlock(nn.Module):
def __init__(self, in_channels, out_channels):
super().__init__()
self.in_channels, self.out_channels = in_channels, out_channels
self.blocks = nn.Identity()
self.shortcut = nn.Identity()
def forward(self, x):
residual = x
if self.apply_shortcut:
residual = self.shortcut(x)
x = self.blocks(x)
x += residual
return x
@property
def apply_shortcut(self):
return self.in_channels != self.out_channels
def get_inputs():
return [torch.rand([4, 4, 4, 4])]
def get_init_inputs():
return [[], {'in_channels': 4, 'out_channels': 4}]
|
import torch
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
import torch.nn as nn
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
@triton.jit
def triton_poi_fused_add_0(in_ptr0, out_ptr1, xnumel, XBLOCK: tl.constexpr):
xnumel = 256
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex
tmp0 = tl.load(in_ptr0 + x0, xmask)
tmp1 = tmp0 + tmp0
tl.store(out_ptr1 + x0, tmp1, xmask)
def call(args):
arg0_1, = args
args.clear()
assert_size_stride(arg0_1, (4, 4, 4, 4), (64, 16, 4, 1))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
get_raw_stream(0)
triton_poi_fused_add_0[grid(256)](arg0_1, arg0_1, 256, XBLOCK=128,
num_warps=4, num_stages=1)
return arg0_1,
class ResidualBlockNew(nn.Module):
def __init__(self, in_channels, out_channels):
super().__init__()
self.in_channels, self.out_channels = in_channels, out_channels
self.blocks = nn.Identity()
self.shortcut = nn.Identity()
@property
def apply_shortcut(self):
return self.in_channels != self.out_channels
def forward(self, input_0):
arg0_1 = input_0
output = call([arg0_1])
return output[0]
|
Rachneet/amc-app
|
ResidualBlock
| false | 11,796 |
[
"MIT"
] | 0 |
20b586608d454a3033333e285f0dbc91e5c6e07f
|
https://github.com/Rachneet/amc-app/tree/20b586608d454a3033333e285f0dbc91e5c6e07f
|
PairwiseCrossCorrelation
|
import torch
from torch import nn
class PairwiseCrossCorrelation(nn.Module):
def __init__(self, lambd=1):
super().__init__()
self.lambd = lambd
def off_diagonal(self, x):
n, m = x.shape
assert n == m
return x.flatten()[:-1].view(n - 1, n + 1)[:, 1:].flatten()
def forward(self, inp, target=None):
inp = inp.flatten(1)
assert len(inp) % 2 == 0
samples1, samples2 = inp[::2], inp[1::2]
c = samples1.T @ samples2
on_diag = torch.diagonal(c).add_(-1)
on_diag = torch.pow(on_diag, 2).sum()
off_diag = self.off_diagonal(c)
off_diag = torch.pow(off_diag, 2).sum()
loss = on_diag + self.lambd * off_diag
loss = loss / len(c) ** 2
return loss
def get_inputs():
return [torch.rand([4, 4, 4, 4])]
def get_init_inputs():
return [[], {}]
|
import torch
from torch._inductor.select_algorithm import extern_kernels
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
from torch import nn
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
@triton.jit
def triton_per_fused_add_pow_sum_0(in_ptr0, out_ptr1, out_ptr2, xnumel,
rnumel, XBLOCK: tl.constexpr):
RBLOCK: tl.constexpr = 64
xoffset = tl.program_id(0) * XBLOCK
xoffset + tl.arange(0, XBLOCK)[:, None]
tl.full([XBLOCK, RBLOCK], True, tl.int1)
rindex = tl.arange(0, RBLOCK)[None, :]
tl.full([XBLOCK, RBLOCK], True, tl.int1)
r0 = rindex
tmp0 = tl.load(in_ptr0 + 65 * r0, None, eviction_policy='evict_last')
tmp1 = -1.0
tmp2 = tmp0 + tmp1
tmp3 = tmp2 * tmp2
tmp4 = tl.broadcast_to(tmp3, [XBLOCK, RBLOCK])
tmp6 = tl.sum(tmp4, 1)[:, None]
tl.store(out_ptr1 + tl.broadcast_to(65 * r0, [XBLOCK, RBLOCK]), tmp2, None)
tl.store(out_ptr2 + tl.full([XBLOCK, 1], 0, tl.int32), tmp6, None)
@triton.jit
def triton_red_fused_add_div_mul_pow_sum_1(in_out_ptr0, in_ptr0, xnumel,
rnumel, XBLOCK: tl.constexpr, RBLOCK: tl.constexpr):
rnumel = 4032
xoffset = tl.program_id(0) * XBLOCK
xoffset + tl.arange(0, XBLOCK)[:, None]
tl.full([XBLOCK, RBLOCK], True, tl.int1)
rbase = tl.arange(0, RBLOCK)[None, :]
_tmp3 = tl.full([XBLOCK, RBLOCK], 0, tl.float32)
for roffset in range(0, rnumel, RBLOCK):
rindex = roffset + rbase
rmask = rindex < rnumel
r0 = rindex
tmp0 = tl.load(in_ptr0 + (1 + 65 * (r0 // 64) + r0 % 64), rmask,
eviction_policy='evict_first', other=0.0)
tmp1 = tmp0 * tmp0
tmp2 = tl.broadcast_to(tmp1, [XBLOCK, RBLOCK])
tmp4 = _tmp3 + tmp2
_tmp3 = tl.where(rmask, tmp4, _tmp3)
tmp3 = tl.sum(_tmp3, 1)[:, None]
tmp5 = tl.load(in_out_ptr0 + 0)
tmp6 = tl.broadcast_to(tmp5, [XBLOCK, 1])
tmp7 = 1.0
tmp8 = tmp3 * tmp7
tmp9 = tmp6 + tmp8
tmp10 = 0.000244140625
tmp11 = tmp9 * tmp10
tl.debug_barrier()
tl.store(in_out_ptr0 + tl.full([XBLOCK, 1], 0, tl.int32), tmp11, None)
def call(args):
arg0_1, = args
args.clear()
assert_size_stride(arg0_1, (4, 4, 4, 4), (64, 16, 4, 1))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((64, 64), (64, 1), torch.float32)
extern_kernels.mm(reinterpret_tensor(arg0_1, (64, 2), (1, 128), 0),
reinterpret_tensor(arg0_1, (2, 64), (128, 1), 64), out=buf0)
del arg0_1
buf3 = empty_strided_cuda((), (), torch.float32)
get_raw_stream(0)
triton_per_fused_add_pow_sum_0[grid(1)](buf0, buf0, buf3, 1, 64,
XBLOCK=1, num_warps=2, num_stages=1)
buf5 = buf3
del buf3
triton_red_fused_add_div_mul_pow_sum_1[grid(1)](buf5, buf0, 1, 4032,
XBLOCK=1, RBLOCK=2048, num_warps=16, num_stages=1)
del buf0
return buf5,
class PairwiseCrossCorrelationNew(nn.Module):
def __init__(self, lambd=1):
super().__init__()
self.lambd = lambd
def off_diagonal(self, x):
n, m = x.shape
assert n == m
return x.flatten()[:-1].view(n - 1, n + 1)[:, 1:].flatten()
def forward(self, input_0):
arg0_1 = input_0
output = call([arg0_1])
return output[0]
|
vzinche/inferno
|
PairwiseCrossCorrelation
| false | 4,512 |
[
"Apache-2.0"
] | 0 |
91b22dfcd1b6a9ec415f0bbb6ae66caea42f4034
|
https://github.com/vzinche/inferno/tree/91b22dfcd1b6a9ec415f0bbb6ae66caea42f4034
|
SVIGlobalMaxPool2D
|
import torch
import torch.nn as nn
class SVIGlobalMaxPool2D(nn.Module):
"""
Expects
:param x: [examples, samples, channels, H, W]
:return: [examples, samples, channels]
"""
def __init__(self):
super(SVIGlobalMaxPool2D, self).__init__()
def forward(self, x):
x = x.max(4)[0].max(3)[0]
return x
def get_inputs():
return [torch.rand([4, 4, 4, 4, 4])]
def get_init_inputs():
return [[], {}]
|
import torch
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
from torch._inductor.runtime import triton_helpers
import torch.nn as nn
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
@triton.jit
def triton_poi_fused_max_0(in_ptr0, out_ptr0, xnumel, XBLOCK: tl.constexpr):
xnumel = 64
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex
tmp0 = tl.load(in_ptr0 + 16 * x0, xmask, eviction_policy='evict_last')
tmp1 = tl.load(in_ptr0 + (1 + 16 * x0), xmask, eviction_policy='evict_last'
)
tmp3 = tl.load(in_ptr0 + (2 + 16 * x0), xmask, eviction_policy='evict_last'
)
tmp5 = tl.load(in_ptr0 + (3 + 16 * x0), xmask, eviction_policy='evict_last'
)
tmp7 = tl.load(in_ptr0 + (4 + 16 * x0), xmask, eviction_policy='evict_last'
)
tmp8 = tl.load(in_ptr0 + (5 + 16 * x0), xmask, eviction_policy='evict_last'
)
tmp10 = tl.load(in_ptr0 + (6 + 16 * x0), xmask, eviction_policy=
'evict_last')
tmp12 = tl.load(in_ptr0 + (7 + 16 * x0), xmask, eviction_policy=
'evict_last')
tmp15 = tl.load(in_ptr0 + (8 + 16 * x0), xmask, eviction_policy=
'evict_last')
tmp16 = tl.load(in_ptr0 + (9 + 16 * x0), xmask, eviction_policy=
'evict_last')
tmp18 = tl.load(in_ptr0 + (10 + 16 * x0), xmask, eviction_policy=
'evict_last')
tmp20 = tl.load(in_ptr0 + (11 + 16 * x0), xmask, eviction_policy=
'evict_last')
tmp23 = tl.load(in_ptr0 + (12 + 16 * x0), xmask, eviction_policy=
'evict_last')
tmp24 = tl.load(in_ptr0 + (13 + 16 * x0), xmask, eviction_policy=
'evict_last')
tmp26 = tl.load(in_ptr0 + (14 + 16 * x0), xmask, eviction_policy=
'evict_last')
tmp28 = tl.load(in_ptr0 + (15 + 16 * x0), xmask, eviction_policy=
'evict_last')
tmp2 = triton_helpers.maximum(tmp0, tmp1)
tmp4 = triton_helpers.maximum(tmp2, tmp3)
tmp6 = triton_helpers.maximum(tmp4, tmp5)
tmp9 = triton_helpers.maximum(tmp7, tmp8)
tmp11 = triton_helpers.maximum(tmp9, tmp10)
tmp13 = triton_helpers.maximum(tmp11, tmp12)
tmp14 = triton_helpers.maximum(tmp6, tmp13)
tmp17 = triton_helpers.maximum(tmp15, tmp16)
tmp19 = triton_helpers.maximum(tmp17, tmp18)
tmp21 = triton_helpers.maximum(tmp19, tmp20)
tmp22 = triton_helpers.maximum(tmp14, tmp21)
tmp25 = triton_helpers.maximum(tmp23, tmp24)
tmp27 = triton_helpers.maximum(tmp25, tmp26)
tmp29 = triton_helpers.maximum(tmp27, tmp28)
tmp30 = triton_helpers.maximum(tmp22, tmp29)
tl.store(out_ptr0 + x0, tmp30, xmask)
def call(args):
arg0_1, = args
args.clear()
assert_size_stride(arg0_1, (4, 4, 4, 4, 4), (256, 64, 16, 4, 1))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((4, 4, 4), (16, 4, 1), torch.float32)
get_raw_stream(0)
triton_poi_fused_max_0[grid(64)](arg0_1, buf0, 64, XBLOCK=64,
num_warps=1, num_stages=1)
del arg0_1
return buf0,
class SVIGlobalMaxPool2DNew(nn.Module):
"""
Expects
:param x: [examples, samples, channels, H, W]
:return: [examples, samples, channels]
"""
def __init__(self):
super(SVIGlobalMaxPool2DNew, self).__init__()
def forward(self, input_0):
arg0_1 = input_0
output = call([arg0_1])
return output[0]
|
RomanShen/radial-bnn
|
SVIGlobalMaxPool2D
| false | 992 |
[
"Apache-2.0"
] | 0 |
7c8bc85397c1461a6fd5ea9adf0631f9ade27f6c
|
https://github.com/RomanShen/radial-bnn/tree/7c8bc85397c1461a6fd5ea9adf0631f9ade27f6c
|
OneTupleModule
|
import torch
import torch.jit
import torch.onnx
import torch.nn
class OneTupleModule(torch.nn.Module):
def __init__(self):
super(OneTupleModule, self).__init__()
def forward(self, x):
y = 2 * x
return y,
def get_inputs():
return [torch.rand([4, 4, 4, 4])]
def get_init_inputs():
return [[], {}]
|
import torch
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
import torch.jit
import torch.onnx
import torch.nn
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
@triton.jit
def triton_poi_fused_mul_0(in_ptr0, out_ptr0, xnumel, XBLOCK: tl.constexpr):
xnumel = 256
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex
tmp0 = tl.load(in_ptr0 + x0, xmask)
tmp1 = 2.0
tmp2 = tmp0 * tmp1
tl.store(out_ptr0 + x0, tmp2, xmask)
def call(args):
arg0_1, = args
args.clear()
assert_size_stride(arg0_1, (4, 4, 4, 4), (64, 16, 4, 1))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32)
get_raw_stream(0)
triton_poi_fused_mul_0[grid(256)](arg0_1, buf0, 256, XBLOCK=128,
num_warps=4, num_stages=1)
del arg0_1
return buf0,
class OneTupleModuleNew(torch.nn.Module):
def __init__(self):
super(OneTupleModuleNew, self).__init__()
def forward(self, input_0):
arg0_1 = input_0
output = call([arg0_1])
return output[0]
|
opti-mix/glow
|
OneTupleModule
| false | 7,386 |
[
"Apache-2.0"
] | 1 |
4ba074df5da9822986a23a6679ab592c22660f6d
|
https://github.com/opti-mix/glow/tree/4ba074df5da9822986a23a6679ab592c22660f6d
|
SSD300
|
import torch
import torchvision
import torch.nn as nn
import torch.nn.functional as F
from math import sqrt
from itertools import product as product
def decimate(tensor, m):
"""
Decimate a tensor by a factor 'm', i.e. downsample by keeping every 'm'th value.
This is used when we convert FC layers to equivalent Convolutional layers, BUT of a smaller size.
:param tensor: tensor to be decimated
:param m: list of decimation factors for each dimension of the tensor; None if not to be decimated along a dimension
:return: decimated tensor
"""
assert tensor.dim() == len(m)
for d in range(tensor.dim()):
if m[d] is not None:
tensor = tensor.index_select(dim=d, index=torch.arange(start=0,
end=tensor.size(d), step=m[d]).long())
return tensor
def cxcy_to_xywh(cxcy):
"""
Convert bounding boxes from center-size coordinates (c_x, c_y, w, h) to boundary coordinates (x_min, y_min, x_max, y_max).
:param cxcy: bounding boxes in center-size coordinates, a tensor of size (n_boxes, 4)
:return: bounding boxes in boundary coordinates, a tensor of size (n_boxes, 4)
"""
return torch.cat([cxcy[:, :2] - cxcy[:, 2:] / 2, cxcy[:, 2:]], 1)
def gcxgcy_to_cxcy(gcxgcy, priors_cxcy):
"""
Decode bounding box coordinates predicted by the model, since they are encoded in the form mentioned above.
They are decoded into center-size coordinates.
This is the inverse of the function above.
:param gcxgcy: encoded bounding boxes, i.e. output of the model, a tensor of size (n_priors, 4)
:param priors_cxcy: prior boxes with respect to which the encoding is defined, a tensor of size (n_priors, 4)
:return: decoded bounding boxes in center-size form, a tensor of size (n_priors, 4)
"""
return torch.cat([gcxgcy[:, :2] * priors_cxcy[:, 2:] / 10 + priors_cxcy
[:, :2], torch.exp(gcxgcy[:, 2:] / 5) * priors_cxcy[:, 2:]], 1)
class VGGBase(nn.Module):
"""
VGG base convolutions to produce lower-level feature maps.
"""
def __init__(self):
super(VGGBase, self).__init__()
self.conv1_1 = nn.Conv2d(3, 64, kernel_size=3, padding=1)
self.conv1_2 = nn.Conv2d(64, 64, kernel_size=3, padding=1)
self.pool1 = nn.MaxPool2d(kernel_size=2, stride=2)
self.conv2_1 = nn.Conv2d(64, 128, kernel_size=3, padding=1)
self.conv2_2 = nn.Conv2d(128, 128, kernel_size=3, padding=1)
self.pool2 = nn.MaxPool2d(kernel_size=2, stride=2)
self.conv3_1 = nn.Conv2d(128, 256, kernel_size=3, padding=1)
self.conv3_2 = nn.Conv2d(256, 256, kernel_size=3, padding=1)
self.conv3_3 = nn.Conv2d(256, 256, kernel_size=3, padding=1)
self.pool3 = nn.MaxPool2d(kernel_size=2, stride=2, ceil_mode=True)
self.conv4_1 = nn.Conv2d(256, 512, kernel_size=3, padding=1)
self.conv4_2 = nn.Conv2d(512, 512, kernel_size=3, padding=1)
self.conv4_3 = nn.Conv2d(512, 512, kernel_size=3, padding=1)
self.pool4 = nn.MaxPool2d(kernel_size=2, stride=2)
self.conv5_1 = nn.Conv2d(512, 512, kernel_size=3, padding=1)
self.conv5_2 = nn.Conv2d(512, 512, kernel_size=3, padding=1)
self.conv5_3 = nn.Conv2d(512, 512, kernel_size=3, padding=1)
self.pool5 = nn.MaxPool2d(kernel_size=3, stride=1, padding=1)
self.conv6 = nn.Conv2d(512, 1024, kernel_size=3, padding=6, dilation=6)
self.conv7 = nn.Conv2d(1024, 1024, kernel_size=1)
def forward(self, image):
"""
Forward propagation.
:param image: images, a tensor of dimensions (N, 3, 300, 300)
:return: lower-level feature maps conv4_3 and conv7
"""
out = F.relu(self.conv1_1(image))
out = F.relu(self.conv1_2(out))
out = self.pool1(out)
out = F.relu(self.conv2_1(out))
out = F.relu(self.conv2_2(out))
out = self.pool2(out)
out = F.relu(self.conv3_1(out))
out = F.relu(self.conv3_2(out))
out = F.relu(self.conv3_3(out))
out = self.pool3(out)
out = F.relu(self.conv4_1(out))
out = F.relu(self.conv4_2(out))
out = F.relu(self.conv4_3(out))
conv4_3_feats = out
out = self.pool4(out)
out = F.relu(self.conv5_1(out))
out = F.relu(self.conv5_2(out))
out = F.relu(self.conv5_3(out))
out = self.pool5(out)
out = F.relu(self.conv6(out))
conv7_feats = F.relu(self.conv7(out))
return conv4_3_feats, conv7_feats
def load_pretrained_layers(self):
"""
As in the paper, we use a VGG-16 pretrained on the ImageNet task as the base network.
There's one available in PyTorch, see https://pytorch.org/docs/stable/torchvision/models.html#torchvision.models.vgg16
We copy these parameters into our network. It's straightforward for conv1 to conv5.
However, the original VGG-16 does not contain the conv6 and con7 layers.
Therefore, we convert fc6 and fc7 into convolutional layers, and subsample by decimation. See 'decimate' in utils.py.
"""
state_dict = self.state_dict()
param_names = list(state_dict.keys())
pretrained_state_dict = torchvision.models.vgg16(pretrained=True
).state_dict()
pretrained_param_names = list(pretrained_state_dict.keys())
for i, param in enumerate(param_names[:-4]):
state_dict[param] = pretrained_state_dict[pretrained_param_names[i]
]
conv_fc6_weight = pretrained_state_dict['classifier.0.weight'].view(
4096, 512, 7, 7)
conv_fc6_bias = pretrained_state_dict['classifier.0.bias']
state_dict['conv6.weight'] = decimate(conv_fc6_weight, m=[4, None,
3, 3])
state_dict['conv6.bias'] = decimate(conv_fc6_bias, m=[4])
conv_fc7_weight = pretrained_state_dict['classifier.3.weight'].view(
4096, 4096, 1, 1)
conv_fc7_bias = pretrained_state_dict['classifier.3.bias']
state_dict['conv7.weight'] = decimate(conv_fc7_weight, m=[4, 4,
None, None])
state_dict['conv7.bias'] = decimate(conv_fc7_bias, m=[4])
self.load_state_dict(state_dict)
None
class AuxiliaryConvolutions(nn.Module):
"""
Additional convolutions to produce higher-level feature maps.
"""
def __init__(self):
super(AuxiliaryConvolutions, self).__init__()
self.conv8_1 = nn.Conv2d(1024, 256, kernel_size=1, padding=0)
self.conv8_2 = nn.Conv2d(256, 512, kernel_size=3, stride=2, padding=1)
self.conv9_1 = nn.Conv2d(512, 128, kernel_size=1, padding=0)
self.conv9_2 = nn.Conv2d(128, 256, kernel_size=3, stride=2, padding=1)
self.conv10_1 = nn.Conv2d(256, 128, kernel_size=1, padding=0)
self.conv10_2 = nn.Conv2d(128, 256, kernel_size=3, padding=0)
self.conv11_1 = nn.Conv2d(256, 128, kernel_size=1, padding=0)
self.conv11_2 = nn.Conv2d(128, 256, kernel_size=3, padding=0)
self.init_conv2d()
def init_conv2d(self):
"""
Initialize convolution parameters.
"""
for c in self.children():
if isinstance(c, nn.Conv2d):
nn.init.xavier_uniform_(c.weight)
nn.init.constant_(c.bias, 0.0)
def forward(self, conv7_feats):
"""
Forward propagation.
:param conv7_feats: lower-level conv7 feature map, a tensor of dimensions (N, 1024, 19, 19)
:return: higher-level feature maps conv8_2, conv9_2, conv10_2, and conv11_2
"""
out = F.relu(self.conv8_1(conv7_feats))
out = F.relu(self.conv8_2(out))
conv8_2_feats = out
out = F.relu(self.conv9_1(out))
out = F.relu(self.conv9_2(out))
conv9_2_feats = out
out = F.relu(self.conv10_1(out))
out = F.relu(self.conv10_2(out))
conv10_2_feats = out
out = F.relu(self.conv11_1(out))
conv11_2_feats = F.relu(self.conv11_2(out))
return conv8_2_feats, conv9_2_feats, conv10_2_feats, conv11_2_feats
class PredictionConvolutions(nn.Module):
"""
Convolutions to predict class scores and bounding boxes using lower and higher-level feature maps.
The bounding boxes (locations) are predicted as encoded offsets w.r.t each of the 8732 prior (default) boxes.
See 'cxcy_to_gcxgcy' in utils.py for the encoding definition.
The class scores represent the scores of each object class in each of the 8732 bounding boxes located.
A high score for 'background' = no object.
"""
def __init__(self, n_classes):
"""
:param n_classes: number of different types of objects
"""
super(PredictionConvolutions, self).__init__()
self.n_classes = n_classes
n_boxes = {'conv4_3': 4, 'conv7': 6, 'conv8_2': 6, 'conv9_2': 6,
'conv10_2': 4, 'conv11_2': 4}
self.loc_conv4_3 = nn.Conv2d(512, n_boxes['conv4_3'] * 4,
kernel_size=3, padding=1)
self.loc_conv7 = nn.Conv2d(1024, n_boxes['conv7'] * 4, kernel_size=
3, padding=1)
self.loc_conv8_2 = nn.Conv2d(512, n_boxes['conv8_2'] * 4,
kernel_size=3, padding=1)
self.loc_conv9_2 = nn.Conv2d(256, n_boxes['conv9_2'] * 4,
kernel_size=3, padding=1)
self.loc_conv10_2 = nn.Conv2d(256, n_boxes['conv10_2'] * 4,
kernel_size=3, padding=1)
self.loc_conv11_2 = nn.Conv2d(256, n_boxes['conv11_2'] * 4,
kernel_size=3, padding=1)
self.cl_conv4_3 = nn.Conv2d(512, n_boxes['conv4_3'] * n_classes,
kernel_size=3, padding=1)
self.cl_conv7 = nn.Conv2d(1024, n_boxes['conv7'] * n_classes,
kernel_size=3, padding=1)
self.cl_conv8_2 = nn.Conv2d(512, n_boxes['conv8_2'] * n_classes,
kernel_size=3, padding=1)
self.cl_conv9_2 = nn.Conv2d(256, n_boxes['conv9_2'] * n_classes,
kernel_size=3, padding=1)
self.cl_conv10_2 = nn.Conv2d(256, n_boxes['conv10_2'] * n_classes,
kernel_size=3, padding=1)
self.cl_conv11_2 = nn.Conv2d(256, n_boxes['conv11_2'] * n_classes,
kernel_size=3, padding=1)
self.init_conv2d()
def init_conv2d(self):
"""
Initialize convolution parameters.
"""
for c in self.children():
if isinstance(c, nn.Conv2d):
nn.init.xavier_uniform_(c.weight)
nn.init.constant_(c.bias, 0.0)
def forward(self, conv4_3_feats, conv7_feats, conv8_2_feats,
conv9_2_feats, conv10_2_feats, conv11_2_feats):
"""
Forward propagation.
:param conv4_3_feats: conv4_3 feature map, a tensor of dimensions (N, 512, 38, 38)
:param conv7_feats: conv7 feature map, a tensor of dimensions (N, 1024, 19, 19)
:param conv8_2_feats: conv8_2 feature map, a tensor of dimensions (N, 512, 10, 10)
:param conv9_2_feats: conv9_2 feature map, a tensor of dimensions (N, 256, 5, 5)
:param conv10_2_feats: conv10_2 feature map, a tensor of dimensions (N, 256, 3, 3)
:param conv11_2_feats: conv11_2 feature map, a tensor of dimensions (N, 256, 1, 1)
:return: 8732 locations and class scores (i.e. w.r.t each prior box) for each image
"""
batch_size = conv4_3_feats.size(0)
l_conv4_3 = self.loc_conv4_3(conv4_3_feats)
l_conv4_3 = l_conv4_3.permute(0, 2, 3, 1).contiguous()
l_conv4_3 = l_conv4_3.view(batch_size, -1, 4)
l_conv7 = self.loc_conv7(conv7_feats)
l_conv7 = l_conv7.permute(0, 2, 3, 1).contiguous()
l_conv7 = l_conv7.view(batch_size, -1, 4)
l_conv8_2 = self.loc_conv8_2(conv8_2_feats)
l_conv8_2 = l_conv8_2.permute(0, 2, 3, 1).contiguous()
l_conv8_2 = l_conv8_2.view(batch_size, -1, 4)
l_conv9_2 = self.loc_conv9_2(conv9_2_feats)
l_conv9_2 = l_conv9_2.permute(0, 2, 3, 1).contiguous()
l_conv9_2 = l_conv9_2.view(batch_size, -1, 4)
l_conv10_2 = self.loc_conv10_2(conv10_2_feats)
l_conv10_2 = l_conv10_2.permute(0, 2, 3, 1).contiguous()
l_conv10_2 = l_conv10_2.view(batch_size, -1, 4)
l_conv11_2 = self.loc_conv11_2(conv11_2_feats)
l_conv11_2 = l_conv11_2.permute(0, 2, 3, 1).contiguous()
l_conv11_2 = l_conv11_2.view(batch_size, -1, 4)
c_conv4_3 = self.cl_conv4_3(conv4_3_feats)
c_conv4_3 = c_conv4_3.permute(0, 2, 3, 1).contiguous()
c_conv4_3 = c_conv4_3.view(batch_size, -1, self.n_classes)
c_conv7 = self.cl_conv7(conv7_feats)
c_conv7 = c_conv7.permute(0, 2, 3, 1).contiguous()
c_conv7 = c_conv7.view(batch_size, -1, self.n_classes)
c_conv8_2 = self.cl_conv8_2(conv8_2_feats)
c_conv8_2 = c_conv8_2.permute(0, 2, 3, 1).contiguous()
c_conv8_2 = c_conv8_2.view(batch_size, -1, self.n_classes)
c_conv9_2 = self.cl_conv9_2(conv9_2_feats)
c_conv9_2 = c_conv9_2.permute(0, 2, 3, 1).contiguous()
c_conv9_2 = c_conv9_2.view(batch_size, -1, self.n_classes)
c_conv10_2 = self.cl_conv10_2(conv10_2_feats)
c_conv10_2 = c_conv10_2.permute(0, 2, 3, 1).contiguous()
c_conv10_2 = c_conv10_2.view(batch_size, -1, self.n_classes)
c_conv11_2 = self.cl_conv11_2(conv11_2_feats)
c_conv11_2 = c_conv11_2.permute(0, 2, 3, 1).contiguous()
c_conv11_2 = c_conv11_2.view(batch_size, -1, self.n_classes)
locs = torch.cat([l_conv4_3, l_conv7, l_conv8_2, l_conv9_2,
l_conv10_2, l_conv11_2], dim=1)
classes_scores = torch.cat([c_conv4_3, c_conv7, c_conv8_2,
c_conv9_2, c_conv10_2, c_conv11_2], dim=1)
return locs, classes_scores
class SSD300(nn.Module):
"""
The SSD300 network - encapsulates the base VGG network, auxiliary, and prediction convolutions.
"""
def __init__(self, n_classes):
super(SSD300, self).__init__()
self.n_classes = n_classes
self.base = VGGBase()
self.aux_convs = AuxiliaryConvolutions()
self.pred_convs = PredictionConvolutions(n_classes)
self.rescale_factors = nn.Parameter(torch.FloatTensor(1, 512, 1, 1))
nn.init.constant_(self.rescale_factors, 20)
self.priors_cxcy = self.create_prior_boxes()
def forward(self, image):
"""
Forward propagation.
:param image: images, a tensor of dimensions (N, 3, 300, 300)
:return: 8732 locations and class scores (i.e. w.r.t each prior box) for each image
"""
conv4_3_feats, conv7_feats = self.base(image)
norm = conv4_3_feats.pow(2).sum(dim=1, keepdim=True).sqrt()
conv4_3_feats = conv4_3_feats / norm
conv4_3_feats = conv4_3_feats * self.rescale_factors
conv8_2_feats, conv9_2_feats, conv10_2_feats, conv11_2_feats = (self
.aux_convs(conv7_feats))
locs, classes_scores = self.pred_convs(conv4_3_feats, conv7_feats,
conv8_2_feats, conv9_2_feats, conv10_2_feats, conv11_2_feats)
return locs, classes_scores
def create_prior_boxes(self):
"""
Create the 8732 prior (default) boxes for the SSD300, as defined in the paper.
:return: prior boxes in center-size coordinates, a tensor of dimensions (8732, 4)
"""
fmap_dims = {'conv4_3': 38, 'conv7': 19, 'conv8_2': 10, 'conv9_2':
5, 'conv10_2': 3, 'conv11_2': 1}
obj_scales = {'conv4_3': 0.1, 'conv7': 0.2, 'conv8_2': 0.375,
'conv9_2': 0.55, 'conv10_2': 0.725, 'conv11_2': 0.9}
aspect_ratios = {'conv4_3': [1.0, 2.0, 0.5], 'conv7': [1.0, 2.0,
3.0, 0.5, 0.333], 'conv8_2': [1.0, 2.0, 3.0, 0.5, 0.333],
'conv9_2': [1.0, 2.0, 3.0, 0.5, 0.333], 'conv10_2': [1.0, 2.0,
0.5], 'conv11_2': [1.0, 2.0, 0.5]}
fmaps = list(fmap_dims.keys())
prior_boxes = []
for k, fmap in enumerate(fmaps):
for i in range(fmap_dims[fmap]):
for j in range(fmap_dims[fmap]):
cx = (j + 0.5) / fmap_dims[fmap]
cy = (i + 0.5) / fmap_dims[fmap]
for ratio in aspect_ratios[fmap]:
prior_boxes.append([cx, cy, obj_scales[fmap] * sqrt
(ratio), obj_scales[fmap] / sqrt(ratio)])
if ratio == 1.0:
try:
additional_scale = sqrt(obj_scales[fmap] *
obj_scales[fmaps[k + 1]])
except IndexError:
additional_scale = 1.0
prior_boxes.append([cx, cy, additional_scale,
additional_scale])
prior_boxes = torch.FloatTensor(prior_boxes)
prior_boxes.clamp_(0, 1)
return prior_boxes
def detect_objects(self, predicted_locs, predicted_scores):
"""
Decipher the 8732 locations and class scores (output of ths SSD300) to detect objects.
For each class, perform Non-Maximum Suppression (NMS) on boxes that are above a minimum threshold.
:param predicted_locs: predicted locations/boxes w.r.t the 8732 prior boxes, a tensor of dimensions (N, 8732, 4)
:param predicted_scores: class scores for each of the encoded locations/boxes, a tensor of dimensions (N, 8732, n_classes)
:param min_score: minimum threshold for a box to be considered a match for a certain class
:param max_overlap: maximum overlap two boxes can have so that the one with the lower score is not suppressed via NMS
:param top_k: if there are a lot of resulting detection across all classes, keep only the top 'k'
:return: detections (boxes, labels, and scores), lists of length batch_size
"""
batch_size = predicted_locs.size(0)
n_priors = self.priors_cxcy.size(0)
predicted_scores = F.softmax(predicted_scores, dim=2)
all_images_boxes = list()
scores = list()
assert n_priors == predicted_locs.size(1) == predicted_scores.size(1)
for i in range(batch_size):
decoded_locs = cxcy_to_xywh(gcxgcy_to_cxcy(predicted_locs[i],
self.priors_cxcy))
c = 1
class_scores = predicted_scores[i][:, c]
score_above_min_score = class_scores > 0.0
n_above_min_score = score_above_min_score.sum().item()
if n_above_min_score == 0:
continue
class_scores = class_scores[score_above_min_score]
class_decoded_locs = decoded_locs[score_above_min_score]
class_scores, sort_ind = class_scores.sort(dim=0, descending=True)
class_decoded_locs = class_decoded_locs[sort_ind]
best_loc = class_decoded_locs[0]
all_images_boxes.append(best_loc)
scores.append(class_scores[sort_ind][0])
return all_images_boxes, scores
def get_inputs():
return [torch.rand([4, 3, 512, 512])]
def get_init_inputs():
return [[], {'n_classes': 4}]
|
import torch
from torch._inductor.select_algorithm import extern_kernels
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
from torch._inductor.runtime import triton_helpers
from torch._inductor.runtime.triton_helpers import libdevice
import torchvision
import torch.nn as nn
import torch.nn.functional as F
from math import sqrt
from itertools import product as product
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
@triton.jit
def triton_poi_fused_convolution_relu_0(in_out_ptr0, in_ptr0, xnumel,
XBLOCK: tl.constexpr):
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
tl.full([XBLOCK], True, tl.int1)
x3 = xindex
x1 = xindex // 262144 % 64
tmp0 = tl.load(in_out_ptr0 + x3, None)
tmp1 = tl.load(in_ptr0 + x1, None, eviction_policy='evict_last')
tmp2 = tmp0 + tmp1
tmp3 = tl.full([1], 0, tl.int32)
tmp4 = triton_helpers.maximum(tmp3, tmp2)
tl.store(in_out_ptr0 + x3, tmp4, None)
@triton.jit
def triton_poi_fused_max_pool2d_with_indices_1(in_ptr0, out_ptr0, out_ptr1,
xnumel, XBLOCK: tl.constexpr):
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
tl.full([XBLOCK], True, tl.int1)
x0 = xindex % 256
x1 = xindex // 256
x2 = xindex
tmp0 = tl.load(in_ptr0 + (2 * x0 + 1024 * x1), None, eviction_policy=
'evict_last')
tmp1 = tl.load(in_ptr0 + (1 + 2 * x0 + 1024 * x1), None,
eviction_policy='evict_last')
tmp3 = tl.load(in_ptr0 + (512 + 2 * x0 + 1024 * x1), None,
eviction_policy='evict_last')
tmp5 = tl.load(in_ptr0 + (513 + 2 * x0 + 1024 * x1), None,
eviction_policy='evict_last')
tmp2 = triton_helpers.maximum(tmp1, tmp0)
tmp4 = triton_helpers.maximum(tmp3, tmp2)
tmp6 = triton_helpers.maximum(tmp5, tmp4)
tmp7 = tmp1 > tmp0
tmp8 = tl.full([1], 1, tl.int8)
tmp9 = tl.full([1], 0, tl.int8)
tmp10 = tl.where(tmp7, tmp8, tmp9)
tmp11 = tmp3 > tmp2
tmp12 = tl.full([1], 2, tl.int8)
tmp13 = tl.where(tmp11, tmp12, tmp10)
tmp14 = tmp5 > tmp4
tmp15 = tl.full([1], 3, tl.int8)
tmp16 = tl.where(tmp14, tmp15, tmp13)
tl.store(out_ptr0 + x2, tmp6, None)
tl.store(out_ptr1 + x2, tmp16, None)
@triton.jit
def triton_poi_fused_convolution_relu_2(in_out_ptr0, in_ptr0, xnumel,
XBLOCK: tl.constexpr):
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
tl.full([XBLOCK], True, tl.int1)
x3 = xindex
x1 = xindex // 65536 % 128
tmp0 = tl.load(in_out_ptr0 + x3, None)
tmp1 = tl.load(in_ptr0 + x1, None, eviction_policy='evict_last')
tmp2 = tmp0 + tmp1
tmp3 = tl.full([1], 0, tl.int32)
tmp4 = triton_helpers.maximum(tmp3, tmp2)
tl.store(in_out_ptr0 + x3, tmp4, None)
@triton.jit
def triton_poi_fused_max_pool2d_with_indices_3(in_ptr0, out_ptr0, out_ptr1,
xnumel, XBLOCK: tl.constexpr):
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
tl.full([XBLOCK], True, tl.int1)
x0 = xindex % 128
x1 = xindex // 128
x2 = xindex
tmp0 = tl.load(in_ptr0 + (2 * x0 + 512 * x1), None, eviction_policy=
'evict_last')
tmp1 = tl.load(in_ptr0 + (1 + 2 * x0 + 512 * x1), None, eviction_policy
='evict_last')
tmp3 = tl.load(in_ptr0 + (256 + 2 * x0 + 512 * x1), None,
eviction_policy='evict_last')
tmp5 = tl.load(in_ptr0 + (257 + 2 * x0 + 512 * x1), None,
eviction_policy='evict_last')
tmp2 = triton_helpers.maximum(tmp1, tmp0)
tmp4 = triton_helpers.maximum(tmp3, tmp2)
tmp6 = triton_helpers.maximum(tmp5, tmp4)
tmp7 = tmp1 > tmp0
tmp8 = tl.full([1], 1, tl.int8)
tmp9 = tl.full([1], 0, tl.int8)
tmp10 = tl.where(tmp7, tmp8, tmp9)
tmp11 = tmp3 > tmp2
tmp12 = tl.full([1], 2, tl.int8)
tmp13 = tl.where(tmp11, tmp12, tmp10)
tmp14 = tmp5 > tmp4
tmp15 = tl.full([1], 3, tl.int8)
tmp16 = tl.where(tmp14, tmp15, tmp13)
tl.store(out_ptr0 + x2, tmp6, None)
tl.store(out_ptr1 + x2, tmp16, None)
@triton.jit
def triton_poi_fused_convolution_relu_4(in_out_ptr0, in_ptr0, xnumel,
XBLOCK: tl.constexpr):
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
tl.full([XBLOCK], True, tl.int1)
x3 = xindex
x1 = xindex // 16384 % 256
tmp0 = tl.load(in_out_ptr0 + x3, None)
tmp1 = tl.load(in_ptr0 + x1, None, eviction_policy='evict_last')
tmp2 = tmp0 + tmp1
tmp3 = tl.full([1], 0, tl.int32)
tmp4 = triton_helpers.maximum(tmp3, tmp2)
tl.store(in_out_ptr0 + x3, tmp4, None)
@triton.jit
def triton_poi_fused_max_pool2d_with_indices_5(in_ptr0, out_ptr0, out_ptr1,
xnumel, XBLOCK: tl.constexpr):
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
tl.full([XBLOCK], True, tl.int1)
x0 = xindex % 64
x1 = xindex // 64
x2 = xindex
tmp0 = tl.load(in_ptr0 + (2 * x0 + 256 * x1), None, eviction_policy=
'evict_last')
tmp1 = tl.load(in_ptr0 + (1 + 2 * x0 + 256 * x1), None, eviction_policy
='evict_last')
tmp3 = tl.load(in_ptr0 + (128 + 2 * x0 + 256 * x1), None,
eviction_policy='evict_last')
tmp5 = tl.load(in_ptr0 + (129 + 2 * x0 + 256 * x1), None,
eviction_policy='evict_last')
tmp2 = triton_helpers.maximum(tmp1, tmp0)
tmp4 = triton_helpers.maximum(tmp3, tmp2)
tmp6 = triton_helpers.maximum(tmp5, tmp4)
tmp7 = tmp1 > tmp0
tmp8 = tl.full([1], 1, tl.int8)
tmp9 = tl.full([1], 0, tl.int8)
tmp10 = tl.where(tmp7, tmp8, tmp9)
tmp11 = tmp3 > tmp2
tmp12 = tl.full([1], 2, tl.int8)
tmp13 = tl.where(tmp11, tmp12, tmp10)
tmp14 = tmp5 > tmp4
tmp15 = tl.full([1], 3, tl.int8)
tmp16 = tl.where(tmp14, tmp15, tmp13)
tl.store(out_ptr0 + x2, tmp6, None)
tl.store(out_ptr1 + x2, tmp16, None)
@triton.jit
def triton_poi_fused_convolution_relu_6(in_out_ptr0, in_ptr0, xnumel,
XBLOCK: tl.constexpr):
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
tl.full([XBLOCK], True, tl.int1)
x3 = xindex
x1 = xindex // 4096 % 512
tmp0 = tl.load(in_out_ptr0 + x3, None)
tmp1 = tl.load(in_ptr0 + x1, None, eviction_policy='evict_last')
tmp2 = tmp0 + tmp1
tmp3 = tl.full([1], 0, tl.int32)
tmp4 = triton_helpers.maximum(tmp3, tmp2)
tl.store(in_out_ptr0 + x3, tmp4, None)
@triton.jit
def triton_poi_fused_max_pool2d_with_indices_7(in_ptr0, out_ptr0, out_ptr1,
xnumel, XBLOCK: tl.constexpr):
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
tl.full([XBLOCK], True, tl.int1)
x0 = xindex % 32
x1 = xindex // 32
x2 = xindex
tmp0 = tl.load(in_ptr0 + (2 * x0 + 128 * x1), None, eviction_policy=
'evict_last')
tmp1 = tl.load(in_ptr0 + (1 + 2 * x0 + 128 * x1), None, eviction_policy
='evict_last')
tmp3 = tl.load(in_ptr0 + (64 + 2 * x0 + 128 * x1), None,
eviction_policy='evict_last')
tmp5 = tl.load(in_ptr0 + (65 + 2 * x0 + 128 * x1), None,
eviction_policy='evict_last')
tmp2 = triton_helpers.maximum(tmp1, tmp0)
tmp4 = triton_helpers.maximum(tmp3, tmp2)
tmp6 = triton_helpers.maximum(tmp5, tmp4)
tmp7 = tmp1 > tmp0
tmp8 = tl.full([1], 1, tl.int8)
tmp9 = tl.full([1], 0, tl.int8)
tmp10 = tl.where(tmp7, tmp8, tmp9)
tmp11 = tmp3 > tmp2
tmp12 = tl.full([1], 2, tl.int8)
tmp13 = tl.where(tmp11, tmp12, tmp10)
tmp14 = tmp5 > tmp4
tmp15 = tl.full([1], 3, tl.int8)
tmp16 = tl.where(tmp14, tmp15, tmp13)
tl.store(out_ptr0 + x2, tmp6, None)
tl.store(out_ptr1 + x2, tmp16, None)
@triton.jit
def triton_poi_fused_convolution_relu_8(in_out_ptr0, in_ptr0, xnumel,
XBLOCK: tl.constexpr):
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
tl.full([XBLOCK], True, tl.int1)
x3 = xindex
x1 = xindex // 1024 % 512
tmp0 = tl.load(in_out_ptr0 + x3, None)
tmp1 = tl.load(in_ptr0 + x1, None, eviction_policy='evict_last')
tmp2 = tmp0 + tmp1
tmp3 = tl.full([1], 0, tl.int32)
tmp4 = triton_helpers.maximum(tmp3, tmp2)
tl.store(in_out_ptr0 + x3, tmp4, None)
@triton.jit
def triton_poi_fused_max_pool2d_with_indices_9(in_ptr0, out_ptr0, out_ptr1,
xnumel, XBLOCK: tl.constexpr):
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
tl.full([XBLOCK], True, tl.int1)
x1 = xindex // 32 % 32
x0 = xindex % 32
x4 = xindex
tmp0 = -1 + x1
tmp1 = tl.full([1], 0, tl.int64)
tmp2 = tmp0 >= tmp1
tmp3 = tl.full([1], 32, tl.int64)
tmp4 = tmp0 < tmp3
tmp5 = tmp2 & tmp4
tmp6 = -1 + x0
tmp7 = tmp6 >= tmp1
tmp8 = tmp6 < tmp3
tmp9 = tmp7 & tmp8
tmp10 = tmp5 & tmp9
tmp11 = tl.load(in_ptr0 + (-33 + x4), tmp10, other=float('-inf'))
tmp12 = x0
tmp13 = tmp12 >= tmp1
tmp14 = tmp12 < tmp3
tmp15 = tmp13 & tmp14
tmp16 = tmp5 & tmp15
tmp17 = tl.load(in_ptr0 + (-32 + x4), tmp16, other=float('-inf'))
tmp18 = triton_helpers.maximum(tmp17, tmp11)
tmp19 = 1 + x0
tmp20 = tmp19 >= tmp1
tmp21 = tmp19 < tmp3
tmp22 = tmp20 & tmp21
tmp23 = tmp5 & tmp22
tmp24 = tl.load(in_ptr0 + (-31 + x4), tmp23, other=float('-inf'))
tmp25 = triton_helpers.maximum(tmp24, tmp18)
tmp26 = x1
tmp27 = tmp26 >= tmp1
tmp28 = tmp26 < tmp3
tmp29 = tmp27 & tmp28
tmp30 = tmp29 & tmp9
tmp31 = tl.load(in_ptr0 + (-1 + x4), tmp30, other=float('-inf'))
tmp32 = triton_helpers.maximum(tmp31, tmp25)
tmp33 = tmp29 & tmp15
tmp34 = tl.load(in_ptr0 + x4, tmp33, other=float('-inf'))
tmp35 = triton_helpers.maximum(tmp34, tmp32)
tmp36 = tmp29 & tmp22
tmp37 = tl.load(in_ptr0 + (1 + x4), tmp36, other=float('-inf'))
tmp38 = triton_helpers.maximum(tmp37, tmp35)
tmp39 = 1 + x1
tmp40 = tmp39 >= tmp1
tmp41 = tmp39 < tmp3
tmp42 = tmp40 & tmp41
tmp43 = tmp42 & tmp9
tmp44 = tl.load(in_ptr0 + (31 + x4), tmp43, other=float('-inf'))
tmp45 = triton_helpers.maximum(tmp44, tmp38)
tmp46 = tmp42 & tmp15
tmp47 = tl.load(in_ptr0 + (32 + x4), tmp46, other=float('-inf'))
tmp48 = triton_helpers.maximum(tmp47, tmp45)
tmp49 = tmp42 & tmp22
tmp50 = tl.load(in_ptr0 + (33 + x4), tmp49, other=float('-inf'))
tmp51 = triton_helpers.maximum(tmp50, tmp48)
tmp52 = tmp17 > tmp11
tmp53 = tl.full([1], 1, tl.int8)
tmp54 = tl.full([1], 0, tl.int8)
tmp55 = tl.where(tmp52, tmp53, tmp54)
tmp56 = tmp24 > tmp18
tmp57 = tl.full([1], 2, tl.int8)
tmp58 = tl.where(tmp56, tmp57, tmp55)
tmp59 = tmp31 > tmp25
tmp60 = tl.full([1], 3, tl.int8)
tmp61 = tl.where(tmp59, tmp60, tmp58)
tmp62 = tmp34 > tmp32
tmp63 = tl.full([1], 4, tl.int8)
tmp64 = tl.where(tmp62, tmp63, tmp61)
tmp65 = tmp37 > tmp35
tmp66 = tl.full([1], 5, tl.int8)
tmp67 = tl.where(tmp65, tmp66, tmp64)
tmp68 = tmp44 > tmp38
tmp69 = tl.full([1], 6, tl.int8)
tmp70 = tl.where(tmp68, tmp69, tmp67)
tmp71 = tmp47 > tmp45
tmp72 = tl.full([1], 7, tl.int8)
tmp73 = tl.where(tmp71, tmp72, tmp70)
tmp74 = tmp50 > tmp48
tmp75 = tl.full([1], 8, tl.int8)
tmp76 = tl.where(tmp74, tmp75, tmp73)
tl.store(out_ptr0 + x4, tmp51, None)
tl.store(out_ptr1 + x4, tmp76, None)
@triton.jit
def triton_poi_fused_convolution_relu_10(in_out_ptr0, in_ptr0, xnumel,
XBLOCK: tl.constexpr):
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
tl.full([XBLOCK], True, tl.int1)
x3 = xindex
x1 = xindex // 1024 % 1024
tmp0 = tl.load(in_out_ptr0 + x3, None)
tmp1 = tl.load(in_ptr0 + x1, None, eviction_policy='evict_last')
tmp2 = tmp0 + tmp1
tmp3 = tl.full([1], 0, tl.int32)
tmp4 = triton_helpers.maximum(tmp3, tmp2)
tl.store(in_out_ptr0 + x3, tmp4, None)
@triton.jit
def triton_red_fused_pow_sqrt_sum_11(in_out_ptr0, in_ptr0, xnumel, rnumel,
XBLOCK: tl.constexpr, RBLOCK: tl.constexpr):
rnumel = 512
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:, None]
tl.full([XBLOCK, RBLOCK], True, tl.int1)
rbase = tl.arange(0, RBLOCK)[None, :]
x0 = xindex % 4096
x1 = xindex // 4096
_tmp3 = tl.full([XBLOCK, RBLOCK], 0, tl.float32)
x3 = xindex
for roffset in range(0, rnumel, RBLOCK):
rindex = roffset + rbase
rmask = rindex < rnumel
r2 = rindex
tmp0 = tl.load(in_ptr0 + (x0 + 4096 * r2 + 2097152 * x1), rmask,
eviction_policy='evict_first', other=0.0)
tmp1 = tmp0 * tmp0
tmp2 = tl.broadcast_to(tmp1, [XBLOCK, RBLOCK])
tmp4 = _tmp3 + tmp2
_tmp3 = tl.where(rmask, tmp4, _tmp3)
tmp3 = tl.sum(_tmp3, 1)[:, None]
tmp5 = libdevice.sqrt(tmp3)
tl.debug_barrier()
tl.store(in_out_ptr0 + x3, tmp5, None)
@triton.jit
def triton_poi_fused_div_mul_12(in_ptr0, in_ptr1, in_ptr2, out_ptr0,
out_ptr1, xnumel, XBLOCK: tl.constexpr):
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
tl.full([XBLOCK], True, tl.int1)
x3 = xindex
x0 = xindex % 4096
x2 = xindex // 2097152
x1 = xindex // 4096 % 512
tmp0 = tl.load(in_ptr0 + x3, None)
tmp1 = tl.load(in_ptr1 + (x0 + 4096 * x2), None, eviction_policy=
'evict_last')
tmp3 = tl.load(in_ptr2 + x1, None, eviction_policy='evict_last')
tmp2 = tmp0 / tmp1
tmp4 = tmp2 * tmp3
tl.store(out_ptr0 + x3, tmp2, None)
tl.store(out_ptr1 + x3, tmp4, None)
@triton.jit
def triton_poi_fused_convolution_relu_13(in_out_ptr0, in_ptr0, xnumel,
XBLOCK: tl.constexpr):
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
tl.full([XBLOCK], True, tl.int1)
x3 = xindex
x1 = xindex // 1024 % 256
tmp0 = tl.load(in_out_ptr0 + x3, None)
tmp1 = tl.load(in_ptr0 + x1, None, eviction_policy='evict_last')
tmp2 = tmp0 + tmp1
tmp3 = tl.full([1], 0, tl.int32)
tmp4 = triton_helpers.maximum(tmp3, tmp2)
tl.store(in_out_ptr0 + x3, tmp4, None)
@triton.jit
def triton_poi_fused_convolution_relu_14(in_out_ptr0, in_ptr0, xnumel,
XBLOCK: tl.constexpr):
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
tl.full([XBLOCK], True, tl.int1)
x3 = xindex
x1 = xindex // 256 % 512
tmp0 = tl.load(in_out_ptr0 + x3, None)
tmp1 = tl.load(in_ptr0 + x1, None, eviction_policy='evict_last')
tmp2 = tmp0 + tmp1
tmp3 = tl.full([1], 0, tl.int32)
tmp4 = triton_helpers.maximum(tmp3, tmp2)
tl.store(in_out_ptr0 + x3, tmp4, None)
@triton.jit
def triton_poi_fused_convolution_relu_15(in_out_ptr0, in_ptr0, xnumel,
XBLOCK: tl.constexpr):
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
tl.full([XBLOCK], True, tl.int1)
x3 = xindex
x1 = xindex // 256 % 128
tmp0 = tl.load(in_out_ptr0 + x3, None)
tmp1 = tl.load(in_ptr0 + x1, None, eviction_policy='evict_last')
tmp2 = tmp0 + tmp1
tmp3 = tl.full([1], 0, tl.int32)
tmp4 = triton_helpers.maximum(tmp3, tmp2)
tl.store(in_out_ptr0 + x3, tmp4, None)
@triton.jit
def triton_poi_fused_convolution_relu_16(in_out_ptr0, in_ptr0, xnumel,
XBLOCK: tl.constexpr):
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
tl.full([XBLOCK], True, tl.int1)
x3 = xindex
x1 = xindex // 64 % 256
tmp0 = tl.load(in_out_ptr0 + x3, None)
tmp1 = tl.load(in_ptr0 + x1, None, eviction_policy='evict_last')
tmp2 = tmp0 + tmp1
tmp3 = tl.full([1], 0, tl.int32)
tmp4 = triton_helpers.maximum(tmp3, tmp2)
tl.store(in_out_ptr0 + x3, tmp4, None)
@triton.jit
def triton_poi_fused_convolution_relu_17(in_out_ptr0, in_ptr0, xnumel,
XBLOCK: tl.constexpr):
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
tl.full([XBLOCK], True, tl.int1)
x3 = xindex
x1 = xindex // 64 % 128
tmp0 = tl.load(in_out_ptr0 + x3, None)
tmp1 = tl.load(in_ptr0 + x1, None, eviction_policy='evict_last')
tmp2 = tmp0 + tmp1
tmp3 = tl.full([1], 0, tl.int32)
tmp4 = triton_helpers.maximum(tmp3, tmp2)
tl.store(in_out_ptr0 + x3, tmp4, None)
@triton.jit
def triton_poi_fused_convolution_relu_18(in_out_ptr0, in_ptr0, xnumel,
XBLOCK: tl.constexpr):
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
tl.full([XBLOCK], True, tl.int1)
x3 = xindex
x1 = xindex // 36 % 256
tmp0 = tl.load(in_out_ptr0 + x3, None)
tmp1 = tl.load(in_ptr0 + x1, None, eviction_policy='evict_last')
tmp2 = tmp0 + tmp1
tmp3 = tl.full([1], 0, tl.int32)
tmp4 = triton_helpers.maximum(tmp3, tmp2)
tl.store(in_out_ptr0 + x3, tmp4, None)
@triton.jit
def triton_poi_fused_convolution_relu_19(in_out_ptr0, in_ptr0, xnumel,
XBLOCK: tl.constexpr):
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
tl.full([XBLOCK], True, tl.int1)
x3 = xindex
x1 = xindex // 36 % 128
tmp0 = tl.load(in_out_ptr0 + x3, None)
tmp1 = tl.load(in_ptr0 + x1, None, eviction_policy='evict_last')
tmp2 = tmp0 + tmp1
tmp3 = tl.full([1], 0, tl.int32)
tmp4 = triton_helpers.maximum(tmp3, tmp2)
tl.store(in_out_ptr0 + x3, tmp4, None)
@triton.jit
def triton_poi_fused_convolution_relu_20(in_out_ptr0, in_ptr0, xnumel,
XBLOCK: tl.constexpr):
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
tl.full([XBLOCK], True, tl.int1)
x3 = xindex
x1 = xindex // 16 % 256
tmp0 = tl.load(in_out_ptr0 + x3, None)
tmp1 = tl.load(in_ptr0 + x1, None, eviction_policy='evict_last')
tmp2 = tmp0 + tmp1
tmp3 = tl.full([1], 0, tl.int32)
tmp4 = triton_helpers.maximum(tmp3, tmp2)
tl.store(in_out_ptr0 + x3, tmp4, None)
@triton.jit
def triton_poi_fused_cat_21(in_ptr0, in_ptr1, in_ptr2, in_ptr3, in_ptr4,
in_ptr5, in_ptr6, in_ptr7, in_ptr8, in_ptr9, in_ptr10, in_ptr11,
out_ptr0, xnumel, XBLOCK: tl.constexpr):
xnumel = 394496
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x1 = xindex // 4 % 24656
x0 = xindex % 4
x2 = xindex // 98624
x3 = xindex
tmp0 = x1
tl.full([1], 0, tl.int64)
tmp3 = tl.full([1], 16384, tl.int64)
tmp4 = tmp0 < tmp3
tmp5 = tl.load(in_ptr0 + (4096 * ((x0 + 4 * x1) % 16) + 65536 * ((x0 +
4 * x1 + 65536 * x2) // 65536 % 4) + (x0 + 4 * x1) // 16 % 4096),
tmp4 & xmask, eviction_policy='evict_last', other=0.0)
tmp6 = tl.load(in_ptr1 + (x0 + 4 * x1) % 16, tmp4 & xmask,
eviction_policy='evict_last', other=0.0)
tmp7 = tmp5 + tmp6
tmp8 = tl.full(tmp7.shape, 0.0, tmp7.dtype)
tmp9 = tl.where(tmp4, tmp7, tmp8)
tmp10 = tmp0 >= tmp3
tmp11 = tl.full([1], 22528, tl.int64)
tmp12 = tmp0 < tmp11
tmp13 = tmp10 & tmp12
tmp14 = tl.load(in_ptr2 + (1024 * ((x0 + 4 * (-16384 + x1)) % 24) +
24576 * ((x0 + 4 * (-16384 + x1) + 24576 * x2) // 24576 % 4) + (x0 +
4 * (-16384 + x1)) // 24 % 1024), tmp13 & xmask, eviction_policy=
'evict_last', other=0.0)
tmp15 = tl.load(in_ptr3 + (x0 + 4 * (-16384 + x1)) % 24, tmp13 & xmask,
eviction_policy='evict_last', other=0.0)
tmp16 = tmp14 + tmp15
tmp17 = tl.full(tmp16.shape, 0.0, tmp16.dtype)
tmp18 = tl.where(tmp13, tmp16, tmp17)
tmp19 = tmp0 >= tmp11
tmp20 = tl.full([1], 24064, tl.int64)
tmp21 = tmp0 < tmp20
tmp22 = tmp19 & tmp21
tmp23 = tl.load(in_ptr4 + (256 * ((x0 + 4 * (-22528 + x1)) % 24) + 6144 *
((x0 + 4 * (-22528 + x1) + 6144 * x2) // 6144 % 4) + (x0 + 4 * (-
22528 + x1)) // 24 % 256), tmp22 & xmask, eviction_policy=
'evict_last', other=0.0)
tmp24 = tl.load(in_ptr5 + (x0 + 4 * (-22528 + x1)) % 24, tmp22 & xmask,
eviction_policy='evict_last', other=0.0)
tmp25 = tmp23 + tmp24
tmp26 = tl.full(tmp25.shape, 0.0, tmp25.dtype)
tmp27 = tl.where(tmp22, tmp25, tmp26)
tmp28 = tmp0 >= tmp20
tmp29 = tl.full([1], 24448, tl.int64)
tmp30 = tmp0 < tmp29
tmp31 = tmp28 & tmp30
tmp32 = tl.load(in_ptr6 + (64 * ((x0 + 4 * (-24064 + x1)) % 24) + 1536 *
((x0 + 4 * (-24064 + x1) + 1536 * x2) // 1536 % 4) + (x0 + 4 * (-
24064 + x1)) // 24 % 64), tmp31 & xmask, eviction_policy=
'evict_last', other=0.0)
tmp33 = tl.load(in_ptr7 + (x0 + 4 * (-24064 + x1)) % 24, tmp31 & xmask,
eviction_policy='evict_last', other=0.0)
tmp34 = tmp32 + tmp33
tmp35 = tl.full(tmp34.shape, 0.0, tmp34.dtype)
tmp36 = tl.where(tmp31, tmp34, tmp35)
tmp37 = tmp0 >= tmp29
tmp38 = tl.full([1], 24592, tl.int64)
tmp39 = tmp0 < tmp38
tmp40 = tmp37 & tmp39
tmp41 = tl.load(in_ptr8 + (36 * ((x0 + 4 * (-24448 + x1)) % 16) + 576 *
((x0 + 4 * (-24448 + x1) + 576 * x2) // 576 % 4) + (x0 + 4 * (-
24448 + x1)) // 16 % 36), tmp40 & xmask, eviction_policy=
'evict_last', other=0.0)
tmp42 = tl.load(in_ptr9 + (x0 + 4 * (-24448 + x1)) % 16, tmp40 & xmask,
eviction_policy='evict_last', other=0.0)
tmp43 = tmp41 + tmp42
tmp44 = tl.full(tmp43.shape, 0.0, tmp43.dtype)
tmp45 = tl.where(tmp40, tmp43, tmp44)
tmp46 = tmp0 >= tmp38
tl.full([1], 24656, tl.int64)
tmp49 = tl.load(in_ptr10 + (16 * ((x0 + 4 * (-24592 + x1)) % 16) + 256 *
((x0 + 4 * (-24592 + x1) + 256 * x2) // 256 % 4) + (x0 + 4 * (-
24592 + x1)) // 16 % 16), tmp46 & xmask, eviction_policy=
'evict_last', other=0.0)
tmp50 = tl.load(in_ptr11 + (x0 + 4 * (-24592 + x1)) % 16, tmp46 & xmask,
eviction_policy='evict_last', other=0.0)
tmp51 = tmp49 + tmp50
tmp52 = tl.full(tmp51.shape, 0.0, tmp51.dtype)
tmp53 = tl.where(tmp46, tmp51, tmp52)
tmp54 = tl.where(tmp40, tmp45, tmp53)
tmp55 = tl.where(tmp31, tmp36, tmp54)
tmp56 = tl.where(tmp22, tmp27, tmp55)
tmp57 = tl.where(tmp13, tmp18, tmp56)
tmp58 = tl.where(tmp4, tmp9, tmp57)
tl.store(out_ptr0 + x3, tmp58, xmask)
def call(args):
(primals_1, primals_2, primals_3, primals_4, primals_5, primals_6,
primals_7, primals_8, primals_9, primals_10, primals_11, primals_12,
primals_13, primals_14, primals_15, primals_16, primals_17,
primals_18, primals_19, primals_20, primals_21, primals_22,
primals_23, primals_24, primals_25, primals_26, primals_27,
primals_28, primals_29, primals_30, primals_31, primals_32,
primals_33, primals_34, primals_35, primals_36, primals_37,
primals_38, primals_39, primals_40, primals_41, primals_42,
primals_43, primals_44, primals_45, primals_46, primals_47,
primals_48, primals_49, primals_50, primals_51, primals_52,
primals_53, primals_54, primals_55, primals_56, primals_57,
primals_58, primals_59, primals_60, primals_61, primals_62,
primals_63, primals_64, primals_65, primals_66, primals_67,
primals_68, primals_69, primals_70, primals_71, primals_72) = args
args.clear()
assert_size_stride(primals_1, (64, 3, 3, 3), (27, 9, 3, 1))
assert_size_stride(primals_2, (64,), (1,))
assert_size_stride(primals_3, (4, 3, 512, 512), (786432, 262144, 512, 1))
assert_size_stride(primals_4, (64, 64, 3, 3), (576, 9, 3, 1))
assert_size_stride(primals_5, (64,), (1,))
assert_size_stride(primals_6, (128, 64, 3, 3), (576, 9, 3, 1))
assert_size_stride(primals_7, (128,), (1,))
assert_size_stride(primals_8, (128, 128, 3, 3), (1152, 9, 3, 1))
assert_size_stride(primals_9, (128,), (1,))
assert_size_stride(primals_10, (256, 128, 3, 3), (1152, 9, 3, 1))
assert_size_stride(primals_11, (256,), (1,))
assert_size_stride(primals_12, (256, 256, 3, 3), (2304, 9, 3, 1))
assert_size_stride(primals_13, (256,), (1,))
assert_size_stride(primals_14, (256, 256, 3, 3), (2304, 9, 3, 1))
assert_size_stride(primals_15, (256,), (1,))
assert_size_stride(primals_16, (512, 256, 3, 3), (2304, 9, 3, 1))
assert_size_stride(primals_17, (512,), (1,))
assert_size_stride(primals_18, (512, 512, 3, 3), (4608, 9, 3, 1))
assert_size_stride(primals_19, (512,), (1,))
assert_size_stride(primals_20, (512, 512, 3, 3), (4608, 9, 3, 1))
assert_size_stride(primals_21, (512,), (1,))
assert_size_stride(primals_22, (512, 512, 3, 3), (4608, 9, 3, 1))
assert_size_stride(primals_23, (512,), (1,))
assert_size_stride(primals_24, (512, 512, 3, 3), (4608, 9, 3, 1))
assert_size_stride(primals_25, (512,), (1,))
assert_size_stride(primals_26, (512, 512, 3, 3), (4608, 9, 3, 1))
assert_size_stride(primals_27, (512,), (1,))
assert_size_stride(primals_28, (1024, 512, 3, 3), (4608, 9, 3, 1))
assert_size_stride(primals_29, (1024,), (1,))
assert_size_stride(primals_30, (1024, 1024, 1, 1), (1024, 1, 1, 1))
assert_size_stride(primals_31, (1024,), (1,))
assert_size_stride(primals_32, (1, 512, 1, 1), (512, 1, 1, 1))
assert_size_stride(primals_33, (256, 1024, 1, 1), (1024, 1, 1, 1))
assert_size_stride(primals_34, (256,), (1,))
assert_size_stride(primals_35, (512, 256, 3, 3), (2304, 9, 3, 1))
assert_size_stride(primals_36, (512,), (1,))
assert_size_stride(primals_37, (128, 512, 1, 1), (512, 1, 1, 1))
assert_size_stride(primals_38, (128,), (1,))
assert_size_stride(primals_39, (256, 128, 3, 3), (1152, 9, 3, 1))
assert_size_stride(primals_40, (256,), (1,))
assert_size_stride(primals_41, (128, 256, 1, 1), (256, 1, 1, 1))
assert_size_stride(primals_42, (128,), (1,))
assert_size_stride(primals_43, (256, 128, 3, 3), (1152, 9, 3, 1))
assert_size_stride(primals_44, (256,), (1,))
assert_size_stride(primals_45, (128, 256, 1, 1), (256, 1, 1, 1))
assert_size_stride(primals_46, (128,), (1,))
assert_size_stride(primals_47, (256, 128, 3, 3), (1152, 9, 3, 1))
assert_size_stride(primals_48, (256,), (1,))
assert_size_stride(primals_49, (16, 512, 3, 3), (4608, 9, 3, 1))
assert_size_stride(primals_50, (16,), (1,))
assert_size_stride(primals_51, (24, 1024, 3, 3), (9216, 9, 3, 1))
assert_size_stride(primals_52, (24,), (1,))
assert_size_stride(primals_53, (24, 512, 3, 3), (4608, 9, 3, 1))
assert_size_stride(primals_54, (24,), (1,))
assert_size_stride(primals_55, (24, 256, 3, 3), (2304, 9, 3, 1))
assert_size_stride(primals_56, (24,), (1,))
assert_size_stride(primals_57, (16, 256, 3, 3), (2304, 9, 3, 1))
assert_size_stride(primals_58, (16,), (1,))
assert_size_stride(primals_59, (16, 256, 3, 3), (2304, 9, 3, 1))
assert_size_stride(primals_60, (16,), (1,))
assert_size_stride(primals_61, (16, 512, 3, 3), (4608, 9, 3, 1))
assert_size_stride(primals_62, (16,), (1,))
assert_size_stride(primals_63, (24, 1024, 3, 3), (9216, 9, 3, 1))
assert_size_stride(primals_64, (24,), (1,))
assert_size_stride(primals_65, (24, 512, 3, 3), (4608, 9, 3, 1))
assert_size_stride(primals_66, (24,), (1,))
assert_size_stride(primals_67, (24, 256, 3, 3), (2304, 9, 3, 1))
assert_size_stride(primals_68, (24,), (1,))
assert_size_stride(primals_69, (16, 256, 3, 3), (2304, 9, 3, 1))
assert_size_stride(primals_70, (16,), (1,))
assert_size_stride(primals_71, (16, 256, 3, 3), (2304, 9, 3, 1))
assert_size_stride(primals_72, (16,), (1,))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = extern_kernels.convolution(primals_3, primals_1, stride=(1,
1), padding=(1, 1), dilation=(1, 1), transposed=False,
output_padding=(0, 0), groups=1, bias=None)
assert_size_stride(buf0, (4, 64, 512, 512), (16777216, 262144, 512, 1))
buf1 = buf0
del buf0
get_raw_stream(0)
triton_poi_fused_convolution_relu_0[grid(67108864)](buf1, primals_2,
67108864, XBLOCK=512, num_warps=8, num_stages=1)
del primals_2
buf2 = extern_kernels.convolution(buf1, primals_4, stride=(1, 1),
padding=(1, 1), dilation=(1, 1), transposed=False,
output_padding=(0, 0), groups=1, bias=None)
assert_size_stride(buf2, (4, 64, 512, 512), (16777216, 262144, 512, 1))
buf3 = buf2
del buf2
triton_poi_fused_convolution_relu_0[grid(67108864)](buf3, primals_5,
67108864, XBLOCK=512, num_warps=8, num_stages=1)
del primals_5
buf4 = empty_strided_cuda((4, 64, 256, 256), (4194304, 65536, 256,
1), torch.float32)
buf5 = empty_strided_cuda((4, 64, 256, 256), (4194304, 65536, 256,
1), torch.int8)
triton_poi_fused_max_pool2d_with_indices_1[grid(16777216)](buf3,
buf4, buf5, 16777216, XBLOCK=512, num_warps=8, num_stages=1)
buf6 = extern_kernels.convolution(buf4, primals_6, stride=(1, 1),
padding=(1, 1), dilation=(1, 1), transposed=False,
output_padding=(0, 0), groups=1, bias=None)
assert_size_stride(buf6, (4, 128, 256, 256), (8388608, 65536, 256, 1))
buf7 = buf6
del buf6
triton_poi_fused_convolution_relu_2[grid(33554432)](buf7, primals_7,
33554432, XBLOCK=1024, num_warps=4, num_stages=1)
del primals_7
buf8 = extern_kernels.convolution(buf7, primals_8, stride=(1, 1),
padding=(1, 1), dilation=(1, 1), transposed=False,
output_padding=(0, 0), groups=1, bias=None)
assert_size_stride(buf8, (4, 128, 256, 256), (8388608, 65536, 256, 1))
buf9 = buf8
del buf8
triton_poi_fused_convolution_relu_2[grid(33554432)](buf9, primals_9,
33554432, XBLOCK=1024, num_warps=4, num_stages=1)
del primals_9
buf10 = empty_strided_cuda((4, 128, 128, 128), (2097152, 16384, 128,
1), torch.float32)
buf11 = empty_strided_cuda((4, 128, 128, 128), (2097152, 16384, 128,
1), torch.int8)
triton_poi_fused_max_pool2d_with_indices_3[grid(8388608)](buf9,
buf10, buf11, 8388608, XBLOCK=512, num_warps=8, num_stages=1)
buf12 = extern_kernels.convolution(buf10, primals_10, stride=(1, 1),
padding=(1, 1), dilation=(1, 1), transposed=False,
output_padding=(0, 0), groups=1, bias=None)
assert_size_stride(buf12, (4, 256, 128, 128), (4194304, 16384, 128, 1))
buf13 = buf12
del buf12
triton_poi_fused_convolution_relu_4[grid(16777216)](buf13,
primals_11, 16777216, XBLOCK=512, num_warps=8, num_stages=1)
del primals_11
buf14 = extern_kernels.convolution(buf13, primals_12, stride=(1, 1),
padding=(1, 1), dilation=(1, 1), transposed=False,
output_padding=(0, 0), groups=1, bias=None)
assert_size_stride(buf14, (4, 256, 128, 128), (4194304, 16384, 128, 1))
buf15 = buf14
del buf14
triton_poi_fused_convolution_relu_4[grid(16777216)](buf15,
primals_13, 16777216, XBLOCK=512, num_warps=8, num_stages=1)
del primals_13
buf16 = extern_kernels.convolution(buf15, primals_14, stride=(1, 1),
padding=(1, 1), dilation=(1, 1), transposed=False,
output_padding=(0, 0), groups=1, bias=None)
assert_size_stride(buf16, (4, 256, 128, 128), (4194304, 16384, 128, 1))
buf17 = buf16
del buf16
triton_poi_fused_convolution_relu_4[grid(16777216)](buf17,
primals_15, 16777216, XBLOCK=512, num_warps=8, num_stages=1)
del primals_15
buf18 = empty_strided_cuda((4, 256, 64, 64), (1048576, 4096, 64, 1),
torch.float32)
buf19 = empty_strided_cuda((4, 256, 64, 64), (1048576, 4096, 64, 1),
torch.int8)
triton_poi_fused_max_pool2d_with_indices_5[grid(4194304)](buf17,
buf18, buf19, 4194304, XBLOCK=512, num_warps=8, num_stages=1)
buf20 = extern_kernels.convolution(buf18, primals_16, stride=(1, 1),
padding=(1, 1), dilation=(1, 1), transposed=False,
output_padding=(0, 0), groups=1, bias=None)
assert_size_stride(buf20, (4, 512, 64, 64), (2097152, 4096, 64, 1))
buf21 = buf20
del buf20
triton_poi_fused_convolution_relu_6[grid(8388608)](buf21,
primals_17, 8388608, XBLOCK=512, num_warps=8, num_stages=1)
del primals_17
buf22 = extern_kernels.convolution(buf21, primals_18, stride=(1, 1),
padding=(1, 1), dilation=(1, 1), transposed=False,
output_padding=(0, 0), groups=1, bias=None)
assert_size_stride(buf22, (4, 512, 64, 64), (2097152, 4096, 64, 1))
buf23 = buf22
del buf22
triton_poi_fused_convolution_relu_6[grid(8388608)](buf23,
primals_19, 8388608, XBLOCK=512, num_warps=8, num_stages=1)
del primals_19
buf24 = extern_kernels.convolution(buf23, primals_20, stride=(1, 1),
padding=(1, 1), dilation=(1, 1), transposed=False,
output_padding=(0, 0), groups=1, bias=None)
assert_size_stride(buf24, (4, 512, 64, 64), (2097152, 4096, 64, 1))
buf25 = buf24
del buf24
triton_poi_fused_convolution_relu_6[grid(8388608)](buf25,
primals_21, 8388608, XBLOCK=512, num_warps=8, num_stages=1)
del primals_21
buf26 = empty_strided_cuda((4, 512, 32, 32), (524288, 1024, 32, 1),
torch.float32)
buf27 = empty_strided_cuda((4, 512, 32, 32), (524288, 1024, 32, 1),
torch.int8)
triton_poi_fused_max_pool2d_with_indices_7[grid(2097152)](buf25,
buf26, buf27, 2097152, XBLOCK=512, num_warps=8, num_stages=1)
buf28 = extern_kernels.convolution(buf26, primals_22, stride=(1, 1),
padding=(1, 1), dilation=(1, 1), transposed=False,
output_padding=(0, 0), groups=1, bias=None)
assert_size_stride(buf28, (4, 512, 32, 32), (524288, 1024, 32, 1))
buf29 = buf28
del buf28
triton_poi_fused_convolution_relu_8[grid(2097152)](buf29,
primals_23, 2097152, XBLOCK=1024, num_warps=4, num_stages=1)
del primals_23
buf30 = extern_kernels.convolution(buf29, primals_24, stride=(1, 1),
padding=(1, 1), dilation=(1, 1), transposed=False,
output_padding=(0, 0), groups=1, bias=None)
assert_size_stride(buf30, (4, 512, 32, 32), (524288, 1024, 32, 1))
buf31 = buf30
del buf30
triton_poi_fused_convolution_relu_8[grid(2097152)](buf31,
primals_25, 2097152, XBLOCK=1024, num_warps=4, num_stages=1)
del primals_25
buf32 = extern_kernels.convolution(buf31, primals_26, stride=(1, 1),
padding=(1, 1), dilation=(1, 1), transposed=False,
output_padding=(0, 0), groups=1, bias=None)
assert_size_stride(buf32, (4, 512, 32, 32), (524288, 1024, 32, 1))
buf33 = buf32
del buf32
triton_poi_fused_convolution_relu_8[grid(2097152)](buf33,
primals_27, 2097152, XBLOCK=1024, num_warps=4, num_stages=1)
del primals_27
buf34 = empty_strided_cuda((4, 512, 32, 32), (524288, 1024, 32, 1),
torch.float32)
buf35 = empty_strided_cuda((4, 512, 32, 32), (524288, 1024, 32, 1),
torch.int8)
triton_poi_fused_max_pool2d_with_indices_9[grid(2097152)](buf33,
buf34, buf35, 2097152, XBLOCK=512, num_warps=8, num_stages=1)
buf36 = extern_kernels.convolution(buf34, primals_28, stride=(1, 1),
padding=(6, 6), dilation=(6, 6), transposed=False,
output_padding=(0, 0), groups=1, bias=None)
assert_size_stride(buf36, (4, 1024, 32, 32), (1048576, 1024, 32, 1))
buf37 = buf36
del buf36
triton_poi_fused_convolution_relu_10[grid(4194304)](buf37,
primals_29, 4194304, XBLOCK=1024, num_warps=4, num_stages=1)
del primals_29
buf38 = extern_kernels.convolution(buf37, primals_30, stride=(1, 1),
padding=(0, 0), dilation=(1, 1), transposed=False,
output_padding=(0, 0), groups=1, bias=None)
assert_size_stride(buf38, (4, 1024, 32, 32), (1048576, 1024, 32, 1))
buf39 = buf38
del buf38
triton_poi_fused_convolution_relu_10[grid(4194304)](buf39,
primals_31, 4194304, XBLOCK=1024, num_warps=4, num_stages=1)
del primals_31
buf40 = empty_strided_cuda((4, 1, 64, 64), (4096, 16384, 64, 1),
torch.float32)
buf41 = reinterpret_tensor(buf40, (4, 1, 64, 64), (4096, 4096, 64,
1), 0)
del buf40
triton_red_fused_pow_sqrt_sum_11[grid(16384)](buf41, buf25, 16384,
512, XBLOCK=64, RBLOCK=8, num_warps=4, num_stages=1)
buf42 = empty_strided_cuda((4, 512, 64, 64), (2097152, 4096, 64, 1),
torch.float32)
buf43 = empty_strided_cuda((4, 512, 64, 64), (2097152, 4096, 64, 1),
torch.float32)
triton_poi_fused_div_mul_12[grid(8388608)](buf25, buf41, primals_32,
buf42, buf43, 8388608, XBLOCK=512, num_warps=8, num_stages=1)
buf44 = extern_kernels.convolution(buf39, primals_33, stride=(1, 1),
padding=(0, 0), dilation=(1, 1), transposed=False,
output_padding=(0, 0), groups=1, bias=None)
assert_size_stride(buf44, (4, 256, 32, 32), (262144, 1024, 32, 1))
buf45 = buf44
del buf44
triton_poi_fused_convolution_relu_13[grid(1048576)](buf45,
primals_34, 1048576, XBLOCK=1024, num_warps=4, num_stages=1)
del primals_34
buf46 = extern_kernels.convolution(buf45, primals_35, stride=(2, 2),
padding=(1, 1), dilation=(1, 1), transposed=False,
output_padding=(0, 0), groups=1, bias=None)
assert_size_stride(buf46, (4, 512, 16, 16), (131072, 256, 16, 1))
buf47 = buf46
del buf46
triton_poi_fused_convolution_relu_14[grid(524288)](buf47,
primals_36, 524288, XBLOCK=1024, num_warps=4, num_stages=1)
del primals_36
buf48 = extern_kernels.convolution(buf47, primals_37, stride=(1, 1),
padding=(0, 0), dilation=(1, 1), transposed=False,
output_padding=(0, 0), groups=1, bias=None)
assert_size_stride(buf48, (4, 128, 16, 16), (32768, 256, 16, 1))
buf49 = buf48
del buf48
triton_poi_fused_convolution_relu_15[grid(131072)](buf49,
primals_38, 131072, XBLOCK=512, num_warps=8, num_stages=1)
del primals_38
buf50 = extern_kernels.convolution(buf49, primals_39, stride=(2, 2),
padding=(1, 1), dilation=(1, 1), transposed=False,
output_padding=(0, 0), groups=1, bias=None)
assert_size_stride(buf50, (4, 256, 8, 8), (16384, 64, 8, 1))
buf51 = buf50
del buf50
triton_poi_fused_convolution_relu_16[grid(65536)](buf51, primals_40,
65536, XBLOCK=256, num_warps=4, num_stages=1)
del primals_40
buf52 = extern_kernels.convolution(buf51, primals_41, stride=(1, 1),
padding=(0, 0), dilation=(1, 1), transposed=False,
output_padding=(0, 0), groups=1, bias=None)
assert_size_stride(buf52, (4, 128, 8, 8), (8192, 64, 8, 1))
buf53 = buf52
del buf52
triton_poi_fused_convolution_relu_17[grid(32768)](buf53, primals_42,
32768, XBLOCK=256, num_warps=4, num_stages=1)
del primals_42
buf54 = extern_kernels.convolution(buf53, primals_43, stride=(1, 1),
padding=(0, 0), dilation=(1, 1), transposed=False,
output_padding=(0, 0), groups=1, bias=None)
assert_size_stride(buf54, (4, 256, 6, 6), (9216, 36, 6, 1))
buf55 = buf54
del buf54
triton_poi_fused_convolution_relu_18[grid(36864)](buf55, primals_44,
36864, XBLOCK=512, num_warps=4, num_stages=1)
del primals_44
buf56 = extern_kernels.convolution(buf55, primals_45, stride=(1, 1),
padding=(0, 0), dilation=(1, 1), transposed=False,
output_padding=(0, 0), groups=1, bias=None)
assert_size_stride(buf56, (4, 128, 6, 6), (4608, 36, 6, 1))
buf57 = buf56
del buf56
triton_poi_fused_convolution_relu_19[grid(18432)](buf57, primals_46,
18432, XBLOCK=256, num_warps=4, num_stages=1)
del primals_46
buf58 = extern_kernels.convolution(buf57, primals_47, stride=(1, 1),
padding=(0, 0), dilation=(1, 1), transposed=False,
output_padding=(0, 0), groups=1, bias=None)
assert_size_stride(buf58, (4, 256, 4, 4), (4096, 16, 4, 1))
buf59 = buf58
del buf58
triton_poi_fused_convolution_relu_20[grid(16384)](buf59, primals_48,
16384, XBLOCK=256, num_warps=4, num_stages=1)
del primals_48
buf60 = extern_kernels.convolution(buf43, primals_49, stride=(1, 1),
padding=(1, 1), dilation=(1, 1), transposed=False,
output_padding=(0, 0), groups=1, bias=None)
assert_size_stride(buf60, (4, 16, 64, 64), (65536, 4096, 64, 1))
buf61 = extern_kernels.convolution(buf39, primals_51, stride=(1, 1),
padding=(1, 1), dilation=(1, 1), transposed=False,
output_padding=(0, 0), groups=1, bias=None)
assert_size_stride(buf61, (4, 24, 32, 32), (24576, 1024, 32, 1))
buf62 = extern_kernels.convolution(buf47, primals_53, stride=(1, 1),
padding=(1, 1), dilation=(1, 1), transposed=False,
output_padding=(0, 0), groups=1, bias=None)
assert_size_stride(buf62, (4, 24, 16, 16), (6144, 256, 16, 1))
buf63 = extern_kernels.convolution(buf51, primals_55, stride=(1, 1),
padding=(1, 1), dilation=(1, 1), transposed=False,
output_padding=(0, 0), groups=1, bias=None)
assert_size_stride(buf63, (4, 24, 8, 8), (1536, 64, 8, 1))
buf64 = extern_kernels.convolution(buf55, primals_57, stride=(1, 1),
padding=(1, 1), dilation=(1, 1), transposed=False,
output_padding=(0, 0), groups=1, bias=None)
assert_size_stride(buf64, (4, 16, 6, 6), (576, 36, 6, 1))
buf65 = extern_kernels.convolution(buf59, primals_59, stride=(1, 1),
padding=(1, 1), dilation=(1, 1), transposed=False,
output_padding=(0, 0), groups=1, bias=None)
assert_size_stride(buf65, (4, 16, 4, 4), (256, 16, 4, 1))
buf66 = extern_kernels.convolution(buf43, primals_61, stride=(1, 1),
padding=(1, 1), dilation=(1, 1), transposed=False,
output_padding=(0, 0), groups=1, bias=None)
assert_size_stride(buf66, (4, 16, 64, 64), (65536, 4096, 64, 1))
buf67 = extern_kernels.convolution(buf39, primals_63, stride=(1, 1),
padding=(1, 1), dilation=(1, 1), transposed=False,
output_padding=(0, 0), groups=1, bias=None)
assert_size_stride(buf67, (4, 24, 32, 32), (24576, 1024, 32, 1))
buf68 = extern_kernels.convolution(buf47, primals_65, stride=(1, 1),
padding=(1, 1), dilation=(1, 1), transposed=False,
output_padding=(0, 0), groups=1, bias=None)
assert_size_stride(buf68, (4, 24, 16, 16), (6144, 256, 16, 1))
buf69 = extern_kernels.convolution(buf51, primals_67, stride=(1, 1),
padding=(1, 1), dilation=(1, 1), transposed=False,
output_padding=(0, 0), groups=1, bias=None)
assert_size_stride(buf69, (4, 24, 8, 8), (1536, 64, 8, 1))
buf70 = extern_kernels.convolution(buf55, primals_69, stride=(1, 1),
padding=(1, 1), dilation=(1, 1), transposed=False,
output_padding=(0, 0), groups=1, bias=None)
assert_size_stride(buf70, (4, 16, 6, 6), (576, 36, 6, 1))
buf71 = extern_kernels.convolution(buf59, primals_71, stride=(1, 1),
padding=(1, 1), dilation=(1, 1), transposed=False,
output_padding=(0, 0), groups=1, bias=None)
assert_size_stride(buf71, (4, 16, 4, 4), (256, 16, 4, 1))
buf72 = empty_strided_cuda((4, 24656, 4), (98624, 4, 1), torch.float32)
triton_poi_fused_cat_21[grid(394496)](buf60, primals_50, buf61,
primals_52, buf62, primals_54, buf63, primals_56, buf64,
primals_58, buf65, primals_60, buf72, 394496, XBLOCK=512,
num_warps=8, num_stages=1)
del buf60
del buf61
del buf62
del buf63
del buf64
del buf65
del primals_50
del primals_52
del primals_54
del primals_56
del primals_58
del primals_60
buf73 = empty_strided_cuda((4, 24656, 4), (98624, 4, 1), torch.float32)
triton_poi_fused_cat_21[grid(394496)](buf66, primals_62, buf67,
primals_64, buf68, primals_66, buf69, primals_68, buf70,
primals_70, buf71, primals_72, buf73, 394496, XBLOCK=512,
num_warps=8, num_stages=1)
del buf66
del buf67
del buf68
del buf69
del buf70
del buf71
del primals_62
del primals_64
del primals_66
del primals_68
del primals_70
del primals_72
return (buf72, buf73, primals_1, primals_3, primals_4, primals_6,
primals_8, primals_10, primals_12, primals_14, primals_16,
primals_18, primals_20, primals_22, primals_24, primals_26,
primals_28, primals_30, primals_32, primals_33, primals_35,
primals_37, primals_39, primals_41, primals_43, primals_45,
primals_47, primals_49, primals_51, primals_53, primals_55,
primals_57, primals_59, primals_61, primals_63, primals_65,
primals_67, primals_69, primals_71, buf1, buf3, buf4, buf5, buf7,
buf9, buf10, buf11, buf13, buf15, buf17, buf18, buf19, buf21, buf23,
buf25, buf26, buf27, buf29, buf31, buf33, buf34, buf35, buf37,
buf39, buf41, buf42, buf43, buf45, buf47, buf49, buf51, buf53,
buf55, buf57, buf59)
def decimate(tensor, m):
"""
Decimate a tensor by a factor 'm', i.e. downsample by keeping every 'm'th value.
This is used when we convert FC layers to equivalent Convolutional layers, BUT of a smaller size.
:param tensor: tensor to be decimated
:param m: list of decimation factors for each dimension of the tensor; None if not to be decimated along a dimension
:return: decimated tensor
"""
assert tensor.dim() == len(m)
for d in range(tensor.dim()):
if m[d] is not None:
tensor = tensor.index_select(dim=d, index=torch.arange(start=0,
end=tensor.size(d), step=m[d]).long())
return tensor
def cxcy_to_xywh(cxcy):
"""
Convert bounding boxes from center-size coordinates (c_x, c_y, w, h) to boundary coordinates (x_min, y_min, x_max, y_max).
:param cxcy: bounding boxes in center-size coordinates, a tensor of size (n_boxes, 4)
:return: bounding boxes in boundary coordinates, a tensor of size (n_boxes, 4)
"""
return torch.cat([cxcy[:, :2] - cxcy[:, 2:] / 2, cxcy[:, 2:]], 1)
def gcxgcy_to_cxcy(gcxgcy, priors_cxcy):
"""
Decode bounding box coordinates predicted by the model, since they are encoded in the form mentioned above.
They are decoded into center-size coordinates.
This is the inverse of the function above.
:param gcxgcy: encoded bounding boxes, i.e. output of the model, a tensor of size (n_priors, 4)
:param priors_cxcy: prior boxes with respect to which the encoding is defined, a tensor of size (n_priors, 4)
:return: decoded bounding boxes in center-size form, a tensor of size (n_priors, 4)
"""
return torch.cat([gcxgcy[:, :2] * priors_cxcy[:, 2:] / 10 + priors_cxcy
[:, :2], torch.exp(gcxgcy[:, 2:] / 5) * priors_cxcy[:, 2:]], 1)
class VGGBase(nn.Module):
"""
VGG base convolutions to produce lower-level feature maps.
"""
def __init__(self):
super(VGGBase, self).__init__()
self.conv1_1 = nn.Conv2d(3, 64, kernel_size=3, padding=1)
self.conv1_2 = nn.Conv2d(64, 64, kernel_size=3, padding=1)
self.pool1 = nn.MaxPool2d(kernel_size=2, stride=2)
self.conv2_1 = nn.Conv2d(64, 128, kernel_size=3, padding=1)
self.conv2_2 = nn.Conv2d(128, 128, kernel_size=3, padding=1)
self.pool2 = nn.MaxPool2d(kernel_size=2, stride=2)
self.conv3_1 = nn.Conv2d(128, 256, kernel_size=3, padding=1)
self.conv3_2 = nn.Conv2d(256, 256, kernel_size=3, padding=1)
self.conv3_3 = nn.Conv2d(256, 256, kernel_size=3, padding=1)
self.pool3 = nn.MaxPool2d(kernel_size=2, stride=2, ceil_mode=True)
self.conv4_1 = nn.Conv2d(256, 512, kernel_size=3, padding=1)
self.conv4_2 = nn.Conv2d(512, 512, kernel_size=3, padding=1)
self.conv4_3 = nn.Conv2d(512, 512, kernel_size=3, padding=1)
self.pool4 = nn.MaxPool2d(kernel_size=2, stride=2)
self.conv5_1 = nn.Conv2d(512, 512, kernel_size=3, padding=1)
self.conv5_2 = nn.Conv2d(512, 512, kernel_size=3, padding=1)
self.conv5_3 = nn.Conv2d(512, 512, kernel_size=3, padding=1)
self.pool5 = nn.MaxPool2d(kernel_size=3, stride=1, padding=1)
self.conv6 = nn.Conv2d(512, 1024, kernel_size=3, padding=6, dilation=6)
self.conv7 = nn.Conv2d(1024, 1024, kernel_size=1)
def forward(self, image):
"""
Forward propagation.
:param image: images, a tensor of dimensions (N, 3, 300, 300)
:return: lower-level feature maps conv4_3 and conv7
"""
out = F.relu(self.conv1_1(image))
out = F.relu(self.conv1_2(out))
out = self.pool1(out)
out = F.relu(self.conv2_1(out))
out = F.relu(self.conv2_2(out))
out = self.pool2(out)
out = F.relu(self.conv3_1(out))
out = F.relu(self.conv3_2(out))
out = F.relu(self.conv3_3(out))
out = self.pool3(out)
out = F.relu(self.conv4_1(out))
out = F.relu(self.conv4_2(out))
out = F.relu(self.conv4_3(out))
conv4_3_feats = out
out = self.pool4(out)
out = F.relu(self.conv5_1(out))
out = F.relu(self.conv5_2(out))
out = F.relu(self.conv5_3(out))
out = self.pool5(out)
out = F.relu(self.conv6(out))
conv7_feats = F.relu(self.conv7(out))
return conv4_3_feats, conv7_feats
def load_pretrained_layers(self):
"""
As in the paper, we use a VGG-16 pretrained on the ImageNet task as the base network.
There's one available in PyTorch, see https://pytorch.org/docs/stable/torchvision/models.html#torchvision.models.vgg16
We copy these parameters into our network. It's straightforward for conv1 to conv5.
However, the original VGG-16 does not contain the conv6 and con7 layers.
Therefore, we convert fc6 and fc7 into convolutional layers, and subsample by decimation. See 'decimate' in utils.py.
"""
state_dict = self.state_dict()
param_names = list(state_dict.keys())
pretrained_state_dict = torchvision.models.vgg16(pretrained=True
).state_dict()
pretrained_param_names = list(pretrained_state_dict.keys())
for i, param in enumerate(param_names[:-4]):
state_dict[param] = pretrained_state_dict[pretrained_param_names[i]
]
conv_fc6_weight = pretrained_state_dict['classifier.0.weight'].view(
4096, 512, 7, 7)
conv_fc6_bias = pretrained_state_dict['classifier.0.bias']
state_dict['conv6.weight'] = decimate(conv_fc6_weight, m=[4, None,
3, 3])
state_dict['conv6.bias'] = decimate(conv_fc6_bias, m=[4])
conv_fc7_weight = pretrained_state_dict['classifier.3.weight'].view(
4096, 4096, 1, 1)
conv_fc7_bias = pretrained_state_dict['classifier.3.bias']
state_dict['conv7.weight'] = decimate(conv_fc7_weight, m=[4, 4,
None, None])
state_dict['conv7.bias'] = decimate(conv_fc7_bias, m=[4])
self.load_state_dict(state_dict)
None
class AuxiliaryConvolutions(nn.Module):
"""
Additional convolutions to produce higher-level feature maps.
"""
def __init__(self):
super(AuxiliaryConvolutions, self).__init__()
self.conv8_1 = nn.Conv2d(1024, 256, kernel_size=1, padding=0)
self.conv8_2 = nn.Conv2d(256, 512, kernel_size=3, stride=2, padding=1)
self.conv9_1 = nn.Conv2d(512, 128, kernel_size=1, padding=0)
self.conv9_2 = nn.Conv2d(128, 256, kernel_size=3, stride=2, padding=1)
self.conv10_1 = nn.Conv2d(256, 128, kernel_size=1, padding=0)
self.conv10_2 = nn.Conv2d(128, 256, kernel_size=3, padding=0)
self.conv11_1 = nn.Conv2d(256, 128, kernel_size=1, padding=0)
self.conv11_2 = nn.Conv2d(128, 256, kernel_size=3, padding=0)
self.init_conv2d()
def init_conv2d(self):
"""
Initialize convolution parameters.
"""
for c in self.children():
if isinstance(c, nn.Conv2d):
nn.init.xavier_uniform_(c.weight)
nn.init.constant_(c.bias, 0.0)
def forward(self, conv7_feats):
"""
Forward propagation.
:param conv7_feats: lower-level conv7 feature map, a tensor of dimensions (N, 1024, 19, 19)
:return: higher-level feature maps conv8_2, conv9_2, conv10_2, and conv11_2
"""
out = F.relu(self.conv8_1(conv7_feats))
out = F.relu(self.conv8_2(out))
conv8_2_feats = out
out = F.relu(self.conv9_1(out))
out = F.relu(self.conv9_2(out))
conv9_2_feats = out
out = F.relu(self.conv10_1(out))
out = F.relu(self.conv10_2(out))
conv10_2_feats = out
out = F.relu(self.conv11_1(out))
conv11_2_feats = F.relu(self.conv11_2(out))
return conv8_2_feats, conv9_2_feats, conv10_2_feats, conv11_2_feats
class PredictionConvolutions(nn.Module):
"""
Convolutions to predict class scores and bounding boxes using lower and higher-level feature maps.
The bounding boxes (locations) are predicted as encoded offsets w.r.t each of the 8732 prior (default) boxes.
See 'cxcy_to_gcxgcy' in utils.py for the encoding definition.
The class scores represent the scores of each object class in each of the 8732 bounding boxes located.
A high score for 'background' = no object.
"""
def __init__(self, n_classes):
"""
:param n_classes: number of different types of objects
"""
super(PredictionConvolutions, self).__init__()
self.n_classes = n_classes
n_boxes = {'conv4_3': 4, 'conv7': 6, 'conv8_2': 6, 'conv9_2': 6,
'conv10_2': 4, 'conv11_2': 4}
self.loc_conv4_3 = nn.Conv2d(512, n_boxes['conv4_3'] * 4,
kernel_size=3, padding=1)
self.loc_conv7 = nn.Conv2d(1024, n_boxes['conv7'] * 4, kernel_size=
3, padding=1)
self.loc_conv8_2 = nn.Conv2d(512, n_boxes['conv8_2'] * 4,
kernel_size=3, padding=1)
self.loc_conv9_2 = nn.Conv2d(256, n_boxes['conv9_2'] * 4,
kernel_size=3, padding=1)
self.loc_conv10_2 = nn.Conv2d(256, n_boxes['conv10_2'] * 4,
kernel_size=3, padding=1)
self.loc_conv11_2 = nn.Conv2d(256, n_boxes['conv11_2'] * 4,
kernel_size=3, padding=1)
self.cl_conv4_3 = nn.Conv2d(512, n_boxes['conv4_3'] * n_classes,
kernel_size=3, padding=1)
self.cl_conv7 = nn.Conv2d(1024, n_boxes['conv7'] * n_classes,
kernel_size=3, padding=1)
self.cl_conv8_2 = nn.Conv2d(512, n_boxes['conv8_2'] * n_classes,
kernel_size=3, padding=1)
self.cl_conv9_2 = nn.Conv2d(256, n_boxes['conv9_2'] * n_classes,
kernel_size=3, padding=1)
self.cl_conv10_2 = nn.Conv2d(256, n_boxes['conv10_2'] * n_classes,
kernel_size=3, padding=1)
self.cl_conv11_2 = nn.Conv2d(256, n_boxes['conv11_2'] * n_classes,
kernel_size=3, padding=1)
self.init_conv2d()
def init_conv2d(self):
"""
Initialize convolution parameters.
"""
for c in self.children():
if isinstance(c, nn.Conv2d):
nn.init.xavier_uniform_(c.weight)
nn.init.constant_(c.bias, 0.0)
def forward(self, conv4_3_feats, conv7_feats, conv8_2_feats,
conv9_2_feats, conv10_2_feats, conv11_2_feats):
"""
Forward propagation.
:param conv4_3_feats: conv4_3 feature map, a tensor of dimensions (N, 512, 38, 38)
:param conv7_feats: conv7 feature map, a tensor of dimensions (N, 1024, 19, 19)
:param conv8_2_feats: conv8_2 feature map, a tensor of dimensions (N, 512, 10, 10)
:param conv9_2_feats: conv9_2 feature map, a tensor of dimensions (N, 256, 5, 5)
:param conv10_2_feats: conv10_2 feature map, a tensor of dimensions (N, 256, 3, 3)
:param conv11_2_feats: conv11_2 feature map, a tensor of dimensions (N, 256, 1, 1)
:return: 8732 locations and class scores (i.e. w.r.t each prior box) for each image
"""
batch_size = conv4_3_feats.size(0)
l_conv4_3 = self.loc_conv4_3(conv4_3_feats)
l_conv4_3 = l_conv4_3.permute(0, 2, 3, 1).contiguous()
l_conv4_3 = l_conv4_3.view(batch_size, -1, 4)
l_conv7 = self.loc_conv7(conv7_feats)
l_conv7 = l_conv7.permute(0, 2, 3, 1).contiguous()
l_conv7 = l_conv7.view(batch_size, -1, 4)
l_conv8_2 = self.loc_conv8_2(conv8_2_feats)
l_conv8_2 = l_conv8_2.permute(0, 2, 3, 1).contiguous()
l_conv8_2 = l_conv8_2.view(batch_size, -1, 4)
l_conv9_2 = self.loc_conv9_2(conv9_2_feats)
l_conv9_2 = l_conv9_2.permute(0, 2, 3, 1).contiguous()
l_conv9_2 = l_conv9_2.view(batch_size, -1, 4)
l_conv10_2 = self.loc_conv10_2(conv10_2_feats)
l_conv10_2 = l_conv10_2.permute(0, 2, 3, 1).contiguous()
l_conv10_2 = l_conv10_2.view(batch_size, -1, 4)
l_conv11_2 = self.loc_conv11_2(conv11_2_feats)
l_conv11_2 = l_conv11_2.permute(0, 2, 3, 1).contiguous()
l_conv11_2 = l_conv11_2.view(batch_size, -1, 4)
c_conv4_3 = self.cl_conv4_3(conv4_3_feats)
c_conv4_3 = c_conv4_3.permute(0, 2, 3, 1).contiguous()
c_conv4_3 = c_conv4_3.view(batch_size, -1, self.n_classes)
c_conv7 = self.cl_conv7(conv7_feats)
c_conv7 = c_conv7.permute(0, 2, 3, 1).contiguous()
c_conv7 = c_conv7.view(batch_size, -1, self.n_classes)
c_conv8_2 = self.cl_conv8_2(conv8_2_feats)
c_conv8_2 = c_conv8_2.permute(0, 2, 3, 1).contiguous()
c_conv8_2 = c_conv8_2.view(batch_size, -1, self.n_classes)
c_conv9_2 = self.cl_conv9_2(conv9_2_feats)
c_conv9_2 = c_conv9_2.permute(0, 2, 3, 1).contiguous()
c_conv9_2 = c_conv9_2.view(batch_size, -1, self.n_classes)
c_conv10_2 = self.cl_conv10_2(conv10_2_feats)
c_conv10_2 = c_conv10_2.permute(0, 2, 3, 1).contiguous()
c_conv10_2 = c_conv10_2.view(batch_size, -1, self.n_classes)
c_conv11_2 = self.cl_conv11_2(conv11_2_feats)
c_conv11_2 = c_conv11_2.permute(0, 2, 3, 1).contiguous()
c_conv11_2 = c_conv11_2.view(batch_size, -1, self.n_classes)
locs = torch.cat([l_conv4_3, l_conv7, l_conv8_2, l_conv9_2,
l_conv10_2, l_conv11_2], dim=1)
classes_scores = torch.cat([c_conv4_3, c_conv7, c_conv8_2,
c_conv9_2, c_conv10_2, c_conv11_2], dim=1)
return locs, classes_scores
class SSD300New(nn.Module):
"""
The SSD300 network - encapsulates the base VGG network, auxiliary, and prediction convolutions.
"""
def __init__(self, n_classes):
super(SSD300New, self).__init__()
self.n_classes = n_classes
self.base = VGGBase()
self.aux_convs = AuxiliaryConvolutions()
self.pred_convs = PredictionConvolutions(n_classes)
self.rescale_factors = nn.Parameter(torch.FloatTensor(1, 512, 1, 1))
nn.init.constant_(self.rescale_factors, 20)
self.priors_cxcy = self.create_prior_boxes()
def create_prior_boxes(self):
"""
Create the 8732 prior (default) boxes for the SSD300, as defined in the paper.
:return: prior boxes in center-size coordinates, a tensor of dimensions (8732, 4)
"""
fmap_dims = {'conv4_3': 38, 'conv7': 19, 'conv8_2': 10, 'conv9_2':
5, 'conv10_2': 3, 'conv11_2': 1}
obj_scales = {'conv4_3': 0.1, 'conv7': 0.2, 'conv8_2': 0.375,
'conv9_2': 0.55, 'conv10_2': 0.725, 'conv11_2': 0.9}
aspect_ratios = {'conv4_3': [1.0, 2.0, 0.5], 'conv7': [1.0, 2.0,
3.0, 0.5, 0.333], 'conv8_2': [1.0, 2.0, 3.0, 0.5, 0.333],
'conv9_2': [1.0, 2.0, 3.0, 0.5, 0.333], 'conv10_2': [1.0, 2.0,
0.5], 'conv11_2': [1.0, 2.0, 0.5]}
fmaps = list(fmap_dims.keys())
prior_boxes = []
for k, fmap in enumerate(fmaps):
for i in range(fmap_dims[fmap]):
for j in range(fmap_dims[fmap]):
cx = (j + 0.5) / fmap_dims[fmap]
cy = (i + 0.5) / fmap_dims[fmap]
for ratio in aspect_ratios[fmap]:
prior_boxes.append([cx, cy, obj_scales[fmap] * sqrt
(ratio), obj_scales[fmap] / sqrt(ratio)])
if ratio == 1.0:
try:
additional_scale = sqrt(obj_scales[fmap] *
obj_scales[fmaps[k + 1]])
except IndexError:
additional_scale = 1.0
prior_boxes.append([cx, cy, additional_scale,
additional_scale])
prior_boxes = torch.FloatTensor(prior_boxes)
prior_boxes.clamp_(0, 1)
return prior_boxes
def detect_objects(self, predicted_locs, predicted_scores):
"""
Decipher the 8732 locations and class scores (output of ths SSD300) to detect objects.
For each class, perform Non-Maximum Suppression (NMS) on boxes that are above a minimum threshold.
:param predicted_locs: predicted locations/boxes w.r.t the 8732 prior boxes, a tensor of dimensions (N, 8732, 4)
:param predicted_scores: class scores for each of the encoded locations/boxes, a tensor of dimensions (N, 8732, n_classes)
:param min_score: minimum threshold for a box to be considered a match for a certain class
:param max_overlap: maximum overlap two boxes can have so that the one with the lower score is not suppressed via NMS
:param top_k: if there are a lot of resulting detection across all classes, keep only the top 'k'
:return: detections (boxes, labels, and scores), lists of length batch_size
"""
batch_size = predicted_locs.size(0)
n_priors = self.priors_cxcy.size(0)
predicted_scores = F.softmax(predicted_scores, dim=2)
all_images_boxes = list()
scores = list()
assert n_priors == predicted_locs.size(1) == predicted_scores.size(1)
for i in range(batch_size):
decoded_locs = cxcy_to_xywh(gcxgcy_to_cxcy(predicted_locs[i],
self.priors_cxcy))
c = 1
class_scores = predicted_scores[i][:, c]
score_above_min_score = class_scores > 0.0
n_above_min_score = score_above_min_score.sum().item()
if n_above_min_score == 0:
continue
class_scores = class_scores[score_above_min_score]
class_decoded_locs = decoded_locs[score_above_min_score]
class_scores, sort_ind = class_scores.sort(dim=0, descending=True)
class_decoded_locs = class_decoded_locs[sort_ind]
best_loc = class_decoded_locs[0]
all_images_boxes.append(best_loc)
scores.append(class_scores[sort_ind][0])
return all_images_boxes, scores
def forward(self, input_0):
primals_32 = self.rescale_factors
primals_1 = self.base.conv1_1.weight
primals_2 = self.base.conv1_1.bias
primals_4 = self.base.conv1_2.weight
primals_5 = self.base.conv1_2.bias
primals_6 = self.base.conv2_1.weight
primals_7 = self.base.conv2_1.bias
primals_8 = self.base.conv2_2.weight
primals_9 = self.base.conv2_2.bias
primals_10 = self.base.conv3_1.weight
primals_11 = self.base.conv3_1.bias
primals_12 = self.base.conv3_2.weight
primals_13 = self.base.conv3_2.bias
primals_14 = self.base.conv3_3.weight
primals_15 = self.base.conv3_3.bias
primals_16 = self.base.conv4_1.weight
primals_17 = self.base.conv4_1.bias
primals_18 = self.base.conv4_2.weight
primals_19 = self.base.conv4_2.bias
primals_20 = self.base.conv4_3.weight
primals_21 = self.base.conv4_3.bias
primals_22 = self.base.conv5_1.weight
primals_23 = self.base.conv5_1.bias
primals_24 = self.base.conv5_2.weight
primals_25 = self.base.conv5_2.bias
primals_26 = self.base.conv5_3.weight
primals_27 = self.base.conv5_3.bias
primals_28 = self.base.conv6.weight
primals_29 = self.base.conv6.bias
primals_30 = self.base.conv7.weight
primals_31 = self.base.conv7.bias
primals_33 = self.aux_convs.conv8_1.weight
primals_34 = self.aux_convs.conv8_1.bias
primals_35 = self.aux_convs.conv8_2.weight
primals_36 = self.aux_convs.conv8_2.bias
primals_37 = self.aux_convs.conv9_1.weight
primals_38 = self.aux_convs.conv9_1.bias
primals_39 = self.aux_convs.conv9_2.weight
primals_40 = self.aux_convs.conv9_2.bias
primals_41 = self.aux_convs.conv10_1.weight
primals_42 = self.aux_convs.conv10_1.bias
primals_43 = self.aux_convs.conv10_2.weight
primals_44 = self.aux_convs.conv10_2.bias
primals_45 = self.aux_convs.conv11_1.weight
primals_46 = self.aux_convs.conv11_1.bias
primals_47 = self.aux_convs.conv11_2.weight
primals_48 = self.aux_convs.conv11_2.bias
primals_49 = self.pred_convs.loc_conv4_3.weight
primals_50 = self.pred_convs.loc_conv4_3.bias
primals_51 = self.pred_convs.loc_conv7.weight
primals_52 = self.pred_convs.loc_conv7.bias
primals_53 = self.pred_convs.loc_conv8_2.weight
primals_54 = self.pred_convs.loc_conv8_2.bias
primals_55 = self.pred_convs.loc_conv9_2.weight
primals_56 = self.pred_convs.loc_conv9_2.bias
primals_57 = self.pred_convs.loc_conv10_2.weight
primals_58 = self.pred_convs.loc_conv10_2.bias
primals_59 = self.pred_convs.loc_conv11_2.weight
primals_60 = self.pred_convs.loc_conv11_2.bias
primals_61 = self.pred_convs.cl_conv4_3.weight
primals_62 = self.pred_convs.cl_conv4_3.bias
primals_63 = self.pred_convs.cl_conv7.weight
primals_64 = self.pred_convs.cl_conv7.bias
primals_65 = self.pred_convs.cl_conv8_2.weight
primals_66 = self.pred_convs.cl_conv8_2.bias
primals_67 = self.pred_convs.cl_conv9_2.weight
primals_68 = self.pred_convs.cl_conv9_2.bias
primals_69 = self.pred_convs.cl_conv10_2.weight
primals_70 = self.pred_convs.cl_conv10_2.bias
primals_71 = self.pred_convs.cl_conv11_2.weight
primals_72 = self.pred_convs.cl_conv11_2.bias
primals_3 = input_0
output = call([primals_1, primals_2, primals_3, primals_4,
primals_5, primals_6, primals_7, primals_8, primals_9,
primals_10, primals_11, primals_12, primals_13, primals_14,
primals_15, primals_16, primals_17, primals_18, primals_19,
primals_20, primals_21, primals_22, primals_23, primals_24,
primals_25, primals_26, primals_27, primals_28, primals_29,
primals_30, primals_31, primals_32, primals_33, primals_34,
primals_35, primals_36, primals_37, primals_38, primals_39,
primals_40, primals_41, primals_42, primals_43, primals_44,
primals_45, primals_46, primals_47, primals_48, primals_49,
primals_50, primals_51, primals_52, primals_53, primals_54,
primals_55, primals_56, primals_57, primals_58, primals_59,
primals_60, primals_61, primals_62, primals_63, primals_64,
primals_65, primals_66, primals_67, primals_68, primals_69,
primals_70, primals_71, primals_72])
return output[0], output[1]
|
ildoonet/ai-starthon-2019
|
SSD300
| false | 15,742 |
[
"MIT"
] | 69 |
148855adcb731741938a86545a2d3282287f0a50
|
https://github.com/ildoonet/ai-starthon-2019/tree/148855adcb731741938a86545a2d3282287f0a50
|
PositionwiseFeedForward
|
# AOT ID: ['0_forward']
from ctypes import c_void_p, c_long, c_int
import torch
import math
import random
import os
import tempfile
from math import inf, nan
from torch._inductor.hooks import run_intermediate_hooks
from torch._inductor.utils import maybe_profile
from torch._inductor.codegen.memory_planning import _align as align
from torch import device, empty_strided
from torch._inductor.async_compile import AsyncCompile
from torch._inductor.select_algorithm import extern_kernels
from torch._inductor.codegen.multi_kernel import MultiKernelCall
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
aten = torch.ops.aten
inductor_ops = torch.ops.inductor
_quantized = torch.ops._quantized
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
alloc_from_pool = torch.ops.inductor._alloc_from_pool
async_compile = AsyncCompile()
# kernel path: runs/run_shard_2/inductor_cache/4u/c4u3liwgy6ah3xlxfhvbczvvfare3yvkd7osc2eyowkxndto3p24.py
# Topologically Sorted Source Nodes: [layer_norm], Original ATen: [aten.native_layer_norm]
# Source node to ATen node mapping:
# layer_norm => add, rsqrt, var_mean
# Graph fragment:
# %var_mean : [num_users=2] = call_function[target=torch.ops.aten.var_mean.correction](args = (%primals_3, [3]), kwargs = {correction: 0, keepdim: True})
# %add : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%getitem, 1e-06), kwargs = {})
# %rsqrt : [num_users=1] = call_function[target=torch.ops.aten.rsqrt.default](args = (%add,), kwargs = {})
triton_poi_fused_native_layer_norm_0 = async_compile.triton('triton_poi_fused_native_layer_norm_0', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[64],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=90, major=9, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=132), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_native_layer_norm_0', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 4, 'num_reduction': 0, 'backend_hash': 'B098E03CDA7B8ADC90DAFFDF24A2956451D1B13F297756A5DCC209498AA53705', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_native_layer_norm_0(in_ptr0, out_ptr0, out_ptr1, xnumel, XBLOCK : tl.constexpr):
xnumel = 64
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex
tmp0 = tl.load(in_ptr0 + (4*x0), xmask, eviction_policy='evict_last')
tmp1 = tl.load(in_ptr0 + (1 + (4*x0)), xmask, eviction_policy='evict_last')
tmp3 = tl.load(in_ptr0 + (2 + (4*x0)), xmask, eviction_policy='evict_last')
tmp5 = tl.load(in_ptr0 + (3 + (4*x0)), xmask, eviction_policy='evict_last')
tmp2 = tmp0 + tmp1
tmp4 = tmp2 + tmp3
tmp6 = tmp4 + tmp5
tmp7 = 4.0
tmp8 = tmp6 / tmp7
tmp9 = tmp0 - tmp8
tmp10 = tmp9 * tmp9
tmp11 = tmp1 - tmp8
tmp12 = tmp11 * tmp11
tmp13 = tmp10 + tmp12
tmp14 = tmp3 - tmp8
tmp15 = tmp14 * tmp14
tmp16 = tmp13 + tmp15
tmp17 = tmp5 - tmp8
tmp18 = tmp17 * tmp17
tmp19 = tmp16 + tmp18
tmp20 = tmp19 / tmp7
tmp21 = 1e-06
tmp22 = tmp20 + tmp21
tmp23 = libdevice.rsqrt(tmp22)
tl.store(out_ptr0 + (x0), tmp8, xmask)
tl.store(out_ptr1 + (x0), tmp23, xmask)
''', device_str='cuda')
# kernel path: runs/run_shard_2/inductor_cache/gn/cgn3tpasui6fv3xxba47jzqip7bgipyrz4akedry64e2fx5k4rvd.py
# Topologically Sorted Source Nodes: [layer_norm], Original ATen: [aten.native_layer_norm]
# Source node to ATen node mapping:
# layer_norm => add, add_1, mul, mul_1, rsqrt, sub, var_mean
# Graph fragment:
# %var_mean : [num_users=2] = call_function[target=torch.ops.aten.var_mean.correction](args = (%primals_3, [3]), kwargs = {correction: 0, keepdim: True})
# %add : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%getitem, 1e-06), kwargs = {})
# %rsqrt : [num_users=1] = call_function[target=torch.ops.aten.rsqrt.default](args = (%add,), kwargs = {})
# %sub : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (%primals_3, %getitem_1), kwargs = {})
# %mul : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%sub, %rsqrt), kwargs = {})
# %mul_1 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%mul, %primals_1), kwargs = {})
# %add_1 : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%mul_1, %primals_2), kwargs = {})
triton_poi_fused_native_layer_norm_1 = async_compile.triton('triton_poi_fused_native_layer_norm_1', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[256],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: '*fp32', 4: '*fp32', 5: '*fp32', 6: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=90, major=9, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=132), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3, 4, 5, 6), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_native_layer_norm_1', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 5, 'num_reduction': 0, 'backend_hash': 'B098E03CDA7B8ADC90DAFFDF24A2956451D1B13F297756A5DCC209498AA53705', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_native_layer_norm_1(in_ptr0, in_ptr1, in_ptr2, in_ptr3, in_ptr4, out_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 256
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x2 = xindex
x1 = (xindex // 4)
x0 = xindex % 4
tmp0 = tl.load(in_ptr0 + (x2), xmask)
tmp1 = tl.load(in_ptr1 + (x1), xmask, eviction_policy='evict_last')
tmp3 = tl.load(in_ptr2 + (x1), xmask, eviction_policy='evict_last')
tmp5 = tl.load(in_ptr3 + (x0), xmask, eviction_policy='evict_last')
tmp7 = tl.load(in_ptr4 + (x0), xmask, eviction_policy='evict_last')
tmp2 = tmp0 - tmp1
tmp4 = tmp2 * tmp3
tmp6 = tmp4 * tmp5
tmp8 = tmp6 + tmp7
tl.store(out_ptr0 + (x2), tmp8, xmask)
''', device_str='cuda')
# kernel path: runs/run_shard_2/inductor_cache/j7/cj7j25upuelhazx47z6nn34kksu33alxa7vt5xu5egksq72vzstt.py
# Topologically Sorted Source Nodes: [mul, pow_1, mul_1, add, mul_2, tanh, add_1, mul_3], Original ATen: [aten.mul, aten.pow, aten.add, aten.tanh]
# Source node to ATen node mapping:
# add => add_2
# add_1 => add_3
# mul => mul_2
# mul_1 => mul_3
# mul_2 => mul_4
# mul_3 => mul_5
# pow_1 => pow_1
# tanh => tanh
# Graph fragment:
# %mul_2 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%view_1, 0.5), kwargs = {})
# %pow_1 : [num_users=1] = call_function[target=torch.ops.aten.pow.Tensor_Scalar](args = (%view_1, 3), kwargs = {})
# %mul_3 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%pow_1, 0.044715), kwargs = {})
# %add_2 : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%view_1, %mul_3), kwargs = {})
# %mul_4 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%add_2, 0.7978845608028654), kwargs = {})
# %tanh : [num_users=1] = call_function[target=torch.ops.aten.tanh.default](args = (%mul_4,), kwargs = {})
# %add_3 : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%tanh, 1), kwargs = {})
# %mul_5 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%mul_2, %add_3), kwargs = {})
triton_poi_fused_add_mul_pow_tanh_2 = async_compile.triton('triton_poi_fused_add_mul_pow_tanh_2', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[256],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=90, major=9, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=132), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_add_mul_pow_tanh_2', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 1, 'num_reduction': 0, 'backend_hash': 'B098E03CDA7B8ADC90DAFFDF24A2956451D1B13F297756A5DCC209498AA53705', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_add_mul_pow_tanh_2(in_ptr0, out_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 256
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex
tmp0 = tl.load(in_ptr0 + (x0), xmask)
tmp1 = 0.5
tmp2 = tmp0 * tmp1
tmp3 = tmp0 * tmp0
tmp4 = tmp3 * tmp0
tmp5 = 0.044715
tmp6 = tmp4 * tmp5
tmp7 = tmp0 + tmp6
tmp8 = 0.7978845608028654
tmp9 = tmp7 * tmp8
tmp10 = libdevice.tanh(tmp9)
tmp11 = 1.0
tmp12 = tmp10 + tmp11
tmp13 = tmp2 * tmp12
tl.store(out_ptr0 + (x0), tmp13, xmask)
''', device_str='cuda')
# kernel path: runs/run_shard_2/inductor_cache/h3/ch3dkn75z5nv2s6poei22lobtkafusftzt2ks6goill4cq3nfbmj.py
# Topologically Sorted Source Nodes: [add_2], Original ATen: [aten.add]
# Source node to ATen node mapping:
# add_2 => add_4
# Graph fragment:
# %add_4 : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%view_3, %primals_3), kwargs = {})
triton_poi_fused_add_3 = async_compile.triton('triton_poi_fused_add_3', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[256],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=90, major=9, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=132), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_add_3', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 3, 'num_reduction': 0, 'backend_hash': 'B098E03CDA7B8ADC90DAFFDF24A2956451D1B13F297756A5DCC209498AA53705', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_add_3(in_out_ptr0, in_ptr0, in_ptr1, xnumel, XBLOCK : tl.constexpr):
xnumel = 256
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x2 = xindex
x0 = xindex % 4
tmp0 = tl.load(in_out_ptr0 + (x2), xmask)
tmp1 = tl.load(in_ptr0 + (x0), xmask, eviction_policy='evict_last')
tmp3 = tl.load(in_ptr1 + (x2), xmask)
tmp2 = tmp0 + tmp1
tmp4 = tmp2 + tmp3
tl.store(in_out_ptr0 + (x2), tmp4, xmask)
''', device_str='cuda')
async_compile.wait(globals())
del async_compile
def call(args):
primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7 = args
args.clear()
assert_size_stride(primals_1, (4, ), (1, ))
assert_size_stride(primals_2, (4, ), (1, ))
assert_size_stride(primals_3, (4, 4, 4, 4), (64, 16, 4, 1))
assert_size_stride(primals_4, (4, 4), (4, 1))
assert_size_stride(primals_5, (4, ), (1, ))
assert_size_stride(primals_6, (4, 4), (4, 1))
assert_size_stride(primals_7, (4, ), (1, ))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((4, 4, 4, 1), (16, 4, 1, 64), torch.float32)
buf1 = empty_strided_cuda((4, 4, 4, 1), (16, 4, 1, 64), torch.float32)
# Topologically Sorted Source Nodes: [layer_norm], Original ATen: [aten.native_layer_norm]
stream0 = get_raw_stream(0)
triton_poi_fused_native_layer_norm_0.run(primals_3, buf0, buf1, 64, grid=grid(64), stream=stream0)
buf2 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32)
# Topologically Sorted Source Nodes: [layer_norm], Original ATen: [aten.native_layer_norm]
triton_poi_fused_native_layer_norm_1.run(primals_3, buf0, buf1, primals_1, primals_2, buf2, 256, grid=grid(256), stream=stream0)
del buf0
del buf1
del primals_1
del primals_2
buf3 = empty_strided_cuda((64, 4), (4, 1), torch.float32)
# Topologically Sorted Source Nodes: [linear], Original ATen: [aten.addmm]
extern_kernels.addmm(primals_5, reinterpret_tensor(buf2, (64, 4), (4, 1), 0), reinterpret_tensor(primals_4, (4, 4), (1, 4), 0), alpha=1, beta=1, out=buf3)
del primals_5
buf4 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32)
# Topologically Sorted Source Nodes: [mul, pow_1, mul_1, add, mul_2, tanh, add_1, mul_3], Original ATen: [aten.mul, aten.pow, aten.add, aten.tanh]
triton_poi_fused_add_mul_pow_tanh_2.run(buf3, buf4, 256, grid=grid(256), stream=stream0)
buf5 = empty_strided_cuda((64, 4), (4, 1), torch.float32)
# Topologically Sorted Source Nodes: [], Original ATen: []
extern_kernels.mm(reinterpret_tensor(buf4, (64, 4), (4, 1), 0), reinterpret_tensor(primals_6, (4, 4), (1, 4), 0), out=buf5)
buf6 = reinterpret_tensor(buf5, (4, 4, 4, 4), (64, 16, 4, 1), 0); del buf5 # reuse
# Topologically Sorted Source Nodes: [add_2], Original ATen: [aten.add]
triton_poi_fused_add_3.run(buf6, primals_7, primals_3, 256, grid=grid(256), stream=stream0)
del primals_7
return (buf6, primals_3, reinterpret_tensor(buf2, (64, 4), (4, 1), 0), buf3, reinterpret_tensor(buf4, (64, 4), (4, 1), 0), primals_6, primals_4, )
def benchmark_compiled_module(times=10, repeat=10):
from torch._dynamo.testing import rand_strided
from torch._inductor.utils import print_performance
primals_1 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32)
primals_2 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32)
primals_3 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32)
primals_4 = rand_strided((4, 4), (4, 1), device='cuda:0', dtype=torch.float32)
primals_5 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32)
primals_6 = rand_strided((4, 4), (4, 1), device='cuda:0', dtype=torch.float32)
primals_7 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32)
fn = lambda: call([primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7])
return print_performance(fn, times=times, repeat=repeat)
if __name__ == "__main__":
from torch._inductor.wrapper_benchmark import compiled_module_main
compiled_module_main('None', benchmark_compiled_module)
|
import torch
from torch._inductor.select_algorithm import extern_kernels
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
from torch._inductor.runtime.triton_helpers import libdevice
import math
import torch.distributed
import torch
import torch.nn as nn
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
@triton.jit
def triton_poi_fused_native_layer_norm_0(in_ptr0, out_ptr0, out_ptr1,
xnumel, XBLOCK: tl.constexpr):
xnumel = 64
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex
tmp0 = tl.load(in_ptr0 + 4 * x0, xmask, eviction_policy='evict_last')
tmp1 = tl.load(in_ptr0 + (1 + 4 * x0), xmask, eviction_policy='evict_last')
tmp3 = tl.load(in_ptr0 + (2 + 4 * x0), xmask, eviction_policy='evict_last')
tmp5 = tl.load(in_ptr0 + (3 + 4 * x0), xmask, eviction_policy='evict_last')
tmp2 = tmp0 + tmp1
tmp4 = tmp2 + tmp3
tmp6 = tmp4 + tmp5
tmp7 = 4.0
tmp8 = tmp6 / tmp7
tmp9 = tmp0 - tmp8
tmp10 = tmp9 * tmp9
tmp11 = tmp1 - tmp8
tmp12 = tmp11 * tmp11
tmp13 = tmp10 + tmp12
tmp14 = tmp3 - tmp8
tmp15 = tmp14 * tmp14
tmp16 = tmp13 + tmp15
tmp17 = tmp5 - tmp8
tmp18 = tmp17 * tmp17
tmp19 = tmp16 + tmp18
tmp20 = tmp19 / tmp7
tmp21 = 1e-06
tmp22 = tmp20 + tmp21
tmp23 = libdevice.rsqrt(tmp22)
tl.store(out_ptr0 + x0, tmp8, xmask)
tl.store(out_ptr1 + x0, tmp23, xmask)
@triton.jit
def triton_poi_fused_native_layer_norm_1(in_ptr0, in_ptr1, in_ptr2, in_ptr3,
in_ptr4, out_ptr0, xnumel, XBLOCK: tl.constexpr):
xnumel = 256
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x2 = xindex
x1 = xindex // 4
x0 = xindex % 4
tmp0 = tl.load(in_ptr0 + x2, xmask)
tmp1 = tl.load(in_ptr1 + x1, xmask, eviction_policy='evict_last')
tmp3 = tl.load(in_ptr2 + x1, xmask, eviction_policy='evict_last')
tmp5 = tl.load(in_ptr3 + x0, xmask, eviction_policy='evict_last')
tmp7 = tl.load(in_ptr4 + x0, xmask, eviction_policy='evict_last')
tmp2 = tmp0 - tmp1
tmp4 = tmp2 * tmp3
tmp6 = tmp4 * tmp5
tmp8 = tmp6 + tmp7
tl.store(out_ptr0 + x2, tmp8, xmask)
@triton.jit
def triton_poi_fused_add_mul_pow_tanh_2(in_ptr0, out_ptr0, xnumel, XBLOCK:
tl.constexpr):
xnumel = 256
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex
tmp0 = tl.load(in_ptr0 + x0, xmask)
tmp1 = 0.5
tmp2 = tmp0 * tmp1
tmp3 = tmp0 * tmp0
tmp4 = tmp3 * tmp0
tmp5 = 0.044715
tmp6 = tmp4 * tmp5
tmp7 = tmp0 + tmp6
tmp8 = 0.7978845608028654
tmp9 = tmp7 * tmp8
tmp10 = libdevice.tanh(tmp9)
tmp11 = 1.0
tmp12 = tmp10 + tmp11
tmp13 = tmp2 * tmp12
tl.store(out_ptr0 + x0, tmp13, xmask)
@triton.jit
def triton_poi_fused_add_3(in_out_ptr0, in_ptr0, in_ptr1, xnumel, XBLOCK:
tl.constexpr):
xnumel = 256
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x2 = xindex
x0 = xindex % 4
tmp0 = tl.load(in_out_ptr0 + x2, xmask)
tmp1 = tl.load(in_ptr0 + x0, xmask, eviction_policy='evict_last')
tmp3 = tl.load(in_ptr1 + x2, xmask)
tmp2 = tmp0 + tmp1
tmp4 = tmp2 + tmp3
tl.store(in_out_ptr0 + x2, tmp4, xmask)
def call(args):
(primals_1, primals_2, primals_3, primals_4, primals_5, primals_6,
primals_7) = args
args.clear()
assert_size_stride(primals_1, (4,), (1,))
assert_size_stride(primals_2, (4,), (1,))
assert_size_stride(primals_3, (4, 4, 4, 4), (64, 16, 4, 1))
assert_size_stride(primals_4, (4, 4), (4, 1))
assert_size_stride(primals_5, (4,), (1,))
assert_size_stride(primals_6, (4, 4), (4, 1))
assert_size_stride(primals_7, (4,), (1,))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((4, 4, 4, 1), (16, 4, 1, 64), torch.float32)
buf1 = empty_strided_cuda((4, 4, 4, 1), (16, 4, 1, 64), torch.float32)
get_raw_stream(0)
triton_poi_fused_native_layer_norm_0[grid(64)](primals_3, buf0,
buf1, 64, XBLOCK=64, num_warps=1, num_stages=1)
buf2 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32)
triton_poi_fused_native_layer_norm_1[grid(256)](primals_3, buf0,
buf1, primals_1, primals_2, buf2, 256, XBLOCK=128, num_warps=4,
num_stages=1)
del buf0
del buf1
del primals_1
del primals_2
buf3 = empty_strided_cuda((64, 4), (4, 1), torch.float32)
extern_kernels.addmm(primals_5, reinterpret_tensor(buf2, (64, 4), (
4, 1), 0), reinterpret_tensor(primals_4, (4, 4), (1, 4), 0),
alpha=1, beta=1, out=buf3)
del primals_5
buf4 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32)
triton_poi_fused_add_mul_pow_tanh_2[grid(256)](buf3, buf4, 256,
XBLOCK=128, num_warps=4, num_stages=1)
buf5 = empty_strided_cuda((64, 4), (4, 1), torch.float32)
extern_kernels.mm(reinterpret_tensor(buf4, (64, 4), (4, 1), 0),
reinterpret_tensor(primals_6, (4, 4), (1, 4), 0), out=buf5)
buf6 = reinterpret_tensor(buf5, (4, 4, 4, 4), (64, 16, 4, 1), 0)
del buf5
triton_poi_fused_add_3[grid(256)](buf6, primals_7, primals_3, 256,
XBLOCK=256, num_warps=4, num_stages=1)
del primals_7
return buf6, primals_3, reinterpret_tensor(buf2, (64, 4), (4, 1), 0
), buf3, reinterpret_tensor(buf4, (64, 4), (4, 1), 0
), primals_6, primals_4
def gelu(x):
return 0.5 * x * (1 + torch.tanh(math.sqrt(2 / math.pi) * (x + 0.044715 *
torch.pow(x, 3))))
class PositionwiseFeedForwardNew(nn.Module):
""" A two-layer Feed-Forward-Network with residual layer norm.
Args:
d_model (int): the size of input for the first-layer of the FFN.
d_ff (int): the hidden layer size of the second-layer
of the FNN.
dropout (float): dropout probability in :math:`[0, 1)`.
"""
def __init__(self, d_model, d_ff, dropout=0.1):
super(PositionwiseFeedForwardNew, self).__init__()
self.w_1 = nn.Linear(d_model, d_ff)
self.w_2 = nn.Linear(d_ff, d_model)
self.layer_norm = nn.LayerNorm(d_model, eps=1e-06)
self.actv = gelu
self.dropout_1 = nn.Dropout(dropout)
self.dropout_2 = nn.Dropout(dropout)
def forward(self, input_0):
primals_4 = self.w_1.weight
primals_1 = self.w_1.bias
primals_6 = self.w_2.weight
primals_2 = self.w_2.bias
primals_5 = self.layer_norm.weight
primals_7 = self.layer_norm.bias
primals_3 = input_0
output = call([primals_1, primals_2, primals_3, primals_4,
primals_5, primals_6, primals_7])
return output[0]
|
RowitZou/CG-nAR
|
PositionwiseFeedForward
| false | 17,879 |
[
"MIT"
] | 8 |
8e2debeb3170045592b3b674ea6f9b56251e71f4
|
https://github.com/RowitZou/CG-nAR/tree/8e2debeb3170045592b3b674ea6f9b56251e71f4
|
ResidualDenseBlock
|
import torch
import torch.nn as nn
class ResidualDenseBlock(nn.Module):
def __init__(self, channels=64, kernel_size=3, growth=32):
super().__init__()
self.conv2d_1 = self.conv2d(channels, growth, kernel_size, growth, 0)
self.conv2d_2 = self.conv2d(channels, growth, kernel_size, growth, 1)
self.conv2d_3 = self.conv2d(channels, growth, kernel_size, growth, 2)
self.conv2d_4 = self.conv2d(channels, growth, kernel_size, growth, 3)
self.conv2d_5 = self.conv2d(channels, channels, kernel_size, growth, 4)
self.relu = nn.LeakyReLU(negative_slope=0.2, inplace=True)
@staticmethod
def conv2d(in_channels, out_channels, kernel_size, growth, factor):
return nn.Conv2d(in_channels=in_channels + factor * growth,
out_channels=out_channels, kernel_size=kernel_size, padding=
kernel_size // 2)
def forward(self, input_data):
x1 = self.relu(self.conv2d_1(input_data))
x2 = self.relu(self.conv2d_2(torch.cat((input_data, x1), 1)))
x3 = self.relu(self.conv2d_3(torch.cat((input_data, x1, x2), 1)))
x4 = self.relu(self.conv2d_4(torch.cat((input_data, x1, x2, x3), 1)))
x5 = self.conv2d_5(torch.cat((input_data, x1, x2, x3, x4), 1))
return input_data + x5 * 0.2
def get_inputs():
return [torch.rand([4, 64, 64, 64])]
def get_init_inputs():
return [[], {}]
|
import torch
from torch._inductor.select_algorithm import extern_kernels
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
import torch.nn as nn
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
@triton.jit
def triton_poi_fused_cat_0(in_ptr0, in_ptr1, in_ptr2, out_ptr0, xnumel,
XBLOCK: tl.constexpr):
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
tl.full([XBLOCK], True, tl.int1)
x1 = xindex // 4096 % 96
x0 = xindex % 4096
x2 = xindex // 393216
x3 = xindex
tmp0 = x1
tl.full([1], 0, tl.int64)
tmp3 = tl.full([1], 64, tl.int64)
tmp4 = tmp0 < tmp3
tmp5 = tl.load(in_ptr0 + (x0 + 4096 * x1 + 262144 * x2), tmp4, other=0.0)
tmp6 = tmp0 >= tmp3
tl.full([1], 96, tl.int64)
tmp9 = tl.load(in_ptr1 + (x0 + 4096 * (-64 + x1) + 131072 * x2), tmp6,
other=0.0)
tmp10 = tl.load(in_ptr2 + (-64 + x1), tmp6, eviction_policy=
'evict_last', other=0.0)
tmp11 = tmp9 + tmp10
tmp12 = 0.0
tmp13 = tmp11 > tmp12
tmp14 = 0.2
tmp15 = tmp11 * tmp14
tmp16 = tl.where(tmp13, tmp11, tmp15)
tmp17 = tl.full(tmp16.shape, 0.0, tmp16.dtype)
tmp18 = tl.where(tmp6, tmp16, tmp17)
tmp19 = tl.where(tmp4, tmp5, tmp18)
tl.store(out_ptr0 + x3, tmp19, None)
@triton.jit
def triton_poi_fused_cat_1(in_ptr0, in_ptr1, in_ptr2, in_ptr3, in_ptr4,
out_ptr0, xnumel, XBLOCK: tl.constexpr):
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
tl.full([XBLOCK], True, tl.int1)
x1 = xindex // 4096 % 128
x0 = xindex % 4096
x2 = xindex // 524288
x3 = xindex
tmp0 = x1
tl.full([1], 0, tl.int64)
tmp3 = tl.full([1], 64, tl.int64)
tmp4 = tmp0 < tmp3
tmp5 = tl.load(in_ptr0 + (x0 + 4096 * x1 + 262144 * x2), tmp4, other=0.0)
tmp6 = tmp0 >= tmp3
tmp7 = tl.full([1], 96, tl.int64)
tmp8 = tmp0 < tmp7
tmp9 = tmp6 & tmp8
tmp10 = tl.load(in_ptr1 + (x0 + 4096 * (-64 + x1) + 131072 * x2), tmp9,
other=0.0)
tmp11 = tl.load(in_ptr2 + (-64 + x1), tmp9, eviction_policy=
'evict_last', other=0.0)
tmp12 = tmp10 + tmp11
tmp13 = 0.0
tmp14 = tmp12 > tmp13
tmp15 = 0.2
tmp16 = tmp12 * tmp15
tmp17 = tl.where(tmp14, tmp12, tmp16)
tmp18 = tl.full(tmp17.shape, 0.0, tmp17.dtype)
tmp19 = tl.where(tmp9, tmp17, tmp18)
tmp20 = tmp0 >= tmp7
tl.full([1], 128, tl.int64)
tmp23 = tl.load(in_ptr3 + (x0 + 4096 * (-96 + x1) + 131072 * x2), tmp20,
other=0.0)
tmp24 = tl.load(in_ptr4 + (-96 + x1), tmp20, eviction_policy=
'evict_last', other=0.0)
tmp25 = tmp23 + tmp24
tmp26 = tmp25 > tmp13
tmp27 = tmp25 * tmp15
tmp28 = tl.where(tmp26, tmp25, tmp27)
tmp29 = tl.full(tmp28.shape, 0.0, tmp28.dtype)
tmp30 = tl.where(tmp20, tmp28, tmp29)
tmp31 = tl.where(tmp9, tmp19, tmp30)
tmp32 = tl.where(tmp4, tmp5, tmp31)
tl.store(out_ptr0 + x3, tmp32, None)
@triton.jit
def triton_poi_fused_cat_2(in_ptr0, in_ptr1, in_ptr2, in_ptr3, in_ptr4,
in_ptr5, in_ptr6, out_ptr0, xnumel, XBLOCK: tl.constexpr):
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
tl.full([XBLOCK], True, tl.int1)
x1 = xindex // 4096 % 160
x0 = xindex % 4096
x2 = xindex // 655360
x3 = xindex
tmp0 = x1
tl.full([1], 0, tl.int64)
tmp3 = tl.full([1], 64, tl.int64)
tmp4 = tmp0 < tmp3
tmp5 = tl.load(in_ptr0 + (x0 + 4096 * x1 + 262144 * x2), tmp4, other=0.0)
tmp6 = tmp0 >= tmp3
tmp7 = tl.full([1], 96, tl.int64)
tmp8 = tmp0 < tmp7
tmp9 = tmp6 & tmp8
tmp10 = tl.load(in_ptr1 + (x0 + 4096 * (-64 + x1) + 131072 * x2), tmp9,
other=0.0)
tmp11 = tl.load(in_ptr2 + (-64 + x1), tmp9, eviction_policy=
'evict_last', other=0.0)
tmp12 = tmp10 + tmp11
tmp13 = 0.0
tmp14 = tmp12 > tmp13
tmp15 = 0.2
tmp16 = tmp12 * tmp15
tmp17 = tl.where(tmp14, tmp12, tmp16)
tmp18 = tl.full(tmp17.shape, 0.0, tmp17.dtype)
tmp19 = tl.where(tmp9, tmp17, tmp18)
tmp20 = tmp0 >= tmp7
tmp21 = tl.full([1], 128, tl.int64)
tmp22 = tmp0 < tmp21
tmp23 = tmp20 & tmp22
tmp24 = tl.load(in_ptr3 + (x0 + 4096 * (-96 + x1) + 131072 * x2), tmp23,
other=0.0)
tmp25 = tl.load(in_ptr4 + (-96 + x1), tmp23, eviction_policy=
'evict_last', other=0.0)
tmp26 = tmp24 + tmp25
tmp27 = tmp26 > tmp13
tmp28 = tmp26 * tmp15
tmp29 = tl.where(tmp27, tmp26, tmp28)
tmp30 = tl.full(tmp29.shape, 0.0, tmp29.dtype)
tmp31 = tl.where(tmp23, tmp29, tmp30)
tmp32 = tmp0 >= tmp21
tl.full([1], 160, tl.int64)
tmp35 = tl.load(in_ptr5 + (x0 + 4096 * (-128 + x1) + 131072 * x2),
tmp32, other=0.0)
tmp36 = tl.load(in_ptr6 + (-128 + x1), tmp32, eviction_policy=
'evict_last', other=0.0)
tmp37 = tmp35 + tmp36
tmp38 = tmp37 > tmp13
tmp39 = tmp37 * tmp15
tmp40 = tl.where(tmp38, tmp37, tmp39)
tmp41 = tl.full(tmp40.shape, 0.0, tmp40.dtype)
tmp42 = tl.where(tmp32, tmp40, tmp41)
tmp43 = tl.where(tmp23, tmp31, tmp42)
tmp44 = tl.where(tmp9, tmp19, tmp43)
tmp45 = tl.where(tmp4, tmp5, tmp44)
tl.store(out_ptr0 + x3, tmp45, None)
@triton.jit
def triton_poi_fused_cat_3(in_ptr0, in_ptr1, in_ptr2, in_ptr3, in_ptr4,
in_ptr5, in_ptr6, in_ptr7, in_ptr8, out_ptr0, xnumel, XBLOCK: tl.constexpr
):
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
tl.full([XBLOCK], True, tl.int1)
x1 = xindex // 4096 % 192
x0 = xindex % 4096
x2 = xindex // 786432
x3 = xindex
tmp0 = x1
tl.full([1], 0, tl.int64)
tmp3 = tl.full([1], 64, tl.int64)
tmp4 = tmp0 < tmp3
tmp5 = tl.load(in_ptr0 + (x0 + 4096 * x1 + 262144 * x2), tmp4, other=0.0)
tmp6 = tmp0 >= tmp3
tmp7 = tl.full([1], 96, tl.int64)
tmp8 = tmp0 < tmp7
tmp9 = tmp6 & tmp8
tmp10 = tl.load(in_ptr1 + (x0 + 4096 * (-64 + x1) + 131072 * x2), tmp9,
other=0.0)
tmp11 = tl.load(in_ptr2 + (-64 + x1), tmp9, eviction_policy=
'evict_last', other=0.0)
tmp12 = tmp10 + tmp11
tmp13 = 0.0
tmp14 = tmp12 > tmp13
tmp15 = 0.2
tmp16 = tmp12 * tmp15
tmp17 = tl.where(tmp14, tmp12, tmp16)
tmp18 = tl.full(tmp17.shape, 0.0, tmp17.dtype)
tmp19 = tl.where(tmp9, tmp17, tmp18)
tmp20 = tmp0 >= tmp7
tmp21 = tl.full([1], 128, tl.int64)
tmp22 = tmp0 < tmp21
tmp23 = tmp20 & tmp22
tmp24 = tl.load(in_ptr3 + (x0 + 4096 * (-96 + x1) + 131072 * x2), tmp23,
other=0.0)
tmp25 = tl.load(in_ptr4 + (-96 + x1), tmp23, eviction_policy=
'evict_last', other=0.0)
tmp26 = tmp24 + tmp25
tmp27 = tmp26 > tmp13
tmp28 = tmp26 * tmp15
tmp29 = tl.where(tmp27, tmp26, tmp28)
tmp30 = tl.full(tmp29.shape, 0.0, tmp29.dtype)
tmp31 = tl.where(tmp23, tmp29, tmp30)
tmp32 = tmp0 >= tmp21
tmp33 = tl.full([1], 160, tl.int64)
tmp34 = tmp0 < tmp33
tmp35 = tmp32 & tmp34
tmp36 = tl.load(in_ptr5 + (x0 + 4096 * (-128 + x1) + 131072 * x2),
tmp35, other=0.0)
tmp37 = tl.load(in_ptr6 + (-128 + x1), tmp35, eviction_policy=
'evict_last', other=0.0)
tmp38 = tmp36 + tmp37
tmp39 = tmp38 > tmp13
tmp40 = tmp38 * tmp15
tmp41 = tl.where(tmp39, tmp38, tmp40)
tmp42 = tl.full(tmp41.shape, 0.0, tmp41.dtype)
tmp43 = tl.where(tmp35, tmp41, tmp42)
tmp44 = tmp0 >= tmp33
tl.full([1], 192, tl.int64)
tmp47 = tl.load(in_ptr7 + (x0 + 4096 * (-160 + x1) + 131072 * x2),
tmp44, other=0.0)
tmp48 = tl.load(in_ptr8 + (-160 + x1), tmp44, eviction_policy=
'evict_last', other=0.0)
tmp49 = tmp47 + tmp48
tmp50 = tmp49 > tmp13
tmp51 = tmp49 * tmp15
tmp52 = tl.where(tmp50, tmp49, tmp51)
tmp53 = tl.full(tmp52.shape, 0.0, tmp52.dtype)
tmp54 = tl.where(tmp44, tmp52, tmp53)
tmp55 = tl.where(tmp35, tmp43, tmp54)
tmp56 = tl.where(tmp23, tmp31, tmp55)
tmp57 = tl.where(tmp9, tmp19, tmp56)
tmp58 = tl.where(tmp4, tmp5, tmp57)
tl.store(out_ptr0 + x3, tmp58, None)
@triton.jit
def triton_poi_fused_add_convolution_mul_4(in_out_ptr0, in_ptr0, in_ptr1,
xnumel, XBLOCK: tl.constexpr):
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
tl.full([XBLOCK], True, tl.int1)
x3 = xindex
x1 = xindex // 4096 % 64
tmp0 = tl.load(in_ptr0 + x3, None)
tmp1 = tl.load(in_out_ptr0 + x3, None)
tmp2 = tl.load(in_ptr1 + x1, None, eviction_policy='evict_last')
tmp3 = tmp1 + tmp2
tmp4 = 0.2
tmp5 = tmp3 * tmp4
tmp6 = tmp0 + tmp5
tl.store(in_out_ptr0 + x3, tmp6, None)
@triton.jit
def triton_poi_fused_convolution_leaky_relu_leaky_relu_backward_5(in_ptr0,
in_ptr1, out_ptr0, xnumel, XBLOCK: tl.constexpr):
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
tl.full([XBLOCK], True, tl.int1)
x3 = xindex
x1 = xindex // 4096 % 32
tmp0 = tl.load(in_ptr0 + x3, None)
tmp1 = tl.load(in_ptr1 + x1, None, eviction_policy='evict_last')
tmp2 = tmp0 + tmp1
tmp3 = 0.0
tmp4 = tmp2 > tmp3
tmp5 = 0.2
tmp6 = tmp2 * tmp5
tmp7 = tl.where(tmp4, tmp2, tmp6)
tmp8 = tmp7 > tmp3
tl.store(out_ptr0 + x3, tmp8, None)
def call(args):
(primals_1, primals_2, primals_3, primals_4, primals_5, primals_6,
primals_7, primals_8, primals_9, primals_10, primals_11) = args
args.clear()
assert_size_stride(primals_1, (32, 64, 3, 3), (576, 9, 3, 1))
assert_size_stride(primals_2, (32,), (1,))
assert_size_stride(primals_3, (4, 64, 64, 64), (262144, 4096, 64, 1))
assert_size_stride(primals_4, (32, 96, 3, 3), (864, 9, 3, 1))
assert_size_stride(primals_5, (32,), (1,))
assert_size_stride(primals_6, (32, 128, 3, 3), (1152, 9, 3, 1))
assert_size_stride(primals_7, (32,), (1,))
assert_size_stride(primals_8, (32, 160, 3, 3), (1440, 9, 3, 1))
assert_size_stride(primals_9, (32,), (1,))
assert_size_stride(primals_10, (64, 192, 3, 3), (1728, 9, 3, 1))
assert_size_stride(primals_11, (64,), (1,))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = extern_kernels.convolution(primals_3, primals_1, stride=(1,
1), padding=(1, 1), dilation=(1, 1), transposed=False,
output_padding=(0, 0), groups=1, bias=None)
assert_size_stride(buf0, (4, 32, 64, 64), (131072, 4096, 64, 1))
buf1 = empty_strided_cuda((4, 96, 64, 64), (393216, 4096, 64, 1),
torch.float32)
get_raw_stream(0)
triton_poi_fused_cat_0[grid(1572864)](primals_3, buf0, primals_2,
buf1, 1572864, XBLOCK=1024, num_warps=4, num_stages=1)
buf2 = extern_kernels.convolution(buf1, primals_4, stride=(1, 1),
padding=(1, 1), dilation=(1, 1), transposed=False,
output_padding=(0, 0), groups=1, bias=None)
assert_size_stride(buf2, (4, 32, 64, 64), (131072, 4096, 64, 1))
buf3 = empty_strided_cuda((4, 128, 64, 64), (524288, 4096, 64, 1),
torch.float32)
triton_poi_fused_cat_1[grid(2097152)](primals_3, buf0, primals_2,
buf2, primals_5, buf3, 2097152, XBLOCK=1024, num_warps=4,
num_stages=1)
buf4 = extern_kernels.convolution(buf3, primals_6, stride=(1, 1),
padding=(1, 1), dilation=(1, 1), transposed=False,
output_padding=(0, 0), groups=1, bias=None)
assert_size_stride(buf4, (4, 32, 64, 64), (131072, 4096, 64, 1))
buf5 = empty_strided_cuda((4, 160, 64, 64), (655360, 4096, 64, 1),
torch.float32)
triton_poi_fused_cat_2[grid(2621440)](primals_3, buf0, primals_2,
buf2, primals_5, buf4, primals_7, buf5, 2621440, XBLOCK=1024,
num_warps=4, num_stages=1)
buf6 = extern_kernels.convolution(buf5, primals_8, stride=(1, 1),
padding=(1, 1), dilation=(1, 1), transposed=False,
output_padding=(0, 0), groups=1, bias=None)
assert_size_stride(buf6, (4, 32, 64, 64), (131072, 4096, 64, 1))
buf7 = empty_strided_cuda((4, 192, 64, 64), (786432, 4096, 64, 1),
torch.float32)
triton_poi_fused_cat_3[grid(3145728)](primals_3, buf0, primals_2,
buf2, primals_5, buf4, primals_7, buf6, primals_9, buf7,
3145728, XBLOCK=512, num_warps=8, num_stages=1)
buf8 = extern_kernels.convolution(buf7, primals_10, stride=(1, 1),
padding=(1, 1), dilation=(1, 1), transposed=False,
output_padding=(0, 0), groups=1, bias=None)
assert_size_stride(buf8, (4, 64, 64, 64), (262144, 4096, 64, 1))
buf9 = buf8
del buf8
triton_poi_fused_add_convolution_mul_4[grid(1048576)](buf9,
primals_3, primals_11, 1048576, XBLOCK=1024, num_warps=4,
num_stages=1)
del primals_11
buf10 = empty_strided_cuda((4, 32, 64, 64), (131072, 4096, 64, 1),
torch.bool)
triton_poi_fused_convolution_leaky_relu_leaky_relu_backward_5[grid(
524288)](buf6, primals_9, buf10, 524288, XBLOCK=1024, num_warps
=4, num_stages=1)
del buf6
del primals_9
buf11 = empty_strided_cuda((4, 32, 64, 64), (131072, 4096, 64, 1),
torch.bool)
triton_poi_fused_convolution_leaky_relu_leaky_relu_backward_5[grid(
524288)](buf4, primals_7, buf11, 524288, XBLOCK=1024, num_warps
=4, num_stages=1)
del buf4
del primals_7
buf12 = empty_strided_cuda((4, 32, 64, 64), (131072, 4096, 64, 1),
torch.bool)
triton_poi_fused_convolution_leaky_relu_leaky_relu_backward_5[grid(
524288)](buf2, primals_5, buf12, 524288, XBLOCK=1024, num_warps
=4, num_stages=1)
del buf2
del primals_5
buf13 = empty_strided_cuda((4, 32, 64, 64), (131072, 4096, 64, 1),
torch.bool)
triton_poi_fused_convolution_leaky_relu_leaky_relu_backward_5[grid(
524288)](buf0, primals_2, buf13, 524288, XBLOCK=1024, num_warps
=4, num_stages=1)
del buf0
del primals_2
return (buf9, primals_1, primals_3, primals_4, primals_6, primals_8,
primals_10, buf1, buf3, buf5, buf7, buf10, buf11, buf12, buf13)
class ResidualDenseBlockNew(nn.Module):
def __init__(self, channels=64, kernel_size=3, growth=32):
super().__init__()
self.conv2d_1 = self.conv2d(channels, growth, kernel_size, growth, 0)
self.conv2d_2 = self.conv2d(channels, growth, kernel_size, growth, 1)
self.conv2d_3 = self.conv2d(channels, growth, kernel_size, growth, 2)
self.conv2d_4 = self.conv2d(channels, growth, kernel_size, growth, 3)
self.conv2d_5 = self.conv2d(channels, channels, kernel_size, growth, 4)
self.relu = nn.LeakyReLU(negative_slope=0.2, inplace=True)
@staticmethod
def conv2d(in_channels, out_channels, kernel_size, growth, factor):
return nn.Conv2d(in_channels=in_channels + factor * growth,
out_channels=out_channels, kernel_size=kernel_size, padding=
kernel_size // 2)
def forward(self, input_0):
primals_1 = self.conv2d_1.weight
primals_2 = self.conv2d_1.bias
primals_4 = self.conv2d_2.weight
primals_5 = self.conv2d_2.bias
primals_6 = self.conv2d_3.weight
primals_7 = self.conv2d_3.bias
primals_8 = self.conv2d_4.weight
primals_9 = self.conv2d_4.bias
primals_10 = self.conv2d_5.weight
primals_11 = self.conv2d_5.bias
primals_3 = input_0
output = call([primals_1, primals_2, primals_3, primals_4,
primals_5, primals_6, primals_7, primals_8, primals_9,
primals_10, primals_11])
return output[0]
|
Frognar/Super-Resolution
|
ResidualDenseBlock
| false | 5,187 |
[
"MIT"
] | 1 |
406b909d71e156aa11ee589698744e3ad9abfee7
|
https://github.com/Frognar/Super-Resolution/tree/406b909d71e156aa11ee589698744e3ad9abfee7
|
PropMaxPool
|
from _paritybench_helpers import _mock_config
import torch
import torch.nn.parallel
import torch.nn as nn
import torch.utils.data
import torch.backends.cudnn
class PropMaxPool(nn.Module):
def __init__(self, cfg):
super(PropMaxPool, self).__init__()
num_layers = cfg.NUM_LAYERS
self.layers = nn.ModuleList([nn.Identity()] + [nn.MaxPool1d(2,
stride=1) for _ in range(num_layers - 1)])
self.num_layers = num_layers
def forward(self, x):
batch_size, hidden_size, num_clips = x.shape
map_h = x.new_zeros(batch_size, hidden_size, num_clips, num_clips)
map_mask = x.new_zeros(batch_size, 1, num_clips, num_clips)
for dig_idx, pool in enumerate(self.layers):
x = pool(x)
start_idxs = [s_idx for s_idx in range(0, num_clips - dig_idx, 1)]
end_idxs = [(s_idx + dig_idx) for s_idx in start_idxs]
map_h[:, :, start_idxs, end_idxs] = x
map_mask[:, :, start_idxs, end_idxs] += 1
return map_h, map_mask
def get_inputs():
return [torch.rand([4, 4, 4])]
def get_init_inputs():
return [[], {'cfg': _mock_config(NUM_LAYERS=4)}]
|
import torch
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
from torch._inductor.runtime import triton_helpers
import torch.nn.parallel
import torch.nn as nn
import torch.utils.data
import torch.backends.cudnn
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
@triton.jit
def triton_poi_fused_new_zeros_0(out_ptr0, xnumel, XBLOCK: tl.constexpr):
xnumel = 256
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex
tmp0 = 0.0
tl.store(out_ptr0 + x0, tmp0, xmask)
@triton.jit
def triton_poi_fused_index_put_new_zeros_1(in_ptr0, out_ptr0, xnumel,
XBLOCK: tl.constexpr):
xnumel = 64
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex % 4
x2 = xindex
x1 = xindex // 4
tmp11 = tl.load(in_ptr0 + x2, xmask)
tmp0 = x0
tmp1 = tl.full([1], 2, tl.int64)
tmp2 = tmp0 < tmp1
tmp3 = tl.full([1], 1, tl.int64)
tmp4 = tmp0 < tmp3
tmp5 = tl.full([1], 0, tl.int64)
tmp6 = tl.where(tmp4, tmp5, tmp3)
tmp7 = tl.full([1], 3, tl.int64)
tmp8 = tmp0 < tmp7
tmp9 = tl.where(tmp8, tmp1, tmp7)
tmp10 = tl.where(tmp2, tmp6, tmp9)
tl.store(out_ptr0 + (5 * tmp10 + 16 * x1), tmp11, xmask)
@triton.jit
def triton_poi_fused_index_put_max_pool2d_with_indices_2(in_ptr0, out_ptr0,
out_ptr1, xnumel, XBLOCK: tl.constexpr):
xnumel = 48
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex % 3
x1 = xindex // 3
x2 = xindex
tmp0 = tl.load(in_ptr0 + (x0 + 4 * x1), xmask)
tmp1 = tl.load(in_ptr0 + (1 + x0 + 4 * x1), xmask)
tmp2 = triton_helpers.maximum(tmp1, tmp0)
tmp3 = x0
tmp4 = tl.full([1], 1, tl.int64)
tmp5 = tmp3 < tmp4
tmp6 = tl.full([1], 2, tl.int64)
tmp7 = tmp3 < tmp6
tmp8 = tl.where(tmp7, tmp4, tmp6)
tmp9 = tl.full([1], 0, tl.int64)
tmp10 = tl.where(tmp5, tmp9, tmp8)
tmp11 = tl.full([1], 3, tl.int64)
tmp12 = tl.where(tmp7, tmp6, tmp11)
tmp13 = tl.where(tmp5, tmp4, tmp12)
tl.store(out_ptr0 + x2, tmp2, xmask)
tl.store(out_ptr1 + (tmp13 + 4 * tmp10 + 16 * x1), tmp2, xmask)
@triton.jit
def triton_poi_fused_index_put_max_pool2d_with_indices_3(in_ptr0, out_ptr0,
out_ptr1, xnumel, XBLOCK: tl.constexpr):
xnumel = 32
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex % 2
x1 = xindex // 2
x2 = xindex
tmp0 = tl.load(in_ptr0 + (x0 + 3 * x1), xmask)
tmp1 = tl.load(in_ptr0 + (1 + x0 + 3 * x1), xmask)
tmp2 = triton_helpers.maximum(tmp1, tmp0)
tmp3 = x0
tmp4 = tl.full([1], 1, tl.int64)
tmp5 = tmp3 < tmp4
tmp6 = tl.full([1], 0, tl.int64)
tmp7 = tl.where(tmp5, tmp6, tmp4)
tmp8 = tl.full([1], 2, tl.int64)
tmp9 = tl.full([1], 3, tl.int64)
tmp10 = tl.where(tmp5, tmp8, tmp9)
tl.store(out_ptr0 + x2, tmp2, xmask)
tl.store(out_ptr1 + (tmp10 + 4 * tmp7 + 16 * x1), tmp2, xmask)
@triton.jit
def triton_poi_fused_index_put_4(in_ptr0, out_ptr0, xnumel, XBLOCK: tl.
constexpr):
xnumel = 16
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex
tmp0 = tl.load(in_ptr0 + 2 * x0, xmask, eviction_policy='evict_last')
tmp1 = tl.load(in_ptr0 + (1 + 2 * x0), xmask, eviction_policy='evict_last')
tmp2 = triton_helpers.maximum(tmp1, tmp0)
tl.store(out_ptr0 + (3 + 16 * x0), tmp2, xmask)
@triton.jit
def triton_poi_fused_new_zeros_5(out_ptr0, xnumel, XBLOCK: tl.constexpr):
xnumel = 64
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex
tmp0 = 0.0
tl.store(out_ptr0 + x0, tmp0, xmask)
@triton.jit
def triton_poi_fused_add_index_index_put_new_zeros_6(out_ptr0, xnumel,
XBLOCK: tl.constexpr):
xnumel = 16
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex % 4
x1 = xindex // 4
tmp0 = x0
tmp1 = tl.full([1], 2, tl.int64)
tmp2 = tmp0 < tmp1
tmp3 = tl.full([1], 1, tl.int64)
tmp4 = tmp0 < tmp3
tmp5 = tl.full([1], 0, tl.int64)
tmp6 = tl.where(tmp4, tmp5, tmp3)
tmp7 = tl.full([1], 3, tl.int64)
tmp8 = tmp0 < tmp7
tmp9 = tl.where(tmp8, tmp1, tmp7)
tmp10 = tl.where(tmp2, tmp6, tmp9)
tmp11 = 1.0
tl.store(out_ptr0 + (5 * tmp10 + 16 * x1), tmp11, xmask)
@triton.jit
def triton_poi_fused_add_index_index_put_7(in_ptr0, out_ptr0, xnumel,
XBLOCK: tl.constexpr):
xnumel = 12
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex % 3
x1 = xindex // 3
tmp0 = x0
tmp1 = tl.full([1], 1, tl.int64)
tmp2 = tmp0 < tmp1
tmp3 = tl.full([1], 2, tl.int64)
tmp4 = tmp0 < tmp3
tmp5 = tl.where(tmp4, tmp1, tmp3)
tmp6 = tl.full([1], 0, tl.int64)
tmp7 = tl.where(tmp2, tmp6, tmp5)
tmp8 = tl.full([1], 3, tl.int64)
tmp9 = tl.where(tmp4, tmp3, tmp8)
tmp10 = tl.where(tmp2, tmp1, tmp9)
tmp11 = tl.load(in_ptr0 + (tmp10 + 4 * tmp7 + 16 * x1), xmask,
eviction_policy='evict_last')
tmp12 = 1.0
tmp13 = tmp11 + tmp12
tl.store(out_ptr0 + (tmp10 + 4 * tmp7 + 16 * x1), tmp13, xmask)
@triton.jit
def triton_poi_fused_add_index_index_put_8(in_ptr0, out_ptr0, xnumel,
XBLOCK: tl.constexpr):
xnumel = 8
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex % 2
x1 = xindex // 2
tmp0 = x0
tmp1 = tl.full([1], 1, tl.int64)
tmp2 = tmp0 < tmp1
tmp3 = tl.full([1], 0, tl.int64)
tmp4 = tl.where(tmp2, tmp3, tmp1)
tmp5 = tl.full([1], 2, tl.int64)
tmp6 = tl.full([1], 3, tl.int64)
tmp7 = tl.where(tmp2, tmp5, tmp6)
tmp8 = tl.load(in_ptr0 + (tmp7 + 4 * tmp4 + 16 * x1), xmask,
eviction_policy='evict_last')
tmp9 = 1.0
tmp10 = tmp8 + tmp9
tl.store(out_ptr0 + (tmp7 + 4 * tmp4 + 16 * x1), tmp10, xmask)
@triton.jit
def triton_poi_fused_add_index_index_put_9(in_ptr0, out_ptr0, xnumel,
XBLOCK: tl.constexpr):
xnumel = 4
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex
tmp0 = tl.load(in_ptr0 + (3 + 16 * x0), xmask, eviction_policy='evict_last'
)
tmp1 = 1.0
tmp2 = tmp0 + tmp1
tl.store(out_ptr0 + (3 + 16 * x0), tmp2, xmask)
def call(args):
arg0_1, = args
args.clear()
assert_size_stride(arg0_1, (4, 4, 4), (16, 4, 1))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf2 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32)
get_raw_stream(0)
triton_poi_fused_new_zeros_0[grid(256)](buf2, 256, XBLOCK=128,
num_warps=4, num_stages=1)
triton_poi_fused_index_put_new_zeros_1[grid(64)](arg0_1, buf2, 64,
XBLOCK=64, num_warps=1, num_stages=1)
buf0 = empty_strided_cuda((4, 4, 1, 3), (12, 3, 48, 1), torch.float32)
triton_poi_fused_index_put_max_pool2d_with_indices_2[grid(48)](arg0_1,
buf0, buf2, 48, XBLOCK=64, num_warps=1, num_stages=1)
del arg0_1
buf1 = empty_strided_cuda((4, 4, 1, 2), (8, 2, 32, 1), torch.float32)
triton_poi_fused_index_put_max_pool2d_with_indices_3[grid(32)](buf0,
buf1, buf2, 32, XBLOCK=32, num_warps=1, num_stages=1)
del buf0
triton_poi_fused_index_put_4[grid(16)](buf1, buf2, 16, XBLOCK=16,
num_warps=1, num_stages=1)
del buf1
buf7 = empty_strided_cuda((4, 1, 4, 4), (16, 16, 4, 1), torch.float32)
triton_poi_fused_new_zeros_5[grid(64)](buf7, 64, XBLOCK=64,
num_warps=1, num_stages=1)
triton_poi_fused_add_index_index_put_new_zeros_6[grid(16)](buf7, 16,
XBLOCK=16, num_warps=1, num_stages=1)
triton_poi_fused_add_index_index_put_7[grid(12)](buf7, buf7, 12,
XBLOCK=16, num_warps=1, num_stages=1)
triton_poi_fused_add_index_index_put_8[grid(8)](buf7, buf7, 8,
XBLOCK=8, num_warps=1, num_stages=1)
triton_poi_fused_add_index_index_put_9[grid(4)](buf7, buf7, 4,
XBLOCK=4, num_warps=1, num_stages=1)
return buf2, buf7
class PropMaxPoolNew(nn.Module):
def __init__(self, cfg):
super(PropMaxPoolNew, self).__init__()
num_layers = cfg.NUM_LAYERS
self.layers = nn.ModuleList([nn.Identity()] + [nn.MaxPool1d(2,
stride=1) for _ in range(num_layers - 1)])
self.num_layers = num_layers
def forward(self, input_0):
arg0_1 = input_0
output = call([arg0_1])
return output[0], output[1]
|
EGO4D/episodic-memory
|
PropMaxPool
| false | 8,812 |
[
"MIT"
] | 27 |
2a3464882cd4f665c358c1b05a6397339e33c2e1
|
https://github.com/EGO4D/episodic-memory/tree/2a3464882cd4f665c358c1b05a6397339e33c2e1
|
Conv2dZeroInit
|
# AOT ID: ['0_forward']
from ctypes import c_void_p, c_long, c_int
import torch
import math
import random
import os
import tempfile
from math import inf, nan
from torch._inductor.hooks import run_intermediate_hooks
from torch._inductor.utils import maybe_profile
from torch._inductor.codegen.memory_planning import _align as align
from torch import device, empty_strided
from torch._inductor.async_compile import AsyncCompile
from torch._inductor.select_algorithm import extern_kernels
from torch._inductor.codegen.multi_kernel import MultiKernelCall
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
aten = torch.ops.aten
inductor_ops = torch.ops.inductor
_quantized = torch.ops._quantized
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
alloc_from_pool = torch.ops.inductor._alloc_from_pool
async_compile = AsyncCompile()
# kernel path: runs/run_shard_4/inductor_cache/b5/cb5h536lfxehnv2ezobudfl5wugu2y6mu444yw7yei4n22rp33zu.py
# Topologically Sorted Source Nodes: [out, mul, exp, mul_1], Original ATen: [aten.convolution, aten.mul, aten.exp]
# Source node to ATen node mapping:
# exp => exp
# mul => mul
# mul_1 => mul_1
# out => convolution
# Graph fragment:
# %convolution : [num_users=2] = call_function[target=torch.ops.aten.convolution.default](args = (%primals_3, %primals_1, %primals_2, [1, 1], [0, 0], [1, 1], False, [0, 0], 1), kwargs = {})
# %mul : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%primals_4, 3.0), kwargs = {})
# %exp : [num_users=1] = call_function[target=torch.ops.aten.exp.default](args = (%mul,), kwargs = {})
# %mul_1 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%convolution, %exp), kwargs = {})
triton_poi_fused_convolution_exp_mul_0 = async_compile.triton('triton_poi_fused_convolution_exp_mul_0', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[16],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: '*fp32', 4: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3, 4), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_convolution_exp_mul_0', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 3, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_convolution_exp_mul_0(in_out_ptr0, in_ptr0, in_ptr1, out_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 16
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x2 = xindex
x0 = xindex % 4
tmp0 = tl.load(in_out_ptr0 + (x2), xmask)
tmp1 = tl.load(in_ptr0 + (x0), xmask, eviction_policy='evict_last')
tmp3 = tl.load(in_ptr1 + (x0), xmask, eviction_policy='evict_last')
tmp2 = tmp0 + tmp1
tmp4 = 3.0
tmp5 = tmp3 * tmp4
tmp6 = tl_math.exp(tmp5)
tmp7 = tmp2 * tmp6
tl.store(in_out_ptr0 + (x2), tmp2, xmask)
tl.store(out_ptr0 + (x2), tmp7, xmask)
''', device_str='cuda')
async_compile.wait(globals())
del async_compile
def call(args):
primals_1, primals_2, primals_3, primals_4 = args
args.clear()
assert_size_stride(primals_1, (4, 4, 4, 4), (64, 16, 4, 1))
assert_size_stride(primals_2, (4, ), (1, ))
assert_size_stride(primals_3, (4, 4, 4, 4), (64, 16, 4, 1))
assert_size_stride(primals_4, (4, 1, 1), (1, 1, 1))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
# Topologically Sorted Source Nodes: [out], Original ATen: [aten.convolution]
buf0 = extern_kernels.convolution(primals_3, primals_1, stride=(1, 1), padding=(0, 0), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None)
assert_size_stride(buf0, (4, 4, 1, 1), (4, 1, 1, 1))
buf1 = buf0; del buf0 # reuse
buf2 = empty_strided_cuda((4, 4, 1, 1), (4, 1, 1, 1), torch.float32)
# Topologically Sorted Source Nodes: [out, mul, exp, mul_1], Original ATen: [aten.convolution, aten.mul, aten.exp]
stream0 = get_raw_stream(0)
triton_poi_fused_convolution_exp_mul_0.run(buf1, primals_2, primals_4, buf2, 16, grid=grid(16), stream=stream0)
del primals_2
return (buf2, primals_1, primals_3, primals_4, buf1, )
def benchmark_compiled_module(times=10, repeat=10):
from torch._dynamo.testing import rand_strided
from torch._inductor.utils import print_performance
primals_1 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32)
primals_2 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32)
primals_3 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32)
primals_4 = rand_strided((4, 1, 1), (1, 1, 1), device='cuda:0', dtype=torch.float32)
fn = lambda: call([primals_1, primals_2, primals_3, primals_4])
return print_performance(fn, times=times, repeat=repeat)
if __name__ == "__main__":
from torch._inductor.wrapper_benchmark import compiled_module_main
compiled_module_main('None', benchmark_compiled_module)
|
import torch
from torch._inductor.select_algorithm import extern_kernels
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
from torch._inductor.runtime.triton_helpers import math as tl_math
import torch.nn as nn
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
@triton.jit
def triton_poi_fused_convolution_exp_mul_0(in_out_ptr0, in_ptr0, in_ptr1,
out_ptr0, xnumel, XBLOCK: tl.constexpr):
xnumel = 16
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x2 = xindex
x0 = xindex % 4
tmp0 = tl.load(in_out_ptr0 + x2, xmask)
tmp1 = tl.load(in_ptr0 + x0, xmask, eviction_policy='evict_last')
tmp3 = tl.load(in_ptr1 + x0, xmask, eviction_policy='evict_last')
tmp2 = tmp0 + tmp1
tmp4 = 3.0
tmp5 = tmp3 * tmp4
tmp6 = tl_math.exp(tmp5)
tmp7 = tmp2 * tmp6
tl.store(in_out_ptr0 + x2, tmp2, xmask)
tl.store(out_ptr0 + x2, tmp7, xmask)
def call(args):
primals_1, primals_2, primals_3, primals_4 = args
args.clear()
assert_size_stride(primals_1, (4, 4, 4, 4), (64, 16, 4, 1))
assert_size_stride(primals_2, (4,), (1,))
assert_size_stride(primals_3, (4, 4, 4, 4), (64, 16, 4, 1))
assert_size_stride(primals_4, (4, 1, 1), (1, 1, 1))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = extern_kernels.convolution(primals_3, primals_1, stride=(1,
1), padding=(0, 0), dilation=(1, 1), transposed=False,
output_padding=(0, 0), groups=1, bias=None)
assert_size_stride(buf0, (4, 4, 1, 1), (4, 1, 1, 1))
buf1 = buf0
del buf0
buf2 = empty_strided_cuda((4, 4, 1, 1), (4, 1, 1, 1), torch.float32)
get_raw_stream(0)
triton_poi_fused_convolution_exp_mul_0[grid(16)](buf1, primals_2,
primals_4, buf2, 16, XBLOCK=16, num_warps=1, num_stages=1)
del primals_2
return buf2, primals_1, primals_3, primals_4, buf1
class Conv2dZeroInitNew(nn.Conv2d):
def __init__(self, channels_in, channels_out, filter_size, stride=1,
padding=0, logscale=3.0):
super().__init__(channels_in, channels_out, filter_size, stride=
stride, padding=padding)
self.register_parameter('logs', nn.Parameter(torch.zeros(
channels_out, 1, 1)))
self.logscale_factor = logscale
def reset_parameters(self):
self.weight.data.zero_()
self.bias.data.zero_()
def forward(self, input_0):
primals_1 = self.weight
primals_2 = self.bias
primals_4 = self.logs
primals_3 = input_0
output = call([primals_1, primals_2, primals_3, primals_4])
return output[0]
|
lingzenan/invertible-resnet
|
Conv2dZeroInit
| false | 7,092 |
[
"MIT"
] | 1 |
57b1c0de51a885aed074b77628f3b0c85c548e70
|
https://github.com/lingzenan/invertible-resnet/tree/57b1c0de51a885aed074b77628f3b0c85c548e70
|
IoULoss
|
import torch
import torch.nn as nn
class IoULoss(nn.Module):
def __init__(self, weight=None, size_average=True):
super().__init__()
def forward(self, inputs, targets):
smooth = 1.0
num = targets.size(0)
m1 = inputs.view(num, -1)
m2 = targets.view(num, -1)
intersection = m1 * m2
score = (intersection.sum(1) + smooth) / (m1.sum(1) + m2.sum(1) -
intersection.sum(1) + smooth)
iou = score.sum() / num
return 1.0 - iou
def get_inputs():
return [torch.rand([4, 4, 4, 4]), torch.rand([4, 4, 4, 4])]
def get_init_inputs():
return [[], {}]
|
import torch
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
import torch.nn as nn
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
@triton.jit
def triton_per_fused_mul_sum_0(in_ptr0, in_ptr1, out_ptr0, out_ptr1,
out_ptr2, out_ptr3, xnumel, rnumel, XBLOCK: tl.constexpr):
xnumel = 4
RBLOCK: tl.constexpr = 64
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:, None]
xmask = xindex < xnumel
rindex = tl.arange(0, RBLOCK)[None, :]
tl.full([XBLOCK, RBLOCK], True, tl.int1)
r1 = rindex
x0 = xindex
tmp0 = tl.load(in_ptr0 + (r1 + 64 * x0), xmask, other=0.0)
tmp5 = tl.load(in_ptr1 + (r1 + 64 * x0), xmask, other=0.0)
tmp1 = tl.broadcast_to(tmp0, [XBLOCK, RBLOCK])
tmp3 = tl.where(xmask, tmp1, 0)
tmp4 = tl.sum(tmp3, 1)[:, None]
tmp6 = tmp5 * tmp0
tmp7 = tl.broadcast_to(tmp6, [XBLOCK, RBLOCK])
tmp9 = tl.where(xmask, tmp7, 0)
tmp10 = tl.sum(tmp9, 1)[:, None]
tmp11 = tl.broadcast_to(tmp5, [XBLOCK, RBLOCK])
tmp13 = tl.where(xmask, tmp11, 0)
tmp14 = tl.sum(tmp13, 1)[:, None]
tl.store(out_ptr0 + x0, tmp4, xmask)
tl.store(out_ptr1 + x0, tmp10, xmask)
tl.store(out_ptr2 + x0, tmp10, xmask)
tl.store(out_ptr3 + x0, tmp14, xmask)
@triton.jit
def triton_per_fused_add_div_rsub_sub_sum_1(in_out_ptr0, in_ptr0, in_ptr1,
in_ptr2, in_ptr3, xnumel, rnumel, XBLOCK: tl.constexpr):
RBLOCK: tl.constexpr = 4
xoffset = tl.program_id(0) * XBLOCK
xoffset + tl.arange(0, XBLOCK)[:, None]
tl.full([XBLOCK, RBLOCK], True, tl.int1)
rindex = tl.arange(0, RBLOCK)[None, :]
tl.full([XBLOCK, RBLOCK], True, tl.int1)
r0 = rindex
tmp0 = tl.load(in_ptr0 + r0, None)
tmp3 = tl.load(in_ptr1 + r0, None)
tmp4 = tl.load(in_ptr2 + r0, None)
tmp6 = tl.load(in_ptr3 + r0, None)
tmp1 = 1.0
tmp2 = tmp0 + tmp1
tmp5 = tmp3 + tmp4
tmp7 = tmp5 - tmp6
tmp8 = tmp7 + tmp1
tmp9 = tmp2 / tmp8
tmp10 = tl.broadcast_to(tmp9, [XBLOCK, RBLOCK])
tmp12 = tl.sum(tmp10, 1)[:, None]
tmp13 = 0.25
tmp14 = tmp12 * tmp13
tmp15 = tmp1 - tmp14
tl.debug_barrier()
tl.store(in_out_ptr0 + tl.full([XBLOCK, 1], 0, tl.int32), tmp15, None)
def call(args):
arg0_1, arg1_1 = args
args.clear()
assert_size_stride(arg0_1, (4, 4, 4, 4), (64, 16, 4, 1))
assert_size_stride(arg1_1, (4, 4, 4, 4), (64, 16, 4, 1))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf2 = empty_strided_cuda((4,), (1,), torch.float32)
buf0 = empty_strided_cuda((4,), (1,), torch.float32)
buf3 = empty_strided_cuda((4,), (1,), torch.float32)
buf1 = empty_strided_cuda((4,), (1,), torch.float32)
get_raw_stream(0)
triton_per_fused_mul_sum_0[grid(4)](arg0_1, arg1_1, buf2, buf0,
buf3, buf1, 4, 64, XBLOCK=1, num_warps=2, num_stages=1)
del arg0_1
del arg1_1
buf4 = empty_strided_cuda((), (), torch.float32)
buf5 = buf4
del buf4
triton_per_fused_add_div_rsub_sub_sum_1[grid(1)](buf5, buf0, buf1,
buf2, buf3, 1, 4, XBLOCK=1, num_warps=2, num_stages=1)
del buf0
del buf1
del buf2
del buf3
return buf5,
class IoULossNew(nn.Module):
def __init__(self, weight=None, size_average=True):
super().__init__()
def forward(self, input_0, input_1):
arg0_1 = input_0
arg1_1 = input_1
output = call([arg0_1, arg1_1])
return output[0]
|
Luoxd1996/Rank2nuclearSegmentation
|
IoULoss
| false | 17,617 |
[
"MIT"
] | 5 |
bd85ac13eec7ce18c286efd521a27486483da904
|
https://github.com/Luoxd1996/Rank2nuclearSegmentation/tree/bd85ac13eec7ce18c286efd521a27486483da904
|
IrisClassifier
|
import torch
import torch.nn as nn
import torch.nn.functional as F
import torch.utils.data
class IrisClassifier(nn.Module):
def __init__(self):
super(IrisClassifier, self).__init__()
self.fc1 = nn.Linear(4, 100)
self.fc2 = nn.Linear(100, 100)
self.fc3 = nn.Linear(100, 3)
self.softmax = nn.Softmax(dim=1)
def forward(self, X):
X = F.relu(self.fc1(X))
X = self.fc2(X)
X = self.fc3(X)
X = self.softmax(X)
return X
def get_inputs():
return [torch.rand([4, 4, 4, 4])]
def get_init_inputs():
return [[], {}]
|
import torch
from torch._inductor.select_algorithm import extern_kernels
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
from torch._inductor.runtime import triton_helpers
from torch._inductor.runtime.triton_helpers import math as tl_math
import torch.nn as nn
import torch.utils.data
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
@triton.jit
def triton_poi_fused_relu_threshold_backward_0(in_out_ptr0, in_ptr0,
out_ptr0, xnumel, XBLOCK: tl.constexpr):
xnumel = 6400
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x4 = xindex
x0 = xindex % 100
x2 = xindex % 1600
x3 = xindex // 1600
tmp0 = tl.load(in_out_ptr0 + x4, xmask)
tmp1 = tl.load(in_ptr0 + x0, xmask, eviction_policy='evict_last')
tmp2 = tmp0 + tmp1
tmp3 = tl.full([1], 0, tl.int32)
tmp4 = triton_helpers.maximum(tmp3, tmp2)
tmp5 = 0.0
tmp6 = tmp4 <= tmp5
tl.store(in_out_ptr0 + x4, tmp4, xmask)
tl.store(out_ptr0 + (x2 + 1664 * x3), tmp6, xmask)
@triton.jit
def triton_poi_fused__softmax_1(in_ptr0, out_ptr0, xnumel, XBLOCK: tl.constexpr
):
xnumel = 192
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x3 = xindex
x0 = xindex % 12
x2 = xindex // 48
tmp0 = tl.load(in_ptr0 + x3, xmask)
tmp1 = tl.load(in_ptr0 + (x0 + 48 * x2), xmask, eviction_policy=
'evict_last')
tmp2 = tl.load(in_ptr0 + (12 + x0 + 48 * x2), xmask, eviction_policy=
'evict_last')
tmp4 = tl.load(in_ptr0 + (24 + x0 + 48 * x2), xmask, eviction_policy=
'evict_last')
tmp6 = tl.load(in_ptr0 + (36 + x0 + 48 * x2), xmask, eviction_policy=
'evict_last')
tmp3 = triton_helpers.maximum(tmp1, tmp2)
tmp5 = triton_helpers.maximum(tmp3, tmp4)
tmp7 = triton_helpers.maximum(tmp5, tmp6)
tmp8 = tmp0 - tmp7
tmp9 = tl_math.exp(tmp8)
tl.store(out_ptr0 + x3, tmp9, xmask)
@triton.jit
def triton_poi_fused__softmax_2(in_ptr0, out_ptr0, xnumel, XBLOCK: tl.constexpr
):
xnumel = 192
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x3 = xindex
x0 = xindex % 12
x2 = xindex // 48
tmp0 = tl.load(in_ptr0 + x3, xmask)
tmp1 = tl.load(in_ptr0 + (x0 + 48 * x2), xmask, eviction_policy=
'evict_last')
tmp2 = tl.load(in_ptr0 + (12 + x0 + 48 * x2), xmask, eviction_policy=
'evict_last')
tmp4 = tl.load(in_ptr0 + (24 + x0 + 48 * x2), xmask, eviction_policy=
'evict_last')
tmp6 = tl.load(in_ptr0 + (36 + x0 + 48 * x2), xmask, eviction_policy=
'evict_last')
tmp3 = tmp1 + tmp2
tmp5 = tmp3 + tmp4
tmp7 = tmp5 + tmp6
tmp8 = tmp0 / tmp7
tl.store(out_ptr0 + x3, tmp8, xmask)
def call(args):
(primals_1, primals_2, primals_3, primals_4, primals_5, primals_6,
primals_7) = args
args.clear()
assert_size_stride(primals_1, (100, 4), (4, 1))
assert_size_stride(primals_2, (100,), (1,))
assert_size_stride(primals_3, (4, 4, 4, 4), (64, 16, 4, 1))
assert_size_stride(primals_4, (100, 100), (100, 1))
assert_size_stride(primals_5, (100,), (1,))
assert_size_stride(primals_6, (3, 100), (100, 1))
assert_size_stride(primals_7, (3,), (1,))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((64, 100), (100, 1), torch.float32)
extern_kernels.mm(reinterpret_tensor(primals_3, (64, 4), (4, 1), 0),
reinterpret_tensor(primals_1, (4, 100), (1, 4), 0), out=buf0)
del primals_1
buf1 = reinterpret_tensor(buf0, (4, 4, 4, 100), (1600, 400, 100, 1), 0)
del buf0
buf6 = empty_strided_cuda((4, 4, 4, 100), (1664, 400, 100, 1),
torch.bool)
get_raw_stream(0)
triton_poi_fused_relu_threshold_backward_0[grid(6400)](buf1,
primals_2, buf6, 6400, XBLOCK=256, num_warps=4, num_stages=1)
del primals_2
buf2 = empty_strided_cuda((64, 100), (100, 1), torch.float32)
extern_kernels.addmm(primals_5, reinterpret_tensor(buf1, (64, 100),
(100, 1), 0), reinterpret_tensor(primals_4, (100, 100), (1, 100
), 0), alpha=1, beta=1, out=buf2)
del primals_5
buf3 = empty_strided_cuda((64, 3), (3, 1), torch.float32)
extern_kernels.addmm(primals_7, buf2, reinterpret_tensor(primals_6,
(100, 3), (1, 100), 0), alpha=1, beta=1, out=buf3)
del primals_7
buf4 = empty_strided_cuda((4, 4, 4, 3), (48, 12, 3, 1), torch.float32)
triton_poi_fused__softmax_1[grid(192)](buf3, buf4, 192, XBLOCK=128,
num_warps=4, num_stages=1)
buf5 = reinterpret_tensor(buf3, (4, 4, 4, 3), (48, 12, 3, 1), 0)
del buf3
triton_poi_fused__softmax_2[grid(192)](buf4, buf5, 192, XBLOCK=256,
num_warps=4, num_stages=1)
del buf4
return buf5, reinterpret_tensor(primals_3, (64, 4), (4, 1), 0
), reinterpret_tensor(buf1, (64, 100), (100, 1), 0
), buf2, buf5, primals_6, primals_4, buf6
class IrisClassifierNew(nn.Module):
def __init__(self):
super(IrisClassifierNew, self).__init__()
self.fc1 = nn.Linear(4, 100)
self.fc2 = nn.Linear(100, 100)
self.fc3 = nn.Linear(100, 3)
self.softmax = nn.Softmax(dim=1)
def forward(self, input_0):
primals_1 = self.fc1.weight
primals_2 = self.fc1.bias
primals_4 = self.fc2.weight
primals_5 = self.fc2.bias
primals_6 = self.fc3.weight
primals_7 = self.fc3.bias
primals_3 = input_0
output = call([primals_1, primals_2, primals_3, primals_4,
primals_5, primals_6, primals_7])
return output[0]
|
dbinoy/pytorch-iris-sagemaker
|
IrisClassifier
| false | 9,974 |
[
"MIT-0"
] | 0 |
afc5bd95f6dd0431338708bc179029fa08724a2f
|
https://github.com/dbinoy/pytorch-iris-sagemaker/tree/afc5bd95f6dd0431338708bc179029fa08724a2f
|
SoftCrossEntropyLossWithOHEM
|
# AOT ID: ['0_inference']
from ctypes import c_void_p, c_long, c_int
import torch
import math
import random
import os
import tempfile
from math import inf, nan
from torch._inductor.hooks import run_intermediate_hooks
from torch._inductor.utils import maybe_profile
from torch._inductor.codegen.memory_planning import _align as align
from torch import device, empty_strided
from torch._inductor.async_compile import AsyncCompile
from torch._inductor.select_algorithm import extern_kernels
from torch._inductor.codegen.multi_kernel import MultiKernelCall
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
aten = torch.ops.aten
inductor_ops = torch.ops.inductor
_quantized = torch.ops._quantized
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
alloc_from_pool = torch.ops.inductor._alloc_from_pool
async_compile = AsyncCompile()
# kernel path: runs/run_shard_2/inductor_cache/u2/cu2beycg2t2ghizs6f4qom7bxbxmajhdaakuyq6y2korxywhp6ba.py
# Topologically Sorted Source Nodes: [pred], Original ATen: [aten._log_softmax]
# Source node to ATen node mapping:
# pred => amax, sub
# Graph fragment:
# %amax : [num_users=1] = call_function[target=torch.ops.aten.amax.default](args = (%arg0_1, [1], True), kwargs = {})
# %sub : [num_users=2] = call_function[target=torch.ops.aten.sub.Tensor](args = (%arg0_1, %amax), kwargs = {})
triton_poi_fused__log_softmax_0 = async_compile.triton('triton_poi_fused__log_softmax_0', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[256],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=90, major=9, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=132), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused__log_softmax_0', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 5, 'num_reduction': 0, 'backend_hash': 'B098E03CDA7B8ADC90DAFFDF24A2956451D1B13F297756A5DCC209498AA53705', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused__log_softmax_0(in_ptr0, out_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 256
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x3 = xindex
x0 = xindex % 16
x2 = (xindex // 64)
tmp0 = tl.load(in_ptr0 + (x3), xmask)
tmp1 = tl.load(in_ptr0 + (x0 + (64*x2)), xmask, eviction_policy='evict_last')
tmp2 = tl.load(in_ptr0 + (16 + x0 + (64*x2)), xmask, eviction_policy='evict_last')
tmp4 = tl.load(in_ptr0 + (32 + x0 + (64*x2)), xmask, eviction_policy='evict_last')
tmp6 = tl.load(in_ptr0 + (48 + x0 + (64*x2)), xmask, eviction_policy='evict_last')
tmp3 = triton_helpers.maximum(tmp1, tmp2)
tmp5 = triton_helpers.maximum(tmp3, tmp4)
tmp7 = triton_helpers.maximum(tmp5, tmp6)
tmp8 = tmp0 - tmp7
tl.store(out_ptr0 + (x3), tmp8, xmask)
''', device_str='cuda')
# kernel path: runs/run_shard_2/inductor_cache/c4/cc427xvppxytjgj6e2mve2ejcy4c5rpo4bck4i5jqq2osmpf4kcv.py
# Topologically Sorted Source Nodes: [pred, mul, sum_1, loss], Original ATen: [aten._log_softmax, aten.mul, aten.sum, aten.neg]
# Source node to ATen node mapping:
# loss => neg
# mul => mul
# pred => exp, log, sub_1, sum_1
# sum_1 => sum_2
# Graph fragment:
# %exp : [num_users=1] = call_function[target=torch.ops.aten.exp.default](args = (%sub,), kwargs = {})
# %sum_1 : [num_users=1] = call_function[target=torch.ops.aten.sum.dim_IntList](args = (%exp, [1], True), kwargs = {})
# %log : [num_users=1] = call_function[target=torch.ops.aten.log.default](args = (%sum_1,), kwargs = {})
# %sub_1 : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (%sub, %log), kwargs = {})
# %mul : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%sub_1, %arg1_1), kwargs = {})
# %sum_2 : [num_users=1] = call_function[target=torch.ops.aten.sum.dim_IntList](args = (%mul, [1]), kwargs = {})
# %neg : [num_users=3] = call_function[target=torch.ops.aten.neg.default](args = (%sum_2,), kwargs = {})
triton_poi_fused__log_softmax_mul_neg_sum_1 = async_compile.triton('triton_poi_fused__log_softmax_mul_neg_sum_1', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[64],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=90, major=9, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=132), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused__log_softmax_mul_neg_sum_1', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 8, 'num_reduction': 0, 'backend_hash': 'B098E03CDA7B8ADC90DAFFDF24A2956451D1B13F297756A5DCC209498AA53705', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused__log_softmax_mul_neg_sum_1(in_ptr0, in_ptr1, out_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 64
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex % 16
x1 = (xindex // 16)
x2 = xindex
tmp0 = tl.load(in_ptr0 + (x0 + (64*x1)), xmask)
tmp2 = tl.load(in_ptr0 + (16 + x0 + (64*x1)), xmask)
tmp5 = tl.load(in_ptr0 + (32 + x0 + (64*x1)), xmask)
tmp8 = tl.load(in_ptr0 + (48 + x0 + (64*x1)), xmask)
tmp13 = tl.load(in_ptr1 + (x0 + (64*x1)), xmask)
tmp16 = tl.load(in_ptr1 + (16 + x0 + (64*x1)), xmask)
tmp20 = tl.load(in_ptr1 + (32 + x0 + (64*x1)), xmask)
tmp24 = tl.load(in_ptr1 + (48 + x0 + (64*x1)), xmask)
tmp1 = tl_math.exp(tmp0)
tmp3 = tl_math.exp(tmp2)
tmp4 = tmp1 + tmp3
tmp6 = tl_math.exp(tmp5)
tmp7 = tmp4 + tmp6
tmp9 = tl_math.exp(tmp8)
tmp10 = tmp7 + tmp9
tmp11 = tl_math.log(tmp10)
tmp12 = tmp0 - tmp11
tmp14 = tmp12 * tmp13
tmp15 = tmp2 - tmp11
tmp17 = tmp15 * tmp16
tmp18 = tmp14 + tmp17
tmp19 = tmp5 - tmp11
tmp21 = tmp19 * tmp20
tmp22 = tmp18 + tmp21
tmp23 = tmp8 - tmp11
tmp25 = tmp23 * tmp24
tmp26 = tmp22 + tmp25
tmp27 = -tmp26
tl.store(out_ptr0 + (x2), tmp27, xmask)
''', device_str='cuda')
# kernel path: runs/run_shard_2/inductor_cache/yk/cykhrvlpa2b4ctusrg4eez76gzyvymmux23ifcgqci7hhis3yolb.py
# Topologically Sorted Source Nodes: [mask, mask_1, loss_1, sum_2, sum_3, add, truediv], Original ATen: [aten.ge, aten._to_copy, aten.mul, aten.sum, aten.add, aten.div]
# Source node to ATen node mapping:
# add => add
# loss_1 => mul_1
# mask => ge
# mask_1 => convert_element_type
# sum_2 => sum_3
# sum_3 => sum_4
# truediv => div
# Graph fragment:
# %ge : [num_users=1] = call_function[target=torch.ops.aten.ge.Tensor](args = (%neg, %select), kwargs = {})
# %convert_element_type : [num_users=2] = call_function[target=torch.ops.prims.convert_element_type.default](args = (%ge, torch.float32), kwargs = {})
# %mul_1 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%neg, %convert_element_type), kwargs = {})
# %sum_3 : [num_users=1] = call_function[target=torch.ops.aten.sum.default](args = (%mul_1,), kwargs = {})
# %sum_4 : [num_users=1] = call_function[target=torch.ops.aten.sum.default](args = (%convert_element_type,), kwargs = {})
# %add : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%sum_4, 1e-07), kwargs = {})
# %div : [num_users=1] = call_function[target=torch.ops.aten.div.Tensor](args = (%sum_3, %add), kwargs = {})
triton_per_fused__to_copy_add_div_ge_mul_sum_2 = async_compile.triton('triton_per_fused__to_copy_add_div_ge_mul_sum_2', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.persistent_reduction(
size_hints=[1, 64],
reduction_hint=ReductionHint.INNER,
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: 'i32', 4: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=90, major=9, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=132), 'constants': {3: 1}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 4), equal_to_1=(3,))]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_per_fused__to_copy_add_div_ge_mul_sum_2', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 2, 'backend_hash': 'B098E03CDA7B8ADC90DAFFDF24A2956451D1B13F297756A5DCC209498AA53705', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}
)
@triton.jit
def triton_per_fused__to_copy_add_div_ge_mul_sum_2(in_out_ptr0, in_ptr0, in_ptr1, xnumel, rnumel, XBLOCK : tl.constexpr):
xnumel = 1
rnumel = 64
RBLOCK: tl.constexpr = 64
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:, None]
xmask = tl.full([XBLOCK, RBLOCK], True, tl.int1)
rindex = tl.arange(0, RBLOCK)[None, :]
roffset = 0
rmask = tl.full([XBLOCK, RBLOCK], True, tl.int1)
r0 = rindex
tmp0 = tl.load(in_ptr0 + (r0), None)
tmp1 = tl.load(in_ptr1 + (63))
tmp2 = tl.broadcast_to(tmp1, [XBLOCK, RBLOCK])
tmp3 = tmp0 >= tmp2
tmp4 = tmp3.to(tl.float32)
tmp5 = tmp0 * tmp4
tmp6 = tl.broadcast_to(tmp5, [XBLOCK, RBLOCK])
tmp8 = tl.sum(tmp6, 1)[:, None]
tmp9 = tl.broadcast_to(tmp4, [XBLOCK, RBLOCK])
tmp11 = tl.sum(tmp9, 1)[:, None]
tmp12 = 1e-07
tmp13 = tmp11 + tmp12
tmp14 = tmp8 / tmp13
tl.debug_barrier()
tl.store(in_out_ptr0 + (tl.full([XBLOCK, 1], 0, tl.int32)), tmp14, None)
''', device_str='cuda')
async_compile.wait(globals())
del async_compile
def call(args):
arg0_1, arg1_1 = args
args.clear()
assert_size_stride(arg0_1, (4, 4, 4, 4), (64, 16, 4, 1))
assert_size_stride(arg1_1, (4, 4, 4, 4), (64, 16, 4, 1))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32)
# Topologically Sorted Source Nodes: [pred], Original ATen: [aten._log_softmax]
stream0 = get_raw_stream(0)
triton_poi_fused__log_softmax_0.run(arg0_1, buf0, 256, grid=grid(256), stream=stream0)
del arg0_1
buf1 = empty_strided_cuda((4, 4, 4), (16, 4, 1), torch.float32)
# Topologically Sorted Source Nodes: [pred, mul, sum_1, loss], Original ATen: [aten._log_softmax, aten.mul, aten.sum, aten.neg]
triton_poi_fused__log_softmax_mul_neg_sum_1.run(buf0, arg1_1, buf1, 64, grid=grid(64), stream=stream0)
del arg1_1
del buf0
# Topologically Sorted Source Nodes: [topk], Original ATen: [aten.topk]
buf2 = torch.ops.aten.topk.default(reinterpret_tensor(buf1, (64, ), (1, ), 0), 64)
buf3 = buf2[0]
del buf2
buf5 = empty_strided_cuda((), (), torch.float32)
buf7 = buf5; del buf5 # reuse
# Topologically Sorted Source Nodes: [mask, mask_1, loss_1, sum_2, sum_3, add, truediv], Original ATen: [aten.ge, aten._to_copy, aten.mul, aten.sum, aten.add, aten.div]
triton_per_fused__to_copy_add_div_ge_mul_sum_2.run(buf7, buf1, buf3, 1, 64, grid=grid(1), stream=stream0)
del buf1
del buf3
return (buf7, )
def benchmark_compiled_module(times=10, repeat=10):
from torch._dynamo.testing import rand_strided
from torch._inductor.utils import print_performance
arg0_1 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32)
arg1_1 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32)
fn = lambda: call([arg0_1, arg1_1])
return print_performance(fn, times=times, repeat=repeat)
if __name__ == "__main__":
from torch._inductor.wrapper_benchmark import compiled_module_main
compiled_module_main('None', benchmark_compiled_module)
|
import torch
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
from torch._inductor.runtime import triton_helpers
from torch._inductor.runtime.triton_helpers import math as tl_math
from torch import nn
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
@triton.jit
def triton_poi_fused__log_softmax_0(in_ptr0, out_ptr0, xnumel, XBLOCK: tl.
constexpr):
xnumel = 256
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x3 = xindex
x0 = xindex % 16
x2 = xindex // 64
tmp0 = tl.load(in_ptr0 + x3, xmask)
tmp1 = tl.load(in_ptr0 + (x0 + 64 * x2), xmask, eviction_policy=
'evict_last')
tmp2 = tl.load(in_ptr0 + (16 + x0 + 64 * x2), xmask, eviction_policy=
'evict_last')
tmp4 = tl.load(in_ptr0 + (32 + x0 + 64 * x2), xmask, eviction_policy=
'evict_last')
tmp6 = tl.load(in_ptr0 + (48 + x0 + 64 * x2), xmask, eviction_policy=
'evict_last')
tmp3 = triton_helpers.maximum(tmp1, tmp2)
tmp5 = triton_helpers.maximum(tmp3, tmp4)
tmp7 = triton_helpers.maximum(tmp5, tmp6)
tmp8 = tmp0 - tmp7
tl.store(out_ptr0 + x3, tmp8, xmask)
@triton.jit
def triton_poi_fused__log_softmax_mul_neg_sum_1(in_ptr0, in_ptr1, out_ptr0,
xnumel, XBLOCK: tl.constexpr):
xnumel = 64
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex % 16
x1 = xindex // 16
x2 = xindex
tmp0 = tl.load(in_ptr0 + (x0 + 64 * x1), xmask)
tmp2 = tl.load(in_ptr0 + (16 + x0 + 64 * x1), xmask)
tmp5 = tl.load(in_ptr0 + (32 + x0 + 64 * x1), xmask)
tmp8 = tl.load(in_ptr0 + (48 + x0 + 64 * x1), xmask)
tmp13 = tl.load(in_ptr1 + (x0 + 64 * x1), xmask)
tmp16 = tl.load(in_ptr1 + (16 + x0 + 64 * x1), xmask)
tmp20 = tl.load(in_ptr1 + (32 + x0 + 64 * x1), xmask)
tmp24 = tl.load(in_ptr1 + (48 + x0 + 64 * x1), xmask)
tmp1 = tl_math.exp(tmp0)
tmp3 = tl_math.exp(tmp2)
tmp4 = tmp1 + tmp3
tmp6 = tl_math.exp(tmp5)
tmp7 = tmp4 + tmp6
tmp9 = tl_math.exp(tmp8)
tmp10 = tmp7 + tmp9
tmp11 = tl_math.log(tmp10)
tmp12 = tmp0 - tmp11
tmp14 = tmp12 * tmp13
tmp15 = tmp2 - tmp11
tmp17 = tmp15 * tmp16
tmp18 = tmp14 + tmp17
tmp19 = tmp5 - tmp11
tmp21 = tmp19 * tmp20
tmp22 = tmp18 + tmp21
tmp23 = tmp8 - tmp11
tmp25 = tmp23 * tmp24
tmp26 = tmp22 + tmp25
tmp27 = -tmp26
tl.store(out_ptr0 + x2, tmp27, xmask)
@triton.jit
def triton_per_fused__to_copy_add_div_ge_mul_sum_2(in_out_ptr0, in_ptr0,
in_ptr1, xnumel, rnumel, XBLOCK: tl.constexpr):
RBLOCK: tl.constexpr = 64
xoffset = tl.program_id(0) * XBLOCK
xoffset + tl.arange(0, XBLOCK)[:, None]
tl.full([XBLOCK, RBLOCK], True, tl.int1)
rindex = tl.arange(0, RBLOCK)[None, :]
tl.full([XBLOCK, RBLOCK], True, tl.int1)
r0 = rindex
tmp0 = tl.load(in_ptr0 + r0, None)
tmp1 = tl.load(in_ptr1 + 63)
tmp2 = tl.broadcast_to(tmp1, [XBLOCK, RBLOCK])
tmp3 = tmp0 >= tmp2
tmp4 = tmp3.to(tl.float32)
tmp5 = tmp0 * tmp4
tmp6 = tl.broadcast_to(tmp5, [XBLOCK, RBLOCK])
tmp8 = tl.sum(tmp6, 1)[:, None]
tmp9 = tl.broadcast_to(tmp4, [XBLOCK, RBLOCK])
tmp11 = tl.sum(tmp9, 1)[:, None]
tmp12 = 1e-07
tmp13 = tmp11 + tmp12
tmp14 = tmp8 / tmp13
tl.debug_barrier()
tl.store(in_out_ptr0 + tl.full([XBLOCK, 1], 0, tl.int32), tmp14, None)
def call(args):
arg0_1, arg1_1 = args
args.clear()
assert_size_stride(arg0_1, (4, 4, 4, 4), (64, 16, 4, 1))
assert_size_stride(arg1_1, (4, 4, 4, 4), (64, 16, 4, 1))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32)
get_raw_stream(0)
triton_poi_fused__log_softmax_0[grid(256)](arg0_1, buf0, 256,
XBLOCK=128, num_warps=4, num_stages=1)
del arg0_1
buf1 = empty_strided_cuda((4, 4, 4), (16, 4, 1), torch.float32)
triton_poi_fused__log_softmax_mul_neg_sum_1[grid(64)](buf0, arg1_1,
buf1, 64, XBLOCK=64, num_warps=1, num_stages=1)
del arg1_1
del buf0
buf2 = torch.ops.aten.topk.default(reinterpret_tensor(buf1, (64,),
(1,), 0), 64)
buf3 = buf2[0]
del buf2
buf5 = empty_strided_cuda((), (), torch.float32)
buf7 = buf5
del buf5
triton_per_fused__to_copy_add_div_ge_mul_sum_2[grid(1)](buf7, buf1,
buf3, 1, 64, XBLOCK=1, num_warps=2, num_stages=1)
del buf1
del buf3
return buf7,
def _ohem_mask(loss, ohem_ratio):
with torch.no_grad():
values, _ = torch.topk(loss.reshape(-1), int(loss.nelement() *
ohem_ratio))
mask = loss >= values[-1]
return mask.float()
class SoftCrossEntropyLossWithOHEMNew(nn.Module):
def __init__(self, ohem_ratio=1.0, eps=1e-07):
super(SoftCrossEntropyLossWithOHEMNew, self).__init__()
self.ohem_ratio = ohem_ratio
self.eps = eps
def set_ohem_ratio(self, ohem_ratio):
self.ohem_ratio = ohem_ratio
def forward(self, input_0, input_1):
arg0_1 = input_0
arg1_1 = input_1
output = call([arg0_1, arg1_1])
return output[0]
|
ForrestPi/semanticSegmentation
|
SoftCrossEntropyLossWithOHEM
| false | 17,345 |
[
"MIT"
] | 7 |
1e5519279e2a9574f09eaf91439138b74b0f860c
|
https://github.com/ForrestPi/semanticSegmentation/tree/1e5519279e2a9574f09eaf91439138b74b0f860c
|
Normalize
|
# AOT ID: ['0_inference']
from ctypes import c_void_p, c_long, c_int
import torch
import math
import random
import os
import tempfile
from math import inf, nan
from torch._inductor.hooks import run_intermediate_hooks
from torch._inductor.utils import maybe_profile
from torch._inductor.codegen.memory_planning import _align as align
from torch import device, empty_strided
from torch._inductor.async_compile import AsyncCompile
from torch._inductor.select_algorithm import extern_kernels
from torch._inductor.codegen.multi_kernel import MultiKernelCall
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
aten = torch.ops.aten
inductor_ops = torch.ops.inductor
_quantized = torch.ops._quantized
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
alloc_from_pool = torch.ops.inductor._alloc_from_pool
async_compile = AsyncCompile()
# kernel path: runs/run_shard_8/inductor_cache/6o/c6ojhuuvyz43ogs3olib4lkalnymxhhnoqfyye667gq5hhhh5aqy.py
# Topologically Sorted Source Nodes: [pow_1, sum_1, norm, add, out], Original ATen: [aten.pow, aten.sum, aten.add, aten.div]
# Source node to ATen node mapping:
# add => add
# norm => pow_2
# out => div
# pow_1 => pow_1
# sum_1 => sum_1
# Graph fragment:
# %pow_1 : [num_users=1] = call_function[target=torch.ops.aten.pow.Tensor_Scalar](args = (%arg0_1, 2), kwargs = {})
# %sum_1 : [num_users=1] = call_function[target=torch.ops.aten.sum.dim_IntList](args = (%pow_1, [1], True), kwargs = {})
# %pow_2 : [num_users=1] = call_function[target=torch.ops.aten.pow.Tensor_Scalar](args = (%sum_1, 0.5), kwargs = {})
# %add : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%pow_2, 1e-07), kwargs = {})
# %div : [num_users=1] = call_function[target=torch.ops.aten.div.Tensor](args = (%arg0_1, %add), kwargs = {})
triton_poi_fused_add_div_pow_sum_0 = async_compile.triton('triton_poi_fused_add_div_pow_sum_0', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[256],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_add_div_pow_sum_0', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 5, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_add_div_pow_sum_0(in_ptr0, out_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 256
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x3 = xindex
x0 = xindex % 16
x2 = (xindex // 64)
tmp0 = tl.load(in_ptr0 + (x3), xmask)
tmp1 = tl.load(in_ptr0 + (x0 + (64*x2)), xmask, eviction_policy='evict_last')
tmp3 = tl.load(in_ptr0 + (16 + x0 + (64*x2)), xmask, eviction_policy='evict_last')
tmp6 = tl.load(in_ptr0 + (32 + x0 + (64*x2)), xmask, eviction_policy='evict_last')
tmp9 = tl.load(in_ptr0 + (48 + x0 + (64*x2)), xmask, eviction_policy='evict_last')
tmp2 = tmp1 * tmp1
tmp4 = tmp3 * tmp3
tmp5 = tmp2 + tmp4
tmp7 = tmp6 * tmp6
tmp8 = tmp5 + tmp7
tmp10 = tmp9 * tmp9
tmp11 = tmp8 + tmp10
tmp12 = libdevice.sqrt(tmp11)
tmp13 = 1e-07
tmp14 = tmp12 + tmp13
tmp15 = tmp0 / tmp14
tl.store(out_ptr0 + (x3), tmp15, xmask)
''', device_str='cuda')
async_compile.wait(globals())
del async_compile
def call(args):
arg0_1, = args
args.clear()
assert_size_stride(arg0_1, (4, 4, 4, 4), (64, 16, 4, 1))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32)
# Topologically Sorted Source Nodes: [pow_1, sum_1, norm, add, out], Original ATen: [aten.pow, aten.sum, aten.add, aten.div]
stream0 = get_raw_stream(0)
triton_poi_fused_add_div_pow_sum_0.run(arg0_1, buf0, 256, grid=grid(256), stream=stream0)
del arg0_1
return (buf0, )
def benchmark_compiled_module(times=10, repeat=10):
from torch._dynamo.testing import rand_strided
from torch._inductor.utils import print_performance
arg0_1 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32)
fn = lambda: call([arg0_1])
return print_performance(fn, times=times, repeat=repeat)
if __name__ == "__main__":
from torch._inductor.wrapper_benchmark import compiled_module_main
compiled_module_main('None', benchmark_compiled_module)
|
import torch
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
from torch._inductor.runtime.triton_helpers import libdevice
import torch.utils.data
import torch
import torch.nn as nn
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
@triton.jit
def triton_poi_fused_add_div_pow_sum_0(in_ptr0, out_ptr0, xnumel, XBLOCK:
tl.constexpr):
xnumel = 256
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x3 = xindex
x0 = xindex % 16
x2 = xindex // 64
tmp0 = tl.load(in_ptr0 + x3, xmask)
tmp1 = tl.load(in_ptr0 + (x0 + 64 * x2), xmask, eviction_policy=
'evict_last')
tmp3 = tl.load(in_ptr0 + (16 + x0 + 64 * x2), xmask, eviction_policy=
'evict_last')
tmp6 = tl.load(in_ptr0 + (32 + x0 + 64 * x2), xmask, eviction_policy=
'evict_last')
tmp9 = tl.load(in_ptr0 + (48 + x0 + 64 * x2), xmask, eviction_policy=
'evict_last')
tmp2 = tmp1 * tmp1
tmp4 = tmp3 * tmp3
tmp5 = tmp2 + tmp4
tmp7 = tmp6 * tmp6
tmp8 = tmp5 + tmp7
tmp10 = tmp9 * tmp9
tmp11 = tmp8 + tmp10
tmp12 = libdevice.sqrt(tmp11)
tmp13 = 1e-07
tmp14 = tmp12 + tmp13
tmp15 = tmp0 / tmp14
tl.store(out_ptr0 + x3, tmp15, xmask)
def call(args):
arg0_1, = args
args.clear()
assert_size_stride(arg0_1, (4, 4, 4, 4), (64, 16, 4, 1))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32)
get_raw_stream(0)
triton_poi_fused_add_div_pow_sum_0[grid(256)](arg0_1, buf0, 256,
XBLOCK=256, num_warps=4, num_stages=1)
del arg0_1
return buf0,
class NormalizeNew(nn.Module):
def __init__(self, power=2):
super(NormalizeNew, self).__init__()
self.power = power
def forward(self, input_0):
arg0_1 = input_0
output = call([arg0_1])
return output[0]
|
a11isonliu/contrastive-unpaired-translation
|
Normalize
| false | 9,850 |
[
"BSD-3-Clause"
] | 0 |
67651ed9877cae121d9398f46094ce8dbc678802
|
https://github.com/a11isonliu/contrastive-unpaired-translation/tree/67651ed9877cae121d9398f46094ce8dbc678802
|
PredictionConvolutions
|
# AOT ID: ['0_forward']
from ctypes import c_void_p, c_long, c_int
import torch
import math
import random
import os
import tempfile
from math import inf, nan
from torch._inductor.hooks import run_intermediate_hooks
from torch._inductor.utils import maybe_profile
from torch._inductor.codegen.memory_planning import _align as align
from torch import device, empty_strided
from torch._inductor.async_compile import AsyncCompile
from torch._inductor.select_algorithm import extern_kernels
from torch._inductor.codegen.multi_kernel import MultiKernelCall
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
aten = torch.ops.aten
inductor_ops = torch.ops.inductor
_quantized = torch.ops._quantized
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
alloc_from_pool = torch.ops.inductor._alloc_from_pool
async_compile = AsyncCompile()
# kernel path: runs/run_shard_0/inductor_cache/wt/cwt5qmtvc7yxu72iuj2iy3dboxfdnpjie7tsbva6mk7drgkwx5ae.py
# Topologically Sorted Source Nodes: [locs], Original ATen: [aten.cat]
# Source node to ATen node mapping:
# locs => cat
# Graph fragment:
# %cat : [num_users=1] = call_function[target=torch.ops.aten.cat.default](args = ([%view, %view_1, %view_2, %view_3, %view_4, %view_5], 1), kwargs = {})
triton_poi_fused_cat_0 = async_compile.triton('triton_poi_fused_cat_0', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[2097152],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: '*fp32', 4: '*fp32', 5: '*fp32', 6: '*fp32', 7: '*fp32', 8: '*fp32', 9: '*fp32', 10: '*fp32', 11: '*fp32', 12: '*fp32', 13: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_cat_0', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 12, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_cat_0(in_ptr0, in_ptr1, in_ptr2, in_ptr3, in_ptr4, in_ptr5, in_ptr6, in_ptr7, in_ptr8, in_ptr9, in_ptr10, in_ptr11, out_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 1966080
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = tl.full([XBLOCK], True, tl.int1)
x1 = (xindex // 4) % 122880
x0 = xindex % 4
x2 = (xindex // 491520)
x3 = xindex
tmp0 = x1
tmp1 = tl.full([1], 0, tl.int64)
tmp2 = tmp0 >= tmp1
tmp3 = tl.full([1], 16384, tl.int64)
tmp4 = tmp0 < tmp3
tmp5 = tl.load(in_ptr0 + ((4096*((x0 + (4*x1)) % 16)) + (65536*(((x0 + (4*x1) + (65536*x2)) // 65536) % 4)) + (((x0 + (4*x1)) // 16) % 4096)), tmp4, eviction_policy='evict_last', other=0.0)
tmp6 = tl.load(in_ptr1 + ((x0 + (4*x1)) % 16), tmp4, eviction_policy='evict_last', other=0.0)
tmp7 = tmp5 + tmp6
tmp8 = tl.full(tmp7.shape, 0.0, tmp7.dtype)
tmp9 = tl.where(tmp4, tmp7, tmp8)
tmp10 = tmp0 >= tmp3
tmp11 = tl.full([1], 40960, tl.int64)
tmp12 = tmp0 < tmp11
tmp13 = tmp10 & tmp12
tmp14 = tl.load(in_ptr2 + ((4096*((x0 + (4*((-16384) + x1))) % 24)) + (98304*(((x0 + (4*((-16384) + x1)) + (98304*x2)) // 98304) % 4)) + (((x0 + (4*((-16384) + x1))) // 24) % 4096)), tmp13, eviction_policy='evict_last', other=0.0)
tmp15 = tl.load(in_ptr3 + ((x0 + (4*((-16384) + x1))) % 24), tmp13, eviction_policy='evict_last', other=0.0)
tmp16 = tmp14 + tmp15
tmp17 = tl.full(tmp16.shape, 0.0, tmp16.dtype)
tmp18 = tl.where(tmp13, tmp16, tmp17)
tmp19 = tmp0 >= tmp11
tmp20 = tl.full([1], 65536, tl.int64)
tmp21 = tmp0 < tmp20
tmp22 = tmp19 & tmp21
tmp23 = tl.load(in_ptr4 + ((4096*((x0 + (4*((-40960) + x1))) % 24)) + (98304*(((x0 + (4*((-40960) + x1)) + (98304*x2)) // 98304) % 4)) + (((x0 + (4*((-40960) + x1))) // 24) % 4096)), tmp22, eviction_policy='evict_last', other=0.0)
tmp24 = tl.load(in_ptr5 + ((x0 + (4*((-40960) + x1))) % 24), tmp22, eviction_policy='evict_last', other=0.0)
tmp25 = tmp23 + tmp24
tmp26 = tl.full(tmp25.shape, 0.0, tmp25.dtype)
tmp27 = tl.where(tmp22, tmp25, tmp26)
tmp28 = tmp0 >= tmp20
tmp29 = tl.full([1], 90112, tl.int64)
tmp30 = tmp0 < tmp29
tmp31 = tmp28 & tmp30
tmp32 = tl.load(in_ptr6 + ((4096*((x0 + (4*((-65536) + x1))) % 24)) + (98304*(((x0 + (4*((-65536) + x1)) + (98304*x2)) // 98304) % 4)) + (((x0 + (4*((-65536) + x1))) // 24) % 4096)), tmp31, eviction_policy='evict_last', other=0.0)
tmp33 = tl.load(in_ptr7 + ((x0 + (4*((-65536) + x1))) % 24), tmp31, eviction_policy='evict_last', other=0.0)
tmp34 = tmp32 + tmp33
tmp35 = tl.full(tmp34.shape, 0.0, tmp34.dtype)
tmp36 = tl.where(tmp31, tmp34, tmp35)
tmp37 = tmp0 >= tmp29
tmp38 = tl.full([1], 106496, tl.int64)
tmp39 = tmp0 < tmp38
tmp40 = tmp37 & tmp39
tmp41 = tl.load(in_ptr8 + ((4096*((x0 + (4*((-90112) + x1))) % 16)) + (65536*(((x0 + (4*((-90112) + x1)) + (65536*x2)) // 65536) % 4)) + (((x0 + (4*((-90112) + x1))) // 16) % 4096)), tmp40, eviction_policy='evict_last', other=0.0)
tmp42 = tl.load(in_ptr9 + ((x0 + (4*((-90112) + x1))) % 16), tmp40, eviction_policy='evict_last', other=0.0)
tmp43 = tmp41 + tmp42
tmp44 = tl.full(tmp43.shape, 0.0, tmp43.dtype)
tmp45 = tl.where(tmp40, tmp43, tmp44)
tmp46 = tmp0 >= tmp38
tmp47 = tl.full([1], 122880, tl.int64)
tmp48 = tmp0 < tmp47
tmp49 = tl.load(in_ptr10 + ((4096*((x0 + (4*((-106496) + x1))) % 16)) + (65536*(((x0 + (4*((-106496) + x1)) + (65536*x2)) // 65536) % 4)) + (((x0 + (4*((-106496) + x1))) // 16) % 4096)), tmp46, eviction_policy='evict_last', other=0.0)
tmp50 = tl.load(in_ptr11 + ((x0 + (4*((-106496) + x1))) % 16), tmp46, eviction_policy='evict_last', other=0.0)
tmp51 = tmp49 + tmp50
tmp52 = tl.full(tmp51.shape, 0.0, tmp51.dtype)
tmp53 = tl.where(tmp46, tmp51, tmp52)
tmp54 = tl.where(tmp40, tmp45, tmp53)
tmp55 = tl.where(tmp31, tmp36, tmp54)
tmp56 = tl.where(tmp22, tmp27, tmp55)
tmp57 = tl.where(tmp13, tmp18, tmp56)
tmp58 = tl.where(tmp4, tmp9, tmp57)
tl.store(out_ptr0 + (x3), tmp58, None)
''', device_str='cuda')
async_compile.wait(globals())
del async_compile
def call(args):
primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7, primals_8, primals_9, primals_10, primals_11, primals_12, primals_13, primals_14, primals_15, primals_16, primals_17, primals_18, primals_19, primals_20, primals_21, primals_22, primals_23, primals_24, primals_25, primals_26, primals_27, primals_28, primals_29, primals_30 = args
args.clear()
assert_size_stride(primals_1, (4, 512, 64, 64), (2097152, 4096, 64, 1))
assert_size_stride(primals_2, (16, 512, 3, 3), (4608, 9, 3, 1))
assert_size_stride(primals_3, (16, ), (1, ))
assert_size_stride(primals_4, (24, 1024, 3, 3), (9216, 9, 3, 1))
assert_size_stride(primals_5, (24, ), (1, ))
assert_size_stride(primals_6, (4, 1024, 64, 64), (4194304, 4096, 64, 1))
assert_size_stride(primals_7, (24, 512, 3, 3), (4608, 9, 3, 1))
assert_size_stride(primals_8, (24, ), (1, ))
assert_size_stride(primals_9, (4, 512, 64, 64), (2097152, 4096, 64, 1))
assert_size_stride(primals_10, (24, 256, 3, 3), (2304, 9, 3, 1))
assert_size_stride(primals_11, (24, ), (1, ))
assert_size_stride(primals_12, (4, 256, 64, 64), (1048576, 4096, 64, 1))
assert_size_stride(primals_13, (16, 256, 3, 3), (2304, 9, 3, 1))
assert_size_stride(primals_14, (16, ), (1, ))
assert_size_stride(primals_15, (4, 256, 64, 64), (1048576, 4096, 64, 1))
assert_size_stride(primals_16, (16, 256, 3, 3), (2304, 9, 3, 1))
assert_size_stride(primals_17, (16, ), (1, ))
assert_size_stride(primals_18, (4, 256, 64, 64), (1048576, 4096, 64, 1))
assert_size_stride(primals_19, (16, 512, 3, 3), (4608, 9, 3, 1))
assert_size_stride(primals_20, (16, ), (1, ))
assert_size_stride(primals_21, (24, 1024, 3, 3), (9216, 9, 3, 1))
assert_size_stride(primals_22, (24, ), (1, ))
assert_size_stride(primals_23, (24, 512, 3, 3), (4608, 9, 3, 1))
assert_size_stride(primals_24, (24, ), (1, ))
assert_size_stride(primals_25, (24, 256, 3, 3), (2304, 9, 3, 1))
assert_size_stride(primals_26, (24, ), (1, ))
assert_size_stride(primals_27, (16, 256, 3, 3), (2304, 9, 3, 1))
assert_size_stride(primals_28, (16, ), (1, ))
assert_size_stride(primals_29, (16, 256, 3, 3), (2304, 9, 3, 1))
assert_size_stride(primals_30, (16, ), (1, ))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
# Topologically Sorted Source Nodes: [l_conv4_3], Original ATen: [aten.convolution]
buf0 = extern_kernels.convolution(primals_1, primals_2, stride=(1, 1), padding=(1, 1), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None)
assert_size_stride(buf0, (4, 16, 64, 64), (65536, 4096, 64, 1))
# Topologically Sorted Source Nodes: [l_conv7], Original ATen: [aten.convolution]
buf1 = extern_kernels.convolution(primals_6, primals_4, stride=(1, 1), padding=(1, 1), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None)
assert_size_stride(buf1, (4, 24, 64, 64), (98304, 4096, 64, 1))
# Topologically Sorted Source Nodes: [l_conv8_2], Original ATen: [aten.convolution]
buf2 = extern_kernels.convolution(primals_9, primals_7, stride=(1, 1), padding=(1, 1), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None)
assert_size_stride(buf2, (4, 24, 64, 64), (98304, 4096, 64, 1))
# Topologically Sorted Source Nodes: [l_conv9_2], Original ATen: [aten.convolution]
buf3 = extern_kernels.convolution(primals_12, primals_10, stride=(1, 1), padding=(1, 1), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None)
assert_size_stride(buf3, (4, 24, 64, 64), (98304, 4096, 64, 1))
# Topologically Sorted Source Nodes: [l_conv10_2], Original ATen: [aten.convolution]
buf4 = extern_kernels.convolution(primals_15, primals_13, stride=(1, 1), padding=(1, 1), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None)
assert_size_stride(buf4, (4, 16, 64, 64), (65536, 4096, 64, 1))
# Topologically Sorted Source Nodes: [l_conv11_2], Original ATen: [aten.convolution]
buf5 = extern_kernels.convolution(primals_18, primals_16, stride=(1, 1), padding=(1, 1), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None)
assert_size_stride(buf5, (4, 16, 64, 64), (65536, 4096, 64, 1))
# Topologically Sorted Source Nodes: [c_conv4_3], Original ATen: [aten.convolution]
buf6 = extern_kernels.convolution(primals_1, primals_19, stride=(1, 1), padding=(1, 1), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None)
assert_size_stride(buf6, (4, 16, 64, 64), (65536, 4096, 64, 1))
# Topologically Sorted Source Nodes: [c_conv7], Original ATen: [aten.convolution]
buf7 = extern_kernels.convolution(primals_6, primals_21, stride=(1, 1), padding=(1, 1), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None)
assert_size_stride(buf7, (4, 24, 64, 64), (98304, 4096, 64, 1))
# Topologically Sorted Source Nodes: [c_conv8_2], Original ATen: [aten.convolution]
buf8 = extern_kernels.convolution(primals_9, primals_23, stride=(1, 1), padding=(1, 1), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None)
assert_size_stride(buf8, (4, 24, 64, 64), (98304, 4096, 64, 1))
# Topologically Sorted Source Nodes: [c_conv9_2], Original ATen: [aten.convolution]
buf9 = extern_kernels.convolution(primals_12, primals_25, stride=(1, 1), padding=(1, 1), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None)
assert_size_stride(buf9, (4, 24, 64, 64), (98304, 4096, 64, 1))
# Topologically Sorted Source Nodes: [c_conv10_2], Original ATen: [aten.convolution]
buf10 = extern_kernels.convolution(primals_15, primals_27, stride=(1, 1), padding=(1, 1), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None)
assert_size_stride(buf10, (4, 16, 64, 64), (65536, 4096, 64, 1))
# Topologically Sorted Source Nodes: [c_conv11_2], Original ATen: [aten.convolution]
buf11 = extern_kernels.convolution(primals_18, primals_29, stride=(1, 1), padding=(1, 1), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None)
assert_size_stride(buf11, (4, 16, 64, 64), (65536, 4096, 64, 1))
buf12 = empty_strided_cuda((4, 122880, 4), (491520, 4, 1), torch.float32)
# Topologically Sorted Source Nodes: [locs], Original ATen: [aten.cat]
stream0 = get_raw_stream(0)
triton_poi_fused_cat_0.run(buf0, primals_3, buf1, primals_5, buf2, primals_8, buf3, primals_11, buf4, primals_14, buf5, primals_17, buf12, 1966080, grid=grid(1966080), stream=stream0)
del buf0
del buf1
del buf2
del buf3
del buf4
del buf5
del primals_11
del primals_14
del primals_17
del primals_3
del primals_5
del primals_8
buf13 = empty_strided_cuda((4, 122880, 4), (491520, 4, 1), torch.float32)
# Topologically Sorted Source Nodes: [classes_scores], Original ATen: [aten.cat]
triton_poi_fused_cat_0.run(buf6, primals_20, buf7, primals_22, buf8, primals_24, buf9, primals_26, buf10, primals_28, buf11, primals_30, buf13, 1966080, grid=grid(1966080), stream=stream0)
del buf10
del buf11
del buf6
del buf7
del buf8
del buf9
del primals_20
del primals_22
del primals_24
del primals_26
del primals_28
del primals_30
return (buf12, buf13, primals_1, primals_2, primals_4, primals_6, primals_7, primals_9, primals_10, primals_12, primals_13, primals_15, primals_16, primals_18, primals_19, primals_21, primals_23, primals_25, primals_27, primals_29, )
def benchmark_compiled_module(times=10, repeat=10):
from torch._dynamo.testing import rand_strided
from torch._inductor.utils import print_performance
primals_1 = rand_strided((4, 512, 64, 64), (2097152, 4096, 64, 1), device='cuda:0', dtype=torch.float32)
primals_2 = rand_strided((16, 512, 3, 3), (4608, 9, 3, 1), device='cuda:0', dtype=torch.float32)
primals_3 = rand_strided((16, ), (1, ), device='cuda:0', dtype=torch.float32)
primals_4 = rand_strided((24, 1024, 3, 3), (9216, 9, 3, 1), device='cuda:0', dtype=torch.float32)
primals_5 = rand_strided((24, ), (1, ), device='cuda:0', dtype=torch.float32)
primals_6 = rand_strided((4, 1024, 64, 64), (4194304, 4096, 64, 1), device='cuda:0', dtype=torch.float32)
primals_7 = rand_strided((24, 512, 3, 3), (4608, 9, 3, 1), device='cuda:0', dtype=torch.float32)
primals_8 = rand_strided((24, ), (1, ), device='cuda:0', dtype=torch.float32)
primals_9 = rand_strided((4, 512, 64, 64), (2097152, 4096, 64, 1), device='cuda:0', dtype=torch.float32)
primals_10 = rand_strided((24, 256, 3, 3), (2304, 9, 3, 1), device='cuda:0', dtype=torch.float32)
primals_11 = rand_strided((24, ), (1, ), device='cuda:0', dtype=torch.float32)
primals_12 = rand_strided((4, 256, 64, 64), (1048576, 4096, 64, 1), device='cuda:0', dtype=torch.float32)
primals_13 = rand_strided((16, 256, 3, 3), (2304, 9, 3, 1), device='cuda:0', dtype=torch.float32)
primals_14 = rand_strided((16, ), (1, ), device='cuda:0', dtype=torch.float32)
primals_15 = rand_strided((4, 256, 64, 64), (1048576, 4096, 64, 1), device='cuda:0', dtype=torch.float32)
primals_16 = rand_strided((16, 256, 3, 3), (2304, 9, 3, 1), device='cuda:0', dtype=torch.float32)
primals_17 = rand_strided((16, ), (1, ), device='cuda:0', dtype=torch.float32)
primals_18 = rand_strided((4, 256, 64, 64), (1048576, 4096, 64, 1), device='cuda:0', dtype=torch.float32)
primals_19 = rand_strided((16, 512, 3, 3), (4608, 9, 3, 1), device='cuda:0', dtype=torch.float32)
primals_20 = rand_strided((16, ), (1, ), device='cuda:0', dtype=torch.float32)
primals_21 = rand_strided((24, 1024, 3, 3), (9216, 9, 3, 1), device='cuda:0', dtype=torch.float32)
primals_22 = rand_strided((24, ), (1, ), device='cuda:0', dtype=torch.float32)
primals_23 = rand_strided((24, 512, 3, 3), (4608, 9, 3, 1), device='cuda:0', dtype=torch.float32)
primals_24 = rand_strided((24, ), (1, ), device='cuda:0', dtype=torch.float32)
primals_25 = rand_strided((24, 256, 3, 3), (2304, 9, 3, 1), device='cuda:0', dtype=torch.float32)
primals_26 = rand_strided((24, ), (1, ), device='cuda:0', dtype=torch.float32)
primals_27 = rand_strided((16, 256, 3, 3), (2304, 9, 3, 1), device='cuda:0', dtype=torch.float32)
primals_28 = rand_strided((16, ), (1, ), device='cuda:0', dtype=torch.float32)
primals_29 = rand_strided((16, 256, 3, 3), (2304, 9, 3, 1), device='cuda:0', dtype=torch.float32)
primals_30 = rand_strided((16, ), (1, ), device='cuda:0', dtype=torch.float32)
fn = lambda: call([primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7, primals_8, primals_9, primals_10, primals_11, primals_12, primals_13, primals_14, primals_15, primals_16, primals_17, primals_18, primals_19, primals_20, primals_21, primals_22, primals_23, primals_24, primals_25, primals_26, primals_27, primals_28, primals_29, primals_30])
return print_performance(fn, times=times, repeat=repeat)
if __name__ == "__main__":
from torch._inductor.wrapper_benchmark import compiled_module_main
compiled_module_main('None', benchmark_compiled_module)
|
import torch
from torch._inductor.select_algorithm import extern_kernels
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
from torch import nn
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
@triton.jit
def triton_poi_fused_cat_0(in_ptr0, in_ptr1, in_ptr2, in_ptr3, in_ptr4,
in_ptr5, in_ptr6, in_ptr7, in_ptr8, in_ptr9, in_ptr10, in_ptr11,
out_ptr0, xnumel, XBLOCK: tl.constexpr):
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
tl.full([XBLOCK], True, tl.int1)
x1 = xindex // 4 % 122880
x0 = xindex % 4
x2 = xindex // 491520
x3 = xindex
tmp0 = x1
tl.full([1], 0, tl.int64)
tmp3 = tl.full([1], 16384, tl.int64)
tmp4 = tmp0 < tmp3
tmp5 = tl.load(in_ptr0 + (4096 * ((x0 + 4 * x1) % 16) + 65536 * ((x0 +
4 * x1 + 65536 * x2) // 65536 % 4) + (x0 + 4 * x1) // 16 % 4096),
tmp4, eviction_policy='evict_last', other=0.0)
tmp6 = tl.load(in_ptr1 + (x0 + 4 * x1) % 16, tmp4, eviction_policy=
'evict_last', other=0.0)
tmp7 = tmp5 + tmp6
tmp8 = tl.full(tmp7.shape, 0.0, tmp7.dtype)
tmp9 = tl.where(tmp4, tmp7, tmp8)
tmp10 = tmp0 >= tmp3
tmp11 = tl.full([1], 40960, tl.int64)
tmp12 = tmp0 < tmp11
tmp13 = tmp10 & tmp12
tmp14 = tl.load(in_ptr2 + (4096 * ((x0 + 4 * (-16384 + x1)) % 24) +
98304 * ((x0 + 4 * (-16384 + x1) + 98304 * x2) // 98304 % 4) + (x0 +
4 * (-16384 + x1)) // 24 % 4096), tmp13, eviction_policy=
'evict_last', other=0.0)
tmp15 = tl.load(in_ptr3 + (x0 + 4 * (-16384 + x1)) % 24, tmp13,
eviction_policy='evict_last', other=0.0)
tmp16 = tmp14 + tmp15
tmp17 = tl.full(tmp16.shape, 0.0, tmp16.dtype)
tmp18 = tl.where(tmp13, tmp16, tmp17)
tmp19 = tmp0 >= tmp11
tmp20 = tl.full([1], 65536, tl.int64)
tmp21 = tmp0 < tmp20
tmp22 = tmp19 & tmp21
tmp23 = tl.load(in_ptr4 + (4096 * ((x0 + 4 * (-40960 + x1)) % 24) +
98304 * ((x0 + 4 * (-40960 + x1) + 98304 * x2) // 98304 % 4) + (x0 +
4 * (-40960 + x1)) // 24 % 4096), tmp22, eviction_policy=
'evict_last', other=0.0)
tmp24 = tl.load(in_ptr5 + (x0 + 4 * (-40960 + x1)) % 24, tmp22,
eviction_policy='evict_last', other=0.0)
tmp25 = tmp23 + tmp24
tmp26 = tl.full(tmp25.shape, 0.0, tmp25.dtype)
tmp27 = tl.where(tmp22, tmp25, tmp26)
tmp28 = tmp0 >= tmp20
tmp29 = tl.full([1], 90112, tl.int64)
tmp30 = tmp0 < tmp29
tmp31 = tmp28 & tmp30
tmp32 = tl.load(in_ptr6 + (4096 * ((x0 + 4 * (-65536 + x1)) % 24) +
98304 * ((x0 + 4 * (-65536 + x1) + 98304 * x2) // 98304 % 4) + (x0 +
4 * (-65536 + x1)) // 24 % 4096), tmp31, eviction_policy=
'evict_last', other=0.0)
tmp33 = tl.load(in_ptr7 + (x0 + 4 * (-65536 + x1)) % 24, tmp31,
eviction_policy='evict_last', other=0.0)
tmp34 = tmp32 + tmp33
tmp35 = tl.full(tmp34.shape, 0.0, tmp34.dtype)
tmp36 = tl.where(tmp31, tmp34, tmp35)
tmp37 = tmp0 >= tmp29
tmp38 = tl.full([1], 106496, tl.int64)
tmp39 = tmp0 < tmp38
tmp40 = tmp37 & tmp39
tmp41 = tl.load(in_ptr8 + (4096 * ((x0 + 4 * (-90112 + x1)) % 16) +
65536 * ((x0 + 4 * (-90112 + x1) + 65536 * x2) // 65536 % 4) + (x0 +
4 * (-90112 + x1)) // 16 % 4096), tmp40, eviction_policy=
'evict_last', other=0.0)
tmp42 = tl.load(in_ptr9 + (x0 + 4 * (-90112 + x1)) % 16, tmp40,
eviction_policy='evict_last', other=0.0)
tmp43 = tmp41 + tmp42
tmp44 = tl.full(tmp43.shape, 0.0, tmp43.dtype)
tmp45 = tl.where(tmp40, tmp43, tmp44)
tmp46 = tmp0 >= tmp38
tl.full([1], 122880, tl.int64)
tmp49 = tl.load(in_ptr10 + (4096 * ((x0 + 4 * (-106496 + x1)) % 16) +
65536 * ((x0 + 4 * (-106496 + x1) + 65536 * x2) // 65536 % 4) + (x0 +
4 * (-106496 + x1)) // 16 % 4096), tmp46, eviction_policy=
'evict_last', other=0.0)
tmp50 = tl.load(in_ptr11 + (x0 + 4 * (-106496 + x1)) % 16, tmp46,
eviction_policy='evict_last', other=0.0)
tmp51 = tmp49 + tmp50
tmp52 = tl.full(tmp51.shape, 0.0, tmp51.dtype)
tmp53 = tl.where(tmp46, tmp51, tmp52)
tmp54 = tl.where(tmp40, tmp45, tmp53)
tmp55 = tl.where(tmp31, tmp36, tmp54)
tmp56 = tl.where(tmp22, tmp27, tmp55)
tmp57 = tl.where(tmp13, tmp18, tmp56)
tmp58 = tl.where(tmp4, tmp9, tmp57)
tl.store(out_ptr0 + x3, tmp58, None)
def call(args):
(primals_1, primals_2, primals_3, primals_4, primals_5, primals_6,
primals_7, primals_8, primals_9, primals_10, primals_11, primals_12,
primals_13, primals_14, primals_15, primals_16, primals_17,
primals_18, primals_19, primals_20, primals_21, primals_22,
primals_23, primals_24, primals_25, primals_26, primals_27,
primals_28, primals_29, primals_30) = args
args.clear()
assert_size_stride(primals_1, (4, 512, 64, 64), (2097152, 4096, 64, 1))
assert_size_stride(primals_2, (16, 512, 3, 3), (4608, 9, 3, 1))
assert_size_stride(primals_3, (16,), (1,))
assert_size_stride(primals_4, (24, 1024, 3, 3), (9216, 9, 3, 1))
assert_size_stride(primals_5, (24,), (1,))
assert_size_stride(primals_6, (4, 1024, 64, 64), (4194304, 4096, 64, 1))
assert_size_stride(primals_7, (24, 512, 3, 3), (4608, 9, 3, 1))
assert_size_stride(primals_8, (24,), (1,))
assert_size_stride(primals_9, (4, 512, 64, 64), (2097152, 4096, 64, 1))
assert_size_stride(primals_10, (24, 256, 3, 3), (2304, 9, 3, 1))
assert_size_stride(primals_11, (24,), (1,))
assert_size_stride(primals_12, (4, 256, 64, 64), (1048576, 4096, 64, 1))
assert_size_stride(primals_13, (16, 256, 3, 3), (2304, 9, 3, 1))
assert_size_stride(primals_14, (16,), (1,))
assert_size_stride(primals_15, (4, 256, 64, 64), (1048576, 4096, 64, 1))
assert_size_stride(primals_16, (16, 256, 3, 3), (2304, 9, 3, 1))
assert_size_stride(primals_17, (16,), (1,))
assert_size_stride(primals_18, (4, 256, 64, 64), (1048576, 4096, 64, 1))
assert_size_stride(primals_19, (16, 512, 3, 3), (4608, 9, 3, 1))
assert_size_stride(primals_20, (16,), (1,))
assert_size_stride(primals_21, (24, 1024, 3, 3), (9216, 9, 3, 1))
assert_size_stride(primals_22, (24,), (1,))
assert_size_stride(primals_23, (24, 512, 3, 3), (4608, 9, 3, 1))
assert_size_stride(primals_24, (24,), (1,))
assert_size_stride(primals_25, (24, 256, 3, 3), (2304, 9, 3, 1))
assert_size_stride(primals_26, (24,), (1,))
assert_size_stride(primals_27, (16, 256, 3, 3), (2304, 9, 3, 1))
assert_size_stride(primals_28, (16,), (1,))
assert_size_stride(primals_29, (16, 256, 3, 3), (2304, 9, 3, 1))
assert_size_stride(primals_30, (16,), (1,))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = extern_kernels.convolution(primals_1, primals_2, stride=(1,
1), padding=(1, 1), dilation=(1, 1), transposed=False,
output_padding=(0, 0), groups=1, bias=None)
assert_size_stride(buf0, (4, 16, 64, 64), (65536, 4096, 64, 1))
buf1 = extern_kernels.convolution(primals_6, primals_4, stride=(1,
1), padding=(1, 1), dilation=(1, 1), transposed=False,
output_padding=(0, 0), groups=1, bias=None)
assert_size_stride(buf1, (4, 24, 64, 64), (98304, 4096, 64, 1))
buf2 = extern_kernels.convolution(primals_9, primals_7, stride=(1,
1), padding=(1, 1), dilation=(1, 1), transposed=False,
output_padding=(0, 0), groups=1, bias=None)
assert_size_stride(buf2, (4, 24, 64, 64), (98304, 4096, 64, 1))
buf3 = extern_kernels.convolution(primals_12, primals_10, stride=(1,
1), padding=(1, 1), dilation=(1, 1), transposed=False,
output_padding=(0, 0), groups=1, bias=None)
assert_size_stride(buf3, (4, 24, 64, 64), (98304, 4096, 64, 1))
buf4 = extern_kernels.convolution(primals_15, primals_13, stride=(1,
1), padding=(1, 1), dilation=(1, 1), transposed=False,
output_padding=(0, 0), groups=1, bias=None)
assert_size_stride(buf4, (4, 16, 64, 64), (65536, 4096, 64, 1))
buf5 = extern_kernels.convolution(primals_18, primals_16, stride=(1,
1), padding=(1, 1), dilation=(1, 1), transposed=False,
output_padding=(0, 0), groups=1, bias=None)
assert_size_stride(buf5, (4, 16, 64, 64), (65536, 4096, 64, 1))
buf6 = extern_kernels.convolution(primals_1, primals_19, stride=(1,
1), padding=(1, 1), dilation=(1, 1), transposed=False,
output_padding=(0, 0), groups=1, bias=None)
assert_size_stride(buf6, (4, 16, 64, 64), (65536, 4096, 64, 1))
buf7 = extern_kernels.convolution(primals_6, primals_21, stride=(1,
1), padding=(1, 1), dilation=(1, 1), transposed=False,
output_padding=(0, 0), groups=1, bias=None)
assert_size_stride(buf7, (4, 24, 64, 64), (98304, 4096, 64, 1))
buf8 = extern_kernels.convolution(primals_9, primals_23, stride=(1,
1), padding=(1, 1), dilation=(1, 1), transposed=False,
output_padding=(0, 0), groups=1, bias=None)
assert_size_stride(buf8, (4, 24, 64, 64), (98304, 4096, 64, 1))
buf9 = extern_kernels.convolution(primals_12, primals_25, stride=(1,
1), padding=(1, 1), dilation=(1, 1), transposed=False,
output_padding=(0, 0), groups=1, bias=None)
assert_size_stride(buf9, (4, 24, 64, 64), (98304, 4096, 64, 1))
buf10 = extern_kernels.convolution(primals_15, primals_27, stride=(
1, 1), padding=(1, 1), dilation=(1, 1), transposed=False,
output_padding=(0, 0), groups=1, bias=None)
assert_size_stride(buf10, (4, 16, 64, 64), (65536, 4096, 64, 1))
buf11 = extern_kernels.convolution(primals_18, primals_29, stride=(
1, 1), padding=(1, 1), dilation=(1, 1), transposed=False,
output_padding=(0, 0), groups=1, bias=None)
assert_size_stride(buf11, (4, 16, 64, 64), (65536, 4096, 64, 1))
buf12 = empty_strided_cuda((4, 122880, 4), (491520, 4, 1), torch.
float32)
get_raw_stream(0)
triton_poi_fused_cat_0[grid(1966080)](buf0, primals_3, buf1,
primals_5, buf2, primals_8, buf3, primals_11, buf4, primals_14,
buf5, primals_17, buf12, 1966080, XBLOCK=1024, num_warps=4,
num_stages=1)
del buf0
del buf1
del buf2
del buf3
del buf4
del buf5
del primals_11
del primals_14
del primals_17
del primals_3
del primals_5
del primals_8
buf13 = empty_strided_cuda((4, 122880, 4), (491520, 4, 1), torch.
float32)
triton_poi_fused_cat_0[grid(1966080)](buf6, primals_20, buf7,
primals_22, buf8, primals_24, buf9, primals_26, buf10,
primals_28, buf11, primals_30, buf13, 1966080, XBLOCK=1024,
num_warps=4, num_stages=1)
del buf10
del buf11
del buf6
del buf7
del buf8
del buf9
del primals_20
del primals_22
del primals_24
del primals_26
del primals_28
del primals_30
return (buf12, buf13, primals_1, primals_2, primals_4, primals_6,
primals_7, primals_9, primals_10, primals_12, primals_13,
primals_15, primals_16, primals_18, primals_19, primals_21,
primals_23, primals_25, primals_27, primals_29)
class PredictionConvolutionsNew(nn.Module):
"""
Convolutions to predict class scores and bounding boxes using lower and higher-level feature maps.
The bounding boxes (locations) are predicted as encoded offsets w.r.t each of the 8732 prior (default) boxes.
See 'cxcy_to_gcxgcy' in utils.py for the encoding definition.
The class scores represent the scores of each object class in each of the 8732 bounding boxes located.
A high score for 'background' = no object.
"""
def __init__(self, n_classes):
"""
:param n_classes: number of different types of objects
"""
super(PredictionConvolutionsNew, self).__init__()
self.n_classes = n_classes
n_boxes = {'conv4_3': 4, 'conv7': 6, 'conv8_2': 6, 'conv9_2': 6,
'conv10_2': 4, 'conv11_2': 4}
self.loc_conv4_3 = nn.Conv2d(512, n_boxes['conv4_3'] * 4,
kernel_size=3, padding=1)
self.loc_conv7 = nn.Conv2d(1024, n_boxes['conv7'] * 4, kernel_size=
3, padding=1)
self.loc_conv8_2 = nn.Conv2d(512, n_boxes['conv8_2'] * 4,
kernel_size=3, padding=1)
self.loc_conv9_2 = nn.Conv2d(256, n_boxes['conv9_2'] * 4,
kernel_size=3, padding=1)
self.loc_conv10_2 = nn.Conv2d(256, n_boxes['conv10_2'] * 4,
kernel_size=3, padding=1)
self.loc_conv11_2 = nn.Conv2d(256, n_boxes['conv11_2'] * 4,
kernel_size=3, padding=1)
self.cl_conv4_3 = nn.Conv2d(512, n_boxes['conv4_3'] * n_classes,
kernel_size=3, padding=1)
self.cl_conv7 = nn.Conv2d(1024, n_boxes['conv7'] * n_classes,
kernel_size=3, padding=1)
self.cl_conv8_2 = nn.Conv2d(512, n_boxes['conv8_2'] * n_classes,
kernel_size=3, padding=1)
self.cl_conv9_2 = nn.Conv2d(256, n_boxes['conv9_2'] * n_classes,
kernel_size=3, padding=1)
self.cl_conv10_2 = nn.Conv2d(256, n_boxes['conv10_2'] * n_classes,
kernel_size=3, padding=1)
self.cl_conv11_2 = nn.Conv2d(256, n_boxes['conv11_2'] * n_classes,
kernel_size=3, padding=1)
self.init_conv2d()
def init_conv2d(self):
"""
Initialize convolution parameters.
"""
for c in self.children():
if isinstance(c, nn.Conv2d):
nn.init.xavier_uniform_(c.weight)
nn.init.constant_(c.bias, 0.0)
def forward(self, input_0, input_1, input_2, input_3, input_4, input_5):
primals_2 = self.loc_conv4_3.weight
primals_3 = self.loc_conv4_3.bias
primals_4 = self.loc_conv7.weight
primals_5 = self.loc_conv7.bias
primals_7 = self.loc_conv8_2.weight
primals_8 = self.loc_conv8_2.bias
primals_10 = self.loc_conv9_2.weight
primals_11 = self.loc_conv9_2.bias
primals_13 = self.loc_conv10_2.weight
primals_14 = self.loc_conv10_2.bias
primals_16 = self.loc_conv11_2.weight
primals_17 = self.loc_conv11_2.bias
primals_19 = self.cl_conv4_3.weight
primals_20 = self.cl_conv4_3.bias
primals_21 = self.cl_conv7.weight
primals_22 = self.cl_conv7.bias
primals_23 = self.cl_conv8_2.weight
primals_24 = self.cl_conv8_2.bias
primals_25 = self.cl_conv9_2.weight
primals_26 = self.cl_conv9_2.bias
primals_27 = self.cl_conv10_2.weight
primals_28 = self.cl_conv10_2.bias
primals_29 = self.cl_conv11_2.weight
primals_30 = self.cl_conv11_2.bias
primals_1 = input_0
primals_6 = input_1
primals_9 = input_2
primals_12 = input_3
primals_15 = input_4
primals_18 = input_5
output = call([primals_1, primals_2, primals_3, primals_4,
primals_5, primals_6, primals_7, primals_8, primals_9,
primals_10, primals_11, primals_12, primals_13, primals_14,
primals_15, primals_16, primals_17, primals_18, primals_19,
primals_20, primals_21, primals_22, primals_23, primals_24,
primals_25, primals_26, primals_27, primals_28, primals_29,
primals_30])
return output[0], output[1]
|
HFAiLab/ffrecord
|
PredictionConvolutions
| false | 14,023 |
[
"MIT"
] | 47 |
e916dc715ffa38a304a673ade7c5aa1efff5936d
|
https://github.com/HFAiLab/ffrecord/tree/e916dc715ffa38a304a673ade7c5aa1efff5936d
|
AttentionSeq2Vec
|
from torch.nn import Module
import torch
from torch.nn import Linear
from typing import Optional
from torch.nn import Tanh
def masked_softmax(vector: 'torch.FloatTensor', mask: 'torch.ByteTensor'):
"""
计算带有 masked 的 softmax
:param vector: shape: (B, seq_len)
:param mask: shape: (B, seq_len),
:return: (B, seq_len)
"""
exp_vector = vector.exp()
masked_vector = exp_vector * mask.float()
return masked_vector / torch.sum(masked_vector, dim=-1, keepdim=True)
class AttentionSeq2Vec(Module):
"""
基于 attention 将 seq2vec. 具体操作如下:
1. sequence: (B, seq_len, input_size)
2. K = WkSeqeunce 将 sequence 进行变换, K shape: (B, seq_len, query_hidden_size)
3. Q = Shape: (query_hidden_size)
4. attention = softmax(KQ), shape: (B, seq_len)
5. V = WvSequence, shape: (B, seq_len, value_hidden_size); 如果 value_hidden_size is None,
shape: (B, seq_len, input_size)
6. sum(V*attention, dim=-1), shape: (B, input_size)
"""
def __init__(self, input_size: 'int', query_hidden_size: 'int',
value_hidden_size: 'Optional[int]'=None):
"""
初始化。遵循 Q K V,计算 attention 方式。
:param input_size: 输入的 sequence token 的 embedding dim
:param query_hidden_size: 将 seqence 变成 Q 的时候,变换后的 token embedding dim.
:param value_hidden_size: 将 seqence 变成 V 的时候, 变换后的 token embedding dim.
如果 value_hidden_size is None, 那么,该模型就与 2016-Hierarchical Attention Networks for Document Classification
是一致的, 最后的输出结果 shape (B, seq_len, input_size);
如果 value_hidden_size 被设置了, 那么,就与 Attention is All your Need 中 变换是一致的, 最后的输出结果
shape (B, seq_len, value_hidden_size)
"""
super().__init__()
self.wk = Linear(in_features=input_size, out_features=
query_hidden_size, bias=True)
self.key_activation = Tanh()
self.attention = Linear(in_features=query_hidden_size, out_features
=1, bias=False)
self.wv = None
if value_hidden_size is not None:
self.wv = Linear(in_features=input_size, out_features=
value_hidden_size, bias=True)
self.reset_parameters()
def reset_parameters(self):
pass
def forward(self, sequence: 'torch.LongTensor', mask:
'Optional[torch.ByteTensor]') ->torch.FloatTensor:
"""
执行 attetion seq2vec
:param sequence: 输入的token 序列, shape: (batch_size, seq_len, input_size)
:param mask: mask shape: (batch_size, seq_len)
:return: attention 编码向量, shape: (batch_size, value_hidden_size or input_size)
"""
assert sequence.dim(
) == 3, 'sequence shape: (batch_size, seq_len, input_size)'
if mask is not None:
assert mask.dim() == 2, 'mask shape: (batch_size, seq_len)'
key = self.wk(sequence)
key = self.key_activation(key)
attention = self.attention(key)
attention = torch.squeeze(attention, dim=-1)
if mask is not None:
attention = masked_softmax(vector=attention, mask=mask)
else:
attention = torch.softmax(attention, dim=-1)
if self.wv is not None:
value = self.wv(sequence)
else:
value = sequence
attentioned_value = value * attention.unsqueeze(dim=-1)
vector = torch.sum(attentioned_value, dim=1)
return vector
def get_inputs():
return [torch.rand([4, 4, 4]), torch.rand([4, 4])]
def get_init_inputs():
return [[], {'input_size': 4, 'query_hidden_size': 4}]
|
import torch
from torch._inductor.select_algorithm import extern_kernels
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch.nn import Module
from torch.nn import Linear
from typing import Optional
from torch.nn import Tanh
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
@triton.jit
def triton_poi_fused_tanh_0(in_out_ptr0, in_ptr0, xnumel, XBLOCK: tl.constexpr
):
xnumel = 64
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x2 = xindex
x0 = xindex % 4
tmp0 = tl.load(in_out_ptr0 + x2, xmask)
tmp1 = tl.load(in_ptr0 + x0, xmask, eviction_policy='evict_last')
tmp2 = tmp0 + tmp1
tmp3 = libdevice.tanh(tmp2)
tl.store(in_out_ptr0 + x2, tmp3, xmask)
@triton.jit
def triton_poi_fused_exp_mul_sum_1(in_ptr0, in_ptr1, out_ptr0, xnumel,
XBLOCK: tl.constexpr):
xnumel = 4
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex
tmp0 = tl.load(in_ptr0 + 4 * x0, xmask, eviction_policy='evict_last')
tmp2 = tl.load(in_ptr1 + 4 * x0, xmask, eviction_policy='evict_last')
tmp4 = tl.load(in_ptr0 + (1 + 4 * x0), xmask, eviction_policy='evict_last')
tmp6 = tl.load(in_ptr1 + (1 + 4 * x0), xmask, eviction_policy='evict_last')
tmp9 = tl.load(in_ptr0 + (2 + 4 * x0), xmask, eviction_policy='evict_last')
tmp11 = tl.load(in_ptr1 + (2 + 4 * x0), xmask, eviction_policy='evict_last'
)
tmp14 = tl.load(in_ptr0 + (3 + 4 * x0), xmask, eviction_policy='evict_last'
)
tmp16 = tl.load(in_ptr1 + (3 + 4 * x0), xmask, eviction_policy='evict_last'
)
tmp1 = tl_math.exp(tmp0)
tmp3 = tmp1 * tmp2
tmp5 = tl_math.exp(tmp4)
tmp7 = tmp5 * tmp6
tmp8 = tmp3 + tmp7
tmp10 = tl_math.exp(tmp9)
tmp12 = tmp10 * tmp11
tmp13 = tmp8 + tmp12
tmp15 = tl_math.exp(tmp14)
tmp17 = tmp15 * tmp16
tmp18 = tmp13 + tmp17
tl.store(out_ptr0 + x0, tmp18, xmask)
@triton.jit
def triton_poi_fused_mul_sum_2(in_ptr0, in_ptr1, in_ptr2, in_ptr3, out_ptr0,
xnumel, XBLOCK: tl.constexpr):
xnumel = 16
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex % 4
x1 = xindex // 4
x2 = xindex
tmp0 = tl.load(in_ptr0 + (x0 + 16 * x1), xmask)
tmp1 = tl.load(in_ptr1 + 4 * x1, xmask, eviction_policy='evict_last')
tmp3 = tl.load(in_ptr2 + 4 * x1, xmask, eviction_policy='evict_last')
tmp5 = tl.load(in_ptr3 + x1, xmask, eviction_policy='evict_last')
tmp8 = tl.load(in_ptr0 + (4 + x0 + 16 * x1), xmask)
tmp9 = tl.load(in_ptr1 + (1 + 4 * x1), xmask, eviction_policy='evict_last')
tmp11 = tl.load(in_ptr2 + (1 + 4 * x1), xmask, eviction_policy='evict_last'
)
tmp16 = tl.load(in_ptr0 + (8 + x0 + 16 * x1), xmask)
tmp17 = tl.load(in_ptr1 + (2 + 4 * x1), xmask, eviction_policy='evict_last'
)
tmp19 = tl.load(in_ptr2 + (2 + 4 * x1), xmask, eviction_policy='evict_last'
)
tmp24 = tl.load(in_ptr0 + (12 + x0 + 16 * x1), xmask)
tmp25 = tl.load(in_ptr1 + (3 + 4 * x1), xmask, eviction_policy='evict_last'
)
tmp27 = tl.load(in_ptr2 + (3 + 4 * x1), xmask, eviction_policy='evict_last'
)
tmp2 = tl_math.exp(tmp1)
tmp4 = tmp2 * tmp3
tmp6 = tmp4 / tmp5
tmp7 = tmp0 * tmp6
tmp10 = tl_math.exp(tmp9)
tmp12 = tmp10 * tmp11
tmp13 = tmp12 / tmp5
tmp14 = tmp8 * tmp13
tmp15 = tmp7 + tmp14
tmp18 = tl_math.exp(tmp17)
tmp20 = tmp18 * tmp19
tmp21 = tmp20 / tmp5
tmp22 = tmp16 * tmp21
tmp23 = tmp15 + tmp22
tmp26 = tl_math.exp(tmp25)
tmp28 = tmp26 * tmp27
tmp29 = tmp28 / tmp5
tmp30 = tmp24 * tmp29
tmp31 = tmp23 + tmp30
tl.store(out_ptr0 + x2, tmp31, xmask)
def call(args):
primals_1, primals_2, primals_3, primals_4, primals_5 = args
args.clear()
assert_size_stride(primals_1, (4, 4, 4), (16, 4, 1))
assert_size_stride(primals_2, (4, 4), (4, 1))
assert_size_stride(primals_3, (4, 4), (4, 1))
assert_size_stride(primals_4, (4,), (1,))
assert_size_stride(primals_5, (1, 4), (4, 1))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((16, 4), (4, 1), torch.float32)
extern_kernels.mm(reinterpret_tensor(primals_1, (16, 4), (4, 1), 0),
reinterpret_tensor(primals_3, (4, 4), (1, 4), 0), out=buf0)
del primals_3
buf1 = reinterpret_tensor(buf0, (4, 4, 4), (16, 4, 1), 0)
del buf0
get_raw_stream(0)
triton_poi_fused_tanh_0[grid(64)](buf1, primals_4, 64, XBLOCK=64,
num_warps=1, num_stages=1)
del primals_4
buf2 = empty_strided_cuda((16, 1), (1, 1), torch.float32)
extern_kernels.mm(reinterpret_tensor(buf1, (16, 4), (4, 1), 0),
reinterpret_tensor(primals_5, (4, 1), (1, 4), 0), out=buf2)
buf3 = empty_strided_cuda((4, 1), (1, 4), torch.float32)
triton_poi_fused_exp_mul_sum_1[grid(4)](buf2, primals_2, buf3, 4,
XBLOCK=4, num_warps=1, num_stages=1)
buf4 = empty_strided_cuda((4, 4), (4, 1), torch.float32)
triton_poi_fused_mul_sum_2[grid(16)](primals_1, buf2, primals_2,
buf3, buf4, 16, XBLOCK=16, num_warps=1, num_stages=1)
del buf3
return buf4, primals_1, primals_2, buf1, buf2, primals_5
def masked_softmax(vector: 'torch.FloatTensor', mask: 'torch.ByteTensor'):
"""
计算带有 masked 的 softmax
:param vector: shape: (B, seq_len)
:param mask: shape: (B, seq_len),
:return: (B, seq_len)
"""
exp_vector = vector.exp()
masked_vector = exp_vector * mask.float()
return masked_vector / torch.sum(masked_vector, dim=-1, keepdim=True)
class AttentionSeq2VecNew(Module):
"""
基于 attention 将 seq2vec. 具体操作如下:
1. sequence: (B, seq_len, input_size)
2. K = WkSeqeunce 将 sequence 进行变换, K shape: (B, seq_len, query_hidden_size)
3. Q = Shape: (query_hidden_size)
4. attention = softmax(KQ), shape: (B, seq_len)
5. V = WvSequence, shape: (B, seq_len, value_hidden_size); 如果 value_hidden_size is None,
shape: (B, seq_len, input_size)
6. sum(V*attention, dim=-1), shape: (B, input_size)
"""
def __init__(self, input_size: 'int', query_hidden_size: 'int',
value_hidden_size: 'Optional[int]'=None):
"""
初始化。遵循 Q K V,计算 attention 方式。
:param input_size: 输入的 sequence token 的 embedding dim
:param query_hidden_size: 将 seqence 变成 Q 的时候,变换后的 token embedding dim.
:param value_hidden_size: 将 seqence 变成 V 的时候, 变换后的 token embedding dim.
如果 value_hidden_size is None, 那么,该模型就与 2016-Hierarchical Attention Networks for Document Classification
是一致的, 最后的输出结果 shape (B, seq_len, input_size);
如果 value_hidden_size 被设置了, 那么,就与 Attention is All your Need 中 变换是一致的, 最后的输出结果
shape (B, seq_len, value_hidden_size)
"""
super().__init__()
self.wk = Linear(in_features=input_size, out_features=
query_hidden_size, bias=True)
self.key_activation = Tanh()
self.attention = Linear(in_features=query_hidden_size, out_features
=1, bias=False)
self.wv = None
if value_hidden_size is not None:
self.wv = Linear(in_features=input_size, out_features=
value_hidden_size, bias=True)
self.reset_parameters()
def reset_parameters(self):
pass
def forward(self, input_0, input_1):
primals_2 = self.wk.weight
primals_4 = self.wk.bias
primals_5 = self.attention.weight
primals_1 = input_0
primals_3 = input_1
output = call([primals_1, primals_2, primals_3, primals_4, primals_5])
return output[0]
|
Tiffany-HONG/easytext
|
AttentionSeq2Vec
| false | 5,901 |
[
"MIT"
] | 1 |
9c717d11240d96fab98b0532084ebb5c093d55bd
|
https://github.com/Tiffany-HONG/easytext/tree/9c717d11240d96fab98b0532084ebb5c093d55bd
|
MAXATTN
|
import torch
import torch.nn as nn
class MAXATTN(nn.Module):
def __init__(self, embed_dim, num_heads, dropout=0.0, bias=True,
add_bias_kv=False, add_zero_attn=False, kdim=None, vdim=None):
super(MAXATTN, self).__init__()
self.attention_layer = nn.MultiheadAttention(embed_dim, num_heads)
def forward(self, hidden, key=None, value=None):
T = hidden.size(0)
query = torch.max(hidden, dim=0, keepdim=True)[0]
out, weight = self.attention_layer(query, hidden, hidden)
return torch.cat([out for i in range(T)], dim=0), torch.cat([weight for
i in range(T)], dim=1)
def get_inputs():
return [torch.rand([4, 4])]
def get_init_inputs():
return [[], {'embed_dim': 4, 'num_heads': 4}]
|
import torch
from torch._inductor.select_algorithm import extern_kernels
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
from torch._inductor.runtime import triton_helpers
from torch._inductor.runtime.triton_helpers import math as tl_math
import torch.nn as nn
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
@triton.jit
def triton_poi_fused_max_0(in_ptr0, out_ptr0, xnumel, XBLOCK: tl.constexpr):
xnumel = 4
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex
tmp0 = tl.load(in_ptr0 + x0, xmask)
tmp1 = tl.load(in_ptr0 + (4 + x0), xmask)
tmp3 = tl.load(in_ptr0 + (8 + x0), xmask)
tmp5 = tl.load(in_ptr0 + (12 + x0), xmask)
tmp2 = triton_helpers.maximum(tmp0, tmp1)
tmp4 = triton_helpers.maximum(tmp2, tmp3)
tmp6 = triton_helpers.maximum(tmp4, tmp5)
tl.store(out_ptr0 + x0, tmp6, xmask)
@triton.jit
def triton_poi_fused_mul_1(in_out_ptr0, in_ptr0, xnumel, XBLOCK: tl.constexpr):
xnumel = 4
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex
tmp0 = tl.load(in_out_ptr0 + x0, xmask)
tmp1 = tl.load(in_ptr0 + x0, xmask)
tmp2 = tmp0 + tmp1
tmp3 = 1.0
tmp4 = tmp2 * tmp3
tl.store(in_out_ptr0 + x0, tmp4, xmask)
@triton.jit
def triton_poi_fused__softmax_2(in_ptr0, out_ptr0, xnumel, XBLOCK: tl.constexpr
):
xnumel = 16
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x2 = xindex
x1 = xindex // 4
tmp0 = tl.load(in_ptr0 + x2, xmask)
tmp1 = tl.load(in_ptr0 + 4 * x1, xmask, eviction_policy='evict_last')
tmp2 = tl.load(in_ptr0 + (1 + 4 * x1), xmask, eviction_policy='evict_last')
tmp4 = tl.load(in_ptr0 + (2 + 4 * x1), xmask, eviction_policy='evict_last')
tmp6 = tl.load(in_ptr0 + (3 + 4 * x1), xmask, eviction_policy='evict_last')
tmp3 = triton_helpers.maximum(tmp1, tmp2)
tmp5 = triton_helpers.maximum(tmp3, tmp4)
tmp7 = triton_helpers.maximum(tmp5, tmp6)
tmp8 = tmp0 - tmp7
tmp9 = tl_math.exp(tmp8)
tl.store(out_ptr0 + x2, tmp9, xmask)
@triton.jit
def triton_poi_fused__softmax_3(in_ptr0, out_ptr0, xnumel, XBLOCK: tl.constexpr
):
xnumel = 16
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x2 = xindex
x1 = xindex // 4
tmp0 = tl.load(in_ptr0 + x2, xmask)
tmp1 = tl.load(in_ptr0 + 4 * x1, xmask, eviction_policy='evict_last')
tmp2 = tl.load(in_ptr0 + (1 + 4 * x1), xmask, eviction_policy='evict_last')
tmp4 = tl.load(in_ptr0 + (2 + 4 * x1), xmask, eviction_policy='evict_last')
tmp6 = tl.load(in_ptr0 + (3 + 4 * x1), xmask, eviction_policy='evict_last')
tmp3 = tmp1 + tmp2
tmp5 = tmp3 + tmp4
tmp7 = tmp5 + tmp6
tmp8 = tmp0 / tmp7
tl.store(out_ptr0 + x2, tmp8, xmask)
@triton.jit
def triton_poi_fused_cat_4(in_ptr0, in_ptr1, out_ptr0, xnumel, XBLOCK: tl.
constexpr):
xnumel = 16
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex % 4
x2 = xindex
tmp0 = tl.load(in_ptr0 + x0, xmask, eviction_policy='evict_last')
tmp1 = tl.load(in_ptr1 + x0, xmask, eviction_policy='evict_last')
tmp2 = tmp0 + tmp1
tl.store(out_ptr0 + x2, tmp2, xmask)
@triton.jit
def triton_poi_fused_cat_5(in_ptr0, out_ptr0, xnumel, XBLOCK: tl.constexpr):
xnumel = 16
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex % 4
x2 = xindex
tmp0 = tl.load(in_ptr0 + x0, xmask, eviction_policy='evict_last')
tmp1 = tl.load(in_ptr0 + (4 + x0), xmask, eviction_policy='evict_last')
tmp3 = tl.load(in_ptr0 + (8 + x0), xmask, eviction_policy='evict_last')
tmp5 = tl.load(in_ptr0 + (12 + x0), xmask, eviction_policy='evict_last')
tmp2 = tmp0 + tmp1
tmp4 = tmp2 + tmp3
tmp6 = tmp4 + tmp5
tmp7 = 4.0
tmp8 = tmp6 / tmp7
tl.store(out_ptr0 + x2, tmp8, xmask)
def call(args):
primals_1, primals_2, primals_3, primals_4, primals_5 = args
args.clear()
assert_size_stride(primals_1, (4, 4), (4, 1))
assert_size_stride(primals_2, (12, 4), (4, 1))
assert_size_stride(primals_3, (12,), (1,))
assert_size_stride(primals_4, (4, 4), (4, 1))
assert_size_stride(primals_5, (4,), (1,))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((1, 4), (4, 1), torch.float32)
get_raw_stream(0)
triton_poi_fused_max_0[grid(4)](primals_1, buf0, 4, XBLOCK=4,
num_warps=1, num_stages=1)
buf1 = empty_strided_cuda((1, 4), (4, 1), torch.float32)
extern_kernels.mm(reinterpret_tensor(buf0, (1, 4), (0, 1), 0),
reinterpret_tensor(primals_2, (4, 4), (1, 4), 0), out=buf1)
buf2 = empty_strided_cuda((4, 4), (4, 1), torch.float32)
extern_kernels.addmm(reinterpret_tensor(primals_3, (4,), (1,), 4),
primals_1, reinterpret_tensor(primals_2, (4, 4), (1, 4), 16),
alpha=1, beta=1, out=buf2)
buf3 = empty_strided_cuda((4, 4), (4, 1), torch.float32)
extern_kernels.addmm(reinterpret_tensor(primals_3, (4,), (1,), 8),
primals_1, reinterpret_tensor(primals_2, (4, 4), (1, 4), 32),
alpha=1, beta=1, out=buf3)
del primals_2
buf4 = reinterpret_tensor(buf1, (4, 1, 1), (1, 4, 4), 0)
del buf1
triton_poi_fused_mul_1[grid(4)](buf4, primals_3, 4, XBLOCK=4,
num_warps=1, num_stages=1)
del primals_3
buf5 = empty_strided_cuda((4, 1, 4), (4, 4, 1), torch.float32)
extern_kernels.bmm(buf4, reinterpret_tensor(buf2, (4, 1, 4), (1, 1,
4), 0), out=buf5)
buf6 = empty_strided_cuda((4, 1, 4), (4, 16, 1), torch.float32)
triton_poi_fused__softmax_2[grid(16)](buf5, buf6, 16, XBLOCK=16,
num_warps=1, num_stages=1)
buf7 = buf5
del buf5
triton_poi_fused__softmax_3[grid(16)](buf6, buf7, 16, XBLOCK=16,
num_warps=1, num_stages=1)
buf8 = reinterpret_tensor(buf0, (4, 1, 1), (1, 1, 1), 0)
del buf0
extern_kernels.bmm(buf7, reinterpret_tensor(buf3, (4, 4, 1), (1, 4,
1), 0), out=buf8)
buf9 = empty_strided_cuda((1, 4), (4, 1), torch.float32)
extern_kernels.mm(reinterpret_tensor(buf8, (1, 4), (4, 1), 0),
reinterpret_tensor(primals_4, (4, 4), (1, 4), 0), out=buf9)
buf10 = reinterpret_tensor(buf6, (4, 4), (4, 1), 0)
del buf6
triton_poi_fused_cat_4[grid(16)](buf9, primals_5, buf10, 16, XBLOCK
=16, num_warps=1, num_stages=1)
del buf9
del primals_5
buf11 = empty_strided_cuda((1, 4, 4), (16, 4, 1), torch.float32)
triton_poi_fused_cat_5[grid(16)](buf7, buf11, 16, XBLOCK=16,
num_warps=1, num_stages=1)
return buf10, reinterpret_tensor(buf11, (1, 16), (16, 1), 0
), primals_1, buf7, reinterpret_tensor(buf8, (1, 4), (1, 1), 0
), reinterpret_tensor(primals_4, (4, 4), (1, 4), 0
), reinterpret_tensor(buf3, (4, 1, 4), (1, 1, 4), 0
), reinterpret_tensor(buf4, (4, 1, 1), (1, 1, 1), 0
), reinterpret_tensor(buf2, (4, 4, 1), (1, 4, 1), 0)
class MAXATTNNew(nn.Module):
def __init__(self, embed_dim, num_heads, dropout=0.0, bias=True,
add_bias_kv=False, add_zero_attn=False, kdim=None, vdim=None):
super(MAXATTNNew, self).__init__()
self.attention_layer = nn.MultiheadAttention(embed_dim, num_heads)
def forward(self, input_0):
primals_2 = self.attention_layer.in_proj_weight
primals_3 = self.attention_layer.in_proj_bias
primals_1 = self.attention_layer.out_proj.weight
primals_5 = self.attention_layer.out_proj.bias
primals_4 = input_0
output = call([primals_1, primals_2, primals_3, primals_4, primals_5])
return output[0], output[1]
|
Hritikbansal/RNNs_SVA_OOD
|
MAXATTN
| false | 17,392 |
[
"MIT"
] | 4 |
a1c73955342d9d35c49da5fcb7b315e37b0f75d1
|
https://github.com/Hritikbansal/RNNs_SVA_OOD/tree/a1c73955342d9d35c49da5fcb7b315e37b0f75d1
|
Conv2d
|
import torch
import torch.nn as nn
from torch.nn import functional as F
class Conv2d(nn.Conv2d):
def __init__(self, in_channels, out_channels, kernel_size, stride=1,
padding=0, dilation=1, groups=1, bias=True):
super(Conv2d, self).__init__(in_channels, out_channels, kernel_size,
stride, padding, dilation, groups, bias)
def forward(self, x):
weight = self.weight
weight_mean = weight.mean(dim=1, keepdim=True).mean(dim=2, keepdim=True
).mean(dim=3, keepdim=True)
weight = weight - weight_mean
std = weight.view(weight.size(0), -1).std(dim=1).view(-1, 1, 1, 1
) + 1e-05
weight = weight / std.expand_as(weight)
return F.conv2d(x, weight, self.bias, self.stride, self.padding,
self.dilation, self.groups)
def get_inputs():
return [torch.rand([4, 4, 4, 4])]
def get_init_inputs():
return [[], {'in_channels': 4, 'out_channels': 4, 'kernel_size': 4}]
|
import torch
from torch._inductor.select_algorithm import extern_kernels
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
from torch._inductor.runtime.triton_helpers import libdevice
import torch.nn as nn
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
@triton.jit
def triton_poi_fused_mean_0(in_ptr0, out_ptr0, xnumel, XBLOCK: tl.constexpr):
xnumel = 16
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex % 4
x1 = xindex // 4
x2 = xindex
tmp0 = tl.load(in_ptr0 + (x0 + 64 * x1), xmask)
tmp1 = tl.load(in_ptr0 + (16 + x0 + 64 * x1), xmask)
tmp3 = tl.load(in_ptr0 + (32 + x0 + 64 * x1), xmask)
tmp5 = tl.load(in_ptr0 + (48 + x0 + 64 * x1), xmask)
tmp9 = tl.load(in_ptr0 + (4 + x0 + 64 * x1), xmask)
tmp10 = tl.load(in_ptr0 + (20 + x0 + 64 * x1), xmask)
tmp12 = tl.load(in_ptr0 + (36 + x0 + 64 * x1), xmask)
tmp14 = tl.load(in_ptr0 + (52 + x0 + 64 * x1), xmask)
tmp18 = tl.load(in_ptr0 + (8 + x0 + 64 * x1), xmask)
tmp19 = tl.load(in_ptr0 + (24 + x0 + 64 * x1), xmask)
tmp21 = tl.load(in_ptr0 + (40 + x0 + 64 * x1), xmask)
tmp23 = tl.load(in_ptr0 + (56 + x0 + 64 * x1), xmask)
tmp27 = tl.load(in_ptr0 + (12 + x0 + 64 * x1), xmask)
tmp28 = tl.load(in_ptr0 + (28 + x0 + 64 * x1), xmask)
tmp30 = tl.load(in_ptr0 + (44 + x0 + 64 * x1), xmask)
tmp32 = tl.load(in_ptr0 + (60 + x0 + 64 * x1), xmask)
tmp2 = tmp0 + tmp1
tmp4 = tmp2 + tmp3
tmp6 = tmp4 + tmp5
tmp7 = 4.0
tmp8 = tmp6 / tmp7
tmp11 = tmp9 + tmp10
tmp13 = tmp11 + tmp12
tmp15 = tmp13 + tmp14
tmp16 = tmp15 / tmp7
tmp17 = tmp8 + tmp16
tmp20 = tmp18 + tmp19
tmp22 = tmp20 + tmp21
tmp24 = tmp22 + tmp23
tmp25 = tmp24 / tmp7
tmp26 = tmp17 + tmp25
tmp29 = tmp27 + tmp28
tmp31 = tmp29 + tmp30
tmp33 = tmp31 + tmp32
tmp34 = tmp33 / tmp7
tmp35 = tmp26 + tmp34
tmp36 = tmp35 / tmp7
tl.store(out_ptr0 + x2, tmp36, xmask)
@triton.jit
def triton_per_fused_div_mean_std_sub_1(in_out_ptr0, in_ptr0, in_ptr1,
out_ptr0, out_ptr1, xnumel, rnumel, XBLOCK: tl.constexpr):
xnumel = 4
RBLOCK: tl.constexpr = 64
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:, None]
xmask = xindex < xnumel
rindex = tl.arange(0, RBLOCK)[None, :]
tl.full([XBLOCK, RBLOCK], True, tl.int1)
r1 = rindex
x0 = xindex
tmp0 = tl.load(in_ptr0 + (r1 + 64 * x0), xmask, other=0.0)
tmp1 = tl.load(in_ptr1 + 4 * x0, xmask, eviction_policy='evict_last')
tmp2 = tl.load(in_ptr1 + (1 + 4 * x0), xmask, eviction_policy='evict_last')
tmp4 = tl.load(in_ptr1 + (2 + 4 * x0), xmask, eviction_policy='evict_last')
tmp6 = tl.load(in_ptr1 + (3 + 4 * x0), xmask, eviction_policy='evict_last')
tmp3 = tmp1 + tmp2
tmp5 = tmp3 + tmp4
tmp7 = tmp5 + tmp6
tmp8 = 4.0
tmp9 = tmp7 / tmp8
tmp10 = tmp0 - tmp9
tmp11 = tl.broadcast_to(tmp10, [XBLOCK, RBLOCK])
tl.where(xmask, tmp11, 0)
tmp14 = tl.broadcast_to(tmp11, [XBLOCK, RBLOCK])
tmp16 = tl.where(xmask, tmp14, 0)
tmp17 = tl.sum(tmp16, 1)[:, None]
tmp18 = tl.full([XBLOCK, 1], 64, tl.int32)
tmp19 = tmp18.to(tl.float32)
tmp20 = tmp17 / tmp19
tmp21 = tmp11 - tmp20
tmp22 = tmp21 * tmp21
tmp23 = tl.broadcast_to(tmp22, [XBLOCK, RBLOCK])
tmp25 = tl.where(xmask, tmp23, 0)
tmp26 = tl.sum(tmp25, 1)[:, None]
tmp27 = 63.0
tmp28 = tmp26 / tmp27
tmp29 = libdevice.sqrt(tmp28)
tmp30 = 1e-05
tmp31 = tmp29 + tmp30
tmp32 = tmp10 / tmp31
tl.store(out_ptr0 + (r1 + 64 * x0), tmp10, xmask)
tl.debug_barrier()
tl.store(in_out_ptr0 + x0, tmp29, xmask)
tl.store(out_ptr1 + (r1 + 64 * x0), tmp32, xmask)
@triton.jit
def triton_poi_fused_convolution_2(in_out_ptr0, in_ptr0, xnumel, XBLOCK: tl
.constexpr):
xnumel = 16
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x2 = xindex
x0 = xindex % 4
tmp0 = tl.load(in_out_ptr0 + x2, xmask)
tmp1 = tl.load(in_ptr0 + x0, xmask, eviction_policy='evict_last')
tmp2 = tmp0 + tmp1
tl.store(in_out_ptr0 + x2, tmp2, xmask)
def call(args):
primals_1, primals_2, primals_3 = args
args.clear()
assert_size_stride(primals_1, (4, 4, 4, 4), (64, 16, 4, 1))
assert_size_stride(primals_2, (4,), (1,))
assert_size_stride(primals_3, (4, 4, 4, 4), (64, 16, 4, 1))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((4, 1, 1, 4), (4, 16, 16, 1), torch.float32)
get_raw_stream(0)
triton_poi_fused_mean_0[grid(16)](primals_1, buf0, 16, XBLOCK=16,
num_warps=1, num_stages=1)
buf1 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32)
buf3 = empty_strided_cuda((4,), (1,), torch.float32)
buf5 = buf3
del buf3
buf6 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32)
triton_per_fused_div_mean_std_sub_1[grid(4)](buf5, primals_1, buf0,
buf1, buf6, 4, 64, XBLOCK=1, num_warps=2, num_stages=1)
del buf0
del buf1
buf7 = extern_kernels.convolution(primals_3, buf6, stride=(1, 1),
padding=(0, 0), dilation=(1, 1), transposed=False,
output_padding=(0, 0), groups=1, bias=None)
assert_size_stride(buf7, (4, 4, 1, 1), (4, 1, 1, 1))
buf8 = buf7
del buf7
triton_poi_fused_convolution_2[grid(16)](buf8, primals_2, 16,
XBLOCK=16, num_warps=1, num_stages=1)
del primals_2
return buf8, primals_1, primals_3, buf5, buf6
class Conv2dNew(nn.Conv2d):
def __init__(self, in_channels, out_channels, kernel_size, stride=1,
padding=0, dilation=1, groups=1, bias=True):
super(Conv2dNew, self).__init__(in_channels, out_channels,
kernel_size, stride, padding, dilation, groups, bias)
def forward(self, input_0):
primals_1 = self.weight
primals_2 = self.bias
primals_3 = input_0
output = call([primals_1, primals_2, primals_3])
return output[0]
|
ChuanqiTan/DeepLabv3.pytorch
|
Conv2d
| false | 11,316 |
[
"BSD-3-Clause"
] | 0 |
260db5812ae3c85f0aacd5ec9bc0e3d8c5d2d067
|
https://github.com/ChuanqiTan/DeepLabv3.pytorch/tree/260db5812ae3c85f0aacd5ec9bc0e3d8c5d2d067
|
FractionProposalModel
|
# AOT ID: ['0_forward']
from ctypes import c_void_p, c_long, c_int
import torch
import math
import random
import os
import tempfile
from math import inf, nan
from torch._inductor.hooks import run_intermediate_hooks
from torch._inductor.utils import maybe_profile
from torch._inductor.codegen.memory_planning import _align as align
from torch import device, empty_strided
from torch._inductor.async_compile import AsyncCompile
from torch._inductor.select_algorithm import extern_kernels
from torch._inductor.codegen.multi_kernel import MultiKernelCall
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
aten = torch.ops.aten
inductor_ops = torch.ops.inductor
_quantized = torch.ops._quantized
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
alloc_from_pool = torch.ops.inductor._alloc_from_pool
async_compile = AsyncCompile()
# kernel path: runs/run_shard_6/inductor_cache/um/cum65j23qchrjf5dndblqgbw6zomhgwfj2obfidtgy7b5j3zwklm.py
# Topologically Sorted Source Nodes: [x_1], Original ATen: [aten._softmax]
# Source node to ATen node mapping:
# x_1 => amax, exp, sub
# Graph fragment:
# %amax : [num_users=1] = call_function[target=torch.ops.aten.amax.default](args = (%addmm, [-1], True), kwargs = {})
# %sub : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (%addmm, %amax), kwargs = {})
# %exp : [num_users=2] = call_function[target=torch.ops.aten.exp.default](args = (%sub,), kwargs = {})
triton_poi_fused__softmax_0 = async_compile.triton('triton_poi_fused__softmax_0', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[16],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused__softmax_0', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 5, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused__softmax_0(in_ptr0, out_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 16
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x2 = xindex
x1 = (xindex // 4)
tmp0 = tl.load(in_ptr0 + (x2), xmask)
tmp1 = tl.load(in_ptr0 + (4*x1), xmask, eviction_policy='evict_last')
tmp2 = tl.load(in_ptr0 + (1 + (4*x1)), xmask, eviction_policy='evict_last')
tmp4 = tl.load(in_ptr0 + (2 + (4*x1)), xmask, eviction_policy='evict_last')
tmp6 = tl.load(in_ptr0 + (3 + (4*x1)), xmask, eviction_policy='evict_last')
tmp3 = triton_helpers.maximum(tmp1, tmp2)
tmp5 = triton_helpers.maximum(tmp3, tmp4)
tmp7 = triton_helpers.maximum(tmp5, tmp6)
tmp8 = tmp0 - tmp7
tmp9 = tl_math.exp(tmp8)
tl.store(out_ptr0 + (x2), tmp9, xmask)
''', device_str='cuda')
# kernel path: runs/run_shard_6/inductor_cache/ay/cay35kjnlnailcihobam7ni4n2dfi7xasjzym6ujrls3xllqyghg.py
# Topologically Sorted Source Nodes: [x_1, taus], Original ATen: [aten._softmax, aten.cumsum]
# Source node to ATen node mapping:
# taus => cumsum
# x_1 => div, sum_1
# Graph fragment:
# %sum_1 : [num_users=1] = call_function[target=torch.ops.aten.sum.dim_IntList](args = (%exp, [-1], True), kwargs = {})
# %div : [num_users=4] = call_function[target=torch.ops.aten.div.Tensor](args = (%exp, %sum_1), kwargs = {})
# %cumsum : [num_users=1] = call_function[target=torch.ops.aten.cumsum.default](args = (%div, -1), kwargs = {})
triton_per_fused__softmax_cumsum_1 = async_compile.triton('triton_per_fused__softmax_cumsum_1', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton.jit
def _triton_helper_fn_add0(arg0_0, arg1_0):
tmp0 = arg0_0 + arg1_0
return tmp0
@triton_heuristics.persistent_reduction(
size_hints=[4, 4],
reduction_hint=ReductionHint.DEFAULT,
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: 'i32', 4: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_per_fused__softmax_cumsum_1', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 5, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}
)
@triton.jit
def triton_per_fused__softmax_cumsum_1(in_ptr0, out_ptr0, out_ptr1, xnumel, rnumel, XBLOCK : tl.constexpr):
xnumel = 4
rnumel = 4
RBLOCK: tl.constexpr = 4
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:, None]
xmask = xindex < xnumel
rindex = tl.arange(0, RBLOCK)[None, :]
roffset = 0
rmask = tl.full([XBLOCK, RBLOCK], True, tl.int1)
r1 = rindex
x0 = xindex
tmp0 = tl.load(in_ptr0 + (r1 + (4*x0)), xmask, other=0.0)
tmp1 = tl.load(in_ptr0 + (4*x0), xmask, eviction_policy='evict_last')
tmp2 = tl.load(in_ptr0 + (1 + (4*x0)), xmask, eviction_policy='evict_last')
tmp4 = tl.load(in_ptr0 + (2 + (4*x0)), xmask, eviction_policy='evict_last')
tmp6 = tl.load(in_ptr0 + (3 + (4*x0)), xmask, eviction_policy='evict_last')
tmp3 = tmp1 + tmp2
tmp5 = tmp3 + tmp4
tmp7 = tmp5 + tmp6
tmp8 = tmp0 / tmp7
tmp9 = tmp8.to(tl.float32)
tmp10 = tl.broadcast_to(tmp9, [XBLOCK, RBLOCK])
tmp11, = tl.associative_scan((tmp10,), 1, _triton_helper_fn_add0)
tl.store(out_ptr0 + (r1 + (4*x0)), tmp8, xmask)
tl.store(out_ptr1 + (r1 + (5*x0)), tmp11, xmask)
''', device_str='cuda')
# kernel path: runs/run_shard_6/inductor_cache/gz/cgztjxak6cbbnu7jo6zpjqobqm6gprdjgbibkvlljrez6pcmrabx.py
# Topologically Sorted Source Nodes: [log, mul, sum_1, ent], Original ATen: [aten.log, aten.mul, aten.sum, aten.neg]
# Source node to ATen node mapping:
# ent => neg
# log => log
# mul => mul
# sum_1 => sum_2
# Graph fragment:
# %log : [num_users=1] = call_function[target=torch.ops.aten.log.default](args = (%div,), kwargs = {})
# %mul : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%div, %log), kwargs = {})
# %sum_2 : [num_users=1] = call_function[target=torch.ops.aten.sum.dim_IntList](args = (%mul, [-1]), kwargs = {})
# %neg : [num_users=1] = call_function[target=torch.ops.aten.neg.default](args = (%sum_2,), kwargs = {})
triton_poi_fused_log_mul_neg_sum_2 = async_compile.triton('triton_poi_fused_log_mul_neg_sum_2', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[4],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_log_mul_neg_sum_2', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 4, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_log_mul_neg_sum_2(in_ptr0, out_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 4
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex
tmp0 = tl.load(in_ptr0 + (4*x0), xmask, eviction_policy='evict_last')
tmp3 = tl.load(in_ptr0 + (1 + (4*x0)), xmask, eviction_policy='evict_last')
tmp7 = tl.load(in_ptr0 + (2 + (4*x0)), xmask, eviction_policy='evict_last')
tmp11 = tl.load(in_ptr0 + (3 + (4*x0)), xmask, eviction_policy='evict_last')
tmp1 = tl_math.log(tmp0)
tmp2 = tmp0 * tmp1
tmp4 = tl_math.log(tmp3)
tmp5 = tmp3 * tmp4
tmp6 = tmp2 + tmp5
tmp8 = tl_math.log(tmp7)
tmp9 = tmp7 * tmp8
tmp10 = tmp6 + tmp9
tmp12 = tl_math.log(tmp11)
tmp13 = tmp11 * tmp12
tmp14 = tmp10 + tmp13
tmp15 = -tmp14
tl.store(out_ptr0 + (x0), tmp15, xmask)
''', device_str='cuda')
# kernel path: runs/run_shard_6/inductor_cache/id/cidk6wbpnsfwwvnvaakmdqewezbky3gjulavbg352zmpfyg4lmym.py
# Topologically Sorted Source Nodes: [tau_0], Original ATen: [aten.zeros]
# Source node to ATen node mapping:
# tau_0 => full_default
# Graph fragment:
# %full_default : [num_users=1] = call_function[target=torch.ops.aten.full.default](args = ([4, 1], 0), kwargs = {dtype: torch.float32, layout: torch.strided, device: cuda:0, pin_memory: False})
triton_poi_fused_zeros_3 = async_compile.triton('triton_poi_fused_zeros_3', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[4],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0,), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_zeros_3', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 0, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_zeros_3(out_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 4
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex
tmp0 = 0.0
tl.store(out_ptr0 + (5*x0), tmp0, xmask)
''', device_str='cuda')
# kernel path: runs/run_shard_6/inductor_cache/4e/c4ej6cqdqupsk2ftuhfedjoq2yfradahrbrm45vwbxaem44logtt.py
# Topologically Sorted Source Nodes: [add, tau_hats], Original ATen: [aten.add, aten.div]
# Source node to ATen node mapping:
# add => add
# tau_hats => div_1
# Graph fragment:
# %add : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%slice_2, %slice_4), kwargs = {})
# %div_1 : [num_users=1] = call_function[target=torch.ops.aten.div.Tensor](args = (%add, 2), kwargs = {})
triton_poi_fused_add_div_4 = async_compile.triton('triton_poi_fused_add_div_4', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[16],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_add_div_4', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_add_div_4(in_ptr0, out_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 16
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex % 4
x1 = (xindex // 4)
x2 = xindex
tmp0 = tl.load(in_ptr0 + (x0 + (5*x1)), xmask)
tmp1 = tl.load(in_ptr0 + (1 + x0 + (5*x1)), xmask)
tmp2 = tmp0 + tmp1
tmp3 = 0.5
tmp4 = tmp2 * tmp3
tl.store(out_ptr0 + (x2), tmp4, xmask)
''', device_str='cuda')
async_compile.wait(globals())
del async_compile
def call(args):
primals_1, primals_2, primals_3 = args
args.clear()
assert_size_stride(primals_1, (4, 4), (4, 1))
assert_size_stride(primals_2, (4, ), (1, ))
assert_size_stride(primals_3, (4, 4), (4, 1))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((4, 4), (4, 1), torch.float32)
# Topologically Sorted Source Nodes: [x], Original ATen: [aten.addmm]
extern_kernels.addmm(primals_2, primals_3, reinterpret_tensor(primals_1, (4, 4), (1, 4), 0), alpha=1, beta=1, out=buf0)
del primals_1
del primals_2
buf1 = empty_strided_cuda((4, 4), (4, 1), torch.float32)
# Topologically Sorted Source Nodes: [x_1], Original ATen: [aten._softmax]
stream0 = get_raw_stream(0)
triton_poi_fused__softmax_0.run(buf0, buf1, 16, grid=grid(16), stream=stream0)
buf2 = buf0; del buf0 # reuse
buf6 = empty_strided_cuda((4, 5), (5, 1), torch.float32)
buf4 = reinterpret_tensor(buf6, (4, 4), (5, 1), 1) # alias
# Topologically Sorted Source Nodes: [x_1, taus], Original ATen: [aten._softmax, aten.cumsum]
triton_per_fused__softmax_cumsum_1.run(buf1, buf2, buf4, 4, 4, grid=grid(4), stream=stream0)
buf3 = empty_strided_cuda((4, ), (1, ), torch.float32)
# Topologically Sorted Source Nodes: [log, mul, sum_1, ent], Original ATen: [aten.log, aten.mul, aten.sum, aten.neg]
triton_poi_fused_log_mul_neg_sum_2.run(buf2, buf3, 4, grid=grid(4), stream=stream0)
buf5 = reinterpret_tensor(buf6, (4, 1), (5, 1), 0) # alias
# Topologically Sorted Source Nodes: [tau_0], Original ATen: [aten.zeros]
triton_poi_fused_zeros_3.run(buf5, 4, grid=grid(4), stream=stream0)
buf7 = buf1; del buf1 # reuse
# Topologically Sorted Source Nodes: [add, tau_hats], Original ATen: [aten.add, aten.div]
triton_poi_fused_add_div_4.run(buf6, buf7, 16, grid=grid(16), stream=stream0)
return (buf6, buf7, buf3, primals_3, buf2, )
def benchmark_compiled_module(times=10, repeat=10):
from torch._dynamo.testing import rand_strided
from torch._inductor.utils import print_performance
primals_1 = rand_strided((4, 4), (4, 1), device='cuda:0', dtype=torch.float32)
primals_2 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32)
primals_3 = rand_strided((4, 4), (4, 1), device='cuda:0', dtype=torch.float32)
fn = lambda: call([primals_1, primals_2, primals_3])
return print_performance(fn, times=times, repeat=repeat)
if __name__ == "__main__":
from torch._inductor.wrapper_benchmark import compiled_module_main
compiled_module_main('None', benchmark_compiled_module)
|
import torch
from torch._inductor.select_algorithm import extern_kernels
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
from torch._inductor.runtime import triton_helpers
from torch._inductor.runtime.triton_helpers import math as tl_math
from torch import nn
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
@triton.jit
def triton_poi_fused__softmax_0(in_ptr0, out_ptr0, xnumel, XBLOCK: tl.constexpr
):
xnumel = 16
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x2 = xindex
x1 = xindex // 4
tmp0 = tl.load(in_ptr0 + x2, xmask)
tmp1 = tl.load(in_ptr0 + 4 * x1, xmask, eviction_policy='evict_last')
tmp2 = tl.load(in_ptr0 + (1 + 4 * x1), xmask, eviction_policy='evict_last')
tmp4 = tl.load(in_ptr0 + (2 + 4 * x1), xmask, eviction_policy='evict_last')
tmp6 = tl.load(in_ptr0 + (3 + 4 * x1), xmask, eviction_policy='evict_last')
tmp3 = triton_helpers.maximum(tmp1, tmp2)
tmp5 = triton_helpers.maximum(tmp3, tmp4)
tmp7 = triton_helpers.maximum(tmp5, tmp6)
tmp8 = tmp0 - tmp7
tmp9 = tl_math.exp(tmp8)
tl.store(out_ptr0 + x2, tmp9, xmask)
@triton.jit
def _triton_helper_fn_add0(arg0_0, arg1_0):
tmp0 = arg0_0 + arg1_0
return tmp0
@triton.jit
def triton_per_fused__softmax_cumsum_1(in_ptr0, out_ptr0, out_ptr1, xnumel,
rnumel, XBLOCK: tl.constexpr):
xnumel = 4
RBLOCK: tl.constexpr = 4
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:, None]
xmask = xindex < xnumel
rindex = tl.arange(0, RBLOCK)[None, :]
tl.full([XBLOCK, RBLOCK], True, tl.int1)
r1 = rindex
x0 = xindex
tmp0 = tl.load(in_ptr0 + (r1 + 4 * x0), xmask, other=0.0)
tmp1 = tl.load(in_ptr0 + 4 * x0, xmask, eviction_policy='evict_last')
tmp2 = tl.load(in_ptr0 + (1 + 4 * x0), xmask, eviction_policy='evict_last')
tmp4 = tl.load(in_ptr0 + (2 + 4 * x0), xmask, eviction_policy='evict_last')
tmp6 = tl.load(in_ptr0 + (3 + 4 * x0), xmask, eviction_policy='evict_last')
tmp3 = tmp1 + tmp2
tmp5 = tmp3 + tmp4
tmp7 = tmp5 + tmp6
tmp8 = tmp0 / tmp7
tmp9 = tmp8.to(tl.float32)
tmp10 = tl.broadcast_to(tmp9, [XBLOCK, RBLOCK])
tmp11, = tl.associative_scan((tmp10,), 1, _triton_helper_fn_add0)
tl.store(out_ptr0 + (r1 + 4 * x0), tmp8, xmask)
tl.store(out_ptr1 + (r1 + 5 * x0), tmp11, xmask)
@triton.jit
def triton_poi_fused_log_mul_neg_sum_2(in_ptr0, out_ptr0, xnumel, XBLOCK:
tl.constexpr):
xnumel = 4
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex
tmp0 = tl.load(in_ptr0 + 4 * x0, xmask, eviction_policy='evict_last')
tmp3 = tl.load(in_ptr0 + (1 + 4 * x0), xmask, eviction_policy='evict_last')
tmp7 = tl.load(in_ptr0 + (2 + 4 * x0), xmask, eviction_policy='evict_last')
tmp11 = tl.load(in_ptr0 + (3 + 4 * x0), xmask, eviction_policy='evict_last'
)
tmp1 = tl_math.log(tmp0)
tmp2 = tmp0 * tmp1
tmp4 = tl_math.log(tmp3)
tmp5 = tmp3 * tmp4
tmp6 = tmp2 + tmp5
tmp8 = tl_math.log(tmp7)
tmp9 = tmp7 * tmp8
tmp10 = tmp6 + tmp9
tmp12 = tl_math.log(tmp11)
tmp13 = tmp11 * tmp12
tmp14 = tmp10 + tmp13
tmp15 = -tmp14
tl.store(out_ptr0 + x0, tmp15, xmask)
@triton.jit
def triton_poi_fused_zeros_3(out_ptr0, xnumel, XBLOCK: tl.constexpr):
xnumel = 4
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex
tmp0 = 0.0
tl.store(out_ptr0 + 5 * x0, tmp0, xmask)
@triton.jit
def triton_poi_fused_add_div_4(in_ptr0, out_ptr0, xnumel, XBLOCK: tl.constexpr
):
xnumel = 16
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex % 4
x1 = xindex // 4
x2 = xindex
tmp0 = tl.load(in_ptr0 + (x0 + 5 * x1), xmask)
tmp1 = tl.load(in_ptr0 + (1 + x0 + 5 * x1), xmask)
tmp2 = tmp0 + tmp1
tmp3 = 0.5
tmp4 = tmp2 * tmp3
tl.store(out_ptr0 + x2, tmp4, xmask)
def call(args):
primals_1, primals_2, primals_3 = args
args.clear()
assert_size_stride(primals_1, (4, 4), (4, 1))
assert_size_stride(primals_2, (4,), (1,))
assert_size_stride(primals_3, (4, 4), (4, 1))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((4, 4), (4, 1), torch.float32)
extern_kernels.addmm(primals_2, primals_3, reinterpret_tensor(
primals_1, (4, 4), (1, 4), 0), alpha=1, beta=1, out=buf0)
del primals_1
del primals_2
buf1 = empty_strided_cuda((4, 4), (4, 1), torch.float32)
get_raw_stream(0)
triton_poi_fused__softmax_0[grid(16)](buf0, buf1, 16, XBLOCK=16,
num_warps=1, num_stages=1)
buf2 = buf0
del buf0
buf6 = empty_strided_cuda((4, 5), (5, 1), torch.float32)
buf4 = reinterpret_tensor(buf6, (4, 4), (5, 1), 1)
triton_per_fused__softmax_cumsum_1[grid(4)](buf1, buf2, buf4, 4, 4,
XBLOCK=1, num_warps=2, num_stages=1)
buf3 = empty_strided_cuda((4,), (1,), torch.float32)
triton_poi_fused_log_mul_neg_sum_2[grid(4)](buf2, buf3, 4, XBLOCK=4,
num_warps=1, num_stages=1)
buf5 = reinterpret_tensor(buf6, (4, 1), (5, 1), 0)
triton_poi_fused_zeros_3[grid(4)](buf5, 4, XBLOCK=4, num_warps=1,
num_stages=1)
buf7 = buf1
del buf1
triton_poi_fused_add_div_4[grid(16)](buf6, buf7, 16, XBLOCK=16,
num_warps=1, num_stages=1)
return buf6, buf7, buf3, primals_3, buf2
class FractionProposalModelNew(nn.Module):
def __init__(self, in_dim, out_dim):
super(FractionProposalModelNew, self).__init__()
self.in_dim = in_dim
self.out_dim = out_dim
self.layer = nn.Linear(self.in_dim, self.out_dim)
nn.init.xavier_uniform_(self.layer.weight)
self.layer.bias.data.zero_()
def forward(self, input_0):
primals_1 = self.layer.weight
primals_2 = self.layer.bias
primals_3 = input_0
output = call([primals_1, primals_2, primals_3])
return output[0], output[1], output[2]
|
alirezakazemipour/Distributional-RL
|
FractionProposalModel
| false | 1,424 |
[
"MIT"
] | 0 |
a3de3a1707bdd57a420f85c6d64a3fb84fb075af
|
https://github.com/alirezakazemipour/Distributional-RL/tree/a3de3a1707bdd57a420f85c6d64a3fb84fb075af
|
SelfAttention
|
# AOT ID: ['0_forward']
from ctypes import c_void_p, c_long, c_int
import torch
import math
import random
import os
import tempfile
from math import inf, nan
from torch._inductor.hooks import run_intermediate_hooks
from torch._inductor.utils import maybe_profile
from torch._inductor.codegen.memory_planning import _align as align
from torch import device, empty_strided
from torch._inductor.async_compile import AsyncCompile
from torch._inductor.select_algorithm import extern_kernels
from torch._inductor.codegen.multi_kernel import MultiKernelCall
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
aten = torch.ops.aten
inductor_ops = torch.ops.inductor
_quantized = torch.ops._quantized
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
alloc_from_pool = torch.ops.inductor._alloc_from_pool
async_compile = AsyncCompile()
# kernel path: runs/run_shard_8/inductor_cache/r6/cr6neze6yovkog6kjrk5k2db63h47ozkojywfys6karxe7dlumrz.py
# Topologically Sorted Source Nodes: [attention], Original ATen: [aten._softmax]
# Source node to ATen node mapping:
# attention => amax, exp, sub
# Graph fragment:
# %amax : [num_users=1] = call_function[target=torch.ops.aten.amax.default](args = (%bmm, [-1], True), kwargs = {})
# %sub : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (%bmm, %amax), kwargs = {})
# %exp : [num_users=2] = call_function[target=torch.ops.aten.exp.default](args = (%sub,), kwargs = {})
triton_poi_fused__softmax_0 = async_compile.triton('triton_poi_fused__softmax_0', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[64],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused__softmax_0', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 5, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused__softmax_0(in_ptr0, out_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 64
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x2 = xindex
x1 = (xindex // 4)
tmp0 = tl.load(in_ptr0 + (x2), xmask)
tmp1 = tl.load(in_ptr0 + (4*x1), xmask, eviction_policy='evict_last')
tmp2 = tl.load(in_ptr0 + (1 + (4*x1)), xmask, eviction_policy='evict_last')
tmp4 = tl.load(in_ptr0 + (2 + (4*x1)), xmask, eviction_policy='evict_last')
tmp6 = tl.load(in_ptr0 + (3 + (4*x1)), xmask, eviction_policy='evict_last')
tmp3 = triton_helpers.maximum(tmp1, tmp2)
tmp5 = triton_helpers.maximum(tmp3, tmp4)
tmp7 = triton_helpers.maximum(tmp5, tmp6)
tmp8 = tmp0 - tmp7
tmp9 = tl_math.exp(tmp8)
tl.store(out_ptr0 + (x2), tmp9, xmask)
''', device_str='cuda')
# kernel path: runs/run_shard_8/inductor_cache/kj/ckjtlefzavjukjsytvkak6ek26zmzexpcbnlwelx4k5kascjxlf3.py
# Topologically Sorted Source Nodes: [attention], Original ATen: [aten._softmax]
# Source node to ATen node mapping:
# attention => div, sum_1
# Graph fragment:
# %sum_1 : [num_users=1] = call_function[target=torch.ops.aten.sum.dim_IntList](args = (%exp, [-1], True), kwargs = {})
# %div : [num_users=2] = call_function[target=torch.ops.aten.div.Tensor](args = (%exp, %sum_1), kwargs = {})
triton_poi_fused__softmax_1 = async_compile.triton('triton_poi_fused__softmax_1', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[64],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused__softmax_1', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 5, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused__softmax_1(in_ptr0, out_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 64
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x2 = xindex
x1 = (xindex // 4)
tmp0 = tl.load(in_ptr0 + (x2), xmask)
tmp1 = tl.load(in_ptr0 + (4*x1), xmask, eviction_policy='evict_last')
tmp2 = tl.load(in_ptr0 + (1 + (4*x1)), xmask, eviction_policy='evict_last')
tmp4 = tl.load(in_ptr0 + (2 + (4*x1)), xmask, eviction_policy='evict_last')
tmp6 = tl.load(in_ptr0 + (3 + (4*x1)), xmask, eviction_policy='evict_last')
tmp3 = tmp1 + tmp2
tmp5 = tmp3 + tmp4
tmp7 = tmp5 + tmp6
tmp8 = tmp0 / tmp7
tl.store(out_ptr0 + (x2), tmp8, xmask)
''', device_str='cuda')
# kernel path: runs/run_shard_8/inductor_cache/yr/cyrniedvhffrxlnlyrxzmh2ttgvxikibqxtc6hisiifo3odz6gur.py
# Topologically Sorted Source Nodes: [mul, out_2], Original ATen: [aten.mul, aten.add]
# Source node to ATen node mapping:
# mul => mul
# out_2 => add
# Graph fragment:
# %mul : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%primals_8, %view_3), kwargs = {})
# %add : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%mul, %primals_1), kwargs = {})
triton_poi_fused_add_mul_2 = async_compile.triton('triton_poi_fused_add_mul_2', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[16],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: '*fp32', 4: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3, 4), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_add_mul_2', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 3, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_add_mul_2(in_ptr0, in_ptr1, in_ptr2, out_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 16
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex
tmp0 = tl.load(in_ptr0 + (0))
tmp1 = tl.broadcast_to(tmp0, [XBLOCK])
tmp2 = tl.load(in_ptr1 + (x0), xmask)
tmp4 = tl.load(in_ptr2 + (x0), xmask)
tmp3 = tmp1 * tmp2
tmp5 = tmp3 + tmp4
tl.store(out_ptr0 + (x0), tmp5, xmask)
''', device_str='cuda')
async_compile.wait(globals())
del async_compile
def call(args):
primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7, primals_8 = args
args.clear()
assert_size_stride(primals_1, (4, 4), (4, 1))
assert_size_stride(primals_2, (4, 4), (4, 1))
assert_size_stride(primals_3, (4, ), (1, ))
assert_size_stride(primals_4, (4, 4), (4, 1))
assert_size_stride(primals_5, (4, ), (1, ))
assert_size_stride(primals_6, (4, 4), (4, 1))
assert_size_stride(primals_7, (4, ), (1, ))
assert_size_stride(primals_8, (1, ), (1, ))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((4, 4), (4, 1), torch.float32)
# Topologically Sorted Source Nodes: [linear], Original ATen: [aten.addmm]
extern_kernels.addmm(primals_3, primals_1, reinterpret_tensor(primals_2, (4, 4), (1, 4), 0), alpha=1, beta=1, out=buf0)
del primals_2
del primals_3
buf1 = empty_strided_cuda((4, 4), (4, 1), torch.float32)
# Topologically Sorted Source Nodes: [linear_1], Original ATen: [aten.addmm]
extern_kernels.addmm(primals_5, primals_1, reinterpret_tensor(primals_4, (4, 4), (1, 4), 0), alpha=1, beta=1, out=buf1)
del primals_4
del primals_5
buf2 = empty_strided_cuda((4, 4, 4), (16, 4, 1), torch.float32)
# Topologically Sorted Source Nodes: [energy], Original ATen: [aten.bmm]
extern_kernels.bmm(reinterpret_tensor(buf0, (4, 4, 1), (4, 1, 4), 0), reinterpret_tensor(buf1, (4, 1, 4), (4, 4, 1), 0), out=buf2)
buf3 = empty_strided_cuda((4, 4, 4), (16, 4, 1), torch.float32)
# Topologically Sorted Source Nodes: [attention], Original ATen: [aten._softmax]
stream0 = get_raw_stream(0)
triton_poi_fused__softmax_0.run(buf2, buf3, 64, grid=grid(64), stream=stream0)
buf4 = buf2; del buf2 # reuse
# Topologically Sorted Source Nodes: [attention], Original ATen: [aten._softmax]
triton_poi_fused__softmax_1.run(buf3, buf4, 64, grid=grid(64), stream=stream0)
del buf3
buf5 = empty_strided_cuda((4, 4), (4, 1), torch.float32)
# Topologically Sorted Source Nodes: [linear_2], Original ATen: [aten.addmm]
extern_kernels.addmm(primals_7, primals_1, reinterpret_tensor(primals_6, (4, 4), (1, 4), 0), alpha=1, beta=1, out=buf5)
del primals_6
del primals_7
buf6 = empty_strided_cuda((4, 1, 4), (4, 4, 1), torch.float32)
# Topologically Sorted Source Nodes: [out], Original ATen: [aten.bmm]
extern_kernels.bmm(reinterpret_tensor(buf5, (4, 1, 4), (4, 4, 1), 0), reinterpret_tensor(buf4, (4, 4, 4), (16, 1, 4), 0), out=buf6)
buf7 = empty_strided_cuda((4, 4), (4, 1), torch.float32)
# Topologically Sorted Source Nodes: [mul, out_2], Original ATen: [aten.mul, aten.add]
triton_poi_fused_add_mul_2.run(primals_8, buf6, primals_1, buf7, 16, grid=grid(16), stream=stream0)
return (buf7, primals_1, primals_8, buf4, buf6, reinterpret_tensor(buf5, (4, 4, 1), (4, 1, 4), 0), reinterpret_tensor(buf0, (4, 1, 4), (4, 4, 1), 0), reinterpret_tensor(buf1, (4, 4, 1), (4, 1, 4), 0), )
def benchmark_compiled_module(times=10, repeat=10):
from torch._dynamo.testing import rand_strided
from torch._inductor.utils import print_performance
primals_1 = rand_strided((4, 4), (4, 1), device='cuda:0', dtype=torch.float32)
primals_2 = rand_strided((4, 4), (4, 1), device='cuda:0', dtype=torch.float32)
primals_3 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32)
primals_4 = rand_strided((4, 4), (4, 1), device='cuda:0', dtype=torch.float32)
primals_5 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32)
primals_6 = rand_strided((4, 4), (4, 1), device='cuda:0', dtype=torch.float32)
primals_7 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32)
primals_8 = rand_strided((1, ), (1, ), device='cuda:0', dtype=torch.float32)
fn = lambda: call([primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7, primals_8])
return print_performance(fn, times=times, repeat=repeat)
if __name__ == "__main__":
from torch._inductor.wrapper_benchmark import compiled_module_main
compiled_module_main('None', benchmark_compiled_module)
|
import torch
from torch._inductor.select_algorithm import extern_kernels
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
from torch._inductor.runtime import triton_helpers
from torch._inductor.runtime.triton_helpers import math as tl_math
import torch.nn as nn
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
@triton.jit
def triton_poi_fused__softmax_0(in_ptr0, out_ptr0, xnumel, XBLOCK: tl.constexpr
):
xnumel = 64
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x2 = xindex
x1 = xindex // 4
tmp0 = tl.load(in_ptr0 + x2, xmask)
tmp1 = tl.load(in_ptr0 + 4 * x1, xmask, eviction_policy='evict_last')
tmp2 = tl.load(in_ptr0 + (1 + 4 * x1), xmask, eviction_policy='evict_last')
tmp4 = tl.load(in_ptr0 + (2 + 4 * x1), xmask, eviction_policy='evict_last')
tmp6 = tl.load(in_ptr0 + (3 + 4 * x1), xmask, eviction_policy='evict_last')
tmp3 = triton_helpers.maximum(tmp1, tmp2)
tmp5 = triton_helpers.maximum(tmp3, tmp4)
tmp7 = triton_helpers.maximum(tmp5, tmp6)
tmp8 = tmp0 - tmp7
tmp9 = tl_math.exp(tmp8)
tl.store(out_ptr0 + x2, tmp9, xmask)
@triton.jit
def triton_poi_fused__softmax_1(in_ptr0, out_ptr0, xnumel, XBLOCK: tl.constexpr
):
xnumel = 64
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x2 = xindex
x1 = xindex // 4
tmp0 = tl.load(in_ptr0 + x2, xmask)
tmp1 = tl.load(in_ptr0 + 4 * x1, xmask, eviction_policy='evict_last')
tmp2 = tl.load(in_ptr0 + (1 + 4 * x1), xmask, eviction_policy='evict_last')
tmp4 = tl.load(in_ptr0 + (2 + 4 * x1), xmask, eviction_policy='evict_last')
tmp6 = tl.load(in_ptr0 + (3 + 4 * x1), xmask, eviction_policy='evict_last')
tmp3 = tmp1 + tmp2
tmp5 = tmp3 + tmp4
tmp7 = tmp5 + tmp6
tmp8 = tmp0 / tmp7
tl.store(out_ptr0 + x2, tmp8, xmask)
@triton.jit
def triton_poi_fused_add_mul_2(in_ptr0, in_ptr1, in_ptr2, out_ptr0, xnumel,
XBLOCK: tl.constexpr):
xnumel = 16
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex
tmp0 = tl.load(in_ptr0 + 0)
tmp1 = tl.broadcast_to(tmp0, [XBLOCK])
tmp2 = tl.load(in_ptr1 + x0, xmask)
tmp4 = tl.load(in_ptr2 + x0, xmask)
tmp3 = tmp1 * tmp2
tmp5 = tmp3 + tmp4
tl.store(out_ptr0 + x0, tmp5, xmask)
def call(args):
(primals_1, primals_2, primals_3, primals_4, primals_5, primals_6,
primals_7, primals_8) = args
args.clear()
assert_size_stride(primals_1, (4, 4), (4, 1))
assert_size_stride(primals_2, (4, 4), (4, 1))
assert_size_stride(primals_3, (4,), (1,))
assert_size_stride(primals_4, (4, 4), (4, 1))
assert_size_stride(primals_5, (4,), (1,))
assert_size_stride(primals_6, (4, 4), (4, 1))
assert_size_stride(primals_7, (4,), (1,))
assert_size_stride(primals_8, (1,), (1,))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((4, 4), (4, 1), torch.float32)
extern_kernels.addmm(primals_3, primals_1, reinterpret_tensor(
primals_2, (4, 4), (1, 4), 0), alpha=1, beta=1, out=buf0)
del primals_2
del primals_3
buf1 = empty_strided_cuda((4, 4), (4, 1), torch.float32)
extern_kernels.addmm(primals_5, primals_1, reinterpret_tensor(
primals_4, (4, 4), (1, 4), 0), alpha=1, beta=1, out=buf1)
del primals_4
del primals_5
buf2 = empty_strided_cuda((4, 4, 4), (16, 4, 1), torch.float32)
extern_kernels.bmm(reinterpret_tensor(buf0, (4, 4, 1), (4, 1, 4), 0
), reinterpret_tensor(buf1, (4, 1, 4), (4, 4, 1), 0), out=buf2)
buf3 = empty_strided_cuda((4, 4, 4), (16, 4, 1), torch.float32)
get_raw_stream(0)
triton_poi_fused__softmax_0[grid(64)](buf2, buf3, 64, XBLOCK=64,
num_warps=1, num_stages=1)
buf4 = buf2
del buf2
triton_poi_fused__softmax_1[grid(64)](buf3, buf4, 64, XBLOCK=64,
num_warps=1, num_stages=1)
del buf3
buf5 = empty_strided_cuda((4, 4), (4, 1), torch.float32)
extern_kernels.addmm(primals_7, primals_1, reinterpret_tensor(
primals_6, (4, 4), (1, 4), 0), alpha=1, beta=1, out=buf5)
del primals_6
del primals_7
buf6 = empty_strided_cuda((4, 1, 4), (4, 4, 1), torch.float32)
extern_kernels.bmm(reinterpret_tensor(buf5, (4, 1, 4), (4, 4, 1), 0
), reinterpret_tensor(buf4, (4, 4, 4), (16, 1, 4), 0), out=buf6)
buf7 = empty_strided_cuda((4, 4), (4, 1), torch.float32)
triton_poi_fused_add_mul_2[grid(16)](primals_8, buf6, primals_1,
buf7, 16, XBLOCK=16, num_warps=1, num_stages=1)
return buf7, primals_1, primals_8, buf4, buf6, reinterpret_tensor(buf5,
(4, 4, 1), (4, 1, 4), 0), reinterpret_tensor(buf0, (4, 1, 4), (4, 4,
1), 0), reinterpret_tensor(buf1, (4, 4, 1), (4, 1, 4), 0)
class SelfAttentionNew(nn.Module):
def __init__(self, in_dim):
super(SelfAttentionNew, self).__init__()
self.query_conv = nn.Linear(in_dim, in_dim)
self.key_conv = nn.Linear(in_dim, in_dim)
self.value_conv = nn.Linear(in_dim, in_dim)
for name, param in self.named_parameters():
if 'bias' in name:
nn.init.constant_(param, 0)
else:
nn.init.xavier_uniform_(param)
self.gamma = nn.Parameter(torch.zeros(1))
self.softmax = nn.Softmax(dim=-1)
def forward(self, input_0):
primals_8 = self.gamma
primals_1 = self.query_conv.weight
primals_3 = self.query_conv.bias
primals_2 = self.key_conv.weight
primals_5 = self.key_conv.bias
primals_4 = self.value_conv.weight
primals_7 = self.value_conv.bias
primals_6 = input_0
output = call([primals_1, primals_2, primals_3, primals_4,
primals_5, primals_6, primals_7, primals_8])
return output[0]
|
ahmedelhodaiby/HandMesh
|
SelfAttention
| false | 9,902 |
[
"MIT"
] | 0 |
d86ec322b7627c5756bd9ae9e152bcd4f2debfa6
|
https://github.com/ahmedelhodaiby/HandMesh/tree/d86ec322b7627c5756bd9ae9e152bcd4f2debfa6
|
MeanMaxPooling
|
import torch
from torch import nn
class MeanMaxPooling(nn.Module):
def __init__(self):
super(MeanMaxPooling, self).__init__()
def forward(self, doc_state, entity_mapping, entity_lens):
"""
:param doc_state: N x L x d
:param entity_mapping: N x E x L
:param entity_lens: N x E
:return: N x E x 2d
"""
entity_states = entity_mapping.unsqueeze(3) * doc_state.unsqueeze(1)
max_pooled = torch.max(entity_states, dim=2)[0]
mean_pooled = torch.sum(entity_states, dim=2) / entity_lens.unsqueeze(2
)
output = torch.cat([max_pooled, mean_pooled], dim=2)
return output
def get_inputs():
return [torch.rand([4, 4, 4, 4, 4]), torch.rand([4, 4, 4, 4]), torch.
rand([4, 4, 4, 4])]
def get_init_inputs():
return [[], {}]
|
import torch
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
from torch._inductor.runtime import triton_helpers
from torch import nn
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
@triton.jit
def triton_poi_fused_div_max_mul_sum_0(in_ptr0, in_ptr1, in_ptr2, out_ptr0,
out_ptr1, xnumel, XBLOCK: tl.constexpr):
xnumel = 1024
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex % 4
x2 = xindex // 16 % 4
x3 = xindex // 64 % 4
x4 = xindex // 256
x5 = xindex % 64
x6 = xindex % 16
x7 = xindex // 64
tmp0 = tl.load(in_ptr0 + (x0 + 4 * x2 + 64 * x3), xmask,
eviction_policy='evict_last')
tmp1 = tl.load(in_ptr1 + (x5 + 256 * x4), xmask, eviction_policy=
'evict_last')
tmp3 = tl.load(in_ptr0 + (16 + x0 + 4 * x2 + 64 * x3), xmask,
eviction_policy='evict_last')
tmp4 = tl.load(in_ptr1 + (64 + x5 + 256 * x4), xmask, eviction_policy=
'evict_last')
tmp7 = tl.load(in_ptr0 + (32 + x0 + 4 * x2 + 64 * x3), xmask,
eviction_policy='evict_last')
tmp8 = tl.load(in_ptr1 + (128 + x5 + 256 * x4), xmask, eviction_policy=
'evict_last')
tmp11 = tl.load(in_ptr0 + (48 + x0 + 4 * x2 + 64 * x3), xmask,
eviction_policy='evict_last')
tmp12 = tl.load(in_ptr1 + (192 + x5 + 256 * x4), xmask, eviction_policy
='evict_last')
tmp15 = tl.load(in_ptr2 + (x6 + 16 * x7), xmask, eviction_policy=
'evict_last')
tmp2 = tmp0 * tmp1
tmp5 = tmp3 * tmp4
tmp6 = tmp2 + tmp5
tmp9 = tmp7 * tmp8
tmp10 = tmp6 + tmp9
tmp13 = tmp11 * tmp12
tmp14 = tmp10 + tmp13
tmp16 = tmp14 / tmp15
tmp17 = triton_helpers.maximum(tmp2, tmp5)
tmp18 = triton_helpers.maximum(tmp17, tmp9)
tmp19 = triton_helpers.maximum(tmp18, tmp13)
tl.store(out_ptr0 + (x5 + 128 * x7), tmp16, xmask)
tl.store(out_ptr1 + (x5 + 128 * x7), tmp19, xmask)
def call(args):
arg0_1, arg1_1, arg2_1 = args
args.clear()
assert_size_stride(arg0_1, (4, 4, 4, 4), (64, 16, 4, 1))
assert_size_stride(arg1_1, (4, 4, 4, 4, 4), (256, 64, 16, 4, 1))
assert_size_stride(arg2_1, (4, 4, 4, 4), (64, 16, 4, 1))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf2 = empty_strided_cuda((4, 4, 8, 4, 4), (512, 128, 16, 4, 1),
torch.float32)
buf0 = reinterpret_tensor(buf2, (4, 4, 4, 4, 4), (512, 128, 16, 4,
1), 64)
buf1 = reinterpret_tensor(buf2, (4, 4, 4, 4, 4), (512, 128, 16, 4,
1), 0)
get_raw_stream(0)
triton_poi_fused_div_max_mul_sum_0[grid(1024)](arg0_1, arg1_1,
arg2_1, buf0, buf1, 1024, XBLOCK=256, num_warps=4, num_stages=1)
del arg0_1
del arg1_1
del arg2_1
return buf2,
class MeanMaxPoolingNew(nn.Module):
def __init__(self):
super(MeanMaxPoolingNew, self).__init__()
def forward(self, input_0, input_1, input_2):
arg1_1 = input_0
arg0_1 = input_1
arg2_1 = input_2
output = call([arg0_1, arg1_1, arg2_1])
return output[0]
|
jennybae1024/DFGN-pytorch
|
MeanMaxPooling
| false | 15,681 |
[
"MIT"
] | 191 |
056d9317f772cd10bdd215bfafdbac5cbd330026
|
https://github.com/jennybae1024/DFGN-pytorch/tree/056d9317f772cd10bdd215bfafdbac5cbd330026
|
EmbeddingsInteraction
|
# AOT ID: ['0_inference']
from ctypes import c_void_p, c_long, c_int
import torch
import math
import random
import os
import tempfile
from math import inf, nan
from torch._inductor.hooks import run_intermediate_hooks
from torch._inductor.utils import maybe_profile
from torch._inductor.codegen.memory_planning import _align as align
from torch import device, empty_strided
from torch._inductor.async_compile import AsyncCompile
from torch._inductor.select_algorithm import extern_kernels
from torch._inductor.codegen.multi_kernel import MultiKernelCall
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
aten = torch.ops.aten
inductor_ops = torch.ops.inductor
_quantized = torch.ops._quantized
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
alloc_from_pool = torch.ops.inductor._alloc_from_pool
async_compile = AsyncCompile()
# kernel path: runs/run_shard_7/inductor_cache/uh/cuhgo2rknguv5p7q2qqukp42laim5h6in7ejukuvt2baxhkrt7ol.py
# Topologically Sorted Source Nodes: [getitem, getitem_1, interaction], Original ATen: [aten.index, aten.mul]
# Source node to ATen node mapping:
# getitem => index
# getitem_1 => index_1
# interaction => mul
# Graph fragment:
# %index : [num_users=1] = call_function[target=torch.ops.aten.index.Tensor](args = (%arg0_1, [None, %lift_fresh_copy]), kwargs = {})
# %index_1 : [num_users=1] = call_function[target=torch.ops.aten.index.Tensor](args = (%arg0_1, [None, %lift_fresh_copy_1]), kwargs = {})
# %mul : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%index, %index_1), kwargs = {})
triton_poi_fused_index_mul_0 = async_compile.triton('triton_poi_fused_index_mul_0', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[512],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_index_mul_0', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 0, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_index_mul_0(in_ptr0, out_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 384
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x1 = (xindex // 16) % 6
x0 = xindex % 16
x2 = (xindex // 96)
x3 = xindex
tmp0 = x1
tmp1 = tl.full([1], 3, tl.int64)
tmp2 = tmp0 < tmp1
tmp3 = tl.full([1], 1, tl.int64)
tmp4 = tmp0 < tmp3
tmp5 = tl.full([1], 2, tl.int64)
tmp6 = tmp0 < tmp5
tmp7 = tl.full([1], 0, tl.int64)
tmp8 = tl.where(tmp6, tmp7, tmp7)
tmp9 = tl.where(tmp4, tmp7, tmp8)
tmp10 = tl.full([1], 4, tl.int64)
tmp11 = tmp0 < tmp10
tmp12 = tl.full([1], 5, tl.int64)
tmp13 = tmp0 < tmp12
tmp14 = tl.where(tmp13, tmp3, tmp5)
tmp15 = tl.where(tmp11, tmp3, tmp14)
tmp16 = tl.where(tmp2, tmp9, tmp15)
tmp17 = tl.load(in_ptr0 + (x0 + (16*tmp16) + (64*x2)), xmask)
tmp18 = tl.where(tmp6, tmp5, tmp1)
tmp19 = tl.where(tmp4, tmp3, tmp18)
tmp20 = tl.where(tmp13, tmp1, tmp1)
tmp21 = tl.where(tmp11, tmp5, tmp20)
tmp22 = tl.where(tmp2, tmp19, tmp21)
tmp23 = tl.load(in_ptr0 + (x0 + (16*tmp22) + (64*x2)), xmask)
tmp24 = tmp17 * tmp23
tl.store(out_ptr0 + (x3), tmp24, xmask)
''', device_str='cuda')
async_compile.wait(globals())
del async_compile
def call(args):
arg0_1, = args
args.clear()
assert_size_stride(arg0_1, (4, 4, 4, 4), (64, 16, 4, 1))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((4, 6, 4, 4), (96, 16, 4, 1), torch.float32)
# Topologically Sorted Source Nodes: [getitem, getitem_1, interaction], Original ATen: [aten.index, aten.mul]
stream0 = get_raw_stream(0)
triton_poi_fused_index_mul_0.run(arg0_1, buf0, 384, grid=grid(384), stream=stream0)
del arg0_1
return (buf0, )
def benchmark_compiled_module(times=10, repeat=10):
from torch._dynamo.testing import rand_strided
from torch._inductor.utils import print_performance
arg0_1 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32)
fn = lambda: call([arg0_1])
return print_performance(fn, times=times, repeat=repeat)
if __name__ == "__main__":
from torch._inductor.wrapper_benchmark import compiled_module_main
compiled_module_main('None', benchmark_compiled_module)
|
import torch
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
import torch.nn as nn
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
@triton.jit
def triton_poi_fused_index_mul_0(in_ptr0, out_ptr0, xnumel, XBLOCK: tl.
constexpr):
xnumel = 384
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x1 = xindex // 16 % 6
x0 = xindex % 16
x2 = xindex // 96
x3 = xindex
tmp0 = x1
tmp1 = tl.full([1], 3, tl.int64)
tmp2 = tmp0 < tmp1
tmp3 = tl.full([1], 1, tl.int64)
tmp4 = tmp0 < tmp3
tmp5 = tl.full([1], 2, tl.int64)
tmp6 = tmp0 < tmp5
tmp7 = tl.full([1], 0, tl.int64)
tmp8 = tl.where(tmp6, tmp7, tmp7)
tmp9 = tl.where(tmp4, tmp7, tmp8)
tmp10 = tl.full([1], 4, tl.int64)
tmp11 = tmp0 < tmp10
tmp12 = tl.full([1], 5, tl.int64)
tmp13 = tmp0 < tmp12
tmp14 = tl.where(tmp13, tmp3, tmp5)
tmp15 = tl.where(tmp11, tmp3, tmp14)
tmp16 = tl.where(tmp2, tmp9, tmp15)
tmp17 = tl.load(in_ptr0 + (x0 + 16 * tmp16 + 64 * x2), xmask)
tmp18 = tl.where(tmp6, tmp5, tmp1)
tmp19 = tl.where(tmp4, tmp3, tmp18)
tmp20 = tl.where(tmp13, tmp1, tmp1)
tmp21 = tl.where(tmp11, tmp5, tmp20)
tmp22 = tl.where(tmp2, tmp19, tmp21)
tmp23 = tl.load(in_ptr0 + (x0 + 16 * tmp22 + 64 * x2), xmask)
tmp24 = tmp17 * tmp23
tl.store(out_ptr0 + x3, tmp24, xmask)
def call(args):
arg0_1, = args
args.clear()
assert_size_stride(arg0_1, (4, 4, 4, 4), (64, 16, 4, 1))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((4, 6, 4, 4), (96, 16, 4, 1), torch.float32)
get_raw_stream(0)
triton_poi_fused_index_mul_0[grid(384)](arg0_1, buf0, 384, XBLOCK=
256, num_warps=4, num_stages=1)
del arg0_1
return buf0,
class EmbeddingsInteractionNew(nn.Module):
def __init__(self):
super(EmbeddingsInteractionNew, self).__init__()
def forward(self, input_0):
arg0_1 = input_0
output = call([arg0_1])
return output[0]
|
SUSTechBruce/RL_CTR
|
EmbeddingsInteraction
| false | 2,789 |
[
"Apache-2.0"
] | 0 |
817398dc1c117e22f41281830ae3c33bba8062d3
|
https://github.com/SUSTechBruce/RL_CTR/tree/817398dc1c117e22f41281830ae3c33bba8062d3
|
InverseDepthSmoothnessLoss
|
# AOT ID: ['0_inference']
from ctypes import c_void_p, c_long, c_int
import torch
import math
import random
import os
import tempfile
from math import inf, nan
from torch._inductor.hooks import run_intermediate_hooks
from torch._inductor.utils import maybe_profile
from torch._inductor.codegen.memory_planning import _align as align
from torch import device, empty_strided
from torch._inductor.async_compile import AsyncCompile
from torch._inductor.select_algorithm import extern_kernels
from torch._inductor.codegen.multi_kernel import MultiKernelCall
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
aten = torch.ops.aten
inductor_ops = torch.ops.inductor
_quantized = torch.ops._quantized
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
alloc_from_pool = torch.ops.inductor._alloc_from_pool
async_compile = AsyncCompile()
# kernel path: runs/run_shard_9/inductor_cache/xo/cxopkxo47z5lmvyq2gx2n4exgeyhweclzftd73pco236dokn54dm.py
# Topologically Sorted Source Nodes: [image_dx, abs_1, mean, neg, weights_x], Original ATen: [aten.sub, aten.abs, aten.mean, aten.neg, aten.exp]
# Source node to ATen node mapping:
# abs_1 => abs_1
# image_dx => sub_2
# mean => mean
# neg => neg
# weights_x => exp
# Graph fragment:
# %sub_2 : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (%slice_20, %slice_24), kwargs = {})
# %abs_1 : [num_users=1] = call_function[target=torch.ops.aten.abs.default](args = (%sub_2,), kwargs = {})
# %mean : [num_users=1] = call_function[target=torch.ops.aten.mean.dim](args = (%abs_1, [1], True), kwargs = {})
# %neg : [num_users=1] = call_function[target=torch.ops.aten.neg.default](args = (%mean,), kwargs = {})
# %exp : [num_users=1] = call_function[target=torch.ops.aten.exp.default](args = (%neg,), kwargs = {})
triton_poi_fused_abs_exp_mean_neg_sub_0 = async_compile.triton('triton_poi_fused_abs_exp_mean_neg_sub_0', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[64],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_abs_exp_mean_neg_sub_0', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 8, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_abs_exp_mean_neg_sub_0(in_ptr0, out_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 48
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex % 3
x1 = (xindex // 3) % 4
x2 = (xindex // 12)
x3 = xindex
tmp0 = tl.load(in_ptr0 + (x0 + (4*x1) + (64*x2)), xmask)
tmp1 = tl.load(in_ptr0 + (1 + x0 + (4*x1) + (64*x2)), xmask)
tmp4 = tl.load(in_ptr0 + (16 + x0 + (4*x1) + (64*x2)), xmask)
tmp5 = tl.load(in_ptr0 + (17 + x0 + (4*x1) + (64*x2)), xmask)
tmp9 = tl.load(in_ptr0 + (32 + x0 + (4*x1) + (64*x2)), xmask)
tmp10 = tl.load(in_ptr0 + (33 + x0 + (4*x1) + (64*x2)), xmask)
tmp14 = tl.load(in_ptr0 + (48 + x0 + (4*x1) + (64*x2)), xmask)
tmp15 = tl.load(in_ptr0 + (49 + x0 + (4*x1) + (64*x2)), xmask)
tmp2 = tmp0 - tmp1
tmp3 = tl_math.abs(tmp2)
tmp6 = tmp4 - tmp5
tmp7 = tl_math.abs(tmp6)
tmp8 = tmp3 + tmp7
tmp11 = tmp9 - tmp10
tmp12 = tl_math.abs(tmp11)
tmp13 = tmp8 + tmp12
tmp16 = tmp14 - tmp15
tmp17 = tl_math.abs(tmp16)
tmp18 = tmp13 + tmp17
tmp19 = 4.0
tmp20 = tmp18 / tmp19
tmp21 = -tmp20
tmp22 = tl_math.exp(tmp21)
tl.store(out_ptr0 + (x3), tmp22, xmask)
''', device_str='cuda')
# kernel path: runs/run_shard_9/inductor_cache/wl/cwl6yd7l3sndnb22swumccpruxx46plry27po4wlv5ktz7r5sl5b.py
# Topologically Sorted Source Nodes: [image_dy, abs_2, mean_1, neg_1, weights_y], Original ATen: [aten.sub, aten.abs, aten.mean, aten.neg, aten.exp]
# Source node to ATen node mapping:
# abs_2 => abs_2
# image_dy => sub_3
# mean_1 => mean_1
# neg_1 => neg_1
# weights_y => exp_1
# Graph fragment:
# %sub_3 : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (%slice_27, %slice_31), kwargs = {})
# %abs_2 : [num_users=1] = call_function[target=torch.ops.aten.abs.default](args = (%sub_3,), kwargs = {})
# %mean_1 : [num_users=1] = call_function[target=torch.ops.aten.mean.dim](args = (%abs_2, [1], True), kwargs = {})
# %neg_1 : [num_users=1] = call_function[target=torch.ops.aten.neg.default](args = (%mean_1,), kwargs = {})
# %exp_1 : [num_users=1] = call_function[target=torch.ops.aten.exp.default](args = (%neg_1,), kwargs = {})
triton_poi_fused_abs_exp_mean_neg_sub_1 = async_compile.triton('triton_poi_fused_abs_exp_mean_neg_sub_1', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[64],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_abs_exp_mean_neg_sub_1', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 8, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_abs_exp_mean_neg_sub_1(in_ptr0, out_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 48
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex % 12
x1 = (xindex // 12)
x2 = xindex
tmp0 = tl.load(in_ptr0 + (x0 + (64*x1)), xmask)
tmp1 = tl.load(in_ptr0 + (4 + x0 + (64*x1)), xmask)
tmp4 = tl.load(in_ptr0 + (16 + x0 + (64*x1)), xmask)
tmp5 = tl.load(in_ptr0 + (20 + x0 + (64*x1)), xmask)
tmp9 = tl.load(in_ptr0 + (32 + x0 + (64*x1)), xmask)
tmp10 = tl.load(in_ptr0 + (36 + x0 + (64*x1)), xmask)
tmp14 = tl.load(in_ptr0 + (48 + x0 + (64*x1)), xmask)
tmp15 = tl.load(in_ptr0 + (52 + x0 + (64*x1)), xmask)
tmp2 = tmp0 - tmp1
tmp3 = tl_math.abs(tmp2)
tmp6 = tmp4 - tmp5
tmp7 = tl_math.abs(tmp6)
tmp8 = tmp3 + tmp7
tmp11 = tmp9 - tmp10
tmp12 = tl_math.abs(tmp11)
tmp13 = tmp8 + tmp12
tmp16 = tmp14 - tmp15
tmp17 = tl_math.abs(tmp16)
tmp18 = tmp13 + tmp17
tmp19 = 4.0
tmp20 = tmp18 / tmp19
tmp21 = -tmp20
tmp22 = tl_math.exp(tmp21)
tl.store(out_ptr0 + (x2), tmp22, xmask)
''', device_str='cuda')
# kernel path: runs/run_shard_9/inductor_cache/o7/co77hkmtzy5ubvbrmxqqwu5n4mggkr3ljkpuheg7zy4q2bdaspun.py
# Topologically Sorted Source Nodes: [idepth_dx, image_dx, abs_1, mean, neg, weights_x, mul, smoothness_x, mean_2, idepth_dy, image_dy, abs_2, mean_1, neg_1, weights_y, mul_1, smoothness_y, mean_3, add], Original ATen: [aten.sub, aten.abs, aten.mean, aten.neg, aten.exp, aten.mul, aten.add]
# Source node to ATen node mapping:
# abs_1 => abs_1
# abs_2 => abs_2
# add => add
# idepth_dx => sub
# idepth_dy => sub_1
# image_dx => sub_2
# image_dy => sub_3
# mean => mean
# mean_1 => mean_1
# mean_2 => mean_2
# mean_3 => mean_3
# mul => mul
# mul_1 => mul_1
# neg => neg
# neg_1 => neg_1
# smoothness_x => abs_3
# smoothness_y => abs_4
# weights_x => exp
# weights_y => exp_1
# Graph fragment:
# %sub : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (%slice_4, %slice_8), kwargs = {})
# %sub_2 : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (%slice_20, %slice_24), kwargs = {})
# %abs_1 : [num_users=1] = call_function[target=torch.ops.aten.abs.default](args = (%sub_2,), kwargs = {})
# %mean : [num_users=1] = call_function[target=torch.ops.aten.mean.dim](args = (%abs_1, [1], True), kwargs = {})
# %neg : [num_users=1] = call_function[target=torch.ops.aten.neg.default](args = (%mean,), kwargs = {})
# %exp : [num_users=1] = call_function[target=torch.ops.aten.exp.default](args = (%neg,), kwargs = {})
# %mul : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%sub, %exp), kwargs = {})
# %abs_3 : [num_users=1] = call_function[target=torch.ops.aten.abs.default](args = (%mul,), kwargs = {})
# %mean_2 : [num_users=1] = call_function[target=torch.ops.aten.mean.default](args = (%abs_3,), kwargs = {})
# %sub_1 : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (%slice_11, %slice_15), kwargs = {})
# %sub_3 : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (%slice_27, %slice_31), kwargs = {})
# %abs_2 : [num_users=1] = call_function[target=torch.ops.aten.abs.default](args = (%sub_3,), kwargs = {})
# %mean_1 : [num_users=1] = call_function[target=torch.ops.aten.mean.dim](args = (%abs_2, [1], True), kwargs = {})
# %neg_1 : [num_users=1] = call_function[target=torch.ops.aten.neg.default](args = (%mean_1,), kwargs = {})
# %exp_1 : [num_users=1] = call_function[target=torch.ops.aten.exp.default](args = (%neg_1,), kwargs = {})
# %mul_1 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%sub_1, %exp_1), kwargs = {})
# %abs_4 : [num_users=1] = call_function[target=torch.ops.aten.abs.default](args = (%mul_1,), kwargs = {})
# %mean_3 : [num_users=1] = call_function[target=torch.ops.aten.mean.default](args = (%abs_4,), kwargs = {})
# %add : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%mean_2, %mean_3), kwargs = {})
triton_per_fused_abs_add_exp_mean_mul_neg_sub_2 = async_compile.triton('triton_per_fused_abs_add_exp_mean_mul_neg_sub_2', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.persistent_reduction(
size_hints=[1, 256],
reduction_hint=ReductionHint.INNER,
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: '*fp32', 4: 'i32', 5: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {4: 1}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3, 5), equal_to_1=(4,))]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_per_fused_abs_add_exp_mean_mul_neg_sub_2', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 6, 'num_reduction': 2, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}
)
@triton.jit
def triton_per_fused_abs_add_exp_mean_mul_neg_sub_2(in_out_ptr0, in_ptr0, in_ptr1, in_ptr2, xnumel, rnumel, XBLOCK : tl.constexpr):
xnumel = 1
rnumel = 192
RBLOCK: tl.constexpr = 256
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:, None]
xmask = tl.full([XBLOCK, RBLOCK], True, tl.int1)
rindex = tl.arange(0, RBLOCK)[None, :]
roffset = 0
rmask = rindex < rnumel
r0 = rindex % 3
r5 = (rindex // 3)
r3 = (rindex // 48)
r4 = rindex % 12
r6 = (rindex // 12)
tmp0 = tl.load(in_ptr0 + (r0 + (4*r5)), rmask, other=0.0)
tmp1 = tl.load(in_ptr0 + (1 + r0 + (4*r5)), rmask, other=0.0)
tmp3 = tl.load(in_ptr1 + (r4 + (12*r3)), rmask, eviction_policy='evict_last', other=0.0)
tmp10 = tl.load(in_ptr0 + (r4 + (16*r6)), rmask, other=0.0)
tmp11 = tl.load(in_ptr0 + (4 + r4 + (16*r6)), rmask, other=0.0)
tmp13 = tl.load(in_ptr2 + (r4 + (12*r3)), rmask, eviction_policy='evict_last', other=0.0)
tmp2 = tmp0 - tmp1
tmp4 = tmp2 * tmp3
tmp5 = tl_math.abs(tmp4)
tmp6 = tl.broadcast_to(tmp5, [XBLOCK, RBLOCK])
tmp8 = tl.where(rmask, tmp6, 0)
tmp9 = tl.sum(tmp8, 1)[:, None]
tmp12 = tmp10 - tmp11
tmp14 = tmp12 * tmp13
tmp15 = tl_math.abs(tmp14)
tmp16 = tl.broadcast_to(tmp15, [XBLOCK, RBLOCK])
tmp18 = tl.where(rmask, tmp16, 0)
tmp19 = tl.sum(tmp18, 1)[:, None]
tmp20 = 192.0
tmp21 = tmp9 / tmp20
tmp22 = tmp19 / tmp20
tmp23 = tmp21 + tmp22
tl.debug_barrier()
tl.store(in_out_ptr0 + (tl.full([XBLOCK, 1], 0, tl.int32)), tmp23, None)
''', device_str='cuda')
async_compile.wait(globals())
del async_compile
def call(args):
arg0_1, arg1_1 = args
args.clear()
assert_size_stride(arg0_1, (4, 4, 4, 4), (64, 16, 4, 1))
assert_size_stride(arg1_1, (4, 4, 4, 4), (64, 16, 4, 1))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((4, 1, 4, 3), (12, 48, 3, 1), torch.float32)
# Topologically Sorted Source Nodes: [image_dx, abs_1, mean, neg, weights_x], Original ATen: [aten.sub, aten.abs, aten.mean, aten.neg, aten.exp]
stream0 = get_raw_stream(0)
triton_poi_fused_abs_exp_mean_neg_sub_0.run(arg1_1, buf0, 48, grid=grid(48), stream=stream0)
buf2 = empty_strided_cuda((4, 1, 3, 4), (12, 48, 4, 1), torch.float32)
# Topologically Sorted Source Nodes: [image_dy, abs_2, mean_1, neg_1, weights_y], Original ATen: [aten.sub, aten.abs, aten.mean, aten.neg, aten.exp]
triton_poi_fused_abs_exp_mean_neg_sub_1.run(arg1_1, buf2, 48, grid=grid(48), stream=stream0)
del arg1_1
buf1 = empty_strided_cuda((), (), torch.float32)
buf4 = buf1; del buf1 # reuse
# Topologically Sorted Source Nodes: [idepth_dx, image_dx, abs_1, mean, neg, weights_x, mul, smoothness_x, mean_2, idepth_dy, image_dy, abs_2, mean_1, neg_1, weights_y, mul_1, smoothness_y, mean_3, add], Original ATen: [aten.sub, aten.abs, aten.mean, aten.neg, aten.exp, aten.mul, aten.add]
triton_per_fused_abs_add_exp_mean_mul_neg_sub_2.run(buf4, arg0_1, buf0, buf2, 1, 192, grid=grid(1), stream=stream0)
del arg0_1
del buf0
del buf2
return (buf4, )
def benchmark_compiled_module(times=10, repeat=10):
from torch._dynamo.testing import rand_strided
from torch._inductor.utils import print_performance
arg0_1 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32)
arg1_1 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32)
fn = lambda: call([arg0_1, arg1_1])
return print_performance(fn, times=times, repeat=repeat)
if __name__ == "__main__":
from torch._inductor.wrapper_benchmark import compiled_module_main
compiled_module_main('None', benchmark_compiled_module)
|
import torch
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
from torch._inductor.runtime.triton_helpers import math as tl_math
import torch.nn as nn
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
@triton.jit
def triton_poi_fused_abs_exp_mean_neg_sub_0(in_ptr0, out_ptr0, xnumel,
XBLOCK: tl.constexpr):
xnumel = 48
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex % 3
x1 = xindex // 3 % 4
x2 = xindex // 12
x3 = xindex
tmp0 = tl.load(in_ptr0 + (x0 + 4 * x1 + 64 * x2), xmask)
tmp1 = tl.load(in_ptr0 + (1 + x0 + 4 * x1 + 64 * x2), xmask)
tmp4 = tl.load(in_ptr0 + (16 + x0 + 4 * x1 + 64 * x2), xmask)
tmp5 = tl.load(in_ptr0 + (17 + x0 + 4 * x1 + 64 * x2), xmask)
tmp9 = tl.load(in_ptr0 + (32 + x0 + 4 * x1 + 64 * x2), xmask)
tmp10 = tl.load(in_ptr0 + (33 + x0 + 4 * x1 + 64 * x2), xmask)
tmp14 = tl.load(in_ptr0 + (48 + x0 + 4 * x1 + 64 * x2), xmask)
tmp15 = tl.load(in_ptr0 + (49 + x0 + 4 * x1 + 64 * x2), xmask)
tmp2 = tmp0 - tmp1
tmp3 = tl_math.abs(tmp2)
tmp6 = tmp4 - tmp5
tmp7 = tl_math.abs(tmp6)
tmp8 = tmp3 + tmp7
tmp11 = tmp9 - tmp10
tmp12 = tl_math.abs(tmp11)
tmp13 = tmp8 + tmp12
tmp16 = tmp14 - tmp15
tmp17 = tl_math.abs(tmp16)
tmp18 = tmp13 + tmp17
tmp19 = 4.0
tmp20 = tmp18 / tmp19
tmp21 = -tmp20
tmp22 = tl_math.exp(tmp21)
tl.store(out_ptr0 + x3, tmp22, xmask)
@triton.jit
def triton_poi_fused_abs_exp_mean_neg_sub_1(in_ptr0, out_ptr0, xnumel,
XBLOCK: tl.constexpr):
xnumel = 48
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex % 12
x1 = xindex // 12
x2 = xindex
tmp0 = tl.load(in_ptr0 + (x0 + 64 * x1), xmask)
tmp1 = tl.load(in_ptr0 + (4 + x0 + 64 * x1), xmask)
tmp4 = tl.load(in_ptr0 + (16 + x0 + 64 * x1), xmask)
tmp5 = tl.load(in_ptr0 + (20 + x0 + 64 * x1), xmask)
tmp9 = tl.load(in_ptr0 + (32 + x0 + 64 * x1), xmask)
tmp10 = tl.load(in_ptr0 + (36 + x0 + 64 * x1), xmask)
tmp14 = tl.load(in_ptr0 + (48 + x0 + 64 * x1), xmask)
tmp15 = tl.load(in_ptr0 + (52 + x0 + 64 * x1), xmask)
tmp2 = tmp0 - tmp1
tmp3 = tl_math.abs(tmp2)
tmp6 = tmp4 - tmp5
tmp7 = tl_math.abs(tmp6)
tmp8 = tmp3 + tmp7
tmp11 = tmp9 - tmp10
tmp12 = tl_math.abs(tmp11)
tmp13 = tmp8 + tmp12
tmp16 = tmp14 - tmp15
tmp17 = tl_math.abs(tmp16)
tmp18 = tmp13 + tmp17
tmp19 = 4.0
tmp20 = tmp18 / tmp19
tmp21 = -tmp20
tmp22 = tl_math.exp(tmp21)
tl.store(out_ptr0 + x2, tmp22, xmask)
@triton.jit
def triton_per_fused_abs_add_exp_mean_mul_neg_sub_2(in_out_ptr0, in_ptr0,
in_ptr1, in_ptr2, xnumel, rnumel, XBLOCK: tl.constexpr):
rnumel = 192
RBLOCK: tl.constexpr = 256
xoffset = tl.program_id(0) * XBLOCK
xoffset + tl.arange(0, XBLOCK)[:, None]
tl.full([XBLOCK, RBLOCK], True, tl.int1)
rindex = tl.arange(0, RBLOCK)[None, :]
rmask = rindex < rnumel
r0 = rindex % 3
r5 = rindex // 3
r3 = rindex // 48
r4 = rindex % 12
r6 = rindex // 12
tmp0 = tl.load(in_ptr0 + (r0 + 4 * r5), rmask, other=0.0)
tmp1 = tl.load(in_ptr0 + (1 + r0 + 4 * r5), rmask, other=0.0)
tmp3 = tl.load(in_ptr1 + (r4 + 12 * r3), rmask, eviction_policy=
'evict_last', other=0.0)
tmp10 = tl.load(in_ptr0 + (r4 + 16 * r6), rmask, other=0.0)
tmp11 = tl.load(in_ptr0 + (4 + r4 + 16 * r6), rmask, other=0.0)
tmp13 = tl.load(in_ptr2 + (r4 + 12 * r3), rmask, eviction_policy=
'evict_last', other=0.0)
tmp2 = tmp0 - tmp1
tmp4 = tmp2 * tmp3
tmp5 = tl_math.abs(tmp4)
tmp6 = tl.broadcast_to(tmp5, [XBLOCK, RBLOCK])
tmp8 = tl.where(rmask, tmp6, 0)
tmp9 = tl.sum(tmp8, 1)[:, None]
tmp12 = tmp10 - tmp11
tmp14 = tmp12 * tmp13
tmp15 = tl_math.abs(tmp14)
tmp16 = tl.broadcast_to(tmp15, [XBLOCK, RBLOCK])
tmp18 = tl.where(rmask, tmp16, 0)
tmp19 = tl.sum(tmp18, 1)[:, None]
tmp20 = 192.0
tmp21 = tmp9 / tmp20
tmp22 = tmp19 / tmp20
tmp23 = tmp21 + tmp22
tl.debug_barrier()
tl.store(in_out_ptr0 + tl.full([XBLOCK, 1], 0, tl.int32), tmp23, None)
def call(args):
arg0_1, arg1_1 = args
args.clear()
assert_size_stride(arg0_1, (4, 4, 4, 4), (64, 16, 4, 1))
assert_size_stride(arg1_1, (4, 4, 4, 4), (64, 16, 4, 1))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((4, 1, 4, 3), (12, 48, 3, 1), torch.float32)
get_raw_stream(0)
triton_poi_fused_abs_exp_mean_neg_sub_0[grid(48)](arg1_1, buf0, 48,
XBLOCK=64, num_warps=1, num_stages=1)
buf2 = empty_strided_cuda((4, 1, 3, 4), (12, 48, 4, 1), torch.float32)
triton_poi_fused_abs_exp_mean_neg_sub_1[grid(48)](arg1_1, buf2, 48,
XBLOCK=64, num_warps=1, num_stages=1)
del arg1_1
buf1 = empty_strided_cuda((), (), torch.float32)
buf4 = buf1
del buf1
triton_per_fused_abs_add_exp_mean_mul_neg_sub_2[grid(1)](buf4,
arg0_1, buf0, buf2, 1, 192, XBLOCK=1, num_warps=2, num_stages=1)
del arg0_1
del buf0
del buf2
return buf4,
def _gradient_x(img: 'torch.Tensor') ->torch.Tensor:
assert len(img.shape) == 4, img.shape
return img[:, :, :, :-1] - img[:, :, :, 1:]
def _gradient_y(img: 'torch.Tensor') ->torch.Tensor:
assert len(img.shape) == 4, img.shape
return img[:, :, :-1, :] - img[:, :, 1:, :]
def inverse_depth_smoothness_loss(idepth: 'torch.Tensor', image: 'torch.Tensor'
) ->torch.Tensor:
"""Criterion that computes image-aware inverse depth smoothness loss.
.. math::
\\text{loss} = \\left | \\partial_x d_{ij} \\right | e^{-\\left \\|
\\partial_x I_{ij} \\right \\|} + \\left |
\\partial_y d_{ij} \\right | e^{-\\left \\| \\partial_y I_{ij} \\right \\|}
Args:
idepth (torch.Tensor): tensor with the inverse depth with shape :math:`(N, 1, H, W)`.
image (torch.Tensor): tensor with the input image with shape :math:`(N, 3, H, W)`.
Return:
torch.Tensor: a scalar with the computed loss.
Examples:
>>> idepth = torch.rand(1, 1, 4, 5)
>>> image = torch.rand(1, 3, 4, 5)
>>> loss = inverse_depth_smoothness_loss(idepth, image)
"""
if not isinstance(idepth, torch.Tensor):
raise TypeError('Input idepth type is not a torch.Tensor. Got {}'.
format(type(idepth)))
if not isinstance(image, torch.Tensor):
raise TypeError('Input image type is not a torch.Tensor. Got {}'.
format(type(image)))
if not len(idepth.shape) == 4:
raise ValueError('Invalid idepth shape, we expect BxCxHxW. Got: {}'
.format(idepth.shape))
if not len(image.shape) == 4:
raise ValueError('Invalid image shape, we expect BxCxHxW. Got: {}'.
format(image.shape))
if not idepth.shape[-2:] == image.shape[-2:]:
raise ValueError(
'idepth and image shapes must be the same. Got: {} and {}'.
format(idepth.shape, image.shape))
if not idepth.device == image.device:
raise ValueError(
'idepth and image must be in the same device. Got: {} and {}'.
format(idepth.device, image.device))
if not idepth.dtype == image.dtype:
raise ValueError(
'idepth and image must be in the same dtype. Got: {} and {}'.
format(idepth.dtype, image.dtype))
idepth_dx: 'torch.Tensor' = _gradient_x(idepth)
idepth_dy: 'torch.Tensor' = _gradient_y(idepth)
image_dx: 'torch.Tensor' = _gradient_x(image)
image_dy: 'torch.Tensor' = _gradient_y(image)
weights_x: 'torch.Tensor' = torch.exp(-torch.mean(torch.abs(image_dx),
dim=1, keepdim=True))
weights_y: 'torch.Tensor' = torch.exp(-torch.mean(torch.abs(image_dy),
dim=1, keepdim=True))
smoothness_x: 'torch.Tensor' = torch.abs(idepth_dx * weights_x)
smoothness_y: 'torch.Tensor' = torch.abs(idepth_dy * weights_y)
return torch.mean(smoothness_x) + torch.mean(smoothness_y)
class InverseDepthSmoothnessLossNew(nn.Module):
"""Criterion that computes image-aware inverse depth smoothness loss.
.. math::
\\text{loss} = \\left | \\partial_x d_{ij} \\right | e^{-\\left \\|
\\partial_x I_{ij} \\right \\|} + \\left |
\\partial_y d_{ij} \\right | e^{-\\left \\| \\partial_y I_{ij} \\right \\|}
Shape:
- Inverse Depth: :math:`(N, 1, H, W)`
- Image: :math:`(N, 3, H, W)`
- Output: scalar
Examples:
>>> idepth = torch.rand(1, 1, 4, 5)
>>> image = torch.rand(1, 3, 4, 5)
>>> smooth = InverseDepthSmoothnessLoss()
>>> loss = smooth(idepth, image)
"""
def forward(self, input_0, input_1):
arg0_1 = input_0
arg1_1 = input_1
output = call([arg0_1, arg1_1])
return output[0]
|
JoanFM/kornia
|
InverseDepthSmoothnessLoss
| false | 11,551 |
[
"ECL-2.0",
"Apache-2.0"
] | 0 |
808898887cde69074ca3e3df9b24dea9682aad90
|
https://github.com/JoanFM/kornia/tree/808898887cde69074ca3e3df9b24dea9682aad90
|
PolicyNetwork
|
import torch
import torch.nn as nn
import torch.nn.functional as F
class PolicyNetwork(nn.Module):
def __init__(self, num_inputs, num_actions, hidden_size=256):
super(PolicyNetwork, self).__init__()
self.num_actions = num_actions
self.linear1 = nn.Linear(num_inputs, hidden_size)
self.linear2 = nn.Linear(hidden_size, num_actions)
def forward(self, state):
x = F.relu(self.linear1(state))
x = F.softmax(self.linear2(x), dim=1)
return x
def get_inputs():
return [torch.rand([4, 4, 4, 4])]
def get_init_inputs():
return [[], {'num_inputs': 4, 'num_actions': 4}]
|
import torch
from torch._inductor.select_algorithm import extern_kernels
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
from torch._inductor.runtime import triton_helpers
from torch._inductor.runtime.triton_helpers import math as tl_math
import torch.nn as nn
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
@triton.jit
def triton_poi_fused_relu_threshold_backward_0(in_out_ptr0, in_ptr0,
out_ptr0, xnumel, XBLOCK: tl.constexpr):
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
tl.full([XBLOCK], True, tl.int1)
x2 = xindex
x0 = xindex % 256
tmp0 = tl.load(in_out_ptr0 + x2, None)
tmp1 = tl.load(in_ptr0 + x0, None, eviction_policy='evict_last')
tmp2 = tmp0 + tmp1
tmp3 = tl.full([1], 0, tl.int32)
tmp4 = triton_helpers.maximum(tmp3, tmp2)
tmp5 = 0.0
tmp6 = tmp4 <= tmp5
tl.store(in_out_ptr0 + x2, tmp4, None)
tl.store(out_ptr0 + x2, tmp6, None)
@triton.jit
def triton_poi_fused__softmax_1(in_ptr0, out_ptr0, xnumel, XBLOCK: tl.constexpr
):
xnumel = 256
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x3 = xindex
x0 = xindex % 16
x2 = xindex // 64
tmp0 = tl.load(in_ptr0 + x3, xmask)
tmp1 = tl.load(in_ptr0 + (x0 + 64 * x2), xmask, eviction_policy=
'evict_last')
tmp2 = tl.load(in_ptr0 + (16 + x0 + 64 * x2), xmask, eviction_policy=
'evict_last')
tmp4 = tl.load(in_ptr0 + (32 + x0 + 64 * x2), xmask, eviction_policy=
'evict_last')
tmp6 = tl.load(in_ptr0 + (48 + x0 + 64 * x2), xmask, eviction_policy=
'evict_last')
tmp3 = triton_helpers.maximum(tmp1, tmp2)
tmp5 = triton_helpers.maximum(tmp3, tmp4)
tmp7 = triton_helpers.maximum(tmp5, tmp6)
tmp8 = tmp0 - tmp7
tmp9 = tl_math.exp(tmp8)
tl.store(out_ptr0 + x3, tmp9, xmask)
@triton.jit
def triton_poi_fused__softmax_2(in_ptr0, out_ptr0, xnumel, XBLOCK: tl.constexpr
):
xnumel = 256
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x3 = xindex
x0 = xindex % 16
x2 = xindex // 64
tmp0 = tl.load(in_ptr0 + x3, xmask)
tmp1 = tl.load(in_ptr0 + (x0 + 64 * x2), xmask, eviction_policy=
'evict_last')
tmp2 = tl.load(in_ptr0 + (16 + x0 + 64 * x2), xmask, eviction_policy=
'evict_last')
tmp4 = tl.load(in_ptr0 + (32 + x0 + 64 * x2), xmask, eviction_policy=
'evict_last')
tmp6 = tl.load(in_ptr0 + (48 + x0 + 64 * x2), xmask, eviction_policy=
'evict_last')
tmp3 = tmp1 + tmp2
tmp5 = tmp3 + tmp4
tmp7 = tmp5 + tmp6
tmp8 = tmp0 / tmp7
tl.store(out_ptr0 + x3, tmp8, xmask)
def call(args):
primals_1, primals_2, primals_3, primals_4, primals_5 = args
args.clear()
assert_size_stride(primals_1, (256, 4), (4, 1))
assert_size_stride(primals_2, (256,), (1,))
assert_size_stride(primals_3, (4, 4, 4, 4), (64, 16, 4, 1))
assert_size_stride(primals_4, (4, 256), (256, 1))
assert_size_stride(primals_5, (4,), (1,))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((64, 256), (256, 1), torch.float32)
extern_kernels.mm(reinterpret_tensor(primals_3, (64, 4), (4, 1), 0),
reinterpret_tensor(primals_1, (4, 256), (1, 4), 0), out=buf0)
del primals_1
buf1 = reinterpret_tensor(buf0, (4, 4, 4, 256), (4096, 1024, 256, 1), 0
)
del buf0
buf5 = empty_strided_cuda((4, 4, 4, 256), (4096, 1024, 256, 1),
torch.bool)
get_raw_stream(0)
triton_poi_fused_relu_threshold_backward_0[grid(16384)](buf1,
primals_2, buf5, 16384, XBLOCK=128, num_warps=4, num_stages=1)
del primals_2
buf2 = empty_strided_cuda((64, 4), (4, 1), torch.float32)
extern_kernels.addmm(primals_5, reinterpret_tensor(buf1, (64, 256),
(256, 1), 0), reinterpret_tensor(primals_4, (256, 4), (1, 256),
0), alpha=1, beta=1, out=buf2)
del primals_5
buf3 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32)
triton_poi_fused__softmax_1[grid(256)](buf2, buf3, 256, XBLOCK=256,
num_warps=4, num_stages=1)
buf4 = reinterpret_tensor(buf2, (4, 4, 4, 4), (64, 16, 4, 1), 0)
del buf2
triton_poi_fused__softmax_2[grid(256)](buf3, buf4, 256, XBLOCK=256,
num_warps=4, num_stages=1)
del buf3
return buf4, reinterpret_tensor(primals_3, (64, 4), (4, 1), 0
), reinterpret_tensor(buf1, (64, 256), (256, 1), 0
), buf4, primals_4, buf5
class PolicyNetworkNew(nn.Module):
def __init__(self, num_inputs, num_actions, hidden_size=256):
super(PolicyNetworkNew, self).__init__()
self.num_actions = num_actions
self.linear1 = nn.Linear(num_inputs, hidden_size)
self.linear2 = nn.Linear(hidden_size, num_actions)
def forward(self, input_0):
primals_1 = self.linear1.weight
primals_2 = self.linear1.bias
primals_4 = self.linear2.weight
primals_5 = self.linear2.bias
primals_3 = input_0
output = call([primals_1, primals_2, primals_3, primals_4, primals_5])
return output[0]
|
bluebibi/rl_book_codes
|
PolicyNetwork
| false | 3,228 |
[
"MIT"
] | 0 |
ef7fc9993eb66618e4b4e80e59cc2879a8db3522
|
https://github.com/bluebibi/rl_book_codes/tree/ef7fc9993eb66618e4b4e80e59cc2879a8db3522
|
SemiNorm
|
import torch
import torch.nn as nn
from torch.nn.utils import spectral_norm
import torch.jit
import torch.nn
from torch.nn.utils.spectral_norm import spectral_norm
class SemiNorm(nn.Module):
def __init__(self, in_size, normalization=None):
super().__init__()
normalization = normalization or spectral_norm
self.norm = nn.Linear(2 * in_size, in_size)
self.bn = nn.LayerNorm(in_size)
def forward(self, inputs):
out = inputs.view(inputs.size(0), inputs.size(1), -1)
mean = out.mean(dim=-1)
std = out.std(dim=-1)
out = self.bn(inputs)
out = out.view(out.size(0), out.size(1), -1)
features = self.norm(torch.cat((mean, std), dim=1))
out = out + features.unsqueeze(-1)
return out.view(inputs.shape)
def get_inputs():
return [torch.rand([4, 4, 4, 4])]
def get_init_inputs():
return [[], {'in_size': 4}]
|
import torch
from torch._inductor.select_algorithm import extern_kernels
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
from torch._inductor.runtime.triton_helpers import libdevice
import torch.nn as nn
from torch.nn.utils import spectral_norm
import torch.jit
import torch.nn
from torch.nn.utils.spectral_norm import spectral_norm
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
@triton.jit
def triton_per_fused_mean_std_0(in_ptr0, out_ptr2, out_ptr3, xnumel, rnumel,
XBLOCK: tl.constexpr):
xnumel = 16
RBLOCK: tl.constexpr = 16
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:, None]
xmask = xindex < xnumel
rindex = tl.arange(0, RBLOCK)[None, :]
tl.full([XBLOCK, RBLOCK], True, tl.int1)
r1 = rindex
x0 = xindex
x2 = xindex % 4
x3 = xindex // 4
tmp0 = tl.load(in_ptr0 + (r1 + 16 * x0), xmask, other=0.0)
tmp1 = tl.broadcast_to(tmp0, [XBLOCK, RBLOCK])
tmp3 = tl.where(xmask, tmp1, 0)
tmp4 = tl.sum(tmp3, 1)[:, None]
tmp6 = tl.broadcast_to(tmp1, [XBLOCK, RBLOCK])
tmp8 = tl.where(xmask, tmp6, 0)
tmp9 = tl.sum(tmp8, 1)[:, None]
tmp10 = tl.full([XBLOCK, 1], 16, tl.int32)
tmp11 = tmp10.to(tl.float32)
tmp12 = tmp9 / tmp11
tmp13 = tmp1 - tmp12
tmp14 = tmp13 * tmp13
tmp15 = tl.broadcast_to(tmp14, [XBLOCK, RBLOCK])
tmp17 = tl.where(xmask, tmp15, 0)
tmp18 = tl.sum(tmp17, 1)[:, None]
tmp19 = 16.0
tmp20 = tmp4 / tmp19
tmp21 = 15.0
tmp22 = tmp18 / tmp21
tmp23 = libdevice.sqrt(tmp22)
tl.store(out_ptr2 + (x2 + 8 * x3), tmp20, xmask)
tl.store(out_ptr3 + (x2 + 8 * x3), tmp23, xmask)
@triton.jit
def triton_poi_fused_native_layer_norm_1(in_ptr0, out_ptr0, out_ptr1,
xnumel, XBLOCK: tl.constexpr):
xnumel = 64
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex
tmp0 = tl.load(in_ptr0 + 4 * x0, xmask, eviction_policy='evict_last')
tmp1 = tl.load(in_ptr0 + (1 + 4 * x0), xmask, eviction_policy='evict_last')
tmp3 = tl.load(in_ptr0 + (2 + 4 * x0), xmask, eviction_policy='evict_last')
tmp5 = tl.load(in_ptr0 + (3 + 4 * x0), xmask, eviction_policy='evict_last')
tmp2 = tmp0 + tmp1
tmp4 = tmp2 + tmp3
tmp6 = tmp4 + tmp5
tmp7 = 4.0
tmp8 = tmp6 / tmp7
tmp9 = tmp0 - tmp8
tmp10 = tmp9 * tmp9
tmp11 = tmp1 - tmp8
tmp12 = tmp11 * tmp11
tmp13 = tmp10 + tmp12
tmp14 = tmp3 - tmp8
tmp15 = tmp14 * tmp14
tmp16 = tmp13 + tmp15
tmp17 = tmp5 - tmp8
tmp18 = tmp17 * tmp17
tmp19 = tmp16 + tmp18
tmp20 = tmp19 / tmp7
tmp21 = 1e-05
tmp22 = tmp20 + tmp21
tmp23 = libdevice.rsqrt(tmp22)
tl.store(out_ptr0 + x0, tmp8, xmask)
tl.store(out_ptr1 + x0, tmp23, xmask)
@triton.jit
def triton_poi_fused_add_2(in_ptr0, in_ptr1, in_ptr2, in_ptr3, in_ptr4,
in_ptr5, in_ptr6, out_ptr0, xnumel, XBLOCK: tl.constexpr):
xnumel = 256
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x3 = xindex
x4 = xindex // 16
x1 = xindex // 16 % 4
tmp0 = tl.load(in_ptr0 + x3, xmask)
tmp1 = tl.load(in_ptr1 + x3 // 4, xmask, eviction_policy='evict_last')
tmp3 = tl.load(in_ptr2 + x3 // 4, xmask, eviction_policy='evict_last')
tmp5 = tl.load(in_ptr3 + x3 % 4, xmask, eviction_policy='evict_last')
tmp7 = tl.load(in_ptr4 + x3 % 4, xmask, eviction_policy='evict_last')
tmp9 = tl.load(in_ptr5 + x4, xmask, eviction_policy='evict_last')
tmp10 = tl.load(in_ptr6 + x1, xmask, eviction_policy='evict_last')
tmp2 = tmp0 - tmp1
tmp4 = tmp2 * tmp3
tmp6 = tmp4 * tmp5
tmp8 = tmp6 + tmp7
tmp11 = tmp9 + tmp10
tmp12 = tmp8 + tmp11
tl.store(out_ptr0 + x3, tmp12, xmask)
def call(args):
primals_1, primals_2, primals_3, primals_4, primals_5 = args
args.clear()
assert_size_stride(primals_1, (4, 4, 4, 4), (64, 16, 4, 1))
assert_size_stride(primals_2, (4,), (1,))
assert_size_stride(primals_3, (4,), (1,))
assert_size_stride(primals_4, (4, 8), (8, 1))
assert_size_stride(primals_5, (4,), (1,))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf8 = empty_strided_cuda((4, 8), (8, 1), torch.float32)
buf6 = reinterpret_tensor(buf8, (4, 4), (8, 1), 0)
buf7 = reinterpret_tensor(buf8, (4, 4), (8, 1), 4)
get_raw_stream(0)
triton_per_fused_mean_std_0[grid(16)](primals_1, buf6, buf7, 16, 16,
XBLOCK=1, num_warps=2, num_stages=1)
buf4 = empty_strided_cuda((4, 4, 4, 1), (16, 4, 1, 64), torch.float32)
buf5 = empty_strided_cuda((4, 4, 4, 1), (16, 4, 1, 64), torch.float32)
triton_poi_fused_native_layer_norm_1[grid(64)](primals_1, buf4,
buf5, 64, XBLOCK=64, num_warps=1, num_stages=1)
buf9 = empty_strided_cuda((4, 4), (4, 1), torch.float32)
extern_kernels.mm(buf8, reinterpret_tensor(primals_4, (8, 4), (1, 8
), 0), out=buf9)
del primals_4
buf10 = empty_strided_cuda((4, 4, 16), (64, 16, 1), torch.float32)
triton_poi_fused_add_2[grid(256)](primals_1, buf4, buf5, primals_2,
primals_3, buf9, primals_5, buf10, 256, XBLOCK=256, num_warps=4,
num_stages=1)
del buf4
del buf5
del buf9
del primals_2
del primals_3
del primals_5
return reinterpret_tensor(buf10, (4, 4, 4, 4), (64, 16, 4, 1), 0
), primals_1, buf8
class SemiNormNew(nn.Module):
def __init__(self, in_size, normalization=None):
super().__init__()
normalization = normalization or spectral_norm
self.norm = nn.Linear(2 * in_size, in_size)
self.bn = nn.LayerNorm(in_size)
def forward(self, input_0):
primals_4 = self.norm.weight
primals_2 = self.norm.bias
primals_3 = self.bn.weight
primals_5 = self.bn.bias
primals_1 = input_0
output = call([primals_1, primals_2, primals_3, primals_4, primals_5])
return output[0]
|
ankmathur96/torchsupport
|
SemiNorm
| false | 3,170 |
[
"MIT"
] | 0 |
77bf4a90b8770a408665e2604428808c3ed2f979
|
https://github.com/ankmathur96/torchsupport/tree/77bf4a90b8770a408665e2604428808c3ed2f979
|
Head
|
import torch
import torch.nn as nn
class Conv(nn.Module):
def __init__(self, filters0, filters1, kernel_size, bn, bias=True):
super().__init__()
if bn:
bias = False
self.conv = nn.Conv2d(filters0, filters1, kernel_size, stride=1,
padding=kernel_size // 2, bias=bias)
self.bn = nn.BatchNorm2d(filters1) if bn else None
def forward(self, x):
h = self.conv(x)
if self.bn is not None:
h = self.bn(h)
return h
class Head(nn.Module):
def __init__(self, input_size, out_filters, outputs):
super().__init__()
self.board_size = input_size[1] * input_size[2]
self.out_filters = out_filters
self.conv = Conv(input_size[0], out_filters, 1, bn=False)
self.activation = nn.LeakyReLU(0.1)
self.fc = nn.Linear(self.board_size * out_filters, outputs, bias=False)
def forward(self, x):
h = self.activation(self.conv(x))
h = self.fc(h.view(-1, self.board_size * self.out_filters))
return h
def get_inputs():
return [torch.rand([4, 4, 4, 4])]
def get_init_inputs():
return [[], {'input_size': [4, 4, 4], 'out_filters': 4, 'outputs': 4}]
|
import torch
from torch._inductor.select_algorithm import extern_kernels
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
import torch.nn as nn
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
@triton.jit
def triton_poi_fused_convolution_leaky_relu_0(in_ptr0, in_ptr1, out_ptr0,
out_ptr1, xnumel, XBLOCK: tl.constexpr):
xnumel = 256
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x3 = xindex
x1 = xindex // 16 % 4
tmp0 = tl.load(in_ptr0 + x3, xmask)
tmp1 = tl.load(in_ptr1 + x1, xmask, eviction_policy='evict_last')
tmp2 = tmp0 + tmp1
tmp3 = 0.0
tmp4 = tmp2 > tmp3
tmp5 = 0.1
tmp6 = tmp2 * tmp5
tmp7 = tl.where(tmp4, tmp2, tmp6)
tl.store(out_ptr0 + x3, tmp4, xmask)
tl.store(out_ptr1 + x3, tmp7, xmask)
def call(args):
primals_1, primals_2, primals_3, primals_4 = args
args.clear()
assert_size_stride(primals_1, (4, 4, 1, 1), (4, 1, 1, 1))
assert_size_stride(primals_2, (4,), (1,))
assert_size_stride(primals_3, (4, 4, 4, 4), (64, 16, 4, 1))
assert_size_stride(primals_4, (4, 64), (64, 1))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = extern_kernels.convolution(primals_3, primals_1, stride=(1,
1), padding=(0, 0), dilation=(1, 1), transposed=False,
output_padding=(0, 0), groups=1, bias=None)
assert_size_stride(buf0, (4, 4, 4, 4), (64, 16, 4, 1))
buf1 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.bool)
buf2 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32)
get_raw_stream(0)
triton_poi_fused_convolution_leaky_relu_0[grid(256)](buf0,
primals_2, buf1, buf2, 256, XBLOCK=256, num_warps=4, num_stages=1)
del buf0
del primals_2
buf3 = empty_strided_cuda((4, 4), (4, 1), torch.float32)
extern_kernels.mm(reinterpret_tensor(buf2, (4, 64), (64, 1), 0),
reinterpret_tensor(primals_4, (64, 4), (1, 64), 0), out=buf3)
return buf3, primals_1, primals_3, buf1, reinterpret_tensor(buf2, (4,
64), (64, 1), 0), primals_4
class Conv(nn.Module):
def __init__(self, filters0, filters1, kernel_size, bn, bias=True):
super().__init__()
if bn:
bias = False
self.conv = nn.Conv2d(filters0, filters1, kernel_size, stride=1,
padding=kernel_size // 2, bias=bias)
self.bn = nn.BatchNorm2d(filters1) if bn else None
def forward(self, x):
h = self.conv(x)
if self.bn is not None:
h = self.bn(h)
return h
class HeadNew(nn.Module):
def __init__(self, input_size, out_filters, outputs):
super().__init__()
self.board_size = input_size[1] * input_size[2]
self.out_filters = out_filters
self.conv = Conv(input_size[0], out_filters, 1, bn=False)
self.activation = nn.LeakyReLU(0.1)
self.fc = nn.Linear(self.board_size * out_filters, outputs, bias=False)
def forward(self, input_0):
primals_1 = self.conv.conv.weight
primals_2 = self.conv.conv.bias
primals_4 = self.fc.weight
primals_3 = input_0
output = call([primals_1, primals_2, primals_3, primals_4])
return output[0]
|
IMOKURI/Hungry-Geese
|
Head
| false | 9,336 |
[
"MIT"
] | 0 |
5e770b3278452c2ba4006c18a43a16d572c636ac
|
https://github.com/IMOKURI/Hungry-Geese/tree/5e770b3278452c2ba4006c18a43a16d572c636ac
|
DilatedGatedConv1D
|
# AOT ID: ['0_forward']
from ctypes import c_void_p, c_long, c_int
import torch
import math
import random
import os
import tempfile
from math import inf, nan
from torch._inductor.hooks import run_intermediate_hooks
from torch._inductor.utils import maybe_profile
from torch._inductor.codegen.memory_planning import _align as align
from torch import device, empty_strided
from torch._inductor.async_compile import AsyncCompile
from torch._inductor.select_algorithm import extern_kernels
from torch._inductor.codegen.multi_kernel import MultiKernelCall
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
aten = torch.ops.aten
inductor_ops = torch.ops.inductor
_quantized = torch.ops._quantized
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
alloc_from_pool = torch.ops.inductor._alloc_from_pool
async_compile = AsyncCompile()
# kernel path: runs/run_shard_0/inductor_cache/iu/ciuxern2omgit5ovksuiwlddxkww6e3pkid4q2h3sauzn5rbd35z.py
# Topologically Sorted Source Nodes: [conv1d], Original ATen: [aten.convolution]
# Source node to ATen node mapping:
# conv1d => convolution
# Graph fragment:
# %convolution : [num_users=2] = call_function[target=torch.ops.aten.convolution.default](args = (%permute, %primals_2, %primals_3, [1], [1], [1], False, [0], 1), kwargs = {})
triton_poi_fused_convolution_0 = async_compile.triton('triton_poi_fused_convolution_0', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[16, 4], tile_hint=TileHint.SQUARE,
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_convolution_0', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 1, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_convolution_0(in_ptr0, out_ptr0, ynumel, xnumel, YBLOCK : tl.constexpr, XBLOCK : tl.constexpr):
ynumel = 16
xnumel = 4
yoffset = tl.program_id(1) * YBLOCK
yindex = yoffset + tl.arange(0, YBLOCK)[None, :]
ymask = yindex < ynumel
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:, None]
xmask = xindex < xnumel
x2 = xindex
y0 = yindex % 4
y1 = (yindex // 4)
y3 = yindex
tmp0 = tl.load(in_ptr0 + (y0 + (4*x2) + (16*y1)), xmask & ymask, eviction_policy='evict_last')
tl.store(out_ptr0 + (x2 + (4*y3)), tmp0, xmask & ymask)
''', device_str='cuda')
# kernel path: runs/run_shard_0/inductor_cache/xd/cxdkgesb6qc4hbcvbeerj4gwfolzo6uujsc7nr7gmmdljjywjmd6.py
# Topologically Sorted Source Nodes: [conv1d], Original ATen: [aten.convolution]
# Source node to ATen node mapping:
# conv1d => convolution
# Graph fragment:
# %convolution : [num_users=2] = call_function[target=torch.ops.aten.convolution.default](args = (%permute, %primals_2, %primals_3, [1], [1], [1], False, [0], 1), kwargs = {})
triton_poi_fused_convolution_1 = async_compile.triton('triton_poi_fused_convolution_1', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[128],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_convolution_1', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_convolution_1(in_out_ptr0, in_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 128
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x3 = xindex
x1 = (xindex // 4) % 8
tmp0 = tl.load(in_out_ptr0 + (x3), xmask)
tmp1 = tl.load(in_ptr0 + (x1), xmask, eviction_policy='evict_last')
tmp2 = tmp0 + tmp1
tl.store(in_out_ptr0 + (x3), tmp2, xmask)
''', device_str='cuda')
# kernel path: runs/run_shard_0/inductor_cache/du/cduiwo37rwoxi2gcv7vm5njuipbt3s73osilncnhdi4hqe6v73w3.py
# Topologically Sorted Source Nodes: [dropout, x1_1, sub, mul, mul_1, add], Original ATen: [aten.clone, aten.sigmoid, aten.rsub, aten.mul, aten.add]
# Source node to ATen node mapping:
# add => add
# dropout => clone
# mul => mul
# mul_1 => mul_1
# sub => sub
# x1_1 => sigmoid
# Graph fragment:
# %clone : [num_users=1] = call_function[target=torch.ops.aten.clone.default](args = (%slice_3,), kwargs = {})
# %sigmoid : [num_users=2] = call_function[target=torch.ops.aten.sigmoid.default](args = (%clone,), kwargs = {})
# %sub : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (1, %sigmoid), kwargs = {})
# %mul : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%primals_1, %sub), kwargs = {})
# %mul_1 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%slice_6, %sigmoid), kwargs = {})
# %add : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%mul, %mul_1), kwargs = {})
triton_poi_fused_add_clone_mul_rsub_sigmoid_2 = async_compile.triton('triton_poi_fused_add_clone_mul_rsub_sigmoid_2', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[16, 4], tile_hint=TileHint.DEFAULT,
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: 'i32', 4: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_add_clone_mul_rsub_sigmoid_2', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 3, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_add_clone_mul_rsub_sigmoid_2(in_ptr0, in_ptr1, out_ptr0, ynumel, xnumel, YBLOCK : tl.constexpr, XBLOCK : tl.constexpr):
ynumel = 16
xnumel = 4
yoffset = tl.program_id(1) * YBLOCK
yindex = yoffset + tl.arange(0, YBLOCK)[None, :]
ymask = yindex < ynumel
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:, None]
xmask = xindex < xnumel
x2 = xindex
y0 = yindex % 4
y1 = (yindex // 4)
tmp0 = tl.load(in_ptr0 + (y0 + (4*x2) + (16*y1)), xmask & ymask, eviction_policy='evict_last')
tmp1 = tl.load(in_ptr1 + (x2 + (4*y0) + (32*y1)), xmask & ymask, eviction_policy='evict_last')
tmp6 = tl.load(in_ptr1 + (16 + x2 + (4*y0) + (32*y1)), xmask & ymask, eviction_policy='evict_last')
tmp2 = tl.sigmoid(tmp1)
tmp3 = 1.0
tmp4 = tmp3 - tmp2
tmp5 = tmp0 * tmp4
tmp7 = tmp6 * tmp2
tmp8 = tmp5 + tmp7
tl.store(out_ptr0 + (y0 + (4*x2) + (16*y1)), tmp8, xmask & ymask)
''', device_str='cuda')
async_compile.wait(globals())
del async_compile
def call(args):
primals_1, primals_2, primals_3 = args
args.clear()
assert_size_stride(primals_1, (4, 4, 4), (16, 4, 1))
assert_size_stride(primals_2, (8, 4, 3), (12, 3, 1))
assert_size_stride(primals_3, (8, ), (1, ))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((4, 4, 4), (16, 4, 1), torch.float32)
# Topologically Sorted Source Nodes: [conv1d], Original ATen: [aten.convolution]
stream0 = get_raw_stream(0)
triton_poi_fused_convolution_0.run(primals_1, buf0, 16, 4, grid=grid(16, 4), stream=stream0)
# Topologically Sorted Source Nodes: [conv1d], Original ATen: [aten.convolution]
buf1 = extern_kernels.convolution(buf0, primals_2, stride=(1,), padding=(1,), dilation=(1,), transposed=False, output_padding=(0,), groups=1, bias=None)
assert_size_stride(buf1, (4, 8, 4), (32, 4, 1))
buf2 = buf1; del buf1 # reuse
# Topologically Sorted Source Nodes: [conv1d], Original ATen: [aten.convolution]
triton_poi_fused_convolution_1.run(buf2, primals_3, 128, grid=grid(128), stream=stream0)
del primals_3
buf3 = buf0; del buf0 # reuse
# Topologically Sorted Source Nodes: [dropout, x1_1, sub, mul, mul_1, add], Original ATen: [aten.clone, aten.sigmoid, aten.rsub, aten.mul, aten.add]
triton_poi_fused_add_clone_mul_rsub_sigmoid_2.run(primals_1, buf2, buf3, 16, 4, grid=grid(16, 4), stream=stream0)
return (buf3, primals_1, primals_2, buf2, )
def benchmark_compiled_module(times=10, repeat=10):
from torch._dynamo.testing import rand_strided
from torch._inductor.utils import print_performance
primals_1 = rand_strided((4, 4, 4), (16, 4, 1), device='cuda:0', dtype=torch.float32)
primals_2 = rand_strided((8, 4, 3), (12, 3, 1), device='cuda:0', dtype=torch.float32)
primals_3 = rand_strided((8, ), (1, ), device='cuda:0', dtype=torch.float32)
fn = lambda: call([primals_1, primals_2, primals_3])
return print_performance(fn, times=times, repeat=repeat)
if __name__ == "__main__":
from torch._inductor.wrapper_benchmark import compiled_module_main
compiled_module_main('None', benchmark_compiled_module)
|
import torch
from torch._inductor.select_algorithm import extern_kernels
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
import torch.nn as nn
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
@triton.jit
def triton_poi_fused_convolution_0(in_ptr0, out_ptr0, ynumel, xnumel,
YBLOCK: tl.constexpr, XBLOCK: tl.constexpr):
ynumel = 16
xnumel = 4
yoffset = tl.program_id(1) * YBLOCK
yindex = yoffset + tl.arange(0, YBLOCK)[None, :]
ymask = yindex < ynumel
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:, None]
xmask = xindex < xnumel
x2 = xindex
y0 = yindex % 4
y1 = yindex // 4
y3 = yindex
tmp0 = tl.load(in_ptr0 + (y0 + 4 * x2 + 16 * y1), xmask & ymask,
eviction_policy='evict_last')
tl.store(out_ptr0 + (x2 + 4 * y3), tmp0, xmask & ymask)
@triton.jit
def triton_poi_fused_convolution_1(in_out_ptr0, in_ptr0, xnumel, XBLOCK: tl
.constexpr):
xnumel = 128
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x3 = xindex
x1 = xindex // 4 % 8
tmp0 = tl.load(in_out_ptr0 + x3, xmask)
tmp1 = tl.load(in_ptr0 + x1, xmask, eviction_policy='evict_last')
tmp2 = tmp0 + tmp1
tl.store(in_out_ptr0 + x3, tmp2, xmask)
@triton.jit
def triton_poi_fused_add_clone_mul_rsub_sigmoid_2(in_ptr0, in_ptr1,
out_ptr0, ynumel, xnumel, YBLOCK: tl.constexpr, XBLOCK: tl.constexpr):
ynumel = 16
xnumel = 4
yoffset = tl.program_id(1) * YBLOCK
yindex = yoffset + tl.arange(0, YBLOCK)[None, :]
ymask = yindex < ynumel
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:, None]
xmask = xindex < xnumel
x2 = xindex
y0 = yindex % 4
y1 = yindex // 4
tmp0 = tl.load(in_ptr0 + (y0 + 4 * x2 + 16 * y1), xmask & ymask,
eviction_policy='evict_last')
tmp1 = tl.load(in_ptr1 + (x2 + 4 * y0 + 32 * y1), xmask & ymask,
eviction_policy='evict_last')
tmp6 = tl.load(in_ptr1 + (16 + x2 + 4 * y0 + 32 * y1), xmask & ymask,
eviction_policy='evict_last')
tmp2 = tl.sigmoid(tmp1)
tmp3 = 1.0
tmp4 = tmp3 - tmp2
tmp5 = tmp0 * tmp4
tmp7 = tmp6 * tmp2
tmp8 = tmp5 + tmp7
tl.store(out_ptr0 + (y0 + 4 * x2 + 16 * y1), tmp8, xmask & ymask)
def call(args):
primals_1, primals_2, primals_3 = args
args.clear()
assert_size_stride(primals_1, (4, 4, 4), (16, 4, 1))
assert_size_stride(primals_2, (8, 4, 3), (12, 3, 1))
assert_size_stride(primals_3, (8,), (1,))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((4, 4, 4), (16, 4, 1), torch.float32)
get_raw_stream(0)
triton_poi_fused_convolution_0[grid(16, 4)](primals_1, buf0, 16, 4,
XBLOCK=4, YBLOCK=16, num_warps=1, num_stages=1)
buf1 = extern_kernels.convolution(buf0, primals_2, stride=(1,),
padding=(1,), dilation=(1,), transposed=False, output_padding=(
0,), groups=1, bias=None)
assert_size_stride(buf1, (4, 8, 4), (32, 4, 1))
buf2 = buf1
del buf1
triton_poi_fused_convolution_1[grid(128)](buf2, primals_3, 128,
XBLOCK=128, num_warps=4, num_stages=1)
del primals_3
buf3 = buf0
del buf0
triton_poi_fused_add_clone_mul_rsub_sigmoid_2[grid(16, 4)](primals_1,
buf2, buf3, 16, 4, XBLOCK=4, YBLOCK=16, num_warps=1, num_stages=1)
return buf3, primals_1, primals_2, buf2
class DilatedGatedConv1DNew(nn.Module):
def __init__(self, dilation_rate, dim):
super().__init__()
self.dim = dim
self.dropout = nn.Dropout(p=0.1)
self.cnn = nn.Conv1d(dim, dim * 2, 3, padding=dilation_rate,
dilation=dilation_rate)
def forward(self, input_0):
primals_2 = self.cnn.weight
primals_3 = self.cnn.bias
primals_1 = input_0
output = call([primals_1, primals_2, primals_3])
return output[0]
|
shinoyuki222/torch-light
|
DilatedGatedConv1D
| false | 16,429 |
[
"MIT"
] | 310 |
4799805d9bcae82a9f12a574dcf9fdd838c92ee9
|
https://github.com/shinoyuki222/torch-light/tree/4799805d9bcae82a9f12a574dcf9fdd838c92ee9
|
Envelope
|
import torch
import torch.utils.data
class Envelope(torch.nn.Module):
def __init__(self, exponent):
super(Envelope, self).__init__()
self.p = exponent + 1
self.a = -(self.p + 1) * (self.p + 2) / 2
self.b = self.p * (self.p + 2)
self.c = -self.p * (self.p + 1) / 2
def forward(self, x):
p, a, b, c = self.p, self.a, self.b, self.c
x_pow_p0 = x.pow(p - 1)
x_pow_p1 = x_pow_p0 * x
x_pow_p2 = x_pow_p1 * x
return 1.0 / x + a * x_pow_p0 + b * x_pow_p1 + c * x_pow_p2
def get_inputs():
return [torch.rand([4, 4, 4, 4])]
def get_init_inputs():
return [[], {'exponent': 4}]
|
import torch
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
import torch.utils.data
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
@triton.jit
def triton_poi_fused_add_mul_pow_reciprocal_0(in_ptr0, out_ptr0, xnumel,
XBLOCK: tl.constexpr):
xnumel = 256
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex
tmp0 = tl.load(in_ptr0 + x0, xmask)
tmp1 = tl.full([1], 1, tl.int32)
tmp2 = tmp1 / tmp0
tmp3 = 1.0
tmp4 = tmp2 * tmp3
tmp5 = tmp0 * tmp0
tmp6 = tmp5 * tmp5
tmp7 = -21.0
tmp8 = tmp6 * tmp7
tmp9 = tmp4 + tmp8
tmp10 = tmp6 * tmp0
tmp11 = 35.0
tmp12 = tmp10 * tmp11
tmp13 = tmp9 + tmp12
tmp14 = tmp10 * tmp0
tmp15 = -15.0
tmp16 = tmp14 * tmp15
tmp17 = tmp13 + tmp16
tl.store(out_ptr0 + x0, tmp17, xmask)
def call(args):
arg0_1, = args
args.clear()
assert_size_stride(arg0_1, (4, 4, 4, 4), (64, 16, 4, 1))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32)
get_raw_stream(0)
triton_poi_fused_add_mul_pow_reciprocal_0[grid(256)](arg0_1, buf0,
256, XBLOCK=256, num_warps=4, num_stages=1)
del arg0_1
return buf0,
class EnvelopeNew(torch.nn.Module):
def __init__(self, exponent):
super(EnvelopeNew, self).__init__()
self.p = exponent + 1
self.a = -(self.p + 1) * (self.p + 2) / 2
self.b = self.p * (self.p + 2)
self.c = -self.p * (self.p + 1) / 2
def forward(self, input_0):
arg0_1 = input_0
output = call([arg0_1])
return output[0]
|
EricAlcaide/pytorch_geometric
|
Envelope
| false | 2,191 |
[
"MIT"
] | 0 |
31cef566cfe22602459155fdf91e9b6ce398bfe7
|
https://github.com/EricAlcaide/pytorch_geometric/tree/31cef566cfe22602459155fdf91e9b6ce398bfe7
|
ConvRelu
|
# AOT ID: ['0_forward']
from ctypes import c_void_p, c_long, c_int
import torch
import math
import random
import os
import tempfile
from math import inf, nan
from torch._inductor.hooks import run_intermediate_hooks
from torch._inductor.utils import maybe_profile
from torch._inductor.codegen.memory_planning import _align as align
from torch import device, empty_strided
from torch._inductor.async_compile import AsyncCompile
from torch._inductor.select_algorithm import extern_kernels
from torch._inductor.codegen.multi_kernel import MultiKernelCall
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
aten = torch.ops.aten
inductor_ops = torch.ops.inductor
_quantized = torch.ops._quantized
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
alloc_from_pool = torch.ops.inductor._alloc_from_pool
async_compile = AsyncCompile()
# kernel path: runs/run_shard_1/inductor_cache/gy/cgysvrjthjxgwk32achz7uofxprlmkqhwkmtl7thbtp7kohn4kl6.py
# Topologically Sorted Source Nodes: [x, x_1], Original ATen: [aten.convolution, aten.relu, aten.threshold_backward]
# Source node to ATen node mapping:
# x => convolution
# x_1 => relu
# Graph fragment:
# %convolution : [num_users=1] = call_function[target=torch.ops.aten.convolution.default](args = (%primals_3, %primals_1, %primals_2, [1, 1], [1, 1], [1, 1], False, [0, 0], 1), kwargs = {})
# %relu : [num_users=2] = call_function[target=torch.ops.aten.relu.default](args = (%convolution,), kwargs = {})
# %le : [num_users=1] = call_function[target=torch.ops.aten.le.Scalar](args = (%relu, 0), kwargs = {})
triton_poi_fused_convolution_relu_threshold_backward_0 = async_compile.triton('triton_poi_fused_convolution_relu_threshold_backward_0', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[256],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*i1', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=90, major=9, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=132), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_convolution_relu_threshold_backward_0', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'B098E03CDA7B8ADC90DAFFDF24A2956451D1B13F297756A5DCC209498AA53705', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_convolution_relu_threshold_backward_0(in_out_ptr0, in_ptr0, out_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 256
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x3 = xindex
x1 = (xindex // 16) % 4
tmp0 = tl.load(in_out_ptr0 + (x3), xmask)
tmp1 = tl.load(in_ptr0 + (x1), xmask, eviction_policy='evict_last')
tmp2 = tmp0 + tmp1
tmp3 = tl.full([1], 0, tl.int32)
tmp4 = triton_helpers.maximum(tmp3, tmp2)
tmp5 = 0.0
tmp6 = tmp4 <= tmp5
tl.store(in_out_ptr0 + (x3), tmp4, xmask)
tl.store(out_ptr0 + (x3), tmp6, xmask)
''', device_str='cuda')
async_compile.wait(globals())
del async_compile
def call(args):
primals_1, primals_2, primals_3 = args
args.clear()
assert_size_stride(primals_1, (4, 4, 3, 3), (36, 9, 3, 1))
assert_size_stride(primals_2, (4, ), (1, ))
assert_size_stride(primals_3, (4, 4, 4, 4), (64, 16, 4, 1))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
# Topologically Sorted Source Nodes: [x], Original ATen: [aten.convolution]
buf0 = extern_kernels.convolution(primals_3, primals_1, stride=(1, 1), padding=(1, 1), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None)
assert_size_stride(buf0, (4, 4, 4, 4), (64, 16, 4, 1))
buf1 = buf0; del buf0 # reuse
buf2 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.bool)
# Topologically Sorted Source Nodes: [x, x_1], Original ATen: [aten.convolution, aten.relu, aten.threshold_backward]
stream0 = get_raw_stream(0)
triton_poi_fused_convolution_relu_threshold_backward_0.run(buf1, primals_2, buf2, 256, grid=grid(256), stream=stream0)
del primals_2
return (buf1, primals_1, primals_3, buf2, )
def benchmark_compiled_module(times=10, repeat=10):
from torch._dynamo.testing import rand_strided
from torch._inductor.utils import print_performance
primals_1 = rand_strided((4, 4, 3, 3), (36, 9, 3, 1), device='cuda:0', dtype=torch.float32)
primals_2 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32)
primals_3 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32)
fn = lambda: call([primals_1, primals_2, primals_3])
return print_performance(fn, times=times, repeat=repeat)
if __name__ == "__main__":
from torch._inductor.wrapper_benchmark import compiled_module_main
compiled_module_main('None', benchmark_compiled_module)
|
import torch
from torch._inductor.select_algorithm import extern_kernels
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
from torch._inductor.runtime import triton_helpers
from torch import nn
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
@triton.jit
def triton_poi_fused_convolution_relu_threshold_backward_0(in_out_ptr0,
in_ptr0, out_ptr0, xnumel, XBLOCK: tl.constexpr):
xnumel = 256
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x3 = xindex
x1 = xindex // 16 % 4
tmp0 = tl.load(in_out_ptr0 + x3, xmask)
tmp1 = tl.load(in_ptr0 + x1, xmask, eviction_policy='evict_last')
tmp2 = tmp0 + tmp1
tmp3 = tl.full([1], 0, tl.int32)
tmp4 = triton_helpers.maximum(tmp3, tmp2)
tmp5 = 0.0
tmp6 = tmp4 <= tmp5
tl.store(in_out_ptr0 + x3, tmp4, xmask)
tl.store(out_ptr0 + x3, tmp6, xmask)
def call(args):
primals_1, primals_2, primals_3 = args
args.clear()
assert_size_stride(primals_1, (4, 4, 3, 3), (36, 9, 3, 1))
assert_size_stride(primals_2, (4,), (1,))
assert_size_stride(primals_3, (4, 4, 4, 4), (64, 16, 4, 1))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = extern_kernels.convolution(primals_3, primals_1, stride=(1,
1), padding=(1, 1), dilation=(1, 1), transposed=False,
output_padding=(0, 0), groups=1, bias=None)
assert_size_stride(buf0, (4, 4, 4, 4), (64, 16, 4, 1))
buf1 = buf0
del buf0
buf2 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.bool)
get_raw_stream(0)
triton_poi_fused_convolution_relu_threshold_backward_0[grid(256)](buf1,
primals_2, buf2, 256, XBLOCK=128, num_warps=4, num_stages=1)
del primals_2
return buf1, primals_1, primals_3, buf2
def conv3x3(in_planes, out_planes, stride=1):
return nn.Conv2d(in_planes, out_planes, kernel_size=3, stride=stride,
padding=1, bias=True)
class ConvReluNew(nn.Module):
def __init__(self, in_: 'int', out: 'int'):
super().__init__()
self.conv = conv3x3(in_, out)
self.activation = nn.ReLU(inplace=True)
def forward(self, input_0):
primals_1 = self.conv.weight
primals_2 = self.conv.bias
primals_3 = input_0
output = call([primals_1, primals_2, primals_3])
return output[0]
|
BloodAxe/segmentation-networks-benchmark
|
ConvRelu
| false | 7,856 |
[
"MIT"
] | 34 |
2e3feb560102230be9369ab442b4a59cc86dff61
|
https://github.com/BloodAxe/segmentation-networks-benchmark/tree/2e3feb560102230be9369ab442b4a59cc86dff61
|
PosLinear
|
import torch
from torch import Tensor
from torch.utils.data import Dataset as Dataset
import torch.nn as nn
import torch.utils.data
class PosLinear(torch.nn.Linear):
def forward(self, x: 'Tensor') ->Tensor:
gain = 1 / x.size(1)
return nn.functional.linear(x, torch.nn.functional.softplus(self.
weight), self.bias) * gain
def get_inputs():
return [torch.rand([4, 4, 4, 4])]
def get_init_inputs():
return [[], {'in_features': 4, 'out_features': 4}]
|
import torch
from torch._inductor.select_algorithm import extern_kernels
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch.utils.data import Dataset as Dataset
import torch.utils.data
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
@triton.jit
def triton_poi_fused_softplus_0(in_ptr0, out_ptr0, xnumel, XBLOCK: tl.constexpr
):
xnumel = 16
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex
tmp0 = tl.load(in_ptr0 + x0, xmask)
tmp1 = 20.0
tmp2 = tmp0 > tmp1
tmp3 = tl_math.exp(tmp0)
tmp4 = libdevice.log1p(tmp3)
tmp5 = tl.where(tmp2, tmp0, tmp4)
tl.store(out_ptr0 + x0, tmp5, xmask)
@triton.jit
def triton_poi_fused_mul_1(in_out_ptr0, in_ptr0, xnumel, XBLOCK: tl.constexpr):
xnumel = 256
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x2 = xindex
x0 = xindex % 4
tmp0 = tl.load(in_out_ptr0 + x2, xmask)
tmp1 = tl.load(in_ptr0 + x0, xmask, eviction_policy='evict_last')
tmp2 = tmp0 + tmp1
tmp3 = 0.25
tmp4 = tmp2 * tmp3
tl.store(in_out_ptr0 + x2, tmp4, xmask)
def call(args):
primals_1, primals_2, primals_3 = args
args.clear()
assert_size_stride(primals_1, (4, 4, 4, 4), (64, 16, 4, 1))
assert_size_stride(primals_2, (4, 4), (4, 1))
assert_size_stride(primals_3, (4,), (1,))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((4, 4), (4, 1), torch.float32)
get_raw_stream(0)
triton_poi_fused_softplus_0[grid(16)](primals_2, buf0, 16, XBLOCK=
16, num_warps=1, num_stages=1)
buf1 = empty_strided_cuda((64, 4), (4, 1), torch.float32)
extern_kernels.mm(reinterpret_tensor(primals_1, (64, 4), (4, 1), 0),
reinterpret_tensor(buf0, (4, 4), (1, 4), 0), out=buf1)
del buf0
buf2 = reinterpret_tensor(buf1, (4, 4, 4, 4), (64, 16, 4, 1), 0)
del buf1
triton_poi_fused_mul_1[grid(256)](buf2, primals_3, 256, XBLOCK=256,
num_warps=4, num_stages=1)
del primals_3
return buf2, primals_2, reinterpret_tensor(primals_1, (64, 4), (4, 1), 0)
class PosLinearNew(torch.nn.Linear):
def forward(self, input_0):
primals_2 = self.weight
primals_3 = self.bias
primals_1 = input_0
output = call([primals_1, primals_2, primals_3])
return output[0]
|
JunLi-Galios/CP-Flow
|
PosLinear
| false | 11,595 |
[
"MIT"
] | 0 |
69272636c8c644ce3c96bbc4d610591756b8e3ff
|
https://github.com/JunLi-Galios/CP-Flow/tree/69272636c8c644ce3c96bbc4d610591756b8e3ff
|
GlobalAttentionGeneral
|
# AOT ID: ['0_inference']
from ctypes import c_void_p, c_long, c_int
import torch
import math
import random
import os
import tempfile
from math import inf, nan
from torch._inductor.hooks import run_intermediate_hooks
from torch._inductor.utils import maybe_profile
from torch._inductor.codegen.memory_planning import _align as align
from torch import device, empty_strided
from torch._inductor.async_compile import AsyncCompile
from torch._inductor.select_algorithm import extern_kernels
from torch._inductor.codegen.multi_kernel import MultiKernelCall
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
aten = torch.ops.aten
inductor_ops = torch.ops.inductor
_quantized = torch.ops._quantized
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
alloc_from_pool = torch.ops.inductor._alloc_from_pool
async_compile = AsyncCompile()
# kernel path: runs/run_shard_1/inductor_cache/gh/cghdn4pihhs4yx6f6a4ig3pjgfy5zh6dghclq5xeandkuwdvuk5c.py
# Topologically Sorted Source Nodes: [targetT], Original ATen: [aten.clone]
# Source node to ATen node mapping:
# targetT => clone
# Graph fragment:
# %clone : [num_users=1] = call_function[target=torch.ops.aten.clone.default](args = (%permute,), kwargs = {memory_format: torch.contiguous_format})
triton_poi_fused_clone_0 = async_compile.triton('triton_poi_fused_clone_0', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[256],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=90, major=9, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=132), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_clone_0', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 1, 'num_reduction': 0, 'backend_hash': 'B098E03CDA7B8ADC90DAFFDF24A2956451D1B13F297756A5DCC209498AA53705', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_clone_0(in_ptr0, out_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 256
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex
tmp0 = tl.load(in_ptr0 + (x0), xmask)
tl.store(out_ptr0 + (x0), tmp0, xmask)
''', device_str='cuda')
# kernel path: runs/run_shard_1/inductor_cache/om/com5a2jdtzsd2gxozlfy64n7thpakjehaajnnx7weffss4gxj2sy.py
# Topologically Sorted Source Nodes: [attn_2], Original ATen: [aten._softmax]
# Source node to ATen node mapping:
# attn_2 => amax, exp, sub
# Graph fragment:
# %amax : [num_users=1] = call_function[target=torch.ops.aten.amax.default](args = (%view_1, [1], True), kwargs = {})
# %sub : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (%view_1, %amax), kwargs = {})
# %exp : [num_users=2] = call_function[target=torch.ops.aten.exp.default](args = (%sub,), kwargs = {})
triton_poi_fused__softmax_1 = async_compile.triton('triton_poi_fused__softmax_1', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[256],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=90, major=9, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=132), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused__softmax_1', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 5, 'num_reduction': 0, 'backend_hash': 'B098E03CDA7B8ADC90DAFFDF24A2956451D1B13F297756A5DCC209498AA53705', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused__softmax_1(in_ptr0, out_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 256
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x2 = xindex
x1 = (xindex // 4)
tmp0 = tl.load(in_ptr0 + (x2), xmask)
tmp1 = tl.load(in_ptr0 + (4*x1), xmask, eviction_policy='evict_last')
tmp2 = tl.load(in_ptr0 + (1 + (4*x1)), xmask, eviction_policy='evict_last')
tmp4 = tl.load(in_ptr0 + (2 + (4*x1)), xmask, eviction_policy='evict_last')
tmp6 = tl.load(in_ptr0 + (3 + (4*x1)), xmask, eviction_policy='evict_last')
tmp3 = triton_helpers.maximum(tmp1, tmp2)
tmp5 = triton_helpers.maximum(tmp3, tmp4)
tmp7 = triton_helpers.maximum(tmp5, tmp6)
tmp8 = tmp0 - tmp7
tmp9 = tl_math.exp(tmp8)
tl.store(out_ptr0 + (x2), tmp9, xmask)
''', device_str='cuda')
# kernel path: runs/run_shard_1/inductor_cache/o6/co6rds2fnpdijj6xbnv2tmkoxmykgqu7idfvvwu22ylhgstr53gf.py
# Topologically Sorted Source Nodes: [attn_4], Original ATen: [aten.clone]
# Source node to ATen node mapping:
# attn_4 => clone_1
# Graph fragment:
# %clone_1 : [num_users=2] = call_function[target=torch.ops.aten.clone.default](args = (%permute_1,), kwargs = {memory_format: torch.contiguous_format})
triton_poi_fused_clone_2 = async_compile.triton('triton_poi_fused_clone_2', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[16, 16], tile_hint=TileHint.SQUARE,
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=90, major=9, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=132), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_clone_2', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 5, 'num_reduction': 0, 'backend_hash': 'B098E03CDA7B8ADC90DAFFDF24A2956451D1B13F297756A5DCC209498AA53705', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_clone_2(in_ptr0, out_ptr0, ynumel, xnumel, YBLOCK : tl.constexpr, XBLOCK : tl.constexpr):
ynumel = 16
xnumel = 16
yoffset = tl.program_id(1) * YBLOCK
yindex = yoffset + tl.arange(0, YBLOCK)[None, :]
ymask = yindex < ynumel
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:, None]
xmask = xindex < xnumel
x2 = xindex
y0 = yindex % 4
y1 = (yindex // 4)
y3 = yindex
tmp0 = tl.load(in_ptr0 + (y0 + (4*x2) + (64*y1)), xmask & ymask)
tmp1 = tl.load(in_ptr0 + ((4*x2) + (64*y1)), xmask & ymask, eviction_policy='evict_last')
tmp2 = tl.load(in_ptr0 + (1 + (4*x2) + (64*y1)), xmask & ymask, eviction_policy='evict_last')
tmp4 = tl.load(in_ptr0 + (2 + (4*x2) + (64*y1)), xmask & ymask, eviction_policy='evict_last')
tmp6 = tl.load(in_ptr0 + (3 + (4*x2) + (64*y1)), xmask & ymask, eviction_policy='evict_last')
tmp3 = tmp1 + tmp2
tmp5 = tmp3 + tmp4
tmp7 = tmp5 + tmp6
tmp8 = tmp0 / tmp7
tl.store(out_ptr0 + (x2 + (16*y3)), tmp8, xmask & ymask)
''', device_str='cuda')
async_compile.wait(globals())
del async_compile
def call(args):
arg0_1, arg1_1, arg2_1 = args
args.clear()
assert_size_stride(arg0_1, (4, 4, 4, 4), (64, 16, 4, 1))
assert_size_stride(arg1_1, (4, 4, 4), (16, 4, 1))
assert_size_stride(arg2_1, (4, 4, 4), (16, 4, 1))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((4, 16, 4), (64, 1, 16), torch.float32)
# Topologically Sorted Source Nodes: [targetT], Original ATen: [aten.clone]
stream0 = get_raw_stream(0)
triton_poi_fused_clone_0.run(arg0_1, buf0, 256, grid=grid(256), stream=stream0)
del arg0_1
buf1 = empty_strided_cuda((4, 16, 4), (64, 4, 1), torch.float32)
# Topologically Sorted Source Nodes: [targetT, attn], Original ATen: [aten.clone, aten.bmm]
extern_kernels.bmm(buf0, arg1_1, out=buf1)
del arg1_1
buf2 = reinterpret_tensor(buf0, (64, 4), (4, 1), 0); del buf0 # reuse
# Topologically Sorted Source Nodes: [attn_2], Original ATen: [aten._softmax]
triton_poi_fused__softmax_1.run(buf1, buf2, 256, grid=grid(256), stream=stream0)
buf3 = reinterpret_tensor(buf1, (4, 4, 16), (64, 16, 1), 0); del buf1 # reuse
# Topologically Sorted Source Nodes: [attn_4], Original ATen: [aten.clone]
triton_poi_fused_clone_2.run(buf2, buf3, 16, 16, grid=grid(16, 16), stream=stream0)
buf4 = reinterpret_tensor(buf2, (4, 4, 16), (64, 16, 1), 0); del buf2 # reuse
# Topologically Sorted Source Nodes: [weightedContext], Original ATen: [aten.bmm]
extern_kernels.bmm(arg2_1, buf3, out=buf4)
del arg2_1
return (reinterpret_tensor(buf4, (4, 4, 4, 4), (64, 16, 4, 1), 0), reinterpret_tensor(buf3, (4, 4, 4, 4), (64, 16, 4, 1), 0), )
def benchmark_compiled_module(times=10, repeat=10):
from torch._dynamo.testing import rand_strided
from torch._inductor.utils import print_performance
arg0_1 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32)
arg1_1 = rand_strided((4, 4, 4), (16, 4, 1), device='cuda:0', dtype=torch.float32)
arg2_1 = rand_strided((4, 4, 4), (16, 4, 1), device='cuda:0', dtype=torch.float32)
fn = lambda: call([arg0_1, arg1_1, arg2_1])
return print_performance(fn, times=times, repeat=repeat)
if __name__ == "__main__":
from torch._inductor.wrapper_benchmark import compiled_module_main
compiled_module_main('None', benchmark_compiled_module)
|
import torch
from torch._inductor.select_algorithm import extern_kernels
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
from torch._inductor.runtime import triton_helpers
from torch._inductor.runtime.triton_helpers import math as tl_math
import torch.nn as nn
import torch.nn.parallel
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
@triton.jit
def triton_poi_fused_clone_0(in_ptr0, out_ptr0, xnumel, XBLOCK: tl.constexpr):
xnumel = 256
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex
tmp0 = tl.load(in_ptr0 + x0, xmask)
tl.store(out_ptr0 + x0, tmp0, xmask)
@triton.jit
def triton_poi_fused__softmax_1(in_ptr0, out_ptr0, xnumel, XBLOCK: tl.constexpr
):
xnumel = 256
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x2 = xindex
x1 = xindex // 4
tmp0 = tl.load(in_ptr0 + x2, xmask)
tmp1 = tl.load(in_ptr0 + 4 * x1, xmask, eviction_policy='evict_last')
tmp2 = tl.load(in_ptr0 + (1 + 4 * x1), xmask, eviction_policy='evict_last')
tmp4 = tl.load(in_ptr0 + (2 + 4 * x1), xmask, eviction_policy='evict_last')
tmp6 = tl.load(in_ptr0 + (3 + 4 * x1), xmask, eviction_policy='evict_last')
tmp3 = triton_helpers.maximum(tmp1, tmp2)
tmp5 = triton_helpers.maximum(tmp3, tmp4)
tmp7 = triton_helpers.maximum(tmp5, tmp6)
tmp8 = tmp0 - tmp7
tmp9 = tl_math.exp(tmp8)
tl.store(out_ptr0 + x2, tmp9, xmask)
@triton.jit
def triton_poi_fused_clone_2(in_ptr0, out_ptr0, ynumel, xnumel, YBLOCK: tl.
constexpr, XBLOCK: tl.constexpr):
ynumel = 16
xnumel = 16
yoffset = tl.program_id(1) * YBLOCK
yindex = yoffset + tl.arange(0, YBLOCK)[None, :]
ymask = yindex < ynumel
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:, None]
xmask = xindex < xnumel
x2 = xindex
y0 = yindex % 4
y1 = yindex // 4
y3 = yindex
tmp0 = tl.load(in_ptr0 + (y0 + 4 * x2 + 64 * y1), xmask & ymask)
tmp1 = tl.load(in_ptr0 + (4 * x2 + 64 * y1), xmask & ymask,
eviction_policy='evict_last')
tmp2 = tl.load(in_ptr0 + (1 + 4 * x2 + 64 * y1), xmask & ymask,
eviction_policy='evict_last')
tmp4 = tl.load(in_ptr0 + (2 + 4 * x2 + 64 * y1), xmask & ymask,
eviction_policy='evict_last')
tmp6 = tl.load(in_ptr0 + (3 + 4 * x2 + 64 * y1), xmask & ymask,
eviction_policy='evict_last')
tmp3 = tmp1 + tmp2
tmp5 = tmp3 + tmp4
tmp7 = tmp5 + tmp6
tmp8 = tmp0 / tmp7
tl.store(out_ptr0 + (x2 + 16 * y3), tmp8, xmask & ymask)
def call(args):
arg0_1, arg1_1, arg2_1 = args
args.clear()
assert_size_stride(arg0_1, (4, 4, 4, 4), (64, 16, 4, 1))
assert_size_stride(arg1_1, (4, 4, 4), (16, 4, 1))
assert_size_stride(arg2_1, (4, 4, 4), (16, 4, 1))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((4, 16, 4), (64, 1, 16), torch.float32)
get_raw_stream(0)
triton_poi_fused_clone_0[grid(256)](arg0_1, buf0, 256, XBLOCK=128,
num_warps=4, num_stages=1)
del arg0_1
buf1 = empty_strided_cuda((4, 16, 4), (64, 4, 1), torch.float32)
extern_kernels.bmm(buf0, arg1_1, out=buf1)
del arg1_1
buf2 = reinterpret_tensor(buf0, (64, 4), (4, 1), 0)
del buf0
triton_poi_fused__softmax_1[grid(256)](buf1, buf2, 256, XBLOCK=256,
num_warps=4, num_stages=1)
buf3 = reinterpret_tensor(buf1, (4, 4, 16), (64, 16, 1), 0)
del buf1
triton_poi_fused_clone_2[grid(16, 16)](buf2, buf3, 16, 16, XBLOCK=
16, YBLOCK=16, num_warps=4, num_stages=1)
buf4 = reinterpret_tensor(buf2, (4, 4, 16), (64, 16, 1), 0)
del buf2
extern_kernels.bmm(arg2_1, buf3, out=buf4)
del arg2_1
return reinterpret_tensor(buf4, (4, 4, 4, 4), (64, 16, 4, 1), 0
), reinterpret_tensor(buf3, (4, 4, 4, 4), (64, 16, 4, 1), 0)
class GlobalAttentionGeneralNew(nn.Module):
def __init__(self, idf, cdf):
super(GlobalAttentionGeneralNew, self).__init__()
self.sm = nn.Softmax()
self.mask = None
def applyMask(self, mask):
self.mask = mask
def forward(self, input_0, input_1, input_2):
arg0_1 = input_0
arg1_1 = input_1
arg2_1 = input_2
output = call([arg0_1, arg1_1, arg2_1])
return output[0], output[1]
|
JoonHong-Kim/T2I_CL
|
GlobalAttentionGeneral
| false | 8,369 |
[
"MIT"
] | 35 |
c52aa73da903d6e4174eeef2663e5bc1163785b1
|
https://github.com/JoonHong-Kim/T2I_CL/tree/c52aa73da903d6e4174eeef2663e5bc1163785b1
|
L2Norm
|
import torch
import torch.nn as nn
class L2Norm(nn.Module):
def __init__(self, n_dims, scale=20.0, eps=1e-10):
super(L2Norm, self).__init__()
self.n_dims = n_dims
self.weight = nn.Parameter(torch.Tensor(self.n_dims))
self.eps = eps
self.scale = scale
def forward(self, x):
x_float = x.float()
norm = x_float.pow(2).sum(1, keepdim=True).sqrt() + self.eps
return (self.weight[None, :, None, None].float().expand_as(x_float) *
x_float / norm).type_as(x)
def get_inputs():
return [torch.rand([4, 4, 4, 4])]
def get_init_inputs():
return [[], {'n_dims': 4}]
|
import torch
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
from torch._inductor.runtime.triton_helpers import libdevice
import torch.nn as nn
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
@triton.jit
def triton_poi_fused_add_div_mul_pow_sqrt_sum_0(in_ptr0, in_ptr1, out_ptr0,
xnumel, XBLOCK: tl.constexpr):
xnumel = 256
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x1 = xindex // 16 % 4
x3 = xindex
x0 = xindex % 16
x2 = xindex // 64
tmp0 = tl.load(in_ptr0 + x1, xmask, eviction_policy='evict_last')
tmp1 = tl.load(in_ptr1 + x3, xmask)
tmp3 = tl.load(in_ptr1 + (x0 + 64 * x2), xmask, eviction_policy=
'evict_last')
tmp5 = tl.load(in_ptr1 + (16 + x0 + 64 * x2), xmask, eviction_policy=
'evict_last')
tmp8 = tl.load(in_ptr1 + (32 + x0 + 64 * x2), xmask, eviction_policy=
'evict_last')
tmp11 = tl.load(in_ptr1 + (48 + x0 + 64 * x2), xmask, eviction_policy=
'evict_last')
tmp2 = tmp0 * tmp1
tmp4 = tmp3 * tmp3
tmp6 = tmp5 * tmp5
tmp7 = tmp4 + tmp6
tmp9 = tmp8 * tmp8
tmp10 = tmp7 + tmp9
tmp12 = tmp11 * tmp11
tmp13 = tmp10 + tmp12
tmp14 = libdevice.sqrt(tmp13)
tmp15 = 1e-10
tmp16 = tmp14 + tmp15
tmp17 = tmp2 / tmp16
tl.store(out_ptr0 + x3, tmp17, xmask)
def call(args):
primals_1, primals_2 = args
args.clear()
assert_size_stride(primals_1, (4, 4, 4, 4), (64, 16, 4, 1))
assert_size_stride(primals_2, (4,), (1,))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32)
get_raw_stream(0)
triton_poi_fused_add_div_mul_pow_sqrt_sum_0[grid(256)](primals_2,
primals_1, buf0, 256, XBLOCK=256, num_warps=4, num_stages=1)
del primals_2
return buf0, primals_1
class L2NormNew(nn.Module):
def __init__(self, n_dims, scale=20.0, eps=1e-10):
super(L2NormNew, self).__init__()
self.n_dims = n_dims
self.weight = nn.Parameter(torch.Tensor(self.n_dims))
self.eps = eps
self.scale = scale
def forward(self, input_0):
primals_2 = self.weight
primals_1 = input_0
output = call([primals_1, primals_2])
return output[0]
|
CK-er/mmdet
|
L2Norm
| false | 2,056 |
[
"Apache-2.0"
] | 0 |
9bea4068efbcf7bf739dbe41917a68d525c29868
|
https://github.com/CK-er/mmdet/tree/9bea4068efbcf7bf739dbe41917a68d525c29868
|
ActorCritic
|
# AOT ID: ['0_forward']
from ctypes import c_void_p, c_long, c_int
import torch
import math
import random
import os
import tempfile
from math import inf, nan
from torch._inductor.hooks import run_intermediate_hooks
from torch._inductor.utils import maybe_profile
from torch._inductor.codegen.memory_planning import _align as align
from torch import device, empty_strided
from torch._inductor.async_compile import AsyncCompile
from torch._inductor.select_algorithm import extern_kernels
from torch._inductor.codegen.multi_kernel import MultiKernelCall
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
aten = torch.ops.aten
inductor_ops = torch.ops.inductor
_quantized = torch.ops._quantized
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
alloc_from_pool = torch.ops.inductor._alloc_from_pool
async_compile = AsyncCompile()
# kernel path: runs/run_shard_0/inductor_cache/md/cmd3ewacyhu5w5hausgbjbmtnt5rr66cgczh4ibdypq7dz6p4v7g.py
# Topologically Sorted Source Nodes: [x], Original ATen: [aten.relu, aten.threshold_backward]
# Source node to ATen node mapping:
# x => relu
# Graph fragment:
# %relu : [num_users=2] = call_function[target=torch.ops.aten.relu.default](args = (%view_1,), kwargs = {})
# %le : [num_users=1] = call_function[target=torch.ops.aten.le.Scalar](args = (%relu, 0), kwargs = {})
triton_poi_fused_relu_threshold_backward_0 = async_compile.triton('triton_poi_fused_relu_threshold_backward_0', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[8192],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*i1', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_relu_threshold_backward_0', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_relu_threshold_backward_0(in_out_ptr0, in_ptr0, out_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 8192
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = tl.full([XBLOCK], True, tl.int1)
x2 = xindex
x0 = xindex % 128
tmp0 = tl.load(in_out_ptr0 + (x2), None)
tmp1 = tl.load(in_ptr0 + (x0), None, eviction_policy='evict_last')
tmp2 = tmp0 + tmp1
tmp3 = tl.full([1], 0, tl.int32)
tmp4 = triton_helpers.maximum(tmp3, tmp2)
tmp5 = 0.0
tmp6 = tmp4 <= tmp5
tl.store(in_out_ptr0 + (x2), tmp4, None)
tl.store(out_ptr0 + (x2), tmp6, None)
''', device_str='cuda')
# kernel path: runs/run_shard_0/inductor_cache/vh/cvhowampoosezwy5zm5vfkdmhzrvsn2u2gxpn4cchngk4b74ympu.py
# Topologically Sorted Source Nodes: [softmax], Original ATen: [aten._softmax]
# Source node to ATen node mapping:
# softmax => amax, div, exp, sub, sum_1
# Graph fragment:
# %amax : [num_users=1] = call_function[target=torch.ops.aten.amax.default](args = (%view_3, [-1], True), kwargs = {})
# %sub : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (%view_3, %amax), kwargs = {})
# %exp : [num_users=2] = call_function[target=torch.ops.aten.exp.default](args = (%sub,), kwargs = {})
# %sum_1 : [num_users=1] = call_function[target=torch.ops.aten.sum.dim_IntList](args = (%exp, [-1], True), kwargs = {})
# %div : [num_users=1] = call_function[target=torch.ops.aten.div.Tensor](args = (%exp, %sum_1), kwargs = {})
triton_poi_fused__softmax_1 = async_compile.triton('triton_poi_fused__softmax_1', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[128],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused__softmax_1', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 3, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused__softmax_1(in_ptr0, out_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 128
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x2 = xindex
x1 = (xindex // 2)
tmp0 = tl.load(in_ptr0 + (x2), xmask)
tmp1 = tl.load(in_ptr0 + (2*x1), xmask, eviction_policy='evict_last')
tmp2 = tl.load(in_ptr0 + (1 + (2*x1)), xmask, eviction_policy='evict_last')
tmp3 = triton_helpers.maximum(tmp1, tmp2)
tmp4 = tmp0 - tmp3
tmp5 = tl_math.exp(tmp4)
tmp6 = tmp1 - tmp3
tmp7 = tl_math.exp(tmp6)
tmp8 = tmp2 - tmp3
tmp9 = tl_math.exp(tmp8)
tmp10 = tmp7 + tmp9
tmp11 = tmp5 / tmp10
tl.store(out_ptr0 + (x2), tmp11, xmask)
''', device_str='cuda')
async_compile.wait(globals())
del async_compile
def call(args):
primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7 = args
args.clear()
assert_size_stride(primals_1, (128, 4), (4, 1))
assert_size_stride(primals_2, (128, ), (1, ))
assert_size_stride(primals_3, (4, 4, 4, 4), (64, 16, 4, 1))
assert_size_stride(primals_4, (2, 128), (128, 1))
assert_size_stride(primals_5, (2, ), (1, ))
assert_size_stride(primals_6, (1, 128), (128, 1))
assert_size_stride(primals_7, (1, ), (1, ))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((64, 128), (128, 1), torch.float32)
# Topologically Sorted Source Nodes: [], Original ATen: []
extern_kernels.mm(reinterpret_tensor(primals_3, (64, 4), (4, 1), 0), reinterpret_tensor(primals_1, (4, 128), (1, 4), 0), out=buf0)
del primals_1
buf1 = reinterpret_tensor(buf0, (4, 4, 4, 128), (2048, 512, 128, 1), 0); del buf0 # reuse
buf6 = empty_strided_cuda((4, 4, 4, 128), (2048, 512, 128, 1), torch.bool)
# Topologically Sorted Source Nodes: [x], Original ATen: [aten.relu, aten.threshold_backward]
stream0 = get_raw_stream(0)
triton_poi_fused_relu_threshold_backward_0.run(buf1, primals_2, buf6, 8192, grid=grid(8192), stream=stream0)
del primals_2
buf2 = empty_strided_cuda((64, 2), (2, 1), torch.float32)
# Topologically Sorted Source Nodes: [action_scores], Original ATen: [aten.addmm]
extern_kernels.addmm(primals_5, reinterpret_tensor(buf1, (64, 128), (128, 1), 0), reinterpret_tensor(primals_4, (128, 2), (1, 128), 0), alpha=1, beta=1, out=buf2)
del primals_5
buf4 = empty_strided_cuda((64, 1), (1, 1), torch.float32)
# Topologically Sorted Source Nodes: [state_values], Original ATen: [aten.addmm]
extern_kernels.addmm(primals_7, reinterpret_tensor(buf1, (64, 128), (128, 1), 0), reinterpret_tensor(primals_6, (128, 1), (1, 128), 0), alpha=1, beta=1, out=buf4)
del primals_7
buf5 = empty_strided_cuda((4, 4, 4, 2), (32, 8, 2, 1), torch.float32)
# Topologically Sorted Source Nodes: [softmax], Original ATen: [aten._softmax]
triton_poi_fused__softmax_1.run(buf2, buf5, 128, grid=grid(128), stream=stream0)
del buf2
return (buf5, reinterpret_tensor(buf4, (4, 4, 4, 1), (16, 4, 1, 1), 0), reinterpret_tensor(primals_3, (64, 4), (4, 1), 0), reinterpret_tensor(buf1, (64, 128), (128, 1), 0), buf5, primals_6, primals_4, buf6, )
def benchmark_compiled_module(times=10, repeat=10):
from torch._dynamo.testing import rand_strided
from torch._inductor.utils import print_performance
primals_1 = rand_strided((128, 4), (4, 1), device='cuda:0', dtype=torch.float32)
primals_2 = rand_strided((128, ), (1, ), device='cuda:0', dtype=torch.float32)
primals_3 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32)
primals_4 = rand_strided((2, 128), (128, 1), device='cuda:0', dtype=torch.float32)
primals_5 = rand_strided((2, ), (1, ), device='cuda:0', dtype=torch.float32)
primals_6 = rand_strided((1, 128), (128, 1), device='cuda:0', dtype=torch.float32)
primals_7 = rand_strided((1, ), (1, ), device='cuda:0', dtype=torch.float32)
fn = lambda: call([primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7])
return print_performance(fn, times=times, repeat=repeat)
if __name__ == "__main__":
from torch._inductor.wrapper_benchmark import compiled_module_main
compiled_module_main('None', benchmark_compiled_module)
|
import torch
from torch._inductor.select_algorithm import extern_kernels
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
from torch._inductor.runtime import triton_helpers
from torch._inductor.runtime.triton_helpers import math as tl_math
import torch.nn as nn
from torch.autograd import Variable
from torch.distributions import Categorical
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
@triton.jit
def triton_poi_fused_relu_threshold_backward_0(in_out_ptr0, in_ptr0,
out_ptr0, xnumel, XBLOCK: tl.constexpr):
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
tl.full([XBLOCK], True, tl.int1)
x2 = xindex
x0 = xindex % 128
tmp0 = tl.load(in_out_ptr0 + x2, None)
tmp1 = tl.load(in_ptr0 + x0, None, eviction_policy='evict_last')
tmp2 = tmp0 + tmp1
tmp3 = tl.full([1], 0, tl.int32)
tmp4 = triton_helpers.maximum(tmp3, tmp2)
tmp5 = 0.0
tmp6 = tmp4 <= tmp5
tl.store(in_out_ptr0 + x2, tmp4, None)
tl.store(out_ptr0 + x2, tmp6, None)
@triton.jit
def triton_poi_fused__softmax_1(in_ptr0, out_ptr0, xnumel, XBLOCK: tl.constexpr
):
xnumel = 128
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x2 = xindex
x1 = xindex // 2
tmp0 = tl.load(in_ptr0 + x2, xmask)
tmp1 = tl.load(in_ptr0 + 2 * x1, xmask, eviction_policy='evict_last')
tmp2 = tl.load(in_ptr0 + (1 + 2 * x1), xmask, eviction_policy='evict_last')
tmp3 = triton_helpers.maximum(tmp1, tmp2)
tmp4 = tmp0 - tmp3
tmp5 = tl_math.exp(tmp4)
tmp6 = tmp1 - tmp3
tmp7 = tl_math.exp(tmp6)
tmp8 = tmp2 - tmp3
tmp9 = tl_math.exp(tmp8)
tmp10 = tmp7 + tmp9
tmp11 = tmp5 / tmp10
tl.store(out_ptr0 + x2, tmp11, xmask)
def call(args):
(primals_1, primals_2, primals_3, primals_4, primals_5, primals_6,
primals_7) = args
args.clear()
assert_size_stride(primals_1, (128, 4), (4, 1))
assert_size_stride(primals_2, (128,), (1,))
assert_size_stride(primals_3, (4, 4, 4, 4), (64, 16, 4, 1))
assert_size_stride(primals_4, (2, 128), (128, 1))
assert_size_stride(primals_5, (2,), (1,))
assert_size_stride(primals_6, (1, 128), (128, 1))
assert_size_stride(primals_7, (1,), (1,))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((64, 128), (128, 1), torch.float32)
extern_kernels.mm(reinterpret_tensor(primals_3, (64, 4), (4, 1), 0),
reinterpret_tensor(primals_1, (4, 128), (1, 4), 0), out=buf0)
del primals_1
buf1 = reinterpret_tensor(buf0, (4, 4, 4, 128), (2048, 512, 128, 1), 0)
del buf0
buf6 = empty_strided_cuda((4, 4, 4, 128), (2048, 512, 128, 1),
torch.bool)
get_raw_stream(0)
triton_poi_fused_relu_threshold_backward_0[grid(8192)](buf1,
primals_2, buf6, 8192, XBLOCK=256, num_warps=4, num_stages=1)
del primals_2
buf2 = empty_strided_cuda((64, 2), (2, 1), torch.float32)
extern_kernels.addmm(primals_5, reinterpret_tensor(buf1, (64, 128),
(128, 1), 0), reinterpret_tensor(primals_4, (128, 2), (1, 128),
0), alpha=1, beta=1, out=buf2)
del primals_5
buf4 = empty_strided_cuda((64, 1), (1, 1), torch.float32)
extern_kernels.addmm(primals_7, reinterpret_tensor(buf1, (64, 128),
(128, 1), 0), reinterpret_tensor(primals_6, (128, 1), (1, 128),
0), alpha=1, beta=1, out=buf4)
del primals_7
buf5 = empty_strided_cuda((4, 4, 4, 2), (32, 8, 2, 1), torch.float32)
triton_poi_fused__softmax_1[grid(128)](buf2, buf5, 128, XBLOCK=128,
num_warps=4, num_stages=1)
del buf2
return buf5, reinterpret_tensor(buf4, (4, 4, 4, 1), (16, 4, 1, 1), 0
), reinterpret_tensor(primals_3, (64, 4), (4, 1), 0
), reinterpret_tensor(buf1, (64, 128), (128, 1), 0
), buf5, primals_6, primals_4, buf6
class ActorCriticNew(nn.Module):
def __init__(self):
super().__init__()
self.affine1 = nn.Linear(4, 128)
self.action_head = nn.Linear(128, 2)
self.value_head = nn.Linear(128, 1)
def select_action(self, state, values, select_props):
state = torch.from_numpy(state).float()
props, value = self(Variable(state))
dist = Categorical(props)
action = dist.sample()
log_props = dist.log_prob(action)
values.append(value)
select_props.append(log_props)
return action.data[0]
def forward(self, input_0):
primals_1 = self.affine1.weight
primals_2 = self.affine1.bias
primals_4 = self.action_head.weight
primals_5 = self.action_head.bias
primals_6 = self.value_head.weight
primals_7 = self.value_head.bias
primals_3 = input_0
output = call([primals_1, primals_2, primals_3, primals_4,
primals_5, primals_6, primals_7])
return output[0], output[1]
|
shinoyuki222/torch-light
|
ActorCritic
| false | 16,425 |
[
"MIT"
] | 310 |
4799805d9bcae82a9f12a574dcf9fdd838c92ee9
|
https://github.com/shinoyuki222/torch-light/tree/4799805d9bcae82a9f12a574dcf9fdd838c92ee9
|
Scale
|
import torch
import torch.nn as nn
import torch.utils.data
class Scale(nn.Module):
"""A learnable scale parameter.
This layer scales the input by a learnable factor. It multiplies a
learnable scale parameter of shape (1,) with input of any shape.
Args:
scale (float): Initial value of scale factor. Default: 1.0
"""
def __init__(self, scale=1.0):
super(Scale, self).__init__()
self.scale = nn.Parameter(torch.tensor(scale, dtype=torch.float))
def forward(self, x):
return x * self.scale
def get_inputs():
return [torch.rand([4, 4, 4, 4])]
def get_init_inputs():
return [[], {}]
|
import torch
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
import torch.nn as nn
import torch.utils.data
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
@triton.jit
def triton_poi_fused_mul_0(in_ptr0, in_ptr1, out_ptr0, xnumel, XBLOCK: tl.
constexpr):
xnumel = 256
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex
tmp0 = tl.load(in_ptr0 + x0, xmask)
tmp1 = tl.load(in_ptr1 + 0)
tmp2 = tl.broadcast_to(tmp1, [XBLOCK])
tmp3 = tmp0 * tmp2
tl.store(out_ptr0 + x0, tmp3, xmask)
def call(args):
primals_1, primals_2 = args
args.clear()
assert_size_stride(primals_1, (), ())
assert_size_stride(primals_2, (4, 4, 4, 4), (64, 16, 4, 1))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32)
get_raw_stream(0)
triton_poi_fused_mul_0[grid(256)](primals_2, primals_1, buf0, 256,
XBLOCK=128, num_warps=4, num_stages=1)
del primals_1
return buf0, primals_2
class ScaleNew(nn.Module):
"""A learnable scale parameter.
This layer scales the input by a learnable factor. It multiplies a
learnable scale parameter of shape (1,) with input of any shape.
Args:
scale (float): Initial value of scale factor. Default: 1.0
"""
def __init__(self, scale=1.0):
super(ScaleNew, self).__init__()
self.scale = nn.Parameter(torch.tensor(scale, dtype=torch.float))
def forward(self, input_0):
primals_1 = self.scale
primals_2 = input_0
output = call([primals_1, primals_2])
return output[0]
|
AIpakchoi/visualDet3D
|
Scale
| false | 4,755 |
[
"Apache-2.0"
] | 1 |
920f6f8ea44eac4c1896b7d157c015e039ac39f9
|
https://github.com/AIpakchoi/visualDet3D/tree/920f6f8ea44eac4c1896b7d157c015e039ac39f9
|
unrotate
|
import torch
import torch.nn as nn
class unrotate(nn.Module):
def __init__(self):
super().__init__()
def forward(self, x):
x0, x90, x180, x270 = torch.chunk(x, 4, dim=0)
x90 = x90.transpose(2, 3).flip(2)
x180 = x180.flip(2).flip(3)
x270 = x270.transpose(2, 3).flip(3)
x = torch.cat((x0, x90, x180, x270), dim=1)
return x
def get_inputs():
return [torch.rand([4, 4, 4, 4])]
def get_init_inputs():
return [[], {}]
|
import torch
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
import torch.nn as nn
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
@triton.jit
def triton_poi_fused_cat_0(in_ptr0, out_ptr0, xnumel, XBLOCK: tl.constexpr):
xnumel = 256
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x2 = xindex // 16
x3 = xindex % 16
x0 = xindex % 4
x1 = xindex // 4 % 4
x4 = xindex
tmp0 = x2
tl.full([1], 0, tl.int64)
tmp3 = tl.full([1], 4, tl.int64)
tmp4 = tmp0 < tmp3
tmp5 = tl.load(in_ptr0 + (x3 + 16 * x2), tmp4 & xmask, other=0.0)
tmp6 = tmp0 >= tmp3
tmp7 = tl.full([1], 8, tl.int64)
tmp8 = tmp0 < tmp7
tmp9 = tmp6 & tmp8
tmp10 = tl.load(in_ptr0 + (67 + -1 * x1 + 4 * x0 + 16 * (-4 + x2)),
tmp9 & xmask, eviction_policy='evict_last', other=0.0)
tmp11 = tmp0 >= tmp7
tmp12 = tl.full([1], 12, tl.int64)
tmp13 = tmp0 < tmp12
tmp14 = tmp11 & tmp13
tmp15 = tl.load(in_ptr0 + (143 + -1 * x3 + 16 * (-8 + x2)), tmp14 &
xmask, eviction_policy='evict_last', other=0.0)
tmp16 = tmp0 >= tmp12
tl.full([1], 16, tl.int64)
tmp19 = tl.load(in_ptr0 + (204 + x1 + -4 * x0 + 16 * (-12 + x2)), tmp16 &
xmask, eviction_policy='evict_last', other=0.0)
tmp20 = tl.where(tmp14, tmp15, tmp19)
tmp21 = tl.where(tmp9, tmp10, tmp20)
tmp22 = tl.where(tmp4, tmp5, tmp21)
tl.store(out_ptr0 + x4, tmp22, xmask)
def call(args):
arg0_1, = args
args.clear()
assert_size_stride(arg0_1, (4, 4, 4, 4), (64, 16, 4, 1))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((1, 16, 4, 4), (256, 16, 4, 1), torch.float32
)
get_raw_stream(0)
triton_poi_fused_cat_0[grid(256)](arg0_1, buf0, 256, XBLOCK=128,
num_warps=4, num_stages=1)
del arg0_1
return buf0,
class unrotateNew(nn.Module):
def __init__(self):
super().__init__()
def forward(self, input_0):
arg0_1 = input_0
output = call([arg0_1])
return output[0]
|
amonod/udvd
|
unrotate
| false | 1,425 |
[
"MIT"
] | 0 |
a1ccb777d205255ac68c40efb93dd3996f562c45
|
https://github.com/amonod/udvd/tree/a1ccb777d205255ac68c40efb93dd3996f562c45
|
FrameAvgPool
|
from _paritybench_helpers import _mock_config
import torch
import torch.nn as nn
class FrameAvgPool(nn.Module):
def __init__(self, cfg):
super(FrameAvgPool, self).__init__()
input_size = cfg.INPUT_SIZE
hidden_size = cfg.HIDDEN_SIZE
kernel_size = cfg.KERNEL_SIZE
stride = cfg.STRIDE
self.vis_conv = nn.Conv1d(input_size, hidden_size, 1, 1)
self.avg_pool = nn.AvgPool1d(kernel_size, stride)
def forward(self, visual_input):
vis_h = torch.relu(self.vis_conv(visual_input))
vis_h = self.avg_pool(vis_h)
return vis_h
def get_inputs():
return [torch.rand([4, 4])]
def get_init_inputs():
return [[], {'cfg': _mock_config(INPUT_SIZE=4, HIDDEN_SIZE=4,
KERNEL_SIZE=4, STRIDE=4)}]
|
import torch
from torch._inductor.select_algorithm import extern_kernels
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
from torch._inductor.runtime import triton_helpers
import torch.nn as nn
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
@triton.jit
def triton_poi_fused_relu_threshold_backward_0(in_out_ptr0, in_ptr0,
out_ptr0, xnumel, XBLOCK: tl.constexpr):
xnumel = 16
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x2 = xindex
x1 = xindex // 4
tmp0 = tl.load(in_out_ptr0 + x2, xmask)
tmp1 = tl.load(in_ptr0 + x1, xmask, eviction_policy='evict_last')
tmp2 = tmp0 + tmp1
tmp3 = tl.full([1], 0, tl.int32)
tmp4 = triton_helpers.maximum(tmp3, tmp2)
tmp5 = 0.0
tmp6 = tmp4 <= tmp5
tl.store(in_out_ptr0 + x2, tmp4, xmask)
tl.store(out_ptr0 + x2, tmp6, xmask)
@triton.jit
def triton_poi_fused_avg_pool2d_1(in_ptr0, out_ptr0, xnumel, XBLOCK: tl.
constexpr):
xnumel = 4
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex
tmp0 = tl.load(in_ptr0 + 4 * x0, xmask, eviction_policy='evict_last')
tmp1 = tl.load(in_ptr0 + (1 + 4 * x0), xmask, eviction_policy='evict_last')
tmp3 = tl.load(in_ptr0 + (2 + 4 * x0), xmask, eviction_policy='evict_last')
tmp5 = tl.load(in_ptr0 + (3 + 4 * x0), xmask, eviction_policy='evict_last')
tmp2 = tmp1 + tmp0
tmp4 = tmp3 + tmp2
tmp6 = tmp5 + tmp4
tmp7 = 0.25
tmp8 = tmp6 * tmp7
tl.store(out_ptr0 + x0, tmp8, xmask)
def call(args):
primals_1, primals_2, primals_3 = args
args.clear()
assert_size_stride(primals_1, (4, 4, 1), (4, 1, 1))
assert_size_stride(primals_2, (4,), (1,))
assert_size_stride(primals_3, (4, 4), (4, 1))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = extern_kernels.convolution(reinterpret_tensor(primals_3, (1,
4, 4), (16, 4, 1), 0), primals_1, stride=(1,), padding=(0,),
dilation=(1,), transposed=False, output_padding=(0,), groups=1,
bias=None)
assert_size_stride(buf0, (1, 4, 4), (16, 4, 1))
buf1 = reinterpret_tensor(buf0, (4, 4), (4, 1), 0)
del buf0
buf3 = empty_strided_cuda((4, 4), (4, 1), torch.bool)
get_raw_stream(0)
triton_poi_fused_relu_threshold_backward_0[grid(16)](buf1,
primals_2, buf3, 16, XBLOCK=16, num_warps=1, num_stages=1)
del primals_2
buf2 = empty_strided_cuda((4, 1, 1), (1, 1, 1), torch.float32)
triton_poi_fused_avg_pool2d_1[grid(4)](buf1, buf2, 4, XBLOCK=4,
num_warps=1, num_stages=1)
return reinterpret_tensor(buf2, (4, 1), (1, 1), 0
), primals_1, reinterpret_tensor(primals_3, (1, 4, 4), (16, 4, 1), 0
), reinterpret_tensor(buf1, (4, 1, 4), (4, 4, 1), 0), buf3
class FrameAvgPoolNew(nn.Module):
def __init__(self, cfg):
super(FrameAvgPoolNew, self).__init__()
input_size = cfg.INPUT_SIZE
hidden_size = cfg.HIDDEN_SIZE
kernel_size = cfg.KERNEL_SIZE
stride = cfg.STRIDE
self.vis_conv = nn.Conv1d(input_size, hidden_size, 1, 1)
self.avg_pool = nn.AvgPool1d(kernel_size, stride)
def forward(self, input_0):
primals_1 = self.vis_conv.weight
primals_2 = self.vis_conv.bias
primals_3 = input_0
output = call([primals_1, primals_2, primals_3])
return output[0]
|
CFM-MSG/Code_LEORN
|
FrameAvgPool
| false | 7,616 |
[
"MIT"
] | 1 |
fabea1e1ded973a4db692e51e2df442bde55f626
|
https://github.com/CFM-MSG/Code_LEORN/tree/fabea1e1ded973a4db692e51e2df442bde55f626
|
Sinc
|
# AOT ID: ['0_inference']
from ctypes import c_void_p, c_long, c_int
import torch
import math
import random
import os
import tempfile
from math import inf, nan
from torch._inductor.hooks import run_intermediate_hooks
from torch._inductor.utils import maybe_profile
from torch._inductor.codegen.memory_planning import _align as align
from torch import device, empty_strided
from torch._inductor.async_compile import AsyncCompile
from torch._inductor.select_algorithm import extern_kernels
from torch._inductor.codegen.multi_kernel import MultiKernelCall
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
aten = torch.ops.aten
inductor_ops = torch.ops.inductor
_quantized = torch.ops._quantized
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
alloc_from_pool = torch.ops.inductor._alloc_from_pool
async_compile = AsyncCompile()
# kernel path: runs/run_shard_9/inductor_cache/e6/ce6t322f2zovhgueyidqf4fawj6rk3xbgauhvwphy6cczoyv65ds.py
# Topologically Sorted Source Nodes: [add, sin, add_1, truediv], Original ATen: [aten.add, aten.sin, aten.div]
# Source node to ATen node mapping:
# add => add
# add_1 => add_1
# sin => sin
# truediv => div
# Graph fragment:
# %add : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%arg0_1, 1e-09), kwargs = {})
# %sin : [num_users=1] = call_function[target=torch.ops.aten.sin.default](args = (%add,), kwargs = {})
# %add_1 : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%arg0_1, 1e-09), kwargs = {})
# %div : [num_users=1] = call_function[target=torch.ops.aten.div.Tensor](args = (%sin, %add_1), kwargs = {})
triton_poi_fused_add_div_sin_0 = async_compile.triton('triton_poi_fused_add_div_sin_0', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[256],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_add_div_sin_0', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 1, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_add_div_sin_0(in_ptr0, out_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 256
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex
tmp0 = tl.load(in_ptr0 + (x0), xmask)
tmp1 = 1e-09
tmp2 = tmp0 + tmp1
tmp3 = tl_math.sin(tmp2)
tmp4 = tmp3 / tmp2
tl.store(out_ptr0 + (x0), tmp4, xmask)
''', device_str='cuda')
async_compile.wait(globals())
del async_compile
def call(args):
arg0_1, = args
args.clear()
assert_size_stride(arg0_1, (4, 4, 4, 4), (64, 16, 4, 1))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32)
# Topologically Sorted Source Nodes: [add, sin, add_1, truediv], Original ATen: [aten.add, aten.sin, aten.div]
stream0 = get_raw_stream(0)
triton_poi_fused_add_div_sin_0.run(arg0_1, buf0, 256, grid=grid(256), stream=stream0)
del arg0_1
return (buf0, )
def benchmark_compiled_module(times=10, repeat=10):
from torch._dynamo.testing import rand_strided
from torch._inductor.utils import print_performance
arg0_1 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32)
fn = lambda: call([arg0_1])
return print_performance(fn, times=times, repeat=repeat)
if __name__ == "__main__":
from torch._inductor.wrapper_benchmark import compiled_module_main
compiled_module_main('None', benchmark_compiled_module)
|
import torch
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
from torch._inductor.runtime.triton_helpers import math as tl_math
import torch.nn as nn
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
@triton.jit
def triton_poi_fused_add_div_sin_0(in_ptr0, out_ptr0, xnumel, XBLOCK: tl.
constexpr):
xnumel = 256
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex
tmp0 = tl.load(in_ptr0 + x0, xmask)
tmp1 = 1e-09
tmp2 = tmp0 + tmp1
tmp3 = tl_math.sin(tmp2)
tmp4 = tmp3 / tmp2
tl.store(out_ptr0 + x0, tmp4, xmask)
def call(args):
arg0_1, = args
args.clear()
assert_size_stride(arg0_1, (4, 4, 4, 4), (64, 16, 4, 1))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32)
get_raw_stream(0)
triton_poi_fused_add_div_sin_0[grid(256)](arg0_1, buf0, 256, XBLOCK
=256, num_warps=4, num_stages=1)
del arg0_1
return buf0,
class SincNew(nn.Module):
def forward(self, input_0):
arg0_1 = input_0
output = call([arg0_1])
return output[0]
|
fmhoward/pysurvival
|
Sinc
| false | 12,379 |
[
"Apache-2.0"
] | 0 |
3fea55f09477e9f0844845e09d6ea60434436e2e
|
https://github.com/fmhoward/pysurvival/tree/3fea55f09477e9f0844845e09d6ea60434436e2e
|
SPHead
|
import torch
import torch.utils.data
import torch.nn as nn
import torch.nn.functional as F
from inspect import isfunction
def get_activation_layer(activation):
"""
Create activation layer from string/function.
Parameters:
----------
activation : function, or str, or nn.Module
Activation function or name of activation function.
Returns
-------
nn.Module
Activation layer.
"""
assert activation is not None
if isfunction(activation):
return activation()
elif isinstance(activation, str):
if activation == 'relu':
return nn.ReLU(inplace=True)
elif activation == 'relu6':
return nn.ReLU6(inplace=True)
elif activation == 'swish':
return Swish()
elif activation == 'hswish':
return HSwish(inplace=True)
else:
raise NotImplementedError()
else:
assert isinstance(activation, nn.Module)
return activation
def conv3x3_block(in_channels, out_channels, stride=1, padding=1, dilation=
1, groups=1, bias=False, use_bn=True, bn_eps=1e-05, activation=lambda :
nn.ReLU(inplace=True)):
"""
3x3 version of the standard convolution block.
Parameters:
----------
in_channels : int
Number of input channels.
out_channels : int
Number of output channels.
stride : int or tuple/list of 2 int, default 1
Strides of the convolution.
padding : int or tuple/list of 2 int, default 1
Padding value for convolution layer.
dilation : int or tuple/list of 2 int, default 1
Dilation value for convolution layer.
groups : int, default 1
Number of groups.
bias : bool, default False
Whether the layer uses a bias vector.
use_bn : bool, default True
Whether to use BatchNorm layer.
bn_eps : float, default 1e-5
Small float added to variance in Batch norm.
activation : function or str or None, default nn.ReLU(inplace=True)
Activation function or name of activation function.
"""
return ConvBlock(in_channels=in_channels, out_channels=out_channels,
kernel_size=3, stride=stride, padding=padding, dilation=dilation,
groups=groups, bias=bias, use_bn=use_bn, bn_eps=bn_eps, activation=
activation)
def conv1x1(in_channels, out_channels, stride=1, groups=1, bias=False):
"""
Convolution 1x1 layer.
Parameters:
----------
in_channels : int
Number of input channels.
out_channels : int
Number of output channels.
stride : int or tuple/list of 2 int, default 1
Strides of the convolution.
groups : int, default 1
Number of groups.
bias : bool, default False
Whether the layer uses a bias vector.
"""
return nn.Conv2d(in_channels=in_channels, out_channels=out_channels,
kernel_size=1, stride=stride, groups=groups, bias=bias)
class HSwish(nn.Module):
"""
H-Swish activation function from 'Searching for MobileNetV3,' https://arxiv.org/abs/1905.02244.
Parameters:
----------
inplace : bool
Whether to use inplace version of the module.
"""
def __init__(self, inplace=False):
super(HSwish, self).__init__()
self.inplace = inplace
def forward(self, x):
return x * F.relu6(x + 3.0, inplace=self.inplace) / 6.0
class Swish(nn.Module):
"""
Swish activation function from 'Searching for Activation Functions,' https://arxiv.org/abs/1710.05941.
"""
def forward(self, x):
return x * torch.sigmoid(x)
class ConvBlock(nn.Module):
"""
Standard convolution block with Batch normalization and activation.
Parameters:
----------
in_channels : int
Number of input channels.
out_channels : int
Number of output channels.
kernel_size : int or tuple/list of 2 int
Convolution window size.
stride : int or tuple/list of 2 int
Strides of the convolution.
padding : int or tuple/list of 2 int
Padding value for convolution layer.
dilation : int or tuple/list of 2 int, default 1
Dilation value for convolution layer.
groups : int, default 1
Number of groups.
bias : bool, default False
Whether the layer uses a bias vector.
use_bn : bool, default True
Whether to use BatchNorm layer.
bn_eps : float, default 1e-5
Small float added to variance in Batch norm.
activation : function or str or None, default nn.ReLU(inplace=True)
Activation function or name of activation function.
activate : bool, default True
Whether activate the convolution block.
"""
def __init__(self, in_channels, out_channels, kernel_size, stride,
padding, dilation=1, groups=1, bias=False, use_bn=True, bn_eps=
1e-05, activation=lambda : nn.ReLU(inplace=True)):
super(ConvBlock, self).__init__()
self.activate = activation is not None
self.use_bn = use_bn
self.conv = nn.Conv2d(in_channels=in_channels, out_channels=
out_channels, kernel_size=kernel_size, stride=stride, padding=
padding, dilation=dilation, groups=groups, bias=bias)
if self.use_bn:
self.bn = nn.BatchNorm2d(num_features=out_channels, eps=bn_eps)
if self.activate:
self.activ = get_activation_layer(activation)
def forward(self, x):
x = self.conv(x)
if self.use_bn:
x = self.bn(x)
if self.activate:
x = self.activ(x)
return x
class SPHead(nn.Module):
"""
SuperPointNet head block.
Parameters:
----------
in_channels : int
Number of input channels.
mid_channels : int
Number of middle channels.
out_channels : int
Number of output channels.
"""
def __init__(self, in_channels, mid_channels, out_channels):
super(SPHead, self).__init__()
self.conv1 = conv3x3_block(in_channels=in_channels, out_channels=
mid_channels, bias=True, use_bn=False)
self.conv2 = conv1x1(in_channels=mid_channels, out_channels=
out_channels, bias=True)
def forward(self, x):
x = self.conv1(x)
x = self.conv2(x)
return x
def get_inputs():
return [torch.rand([4, 4, 4, 4])]
def get_init_inputs():
return [[], {'in_channels': 4, 'mid_channels': 4, 'out_channels': 4}]
|
import torch
from torch._inductor.select_algorithm import extern_kernels
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
from torch._inductor.runtime import triton_helpers
import torch.utils.data
import torch.nn as nn
import torch.nn.functional as F
from inspect import isfunction
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
@triton.jit
def triton_poi_fused_convolution_relu_0(in_out_ptr0, in_ptr0, xnumel,
XBLOCK: tl.constexpr):
xnumel = 256
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x3 = xindex
x1 = xindex // 16 % 4
tmp0 = tl.load(in_out_ptr0 + x3, xmask)
tmp1 = tl.load(in_ptr0 + x1, xmask, eviction_policy='evict_last')
tmp2 = tmp0 + tmp1
tmp3 = tl.full([1], 0, tl.int32)
tmp4 = triton_helpers.maximum(tmp3, tmp2)
tl.store(in_out_ptr0 + x3, tmp4, xmask)
@triton.jit
def triton_poi_fused_convolution_1(in_out_ptr0, in_ptr0, xnumel, XBLOCK: tl
.constexpr):
xnumel = 256
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x3 = xindex
x1 = xindex // 16 % 4
tmp0 = tl.load(in_out_ptr0 + x3, xmask)
tmp1 = tl.load(in_ptr0 + x1, xmask, eviction_policy='evict_last')
tmp2 = tmp0 + tmp1
tl.store(in_out_ptr0 + x3, tmp2, xmask)
def call(args):
primals_1, primals_2, primals_3, primals_4, primals_5 = args
args.clear()
assert_size_stride(primals_1, (4, 4, 3, 3), (36, 9, 3, 1))
assert_size_stride(primals_2, (4,), (1,))
assert_size_stride(primals_3, (4, 4, 4, 4), (64, 16, 4, 1))
assert_size_stride(primals_4, (4, 4, 1, 1), (4, 1, 1, 1))
assert_size_stride(primals_5, (4,), (1,))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = extern_kernels.convolution(primals_3, primals_1, stride=(1,
1), padding=(1, 1), dilation=(1, 1), transposed=False,
output_padding=(0, 0), groups=1, bias=None)
assert_size_stride(buf0, (4, 4, 4, 4), (64, 16, 4, 1))
buf1 = buf0
del buf0
get_raw_stream(0)
triton_poi_fused_convolution_relu_0[grid(256)](buf1, primals_2, 256,
XBLOCK=128, num_warps=4, num_stages=1)
del primals_2
buf2 = extern_kernels.convolution(buf1, primals_4, stride=(1, 1),
padding=(0, 0), dilation=(1, 1), transposed=False,
output_padding=(0, 0), groups=1, bias=None)
assert_size_stride(buf2, (4, 4, 4, 4), (64, 16, 4, 1))
buf3 = buf2
del buf2
triton_poi_fused_convolution_1[grid(256)](buf3, primals_5, 256,
XBLOCK=128, num_warps=4, num_stages=1)
del primals_5
return buf3, primals_1, primals_3, primals_4, buf1
def get_activation_layer(activation):
"""
Create activation layer from string/function.
Parameters:
----------
activation : function, or str, or nn.Module
Activation function or name of activation function.
Returns
-------
nn.Module
Activation layer.
"""
assert activation is not None
if isfunction(activation):
return activation()
elif isinstance(activation, str):
if activation == 'relu':
return nn.ReLU(inplace=True)
elif activation == 'relu6':
return nn.ReLU6(inplace=True)
elif activation == 'swish':
return Swish()
elif activation == 'hswish':
return HSwish(inplace=True)
else:
raise NotImplementedError()
else:
assert isinstance(activation, nn.Module)
return activation
def conv3x3_block(in_channels, out_channels, stride=1, padding=1, dilation=
1, groups=1, bias=False, use_bn=True, bn_eps=1e-05, activation=lambda :
nn.ReLU(inplace=True)):
"""
3x3 version of the standard convolution block.
Parameters:
----------
in_channels : int
Number of input channels.
out_channels : int
Number of output channels.
stride : int or tuple/list of 2 int, default 1
Strides of the convolution.
padding : int or tuple/list of 2 int, default 1
Padding value for convolution layer.
dilation : int or tuple/list of 2 int, default 1
Dilation value for convolution layer.
groups : int, default 1
Number of groups.
bias : bool, default False
Whether the layer uses a bias vector.
use_bn : bool, default True
Whether to use BatchNorm layer.
bn_eps : float, default 1e-5
Small float added to variance in Batch norm.
activation : function or str or None, default nn.ReLU(inplace=True)
Activation function or name of activation function.
"""
return ConvBlock(in_channels=in_channels, out_channels=out_channels,
kernel_size=3, stride=stride, padding=padding, dilation=dilation,
groups=groups, bias=bias, use_bn=use_bn, bn_eps=bn_eps, activation=
activation)
def conv1x1(in_channels, out_channels, stride=1, groups=1, bias=False):
"""
Convolution 1x1 layer.
Parameters:
----------
in_channels : int
Number of input channels.
out_channels : int
Number of output channels.
stride : int or tuple/list of 2 int, default 1
Strides of the convolution.
groups : int, default 1
Number of groups.
bias : bool, default False
Whether the layer uses a bias vector.
"""
return nn.Conv2d(in_channels=in_channels, out_channels=out_channels,
kernel_size=1, stride=stride, groups=groups, bias=bias)
class HSwish(nn.Module):
"""
H-Swish activation function from 'Searching for MobileNetV3,' https://arxiv.org/abs/1905.02244.
Parameters:
----------
inplace : bool
Whether to use inplace version of the module.
"""
def __init__(self, inplace=False):
super(HSwish, self).__init__()
self.inplace = inplace
def forward(self, x):
return x * F.relu6(x + 3.0, inplace=self.inplace) / 6.0
class Swish(nn.Module):
"""
Swish activation function from 'Searching for Activation Functions,' https://arxiv.org/abs/1710.05941.
"""
def forward(self, x):
return x * torch.sigmoid(x)
class ConvBlock(nn.Module):
"""
Standard convolution block with Batch normalization and activation.
Parameters:
----------
in_channels : int
Number of input channels.
out_channels : int
Number of output channels.
kernel_size : int or tuple/list of 2 int
Convolution window size.
stride : int or tuple/list of 2 int
Strides of the convolution.
padding : int or tuple/list of 2 int
Padding value for convolution layer.
dilation : int or tuple/list of 2 int, default 1
Dilation value for convolution layer.
groups : int, default 1
Number of groups.
bias : bool, default False
Whether the layer uses a bias vector.
use_bn : bool, default True
Whether to use BatchNorm layer.
bn_eps : float, default 1e-5
Small float added to variance in Batch norm.
activation : function or str or None, default nn.ReLU(inplace=True)
Activation function or name of activation function.
activate : bool, default True
Whether activate the convolution block.
"""
def __init__(self, in_channels, out_channels, kernel_size, stride,
padding, dilation=1, groups=1, bias=False, use_bn=True, bn_eps=
1e-05, activation=lambda : nn.ReLU(inplace=True)):
super(ConvBlock, self).__init__()
self.activate = activation is not None
self.use_bn = use_bn
self.conv = nn.Conv2d(in_channels=in_channels, out_channels=
out_channels, kernel_size=kernel_size, stride=stride, padding=
padding, dilation=dilation, groups=groups, bias=bias)
if self.use_bn:
self.bn = nn.BatchNorm2d(num_features=out_channels, eps=bn_eps)
if self.activate:
self.activ = get_activation_layer(activation)
def forward(self, x):
x = self.conv(x)
if self.use_bn:
x = self.bn(x)
if self.activate:
x = self.activ(x)
return x
class SPHeadNew(nn.Module):
"""
SuperPointNet head block.
Parameters:
----------
in_channels : int
Number of input channels.
mid_channels : int
Number of middle channels.
out_channels : int
Number of output channels.
"""
def __init__(self, in_channels, mid_channels, out_channels):
super(SPHeadNew, self).__init__()
self.conv1 = conv3x3_block(in_channels=in_channels, out_channels=
mid_channels, bias=True, use_bn=False)
self.conv2 = conv1x1(in_channels=mid_channels, out_channels=
out_channels, bias=True)
def forward(self, input_0):
primals_1 = self.conv1.conv.weight
primals_2 = self.conv1.conv.bias
primals_4 = self.conv2.weight
primals_5 = self.conv2.bias
primals_3 = input_0
output = call([primals_1, primals_2, primals_3, primals_4, primals_5])
return output[0]
|
HyperGAN/imgclsmob
|
SPHead
| false | 17,687 |
[
"MIT"
] | 9 |
88b9776a5a927dc9a54e85e31978c4a9ec5ecbf3
|
https://github.com/HyperGAN/imgclsmob/tree/88b9776a5a927dc9a54e85e31978c4a9ec5ecbf3
|
ToSEG
|
# AOT ID: ['0_forward']
from ctypes import c_void_p, c_long, c_int
import torch
import math
import random
import os
import tempfile
from math import inf, nan
from torch._inductor.hooks import run_intermediate_hooks
from torch._inductor.utils import maybe_profile
from torch._inductor.codegen.memory_planning import _align as align
from torch import device, empty_strided
from torch._inductor.async_compile import AsyncCompile
from torch._inductor.select_algorithm import extern_kernels
from torch._inductor.codegen.multi_kernel import MultiKernelCall
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
aten = torch.ops.aten
inductor_ops = torch.ops.inductor
_quantized = torch.ops._quantized
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
alloc_from_pool = torch.ops.inductor._alloc_from_pool
async_compile = AsyncCompile()
# kernel path: runs/run_shard_7/inductor_cache/wi/cwiyl3lwwtancorrifw77xt3aqb4lermdintht45zvkj3bg54nbl.py
# Topologically Sorted Source Nodes: [mul], Original ATen: [aten.mul]
# Source node to ATen node mapping:
# mul => mul
# Graph fragment:
# %mul : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%primals_2, 0.5), kwargs = {})
triton_poi_fused_mul_0 = async_compile.triton('triton_poi_fused_mul_0', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[16],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_mul_0', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 1, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_mul_0(in_ptr0, out_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 16
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex
tmp0 = tl.load(in_ptr0 + (x0), xmask)
tmp1 = 0.5
tmp2 = tmp0 * tmp1
tl.store(out_ptr0 + (x0), tmp2, xmask)
''', device_str='cuda')
# kernel path: runs/run_shard_7/inductor_cache/2o/c2oqkq7zaubqmw7vuixxlseb2ff5jzqqbyczicxlmsahuxwdpdyp.py
# Topologically Sorted Source Nodes: [mul_1], Original ATen: [aten.mul]
# Source node to ATen node mapping:
# mul_1 => mul_1
# Graph fragment:
# %mul_1 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%primals_3, 1), kwargs = {})
triton_poi_fused_mul_1 = async_compile.triton('triton_poi_fused_mul_1', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[4],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_mul_1', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 1, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_mul_1(in_ptr0, out_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 4
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex
tmp0 = tl.load(in_ptr0 + (x0), xmask)
tmp1 = 1.0
tmp2 = tmp0 * tmp1
tl.store(out_ptr0 + (x0), tmp2, xmask)
''', device_str='cuda')
# kernel path: runs/run_shard_7/inductor_cache/s3/cs3vevvlveudb7oguup5ljgcyslvygs2cnrc5347em4iypopundn.py
# Topologically Sorted Source Nodes: [mul_2, weight], Original ATen: [aten.mul]
# Source node to ATen node mapping:
# mul_2 => mul_2
# weight => mul_3
# Graph fragment:
# %mul_2 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%primals_5, 0.5), kwargs = {})
# %mul_3 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%mul_2, %view), kwargs = {})
triton_poi_fused_mul_2 = async_compile.triton('triton_poi_fused_mul_2', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[64],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_mul_2', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_mul_2(in_ptr0, in_ptr1, out_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 64
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x3 = xindex % 16
x0 = xindex % 4
x2 = (xindex // 16)
x4 = xindex
tmp0 = tl.load(in_ptr0 + (x3), xmask, eviction_policy='evict_last')
tmp3 = tl.load(in_ptr1 + (x0 + (4*x2)), xmask, eviction_policy='evict_last')
tmp1 = 0.5
tmp2 = tmp0 * tmp1
tmp4 = tmp2 * tmp3
tl.store(out_ptr0 + (x4), tmp4, xmask)
''', device_str='cuda')
# kernel path: runs/run_shard_7/inductor_cache/r2/cr263a6gzji5hcuzutpzrubs2olns2ao2sa7aaaziqrb7stxhlqd.py
# Topologically Sorted Source Nodes: [out_3], Original ATen: [aten.add]
# Source node to ATen node mapping:
# out_3 => add
# Graph fragment:
# %add : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%view_3, %primals_6), kwargs = {})
triton_poi_fused_add_3 = async_compile.triton('triton_poi_fused_add_3', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[256],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_add_3', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_add_3(in_out_ptr0, in_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 256
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x3 = xindex
x1 = (xindex // 16) % 4
tmp0 = tl.load(in_out_ptr0 + (x3), xmask)
tmp1 = tl.load(in_ptr0 + (x1), xmask, eviction_policy='evict_last')
tmp2 = tmp0 + tmp1
tl.store(in_out_ptr0 + (x3), tmp2, xmask)
''', device_str='cuda')
async_compile.wait(globals())
del async_compile
def call(args):
primals_1, primals_2, primals_3, primals_4, primals_5, primals_6 = args
args.clear()
assert_size_stride(primals_1, (4, 4, 4, 4), (64, 16, 4, 1))
assert_size_stride(primals_2, (4, 4), (4, 1))
assert_size_stride(primals_3, (4, ), (1, ))
assert_size_stride(primals_4, (4, 4), (4, 1))
assert_size_stride(primals_5, (1, 4, 4, 1, 1), (16, 4, 1, 1, 1))
assert_size_stride(primals_6, (1, 4, 1, 1), (4, 1, 1, 1))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((4, 4), (4, 1), torch.float32)
# Topologically Sorted Source Nodes: [mul], Original ATen: [aten.mul]
stream0 = get_raw_stream(0)
triton_poi_fused_mul_0.run(primals_2, buf0, 16, grid=grid(16), stream=stream0)
del primals_2
buf1 = empty_strided_cuda((4, ), (1, ), torch.float32)
# Topologically Sorted Source Nodes: [mul_1], Original ATen: [aten.mul]
triton_poi_fused_mul_1.run(primals_3, buf1, 4, grid=grid(4), stream=stream0)
del primals_3
buf2 = empty_strided_cuda((4, 4), (4, 1), torch.float32)
# Topologically Sorted Source Nodes: [mul_1, out], Original ATen: [aten.mul, aten.addmm]
extern_kernels.addmm(buf1, primals_4, reinterpret_tensor(buf0, (4, 4), (1, 4), 0), alpha=1, beta=1, out=buf2)
del buf0
del buf1
buf3 = empty_strided_cuda((4, 4, 4, 1, 1), (16, 4, 1, 1, 1), torch.float32)
# Topologically Sorted Source Nodes: [mul_2, weight], Original ATen: [aten.mul]
triton_poi_fused_mul_2.run(primals_5, buf2, buf3, 64, grid=grid(64), stream=stream0)
# Topologically Sorted Source Nodes: [out_1], Original ATen: [aten.convolution]
buf4 = extern_kernels.convolution(reinterpret_tensor(primals_1, (1, 16, 4, 4), (256, 16, 4, 1), 0), reinterpret_tensor(buf3, (16, 4, 1, 1), (4, 1, 0, 0), 0), stride=(1, 1), padding=(0, 0), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=4, bias=None)
assert_size_stride(buf4, (1, 16, 4, 4), (256, 16, 4, 1))
buf5 = reinterpret_tensor(buf4, (4, 4, 4, 4), (64, 16, 4, 1), 0); del buf4 # reuse
# Topologically Sorted Source Nodes: [out_3], Original ATen: [aten.add]
triton_poi_fused_add_3.run(buf5, primals_6, 256, grid=grid(256), stream=stream0)
del primals_6
return (buf5, primals_4, primals_5, buf2, reinterpret_tensor(buf3, (16, 4, 1, 1), (4, 1, 1, 1), 0), reinterpret_tensor(primals_1, (1, 16, 4, 4), (256, 16, 4, 1), 0), )
def benchmark_compiled_module(times=10, repeat=10):
from torch._dynamo.testing import rand_strided
from torch._inductor.utils import print_performance
primals_1 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32)
primals_2 = rand_strided((4, 4), (4, 1), device='cuda:0', dtype=torch.float32)
primals_3 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32)
primals_4 = rand_strided((4, 4), (4, 1), device='cuda:0', dtype=torch.float32)
primals_5 = rand_strided((1, 4, 4, 1, 1), (16, 4, 1, 1, 1), device='cuda:0', dtype=torch.float32)
primals_6 = rand_strided((1, 4, 1, 1), (4, 1, 1, 1), device='cuda:0', dtype=torch.float32)
fn = lambda: call([primals_1, primals_2, primals_3, primals_4, primals_5, primals_6])
return print_performance(fn, times=times, repeat=repeat)
if __name__ == "__main__":
from torch._inductor.wrapper_benchmark import compiled_module_main
compiled_module_main('None', benchmark_compiled_module)
|
import torch
from torch._inductor.select_algorithm import extern_kernels
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
from torch.autograd import Function
import math
import torch.nn as nn
import torch.nn.functional as F
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
@triton.jit
def triton_poi_fused_mul_0(in_ptr0, out_ptr0, xnumel, XBLOCK: tl.constexpr):
xnumel = 16
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex
tmp0 = tl.load(in_ptr0 + x0, xmask)
tmp1 = 0.5
tmp2 = tmp0 * tmp1
tl.store(out_ptr0 + x0, tmp2, xmask)
@triton.jit
def triton_poi_fused_mul_1(in_ptr0, out_ptr0, xnumel, XBLOCK: tl.constexpr):
xnumel = 4
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex
tmp0 = tl.load(in_ptr0 + x0, xmask)
tmp1 = 1.0
tmp2 = tmp0 * tmp1
tl.store(out_ptr0 + x0, tmp2, xmask)
@triton.jit
def triton_poi_fused_mul_2(in_ptr0, in_ptr1, out_ptr0, xnumel, XBLOCK: tl.
constexpr):
xnumel = 64
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x3 = xindex % 16
x0 = xindex % 4
x2 = xindex // 16
x4 = xindex
tmp0 = tl.load(in_ptr0 + x3, xmask, eviction_policy='evict_last')
tmp3 = tl.load(in_ptr1 + (x0 + 4 * x2), xmask, eviction_policy='evict_last'
)
tmp1 = 0.5
tmp2 = tmp0 * tmp1
tmp4 = tmp2 * tmp3
tl.store(out_ptr0 + x4, tmp4, xmask)
@triton.jit
def triton_poi_fused_add_3(in_out_ptr0, in_ptr0, xnumel, XBLOCK: tl.constexpr):
xnumel = 256
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x3 = xindex
x1 = xindex // 16 % 4
tmp0 = tl.load(in_out_ptr0 + x3, xmask)
tmp1 = tl.load(in_ptr0 + x1, xmask, eviction_policy='evict_last')
tmp2 = tmp0 + tmp1
tl.store(in_out_ptr0 + x3, tmp2, xmask)
def call(args):
primals_1, primals_2, primals_3, primals_4, primals_5, primals_6 = args
args.clear()
assert_size_stride(primals_1, (4, 4, 4, 4), (64, 16, 4, 1))
assert_size_stride(primals_2, (4, 4), (4, 1))
assert_size_stride(primals_3, (4,), (1,))
assert_size_stride(primals_4, (4, 4), (4, 1))
assert_size_stride(primals_5, (1, 4, 4, 1, 1), (16, 4, 1, 1, 1))
assert_size_stride(primals_6, (1, 4, 1, 1), (4, 1, 1, 1))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((4, 4), (4, 1), torch.float32)
get_raw_stream(0)
triton_poi_fused_mul_0[grid(16)](primals_2, buf0, 16, XBLOCK=16,
num_warps=1, num_stages=1)
del primals_2
buf1 = empty_strided_cuda((4,), (1,), torch.float32)
triton_poi_fused_mul_1[grid(4)](primals_3, buf1, 4, XBLOCK=4,
num_warps=1, num_stages=1)
del primals_3
buf2 = empty_strided_cuda((4, 4), (4, 1), torch.float32)
extern_kernels.addmm(buf1, primals_4, reinterpret_tensor(buf0, (4,
4), (1, 4), 0), alpha=1, beta=1, out=buf2)
del buf0
del buf1
buf3 = empty_strided_cuda((4, 4, 4, 1, 1), (16, 4, 1, 1, 1), torch.
float32)
triton_poi_fused_mul_2[grid(64)](primals_5, buf2, buf3, 64, XBLOCK=
64, num_warps=1, num_stages=1)
buf4 = extern_kernels.convolution(reinterpret_tensor(primals_1, (1,
16, 4, 4), (256, 16, 4, 1), 0), reinterpret_tensor(buf3, (16, 4,
1, 1), (4, 1, 0, 0), 0), stride=(1, 1), padding=(0, 0),
dilation=(1, 1), transposed=False, output_padding=(0, 0),
groups=4, bias=None)
assert_size_stride(buf4, (1, 16, 4, 4), (256, 16, 4, 1))
buf5 = reinterpret_tensor(buf4, (4, 4, 4, 4), (64, 16, 4, 1), 0)
del buf4
triton_poi_fused_add_3[grid(256)](buf5, primals_6, 256, XBLOCK=128,
num_warps=4, num_stages=1)
del primals_6
return buf5, primals_4, primals_5, buf2, reinterpret_tensor(buf3, (16,
4, 1, 1), (4, 1, 1, 1), 0), reinterpret_tensor(primals_1, (1, 16, 4,
4), (256, 16, 4, 1), 0)
def fused_leaky_relu(input, bias=None, negative_slope=0.2, scale=2 ** 0.5):
if input.device.type == 'cpu':
if bias is not None:
rest_dim = [1] * (input.ndim - bias.ndim - 1)
return F.leaky_relu(input + bias.view(1, bias.shape[0], *
rest_dim), negative_slope=0.2) * scale
else:
return F.leaky_relu(input, negative_slope=0.2) * scale
else:
return FusedLeakyReLUFunction.apply(input, bias, negative_slope, scale)
def make_kernel(k):
k = torch.tensor(k, dtype=torch.float32)
if k.ndim == 1:
k = k[None, :] * k[:, None]
k /= k.sum()
return k
def upfirdn2d_native(input, kernel, up_x, up_y, down_x, down_y, pad_x0,
pad_x1, pad_y0, pad_y1):
_, channel, in_h, in_w = input.shape
input = input.reshape(-1, in_h, in_w, 1)
_, in_h, in_w, minor = input.shape
kernel_h, kernel_w = kernel.shape
out = input.view(-1, in_h, 1, in_w, 1, minor)
out = F.pad(out, [0, 0, 0, up_x - 1, 0, 0, 0, up_y - 1])
out = out.view(-1, in_h * up_y, in_w * up_x, minor)
out = F.pad(out, [0, 0, max(pad_x0, 0), max(pad_x1, 0), max(pad_y0, 0),
max(pad_y1, 0)])
out = out[:, max(-pad_y0, 0):out.shape[1] - max(-pad_y1, 0), max(-
pad_x0, 0):out.shape[2] - max(-pad_x1, 0), :]
out = out.permute(0, 3, 1, 2)
out = out.reshape([-1, 1, in_h * up_y + pad_y0 + pad_y1, in_w * up_x +
pad_x0 + pad_x1])
w = torch.flip(kernel, [0, 1]).view(1, 1, kernel_h, kernel_w)
out = F.conv2d(out, w)
out = out.reshape(-1, minor, in_h * up_y + pad_y0 + pad_y1 - kernel_h +
1, in_w * up_x + pad_x0 + pad_x1 - kernel_w + 1)
out = out.permute(0, 2, 3, 1)
out = out[:, ::down_y, ::down_x, :]
out_h = (in_h * up_y + pad_y0 + pad_y1 - kernel_h) // down_y + 1
out_w = (in_w * up_x + pad_x0 + pad_x1 - kernel_w) // down_x + 1
return out.view(-1, channel, out_h, out_w)
def upfirdn2d(input, kernel, up=1, down=1, pad=(0, 0)):
if input.device.type == 'cpu':
out = upfirdn2d_native(input, kernel, up, up, down, down, pad[0],
pad[1], pad[0], pad[1])
else:
out = UpFirDn2d.apply(input, kernel, (up, up), (down, down), (pad[0
], pad[1], pad[0], pad[1]))
return out
def upsample(in_tens, out_H=64):
in_H = in_tens.shape[2]
scale_factor = 1.0 * out_H / in_H
return nn.Upsample(scale_factor=scale_factor, mode='bilinear',
align_corners=False)(in_tens)
class FusedLeakyReLUFunctionBackward(Function):
@staticmethod
def forward(ctx, grad_output, out, bias, negative_slope, scale):
ctx.save_for_backward(out)
ctx.negative_slope = negative_slope
ctx.scale = scale
empty = grad_output.new_empty(0)
grad_input = fused.fused_bias_act(grad_output, empty, out, 3, 1,
negative_slope, scale)
dim = [0]
if grad_input.ndim > 2:
dim += list(range(2, grad_input.ndim))
if bias:
grad_bias = grad_input.sum(dim).detach()
else:
grad_bias = empty
return grad_input, grad_bias
@staticmethod
def backward(ctx, gradgrad_input, gradgrad_bias):
out, = ctx.saved_tensors
gradgrad_out = fused.fused_bias_act(gradgrad_input, gradgrad_bias,
out, 3, 1, ctx.negative_slope, ctx.scale)
return gradgrad_out, None, None, None, None
class FusedLeakyReLUFunction(Function):
@staticmethod
def forward(ctx, input, bias, negative_slope, scale):
empty = input.new_empty(0)
ctx.bias = bias is not None
if bias is None:
bias = empty
out = fused.fused_bias_act(input, bias, empty, 3, 0, negative_slope,
scale)
ctx.save_for_backward(out)
ctx.negative_slope = negative_slope
ctx.scale = scale
return out
@staticmethod
def backward(ctx, grad_output):
out, = ctx.saved_tensors
grad_input, grad_bias = FusedLeakyReLUFunctionBackward.apply(
grad_output, out, ctx.bias, ctx.negative_slope, ctx.scale)
if not ctx.bias:
grad_bias = None
return grad_input, grad_bias, None, None
class EqualLinear(nn.Module):
def __init__(self, in_dim, out_dim, bias=True, bias_init=0, lr_mul=1,
activation=None):
super().__init__()
self.weight = nn.Parameter(torch.randn(out_dim, in_dim).div_(lr_mul))
if bias:
self.bias = nn.Parameter(torch.zeros(out_dim).fill_(bias_init))
else:
self.bias = None
self.activation = activation
self.scale = 1 / math.sqrt(in_dim) * lr_mul
self.lr_mul = lr_mul
def forward(self, input):
if self.activation:
out = F.linear(input, self.weight * self.scale)
out = fused_leaky_relu(out, self.bias * self.lr_mul)
else:
out = F.linear(input, self.weight * self.scale, bias=self.bias *
self.lr_mul)
return out
def __repr__(self):
return (
f'{self.__class__.__name__}({self.weight.shape[1]}, {self.weight.shape[0]})'
)
class UpFirDn2dBackward(Function):
@staticmethod
def forward(ctx, grad_output, kernel, grad_kernel, up, down, pad, g_pad,
in_size, out_size):
up_x, up_y = up
down_x, down_y = down
g_pad_x0, g_pad_x1, g_pad_y0, g_pad_y1 = g_pad
grad_output = grad_output.reshape(-1, out_size[0], out_size[1], 1)
grad_input = upfirdn2d_op.upfirdn2d(grad_output, grad_kernel,
down_x, down_y, up_x, up_y, g_pad_x0, g_pad_x1, g_pad_y0, g_pad_y1)
grad_input = grad_input.view(in_size[0], in_size[1], in_size[2],
in_size[3])
ctx.save_for_backward(kernel)
pad_x0, pad_x1, pad_y0, pad_y1 = pad
ctx.up_x = up_x
ctx.up_y = up_y
ctx.down_x = down_x
ctx.down_y = down_y
ctx.pad_x0 = pad_x0
ctx.pad_x1 = pad_x1
ctx.pad_y0 = pad_y0
ctx.pad_y1 = pad_y1
ctx.in_size = in_size
ctx.out_size = out_size
return grad_input
@staticmethod
def backward(ctx, gradgrad_input):
kernel, = ctx.saved_tensors
gradgrad_input = gradgrad_input.reshape(-1, ctx.in_size[2], ctx.
in_size[3], 1)
gradgrad_out = upfirdn2d_op.upfirdn2d(gradgrad_input, kernel, ctx.
up_x, ctx.up_y, ctx.down_x, ctx.down_y, ctx.pad_x0, ctx.pad_x1,
ctx.pad_y0, ctx.pad_y1)
gradgrad_out = gradgrad_out.view(ctx.in_size[0], ctx.in_size[1],
ctx.out_size[0], ctx.out_size[1])
return gradgrad_out, None, None, None, None, None, None, None, None
class UpFirDn2d(Function):
@staticmethod
def forward(ctx, input, kernel, up, down, pad):
up_x, up_y = up
down_x, down_y = down
pad_x0, pad_x1, pad_y0, pad_y1 = pad
kernel_h, kernel_w = kernel.shape
_batch, channel, in_h, in_w = input.shape
ctx.in_size = input.shape
input = input.reshape(-1, in_h, in_w, 1)
ctx.save_for_backward(kernel, torch.flip(kernel, [0, 1]))
out_h = (in_h * up_y + pad_y0 + pad_y1 - kernel_h) // down_y + 1
out_w = (in_w * up_x + pad_x0 + pad_x1 - kernel_w) // down_x + 1
ctx.out_size = out_h, out_w
ctx.up = up_x, up_y
ctx.down = down_x, down_y
ctx.pad = pad_x0, pad_x1, pad_y0, pad_y1
g_pad_x0 = kernel_w - pad_x0 - 1
g_pad_y0 = kernel_h - pad_y0 - 1
g_pad_x1 = in_w * up_x - out_w * down_x + pad_x0 - up_x + 1
g_pad_y1 = in_h * up_y - out_h * down_y + pad_y0 - up_y + 1
ctx.g_pad = g_pad_x0, g_pad_x1, g_pad_y0, g_pad_y1
out = upfirdn2d_op.upfirdn2d(input, kernel, up_x, up_y, down_x,
down_y, pad_x0, pad_x1, pad_y0, pad_y1)
out = out.view(-1, channel, out_h, out_w)
return out
@staticmethod
def backward(ctx, grad_output):
kernel, grad_kernel = ctx.saved_tensors
grad_input = UpFirDn2dBackward.apply(grad_output, kernel,
grad_kernel, ctx.up, ctx.down, ctx.pad, ctx.g_pad, ctx.in_size,
ctx.out_size)
return grad_input, None, None, None, None
class Blur(nn.Module):
def __init__(self, kernel, pad, upsample_factor=1):
super().__init__()
kernel = make_kernel(kernel)
if upsample_factor > 1:
kernel = kernel * upsample_factor ** 2
self.register_buffer('kernel', kernel)
self.pad = pad
def forward(self, input):
out = upfirdn2d(input, self.kernel, pad=self.pad)
return out
class ModulatedConv2d(nn.Module):
def __init__(self, in_channel, out_channel, kernel_size, style_dim,
demodulate=True, upsample=False, downsample=False, blur_kernel=[1,
3, 3, 1]):
super().__init__()
self.eps = 1e-08
self.kernel_size = kernel_size
self.in_channel = in_channel
self.out_channel = out_channel
self.upsample = upsample
self.downsample = downsample
if upsample:
factor = 2
p = len(blur_kernel) - factor - (kernel_size - 1)
pad0 = (p + 1) // 2 + factor - 1
pad1 = p // 2 + 1
self.blur = Blur(blur_kernel, pad=(pad0, pad1), upsample_factor
=factor)
if downsample:
factor = 2
p = len(blur_kernel) - factor + (kernel_size - 1)
pad0 = (p + 1) // 2
pad1 = p // 2
self.blur = Blur(blur_kernel, pad=(pad0, pad1))
fan_in = in_channel * kernel_size ** 2
self.scale = 1 / math.sqrt(fan_in)
self.padding = kernel_size // 2
self.weight = nn.Parameter(torch.randn(1, out_channel, in_channel,
kernel_size, kernel_size))
self.modulation = EqualLinear(style_dim, in_channel, bias_init=1)
self.demodulate = demodulate
def __repr__(self):
return (
f'{self.__class__.__name__}({self.in_channel}, {self.out_channel}, {self.kernel_size}, upsample={self.upsample}, downsample={self.downsample})'
)
def forward(self, input, style):
batch, in_channel, height, width = input.shape
style = self.modulation(style).view(batch, 1, in_channel, 1, 1)
weight = self.scale * self.weight * style
if self.demodulate:
demod = torch.rsqrt(weight.pow(2).sum([2, 3, 4]) + 1e-08)
weight = weight * demod.view(batch, self.out_channel, 1, 1, 1)
weight = weight.view(batch * self.out_channel, in_channel, self.
kernel_size, self.kernel_size)
if self.upsample:
input = input.view(1, batch * in_channel, height, width)
weight = weight.view(batch, self.out_channel, in_channel, self.
kernel_size, self.kernel_size)
weight = weight.transpose(1, 2).reshape(batch * in_channel,
self.out_channel, self.kernel_size, self.kernel_size)
out = F.conv_transpose2d(input, weight, padding=0, stride=2,
groups=batch)
_, _, height, width = out.shape
out = out.view(batch, self.out_channel, height, width)
out = self.blur(out)
elif self.downsample:
input = self.blur(input)
_, _, height, width = input.shape
input = input.view(1, batch * in_channel, height, width)
out = F.conv2d(input, weight, padding=0, stride=2, groups=batch)
_, _, height, width = out.shape
out = out.view(batch, self.out_channel, height, width)
else:
input = input.view(1, batch * in_channel, height, width)
out = F.conv2d(input, weight, padding=self.padding, groups=batch)
_, _, height, width = out.shape
out = out.view(batch, self.out_channel, height, width)
return out
class Upsample(nn.Module):
def __init__(self, kernel, factor=2):
super().__init__()
self.factor = factor
kernel = make_kernel(kernel) * factor ** 2
self.register_buffer('kernel', kernel)
p = kernel.shape[0] - factor
pad0 = (p + 1) // 2 + factor - 1
pad1 = p // 2
self.pad = pad0, pad1
def forward(self, input):
out = upfirdn2d(input, self.kernel, up=self.factor, down=1, pad=
self.pad)
return out
class ToSEGNew(nn.Module):
def __init__(self, in_channel, out_channel, style_dim, upsample=True,
blur_kernel=[1, 3, 3, 1]):
super().__init__()
if upsample:
self.upsample = Upsample(blur_kernel)
self.conv = ModulatedConv2d(in_channel, out_channel, 1, style_dim,
demodulate=False)
self.bias = nn.Parameter(torch.zeros(1, out_channel, 1, 1))
def forward(self, input_0, input_1):
primals_6 = self.bias
primals_5 = self.conv.weight
primals_2 = self.conv.modulation.weight
primals_3 = self.conv.modulation.bias
primals_1 = input_0
primals_4 = input_1
output = call([primals_1, primals_2, primals_3, primals_4,
primals_5, primals_6])
return output[0]
|
MargauxMasson/semanticGAN_code
|
ToSEG
| false | 2,642 |
[
"BSD-2-Clause",
"MIT"
] | 0 |
a5b7fbbc505f8ae08c8aab8e199aa6406fffdb07
|
https://github.com/MargauxMasson/semanticGAN_code/tree/a5b7fbbc505f8ae08c8aab8e199aa6406fffdb07
|
NBLoss
|
import torch
import numpy as np
def _nan2inf(x):
return torch.where(torch.isnan(x), torch.zeros_like(x) + np.inf, x)
class NBLoss(torch.nn.Module):
def __init__(self):
super(NBLoss, self).__init__()
def forward(self, yhat, y, eps=1e-08):
"""Negative binomial log-likelihood loss. It assumes targets `y` with n
rows and d columns, but estimates `yhat` with n rows and 2d columns.
The columns 0:d of `yhat` contain estimated means, the columns d:2*d of
`yhat` contain estimated variances. This module assumes that the
estimated mean and inverse dispersion are positive---for numerical
stability, it is recommended that the minimum estimated variance is
greater than a small number (1e-3).
Parameters
----------
yhat: Tensor
Torch Tensor of reeconstructed data.
y: Tensor
Torch Tensor of ground truth data.
eps: Float
numerical stability constant.
"""
dim = yhat.size(1) // 2
mu = yhat[:, :dim]
theta = yhat[:, dim:]
if theta.ndimension() == 1:
theta = theta.view(1, theta.size(0))
t1 = torch.lgamma(theta + eps) + torch.lgamma(y + 1.0) - torch.lgamma(
y + theta + eps)
t2 = (theta + y) * torch.log(1.0 + mu / (theta + eps)) + y * (torch
.log(theta + eps) - torch.log(mu + eps))
final = t1 + t2
final = _nan2inf(final)
return torch.mean(final)
def get_inputs():
return [torch.rand([4, 4, 4, 4]), torch.rand([4, 2, 4, 4])]
def get_init_inputs():
return [[], {}]
|
import torch
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
import numpy as np
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
@triton.jit
def triton_per_fused_add_div_isnan_lgamma_log_mean_mul_sub_where_0(in_out_ptr0,
in_ptr0, in_ptr1, xnumel, rnumel, XBLOCK: tl.constexpr):
RBLOCK: tl.constexpr = 128
xoffset = tl.program_id(0) * XBLOCK
xoffset + tl.arange(0, XBLOCK)[:, None]
tl.full([XBLOCK, RBLOCK], True, tl.int1)
rindex = tl.arange(0, RBLOCK)[None, :]
tl.full([XBLOCK, RBLOCK], True, tl.int1)
r0 = rindex % 32
r1 = rindex // 32
r2 = rindex
tmp0 = tl.load(in_ptr0 + (32 + r0 + 64 * r1), None)
tmp4 = tl.load(in_ptr1 + r2, None)
tmp14 = tl.load(in_ptr0 + (r0 + 64 * r1), None)
tmp1 = 1e-08
tmp2 = tmp0 + tmp1
tmp3 = libdevice.lgamma(tmp2)
tmp5 = 1.0
tmp6 = tmp4 + tmp5
tmp7 = libdevice.lgamma(tmp6)
tmp8 = tmp3 + tmp7
tmp9 = tmp4 + tmp0
tmp10 = tmp9 + tmp1
tmp11 = libdevice.lgamma(tmp10)
tmp12 = tmp8 - tmp11
tmp13 = tmp0 + tmp4
tmp15 = tmp14 / tmp2
tmp16 = tmp15 + tmp5
tmp17 = tl_math.log(tmp16)
tmp18 = tmp13 * tmp17
tmp19 = tl_math.log(tmp2)
tmp20 = tmp14 + tmp1
tmp21 = tl_math.log(tmp20)
tmp22 = tmp19 - tmp21
tmp23 = tmp4 * tmp22
tmp24 = tmp18 + tmp23
tmp25 = tmp12 + tmp24
tmp26 = libdevice.isnan(tmp25).to(tl.int1)
tmp27 = float('inf')
tmp28 = tl.where(tmp26, tmp27, tmp25)
tmp29 = tl.broadcast_to(tmp28, [XBLOCK, RBLOCK])
tmp31 = tl.sum(tmp29, 1)[:, None]
tmp32 = 128.0
tmp33 = tmp31 / tmp32
tl.debug_barrier()
tl.store(in_out_ptr0 + tl.full([XBLOCK, 1], 0, tl.int32), tmp33, None)
def call(args):
arg0_1, arg1_1 = args
args.clear()
assert_size_stride(arg0_1, (4, 4, 4, 4), (64, 16, 4, 1))
assert_size_stride(arg1_1, (4, 2, 4, 4), (32, 16, 4, 1))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((), (), torch.float32)
buf1 = buf0
del buf0
get_raw_stream(0)
triton_per_fused_add_div_isnan_lgamma_log_mean_mul_sub_where_0[grid(1)
](buf1, arg0_1, arg1_1, 1, 128, XBLOCK=1, num_warps=2, num_stages=1
)
del arg0_1
del arg1_1
return buf1,
def _nan2inf(x):
return torch.where(torch.isnan(x), torch.zeros_like(x) + np.inf, x)
class NBLossNew(torch.nn.Module):
def __init__(self):
super(NBLossNew, self).__init__()
def forward(self, input_0, input_1):
arg0_1 = input_0
arg1_1 = input_1
output = call([arg0_1, arg1_1])
return output[0]
|
scottgigante-immunai/CPA
|
NBLoss
| false | 16,367 |
[
"MIT"
] | 132 |
9338ede503d36c6163a521bee904aa93d896ef92
|
https://github.com/scottgigante-immunai/CPA/tree/9338ede503d36c6163a521bee904aa93d896ef92
|
VNet
|
import torch
import torch.nn as nn
class VNet(nn.Module):
def __init__(self, input_size, hidden_size, output_size=1):
super(VNet, self).__init__()
self.linear1 = nn.Linear(input_size, hidden_size)
self.relu1 = nn.ReLU(inplace=True)
self.linear2 = nn.Linear(hidden_size, output_size)
def forward(self, x):
x = self.linear1(x)
x = self.relu1(x)
out = self.linear2(x)
return torch.sigmoid(out)
def get_inputs():
return [torch.rand([4, 4, 4, 4])]
def get_init_inputs():
return [[], {'input_size': 4, 'hidden_size': 4}]
|
import torch
from torch._inductor.select_algorithm import extern_kernels
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
from torch._inductor.runtime import triton_helpers
import torch.nn as nn
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
@triton.jit
def triton_poi_fused_relu_threshold_backward_0(in_out_ptr0, in_ptr0,
out_ptr0, xnumel, XBLOCK: tl.constexpr):
xnumel = 256
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x4 = xindex
x0 = xindex % 4
tmp0 = tl.load(in_out_ptr0 + x4, xmask)
tmp1 = tl.load(in_ptr0 + x0, xmask, eviction_policy='evict_last')
tmp2 = tmp0 + tmp1
tmp3 = tl.full([1], 0, tl.int32)
tmp4 = triton_helpers.maximum(tmp3, tmp2)
tmp5 = 0.0
tmp6 = tmp4 <= tmp5
tl.store(in_out_ptr0 + x4, tmp4, xmask)
tl.store(out_ptr0 + x4, tmp6, xmask)
@triton.jit
def triton_poi_fused_view_1(in_ptr0, out_ptr0, xnumel, XBLOCK: tl.constexpr):
xnumel = 256
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex % 4
x1 = xindex // 4
x2 = xindex
tmp0 = tl.load(in_ptr0 + (x0 + 4 * x1 + 16 * (x1 % 4 // 4) + 64 * ((4 *
(x1 // 4 % 4) + x1 % 4) // 16)), xmask)
tl.store(out_ptr0 + x2, tmp0, xmask)
@triton.jit
def triton_poi_fused_sigmoid_2(in_out_ptr0, in_ptr0, xnumel, XBLOCK: tl.
constexpr):
xnumel = 64
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex
tmp0 = tl.load(in_out_ptr0 + x0, xmask)
tmp1 = tl.load(in_ptr0 + 0)
tmp2 = tl.broadcast_to(tmp1, [XBLOCK])
tmp3 = tmp0 + tmp2
tmp4 = tl.sigmoid(tmp3)
tl.store(in_out_ptr0 + x0, tmp4, xmask)
def call(args):
primals_1, primals_2, primals_3, primals_4, primals_5 = args
args.clear()
assert_size_stride(primals_1, (4, 4), (4, 1))
assert_size_stride(primals_2, (4,), (1,))
assert_size_stride(primals_3, (4, 4, 4, 4), (64, 16, 4, 1))
assert_size_stride(primals_4, (1, 4), (4, 1))
assert_size_stride(primals_5, (1,), (1,))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((64, 4), (4, 1), torch.float32)
extern_kernels.mm(reinterpret_tensor(primals_3, (64, 4), (4, 1), 0),
reinterpret_tensor(primals_1, (4, 4), (1, 4), 0), out=buf0)
del primals_1
buf1 = reinterpret_tensor(buf0, (4, 4, 4, 4), (64, 16, 4, 1), 0)
del buf0
buf5 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.bool)
get_raw_stream(0)
triton_poi_fused_relu_threshold_backward_0[grid(256)](buf1,
primals_2, buf5, 256, XBLOCK=128, num_warps=4, num_stages=1)
del primals_2
buf2 = empty_strided_cuda((64, 4), (4, 1), torch.float32)
triton_poi_fused_view_1[grid(256)](buf1, buf2, 256, XBLOCK=256,
num_warps=4, num_stages=1)
del buf1
buf3 = empty_strided_cuda((64, 1), (1, 1), torch.float32)
extern_kernels.mm(buf2, reinterpret_tensor(primals_4, (4, 1), (1, 4
), 0), out=buf3)
buf4 = reinterpret_tensor(buf3, (4, 4, 4, 1), (16, 4, 1, 1), 0)
del buf3
triton_poi_fused_sigmoid_2[grid(64)](buf4, primals_5, 64, XBLOCK=64,
num_warps=1, num_stages=1)
del primals_5
return buf4, reinterpret_tensor(primals_3, (64, 4), (4, 1), 0
), buf2, buf4, primals_4, buf5
class VNetNew(nn.Module):
def __init__(self, input_size, hidden_size, output_size=1):
super(VNetNew, self).__init__()
self.linear1 = nn.Linear(input_size, hidden_size)
self.relu1 = nn.ReLU(inplace=True)
self.linear2 = nn.Linear(hidden_size, output_size)
def forward(self, input_0):
primals_1 = self.linear1.weight
primals_2 = self.linear1.bias
primals_4 = self.linear2.weight
primals_5 = self.linear2.bias
primals_3 = input_0
output = call([primals_1, primals_2, primals_3, primals_4, primals_5])
return output[0]
|
Stranger469/wrench
|
VNet
| false | 5,863 |
[
"Apache-2.0"
] | 1 |
ab717ac26a76649c8fdb946a28dffe7e682c80ba
|
https://github.com/Stranger469/wrench/tree/ab717ac26a76649c8fdb946a28dffe7e682c80ba
|
AmdimNCELoss
|
import torch
from torch import nn
def tanh_clip(x, clip_val=10.0):
"""soft clip values to the range [-clip_val, +clip_val]"""
if clip_val is not None:
x_clip = clip_val * torch.tanh(1.0 / clip_val * x)
else:
x_clip = x
return x_clip
class AmdimNCELoss(nn.Module):
"""Compute the NCE scores for predicting r_src->r_trg."""
def __init__(self, tclip):
super().__init__()
self.tclip = tclip
def forward(self, anchor_representations, positive_representations,
mask_mat):
"""
Args:
anchor_representations: (batch_size, emb_dim)
positive_representations: (emb_dim, n_batch * w* h) (ie: nb_feat_vectors x embedding_dim)
mask_mat: (n_batch_gpu, n_batch)
Output:
raw_scores: (n_batch_gpu, n_locs)
nce_scores: (n_batch_gpu, n_locs)
lgt_reg : scalar
"""
r_src = anchor_representations
r_trg = positive_representations
batch_size, emb_dim = r_src.size()
nb_feat_vectors = r_trg.size(1) // batch_size
mask_pos = mask_mat.unsqueeze(dim=2).expand(-1, -1, nb_feat_vectors
).float()
mask_neg = 1.0 - mask_pos
raw_scores = torch.mm(r_src, r_trg).float()
raw_scores = raw_scores.reshape(batch_size, batch_size, nb_feat_vectors
)
raw_scores = raw_scores / emb_dim ** 0.5
lgt_reg = 0.05 * (raw_scores ** 2.0).mean()
raw_scores = tanh_clip(raw_scores, clip_val=self.tclip)
"""
pos_scores includes scores for all the positive samples
neg_scores includes scores for all the negative samples, with
scores for positive samples set to the min score (-self.tclip here)
"""
pos_scores = (mask_pos * raw_scores).sum(dim=1)
neg_scores = mask_neg * raw_scores - self.tclip * mask_pos
neg_scores = neg_scores.reshape(batch_size, -1)
mask_neg = mask_neg.reshape(batch_size, -1)
neg_maxes = torch.max(neg_scores, dim=1, keepdim=True)[0]
neg_sumexp = (mask_neg * torch.exp(neg_scores - neg_maxes)).sum(dim
=1, keepdim=True)
all_logsumexp = torch.log(torch.exp(pos_scores - neg_maxes) +
neg_sumexp)
pos_shiftexp = pos_scores - neg_maxes
nce_scores = pos_shiftexp - all_logsumexp
nce_scores = -nce_scores.mean()
return nce_scores, lgt_reg
def get_inputs():
return [torch.rand([4, 4]), torch.rand([4, 4]), torch.rand([4, 4])]
def get_init_inputs():
return [[], {'tclip': 4}]
|
import torch
from torch._inductor.select_algorithm import extern_kernels
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
from torch._inductor.runtime import triton_helpers
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch import nn
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
@triton.jit
def triton_per_fused_add_div_exp_log_max_mean_mul_neg_sub_sum_tanh_0(
in_out_ptr0, in_ptr0, in_ptr1, xnumel, rnumel, XBLOCK: tl.constexpr):
RBLOCK: tl.constexpr = 4
xoffset = tl.program_id(0) * XBLOCK
xoffset + tl.arange(0, XBLOCK)[:, None]
tl.full([XBLOCK, RBLOCK], True, tl.int1)
rindex = tl.arange(0, RBLOCK)[None, :]
tl.full([XBLOCK, RBLOCK], True, tl.int1)
r0 = rindex
tmp0 = tl.load(in_ptr0 + 4 * r0, None, eviction_policy='evict_last')
tmp3 = tl.load(in_ptr1 + 4 * r0, None, eviction_policy='evict_last')
tmp14 = tl.load(in_ptr0 + (1 + 4 * r0), None, eviction_policy='evict_last')
tmp16 = tl.load(in_ptr1 + (1 + 4 * r0), None, eviction_policy='evict_last')
tmp25 = tl.load(in_ptr0 + (2 + 4 * r0), None, eviction_policy='evict_last')
tmp27 = tl.load(in_ptr1 + (2 + 4 * r0), None, eviction_policy='evict_last')
tmp36 = tl.load(in_ptr0 + (3 + 4 * r0), None, eviction_policy='evict_last')
tmp38 = tl.load(in_ptr1 + (3 + 4 * r0), None, eviction_policy='evict_last')
tmp1 = 1.0
tmp2 = tmp1 - tmp0
tmp4 = 0.5
tmp5 = tmp3 * tmp4
tmp6 = 0.25
tmp7 = tmp5 * tmp6
tmp8 = libdevice.tanh(tmp7)
tmp9 = 4.0
tmp10 = tmp8 * tmp9
tmp11 = tmp2 * tmp10
tmp12 = tmp0 * tmp9
tmp13 = tmp11 - tmp12
tmp15 = tmp1 - tmp14
tmp17 = tmp16 * tmp4
tmp18 = tmp17 * tmp6
tmp19 = libdevice.tanh(tmp18)
tmp20 = tmp19 * tmp9
tmp21 = tmp15 * tmp20
tmp22 = tmp14 * tmp9
tmp23 = tmp21 - tmp22
tmp24 = triton_helpers.maximum(tmp13, tmp23)
tmp26 = tmp1 - tmp25
tmp28 = tmp27 * tmp4
tmp29 = tmp28 * tmp6
tmp30 = libdevice.tanh(tmp29)
tmp31 = tmp30 * tmp9
tmp32 = tmp26 * tmp31
tmp33 = tmp25 * tmp9
tmp34 = tmp32 - tmp33
tmp35 = triton_helpers.maximum(tmp24, tmp34)
tmp37 = tmp1 - tmp36
tmp39 = tmp38 * tmp4
tmp40 = tmp39 * tmp6
tmp41 = libdevice.tanh(tmp40)
tmp42 = tmp41 * tmp9
tmp43 = tmp37 * tmp42
tmp44 = tmp36 * tmp9
tmp45 = tmp43 - tmp44
tmp46 = triton_helpers.maximum(tmp35, tmp45)
tmp47 = tmp13 - tmp46
tmp48 = tl_math.exp(tmp47)
tmp49 = tmp2 * tmp48
tmp50 = tmp23 - tmp46
tmp51 = tl_math.exp(tmp50)
tmp52 = tmp15 * tmp51
tmp53 = tmp49 + tmp52
tmp54 = tmp34 - tmp46
tmp55 = tl_math.exp(tmp54)
tmp56 = tmp26 * tmp55
tmp57 = tmp53 + tmp56
tmp58 = tmp45 - tmp46
tmp59 = tl_math.exp(tmp58)
tmp60 = tmp37 * tmp59
tmp61 = tmp57 + tmp60
tmp62 = tmp0 * tmp10
tmp63 = tmp14 * tmp20
tmp64 = tmp62 + tmp63
tmp65 = tmp25 * tmp31
tmp66 = tmp64 + tmp65
tmp67 = tmp36 * tmp42
tmp68 = tmp66 + tmp67
tmp69 = tmp68 - tmp46
tmp70 = tl_math.exp(tmp69)
tmp71 = tmp70 + tmp61
tmp72 = tl_math.log(tmp71)
tmp73 = tmp69 - tmp72
tmp74 = tl.broadcast_to(tmp73, [XBLOCK, RBLOCK])
tmp76 = tl.sum(tmp74, 1)[:, None]
tmp77 = tmp76 / tmp9
tmp78 = -tmp77
tl.debug_barrier()
tl.store(in_out_ptr0 + tl.full([XBLOCK, 1], 0, tl.int32), tmp78, None)
@triton.jit
def triton_per_fused_div_mean_mul_pow_1(in_out_ptr0, in_ptr0, xnumel,
rnumel, XBLOCK: tl.constexpr):
RBLOCK: tl.constexpr = 16
xoffset = tl.program_id(0) * XBLOCK
xoffset + tl.arange(0, XBLOCK)[:, None]
tl.full([XBLOCK, RBLOCK], True, tl.int1)
rindex = tl.arange(0, RBLOCK)[None, :]
tl.full([XBLOCK, RBLOCK], True, tl.int1)
r0 = rindex
tmp0 = tl.load(in_ptr0 + r0, None)
tmp1 = 0.5
tmp2 = tmp0 * tmp1
tmp3 = tmp2 * tmp2
tmp4 = tl.broadcast_to(tmp3, [XBLOCK, RBLOCK])
tmp6 = tl.sum(tmp4, 1)[:, None]
tmp7 = 16.0
tmp8 = tmp6 / tmp7
tmp9 = 0.05
tmp10 = tmp8 * tmp9
tl.debug_barrier()
tl.store(in_out_ptr0 + tl.full([XBLOCK, 1], 0, tl.int32), tmp10, None)
def call(args):
arg0_1, arg1_1, arg2_1 = args
args.clear()
assert_size_stride(arg0_1, (4, 4), (4, 1))
assert_size_stride(arg1_1, (4, 4), (4, 1))
assert_size_stride(arg2_1, (4, 4), (4, 1))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((4, 4), (4, 1), torch.float32)
extern_kernels.mm(arg0_1, arg1_1, out=buf0)
del arg0_1
del arg1_1
buf4 = empty_strided_cuda((), (), torch.float32)
buf6 = buf4
del buf4
get_raw_stream(0)
triton_per_fused_add_div_exp_log_max_mean_mul_neg_sub_sum_tanh_0[grid
(1)](buf6, arg2_1, buf0, 1, 4, XBLOCK=1, num_warps=2, num_stages=1)
del arg2_1
buf5 = empty_strided_cuda((), (), torch.float32)
buf7 = buf5
del buf5
triton_per_fused_div_mean_mul_pow_1[grid(1)](buf7, buf0, 1, 16,
XBLOCK=1, num_warps=2, num_stages=1)
del buf0
return buf6, buf7
def tanh_clip(x, clip_val=10.0):
"""soft clip values to the range [-clip_val, +clip_val]"""
if clip_val is not None:
x_clip = clip_val * torch.tanh(1.0 / clip_val * x)
else:
x_clip = x
return x_clip
class AmdimNCELossNew(nn.Module):
"""Compute the NCE scores for predicting r_src->r_trg."""
def __init__(self, tclip):
super().__init__()
self.tclip = tclip
def forward(self, input_0, input_1, input_2):
arg0_1 = input_0
arg1_1 = input_1
arg2_1 = input_2
output = call([arg0_1, arg1_1, arg2_1])
return output[0], output[1]
|
Benjamin-Etheredge/lightning-bolts
|
AmdimNCELoss
| false | 138 |
[
"Apache-2.0"
] | 0 |
1971d6a924729940b98793aa7751bdf769350aca
|
https://github.com/Benjamin-Etheredge/lightning-bolts/tree/1971d6a924729940b98793aa7751bdf769350aca
|
MultiHeadDenseLayer
|
import torch
import tensorflow as tf
import torch.nn as nn
import torch.nn.functional as F
def get_activation(activ):
if callable(activ):
return activ
if activ is None:
return lambda x: x
if activ == 'tanh':
return F.tanh
elif activ == 'relu':
return F.relu
elif activ == 'gelu':
return F.gelu
elif activ == 'glu':
return lambda x: F.glu(x, -1)
else:
raise ValueError('Unknown activation: {}'.format(activ))
class MultiHeadDenseLayer(nn.Module):
""" Auto splitting or combining heads for the linear transformation. """
def __init__(self, input_size, output_units, num_heads, activation=None,
use_bias=True, is_output_transform=False):
""" Initializes MultiHeadDenseLayer.
Args:
input_size: The input dimension.
output_units: A int scalar or int list, indicating the transformed output units.
It must be a int scalar when `is_output_transform` is True.
num_heads: The head num.
activation: A string or a callable function for activation.
use_bias: A boolean, whether to add bias tensor.
is_output_transform: A boolean, whether to use this layer for the output
transformation in multi head attention.
"""
super(MultiHeadDenseLayer, self).__init__()
self._output_units = output_units
self._num_heads = num_heads
self._use_bias = use_bias
self._is_output_transform = is_output_transform
self._activation = activation
self._activation_fn = get_activation(activation)
self._flatten_output_units = tf.nest.flatten(self._output_units)
if is_output_transform:
assert not tf.nest.is_nested(self._output_units)
self._kernel = torch.nn.Parameter(torch.nn.init.xavier_normal_(
torch.empty(input_size, self._output_units)))
else:
self._kernel = torch.nn.Parameter(torch.nn.init.xavier_normal_(
torch.empty(input_size, sum(self._flatten_output_units))),
requires_grad=True)
if self._use_bias:
self._bias = torch.nn.Parameter(torch.zeros(sum(self.
_flatten_output_units)), requires_grad=True)
def compat_kernel_shape(self, input_shape):
""" Compatible kernel for variable storage. """
if self._is_output_transform:
return [input_shape[-1] * input_shape[-2], self._output_units]
return [input_shape[-1], sum(self._flatten_output_units)]
@property
def kernel_shape(self):
""" The kernel shape. """
if self._is_output_transform:
return [self._num_heads, -1, self._output_units]
return [-1, sum(self._flatten_output_units)]
def forward(self, inputs):
""" Implements ``call()`` for MultiHeadDenseLayer.
Args:
inputs: A float tensor of shape [batch_size, length, hidden_size]
when output_projection is False, otherwise a float tensor of shape
[batch_size, length, num_heads, num_units_per_head].
Returns:
The projected tensor with shape [batch_size, length, num_heads,
num_units_per_head] per `self._output_units` when output_projection
is False, otherwise [batch_size, length, output_units].
"""
kernel = torch.reshape(self._kernel, self.kernel_shape)
if self._is_output_transform:
output = torch.einsum('abcd,cde->abe', inputs, kernel)
else:
output = torch.einsum('abc,cd->abd', inputs, kernel)
if self._use_bias:
output += self._bias
if not self._is_output_transform:
output = torch.split(output, self._flatten_output_units, dim=-1)
output = tf.nest.map_structure(lambda x, num_units: torch.
reshape(x, list(x.size())[:-1] + [self._num_heads,
num_units // self._num_heads]), output, self.
_flatten_output_units, check_types=False)
output = tf.nest.flatten(output)
if self._activation_fn is not None:
output = tf.nest.map_structure(self._activation_fn, output,
check_types=False)
return tf.nest.pack_sequence_as(self._output_units, output)
def get_inputs():
return [torch.rand([4, 4, 4])]
def get_init_inputs():
return [[], {'input_size': 4, 'output_units': 4, 'num_heads': 4}]
|
import torch
from torch._inductor.select_algorithm import extern_kernels
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
import tensorflow as tf
import torch.nn as nn
import torch.nn.functional as F
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
@triton.jit
def triton_poi_fused_add_0(in_out_ptr0, in_ptr0, xnumel, XBLOCK: tl.constexpr):
xnumel = 64
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x2 = xindex
x0 = xindex % 4
tmp0 = tl.load(in_out_ptr0 + x2, xmask)
tmp1 = tl.load(in_ptr0 + x0, xmask, eviction_policy='evict_last')
tmp2 = tmp0 + tmp1
tl.store(in_out_ptr0 + x2, tmp2, xmask)
def call(args):
primals_1, primals_2, primals_3 = args
args.clear()
assert_size_stride(primals_1, (4, 4), (4, 1))
assert_size_stride(primals_2, (4, 4, 4), (16, 4, 1))
assert_size_stride(primals_3, (4,), (1,))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((1, 16, 4), (64, 4, 1), torch.float32)
extern_kernels.bmm(reinterpret_tensor(primals_2, (1, 16, 4), (64, 4,
1), 0), reinterpret_tensor(primals_1, (1, 4, 4), (16, 4, 1), 0),
out=buf0)
del primals_1
buf1 = reinterpret_tensor(buf0, (4, 4, 4), (16, 4, 1), 0)
del buf0
get_raw_stream(0)
triton_poi_fused_add_0[grid(64)](buf1, primals_3, 64, XBLOCK=64,
num_warps=1, num_stages=1)
del primals_3
return buf1, reinterpret_tensor(primals_2, (1, 4, 16), (64, 1, 4), 0)
def get_activation(activ):
if callable(activ):
return activ
if activ is None:
return lambda x: x
if activ == 'tanh':
return F.tanh
elif activ == 'relu':
return F.relu
elif activ == 'gelu':
return F.gelu
elif activ == 'glu':
return lambda x: F.glu(x, -1)
else:
raise ValueError('Unknown activation: {}'.format(activ))
class MultiHeadDenseLayerNew(nn.Module):
""" Auto splitting or combining heads for the linear transformation. """
def __init__(self, input_size, output_units, num_heads, activation=None,
use_bias=True, is_output_transform=False):
""" Initializes MultiHeadDenseLayer.
Args:
input_size: The input dimension.
output_units: A int scalar or int list, indicating the transformed output units.
It must be a int scalar when `is_output_transform` is True.
num_heads: The head num.
activation: A string or a callable function for activation.
use_bias: A boolean, whether to add bias tensor.
is_output_transform: A boolean, whether to use this layer for the output
transformation in multi head attention.
"""
super(MultiHeadDenseLayerNew, self).__init__()
self._output_units = output_units
self._num_heads = num_heads
self._use_bias = use_bias
self._is_output_transform = is_output_transform
self._activation = activation
self._activation_fn = get_activation(activation)
self._flatten_output_units = tf.nest.flatten(self._output_units)
if is_output_transform:
assert not tf.nest.is_nested(self._output_units)
self._kernel = torch.nn.Parameter(torch.nn.init.xavier_normal_(
torch.empty(input_size, self._output_units)))
else:
self._kernel = torch.nn.Parameter(torch.nn.init.xavier_normal_(
torch.empty(input_size, sum(self._flatten_output_units))),
requires_grad=True)
if self._use_bias:
self._bias = torch.nn.Parameter(torch.zeros(sum(self.
_flatten_output_units)), requires_grad=True)
def compat_kernel_shape(self, input_shape):
""" Compatible kernel for variable storage. """
if self._is_output_transform:
return [input_shape[-1] * input_shape[-2], self._output_units]
return [input_shape[-1], sum(self._flatten_output_units)]
@property
def kernel_shape(self):
""" The kernel shape. """
if self._is_output_transform:
return [self._num_heads, -1, self._output_units]
return [-1, sum(self._flatten_output_units)]
def forward(self, input_0):
primals_1 = self._kernel
primals_3 = self._bias
primals_2 = input_0
output = call([primals_1, primals_2, primals_3])
return output[0]
|
ishine/neurst
|
MultiHeadDenseLayer
| false | 16,691 |
[
"Apache-2.0"
] | 208 |
2ba322393fcfed4261b33f4a657e12bbe321baaa
|
https://github.com/ishine/neurst/tree/2ba322393fcfed4261b33f4a657e12bbe321baaa
|
FactorizedReduce
|
import torch
import torch.nn as nn
import torch.utils.data
import torch.utils
from matplotlib import cm as cm
from torch.nn.parallel import *
from torchvision.models import *
from torchvision.datasets import *
def get_norm_layer(norm, C):
if norm in [None, '', 'none']:
norm_layer = nn.Identity()
elif norm.startswith('bn'):
norm_layer = nn.BatchNorm2d(C, track_running_stats=norm.find(
'track') >= 0)
else:
raise NotImplementedError(norm)
return norm_layer
class FactorizedReduce(nn.Module):
def __init__(self, C_in, C_out, norm='bn', stride=2):
super(FactorizedReduce, self).__init__()
assert C_out % 2 == 0
self.stride = stride
self.relu = nn.ReLU(inplace=False)
self.conv_1 = nn.Conv2d(C_in, C_out // 2, 1, stride=stride, padding
=0, bias=False)
self.conv_2 = nn.Conv2d(C_in, C_out // 2, 1, stride=stride, padding
=0, bias=False)
self.bn = get_norm_layer(norm, C_out)
def forward(self, x):
x = self.relu(x)
out = torch.cat([self.conv_1(x), self.conv_2(x[:, :, 1:, 1:] if
self.stride > 1 else x)], dim=1)
out = self.bn(out)
return out
def get_inputs():
return [torch.rand([4, 4, 4, 4])]
def get_init_inputs():
return [[], {'C_in': 4, 'C_out': 4}]
|
import torch
from torch._inductor.select_algorithm import extern_kernels
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
from torch._inductor.runtime import triton_helpers
from torch._inductor.runtime.triton_helpers import libdevice
import torch.nn as nn
import torch.utils.data
import torch.utils
from matplotlib import cm as cm
from torch.nn.parallel import *
from torchvision.models import *
from torchvision.datasets import *
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
@triton.jit
def triton_poi_fused_relu_0(in_ptr0, out_ptr0, xnumel, XBLOCK: tl.constexpr):
xnumel = 256
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex
tmp0 = tl.load(in_ptr0 + x0, xmask)
tmp1 = tl.full([1], 0, tl.int32)
tmp2 = triton_helpers.maximum(tmp1, tmp0)
tl.store(out_ptr0 + x0, tmp2, xmask)
@triton.jit
def triton_poi_fused_cat_1(in_ptr0, in_ptr1, out_ptr0, xnumel, XBLOCK: tl.
constexpr):
xnumel = 64
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x1 = xindex // 4 % 4
x0 = xindex % 4
x2 = xindex // 16
x3 = xindex
tmp0 = x1
tl.full([1], 0, tl.int64)
tmp3 = tl.full([1], 2, tl.int64)
tmp4 = tmp0 < tmp3
tmp5 = tl.load(in_ptr0 + (x0 + 4 * x1 + 8 * x2), tmp4 & xmask, other=0.0)
tmp6 = tmp0 >= tmp3
tl.full([1], 4, tl.int64)
tmp9 = tl.load(in_ptr1 + (x0 + 4 * (-2 + x1) + 8 * x2), tmp6 & xmask,
other=0.0)
tmp10 = tl.where(tmp4, tmp5, tmp9)
tl.store(out_ptr0 + x3, tmp10, xmask)
@triton.jit
def triton_per_fused__native_batch_norm_legit_2(in_ptr0, out_ptr0, out_ptr1,
out_ptr2, xnumel, rnumel, XBLOCK: tl.constexpr):
xnumel = 4
RBLOCK: tl.constexpr = 16
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:, None]
xmask = xindex < xnumel
rindex = tl.arange(0, RBLOCK)[None, :]
tl.full([XBLOCK, RBLOCK], True, tl.int1)
r1 = rindex % 4
r2 = rindex // 4
x0 = xindex
tmp0 = tl.load(in_ptr0 + (r1 + 4 * x0 + 16 * r2), xmask, other=0.0)
tmp1 = tl.broadcast_to(tmp0, [XBLOCK, RBLOCK])
tl.where(xmask, tmp1, 0)
tmp4 = tl.broadcast_to(tmp1, [XBLOCK, RBLOCK])
tmp6 = tl.where(xmask, tmp4, 0)
tmp7 = tl.sum(tmp6, 1)[:, None]
tmp8 = tl.full([XBLOCK, 1], 16, tl.int32)
tmp9 = tmp8.to(tl.float32)
tmp10 = tmp7 / tmp9
tmp11 = tmp1 - tmp10
tmp12 = tmp11 * tmp11
tmp13 = tl.broadcast_to(tmp12, [XBLOCK, RBLOCK])
tmp15 = tl.where(xmask, tmp13, 0)
tmp16 = tl.sum(tmp15, 1)[:, None]
tmp17 = 16.0
tmp18 = tmp16 / tmp17
tmp19 = 1e-05
tmp20 = tmp18 + tmp19
tmp21 = libdevice.rsqrt(tmp20)
tl.store(out_ptr2 + x0, tmp21, xmask)
tl.store(out_ptr0 + x0, tmp10, xmask)
tl.store(out_ptr1 + x0, tmp16, xmask)
@triton.jit
def triton_poi_fused__native_batch_norm_legit_3(in_ptr0, in_ptr1, in_ptr2,
in_ptr3, in_ptr4, out_ptr0, xnumel, XBLOCK: tl.constexpr):
xnumel = 64
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x3 = xindex
x1 = xindex // 4 % 4
tmp0 = tl.load(in_ptr0 + x3, xmask)
tmp1 = tl.load(in_ptr1 + x1, xmask, eviction_policy='evict_last')
tmp3 = tl.load(in_ptr2 + x1, xmask, eviction_policy='evict_last')
tmp10 = tl.load(in_ptr3 + x1, xmask, eviction_policy='evict_last')
tmp12 = tl.load(in_ptr4 + x1, xmask, eviction_policy='evict_last')
tmp2 = tmp0 - tmp1
tmp4 = 16.0
tmp5 = tmp3 / tmp4
tmp6 = 1e-05
tmp7 = tmp5 + tmp6
tmp8 = libdevice.rsqrt(tmp7)
tmp9 = tmp2 * tmp8
tmp11 = tmp9 * tmp10
tmp13 = tmp11 + tmp12
tl.store(out_ptr0 + x3, tmp13, xmask)
def call(args):
primals_1, primals_2, primals_3, primals_4, primals_5 = args
args.clear()
assert_size_stride(primals_1, (4, 4, 4, 4), (64, 16, 4, 1))
assert_size_stride(primals_2, (2, 4, 1, 1), (4, 1, 1, 1))
assert_size_stride(primals_3, (2, 4, 1, 1), (4, 1, 1, 1))
assert_size_stride(primals_4, (4,), (1,))
assert_size_stride(primals_5, (4,), (1,))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32)
get_raw_stream(0)
triton_poi_fused_relu_0[grid(256)](primals_1, buf0, 256, XBLOCK=128,
num_warps=4, num_stages=1)
del primals_1
buf1 = extern_kernels.convolution(buf0, primals_2, stride=(2, 2),
padding=(0, 0), dilation=(1, 1), transposed=False,
output_padding=(0, 0), groups=1, bias=None)
assert_size_stride(buf1, (4, 2, 2, 2), (8, 4, 2, 1))
buf2 = extern_kernels.convolution(reinterpret_tensor(buf0, (4, 4, 3,
3), (64, 16, 4, 1), 5), primals_3, stride=(2, 2), padding=(0, 0
), dilation=(1, 1), transposed=False, output_padding=(0, 0),
groups=1, bias=None)
assert_size_stride(buf2, (4, 2, 2, 2), (8, 4, 2, 1))
buf3 = empty_strided_cuda((4, 4, 2, 2), (16, 4, 2, 1), torch.float32)
triton_poi_fused_cat_1[grid(64)](buf1, buf2, buf3, 64, XBLOCK=64,
num_warps=1, num_stages=1)
del buf1
del buf2
buf4 = empty_strided_cuda((1, 4, 1, 1), (4, 1, 4, 4), torch.float32)
buf5 = empty_strided_cuda((1, 4, 1, 1), (4, 1, 4, 4), torch.float32)
buf7 = empty_strided_cuda((1, 4, 1, 1), (4, 1, 4, 4), torch.float32)
triton_per_fused__native_batch_norm_legit_2[grid(4)](buf3, buf4,
buf5, buf7, 4, 16, XBLOCK=1, num_warps=2, num_stages=1)
buf8 = empty_strided_cuda((4, 4, 2, 2), (16, 4, 2, 1), torch.float32)
triton_poi_fused__native_batch_norm_legit_3[grid(64)](buf3, buf4,
buf5, primals_4, primals_5, buf8, 64, XBLOCK=64, num_warps=1,
num_stages=1)
del buf5
del primals_5
return (buf8, primals_2, primals_3, primals_4, buf0, buf3,
reinterpret_tensor(buf7, (4,), (1,), 0), reinterpret_tensor(buf4, (
1, 4, 1, 1), (4, 1, 1, 1), 0))
def get_norm_layer(norm, C):
if norm in [None, '', 'none']:
norm_layer = nn.Identity()
elif norm.startswith('bn'):
norm_layer = nn.BatchNorm2d(C, track_running_stats=norm.find(
'track') >= 0)
else:
raise NotImplementedError(norm)
return norm_layer
class FactorizedReduceNew(nn.Module):
def __init__(self, C_in, C_out, norm='bn', stride=2):
super(FactorizedReduceNew, self).__init__()
assert C_out % 2 == 0
self.stride = stride
self.relu = nn.ReLU(inplace=False)
self.conv_1 = nn.Conv2d(C_in, C_out // 2, 1, stride=stride, padding
=0, bias=False)
self.conv_2 = nn.Conv2d(C_in, C_out // 2, 1, stride=stride, padding
=0, bias=False)
self.bn = get_norm_layer(norm, C_out)
def forward(self, input_0):
primals_2 = self.conv_1.weight
primals_3 = self.conv_2.weight
primals_4 = self.bn.weight
primals_5 = self.bn.bias
primals_1 = input_0
output = call([primals_1, primals_2, primals_3, primals_4, primals_5])
return output[0]
|
evdcush/ppuda
|
FactorizedReduce
| false | 15,335 |
[
"MIT"
] | 262 |
22783ac92207da6730ee618c953af230c5c39f28
|
https://github.com/evdcush/ppuda/tree/22783ac92207da6730ee618c953af230c5c39f28
|
Subsets and Splits
No community queries yet
The top public SQL queries from the community will appear here once available.