entry_point
stringlengths 1
65
| original_triton_python_code
stringlengths 208
619k
| optimised_triton_code
stringlengths 1.15k
275k
| repo_name
stringlengths 7
115
| module_name
stringlengths 1
65
| synthetic
bool 1
class | uuid
int64 0
18.5k
| licenses
listlengths 1
6
| stars
int64 0
19.8k
| sha
stringlengths 40
40
| repo_link
stringlengths 72
180
|
---|---|---|---|---|---|---|---|---|---|---|
ScaledL2Norm
|
import torch
import torch.onnx
import torch
import torch.nn as nn
import torch.nn.functional as F
class ScaledL2Norm(nn.Module):
def __init__(self, in_channels, initial_scale):
super(ScaledL2Norm, self).__init__()
self.in_channels = in_channels
self.scale = nn.Parameter(torch.Tensor(in_channels))
self.initial_scale = initial_scale
self.reset_parameters()
def forward(self, x):
return F.normalize(x, p=2, dim=1) * self.scale.unsqueeze(0).unsqueeze(2
).unsqueeze(3)
def reset_parameters(self):
self.scale.data.fill_(self.initial_scale)
def get_inputs():
return [torch.rand([4, 4, 4, 4])]
def get_init_inputs():
return [[], {'in_channels': 4, 'initial_scale': 1.0}]
|
import torch
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
from torch._inductor.runtime import triton_helpers
from torch._inductor.runtime.triton_helpers import libdevice
import torch.onnx
import torch
import torch.nn as nn
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
@triton.jit
def triton_poi_fused_div_mul_0(in_ptr0, in_ptr1, out_ptr0, xnumel, XBLOCK:
tl.constexpr):
xnumel = 256
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x3 = xindex
x0 = xindex % 16
x2 = xindex // 64
x1 = xindex // 16 % 4
tmp0 = tl.load(in_ptr0 + x3, xmask)
tmp1 = tl.load(in_ptr0 + (x0 + 64 * x2), xmask, eviction_policy=
'evict_last')
tmp3 = tl.load(in_ptr0 + (16 + x0 + 64 * x2), xmask, eviction_policy=
'evict_last')
tmp6 = tl.load(in_ptr0 + (32 + x0 + 64 * x2), xmask, eviction_policy=
'evict_last')
tmp9 = tl.load(in_ptr0 + (48 + x0 + 64 * x2), xmask, eviction_policy=
'evict_last')
tmp16 = tl.load(in_ptr1 + x1, xmask, eviction_policy='evict_last')
tmp2 = tmp1 * tmp1
tmp4 = tmp3 * tmp3
tmp5 = tmp2 + tmp4
tmp7 = tmp6 * tmp6
tmp8 = tmp5 + tmp7
tmp10 = tmp9 * tmp9
tmp11 = tmp8 + tmp10
tmp12 = libdevice.sqrt(tmp11)
tmp13 = 1e-12
tmp14 = triton_helpers.maximum(tmp12, tmp13)
tmp15 = tmp0 / tmp14
tmp17 = tmp15 * tmp16
tl.store(out_ptr0 + x3, tmp17, xmask)
def call(args):
primals_1, primals_2 = args
args.clear()
assert_size_stride(primals_1, (4, 4, 4, 4), (64, 16, 4, 1))
assert_size_stride(primals_2, (4,), (1,))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32)
get_raw_stream(0)
triton_poi_fused_div_mul_0[grid(256)](primals_1, primals_2, buf0,
256, XBLOCK=256, num_warps=4, num_stages=1)
del primals_2
return buf0, primals_1
class ScaledL2NormNew(nn.Module):
def __init__(self, in_channels, initial_scale):
super(ScaledL2NormNew, self).__init__()
self.in_channels = in_channels
self.scale = nn.Parameter(torch.Tensor(in_channels))
self.initial_scale = initial_scale
self.reset_parameters()
def reset_parameters(self):
self.scale.data.fill_(self.initial_scale)
def forward(self, input_0):
primals_2 = self.scale
primals_1 = input_0
output = call([primals_1, primals_2])
return output[0]
|
SoonminHwang/pytorch-ssd
|
ScaledL2Norm
| false | 9,498 |
[
"MIT"
] | 0 |
1d6b9427a4b649bc2ce85a82511b9dd299f9d3e8
|
https://github.com/SoonminHwang/pytorch-ssd/tree/1d6b9427a4b649bc2ce85a82511b9dd299f9d3e8
|
Discriminator2
|
import torch
import torch.utils.data
import torch.nn as nn
class Discriminator2(nn.Module):
def __init__(self, n_h):
super(Discriminator2, self).__init__()
self.f_k = nn.Bilinear(n_h, n_h, 1)
for m in self.modules():
self.weights_init(m)
def weights_init(self, m):
if isinstance(m, nn.Bilinear):
torch.nn.init.xavier_uniform_(m.weight.data)
if m.bias is not None:
m.bias.data.fill_(0.0)
def forward(self, c, h_pl, h_mi, s_bias1=None, s_bias2=None):
c_x = c
sc_1 = torch.squeeze(self.f_k(h_pl, c_x), 2)
sc_2 = torch.squeeze(self.f_k(h_mi, c_x), 2)
if s_bias1 is not None:
sc_1 += s_bias1
if s_bias2 is not None:
sc_2 += s_bias2
logits = torch.cat((sc_1, sc_2), 1)
return logits
def get_inputs():
return [torch.rand([4, 4, 4, 4]), torch.rand([4, 4, 4, 4]), torch.rand(
[4, 4, 4, 4])]
def get_init_inputs():
return [[], {'n_h': 4}]
|
import torch
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
import torch.utils.data
import torch.nn as nn
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
@triton.jit
def triton_poi_fused_cat_0(in_ptr0, in_ptr1, in_ptr2, out_ptr0, xnumel,
XBLOCK: tl.constexpr):
xnumel = 128
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x1 = xindex // 4 % 8
x0 = xindex % 4
x2 = xindex // 32
x3 = xindex
tmp6 = tl.load(in_ptr1 + 0)
tmp7 = tl.broadcast_to(tmp6, [XBLOCK])
tmp0 = x1
tl.full([1], 0, tl.int64)
tmp3 = tl.full([1], 4, tl.int64)
tmp4 = tmp0 < tmp3
tmp5 = tl.load(in_ptr0 + (x0 + 4 * x1 + 16 * x2), tmp4 & xmask, other=0.0)
tmp8 = tmp5 + tmp7
tmp9 = tl.full(tmp8.shape, 0.0, tmp8.dtype)
tmp10 = tl.where(tmp4, tmp8, tmp9)
tmp11 = tmp0 >= tmp3
tl.full([1], 8, tl.int64)
tmp14 = tl.load(in_ptr2 + (x0 + 4 * (-4 + x1) + 16 * x2), tmp11 & xmask,
other=0.0)
tmp15 = tmp14 + tmp7
tmp16 = tl.full(tmp15.shape, 0.0, tmp15.dtype)
tmp17 = tl.where(tmp11, tmp15, tmp16)
tmp18 = tl.where(tmp4, tmp10, tmp17)
tl.store(out_ptr0 + x3, tmp18, xmask)
def call(args):
primals_1, primals_2, primals_3, primals_4, primals_5 = args
args.clear()
assert_size_stride(primals_1, (4, 4, 4, 4), (64, 16, 4, 1))
assert_size_stride(primals_2, (1, 4, 4), (16, 4, 1))
assert_size_stride(primals_3, (1,), (1,))
assert_size_stride(primals_4, (4, 4, 4, 4), (64, 16, 4, 1))
assert_size_stride(primals_5, (4, 4, 4, 4), (64, 16, 4, 1))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = torch.ops.aten._trilinear.default(reinterpret_tensor(
primals_4, (64, 4), (4, 1), 0), primals_2, reinterpret_tensor(
primals_1, (64, 4), (4, 1), 0), [1, 3], [0], [1, 2], [2, 3])
buf1 = buf0
del buf0
buf2 = torch.ops.aten._trilinear.default(reinterpret_tensor(
primals_5, (64, 4), (4, 1), 0), primals_2, reinterpret_tensor(
primals_1, (64, 4), (4, 1), 0), [1, 3], [0], [1, 2], [2, 3])
del primals_2
buf3 = buf2
del buf2
buf4 = empty_strided_cuda((4, 8, 4, 1), (32, 4, 1, 1), torch.float32)
get_raw_stream(0)
triton_poi_fused_cat_0[grid(128)](buf1, primals_3, buf3, buf4, 128,
XBLOCK=128, num_warps=4, num_stages=1)
del buf1
del buf3
del primals_3
return buf4, reinterpret_tensor(primals_4, (64, 4), (4, 1), 0
), reinterpret_tensor(primals_1, (64, 4), (4, 1), 0
), reinterpret_tensor(primals_5, (64, 4), (4, 1), 0)
class Discriminator2New(nn.Module):
def __init__(self, n_h):
super(Discriminator2New, self).__init__()
self.f_k = nn.Bilinear(n_h, n_h, 1)
for m in self.modules():
self.weights_init(m)
def weights_init(self, m):
if isinstance(m, nn.Bilinear):
torch.nn.init.xavier_uniform_(m.weight.data)
if m.bias is not None:
m.bias.data.fill_(0.0)
def forward(self, input_0, input_1, input_2):
primals_2 = self.f_k.weight
primals_3 = self.f_k.bias
primals_1 = input_0
primals_4 = input_1
primals_5 = input_2
output = call([primals_1, primals_2, primals_3, primals_4, primals_5])
return output[0]
|
XrosLiang/GraphCL
|
Discriminator2
| false | 5,996 |
[
"MIT"
] | 1 |
fdf9fabcdaddbc17e5c8b7ac9e9d2bdfe4acc56c
|
https://github.com/XrosLiang/GraphCL/tree/fdf9fabcdaddbc17e5c8b7ac9e9d2bdfe4acc56c
|
TorchClampOptionMax
|
import torch
class TorchClampOptionMax(torch.nn.Module):
def forward(self, x):
return torch.clamp(x, max=0.1)
def get_inputs():
return [torch.rand([4, 4, 4, 4])]
def get_init_inputs():
return [[], {}]
|
import torch
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
from torch._inductor.runtime import triton_helpers
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
@triton.jit
def triton_poi_fused_clamp_0(in_ptr0, out_ptr0, xnumel, XBLOCK: tl.constexpr):
xnumel = 256
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex
tmp0 = tl.load(in_ptr0 + x0, xmask)
tmp1 = 0.1
tmp2 = triton_helpers.minimum(tmp0, tmp1)
tl.store(out_ptr0 + x0, tmp2, xmask)
def call(args):
arg0_1, = args
args.clear()
assert_size_stride(arg0_1, (4, 4, 4, 4), (64, 16, 4, 1))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32)
get_raw_stream(0)
triton_poi_fused_clamp_0[grid(256)](arg0_1, buf0, 256, XBLOCK=256,
num_warps=4, num_stages=1)
del arg0_1
return buf0,
class TorchClampOptionMaxNew(torch.nn.Module):
def forward(self, input_0):
arg0_1 = input_0
output = call([arg0_1])
return output[0]
|
NVIDIA-AI-IOT-private/torch2trt
|
TorchClampOptionMax
| false | 10,544 |
[
"MIT"
] | 0 |
953d60039e0c81e90eea467c3df2e6e3f7040242
|
https://github.com/NVIDIA-AI-IOT-private/torch2trt/tree/953d60039e0c81e90eea467c3df2e6e3f7040242
|
Ones
|
# AOT ID: ['0_inference']
from ctypes import c_void_p, c_long, c_int
import torch
import math
import random
import os
import tempfile
from math import inf, nan
from torch._inductor.hooks import run_intermediate_hooks
from torch._inductor.utils import maybe_profile
from torch._inductor.codegen.memory_planning import _align as align
from torch import device, empty_strided
from torch._inductor.async_compile import AsyncCompile
from torch._inductor.select_algorithm import extern_kernels
from torch._inductor.codegen.multi_kernel import MultiKernelCall
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
aten = torch.ops.aten
inductor_ops = torch.ops.inductor
_quantized = torch.ops._quantized
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
alloc_from_pool = torch.ops.inductor._alloc_from_pool
async_compile = AsyncCompile()
# kernel path: runs/run_shard_2/inductor_cache/a6/ca6cipguchfnp6u3kr7cqimnoh3ofbrs5j5govcb5fwb4udwfabz.py
# Topologically Sorted Source Nodes: [ones], Original ATen: [aten.ones]
# Source node to ATen node mapping:
# ones => full
# Graph fragment:
# %full : [num_users=1] = call_function[target=torch.ops.aten.full.default](args = ([1, 4, 4, 4], 1), kwargs = {dtype: torch.float32, layout: torch.strided, device: cuda:0, pin_memory: False})
triton_poi_fused_ones_0 = async_compile.triton('triton_poi_fused_ones_0', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[64],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=90, major=9, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=132), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_ones_0', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 0, 'num_reduction': 0, 'backend_hash': 'B098E03CDA7B8ADC90DAFFDF24A2956451D1B13F297756A5DCC209498AA53705', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_ones_0(out_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 64
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex
tmp0 = 1.0
tl.store(out_ptr0 + (x0), tmp0, xmask)
''', device_str='cuda')
async_compile.wait(globals())
del async_compile
def call(args):
arg0_1, = args
args.clear()
assert_size_stride(arg0_1, (4, 4, 4, 4), (64, 16, 4, 1))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((1, 4, 4, 4), (64, 16, 4, 1), torch.float32)
# Topologically Sorted Source Nodes: [ones], Original ATen: [aten.ones]
stream0 = get_raw_stream(0)
triton_poi_fused_ones_0.run(buf0, 64, grid=grid(64), stream=stream0)
return (reinterpret_tensor(buf0, (4, 4, 4, 4), (0, 16, 4, 1), 0), )
def benchmark_compiled_module(times=10, repeat=10):
from torch._dynamo.testing import rand_strided
from torch._inductor.utils import print_performance
arg0_1 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32)
fn = lambda: call([arg0_1])
return print_performance(fn, times=times, repeat=repeat)
if __name__ == "__main__":
from torch._inductor.wrapper_benchmark import compiled_module_main
compiled_module_main('None', benchmark_compiled_module)
|
import torch
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
import torch.optim
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
@triton.jit
def triton_poi_fused_ones_0(out_ptr0, xnumel, XBLOCK: tl.constexpr):
xnumel = 64
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex
tmp0 = 1.0
tl.store(out_ptr0 + x0, tmp0, xmask)
def call(args):
arg0_1, = args
args.clear()
assert_size_stride(arg0_1, (4, 4, 4, 4), (64, 16, 4, 1))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((1, 4, 4, 4), (64, 16, 4, 1), torch.float32)
get_raw_stream(0)
triton_poi_fused_ones_0[grid(64)](buf0, 64, XBLOCK=64, num_warps=1,
num_stages=1)
return reinterpret_tensor(buf0, (4, 4, 4, 4), (0, 16, 4, 1), 0),
class OnesNew(torch.nn.Module):
def __init__(self):
super(OnesNew, self).__init__()
def forward(self, input_0):
arg0_1 = input_0
output = call([arg0_1])
return output[0]
|
ai-in-motion/moai
|
Ones
| false | 18,341 |
[
"Apache-2.0"
] | 10 |
e38cac046c059d2e2331ef4883bbabc5a500a5cf
|
https://github.com/ai-in-motion/moai/tree/e38cac046c059d2e2331ef4883bbabc5a500a5cf
|
FocalLoss
|
# AOT ID: ['0_inference']
from ctypes import c_void_p, c_long, c_int
import torch
import math
import random
import os
import tempfile
from math import inf, nan
from torch._inductor.hooks import run_intermediate_hooks
from torch._inductor.utils import maybe_profile
from torch._inductor.codegen.memory_planning import _align as align
from torch import device, empty_strided
from torch._inductor.async_compile import AsyncCompile
from torch._inductor.select_algorithm import extern_kernels
from torch._inductor.codegen.multi_kernel import MultiKernelCall
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
aten = torch.ops.aten
inductor_ops = torch.ops.inductor
_quantized = torch.ops._quantized
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
alloc_from_pool = torch.ops.inductor._alloc_from_pool
async_compile = AsyncCompile()
# kernel path: runs/run_shard_9/inductor_cache/z4/cz4rdmnjzva3wxtwkxdq32ntpuxr4xa3itqmggsv52y455k5rfxs.py
# Topologically Sorted Source Nodes: [mul, sub, mul_1, alpha, eq, pred, sub_1, pt, sub_2, pow_1, mul_2, ce, mul_3], Original ATen: [aten.mul, aten.rsub, aten.add, aten.eq, aten.sigmoid, aten.where, aten.pow, aten.binary_cross_entropy_with_logits]
# Source node to ATen node mapping:
# alpha => add
# ce => abs_1, exp, full_default, log1p, minimum, mul, neg, sub, sub_1, sub_2
# eq => eq
# mul => mul_1
# mul_1 => mul_2
# mul_2 => mul_3
# mul_3 => mul_4
# pow_1 => pow_1
# pred => sigmoid
# pt => where
# sub => sub_3
# sub_1 => sub_4
# sub_2 => sub_5
# Graph fragment:
# %mul_1 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%arg1_1, 0.25), kwargs = {})
# %sub_3 : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (1.0, %arg1_1), kwargs = {})
# %mul_2 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%sub_3, 0.75), kwargs = {})
# %add : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%mul_1, %mul_2), kwargs = {})
# %eq : [num_users=1] = call_function[target=torch.ops.aten.eq.Scalar](args = (%arg1_1, 1), kwargs = {})
# %sigmoid : [num_users=2] = call_function[target=torch.ops.aten.sigmoid.default](args = (%arg0_1,), kwargs = {})
# %sub_4 : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (1, %sigmoid), kwargs = {})
# %where : [num_users=1] = call_function[target=torch.ops.aten.where.self](args = (%eq, %sigmoid, %sub_4), kwargs = {})
# %sub_5 : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (1.0, %where), kwargs = {})
# %pow_1 : [num_users=1] = call_function[target=torch.ops.aten.pow.Tensor_Scalar](args = (%sub_5, 2), kwargs = {})
# %mul_3 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%add, %pow_1), kwargs = {})
# %sub : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (1, %arg1_1), kwargs = {})
# %mul : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%sub, %arg0_1), kwargs = {})
# %full_default : [num_users=1] = call_function[target=torch.ops.aten.full.default](args = ([], 0), kwargs = {dtype: torch.float32, layout: torch.strided, device: cuda:0, pin_memory: False})
# %minimum : [num_users=1] = call_function[target=torch.ops.aten.minimum.default](args = (%full_default, %arg0_1), kwargs = {})
# %abs_1 : [num_users=1] = call_function[target=torch.ops.aten.abs.default](args = (%arg0_1,), kwargs = {})
# %neg : [num_users=1] = call_function[target=torch.ops.aten.neg.default](args = (%abs_1,), kwargs = {})
# %exp : [num_users=1] = call_function[target=torch.ops.aten.exp.default](args = (%neg,), kwargs = {})
# %log1p : [num_users=1] = call_function[target=torch.ops.aten.log1p.default](args = (%exp,), kwargs = {})
# %sub_1 : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (%minimum, %log1p), kwargs = {})
# %sub_2 : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (%mul, %sub_1), kwargs = {})
# %mul_4 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%mul_3, %sub_2), kwargs = {})
triton_poi_fused_add_binary_cross_entropy_with_logits_eq_mul_pow_rsub_sigmoid_where_0 = async_compile.triton('triton_poi_fused_add_binary_cross_entropy_with_logits_eq_mul_pow_rsub_sigmoid_where_0', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[256],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_add_binary_cross_entropy_with_logits_eq_mul_pow_rsub_sigmoid_where_0', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_add_binary_cross_entropy_with_logits_eq_mul_pow_rsub_sigmoid_where_0(in_ptr0, in_ptr1, out_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 256
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex
tmp0 = tl.load(in_ptr0 + (x0), xmask)
tmp9 = tl.load(in_ptr1 + (x0), xmask)
tmp1 = 0.25
tmp2 = tmp0 * tmp1
tmp3 = 1.0
tmp4 = tmp3 - tmp0
tmp5 = 0.75
tmp6 = tmp4 * tmp5
tmp7 = tmp2 + tmp6
tmp8 = tmp0 == tmp3
tmp10 = tl.sigmoid(tmp9)
tmp11 = tmp3 - tmp10
tmp12 = tl.where(tmp8, tmp10, tmp11)
tmp13 = tmp3 - tmp12
tmp14 = tmp13 * tmp13
tmp15 = tmp7 * tmp14
tmp16 = tmp4 * tmp9
tmp17 = 0.0
tmp18 = triton_helpers.minimum(tmp17, tmp9)
tmp19 = tl_math.abs(tmp9)
tmp20 = -tmp19
tmp21 = tl_math.exp(tmp20)
tmp22 = libdevice.log1p(tmp21)
tmp23 = tmp18 - tmp22
tmp24 = tmp16 - tmp23
tmp25 = tmp15 * tmp24
tl.store(out_ptr0 + (x0), tmp25, xmask)
''', device_str='cuda')
async_compile.wait(globals())
del async_compile
def call(args):
arg0_1, arg1_1 = args
args.clear()
assert_size_stride(arg0_1, (4, 4, 4, 4), (64, 16, 4, 1))
assert_size_stride(arg1_1, (4, 4, 4, 4), (64, 16, 4, 1))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32)
# Topologically Sorted Source Nodes: [mul, sub, mul_1, alpha, eq, pred, sub_1, pt, sub_2, pow_1, mul_2, ce, mul_3], Original ATen: [aten.mul, aten.rsub, aten.add, aten.eq, aten.sigmoid, aten.where, aten.pow, aten.binary_cross_entropy_with_logits]
stream0 = get_raw_stream(0)
triton_poi_fused_add_binary_cross_entropy_with_logits_eq_mul_pow_rsub_sigmoid_where_0.run(arg1_1, arg0_1, buf0, 256, grid=grid(256), stream=stream0)
del arg0_1
del arg1_1
return (buf0, )
def benchmark_compiled_module(times=10, repeat=10):
from torch._dynamo.testing import rand_strided
from torch._inductor.utils import print_performance
arg0_1 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32)
arg1_1 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32)
fn = lambda: call([arg0_1, arg1_1])
return print_performance(fn, times=times, repeat=repeat)
if __name__ == "__main__":
from torch._inductor.wrapper_benchmark import compiled_module_main
compiled_module_main('None', benchmark_compiled_module)
|
import torch
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
from torch._inductor.runtime import triton_helpers
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
import torch.nn as nn
import torch.cuda
import torch.distributed
import torch.multiprocessing
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
@triton.jit
def triton_poi_fused_add_binary_cross_entropy_with_logits_eq_mul_pow_rsub_sigmoid_where_0(
in_ptr0, in_ptr1, out_ptr0, xnumel, XBLOCK: tl.constexpr):
xnumel = 256
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex
tmp0 = tl.load(in_ptr0 + x0, xmask)
tmp9 = tl.load(in_ptr1 + x0, xmask)
tmp1 = 0.25
tmp2 = tmp0 * tmp1
tmp3 = 1.0
tmp4 = tmp3 - tmp0
tmp5 = 0.75
tmp6 = tmp4 * tmp5
tmp7 = tmp2 + tmp6
tmp8 = tmp0 == tmp3
tmp10 = tl.sigmoid(tmp9)
tmp11 = tmp3 - tmp10
tmp12 = tl.where(tmp8, tmp10, tmp11)
tmp13 = tmp3 - tmp12
tmp14 = tmp13 * tmp13
tmp15 = tmp7 * tmp14
tmp16 = tmp4 * tmp9
tmp17 = 0.0
tmp18 = triton_helpers.minimum(tmp17, tmp9)
tmp19 = tl_math.abs(tmp9)
tmp20 = -tmp19
tmp21 = tl_math.exp(tmp20)
tmp22 = libdevice.log1p(tmp21)
tmp23 = tmp18 - tmp22
tmp24 = tmp16 - tmp23
tmp25 = tmp15 * tmp24
tl.store(out_ptr0 + x0, tmp25, xmask)
def call(args):
arg0_1, arg1_1 = args
args.clear()
assert_size_stride(arg0_1, (4, 4, 4, 4), (64, 16, 4, 1))
assert_size_stride(arg1_1, (4, 4, 4, 4), (64, 16, 4, 1))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32)
get_raw_stream(0)
triton_poi_fused_add_binary_cross_entropy_with_logits_eq_mul_pow_rsub_sigmoid_where_0[
grid(256)](arg1_1, arg0_1, buf0, 256, XBLOCK=128, num_warps=4,
num_stages=1)
del arg0_1
del arg1_1
return buf0,
class FocalLossNew(nn.Module):
"""Focal Loss - https://arxiv.org/abs/1708.02002"""
def __init__(self, alpha=0.25, gamma=2):
super().__init__()
self.alpha = alpha
self.gamma = gamma
def forward(self, input_0, input_1):
arg0_1 = input_0
arg1_1 = input_1
output = call([arg0_1, arg1_1])
return output[0]
|
krisk84/retinanet-examples
|
FocalLoss
| false | 12,685 |
[
"BSD-3-Clause"
] | 0 |
174d95f3aabe1746d105c66f87aa445607f4eab8
|
https://github.com/krisk84/retinanet-examples/tree/174d95f3aabe1746d105c66f87aa445607f4eab8
|
GE2ELoss
|
import torch
import torch.nn.functional as F
import torch.nn as nn
def calc_loss(sim_matrix):
same_idx = list(range(sim_matrix.size(0)))
pos = sim_matrix[same_idx, :, same_idx]
neg = (torch.exp(sim_matrix).sum(dim=2) + 1e-06).log_()
per_embedding_loss = -1 * (pos - neg)
loss = per_embedding_loss.sum()
return loss, per_embedding_loss
def get_centroids(embeddings):
centroids = embeddings.mean(dim=1)
return centroids
def get_utterance_centroids(embeddings):
"""
Returns the centroids for each utterance of a speaker, where
the utterance centroid is the speaker centroid without considering
this utterance
Shape of embeddings should be:
(speaker_ct, utterance_per_speaker_ct, embedding_size)
"""
sum_centroids = embeddings.sum(dim=1)
sum_centroids = sum_centroids.reshape(sum_centroids.shape[0], 1,
sum_centroids.shape[-1])
num_utterances = embeddings.shape[1] - 1
centroids = (sum_centroids - embeddings) / num_utterances
return centroids
def get_cossim(embeddings, centroids):
num_utterances = embeddings.shape[1]
utterance_centroids = get_utterance_centroids(embeddings)
utterance_centroids_flat = utterance_centroids.view(utterance_centroids
.shape[0] * utterance_centroids.shape[1], -1)
embeddings_flat = embeddings.view(embeddings.shape[0] * num_utterances, -1)
cos_same = F.cosine_similarity(embeddings_flat, utterance_centroids_flat)
centroids_expand = centroids.repeat((num_utterances * embeddings.shape[
0], 1))
embeddings_expand = embeddings_flat.unsqueeze(1).repeat(1, embeddings.
shape[0], 1)
embeddings_expand = embeddings_expand.view(embeddings_expand.shape[0] *
embeddings_expand.shape[1], embeddings_expand.shape[-1])
cos_diff = F.cosine_similarity(embeddings_expand, centroids_expand)
cos_diff = cos_diff.view(embeddings.size(0), num_utterances, centroids.
size(0))
same_idx = list(range(embeddings.size(0)))
cos_diff[same_idx, :, same_idx] = cos_same.view(embeddings.shape[0],
num_utterances)
cos_diff = cos_diff + 1e-06
return cos_diff
class GE2ELoss(nn.Module):
def __init__(self, device):
super(GE2ELoss, self).__init__()
self.w = nn.Parameter(torch.tensor(10.0), requires_grad=True)
self.b = nn.Parameter(torch.tensor(-5.0), requires_grad=True)
self.device = device
def forward(self, embeddings):
torch.clamp(self.w, 1e-06)
centroids = get_centroids(embeddings)
cossim = get_cossim(embeddings, centroids)
sim_matrix = self.w * cossim + self.b
loss, _ = calc_loss(sim_matrix)
return loss
def get_inputs():
return [torch.rand([4, 4, 4])]
def get_init_inputs():
return [[], {'device': 0}]
|
import torch
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
from torch._inductor.runtime import triton_helpers
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
import torch.nn.functional as F
import torch.nn as nn
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
@triton.jit
def triton_poi_fused_div_sub_0(in_ptr0, out_ptr0, xnumel, XBLOCK: tl.constexpr
):
xnumel = 64
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex % 4
x2 = xindex // 16
x3 = xindex
tmp0 = tl.load(in_ptr0 + (x0 + 16 * x2), xmask, eviction_policy=
'evict_last')
tmp1 = tl.load(in_ptr0 + (4 + x0 + 16 * x2), xmask, eviction_policy=
'evict_last')
tmp3 = tl.load(in_ptr0 + (8 + x0 + 16 * x2), xmask, eviction_policy=
'evict_last')
tmp5 = tl.load(in_ptr0 + (12 + x0 + 16 * x2), xmask, eviction_policy=
'evict_last')
tmp7 = tl.load(in_ptr0 + x3, xmask)
tmp2 = tmp0 + tmp1
tmp4 = tmp2 + tmp3
tmp6 = tmp4 + tmp5
tmp8 = tmp6 - tmp7
tmp9 = 0.3333333333333333
tmp10 = tmp8 * tmp9
tl.store(out_ptr0 + x3, tmp10, xmask)
@triton.jit
def triton_poi_fused_clamp_min_div_linalg_vector_norm_mul_1(in_ptr0,
in_ptr1, out_ptr0, xnumel, XBLOCK: tl.constexpr):
xnumel = 64
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x2 = xindex
x1 = xindex // 4
tmp0 = tl.load(in_ptr0 + x2, xmask)
tmp1 = tl.load(in_ptr0 + 4 * x1, xmask, eviction_policy='evict_last')
tmp3 = tl.load(in_ptr0 + (1 + 4 * x1), xmask, eviction_policy='evict_last')
tmp6 = tl.load(in_ptr0 + (2 + 4 * x1), xmask, eviction_policy='evict_last')
tmp9 = tl.load(in_ptr0 + (3 + 4 * x1), xmask, eviction_policy='evict_last')
tmp16 = tl.load(in_ptr1 + x2, xmask)
tmp17 = tl.load(in_ptr1 + 4 * x1, xmask, eviction_policy='evict_last')
tmp19 = tl.load(in_ptr1 + (1 + 4 * x1), xmask, eviction_policy='evict_last'
)
tmp22 = tl.load(in_ptr1 + (2 + 4 * x1), xmask, eviction_policy='evict_last'
)
tmp25 = tl.load(in_ptr1 + (3 + 4 * x1), xmask, eviction_policy='evict_last'
)
tmp2 = tmp1 * tmp1
tmp4 = tmp3 * tmp3
tmp5 = tmp2 + tmp4
tmp7 = tmp6 * tmp6
tmp8 = tmp5 + tmp7
tmp10 = tmp9 * tmp9
tmp11 = tmp8 + tmp10
tmp12 = libdevice.sqrt(tmp11)
tmp13 = 1e-08
tmp14 = triton_helpers.maximum(tmp12, tmp13)
tmp15 = tmp0 / tmp14
tmp18 = tmp17 * tmp17
tmp20 = tmp19 * tmp19
tmp21 = tmp18 + tmp20
tmp23 = tmp22 * tmp22
tmp24 = tmp21 + tmp23
tmp26 = tmp25 * tmp25
tmp27 = tmp24 + tmp26
tmp28 = libdevice.sqrt(tmp27)
tmp29 = triton_helpers.maximum(tmp28, tmp13)
tmp30 = tmp16 / tmp29
tmp31 = tmp15 * tmp30
tl.store(out_ptr0 + x2, tmp31, xmask)
@triton.jit
def triton_poi_fused_linalg_vector_norm_mean_repeat_2(in_ptr0, out_ptr0,
xnumel, XBLOCK: tl.constexpr):
xnumel = 64
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex
tmp0 = tl.load(in_ptr0 + 16 * (x0 % 4), xmask, eviction_policy='evict_last'
)
tmp1 = tl.load(in_ptr0 + (4 + 16 * (x0 % 4)), xmask, eviction_policy=
'evict_last')
tmp3 = tl.load(in_ptr0 + (8 + 16 * (x0 % 4)), xmask, eviction_policy=
'evict_last')
tmp5 = tl.load(in_ptr0 + (12 + 16 * (x0 % 4)), xmask, eviction_policy=
'evict_last')
tmp10 = tl.load(in_ptr0 + (1 + 16 * (x0 % 4)), xmask, eviction_policy=
'evict_last')
tmp11 = tl.load(in_ptr0 + (5 + 16 * (x0 % 4)), xmask, eviction_policy=
'evict_last')
tmp13 = tl.load(in_ptr0 + (9 + 16 * (x0 % 4)), xmask, eviction_policy=
'evict_last')
tmp15 = tl.load(in_ptr0 + (13 + 16 * (x0 % 4)), xmask, eviction_policy=
'evict_last')
tmp20 = tl.load(in_ptr0 + (2 + 16 * (x0 % 4)), xmask, eviction_policy=
'evict_last')
tmp21 = tl.load(in_ptr0 + (6 + 16 * (x0 % 4)), xmask, eviction_policy=
'evict_last')
tmp23 = tl.load(in_ptr0 + (10 + 16 * (x0 % 4)), xmask, eviction_policy=
'evict_last')
tmp25 = tl.load(in_ptr0 + (14 + 16 * (x0 % 4)), xmask, eviction_policy=
'evict_last')
tmp30 = tl.load(in_ptr0 + (3 + 16 * (x0 % 4)), xmask, eviction_policy=
'evict_last')
tmp31 = tl.load(in_ptr0 + (7 + 16 * (x0 % 4)), xmask, eviction_policy=
'evict_last')
tmp33 = tl.load(in_ptr0 + (11 + 16 * (x0 % 4)), xmask, eviction_policy=
'evict_last')
tmp35 = tl.load(in_ptr0 + (15 + 16 * (x0 % 4)), xmask, eviction_policy=
'evict_last')
tmp2 = tmp0 + tmp1
tmp4 = tmp2 + tmp3
tmp6 = tmp4 + tmp5
tmp7 = 4.0
tmp8 = tmp6 / tmp7
tmp9 = tmp8 * tmp8
tmp12 = tmp10 + tmp11
tmp14 = tmp12 + tmp13
tmp16 = tmp14 + tmp15
tmp17 = tmp16 / tmp7
tmp18 = tmp17 * tmp17
tmp19 = tmp9 + tmp18
tmp22 = tmp20 + tmp21
tmp24 = tmp22 + tmp23
tmp26 = tmp24 + tmp25
tmp27 = tmp26 / tmp7
tmp28 = tmp27 * tmp27
tmp29 = tmp19 + tmp28
tmp32 = tmp30 + tmp31
tmp34 = tmp32 + tmp33
tmp36 = tmp34 + tmp35
tmp37 = tmp36 / tmp7
tmp38 = tmp37 * tmp37
tmp39 = tmp29 + tmp38
tl.store(out_ptr0 + x0, tmp39, xmask)
@triton.jit
def triton_poi_fused_clamp_min_div_linalg_vector_norm_mean_mul_repeat_3(in_ptr0
, in_ptr1, out_ptr0, xnumel, XBLOCK: tl.constexpr):
xnumel = 256
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex % 4
x1 = xindex // 4
x2 = xindex
tmp0 = tl.load(in_ptr0 + (x0 + 4 * (x1 // 4)), xmask)
tmp1 = tl.load(in_ptr0 + 4 * (x1 // 4), xmask, eviction_policy='evict_last'
)
tmp3 = tl.load(in_ptr0 + (1 + 4 * (x1 // 4)), xmask, eviction_policy=
'evict_last')
tmp6 = tl.load(in_ptr0 + (2 + 4 * (x1 // 4)), xmask, eviction_policy=
'evict_last')
tmp9 = tl.load(in_ptr0 + (3 + 4 * (x1 // 4)), xmask, eviction_policy=
'evict_last')
tmp16 = tl.load(in_ptr0 + (x0 + 16 * (x1 % 4)), xmask)
tmp17 = tl.load(in_ptr0 + (4 + x0 + 16 * (x1 % 4)), xmask)
tmp19 = tl.load(in_ptr0 + (8 + x0 + 16 * (x1 % 4)), xmask)
tmp21 = tl.load(in_ptr0 + (12 + x0 + 16 * (x1 % 4)), xmask)
tmp25 = tl.load(in_ptr1 + x1, xmask, eviction_policy='evict_last')
tmp2 = tmp1 * tmp1
tmp4 = tmp3 * tmp3
tmp5 = tmp2 + tmp4
tmp7 = tmp6 * tmp6
tmp8 = tmp5 + tmp7
tmp10 = tmp9 * tmp9
tmp11 = tmp8 + tmp10
tmp12 = libdevice.sqrt(tmp11)
tmp13 = 1e-08
tmp14 = triton_helpers.maximum(tmp12, tmp13)
tmp15 = tmp0 / tmp14
tmp18 = tmp16 + tmp17
tmp20 = tmp18 + tmp19
tmp22 = tmp20 + tmp21
tmp23 = 4.0
tmp24 = tmp22 / tmp23
tmp26 = libdevice.sqrt(tmp25)
tmp27 = triton_helpers.maximum(tmp26, tmp13)
tmp28 = tmp24 / tmp27
tmp29 = tmp15 * tmp28
tl.store(out_ptr0 + x2, tmp29, xmask)
@triton.jit
def triton_poi_fused_sum_4(in_ptr0, out_ptr0, xnumel, XBLOCK: tl.constexpr):
xnumel = 64
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex
tmp0 = tl.load(in_ptr0 + 4 * x0, xmask, eviction_policy='evict_last')
tmp1 = tl.load(in_ptr0 + (1 + 4 * x0), xmask, eviction_policy='evict_last')
tmp3 = tl.load(in_ptr0 + (2 + 4 * x0), xmask, eviction_policy='evict_last')
tmp5 = tl.load(in_ptr0 + (3 + 4 * x0), xmask, eviction_policy='evict_last')
tmp2 = tmp0 + tmp1
tmp4 = tmp2 + tmp3
tmp6 = tmp4 + tmp5
tl.store(out_ptr0 + x0, tmp6, xmask)
@triton.jit
def triton_poi_fused_index_put_5(in_ptr0, out_ptr0, xnumel, XBLOCK: tl.
constexpr):
xnumel = 16
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x1 = xindex // 4
x2 = xindex
x0 = xindex % 4
tmp11 = tl.load(in_ptr0 + 4 * x2, xmask, eviction_policy='evict_last')
tmp12 = tl.load(in_ptr0 + (1 + 4 * x2), xmask, eviction_policy='evict_last'
)
tmp14 = tl.load(in_ptr0 + (2 + 4 * x2), xmask, eviction_policy='evict_last'
)
tmp16 = tl.load(in_ptr0 + (3 + 4 * x2), xmask, eviction_policy='evict_last'
)
tmp0 = x1
tmp1 = tl.full([1], 2, tl.int64)
tmp2 = tmp0 < tmp1
tmp3 = tl.full([1], 1, tl.int64)
tmp4 = tmp0 < tmp3
tmp5 = tl.full([1], 0, tl.int64)
tmp6 = tl.where(tmp4, tmp5, tmp3)
tmp7 = tl.full([1], 3, tl.int64)
tmp8 = tmp0 < tmp7
tmp9 = tl.where(tmp8, tmp1, tmp7)
tmp10 = tl.where(tmp2, tmp6, tmp9)
tmp13 = tmp11 + tmp12
tmp15 = tmp13 + tmp14
tmp17 = tmp15 + tmp16
tl.store(out_ptr0 + (4 * x0 + 17 * tmp10), tmp17, xmask)
@triton.jit
def triton_per_fused_add_exp_index_log_mul_sub_sum_6(in_ptr0, in_ptr1,
in_ptr2, out_ptr1, xnumel, rnumel, XBLOCK: tl.constexpr):
RBLOCK: tl.constexpr = 16
xoffset = tl.program_id(0) * XBLOCK
xoffset + tl.arange(0, XBLOCK)[:, None]
tl.full([XBLOCK, RBLOCK], True, tl.int1)
rindex = tl.arange(0, RBLOCK)[None, :]
tl.full([XBLOCK, RBLOCK], True, tl.int1)
r1 = rindex // 4
r0 = rindex % 4
r2 = rindex
tmp11 = tl.load(in_ptr0 + 0)
tmp12 = tl.broadcast_to(tmp11, [XBLOCK, RBLOCK])
tmp17 = tl.load(in_ptr2 + 0)
tmp18 = tl.broadcast_to(tmp17, [XBLOCK, RBLOCK])
tmp20 = tl.load(in_ptr1 + 4 * r2, None, eviction_policy='evict_last')
tmp25 = tl.load(in_ptr1 + (1 + 4 * r2), None, eviction_policy='evict_last')
tmp31 = tl.load(in_ptr1 + (2 + 4 * r2), None, eviction_policy='evict_last')
tmp37 = tl.load(in_ptr1 + (3 + 4 * r2), None, eviction_policy='evict_last')
tmp0 = r1
tmp1 = tl.full([1, 1], 2, tl.int64)
tmp2 = tmp0 < tmp1
tmp3 = tl.full([1, 1], 1, tl.int64)
tmp4 = tmp0 < tmp3
tmp5 = tl.full([1, 1], 0, tl.int64)
tmp6 = tl.where(tmp4, tmp5, tmp3)
tmp7 = tl.full([1, 1], 3, tl.int64)
tmp8 = tmp0 < tmp7
tmp9 = tl.where(tmp8, tmp1, tmp7)
tmp10 = tl.where(tmp2, tmp6, tmp9)
tmp13 = tl.load(in_ptr1 + (4 * r0 + 17 * tmp10), None, eviction_policy=
'evict_last')
tmp14 = 1e-06
tmp15 = tmp13 + tmp14
tmp16 = tmp12 * tmp15
tmp19 = tmp16 + tmp18
tmp21 = tmp20 + tmp14
tmp22 = tmp12 * tmp21
tmp23 = tmp22 + tmp18
tmp24 = tl_math.exp(tmp23)
tmp26 = tmp25 + tmp14
tmp27 = tmp12 * tmp26
tmp28 = tmp27 + tmp18
tmp29 = tl_math.exp(tmp28)
tmp30 = tmp24 + tmp29
tmp32 = tmp31 + tmp14
tmp33 = tmp12 * tmp32
tmp34 = tmp33 + tmp18
tmp35 = tl_math.exp(tmp34)
tmp36 = tmp30 + tmp35
tmp38 = tmp37 + tmp14
tmp39 = tmp12 * tmp38
tmp40 = tmp39 + tmp18
tmp41 = tl_math.exp(tmp40)
tmp42 = tmp36 + tmp41
tmp43 = tmp42 + tmp14
tmp44 = tl_math.log(tmp43)
tmp45 = tmp19 - tmp44
tmp46 = -1.0
tmp47 = tmp45 * tmp46
tmp48 = tl.broadcast_to(tmp47, [XBLOCK, RBLOCK])
tmp50 = tl.sum(tmp48, 1)[:, None]
tl.store(out_ptr1 + tl.full([XBLOCK, 1], 0, tl.int32), tmp50, None)
def call(args):
primals_1, primals_2, primals_3 = args
args.clear()
assert_size_stride(primals_1, (), ())
assert_size_stride(primals_2, (4, 4, 4), (16, 4, 1))
assert_size_stride(primals_3, (), ())
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((4, 4, 4), (16, 4, 1), torch.float32)
get_raw_stream(0)
triton_poi_fused_div_sub_0[grid(64)](primals_2, buf0, 64, XBLOCK=64,
num_warps=1, num_stages=1)
buf1 = empty_strided_cuda((16, 4), (4, 1), torch.float32)
triton_poi_fused_clamp_min_div_linalg_vector_norm_mul_1[grid(64)](
primals_2, buf0, buf1, 64, XBLOCK=64, num_warps=1, num_stages=1)
buf2 = reinterpret_tensor(buf0, (64, 1), (1, 64), 0)
del buf0
triton_poi_fused_linalg_vector_norm_mean_repeat_2[grid(64)](primals_2,
buf2, 64, XBLOCK=64, num_warps=1, num_stages=1)
buf3 = empty_strided_cuda((64, 4), (4, 1), torch.float32)
triton_poi_fused_clamp_min_div_linalg_vector_norm_mean_mul_repeat_3[
grid(256)](primals_2, buf2, buf3, 256, XBLOCK=256, num_warps=4,
num_stages=1)
del primals_2
buf4 = reinterpret_tensor(buf2, (64,), (1,), 0)
del buf2
triton_poi_fused_sum_4[grid(64)](buf3, buf4, 64, XBLOCK=64,
num_warps=1, num_stages=1)
del buf3
triton_poi_fused_index_put_5[grid(16)](buf1, buf4, 16, XBLOCK=16,
num_warps=1, num_stages=1)
del buf1
buf7 = empty_strided_cuda((), (), torch.float32)
triton_per_fused_add_exp_index_log_mul_sub_sum_6[grid(1)](primals_1,
buf4, primals_3, buf7, 1, 16, XBLOCK=1, num_warps=2, num_stages=1)
return buf7, primals_1, primals_3, reinterpret_tensor(buf4, (4, 4, 4),
(16, 4, 1), 0)
def calc_loss(sim_matrix):
same_idx = list(range(sim_matrix.size(0)))
pos = sim_matrix[same_idx, :, same_idx]
neg = (torch.exp(sim_matrix).sum(dim=2) + 1e-06).log_()
per_embedding_loss = -1 * (pos - neg)
loss = per_embedding_loss.sum()
return loss, per_embedding_loss
def get_centroids(embeddings):
centroids = embeddings.mean(dim=1)
return centroids
def get_utterance_centroids(embeddings):
"""
Returns the centroids for each utterance of a speaker, where
the utterance centroid is the speaker centroid without considering
this utterance
Shape of embeddings should be:
(speaker_ct, utterance_per_speaker_ct, embedding_size)
"""
sum_centroids = embeddings.sum(dim=1)
sum_centroids = sum_centroids.reshape(sum_centroids.shape[0], 1,
sum_centroids.shape[-1])
num_utterances = embeddings.shape[1] - 1
centroids = (sum_centroids - embeddings) / num_utterances
return centroids
def get_cossim(embeddings, centroids):
num_utterances = embeddings.shape[1]
utterance_centroids = get_utterance_centroids(embeddings)
utterance_centroids_flat = utterance_centroids.view(utterance_centroids
.shape[0] * utterance_centroids.shape[1], -1)
embeddings_flat = embeddings.view(embeddings.shape[0] * num_utterances, -1)
cos_same = F.cosine_similarity(embeddings_flat, utterance_centroids_flat)
centroids_expand = centroids.repeat((num_utterances * embeddings.shape[
0], 1))
embeddings_expand = embeddings_flat.unsqueeze(1).repeat(1, embeddings.
shape[0], 1)
embeddings_expand = embeddings_expand.view(embeddings_expand.shape[0] *
embeddings_expand.shape[1], embeddings_expand.shape[-1])
cos_diff = F.cosine_similarity(embeddings_expand, centroids_expand)
cos_diff = cos_diff.view(embeddings.size(0), num_utterances, centroids.
size(0))
same_idx = list(range(embeddings.size(0)))
cos_diff[same_idx, :, same_idx] = cos_same.view(embeddings.shape[0],
num_utterances)
cos_diff = cos_diff + 1e-06
return cos_diff
class GE2ELossNew(nn.Module):
def __init__(self, device):
super(GE2ELossNew, self).__init__()
self.w = nn.Parameter(torch.tensor(10.0), requires_grad=True)
self.b = nn.Parameter(torch.tensor(-5.0), requires_grad=True)
self.device = device
def forward(self, input_0):
primals_1 = self.w
primals_3 = self.b
primals_2 = input_0
output = call([primals_1, primals_2, primals_3])
return output[0]
|
dodo0822/PyTorch_Speaker_Verification
|
GE2ELoss
| false | 3,447 |
[
"BSD-3-Clause"
] | 0 |
5310f441894e77895de27380d31149629e309d0f
|
https://github.com/dodo0822/PyTorch_Speaker_Verification/tree/5310f441894e77895de27380d31149629e309d0f
|
AttentionLayer
|
import torch
import torch.nn as nn
import torch.nn.functional as F
class AttentionLayer(nn.Module):
def __init__(self, hidden_size):
super(AttentionLayer, self).__init__()
self.hidden_size = hidden_size
def dot_product_attention(self, hidden, encoder_output):
return torch.sum(hidden * encoder_output, dim=2)
def forward(self, hidden, encoded_output):
energies = self.dot_product_attention(hidden, encoded_output)
energies = energies.t()
return F.softmax(energies, dim=1).unsqueeze(1)
def get_inputs():
return [torch.rand([4, 4, 4]), torch.rand([4, 4])]
def get_init_inputs():
return [[], {'hidden_size': 4}]
|
import torch
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
from torch._inductor.runtime import triton_helpers
from torch._inductor.runtime.triton_helpers import math as tl_math
import torch.nn as nn
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
@triton.jit
def triton_poi_fused__softmax_0(in_ptr0, in_ptr1, out_ptr0, xnumel, XBLOCK:
tl.constexpr):
xnumel = 16
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x2 = xindex
x0 = xindex % 4
tmp0 = tl.load(in_ptr0 + 4 * x2, xmask, eviction_policy='evict_last')
tmp1 = tl.load(in_ptr1 + 4 * x0, xmask, eviction_policy='evict_last')
tmp3 = tl.load(in_ptr0 + (1 + 4 * x2), xmask, eviction_policy='evict_last')
tmp4 = tl.load(in_ptr1 + (1 + 4 * x0), xmask, eviction_policy='evict_last')
tmp7 = tl.load(in_ptr0 + (2 + 4 * x2), xmask, eviction_policy='evict_last')
tmp8 = tl.load(in_ptr1 + (2 + 4 * x0), xmask, eviction_policy='evict_last')
tmp11 = tl.load(in_ptr0 + (3 + 4 * x2), xmask, eviction_policy='evict_last'
)
tmp12 = tl.load(in_ptr1 + (3 + 4 * x0), xmask, eviction_policy='evict_last'
)
tmp2 = tmp0 * tmp1
tmp5 = tmp3 * tmp4
tmp6 = tmp2 + tmp5
tmp9 = tmp7 * tmp8
tmp10 = tmp6 + tmp9
tmp13 = tmp11 * tmp12
tmp14 = tmp10 + tmp13
tl.store(out_ptr0 + x2, tmp14, xmask)
@triton.jit
def triton_poi_fused__softmax_1(in_ptr0, out_ptr0, xnumel, XBLOCK: tl.constexpr
):
xnumel = 16
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x2 = xindex
x0 = xindex % 4
tmp0 = tl.load(in_ptr0 + x2, xmask)
tmp1 = tl.load(in_ptr0 + x0, xmask, eviction_policy='evict_last')
tmp2 = tl.load(in_ptr0 + (4 + x0), xmask, eviction_policy='evict_last')
tmp4 = tl.load(in_ptr0 + (8 + x0), xmask, eviction_policy='evict_last')
tmp6 = tl.load(in_ptr0 + (12 + x0), xmask, eviction_policy='evict_last')
tmp3 = triton_helpers.maximum(tmp1, tmp2)
tmp5 = triton_helpers.maximum(tmp3, tmp4)
tmp7 = triton_helpers.maximum(tmp5, tmp6)
tmp8 = tmp0 - tmp7
tmp9 = tl_math.exp(tmp8)
tl.store(out_ptr0 + x2, tmp9, xmask)
@triton.jit
def triton_poi_fused__softmax_2(in_ptr0, out_ptr0, ynumel, xnumel, YBLOCK:
tl.constexpr, XBLOCK: tl.constexpr):
ynumel = 4
xnumel = 4
yoffset = tl.program_id(1) * YBLOCK
yindex = yoffset + tl.arange(0, YBLOCK)[None, :]
ymask = yindex < ynumel
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:, None]
xmask = xindex < xnumel
x1 = xindex
y0 = yindex
tmp0 = tl.load(in_ptr0 + (y0 + 4 * x1), xmask & ymask)
tmp1 = tl.load(in_ptr0 + y0, ymask, eviction_policy='evict_last')
tmp2 = tl.load(in_ptr0 + (4 + y0), ymask, eviction_policy='evict_last')
tmp4 = tl.load(in_ptr0 + (8 + y0), ymask, eviction_policy='evict_last')
tmp6 = tl.load(in_ptr0 + (12 + y0), ymask, eviction_policy='evict_last')
tmp3 = tmp1 + tmp2
tmp5 = tmp3 + tmp4
tmp7 = tmp5 + tmp6
tmp8 = tmp0 / tmp7
tl.store(out_ptr0 + (x1 + 4 * y0), tmp8, xmask & ymask)
def call(args):
arg0_1, arg1_1 = args
args.clear()
assert_size_stride(arg0_1, (4, 4, 4), (16, 4, 1))
assert_size_stride(arg1_1, (4, 4), (4, 1))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((4, 4), (1, 4), torch.float32)
get_raw_stream(0)
triton_poi_fused__softmax_0[grid(16)](arg0_1, arg1_1, buf0, 16,
XBLOCK=16, num_warps=1, num_stages=1)
del arg0_1
del arg1_1
buf1 = empty_strided_cuda((4, 4), (1, 4), torch.float32)
triton_poi_fused__softmax_1[grid(16)](buf0, buf1, 16, XBLOCK=16,
num_warps=1, num_stages=1)
buf2 = reinterpret_tensor(buf0, (4, 4), (4, 1), 0)
del buf0
triton_poi_fused__softmax_2[grid(4, 4)](buf1, buf2, 4, 4, XBLOCK=4,
YBLOCK=4, num_warps=1, num_stages=1)
del buf1
return reinterpret_tensor(buf2, (4, 1, 4), (4, 4, 1), 0),
class AttentionLayerNew(nn.Module):
def __init__(self, hidden_size):
super(AttentionLayerNew, self).__init__()
self.hidden_size = hidden_size
def dot_product_attention(self, hidden, encoder_output):
return torch.sum(hidden * encoder_output, dim=2)
def forward(self, input_0, input_1):
arg0_1 = input_0
arg1_1 = input_1
output = call([arg0_1, arg1_1])
return output[0]
|
u7javed/AI-Chatbot
|
AttentionLayer
| false | 10,873 |
[
"MIT"
] | 0 |
d86916537e7b0b9a45f11d0fe0367fe9f66721e7
|
https://github.com/u7javed/AI-Chatbot/tree/d86916537e7b0b9a45f11d0fe0367fe9f66721e7
|
L2Norm
|
import torch
import torch.nn as nn
class L2Norm(nn.Module):
"""
Scale shall be learnable according to original paper
scale: initial scale number
chan_num: L2Norm channel number (norm over all channels)
"""
def __init__(self, scale=20, chan_num=512):
super(L2Norm, self).__init__()
self.scale = nn.Parameter(torch.Tensor([scale] * chan_num).view(1,
chan_num, 1, 1))
def forward(self, data):
return self.scale * data * data.pow(2).sum(dim=1, keepdim=True).clamp(
min=1e-12).rsqrt()
def get_inputs():
return [torch.rand([4, 512, 4, 4])]
def get_init_inputs():
return [[], {}]
|
import torch
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
from torch._inductor.runtime import triton_helpers
from torch._inductor.runtime.triton_helpers import libdevice
import torch.nn as nn
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
@triton.jit
def triton_red_fused_pow_sum_0(in_ptr0, out_ptr0, xnumel, rnumel, XBLOCK:
tl.constexpr, RBLOCK: tl.constexpr):
xnumel = 256
rnumel = 128
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:, None]
xmask = xindex < xnumel
rbase = tl.arange(0, RBLOCK)[None, :]
x0 = xindex % 16
x1 = xindex // 16
_tmp3 = tl.full([XBLOCK, RBLOCK], 0, tl.float32)
x3 = xindex
for roffset in range(0, rnumel, RBLOCK):
rindex = roffset + rbase
rmask = rindex < rnumel
r2 = rindex
tmp0 = tl.load(in_ptr0 + (x0 + 16 * r2 + 2048 * x1), rmask & xmask,
eviction_policy='evict_last', other=0.0)
tmp1 = tmp0 * tmp0
tmp2 = tl.broadcast_to(tmp1, [XBLOCK, RBLOCK])
tmp4 = _tmp3 + tmp2
_tmp3 = tl.where(rmask & xmask, tmp4, _tmp3)
tmp3 = tl.sum(_tmp3, 1)[:, None]
tl.store(out_ptr0 + x3, tmp3, xmask)
@triton.jit
def triton_per_fused_clamp_pow_rsqrt_sum_1(in_out_ptr0, in_ptr0, xnumel,
rnumel, XBLOCK: tl.constexpr):
xnumel = 64
RBLOCK: tl.constexpr = 4
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:, None]
xmask = xindex < xnumel
rindex = tl.arange(0, RBLOCK)[None, :]
tl.full([XBLOCK, RBLOCK], True, tl.int1)
r2 = rindex
x0 = xindex % 16
x1 = xindex // 16
x3 = xindex
tmp0 = tl.load(in_ptr0 + (x0 + 16 * r2 + 64 * x1), xmask, other=0.0)
tmp1 = tl.broadcast_to(tmp0, [XBLOCK, RBLOCK])
tmp3 = tl.where(xmask, tmp1, 0)
tmp4 = tl.sum(tmp3, 1)[:, None]
tmp5 = 1e-12
tmp6 = triton_helpers.maximum(tmp4, tmp5)
tmp7 = libdevice.rsqrt(tmp6)
tl.debug_barrier()
tl.store(in_out_ptr0 + x3, tmp7, xmask)
@triton.jit
def triton_poi_fused_mul_2(in_ptr0, in_ptr1, in_ptr2, out_ptr0, xnumel,
XBLOCK: tl.constexpr):
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
tl.full([XBLOCK], True, tl.int1)
x1 = xindex // 16 % 512
x3 = xindex
x0 = xindex % 16
x2 = xindex // 8192
tmp0 = tl.load(in_ptr0 + x1, None, eviction_policy='evict_last')
tmp1 = tl.load(in_ptr1 + x3, None)
tmp3 = tl.load(in_ptr2 + (x0 + 16 * x2), None, eviction_policy='evict_last'
)
tmp2 = tmp0 * tmp1
tmp4 = tmp2 * tmp3
tl.store(out_ptr0 + x3, tmp4, None)
def call(args):
primals_1, primals_2 = args
args.clear()
assert_size_stride(primals_1, (1, 512, 1, 1), (512, 1, 1, 1))
assert_size_stride(primals_2, (4, 512, 4, 4), (8192, 16, 4, 1))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((4, 1, 4, 4, 4), (64, 256, 4, 1, 16),
torch.float32)
get_raw_stream(0)
triton_red_fused_pow_sum_0[grid(256)](primals_2, buf0, 256, 128,
XBLOCK=64, RBLOCK=8, num_warps=4, num_stages=1)
buf1 = empty_strided_cuda((4, 1, 4, 4), (16, 64, 4, 1), torch.float32)
buf2 = reinterpret_tensor(buf1, (4, 1, 4, 4), (16, 16, 4, 1), 0)
del buf1
triton_per_fused_clamp_pow_rsqrt_sum_1[grid(64)](buf2, buf0, 64, 4,
XBLOCK=64, num_warps=2, num_stages=1)
del buf0
buf3 = empty_strided_cuda((4, 512, 4, 4), (8192, 16, 4, 1), torch.
float32)
triton_poi_fused_mul_2[grid(32768)](primals_1, primals_2, buf2,
buf3, 32768, XBLOCK=256, num_warps=4, num_stages=1)
del primals_1
return buf3, primals_2, buf2
class L2NormNew(nn.Module):
"""
Scale shall be learnable according to original paper
scale: initial scale number
chan_num: L2Norm channel number (norm over all channels)
"""
def __init__(self, scale=20, chan_num=512):
super(L2NormNew, self).__init__()
self.scale = nn.Parameter(torch.Tensor([scale] * chan_num).view(1,
chan_num, 1, 1))
def forward(self, input_0):
primals_1 = self.scale
primals_2 = input_0
output = call([primals_1, primals_2])
return output[0]
|
EldritchJS/inference_results_v0.5
|
L2Norm
| false | 409 |
[
"Apache-2.0"
] | 0 |
5552490e184d9fc342d871fcc410ac423ea49053
|
https://github.com/EldritchJS/inference_results_v0.5/tree/5552490e184d9fc342d871fcc410ac423ea49053
|
SpatialGate
|
# AOT ID: ['0_forward']
from ctypes import c_void_p, c_long, c_int
import torch
import math
import random
import os
import tempfile
from math import inf, nan
from torch._inductor.hooks import run_intermediate_hooks
from torch._inductor.utils import maybe_profile
from torch._inductor.codegen.memory_planning import _align as align
from torch import device, empty_strided
from torch._inductor.async_compile import AsyncCompile
from torch._inductor.select_algorithm import extern_kernels
from torch._inductor.codegen.multi_kernel import MultiKernelCall
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
aten = torch.ops.aten
inductor_ops = torch.ops.inductor
_quantized = torch.ops._quantized
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
alloc_from_pool = torch.ops.inductor._alloc_from_pool
async_compile = AsyncCompile()
# kernel path: runs/run_shard_0/inductor_cache/uc/cucdaa5tqnxykdmw5yqh7ir5ac35phopjcobljrg4rrtlnfjtuwd.py
# Topologically Sorted Source Nodes: [x_compress], Original ATen: [aten.cat]
# Source node to ATen node mapping:
# x_compress => cat
# Graph fragment:
# %cat : [num_users=2] = call_function[target=torch.ops.aten.cat.default](args = ([%unsqueeze, %unsqueeze_1], 1), kwargs = {})
triton_poi_fused_cat_0 = async_compile.triton('triton_poi_fused_cat_0', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[128],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_cat_0', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 8, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_cat_0(in_ptr0, out_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 128
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x1 = (xindex // 16) % 2
x0 = xindex % 16
x2 = (xindex // 32)
x3 = xindex
tmp0 = x1
tmp1 = tl.full([1], 0, tl.int64)
tmp2 = tmp0 >= tmp1
tmp3 = tl.full([1], 1, tl.int64)
tmp4 = tmp0 < tmp3
tmp5 = tl.load(in_ptr0 + (x0 + (64*x2)), tmp4 & xmask, eviction_policy='evict_last', other=0.0)
tmp6 = tl.load(in_ptr0 + (16 + x0 + (64*x2)), tmp4 & xmask, eviction_policy='evict_last', other=0.0)
tmp7 = triton_helpers.maximum(tmp5, tmp6)
tmp8 = tl.load(in_ptr0 + (32 + x0 + (64*x2)), tmp4 & xmask, eviction_policy='evict_last', other=0.0)
tmp9 = triton_helpers.maximum(tmp7, tmp8)
tmp10 = tl.load(in_ptr0 + (48 + x0 + (64*x2)), tmp4 & xmask, eviction_policy='evict_last', other=0.0)
tmp11 = triton_helpers.maximum(tmp9, tmp10)
tmp12 = tl.full(tmp11.shape, 0.0, tmp11.dtype)
tmp13 = tl.where(tmp4, tmp11, tmp12)
tmp14 = tmp0 >= tmp3
tmp15 = tl.full([1], 2, tl.int64)
tmp16 = tmp0 < tmp15
tmp17 = tl.load(in_ptr0 + (x0 + (64*x2)), tmp14 & xmask, eviction_policy='evict_last', other=0.0)
tmp18 = tl.load(in_ptr0 + (16 + x0 + (64*x2)), tmp14 & xmask, eviction_policy='evict_last', other=0.0)
tmp19 = tmp17 + tmp18
tmp20 = tl.load(in_ptr0 + (32 + x0 + (64*x2)), tmp14 & xmask, eviction_policy='evict_last', other=0.0)
tmp21 = tmp19 + tmp20
tmp22 = tl.load(in_ptr0 + (48 + x0 + (64*x2)), tmp14 & xmask, eviction_policy='evict_last', other=0.0)
tmp23 = tmp21 + tmp22
tmp24 = 4.0
tmp25 = tmp23 / tmp24
tmp26 = tl.full(tmp25.shape, 0.0, tmp25.dtype)
tmp27 = tl.where(tmp14, tmp25, tmp26)
tmp28 = tl.where(tmp4, tmp13, tmp27)
tl.store(out_ptr0 + (x3), tmp28, xmask)
''', device_str='cuda')
# kernel path: runs/run_shard_0/inductor_cache/hy/chyq5lqryq6qebxlfhdffupuca4px672fxychf3hng5vgomdaota.py
# Topologically Sorted Source Nodes: [x], Original ATen: [aten.convolution]
# Source node to ATen node mapping:
# x => convolution
# Graph fragment:
# %convolution : [num_users=2] = call_function[target=torch.ops.aten.convolution.default](args = (%cat, %primals_2, %primals_3, [1, 1], [3, 3], [1, 1], False, [0, 0], 1), kwargs = {})
triton_poi_fused_convolution_1 = async_compile.triton('triton_poi_fused_convolution_1', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[64],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_convolution_1', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_convolution_1(in_out_ptr0, in_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 64
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex
tmp0 = tl.load(in_out_ptr0 + (x0), xmask)
tmp1 = tl.load(in_ptr0 + (0))
tmp2 = tl.broadcast_to(tmp1, [XBLOCK])
tmp3 = tmp0 + tmp2
tl.store(in_out_ptr0 + (x0), tmp3, xmask)
''', device_str='cuda')
# kernel path: runs/run_shard_0/inductor_cache/k4/ck42otglczd2qtk6fovmlu2yv7bzgywgiadyjygqbvu4m2rftbjm.py
# Topologically Sorted Source Nodes: [scale, mul], Original ATen: [aten.sigmoid, aten.mul]
# Source node to ATen node mapping:
# mul => mul
# scale => sigmoid
# Graph fragment:
# %sigmoid : [num_users=1] = call_function[target=torch.ops.aten.sigmoid.default](args = (%convolution,), kwargs = {})
# %mul : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%primals_1, %sigmoid), kwargs = {})
triton_poi_fused_mul_sigmoid_2 = async_compile.triton('triton_poi_fused_mul_sigmoid_2', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[256],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_mul_sigmoid_2', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_mul_sigmoid_2(in_ptr0, in_ptr1, out_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 256
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x3 = xindex
x0 = xindex % 16
x2 = (xindex // 64)
tmp0 = tl.load(in_ptr0 + (x3), xmask)
tmp1 = tl.load(in_ptr1 + (x0 + (16*x2)), xmask, eviction_policy='evict_last')
tmp2 = tl.sigmoid(tmp1)
tmp3 = tmp0 * tmp2
tl.store(out_ptr0 + (x3), tmp3, xmask)
''', device_str='cuda')
async_compile.wait(globals())
del async_compile
def call(args):
primals_1, primals_2, primals_3 = args
args.clear()
assert_size_stride(primals_1, (4, 4, 4, 4), (64, 16, 4, 1))
assert_size_stride(primals_2, (1, 2, 7, 7), (98, 49, 7, 1))
assert_size_stride(primals_3, (1, ), (1, ))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((4, 2, 4, 4), (32, 16, 4, 1), torch.float32)
# Topologically Sorted Source Nodes: [x_compress], Original ATen: [aten.cat]
stream0 = get_raw_stream(0)
triton_poi_fused_cat_0.run(primals_1, buf0, 128, grid=grid(128), stream=stream0)
# Topologically Sorted Source Nodes: [x], Original ATen: [aten.convolution]
buf1 = extern_kernels.convolution(buf0, primals_2, stride=(1, 1), padding=(3, 3), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None)
assert_size_stride(buf1, (4, 1, 4, 4), (16, 16, 4, 1))
buf2 = buf1; del buf1 # reuse
# Topologically Sorted Source Nodes: [x], Original ATen: [aten.convolution]
triton_poi_fused_convolution_1.run(buf2, primals_3, 64, grid=grid(64), stream=stream0)
del primals_3
buf3 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32)
# Topologically Sorted Source Nodes: [scale, mul], Original ATen: [aten.sigmoid, aten.mul]
triton_poi_fused_mul_sigmoid_2.run(primals_1, buf2, buf3, 256, grid=grid(256), stream=stream0)
return (buf3, primals_1, primals_2, buf0, buf2, )
def benchmark_compiled_module(times=10, repeat=10):
from torch._dynamo.testing import rand_strided
from torch._inductor.utils import print_performance
primals_1 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32)
primals_2 = rand_strided((1, 2, 7, 7), (98, 49, 7, 1), device='cuda:0', dtype=torch.float32)
primals_3 = rand_strided((1, ), (1, ), device='cuda:0', dtype=torch.float32)
fn = lambda: call([primals_1, primals_2, primals_3])
return print_performance(fn, times=times, repeat=repeat)
if __name__ == "__main__":
from torch._inductor.wrapper_benchmark import compiled_module_main
compiled_module_main('None', benchmark_compiled_module)
|
import torch
from torch._inductor.select_algorithm import extern_kernels
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
from torch._inductor.runtime import triton_helpers
import torch.nn as nn
import torch.utils.model_zoo
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
@triton.jit
def triton_poi_fused_cat_0(in_ptr0, out_ptr0, xnumel, XBLOCK: tl.constexpr):
xnumel = 128
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x1 = xindex // 16 % 2
x0 = xindex % 16
x2 = xindex // 32
x3 = xindex
tmp0 = x1
tl.full([1], 0, tl.int64)
tmp3 = tl.full([1], 1, tl.int64)
tmp4 = tmp0 < tmp3
tmp5 = tl.load(in_ptr0 + (x0 + 64 * x2), tmp4 & xmask, eviction_policy=
'evict_last', other=0.0)
tmp6 = tl.load(in_ptr0 + (16 + x0 + 64 * x2), tmp4 & xmask,
eviction_policy='evict_last', other=0.0)
tmp7 = triton_helpers.maximum(tmp5, tmp6)
tmp8 = tl.load(in_ptr0 + (32 + x0 + 64 * x2), tmp4 & xmask,
eviction_policy='evict_last', other=0.0)
tmp9 = triton_helpers.maximum(tmp7, tmp8)
tmp10 = tl.load(in_ptr0 + (48 + x0 + 64 * x2), tmp4 & xmask,
eviction_policy='evict_last', other=0.0)
tmp11 = triton_helpers.maximum(tmp9, tmp10)
tmp12 = tl.full(tmp11.shape, 0.0, tmp11.dtype)
tmp13 = tl.where(tmp4, tmp11, tmp12)
tmp14 = tmp0 >= tmp3
tl.full([1], 2, tl.int64)
tmp17 = tl.load(in_ptr0 + (x0 + 64 * x2), tmp14 & xmask,
eviction_policy='evict_last', other=0.0)
tmp18 = tl.load(in_ptr0 + (16 + x0 + 64 * x2), tmp14 & xmask,
eviction_policy='evict_last', other=0.0)
tmp19 = tmp17 + tmp18
tmp20 = tl.load(in_ptr0 + (32 + x0 + 64 * x2), tmp14 & xmask,
eviction_policy='evict_last', other=0.0)
tmp21 = tmp19 + tmp20
tmp22 = tl.load(in_ptr0 + (48 + x0 + 64 * x2), tmp14 & xmask,
eviction_policy='evict_last', other=0.0)
tmp23 = tmp21 + tmp22
tmp24 = 4.0
tmp25 = tmp23 / tmp24
tmp26 = tl.full(tmp25.shape, 0.0, tmp25.dtype)
tmp27 = tl.where(tmp14, tmp25, tmp26)
tmp28 = tl.where(tmp4, tmp13, tmp27)
tl.store(out_ptr0 + x3, tmp28, xmask)
@triton.jit
def triton_poi_fused_convolution_1(in_out_ptr0, in_ptr0, xnumel, XBLOCK: tl
.constexpr):
xnumel = 64
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex
tmp0 = tl.load(in_out_ptr0 + x0, xmask)
tmp1 = tl.load(in_ptr0 + 0)
tmp2 = tl.broadcast_to(tmp1, [XBLOCK])
tmp3 = tmp0 + tmp2
tl.store(in_out_ptr0 + x0, tmp3, xmask)
@triton.jit
def triton_poi_fused_mul_sigmoid_2(in_ptr0, in_ptr1, out_ptr0, xnumel,
XBLOCK: tl.constexpr):
xnumel = 256
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x3 = xindex
x0 = xindex % 16
x2 = xindex // 64
tmp0 = tl.load(in_ptr0 + x3, xmask)
tmp1 = tl.load(in_ptr1 + (x0 + 16 * x2), xmask, eviction_policy=
'evict_last')
tmp2 = tl.sigmoid(tmp1)
tmp3 = tmp0 * tmp2
tl.store(out_ptr0 + x3, tmp3, xmask)
def call(args):
primals_1, primals_2, primals_3 = args
args.clear()
assert_size_stride(primals_1, (4, 4, 4, 4), (64, 16, 4, 1))
assert_size_stride(primals_2, (1, 2, 7, 7), (98, 49, 7, 1))
assert_size_stride(primals_3, (1,), (1,))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((4, 2, 4, 4), (32, 16, 4, 1), torch.float32)
get_raw_stream(0)
triton_poi_fused_cat_0[grid(128)](primals_1, buf0, 128, XBLOCK=128,
num_warps=4, num_stages=1)
buf1 = extern_kernels.convolution(buf0, primals_2, stride=(1, 1),
padding=(3, 3), dilation=(1, 1), transposed=False,
output_padding=(0, 0), groups=1, bias=None)
assert_size_stride(buf1, (4, 1, 4, 4), (16, 16, 4, 1))
buf2 = buf1
del buf1
triton_poi_fused_convolution_1[grid(64)](buf2, primals_3, 64,
XBLOCK=64, num_warps=1, num_stages=1)
del primals_3
buf3 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32)
triton_poi_fused_mul_sigmoid_2[grid(256)](primals_1, buf2, buf3,
256, XBLOCK=256, num_warps=4, num_stages=1)
return buf3, primals_1, primals_2, buf0, buf2
class BasicConv(nn.Module):
def __init__(self, in_planes, out_planes, kernel_size, stride=1,
padding=0, dilation=1, groups=1, relu=True, bn=False, bias=True):
super(BasicConv, self).__init__()
self.out_channels = out_planes
self.conv = nn.Conv2d(in_planes, out_planes, kernel_size=
kernel_size, stride=stride, padding=padding, dilation=dilation,
groups=groups, bias=bias)
self.bn = nn.BatchNorm2d(out_planes, eps=1e-05, momentum=0.01,
affine=True) if bn else None
self.relu = nn.ReLU() if relu else None
def forward(self, x):
x = self.conv(x)
if self.bn is not None:
x = self.bn(x)
if self.relu is not None:
x = self.relu(x)
return x
class ChannelPool(nn.Module):
def forward(self, x):
return torch.cat((torch.max(x, 1)[0].unsqueeze(1), torch.mean(x, 1)
.unsqueeze(1)), dim=1)
class SpatialGateNew(nn.Module):
def __init__(self):
super(SpatialGateNew, self).__init__()
kernel_size = 7
self.compress = ChannelPool()
self.spatial = BasicConv(2, 1, kernel_size, stride=1, padding=(
kernel_size - 1) // 2, relu=False)
def forward(self, input_0):
primals_2 = self.spatial.conv.weight
primals_3 = self.spatial.conv.bias
primals_1 = input_0
output = call([primals_1, primals_2, primals_3])
return output[0]
|
HolmesShuan/OISR-PyTorch
|
SpatialGate
| false | 13,793 |
[
"BSD-2-Clause"
] | 141 |
bbe0c88f71fe565a2842df7971b62a9bc5a56c48
|
https://github.com/HolmesShuan/OISR-PyTorch/tree/bbe0c88f71fe565a2842df7971b62a9bc5a56c48
|
MSELoss
|
import torch
import torch.nn as nn
import torch.nn.parallel
import torch.optim
import torch.utils.data
import torch.nn.functional as F
class MSELoss(nn.Module):
def __init__(self, ratio=1, size_average=None, reduce=None, reduction=
'mean'):
super(MSELoss, self).__init__()
self.ratio = ratio
self.size_average = size_average
self.reduce = reduce
self.reduction = reduction
def forward(self, input, target, avg_factor=None):
return self.ratio * F.mse_loss(input, target, reduction=self.reduction)
def get_inputs():
return [torch.rand([4, 4, 4, 4]), torch.rand([4, 4, 4, 4])]
def get_init_inputs():
return [[], {}]
|
import torch
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
from torch._inductor.runtime import triton_helpers
import torch.nn as nn
import torch.nn.parallel
import torch.optim
import torch.utils.data
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
@triton.jit
def triton_per_fused_mse_loss_mul_0(in_out_ptr0, in_ptr0, in_ptr1, xnumel,
rnumel):
XBLOCK: tl.constexpr = 1
RBLOCK: tl.constexpr = 256
xoffset = tl.program_id(0) * XBLOCK
tl.full([1], xoffset, tl.int32)
tl.full([RBLOCK], True, tl.int1)
rindex = tl.arange(0, RBLOCK)[:]
tl.full([RBLOCK], True, tl.int1)
r0 = rindex
tmp0 = tl.load(in_ptr0 + r0, None)
tmp1 = tl.load(in_ptr1 + r0, None)
tmp2 = tmp0 - tmp1
tmp3 = tmp2 * tmp2
tmp4 = tl.broadcast_to(tmp3, [RBLOCK])
tmp6 = triton_helpers.promote_to_tensor(tl.sum(tmp4, 0))
tmp7 = 256.0
tmp8 = tmp6 / tmp7
tmp9 = 1.0
tmp10 = tmp8 * tmp9
tl.debug_barrier()
tl.store(in_out_ptr0 + tl.full([1], 0, tl.int32), tmp10, None)
def call(args):
arg0_1, arg1_1 = args
args.clear()
assert_size_stride(arg0_1, (4, 4, 4, 4), (64, 16, 4, 1))
assert_size_stride(arg1_1, (4, 4, 4, 4), (64, 16, 4, 1))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((), (), torch.float32)
buf1 = buf0
del buf0
get_raw_stream(0)
triton_per_fused_mse_loss_mul_0[grid(1)](buf1, arg1_1, arg0_1, 1,
256, num_warps=2, num_stages=1)
del arg0_1
del arg1_1
return buf1,
class MSELossNew(nn.Module):
def __init__(self, ratio=1, size_average=None, reduce=None, reduction=
'mean'):
super(MSELossNew, self).__init__()
self.ratio = ratio
self.size_average = size_average
self.reduce = reduce
self.reduction = reduction
def forward(self, input_0, input_1):
arg0_1 = input_0
arg1_1 = input_1
output = call([arg0_1, arg1_1])
return output[0]
|
Dogacel/mmfashion
|
MSELoss
| false | 11,413 |
[
"Apache-2.0"
] | 0 |
e49613245c8501042edd7aeeaa8fb93e5ea13238
|
https://github.com/Dogacel/mmfashion/tree/e49613245c8501042edd7aeeaa8fb93e5ea13238
|
Concat
|
# AOT ID: ['0_inference']
from ctypes import c_void_p, c_long, c_int
import torch
import math
import random
import os
import tempfile
from math import inf, nan
from torch._inductor.hooks import run_intermediate_hooks
from torch._inductor.utils import maybe_profile
from torch._inductor.codegen.memory_planning import _align as align
from torch import device, empty_strided
from torch._inductor.async_compile import AsyncCompile
from torch._inductor.select_algorithm import extern_kernels
from torch._inductor.codegen.multi_kernel import MultiKernelCall
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
aten = torch.ops.aten
inductor_ops = torch.ops.inductor
_quantized = torch.ops._quantized
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
alloc_from_pool = torch.ops.inductor._alloc_from_pool
async_compile = AsyncCompile()
# kernel path: runs/run_shard_9/inductor_cache/m6/cm6nixhuxyf76p5x5wtskqwfrb5kdl2bfda4t34yltftpilyxauy.py
# Topologically Sorted Source Nodes: [cat], Original ATen: [aten.cat]
# Source node to ATen node mapping:
# cat => cat
# Graph fragment:
# %cat : [num_users=1] = call_function[target=torch.ops.aten.cat.default](args = ([%arg0_1, %arg1_1],), kwargs = {})
triton_poi_fused_cat_0 = async_compile.triton('triton_poi_fused_cat_0', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[512],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_cat_0', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_cat_0(in_ptr0, in_ptr1, out_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 512
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x1 = (xindex // 64)
x0 = xindex % 64
x2 = xindex
tmp0 = x1
tmp1 = tl.full([1], 0, tl.int64)
tmp2 = tmp0 >= tmp1
tmp3 = tl.full([1], 4, tl.int64)
tmp4 = tmp0 < tmp3
tmp5 = tl.load(in_ptr0 + (x0 + (64*x1)), tmp4 & xmask, other=0.0)
tmp6 = tmp0 >= tmp3
tmp7 = tl.full([1], 8, tl.int64)
tmp8 = tmp0 < tmp7
tmp9 = tl.load(in_ptr1 + (x0 + (64*((-4) + x1))), tmp6 & xmask, other=0.0)
tmp10 = tl.where(tmp4, tmp5, tmp9)
tl.store(out_ptr0 + (x2), tmp10, xmask)
''', device_str='cuda')
async_compile.wait(globals())
del async_compile
def call(args):
arg0_1, arg1_1 = args
args.clear()
assert_size_stride(arg0_1, (4, 4, 4, 4), (64, 16, 4, 1))
assert_size_stride(arg1_1, (4, 4, 4, 4), (64, 16, 4, 1))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((8, 4, 4, 4), (64, 16, 4, 1), torch.float32)
# Topologically Sorted Source Nodes: [cat], Original ATen: [aten.cat]
stream0 = get_raw_stream(0)
triton_poi_fused_cat_0.run(arg0_1, arg1_1, buf0, 512, grid=grid(512), stream=stream0)
del arg0_1
del arg1_1
return (buf0, )
def benchmark_compiled_module(times=10, repeat=10):
from torch._dynamo.testing import rand_strided
from torch._inductor.utils import print_performance
arg0_1 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32)
arg1_1 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32)
fn = lambda: call([arg0_1, arg1_1])
return print_performance(fn, times=times, repeat=repeat)
if __name__ == "__main__":
from torch._inductor.wrapper_benchmark import compiled_module_main
compiled_module_main('None', benchmark_compiled_module)
|
import torch
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
import torch.nn
import torch.utils.data
import torch.utils.tensorboard._pytorch_graph
import torch.onnx.symbolic_caffe2
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
@triton.jit
def triton_poi_fused_cat_0(in_ptr0, in_ptr1, out_ptr0, xnumel, XBLOCK: tl.
constexpr):
xnumel = 512
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x1 = xindex // 64
x0 = xindex % 64
x2 = xindex
tmp0 = x1
tl.full([1], 0, tl.int64)
tmp3 = tl.full([1], 4, tl.int64)
tmp4 = tmp0 < tmp3
tmp5 = tl.load(in_ptr0 + (x0 + 64 * x1), tmp4 & xmask, other=0.0)
tmp6 = tmp0 >= tmp3
tl.full([1], 8, tl.int64)
tmp9 = tl.load(in_ptr1 + (x0 + 64 * (-4 + x1)), tmp6 & xmask, other=0.0)
tmp10 = tl.where(tmp4, tmp5, tmp9)
tl.store(out_ptr0 + x2, tmp10, xmask)
def call(args):
arg0_1, arg1_1 = args
args.clear()
assert_size_stride(arg0_1, (4, 4, 4, 4), (64, 16, 4, 1))
assert_size_stride(arg1_1, (4, 4, 4, 4), (64, 16, 4, 1))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((8, 4, 4, 4), (64, 16, 4, 1), torch.float32)
get_raw_stream(0)
triton_poi_fused_cat_0[grid(512)](arg0_1, arg1_1, buf0, 512, XBLOCK
=256, num_warps=4, num_stages=1)
del arg0_1
del arg1_1
return buf0,
class ConcatNew(torch.nn.Module):
""" Concat module for a functional concat"""
def __init__(self, axis: 'int'=0):
super(ConcatNew, self).__init__()
self.axis = axis
def forward(self, input_0, input_1):
arg0_1 = input_0
arg1_1 = input_1
output = call([arg0_1, arg1_1])
return output[0]
|
arjunsuresh/aimet
|
Concat
| false | 12,326 |
[
"BSD-3-Clause"
] | 0 |
f6e09cb07a91eed3a5e6b8e19e6b065303af5a39
|
https://github.com/arjunsuresh/aimet/tree/f6e09cb07a91eed3a5e6b8e19e6b065303af5a39
|
SpatialGatherModule
|
import torch
import torch.nn.functional as F
import torch.nn as nn
import torch._C
import torch.serialization
class SpatialGatherModule(nn.Module):
"""Aggregate the context features according to the initial predicted
probability distribution.
Employ the soft-weighted method to aggregate the context.
"""
def __init__(self, scale):
super(SpatialGatherModule, self).__init__()
self.scale = scale
def forward(self, feats, probs):
"""Forward function."""
batch_size, num_classes, _height, _width = probs.size()
channels = feats.size(1)
probs = probs.view(batch_size, num_classes, -1)
feats = feats.view(batch_size, channels, -1)
feats = feats.permute(0, 2, 1)
probs = F.softmax(self.scale * probs, dim=2)
ocr_context = torch.matmul(probs, feats)
ocr_context = ocr_context.permute(0, 2, 1).contiguous().unsqueeze(3)
return ocr_context
def get_inputs():
return [torch.rand([4, 4, 4, 4]), torch.rand([4, 4, 4, 4])]
def get_init_inputs():
return [[], {'scale': 1.0}]
|
import torch
from torch._inductor.select_algorithm import extern_kernels
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
from torch._inductor.runtime import triton_helpers
from torch._inductor.runtime.triton_helpers import math as tl_math
import torch.nn as nn
import torch._C
import torch.serialization
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
@triton.jit
def triton_per_fused__softmax_0(in_ptr0, out_ptr2, xnumel, rnumel, XBLOCK:
tl.constexpr):
xnumel = 16
RBLOCK: tl.constexpr = 16
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:, None]
xmask = xindex < xnumel
rindex = tl.arange(0, RBLOCK)[None, :]
tl.full([XBLOCK, RBLOCK], True, tl.int1)
r1 = rindex
x0 = xindex
tmp0 = tl.load(in_ptr0 + (r1 + 16 * x0), xmask, other=0.0)
tmp1 = 1.0
tmp2 = tmp0 * tmp1
tmp3 = tl.broadcast_to(tmp2, [XBLOCK, RBLOCK])
tmp5 = tl.where(xmask, tmp3, float('-inf'))
tmp6 = triton_helpers.max2(tmp5, 1)[:, None]
tmp7 = tmp2 - tmp6
tmp8 = tmp7 * tmp1
tmp9 = tl_math.exp(tmp8)
tmp10 = tl.broadcast_to(tmp9, [XBLOCK, RBLOCK])
tmp12 = tl.where(xmask, tmp10, 0)
tmp13 = tl.sum(tmp12, 1)[:, None]
tmp14 = tmp9 / tmp13
tl.store(out_ptr2 + (r1 + 16 * x0), tmp14, xmask)
@triton.jit
def triton_poi_fused_clone_1(in_ptr0, out_ptr0, ynumel, xnumel, YBLOCK: tl.
constexpr, XBLOCK: tl.constexpr):
ynumel = 16
xnumel = 4
yoffset = tl.program_id(1) * YBLOCK
yindex = yoffset + tl.arange(0, YBLOCK)[None, :]
ymask = yindex < ynumel
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:, None]
xmask = xindex < xnumel
x2 = xindex
y0 = yindex % 4
y1 = yindex // 4
y3 = yindex
tmp0 = tl.load(in_ptr0 + (y0 + 4 * x2 + 16 * y1), xmask & ymask,
eviction_policy='evict_last')
tl.store(out_ptr0 + (x2 + 4 * y3), tmp0, xmask & ymask)
def call(args):
arg0_1, arg1_1 = args
args.clear()
assert_size_stride(arg0_1, (4, 4, 4, 4), (64, 16, 4, 1))
assert_size_stride(arg1_1, (4, 4, 4, 4), (64, 16, 4, 1))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf2 = empty_strided_cuda((4, 4, 16), (64, 16, 1), torch.float32)
get_raw_stream(0)
triton_per_fused__softmax_0[grid(16)](arg0_1, buf2, 16, 16, XBLOCK=
1, num_warps=2, num_stages=1)
del arg0_1
buf3 = empty_strided_cuda((4, 4, 4), (16, 4, 1), torch.float32)
extern_kernels.bmm(buf2, reinterpret_tensor(arg1_1, (4, 16, 4), (64,
1, 16), 0), out=buf3)
del arg1_1
del buf2
buf4 = empty_strided_cuda((4, 4, 4), (16, 4, 1), torch.float32)
triton_poi_fused_clone_1[grid(16, 4)](buf3, buf4, 16, 4, XBLOCK=4,
YBLOCK=16, num_warps=1, num_stages=1)
del buf3
return reinterpret_tensor(buf4, (4, 4, 4, 1), (16, 4, 1, 1), 0),
class SpatialGatherModuleNew(nn.Module):
"""Aggregate the context features according to the initial predicted
probability distribution.
Employ the soft-weighted method to aggregate the context.
"""
def __init__(self, scale):
super(SpatialGatherModuleNew, self).__init__()
self.scale = scale
def forward(self, input_0, input_1):
arg0_1 = input_0
arg1_1 = input_1
output = call([arg0_1, arg1_1])
return output[0]
|
HusterRC/mmsegmentation
|
SpatialGatherModule
| false | 5,310 |
[
"Apache-2.0"
] | 1 |
c3e4dbc2e06de3f47f75098f76772b4ee7e91e35
|
https://github.com/HusterRC/mmsegmentation/tree/c3e4dbc2e06de3f47f75098f76772b4ee7e91e35
|
ConveRTOuterFeedForward
|
import torch
import torch.nn as nn
import torch.nn.functional as fnn
from torch.nn.modules.normalization import LayerNorm
class ConveRTOuterFeedForward(nn.Module):
"""Fully-Connected 3-layer Linear Model"""
def __init__(self, input_hidden: 'int', intermediate_hidden: 'int',
dropout_rate: 'float'=0.0):
"""
:param input_hidden: first-hidden layer input embed-dim
:type input_hidden: int
:param intermediate_hidden: layer-(hidden)-layer middle point weight
:type intermediate_hidden: int
:param dropout_rate: dropout rate, defaults to None
:type dropout_rate: float, optional
"""
super().__init__()
self.linear_1 = nn.Linear(input_hidden, intermediate_hidden)
self.dropout = nn.Dropout(dropout_rate)
self.linear_2 = nn.Linear(intermediate_hidden, intermediate_hidden)
self.dropout = nn.Dropout(dropout_rate)
self.linear_3 = nn.Linear(intermediate_hidden, intermediate_hidden)
self.norm = LayerNorm(intermediate_hidden)
def forward(self, x: 'torch.Tensor') ->torch.Tensor:
"""forward through fully-connected 3-layer
:param x: fnn input
:type x: torch.Tensor
:return: return fnn output
:rtype: torch.Tensor
"""
x = self.linear_1(x)
x = self.linear_2(self.dropout(x))
x = self.linear_3(self.dropout(x))
return fnn.gelu(self.norm(x))
def get_inputs():
return [torch.rand([4, 4, 4, 4])]
def get_init_inputs():
return [[], {'input_hidden': 4, 'intermediate_hidden': 4}]
|
import torch
from torch._inductor.select_algorithm import extern_kernels
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
from torch._inductor.runtime.triton_helpers import libdevice
import torch.nn as nn
from torch.nn.modules.normalization import LayerNorm
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
@triton.jit
def triton_poi_fused_native_layer_norm_0(in_ptr0, out_ptr0, out_ptr1,
xnumel, XBLOCK: tl.constexpr):
xnumel = 64
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex
tmp0 = tl.load(in_ptr0 + 4 * x0, xmask, eviction_policy='evict_last')
tmp1 = tl.load(in_ptr0 + (1 + 4 * x0), xmask, eviction_policy='evict_last')
tmp3 = tl.load(in_ptr0 + (2 + 4 * x0), xmask, eviction_policy='evict_last')
tmp5 = tl.load(in_ptr0 + (3 + 4 * x0), xmask, eviction_policy='evict_last')
tmp2 = tmp0 + tmp1
tmp4 = tmp2 + tmp3
tmp6 = tmp4 + tmp5
tmp7 = 4.0
tmp8 = tmp6 / tmp7
tmp9 = tmp0 - tmp8
tmp10 = tmp9 * tmp9
tmp11 = tmp1 - tmp8
tmp12 = tmp11 * tmp11
tmp13 = tmp10 + tmp12
tmp14 = tmp3 - tmp8
tmp15 = tmp14 * tmp14
tmp16 = tmp13 + tmp15
tmp17 = tmp5 - tmp8
tmp18 = tmp17 * tmp17
tmp19 = tmp16 + tmp18
tmp20 = tmp19 / tmp7
tmp21 = 1e-05
tmp22 = tmp20 + tmp21
tmp23 = libdevice.rsqrt(tmp22)
tl.store(out_ptr0 + x0, tmp8, xmask)
tl.store(out_ptr1 + x0, tmp23, xmask)
@triton.jit
def triton_poi_fused_gelu_native_layer_norm_1(in_out_ptr0, in_ptr0, in_ptr1,
in_ptr2, in_ptr3, in_ptr4, xnumel, XBLOCK: tl.constexpr):
xnumel = 256
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x2 = xindex
x1 = xindex // 4
x0 = xindex % 4
tmp0 = tl.load(in_ptr0 + x2, xmask)
tmp1 = tl.load(in_ptr1 + x1, xmask, eviction_policy='evict_last')
tmp3 = tl.load(in_ptr2 + x1, xmask, eviction_policy='evict_last')
tmp5 = tl.load(in_ptr3 + x0, xmask, eviction_policy='evict_last')
tmp7 = tl.load(in_ptr4 + x0, xmask, eviction_policy='evict_last')
tmp2 = tmp0 - tmp1
tmp4 = tmp2 * tmp3
tmp6 = tmp4 * tmp5
tmp8 = tmp6 + tmp7
tmp9 = 0.5
tmp10 = tmp8 * tmp9
tmp11 = 0.7071067811865476
tmp12 = tmp8 * tmp11
tmp13 = libdevice.erf(tmp12)
tmp14 = 1.0
tmp15 = tmp13 + tmp14
tmp16 = tmp10 * tmp15
tl.store(in_out_ptr0 + x2, tmp16, xmask)
def call(args):
(primals_1, primals_2, primals_3, primals_4, primals_5, primals_6,
primals_7, primals_8, primals_9) = args
args.clear()
assert_size_stride(primals_1, (4, 4), (4, 1))
assert_size_stride(primals_2, (4,), (1,))
assert_size_stride(primals_3, (4, 4, 4, 4), (64, 16, 4, 1))
assert_size_stride(primals_4, (4, 4), (4, 1))
assert_size_stride(primals_5, (4,), (1,))
assert_size_stride(primals_6, (4, 4), (4, 1))
assert_size_stride(primals_7, (4,), (1,))
assert_size_stride(primals_8, (4,), (1,))
assert_size_stride(primals_9, (4,), (1,))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((64, 4), (4, 1), torch.float32)
extern_kernels.addmm(primals_2, reinterpret_tensor(primals_3, (64,
4), (4, 1), 0), reinterpret_tensor(primals_1, (4, 4), (1, 4), 0
), alpha=1, beta=1, out=buf0)
del primals_1
del primals_2
buf1 = empty_strided_cuda((64, 4), (4, 1), torch.float32)
extern_kernels.addmm(primals_5, buf0, reinterpret_tensor(primals_4,
(4, 4), (1, 4), 0), alpha=1, beta=1, out=buf1)
del primals_5
buf2 = empty_strided_cuda((64, 4), (4, 1), torch.float32)
extern_kernels.addmm(primals_7, buf1, reinterpret_tensor(primals_6,
(4, 4), (1, 4), 0), alpha=1, beta=1, out=buf2)
del primals_7
buf3 = empty_strided_cuda((4, 4, 4, 1), (16, 4, 1, 64), torch.float32)
buf4 = empty_strided_cuda((4, 4, 4, 1), (16, 4, 1, 64), torch.float32)
get_raw_stream(0)
triton_poi_fused_native_layer_norm_0[grid(64)](buf2, buf3, buf4, 64,
XBLOCK=64, num_warps=1, num_stages=1)
buf5 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32)
buf6 = buf5
del buf5
triton_poi_fused_gelu_native_layer_norm_1[grid(256)](buf6, buf2,
buf3, buf4, primals_8, primals_9, 256, XBLOCK=256, num_warps=4,
num_stages=1)
del buf3
del buf4
return buf6, primals_8, primals_9, reinterpret_tensor(primals_3, (64, 4
), (4, 1), 0), buf0, buf1, buf2, primals_6, primals_4
class ConveRTOuterFeedForwardNew(nn.Module):
"""Fully-Connected 3-layer Linear Model"""
def __init__(self, input_hidden: 'int', intermediate_hidden: 'int',
dropout_rate: 'float'=0.0):
"""
:param input_hidden: first-hidden layer input embed-dim
:type input_hidden: int
:param intermediate_hidden: layer-(hidden)-layer middle point weight
:type intermediate_hidden: int
:param dropout_rate: dropout rate, defaults to None
:type dropout_rate: float, optional
"""
super().__init__()
self.linear_1 = nn.Linear(input_hidden, intermediate_hidden)
self.dropout = nn.Dropout(dropout_rate)
self.linear_2 = nn.Linear(intermediate_hidden, intermediate_hidden)
self.dropout = nn.Dropout(dropout_rate)
self.linear_3 = nn.Linear(intermediate_hidden, intermediate_hidden)
self.norm = LayerNorm(intermediate_hidden)
def forward(self, input_0):
primals_1 = self.linear_1.weight
primals_2 = self.linear_1.bias
primals_4 = self.linear_2.weight
primals_5 = self.linear_2.bias
primals_6 = self.linear_3.weight
primals_7 = self.linear_3.bias
primals_8 = self.norm.weight
primals_9 = self.norm.bias
primals_3 = input_0
output = call([primals_1, primals_2, primals_3, primals_4,
primals_5, primals_6, primals_7, primals_8, primals_9])
return output[0]
|
luweishuang/ConveRT-pytorch
|
ConveRTOuterFeedForward
| false | 10,569 |
[
"Apache-2.0"
] | 0 |
e14aaf2287eb3a78ee7d83ea02d9bd322863227f
|
https://github.com/luweishuang/ConveRT-pytorch/tree/e14aaf2287eb3a78ee7d83ea02d9bd322863227f
|
Pool
|
# AOT ID: ['0_inference']
from ctypes import c_void_p, c_long, c_int
import torch
import math
import random
import os
import tempfile
from math import inf, nan
from torch._inductor.hooks import run_intermediate_hooks
from torch._inductor.utils import maybe_profile
from torch._inductor.codegen.memory_planning import _align as align
from torch import device, empty_strided
from torch._inductor.async_compile import AsyncCompile
from torch._inductor.select_algorithm import extern_kernels
from torch._inductor.codegen.multi_kernel import MultiKernelCall
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
aten = torch.ops.aten
inductor_ops = torch.ops.inductor
_quantized = torch.ops._quantized
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
alloc_from_pool = torch.ops.inductor._alloc_from_pool
async_compile = AsyncCompile()
# kernel path: runs/run_shard_8/inductor_cache/ws/cwsernjijxsliy5iskqdqkl4a4mqrxpxpwdopiyuuvrgc74ugctd.py
# Topologically Sorted Source Nodes: [adaptive_avg_pool2d], Original ATen: [aten._adaptive_avg_pool2d]
# Source node to ATen node mapping:
# adaptive_avg_pool2d => _adaptive_avg_pool2d
# Graph fragment:
# %_adaptive_avg_pool2d : [num_users=1] = call_function[target=torch.ops.aten._adaptive_avg_pool2d.default](args = (%arg0_1, [5, 5]), kwargs = {})
triton_poi_fused__adaptive_avg_pool2d_0 = async_compile.triton('triton_poi_fused__adaptive_avg_pool2d_0', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[512],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused__adaptive_avg_pool2d_0', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 4, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused__adaptive_avg_pool2d_0(in_ptr0, out_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 400
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x1 = (xindex // 5) % 5
x0 = xindex % 5
x2 = (xindex // 25)
x4 = xindex
tmp0 = ((4*x1) // 5)
tmp1 = ((8 + (4*x1)) // 5)
tmp2 = tmp0 < tmp1
tmp3 = ((4*x0) // 5)
tmp4 = ((8 + (4*x0)) // 5)
tmp5 = tmp3 < tmp4
tmp6 = tmp2 & tmp5
tmp7 = tl.load(in_ptr0 + ((4*((4*x1) // 5)) + (16*x2) + ((4*x0) // 5)), tmp6 & xmask, eviction_policy='evict_last', other=0.0)
tmp8 = 1 + ((4*x0) // 5)
tmp9 = tmp8 < tmp4
tmp10 = tmp2 & tmp9
tmp11 = tl.load(in_ptr0 + (1 + (4*((4*x1) // 5)) + (16*x2) + ((4*x0) // 5)), tmp10 & xmask, eviction_policy='evict_last', other=0.0)
tmp12 = tmp11 + tmp7
tmp13 = 1 + ((4*x1) // 5)
tmp14 = tmp13 < tmp1
tmp15 = tmp14 & tmp5
tmp16 = tl.load(in_ptr0 + (4 + (4*((4*x1) // 5)) + (16*x2) + ((4*x0) // 5)), tmp15 & xmask, eviction_policy='evict_last', other=0.0)
tmp17 = tmp16 + tmp12
tmp18 = tmp14 & tmp9
tmp19 = tl.load(in_ptr0 + (5 + (4*((4*x1) // 5)) + (16*x2) + ((4*x0) // 5)), tmp18 & xmask, eviction_policy='evict_last', other=0.0)
tmp20 = tmp19 + tmp17
tmp21 = 1.0
tmp22 = tl.full(tmp21.shape, 0.0, tmp21.dtype)
tmp23 = tl.where(tmp6, tmp21, tmp22)
tmp24 = tl.where(tmp10, tmp21, tmp22)
tmp25 = tmp24 + tmp23
tmp26 = tl.where(tmp15, tmp21, tmp22)
tmp27 = tmp26 + tmp25
tmp28 = tl.where(tmp18, tmp21, tmp22)
tmp29 = tmp28 + tmp27
tmp30 = tmp20 / tmp29
tl.store(out_ptr0 + (x4), tmp30, xmask)
''', device_str='cuda')
async_compile.wait(globals())
del async_compile
def call(args):
arg0_1, = args
args.clear()
assert_size_stride(arg0_1, (4, 4, 4, 4), (64, 16, 4, 1))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((4, 4, 5, 5), (100, 25, 5, 1), torch.float32)
# Topologically Sorted Source Nodes: [adaptive_avg_pool2d], Original ATen: [aten._adaptive_avg_pool2d]
stream0 = get_raw_stream(0)
triton_poi_fused__adaptive_avg_pool2d_0.run(arg0_1, buf0, 400, grid=grid(400), stream=stream0)
del arg0_1
return (buf0, )
def benchmark_compiled_module(times=10, repeat=10):
from torch._dynamo.testing import rand_strided
from torch._inductor.utils import print_performance
arg0_1 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32)
fn = lambda: call([arg0_1])
return print_performance(fn, times=times, repeat=repeat)
if __name__ == "__main__":
from torch._inductor.wrapper_benchmark import compiled_module_main
compiled_module_main('None', benchmark_compiled_module)
|
import torch
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
import torch.nn as nn
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
@triton.jit
def triton_poi_fused__adaptive_avg_pool2d_0(in_ptr0, out_ptr0, xnumel,
XBLOCK: tl.constexpr):
xnumel = 400
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x1 = xindex // 5 % 5
x0 = xindex % 5
x2 = xindex // 25
x4 = xindex
tmp0 = 4 * x1 // 5
tmp1 = (8 + 4 * x1) // 5
tmp2 = tmp0 < tmp1
tmp3 = 4 * x0 // 5
tmp4 = (8 + 4 * x0) // 5
tmp5 = tmp3 < tmp4
tmp6 = tmp2 & tmp5
tmp7 = tl.load(in_ptr0 + (4 * (4 * x1 // 5) + 16 * x2 + 4 * x0 // 5),
tmp6 & xmask, eviction_policy='evict_last', other=0.0)
tmp8 = 1 + 4 * x0 // 5
tmp9 = tmp8 < tmp4
tmp10 = tmp2 & tmp9
tmp11 = tl.load(in_ptr0 + (1 + 4 * (4 * x1 // 5) + 16 * x2 + 4 * x0 //
5), tmp10 & xmask, eviction_policy='evict_last', other=0.0)
tmp12 = tmp11 + tmp7
tmp13 = 1 + 4 * x1 // 5
tmp14 = tmp13 < tmp1
tmp15 = tmp14 & tmp5
tmp16 = tl.load(in_ptr0 + (4 + 4 * (4 * x1 // 5) + 16 * x2 + 4 * x0 //
5), tmp15 & xmask, eviction_policy='evict_last', other=0.0)
tmp17 = tmp16 + tmp12
tmp18 = tmp14 & tmp9
tmp19 = tl.load(in_ptr0 + (5 + 4 * (4 * x1 // 5) + 16 * x2 + 4 * x0 //
5), tmp18 & xmask, eviction_policy='evict_last', other=0.0)
tmp20 = tmp19 + tmp17
tmp21 = 1.0
tmp22 = tl.full(tmp21.shape, 0.0, tmp21.dtype)
tmp23 = tl.where(tmp6, tmp21, tmp22)
tmp24 = tl.where(tmp10, tmp21, tmp22)
tmp25 = tmp24 + tmp23
tmp26 = tl.where(tmp15, tmp21, tmp22)
tmp27 = tmp26 + tmp25
tmp28 = tl.where(tmp18, tmp21, tmp22)
tmp29 = tmp28 + tmp27
tmp30 = tmp20 / tmp29
tl.store(out_ptr0 + x4, tmp30, xmask)
def call(args):
arg0_1, = args
args.clear()
assert_size_stride(arg0_1, (4, 4, 4, 4), (64, 16, 4, 1))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((4, 4, 5, 5), (100, 25, 5, 1), torch.float32)
get_raw_stream(0)
triton_poi_fused__adaptive_avg_pool2d_0[grid(400)](arg0_1, buf0,
400, XBLOCK=256, num_warps=4, num_stages=1)
del arg0_1
return buf0,
class PoolNew(nn.Module):
def __init__(self):
super(PoolNew, self).__init__()
def forward(self, input_0):
arg0_1 = input_0
output = call([arg0_1])
return output[0]
|
borisfom/TRTorch
|
Pool
| false | 9,792 |
[
"BSD-3-Clause"
] | 0 |
1660633c6f6a480cd123d9d91cabf4eced12e8f3
|
https://github.com/borisfom/TRTorch/tree/1660633c6f6a480cd123d9d91cabf4eced12e8f3
|
MultiHeadAttention
|
import math
import torch
import torch.nn as nn
def scaled_dot_product_attention(query, keys, values, mask=None):
d_k = keys.shape[-1]
dot_score = query @ keys.transpose(-2, -1) / math.sqrt(d_k)
if mask is not None:
dot_score = dot_score.masked_fill(mask == 0, -1000000000.0)
attn_score = torch.softmax(dot_score, dim=-1)
return attn_score @ values, attn_score
class MultiHeadAttention(nn.Module):
def __init__(self, d_model, num_heads):
super(MultiHeadAttention, self).__init__()
self.num_heads = num_heads
self.depth = d_model // num_heads
self.d_model = self.num_heads * self.depth
self.wq = nn.Linear(d_model, d_model)
self.wk = nn.Linear(d_model, d_model)
self.wv = nn.Linear(d_model, d_model)
self.wo = nn.Linear(d_model, d_model)
def reshape_for_multi_heads_attention(self, t):
batch_size = t.shape[0]
t = t.view(batch_size, -1, self.num_heads, self.depth)
return t.transpose(1, 2)
def forward(self, q, k, v, mask):
batch_size = q.shape[0]
q = self.wq(q)
k = self.wk(k)
v = self.wv(v)
q = self.reshape_for_multi_heads_attention(q)
k = self.reshape_for_multi_heads_attention(k)
v = self.reshape_for_multi_heads_attention(v)
scaled_attention, _attention_weights = scaled_dot_product_attention(q,
k, v, mask)
scaled_attention = scaled_attention.transpose(2, 1).contiguous().view(
batch_size, -1, self.d_model)
return self.wo(scaled_attention)
def get_inputs():
return [torch.rand([4, 4, 4, 4]), torch.rand([4, 4, 4, 4]), torch.rand(
[4, 4, 4, 4]), torch.rand([4, 4, 16, 16])]
def get_init_inputs():
return [[], {'d_model': 4, 'num_heads': 4}]
|
import torch
from torch._inductor.select_algorithm import extern_kernels
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
from torch._inductor.runtime import triton_helpers
from torch._inductor.runtime.triton_helpers import math as tl_math
import math
import torch.nn as nn
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
@triton.jit
def triton_poi_fused_clone_0(in_ptr0, in_ptr1, out_ptr0, ynumel, xnumel,
YBLOCK: tl.constexpr, XBLOCK: tl.constexpr):
ynumel = 16
xnumel = 16
yoffset = tl.program_id(1) * YBLOCK
yindex = yoffset + tl.arange(0, YBLOCK)[None, :]
ymask = yindex < ynumel
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:, None]
xmask = xindex < xnumel
x2 = xindex
y0 = yindex % 4
y1 = yindex // 4
y3 = yindex
tmp0 = tl.load(in_ptr0 + (y0 + 4 * x2 + 64 * y1), xmask & ymask)
tmp1 = tl.load(in_ptr1 + y0, ymask, eviction_policy='evict_last')
tmp2 = tmp0 + tmp1
tl.store(out_ptr0 + (x2 + 16 * y3), tmp2, xmask & ymask)
@triton.jit
def triton_per_fused__softmax_div_eq_masked_fill_1(in_ptr0, in_ptr1,
out_ptr0, out_ptr3, xnumel, rnumel, XBLOCK: tl.constexpr):
xnumel = 256
RBLOCK: tl.constexpr = 16
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:, None]
xmask = xindex < xnumel
rindex = tl.arange(0, RBLOCK)[None, :]
tl.full([XBLOCK, RBLOCK], True, tl.int1)
r1 = rindex
x0 = xindex
tmp0 = tl.load(in_ptr0 + (r1 + 16 * x0), xmask, other=0.0)
tmp3 = tl.load(in_ptr1 + (r1 + 16 * x0), xmask, other=0.0)
tmp1 = 0.0
tmp2 = tmp0 == tmp1
tmp4 = 1.0
tmp5 = tmp3 * tmp4
tmp6 = -1000000000.0
tmp7 = tl.where(tmp2, tmp6, tmp5)
tmp8 = tl.broadcast_to(tmp7, [XBLOCK, RBLOCK])
tmp10 = tl.where(xmask, tmp8, float('-inf'))
tmp11 = triton_helpers.max2(tmp10, 1)[:, None]
tmp12 = tmp7 - tmp11
tmp13 = tl_math.exp(tmp12)
tmp14 = tl.broadcast_to(tmp13, [XBLOCK, RBLOCK])
tmp16 = tl.where(xmask, tmp14, 0)
tmp17 = tl.sum(tmp16, 1)[:, None]
tmp18 = tmp13 / tmp17
tl.store(out_ptr0 + (r1 + 16 * x0), tmp2, xmask)
tl.store(out_ptr3 + (r1 + 16 * x0), tmp18, xmask)
@triton.jit
def triton_poi_fused_clone_2(in_ptr0, out_ptr0, ynumel, xnumel, YBLOCK: tl.
constexpr, XBLOCK: tl.constexpr):
ynumel = 64
xnumel = 4
yoffset = tl.program_id(1) * YBLOCK
yindex = yoffset + tl.arange(0, YBLOCK)[None, :]
ymask = yindex < ynumel
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:, None]
xmask = xindex < xnumel
x2 = xindex
y0 = yindex % 16
y1 = yindex // 16
y3 = yindex
tmp0 = tl.load(in_ptr0 + (y0 + 16 * x2 + 64 * y1), xmask & ymask,
eviction_policy='evict_last')
tl.store(out_ptr0 + (x2 + 4 * y3), tmp0, xmask & ymask)
def call(args):
(primals_1, primals_2, primals_3, primals_4, primals_5, primals_6,
primals_7, primals_8, primals_9, primals_10, primals_11, primals_12
) = args
args.clear()
assert_size_stride(primals_1, (4, 4, 4, 4), (64, 16, 4, 1))
assert_size_stride(primals_2, (4, 4), (4, 1))
assert_size_stride(primals_3, (4,), (1,))
assert_size_stride(primals_4, (4, 4), (4, 1))
assert_size_stride(primals_5, (4,), (1,))
assert_size_stride(primals_6, (4, 4, 4, 4), (64, 16, 4, 1))
assert_size_stride(primals_7, (4, 4), (4, 1))
assert_size_stride(primals_8, (4,), (1,))
assert_size_stride(primals_9, (4, 4, 4, 4), (64, 16, 4, 1))
assert_size_stride(primals_10, (4, 4, 16, 16), (1024, 256, 16, 1))
assert_size_stride(primals_11, (4, 4), (4, 1))
assert_size_stride(primals_12, (4,), (1,))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((64, 4), (4, 1), torch.float32)
extern_kernels.mm(reinterpret_tensor(primals_1, (64, 4), (4, 1), 0),
reinterpret_tensor(primals_2, (4, 4), (1, 4), 0), out=buf0)
del primals_2
buf1 = empty_strided_cuda((64, 4), (4, 1), torch.float32)
extern_kernels.mm(reinterpret_tensor(primals_6, (64, 4), (4, 1), 0),
reinterpret_tensor(primals_4, (4, 4), (1, 4), 0), out=buf1)
del primals_4
buf2 = empty_strided_cuda((64, 4), (4, 1), torch.float32)
extern_kernels.mm(reinterpret_tensor(primals_9, (64, 4), (4, 1), 0),
reinterpret_tensor(primals_7, (4, 4), (1, 4), 0), out=buf2)
del primals_7
buf3 = empty_strided_cuda((4, 4, 16, 1), (64, 16, 1, 1), torch.float32)
get_raw_stream(0)
triton_poi_fused_clone_0[grid(16, 16)](buf0, primals_3, buf3, 16,
16, XBLOCK=16, YBLOCK=16, num_warps=4, num_stages=1)
del primals_3
buf4 = reinterpret_tensor(buf0, (4, 4, 1, 16), (64, 16, 16, 1), 0)
del buf0
triton_poi_fused_clone_0[grid(16, 16)](buf1, primals_5, buf4, 16,
16, XBLOCK=16, YBLOCK=16, num_warps=4, num_stages=1)
del primals_5
buf5 = empty_strided_cuda((16, 16, 16), (256, 16, 1), torch.float32)
extern_kernels.bmm(reinterpret_tensor(buf3, (16, 16, 1), (16, 1, 0),
0), reinterpret_tensor(buf4, (16, 1, 16), (16, 0, 1), 0), out=buf5)
buf6 = empty_strided_cuda((4, 4, 16, 16), (1024, 256, 16, 1), torch
.bool)
buf9 = empty_strided_cuda((4, 4, 16, 16), (1024, 256, 16, 1), torch
.float32)
triton_per_fused__softmax_div_eq_masked_fill_1[grid(256)](primals_10,
buf5, buf6, buf9, 256, 16, XBLOCK=1, num_warps=2, num_stages=1)
del buf5
del primals_10
buf10 = reinterpret_tensor(buf1, (4, 4, 16, 1), (64, 16, 1, 1), 0)
del buf1
triton_poi_fused_clone_0[grid(16, 16)](buf2, primals_8, buf10, 16,
16, XBLOCK=16, YBLOCK=16, num_warps=4, num_stages=1)
del primals_8
buf11 = reinterpret_tensor(buf2, (16, 16, 1), (16, 1, 1), 0)
del buf2
extern_kernels.bmm(reinterpret_tensor(buf9, (16, 16, 16), (256, 16,
1), 0), reinterpret_tensor(buf10, (16, 16, 1), (16, 1, 0), 0),
out=buf11)
buf12 = empty_strided_cuda((4, 16, 4, 1), (64, 4, 1, 1), torch.float32)
triton_poi_fused_clone_2[grid(64, 4)](buf11, buf12, 64, 4, XBLOCK=4,
YBLOCK=32, num_warps=4, num_stages=1)
buf13 = reinterpret_tensor(buf11, (64, 4), (4, 1), 0)
del buf11
extern_kernels.addmm(primals_12, reinterpret_tensor(buf12, (64, 4),
(4, 1), 0), reinterpret_tensor(primals_11, (4, 4), (1, 4), 0),
alpha=1, beta=1, out=buf13)
del primals_12
return reinterpret_tensor(buf13, (4, 16, 4), (64, 4, 1), 0
), reinterpret_tensor(primals_1, (64, 4), (4, 1), 0
), reinterpret_tensor(primals_6, (64, 4), (4, 1), 0
), reinterpret_tensor(primals_9, (64, 4), (4, 1), 0
), buf6, buf9, reinterpret_tensor(buf12, (64, 4), (4, 1), 0
), primals_11, reinterpret_tensor(buf10, (16, 1, 16), (16, 1, 1), 0
), reinterpret_tensor(buf3, (16, 1, 16), (16, 1, 1), 0
), reinterpret_tensor(buf4, (16, 16, 1), (16, 1, 16), 0)
def scaled_dot_product_attention(query, keys, values, mask=None):
d_k = keys.shape[-1]
dot_score = query @ keys.transpose(-2, -1) / math.sqrt(d_k)
if mask is not None:
dot_score = dot_score.masked_fill(mask == 0, -1000000000.0)
attn_score = torch.softmax(dot_score, dim=-1)
return attn_score @ values, attn_score
class MultiHeadAttentionNew(nn.Module):
def __init__(self, d_model, num_heads):
super(MultiHeadAttentionNew, self).__init__()
self.num_heads = num_heads
self.depth = d_model // num_heads
self.d_model = self.num_heads * self.depth
self.wq = nn.Linear(d_model, d_model)
self.wk = nn.Linear(d_model, d_model)
self.wv = nn.Linear(d_model, d_model)
self.wo = nn.Linear(d_model, d_model)
def reshape_for_multi_heads_attention(self, t):
batch_size = t.shape[0]
t = t.view(batch_size, -1, self.num_heads, self.depth)
return t.transpose(1, 2)
def forward(self, input_0, input_1, input_2, input_3):
primals_2 = self.wq.weight
primals_3 = self.wq.bias
primals_4 = self.wk.weight
primals_5 = self.wk.bias
primals_7 = self.wv.weight
primals_8 = self.wv.bias
primals_11 = self.wo.weight
primals_12 = self.wo.bias
primals_1 = input_0
primals_6 = input_1
primals_9 = input_2
primals_10 = input_3
output = call([primals_1, primals_2, primals_3, primals_4,
primals_5, primals_6, primals_7, primals_8, primals_9,
primals_10, primals_11, primals_12])
return output[0]
|
NathanYanJing/TransformerReplication
|
MultiHeadAttention
| false | 11,748 |
[
"MIT"
] | 0 |
b20f987dcc507724971f843c2d214c9c76bd8e34
|
https://github.com/NathanYanJing/TransformerReplication/tree/b20f987dcc507724971f843c2d214c9c76bd8e34
|
GradientReversal
|
# AOT ID: ['0_inference']
from ctypes import c_void_p, c_long, c_int
import torch
import math
import random
import os
import tempfile
from math import inf, nan
from torch._inductor.hooks import run_intermediate_hooks
from torch._inductor.utils import maybe_profile
from torch._inductor.codegen.memory_planning import _align as align
from torch import device, empty_strided
from torch._inductor.async_compile import AsyncCompile
from torch._inductor.select_algorithm import extern_kernels
from torch._inductor.codegen.multi_kernel import MultiKernelCall
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
aten = torch.ops.aten
inductor_ops = torch.ops.inductor
_quantized = torch.ops._quantized
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
alloc_from_pool = torch.ops.inductor._alloc_from_pool
async_compile = AsyncCompile()
# kernel path: runs/run_shard_9/inductor_cache/u5/cu56dhpcth43gy4shrd7mcexf4nfa6qetnnhwe4mno4v6ug76h6j.py
# Topologically Sorted Source Nodes: [clone], Original ATen: [aten.clone]
# Source node to ATen node mapping:
# clone => clone
# Graph fragment:
# %clone : [num_users=1] = call_function[target=torch.ops.aten.clone.default](args = (%arg0_1,), kwargs = {})
triton_poi_fused_clone_0 = async_compile.triton('triton_poi_fused_clone_0', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[256],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_clone_0', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 1, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_clone_0(in_ptr0, out_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 256
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex
tmp0 = tl.load(in_ptr0 + (x0), xmask)
tl.store(out_ptr0 + (x0), tmp0, xmask)
''', device_str='cuda')
async_compile.wait(globals())
del async_compile
def call(args):
arg0_1, = args
args.clear()
assert_size_stride(arg0_1, (4, 4, 4, 4), (64, 16, 4, 1))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32)
# Topologically Sorted Source Nodes: [clone], Original ATen: [aten.clone]
stream0 = get_raw_stream(0)
triton_poi_fused_clone_0.run(arg0_1, buf0, 256, grid=grid(256), stream=stream0)
del arg0_1
return (buf0, )
def benchmark_compiled_module(times=10, repeat=10):
from torch._dynamo.testing import rand_strided
from torch._inductor.utils import print_performance
arg0_1 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32)
fn = lambda: call([arg0_1])
return print_performance(fn, times=times, repeat=repeat)
if __name__ == "__main__":
from torch._inductor.wrapper_benchmark import compiled_module_main
compiled_module_main('None', benchmark_compiled_module)
|
import torch
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
@triton.jit
def triton_poi_fused_clone_0(in_ptr0, out_ptr0, xnumel, XBLOCK: tl.constexpr):
xnumel = 256
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex
tmp0 = tl.load(in_ptr0 + x0, xmask)
tl.store(out_ptr0 + x0, tmp0, xmask)
def call(args):
arg0_1, = args
args.clear()
assert_size_stride(arg0_1, (4, 4, 4, 4), (64, 16, 4, 1))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32)
get_raw_stream(0)
triton_poi_fused_clone_0[grid(256)](arg0_1, buf0, 256, XBLOCK=256,
num_warps=4, num_stages=1)
del arg0_1
return buf0,
class GradientReversalFunction(torch.autograd.Function):
"""
Gradient Reversal Layer from:
Unsupervised Domain Adaptation by Backpropagation (Ganin & Lempitsky, 2015)
Forward pass is the identity function.
In the backward pass,
the upstream gradients are multiplied by -lambda (i.e. gradient is reversed)
"""
@staticmethod
def forward(ctx, x, lambda_):
ctx.lambda_ = lambda_
return x.clone()
@staticmethod
def backward(ctx, grads):
lambda_ = ctx.lambda_
lambda_ = grads.new_tensor(lambda_)
dx = -lambda_ * grads
return dx, None
class GradientReversalNew(torch.nn.Module):
"""
Gradient Reversal Layer
Code from:
https://github.com/jvanvugt/pytorch-domain-adaptation/blob/master/utils.py
"""
def __init__(self, lambda_=1):
super(GradientReversalNew, self).__init__()
self.lambda_ = lambda_
def forward(self, input_0):
arg0_1 = input_0
output = call([arg0_1])
return output[0]
|
ishine/CDFSE_FastSpeech2
|
GradientReversal
| false | 12,539 |
[
"MIT"
] | 0 |
f0facd077fa3e11b2704f2e8a1d1315bd1f4f493
|
https://github.com/ishine/CDFSE_FastSpeech2/tree/f0facd077fa3e11b2704f2e8a1d1315bd1f4f493
|
ConcatPool2d
|
# AOT ID: ['0_inference']
from ctypes import c_void_p, c_long, c_int
import torch
import math
import random
import os
import tempfile
from math import inf, nan
from torch._inductor.hooks import run_intermediate_hooks
from torch._inductor.utils import maybe_profile
from torch._inductor.codegen.memory_planning import _align as align
from torch import device, empty_strided
from torch._inductor.async_compile import AsyncCompile
from torch._inductor.select_algorithm import extern_kernels
from torch._inductor.codegen.multi_kernel import MultiKernelCall
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
aten = torch.ops.aten
inductor_ops = torch.ops.inductor
_quantized = torch.ops._quantized
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
alloc_from_pool = torch.ops.inductor._alloc_from_pool
async_compile = AsyncCompile()
# kernel path: runs/run_shard_6/inductor_cache/dy/cdydayzef2fxcnqukm4em4cj2latyjpphw5luwkneuqlp4m5b7zg.py
# Topologically Sorted Source Nodes: [max_pool2d, avg_pool2d], Original ATen: [aten.max_pool2d_with_indices, aten.avg_pool2d]
# Source node to ATen node mapping:
# avg_pool2d => avg_pool2d
# max_pool2d => _low_memory_max_pool2d_with_offsets
# Graph fragment:
# %_low_memory_max_pool2d_with_offsets : [num_users=1] = call_function[target=torch.ops.prims._low_memory_max_pool2d_with_offsets.default](args = (%arg0_1, [4, 4], [4, 4], [0, 0], [1, 1], False), kwargs = {})
# %avg_pool2d : [num_users=1] = call_function[target=torch.ops.aten.avg_pool2d.default](args = (%arg0_1, [4, 4], [4, 4]), kwargs = {})
triton_poi_fused_avg_pool2d_max_pool2d_with_indices_0 = async_compile.triton('triton_poi_fused_avg_pool2d_max_pool2d_with_indices_0', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[16],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 3), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_avg_pool2d_max_pool2d_with_indices_0', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 16, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_avg_pool2d_max_pool2d_with_indices_0(in_ptr0, out_ptr0, out_ptr1, xnumel, XBLOCK : tl.constexpr):
xnumel = 16
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x2 = xindex
x0 = xindex % 4
x1 = (xindex // 4)
tmp0 = tl.load(in_ptr0 + (16*x2), xmask, eviction_policy='evict_last')
tmp1 = tl.load(in_ptr0 + (1 + (16*x2)), xmask, eviction_policy='evict_last')
tmp3 = tl.load(in_ptr0 + (2 + (16*x2)), xmask, eviction_policy='evict_last')
tmp5 = tl.load(in_ptr0 + (3 + (16*x2)), xmask, eviction_policy='evict_last')
tmp7 = tl.load(in_ptr0 + (4 + (16*x2)), xmask, eviction_policy='evict_last')
tmp9 = tl.load(in_ptr0 + (5 + (16*x2)), xmask, eviction_policy='evict_last')
tmp11 = tl.load(in_ptr0 + (6 + (16*x2)), xmask, eviction_policy='evict_last')
tmp13 = tl.load(in_ptr0 + (7 + (16*x2)), xmask, eviction_policy='evict_last')
tmp15 = tl.load(in_ptr0 + (8 + (16*x2)), xmask, eviction_policy='evict_last')
tmp17 = tl.load(in_ptr0 + (9 + (16*x2)), xmask, eviction_policy='evict_last')
tmp19 = tl.load(in_ptr0 + (10 + (16*x2)), xmask, eviction_policy='evict_last')
tmp21 = tl.load(in_ptr0 + (11 + (16*x2)), xmask, eviction_policy='evict_last')
tmp23 = tl.load(in_ptr0 + (12 + (16*x2)), xmask, eviction_policy='evict_last')
tmp25 = tl.load(in_ptr0 + (13 + (16*x2)), xmask, eviction_policy='evict_last')
tmp27 = tl.load(in_ptr0 + (14 + (16*x2)), xmask, eviction_policy='evict_last')
tmp29 = tl.load(in_ptr0 + (15 + (16*x2)), xmask, eviction_policy='evict_last')
tmp2 = triton_helpers.maximum(tmp1, tmp0)
tmp4 = triton_helpers.maximum(tmp3, tmp2)
tmp6 = triton_helpers.maximum(tmp5, tmp4)
tmp8 = triton_helpers.maximum(tmp7, tmp6)
tmp10 = triton_helpers.maximum(tmp9, tmp8)
tmp12 = triton_helpers.maximum(tmp11, tmp10)
tmp14 = triton_helpers.maximum(tmp13, tmp12)
tmp16 = triton_helpers.maximum(tmp15, tmp14)
tmp18 = triton_helpers.maximum(tmp17, tmp16)
tmp20 = triton_helpers.maximum(tmp19, tmp18)
tmp22 = triton_helpers.maximum(tmp21, tmp20)
tmp24 = triton_helpers.maximum(tmp23, tmp22)
tmp26 = triton_helpers.maximum(tmp25, tmp24)
tmp28 = triton_helpers.maximum(tmp27, tmp26)
tmp30 = triton_helpers.maximum(tmp29, tmp28)
tmp31 = tmp1 + tmp0
tmp32 = tmp3 + tmp31
tmp33 = tmp5 + tmp32
tmp34 = tmp7 + tmp33
tmp35 = tmp9 + tmp34
tmp36 = tmp11 + tmp35
tmp37 = tmp13 + tmp36
tmp38 = tmp15 + tmp37
tmp39 = tmp17 + tmp38
tmp40 = tmp19 + tmp39
tmp41 = tmp21 + tmp40
tmp42 = tmp23 + tmp41
tmp43 = tmp25 + tmp42
tmp44 = tmp27 + tmp43
tmp45 = tmp29 + tmp44
tmp46 = 0.0625
tmp47 = tmp45 * tmp46
tl.store(out_ptr0 + (x0 + (8*x1)), tmp30, xmask)
tl.store(out_ptr1 + (x0 + (8*x1)), tmp47, xmask)
''', device_str='cuda')
async_compile.wait(globals())
del async_compile
def call(args):
arg0_1, = args
args.clear()
assert_size_stride(arg0_1, (4, 4, 4, 4), (64, 16, 4, 1))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf2 = empty_strided_cuda((4, 8, 1, 1), (8, 1, 1, 1), torch.float32)
buf0 = reinterpret_tensor(buf2, (4, 4, 1, 1), (8, 1, 1, 1), 0) # alias
buf1 = reinterpret_tensor(buf2, (4, 4, 1, 1), (8, 1, 1, 1), 4) # alias
# Topologically Sorted Source Nodes: [max_pool2d, avg_pool2d], Original ATen: [aten.max_pool2d_with_indices, aten.avg_pool2d]
stream0 = get_raw_stream(0)
triton_poi_fused_avg_pool2d_max_pool2d_with_indices_0.run(arg0_1, buf0, buf1, 16, grid=grid(16), stream=stream0)
del arg0_1
return (buf2, )
def benchmark_compiled_module(times=10, repeat=10):
from torch._dynamo.testing import rand_strided
from torch._inductor.utils import print_performance
arg0_1 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32)
fn = lambda: call([arg0_1])
return print_performance(fn, times=times, repeat=repeat)
if __name__ == "__main__":
from torch._inductor.wrapper_benchmark import compiled_module_main
compiled_module_main('None', benchmark_compiled_module)
|
import torch
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
from torch._inductor.runtime import triton_helpers
import torch.nn as nn
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
@triton.jit
def triton_poi_fused_avg_pool2d_max_pool2d_with_indices_0(in_ptr0, out_ptr0,
out_ptr1, xnumel, XBLOCK: tl.constexpr):
xnumel = 16
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x2 = xindex
x0 = xindex % 4
x1 = xindex // 4
tmp0 = tl.load(in_ptr0 + 16 * x2, xmask, eviction_policy='evict_last')
tmp1 = tl.load(in_ptr0 + (1 + 16 * x2), xmask, eviction_policy='evict_last'
)
tmp3 = tl.load(in_ptr0 + (2 + 16 * x2), xmask, eviction_policy='evict_last'
)
tmp5 = tl.load(in_ptr0 + (3 + 16 * x2), xmask, eviction_policy='evict_last'
)
tmp7 = tl.load(in_ptr0 + (4 + 16 * x2), xmask, eviction_policy='evict_last'
)
tmp9 = tl.load(in_ptr0 + (5 + 16 * x2), xmask, eviction_policy='evict_last'
)
tmp11 = tl.load(in_ptr0 + (6 + 16 * x2), xmask, eviction_policy=
'evict_last')
tmp13 = tl.load(in_ptr0 + (7 + 16 * x2), xmask, eviction_policy=
'evict_last')
tmp15 = tl.load(in_ptr0 + (8 + 16 * x2), xmask, eviction_policy=
'evict_last')
tmp17 = tl.load(in_ptr0 + (9 + 16 * x2), xmask, eviction_policy=
'evict_last')
tmp19 = tl.load(in_ptr0 + (10 + 16 * x2), xmask, eviction_policy=
'evict_last')
tmp21 = tl.load(in_ptr0 + (11 + 16 * x2), xmask, eviction_policy=
'evict_last')
tmp23 = tl.load(in_ptr0 + (12 + 16 * x2), xmask, eviction_policy=
'evict_last')
tmp25 = tl.load(in_ptr0 + (13 + 16 * x2), xmask, eviction_policy=
'evict_last')
tmp27 = tl.load(in_ptr0 + (14 + 16 * x2), xmask, eviction_policy=
'evict_last')
tmp29 = tl.load(in_ptr0 + (15 + 16 * x2), xmask, eviction_policy=
'evict_last')
tmp2 = triton_helpers.maximum(tmp1, tmp0)
tmp4 = triton_helpers.maximum(tmp3, tmp2)
tmp6 = triton_helpers.maximum(tmp5, tmp4)
tmp8 = triton_helpers.maximum(tmp7, tmp6)
tmp10 = triton_helpers.maximum(tmp9, tmp8)
tmp12 = triton_helpers.maximum(tmp11, tmp10)
tmp14 = triton_helpers.maximum(tmp13, tmp12)
tmp16 = triton_helpers.maximum(tmp15, tmp14)
tmp18 = triton_helpers.maximum(tmp17, tmp16)
tmp20 = triton_helpers.maximum(tmp19, tmp18)
tmp22 = triton_helpers.maximum(tmp21, tmp20)
tmp24 = triton_helpers.maximum(tmp23, tmp22)
tmp26 = triton_helpers.maximum(tmp25, tmp24)
tmp28 = triton_helpers.maximum(tmp27, tmp26)
tmp30 = triton_helpers.maximum(tmp29, tmp28)
tmp31 = tmp1 + tmp0
tmp32 = tmp3 + tmp31
tmp33 = tmp5 + tmp32
tmp34 = tmp7 + tmp33
tmp35 = tmp9 + tmp34
tmp36 = tmp11 + tmp35
tmp37 = tmp13 + tmp36
tmp38 = tmp15 + tmp37
tmp39 = tmp17 + tmp38
tmp40 = tmp19 + tmp39
tmp41 = tmp21 + tmp40
tmp42 = tmp23 + tmp41
tmp43 = tmp25 + tmp42
tmp44 = tmp27 + tmp43
tmp45 = tmp29 + tmp44
tmp46 = 0.0625
tmp47 = tmp45 * tmp46
tl.store(out_ptr0 + (x0 + 8 * x1), tmp30, xmask)
tl.store(out_ptr1 + (x0 + 8 * x1), tmp47, xmask)
def call(args):
arg0_1, = args
args.clear()
assert_size_stride(arg0_1, (4, 4, 4, 4), (64, 16, 4, 1))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf2 = empty_strided_cuda((4, 8, 1, 1), (8, 1, 1, 1), torch.float32)
buf0 = reinterpret_tensor(buf2, (4, 4, 1, 1), (8, 1, 1, 1), 0)
buf1 = reinterpret_tensor(buf2, (4, 4, 1, 1), (8, 1, 1, 1), 4)
get_raw_stream(0)
triton_poi_fused_avg_pool2d_max_pool2d_with_indices_0[grid(16)](arg0_1,
buf0, buf1, 16, XBLOCK=16, num_warps=1, num_stages=1)
del arg0_1
return buf2,
class ConcatPool2dNew(nn.Module):
"""Layer that concats `AvgPool2d` and `MaxPool2d`"""
def __init__(self, ks, stride=None, padding=0):
super().__init__()
self.ap = nn.AvgPool2d(ks, stride, padding)
self.mp = nn.MaxPool2d(ks, stride, padding)
def forward(self, input_0):
arg0_1 = input_0
output = call([arg0_1])
return output[0]
|
davidleonfdez/face2anime
|
ConcatPool2d
| false | 1,801 |
[
"MIT"
] | 0 |
896bf85a7aa28322cc9e9e586685db8cbbf39d89
|
https://github.com/davidleonfdez/face2anime/tree/896bf85a7aa28322cc9e9e586685db8cbbf39d89
|
LRN
|
# AOT ID: ['0_inference']
from ctypes import c_void_p, c_long, c_int
import torch
import math
import random
import os
import tempfile
from math import inf, nan
from torch._inductor.hooks import run_intermediate_hooks
from torch._inductor.utils import maybe_profile
from torch._inductor.codegen.memory_planning import _align as align
from torch import device, empty_strided
from torch._inductor.async_compile import AsyncCompile
from torch._inductor.select_algorithm import extern_kernels
from torch._inductor.codegen.multi_kernel import MultiKernelCall
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
aten = torch.ops.aten
inductor_ops = torch.ops.inductor
_quantized = torch.ops._quantized
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
alloc_from_pool = torch.ops.inductor._alloc_from_pool
async_compile = AsyncCompile()
# kernel path: runs/run_shard_6/inductor_cache/gv/cgvon7iygyhjm2kmwtta5t2r3z2byfrr4qwpcmym3h4h6yzxvtvp.py
# Topologically Sorted Source Nodes: [div, div_1, mul, add, div_2, x], Original ATen: [aten.pow, aten.avg_pool2d, aten.mul, aten.add, aten.div]
# Source node to ATen node mapping:
# add => add
# div => pow_1
# div_1 => avg_pool2d
# div_2 => pow_2
# mul => mul
# x => div
# Graph fragment:
# %pow_1 : [num_users=1] = call_function[target=torch.ops.aten.pow.Tensor_Scalar](args = (%arg0_1, 2), kwargs = {})
# %avg_pool2d : [num_users=1] = call_function[target=torch.ops.aten.avg_pool2d.default](args = (%pow_1, [1, 1], [1, 1]), kwargs = {})
# %mul : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%avg_pool2d, 0.0001), kwargs = {})
# %add : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%mul, 2.0), kwargs = {})
# %pow_2 : [num_users=1] = call_function[target=torch.ops.aten.pow.Tensor_Scalar](args = (%add, 0.75), kwargs = {})
# %div : [num_users=1] = call_function[target=torch.ops.aten.div.Tensor](args = (%arg0_1, %pow_2), kwargs = {})
triton_poi_fused_add_avg_pool2d_div_mul_pow_0 = async_compile.triton('triton_poi_fused_add_avg_pool2d_div_mul_pow_0', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[256],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_add_avg_pool2d_div_mul_pow_0', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 1, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_add_avg_pool2d_div_mul_pow_0(in_ptr0, out_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 256
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex
tmp0 = tl.load(in_ptr0 + (x0), xmask)
tmp1 = tmp0 * tmp0
tmp2 = 1.0
tmp3 = tmp1 * tmp2
tmp4 = 0.0001
tmp5 = tmp3 * tmp4
tmp6 = 2.0
tmp7 = tmp5 + tmp6
tmp8 = 0.75
tmp9 = libdevice.pow(tmp7, tmp8)
tmp10 = tmp0 / tmp9
tl.store(out_ptr0 + (x0), tmp10, xmask)
''', device_str='cuda')
async_compile.wait(globals())
del async_compile
def call(args):
arg0_1, = args
args.clear()
assert_size_stride(arg0_1, (4, 4, 4, 4), (64, 16, 4, 1))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32)
# Topologically Sorted Source Nodes: [div, div_1, mul, add, div_2, x], Original ATen: [aten.pow, aten.avg_pool2d, aten.mul, aten.add, aten.div]
stream0 = get_raw_stream(0)
triton_poi_fused_add_avg_pool2d_div_mul_pow_0.run(arg0_1, buf0, 256, grid=grid(256), stream=stream0)
del arg0_1
return (buf0, )
def benchmark_compiled_module(times=10, repeat=10):
from torch._dynamo.testing import rand_strided
from torch._inductor.utils import print_performance
arg0_1 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32)
fn = lambda: call([arg0_1])
return print_performance(fn, times=times, repeat=repeat)
if __name__ == "__main__":
from torch._inductor.wrapper_benchmark import compiled_module_main
compiled_module_main('None', benchmark_compiled_module)
|
import torch
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
from torch._inductor.runtime.triton_helpers import libdevice
import torch.nn as nn
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
@triton.jit
def triton_poi_fused_add_avg_pool2d_div_mul_pow_0(in_ptr0, out_ptr0, xnumel,
XBLOCK: tl.constexpr):
xnumel = 256
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex
tmp0 = tl.load(in_ptr0 + x0, xmask)
tmp1 = tmp0 * tmp0
tmp2 = 1.0
tmp3 = tmp1 * tmp2
tmp4 = 0.0001
tmp5 = tmp3 * tmp4
tmp6 = 2.0
tmp7 = tmp5 + tmp6
tmp8 = 0.75
tmp9 = libdevice.pow(tmp7, tmp8)
tmp10 = tmp0 / tmp9
tl.store(out_ptr0 + x0, tmp10, xmask)
def call(args):
arg0_1, = args
args.clear()
assert_size_stride(arg0_1, (4, 4, 4, 4), (64, 16, 4, 1))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32)
get_raw_stream(0)
triton_poi_fused_add_avg_pool2d_div_mul_pow_0[grid(256)](arg0_1,
buf0, 256, XBLOCK=256, num_warps=4, num_stages=1)
del arg0_1
return buf0,
class LRNNew(nn.Module):
def __init__(self, local_size=1, alpha=0.0001, beta=0.75,
ACROSS_CHANNELS=False):
super(LRNNew, self).__init__()
self.ACROSS_CHANNELS = ACROSS_CHANNELS
if self.ACROSS_CHANNELS:
self.average = nn.AvgPool3d(kernel_size=(local_size, 1, 1),
stride=1, padding=(int((local_size - 1.0) / 2), 0, 0))
else:
self.average = nn.AvgPool2d(kernel_size=local_size, stride=1,
padding=int((local_size - 1.0) / 2))
self.alpha = alpha
self.beta = beta
def forward(self, input_0):
arg0_1 = input_0
output = call([arg0_1])
return output[0]
|
PengJingchao/DFNet
|
LRN
| false | 937 |
[
"MIT"
] | 0 |
49e83501f81515aebca211351e315896da7afc54
|
https://github.com/PengJingchao/DFNet/tree/49e83501f81515aebca211351e315896da7afc54
|
Net
|
import torch
import torch.nn as nn
import torch.nn.functional as F
class Net(nn.Module):
def __init__(self):
super(Net, self).__init__()
self.conv1_1 = nn.Conv2d(1, 32, kernel_size=5, padding=2)
self.prelu1_1 = nn.PReLU()
self.conv1_2 = nn.Conv2d(32, 32, kernel_size=5, padding=2)
self.prelu1_2 = nn.PReLU()
self.conv2_1 = nn.Conv2d(32, 64, kernel_size=5, padding=2)
self.prelu2_1 = nn.PReLU()
self.conv2_2 = nn.Conv2d(64, 64, kernel_size=5, padding=2)
self.prelu2_2 = nn.PReLU()
self.conv3_1 = nn.Conv2d(64, 128, kernel_size=5, padding=2)
self.prelu3_1 = nn.PReLU()
self.conv3_2 = nn.Conv2d(128, 128, kernel_size=5, padding=2)
self.prelu3_2 = nn.PReLU()
self.preluip1 = nn.PReLU()
self.ip1 = nn.Linear(128 * 3 * 3, 2)
self.ip2 = nn.Linear(2, 10, bias=False)
def forward(self, x):
x = self.prelu1_1(self.conv1_1(x))
x = self.prelu1_2(self.conv1_2(x))
x = F.max_pool2d(x, 2)
x = self.prelu2_1(self.conv2_1(x))
x = self.prelu2_2(self.conv2_2(x))
x = F.max_pool2d(x, 2)
x = self.prelu3_1(self.conv3_1(x))
x = self.prelu3_2(self.conv3_2(x))
x = F.max_pool2d(x, 2)
x = x.view(-1, 128 * 3 * 3)
ip1 = self.preluip1(self.ip1(x))
ip2 = self.ip2(ip1)
return ip1, F.log_softmax(ip2, dim=1)
def get_inputs():
return [torch.rand([4, 1, 24, 24])]
def get_init_inputs():
return [[], {}]
|
import torch
from torch._inductor.select_algorithm import extern_kernels
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
from torch._inductor.runtime import triton_helpers
from torch._inductor.runtime.triton_helpers import math as tl_math
import torch.nn as nn
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
@triton.jit
def triton_poi_fused_0(in_ptr0, out_ptr0, ynumel, xnumel, YBLOCK: tl.
constexpr, XBLOCK: tl.constexpr):
xnumel = 25
yoffset = tl.program_id(1) * YBLOCK
yindex = yoffset + tl.arange(0, YBLOCK)[None, :]
tl.full([XBLOCK, YBLOCK], True, tl.int1)
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:, None]
xmask = xindex < xnumel
x2 = xindex
y3 = yindex
y0 = yindex % 32
y1 = yindex // 32
tmp0 = tl.load(in_ptr0 + (x2 + 25 * y3), xmask, eviction_policy=
'evict_last')
tl.store(out_ptr0 + (y0 + 32 * x2 + 800 * y1), tmp0, xmask)
@triton.jit
def triton_poi_fused_1(in_ptr0, out_ptr0, ynumel, xnumel, YBLOCK: tl.
constexpr, XBLOCK: tl.constexpr):
xnumel = 25
yoffset = tl.program_id(1) * YBLOCK
yindex = yoffset + tl.arange(0, YBLOCK)[None, :]
tl.full([XBLOCK, YBLOCK], True, tl.int1)
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:, None]
xmask = xindex < xnumel
x2 = xindex
y3 = yindex
y0 = yindex % 32
y1 = yindex // 32
tmp0 = tl.load(in_ptr0 + (x2 + 25 * y3), xmask, eviction_policy=
'evict_last')
tl.store(out_ptr0 + (y0 + 32 * x2 + 800 * y1), tmp0, xmask)
@triton.jit
def triton_poi_fused_2(in_ptr0, out_ptr0, ynumel, xnumel, YBLOCK: tl.
constexpr, XBLOCK: tl.constexpr):
xnumel = 25
yoffset = tl.program_id(1) * YBLOCK
yindex = yoffset + tl.arange(0, YBLOCK)[None, :]
tl.full([XBLOCK, YBLOCK], True, tl.int1)
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:, None]
xmask = xindex < xnumel
x2 = xindex
y3 = yindex
y0 = yindex % 64
y1 = yindex // 64
tmp0 = tl.load(in_ptr0 + (x2 + 25 * y3), xmask, eviction_policy=
'evict_last')
tl.store(out_ptr0 + (y0 + 64 * x2 + 1600 * y1), tmp0, xmask)
@triton.jit
def triton_poi_fused_3(in_ptr0, out_ptr0, ynumel, xnumel, YBLOCK: tl.
constexpr, XBLOCK: tl.constexpr):
xnumel = 25
yoffset = tl.program_id(1) * YBLOCK
yindex = yoffset + tl.arange(0, YBLOCK)[None, :]
tl.full([XBLOCK, YBLOCK], True, tl.int1)
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:, None]
xmask = xindex < xnumel
x2 = xindex
y3 = yindex
y0 = yindex % 64
y1 = yindex // 64
tmp0 = tl.load(in_ptr0 + (x2 + 25 * y3), xmask, eviction_policy=
'evict_last')
tl.store(out_ptr0 + (y0 + 64 * x2 + 1600 * y1), tmp0, xmask)
@triton.jit
def triton_poi_fused_4(in_ptr0, out_ptr0, ynumel, xnumel, YBLOCK: tl.
constexpr, XBLOCK: tl.constexpr):
xnumel = 25
yoffset = tl.program_id(1) * YBLOCK
yindex = yoffset + tl.arange(0, YBLOCK)[None, :]
tl.full([XBLOCK, YBLOCK], True, tl.int1)
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:, None]
xmask = xindex < xnumel
x2 = xindex
y3 = yindex
y0 = yindex % 128
y1 = yindex // 128
tmp0 = tl.load(in_ptr0 + (x2 + 25 * y3), xmask, eviction_policy=
'evict_last')
tl.store(out_ptr0 + (y0 + 128 * x2 + 3200 * y1), tmp0, xmask)
@triton.jit
def triton_poi_fused_convolution_5(in_ptr0, in_ptr1, out_ptr0, ynumel,
xnumel, YBLOCK: tl.constexpr, XBLOCK: tl.constexpr):
ynumel = 128
xnumel = 576
yoffset = tl.program_id(1) * YBLOCK
yindex = yoffset + tl.arange(0, YBLOCK)[None, :]
ymask = yindex < ynumel
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:, None]
xmask = xindex < xnumel
x2 = xindex
y3 = yindex
y0 = yindex % 32
y1 = yindex // 32
tmp0 = tl.load(in_ptr0 + (x2 + 576 * y3), xmask & ymask,
eviction_policy='evict_last')
tmp1 = tl.load(in_ptr1 + y0, ymask, eviction_policy='evict_last')
tmp2 = tmp0 + tmp1
tl.store(out_ptr0 + (y0 + 32 * x2 + 18432 * y1), tmp2, xmask & ymask)
@triton.jit
def triton_poi_fused__prelu_kernel_6(in_ptr0, in_ptr1, out_ptr0, xnumel,
XBLOCK: tl.constexpr):
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
tl.full([XBLOCK], True, tl.int1)
x0 = xindex
tmp0 = tl.load(in_ptr0 + x0, None)
tmp3 = tl.load(in_ptr1 + 0)
tmp4 = tl.broadcast_to(tmp3, [XBLOCK])
tmp1 = 0.0
tmp2 = tmp0 > tmp1
tmp5 = tmp4 * tmp0
tmp6 = tl.where(tmp2, tmp0, tmp5)
tl.store(out_ptr0 + x0, tmp6, None)
@triton.jit
def triton_poi_fused__prelu_kernel_convolution_7(in_out_ptr0, in_ptr0,
in_ptr1, out_ptr0, xnumel, XBLOCK: tl.constexpr):
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
tl.full([XBLOCK], True, tl.int1)
x2 = xindex
x0 = xindex % 32
tmp0 = tl.load(in_out_ptr0 + x2, None)
tmp1 = tl.load(in_ptr0 + x0, None, eviction_policy='evict_last')
tmp5 = tl.load(in_ptr1 + 0)
tmp6 = tl.broadcast_to(tmp5, [XBLOCK])
tmp2 = tmp0 + tmp1
tmp3 = 0.0
tmp4 = tmp2 > tmp3
tmp7 = tmp6 * tmp2
tmp8 = tl.where(tmp4, tmp2, tmp7)
tl.store(in_out_ptr0 + x2, tmp2, None)
tl.store(out_ptr0 + x2, tmp8, None)
@triton.jit
def triton_poi_fused_max_pool2d_with_indices_8(in_ptr0, out_ptr0, out_ptr1,
xnumel, XBLOCK: tl.constexpr):
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
tl.full([XBLOCK], True, tl.int1)
x0 = xindex % 32
x1 = xindex // 32 % 12
x2 = xindex // 384
x3 = xindex
tmp0 = tl.load(in_ptr0 + (x0 + 64 * x1 + 1536 * x2), None)
tmp1 = tl.load(in_ptr0 + (32 + x0 + 64 * x1 + 1536 * x2), None)
tmp3 = tl.load(in_ptr0 + (768 + x0 + 64 * x1 + 1536 * x2), None)
tmp5 = tl.load(in_ptr0 + (800 + x0 + 64 * x1 + 1536 * x2), None)
tmp2 = triton_helpers.maximum(tmp1, tmp0)
tmp4 = triton_helpers.maximum(tmp3, tmp2)
tmp6 = triton_helpers.maximum(tmp5, tmp4)
tmp7 = tmp1 > tmp0
tmp8 = tl.full([1], 1, tl.int8)
tmp9 = tl.full([1], 0, tl.int8)
tmp10 = tl.where(tmp7, tmp8, tmp9)
tmp11 = tmp3 > tmp2
tmp12 = tl.full([1], 2, tl.int8)
tmp13 = tl.where(tmp11, tmp12, tmp10)
tmp14 = tmp5 > tmp4
tmp15 = tl.full([1], 3, tl.int8)
tmp16 = tl.where(tmp14, tmp15, tmp13)
tl.store(out_ptr0 + x3, tmp6, None)
tl.store(out_ptr1 + x3, tmp16, None)
@triton.jit
def triton_poi_fused__prelu_kernel_convolution_9(in_out_ptr0, in_ptr0,
in_ptr1, out_ptr0, xnumel, XBLOCK: tl.constexpr):
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
tl.full([XBLOCK], True, tl.int1)
x2 = xindex
x0 = xindex % 64
tmp0 = tl.load(in_out_ptr0 + x2, None)
tmp1 = tl.load(in_ptr0 + x0, None, eviction_policy='evict_last')
tmp5 = tl.load(in_ptr1 + 0)
tmp6 = tl.broadcast_to(tmp5, [XBLOCK])
tmp2 = tmp0 + tmp1
tmp3 = 0.0
tmp4 = tmp2 > tmp3
tmp7 = tmp6 * tmp2
tmp8 = tl.where(tmp4, tmp2, tmp7)
tl.store(in_out_ptr0 + x2, tmp2, None)
tl.store(out_ptr0 + x2, tmp8, None)
@triton.jit
def triton_poi_fused_max_pool2d_with_indices_10(in_ptr0, out_ptr0, out_ptr1,
xnumel, XBLOCK: tl.constexpr):
xnumel = 9216
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex % 64
x1 = xindex // 64 % 6
x2 = xindex // 384
x3 = xindex
tmp0 = tl.load(in_ptr0 + (x0 + 128 * x1 + 1536 * x2), xmask)
tmp1 = tl.load(in_ptr0 + (64 + x0 + 128 * x1 + 1536 * x2), xmask)
tmp3 = tl.load(in_ptr0 + (768 + x0 + 128 * x1 + 1536 * x2), xmask)
tmp5 = tl.load(in_ptr0 + (832 + x0 + 128 * x1 + 1536 * x2), xmask)
tmp2 = triton_helpers.maximum(tmp1, tmp0)
tmp4 = triton_helpers.maximum(tmp3, tmp2)
tmp6 = triton_helpers.maximum(tmp5, tmp4)
tmp7 = tmp1 > tmp0
tmp8 = tl.full([1], 1, tl.int8)
tmp9 = tl.full([1], 0, tl.int8)
tmp10 = tl.where(tmp7, tmp8, tmp9)
tmp11 = tmp3 > tmp2
tmp12 = tl.full([1], 2, tl.int8)
tmp13 = tl.where(tmp11, tmp12, tmp10)
tmp14 = tmp5 > tmp4
tmp15 = tl.full([1], 3, tl.int8)
tmp16 = tl.where(tmp14, tmp15, tmp13)
tl.store(out_ptr0 + x3, tmp6, xmask)
tl.store(out_ptr1 + x3, tmp16, xmask)
@triton.jit
def triton_poi_fused__prelu_kernel_convolution_11(in_out_ptr0, in_ptr0,
in_ptr1, out_ptr0, xnumel, XBLOCK: tl.constexpr):
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
tl.full([XBLOCK], True, tl.int1)
x2 = xindex
x0 = xindex % 128
tmp0 = tl.load(in_out_ptr0 + x2, None)
tmp1 = tl.load(in_ptr0 + x0, None, eviction_policy='evict_last')
tmp5 = tl.load(in_ptr1 + 0)
tmp6 = tl.broadcast_to(tmp5, [XBLOCK])
tmp2 = tmp0 + tmp1
tmp3 = 0.0
tmp4 = tmp2 > tmp3
tmp7 = tmp6 * tmp2
tmp8 = tl.where(tmp4, tmp2, tmp7)
tl.store(in_out_ptr0 + x2, tmp2, None)
tl.store(out_ptr0 + x2, tmp8, None)
@triton.jit
def triton_poi_fused_max_pool2d_with_indices_12(in_ptr0, out_ptr0, out_ptr1,
ynumel, xnumel, YBLOCK: tl.constexpr, XBLOCK: tl.constexpr):
ynumel = 36
xnumel = 128
yoffset = tl.program_id(1) * YBLOCK
yindex = yoffset + tl.arange(0, YBLOCK)[None, :]
ymask = yindex < ynumel
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:, None]
xmask = xindex < xnumel
x2 = xindex
y0 = yindex % 3
y1 = yindex // 3
y5 = yindex
y4 = yindex // 9
y6 = yindex % 9
tmp0 = tl.load(in_ptr0 + (x2 + 256 * y0 + 1536 * y1), xmask & ymask,
eviction_policy='evict_last')
tmp1 = tl.load(in_ptr0 + (128 + x2 + 256 * y0 + 1536 * y1), xmask &
ymask, eviction_policy='evict_last')
tmp7 = tl.load(in_ptr0 + (768 + x2 + 256 * y0 + 1536 * y1), xmask &
ymask, eviction_policy='evict_last')
tmp12 = tl.load(in_ptr0 + (896 + x2 + 256 * y0 + 1536 * y1), xmask &
ymask, eviction_policy='evict_last')
tmp2 = tmp1 > tmp0
tmp3 = tl.full([1, 1], 1, tl.int8)
tmp4 = tl.full([1, 1], 0, tl.int8)
tmp5 = tl.where(tmp2, tmp3, tmp4)
tmp6 = triton_helpers.maximum(tmp1, tmp0)
tmp8 = tmp7 > tmp6
tmp9 = tl.full([1, 1], 2, tl.int8)
tmp10 = tl.where(tmp8, tmp9, tmp5)
tmp11 = triton_helpers.maximum(tmp7, tmp6)
tmp13 = tmp12 > tmp11
tmp14 = tl.full([1, 1], 3, tl.int8)
tmp15 = tl.where(tmp13, tmp14, tmp10)
tmp16 = triton_helpers.maximum(tmp12, tmp11)
tl.store(out_ptr0 + (x2 + 128 * y5), tmp15, xmask & ymask)
tl.store(out_ptr1 + (y6 + 9 * x2 + 1152 * y4), tmp16, xmask & ymask)
@triton.jit
def triton_poi_fused__prelu_kernel_13(in_ptr0, in_ptr1, out_ptr0, xnumel,
XBLOCK: tl.constexpr):
xnumel = 8
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex
tmp0 = tl.load(in_ptr0 + x0, xmask)
tmp3 = tl.load(in_ptr1 + 0)
tmp4 = tl.broadcast_to(tmp3, [XBLOCK])
tmp1 = 0.0
tmp2 = tmp0 > tmp1
tmp5 = tmp4 * tmp0
tmp6 = tl.where(tmp2, tmp0, tmp5)
tl.store(out_ptr0 + x0, tmp6, xmask)
@triton.jit
def triton_per_fused__log_softmax_14(in_ptr0, out_ptr2, xnumel, rnumel,
XBLOCK: tl.constexpr):
xnumel = 4
rnumel = 10
RBLOCK: tl.constexpr = 16
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:, None]
xmask = xindex < xnumel
rindex = tl.arange(0, RBLOCK)[None, :]
rmask = rindex < rnumel
r1 = rindex
x0 = xindex
tmp0 = tl.load(in_ptr0 + (r1 + 10 * x0), rmask & xmask, other=0.0)
tmp1 = tl.broadcast_to(tmp0, [XBLOCK, RBLOCK])
tmp3 = tl.where(rmask & xmask, tmp1, float('-inf'))
tmp4 = triton_helpers.max2(tmp3, 1)[:, None]
tmp5 = tmp0 - tmp4
tmp6 = tl_math.exp(tmp5)
tmp7 = tl.broadcast_to(tmp6, [XBLOCK, RBLOCK])
tmp9 = tl.where(rmask & xmask, tmp7, 0)
tmp10 = tl.sum(tmp9, 1)[:, None]
tmp11 = tl_math.log(tmp10)
tmp12 = tmp5 - tmp11
tl.store(out_ptr2 + (r1 + 10 * x0), tmp12, rmask & xmask)
def call(args):
(primals_1, primals_2, primals_3, primals_4, primals_5, primals_6,
primals_7, primals_8, primals_9, primals_10, primals_11, primals_12,
primals_13, primals_14, primals_15, primals_16, primals_17,
primals_18, primals_19, primals_20, primals_21, primals_22, primals_23
) = args
args.clear()
assert_size_stride(primals_1, (32, 1, 5, 5), (25, 25, 5, 1))
assert_size_stride(primals_2, (32,), (1,))
assert_size_stride(primals_3, (4, 1, 24, 24), (576, 576, 24, 1))
assert_size_stride(primals_4, (1,), (1,))
assert_size_stride(primals_5, (32, 32, 5, 5), (800, 25, 5, 1))
assert_size_stride(primals_6, (32,), (1,))
assert_size_stride(primals_7, (1,), (1,))
assert_size_stride(primals_8, (64, 32, 5, 5), (800, 25, 5, 1))
assert_size_stride(primals_9, (64,), (1,))
assert_size_stride(primals_10, (1,), (1,))
assert_size_stride(primals_11, (64, 64, 5, 5), (1600, 25, 5, 1))
assert_size_stride(primals_12, (64,), (1,))
assert_size_stride(primals_13, (1,), (1,))
assert_size_stride(primals_14, (128, 64, 5, 5), (1600, 25, 5, 1))
assert_size_stride(primals_15, (128,), (1,))
assert_size_stride(primals_16, (1,), (1,))
assert_size_stride(primals_17, (128, 128, 5, 5), (3200, 25, 5, 1))
assert_size_stride(primals_18, (128,), (1,))
assert_size_stride(primals_19, (1,), (1,))
assert_size_stride(primals_20, (2, 1152), (1152, 1))
assert_size_stride(primals_21, (2,), (1,))
assert_size_stride(primals_22, (1,), (1,))
assert_size_stride(primals_23, (10, 2), (2, 1))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((32, 32, 5, 5), (800, 1, 160, 32), torch.
float32)
get_raw_stream(0)
triton_poi_fused_0[grid(1024, 25)](primals_5, buf0, 1024, 25,
XBLOCK=32, YBLOCK=32, num_warps=4, num_stages=1)
del primals_5
buf1 = empty_strided_cuda((64, 32, 5, 5), (800, 1, 160, 32), torch.
float32)
triton_poi_fused_1[grid(2048, 25)](primals_8, buf1, 2048, 25,
XBLOCK=32, YBLOCK=32, num_warps=4, num_stages=1)
del primals_8
buf2 = empty_strided_cuda((64, 64, 5, 5), (1600, 1, 320, 64), torch
.float32)
triton_poi_fused_2[grid(4096, 25)](primals_11, buf2, 4096, 25,
XBLOCK=32, YBLOCK=32, num_warps=4, num_stages=1)
del primals_11
buf3 = empty_strided_cuda((128, 64, 5, 5), (1600, 1, 320, 64),
torch.float32)
triton_poi_fused_3[grid(8192, 25)](primals_14, buf3, 8192, 25,
XBLOCK=32, YBLOCK=32, num_warps=4, num_stages=1)
del primals_14
buf4 = empty_strided_cuda((128, 128, 5, 5), (3200, 1, 640, 128),
torch.float32)
triton_poi_fused_4[grid(16384, 25)](primals_17, buf4, 16384, 25,
XBLOCK=32, YBLOCK=32, num_warps=4, num_stages=1)
del primals_17
buf5 = extern_kernels.convolution(primals_3, primals_1, stride=(1,
1), padding=(2, 2), dilation=(1, 1), transposed=False,
output_padding=(0, 0), groups=1, bias=None)
assert_size_stride(buf5, (4, 32, 24, 24), (18432, 576, 24, 1))
buf6 = empty_strided_cuda((4, 32, 24, 24), (18432, 1, 768, 32),
torch.float32)
triton_poi_fused_convolution_5[grid(128, 576)](buf5, primals_2,
buf6, 128, 576, XBLOCK=32, YBLOCK=32, num_warps=4, num_stages=1)
del primals_2
buf7 = reinterpret_tensor(buf5, (4, 32, 24, 24), (18432, 1, 768, 32), 0
)
del buf5
triton_poi_fused__prelu_kernel_6[grid(73728)](buf6, primals_4, buf7,
73728, XBLOCK=512, num_warps=8, num_stages=1)
buf8 = extern_kernels.convolution(buf7, buf0, stride=(1, 1),
padding=(2, 2), dilation=(1, 1), transposed=False,
output_padding=(0, 0), groups=1, bias=None)
assert_size_stride(buf8, (4, 32, 24, 24), (18432, 1, 768, 32))
buf9 = buf8
del buf8
buf10 = empty_strided_cuda((4, 32, 24, 24), (18432, 1, 768, 32),
torch.float32)
triton_poi_fused__prelu_kernel_convolution_7[grid(73728)](buf9,
primals_6, primals_7, buf10, 73728, XBLOCK=1024, num_warps=4,
num_stages=1)
del primals_6
buf11 = empty_strided_cuda((4, 32, 12, 12), (4608, 1, 384, 32),
torch.float32)
buf12 = empty_strided_cuda((4, 32, 12, 12), (4608, 1, 384, 32),
torch.int8)
triton_poi_fused_max_pool2d_with_indices_8[grid(18432)](buf10,
buf11, buf12, 18432, XBLOCK=256, num_warps=4, num_stages=1)
buf13 = extern_kernels.convolution(buf11, buf1, stride=(1, 1),
padding=(2, 2), dilation=(1, 1), transposed=False,
output_padding=(0, 0), groups=1, bias=None)
assert_size_stride(buf13, (4, 64, 12, 12), (9216, 1, 768, 64))
buf14 = buf13
del buf13
buf15 = empty_strided_cuda((4, 64, 12, 12), (9216, 1, 768, 64),
torch.float32)
triton_poi_fused__prelu_kernel_convolution_9[grid(36864)](buf14,
primals_9, primals_10, buf15, 36864, XBLOCK=512, num_warps=4,
num_stages=1)
del primals_9
buf16 = extern_kernels.convolution(buf15, buf2, stride=(1, 1),
padding=(2, 2), dilation=(1, 1), transposed=False,
output_padding=(0, 0), groups=1, bias=None)
assert_size_stride(buf16, (4, 64, 12, 12), (9216, 1, 768, 64))
buf17 = buf16
del buf16
buf18 = empty_strided_cuda((4, 64, 12, 12), (9216, 1, 768, 64),
torch.float32)
triton_poi_fused__prelu_kernel_convolution_9[grid(36864)](buf17,
primals_12, primals_13, buf18, 36864, XBLOCK=512, num_warps=4,
num_stages=1)
del primals_12
buf19 = empty_strided_cuda((4, 64, 6, 6), (2304, 1, 384, 64), torch
.float32)
buf20 = empty_strided_cuda((4, 64, 6, 6), (2304, 1, 384, 64), torch
.int8)
triton_poi_fused_max_pool2d_with_indices_10[grid(9216)](buf18,
buf19, buf20, 9216, XBLOCK=256, num_warps=4, num_stages=1)
buf21 = extern_kernels.convolution(buf19, buf3, stride=(1, 1),
padding=(2, 2), dilation=(1, 1), transposed=False,
output_padding=(0, 0), groups=1, bias=None)
assert_size_stride(buf21, (4, 128, 6, 6), (4608, 1, 768, 128))
buf22 = buf21
del buf21
buf23 = empty_strided_cuda((4, 128, 6, 6), (4608, 1, 768, 128),
torch.float32)
triton_poi_fused__prelu_kernel_convolution_11[grid(18432)](buf22,
primals_15, primals_16, buf23, 18432, XBLOCK=128, num_warps=4,
num_stages=1)
del primals_15
buf24 = extern_kernels.convolution(buf23, buf4, stride=(1, 1),
padding=(2, 2), dilation=(1, 1), transposed=False,
output_padding=(0, 0), groups=1, bias=None)
assert_size_stride(buf24, (4, 128, 6, 6), (4608, 1, 768, 128))
buf25 = buf24
del buf24
buf26 = empty_strided_cuda((4, 128, 6, 6), (4608, 1, 768, 128),
torch.float32)
triton_poi_fused__prelu_kernel_convolution_11[grid(18432)](buf25,
primals_18, primals_19, buf26, 18432, XBLOCK=128, num_warps=4,
num_stages=1)
del primals_18
buf27 = empty_strided_cuda((4, 128, 3, 3), (1152, 1, 384, 128),
torch.int8)
buf28 = empty_strided_cuda((4, 128, 3, 3), (1152, 9, 3, 1), torch.
float32)
triton_poi_fused_max_pool2d_with_indices_12[grid(36, 128)](buf26,
buf27, buf28, 36, 128, XBLOCK=4, YBLOCK=64, num_warps=4,
num_stages=1)
buf29 = empty_strided_cuda((4, 2), (2, 1), torch.float32)
extern_kernels.addmm(primals_21, reinterpret_tensor(buf28, (4, 1152
), (1152, 1), 0), reinterpret_tensor(primals_20, (1152, 2), (1,
1152), 0), alpha=1, beta=1, out=buf29)
del primals_21
buf30 = empty_strided_cuda((4, 2), (2, 1), torch.float32)
triton_poi_fused__prelu_kernel_13[grid(8)](buf29, primals_22, buf30,
8, XBLOCK=8, num_warps=1, num_stages=1)
buf31 = empty_strided_cuda((4, 10), (10, 1), torch.float32)
extern_kernels.mm(buf30, reinterpret_tensor(primals_23, (2, 10), (1,
2), 0), out=buf31)
buf34 = empty_strided_cuda((4, 10), (10, 1), torch.float32)
triton_per_fused__log_softmax_14[grid(4)](buf31, buf34, 4, 10,
XBLOCK=1, num_warps=2, num_stages=1)
del buf31
return (buf30, buf34, primals_1, primals_3, primals_4, buf0, primals_7,
buf1, primals_10, buf2, primals_13, buf3, primals_16, buf4,
primals_19, primals_22, buf6, buf7, buf9, buf10, buf11, buf12,
buf14, buf15, buf17, buf18, buf19, buf20, buf22, buf23, buf25,
buf26, buf27, reinterpret_tensor(buf28, (4, 1152), (1152, 1), 0),
buf29, buf30, buf34, primals_23, primals_20)
class NetNew(nn.Module):
def __init__(self):
super(NetNew, self).__init__()
self.conv1_1 = nn.Conv2d(1, 32, kernel_size=5, padding=2)
self.prelu1_1 = nn.PReLU()
self.conv1_2 = nn.Conv2d(32, 32, kernel_size=5, padding=2)
self.prelu1_2 = nn.PReLU()
self.conv2_1 = nn.Conv2d(32, 64, kernel_size=5, padding=2)
self.prelu2_1 = nn.PReLU()
self.conv2_2 = nn.Conv2d(64, 64, kernel_size=5, padding=2)
self.prelu2_2 = nn.PReLU()
self.conv3_1 = nn.Conv2d(64, 128, kernel_size=5, padding=2)
self.prelu3_1 = nn.PReLU()
self.conv3_2 = nn.Conv2d(128, 128, kernel_size=5, padding=2)
self.prelu3_2 = nn.PReLU()
self.preluip1 = nn.PReLU()
self.ip1 = nn.Linear(128 * 3 * 3, 2)
self.ip2 = nn.Linear(2, 10, bias=False)
def forward(self, input_0):
primals_1 = self.conv1_1.weight
primals_2 = self.conv1_1.bias
primals_4 = self.prelu1_1.weight
primals_5 = self.conv1_2.weight
primals_6 = self.conv1_2.bias
primals_7 = self.prelu1_2.weight
primals_8 = self.conv2_1.weight
primals_9 = self.conv2_1.bias
primals_10 = self.prelu2_1.weight
primals_11 = self.conv2_2.weight
primals_12 = self.conv2_2.bias
primals_13 = self.prelu2_2.weight
primals_14 = self.conv3_1.weight
primals_15 = self.conv3_1.bias
primals_16 = self.prelu3_1.weight
primals_17 = self.conv3_2.weight
primals_18 = self.conv3_2.bias
primals_19 = self.prelu3_2.weight
primals_22 = self.preluip1.weight
primals_20 = self.ip1.weight
primals_21 = self.ip1.bias
primals_23 = self.ip2.weight
primals_3 = input_0
output = call([primals_1, primals_2, primals_3, primals_4,
primals_5, primals_6, primals_7, primals_8, primals_9,
primals_10, primals_11, primals_12, primals_13, primals_14,
primals_15, primals_16, primals_17, primals_18, primals_19,
primals_20, primals_21, primals_22, primals_23])
return output[0], output[1]
|
jxgu1016/MNIST_with_centerloss.pytorch
|
Net
| false | 15,812 |
[
"MIT"
] | 346 |
4e94cc77fe94056a7f1f081fcaf0325781ba0224
|
https://github.com/jxgu1016/MNIST_with_centerloss.pytorch/tree/4e94cc77fe94056a7f1f081fcaf0325781ba0224
|
LayerScaleBlock
|
# AOT ID: ['0_forward']
from ctypes import c_void_p, c_long, c_int
import torch
import math
import random
import os
import tempfile
from math import inf, nan
from torch._inductor.hooks import run_intermediate_hooks
from torch._inductor.utils import maybe_profile
from torch._inductor.codegen.memory_planning import _align as align
from torch import device, empty_strided
from torch._inductor.async_compile import AsyncCompile
from torch._inductor.select_algorithm import extern_kernels
from torch._inductor.codegen.multi_kernel import MultiKernelCall
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
aten = torch.ops.aten
inductor_ops = torch.ops.inductor
_quantized = torch.ops._quantized
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
alloc_from_pool = torch.ops.inductor._alloc_from_pool
async_compile = AsyncCompile()
# kernel path: runs/run_shard_8/inductor_cache/wd/cwdz7kqs3uwyg53zsyekt77eye7yjl6v7vulow2q6ni534mkf6zw.py
# Topologically Sorted Source Nodes: [layer_norm], Original ATen: [aten.native_layer_norm]
# Source node to ATen node mapping:
# layer_norm => add, rsqrt, var_mean
# Graph fragment:
# %var_mean : [num_users=2] = call_function[target=torch.ops.aten.var_mean.correction](args = (%primals_4, [2]), kwargs = {correction: 0, keepdim: True})
# %add : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%getitem, 1e-05), kwargs = {})
# %rsqrt : [num_users=1] = call_function[target=torch.ops.aten.rsqrt.default](args = (%add,), kwargs = {})
triton_poi_fused_native_layer_norm_0 = async_compile.triton('triton_poi_fused_native_layer_norm_0', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[16],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_native_layer_norm_0', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 4, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_native_layer_norm_0(in_ptr0, out_ptr0, out_ptr1, xnumel, XBLOCK : tl.constexpr):
xnumel = 16
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex
tmp0 = tl.load(in_ptr0 + (4*x0), xmask, eviction_policy='evict_last')
tmp1 = tl.load(in_ptr0 + (1 + (4*x0)), xmask, eviction_policy='evict_last')
tmp3 = tl.load(in_ptr0 + (2 + (4*x0)), xmask, eviction_policy='evict_last')
tmp5 = tl.load(in_ptr0 + (3 + (4*x0)), xmask, eviction_policy='evict_last')
tmp2 = tmp0 + tmp1
tmp4 = tmp2 + tmp3
tmp6 = tmp4 + tmp5
tmp7 = 4.0
tmp8 = tmp6 / tmp7
tmp9 = tmp0 - tmp8
tmp10 = tmp9 * tmp9
tmp11 = tmp1 - tmp8
tmp12 = tmp11 * tmp11
tmp13 = tmp10 + tmp12
tmp14 = tmp3 - tmp8
tmp15 = tmp14 * tmp14
tmp16 = tmp13 + tmp15
tmp17 = tmp5 - tmp8
tmp18 = tmp17 * tmp17
tmp19 = tmp16 + tmp18
tmp20 = tmp19 / tmp7
tmp21 = 1e-05
tmp22 = tmp20 + tmp21
tmp23 = libdevice.rsqrt(tmp22)
tl.store(out_ptr0 + (x0), tmp8, xmask)
tl.store(out_ptr1 + (x0), tmp23, xmask)
''', device_str='cuda')
# kernel path: runs/run_shard_8/inductor_cache/vs/cvsfvbs4wlaqvwxm3svg65dnhcq336ptudvn6xetnbnrtzj7xssn.py
# Topologically Sorted Source Nodes: [layer_norm], Original ATen: [aten.native_layer_norm]
# Source node to ATen node mapping:
# layer_norm => add, add_1, mul, mul_1, rsqrt, sub, var_mean
# Graph fragment:
# %var_mean : [num_users=2] = call_function[target=torch.ops.aten.var_mean.correction](args = (%primals_4, [2]), kwargs = {correction: 0, keepdim: True})
# %add : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%getitem, 1e-05), kwargs = {})
# %rsqrt : [num_users=1] = call_function[target=torch.ops.aten.rsqrt.default](args = (%add,), kwargs = {})
# %sub : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (%primals_4, %getitem_1), kwargs = {})
# %mul : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%sub, %rsqrt), kwargs = {})
# %mul_1 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%mul, %primals_2), kwargs = {})
# %add_1 : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%mul_1, %primals_3), kwargs = {})
triton_poi_fused_native_layer_norm_1 = async_compile.triton('triton_poi_fused_native_layer_norm_1', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[64],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: '*fp32', 4: '*fp32', 5: '*fp32', 6: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3, 4, 5, 6), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_native_layer_norm_1', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 5, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_native_layer_norm_1(in_ptr0, in_ptr1, in_ptr2, in_ptr3, in_ptr4, out_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 64
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x2 = xindex
x1 = (xindex // 4)
x0 = xindex % 4
tmp0 = tl.load(in_ptr0 + (x2), xmask)
tmp1 = tl.load(in_ptr1 + (x1), xmask, eviction_policy='evict_last')
tmp3 = tl.load(in_ptr2 + (x1), xmask, eviction_policy='evict_last')
tmp5 = tl.load(in_ptr3 + (x0), xmask, eviction_policy='evict_last')
tmp7 = tl.load(in_ptr4 + (x0), xmask, eviction_policy='evict_last')
tmp2 = tmp0 - tmp1
tmp4 = tmp2 * tmp3
tmp6 = tmp4 * tmp5
tmp8 = tmp6 + tmp7
tl.store(out_ptr0 + (x2), tmp8, xmask)
''', device_str='cuda')
# kernel path: runs/run_shard_8/inductor_cache/vs/cvs6icdxviah4kvxj7x53zy2cxi5vohxx6kljkphckzrvc3cntr4.py
# Topologically Sorted Source Nodes: [q, attn], Original ATen: [aten.mul, aten.clone]
# Source node to ATen node mapping:
# attn => clone
# q => mul_2
# Graph fragment:
# %mul_2 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%select, 1.0), kwargs = {})
# %clone : [num_users=1] = call_function[target=torch.ops.aten.clone.default](args = (%expand,), kwargs = {memory_format: torch.contiguous_format})
triton_poi_fused_clone_mul_2 = async_compile.triton('triton_poi_fused_clone_mul_2', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[16, 4], tile_hint=TileHint.SQUARE,
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_clone_mul_2', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 1, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_clone_mul_2(in_ptr0, out_ptr0, ynumel, xnumel, YBLOCK : tl.constexpr, XBLOCK : tl.constexpr):
ynumel = 16
xnumel = 4
yoffset = tl.program_id(1) * YBLOCK
yindex = yoffset + tl.arange(0, YBLOCK)[None, :]
ymask = yindex < ynumel
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:, None]
xmask = xindex < xnumel
x2 = xindex
y0 = yindex % 4
y1 = (yindex // 4)
y3 = yindex
tmp0 = tl.load(in_ptr0 + (y0 + (12*x2) + (48*y1)), xmask & ymask, eviction_policy='evict_last')
tmp1 = 1.0
tmp2 = tmp0 * tmp1
tl.store(out_ptr0 + (x2 + (4*y3)), tmp2, xmask & ymask)
''', device_str='cuda')
# kernel path: runs/run_shard_8/inductor_cache/aw/cawvwx3nv7ipnpnf2hcgwz5usu7vsw5yynj5ofrunhktjwqff5vq.py
# Topologically Sorted Source Nodes: [attn], Original ATen: [aten.clone]
# Source node to ATen node mapping:
# attn => clone_1
# Graph fragment:
# %clone_1 : [num_users=1] = call_function[target=torch.ops.aten.clone.default](args = (%expand_1,), kwargs = {memory_format: torch.contiguous_format})
triton_poi_fused_clone_3 = async_compile.triton('triton_poi_fused_clone_3', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[16, 4], tile_hint=TileHint.SQUARE,
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_clone_3', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 1, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_clone_3(in_ptr0, out_ptr0, ynumel, xnumel, YBLOCK : tl.constexpr, XBLOCK : tl.constexpr):
ynumel = 16
xnumel = 4
yoffset = tl.program_id(1) * YBLOCK
yindex = yoffset + tl.arange(0, YBLOCK)[None, :]
ymask = yindex < ynumel
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:, None]
xmask = xindex < xnumel
x2 = xindex
y0 = yindex % 4
y1 = (yindex // 4)
y3 = yindex
tmp0 = tl.load(in_ptr0 + (4 + y0 + (12*x2) + (48*y1)), xmask & ymask, eviction_policy='evict_last')
tl.store(out_ptr0 + (x2 + (4*y3)), tmp0, xmask & ymask)
''', device_str='cuda')
# kernel path: runs/run_shard_8/inductor_cache/5j/c5jbbs6rjuscr2km33ndvlmtkgcup7curz3fm3tk7stvjquhtikm.py
# Topologically Sorted Source Nodes: [linear_1], Original ATen: [aten.clone]
# Source node to ATen node mapping:
# linear_1 => clone_2
# Graph fragment:
# %clone_2 : [num_users=1] = call_function[target=torch.ops.aten.clone.default](args = (%permute_3,), kwargs = {memory_format: torch.contiguous_format})
triton_poi_fused_clone_4 = async_compile.triton('triton_poi_fused_clone_4', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[64, 4], tile_hint=TileHint.SQUARE,
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_clone_4', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 1, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_clone_4(in_ptr0, out_ptr0, ynumel, xnumel, YBLOCK : tl.constexpr, XBLOCK : tl.constexpr):
ynumel = 64
xnumel = 4
yoffset = tl.program_id(1) * YBLOCK
yindex = yoffset + tl.arange(0, YBLOCK)[None, :]
ymask = yindex < ynumel
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:, None]
xmask = xindex < xnumel
x2 = xindex
y0 = yindex % 16
y1 = (yindex // 16)
y3 = yindex
tmp0 = tl.load(in_ptr0 + (y0 + (16*x2) + (64*y1)), xmask & ymask, eviction_policy='evict_last')
tl.store(out_ptr0 + (x2 + (4*y3)), tmp0, xmask & ymask)
''', device_str='cuda')
# kernel path: runs/run_shard_8/inductor_cache/qh/cqhjawj74jhki6ttujjfuup7tdnvc4atfzmw7o2uoasyzrs5f2ht.py
# Topologically Sorted Source Nodes: [attn_2], Original ATen: [aten._softmax]
# Source node to ATen node mapping:
# attn_2 => amax, clone_3, exp, sub_1, sum_1
# Graph fragment:
# %clone_3 : [num_users=2] = call_function[target=torch.ops.aten.clone.default](args = (%permute_5,), kwargs = {memory_format: torch.contiguous_format})
# %amax : [num_users=1] = call_function[target=torch.ops.aten.amax.default](args = (%clone_3, [-1], True), kwargs = {})
# %sub_1 : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (%clone_3, %amax), kwargs = {})
# %exp : [num_users=2] = call_function[target=torch.ops.aten.exp.default](args = (%sub_1,), kwargs = {})
# %sum_1 : [num_users=1] = call_function[target=torch.ops.aten.sum.dim_IntList](args = (%exp, [-1], True), kwargs = {})
triton_poi_fused__softmax_5 = async_compile.triton('triton_poi_fused__softmax_5', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[64],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: '*fp32', 4: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3, 4), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused__softmax_5', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 5, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused__softmax_5(in_ptr0, in_ptr1, out_ptr0, out_ptr1, xnumel, XBLOCK : tl.constexpr):
xnumel = 64
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex % 4
x1 = (xindex // 4)
x2 = xindex
tmp0 = tl.load(in_ptr0 + (x0 + (16*x1)), xmask)
tmp1 = tl.load(in_ptr1 + (x0), xmask, eviction_policy='evict_last')
tmp3 = tl.load(in_ptr0 + (4 + x0 + (16*x1)), xmask)
tmp6 = tl.load(in_ptr0 + (8 + x0 + (16*x1)), xmask)
tmp9 = tl.load(in_ptr0 + (12 + x0 + (16*x1)), xmask)
tmp2 = tmp0 + tmp1
tmp4 = tmp3 + tmp1
tmp5 = triton_helpers.maximum(tmp2, tmp4)
tmp7 = tmp6 + tmp1
tmp8 = triton_helpers.maximum(tmp5, tmp7)
tmp10 = tmp9 + tmp1
tmp11 = triton_helpers.maximum(tmp8, tmp10)
tmp12 = tmp2 - tmp11
tmp13 = tl_math.exp(tmp12)
tmp14 = tmp4 - tmp11
tmp15 = tl_math.exp(tmp14)
tmp16 = tmp13 + tmp15
tmp17 = tmp7 - tmp11
tmp18 = tl_math.exp(tmp17)
tmp19 = tmp16 + tmp18
tmp20 = tmp10 - tmp11
tmp21 = tl_math.exp(tmp20)
tmp22 = tmp19 + tmp21
tl.store(out_ptr0 + (x2), tmp11, xmask)
tl.store(out_ptr1 + (x2), tmp22, xmask)
''', device_str='cuda')
# kernel path: runs/run_shard_8/inductor_cache/2n/c2no6slg3kdm2omssc7xgqdy7bp47rufttfgcv7gbbfogwfv7ngf.py
# Topologically Sorted Source Nodes: [linear_2], Original ATen: [aten.clone]
# Source node to ATen node mapping:
# linear_2 => clone_4
# Graph fragment:
# %clone_4 : [num_users=1] = call_function[target=torch.ops.aten.clone.default](args = (%permute_6,), kwargs = {memory_format: torch.contiguous_format})
triton_poi_fused_clone_6 = async_compile.triton('triton_poi_fused_clone_6', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[256],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: '*fp32', 4: '*fp32', 5: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3, 4, 5), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_clone_6', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 4, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_clone_6(in_ptr0, in_ptr1, in_ptr2, in_ptr3, out_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 256
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x3 = xindex
x0 = xindex % 4
x2 = (xindex // 16)
tmp0 = tl.load(in_ptr0 + (x3), xmask)
tmp1 = tl.load(in_ptr1 + (x0), xmask, eviction_policy='evict_last')
tmp3 = tl.load(in_ptr2 + (x0 + (4*x2)), xmask, eviction_policy='evict_last')
tmp6 = tl.load(in_ptr3 + (x0 + (4*x2)), xmask, eviction_policy='evict_last')
tmp2 = tmp0 + tmp1
tmp4 = tmp2 - tmp3
tmp5 = tl_math.exp(tmp4)
tmp7 = tmp5 / tmp6
tl.store(out_ptr0 + (x3), tmp7, xmask)
''', device_str='cuda')
# kernel path: runs/run_shard_8/inductor_cache/go/cgojyax3mzsggeiylukgnpnwa2eaupb5run3yfarghtgr6k2gbks.py
# Topologically Sorted Source Nodes: [matmul_1], Original ATen: [aten.clone]
# Source node to ATen node mapping:
# matmul_1 => clone_6
# Graph fragment:
# %clone_6 : [num_users=1] = call_function[target=torch.ops.aten.clone.default](args = (%expand_2,), kwargs = {memory_format: torch.contiguous_format})
triton_poi_fused_clone_7 = async_compile.triton('triton_poi_fused_clone_7', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[16, 16], tile_hint=TileHint.DEFAULT,
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: 'i32', 4: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3, 4), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_clone_7', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_clone_7(in_ptr0, in_ptr1, out_ptr0, ynumel, xnumel, YBLOCK : tl.constexpr, XBLOCK : tl.constexpr):
ynumel = 16
xnumel = 16
yoffset = tl.program_id(1) * YBLOCK
yindex = yoffset + tl.arange(0, YBLOCK)[None, :]
ymask = yindex < ynumel
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:, None]
xmask = xindex < xnumel
x2 = xindex
y0 = yindex % 4
y1 = (yindex // 4)
y3 = yindex
tmp0 = tl.load(in_ptr0 + (y0 + (4*x2) + (64*y1)), xmask & ymask)
tmp1 = tl.load(in_ptr1 + (y0), ymask, eviction_policy='evict_last')
tmp2 = tmp0 + tmp1
tl.store(out_ptr0 + (x2 + (16*y3)), tmp2, xmask & ymask)
''', device_str='cuda')
# kernel path: runs/run_shard_8/inductor_cache/z5/cz5vsepa6xzt2kxyz2o5pev7avr6mhxpo7iklp72hpog6wgaos5u.py
# Topologically Sorted Source Nodes: [matmul_1], Original ATen: [aten.clone]
# Source node to ATen node mapping:
# matmul_1 => clone_7
# Graph fragment:
# %clone_7 : [num_users=1] = call_function[target=torch.ops.aten.clone.default](args = (%expand_3,), kwargs = {memory_format: torch.contiguous_format})
triton_poi_fused_clone_8 = async_compile.triton('triton_poi_fused_clone_8', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[16, 4], tile_hint=TileHint.SQUARE,
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_clone_8', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 1, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_clone_8(in_ptr0, out_ptr0, ynumel, xnumel, YBLOCK : tl.constexpr, XBLOCK : tl.constexpr):
ynumel = 16
xnumel = 4
yoffset = tl.program_id(1) * YBLOCK
yindex = yoffset + tl.arange(0, YBLOCK)[None, :]
ymask = yindex < ynumel
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:, None]
xmask = xindex < xnumel
x2 = xindex
y0 = yindex % 4
y1 = (yindex // 4)
y3 = yindex
tmp0 = tl.load(in_ptr0 + (8 + y0 + (12*x2) + (48*y1)), xmask & ymask, eviction_policy='evict_last')
tl.store(out_ptr0 + (x2 + (4*y3)), tmp0, xmask & ymask)
''', device_str='cuda')
# kernel path: runs/run_shard_8/inductor_cache/he/chelvagj4d5lscmfzmvqqdjzm5txfx45x7j7qh4gwkcdx2i3wvui.py
# Topologically Sorted Source Nodes: [x_1], Original ATen: [aten.clone]
# Source node to ATen node mapping:
# x_1 => clone_8
# Graph fragment:
# %clone_8 : [num_users=1] = call_function[target=torch.ops.aten.clone.default](args = (%view_13,), kwargs = {memory_format: torch.contiguous_format})
triton_poi_fused_clone_9 = async_compile.triton('triton_poi_fused_clone_9', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[16, 4], tile_hint=TileHint.SQUARE,
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_clone_9', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 1, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_clone_9(in_ptr0, out_ptr0, ynumel, xnumel, YBLOCK : tl.constexpr, XBLOCK : tl.constexpr):
ynumel = 16
xnumel = 4
yoffset = tl.program_id(1) * YBLOCK
yindex = yoffset + tl.arange(0, YBLOCK)[None, :]
ymask = yindex < ynumel
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:, None]
xmask = xindex < xnumel
x2 = xindex
y0 = yindex % 4
y1 = (yindex // 4)
y3 = yindex
tmp0 = tl.load(in_ptr0 + (y0 + (4*x2) + (16*y1)), xmask & ymask, eviction_policy='evict_last')
tl.store(out_ptr0 + (x2 + (4*y3)), tmp0, xmask & ymask)
''', device_str='cuda')
# kernel path: runs/run_shard_8/inductor_cache/b5/cb56g3tvhbiqa54nbdvqrjnvglvsqxe3q6cr7qfdqipiteo3dpeo.py
# Topologically Sorted Source Nodes: [x_1, mul_1, y], Original ATen: [aten.add, aten.mul]
# Source node to ATen node mapping:
# mul_1 => mul_3
# x_1 => add_4
# y => add_5
# Graph fragment:
# %add_4 : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%view_15, %primals_11), kwargs = {})
# %mul_3 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%primals_1, %add_4), kwargs = {})
# %add_5 : [num_users=4] = call_function[target=torch.ops.aten.add.Tensor](args = (%primals_4, %mul_3), kwargs = {})
triton_poi_fused_add_mul_10 = async_compile.triton('triton_poi_fused_add_mul_10', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[64],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: '*fp32', 4: '*fp32', 5: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3, 4, 5), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_add_mul_10', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 4, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_add_mul_10(in_ptr0, in_ptr1, in_ptr2, in_ptr3, out_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 64
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x2 = xindex
x0 = xindex % 4
tmp0 = tl.load(in_ptr0 + (x2), xmask)
tmp1 = tl.load(in_ptr1 + (x0), xmask, eviction_policy='evict_last')
tmp2 = tl.load(in_ptr2 + (x2), xmask)
tmp3 = tl.load(in_ptr3 + (x0), xmask, eviction_policy='evict_last')
tmp4 = tmp2 + tmp3
tmp5 = tmp1 * tmp4
tmp6 = tmp0 + tmp5
tl.store(out_ptr0 + (x2), tmp6, xmask)
''', device_str='cuda')
# kernel path: runs/run_shard_8/inductor_cache/oq/coqzumelatufp5yu7vvdhpigthzr66jabgl2tfuy5kbvx35q2ezh.py
# Topologically Sorted Source Nodes: [x_4], Original ATen: [aten.gelu]
# Source node to ATen node mapping:
# x_4 => add_8, erf, mul_6, mul_7, mul_8
# Graph fragment:
# %mul_6 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%view_17, 0.5), kwargs = {})
# %mul_7 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%view_17, 0.7071067811865476), kwargs = {})
# %erf : [num_users=1] = call_function[target=torch.ops.aten.erf.default](args = (%mul_7,), kwargs = {})
# %add_8 : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%erf, 1), kwargs = {})
# %mul_8 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%mul_6, %add_8), kwargs = {})
triton_poi_fused_gelu_11 = async_compile.triton('triton_poi_fused_gelu_11', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[256],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_gelu_11', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 1, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_gelu_11(in_ptr0, out_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 256
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex
tmp0 = tl.load(in_ptr0 + (x0), xmask)
tmp1 = 0.5
tmp2 = tmp0 * tmp1
tmp3 = 0.7071067811865476
tmp4 = tmp0 * tmp3
tmp5 = libdevice.erf(tmp4)
tmp6 = 1.0
tmp7 = tmp5 + tmp6
tmp8 = tmp2 * tmp7
tl.store(out_ptr0 + (x0), tmp8, xmask)
''', device_str='cuda')
# kernel path: runs/run_shard_8/inductor_cache/ft/cft2a6imncwdsd5fye4tmq2k4anwxyebo7ti5nsvvg43n7kjjw2z.py
# Topologically Sorted Source Nodes: [mul_2, z], Original ATen: [aten.mul, aten.add]
# Source node to ATen node mapping:
# mul_2 => mul_9
# z => add_9
# Graph fragment:
# %mul_9 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%primals_12, %view_19), kwargs = {})
# %add_9 : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%add_5, %mul_9), kwargs = {})
triton_poi_fused_add_mul_12 = async_compile.triton('triton_poi_fused_add_mul_12', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[64],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: '*fp32', 4: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3, 4), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_add_mul_12', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 3, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_add_mul_12(in_ptr0, in_ptr1, in_ptr2, out_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 64
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x2 = xindex
x0 = xindex % 4
tmp0 = tl.load(in_ptr0 + (x2), xmask)
tmp1 = tl.load(in_ptr1 + (x0), xmask, eviction_policy='evict_last')
tmp2 = tl.load(in_ptr2 + (x2), xmask)
tmp3 = tmp1 * tmp2
tmp4 = tmp0 + tmp3
tl.store(out_ptr0 + (x2), tmp4, xmask)
''', device_str='cuda')
async_compile.wait(globals())
del async_compile
def call(args):
primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7, primals_8, primals_9, primals_10, primals_11, primals_12, primals_13, primals_14, primals_15, primals_16, primals_17, primals_18 = args
args.clear()
assert_size_stride(primals_1, (4, ), (1, ))
assert_size_stride(primals_2, (4, ), (1, ))
assert_size_stride(primals_3, (4, ), (1, ))
assert_size_stride(primals_4, (4, 4, 4), (16, 4, 1))
assert_size_stride(primals_5, (12, 4), (4, 1))
assert_size_stride(primals_6, (4, 4), (4, 1))
assert_size_stride(primals_7, (4, ), (1, ))
assert_size_stride(primals_8, (4, 4), (4, 1))
assert_size_stride(primals_9, (4, ), (1, ))
assert_size_stride(primals_10, (4, 4), (4, 1))
assert_size_stride(primals_11, (4, ), (1, ))
assert_size_stride(primals_12, (4, ), (1, ))
assert_size_stride(primals_13, (4, ), (1, ))
assert_size_stride(primals_14, (4, ), (1, ))
assert_size_stride(primals_15, (16, 4), (4, 1))
assert_size_stride(primals_16, (16, ), (1, ))
assert_size_stride(primals_17, (4, 16), (16, 1))
assert_size_stride(primals_18, (4, ), (1, ))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((4, 4, 1), (4, 1, 16), torch.float32)
buf1 = empty_strided_cuda((4, 4, 1), (4, 1, 16), torch.float32)
# Topologically Sorted Source Nodes: [layer_norm], Original ATen: [aten.native_layer_norm]
stream0 = get_raw_stream(0)
triton_poi_fused_native_layer_norm_0.run(primals_4, buf0, buf1, 16, grid=grid(16), stream=stream0)
buf2 = empty_strided_cuda((4, 4, 4), (16, 4, 1), torch.float32)
# Topologically Sorted Source Nodes: [layer_norm], Original ATen: [aten.native_layer_norm]
triton_poi_fused_native_layer_norm_1.run(primals_4, buf0, buf1, primals_2, primals_3, buf2, 64, grid=grid(64), stream=stream0)
del primals_2
del primals_3
buf3 = empty_strided_cuda((16, 12), (12, 1), torch.float32)
# Topologically Sorted Source Nodes: [linear], Original ATen: [aten.mm]
extern_kernels.mm(reinterpret_tensor(buf2, (16, 4), (4, 1), 0), reinterpret_tensor(primals_5, (4, 12), (1, 4), 0), out=buf3)
buf4 = empty_strided_cuda((4, 4, 4, 1), (16, 4, 1, 1), torch.float32)
# Topologically Sorted Source Nodes: [q, attn], Original ATen: [aten.mul, aten.clone]
triton_poi_fused_clone_mul_2.run(buf3, buf4, 16, 4, grid=grid(16, 4), stream=stream0)
buf5 = empty_strided_cuda((4, 4, 1, 4), (16, 4, 4, 1), torch.float32)
# Topologically Sorted Source Nodes: [attn], Original ATen: [aten.clone]
triton_poi_fused_clone_3.run(buf3, buf5, 16, 4, grid=grid(16, 4), stream=stream0)
buf6 = empty_strided_cuda((16, 4, 4), (16, 4, 1), torch.float32)
# Topologically Sorted Source Nodes: [attn], Original ATen: [aten.bmm]
extern_kernels.bmm(reinterpret_tensor(buf4, (16, 4, 1), (4, 1, 0), 0), reinterpret_tensor(buf5, (16, 1, 4), (4, 0, 1), 0), out=buf6)
buf7 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32)
# Topologically Sorted Source Nodes: [linear_1], Original ATen: [aten.clone]
triton_poi_fused_clone_4.run(buf6, buf7, 64, 4, grid=grid(64, 4), stream=stream0)
buf8 = reinterpret_tensor(buf6, (64, 4), (4, 1), 0); del buf6 # reuse
# Topologically Sorted Source Nodes: [linear_1], Original ATen: [aten.mm]
extern_kernels.mm(reinterpret_tensor(buf7, (64, 4), (4, 1), 0), reinterpret_tensor(primals_6, (4, 4), (1, 4), 0), out=buf8)
buf9 = empty_strided_cuda((4, 4, 4, 1), (16, 1, 4, 64), torch.float32)
buf10 = empty_strided_cuda((4, 4, 4, 1), (16, 1, 4, 64), torch.float32)
# Topologically Sorted Source Nodes: [attn_2], Original ATen: [aten._softmax]
triton_poi_fused__softmax_5.run(buf8, primals_7, buf9, buf10, 64, grid=grid(64), stream=stream0)
buf11 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32)
# Topologically Sorted Source Nodes: [linear_2], Original ATen: [aten.clone]
triton_poi_fused_clone_6.run(buf8, primals_7, buf9, buf10, buf11, 256, grid=grid(256), stream=stream0)
buf12 = empty_strided_cuda((64, 4), (4, 1), torch.float32)
# Topologically Sorted Source Nodes: [linear_2], Original ATen: [aten.mm]
extern_kernels.mm(reinterpret_tensor(buf11, (64, 4), (4, 1), 0), reinterpret_tensor(primals_8, (4, 4), (1, 4), 0), out=buf12)
buf13 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32)
# Topologically Sorted Source Nodes: [matmul_1], Original ATen: [aten.clone]
triton_poi_fused_clone_7.run(buf12, primals_9, buf13, 16, 16, grid=grid(16, 16), stream=stream0)
del primals_9
buf14 = reinterpret_tensor(buf9, (4, 4, 4, 1), (16, 4, 1, 1), 0); del buf9 # reuse
# Topologically Sorted Source Nodes: [matmul_1], Original ATen: [aten.clone]
triton_poi_fused_clone_8.run(buf3, buf14, 16, 4, grid=grid(16, 4), stream=stream0)
del buf3
buf15 = reinterpret_tensor(buf10, (16, 4, 1), (4, 1, 1), 0); del buf10 # reuse
# Topologically Sorted Source Nodes: [matmul_1], Original ATen: [aten.bmm]
extern_kernels.bmm(reinterpret_tensor(buf13, (16, 4, 4), (16, 4, 1), 0), reinterpret_tensor(buf14, (16, 4, 1), (4, 1, 0), 0), out=buf15)
buf16 = empty_strided_cuda((4, 4, 4), (16, 4, 1), torch.float32)
# Topologically Sorted Source Nodes: [x_1], Original ATen: [aten.clone]
triton_poi_fused_clone_9.run(buf15, buf16, 16, 4, grid=grid(16, 4), stream=stream0)
buf17 = reinterpret_tensor(buf15, (16, 4), (4, 1), 0); del buf15 # reuse
# Topologically Sorted Source Nodes: [x_1], Original ATen: [aten.mm]
extern_kernels.mm(reinterpret_tensor(buf16, (16, 4), (4, 1), 0), reinterpret_tensor(primals_10, (4, 4), (1, 4), 0), out=buf17)
buf18 = empty_strided_cuda((4, 4, 4), (16, 4, 1), torch.float32)
# Topologically Sorted Source Nodes: [x_1, mul_1, y], Original ATen: [aten.add, aten.mul]
triton_poi_fused_add_mul_10.run(primals_4, primals_1, buf17, primals_11, buf18, 64, grid=grid(64), stream=stream0)
buf19 = buf1; del buf1 # reuse
buf20 = buf0; del buf0 # reuse
# Topologically Sorted Source Nodes: [layer_norm_1], Original ATen: [aten.native_layer_norm]
triton_poi_fused_native_layer_norm_0.run(buf18, buf19, buf20, 16, grid=grid(16), stream=stream0)
buf21 = empty_strided_cuda((4, 4, 4), (16, 4, 1), torch.float32)
# Topologically Sorted Source Nodes: [layer_norm_1], Original ATen: [aten.native_layer_norm]
triton_poi_fused_native_layer_norm_1.run(buf18, buf19, buf20, primals_13, primals_14, buf21, 64, grid=grid(64), stream=stream0)
del buf19
del buf20
del primals_14
buf22 = reinterpret_tensor(buf12, (16, 16), (16, 1), 0); del buf12 # reuse
# Topologically Sorted Source Nodes: [x_3], Original ATen: [aten.addmm]
extern_kernels.addmm(primals_16, reinterpret_tensor(buf21, (16, 4), (4, 1), 0), reinterpret_tensor(primals_15, (4, 16), (1, 4), 0), alpha=1, beta=1, out=buf22)
del primals_16
buf23 = empty_strided_cuda((4, 4, 16), (64, 16, 1), torch.float32)
# Topologically Sorted Source Nodes: [x_4], Original ATen: [aten.gelu]
triton_poi_fused_gelu_11.run(buf22, buf23, 256, grid=grid(256), stream=stream0)
buf24 = empty_strided_cuda((16, 4), (4, 1), torch.float32)
# Topologically Sorted Source Nodes: [x_6], Original ATen: [aten.addmm]
extern_kernels.addmm(primals_18, reinterpret_tensor(buf23, (16, 16), (16, 1), 0), reinterpret_tensor(primals_17, (16, 4), (1, 16), 0), alpha=1, beta=1, out=buf24)
del primals_18
buf25 = empty_strided_cuda((4, 4, 4), (16, 4, 1), torch.float32)
# Topologically Sorted Source Nodes: [mul_2, z], Original ATen: [aten.mul, aten.add]
triton_poi_fused_add_mul_12.run(buf18, primals_12, buf24, buf25, 64, grid=grid(64), stream=stream0)
return (buf18, buf25, primals_1, primals_4, primals_7, primals_11, primals_12, primals_13, reinterpret_tensor(buf2, (16, 4), (4, 1), 0), reinterpret_tensor(buf7, (64, 4), (4, 1), 0), buf8, reinterpret_tensor(buf11, (64, 4), (4, 1), 0), reinterpret_tensor(buf16, (16, 4), (4, 1), 0), buf17, buf18, reinterpret_tensor(buf21, (16, 4), (4, 1), 0), buf22, reinterpret_tensor(buf23, (16, 16), (16, 1), 0), buf24, primals_17, primals_15, primals_10, reinterpret_tensor(buf13, (16, 4, 4), (16, 1, 4), 0), reinterpret_tensor(buf14, (16, 1, 4), (4, 1, 1), 0), primals_8, primals_6, reinterpret_tensor(buf4, (16, 1, 4), (4, 1, 1), 0), reinterpret_tensor(buf5, (16, 4, 1), (4, 1, 4), 0), primals_5, )
def benchmark_compiled_module(times=10, repeat=10):
from torch._dynamo.testing import rand_strided
from torch._inductor.utils import print_performance
primals_1 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32)
primals_2 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32)
primals_3 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32)
primals_4 = rand_strided((4, 4, 4), (16, 4, 1), device='cuda:0', dtype=torch.float32)
primals_5 = rand_strided((12, 4), (4, 1), device='cuda:0', dtype=torch.float32)
primals_6 = rand_strided((4, 4), (4, 1), device='cuda:0', dtype=torch.float32)
primals_7 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32)
primals_8 = rand_strided((4, 4), (4, 1), device='cuda:0', dtype=torch.float32)
primals_9 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32)
primals_10 = rand_strided((4, 4), (4, 1), device='cuda:0', dtype=torch.float32)
primals_11 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32)
primals_12 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32)
primals_13 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32)
primals_14 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32)
primals_15 = rand_strided((16, 4), (4, 1), device='cuda:0', dtype=torch.float32)
primals_16 = rand_strided((16, ), (1, ), device='cuda:0', dtype=torch.float32)
primals_17 = rand_strided((4, 16), (16, 1), device='cuda:0', dtype=torch.float32)
primals_18 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32)
fn = lambda: call([primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7, primals_8, primals_9, primals_10, primals_11, primals_12, primals_13, primals_14, primals_15, primals_16, primals_17, primals_18])
return print_performance(fn, times=times, repeat=repeat)
if __name__ == "__main__":
from torch._inductor.wrapper_benchmark import compiled_module_main
compiled_module_main('None', benchmark_compiled_module)
|
import torch
from torch._inductor.select_algorithm import extern_kernels
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
from torch._inductor.runtime import triton_helpers
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
import torch.nn as nn
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
@triton.jit
def triton_poi_fused_native_layer_norm_0(in_ptr0, out_ptr0, out_ptr1,
xnumel, XBLOCK: tl.constexpr):
xnumel = 16
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex
tmp0 = tl.load(in_ptr0 + 4 * x0, xmask, eviction_policy='evict_last')
tmp1 = tl.load(in_ptr0 + (1 + 4 * x0), xmask, eviction_policy='evict_last')
tmp3 = tl.load(in_ptr0 + (2 + 4 * x0), xmask, eviction_policy='evict_last')
tmp5 = tl.load(in_ptr0 + (3 + 4 * x0), xmask, eviction_policy='evict_last')
tmp2 = tmp0 + tmp1
tmp4 = tmp2 + tmp3
tmp6 = tmp4 + tmp5
tmp7 = 4.0
tmp8 = tmp6 / tmp7
tmp9 = tmp0 - tmp8
tmp10 = tmp9 * tmp9
tmp11 = tmp1 - tmp8
tmp12 = tmp11 * tmp11
tmp13 = tmp10 + tmp12
tmp14 = tmp3 - tmp8
tmp15 = tmp14 * tmp14
tmp16 = tmp13 + tmp15
tmp17 = tmp5 - tmp8
tmp18 = tmp17 * tmp17
tmp19 = tmp16 + tmp18
tmp20 = tmp19 / tmp7
tmp21 = 1e-05
tmp22 = tmp20 + tmp21
tmp23 = libdevice.rsqrt(tmp22)
tl.store(out_ptr0 + x0, tmp8, xmask)
tl.store(out_ptr1 + x0, tmp23, xmask)
@triton.jit
def triton_poi_fused_native_layer_norm_1(in_ptr0, in_ptr1, in_ptr2, in_ptr3,
in_ptr4, out_ptr0, xnumel, XBLOCK: tl.constexpr):
xnumel = 64
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x2 = xindex
x1 = xindex // 4
x0 = xindex % 4
tmp0 = tl.load(in_ptr0 + x2, xmask)
tmp1 = tl.load(in_ptr1 + x1, xmask, eviction_policy='evict_last')
tmp3 = tl.load(in_ptr2 + x1, xmask, eviction_policy='evict_last')
tmp5 = tl.load(in_ptr3 + x0, xmask, eviction_policy='evict_last')
tmp7 = tl.load(in_ptr4 + x0, xmask, eviction_policy='evict_last')
tmp2 = tmp0 - tmp1
tmp4 = tmp2 * tmp3
tmp6 = tmp4 * tmp5
tmp8 = tmp6 + tmp7
tl.store(out_ptr0 + x2, tmp8, xmask)
@triton.jit
def triton_poi_fused_clone_mul_2(in_ptr0, out_ptr0, ynumel, xnumel, YBLOCK:
tl.constexpr, XBLOCK: tl.constexpr):
ynumel = 16
xnumel = 4
yoffset = tl.program_id(1) * YBLOCK
yindex = yoffset + tl.arange(0, YBLOCK)[None, :]
ymask = yindex < ynumel
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:, None]
xmask = xindex < xnumel
x2 = xindex
y0 = yindex % 4
y1 = yindex // 4
y3 = yindex
tmp0 = tl.load(in_ptr0 + (y0 + 12 * x2 + 48 * y1), xmask & ymask,
eviction_policy='evict_last')
tmp1 = 1.0
tmp2 = tmp0 * tmp1
tl.store(out_ptr0 + (x2 + 4 * y3), tmp2, xmask & ymask)
@triton.jit
def triton_poi_fused_clone_3(in_ptr0, out_ptr0, ynumel, xnumel, YBLOCK: tl.
constexpr, XBLOCK: tl.constexpr):
ynumel = 16
xnumel = 4
yoffset = tl.program_id(1) * YBLOCK
yindex = yoffset + tl.arange(0, YBLOCK)[None, :]
ymask = yindex < ynumel
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:, None]
xmask = xindex < xnumel
x2 = xindex
y0 = yindex % 4
y1 = yindex // 4
y3 = yindex
tmp0 = tl.load(in_ptr0 + (4 + y0 + 12 * x2 + 48 * y1), xmask & ymask,
eviction_policy='evict_last')
tl.store(out_ptr0 + (x2 + 4 * y3), tmp0, xmask & ymask)
@triton.jit
def triton_poi_fused_clone_4(in_ptr0, out_ptr0, ynumel, xnumel, YBLOCK: tl.
constexpr, XBLOCK: tl.constexpr):
ynumel = 64
xnumel = 4
yoffset = tl.program_id(1) * YBLOCK
yindex = yoffset + tl.arange(0, YBLOCK)[None, :]
ymask = yindex < ynumel
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:, None]
xmask = xindex < xnumel
x2 = xindex
y0 = yindex % 16
y1 = yindex // 16
y3 = yindex
tmp0 = tl.load(in_ptr0 + (y0 + 16 * x2 + 64 * y1), xmask & ymask,
eviction_policy='evict_last')
tl.store(out_ptr0 + (x2 + 4 * y3), tmp0, xmask & ymask)
@triton.jit
def triton_poi_fused__softmax_5(in_ptr0, in_ptr1, out_ptr0, out_ptr1,
xnumel, XBLOCK: tl.constexpr):
xnumel = 64
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex % 4
x1 = xindex // 4
x2 = xindex
tmp0 = tl.load(in_ptr0 + (x0 + 16 * x1), xmask)
tmp1 = tl.load(in_ptr1 + x0, xmask, eviction_policy='evict_last')
tmp3 = tl.load(in_ptr0 + (4 + x0 + 16 * x1), xmask)
tmp6 = tl.load(in_ptr0 + (8 + x0 + 16 * x1), xmask)
tmp9 = tl.load(in_ptr0 + (12 + x0 + 16 * x1), xmask)
tmp2 = tmp0 + tmp1
tmp4 = tmp3 + tmp1
tmp5 = triton_helpers.maximum(tmp2, tmp4)
tmp7 = tmp6 + tmp1
tmp8 = triton_helpers.maximum(tmp5, tmp7)
tmp10 = tmp9 + tmp1
tmp11 = triton_helpers.maximum(tmp8, tmp10)
tmp12 = tmp2 - tmp11
tmp13 = tl_math.exp(tmp12)
tmp14 = tmp4 - tmp11
tmp15 = tl_math.exp(tmp14)
tmp16 = tmp13 + tmp15
tmp17 = tmp7 - tmp11
tmp18 = tl_math.exp(tmp17)
tmp19 = tmp16 + tmp18
tmp20 = tmp10 - tmp11
tmp21 = tl_math.exp(tmp20)
tmp22 = tmp19 + tmp21
tl.store(out_ptr0 + x2, tmp11, xmask)
tl.store(out_ptr1 + x2, tmp22, xmask)
@triton.jit
def triton_poi_fused_clone_6(in_ptr0, in_ptr1, in_ptr2, in_ptr3, out_ptr0,
xnumel, XBLOCK: tl.constexpr):
xnumel = 256
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x3 = xindex
x0 = xindex % 4
x2 = xindex // 16
tmp0 = tl.load(in_ptr0 + x3, xmask)
tmp1 = tl.load(in_ptr1 + x0, xmask, eviction_policy='evict_last')
tmp3 = tl.load(in_ptr2 + (x0 + 4 * x2), xmask, eviction_policy='evict_last'
)
tmp6 = tl.load(in_ptr3 + (x0 + 4 * x2), xmask, eviction_policy='evict_last'
)
tmp2 = tmp0 + tmp1
tmp4 = tmp2 - tmp3
tmp5 = tl_math.exp(tmp4)
tmp7 = tmp5 / tmp6
tl.store(out_ptr0 + x3, tmp7, xmask)
@triton.jit
def triton_poi_fused_clone_7(in_ptr0, in_ptr1, out_ptr0, ynumel, xnumel,
YBLOCK: tl.constexpr, XBLOCK: tl.constexpr):
ynumel = 16
xnumel = 16
yoffset = tl.program_id(1) * YBLOCK
yindex = yoffset + tl.arange(0, YBLOCK)[None, :]
ymask = yindex < ynumel
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:, None]
xmask = xindex < xnumel
x2 = xindex
y0 = yindex % 4
y1 = yindex // 4
y3 = yindex
tmp0 = tl.load(in_ptr0 + (y0 + 4 * x2 + 64 * y1), xmask & ymask)
tmp1 = tl.load(in_ptr1 + y0, ymask, eviction_policy='evict_last')
tmp2 = tmp0 + tmp1
tl.store(out_ptr0 + (x2 + 16 * y3), tmp2, xmask & ymask)
@triton.jit
def triton_poi_fused_clone_8(in_ptr0, out_ptr0, ynumel, xnumel, YBLOCK: tl.
constexpr, XBLOCK: tl.constexpr):
ynumel = 16
xnumel = 4
yoffset = tl.program_id(1) * YBLOCK
yindex = yoffset + tl.arange(0, YBLOCK)[None, :]
ymask = yindex < ynumel
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:, None]
xmask = xindex < xnumel
x2 = xindex
y0 = yindex % 4
y1 = yindex // 4
y3 = yindex
tmp0 = tl.load(in_ptr0 + (8 + y0 + 12 * x2 + 48 * y1), xmask & ymask,
eviction_policy='evict_last')
tl.store(out_ptr0 + (x2 + 4 * y3), tmp0, xmask & ymask)
@triton.jit
def triton_poi_fused_clone_9(in_ptr0, out_ptr0, ynumel, xnumel, YBLOCK: tl.
constexpr, XBLOCK: tl.constexpr):
ynumel = 16
xnumel = 4
yoffset = tl.program_id(1) * YBLOCK
yindex = yoffset + tl.arange(0, YBLOCK)[None, :]
ymask = yindex < ynumel
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:, None]
xmask = xindex < xnumel
x2 = xindex
y0 = yindex % 4
y1 = yindex // 4
y3 = yindex
tmp0 = tl.load(in_ptr0 + (y0 + 4 * x2 + 16 * y1), xmask & ymask,
eviction_policy='evict_last')
tl.store(out_ptr0 + (x2 + 4 * y3), tmp0, xmask & ymask)
@triton.jit
def triton_poi_fused_add_mul_10(in_ptr0, in_ptr1, in_ptr2, in_ptr3,
out_ptr0, xnumel, XBLOCK: tl.constexpr):
xnumel = 64
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x2 = xindex
x0 = xindex % 4
tmp0 = tl.load(in_ptr0 + x2, xmask)
tmp1 = tl.load(in_ptr1 + x0, xmask, eviction_policy='evict_last')
tmp2 = tl.load(in_ptr2 + x2, xmask)
tmp3 = tl.load(in_ptr3 + x0, xmask, eviction_policy='evict_last')
tmp4 = tmp2 + tmp3
tmp5 = tmp1 * tmp4
tmp6 = tmp0 + tmp5
tl.store(out_ptr0 + x2, tmp6, xmask)
@triton.jit
def triton_poi_fused_gelu_11(in_ptr0, out_ptr0, xnumel, XBLOCK: tl.constexpr):
xnumel = 256
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex
tmp0 = tl.load(in_ptr0 + x0, xmask)
tmp1 = 0.5
tmp2 = tmp0 * tmp1
tmp3 = 0.7071067811865476
tmp4 = tmp0 * tmp3
tmp5 = libdevice.erf(tmp4)
tmp6 = 1.0
tmp7 = tmp5 + tmp6
tmp8 = tmp2 * tmp7
tl.store(out_ptr0 + x0, tmp8, xmask)
@triton.jit
def triton_poi_fused_add_mul_12(in_ptr0, in_ptr1, in_ptr2, out_ptr0, xnumel,
XBLOCK: tl.constexpr):
xnumel = 64
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x2 = xindex
x0 = xindex % 4
tmp0 = tl.load(in_ptr0 + x2, xmask)
tmp1 = tl.load(in_ptr1 + x0, xmask, eviction_policy='evict_last')
tmp2 = tl.load(in_ptr2 + x2, xmask)
tmp3 = tmp1 * tmp2
tmp4 = tmp0 + tmp3
tl.store(out_ptr0 + x2, tmp4, xmask)
def call(args):
(primals_1, primals_2, primals_3, primals_4, primals_5, primals_6,
primals_7, primals_8, primals_9, primals_10, primals_11, primals_12,
primals_13, primals_14, primals_15, primals_16, primals_17, primals_18
) = args
args.clear()
assert_size_stride(primals_1, (4,), (1,))
assert_size_stride(primals_2, (4,), (1,))
assert_size_stride(primals_3, (4,), (1,))
assert_size_stride(primals_4, (4, 4, 4), (16, 4, 1))
assert_size_stride(primals_5, (12, 4), (4, 1))
assert_size_stride(primals_6, (4, 4), (4, 1))
assert_size_stride(primals_7, (4,), (1,))
assert_size_stride(primals_8, (4, 4), (4, 1))
assert_size_stride(primals_9, (4,), (1,))
assert_size_stride(primals_10, (4, 4), (4, 1))
assert_size_stride(primals_11, (4,), (1,))
assert_size_stride(primals_12, (4,), (1,))
assert_size_stride(primals_13, (4,), (1,))
assert_size_stride(primals_14, (4,), (1,))
assert_size_stride(primals_15, (16, 4), (4, 1))
assert_size_stride(primals_16, (16,), (1,))
assert_size_stride(primals_17, (4, 16), (16, 1))
assert_size_stride(primals_18, (4,), (1,))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((4, 4, 1), (4, 1, 16), torch.float32)
buf1 = empty_strided_cuda((4, 4, 1), (4, 1, 16), torch.float32)
get_raw_stream(0)
triton_poi_fused_native_layer_norm_0[grid(16)](primals_4, buf0,
buf1, 16, XBLOCK=16, num_warps=1, num_stages=1)
buf2 = empty_strided_cuda((4, 4, 4), (16, 4, 1), torch.float32)
triton_poi_fused_native_layer_norm_1[grid(64)](primals_4, buf0,
buf1, primals_2, primals_3, buf2, 64, XBLOCK=64, num_warps=1,
num_stages=1)
del primals_2
del primals_3
buf3 = empty_strided_cuda((16, 12), (12, 1), torch.float32)
extern_kernels.mm(reinterpret_tensor(buf2, (16, 4), (4, 1), 0),
reinterpret_tensor(primals_5, (4, 12), (1, 4), 0), out=buf3)
buf4 = empty_strided_cuda((4, 4, 4, 1), (16, 4, 1, 1), torch.float32)
triton_poi_fused_clone_mul_2[grid(16, 4)](buf3, buf4, 16, 4, XBLOCK
=4, YBLOCK=16, num_warps=1, num_stages=1)
buf5 = empty_strided_cuda((4, 4, 1, 4), (16, 4, 4, 1), torch.float32)
triton_poi_fused_clone_3[grid(16, 4)](buf3, buf5, 16, 4, XBLOCK=4,
YBLOCK=16, num_warps=1, num_stages=1)
buf6 = empty_strided_cuda((16, 4, 4), (16, 4, 1), torch.float32)
extern_kernels.bmm(reinterpret_tensor(buf4, (16, 4, 1), (4, 1, 0),
0), reinterpret_tensor(buf5, (16, 1, 4), (4, 0, 1), 0), out=buf6)
buf7 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32)
triton_poi_fused_clone_4[grid(64, 4)](buf6, buf7, 64, 4, XBLOCK=4,
YBLOCK=32, num_warps=4, num_stages=1)
buf8 = reinterpret_tensor(buf6, (64, 4), (4, 1), 0)
del buf6
extern_kernels.mm(reinterpret_tensor(buf7, (64, 4), (4, 1), 0),
reinterpret_tensor(primals_6, (4, 4), (1, 4), 0), out=buf8)
buf9 = empty_strided_cuda((4, 4, 4, 1), (16, 1, 4, 64), torch.float32)
buf10 = empty_strided_cuda((4, 4, 4, 1), (16, 1, 4, 64), torch.float32)
triton_poi_fused__softmax_5[grid(64)](buf8, primals_7, buf9, buf10,
64, XBLOCK=64, num_warps=1, num_stages=1)
buf11 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32)
triton_poi_fused_clone_6[grid(256)](buf8, primals_7, buf9, buf10,
buf11, 256, XBLOCK=256, num_warps=4, num_stages=1)
buf12 = empty_strided_cuda((64, 4), (4, 1), torch.float32)
extern_kernels.mm(reinterpret_tensor(buf11, (64, 4), (4, 1), 0),
reinterpret_tensor(primals_8, (4, 4), (1, 4), 0), out=buf12)
buf13 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32)
triton_poi_fused_clone_7[grid(16, 16)](buf12, primals_9, buf13, 16,
16, XBLOCK=16, YBLOCK=16, num_warps=4, num_stages=1)
del primals_9
buf14 = reinterpret_tensor(buf9, (4, 4, 4, 1), (16, 4, 1, 1), 0)
del buf9
triton_poi_fused_clone_8[grid(16, 4)](buf3, buf14, 16, 4, XBLOCK=4,
YBLOCK=16, num_warps=1, num_stages=1)
del buf3
buf15 = reinterpret_tensor(buf10, (16, 4, 1), (4, 1, 1), 0)
del buf10
extern_kernels.bmm(reinterpret_tensor(buf13, (16, 4, 4), (16, 4, 1),
0), reinterpret_tensor(buf14, (16, 4, 1), (4, 1, 0), 0), out=buf15)
buf16 = empty_strided_cuda((4, 4, 4), (16, 4, 1), torch.float32)
triton_poi_fused_clone_9[grid(16, 4)](buf15, buf16, 16, 4, XBLOCK=4,
YBLOCK=16, num_warps=1, num_stages=1)
buf17 = reinterpret_tensor(buf15, (16, 4), (4, 1), 0)
del buf15
extern_kernels.mm(reinterpret_tensor(buf16, (16, 4), (4, 1), 0),
reinterpret_tensor(primals_10, (4, 4), (1, 4), 0), out=buf17)
buf18 = empty_strided_cuda((4, 4, 4), (16, 4, 1), torch.float32)
triton_poi_fused_add_mul_10[grid(64)](primals_4, primals_1, buf17,
primals_11, buf18, 64, XBLOCK=64, num_warps=1, num_stages=1)
buf19 = buf1
del buf1
buf20 = buf0
del buf0
triton_poi_fused_native_layer_norm_0[grid(16)](buf18, buf19, buf20,
16, XBLOCK=16, num_warps=1, num_stages=1)
buf21 = empty_strided_cuda((4, 4, 4), (16, 4, 1), torch.float32)
triton_poi_fused_native_layer_norm_1[grid(64)](buf18, buf19, buf20,
primals_13, primals_14, buf21, 64, XBLOCK=64, num_warps=1,
num_stages=1)
del buf19
del buf20
del primals_14
buf22 = reinterpret_tensor(buf12, (16, 16), (16, 1), 0)
del buf12
extern_kernels.addmm(primals_16, reinterpret_tensor(buf21, (16, 4),
(4, 1), 0), reinterpret_tensor(primals_15, (4, 16), (1, 4), 0),
alpha=1, beta=1, out=buf22)
del primals_16
buf23 = empty_strided_cuda((4, 4, 16), (64, 16, 1), torch.float32)
triton_poi_fused_gelu_11[grid(256)](buf22, buf23, 256, XBLOCK=256,
num_warps=4, num_stages=1)
buf24 = empty_strided_cuda((16, 4), (4, 1), torch.float32)
extern_kernels.addmm(primals_18, reinterpret_tensor(buf23, (16, 16),
(16, 1), 0), reinterpret_tensor(primals_17, (16, 4), (1, 16), 0
), alpha=1, beta=1, out=buf24)
del primals_18
buf25 = empty_strided_cuda((4, 4, 4), (16, 4, 1), torch.float32)
triton_poi_fused_add_mul_12[grid(64)](buf18, primals_12, buf24,
buf25, 64, XBLOCK=64, num_warps=1, num_stages=1)
return (buf18, buf25, primals_1, primals_4, primals_7, primals_11,
primals_12, primals_13, reinterpret_tensor(buf2, (16, 4), (4, 1), 0
), reinterpret_tensor(buf7, (64, 4), (4, 1), 0), buf8,
reinterpret_tensor(buf11, (64, 4), (4, 1), 0), reinterpret_tensor(
buf16, (16, 4), (4, 1), 0), buf17, buf18, reinterpret_tensor(buf21,
(16, 4), (4, 1), 0), buf22, reinterpret_tensor(buf23, (16, 16), (16,
1), 0), buf24, primals_17, primals_15, primals_10,
reinterpret_tensor(buf13, (16, 4, 4), (16, 1, 4), 0),
reinterpret_tensor(buf14, (16, 1, 4), (4, 1, 1), 0), primals_8,
primals_6, reinterpret_tensor(buf4, (16, 1, 4), (4, 1, 1), 0),
reinterpret_tensor(buf5, (16, 4, 1), (4, 1, 4), 0), primals_5)
def drop_path(x, drop_prob: 'float'=0.0, training: 'bool'=False):
"""Drop paths (Stochastic Depth) per sample (when applied in main path of residual blocks).
This is the same as the DropConnect impl I created for EfficientNet, etc networks, however,
the original name is misleading as 'Drop Connect' is a different form of dropout in a separate paper...
See discussion: https://github.com/tensorflow/tpu/issues/494#issuecomment-532968956 ... I've opted for
changing the layer and argument names to 'drop path' rather than mix DropConnect as a layer name and use
'survival rate' as the argument.
"""
if drop_prob == 0.0 or not training:
return x
keep_prob = 1 - drop_prob
shape = (x.shape[0],) + (1,) * (x.ndim - 1)
random_tensor = keep_prob + torch.rand(shape, dtype=x.dtype, device=x.
device)
random_tensor.floor_()
output = x.div(keep_prob) * random_tensor
return output
class DropPath(nn.Module):
"""Drop paths (Stochastic Depth) per sample (when applied in main path of residual blocks).
"""
def __init__(self, drop_prob=None):
super(DropPath, self).__init__()
self.drop_prob = drop_prob
def forward(self, x):
return drop_path(x, self.drop_prob, self.training)
class Mlp(nn.Module):
""" MLP as used in Vision Transformer, MLP-Mixer and related networks
"""
def __init__(self, in_features, hidden_features=None, out_features=None,
act_layer=nn.GELU, drop=0.0):
super().__init__()
out_features = out_features or in_features
hidden_features = hidden_features or in_features
self.fc1 = nn.Linear(in_features, hidden_features)
self.act = act_layer()
self.fc2 = nn.Linear(hidden_features, out_features)
self.drop = nn.Dropout(drop)
def forward(self, x):
x = self.fc1(x)
x = self.act(x)
x = self.drop(x)
x = self.fc2(x)
x = self.drop(x)
return x
class TalkingHeadAttn(nn.Module):
def __init__(self, dim, num_heads=8, qkv_bias=False, qk_scale=None,
attn_drop=0.0, proj_drop=0.0):
super().__init__()
self.num_heads = num_heads
head_dim = dim // num_heads
self.scale = qk_scale or head_dim ** -0.5
self.qkv = nn.Linear(dim, dim * 3, bias=qkv_bias)
self.attn_drop = nn.Dropout(attn_drop)
self.proj = nn.Linear(dim, dim)
self.proj_l = nn.Linear(num_heads, num_heads)
self.proj_w = nn.Linear(num_heads, num_heads)
self.proj_drop = nn.Dropout(proj_drop)
def forward(self, x):
B, N, C = x.shape
qkv = self.qkv(x).reshape(B, N, 3, self.num_heads, C // self.num_heads
).permute(2, 0, 3, 1, 4)
q, k, v = qkv[0] * self.scale, qkv[1], qkv[2]
attn = q @ k.transpose(-2, -1)
attn = self.proj_l(attn.permute(0, 2, 3, 1)).permute(0, 3, 1, 2)
attn = attn.softmax(dim=-1)
attn = self.proj_w(attn.permute(0, 2, 3, 1)).permute(0, 3, 1, 2)
attn = self.attn_drop(attn)
x = (attn @ v).transpose(1, 2).reshape(B, N, C)
x = self.proj(x)
x = self.proj_drop(x)
return x
class LayerScaleBlockNew(nn.Module):
def __init__(self, dim, num_heads, mlp_ratio=4.0, qkv_bias=False,
qk_scale=None, drop=0.0, attn_drop=0.0, drop_path=0.0, act_layer=nn
.GELU, norm_layer=nn.LayerNorm, attn_block=TalkingHeadAttn,
mlp_block=Mlp, init_values=0.0001):
super().__init__()
self.norm1 = norm_layer(dim)
self.attn = attn_block(dim, num_heads=num_heads, qkv_bias=qkv_bias,
qk_scale=qk_scale, attn_drop=attn_drop, proj_drop=drop)
self.drop_path = DropPath(drop_path
) if drop_path > 0.0 else nn.Identity()
self.norm2 = norm_layer(dim)
mlp_hidden_dim = int(dim * mlp_ratio)
self.mlp = mlp_block(in_features=dim, hidden_features=
mlp_hidden_dim, act_layer=act_layer, drop=drop)
self.gamma_1 = nn.Parameter(init_values * torch.ones(dim),
requires_grad=True)
self.gamma_2 = nn.Parameter(init_values * torch.ones(dim),
requires_grad=True)
def forward(self, input_0):
primals_1 = self.gamma_1
primals_2 = self.gamma_2
primals_3 = self.norm1.weight
primals_7 = self.norm1.bias
primals_5 = self.attn.qkv.weight
primals_6 = self.attn.proj.weight
primals_9 = self.attn.proj.bias
primals_8 = self.attn.proj_l.weight
primals_11 = self.attn.proj_l.bias
primals_10 = self.attn.proj_w.weight
primals_12 = self.attn.proj_w.bias
primals_13 = self.norm2.weight
primals_14 = self.norm2.bias
primals_15 = self.mlp.fc1.weight
primals_16 = self.mlp.fc1.bias
primals_17 = self.mlp.fc2.weight
primals_18 = self.mlp.fc2.bias
primals_4 = input_0
output = call([primals_1, primals_2, primals_3, primals_4,
primals_5, primals_6, primals_7, primals_8, primals_9,
primals_10, primals_11, primals_12, primals_13, primals_14,
primals_15, primals_16, primals_17, primals_18])
return output[0], output[1]
|
yifanc96/yifanc-DL
|
LayerScaleBlock
| false | 11,101 |
[
"MIT"
] | 0 |
25d56cec776fb151c8f6bcbd997bca94f07f3597
|
https://github.com/yifanc96/yifanc-DL/tree/25d56cec776fb151c8f6bcbd997bca94f07f3597
|
LocalResponseNormLayer
|
import torch
import torch.nn as nn
import torch.nn.functional as F
class LocalResponseNormLayer(nn.Module):
def forward(self, tensor, size=5, alpha=9.999999747378752e-05, beta=
0.75, k=1.0):
return F.local_response_norm(tensor, size=size, alpha=alpha, beta=
beta, k=k)
def get_inputs():
return [torch.rand([4, 4, 4, 4])]
def get_init_inputs():
return [[], {}]
|
import torch
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
from torch._inductor.runtime.triton_helpers import libdevice
import torch.nn as nn
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
@triton.jit
def triton_poi_fused_add_avg_pool3d_constant_pad_nd_div_mul_pow_0(in_out_ptr0,
in_ptr0, xnumel, XBLOCK: tl.constexpr):
xnumel = 256
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x1 = xindex // 16 % 4
x3 = xindex
tmp48 = tl.load(in_ptr0 + x3, xmask)
tmp0 = -2 + x1
tmp1 = tl.full([1], 0, tl.int64)
tmp2 = tmp0 >= tmp1
tmp3 = tl.full([1], 4, tl.int64)
tmp4 = tmp0 < tmp3
tmp5 = tmp2 & tmp4
tmp6 = tl.load(in_ptr0 + (-32 + x3), tmp5 & xmask, other=0.0)
tmp7 = tmp6 * tmp6
tmp8 = tl.full(tmp7.shape, 0.0, tmp7.dtype)
tmp9 = tl.where(tmp5, tmp7, tmp8)
tmp10 = -1 + x1
tmp11 = tmp10 >= tmp1
tmp12 = tmp10 < tmp3
tmp13 = tmp11 & tmp12
tmp14 = tl.load(in_ptr0 + (-16 + x3), tmp13 & xmask, other=0.0)
tmp15 = tmp14 * tmp14
tmp16 = tl.full(tmp15.shape, 0.0, tmp15.dtype)
tmp17 = tl.where(tmp13, tmp15, tmp16)
tmp18 = tmp17 + tmp9
tmp19 = x1
tmp20 = tmp19 >= tmp1
tmp21 = tmp19 < tmp3
tmp22 = tmp20 & tmp21
tmp23 = tl.load(in_ptr0 + x3, tmp22 & xmask, other=0.0)
tmp24 = tmp23 * tmp23
tmp25 = tl.full(tmp24.shape, 0.0, tmp24.dtype)
tmp26 = tl.where(tmp22, tmp24, tmp25)
tmp27 = tmp26 + tmp18
tmp28 = 1 + x1
tmp29 = tmp28 >= tmp1
tmp30 = tmp28 < tmp3
tmp31 = tmp29 & tmp30
tmp32 = tl.load(in_ptr0 + (16 + x3), tmp31 & xmask, other=0.0)
tmp33 = tmp32 * tmp32
tmp34 = tl.full(tmp33.shape, 0.0, tmp33.dtype)
tmp35 = tl.where(tmp31, tmp33, tmp34)
tmp36 = tmp35 + tmp27
tmp37 = 2 + x1
tmp38 = tmp37 >= tmp1
tmp39 = tmp37 < tmp3
tmp40 = tmp38 & tmp39
tmp41 = tl.load(in_ptr0 + (32 + x3), tmp40 & xmask, other=0.0)
tmp42 = tmp41 * tmp41
tmp43 = tl.full(tmp42.shape, 0.0, tmp42.dtype)
tmp44 = tl.where(tmp40, tmp42, tmp43)
tmp45 = tmp44 + tmp36
tmp46 = 0.2
tmp47 = tmp45 * tmp46
tmp49 = 9.999999747378752e-05
tmp50 = tmp47 * tmp49
tmp51 = 1.0
tmp52 = tmp50 + tmp51
tmp53 = 0.75
tmp54 = libdevice.pow(tmp52, tmp53)
tmp55 = tmp48 / tmp54
tl.store(in_out_ptr0 + x3, tmp55, xmask)
def call(args):
arg0_1, = args
args.clear()
assert_size_stride(arg0_1, (4, 4, 4, 4), (64, 16, 4, 1))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((4, 1, 4, 4, 4), (64, 64, 16, 4, 1),
torch.float32)
buf1 = reinterpret_tensor(buf0, (4, 4, 4, 4), (64, 16, 4, 1), 0)
del buf0
get_raw_stream(0)
triton_poi_fused_add_avg_pool3d_constant_pad_nd_div_mul_pow_0[grid(256)
](buf1, arg0_1, 256, XBLOCK=128, num_warps=4, num_stages=1)
del arg0_1
return buf1,
class LocalResponseNormLayerNew(nn.Module):
def forward(self, input_0):
arg0_1 = input_0
output = call([arg0_1])
return output[0]
|
a-kore/lucent
|
LocalResponseNormLayer
| false | 1,334 |
[
"Apache-2.0"
] | 0 |
6b2b4dfea45c36c99e16f9923104a532df80e0a8
|
https://github.com/a-kore/lucent/tree/6b2b4dfea45c36c99e16f9923104a532df80e0a8
|
C51ValueNetwork
|
import torch
import numpy as np
import torch.nn as nn
class C51ValueNetwork(nn.Module):
"""Critic - return Q value from given states and actions. """
def __init__(self, num_states, num_actions, hidden_size, v_min, v_max,
num_atoms, device='cuda'):
"""
Args:
num_states (int): state dimension
num_actions (int): action dimension
hidden_size (int): size of the hidden layers
v_min (float): minimum value for critic
v_max (float): maximum value for critic
num_atoms (int): number of atoms in distribution
init_w:
"""
super(C51ValueNetwork, self).__init__()
self.linear1 = nn.Linear(num_states + num_actions, hidden_size)
self.linear2 = nn.Linear(hidden_size, hidden_size)
self.linear3 = nn.Linear(hidden_size, num_atoms)
self.z_atoms = np.linspace(v_min, v_max, num_atoms)
self
def forward(self, state, action):
x = torch.cat([state, action], 1)
x = torch.relu(self.linear1(x))
x = torch.relu(self.linear2(x))
x = self.linear3(x)
return x
def get_probs(self, state, action):
return torch.softmax(self.forward(state, action), dim=1)
def get_inputs():
return [torch.rand([4, 4]), torch.rand([4, 4])]
def get_init_inputs():
return [[], {'num_states': 4, 'num_actions': 4, 'hidden_size': 4,
'v_min': 4, 'v_max': 4, 'num_atoms': 4}]
|
import torch
from torch._inductor.select_algorithm import extern_kernels
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
from torch._inductor.runtime import triton_helpers
import numpy as np
import torch.nn as nn
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
@triton.jit
def triton_poi_fused_cat_0(in_ptr0, in_ptr1, out_ptr0, xnumel, XBLOCK: tl.
constexpr):
xnumel = 32
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex % 8
x1 = xindex // 8
x2 = xindex
tmp0 = x0
tl.full([1], 0, tl.int64)
tmp3 = tl.full([1], 4, tl.int64)
tmp4 = tmp0 < tmp3
tmp5 = tl.load(in_ptr0 + (4 * x1 + x0), tmp4 & xmask, eviction_policy=
'evict_last', other=0.0)
tmp6 = tmp0 >= tmp3
tl.full([1], 8, tl.int64)
tmp9 = tl.load(in_ptr1 + (4 * x1 + (-4 + x0)), tmp6 & xmask,
eviction_policy='evict_last', other=0.0)
tmp10 = tl.where(tmp4, tmp5, tmp9)
tl.store(out_ptr0 + x2, tmp10, xmask)
@triton.jit
def triton_poi_fused_relu_1(in_out_ptr0, in_ptr0, xnumel, XBLOCK: tl.constexpr
):
xnumel = 16
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x2 = xindex
x0 = xindex % 4
tmp0 = tl.load(in_out_ptr0 + x2, xmask)
tmp1 = tl.load(in_ptr0 + x0, xmask, eviction_policy='evict_last')
tmp2 = tmp0 + tmp1
tmp3 = tl.full([1], 0, tl.int32)
tmp4 = triton_helpers.maximum(tmp3, tmp2)
tl.store(in_out_ptr0 + x2, tmp4, xmask)
def call(args):
(primals_1, primals_2, primals_3, primals_4, primals_5, primals_6,
primals_7, primals_8) = args
args.clear()
assert_size_stride(primals_1, (4, 4), (4, 1))
assert_size_stride(primals_2, (4, 4), (4, 1))
assert_size_stride(primals_3, (4, 8), (8, 1))
assert_size_stride(primals_4, (4,), (1,))
assert_size_stride(primals_5, (4, 4), (4, 1))
assert_size_stride(primals_6, (4,), (1,))
assert_size_stride(primals_7, (4, 4), (4, 1))
assert_size_stride(primals_8, (4,), (1,))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((4, 8), (8, 1), torch.float32)
get_raw_stream(0)
triton_poi_fused_cat_0[grid(32)](primals_1, primals_2, buf0, 32,
XBLOCK=32, num_warps=1, num_stages=1)
del primals_1
del primals_2
buf1 = empty_strided_cuda((4, 4), (4, 1), torch.float32)
extern_kernels.mm(buf0, reinterpret_tensor(primals_3, (8, 4), (1, 8
), 0), out=buf1)
del primals_3
buf2 = buf1
del buf1
triton_poi_fused_relu_1[grid(16)](buf2, primals_4, 16, XBLOCK=16,
num_warps=1, num_stages=1)
del primals_4
buf3 = empty_strided_cuda((4, 4), (4, 1), torch.float32)
extern_kernels.mm(buf2, reinterpret_tensor(primals_5, (4, 4), (1, 4
), 0), out=buf3)
buf4 = buf3
del buf3
triton_poi_fused_relu_1[grid(16)](buf4, primals_6, 16, XBLOCK=16,
num_warps=1, num_stages=1)
del primals_6
buf5 = empty_strided_cuda((4, 4), (4, 1), torch.float32)
extern_kernels.addmm(primals_8, buf4, reinterpret_tensor(primals_7,
(4, 4), (1, 4), 0), alpha=1, beta=1, out=buf5)
del primals_8
return buf5, buf0, buf2, buf4, primals_7, primals_5
class C51ValueNetworkNew(nn.Module):
"""Critic - return Q value from given states and actions. """
def __init__(self, num_states, num_actions, hidden_size, v_min, v_max,
num_atoms, device='cuda'):
"""
Args:
num_states (int): state dimension
num_actions (int): action dimension
hidden_size (int): size of the hidden layers
v_min (float): minimum value for critic
v_max (float): maximum value for critic
num_atoms (int): number of atoms in distribution
init_w:
"""
super(C51ValueNetworkNew, self).__init__()
self.linear1 = nn.Linear(num_states + num_actions, hidden_size)
self.linear2 = nn.Linear(hidden_size, hidden_size)
self.linear3 = nn.Linear(hidden_size, num_atoms)
self.z_atoms = np.linspace(v_min, v_max, num_atoms)
self
def get_probs(self, state, action):
return torch.softmax(self.forward(state, action), dim=1)
def forward(self, input_0, input_1):
primals_3 = self.linear1.weight
primals_4 = self.linear1.bias
primals_1 = self.linear2.weight
primals_6 = self.linear2.bias
primals_2 = self.linear3.weight
primals_8 = self.linear3.bias
primals_5 = input_0
primals_7 = input_1
output = call([primals_1, primals_2, primals_3, primals_4,
primals_5, primals_6, primals_7, primals_8])
return output[0]
|
HzcIrving/DLRL_PlayGround
|
C51ValueNetwork
| false | 8,286 |
[
"MIT"
] | 27 |
0db9a4bdb87130d1d26aea1591ef74cbe6aaa43b
|
https://github.com/HzcIrving/DLRL_PlayGround/tree/0db9a4bdb87130d1d26aea1591ef74cbe6aaa43b
|
BertSelfAttention
|
from _paritybench_helpers import _mock_config
import math
import torch
import torch.nn as nn
class BertSelfAttention(nn.Module):
def __init__(self, config):
super(BertSelfAttention, self).__init__()
if config.hidden_size % config.num_attention_heads != 0:
raise ValueError(
'The hidden size (%d) is not a multiple of the number of attention heads (%d)'
% (config.hidden_size, config.num_attention_heads))
self.num_attention_heads = config.num_attention_heads
self.attention_head_size = int(config.hidden_size / config.
num_attention_heads)
self.all_head_size = (self.num_attention_heads * self.
attention_head_size)
self.query = nn.Linear(config.hidden_size, self.all_head_size)
self.key = nn.Linear(config.hidden_size, self.all_head_size)
self.value = nn.Linear(config.hidden_size, self.all_head_size)
self.dropout = nn.Dropout(config.attention_probs_dropout_prob)
def transpose_for_scores(self, x):
new_x_shape = x.size()[:-1] + (self.num_attention_heads, self.
attention_head_size)
x = x.view(*new_x_shape)
return x.permute(0, 2, 1, 3)
def forward(self, query_states, key_states, value_states, attention_mask):
"""
Args:
query_states: (N, Lq, D)
key_states: (N, L, D)
value_states: (N, L, D)
attention_mask: (N, Lq, L)
Returns:
"""
attention_mask = (1 - attention_mask.unsqueeze(1)) * -10000.0
mixed_query_layer = self.query(query_states)
mixed_key_layer = self.key(key_states)
mixed_value_layer = self.value(value_states)
query_layer = self.transpose_for_scores(mixed_query_layer)
key_layer = self.transpose_for_scores(mixed_key_layer)
value_layer = self.transpose_for_scores(mixed_value_layer)
attention_scores = torch.matmul(query_layer, key_layer.transpose(-1,
-2))
attention_scores = attention_scores / math.sqrt(self.
attention_head_size)
attention_scores = attention_scores + attention_mask
attention_probs = nn.Softmax(dim=-1)(attention_scores)
attention_probs = self.dropout(attention_probs)
context_layer = torch.matmul(attention_probs, value_layer)
context_layer = context_layer.permute(0, 2, 1, 3).contiguous()
new_context_layer_shape = context_layer.size()[:-2] + (self.
all_head_size,)
context_layer = context_layer.view(*new_context_layer_shape)
return context_layer
def get_inputs():
return [torch.rand([4, 4, 4]), torch.rand([4, 4, 4]), torch.rand([4, 4,
4]), torch.rand([4, 4, 4])]
def get_init_inputs():
return [[], {'config': _mock_config(hidden_size=4, num_attention_heads=
4, attention_probs_dropout_prob=0.5)}]
|
import torch
from torch._inductor.select_algorithm import extern_kernels
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
from torch._inductor.runtime import triton_helpers
from torch._inductor.runtime.triton_helpers import math as tl_math
import torch.nn as nn
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
@triton.jit
def triton_poi_fused_0(in_ptr0, in_ptr1, out_ptr0, ynumel, xnumel, YBLOCK:
tl.constexpr, XBLOCK: tl.constexpr):
ynumel = 16
xnumel = 4
yoffset = tl.program_id(1) * YBLOCK
yindex = yoffset + tl.arange(0, YBLOCK)[None, :]
ymask = yindex < ynumel
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:, None]
xmask = xindex < xnumel
x2 = xindex
y0 = yindex % 4
y1 = yindex // 4
y3 = yindex
tmp0 = tl.load(in_ptr0 + (y0 + 4 * x2 + 16 * y1), xmask & ymask,
eviction_policy='evict_last')
tmp1 = tl.load(in_ptr1 + y0, ymask, eviction_policy='evict_last')
tmp2 = tmp0 + tmp1
tmp3 = 1.0
tmp4 = tmp2 * tmp3
tl.store(out_ptr0 + (x2 + 4 * y3), tmp4, xmask & ymask)
@triton.jit
def triton_poi_fused_mul_rsub_1(in_ptr0, in_ptr1, out_ptr0, out_ptr1,
out_ptr2, xnumel, XBLOCK: tl.constexpr):
xnumel = 64
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x3 = xindex
x0 = xindex % 4
x2 = xindex // 16
tmp0 = tl.load(in_ptr0 + 4 * x3, xmask, eviction_policy='evict_last')
tmp1 = tl.load(in_ptr1 + (4 * x0 + 16 * x2), xmask, eviction_policy=
'evict_last')
tmp7 = tl.load(in_ptr0 + (1 + 4 * x3), xmask, eviction_policy='evict_last')
tmp8 = tl.load(in_ptr1 + (1 + 4 * x0 + 16 * x2), xmask, eviction_policy
='evict_last')
tmp13 = tl.load(in_ptr0 + (2 + 4 * x3), xmask, eviction_policy='evict_last'
)
tmp14 = tl.load(in_ptr1 + (2 + 4 * x0 + 16 * x2), xmask,
eviction_policy='evict_last')
tmp19 = tl.load(in_ptr0 + (3 + 4 * x3), xmask, eviction_policy='evict_last'
)
tmp20 = tl.load(in_ptr1 + (3 + 4 * x0 + 16 * x2), xmask,
eviction_policy='evict_last')
tmp2 = 1.0
tmp3 = tmp2 - tmp1
tmp4 = -10000.0
tmp5 = tmp3 * tmp4
tmp6 = tmp0 + tmp5
tmp9 = tmp2 - tmp8
tmp10 = tmp9 * tmp4
tmp11 = tmp7 + tmp10
tmp12 = triton_helpers.maximum(tmp6, tmp11)
tmp15 = tmp2 - tmp14
tmp16 = tmp15 * tmp4
tmp17 = tmp13 + tmp16
tmp18 = triton_helpers.maximum(tmp12, tmp17)
tmp21 = tmp2 - tmp20
tmp22 = tmp21 * tmp4
tmp23 = tmp19 + tmp22
tmp24 = triton_helpers.maximum(tmp18, tmp23)
tmp25 = tmp6 - tmp24
tmp26 = tl_math.exp(tmp25)
tmp27 = tmp11 - tmp24
tmp28 = tl_math.exp(tmp27)
tmp29 = tmp26 + tmp28
tmp30 = tmp17 - tmp24
tmp31 = tl_math.exp(tmp30)
tmp32 = tmp29 + tmp31
tmp33 = tmp23 - tmp24
tmp34 = tl_math.exp(tmp33)
tmp35 = tmp32 + tmp34
tmp36 = float('-inf')
tmp37 = tmp6 == tmp36
tmp38 = tmp37 == 0
tmp39 = tmp38.to(tl.int64)
tmp40 = tmp39 != 0
tmp41 = tmp11 == tmp36
tmp42 = tmp41 == 0
tmp43 = tmp42.to(tl.int64)
tmp44 = tmp43 != 0
tmp45 = tmp40 | tmp44
tmp46 = tmp17 == tmp36
tmp47 = tmp46 == 0
tmp48 = tmp47.to(tl.int64)
tmp49 = tmp48 != 0
tmp50 = tmp45 | tmp49
tmp51 = tmp23 == tmp36
tmp52 = tmp51 == 0
tmp53 = tmp52.to(tl.int64)
tmp54 = tmp53 != 0
tmp55 = tmp50 | tmp54
tl.store(out_ptr0 + x3, tmp24, xmask)
tl.store(out_ptr1 + x3, tmp35, xmask)
tl.store(out_ptr2 + x3, tmp55, xmask)
@triton.jit
def triton_poi_fused_mul_rsub_2(in_out_ptr0, in_ptr0, in_ptr1, in_ptr2,
in_ptr3, xnumel, XBLOCK: tl.constexpr):
xnumel = 256
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x4 = xindex // 4
x5 = xindex
x3 = xindex // 64
x6 = xindex % 16
tmp0 = tl.load(in_ptr0 + x4, xmask, eviction_policy='evict_last').to(tl
.int1)
tmp2 = tl.load(in_out_ptr0 + x5, xmask)
tmp3 = tl.load(in_ptr1 + (x6 + 16 * x3), xmask, eviction_policy=
'evict_last')
tmp9 = tl.load(in_ptr2 + x4, xmask, eviction_policy='evict_last')
tmp12 = tl.load(in_ptr3 + x4, xmask, eviction_policy='evict_last')
tmp1 = tmp0 == 0
tmp4 = 1.0
tmp5 = tmp4 - tmp3
tmp6 = -10000.0
tmp7 = tmp5 * tmp6
tmp8 = tmp2 + tmp7
tmp10 = tmp8 - tmp9
tmp11 = tl_math.exp(tmp10)
tmp13 = tmp11 / tmp12
tmp14 = 0.0
tmp15 = tl.where(tmp1, tmp14, tmp13)
tl.store(in_out_ptr0 + x5, tmp15, xmask)
@triton.jit
def triton_poi_fused_3(in_ptr0, in_ptr1, out_ptr0, ynumel, xnumel, YBLOCK:
tl.constexpr, XBLOCK: tl.constexpr):
ynumel = 16
xnumel = 4
yoffset = tl.program_id(1) * YBLOCK
yindex = yoffset + tl.arange(0, YBLOCK)[None, :]
ymask = yindex < ynumel
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:, None]
xmask = xindex < xnumel
x2 = xindex
y0 = yindex % 4
y1 = yindex // 4
y3 = yindex
tmp0 = tl.load(in_ptr0 + (y0 + 4 * x2 + 16 * y1), xmask & ymask,
eviction_policy='evict_last')
tmp1 = tl.load(in_ptr1 + y0, ymask, eviction_policy='evict_last')
tmp2 = tmp0 + tmp1
tl.store(out_ptr0 + (x2 + 4 * y3), tmp2, xmask & ymask)
@triton.jit
def triton_poi_fused_clone_4(in_ptr0, out_ptr0, ynumel, xnumel, YBLOCK: tl.
constexpr, XBLOCK: tl.constexpr):
ynumel = 16
xnumel = 4
yoffset = tl.program_id(1) * YBLOCK
yindex = yoffset + tl.arange(0, YBLOCK)[None, :]
ymask = yindex < ynumel
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:, None]
xmask = xindex < xnumel
x2 = xindex
y0 = yindex % 4
y1 = yindex // 4
y3 = yindex
tmp0 = tl.load(in_ptr0 + (y0 + 4 * x2 + 16 * y1), xmask & ymask,
eviction_policy='evict_last')
tl.store(out_ptr0 + (x2 + 4 * y3), tmp0, xmask & ymask)
def call(args):
(primals_1, primals_2, primals_3, primals_4, primals_5, primals_6,
primals_7, primals_8, primals_9, primals_10) = args
args.clear()
assert_size_stride(primals_1, (4, 4, 4), (16, 4, 1))
assert_size_stride(primals_2, (4, 4), (4, 1))
assert_size_stride(primals_3, (4,), (1,))
assert_size_stride(primals_4, (4, 4, 4), (16, 4, 1))
assert_size_stride(primals_5, (4, 4), (4, 1))
assert_size_stride(primals_6, (4,), (1,))
assert_size_stride(primals_7, (4, 4, 4), (16, 4, 1))
assert_size_stride(primals_8, (4, 4), (4, 1))
assert_size_stride(primals_9, (4,), (1,))
assert_size_stride(primals_10, (4, 4, 4), (16, 4, 1))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((16, 4), (4, 1), torch.float32)
extern_kernels.mm(reinterpret_tensor(primals_4, (16, 4), (4, 1), 0),
reinterpret_tensor(primals_2, (4, 4), (1, 4), 0), out=buf0)
del primals_2
buf1 = empty_strided_cuda((16, 4), (4, 1), torch.float32)
extern_kernels.mm(reinterpret_tensor(primals_7, (16, 4), (4, 1), 0),
reinterpret_tensor(primals_5, (4, 4), (1, 4), 0), out=buf1)
del primals_5
buf2 = empty_strided_cuda((16, 4), (4, 1), torch.float32)
extern_kernels.mm(reinterpret_tensor(primals_10, (16, 4), (4, 1), 0
), reinterpret_tensor(primals_8, (4, 4), (1, 4), 0), out=buf2)
del primals_8
buf3 = empty_strided_cuda((4, 4, 4, 1), (16, 4, 1, 1), torch.float32)
get_raw_stream(0)
triton_poi_fused_0[grid(16, 4)](buf0, primals_3, buf3, 16, 4,
XBLOCK=4, YBLOCK=8, num_warps=1, num_stages=1)
del primals_3
buf4 = reinterpret_tensor(buf0, (4, 4, 1, 4), (16, 4, 4, 1), 0)
del buf0
triton_poi_fused_0[grid(16, 4)](buf1, primals_6, buf4, 16, 4,
XBLOCK=4, YBLOCK=8, num_warps=1, num_stages=1)
del primals_6
buf5 = empty_strided_cuda((16, 4, 4), (16, 4, 1), torch.float32)
extern_kernels.bmm(reinterpret_tensor(buf3, (16, 4, 1), (4, 1, 0),
0), reinterpret_tensor(buf4, (16, 1, 4), (4, 0, 1), 0), out=buf5)
buf6 = reinterpret_tensor(buf1, (4, 4, 4, 1), (16, 4, 1, 64), 0)
del buf1
buf7 = empty_strided_cuda((4, 4, 4, 1), (16, 4, 1, 64), torch.float32)
buf8 = empty_strided_cuda((4, 4, 4, 1), (16, 4, 1, 64), torch.bool)
triton_poi_fused_mul_rsub_1[grid(64)](buf5, primals_1, buf6, buf7,
buf8, 64, XBLOCK=64, num_warps=1, num_stages=1)
buf9 = reinterpret_tensor(buf5, (4, 4, 4, 4), (64, 16, 4, 1), 0)
del buf5
triton_poi_fused_mul_rsub_2[grid(256)](buf9, buf8, primals_1, buf6,
buf7, 256, XBLOCK=128, num_warps=4, num_stages=1)
del buf8
del primals_1
buf10 = reinterpret_tensor(buf7, (4, 4, 4, 1), (16, 4, 1, 1), 0)
del buf7
triton_poi_fused_3[grid(16, 4)](buf2, primals_9, buf10, 16, 4,
XBLOCK=4, YBLOCK=16, num_warps=1, num_stages=1)
del primals_9
buf11 = reinterpret_tensor(buf2, (16, 4, 1), (4, 1, 1), 0)
del buf2
extern_kernels.bmm(reinterpret_tensor(buf9, (16, 4, 4), (16, 4, 1),
0), reinterpret_tensor(buf10, (16, 4, 1), (4, 1, 0), 0), out=buf11)
buf12 = reinterpret_tensor(buf6, (4, 4, 4, 1), (16, 4, 1, 1), 0)
del buf6
triton_poi_fused_clone_4[grid(16, 4)](buf11, buf12, 16, 4, XBLOCK=4,
YBLOCK=16, num_warps=1, num_stages=1)
del buf11
return reinterpret_tensor(buf12, (4, 4, 4), (16, 4, 1), 0
), reinterpret_tensor(primals_4, (16, 4), (4, 1), 0
), reinterpret_tensor(primals_7, (16, 4), (4, 1), 0
), reinterpret_tensor(primals_10, (16, 4), (4, 1), 0
), buf9, reinterpret_tensor(buf10, (16, 1, 4), (4, 1, 1), 0
), reinterpret_tensor(buf3, (16, 1, 4), (4, 1, 1), 0
), reinterpret_tensor(buf4, (16, 4, 1), (4, 1, 4), 0)
class BertSelfAttentionNew(nn.Module):
def __init__(self, config):
super(BertSelfAttentionNew, self).__init__()
if config.hidden_size % config.num_attention_heads != 0:
raise ValueError(
'The hidden size (%d) is not a multiple of the number of attention heads (%d)'
% (config.hidden_size, config.num_attention_heads))
self.num_attention_heads = config.num_attention_heads
self.attention_head_size = int(config.hidden_size / config.
num_attention_heads)
self.all_head_size = (self.num_attention_heads * self.
attention_head_size)
self.query = nn.Linear(config.hidden_size, self.all_head_size)
self.key = nn.Linear(config.hidden_size, self.all_head_size)
self.value = nn.Linear(config.hidden_size, self.all_head_size)
self.dropout = nn.Dropout(config.attention_probs_dropout_prob)
def transpose_for_scores(self, x):
new_x_shape = x.size()[:-1] + (self.num_attention_heads, self.
attention_head_size)
x = x.view(*new_x_shape)
return x.permute(0, 2, 1, 3)
def forward(self, input_0, input_1, input_2, input_3):
primals_2 = self.query.weight
primals_3 = self.query.bias
primals_5 = self.key.weight
primals_6 = self.key.bias
primals_8 = self.value.weight
primals_9 = self.value.bias
primals_1 = input_0
primals_4 = input_1
primals_7 = input_2
primals_10 = input_3
output = call([primals_1, primals_2, primals_3, primals_4,
primals_5, primals_6, primals_7, primals_8, primals_9, primals_10])
return output[0]
|
minjoong507/Image-Captioning-Transformer
|
BertSelfAttention
| false | 7,247 |
[
"MIT"
] | 1 |
813060f0bb656e336154173f11e99a80362c8c2a
|
https://github.com/minjoong507/Image-Captioning-Transformer/tree/813060f0bb656e336154173f11e99a80362c8c2a
|
GatedConvTranspose
|
# AOT ID: ['0_forward']
from ctypes import c_void_p, c_long, c_int
import torch
import math
import random
import os
import tempfile
from math import inf, nan
from torch._inductor.hooks import run_intermediate_hooks
from torch._inductor.utils import maybe_profile
from torch._inductor.codegen.memory_planning import _align as align
from torch import device, empty_strided
from torch._inductor.async_compile import AsyncCompile
from torch._inductor.select_algorithm import extern_kernels
from torch._inductor.codegen.multi_kernel import MultiKernelCall
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
aten = torch.ops.aten
inductor_ops = torch.ops.inductor
_quantized = torch.ops._quantized
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
alloc_from_pool = torch.ops.inductor._alloc_from_pool
async_compile = AsyncCompile()
# kernel path: runs/run_shard_0/inductor_cache/6k/c6kazydtzigopxuzedfthhmhnydldamntm2carnmlp5uv53z3g7p.py
# Topologically Sorted Source Nodes: [f, conv_transpose2d_1, g, mul], Original ATen: [aten.convolution, aten.sigmoid, aten.mul]
# Source node to ATen node mapping:
# conv_transpose2d_1 => convolution_1
# f => convolution
# g => sigmoid
# mul => mul
# Graph fragment:
# %convolution : [num_users=2] = call_function[target=torch.ops.aten.convolution.default](args = (%primals_3, %primals_1, %primals_2, [1, 1], [0, 0], [1, 1], True, [0, 0], 1), kwargs = {})
# %convolution_1 : [num_users=2] = call_function[target=torch.ops.aten.convolution.default](args = (%primals_3, %primals_4, %primals_5, [1, 1], [0, 0], [1, 1], True, [0, 0], 1), kwargs = {})
# %sigmoid : [num_users=1] = call_function[target=torch.ops.aten.sigmoid.default](args = (%convolution_1,), kwargs = {})
# %mul : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%convolution, %sigmoid), kwargs = {})
triton_poi_fused_convolution_mul_sigmoid_0 = async_compile.triton('triton_poi_fused_convolution_mul_sigmoid_0', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[1024],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: '*fp32', 4: '*fp32', 5: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3, 4, 5), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_convolution_mul_sigmoid_0', 'mutated_arg_names': ['in_out_ptr0', 'in_out_ptr1'], 'no_x_dim': False, 'num_load': 4, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_convolution_mul_sigmoid_0(in_out_ptr0, in_out_ptr1, in_ptr0, in_ptr1, out_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 784
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x3 = xindex
x1 = (xindex // 49) % 4
tmp0 = tl.load(in_out_ptr0 + (x3), xmask)
tmp1 = tl.load(in_ptr0 + (x1), xmask, eviction_policy='evict_last')
tmp3 = tl.load(in_out_ptr1 + (x3), xmask)
tmp4 = tl.load(in_ptr1 + (x1), xmask, eviction_policy='evict_last')
tmp2 = tmp0 + tmp1
tmp5 = tmp3 + tmp4
tmp6 = tl.sigmoid(tmp5)
tmp7 = tmp2 * tmp6
tl.store(in_out_ptr0 + (x3), tmp2, xmask)
tl.store(in_out_ptr1 + (x3), tmp5, xmask)
tl.store(out_ptr0 + (x3), tmp7, xmask)
''', device_str='cuda')
async_compile.wait(globals())
del async_compile
def call(args):
primals_1, primals_2, primals_3, primals_4, primals_5 = args
args.clear()
assert_size_stride(primals_1, (4, 4, 4, 4), (64, 16, 4, 1))
assert_size_stride(primals_2, (4, ), (1, ))
assert_size_stride(primals_3, (4, 4, 4, 4), (64, 16, 4, 1))
assert_size_stride(primals_4, (4, 4, 4, 4), (64, 16, 4, 1))
assert_size_stride(primals_5, (4, ), (1, ))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
# Topologically Sorted Source Nodes: [f], Original ATen: [aten.convolution]
buf0 = extern_kernels.convolution(primals_3, primals_1, stride=(1, 1), padding=(0, 0), dilation=(1, 1), transposed=True, output_padding=(0, 0), groups=1, bias=None)
assert_size_stride(buf0, (4, 4, 7, 7), (196, 49, 7, 1))
# Topologically Sorted Source Nodes: [conv_transpose2d_1], Original ATen: [aten.convolution]
buf2 = extern_kernels.convolution(primals_3, primals_4, stride=(1, 1), padding=(0, 0), dilation=(1, 1), transposed=True, output_padding=(0, 0), groups=1, bias=None)
assert_size_stride(buf2, (4, 4, 7, 7), (196, 49, 7, 1))
buf1 = buf0; del buf0 # reuse
buf3 = buf2; del buf2 # reuse
buf4 = empty_strided_cuda((4, 4, 7, 7), (196, 49, 7, 1), torch.float32)
# Topologically Sorted Source Nodes: [f, conv_transpose2d_1, g, mul], Original ATen: [aten.convolution, aten.sigmoid, aten.mul]
stream0 = get_raw_stream(0)
triton_poi_fused_convolution_mul_sigmoid_0.run(buf1, buf3, primals_2, primals_5, buf4, 784, grid=grid(784), stream=stream0)
del primals_2
del primals_5
return (buf4, primals_1, primals_3, primals_4, buf1, buf3, )
def benchmark_compiled_module(times=10, repeat=10):
from torch._dynamo.testing import rand_strided
from torch._inductor.utils import print_performance
primals_1 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32)
primals_2 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32)
primals_3 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32)
primals_4 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32)
primals_5 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32)
fn = lambda: call([primals_1, primals_2, primals_3, primals_4, primals_5])
return print_performance(fn, times=times, repeat=repeat)
if __name__ == "__main__":
from torch._inductor.wrapper_benchmark import compiled_module_main
compiled_module_main('None', benchmark_compiled_module)
|
import torch
from torch._inductor.select_algorithm import extern_kernels
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
import torch.nn as nn
import torch.utils.data
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
@triton.jit
def triton_poi_fused_convolution_mul_sigmoid_0(in_out_ptr0, in_out_ptr1,
in_ptr0, in_ptr1, out_ptr0, xnumel, XBLOCK: tl.constexpr):
xnumel = 784
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x3 = xindex
x1 = xindex // 49 % 4
tmp0 = tl.load(in_out_ptr0 + x3, xmask)
tmp1 = tl.load(in_ptr0 + x1, xmask, eviction_policy='evict_last')
tmp3 = tl.load(in_out_ptr1 + x3, xmask)
tmp4 = tl.load(in_ptr1 + x1, xmask, eviction_policy='evict_last')
tmp2 = tmp0 + tmp1
tmp5 = tmp3 + tmp4
tmp6 = tl.sigmoid(tmp5)
tmp7 = tmp2 * tmp6
tl.store(in_out_ptr0 + x3, tmp2, xmask)
tl.store(in_out_ptr1 + x3, tmp5, xmask)
tl.store(out_ptr0 + x3, tmp7, xmask)
def call(args):
primals_1, primals_2, primals_3, primals_4, primals_5 = args
args.clear()
assert_size_stride(primals_1, (4, 4, 4, 4), (64, 16, 4, 1))
assert_size_stride(primals_2, (4,), (1,))
assert_size_stride(primals_3, (4, 4, 4, 4), (64, 16, 4, 1))
assert_size_stride(primals_4, (4, 4, 4, 4), (64, 16, 4, 1))
assert_size_stride(primals_5, (4,), (1,))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = extern_kernels.convolution(primals_3, primals_1, stride=(1,
1), padding=(0, 0), dilation=(1, 1), transposed=True,
output_padding=(0, 0), groups=1, bias=None)
assert_size_stride(buf0, (4, 4, 7, 7), (196, 49, 7, 1))
buf2 = extern_kernels.convolution(primals_3, primals_4, stride=(1,
1), padding=(0, 0), dilation=(1, 1), transposed=True,
output_padding=(0, 0), groups=1, bias=None)
assert_size_stride(buf2, (4, 4, 7, 7), (196, 49, 7, 1))
buf1 = buf0
del buf0
buf3 = buf2
del buf2
buf4 = empty_strided_cuda((4, 4, 7, 7), (196, 49, 7, 1), torch.float32)
get_raw_stream(0)
triton_poi_fused_convolution_mul_sigmoid_0[grid(784)](buf1, buf3,
primals_2, primals_5, buf4, 784, XBLOCK=128, num_warps=4,
num_stages=1)
del primals_2
del primals_5
return buf4, primals_1, primals_3, primals_4, buf1, buf3
class GatedConvTransposeNew(nn.Module):
def __init__(self, in_channels, out_channels, kernel_size, stride=1,
padding=0, output_padding=0, groups=1):
super(GatedConvTransposeNew, self).__init__()
self.layer_f = nn.ConvTranspose2d(in_channels, out_channels,
kernel_size, stride=stride, padding=padding, output_padding=
output_padding, groups=groups)
self.layer_g = nn.ConvTranspose2d(in_channels, out_channels,
kernel_size, stride=stride, padding=padding, output_padding=
output_padding, groups=groups)
def forward(self, input_0):
primals_1 = self.layer_f.weight
primals_2 = self.layer_f.bias
primals_3 = self.layer_g.weight
primals_5 = self.layer_g.bias
primals_4 = input_0
output = call([primals_1, primals_2, primals_3, primals_4, primals_5])
return output[0]
|
ClaraBing/ffjord
|
GatedConvTranspose
| false | 13,520 |
[
"MIT"
] | 518 |
a97c34ff546a063316828f53bd041555e663428d
|
https://github.com/ClaraBing/ffjord/tree/a97c34ff546a063316828f53bd041555e663428d
|
CategoricalSampler
|
import torch
import torch.nn as nn
class Sampler(nn.Module):
""" args; logits: (batch, n_nodes)
return; next_node: (batch, 1)
TopKSampler <=> greedy; sample one with biggest probability
CategoricalSampler <=> sampling; randomly sample one from possible distribution based on probability
"""
def __init__(self, n_samples=1, **kwargs):
super().__init__(**kwargs)
self.n_samples = n_samples
class CategoricalSampler(Sampler):
def forward(self, logits):
return torch.multinomial(logits.exp(), self.n_samples)
def get_inputs():
return [torch.rand([4, 4])]
def get_init_inputs():
return [[], {}]
|
import torch
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
from torch._inductor.runtime.triton_helpers import math as tl_math
import torch.nn as nn
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
@triton.jit
def triton_poi_fused_exp_0(in_ptr0, out_ptr0, xnumel, XBLOCK: tl.constexpr):
xnumel = 16
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex
tmp0 = tl.load(in_ptr0 + x0, xmask)
tmp1 = tl_math.exp(tmp0)
tl.store(out_ptr0 + x0, tmp1, xmask)
def call(args):
arg0_1, = args
args.clear()
assert_size_stride(arg0_1, (4, 4), (4, 1))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((4, 4), (4, 1), torch.float32)
get_raw_stream(0)
triton_poi_fused_exp_0[grid(16)](arg0_1, buf0, 16, XBLOCK=16,
num_warps=1, num_stages=1)
del arg0_1
buf1 = torch.ops.aten.multinomial.default(buf0, 1)
del buf0
buf2 = buf1
del buf1
return buf2,
class Sampler(nn.Module):
""" args; logits: (batch, n_nodes)
return; next_node: (batch, 1)
TopKSampler <=> greedy; sample one with biggest probability
CategoricalSampler <=> sampling; randomly sample one from possible distribution based on probability
"""
def __init__(self, n_samples=1, **kwargs):
super().__init__(**kwargs)
self.n_samples = n_samples
class CategoricalSamplerNew(Sampler):
def forward(self, input_0):
arg0_1 = input_0
output = call([arg0_1])
return output[0]
|
TSLNIHAOGIT/VRP_DRL_MHA
|
CategoricalSampler
| false | 14,457 |
[
"MIT"
] | 55 |
6a59918ffb815fbdab4d75cb78130fc638c64d69
|
https://github.com/TSLNIHAOGIT/VRP_DRL_MHA/tree/6a59918ffb815fbdab4d75cb78130fc638c64d69
|
LastBlock
|
import torch
import numpy as np
import torch.nn as nn
class BatchNormLayer(nn.Module):
"""Implements batch normalization layer."""
def __init__(self, channels, gamma=False, beta=True, decay=0.9, epsilon
=1e-05):
"""Initializes with basic settings.
Args:
channels: Number of channels of the input tensor.
gamma: Whether the scale (weight) of the affine mapping is learnable.
beta: Whether the center (bias) of the affine mapping is learnable.
decay: Decay factor for moving average operations in this layer.
epsilon: A value added to the denominator for numerical stability.
"""
super().__init__()
self.bn = nn.BatchNorm2d(num_features=channels, affine=True,
track_running_stats=True, momentum=1 - decay, eps=epsilon)
self.bn.weight.requires_grad = gamma
self.bn.bias.requires_grad = beta
def forward(self, x):
return self.bn(x)
class LastBlock(nn.Module):
"""Implements the last block, which is a dense block."""
def __init__(self, in_channels, out_channels, use_wscale=False,
wscale_gain=1.0, use_bn=False):
super().__init__()
self.fc = nn.Linear(in_features=in_channels, out_features=
out_channels, bias=False)
self.scale = wscale_gain / np.sqrt(in_channels) if use_wscale else 1.0
self.bn = BatchNormLayer(channels=out_channels
) if use_bn else nn.Identity()
def forward(self, x):
x = x.view(x.shape[0], -1)
x = self.fc(x) * self.scale
x = x.view(x.shape[0], x.shape[1], 1, 1)
return self.bn(x).view(x.shape[0], x.shape[1])
def get_inputs():
return [torch.rand([4, 4])]
def get_init_inputs():
return [[], {'in_channels': 4, 'out_channels': 4}]
|
import torch
from torch._inductor.select_algorithm import extern_kernels
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
import numpy as np
import torch.nn as nn
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
@triton.jit
def triton_poi_fused_mul_0(in_out_ptr0, xnumel, XBLOCK: tl.constexpr):
xnumel = 16
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex
tmp0 = tl.load(in_out_ptr0 + x0, xmask)
tmp1 = 1.0
tmp2 = tmp0 * tmp1
tl.store(in_out_ptr0 + x0, tmp2, xmask)
def call(args):
primals_1, primals_2 = args
args.clear()
assert_size_stride(primals_1, (4, 4), (4, 1))
assert_size_stride(primals_2, (4, 4), (4, 1))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((4, 4), (4, 1), torch.float32)
extern_kernels.mm(primals_1, reinterpret_tensor(primals_2, (4, 4),
(1, 4), 0), out=buf0)
del primals_2
buf1 = buf0
del buf0
get_raw_stream(0)
triton_poi_fused_mul_0[grid(16)](buf1, 16, XBLOCK=16, num_warps=1,
num_stages=1)
return buf1, primals_1
class BatchNormLayer(nn.Module):
"""Implements batch normalization layer."""
def __init__(self, channels, gamma=False, beta=True, decay=0.9, epsilon
=1e-05):
"""Initializes with basic settings.
Args:
channels: Number of channels of the input tensor.
gamma: Whether the scale (weight) of the affine mapping is learnable.
beta: Whether the center (bias) of the affine mapping is learnable.
decay: Decay factor for moving average operations in this layer.
epsilon: A value added to the denominator for numerical stability.
"""
super().__init__()
self.bn = nn.BatchNorm2d(num_features=channels, affine=True,
track_running_stats=True, momentum=1 - decay, eps=epsilon)
self.bn.weight.requires_grad = gamma
self.bn.bias.requires_grad = beta
def forward(self, x):
return self.bn(x)
class LastBlockNew(nn.Module):
"""Implements the last block, which is a dense block."""
def __init__(self, in_channels, out_channels, use_wscale=False,
wscale_gain=1.0, use_bn=False):
super().__init__()
self.fc = nn.Linear(in_features=in_channels, out_features=
out_channels, bias=False)
self.scale = wscale_gain / np.sqrt(in_channels) if use_wscale else 1.0
self.bn = BatchNormLayer(channels=out_channels
) if use_bn else nn.Identity()
def forward(self, input_0):
primals_1 = self.fc.weight
primals_2 = input_0
output = call([primals_1, primals_2])
return output[0]
|
thunguyenphuoc/idinvert_pytorch
|
LastBlock
| false | 13,133 |
[
"MIT"
] | 0 |
bf8a81e75d193c22a05d9c4457907dc468389766
|
https://github.com/thunguyenphuoc/idinvert_pytorch/tree/bf8a81e75d193c22a05d9c4457907dc468389766
|
AgreementRouting
|
import torch
import torch.nn as nn
import torch.nn.functional as F
def squash(x):
lengths2 = x.pow(2).sum(dim=2)
lengths = lengths2.sqrt()
x = x * (lengths2 / (1 + lengths2) / lengths).view(x.size(0), x.size(1), 1)
return x
class AgreementRouting(nn.Module):
def __init__(self, input_caps, output_caps, n_iterations):
super(AgreementRouting, self).__init__()
self.n_iterations = n_iterations
self.b = nn.Parameter(torch.zeros((input_caps, output_caps)))
def forward(self, u_predict):
batch_size, input_caps, output_caps, _output_dim = u_predict.size()
c = F.softmax(self.b)
s = (c.unsqueeze(2) * u_predict).sum(dim=1)
v = squash(s)
if self.n_iterations > 0:
b_batch = self.b.expand((batch_size, input_caps, output_caps))
for r in range(self.n_iterations):
v = v.unsqueeze(1)
b_batch = b_batch + (u_predict * v).sum(-1)
c = F.softmax(b_batch.view(-1, output_caps)).view(-1,
input_caps, output_caps, 1)
s = (c * u_predict).sum(dim=1)
v = squash(s)
return v
def get_inputs():
return [torch.rand([4, 4, 4, 4])]
def get_init_inputs():
return [[], {'input_caps': 4, 'output_caps': 4, 'n_iterations': 4}]
|
import torch
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
from torch._inductor.runtime import triton_helpers
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
import torch.nn as nn
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
@triton.jit
def triton_poi_fused__softmax_0(in_ptr0, out_ptr0, xnumel, XBLOCK: tl.constexpr
):
xnumel = 16
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x2 = xindex
x1 = xindex // 4
tmp0 = tl.load(in_ptr0 + x2, xmask)
tmp1 = tl.load(in_ptr0 + 4 * x1, xmask, eviction_policy='evict_last')
tmp2 = tl.load(in_ptr0 + (1 + 4 * x1), xmask, eviction_policy='evict_last')
tmp4 = tl.load(in_ptr0 + (2 + 4 * x1), xmask, eviction_policy='evict_last')
tmp6 = tl.load(in_ptr0 + (3 + 4 * x1), xmask, eviction_policy='evict_last')
tmp3 = triton_helpers.maximum(tmp1, tmp2)
tmp5 = triton_helpers.maximum(tmp3, tmp4)
tmp7 = triton_helpers.maximum(tmp5, tmp6)
tmp8 = tmp0 - tmp7
tmp9 = tl_math.exp(tmp8)
tl.store(out_ptr0 + x2, tmp9, xmask)
@triton.jit
def triton_poi_fused__softmax_1(in_ptr0, out_ptr0, xnumel, XBLOCK: tl.constexpr
):
xnumel = 16
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x2 = xindex
x1 = xindex // 4
tmp0 = tl.load(in_ptr0 + x2, xmask)
tmp1 = tl.load(in_ptr0 + 4 * x1, xmask, eviction_policy='evict_last')
tmp2 = tl.load(in_ptr0 + (1 + 4 * x1), xmask, eviction_policy='evict_last')
tmp4 = tl.load(in_ptr0 + (2 + 4 * x1), xmask, eviction_policy='evict_last')
tmp6 = tl.load(in_ptr0 + (3 + 4 * x1), xmask, eviction_policy='evict_last')
tmp3 = tmp1 + tmp2
tmp5 = tmp3 + tmp4
tmp7 = tmp5 + tmp6
tmp8 = tmp0 / tmp7
tl.store(out_ptr0 + x2, tmp8, xmask)
@triton.jit
def triton_poi_fused_mul_sum_2(in_ptr0, in_ptr1, out_ptr0, xnumel, XBLOCK:
tl.constexpr):
xnumel = 64
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x1 = xindex // 4 % 4
x2 = xindex // 16
x3 = xindex % 16
x4 = xindex
tmp0 = tl.load(in_ptr0 + x1, xmask, eviction_policy='evict_last')
tmp1 = tl.load(in_ptr1 + (x3 + 64 * x2), xmask)
tmp3 = tl.load(in_ptr0 + (4 + x1), xmask, eviction_policy='evict_last')
tmp4 = tl.load(in_ptr1 + (16 + x3 + 64 * x2), xmask)
tmp7 = tl.load(in_ptr0 + (8 + x1), xmask, eviction_policy='evict_last')
tmp8 = tl.load(in_ptr1 + (32 + x3 + 64 * x2), xmask)
tmp11 = tl.load(in_ptr0 + (12 + x1), xmask, eviction_policy='evict_last')
tmp12 = tl.load(in_ptr1 + (48 + x3 + 64 * x2), xmask)
tmp2 = tmp0 * tmp1
tmp5 = tmp3 * tmp4
tmp6 = tmp2 + tmp5
tmp9 = tmp7 * tmp8
tmp10 = tmp6 + tmp9
tmp13 = tmp11 * tmp12
tmp14 = tmp10 + tmp13
tl.store(out_ptr0 + x4, tmp14, xmask)
@triton.jit
def triton_poi_fused_mul_3(in_ptr0, out_ptr0, xnumel, XBLOCK: tl.constexpr):
xnumel = 64
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x2 = xindex
x1 = xindex // 4
tmp0 = tl.load(in_ptr0 + x2, xmask)
tmp1 = tl.load(in_ptr0 + 4 * x1, xmask, eviction_policy='evict_last')
tmp3 = tl.load(in_ptr0 + (1 + 4 * x1), xmask, eviction_policy='evict_last')
tmp6 = tl.load(in_ptr0 + (2 + 4 * x1), xmask, eviction_policy='evict_last')
tmp9 = tl.load(in_ptr0 + (3 + 4 * x1), xmask, eviction_policy='evict_last')
tmp2 = tmp1 * tmp1
tmp4 = tmp3 * tmp3
tmp5 = tmp2 + tmp4
tmp7 = tmp6 * tmp6
tmp8 = tmp5 + tmp7
tmp10 = tmp9 * tmp9
tmp11 = tmp8 + tmp10
tmp12 = 1.0
tmp13 = tmp11 + tmp12
tmp14 = tmp11 / tmp13
tmp15 = libdevice.sqrt(tmp11)
tmp16 = tmp14 / tmp15
tmp17 = tmp0 * tmp16
tl.store(out_ptr0 + x2, tmp17, xmask)
@triton.jit
def triton_poi_fused_add_mul_sum_4(in_ptr0, in_ptr1, in_ptr2, out_ptr0,
xnumel, XBLOCK: tl.constexpr):
xnumel = 64
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x3 = xindex % 16
x4 = xindex
x0 = xindex % 4
x2 = xindex // 16
tmp0 = tl.load(in_ptr0 + x3, xmask, eviction_policy='evict_last')
tmp1 = tl.load(in_ptr1 + 4 * x4, xmask, eviction_policy='evict_last')
tmp2 = tl.load(in_ptr2 + (4 * x0 + 16 * x2), xmask, eviction_policy=
'evict_last')
tmp4 = tl.load(in_ptr1 + (1 + 4 * x4), xmask, eviction_policy='evict_last')
tmp5 = tl.load(in_ptr2 + (1 + 4 * x0 + 16 * x2), xmask, eviction_policy
='evict_last')
tmp8 = tl.load(in_ptr1 + (2 + 4 * x4), xmask, eviction_policy='evict_last')
tmp9 = tl.load(in_ptr2 + (2 + 4 * x0 + 16 * x2), xmask, eviction_policy
='evict_last')
tmp12 = tl.load(in_ptr1 + (3 + 4 * x4), xmask, eviction_policy='evict_last'
)
tmp13 = tl.load(in_ptr2 + (3 + 4 * x0 + 16 * x2), xmask,
eviction_policy='evict_last')
tmp3 = tmp1 * tmp2
tmp6 = tmp4 * tmp5
tmp7 = tmp3 + tmp6
tmp10 = tmp8 * tmp9
tmp11 = tmp7 + tmp10
tmp14 = tmp12 * tmp13
tmp15 = tmp11 + tmp14
tmp16 = tmp0 + tmp15
tl.store(out_ptr0 + x4, tmp16, xmask)
@triton.jit
def triton_poi_fused__softmax_5(in_ptr0, out_ptr0, xnumel, XBLOCK: tl.constexpr
):
xnumel = 64
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x2 = xindex
x1 = xindex // 4
tmp0 = tl.load(in_ptr0 + x2, xmask)
tmp1 = tl.load(in_ptr0 + 4 * x1, xmask, eviction_policy='evict_last')
tmp2 = tl.load(in_ptr0 + (1 + 4 * x1), xmask, eviction_policy='evict_last')
tmp4 = tl.load(in_ptr0 + (2 + 4 * x1), xmask, eviction_policy='evict_last')
tmp6 = tl.load(in_ptr0 + (3 + 4 * x1), xmask, eviction_policy='evict_last')
tmp3 = triton_helpers.maximum(tmp1, tmp2)
tmp5 = triton_helpers.maximum(tmp3, tmp4)
tmp7 = triton_helpers.maximum(tmp5, tmp6)
tmp8 = tmp0 - tmp7
tmp9 = tl_math.exp(tmp8)
tl.store(out_ptr0 + x2, tmp9, xmask)
@triton.jit
def triton_poi_fused__softmax_6(in_ptr0, out_ptr0, xnumel, XBLOCK: tl.constexpr
):
xnumel = 64
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x2 = xindex
x1 = xindex // 4
tmp0 = tl.load(in_ptr0 + x2, xmask)
tmp1 = tl.load(in_ptr0 + 4 * x1, xmask, eviction_policy='evict_last')
tmp2 = tl.load(in_ptr0 + (1 + 4 * x1), xmask, eviction_policy='evict_last')
tmp4 = tl.load(in_ptr0 + (2 + 4 * x1), xmask, eviction_policy='evict_last')
tmp6 = tl.load(in_ptr0 + (3 + 4 * x1), xmask, eviction_policy='evict_last')
tmp3 = tmp1 + tmp2
tmp5 = tmp3 + tmp4
tmp7 = tmp5 + tmp6
tmp8 = tmp0 / tmp7
tl.store(out_ptr0 + x2, tmp8, xmask)
@triton.jit
def triton_poi_fused_mul_sum_7(in_ptr0, in_ptr1, out_ptr0, xnumel, XBLOCK:
tl.constexpr):
xnumel = 64
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x1 = xindex // 4 % 4
x2 = xindex // 16
x3 = xindex % 16
x4 = xindex
tmp0 = tl.load(in_ptr0 + (x1 + 16 * x2), xmask, eviction_policy=
'evict_last')
tmp1 = tl.load(in_ptr1 + (x3 + 64 * x2), xmask)
tmp3 = tl.load(in_ptr0 + (4 + x1 + 16 * x2), xmask, eviction_policy=
'evict_last')
tmp4 = tl.load(in_ptr1 + (16 + x3 + 64 * x2), xmask)
tmp7 = tl.load(in_ptr0 + (8 + x1 + 16 * x2), xmask, eviction_policy=
'evict_last')
tmp8 = tl.load(in_ptr1 + (32 + x3 + 64 * x2), xmask)
tmp11 = tl.load(in_ptr0 + (12 + x1 + 16 * x2), xmask, eviction_policy=
'evict_last')
tmp12 = tl.load(in_ptr1 + (48 + x3 + 64 * x2), xmask)
tmp2 = tmp0 * tmp1
tmp5 = tmp3 * tmp4
tmp6 = tmp2 + tmp5
tmp9 = tmp7 * tmp8
tmp10 = tmp6 + tmp9
tmp13 = tmp11 * tmp12
tmp14 = tmp10 + tmp13
tl.store(out_ptr0 + x4, tmp14, xmask)
@triton.jit
def triton_poi_fused_add_mul_sum_8(in_out_ptr0, in_ptr0, in_ptr1, xnumel,
XBLOCK: tl.constexpr):
xnumel = 64
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x3 = xindex
x0 = xindex % 4
x2 = xindex // 16
tmp0 = tl.load(in_out_ptr0 + x3, xmask)
tmp1 = tl.load(in_ptr0 + 4 * x3, xmask, eviction_policy='evict_last')
tmp2 = tl.load(in_ptr1 + (4 * x0 + 16 * x2), xmask, eviction_policy=
'evict_last')
tmp4 = tl.load(in_ptr0 + (1 + 4 * x3), xmask, eviction_policy='evict_last')
tmp5 = tl.load(in_ptr1 + (1 + 4 * x0 + 16 * x2), xmask, eviction_policy
='evict_last')
tmp8 = tl.load(in_ptr0 + (2 + 4 * x3), xmask, eviction_policy='evict_last')
tmp9 = tl.load(in_ptr1 + (2 + 4 * x0 + 16 * x2), xmask, eviction_policy
='evict_last')
tmp12 = tl.load(in_ptr0 + (3 + 4 * x3), xmask, eviction_policy='evict_last'
)
tmp13 = tl.load(in_ptr1 + (3 + 4 * x0 + 16 * x2), xmask,
eviction_policy='evict_last')
tmp3 = tmp1 * tmp2
tmp6 = tmp4 * tmp5
tmp7 = tmp3 + tmp6
tmp10 = tmp8 * tmp9
tmp11 = tmp7 + tmp10
tmp14 = tmp12 * tmp13
tmp15 = tmp11 + tmp14
tmp16 = tmp0 + tmp15
tl.store(in_out_ptr0 + x3, tmp16, xmask)
def call(args):
primals_1, primals_2 = args
args.clear()
assert_size_stride(primals_1, (4, 4, 4, 4), (64, 16, 4, 1))
assert_size_stride(primals_2, (4, 4), (4, 1))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((4, 4), (4, 1), torch.float32)
get_raw_stream(0)
triton_poi_fused__softmax_0[grid(16)](primals_2, buf0, 16, XBLOCK=
16, num_warps=1, num_stages=1)
buf1 = empty_strided_cuda((4, 4), (4, 1), torch.float32)
triton_poi_fused__softmax_1[grid(16)](buf0, buf1, 16, XBLOCK=16,
num_warps=1, num_stages=1)
del buf0
buf2 = empty_strided_cuda((4, 4, 4), (16, 4, 1), torch.float32)
triton_poi_fused_mul_sum_2[grid(64)](buf1, primals_1, buf2, 64,
XBLOCK=64, num_warps=1, num_stages=1)
del buf1
buf3 = empty_strided_cuda((4, 4, 4), (16, 4, 1), torch.float32)
triton_poi_fused_mul_3[grid(64)](buf2, buf3, 64, XBLOCK=64,
num_warps=1, num_stages=1)
buf4 = buf2
del buf2
triton_poi_fused_add_mul_sum_4[grid(64)](primals_2, primals_1, buf3,
buf4, 64, XBLOCK=64, num_warps=1, num_stages=1)
buf5 = reinterpret_tensor(buf3, (16, 4), (4, 1), 0)
del buf3
triton_poi_fused__softmax_5[grid(64)](buf4, buf5, 64, XBLOCK=64,
num_warps=1, num_stages=1)
buf6 = empty_strided_cuda((16, 4), (4, 1), torch.float32)
triton_poi_fused__softmax_6[grid(64)](buf5, buf6, 64, XBLOCK=64,
num_warps=1, num_stages=1)
buf7 = reinterpret_tensor(buf5, (4, 4, 4), (16, 4, 1), 0)
del buf5
triton_poi_fused_mul_sum_7[grid(64)](buf6, primals_1, buf7, 64,
XBLOCK=64, num_warps=1, num_stages=1)
buf8 = reinterpret_tensor(buf6, (4, 4, 4), (16, 4, 1), 0)
del buf6
triton_poi_fused_mul_3[grid(64)](buf7, buf8, 64, XBLOCK=64,
num_warps=1, num_stages=1)
buf9 = buf4
del buf4
triton_poi_fused_add_mul_sum_8[grid(64)](buf9, primals_1, buf8, 64,
XBLOCK=64, num_warps=1, num_stages=1)
buf10 = reinterpret_tensor(buf8, (16, 4), (4, 1), 0)
del buf8
triton_poi_fused__softmax_5[grid(64)](buf9, buf10, 64, XBLOCK=64,
num_warps=1, num_stages=1)
buf11 = reinterpret_tensor(buf7, (16, 4), (4, 1), 0)
del buf7
triton_poi_fused__softmax_6[grid(64)](buf10, buf11, 64, XBLOCK=64,
num_warps=1, num_stages=1)
buf12 = reinterpret_tensor(buf10, (4, 4, 4), (16, 4, 1), 0)
del buf10
triton_poi_fused_mul_sum_7[grid(64)](buf11, primals_1, buf12, 64,
XBLOCK=64, num_warps=1, num_stages=1)
buf13 = reinterpret_tensor(buf11, (4, 4, 4), (16, 4, 1), 0)
del buf11
triton_poi_fused_mul_3[grid(64)](buf12, buf13, 64, XBLOCK=64,
num_warps=1, num_stages=1)
buf14 = buf9
del buf9
triton_poi_fused_add_mul_sum_8[grid(64)](buf14, primals_1, buf13,
64, XBLOCK=64, num_warps=1, num_stages=1)
buf15 = reinterpret_tensor(buf13, (16, 4), (4, 1), 0)
del buf13
triton_poi_fused__softmax_5[grid(64)](buf14, buf15, 64, XBLOCK=64,
num_warps=1, num_stages=1)
buf16 = reinterpret_tensor(buf12, (16, 4), (4, 1), 0)
del buf12
triton_poi_fused__softmax_6[grid(64)](buf15, buf16, 64, XBLOCK=64,
num_warps=1, num_stages=1)
buf17 = reinterpret_tensor(buf15, (4, 4, 4), (16, 4, 1), 0)
del buf15
triton_poi_fused_mul_sum_7[grid(64)](buf16, primals_1, buf17, 64,
XBLOCK=64, num_warps=1, num_stages=1)
buf18 = reinterpret_tensor(buf16, (4, 4, 4), (16, 4, 1), 0)
del buf16
triton_poi_fused_mul_3[grid(64)](buf17, buf18, 64, XBLOCK=64,
num_warps=1, num_stages=1)
del buf17
buf19 = buf14
del buf14
triton_poi_fused_add_mul_sum_8[grid(64)](buf19, primals_1, buf18,
64, XBLOCK=64, num_warps=1, num_stages=1)
buf20 = reinterpret_tensor(buf18, (16, 4), (4, 1), 0)
del buf18
triton_poi_fused__softmax_5[grid(64)](buf19, buf20, 64, XBLOCK=64,
num_warps=1, num_stages=1)
buf21 = reinterpret_tensor(buf19, (16, 4), (4, 1), 0)
del buf19
triton_poi_fused__softmax_6[grid(64)](buf20, buf21, 64, XBLOCK=64,
num_warps=1, num_stages=1)
buf22 = reinterpret_tensor(buf20, (4, 4, 4), (16, 4, 1), 0)
del buf20
triton_poi_fused_mul_sum_7[grid(64)](buf21, primals_1, buf22, 64,
XBLOCK=64, num_warps=1, num_stages=1)
buf23 = reinterpret_tensor(buf21, (4, 4, 4), (16, 4, 1), 0)
del buf21
triton_poi_fused_mul_3[grid(64)](buf22, buf23, 64, XBLOCK=64,
num_warps=1, num_stages=1)
del buf22
return buf23, primals_1, primals_2
def squash(x):
lengths2 = x.pow(2).sum(dim=2)
lengths = lengths2.sqrt()
x = x * (lengths2 / (1 + lengths2) / lengths).view(x.size(0), x.size(1), 1)
return x
class AgreementRoutingNew(nn.Module):
def __init__(self, input_caps, output_caps, n_iterations):
super(AgreementRoutingNew, self).__init__()
self.n_iterations = n_iterations
self.b = nn.Parameter(torch.zeros((input_caps, output_caps)))
def forward(self, input_0):
primals_2 = self.b
primals_1 = input_0
output = call([primals_1, primals_2])
return output[0]
|
bentrevett/capsules
|
AgreementRouting
| false | 3,237 |
[
"MIT"
] | 0 |
239273de25c607d7a7504e8c6900772fddd15cd3
|
https://github.com/bentrevett/capsules/tree/239273de25c607d7a7504e8c6900772fddd15cd3
|
SigmoidRange
|
from torch.nn import Module
import functools
import torch
import torch.nn as nn
from typing import *
def sigmoid_range(x, low, high):
"""Sigmoid function with range `(low, high)`"""
return torch.sigmoid(x) * (high - low) + low
class PrePostInitMeta(type):
"""A metaclass that calls optional `__pre_init__` and `__post_init__` methods"""
def __new__(cls, name, bases, dct):
x = super().__new__(cls, name, bases, dct)
def _pass(self, *args, **kwargs):
pass
for o in ('__init__', '__pre_init__', '__post_init__'):
if not hasattr(x, o):
setattr(x, o, _pass)
old_init = x.__init__
@functools.wraps(old_init)
def _init(self, *args, **kwargs):
self.__pre_init__()
old_init(self, *args, **kwargs)
self.__post_init__()
setattr(x, '__init__', _init)
return x
class Module(nn.Module, metaclass=PrePostInitMeta):
"""Same as `nn.Module`, but no need for subclasses to call `super().__init__`"""
def __pre_init__(self):
super().__init__()
def __init__(self):
pass
class SigmoidRange(Module):
"""Sigmoid module with range `(low, high)`"""
def __init__(self, low, high):
self.low, self.high = low, high
def forward(self, x):
return sigmoid_range(x, self.low, self.high)
def get_inputs():
return [torch.rand([4, 4, 4, 4])]
def get_init_inputs():
return [[], {'low': 4, 'high': 4}]
|
import torch
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
from torch.nn import Module
import functools
import torch.nn as nn
from typing import *
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
@triton.jit
def triton_poi_fused_add_mul_sigmoid_0(in_ptr0, out_ptr0, xnumel, XBLOCK:
tl.constexpr):
xnumel = 256
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex
tmp0 = tl.load(in_ptr0 + x0, xmask)
tmp1 = tl.sigmoid(tmp0)
tmp2 = 0.0
tmp3 = tmp1 * tmp2
tmp4 = 4.0
tmp5 = tmp3 + tmp4
tl.store(out_ptr0 + x0, tmp5, xmask)
def call(args):
arg0_1, = args
args.clear()
assert_size_stride(arg0_1, (4, 4, 4, 4), (64, 16, 4, 1))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32)
get_raw_stream(0)
triton_poi_fused_add_mul_sigmoid_0[grid(256)](arg0_1, buf0, 256,
XBLOCK=256, num_warps=4, num_stages=1)
del arg0_1
return buf0,
def sigmoid_range(x, low, high):
"""Sigmoid function with range `(low, high)`"""
return torch.sigmoid(x) * (high - low) + low
class PrePostInitMeta(type):
"""A metaclass that calls optional `__pre_init__` and `__post_init__` methods"""
def __new__(cls, name, bases, dct):
x = super().__new__(cls, name, bases, dct)
def _pass(self, *args, **kwargs):
pass
for o in ('__init__', '__pre_init__', '__post_init__'):
if not hasattr(x, o):
setattr(x, o, _pass)
old_init = x.__init__
@functools.wraps(old_init)
def _init(self, *args, **kwargs):
self.__pre_init__()
old_init(self, *args, **kwargs)
self.__post_init__()
setattr(x, '__init__', _init)
return x
class Module(nn.Module, metaclass=PrePostInitMeta):
"""Same as `nn.Module`, but no need for subclasses to call `super().__init__`"""
def __pre_init__(self):
super().__init__()
def __init__(self):
pass
class SigmoidRangeNew(Module):
"""Sigmoid module with range `(low, high)`"""
def __init__(self, low, high):
self.low, self.high = low, high
def forward(self, input_0):
arg0_1 = input_0
output = call([arg0_1])
return output[0]
|
davidpfahler/fastai_dev
|
SigmoidRange
| false | 10,053 |
[
"Apache-2.0"
] | 0 |
a86b15f86138a9902e8649e3f745e76a19139ab3
|
https://github.com/davidpfahler/fastai_dev/tree/a86b15f86138a9902e8649e3f745e76a19139ab3
|
NormLayer
|
# AOT ID: ['0_inference']
from ctypes import c_void_p, c_long, c_int
import torch
import math
import random
import os
import tempfile
from math import inf, nan
from torch._inductor.hooks import run_intermediate_hooks
from torch._inductor.utils import maybe_profile
from torch._inductor.codegen.memory_planning import _align as align
from torch import device, empty_strided
from torch._inductor.async_compile import AsyncCompile
from torch._inductor.select_algorithm import extern_kernels
from torch._inductor.codegen.multi_kernel import MultiKernelCall
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
aten = torch.ops.aten
inductor_ops = torch.ops.inductor
_quantized = torch.ops._quantized
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
alloc_from_pool = torch.ops.inductor._alloc_from_pool
async_compile = AsyncCompile()
# kernel path: runs/run_shard_4/inductor_cache/kr/ckrxqy227ju5oy4cidmyb35esvbq3qjjqbbpiqrdjo6j5hkwzhi4.py
# Topologically Sorted Source Nodes: [sub, truediv], Original ATen: [aten.sub, aten.div]
# Source node to ATen node mapping:
# sub => sub
# truediv => div
# Graph fragment:
# %sub : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (%arg0_1, 4), kwargs = {})
# %div : [num_users=1] = call_function[target=torch.ops.aten.div.Tensor](args = (%sub, 4.00000001), kwargs = {})
triton_poi_fused_div_sub_0 = async_compile.triton('triton_poi_fused_div_sub_0', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[256],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_div_sub_0', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 1, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_div_sub_0(in_ptr0, out_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 256
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex
tmp0 = tl.load(in_ptr0 + (x0), xmask)
tmp1 = 4.0
tmp2 = tmp0 - tmp1
tmp3 = 0.249999999375
tmp4 = tmp2 * tmp3
tl.store(out_ptr0 + (x0), tmp4, xmask)
''', device_str='cuda')
async_compile.wait(globals())
del async_compile
def call(args):
arg0_1, = args
args.clear()
assert_size_stride(arg0_1, (4, 4, 4, 4), (64, 16, 4, 1))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32)
# Topologically Sorted Source Nodes: [sub, truediv], Original ATen: [aten.sub, aten.div]
stream0 = get_raw_stream(0)
triton_poi_fused_div_sub_0.run(arg0_1, buf0, 256, grid=grid(256), stream=stream0)
del arg0_1
return (buf0, )
def benchmark_compiled_module(times=10, repeat=10):
from torch._dynamo.testing import rand_strided
from torch._inductor.utils import print_performance
arg0_1 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32)
fn = lambda: call([arg0_1])
return print_performance(fn, times=times, repeat=repeat)
if __name__ == "__main__":
from torch._inductor.wrapper_benchmark import compiled_module_main
compiled_module_main('None', benchmark_compiled_module)
|
import torch
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
import torch.nn as nn
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
@triton.jit
def triton_poi_fused_div_sub_0(in_ptr0, out_ptr0, xnumel, XBLOCK: tl.constexpr
):
xnumel = 256
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex
tmp0 = tl.load(in_ptr0 + x0, xmask)
tmp1 = 4.0
tmp2 = tmp0 - tmp1
tmp3 = 0.249999999375
tmp4 = tmp2 * tmp3
tl.store(out_ptr0 + x0, tmp4, xmask)
def call(args):
arg0_1, = args
args.clear()
assert_size_stride(arg0_1, (4, 4, 4, 4), (64, 16, 4, 1))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32)
get_raw_stream(0)
triton_poi_fused_div_sub_0[grid(256)](arg0_1, buf0, 256, XBLOCK=128,
num_warps=4, num_stages=1)
del arg0_1
return buf0,
class NormLayerNew(nn.Module):
def __init__(self, mean, std, n=None, eps=1e-08) ->None:
super().__init__()
self.mean = mean
self.std = std
self.eps = eps
def forward(self, input_0):
arg0_1 = input_0
output = call([arg0_1])
return output[0]
|
LMdeLiangMi/captum
|
NormLayer
| false | 5,472 |
[
"BSD-3-Clause"
] | 1 |
8bd9686013fe0ba8996e9b1cbeb0ea8e91512787
|
https://github.com/LMdeLiangMi/captum/tree/8bd9686013fe0ba8996e9b1cbeb0ea8e91512787
|
LearnedUpsampling1d
|
import torch
from torch import nn
class LearnedUpsampling1d(nn.Module):
def __init__(self, in_channels, out_channels, kernel_size, bias=True):
super().__init__()
self.conv_t = nn.ConvTranspose1d(in_channels=in_channels,
out_channels=out_channels, kernel_size=kernel_size, stride=
kernel_size, bias=False)
if bias:
self.bias = nn.Parameter(torch.FloatTensor(out_channels,
kernel_size))
else:
self.register_parameter('bias', None)
self.reset_parameters()
def reset_parameters(self):
self.conv_t.reset_parameters()
nn.init.constant(self.bias, 0)
def forward(self, input):
batch_size, _, length = input.size()
kernel_size, = self.conv_t.kernel_size
bias = self.bias.unsqueeze(0).unsqueeze(2).expand(batch_size, self.
conv_t.out_channels, length, kernel_size).contiguous().view(
batch_size, self.conv_t.out_channels, length * kernel_size)
return self.conv_t(input) + bias
def get_inputs():
return [torch.rand([4, 4, 4])]
def get_init_inputs():
return [[], {'in_channels': 4, 'out_channels': 4, 'kernel_size': 4}]
|
import torch
from torch._inductor.select_algorithm import extern_kernels
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
from torch import nn
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
@triton.jit
def triton_poi_fused_add_0(in_out_ptr0, in_ptr0, xnumel, XBLOCK: tl.constexpr):
xnumel = 256
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x3 = xindex
x0 = xindex % 16
x1 = xindex // 16 % 4
tmp0 = tl.load(in_out_ptr0 + x3, xmask)
tmp1 = tl.load(in_ptr0 + (4 * x1 + x0 % 4), xmask, eviction_policy=
'evict_last')
tmp2 = tmp0 + tmp1
tl.store(in_out_ptr0 + x3, tmp2, xmask)
def call(args):
primals_1, primals_2, primals_3 = args
args.clear()
assert_size_stride(primals_1, (4, 4, 4), (16, 4, 1))
assert_size_stride(primals_2, (4, 4), (4, 1))
assert_size_stride(primals_3, (4, 4, 4), (16, 4, 1))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = extern_kernels.convolution(primals_1, primals_3, stride=(4,),
padding=(0,), dilation=(1,), transposed=True, output_padding=(0
,), groups=1, bias=None)
assert_size_stride(buf0, (4, 4, 16), (64, 16, 1))
buf1 = buf0
del buf0
get_raw_stream(0)
triton_poi_fused_add_0[grid(256)](buf1, primals_2, 256, XBLOCK=256,
num_warps=4, num_stages=1)
del primals_2
return buf1, primals_1, primals_3
class LearnedUpsampling1dNew(nn.Module):
def __init__(self, in_channels, out_channels, kernel_size, bias=True):
super().__init__()
self.conv_t = nn.ConvTranspose1d(in_channels=in_channels,
out_channels=out_channels, kernel_size=kernel_size, stride=
kernel_size, bias=False)
if bias:
self.bias = nn.Parameter(torch.FloatTensor(out_channels,
kernel_size))
else:
self.register_parameter('bias', None)
self.reset_parameters()
def reset_parameters(self):
self.conv_t.reset_parameters()
nn.init.constant(self.bias, 0)
def forward(self, input_0):
primals_2 = self.bias
primals_1 = self.conv_t.weight
primals_3 = input_0
output = call([primals_1, primals_2, primals_3])
return output[0]
|
fdb/samplernn-pytorch
|
LearnedUpsampling1d
| false | 15,345 |
[
"MIT"
] | 259 |
87ce71cc2cf26601a271648597f198df33059f96
|
https://github.com/fdb/samplernn-pytorch/tree/87ce71cc2cf26601a271648597f198df33059f96
|
NaiveGroupNorm
|
from torch.nn import Module
import torch
from torch.nn import Parameter
from torch.nn import init
import torch.nn.parallel
class NaiveGroupNorm(Module):
"""NaiveGroupNorm implements Group Normalization with the high-level matrix operations in PyTorch.
It is a temporary solution to export GN by ONNX before the official GN can be exported by ONNX.
The usage of NaiveGroupNorm is exactly the same as the official :class:`torch.nn.GroupNorm`.
Args:
num_groups (int): number of groups to separate the channels into
num_channels (int): number of channels expected in input
eps: a value added to the denominator for numerical stability. Default: 1e-5
affine: a boolean value that when set to ``True``, this module
has learnable per-channel affine parameters initialized to ones (for weights)
and zeros (for biases). Default: ``True``.
Shape:
- Input: :math:`(N, C, *)` where :math:`C=\\text{num\\_channels}`
- Output: :math:`(N, C, *)` (same shape as input)
Examples::
>>> input = torch.randn(20, 6, 10, 10)
>>> # Separate 6 channels into 3 groups
>>> m = NaiveGroupNorm(3, 6)
>>> # Separate 6 channels into 6 groups (equivalent with InstanceNorm)
>>> m = NaiveGroupNorm(6, 6)
>>> # Put all 6 channels into a single group (equivalent with LayerNorm)
>>> m = NaiveGroupNorm(1, 6)
>>> # Activating the module
>>> output = m(input)
.. _`Group Normalization`: https://arxiv.org/abs/1803.08494
"""
__constants__ = ['num_groups', 'num_channels', 'eps', 'affine',
'weight', 'bias']
def __init__(self, num_groups, num_channels, eps=1e-05, affine=True):
super(NaiveGroupNorm, self).__init__()
self.num_groups = num_groups
self.num_channels = num_channels
self.eps = eps
self.affine = affine
if self.affine:
self.weight = Parameter(torch.Tensor(num_channels))
self.bias = Parameter(torch.Tensor(num_channels))
else:
self.register_parameter('weight', None)
self.register_parameter('bias', None)
self.reset_parameters()
def reset_parameters(self):
if self.affine:
init.ones_(self.weight)
init.zeros_(self.bias)
def forward(self, input):
N, C, H, W = input.size()
assert C % self.num_groups == 0
input = input.reshape(N, self.num_groups, -1)
mean = input.mean(dim=-1, keepdim=True)
var = (input ** 2).mean(dim=-1, keepdim=True) - mean ** 2
std = torch.sqrt(var + self.eps)
input = (input - mean) / std
input = input.reshape(N, C, H, W)
if self.affine:
input = input * self.weight.reshape(1, C, 1, 1
) + self.bias.reshape(1, C, 1, 1)
return input
def extra_repr(self):
return ('{num_groups}, {num_channels}, eps={eps}, affine={affine}'.
format(**self.__dict__))
def get_inputs():
return [torch.rand([4, 4, 4, 4])]
def get_init_inputs():
return [[], {'num_groups': 1, 'num_channels': 4}]
|
import torch
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
from torch._inductor.runtime.triton_helpers import libdevice
from torch.nn import Module
from torch.nn import Parameter
from torch.nn import init
import torch.nn.parallel
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
@triton.jit
def triton_per_fused_add_mean_mul_pow_sqrt_sub_0(in_out_ptr0, in_out_ptr1,
in_ptr0, in_ptr1, in_ptr2, out_ptr0, xnumel, rnumel, XBLOCK: tl.constexpr):
xnumel = 4
RBLOCK: tl.constexpr = 64
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:, None]
xmask = xindex < xnumel
rindex = tl.arange(0, RBLOCK)[None, :]
tl.full([XBLOCK, RBLOCK], True, tl.int1)
r1 = rindex
x0 = xindex
r3 = rindex // 16
tmp0 = tl.load(in_ptr0 + (r1 + 64 * x0), xmask, other=0.0)
tmp20 = tl.load(in_ptr1 + r3, None, eviction_policy='evict_last')
tmp22 = tl.load(in_ptr2 + r3, None, eviction_policy='evict_last')
tmp1 = tl.broadcast_to(tmp0, [XBLOCK, RBLOCK])
tmp3 = tl.where(xmask, tmp1, 0)
tmp4 = tl.sum(tmp3, 1)[:, None]
tmp5 = tmp0 * tmp0
tmp6 = tl.broadcast_to(tmp5, [XBLOCK, RBLOCK])
tmp8 = tl.where(xmask, tmp6, 0)
tmp9 = tl.sum(tmp8, 1)[:, None]
tmp10 = 64.0
tmp11 = tmp4 / tmp10
tmp12 = tmp9 / tmp10
tmp13 = tmp11 * tmp11
tmp14 = tmp12 - tmp13
tmp15 = 1e-05
tmp16 = tmp14 + tmp15
tmp17 = libdevice.sqrt(tmp16)
tmp18 = tmp0 - tmp11
tmp19 = tmp18 / tmp17
tmp21 = tmp19 * tmp20
tmp23 = tmp21 + tmp22
tl.debug_barrier()
tl.store(in_out_ptr0 + x0, tmp11, xmask)
tl.debug_barrier()
tl.store(in_out_ptr1 + x0, tmp17, xmask)
tl.store(out_ptr0 + (r1 + 64 * x0), tmp23, xmask)
def call(args):
primals_1, primals_2, primals_3 = args
args.clear()
assert_size_stride(primals_1, (4, 4, 4, 4), (64, 16, 4, 1))
assert_size_stride(primals_2, (4,), (1,))
assert_size_stride(primals_3, (4,), (1,))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((4, 1, 1), (1, 4, 4), torch.float32)
buf2 = empty_strided_cuda((4, 1, 1), (1, 4, 4), torch.float32)
buf1 = reinterpret_tensor(buf0, (4, 1, 1), (1, 1, 1), 0)
del buf0
buf3 = reinterpret_tensor(buf2, (4, 1, 1), (1, 1, 1), 0)
del buf2
buf4 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32)
get_raw_stream(0)
triton_per_fused_add_mean_mul_pow_sqrt_sub_0[grid(4)](buf1, buf3,
primals_1, primals_2, primals_3, buf4, 4, 64, XBLOCK=1,
num_warps=2, num_stages=1)
del primals_2
del primals_3
return buf4, primals_1, buf1, buf3
class NaiveGroupNormNew(Module):
"""NaiveGroupNorm implements Group Normalization with the high-level matrix operations in PyTorch.
It is a temporary solution to export GN by ONNX before the official GN can be exported by ONNX.
The usage of NaiveGroupNorm is exactly the same as the official :class:`torch.nn.GroupNorm`.
Args:
num_groups (int): number of groups to separate the channels into
num_channels (int): number of channels expected in input
eps: a value added to the denominator for numerical stability. Default: 1e-5
affine: a boolean value that when set to ``True``, this module
has learnable per-channel affine parameters initialized to ones (for weights)
and zeros (for biases). Default: ``True``.
Shape:
- Input: :math:`(N, C, *)` where :math:`C=\\text{num\\_channels}`
- Output: :math:`(N, C, *)` (same shape as input)
Examples::
>>> input = torch.randn(20, 6, 10, 10)
>>> # Separate 6 channels into 3 groups
>>> m = NaiveGroupNorm(3, 6)
>>> # Separate 6 channels into 6 groups (equivalent with InstanceNorm)
>>> m = NaiveGroupNorm(6, 6)
>>> # Put all 6 channels into a single group (equivalent with LayerNorm)
>>> m = NaiveGroupNorm(1, 6)
>>> # Activating the module
>>> output = m(input)
.. _`Group Normalization`: https://arxiv.org/abs/1803.08494
"""
__constants__ = ['num_groups', 'num_channels', 'eps', 'affine',
'weight', 'bias']
def __init__(self, num_groups, num_channels, eps=1e-05, affine=True):
super(NaiveGroupNormNew, self).__init__()
self.num_groups = num_groups
self.num_channels = num_channels
self.eps = eps
self.affine = affine
if self.affine:
self.weight = Parameter(torch.Tensor(num_channels))
self.bias = Parameter(torch.Tensor(num_channels))
else:
self.register_parameter('weight', None)
self.register_parameter('bias', None)
self.reset_parameters()
def reset_parameters(self):
if self.affine:
init.ones_(self.weight)
init.zeros_(self.bias)
def extra_repr(self):
return ('{num_groups}, {num_channels}, eps={eps}, affine={affine}'.
format(**self.__dict__))
def forward(self, input_0):
primals_2 = self.weight
primals_3 = self.bias
primals_1 = input_0
output = call([primals_1, primals_2, primals_3])
return output[0]
|
EllisHui/outOfRailWay
|
NaiveGroupNorm
| false | 427 |
[
"BSD-2-Clause"
] | 0 |
e3bf9aaa18879bee5536740d55006c872f06278f
|
https://github.com/EllisHui/outOfRailWay/tree/e3bf9aaa18879bee5536740d55006c872f06278f
|
QRLoss
|
# AOT ID: ['0_inference']
from ctypes import c_void_p, c_long, c_int
import torch
import math
import random
import os
import tempfile
from math import inf, nan
from torch._inductor.hooks import run_intermediate_hooks
from torch._inductor.utils import maybe_profile
from torch._inductor.codegen.memory_planning import _align as align
from torch import device, empty_strided
from torch._inductor.async_compile import AsyncCompile
from torch._inductor.select_algorithm import extern_kernels
from torch._inductor.codegen.multi_kernel import MultiKernelCall
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
aten = torch.ops.aten
inductor_ops = torch.ops.inductor
_quantized = torch.ops._quantized
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
alloc_from_pool = torch.ops.inductor._alloc_from_pool
async_compile = AsyncCompile()
# kernel path: runs/run_shard_0/inductor_cache/nt/cntfuccf5likrxmjfhf7ci2kcrcvhvrhwcbyjbtnwc24lfr23xmz.py
# Topologically Sorted Source Nodes: [q_bar], Original ATen: [aten.mean]
# Source node to ATen node mapping:
# q_bar => mean
# Graph fragment:
# %mean : [num_users=2] = call_function[target=torch.ops.aten.mean.dim](args = (%arg0_1, [0, 2, 3]), kwargs = {})
triton_per_fused_mean_0 = async_compile.triton('triton_per_fused_mean_0', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.persistent_reduction(
size_hints=[4, 64],
reduction_hint=ReductionHint.INNER,
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 3), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_per_fused_mean_0', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 1, 'num_reduction': 1, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}
)
@triton.jit
def triton_per_fused_mean_0(in_ptr0, out_ptr0, xnumel, rnumel, XBLOCK : tl.constexpr):
xnumel = 4
rnumel = 64
RBLOCK: tl.constexpr = 64
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:, None]
xmask = xindex < xnumel
rindex = tl.arange(0, RBLOCK)[None, :]
roffset = 0
rmask = tl.full([XBLOCK, RBLOCK], True, tl.int1)
r1 = rindex % 16
r2 = (rindex // 16)
x0 = xindex
tmp0 = tl.load(in_ptr0 + (r1 + (16*x0) + (64*r2)), xmask, other=0.0)
tmp1 = tl.broadcast_to(tmp0, [XBLOCK, RBLOCK])
tmp3 = tl.where(xmask, tmp1, 0)
tmp4 = tl.sum(tmp3, 1)[:, None]
tl.store(out_ptr0 + (x0), tmp4, xmask)
''', device_str='cuda')
# kernel path: runs/run_shard_0/inductor_cache/76/c763g2dm4264ss6vfjeky27pd43x3xyr3liuvrqgc4kgai24lj7g.py
# Topologically Sorted Source Nodes: [q_bar, log, mul, qbar_log_S], Original ATen: [aten.mean, aten.log, aten.mul, aten.sum]
# Source node to ATen node mapping:
# log => log
# mul => mul
# q_bar => mean
# qbar_log_S => sum_1
# Graph fragment:
# %mean : [num_users=2] = call_function[target=torch.ops.aten.mean.dim](args = (%arg0_1, [0, 2, 3]), kwargs = {})
# %log : [num_users=1] = call_function[target=torch.ops.aten.log.default](args = (%mean,), kwargs = {})
# %mul : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%mean, %log), kwargs = {})
# %sum_1 : [num_users=1] = call_function[target=torch.ops.aten.sum.default](args = (%mul,), kwargs = {})
triton_per_fused_log_mean_mul_sum_1 = async_compile.triton('triton_per_fused_log_mean_mul_sum_1', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.persistent_reduction(
size_hints=[1, 4],
reduction_hint=ReductionHint.INNER,
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {2: 1}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1), equal_to_1=(2,))]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_per_fused_log_mean_mul_sum_1', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 1, 'num_reduction': 1, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}
)
@triton.jit
def triton_per_fused_log_mean_mul_sum_1(in_ptr0, out_ptr0, xnumel, rnumel, XBLOCK : tl.constexpr):
xnumel = 1
rnumel = 4
RBLOCK: tl.constexpr = 4
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:, None]
xmask = tl.full([XBLOCK, RBLOCK], True, tl.int1)
rindex = tl.arange(0, RBLOCK)[None, :]
roffset = 0
rmask = tl.full([XBLOCK, RBLOCK], True, tl.int1)
r0 = rindex
tmp0 = tl.load(in_ptr0 + (r0), None)
tmp1 = 64.0
tmp2 = tmp0 / tmp1
tmp3 = tl_math.log(tmp2)
tmp4 = tmp2 * tmp3
tmp5 = tl.broadcast_to(tmp4, [XBLOCK, RBLOCK])
tmp7 = tl.sum(tmp5, 1)[:, None]
tl.store(out_ptr0 + (tl.full([XBLOCK, 1], 0, tl.int32)), tmp7, None)
''', device_str='cuda')
# kernel path: runs/run_shard_0/inductor_cache/mz/cmzlu2lip25blpsdqeby7ek5757op6xw3pdkxbdediou5szw32tx.py
# Topologically Sorted Source Nodes: [einsum], Original ATen: [aten.clone]
# Source node to ATen node mapping:
# einsum => clone
# Graph fragment:
# %clone : [num_users=1] = call_function[target=torch.ops.aten.clone.default](args = (%permute_2,), kwargs = {memory_format: torch.contiguous_format})
triton_poi_fused_clone_2 = async_compile.triton('triton_poi_fused_clone_2', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[64, 4], tile_hint=TileHint.SQUARE,
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_clone_2', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 1, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_clone_2(in_ptr0, out_ptr0, ynumel, xnumel, YBLOCK : tl.constexpr, XBLOCK : tl.constexpr):
ynumel = 64
xnumel = 4
yoffset = tl.program_id(1) * YBLOCK
yindex = yoffset + tl.arange(0, YBLOCK)[None, :]
ymask = yindex < ynumel
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:, None]
xmask = xindex < xnumel
x2 = xindex
y0 = yindex % 16
y1 = (yindex // 16)
y3 = yindex
tmp0 = tl.load(in_ptr0 + (y0 + (16*x2) + (64*y1)), xmask & ymask, eviction_policy='evict_last')
tl.store(out_ptr0 + (x2 + (4*y3)), tmp0, xmask & ymask)
''', device_str='cuda')
# kernel path: runs/run_shard_0/inductor_cache/uc/cucdsxx4mqgwbexjohnr77euymo64cqsxlygdc6xijcomgyerfue.py
# Topologically Sorted Source Nodes: [einsum], Original ATen: [aten.clone]
# Source node to ATen node mapping:
# einsum => clone_1
# Graph fragment:
# %clone_1 : [num_users=1] = call_function[target=torch.ops.aten.clone.default](args = (%permute_3,), kwargs = {memory_format: torch.contiguous_format})
triton_poi_fused_clone_3 = async_compile.triton('triton_poi_fused_clone_3', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[64, 4], tile_hint=TileHint.SQUARE,
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_clone_3', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 1, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_clone_3(in_ptr0, out_ptr0, ynumel, xnumel, YBLOCK : tl.constexpr, XBLOCK : tl.constexpr):
ynumel = 64
xnumel = 4
yoffset = tl.program_id(1) * YBLOCK
yindex = yoffset + tl.arange(0, YBLOCK)[None, :]
ymask = yindex < ynumel
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:, None]
xmask = xindex < xnumel
x2 = xindex
y0 = yindex % 16
y1 = (yindex // 16)
y3 = yindex
tmp0 = tl.load(in_ptr0 + (y0 + (16*x2) + (64*y1)), xmask & ymask, eviction_policy='evict_last')
tmp1 = tl_math.log(tmp0)
tl.store(out_ptr0 + (x2 + (4*y3)), tmp1, xmask & ymask)
''', device_str='cuda')
# kernel path: runs/run_shard_0/inductor_cache/4q/c4qvkmdkhztaqsclmaqsdnjb34q22zutmp6srvwwwjydssjmtmyu.py
# Topologically Sorted Source Nodes: [q_log_p, loss], Original ATen: [aten.mean, aten.sub]
# Source node to ATen node mapping:
# loss => sub
# q_log_p => mean_1
# Graph fragment:
# %mean_1 : [num_users=1] = call_function[target=torch.ops.aten.mean.default](args = (%view_3,), kwargs = {})
# %sub : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (%sum_1, %mean_1), kwargs = {})
triton_per_fused_mean_sub_4 = async_compile.triton('triton_per_fused_mean_sub_4', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.persistent_reduction(
size_hints=[1, 64],
reduction_hint=ReductionHint.INNER,
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {2: 1}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 3), equal_to_1=(2,))]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_per_fused_mean_sub_4', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 1, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}
)
@triton.jit
def triton_per_fused_mean_sub_4(in_out_ptr0, in_ptr0, xnumel, rnumel, XBLOCK : tl.constexpr):
xnumel = 1
rnumel = 64
RBLOCK: tl.constexpr = 64
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:, None]
xmask = tl.full([XBLOCK, RBLOCK], True, tl.int1)
rindex = tl.arange(0, RBLOCK)[None, :]
roffset = 0
rmask = tl.full([XBLOCK, RBLOCK], True, tl.int1)
r0 = rindex
tmp0 = tl.load(in_ptr0 + (r0), None)
tmp4 = tl.load(in_out_ptr0 + (0))
tmp5 = tl.broadcast_to(tmp4, [XBLOCK, 1])
tmp1 = tl.broadcast_to(tmp0, [XBLOCK, RBLOCK])
tmp3 = tl.sum(tmp1, 1)[:, None]
tmp6 = 64.0
tmp7 = tmp3 / tmp6
tmp8 = tmp5 - tmp7
tl.debug_barrier()
tl.store(in_out_ptr0 + (tl.full([XBLOCK, 1], 0, tl.int32)), tmp8, None)
''', device_str='cuda')
async_compile.wait(globals())
del async_compile
def call(args):
arg0_1, arg1_1 = args
args.clear()
assert_size_stride(arg0_1, (4, 4, 4, 4), (64, 16, 4, 1))
assert_size_stride(arg1_1, (4, 4, 4, 4), (64, 16, 4, 1))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((4, ), (1, ), torch.float32)
# Topologically Sorted Source Nodes: [q_bar], Original ATen: [aten.mean]
stream0 = get_raw_stream(0)
triton_per_fused_mean_0.run(arg0_1, buf0, 4, 64, grid=grid(4), stream=stream0)
buf1 = empty_strided_cuda((), (), torch.float32)
# Topologically Sorted Source Nodes: [q_bar, log, mul, qbar_log_S], Original ATen: [aten.mean, aten.log, aten.mul, aten.sum]
triton_per_fused_log_mean_mul_sum_1.run(buf0, buf1, 1, 4, grid=grid(1), stream=stream0)
del buf0
buf2 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32)
# Topologically Sorted Source Nodes: [einsum], Original ATen: [aten.clone]
triton_poi_fused_clone_2.run(arg0_1, buf2, 64, 4, grid=grid(64, 4), stream=stream0)
del arg0_1
buf3 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32)
# Topologically Sorted Source Nodes: [einsum], Original ATen: [aten.clone]
triton_poi_fused_clone_3.run(arg1_1, buf3, 64, 4, grid=grid(64, 4), stream=stream0)
del arg1_1
buf4 = empty_strided_cuda((64, 1, 1), (1, 1, 1), torch.float32)
# Topologically Sorted Source Nodes: [einsum], Original ATen: [aten.bmm]
extern_kernels.bmm(reinterpret_tensor(buf2, (64, 1, 4), (4, 0, 1), 0), reinterpret_tensor(buf3, (64, 4, 1), (4, 1, 0), 0), out=buf4)
del buf2
del buf3
buf6 = buf1; del buf1 # reuse
# Topologically Sorted Source Nodes: [q_log_p, loss], Original ATen: [aten.mean, aten.sub]
triton_per_fused_mean_sub_4.run(buf6, buf4, 1, 64, grid=grid(1), stream=stream0)
del buf4
return (buf6, )
def benchmark_compiled_module(times=10, repeat=10):
from torch._dynamo.testing import rand_strided
from torch._inductor.utils import print_performance
arg0_1 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32)
arg1_1 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32)
fn = lambda: call([arg0_1, arg1_1])
return print_performance(fn, times=times, repeat=repeat)
if __name__ == "__main__":
from torch._inductor.wrapper_benchmark import compiled_module_main
compiled_module_main('None', benchmark_compiled_module)
|
import torch
from torch._inductor.select_algorithm import extern_kernels
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
from torch._inductor.runtime.triton_helpers import math as tl_math
from torch.nn import Module
from torch.nn.modules import Module
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
@triton.jit
def triton_per_fused_mean_0(in_ptr0, out_ptr0, xnumel, rnumel, XBLOCK: tl.
constexpr):
xnumel = 4
RBLOCK: tl.constexpr = 64
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:, None]
xmask = xindex < xnumel
rindex = tl.arange(0, RBLOCK)[None, :]
tl.full([XBLOCK, RBLOCK], True, tl.int1)
r1 = rindex % 16
r2 = rindex // 16
x0 = xindex
tmp0 = tl.load(in_ptr0 + (r1 + 16 * x0 + 64 * r2), xmask, other=0.0)
tmp1 = tl.broadcast_to(tmp0, [XBLOCK, RBLOCK])
tmp3 = tl.where(xmask, tmp1, 0)
tmp4 = tl.sum(tmp3, 1)[:, None]
tl.store(out_ptr0 + x0, tmp4, xmask)
@triton.jit
def triton_per_fused_log_mean_mul_sum_1(in_ptr0, out_ptr0, xnumel, rnumel,
XBLOCK: tl.constexpr):
RBLOCK: tl.constexpr = 4
xoffset = tl.program_id(0) * XBLOCK
xoffset + tl.arange(0, XBLOCK)[:, None]
tl.full([XBLOCK, RBLOCK], True, tl.int1)
rindex = tl.arange(0, RBLOCK)[None, :]
tl.full([XBLOCK, RBLOCK], True, tl.int1)
r0 = rindex
tmp0 = tl.load(in_ptr0 + r0, None)
tmp1 = 64.0
tmp2 = tmp0 / tmp1
tmp3 = tl_math.log(tmp2)
tmp4 = tmp2 * tmp3
tmp5 = tl.broadcast_to(tmp4, [XBLOCK, RBLOCK])
tmp7 = tl.sum(tmp5, 1)[:, None]
tl.store(out_ptr0 + tl.full([XBLOCK, 1], 0, tl.int32), tmp7, None)
@triton.jit
def triton_poi_fused_clone_2(in_ptr0, out_ptr0, ynumel, xnumel, YBLOCK: tl.
constexpr, XBLOCK: tl.constexpr):
ynumel = 64
xnumel = 4
yoffset = tl.program_id(1) * YBLOCK
yindex = yoffset + tl.arange(0, YBLOCK)[None, :]
ymask = yindex < ynumel
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:, None]
xmask = xindex < xnumel
x2 = xindex
y0 = yindex % 16
y1 = yindex // 16
y3 = yindex
tmp0 = tl.load(in_ptr0 + (y0 + 16 * x2 + 64 * y1), xmask & ymask,
eviction_policy='evict_last')
tl.store(out_ptr0 + (x2 + 4 * y3), tmp0, xmask & ymask)
@triton.jit
def triton_poi_fused_clone_3(in_ptr0, out_ptr0, ynumel, xnumel, YBLOCK: tl.
constexpr, XBLOCK: tl.constexpr):
ynumel = 64
xnumel = 4
yoffset = tl.program_id(1) * YBLOCK
yindex = yoffset + tl.arange(0, YBLOCK)[None, :]
ymask = yindex < ynumel
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:, None]
xmask = xindex < xnumel
x2 = xindex
y0 = yindex % 16
y1 = yindex // 16
y3 = yindex
tmp0 = tl.load(in_ptr0 + (y0 + 16 * x2 + 64 * y1), xmask & ymask,
eviction_policy='evict_last')
tmp1 = tl_math.log(tmp0)
tl.store(out_ptr0 + (x2 + 4 * y3), tmp1, xmask & ymask)
@triton.jit
def triton_per_fused_mean_sub_4(in_out_ptr0, in_ptr0, xnumel, rnumel,
XBLOCK: tl.constexpr):
RBLOCK: tl.constexpr = 64
xoffset = tl.program_id(0) * XBLOCK
xoffset + tl.arange(0, XBLOCK)[:, None]
tl.full([XBLOCK, RBLOCK], True, tl.int1)
rindex = tl.arange(0, RBLOCK)[None, :]
tl.full([XBLOCK, RBLOCK], True, tl.int1)
r0 = rindex
tmp0 = tl.load(in_ptr0 + r0, None)
tmp4 = tl.load(in_out_ptr0 + 0)
tmp5 = tl.broadcast_to(tmp4, [XBLOCK, 1])
tmp1 = tl.broadcast_to(tmp0, [XBLOCK, RBLOCK])
tmp3 = tl.sum(tmp1, 1)[:, None]
tmp6 = 64.0
tmp7 = tmp3 / tmp6
tmp8 = tmp5 - tmp7
tl.debug_barrier()
tl.store(in_out_ptr0 + tl.full([XBLOCK, 1], 0, tl.int32), tmp8, None)
def call(args):
arg0_1, arg1_1 = args
args.clear()
assert_size_stride(arg0_1, (4, 4, 4, 4), (64, 16, 4, 1))
assert_size_stride(arg1_1, (4, 4, 4, 4), (64, 16, 4, 1))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((4,), (1,), torch.float32)
get_raw_stream(0)
triton_per_fused_mean_0[grid(4)](arg0_1, buf0, 4, 64, XBLOCK=1,
num_warps=2, num_stages=1)
buf1 = empty_strided_cuda((), (), torch.float32)
triton_per_fused_log_mean_mul_sum_1[grid(1)](buf0, buf1, 1, 4,
XBLOCK=1, num_warps=2, num_stages=1)
del buf0
buf2 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32)
triton_poi_fused_clone_2[grid(64, 4)](arg0_1, buf2, 64, 4, XBLOCK=4,
YBLOCK=32, num_warps=4, num_stages=1)
del arg0_1
buf3 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32)
triton_poi_fused_clone_3[grid(64, 4)](arg1_1, buf3, 64, 4, XBLOCK=4,
YBLOCK=32, num_warps=4, num_stages=1)
del arg1_1
buf4 = empty_strided_cuda((64, 1, 1), (1, 1, 1), torch.float32)
extern_kernels.bmm(reinterpret_tensor(buf2, (64, 1, 4), (4, 0, 1),
0), reinterpret_tensor(buf3, (64, 4, 1), (4, 1, 0), 0), out=buf4)
del buf2
del buf3
buf6 = buf1
del buf1
triton_per_fused_mean_sub_4[grid(1)](buf6, buf4, 1, 64, XBLOCK=1,
num_warps=2, num_stages=1)
del buf4
return buf6,
class QRLossNew(Module):
"""The QR (forward) loss between class probabilities and predictions.
This loss is defined in `'Resolving label uncertainty with implicit generative
models' <https://openreview.net/forum?id=AEa_UepnMDX>`_.
.. versionadded:: 0.2
"""
def forward(self, input_0, input_1):
arg0_1 = input_0
arg1_1 = input_1
output = call([arg0_1, arg1_1])
return output[0]
|
ethanwhite/torchgeo
|
QRLoss
| false | 15,313 |
[
"MIT"
] | 678 |
cb20e1abfd9213f9ee7700df972385db13568642
|
https://github.com/ethanwhite/torchgeo/tree/cb20e1abfd9213f9ee7700df972385db13568642
|
DeepSVDDLoss
|
# AOT ID: ['0_inference']
from ctypes import c_void_p, c_long, c_int
import torch
import math
import random
import os
import tempfile
from math import inf, nan
from torch._inductor.hooks import run_intermediate_hooks
from torch._inductor.utils import maybe_profile
from torch._inductor.codegen.memory_planning import _align as align
from torch import device, empty_strided
from torch._inductor.async_compile import AsyncCompile
from torch._inductor.select_algorithm import extern_kernels
from torch._inductor.codegen.multi_kernel import MultiKernelCall
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
aten = torch.ops.aten
inductor_ops = torch.ops.inductor
_quantized = torch.ops._quantized
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
alloc_from_pool = torch.ops.inductor._alloc_from_pool
async_compile = AsyncCompile()
# kernel path: runs/run_shard_1/inductor_cache/yz/cyzzwmigglflirqvx3z34vnjywtdaenzs4wt4dm747p5wxvo6org.py
# Topologically Sorted Source Nodes: [sub, pow_1, dist, loss], Original ATen: [aten.sub, aten.pow, aten.sum, aten.mean]
# Source node to ATen node mapping:
# dist => sum_1
# loss => mean
# pow_1 => pow_1
# sub => sub
# Graph fragment:
# %sub : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (%arg0_1, 4), kwargs = {})
# %pow_1 : [num_users=1] = call_function[target=torch.ops.aten.pow.Tensor_Scalar](args = (%sub, 2), kwargs = {})
# %sum_1 : [num_users=1] = call_function[target=torch.ops.aten.sum.dim_IntList](args = (%pow_1, [1]), kwargs = {})
# %mean : [num_users=1] = call_function[target=torch.ops.aten.mean.default](args = (%sum_1,), kwargs = {})
triton_per_fused_mean_pow_sub_sum_0 = async_compile.triton('triton_per_fused_mean_pow_sub_sum_0', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.persistent_reduction(
size_hints=[1, 64],
reduction_hint=ReductionHint.INNER,
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=90, major=9, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=132), 'constants': {2: 1}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 3), equal_to_1=(2,))]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_per_fused_mean_pow_sub_sum_0', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 4, 'num_reduction': 1, 'backend_hash': 'B098E03CDA7B8ADC90DAFFDF24A2956451D1B13F297756A5DCC209498AA53705', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}
)
@triton.jit
def triton_per_fused_mean_pow_sub_sum_0(in_out_ptr0, in_ptr0, xnumel, rnumel, XBLOCK : tl.constexpr):
xnumel = 1
rnumel = 64
RBLOCK: tl.constexpr = 64
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:, None]
xmask = tl.full([XBLOCK, RBLOCK], True, tl.int1)
rindex = tl.arange(0, RBLOCK)[None, :]
roffset = 0
rmask = tl.full([XBLOCK, RBLOCK], True, tl.int1)
r0 = rindex % 16
r1 = (rindex // 16)
tmp0 = tl.load(in_ptr0 + (r0 + (64*r1)), None)
tmp4 = tl.load(in_ptr0 + (16 + r0 + (64*r1)), None)
tmp8 = tl.load(in_ptr0 + (32 + r0 + (64*r1)), None)
tmp12 = tl.load(in_ptr0 + (48 + r0 + (64*r1)), None)
tmp1 = 4.0
tmp2 = tmp0 - tmp1
tmp3 = tmp2 * tmp2
tmp5 = tmp4 - tmp1
tmp6 = tmp5 * tmp5
tmp7 = tmp3 + tmp6
tmp9 = tmp8 - tmp1
tmp10 = tmp9 * tmp9
tmp11 = tmp7 + tmp10
tmp13 = tmp12 - tmp1
tmp14 = tmp13 * tmp13
tmp15 = tmp11 + tmp14
tmp16 = tl.broadcast_to(tmp15, [XBLOCK, RBLOCK])
tmp18 = tl.sum(tmp16, 1)[:, None]
tmp19 = 64.0
tmp20 = tmp18 / tmp19
tl.debug_barrier()
tl.store(in_out_ptr0 + (tl.full([XBLOCK, 1], 0, tl.int32)), tmp20, None)
''', device_str='cuda')
async_compile.wait(globals())
del async_compile
def call(args):
arg0_1, = args
args.clear()
assert_size_stride(arg0_1, (4, 4, 4, 4), (64, 16, 4, 1))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((), (), torch.float32)
buf1 = buf0; del buf0 # reuse
# Topologically Sorted Source Nodes: [sub, pow_1, dist, loss], Original ATen: [aten.sub, aten.pow, aten.sum, aten.mean]
stream0 = get_raw_stream(0)
triton_per_fused_mean_pow_sub_sum_0.run(buf1, arg0_1, 1, 64, grid=grid(1), stream=stream0)
del arg0_1
return (buf1, )
def benchmark_compiled_module(times=10, repeat=10):
from torch._dynamo.testing import rand_strided
from torch._inductor.utils import print_performance
arg0_1 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32)
fn = lambda: call([arg0_1])
return print_performance(fn, times=times, repeat=repeat)
if __name__ == "__main__":
from torch._inductor.wrapper_benchmark import compiled_module_main
compiled_module_main('None', benchmark_compiled_module)
|
import torch
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
from functools import reduce
import torch.nn as nn
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
@triton.jit
def triton_per_fused_mean_pow_sub_sum_0(in_out_ptr0, in_ptr0, xnumel,
rnumel, XBLOCK: tl.constexpr):
RBLOCK: tl.constexpr = 64
xoffset = tl.program_id(0) * XBLOCK
xoffset + tl.arange(0, XBLOCK)[:, None]
tl.full([XBLOCK, RBLOCK], True, tl.int1)
rindex = tl.arange(0, RBLOCK)[None, :]
tl.full([XBLOCK, RBLOCK], True, tl.int1)
r0 = rindex % 16
r1 = rindex // 16
tmp0 = tl.load(in_ptr0 + (r0 + 64 * r1), None)
tmp4 = tl.load(in_ptr0 + (16 + r0 + 64 * r1), None)
tmp8 = tl.load(in_ptr0 + (32 + r0 + 64 * r1), None)
tmp12 = tl.load(in_ptr0 + (48 + r0 + 64 * r1), None)
tmp1 = 4.0
tmp2 = tmp0 - tmp1
tmp3 = tmp2 * tmp2
tmp5 = tmp4 - tmp1
tmp6 = tmp5 * tmp5
tmp7 = tmp3 + tmp6
tmp9 = tmp8 - tmp1
tmp10 = tmp9 * tmp9
tmp11 = tmp7 + tmp10
tmp13 = tmp12 - tmp1
tmp14 = tmp13 * tmp13
tmp15 = tmp11 + tmp14
tmp16 = tl.broadcast_to(tmp15, [XBLOCK, RBLOCK])
tmp18 = tl.sum(tmp16, 1)[:, None]
tmp19 = 64.0
tmp20 = tmp18 / tmp19
tl.debug_barrier()
tl.store(in_out_ptr0 + tl.full([XBLOCK, 1], 0, tl.int32), tmp20, None)
def call(args):
arg0_1, = args
args.clear()
assert_size_stride(arg0_1, (4, 4, 4, 4), (64, 16, 4, 1))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((), (), torch.float32)
buf1 = buf0
del buf0
get_raw_stream(0)
triton_per_fused_mean_pow_sub_sum_0[grid(1)](buf1, arg0_1, 1, 64,
XBLOCK=1, num_warps=2, num_stages=1)
del arg0_1
return buf1,
class BaseModule(nn.Module):
"""
Implements the basic module.
All other modules inherit from this one
"""
def load_w(self, checkpoint_path):
"""
Loads a checkpoint into the state_dict.
:param checkpoint_path: the checkpoint file to be loaded.
"""
device = torch.device('cuda:' + '1')
self.load_state_dict(torch.load(checkpoint_path, map_location=device))
def __repr__(self):
"""
String representation
"""
good_old = super(BaseModule, self).__repr__()
addition = 'Total number of parameters: {:,}'.format(self.n_parameters)
return good_old + '\n' + addition
def __call__(self, *args, **kwargs):
return super(BaseModule, self).__call__(*args, **kwargs)
@property
def n_parameters(self):
"""
Number of parameters of the model.
"""
n_parameters = 0
for p in self.parameters():
if hasattr(p, 'mask'):
n_parameters += torch.sum(p.mask).item()
else:
n_parameters += reduce(mul, p.shape)
return int(n_parameters)
class DeepSVDDLossNew(BaseModule):
"""
Implements the reconstruction loss.
"""
def __init__(self, c, R, nu, objective):
"""
Class constructor.
"""
super(DeepSVDDLossNew, self).__init__()
self.c = c
self.R = R
self.nu = nu
self.objective = objective
def forward(self, input_0):
arg0_1 = input_0
output = call([arg0_1])
return output[0]
|
NjuHaoZhang/AutoregressModel-AE_VAD_CVPR2019
|
DeepSVDDLoss
| false | 8,595 |
[
"MIT"
] | 12 |
b9843f34ecb59f908d78ddf977ee4670e0ed6cb4
|
https://github.com/NjuHaoZhang/AutoregressModel-AE_VAD_CVPR2019/tree/b9843f34ecb59f908d78ddf977ee4670e0ed6cb4
|
NLKProjection
|
import torch
from torch import nn
import torch.nn.functional as F
class TwoLayerNet(nn.Module):
def __init__(self, dim, hidden_dim, output_dim):
super(TwoLayerNet, self).__init__()
self.layer1 = nn.Linear(dim, hidden_dim)
self.layer2 = nn.Linear(hidden_dim, output_dim)
nn.init.xavier_uniform_(self.layer1.weight)
nn.init.xavier_uniform_(self.layer2.weight)
def forward(self, emb):
return self.layer2(F.relu(self.layer1(emb)))
class NLKProjection(nn.Module):
def __init__(self, dim, hidden_dim, group_num):
super(NLKProjection, self).__init__()
self.dim, self.hidden_dim, self.concat_dim = (dim, hidden_dim, 2 *
dim + group_num)
self.MLP1 = TwoLayerNet(dim, hidden_dim, dim)
self.MLP2 = TwoLayerNet(dim, hidden_dim, dim)
self.MLP3 = TwoLayerNet(self.concat_dim, hidden_dim, dim)
self.MLP4 = TwoLayerNet(self.concat_dim, hidden_dim, dim)
def forward(self, origin_center, origin_offset, x_new):
z1 = self.MLP1(origin_center)
z2 = self.MLP2(origin_offset)
final_input = torch.cat([z1, z2, x_new], dim=-1)
new_offset = self.MLP3(final_input)
new_center = self.MLP4(final_input)
return torch.cat([new_center, new_offset, x_new], dim=-1)
def get_inputs():
return [torch.rand([4, 4, 4, 4]), torch.rand([4, 4, 4, 4]), torch.rand(
[4, 4, 4, 4])]
def get_init_inputs():
return [[], {'dim': 4, 'hidden_dim': 4, 'group_num': 4}]
|
import torch
from torch._inductor.select_algorithm import extern_kernels
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
from torch._inductor.runtime import triton_helpers
from torch import nn
import torch.nn.functional as F
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
@triton.jit
def triton_poi_fused_relu_threshold_backward_0(in_out_ptr0, in_ptr0,
out_ptr0, xnumel, XBLOCK: tl.constexpr):
xnumel = 256
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x2 = xindex
x0 = xindex % 4
tmp0 = tl.load(in_out_ptr0 + x2, xmask)
tmp1 = tl.load(in_ptr0 + x0, xmask, eviction_policy='evict_last')
tmp2 = tmp0 + tmp1
tmp3 = tl.full([1], 0, tl.int32)
tmp4 = triton_helpers.maximum(tmp3, tmp2)
tmp5 = 0.0
tmp6 = tmp4 <= tmp5
tl.store(in_out_ptr0 + x2, tmp4, xmask)
tl.store(out_ptr0 + x2, tmp6, xmask)
@triton.jit
def triton_poi_fused_cat_1(in_ptr0, in_ptr1, in_ptr2, out_ptr0, xnumel,
XBLOCK: tl.constexpr):
xnumel = 768
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex % 12
x1 = xindex // 12
x2 = xindex
tmp0 = x0
tl.full([1], 0, tl.int64)
tmp3 = tl.full([1], 4, tl.int64)
tmp4 = tmp0 < tmp3
tmp5 = tl.load(in_ptr0 + (4 * x1 + x0), tmp4 & xmask, eviction_policy=
'evict_last', other=0.0)
tmp6 = tmp0 >= tmp3
tmp7 = tl.full([1], 8, tl.int64)
tmp8 = tmp0 < tmp7
tmp9 = tmp6 & tmp8
tmp10 = tl.load(in_ptr1 + (4 * x1 + (-4 + x0)), tmp9 & xmask,
eviction_policy='evict_last', other=0.0)
tmp11 = tmp0 >= tmp7
tl.full([1], 12, tl.int64)
tmp14 = tl.load(in_ptr2 + (4 * x1 + (-8 + x0)), tmp11 & xmask,
eviction_policy='evict_last', other=0.0)
tmp15 = tl.where(tmp9, tmp10, tmp14)
tmp16 = tl.where(tmp4, tmp5, tmp15)
tl.store(out_ptr0 + x2, tmp16, xmask)
def call(args):
(primals_1, primals_2, primals_3, primals_4, primals_5, primals_6,
primals_7, primals_8, primals_9, primals_10, primals_11, primals_12,
primals_13, primals_14, primals_15, primals_16, primals_17,
primals_18, primals_19) = args
args.clear()
assert_size_stride(primals_1, (4, 4), (4, 1))
assert_size_stride(primals_2, (4,), (1,))
assert_size_stride(primals_3, (4, 4, 4, 4), (64, 16, 4, 1))
assert_size_stride(primals_4, (4, 4), (4, 1))
assert_size_stride(primals_5, (4,), (1,))
assert_size_stride(primals_6, (4, 4), (4, 1))
assert_size_stride(primals_7, (4,), (1,))
assert_size_stride(primals_8, (4, 4, 4, 4), (64, 16, 4, 1))
assert_size_stride(primals_9, (4, 4), (4, 1))
assert_size_stride(primals_10, (4,), (1,))
assert_size_stride(primals_11, (4, 4, 4, 4), (64, 16, 4, 1))
assert_size_stride(primals_12, (4, 12), (12, 1))
assert_size_stride(primals_13, (4,), (1,))
assert_size_stride(primals_14, (4, 4), (4, 1))
assert_size_stride(primals_15, (4,), (1,))
assert_size_stride(primals_16, (4, 12), (12, 1))
assert_size_stride(primals_17, (4,), (1,))
assert_size_stride(primals_18, (4, 4), (4, 1))
assert_size_stride(primals_19, (4,), (1,))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((64, 4), (4, 1), torch.float32)
extern_kernels.mm(reinterpret_tensor(primals_3, (64, 4), (4, 1), 0),
reinterpret_tensor(primals_1, (4, 4), (1, 4), 0), out=buf0)
del primals_1
buf1 = reinterpret_tensor(buf0, (4, 4, 4, 4), (64, 16, 4, 1), 0)
del buf0
buf17 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.bool)
get_raw_stream(0)
triton_poi_fused_relu_threshold_backward_0[grid(256)](buf1,
primals_2, buf17, 256, XBLOCK=128, num_warps=4, num_stages=1)
del primals_2
buf2 = empty_strided_cuda((64, 4), (4, 1), torch.float32)
extern_kernels.addmm(primals_5, reinterpret_tensor(buf1, (64, 4), (
4, 1), 0), reinterpret_tensor(primals_4, (4, 4), (1, 4), 0),
alpha=1, beta=1, out=buf2)
del primals_5
buf3 = empty_strided_cuda((64, 4), (4, 1), torch.float32)
extern_kernels.mm(reinterpret_tensor(primals_8, (64, 4), (4, 1), 0),
reinterpret_tensor(primals_6, (4, 4), (1, 4), 0), out=buf3)
del primals_6
buf4 = reinterpret_tensor(buf3, (4, 4, 4, 4), (64, 16, 4, 1), 0)
del buf3
buf16 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.bool)
triton_poi_fused_relu_threshold_backward_0[grid(256)](buf4,
primals_7, buf16, 256, XBLOCK=128, num_warps=4, num_stages=1)
del primals_7
buf5 = empty_strided_cuda((64, 4), (4, 1), torch.float32)
extern_kernels.addmm(primals_10, reinterpret_tensor(buf4, (64, 4),
(4, 1), 0), reinterpret_tensor(primals_9, (4, 4), (1, 4), 0),
alpha=1, beta=1, out=buf5)
del primals_10
buf6 = empty_strided_cuda((4, 4, 4, 12), (192, 48, 12, 1), torch.
float32)
triton_poi_fused_cat_1[grid(768)](buf2, buf5, primals_11, buf6, 768,
XBLOCK=256, num_warps=4, num_stages=1)
buf7 = buf5
del buf5
extern_kernels.mm(reinterpret_tensor(buf6, (64, 12), (12, 1), 0),
reinterpret_tensor(primals_12, (12, 4), (1, 12), 0), out=buf7)
buf8 = reinterpret_tensor(buf7, (4, 4, 4, 4), (64, 16, 4, 1), 0)
del buf7
buf15 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.bool)
triton_poi_fused_relu_threshold_backward_0[grid(256)](buf8,
primals_13, buf15, 256, XBLOCK=128, num_warps=4, num_stages=1)
del primals_13
buf9 = buf2
del buf2
extern_kernels.addmm(primals_15, reinterpret_tensor(buf8, (64, 4),
(4, 1), 0), reinterpret_tensor(primals_14, (4, 4), (1, 4), 0),
alpha=1, beta=1, out=buf9)
del primals_15
buf10 = empty_strided_cuda((64, 4), (4, 1), torch.float32)
extern_kernels.mm(reinterpret_tensor(buf6, (64, 12), (12, 1), 0),
reinterpret_tensor(primals_16, (12, 4), (1, 12), 0), out=buf10)
buf11 = reinterpret_tensor(buf10, (4, 4, 4, 4), (64, 16, 4, 1), 0)
del buf10
buf14 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.bool)
triton_poi_fused_relu_threshold_backward_0[grid(256)](buf11,
primals_17, buf14, 256, XBLOCK=128, num_warps=4, num_stages=1)
del primals_17
buf12 = empty_strided_cuda((64, 4), (4, 1), torch.float32)
extern_kernels.addmm(primals_19, reinterpret_tensor(buf11, (64, 4),
(4, 1), 0), reinterpret_tensor(primals_18, (4, 4), (1, 4), 0),
alpha=1, beta=1, out=buf12)
del primals_19
buf13 = empty_strided_cuda((4, 4, 4, 12), (192, 48, 12, 1), torch.
float32)
triton_poi_fused_cat_1[grid(768)](buf12, buf9, primals_11, buf13,
768, XBLOCK=256, num_warps=4, num_stages=1)
del buf12
del buf9
del primals_11
return (buf13, reinterpret_tensor(primals_3, (64, 4), (4, 1), 0),
reinterpret_tensor(buf1, (64, 4), (4, 1), 0), reinterpret_tensor(
primals_8, (64, 4), (4, 1), 0), reinterpret_tensor(buf4, (64, 4), (
4, 1), 0), reinterpret_tensor(buf6, (64, 12), (12, 1), 0),
reinterpret_tensor(buf8, (64, 4), (4, 1), 0), reinterpret_tensor(
buf11, (64, 4), (4, 1), 0), primals_18, buf14, primals_16,
primals_14, buf15, primals_12, primals_9, buf16, primals_4, buf17)
class TwoLayerNet(nn.Module):
def __init__(self, dim, hidden_dim, output_dim):
super(TwoLayerNet, self).__init__()
self.layer1 = nn.Linear(dim, hidden_dim)
self.layer2 = nn.Linear(hidden_dim, output_dim)
nn.init.xavier_uniform_(self.layer1.weight)
nn.init.xavier_uniform_(self.layer2.weight)
def forward(self, emb):
return self.layer2(F.relu(self.layer1(emb)))
class NLKProjectionNew(nn.Module):
def __init__(self, dim, hidden_dim, group_num):
super(NLKProjectionNew, self).__init__()
self.dim, self.hidden_dim, self.concat_dim = (dim, hidden_dim, 2 *
dim + group_num)
self.MLP1 = TwoLayerNet(dim, hidden_dim, dim)
self.MLP2 = TwoLayerNet(dim, hidden_dim, dim)
self.MLP3 = TwoLayerNet(self.concat_dim, hidden_dim, dim)
self.MLP4 = TwoLayerNet(self.concat_dim, hidden_dim, dim)
def forward(self, input_0, input_1, input_2):
primals_1 = self.MLP1.layer1.weight
primals_2 = self.MLP1.layer1.bias
primals_4 = self.MLP1.layer2.weight
primals_5 = self.MLP1.layer2.bias
primals_6 = self.MLP2.layer1.weight
primals_7 = self.MLP2.layer1.bias
primals_9 = self.MLP2.layer2.weight
primals_10 = self.MLP2.layer2.bias
primals_12 = self.MLP3.layer1.weight
primals_13 = self.MLP3.layer1.bias
primals_14 = self.MLP3.layer2.weight
primals_15 = self.MLP3.layer2.bias
primals_16 = self.MLP4.layer1.weight
primals_17 = self.MLP4.layer1.bias
primals_18 = self.MLP4.layer2.weight
primals_19 = self.MLP4.layer2.bias
primals_3 = input_0
primals_8 = input_1
primals_11 = input_2
output = call([primals_1, primals_2, primals_3, primals_4,
primals_5, primals_6, primals_7, primals_8, primals_9,
primals_10, primals_11, primals_12, primals_13, primals_14,
primals_15, primals_16, primals_17, primals_18, primals_19])
return output[0]
|
HKUST-KnowComp/EFO-1-QA-benchmark
|
NLKProjection
| false | 17,357 |
[
"MIT"
] | 9 |
600fb02c76ab631f93ee362ceb789216ec085790
|
https://github.com/HKUST-KnowComp/EFO-1-QA-benchmark/tree/600fb02c76ab631f93ee362ceb789216ec085790
|
UnpoolAvgEquiangular
|
# AOT ID: ['0_inference']
from ctypes import c_void_p, c_long, c_int
import torch
import math
import random
import os
import tempfile
from math import inf, nan
from torch._inductor.hooks import run_intermediate_hooks
from torch._inductor.utils import maybe_profile
from torch._inductor.codegen.memory_planning import _align as align
from torch import device, empty_strided
from torch._inductor.async_compile import AsyncCompile
from torch._inductor.select_algorithm import extern_kernels
from torch._inductor.codegen.multi_kernel import MultiKernelCall
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
aten = torch.ops.aten
inductor_ops = torch.ops.inductor
_quantized = torch.ops._quantized
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
alloc_from_pool = torch.ops.inductor._alloc_from_pool
async_compile = AsyncCompile()
# kernel path: runs/run_shard_4/inductor_cache/iq/ciqv7bi5u5n5lklll775de7zs2dribgtfk5mjtugtmgprxav7lxa.py
# Topologically Sorted Source Nodes: [x_1], Original ATen: [aten._unsafe_index, aten.clone]
# Source node to ATen node mapping:
# x_1 => _unsafe_index, clone
# Graph fragment:
# %_unsafe_index : [num_users=1] = call_function[target=torch.ops.aten._unsafe_index.Tensor](args = (%permute, [None, None, %unsqueeze, %convert_element_type_3]), kwargs = {})
# %clone : [num_users=1] = call_function[target=torch.ops.aten.clone.default](args = (%_unsafe_index,), kwargs = {memory_format: torch.channels_last})
triton_poi_fused__unsafe_index_clone_0 = async_compile.triton('triton_poi_fused__unsafe_index_clone_0', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[256],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused__unsafe_index_clone_0', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 0, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused__unsafe_index_clone_0(in_ptr0, out_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 256
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x2 = (xindex // 32) % 2
x1 = (xindex // 4) % 8
x0 = xindex % 4
x3 = (xindex // 64)
x5 = xindex
tmp0 = x2
tmp1 = tmp0.to(tl.float32)
tmp2 = 0.5
tmp3 = tmp1 * tmp2
tmp4 = tmp3.to(tl.int32)
tmp5 = x1
tmp6 = tmp5.to(tl.float32)
tmp7 = tmp6 * tmp2
tmp8 = tmp7.to(tl.int32)
tmp9 = tl.load(in_ptr0 + (x0 + (4*tmp8) + (16*x3)), xmask)
tl.store(out_ptr0 + (x5), tmp9, xmask)
''', device_str='cuda')
async_compile.wait(globals())
del async_compile
def call(args):
arg0_1, = args
args.clear()
assert_size_stride(arg0_1, (4, 4, 4), (16, 4, 1))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((4, 4, 2, 8), (64, 1, 32, 4), torch.float32)
# Topologically Sorted Source Nodes: [x_1], Original ATen: [aten._unsafe_index, aten.clone]
stream0 = get_raw_stream(0)
triton_poi_fused__unsafe_index_clone_0.run(arg0_1, buf0, 256, grid=grid(256), stream=stream0)
del arg0_1
return (reinterpret_tensor(buf0, (4, 16, 4), (64, 4, 1), 0), )
def benchmark_compiled_module(times=10, repeat=10):
from torch._dynamo.testing import rand_strided
from torch._inductor.utils import print_performance
arg0_1 = rand_strided((4, 4, 4), (16, 4, 1), device='cuda:0', dtype=torch.float32)
fn = lambda: call([arg0_1])
return print_performance(fn, times=times, repeat=repeat)
if __name__ == "__main__":
from torch._inductor.wrapper_benchmark import compiled_module_main
compiled_module_main('None', benchmark_compiled_module)
|
import torch
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
@triton.jit
def triton_poi_fused__unsafe_index_clone_0(in_ptr0, out_ptr0, xnumel,
XBLOCK: tl.constexpr):
xnumel = 256
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x2 = xindex // 32 % 2
x1 = xindex // 4 % 8
x0 = xindex % 4
x3 = xindex // 64
x5 = xindex
tmp0 = x2
tmp1 = tmp0.to(tl.float32)
tmp2 = 0.5
tmp3 = tmp1 * tmp2
tmp3.to(tl.int32)
tmp5 = x1
tmp6 = tmp5.to(tl.float32)
tmp7 = tmp6 * tmp2
tmp8 = tmp7.to(tl.int32)
tmp9 = tl.load(in_ptr0 + (x0 + 4 * tmp8 + 16 * x3), xmask)
tl.store(out_ptr0 + x5, tmp9, xmask)
def call(args):
arg0_1, = args
args.clear()
assert_size_stride(arg0_1, (4, 4, 4), (16, 4, 1))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((4, 4, 2, 8), (64, 1, 32, 4), torch.float32)
get_raw_stream(0)
triton_poi_fused__unsafe_index_clone_0[grid(256)](arg0_1, buf0, 256,
XBLOCK=256, num_warps=4, num_stages=1)
del arg0_1
return reinterpret_tensor(buf0, (4, 16, 4), (64, 4, 1), 0),
def equiangular_dimension_unpack(nodes, ratio):
"""Calculate the two underlying dimensions
from the total number of nodes
Args:
nodes (int): combined dimensions
ratio (float): ratio between the two dimensions
Returns:
int, int: separated dimensions
"""
dim1 = int((nodes / ratio) ** 0.5)
dim2 = int((nodes * ratio) ** 0.5)
if dim1 * dim2 != nodes:
if nodes % dim1 == 0:
dim2 = nodes // dim1
if nodes % dim2 == 0:
dim1 = nodes // dim2
assert dim1 * dim2 == nodes, f'Unable to unpack nodes: {nodes}, ratio: {ratio}'
return dim1, dim2
def equiangular_calculator(tensor, ratio):
N, M, F = tensor.size()
dim1, dim2 = equiangular_dimension_unpack(M, ratio)
tensor = tensor.view(N, dim1, dim2, F)
return tensor
def reformat(x):
"""Reformat the input from a 4D tensor to a 3D tensor
Args:
x (:obj:`torch.tensor`): a 4D tensor
Returns:
:obj:`torch.tensor`: a 3D tensor
"""
x = x.permute(0, 2, 3, 1)
N, D1, D2, Feat = x.size()
x = x.view(N, D1 * D2, Feat)
return x
class UnpoolAvgEquiangularNew(torch.nn.Module):
"""EquiAngular average unpooling
Parameters
----------
ratio : float
Parameter for equiangular sampling -> width/height
"""
def __init__(self, ratio, kernel_size, *args, **kwargs):
self.ratio = ratio
self.kernel_size = int(kernel_size ** 0.5)
super().__init__()
def forward(self, input_0):
arg0_1 = input_0
output = call([arg0_1])
return output[0]
|
ownzonefeng/weather_prediction
|
UnpoolAvgEquiangular
| false | 7,426 |
[
"MIT"
] | 1 |
723c02b6b3c0a40751d87572b66c7a4e040dec92
|
https://github.com/ownzonefeng/weather_prediction/tree/723c02b6b3c0a40751d87572b66c7a4e040dec92
|
MinimaxDiscriminatorLoss
|
import torch
import torch.nn as nn
import torch.nn.functional as F
def minimax_discriminator_loss(dx, dgz, label_smoothing=0.0, reduction='mean'):
target_ones = torch.ones_like(dgz) * (1.0 - label_smoothing)
target_zeros = torch.zeros_like(dx)
loss = F.binary_cross_entropy_with_logits(dx, target_ones, reduction=
reduction)
loss += F.binary_cross_entropy_with_logits(dgz, target_zeros, reduction
=reduction)
return loss
class DiscriminatorLoss(nn.Module):
"""Base class for all discriminator losses.
.. note:: All Losses meant to be minimized for optimizing the Discriminator must subclass this.
Args:
reduction (str, optional): Specifies the reduction to apply to the output.
If ``none`` no reduction will be applied. If ``mean`` the outputs are averaged over batch size.
If ``sum`` the elements of the output are summed.
override_train_ops (function, optional): Function to be used in place of the default ``train_ops``
"""
def __init__(self, reduction='mean', override_train_ops=None):
super(DiscriminatorLoss, self).__init__()
self.reduction = reduction
self.override_train_ops = override_train_ops
self.arg_map = {}
def set_arg_map(self, value):
"""Updates the ``arg_map`` for passing a different value to the ``train_ops``.
Args:
value (dict): A mapping of the ``argument name`` in the method signature and the
variable name in the ``Trainer`` it corresponds to.
.. note::
If the ``train_ops`` signature is
``train_ops(self, gen, disc, optimizer_discriminator, device, batch_size, labels=None)``
then we need to map ``gen`` to ``generator`` and ``disc`` to ``discriminator``.
In this case we make the following function call
``loss.set_arg_map({"gen": "generator", "disc": "discriminator"})``.
"""
self.arg_map.update(value)
def train_ops(self, generator, discriminator, optimizer_discriminator,
real_inputs, device, labels=None):
"""Defines the standard ``train_ops`` used by most losses. Losses which have a different
training procedure can either ``subclass`` it **(recommended approach)** or make use of
``override_train_ops`` argument.
The ``standard optimization algorithm`` for the ``discriminator`` defined in this train_ops
is as follows:
1. :math:`fake = generator(noise)`
2. :math:`value_1 = discriminator(fake)`
3. :math:`value_2 = discriminator(real)`
4. :math:`loss = loss\\_function(value_1, value_2)`
5. Backpropagate by computing :math:`\\nabla loss`
6. Run a step of the optimizer for discriminator
Args:
generator (torchgan.models.Generator): The model to be optimized.
discriminator (torchgan.models.Discriminator): The discriminator which judges the
performance of the generator.
optimizer_discriminator (torch.optim.Optimizer): Optimizer which updates the ``parameters``
of the ``discriminator``.
real_inputs (torch.Tensor): The real data to be fed to the ``discriminator``.
device (torch.device): Device on which the ``generator`` and ``discriminator`` is present.
batch_size (int): Batch Size of the data infered from the ``DataLoader`` by the ``Trainer``.
labels (torch.Tensor, optional): Labels for the data.
Returns:
Scalar value of the loss.
"""
if self.override_train_ops is not None:
return self.override_train_ops(self, generator, discriminator,
optimizer_discriminator, real_inputs, device, labels)
else:
if labels is None and (generator.label_type == 'required' or
discriminator.label_type == 'required'):
raise Exception('GAN model requires labels for training')
batch_size = real_inputs.size(0)
noise = torch.randn(batch_size, generator.encoding_dims, device
=device)
if generator.label_type == 'generated':
label_gen = torch.randint(0, generator.num_classes, (
batch_size,), device=device)
optimizer_discriminator.zero_grad()
if discriminator.label_type == 'none':
dx = discriminator(real_inputs)
elif discriminator.label_type == 'required':
dx = discriminator(real_inputs, labels)
else:
dx = discriminator(real_inputs, label_gen)
if generator.label_type == 'none':
fake = generator(noise)
elif generator.label_type == 'required':
fake = generator(noise, labels)
else:
fake = generator(noise, label_gen)
if discriminator.label_type == 'none':
dgz = discriminator(fake.detach())
elif generator.label_type == 'generated':
dgz = discriminator(fake.detach(), label_gen)
else:
dgz = discriminator(fake.detach(), labels)
loss = self.forward(dx, dgz)
loss.backward()
optimizer_discriminator.step()
return loss.item()
class MinimaxDiscriminatorLoss(DiscriminatorLoss):
"""Minimax game discriminator loss from the original GAN paper `"Generative Adversarial Networks
by Goodfellow et. al." <https://arxiv.org/abs/1406.2661>`_
The loss can be described as:
.. math:: L(D) = -[log(D(x)) + log(1 - D(G(z)))]
where
- :math:`G` : Generator
- :math:`D` : Discriminator
- :math:`x` : A sample from the data distribution
- :math:`z` : A sample from the noise prior
Args:
label_smoothing (float, optional): The factor by which the labels (1 in this case) needs
to be smoothened. For example, label_smoothing = 0.2 changes the value of the real
labels to 0.8.
reduction (str, optional): Specifies the reduction to apply to the output.
If ``none`` no reduction will be applied. If ``mean`` the mean of the output.
If ``sum`` the elements of the output will be summed.
override_train_ops (function, optional): A function is passed to this argument,
if the default ``train_ops`` is not to be used.
"""
def __init__(self, label_smoothing=0.0, reduction='mean',
override_train_ops=None):
super(MinimaxDiscriminatorLoss, self).__init__(reduction,
override_train_ops)
self.label_smoothing = label_smoothing
def forward(self, dx, dgz):
"""Computes the loss for the given input.
Args:
dx (torch.Tensor) : Output of the Discriminator with real data. It must have the
dimensions (N, \\*) where \\* means any number of additional
dimensions.
dgz (torch.Tensor) : Output of the Discriminator with generated data. It must have the
dimensions (N, \\*) where \\* means any number of additional
dimensions.
Returns:
scalar if reduction is applied else Tensor with dimensions (N, \\*).
"""
return minimax_discriminator_loss(dx, dgz, label_smoothing=self.
label_smoothing, reduction=self.reduction)
def get_inputs():
return [torch.rand([4, 4, 4, 4]), torch.rand([4, 4, 4, 4])]
def get_init_inputs():
return [[], {}]
|
import torch
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
from torch._inductor.runtime import triton_helpers
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
import torch.nn as nn
import torch.nn.functional as F
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
@triton.jit
def triton_per_fused_add_binary_cross_entropy_with_logits_0(in_out_ptr0,
in_ptr0, in_ptr1, xnumel, rnumel):
XBLOCK: tl.constexpr = 1
RBLOCK: tl.constexpr = 256
xoffset = tl.program_id(0) * XBLOCK
tl.full([1], xoffset, tl.int32)
tl.full([RBLOCK], True, tl.int1)
rindex = tl.arange(0, RBLOCK)[:]
tl.full([RBLOCK], True, tl.int1)
r0 = rindex
tmp0 = tl.load(in_ptr0 + r0, None)
tmp13 = tl.load(in_ptr1 + r0, None)
tmp1 = 0.0
tmp2 = tmp1 * tmp0
tmp3 = triton_helpers.minimum(tmp1, tmp0)
tmp4 = tl_math.abs(tmp0)
tmp5 = -tmp4
tmp6 = tl_math.exp(tmp5)
tmp7 = libdevice.log1p(tmp6)
tmp8 = tmp3 - tmp7
tmp9 = tmp2 - tmp8
tmp10 = tl.broadcast_to(tmp9, [RBLOCK])
tmp12 = triton_helpers.promote_to_tensor(tl.sum(tmp10, 0))
tmp14 = triton_helpers.minimum(tmp1, tmp13)
tmp15 = tl_math.abs(tmp13)
tmp16 = -tmp15
tmp17 = tl_math.exp(tmp16)
tmp18 = libdevice.log1p(tmp17)
tmp19 = tmp14 - tmp18
tmp20 = tmp13 - tmp19
tmp21 = tl.broadcast_to(tmp20, [RBLOCK])
tmp23 = triton_helpers.promote_to_tensor(tl.sum(tmp21, 0))
tmp24 = 256.0
tmp25 = tmp12 / tmp24
tmp26 = tmp23 / tmp24
tmp27 = tmp25 + tmp26
tl.debug_barrier()
tl.store(in_out_ptr0 + tl.full([1], 0, tl.int32), tmp27, None)
def call(args):
arg0_1, arg1_1 = args
args.clear()
assert_size_stride(arg0_1, (4, 4, 4, 4), (64, 16, 4, 1))
assert_size_stride(arg1_1, (4, 4, 4, 4), (64, 16, 4, 1))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((), (), torch.float32)
buf2 = buf0
del buf0
get_raw_stream(0)
triton_per_fused_add_binary_cross_entropy_with_logits_0[grid(1)](buf2,
arg0_1, arg1_1, 1, 256, num_warps=2, num_stages=1)
del arg0_1
del arg1_1
return buf2,
def minimax_discriminator_loss(dx, dgz, label_smoothing=0.0, reduction='mean'):
target_ones = torch.ones_like(dgz) * (1.0 - label_smoothing)
target_zeros = torch.zeros_like(dx)
loss = F.binary_cross_entropy_with_logits(dx, target_ones, reduction=
reduction)
loss += F.binary_cross_entropy_with_logits(dgz, target_zeros, reduction
=reduction)
return loss
class DiscriminatorLoss(nn.Module):
"""Base class for all discriminator losses.
.. note:: All Losses meant to be minimized for optimizing the Discriminator must subclass this.
Args:
reduction (str, optional): Specifies the reduction to apply to the output.
If ``none`` no reduction will be applied. If ``mean`` the outputs are averaged over batch size.
If ``sum`` the elements of the output are summed.
override_train_ops (function, optional): Function to be used in place of the default ``train_ops``
"""
def __init__(self, reduction='mean', override_train_ops=None):
super(DiscriminatorLoss, self).__init__()
self.reduction = reduction
self.override_train_ops = override_train_ops
self.arg_map = {}
def set_arg_map(self, value):
"""Updates the ``arg_map`` for passing a different value to the ``train_ops``.
Args:
value (dict): A mapping of the ``argument name`` in the method signature and the
variable name in the ``Trainer`` it corresponds to.
.. note::
If the ``train_ops`` signature is
``train_ops(self, gen, disc, optimizer_discriminator, device, batch_size, labels=None)``
then we need to map ``gen`` to ``generator`` and ``disc`` to ``discriminator``.
In this case we make the following function call
``loss.set_arg_map({"gen": "generator", "disc": "discriminator"})``.
"""
self.arg_map.update(value)
def train_ops(self, generator, discriminator, optimizer_discriminator,
real_inputs, device, labels=None):
"""Defines the standard ``train_ops`` used by most losses. Losses which have a different
training procedure can either ``subclass`` it **(recommended approach)** or make use of
``override_train_ops`` argument.
The ``standard optimization algorithm`` for the ``discriminator`` defined in this train_ops
is as follows:
1. :math:`fake = generator(noise)`
2. :math:`value_1 = discriminator(fake)`
3. :math:`value_2 = discriminator(real)`
4. :math:`loss = loss\\_function(value_1, value_2)`
5. Backpropagate by computing :math:`\\nabla loss`
6. Run a step of the optimizer for discriminator
Args:
generator (torchgan.models.Generator): The model to be optimized.
discriminator (torchgan.models.Discriminator): The discriminator which judges the
performance of the generator.
optimizer_discriminator (torch.optim.Optimizer): Optimizer which updates the ``parameters``
of the ``discriminator``.
real_inputs (torch.Tensor): The real data to be fed to the ``discriminator``.
device (torch.device): Device on which the ``generator`` and ``discriminator`` is present.
batch_size (int): Batch Size of the data infered from the ``DataLoader`` by the ``Trainer``.
labels (torch.Tensor, optional): Labels for the data.
Returns:
Scalar value of the loss.
"""
if self.override_train_ops is not None:
return self.override_train_ops(self, generator, discriminator,
optimizer_discriminator, real_inputs, device, labels)
else:
if labels is None and (generator.label_type == 'required' or
discriminator.label_type == 'required'):
raise Exception('GAN model requires labels for training')
batch_size = real_inputs.size(0)
noise = torch.randn(batch_size, generator.encoding_dims, device
=device)
if generator.label_type == 'generated':
label_gen = torch.randint(0, generator.num_classes, (
batch_size,), device=device)
optimizer_discriminator.zero_grad()
if discriminator.label_type == 'none':
dx = discriminator(real_inputs)
elif discriminator.label_type == 'required':
dx = discriminator(real_inputs, labels)
else:
dx = discriminator(real_inputs, label_gen)
if generator.label_type == 'none':
fake = generator(noise)
elif generator.label_type == 'required':
fake = generator(noise, labels)
else:
fake = generator(noise, label_gen)
if discriminator.label_type == 'none':
dgz = discriminator(fake.detach())
elif generator.label_type == 'generated':
dgz = discriminator(fake.detach(), label_gen)
else:
dgz = discriminator(fake.detach(), labels)
loss = self.forward(dx, dgz)
loss.backward()
optimizer_discriminator.step()
return loss.item()
class MinimaxDiscriminatorLossNew(DiscriminatorLoss):
"""Minimax game discriminator loss from the original GAN paper `"Generative Adversarial Networks
by Goodfellow et. al." <https://arxiv.org/abs/1406.2661>`_
The loss can be described as:
.. math:: L(D) = -[log(D(x)) + log(1 - D(G(z)))]
where
- :math:`G` : Generator
- :math:`D` : Discriminator
- :math:`x` : A sample from the data distribution
- :math:`z` : A sample from the noise prior
Args:
label_smoothing (float, optional): The factor by which the labels (1 in this case) needs
to be smoothened. For example, label_smoothing = 0.2 changes the value of the real
labels to 0.8.
reduction (str, optional): Specifies the reduction to apply to the output.
If ``none`` no reduction will be applied. If ``mean`` the mean of the output.
If ``sum`` the elements of the output will be summed.
override_train_ops (function, optional): A function is passed to this argument,
if the default ``train_ops`` is not to be used.
"""
def __init__(self, label_smoothing=0.0, reduction='mean',
override_train_ops=None):
super(MinimaxDiscriminatorLossNew, self).__init__(reduction,
override_train_ops)
self.label_smoothing = label_smoothing
def forward(self, input_0, input_1):
arg0_1 = input_0
arg1_1 = input_1
output = call([arg0_1, arg1_1])
return output[0]
|
torchgan/torchgan
|
MinimaxDiscriminatorLoss
| false | 16,609 |
[
"MIT"
] | 1,300 |
f4139537ac2d3d8609d5aecc859a6fb797b107a1
|
https://github.com/torchgan/torchgan/tree/f4139537ac2d3d8609d5aecc859a6fb797b107a1
|
PolicyNetwork
|
# AOT ID: ['0_forward']
from ctypes import c_void_p, c_long, c_int
import torch
import math
import random
import os
import tempfile
from math import inf, nan
from torch._inductor.hooks import run_intermediate_hooks
from torch._inductor.utils import maybe_profile
from torch._inductor.codegen.memory_planning import _align as align
from torch import device, empty_strided
from torch._inductor.async_compile import AsyncCompile
from torch._inductor.select_algorithm import extern_kernels
from torch._inductor.codegen.multi_kernel import MultiKernelCall
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
aten = torch.ops.aten
inductor_ops = torch.ops.inductor
_quantized = torch.ops._quantized
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
alloc_from_pool = torch.ops.inductor._alloc_from_pool
async_compile = AsyncCompile()
# kernel path: runs/run_shard_1/inductor_cache/cn/ccnvkf7kfnskbbfy2kwx55oghjftngamwdttghryrfs4g3fay72l.py
# Topologically Sorted Source Nodes: [x], Original ATen: [aten.relu, aten.threshold_backward]
# Source node to ATen node mapping:
# x => relu
# Graph fragment:
# %relu : [num_users=2] = call_function[target=torch.ops.aten.relu.default](args = (%view_1,), kwargs = {})
# %le_1 : [num_users=1] = call_function[target=torch.ops.aten.le.Scalar](args = (%relu, 0), kwargs = {})
triton_poi_fused_relu_threshold_backward_0 = async_compile.triton('triton_poi_fused_relu_threshold_backward_0', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[16384],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*i1', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=90, major=9, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=132), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_relu_threshold_backward_0', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'B098E03CDA7B8ADC90DAFFDF24A2956451D1B13F297756A5DCC209498AA53705', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_relu_threshold_backward_0(in_out_ptr0, in_ptr0, out_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 16384
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = tl.full([XBLOCK], True, tl.int1)
x2 = xindex
x0 = xindex % 256
tmp0 = tl.load(in_out_ptr0 + (x2), None)
tmp1 = tl.load(in_ptr0 + (x0), None, eviction_policy='evict_last')
tmp2 = tmp0 + tmp1
tmp3 = tl.full([1], 0, tl.int32)
tmp4 = triton_helpers.maximum(tmp3, tmp2)
tmp5 = 0.0
tmp6 = tmp4 <= tmp5
tl.store(in_out_ptr0 + (x2), tmp4, None)
tl.store(out_ptr0 + (x2), tmp6, None)
''', device_str='cuda')
# kernel path: runs/run_shard_1/inductor_cache/gr/cgrekmp3vmfaskaxgm7wq3mhpcpisrqek37fdagqcpd5rqlnxvep.py
# Topologically Sorted Source Nodes: [x_2], Original ATen: [aten._softmax]
# Source node to ATen node mapping:
# x_2 => amax, exp, sub
# Graph fragment:
# %amax : [num_users=1] = call_function[target=torch.ops.aten.amax.default](args = (%view_5, [1], True), kwargs = {})
# %sub : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (%view_5, %amax), kwargs = {})
# %exp : [num_users=2] = call_function[target=torch.ops.aten.exp.default](args = (%sub,), kwargs = {})
triton_poi_fused__softmax_1 = async_compile.triton('triton_poi_fused__softmax_1', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[128],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=90, major=9, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=132), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused__softmax_1', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 5, 'num_reduction': 0, 'backend_hash': 'B098E03CDA7B8ADC90DAFFDF24A2956451D1B13F297756A5DCC209498AA53705', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused__softmax_1(in_ptr0, out_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 128
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x3 = xindex
x0 = xindex % 8
x2 = (xindex // 32)
tmp0 = tl.load(in_ptr0 + (x3), xmask)
tmp1 = tl.load(in_ptr0 + (x0 + (32*x2)), xmask, eviction_policy='evict_last')
tmp2 = tl.load(in_ptr0 + (8 + x0 + (32*x2)), xmask, eviction_policy='evict_last')
tmp4 = tl.load(in_ptr0 + (16 + x0 + (32*x2)), xmask, eviction_policy='evict_last')
tmp6 = tl.load(in_ptr0 + (24 + x0 + (32*x2)), xmask, eviction_policy='evict_last')
tmp3 = triton_helpers.maximum(tmp1, tmp2)
tmp5 = triton_helpers.maximum(tmp3, tmp4)
tmp7 = triton_helpers.maximum(tmp5, tmp6)
tmp8 = tmp0 - tmp7
tmp9 = tl_math.exp(tmp8)
tl.store(out_ptr0 + (x3), tmp9, xmask)
''', device_str='cuda')
# kernel path: runs/run_shard_1/inductor_cache/vv/cvvhapfmnf3saoxluehcmlbqma5latd76fq263yvdkloxowagavl.py
# Topologically Sorted Source Nodes: [x_2], Original ATen: [aten._softmax]
# Source node to ATen node mapping:
# x_2 => div, sum_1
# Graph fragment:
# %sum_1 : [num_users=1] = call_function[target=torch.ops.aten.sum.dim_IntList](args = (%exp, [1], True), kwargs = {})
# %div : [num_users=1] = call_function[target=torch.ops.aten.div.Tensor](args = (%exp, %sum_1), kwargs = {})
triton_poi_fused__softmax_2 = async_compile.triton('triton_poi_fused__softmax_2', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[128],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=90, major=9, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=132), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused__softmax_2', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 5, 'num_reduction': 0, 'backend_hash': 'B098E03CDA7B8ADC90DAFFDF24A2956451D1B13F297756A5DCC209498AA53705', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused__softmax_2(in_ptr0, out_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 128
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x3 = xindex
x0 = xindex % 8
x2 = (xindex // 32)
tmp0 = tl.load(in_ptr0 + (x3), xmask)
tmp1 = tl.load(in_ptr0 + (x0 + (32*x2)), xmask, eviction_policy='evict_last')
tmp2 = tl.load(in_ptr0 + (8 + x0 + (32*x2)), xmask, eviction_policy='evict_last')
tmp4 = tl.load(in_ptr0 + (16 + x0 + (32*x2)), xmask, eviction_policy='evict_last')
tmp6 = tl.load(in_ptr0 + (24 + x0 + (32*x2)), xmask, eviction_policy='evict_last')
tmp3 = tmp1 + tmp2
tmp5 = tmp3 + tmp4
tmp7 = tmp5 + tmp6
tmp8 = tmp0 / tmp7
tl.store(out_ptr0 + (x3), tmp8, xmask)
''', device_str='cuda')
async_compile.wait(globals())
del async_compile
def call(args):
primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7 = args
args.clear()
assert_size_stride(primals_1, (256, 4), (4, 1))
assert_size_stride(primals_2, (256, ), (1, ))
assert_size_stride(primals_3, (4, 4, 4, 4), (64, 16, 4, 1))
assert_size_stride(primals_4, (256, 256), (256, 1))
assert_size_stride(primals_5, (256, ), (1, ))
assert_size_stride(primals_6, (2, 256), (256, 1))
assert_size_stride(primals_7, (2, ), (1, ))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((64, 256), (256, 1), torch.float32)
# Topologically Sorted Source Nodes: [], Original ATen: []
extern_kernels.mm(reinterpret_tensor(primals_3, (64, 4), (4, 1), 0), reinterpret_tensor(primals_1, (4, 256), (1, 4), 0), out=buf0)
del primals_1
buf1 = reinterpret_tensor(buf0, (4, 4, 4, 256), (4096, 1024, 256, 1), 0); del buf0 # reuse
buf8 = empty_strided_cuda((4, 4, 4, 256), (4096, 1024, 256, 1), torch.bool)
# Topologically Sorted Source Nodes: [x], Original ATen: [aten.relu, aten.threshold_backward]
stream0 = get_raw_stream(0)
triton_poi_fused_relu_threshold_backward_0.run(buf1, primals_2, buf8, 16384, grid=grid(16384), stream=stream0)
del primals_2
buf2 = empty_strided_cuda((64, 256), (256, 1), torch.float32)
# Topologically Sorted Source Nodes: [], Original ATen: []
extern_kernels.mm(reinterpret_tensor(buf1, (64, 256), (256, 1), 0), reinterpret_tensor(primals_4, (256, 256), (1, 256), 0), out=buf2)
buf3 = reinterpret_tensor(buf2, (4, 4, 4, 256), (4096, 1024, 256, 1), 0); del buf2 # reuse
buf7 = empty_strided_cuda((4, 4, 4, 256), (4096, 1024, 256, 1), torch.bool)
# Topologically Sorted Source Nodes: [x_1], Original ATen: [aten.relu, aten.threshold_backward]
triton_poi_fused_relu_threshold_backward_0.run(buf3, primals_5, buf7, 16384, grid=grid(16384), stream=stream0)
del primals_5
buf4 = empty_strided_cuda((64, 2), (2, 1), torch.float32)
# Topologically Sorted Source Nodes: [linear_2], Original ATen: [aten.addmm]
extern_kernels.addmm(primals_7, reinterpret_tensor(buf3, (64, 256), (256, 1), 0), reinterpret_tensor(primals_6, (256, 2), (1, 256), 0), alpha=1, beta=1, out=buf4)
del primals_7
buf5 = empty_strided_cuda((4, 4, 4, 2), (32, 8, 2, 1), torch.float32)
# Topologically Sorted Source Nodes: [x_2], Original ATen: [aten._softmax]
triton_poi_fused__softmax_1.run(buf4, buf5, 128, grid=grid(128), stream=stream0)
buf6 = reinterpret_tensor(buf4, (4, 4, 4, 2), (32, 8, 2, 1), 0); del buf4 # reuse
# Topologically Sorted Source Nodes: [x_2], Original ATen: [aten._softmax]
triton_poi_fused__softmax_2.run(buf5, buf6, 128, grid=grid(128), stream=stream0)
del buf5
return (buf6, reinterpret_tensor(primals_3, (64, 4), (4, 1), 0), reinterpret_tensor(buf1, (64, 256), (256, 1), 0), reinterpret_tensor(buf3, (64, 256), (256, 1), 0), buf6, primals_6, buf7, primals_4, buf8, )
def benchmark_compiled_module(times=10, repeat=10):
from torch._dynamo.testing import rand_strided
from torch._inductor.utils import print_performance
primals_1 = rand_strided((256, 4), (4, 1), device='cuda:0', dtype=torch.float32)
primals_2 = rand_strided((256, ), (1, ), device='cuda:0', dtype=torch.float32)
primals_3 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32)
primals_4 = rand_strided((256, 256), (256, 1), device='cuda:0', dtype=torch.float32)
primals_5 = rand_strided((256, ), (1, ), device='cuda:0', dtype=torch.float32)
primals_6 = rand_strided((2, 256), (256, 1), device='cuda:0', dtype=torch.float32)
primals_7 = rand_strided((2, ), (1, ), device='cuda:0', dtype=torch.float32)
fn = lambda: call([primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7])
return print_performance(fn, times=times, repeat=repeat)
if __name__ == "__main__":
from torch._inductor.wrapper_benchmark import compiled_module_main
compiled_module_main('None', benchmark_compiled_module)
|
import torch
from torch._inductor.select_algorithm import extern_kernels
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
from torch._inductor.runtime import triton_helpers
from torch._inductor.runtime.triton_helpers import math as tl_math
import torch.nn as nn
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
@triton.jit
def triton_poi_fused_relu_threshold_backward_0(in_out_ptr0, in_ptr0,
out_ptr0, xnumel, XBLOCK: tl.constexpr):
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
tl.full([XBLOCK], True, tl.int1)
x2 = xindex
x0 = xindex % 256
tmp0 = tl.load(in_out_ptr0 + x2, None)
tmp1 = tl.load(in_ptr0 + x0, None, eviction_policy='evict_last')
tmp2 = tmp0 + tmp1
tmp3 = tl.full([1], 0, tl.int32)
tmp4 = triton_helpers.maximum(tmp3, tmp2)
tmp5 = 0.0
tmp6 = tmp4 <= tmp5
tl.store(in_out_ptr0 + x2, tmp4, None)
tl.store(out_ptr0 + x2, tmp6, None)
@triton.jit
def triton_poi_fused__softmax_1(in_ptr0, out_ptr0, xnumel, XBLOCK: tl.constexpr
):
xnumel = 128
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x3 = xindex
x0 = xindex % 8
x2 = xindex // 32
tmp0 = tl.load(in_ptr0 + x3, xmask)
tmp1 = tl.load(in_ptr0 + (x0 + 32 * x2), xmask, eviction_policy=
'evict_last')
tmp2 = tl.load(in_ptr0 + (8 + x0 + 32 * x2), xmask, eviction_policy=
'evict_last')
tmp4 = tl.load(in_ptr0 + (16 + x0 + 32 * x2), xmask, eviction_policy=
'evict_last')
tmp6 = tl.load(in_ptr0 + (24 + x0 + 32 * x2), xmask, eviction_policy=
'evict_last')
tmp3 = triton_helpers.maximum(tmp1, tmp2)
tmp5 = triton_helpers.maximum(tmp3, tmp4)
tmp7 = triton_helpers.maximum(tmp5, tmp6)
tmp8 = tmp0 - tmp7
tmp9 = tl_math.exp(tmp8)
tl.store(out_ptr0 + x3, tmp9, xmask)
@triton.jit
def triton_poi_fused__softmax_2(in_ptr0, out_ptr0, xnumel, XBLOCK: tl.constexpr
):
xnumel = 128
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x3 = xindex
x0 = xindex % 8
x2 = xindex // 32
tmp0 = tl.load(in_ptr0 + x3, xmask)
tmp1 = tl.load(in_ptr0 + (x0 + 32 * x2), xmask, eviction_policy=
'evict_last')
tmp2 = tl.load(in_ptr0 + (8 + x0 + 32 * x2), xmask, eviction_policy=
'evict_last')
tmp4 = tl.load(in_ptr0 + (16 + x0 + 32 * x2), xmask, eviction_policy=
'evict_last')
tmp6 = tl.load(in_ptr0 + (24 + x0 + 32 * x2), xmask, eviction_policy=
'evict_last')
tmp3 = tmp1 + tmp2
tmp5 = tmp3 + tmp4
tmp7 = tmp5 + tmp6
tmp8 = tmp0 / tmp7
tl.store(out_ptr0 + x3, tmp8, xmask)
def call(args):
(primals_1, primals_2, primals_3, primals_4, primals_5, primals_6,
primals_7) = args
args.clear()
assert_size_stride(primals_1, (256, 4), (4, 1))
assert_size_stride(primals_2, (256,), (1,))
assert_size_stride(primals_3, (4, 4, 4, 4), (64, 16, 4, 1))
assert_size_stride(primals_4, (256, 256), (256, 1))
assert_size_stride(primals_5, (256,), (1,))
assert_size_stride(primals_6, (2, 256), (256, 1))
assert_size_stride(primals_7, (2,), (1,))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((64, 256), (256, 1), torch.float32)
extern_kernels.mm(reinterpret_tensor(primals_3, (64, 4), (4, 1), 0),
reinterpret_tensor(primals_1, (4, 256), (1, 4), 0), out=buf0)
del primals_1
buf1 = reinterpret_tensor(buf0, (4, 4, 4, 256), (4096, 1024, 256, 1), 0
)
del buf0
buf8 = empty_strided_cuda((4, 4, 4, 256), (4096, 1024, 256, 1),
torch.bool)
get_raw_stream(0)
triton_poi_fused_relu_threshold_backward_0[grid(16384)](buf1,
primals_2, buf8, 16384, XBLOCK=128, num_warps=4, num_stages=1)
del primals_2
buf2 = empty_strided_cuda((64, 256), (256, 1), torch.float32)
extern_kernels.mm(reinterpret_tensor(buf1, (64, 256), (256, 1), 0),
reinterpret_tensor(primals_4, (256, 256), (1, 256), 0), out=buf2)
buf3 = reinterpret_tensor(buf2, (4, 4, 4, 256), (4096, 1024, 256, 1), 0
)
del buf2
buf7 = empty_strided_cuda((4, 4, 4, 256), (4096, 1024, 256, 1),
torch.bool)
triton_poi_fused_relu_threshold_backward_0[grid(16384)](buf3,
primals_5, buf7, 16384, XBLOCK=128, num_warps=4, num_stages=1)
del primals_5
buf4 = empty_strided_cuda((64, 2), (2, 1), torch.float32)
extern_kernels.addmm(primals_7, reinterpret_tensor(buf3, (64, 256),
(256, 1), 0), reinterpret_tensor(primals_6, (256, 2), (1, 256),
0), alpha=1, beta=1, out=buf4)
del primals_7
buf5 = empty_strided_cuda((4, 4, 4, 2), (32, 8, 2, 1), torch.float32)
triton_poi_fused__softmax_1[grid(128)](buf4, buf5, 128, XBLOCK=128,
num_warps=4, num_stages=1)
buf6 = reinterpret_tensor(buf4, (4, 4, 4, 2), (32, 8, 2, 1), 0)
del buf4
triton_poi_fused__softmax_2[grid(128)](buf5, buf6, 128, XBLOCK=128,
num_warps=4, num_stages=1)
del buf5
return buf6, reinterpret_tensor(primals_3, (64, 4), (4, 1), 0
), reinterpret_tensor(buf1, (64, 256), (256, 1), 0
), reinterpret_tensor(buf3, (64, 256), (256, 1), 0
), buf6, primals_6, buf7, primals_4, buf8
class PolicyNetworkNew(nn.Module):
def __init__(self):
super(PolicyNetworkNew, self).__init__()
self.fc1 = nn.Linear(4, 256)
self.fc2 = nn.Linear(256, 256)
self.fc3 = nn.Linear(256, 2)
def forward(self, input_0):
primals_1 = self.fc1.weight
primals_2 = self.fc1.bias
primals_4 = self.fc2.weight
primals_5 = self.fc2.bias
primals_6 = self.fc3.weight
primals_7 = self.fc3.bias
primals_3 = input_0
output = call([primals_1, primals_2, primals_3, primals_4,
primals_5, primals_6, primals_7])
return output[0]
|
DensoITLab/spinningup_in_pytorch
|
PolicyNetwork
| false | 7,955 |
[
"MIT"
] | 11 |
612d8c4c6593c8c5ecb5a939bf43085daac9e552
|
https://github.com/DensoITLab/spinningup_in_pytorch/tree/612d8c4c6593c8c5ecb5a939bf43085daac9e552
|
WeightedBinaryCrossEntropyLoss
|
# AOT ID: ['0_inference']
from ctypes import c_void_p, c_long, c_int
import torch
import math
import random
import os
import tempfile
from math import inf, nan
from torch._inductor.hooks import run_intermediate_hooks
from torch._inductor.utils import maybe_profile
from torch._inductor.codegen.memory_planning import _align as align
from torch import device, empty_strided
from torch._inductor.async_compile import AsyncCompile
from torch._inductor.select_algorithm import extern_kernels
from torch._inductor.codegen.multi_kernel import MultiKernelCall
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
aten = torch.ops.aten
inductor_ops = torch.ops.inductor
_quantized = torch.ops._quantized
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
alloc_from_pool = torch.ops.inductor._alloc_from_pool
async_compile = AsyncCompile()
# kernel path: runs/run_shard_0/inductor_cache/g7/cg7e5goodui2hzv2flznm2xjbqtugobnnulk2o7g2rtwmrt67pkf.py
# Topologically Sorted Source Nodes: [binary_cross_entropy_with_logits, loss], Original ATen: [aten.binary_cross_entropy_with_logits, aten.mul]
# Source node to ATen node mapping:
# binary_cross_entropy_with_logits => abs_1, exp, full_default, log1p, minimum, mul, neg, sub, sub_1, sub_2
# loss => mul_1
# Graph fragment:
# %sub : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (1, %arg1_1), kwargs = {})
# %mul : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%sub, %arg0_1), kwargs = {})
# %full_default : [num_users=1] = call_function[target=torch.ops.aten.full.default](args = ([], 0), kwargs = {dtype: torch.float32, layout: torch.strided, device: cuda:0, pin_memory: False})
# %minimum : [num_users=1] = call_function[target=torch.ops.aten.minimum.default](args = (%full_default, %arg0_1), kwargs = {})
# %abs_1 : [num_users=1] = call_function[target=torch.ops.aten.abs.default](args = (%arg0_1,), kwargs = {})
# %neg : [num_users=1] = call_function[target=torch.ops.aten.neg.default](args = (%abs_1,), kwargs = {})
# %exp : [num_users=1] = call_function[target=torch.ops.aten.exp.default](args = (%neg,), kwargs = {})
# %log1p : [num_users=1] = call_function[target=torch.ops.aten.log1p.default](args = (%exp,), kwargs = {})
# %sub_1 : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (%minimum, %log1p), kwargs = {})
# %sub_2 : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (%mul, %sub_1), kwargs = {})
# %mul_1 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%sub_2, %arg2_1), kwargs = {})
triton_poi_fused_binary_cross_entropy_with_logits_mul_0 = async_compile.triton('triton_poi_fused_binary_cross_entropy_with_logits_mul_0', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[256],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: '*fp32', 4: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3, 4), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_binary_cross_entropy_with_logits_mul_0', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 3, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_binary_cross_entropy_with_logits_mul_0(in_ptr0, in_ptr1, in_ptr2, out_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 256
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex
tmp0 = tl.load(in_ptr0 + (x0), xmask)
tmp3 = tl.load(in_ptr1 + (x0), xmask)
tmp13 = tl.load(in_ptr2 + (x0), xmask)
tmp1 = 1.0
tmp2 = tmp1 - tmp0
tmp4 = tmp2 * tmp3
tmp5 = 0.0
tmp6 = triton_helpers.minimum(tmp5, tmp3)
tmp7 = tl_math.abs(tmp3)
tmp8 = -tmp7
tmp9 = tl_math.exp(tmp8)
tmp10 = libdevice.log1p(tmp9)
tmp11 = tmp6 - tmp10
tmp12 = tmp4 - tmp11
tmp14 = tmp12 * tmp13
tl.store(out_ptr0 + (x0), tmp14, xmask)
''', device_str='cuda')
async_compile.wait(globals())
del async_compile
def call(args):
arg0_1, arg1_1, arg2_1 = args
args.clear()
assert_size_stride(arg0_1, (4, 4, 4, 4), (64, 16, 4, 1))
assert_size_stride(arg1_1, (4, 4, 4, 4), (64, 16, 4, 1))
assert_size_stride(arg2_1, (4, 4, 4, 4), (64, 16, 4, 1))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32)
# Topologically Sorted Source Nodes: [binary_cross_entropy_with_logits, loss], Original ATen: [aten.binary_cross_entropy_with_logits, aten.mul]
stream0 = get_raw_stream(0)
triton_poi_fused_binary_cross_entropy_with_logits_mul_0.run(arg1_1, arg0_1, arg2_1, buf0, 256, grid=grid(256), stream=stream0)
del arg0_1
del arg1_1
del arg2_1
return (buf0, )
def benchmark_compiled_module(times=10, repeat=10):
from torch._dynamo.testing import rand_strided
from torch._inductor.utils import print_performance
arg0_1 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32)
arg1_1 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32)
arg2_1 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32)
fn = lambda: call([arg0_1, arg1_1, arg2_1])
return print_performance(fn, times=times, repeat=repeat)
if __name__ == "__main__":
from torch._inductor.wrapper_benchmark import compiled_module_main
compiled_module_main('None', benchmark_compiled_module)
|
import torch
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
from torch._inductor.runtime import triton_helpers
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
import torch.nn as nn
import torch.utils.data
import torch.autograd
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
@triton.jit
def triton_poi_fused_binary_cross_entropy_with_logits_mul_0(in_ptr0,
in_ptr1, in_ptr2, out_ptr0, xnumel, XBLOCK: tl.constexpr):
xnumel = 256
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex
tmp0 = tl.load(in_ptr0 + x0, xmask)
tmp3 = tl.load(in_ptr1 + x0, xmask)
tmp13 = tl.load(in_ptr2 + x0, xmask)
tmp1 = 1.0
tmp2 = tmp1 - tmp0
tmp4 = tmp2 * tmp3
tmp5 = 0.0
tmp6 = triton_helpers.minimum(tmp5, tmp3)
tmp7 = tl_math.abs(tmp3)
tmp8 = -tmp7
tmp9 = tl_math.exp(tmp8)
tmp10 = libdevice.log1p(tmp9)
tmp11 = tmp6 - tmp10
tmp12 = tmp4 - tmp11
tmp14 = tmp12 * tmp13
tl.store(out_ptr0 + x0, tmp14, xmask)
def call(args):
arg0_1, arg1_1, arg2_1 = args
args.clear()
assert_size_stride(arg0_1, (4, 4, 4, 4), (64, 16, 4, 1))
assert_size_stride(arg1_1, (4, 4, 4, 4), (64, 16, 4, 1))
assert_size_stride(arg2_1, (4, 4, 4, 4), (64, 16, 4, 1))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32)
get_raw_stream(0)
triton_poi_fused_binary_cross_entropy_with_logits_mul_0[grid(256)](
arg1_1, arg0_1, arg2_1, buf0, 256, XBLOCK=256, num_warps=4,
num_stages=1)
del arg0_1
del arg1_1
del arg2_1
return buf0,
class WeightedBinaryCrossEntropyLossNew(nn.Module):
def __init__(self):
super(WeightedBinaryCrossEntropyLossNew, self).__init__()
def forward(self, input_0, input_1, input_2):
arg0_1 = input_0
arg1_1 = input_1
arg2_1 = input_2
output = call([arg0_1, arg1_1, arg2_1])
return output[0]
|
LaudateCorpus1/LIGA-Stereo
|
WeightedBinaryCrossEntropyLoss
| false | 13,987 |
[
"Apache-2.0"
] | 56 |
aee3731a24a0ab1667e633e520cc89be2f135272
|
https://github.com/LaudateCorpus1/LIGA-Stereo/tree/aee3731a24a0ab1667e633e520cc89be2f135272
|
TVLoss
|
# AOT ID: ['0_inference']
from ctypes import c_void_p, c_long, c_int
import torch
import math
import random
import os
import tempfile
from math import inf, nan
from torch._inductor.hooks import run_intermediate_hooks
from torch._inductor.utils import maybe_profile
from torch._inductor.codegen.memory_planning import _align as align
from torch import device, empty_strided
from torch._inductor.async_compile import AsyncCompile
from torch._inductor.select_algorithm import extern_kernels
from torch._inductor.codegen.multi_kernel import MultiKernelCall
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
aten = torch.ops.aten
inductor_ops = torch.ops.inductor
_quantized = torch.ops._quantized
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
alloc_from_pool = torch.ops.inductor._alloc_from_pool
async_compile = AsyncCompile()
# kernel path: runs/run_shard_1/inductor_cache/pk/cpk4fxkha5p2i5gkbm5kyfvoyqn3fhzajspzwiol6f6vzv3u6zoc.py
# Topologically Sorted Source Nodes: [sub, pow_1, h_tv, sub_1, pow_2, w_tv, add], Original ATen: [aten.sub, aten.pow, aten.sum, aten.add]
# Source node to ATen node mapping:
# add => add
# h_tv => sum_1
# pow_1 => pow_1
# pow_2 => pow_2
# sub => sub
# sub_1 => sub_1
# w_tv => sum_2
# Graph fragment:
# %sub : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (%slice_3, %slice_7), kwargs = {})
# %pow_1 : [num_users=1] = call_function[target=torch.ops.aten.pow.Tensor_Scalar](args = (%sub, 2), kwargs = {})
# %sum_1 : [num_users=1] = call_function[target=torch.ops.aten.sum.default](args = (%pow_1,), kwargs = {})
# %sub_1 : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (%slice_12, %slice_16), kwargs = {})
# %pow_2 : [num_users=1] = call_function[target=torch.ops.aten.pow.Tensor_Scalar](args = (%sub_1, 2), kwargs = {})
# %sum_2 : [num_users=1] = call_function[target=torch.ops.aten.sum.default](args = (%pow_2,), kwargs = {})
# %add : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%sum_1, %sum_2), kwargs = {})
triton_per_fused_add_pow_sub_sum_0 = async_compile.triton('triton_per_fused_add_pow_sub_sum_0', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.persistent_reduction(
size_hints=[1, 256],
reduction_hint=ReductionHint.INNER,
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=90, major=9, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=132), 'constants': {2: 1}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 3), equal_to_1=(2,))]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_per_fused_add_pow_sub_sum_0', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 4, 'num_reduction': 2, 'backend_hash': 'B098E03CDA7B8ADC90DAFFDF24A2956451D1B13F297756A5DCC209498AA53705', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}
)
@triton.jit
def triton_per_fused_add_pow_sub_sum_0(in_out_ptr0, in_ptr0, xnumel, rnumel, XBLOCK : tl.constexpr):
xnumel = 1
rnumel = 192
RBLOCK: tl.constexpr = 256
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:, None]
xmask = tl.full([XBLOCK, RBLOCK], True, tl.int1)
rindex = tl.arange(0, RBLOCK)[None, :]
roffset = 0
rmask = rindex < rnumel
r0 = rindex % 12
r1 = (rindex // 12)
r2 = rindex % 3
r3 = (rindex // 3)
tmp0 = tl.load(in_ptr0 + (4 + r0 + (16*r1)), rmask, other=0.0)
tmp1 = tl.load(in_ptr0 + (r0 + (16*r1)), rmask, other=0.0)
tmp8 = tl.load(in_ptr0 + (1 + r2 + (4*r3)), rmask, other=0.0)
tmp9 = tl.load(in_ptr0 + (r2 + (4*r3)), rmask, other=0.0)
tmp2 = tmp0 - tmp1
tmp3 = tmp2 * tmp2
tmp4 = tl.broadcast_to(tmp3, [XBLOCK, RBLOCK])
tmp6 = tl.where(rmask, tmp4, 0)
tmp7 = tl.sum(tmp6, 1)[:, None]
tmp10 = tmp8 - tmp9
tmp11 = tmp10 * tmp10
tmp12 = tl.broadcast_to(tmp11, [XBLOCK, RBLOCK])
tmp14 = tl.where(rmask, tmp12, 0)
tmp15 = tl.sum(tmp14, 1)[:, None]
tmp16 = tmp7 + tmp15
tl.debug_barrier()
tl.store(in_out_ptr0 + (tl.full([XBLOCK, 1], 0, tl.int32)), tmp16, None)
''', device_str='cuda')
async_compile.wait(globals())
del async_compile
def call(args):
arg0_1, = args
args.clear()
assert_size_stride(arg0_1, (4, 4, 4, 4), (64, 16, 4, 1))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((), (), torch.float32)
buf2 = buf0; del buf0 # reuse
# Topologically Sorted Source Nodes: [sub, pow_1, h_tv, sub_1, pow_2, w_tv, add], Original ATen: [aten.sub, aten.pow, aten.sum, aten.add]
stream0 = get_raw_stream(0)
triton_per_fused_add_pow_sub_sum_0.run(buf2, arg0_1, 1, 192, grid=grid(1), stream=stream0)
del arg0_1
return (buf2, )
def benchmark_compiled_module(times=10, repeat=10):
from torch._dynamo.testing import rand_strided
from torch._inductor.utils import print_performance
arg0_1 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32)
fn = lambda: call([arg0_1])
return print_performance(fn, times=times, repeat=repeat)
if __name__ == "__main__":
from torch._inductor.wrapper_benchmark import compiled_module_main
compiled_module_main('None', benchmark_compiled_module)
|
import torch
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
import torch.utils.data
import torch.nn as nn
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
@triton.jit
def triton_per_fused_add_pow_sub_sum_0(in_out_ptr0, in_ptr0, xnumel, rnumel,
XBLOCK: tl.constexpr):
rnumel = 192
RBLOCK: tl.constexpr = 256
xoffset = tl.program_id(0) * XBLOCK
xoffset + tl.arange(0, XBLOCK)[:, None]
tl.full([XBLOCK, RBLOCK], True, tl.int1)
rindex = tl.arange(0, RBLOCK)[None, :]
rmask = rindex < rnumel
r0 = rindex % 12
r1 = rindex // 12
r2 = rindex % 3
r3 = rindex // 3
tmp0 = tl.load(in_ptr0 + (4 + r0 + 16 * r1), rmask, other=0.0)
tmp1 = tl.load(in_ptr0 + (r0 + 16 * r1), rmask, other=0.0)
tmp8 = tl.load(in_ptr0 + (1 + r2 + 4 * r3), rmask, other=0.0)
tmp9 = tl.load(in_ptr0 + (r2 + 4 * r3), rmask, other=0.0)
tmp2 = tmp0 - tmp1
tmp3 = tmp2 * tmp2
tmp4 = tl.broadcast_to(tmp3, [XBLOCK, RBLOCK])
tmp6 = tl.where(rmask, tmp4, 0)
tmp7 = tl.sum(tmp6, 1)[:, None]
tmp10 = tmp8 - tmp9
tmp11 = tmp10 * tmp10
tmp12 = tl.broadcast_to(tmp11, [XBLOCK, RBLOCK])
tmp14 = tl.where(rmask, tmp12, 0)
tmp15 = tl.sum(tmp14, 1)[:, None]
tmp16 = tmp7 + tmp15
tl.debug_barrier()
tl.store(in_out_ptr0 + tl.full([XBLOCK, 1], 0, tl.int32), tmp16, None)
def call(args):
arg0_1, = args
args.clear()
assert_size_stride(arg0_1, (4, 4, 4, 4), (64, 16, 4, 1))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((), (), torch.float32)
buf2 = buf0
del buf0
get_raw_stream(0)
triton_per_fused_add_pow_sub_sum_0[grid(1)](buf2, arg0_1, 1, 192,
XBLOCK=1, num_warps=2, num_stages=1)
del arg0_1
return buf2,
class TVLossNew(nn.Module):
def __init__(self):
super(TVLossNew, self).__init__()
def _tensor_size(self, t):
return t.size()[1] * t.size()[2] * t.size()[3]
def forward(self, input_0):
arg0_1 = input_0
output = call([arg0_1])
return output[0]
|
GuoShi28/GCP-Net
|
TVLoss
| false | 8,160 |
[
"Apache-2.0"
] | 24 |
cef7513fa242343055af64e612429e4384d3c1d7
|
https://github.com/GuoShi28/GCP-Net/tree/cef7513fa242343055af64e612429e4384d3c1d7
|
ConvReg
|
import torch
import torch.nn as nn
class ConvReg(nn.Module):
def __init__(self):
super().__init__()
self.conv1 = nn.Conv2d(3, 64, 3, stride=2, padding=1)
self.conv2 = nn.Conv2d(64, 128, 3, stride=2, padding=1)
self.relu = nn.ReLU()
self.sigmoid = nn.Sigmoid()
self.t_conv1 = nn.ConvTranspose2d(128, 64, 2, stride=2)
self.t_conv2 = nn.ConvTranspose2d(64, 3, 2, stride=2)
def forward(self, x):
x = self.conv1(x)
x = self.relu(x)
x = self.conv2(x)
x = self.relu(x)
x = self.t_conv1(x)
x = self.relu(x)
x = self.t_conv2(x)
x = self.sigmoid(x)
return x
def get_inputs():
return [torch.rand([4, 3, 64, 64])]
def get_init_inputs():
return [[], {}]
|
import torch
from torch._inductor.select_algorithm import extern_kernels
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
from torch._inductor.runtime import triton_helpers
import torch.nn as nn
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
@triton.jit
def triton_poi_fused_0(in_ptr0, out_ptr0, ynumel, xnumel, YBLOCK: tl.
constexpr, XBLOCK: tl.constexpr):
ynumel = 192
xnumel = 9
yoffset = tl.program_id(1) * YBLOCK
yindex = yoffset + tl.arange(0, YBLOCK)[None, :]
ymask = yindex < ynumel
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:, None]
xmask = xindex < xnumel
x2 = xindex
y3 = yindex
y0 = yindex % 3
y1 = yindex // 3
tmp0 = tl.load(in_ptr0 + (x2 + 9 * y3), xmask & ymask, eviction_policy=
'evict_last')
tl.store(out_ptr0 + (y0 + 3 * x2 + 27 * y1), tmp0, xmask & ymask)
@triton.jit
def triton_poi_fused_1(in_ptr0, out_ptr0, ynumel, xnumel, YBLOCK: tl.
constexpr, XBLOCK: tl.constexpr):
ynumel = 12
yoffset = tl.program_id(1) * YBLOCK
yindex = yoffset + tl.arange(0, YBLOCK)[None, :]
ymask = yindex < ynumel
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:, None]
tl.full([XBLOCK, YBLOCK], True, tl.int1)
x2 = xindex
y3 = yindex
y0 = yindex % 3
y1 = yindex // 3
tmp0 = tl.load(in_ptr0 + (x2 + 4096 * y3), ymask, eviction_policy=
'evict_last')
tl.store(out_ptr0 + (y0 + 3 * x2 + 12288 * y1), tmp0, ymask)
@triton.jit
def triton_poi_fused_2(in_ptr0, out_ptr0, ynumel, xnumel, YBLOCK: tl.
constexpr, XBLOCK: tl.constexpr):
xnumel = 9
yoffset = tl.program_id(1) * YBLOCK
yindex = yoffset + tl.arange(0, YBLOCK)[None, :]
tl.full([XBLOCK, YBLOCK], True, tl.int1)
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:, None]
xmask = xindex < xnumel
x2 = xindex
y3 = yindex
y0 = yindex % 64
y1 = yindex // 64
tmp0 = tl.load(in_ptr0 + (x2 + 9 * y3), xmask, eviction_policy='evict_last'
)
tl.store(out_ptr0 + (y0 + 64 * x2 + 576 * y1), tmp0, xmask)
@triton.jit
def triton_poi_fused_3(in_ptr0, out_ptr0, ynumel, xnumel, YBLOCK: tl.
constexpr, XBLOCK: tl.constexpr):
xnumel = 4
yoffset = tl.program_id(1) * YBLOCK
yindex = yoffset + tl.arange(0, YBLOCK)[None, :]
tl.full([XBLOCK, YBLOCK], True, tl.int1)
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:, None]
xmask = xindex < xnumel
x2 = xindex
y3 = yindex
y0 = yindex % 64
y1 = yindex // 64
tmp0 = tl.load(in_ptr0 + (x2 + 4 * y3), xmask, eviction_policy='evict_last'
)
tl.store(out_ptr0 + (y0 + 64 * x2 + 256 * y1), tmp0, xmask)
@triton.jit
def triton_poi_fused_4(in_ptr0, out_ptr0, ynumel, xnumel, YBLOCK: tl.
constexpr, XBLOCK: tl.constexpr):
ynumel = 192
xnumel = 4
yoffset = tl.program_id(1) * YBLOCK
yindex = yoffset + tl.arange(0, YBLOCK)[None, :]
ymask = yindex < ynumel
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:, None]
xmask = xindex < xnumel
x2 = xindex
y3 = yindex
y0 = yindex % 3
y1 = yindex // 3
tmp0 = tl.load(in_ptr0 + (x2 + 4 * y3), xmask & ymask, eviction_policy=
'evict_last')
tl.store(out_ptr0 + (y0 + 3 * x2 + 12 * y1), tmp0, xmask & ymask)
@triton.jit
def triton_poi_fused_convolution_relu_5(in_out_ptr0, in_ptr0, xnumel,
XBLOCK: tl.constexpr):
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
tl.full([XBLOCK], True, tl.int1)
x2 = xindex
x0 = xindex % 64
tmp0 = tl.load(in_out_ptr0 + x2, None)
tmp1 = tl.load(in_ptr0 + x0, None, eviction_policy='evict_last')
tmp2 = tmp0 + tmp1
tmp3 = tl.full([1], 0, tl.int32)
tmp4 = triton_helpers.maximum(tmp3, tmp2)
tl.store(in_out_ptr0 + x2, tmp4, None)
@triton.jit
def triton_poi_fused_convolution_relu_6(in_out_ptr0, in_ptr0, xnumel,
XBLOCK: tl.constexpr):
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
tl.full([XBLOCK], True, tl.int1)
x2 = xindex
x0 = xindex % 128
tmp0 = tl.load(in_out_ptr0 + x2, None)
tmp1 = tl.load(in_ptr0 + x0, None, eviction_policy='evict_last')
tmp2 = tmp0 + tmp1
tmp3 = tl.full([1], 0, tl.int32)
tmp4 = triton_helpers.maximum(tmp3, tmp2)
tl.store(in_out_ptr0 + x2, tmp4, None)
@triton.jit
def triton_poi_fused_convolution_sigmoid_7(in_ptr0, in_ptr1, out_ptr0,
ynumel, xnumel, YBLOCK: tl.constexpr, XBLOCK: tl.constexpr):
ynumel = 12
yoffset = tl.program_id(1) * YBLOCK
yindex = yoffset + tl.arange(0, YBLOCK)[None, :]
ymask = yindex < ynumel
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:, None]
tl.full([XBLOCK, YBLOCK], True, tl.int1)
x2 = xindex
y0 = yindex % 3
y1 = yindex // 3
y3 = yindex
tmp0 = tl.load(in_ptr0 + (y0 + 3 * x2 + 12288 * y1), ymask,
eviction_policy='evict_last')
tmp1 = tl.load(in_ptr1 + y0, ymask, eviction_policy='evict_last')
tmp2 = tmp0 + tmp1
tmp3 = tl.sigmoid(tmp2)
tl.store(out_ptr0 + (x2 + 4096 * y3), tmp3, ymask)
def call(args):
(primals_1, primals_2, primals_3, primals_4, primals_5, primals_6,
primals_7, primals_8, primals_9) = args
args.clear()
assert_size_stride(primals_1, (64, 3, 3, 3), (27, 9, 3, 1))
assert_size_stride(primals_2, (64,), (1,))
assert_size_stride(primals_3, (4, 3, 64, 64), (12288, 4096, 64, 1))
assert_size_stride(primals_4, (128, 64, 3, 3), (576, 9, 3, 1))
assert_size_stride(primals_5, (128,), (1,))
assert_size_stride(primals_6, (128, 64, 2, 2), (256, 4, 2, 1))
assert_size_stride(primals_7, (64,), (1,))
assert_size_stride(primals_8, (64, 3, 2, 2), (12, 4, 2, 1))
assert_size_stride(primals_9, (3,), (1,))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((64, 3, 3, 3), (27, 1, 9, 3), torch.float32)
get_raw_stream(0)
triton_poi_fused_0[grid(192, 9)](primals_1, buf0, 192, 9, XBLOCK=16,
YBLOCK=64, num_warps=4, num_stages=1)
del primals_1
buf1 = empty_strided_cuda((4, 3, 64, 64), (12288, 1, 192, 3), torch
.float32)
triton_poi_fused_1[grid(12, 4096)](primals_3, buf1, 12, 4096,
XBLOCK=64, YBLOCK=16, num_warps=4, num_stages=1)
del primals_3
buf2 = empty_strided_cuda((128, 64, 3, 3), (576, 1, 192, 64), torch
.float32)
triton_poi_fused_2[grid(8192, 9)](primals_4, buf2, 8192, 9, XBLOCK=
16, YBLOCK=64, num_warps=4, num_stages=1)
del primals_4
buf3 = empty_strided_cuda((128, 64, 2, 2), (256, 1, 128, 64), torch
.float32)
triton_poi_fused_3[grid(8192, 4)](primals_6, buf3, 8192, 4, XBLOCK=
4, YBLOCK=256, num_warps=4, num_stages=1)
del primals_6
buf4 = empty_strided_cuda((64, 3, 2, 2), (12, 1, 6, 3), torch.float32)
triton_poi_fused_4[grid(192, 4)](primals_8, buf4, 192, 4, XBLOCK=4,
YBLOCK=256, num_warps=4, num_stages=1)
del primals_8
buf5 = extern_kernels.convolution(buf1, buf0, stride=(2, 2),
padding=(1, 1), dilation=(1, 1), transposed=False,
output_padding=(0, 0), groups=1, bias=None)
assert_size_stride(buf5, (4, 64, 32, 32), (65536, 1, 2048, 64))
buf6 = buf5
del buf5
triton_poi_fused_convolution_relu_5[grid(262144)](buf6, primals_2,
262144, XBLOCK=512, num_warps=8, num_stages=1)
del primals_2
buf7 = extern_kernels.convolution(buf6, buf2, stride=(2, 2),
padding=(1, 1), dilation=(1, 1), transposed=False,
output_padding=(0, 0), groups=1, bias=None)
assert_size_stride(buf7, (4, 128, 16, 16), (32768, 1, 2048, 128))
buf8 = buf7
del buf7
triton_poi_fused_convolution_relu_6[grid(131072)](buf8, primals_5,
131072, XBLOCK=1024, num_warps=4, num_stages=1)
del primals_5
buf9 = extern_kernels.convolution(buf8, buf3, stride=(2, 2),
padding=(0, 0), dilation=(1, 1), transposed=True,
output_padding=(0, 0), groups=1, bias=None)
assert_size_stride(buf9, (4, 64, 32, 32), (65536, 1, 2048, 64))
buf10 = buf9
del buf9
triton_poi_fused_convolution_relu_5[grid(262144)](buf10, primals_7,
262144, XBLOCK=512, num_warps=8, num_stages=1)
del primals_7
buf11 = extern_kernels.convolution(buf10, buf4, stride=(2, 2),
padding=(0, 0), dilation=(1, 1), transposed=True,
output_padding=(0, 0), groups=1, bias=None)
assert_size_stride(buf11, (4, 3, 64, 64), (12288, 1, 192, 3))
buf12 = empty_strided_cuda((4, 3, 64, 64), (12288, 4096, 64, 1),
torch.float32)
triton_poi_fused_convolution_sigmoid_7[grid(12, 4096)](buf11,
primals_9, buf12, 12, 4096, XBLOCK=64, YBLOCK=16, num_warps=4,
num_stages=1)
del buf11
del primals_9
return buf12, buf0, buf1, buf2, buf3, buf4, buf6, buf8, buf10, buf12
class ConvRegNew(nn.Module):
def __init__(self):
super().__init__()
self.conv1 = nn.Conv2d(3, 64, 3, stride=2, padding=1)
self.conv2 = nn.Conv2d(64, 128, 3, stride=2, padding=1)
self.relu = nn.ReLU()
self.sigmoid = nn.Sigmoid()
self.t_conv1 = nn.ConvTranspose2d(128, 64, 2, stride=2)
self.t_conv2 = nn.ConvTranspose2d(64, 3, 2, stride=2)
def forward(self, input_0):
primals_1 = self.conv1.weight
primals_2 = self.conv1.bias
primals_4 = self.conv2.weight
primals_5 = self.conv2.bias
primals_6 = self.t_conv1.weight
primals_7 = self.t_conv1.bias
primals_8 = self.t_conv2.weight
primals_9 = self.t_conv2.bias
primals_3 = input_0
output = call([primals_1, primals_2, primals_3, primals_4,
primals_5, primals_6, primals_7, primals_8, primals_9])
return output[0]
|
Guru-Uni-siegen/Domain-Shifting-Network
|
ConvReg
| false | 11,475 |
[
"MIT"
] | 0 |
dd9eb7bda07634874497a335151b5e967aaad874
|
https://github.com/Guru-Uni-siegen/Domain-Shifting-Network/tree/dd9eb7bda07634874497a335151b5e967aaad874
|
PCK
|
# AOT ID: ['0_inference']
from ctypes import c_void_p, c_long, c_int
import torch
import math
import random
import os
import tempfile
from math import inf, nan
from torch._inductor.hooks import run_intermediate_hooks
from torch._inductor.utils import maybe_profile
from torch._inductor.codegen.memory_planning import _align as align
from torch import device, empty_strided
from torch._inductor.async_compile import AsyncCompile
from torch._inductor.select_algorithm import extern_kernels
from torch._inductor.codegen.multi_kernel import MultiKernelCall
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
aten = torch.ops.aten
inductor_ops = torch.ops.inductor
_quantized = torch.ops._quantized
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
alloc_from_pool = torch.ops.inductor._alloc_from_pool
async_compile = AsyncCompile()
# kernel path: runs/run_shard_8/inductor_cache/r5/cr56rlcvtfyi52hk4c74nr7txue2zp6d35puxsdjrhq3rioeyj4k.py
# Topologically Sorted Source Nodes: [sub, norm, lt, dist_2d], Original ATen: [aten.sub, aten.linalg_vector_norm, aten.lt, aten._to_copy]
# Source node to ATen node mapping:
# dist_2d => convert_element_type
# lt => lt
# norm => pow_1, pow_2, sum_1
# sub => sub
# Graph fragment:
# %sub : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (%arg0_1, %arg1_1), kwargs = {})
# %pow_1 : [num_users=1] = call_function[target=torch.ops.aten.pow.Tensor_Scalar](args = (%sub, 2), kwargs = {})
# %sum_1 : [num_users=1] = call_function[target=torch.ops.aten.sum.dim_IntList](args = (%pow_1, [-1]), kwargs = {})
# %pow_2 : [num_users=1] = call_function[target=torch.ops.aten.pow.Tensor_Scalar](args = (%sum_1, 0.5), kwargs = {})
# %lt : [num_users=1] = call_function[target=torch.ops.aten.lt.Scalar](args = (%pow_2, 150), kwargs = {})
# %convert_element_type : [num_users=1] = call_function[target=torch.ops.prims.convert_element_type.default](args = (%lt, torch.float64), kwargs = {})
triton_poi_fused__to_copy_linalg_vector_norm_lt_sub_0 = async_compile.triton('triton_poi_fused__to_copy_linalg_vector_norm_lt_sub_0', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[64],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp64', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused__to_copy_linalg_vector_norm_lt_sub_0', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 8, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused__to_copy_linalg_vector_norm_lt_sub_0(in_ptr0, in_ptr1, out_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 64
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex
tmp0 = tl.load(in_ptr0 + (4*x0), xmask, eviction_policy='evict_last')
tmp1 = tl.load(in_ptr1 + (4*x0), xmask, eviction_policy='evict_last')
tmp4 = tl.load(in_ptr0 + (1 + (4*x0)), xmask, eviction_policy='evict_last')
tmp5 = tl.load(in_ptr1 + (1 + (4*x0)), xmask, eviction_policy='evict_last')
tmp9 = tl.load(in_ptr0 + (2 + (4*x0)), xmask, eviction_policy='evict_last')
tmp10 = tl.load(in_ptr1 + (2 + (4*x0)), xmask, eviction_policy='evict_last')
tmp14 = tl.load(in_ptr0 + (3 + (4*x0)), xmask, eviction_policy='evict_last')
tmp15 = tl.load(in_ptr1 + (3 + (4*x0)), xmask, eviction_policy='evict_last')
tmp2 = tmp0 - tmp1
tmp3 = tmp2 * tmp2
tmp6 = tmp4 - tmp5
tmp7 = tmp6 * tmp6
tmp8 = tmp3 + tmp7
tmp11 = tmp9 - tmp10
tmp12 = tmp11 * tmp11
tmp13 = tmp8 + tmp12
tmp16 = tmp14 - tmp15
tmp17 = tmp16 * tmp16
tmp18 = tmp13 + tmp17
tmp19 = libdevice.sqrt(tmp18)
tmp20 = 150.0
tmp21 = tmp19 < tmp20
tmp22 = tmp21.to(tl.float64)
tl.store(out_ptr0 + (x0), tmp22, xmask)
''', device_str='cuda')
async_compile.wait(globals())
del async_compile
def call(args):
arg0_1, arg1_1 = args
args.clear()
assert_size_stride(arg0_1, (4, 4, 4, 4), (64, 16, 4, 1))
assert_size_stride(arg1_1, (4, 4, 4, 4), (64, 16, 4, 1))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((4, 4, 4), (16, 4, 1), torch.float64)
# Topologically Sorted Source Nodes: [sub, norm, lt, dist_2d], Original ATen: [aten.sub, aten.linalg_vector_norm, aten.lt, aten._to_copy]
stream0 = get_raw_stream(0)
triton_poi_fused__to_copy_linalg_vector_norm_lt_sub_0.run(arg0_1, arg1_1, buf0, 64, grid=grid(64), stream=stream0)
del arg0_1
del arg1_1
return (buf0, )
def benchmark_compiled_module(times=10, repeat=10):
from torch._dynamo.testing import rand_strided
from torch._inductor.utils import print_performance
arg0_1 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32)
arg1_1 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32)
fn = lambda: call([arg0_1, arg1_1])
return print_performance(fn, times=times, repeat=repeat)
if __name__ == "__main__":
from torch._inductor.wrapper_benchmark import compiled_module_main
compiled_module_main('None', benchmark_compiled_module)
|
import torch
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
from torch._inductor.runtime.triton_helpers import libdevice
import torch.nn as nn
import torch.nn.functional
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
@triton.jit
def triton_poi_fused__to_copy_linalg_vector_norm_lt_sub_0(in_ptr0, in_ptr1,
out_ptr0, xnumel, XBLOCK: tl.constexpr):
xnumel = 64
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex
tmp0 = tl.load(in_ptr0 + 4 * x0, xmask, eviction_policy='evict_last')
tmp1 = tl.load(in_ptr1 + 4 * x0, xmask, eviction_policy='evict_last')
tmp4 = tl.load(in_ptr0 + (1 + 4 * x0), xmask, eviction_policy='evict_last')
tmp5 = tl.load(in_ptr1 + (1 + 4 * x0), xmask, eviction_policy='evict_last')
tmp9 = tl.load(in_ptr0 + (2 + 4 * x0), xmask, eviction_policy='evict_last')
tmp10 = tl.load(in_ptr1 + (2 + 4 * x0), xmask, eviction_policy='evict_last'
)
tmp14 = tl.load(in_ptr0 + (3 + 4 * x0), xmask, eviction_policy='evict_last'
)
tmp15 = tl.load(in_ptr1 + (3 + 4 * x0), xmask, eviction_policy='evict_last'
)
tmp2 = tmp0 - tmp1
tmp3 = tmp2 * tmp2
tmp6 = tmp4 - tmp5
tmp7 = tmp6 * tmp6
tmp8 = tmp3 + tmp7
tmp11 = tmp9 - tmp10
tmp12 = tmp11 * tmp11
tmp13 = tmp8 + tmp12
tmp16 = tmp14 - tmp15
tmp17 = tmp16 * tmp16
tmp18 = tmp13 + tmp17
tmp19 = libdevice.sqrt(tmp18)
tmp20 = 150.0
tmp21 = tmp19 < tmp20
tmp22 = tmp21.to(tl.float64)
tl.store(out_ptr0 + x0, tmp22, xmask)
def call(args):
arg0_1, arg1_1 = args
args.clear()
assert_size_stride(arg0_1, (4, 4, 4, 4), (64, 16, 4, 1))
assert_size_stride(arg1_1, (4, 4, 4, 4), (64, 16, 4, 1))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((4, 4, 4), (16, 4, 1), torch.float64)
get_raw_stream(0)
triton_poi_fused__to_copy_linalg_vector_norm_lt_sub_0[grid(64)](arg0_1,
arg1_1, buf0, 64, XBLOCK=64, num_warps=1, num_stages=1)
del arg0_1
del arg1_1
return buf0,
class BaseMetric(nn.Module):
def forward(self, y_pr, points_gt, gt_mask=None):
"""
Base forward method for metric evaluation
Args:
y_pr: 3D prediction of joints, tensor of shape (BATCH_SIZExN_JOINTSx3)
points_gt: 3D gt of joints, tensor of shape (BATCH_SIZExN_JOINTSx3)
gt_mask: boolean mask, tensor of shape (BATCH_SIZExN_JOINTS).
Applied to results, if provided
Returns:
Metric as single value, if reduction is given, or as a tensor of values
"""
pass
class PCKNew(BaseMetric):
"""
Percentage of correct keypoints according to a thresold value. Usually
default threshold is 150mm
"""
def __init__(self, reduction=None, threshold=150, **kwargs):
super().__init__(**kwargs)
self.thr = threshold
self.reduction = reduction
def forward(self, input_0, input_1):
arg0_1 = input_0
arg1_1 = input_1
output = call([arg0_1, arg1_1])
return output[0]
|
miracleyoo/lifting_events_to_3d_hpe
|
PCK
| false | 10,600 |
[
"Apache-2.0"
] | 0 |
dfe734ee055900d6ab90c064bf82db7672830ac7
|
https://github.com/miracleyoo/lifting_events_to_3d_hpe/tree/dfe734ee055900d6ab90c064bf82db7672830ac7
|
Net
|
import torch
import torch.nn as nn
import torch.nn.functional as F
import torch.optim
import torch.autograd
class Net(nn.Module):
def __init__(self, STATE_NUM, ACTION_NUM):
super(Net, self).__init__()
self.fc1 = nn.Linear(in_features=STATE_NUM, out_features=128)
self.fc2 = nn.Linear(in_features=128, out_features=ACTION_NUM)
def forward(self, x):
x = self.fc1(x)
x = F.relu(x)
action_value = self.fc2(x)
return action_value
def get_inputs():
return [torch.rand([4, 4, 4, 4])]
def get_init_inputs():
return [[], {'STATE_NUM': 4, 'ACTION_NUM': 4}]
|
import torch
from torch._inductor.select_algorithm import extern_kernels
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
from torch._inductor.runtime import triton_helpers
import torch.nn as nn
import torch.optim
import torch.autograd
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
@triton.jit
def triton_poi_fused_relu_threshold_backward_0(in_out_ptr0, in_ptr0,
out_ptr0, xnumel, XBLOCK: tl.constexpr):
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
tl.full([XBLOCK], True, tl.int1)
x2 = xindex
x0 = xindex % 128
tmp0 = tl.load(in_out_ptr0 + x2, None)
tmp1 = tl.load(in_ptr0 + x0, None, eviction_policy='evict_last')
tmp2 = tmp0 + tmp1
tmp3 = tl.full([1], 0, tl.int32)
tmp4 = triton_helpers.maximum(tmp3, tmp2)
tmp5 = 0.0
tmp6 = tmp4 <= tmp5
tl.store(in_out_ptr0 + x2, tmp4, None)
tl.store(out_ptr0 + x2, tmp6, None)
def call(args):
primals_1, primals_2, primals_3, primals_4, primals_5 = args
args.clear()
assert_size_stride(primals_1, (128, 4), (4, 1))
assert_size_stride(primals_2, (128,), (1,))
assert_size_stride(primals_3, (4, 4, 4, 4), (64, 16, 4, 1))
assert_size_stride(primals_4, (4, 128), (128, 1))
assert_size_stride(primals_5, (4,), (1,))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((64, 128), (128, 1), torch.float32)
extern_kernels.mm(reinterpret_tensor(primals_3, (64, 4), (4, 1), 0),
reinterpret_tensor(primals_1, (4, 128), (1, 4), 0), out=buf0)
del primals_1
buf1 = reinterpret_tensor(buf0, (4, 4, 4, 128), (2048, 512, 128, 1), 0)
del buf0
buf3 = empty_strided_cuda((4, 4, 4, 128), (2048, 512, 128, 1),
torch.bool)
get_raw_stream(0)
triton_poi_fused_relu_threshold_backward_0[grid(8192)](buf1,
primals_2, buf3, 8192, XBLOCK=128, num_warps=4, num_stages=1)
del primals_2
buf2 = empty_strided_cuda((64, 4), (4, 1), torch.float32)
extern_kernels.addmm(primals_5, reinterpret_tensor(buf1, (64, 128),
(128, 1), 0), reinterpret_tensor(primals_4, (128, 4), (1, 128),
0), alpha=1, beta=1, out=buf2)
del primals_5
return reinterpret_tensor(buf2, (4, 4, 4, 4), (64, 16, 4, 1), 0
), reinterpret_tensor(primals_3, (64, 4), (4, 1), 0
), reinterpret_tensor(buf1, (64, 128), (128, 1), 0), primals_4, buf3
class NetNew(nn.Module):
def __init__(self, STATE_NUM, ACTION_NUM):
super(NetNew, self).__init__()
self.fc1 = nn.Linear(in_features=STATE_NUM, out_features=128)
self.fc2 = nn.Linear(in_features=128, out_features=ACTION_NUM)
def forward(self, input_0):
primals_1 = self.fc1.weight
primals_2 = self.fc1.bias
primals_4 = self.fc2.weight
primals_5 = self.fc2.bias
primals_3 = input_0
output = call([primals_1, primals_2, primals_3, primals_4, primals_5])
return output[0]
|
ChangQingAAS/Deep-Reinforcement-Learning
|
Net
| false | 233 |
[
"MIT"
] | 0 |
3bc1381c632b1730a48e63e972aea62086c4287c
|
https://github.com/ChangQingAAS/Deep-Reinforcement-Learning/tree/3bc1381c632b1730a48e63e972aea62086c4287c
|
ScaleNorm
|
# AOT ID: ['0_forward']
from ctypes import c_void_p, c_long, c_int
import torch
import math
import random
import os
import tempfile
from math import inf, nan
from torch._inductor.hooks import run_intermediate_hooks
from torch._inductor.utils import maybe_profile
from torch._inductor.codegen.memory_planning import _align as align
from torch import device, empty_strided
from torch._inductor.async_compile import AsyncCompile
from torch._inductor.select_algorithm import extern_kernels
from torch._inductor.codegen.multi_kernel import MultiKernelCall
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
aten = torch.ops.aten
inductor_ops = torch.ops.inductor
_quantized = torch.ops._quantized
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
alloc_from_pool = torch.ops.inductor._alloc_from_pool
async_compile = AsyncCompile()
# kernel path: runs/run_shard_0/inductor_cache/yn/cynw6cijkr7y2as6ogxkwx5qt4wbidmg3yocmoqlnbzb4jxtevqv.py
# Topologically Sorted Source Nodes: [norm, clamp, n, truediv, x], Original ATen: [aten.linalg_vector_norm, aten.clamp, aten.mul, aten.div]
# Source node to ATen node mapping:
# clamp => clamp_min
# n => mul
# norm => pow_1, pow_2, sum_1
# truediv => div
# x => mul_1
# Graph fragment:
# %pow_1 : [num_users=1] = call_function[target=torch.ops.aten.pow.Tensor_Scalar](args = (%primals_1, 2), kwargs = {})
# %sum_1 : [num_users=1] = call_function[target=torch.ops.aten.sum.dim_IntList](args = (%pow_1, [-1], True), kwargs = {})
# %pow_2 : [num_users=1] = call_function[target=torch.ops.aten.pow.Tensor_Scalar](args = (%sum_1, 0.5), kwargs = {})
# %clamp_min : [num_users=1] = call_function[target=torch.ops.aten.clamp_min.default](args = (%pow_2, 1e-05), kwargs = {})
# %mul : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%clamp_min, 0.5), kwargs = {})
# %div : [num_users=1] = call_function[target=torch.ops.aten.div.Tensor](args = (%primals_1, %mul), kwargs = {})
# %mul_1 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%div, %primals_2), kwargs = {})
triton_poi_fused_clamp_div_linalg_vector_norm_mul_0 = async_compile.triton('triton_poi_fused_clamp_div_linalg_vector_norm_mul_0', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[256],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_clamp_div_linalg_vector_norm_mul_0', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 6, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_clamp_div_linalg_vector_norm_mul_0(in_ptr0, in_ptr1, out_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 256
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x2 = xindex
x1 = (xindex // 4)
tmp0 = tl.load(in_ptr0 + (x2), xmask)
tmp1 = tl.load(in_ptr0 + (4*x1), xmask, eviction_policy='evict_last')
tmp3 = tl.load(in_ptr0 + (1 + (4*x1)), xmask, eviction_policy='evict_last')
tmp6 = tl.load(in_ptr0 + (2 + (4*x1)), xmask, eviction_policy='evict_last')
tmp9 = tl.load(in_ptr0 + (3 + (4*x1)), xmask, eviction_policy='evict_last')
tmp18 = tl.load(in_ptr1 + (0))
tmp19 = tl.broadcast_to(tmp18, [XBLOCK])
tmp2 = tmp1 * tmp1
tmp4 = tmp3 * tmp3
tmp5 = tmp2 + tmp4
tmp7 = tmp6 * tmp6
tmp8 = tmp5 + tmp7
tmp10 = tmp9 * tmp9
tmp11 = tmp8 + tmp10
tmp12 = libdevice.sqrt(tmp11)
tmp13 = 1e-05
tmp14 = triton_helpers.maximum(tmp12, tmp13)
tmp15 = 0.5
tmp16 = tmp14 * tmp15
tmp17 = tmp0 / tmp16
tmp20 = tmp17 * tmp19
tl.store(out_ptr0 + (x2), tmp20, xmask)
''', device_str='cuda')
async_compile.wait(globals())
del async_compile
def call(args):
primals_1, primals_2 = args
args.clear()
assert_size_stride(primals_1, (4, 4, 4, 4), (64, 16, 4, 1))
assert_size_stride(primals_2, (1, ), (1, ))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32)
# Topologically Sorted Source Nodes: [norm, clamp, n, truediv, x], Original ATen: [aten.linalg_vector_norm, aten.clamp, aten.mul, aten.div]
stream0 = get_raw_stream(0)
triton_poi_fused_clamp_div_linalg_vector_norm_mul_0.run(primals_1, primals_2, buf0, 256, grid=grid(256), stream=stream0)
del primals_2
return (buf0, primals_1, )
def benchmark_compiled_module(times=10, repeat=10):
from torch._dynamo.testing import rand_strided
from torch._inductor.utils import print_performance
primals_1 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32)
primals_2 = rand_strided((1, ), (1, ), device='cuda:0', dtype=torch.float32)
fn = lambda: call([primals_1, primals_2])
return print_performance(fn, times=times, repeat=repeat)
if __name__ == "__main__":
from torch._inductor.wrapper_benchmark import compiled_module_main
compiled_module_main('None', benchmark_compiled_module)
|
import torch
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
from torch._inductor.runtime import triton_helpers
from torch._inductor.runtime.triton_helpers import libdevice
from torch import nn
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
@triton.jit
def triton_poi_fused_clamp_div_linalg_vector_norm_mul_0(in_ptr0, in_ptr1,
out_ptr0, xnumel, XBLOCK: tl.constexpr):
xnumel = 256
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x2 = xindex
x1 = xindex // 4
tmp0 = tl.load(in_ptr0 + x2, xmask)
tmp1 = tl.load(in_ptr0 + 4 * x1, xmask, eviction_policy='evict_last')
tmp3 = tl.load(in_ptr0 + (1 + 4 * x1), xmask, eviction_policy='evict_last')
tmp6 = tl.load(in_ptr0 + (2 + 4 * x1), xmask, eviction_policy='evict_last')
tmp9 = tl.load(in_ptr0 + (3 + 4 * x1), xmask, eviction_policy='evict_last')
tmp18 = tl.load(in_ptr1 + 0)
tmp19 = tl.broadcast_to(tmp18, [XBLOCK])
tmp2 = tmp1 * tmp1
tmp4 = tmp3 * tmp3
tmp5 = tmp2 + tmp4
tmp7 = tmp6 * tmp6
tmp8 = tmp5 + tmp7
tmp10 = tmp9 * tmp9
tmp11 = tmp8 + tmp10
tmp12 = libdevice.sqrt(tmp11)
tmp13 = 1e-05
tmp14 = triton_helpers.maximum(tmp12, tmp13)
tmp15 = 0.5
tmp16 = tmp14 * tmp15
tmp17 = tmp0 / tmp16
tmp20 = tmp17 * tmp19
tl.store(out_ptr0 + x2, tmp20, xmask)
def call(args):
primals_1, primals_2 = args
args.clear()
assert_size_stride(primals_1, (4, 4, 4, 4), (64, 16, 4, 1))
assert_size_stride(primals_2, (1,), (1,))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32)
get_raw_stream(0)
triton_poi_fused_clamp_div_linalg_vector_norm_mul_0[grid(256)](
primals_1, primals_2, buf0, 256, XBLOCK=256, num_warps=4,
num_stages=1)
del primals_2
return buf0, primals_1
class ScaleNormNew(nn.Module):
def __init__(self, dim, eps=1e-05):
super().__init__()
self.scale = dim ** -0.5
self.g = nn.Parameter(torch.ones(1))
self.eps = eps
def forward(self, input_0):
primals_2 = self.g
primals_1 = input_0
output = call([primals_1, primals_2])
return output[0]
|
Piki1989/spacetimeformer
|
ScaleNorm
| false | 14,190 |
[
"MIT"
] | 209 |
7e0caf17dd03e5d25e2766c4f7132805779bcc40
|
https://github.com/Piki1989/spacetimeformer/tree/7e0caf17dd03e5d25e2766c4f7132805779bcc40
|
SeparableConv2d_same
|
# AOT ID: ['0_forward']
from ctypes import c_void_p, c_long, c_int
import torch
import math
import random
import os
import tempfile
from math import inf, nan
from torch._inductor.hooks import run_intermediate_hooks
from torch._inductor.utils import maybe_profile
from torch._inductor.codegen.memory_planning import _align as align
from torch import device, empty_strided
from torch._inductor.async_compile import AsyncCompile
from torch._inductor.select_algorithm import extern_kernels
from torch._inductor.codegen.multi_kernel import MultiKernelCall
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
aten = torch.ops.aten
inductor_ops = torch.ops.inductor
_quantized = torch.ops._quantized
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
alloc_from_pool = torch.ops.inductor._alloc_from_pool
async_compile = AsyncCompile()
# kernel path: runs/run_shard_6/inductor_cache/td/ctdv3m5a33kovvtng5iilth4k6mtnyfcota6hhwoiqm34iumu7wi.py
# Topologically Sorted Source Nodes: [padded_inputs], Original ATen: [aten.constant_pad_nd]
# Source node to ATen node mapping:
# padded_inputs => constant_pad_nd
# Graph fragment:
# %constant_pad_nd : [num_users=2] = call_function[target=torch.ops.aten.constant_pad_nd.default](args = (%primals_1, [1, 1, 1, 1], 0.0), kwargs = {})
triton_poi_fused_constant_pad_nd_0 = async_compile.triton('triton_poi_fused_constant_pad_nd_0', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[1024],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_constant_pad_nd_0', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 1, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_constant_pad_nd_0(in_ptr0, out_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 576
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x1 = (xindex // 6) % 6
x0 = xindex % 6
x2 = (xindex // 36)
x4 = xindex
tmp0 = (-1) + x1
tmp1 = tl.full([1], 0, tl.int64)
tmp2 = tmp0 >= tmp1
tmp3 = tl.full([1], 4, tl.int64)
tmp4 = tmp0 < tmp3
tmp5 = (-1) + x0
tmp6 = tmp5 >= tmp1
tmp7 = tmp5 < tmp3
tmp8 = tmp2 & tmp4
tmp9 = tmp8 & tmp6
tmp10 = tmp9 & tmp7
tmp11 = tl.load(in_ptr0 + ((-5) + x0 + (4*x1) + (16*x2)), tmp10 & xmask, other=0.0)
tl.store(out_ptr0 + (x4), tmp11, xmask)
''', device_str='cuda')
async_compile.wait(globals())
del async_compile
def call(args):
primals_1, primals_2, primals_3 = args
args.clear()
assert_size_stride(primals_1, (4, 4, 4, 4), (64, 16, 4, 1))
assert_size_stride(primals_2, (4, 1, 3, 3), (9, 9, 3, 1))
assert_size_stride(primals_3, (4, 4, 1, 1), (4, 1, 1, 1))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((4, 4, 6, 6), (144, 36, 6, 1), torch.float32)
# Topologically Sorted Source Nodes: [padded_inputs], Original ATen: [aten.constant_pad_nd]
stream0 = get_raw_stream(0)
triton_poi_fused_constant_pad_nd_0.run(primals_1, buf0, 576, grid=grid(576), stream=stream0)
del primals_1
# Topologically Sorted Source Nodes: [x], Original ATen: [aten.convolution]
buf1 = extern_kernels.convolution(buf0, primals_2, stride=(1, 1), padding=(0, 0), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=4, bias=None)
assert_size_stride(buf1, (4, 4, 4, 4), (64, 16, 4, 1))
# Topologically Sorted Source Nodes: [x_1], Original ATen: [aten.convolution]
buf2 = extern_kernels.convolution(buf1, primals_3, stride=(1, 1), padding=(0, 0), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None)
assert_size_stride(buf2, (4, 4, 4, 4), (64, 16, 4, 1))
return (buf2, primals_2, primals_3, buf0, buf1, )
def benchmark_compiled_module(times=10, repeat=10):
from torch._dynamo.testing import rand_strided
from torch._inductor.utils import print_performance
primals_1 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32)
primals_2 = rand_strided((4, 1, 3, 3), (9, 9, 3, 1), device='cuda:0', dtype=torch.float32)
primals_3 = rand_strided((4, 4, 1, 1), (4, 1, 1, 1), device='cuda:0', dtype=torch.float32)
fn = lambda: call([primals_1, primals_2, primals_3])
return print_performance(fn, times=times, repeat=repeat)
if __name__ == "__main__":
from torch._inductor.wrapper_benchmark import compiled_module_main
compiled_module_main('None', benchmark_compiled_module)
|
import torch
from torch._inductor.select_algorithm import extern_kernels
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
from torch import nn
from torch.nn import functional as F
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
@triton.jit
def triton_poi_fused_constant_pad_nd_0(in_ptr0, out_ptr0, xnumel, XBLOCK:
tl.constexpr):
xnumel = 576
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x1 = xindex // 6 % 6
x0 = xindex % 6
x2 = xindex // 36
x4 = xindex
tmp0 = -1 + x1
tmp1 = tl.full([1], 0, tl.int64)
tmp2 = tmp0 >= tmp1
tmp3 = tl.full([1], 4, tl.int64)
tmp4 = tmp0 < tmp3
tmp5 = -1 + x0
tmp6 = tmp5 >= tmp1
tmp7 = tmp5 < tmp3
tmp8 = tmp2 & tmp4
tmp9 = tmp8 & tmp6
tmp10 = tmp9 & tmp7
tmp11 = tl.load(in_ptr0 + (-5 + x0 + 4 * x1 + 16 * x2), tmp10 & xmask,
other=0.0)
tl.store(out_ptr0 + x4, tmp11, xmask)
def call(args):
primals_1, primals_2, primals_3 = args
args.clear()
assert_size_stride(primals_1, (4, 4, 4, 4), (64, 16, 4, 1))
assert_size_stride(primals_2, (4, 1, 3, 3), (9, 9, 3, 1))
assert_size_stride(primals_3, (4, 4, 1, 1), (4, 1, 1, 1))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((4, 4, 6, 6), (144, 36, 6, 1), torch.float32)
get_raw_stream(0)
triton_poi_fused_constant_pad_nd_0[grid(576)](primals_1, buf0, 576,
XBLOCK=256, num_warps=4, num_stages=1)
del primals_1
buf1 = extern_kernels.convolution(buf0, primals_2, stride=(1, 1),
padding=(0, 0), dilation=(1, 1), transposed=False,
output_padding=(0, 0), groups=4, bias=None)
assert_size_stride(buf1, (4, 4, 4, 4), (64, 16, 4, 1))
buf2 = extern_kernels.convolution(buf1, primals_3, stride=(1, 1),
padding=(0, 0), dilation=(1, 1), transposed=False,
output_padding=(0, 0), groups=1, bias=None)
assert_size_stride(buf2, (4, 4, 4, 4), (64, 16, 4, 1))
return buf2, primals_2, primals_3, buf0, buf1
def fixed_padding(inputs, kernel_size, rate):
kernel_size_effective = kernel_size + (kernel_size - 1) * (rate - 1)
pad_total = kernel_size_effective - 1
pad_beg = pad_total // 2
pad_end = pad_total - pad_beg
padded_inputs = F.pad(inputs, (pad_beg, pad_end, pad_beg, pad_end))
return padded_inputs
class SeparableConv2d_sameNew(nn.Module):
def __init__(self, inplanes, planes, kernel_size=3, stride=1, dilation=
1, bias=False):
super(SeparableConv2d_sameNew, self).__init__()
self.conv1 = nn.Conv2d(inplanes, inplanes, kernel_size, stride, 0,
dilation, groups=inplanes, bias=bias)
self.pointwise = nn.Conv2d(inplanes, planes, 1, 1, 0, 1, 1, bias=bias)
def forward(self, input_0):
primals_2 = self.conv1.weight
primals_3 = self.pointwise.weight
primals_1 = input_0
output = call([primals_1, primals_2, primals_3])
return output[0]
|
Gummary/Pytorch-Project-Template
|
SeparableConv2d_same
| false | 505 |
[
"MIT"
] | 0 |
56bc5e253627d40fb8771eccdb2bb663c833beb3
|
https://github.com/Gummary/Pytorch-Project-Template/tree/56bc5e253627d40fb8771eccdb2bb663c833beb3
|
AdditiveAttention
|
# AOT ID: ['0_forward']
from ctypes import c_void_p, c_long, c_int
import torch
import math
import random
import os
import tempfile
from math import inf, nan
from torch._inductor.hooks import run_intermediate_hooks
from torch._inductor.utils import maybe_profile
from torch._inductor.codegen.memory_planning import _align as align
from torch import device, empty_strided
from torch._inductor.async_compile import AsyncCompile
from torch._inductor.select_algorithm import extern_kernels
from torch._inductor.codegen.multi_kernel import MultiKernelCall
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
aten = torch.ops.aten
inductor_ops = torch.ops.inductor
_quantized = torch.ops._quantized
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
alloc_from_pool = torch.ops.inductor._alloc_from_pool
async_compile = AsyncCompile()
# kernel path: runs/run_shard_4/inductor_cache/2x/c2x66b6sza3svon43c774fqn45xzpdlajk7fj3gf6dzmp6nxl7jx.py
# Topologically Sorted Source Nodes: [add, tanh], Original ATen: [aten.add, aten.tanh]
# Source node to ATen node mapping:
# add => add
# tanh => tanh
# Graph fragment:
# %add : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%view_1, %view_3), kwargs = {})
# %tanh : [num_users=2] = call_function[target=torch.ops.aten.tanh.default](args = (%add,), kwargs = {})
triton_poi_fused_add_tanh_0 = async_compile.triton('triton_poi_fused_add_tanh_0', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[1024],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: '*fp32', 4: '*fp32', 5: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3, 4, 5), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_add_tanh_0', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 4, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_add_tanh_0(in_ptr0, in_ptr1, in_ptr2, in_ptr3, out_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 1024
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x4 = xindex % 256
x0 = xindex % 4
x3 = (xindex // 256)
x5 = xindex % 64
x6 = xindex
tmp0 = tl.load(in_ptr0 + (x4), xmask, eviction_policy='evict_last')
tmp1 = tl.load(in_ptr1 + (x0), xmask, eviction_policy='evict_last')
tmp3 = tl.load(in_ptr2 + (x5 + (64*x3)), xmask, eviction_policy='evict_last')
tmp4 = tl.load(in_ptr3 + (x0), xmask, eviction_policy='evict_last')
tmp2 = tmp0 + tmp1
tmp5 = tmp3 + tmp4
tmp6 = tmp2 + tmp5
tmp7 = libdevice.tanh(tmp6)
tl.store(out_ptr0 + (x6), tmp7, xmask)
''', device_str='cuda')
# kernel path: runs/run_shard_4/inductor_cache/oe/coezvwyo2fyfsqghp3geqsqeeuhyvxcoe7thtujlv6einfmi73d5.py
# Topologically Sorted Source Nodes: [mask, invert, setitem], Original ATen: [aten._to_copy, aten.bitwise_not, aten.lift_fresh, aten.index_put]
# Source node to ATen node mapping:
# invert => bitwise_not
# mask => convert_element_type
# setitem => full_default, index_put
# Graph fragment:
# %convert_element_type : [num_users=1] = call_function[target=torch.ops.prims.convert_element_type.default](args = (%primals_9, torch.bool), kwargs = {})
# %bitwise_not : [num_users=2] = call_function[target=torch.ops.aten.bitwise_not.default](args = (%convert_element_type,), kwargs = {})
# %full_default : [num_users=1] = call_function[target=torch.ops.aten.full.default](args = ([], -inf), kwargs = {dtype: torch.float32, layout: torch.strided, device: cpu, pin_memory: False})
# %index_put : [num_users=1] = call_function[target=torch.ops.aten.index_put_.default](args = (%squeeze, [%bitwise_not], %full_default), kwargs = {})
triton_poi_fused__to_copy_bitwise_not_index_put_lift_fresh_1 = async_compile.triton('triton_poi_fused__to_copy_bitwise_not_index_put_lift_fresh_1', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[256],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*i1', 3: '*fp32', 4: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3, 4), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused__to_copy_bitwise_not_index_put_lift_fresh_1', 'mutated_arg_names': ['in_ptr1', 'out_ptr2'], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused__to_copy_bitwise_not_index_put_lift_fresh_1(in_ptr0, in_ptr1, out_ptr0, out_ptr2, xnumel, XBLOCK : tl.constexpr):
xnumel = 256
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex
tmp0 = tl.load(in_ptr0 + (x0), xmask)
tmp3 = tl.load(in_ptr1 + (x0), xmask)
tmp1 = (tmp0 != 0)
tmp2 = tmp1 == 0
tmp4 = float("-inf")
tmp5 = tl.where(tmp2, tmp4, tmp3)
tl.store(out_ptr0 + (x0), tmp2, xmask)
tl.store(out_ptr2 + (x0), tmp5, xmask)
''', device_str='cuda')
async_compile.wait(globals())
del async_compile
def call(args):
primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7, primals_8, primals_9 = args
args.clear()
assert_size_stride(primals_1, (4, 4), (4, 1))
assert_size_stride(primals_2, (4, ), (1, ))
assert_size_stride(primals_3, (4, 4, 4, 4), (64, 16, 4, 1))
assert_size_stride(primals_4, (4, 4, 4, 4), (64, 16, 4, 1))
assert_size_stride(primals_5, (4, 4), (4, 1))
assert_size_stride(primals_6, (4, ), (1, ))
assert_size_stride(primals_7, (1, 4), (4, 1))
assert_size_stride(primals_8, (1, ), (1, ))
assert_size_stride(primals_9, (4, 4, 4, 4), (64, 16, 4, 1))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((64, 4), (4, 1), torch.float32)
# Topologically Sorted Source Nodes: [], Original ATen: []
extern_kernels.mm(reinterpret_tensor(primals_3, (64, 4), (4, 1), 0), reinterpret_tensor(primals_1, (4, 4), (1, 4), 0), out=buf0)
del primals_1
buf1 = empty_strided_cuda((64, 4), (4, 1), torch.float32)
# Topologically Sorted Source Nodes: [], Original ATen: []
extern_kernels.mm(reinterpret_tensor(primals_4, (64, 4), (4, 1), 0), reinterpret_tensor(primals_5, (4, 4), (1, 4), 0), out=buf1)
del primals_5
buf2 = empty_strided_cuda((4, 4, 4, 4, 4), (256, 64, 16, 4, 1), torch.float32)
# Topologically Sorted Source Nodes: [add, tanh], Original ATen: [aten.add, aten.tanh]
stream0 = get_raw_stream(0)
triton_poi_fused_add_tanh_0.run(buf0, primals_2, buf1, primals_6, buf2, 1024, grid=grid(1024), stream=stream0)
del buf0
del primals_2
del primals_6
buf4 = reinterpret_tensor(buf1, (256, 1), (1, 1), 0); del buf1 # reuse
# Topologically Sorted Source Nodes: [linear_2], Original ATen: [aten.addmm]
extern_kernels.addmm(primals_8, reinterpret_tensor(buf2, (256, 4), (4, 1), 0), reinterpret_tensor(primals_7, (4, 1), (1, 4), 0), alpha=1, beta=1, out=buf4)
del primals_8
buf5 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.bool)
# Topologically Sorted Source Nodes: [mask, invert, setitem], Original ATen: [aten._to_copy, aten.bitwise_not, aten.lift_fresh, aten.index_put]
triton_poi_fused__to_copy_bitwise_not_index_put_lift_fresh_1.run(primals_9, buf4, buf5, buf4, 256, grid=grid(256), stream=stream0)
del primals_9
return (reinterpret_tensor(buf4, (4, 4, 4, 4), (64, 16, 4, 1), 0), reinterpret_tensor(primals_3, (64, 4), (4, 1), 0), reinterpret_tensor(primals_4, (64, 4), (4, 1), 0), buf2, buf5, primals_7, )
def benchmark_compiled_module(times=10, repeat=10):
from torch._dynamo.testing import rand_strided
from torch._inductor.utils import print_performance
primals_1 = rand_strided((4, 4), (4, 1), device='cuda:0', dtype=torch.float32)
primals_2 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32)
primals_3 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32)
primals_4 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32)
primals_5 = rand_strided((4, 4), (4, 1), device='cuda:0', dtype=torch.float32)
primals_6 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32)
primals_7 = rand_strided((1, 4), (4, 1), device='cuda:0', dtype=torch.float32)
primals_8 = rand_strided((1, ), (1, ), device='cuda:0', dtype=torch.float32)
primals_9 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32)
fn = lambda: call([primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7, primals_8, primals_9])
return print_performance(fn, times=times, repeat=repeat)
if __name__ == "__main__":
from torch._inductor.wrapper_benchmark import compiled_module_main
compiled_module_main('None', benchmark_compiled_module)
|
import torch
from torch._inductor.select_algorithm import extern_kernels
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
from torch._inductor.runtime.triton_helpers import libdevice
import torch.nn as nn
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
@triton.jit
def triton_poi_fused_add_tanh_0(in_ptr0, in_ptr1, in_ptr2, in_ptr3,
out_ptr0, xnumel, XBLOCK: tl.constexpr):
xnumel = 1024
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x4 = xindex % 256
x0 = xindex % 4
x3 = xindex // 256
x5 = xindex % 64
x6 = xindex
tmp0 = tl.load(in_ptr0 + x4, xmask, eviction_policy='evict_last')
tmp1 = tl.load(in_ptr1 + x0, xmask, eviction_policy='evict_last')
tmp3 = tl.load(in_ptr2 + (x5 + 64 * x3), xmask, eviction_policy=
'evict_last')
tmp4 = tl.load(in_ptr3 + x0, xmask, eviction_policy='evict_last')
tmp2 = tmp0 + tmp1
tmp5 = tmp3 + tmp4
tmp6 = tmp2 + tmp5
tmp7 = libdevice.tanh(tmp6)
tl.store(out_ptr0 + x6, tmp7, xmask)
@triton.jit
def triton_poi_fused__to_copy_bitwise_not_index_put_lift_fresh_1(in_ptr0,
in_ptr1, out_ptr0, out_ptr2, xnumel, XBLOCK: tl.constexpr):
xnumel = 256
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex
tmp0 = tl.load(in_ptr0 + x0, xmask)
tmp3 = tl.load(in_ptr1 + x0, xmask)
tmp1 = tmp0 != 0
tmp2 = tmp1 == 0
tmp4 = float('-inf')
tmp5 = tl.where(tmp2, tmp4, tmp3)
tl.store(out_ptr0 + x0, tmp2, xmask)
tl.store(out_ptr2 + x0, tmp5, xmask)
def call(args):
(primals_1, primals_2, primals_3, primals_4, primals_5, primals_6,
primals_7, primals_8, primals_9) = args
args.clear()
assert_size_stride(primals_1, (4, 4), (4, 1))
assert_size_stride(primals_2, (4,), (1,))
assert_size_stride(primals_3, (4, 4, 4, 4), (64, 16, 4, 1))
assert_size_stride(primals_4, (4, 4, 4, 4), (64, 16, 4, 1))
assert_size_stride(primals_5, (4, 4), (4, 1))
assert_size_stride(primals_6, (4,), (1,))
assert_size_stride(primals_7, (1, 4), (4, 1))
assert_size_stride(primals_8, (1,), (1,))
assert_size_stride(primals_9, (4, 4, 4, 4), (64, 16, 4, 1))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((64, 4), (4, 1), torch.float32)
extern_kernels.mm(reinterpret_tensor(primals_3, (64, 4), (4, 1), 0),
reinterpret_tensor(primals_1, (4, 4), (1, 4), 0), out=buf0)
del primals_1
buf1 = empty_strided_cuda((64, 4), (4, 1), torch.float32)
extern_kernels.mm(reinterpret_tensor(primals_4, (64, 4), (4, 1), 0),
reinterpret_tensor(primals_5, (4, 4), (1, 4), 0), out=buf1)
del primals_5
buf2 = empty_strided_cuda((4, 4, 4, 4, 4), (256, 64, 16, 4, 1),
torch.float32)
get_raw_stream(0)
triton_poi_fused_add_tanh_0[grid(1024)](buf0, primals_2, buf1,
primals_6, buf2, 1024, XBLOCK=128, num_warps=4, num_stages=1)
del buf0
del primals_2
del primals_6
buf4 = reinterpret_tensor(buf1, (256, 1), (1, 1), 0)
del buf1
extern_kernels.addmm(primals_8, reinterpret_tensor(buf2, (256, 4),
(4, 1), 0), reinterpret_tensor(primals_7, (4, 1), (1, 4), 0),
alpha=1, beta=1, out=buf4)
del primals_8
buf5 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.bool)
triton_poi_fused__to_copy_bitwise_not_index_put_lift_fresh_1[grid(256)
](primals_9, buf4, buf5, buf4, 256, XBLOCK=256, num_warps=4,
num_stages=1)
del primals_9
return reinterpret_tensor(buf4, (4, 4, 4, 4), (64, 16, 4, 1), 0
), reinterpret_tensor(primals_3, (64, 4), (4, 1), 0
), reinterpret_tensor(primals_4, (64, 4), (4, 1), 0
), buf2, buf5, primals_7
class AdditiveAttentionNew(nn.Module):
"""
Originally from:
https://arxiv.org/pdf/1409.0473v5.pdf
Also referenced to as Content Based Attention:
https://arxiv.org/pdf/1506.03134v1.pdf
Attention is learned for a query vector over a set of vectors.
If we have a query vector and then a key matrix with the size (n,k),
we will create attention vector over n
NOTE!
We mask out the attention scores for the positions which its impossible for
the segments to attend to. I.e. the padding.
"""
def __init__(self, input_dim: 'int'):
super().__init__()
self.W1 = nn.Linear(input_dim, input_dim)
self.W2 = nn.Linear(input_dim, input_dim)
self.v = nn.Linear(input_dim, 1)
def forward(self, input_0, input_1, input_2):
primals_1 = self.W1.weight
primals_2 = self.W1.bias
primals_5 = self.W2.weight
primals_6 = self.W2.bias
primals_7 = self.v.weight
primals_8 = self.v.bias
primals_3 = input_0
primals_4 = input_1
primals_9 = input_2
output = call([primals_1, primals_2, primals_3, primals_4,
primals_5, primals_6, primals_7, primals_8, primals_9])
return output[0]
|
AxlAlm/SegNLP
|
AdditiveAttention
| false | 4,881 |
[
"Apache-2.0"
] | 1 |
89b8d077952397dfcea089376b373b117bcf6a65
|
https://github.com/AxlAlm/SegNLP/tree/89b8d077952397dfcea089376b373b117bcf6a65
|
TransposeGatedConv2d
|
# AOT ID: ['0_forward']
from ctypes import c_void_p, c_long, c_int
import torch
import math
import random
import os
import tempfile
from math import inf, nan
from torch._inductor.hooks import run_intermediate_hooks
from torch._inductor.utils import maybe_profile
from torch._inductor.codegen.memory_planning import _align as align
from torch import device, empty_strided
from torch._inductor.async_compile import AsyncCompile
from torch._inductor.select_algorithm import extern_kernels
from torch._inductor.codegen.multi_kernel import MultiKernelCall
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
aten = torch.ops.aten
inductor_ops = torch.ops.inductor
_quantized = torch.ops._quantized
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
alloc_from_pool = torch.ops.inductor._alloc_from_pool
async_compile = AsyncCompile()
# kernel path: runs/run_shard_4/inductor_cache/oj/cojl5mb3pzv5jbmfzjkbac5hekbmpvb72kof6ouyyasitrogdd6n.py
# Topologically Sorted Source Nodes: [x], Original ATen: [aten._unsafe_index]
# Source node to ATen node mapping:
# x => _unsafe_index
# Graph fragment:
# %_unsafe_index : [num_users=3] = call_function[target=torch.ops.aten._unsafe_index.Tensor](args = (%primals_1, [None, None, %unsqueeze, %convert_element_type_1]), kwargs = {})
triton_poi_fused__unsafe_index_0 = async_compile.triton('triton_poi_fused__unsafe_index_0', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[1024],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused__unsafe_index_0', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 0, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused__unsafe_index_0(in_ptr0, out_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 1024
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x1 = (xindex // 8) % 8
x0 = xindex % 8
x2 = (xindex // 64)
x4 = xindex
tmp0 = x1
tmp1 = tmp0.to(tl.float32)
tmp2 = 0.5
tmp3 = tmp1 * tmp2
tmp4 = tmp3.to(tl.int32)
tmp5 = x0
tmp6 = tmp5.to(tl.float32)
tmp7 = tmp6 * tmp2
tmp8 = tmp7.to(tl.int32)
tmp9 = tl.load(in_ptr0 + (tmp8 + (4*tmp4) + (16*x2)), xmask, eviction_policy='evict_last')
tl.store(out_ptr0 + (x4), tmp9, xmask)
''', device_str='cuda')
# kernel path: runs/run_shard_4/inductor_cache/vk/cvkcyzml7vrfy2i3zs2tgjrz2g3re65xluovrlmik7fmdvw7f3uo.py
# Topologically Sorted Source Nodes: [norm, add, truediv], Original ATen: [aten.linalg_vector_norm, aten.add, aten.div]
# Source node to ATen node mapping:
# add => add_4
# norm => pow_1, pow_2, sum_1
# truediv => div
# Graph fragment:
# %pow_1 : [num_users=1] = call_function[target=torch.ops.aten.pow.Tensor_Scalar](args = (%squeeze, 2), kwargs = {})
# %sum_1 : [num_users=1] = call_function[target=torch.ops.aten.sum.dim_IntList](args = (%pow_1, None), kwargs = {})
# %pow_2 : [num_users=1] = call_function[target=torch.ops.aten.pow.Tensor_Scalar](args = (%sum_1, 0.5), kwargs = {})
# %add_4 : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%pow_2, 1e-12), kwargs = {})
# %div : [num_users=2] = call_function[target=torch.ops.aten.div.Tensor](args = (%squeeze, %add_4), kwargs = {})
triton_per_fused_add_div_linalg_vector_norm_1 = async_compile.triton('triton_per_fused_add_div_linalg_vector_norm_1', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.persistent_reduction(
size_hints=[1, 64],
reduction_hint=ReductionHint.INNER,
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {2: 1}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 3), equal_to_1=(2,))]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_per_fused_add_div_linalg_vector_norm_1', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 1, 'num_reduction': 1, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}
)
@triton.jit
def triton_per_fused_add_div_linalg_vector_norm_1(in_ptr0, out_ptr1, xnumel, rnumel, XBLOCK : tl.constexpr):
xnumel = 1
rnumel = 64
RBLOCK: tl.constexpr = 64
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:, None]
xmask = tl.full([XBLOCK, RBLOCK], True, tl.int1)
rindex = tl.arange(0, RBLOCK)[None, :]
roffset = 0
rmask = tl.full([XBLOCK, RBLOCK], True, tl.int1)
r0 = rindex
tmp0 = tl.load(in_ptr0 + (r0), None)
tmp1 = tmp0 * tmp0
tmp2 = tl.broadcast_to(tmp1, [XBLOCK, RBLOCK])
tmp4 = tl.sum(tmp2, 1)[:, None]
tmp5 = libdevice.sqrt(tmp4)
tmp6 = 1e-12
tmp7 = tmp5 + tmp6
tmp8 = tmp0 / tmp7
tl.store(out_ptr1 + (tl.broadcast_to(r0, [XBLOCK, RBLOCK])), tmp8, None)
''', device_str='cuda')
# kernel path: runs/run_shard_4/inductor_cache/fu/cfu7hyunx5ghrb4pvgnxxnkvmgplfrecz32xriljo6ebdst3haad.py
# Topologically Sorted Source Nodes: [norm_1, add_1, truediv_1, sigma, sigma_1], Original ATen: [aten.linalg_vector_norm, aten.add, aten.div, aten.mul, aten.sum]
# Source node to ATen node mapping:
# add_1 => add_5
# norm_1 => pow_3, pow_4, sum_2
# sigma => mul_4
# sigma_1 => sum_3
# truediv_1 => div_1
# Graph fragment:
# %pow_3 : [num_users=1] = call_function[target=torch.ops.aten.pow.Tensor_Scalar](args = (%squeeze_1, 2), kwargs = {})
# %sum_2 : [num_users=1] = call_function[target=torch.ops.aten.sum.dim_IntList](args = (%pow_3, None), kwargs = {})
# %pow_4 : [num_users=1] = call_function[target=torch.ops.aten.pow.Tensor_Scalar](args = (%sum_2, 0.5), kwargs = {})
# %add_5 : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%pow_4, 1e-12), kwargs = {})
# %div_1 : [num_users=2] = call_function[target=torch.ops.aten.div.Tensor](args = (%squeeze_1, %add_5), kwargs = {})
# %mul_4 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%div_1, %squeeze_1), kwargs = {})
# %sum_3 : [num_users=2] = call_function[target=torch.ops.aten.sum.default](args = (%mul_4,), kwargs = {})
triton_per_fused_add_div_linalg_vector_norm_mul_sum_2 = async_compile.triton('triton_per_fused_add_div_linalg_vector_norm_mul_sum_2', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.persistent_reduction(
size_hints=[1, 4],
reduction_hint=ReductionHint.INNER,
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: 'i32', 4: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {3: 1}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=(3,))]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_per_fused_add_div_linalg_vector_norm_mul_sum_2', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 1, 'num_reduction': 2, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}
)
@triton.jit
def triton_per_fused_add_div_linalg_vector_norm_mul_sum_2(in_ptr0, out_ptr1, out_ptr2, xnumel, rnumel, XBLOCK : tl.constexpr):
xnumel = 1
rnumel = 4
RBLOCK: tl.constexpr = 4
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:, None]
xmask = tl.full([XBLOCK, RBLOCK], True, tl.int1)
rindex = tl.arange(0, RBLOCK)[None, :]
roffset = 0
rmask = tl.full([XBLOCK, RBLOCK], True, tl.int1)
r0 = rindex
tmp0 = tl.load(in_ptr0 + (r0), None)
tmp1 = tmp0 * tmp0
tmp2 = tl.broadcast_to(tmp1, [XBLOCK, RBLOCK])
tmp4 = tl.sum(tmp2, 1)[:, None]
tmp5 = libdevice.sqrt(tmp4)
tmp6 = 1e-12
tmp7 = tmp5 + tmp6
tmp8 = tmp0 / tmp7
tmp9 = tmp8 * tmp0
tmp10 = tl.broadcast_to(tmp9, [XBLOCK, RBLOCK])
tmp12 = tl.sum(tmp10, 1)[:, None]
tl.store(out_ptr2 + (tl.broadcast_to(r0, [XBLOCK, RBLOCK])), tmp8, None)
tl.store(out_ptr1 + (tl.full([XBLOCK, 1], 0, tl.int32)), tmp12, None)
''', device_str='cuda')
# kernel path: runs/run_shard_4/inductor_cache/2r/c2rc442g4q5j7ue6cvpvh3io7ghkfdrmn76o244doamnt7unobsn.py
# Topologically Sorted Source Nodes: [truediv_2], Original ATen: [aten.div]
# Source node to ATen node mapping:
# truediv_2 => div_2
# Graph fragment:
# %div_2 : [num_users=2] = call_function[target=torch.ops.aten.div.Tensor](args = (%primals_4, %expand), kwargs = {})
triton_poi_fused_div_3 = async_compile.triton('triton_poi_fused_div_3', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[256],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_div_3', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_div_3(in_ptr0, in_ptr1, out_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 256
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex
tmp0 = tl.load(in_ptr0 + (x0), xmask)
tmp1 = tl.load(in_ptr1 + (0))
tmp2 = tl.broadcast_to(tmp1, [XBLOCK])
tmp3 = tmp0 / tmp2
tl.store(out_ptr0 + (x0), tmp3, xmask)
''', device_str='cuda')
# kernel path: runs/run_shard_4/inductor_cache/dg/cdgmuvildyld52vxzyu4vek5xyxllfoowazacbtlvri2cbtd4afh.py
# Topologically Sorted Source Nodes: [conv, conv_1, mask, gated_mask, x_2], Original ATen: [aten.convolution, aten.leaky_relu, aten.sigmoid, aten.mul]
# Source node to ATen node mapping:
# conv => convolution
# conv_1 => gt, mul_5, where
# gated_mask => sigmoid
# mask => convolution_1
# x_2 => mul_7
# Graph fragment:
# %convolution : [num_users=4] = call_function[target=torch.ops.aten.convolution.default](args = (%_unsafe_index, %div_2, %primals_5, [1, 1], [0, 0], [1, 1], False, [0, 0], 1), kwargs = {})
# %gt : [num_users=1] = call_function[target=torch.ops.aten.gt.Scalar](args = (%convolution, 0), kwargs = {})
# %mul_5 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%convolution, 0.2), kwargs = {})
# %where : [num_users=1] = call_function[target=torch.ops.aten.where.self](args = (%gt, %convolution, %mul_5), kwargs = {})
# %convolution_1 : [num_users=2] = call_function[target=torch.ops.aten.convolution.default](args = (%_unsafe_index, %div_5, %primals_9, [1, 1], [0, 0], [1, 1], False, [0, 0], 1), kwargs = {})
# %sigmoid : [num_users=1] = call_function[target=torch.ops.aten.sigmoid.default](args = (%convolution_1,), kwargs = {})
# %mul_7 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%where, %sigmoid), kwargs = {})
triton_poi_fused_convolution_leaky_relu_mul_sigmoid_4 = async_compile.triton('triton_poi_fused_convolution_leaky_relu_mul_sigmoid_4', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[512],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: '*fp32', 4: '*fp32', 5: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3, 4, 5), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_convolution_leaky_relu_mul_sigmoid_4', 'mutated_arg_names': ['in_out_ptr0', 'in_out_ptr1'], 'no_x_dim': False, 'num_load': 4, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_convolution_leaky_relu_mul_sigmoid_4(in_out_ptr0, in_out_ptr1, in_ptr0, in_ptr1, out_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 400
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x3 = xindex
x1 = (xindex // 25) % 4
tmp0 = tl.load(in_out_ptr0 + (x3), xmask)
tmp1 = tl.load(in_ptr0 + (x1), xmask, eviction_policy='evict_last')
tmp3 = tl.load(in_out_ptr1 + (x3), xmask)
tmp4 = tl.load(in_ptr1 + (x1), xmask, eviction_policy='evict_last')
tmp2 = tmp0 + tmp1
tmp5 = tmp3 + tmp4
tmp6 = 0.0
tmp7 = tmp2 > tmp6
tmp8 = 0.2
tmp9 = tmp2 * tmp8
tmp10 = tl.where(tmp7, tmp2, tmp9)
tmp11 = tl.sigmoid(tmp5)
tmp12 = tmp10 * tmp11
tl.store(in_out_ptr0 + (x3), tmp2, xmask)
tl.store(in_out_ptr1 + (x3), tmp5, xmask)
tl.store(out_ptr0 + (x3), tmp12, xmask)
''', device_str='cuda')
async_compile.wait(globals())
del async_compile
def call(args):
primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7, primals_8, primals_9 = args
args.clear()
assert_size_stride(primals_1, (4, 4, 4, 4), (64, 16, 4, 1))
assert_size_stride(primals_2, (4, ), (1, ))
assert_size_stride(primals_3, (64, ), (1, ))
assert_size_stride(primals_4, (4, 4, 4, 4), (64, 16, 4, 1))
assert_size_stride(primals_5, (4, ), (1, ))
assert_size_stride(primals_6, (4, ), (1, ))
assert_size_stride(primals_7, (64, ), (1, ))
assert_size_stride(primals_8, (4, 4, 4, 4), (64, 16, 4, 1))
assert_size_stride(primals_9, (4, ), (1, ))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((4, 4, 8, 8), (256, 64, 8, 1), torch.float32)
# Topologically Sorted Source Nodes: [x], Original ATen: [aten._unsafe_index]
stream0 = get_raw_stream(0)
triton_poi_fused__unsafe_index_0.run(primals_1, buf0, 1024, grid=grid(1024), stream=stream0)
del primals_1
buf1 = empty_strided_cuda((64, 1), (1, 1), torch.float32)
# Topologically Sorted Source Nodes: [mm], Original ATen: [aten.mm]
extern_kernels.mm(reinterpret_tensor(primals_4, (64, 4), (1, 64), 0), reinterpret_tensor(primals_2, (4, 1), (1, 1), 0), out=buf1)
buf3 = empty_strided_cuda((64, ), (1, ), torch.float32)
# Topologically Sorted Source Nodes: [norm, add, truediv], Original ATen: [aten.linalg_vector_norm, aten.add, aten.div]
triton_per_fused_add_div_linalg_vector_norm_1.run(buf1, buf3, 1, 64, grid=grid(1), stream=stream0)
buf4 = empty_strided_cuda((4, 1), (1, 1), torch.float32)
# Topologically Sorted Source Nodes: [mm_1], Original ATen: [aten.mm]
extern_kernels.mm(reinterpret_tensor(primals_4, (4, 64), (64, 1), 0), reinterpret_tensor(buf3, (64, 1), (1, 0), 0), out=buf4)
buf6 = empty_strided_cuda((), (), torch.float32)
buf20 = empty_strided_cuda((4, ), (1, ), torch.float32)
# Topologically Sorted Source Nodes: [norm_1, add_1, truediv_1, sigma, sigma_1], Original ATen: [aten.linalg_vector_norm, aten.add, aten.div, aten.mul, aten.sum]
triton_per_fused_add_div_linalg_vector_norm_mul_sum_2.run(buf4, buf6, buf20, 1, 4, grid=grid(1), stream=stream0)
buf7 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32)
# Topologically Sorted Source Nodes: [truediv_2], Original ATen: [aten.div]
triton_poi_fused_div_3.run(primals_4, buf6, buf7, 256, grid=grid(256), stream=stream0)
del primals_4
# Topologically Sorted Source Nodes: [conv], Original ATen: [aten.convolution]
buf8 = extern_kernels.convolution(buf0, buf7, stride=(1, 1), padding=(0, 0), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None)
assert_size_stride(buf8, (4, 4, 5, 5), (100, 25, 5, 1))
buf10 = empty_strided_cuda((64, 1), (1, 1), torch.float32)
# Topologically Sorted Source Nodes: [mm_3], Original ATen: [aten.mm]
extern_kernels.mm(reinterpret_tensor(primals_8, (64, 4), (1, 64), 0), reinterpret_tensor(primals_6, (4, 1), (1, 1), 0), out=buf10)
buf12 = empty_strided_cuda((64, ), (1, ), torch.float32)
# Topologically Sorted Source Nodes: [norm_2, add_2, truediv_3], Original ATen: [aten.linalg_vector_norm, aten.add, aten.div]
triton_per_fused_add_div_linalg_vector_norm_1.run(buf10, buf12, 1, 64, grid=grid(1), stream=stream0)
buf13 = empty_strided_cuda((4, 1), (1, 1), torch.float32)
# Topologically Sorted Source Nodes: [mm_4], Original ATen: [aten.mm]
extern_kernels.mm(reinterpret_tensor(primals_8, (4, 64), (64, 1), 0), reinterpret_tensor(buf12, (64, 1), (1, 0), 0), out=buf13)
buf15 = empty_strided_cuda((), (), torch.float32)
buf27 = empty_strided_cuda((4, ), (1, ), torch.float32)
# Topologically Sorted Source Nodes: [norm_3, add_3, truediv_4, sigma_2, sigma_3], Original ATen: [aten.linalg_vector_norm, aten.add, aten.div, aten.mul, aten.sum]
triton_per_fused_add_div_linalg_vector_norm_mul_sum_2.run(buf13, buf15, buf27, 1, 4, grid=grid(1), stream=stream0)
buf16 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32)
# Topologically Sorted Source Nodes: [truediv_5], Original ATen: [aten.div]
triton_poi_fused_div_3.run(primals_8, buf15, buf16, 256, grid=grid(256), stream=stream0)
del primals_8
# Topologically Sorted Source Nodes: [mask], Original ATen: [aten.convolution]
buf17 = extern_kernels.convolution(buf0, buf16, stride=(1, 1), padding=(0, 0), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None)
assert_size_stride(buf17, (4, 4, 5, 5), (100, 25, 5, 1))
buf9 = buf8; del buf8 # reuse
buf18 = buf17; del buf17 # reuse
buf19 = empty_strided_cuda((4, 4, 5, 5), (100, 25, 5, 1), torch.float32)
# Topologically Sorted Source Nodes: [conv, conv_1, mask, gated_mask, x_2], Original ATen: [aten.convolution, aten.leaky_relu, aten.sigmoid, aten.mul]
triton_poi_fused_convolution_leaky_relu_mul_sigmoid_4.run(buf9, buf18, primals_5, primals_9, buf19, 400, grid=grid(400), stream=stream0)
del primals_5
del primals_9
# Topologically Sorted Source Nodes: [norm_1, add_1, truediv_1], Original ATen: [aten.linalg_vector_norm, aten.add, aten.div]
buf21 = torch.ops.aten.set_.source_Tensor(primals_2, buf20)
assert_size_stride(buf21, (4, ), (1, ))
del buf1
del primals_2
# Topologically Sorted Source Nodes: [], Original ATen: []
buf24 = torch.ops.aten.set_.source_Tensor(primals_3, buf3)
assert_size_stride(buf24, (64, ), (1, ))
del buf4
del primals_3
# Topologically Sorted Source Nodes: [norm_3, add_3, truediv_4], Original ATen: [aten.linalg_vector_norm, aten.add, aten.div]
buf28 = torch.ops.aten.set_.source_Tensor(primals_6, buf27)
assert_size_stride(buf28, (4, ), (1, ))
del buf10
del primals_6
# Topologically Sorted Source Nodes: [], Original ATen: []
buf31 = torch.ops.aten.set_.source_Tensor(primals_7, buf12)
assert_size_stride(buf31, (64, ), (1, ))
del buf13
del primals_7
return (buf19, buf7, buf16, buf0, buf6, buf7, buf9, buf15, buf16, buf18, )
def benchmark_compiled_module(times=10, repeat=10):
from torch._dynamo.testing import rand_strided
from torch._inductor.utils import print_performance
primals_1 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32)
primals_2 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32)
primals_3 = rand_strided((64, ), (1, ), device='cuda:0', dtype=torch.float32)
primals_4 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32)
primals_5 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32)
primals_6 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32)
primals_7 = rand_strided((64, ), (1, ), device='cuda:0', dtype=torch.float32)
primals_8 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32)
primals_9 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32)
fn = lambda: call([primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7, primals_8, primals_9])
return print_performance(fn, times=times, repeat=repeat)
if __name__ == "__main__":
from torch._inductor.wrapper_benchmark import compiled_module_main
compiled_module_main('None', benchmark_compiled_module)
|
import torch
from torch._inductor.select_algorithm import extern_kernels
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
from torch._inductor.runtime.triton_helpers import libdevice
import torch.nn as nn
from torch.nn import Parameter
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
@triton.jit
def triton_poi_fused__unsafe_index_0(in_ptr0, out_ptr0, xnumel, XBLOCK: tl.
constexpr):
xnumel = 1024
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x1 = xindex // 8 % 8
x0 = xindex % 8
x2 = xindex // 64
x4 = xindex
tmp0 = x1
tmp1 = tmp0.to(tl.float32)
tmp2 = 0.5
tmp3 = tmp1 * tmp2
tmp4 = tmp3.to(tl.int32)
tmp5 = x0
tmp6 = tmp5.to(tl.float32)
tmp7 = tmp6 * tmp2
tmp8 = tmp7.to(tl.int32)
tmp9 = tl.load(in_ptr0 + (tmp8 + 4 * tmp4 + 16 * x2), xmask,
eviction_policy='evict_last')
tl.store(out_ptr0 + x4, tmp9, xmask)
@triton.jit
def triton_per_fused_add_div_linalg_vector_norm_1(in_ptr0, out_ptr1, xnumel,
rnumel, XBLOCK: tl.constexpr):
RBLOCK: tl.constexpr = 64
xoffset = tl.program_id(0) * XBLOCK
xoffset + tl.arange(0, XBLOCK)[:, None]
tl.full([XBLOCK, RBLOCK], True, tl.int1)
rindex = tl.arange(0, RBLOCK)[None, :]
tl.full([XBLOCK, RBLOCK], True, tl.int1)
r0 = rindex
tmp0 = tl.load(in_ptr0 + r0, None)
tmp1 = tmp0 * tmp0
tmp2 = tl.broadcast_to(tmp1, [XBLOCK, RBLOCK])
tmp4 = tl.sum(tmp2, 1)[:, None]
tmp5 = libdevice.sqrt(tmp4)
tmp6 = 1e-12
tmp7 = tmp5 + tmp6
tmp8 = tmp0 / tmp7
tl.store(out_ptr1 + tl.broadcast_to(r0, [XBLOCK, RBLOCK]), tmp8, None)
@triton.jit
def triton_per_fused_add_div_linalg_vector_norm_mul_sum_2(in_ptr0, out_ptr1,
out_ptr2, xnumel, rnumel, XBLOCK: tl.constexpr):
RBLOCK: tl.constexpr = 4
xoffset = tl.program_id(0) * XBLOCK
xoffset + tl.arange(0, XBLOCK)[:, None]
tl.full([XBLOCK, RBLOCK], True, tl.int1)
rindex = tl.arange(0, RBLOCK)[None, :]
tl.full([XBLOCK, RBLOCK], True, tl.int1)
r0 = rindex
tmp0 = tl.load(in_ptr0 + r0, None)
tmp1 = tmp0 * tmp0
tmp2 = tl.broadcast_to(tmp1, [XBLOCK, RBLOCK])
tmp4 = tl.sum(tmp2, 1)[:, None]
tmp5 = libdevice.sqrt(tmp4)
tmp6 = 1e-12
tmp7 = tmp5 + tmp6
tmp8 = tmp0 / tmp7
tmp9 = tmp8 * tmp0
tmp10 = tl.broadcast_to(tmp9, [XBLOCK, RBLOCK])
tmp12 = tl.sum(tmp10, 1)[:, None]
tl.store(out_ptr2 + tl.broadcast_to(r0, [XBLOCK, RBLOCK]), tmp8, None)
tl.store(out_ptr1 + tl.full([XBLOCK, 1], 0, tl.int32), tmp12, None)
@triton.jit
def triton_poi_fused_div_3(in_ptr0, in_ptr1, out_ptr0, xnumel, XBLOCK: tl.
constexpr):
xnumel = 256
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex
tmp0 = tl.load(in_ptr0 + x0, xmask)
tmp1 = tl.load(in_ptr1 + 0)
tmp2 = tl.broadcast_to(tmp1, [XBLOCK])
tmp3 = tmp0 / tmp2
tl.store(out_ptr0 + x0, tmp3, xmask)
@triton.jit
def triton_poi_fused_convolution_leaky_relu_mul_sigmoid_4(in_out_ptr0,
in_out_ptr1, in_ptr0, in_ptr1, out_ptr0, xnumel, XBLOCK: tl.constexpr):
xnumel = 400
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x3 = xindex
x1 = xindex // 25 % 4
tmp0 = tl.load(in_out_ptr0 + x3, xmask)
tmp1 = tl.load(in_ptr0 + x1, xmask, eviction_policy='evict_last')
tmp3 = tl.load(in_out_ptr1 + x3, xmask)
tmp4 = tl.load(in_ptr1 + x1, xmask, eviction_policy='evict_last')
tmp2 = tmp0 + tmp1
tmp5 = tmp3 + tmp4
tmp6 = 0.0
tmp7 = tmp2 > tmp6
tmp8 = 0.2
tmp9 = tmp2 * tmp8
tmp10 = tl.where(tmp7, tmp2, tmp9)
tmp11 = tl.sigmoid(tmp5)
tmp12 = tmp10 * tmp11
tl.store(in_out_ptr0 + x3, tmp2, xmask)
tl.store(in_out_ptr1 + x3, tmp5, xmask)
tl.store(out_ptr0 + x3, tmp12, xmask)
def call(args):
(primals_1, primals_2, primals_3, primals_4, primals_5, primals_6,
primals_7, primals_8, primals_9) = args
args.clear()
assert_size_stride(primals_1, (4, 4, 4, 4), (64, 16, 4, 1))
assert_size_stride(primals_2, (4,), (1,))
assert_size_stride(primals_3, (64,), (1,))
assert_size_stride(primals_4, (4, 4, 4, 4), (64, 16, 4, 1))
assert_size_stride(primals_5, (4,), (1,))
assert_size_stride(primals_6, (4,), (1,))
assert_size_stride(primals_7, (64,), (1,))
assert_size_stride(primals_8, (4, 4, 4, 4), (64, 16, 4, 1))
assert_size_stride(primals_9, (4,), (1,))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((4, 4, 8, 8), (256, 64, 8, 1), torch.float32)
get_raw_stream(0)
triton_poi_fused__unsafe_index_0[grid(1024)](primals_1, buf0, 1024,
XBLOCK=256, num_warps=4, num_stages=1)
del primals_1
buf1 = empty_strided_cuda((64, 1), (1, 1), torch.float32)
extern_kernels.mm(reinterpret_tensor(primals_4, (64, 4), (1, 64), 0
), reinterpret_tensor(primals_2, (4, 1), (1, 1), 0), out=buf1)
buf3 = empty_strided_cuda((64,), (1,), torch.float32)
triton_per_fused_add_div_linalg_vector_norm_1[grid(1)](buf1, buf3,
1, 64, XBLOCK=1, num_warps=2, num_stages=1)
buf4 = empty_strided_cuda((4, 1), (1, 1), torch.float32)
extern_kernels.mm(reinterpret_tensor(primals_4, (4, 64), (64, 1), 0
), reinterpret_tensor(buf3, (64, 1), (1, 0), 0), out=buf4)
buf6 = empty_strided_cuda((), (), torch.float32)
buf20 = empty_strided_cuda((4,), (1,), torch.float32)
triton_per_fused_add_div_linalg_vector_norm_mul_sum_2[grid(1)](buf4,
buf6, buf20, 1, 4, XBLOCK=1, num_warps=2, num_stages=1)
buf7 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32)
triton_poi_fused_div_3[grid(256)](primals_4, buf6, buf7, 256,
XBLOCK=128, num_warps=4, num_stages=1)
del primals_4
buf8 = extern_kernels.convolution(buf0, buf7, stride=(1, 1),
padding=(0, 0), dilation=(1, 1), transposed=False,
output_padding=(0, 0), groups=1, bias=None)
assert_size_stride(buf8, (4, 4, 5, 5), (100, 25, 5, 1))
buf10 = empty_strided_cuda((64, 1), (1, 1), torch.float32)
extern_kernels.mm(reinterpret_tensor(primals_8, (64, 4), (1, 64), 0
), reinterpret_tensor(primals_6, (4, 1), (1, 1), 0), out=buf10)
buf12 = empty_strided_cuda((64,), (1,), torch.float32)
triton_per_fused_add_div_linalg_vector_norm_1[grid(1)](buf10, buf12,
1, 64, XBLOCK=1, num_warps=2, num_stages=1)
buf13 = empty_strided_cuda((4, 1), (1, 1), torch.float32)
extern_kernels.mm(reinterpret_tensor(primals_8, (4, 64), (64, 1), 0
), reinterpret_tensor(buf12, (64, 1), (1, 0), 0), out=buf13)
buf15 = empty_strided_cuda((), (), torch.float32)
buf27 = empty_strided_cuda((4,), (1,), torch.float32)
triton_per_fused_add_div_linalg_vector_norm_mul_sum_2[grid(1)](buf13,
buf15, buf27, 1, 4, XBLOCK=1, num_warps=2, num_stages=1)
buf16 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32)
triton_poi_fused_div_3[grid(256)](primals_8, buf15, buf16, 256,
XBLOCK=128, num_warps=4, num_stages=1)
del primals_8
buf17 = extern_kernels.convolution(buf0, buf16, stride=(1, 1),
padding=(0, 0), dilation=(1, 1), transposed=False,
output_padding=(0, 0), groups=1, bias=None)
assert_size_stride(buf17, (4, 4, 5, 5), (100, 25, 5, 1))
buf9 = buf8
del buf8
buf18 = buf17
del buf17
buf19 = empty_strided_cuda((4, 4, 5, 5), (100, 25, 5, 1), torch.float32
)
triton_poi_fused_convolution_leaky_relu_mul_sigmoid_4[grid(400)](buf9,
buf18, primals_5, primals_9, buf19, 400, XBLOCK=128, num_warps=
4, num_stages=1)
del primals_5
del primals_9
buf21 = torch.ops.aten.set_.source_Tensor(primals_2, buf20)
assert_size_stride(buf21, (4,), (1,))
del buf1
del primals_2
buf24 = torch.ops.aten.set_.source_Tensor(primals_3, buf3)
assert_size_stride(buf24, (64,), (1,))
del buf4
del primals_3
buf28 = torch.ops.aten.set_.source_Tensor(primals_6, buf27)
assert_size_stride(buf28, (4,), (1,))
del buf10
del primals_6
buf31 = torch.ops.aten.set_.source_Tensor(primals_7, buf12)
assert_size_stride(buf31, (64,), (1,))
del buf13
del primals_7
return buf19, buf7, buf16, buf0, buf6, buf7, buf9, buf15, buf16, buf18
def l2normalize(v, eps=1e-12):
return v / (v.norm() + eps)
class SpectralNorm(nn.Module):
def __init__(self, module, name='weight', power_iterations=1):
super(SpectralNorm, self).__init__()
self.module = module
self.name = name
self.power_iterations = power_iterations
if not self._made_params():
self._make_params()
def _update_u_v(self):
u = getattr(self.module, self.name + '_u')
v = getattr(self.module, self.name + '_v')
w = getattr(self.module, self.name + '_bar')
height = w.data.shape[0]
for _ in range(self.power_iterations):
v.data = l2normalize(torch.mm(torch.t(w.view(height, -1).data),
u.data.view(-1, 1)).squeeze(1))
u.data = l2normalize(torch.mm(w.view(height, -1).data, v.data.
view(-1, 1)).squeeze(1))
sigma = u.data * w.view(height, -1).data.mm(v.data.view(-1, 1)
).squeeze(1)
sigma = sigma.sum()
setattr(self.module, self.name, w / sigma.expand_as(w))
def _made_params(self):
try:
getattr(self.module, self.name + '_u')
getattr(self.module, self.name + '_v')
getattr(self.module, self.name + '_bar')
return True
except AttributeError:
return False
def _make_params(self):
w = getattr(self.module, self.name)
height = w.data.shape[0]
width = w.view(height, -1).data.shape[1]
u = Parameter(w.data.new(height).normal_(0, 1), requires_grad=False)
v = Parameter(w.data.new(width).normal_(0, 1), requires_grad=False)
u.data = l2normalize(u.data)
v.data = l2normalize(v.data)
w_bar = Parameter(w.data)
del self.module._parameters[self.name]
self.module.register_parameter(self.name + '_u', u)
self.module.register_parameter(self.name + '_v', v)
self.module.register_parameter(self.name + '_bar', w_bar)
def forward(self, *args):
self._update_u_v()
return self.module.forward(*args)
class GatedConv2d(nn.Module):
def __init__(self, in_channels, out_channels, kernel_size, stride=1,
padding=0, dilation=1, activation='elu', sn=False):
super(GatedConv2d, self).__init__()
self.pad = nn.ZeroPad2d(padding)
if activation == 'relu':
self.activation = nn.ReLU(inplace=True)
elif activation == 'lrelu':
self.activation = nn.LeakyReLU(0.2, inplace=True)
elif activation == 'elu':
self.activation = nn.ELU()
elif activation == 'selu':
self.activation = nn.SELU(inplace=True)
elif activation == 'tanh':
self.activation = nn.Tanh()
elif activation == 'sigmoid':
self.activation = nn.Sigmoid()
elif activation == 'none':
self.activation = None
else:
assert 0, 'Unsupported activation: {}'.format(activation)
if sn:
self.conv2d = SpectralNorm(nn.Conv2d(in_channels, out_channels,
kernel_size, stride, padding=0, dilation=dilation))
self.mask_conv2d = SpectralNorm(nn.Conv2d(in_channels,
out_channels, kernel_size, stride, padding=0, dilation=
dilation))
else:
self.conv2d = nn.Conv2d(in_channels, out_channels, kernel_size,
stride, padding=0, dilation=dilation)
self.mask_conv2d = nn.Conv2d(in_channels, out_channels,
kernel_size, stride, padding=0, dilation=dilation)
self.sigmoid = torch.nn.Sigmoid()
def forward(self, x):
x = self.pad(x)
conv = self.conv2d(x)
if self.activation:
conv = self.activation(conv)
mask = self.mask_conv2d(x)
gated_mask = self.sigmoid(mask)
x = conv * gated_mask
return x
class TransposeGatedConv2dNew(nn.Module):
def __init__(self, in_channels, out_channels, kernel_size, stride=1,
padding=0, dilation=1, activation='lrelu', sn=True, scale_factor=2):
super(TransposeGatedConv2dNew, self).__init__()
self.scale_factor = scale_factor
self.gated_conv2d = GatedConv2d(in_channels, out_channels,
kernel_size, stride, padding, dilation, activation, sn)
def forward(self, input_0):
primals_2 = self.gated_conv2d.conv2d.module.bias
primals_5 = self.gated_conv2d.conv2d.module.weight_u
primals_3 = self.gated_conv2d.conv2d.module.weight_v
primals_1 = self.gated_conv2d.conv2d.module.weight_bar
primals_6 = self.gated_conv2d.mask_conv2d.module.bias
primals_9 = self.gated_conv2d.mask_conv2d.module.weight_u
primals_7 = self.gated_conv2d.mask_conv2d.module.weight_v
primals_4 = self.gated_conv2d.mask_conv2d.module.weight_bar
primals_8 = input_0
output = call([primals_1, primals_2, primals_3, primals_4,
primals_5, primals_6, primals_7, primals_8, primals_9])
return output[0]
|
delldu/DeepFillv2
|
TransposeGatedConv2d
| false | 6,565 |
[
"MIT"
] | 1 |
a564b9589c1b42bcdddd3d7601f4059c4594a439
|
https://github.com/delldu/DeepFillv2/tree/a564b9589c1b42bcdddd3d7601f4059c4594a439
|
ImageLinearAttention
|
# AOT ID: ['0_forward']
from ctypes import c_void_p, c_long, c_int
import torch
import math
import random
import os
import tempfile
from math import inf, nan
from torch._inductor.hooks import run_intermediate_hooks
from torch._inductor.utils import maybe_profile
from torch._inductor.codegen.memory_planning import _align as align
from torch import device, empty_strided
from torch._inductor.async_compile import AsyncCompile
from torch._inductor.select_algorithm import extern_kernels
from torch._inductor.codegen.multi_kernel import MultiKernelCall
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
aten = torch.ops.aten
inductor_ops = torch.ops.inductor
_quantized = torch.ops._quantized
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
alloc_from_pool = torch.ops.inductor._alloc_from_pool
async_compile = AsyncCompile()
# kernel path: runs/run_shard_1/inductor_cache/fb/cfbyh7temr2u5cam5txbekh4n77qsqs7bwxugnr6jx7oljt7yy43.py
# Unsorted Source Nodes: [], Original ATen: []
# Source node to ATen node mapping:
triton_poi_fused_0 = async_compile.triton('triton_poi_fused_0', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[16, 16], tile_hint=TileHint.SQUARE,
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=90, major=9, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=132), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_0', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 1, 'num_reduction': 0, 'backend_hash': 'B098E03CDA7B8ADC90DAFFDF24A2956451D1B13F297756A5DCC209498AA53705', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_0(in_ptr0, out_ptr0, ynumel, xnumel, YBLOCK : tl.constexpr, XBLOCK : tl.constexpr):
ynumel = 16
xnumel = 16
yoffset = tl.program_id(1) * YBLOCK
yindex = yoffset + tl.arange(0, YBLOCK)[None, :]
ymask = yindex < ynumel
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:, None]
xmask = xindex < xnumel
x2 = xindex
y3 = yindex
y0 = yindex % 4
y1 = (yindex // 4)
tmp0 = tl.load(in_ptr0 + (x2 + (16*y3)), xmask & ymask)
tl.store(out_ptr0 + (y0 + (4*x2) + (64*y1)), tmp0, xmask & ymask)
''', device_str='cuda')
# kernel path: runs/run_shard_1/inductor_cache/ui/cuin67jltyp2pqmjyuj7jk5xm32mnpns6lnsj6m7rj5penfpunzh.py
# Topologically Sorted Source Nodes: [k_3], Original ATen: [aten._softmax]
# Source node to ATen node mapping:
# k_3 => exp, sum_1
# Graph fragment:
# %mul_tensor_2 : [num_users=2] = call_function[target=torch.ops.aten.mul.Tensor](args = (%view_1, 1), kwargs = {})
# %amax_default_1 : [num_users=1] = call_function[target=torch.ops.aten.amax.default](args = (%mul_tensor_2, [2], True), kwargs = {})
# %sub_tensor_1 : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (%mul_tensor_2, %amax_default_1), kwargs = {})
# %mul_tensor_3 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%sub_tensor_1, 0.3535533905932738), kwargs = {})
# %exp : [num_users=2] = call_function[target=torch.ops.aten.exp.default](args = (%mul_tensor_3,), kwargs = {})
# %sum_1 : [num_users=1] = call_function[target=torch.ops.aten.sum.dim_IntList](args = (%exp, [2], True), kwargs = {})
triton_per_fused__softmax_1 = async_compile.triton('triton_per_fused__softmax_1', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.persistent_reduction(
size_hints=[512, 64],
reduction_hint=ReductionHint.INNER,
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: '*fp32', 4: 'i32', 5: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=90, major=9, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=132), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3, 4, 5), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_per_fused__softmax_1', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 2, 'backend_hash': 'B098E03CDA7B8ADC90DAFFDF24A2956451D1B13F297756A5DCC209498AA53705', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}
)
@triton.jit
def triton_per_fused__softmax_1(in_ptr0, in_ptr1, out_ptr0, out_ptr1, xnumel, rnumel, XBLOCK : tl.constexpr):
xnumel = 512
rnumel = 64
RBLOCK: tl.constexpr = 64
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:, None]
xmask = xindex < xnumel
rindex = tl.arange(0, RBLOCK)[None, :]
roffset = 0
rmask = tl.full([XBLOCK, RBLOCK], True, tl.int1)
r2 = rindex
x3 = xindex
x0 = xindex % 8
tmp0 = tl.load(in_ptr0 + (r2 + (64*x3)), xmask, other=0.0)
tmp1 = tl.load(in_ptr1 + (r2 + (64*x0)), xmask, eviction_policy='evict_last', other=0.0)
tmp2 = tmp0 + tmp1
tmp3 = 1.0
tmp4 = tmp2 * tmp3
tmp5 = tl.broadcast_to(tmp4, [XBLOCK, RBLOCK])
tmp7 = tl.where(xmask, tmp5, float("-inf"))
tmp8 = triton_helpers.max2(tmp7, 1)[:, None]
tmp9 = tmp4 - tmp8
tmp10 = 0.3535533905932738
tmp11 = tmp9 * tmp10
tmp12 = tl_math.exp(tmp11)
tmp13 = tl.broadcast_to(tmp12, [XBLOCK, RBLOCK])
tmp15 = tl.where(xmask, tmp13, 0)
tmp16 = tl.sum(tmp15, 1)[:, None]
tl.store(out_ptr0 + (x3), tmp8, xmask)
tl.store(out_ptr1 + (x3), tmp16, xmask)
''', device_str='cuda')
# kernel path: runs/run_shard_1/inductor_cache/e4/ce4rwceimtzgrkn6hryj7x2suuhmh2y5y7azzuzwme6dg6vorcfr.py
# Topologically Sorted Source Nodes: [k_3], Original ATen: [aten._softmax]
# Source node to ATen node mapping:
# k_3 => div, exp
# Graph fragment:
# %mul_tensor_2 : [num_users=2] = call_function[target=torch.ops.aten.mul.Tensor](args = (%view_1, 1), kwargs = {})
# %sub_tensor_1 : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (%mul_tensor_2, %amax_default_1), kwargs = {})
# %mul_tensor_3 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%sub_tensor_1, 0.3535533905932738), kwargs = {})
# %exp : [num_users=2] = call_function[target=torch.ops.aten.exp.default](args = (%mul_tensor_3,), kwargs = {})
# %div : [num_users=2] = call_function[target=torch.ops.aten.div.Tensor](args = (%exp, %sum_1), kwargs = {})
triton_poi_fused__softmax_2 = async_compile.triton('triton_poi_fused__softmax_2', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[32, 1024], tile_hint=TileHint.DEFAULT,
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: '*fp32', 4: '*fp32', 5: 'i32', 6: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=90, major=9, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=132), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3, 4, 5, 6), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused__softmax_2', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 4, 'num_reduction': 0, 'backend_hash': 'B098E03CDA7B8ADC90DAFFDF24A2956451D1B13F297756A5DCC209498AA53705', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused__softmax_2(in_ptr0, in_ptr1, in_ptr2, in_ptr3, out_ptr0, ynumel, xnumel, YBLOCK : tl.constexpr, XBLOCK : tl.constexpr):
ynumel = 32
xnumel = 1024
yoffset = tl.program_id(1) * YBLOCK
yindex = yoffset + tl.arange(0, YBLOCK)[None, :]
ymask = yindex < ynumel
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:, None]
xmask = xindex < xnumel
x2 = xindex % 16
x3 = (xindex // 16)
y0 = yindex % 8
y1 = (yindex // 8)
x4 = xindex
tmp0 = tl.load(in_ptr0 + (x3 + (64*y0) + (512*x2) + (8192*y1)), xmask & ymask, eviction_policy='evict_last')
tmp1 = tl.load(in_ptr1 + (x3 + (64*y0)), xmask & ymask, eviction_policy='evict_last')
tmp5 = tl.load(in_ptr2 + (y0 + (8*x2) + (128*y1)), xmask & ymask, eviction_policy='evict_last')
tmp10 = tl.load(in_ptr3 + (y0 + (8*x2) + (128*y1)), xmask & ymask, eviction_policy='evict_last')
tmp2 = tmp0 + tmp1
tmp3 = 1.0
tmp4 = tmp2 * tmp3
tmp6 = tmp4 - tmp5
tmp7 = 0.3535533905932738
tmp8 = tmp6 * tmp7
tmp9 = tl_math.exp(tmp8)
tmp11 = tmp9 / tmp10
tl.store(out_ptr0 + (y0 + (8*x4) + (8192*y1)), tmp11, xmask & ymask)
''', device_str='cuda')
# kernel path: runs/run_shard_1/inductor_cache/fl/cflyoqdqyoifdgzjzagxzvnxdpl2rmwlevx4kd65xgj7pgguu52i.py
# Topologically Sorted Source Nodes: [v], Original ATen: [aten.convolution]
# Source node to ATen node mapping:
# v => convolution_2
# Graph fragment:
# %convolution_2 : [num_users=1] = call_function[target=torch.ops.aten.convolution.default](args = (%primals_1, %primals_6, %primals_7, [1, 1], [0, 0], [1, 1], False, [0, 0], 1), kwargs = {})
triton_poi_fused_convolution_3 = async_compile.triton('triton_poi_fused_convolution_3', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[2048, 16], tile_hint=TileHint.DEFAULT,
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: 'i32', 4: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=90, major=9, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=132), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3, 4), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_convolution_3', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'B098E03CDA7B8ADC90DAFFDF24A2956451D1B13F297756A5DCC209498AA53705', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_convolution_3(in_ptr0, in_ptr1, out_ptr0, ynumel, xnumel, YBLOCK : tl.constexpr, XBLOCK : tl.constexpr):
ynumel = 2048
xnumel = 16
yoffset = tl.program_id(1) * YBLOCK
yindex = yoffset + tl.arange(0, YBLOCK)[None, :]
ymask = tl.full([XBLOCK, YBLOCK], True, tl.int1)
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:, None]
xmask = xindex < xnumel
x2 = xindex
y0 = yindex % 512
y1 = (yindex // 512)
y3 = yindex
tmp0 = tl.load(in_ptr0 + (y0 + (512*x2) + (8192*y1)), xmask, eviction_policy='evict_last')
tmp1 = tl.load(in_ptr1 + (y0), None, eviction_policy='evict_last')
tmp2 = tmp0 + tmp1
tl.store(out_ptr0 + (x2 + (16*y3)), tmp2, xmask)
''', device_str='cuda')
# kernel path: runs/run_shard_1/inductor_cache/xk/cxka5dpwif2jhpgq2o4djeic2tvlswcqq5ylysqhjtvdnur44oen.py
# Topologically Sorted Source Nodes: [context], Original ATen: [aten.bmm]
# Source node to ATen node mapping:
# context => bmm
# Graph fragment:
# %bmm : [num_users=1] = call_function[target=torch.ops.aten.bmm.default](args = (%view_3, %view_4), kwargs = {})
triton_poi_fused_bmm_4 = async_compile.triton('triton_poi_fused_bmm_4', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[32768],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=90, major=9, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=132), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_bmm_4', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 1, 'num_reduction': 0, 'backend_hash': 'B098E03CDA7B8ADC90DAFFDF24A2956451D1B13F297756A5DCC209498AA53705', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_bmm_4(in_ptr0, out_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 32768
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = tl.full([XBLOCK], True, tl.int1)
x0 = xindex % 32
x1 = (xindex // 32)
x2 = xindex
tmp0 = tl.load(in_ptr0 + ((8*x1) + (8192*(x0 // 8)) + (x0 % 8)), None)
tl.store(out_ptr0 + (x2), tmp0, None)
''', device_str='cuda')
# kernel path: runs/run_shard_1/inductor_cache/h7/ch7mni2ceg3yfpa65pszw6dduzxpoxwcqlucmwkevlvhaokh4nh4.py
# Topologically Sorted Source Nodes: [out_1], Original ATen: [aten.clone, aten._unsafe_view]
# Source node to ATen node mapping:
# out_1 => clone, view_11
# Graph fragment:
# %clone : [num_users=1] = call_function[target=torch.ops.aten.clone.default](args = (%view_10,), kwargs = {memory_format: torch.contiguous_format})
# %view_11 : [num_users=2] = call_function[target=torch.ops.aten.reshape.default](args = (%clone, [4, 512, 4, 4]), kwargs = {})
triton_poi_fused__unsafe_view_clone_5 = async_compile.triton('triton_poi_fused__unsafe_view_clone_5', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[2048, 16], tile_hint=TileHint.SQUARE,
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=90, major=9, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=132), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused__unsafe_view_clone_5', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 1, 'num_reduction': 0, 'backend_hash': 'B098E03CDA7B8ADC90DAFFDF24A2956451D1B13F297756A5DCC209498AA53705', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused__unsafe_view_clone_5(in_ptr0, out_ptr1, ynumel, xnumel, YBLOCK : tl.constexpr, XBLOCK : tl.constexpr):
ynumel = 2048
xnumel = 16
yoffset = tl.program_id(1) * YBLOCK
yindex = yoffset + tl.arange(0, YBLOCK)[None, :]
ymask = tl.full([XBLOCK, YBLOCK], True, tl.int1)
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:, None]
xmask = xindex < xnumel
x2 = xindex
y0 = yindex % 64
y1 = (yindex // 64)
y5 = yindex
y3 = yindex % 512
y4 = (yindex // 512)
tmp0 = tl.load(in_ptr0 + (y0 + (64*x2) + (1024*y1)), xmask, eviction_policy='evict_last')
tl.store(out_ptr1 + (y3 + (512*x2) + (8192*y4)), tmp0, xmask)
''', device_str='cuda')
# kernel path: runs/run_shard_1/inductor_cache/ak/cakqdtdgjrrn2wn6ok7glhc4cgech4lq2xoi2fg23uzsycnfeerj.py
# Topologically Sorted Source Nodes: [out_2], Original ATen: [aten.convolution]
# Source node to ATen node mapping:
# out_2 => convolution_3
# Graph fragment:
# %convolution_3 : [num_users=1] = call_function[target=torch.ops.aten.convolution.default](args = (%view_11, %primals_8, %primals_9, [1, 1], [0, 0], [1, 1], False, [0, 0], 1), kwargs = {})
triton_poi_fused_convolution_6 = async_compile.triton('triton_poi_fused_convolution_6', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[16, 16], tile_hint=TileHint.DEFAULT,
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: 'i32', 4: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=90, major=9, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=132), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3, 4), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_convolution_6', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'B098E03CDA7B8ADC90DAFFDF24A2956451D1B13F297756A5DCC209498AA53705', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_convolution_6(in_ptr0, in_ptr1, out_ptr0, ynumel, xnumel, YBLOCK : tl.constexpr, XBLOCK : tl.constexpr):
ynumel = 16
xnumel = 16
yoffset = tl.program_id(1) * YBLOCK
yindex = yoffset + tl.arange(0, YBLOCK)[None, :]
ymask = yindex < ynumel
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:, None]
xmask = xindex < xnumel
x2 = xindex
y0 = yindex % 4
y1 = (yindex // 4)
y3 = yindex
tmp0 = tl.load(in_ptr0 + (y0 + (4*x2) + (64*y1)), xmask & ymask)
tmp1 = tl.load(in_ptr1 + (y0), ymask, eviction_policy='evict_last')
tmp2 = tmp0 + tmp1
tl.store(out_ptr0 + (x2 + (16*y3)), tmp2, xmask & ymask)
''', device_str='cuda')
async_compile.wait(globals())
del async_compile
def call(args):
primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7, primals_8, primals_9 = args
args.clear()
assert_size_stride(primals_1, (4, 4, 4, 4), (64, 16, 4, 1))
assert_size_stride(primals_2, (512, 4, 1, 1), (4, 1, 1, 1))
assert_size_stride(primals_3, (512, ), (1, ))
assert_size_stride(primals_4, (512, 4, 1, 1), (4, 1, 1, 1))
assert_size_stride(primals_5, (512, ), (1, ))
assert_size_stride(primals_6, (512, 4, 1, 1), (4, 1, 1, 1))
assert_size_stride(primals_7, (512, ), (1, ))
assert_size_stride(primals_8, (4, 512, 1, 1), (512, 1, 1, 1))
assert_size_stride(primals_9, (4, ), (1, ))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((4, 4, 4, 4), (64, 1, 16, 4), torch.float32)
# Unsorted Source Nodes: [], Original ATen: []
stream0 = get_raw_stream(0)
triton_poi_fused_0.run(primals_1, buf0, 16, 16, grid=grid(16, 16), stream=stream0)
del primals_1
# Topologically Sorted Source Nodes: [q], Original ATen: [aten.convolution]
buf1 = extern_kernels.convolution(buf0, primals_2, stride=(1, 1), padding=(0, 0), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None)
assert_size_stride(buf1, (4, 512, 4, 4), (8192, 1, 2048, 512))
# Topologically Sorted Source Nodes: [k], Original ATen: [aten.convolution]
buf2 = extern_kernels.convolution(buf0, primals_4, stride=(1, 1), padding=(0, 0), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None)
assert_size_stride(buf2, (4, 512, 4, 4), (8192, 1, 2048, 512))
# Topologically Sorted Source Nodes: [v], Original ATen: [aten.convolution]
buf3 = extern_kernels.convolution(buf0, primals_6, stride=(1, 1), padding=(0, 0), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None)
assert_size_stride(buf3, (4, 512, 4, 4), (8192, 1, 2048, 512))
buf4 = empty_strided_cuda((4, 8, 1, 16), (128, 1, 512, 8), torch.float32)
buf5 = empty_strided_cuda((4, 8, 1, 16), (128, 1, 512, 8), torch.float32)
# Topologically Sorted Source Nodes: [k_3], Original ATen: [aten._softmax]
triton_per_fused__softmax_1.run(buf2, primals_5, buf4, buf5, 512, 64, grid=grid(512), stream=stream0)
buf6 = empty_strided_cuda((4, 8, 64, 16), (8192, 1, 128, 8), torch.float32)
# Topologically Sorted Source Nodes: [k_3], Original ATen: [aten._softmax]
triton_poi_fused__softmax_2.run(buf2, primals_5, buf4, buf5, buf6, 32, 1024, grid=grid(32, 1024), stream=stream0)
del primals_5
buf7 = buf5; del buf5 # reuse
buf8 = buf4; del buf4 # reuse
# Topologically Sorted Source Nodes: [q_3], Original ATen: [aten._softmax]
triton_per_fused__softmax_1.run(buf1, primals_3, buf7, buf8, 512, 64, grid=grid(512), stream=stream0)
buf9 = reinterpret_tensor(buf2, (4, 8, 64, 16), (8192, 1, 128, 8), 0); del buf2 # reuse
# Topologically Sorted Source Nodes: [q_3], Original ATen: [aten._softmax]
triton_poi_fused__softmax_2.run(buf1, primals_3, buf7, buf8, buf9, 32, 1024, grid=grid(32, 1024), stream=stream0)
del buf7
del buf8
del primals_3
buf10 = reinterpret_tensor(buf1, (4, 512, 4, 4), (8192, 16, 4, 1), 0); del buf1 # reuse
# Topologically Sorted Source Nodes: [v], Original ATen: [aten.convolution]
triton_poi_fused_convolution_3.run(buf3, primals_7, buf10, 2048, 16, grid=grid(2048, 16), stream=stream0)
del primals_7
buf11 = reinterpret_tensor(buf3, (32, 64, 16), (1, 512, 32), 0); del buf3 # reuse
# Topologically Sorted Source Nodes: [context], Original ATen: [aten.bmm]
triton_poi_fused_bmm_4.run(buf6, buf11, 32768, grid=grid(32768), stream=stream0)
buf12 = empty_strided_cuda((32, 64, 64), (4096, 64, 1), torch.float32)
# Topologically Sorted Source Nodes: [context], Original ATen: [aten.bmm]
extern_kernels.bmm(buf11, reinterpret_tensor(buf10, (32, 16, 64), (1024, 1, 16), 0), out=buf12)
buf13 = reinterpret_tensor(buf11, (32, 16, 64), (1, 32, 512), 0); del buf11 # reuse
# Topologically Sorted Source Nodes: [out], Original ATen: [aten.bmm]
triton_poi_fused_bmm_4.run(buf9, buf13, 32768, grid=grid(32768), stream=stream0)
buf14 = empty_strided_cuda((32, 16, 64), (1024, 64, 1), torch.float32)
# Topologically Sorted Source Nodes: [out], Original ATen: [aten.bmm]
extern_kernels.bmm(buf13, buf12, out=buf14)
buf16 = reinterpret_tensor(buf13, (4, 512, 4, 4), (8192, 1, 2048, 512), 0); del buf13 # reuse
# Topologically Sorted Source Nodes: [out_1], Original ATen: [aten.clone, aten._unsafe_view]
triton_poi_fused__unsafe_view_clone_5.run(buf14, buf16, 2048, 16, grid=grid(2048, 16), stream=stream0)
del buf14
# Topologically Sorted Source Nodes: [out_2], Original ATen: [aten.convolution]
buf17 = extern_kernels.convolution(buf16, primals_8, stride=(1, 1), padding=(0, 0), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None)
assert_size_stride(buf17, (4, 4, 4, 4), (64, 1, 16, 4))
buf18 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32)
# Topologically Sorted Source Nodes: [out_2], Original ATen: [aten.convolution]
triton_poi_fused_convolution_6.run(buf17, primals_9, buf18, 16, 16, grid=grid(16, 16), stream=stream0)
del buf17
del primals_9
return (buf18, buf0, primals_2, primals_4, primals_6, primals_8, buf6, buf9, buf16, reinterpret_tensor(buf12, (32, 64, 64), (4096, 1, 64), 0), reinterpret_tensor(buf10, (32, 64, 16), (1024, 16, 1), 0), )
def benchmark_compiled_module(times=10, repeat=10):
from torch._dynamo.testing import rand_strided
from torch._inductor.utils import print_performance
primals_1 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32)
primals_2 = rand_strided((512, 4, 1, 1), (4, 1, 1, 1), device='cuda:0', dtype=torch.float32)
primals_3 = rand_strided((512, ), (1, ), device='cuda:0', dtype=torch.float32)
primals_4 = rand_strided((512, 4, 1, 1), (4, 1, 1, 1), device='cuda:0', dtype=torch.float32)
primals_5 = rand_strided((512, ), (1, ), device='cuda:0', dtype=torch.float32)
primals_6 = rand_strided((512, 4, 1, 1), (4, 1, 1, 1), device='cuda:0', dtype=torch.float32)
primals_7 = rand_strided((512, ), (1, ), device='cuda:0', dtype=torch.float32)
primals_8 = rand_strided((4, 512, 1, 1), (512, 1, 1, 1), device='cuda:0', dtype=torch.float32)
primals_9 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32)
fn = lambda: call([primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7, primals_8, primals_9])
return print_performance(fn, times=times, repeat=repeat)
if __name__ == "__main__":
from torch._inductor.wrapper_benchmark import compiled_module_main
compiled_module_main('None', benchmark_compiled_module)
|
import torch
from torch._inductor.select_algorithm import extern_kernels
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
from torch._inductor.runtime import triton_helpers
from torch._inductor.runtime.triton_helpers import math as tl_math
import torch.nn as nn
import torch.utils.data
import torch.onnx.operators
import torch.optim
import torch.optim.lr_scheduler
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
@triton.jit
def triton_poi_fused_0(in_ptr0, out_ptr0, ynumel, xnumel, YBLOCK: tl.
constexpr, XBLOCK: tl.constexpr):
ynumel = 16
xnumel = 16
yoffset = tl.program_id(1) * YBLOCK
yindex = yoffset + tl.arange(0, YBLOCK)[None, :]
ymask = yindex < ynumel
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:, None]
xmask = xindex < xnumel
x2 = xindex
y3 = yindex
y0 = yindex % 4
y1 = yindex // 4
tmp0 = tl.load(in_ptr0 + (x2 + 16 * y3), xmask & ymask)
tl.store(out_ptr0 + (y0 + 4 * x2 + 64 * y1), tmp0, xmask & ymask)
@triton.jit
def triton_per_fused__softmax_1(in_ptr0, in_ptr1, out_ptr0, out_ptr1,
xnumel, rnumel, XBLOCK: tl.constexpr):
xnumel = 512
RBLOCK: tl.constexpr = 64
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:, None]
xmask = xindex < xnumel
rindex = tl.arange(0, RBLOCK)[None, :]
tl.full([XBLOCK, RBLOCK], True, tl.int1)
r2 = rindex
x3 = xindex
x0 = xindex % 8
tmp0 = tl.load(in_ptr0 + (r2 + 64 * x3), xmask, other=0.0)
tmp1 = tl.load(in_ptr1 + (r2 + 64 * x0), xmask, eviction_policy=
'evict_last', other=0.0)
tmp2 = tmp0 + tmp1
tmp3 = 1.0
tmp4 = tmp2 * tmp3
tmp5 = tl.broadcast_to(tmp4, [XBLOCK, RBLOCK])
tmp7 = tl.where(xmask, tmp5, float('-inf'))
tmp8 = triton_helpers.max2(tmp7, 1)[:, None]
tmp9 = tmp4 - tmp8
tmp10 = 0.3535533905932738
tmp11 = tmp9 * tmp10
tmp12 = tl_math.exp(tmp11)
tmp13 = tl.broadcast_to(tmp12, [XBLOCK, RBLOCK])
tmp15 = tl.where(xmask, tmp13, 0)
tmp16 = tl.sum(tmp15, 1)[:, None]
tl.store(out_ptr0 + x3, tmp8, xmask)
tl.store(out_ptr1 + x3, tmp16, xmask)
@triton.jit
def triton_poi_fused__softmax_2(in_ptr0, in_ptr1, in_ptr2, in_ptr3,
out_ptr0, ynumel, xnumel, YBLOCK: tl.constexpr, XBLOCK: tl.constexpr):
ynumel = 32
xnumel = 1024
yoffset = tl.program_id(1) * YBLOCK
yindex = yoffset + tl.arange(0, YBLOCK)[None, :]
ymask = yindex < ynumel
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:, None]
xmask = xindex < xnumel
x2 = xindex % 16
x3 = xindex // 16
y0 = yindex % 8
y1 = yindex // 8
x4 = xindex
tmp0 = tl.load(in_ptr0 + (x3 + 64 * y0 + 512 * x2 + 8192 * y1), xmask &
ymask, eviction_policy='evict_last')
tmp1 = tl.load(in_ptr1 + (x3 + 64 * y0), xmask & ymask, eviction_policy
='evict_last')
tmp5 = tl.load(in_ptr2 + (y0 + 8 * x2 + 128 * y1), xmask & ymask,
eviction_policy='evict_last')
tmp10 = tl.load(in_ptr3 + (y0 + 8 * x2 + 128 * y1), xmask & ymask,
eviction_policy='evict_last')
tmp2 = tmp0 + tmp1
tmp3 = 1.0
tmp4 = tmp2 * tmp3
tmp6 = tmp4 - tmp5
tmp7 = 0.3535533905932738
tmp8 = tmp6 * tmp7
tmp9 = tl_math.exp(tmp8)
tmp11 = tmp9 / tmp10
tl.store(out_ptr0 + (y0 + 8 * x4 + 8192 * y1), tmp11, xmask & ymask)
@triton.jit
def triton_poi_fused_convolution_3(in_ptr0, in_ptr1, out_ptr0, ynumel,
xnumel, YBLOCK: tl.constexpr, XBLOCK: tl.constexpr):
xnumel = 16
yoffset = tl.program_id(1) * YBLOCK
yindex = yoffset + tl.arange(0, YBLOCK)[None, :]
tl.full([XBLOCK, YBLOCK], True, tl.int1)
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:, None]
xmask = xindex < xnumel
x2 = xindex
y0 = yindex % 512
y1 = yindex // 512
y3 = yindex
tmp0 = tl.load(in_ptr0 + (y0 + 512 * x2 + 8192 * y1), xmask,
eviction_policy='evict_last')
tmp1 = tl.load(in_ptr1 + y0, None, eviction_policy='evict_last')
tmp2 = tmp0 + tmp1
tl.store(out_ptr0 + (x2 + 16 * y3), tmp2, xmask)
@triton.jit
def triton_poi_fused_bmm_4(in_ptr0, out_ptr0, xnumel, XBLOCK: tl.constexpr):
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
tl.full([XBLOCK], True, tl.int1)
x0 = xindex % 32
x1 = xindex // 32
x2 = xindex
tmp0 = tl.load(in_ptr0 + (8 * x1 + 8192 * (x0 // 8) + x0 % 8), None)
tl.store(out_ptr0 + x2, tmp0, None)
@triton.jit
def triton_poi_fused__unsafe_view_clone_5(in_ptr0, out_ptr1, ynumel, xnumel,
YBLOCK: tl.constexpr, XBLOCK: tl.constexpr):
xnumel = 16
yoffset = tl.program_id(1) * YBLOCK
yindex = yoffset + tl.arange(0, YBLOCK)[None, :]
tl.full([XBLOCK, YBLOCK], True, tl.int1)
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:, None]
xmask = xindex < xnumel
x2 = xindex
y0 = yindex % 64
y1 = yindex // 64
y3 = yindex % 512
y4 = yindex // 512
tmp0 = tl.load(in_ptr0 + (y0 + 64 * x2 + 1024 * y1), xmask,
eviction_policy='evict_last')
tl.store(out_ptr1 + (y3 + 512 * x2 + 8192 * y4), tmp0, xmask)
@triton.jit
def triton_poi_fused_convolution_6(in_ptr0, in_ptr1, out_ptr0, ynumel,
xnumel, YBLOCK: tl.constexpr, XBLOCK: tl.constexpr):
ynumel = 16
xnumel = 16
yoffset = tl.program_id(1) * YBLOCK
yindex = yoffset + tl.arange(0, YBLOCK)[None, :]
ymask = yindex < ynumel
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:, None]
xmask = xindex < xnumel
x2 = xindex
y0 = yindex % 4
y1 = yindex // 4
y3 = yindex
tmp0 = tl.load(in_ptr0 + (y0 + 4 * x2 + 64 * y1), xmask & ymask)
tmp1 = tl.load(in_ptr1 + y0, ymask, eviction_policy='evict_last')
tmp2 = tmp0 + tmp1
tl.store(out_ptr0 + (x2 + 16 * y3), tmp2, xmask & ymask)
def call(args):
(primals_1, primals_2, primals_3, primals_4, primals_5, primals_6,
primals_7, primals_8, primals_9) = args
args.clear()
assert_size_stride(primals_1, (4, 4, 4, 4), (64, 16, 4, 1))
assert_size_stride(primals_2, (512, 4, 1, 1), (4, 1, 1, 1))
assert_size_stride(primals_3, (512,), (1,))
assert_size_stride(primals_4, (512, 4, 1, 1), (4, 1, 1, 1))
assert_size_stride(primals_5, (512,), (1,))
assert_size_stride(primals_6, (512, 4, 1, 1), (4, 1, 1, 1))
assert_size_stride(primals_7, (512,), (1,))
assert_size_stride(primals_8, (4, 512, 1, 1), (512, 1, 1, 1))
assert_size_stride(primals_9, (4,), (1,))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((4, 4, 4, 4), (64, 1, 16, 4), torch.float32)
get_raw_stream(0)
triton_poi_fused_0[grid(16, 16)](primals_1, buf0, 16, 16, XBLOCK=16,
YBLOCK=16, num_warps=4, num_stages=1)
del primals_1
buf1 = extern_kernels.convolution(buf0, primals_2, stride=(1, 1),
padding=(0, 0), dilation=(1, 1), transposed=False,
output_padding=(0, 0), groups=1, bias=None)
assert_size_stride(buf1, (4, 512, 4, 4), (8192, 1, 2048, 512))
buf2 = extern_kernels.convolution(buf0, primals_4, stride=(1, 1),
padding=(0, 0), dilation=(1, 1), transposed=False,
output_padding=(0, 0), groups=1, bias=None)
assert_size_stride(buf2, (4, 512, 4, 4), (8192, 1, 2048, 512))
buf3 = extern_kernels.convolution(buf0, primals_6, stride=(1, 1),
padding=(0, 0), dilation=(1, 1), transposed=False,
output_padding=(0, 0), groups=1, bias=None)
assert_size_stride(buf3, (4, 512, 4, 4), (8192, 1, 2048, 512))
buf4 = empty_strided_cuda((4, 8, 1, 16), (128, 1, 512, 8), torch.
float32)
buf5 = empty_strided_cuda((4, 8, 1, 16), (128, 1, 512, 8), torch.
float32)
triton_per_fused__softmax_1[grid(512)](buf2, primals_5, buf4, buf5,
512, 64, XBLOCK=8, num_warps=4, num_stages=1)
buf6 = empty_strided_cuda((4, 8, 64, 16), (8192, 1, 128, 8), torch.
float32)
triton_poi_fused__softmax_2[grid(32, 1024)](buf2, primals_5, buf4,
buf5, buf6, 32, 1024, XBLOCK=256, YBLOCK=1, num_warps=4,
num_stages=1)
del primals_5
buf7 = buf5
del buf5
buf8 = buf4
del buf4
triton_per_fused__softmax_1[grid(512)](buf1, primals_3, buf7, buf8,
512, 64, XBLOCK=8, num_warps=4, num_stages=1)
buf9 = reinterpret_tensor(buf2, (4, 8, 64, 16), (8192, 1, 128, 8), 0)
del buf2
triton_poi_fused__softmax_2[grid(32, 1024)](buf1, primals_3, buf7,
buf8, buf9, 32, 1024, XBLOCK=256, YBLOCK=1, num_warps=4,
num_stages=1)
del buf7
del buf8
del primals_3
buf10 = reinterpret_tensor(buf1, (4, 512, 4, 4), (8192, 16, 4, 1), 0)
del buf1
triton_poi_fused_convolution_3[grid(2048, 16)](buf3, primals_7,
buf10, 2048, 16, XBLOCK=1, YBLOCK=256, num_warps=4, num_stages=1)
del primals_7
buf11 = reinterpret_tensor(buf3, (32, 64, 16), (1, 512, 32), 0)
del buf3
triton_poi_fused_bmm_4[grid(32768)](buf6, buf11, 32768, XBLOCK=256,
num_warps=4, num_stages=1)
buf12 = empty_strided_cuda((32, 64, 64), (4096, 64, 1), torch.float32)
extern_kernels.bmm(buf11, reinterpret_tensor(buf10, (32, 16, 64), (
1024, 1, 16), 0), out=buf12)
buf13 = reinterpret_tensor(buf11, (32, 16, 64), (1, 32, 512), 0)
del buf11
triton_poi_fused_bmm_4[grid(32768)](buf9, buf13, 32768, XBLOCK=256,
num_warps=4, num_stages=1)
buf14 = empty_strided_cuda((32, 16, 64), (1024, 64, 1), torch.float32)
extern_kernels.bmm(buf13, buf12, out=buf14)
buf16 = reinterpret_tensor(buf13, (4, 512, 4, 4), (8192, 1, 2048,
512), 0)
del buf13
triton_poi_fused__unsafe_view_clone_5[grid(2048, 16)](buf14, buf16,
2048, 16, XBLOCK=16, YBLOCK=64, num_warps=4, num_stages=1)
del buf14
buf17 = extern_kernels.convolution(buf16, primals_8, stride=(1, 1),
padding=(0, 0), dilation=(1, 1), transposed=False,
output_padding=(0, 0), groups=1, bias=None)
assert_size_stride(buf17, (4, 4, 4, 4), (64, 1, 16, 4))
buf18 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32)
triton_poi_fused_convolution_6[grid(16, 16)](buf17, primals_9,
buf18, 16, 16, XBLOCK=16, YBLOCK=16, num_warps=4, num_stages=1)
del buf17
del primals_9
return (buf18, buf0, primals_2, primals_4, primals_6, primals_8, buf6,
buf9, buf16, reinterpret_tensor(buf12, (32, 64, 64), (4096, 1, 64),
0), reinterpret_tensor(buf10, (32, 64, 16), (1024, 16, 1), 0))
class ImageLinearAttentionNew(nn.Module):
def __init__(self, chan, chan_out=None, kernel_size=1, padding=0,
stride=1, key_dim=64, value_dim=64, heads=8):
super().__init__()
self.chan = chan
chan_out = chan if chan_out is None else chan_out
self.key_dim = key_dim
self.value_dim = value_dim
self.heads = heads
conv_kwargs = {'padding': padding, 'stride': stride}
self.to_q = nn.Conv2d(chan, key_dim * heads, kernel_size, **conv_kwargs
)
self.to_k = nn.Conv2d(chan, key_dim * heads, kernel_size, **conv_kwargs
)
self.to_v = nn.Conv2d(chan, value_dim * heads, kernel_size, **
conv_kwargs)
out_conv_kwargs = {'padding': padding}
self.to_out = nn.Conv2d(value_dim * heads, chan_out, kernel_size,
**out_conv_kwargs)
def forward(self, input_0):
primals_2 = self.to_q.weight
primals_3 = self.to_q.bias
primals_4 = self.to_k.weight
primals_5 = self.to_k.bias
primals_6 = self.to_v.weight
primals_7 = self.to_v.bias
primals_8 = self.to_out.weight
primals_9 = self.to_out.bias
primals_1 = input_0
output = call([primals_1, primals_2, primals_3, primals_4,
primals_5, primals_6, primals_7, primals_8, primals_9])
return output[0]
|
CUMLSec/stateformer
|
ImageLinearAttention
| false | 7,916 |
[
"MIT"
] | 41 |
87cb3c906c43fcff42b2ca820eb6e7fd918d0a1c
|
https://github.com/CUMLSec/stateformer/tree/87cb3c906c43fcff42b2ca820eb6e7fd918d0a1c
|
CAModule
|
import torch
import torch.nn as nn
class CAModule(nn.Module):
"""
Re-implementation of Squeeze-and-Excitation (SE) block described in:
*Hu et al., Squeeze-and-Excitation Networks, arXiv:1709.01507*
code reference:
https://github.com/kobiso/CBAM-keras/blob/master/models/attention_module.py
"""
def __init__(self, num_channels, reduc_ratio=2):
super(CAModule, self).__init__()
self.num_channels = num_channels
self.reduc_ratio = reduc_ratio
self.fc1 = nn.Linear(num_channels, num_channels // reduc_ratio,
bias=True)
self.fc2 = nn.Linear(num_channels // reduc_ratio, num_channels,
bias=True)
self.relu = nn.ReLU()
self.sigmoid = nn.Sigmoid()
def forward(self, feat_map):
gap_out = feat_map.view(feat_map.size()[0], self.num_channels, -1
).mean(dim=2)
fc1_out = self.relu(self.fc1(gap_out))
fc2_out = self.sigmoid(self.fc2(fc1_out))
fc2_out = fc2_out.view(fc2_out.size()[0], fc2_out.size()[1], 1, 1)
feat_map = torch.mul(feat_map, fc2_out)
return feat_map
def get_inputs():
return [torch.rand([4, 4, 4, 4])]
def get_init_inputs():
return [[], {'num_channels': 4}]
|
import torch
from torch._inductor.select_algorithm import extern_kernels
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
from torch._inductor.runtime import triton_helpers
import torch.nn as nn
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
@triton.jit
def triton_per_fused_mean_0(in_out_ptr0, in_ptr0, xnumel, rnumel, XBLOCK:
tl.constexpr):
xnumel = 16
RBLOCK: tl.constexpr = 16
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:, None]
xmask = xindex < xnumel
rindex = tl.arange(0, RBLOCK)[None, :]
tl.full([XBLOCK, RBLOCK], True, tl.int1)
r1 = rindex
x0 = xindex
tmp0 = tl.load(in_ptr0 + (r1 + 16 * x0), xmask, other=0.0)
tmp1 = tl.broadcast_to(tmp0, [XBLOCK, RBLOCK])
tmp3 = tl.where(xmask, tmp1, 0)
tmp4 = tl.sum(tmp3, 1)[:, None]
tmp5 = 16.0
tmp6 = tmp4 / tmp5
tl.debug_barrier()
tl.store(in_out_ptr0 + x0, tmp6, xmask)
@triton.jit
def triton_poi_fused_relu_1(in_out_ptr0, in_ptr0, xnumel, XBLOCK: tl.constexpr
):
xnumel = 8
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x2 = xindex
x0 = xindex % 2
tmp0 = tl.load(in_out_ptr0 + x2, xmask)
tmp1 = tl.load(in_ptr0 + x0, xmask, eviction_policy='evict_last')
tmp2 = tmp0 + tmp1
tmp3 = tl.full([1], 0, tl.int32)
tmp4 = triton_helpers.maximum(tmp3, tmp2)
tl.store(in_out_ptr0 + x2, tmp4, xmask)
@triton.jit
def triton_poi_fused_mul_2(in_ptr0, in_ptr1, out_ptr0, xnumel, XBLOCK: tl.
constexpr):
xnumel = 256
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x2 = xindex
x1 = xindex // 16
tmp0 = tl.load(in_ptr0 + x2, xmask)
tmp1 = tl.load(in_ptr1 + x1, xmask, eviction_policy='evict_last')
tmp2 = tl.sigmoid(tmp1)
tmp3 = tmp0 * tmp2
tl.store(out_ptr0 + x2, tmp3, xmask)
def call(args):
primals_1, primals_2, primals_3, primals_4, primals_5 = args
args.clear()
assert_size_stride(primals_1, (4, 4, 4, 4), (64, 16, 4, 1))
assert_size_stride(primals_2, (2, 4), (4, 1))
assert_size_stride(primals_3, (2,), (1,))
assert_size_stride(primals_4, (4, 2), (2, 1))
assert_size_stride(primals_5, (4,), (1,))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((4, 4), (4, 1), torch.float32)
buf1 = buf0
del buf0
get_raw_stream(0)
triton_per_fused_mean_0[grid(16)](buf1, primals_1, 16, 16, XBLOCK=8,
num_warps=2, num_stages=1)
buf2 = empty_strided_cuda((4, 2), (2, 1), torch.float32)
extern_kernels.mm(buf1, reinterpret_tensor(primals_2, (4, 2), (1, 4
), 0), out=buf2)
del primals_2
buf3 = buf2
del buf2
triton_poi_fused_relu_1[grid(8)](buf3, primals_3, 8, XBLOCK=8,
num_warps=1, num_stages=1)
del primals_3
buf4 = empty_strided_cuda((4, 4), (4, 1), torch.float32)
extern_kernels.addmm(primals_5, buf3, reinterpret_tensor(primals_4,
(2, 4), (1, 2), 0), alpha=1, beta=1, out=buf4)
del primals_5
buf5 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32)
triton_poi_fused_mul_2[grid(256)](primals_1, buf4, buf5, 256,
XBLOCK=256, num_warps=4, num_stages=1)
return buf5, primals_1, buf1, buf3, buf4, primals_4
class CAModuleNew(nn.Module):
"""
Re-implementation of Squeeze-and-Excitation (SE) block described in:
*Hu et al., Squeeze-and-Excitation Networks, arXiv:1709.01507*
code reference:
https://github.com/kobiso/CBAM-keras/blob/master/models/attention_module.py
"""
def __init__(self, num_channels, reduc_ratio=2):
super(CAModuleNew, self).__init__()
self.num_channels = num_channels
self.reduc_ratio = reduc_ratio
self.fc1 = nn.Linear(num_channels, num_channels // reduc_ratio,
bias=True)
self.fc2 = nn.Linear(num_channels // reduc_ratio, num_channels,
bias=True)
self.relu = nn.ReLU()
self.sigmoid = nn.Sigmoid()
def forward(self, input_0):
primals_2 = self.fc1.weight
primals_3 = self.fc1.bias
primals_4 = self.fc2.weight
primals_5 = self.fc2.bias
primals_1 = input_0
output = call([primals_1, primals_2, primals_3, primals_4, primals_5])
return output[0]
|
C3-ASV-Team/torchxrayvision
|
CAModule
| false | 4,929 |
[
"Apache-2.0"
] | 1 |
7e53f0606986562f17a1ffd9f31d006756eff78d
|
https://github.com/C3-ASV-Team/torchxrayvision/tree/7e53f0606986562f17a1ffd9f31d006756eff78d
|
ScaledDotProductAttention
|
import torch
import torch.nn as nn
import torch.nn.functional as F
class ScaledDotProductAttention(nn.Module):
""" Scaled Dot-Product Attention """
def __init__(self, temperature, attn_dropout=0.1):
super().__init__()
self.temperature = temperature
self.dropout = nn.Dropout(attn_dropout)
self.softmax = nn.Softmax(dim=2)
def forward(self, q, k, v):
attn = torch.bmm(q, k.transpose(1, 2))
attn = attn / self.temperature
log_attn = F.log_softmax(attn, 2)
attn = self.softmax(attn)
attn = self.dropout(attn)
output = torch.bmm(attn, v)
return output, attn, log_attn
def get_inputs():
return [torch.rand([4, 4, 4]), torch.rand([4, 4, 4]), torch.rand([4, 4, 4])
]
def get_init_inputs():
return [[], {'temperature': 4}]
|
import torch
from torch._inductor.select_algorithm import extern_kernels
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
from torch._inductor.runtime import triton_helpers
from torch._inductor.runtime.triton_helpers import math as tl_math
import torch.nn as nn
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
@triton.jit
def triton_poi_fused__softmax_0(in_ptr0, out_ptr0, out_ptr1, xnumel, XBLOCK:
tl.constexpr):
xnumel = 64
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x2 = xindex
x1 = xindex // 4
tmp0 = tl.load(in_ptr0 + x2, xmask)
tmp3 = tl.load(in_ptr0 + 4 * x1, xmask, eviction_policy='evict_last')
tmp5 = tl.load(in_ptr0 + (1 + 4 * x1), xmask, eviction_policy='evict_last')
tmp8 = tl.load(in_ptr0 + (2 + 4 * x1), xmask, eviction_policy='evict_last')
tmp11 = tl.load(in_ptr0 + (3 + 4 * x1), xmask, eviction_policy='evict_last'
)
tmp1 = 1.0
tmp2 = tmp0 * tmp1
tmp4 = tmp3 * tmp1
tmp6 = tmp5 * tmp1
tmp7 = triton_helpers.maximum(tmp4, tmp6)
tmp9 = tmp8 * tmp1
tmp10 = triton_helpers.maximum(tmp7, tmp9)
tmp12 = tmp11 * tmp1
tmp13 = triton_helpers.maximum(tmp10, tmp12)
tmp14 = tmp2 - tmp13
tmp15 = 0.25
tmp16 = tmp14 * tmp15
tmp17 = tl_math.exp(tmp16)
tl.store(out_ptr0 + x2, tmp17, xmask)
tl.store(out_ptr1 + x2, tmp16, xmask)
@triton.jit
def triton_poi_fused__softmax_1(in_ptr0, out_ptr0, xnumel, XBLOCK: tl.constexpr
):
xnumel = 64
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x2 = xindex
x1 = xindex // 4
tmp0 = tl.load(in_ptr0 + x2, xmask)
tmp1 = tl.load(in_ptr0 + 4 * x1, xmask, eviction_policy='evict_last')
tmp2 = tl.load(in_ptr0 + (1 + 4 * x1), xmask, eviction_policy='evict_last')
tmp4 = tl.load(in_ptr0 + (2 + 4 * x1), xmask, eviction_policy='evict_last')
tmp6 = tl.load(in_ptr0 + (3 + 4 * x1), xmask, eviction_policy='evict_last')
tmp3 = tmp1 + tmp2
tmp5 = tmp3 + tmp4
tmp7 = tmp5 + tmp6
tmp8 = tmp0 / tmp7
tl.store(out_ptr0 + x2, tmp8, xmask)
@triton.jit
def triton_poi_fused__log_softmax_2(in_ptr0, out_ptr0, xnumel, XBLOCK: tl.
constexpr):
xnumel = 64
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x2 = xindex
x1 = xindex // 4
tmp0 = tl.load(in_ptr0 + x2, xmask)
tmp1 = tl.load(in_ptr0 + 4 * x1, xmask, eviction_policy='evict_last')
tmp3 = tl.load(in_ptr0 + (1 + 4 * x1), xmask, eviction_policy='evict_last')
tmp6 = tl.load(in_ptr0 + (2 + 4 * x1), xmask, eviction_policy='evict_last')
tmp9 = tl.load(in_ptr0 + (3 + 4 * x1), xmask, eviction_policy='evict_last')
tmp2 = tl_math.exp(tmp1)
tmp4 = tl_math.exp(tmp3)
tmp5 = tmp2 + tmp4
tmp7 = tl_math.exp(tmp6)
tmp8 = tmp5 + tmp7
tmp10 = tl_math.exp(tmp9)
tmp11 = tmp8 + tmp10
tmp12 = tl_math.log(tmp11)
tmp13 = tmp0 - tmp12
tl.store(out_ptr0 + x2, tmp13, xmask)
def call(args):
arg0_1, arg1_1, arg2_1 = args
args.clear()
assert_size_stride(arg0_1, (4, 4, 4), (16, 4, 1))
assert_size_stride(arg1_1, (4, 4, 4), (16, 4, 1))
assert_size_stride(arg2_1, (4, 4, 4), (16, 4, 1))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((4, 4, 4), (16, 4, 1), torch.float32)
extern_kernels.bmm(arg1_1, reinterpret_tensor(arg0_1, (4, 4, 4), (
16, 1, 4), 0), out=buf0)
del arg0_1
del arg1_1
buf1 = empty_strided_cuda((4, 4, 4), (16, 4, 1), torch.float32)
buf4 = empty_strided_cuda((4, 4, 4), (16, 4, 1), torch.float32)
get_raw_stream(0)
triton_poi_fused__softmax_0[grid(64)](buf0, buf1, buf4, 64, XBLOCK=
64, num_warps=1, num_stages=1)
buf2 = buf0
del buf0
triton_poi_fused__softmax_1[grid(64)](buf1, buf2, 64, XBLOCK=64,
num_warps=1, num_stages=1)
buf3 = buf1
del buf1
extern_kernels.bmm(buf2, arg2_1, out=buf3)
del arg2_1
buf5 = empty_strided_cuda((4, 4, 4), (16, 4, 1), torch.float32)
triton_poi_fused__log_softmax_2[grid(64)](buf4, buf5, 64, XBLOCK=64,
num_warps=1, num_stages=1)
del buf4
return buf3, buf2, buf5
class ScaledDotProductAttentionNew(nn.Module):
""" Scaled Dot-Product Attention """
def __init__(self, temperature, attn_dropout=0.1):
super().__init__()
self.temperature = temperature
self.dropout = nn.Dropout(attn_dropout)
self.softmax = nn.Softmax(dim=2)
def forward(self, input_0, input_1, input_2):
arg0_1 = input_0
arg1_1 = input_1
arg2_1 = input_2
output = call([arg0_1, arg1_1, arg2_1])
return output[0], output[1], output[2]
|
RuaBQ/FEAT
|
ScaledDotProductAttention
| false | 2,823 |
[
"MIT"
] | 0 |
e46f56b03f8ef820d549cb385600a12bdf224de9
|
https://github.com/RuaBQ/FEAT/tree/e46f56b03f8ef820d549cb385600a12bdf224de9
|
FocalLoss
|
# AOT ID: ['0_inference']
from ctypes import c_void_p, c_long, c_int
import torch
import math
import random
import os
import tempfile
from math import inf, nan
from torch._inductor.hooks import run_intermediate_hooks
from torch._inductor.utils import maybe_profile
from torch._inductor.codegen.memory_planning import _align as align
from torch import device, empty_strided
from torch._inductor.async_compile import AsyncCompile
from torch._inductor.select_algorithm import extern_kernels
from torch._inductor.codegen.multi_kernel import MultiKernelCall
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
aten = torch.ops.aten
inductor_ops = torch.ops.inductor
_quantized = torch.ops._quantized
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
alloc_from_pool = torch.ops.inductor._alloc_from_pool
async_compile = AsyncCompile()
# kernel path: runs/run_shard_7/inductor_cache/tj/ctjenrmpmnfu2d3pk5t7qu4ih2v4kysuba4mugrps3thgibhpgig.py
# Topologically Sorted Source Nodes: [binary_cross_entropy_with_logits, mul_2, sub_2, mul_3, add_1, pred_sigmoid, sub, mul, sub_1, mul_1, pt, pow_1, focal_weight, loss, loss_1, loss_cls], Original ATen: [aten.binary_cross_entropy_with_logits, aten.mul, aten.rsub, aten.add, aten.sigmoid, aten.pow, aten.mean]
# Source node to ATen node mapping:
# add_1 => add_1
# binary_cross_entropy_with_logits => abs_1, exp, full_default, log1p, minimum, mul_5, neg, sub_3, sub_4, sub_5
# focal_weight => mul_4
# loss => mul_6
# loss_1 => mean
# loss_cls => mul_7
# mul => mul
# mul_1 => mul_1
# mul_2 => mul_2
# mul_3 => mul_3
# pow_1 => pow_1
# pred_sigmoid => sigmoid
# pt => add
# sub => sub
# sub_1 => sub_1
# sub_2 => sub_2
# Graph fragment:
# %sub_3 : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (1, %arg1_1), kwargs = {})
# %mul_5 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%sub_3, %arg0_1), kwargs = {})
# %full_default : [num_users=1] = call_function[target=torch.ops.aten.full.default](args = ([], 0), kwargs = {dtype: torch.float32, layout: torch.strided, device: cuda:0, pin_memory: False})
# %minimum : [num_users=1] = call_function[target=torch.ops.aten.minimum.default](args = (%full_default, %arg0_1), kwargs = {})
# %abs_1 : [num_users=1] = call_function[target=torch.ops.aten.abs.default](args = (%arg0_1,), kwargs = {})
# %neg : [num_users=1] = call_function[target=torch.ops.aten.neg.default](args = (%abs_1,), kwargs = {})
# %exp : [num_users=1] = call_function[target=torch.ops.aten.exp.default](args = (%neg,), kwargs = {})
# %log1p : [num_users=1] = call_function[target=torch.ops.aten.log1p.default](args = (%exp,), kwargs = {})
# %sub_4 : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (%minimum, %log1p), kwargs = {})
# %sub_5 : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (%mul_5, %sub_4), kwargs = {})
# %mul_2 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%arg1_1, 0.25), kwargs = {})
# %sub_2 : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (1, %arg1_1), kwargs = {})
# %mul_3 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%sub_2, 0.75), kwargs = {})
# %add_1 : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%mul_2, %mul_3), kwargs = {})
# %sigmoid : [num_users=2] = call_function[target=torch.ops.aten.sigmoid.default](args = (%arg0_1,), kwargs = {})
# %sub : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (1, %sigmoid), kwargs = {})
# %mul : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%sub, %arg1_1), kwargs = {})
# %sub_1 : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (1, %arg1_1), kwargs = {})
# %mul_1 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%sigmoid, %sub_1), kwargs = {})
# %add : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%mul, %mul_1), kwargs = {})
# %pow_1 : [num_users=1] = call_function[target=torch.ops.aten.pow.Tensor_Scalar](args = (%add, 2.0), kwargs = {})
# %mul_4 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%add_1, %pow_1), kwargs = {})
# %mul_6 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%sub_5, %mul_4), kwargs = {})
# %mean : [num_users=1] = call_function[target=torch.ops.aten.mean.default](args = (%mul_6,), kwargs = {})
# %mul_7 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%mean, 1.0), kwargs = {})
triton_per_fused_add_binary_cross_entropy_with_logits_mean_mul_pow_rsub_sigmoid_0 = async_compile.triton('triton_per_fused_add_binary_cross_entropy_with_logits_mean_mul_pow_rsub_sigmoid_0', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.persistent_reduction(
size_hints=[1, 256],
reduction_hint=ReductionHint.INNER,
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: 'i32', 4: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {3: 1}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 4), equal_to_1=(3,))]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_per_fused_add_binary_cross_entropy_with_logits_mean_mul_pow_rsub_sigmoid_0', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': True, 'num_load': 2, 'num_reduction': 1, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}
)
@triton.jit
def triton_per_fused_add_binary_cross_entropy_with_logits_mean_mul_pow_rsub_sigmoid_0(in_out_ptr0, in_ptr0, in_ptr1, xnumel, rnumel):
xnumel = 1
XBLOCK: tl.constexpr = 1
rnumel = 256
RBLOCK: tl.constexpr = 256
xoffset = tl.program_id(0) * XBLOCK
xindex = tl.full([1], xoffset, tl.int32)
xmask = tl.full([RBLOCK], True, tl.int1)
rindex = tl.arange(0, RBLOCK)[:]
roffset = 0
rmask = tl.full([RBLOCK], True, tl.int1)
r0 = rindex
tmp0 = tl.load(in_ptr0 + (r0), None)
tmp3 = tl.load(in_ptr1 + (r0), None)
tmp1 = 1.0
tmp2 = tmp1 - tmp0
tmp4 = tmp2 * tmp3
tmp5 = 0.0
tmp6 = triton_helpers.minimum(tmp5, tmp3)
tmp7 = tl_math.abs(tmp3)
tmp8 = -tmp7
tmp9 = tl_math.exp(tmp8)
tmp10 = libdevice.log1p(tmp9)
tmp11 = tmp6 - tmp10
tmp12 = tmp4 - tmp11
tmp13 = 0.25
tmp14 = tmp0 * tmp13
tmp15 = 0.75
tmp16 = tmp2 * tmp15
tmp17 = tmp14 + tmp16
tmp18 = tl.sigmoid(tmp3)
tmp19 = tmp1 - tmp18
tmp20 = tmp19 * tmp0
tmp21 = tmp18 * tmp2
tmp22 = tmp20 + tmp21
tmp23 = tmp22 * tmp22
tmp24 = tmp17 * tmp23
tmp25 = tmp12 * tmp24
tmp26 = tl.broadcast_to(tmp25, [RBLOCK])
tmp28 = triton_helpers.promote_to_tensor(tl.sum(tmp26, 0))
tmp29 = 256.0
tmp30 = tmp28 / tmp29
tmp31 = tmp30 * tmp1
tl.debug_barrier()
tl.store(in_out_ptr0 + (tl.full([1], 0, tl.int32)), tmp31, None)
''', device_str='cuda')
async_compile.wait(globals())
del async_compile
def call(args):
arg0_1, arg1_1 = args
args.clear()
assert_size_stride(arg0_1, (4, 4, 4, 4), (64, 16, 4, 1))
assert_size_stride(arg1_1, (4, 4, 4, 4), (64, 16, 4, 1))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((), (), torch.float32)
buf1 = buf0; del buf0 # reuse
# Topologically Sorted Source Nodes: [binary_cross_entropy_with_logits, mul_2, sub_2, mul_3, add_1, pred_sigmoid, sub, mul, sub_1, mul_1, pt, pow_1, focal_weight, loss, loss_1, loss_cls], Original ATen: [aten.binary_cross_entropy_with_logits, aten.mul, aten.rsub, aten.add, aten.sigmoid, aten.pow, aten.mean]
stream0 = get_raw_stream(0)
triton_per_fused_add_binary_cross_entropy_with_logits_mean_mul_pow_rsub_sigmoid_0.run(buf1, arg1_1, arg0_1, 1, 256, grid=grid(1), stream=stream0)
del arg0_1
del arg1_1
return (buf1, )
def benchmark_compiled_module(times=10, repeat=10):
from torch._dynamo.testing import rand_strided
from torch._inductor.utils import print_performance
arg0_1 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32)
arg1_1 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32)
fn = lambda: call([arg0_1, arg1_1])
return print_performance(fn, times=times, repeat=repeat)
if __name__ == "__main__":
from torch._inductor.wrapper_benchmark import compiled_module_main
compiled_module_main('None', benchmark_compiled_module)
|
import torch
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
from torch._inductor.runtime import triton_helpers
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch import Tensor
import torch.nn as nn
from typing import Optional
from typing import Union
import torch.nn.functional as F
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
@triton.jit
def triton_per_fused_add_binary_cross_entropy_with_logits_mean_mul_pow_rsub_sigmoid_0(
in_out_ptr0, in_ptr0, in_ptr1, xnumel, rnumel):
XBLOCK: tl.constexpr = 1
RBLOCK: tl.constexpr = 256
xoffset = tl.program_id(0) * XBLOCK
tl.full([1], xoffset, tl.int32)
tl.full([RBLOCK], True, tl.int1)
rindex = tl.arange(0, RBLOCK)[:]
tl.full([RBLOCK], True, tl.int1)
r0 = rindex
tmp0 = tl.load(in_ptr0 + r0, None)
tmp3 = tl.load(in_ptr1 + r0, None)
tmp1 = 1.0
tmp2 = tmp1 - tmp0
tmp4 = tmp2 * tmp3
tmp5 = 0.0
tmp6 = triton_helpers.minimum(tmp5, tmp3)
tmp7 = tl_math.abs(tmp3)
tmp8 = -tmp7
tmp9 = tl_math.exp(tmp8)
tmp10 = libdevice.log1p(tmp9)
tmp11 = tmp6 - tmp10
tmp12 = tmp4 - tmp11
tmp13 = 0.25
tmp14 = tmp0 * tmp13
tmp15 = 0.75
tmp16 = tmp2 * tmp15
tmp17 = tmp14 + tmp16
tmp18 = tl.sigmoid(tmp3)
tmp19 = tmp1 - tmp18
tmp20 = tmp19 * tmp0
tmp21 = tmp18 * tmp2
tmp22 = tmp20 + tmp21
tmp23 = tmp22 * tmp22
tmp24 = tmp17 * tmp23
tmp25 = tmp12 * tmp24
tmp26 = tl.broadcast_to(tmp25, [RBLOCK])
tmp28 = triton_helpers.promote_to_tensor(tl.sum(tmp26, 0))
tmp29 = 256.0
tmp30 = tmp28 / tmp29
tmp31 = tmp30 * tmp1
tl.debug_barrier()
tl.store(in_out_ptr0 + tl.full([1], 0, tl.int32), tmp31, None)
def call(args):
arg0_1, arg1_1 = args
args.clear()
assert_size_stride(arg0_1, (4, 4, 4, 4), (64, 16, 4, 1))
assert_size_stride(arg1_1, (4, 4, 4, 4), (64, 16, 4, 1))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((), (), torch.float32)
buf1 = buf0
del buf0
get_raw_stream(0)
triton_per_fused_add_binary_cross_entropy_with_logits_mean_mul_pow_rsub_sigmoid_0[
grid(1)](buf1, arg1_1, arg0_1, 1, 256, num_warps=2, num_stages=1)
del arg0_1
del arg1_1
return buf1,
def reduce_loss(loss, reduction):
"""Reduce loss as specified.
Args:
loss (Tensor): Elementwise loss tensor.
reduction (str): Options are "none", "mean" and "sum".
Return:
Tensor: Reduced loss tensor.
"""
reduction_enum = F._Reduction.get_enum(reduction)
if reduction_enum == 0:
return loss
elif reduction_enum == 1:
return loss.mean()
elif reduction_enum == 2:
return loss.sum()
def weight_reduce_loss(loss, weight=None, reduction='mean', avg_factor=None):
"""Apply element-wise weight and reduce loss.
Args:
loss (Tensor): Element-wise loss.
weight (Tensor): Element-wise weights.
reduction (str): Same as built-in losses of PyTorch.
avg_factor (float): Average factor when computing the mean of losses.
Returns:
Tensor: Processed loss values.
"""
if weight is not None:
loss = loss * weight
if avg_factor is None:
loss = reduce_loss(loss, reduction)
elif reduction == 'mean':
loss = loss.sum() / avg_factor
elif reduction != 'none':
raise ValueError('avg_factor can not be used with reduction="sum"')
return loss
def sigmoid_focal_loss(pred: 'Tensor', target: 'Tensor', weight:
'Optional[Tensor]'=None, gamma: 'float'=2.0, alpha:
'Union[float, Tensor]'=0.25, reduction: 'str'='mean', avg_factor:
'Optional[float]'=None) ->Tensor:
"""Sigmoid focal loss.
Args:
pred: The prediction with shape (N, \\*).
target: The ground truth label of the prediction with
shape (N, \\*).
weight: Sample-wise loss weight with shape
(N, ). Defaults to None.
gamma: The gamma for calculating the modulating factor.
Defaults to 2.0.
alpha: A balanced form for Focal Loss. If it is a float, then a global balanced form is applied.
If it is Tensor with shape (N, \\*) or any shape that are broadcast-compatible with `pred`.
reduction: The method used to reduce the loss.
Options are "none", "mean" and "sum". If reduction is 'none' ,
loss is same shape as pred and label. Defaults to 'mean'.
avg_factor: Average factor that is used to average
the loss. Defaults to None.
Returns:
Loss.
"""
assert pred.shape == target.shape, 'pred and target should be in the same shape.'
pred_sigmoid = pred.sigmoid()
target = target.type_as(pred)
pt = (1 - pred_sigmoid) * target + pred_sigmoid * (1 - target)
focal_weight = (alpha * target + (1 - alpha) * (1 - target)) * pt.pow(gamma
)
loss = F.binary_cross_entropy_with_logits(pred, target, reduction='none'
) * focal_weight
if weight is not None:
assert weight.dim() == 1
weight = weight.float()
if pred.dim() > 1:
weight = weight.reshape(-1, 1)
loss = weight_reduce_loss(loss, weight, reduction, avg_factor)
return loss
class FocalLossNew(nn.Module):
"""Focal loss.
Args:
gamma (float): Focusing parameter in focal loss.
Defaults to 2.0.
alpha (float): The parameter in balanced form of focal
loss. Defaults to 0.25.
reduction (str): The method used to reduce the loss into
a scalar. Options are "none" and "mean". Defaults to 'mean'.
loss_weight (float): Weight of loss. Defaults to 1.0.
"""
def __init__(self, gamma=2.0, alpha=0.25, reduction='mean', loss_weight=1.0
):
super(FocalLossNew, self).__init__()
self.gamma = gamma
self.alpha = alpha
self.reduction = reduction
self.loss_weight = loss_weight
def forward(self, input_0, input_1):
arg0_1 = input_0
arg1_1 = input_1
output = call([arg0_1, arg1_1])
return output[0]
|
CAMP-eXplain-AI/imba-explain
|
FocalLoss
| false | 2,040 |
[
"MIT"
] | 0 |
e41b4ca5de63955cb0e925aad9599f38c5a3e973
|
https://github.com/CAMP-eXplain-AI/imba-explain/tree/e41b4ca5de63955cb0e925aad9599f38c5a3e973
|
CNN_MNIST
|
import torch
import torch.nn as nn
import torch.nn.functional as F
class CNN_MNIST(nn.Module):
def __init__(self, num_channels, num_classes):
super(CNN_MNIST, self).__init__()
self.conv1 = nn.Conv2d(num_channels, 32, 3, stride=1, padding=0)
self.conv2 = nn.Conv2d(32, 64, 3, stride=1, padding=0)
self.conv3 = nn.Conv2d(64, 64, 3, stride=1, padding=0)
self.pool1 = nn.MaxPool2d(2)
self.pool2 = nn.MaxPool2d(2)
self.fc1 = nn.Linear(3 * 3 * 64, 64, bias=True)
self.fc2 = nn.Linear(64, num_classes)
def forward(self, X):
x = F.relu(self.conv1(X))
x = self.pool1(x)
x = F.relu(self.conv2(x))
x = self.pool2(x)
x = F.relu(self.conv3(x))
x = x.reshape(-1, 3 * 3 * 64)
x = F.relu(self.fc1(x))
x = self.fc2(x)
return x
def get_inputs():
return [torch.rand([4, 4, 64, 64])]
def get_init_inputs():
return [[], {'num_channels': 4, 'num_classes': 4}]
|
import torch
from torch._inductor.select_algorithm import extern_kernels
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
from torch._inductor.runtime import triton_helpers
import torch.nn as nn
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
@triton.jit
def triton_poi_fused_convolution_relu_0(in_ptr0, in_ptr1, out_ptr0, xnumel,
XBLOCK: tl.constexpr):
xnumel = 492032
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x3 = xindex
x1 = xindex // 3844 % 32
x0 = xindex % 3844
x4 = xindex // 3844
tmp0 = tl.load(in_ptr0 + x3, xmask)
tmp1 = tl.load(in_ptr1 + x1, xmask, eviction_policy='evict_last')
tmp2 = tmp0 + tmp1
tmp3 = tl.full([1], 0, tl.int32)
tmp4 = triton_helpers.maximum(tmp3, tmp2)
tl.store(out_ptr0 + (x0 + 3872 * x4), tmp4, xmask)
@triton.jit
def triton_poi_fused_max_pool2d_with_indices_1(in_ptr0, out_ptr0, out_ptr1,
xnumel, XBLOCK: tl.constexpr):
xnumel = 123008
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex % 31
x1 = xindex // 31 % 31
x2 = xindex // 961
x5 = xindex
x4 = xindex // 30752
x6 = xindex % 30752
tmp0 = tl.load(in_ptr0 + (2 * x0 + 124 * x1 + 3872 * x2), xmask,
eviction_policy='evict_last')
tmp1 = tl.load(in_ptr0 + (1 + 2 * x0 + 124 * x1 + 3872 * x2), xmask,
eviction_policy='evict_last')
tmp3 = tl.load(in_ptr0 + (62 + 2 * x0 + 124 * x1 + 3872 * x2), xmask,
eviction_policy='evict_last')
tmp5 = tl.load(in_ptr0 + (63 + 2 * x0 + 124 * x1 + 3872 * x2), xmask,
eviction_policy='evict_last')
tmp2 = triton_helpers.maximum(tmp1, tmp0)
tmp4 = triton_helpers.maximum(tmp3, tmp2)
tmp6 = triton_helpers.maximum(tmp5, tmp4)
tmp7 = tmp1 > tmp0
tmp8 = tl.full([1], 1, tl.int8)
tmp9 = tl.full([1], 0, tl.int8)
tmp10 = tl.where(tmp7, tmp8, tmp9)
tmp11 = tmp3 > tmp2
tmp12 = tl.full([1], 2, tl.int8)
tmp13 = tl.where(tmp11, tmp12, tmp10)
tmp14 = tmp5 > tmp4
tmp15 = tl.full([1], 3, tl.int8)
tmp16 = tl.where(tmp14, tmp15, tmp13)
tl.store(out_ptr0 + x5, tmp6, xmask)
tl.store(out_ptr1 + (x6 + 30848 * x4), tmp16, xmask)
@triton.jit
def triton_poi_fused_convolution_relu_2(in_out_ptr0, in_ptr0, xnumel,
XBLOCK: tl.constexpr):
xnumel = 215296
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x3 = xindex
x1 = xindex // 841 % 64
tmp0 = tl.load(in_out_ptr0 + x3, xmask)
tmp1 = tl.load(in_ptr0 + x1, xmask, eviction_policy='evict_last')
tmp2 = tmp0 + tmp1
tmp3 = tl.full([1], 0, tl.int32)
tmp4 = triton_helpers.maximum(tmp3, tmp2)
tl.store(in_out_ptr0 + x3, tmp4, xmask)
@triton.jit
def triton_poi_fused_max_pool2d_with_indices_3(in_ptr0, out_ptr0, out_ptr1,
xnumel, XBLOCK: tl.constexpr):
xnumel = 50176
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex % 14
x1 = xindex // 14 % 14
x2 = xindex // 196
x3 = xindex
tmp0 = tl.load(in_ptr0 + (2 * x0 + 58 * x1 + 841 * x2), xmask,
eviction_policy='evict_last')
tmp1 = tl.load(in_ptr0 + (1 + 2 * x0 + 58 * x1 + 841 * x2), xmask,
eviction_policy='evict_last')
tmp3 = tl.load(in_ptr0 + (29 + 2 * x0 + 58 * x1 + 841 * x2), xmask,
eviction_policy='evict_last')
tmp5 = tl.load(in_ptr0 + (30 + 2 * x0 + 58 * x1 + 841 * x2), xmask,
eviction_policy='evict_last')
tmp2 = triton_helpers.maximum(tmp1, tmp0)
tmp4 = triton_helpers.maximum(tmp3, tmp2)
tmp6 = triton_helpers.maximum(tmp5, tmp4)
tmp7 = tmp1 > tmp0
tmp8 = tl.full([1], 1, tl.int8)
tmp9 = tl.full([1], 0, tl.int8)
tmp10 = tl.where(tmp7, tmp8, tmp9)
tmp11 = tmp3 > tmp2
tmp12 = tl.full([1], 2, tl.int8)
tmp13 = tl.where(tmp11, tmp12, tmp10)
tmp14 = tmp5 > tmp4
tmp15 = tl.full([1], 3, tl.int8)
tmp16 = tl.where(tmp14, tmp15, tmp13)
tl.store(out_ptr0 + x3, tmp6, xmask)
tl.store(out_ptr1 + x3, tmp16, xmask)
@triton.jit
def triton_poi_fused_convolution_relu_threshold_backward_4(in_out_ptr0,
in_ptr0, out_ptr0, xnumel, XBLOCK: tl.constexpr):
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
tl.full([XBLOCK], True, tl.int1)
x3 = xindex
x1 = xindex // 144 % 64
tmp0 = tl.load(in_out_ptr0 + x3, None)
tmp1 = tl.load(in_ptr0 + x1, None, eviction_policy='evict_last')
tmp2 = tmp0 + tmp1
tmp3 = tl.full([1], 0, tl.int32)
tmp4 = triton_helpers.maximum(tmp3, tmp2)
tmp5 = 0.0
tmp6 = tmp4 <= tmp5
tl.store(in_out_ptr0 + x3, tmp4, None)
tl.store(out_ptr0 + x3, tmp6, None)
@triton.jit
def triton_poi_fused_relu_5(in_out_ptr0, in_ptr0, xnumel, XBLOCK: tl.constexpr
):
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
tl.full([XBLOCK], True, tl.int1)
x2 = xindex
x0 = xindex % 64
tmp0 = tl.load(in_out_ptr0 + x2, None)
tmp1 = tl.load(in_ptr0 + x0, None, eviction_policy='evict_last')
tmp2 = tmp0 + tmp1
tmp3 = tl.full([1], 0, tl.int32)
tmp4 = triton_helpers.maximum(tmp3, tmp2)
tl.store(in_out_ptr0 + x2, tmp4, None)
def call(args):
(primals_1, primals_2, primals_3, primals_4, primals_5, primals_6,
primals_7, primals_8, primals_9, primals_10, primals_11) = args
args.clear()
assert_size_stride(primals_1, (32, 4, 3, 3), (36, 9, 3, 1))
assert_size_stride(primals_2, (32,), (1,))
assert_size_stride(primals_3, (4, 4, 64, 64), (16384, 4096, 64, 1))
assert_size_stride(primals_4, (64, 32, 3, 3), (288, 9, 3, 1))
assert_size_stride(primals_5, (64,), (1,))
assert_size_stride(primals_6, (64, 64, 3, 3), (576, 9, 3, 1))
assert_size_stride(primals_7, (64,), (1,))
assert_size_stride(primals_8, (64, 576), (576, 1))
assert_size_stride(primals_9, (64,), (1,))
assert_size_stride(primals_10, (4, 64), (64, 1))
assert_size_stride(primals_11, (4,), (1,))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = extern_kernels.convolution(primals_3, primals_1, stride=(1,
1), padding=(0, 0), dilation=(1, 1), transposed=False,
output_padding=(0, 0), groups=1, bias=None)
assert_size_stride(buf0, (4, 32, 62, 62), (123008, 3844, 62, 1))
buf1 = empty_strided_cuda((4, 32, 62, 62), (123904, 3872, 62, 1),
torch.float32)
get_raw_stream(0)
triton_poi_fused_convolution_relu_0[grid(492032)](buf0, primals_2,
buf1, 492032, XBLOCK=1024, num_warps=4, num_stages=1)
del buf0
del primals_2
buf2 = empty_strided_cuda((4, 32, 31, 31), (30752, 961, 31, 1),
torch.float32)
buf3 = empty_strided_cuda((4, 32, 31, 31), (30848, 961, 31, 1),
torch.int8)
triton_poi_fused_max_pool2d_with_indices_1[grid(123008)](buf1, buf2,
buf3, 123008, XBLOCK=512, num_warps=8, num_stages=1)
buf4 = extern_kernels.convolution(buf2, primals_4, stride=(1, 1),
padding=(0, 0), dilation=(1, 1), transposed=False,
output_padding=(0, 0), groups=1, bias=None)
assert_size_stride(buf4, (4, 64, 29, 29), (53824, 841, 29, 1))
buf5 = buf4
del buf4
triton_poi_fused_convolution_relu_2[grid(215296)](buf5, primals_5,
215296, XBLOCK=1024, num_warps=4, num_stages=1)
del primals_5
buf6 = empty_strided_cuda((4, 64, 14, 14), (12544, 196, 14, 1),
torch.float32)
buf7 = empty_strided_cuda((4, 64, 14, 14), (12544, 196, 14, 1),
torch.int8)
triton_poi_fused_max_pool2d_with_indices_3[grid(50176)](buf5, buf6,
buf7, 50176, XBLOCK=256, num_warps=4, num_stages=1)
buf8 = extern_kernels.convolution(buf6, primals_6, stride=(1, 1),
padding=(0, 0), dilation=(1, 1), transposed=False,
output_padding=(0, 0), groups=1, bias=None)
assert_size_stride(buf8, (4, 64, 12, 12), (9216, 144, 12, 1))
buf9 = buf8
del buf8
buf13 = empty_strided_cuda((4, 64, 12, 12), (9216, 144, 12, 1),
torch.bool)
triton_poi_fused_convolution_relu_threshold_backward_4[grid(36864)](
buf9, primals_7, buf13, 36864, XBLOCK=512, num_warps=4,
num_stages=1)
del primals_7
buf10 = empty_strided_cuda((64, 64), (64, 1), torch.float32)
extern_kernels.mm(reinterpret_tensor(buf9, (64, 576), (576, 1), 0),
reinterpret_tensor(primals_8, (576, 64), (1, 576), 0), out=buf10)
buf11 = buf10
del buf10
triton_poi_fused_relu_5[grid(4096)](buf11, primals_9, 4096, XBLOCK=
128, num_warps=4, num_stages=1)
del primals_9
buf12 = empty_strided_cuda((64, 4), (4, 1), torch.float32)
extern_kernels.addmm(primals_11, buf11, reinterpret_tensor(
primals_10, (64, 4), (1, 64), 0), alpha=1, beta=1, out=buf12)
del primals_11
return (buf12, primals_1, primals_3, primals_4, primals_6, buf1, buf2,
buf3, buf5, buf6, buf7, reinterpret_tensor(buf9, (64, 576), (576, 1
), 0), buf11, primals_10, primals_8, buf13)
class CNN_MNISTNew(nn.Module):
def __init__(self, num_channels, num_classes):
super(CNN_MNISTNew, self).__init__()
self.conv1 = nn.Conv2d(num_channels, 32, 3, stride=1, padding=0)
self.conv2 = nn.Conv2d(32, 64, 3, stride=1, padding=0)
self.conv3 = nn.Conv2d(64, 64, 3, stride=1, padding=0)
self.pool1 = nn.MaxPool2d(2)
self.pool2 = nn.MaxPool2d(2)
self.fc1 = nn.Linear(3 * 3 * 64, 64, bias=True)
self.fc2 = nn.Linear(64, num_classes)
def forward(self, input_0):
primals_1 = self.conv1.weight
primals_2 = self.conv1.bias
primals_4 = self.conv2.weight
primals_5 = self.conv2.bias
primals_6 = self.conv3.weight
primals_7 = self.conv3.bias
primals_8 = self.fc1.weight
primals_9 = self.fc1.bias
primals_10 = self.fc2.weight
primals_11 = self.fc2.bias
primals_3 = input_0
output = call([primals_1, primals_2, primals_3, primals_4,
primals_5, primals_6, primals_7, primals_8, primals_9,
primals_10, primals_11])
return output[0]
|
Billy1900/Noise-Adaption-Layer
|
CNN_MNIST
| false | 16,999 |
[
"MIT"
] | 5 |
57b52dc4873f8eba7b8332db0ca3e593c2e3ffa8
|
https://github.com/Billy1900/Noise-Adaption-Layer/tree/57b52dc4873f8eba7b8332db0ca3e593c2e3ffa8
|
FCN32s
|
# AOT ID: ['0_forward']
from ctypes import c_void_p, c_long, c_int
import torch
import math
import random
import os
import tempfile
from math import inf, nan
from torch._inductor.hooks import run_intermediate_hooks
from torch._inductor.utils import maybe_profile
from torch._inductor.codegen.memory_planning import _align as align
from torch import device, empty_strided
from torch._inductor.async_compile import AsyncCompile
from torch._inductor.select_algorithm import extern_kernels
from torch._inductor.codegen.multi_kernel import MultiKernelCall
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
aten = torch.ops.aten
inductor_ops = torch.ops.inductor
_quantized = torch.ops._quantized
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
alloc_from_pool = torch.ops.inductor._alloc_from_pool
async_compile = AsyncCompile()
# kernel path: runs/run_shard_8/inductor_cache/yh/cyhcthmybpwuhajc2prpx2buu2aaanp4xjhlfcddqe2a2vxploid.py
# Unsorted Source Nodes: [], Original ATen: []
# Source node to ATen node mapping:
triton_poi_fused_0 = async_compile.triton('triton_poi_fused_0', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[32, 4096], tile_hint=TileHint.SQUARE,
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 3), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_0', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 1, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_0(in_ptr0, out_ptr0, ynumel, xnumel, YBLOCK : tl.constexpr, XBLOCK : tl.constexpr):
ynumel = 20
xnumel = 4096
yoffset = tl.program_id(1) * YBLOCK
yindex = yoffset + tl.arange(0, YBLOCK)[None, :]
ymask = yindex < ynumel
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:, None]
xmask = tl.full([XBLOCK, YBLOCK], True, tl.int1)
x2 = xindex
y3 = yindex
y0 = yindex % 5
y1 = (yindex // 5)
tmp0 = tl.load(in_ptr0 + (x2 + (4096*y3)), ymask, eviction_policy='evict_last')
tl.store(out_ptr0 + (y0 + (5*x2) + (20480*y1)), tmp0, ymask)
''', device_str='cuda')
# kernel path: runs/run_shard_8/inductor_cache/ug/cugiuc33kwmzgnaeznqxdpmk7r65jz2veybmiu3ozf6tpjzo34kf.py
# Unsorted Source Nodes: [], Original ATen: []
# Source node to ATen node mapping:
triton_poi_fused_1 = async_compile.triton('triton_poi_fused_1', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[512, 16], tile_hint=TileHint.SQUARE,
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_1', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 1, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_1(in_ptr0, out_ptr0, ynumel, xnumel, YBLOCK : tl.constexpr, XBLOCK : tl.constexpr):
ynumel = 320
xnumel = 9
yoffset = tl.program_id(1) * YBLOCK
yindex = yoffset + tl.arange(0, YBLOCK)[None, :]
ymask = yindex < ynumel
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:, None]
xmask = xindex < xnumel
x2 = xindex
y3 = yindex
y0 = yindex % 5
y1 = (yindex // 5)
tmp0 = tl.load(in_ptr0 + (x2 + (9*y3)), xmask & ymask, eviction_policy='evict_last')
tl.store(out_ptr0 + (y0 + (5*x2) + (45*y1)), tmp0, xmask & ymask)
''', device_str='cuda')
# kernel path: runs/run_shard_8/inductor_cache/xq/cxq75w43anllid5ys7ss3yyizuoeph3vvaqlvm5lo434hrywtyle.py
# Unsorted Source Nodes: [], Original ATen: []
# Source node to ATen node mapping:
triton_poi_fused_2 = async_compile.triton('triton_poi_fused_2', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[4096, 16], tile_hint=TileHint.SQUARE,
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_2', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 1, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_2(in_ptr0, out_ptr0, ynumel, xnumel, YBLOCK : tl.constexpr, XBLOCK : tl.constexpr):
ynumel = 4096
xnumel = 9
yoffset = tl.program_id(1) * YBLOCK
yindex = yoffset + tl.arange(0, YBLOCK)[None, :]
ymask = tl.full([XBLOCK, YBLOCK], True, tl.int1)
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:, None]
xmask = xindex < xnumel
x2 = xindex
y3 = yindex
y0 = yindex % 64
y1 = (yindex // 64)
tmp0 = tl.load(in_ptr0 + (x2 + (9*y3)), xmask, eviction_policy='evict_last')
tl.store(out_ptr0 + (y0 + (64*x2) + (576*y1)), tmp0, xmask)
''', device_str='cuda')
# kernel path: runs/run_shard_8/inductor_cache/nw/cnwm6ljuusoqjcwr2jdx6p2ue7ldghxjdr3oe62stiuqhsboiczy.py
# Unsorted Source Nodes: [], Original ATen: []
# Source node to ATen node mapping:
triton_poi_fused_3 = async_compile.triton('triton_poi_fused_3', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[8192, 16], tile_hint=TileHint.SQUARE,
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_3', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 1, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_3(in_ptr0, out_ptr0, ynumel, xnumel, YBLOCK : tl.constexpr, XBLOCK : tl.constexpr):
ynumel = 8192
xnumel = 9
yoffset = tl.program_id(1) * YBLOCK
yindex = yoffset + tl.arange(0, YBLOCK)[None, :]
ymask = tl.full([XBLOCK, YBLOCK], True, tl.int1)
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:, None]
xmask = xindex < xnumel
x2 = xindex
y3 = yindex
y0 = yindex % 64
y1 = (yindex // 64)
tmp0 = tl.load(in_ptr0 + (x2 + (9*y3)), xmask, eviction_policy='evict_last')
tl.store(out_ptr0 + (y0 + (64*x2) + (576*y1)), tmp0, xmask)
''', device_str='cuda')
# kernel path: runs/run_shard_8/inductor_cache/32/c32xiwptfqtyhbnde262mvq5tzywzo6zquurttkv7sztqnze6yni.py
# Unsorted Source Nodes: [], Original ATen: []
# Source node to ATen node mapping:
triton_poi_fused_4 = async_compile.triton('triton_poi_fused_4', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[16384, 16], tile_hint=TileHint.SQUARE,
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_4', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 1, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_4(in_ptr0, out_ptr0, ynumel, xnumel, YBLOCK : tl.constexpr, XBLOCK : tl.constexpr):
ynumel = 16384
xnumel = 9
yoffset = tl.program_id(1) * YBLOCK
yindex = yoffset + tl.arange(0, YBLOCK)[None, :]
ymask = tl.full([XBLOCK, YBLOCK], True, tl.int1)
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:, None]
xmask = xindex < xnumel
x2 = xindex
y3 = yindex
y0 = yindex % 128
y1 = (yindex // 128)
tmp0 = tl.load(in_ptr0 + (x2 + (9*y3)), xmask, eviction_policy='evict_last')
tl.store(out_ptr0 + (y0 + (128*x2) + (1152*y1)), tmp0, xmask)
''', device_str='cuda')
# kernel path: runs/run_shard_8/inductor_cache/jj/cjjz4tpbucpuc3faa2ky32crfwhb5fbnssd6o2yfkgdcjg2acfmo.py
# Unsorted Source Nodes: [], Original ATen: []
# Source node to ATen node mapping:
triton_poi_fused_5 = async_compile.triton('triton_poi_fused_5', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[32768, 16], tile_hint=TileHint.SQUARE,
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_5', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 1, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_5(in_ptr0, out_ptr0, ynumel, xnumel, YBLOCK : tl.constexpr, XBLOCK : tl.constexpr):
ynumel = 32768
xnumel = 9
yoffset = tl.program_id(1) * YBLOCK
yindex = yoffset + tl.arange(0, YBLOCK)[None, :]
ymask = tl.full([XBLOCK, YBLOCK], True, tl.int1)
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:, None]
xmask = xindex < xnumel
x2 = xindex
y3 = yindex
y0 = yindex % 128
y1 = (yindex // 128)
tmp0 = tl.load(in_ptr0 + (x2 + (9*y3)), xmask, eviction_policy='evict_last')
tl.store(out_ptr0 + (y0 + (128*x2) + (1152*y1)), tmp0, xmask)
''', device_str='cuda')
# kernel path: runs/run_shard_8/inductor_cache/tg/ctgdsxjd3rciejxtjvi3y2w5fmmggh5lm3mivuygvkdzeb3zulmc.py
# Unsorted Source Nodes: [], Original ATen: []
# Source node to ATen node mapping:
triton_poi_fused_6 = async_compile.triton('triton_poi_fused_6', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[65536, 16], tile_hint=TileHint.SQUARE,
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_6', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 1, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_6(in_ptr0, out_ptr0, ynumel, xnumel, YBLOCK : tl.constexpr, XBLOCK : tl.constexpr):
ynumel = 65536
xnumel = 9
yoffset = (tl.program_id(1) + tl.program_id(2) * tl.num_programs(1)) * YBLOCK
yindex = yoffset + tl.arange(0, YBLOCK)[None, :]
ymask = tl.full([XBLOCK, YBLOCK], True, tl.int1)
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:, None]
xmask = xindex < xnumel
x2 = xindex
y3 = yindex
y0 = yindex % 256
y1 = (yindex // 256)
tmp0 = tl.load(in_ptr0 + (x2 + (9*y3)), xmask, eviction_policy='evict_last')
tl.store(out_ptr0 + (y0 + (256*x2) + (2304*y1)), tmp0, xmask)
''', device_str='cuda')
# kernel path: runs/run_shard_8/inductor_cache/e7/ce7jqsdrj5poslb2hpufqd2wdux5xiab5n2auqal3ztzvkzrmnzl.py
# Unsorted Source Nodes: [], Original ATen: []
# Source node to ATen node mapping:
triton_poi_fused_7 = async_compile.triton('triton_poi_fused_7', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[131072, 16], tile_hint=TileHint.SQUARE,
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_7', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 1, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_7(in_ptr0, out_ptr0, ynumel, xnumel, YBLOCK : tl.constexpr, XBLOCK : tl.constexpr):
ynumel = 131072
xnumel = 9
yoffset = (tl.program_id(1) + tl.program_id(2) * tl.num_programs(1)) * YBLOCK
yindex = yoffset + tl.arange(0, YBLOCK)[None, :]
ymask = tl.full([XBLOCK, YBLOCK], True, tl.int1)
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:, None]
xmask = xindex < xnumel
x2 = xindex
y3 = yindex
y0 = yindex % 256
y1 = (yindex // 256)
tmp0 = tl.load(in_ptr0 + (x2 + (9*y3)), xmask, eviction_policy='evict_last')
tl.store(out_ptr0 + (y0 + (256*x2) + (2304*y1)), tmp0, xmask)
''', device_str='cuda')
# kernel path: runs/run_shard_8/inductor_cache/ks/ckso6iiq5yfqfxmx7ilr6ufrmz6mlkiy75pexzhyf3ierq4pu3zl.py
# Unsorted Source Nodes: [], Original ATen: []
# Source node to ATen node mapping:
triton_poi_fused_8 = async_compile.triton('triton_poi_fused_8', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[262144, 16], tile_hint=TileHint.SQUARE,
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_8', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 1, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_8(in_ptr0, out_ptr0, ynumel, xnumel, YBLOCK : tl.constexpr, XBLOCK : tl.constexpr):
ynumel = 262144
xnumel = 9
yoffset = (tl.program_id(1) + tl.program_id(2) * tl.num_programs(1)) * YBLOCK
yindex = yoffset + tl.arange(0, YBLOCK)[None, :]
ymask = tl.full([XBLOCK, YBLOCK], True, tl.int1)
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:, None]
xmask = xindex < xnumel
x2 = xindex
y3 = yindex
y0 = yindex % 512
y1 = (yindex // 512)
tmp0 = tl.load(in_ptr0 + (x2 + (9*y3)), xmask, eviction_policy='evict_last')
tl.store(out_ptr0 + (y0 + (512*x2) + (4608*y1)), tmp0, xmask)
''', device_str='cuda')
# kernel path: runs/run_shard_8/inductor_cache/4i/c4islqctnux7quywor4ljttjc6krtgvecvzfsjd2pvp4i6z2bufb.py
# Unsorted Source Nodes: [], Original ATen: []
# Source node to ATen node mapping:
triton_poi_fused_9 = async_compile.triton('triton_poi_fused_9', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[2097152, 64], tile_hint=TileHint.SQUARE,
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_9', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 1, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_9(in_ptr0, out_ptr0, ynumel, xnumel, YBLOCK : tl.constexpr, XBLOCK : tl.constexpr):
ynumel = 2097152
xnumel = 49
yoffset = (tl.program_id(1) + tl.program_id(2) * tl.num_programs(1)) * YBLOCK
yindex = yoffset + tl.arange(0, YBLOCK)[None, :]
ymask = tl.full([XBLOCK, YBLOCK], True, tl.int1)
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:, None]
xmask = xindex < xnumel
x2 = xindex
y3 = yindex
y0 = yindex % 512
y1 = (yindex // 512)
tmp0 = tl.load(in_ptr0 + (x2 + (49*y3)), xmask, eviction_policy='evict_last')
tl.store(out_ptr0 + (y0 + (512*x2) + (25088*y1)), tmp0, xmask)
''', device_str='cuda')
# kernel path: runs/run_shard_8/inductor_cache/md/cmdsupo5iyzolhpw6ahmecqsejr37jfeyzsgf7lnfmc3sylo6hn7.py
# Topologically Sorted Source Nodes: [conv2d, h], Original ATen: [aten.convolution, aten.relu]
# Source node to ATen node mapping:
# conv2d => convolution
# h => relu
# Graph fragment:
# %convolution : [num_users=1] = call_function[target=torch.ops.aten.convolution.default](args = (%primals_1, %primals_2, %primals_3, [1, 1], [100, 100], [1, 1], False, [0, 0], 1), kwargs = {})
# %relu : [num_users=2] = call_function[target=torch.ops.aten.relu.default](args = (%convolution,), kwargs = {})
triton_poi_fused_convolution_relu_10 = async_compile.triton('triton_poi_fused_convolution_relu_10', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[33554432],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_convolution_relu_10', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_convolution_relu_10(in_out_ptr0, in_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 17572864
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x2 = xindex
x0 = xindex % 64
tmp0 = tl.load(in_out_ptr0 + (x2), xmask)
tmp1 = tl.load(in_ptr0 + (x0), xmask, eviction_policy='evict_last')
tmp2 = tmp0 + tmp1
tmp3 = tl.full([1], 0, tl.int32)
tmp4 = triton_helpers.maximum(tmp3, tmp2)
tl.store(in_out_ptr0 + (x2), tmp4, xmask)
''', device_str='cuda')
# kernel path: runs/run_shard_8/inductor_cache/z5/cz5w3p5clskvlxhaxinsnisy4dwdncan46mbp45aclwsvbmk3ale.py
# Topologically Sorted Source Nodes: [h_2], Original ATen: [aten.max_pool2d_with_indices]
# Source node to ATen node mapping:
# h_2 => getitem, getitem_1
# Graph fragment:
# %getitem : [num_users=2] = call_function[target=operator.getitem](args = (%_low_memory_max_pool2d_with_offsets, 0), kwargs = {})
# %getitem_1 : [num_users=1] = call_function[target=operator.getitem](args = (%_low_memory_max_pool2d_with_offsets, 1), kwargs = {})
triton_poi_fused_max_pool2d_with_indices_11 = async_compile.triton('triton_poi_fused_max_pool2d_with_indices_11', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[8388608],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*i8', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_max_pool2d_with_indices_11', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 4, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_max_pool2d_with_indices_11(in_ptr0, out_ptr0, out_ptr1, xnumel, XBLOCK : tl.constexpr):
xnumel = 4393216
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex % 64
x1 = (xindex // 64) % 131
x2 = (xindex // 8384)
x3 = xindex
tmp0 = tl.load(in_ptr0 + (x0 + (128*x1) + (33536*x2)), xmask)
tmp1 = tl.load(in_ptr0 + (64 + x0 + (128*x1) + (33536*x2)), xmask)
tmp3 = tl.load(in_ptr0 + (16768 + x0 + (128*x1) + (33536*x2)), xmask)
tmp5 = tl.load(in_ptr0 + (16832 + x0 + (128*x1) + (33536*x2)), xmask)
tmp2 = triton_helpers.maximum(tmp1, tmp0)
tmp4 = triton_helpers.maximum(tmp3, tmp2)
tmp6 = triton_helpers.maximum(tmp5, tmp4)
tmp7 = tmp1 > tmp0
tmp8 = tl.full([1], 1, tl.int8)
tmp9 = tl.full([1], 0, tl.int8)
tmp10 = tl.where(tmp7, tmp8, tmp9)
tmp11 = tmp3 > tmp2
tmp12 = tl.full([1], 2, tl.int8)
tmp13 = tl.where(tmp11, tmp12, tmp10)
tmp14 = tmp5 > tmp4
tmp15 = tl.full([1], 3, tl.int8)
tmp16 = tl.where(tmp14, tmp15, tmp13)
tl.store(out_ptr0 + (x3), tmp6, xmask)
tl.store(out_ptr1 + (x3), tmp16, xmask)
''', device_str='cuda')
# kernel path: runs/run_shard_8/inductor_cache/qq/cqqgx4bd67gkdynuvs4ihlgjgq3bvd73tn2htvsxd4ersue7qkvs.py
# Topologically Sorted Source Nodes: [conv2d_2, h_3], Original ATen: [aten.convolution, aten.relu]
# Source node to ATen node mapping:
# conv2d_2 => convolution_2
# h_3 => relu_2
# Graph fragment:
# %convolution_2 : [num_users=1] = call_function[target=torch.ops.aten.convolution.default](args = (%getitem, %primals_6, %primals_7, [1, 1], [1, 1], [1, 1], False, [0, 0], 1), kwargs = {})
# %relu_2 : [num_users=2] = call_function[target=torch.ops.aten.relu.default](args = (%convolution_2,), kwargs = {})
triton_poi_fused_convolution_relu_12 = async_compile.triton('triton_poi_fused_convolution_relu_12', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[16777216],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_convolution_relu_12', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_convolution_relu_12(in_out_ptr0, in_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 8786432
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x2 = xindex
x0 = xindex % 128
tmp0 = tl.load(in_out_ptr0 + (x2), xmask)
tmp1 = tl.load(in_ptr0 + (x0), xmask, eviction_policy='evict_last')
tmp2 = tmp0 + tmp1
tmp3 = tl.full([1], 0, tl.int32)
tmp4 = triton_helpers.maximum(tmp3, tmp2)
tl.store(in_out_ptr0 + (x2), tmp4, xmask)
''', device_str='cuda')
# kernel path: runs/run_shard_8/inductor_cache/sd/csdeiw4phywtem76xa34mjgxjkclvuzqzlzin7wo4erpcfmzh76t.py
# Topologically Sorted Source Nodes: [h_5], Original ATen: [aten.max_pool2d_with_indices]
# Source node to ATen node mapping:
# h_5 => getitem_2, getitem_3
# Graph fragment:
# %getitem_2 : [num_users=2] = call_function[target=operator.getitem](args = (%_low_memory_max_pool2d_with_offsets_1, 0), kwargs = {})
# %getitem_3 : [num_users=1] = call_function[target=operator.getitem](args = (%_low_memory_max_pool2d_with_offsets_1, 1), kwargs = {})
triton_poi_fused_max_pool2d_with_indices_13 = async_compile.triton('triton_poi_fused_max_pool2d_with_indices_13', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[4194304],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*i8', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_max_pool2d_with_indices_13', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 4, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_max_pool2d_with_indices_13(in_ptr0, out_ptr0, out_ptr1, xnumel, XBLOCK : tl.constexpr):
xnumel = 2230272
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = tl.full([XBLOCK], True, tl.int1)
x2 = (xindex // 8448) % 66
x1 = (xindex // 128) % 66
x0 = xindex % 128
x3 = (xindex // 557568)
x6 = xindex
tmp0 = 2*x2
tmp1 = tl.full([1], 0, tl.int64)
tmp2 = tmp0 >= tmp1
tmp3 = tl.full([1], 131, tl.int64)
tmp4 = tmp0 < tmp3
tmp5 = tmp2 & tmp4
tmp6 = 2*x1
tmp7 = tmp6 >= tmp1
tmp8 = tmp6 < tmp3
tmp9 = tmp7 & tmp8
tmp10 = tmp5 & tmp9
tmp11 = tl.load(in_ptr0 + (x0 + (256*x1) + (33536*x2) + (2196608*x3)), tmp10, other=float("-inf"))
tmp12 = 1 + (2*x1)
tmp13 = tmp12 >= tmp1
tmp14 = tmp12 < tmp3
tmp15 = tmp13 & tmp14
tmp16 = tmp5 & tmp15
tmp17 = tl.load(in_ptr0 + (128 + x0 + (256*x1) + (33536*x2) + (2196608*x3)), tmp16, other=float("-inf"))
tmp18 = triton_helpers.maximum(tmp17, tmp11)
tmp19 = 1 + (2*x2)
tmp20 = tmp19 >= tmp1
tmp21 = tmp19 < tmp3
tmp22 = tmp20 & tmp21
tmp23 = tmp22 & tmp9
tmp24 = tl.load(in_ptr0 + (16768 + x0 + (256*x1) + (33536*x2) + (2196608*x3)), tmp23, other=float("-inf"))
tmp25 = triton_helpers.maximum(tmp24, tmp18)
tmp26 = tmp22 & tmp15
tmp27 = tl.load(in_ptr0 + (16896 + x0 + (256*x1) + (33536*x2) + (2196608*x3)), tmp26, other=float("-inf"))
tmp28 = triton_helpers.maximum(tmp27, tmp25)
tmp29 = tmp17 > tmp11
tmp30 = tl.full([1], 1, tl.int8)
tmp31 = tl.full([1], 0, tl.int8)
tmp32 = tl.where(tmp29, tmp30, tmp31)
tmp33 = tmp24 > tmp18
tmp34 = tl.full([1], 2, tl.int8)
tmp35 = tl.where(tmp33, tmp34, tmp32)
tmp36 = tmp27 > tmp25
tmp37 = tl.full([1], 3, tl.int8)
tmp38 = tl.where(tmp36, tmp37, tmp35)
tl.store(out_ptr0 + (x6), tmp28, None)
tl.store(out_ptr1 + (x6), tmp38, None)
''', device_str='cuda')
# kernel path: runs/run_shard_8/inductor_cache/tb/ctb5lccopknr7xxr3evsl64ic5r4ufx4pjs6gjvlnwoorj5p2wfc.py
# Topologically Sorted Source Nodes: [conv2d_4, h_6], Original ATen: [aten.convolution, aten.relu]
# Source node to ATen node mapping:
# conv2d_4 => convolution_4
# h_6 => relu_4
# Graph fragment:
# %convolution_4 : [num_users=1] = call_function[target=torch.ops.aten.convolution.default](args = (%getitem_2, %primals_10, %primals_11, [1, 1], [1, 1], [1, 1], False, [0, 0], 1), kwargs = {})
# %relu_4 : [num_users=2] = call_function[target=torch.ops.aten.relu.default](args = (%convolution_4,), kwargs = {})
triton_poi_fused_convolution_relu_14 = async_compile.triton('triton_poi_fused_convolution_relu_14', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[8388608],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_convolution_relu_14', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_convolution_relu_14(in_out_ptr0, in_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 4460544
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = tl.full([XBLOCK], True, tl.int1)
x2 = xindex
x0 = xindex % 256
tmp0 = tl.load(in_out_ptr0 + (x2), None)
tmp1 = tl.load(in_ptr0 + (x0), None, eviction_policy='evict_last')
tmp2 = tmp0 + tmp1
tmp3 = tl.full([1], 0, tl.int32)
tmp4 = triton_helpers.maximum(tmp3, tmp2)
tl.store(in_out_ptr0 + (x2), tmp4, None)
''', device_str='cuda')
# kernel path: runs/run_shard_8/inductor_cache/c4/cc4vltulbg5vj3jzsdzvbqj7ho7giigov24snntuectxulb7wm7h.py
# Topologically Sorted Source Nodes: [h_9], Original ATen: [aten.max_pool2d_with_indices]
# Source node to ATen node mapping:
# h_9 => getitem_4, getitem_5
# Graph fragment:
# %getitem_4 : [num_users=2] = call_function[target=operator.getitem](args = (%_low_memory_max_pool2d_with_offsets_2, 0), kwargs = {})
# %getitem_5 : [num_users=1] = call_function[target=operator.getitem](args = (%_low_memory_max_pool2d_with_offsets_2, 1), kwargs = {})
triton_poi_fused_max_pool2d_with_indices_15 = async_compile.triton('triton_poi_fused_max_pool2d_with_indices_15', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[2097152],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*i8', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_max_pool2d_with_indices_15', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 4, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_max_pool2d_with_indices_15(in_ptr0, out_ptr0, out_ptr1, xnumel, XBLOCK : tl.constexpr):
xnumel = 1115136
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex % 256
x1 = (xindex // 256) % 33
x2 = (xindex // 8448)
x3 = xindex
tmp0 = tl.load(in_ptr0 + (x0 + (512*x1) + (33792*x2)), xmask)
tmp1 = tl.load(in_ptr0 + (256 + x0 + (512*x1) + (33792*x2)), xmask)
tmp3 = tl.load(in_ptr0 + (16896 + x0 + (512*x1) + (33792*x2)), xmask)
tmp5 = tl.load(in_ptr0 + (17152 + x0 + (512*x1) + (33792*x2)), xmask)
tmp2 = triton_helpers.maximum(tmp1, tmp0)
tmp4 = triton_helpers.maximum(tmp3, tmp2)
tmp6 = triton_helpers.maximum(tmp5, tmp4)
tmp7 = tmp1 > tmp0
tmp8 = tl.full([1], 1, tl.int8)
tmp9 = tl.full([1], 0, tl.int8)
tmp10 = tl.where(tmp7, tmp8, tmp9)
tmp11 = tmp3 > tmp2
tmp12 = tl.full([1], 2, tl.int8)
tmp13 = tl.where(tmp11, tmp12, tmp10)
tmp14 = tmp5 > tmp4
tmp15 = tl.full([1], 3, tl.int8)
tmp16 = tl.where(tmp14, tmp15, tmp13)
tl.store(out_ptr0 + (x3), tmp6, xmask)
tl.store(out_ptr1 + (x3), tmp16, xmask)
''', device_str='cuda')
# kernel path: runs/run_shard_8/inductor_cache/uh/cuhmvwaq2epkqdsbcpyzl2cbecntikxzjbvwfqzaw27ipfpz7z7p.py
# Topologically Sorted Source Nodes: [conv2d_7, h_10], Original ATen: [aten.convolution, aten.relu]
# Source node to ATen node mapping:
# conv2d_7 => convolution_7
# h_10 => relu_7
# Graph fragment:
# %convolution_7 : [num_users=1] = call_function[target=torch.ops.aten.convolution.default](args = (%getitem_4, %primals_16, %primals_17, [1, 1], [1, 1], [1, 1], False, [0, 0], 1), kwargs = {})
# %relu_7 : [num_users=2] = call_function[target=torch.ops.aten.relu.default](args = (%convolution_7,), kwargs = {})
triton_poi_fused_convolution_relu_16 = async_compile.triton('triton_poi_fused_convolution_relu_16', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[4194304],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_convolution_relu_16', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_convolution_relu_16(in_out_ptr0, in_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 2230272
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = tl.full([XBLOCK], True, tl.int1)
x2 = xindex
x0 = xindex % 512
tmp0 = tl.load(in_out_ptr0 + (x2), None)
tmp1 = tl.load(in_ptr0 + (x0), None, eviction_policy='evict_last')
tmp2 = tmp0 + tmp1
tmp3 = tl.full([1], 0, tl.int32)
tmp4 = triton_helpers.maximum(tmp3, tmp2)
tl.store(in_out_ptr0 + (x2), tmp4, None)
''', device_str='cuda')
# kernel path: runs/run_shard_8/inductor_cache/p7/cp7mv7czuycllanudflpzvh5xztkpijbxdp27bonysvmd2pffhsx.py
# Topologically Sorted Source Nodes: [h_13], Original ATen: [aten.max_pool2d_with_indices]
# Source node to ATen node mapping:
# h_13 => getitem_6, getitem_7
# Graph fragment:
# %getitem_6 : [num_users=2] = call_function[target=operator.getitem](args = (%_low_memory_max_pool2d_with_offsets_3, 0), kwargs = {})
# %getitem_7 : [num_users=1] = call_function[target=operator.getitem](args = (%_low_memory_max_pool2d_with_offsets_3, 1), kwargs = {})
triton_poi_fused_max_pool2d_with_indices_17 = async_compile.triton('triton_poi_fused_max_pool2d_with_indices_17', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[1048576],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*i8', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_max_pool2d_with_indices_17', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 4, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_max_pool2d_with_indices_17(in_ptr0, out_ptr0, out_ptr1, xnumel, XBLOCK : tl.constexpr):
xnumel = 591872
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = tl.full([XBLOCK], True, tl.int1)
x2 = (xindex // 8704) % 17
x1 = (xindex // 512) % 17
x0 = xindex % 512
x3 = (xindex // 147968)
x6 = xindex
tmp0 = 2*x2
tmp1 = tl.full([1], 0, tl.int64)
tmp2 = tmp0 >= tmp1
tmp3 = tl.full([1], 33, tl.int64)
tmp4 = tmp0 < tmp3
tmp5 = tmp2 & tmp4
tmp6 = 2*x1
tmp7 = tmp6 >= tmp1
tmp8 = tmp6 < tmp3
tmp9 = tmp7 & tmp8
tmp10 = tmp5 & tmp9
tmp11 = tl.load(in_ptr0 + (x0 + (1024*x1) + (33792*x2) + (557568*x3)), tmp10, other=float("-inf"))
tmp12 = 1 + (2*x1)
tmp13 = tmp12 >= tmp1
tmp14 = tmp12 < tmp3
tmp15 = tmp13 & tmp14
tmp16 = tmp5 & tmp15
tmp17 = tl.load(in_ptr0 + (512 + x0 + (1024*x1) + (33792*x2) + (557568*x3)), tmp16, other=float("-inf"))
tmp18 = triton_helpers.maximum(tmp17, tmp11)
tmp19 = 1 + (2*x2)
tmp20 = tmp19 >= tmp1
tmp21 = tmp19 < tmp3
tmp22 = tmp20 & tmp21
tmp23 = tmp22 & tmp9
tmp24 = tl.load(in_ptr0 + (16896 + x0 + (1024*x1) + (33792*x2) + (557568*x3)), tmp23, other=float("-inf"))
tmp25 = triton_helpers.maximum(tmp24, tmp18)
tmp26 = tmp22 & tmp15
tmp27 = tl.load(in_ptr0 + (17408 + x0 + (1024*x1) + (33792*x2) + (557568*x3)), tmp26, other=float("-inf"))
tmp28 = triton_helpers.maximum(tmp27, tmp25)
tmp29 = tmp17 > tmp11
tmp30 = tl.full([1], 1, tl.int8)
tmp31 = tl.full([1], 0, tl.int8)
tmp32 = tl.where(tmp29, tmp30, tmp31)
tmp33 = tmp24 > tmp18
tmp34 = tl.full([1], 2, tl.int8)
tmp35 = tl.where(tmp33, tmp34, tmp32)
tmp36 = tmp27 > tmp25
tmp37 = tl.full([1], 3, tl.int8)
tmp38 = tl.where(tmp36, tmp37, tmp35)
tl.store(out_ptr0 + (x6), tmp28, None)
tl.store(out_ptr1 + (x6), tmp38, None)
''', device_str='cuda')
# kernel path: runs/run_shard_8/inductor_cache/xq/cxqbn72jjnqokyo55zpsu52c6azgyekra26qjkgequt3brmypgu4.py
# Topologically Sorted Source Nodes: [conv2d_10, h_14], Original ATen: [aten.convolution, aten.relu]
# Source node to ATen node mapping:
# conv2d_10 => convolution_10
# h_14 => relu_10
# Graph fragment:
# %convolution_10 : [num_users=1] = call_function[target=torch.ops.aten.convolution.default](args = (%getitem_6, %primals_22, %primals_23, [1, 1], [1, 1], [1, 1], False, [0, 0], 1), kwargs = {})
# %relu_10 : [num_users=2] = call_function[target=torch.ops.aten.relu.default](args = (%convolution_10,), kwargs = {})
triton_poi_fused_convolution_relu_18 = async_compile.triton('triton_poi_fused_convolution_relu_18', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[1048576],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_convolution_relu_18', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_convolution_relu_18(in_out_ptr0, in_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 591872
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = tl.full([XBLOCK], True, tl.int1)
x2 = xindex
x0 = xindex % 512
tmp0 = tl.load(in_out_ptr0 + (x2), None)
tmp1 = tl.load(in_ptr0 + (x0), None, eviction_policy='evict_last')
tmp2 = tmp0 + tmp1
tmp3 = tl.full([1], 0, tl.int32)
tmp4 = triton_helpers.maximum(tmp3, tmp2)
tl.store(in_out_ptr0 + (x2), tmp4, None)
''', device_str='cuda')
# kernel path: runs/run_shard_8/inductor_cache/xk/cxki4k5jlgybjbomie7ngclgckyb4jaorjcpddo3vcksb3nflpug.py
# Topologically Sorted Source Nodes: [h_17], Original ATen: [aten.max_pool2d_with_indices]
# Source node to ATen node mapping:
# h_17 => getitem_8, getitem_9
# Graph fragment:
# %getitem_8 : [num_users=2] = call_function[target=operator.getitem](args = (%_low_memory_max_pool2d_with_offsets_4, 0), kwargs = {})
# %getitem_9 : [num_users=1] = call_function[target=operator.getitem](args = (%_low_memory_max_pool2d_with_offsets_4, 1), kwargs = {})
triton_poi_fused_max_pool2d_with_indices_19 = async_compile.triton('triton_poi_fused_max_pool2d_with_indices_19', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[262144],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*i8', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_max_pool2d_with_indices_19', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 4, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_max_pool2d_with_indices_19(in_ptr0, out_ptr0, out_ptr1, xnumel, XBLOCK : tl.constexpr):
xnumel = 165888
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = tl.full([XBLOCK], True, tl.int1)
x2 = (xindex // 4608) % 9
x1 = (xindex // 512) % 9
x0 = xindex % 512
x3 = (xindex // 41472)
x6 = xindex
tmp0 = 2*x2
tmp1 = tl.full([1], 0, tl.int64)
tmp2 = tmp0 >= tmp1
tmp3 = tl.full([1], 17, tl.int64)
tmp4 = tmp0 < tmp3
tmp5 = tmp2 & tmp4
tmp6 = 2*x1
tmp7 = tmp6 >= tmp1
tmp8 = tmp6 < tmp3
tmp9 = tmp7 & tmp8
tmp10 = tmp5 & tmp9
tmp11 = tl.load(in_ptr0 + (x0 + (1024*x1) + (17408*x2) + (147968*x3)), tmp10, other=float("-inf"))
tmp12 = 1 + (2*x1)
tmp13 = tmp12 >= tmp1
tmp14 = tmp12 < tmp3
tmp15 = tmp13 & tmp14
tmp16 = tmp5 & tmp15
tmp17 = tl.load(in_ptr0 + (512 + x0 + (1024*x1) + (17408*x2) + (147968*x3)), tmp16, other=float("-inf"))
tmp18 = triton_helpers.maximum(tmp17, tmp11)
tmp19 = 1 + (2*x2)
tmp20 = tmp19 >= tmp1
tmp21 = tmp19 < tmp3
tmp22 = tmp20 & tmp21
tmp23 = tmp22 & tmp9
tmp24 = tl.load(in_ptr0 + (8704 + x0 + (1024*x1) + (17408*x2) + (147968*x3)), tmp23, other=float("-inf"))
tmp25 = triton_helpers.maximum(tmp24, tmp18)
tmp26 = tmp22 & tmp15
tmp27 = tl.load(in_ptr0 + (9216 + x0 + (1024*x1) + (17408*x2) + (147968*x3)), tmp26, other=float("-inf"))
tmp28 = triton_helpers.maximum(tmp27, tmp25)
tmp29 = tmp17 > tmp11
tmp30 = tl.full([1], 1, tl.int8)
tmp31 = tl.full([1], 0, tl.int8)
tmp32 = tl.where(tmp29, tmp30, tmp31)
tmp33 = tmp24 > tmp18
tmp34 = tl.full([1], 2, tl.int8)
tmp35 = tl.where(tmp33, tmp34, tmp32)
tmp36 = tmp27 > tmp25
tmp37 = tl.full([1], 3, tl.int8)
tmp38 = tl.where(tmp36, tmp37, tmp35)
tl.store(out_ptr0 + (x6), tmp28, None)
tl.store(out_ptr1 + (x6), tmp38, None)
''', device_str='cuda')
# kernel path: runs/run_shard_8/inductor_cache/nj/cnjp6idq6vu3t4k5t2ashy54iuhcp2lh5vwz3433o5cf5r7fmdck.py
# Topologically Sorted Source Nodes: [conv2d_13, h_18], Original ATen: [aten.convolution, aten.relu]
# Source node to ATen node mapping:
# conv2d_13 => convolution_13
# h_18 => relu_13
# Graph fragment:
# %convolution_13 : [num_users=1] = call_function[target=torch.ops.aten.convolution.default](args = (%getitem_8, %primals_28, %primals_29, [1, 1], [0, 0], [1, 1], False, [0, 0], 1), kwargs = {})
# %relu_13 : [num_users=2] = call_function[target=torch.ops.aten.relu.default](args = (%convolution_13,), kwargs = {})
triton_poi_fused_convolution_relu_20 = async_compile.triton('triton_poi_fused_convolution_relu_20', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[262144],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_convolution_relu_20', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_convolution_relu_20(in_out_ptr0, in_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 147456
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = tl.full([XBLOCK], True, tl.int1)
x2 = xindex
x0 = xindex % 4096
tmp0 = tl.load(in_out_ptr0 + (x2), None)
tmp1 = tl.load(in_ptr0 + (x0), None, eviction_policy='evict_last')
tmp2 = tmp0 + tmp1
tmp3 = tl.full([1], 0, tl.int32)
tmp4 = triton_helpers.maximum(tmp3, tmp2)
tl.store(in_out_ptr0 + (x2), tmp4, None)
''', device_str='cuda')
# kernel path: runs/run_shard_8/inductor_cache/45/c45l55dp54hb7ihramfhxmgidblcal7beaongbuydibo2hdowmbj.py
# Topologically Sorted Source Nodes: [h_22], Original ATen: [aten.convolution]
# Source node to ATen node mapping:
# h_22 => convolution_15
# Graph fragment:
# %convolution_15 : [num_users=2] = call_function[target=torch.ops.aten.convolution.default](args = (%relu_14, %primals_32, %primals_33, [1, 1], [0, 0], [1, 1], False, [0, 0], 1), kwargs = {})
triton_poi_fused_convolution_21 = async_compile.triton('triton_poi_fused_convolution_21', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[64],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_convolution_21', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_convolution_21(in_out_ptr0, in_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 36
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex
tmp0 = tl.load(in_out_ptr0 + (x0), xmask)
tmp1 = tl.load(in_ptr0 + (0))
tmp2 = tl.broadcast_to(tmp1, [XBLOCK])
tmp3 = tmp0 + tmp2
tl.store(in_out_ptr0 + (x0), tmp3, xmask)
''', device_str='cuda')
# kernel path: runs/run_shard_8/inductor_cache/wq/cwqrpbigoqv3g4hr6shnaizyxbgw4cquq2tci2levhsi7cjh22nc.py
# Topologically Sorted Source Nodes: [h_24], Original ATen: [aten.clone]
# Source node to ATen node mapping:
# h_24 => clone
# Graph fragment:
# %clone : [num_users=1] = call_function[target=torch.ops.aten.clone.default](args = (%slice_4,), kwargs = {memory_format: torch.contiguous_format})
triton_poi_fused_clone_22 = async_compile.triton('triton_poi_fused_clone_22', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[16384],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_clone_22', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 1, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_clone_22(in_ptr0, out_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 16384
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = tl.full([XBLOCK], True, tl.int1)
x0 = xindex % 64
x1 = (xindex // 64) % 64
x2 = (xindex // 4096)
x3 = xindex
tmp0 = tl.load(in_ptr0 + (2451 + x0 + (128*x1) + (16384*x2)), None)
tl.store(out_ptr0 + (x3), tmp0, None)
''', device_str='cuda')
async_compile.wait(globals())
del async_compile
def call(args):
primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7, primals_8, primals_9, primals_10, primals_11, primals_12, primals_13, primals_14, primals_15, primals_16, primals_17, primals_18, primals_19, primals_20, primals_21, primals_22, primals_23, primals_24, primals_25, primals_26, primals_27, primals_28, primals_29, primals_30, primals_31, primals_32, primals_33, primals_34 = args
args.clear()
assert_size_stride(primals_1, (4, 5, 64, 64), (20480, 4096, 64, 1))
assert_size_stride(primals_2, (64, 5, 3, 3), (45, 9, 3, 1))
assert_size_stride(primals_3, (64, ), (1, ))
assert_size_stride(primals_4, (64, 64, 3, 3), (576, 9, 3, 1))
assert_size_stride(primals_5, (64, ), (1, ))
assert_size_stride(primals_6, (128, 64, 3, 3), (576, 9, 3, 1))
assert_size_stride(primals_7, (128, ), (1, ))
assert_size_stride(primals_8, (128, 128, 3, 3), (1152, 9, 3, 1))
assert_size_stride(primals_9, (128, ), (1, ))
assert_size_stride(primals_10, (256, 128, 3, 3), (1152, 9, 3, 1))
assert_size_stride(primals_11, (256, ), (1, ))
assert_size_stride(primals_12, (256, 256, 3, 3), (2304, 9, 3, 1))
assert_size_stride(primals_13, (256, ), (1, ))
assert_size_stride(primals_14, (256, 256, 3, 3), (2304, 9, 3, 1))
assert_size_stride(primals_15, (256, ), (1, ))
assert_size_stride(primals_16, (512, 256, 3, 3), (2304, 9, 3, 1))
assert_size_stride(primals_17, (512, ), (1, ))
assert_size_stride(primals_18, (512, 512, 3, 3), (4608, 9, 3, 1))
assert_size_stride(primals_19, (512, ), (1, ))
assert_size_stride(primals_20, (512, 512, 3, 3), (4608, 9, 3, 1))
assert_size_stride(primals_21, (512, ), (1, ))
assert_size_stride(primals_22, (512, 512, 3, 3), (4608, 9, 3, 1))
assert_size_stride(primals_23, (512, ), (1, ))
assert_size_stride(primals_24, (512, 512, 3, 3), (4608, 9, 3, 1))
assert_size_stride(primals_25, (512, ), (1, ))
assert_size_stride(primals_26, (512, 512, 3, 3), (4608, 9, 3, 1))
assert_size_stride(primals_27, (512, ), (1, ))
assert_size_stride(primals_28, (4096, 512, 7, 7), (25088, 49, 7, 1))
assert_size_stride(primals_29, (4096, ), (1, ))
assert_size_stride(primals_30, (4096, 4096, 1, 1), (4096, 1, 1, 1))
assert_size_stride(primals_31, (4096, ), (1, ))
assert_size_stride(primals_32, (1, 4096, 1, 1), (4096, 1, 1, 1))
assert_size_stride(primals_33, (1, ), (1, ))
assert_size_stride(primals_34, (1, 1, 64, 64), (4096, 4096, 64, 1))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((4, 5, 64, 64), (20480, 1, 320, 5), torch.float32)
# Unsorted Source Nodes: [], Original ATen: []
stream0 = get_raw_stream(0)
triton_poi_fused_0.run(primals_1, buf0, 20, 4096, grid=grid(20, 4096), stream=stream0)
del primals_1
buf1 = empty_strided_cuda((64, 5, 3, 3), (45, 1, 15, 5), torch.float32)
# Unsorted Source Nodes: [], Original ATen: []
triton_poi_fused_1.run(primals_2, buf1, 320, 9, grid=grid(320, 9), stream=stream0)
del primals_2
buf2 = empty_strided_cuda((64, 64, 3, 3), (576, 1, 192, 64), torch.float32)
# Unsorted Source Nodes: [], Original ATen: []
triton_poi_fused_2.run(primals_4, buf2, 4096, 9, grid=grid(4096, 9), stream=stream0)
del primals_4
buf3 = empty_strided_cuda((128, 64, 3, 3), (576, 1, 192, 64), torch.float32)
# Unsorted Source Nodes: [], Original ATen: []
triton_poi_fused_3.run(primals_6, buf3, 8192, 9, grid=grid(8192, 9), stream=stream0)
del primals_6
buf4 = empty_strided_cuda((128, 128, 3, 3), (1152, 1, 384, 128), torch.float32)
# Unsorted Source Nodes: [], Original ATen: []
triton_poi_fused_4.run(primals_8, buf4, 16384, 9, grid=grid(16384, 9), stream=stream0)
del primals_8
buf5 = empty_strided_cuda((256, 128, 3, 3), (1152, 1, 384, 128), torch.float32)
# Unsorted Source Nodes: [], Original ATen: []
triton_poi_fused_5.run(primals_10, buf5, 32768, 9, grid=grid(32768, 9), stream=stream0)
del primals_10
buf6 = empty_strided_cuda((256, 256, 3, 3), (2304, 1, 768, 256), torch.float32)
# Unsorted Source Nodes: [], Original ATen: []
triton_poi_fused_6.run(primals_12, buf6, 65536, 9, grid=grid(65536, 9), stream=stream0)
del primals_12
buf7 = empty_strided_cuda((256, 256, 3, 3), (2304, 1, 768, 256), torch.float32)
# Unsorted Source Nodes: [], Original ATen: []
triton_poi_fused_6.run(primals_14, buf7, 65536, 9, grid=grid(65536, 9), stream=stream0)
del primals_14
buf8 = empty_strided_cuda((512, 256, 3, 3), (2304, 1, 768, 256), torch.float32)
# Unsorted Source Nodes: [], Original ATen: []
triton_poi_fused_7.run(primals_16, buf8, 131072, 9, grid=grid(131072, 9), stream=stream0)
del primals_16
buf9 = empty_strided_cuda((512, 512, 3, 3), (4608, 1, 1536, 512), torch.float32)
# Unsorted Source Nodes: [], Original ATen: []
triton_poi_fused_8.run(primals_18, buf9, 262144, 9, grid=grid(262144, 9), stream=stream0)
del primals_18
buf10 = empty_strided_cuda((512, 512, 3, 3), (4608, 1, 1536, 512), torch.float32)
# Unsorted Source Nodes: [], Original ATen: []
triton_poi_fused_8.run(primals_20, buf10, 262144, 9, grid=grid(262144, 9), stream=stream0)
del primals_20
buf11 = empty_strided_cuda((512, 512, 3, 3), (4608, 1, 1536, 512), torch.float32)
# Unsorted Source Nodes: [], Original ATen: []
triton_poi_fused_8.run(primals_22, buf11, 262144, 9, grid=grid(262144, 9), stream=stream0)
del primals_22
buf12 = empty_strided_cuda((512, 512, 3, 3), (4608, 1, 1536, 512), torch.float32)
# Unsorted Source Nodes: [], Original ATen: []
triton_poi_fused_8.run(primals_24, buf12, 262144, 9, grid=grid(262144, 9), stream=stream0)
del primals_24
buf13 = empty_strided_cuda((512, 512, 3, 3), (4608, 1, 1536, 512), torch.float32)
# Unsorted Source Nodes: [], Original ATen: []
triton_poi_fused_8.run(primals_26, buf13, 262144, 9, grid=grid(262144, 9), stream=stream0)
del primals_26
buf14 = empty_strided_cuda((4096, 512, 7, 7), (25088, 1, 3584, 512), torch.float32)
# Unsorted Source Nodes: [], Original ATen: []
triton_poi_fused_9.run(primals_28, buf14, 2097152, 49, grid=grid(2097152, 49), stream=stream0)
del primals_28
# Topologically Sorted Source Nodes: [conv2d], Original ATen: [aten.convolution]
buf15 = extern_kernels.convolution(buf0, buf1, stride=(1, 1), padding=(100, 100), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None)
assert_size_stride(buf15, (4, 64, 262, 262), (4393216, 1, 16768, 64))
buf16 = buf15; del buf15 # reuse
# Topologically Sorted Source Nodes: [conv2d, h], Original ATen: [aten.convolution, aten.relu]
triton_poi_fused_convolution_relu_10.run(buf16, primals_3, 17572864, grid=grid(17572864), stream=stream0)
del primals_3
# Topologically Sorted Source Nodes: [conv2d_1], Original ATen: [aten.convolution]
buf17 = extern_kernels.convolution(buf16, buf2, stride=(1, 1), padding=(1, 1), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None)
assert_size_stride(buf17, (4, 64, 262, 262), (4393216, 1, 16768, 64))
buf18 = buf17; del buf17 # reuse
# Topologically Sorted Source Nodes: [conv2d_1, h_1], Original ATen: [aten.convolution, aten.relu]
triton_poi_fused_convolution_relu_10.run(buf18, primals_5, 17572864, grid=grid(17572864), stream=stream0)
del primals_5
buf19 = empty_strided_cuda((4, 64, 131, 131), (1098304, 1, 8384, 64), torch.float32)
buf20 = empty_strided_cuda((4, 64, 131, 131), (1098304, 1, 8384, 64), torch.int8)
# Topologically Sorted Source Nodes: [h_2], Original ATen: [aten.max_pool2d_with_indices]
triton_poi_fused_max_pool2d_with_indices_11.run(buf18, buf19, buf20, 4393216, grid=grid(4393216), stream=stream0)
# Topologically Sorted Source Nodes: [conv2d_2], Original ATen: [aten.convolution]
buf21 = extern_kernels.convolution(buf19, buf3, stride=(1, 1), padding=(1, 1), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None)
assert_size_stride(buf21, (4, 128, 131, 131), (2196608, 1, 16768, 128))
buf22 = buf21; del buf21 # reuse
# Topologically Sorted Source Nodes: [conv2d_2, h_3], Original ATen: [aten.convolution, aten.relu]
triton_poi_fused_convolution_relu_12.run(buf22, primals_7, 8786432, grid=grid(8786432), stream=stream0)
del primals_7
# Topologically Sorted Source Nodes: [conv2d_3], Original ATen: [aten.convolution]
buf23 = extern_kernels.convolution(buf22, buf4, stride=(1, 1), padding=(1, 1), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None)
assert_size_stride(buf23, (4, 128, 131, 131), (2196608, 1, 16768, 128))
buf24 = buf23; del buf23 # reuse
# Topologically Sorted Source Nodes: [conv2d_3, h_4], Original ATen: [aten.convolution, aten.relu]
triton_poi_fused_convolution_relu_12.run(buf24, primals_9, 8786432, grid=grid(8786432), stream=stream0)
del primals_9
buf25 = empty_strided_cuda((4, 128, 66, 66), (557568, 1, 8448, 128), torch.float32)
buf26 = empty_strided_cuda((4, 128, 66, 66), (557568, 1, 8448, 128), torch.int8)
# Topologically Sorted Source Nodes: [h_5], Original ATen: [aten.max_pool2d_with_indices]
triton_poi_fused_max_pool2d_with_indices_13.run(buf24, buf25, buf26, 2230272, grid=grid(2230272), stream=stream0)
# Topologically Sorted Source Nodes: [conv2d_4], Original ATen: [aten.convolution]
buf27 = extern_kernels.convolution(buf25, buf5, stride=(1, 1), padding=(1, 1), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None)
assert_size_stride(buf27, (4, 256, 66, 66), (1115136, 1, 16896, 256))
buf28 = buf27; del buf27 # reuse
# Topologically Sorted Source Nodes: [conv2d_4, h_6], Original ATen: [aten.convolution, aten.relu]
triton_poi_fused_convolution_relu_14.run(buf28, primals_11, 4460544, grid=grid(4460544), stream=stream0)
del primals_11
# Topologically Sorted Source Nodes: [conv2d_5], Original ATen: [aten.convolution]
buf29 = extern_kernels.convolution(buf28, buf6, stride=(1, 1), padding=(1, 1), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None)
assert_size_stride(buf29, (4, 256, 66, 66), (1115136, 1, 16896, 256))
buf30 = buf29; del buf29 # reuse
# Topologically Sorted Source Nodes: [conv2d_5, h_7], Original ATen: [aten.convolution, aten.relu]
triton_poi_fused_convolution_relu_14.run(buf30, primals_13, 4460544, grid=grid(4460544), stream=stream0)
del primals_13
# Topologically Sorted Source Nodes: [conv2d_6], Original ATen: [aten.convolution]
buf31 = extern_kernels.convolution(buf30, buf7, stride=(1, 1), padding=(1, 1), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None)
assert_size_stride(buf31, (4, 256, 66, 66), (1115136, 1, 16896, 256))
buf32 = buf31; del buf31 # reuse
# Topologically Sorted Source Nodes: [conv2d_6, h_8], Original ATen: [aten.convolution, aten.relu]
triton_poi_fused_convolution_relu_14.run(buf32, primals_15, 4460544, grid=grid(4460544), stream=stream0)
del primals_15
buf33 = empty_strided_cuda((4, 256, 33, 33), (278784, 1, 8448, 256), torch.float32)
buf34 = empty_strided_cuda((4, 256, 33, 33), (278784, 1, 8448, 256), torch.int8)
# Topologically Sorted Source Nodes: [h_9], Original ATen: [aten.max_pool2d_with_indices]
triton_poi_fused_max_pool2d_with_indices_15.run(buf32, buf33, buf34, 1115136, grid=grid(1115136), stream=stream0)
# Topologically Sorted Source Nodes: [conv2d_7], Original ATen: [aten.convolution]
buf35 = extern_kernels.convolution(buf33, buf8, stride=(1, 1), padding=(1, 1), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None)
assert_size_stride(buf35, (4, 512, 33, 33), (557568, 1, 16896, 512))
buf36 = buf35; del buf35 # reuse
# Topologically Sorted Source Nodes: [conv2d_7, h_10], Original ATen: [aten.convolution, aten.relu]
triton_poi_fused_convolution_relu_16.run(buf36, primals_17, 2230272, grid=grid(2230272), stream=stream0)
del primals_17
# Topologically Sorted Source Nodes: [conv2d_8], Original ATen: [aten.convolution]
buf37 = extern_kernels.convolution(buf36, buf9, stride=(1, 1), padding=(1, 1), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None)
assert_size_stride(buf37, (4, 512, 33, 33), (557568, 1, 16896, 512))
buf38 = buf37; del buf37 # reuse
# Topologically Sorted Source Nodes: [conv2d_8, h_11], Original ATen: [aten.convolution, aten.relu]
triton_poi_fused_convolution_relu_16.run(buf38, primals_19, 2230272, grid=grid(2230272), stream=stream0)
del primals_19
# Topologically Sorted Source Nodes: [conv2d_9], Original ATen: [aten.convolution]
buf39 = extern_kernels.convolution(buf38, buf10, stride=(1, 1), padding=(1, 1), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None)
assert_size_stride(buf39, (4, 512, 33, 33), (557568, 1, 16896, 512))
buf40 = buf39; del buf39 # reuse
# Topologically Sorted Source Nodes: [conv2d_9, h_12], Original ATen: [aten.convolution, aten.relu]
triton_poi_fused_convolution_relu_16.run(buf40, primals_21, 2230272, grid=grid(2230272), stream=stream0)
del primals_21
buf41 = empty_strided_cuda((4, 512, 17, 17), (147968, 1, 8704, 512), torch.float32)
buf42 = empty_strided_cuda((4, 512, 17, 17), (147968, 1, 8704, 512), torch.int8)
# Topologically Sorted Source Nodes: [h_13], Original ATen: [aten.max_pool2d_with_indices]
triton_poi_fused_max_pool2d_with_indices_17.run(buf40, buf41, buf42, 591872, grid=grid(591872), stream=stream0)
# Topologically Sorted Source Nodes: [conv2d_10], Original ATen: [aten.convolution]
buf43 = extern_kernels.convolution(buf41, buf11, stride=(1, 1), padding=(1, 1), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None)
assert_size_stride(buf43, (4, 512, 17, 17), (147968, 1, 8704, 512))
buf44 = buf43; del buf43 # reuse
# Topologically Sorted Source Nodes: [conv2d_10, h_14], Original ATen: [aten.convolution, aten.relu]
triton_poi_fused_convolution_relu_18.run(buf44, primals_23, 591872, grid=grid(591872), stream=stream0)
del primals_23
# Topologically Sorted Source Nodes: [conv2d_11], Original ATen: [aten.convolution]
buf45 = extern_kernels.convolution(buf44, buf12, stride=(1, 1), padding=(1, 1), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None)
assert_size_stride(buf45, (4, 512, 17, 17), (147968, 1, 8704, 512))
buf46 = buf45; del buf45 # reuse
# Topologically Sorted Source Nodes: [conv2d_11, h_15], Original ATen: [aten.convolution, aten.relu]
triton_poi_fused_convolution_relu_18.run(buf46, primals_25, 591872, grid=grid(591872), stream=stream0)
del primals_25
# Topologically Sorted Source Nodes: [conv2d_12], Original ATen: [aten.convolution]
buf47 = extern_kernels.convolution(buf46, buf13, stride=(1, 1), padding=(1, 1), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None)
assert_size_stride(buf47, (4, 512, 17, 17), (147968, 1, 8704, 512))
buf48 = buf47; del buf47 # reuse
# Topologically Sorted Source Nodes: [conv2d_12, h_16], Original ATen: [aten.convolution, aten.relu]
triton_poi_fused_convolution_relu_18.run(buf48, primals_27, 591872, grid=grid(591872), stream=stream0)
del primals_27
buf49 = empty_strided_cuda((4, 512, 9, 9), (41472, 1, 4608, 512), torch.float32)
buf50 = empty_strided_cuda((4, 512, 9, 9), (41472, 1, 4608, 512), torch.int8)
# Topologically Sorted Source Nodes: [h_17], Original ATen: [aten.max_pool2d_with_indices]
triton_poi_fused_max_pool2d_with_indices_19.run(buf48, buf49, buf50, 165888, grid=grid(165888), stream=stream0)
# Topologically Sorted Source Nodes: [conv2d_13], Original ATen: [aten.convolution]
buf51 = extern_kernels.convolution(buf49, buf14, stride=(1, 1), padding=(0, 0), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None)
assert_size_stride(buf51, (4, 4096, 3, 3), (36864, 1, 12288, 4096))
buf52 = buf51; del buf51 # reuse
# Topologically Sorted Source Nodes: [conv2d_13, h_18], Original ATen: [aten.convolution, aten.relu]
triton_poi_fused_convolution_relu_20.run(buf52, primals_29, 147456, grid=grid(147456), stream=stream0)
del primals_29
# Topologically Sorted Source Nodes: [conv2d_14], Original ATen: [aten.convolution]
buf53 = extern_kernels.convolution(buf52, primals_30, stride=(1, 1), padding=(0, 0), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None)
assert_size_stride(buf53, (4, 4096, 3, 3), (36864, 1, 12288, 4096))
buf54 = buf53; del buf53 # reuse
# Topologically Sorted Source Nodes: [conv2d_14, h_20], Original ATen: [aten.convolution, aten.relu]
triton_poi_fused_convolution_relu_20.run(buf54, primals_31, 147456, grid=grid(147456), stream=stream0)
del primals_31
# Topologically Sorted Source Nodes: [h_22], Original ATen: [aten.convolution]
buf55 = extern_kernels.convolution(buf54, primals_32, stride=(1, 1), padding=(0, 0), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None)
assert_size_stride(buf55, (4, 1, 3, 3), (9, 1, 3, 1))
buf56 = buf55; del buf55 # reuse
# Topologically Sorted Source Nodes: [h_22], Original ATen: [aten.convolution]
triton_poi_fused_convolution_21.run(buf56, primals_33, 36, grid=grid(36), stream=stream0)
del primals_33
# Topologically Sorted Source Nodes: [h_23], Original ATen: [aten.convolution]
buf57 = extern_kernels.convolution(buf56, primals_34, stride=(32, 32), padding=(0, 0), dilation=(1, 1), transposed=True, output_padding=(0, 0), groups=1, bias=None)
assert_size_stride(buf57, (4, 1, 128, 128), (16384, 1, 128, 1))
buf58 = empty_strided_cuda((4, 1, 64, 64), (4096, 4096, 64, 1), torch.float32)
# Topologically Sorted Source Nodes: [h_24], Original ATen: [aten.clone]
triton_poi_fused_clone_22.run(buf57, buf58, 16384, grid=grid(16384), stream=stream0)
del buf57
return (buf58, buf0, buf1, buf2, buf3, buf4, buf5, buf6, buf7, buf8, buf9, buf10, buf11, buf12, buf13, buf14, primals_30, primals_32, primals_34, buf16, buf18, buf19, buf20, buf22, buf24, buf25, buf26, buf28, buf30, buf32, buf33, buf34, buf36, buf38, buf40, buf41, buf42, buf44, buf46, buf48, buf49, buf50, buf52, buf54, buf56, )
def benchmark_compiled_module(times=10, repeat=10):
from torch._dynamo.testing import rand_strided
from torch._inductor.utils import print_performance
primals_1 = rand_strided((4, 5, 64, 64), (20480, 4096, 64, 1), device='cuda:0', dtype=torch.float32)
primals_2 = rand_strided((64, 5, 3, 3), (45, 9, 3, 1), device='cuda:0', dtype=torch.float32)
primals_3 = rand_strided((64, ), (1, ), device='cuda:0', dtype=torch.float32)
primals_4 = rand_strided((64, 64, 3, 3), (576, 9, 3, 1), device='cuda:0', dtype=torch.float32)
primals_5 = rand_strided((64, ), (1, ), device='cuda:0', dtype=torch.float32)
primals_6 = rand_strided((128, 64, 3, 3), (576, 9, 3, 1), device='cuda:0', dtype=torch.float32)
primals_7 = rand_strided((128, ), (1, ), device='cuda:0', dtype=torch.float32)
primals_8 = rand_strided((128, 128, 3, 3), (1152, 9, 3, 1), device='cuda:0', dtype=torch.float32)
primals_9 = rand_strided((128, ), (1, ), device='cuda:0', dtype=torch.float32)
primals_10 = rand_strided((256, 128, 3, 3), (1152, 9, 3, 1), device='cuda:0', dtype=torch.float32)
primals_11 = rand_strided((256, ), (1, ), device='cuda:0', dtype=torch.float32)
primals_12 = rand_strided((256, 256, 3, 3), (2304, 9, 3, 1), device='cuda:0', dtype=torch.float32)
primals_13 = rand_strided((256, ), (1, ), device='cuda:0', dtype=torch.float32)
primals_14 = rand_strided((256, 256, 3, 3), (2304, 9, 3, 1), device='cuda:0', dtype=torch.float32)
primals_15 = rand_strided((256, ), (1, ), device='cuda:0', dtype=torch.float32)
primals_16 = rand_strided((512, 256, 3, 3), (2304, 9, 3, 1), device='cuda:0', dtype=torch.float32)
primals_17 = rand_strided((512, ), (1, ), device='cuda:0', dtype=torch.float32)
primals_18 = rand_strided((512, 512, 3, 3), (4608, 9, 3, 1), device='cuda:0', dtype=torch.float32)
primals_19 = rand_strided((512, ), (1, ), device='cuda:0', dtype=torch.float32)
primals_20 = rand_strided((512, 512, 3, 3), (4608, 9, 3, 1), device='cuda:0', dtype=torch.float32)
primals_21 = rand_strided((512, ), (1, ), device='cuda:0', dtype=torch.float32)
primals_22 = rand_strided((512, 512, 3, 3), (4608, 9, 3, 1), device='cuda:0', dtype=torch.float32)
primals_23 = rand_strided((512, ), (1, ), device='cuda:0', dtype=torch.float32)
primals_24 = rand_strided((512, 512, 3, 3), (4608, 9, 3, 1), device='cuda:0', dtype=torch.float32)
primals_25 = rand_strided((512, ), (1, ), device='cuda:0', dtype=torch.float32)
primals_26 = rand_strided((512, 512, 3, 3), (4608, 9, 3, 1), device='cuda:0', dtype=torch.float32)
primals_27 = rand_strided((512, ), (1, ), device='cuda:0', dtype=torch.float32)
primals_28 = rand_strided((4096, 512, 7, 7), (25088, 49, 7, 1), device='cuda:0', dtype=torch.float32)
primals_29 = rand_strided((4096, ), (1, ), device='cuda:0', dtype=torch.float32)
primals_30 = rand_strided((4096, 4096, 1, 1), (4096, 1, 1, 1), device='cuda:0', dtype=torch.float32)
primals_31 = rand_strided((4096, ), (1, ), device='cuda:0', dtype=torch.float32)
primals_32 = rand_strided((1, 4096, 1, 1), (4096, 1, 1, 1), device='cuda:0', dtype=torch.float32)
primals_33 = rand_strided((1, ), (1, ), device='cuda:0', dtype=torch.float32)
primals_34 = rand_strided((1, 1, 64, 64), (4096, 4096, 64, 1), device='cuda:0', dtype=torch.float32)
fn = lambda: call([primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7, primals_8, primals_9, primals_10, primals_11, primals_12, primals_13, primals_14, primals_15, primals_16, primals_17, primals_18, primals_19, primals_20, primals_21, primals_22, primals_23, primals_24, primals_25, primals_26, primals_27, primals_28, primals_29, primals_30, primals_31, primals_32, primals_33, primals_34])
return print_performance(fn, times=times, repeat=repeat)
if __name__ == "__main__":
from torch._inductor.wrapper_benchmark import compiled_module_main
compiled_module_main('None', benchmark_compiled_module)
|
import torch
from torch._inductor.select_algorithm import extern_kernels
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
from torch._inductor.runtime import triton_helpers
import numpy as np
from torch import nn
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
@triton.jit
def triton_poi_fused_0(in_ptr0, out_ptr0, ynumel, xnumel, YBLOCK: tl.
constexpr, XBLOCK: tl.constexpr):
ynumel = 20
yoffset = tl.program_id(1) * YBLOCK
yindex = yoffset + tl.arange(0, YBLOCK)[None, :]
ymask = yindex < ynumel
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:, None]
tl.full([XBLOCK, YBLOCK], True, tl.int1)
x2 = xindex
y3 = yindex
y0 = yindex % 5
y1 = yindex // 5
tmp0 = tl.load(in_ptr0 + (x2 + 4096 * y3), ymask, eviction_policy=
'evict_last')
tl.store(out_ptr0 + (y0 + 5 * x2 + 20480 * y1), tmp0, ymask)
@triton.jit
def triton_poi_fused_1(in_ptr0, out_ptr0, ynumel, xnumel, YBLOCK: tl.
constexpr, XBLOCK: tl.constexpr):
ynumel = 320
xnumel = 9
yoffset = tl.program_id(1) * YBLOCK
yindex = yoffset + tl.arange(0, YBLOCK)[None, :]
ymask = yindex < ynumel
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:, None]
xmask = xindex < xnumel
x2 = xindex
y3 = yindex
y0 = yindex % 5
y1 = yindex // 5
tmp0 = tl.load(in_ptr0 + (x2 + 9 * y3), xmask & ymask, eviction_policy=
'evict_last')
tl.store(out_ptr0 + (y0 + 5 * x2 + 45 * y1), tmp0, xmask & ymask)
@triton.jit
def triton_poi_fused_2(in_ptr0, out_ptr0, ynumel, xnumel, YBLOCK: tl.
constexpr, XBLOCK: tl.constexpr):
xnumel = 9
yoffset = tl.program_id(1) * YBLOCK
yindex = yoffset + tl.arange(0, YBLOCK)[None, :]
tl.full([XBLOCK, YBLOCK], True, tl.int1)
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:, None]
xmask = xindex < xnumel
x2 = xindex
y3 = yindex
y0 = yindex % 64
y1 = yindex // 64
tmp0 = tl.load(in_ptr0 + (x2 + 9 * y3), xmask, eviction_policy='evict_last'
)
tl.store(out_ptr0 + (y0 + 64 * x2 + 576 * y1), tmp0, xmask)
@triton.jit
def triton_poi_fused_3(in_ptr0, out_ptr0, ynumel, xnumel, YBLOCK: tl.
constexpr, XBLOCK: tl.constexpr):
xnumel = 9
yoffset = tl.program_id(1) * YBLOCK
yindex = yoffset + tl.arange(0, YBLOCK)[None, :]
tl.full([XBLOCK, YBLOCK], True, tl.int1)
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:, None]
xmask = xindex < xnumel
x2 = xindex
y3 = yindex
y0 = yindex % 64
y1 = yindex // 64
tmp0 = tl.load(in_ptr0 + (x2 + 9 * y3), xmask, eviction_policy='evict_last'
)
tl.store(out_ptr0 + (y0 + 64 * x2 + 576 * y1), tmp0, xmask)
@triton.jit
def triton_poi_fused_4(in_ptr0, out_ptr0, ynumel, xnumel, YBLOCK: tl.
constexpr, XBLOCK: tl.constexpr):
xnumel = 9
yoffset = tl.program_id(1) * YBLOCK
yindex = yoffset + tl.arange(0, YBLOCK)[None, :]
tl.full([XBLOCK, YBLOCK], True, tl.int1)
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:, None]
xmask = xindex < xnumel
x2 = xindex
y3 = yindex
y0 = yindex % 128
y1 = yindex // 128
tmp0 = tl.load(in_ptr0 + (x2 + 9 * y3), xmask, eviction_policy='evict_last'
)
tl.store(out_ptr0 + (y0 + 128 * x2 + 1152 * y1), tmp0, xmask)
@triton.jit
def triton_poi_fused_5(in_ptr0, out_ptr0, ynumel, xnumel, YBLOCK: tl.
constexpr, XBLOCK: tl.constexpr):
xnumel = 9
yoffset = tl.program_id(1) * YBLOCK
yindex = yoffset + tl.arange(0, YBLOCK)[None, :]
tl.full([XBLOCK, YBLOCK], True, tl.int1)
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:, None]
xmask = xindex < xnumel
x2 = xindex
y3 = yindex
y0 = yindex % 128
y1 = yindex // 128
tmp0 = tl.load(in_ptr0 + (x2 + 9 * y3), xmask, eviction_policy='evict_last'
)
tl.store(out_ptr0 + (y0 + 128 * x2 + 1152 * y1), tmp0, xmask)
@triton.jit
def triton_poi_fused_6(in_ptr0, out_ptr0, ynumel, xnumel, YBLOCK: tl.
constexpr, XBLOCK: tl.constexpr):
xnumel = 9
yoffset = (tl.program_id(1) + tl.program_id(2) * tl.num_programs(1)
) * YBLOCK
yindex = yoffset + tl.arange(0, YBLOCK)[None, :]
tl.full([XBLOCK, YBLOCK], True, tl.int1)
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:, None]
xmask = xindex < xnumel
x2 = xindex
y3 = yindex
y0 = yindex % 256
y1 = yindex // 256
tmp0 = tl.load(in_ptr0 + (x2 + 9 * y3), xmask, eviction_policy='evict_last'
)
tl.store(out_ptr0 + (y0 + 256 * x2 + 2304 * y1), tmp0, xmask)
@triton.jit
def triton_poi_fused_7(in_ptr0, out_ptr0, ynumel, xnumel, YBLOCK: tl.
constexpr, XBLOCK: tl.constexpr):
xnumel = 9
yoffset = (tl.program_id(1) + tl.program_id(2) * tl.num_programs(1)
) * YBLOCK
yindex = yoffset + tl.arange(0, YBLOCK)[None, :]
tl.full([XBLOCK, YBLOCK], True, tl.int1)
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:, None]
xmask = xindex < xnumel
x2 = xindex
y3 = yindex
y0 = yindex % 256
y1 = yindex // 256
tmp0 = tl.load(in_ptr0 + (x2 + 9 * y3), xmask, eviction_policy='evict_last'
)
tl.store(out_ptr0 + (y0 + 256 * x2 + 2304 * y1), tmp0, xmask)
@triton.jit
def triton_poi_fused_8(in_ptr0, out_ptr0, ynumel, xnumel, YBLOCK: tl.
constexpr, XBLOCK: tl.constexpr):
xnumel = 9
yoffset = (tl.program_id(1) + tl.program_id(2) * tl.num_programs(1)
) * YBLOCK
yindex = yoffset + tl.arange(0, YBLOCK)[None, :]
tl.full([XBLOCK, YBLOCK], True, tl.int1)
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:, None]
xmask = xindex < xnumel
x2 = xindex
y3 = yindex
y0 = yindex % 512
y1 = yindex // 512
tmp0 = tl.load(in_ptr0 + (x2 + 9 * y3), xmask, eviction_policy='evict_last'
)
tl.store(out_ptr0 + (y0 + 512 * x2 + 4608 * y1), tmp0, xmask)
@triton.jit
def triton_poi_fused_9(in_ptr0, out_ptr0, ynumel, xnumel, YBLOCK: tl.
constexpr, XBLOCK: tl.constexpr):
xnumel = 49
yoffset = (tl.program_id(1) + tl.program_id(2) * tl.num_programs(1)
) * YBLOCK
yindex = yoffset + tl.arange(0, YBLOCK)[None, :]
tl.full([XBLOCK, YBLOCK], True, tl.int1)
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:, None]
xmask = xindex < xnumel
x2 = xindex
y3 = yindex
y0 = yindex % 512
y1 = yindex // 512
tmp0 = tl.load(in_ptr0 + (x2 + 49 * y3), xmask, eviction_policy=
'evict_last')
tl.store(out_ptr0 + (y0 + 512 * x2 + 25088 * y1), tmp0, xmask)
@triton.jit
def triton_poi_fused_convolution_relu_10(in_out_ptr0, in_ptr0, xnumel,
XBLOCK: tl.constexpr):
xnumel = 17572864
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x2 = xindex
x0 = xindex % 64
tmp0 = tl.load(in_out_ptr0 + x2, xmask)
tmp1 = tl.load(in_ptr0 + x0, xmask, eviction_policy='evict_last')
tmp2 = tmp0 + tmp1
tmp3 = tl.full([1], 0, tl.int32)
tmp4 = triton_helpers.maximum(tmp3, tmp2)
tl.store(in_out_ptr0 + x2, tmp4, xmask)
@triton.jit
def triton_poi_fused_max_pool2d_with_indices_11(in_ptr0, out_ptr0, out_ptr1,
xnumel, XBLOCK: tl.constexpr):
xnumel = 4393216
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex % 64
x1 = xindex // 64 % 131
x2 = xindex // 8384
x3 = xindex
tmp0 = tl.load(in_ptr0 + (x0 + 128 * x1 + 33536 * x2), xmask)
tmp1 = tl.load(in_ptr0 + (64 + x0 + 128 * x1 + 33536 * x2), xmask)
tmp3 = tl.load(in_ptr0 + (16768 + x0 + 128 * x1 + 33536 * x2), xmask)
tmp5 = tl.load(in_ptr0 + (16832 + x0 + 128 * x1 + 33536 * x2), xmask)
tmp2 = triton_helpers.maximum(tmp1, tmp0)
tmp4 = triton_helpers.maximum(tmp3, tmp2)
tmp6 = triton_helpers.maximum(tmp5, tmp4)
tmp7 = tmp1 > tmp0
tmp8 = tl.full([1], 1, tl.int8)
tmp9 = tl.full([1], 0, tl.int8)
tmp10 = tl.where(tmp7, tmp8, tmp9)
tmp11 = tmp3 > tmp2
tmp12 = tl.full([1], 2, tl.int8)
tmp13 = tl.where(tmp11, tmp12, tmp10)
tmp14 = tmp5 > tmp4
tmp15 = tl.full([1], 3, tl.int8)
tmp16 = tl.where(tmp14, tmp15, tmp13)
tl.store(out_ptr0 + x3, tmp6, xmask)
tl.store(out_ptr1 + x3, tmp16, xmask)
@triton.jit
def triton_poi_fused_convolution_relu_12(in_out_ptr0, in_ptr0, xnumel,
XBLOCK: tl.constexpr):
xnumel = 8786432
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x2 = xindex
x0 = xindex % 128
tmp0 = tl.load(in_out_ptr0 + x2, xmask)
tmp1 = tl.load(in_ptr0 + x0, xmask, eviction_policy='evict_last')
tmp2 = tmp0 + tmp1
tmp3 = tl.full([1], 0, tl.int32)
tmp4 = triton_helpers.maximum(tmp3, tmp2)
tl.store(in_out_ptr0 + x2, tmp4, xmask)
@triton.jit
def triton_poi_fused_max_pool2d_with_indices_13(in_ptr0, out_ptr0, out_ptr1,
xnumel, XBLOCK: tl.constexpr):
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
tl.full([XBLOCK], True, tl.int1)
x2 = xindex // 8448 % 66
x1 = xindex // 128 % 66
x0 = xindex % 128
x3 = xindex // 557568
x6 = xindex
tmp0 = 2 * x2
tmp1 = tl.full([1], 0, tl.int64)
tmp2 = tmp0 >= tmp1
tmp3 = tl.full([1], 131, tl.int64)
tmp4 = tmp0 < tmp3
tmp5 = tmp2 & tmp4
tmp6 = 2 * x1
tmp7 = tmp6 >= tmp1
tmp8 = tmp6 < tmp3
tmp9 = tmp7 & tmp8
tmp10 = tmp5 & tmp9
tmp11 = tl.load(in_ptr0 + (x0 + 256 * x1 + 33536 * x2 + 2196608 * x3),
tmp10, other=float('-inf'))
tmp12 = 1 + 2 * x1
tmp13 = tmp12 >= tmp1
tmp14 = tmp12 < tmp3
tmp15 = tmp13 & tmp14
tmp16 = tmp5 & tmp15
tmp17 = tl.load(in_ptr0 + (128 + x0 + 256 * x1 + 33536 * x2 + 2196608 *
x3), tmp16, other=float('-inf'))
tmp18 = triton_helpers.maximum(tmp17, tmp11)
tmp19 = 1 + 2 * x2
tmp20 = tmp19 >= tmp1
tmp21 = tmp19 < tmp3
tmp22 = tmp20 & tmp21
tmp23 = tmp22 & tmp9
tmp24 = tl.load(in_ptr0 + (16768 + x0 + 256 * x1 + 33536 * x2 + 2196608 *
x3), tmp23, other=float('-inf'))
tmp25 = triton_helpers.maximum(tmp24, tmp18)
tmp26 = tmp22 & tmp15
tmp27 = tl.load(in_ptr0 + (16896 + x0 + 256 * x1 + 33536 * x2 + 2196608 *
x3), tmp26, other=float('-inf'))
tmp28 = triton_helpers.maximum(tmp27, tmp25)
tmp29 = tmp17 > tmp11
tmp30 = tl.full([1], 1, tl.int8)
tmp31 = tl.full([1], 0, tl.int8)
tmp32 = tl.where(tmp29, tmp30, tmp31)
tmp33 = tmp24 > tmp18
tmp34 = tl.full([1], 2, tl.int8)
tmp35 = tl.where(tmp33, tmp34, tmp32)
tmp36 = tmp27 > tmp25
tmp37 = tl.full([1], 3, tl.int8)
tmp38 = tl.where(tmp36, tmp37, tmp35)
tl.store(out_ptr0 + x6, tmp28, None)
tl.store(out_ptr1 + x6, tmp38, None)
@triton.jit
def triton_poi_fused_convolution_relu_14(in_out_ptr0, in_ptr0, xnumel,
XBLOCK: tl.constexpr):
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
tl.full([XBLOCK], True, tl.int1)
x2 = xindex
x0 = xindex % 256
tmp0 = tl.load(in_out_ptr0 + x2, None)
tmp1 = tl.load(in_ptr0 + x0, None, eviction_policy='evict_last')
tmp2 = tmp0 + tmp1
tmp3 = tl.full([1], 0, tl.int32)
tmp4 = triton_helpers.maximum(tmp3, tmp2)
tl.store(in_out_ptr0 + x2, tmp4, None)
@triton.jit
def triton_poi_fused_max_pool2d_with_indices_15(in_ptr0, out_ptr0, out_ptr1,
xnumel, XBLOCK: tl.constexpr):
xnumel = 1115136
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex % 256
x1 = xindex // 256 % 33
x2 = xindex // 8448
x3 = xindex
tmp0 = tl.load(in_ptr0 + (x0 + 512 * x1 + 33792 * x2), xmask)
tmp1 = tl.load(in_ptr0 + (256 + x0 + 512 * x1 + 33792 * x2), xmask)
tmp3 = tl.load(in_ptr0 + (16896 + x0 + 512 * x1 + 33792 * x2), xmask)
tmp5 = tl.load(in_ptr0 + (17152 + x0 + 512 * x1 + 33792 * x2), xmask)
tmp2 = triton_helpers.maximum(tmp1, tmp0)
tmp4 = triton_helpers.maximum(tmp3, tmp2)
tmp6 = triton_helpers.maximum(tmp5, tmp4)
tmp7 = tmp1 > tmp0
tmp8 = tl.full([1], 1, tl.int8)
tmp9 = tl.full([1], 0, tl.int8)
tmp10 = tl.where(tmp7, tmp8, tmp9)
tmp11 = tmp3 > tmp2
tmp12 = tl.full([1], 2, tl.int8)
tmp13 = tl.where(tmp11, tmp12, tmp10)
tmp14 = tmp5 > tmp4
tmp15 = tl.full([1], 3, tl.int8)
tmp16 = tl.where(tmp14, tmp15, tmp13)
tl.store(out_ptr0 + x3, tmp6, xmask)
tl.store(out_ptr1 + x3, tmp16, xmask)
@triton.jit
def triton_poi_fused_convolution_relu_16(in_out_ptr0, in_ptr0, xnumel,
XBLOCK: tl.constexpr):
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
tl.full([XBLOCK], True, tl.int1)
x2 = xindex
x0 = xindex % 512
tmp0 = tl.load(in_out_ptr0 + x2, None)
tmp1 = tl.load(in_ptr0 + x0, None, eviction_policy='evict_last')
tmp2 = tmp0 + tmp1
tmp3 = tl.full([1], 0, tl.int32)
tmp4 = triton_helpers.maximum(tmp3, tmp2)
tl.store(in_out_ptr0 + x2, tmp4, None)
@triton.jit
def triton_poi_fused_max_pool2d_with_indices_17(in_ptr0, out_ptr0, out_ptr1,
xnumel, XBLOCK: tl.constexpr):
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
tl.full([XBLOCK], True, tl.int1)
x2 = xindex // 8704 % 17
x1 = xindex // 512 % 17
x0 = xindex % 512
x3 = xindex // 147968
x6 = xindex
tmp0 = 2 * x2
tmp1 = tl.full([1], 0, tl.int64)
tmp2 = tmp0 >= tmp1
tmp3 = tl.full([1], 33, tl.int64)
tmp4 = tmp0 < tmp3
tmp5 = tmp2 & tmp4
tmp6 = 2 * x1
tmp7 = tmp6 >= tmp1
tmp8 = tmp6 < tmp3
tmp9 = tmp7 & tmp8
tmp10 = tmp5 & tmp9
tmp11 = tl.load(in_ptr0 + (x0 + 1024 * x1 + 33792 * x2 + 557568 * x3),
tmp10, other=float('-inf'))
tmp12 = 1 + 2 * x1
tmp13 = tmp12 >= tmp1
tmp14 = tmp12 < tmp3
tmp15 = tmp13 & tmp14
tmp16 = tmp5 & tmp15
tmp17 = tl.load(in_ptr0 + (512 + x0 + 1024 * x1 + 33792 * x2 + 557568 *
x3), tmp16, other=float('-inf'))
tmp18 = triton_helpers.maximum(tmp17, tmp11)
tmp19 = 1 + 2 * x2
tmp20 = tmp19 >= tmp1
tmp21 = tmp19 < tmp3
tmp22 = tmp20 & tmp21
tmp23 = tmp22 & tmp9
tmp24 = tl.load(in_ptr0 + (16896 + x0 + 1024 * x1 + 33792 * x2 + 557568 *
x3), tmp23, other=float('-inf'))
tmp25 = triton_helpers.maximum(tmp24, tmp18)
tmp26 = tmp22 & tmp15
tmp27 = tl.load(in_ptr0 + (17408 + x0 + 1024 * x1 + 33792 * x2 + 557568 *
x3), tmp26, other=float('-inf'))
tmp28 = triton_helpers.maximum(tmp27, tmp25)
tmp29 = tmp17 > tmp11
tmp30 = tl.full([1], 1, tl.int8)
tmp31 = tl.full([1], 0, tl.int8)
tmp32 = tl.where(tmp29, tmp30, tmp31)
tmp33 = tmp24 > tmp18
tmp34 = tl.full([1], 2, tl.int8)
tmp35 = tl.where(tmp33, tmp34, tmp32)
tmp36 = tmp27 > tmp25
tmp37 = tl.full([1], 3, tl.int8)
tmp38 = tl.where(tmp36, tmp37, tmp35)
tl.store(out_ptr0 + x6, tmp28, None)
tl.store(out_ptr1 + x6, tmp38, None)
@triton.jit
def triton_poi_fused_convolution_relu_18(in_out_ptr0, in_ptr0, xnumel,
XBLOCK: tl.constexpr):
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
tl.full([XBLOCK], True, tl.int1)
x2 = xindex
x0 = xindex % 512
tmp0 = tl.load(in_out_ptr0 + x2, None)
tmp1 = tl.load(in_ptr0 + x0, None, eviction_policy='evict_last')
tmp2 = tmp0 + tmp1
tmp3 = tl.full([1], 0, tl.int32)
tmp4 = triton_helpers.maximum(tmp3, tmp2)
tl.store(in_out_ptr0 + x2, tmp4, None)
@triton.jit
def triton_poi_fused_max_pool2d_with_indices_19(in_ptr0, out_ptr0, out_ptr1,
xnumel, XBLOCK: tl.constexpr):
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
tl.full([XBLOCK], True, tl.int1)
x2 = xindex // 4608 % 9
x1 = xindex // 512 % 9
x0 = xindex % 512
x3 = xindex // 41472
x6 = xindex
tmp0 = 2 * x2
tmp1 = tl.full([1], 0, tl.int64)
tmp2 = tmp0 >= tmp1
tmp3 = tl.full([1], 17, tl.int64)
tmp4 = tmp0 < tmp3
tmp5 = tmp2 & tmp4
tmp6 = 2 * x1
tmp7 = tmp6 >= tmp1
tmp8 = tmp6 < tmp3
tmp9 = tmp7 & tmp8
tmp10 = tmp5 & tmp9
tmp11 = tl.load(in_ptr0 + (x0 + 1024 * x1 + 17408 * x2 + 147968 * x3),
tmp10, other=float('-inf'))
tmp12 = 1 + 2 * x1
tmp13 = tmp12 >= tmp1
tmp14 = tmp12 < tmp3
tmp15 = tmp13 & tmp14
tmp16 = tmp5 & tmp15
tmp17 = tl.load(in_ptr0 + (512 + x0 + 1024 * x1 + 17408 * x2 + 147968 *
x3), tmp16, other=float('-inf'))
tmp18 = triton_helpers.maximum(tmp17, tmp11)
tmp19 = 1 + 2 * x2
tmp20 = tmp19 >= tmp1
tmp21 = tmp19 < tmp3
tmp22 = tmp20 & tmp21
tmp23 = tmp22 & tmp9
tmp24 = tl.load(in_ptr0 + (8704 + x0 + 1024 * x1 + 17408 * x2 + 147968 *
x3), tmp23, other=float('-inf'))
tmp25 = triton_helpers.maximum(tmp24, tmp18)
tmp26 = tmp22 & tmp15
tmp27 = tl.load(in_ptr0 + (9216 + x0 + 1024 * x1 + 17408 * x2 + 147968 *
x3), tmp26, other=float('-inf'))
tmp28 = triton_helpers.maximum(tmp27, tmp25)
tmp29 = tmp17 > tmp11
tmp30 = tl.full([1], 1, tl.int8)
tmp31 = tl.full([1], 0, tl.int8)
tmp32 = tl.where(tmp29, tmp30, tmp31)
tmp33 = tmp24 > tmp18
tmp34 = tl.full([1], 2, tl.int8)
tmp35 = tl.where(tmp33, tmp34, tmp32)
tmp36 = tmp27 > tmp25
tmp37 = tl.full([1], 3, tl.int8)
tmp38 = tl.where(tmp36, tmp37, tmp35)
tl.store(out_ptr0 + x6, tmp28, None)
tl.store(out_ptr1 + x6, tmp38, None)
@triton.jit
def triton_poi_fused_convolution_relu_20(in_out_ptr0, in_ptr0, xnumel,
XBLOCK: tl.constexpr):
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
tl.full([XBLOCK], True, tl.int1)
x2 = xindex
x0 = xindex % 4096
tmp0 = tl.load(in_out_ptr0 + x2, None)
tmp1 = tl.load(in_ptr0 + x0, None, eviction_policy='evict_last')
tmp2 = tmp0 + tmp1
tmp3 = tl.full([1], 0, tl.int32)
tmp4 = triton_helpers.maximum(tmp3, tmp2)
tl.store(in_out_ptr0 + x2, tmp4, None)
@triton.jit
def triton_poi_fused_convolution_21(in_out_ptr0, in_ptr0, xnumel, XBLOCK:
tl.constexpr):
xnumel = 36
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex
tmp0 = tl.load(in_out_ptr0 + x0, xmask)
tmp1 = tl.load(in_ptr0 + 0)
tmp2 = tl.broadcast_to(tmp1, [XBLOCK])
tmp3 = tmp0 + tmp2
tl.store(in_out_ptr0 + x0, tmp3, xmask)
@triton.jit
def triton_poi_fused_clone_22(in_ptr0, out_ptr0, xnumel, XBLOCK: tl.constexpr):
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
tl.full([XBLOCK], True, tl.int1)
x0 = xindex % 64
x1 = xindex // 64 % 64
x2 = xindex // 4096
x3 = xindex
tmp0 = tl.load(in_ptr0 + (2451 + x0 + 128 * x1 + 16384 * x2), None)
tl.store(out_ptr0 + x3, tmp0, None)
def call(args):
(primals_1, primals_2, primals_3, primals_4, primals_5, primals_6,
primals_7, primals_8, primals_9, primals_10, primals_11, primals_12,
primals_13, primals_14, primals_15, primals_16, primals_17,
primals_18, primals_19, primals_20, primals_21, primals_22,
primals_23, primals_24, primals_25, primals_26, primals_27,
primals_28, primals_29, primals_30, primals_31, primals_32,
primals_33, primals_34) = args
args.clear()
assert_size_stride(primals_1, (4, 5, 64, 64), (20480, 4096, 64, 1))
assert_size_stride(primals_2, (64, 5, 3, 3), (45, 9, 3, 1))
assert_size_stride(primals_3, (64,), (1,))
assert_size_stride(primals_4, (64, 64, 3, 3), (576, 9, 3, 1))
assert_size_stride(primals_5, (64,), (1,))
assert_size_stride(primals_6, (128, 64, 3, 3), (576, 9, 3, 1))
assert_size_stride(primals_7, (128,), (1,))
assert_size_stride(primals_8, (128, 128, 3, 3), (1152, 9, 3, 1))
assert_size_stride(primals_9, (128,), (1,))
assert_size_stride(primals_10, (256, 128, 3, 3), (1152, 9, 3, 1))
assert_size_stride(primals_11, (256,), (1,))
assert_size_stride(primals_12, (256, 256, 3, 3), (2304, 9, 3, 1))
assert_size_stride(primals_13, (256,), (1,))
assert_size_stride(primals_14, (256, 256, 3, 3), (2304, 9, 3, 1))
assert_size_stride(primals_15, (256,), (1,))
assert_size_stride(primals_16, (512, 256, 3, 3), (2304, 9, 3, 1))
assert_size_stride(primals_17, (512,), (1,))
assert_size_stride(primals_18, (512, 512, 3, 3), (4608, 9, 3, 1))
assert_size_stride(primals_19, (512,), (1,))
assert_size_stride(primals_20, (512, 512, 3, 3), (4608, 9, 3, 1))
assert_size_stride(primals_21, (512,), (1,))
assert_size_stride(primals_22, (512, 512, 3, 3), (4608, 9, 3, 1))
assert_size_stride(primals_23, (512,), (1,))
assert_size_stride(primals_24, (512, 512, 3, 3), (4608, 9, 3, 1))
assert_size_stride(primals_25, (512,), (1,))
assert_size_stride(primals_26, (512, 512, 3, 3), (4608, 9, 3, 1))
assert_size_stride(primals_27, (512,), (1,))
assert_size_stride(primals_28, (4096, 512, 7, 7), (25088, 49, 7, 1))
assert_size_stride(primals_29, (4096,), (1,))
assert_size_stride(primals_30, (4096, 4096, 1, 1), (4096, 1, 1, 1))
assert_size_stride(primals_31, (4096,), (1,))
assert_size_stride(primals_32, (1, 4096, 1, 1), (4096, 1, 1, 1))
assert_size_stride(primals_33, (1,), (1,))
assert_size_stride(primals_34, (1, 1, 64, 64), (4096, 4096, 64, 1))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((4, 5, 64, 64), (20480, 1, 320, 5), torch
.float32)
get_raw_stream(0)
triton_poi_fused_0[grid(20, 4096)](primals_1, buf0, 20, 4096,
XBLOCK=32, YBLOCK=32, num_warps=4, num_stages=1)
del primals_1
buf1 = empty_strided_cuda((64, 5, 3, 3), (45, 1, 15, 5), torch.float32)
triton_poi_fused_1[grid(320, 9)](primals_2, buf1, 320, 9, XBLOCK=16,
YBLOCK=64, num_warps=4, num_stages=1)
del primals_2
buf2 = empty_strided_cuda((64, 64, 3, 3), (576, 1, 192, 64), torch.
float32)
triton_poi_fused_2[grid(4096, 9)](primals_4, buf2, 4096, 9, XBLOCK=
16, YBLOCK=64, num_warps=4, num_stages=1)
del primals_4
buf3 = empty_strided_cuda((128, 64, 3, 3), (576, 1, 192, 64), torch
.float32)
triton_poi_fused_3[grid(8192, 9)](primals_6, buf3, 8192, 9, XBLOCK=
16, YBLOCK=64, num_warps=4, num_stages=1)
del primals_6
buf4 = empty_strided_cuda((128, 128, 3, 3), (1152, 1, 384, 128),
torch.float32)
triton_poi_fused_4[grid(16384, 9)](primals_8, buf4, 16384, 9,
XBLOCK=16, YBLOCK=64, num_warps=4, num_stages=1)
del primals_8
buf5 = empty_strided_cuda((256, 128, 3, 3), (1152, 1, 384, 128),
torch.float32)
triton_poi_fused_5[grid(32768, 9)](primals_10, buf5, 32768, 9,
XBLOCK=16, YBLOCK=64, num_warps=4, num_stages=1)
del primals_10
buf6 = empty_strided_cuda((256, 256, 3, 3), (2304, 1, 768, 256),
torch.float32)
triton_poi_fused_6[grid(65536, 9)](primals_12, buf6, 65536, 9,
XBLOCK=16, YBLOCK=64, num_warps=4, num_stages=1)
del primals_12
buf7 = empty_strided_cuda((256, 256, 3, 3), (2304, 1, 768, 256),
torch.float32)
triton_poi_fused_6[grid(65536, 9)](primals_14, buf7, 65536, 9,
XBLOCK=16, YBLOCK=64, num_warps=4, num_stages=1)
del primals_14
buf8 = empty_strided_cuda((512, 256, 3, 3), (2304, 1, 768, 256),
torch.float32)
triton_poi_fused_7[grid(131072, 9)](primals_16, buf8, 131072, 9,
XBLOCK=16, YBLOCK=64, num_warps=4, num_stages=1)
del primals_16
buf9 = empty_strided_cuda((512, 512, 3, 3), (4608, 1, 1536, 512),
torch.float32)
triton_poi_fused_8[grid(262144, 9)](primals_18, buf9, 262144, 9,
XBLOCK=16, YBLOCK=64, num_warps=4, num_stages=1)
del primals_18
buf10 = empty_strided_cuda((512, 512, 3, 3), (4608, 1, 1536, 512),
torch.float32)
triton_poi_fused_8[grid(262144, 9)](primals_20, buf10, 262144, 9,
XBLOCK=16, YBLOCK=64, num_warps=4, num_stages=1)
del primals_20
buf11 = empty_strided_cuda((512, 512, 3, 3), (4608, 1, 1536, 512),
torch.float32)
triton_poi_fused_8[grid(262144, 9)](primals_22, buf11, 262144, 9,
XBLOCK=16, YBLOCK=64, num_warps=4, num_stages=1)
del primals_22
buf12 = empty_strided_cuda((512, 512, 3, 3), (4608, 1, 1536, 512),
torch.float32)
triton_poi_fused_8[grid(262144, 9)](primals_24, buf12, 262144, 9,
XBLOCK=16, YBLOCK=64, num_warps=4, num_stages=1)
del primals_24
buf13 = empty_strided_cuda((512, 512, 3, 3), (4608, 1, 1536, 512),
torch.float32)
triton_poi_fused_8[grid(262144, 9)](primals_26, buf13, 262144, 9,
XBLOCK=16, YBLOCK=64, num_warps=4, num_stages=1)
del primals_26
buf14 = empty_strided_cuda((4096, 512, 7, 7), (25088, 1, 3584, 512),
torch.float32)
triton_poi_fused_9[grid(2097152, 49)](primals_28, buf14, 2097152,
49, XBLOCK=32, YBLOCK=64, num_warps=8, num_stages=1)
del primals_28
buf15 = extern_kernels.convolution(buf0, buf1, stride=(1, 1),
padding=(100, 100), dilation=(1, 1), transposed=False,
output_padding=(0, 0), groups=1, bias=None)
assert_size_stride(buf15, (4, 64, 262, 262), (4393216, 1, 16768, 64))
buf16 = buf15
del buf15
triton_poi_fused_convolution_relu_10[grid(17572864)](buf16,
primals_3, 17572864, XBLOCK=512, num_warps=8, num_stages=1)
del primals_3
buf17 = extern_kernels.convolution(buf16, buf2, stride=(1, 1),
padding=(1, 1), dilation=(1, 1), transposed=False,
output_padding=(0, 0), groups=1, bias=None)
assert_size_stride(buf17, (4, 64, 262, 262), (4393216, 1, 16768, 64))
buf18 = buf17
del buf17
triton_poi_fused_convolution_relu_10[grid(17572864)](buf18,
primals_5, 17572864, XBLOCK=512, num_warps=8, num_stages=1)
del primals_5
buf19 = empty_strided_cuda((4, 64, 131, 131), (1098304, 1, 8384, 64
), torch.float32)
buf20 = empty_strided_cuda((4, 64, 131, 131), (1098304, 1, 8384, 64
), torch.int8)
triton_poi_fused_max_pool2d_with_indices_11[grid(4393216)](buf18,
buf19, buf20, 4393216, XBLOCK=512, num_warps=8, num_stages=1)
buf21 = extern_kernels.convolution(buf19, buf3, stride=(1, 1),
padding=(1, 1), dilation=(1, 1), transposed=False,
output_padding=(0, 0), groups=1, bias=None)
assert_size_stride(buf21, (4, 128, 131, 131), (2196608, 1, 16768, 128))
buf22 = buf21
del buf21
triton_poi_fused_convolution_relu_12[grid(8786432)](buf22,
primals_7, 8786432, XBLOCK=512, num_warps=8, num_stages=1)
del primals_7
buf23 = extern_kernels.convolution(buf22, buf4, stride=(1, 1),
padding=(1, 1), dilation=(1, 1), transposed=False,
output_padding=(0, 0), groups=1, bias=None)
assert_size_stride(buf23, (4, 128, 131, 131), (2196608, 1, 16768, 128))
buf24 = buf23
del buf23
triton_poi_fused_convolution_relu_12[grid(8786432)](buf24,
primals_9, 8786432, XBLOCK=512, num_warps=8, num_stages=1)
del primals_9
buf25 = empty_strided_cuda((4, 128, 66, 66), (557568, 1, 8448, 128),
torch.float32)
buf26 = empty_strided_cuda((4, 128, 66, 66), (557568, 1, 8448, 128),
torch.int8)
triton_poi_fused_max_pool2d_with_indices_13[grid(2230272)](buf24,
buf25, buf26, 2230272, XBLOCK=512, num_warps=8, num_stages=1)
buf27 = extern_kernels.convolution(buf25, buf5, stride=(1, 1),
padding=(1, 1), dilation=(1, 1), transposed=False,
output_padding=(0, 0), groups=1, bias=None)
assert_size_stride(buf27, (4, 256, 66, 66), (1115136, 1, 16896, 256))
buf28 = buf27
del buf27
triton_poi_fused_convolution_relu_14[grid(4460544)](buf28,
primals_11, 4460544, XBLOCK=1024, num_warps=4, num_stages=1)
del primals_11
buf29 = extern_kernels.convolution(buf28, buf6, stride=(1, 1),
padding=(1, 1), dilation=(1, 1), transposed=False,
output_padding=(0, 0), groups=1, bias=None)
assert_size_stride(buf29, (4, 256, 66, 66), (1115136, 1, 16896, 256))
buf30 = buf29
del buf29
triton_poi_fused_convolution_relu_14[grid(4460544)](buf30,
primals_13, 4460544, XBLOCK=1024, num_warps=4, num_stages=1)
del primals_13
buf31 = extern_kernels.convolution(buf30, buf7, stride=(1, 1),
padding=(1, 1), dilation=(1, 1), transposed=False,
output_padding=(0, 0), groups=1, bias=None)
assert_size_stride(buf31, (4, 256, 66, 66), (1115136, 1, 16896, 256))
buf32 = buf31
del buf31
triton_poi_fused_convolution_relu_14[grid(4460544)](buf32,
primals_15, 4460544, XBLOCK=1024, num_warps=4, num_stages=1)
del primals_15
buf33 = empty_strided_cuda((4, 256, 33, 33), (278784, 1, 8448, 256),
torch.float32)
buf34 = empty_strided_cuda((4, 256, 33, 33), (278784, 1, 8448, 256),
torch.int8)
triton_poi_fused_max_pool2d_with_indices_15[grid(1115136)](buf32,
buf33, buf34, 1115136, XBLOCK=512, num_warps=8, num_stages=1)
buf35 = extern_kernels.convolution(buf33, buf8, stride=(1, 1),
padding=(1, 1), dilation=(1, 1), transposed=False,
output_padding=(0, 0), groups=1, bias=None)
assert_size_stride(buf35, (4, 512, 33, 33), (557568, 1, 16896, 512))
buf36 = buf35
del buf35
triton_poi_fused_convolution_relu_16[grid(2230272)](buf36,
primals_17, 2230272, XBLOCK=1024, num_warps=4, num_stages=1)
del primals_17
buf37 = extern_kernels.convolution(buf36, buf9, stride=(1, 1),
padding=(1, 1), dilation=(1, 1), transposed=False,
output_padding=(0, 0), groups=1, bias=None)
assert_size_stride(buf37, (4, 512, 33, 33), (557568, 1, 16896, 512))
buf38 = buf37
del buf37
triton_poi_fused_convolution_relu_16[grid(2230272)](buf38,
primals_19, 2230272, XBLOCK=1024, num_warps=4, num_stages=1)
del primals_19
buf39 = extern_kernels.convolution(buf38, buf10, stride=(1, 1),
padding=(1, 1), dilation=(1, 1), transposed=False,
output_padding=(0, 0), groups=1, bias=None)
assert_size_stride(buf39, (4, 512, 33, 33), (557568, 1, 16896, 512))
buf40 = buf39
del buf39
triton_poi_fused_convolution_relu_16[grid(2230272)](buf40,
primals_21, 2230272, XBLOCK=1024, num_warps=4, num_stages=1)
del primals_21
buf41 = empty_strided_cuda((4, 512, 17, 17), (147968, 1, 8704, 512),
torch.float32)
buf42 = empty_strided_cuda((4, 512, 17, 17), (147968, 1, 8704, 512),
torch.int8)
triton_poi_fused_max_pool2d_with_indices_17[grid(591872)](buf40,
buf41, buf42, 591872, XBLOCK=1024, num_warps=4, num_stages=1)
buf43 = extern_kernels.convolution(buf41, buf11, stride=(1, 1),
padding=(1, 1), dilation=(1, 1), transposed=False,
output_padding=(0, 0), groups=1, bias=None)
assert_size_stride(buf43, (4, 512, 17, 17), (147968, 1, 8704, 512))
buf44 = buf43
del buf43
triton_poi_fused_convolution_relu_18[grid(591872)](buf44,
primals_23, 591872, XBLOCK=1024, num_warps=4, num_stages=1)
del primals_23
buf45 = extern_kernels.convolution(buf44, buf12, stride=(1, 1),
padding=(1, 1), dilation=(1, 1), transposed=False,
output_padding=(0, 0), groups=1, bias=None)
assert_size_stride(buf45, (4, 512, 17, 17), (147968, 1, 8704, 512))
buf46 = buf45
del buf45
triton_poi_fused_convolution_relu_18[grid(591872)](buf46,
primals_25, 591872, XBLOCK=1024, num_warps=4, num_stages=1)
del primals_25
buf47 = extern_kernels.convolution(buf46, buf13, stride=(1, 1),
padding=(1, 1), dilation=(1, 1), transposed=False,
output_padding=(0, 0), groups=1, bias=None)
assert_size_stride(buf47, (4, 512, 17, 17), (147968, 1, 8704, 512))
buf48 = buf47
del buf47
triton_poi_fused_convolution_relu_18[grid(591872)](buf48,
primals_27, 591872, XBLOCK=1024, num_warps=4, num_stages=1)
del primals_27
buf49 = empty_strided_cuda((4, 512, 9, 9), (41472, 1, 4608, 512),
torch.float32)
buf50 = empty_strided_cuda((4, 512, 9, 9), (41472, 1, 4608, 512),
torch.int8)
triton_poi_fused_max_pool2d_with_indices_19[grid(165888)](buf48,
buf49, buf50, 165888, XBLOCK=512, num_warps=8, num_stages=1)
buf51 = extern_kernels.convolution(buf49, buf14, stride=(1, 1),
padding=(0, 0), dilation=(1, 1), transposed=False,
output_padding=(0, 0), groups=1, bias=None)
assert_size_stride(buf51, (4, 4096, 3, 3), (36864, 1, 12288, 4096))
buf52 = buf51
del buf51
triton_poi_fused_convolution_relu_20[grid(147456)](buf52,
primals_29, 147456, XBLOCK=1024, num_warps=4, num_stages=1)
del primals_29
buf53 = extern_kernels.convolution(buf52, primals_30, stride=(1, 1),
padding=(0, 0), dilation=(1, 1), transposed=False,
output_padding=(0, 0), groups=1, bias=None)
assert_size_stride(buf53, (4, 4096, 3, 3), (36864, 1, 12288, 4096))
buf54 = buf53
del buf53
triton_poi_fused_convolution_relu_20[grid(147456)](buf54,
primals_31, 147456, XBLOCK=1024, num_warps=4, num_stages=1)
del primals_31
buf55 = extern_kernels.convolution(buf54, primals_32, stride=(1, 1),
padding=(0, 0), dilation=(1, 1), transposed=False,
output_padding=(0, 0), groups=1, bias=None)
assert_size_stride(buf55, (4, 1, 3, 3), (9, 1, 3, 1))
buf56 = buf55
del buf55
triton_poi_fused_convolution_21[grid(36)](buf56, primals_33, 36,
XBLOCK=64, num_warps=1, num_stages=1)
del primals_33
buf57 = extern_kernels.convolution(buf56, primals_34, stride=(32,
32), padding=(0, 0), dilation=(1, 1), transposed=True,
output_padding=(0, 0), groups=1, bias=None)
assert_size_stride(buf57, (4, 1, 128, 128), (16384, 1, 128, 1))
buf58 = empty_strided_cuda((4, 1, 64, 64), (4096, 4096, 64, 1),
torch.float32)
triton_poi_fused_clone_22[grid(16384)](buf57, buf58, 16384, XBLOCK=
128, num_warps=4, num_stages=1)
del buf57
return (buf58, buf0, buf1, buf2, buf3, buf4, buf5, buf6, buf7, buf8,
buf9, buf10, buf11, buf12, buf13, buf14, primals_30, primals_32,
primals_34, buf16, buf18, buf19, buf20, buf22, buf24, buf25, buf26,
buf28, buf30, buf32, buf33, buf34, buf36, buf38, buf40, buf41,
buf42, buf44, buf46, buf48, buf49, buf50, buf52, buf54, buf56)
def get_upsampling_weight(in_channels, out_channels, kernel_size):
"""Make a 2D bilinear kernel suitable for upsampling"""
factor = (kernel_size + 1) // 2
if kernel_size % 2 == 1:
center = factor - 1
else:
center = factor - 0.5
og = np.ogrid[:kernel_size, :kernel_size]
filt = (1 - abs(og[0] - center) / factor) * (1 - abs(og[1] - center) /
factor)
weight = np.zeros((in_channels, out_channels, kernel_size, kernel_size),
dtype=np.float64)
weight[range(in_channels), range(out_channels), :, :] = filt
return torch.from_numpy(weight).float()
class FCN32sNew(nn.Module):
def __init__(self, n_channels=5, n_class=1):
super(FCN32sNew, self).__init__()
self.conv1_1 = nn.Conv2d(5, 64, 3, padding=100)
self.relu1_1 = nn.ReLU(inplace=True)
self.conv1_2 = nn.Conv2d(64, 64, 3, padding=1)
self.relu1_2 = nn.ReLU(inplace=True)
self.pool1 = nn.MaxPool2d(2, stride=2, ceil_mode=True)
self.conv2_1 = nn.Conv2d(64, 128, 3, padding=1)
self.relu2_1 = nn.ReLU(inplace=True)
self.conv2_2 = nn.Conv2d(128, 128, 3, padding=1)
self.relu2_2 = nn.ReLU(inplace=True)
self.pool2 = nn.MaxPool2d(2, stride=2, ceil_mode=True)
self.conv3_1 = nn.Conv2d(128, 256, 3, padding=1)
self.relu3_1 = nn.ReLU(inplace=True)
self.conv3_2 = nn.Conv2d(256, 256, 3, padding=1)
self.relu3_2 = nn.ReLU(inplace=True)
self.conv3_3 = nn.Conv2d(256, 256, 3, padding=1)
self.relu3_3 = nn.ReLU(inplace=True)
self.pool3 = nn.MaxPool2d(2, stride=2, ceil_mode=True)
self.conv4_1 = nn.Conv2d(256, 512, 3, padding=1)
self.relu4_1 = nn.ReLU(inplace=True)
self.conv4_2 = nn.Conv2d(512, 512, 3, padding=1)
self.relu4_2 = nn.ReLU(inplace=True)
self.conv4_3 = nn.Conv2d(512, 512, 3, padding=1)
self.relu4_3 = nn.ReLU(inplace=True)
self.pool4 = nn.MaxPool2d(2, stride=2, ceil_mode=True)
self.conv5_1 = nn.Conv2d(512, 512, 3, padding=1)
self.relu5_1 = nn.ReLU(inplace=True)
self.conv5_2 = nn.Conv2d(512, 512, 3, padding=1)
self.relu5_2 = nn.ReLU(inplace=True)
self.conv5_3 = nn.Conv2d(512, 512, 3, padding=1)
self.relu5_3 = nn.ReLU(inplace=True)
self.pool5 = nn.MaxPool2d(2, stride=2, ceil_mode=True)
self.fc6 = nn.Conv2d(512, 4096, 7)
self.relu6 = nn.ReLU(inplace=True)
self.drop6 = nn.Dropout2d()
self.fc7 = nn.Conv2d(4096, 4096, 1)
self.relu7 = nn.ReLU(inplace=True)
self.drop7 = nn.Dropout2d()
self.score_fr = nn.Conv2d(4096, n_class, 1)
self.upscore = nn.ConvTranspose2d(n_class, n_class, 64, stride=32,
bias=False)
self._initialize_weights()
def _initialize_weights(self):
for m in self.modules():
if isinstance(m, nn.Conv2d):
m.weight.data.zero_()
if m.bias is not None:
m.bias.data.zero_()
if isinstance(m, nn.ConvTranspose2d):
assert m.kernel_size[0] == m.kernel_size[1]
initial_weight = get_upsampling_weight(m.in_channels, m.
out_channels, m.kernel_size[0])
m.weight.data.copy_(initial_weight)
def copy_params_from_vgg16(self, vgg16):
features = [self.conv1_1, self.relu1_1, self.conv1_2, self.relu1_2,
self.pool1, self.conv2_1, self.relu2_1, self.conv2_2, self.
relu2_2, self.pool2, self.conv3_1, self.relu3_1, self.conv3_2,
self.relu3_2, self.conv3_3, self.relu3_3, self.pool3, self.
conv4_1, self.relu4_1, self.conv4_2, self.relu4_2, self.conv4_3,
self.relu4_3, self.pool4, self.conv5_1, self.relu5_1, self.
conv5_2, self.relu5_2, self.conv5_3, self.relu5_3, self.pool5]
for l1, l2 in zip(vgg16.features, features):
if isinstance(l1, nn.Conv2d) and isinstance(l2, nn.Conv2d):
assert l1.weight.size() == l2.weight.size()
assert l1.bias.size() == l2.bias.size()
l2.weight.data = l1.weight.data
l2.bias.data = l1.bias.data
for i, name in zip([0, 3], ['fc6', 'fc7']):
l1 = vgg16.classifier[i]
l2 = getattr(self, name)
l2.weight.data = l1.weight.data.view(l2.weight.size())
l2.bias.data = l1.bias.data.view(l2.bias.size())
def forward(self, input_0):
primals_2 = self.conv1_1.weight
primals_3 = self.conv1_1.bias
primals_4 = self.conv1_2.weight
primals_5 = self.conv1_2.bias
primals_6 = self.conv2_1.weight
primals_7 = self.conv2_1.bias
primals_8 = self.conv2_2.weight
primals_9 = self.conv2_2.bias
primals_10 = self.conv3_1.weight
primals_11 = self.conv3_1.bias
primals_12 = self.conv3_2.weight
primals_13 = self.conv3_2.bias
primals_14 = self.conv3_3.weight
primals_15 = self.conv3_3.bias
primals_16 = self.conv4_1.weight
primals_17 = self.conv4_1.bias
primals_18 = self.conv4_2.weight
primals_19 = self.conv4_2.bias
primals_20 = self.conv4_3.weight
primals_21 = self.conv4_3.bias
primals_22 = self.conv5_1.weight
primals_23 = self.conv5_1.bias
primals_24 = self.conv5_2.weight
primals_25 = self.conv5_2.bias
primals_26 = self.conv5_3.weight
primals_27 = self.conv5_3.bias
primals_28 = self.fc6.weight
primals_29 = self.fc6.bias
primals_30 = self.fc7.weight
primals_31 = self.fc7.bias
primals_32 = self.score_fr.weight
primals_33 = self.score_fr.bias
primals_34 = self.upscore.weight
primals_1 = input_0
output = call([primals_1, primals_2, primals_3, primals_4,
primals_5, primals_6, primals_7, primals_8, primals_9,
primals_10, primals_11, primals_12, primals_13, primals_14,
primals_15, primals_16, primals_17, primals_18, primals_19,
primals_20, primals_21, primals_22, primals_23, primals_24,
primals_25, primals_26, primals_27, primals_28, primals_29,
primals_30, primals_31, primals_32, primals_33, primals_34])
return output[0]
|
Yusoi/mmdetection
|
FCN32s
| false | 9,960 |
[
"Apache-2.0"
] | 0 |
cbb5fb00f6e124fbb2c15e7e3438d7fa76b8850a
|
https://github.com/Yusoi/mmdetection/tree/cbb5fb00f6e124fbb2c15e7e3438d7fa76b8850a
|
SAM_Module
|
import torch
import torch.nn as nn
from torchvision.transforms import *
class SAM_Module(nn.Module):
""" Position attention module"""
def __init__(self, channels):
super(SAM_Module, self).__init__()
self.relu = nn.ReLU(inplace=True)
self.conv_after_concat = nn.Conv2d(1, 1, kernel_size=3, stride=1,
padding=1)
self.sigmoid_spatial = nn.Sigmoid()
def forward(self, x):
"""
inputs :
x : input feature maps( B X C X H X W)
returns :
out : attention value + input feature
attention: B X (HxW) X (HxW)
"""
module_input = x
avg = torch.mean(x, 1, True)
x = self.conv_after_concat(avg)
x = self.sigmoid_spatial(x)
x = module_input * x
return x
def get_inputs():
return [torch.rand([4, 4, 4, 4])]
def get_init_inputs():
return [[], {'channels': 4}]
|
import torch
from torch._inductor.select_algorithm import extern_kernels
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
import torch.nn as nn
from torchvision.transforms import *
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
@triton.jit
def triton_poi_fused_mean_0(in_ptr0, out_ptr0, xnumel, XBLOCK: tl.constexpr):
xnumel = 64
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex % 16
x1 = xindex // 16
x2 = xindex
tmp0 = tl.load(in_ptr0 + (x0 + 64 * x1), xmask)
tmp1 = tl.load(in_ptr0 + (16 + x0 + 64 * x1), xmask)
tmp3 = tl.load(in_ptr0 + (32 + x0 + 64 * x1), xmask)
tmp5 = tl.load(in_ptr0 + (48 + x0 + 64 * x1), xmask)
tmp2 = tmp0 + tmp1
tmp4 = tmp2 + tmp3
tmp6 = tmp4 + tmp5
tmp7 = 4.0
tmp8 = tmp6 / tmp7
tl.store(out_ptr0 + x2, tmp8, xmask)
@triton.jit
def triton_poi_fused_convolution_1(in_out_ptr0, in_ptr0, xnumel, XBLOCK: tl
.constexpr):
xnumel = 64
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex
tmp0 = tl.load(in_out_ptr0 + x0, xmask)
tmp1 = tl.load(in_ptr0 + 0)
tmp2 = tl.broadcast_to(tmp1, [XBLOCK])
tmp3 = tmp0 + tmp2
tl.store(in_out_ptr0 + x0, tmp3, xmask)
@triton.jit
def triton_poi_fused_mul_sigmoid_2(in_ptr0, in_ptr1, out_ptr0, xnumel,
XBLOCK: tl.constexpr):
xnumel = 256
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x3 = xindex
x0 = xindex % 16
x2 = xindex // 64
tmp0 = tl.load(in_ptr0 + x3, xmask)
tmp1 = tl.load(in_ptr1 + (x0 + 16 * x2), xmask, eviction_policy=
'evict_last')
tmp2 = tl.sigmoid(tmp1)
tmp3 = tmp0 * tmp2
tl.store(out_ptr0 + x3, tmp3, xmask)
def call(args):
primals_1, primals_2, primals_3 = args
args.clear()
assert_size_stride(primals_1, (4, 4, 4, 4), (64, 16, 4, 1))
assert_size_stride(primals_2, (1, 1, 3, 3), (9, 9, 3, 1))
assert_size_stride(primals_3, (1,), (1,))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((4, 1, 4, 4), (16, 16, 4, 1), torch.float32)
get_raw_stream(0)
triton_poi_fused_mean_0[grid(64)](primals_1, buf0, 64, XBLOCK=64,
num_warps=1, num_stages=1)
buf1 = extern_kernels.convolution(buf0, primals_2, stride=(1, 1),
padding=(1, 1), dilation=(1, 1), transposed=False,
output_padding=(0, 0), groups=1, bias=None)
assert_size_stride(buf1, (4, 1, 4, 4), (16, 16, 4, 1))
buf2 = buf1
del buf1
triton_poi_fused_convolution_1[grid(64)](buf2, primals_3, 64,
XBLOCK=64, num_warps=1, num_stages=1)
del primals_3
buf3 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32)
triton_poi_fused_mul_sigmoid_2[grid(256)](primals_1, buf2, buf3,
256, XBLOCK=128, num_warps=4, num_stages=1)
return buf3, primals_1, primals_2, buf0, buf2
class SAM_ModuleNew(nn.Module):
""" Position attention module"""
def __init__(self, channels):
super(SAM_ModuleNew, self).__init__()
self.relu = nn.ReLU(inplace=True)
self.conv_after_concat = nn.Conv2d(1, 1, kernel_size=3, stride=1,
padding=1)
self.sigmoid_spatial = nn.Sigmoid()
def forward(self, input_0):
primals_2 = self.conv_after_concat.weight
primals_3 = self.conv_after_concat.bias
primals_1 = input_0
output = call([primals_1, primals_2, primals_3])
return output[0]
|
Vill-Lab/IGOAS
|
SAM_Module
| false | 18,043 |
[
"MIT"
] | 8 |
42ca1d45e441f993c95b5e8f33c9f97ea3b916f3
|
https://github.com/Vill-Lab/IGOAS/tree/42ca1d45e441f993c95b5e8f33c9f97ea3b916f3
|
LinearAdditiveUpsample
|
# AOT ID: ['0_inference']
from ctypes import c_void_p, c_long, c_int
import torch
import math
import random
import os
import tempfile
from math import inf, nan
from torch._inductor.hooks import run_intermediate_hooks
from torch._inductor.utils import maybe_profile
from torch._inductor.codegen.memory_planning import _align as align
from torch import device, empty_strided
from torch._inductor.async_compile import AsyncCompile
from torch._inductor.select_algorithm import extern_kernels
from torch._inductor.codegen.multi_kernel import MultiKernelCall
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
aten = torch.ops.aten
inductor_ops = torch.ops.inductor
_quantized = torch.ops._quantized
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
alloc_from_pool = torch.ops.inductor._alloc_from_pool
async_compile = AsyncCompile()
# kernel path: runs/run_shard_7/inductor_cache/eq/ceqd4v2pibbxxx65uo2foiehgfuw64kx77b4cfkmooflc3b45zik.py
# Topologically Sorted Source Nodes: [resizing_layer], Original ATen: [aten._to_copy, aten.arange, aten.add, aten.mul, aten.sub, aten.clamp, aten._unsafe_index]
# Source node to ATen node mapping:
# resizing_layer => _unsafe_index, _unsafe_index_1, _unsafe_index_2, _unsafe_index_3, _unsafe_index_4, _unsafe_index_5, _unsafe_index_6, _unsafe_index_7, add_10, add_11, add_4, add_6, add_7, add_8, add_9, clamp_max_3, clamp_max_4, clamp_max_5, clamp_min_2, clamp_min_3, clamp_min_4, clamp_min_5, convert_element_type_1, convert_element_type_3, convert_element_type_4, convert_element_type_5, iota_2, mul_2, mul_3, mul_4, mul_5, mul_6, mul_7, mul_8, mul_9, sub_10, sub_11, sub_12, sub_2, sub_3, sub_4, sub_5, sub_6, sub_7, sub_8, sub_9
# Graph fragment:
# %convert_element_type_1 : [num_users=6] = call_function[target=torch.ops.prims.convert_element_type.default](args = (%view, torch.int64), kwargs = {})
# %convert_element_type_3 : [num_users=6] = call_function[target=torch.ops.prims.convert_element_type.default](args = (%view_1, torch.int64), kwargs = {})
# %iota_2 : [num_users=1] = call_function[target=torch.ops.prims.iota.default](args = (4,), kwargs = {start: 0, step: 1, dtype: torch.int64, device: cuda:0, requires_grad: False})
# %convert_element_type_4 : [num_users=1] = call_function[target=torch.ops.prims.convert_element_type.default](args = (%iota_2, torch.float32), kwargs = {})
# %add_4 : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%convert_element_type_4, 0.5), kwargs = {})
# %mul_2 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%add_4, 1.0), kwargs = {})
# %sub_2 : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (%mul_2, 0.5), kwargs = {})
# %clamp_min_2 : [num_users=2] = call_function[target=torch.ops.aten.clamp_min.default](args = (%sub_2, 0.0), kwargs = {})
# %convert_element_type_5 : [num_users=6] = call_function[target=torch.ops.prims.convert_element_type.default](args = (%clamp_min_2, torch.int64), kwargs = {})
# %_unsafe_index_7 : [num_users=1] = call_function[target=torch.ops.aten._unsafe_index.Tensor](args = (%arg0_1, [None, None, %clamp_max, %clamp_max_1, %clamp_max_2]), kwargs = {})
# %_unsafe_index_6 : [num_users=2] = call_function[target=torch.ops.aten._unsafe_index.Tensor](args = (%arg0_1, [None, None, %clamp_max, %clamp_max_1, %convert_element_type_5]), kwargs = {})
# %sub_7 : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (%_unsafe_index_7, %_unsafe_index_6), kwargs = {})
# %sub_3 : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (%clamp_min_2, %convert_element_type_5), kwargs = {})
# %clamp_min_3 : [num_users=1] = call_function[target=torch.ops.aten.clamp_min.default](args = (%sub_3, 0.0), kwargs = {})
# %clamp_max_3 : [num_users=4] = call_function[target=torch.ops.aten.clamp_max.default](args = (%clamp_min_3, 1.0), kwargs = {})
# %mul_6 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%sub_7, %clamp_max_3), kwargs = {})
# %add_9 : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%_unsafe_index_6, %mul_6), kwargs = {})
# %_unsafe_index_5 : [num_users=1] = call_function[target=torch.ops.aten._unsafe_index.Tensor](args = (%arg0_1, [None, None, %clamp_max, %convert_element_type_3, %clamp_max_2]), kwargs = {})
# %_unsafe_index_4 : [num_users=2] = call_function[target=torch.ops.aten._unsafe_index.Tensor](args = (%arg0_1, [None, None, %clamp_max, %convert_element_type_3, %convert_element_type_5]), kwargs = {})
# %sub_6 : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (%_unsafe_index_5, %_unsafe_index_4), kwargs = {})
# %mul_5 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%sub_6, %clamp_max_3), kwargs = {})
# %add_8 : [num_users=2] = call_function[target=torch.ops.aten.add.Tensor](args = (%_unsafe_index_4, %mul_5), kwargs = {})
# %sub_10 : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (%add_9, %add_8), kwargs = {})
# %sub_8 : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (%view_1, %convert_element_type_3), kwargs = {})
# %clamp_min_4 : [num_users=1] = call_function[target=torch.ops.aten.clamp_min.default](args = (%sub_8, 0.0), kwargs = {})
# %clamp_max_4 : [num_users=2] = call_function[target=torch.ops.aten.clamp_max.default](args = (%clamp_min_4, 1.0), kwargs = {})
# %mul_8 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%sub_10, %clamp_max_4), kwargs = {})
# %add_11 : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%add_8, %mul_8), kwargs = {})
# %_unsafe_index_3 : [num_users=1] = call_function[target=torch.ops.aten._unsafe_index.Tensor](args = (%arg0_1, [None, None, %convert_element_type_1, %clamp_max_1, %clamp_max_2]), kwargs = {})
# %_unsafe_index_2 : [num_users=2] = call_function[target=torch.ops.aten._unsafe_index.Tensor](args = (%arg0_1, [None, None, %convert_element_type_1, %clamp_max_1, %convert_element_type_5]), kwargs = {})
# %sub_5 : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (%_unsafe_index_3, %_unsafe_index_2), kwargs = {})
# %mul_4 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%sub_5, %clamp_max_3), kwargs = {})
# %add_7 : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%_unsafe_index_2, %mul_4), kwargs = {})
# %_unsafe_index_1 : [num_users=1] = call_function[target=torch.ops.aten._unsafe_index.Tensor](args = (%arg0_1, [None, None, %convert_element_type_1, %convert_element_type_3, %clamp_max_2]), kwargs = {})
# %_unsafe_index : [num_users=2] = call_function[target=torch.ops.aten._unsafe_index.Tensor](args = (%arg0_1, [None, None, %convert_element_type_1, %convert_element_type_3, %convert_element_type_5]), kwargs = {})
# %sub_4 : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (%_unsafe_index_1, %_unsafe_index), kwargs = {})
# %mul_3 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%sub_4, %clamp_max_3), kwargs = {})
# %add_6 : [num_users=2] = call_function[target=torch.ops.aten.add.Tensor](args = (%_unsafe_index, %mul_3), kwargs = {})
# %sub_9 : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (%add_7, %add_6), kwargs = {})
# %mul_7 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%sub_9, %clamp_max_4), kwargs = {})
# %add_10 : [num_users=2] = call_function[target=torch.ops.aten.add.Tensor](args = (%add_6, %mul_7), kwargs = {})
# %sub_12 : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (%add_11, %add_10), kwargs = {})
# %sub_11 : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (%view, %convert_element_type_1), kwargs = {})
# %clamp_min_5 : [num_users=1] = call_function[target=torch.ops.aten.clamp_min.default](args = (%sub_11, 0.0), kwargs = {})
# %clamp_max_5 : [num_users=1] = call_function[target=torch.ops.aten.clamp_max.default](args = (%clamp_min_5, 1.0), kwargs = {})
# %mul_9 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%sub_12, %clamp_max_5), kwargs = {})
triton_poi_fused__to_copy__unsafe_index_add_arange_clamp_mul_sub_0 = async_compile.triton('triton_poi_fused__to_copy__unsafe_index_add_arange_clamp_mul_sub_0', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[1024],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: '*fp32', 4: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3, 4), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused__to_copy__unsafe_index_add_arange_clamp_mul_sub_0', 'mutated_arg_names': ['in_out_ptr0', 'in_out_ptr1', 'in_out_ptr3'], 'no_x_dim': False, 'num_load': 0, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused__to_copy__unsafe_index_add_arange_clamp_mul_sub_0(in_out_ptr0, in_out_ptr1, in_out_ptr3, in_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 1024
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x2 = (xindex // 16) % 4
x1 = (xindex // 4) % 4
x0 = xindex % 4
x3 = (xindex // 64)
x6 = xindex
tmp0 = x2
tmp1 = tmp0.to(tl.float32)
tmp2 = 0.5
tmp3 = tmp1 + tmp2
tmp4 = 1.0
tmp5 = tmp3 * tmp4
tmp6 = tmp5 - tmp2
tmp7 = 0.0
tmp8 = triton_helpers.maximum(tmp6, tmp7)
tmp9 = tmp8.to(tl.int32)
tmp10 = x1
tmp11 = tmp10.to(tl.float32)
tmp12 = tmp11 + tmp2
tmp13 = tmp12 * tmp4
tmp14 = tmp13 - tmp2
tmp15 = triton_helpers.maximum(tmp14, tmp7)
tmp16 = tmp15.to(tl.int32)
tmp17 = tl.full([1], 1, tl.int64)
tmp18 = tmp16 + tmp17
tmp19 = tl.full([1], 3, tl.int64)
tmp20 = triton_helpers.minimum(tmp18, tmp19)
tmp21 = x0
tmp22 = tmp21.to(tl.float32)
tmp23 = tmp22 + tmp2
tmp24 = tmp23 * tmp4
tmp25 = tmp24 - tmp2
tmp26 = triton_helpers.maximum(tmp25, tmp7)
tmp27 = tmp26.to(tl.int32)
tmp28 = tmp27 + tmp17
tmp29 = triton_helpers.minimum(tmp28, tmp19)
tmp30 = tl.load(in_ptr0 + (tmp29 + (4*tmp20) + (16*tmp9) + (64*x3)), xmask, eviction_policy='evict_last')
tmp31 = tl.load(in_ptr0 + (tmp27 + (4*tmp20) + (16*tmp9) + (64*x3)), xmask, eviction_policy='evict_last')
tmp32 = tmp30 - tmp31
tmp33 = tmp27.to(tl.float32)
tmp34 = tmp26 - tmp33
tmp35 = triton_helpers.maximum(tmp34, tmp7)
tmp36 = triton_helpers.minimum(tmp35, tmp4)
tmp37 = tmp32 * tmp36
tmp38 = tmp31 + tmp37
tmp39 = tl.load(in_ptr0 + (tmp29 + (4*tmp16) + (16*tmp9) + (64*x3)), xmask, eviction_policy='evict_last')
tmp40 = tl.load(in_ptr0 + (tmp27 + (4*tmp16) + (16*tmp9) + (64*x3)), xmask, eviction_policy='evict_last')
tmp41 = tmp39 - tmp40
tmp42 = tmp41 * tmp36
tmp43 = tmp40 + tmp42
tmp44 = tmp9 + tmp17
tmp45 = triton_helpers.minimum(tmp44, tmp19)
tmp46 = tl.load(in_ptr0 + (tmp29 + (4*tmp20) + (16*tmp45) + (64*x3)), xmask, eviction_policy='evict_last')
tmp47 = tl.load(in_ptr0 + (tmp27 + (4*tmp20) + (16*tmp45) + (64*x3)), xmask, eviction_policy='evict_last')
tmp48 = tl.load(in_ptr0 + (tmp29 + (4*tmp16) + (16*tmp45) + (64*x3)), xmask, eviction_policy='evict_last')
tmp49 = tl.load(in_ptr0 + (tmp27 + (4*tmp16) + (16*tmp45) + (64*x3)), xmask, eviction_policy='evict_last')
tmp50 = tmp48 - tmp49
tmp51 = tmp50 * tmp36
tmp52 = tmp49 + tmp51
tmp53 = tmp46 - tmp47
tmp54 = tmp53 * tmp36
tmp55 = tmp47 + tmp54
tmp56 = tmp55 - tmp52
tmp57 = tmp16.to(tl.float32)
tmp58 = tmp15 - tmp57
tmp59 = triton_helpers.maximum(tmp58, tmp7)
tmp60 = triton_helpers.minimum(tmp59, tmp4)
tmp61 = tmp56 * tmp60
tmp62 = tmp52 + tmp61
tmp63 = tmp38 - tmp43
tmp64 = tmp63 * tmp60
tmp65 = tmp43 + tmp64
tmp66 = tmp62 - tmp65
tmp67 = tmp9.to(tl.float32)
tmp68 = tmp8 - tmp67
tmp69 = triton_helpers.maximum(tmp68, tmp7)
tmp70 = triton_helpers.minimum(tmp69, tmp4)
tmp71 = tmp66 * tmp70
tl.store(in_out_ptr0 + (x6), tmp38, xmask)
tl.store(in_out_ptr1 + (x6), tmp43, xmask)
tl.store(in_out_ptr3 + (x6), tmp71, xmask)
''', device_str='cuda')
# kernel path: runs/run_shard_7/inductor_cache/q7/cq7a57jaykep2rn5amyxkdznm2ecmdbkbyxbbpppwdsky6lbmylr.py
# Topologically Sorted Source Nodes: [output_tensor], Original ATen: [aten.sum]
# Source node to ATen node mapping:
# output_tensor => sum_1
# Graph fragment:
# %sum_1 : [num_users=1] = call_function[target=torch.ops.aten.sum.dim_IntList](args = (%view_3, [2]), kwargs = {})
triton_poi_fused_sum_1 = async_compile.triton('triton_poi_fused_sum_1', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[256],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: '*fp32', 4: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3, 4), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_sum_1', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 12, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_sum_1(in_ptr0, in_ptr1, in_ptr2, out_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 256
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x3 = (xindex // 64)
x4 = xindex % 64
x1 = (xindex // 4) % 4
x5 = xindex
tmp0 = tl.load(in_ptr0 + (x4 + (256*x3)), xmask)
tmp1 = tl.load(in_ptr1 + (x4 + (256*x3)), xmask)
tmp19 = tl.load(in_ptr2 + (x4 + (256*x3)), xmask)
tmp21 = tl.load(in_ptr0 + (64 + x4 + (256*x3)), xmask)
tmp22 = tl.load(in_ptr1 + (64 + x4 + (256*x3)), xmask)
tmp26 = tl.load(in_ptr2 + (64 + x4 + (256*x3)), xmask)
tmp29 = tl.load(in_ptr0 + (128 + x4 + (256*x3)), xmask)
tmp30 = tl.load(in_ptr1 + (128 + x4 + (256*x3)), xmask)
tmp34 = tl.load(in_ptr2 + (128 + x4 + (256*x3)), xmask)
tmp37 = tl.load(in_ptr0 + (192 + x4 + (256*x3)), xmask)
tmp38 = tl.load(in_ptr1 + (192 + x4 + (256*x3)), xmask)
tmp42 = tl.load(in_ptr2 + (192 + x4 + (256*x3)), xmask)
tmp2 = tmp1 - tmp0
tmp3 = x1
tmp4 = tmp3.to(tl.float32)
tmp5 = 0.5
tmp6 = tmp4 + tmp5
tmp7 = 1.0
tmp8 = tmp6 * tmp7
tmp9 = tmp8 - tmp5
tmp10 = 0.0
tmp11 = triton_helpers.maximum(tmp9, tmp10)
tmp12 = tmp11.to(tl.int32)
tmp13 = tmp12.to(tl.float32)
tmp14 = tmp11 - tmp13
tmp15 = triton_helpers.maximum(tmp14, tmp10)
tmp16 = triton_helpers.minimum(tmp15, tmp7)
tmp17 = tmp2 * tmp16
tmp18 = tmp0 + tmp17
tmp20 = tmp18 + tmp19
tmp23 = tmp22 - tmp21
tmp24 = tmp23 * tmp16
tmp25 = tmp21 + tmp24
tmp27 = tmp25 + tmp26
tmp28 = tmp20 + tmp27
tmp31 = tmp30 - tmp29
tmp32 = tmp31 * tmp16
tmp33 = tmp29 + tmp32
tmp35 = tmp33 + tmp34
tmp36 = tmp28 + tmp35
tmp39 = tmp38 - tmp37
tmp40 = tmp39 * tmp16
tmp41 = tmp37 + tmp40
tmp43 = tmp41 + tmp42
tmp44 = tmp36 + tmp43
tl.store(out_ptr0 + (x5), tmp44, xmask)
''', device_str='cuda')
async_compile.wait(globals())
del async_compile
def call(args):
arg0_1, = args
args.clear()
assert_size_stride(arg0_1, (4, 4, 4, 4, 4), (256, 64, 16, 4, 1))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf6 = empty_strided_cuda((4, 4, 4, 4, 4), (256, 64, 16, 4, 1), torch.float32)
buf7 = buf6; del buf6 # reuse
buf8 = buf7; del buf7 # reuse
buf9 = empty_strided_cuda((4, 4, 4, 4, 4), (256, 64, 16, 4, 1), torch.float32)
buf10 = buf9; del buf9 # reuse
buf0 = empty_strided_cuda((4, 4, 4, 4, 4), (256, 64, 16, 4, 1), torch.float32)
buf5 = buf0; del buf0 # reuse
buf11 = buf5; del buf5 # reuse
# Topologically Sorted Source Nodes: [resizing_layer], Original ATen: [aten._to_copy, aten.arange, aten.add, aten.mul, aten.sub, aten.clamp, aten._unsafe_index]
stream0 = get_raw_stream(0)
triton_poi_fused__to_copy__unsafe_index_add_arange_clamp_mul_sub_0.run(buf8, buf10, buf11, arg0_1, 1024, grid=grid(1024), stream=stream0)
del arg0_1
buf12 = empty_strided_cuda((4, 1, 4, 4, 4), (64, 64, 16, 4, 1), torch.float32)
# Topologically Sorted Source Nodes: [output_tensor], Original ATen: [aten.sum]
triton_poi_fused_sum_1.run(buf10, buf8, buf11, buf12, 256, grid=grid(256), stream=stream0)
del buf10
del buf11
del buf8
return (buf12, )
def benchmark_compiled_module(times=10, repeat=10):
from torch._dynamo.testing import rand_strided
from torch._inductor.utils import print_performance
arg0_1 = rand_strided((4, 4, 4, 4, 4), (256, 64, 16, 4, 1), device='cuda:0', dtype=torch.float32)
fn = lambda: call([arg0_1])
return print_performance(fn, times=times, repeat=repeat)
if __name__ == "__main__":
from torch._inductor.wrapper_benchmark import compiled_module_main
compiled_module_main('None', benchmark_compiled_module)
|
import torch
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
from torch._inductor.runtime import triton_helpers
import torch.utils.data
import torch
import torch.nn as nn
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
@triton.jit
def triton_poi_fused__to_copy__unsafe_index_add_arange_clamp_mul_sub_0(
in_out_ptr0, in_out_ptr1, in_out_ptr3, in_ptr0, xnumel, XBLOCK: tl.
constexpr):
xnumel = 1024
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x2 = xindex // 16 % 4
x1 = xindex // 4 % 4
x0 = xindex % 4
x3 = xindex // 64
x6 = xindex
tmp0 = x2
tmp1 = tmp0.to(tl.float32)
tmp2 = 0.5
tmp3 = tmp1 + tmp2
tmp4 = 1.0
tmp5 = tmp3 * tmp4
tmp6 = tmp5 - tmp2
tmp7 = 0.0
tmp8 = triton_helpers.maximum(tmp6, tmp7)
tmp9 = tmp8.to(tl.int32)
tmp10 = x1
tmp11 = tmp10.to(tl.float32)
tmp12 = tmp11 + tmp2
tmp13 = tmp12 * tmp4
tmp14 = tmp13 - tmp2
tmp15 = triton_helpers.maximum(tmp14, tmp7)
tmp16 = tmp15.to(tl.int32)
tmp17 = tl.full([1], 1, tl.int64)
tmp18 = tmp16 + tmp17
tmp19 = tl.full([1], 3, tl.int64)
tmp20 = triton_helpers.minimum(tmp18, tmp19)
tmp21 = x0
tmp22 = tmp21.to(tl.float32)
tmp23 = tmp22 + tmp2
tmp24 = tmp23 * tmp4
tmp25 = tmp24 - tmp2
tmp26 = triton_helpers.maximum(tmp25, tmp7)
tmp27 = tmp26.to(tl.int32)
tmp28 = tmp27 + tmp17
tmp29 = triton_helpers.minimum(tmp28, tmp19)
tmp30 = tl.load(in_ptr0 + (tmp29 + 4 * tmp20 + 16 * tmp9 + 64 * x3),
xmask, eviction_policy='evict_last')
tmp31 = tl.load(in_ptr0 + (tmp27 + 4 * tmp20 + 16 * tmp9 + 64 * x3),
xmask, eviction_policy='evict_last')
tmp32 = tmp30 - tmp31
tmp33 = tmp27.to(tl.float32)
tmp34 = tmp26 - tmp33
tmp35 = triton_helpers.maximum(tmp34, tmp7)
tmp36 = triton_helpers.minimum(tmp35, tmp4)
tmp37 = tmp32 * tmp36
tmp38 = tmp31 + tmp37
tmp39 = tl.load(in_ptr0 + (tmp29 + 4 * tmp16 + 16 * tmp9 + 64 * x3),
xmask, eviction_policy='evict_last')
tmp40 = tl.load(in_ptr0 + (tmp27 + 4 * tmp16 + 16 * tmp9 + 64 * x3),
xmask, eviction_policy='evict_last')
tmp41 = tmp39 - tmp40
tmp42 = tmp41 * tmp36
tmp43 = tmp40 + tmp42
tmp44 = tmp9 + tmp17
tmp45 = triton_helpers.minimum(tmp44, tmp19)
tmp46 = tl.load(in_ptr0 + (tmp29 + 4 * tmp20 + 16 * tmp45 + 64 * x3),
xmask, eviction_policy='evict_last')
tmp47 = tl.load(in_ptr0 + (tmp27 + 4 * tmp20 + 16 * tmp45 + 64 * x3),
xmask, eviction_policy='evict_last')
tmp48 = tl.load(in_ptr0 + (tmp29 + 4 * tmp16 + 16 * tmp45 + 64 * x3),
xmask, eviction_policy='evict_last')
tmp49 = tl.load(in_ptr0 + (tmp27 + 4 * tmp16 + 16 * tmp45 + 64 * x3),
xmask, eviction_policy='evict_last')
tmp50 = tmp48 - tmp49
tmp51 = tmp50 * tmp36
tmp52 = tmp49 + tmp51
tmp53 = tmp46 - tmp47
tmp54 = tmp53 * tmp36
tmp55 = tmp47 + tmp54
tmp56 = tmp55 - tmp52
tmp57 = tmp16.to(tl.float32)
tmp58 = tmp15 - tmp57
tmp59 = triton_helpers.maximum(tmp58, tmp7)
tmp60 = triton_helpers.minimum(tmp59, tmp4)
tmp61 = tmp56 * tmp60
tmp62 = tmp52 + tmp61
tmp63 = tmp38 - tmp43
tmp64 = tmp63 * tmp60
tmp65 = tmp43 + tmp64
tmp66 = tmp62 - tmp65
tmp67 = tmp9.to(tl.float32)
tmp68 = tmp8 - tmp67
tmp69 = triton_helpers.maximum(tmp68, tmp7)
tmp70 = triton_helpers.minimum(tmp69, tmp4)
tmp71 = tmp66 * tmp70
tl.store(in_out_ptr0 + x6, tmp38, xmask)
tl.store(in_out_ptr1 + x6, tmp43, xmask)
tl.store(in_out_ptr3 + x6, tmp71, xmask)
@triton.jit
def triton_poi_fused_sum_1(in_ptr0, in_ptr1, in_ptr2, out_ptr0, xnumel,
XBLOCK: tl.constexpr):
xnumel = 256
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x3 = xindex // 64
x4 = xindex % 64
x1 = xindex // 4 % 4
x5 = xindex
tmp0 = tl.load(in_ptr0 + (x4 + 256 * x3), xmask)
tmp1 = tl.load(in_ptr1 + (x4 + 256 * x3), xmask)
tmp19 = tl.load(in_ptr2 + (x4 + 256 * x3), xmask)
tmp21 = tl.load(in_ptr0 + (64 + x4 + 256 * x3), xmask)
tmp22 = tl.load(in_ptr1 + (64 + x4 + 256 * x3), xmask)
tmp26 = tl.load(in_ptr2 + (64 + x4 + 256 * x3), xmask)
tmp29 = tl.load(in_ptr0 + (128 + x4 + 256 * x3), xmask)
tmp30 = tl.load(in_ptr1 + (128 + x4 + 256 * x3), xmask)
tmp34 = tl.load(in_ptr2 + (128 + x4 + 256 * x3), xmask)
tmp37 = tl.load(in_ptr0 + (192 + x4 + 256 * x3), xmask)
tmp38 = tl.load(in_ptr1 + (192 + x4 + 256 * x3), xmask)
tmp42 = tl.load(in_ptr2 + (192 + x4 + 256 * x3), xmask)
tmp2 = tmp1 - tmp0
tmp3 = x1
tmp4 = tmp3.to(tl.float32)
tmp5 = 0.5
tmp6 = tmp4 + tmp5
tmp7 = 1.0
tmp8 = tmp6 * tmp7
tmp9 = tmp8 - tmp5
tmp10 = 0.0
tmp11 = triton_helpers.maximum(tmp9, tmp10)
tmp12 = tmp11.to(tl.int32)
tmp13 = tmp12.to(tl.float32)
tmp14 = tmp11 - tmp13
tmp15 = triton_helpers.maximum(tmp14, tmp10)
tmp16 = triton_helpers.minimum(tmp15, tmp7)
tmp17 = tmp2 * tmp16
tmp18 = tmp0 + tmp17
tmp20 = tmp18 + tmp19
tmp23 = tmp22 - tmp21
tmp24 = tmp23 * tmp16
tmp25 = tmp21 + tmp24
tmp27 = tmp25 + tmp26
tmp28 = tmp20 + tmp27
tmp31 = tmp30 - tmp29
tmp32 = tmp31 * tmp16
tmp33 = tmp29 + tmp32
tmp35 = tmp33 + tmp34
tmp36 = tmp28 + tmp35
tmp39 = tmp38 - tmp37
tmp40 = tmp39 * tmp16
tmp41 = tmp37 + tmp40
tmp43 = tmp41 + tmp42
tmp44 = tmp36 + tmp43
tl.store(out_ptr0 + x5, tmp44, xmask)
def call(args):
arg0_1, = args
args.clear()
assert_size_stride(arg0_1, (4, 4, 4, 4, 4), (256, 64, 16, 4, 1))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf6 = empty_strided_cuda((4, 4, 4, 4, 4), (256, 64, 16, 4, 1),
torch.float32)
buf7 = buf6
del buf6
buf8 = buf7
del buf7
buf9 = empty_strided_cuda((4, 4, 4, 4, 4), (256, 64, 16, 4, 1),
torch.float32)
buf10 = buf9
del buf9
buf0 = empty_strided_cuda((4, 4, 4, 4, 4), (256, 64, 16, 4, 1),
torch.float32)
buf5 = buf0
del buf0
buf11 = buf5
del buf5
get_raw_stream(0)
triton_poi_fused__to_copy__unsafe_index_add_arange_clamp_mul_sub_0[grid
(1024)](buf8, buf10, buf11, arg0_1, 1024, XBLOCK=256, num_warps
=4, num_stages=1)
del arg0_1
buf12 = empty_strided_cuda((4, 1, 4, 4, 4), (64, 64, 16, 4, 1),
torch.float32)
triton_poi_fused_sum_1[grid(256)](buf10, buf8, buf11, buf12, 256,
XBLOCK=128, num_warps=4, num_stages=1)
del buf10
del buf11
del buf8
return buf12,
class LinearAdditiveUpsampleNew(nn.Module):
"""Bi/Trilinear Additive Upsample
Upsampling strategy described in Wojna et al (https://doi.org/10.1007/s11263-019-01170-8) to avoid checkerboard
patterns while keeping a better performance for the convolution.
Parameters:
scale_factor (int) -- the factor for the upsampling operation
n_splits (float) -- the channel reduction factor
threed (bool) -- 3D (true) or 2D (false) network
"""
def __init__(self, scale_factor, n_splits, threed):
super(LinearAdditiveUpsampleNew, self).__init__()
self.scale_factor = scale_factor
self.n_splits = n_splits
if threed:
self.mode = 'trilinear'
else:
self.mode = 'bilinear'
def forward(self, input_0):
arg0_1 = input_0
output = call([arg0_1])
return output[0]
|
giuliabaldini/Pix2PixNIfTI
|
LinearAdditiveUpsample
| false | 3,544 |
[
"BSD-3-Clause"
] | 0 |
59ff825760f682d2734bd5e95503a03f80d32414
|
https://github.com/giuliabaldini/Pix2PixNIfTI/tree/59ff825760f682d2734bd5e95503a03f80d32414
|
TransformerEncoderLayer
|
# AOT ID: ['0_forward']
from ctypes import c_void_p, c_long, c_int
import torch
import math
import random
import os
import tempfile
from math import inf, nan
from torch._inductor.hooks import run_intermediate_hooks
from torch._inductor.utils import maybe_profile
from torch._inductor.codegen.memory_planning import _align as align
from torch import device, empty_strided
from torch._inductor.async_compile import AsyncCompile
from torch._inductor.select_algorithm import extern_kernels
from torch._inductor.codegen.multi_kernel import MultiKernelCall
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
aten = torch.ops.aten
inductor_ops = torch.ops.inductor
_quantized = torch.ops._quantized
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
alloc_from_pool = torch.ops.inductor._alloc_from_pool
async_compile = AsyncCompile()
# kernel path: runs/run_shard_2/inductor_cache/no/cnon5ajue75qf7yiwbkruc77mekmrelvorvagtbhdc4kdbzwzdin.py
# Topologically Sorted Source Nodes: [multi_head_attention_forward], Original ATen: [aten.mul]
# Source node to ATen node mapping:
# multi_head_attention_forward => mul
# Graph fragment:
# %mul : [num_users=2] = call_function[target=torch.ops.aten.mul.Tensor](args = (%permute_3, 1.0), kwargs = {})
triton_poi_fused_mul_0 = async_compile.triton('triton_poi_fused_mul_0', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[16],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=90, major=9, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=132), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_mul_0', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'B098E03CDA7B8ADC90DAFFDF24A2956451D1B13F297756A5DCC209498AA53705', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_mul_0(in_out_ptr0, in_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 16
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x2 = xindex
x0 = xindex % 4
tmp0 = tl.load(in_out_ptr0 + (x2), xmask)
tmp1 = tl.load(in_ptr0 + (x0), xmask, eviction_policy='evict_last')
tmp2 = tmp0 + tmp1
tmp3 = 1.0
tmp4 = tmp2 * tmp3
tl.store(in_out_ptr0 + (x2), tmp4, xmask)
''', device_str='cuda')
# kernel path: runs/run_shard_2/inductor_cache/a5/ca56rgpdjbilaspdaau44lnrilsxekhmcnbwzhtrcgfbilkik27p.py
# Topologically Sorted Source Nodes: [multi_head_attention_forward], Original ATen: [aten._softmax]
# Source node to ATen node mapping:
# multi_head_attention_forward => amax, exp, sub
# Graph fragment:
# %amax : [num_users=1] = call_function[target=torch.ops.aten.amax.default](args = (%bmm, [-1], True), kwargs = {})
# %sub : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (%bmm, %amax), kwargs = {})
# %exp : [num_users=2] = call_function[target=torch.ops.aten.exp.default](args = (%sub,), kwargs = {})
triton_poi_fused__softmax_1 = async_compile.triton('triton_poi_fused__softmax_1', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[64],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=90, major=9, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=132), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused__softmax_1', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 5, 'num_reduction': 0, 'backend_hash': 'B098E03CDA7B8ADC90DAFFDF24A2956451D1B13F297756A5DCC209498AA53705', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused__softmax_1(in_ptr0, out_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 64
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x2 = xindex
x1 = (xindex // 4)
tmp0 = tl.load(in_ptr0 + (x2), xmask)
tmp1 = tl.load(in_ptr0 + (4*x1), xmask, eviction_policy='evict_last')
tmp2 = tl.load(in_ptr0 + (1 + (4*x1)), xmask, eviction_policy='evict_last')
tmp4 = tl.load(in_ptr0 + (2 + (4*x1)), xmask, eviction_policy='evict_last')
tmp6 = tl.load(in_ptr0 + (3 + (4*x1)), xmask, eviction_policy='evict_last')
tmp3 = triton_helpers.maximum(tmp1, tmp2)
tmp5 = triton_helpers.maximum(tmp3, tmp4)
tmp7 = triton_helpers.maximum(tmp5, tmp6)
tmp8 = tmp0 - tmp7
tmp9 = tl_math.exp(tmp8)
tl.store(out_ptr0 + (x2), tmp9, xmask)
''', device_str='cuda')
# kernel path: runs/run_shard_2/inductor_cache/xl/cxls6dl5dz3ua4ilno7rjcfd6m7p4ydnd3mzfaq2cepnph6e2y7h.py
# Topologically Sorted Source Nodes: [multi_head_attention_forward], Original ATen: [aten._softmax]
# Source node to ATen node mapping:
# multi_head_attention_forward => div, sum_1
# Graph fragment:
# %sum_1 : [num_users=1] = call_function[target=torch.ops.aten.sum.dim_IntList](args = (%exp, [-1], True), kwargs = {})
# %div : [num_users=3] = call_function[target=torch.ops.aten.div.Tensor](args = (%exp, %sum_1), kwargs = {})
triton_poi_fused__softmax_2 = async_compile.triton('triton_poi_fused__softmax_2', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[64],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=90, major=9, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=132), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused__softmax_2', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 5, 'num_reduction': 0, 'backend_hash': 'B098E03CDA7B8ADC90DAFFDF24A2956451D1B13F297756A5DCC209498AA53705', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused__softmax_2(in_ptr0, out_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 64
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x2 = xindex
x1 = (xindex // 4)
tmp0 = tl.load(in_ptr0 + (x2), xmask)
tmp1 = tl.load(in_ptr0 + (4*x1), xmask, eviction_policy='evict_last')
tmp2 = tl.load(in_ptr0 + (1 + (4*x1)), xmask, eviction_policy='evict_last')
tmp4 = tl.load(in_ptr0 + (2 + (4*x1)), xmask, eviction_policy='evict_last')
tmp6 = tl.load(in_ptr0 + (3 + (4*x1)), xmask, eviction_policy='evict_last')
tmp3 = tmp1 + tmp2
tmp5 = tmp3 + tmp4
tmp7 = tmp5 + tmp6
tmp8 = tmp0 / tmp7
tl.store(out_ptr0 + (x2), tmp8, xmask)
''', device_str='cuda')
# kernel path: runs/run_shard_2/inductor_cache/mf/cmfwwg65sbylkho5zzcgwfl3cw2tru7uwmgab3xaed7bzoxeyhoe.py
# Topologically Sorted Source Nodes: [multi_head_attention_forward], Original ATen: [aten.clone]
# Source node to ATen node mapping:
# multi_head_attention_forward => clone
# Graph fragment:
# %clone : [num_users=1] = call_function[target=torch.ops.aten.clone.default](args = (%permute_7,), kwargs = {memory_format: torch.contiguous_format})
triton_poi_fused_clone_3 = async_compile.triton('triton_poi_fused_clone_3', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[4, 4], tile_hint=TileHint.SQUARE,
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=90, major=9, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=132), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_clone_3', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 1, 'num_reduction': 0, 'backend_hash': 'B098E03CDA7B8ADC90DAFFDF24A2956451D1B13F297756A5DCC209498AA53705', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_clone_3(in_ptr0, out_ptr0, ynumel, xnumel, YBLOCK : tl.constexpr, XBLOCK : tl.constexpr):
ynumel = 4
xnumel = 4
yoffset = tl.program_id(1) * YBLOCK
yindex = yoffset + tl.arange(0, YBLOCK)[None, :]
ymask = yindex < ynumel
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:, None]
xmask = xindex < xnumel
x1 = xindex
y0 = yindex
tmp0 = tl.load(in_ptr0 + (y0 + (4*x1)), xmask & ymask)
tl.store(out_ptr0 + (x1 + (4*y0)), tmp0, xmask & ymask)
''', device_str='cuda')
# kernel path: runs/run_shard_2/inductor_cache/xo/cxo7kebwccavmyl6qt2qy6dv6nxtxbcnmr6bte7ferqglr6pf5lx.py
# Topologically Sorted Source Nodes: [multi_head_attention_forward], Original ATen: [aten.mean]
# Source node to ATen node mapping:
# multi_head_attention_forward => mean
# Graph fragment:
# %mean : [num_users=1] = call_function[target=torch.ops.aten.mean.dim](args = (%view_11, [1]), kwargs = {})
triton_poi_fused_mean_4 = async_compile.triton('triton_poi_fused_mean_4', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[16],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=90, major=9, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=132), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_mean_4', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 4, 'num_reduction': 0, 'backend_hash': 'B098E03CDA7B8ADC90DAFFDF24A2956451D1B13F297756A5DCC209498AA53705', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_mean_4(in_ptr0, out_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 16
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex
tmp0 = tl.load(in_ptr0 + (x0), xmask)
tmp1 = tl.load(in_ptr0 + (16 + x0), xmask)
tmp3 = tl.load(in_ptr0 + (32 + x0), xmask)
tmp5 = tl.load(in_ptr0 + (48 + x0), xmask)
tmp2 = tmp0 + tmp1
tmp4 = tmp2 + tmp3
tmp6 = tmp4 + tmp5
tmp7 = 4.0
tmp8 = tmp6 / tmp7
tl.store(out_ptr0 + (x0), tmp8, xmask)
''', device_str='cuda')
# kernel path: runs/run_shard_2/inductor_cache/a5/ca5u4qmkoeql76ogmh3jtan7rcyuzjntmkbi6vseh2aka4oj7x22.py
# Topologically Sorted Source Nodes: [src, src_1], Original ATen: [aten.add, aten.native_layer_norm]
# Source node to ATen node mapping:
# src => add
# src_1 => var_mean
# Graph fragment:
# %add : [num_users=2] = call_function[target=torch.ops.aten.add.Tensor](args = (%primals_1, %squeeze), kwargs = {})
# %var_mean : [num_users=2] = call_function[target=torch.ops.aten.var_mean.correction](args = (%add, [1]), kwargs = {correction: 0, keepdim: True})
triton_poi_fused_add_native_layer_norm_5 = async_compile.triton('triton_poi_fused_add_native_layer_norm_5', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[4],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: '*fp32', 4: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=90, major=9, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=132), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_add_native_layer_norm_5', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 8, 'num_reduction': 0, 'backend_hash': 'B098E03CDA7B8ADC90DAFFDF24A2956451D1B13F297756A5DCC209498AA53705', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_add_native_layer_norm_5(in_ptr0, in_ptr1, out_ptr0, out_ptr1, xnumel, XBLOCK : tl.constexpr):
xnumel = 4
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex
tmp0 = tl.load(in_ptr0 + (4*x0), xmask, eviction_policy='evict_last')
tmp1 = tl.load(in_ptr1 + (4*x0), xmask, eviction_policy='evict_last')
tmp3 = tl.load(in_ptr0 + (1 + (4*x0)), xmask, eviction_policy='evict_last')
tmp4 = tl.load(in_ptr1 + (1 + (4*x0)), xmask, eviction_policy='evict_last')
tmp7 = tl.load(in_ptr0 + (2 + (4*x0)), xmask, eviction_policy='evict_last')
tmp8 = tl.load(in_ptr1 + (2 + (4*x0)), xmask, eviction_policy='evict_last')
tmp11 = tl.load(in_ptr0 + (3 + (4*x0)), xmask, eviction_policy='evict_last')
tmp12 = tl.load(in_ptr1 + (3 + (4*x0)), xmask, eviction_policy='evict_last')
tmp2 = tmp0 + tmp1
tmp5 = tmp3 + tmp4
tmp6 = tmp2 + tmp5
tmp9 = tmp7 + tmp8
tmp10 = tmp6 + tmp9
tmp13 = tmp11 + tmp12
tmp14 = tmp10 + tmp13
tmp15 = 4.0
tmp16 = tmp14 / tmp15
tmp17 = tmp2 - tmp16
tmp18 = tmp17 * tmp17
tmp19 = tmp5 - tmp16
tmp20 = tmp19 * tmp19
tmp21 = tmp18 + tmp20
tmp22 = tmp9 - tmp16
tmp23 = tmp22 * tmp22
tmp24 = tmp21 + tmp23
tmp25 = tmp13 - tmp16
tmp26 = tmp25 * tmp25
tmp27 = tmp24 + tmp26
tmp28 = tmp27 / tmp15
tl.store(out_ptr0 + (x0), tmp16, xmask)
tl.store(out_ptr1 + (x0), tmp28, xmask)
''', device_str='cuda')
# kernel path: runs/run_shard_2/inductor_cache/ud/cudlmttxldaqwjebx3x6ystcji3chwr3lkxk64maxy4khpdp3nfn.py
# Topologically Sorted Source Nodes: [src, src_1], Original ATen: [aten.add, aten.native_layer_norm]
# Source node to ATen node mapping:
# src => add
# src_1 => add_1, add_2, mul_1, mul_2, rsqrt, sub_1
# Graph fragment:
# %add : [num_users=2] = call_function[target=torch.ops.aten.add.Tensor](args = (%primals_1, %squeeze), kwargs = {})
# %add_1 : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%getitem_6, 1e-05), kwargs = {})
# %rsqrt : [num_users=1] = call_function[target=torch.ops.aten.rsqrt.default](args = (%add_1,), kwargs = {})
# %sub_1 : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (%add, %getitem_7), kwargs = {})
# %mul_1 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%sub_1, %rsqrt), kwargs = {})
# %mul_2 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%mul_1, %primals_6), kwargs = {})
# %add_2 : [num_users=3] = call_function[target=torch.ops.aten.add.Tensor](args = (%mul_2, %primals_7), kwargs = {})
triton_poi_fused_add_native_layer_norm_6 = async_compile.triton('triton_poi_fused_add_native_layer_norm_6', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[16],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: '*fp32', 4: '*fp32', 5: '*fp32', 6: '*fp32', 7: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=90, major=9, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=132), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3, 4, 5, 6, 7), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_add_native_layer_norm_6', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 6, 'num_reduction': 0, 'backend_hash': 'B098E03CDA7B8ADC90DAFFDF24A2956451D1B13F297756A5DCC209498AA53705', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_add_native_layer_norm_6(in_ptr0, in_ptr1, in_ptr2, in_ptr3, in_ptr4, in_ptr5, out_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 16
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x2 = xindex
x1 = (xindex // 4)
x0 = xindex % 4
tmp0 = tl.load(in_ptr0 + (x2), xmask)
tmp1 = tl.load(in_ptr1 + (x2), xmask)
tmp3 = tl.load(in_ptr2 + (x1), xmask, eviction_policy='evict_last')
tmp5 = tl.load(in_ptr3 + (x1), xmask, eviction_policy='evict_last')
tmp10 = tl.load(in_ptr4 + (x0), xmask, eviction_policy='evict_last')
tmp12 = tl.load(in_ptr5 + (x0), xmask, eviction_policy='evict_last')
tmp2 = tmp0 + tmp1
tmp4 = tmp2 - tmp3
tmp6 = 1e-05
tmp7 = tmp5 + tmp6
tmp8 = libdevice.rsqrt(tmp7)
tmp9 = tmp4 * tmp8
tmp11 = tmp9 * tmp10
tmp13 = tmp11 + tmp12
tl.store(out_ptr0 + (x2), tmp13, xmask)
''', device_str='cuda')
# kernel path: runs/run_shard_2/inductor_cache/2l/c2lx4cm43t5ldlcrg54wtrimftmxqc5oaodvjlhhxk26wwohsh7x.py
# Topologically Sorted Source Nodes: [relu], Original ATen: [aten.relu]
# Source node to ATen node mapping:
# relu => relu
# Graph fragment:
# %add_tensor_1 : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%mm_default_1, %primals_9), kwargs = {})
# %relu : [num_users=2] = call_function[target=torch.ops.aten.relu.default](args = (%add_tensor_1,), kwargs = {})
triton_poi_fused_relu_7 = async_compile.triton('triton_poi_fused_relu_7', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[8192],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=90, major=9, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=132), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_relu_7', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'B098E03CDA7B8ADC90DAFFDF24A2956451D1B13F297756A5DCC209498AA53705', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_relu_7(in_out_ptr0, in_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 8192
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = tl.full([XBLOCK], True, tl.int1)
x2 = xindex
x0 = xindex % 2048
tmp0 = tl.load(in_out_ptr0 + (x2), None)
tmp1 = tl.load(in_ptr0 + (x0), None, eviction_policy='evict_last')
tmp2 = tmp0 + tmp1
tmp3 = tl.full([1], 0, tl.int32)
tmp4 = triton_helpers.maximum(tmp3, tmp2)
tl.store(in_out_ptr0 + (x2), tmp4, None)
''', device_str='cuda')
# kernel path: runs/run_shard_2/inductor_cache/jr/cjrivzlgffmd4mdkydwzbkypvq43vw5lx7lx34d75oidkn5oukkt.py
# Topologically Sorted Source Nodes: [src_2], Original ATen: [aten.add]
# Source node to ATen node mapping:
# src_2 => add_3
# Graph fragment:
# %add_tensor : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%mm_default, %primals_11), kwargs = {})
# %add_3 : [num_users=3] = call_function[target=torch.ops.aten.add.Tensor](args = (%add_2, %add_tensor), kwargs = {})
triton_poi_fused_add_8 = async_compile.triton('triton_poi_fused_add_8', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[16],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=90, major=9, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=132), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_add_8', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 3, 'num_reduction': 0, 'backend_hash': 'B098E03CDA7B8ADC90DAFFDF24A2956451D1B13F297756A5DCC209498AA53705', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_add_8(in_out_ptr0, in_ptr0, in_ptr1, xnumel, XBLOCK : tl.constexpr):
xnumel = 16
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x2 = xindex
x0 = xindex % 4
tmp0 = tl.load(in_ptr0 + (x2), xmask)
tmp1 = tl.load(in_out_ptr0 + (x2), xmask)
tmp2 = tl.load(in_ptr1 + (x0), xmask, eviction_policy='evict_last')
tmp3 = tmp1 + tmp2
tmp4 = tmp0 + tmp3
tl.store(in_out_ptr0 + (x2), tmp4, xmask)
''', device_str='cuda')
# kernel path: runs/run_shard_2/inductor_cache/w7/cw7rcffzrlzzq6c736du6qnb5ytwzbniibkuycklm4tfjn6me2ee.py
# Topologically Sorted Source Nodes: [src_3], Original ATen: [aten.native_layer_norm]
# Source node to ATen node mapping:
# src_3 => add_4, rsqrt_1, var_mean_1
# Graph fragment:
# %var_mean_1 : [num_users=2] = call_function[target=torch.ops.aten.var_mean.correction](args = (%add_3, [1]), kwargs = {correction: 0, keepdim: True})
# %add_4 : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%getitem_8, 1e-05), kwargs = {})
# %rsqrt_1 : [num_users=1] = call_function[target=torch.ops.aten.rsqrt.default](args = (%add_4,), kwargs = {})
triton_poi_fused_native_layer_norm_9 = async_compile.triton('triton_poi_fused_native_layer_norm_9', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[4],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=90, major=9, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=132), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_native_layer_norm_9', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 4, 'num_reduction': 0, 'backend_hash': 'B098E03CDA7B8ADC90DAFFDF24A2956451D1B13F297756A5DCC209498AA53705', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_native_layer_norm_9(in_ptr0, out_ptr0, out_ptr1, xnumel, XBLOCK : tl.constexpr):
xnumel = 4
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex
tmp0 = tl.load(in_ptr0 + (4*x0), xmask, eviction_policy='evict_last')
tmp1 = tl.load(in_ptr0 + (1 + (4*x0)), xmask, eviction_policy='evict_last')
tmp3 = tl.load(in_ptr0 + (2 + (4*x0)), xmask, eviction_policy='evict_last')
tmp5 = tl.load(in_ptr0 + (3 + (4*x0)), xmask, eviction_policy='evict_last')
tmp2 = tmp0 + tmp1
tmp4 = tmp2 + tmp3
tmp6 = tmp4 + tmp5
tmp7 = 4.0
tmp8 = tmp6 / tmp7
tmp9 = tmp0 - tmp8
tmp10 = tmp9 * tmp9
tmp11 = tmp1 - tmp8
tmp12 = tmp11 * tmp11
tmp13 = tmp10 + tmp12
tmp14 = tmp3 - tmp8
tmp15 = tmp14 * tmp14
tmp16 = tmp13 + tmp15
tmp17 = tmp5 - tmp8
tmp18 = tmp17 * tmp17
tmp19 = tmp16 + tmp18
tmp20 = tmp19 / tmp7
tmp21 = 1e-05
tmp22 = tmp20 + tmp21
tmp23 = libdevice.rsqrt(tmp22)
tl.store(out_ptr0 + (x0), tmp8, xmask)
tl.store(out_ptr1 + (x0), tmp23, xmask)
''', device_str='cuda')
# kernel path: runs/run_shard_2/inductor_cache/qq/cqqkte7r3xbnvps7wbt5vgxcwukikbvlwemcbrcnle7woo3t3r3c.py
# Topologically Sorted Source Nodes: [src_3], Original ATen: [aten.native_layer_norm]
# Source node to ATen node mapping:
# src_3 => add_4, add_5, mul_3, mul_4, rsqrt_1, sub_2, var_mean_1
# Graph fragment:
# %var_mean_1 : [num_users=2] = call_function[target=torch.ops.aten.var_mean.correction](args = (%add_3, [1]), kwargs = {correction: 0, keepdim: True})
# %add_4 : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%getitem_8, 1e-05), kwargs = {})
# %rsqrt_1 : [num_users=1] = call_function[target=torch.ops.aten.rsqrt.default](args = (%add_4,), kwargs = {})
# %sub_2 : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (%add_3, %getitem_9), kwargs = {})
# %mul_3 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%sub_2, %rsqrt_1), kwargs = {})
# %mul_4 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%mul_3, %primals_12), kwargs = {})
# %add_5 : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%mul_4, %primals_13), kwargs = {})
triton_poi_fused_native_layer_norm_10 = async_compile.triton('triton_poi_fused_native_layer_norm_10', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[16],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: '*fp32', 4: '*fp32', 5: '*fp32', 6: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=90, major=9, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=132), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3, 4, 5, 6), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_native_layer_norm_10', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 5, 'num_reduction': 0, 'backend_hash': 'B098E03CDA7B8ADC90DAFFDF24A2956451D1B13F297756A5DCC209498AA53705', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_native_layer_norm_10(in_ptr0, in_ptr1, in_ptr2, in_ptr3, in_ptr4, out_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 16
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x2 = xindex
x1 = (xindex // 4)
x0 = xindex % 4
tmp0 = tl.load(in_ptr0 + (x2), xmask)
tmp1 = tl.load(in_ptr1 + (x1), xmask, eviction_policy='evict_last')
tmp3 = tl.load(in_ptr2 + (x1), xmask, eviction_policy='evict_last')
tmp5 = tl.load(in_ptr3 + (x0), xmask, eviction_policy='evict_last')
tmp7 = tl.load(in_ptr4 + (x0), xmask, eviction_policy='evict_last')
tmp2 = tmp0 - tmp1
tmp4 = tmp2 * tmp3
tmp6 = tmp4 * tmp5
tmp8 = tmp6 + tmp7
tl.store(out_ptr0 + (x2), tmp8, xmask)
''', device_str='cuda')
async_compile.wait(globals())
del async_compile
def call(args):
primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7, primals_8, primals_9, primals_10, primals_11, primals_12, primals_13 = args
args.clear()
assert_size_stride(primals_1, (4, 4), (4, 1))
assert_size_stride(primals_2, (12, 4), (4, 1))
assert_size_stride(primals_3, (12, ), (1, ))
assert_size_stride(primals_4, (4, 4), (4, 1))
assert_size_stride(primals_5, (4, ), (1, ))
assert_size_stride(primals_6, (4, ), (1, ))
assert_size_stride(primals_7, (4, ), (1, ))
assert_size_stride(primals_8, (2048, 4), (4, 1))
assert_size_stride(primals_9, (2048, ), (1, ))
assert_size_stride(primals_10, (4, 2048), (2048, 1))
assert_size_stride(primals_11, (4, ), (1, ))
assert_size_stride(primals_12, (4, ), (1, ))
assert_size_stride(primals_13, (4, ), (1, ))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((4, 4), (4, 1), torch.float32)
# Topologically Sorted Source Nodes: [], Original ATen: []
extern_kernels.mm(primals_1, reinterpret_tensor(primals_2, (4, 4), (1, 4), 0), out=buf0)
buf1 = empty_strided_cuda((4, 4), (4, 1), torch.float32)
# Topologically Sorted Source Nodes: [multi_head_attention_forward], Original ATen: [aten.addmm]
extern_kernels.addmm(reinterpret_tensor(primals_3, (4, ), (1, ), 4), primals_1, reinterpret_tensor(primals_2, (4, 4), (1, 4), 16), alpha=1, beta=1, out=buf1)
buf2 = empty_strided_cuda((4, 4), (4, 1), torch.float32)
# Topologically Sorted Source Nodes: [multi_head_attention_forward], Original ATen: [aten.addmm]
extern_kernels.addmm(reinterpret_tensor(primals_3, (4, ), (1, ), 8), primals_1, reinterpret_tensor(primals_2, (4, 4), (1, 4), 32), alpha=1, beta=1, out=buf2)
del primals_2
buf3 = reinterpret_tensor(buf0, (4, 4, 1), (1, 4, 16), 0); del buf0 # reuse
# Topologically Sorted Source Nodes: [multi_head_attention_forward], Original ATen: [aten.mul]
stream0 = get_raw_stream(0)
triton_poi_fused_mul_0.run(buf3, primals_3, 16, grid=grid(16), stream=stream0)
del primals_3
buf4 = empty_strided_cuda((4, 4, 4), (16, 4, 1), torch.float32)
# Topologically Sorted Source Nodes: [multi_head_attention_forward], Original ATen: [aten.bmm]
extern_kernels.bmm(buf3, reinterpret_tensor(buf1, (4, 1, 4), (1, 1, 4), 0), out=buf4)
buf5 = empty_strided_cuda((4, 4, 4), (16, 4, 1), torch.float32)
# Topologically Sorted Source Nodes: [multi_head_attention_forward], Original ATen: [aten._softmax]
triton_poi_fused__softmax_1.run(buf4, buf5, 64, grid=grid(64), stream=stream0)
buf6 = buf4; del buf4 # reuse
# Topologically Sorted Source Nodes: [multi_head_attention_forward], Original ATen: [aten._softmax]
triton_poi_fused__softmax_2.run(buf5, buf6, 64, grid=grid(64), stream=stream0)
del buf5
buf7 = empty_strided_cuda((4, 4, 1), (4, 1, 1), torch.float32)
# Topologically Sorted Source Nodes: [multi_head_attention_forward], Original ATen: [aten.bmm]
extern_kernels.bmm(buf6, reinterpret_tensor(buf2, (4, 4, 1), (1, 4, 1), 0), out=buf7)
buf8 = empty_strided_cuda((4, 4, 1), (4, 1, 1), torch.float32)
# Topologically Sorted Source Nodes: [multi_head_attention_forward], Original ATen: [aten.clone]
triton_poi_fused_clone_3.run(buf7, buf8, 4, 4, grid=grid(4, 4), stream=stream0)
buf9 = reinterpret_tensor(buf7, (4, 4), (4, 1), 0); del buf7 # reuse
# Topologically Sorted Source Nodes: [multi_head_attention_forward], Original ATen: [aten.addmm]
extern_kernels.addmm(primals_5, reinterpret_tensor(buf8, (4, 4), (4, 1), 0), reinterpret_tensor(primals_4, (4, 4), (1, 4), 0), alpha=1, beta=1, out=buf9)
del primals_5
buf10 = empty_strided_cuda((1, 4, 4), (16, 4, 1), torch.float32)
# Topologically Sorted Source Nodes: [multi_head_attention_forward], Original ATen: [aten.mean]
triton_poi_fused_mean_4.run(buf6, buf10, 16, grid=grid(16), stream=stream0)
buf11 = empty_strided_cuda((4, 1), (1, 4), torch.float32)
buf12 = empty_strided_cuda((4, 1), (1, 4), torch.float32)
# Topologically Sorted Source Nodes: [src, src_1], Original ATen: [aten.add, aten.native_layer_norm]
triton_poi_fused_add_native_layer_norm_5.run(primals_1, buf9, buf11, buf12, 4, grid=grid(4), stream=stream0)
buf13 = empty_strided_cuda((4, 4), (4, 1), torch.float32)
# Topologically Sorted Source Nodes: [src, src_1], Original ATen: [aten.add, aten.native_layer_norm]
triton_poi_fused_add_native_layer_norm_6.run(primals_1, buf9, buf11, buf12, primals_6, primals_7, buf13, 16, grid=grid(16), stream=stream0)
del primals_7
buf14 = empty_strided_cuda((4, 2048), (2048, 1), torch.float32)
# Topologically Sorted Source Nodes: [], Original ATen: []
extern_kernels.mm(buf13, reinterpret_tensor(primals_8, (4, 2048), (1, 4), 0), out=buf14)
buf15 = buf14; del buf14 # reuse
# Topologically Sorted Source Nodes: [relu], Original ATen: [aten.relu]
triton_poi_fused_relu_7.run(buf15, primals_9, 8192, grid=grid(8192), stream=stream0)
del primals_9
buf16 = empty_strided_cuda((4, 4), (4, 1), torch.float32)
# Topologically Sorted Source Nodes: [], Original ATen: []
extern_kernels.mm(buf15, reinterpret_tensor(primals_10, (2048, 4), (1, 2048), 0), out=buf16)
buf17 = buf16; del buf16 # reuse
# Topologically Sorted Source Nodes: [src_2], Original ATen: [aten.add]
triton_poi_fused_add_8.run(buf17, buf13, primals_11, 16, grid=grid(16), stream=stream0)
del primals_11
buf18 = buf12; del buf12 # reuse
buf19 = buf11; del buf11 # reuse
# Topologically Sorted Source Nodes: [src_3], Original ATen: [aten.native_layer_norm]
triton_poi_fused_native_layer_norm_9.run(buf17, buf18, buf19, 4, grid=grid(4), stream=stream0)
buf20 = empty_strided_cuda((4, 4), (4, 1), torch.float32)
# Topologically Sorted Source Nodes: [src_3], Original ATen: [aten.native_layer_norm]
triton_poi_fused_native_layer_norm_10.run(buf17, buf18, buf19, primals_12, primals_13, buf20, 16, grid=grid(16), stream=stream0)
del buf18
del buf19
del primals_13
return (buf20, reinterpret_tensor(buf10, (4, 4), (4, 1), 0), primals_1, primals_6, primals_12, buf6, reinterpret_tensor(buf8, (4, 4), (4, 1), 0), buf9, buf13, buf15, buf17, primals_10, primals_8, primals_4, reinterpret_tensor(buf2, (4, 1, 4), (1, 1, 4), 0), reinterpret_tensor(buf3, (4, 1, 4), (1, 1, 4), 0), reinterpret_tensor(buf1, (4, 4, 1), (1, 4, 1), 0), )
def benchmark_compiled_module(times=10, repeat=10):
from torch._dynamo.testing import rand_strided
from torch._inductor.utils import print_performance
primals_1 = rand_strided((4, 4), (4, 1), device='cuda:0', dtype=torch.float32)
primals_2 = rand_strided((12, 4), (4, 1), device='cuda:0', dtype=torch.float32)
primals_3 = rand_strided((12, ), (1, ), device='cuda:0', dtype=torch.float32)
primals_4 = rand_strided((4, 4), (4, 1), device='cuda:0', dtype=torch.float32)
primals_5 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32)
primals_6 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32)
primals_7 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32)
primals_8 = rand_strided((2048, 4), (4, 1), device='cuda:0', dtype=torch.float32)
primals_9 = rand_strided((2048, ), (1, ), device='cuda:0', dtype=torch.float32)
primals_10 = rand_strided((4, 2048), (2048, 1), device='cuda:0', dtype=torch.float32)
primals_11 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32)
primals_12 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32)
primals_13 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32)
fn = lambda: call([primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7, primals_8, primals_9, primals_10, primals_11, primals_12, primals_13])
return print_performance(fn, times=times, repeat=repeat)
if __name__ == "__main__":
from torch._inductor.wrapper_benchmark import compiled_module_main
compiled_module_main('None', benchmark_compiled_module)
|
import torch
from torch._inductor.select_algorithm import extern_kernels
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
from torch._inductor.runtime import triton_helpers
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch.nn import Module
import torch.nn.functional as F
from torch.nn.modules import Module
from torch.nn.modules.activation import MultiheadAttention
from torch.nn.modules.dropout import Dropout
from torch.nn.modules.linear import Linear
from torch.nn.modules.normalization import LayerNorm
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
@triton.jit
def triton_poi_fused_mul_0(in_out_ptr0, in_ptr0, xnumel, XBLOCK: tl.constexpr):
xnumel = 16
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x2 = xindex
x0 = xindex % 4
tmp0 = tl.load(in_out_ptr0 + x2, xmask)
tmp1 = tl.load(in_ptr0 + x0, xmask, eviction_policy='evict_last')
tmp2 = tmp0 + tmp1
tmp3 = 1.0
tmp4 = tmp2 * tmp3
tl.store(in_out_ptr0 + x2, tmp4, xmask)
@triton.jit
def triton_poi_fused__softmax_1(in_ptr0, out_ptr0, xnumel, XBLOCK: tl.constexpr
):
xnumel = 64
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x2 = xindex
x1 = xindex // 4
tmp0 = tl.load(in_ptr0 + x2, xmask)
tmp1 = tl.load(in_ptr0 + 4 * x1, xmask, eviction_policy='evict_last')
tmp2 = tl.load(in_ptr0 + (1 + 4 * x1), xmask, eviction_policy='evict_last')
tmp4 = tl.load(in_ptr0 + (2 + 4 * x1), xmask, eviction_policy='evict_last')
tmp6 = tl.load(in_ptr0 + (3 + 4 * x1), xmask, eviction_policy='evict_last')
tmp3 = triton_helpers.maximum(tmp1, tmp2)
tmp5 = triton_helpers.maximum(tmp3, tmp4)
tmp7 = triton_helpers.maximum(tmp5, tmp6)
tmp8 = tmp0 - tmp7
tmp9 = tl_math.exp(tmp8)
tl.store(out_ptr0 + x2, tmp9, xmask)
@triton.jit
def triton_poi_fused__softmax_2(in_ptr0, out_ptr0, xnumel, XBLOCK: tl.constexpr
):
xnumel = 64
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x2 = xindex
x1 = xindex // 4
tmp0 = tl.load(in_ptr0 + x2, xmask)
tmp1 = tl.load(in_ptr0 + 4 * x1, xmask, eviction_policy='evict_last')
tmp2 = tl.load(in_ptr0 + (1 + 4 * x1), xmask, eviction_policy='evict_last')
tmp4 = tl.load(in_ptr0 + (2 + 4 * x1), xmask, eviction_policy='evict_last')
tmp6 = tl.load(in_ptr0 + (3 + 4 * x1), xmask, eviction_policy='evict_last')
tmp3 = tmp1 + tmp2
tmp5 = tmp3 + tmp4
tmp7 = tmp5 + tmp6
tmp8 = tmp0 / tmp7
tl.store(out_ptr0 + x2, tmp8, xmask)
@triton.jit
def triton_poi_fused_clone_3(in_ptr0, out_ptr0, ynumel, xnumel, YBLOCK: tl.
constexpr, XBLOCK: tl.constexpr):
ynumel = 4
xnumel = 4
yoffset = tl.program_id(1) * YBLOCK
yindex = yoffset + tl.arange(0, YBLOCK)[None, :]
ymask = yindex < ynumel
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:, None]
xmask = xindex < xnumel
x1 = xindex
y0 = yindex
tmp0 = tl.load(in_ptr0 + (y0 + 4 * x1), xmask & ymask)
tl.store(out_ptr0 + (x1 + 4 * y0), tmp0, xmask & ymask)
@triton.jit
def triton_poi_fused_mean_4(in_ptr0, out_ptr0, xnumel, XBLOCK: tl.constexpr):
xnumel = 16
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex
tmp0 = tl.load(in_ptr0 + x0, xmask)
tmp1 = tl.load(in_ptr0 + (16 + x0), xmask)
tmp3 = tl.load(in_ptr0 + (32 + x0), xmask)
tmp5 = tl.load(in_ptr0 + (48 + x0), xmask)
tmp2 = tmp0 + tmp1
tmp4 = tmp2 + tmp3
tmp6 = tmp4 + tmp5
tmp7 = 4.0
tmp8 = tmp6 / tmp7
tl.store(out_ptr0 + x0, tmp8, xmask)
@triton.jit
def triton_poi_fused_add_native_layer_norm_5(in_ptr0, in_ptr1, out_ptr0,
out_ptr1, xnumel, XBLOCK: tl.constexpr):
xnumel = 4
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex
tmp0 = tl.load(in_ptr0 + 4 * x0, xmask, eviction_policy='evict_last')
tmp1 = tl.load(in_ptr1 + 4 * x0, xmask, eviction_policy='evict_last')
tmp3 = tl.load(in_ptr0 + (1 + 4 * x0), xmask, eviction_policy='evict_last')
tmp4 = tl.load(in_ptr1 + (1 + 4 * x0), xmask, eviction_policy='evict_last')
tmp7 = tl.load(in_ptr0 + (2 + 4 * x0), xmask, eviction_policy='evict_last')
tmp8 = tl.load(in_ptr1 + (2 + 4 * x0), xmask, eviction_policy='evict_last')
tmp11 = tl.load(in_ptr0 + (3 + 4 * x0), xmask, eviction_policy='evict_last'
)
tmp12 = tl.load(in_ptr1 + (3 + 4 * x0), xmask, eviction_policy='evict_last'
)
tmp2 = tmp0 + tmp1
tmp5 = tmp3 + tmp4
tmp6 = tmp2 + tmp5
tmp9 = tmp7 + tmp8
tmp10 = tmp6 + tmp9
tmp13 = tmp11 + tmp12
tmp14 = tmp10 + tmp13
tmp15 = 4.0
tmp16 = tmp14 / tmp15
tmp17 = tmp2 - tmp16
tmp18 = tmp17 * tmp17
tmp19 = tmp5 - tmp16
tmp20 = tmp19 * tmp19
tmp21 = tmp18 + tmp20
tmp22 = tmp9 - tmp16
tmp23 = tmp22 * tmp22
tmp24 = tmp21 + tmp23
tmp25 = tmp13 - tmp16
tmp26 = tmp25 * tmp25
tmp27 = tmp24 + tmp26
tmp28 = tmp27 / tmp15
tl.store(out_ptr0 + x0, tmp16, xmask)
tl.store(out_ptr1 + x0, tmp28, xmask)
@triton.jit
def triton_poi_fused_add_native_layer_norm_6(in_ptr0, in_ptr1, in_ptr2,
in_ptr3, in_ptr4, in_ptr5, out_ptr0, xnumel, XBLOCK: tl.constexpr):
xnumel = 16
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x2 = xindex
x1 = xindex // 4
x0 = xindex % 4
tmp0 = tl.load(in_ptr0 + x2, xmask)
tmp1 = tl.load(in_ptr1 + x2, xmask)
tmp3 = tl.load(in_ptr2 + x1, xmask, eviction_policy='evict_last')
tmp5 = tl.load(in_ptr3 + x1, xmask, eviction_policy='evict_last')
tmp10 = tl.load(in_ptr4 + x0, xmask, eviction_policy='evict_last')
tmp12 = tl.load(in_ptr5 + x0, xmask, eviction_policy='evict_last')
tmp2 = tmp0 + tmp1
tmp4 = tmp2 - tmp3
tmp6 = 1e-05
tmp7 = tmp5 + tmp6
tmp8 = libdevice.rsqrt(tmp7)
tmp9 = tmp4 * tmp8
tmp11 = tmp9 * tmp10
tmp13 = tmp11 + tmp12
tl.store(out_ptr0 + x2, tmp13, xmask)
@triton.jit
def triton_poi_fused_relu_7(in_out_ptr0, in_ptr0, xnumel, XBLOCK: tl.constexpr
):
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
tl.full([XBLOCK], True, tl.int1)
x2 = xindex
x0 = xindex % 2048
tmp0 = tl.load(in_out_ptr0 + x2, None)
tmp1 = tl.load(in_ptr0 + x0, None, eviction_policy='evict_last')
tmp2 = tmp0 + tmp1
tmp3 = tl.full([1], 0, tl.int32)
tmp4 = triton_helpers.maximum(tmp3, tmp2)
tl.store(in_out_ptr0 + x2, tmp4, None)
@triton.jit
def triton_poi_fused_add_8(in_out_ptr0, in_ptr0, in_ptr1, xnumel, XBLOCK:
tl.constexpr):
xnumel = 16
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x2 = xindex
x0 = xindex % 4
tmp0 = tl.load(in_ptr0 + x2, xmask)
tmp1 = tl.load(in_out_ptr0 + x2, xmask)
tmp2 = tl.load(in_ptr1 + x0, xmask, eviction_policy='evict_last')
tmp3 = tmp1 + tmp2
tmp4 = tmp0 + tmp3
tl.store(in_out_ptr0 + x2, tmp4, xmask)
@triton.jit
def triton_poi_fused_native_layer_norm_9(in_ptr0, out_ptr0, out_ptr1,
xnumel, XBLOCK: tl.constexpr):
xnumel = 4
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex
tmp0 = tl.load(in_ptr0 + 4 * x0, xmask, eviction_policy='evict_last')
tmp1 = tl.load(in_ptr0 + (1 + 4 * x0), xmask, eviction_policy='evict_last')
tmp3 = tl.load(in_ptr0 + (2 + 4 * x0), xmask, eviction_policy='evict_last')
tmp5 = tl.load(in_ptr0 + (3 + 4 * x0), xmask, eviction_policy='evict_last')
tmp2 = tmp0 + tmp1
tmp4 = tmp2 + tmp3
tmp6 = tmp4 + tmp5
tmp7 = 4.0
tmp8 = tmp6 / tmp7
tmp9 = tmp0 - tmp8
tmp10 = tmp9 * tmp9
tmp11 = tmp1 - tmp8
tmp12 = tmp11 * tmp11
tmp13 = tmp10 + tmp12
tmp14 = tmp3 - tmp8
tmp15 = tmp14 * tmp14
tmp16 = tmp13 + tmp15
tmp17 = tmp5 - tmp8
tmp18 = tmp17 * tmp17
tmp19 = tmp16 + tmp18
tmp20 = tmp19 / tmp7
tmp21 = 1e-05
tmp22 = tmp20 + tmp21
tmp23 = libdevice.rsqrt(tmp22)
tl.store(out_ptr0 + x0, tmp8, xmask)
tl.store(out_ptr1 + x0, tmp23, xmask)
@triton.jit
def triton_poi_fused_native_layer_norm_10(in_ptr0, in_ptr1, in_ptr2,
in_ptr3, in_ptr4, out_ptr0, xnumel, XBLOCK: tl.constexpr):
xnumel = 16
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x2 = xindex
x1 = xindex // 4
x0 = xindex % 4
tmp0 = tl.load(in_ptr0 + x2, xmask)
tmp1 = tl.load(in_ptr1 + x1, xmask, eviction_policy='evict_last')
tmp3 = tl.load(in_ptr2 + x1, xmask, eviction_policy='evict_last')
tmp5 = tl.load(in_ptr3 + x0, xmask, eviction_policy='evict_last')
tmp7 = tl.load(in_ptr4 + x0, xmask, eviction_policy='evict_last')
tmp2 = tmp0 - tmp1
tmp4 = tmp2 * tmp3
tmp6 = tmp4 * tmp5
tmp8 = tmp6 + tmp7
tl.store(out_ptr0 + x2, tmp8, xmask)
def call(args):
(primals_1, primals_2, primals_3, primals_4, primals_5, primals_6,
primals_7, primals_8, primals_9, primals_10, primals_11, primals_12,
primals_13) = args
args.clear()
assert_size_stride(primals_1, (4, 4), (4, 1))
assert_size_stride(primals_2, (12, 4), (4, 1))
assert_size_stride(primals_3, (12,), (1,))
assert_size_stride(primals_4, (4, 4), (4, 1))
assert_size_stride(primals_5, (4,), (1,))
assert_size_stride(primals_6, (4,), (1,))
assert_size_stride(primals_7, (4,), (1,))
assert_size_stride(primals_8, (2048, 4), (4, 1))
assert_size_stride(primals_9, (2048,), (1,))
assert_size_stride(primals_10, (4, 2048), (2048, 1))
assert_size_stride(primals_11, (4,), (1,))
assert_size_stride(primals_12, (4,), (1,))
assert_size_stride(primals_13, (4,), (1,))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((4, 4), (4, 1), torch.float32)
extern_kernels.mm(primals_1, reinterpret_tensor(primals_2, (4, 4),
(1, 4), 0), out=buf0)
buf1 = empty_strided_cuda((4, 4), (4, 1), torch.float32)
extern_kernels.addmm(reinterpret_tensor(primals_3, (4,), (1,), 4),
primals_1, reinterpret_tensor(primals_2, (4, 4), (1, 4), 16),
alpha=1, beta=1, out=buf1)
buf2 = empty_strided_cuda((4, 4), (4, 1), torch.float32)
extern_kernels.addmm(reinterpret_tensor(primals_3, (4,), (1,), 8),
primals_1, reinterpret_tensor(primals_2, (4, 4), (1, 4), 32),
alpha=1, beta=1, out=buf2)
del primals_2
buf3 = reinterpret_tensor(buf0, (4, 4, 1), (1, 4, 16), 0)
del buf0
get_raw_stream(0)
triton_poi_fused_mul_0[grid(16)](buf3, primals_3, 16, XBLOCK=16,
num_warps=1, num_stages=1)
del primals_3
buf4 = empty_strided_cuda((4, 4, 4), (16, 4, 1), torch.float32)
extern_kernels.bmm(buf3, reinterpret_tensor(buf1, (4, 1, 4), (1, 1,
4), 0), out=buf4)
buf5 = empty_strided_cuda((4, 4, 4), (16, 4, 1), torch.float32)
triton_poi_fused__softmax_1[grid(64)](buf4, buf5, 64, XBLOCK=64,
num_warps=1, num_stages=1)
buf6 = buf4
del buf4
triton_poi_fused__softmax_2[grid(64)](buf5, buf6, 64, XBLOCK=64,
num_warps=1, num_stages=1)
del buf5
buf7 = empty_strided_cuda((4, 4, 1), (4, 1, 1), torch.float32)
extern_kernels.bmm(buf6, reinterpret_tensor(buf2, (4, 4, 1), (1, 4,
1), 0), out=buf7)
buf8 = empty_strided_cuda((4, 4, 1), (4, 1, 1), torch.float32)
triton_poi_fused_clone_3[grid(4, 4)](buf7, buf8, 4, 4, XBLOCK=4,
YBLOCK=4, num_warps=1, num_stages=1)
buf9 = reinterpret_tensor(buf7, (4, 4), (4, 1), 0)
del buf7
extern_kernels.addmm(primals_5, reinterpret_tensor(buf8, (4, 4), (4,
1), 0), reinterpret_tensor(primals_4, (4, 4), (1, 4), 0), alpha
=1, beta=1, out=buf9)
del primals_5
buf10 = empty_strided_cuda((1, 4, 4), (16, 4, 1), torch.float32)
triton_poi_fused_mean_4[grid(16)](buf6, buf10, 16, XBLOCK=16,
num_warps=1, num_stages=1)
buf11 = empty_strided_cuda((4, 1), (1, 4), torch.float32)
buf12 = empty_strided_cuda((4, 1), (1, 4), torch.float32)
triton_poi_fused_add_native_layer_norm_5[grid(4)](primals_1, buf9,
buf11, buf12, 4, XBLOCK=4, num_warps=1, num_stages=1)
buf13 = empty_strided_cuda((4, 4), (4, 1), torch.float32)
triton_poi_fused_add_native_layer_norm_6[grid(16)](primals_1, buf9,
buf11, buf12, primals_6, primals_7, buf13, 16, XBLOCK=16,
num_warps=1, num_stages=1)
del primals_7
buf14 = empty_strided_cuda((4, 2048), (2048, 1), torch.float32)
extern_kernels.mm(buf13, reinterpret_tensor(primals_8, (4, 2048), (
1, 4), 0), out=buf14)
buf15 = buf14
del buf14
triton_poi_fused_relu_7[grid(8192)](buf15, primals_9, 8192, XBLOCK=
128, num_warps=4, num_stages=1)
del primals_9
buf16 = empty_strided_cuda((4, 4), (4, 1), torch.float32)
extern_kernels.mm(buf15, reinterpret_tensor(primals_10, (2048, 4),
(1, 2048), 0), out=buf16)
buf17 = buf16
del buf16
triton_poi_fused_add_8[grid(16)](buf17, buf13, primals_11, 16,
XBLOCK=16, num_warps=1, num_stages=1)
del primals_11
buf18 = buf12
del buf12
buf19 = buf11
del buf11
triton_poi_fused_native_layer_norm_9[grid(4)](buf17, buf18, buf19,
4, XBLOCK=4, num_warps=1, num_stages=1)
buf20 = empty_strided_cuda((4, 4), (4, 1), torch.float32)
triton_poi_fused_native_layer_norm_10[grid(16)](buf17, buf18, buf19,
primals_12, primals_13, buf20, 16, XBLOCK=16, num_warps=1,
num_stages=1)
del buf18
del buf19
del primals_13
return (buf20, reinterpret_tensor(buf10, (4, 4), (4, 1), 0), primals_1,
primals_6, primals_12, buf6, reinterpret_tensor(buf8, (4, 4), (4, 1
), 0), buf9, buf13, buf15, buf17, primals_10, primals_8, primals_4,
reinterpret_tensor(buf2, (4, 1, 4), (1, 1, 4), 0),
reinterpret_tensor(buf3, (4, 1, 4), (1, 1, 4), 0),
reinterpret_tensor(buf1, (4, 4, 1), (1, 4, 1), 0))
def _get_activation_fn(activation):
if activation == 'relu':
return F.relu
elif activation == 'gelu':
return F.gelu
raise RuntimeError('activation should be relu/gelu, not {}'.format(
activation))
class TransformerEncoderLayerNew(Module):
"""TransformerEncoderLayer is made up of self-attn and feedforward network.
This standard encoder layer is based on the paper "Attention Is All You Need".
Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N Gomez,
Lukasz Kaiser, and Illia Polosukhin. 2017. Attention is all you need. In Advances in
Neural Information Processing Systems, pages 6000-6010. Users may modify or implement
in a different way during application.
Args:
d_model: the number of expected features in the input (required).
nhead: the number of heads in the multiheadattention models (required).
dim_feedforward: the dimension of the feedforward network model (default=2048).
dropout: the dropout value (default=0.1).
activation: the activation function of intermediate layer, relu or gelu (default=relu).
"""
def __init__(self, d_model, nhead, dim_feedforward=2048, dropout=0.1,
activation='relu'):
super(TransformerEncoderLayerNew, self).__init__()
self.self_attn = MultiheadAttention(d_model, nhead, dropout=dropout)
self.linear1 = Linear(d_model, dim_feedforward)
self.dropout = Dropout(dropout)
self.linear2 = Linear(dim_feedforward, d_model)
self.norm1 = LayerNorm(d_model)
self.norm2 = LayerNorm(d_model)
self.dropout1 = Dropout(dropout)
self.dropout2 = Dropout(dropout)
self.activation = _get_activation_fn(activation)
def __setstate__(self, state):
if 'activation' not in state:
state['activation'] = F.relu
super(TransformerEncoderLayerNew, self).__setstate__(state)
def forward(self, input_0):
primals_2 = self.self_attn.in_proj_weight
primals_3 = self.self_attn.in_proj_bias
primals_1 = self.self_attn.out_proj.weight
primals_5 = self.self_attn.out_proj.bias
primals_8 = self.linear1.weight
primals_9 = self.linear1.bias
primals_10 = self.linear2.weight
primals_6 = self.linear2.bias
primals_7 = self.norm1.weight
primals_11 = self.norm1.bias
primals_12 = self.norm2.weight
primals_13 = self.norm2.bias
primals_4 = input_0
output = call([primals_1, primals_2, primals_3, primals_4,
primals_5, primals_6, primals_7, primals_8, primals_9,
primals_10, primals_11, primals_12, primals_13])
return output[0], output[1]
|
Lingzhi-WANG/Quotation-Recommendation
|
TransformerEncoderLayer
| false | 17,595 |
[
"MIT"
] | 4 |
40a875a41f10a597604206e067a16cbbfc88cdd7
|
https://github.com/Lingzhi-WANG/Quotation-Recommendation/tree/40a875a41f10a597604206e067a16cbbfc88cdd7
|
MaxPoolStride1
|
import torch
import torch.nn as nn
import torch.nn.functional as F
class MaxPoolStride1(nn.Module):
def __init__(self, kernel_size):
super(MaxPoolStride1, self).__init__()
self.kernel_size = kernel_size
self.pad = kernel_size - 1
def forward(self, x):
padded_x = F.pad(x, (0, self.pad, 0, self.pad), mode='replicate')
pooled_x = nn.MaxPool2d(self.kernel_size, self.pad)(padded_x)
return pooled_x
def get_inputs():
return [torch.rand([4, 4, 4, 4])]
def get_init_inputs():
return [[], {'kernel_size': 4}]
|
import torch
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
from torch._inductor.runtime import triton_helpers
import torch.nn as nn
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
@triton.jit
def triton_poi_fused_max_pool2d_with_indices_0(in_ptr0, out_ptr0, xnumel,
XBLOCK: tl.constexpr):
xnumel = 64
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex % 2
x1 = xindex // 2 % 2
x2 = xindex // 4
x4 = xindex
tmp0 = tl.load(in_ptr0 + (4 * (3 * (3 <= 3 * x1) + 3 * x1 * (3 * x1 < 3
)) + 16 * x2 + (3 * (3 <= 3 * x0) + 3 * x0 * (3 * x0 < 3))), xmask,
eviction_policy='evict_last')
tmp1 = tl.load(in_ptr0 + (4 * (3 * (3 <= 3 * x1) + 3 * x1 * (3 * x1 < 3
)) + 16 * x2 + (3 * (3 <= 1 + 3 * x0) + (1 + 3 * x0) * (1 + 3 * x0 <
3))), xmask, eviction_policy='evict_last')
tmp3 = tl.load(in_ptr0 + (4 * (3 * (3 <= 3 * x1) + 3 * x1 * (3 * x1 < 3
)) + 16 * x2 + (3 * (3 <= 2 + 3 * x0) + (2 + 3 * x0) * (2 + 3 * x0 <
3))), xmask)
tmp5 = tl.load(in_ptr0 + (3 + 4 * (3 * (3 <= 3 * x1) + 3 * x1 * (3 * x1 <
3)) + 16 * x2), xmask, eviction_policy='evict_last')
tmp7 = tl.load(in_ptr0 + (4 * (3 * (3 <= 1 + 3 * x1) + (1 + 3 * x1) * (
1 + 3 * x1 < 3)) + 16 * x2 + (3 * (3 <= 3 * x0) + 3 * x0 * (3 * x0 <
3))), xmask, eviction_policy='evict_last')
tmp9 = tl.load(in_ptr0 + (4 * (3 * (3 <= 1 + 3 * x1) + (1 + 3 * x1) * (
1 + 3 * x1 < 3)) + 16 * x2 + (3 * (3 <= 1 + 3 * x0) + (1 + 3 * x0) *
(1 + 3 * x0 < 3))), xmask, eviction_policy='evict_last')
tmp11 = tl.load(in_ptr0 + (4 * (3 * (3 <= 1 + 3 * x1) + (1 + 3 * x1) *
(1 + 3 * x1 < 3)) + 16 * x2 + (3 * (3 <= 2 + 3 * x0) + (2 + 3 * x0) *
(2 + 3 * x0 < 3))), xmask)
tmp13 = tl.load(in_ptr0 + (3 + 4 * (3 * (3 <= 1 + 3 * x1) + (1 + 3 * x1
) * (1 + 3 * x1 < 3)) + 16 * x2), xmask, eviction_policy='evict_last')
tmp15 = tl.load(in_ptr0 + (4 * (3 * (3 <= 2 + 3 * x1) + (2 + 3 * x1) *
(2 + 3 * x1 < 3)) + 16 * x2 + (3 * (3 <= 3 * x0) + 3 * x0 * (3 * x0 <
3))), xmask, eviction_policy='evict_last')
tmp17 = tl.load(in_ptr0 + (4 * (3 * (3 <= 2 + 3 * x1) + (2 + 3 * x1) *
(2 + 3 * x1 < 3)) + 16 * x2 + (3 * (3 <= 1 + 3 * x0) + (1 + 3 * x0) *
(1 + 3 * x0 < 3))), xmask, eviction_policy='evict_last')
tmp19 = tl.load(in_ptr0 + (4 * (3 * (3 <= 2 + 3 * x1) + (2 + 3 * x1) *
(2 + 3 * x1 < 3)) + 16 * x2 + (3 * (3 <= 2 + 3 * x0) + (2 + 3 * x0) *
(2 + 3 * x0 < 3))), xmask)
tmp21 = tl.load(in_ptr0 + (3 + 4 * (3 * (3 <= 2 + 3 * x1) + (2 + 3 * x1
) * (2 + 3 * x1 < 3)) + 16 * x2), xmask, eviction_policy='evict_last')
tmp23 = tl.load(in_ptr0 + (12 + 16 * x2 + (3 * (3 <= 3 * x0) + 3 * x0 *
(3 * x0 < 3))), xmask, eviction_policy='evict_last')
tmp25 = tl.load(in_ptr0 + (12 + 16 * x2 + (3 * (3 <= 1 + 3 * x0) + (1 +
3 * x0) * (1 + 3 * x0 < 3))), xmask, eviction_policy='evict_last')
tmp27 = tl.load(in_ptr0 + (12 + 16 * x2 + (3 * (3 <= 2 + 3 * x0) + (2 +
3 * x0) * (2 + 3 * x0 < 3))), xmask, eviction_policy='evict_last')
tmp29 = tl.load(in_ptr0 + (15 + 16 * x2), xmask, eviction_policy=
'evict_last')
tmp2 = triton_helpers.maximum(tmp1, tmp0)
tmp4 = triton_helpers.maximum(tmp3, tmp2)
tmp6 = triton_helpers.maximum(tmp5, tmp4)
tmp8 = triton_helpers.maximum(tmp7, tmp6)
tmp10 = triton_helpers.maximum(tmp9, tmp8)
tmp12 = triton_helpers.maximum(tmp11, tmp10)
tmp14 = triton_helpers.maximum(tmp13, tmp12)
tmp16 = triton_helpers.maximum(tmp15, tmp14)
tmp18 = triton_helpers.maximum(tmp17, tmp16)
tmp20 = triton_helpers.maximum(tmp19, tmp18)
tmp22 = triton_helpers.maximum(tmp21, tmp20)
tmp24 = triton_helpers.maximum(tmp23, tmp22)
tmp26 = triton_helpers.maximum(tmp25, tmp24)
tmp28 = triton_helpers.maximum(tmp27, tmp26)
tmp30 = triton_helpers.maximum(tmp29, tmp28)
tl.store(out_ptr0 + x4, tmp30, xmask)
def call(args):
arg0_1, = args
args.clear()
assert_size_stride(arg0_1, (4, 4, 4, 4), (64, 16, 4, 1))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((4, 4, 2, 2), (16, 4, 2, 1), torch.float32)
get_raw_stream(0)
triton_poi_fused_max_pool2d_with_indices_0[grid(64)](arg0_1, buf0,
64, XBLOCK=64, num_warps=1, num_stages=1)
del arg0_1
return buf0,
class MaxPoolStride1New(nn.Module):
def __init__(self, kernel_size):
super(MaxPoolStride1New, self).__init__()
self.kernel_size = kernel_size
self.pad = kernel_size - 1
def forward(self, input_0):
arg0_1 = input_0
output = call([arg0_1])
return output[0]
|
TCC-MonitoramentoInteligente/dev-tool
|
MaxPoolStride1
| false | 9,509 |
[
"MIT"
] | 0 |
d3a1d697c4ba7a5fff54be08541da4fc4811ab5e
|
https://github.com/TCC-MonitoramentoInteligente/dev-tool/tree/d3a1d697c4ba7a5fff54be08541da4fc4811ab5e
|
Generator
|
import torch
from torch import nn
def gumbel_softmax(logits, tau=1.0, hard=False, log_mode=True, dim=-1):
while True:
gumbels = -torch.empty_like(logits).exponential_().log()
gumbels = (logits + gumbels) / tau
if log_mode:
y_soft = gumbels.log_softmax(dim)
else:
y_soft = gumbels.softmax(dim)
if torch.sum(torch.isnan(y_soft)).item() < 0.01:
break
if hard:
index = y_soft.max(dim, keepdim=True)[1]
y_hard = torch.zeros_like(logits).scatter_(dim, index, 1.0)
ret = y_hard - y_soft.detach() + y_soft
else:
ret = y_soft
return ret
class Generator(nn.Module):
def __init__(self, vocab_size, dec_hidden_size, pad_idx):
super(Generator, self).__init__()
self.linear = nn.Linear(dec_hidden_size, vocab_size)
self.softmax = nn.LogSoftmax(dim=-1)
self.pad_idx = pad_idx
def forward(self, x, use_gumbel_softmax=False):
output = self.linear(x)
output[:, self.pad_idx] = -float('inf')
if use_gumbel_softmax:
output = gumbel_softmax(output, log_mode=True, dim=-1)
else:
output = self.softmax(output)
return output
def get_inputs():
return [torch.rand([4, 5, 4, 4])]
def get_init_inputs():
return [[], {'vocab_size': 4, 'dec_hidden_size': 4, 'pad_idx': 4}]
|
import torch
from torch._inductor.select_algorithm import extern_kernels
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
from torch._inductor.runtime import triton_helpers
from torch._inductor.runtime.triton_helpers import math as tl_math
from torch import nn
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
@triton.jit
def triton_poi_fused__log_softmax_0(in_ptr0, out_ptr0, xnumel, XBLOCK: tl.
constexpr):
xnumel = 320
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x2 = xindex // 16 % 5
x5 = xindex
x6 = xindex // 4
tmp3 = tl.load(in_ptr0 + x5, xmask)
tmp6 = tl.load(in_ptr0 + 4 * x6, xmask, eviction_policy='evict_last')
tmp8 = tl.load(in_ptr0 + (1 + 4 * x6), xmask, eviction_policy='evict_last')
tmp11 = tl.load(in_ptr0 + (2 + 4 * x6), xmask, eviction_policy='evict_last'
)
tmp14 = tl.load(in_ptr0 + (3 + 4 * x6), xmask, eviction_policy='evict_last'
)
tmp0 = x2
tmp1 = tl.full([1], 4, tl.int32)
tmp2 = tmp0 == tmp1
tmp4 = float('-inf')
tmp5 = tl.where(tmp2, tmp4, tmp3)
tmp7 = tl.where(tmp2, tmp4, tmp6)
tmp9 = tl.where(tmp2, tmp4, tmp8)
tmp10 = triton_helpers.maximum(tmp7, tmp9)
tmp12 = tl.where(tmp2, tmp4, tmp11)
tmp13 = triton_helpers.maximum(tmp10, tmp12)
tmp15 = tl.where(tmp2, tmp4, tmp14)
tmp16 = triton_helpers.maximum(tmp13, tmp15)
tmp17 = tmp5 - tmp16
tl.store(out_ptr0 + x5, tmp17, xmask)
@triton.jit
def triton_poi_fused__log_softmax_1(in_ptr0, out_ptr0, xnumel, XBLOCK: tl.
constexpr):
xnumel = 320
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x2 = xindex
x1 = xindex // 4
tmp0 = tl.load(in_ptr0 + x2, xmask)
tmp1 = tl.load(in_ptr0 + 4 * x1, xmask, eviction_policy='evict_last')
tmp3 = tl.load(in_ptr0 + (1 + 4 * x1), xmask, eviction_policy='evict_last')
tmp6 = tl.load(in_ptr0 + (2 + 4 * x1), xmask, eviction_policy='evict_last')
tmp9 = tl.load(in_ptr0 + (3 + 4 * x1), xmask, eviction_policy='evict_last')
tmp2 = tl_math.exp(tmp1)
tmp4 = tl_math.exp(tmp3)
tmp5 = tmp2 + tmp4
tmp7 = tl_math.exp(tmp6)
tmp8 = tmp5 + tmp7
tmp10 = tl_math.exp(tmp9)
tmp11 = tmp8 + tmp10
tmp12 = tl_math.log(tmp11)
tmp13 = tmp0 - tmp12
tl.store(out_ptr0 + x2, tmp13, xmask)
def call(args):
primals_1, primals_2, primals_3 = args
args.clear()
assert_size_stride(primals_1, (4, 4), (4, 1))
assert_size_stride(primals_2, (4,), (1,))
assert_size_stride(primals_3, (4, 5, 4, 4), (80, 16, 4, 1))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((80, 4), (4, 1), torch.float32)
extern_kernels.addmm(primals_2, reinterpret_tensor(primals_3, (80,
4), (4, 1), 0), reinterpret_tensor(primals_1, (4, 4), (1, 4), 0
), alpha=1, beta=1, out=buf0)
del primals_1
del primals_2
buf1 = empty_strided_cuda((4, 5, 4, 4), (80, 16, 4, 1), torch.float32)
get_raw_stream(0)
triton_poi_fused__log_softmax_0[grid(320)](buf0, buf1, 320, XBLOCK=
256, num_warps=4, num_stages=1)
buf2 = reinterpret_tensor(buf0, (4, 5, 4, 4), (80, 16, 4, 1), 0)
del buf0
triton_poi_fused__log_softmax_1[grid(320)](buf1, buf2, 320, XBLOCK=
256, num_warps=4, num_stages=1)
del buf1
return buf2, reinterpret_tensor(primals_3, (80, 4), (4, 1), 0), buf2
def gumbel_softmax(logits, tau=1.0, hard=False, log_mode=True, dim=-1):
while True:
gumbels = -torch.empty_like(logits).exponential_().log()
gumbels = (logits + gumbels) / tau
if log_mode:
y_soft = gumbels.log_softmax(dim)
else:
y_soft = gumbels.softmax(dim)
if torch.sum(torch.isnan(y_soft)).item() < 0.01:
break
if hard:
index = y_soft.max(dim, keepdim=True)[1]
y_hard = torch.zeros_like(logits).scatter_(dim, index, 1.0)
ret = y_hard - y_soft.detach() + y_soft
else:
ret = y_soft
return ret
class GeneratorNew(nn.Module):
def __init__(self, vocab_size, dec_hidden_size, pad_idx):
super(GeneratorNew, self).__init__()
self.linear = nn.Linear(dec_hidden_size, vocab_size)
self.softmax = nn.LogSoftmax(dim=-1)
self.pad_idx = pad_idx
def forward(self, input_0):
primals_1 = self.linear.weight
primals_2 = self.linear.bias
primals_3 = input_0
output = call([primals_1, primals_2, primals_3])
return output[0]
|
mosespv96/SCAPT-ABSA
|
Generator
| false | 16,108 |
[
"MIT"
] | 49 |
6f7f89a131127f262a8d1fd2774e5a96b58e7193
|
https://github.com/mosespv96/SCAPT-ABSA/tree/6f7f89a131127f262a8d1fd2774e5a96b58e7193
|
PatchEmbed
|
# AOT ID: ['0_forward']
from ctypes import c_void_p, c_long, c_int
import torch
import math
import random
import os
import tempfile
from math import inf, nan
from torch._inductor.hooks import run_intermediate_hooks
from torch._inductor.utils import maybe_profile
from torch._inductor.codegen.memory_planning import _align as align
from torch import device, empty_strided
from torch._inductor.async_compile import AsyncCompile
from torch._inductor.select_algorithm import extern_kernels
from torch._inductor.codegen.multi_kernel import MultiKernelCall
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
aten = torch.ops.aten
inductor_ops = torch.ops.inductor
_quantized = torch.ops._quantized
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
alloc_from_pool = torch.ops.inductor._alloc_from_pool
async_compile = AsyncCompile()
# kernel path: runs/run_shard_7/inductor_cache/nl/cnlokrj2wjyrgg7wfimnkgyoc67ges2kinndxwhgqm3b33ayddof.py
# Unsorted Source Nodes: [], Original ATen: []
# Source node to ATen node mapping:
triton_poi_fused_0 = async_compile.triton('triton_poi_fused_0', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[32768, 64], tile_hint=TileHint.SQUARE,
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_0', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 1, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_0(in_ptr0, out_ptr0, ynumel, xnumel, YBLOCK : tl.constexpr, XBLOCK : tl.constexpr):
ynumel = 24576
xnumel = 64
yoffset = tl.program_id(1) * YBLOCK
yindex = yoffset + tl.arange(0, YBLOCK)[None, :]
ymask = tl.full([XBLOCK, YBLOCK], True, tl.int1)
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:, None]
xmask = xindex < xnumel
x2 = xindex
y3 = yindex
y0 = yindex % 64
y1 = (yindex // 64)
tmp0 = tl.load(in_ptr0 + (x2 + (64*y3)), xmask, eviction_policy='evict_last')
tl.store(out_ptr0 + (y0 + (64*x2) + (4096*y1)), tmp0, xmask)
''', device_str='cuda')
# kernel path: runs/run_shard_7/inductor_cache/nq/cnqioqtc5smqmnt22pzdujcgch6iuo4ayzdajy2hr5awqxgsqhdm.py
# Unsorted Source Nodes: [], Original ATen: []
# Source node to ATen node mapping:
triton_poi_fused_1 = async_compile.triton('triton_poi_fused_1', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[256, 4096], tile_hint=TileHint.SQUARE,
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_1', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 1, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_1(in_ptr0, out_ptr0, ynumel, xnumel, YBLOCK : tl.constexpr, XBLOCK : tl.constexpr):
ynumel = 256
xnumel = 4096
yoffset = tl.program_id(1) * YBLOCK
yindex = yoffset + tl.arange(0, YBLOCK)[None, :]
ymask = yindex < ynumel
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:, None]
xmask = tl.full([XBLOCK, YBLOCK], True, tl.int1)
x2 = xindex
y3 = yindex
y0 = yindex % 64
y1 = (yindex // 64)
tmp0 = tl.load(in_ptr0 + (x2 + (4096*y3)), ymask, eviction_policy='evict_last')
tl.store(out_ptr0 + (y0 + (64*x2) + (262144*y1)), tmp0, ymask)
''', device_str='cuda')
# kernel path: runs/run_shard_7/inductor_cache/l6/cl6ocqksyk3wleegoip6f6dl6yzvtddsatt22zjqsevei4dpu6kx.py
# Topologically Sorted Source Nodes: [x], Original ATen: [aten.convolution]
# Source node to ATen node mapping:
# x => convolution
# Graph fragment:
# %convolution : [num_users=1] = call_function[target=torch.ops.aten.convolution.default](args = (%primals_3, %primals_1, %primals_2, [8, 8], [0, 0], [1, 1], False, [0, 0], 1), kwargs = {})
triton_poi_fused_convolution_2 = async_compile.triton('triton_poi_fused_convolution_2', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[2048, 64], tile_hint=TileHint.DEFAULT,
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: 'i32', 4: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3, 4), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_convolution_2', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_convolution_2(in_ptr0, in_ptr1, out_ptr0, ynumel, xnumel, YBLOCK : tl.constexpr, XBLOCK : tl.constexpr):
ynumel = 1536
xnumel = 64
yoffset = tl.program_id(1) * YBLOCK
yindex = yoffset + tl.arange(0, YBLOCK)[None, :]
ymask = yindex < ynumel
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:, None]
xmask = xindex < xnumel
x2 = xindex
y0 = yindex % 384
y1 = (yindex // 384)
y3 = yindex
tmp0 = tl.load(in_ptr0 + (y0 + (384*x2) + (24576*y1)), xmask & ymask, eviction_policy='evict_last')
tmp1 = tl.load(in_ptr1 + (y0), ymask, eviction_policy='evict_last')
tmp2 = tmp0 + tmp1
tl.store(out_ptr0 + (x2 + (64*y3)), tmp2, xmask & ymask)
''', device_str='cuda')
async_compile.wait(globals())
del async_compile
def call(args):
primals_1, primals_2, primals_3 = args
args.clear()
assert_size_stride(primals_1, (384, 64, 8, 8), (4096, 64, 8, 1))
assert_size_stride(primals_2, (384, ), (1, ))
assert_size_stride(primals_3, (4, 64, 64, 64), (262144, 4096, 64, 1))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((384, 64, 8, 8), (4096, 1, 512, 64), torch.float32)
# Unsorted Source Nodes: [], Original ATen: []
stream0 = get_raw_stream(0)
triton_poi_fused_0.run(primals_1, buf0, 24576, 64, grid=grid(24576, 64), stream=stream0)
del primals_1
buf1 = empty_strided_cuda((4, 64, 64, 64), (262144, 1, 4096, 64), torch.float32)
# Unsorted Source Nodes: [], Original ATen: []
triton_poi_fused_1.run(primals_3, buf1, 256, 4096, grid=grid(256, 4096), stream=stream0)
del primals_3
# Topologically Sorted Source Nodes: [x], Original ATen: [aten.convolution]
buf2 = extern_kernels.convolution(buf1, buf0, stride=(8, 8), padding=(0, 0), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None)
assert_size_stride(buf2, (4, 384, 8, 8), (24576, 1, 3072, 384))
buf3 = empty_strided_cuda((4, 384, 8, 8), (24576, 64, 8, 1), torch.float32)
# Topologically Sorted Source Nodes: [x], Original ATen: [aten.convolution]
triton_poi_fused_convolution_2.run(buf2, primals_2, buf3, 1536, 64, grid=grid(1536, 64), stream=stream0)
del buf2
del primals_2
return (buf3, buf0, buf1, )
def benchmark_compiled_module(times=10, repeat=10):
from torch._dynamo.testing import rand_strided
from torch._inductor.utils import print_performance
primals_1 = rand_strided((384, 64, 8, 8), (4096, 64, 8, 1), device='cuda:0', dtype=torch.float32)
primals_2 = rand_strided((384, ), (1, ), device='cuda:0', dtype=torch.float32)
primals_3 = rand_strided((4, 64, 64, 64), (262144, 4096, 64, 1), device='cuda:0', dtype=torch.float32)
fn = lambda: call([primals_1, primals_2, primals_3])
return print_performance(fn, times=times, repeat=repeat)
if __name__ == "__main__":
from torch._inductor.wrapper_benchmark import compiled_module_main
compiled_module_main('None', benchmark_compiled_module)
|
import torch
from torch._inductor.select_algorithm import extern_kernels
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
import torch.nn as nn
import torch.nn.parallel
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
@triton.jit
def triton_poi_fused_0(in_ptr0, out_ptr0, ynumel, xnumel, YBLOCK: tl.
constexpr, XBLOCK: tl.constexpr):
xnumel = 64
yoffset = tl.program_id(1) * YBLOCK
yindex = yoffset + tl.arange(0, YBLOCK)[None, :]
tl.full([XBLOCK, YBLOCK], True, tl.int1)
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:, None]
xmask = xindex < xnumel
x2 = xindex
y3 = yindex
y0 = yindex % 64
y1 = yindex // 64
tmp0 = tl.load(in_ptr0 + (x2 + 64 * y3), xmask, eviction_policy=
'evict_last')
tl.store(out_ptr0 + (y0 + 64 * x2 + 4096 * y1), tmp0, xmask)
@triton.jit
def triton_poi_fused_1(in_ptr0, out_ptr0, ynumel, xnumel, YBLOCK: tl.
constexpr, XBLOCK: tl.constexpr):
ynumel = 256
yoffset = tl.program_id(1) * YBLOCK
yindex = yoffset + tl.arange(0, YBLOCK)[None, :]
ymask = yindex < ynumel
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:, None]
tl.full([XBLOCK, YBLOCK], True, tl.int1)
x2 = xindex
y3 = yindex
y0 = yindex % 64
y1 = yindex // 64
tmp0 = tl.load(in_ptr0 + (x2 + 4096 * y3), ymask, eviction_policy=
'evict_last')
tl.store(out_ptr0 + (y0 + 64 * x2 + 262144 * y1), tmp0, ymask)
@triton.jit
def triton_poi_fused_convolution_2(in_ptr0, in_ptr1, out_ptr0, ynumel,
xnumel, YBLOCK: tl.constexpr, XBLOCK: tl.constexpr):
ynumel = 1536
xnumel = 64
yoffset = tl.program_id(1) * YBLOCK
yindex = yoffset + tl.arange(0, YBLOCK)[None, :]
ymask = yindex < ynumel
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:, None]
xmask = xindex < xnumel
x2 = xindex
y0 = yindex % 384
y1 = yindex // 384
y3 = yindex
tmp0 = tl.load(in_ptr0 + (y0 + 384 * x2 + 24576 * y1), xmask & ymask,
eviction_policy='evict_last')
tmp1 = tl.load(in_ptr1 + y0, ymask, eviction_policy='evict_last')
tmp2 = tmp0 + tmp1
tl.store(out_ptr0 + (x2 + 64 * y3), tmp2, xmask & ymask)
def call(args):
primals_1, primals_2, primals_3 = args
args.clear()
assert_size_stride(primals_1, (384, 64, 8, 8), (4096, 64, 8, 1))
assert_size_stride(primals_2, (384,), (1,))
assert_size_stride(primals_3, (4, 64, 64, 64), (262144, 4096, 64, 1))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((384, 64, 8, 8), (4096, 1, 512, 64),
torch.float32)
get_raw_stream(0)
triton_poi_fused_0[grid(24576, 64)](primals_1, buf0, 24576, 64,
XBLOCK=32, YBLOCK=32, num_warps=4, num_stages=1)
del primals_1
buf1 = empty_strided_cuda((4, 64, 64, 64), (262144, 1, 4096, 64),
torch.float32)
triton_poi_fused_1[grid(256, 4096)](primals_3, buf1, 256, 4096,
XBLOCK=32, YBLOCK=32, num_warps=4, num_stages=1)
del primals_3
buf2 = extern_kernels.convolution(buf1, buf0, stride=(8, 8),
padding=(0, 0), dilation=(1, 1), transposed=False,
output_padding=(0, 0), groups=1, bias=None)
assert_size_stride(buf2, (4, 384, 8, 8), (24576, 1, 3072, 384))
buf3 = empty_strided_cuda((4, 384, 8, 8), (24576, 64, 8, 1), torch.
float32)
triton_poi_fused_convolution_2[grid(1536, 64)](buf2, primals_2,
buf3, 1536, 64, XBLOCK=64, YBLOCK=16, num_warps=4, num_stages=1)
del buf2
del primals_2
return buf3, buf0, buf1
class PatchEmbedNew(nn.Module):
"""
Image to Patch Embedding.
Different with ViT use 1 conv layer, we use 4 conv layers to do patch embedding
"""
def __init__(self, img_size=224, stem_conv=False, stem_stride=1,
patch_size=8, in_chans=3, hidden_dim=64, embed_dim=384):
super().__init__()
assert patch_size in [4, 8, 16]
self.stem_conv = stem_conv
if stem_conv:
self.conv = nn.Sequential(nn.Conv2d(in_chans, hidden_dim,
kernel_size=7, stride=stem_stride, padding=3, bias=False),
nn.BatchNorm2d(hidden_dim), nn.ReLU(inplace=True), nn.
Conv2d(hidden_dim, hidden_dim, kernel_size=3, stride=1,
padding=1, bias=False), nn.BatchNorm2d(hidden_dim), nn.ReLU
(inplace=True), nn.Conv2d(hidden_dim, hidden_dim,
kernel_size=3, stride=1, padding=1, bias=False), nn.
BatchNorm2d(hidden_dim), nn.ReLU(inplace=True))
self.proj = nn.Conv2d(hidden_dim, embed_dim, kernel_size=patch_size //
stem_stride, stride=patch_size // stem_stride)
self.num_patches = img_size // patch_size * (img_size // patch_size)
def forward(self, input_0):
primals_1 = self.proj.weight
primals_2 = self.proj.bias
primals_3 = input_0
output = call([primals_1, primals_2, primals_3])
return output[0]
|
QLSong/cv-classify
|
PatchEmbed
| false | 2,749 |
[
"Apache-2.0"
] | 0 |
02f53d03868f299a08b5c97a266b50a7fdcd3f2b
|
https://github.com/QLSong/cv-classify/tree/02f53d03868f299a08b5c97a266b50a7fdcd3f2b
|
ToContinuous
|
# AOT ID: ['0_inference']
from ctypes import c_void_p, c_long, c_int
import torch
import math
import random
import os
import tempfile
from math import inf, nan
from torch._inductor.hooks import run_intermediate_hooks
from torch._inductor.utils import maybe_profile
from torch._inductor.codegen.memory_planning import _align as align
from torch import device, empty_strided
from torch._inductor.async_compile import AsyncCompile
from torch._inductor.select_algorithm import extern_kernels
from torch._inductor.codegen.multi_kernel import MultiKernelCall
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
aten = torch.ops.aten
inductor_ops = torch.ops.inductor
_quantized = torch.ops._quantized
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
alloc_from_pool = torch.ops.inductor._alloc_from_pool
async_compile = AsyncCompile()
# kernel path: runs/run_shard_7/inductor_cache/3b/c3b62pdsbck73tub674e2ap2qhafl7nnia7qegg6orm2txneplfz.py
# Topologically Sorted Source Nodes: [max_1, float_2, sub, x_2, mul, x_3, setitem], Original ATen: [aten.max, aten._to_copy, aten.sub, aten.div, aten.mul, aten.lift_fresh, aten.index_put]
# Source node to ATen node mapping:
# float_2 => convert_element_type_1
# max_1 => max_1
# mul => mul
# setitem => full_default, index_put
# sub => sub
# x_2 => div
# x_3 => sub_1
# Graph fragment:
# %max_1 : [num_users=1] = call_function[target=torch.ops.aten.max.dim](args = (%view, 1), kwargs = {})
# %convert_element_type_1 : [num_users=1] = call_function[target=torch.ops.prims.convert_element_type.default](args = (%getitem_1, torch.float32), kwargs = {})
# %sub : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (%convert_element_type_1, 1), kwargs = {})
# %div : [num_users=1] = call_function[target=torch.ops.aten.div.Tensor](args = (%sub, 2), kwargs = {})
# %mul : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%div, 2), kwargs = {})
# %sub_1 : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (%mul, 1), kwargs = {})
# %full_default : [num_users=1] = call_function[target=torch.ops.aten.full.default](args = ([], -1.0), kwargs = {dtype: torch.float32, layout: torch.strided, device: cpu, pin_memory: False})
# %index_put : [num_users=1] = call_function[target=torch.ops.aten.index_put_.default](args = (%sub_1, [%bitwise_not], %full_default), kwargs = {})
triton_poi_fused__to_copy_div_index_put_lift_fresh_max_mul_sub_0 = async_compile.triton('triton_poi_fused__to_copy_div_index_put_lift_fresh_max_mul_sub_0', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[64],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*i64', 2: '*fp32', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused__to_copy_div_index_put_lift_fresh_max_mul_sub_0', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 4, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused__to_copy_div_index_put_lift_fresh_max_mul_sub_0(in_ptr0, out_ptr0, out_ptr1, xnumel, XBLOCK : tl.constexpr):
xnumel = 64
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex % 16
x1 = (xindex // 16)
x2 = xindex
tmp0 = tl.load(in_ptr0 + (x0 + (64*x1)), xmask)
tmp1 = tl.load(in_ptr0 + (16 + x0 + (64*x1)), xmask)
tmp17 = tl.load(in_ptr0 + (32 + x0 + (64*x1)), xmask)
tmp32 = tl.load(in_ptr0 + (48 + x0 + (64*x1)), xmask)
tmp2 = tmp0 > tmp1
tmp3 = tmp0 == tmp1
tmp4 = tmp0 != tmp0
tmp5 = tmp1 != tmp1
tmp6 = tmp4 > tmp5
tmp7 = tmp2 | tmp6
tmp8 = tmp4 & tmp5
tmp9 = tmp3 | tmp8
tmp10 = tl.full([1], 0, tl.int64)
tmp11 = tl.full([1], 1, tl.int64)
tmp12 = tmp10 < tmp11
tmp13 = tmp9 & tmp12
tmp14 = tmp7 | tmp13
tmp15 = tl.where(tmp14, tmp0, tmp1)
tmp16 = tl.where(tmp14, tmp10, tmp11)
tmp18 = tmp15 > tmp17
tmp19 = tmp15 == tmp17
tmp20 = tmp15 != tmp15
tmp21 = tmp17 != tmp17
tmp22 = tmp20 > tmp21
tmp23 = tmp18 | tmp22
tmp24 = tmp20 & tmp21
tmp25 = tmp19 | tmp24
tmp26 = tl.full([1], 2, tl.int64)
tmp27 = tmp16 < tmp26
tmp28 = tmp25 & tmp27
tmp29 = tmp23 | tmp28
tmp30 = tl.where(tmp29, tmp15, tmp17)
tmp31 = tl.where(tmp29, tmp16, tmp26)
tmp33 = tmp30 > tmp32
tmp34 = tmp30 == tmp32
tmp35 = tmp30 != tmp30
tmp36 = tmp32 != tmp32
tmp37 = tmp35 > tmp36
tmp38 = tmp33 | tmp37
tmp39 = tmp35 & tmp36
tmp40 = tmp34 | tmp39
tmp41 = tl.full([1], 3, tl.int64)
tmp42 = tmp31 < tmp41
tmp43 = tmp40 & tmp42
tmp44 = tmp38 | tmp43
tmp45 = tl.where(tmp44, tmp30, tmp32)
tmp46 = tl.where(tmp44, tmp31, tmp41)
tmp47 = tmp46 > tmp10
tmp48 = tmp47 == 0
tmp49 = tmp46.to(tl.float32)
tmp50 = 1.0
tmp51 = tmp49 - tmp50
tmp52 = 0.5
tmp53 = tmp51 * tmp52
tmp54 = 2.0
tmp55 = tmp53 * tmp54
tmp56 = tmp55 - tmp50
tmp57 = -1.0
tmp58 = tl.where(tmp48, tmp57, tmp56)
tl.store(out_ptr0 + (x2), tmp46, xmask)
tl.store(out_ptr1 + (x2), tmp58, xmask)
''', device_str='cuda')
# kernel path: runs/run_shard_7/inductor_cache/j5/cj5xlqb2izp3v4stsdw4qkcghuulalwjuyl2kw4xl2gdfve2bely.py
# Topologically Sorted Source Nodes: [x_4], Original ATen: [aten.clone]
# Source node to ATen node mapping:
# x_4 => clone
# Graph fragment:
# %clone : [num_users=1] = call_function[target=torch.ops.aten.clone.default](args = (%permute,), kwargs = {memory_format: torch.contiguous_format})
triton_poi_fused_clone_1 = async_compile.triton('triton_poi_fused_clone_1', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[128],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*i64', 2: '*fp32', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_clone_1', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_clone_1(in_ptr0, in_ptr1, out_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 128
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x1 = (xindex // 16) % 2
x2 = (xindex // 32)
x0 = xindex % 16
x3 = xindex
tmp0 = x2 + (4*x1)
tmp1 = tl.full([1], 0, tl.int64)
tmp2 = tmp0 >= tmp1
tmp3 = tl.full([1], 4, tl.int64)
tmp4 = tmp0 < tmp3
tmp5 = tl.load(in_ptr0 + (x0 + (16*(x2 + (4*x1)))), tmp4 & xmask, other=0.0)
tmp6 = tmp0 >= tmp3
tmp7 = tl.full([1], 8, tl.int64)
tmp8 = tmp0 < tmp7
tmp9 = tl.load(in_ptr1 + (x0 + (16*((-4) + x2 + (4*x1)))), tmp6 & xmask, other=0.0)
tmp10 = tmp9 > tmp1
tmp11 = tmp10.to(tl.float32)
tmp12 = tl.full(tmp11.shape, 0.0, tmp11.dtype)
tmp13 = tl.where(tmp6, tmp11, tmp12)
tmp14 = tl.where(tmp4, tmp5, tmp13)
tl.store(out_ptr0 + (x3), tmp14, xmask)
''', device_str='cuda')
async_compile.wait(globals())
del async_compile
def call(args):
arg0_1, = args
args.clear()
assert_size_stride(arg0_1, (4, 4, 4, 4), (64, 16, 4, 1))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((4, 4, 4), (16, 4, 1), torch.int64)
buf1 = empty_strided_cuda((4, 4, 4), (16, 4, 1), torch.float32)
# Topologically Sorted Source Nodes: [max_1, float_2, sub, x_2, mul, x_3, setitem], Original ATen: [aten.max, aten._to_copy, aten.sub, aten.div, aten.mul, aten.lift_fresh, aten.index_put]
stream0 = get_raw_stream(0)
triton_poi_fused__to_copy_div_index_put_lift_fresh_max_mul_sub_0.run(arg0_1, buf0, buf1, 64, grid=grid(64), stream=stream0)
del arg0_1
buf2 = empty_strided_cuda((4, 2, 4, 4), (32, 16, 4, 1), torch.float32)
# Topologically Sorted Source Nodes: [x_4], Original ATen: [aten.clone]
triton_poi_fused_clone_1.run(buf1, buf0, buf2, 128, grid=grid(128), stream=stream0)
del buf0
del buf1
return (buf2, )
def benchmark_compiled_module(times=10, repeat=10):
from torch._dynamo.testing import rand_strided
from torch._inductor.utils import print_performance
arg0_1 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32)
fn = lambda: call([arg0_1])
return print_performance(fn, times=times, repeat=repeat)
if __name__ == "__main__":
from torch._inductor.wrapper_benchmark import compiled_module_main
compiled_module_main('None', benchmark_compiled_module)
|
import torch
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
import torch.nn as nn
import torch.nn.parallel
import torch.utils.data
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
@triton.jit
def triton_poi_fused__to_copy_div_index_put_lift_fresh_max_mul_sub_0(in_ptr0,
out_ptr0, out_ptr1, xnumel, XBLOCK: tl.constexpr):
xnumel = 64
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex % 16
x1 = xindex // 16
x2 = xindex
tmp0 = tl.load(in_ptr0 + (x0 + 64 * x1), xmask)
tmp1 = tl.load(in_ptr0 + (16 + x0 + 64 * x1), xmask)
tmp17 = tl.load(in_ptr0 + (32 + x0 + 64 * x1), xmask)
tmp32 = tl.load(in_ptr0 + (48 + x0 + 64 * x1), xmask)
tmp2 = tmp0 > tmp1
tmp3 = tmp0 == tmp1
tmp4 = tmp0 != tmp0
tmp5 = tmp1 != tmp1
tmp6 = tmp4 > tmp5
tmp7 = tmp2 | tmp6
tmp8 = tmp4 & tmp5
tmp9 = tmp3 | tmp8
tmp10 = tl.full([1], 0, tl.int64)
tmp11 = tl.full([1], 1, tl.int64)
tmp12 = tmp10 < tmp11
tmp13 = tmp9 & tmp12
tmp14 = tmp7 | tmp13
tmp15 = tl.where(tmp14, tmp0, tmp1)
tmp16 = tl.where(tmp14, tmp10, tmp11)
tmp18 = tmp15 > tmp17
tmp19 = tmp15 == tmp17
tmp20 = tmp15 != tmp15
tmp21 = tmp17 != tmp17
tmp22 = tmp20 > tmp21
tmp23 = tmp18 | tmp22
tmp24 = tmp20 & tmp21
tmp25 = tmp19 | tmp24
tmp26 = tl.full([1], 2, tl.int64)
tmp27 = tmp16 < tmp26
tmp28 = tmp25 & tmp27
tmp29 = tmp23 | tmp28
tmp30 = tl.where(tmp29, tmp15, tmp17)
tmp31 = tl.where(tmp29, tmp16, tmp26)
tmp33 = tmp30 > tmp32
tmp34 = tmp30 == tmp32
tmp35 = tmp30 != tmp30
tmp36 = tmp32 != tmp32
tmp37 = tmp35 > tmp36
tmp38 = tmp33 | tmp37
tmp39 = tmp35 & tmp36
tmp40 = tmp34 | tmp39
tmp41 = tl.full([1], 3, tl.int64)
tmp42 = tmp31 < tmp41
tmp43 = tmp40 & tmp42
tmp44 = tmp38 | tmp43
tl.where(tmp44, tmp30, tmp32)
tmp46 = tl.where(tmp44, tmp31, tmp41)
tmp47 = tmp46 > tmp10
tmp48 = tmp47 == 0
tmp49 = tmp46.to(tl.float32)
tmp50 = 1.0
tmp51 = tmp49 - tmp50
tmp52 = 0.5
tmp53 = tmp51 * tmp52
tmp54 = 2.0
tmp55 = tmp53 * tmp54
tmp56 = tmp55 - tmp50
tmp57 = -1.0
tmp58 = tl.where(tmp48, tmp57, tmp56)
tl.store(out_ptr0 + x2, tmp46, xmask)
tl.store(out_ptr1 + x2, tmp58, xmask)
@triton.jit
def triton_poi_fused_clone_1(in_ptr0, in_ptr1, out_ptr0, xnumel, XBLOCK: tl
.constexpr):
xnumel = 128
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x1 = xindex // 16 % 2
x2 = xindex // 32
x0 = xindex % 16
x3 = xindex
tmp0 = x2 + 4 * x1
tmp1 = tl.full([1], 0, tl.int64)
tmp3 = tl.full([1], 4, tl.int64)
tmp4 = tmp0 < tmp3
tmp5 = tl.load(in_ptr0 + (x0 + 16 * (x2 + 4 * x1)), tmp4 & xmask, other=0.0
)
tmp6 = tmp0 >= tmp3
tl.full([1], 8, tl.int64)
tmp9 = tl.load(in_ptr1 + (x0 + 16 * (-4 + x2 + 4 * x1)), tmp6 & xmask,
other=0.0)
tmp10 = tmp9 > tmp1
tmp11 = tmp10.to(tl.float32)
tmp12 = tl.full(tmp11.shape, 0.0, tmp11.dtype)
tmp13 = tl.where(tmp6, tmp11, tmp12)
tmp14 = tl.where(tmp4, tmp5, tmp13)
tl.store(out_ptr0 + x3, tmp14, xmask)
def call(args):
arg0_1, = args
args.clear()
assert_size_stride(arg0_1, (4, 4, 4, 4), (64, 16, 4, 1))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((4, 4, 4), (16, 4, 1), torch.int64)
buf1 = empty_strided_cuda((4, 4, 4), (16, 4, 1), torch.float32)
get_raw_stream(0)
triton_poi_fused__to_copy_div_index_put_lift_fresh_max_mul_sub_0[grid
(64)](arg0_1, buf0, buf1, 64, XBLOCK=64, num_warps=1, num_stages=1)
del arg0_1
buf2 = empty_strided_cuda((4, 2, 4, 4), (32, 16, 4, 1), torch.float32)
triton_poi_fused_clone_1[grid(128)](buf1, buf0, buf2, 128, XBLOCK=
128, num_warps=4, num_stages=1)
del buf0
del buf1
return buf2,
class ToContinuousNew(nn.Module):
def __init__(self):
super(ToContinuousNew, self).__init__()
def forward(self, input_0):
arg0_1 = input_0
output = call([arg0_1])
return output[0]
|
kampta/multiview-shapes
|
ToContinuous
| false | 3,796 |
[
"MIT"
] | 0 |
a79eb4b492be8c2c279e2c69b13d5a19dff1621b
|
https://github.com/kampta/multiview-shapes/tree/a79eb4b492be8c2c279e2c69b13d5a19dff1621b
|
UpConv
|
import torch
import torch.nn as nn
class UpConv(nn.Module):
def __init__(self, input_nc, output_nc, kernel_size):
super(UpConv, self).__init__()
self.deconv = nn.ConvTranspose2d(in_channels=input_nc, out_channels
=output_nc, kernel_size=2, bias=True, stride=2, padding=0)
self.activation_fn = nn.ELU()
def forward(self, input):
return self.activation_fn(self.deconv(input))
def get_inputs():
return [torch.rand([4, 4, 4, 4])]
def get_init_inputs():
return [[], {'input_nc': 4, 'output_nc': 4, 'kernel_size': 4}]
|
import torch
from torch._inductor.select_algorithm import extern_kernels
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
from torch._inductor.runtime.triton_helpers import libdevice
import torch.nn as nn
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
@triton.jit
def triton_poi_fused_convolution_elu_0(in_out_ptr0, in_ptr0, out_ptr0,
xnumel, XBLOCK: tl.constexpr):
xnumel = 1024
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x3 = xindex
x1 = xindex // 64 % 4
tmp0 = tl.load(in_out_ptr0 + x3, xmask)
tmp1 = tl.load(in_ptr0 + x1, xmask, eviction_policy='evict_last')
tmp2 = tmp0 + tmp1
tmp3 = 0.0
tmp4 = tmp2 > tmp3
tmp5 = 1.0
tmp6 = tmp2 * tmp5
tmp7 = libdevice.expm1(tmp6)
tmp8 = tmp7 * tmp5
tmp9 = tl.where(tmp4, tmp6, tmp8)
tl.store(in_out_ptr0 + x3, tmp2, xmask)
tl.store(out_ptr0 + x3, tmp9, xmask)
def call(args):
primals_1, primals_2, primals_3 = args
args.clear()
assert_size_stride(primals_1, (4, 4, 2, 2), (16, 4, 2, 1))
assert_size_stride(primals_2, (4,), (1,))
assert_size_stride(primals_3, (4, 4, 4, 4), (64, 16, 4, 1))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = extern_kernels.convolution(primals_3, primals_1, stride=(2,
2), padding=(0, 0), dilation=(1, 1), transposed=True,
output_padding=(0, 0), groups=1, bias=None)
assert_size_stride(buf0, (4, 4, 8, 8), (256, 64, 8, 1))
buf1 = buf0
del buf0
buf2 = empty_strided_cuda((4, 4, 8, 8), (256, 64, 8, 1), torch.float32)
get_raw_stream(0)
triton_poi_fused_convolution_elu_0[grid(1024)](buf1, primals_2,
buf2, 1024, XBLOCK=128, num_warps=4, num_stages=1)
del primals_2
return buf2, primals_1, primals_3, buf1
class UpConvNew(nn.Module):
def __init__(self, input_nc, output_nc, kernel_size):
super(UpConvNew, self).__init__()
self.deconv = nn.ConvTranspose2d(in_channels=input_nc, out_channels
=output_nc, kernel_size=2, bias=True, stride=2, padding=0)
self.activation_fn = nn.ELU()
def forward(self, input_0):
primals_1 = self.deconv.weight
primals_2 = self.deconv.bias
primals_3 = input_0
output = call([primals_1, primals_2, primals_3])
return output[0]
|
dong1015323606/LKVOLearner
|
UpConv
| false | 15,205 |
[
"BSD-3-Clause"
] | 237 |
6ac9fb5d3c22d6a81529063f8c52d6aa34166b2a
|
https://github.com/dong1015323606/LKVOLearner/tree/6ac9fb5d3c22d6a81529063f8c52d6aa34166b2a
|
BertGELU
|
# AOT ID: ['0_inference']
from ctypes import c_void_p, c_long, c_int
import torch
import math
import random
import os
import tempfile
from math import inf, nan
from torch._inductor.hooks import run_intermediate_hooks
from torch._inductor.utils import maybe_profile
from torch._inductor.codegen.memory_planning import _align as align
from torch import device, empty_strided
from torch._inductor.async_compile import AsyncCompile
from torch._inductor.select_algorithm import extern_kernels
from torch._inductor.codegen.multi_kernel import MultiKernelCall
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
aten = torch.ops.aten
inductor_ops = torch.ops.inductor
_quantized = torch.ops._quantized
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
alloc_from_pool = torch.ops.inductor._alloc_from_pool
async_compile = AsyncCompile()
# kernel path: runs/run_shard_9/inductor_cache/6s/c6shmuvjmq6zc4ifvdsynorwri47ra63qxa7jg3e7p6lw6xlqj5q.py
# Topologically Sorted Source Nodes: [mul, truediv, erf, add, mul_1], Original ATen: [aten.mul, aten.div, aten.erf, aten.add]
# Source node to ATen node mapping:
# add => add
# erf => erf
# mul => mul
# mul_1 => mul_1
# truediv => div
# Graph fragment:
# %mul : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%arg0_1, 0.5), kwargs = {})
# %div : [num_users=1] = call_function[target=torch.ops.aten.div.Tensor](args = (%arg0_1, 1.4142135623730951), kwargs = {})
# %erf : [num_users=1] = call_function[target=torch.ops.aten.erf.default](args = (%div,), kwargs = {})
# %add : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%erf, 1.0), kwargs = {})
# %mul_1 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%mul, %add), kwargs = {})
triton_poi_fused_add_div_erf_mul_0 = async_compile.triton('triton_poi_fused_add_div_erf_mul_0', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[256],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_add_div_erf_mul_0', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 1, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_add_div_erf_mul_0(in_ptr0, out_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 256
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex
tmp0 = tl.load(in_ptr0 + (x0), xmask)
tmp1 = 0.5
tmp2 = tmp0 * tmp1
tmp3 = 0.7071067811865475
tmp4 = tmp0 * tmp3
tmp5 = libdevice.erf(tmp4)
tmp6 = 1.0
tmp7 = tmp5 + tmp6
tmp8 = tmp2 * tmp7
tl.store(out_ptr0 + (x0), tmp8, xmask)
''', device_str='cuda')
async_compile.wait(globals())
del async_compile
def call(args):
arg0_1, = args
args.clear()
assert_size_stride(arg0_1, (4, 4, 4, 4), (64, 16, 4, 1))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32)
# Topologically Sorted Source Nodes: [mul, truediv, erf, add, mul_1], Original ATen: [aten.mul, aten.div, aten.erf, aten.add]
stream0 = get_raw_stream(0)
triton_poi_fused_add_div_erf_mul_0.run(arg0_1, buf0, 256, grid=grid(256), stream=stream0)
del arg0_1
return (buf0, )
def benchmark_compiled_module(times=10, repeat=10):
from torch._dynamo.testing import rand_strided
from torch._inductor.utils import print_performance
arg0_1 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32)
fn = lambda: call([arg0_1])
return print_performance(fn, times=times, repeat=repeat)
if __name__ == "__main__":
from torch._inductor.wrapper_benchmark import compiled_module_main
compiled_module_main('None', benchmark_compiled_module)
|
import torch
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
from torch._inductor.runtime.triton_helpers import libdevice
from torch import nn
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
@triton.jit
def triton_poi_fused_add_div_erf_mul_0(in_ptr0, out_ptr0, xnumel, XBLOCK:
tl.constexpr):
xnumel = 256
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex
tmp0 = tl.load(in_ptr0 + x0, xmask)
tmp1 = 0.5
tmp2 = tmp0 * tmp1
tmp3 = 0.7071067811865475
tmp4 = tmp0 * tmp3
tmp5 = libdevice.erf(tmp4)
tmp6 = 1.0
tmp7 = tmp5 + tmp6
tmp8 = tmp2 * tmp7
tl.store(out_ptr0 + x0, tmp8, xmask)
def call(args):
arg0_1, = args
args.clear()
assert_size_stride(arg0_1, (4, 4, 4, 4), (64, 16, 4, 1))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32)
get_raw_stream(0)
triton_poi_fused_add_div_erf_mul_0[grid(256)](arg0_1, buf0, 256,
XBLOCK=256, num_warps=4, num_stages=1)
del arg0_1
return buf0,
class BertGELUNew(nn.Module):
"""Bert uses GELU as the activation function for the position-wise network.
"""
def forward(self, input_0):
arg0_1 = input_0
output = call([arg0_1])
return output[0]
|
Codle/texar-pytorch
|
BertGELU
| false | 11,298 |
[
"Apache-2.0"
] | 0 |
d63556e7a8f48076c396467314a771d56552d595
|
https://github.com/Codle/texar-pytorch/tree/d63556e7a8f48076c396467314a771d56552d595
|
_MLP_C
|
import torch
import torch.nn as nn
class _MLP_C(nn.Module):
"""MLP that use DPMs from fcn and age, gender and MMSE"""
def __init__(self, in_size, drop_rate, fil_num):
super(_MLP_C, self).__init__()
self.fc1 = nn.Linear(in_size, fil_num)
self.fc2 = nn.Linear(fil_num, 2)
self.do1 = nn.Dropout(drop_rate)
self.do2 = nn.Dropout(drop_rate)
self.ac1 = nn.LeakyReLU()
def forward(self, X1, X2):
X = torch.cat((X1, X2), 1)
out = self.do1(X)
out = self.fc1(out)
out = self.ac1(out)
out = self.do2(out)
out = self.fc2(out)
return out
def get_inputs():
return [torch.rand([4, 4, 4, 4]), torch.rand([4, 4, 4, 4])]
def get_init_inputs():
return [[], {'in_size': 4, 'drop_rate': 0.5, 'fil_num': 4}]
|
import torch
from torch._inductor.select_algorithm import extern_kernels
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
import torch.nn as nn
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
@triton.jit
def triton_poi_fused_cat_0(in_ptr0, in_ptr1, out_ptr0, xnumel, XBLOCK: tl.
constexpr):
xnumel = 512
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x1 = xindex // 16 % 8
x0 = xindex % 16
x2 = xindex // 128
x3 = xindex
tmp0 = x1
tl.full([1], 0, tl.int64)
tmp3 = tl.full([1], 4, tl.int64)
tmp4 = tmp0 < tmp3
tmp5 = tl.load(in_ptr0 + (x0 + 16 * x1 + 64 * x2), tmp4 & xmask, other=0.0)
tmp6 = tmp0 >= tmp3
tl.full([1], 8, tl.int64)
tmp9 = tl.load(in_ptr1 + (x0 + 16 * (-4 + x1) + 64 * x2), tmp6 & xmask,
other=0.0)
tmp10 = tl.where(tmp4, tmp5, tmp9)
tl.store(out_ptr0 + x3, tmp10, xmask)
@triton.jit
def triton_poi_fused_leaky_relu_1(in_ptr0, in_ptr1, out_ptr0, out_ptr1,
xnumel, XBLOCK: tl.constexpr):
xnumel = 512
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x2 = xindex
x0 = xindex % 4
tmp0 = tl.load(in_ptr0 + x2, xmask)
tmp1 = tl.load(in_ptr1 + x0, xmask, eviction_policy='evict_last')
tmp2 = tmp0 + tmp1
tmp3 = 0.0
tmp4 = tmp2 > tmp3
tmp5 = 0.01
tmp6 = tmp2 * tmp5
tmp7 = tl.where(tmp4, tmp2, tmp6)
tl.store(out_ptr0 + x2, tmp4, xmask)
tl.store(out_ptr1 + x2, tmp7, xmask)
def call(args):
primals_1, primals_2, primals_3, primals_4, primals_5, primals_6 = args
args.clear()
assert_size_stride(primals_1, (4, 4, 4, 4), (64, 16, 4, 1))
assert_size_stride(primals_2, (4, 4, 4, 4), (64, 16, 4, 1))
assert_size_stride(primals_3, (4, 4), (4, 1))
assert_size_stride(primals_4, (4,), (1,))
assert_size_stride(primals_5, (2, 4), (4, 1))
assert_size_stride(primals_6, (2,), (1,))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((4, 8, 4, 4), (128, 16, 4, 1), torch.float32)
get_raw_stream(0)
triton_poi_fused_cat_0[grid(512)](primals_1, primals_2, buf0, 512,
XBLOCK=256, num_warps=4, num_stages=1)
del primals_1
del primals_2
buf1 = empty_strided_cuda((128, 4), (4, 1), torch.float32)
extern_kernels.mm(reinterpret_tensor(buf0, (128, 4), (4, 1), 0),
reinterpret_tensor(primals_3, (4, 4), (1, 4), 0), out=buf1)
del primals_3
buf2 = empty_strided_cuda((4, 8, 4, 4), (128, 16, 4, 1), torch.bool)
buf3 = empty_strided_cuda((4, 8, 4, 4), (128, 16, 4, 1), torch.float32)
triton_poi_fused_leaky_relu_1[grid(512)](buf1, primals_4, buf2,
buf3, 512, XBLOCK=128, num_warps=4, num_stages=1)
del buf1
del primals_4
buf4 = empty_strided_cuda((128, 2), (2, 1), torch.float32)
extern_kernels.addmm(primals_6, reinterpret_tensor(buf3, (128, 4),
(4, 1), 0), reinterpret_tensor(primals_5, (4, 2), (1, 4), 0),
alpha=1, beta=1, out=buf4)
del primals_6
return reinterpret_tensor(buf4, (4, 8, 4, 2), (64, 8, 2, 1), 0
), reinterpret_tensor(buf0, (128, 4), (4, 1), 0
), buf2, reinterpret_tensor(buf3, (128, 4), (4, 1), 0), primals_5
class _MLP_CNew(nn.Module):
"""MLP that use DPMs from fcn and age, gender and MMSE"""
def __init__(self, in_size, drop_rate, fil_num):
super(_MLP_CNew, self).__init__()
self.fc1 = nn.Linear(in_size, fil_num)
self.fc2 = nn.Linear(fil_num, 2)
self.do1 = nn.Dropout(drop_rate)
self.do2 = nn.Dropout(drop_rate)
self.ac1 = nn.LeakyReLU()
def forward(self, input_0, input_1):
primals_3 = self.fc1.weight
primals_4 = self.fc1.bias
primals_5 = self.fc2.weight
primals_6 = self.fc2.bias
primals_1 = input_0
primals_2 = input_1
output = call([primals_1, primals_2, primals_3, primals_4,
primals_5, primals_6])
return output[0]
|
GaelKBertrand/Meliora_DeepLearning
|
_MLP_C
| false | 5,185 |
[
"MIT"
] | 1 |
5618e01066d4d0afcd7dfe074dda91af22b5857c
|
https://github.com/GaelKBertrand/Meliora_DeepLearning/tree/5618e01066d4d0afcd7dfe074dda91af22b5857c
|
L2Norm
|
# AOT ID: ['0_forward']
from ctypes import c_void_p, c_long, c_int
import torch
import math
import random
import os
import tempfile
from math import inf, nan
from torch._inductor.hooks import run_intermediate_hooks
from torch._inductor.utils import maybe_profile
from torch._inductor.codegen.memory_planning import _align as align
from torch import device, empty_strided
from torch._inductor.async_compile import AsyncCompile
from torch._inductor.select_algorithm import extern_kernels
from torch._inductor.codegen.multi_kernel import MultiKernelCall
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
aten = torch.ops.aten
inductor_ops = torch.ops.inductor
_quantized = torch.ops._quantized
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
alloc_from_pool = torch.ops.inductor._alloc_from_pool
async_compile = AsyncCompile()
# kernel path: runs/run_shard_4/inductor_cache/dw/cdwecwssm3wtmxsvs2kudgljb4a2t55bg5xziiwfbr2wlehdvnmj.py
# Topologically Sorted Source Nodes: [x, out], Original ATen: [aten.div, aten.mul]
# Source node to ATen node mapping:
# out => mul
# x => div
# Graph fragment:
# %div : [num_users=3] = call_function[target=torch.ops.aten.div.Tensor](args = (%primals_1, %expand), kwargs = {})
# %mul : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%expand_1, %div), kwargs = {})
# %copy_ : [num_users=0] = call_function[target=torch.ops.aten.copy_.default](args = (%primals_1, %div), kwargs = {})
triton_poi_fused_div_mul_0 = async_compile.triton('triton_poi_fused_div_mul_0', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[256],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: '*fp32', 4: '*fp32', 5: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3, 4, 5), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_div_mul_0', 'mutated_arg_names': ['in_ptr0', 'out_ptr2'], 'no_x_dim': False, 'num_load': 6, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_div_mul_0(in_ptr0, in_ptr1, out_ptr0, out_ptr1, out_ptr2, xnumel, XBLOCK : tl.constexpr):
xnumel = 256
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x3 = xindex
x0 = xindex % 16
x1 = (xindex // 16) % 4
tmp0 = tl.load(in_ptr0 + (x3), xmask)
tmp1 = tl.load(in_ptr0 + (x0 + (64*x1)), xmask, eviction_policy='evict_last')
tmp3 = tl.load(in_ptr0 + (16 + x0 + (64*x1)), xmask, eviction_policy='evict_last')
tmp6 = tl.load(in_ptr0 + (32 + x0 + (64*x1)), xmask, eviction_policy='evict_last')
tmp9 = tl.load(in_ptr0 + (48 + x0 + (64*x1)), xmask, eviction_policy='evict_last')
tmp16 = tl.load(in_ptr1 + (x1), xmask, eviction_policy='evict_last')
tmp2 = tmp1 * tmp1
tmp4 = tmp3 * tmp3
tmp5 = tmp2 + tmp4
tmp7 = tmp6 * tmp6
tmp8 = tmp5 + tmp7
tmp10 = tmp9 * tmp9
tmp11 = tmp8 + tmp10
tmp12 = libdevice.sqrt(tmp11)
tmp13 = 1e-10
tmp14 = tmp12 + tmp13
tmp15 = tmp0 / tmp14
tmp17 = tmp16 * tmp15
tl.store(out_ptr0 + (x3), tmp15, xmask)
tl.store(out_ptr1 + (x3), tmp17, xmask)
tl.store(out_ptr2 + (x3), tmp15, xmask)
''', device_str='cuda')
async_compile.wait(globals())
del async_compile
def call(args):
primals_1, primals_2 = args
args.clear()
assert_size_stride(primals_1, (4, 4, 4, 4), (64, 16, 4, 1))
assert_size_stride(primals_2, (4, ), (1, ))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32)
buf1 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32)
# Topologically Sorted Source Nodes: [x, out], Original ATen: [aten.div, aten.mul]
stream0 = get_raw_stream(0)
triton_poi_fused_div_mul_0.run(primals_1, primals_2, buf0, buf1, primals_1, 256, grid=grid(256), stream=stream0)
del primals_1
del primals_2
return (buf1, buf0, )
def benchmark_compiled_module(times=10, repeat=10):
from torch._dynamo.testing import rand_strided
from torch._inductor.utils import print_performance
primals_1 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32)
primals_2 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32)
fn = lambda: call([primals_1, primals_2])
return print_performance(fn, times=times, repeat=repeat)
if __name__ == "__main__":
from torch._inductor.wrapper_benchmark import compiled_module_main
compiled_module_main('None', benchmark_compiled_module)
|
import torch
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
from torch._inductor.runtime.triton_helpers import libdevice
import torch.nn as nn
from math import sqrt as sqrt
from itertools import product as product
import torch.nn.init as init
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
@triton.jit
def triton_poi_fused_div_mul_0(in_ptr0, in_ptr1, out_ptr0, out_ptr1,
out_ptr2, xnumel, XBLOCK: tl.constexpr):
xnumel = 256
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x3 = xindex
x0 = xindex % 16
x1 = xindex // 16 % 4
tmp0 = tl.load(in_ptr0 + x3, xmask)
tmp1 = tl.load(in_ptr0 + (x0 + 64 * x1), xmask, eviction_policy=
'evict_last')
tmp3 = tl.load(in_ptr0 + (16 + x0 + 64 * x1), xmask, eviction_policy=
'evict_last')
tmp6 = tl.load(in_ptr0 + (32 + x0 + 64 * x1), xmask, eviction_policy=
'evict_last')
tmp9 = tl.load(in_ptr0 + (48 + x0 + 64 * x1), xmask, eviction_policy=
'evict_last')
tmp16 = tl.load(in_ptr1 + x1, xmask, eviction_policy='evict_last')
tmp2 = tmp1 * tmp1
tmp4 = tmp3 * tmp3
tmp5 = tmp2 + tmp4
tmp7 = tmp6 * tmp6
tmp8 = tmp5 + tmp7
tmp10 = tmp9 * tmp9
tmp11 = tmp8 + tmp10
tmp12 = libdevice.sqrt(tmp11)
tmp13 = 1e-10
tmp14 = tmp12 + tmp13
tmp15 = tmp0 / tmp14
tmp17 = tmp16 * tmp15
tl.store(out_ptr0 + x3, tmp15, xmask)
tl.store(out_ptr1 + x3, tmp17, xmask)
tl.store(out_ptr2 + x3, tmp15, xmask)
def call(args):
primals_1, primals_2 = args
args.clear()
assert_size_stride(primals_1, (4, 4, 4, 4), (64, 16, 4, 1))
assert_size_stride(primals_2, (4,), (1,))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32)
buf1 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32)
get_raw_stream(0)
triton_poi_fused_div_mul_0[grid(256)](primals_1, primals_2, buf0,
buf1, primals_1, 256, XBLOCK=128, num_warps=4, num_stages=1)
del primals_1
del primals_2
return buf1, buf0
class L2NormNew(nn.Module):
def __init__(self, n_channels, scale):
super(L2NormNew, self).__init__()
self.n_channels = n_channels
self.gamma = scale or None
self.eps = 1e-10
self.weight = nn.Parameter(torch.Tensor(self.n_channels))
self.reset_parameters()
def reset_parameters(self):
init.constant(self.weight, self.gamma)
def forward(self, input_0):
primals_2 = self.weight
primals_1 = input_0
output = call([primals_1, primals_2])
return output[0]
|
ashwath007/amenity-detection
|
L2Norm
| false | 6,263 |
[
"Apache-2.0"
] | 1 |
acb885eb4d791acc6e65237445a4fc6830e4d30c
|
https://github.com/ashwath007/amenity-detection/tree/acb885eb4d791acc6e65237445a4fc6830e4d30c
|
Sigmoid
|
import torch
import torch.nn as nn
class ActivationFunction(nn.Module):
def __init__(self):
super().__init__()
self.name = self.__class__.__name__
self.config = {'name': self.name}
class Sigmoid(ActivationFunction):
def forward(self, x):
return 1 / (1 + torch.exp(-x))
def get_inputs():
return [torch.rand([4, 4, 4, 4])]
def get_init_inputs():
return [[], {}]
|
import torch
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
from torch._inductor.runtime.triton_helpers import math as tl_math
import torch.nn as nn
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
@triton.jit
def triton_poi_fused_add_exp_mul_neg_reciprocal_0(in_ptr0, out_ptr0, xnumel,
XBLOCK: tl.constexpr):
xnumel = 256
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex
tmp0 = tl.load(in_ptr0 + x0, xmask)
tmp1 = -tmp0
tmp2 = tl_math.exp(tmp1)
tmp3 = 1.0
tmp4 = tmp2 + tmp3
tmp5 = tl.full([1], 1, tl.int32)
tmp6 = tmp5 / tmp4
tmp7 = tmp6 * tmp3
tl.store(out_ptr0 + x0, tmp7, xmask)
def call(args):
arg0_1, = args
args.clear()
assert_size_stride(arg0_1, (4, 4, 4, 4), (64, 16, 4, 1))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32)
get_raw_stream(0)
triton_poi_fused_add_exp_mul_neg_reciprocal_0[grid(256)](arg0_1,
buf0, 256, XBLOCK=256, num_warps=4, num_stages=1)
del arg0_1
return buf0,
class ActivationFunction(nn.Module):
def __init__(self):
super().__init__()
self.name = self.__class__.__name__
self.config = {'name': self.name}
class SigmoidNew(ActivationFunction):
def forward(self, input_0):
arg0_1 = input_0
output = call([arg0_1])
return output[0]
|
ashutoshml/lightning-tutorials
|
Sigmoid
| false | 6,243 |
[
"Apache-2.0"
] | 1 |
898b8b6f9852c0b80f034a3187bc1cd34dd521ce
|
https://github.com/ashutoshml/lightning-tutorials/tree/898b8b6f9852c0b80f034a3187bc1cd34dd521ce
|
ModulatedConv2d
|
# AOT ID: ['0_forward']
from ctypes import c_void_p, c_long, c_int
import torch
import math
import random
import os
import tempfile
from math import inf, nan
from torch._inductor.hooks import run_intermediate_hooks
from torch._inductor.utils import maybe_profile
from torch._inductor.codegen.memory_planning import _align as align
from torch import device, empty_strided
from torch._inductor.async_compile import AsyncCompile
from torch._inductor.select_algorithm import extern_kernels
from torch._inductor.codegen.multi_kernel import MultiKernelCall
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
aten = torch.ops.aten
inductor_ops = torch.ops.inductor
_quantized = torch.ops._quantized
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
alloc_from_pool = torch.ops.inductor._alloc_from_pool
async_compile = AsyncCompile()
# kernel path: runs/run_shard_8/inductor_cache/wi/cwiyl3lwwtancorrifw77xt3aqb4lermdintht45zvkj3bg54nbl.py
# Topologically Sorted Source Nodes: [mul], Original ATen: [aten.mul]
# Source node to ATen node mapping:
# mul => mul
# Graph fragment:
# %mul : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%primals_2, 0.5), kwargs = {})
triton_poi_fused_mul_0 = async_compile.triton('triton_poi_fused_mul_0', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[16],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_mul_0', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 1, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_mul_0(in_ptr0, out_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 16
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex
tmp0 = tl.load(in_ptr0 + (x0), xmask)
tmp1 = 0.5
tmp2 = tmp0 * tmp1
tl.store(out_ptr0 + (x0), tmp2, xmask)
''', device_str='cuda')
# kernel path: runs/run_shard_8/inductor_cache/2o/c2oqkq7zaubqmw7vuixxlseb2ff5jzqqbyczicxlmsahuxwdpdyp.py
# Topologically Sorted Source Nodes: [mul_1], Original ATen: [aten.mul]
# Source node to ATen node mapping:
# mul_1 => mul_1
# Graph fragment:
# %mul_1 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%primals_3, 1), kwargs = {})
triton_poi_fused_mul_1 = async_compile.triton('triton_poi_fused_mul_1', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[4],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_mul_1', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 1, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_mul_1(in_ptr0, out_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 4
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex
tmp0 = tl.load(in_ptr0 + (x0), xmask)
tmp1 = 1.0
tmp2 = tmp0 * tmp1
tl.store(out_ptr0 + (x0), tmp2, xmask)
''', device_str='cuda')
# kernel path: runs/run_shard_8/inductor_cache/ri/criuvsdl3sferb4bb6ci5zaps3wys7xxcpybz7vfo2ba4q7cuq6c.py
# Topologically Sorted Source Nodes: [mul_2, weight, pow_1, sum_1, add, demod, weight_1], Original ATen: [aten.mul, aten.pow, aten.sum, aten.add, aten.rsqrt]
# Source node to ATen node mapping:
# add => add
# demod => rsqrt
# mul_2 => mul_2
# pow_1 => pow_1
# sum_1 => sum_1
# weight => mul_3
# weight_1 => mul_4
# Graph fragment:
# %mul_2 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%primals_5, 0.125), kwargs = {})
# %mul_3 : [num_users=2] = call_function[target=torch.ops.aten.mul.Tensor](args = (%mul_2, %view), kwargs = {})
# %pow_1 : [num_users=1] = call_function[target=torch.ops.aten.pow.Tensor_Scalar](args = (%mul_3, 2), kwargs = {})
# %sum_1 : [num_users=1] = call_function[target=torch.ops.aten.sum.dim_IntList](args = (%pow_1, [2, 3, 4]), kwargs = {})
# %add : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%sum_1, 1e-08), kwargs = {})
# %rsqrt : [num_users=2] = call_function[target=torch.ops.aten.rsqrt.default](args = (%add,), kwargs = {})
# %mul_4 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%mul_3, %view_1), kwargs = {})
triton_per_fused_add_mul_pow_rsqrt_sum_2 = async_compile.triton('triton_per_fused_add_mul_pow_rsqrt_sum_2', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.persistent_reduction(
size_hints=[16, 64],
reduction_hint=ReductionHint.DEFAULT,
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: '*fp32', 4: 'i32', 5: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3, 4, 5), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_per_fused_add_mul_pow_rsqrt_sum_2', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 1, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}
)
@triton.jit
def triton_per_fused_add_mul_pow_rsqrt_sum_2(in_out_ptr0, in_ptr0, in_ptr1, out_ptr0, xnumel, rnumel, XBLOCK : tl.constexpr):
xnumel = 16
rnumel = 64
RBLOCK: tl.constexpr = 64
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:, None]
xmask = xindex < xnumel
rindex = tl.arange(0, RBLOCK)[None, :]
roffset = 0
rmask = tl.full([XBLOCK, RBLOCK], True, tl.int1)
r5 = rindex
x0 = xindex % 4
r3 = (rindex // 16)
x1 = (xindex // 4)
x4 = xindex
tmp0 = tl.load(in_ptr0 + (r5 + (64*x0)), xmask, eviction_policy='evict_last', other=0.0)
tmp3 = tl.load(in_ptr1 + (r3 + (4*x1)), xmask, eviction_policy='evict_last', other=0.0)
tmp1 = 0.125
tmp2 = tmp0 * tmp1
tmp4 = tmp2 * tmp3
tmp5 = tmp4 * tmp4
tmp6 = tl.broadcast_to(tmp5, [XBLOCK, RBLOCK])
tmp8 = tl.where(xmask, tmp6, 0)
tmp9 = tl.sum(tmp8, 1)[:, None]
tmp10 = 1e-08
tmp11 = tmp9 + tmp10
tmp12 = libdevice.rsqrt(tmp11)
tmp13 = tmp4 * tmp12
tl.debug_barrier()
tl.store(in_out_ptr0 + (x4), tmp12, xmask)
tl.store(out_ptr0 + (r5 + (64*x4)), tmp13, xmask)
''', device_str='cuda')
async_compile.wait(globals())
del async_compile
def call(args):
primals_1, primals_2, primals_3, primals_4, primals_5 = args
args.clear()
assert_size_stride(primals_1, (4, 4, 4, 4), (64, 16, 4, 1))
assert_size_stride(primals_2, (4, 4), (4, 1))
assert_size_stride(primals_3, (4, ), (1, ))
assert_size_stride(primals_4, (4, 4), (4, 1))
assert_size_stride(primals_5, (1, 4, 4, 4, 4), (256, 64, 16, 4, 1))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((4, 4), (4, 1), torch.float32)
# Topologically Sorted Source Nodes: [mul], Original ATen: [aten.mul]
stream0 = get_raw_stream(0)
triton_poi_fused_mul_0.run(primals_2, buf0, 16, grid=grid(16), stream=stream0)
del primals_2
buf1 = empty_strided_cuda((4, ), (1, ), torch.float32)
# Topologically Sorted Source Nodes: [mul_1], Original ATen: [aten.mul]
triton_poi_fused_mul_1.run(primals_3, buf1, 4, grid=grid(4), stream=stream0)
del primals_3
buf2 = empty_strided_cuda((4, 4), (4, 1), torch.float32)
# Topologically Sorted Source Nodes: [mul_1, out], Original ATen: [aten.mul, aten.addmm]
extern_kernels.addmm(buf1, primals_4, reinterpret_tensor(buf0, (4, 4), (1, 4), 0), alpha=1, beta=1, out=buf2)
del buf1
buf3 = buf0; del buf0 # reuse
buf4 = buf3; del buf3 # reuse
buf5 = empty_strided_cuda((4, 4, 4, 4, 4), (256, 64, 16, 4, 1), torch.float32)
# Topologically Sorted Source Nodes: [mul_2, weight, pow_1, sum_1, add, demod, weight_1], Original ATen: [aten.mul, aten.pow, aten.sum, aten.add, aten.rsqrt]
triton_per_fused_add_mul_pow_rsqrt_sum_2.run(buf4, primals_5, buf2, buf5, 16, 64, grid=grid(16), stream=stream0)
# Topologically Sorted Source Nodes: [out_1], Original ATen: [aten.convolution]
buf6 = extern_kernels.convolution(reinterpret_tensor(primals_1, (1, 16, 4, 4), (256, 16, 4, 1), 0), reinterpret_tensor(buf5, (16, 4, 4, 4), (64, 16, 4, 1), 0), stride=(1, 1), padding=(2, 2), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=4, bias=None)
assert_size_stride(buf6, (1, 16, 5, 5), (400, 25, 5, 1))
return (reinterpret_tensor(buf6, (4, 4, 5, 5), (100, 25, 5, 1), 0), primals_4, primals_5, buf2, buf4, reinterpret_tensor(buf5, (16, 4, 4, 4), (64, 16, 4, 1), 0), reinterpret_tensor(primals_1, (1, 16, 4, 4), (256, 16, 4, 1), 0), )
def benchmark_compiled_module(times=10, repeat=10):
from torch._dynamo.testing import rand_strided
from torch._inductor.utils import print_performance
primals_1 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32)
primals_2 = rand_strided((4, 4), (4, 1), device='cuda:0', dtype=torch.float32)
primals_3 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32)
primals_4 = rand_strided((4, 4), (4, 1), device='cuda:0', dtype=torch.float32)
primals_5 = rand_strided((1, 4, 4, 4, 4), (256, 64, 16, 4, 1), device='cuda:0', dtype=torch.float32)
fn = lambda: call([primals_1, primals_2, primals_3, primals_4, primals_5])
return print_performance(fn, times=times, repeat=repeat)
if __name__ == "__main__":
from torch._inductor.wrapper_benchmark import compiled_module_main
compiled_module_main('None', benchmark_compiled_module)
|
import torch
from torch._inductor.select_algorithm import extern_kernels
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
from torch._inductor.runtime.triton_helpers import libdevice
from torch.autograd import Function
import math
import torch.nn as nn
import torch.nn.functional as F
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
@triton.jit
def triton_poi_fused_mul_0(in_ptr0, out_ptr0, xnumel, XBLOCK: tl.constexpr):
xnumel = 16
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex
tmp0 = tl.load(in_ptr0 + x0, xmask)
tmp1 = 0.5
tmp2 = tmp0 * tmp1
tl.store(out_ptr0 + x0, tmp2, xmask)
@triton.jit
def triton_poi_fused_mul_1(in_ptr0, out_ptr0, xnumel, XBLOCK: tl.constexpr):
xnumel = 4
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex
tmp0 = tl.load(in_ptr0 + x0, xmask)
tmp1 = 1.0
tmp2 = tmp0 * tmp1
tl.store(out_ptr0 + x0, tmp2, xmask)
@triton.jit
def triton_per_fused_add_mul_pow_rsqrt_sum_2(in_out_ptr0, in_ptr0, in_ptr1,
out_ptr0, xnumel, rnumel, XBLOCK: tl.constexpr):
xnumel = 16
RBLOCK: tl.constexpr = 64
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:, None]
xmask = xindex < xnumel
rindex = tl.arange(0, RBLOCK)[None, :]
tl.full([XBLOCK, RBLOCK], True, tl.int1)
r5 = rindex
x0 = xindex % 4
r3 = rindex // 16
x1 = xindex // 4
x4 = xindex
tmp0 = tl.load(in_ptr0 + (r5 + 64 * x0), xmask, eviction_policy=
'evict_last', other=0.0)
tmp3 = tl.load(in_ptr1 + (r3 + 4 * x1), xmask, eviction_policy=
'evict_last', other=0.0)
tmp1 = 0.125
tmp2 = tmp0 * tmp1
tmp4 = tmp2 * tmp3
tmp5 = tmp4 * tmp4
tmp6 = tl.broadcast_to(tmp5, [XBLOCK, RBLOCK])
tmp8 = tl.where(xmask, tmp6, 0)
tmp9 = tl.sum(tmp8, 1)[:, None]
tmp10 = 1e-08
tmp11 = tmp9 + tmp10
tmp12 = libdevice.rsqrt(tmp11)
tmp13 = tmp4 * tmp12
tl.debug_barrier()
tl.store(in_out_ptr0 + x4, tmp12, xmask)
tl.store(out_ptr0 + (r5 + 64 * x4), tmp13, xmask)
def call(args):
primals_1, primals_2, primals_3, primals_4, primals_5 = args
args.clear()
assert_size_stride(primals_1, (4, 4, 4, 4), (64, 16, 4, 1))
assert_size_stride(primals_2, (4, 4), (4, 1))
assert_size_stride(primals_3, (4,), (1,))
assert_size_stride(primals_4, (4, 4), (4, 1))
assert_size_stride(primals_5, (1, 4, 4, 4, 4), (256, 64, 16, 4, 1))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((4, 4), (4, 1), torch.float32)
get_raw_stream(0)
triton_poi_fused_mul_0[grid(16)](primals_2, buf0, 16, XBLOCK=16,
num_warps=1, num_stages=1)
del primals_2
buf1 = empty_strided_cuda((4,), (1,), torch.float32)
triton_poi_fused_mul_1[grid(4)](primals_3, buf1, 4, XBLOCK=4,
num_warps=1, num_stages=1)
del primals_3
buf2 = empty_strided_cuda((4, 4), (4, 1), torch.float32)
extern_kernels.addmm(buf1, primals_4, reinterpret_tensor(buf0, (4,
4), (1, 4), 0), alpha=1, beta=1, out=buf2)
del buf1
buf3 = buf0
del buf0
buf4 = buf3
del buf3
buf5 = empty_strided_cuda((4, 4, 4, 4, 4), (256, 64, 16, 4, 1),
torch.float32)
triton_per_fused_add_mul_pow_rsqrt_sum_2[grid(16)](buf4, primals_5,
buf2, buf5, 16, 64, XBLOCK=1, num_warps=2, num_stages=1)
buf6 = extern_kernels.convolution(reinterpret_tensor(primals_1, (1,
16, 4, 4), (256, 16, 4, 1), 0), reinterpret_tensor(buf5, (16, 4,
4, 4), (64, 16, 4, 1), 0), stride=(1, 1), padding=(2, 2),
dilation=(1, 1), transposed=False, output_padding=(0, 0),
groups=4, bias=None)
assert_size_stride(buf6, (1, 16, 5, 5), (400, 25, 5, 1))
return reinterpret_tensor(buf6, (4, 4, 5, 5), (100, 25, 5, 1), 0
), primals_4, primals_5, buf2, buf4, reinterpret_tensor(buf5, (16,
4, 4, 4), (64, 16, 4, 1), 0), reinterpret_tensor(primals_1, (1, 16,
4, 4), (256, 16, 4, 1), 0)
def fused_leaky_relu(input, bias, negative_slope=0.2, scale=2 ** 0.5):
return FusedLeakyReLUFunction.apply(input, bias, negative_slope, scale)
def make_kernel(k):
k = torch.tensor(k, dtype=torch.float32)
if k.ndim == 1:
k = k[None, :] * k[:, None]
k /= k.sum()
return k
def upfirdn2d(input, kernel, up=1, down=1, pad=(0, 0)):
out = UpFirDn2d.apply(input, kernel, (up, up), (down, down), (pad[0],
pad[1], pad[0], pad[1]))
return out
class FusedLeakyReLUFunctionBackward(Function):
@staticmethod
def forward(ctx, grad_output, out, negative_slope, scale):
ctx.save_for_backward(out)
ctx.negative_slope = negative_slope
ctx.scale = scale
empty = grad_output.new_empty(0)
grad_input = fused.fused_bias_act(grad_output, empty, out, 3, 1,
negative_slope, scale)
dim = [0]
if grad_input.ndim > 2:
dim += list(range(2, grad_input.ndim))
grad_bias = grad_input.sum(dim).detach()
return grad_input, grad_bias
@staticmethod
def backward(ctx, gradgrad_input, gradgrad_bias):
out, = ctx.saved_tensors
gradgrad_out = fused.fused_bias_act(gradgrad_input, gradgrad_bias,
out, 3, 1, ctx.negative_slope, ctx.scale)
return gradgrad_out, None, None, None
class FusedLeakyReLUFunction(Function):
@staticmethod
def forward(ctx, input, bias, negative_slope, scale):
empty = input.new_empty(0)
out = fused.fused_bias_act(input, bias, empty, 3, 0, negative_slope,
scale)
ctx.save_for_backward(out)
ctx.negative_slope = negative_slope
ctx.scale = scale
return out
@staticmethod
def backward(ctx, grad_output):
out, = ctx.saved_tensors
grad_input, grad_bias = FusedLeakyReLUFunctionBackward.apply(
grad_output, out, ctx.negative_slope, ctx.scale)
return grad_input, grad_bias, None, None
class EqualLinear(nn.Module):
def __init__(self, in_dim, out_dim, bias=True, bias_init=0, lr_mul=1,
activation=None):
super().__init__()
self.weight = nn.Parameter(torch.randn(out_dim, in_dim).div_(lr_mul))
if bias:
self.bias = nn.Parameter(torch.zeros(out_dim).fill_(bias_init))
else:
self.bias = None
self.activation = activation
self.scale = 1 / math.sqrt(in_dim) * lr_mul
self.lr_mul = lr_mul
def forward(self, input):
if self.activation:
out = F.linear(input, self.weight * self.scale)
out = fused_leaky_relu(out, self.bias * self.lr_mul)
else:
out = F.linear(input, self.weight * self.scale, bias=self.bias *
self.lr_mul)
return out
def __repr__(self):
return (
f'{self.__class__.__name__}({self.weight.shape[1]}, {self.weight.shape[0]})'
)
class UpFirDn2dBackward(Function):
@staticmethod
def forward(ctx, grad_output, kernel, grad_kernel, up, down, pad, g_pad,
in_size, out_size):
up_x, up_y = up
down_x, down_y = down
g_pad_x0, g_pad_x1, g_pad_y0, g_pad_y1 = g_pad
grad_output = grad_output.reshape(-1, out_size[0], out_size[1], 1)
grad_input = upfirdn2d_op.upfirdn2d(grad_output, grad_kernel,
down_x, down_y, up_x, up_y, g_pad_x0, g_pad_x1, g_pad_y0, g_pad_y1)
grad_input = grad_input.view(in_size[0], in_size[1], in_size[2],
in_size[3])
ctx.save_for_backward(kernel)
pad_x0, pad_x1, pad_y0, pad_y1 = pad
ctx.up_x = up_x
ctx.up_y = up_y
ctx.down_x = down_x
ctx.down_y = down_y
ctx.pad_x0 = pad_x0
ctx.pad_x1 = pad_x1
ctx.pad_y0 = pad_y0
ctx.pad_y1 = pad_y1
ctx.in_size = in_size
ctx.out_size = out_size
return grad_input
@staticmethod
def backward(ctx, gradgrad_input):
kernel, = ctx.saved_tensors
gradgrad_input = gradgrad_input.reshape(-1, ctx.in_size[2], ctx.
in_size[3], 1)
gradgrad_out = upfirdn2d_op.upfirdn2d(gradgrad_input, kernel, ctx.
up_x, ctx.up_y, ctx.down_x, ctx.down_y, ctx.pad_x0, ctx.pad_x1,
ctx.pad_y0, ctx.pad_y1)
gradgrad_out = gradgrad_out.view(ctx.in_size[0], ctx.in_size[1],
ctx.out_size[0], ctx.out_size[1])
return gradgrad_out, None, None, None, None, None, None, None, None
class UpFirDn2d(Function):
@staticmethod
def forward(ctx, input, kernel, up, down, pad):
up_x, up_y = up
down_x, down_y = down
pad_x0, pad_x1, pad_y0, pad_y1 = pad
kernel_h, kernel_w = kernel.shape
_batch, channel, in_h, in_w = input.shape
ctx.in_size = input.shape
input = input.reshape(-1, in_h, in_w, 1)
ctx.save_for_backward(kernel, torch.flip(kernel, [0, 1]))
out_h = (in_h * up_y + pad_y0 + pad_y1 - kernel_h) // down_y + 1
out_w = (in_w * up_x + pad_x0 + pad_x1 - kernel_w) // down_x + 1
ctx.out_size = out_h, out_w
ctx.up = up_x, up_y
ctx.down = down_x, down_y
ctx.pad = pad_x0, pad_x1, pad_y0, pad_y1
g_pad_x0 = kernel_w - pad_x0 - 1
g_pad_y0 = kernel_h - pad_y0 - 1
g_pad_x1 = in_w * up_x - out_w * down_x + pad_x0 - up_x + 1
g_pad_y1 = in_h * up_y - out_h * down_y + pad_y0 - up_y + 1
ctx.g_pad = g_pad_x0, g_pad_x1, g_pad_y0, g_pad_y1
out = upfirdn2d_op.upfirdn2d(input, kernel, up_x, up_y, down_x,
down_y, pad_x0, pad_x1, pad_y0, pad_y1)
out = out.view(-1, channel, out_h, out_w)
return out
@staticmethod
def backward(ctx, grad_output):
kernel, grad_kernel = ctx.saved_tensors
grad_input = UpFirDn2dBackward.apply(grad_output, kernel,
grad_kernel, ctx.up, ctx.down, ctx.pad, ctx.g_pad, ctx.in_size,
ctx.out_size)
return grad_input, None, None, None, None
class Blur(nn.Module):
def __init__(self, kernel, pad, upsample_factor=1):
super().__init__()
kernel = make_kernel(kernel)
if upsample_factor > 1:
kernel = kernel * upsample_factor ** 2
self.register_buffer('kernel', kernel)
self.pad = pad
def forward(self, input):
out = upfirdn2d(input, self.kernel, pad=self.pad)
return out
class ModulatedConv2dNew(nn.Module):
def __init__(self, in_channel, out_channel, kernel_size, style_dim,
demodulate=True, upsample=False, downsample=False, blur_kernel=[1,
3, 3, 1]):
super().__init__()
self.eps = 1e-08
self.kernel_size = kernel_size
self.in_channel = in_channel
self.out_channel = out_channel
self.upsample = upsample
self.downsample = downsample
if upsample:
factor = 2
p = len(blur_kernel) - factor - (kernel_size - 1)
pad0 = (p + 1) // 2 + factor - 1
pad1 = p // 2 + 1
self.blur = Blur(blur_kernel, pad=(pad0, pad1), upsample_factor
=factor)
if downsample:
factor = 2
p = len(blur_kernel) - factor + (kernel_size - 1)
pad0 = (p + 1) // 2
pad1 = p // 2
self.blur = Blur(blur_kernel, pad=(pad0, pad1))
fan_in = in_channel * kernel_size ** 2
self.scale = 1 / math.sqrt(fan_in)
self.padding = kernel_size // 2
self.weight = nn.Parameter(torch.randn(1, out_channel, in_channel,
kernel_size, kernel_size))
self.modulation = EqualLinear(style_dim, in_channel, bias_init=1)
self.demodulate = demodulate
def __repr__(self):
return (
f'{self.__class__.__name__}({self.in_channel}, {self.out_channel}, {self.kernel_size}, upsample={self.upsample}, downsample={self.downsample})'
)
def forward(self, input_0, input_1):
primals_5 = self.weight
primals_2 = self.modulation.weight
primals_3 = self.modulation.bias
primals_1 = input_0
primals_4 = input_1
output = call([primals_1, primals_2, primals_3, primals_4, primals_5])
return output[0]
|
AsianZeus/Diverse-Facial-Edit
|
ModulatedConv2d
| false | 9,415 |
[
"Apache-2.0"
] | 0 |
3d4b1b41546a08a1fa3cb164ade33e319806b12b
|
https://github.com/AsianZeus/Diverse-Facial-Edit/tree/3d4b1b41546a08a1fa3cb164ade33e319806b12b
|
PropMaxPool
|
# AOT ID: ['0_inference']
from ctypes import c_void_p, c_long, c_int
import torch
import math
import random
import os
import tempfile
from math import inf, nan
from torch._inductor.hooks import run_intermediate_hooks
from torch._inductor.utils import maybe_profile
from torch._inductor.codegen.memory_planning import _align as align
from torch import device, empty_strided
from torch._inductor.async_compile import AsyncCompile
from torch._inductor.select_algorithm import extern_kernels
from torch._inductor.codegen.multi_kernel import MultiKernelCall
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
aten = torch.ops.aten
inductor_ops = torch.ops.inductor
_quantized = torch.ops._quantized
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
alloc_from_pool = torch.ops.inductor._alloc_from_pool
async_compile = AsyncCompile()
# kernel path: runs/run_shard_1/inductor_cache/o3/co3fvzuaybjp4ocvx5bnaukyhlezccwzraqdsx6elnoggrfynhhv.py
# Topologically Sorted Source Nodes: [map_h], Original ATen: [aten.new_zeros]
# Source node to ATen node mapping:
# map_h => full_default
# Graph fragment:
# %full_default : [num_users=1] = call_function[target=torch.ops.aten.full.default](args = ([4, 4, 4, 4], 0), kwargs = {dtype: torch.float32, layout: torch.strided, device: cuda:0, pin_memory: False})
triton_poi_fused_new_zeros_0 = async_compile.triton('triton_poi_fused_new_zeros_0', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[256],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=90, major=9, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=132), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_new_zeros_0', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 0, 'num_reduction': 0, 'backend_hash': 'B098E03CDA7B8ADC90DAFFDF24A2956451D1B13F297756A5DCC209498AA53705', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_new_zeros_0(out_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 256
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex
tmp0 = 0.0
tl.store(out_ptr0 + (x0), tmp0, xmask)
''', device_str='cuda')
# kernel path: runs/run_shard_1/inductor_cache/lg/clgxgb5ifxkfz47ikkzqlj6pgovt74rn2ejb3t7kvtlwnebdzz74.py
# Topologically Sorted Source Nodes: [map_h, setitem], Original ATen: [aten.new_zeros, aten.index_put]
# Source node to ATen node mapping:
# map_h => full_default
# setitem => index_put
# Graph fragment:
# %full_default : [num_users=1] = call_function[target=torch.ops.aten.full.default](args = ([4, 4, 4, 4], 0), kwargs = {dtype: torch.float32, layout: torch.strided, device: cuda:0, pin_memory: False})
# %index_put : [num_users=1] = call_function[target=torch.ops.aten.index_put_.default](args = (%full_default, [None, None, %lift_fresh_copy, %lift_fresh_copy_1], %arg0_1), kwargs = {})
triton_poi_fused_index_put_new_zeros_1 = async_compile.triton('triton_poi_fused_index_put_new_zeros_1', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[64],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=90, major=9, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=132), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_index_put_new_zeros_1', 'mutated_arg_names': ['out_ptr0'], 'no_x_dim': False, 'num_load': 1, 'num_reduction': 0, 'backend_hash': 'B098E03CDA7B8ADC90DAFFDF24A2956451D1B13F297756A5DCC209498AA53705', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_index_put_new_zeros_1(in_ptr0, out_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 64
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex % 4
x2 = xindex
x1 = (xindex // 4)
tmp11 = tl.load(in_ptr0 + (x2), xmask)
tmp0 = x0
tmp1 = tl.full([1], 2, tl.int64)
tmp2 = tmp0 < tmp1
tmp3 = tl.full([1], 1, tl.int64)
tmp4 = tmp0 < tmp3
tmp5 = tl.full([1], 0, tl.int64)
tmp6 = tl.where(tmp4, tmp5, tmp3)
tmp7 = tl.full([1], 3, tl.int64)
tmp8 = tmp0 < tmp7
tmp9 = tl.where(tmp8, tmp1, tmp7)
tmp10 = tl.where(tmp2, tmp6, tmp9)
tl.store(out_ptr0 + ((5*tmp10) + (16*x1)), tmp11, xmask)
''', device_str='cuda')
# kernel path: runs/run_shard_1/inductor_cache/3m/c3m5zntshenarfio7ilpf5k726vzzoayxjev4sjdillw6khpkhfk.py
# Topologically Sorted Source Nodes: [x, setitem_2], Original ATen: [aten.max_pool2d_with_indices, aten.index_put]
# Source node to ATen node mapping:
# setitem_2 => index_put_2
# x => _low_memory_max_pool2d_with_offsets
# Graph fragment:
# %_low_memory_max_pool2d_with_offsets : [num_users=1] = call_function[target=torch.ops.prims._low_memory_max_pool2d_with_offsets.default](args = (%unsqueeze, [1, 2], [1, 1], [0, 0], [1, 1], False), kwargs = {})
# %index_put_2 : [num_users=1] = call_function[target=torch.ops.aten.index_put_.default](args = (%index_put, [None, None, %lift_fresh_copy_6, %lift_fresh_copy_7], %squeeze), kwargs = {})
triton_poi_fused_index_put_max_pool2d_with_indices_2 = async_compile.triton('triton_poi_fused_index_put_max_pool2d_with_indices_2', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[64],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=90, major=9, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=132), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_index_put_max_pool2d_with_indices_2', 'mutated_arg_names': ['out_ptr1'], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'B098E03CDA7B8ADC90DAFFDF24A2956451D1B13F297756A5DCC209498AA53705', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_index_put_max_pool2d_with_indices_2(in_ptr0, out_ptr0, out_ptr1, xnumel, XBLOCK : tl.constexpr):
xnumel = 48
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex % 3
x1 = (xindex // 3)
x2 = xindex
tmp0 = tl.load(in_ptr0 + (x0 + (4*x1)), xmask)
tmp1 = tl.load(in_ptr0 + (1 + x0 + (4*x1)), xmask)
tmp2 = triton_helpers.maximum(tmp1, tmp0)
tmp3 = x0
tmp4 = tl.full([1], 1, tl.int64)
tmp5 = tmp3 < tmp4
tmp6 = tl.full([1], 2, tl.int64)
tmp7 = tmp3 < tmp6
tmp8 = tl.where(tmp7, tmp4, tmp6)
tmp9 = tl.full([1], 0, tl.int64)
tmp10 = tl.where(tmp5, tmp9, tmp8)
tmp11 = tl.full([1], 3, tl.int64)
tmp12 = tl.where(tmp7, tmp6, tmp11)
tmp13 = tl.where(tmp5, tmp4, tmp12)
tl.store(out_ptr0 + (x2), tmp2, xmask)
tl.store(out_ptr1 + (tmp13 + (4*tmp10) + (16*x1)), tmp2, xmask)
''', device_str='cuda')
# kernel path: runs/run_shard_1/inductor_cache/rx/crxe2gmw4ppbxxq3kvcirqaw5tb4kagz5epjsaw3i5xywjm6fnxp.py
# Topologically Sorted Source Nodes: [x_1, setitem_4], Original ATen: [aten.max_pool2d_with_indices, aten.index_put]
# Source node to ATen node mapping:
# setitem_4 => index_put_4
# x_1 => _low_memory_max_pool2d_with_offsets_1
# Graph fragment:
# %_low_memory_max_pool2d_with_offsets_1 : [num_users=1] = call_function[target=torch.ops.prims._low_memory_max_pool2d_with_offsets.default](args = (%unsqueeze_1, [1, 2], [1, 1], [0, 0], [1, 1], False), kwargs = {})
# %index_put_4 : [num_users=1] = call_function[target=torch.ops.aten.index_put_.default](args = (%index_put_2, [None, None, %lift_fresh_copy_12, %lift_fresh_copy_13], %squeeze_2), kwargs = {})
triton_poi_fused_index_put_max_pool2d_with_indices_3 = async_compile.triton('triton_poi_fused_index_put_max_pool2d_with_indices_3', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[32],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=90, major=9, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=132), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_index_put_max_pool2d_with_indices_3', 'mutated_arg_names': ['out_ptr1'], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'B098E03CDA7B8ADC90DAFFDF24A2956451D1B13F297756A5DCC209498AA53705', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_index_put_max_pool2d_with_indices_3(in_ptr0, out_ptr0, out_ptr1, xnumel, XBLOCK : tl.constexpr):
xnumel = 32
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex % 2
x1 = (xindex // 2)
x2 = xindex
tmp0 = tl.load(in_ptr0 + (x0 + (3*x1)), xmask)
tmp1 = tl.load(in_ptr0 + (1 + x0 + (3*x1)), xmask)
tmp2 = triton_helpers.maximum(tmp1, tmp0)
tmp3 = x0
tmp4 = tl.full([1], 1, tl.int64)
tmp5 = tmp3 < tmp4
tmp6 = tl.full([1], 0, tl.int64)
tmp7 = tl.where(tmp5, tmp6, tmp4)
tmp8 = tl.full([1], 2, tl.int64)
tmp9 = tl.full([1], 3, tl.int64)
tmp10 = tl.where(tmp5, tmp8, tmp9)
tl.store(out_ptr0 + (x2), tmp2, xmask)
tl.store(out_ptr1 + (tmp10 + (4*tmp7) + (16*x1)), tmp2, xmask)
''', device_str='cuda')
# kernel path: runs/run_shard_1/inductor_cache/t3/ct3jy6bo7isikipngetj4c7rkfh6o7gaemb3wzt2usaj3ukrkpmn.py
# Topologically Sorted Source Nodes: [setitem_6], Original ATen: [aten.index_put]
# Source node to ATen node mapping:
# setitem_6 => index_put_6
# Graph fragment:
# %index_put_6 : [num_users=1] = call_function[target=torch.ops.aten.index_put_.default](args = (%index_put_4, [None, None, %full_default_2, %full_default_3], %squeeze_4), kwargs = {})
triton_poi_fused_index_put_4 = async_compile.triton('triton_poi_fused_index_put_4', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[16],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=90, major=9, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=132), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_index_put_4', 'mutated_arg_names': ['out_ptr0'], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'B098E03CDA7B8ADC90DAFFDF24A2956451D1B13F297756A5DCC209498AA53705', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_index_put_4(in_ptr0, out_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 16
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex
tmp0 = tl.load(in_ptr0 + (2*x0), xmask, eviction_policy='evict_last')
tmp1 = tl.load(in_ptr0 + (1 + (2*x0)), xmask, eviction_policy='evict_last')
tmp2 = triton_helpers.maximum(tmp1, tmp0)
tl.store(out_ptr0 + (3 + (16*x0)), tmp2, xmask)
''', device_str='cuda')
# kernel path: runs/run_shard_1/inductor_cache/rk/crk2aqpub5cu4vqgxe7cgebyr75yv52xg2z4s5qtybyjz5gcgb4o.py
# Topologically Sorted Source Nodes: [map_mask], Original ATen: [aten.new_zeros]
# Source node to ATen node mapping:
# map_mask => full_default_1
# Graph fragment:
# %full_default_1 : [num_users=2] = call_function[target=torch.ops.aten.full.default](args = ([4, 1, 4, 4], 0), kwargs = {dtype: torch.float32, layout: torch.strided, device: cuda:0, pin_memory: False})
triton_poi_fused_new_zeros_5 = async_compile.triton('triton_poi_fused_new_zeros_5', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[64],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=90, major=9, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=132), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_new_zeros_5', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 0, 'num_reduction': 0, 'backend_hash': 'B098E03CDA7B8ADC90DAFFDF24A2956451D1B13F297756A5DCC209498AA53705', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_new_zeros_5(out_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 64
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex
tmp0 = 0.0
tl.store(out_ptr0 + (x0), tmp0, xmask)
''', device_str='cuda')
# kernel path: runs/run_shard_1/inductor_cache/kq/ckqkdi7yzrq5y2u3jt6hddlvw44kdgifjvpb6zy7gn3uqjtw77rv.py
# Topologically Sorted Source Nodes: [map_mask, getitem, iadd, setitem_1], Original ATen: [aten.new_zeros, aten.index, aten.add, aten.index_put]
# Source node to ATen node mapping:
# getitem => index
# iadd => add
# map_mask => full_default_1
# setitem_1 => index_put_1
# Graph fragment:
# %full_default_1 : [num_users=2] = call_function[target=torch.ops.aten.full.default](args = ([4, 1, 4, 4], 0), kwargs = {dtype: torch.float32, layout: torch.strided, device: cuda:0, pin_memory: False})
# %index : [num_users=1] = call_function[target=torch.ops.aten.index.Tensor](args = (%full_default_1, [None, None, %lift_fresh_copy_2, %lift_fresh_copy_3]), kwargs = {})
# %add : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%index, 1), kwargs = {})
# %index_put_1 : [num_users=2] = call_function[target=torch.ops.aten.index_put_.default](args = (%full_default_1, [None, None, %lift_fresh_copy_4, %lift_fresh_copy_5], %add), kwargs = {})
triton_poi_fused_add_index_index_put_new_zeros_6 = async_compile.triton('triton_poi_fused_add_index_index_put_new_zeros_6', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[16],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=90, major=9, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=132), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_add_index_index_put_new_zeros_6', 'mutated_arg_names': ['out_ptr0'], 'no_x_dim': False, 'num_load': 0, 'num_reduction': 0, 'backend_hash': 'B098E03CDA7B8ADC90DAFFDF24A2956451D1B13F297756A5DCC209498AA53705', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_add_index_index_put_new_zeros_6(out_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 16
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex % 4
x1 = (xindex // 4)
tmp0 = x0
tmp1 = tl.full([1], 2, tl.int64)
tmp2 = tmp0 < tmp1
tmp3 = tl.full([1], 1, tl.int64)
tmp4 = tmp0 < tmp3
tmp5 = tl.full([1], 0, tl.int64)
tmp6 = tl.where(tmp4, tmp5, tmp3)
tmp7 = tl.full([1], 3, tl.int64)
tmp8 = tmp0 < tmp7
tmp9 = tl.where(tmp8, tmp1, tmp7)
tmp10 = tl.where(tmp2, tmp6, tmp9)
tmp11 = 1.0
tl.store(out_ptr0 + ((5*tmp10) + (16*x1)), tmp11, xmask)
''', device_str='cuda')
# kernel path: runs/run_shard_1/inductor_cache/yh/cyh4d473zu5fq3zvya4d54k32mgtgjmqfi434h7w34pu27wva22o.py
# Topologically Sorted Source Nodes: [getitem_1, iadd_1, setitem_3], Original ATen: [aten.index, aten.add, aten.index_put]
# Source node to ATen node mapping:
# getitem_1 => index_1
# iadd_1 => add_1
# setitem_3 => index_put_3
# Graph fragment:
# %index_1 : [num_users=1] = call_function[target=torch.ops.aten.index.Tensor](args = (%index_put_1, [None, None, %lift_fresh_copy_8, %lift_fresh_copy_9]), kwargs = {})
# %add_1 : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%index_1, 1), kwargs = {})
# %index_put_3 : [num_users=2] = call_function[target=torch.ops.aten.index_put_.default](args = (%index_put_1, [None, None, %lift_fresh_copy_10, %lift_fresh_copy_11], %add_1), kwargs = {})
triton_poi_fused_add_index_index_put_7 = async_compile.triton('triton_poi_fused_add_index_index_put_7', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[16],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=90, major=9, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=132), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_add_index_index_put_7', 'mutated_arg_names': ['in_ptr0', 'out_ptr0'], 'no_x_dim': False, 'num_load': 0, 'num_reduction': 0, 'backend_hash': 'B098E03CDA7B8ADC90DAFFDF24A2956451D1B13F297756A5DCC209498AA53705', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_add_index_index_put_7(in_ptr0, out_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 12
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex % 3
x1 = (xindex // 3)
tmp0 = x0
tmp1 = tl.full([1], 1, tl.int64)
tmp2 = tmp0 < tmp1
tmp3 = tl.full([1], 2, tl.int64)
tmp4 = tmp0 < tmp3
tmp5 = tl.where(tmp4, tmp1, tmp3)
tmp6 = tl.full([1], 0, tl.int64)
tmp7 = tl.where(tmp2, tmp6, tmp5)
tmp8 = tl.full([1], 3, tl.int64)
tmp9 = tl.where(tmp4, tmp3, tmp8)
tmp10 = tl.where(tmp2, tmp1, tmp9)
tmp11 = tl.load(in_ptr0 + (tmp10 + (4*tmp7) + (16*x1)), xmask, eviction_policy='evict_last')
tmp12 = 1.0
tmp13 = tmp11 + tmp12
tl.store(out_ptr0 + (tmp10 + (4*tmp7) + (16*x1)), tmp13, xmask)
''', device_str='cuda')
# kernel path: runs/run_shard_1/inductor_cache/rx/crxdgu3cbwdxalwp2y4qfsqcgo77ly6gwe6f4f6cgp6tluldiivu.py
# Topologically Sorted Source Nodes: [getitem_2, iadd_2, setitem_5], Original ATen: [aten.index, aten.add, aten.index_put]
# Source node to ATen node mapping:
# getitem_2 => index_2
# iadd_2 => add_2
# setitem_5 => index_put_5
# Graph fragment:
# %index_2 : [num_users=1] = call_function[target=torch.ops.aten.index.Tensor](args = (%index_put_3, [None, None, %lift_fresh_copy_14, %lift_fresh_copy_15]), kwargs = {})
# %add_2 : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%index_2, 1), kwargs = {})
# %index_put_5 : [num_users=2] = call_function[target=torch.ops.aten.index_put_.default](args = (%index_put_3, [None, None, %lift_fresh_copy_16, %lift_fresh_copy_17], %add_2), kwargs = {})
triton_poi_fused_add_index_index_put_8 = async_compile.triton('triton_poi_fused_add_index_index_put_8', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[8],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=90, major=9, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=132), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_add_index_index_put_8', 'mutated_arg_names': ['in_ptr0', 'out_ptr0'], 'no_x_dim': False, 'num_load': 0, 'num_reduction': 0, 'backend_hash': 'B098E03CDA7B8ADC90DAFFDF24A2956451D1B13F297756A5DCC209498AA53705', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_add_index_index_put_8(in_ptr0, out_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 8
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex % 2
x1 = (xindex // 2)
tmp0 = x0
tmp1 = tl.full([1], 1, tl.int64)
tmp2 = tmp0 < tmp1
tmp3 = tl.full([1], 0, tl.int64)
tmp4 = tl.where(tmp2, tmp3, tmp1)
tmp5 = tl.full([1], 2, tl.int64)
tmp6 = tl.full([1], 3, tl.int64)
tmp7 = tl.where(tmp2, tmp5, tmp6)
tmp8 = tl.load(in_ptr0 + (tmp7 + (4*tmp4) + (16*x1)), xmask, eviction_policy='evict_last')
tmp9 = 1.0
tmp10 = tmp8 + tmp9
tl.store(out_ptr0 + (tmp7 + (4*tmp4) + (16*x1)), tmp10, xmask)
''', device_str='cuda')
# kernel path: runs/run_shard_1/inductor_cache/cv/ccvvzhsqsa5cdebqqmpw52jbb6o2hpjsqzkzzl2zgw37x56bdno7.py
# Topologically Sorted Source Nodes: [getitem_3, iadd_3, setitem_7], Original ATen: [aten.index, aten.add, aten.index_put]
# Source node to ATen node mapping:
# getitem_3 => index_3
# iadd_3 => add_3
# setitem_7 => index_put_7
# Graph fragment:
# %index_3 : [num_users=1] = call_function[target=torch.ops.aten.index.Tensor](args = (%index_put_5, [None, None, %full_default_4, %full_default_5]), kwargs = {})
# %add_3 : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%index_3, 1), kwargs = {})
# %index_put_7 : [num_users=1] = call_function[target=torch.ops.aten.index_put_.default](args = (%index_put_5, [None, None, %full_default_6, %full_default_7], %add_3), kwargs = {})
triton_poi_fused_add_index_index_put_9 = async_compile.triton('triton_poi_fused_add_index_index_put_9', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[4],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=90, major=9, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=132), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_add_index_index_put_9', 'mutated_arg_names': ['in_ptr0', 'out_ptr0'], 'no_x_dim': False, 'num_load': 1, 'num_reduction': 0, 'backend_hash': 'B098E03CDA7B8ADC90DAFFDF24A2956451D1B13F297756A5DCC209498AA53705', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_add_index_index_put_9(in_ptr0, out_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 4
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex
tmp0 = tl.load(in_ptr0 + (3 + (16*x0)), xmask, eviction_policy='evict_last')
tmp1 = 1.0
tmp2 = tmp0 + tmp1
tl.store(out_ptr0 + (3 + (16*x0)), tmp2, xmask)
''', device_str='cuda')
async_compile.wait(globals())
del async_compile
def call(args):
arg0_1, = args
args.clear()
assert_size_stride(arg0_1, (4, 4, 4), (16, 4, 1))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf2 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32)
# Topologically Sorted Source Nodes: [map_h], Original ATen: [aten.new_zeros]
stream0 = get_raw_stream(0)
triton_poi_fused_new_zeros_0.run(buf2, 256, grid=grid(256), stream=stream0)
# Topologically Sorted Source Nodes: [map_h, setitem], Original ATen: [aten.new_zeros, aten.index_put]
triton_poi_fused_index_put_new_zeros_1.run(arg0_1, buf2, 64, grid=grid(64), stream=stream0)
buf0 = empty_strided_cuda((4, 4, 1, 3), (12, 3, 48, 1), torch.float32)
# Topologically Sorted Source Nodes: [x, setitem_2], Original ATen: [aten.max_pool2d_with_indices, aten.index_put]
triton_poi_fused_index_put_max_pool2d_with_indices_2.run(arg0_1, buf0, buf2, 48, grid=grid(48), stream=stream0)
del arg0_1
buf1 = empty_strided_cuda((4, 4, 1, 2), (8, 2, 32, 1), torch.float32)
# Topologically Sorted Source Nodes: [x_1, setitem_4], Original ATen: [aten.max_pool2d_with_indices, aten.index_put]
triton_poi_fused_index_put_max_pool2d_with_indices_3.run(buf0, buf1, buf2, 32, grid=grid(32), stream=stream0)
del buf0
# Topologically Sorted Source Nodes: [setitem_6], Original ATen: [aten.index_put]
triton_poi_fused_index_put_4.run(buf1, buf2, 16, grid=grid(16), stream=stream0)
del buf1
buf7 = empty_strided_cuda((4, 1, 4, 4), (16, 16, 4, 1), torch.float32)
# Topologically Sorted Source Nodes: [map_mask], Original ATen: [aten.new_zeros]
triton_poi_fused_new_zeros_5.run(buf7, 64, grid=grid(64), stream=stream0)
# Topologically Sorted Source Nodes: [map_mask, getitem, iadd, setitem_1], Original ATen: [aten.new_zeros, aten.index, aten.add, aten.index_put]
triton_poi_fused_add_index_index_put_new_zeros_6.run(buf7, 16, grid=grid(16), stream=stream0)
# Topologically Sorted Source Nodes: [getitem_1, iadd_1, setitem_3], Original ATen: [aten.index, aten.add, aten.index_put]
triton_poi_fused_add_index_index_put_7.run(buf7, buf7, 12, grid=grid(12), stream=stream0)
# Topologically Sorted Source Nodes: [getitem_2, iadd_2, setitem_5], Original ATen: [aten.index, aten.add, aten.index_put]
triton_poi_fused_add_index_index_put_8.run(buf7, buf7, 8, grid=grid(8), stream=stream0)
# Topologically Sorted Source Nodes: [getitem_3, iadd_3, setitem_7], Original ATen: [aten.index, aten.add, aten.index_put]
triton_poi_fused_add_index_index_put_9.run(buf7, buf7, 4, grid=grid(4), stream=stream0)
return (buf2, buf7, )
def benchmark_compiled_module(times=10, repeat=10):
from torch._dynamo.testing import rand_strided
from torch._inductor.utils import print_performance
arg0_1 = rand_strided((4, 4, 4), (16, 4, 1), device='cuda:0', dtype=torch.float32)
fn = lambda: call([arg0_1])
return print_performance(fn, times=times, repeat=repeat)
if __name__ == "__main__":
from torch._inductor.wrapper_benchmark import compiled_module_main
compiled_module_main('None', benchmark_compiled_module)
|
import torch
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
from torch._inductor.runtime import triton_helpers
import torch.nn.parallel
import torch.nn as nn
import torch.utils.data
import torch.backends.cudnn
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
@triton.jit
def triton_poi_fused_new_zeros_0(out_ptr0, xnumel, XBLOCK: tl.constexpr):
xnumel = 256
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex
tmp0 = 0.0
tl.store(out_ptr0 + x0, tmp0, xmask)
@triton.jit
def triton_poi_fused_index_put_new_zeros_1(in_ptr0, out_ptr0, xnumel,
XBLOCK: tl.constexpr):
xnumel = 64
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex % 4
x2 = xindex
x1 = xindex // 4
tmp11 = tl.load(in_ptr0 + x2, xmask)
tmp0 = x0
tmp1 = tl.full([1], 2, tl.int64)
tmp2 = tmp0 < tmp1
tmp3 = tl.full([1], 1, tl.int64)
tmp4 = tmp0 < tmp3
tmp5 = tl.full([1], 0, tl.int64)
tmp6 = tl.where(tmp4, tmp5, tmp3)
tmp7 = tl.full([1], 3, tl.int64)
tmp8 = tmp0 < tmp7
tmp9 = tl.where(tmp8, tmp1, tmp7)
tmp10 = tl.where(tmp2, tmp6, tmp9)
tl.store(out_ptr0 + (5 * tmp10 + 16 * x1), tmp11, xmask)
@triton.jit
def triton_poi_fused_index_put_max_pool2d_with_indices_2(in_ptr0, out_ptr0,
out_ptr1, xnumel, XBLOCK: tl.constexpr):
xnumel = 48
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex % 3
x1 = xindex // 3
x2 = xindex
tmp0 = tl.load(in_ptr0 + (x0 + 4 * x1), xmask)
tmp1 = tl.load(in_ptr0 + (1 + x0 + 4 * x1), xmask)
tmp2 = triton_helpers.maximum(tmp1, tmp0)
tmp3 = x0
tmp4 = tl.full([1], 1, tl.int64)
tmp5 = tmp3 < tmp4
tmp6 = tl.full([1], 2, tl.int64)
tmp7 = tmp3 < tmp6
tmp8 = tl.where(tmp7, tmp4, tmp6)
tmp9 = tl.full([1], 0, tl.int64)
tmp10 = tl.where(tmp5, tmp9, tmp8)
tmp11 = tl.full([1], 3, tl.int64)
tmp12 = tl.where(tmp7, tmp6, tmp11)
tmp13 = tl.where(tmp5, tmp4, tmp12)
tl.store(out_ptr0 + x2, tmp2, xmask)
tl.store(out_ptr1 + (tmp13 + 4 * tmp10 + 16 * x1), tmp2, xmask)
@triton.jit
def triton_poi_fused_index_put_max_pool2d_with_indices_3(in_ptr0, out_ptr0,
out_ptr1, xnumel, XBLOCK: tl.constexpr):
xnumel = 32
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex % 2
x1 = xindex // 2
x2 = xindex
tmp0 = tl.load(in_ptr0 + (x0 + 3 * x1), xmask)
tmp1 = tl.load(in_ptr0 + (1 + x0 + 3 * x1), xmask)
tmp2 = triton_helpers.maximum(tmp1, tmp0)
tmp3 = x0
tmp4 = tl.full([1], 1, tl.int64)
tmp5 = tmp3 < tmp4
tmp6 = tl.full([1], 0, tl.int64)
tmp7 = tl.where(tmp5, tmp6, tmp4)
tmp8 = tl.full([1], 2, tl.int64)
tmp9 = tl.full([1], 3, tl.int64)
tmp10 = tl.where(tmp5, tmp8, tmp9)
tl.store(out_ptr0 + x2, tmp2, xmask)
tl.store(out_ptr1 + (tmp10 + 4 * tmp7 + 16 * x1), tmp2, xmask)
@triton.jit
def triton_poi_fused_index_put_4(in_ptr0, out_ptr0, xnumel, XBLOCK: tl.
constexpr):
xnumel = 16
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex
tmp0 = tl.load(in_ptr0 + 2 * x0, xmask, eviction_policy='evict_last')
tmp1 = tl.load(in_ptr0 + (1 + 2 * x0), xmask, eviction_policy='evict_last')
tmp2 = triton_helpers.maximum(tmp1, tmp0)
tl.store(out_ptr0 + (3 + 16 * x0), tmp2, xmask)
@triton.jit
def triton_poi_fused_new_zeros_5(out_ptr0, xnumel, XBLOCK: tl.constexpr):
xnumel = 64
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex
tmp0 = 0.0
tl.store(out_ptr0 + x0, tmp0, xmask)
@triton.jit
def triton_poi_fused_add_index_index_put_new_zeros_6(out_ptr0, xnumel,
XBLOCK: tl.constexpr):
xnumel = 16
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex % 4
x1 = xindex // 4
tmp0 = x0
tmp1 = tl.full([1], 2, tl.int64)
tmp2 = tmp0 < tmp1
tmp3 = tl.full([1], 1, tl.int64)
tmp4 = tmp0 < tmp3
tmp5 = tl.full([1], 0, tl.int64)
tmp6 = tl.where(tmp4, tmp5, tmp3)
tmp7 = tl.full([1], 3, tl.int64)
tmp8 = tmp0 < tmp7
tmp9 = tl.where(tmp8, tmp1, tmp7)
tmp10 = tl.where(tmp2, tmp6, tmp9)
tmp11 = 1.0
tl.store(out_ptr0 + (5 * tmp10 + 16 * x1), tmp11, xmask)
@triton.jit
def triton_poi_fused_add_index_index_put_7(in_ptr0, out_ptr0, xnumel,
XBLOCK: tl.constexpr):
xnumel = 12
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex % 3
x1 = xindex // 3
tmp0 = x0
tmp1 = tl.full([1], 1, tl.int64)
tmp2 = tmp0 < tmp1
tmp3 = tl.full([1], 2, tl.int64)
tmp4 = tmp0 < tmp3
tmp5 = tl.where(tmp4, tmp1, tmp3)
tmp6 = tl.full([1], 0, tl.int64)
tmp7 = tl.where(tmp2, tmp6, tmp5)
tmp8 = tl.full([1], 3, tl.int64)
tmp9 = tl.where(tmp4, tmp3, tmp8)
tmp10 = tl.where(tmp2, tmp1, tmp9)
tmp11 = tl.load(in_ptr0 + (tmp10 + 4 * tmp7 + 16 * x1), xmask,
eviction_policy='evict_last')
tmp12 = 1.0
tmp13 = tmp11 + tmp12
tl.store(out_ptr0 + (tmp10 + 4 * tmp7 + 16 * x1), tmp13, xmask)
@triton.jit
def triton_poi_fused_add_index_index_put_8(in_ptr0, out_ptr0, xnumel,
XBLOCK: tl.constexpr):
xnumel = 8
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex % 2
x1 = xindex // 2
tmp0 = x0
tmp1 = tl.full([1], 1, tl.int64)
tmp2 = tmp0 < tmp1
tmp3 = tl.full([1], 0, tl.int64)
tmp4 = tl.where(tmp2, tmp3, tmp1)
tmp5 = tl.full([1], 2, tl.int64)
tmp6 = tl.full([1], 3, tl.int64)
tmp7 = tl.where(tmp2, tmp5, tmp6)
tmp8 = tl.load(in_ptr0 + (tmp7 + 4 * tmp4 + 16 * x1), xmask,
eviction_policy='evict_last')
tmp9 = 1.0
tmp10 = tmp8 + tmp9
tl.store(out_ptr0 + (tmp7 + 4 * tmp4 + 16 * x1), tmp10, xmask)
@triton.jit
def triton_poi_fused_add_index_index_put_9(in_ptr0, out_ptr0, xnumel,
XBLOCK: tl.constexpr):
xnumel = 4
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex
tmp0 = tl.load(in_ptr0 + (3 + 16 * x0), xmask, eviction_policy='evict_last'
)
tmp1 = 1.0
tmp2 = tmp0 + tmp1
tl.store(out_ptr0 + (3 + 16 * x0), tmp2, xmask)
def call(args):
arg0_1, = args
args.clear()
assert_size_stride(arg0_1, (4, 4, 4), (16, 4, 1))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf2 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32)
get_raw_stream(0)
triton_poi_fused_new_zeros_0[grid(256)](buf2, 256, XBLOCK=128,
num_warps=4, num_stages=1)
triton_poi_fused_index_put_new_zeros_1[grid(64)](arg0_1, buf2, 64,
XBLOCK=64, num_warps=1, num_stages=1)
buf0 = empty_strided_cuda((4, 4, 1, 3), (12, 3, 48, 1), torch.float32)
triton_poi_fused_index_put_max_pool2d_with_indices_2[grid(48)](arg0_1,
buf0, buf2, 48, XBLOCK=64, num_warps=1, num_stages=1)
del arg0_1
buf1 = empty_strided_cuda((4, 4, 1, 2), (8, 2, 32, 1), torch.float32)
triton_poi_fused_index_put_max_pool2d_with_indices_3[grid(32)](buf0,
buf1, buf2, 32, XBLOCK=32, num_warps=1, num_stages=1)
del buf0
triton_poi_fused_index_put_4[grid(16)](buf1, buf2, 16, XBLOCK=16,
num_warps=1, num_stages=1)
del buf1
buf7 = empty_strided_cuda((4, 1, 4, 4), (16, 16, 4, 1), torch.float32)
triton_poi_fused_new_zeros_5[grid(64)](buf7, 64, XBLOCK=64,
num_warps=1, num_stages=1)
triton_poi_fused_add_index_index_put_new_zeros_6[grid(16)](buf7, 16,
XBLOCK=16, num_warps=1, num_stages=1)
triton_poi_fused_add_index_index_put_7[grid(12)](buf7, buf7, 12,
XBLOCK=16, num_warps=1, num_stages=1)
triton_poi_fused_add_index_index_put_8[grid(8)](buf7, buf7, 8,
XBLOCK=8, num_warps=1, num_stages=1)
triton_poi_fused_add_index_index_put_9[grid(4)](buf7, buf7, 4,
XBLOCK=4, num_warps=1, num_stages=1)
return buf2, buf7
class PropMaxPoolNew(nn.Module):
def __init__(self, cfg):
super(PropMaxPoolNew, self).__init__()
num_layers = cfg.NUM_LAYERS
self.layers = nn.ModuleList([nn.Identity()] + [nn.MaxPool1d(2,
stride=1) for _ in range(num_layers - 1)])
self.num_layers = num_layers
def forward(self, input_0):
arg0_1 = input_0
output = call([arg0_1])
return output[0], output[1]
|
EGO4D/episodic-memory
|
PropMaxPool
| false | 8,812 |
[
"MIT"
] | 27 |
2a3464882cd4f665c358c1b05a6397339e33c2e1
|
https://github.com/EGO4D/episodic-memory/tree/2a3464882cd4f665c358c1b05a6397339e33c2e1
|
VanillaGenerativeAdversarialLoss
|
# AOT ID: ['0_inference']
from ctypes import c_void_p, c_long, c_int
import torch
import math
import random
import os
import tempfile
from math import inf, nan
from torch._inductor.hooks import run_intermediate_hooks
from torch._inductor.utils import maybe_profile
from torch._inductor.codegen.memory_planning import _align as align
from torch import device, empty_strided
from torch._inductor.async_compile import AsyncCompile
from torch._inductor.select_algorithm import extern_kernels
from torch._inductor.codegen.multi_kernel import MultiKernelCall
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
aten = torch.ops.aten
inductor_ops = torch.ops.inductor
_quantized = torch.ops._quantized
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
alloc_from_pool = torch.ops.inductor._alloc_from_pool
async_compile = AsyncCompile()
# kernel path: runs/run_shard_0/inductor_cache/dj/cdjw23gjsvidmi7xlhfpigbxfqor2vsiltadbvmh3w5h4gtvhk46.py
# Topologically Sorted Source Nodes: [binary_cross_entropy_with_logits], Original ATen: [aten.binary_cross_entropy_with_logits]
# Source node to ATen node mapping:
# binary_cross_entropy_with_logits => abs_1, exp, full_default, full_default_1, log1p, mean, minimum, mul, neg, sub_1, sub_2
# Graph fragment:
# %full_default : [num_users=1] = call_function[target=torch.ops.aten.full.default](args = ([4, 4, 4, 4], 0.0), kwargs = {dtype: torch.float32, layout: torch.strided, device: cuda:0, pin_memory: False})
# %mul : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%full_default, %arg0_1), kwargs = {})
# %full_default_1 : [num_users=1] = call_function[target=torch.ops.aten.full.default](args = ([], 0), kwargs = {dtype: torch.float32, layout: torch.strided, device: cuda:0, pin_memory: False})
# %minimum : [num_users=1] = call_function[target=torch.ops.aten.minimum.default](args = (%full_default_1, %arg0_1), kwargs = {})
# %abs_1 : [num_users=1] = call_function[target=torch.ops.aten.abs.default](args = (%arg0_1,), kwargs = {})
# %neg : [num_users=1] = call_function[target=torch.ops.aten.neg.default](args = (%abs_1,), kwargs = {})
# %exp : [num_users=1] = call_function[target=torch.ops.aten.exp.default](args = (%neg,), kwargs = {})
# %log1p : [num_users=1] = call_function[target=torch.ops.aten.log1p.default](args = (%exp,), kwargs = {})
# %sub_1 : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (%minimum, %log1p), kwargs = {})
# %sub_2 : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (%mul, %sub_1), kwargs = {})
# %mean : [num_users=1] = call_function[target=torch.ops.aten.mean.default](args = (%sub_2,), kwargs = {})
triton_per_fused_binary_cross_entropy_with_logits_0 = async_compile.triton('triton_per_fused_binary_cross_entropy_with_logits_0', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.persistent_reduction(
size_hints=[1, 256],
reduction_hint=ReductionHint.INNER,
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {2: 1}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 3), equal_to_1=(2,))]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_per_fused_binary_cross_entropy_with_logits_0', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': True, 'num_load': 1, 'num_reduction': 1, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}
)
@triton.jit
def triton_per_fused_binary_cross_entropy_with_logits_0(in_out_ptr0, in_ptr0, xnumel, rnumel):
xnumel = 1
XBLOCK: tl.constexpr = 1
rnumel = 256
RBLOCK: tl.constexpr = 256
xoffset = tl.program_id(0) * XBLOCK
xindex = tl.full([1], xoffset, tl.int32)
xmask = tl.full([RBLOCK], True, tl.int1)
rindex = tl.arange(0, RBLOCK)[:]
roffset = 0
rmask = tl.full([RBLOCK], True, tl.int1)
r0 = rindex
tmp0 = tl.load(in_ptr0 + (r0), None)
tmp1 = 0.0
tmp2 = tmp1 * tmp0
tmp3 = triton_helpers.minimum(tmp1, tmp0)
tmp4 = tl_math.abs(tmp0)
tmp5 = -tmp4
tmp6 = tl_math.exp(tmp5)
tmp7 = libdevice.log1p(tmp6)
tmp8 = tmp3 - tmp7
tmp9 = tmp2 - tmp8
tmp10 = tl.broadcast_to(tmp9, [RBLOCK])
tmp12 = triton_helpers.promote_to_tensor(tl.sum(tmp10, 0))
tmp13 = 256.0
tmp14 = tmp12 / tmp13
tl.debug_barrier()
tl.store(in_out_ptr0 + (tl.full([1], 0, tl.int32)), tmp14, None)
''', device_str='cuda')
async_compile.wait(globals())
del async_compile
def call(args):
arg0_1, = args
args.clear()
assert_size_stride(arg0_1, (4, 4, 4, 4), (64, 16, 4, 1))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((), (), torch.float32)
buf1 = buf0; del buf0 # reuse
# Topologically Sorted Source Nodes: [binary_cross_entropy_with_logits], Original ATen: [aten.binary_cross_entropy_with_logits]
stream0 = get_raw_stream(0)
triton_per_fused_binary_cross_entropy_with_logits_0.run(buf1, arg0_1, 1, 256, grid=grid(1), stream=stream0)
del arg0_1
return (buf1, )
def benchmark_compiled_module(times=10, repeat=10):
from torch._dynamo.testing import rand_strided
from torch._inductor.utils import print_performance
arg0_1 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32)
fn = lambda: call([arg0_1])
return print_performance(fn, times=times, repeat=repeat)
if __name__ == "__main__":
from torch._inductor.wrapper_benchmark import compiled_module_main
compiled_module_main('None', benchmark_compiled_module)
|
import torch
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
from torch._inductor.runtime import triton_helpers
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
import torch.nn as nn
import torch.utils.data
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
@triton.jit
def triton_per_fused_binary_cross_entropy_with_logits_0(in_out_ptr0,
in_ptr0, xnumel, rnumel):
XBLOCK: tl.constexpr = 1
RBLOCK: tl.constexpr = 256
xoffset = tl.program_id(0) * XBLOCK
tl.full([1], xoffset, tl.int32)
tl.full([RBLOCK], True, tl.int1)
rindex = tl.arange(0, RBLOCK)[:]
tl.full([RBLOCK], True, tl.int1)
r0 = rindex
tmp0 = tl.load(in_ptr0 + r0, None)
tmp1 = 0.0
tmp2 = tmp1 * tmp0
tmp3 = triton_helpers.minimum(tmp1, tmp0)
tmp4 = tl_math.abs(tmp0)
tmp5 = -tmp4
tmp6 = tl_math.exp(tmp5)
tmp7 = libdevice.log1p(tmp6)
tmp8 = tmp3 - tmp7
tmp9 = tmp2 - tmp8
tmp10 = tl.broadcast_to(tmp9, [RBLOCK])
tmp12 = triton_helpers.promote_to_tensor(tl.sum(tmp10, 0))
tmp13 = 256.0
tmp14 = tmp12 / tmp13
tl.debug_barrier()
tl.store(in_out_ptr0 + tl.full([1], 0, tl.int32), tmp14, None)
def call(args):
arg0_1, = args
args.clear()
assert_size_stride(arg0_1, (4, 4, 4, 4), (64, 16, 4, 1))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((), (), torch.float32)
buf1 = buf0
del buf0
get_raw_stream(0)
triton_per_fused_binary_cross_entropy_with_logits_0[grid(1)](buf1,
arg0_1, 1, 256, num_warps=2, num_stages=1)
del arg0_1
return buf1,
class VanillaGenerativeAdversarialLossNew(nn.Module):
"""
Loss for `Vanilla Generative Adversarial Network <https://arxiv.org/abs/1406.2661>`_
Args:
reduction (str, optional): Specifies the reduction to apply to the output:
``'none'`` | ``'mean'`` | ``'sum'``. ``'none'``: no reduction will be applied,
``'mean'``: the sum of the output will be divided by the number of
elements in the output, ``'sum'``: the output will be summed. Default: ``'mean'``
Inputs:
- prediction (tensor): unnormalized discriminator predictions
- real (bool): if the ground truth label is for real images or fake images. Default: true
.. warning::
Do not use sigmoid as the last layer of Discriminator.
"""
def __init__(self, reduction='mean'):
super(VanillaGenerativeAdversarialLossNew, self).__init__()
self.bce_loss = nn.BCEWithLogitsLoss(reduction=reduction)
def forward(self, input_0):
arg0_1 = input_0
output = call([arg0_1])
return output[0]
|
neka-nat/Transfer-Learning-Library
|
VanillaGenerativeAdversarialLoss
| false | 16,147 |
[
"MIT"
] | 1,474 |
a3b27b0d7562fa90a02e914140b37ab438469e6c
|
https://github.com/neka-nat/Transfer-Learning-Library/tree/a3b27b0d7562fa90a02e914140b37ab438469e6c
|
h_sigmoid
|
# AOT ID: ['0_inference']
from ctypes import c_void_p, c_long, c_int
import torch
import math
import random
import os
import tempfile
from math import inf, nan
from torch._inductor.hooks import run_intermediate_hooks
from torch._inductor.utils import maybe_profile
from torch._inductor.codegen.memory_planning import _align as align
from torch import device, empty_strided
from torch._inductor.async_compile import AsyncCompile
from torch._inductor.select_algorithm import extern_kernels
from torch._inductor.codegen.multi_kernel import MultiKernelCall
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
aten = torch.ops.aten
inductor_ops = torch.ops.inductor
_quantized = torch.ops._quantized
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
alloc_from_pool = torch.ops.inductor._alloc_from_pool
async_compile = AsyncCompile()
# kernel path: runs/run_shard_9/inductor_cache/rm/crm72qx6rsghhfnyhuw5kfn2z6uwrgv7td4c2blpcrynbklz2exg.py
# Topologically Sorted Source Nodes: [add, hardtanh, mul, truediv], Original ATen: [aten.add, aten.hardtanh, aten.mul, aten.div]
# Source node to ATen node mapping:
# add => add
# hardtanh => clamp_max, clamp_min
# mul => mul
# truediv => div
# Graph fragment:
# %add : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%arg0_1, 3), kwargs = {})
# %clamp_min : [num_users=1] = call_function[target=torch.ops.aten.clamp_min.default](args = (%add, 0.0), kwargs = {})
# %clamp_max : [num_users=1] = call_function[target=torch.ops.aten.clamp_max.default](args = (%clamp_min, 6.0), kwargs = {})
# %mul : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%clamp_max, 1), kwargs = {})
# %div : [num_users=1] = call_function[target=torch.ops.aten.div.Tensor](args = (%mul, 6), kwargs = {})
triton_poi_fused_add_div_hardtanh_mul_0 = async_compile.triton('triton_poi_fused_add_div_hardtanh_mul_0', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[256],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_add_div_hardtanh_mul_0', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 1, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_add_div_hardtanh_mul_0(in_ptr0, out_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 256
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex
tmp0 = tl.load(in_ptr0 + (x0), xmask)
tmp1 = 3.0
tmp2 = tmp0 + tmp1
tmp3 = 0.0
tmp4 = triton_helpers.maximum(tmp2, tmp3)
tmp5 = 6.0
tmp6 = triton_helpers.minimum(tmp4, tmp5)
tmp7 = 1.0
tmp8 = tmp6 * tmp7
tmp9 = 0.16666666666666666
tmp10 = tmp8 * tmp9
tl.store(out_ptr0 + (x0), tmp10, xmask)
''', device_str='cuda')
async_compile.wait(globals())
del async_compile
def call(args):
arg0_1, = args
args.clear()
assert_size_stride(arg0_1, (4, 4, 4, 4), (64, 16, 4, 1))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32)
# Topologically Sorted Source Nodes: [add, hardtanh, mul, truediv], Original ATen: [aten.add, aten.hardtanh, aten.mul, aten.div]
stream0 = get_raw_stream(0)
triton_poi_fused_add_div_hardtanh_mul_0.run(arg0_1, buf0, 256, grid=grid(256), stream=stream0)
del arg0_1
return (buf0, )
def benchmark_compiled_module(times=10, repeat=10):
from torch._dynamo.testing import rand_strided
from torch._inductor.utils import print_performance
arg0_1 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32)
fn = lambda: call([arg0_1])
return print_performance(fn, times=times, repeat=repeat)
if __name__ == "__main__":
from torch._inductor.wrapper_benchmark import compiled_module_main
compiled_module_main('None', benchmark_compiled_module)
|
import torch
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
from torch._inductor.runtime import triton_helpers
import torch.nn as nn
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
@triton.jit
def triton_poi_fused_add_div_hardtanh_mul_0(in_ptr0, out_ptr0, xnumel,
XBLOCK: tl.constexpr):
xnumel = 256
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex
tmp0 = tl.load(in_ptr0 + x0, xmask)
tmp1 = 3.0
tmp2 = tmp0 + tmp1
tmp3 = 0.0
tmp4 = triton_helpers.maximum(tmp2, tmp3)
tmp5 = 6.0
tmp6 = triton_helpers.minimum(tmp4, tmp5)
tmp7 = 1.0
tmp8 = tmp6 * tmp7
tmp9 = 0.16666666666666666
tmp10 = tmp8 * tmp9
tl.store(out_ptr0 + x0, tmp10, xmask)
def call(args):
arg0_1, = args
args.clear()
assert_size_stride(arg0_1, (4, 4, 4, 4), (64, 16, 4, 1))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32)
get_raw_stream(0)
triton_poi_fused_add_div_hardtanh_mul_0[grid(256)](arg0_1, buf0,
256, XBLOCK=256, num_warps=4, num_stages=1)
del arg0_1
return buf0,
class h_sigmoidNew(nn.Module):
def __init__(self, inplace=True, h_max=1):
super(h_sigmoidNew, self).__init__()
self.relu = nn.ReLU6(inplace=inplace)
self.h_max = h_max
def forward(self, input_0):
arg0_1 = input_0
output = call([arg0_1])
return output[0]
|
rahulmangalampalli/esvit
|
h_sigmoid
| false | 12,917 |
[
"MIT"
] | 0 |
5caf6e36b088ae2e7aaa4100b307eec991078e3e
|
https://github.com/rahulmangalampalli/esvit/tree/5caf6e36b088ae2e7aaa4100b307eec991078e3e
|
OneLayerFCBodyWithAction
|
# AOT ID: ['0_forward']
from ctypes import c_void_p, c_long, c_int
import torch
import math
import random
import os
import tempfile
from math import inf, nan
from torch._inductor.hooks import run_intermediate_hooks
from torch._inductor.utils import maybe_profile
from torch._inductor.codegen.memory_planning import _align as align
from torch import device, empty_strided
from torch._inductor.async_compile import AsyncCompile
from torch._inductor.select_algorithm import extern_kernels
from torch._inductor.codegen.multi_kernel import MultiKernelCall
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
aten = torch.ops.aten
inductor_ops = torch.ops.inductor
_quantized = torch.ops._quantized
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
alloc_from_pool = torch.ops.inductor._alloc_from_pool
async_compile = AsyncCompile()
# kernel path: runs/run_shard_4/inductor_cache/kq/ckqwt2pwz66gtbhjk2az2uo7eeaumbjxytnisacsyuay6w5j2y3l.py
# Topologically Sorted Source Nodes: [cat, phi], Original ATen: [aten.cat, aten.relu, aten.threshold_backward]
# Source node to ATen node mapping:
# cat => cat
# phi => relu
# Graph fragment:
# %cat : [num_users=1] = call_function[target=torch.ops.aten.cat.default](args = ([%view_1, %view_3], 1), kwargs = {})
# %relu : [num_users=2] = call_function[target=torch.ops.aten.relu.default](args = (%cat,), kwargs = {})
# %le : [num_users=1] = call_function[target=torch.ops.aten.le.Scalar](args = (%relu, 0), kwargs = {})
triton_poi_fused_cat_relu_threshold_backward_0 = async_compile.triton('triton_poi_fused_cat_relu_threshold_backward_0', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[512],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: '*i1', 4: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3, 4), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_cat_relu_threshold_backward_0', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_cat_relu_threshold_backward_0(in_ptr0, in_ptr1, out_ptr0, out_ptr1, xnumel, XBLOCK : tl.constexpr):
xnumel = 512
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x1 = (xindex // 16) % 8
x0 = xindex % 16
x2 = (xindex // 128)
x3 = xindex
tmp0 = x1
tmp1 = tl.full([1], 0, tl.int64)
tmp2 = tmp0 >= tmp1
tmp3 = tl.full([1], 4, tl.int64)
tmp4 = tmp0 < tmp3
tmp5 = tl.load(in_ptr0 + (x0 + (16*x1) + (64*x2)), tmp4 & xmask, other=0.0)
tmp6 = tmp0 >= tmp3
tmp7 = tl.full([1], 8, tl.int64)
tmp8 = tmp0 < tmp7
tmp9 = tl.load(in_ptr1 + (x0 + (16*((-4) + x1)) + (64*x2)), tmp6 & xmask, other=0.0)
tmp10 = tl.where(tmp4, tmp5, tmp9)
tmp11 = tl.full([1], 0, tl.int32)
tmp12 = triton_helpers.maximum(tmp11, tmp10)
tmp13 = 0.0
tmp14 = tmp12 <= tmp13
tl.store(out_ptr0 + (x3), tmp12, xmask)
tl.store(out_ptr1 + (x3), tmp14, xmask)
''', device_str='cuda')
async_compile.wait(globals())
del async_compile
def call(args):
primals_1, primals_2, primals_3, primals_4, primals_5, primals_6 = args
args.clear()
assert_size_stride(primals_1, (4, 4), (4, 1))
assert_size_stride(primals_2, (4, ), (1, ))
assert_size_stride(primals_3, (4, 4, 4, 4), (64, 16, 4, 1))
assert_size_stride(primals_4, (4, 4), (4, 1))
assert_size_stride(primals_5, (4, ), (1, ))
assert_size_stride(primals_6, (4, 4, 4, 4), (64, 16, 4, 1))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((64, 4), (4, 1), torch.float32)
# Topologically Sorted Source Nodes: [linear], Original ATen: [aten.addmm]
extern_kernels.addmm(primals_2, reinterpret_tensor(primals_3, (64, 4), (4, 1), 0), reinterpret_tensor(primals_1, (4, 4), (1, 4), 0), alpha=1, beta=1, out=buf0)
del primals_1
del primals_2
buf1 = empty_strided_cuda((64, 4), (4, 1), torch.float32)
# Topologically Sorted Source Nodes: [linear_1], Original ATen: [aten.addmm]
extern_kernels.addmm(primals_5, reinterpret_tensor(primals_6, (64, 4), (4, 1), 0), reinterpret_tensor(primals_4, (4, 4), (1, 4), 0), alpha=1, beta=1, out=buf1)
del primals_4
del primals_5
buf2 = empty_strided_cuda((4, 8, 4, 4), (128, 16, 4, 1), torch.float32)
buf3 = empty_strided_cuda((4, 8, 4, 4), (128, 16, 4, 1), torch.bool)
# Topologically Sorted Source Nodes: [cat, phi], Original ATen: [aten.cat, aten.relu, aten.threshold_backward]
stream0 = get_raw_stream(0)
triton_poi_fused_cat_relu_threshold_backward_0.run(buf0, buf1, buf2, buf3, 512, grid=grid(512), stream=stream0)
del buf0
del buf1
return (buf2, reinterpret_tensor(primals_3, (64, 4), (4, 1), 0), reinterpret_tensor(primals_6, (64, 4), (4, 1), 0), buf3, )
def benchmark_compiled_module(times=10, repeat=10):
from torch._dynamo.testing import rand_strided
from torch._inductor.utils import print_performance
primals_1 = rand_strided((4, 4), (4, 1), device='cuda:0', dtype=torch.float32)
primals_2 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32)
primals_3 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32)
primals_4 = rand_strided((4, 4), (4, 1), device='cuda:0', dtype=torch.float32)
primals_5 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32)
primals_6 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32)
fn = lambda: call([primals_1, primals_2, primals_3, primals_4, primals_5, primals_6])
return print_performance(fn, times=times, repeat=repeat)
if __name__ == "__main__":
from torch._inductor.wrapper_benchmark import compiled_module_main
compiled_module_main('None', benchmark_compiled_module)
|
import torch
from torch._inductor.select_algorithm import extern_kernels
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
from torch._inductor.runtime import triton_helpers
import torch.nn as nn
import torch.nn.functional as F
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
@triton.jit
def triton_poi_fused_cat_relu_threshold_backward_0(in_ptr0, in_ptr1,
out_ptr0, out_ptr1, xnumel, XBLOCK: tl.constexpr):
xnumel = 512
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x1 = xindex // 16 % 8
x0 = xindex % 16
x2 = xindex // 128
x3 = xindex
tmp0 = x1
tl.full([1], 0, tl.int64)
tmp3 = tl.full([1], 4, tl.int64)
tmp4 = tmp0 < tmp3
tmp5 = tl.load(in_ptr0 + (x0 + 16 * x1 + 64 * x2), tmp4 & xmask, other=0.0)
tmp6 = tmp0 >= tmp3
tl.full([1], 8, tl.int64)
tmp9 = tl.load(in_ptr1 + (x0 + 16 * (-4 + x1) + 64 * x2), tmp6 & xmask,
other=0.0)
tmp10 = tl.where(tmp4, tmp5, tmp9)
tmp11 = tl.full([1], 0, tl.int32)
tmp12 = triton_helpers.maximum(tmp11, tmp10)
tmp13 = 0.0
tmp14 = tmp12 <= tmp13
tl.store(out_ptr0 + x3, tmp12, xmask)
tl.store(out_ptr1 + x3, tmp14, xmask)
def call(args):
primals_1, primals_2, primals_3, primals_4, primals_5, primals_6 = args
args.clear()
assert_size_stride(primals_1, (4, 4), (4, 1))
assert_size_stride(primals_2, (4,), (1,))
assert_size_stride(primals_3, (4, 4, 4, 4), (64, 16, 4, 1))
assert_size_stride(primals_4, (4, 4), (4, 1))
assert_size_stride(primals_5, (4,), (1,))
assert_size_stride(primals_6, (4, 4, 4, 4), (64, 16, 4, 1))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((64, 4), (4, 1), torch.float32)
extern_kernels.addmm(primals_2, reinterpret_tensor(primals_3, (64,
4), (4, 1), 0), reinterpret_tensor(primals_1, (4, 4), (1, 4), 0
), alpha=1, beta=1, out=buf0)
del primals_1
del primals_2
buf1 = empty_strided_cuda((64, 4), (4, 1), torch.float32)
extern_kernels.addmm(primals_5, reinterpret_tensor(primals_6, (64,
4), (4, 1), 0), reinterpret_tensor(primals_4, (4, 4), (1, 4), 0
), alpha=1, beta=1, out=buf1)
del primals_4
del primals_5
buf2 = empty_strided_cuda((4, 8, 4, 4), (128, 16, 4, 1), torch.float32)
buf3 = empty_strided_cuda((4, 8, 4, 4), (128, 16, 4, 1), torch.bool)
get_raw_stream(0)
triton_poi_fused_cat_relu_threshold_backward_0[grid(512)](buf0,
buf1, buf2, buf3, 512, XBLOCK=256, num_warps=4, num_stages=1)
del buf0
del buf1
return buf2, reinterpret_tensor(primals_3, (64, 4), (4, 1), 0
), reinterpret_tensor(primals_6, (64, 4), (4, 1), 0), buf3
def layer_init(layer, w_scale=1.0):
nn.init.orthogonal_(layer.weight.data)
layer.weight.data.mul_(w_scale)
nn.init.constant_(layer.bias.data, 0)
return layer
class OneLayerFCBodyWithActionNew(nn.Module):
def __init__(self, state_dim, action_dim, hidden_units, gate=F.relu):
super(OneLayerFCBodyWithActionNew, self).__init__()
self.fc_s = layer_init(nn.Linear(state_dim, hidden_units))
self.fc_a = layer_init(nn.Linear(action_dim, hidden_units))
self.gate = gate
self.feature_dim = hidden_units * 2
def forward(self, input_0, input_1):
primals_1 = self.fc_s.weight
primals_2 = self.fc_s.bias
primals_4 = self.fc_a.weight
primals_5 = self.fc_a.bias
primals_3 = input_0
primals_6 = input_1
output = call([primals_1, primals_2, primals_3, primals_4,
primals_5, primals_6])
return output[0]
|
Sohojoe/UdacityDeepRL-Project2
|
OneLayerFCBodyWithAction
| false | 5,844 |
[
"MIT"
] | 1 |
7137eea0b606ea32d00424d23130ff213f03ecf1
|
https://github.com/Sohojoe/UdacityDeepRL-Project2/tree/7137eea0b606ea32d00424d23130ff213f03ecf1
|
LabelSmoothingCrossEntropy
|
# AOT ID: ['0_inference']
from ctypes import c_void_p, c_long, c_int
import torch
import math
import random
import os
import tempfile
from math import inf, nan
from torch._inductor.hooks import run_intermediate_hooks
from torch._inductor.utils import maybe_profile
from torch._inductor.codegen.memory_planning import _align as align
from torch import device, empty_strided
from torch._inductor.async_compile import AsyncCompile
from torch._inductor.select_algorithm import extern_kernels
from torch._inductor.codegen.multi_kernel import MultiKernelCall
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
aten = torch.ops.aten
inductor_ops = torch.ops.inductor
_quantized = torch.ops._quantized
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
alloc_from_pool = torch.ops.inductor._alloc_from_pool
async_compile = AsyncCompile()
# kernel path: runs/run_shard_1/inductor_cache/cu/ccuko3mbxkqp7jt6hb7qbvtcoh24p6hyrhnytl6csszmm77k2twe.py
# Topologically Sorted Source Nodes: [logprobs], Original ATen: [aten._log_softmax]
# Source node to ATen node mapping:
# logprobs => amax, clone_1, sub
# Graph fragment:
# %clone_1 : [num_users=2] = call_function[target=torch.ops.aten.clone.default](args = (%permute_1,), kwargs = {memory_format: torch.contiguous_format})
# %amax : [num_users=1] = call_function[target=torch.ops.aten.amax.default](args = (%clone_1, [-1], True), kwargs = {})
# %sub : [num_users=2] = call_function[target=torch.ops.aten.sub.Tensor](args = (%clone_1, %amax), kwargs = {})
triton_poi_fused__log_softmax_0 = async_compile.triton('triton_poi_fused__log_softmax_0', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[4096],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=90, major=9, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=132), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused__log_softmax_0', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 5, 'num_reduction': 0, 'backend_hash': 'B098E03CDA7B8ADC90DAFFDF24A2956451D1B13F297756A5DCC209498AA53705', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused__log_softmax_0(in_ptr0, out_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 4096
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = tl.full([XBLOCK], True, tl.int1)
x0 = xindex % 1024
x1 = (xindex // 1024)
x2 = xindex
tmp0 = tl.load(in_ptr0 + ((16*x1) + (64*(x0 // 16)) + (x0 % 16)), None)
tmp1 = tl.load(in_ptr0 + ((64*(x0 // 16)) + (x0 % 16)), None, eviction_policy='evict_last')
tmp2 = tl.load(in_ptr0 + (16 + (64*(x0 // 16)) + (x0 % 16)), None, eviction_policy='evict_last')
tmp4 = tl.load(in_ptr0 + (32 + (64*(x0 // 16)) + (x0 % 16)), None, eviction_policy='evict_last')
tmp6 = tl.load(in_ptr0 + (48 + (64*(x0 // 16)) + (x0 % 16)), None, eviction_policy='evict_last')
tmp3 = triton_helpers.maximum(tmp1, tmp2)
tmp5 = triton_helpers.maximum(tmp3, tmp4)
tmp7 = triton_helpers.maximum(tmp5, tmp6)
tmp8 = tmp0 - tmp7
tl.store(out_ptr0 + (x2), tmp8, None)
''', device_str='cuda')
# kernel path: runs/run_shard_1/inductor_cache/ro/crontwu3nbwwbc6scrasdfjovpgqubfzbn3q5gjyfqs3i2zst534.py
# Topologically Sorted Source Nodes: [logprobs], Original ATen: [aten._log_softmax]
# Source node to ATen node mapping:
# logprobs => exp, log, sub_1, sum_1
# Graph fragment:
# %exp : [num_users=1] = call_function[target=torch.ops.aten.exp.default](args = (%sub,), kwargs = {})
# %sum_1 : [num_users=1] = call_function[target=torch.ops.aten.sum.dim_IntList](args = (%exp, [-1], True), kwargs = {})
# %log : [num_users=1] = call_function[target=torch.ops.aten.log.default](args = (%sum_1,), kwargs = {})
# %sub_1 : [num_users=2] = call_function[target=torch.ops.aten.sub.Tensor](args = (%sub, %log), kwargs = {})
triton_poi_fused__log_softmax_1 = async_compile.triton('triton_poi_fused__log_softmax_1', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[4096],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=90, major=9, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=132), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused__log_softmax_1', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 5, 'num_reduction': 0, 'backend_hash': 'B098E03CDA7B8ADC90DAFFDF24A2956451D1B13F297756A5DCC209498AA53705', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused__log_softmax_1(in_ptr0, out_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 4096
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = tl.full([XBLOCK], True, tl.int1)
x2 = xindex
x0 = xindex % 1024
tmp0 = tl.load(in_ptr0 + (x2), None)
tmp1 = tl.load(in_ptr0 + (x0), None, eviction_policy='evict_last')
tmp3 = tl.load(in_ptr0 + (1024 + x0), None, eviction_policy='evict_last')
tmp6 = tl.load(in_ptr0 + (2048 + x0), None, eviction_policy='evict_last')
tmp9 = tl.load(in_ptr0 + (3072 + x0), None, eviction_policy='evict_last')
tmp2 = tl_math.exp(tmp1)
tmp4 = tl_math.exp(tmp3)
tmp5 = tmp2 + tmp4
tmp7 = tl_math.exp(tmp6)
tmp8 = tmp5 + tmp7
tmp10 = tl_math.exp(tmp9)
tmp11 = tmp8 + tmp10
tmp12 = tl_math.log(tmp11)
tmp13 = tmp0 - tmp12
tl.store(out_ptr0 + (x2), tmp13, None)
''', device_str='cuda')
# kernel path: runs/run_shard_1/inductor_cache/rb/crbplhsup7djsfltzsb2n2jefhyri7njg6573ienhsa36pldqvpl.py
# Topologically Sorted Source Nodes: [mul, mean, smooth_loss, mul_1, add, loss, mean_1], Original ATen: [aten.mul, aten.mean, aten.neg, aten.add]
# Source node to ATen node mapping:
# add => add
# loss => mul_2
# mean => mean
# mean_1 => mean_1
# mul => mul
# mul_1 => mul_1
# smooth_loss => neg_1
# Graph fragment:
# %mul : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%squeeze, 0.9), kwargs = {})
# %mean : [num_users=1] = call_function[target=torch.ops.aten.mean.dim](args = (%sub_1, [-1]), kwargs = {})
# %neg_1 : [num_users=1] = call_function[target=torch.ops.aten.neg.default](args = (%mean,), kwargs = {})
# %mul_1 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%neg_1, 0.1), kwargs = {})
# %add : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%mul, %mul_1), kwargs = {})
# %mul_2 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%add, 1.0), kwargs = {})
# %mean_1 : [num_users=1] = call_function[target=torch.ops.aten.mean.default](args = (%mul_2,), kwargs = {})
triton_per_fused_add_mean_mul_neg_2 = async_compile.triton('triton_per_fused_add_mean_mul_neg_2', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.persistent_reduction(
size_hints=[1, 1024],
reduction_hint=ReductionHint.INNER,
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*i64', 2: '*fp32', 3: 'i32', 4: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=90, major=9, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=132), 'constants': {3: 1}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 4), equal_to_1=(3,))]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_per_fused_add_mean_mul_neg_2', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': True, 'num_load': 5, 'num_reduction': 1, 'backend_hash': 'B098E03CDA7B8ADC90DAFFDF24A2956451D1B13F297756A5DCC209498AA53705', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}
)
@triton.jit
def triton_per_fused_add_mean_mul_neg_2(in_out_ptr0, in_ptr0, in_ptr1, xnumel, rnumel):
xnumel = 1
XBLOCK: tl.constexpr = 1
rnumel = 1024
RBLOCK: tl.constexpr = 1024
xoffset = tl.program_id(0) * XBLOCK
xindex = tl.full([1], xoffset, tl.int32)
xmask = tl.full([RBLOCK], True, tl.int1)
rindex = tl.arange(0, RBLOCK)[:]
roffset = 0
rmask = tl.full([RBLOCK], True, tl.int1)
r0 = rindex
tmp0 = tl.load(in_ptr0 + (r0), None)
tmp10 = tl.load(in_ptr1 + (r0), None)
tmp11 = tl.load(in_ptr1 + (1024 + r0), None)
tmp13 = tl.load(in_ptr1 + (2048 + r0), None)
tmp15 = tl.load(in_ptr1 + (3072 + r0), None)
tmp1 = tl.full([RBLOCK], 4, tl.int32)
tmp2 = tmp0 + tmp1
tmp3 = tmp0 < 0
tmp4 = tl.where(tmp3, tmp2, tmp0)
tl.device_assert((0 <= tmp4) & (tmp4 < 4), "index out of bounds: 0 <= tmp4 < 4")
tmp6 = tl.load(in_ptr1 + (r0 + (1024*tmp4)), None)
tmp7 = -tmp6
tmp8 = 0.9
tmp9 = tmp7 * tmp8
tmp12 = tmp10 + tmp11
tmp14 = tmp12 + tmp13
tmp16 = tmp14 + tmp15
tmp17 = 4.0
tmp18 = tmp16 / tmp17
tmp19 = -tmp18
tmp20 = 0.1
tmp21 = tmp19 * tmp20
tmp22 = tmp9 + tmp21
tmp23 = 1.0
tmp24 = tmp22 * tmp23
tmp25 = tl.broadcast_to(tmp24, [RBLOCK])
tmp27 = triton_helpers.promote_to_tensor(tl.sum(tmp25, 0))
tmp28 = 1024.0
tmp29 = tmp27 / tmp28
tl.debug_barrier()
tl.store(in_out_ptr0 + (tl.full([1], 0, tl.int32)), tmp29, None)
''', device_str='cuda')
async_compile.wait(globals())
del async_compile
def call(args):
arg0_1, arg1_1 = args
args.clear()
assert_size_stride(arg0_1, (64, 4, 4, 4), (64, 16, 4, 1))
assert_size_stride(arg1_1, (1024, ), (1, ))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((1024, 4), (1, 1024), torch.float32)
# Topologically Sorted Source Nodes: [logprobs], Original ATen: [aten._log_softmax]
stream0 = get_raw_stream(0)
triton_poi_fused__log_softmax_0.run(arg0_1, buf0, 4096, grid=grid(4096), stream=stream0)
del arg0_1
buf1 = empty_strided_cuda((1024, 4), (1, 1024), torch.float32)
# Topologically Sorted Source Nodes: [logprobs], Original ATen: [aten._log_softmax]
triton_poi_fused__log_softmax_1.run(buf0, buf1, 4096, grid=grid(4096), stream=stream0)
del buf0
buf2 = empty_strided_cuda((), (), torch.float32)
buf3 = buf2; del buf2 # reuse
# Topologically Sorted Source Nodes: [mul, mean, smooth_loss, mul_1, add, loss, mean_1], Original ATen: [aten.mul, aten.mean, aten.neg, aten.add]
triton_per_fused_add_mean_mul_neg_2.run(buf3, arg1_1, buf1, 1, 1024, grid=grid(1), stream=stream0)
del arg1_1
del buf1
return (buf3, )
def benchmark_compiled_module(times=10, repeat=10):
from torch._dynamo.testing import rand_strided
from torch._inductor.utils import print_performance
arg0_1 = rand_strided((64, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32)
arg1_1 = rand_strided((1024, ), (1, ), device='cuda:0', dtype=torch.int64)
fn = lambda: call([arg0_1, arg1_1])
return print_performance(fn, times=times, repeat=repeat)
if __name__ == "__main__":
from torch._inductor.wrapper_benchmark import compiled_module_main
compiled_module_main('None', benchmark_compiled_module)
|
import torch
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
from torch._inductor.runtime import triton_helpers
from torch._inductor.runtime.triton_helpers import math as tl_math
import torch._C
import torch.serialization
from torch import nn
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
@triton.jit
def triton_poi_fused__log_softmax_0(in_ptr0, out_ptr0, xnumel, XBLOCK: tl.
constexpr):
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
tl.full([XBLOCK], True, tl.int1)
x0 = xindex % 1024
x1 = xindex // 1024
x2 = xindex
tmp0 = tl.load(in_ptr0 + (16 * x1 + 64 * (x0 // 16) + x0 % 16), None)
tmp1 = tl.load(in_ptr0 + (64 * (x0 // 16) + x0 % 16), None,
eviction_policy='evict_last')
tmp2 = tl.load(in_ptr0 + (16 + 64 * (x0 // 16) + x0 % 16), None,
eviction_policy='evict_last')
tmp4 = tl.load(in_ptr0 + (32 + 64 * (x0 // 16) + x0 % 16), None,
eviction_policy='evict_last')
tmp6 = tl.load(in_ptr0 + (48 + 64 * (x0 // 16) + x0 % 16), None,
eviction_policy='evict_last')
tmp3 = triton_helpers.maximum(tmp1, tmp2)
tmp5 = triton_helpers.maximum(tmp3, tmp4)
tmp7 = triton_helpers.maximum(tmp5, tmp6)
tmp8 = tmp0 - tmp7
tl.store(out_ptr0 + x2, tmp8, None)
@triton.jit
def triton_poi_fused__log_softmax_1(in_ptr0, out_ptr0, xnumel, XBLOCK: tl.
constexpr):
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
tl.full([XBLOCK], True, tl.int1)
x2 = xindex
x0 = xindex % 1024
tmp0 = tl.load(in_ptr0 + x2, None)
tmp1 = tl.load(in_ptr0 + x0, None, eviction_policy='evict_last')
tmp3 = tl.load(in_ptr0 + (1024 + x0), None, eviction_policy='evict_last')
tmp6 = tl.load(in_ptr0 + (2048 + x0), None, eviction_policy='evict_last')
tmp9 = tl.load(in_ptr0 + (3072 + x0), None, eviction_policy='evict_last')
tmp2 = tl_math.exp(tmp1)
tmp4 = tl_math.exp(tmp3)
tmp5 = tmp2 + tmp4
tmp7 = tl_math.exp(tmp6)
tmp8 = tmp5 + tmp7
tmp10 = tl_math.exp(tmp9)
tmp11 = tmp8 + tmp10
tmp12 = tl_math.log(tmp11)
tmp13 = tmp0 - tmp12
tl.store(out_ptr0 + x2, tmp13, None)
@triton.jit
def triton_per_fused_add_mean_mul_neg_2(in_out_ptr0, in_ptr0, in_ptr1,
xnumel, rnumel):
XBLOCK: tl.constexpr = 1
RBLOCK: tl.constexpr = 1024
xoffset = tl.program_id(0) * XBLOCK
tl.full([1], xoffset, tl.int32)
tl.full([RBLOCK], True, tl.int1)
rindex = tl.arange(0, RBLOCK)[:]
tl.full([RBLOCK], True, tl.int1)
r0 = rindex
tmp0 = tl.load(in_ptr0 + r0, None)
tmp10 = tl.load(in_ptr1 + r0, None)
tmp11 = tl.load(in_ptr1 + (1024 + r0), None)
tmp13 = tl.load(in_ptr1 + (2048 + r0), None)
tmp15 = tl.load(in_ptr1 + (3072 + r0), None)
tmp1 = tl.full([RBLOCK], 4, tl.int32)
tmp2 = tmp0 + tmp1
tmp3 = tmp0 < 0
tmp4 = tl.where(tmp3, tmp2, tmp0)
tl.device_assert((0 <= tmp4) & (tmp4 < 4),
'index out of bounds: 0 <= tmp4 < 4')
tmp6 = tl.load(in_ptr1 + (r0 + 1024 * tmp4), None)
tmp7 = -tmp6
tmp8 = 0.9
tmp9 = tmp7 * tmp8
tmp12 = tmp10 + tmp11
tmp14 = tmp12 + tmp13
tmp16 = tmp14 + tmp15
tmp17 = 4.0
tmp18 = tmp16 / tmp17
tmp19 = -tmp18
tmp20 = 0.1
tmp21 = tmp19 * tmp20
tmp22 = tmp9 + tmp21
tmp23 = 1.0
tmp24 = tmp22 * tmp23
tmp25 = tl.broadcast_to(tmp24, [RBLOCK])
tmp27 = triton_helpers.promote_to_tensor(tl.sum(tmp25, 0))
tmp28 = 1024.0
tmp29 = tmp27 / tmp28
tl.debug_barrier()
tl.store(in_out_ptr0 + tl.full([1], 0, tl.int32), tmp29, None)
def call(args):
arg0_1, arg1_1 = args
args.clear()
assert_size_stride(arg0_1, (64, 4, 4, 4), (64, 16, 4, 1))
assert_size_stride(arg1_1, (1024,), (1,))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((1024, 4), (1, 1024), torch.float32)
get_raw_stream(0)
triton_poi_fused__log_softmax_0[grid(4096)](arg0_1, buf0, 4096,
XBLOCK=128, num_warps=4, num_stages=1)
del arg0_1
buf1 = empty_strided_cuda((1024, 4), (1, 1024), torch.float32)
triton_poi_fused__log_softmax_1[grid(4096)](buf0, buf1, 4096,
XBLOCK=256, num_warps=4, num_stages=1)
del buf0
buf2 = empty_strided_cuda((), (), torch.float32)
buf3 = buf2
del buf2
triton_per_fused_add_mean_mul_neg_2[grid(1)](buf3, arg1_1, buf1, 1,
1024, num_warps=8, num_stages=1)
del arg1_1
del buf1
return buf3,
class LabelSmoothingCrossEntropyNew(nn.Module):
""" NLL loss with label smoothing.
"""
def __init__(self, smoothing=0.1, loss_weight=1.0, loss_name='loss_ce'):
super(LabelSmoothingCrossEntropyNew, self).__init__()
assert smoothing < 1.0
self.smoothing = smoothing
self.confidence = 1.0 - smoothing
self.loss_weight = loss_weight
self._loss_name = loss_name
@property
def loss_name(self):
"""Loss Name.
This function must be implemented and will return the name of this
loss function. This name will be used to combine different loss items
by simple sum operation. In addition, if you want this loss item to be
included into the backward graph, `loss_` must be the prefix of the
name.
Returns:
str: The name of this loss item.
"""
return self._loss_name
def forward(self, input_0, input_1):
arg0_1 = input_0
arg1_1 = input_1
output = call([arg0_1, arg1_1])
return output[0]
|
Molly6/segmentation_shengteng2021
|
LabelSmoothingCrossEntropy
| false | 8,569 |
[
"Apache-2.0"
] | 21 |
33dfefa80193586f504069793d9e141944549e99
|
https://github.com/Molly6/segmentation_shengteng2021/tree/33dfefa80193586f504069793d9e141944549e99
|
MaskedL1Loss
|
import torch
import torch.utils.data
import torch.nn as nn
class MaskedL1Loss(nn.Module):
def __init__(self):
super(MaskedL1Loss, self).__init__()
self.criterion = nn.L1Loss()
def forward(self, input, target, mask):
mask = mask.expand(-1, input.size()[1], -1, -1)
loss = self.criterion(input * mask, target * mask)
return loss
def get_inputs():
return [torch.rand([4, 4, 4, 4]), torch.rand([4, 4, 4, 4]), torch.rand(
[4, 4, 4, 4])]
def get_init_inputs():
return [[], {}]
|
import torch
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
from torch._inductor.runtime import triton_helpers
from torch._inductor.runtime.triton_helpers import math as tl_math
import torch.utils.data
import torch.nn as nn
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
@triton.jit
def triton_per_fused_abs_mean_mul_sub_0(in_out_ptr0, in_ptr0, in_ptr1,
in_ptr2, xnumel, rnumel):
XBLOCK: tl.constexpr = 1
RBLOCK: tl.constexpr = 256
xoffset = tl.program_id(0) * XBLOCK
tl.full([1], xoffset, tl.int32)
tl.full([RBLOCK], True, tl.int1)
rindex = tl.arange(0, RBLOCK)[:]
tl.full([RBLOCK], True, tl.int1)
r0 = rindex
tmp0 = tl.load(in_ptr0 + r0, None)
tmp1 = tl.load(in_ptr1 + r0, None)
tmp3 = tl.load(in_ptr2 + r0, None)
tmp2 = tmp0 * tmp1
tmp4 = tmp3 * tmp1
tmp5 = tmp2 - tmp4
tmp6 = tl_math.abs(tmp5)
tmp7 = tl.broadcast_to(tmp6, [RBLOCK])
tmp9 = triton_helpers.promote_to_tensor(tl.sum(tmp7, 0))
tmp10 = 256.0
tmp11 = tmp9 / tmp10
tl.debug_barrier()
tl.store(in_out_ptr0 + tl.full([1], 0, tl.int32), tmp11, None)
def call(args):
arg0_1, arg1_1, arg2_1 = args
args.clear()
assert_size_stride(arg0_1, (4, 4, 4, 4), (64, 16, 4, 1))
assert_size_stride(arg1_1, (4, 4, 4, 4), (64, 16, 4, 1))
assert_size_stride(arg2_1, (4, 4, 4, 4), (64, 16, 4, 1))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((), (), torch.float32)
buf1 = buf0
del buf0
get_raw_stream(0)
triton_per_fused_abs_mean_mul_sub_0[grid(1)](buf1, arg1_1, arg0_1,
arg2_1, 1, 256, num_warps=2, num_stages=1)
del arg0_1
del arg1_1
del arg2_1
return buf1,
class MaskedL1LossNew(nn.Module):
def __init__(self):
super(MaskedL1LossNew, self).__init__()
self.criterion = nn.L1Loss()
def forward(self, input_0, input_1, input_2):
arg0_1 = input_0
arg1_1 = input_1
arg2_1 = input_2
output = call([arg0_1, arg1_1, arg2_1])
return output[0]
|
lichnost/head2head
|
MaskedL1Loss
| false | 3,914 |
[
"MIT"
] | 0 |
b0ec8b6965c9a32f3727dee9c164a7aaff027c5f
|
https://github.com/lichnost/head2head/tree/b0ec8b6965c9a32f3727dee9c164a7aaff027c5f
|
Attention
|
from _paritybench_helpers import _mock_config
import torch
import torch.nn as nn
import torch.nn.functional as F
from torch.autograd import *
class Attention(nn.Module):
def __init__(self, opt):
super(Attention, self).__init__()
self.rnn_size = opt.rnn_size
self.att_hid_size = opt.att_hid_size
self.h2att = nn.Linear(self.rnn_size, self.att_hid_size)
self.alpha_net = nn.Linear(self.att_hid_size, 1)
def forward(self, h, att_feats, p_att_feats, att_masks=None):
att_size = att_feats.numel() // att_feats.size(0) // att_feats.size(-1)
att = p_att_feats.view(-1, att_size, self.att_hid_size)
att_h = self.h2att(h)
att_h = att_h.unsqueeze(1).expand_as(att)
dot = att + att_h
dot = F.tanh(dot)
dot = dot.view(-1, self.att_hid_size)
dot = self.alpha_net(dot)
dot = dot.view(-1, att_size)
weight = F.softmax(dot, dim=1)
if att_masks is not None:
weight = weight * att_masks.view(-1, att_size).float()
weight = weight / weight.sum(1, keepdim=True)
att_feats_ = att_feats.view(-1, att_size, att_feats.size(-1))
att_res = torch.bmm(weight.unsqueeze(1), att_feats_).squeeze(1)
return att_res
def get_inputs():
return [torch.rand([4, 4]), torch.rand([4, 4, 4, 4]), torch.rand([4, 4,
4, 4])]
def get_init_inputs():
return [[], {'opt': _mock_config(rnn_size=4, att_hid_size=4)}]
|
import torch
from torch._inductor.select_algorithm import extern_kernels
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
from torch._inductor.runtime import triton_helpers
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
import torch.nn as nn
from torch.autograd import *
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
@triton.jit
def triton_poi_fused_add_tanh_0(in_ptr0, in_ptr1, in_ptr2, out_ptr0, xnumel,
XBLOCK: tl.constexpr):
xnumel = 256
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x3 = xindex
x0 = xindex % 4
x2 = xindex // 64
tmp0 = tl.load(in_ptr0 + x3, xmask)
tmp1 = tl.load(in_ptr1 + (x0 + 4 * x2), xmask, eviction_policy='evict_last'
)
tmp2 = tl.load(in_ptr2 + x0, xmask, eviction_policy='evict_last')
tmp3 = tmp1 + tmp2
tmp4 = tmp0 + tmp3
tmp5 = libdevice.tanh(tmp4)
tl.store(out_ptr0 + x3, tmp5, xmask)
@triton.jit
def triton_per_fused__softmax_1(in_ptr0, out_ptr0, out_ptr1, out_ptr2,
xnumel, rnumel, XBLOCK: tl.constexpr):
xnumel = 4
RBLOCK: tl.constexpr = 16
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:, None]
xmask = xindex < xnumel
rindex = tl.arange(0, RBLOCK)[None, :]
tl.full([XBLOCK, RBLOCK], True, tl.int1)
r1 = rindex
x0 = xindex
tmp0 = tl.load(in_ptr0 + (r1 + 16 * x0), xmask, other=0.0)
tmp1 = tl.broadcast_to(tmp0, [XBLOCK, RBLOCK])
tmp3 = tl.where(xmask, tmp1, float('-inf'))
tmp4 = triton_helpers.max2(tmp3, 1)[:, None]
tmp5 = tmp0 - tmp4
tmp6 = tl_math.exp(tmp5)
tmp7 = tl.broadcast_to(tmp6, [XBLOCK, RBLOCK])
tmp9 = tl.where(xmask, tmp7, 0)
tmp10 = tl.sum(tmp9, 1)[:, None]
tmp11 = tmp6 / tmp10
tl.store(out_ptr2 + (r1 + 16 * x0), tmp11, xmask)
tl.store(out_ptr0 + x0, tmp4, xmask)
tl.store(out_ptr1 + x0, tmp10, xmask)
def call(args):
(primals_1, primals_2, primals_3, primals_4, primals_5, primals_6,
primals_7) = args
args.clear()
assert_size_stride(primals_1, (4, 4, 4, 4), (64, 16, 4, 1))
assert_size_stride(primals_2, (4, 4, 4, 4), (64, 16, 4, 1))
assert_size_stride(primals_3, (4, 4), (4, 1))
assert_size_stride(primals_4, (4,), (1,))
assert_size_stride(primals_5, (4, 4), (4, 1))
assert_size_stride(primals_6, (1, 4), (4, 1))
assert_size_stride(primals_7, (1,), (1,))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((4, 4), (4, 1), torch.float32)
extern_kernels.mm(primals_5, reinterpret_tensor(primals_3, (4, 4),
(1, 4), 0), out=buf0)
del primals_3
buf1 = empty_strided_cuda((4, 16, 4), (64, 4, 1), torch.float32)
get_raw_stream(0)
triton_poi_fused_add_tanh_0[grid(256)](primals_2, buf0, primals_4,
buf1, 256, XBLOCK=128, num_warps=4, num_stages=1)
del primals_2
del primals_4
buf3 = empty_strided_cuda((64, 1), (1, 1), torch.float32)
extern_kernels.addmm(primals_7, reinterpret_tensor(buf1, (64, 4), (
4, 1), 0), reinterpret_tensor(primals_6, (4, 1), (1, 4), 0),
alpha=1, beta=1, out=buf3)
del primals_7
buf4 = empty_strided_cuda((4, 1), (1, 1), torch.float32)
buf5 = empty_strided_cuda((4, 1), (1, 1), torch.float32)
buf6 = empty_strided_cuda((4, 16), (16, 1), torch.float32)
triton_per_fused__softmax_1[grid(4)](buf3, buf4, buf5, buf6, 4, 16,
XBLOCK=1, num_warps=2, num_stages=1)
buf7 = reinterpret_tensor(buf0, (4, 1, 4), (4, 4, 1), 0)
del buf0
extern_kernels.bmm(reinterpret_tensor(buf6, (4, 1, 16), (16, 0, 1),
0), reinterpret_tensor(primals_1, (4, 16, 4), (64, 4, 1), 0),
out=buf7)
del buf6
return reinterpret_tensor(buf7, (4, 4), (4, 1), 0
), primals_5, buf1, buf3, buf4, buf5, reinterpret_tensor(primals_1,
(4, 4, 16), (64, 1, 4), 0), primals_6
class AttentionNew(nn.Module):
def __init__(self, opt):
super(AttentionNew, self).__init__()
self.rnn_size = opt.rnn_size
self.att_hid_size = opt.att_hid_size
self.h2att = nn.Linear(self.rnn_size, self.att_hid_size)
self.alpha_net = nn.Linear(self.att_hid_size, 1)
def forward(self, input_0, input_1, input_2):
primals_3 = self.h2att.weight
primals_4 = self.h2att.bias
primals_6 = self.alpha_net.weight
primals_7 = self.alpha_net.bias
primals_5 = input_0
primals_1 = input_1
primals_2 = input_2
output = call([primals_1, primals_2, primals_3, primals_4,
primals_5, primals_6, primals_7])
return output[0]
|
Zhendong-Wang/arsm_image_captioning
|
Attention
| false | 11,137 |
[
"MIT"
] | 0 |
2282b76ab03b53952269d94d6c4b19ab98636ca5
|
https://github.com/Zhendong-Wang/arsm_image_captioning/tree/2282b76ab03b53952269d94d6c4b19ab98636ca5
|
SimpleMLPGen_with_meta_feature
|
# AOT ID: ['0_forward']
from ctypes import c_void_p, c_long, c_int
import torch
import math
import random
import os
import tempfile
from math import inf, nan
from torch._inductor.hooks import run_intermediate_hooks
from torch._inductor.utils import maybe_profile
from torch._inductor.codegen.memory_planning import _align as align
from torch import device, empty_strided
from torch._inductor.async_compile import AsyncCompile
from torch._inductor.select_algorithm import extern_kernels
from torch._inductor.codegen.multi_kernel import MultiKernelCall
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
aten = torch.ops.aten
inductor_ops = torch.ops.inductor
_quantized = torch.ops._quantized
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
alloc_from_pool = torch.ops.inductor._alloc_from_pool
async_compile = AsyncCompile()
# kernel path: runs/run_shard_9/inductor_cache/mi/cmi476zw6ohnah2zxegdqc6fvw4ui6ahcdpt576v245i6ehle2hj.py
# Topologically Sorted Source Nodes: [x], Original ATen: [aten.elu]
# Source node to ATen node mapping:
# x => expm1, gt, mul, mul_2, where
# Graph fragment:
# %gt : [num_users=1] = call_function[target=torch.ops.aten.gt.Scalar](args = (%view_1, 0), kwargs = {})
# %mul : [num_users=2] = call_function[target=torch.ops.aten.mul.Tensor](args = (%view_1, 1.0), kwargs = {})
# %expm1 : [num_users=1] = call_function[target=torch.ops.aten.expm1.default](args = (%mul,), kwargs = {})
# %mul_2 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%expm1, 1.0), kwargs = {})
# %where : [num_users=1] = call_function[target=torch.ops.aten.where.self](args = (%gt, %mul, %mul_2), kwargs = {})
triton_poi_fused_elu_0 = async_compile.triton('triton_poi_fused_elu_0', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[64],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_elu_0', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 1, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_elu_0(in_ptr0, out_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 64
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex
tmp0 = tl.load(in_ptr0 + (x0), xmask)
tmp1 = 0.0
tmp2 = tmp0 > tmp1
tmp3 = 1.0
tmp4 = tmp0 * tmp3
tmp5 = libdevice.expm1(tmp4)
tmp6 = tmp5 * tmp3
tmp7 = tl.where(tmp2, tmp4, tmp6)
tl.store(out_ptr0 + (x0), tmp7, xmask)
''', device_str='cuda')
async_compile.wait(globals())
del async_compile
def call(args):
primals_1, primals_2, primals_3, primals_4, primals_5 = args
args.clear()
assert_size_stride(primals_1, (1, 4), (4, 1))
assert_size_stride(primals_2, (1, ), (1, ))
assert_size_stride(primals_3, (4, 4, 4, 4), (64, 16, 4, 1))
assert_size_stride(primals_4, (4, 1), (1, 1))
assert_size_stride(primals_5, (4, ), (1, ))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf1 = empty_strided_cuda((64, 1), (1, 1), torch.float32)
# Topologically Sorted Source Nodes: [linear], Original ATen: [aten.addmm]
extern_kernels.addmm(primals_2, reinterpret_tensor(primals_3, (64, 4), (4, 1), 0), reinterpret_tensor(primals_1, (4, 1), (1, 4), 0), alpha=1, beta=1, out=buf1)
del primals_1
del primals_2
buf2 = empty_strided_cuda((4, 4, 4, 1), (16, 4, 1, 1), torch.float32)
# Topologically Sorted Source Nodes: [x], Original ATen: [aten.elu]
stream0 = get_raw_stream(0)
triton_poi_fused_elu_0.run(buf1, buf2, 64, grid=grid(64), stream=stream0)
buf3 = empty_strided_cuda((64, 4), (4, 1), torch.float32)
# Topologically Sorted Source Nodes: [x_1], Original ATen: [aten.addmm]
extern_kernels.addmm(primals_5, reinterpret_tensor(buf2, (64, 1), (1, 0), 0), reinterpret_tensor(primals_4, (1, 4), (1, 1), 0), alpha=1, beta=1, out=buf3)
del primals_5
return (reinterpret_tensor(buf3, (4, 4, 4, 4), (64, 16, 4, 1), 0), reinterpret_tensor(primals_3, (64, 4), (4, 1), 0), buf1, reinterpret_tensor(buf2, (64, 1), (1, 1), 0), primals_4, )
def benchmark_compiled_module(times=10, repeat=10):
from torch._dynamo.testing import rand_strided
from torch._inductor.utils import print_performance
primals_1 = rand_strided((1, 4), (4, 1), device='cuda:0', dtype=torch.float32)
primals_2 = rand_strided((1, ), (1, ), device='cuda:0', dtype=torch.float32)
primals_3 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32)
primals_4 = rand_strided((4, 1), (1, 1), device='cuda:0', dtype=torch.float32)
primals_5 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32)
fn = lambda: call([primals_1, primals_2, primals_3, primals_4, primals_5])
return print_performance(fn, times=times, repeat=repeat)
if __name__ == "__main__":
from torch._inductor.wrapper_benchmark import compiled_module_main
compiled_module_main('None', benchmark_compiled_module)
|
import torch
from torch._inductor.select_algorithm import extern_kernels
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
from torch._inductor.runtime.triton_helpers import libdevice
import torch.optim
import torch.jit
import torch.nn as nn
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
@triton.jit
def triton_poi_fused_elu_0(in_ptr0, out_ptr0, xnumel, XBLOCK: tl.constexpr):
xnumel = 64
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex
tmp0 = tl.load(in_ptr0 + x0, xmask)
tmp1 = 0.0
tmp2 = tmp0 > tmp1
tmp3 = 1.0
tmp4 = tmp0 * tmp3
tmp5 = libdevice.expm1(tmp4)
tmp6 = tmp5 * tmp3
tmp7 = tl.where(tmp2, tmp4, tmp6)
tl.store(out_ptr0 + x0, tmp7, xmask)
def call(args):
primals_1, primals_2, primals_3, primals_4, primals_5 = args
args.clear()
assert_size_stride(primals_1, (1, 4), (4, 1))
assert_size_stride(primals_2, (1,), (1,))
assert_size_stride(primals_3, (4, 4, 4, 4), (64, 16, 4, 1))
assert_size_stride(primals_4, (4, 1), (1, 1))
assert_size_stride(primals_5, (4,), (1,))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf1 = empty_strided_cuda((64, 1), (1, 1), torch.float32)
extern_kernels.addmm(primals_2, reinterpret_tensor(primals_3, (64,
4), (4, 1), 0), reinterpret_tensor(primals_1, (4, 1), (1, 4), 0
), alpha=1, beta=1, out=buf1)
del primals_1
del primals_2
buf2 = empty_strided_cuda((4, 4, 4, 1), (16, 4, 1, 1), torch.float32)
get_raw_stream(0)
triton_poi_fused_elu_0[grid(64)](buf1, buf2, 64, XBLOCK=64,
num_warps=1, num_stages=1)
buf3 = empty_strided_cuda((64, 4), (4, 1), torch.float32)
extern_kernels.addmm(primals_5, reinterpret_tensor(buf2, (64, 1), (
1, 0), 0), reinterpret_tensor(primals_4, (1, 4), (1, 1), 0),
alpha=1, beta=1, out=buf3)
del primals_5
return reinterpret_tensor(buf3, (4, 4, 4, 4), (64, 16, 4, 1), 0
), reinterpret_tensor(primals_3, (64, 4), (4, 1), 0
), buf1, reinterpret_tensor(buf2, (64, 1), (1, 1), 0), primals_4
class SimpleMLPGen_with_meta_featureNew(nn.Module):
def __init__(self, num_in_features, num_out_features, neurons_per_layer):
super(SimpleMLPGen_with_meta_featureNew, self).__init__()
self.l_in = nn.Linear(in_features=num_in_features, out_features=
neurons_per_layer)
self.l_out = nn.Linear(in_features=neurons_per_layer, out_features=
num_out_features)
self.act = nn.ELU()
def set_parameters(self, meta_in_features, simple_mlp_gen_obj):
x = simple_mlp_gen_obj.act(simple_mlp_gen_obj.l_in(meta_in_features))
x = simple_mlp_gen_obj.l_out(x)
_base = (simple_mlp_gen_obj.num_in_features * simple_mlp_gen_obj.
neurons_per_layer)
l_in_weight = x[:_base].reshape((simple_mlp_gen_obj.num_in_features,
simple_mlp_gen_obj.neurons_per_layer)).t()
l_in_bias = x[_base:_base + simple_mlp_gen_obj.neurons_per_layer]
_base += simple_mlp_gen_obj.neurons_per_layer
_base_add = (simple_mlp_gen_obj.neurons_per_layer *
simple_mlp_gen_obj.num_out_features)
l_out_weight = x[_base:_base + _base_add].reshape((
simple_mlp_gen_obj.neurons_per_layer, simple_mlp_gen_obj.
num_out_features)).t()
_base += _base_add
l_out_bias = x[_base:]
self.l_in.weight = torch.nn.Parameter(l_in_weight)
self.l_out.weight = torch.nn.Parameter(l_out_weight)
self.l_in.bias = torch.nn.Parameter(l_in_bias)
self.l_out.bias = torch.nn.Parameter(l_out_bias)
def forward(self, input_0):
primals_1 = self.l_in.weight
primals_2 = self.l_in.bias
primals_4 = self.l_out.weight
primals_5 = self.l_out.bias
primals_3 = input_0
output = call([primals_1, primals_2, primals_3, primals_4, primals_5])
return output[0]
|
zhaofeng-shu33/deep_euler_tests
|
SimpleMLPGen_with_meta_feature
| false | 13,166 |
[
"MIT"
] | 0 |
a3d0961af679d490b0c58873ee0726234122bc7a
|
https://github.com/zhaofeng-shu33/deep_euler_tests/tree/a3d0961af679d490b0c58873ee0726234122bc7a
|
MLP
|
import torch
import numpy as np
import torch.nn as nn
import torch.optim as optim
from collections import OrderedDict
class MLP(nn.Module):
def __init__(self, input_size, output_size):
super(MLP, self).__init__()
self.input_size = input_size
self.output_size = output_size
self.mlp = nn.Sequential(OrderedDict([('linear1', nn.Linear(self.
input_size, 256)), ('relu1', nn.ReLU()), ('linear2', nn.Linear(
256, 128)), ('relu2', nn.ReLU()), ('linear3', nn.Linear(128,
self.output_size))]))
def forward(self, text):
out = self.mlp(text)
return out
def construct_sparse_tensor(self, coo):
"""import torch
import numpy as np
from scipy.sparse import coo_matrix"""
values = coo.data
indices = np.vstack((coo.row, coo.col))
i = torch.LongTensor(indices)
v = torch.FloatTensor(values)
shape = coo.shape
return torch.sparse.FloatTensor(i, v, torch.Size(shape)).to_dense()
def train_mlp(self, x_train: 'torch.Tensor', x_val: 'torch.Tensor',
x_test: 'torch.Tensor', y_train: 'torch.Tensor', y_val:
'torch.Tensor', y_test: 'torch.Tensor', hparams: 'dict'):
lr = hparams['lr']
epochs = hparams['epochs']
batch_size = hparams['batch_size']
patience = hparams['patience']
optimizer = optim.Adam(self.parameters(), lr=lr)
criterion = nn.CrossEntropyLoss()
best_acc = np.NINF
trace_train = []
trace_val = []
for epoch in range(epochs):
running_train_loss = 0.0
running_train_acc = 0.0
None
for i in tqdm(range(0, x_train.shape[0], batch_size)):
batch = x_train[i:i + batch_size]
label = y_train[i:i + batch_size]
output = self.forward(batch)
loss = criterion(output, label)
predictions = output.argmax(axis=1)
running_train_acc += (predictions == label).sum()
optimizer.zero_grad()
loss.backward()
running_train_loss += loss.item()
optimizer.step()
running_val_loss = 0.0
running_val_acc = 0.0
for i in tqdm(range(0, x_val.shape[0], batch_size)):
batch = x_val[i:i + batch_size]
label = y_val[i:i + batch_size]
output = self.forward(batch)
predictions = output.argmax(axis=1)
running_val_acc += (predictions == label).sum()
loss = criterion(output, label)
running_val_loss += loss.item()
None
trace_train.append(running_train_loss)
trace_val.append(running_val_loss)
if running_val_acc > best_acc:
best_acc = running_val_acc
best_epoch = epoch
best_state = {key: value.cpu() for key, value in self.
state_dict().items()}
elif epoch >= best_epoch + patience:
break
self.load_state_dict(best_state)
torch.save(best_state, 'model.pt')
predictions = self.forward(x_test).argmax(axis=1)
(predictions == y_test).sum()
None
None
return trace_train, trace_val
def get_inputs():
return [torch.rand([4, 4, 4, 4])]
def get_init_inputs():
return [[], {'input_size': 4, 'output_size': 4}]
|
import torch
from torch._inductor.select_algorithm import extern_kernels
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
from torch._inductor.runtime import triton_helpers
import numpy as np
import torch.nn as nn
import torch.optim as optim
from collections import OrderedDict
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
@triton.jit
def triton_poi_fused_relu_threshold_backward_0(in_out_ptr0, in_ptr0,
out_ptr0, xnumel, XBLOCK: tl.constexpr):
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
tl.full([XBLOCK], True, tl.int1)
x2 = xindex
x0 = xindex % 256
tmp0 = tl.load(in_out_ptr0 + x2, None)
tmp1 = tl.load(in_ptr0 + x0, None, eviction_policy='evict_last')
tmp2 = tmp0 + tmp1
tmp3 = tl.full([1], 0, tl.int32)
tmp4 = triton_helpers.maximum(tmp3, tmp2)
tmp5 = 0.0
tmp6 = tmp4 <= tmp5
tl.store(in_out_ptr0 + x2, tmp4, None)
tl.store(out_ptr0 + x2, tmp6, None)
@triton.jit
def triton_poi_fused_relu_threshold_backward_1(in_out_ptr0, in_ptr0,
out_ptr0, xnumel, XBLOCK: tl.constexpr):
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
tl.full([XBLOCK], True, tl.int1)
x2 = xindex
x0 = xindex % 128
tmp0 = tl.load(in_out_ptr0 + x2, None)
tmp1 = tl.load(in_ptr0 + x0, None, eviction_policy='evict_last')
tmp2 = tmp0 + tmp1
tmp3 = tl.full([1], 0, tl.int32)
tmp4 = triton_helpers.maximum(tmp3, tmp2)
tmp5 = 0.0
tmp6 = tmp4 <= tmp5
tl.store(in_out_ptr0 + x2, tmp4, None)
tl.store(out_ptr0 + x2, tmp6, None)
def call(args):
(primals_1, primals_2, primals_3, primals_4, primals_5, primals_6,
primals_7) = args
args.clear()
assert_size_stride(primals_1, (256, 4), (4, 1))
assert_size_stride(primals_2, (256,), (1,))
assert_size_stride(primals_3, (4, 4, 4, 4), (64, 16, 4, 1))
assert_size_stride(primals_4, (128, 256), (256, 1))
assert_size_stride(primals_5, (128,), (1,))
assert_size_stride(primals_6, (4, 128), (128, 1))
assert_size_stride(primals_7, (4,), (1,))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((64, 256), (256, 1), torch.float32)
extern_kernels.mm(reinterpret_tensor(primals_3, (64, 4), (4, 1), 0),
reinterpret_tensor(primals_1, (4, 256), (1, 4), 0), out=buf0)
del primals_1
buf1 = reinterpret_tensor(buf0, (4, 4, 4, 256), (4096, 1024, 256, 1), 0
)
del buf0
buf6 = empty_strided_cuda((4, 4, 4, 256), (4096, 1024, 256, 1),
torch.bool)
get_raw_stream(0)
triton_poi_fused_relu_threshold_backward_0[grid(16384)](buf1,
primals_2, buf6, 16384, XBLOCK=128, num_warps=4, num_stages=1)
del primals_2
buf2 = empty_strided_cuda((64, 128), (128, 1), torch.float32)
extern_kernels.mm(reinterpret_tensor(buf1, (64, 256), (256, 1), 0),
reinterpret_tensor(primals_4, (256, 128), (1, 256), 0), out=buf2)
buf3 = reinterpret_tensor(buf2, (4, 4, 4, 128), (2048, 512, 128, 1), 0)
del buf2
buf5 = empty_strided_cuda((4, 4, 4, 128), (2048, 512, 128, 1),
torch.bool)
triton_poi_fused_relu_threshold_backward_1[grid(8192)](buf3,
primals_5, buf5, 8192, XBLOCK=256, num_warps=4, num_stages=1)
del primals_5
buf4 = empty_strided_cuda((64, 4), (4, 1), torch.float32)
extern_kernels.addmm(primals_7, reinterpret_tensor(buf3, (64, 128),
(128, 1), 0), reinterpret_tensor(primals_6, (128, 4), (1, 128),
0), alpha=1, beta=1, out=buf4)
del primals_7
return reinterpret_tensor(buf4, (4, 4, 4, 4), (64, 16, 4, 1), 0
), reinterpret_tensor(primals_3, (64, 4), (4, 1), 0
), reinterpret_tensor(buf1, (64, 256), (256, 1), 0
), reinterpret_tensor(buf3, (64, 128), (128, 1), 0
), primals_6, buf5, primals_4, buf6
class MLPNew(nn.Module):
def __init__(self, input_size, output_size):
super(MLPNew, self).__init__()
self.input_size = input_size
self.output_size = output_size
self.mlp = nn.Sequential(OrderedDict([('linear1', nn.Linear(self.
input_size, 256)), ('relu1', nn.ReLU()), ('linear2', nn.Linear(
256, 128)), ('relu2', nn.ReLU()), ('linear3', nn.Linear(128,
self.output_size))]))
def construct_sparse_tensor(self, coo):
"""import torch
import numpy as np
from scipy.sparse import coo_matrix"""
values = coo.data
indices = np.vstack((coo.row, coo.col))
i = torch.LongTensor(indices)
v = torch.FloatTensor(values)
shape = coo.shape
return torch.sparse.FloatTensor(i, v, torch.Size(shape)).to_dense()
def train_mlp(self, x_train: 'torch.Tensor', x_val: 'torch.Tensor',
x_test: 'torch.Tensor', y_train: 'torch.Tensor', y_val:
'torch.Tensor', y_test: 'torch.Tensor', hparams: 'dict'):
lr = hparams['lr']
epochs = hparams['epochs']
batch_size = hparams['batch_size']
patience = hparams['patience']
optimizer = optim.Adam(self.parameters(), lr=lr)
criterion = nn.CrossEntropyLoss()
best_acc = np.NINF
trace_train = []
trace_val = []
for epoch in range(epochs):
running_train_loss = 0.0
running_train_acc = 0.0
None
for i in tqdm(range(0, x_train.shape[0], batch_size)):
batch = x_train[i:i + batch_size]
label = y_train[i:i + batch_size]
output = self.forward(batch)
loss = criterion(output, label)
predictions = output.argmax(axis=1)
running_train_acc += (predictions == label).sum()
optimizer.zero_grad()
loss.backward()
running_train_loss += loss.item()
optimizer.step()
running_val_loss = 0.0
running_val_acc = 0.0
for i in tqdm(range(0, x_val.shape[0], batch_size)):
batch = x_val[i:i + batch_size]
label = y_val[i:i + batch_size]
output = self.forward(batch)
predictions = output.argmax(axis=1)
running_val_acc += (predictions == label).sum()
loss = criterion(output, label)
running_val_loss += loss.item()
None
trace_train.append(running_train_loss)
trace_val.append(running_val_loss)
if running_val_acc > best_acc:
best_acc = running_val_acc
best_epoch = epoch
best_state = {key: value.cpu() for key, value in self.
state_dict().items()}
elif epoch >= best_epoch + patience:
break
self.load_state_dict(best_state)
torch.save(best_state, 'model.pt')
predictions = self.forward(x_test).argmax(axis=1)
(predictions == y_test).sum()
None
None
return trace_train, trace_val
def forward(self, input_0):
primals_1 = self.mlp.linear1.weight
primals_2 = self.mlp.linear1.bias
primals_4 = self.mlp.linear2.weight
primals_5 = self.mlp.linear2.bias
primals_6 = self.mlp.linear3.weight
primals_7 = self.mlp.linear3.bias
primals_3 = input_0
output = call([primals_1, primals_2, primals_3, primals_4,
primals_5, primals_6, primals_7])
return output[0]
|
andreasbinder/Stochastic-Graph-assisted-Genre-Classification
|
MLP
| false | 1,435 |
[
"MIT"
] | 0 |
78752716030466f02424dcf1cbe5a66d756a13c4
|
https://github.com/andreasbinder/Stochastic-Graph-assisted-Genre-Classification/tree/78752716030466f02424dcf1cbe5a66d756a13c4
|
MyBatchNorm
|
# AOT ID: ['0_forward']
from ctypes import c_void_p, c_long, c_int
import torch
import math
import random
import os
import tempfile
from math import inf, nan
from torch._inductor.hooks import run_intermediate_hooks
from torch._inductor.utils import maybe_profile
from torch._inductor.codegen.memory_planning import _align as align
from torch import device, empty_strided
from torch._inductor.async_compile import AsyncCompile
from torch._inductor.select_algorithm import extern_kernels
from torch._inductor.codegen.multi_kernel import MultiKernelCall
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
aten = torch.ops.aten
inductor_ops = torch.ops.inductor
_quantized = torch.ops._quantized
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
alloc_from_pool = torch.ops.inductor._alloc_from_pool
async_compile = AsyncCompile()
# kernel path: runs/run_shard_7/inductor_cache/zm/czmag3kfjhprfl74ex2gtrbasibb5zez6geq7q2q34kdf6ae4lps.py
# Topologically Sorted Source Nodes: [var_mean, add, sqrt], Original ATen: [aten.var_mean, aten.add, aten.sqrt]
# Source node to ATen node mapping:
# add => add
# sqrt => sqrt
# var_mean => var_mean
# Graph fragment:
# %var_mean : [num_users=2] = call_function[target=torch.ops.aten.var_mean.correction](args = (%primals_1, [0]), kwargs = {correction: 1})
# %add : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%getitem, 1e-05), kwargs = {})
# %sqrt : [num_users=1] = call_function[target=torch.ops.aten.sqrt.default](args = (%add,), kwargs = {})
triton_poi_fused_add_sqrt_var_mean_0 = async_compile.triton('triton_poi_fused_add_sqrt_var_mean_0', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[64],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_add_sqrt_var_mean_0', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 4, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_add_sqrt_var_mean_0(in_ptr0, out_ptr0, out_ptr1, xnumel, XBLOCK : tl.constexpr):
xnumel = 64
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex
tmp0 = tl.load(in_ptr0 + (x0), xmask)
tmp1 = tl.load(in_ptr0 + (64 + x0), xmask)
tmp3 = tl.load(in_ptr0 + (128 + x0), xmask)
tmp5 = tl.load(in_ptr0 + (192 + x0), xmask)
tmp2 = tmp0 + tmp1
tmp4 = tmp2 + tmp3
tmp6 = tmp4 + tmp5
tmp7 = 4.0
tmp8 = tmp6 / tmp7
tmp9 = tmp0 - tmp8
tmp10 = tmp9 * tmp9
tmp11 = tmp1 - tmp8
tmp12 = tmp11 * tmp11
tmp13 = tmp10 + tmp12
tmp14 = tmp3 - tmp8
tmp15 = tmp14 * tmp14
tmp16 = tmp13 + tmp15
tmp17 = tmp5 - tmp8
tmp18 = tmp17 * tmp17
tmp19 = tmp16 + tmp18
tmp20 = 3.0
tmp21 = tmp19 / tmp20
tmp22 = 1e-05
tmp23 = tmp21 + tmp22
tmp24 = libdevice.sqrt(tmp23)
tl.store(out_ptr0 + (x0), tmp8, xmask)
tl.store(out_ptr1 + (x0), tmp24, xmask)
''', device_str='cuda')
# kernel path: runs/run_shard_7/inductor_cache/ub/cubnh6zgxyxindhc5zulhxvecgwfwmjretrkc27g3y2xg56gt47o.py
# Topologically Sorted Source Nodes: [var_mean, sub, add, sqrt, zed_prime, mul, zed_norm], Original ATen: [aten.var_mean, aten.sub, aten.add, aten.sqrt, aten.div, aten.mul]
# Source node to ATen node mapping:
# add => add
# mul => mul
# sqrt => sqrt
# sub => sub
# var_mean => var_mean
# zed_norm => add_1
# zed_prime => div
# Graph fragment:
# %var_mean : [num_users=2] = call_function[target=torch.ops.aten.var_mean.correction](args = (%primals_1, [0]), kwargs = {correction: 1})
# %sub : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (%primals_1, %getitem_1), kwargs = {})
# %add : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%getitem, 1e-05), kwargs = {})
# %sqrt : [num_users=1] = call_function[target=torch.ops.aten.sqrt.default](args = (%add,), kwargs = {})
# %div : [num_users=1] = call_function[target=torch.ops.aten.div.Tensor](args = (%sub, %sqrt), kwargs = {})
# %mul : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%primals_2, %div), kwargs = {})
# %add_1 : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%mul, %primals_3), kwargs = {})
triton_poi_fused_add_div_mul_sqrt_sub_var_mean_1 = async_compile.triton('triton_poi_fused_add_div_mul_sqrt_sub_var_mean_1', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[256],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: '*fp32', 4: '*fp32', 5: '*fp32', 6: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3, 4, 5, 6), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_add_div_mul_sqrt_sub_var_mean_1', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 5, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_add_div_mul_sqrt_sub_var_mean_1(in_ptr0, in_ptr1, in_ptr2, in_ptr3, in_ptr4, out_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 256
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex % 4
x3 = xindex
x4 = xindex % 64
tmp0 = tl.load(in_ptr0 + (x0), xmask, eviction_policy='evict_last')
tmp1 = tl.load(in_ptr1 + (x3), xmask)
tmp2 = tl.load(in_ptr2 + (x4), xmask, eviction_policy='evict_last')
tmp4 = tl.load(in_ptr3 + (x4), xmask, eviction_policy='evict_last')
tmp7 = tl.load(in_ptr4 + (x0), xmask, eviction_policy='evict_last')
tmp3 = tmp1 - tmp2
tmp5 = tmp3 / tmp4
tmp6 = tmp0 * tmp5
tmp8 = tmp6 + tmp7
tl.store(out_ptr0 + (x3), tmp8, xmask)
''', device_str='cuda')
async_compile.wait(globals())
del async_compile
def call(args):
primals_1, primals_2, primals_3 = args
args.clear()
assert_size_stride(primals_1, (4, 4, 4, 4), (64, 16, 4, 1))
assert_size_stride(primals_2, (4, ), (1, ))
assert_size_stride(primals_3, (4, ), (1, ))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((1, 4, 4, 4), (64, 16, 4, 1), torch.float32)
buf1 = empty_strided_cuda((4, 4, 4), (16, 4, 1), torch.float32)
# Topologically Sorted Source Nodes: [var_mean, add, sqrt], Original ATen: [aten.var_mean, aten.add, aten.sqrt]
stream0 = get_raw_stream(0)
triton_poi_fused_add_sqrt_var_mean_0.run(primals_1, buf0, buf1, 64, grid=grid(64), stream=stream0)
buf2 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32)
# Topologically Sorted Source Nodes: [var_mean, sub, add, sqrt, zed_prime, mul, zed_norm], Original ATen: [aten.var_mean, aten.sub, aten.add, aten.sqrt, aten.div, aten.mul]
triton_poi_fused_add_div_mul_sqrt_sub_var_mean_1.run(primals_2, primals_1, buf0, buf1, primals_3, buf2, 256, grid=grid(256), stream=stream0)
del buf0
del buf1
del primals_2
del primals_3
return (buf2, primals_1, )
def benchmark_compiled_module(times=10, repeat=10):
from torch._dynamo.testing import rand_strided
from torch._inductor.utils import print_performance
primals_1 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32)
primals_2 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32)
primals_3 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32)
fn = lambda: call([primals_1, primals_2, primals_3])
return print_performance(fn, times=times, repeat=repeat)
if __name__ == "__main__":
from torch._inductor.wrapper_benchmark import compiled_module_main
compiled_module_main('None', benchmark_compiled_module)
|
import torch
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
from torch._inductor.runtime.triton_helpers import libdevice
import torch.nn as nn
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
@triton.jit
def triton_poi_fused_add_sqrt_var_mean_0(in_ptr0, out_ptr0, out_ptr1,
xnumel, XBLOCK: tl.constexpr):
xnumel = 64
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex
tmp0 = tl.load(in_ptr0 + x0, xmask)
tmp1 = tl.load(in_ptr0 + (64 + x0), xmask)
tmp3 = tl.load(in_ptr0 + (128 + x0), xmask)
tmp5 = tl.load(in_ptr0 + (192 + x0), xmask)
tmp2 = tmp0 + tmp1
tmp4 = tmp2 + tmp3
tmp6 = tmp4 + tmp5
tmp7 = 4.0
tmp8 = tmp6 / tmp7
tmp9 = tmp0 - tmp8
tmp10 = tmp9 * tmp9
tmp11 = tmp1 - tmp8
tmp12 = tmp11 * tmp11
tmp13 = tmp10 + tmp12
tmp14 = tmp3 - tmp8
tmp15 = tmp14 * tmp14
tmp16 = tmp13 + tmp15
tmp17 = tmp5 - tmp8
tmp18 = tmp17 * tmp17
tmp19 = tmp16 + tmp18
tmp20 = 3.0
tmp21 = tmp19 / tmp20
tmp22 = 1e-05
tmp23 = tmp21 + tmp22
tmp24 = libdevice.sqrt(tmp23)
tl.store(out_ptr0 + x0, tmp8, xmask)
tl.store(out_ptr1 + x0, tmp24, xmask)
@triton.jit
def triton_poi_fused_add_div_mul_sqrt_sub_var_mean_1(in_ptr0, in_ptr1,
in_ptr2, in_ptr3, in_ptr4, out_ptr0, xnumel, XBLOCK: tl.constexpr):
xnumel = 256
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex % 4
x3 = xindex
x4 = xindex % 64
tmp0 = tl.load(in_ptr0 + x0, xmask, eviction_policy='evict_last')
tmp1 = tl.load(in_ptr1 + x3, xmask)
tmp2 = tl.load(in_ptr2 + x4, xmask, eviction_policy='evict_last')
tmp4 = tl.load(in_ptr3 + x4, xmask, eviction_policy='evict_last')
tmp7 = tl.load(in_ptr4 + x0, xmask, eviction_policy='evict_last')
tmp3 = tmp1 - tmp2
tmp5 = tmp3 / tmp4
tmp6 = tmp0 * tmp5
tmp8 = tmp6 + tmp7
tl.store(out_ptr0 + x3, tmp8, xmask)
def call(args):
primals_1, primals_2, primals_3 = args
args.clear()
assert_size_stride(primals_1, (4, 4, 4, 4), (64, 16, 4, 1))
assert_size_stride(primals_2, (4,), (1,))
assert_size_stride(primals_3, (4,), (1,))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((1, 4, 4, 4), (64, 16, 4, 1), torch.float32)
buf1 = empty_strided_cuda((4, 4, 4), (16, 4, 1), torch.float32)
get_raw_stream(0)
triton_poi_fused_add_sqrt_var_mean_0[grid(64)](primals_1, buf0,
buf1, 64, XBLOCK=64, num_warps=1, num_stages=1)
buf2 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32)
triton_poi_fused_add_div_mul_sqrt_sub_var_mean_1[grid(256)](primals_2,
primals_1, buf0, buf1, primals_3, buf2, 256, XBLOCK=256,
num_warps=4, num_stages=1)
del buf0
del buf1
del primals_2
del primals_3
return buf2, primals_1
class MyBatchNormNew(nn.Module):
def __init__(self, size, epsilon=1e-05):
super(MyBatchNormNew, self).__init__()
self.gamma = nn.Parameter(torch.ones(size))
self.beta = nn.Parameter(torch.zeros(size))
self.epsilon = epsilon
def forward(self, input_0):
primals_2 = self.gamma
primals_3 = self.beta
primals_1 = input_0
output = call([primals_1, primals_2, primals_3])
return output[0]
|
shohamda/deep-learning
|
MyBatchNorm
| false | 4,319 |
[
"MIT"
] | 0 |
160296c403cefd5351ffe5161e07789c22637284
|
https://github.com/shohamda/deep-learning/tree/160296c403cefd5351ffe5161e07789c22637284
|
MySimpleNet
|
# AOT ID: ['0_forward']
from ctypes import c_void_p, c_long, c_int
import torch
import math
import random
import os
import tempfile
from math import inf, nan
from torch._inductor.hooks import run_intermediate_hooks
from torch._inductor.utils import maybe_profile
from torch._inductor.codegen.memory_planning import _align as align
from torch import device, empty_strided
from torch._inductor.async_compile import AsyncCompile
from torch._inductor.select_algorithm import extern_kernels
from torch._inductor.codegen.multi_kernel import MultiKernelCall
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
aten = torch.ops.aten
inductor_ops = torch.ops.inductor
_quantized = torch.ops._quantized
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
alloc_from_pool = torch.ops.inductor._alloc_from_pool
async_compile = AsyncCompile()
# kernel path: runs/run_shard_7/inductor_cache/nu/cnuuaznpt4szfn74bn46qfjkdypvlkfa5x44ywjpperdjt2a66rj.py
# Topologically Sorted Source Nodes: [X], Original ATen: [aten.relu, aten.threshold_backward]
# Source node to ATen node mapping:
# X => relu
# Graph fragment:
# %relu : [num_users=2] = call_function[target=torch.ops.aten.relu.default](args = (%view_1,), kwargs = {})
# %le_1 : [num_users=1] = call_function[target=torch.ops.aten.le.Scalar](args = (%relu, 0), kwargs = {})
triton_poi_fused_relu_threshold_backward_0 = async_compile.triton('triton_poi_fused_relu_threshold_backward_0', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[1024],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*i1', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_relu_threshold_backward_0', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_relu_threshold_backward_0(in_out_ptr0, in_ptr0, out_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 640
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x2 = xindex
x0 = xindex % 10
tmp0 = tl.load(in_out_ptr0 + (x2), xmask)
tmp1 = tl.load(in_ptr0 + (x0), xmask, eviction_policy='evict_last')
tmp2 = tmp0 + tmp1
tmp3 = tl.full([1], 0, tl.int32)
tmp4 = triton_helpers.maximum(tmp3, tmp2)
tmp5 = 0.0
tmp6 = tmp4 <= tmp5
tl.store(in_out_ptr0 + (x2), tmp4, xmask)
tl.store(out_ptr0 + (x2), tmp6, xmask)
''', device_str='cuda')
# kernel path: runs/run_shard_7/inductor_cache/mp/cmpdsbnpgfsr7uwb7env74mojrq3nlzieqot6rnnkfpbzkkensbi.py
# Topologically Sorted Source Nodes: [X_2], Original ATen: [aten.relu, aten.threshold_backward]
# Source node to ATen node mapping:
# X_2 => relu_1
# Graph fragment:
# %relu_1 : [num_users=2] = call_function[target=torch.ops.aten.relu.default](args = (%view_3,), kwargs = {})
# %le : [num_users=1] = call_function[target=torch.ops.aten.le.Scalar](args = (%relu_1, 0), kwargs = {})
triton_poi_fused_relu_threshold_backward_1 = async_compile.triton('triton_poi_fused_relu_threshold_backward_1', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[256],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*i1', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_relu_threshold_backward_1', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_relu_threshold_backward_1(in_out_ptr0, in_ptr0, out_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 256
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x2 = xindex
x0 = xindex % 4
tmp0 = tl.load(in_out_ptr0 + (x2), xmask)
tmp1 = tl.load(in_ptr0 + (x0), xmask, eviction_policy='evict_last')
tmp2 = tmp0 + tmp1
tmp3 = tl.full([1], 0, tl.int32)
tmp4 = triton_helpers.maximum(tmp3, tmp2)
tmp5 = 0.0
tmp6 = tmp4 <= tmp5
tl.store(in_out_ptr0 + (x2), tmp4, xmask)
tl.store(out_ptr0 + (x2), tmp6, xmask)
''', device_str='cuda')
# kernel path: runs/run_shard_7/inductor_cache/z5/cz5xs7y3thsep5yn6qoths757rduuevog6mtea3nqr4nwnh2olnx.py
# Topologically Sorted Source Nodes: [X_3], Original ATen: [aten._softmax]
# Source node to ATen node mapping:
# X_3 => amax, exp, sub
# Graph fragment:
# %amax : [num_users=1] = call_function[target=torch.ops.aten.amax.default](args = (%view_5, [1], True), kwargs = {})
# %sub : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (%view_5, %amax), kwargs = {})
# %exp : [num_users=2] = call_function[target=torch.ops.aten.exp.default](args = (%sub,), kwargs = {})
triton_poi_fused__softmax_2 = async_compile.triton('triton_poi_fused__softmax_2', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[128],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused__softmax_2', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 5, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused__softmax_2(in_ptr0, out_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 128
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x3 = xindex
x0 = xindex % 8
x2 = (xindex // 32)
tmp0 = tl.load(in_ptr0 + (x3), xmask)
tmp1 = tl.load(in_ptr0 + (x0 + (32*x2)), xmask, eviction_policy='evict_last')
tmp2 = tl.load(in_ptr0 + (8 + x0 + (32*x2)), xmask, eviction_policy='evict_last')
tmp4 = tl.load(in_ptr0 + (16 + x0 + (32*x2)), xmask, eviction_policy='evict_last')
tmp6 = tl.load(in_ptr0 + (24 + x0 + (32*x2)), xmask, eviction_policy='evict_last')
tmp3 = triton_helpers.maximum(tmp1, tmp2)
tmp5 = triton_helpers.maximum(tmp3, tmp4)
tmp7 = triton_helpers.maximum(tmp5, tmp6)
tmp8 = tmp0 - tmp7
tmp9 = tl_math.exp(tmp8)
tl.store(out_ptr0 + (x3), tmp9, xmask)
''', device_str='cuda')
# kernel path: runs/run_shard_7/inductor_cache/nv/cnvo7i3x3dm4mdtrcmoddo2p4odl6hgahimnieftjxkqwe7ehw54.py
# Topologically Sorted Source Nodes: [X_3], Original ATen: [aten._softmax]
# Source node to ATen node mapping:
# X_3 => div, sum_1
# Graph fragment:
# %sum_1 : [num_users=1] = call_function[target=torch.ops.aten.sum.dim_IntList](args = (%exp, [1], True), kwargs = {})
# %div : [num_users=1] = call_function[target=torch.ops.aten.div.Tensor](args = (%exp, %sum_1), kwargs = {})
triton_poi_fused__softmax_3 = async_compile.triton('triton_poi_fused__softmax_3', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[128],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused__softmax_3', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 5, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused__softmax_3(in_ptr0, out_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 128
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x3 = xindex
x0 = xindex % 8
x2 = (xindex // 32)
tmp0 = tl.load(in_ptr0 + (x3), xmask)
tmp1 = tl.load(in_ptr0 + (x0 + (32*x2)), xmask, eviction_policy='evict_last')
tmp2 = tl.load(in_ptr0 + (8 + x0 + (32*x2)), xmask, eviction_policy='evict_last')
tmp4 = tl.load(in_ptr0 + (16 + x0 + (32*x2)), xmask, eviction_policy='evict_last')
tmp6 = tl.load(in_ptr0 + (24 + x0 + (32*x2)), xmask, eviction_policy='evict_last')
tmp3 = tmp1 + tmp2
tmp5 = tmp3 + tmp4
tmp7 = tmp5 + tmp6
tmp8 = tmp0 / tmp7
tl.store(out_ptr0 + (x3), tmp8, xmask)
''', device_str='cuda')
async_compile.wait(globals())
del async_compile
def call(args):
primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7 = args
args.clear()
assert_size_stride(primals_1, (10, 4), (4, 1))
assert_size_stride(primals_2, (10, ), (1, ))
assert_size_stride(primals_3, (4, 4, 4, 4), (64, 16, 4, 1))
assert_size_stride(primals_4, (4, 10), (10, 1))
assert_size_stride(primals_5, (4, ), (1, ))
assert_size_stride(primals_6, (2, 4), (4, 1))
assert_size_stride(primals_7, (2, ), (1, ))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((64, 10), (10, 1), torch.float32)
# Topologically Sorted Source Nodes: [], Original ATen: []
extern_kernels.mm(reinterpret_tensor(primals_3, (64, 4), (4, 1), 0), reinterpret_tensor(primals_1, (4, 10), (1, 4), 0), out=buf0)
del primals_1
buf1 = reinterpret_tensor(buf0, (4, 4, 4, 10), (160, 40, 10, 1), 0); del buf0 # reuse
buf8 = empty_strided_cuda((4, 4, 4, 10), (160, 40, 10, 1), torch.bool)
# Topologically Sorted Source Nodes: [X], Original ATen: [aten.relu, aten.threshold_backward]
stream0 = get_raw_stream(0)
triton_poi_fused_relu_threshold_backward_0.run(buf1, primals_2, buf8, 640, grid=grid(640), stream=stream0)
del primals_2
buf2 = empty_strided_cuda((64, 4), (4, 1), torch.float32)
# Topologically Sorted Source Nodes: [], Original ATen: []
extern_kernels.mm(reinterpret_tensor(buf1, (64, 10), (10, 1), 0), reinterpret_tensor(primals_4, (10, 4), (1, 10), 0), out=buf2)
buf3 = reinterpret_tensor(buf2, (4, 4, 4, 4), (64, 16, 4, 1), 0); del buf2 # reuse
buf7 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.bool)
# Topologically Sorted Source Nodes: [X_2], Original ATen: [aten.relu, aten.threshold_backward]
triton_poi_fused_relu_threshold_backward_1.run(buf3, primals_5, buf7, 256, grid=grid(256), stream=stream0)
del primals_5
buf4 = empty_strided_cuda((64, 2), (2, 1), torch.float32)
# Topologically Sorted Source Nodes: [linear_2], Original ATen: [aten.addmm]
extern_kernels.addmm(primals_7, reinterpret_tensor(buf3, (64, 4), (4, 1), 0), reinterpret_tensor(primals_6, (4, 2), (1, 4), 0), alpha=1, beta=1, out=buf4)
del primals_7
buf5 = empty_strided_cuda((4, 4, 4, 2), (32, 8, 2, 1), torch.float32)
# Topologically Sorted Source Nodes: [X_3], Original ATen: [aten._softmax]
triton_poi_fused__softmax_2.run(buf4, buf5, 128, grid=grid(128), stream=stream0)
buf6 = reinterpret_tensor(buf4, (4, 4, 4, 2), (32, 8, 2, 1), 0); del buf4 # reuse
# Topologically Sorted Source Nodes: [X_3], Original ATen: [aten._softmax]
triton_poi_fused__softmax_3.run(buf5, buf6, 128, grid=grid(128), stream=stream0)
del buf5
return (buf6, reinterpret_tensor(primals_3, (64, 4), (4, 1), 0), reinterpret_tensor(buf1, (64, 10), (10, 1), 0), reinterpret_tensor(buf3, (64, 4), (4, 1), 0), buf6, primals_6, buf7, primals_4, buf8, )
def benchmark_compiled_module(times=10, repeat=10):
from torch._dynamo.testing import rand_strided
from torch._inductor.utils import print_performance
primals_1 = rand_strided((10, 4), (4, 1), device='cuda:0', dtype=torch.float32)
primals_2 = rand_strided((10, ), (1, ), device='cuda:0', dtype=torch.float32)
primals_3 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32)
primals_4 = rand_strided((4, 10), (10, 1), device='cuda:0', dtype=torch.float32)
primals_5 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32)
primals_6 = rand_strided((2, 4), (4, 1), device='cuda:0', dtype=torch.float32)
primals_7 = rand_strided((2, ), (1, ), device='cuda:0', dtype=torch.float32)
fn = lambda: call([primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7])
return print_performance(fn, times=times, repeat=repeat)
if __name__ == "__main__":
from torch._inductor.wrapper_benchmark import compiled_module_main
compiled_module_main('None', benchmark_compiled_module)
|
import torch
from torch._inductor.select_algorithm import extern_kernels
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
from torch._inductor.runtime import triton_helpers
from torch._inductor.runtime.triton_helpers import math as tl_math
import torch.nn.functional as F
from torch import nn
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
@triton.jit
def triton_poi_fused_relu_threshold_backward_0(in_out_ptr0, in_ptr0,
out_ptr0, xnumel, XBLOCK: tl.constexpr):
xnumel = 640
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x2 = xindex
x0 = xindex % 10
tmp0 = tl.load(in_out_ptr0 + x2, xmask)
tmp1 = tl.load(in_ptr0 + x0, xmask, eviction_policy='evict_last')
tmp2 = tmp0 + tmp1
tmp3 = tl.full([1], 0, tl.int32)
tmp4 = triton_helpers.maximum(tmp3, tmp2)
tmp5 = 0.0
tmp6 = tmp4 <= tmp5
tl.store(in_out_ptr0 + x2, tmp4, xmask)
tl.store(out_ptr0 + x2, tmp6, xmask)
@triton.jit
def triton_poi_fused_relu_threshold_backward_1(in_out_ptr0, in_ptr0,
out_ptr0, xnumel, XBLOCK: tl.constexpr):
xnumel = 256
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x2 = xindex
x0 = xindex % 4
tmp0 = tl.load(in_out_ptr0 + x2, xmask)
tmp1 = tl.load(in_ptr0 + x0, xmask, eviction_policy='evict_last')
tmp2 = tmp0 + tmp1
tmp3 = tl.full([1], 0, tl.int32)
tmp4 = triton_helpers.maximum(tmp3, tmp2)
tmp5 = 0.0
tmp6 = tmp4 <= tmp5
tl.store(in_out_ptr0 + x2, tmp4, xmask)
tl.store(out_ptr0 + x2, tmp6, xmask)
@triton.jit
def triton_poi_fused__softmax_2(in_ptr0, out_ptr0, xnumel, XBLOCK: tl.constexpr
):
xnumel = 128
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x3 = xindex
x0 = xindex % 8
x2 = xindex // 32
tmp0 = tl.load(in_ptr0 + x3, xmask)
tmp1 = tl.load(in_ptr0 + (x0 + 32 * x2), xmask, eviction_policy=
'evict_last')
tmp2 = tl.load(in_ptr0 + (8 + x0 + 32 * x2), xmask, eviction_policy=
'evict_last')
tmp4 = tl.load(in_ptr0 + (16 + x0 + 32 * x2), xmask, eviction_policy=
'evict_last')
tmp6 = tl.load(in_ptr0 + (24 + x0 + 32 * x2), xmask, eviction_policy=
'evict_last')
tmp3 = triton_helpers.maximum(tmp1, tmp2)
tmp5 = triton_helpers.maximum(tmp3, tmp4)
tmp7 = triton_helpers.maximum(tmp5, tmp6)
tmp8 = tmp0 - tmp7
tmp9 = tl_math.exp(tmp8)
tl.store(out_ptr0 + x3, tmp9, xmask)
@triton.jit
def triton_poi_fused__softmax_3(in_ptr0, out_ptr0, xnumel, XBLOCK: tl.constexpr
):
xnumel = 128
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x3 = xindex
x0 = xindex % 8
x2 = xindex // 32
tmp0 = tl.load(in_ptr0 + x3, xmask)
tmp1 = tl.load(in_ptr0 + (x0 + 32 * x2), xmask, eviction_policy=
'evict_last')
tmp2 = tl.load(in_ptr0 + (8 + x0 + 32 * x2), xmask, eviction_policy=
'evict_last')
tmp4 = tl.load(in_ptr0 + (16 + x0 + 32 * x2), xmask, eviction_policy=
'evict_last')
tmp6 = tl.load(in_ptr0 + (24 + x0 + 32 * x2), xmask, eviction_policy=
'evict_last')
tmp3 = tmp1 + tmp2
tmp5 = tmp3 + tmp4
tmp7 = tmp5 + tmp6
tmp8 = tmp0 / tmp7
tl.store(out_ptr0 + x3, tmp8, xmask)
def call(args):
(primals_1, primals_2, primals_3, primals_4, primals_5, primals_6,
primals_7) = args
args.clear()
assert_size_stride(primals_1, (10, 4), (4, 1))
assert_size_stride(primals_2, (10,), (1,))
assert_size_stride(primals_3, (4, 4, 4, 4), (64, 16, 4, 1))
assert_size_stride(primals_4, (4, 10), (10, 1))
assert_size_stride(primals_5, (4,), (1,))
assert_size_stride(primals_6, (2, 4), (4, 1))
assert_size_stride(primals_7, (2,), (1,))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((64, 10), (10, 1), torch.float32)
extern_kernels.mm(reinterpret_tensor(primals_3, (64, 4), (4, 1), 0),
reinterpret_tensor(primals_1, (4, 10), (1, 4), 0), out=buf0)
del primals_1
buf1 = reinterpret_tensor(buf0, (4, 4, 4, 10), (160, 40, 10, 1), 0)
del buf0
buf8 = empty_strided_cuda((4, 4, 4, 10), (160, 40, 10, 1), torch.bool)
get_raw_stream(0)
triton_poi_fused_relu_threshold_backward_0[grid(640)](buf1,
primals_2, buf8, 640, XBLOCK=256, num_warps=4, num_stages=1)
del primals_2
buf2 = empty_strided_cuda((64, 4), (4, 1), torch.float32)
extern_kernels.mm(reinterpret_tensor(buf1, (64, 10), (10, 1), 0),
reinterpret_tensor(primals_4, (10, 4), (1, 10), 0), out=buf2)
buf3 = reinterpret_tensor(buf2, (4, 4, 4, 4), (64, 16, 4, 1), 0)
del buf2
buf7 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.bool)
triton_poi_fused_relu_threshold_backward_1[grid(256)](buf3,
primals_5, buf7, 256, XBLOCK=128, num_warps=4, num_stages=1)
del primals_5
buf4 = empty_strided_cuda((64, 2), (2, 1), torch.float32)
extern_kernels.addmm(primals_7, reinterpret_tensor(buf3, (64, 4), (
4, 1), 0), reinterpret_tensor(primals_6, (4, 2), (1, 4), 0),
alpha=1, beta=1, out=buf4)
del primals_7
buf5 = empty_strided_cuda((4, 4, 4, 2), (32, 8, 2, 1), torch.float32)
triton_poi_fused__softmax_2[grid(128)](buf4, buf5, 128, XBLOCK=128,
num_warps=4, num_stages=1)
buf6 = reinterpret_tensor(buf4, (4, 4, 4, 2), (32, 8, 2, 1), 0)
del buf4
triton_poi_fused__softmax_3[grid(128)](buf5, buf6, 128, XBLOCK=128,
num_warps=4, num_stages=1)
del buf5
return buf6, reinterpret_tensor(primals_3, (64, 4), (4, 1), 0
), reinterpret_tensor(buf1, (64, 10), (10, 1), 0), reinterpret_tensor(
buf3, (64, 4), (4, 1), 0), buf6, primals_6, buf7, primals_4, buf8
class MySimpleNetNew(nn.Module):
"""
Very simple 2-layer net, slightly adapted from the docs:
https://skorch.readthedocs.io/en/stable/user/quickstart.html
"""
def __init__(self, num_in, num_feat, num_hidden=10, nonlin=F.relu):
super(MySimpleNetNew, self).__init__()
self.dense0 = nn.Linear(num_in, num_hidden)
self.nonlin = nonlin
self.dropout = nn.Dropout(0.5)
self.dense1 = nn.Linear(num_hidden, num_feat)
self.output = nn.Linear(num_feat, 2)
def forward(self, input_0):
primals_1 = self.dense0.weight
primals_2 = self.dense0.bias
primals_4 = self.dense1.weight
primals_5 = self.dense1.bias
primals_6 = self.output.weight
primals_7 = self.output.bias
primals_3 = input_0
output = call([primals_1, primals_2, primals_3, primals_4,
primals_5, primals_6, primals_7])
return output[0]
|
samxu0823/anfis-pytorch
|
MySimpleNet
| false | 4,259 |
[
"MIT"
] | 0 |
b4ec3f0e8259963800e9e0a2904a580d1e56cc1c
|
https://github.com/samxu0823/anfis-pytorch/tree/b4ec3f0e8259963800e9e0a2904a580d1e56cc1c
|
GlobalAttention
|
# AOT ID: ['0_forward']
from ctypes import c_void_p, c_long, c_int
import torch
import math
import random
import os
import tempfile
from math import inf, nan
from torch._inductor.hooks import run_intermediate_hooks
from torch._inductor.utils import maybe_profile
from torch._inductor.codegen.memory_planning import _align as align
from torch import device, empty_strided
from torch._inductor.async_compile import AsyncCompile
from torch._inductor.select_algorithm import extern_kernels
from torch._inductor.codegen.multi_kernel import MultiKernelCall
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
aten = torch.ops.aten
inductor_ops = torch.ops.inductor
_quantized = torch.ops._quantized
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
alloc_from_pool = torch.ops.inductor._alloc_from_pool
async_compile = AsyncCompile()
# kernel path: runs/run_shard_0/inductor_cache/r6/cr6neze6yovkog6kjrk5k2db63h47ozkojywfys6karxe7dlumrz.py
# Topologically Sorted Source Nodes: [align_vectors], Original ATen: [aten._softmax]
# Source node to ATen node mapping:
# align_vectors => amax, exp, sub
# Graph fragment:
# %amax : [num_users=1] = call_function[target=torch.ops.aten.amax.default](args = (%view, [1], True), kwargs = {})
# %sub : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (%view, %amax), kwargs = {})
# %exp : [num_users=2] = call_function[target=torch.ops.aten.exp.default](args = (%sub,), kwargs = {})
triton_poi_fused__softmax_0 = async_compile.triton('triton_poi_fused__softmax_0', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[64],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused__softmax_0', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 5, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused__softmax_0(in_ptr0, out_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 64
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x2 = xindex
x1 = (xindex // 4)
tmp0 = tl.load(in_ptr0 + (x2), xmask)
tmp1 = tl.load(in_ptr0 + (4*x1), xmask, eviction_policy='evict_last')
tmp2 = tl.load(in_ptr0 + (1 + (4*x1)), xmask, eviction_policy='evict_last')
tmp4 = tl.load(in_ptr0 + (2 + (4*x1)), xmask, eviction_policy='evict_last')
tmp6 = tl.load(in_ptr0 + (3 + (4*x1)), xmask, eviction_policy='evict_last')
tmp3 = triton_helpers.maximum(tmp1, tmp2)
tmp5 = triton_helpers.maximum(tmp3, tmp4)
tmp7 = triton_helpers.maximum(tmp5, tmp6)
tmp8 = tmp0 - tmp7
tmp9 = tl_math.exp(tmp8)
tl.store(out_ptr0 + (x2), tmp9, xmask)
''', device_str='cuda')
# kernel path: runs/run_shard_0/inductor_cache/kj/ckjtlefzavjukjsytvkak6ek26zmzexpcbnlwelx4k5kascjxlf3.py
# Topologically Sorted Source Nodes: [align_vectors], Original ATen: [aten._softmax]
# Source node to ATen node mapping:
# align_vectors => div, sum_1
# Graph fragment:
# %sum_1 : [num_users=1] = call_function[target=torch.ops.aten.sum.dim_IntList](args = (%exp, [1], True), kwargs = {})
# %div : [num_users=1] = call_function[target=torch.ops.aten.div.Tensor](args = (%exp, %sum_1), kwargs = {})
triton_poi_fused__softmax_1 = async_compile.triton('triton_poi_fused__softmax_1', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[64],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused__softmax_1', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 5, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused__softmax_1(in_ptr0, out_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 64
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x2 = xindex
x1 = (xindex // 4)
tmp0 = tl.load(in_ptr0 + (x2), xmask)
tmp1 = tl.load(in_ptr0 + (4*x1), xmask, eviction_policy='evict_last')
tmp2 = tl.load(in_ptr0 + (1 + (4*x1)), xmask, eviction_policy='evict_last')
tmp4 = tl.load(in_ptr0 + (2 + (4*x1)), xmask, eviction_policy='evict_last')
tmp6 = tl.load(in_ptr0 + (3 + (4*x1)), xmask, eviction_policy='evict_last')
tmp3 = tmp1 + tmp2
tmp5 = tmp3 + tmp4
tmp7 = tmp5 + tmp6
tmp8 = tmp0 / tmp7
tl.store(out_ptr0 + (x2), tmp8, xmask)
''', device_str='cuda')
# kernel path: runs/run_shard_0/inductor_cache/ip/cip3p4ibqio6uu76ccsemd7wjusq5ptlow3dt2zxzouyuz2sqywf.py
# Topologically Sorted Source Nodes: [cat], Original ATen: [aten.cat]
# Source node to ATen node mapping:
# cat => cat
# Graph fragment:
# %cat : [num_users=1] = call_function[target=torch.ops.aten.cat.default](args = ([%bmm_1, %primals_1], 2), kwargs = {})
triton_poi_fused_cat_2 = async_compile.triton('triton_poi_fused_cat_2', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[128],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_cat_2', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_cat_2(in_ptr0, in_ptr1, out_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 128
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex % 8
x1 = (xindex // 8)
x2 = xindex
tmp0 = x0
tmp1 = tl.full([1], 0, tl.int64)
tmp2 = tmp0 >= tmp1
tmp3 = tl.full([1], 4, tl.int64)
tmp4 = tmp0 < tmp3
tmp5 = tl.load(in_ptr0 + ((4*x1) + x0), tmp4 & xmask, eviction_policy='evict_last', other=0.0)
tmp6 = tmp0 >= tmp3
tmp7 = tl.full([1], 8, tl.int64)
tmp8 = tmp0 < tmp7
tmp9 = tl.load(in_ptr1 + ((4*x1) + ((-4) + x0)), tmp6 & xmask, eviction_policy='evict_last', other=0.0)
tmp10 = tl.where(tmp4, tmp5, tmp9)
tl.store(out_ptr0 + (x2), tmp10, xmask)
''', device_str='cuda')
# kernel path: runs/run_shard_0/inductor_cache/f5/cf5pnuv5il7avsmzck3quom7r6zvcfuulsdwpzlv2epzfmcgqgwb.py
# Topologically Sorted Source Nodes: [attn_h_2], Original ATen: [aten.clone]
# Source node to ATen node mapping:
# attn_h_2 => clone
# Graph fragment:
# %clone : [num_users=1] = call_function[target=torch.ops.aten.clone.default](args = (%permute_2,), kwargs = {memory_format: torch.contiguous_format})
triton_poi_fused_clone_3 = async_compile.triton('triton_poi_fused_clone_3', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[64],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_clone_3', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 1, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_clone_3(in_ptr0, out_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 64
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex % 4
x1 = (xindex // 4) % 4
x2 = (xindex // 16)
x3 = xindex
tmp0 = tl.load(in_ptr0 + (x0 + (4*x2) + (16*x1)), xmask)
tmp1 = libdevice.tanh(tmp0)
tl.store(out_ptr0 + (x3), tmp1, xmask)
''', device_str='cuda')
# kernel path: runs/run_shard_0/inductor_cache/u4/cu4fypgfipklcxtitafatnyqdaatx5tws6qfndqotcy4qivcph6d.py
# Topologically Sorted Source Nodes: [align_vectors_2], Original ATen: [aten.clone]
# Source node to ATen node mapping:
# align_vectors_2 => clone_1
# Graph fragment:
# %clone_1 : [num_users=1] = call_function[target=torch.ops.aten.clone.default](args = (%permute_3,), kwargs = {memory_format: torch.contiguous_format})
triton_poi_fused_clone_4 = async_compile.triton('triton_poi_fused_clone_4', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[64],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_clone_4', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 1, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_clone_4(in_ptr0, out_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 64
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex % 4
x1 = (xindex // 4) % 4
x2 = (xindex // 16)
x3 = xindex
tmp0 = tl.load(in_ptr0 + (x0 + (4*x2) + (16*x1)), xmask)
tl.store(out_ptr0 + (x3), tmp0, xmask)
''', device_str='cuda')
async_compile.wait(globals())
del async_compile
def call(args):
primals_1, primals_2, primals_3 = args
args.clear()
assert_size_stride(primals_1, (4, 4, 4), (16, 4, 1))
assert_size_stride(primals_2, (4, 4, 4), (16, 4, 1))
assert_size_stride(primals_3, (4, 8), (8, 1))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((4, 4, 4), (16, 4, 1), torch.float32)
# Topologically Sorted Source Nodes: [align], Original ATen: [aten.bmm]
extern_kernels.bmm(primals_1, reinterpret_tensor(primals_2, (4, 4, 4), (16, 1, 4), 0), out=buf0)
buf1 = empty_strided_cuda((16, 4), (4, 1), torch.float32)
# Topologically Sorted Source Nodes: [align_vectors], Original ATen: [aten._softmax]
stream0 = get_raw_stream(0)
triton_poi_fused__softmax_0.run(buf0, buf1, 64, grid=grid(64), stream=stream0)
buf2 = reinterpret_tensor(buf0, (16, 4), (4, 1), 0); del buf0 # reuse
# Topologically Sorted Source Nodes: [align_vectors], Original ATen: [aten._softmax]
triton_poi_fused__softmax_1.run(buf1, buf2, 64, grid=grid(64), stream=stream0)
buf3 = reinterpret_tensor(buf1, (4, 4, 4), (16, 4, 1), 0); del buf1 # reuse
# Topologically Sorted Source Nodes: [c], Original ATen: [aten.bmm]
extern_kernels.bmm(reinterpret_tensor(buf2, (4, 4, 4), (16, 4, 1), 0), primals_2, out=buf3)
del primals_2
buf4 = empty_strided_cuda((4, 4, 8), (32, 8, 1), torch.float32)
# Topologically Sorted Source Nodes: [cat], Original ATen: [aten.cat]
triton_poi_fused_cat_2.run(buf3, primals_1, buf4, 128, grid=grid(128), stream=stream0)
del primals_1
buf5 = reinterpret_tensor(buf3, (16, 4), (4, 1), 0); del buf3 # reuse
# Topologically Sorted Source Nodes: [linear], Original ATen: [aten.mm]
extern_kernels.mm(reinterpret_tensor(buf4, (16, 8), (8, 1), 0), reinterpret_tensor(primals_3, (8, 4), (1, 8), 0), out=buf5)
del primals_3
buf6 = empty_strided_cuda((4, 4, 4), (16, 4, 1), torch.float32)
# Topologically Sorted Source Nodes: [attn_h_2], Original ATen: [aten.clone]
triton_poi_fused_clone_3.run(buf5, buf6, 64, grid=grid(64), stream=stream0)
buf7 = empty_strided_cuda((4, 4, 4), (16, 4, 1), torch.float32)
# Topologically Sorted Source Nodes: [align_vectors_2], Original ATen: [aten.clone]
triton_poi_fused_clone_4.run(buf2, buf7, 64, grid=grid(64), stream=stream0)
del buf2
return (buf6, buf7, reinterpret_tensor(buf4, (16, 8), (8, 1), 0), buf5, )
def benchmark_compiled_module(times=10, repeat=10):
from torch._dynamo.testing import rand_strided
from torch._inductor.utils import print_performance
primals_1 = rand_strided((4, 4, 4), (16, 4, 1), device='cuda:0', dtype=torch.float32)
primals_2 = rand_strided((4, 4, 4), (16, 4, 1), device='cuda:0', dtype=torch.float32)
primals_3 = rand_strided((4, 8), (8, 1), device='cuda:0', dtype=torch.float32)
fn = lambda: call([primals_1, primals_2, primals_3])
return print_performance(fn, times=times, repeat=repeat)
if __name__ == "__main__":
from torch._inductor.wrapper_benchmark import compiled_module_main
compiled_module_main('None', benchmark_compiled_module)
|
import torch
from torch._inductor.select_algorithm import extern_kernels
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
from torch._inductor.runtime import triton_helpers
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
import torch.nn as nn
import torch.utils.data
import torch.cuda
import torch.optim
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
@triton.jit
def triton_poi_fused__softmax_0(in_ptr0, out_ptr0, xnumel, XBLOCK: tl.constexpr
):
xnumel = 64
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x2 = xindex
x1 = xindex // 4
tmp0 = tl.load(in_ptr0 + x2, xmask)
tmp1 = tl.load(in_ptr0 + 4 * x1, xmask, eviction_policy='evict_last')
tmp2 = tl.load(in_ptr0 + (1 + 4 * x1), xmask, eviction_policy='evict_last')
tmp4 = tl.load(in_ptr0 + (2 + 4 * x1), xmask, eviction_policy='evict_last')
tmp6 = tl.load(in_ptr0 + (3 + 4 * x1), xmask, eviction_policy='evict_last')
tmp3 = triton_helpers.maximum(tmp1, tmp2)
tmp5 = triton_helpers.maximum(tmp3, tmp4)
tmp7 = triton_helpers.maximum(tmp5, tmp6)
tmp8 = tmp0 - tmp7
tmp9 = tl_math.exp(tmp8)
tl.store(out_ptr0 + x2, tmp9, xmask)
@triton.jit
def triton_poi_fused__softmax_1(in_ptr0, out_ptr0, xnumel, XBLOCK: tl.constexpr
):
xnumel = 64
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x2 = xindex
x1 = xindex // 4
tmp0 = tl.load(in_ptr0 + x2, xmask)
tmp1 = tl.load(in_ptr0 + 4 * x1, xmask, eviction_policy='evict_last')
tmp2 = tl.load(in_ptr0 + (1 + 4 * x1), xmask, eviction_policy='evict_last')
tmp4 = tl.load(in_ptr0 + (2 + 4 * x1), xmask, eviction_policy='evict_last')
tmp6 = tl.load(in_ptr0 + (3 + 4 * x1), xmask, eviction_policy='evict_last')
tmp3 = tmp1 + tmp2
tmp5 = tmp3 + tmp4
tmp7 = tmp5 + tmp6
tmp8 = tmp0 / tmp7
tl.store(out_ptr0 + x2, tmp8, xmask)
@triton.jit
def triton_poi_fused_cat_2(in_ptr0, in_ptr1, out_ptr0, xnumel, XBLOCK: tl.
constexpr):
xnumel = 128
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex % 8
x1 = xindex // 8
x2 = xindex
tmp0 = x0
tl.full([1], 0, tl.int64)
tmp3 = tl.full([1], 4, tl.int64)
tmp4 = tmp0 < tmp3
tmp5 = tl.load(in_ptr0 + (4 * x1 + x0), tmp4 & xmask, eviction_policy=
'evict_last', other=0.0)
tmp6 = tmp0 >= tmp3
tl.full([1], 8, tl.int64)
tmp9 = tl.load(in_ptr1 + (4 * x1 + (-4 + x0)), tmp6 & xmask,
eviction_policy='evict_last', other=0.0)
tmp10 = tl.where(tmp4, tmp5, tmp9)
tl.store(out_ptr0 + x2, tmp10, xmask)
@triton.jit
def triton_poi_fused_clone_3(in_ptr0, out_ptr0, xnumel, XBLOCK: tl.constexpr):
xnumel = 64
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex % 4
x1 = xindex // 4 % 4
x2 = xindex // 16
x3 = xindex
tmp0 = tl.load(in_ptr0 + (x0 + 4 * x2 + 16 * x1), xmask)
tmp1 = libdevice.tanh(tmp0)
tl.store(out_ptr0 + x3, tmp1, xmask)
@triton.jit
def triton_poi_fused_clone_4(in_ptr0, out_ptr0, xnumel, XBLOCK: tl.constexpr):
xnumel = 64
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex % 4
x1 = xindex // 4 % 4
x2 = xindex // 16
x3 = xindex
tmp0 = tl.load(in_ptr0 + (x0 + 4 * x2 + 16 * x1), xmask)
tl.store(out_ptr0 + x3, tmp0, xmask)
def call(args):
primals_1, primals_2, primals_3 = args
args.clear()
assert_size_stride(primals_1, (4, 4, 4), (16, 4, 1))
assert_size_stride(primals_2, (4, 4, 4), (16, 4, 1))
assert_size_stride(primals_3, (4, 8), (8, 1))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((4, 4, 4), (16, 4, 1), torch.float32)
extern_kernels.bmm(primals_1, reinterpret_tensor(primals_2, (4, 4,
4), (16, 1, 4), 0), out=buf0)
buf1 = empty_strided_cuda((16, 4), (4, 1), torch.float32)
get_raw_stream(0)
triton_poi_fused__softmax_0[grid(64)](buf0, buf1, 64, XBLOCK=64,
num_warps=1, num_stages=1)
buf2 = reinterpret_tensor(buf0, (16, 4), (4, 1), 0)
del buf0
triton_poi_fused__softmax_1[grid(64)](buf1, buf2, 64, XBLOCK=64,
num_warps=1, num_stages=1)
buf3 = reinterpret_tensor(buf1, (4, 4, 4), (16, 4, 1), 0)
del buf1
extern_kernels.bmm(reinterpret_tensor(buf2, (4, 4, 4), (16, 4, 1),
0), primals_2, out=buf3)
del primals_2
buf4 = empty_strided_cuda((4, 4, 8), (32, 8, 1), torch.float32)
triton_poi_fused_cat_2[grid(128)](buf3, primals_1, buf4, 128,
XBLOCK=128, num_warps=4, num_stages=1)
del primals_1
buf5 = reinterpret_tensor(buf3, (16, 4), (4, 1), 0)
del buf3
extern_kernels.mm(reinterpret_tensor(buf4, (16, 8), (8, 1), 0),
reinterpret_tensor(primals_3, (8, 4), (1, 8), 0), out=buf5)
del primals_3
buf6 = empty_strided_cuda((4, 4, 4), (16, 4, 1), torch.float32)
triton_poi_fused_clone_3[grid(64)](buf5, buf6, 64, XBLOCK=64,
num_warps=1, num_stages=1)
buf7 = empty_strided_cuda((4, 4, 4), (16, 4, 1), torch.float32)
triton_poi_fused_clone_4[grid(64)](buf2, buf7, 64, XBLOCK=64,
num_warps=1, num_stages=1)
del buf2
return buf6, buf7, reinterpret_tensor(buf4, (16, 8), (8, 1), 0), buf5
def aeq(*args):
"""
Assert all arguments have the same value
"""
arguments = (arg for arg in args)
first = next(arguments)
assert all(arg == first for arg in arguments
), 'Not all arguments have the same value: ' + str(args)
class Bottle(nn.Module):
def forward(self, input):
if len(input.size()) <= 2:
return super(Bottle, self).forward(input)
size = input.size()[:2]
out = super(Bottle, self).forward(input.view(size[0] * size[1], -1))
return out.contiguous().view(size[0], size[1], -1)
class BottleLinear(Bottle, nn.Linear):
pass
class GlobalAttentionNew(nn.Module):
"""
Luong Attention.
Global attention takes a matrix and a query vector. It
then computes a parameterized convex combination of the matrix
based on the input query.
H_1 H_2 H_3 ... H_n
q q q q
| | | |
\\ | | /
.....
\\ | /
a
Constructs a unit mapping.
$$(H_1 + H_n, q) => (a)$$
Where H is of `batch x n x dim` and q is of `batch x dim`.
Luong Attention (dot, general):
The full function is
$$ anh(W_2 [(softmax((W_1 q + b_1) H) H), q] + b_2)$$.
* dot: $$score(h_t,{\\overline{h}}_s) = h_t^T{\\overline{h}}_s$$
* general: $$score(h_t,{\\overline{h}}_s) = h_t^T W_a {\\overline{h}}_s$$
Bahdanau Attention (mlp):
$$c = \\sum_{j=1}^{SeqLength}_jh_j$$.
The Alignment-function $$a$$ computes an alignment as:
$$a_j = softmax(v_a^T anh(W_a q + U_a h_j) )$$.
"""
def __init__(self, dim, coverage=False, attn_type='dot'):
super(GlobalAttentionNew, self).__init__()
self.dim = dim
self.attn_type = attn_type
assert self.attn_type in ['dot', 'general', 'mlp'
], 'Please select a valid attention type.'
if self.attn_type == 'general':
self.linear_in = nn.Linear(dim, dim, bias=False)
elif self.attn_type == 'mlp':
self.linear_context = BottleLinear(dim, dim, bias=False)
self.linear_query = nn.Linear(dim, dim, bias=True)
self.v = BottleLinear(dim, 1, bias=False)
out_bias = self.attn_type == 'mlp'
self.linear_out = nn.Linear(dim * 2, dim, bias=out_bias)
self.sm = nn.Softmax()
self.tanh = nn.Tanh()
self.mask = None
if coverage:
self.linear_cover = nn.Linear(1, dim, bias=False)
def applyMask(self, mask):
self.mask = mask
def score(self, h_t, h_s):
"""
h_t (FloatTensor): batch x tgt_len x dim
h_s (FloatTensor): batch x src_len x dim
returns scores (FloatTensor): batch x tgt_len x src_len:
raw attention scores for each src index
"""
src_batch, src_len, src_dim = h_s.size()
tgt_batch, tgt_len, tgt_dim = h_t.size()
aeq(src_batch, tgt_batch)
aeq(src_dim, tgt_dim)
aeq(self.dim, src_dim)
if self.attn_type in ['general', 'dot']:
if self.attn_type == 'general':
h_t_ = h_t.view(tgt_batch * tgt_len, tgt_dim)
h_t_ = self.linear_in(h_t_)
h_t = h_t_.view(tgt_batch, tgt_len, tgt_dim)
h_s_ = h_s.transpose(1, 2)
return torch.bmm(h_t, h_s_)
else:
dim = self.dim
wq = self.linear_query(h_t.view(-1, dim))
wq = wq.view(tgt_batch, tgt_len, 1, dim)
wq = wq.expand(tgt_batch, tgt_len, src_len, dim)
uh = self.linear_context(h_s.contiguous().view(-1, dim))
uh = uh.view(src_batch, 1, src_len, dim)
uh = uh.expand(src_batch, tgt_len, src_len, dim)
wquh = self.tanh(wq + uh)
return self.v(wquh.view(-1, dim)).view(tgt_batch, tgt_len, src_len)
def forward(self, input_0, input_1):
primals_3 = self.linear_out.weight
primals_1 = input_0
primals_2 = input_1
output = call([primals_1, primals_2, primals_3])
return output[0], output[1]
|
Flamexmt/LMA
|
GlobalAttention
| false | 13,715 |
[
"MIT"
] | 321 |
f6fdec2d17a2d7a7733dd5a5745312bad392cdf3
|
https://github.com/Flamexmt/LMA/tree/f6fdec2d17a2d7a7733dd5a5745312bad392cdf3
|
PytorchBinary
|
import torch
import torch.nn as nn
import torch.nn.functional as F
class PytorchBinary(nn.Module):
def __init__(self, num_features):
super(PytorchBinary, self).__init__()
self.layer_1 = nn.Linear(num_features, 256)
self.layer_out = nn.Linear(256, 1)
self.sigmoid = nn.Sigmoid()
def forward(self, x):
x = F.dropout(F.relu(self.layer_1(x)))
x = self.sigmoid(self.layer_out(x))
return x
def get_inputs():
return [torch.rand([4, 4, 4, 4])]
def get_init_inputs():
return [[], {'num_features': 4}]
|
import torch
from torch._inductor.select_algorithm import extern_kernels
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
from torch._inductor.runtime import triton_helpers
import torch.nn as nn
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
@triton.jit
def triton_poi_fused_relu_threshold_backward_0(in_out_ptr0, in_ptr0,
out_ptr0, xnumel, XBLOCK: tl.constexpr):
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
tl.full([XBLOCK], True, tl.int1)
x2 = xindex
x0 = xindex % 256
tmp0 = tl.load(in_out_ptr0 + x2, None)
tmp1 = tl.load(in_ptr0 + x0, None, eviction_policy='evict_last')
tmp2 = tmp0 + tmp1
tmp3 = tl.full([1], 0, tl.int32)
tmp4 = triton_helpers.maximum(tmp3, tmp2)
tmp5 = 0.0
tmp6 = tmp4 <= tmp5
tl.store(in_out_ptr0 + x2, tmp4, None)
tl.store(out_ptr0 + x2, tmp6, None)
@triton.jit
def triton_poi_fused_sigmoid_1(in_out_ptr0, in_ptr0, xnumel, XBLOCK: tl.
constexpr):
xnumel = 64
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex
tmp0 = tl.load(in_out_ptr0 + x0, xmask)
tmp1 = tl.load(in_ptr0 + 0)
tmp2 = tl.broadcast_to(tmp1, [XBLOCK])
tmp3 = tmp0 + tmp2
tmp4 = tl.sigmoid(tmp3)
tl.store(in_out_ptr0 + x0, tmp4, xmask)
def call(args):
primals_1, primals_2, primals_3, primals_4, primals_5 = args
args.clear()
assert_size_stride(primals_1, (256, 4), (4, 1))
assert_size_stride(primals_2, (256,), (1,))
assert_size_stride(primals_3, (4, 4, 4, 4), (64, 16, 4, 1))
assert_size_stride(primals_4, (1, 256), (256, 1))
assert_size_stride(primals_5, (1,), (1,))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((64, 256), (256, 1), torch.float32)
extern_kernels.mm(reinterpret_tensor(primals_3, (64, 4), (4, 1), 0),
reinterpret_tensor(primals_1, (4, 256), (1, 4), 0), out=buf0)
del primals_1
buf1 = reinterpret_tensor(buf0, (4, 4, 4, 256), (4096, 1024, 256, 1), 0
)
del buf0
buf7 = empty_strided_cuda((4, 4, 4, 256), (4096, 1024, 256, 1),
torch.bool)
get_raw_stream(0)
triton_poi_fused_relu_threshold_backward_0[grid(16384)](buf1,
primals_2, buf7, 16384, XBLOCK=256, num_warps=4, num_stages=1)
del primals_2
buf2 = torch.ops.aten.native_dropout.default(buf1, 0.5, True)
del buf1
buf3 = buf2[0]
buf4 = buf2[1]
del buf2
buf5 = empty_strided_cuda((64, 1), (1, 1), torch.float32)
extern_kernels.mm(reinterpret_tensor(buf3, (64, 256), (256, 1), 0),
reinterpret_tensor(primals_4, (256, 1), (1, 256), 0), out=buf5)
buf6 = reinterpret_tensor(buf5, (4, 4, 4, 1), (16, 4, 1, 1), 0)
del buf5
triton_poi_fused_sigmoid_1[grid(64)](buf6, primals_5, 64, XBLOCK=64,
num_warps=1, num_stages=1)
del primals_5
return buf6, reinterpret_tensor(primals_3, (64, 4), (4, 1), 0
), buf4, reinterpret_tensor(buf3, (64, 256), (256, 1), 0
), buf6, primals_4, buf7
class PytorchBinaryNew(nn.Module):
def __init__(self, num_features):
super(PytorchBinaryNew, self).__init__()
self.layer_1 = nn.Linear(num_features, 256)
self.layer_out = nn.Linear(256, 1)
self.sigmoid = nn.Sigmoid()
def forward(self, input_0):
primals_1 = self.layer_1.weight
primals_2 = self.layer_1.bias
primals_4 = self.layer_out.weight
primals_5 = self.layer_out.bias
primals_3 = input_0
output = call([primals_1, primals_2, primals_3, primals_4, primals_5])
return output[0]
|
freescania/advdsi_at2
|
PytorchBinary
| false | 10,150 |
[
"MIT"
] | 0 |
13fa0b8beaeccc28975aea40ee5a1db3dd3e33be
|
https://github.com/freescania/advdsi_at2/tree/13fa0b8beaeccc28975aea40ee5a1db3dd3e33be
|
LearnedUpsampling1d
|
# AOT ID: ['0_forward']
from ctypes import c_void_p, c_long, c_int
import torch
import math
import random
import os
import tempfile
from math import inf, nan
from torch._inductor.hooks import run_intermediate_hooks
from torch._inductor.utils import maybe_profile
from torch._inductor.codegen.memory_planning import _align as align
from torch import device, empty_strided
from torch._inductor.async_compile import AsyncCompile
from torch._inductor.select_algorithm import extern_kernels
from torch._inductor.codegen.multi_kernel import MultiKernelCall
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
aten = torch.ops.aten
inductor_ops = torch.ops.inductor
_quantized = torch.ops._quantized
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
alloc_from_pool = torch.ops.inductor._alloc_from_pool
async_compile = AsyncCompile()
# kernel path: runs/run_shard_0/inductor_cache/yq/cyq4wjugvjvikmffahqz4pku6bhacbiyag4qtgzuj5w5mlbrlq42.py
# Topologically Sorted Source Nodes: [add], Original ATen: [aten.add]
# Source node to ATen node mapping:
# add => add
# Graph fragment:
# %add : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%convolution, %view), kwargs = {})
triton_poi_fused_add_0 = async_compile.triton('triton_poi_fused_add_0', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[256],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_add_0', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_add_0(in_out_ptr0, in_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 256
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x3 = xindex
x0 = xindex % 16
x1 = (xindex // 16) % 4
tmp0 = tl.load(in_out_ptr0 + (x3), xmask)
tmp1 = tl.load(in_ptr0 + ((4*x1) + (x0 % 4)), xmask, eviction_policy='evict_last')
tmp2 = tmp0 + tmp1
tl.store(in_out_ptr0 + (x3), tmp2, xmask)
''', device_str='cuda')
async_compile.wait(globals())
del async_compile
def call(args):
primals_1, primals_2, primals_3 = args
args.clear()
assert_size_stride(primals_1, (4, 4, 4), (16, 4, 1))
assert_size_stride(primals_2, (4, 4), (4, 1))
assert_size_stride(primals_3, (4, 4, 4), (16, 4, 1))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
# Topologically Sorted Source Nodes: [conv_transpose1d], Original ATen: [aten.convolution]
buf0 = extern_kernels.convolution(primals_1, primals_3, stride=(4,), padding=(0,), dilation=(1,), transposed=True, output_padding=(0,), groups=1, bias=None)
assert_size_stride(buf0, (4, 4, 16), (64, 16, 1))
buf1 = buf0; del buf0 # reuse
# Topologically Sorted Source Nodes: [add], Original ATen: [aten.add]
stream0 = get_raw_stream(0)
triton_poi_fused_add_0.run(buf1, primals_2, 256, grid=grid(256), stream=stream0)
del primals_2
return (buf1, primals_1, primals_3, )
def benchmark_compiled_module(times=10, repeat=10):
from torch._dynamo.testing import rand_strided
from torch._inductor.utils import print_performance
primals_1 = rand_strided((4, 4, 4), (16, 4, 1), device='cuda:0', dtype=torch.float32)
primals_2 = rand_strided((4, 4), (4, 1), device='cuda:0', dtype=torch.float32)
primals_3 = rand_strided((4, 4, 4), (16, 4, 1), device='cuda:0', dtype=torch.float32)
fn = lambda: call([primals_1, primals_2, primals_3])
return print_performance(fn, times=times, repeat=repeat)
if __name__ == "__main__":
from torch._inductor.wrapper_benchmark import compiled_module_main
compiled_module_main('None', benchmark_compiled_module)
|
import torch
from torch._inductor.select_algorithm import extern_kernels
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
from torch import nn
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
@triton.jit
def triton_poi_fused_add_0(in_out_ptr0, in_ptr0, xnumel, XBLOCK: tl.constexpr):
xnumel = 256
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x3 = xindex
x0 = xindex % 16
x1 = xindex // 16 % 4
tmp0 = tl.load(in_out_ptr0 + x3, xmask)
tmp1 = tl.load(in_ptr0 + (4 * x1 + x0 % 4), xmask, eviction_policy=
'evict_last')
tmp2 = tmp0 + tmp1
tl.store(in_out_ptr0 + x3, tmp2, xmask)
def call(args):
primals_1, primals_2, primals_3 = args
args.clear()
assert_size_stride(primals_1, (4, 4, 4), (16, 4, 1))
assert_size_stride(primals_2, (4, 4), (4, 1))
assert_size_stride(primals_3, (4, 4, 4), (16, 4, 1))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = extern_kernels.convolution(primals_1, primals_3, stride=(4,),
padding=(0,), dilation=(1,), transposed=True, output_padding=(0
,), groups=1, bias=None)
assert_size_stride(buf0, (4, 4, 16), (64, 16, 1))
buf1 = buf0
del buf0
get_raw_stream(0)
triton_poi_fused_add_0[grid(256)](buf1, primals_2, 256, XBLOCK=256,
num_warps=4, num_stages=1)
del primals_2
return buf1, primals_1, primals_3
class LearnedUpsampling1dNew(nn.Module):
def __init__(self, in_channels, out_channels, kernel_size, bias=True):
super().__init__()
self.conv_t = nn.ConvTranspose1d(in_channels=in_channels,
out_channels=out_channels, kernel_size=kernel_size, stride=
kernel_size, bias=False)
if bias:
self.bias = nn.Parameter(torch.FloatTensor(out_channels,
kernel_size))
else:
self.register_parameter('bias', None)
self.reset_parameters()
def reset_parameters(self):
self.conv_t.reset_parameters()
nn.init.constant(self.bias, 0)
def forward(self, input_0):
primals_2 = self.bias
primals_1 = self.conv_t.weight
primals_3 = input_0
output = call([primals_1, primals_2, primals_3])
return output[0]
|
fdb/samplernn-pytorch
|
LearnedUpsampling1d
| false | 15,345 |
[
"MIT"
] | 259 |
87ce71cc2cf26601a271648597f198df33059f96
|
https://github.com/fdb/samplernn-pytorch/tree/87ce71cc2cf26601a271648597f198df33059f96
|
PixelNorm
|
# AOT ID: ['0_inference']
from ctypes import c_void_p, c_long, c_int
import torch
import math
import random
import os
import tempfile
from math import inf, nan
from torch._inductor.hooks import run_intermediate_hooks
from torch._inductor.utils import maybe_profile
from torch._inductor.codegen.memory_planning import _align as align
from torch import device, empty_strided
from torch._inductor.async_compile import AsyncCompile
from torch._inductor.select_algorithm import extern_kernels
from torch._inductor.codegen.multi_kernel import MultiKernelCall
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
aten = torch.ops.aten
inductor_ops = torch.ops.inductor
_quantized = torch.ops._quantized
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
alloc_from_pool = torch.ops.inductor._alloc_from_pool
async_compile = AsyncCompile()
# kernel path: runs/run_shard_2/inductor_cache/ln/clnknwdlswmj3l56wk4ertm47scosxi4dtpndhkl7cvrs2tmbcj5.py
# Topologically Sorted Source Nodes: [pow_1, mean, add, rsqrt, mul], Original ATen: [aten.pow, aten.mean, aten.add, aten.rsqrt, aten.mul]
# Source node to ATen node mapping:
# add => add
# mean => mean
# mul => mul
# pow_1 => pow_1
# rsqrt => rsqrt
# Graph fragment:
# %pow_1 : [num_users=1] = call_function[target=torch.ops.aten.pow.Tensor_Scalar](args = (%arg0_1, 2), kwargs = {})
# %mean : [num_users=1] = call_function[target=torch.ops.aten.mean.dim](args = (%pow_1, [1], True), kwargs = {})
# %add : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%mean, 1e-08), kwargs = {})
# %rsqrt : [num_users=1] = call_function[target=torch.ops.aten.rsqrt.default](args = (%add,), kwargs = {})
# %mul : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%arg0_1, %rsqrt), kwargs = {})
triton_poi_fused_add_mean_mul_pow_rsqrt_0 = async_compile.triton('triton_poi_fused_add_mean_mul_pow_rsqrt_0', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[256],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=90, major=9, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=132), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_add_mean_mul_pow_rsqrt_0', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 5, 'num_reduction': 0, 'backend_hash': 'B098E03CDA7B8ADC90DAFFDF24A2956451D1B13F297756A5DCC209498AA53705', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_add_mean_mul_pow_rsqrt_0(in_ptr0, out_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 256
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x3 = xindex
x0 = xindex % 16
x2 = (xindex // 64)
tmp0 = tl.load(in_ptr0 + (x3), xmask)
tmp1 = tl.load(in_ptr0 + (x0 + (64*x2)), xmask, eviction_policy='evict_last')
tmp3 = tl.load(in_ptr0 + (16 + x0 + (64*x2)), xmask, eviction_policy='evict_last')
tmp6 = tl.load(in_ptr0 + (32 + x0 + (64*x2)), xmask, eviction_policy='evict_last')
tmp9 = tl.load(in_ptr0 + (48 + x0 + (64*x2)), xmask, eviction_policy='evict_last')
tmp2 = tmp1 * tmp1
tmp4 = tmp3 * tmp3
tmp5 = tmp2 + tmp4
tmp7 = tmp6 * tmp6
tmp8 = tmp5 + tmp7
tmp10 = tmp9 * tmp9
tmp11 = tmp8 + tmp10
tmp12 = 4.0
tmp13 = tmp11 / tmp12
tmp14 = 1e-08
tmp15 = tmp13 + tmp14
tmp16 = libdevice.rsqrt(tmp15)
tmp17 = tmp0 * tmp16
tl.store(out_ptr0 + (x3), tmp17, xmask)
''', device_str='cuda')
async_compile.wait(globals())
del async_compile
def call(args):
arg0_1, = args
args.clear()
assert_size_stride(arg0_1, (4, 4, 4, 4), (64, 16, 4, 1))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32)
# Topologically Sorted Source Nodes: [pow_1, mean, add, rsqrt, mul], Original ATen: [aten.pow, aten.mean, aten.add, aten.rsqrt, aten.mul]
stream0 = get_raw_stream(0)
triton_poi_fused_add_mean_mul_pow_rsqrt_0.run(arg0_1, buf0, 256, grid=grid(256), stream=stream0)
del arg0_1
return (buf0, )
def benchmark_compiled_module(times=10, repeat=10):
from torch._dynamo.testing import rand_strided
from torch._inductor.utils import print_performance
arg0_1 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32)
fn = lambda: call([arg0_1])
return print_performance(fn, times=times, repeat=repeat)
if __name__ == "__main__":
from torch._inductor.wrapper_benchmark import compiled_module_main
compiled_module_main('None', benchmark_compiled_module)
|
import torch
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
from torch._inductor.runtime.triton_helpers import libdevice
from torch import nn
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
@triton.jit
def triton_poi_fused_add_mean_mul_pow_rsqrt_0(in_ptr0, out_ptr0, xnumel,
XBLOCK: tl.constexpr):
xnumel = 256
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x3 = xindex
x0 = xindex % 16
x2 = xindex // 64
tmp0 = tl.load(in_ptr0 + x3, xmask)
tmp1 = tl.load(in_ptr0 + (x0 + 64 * x2), xmask, eviction_policy=
'evict_last')
tmp3 = tl.load(in_ptr0 + (16 + x0 + 64 * x2), xmask, eviction_policy=
'evict_last')
tmp6 = tl.load(in_ptr0 + (32 + x0 + 64 * x2), xmask, eviction_policy=
'evict_last')
tmp9 = tl.load(in_ptr0 + (48 + x0 + 64 * x2), xmask, eviction_policy=
'evict_last')
tmp2 = tmp1 * tmp1
tmp4 = tmp3 * tmp3
tmp5 = tmp2 + tmp4
tmp7 = tmp6 * tmp6
tmp8 = tmp5 + tmp7
tmp10 = tmp9 * tmp9
tmp11 = tmp8 + tmp10
tmp12 = 4.0
tmp13 = tmp11 / tmp12
tmp14 = 1e-08
tmp15 = tmp13 + tmp14
tmp16 = libdevice.rsqrt(tmp15)
tmp17 = tmp0 * tmp16
tl.store(out_ptr0 + x3, tmp17, xmask)
def call(args):
arg0_1, = args
args.clear()
assert_size_stride(arg0_1, (4, 4, 4, 4), (64, 16, 4, 1))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32)
get_raw_stream(0)
triton_poi_fused_add_mean_mul_pow_rsqrt_0[grid(256)](arg0_1, buf0,
256, XBLOCK=256, num_warps=4, num_stages=1)
del arg0_1
return buf0,
class PixelNormNew(nn.Module):
def __init__(self):
super().__init__()
def forward(self, input_0):
arg0_1 = input_0
output = call([arg0_1])
return output[0]
|
Liamkuo/SAIR
|
PixelNorm
| false | 17,574 |
[
"MIT"
] | 6 |
0fb289cd975b5a196b58e7d16bac00e31fd41d39
|
https://github.com/Liamkuo/SAIR/tree/0fb289cd975b5a196b58e7d16bac00e31fd41d39
|
BCEFocalLoss
|
# AOT ID: ['0_inference']
from ctypes import c_void_p, c_long, c_int
import torch
import math
import random
import os
import tempfile
from math import inf, nan
from torch._inductor.hooks import run_intermediate_hooks
from torch._inductor.utils import maybe_profile
from torch._inductor.codegen.memory_planning import _align as align
from torch import device, empty_strided
from torch._inductor.async_compile import AsyncCompile
from torch._inductor.select_algorithm import extern_kernels
from torch._inductor.codegen.multi_kernel import MultiKernelCall
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
aten = torch.ops.aten
inductor_ops = torch.ops.inductor
_quantized = torch.ops._quantized
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
alloc_from_pool = torch.ops.inductor._alloc_from_pool
async_compile = AsyncCompile()
# kernel path: runs/run_shard_0/inductor_cache/n4/cn4l67wrwka2oqlbqovgswkunvp62yjnmtlpzhqpoe2wqbjmrkfj.py
# Topologically Sorted Source Nodes: [logp, neg, p, sub, pow_1, loss, mean], Original ATen: [aten.binary_cross_entropy_with_logits, aten.neg, aten.exp, aten.rsub, aten.pow, aten.mul, aten.mean]
# Source node to ATen node mapping:
# logp => abs_1, exp, full_default, log1p, minimum, mul, neg, sub, sub_1, sub_2
# loss => mul_1
# mean => mean
# neg => neg_1
# p => exp_1
# pow_1 => pow_1
# sub => sub_3
# Graph fragment:
# %sub : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (1, %arg0_1), kwargs = {})
# %mul : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%sub, %arg1_1), kwargs = {})
# %full_default : [num_users=1] = call_function[target=torch.ops.aten.full.default](args = ([], 0), kwargs = {dtype: torch.float32, layout: torch.strided, device: cuda:0, pin_memory: False})
# %minimum : [num_users=1] = call_function[target=torch.ops.aten.minimum.default](args = (%full_default, %arg1_1), kwargs = {})
# %abs_1 : [num_users=1] = call_function[target=torch.ops.aten.abs.default](args = (%arg1_1,), kwargs = {})
# %neg : [num_users=1] = call_function[target=torch.ops.aten.neg.default](args = (%abs_1,), kwargs = {})
# %exp : [num_users=1] = call_function[target=torch.ops.aten.exp.default](args = (%neg,), kwargs = {})
# %log1p : [num_users=1] = call_function[target=torch.ops.aten.log1p.default](args = (%exp,), kwargs = {})
# %sub_1 : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (%minimum, %log1p), kwargs = {})
# %sub_2 : [num_users=2] = call_function[target=torch.ops.aten.sub.Tensor](args = (%mul, %sub_1), kwargs = {})
# %neg_1 : [num_users=1] = call_function[target=torch.ops.aten.neg.default](args = (%sub_2,), kwargs = {})
# %exp_1 : [num_users=1] = call_function[target=torch.ops.aten.exp.default](args = (%neg_1,), kwargs = {})
# %sub_3 : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (1, %exp_1), kwargs = {})
# %pow_1 : [num_users=1] = call_function[target=torch.ops.aten.pow.Tensor_Scalar](args = (%sub_3, 0), kwargs = {})
# %mul_1 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%pow_1, %sub_2), kwargs = {})
# %mean : [num_users=1] = call_function[target=torch.ops.aten.mean.default](args = (%mul_1,), kwargs = {})
triton_per_fused_binary_cross_entropy_with_logits_exp_mean_mul_neg_pow_rsub_0 = async_compile.triton('triton_per_fused_binary_cross_entropy_with_logits_exp_mean_mul_neg_pow_rsub_0', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.persistent_reduction(
size_hints=[1, 256],
reduction_hint=ReductionHint.INNER,
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: 'i32', 4: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {3: 1}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 4), equal_to_1=(3,))]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_per_fused_binary_cross_entropy_with_logits_exp_mean_mul_neg_pow_rsub_0', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': True, 'num_load': 2, 'num_reduction': 1, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}
)
@triton.jit
def triton_per_fused_binary_cross_entropy_with_logits_exp_mean_mul_neg_pow_rsub_0(in_out_ptr0, in_ptr0, in_ptr1, xnumel, rnumel):
xnumel = 1
XBLOCK: tl.constexpr = 1
rnumel = 256
RBLOCK: tl.constexpr = 256
xoffset = tl.program_id(0) * XBLOCK
xindex = tl.full([1], xoffset, tl.int32)
xmask = tl.full([RBLOCK], True, tl.int1)
rindex = tl.arange(0, RBLOCK)[:]
roffset = 0
rmask = tl.full([RBLOCK], True, tl.int1)
r0 = rindex
tmp0 = tl.load(in_ptr0 + (r0), None)
tmp3 = tl.load(in_ptr1 + (r0), None)
tmp1 = 1.0
tmp2 = tmp1 - tmp0
tmp4 = tmp2 * tmp3
tmp5 = 0.0
tmp6 = triton_helpers.minimum(tmp5, tmp3)
tmp7 = tl_math.abs(tmp3)
tmp8 = -tmp7
tmp9 = tl_math.exp(tmp8)
tmp10 = libdevice.log1p(tmp9)
tmp11 = tmp6 - tmp10
tmp12 = tmp4 - tmp11
tmp13 = -tmp12
tmp14 = tl_math.exp(tmp13)
tmp15 = tmp1 - tmp14
tmp16 = tmp1 * tmp12
tmp17 = tl.broadcast_to(tmp16, [RBLOCK])
tmp19 = triton_helpers.promote_to_tensor(tl.sum(tmp17, 0))
tmp20 = 256.0
tmp21 = tmp19 / tmp20
tl.debug_barrier()
tl.store(in_out_ptr0 + (tl.full([1], 0, tl.int32)), tmp21, None)
''', device_str='cuda')
async_compile.wait(globals())
del async_compile
def call(args):
arg0_1, arg1_1 = args
args.clear()
assert_size_stride(arg0_1, (4, 4, 4, 4), (64, 16, 4, 1))
assert_size_stride(arg1_1, (4, 4, 4, 4), (64, 16, 4, 1))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((), (), torch.float32)
buf1 = buf0; del buf0 # reuse
# Topologically Sorted Source Nodes: [logp, neg, p, sub, pow_1, loss, mean], Original ATen: [aten.binary_cross_entropy_with_logits, aten.neg, aten.exp, aten.rsub, aten.pow, aten.mul, aten.mean]
stream0 = get_raw_stream(0)
triton_per_fused_binary_cross_entropy_with_logits_exp_mean_mul_neg_pow_rsub_0.run(buf1, arg0_1, arg1_1, 1, 256, grid=grid(1), stream=stream0)
del arg0_1
del arg1_1
return (buf1, )
def benchmark_compiled_module(times=10, repeat=10):
from torch._dynamo.testing import rand_strided
from torch._inductor.utils import print_performance
arg0_1 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32)
arg1_1 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32)
fn = lambda: call([arg0_1, arg1_1])
return print_performance(fn, times=times, repeat=repeat)
if __name__ == "__main__":
from torch._inductor.wrapper_benchmark import compiled_module_main
compiled_module_main('None', benchmark_compiled_module)
|
import torch
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
from torch._inductor.runtime import triton_helpers
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch import nn
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
@triton.jit
def triton_per_fused_binary_cross_entropy_with_logits_exp_mean_mul_neg_pow_rsub_0(
in_out_ptr0, in_ptr0, in_ptr1, xnumel, rnumel):
XBLOCK: tl.constexpr = 1
RBLOCK: tl.constexpr = 256
xoffset = tl.program_id(0) * XBLOCK
tl.full([1], xoffset, tl.int32)
tl.full([RBLOCK], True, tl.int1)
rindex = tl.arange(0, RBLOCK)[:]
tl.full([RBLOCK], True, tl.int1)
r0 = rindex
tmp0 = tl.load(in_ptr0 + r0, None)
tmp3 = tl.load(in_ptr1 + r0, None)
tmp1 = 1.0
tmp2 = tmp1 - tmp0
tmp4 = tmp2 * tmp3
tmp5 = 0.0
tmp6 = triton_helpers.minimum(tmp5, tmp3)
tmp7 = tl_math.abs(tmp3)
tmp8 = -tmp7
tmp9 = tl_math.exp(tmp8)
tmp10 = libdevice.log1p(tmp9)
tmp11 = tmp6 - tmp10
tmp12 = tmp4 - tmp11
tmp13 = -tmp12
tmp14 = tl_math.exp(tmp13)
tmp1 - tmp14
tmp16 = tmp1 * tmp12
tmp17 = tl.broadcast_to(tmp16, [RBLOCK])
tmp19 = triton_helpers.promote_to_tensor(tl.sum(tmp17, 0))
tmp20 = 256.0
tmp21 = tmp19 / tmp20
tl.debug_barrier()
tl.store(in_out_ptr0 + tl.full([1], 0, tl.int32), tmp21, None)
def call(args):
arg0_1, arg1_1 = args
args.clear()
assert_size_stride(arg0_1, (4, 4, 4, 4), (64, 16, 4, 1))
assert_size_stride(arg1_1, (4, 4, 4, 4), (64, 16, 4, 1))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((), (), torch.float32)
buf1 = buf0
del buf0
get_raw_stream(0)
triton_per_fused_binary_cross_entropy_with_logits_exp_mean_mul_neg_pow_rsub_0[
grid(1)](buf1, arg0_1, arg1_1, 1, 256, num_warps=2, num_stages=1)
del arg0_1
del arg1_1
return buf1,
class BCEFocalLossNew(nn.Module):
"""Implementation of Focal Loss for Binary Classification Problems.
Focal loss was proposed in `Focal Loss for Dense Object Detection_.
<https://arxiv.org/abs/1708.02002>`_.
"""
def __init__(self, gamma=0, eps=1e-07, reduction='mean'):
"""Constructor Method for FocalLoss class.
Args:
gamma : The focal parameter. Defaults to 0.
eps : Constant for computational stability.
reduction: The reduction parameter for Cross Entropy Loss.
"""
super(BCEFocalLossNew, self).__init__()
self.gamma = gamma
self.reduction = reduction
self.eps = eps
self.bce = torch.nn.BCEWithLogitsLoss(reduction='none')
def forward(self, input_0, input_1):
arg0_1 = input_0
arg1_1 = input_1
output = call([arg0_1, arg1_1])
return output[0]
|
Atharva-Phatak/torchflare
|
BCEFocalLoss
| false | 13,330 |
[
"Apache-2.0"
] | 86 |
945f4bee73a855edd8cb19cd646731155499a27f
|
https://github.com/Atharva-Phatak/torchflare/tree/945f4bee73a855edd8cb19cd646731155499a27f
|
Sparsemax
|
# AOT ID: ['0_inference']
from ctypes import c_void_p, c_long, c_int
import torch
import math
import random
import os
import tempfile
from math import inf, nan
from torch._inductor.hooks import run_intermediate_hooks
from torch._inductor.utils import maybe_profile
from torch._inductor.codegen.memory_planning import _align as align
from torch import device, empty_strided
from torch._inductor.async_compile import AsyncCompile
from torch._inductor.select_algorithm import extern_kernels
from torch._inductor.codegen.multi_kernel import MultiKernelCall
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
aten = torch.ops.aten
inductor_ops = torch.ops.inductor
_quantized = torch.ops._quantized
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
alloc_from_pool = torch.ops.inductor._alloc_from_pool
async_compile = AsyncCompile()
# kernel path: runs/run_shard_7/inductor_cache/nk/cnkmgeqruamtgccvbn4zkgty33cqveg7s4ow6q4qrojcnzzpb3wy.py
# Topologically Sorted Source Nodes: [max_1, X, sort, cumsum], Original ATen: [aten.max, aten.sub, aten.sort, aten.cumsum]
# Source node to ATen node mapping:
# X => sub
# cumsum => cumsum
# max_1 => max_1
# sort => sort
# Graph fragment:
# %max_1 : [num_users=1] = call_function[target=torch.ops.aten.max.dim](args = (%arg0_1, -1, True), kwargs = {})
# %sub : [num_users=2] = call_function[target=torch.ops.aten.sub.Tensor](args = (%arg0_1, %getitem), kwargs = {})
# %sort : [num_users=1] = call_function[target=torch.ops.aten.sort.default](args = (%sub, -1, True), kwargs = {})
# %cumsum : [num_users=1] = call_function[target=torch.ops.aten.cumsum.default](args = (%getitem_2, -1), kwargs = {})
triton_per_fused_cumsum_max_sort_sub_0 = async_compile.triton('triton_per_fused_cumsum_max_sort_sub_0', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton.jit
def _triton_helper_fn_add0(arg0_0, arg1_0):
tmp0 = arg0_0 + arg1_0
return tmp0
@triton_heuristics.persistent_reduction(
size_hints=[64, 4],
reduction_hint=ReductionHint.DEFAULT,
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: '*fp32', 4: 'i32', 5: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3, 4), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_per_fused_cumsum_max_sort_sub_0', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 5, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}
)
@triton.jit
def triton_per_fused_cumsum_max_sort_sub_0(in_ptr0, out_ptr0, out_ptr1, out_ptr2, xnumel, rnumel, XBLOCK : tl.constexpr):
xnumel = 64
rnumel = 4
RBLOCK: tl.constexpr = 4
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:, None]
xmask = xindex < xnumel
rindex = tl.arange(0, RBLOCK)[None, :]
roffset = 0
rmask = tl.full([XBLOCK, RBLOCK], True, tl.int1)
r1 = rindex
x0 = xindex
tmp0 = tl.load(in_ptr0 + (r1 + (4*x0)), xmask, other=0.0)
tmp1 = tl.load(in_ptr0 + (4*x0), xmask, eviction_policy='evict_last')
tmp2 = tl.load(in_ptr0 + (1 + (4*x0)), xmask, eviction_policy='evict_last')
tmp4 = tl.load(in_ptr0 + (2 + (4*x0)), xmask, eviction_policy='evict_last')
tmp6 = tl.load(in_ptr0 + (3 + (4*x0)), xmask, eviction_policy='evict_last')
tmp3 = triton_helpers.maximum(tmp1, tmp2)
tmp5 = triton_helpers.maximum(tmp3, tmp4)
tmp7 = triton_helpers.maximum(tmp5, tmp6)
tmp8 = tmp0 - tmp7
tmp9 = r1
tmp10 = tmp9.to(tl.int16)
tmp11 = tl.broadcast_to(tmp8, [XBLOCK, RBLOCK])
tmp12 = tl.broadcast_to(tmp10, [XBLOCK, RBLOCK])
tmp13, tmp14, = triton_helpers.sort_with_index(tmp11, tmp12, None, 1, stable=False, descending=True)
tmp15 = tmp13.to(tl.float32)
tmp16 = tl.broadcast_to(tmp15, [XBLOCK, RBLOCK])
tmp17, = tl.associative_scan((tmp16,), 1, _triton_helper_fn_add0)
tl.store(out_ptr0 + (r1 + (4*x0)), tmp8, xmask)
tl.store(out_ptr1 + (r1 + (4*x0)), tmp13, xmask)
tl.store(out_ptr2 + (r1 + (4*x0)), tmp17, xmask)
''', device_str='cuda')
# kernel path: runs/run_shard_7/inductor_cache/uc/cuc2f2cgz6j7wqohouz3uu6ir7263uhsfcodyhv3lka5vxtu4ewc.py
# Topologically Sorted Source Nodes: [mul, topk_cumsum, support, sum_1], Original ATen: [aten.mul, aten.sub, aten.gt, aten.sum]
# Source node to ATen node mapping:
# mul => mul_1
# sum_1 => sum_1
# support => gt
# topk_cumsum => sub_1
# Graph fragment:
# %mul_1 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%permute, %getitem_2), kwargs = {})
# %sub_1 : [num_users=2] = call_function[target=torch.ops.aten.sub.Tensor](args = (%cumsum, 1), kwargs = {})
# %gt : [num_users=1] = call_function[target=torch.ops.aten.gt.Tensor](args = (%mul_1, %sub_1), kwargs = {})
# %sum_1 : [num_users=1] = call_function[target=torch.ops.aten.sum.dim_IntList](args = (%gt, [-1]), kwargs = {})
triton_poi_fused_gt_mul_sub_sum_1 = async_compile.triton('triton_poi_fused_gt_mul_sub_sum_1', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[64],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*i64', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_gt_mul_sub_sum_1', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 8, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_gt_mul_sub_sum_1(in_ptr0, in_ptr1, out_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 64
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex
tmp0 = tl.load(in_ptr0 + (4*x0), xmask, eviction_policy='evict_last')
tmp3 = tl.load(in_ptr1 + (4*x0), xmask, eviction_policy='evict_last')
tmp7 = tl.load(in_ptr0 + (1 + (4*x0)), xmask, eviction_policy='evict_last')
tmp10 = tl.load(in_ptr1 + (1 + (4*x0)), xmask, eviction_policy='evict_last')
tmp15 = tl.load(in_ptr0 + (2 + (4*x0)), xmask, eviction_policy='evict_last')
tmp18 = tl.load(in_ptr1 + (2 + (4*x0)), xmask, eviction_policy='evict_last')
tmp23 = tl.load(in_ptr0 + (3 + (4*x0)), xmask, eviction_policy='evict_last')
tmp26 = tl.load(in_ptr1 + (3 + (4*x0)), xmask, eviction_policy='evict_last')
tmp1 = 1.0
tmp2 = tmp1 * tmp0
tmp4 = tmp3 - tmp1
tmp5 = tmp2 > tmp4
tmp6 = tmp5.to(tl.int64)
tmp8 = 2.0
tmp9 = tmp8 * tmp7
tmp11 = tmp10 - tmp1
tmp12 = tmp9 > tmp11
tmp13 = tmp12.to(tl.int64)
tmp14 = tmp6 + tmp13
tmp16 = 3.0
tmp17 = tmp16 * tmp15
tmp19 = tmp18 - tmp1
tmp20 = tmp17 > tmp19
tmp21 = tmp20.to(tl.int64)
tmp22 = tmp14 + tmp21
tmp24 = 4.0
tmp25 = tmp24 * tmp23
tmp27 = tmp26 - tmp1
tmp28 = tmp25 > tmp27
tmp29 = tmp28.to(tl.int64)
tmp30 = tmp22 + tmp29
tl.store(out_ptr0 + (x0), tmp30, xmask)
''', device_str='cuda')
# kernel path: runs/run_shard_7/inductor_cache/v4/cv4frpxvm4rhejbwxhericho6gutfmihwrgomlmqytuxrptdu7cn.py
# Topologically Sorted Source Nodes: [topk_cumsum, sub_2, tau, tau_1, sub_3, output], Original ATen: [aten.sub, aten.gather, aten.div, aten.clamp]
# Source node to ATen node mapping:
# output => clamp_min
# sub_2 => sub_2
# sub_3 => sub_3
# tau => gather
# tau_1 => div
# topk_cumsum => sub_1
# Graph fragment:
# %sub_1 : [num_users=2] = call_function[target=torch.ops.aten.sub.Tensor](args = (%cumsum, 1), kwargs = {})
# %sub_2 : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (%unsqueeze, 1), kwargs = {})
# %gather : [num_users=1] = call_function[target=torch.ops.aten.gather.default](args = (%sub_1, -1, %sub_2), kwargs = {})
# %div : [num_users=1] = call_function[target=torch.ops.aten.div.Tensor](args = (%gather, %unsqueeze), kwargs = {})
# %sub_3 : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (%sub, %div), kwargs = {})
# %clamp_min : [num_users=1] = call_function[target=torch.ops.aten.clamp_min.default](args = (%sub_3, 0), kwargs = {})
triton_poi_fused_clamp_div_gather_sub_2 = async_compile.triton('triton_poi_fused_clamp_div_gather_sub_2', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[256],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*i64', 2: '*fp32', 3: '*fp32', 4: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3, 4), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_clamp_div_gather_sub_2', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_clamp_div_gather_sub_2(in_ptr0, in_ptr1, in_ptr2, out_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 256
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x2 = xindex
x1 = (xindex // 4)
tmp0 = tl.load(in_ptr0 + (x2), xmask)
tmp1 = tl.load(in_ptr1 + (x1), xmask, eviction_policy='evict_last')
tmp2 = tl.full([1], 1, tl.int64)
tmp3 = tmp1 - tmp2
tmp4 = tl.full([XBLOCK], 4, tl.int32)
tmp5 = tmp3 + tmp4
tmp6 = tmp3 < 0
tmp7 = tl.where(tmp6, tmp5, tmp3)
tl.device_assert(((0 <= tmp7) & (tmp7 < 4)) | ~(xmask), "index out of bounds: 0 <= tmp7 < 4")
tmp9 = tl.load(in_ptr2 + (tmp7 + (4*x1)), xmask, eviction_policy='evict_last')
tmp10 = 1.0
tmp11 = tmp9 - tmp10
tmp12 = tmp1.to(tl.float32)
tmp13 = tmp11 / tmp12
tmp14 = tmp0 - tmp13
tmp15 = 0.0
tmp16 = triton_helpers.maximum(tmp14, tmp15)
tl.store(out_ptr0 + (x2), tmp16, xmask)
''', device_str='cuda')
async_compile.wait(globals())
del async_compile
def call(args):
arg0_1, = args
args.clear()
assert_size_stride(arg0_1, (4, 4, 4, 4), (64, 16, 4, 1))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32)
buf1 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32)
buf3 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32)
# Topologically Sorted Source Nodes: [max_1, X, sort, cumsum], Original ATen: [aten.max, aten.sub, aten.sort, aten.cumsum]
stream0 = get_raw_stream(0)
triton_per_fused_cumsum_max_sort_sub_0.run(arg0_1, buf0, buf1, buf3, 64, 4, grid=grid(64), stream=stream0)
del arg0_1
buf4 = empty_strided_cuda((4, 4, 4), (16, 4, 1), torch.int64)
# Topologically Sorted Source Nodes: [mul, topk_cumsum, support, sum_1], Original ATen: [aten.mul, aten.sub, aten.gt, aten.sum]
triton_poi_fused_gt_mul_sub_sum_1.run(buf1, buf3, buf4, 64, grid=grid(64), stream=stream0)
buf5 = buf1; del buf1 # reuse
# Topologically Sorted Source Nodes: [topk_cumsum, sub_2, tau, tau_1, sub_3, output], Original ATen: [aten.sub, aten.gather, aten.div, aten.clamp]
triton_poi_fused_clamp_div_gather_sub_2.run(buf0, buf4, buf3, buf5, 256, grid=grid(256), stream=stream0)
del buf0
del buf3
del buf4
return (buf5, )
def benchmark_compiled_module(times=10, repeat=10):
from torch._dynamo.testing import rand_strided
from torch._inductor.utils import print_performance
arg0_1 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32)
fn = lambda: call([arg0_1])
return print_performance(fn, times=times, repeat=repeat)
if __name__ == "__main__":
from torch._inductor.wrapper_benchmark import compiled_module_main
compiled_module_main('None', benchmark_compiled_module)
|
import torch
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
from torch._inductor.runtime import triton_helpers
from torch.autograd import Function
from torch import nn
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
@triton.jit
def _triton_helper_fn_add0(arg0_0, arg1_0):
tmp0 = arg0_0 + arg1_0
return tmp0
@triton.jit
def triton_per_fused_cumsum_max_sort_sub_0(in_ptr0, out_ptr0, out_ptr1,
out_ptr2, xnumel, rnumel, XBLOCK: tl.constexpr):
xnumel = 64
RBLOCK: tl.constexpr = 4
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:, None]
xmask = xindex < xnumel
rindex = tl.arange(0, RBLOCK)[None, :]
tl.full([XBLOCK, RBLOCK], True, tl.int1)
r1 = rindex
x0 = xindex
tmp0 = tl.load(in_ptr0 + (r1 + 4 * x0), xmask, other=0.0)
tmp1 = tl.load(in_ptr0 + 4 * x0, xmask, eviction_policy='evict_last')
tmp2 = tl.load(in_ptr0 + (1 + 4 * x0), xmask, eviction_policy='evict_last')
tmp4 = tl.load(in_ptr0 + (2 + 4 * x0), xmask, eviction_policy='evict_last')
tmp6 = tl.load(in_ptr0 + (3 + 4 * x0), xmask, eviction_policy='evict_last')
tmp3 = triton_helpers.maximum(tmp1, tmp2)
tmp5 = triton_helpers.maximum(tmp3, tmp4)
tmp7 = triton_helpers.maximum(tmp5, tmp6)
tmp8 = tmp0 - tmp7
tmp9 = r1
tmp10 = tmp9.to(tl.int16)
tmp11 = tl.broadcast_to(tmp8, [XBLOCK, RBLOCK])
tmp12 = tl.broadcast_to(tmp10, [XBLOCK, RBLOCK])
tmp13, _tmp14 = triton_helpers.sort_with_index(tmp11, tmp12, None, 1,
stable=False, descending=True)
tmp15 = tmp13.to(tl.float32)
tmp16 = tl.broadcast_to(tmp15, [XBLOCK, RBLOCK])
tmp17, = tl.associative_scan((tmp16,), 1, _triton_helper_fn_add0)
tl.store(out_ptr0 + (r1 + 4 * x0), tmp8, xmask)
tl.store(out_ptr1 + (r1 + 4 * x0), tmp13, xmask)
tl.store(out_ptr2 + (r1 + 4 * x0), tmp17, xmask)
@triton.jit
def triton_poi_fused_gt_mul_sub_sum_1(in_ptr0, in_ptr1, out_ptr0, xnumel,
XBLOCK: tl.constexpr):
xnumel = 64
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex
tmp0 = tl.load(in_ptr0 + 4 * x0, xmask, eviction_policy='evict_last')
tmp3 = tl.load(in_ptr1 + 4 * x0, xmask, eviction_policy='evict_last')
tmp7 = tl.load(in_ptr0 + (1 + 4 * x0), xmask, eviction_policy='evict_last')
tmp10 = tl.load(in_ptr1 + (1 + 4 * x0), xmask, eviction_policy='evict_last'
)
tmp15 = tl.load(in_ptr0 + (2 + 4 * x0), xmask, eviction_policy='evict_last'
)
tmp18 = tl.load(in_ptr1 + (2 + 4 * x0), xmask, eviction_policy='evict_last'
)
tmp23 = tl.load(in_ptr0 + (3 + 4 * x0), xmask, eviction_policy='evict_last'
)
tmp26 = tl.load(in_ptr1 + (3 + 4 * x0), xmask, eviction_policy='evict_last'
)
tmp1 = 1.0
tmp2 = tmp1 * tmp0
tmp4 = tmp3 - tmp1
tmp5 = tmp2 > tmp4
tmp6 = tmp5.to(tl.int64)
tmp8 = 2.0
tmp9 = tmp8 * tmp7
tmp11 = tmp10 - tmp1
tmp12 = tmp9 > tmp11
tmp13 = tmp12.to(tl.int64)
tmp14 = tmp6 + tmp13
tmp16 = 3.0
tmp17 = tmp16 * tmp15
tmp19 = tmp18 - tmp1
tmp20 = tmp17 > tmp19
tmp21 = tmp20.to(tl.int64)
tmp22 = tmp14 + tmp21
tmp24 = 4.0
tmp25 = tmp24 * tmp23
tmp27 = tmp26 - tmp1
tmp28 = tmp25 > tmp27
tmp29 = tmp28.to(tl.int64)
tmp30 = tmp22 + tmp29
tl.store(out_ptr0 + x0, tmp30, xmask)
@triton.jit
def triton_poi_fused_clamp_div_gather_sub_2(in_ptr0, in_ptr1, in_ptr2,
out_ptr0, xnumel, XBLOCK: tl.constexpr):
xnumel = 256
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x2 = xindex
x1 = xindex // 4
tmp0 = tl.load(in_ptr0 + x2, xmask)
tmp1 = tl.load(in_ptr1 + x1, xmask, eviction_policy='evict_last')
tmp2 = tl.full([1], 1, tl.int64)
tmp3 = tmp1 - tmp2
tmp4 = tl.full([XBLOCK], 4, tl.int32)
tmp5 = tmp3 + tmp4
tmp6 = tmp3 < 0
tmp7 = tl.where(tmp6, tmp5, tmp3)
tl.device_assert((0 <= tmp7) & (tmp7 < 4) | ~xmask,
'index out of bounds: 0 <= tmp7 < 4')
tmp9 = tl.load(in_ptr2 + (tmp7 + 4 * x1), xmask, eviction_policy=
'evict_last')
tmp10 = 1.0
tmp11 = tmp9 - tmp10
tmp12 = tmp1.to(tl.float32)
tmp13 = tmp11 / tmp12
tmp14 = tmp0 - tmp13
tmp15 = 0.0
tmp16 = triton_helpers.maximum(tmp14, tmp15)
tl.store(out_ptr0 + x2, tmp16, xmask)
def call(args):
arg0_1, = args
args.clear()
assert_size_stride(arg0_1, (4, 4, 4, 4), (64, 16, 4, 1))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32)
buf1 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32)
buf3 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32)
get_raw_stream(0)
triton_per_fused_cumsum_max_sort_sub_0[grid(64)](arg0_1, buf0, buf1,
buf3, 64, 4, XBLOCK=1, num_warps=2, num_stages=1)
del arg0_1
buf4 = empty_strided_cuda((4, 4, 4), (16, 4, 1), torch.int64)
triton_poi_fused_gt_mul_sub_sum_1[grid(64)](buf1, buf3, buf4, 64,
XBLOCK=64, num_warps=1, num_stages=1)
buf5 = buf1
del buf1
triton_poi_fused_clamp_div_gather_sub_2[grid(256)](buf0, buf4, buf3,
buf5, 256, XBLOCK=128, num_warps=4, num_stages=1)
del buf0
del buf3
del buf4
return buf5,
def _make_ix_like(X, dim):
d = X.size(dim)
rho = torch.arange(1, d + 1, device=X.device, dtype=X.dtype)
view = [1] * X.dim()
view[0] = -1
return rho.view(view).transpose(0, dim)
def _roll_last(X, dim):
if dim == -1:
return X
elif dim < 0:
dim = X.dim() - dim
perm = [i for i in range(X.dim()) if i != dim] + [dim]
return X.permute(perm)
def _sparsemax_threshold_and_support(X, dim=-1, k=None):
"""Core computation for sparsemax: optimal threshold and support size.
Parameters
----------
X : torch.Tensor
The input tensor to compute thresholds over.
dim : int
The dimension along which to apply sparsemax.
k : int or None
number of largest elements to partial-sort over. For optimal
performance, should be slightly bigger than the expected number of
nonzeros in the solution. If the solution is more than k-sparse,
this function is recursively called with a 2*k schedule.
If `None`, full sorting is performed from the beginning.
Returns
-------
tau : torch.Tensor like `X`, with all but the `dim` dimension intact
the threshold value for each vector
support_size : torch LongTensor, shape like `tau`
the number of nonzeros in each vector.
"""
if k is None or k >= X.shape[dim]:
topk, _ = torch.sort(X, dim=dim, descending=True)
else:
topk, _ = torch.topk(X, k=k, dim=dim)
topk_cumsum = topk.cumsum(dim) - 1
rhos = _make_ix_like(topk, dim)
support = rhos * topk > topk_cumsum
support_size = support.sum(dim=dim).unsqueeze(dim)
tau = topk_cumsum.gather(dim, support_size - 1)
tau /= support_size
if k is not None and k < X.shape[dim]:
unsolved = (support_size == k).squeeze(dim)
if torch.any(unsolved):
in_ = _roll_last(X, dim)[unsolved]
tau_, ss_ = _sparsemax_threshold_and_support(in_, dim=-1, k=2 * k)
_roll_last(tau, dim)[unsolved] = tau_
_roll_last(support_size, dim)[unsolved] = ss_
return tau, support_size
def sparsemax(X, dim=-1, k=None):
"""sparsemax: normalizing sparse transform (a la softmax).
Solves the projection:
min_p ||x - p||_2 s.t. p >= 0, sum(p) == 1.
Parameters
----------
X : torch.Tensor
The input tensor.
dim : int
The dimension along which to apply sparsemax.
k : int or None
number of largest elements to partial-sort over. For optimal
performance, should be slightly bigger than the expected number of
nonzeros in the solution. If the solution is more than k-sparse,
this function is recursively called with a 2*k schedule.
If `None`, full sorting is performed from the beginning.
Returns
-------
P : torch tensor, same shape as X
The projection result, such that P.sum(dim=dim) == 1 elementwise.
"""
return SparsemaxFunction.apply(X, dim, k)
class SparsemaxFunction(Function):
@classmethod
def forward(cls, ctx, X, dim=-1, k=None):
ctx.dim = dim
max_val, _ = X.max(dim=dim, keepdim=True)
X = X - max_val
tau, supp_size = _sparsemax_threshold_and_support(X, dim=dim, k=k)
output = torch.clamp(X - tau, min=0)
ctx.save_for_backward(supp_size, output)
return output
@classmethod
def backward(cls, ctx, grad_output):
supp_size, output = ctx.saved_tensors
dim = ctx.dim
grad_input = grad_output.clone()
grad_input[output == 0] = 0
v_hat = grad_input.sum(dim=dim) / supp_size.squeeze()
v_hat = v_hat.unsqueeze(dim)
grad_input = torch.where(output != 0, grad_input - v_hat, grad_input)
return grad_input, None, None
class SparsemaxNew(nn.Module):
def __init__(self, dim=-1, k=None):
"""sparsemax: normalizing sparse transform (a la softmax).
Solves the projection:
min_p ||x - p||_2 s.t. p >= 0, sum(p) == 1.
Parameters
----------
dim : int
The dimension along which to apply sparsemax.
k : int or None
number of largest elements to partial-sort over. For optimal
performance, should be slightly bigger than the expected number of
nonzeros in the solution. If the solution is more than k-sparse,
this function is recursively called with a 2*k schedule.
If `None`, full sorting is performed from the beginning.
"""
self.dim = dim
self.k = k
super(SparsemaxNew, self).__init__()
def forward(self, input_0):
arg0_1 = input_0
output = call([arg0_1])
return output[0]
|
gitlost-murali/awesome-align
|
Sparsemax
| false | 3,554 |
[
"BSD-3-Clause"
] | 0 |
39fb45ca85a98e005447bddb52c48e65ce7d399b
|
https://github.com/gitlost-murali/awesome-align/tree/39fb45ca85a98e005447bddb52c48e65ce7d399b
|
Net
|
import torch
import torch.nn as nn
import torch.nn.functional as F
import torch.utils.data.distributed
class Net(nn.Module):
def __init__(self):
super(Net, self).__init__()
self.conv1 = nn.Conv2d(3, 32, (3, 3))
self.pool1 = nn.MaxPool2d((2, 2))
self.conv2 = nn.Conv2d(32, 32, (3, 3))
self.pool2 = nn.MaxPool2d((2, 2))
self.conv3 = nn.Conv2d(32, 64, (3, 3))
self.pool3 = nn.MaxPool2d((2, 2))
self.fc1 = nn.Linear(17 * 17 * 64, 64)
self.fc1_drop = nn.Dropout(0.5)
self.fc2 = nn.Linear(64, 1)
def forward(self, x):
x = F.relu(self.conv1(x))
x = self.pool1(x)
x = F.relu(self.conv2(x))
x = self.pool2(x)
x = F.relu(self.conv3(x))
x = self.pool3(x)
x = x.view(-1, 17 * 17 * 64)
x = F.relu(self.fc1(x))
x = self.fc1_drop(x)
return torch.sigmoid(self.fc2(x))
def get_inputs():
return [torch.rand([4, 3, 288, 288])]
def get_init_inputs():
return [[], {}]
|
import torch
from torch._inductor.select_algorithm import extern_kernels
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
from torch._inductor.runtime import triton_helpers
import torch.nn as nn
import torch.utils.data.distributed
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
@triton.jit
def triton_poi_fused_convolution_relu_0(in_ptr0, in_ptr1, out_ptr0, xnumel,
XBLOCK: tl.constexpr):
xnumel = 10469888
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x3 = xindex
x1 = xindex // 81796 % 32
x0 = xindex % 81796
x4 = xindex // 81796
tmp0 = tl.load(in_ptr0 + x3, xmask)
tmp1 = tl.load(in_ptr1 + x1, xmask, eviction_policy='evict_last')
tmp2 = tmp0 + tmp1
tmp3 = tl.full([1], 0, tl.int32)
tmp4 = triton_helpers.maximum(tmp3, tmp2)
tl.store(out_ptr0 + (x0 + 81824 * x4), tmp4, xmask)
@triton.jit
def triton_poi_fused_max_pool2d_with_indices_1(in_ptr0, out_ptr0, out_ptr1,
xnumel, XBLOCK: tl.constexpr):
xnumel = 2617472
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex % 143
x1 = xindex // 143 % 143
x2 = xindex // 20449
x3 = xindex % 20449
tmp0 = tl.load(in_ptr0 + (2 * x0 + 572 * x1 + 81824 * x2), xmask,
eviction_policy='evict_last')
tmp1 = tl.load(in_ptr0 + (1 + 2 * x0 + 572 * x1 + 81824 * x2), xmask,
eviction_policy='evict_last')
tmp3 = tl.load(in_ptr0 + (286 + 2 * x0 + 572 * x1 + 81824 * x2), xmask,
eviction_policy='evict_last')
tmp5 = tl.load(in_ptr0 + (287 + 2 * x0 + 572 * x1 + 81824 * x2), xmask,
eviction_policy='evict_last')
tmp2 = triton_helpers.maximum(tmp1, tmp0)
tmp4 = triton_helpers.maximum(tmp3, tmp2)
tmp6 = triton_helpers.maximum(tmp5, tmp4)
tmp7 = tmp1 > tmp0
tmp8 = tl.full([1], 1, tl.int8)
tmp9 = tl.full([1], 0, tl.int8)
tmp10 = tl.where(tmp7, tmp8, tmp9)
tmp11 = tmp3 > tmp2
tmp12 = tl.full([1], 2, tl.int8)
tmp13 = tl.where(tmp11, tmp12, tmp10)
tmp14 = tmp5 > tmp4
tmp15 = tl.full([1], 3, tl.int8)
tmp16 = tl.where(tmp14, tmp15, tmp13)
tl.store(out_ptr0 + (x3 + 20480 * x2), tmp6, xmask)
tl.store(out_ptr1 + (x3 + 20480 * x2), tmp16, xmask)
@triton.jit
def triton_poi_fused_convolution_relu_2(in_ptr0, in_ptr1, out_ptr0, xnumel,
XBLOCK: tl.constexpr):
xnumel = 2544768
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x3 = xindex
x1 = xindex // 19881 % 32
x0 = xindex % 19881
x4 = xindex // 19881
tmp0 = tl.load(in_ptr0 + x3, xmask)
tmp1 = tl.load(in_ptr1 + x1, xmask, eviction_policy='evict_last')
tmp2 = tmp0 + tmp1
tmp3 = tl.full([1], 0, tl.int32)
tmp4 = triton_helpers.maximum(tmp3, tmp2)
tl.store(out_ptr0 + (x0 + 19904 * x4), tmp4, xmask)
@triton.jit
def triton_poi_fused_max_pool2d_with_indices_3(in_ptr0, out_ptr0, out_ptr1,
xnumel, XBLOCK: tl.constexpr):
xnumel = 627200
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex % 70
x1 = xindex // 70 % 70
x2 = xindex // 4900
x3 = xindex % 4900
tmp0 = tl.load(in_ptr0 + (2 * x0 + 282 * x1 + 19904 * x2), xmask,
eviction_policy='evict_last')
tmp1 = tl.load(in_ptr0 + (1 + 2 * x0 + 282 * x1 + 19904 * x2), xmask,
eviction_policy='evict_last')
tmp3 = tl.load(in_ptr0 + (141 + 2 * x0 + 282 * x1 + 19904 * x2), xmask,
eviction_policy='evict_last')
tmp5 = tl.load(in_ptr0 + (142 + 2 * x0 + 282 * x1 + 19904 * x2), xmask,
eviction_policy='evict_last')
tmp2 = triton_helpers.maximum(tmp1, tmp0)
tmp4 = triton_helpers.maximum(tmp3, tmp2)
tmp6 = triton_helpers.maximum(tmp5, tmp4)
tmp7 = tmp1 > tmp0
tmp8 = tl.full([1], 1, tl.int8)
tmp9 = tl.full([1], 0, tl.int8)
tmp10 = tl.where(tmp7, tmp8, tmp9)
tmp11 = tmp3 > tmp2
tmp12 = tl.full([1], 2, tl.int8)
tmp13 = tl.where(tmp11, tmp12, tmp10)
tmp14 = tmp5 > tmp4
tmp15 = tl.full([1], 3, tl.int8)
tmp16 = tl.where(tmp14, tmp15, tmp13)
tl.store(out_ptr0 + (x3 + 4928 * x2), tmp6, xmask)
tl.store(out_ptr1 + (x3 + 4992 * x2), tmp16, xmask)
@triton.jit
def triton_poi_fused_convolution_relu_4(in_ptr0, in_ptr1, out_ptr0, xnumel,
XBLOCK: tl.constexpr):
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
tl.full([XBLOCK], True, tl.int1)
x3 = xindex
x1 = xindex // 4624 % 64
x0 = xindex % 4624
x4 = xindex // 4624
tmp0 = tl.load(in_ptr0 + x3, None)
tmp1 = tl.load(in_ptr1 + x1, None, eviction_policy='evict_last')
tmp2 = tmp0 + tmp1
tmp3 = tl.full([1], 0, tl.int32)
tmp4 = triton_helpers.maximum(tmp3, tmp2)
tl.store(out_ptr0 + (x0 + 4640 * x4), tmp4, None)
@triton.jit
def triton_poi_fused_max_pool2d_with_indices_5(in_ptr0, out_ptr0, out_ptr1,
xnumel, XBLOCK: tl.constexpr):
xnumel = 295936
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex % 34
x1 = xindex // 34 % 34
x2 = xindex // 1156
x3 = xindex % 1156
tmp0 = tl.load(in_ptr0 + (2 * x0 + 136 * x1 + 4640 * x2), xmask,
eviction_policy='evict_last')
tmp1 = tl.load(in_ptr0 + (1 + 2 * x0 + 136 * x1 + 4640 * x2), xmask,
eviction_policy='evict_last')
tmp7 = tl.load(in_ptr0 + (68 + 2 * x0 + 136 * x1 + 4640 * x2), xmask,
eviction_policy='evict_last')
tmp12 = tl.load(in_ptr0 + (69 + 2 * x0 + 136 * x1 + 4640 * x2), xmask,
eviction_policy='evict_last')
tmp2 = tmp1 > tmp0
tmp3 = tl.full([1], 1, tl.int8)
tmp4 = tl.full([1], 0, tl.int8)
tmp5 = tl.where(tmp2, tmp3, tmp4)
tmp6 = triton_helpers.maximum(tmp1, tmp0)
tmp8 = tmp7 > tmp6
tmp9 = tl.full([1], 2, tl.int8)
tmp10 = tl.where(tmp8, tmp9, tmp5)
tmp11 = triton_helpers.maximum(tmp7, tmp6)
tmp13 = tmp12 > tmp11
tmp14 = tl.full([1], 3, tl.int8)
tmp15 = tl.where(tmp13, tmp14, tmp10)
tmp16 = triton_helpers.maximum(tmp12, tmp11)
tl.store(out_ptr0 + (x3 + 1280 * x2), tmp15, xmask)
tl.store(out_ptr1 + (x3 + 1184 * x2), tmp16, xmask)
@triton.jit
def triton_poi_fused_max_pool2d_with_indices_view_6(in_ptr0, out_ptr0,
xnumel, XBLOCK: tl.constexpr):
xnumel = 295936
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex % 18496
x1 = xindex // 18496
x2 = xindex
tmp0 = tl.load(in_ptr0 + (1184 * (x0 // 1156) + 18944 * x1 + x0 % 1156),
xmask)
tl.store(out_ptr0 + x2, tmp0, xmask)
@triton.jit
def triton_poi_fused_relu_7(in_out_ptr0, in_ptr0, xnumel, XBLOCK: tl.constexpr
):
xnumel = 1024
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x2 = xindex
x0 = xindex % 64
tmp0 = tl.load(in_out_ptr0 + x2, xmask)
tmp1 = tl.load(in_ptr0 + x0, xmask, eviction_policy='evict_last')
tmp2 = tmp0 + tmp1
tmp3 = tl.full([1], 0, tl.int32)
tmp4 = triton_helpers.maximum(tmp3, tmp2)
tl.store(in_out_ptr0 + x2, tmp4, xmask)
@triton.jit
def triton_poi_fused_sigmoid_8(in_out_ptr0, in_ptr0, xnumel, XBLOCK: tl.
constexpr):
xnumel = 16
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex
tmp0 = tl.load(in_out_ptr0 + x0, xmask)
tmp1 = tl.load(in_ptr0 + 0)
tmp2 = tl.broadcast_to(tmp1, [XBLOCK])
tmp3 = tmp0 + tmp2
tmp4 = tl.sigmoid(tmp3)
tl.store(in_out_ptr0 + x0, tmp4, xmask)
def call(args):
(primals_1, primals_2, primals_3, primals_4, primals_5, primals_6,
primals_7, primals_8, primals_9, primals_10, primals_11) = args
args.clear()
assert_size_stride(primals_1, (32, 3, 3, 3), (27, 9, 3, 1))
assert_size_stride(primals_2, (32,), (1,))
assert_size_stride(primals_3, (4, 3, 288, 288), (248832, 82944, 288, 1))
assert_size_stride(primals_4, (32, 32, 3, 3), (288, 9, 3, 1))
assert_size_stride(primals_5, (32,), (1,))
assert_size_stride(primals_6, (64, 32, 3, 3), (288, 9, 3, 1))
assert_size_stride(primals_7, (64,), (1,))
assert_size_stride(primals_8, (64, 18496), (18496, 1))
assert_size_stride(primals_9, (64,), (1,))
assert_size_stride(primals_10, (1, 64), (64, 1))
assert_size_stride(primals_11, (1,), (1,))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = extern_kernels.convolution(primals_3, primals_1, stride=(1,
1), padding=(0, 0), dilation=(1, 1), transposed=False,
output_padding=(0, 0), groups=1, bias=None)
assert_size_stride(buf0, (4, 32, 286, 286), (2617472, 81796, 286, 1))
buf1 = empty_strided_cuda((4, 32, 286, 286), (2618368, 81824, 286,
1), torch.float32)
get_raw_stream(0)
triton_poi_fused_convolution_relu_0[grid(10469888)](buf0, primals_2,
buf1, 10469888, XBLOCK=512, num_warps=8, num_stages=1)
del buf0
del primals_2
buf2 = empty_strided_cuda((4, 32, 143, 143), (655360, 20480, 143, 1
), torch.float32)
buf3 = empty_strided_cuda((4, 32, 143, 143), (655360, 20480, 143, 1
), torch.int8)
triton_poi_fused_max_pool2d_with_indices_1[grid(2617472)](buf1,
buf2, buf3, 2617472, XBLOCK=512, num_warps=8, num_stages=1)
buf4 = extern_kernels.convolution(buf2, primals_4, stride=(1, 1),
padding=(0, 0), dilation=(1, 1), transposed=False,
output_padding=(0, 0), groups=1, bias=None)
assert_size_stride(buf4, (4, 32, 141, 141), (636192, 19881, 141, 1))
buf5 = empty_strided_cuda((4, 32, 141, 141), (636928, 19904, 141, 1
), torch.float32)
triton_poi_fused_convolution_relu_2[grid(2544768)](buf4, primals_5,
buf5, 2544768, XBLOCK=1024, num_warps=4, num_stages=1)
del buf4
del primals_5
buf6 = empty_strided_cuda((4, 32, 70, 70), (157696, 4928, 70, 1),
torch.float32)
buf7 = empty_strided_cuda((4, 32, 70, 70), (159744, 4992, 70, 1),
torch.int8)
triton_poi_fused_max_pool2d_with_indices_3[grid(627200)](buf5, buf6,
buf7, 627200, XBLOCK=1024, num_warps=4, num_stages=1)
buf8 = extern_kernels.convolution(buf6, primals_6, stride=(1, 1),
padding=(0, 0), dilation=(1, 1), transposed=False,
output_padding=(0, 0), groups=1, bias=None)
assert_size_stride(buf8, (4, 64, 68, 68), (295936, 4624, 68, 1))
buf9 = empty_strided_cuda((4, 64, 68, 68), (296960, 4640, 68, 1),
torch.float32)
triton_poi_fused_convolution_relu_4[grid(1183744)](buf8, primals_7,
buf9, 1183744, XBLOCK=1024, num_warps=4, num_stages=1)
del buf8
del primals_7
buf10 = empty_strided_cuda((4, 64, 34, 34), (81920, 1280, 34, 1),
torch.int8)
buf11 = empty_strided_cuda((4, 64, 34, 34), (75776, 1184, 34, 1),
torch.float32)
triton_poi_fused_max_pool2d_with_indices_5[grid(295936)](buf9,
buf10, buf11, 295936, XBLOCK=512, num_warps=8, num_stages=1)
buf12 = empty_strided_cuda((16, 18496), (18496, 1), torch.float32)
triton_poi_fused_max_pool2d_with_indices_view_6[grid(295936)](buf11,
buf12, 295936, XBLOCK=512, num_warps=8, num_stages=1)
del buf11
buf13 = empty_strided_cuda((16, 64), (64, 1), torch.float32)
extern_kernels.mm(buf12, reinterpret_tensor(primals_8, (18496, 64),
(1, 18496), 0), out=buf13)
buf14 = buf13
del buf13
triton_poi_fused_relu_7[grid(1024)](buf14, primals_9, 1024, XBLOCK=
128, num_warps=4, num_stages=1)
del primals_9
buf15 = empty_strided_cuda((16, 1), (1, 1), torch.float32)
extern_kernels.mm(buf14, reinterpret_tensor(primals_10, (64, 1), (1,
64), 0), out=buf15)
buf16 = buf15
del buf15
triton_poi_fused_sigmoid_8[grid(16)](buf16, primals_11, 16, XBLOCK=
16, num_warps=1, num_stages=1)
del primals_11
return (buf16, primals_1, primals_3, primals_4, primals_6, buf1, buf2,
buf3, buf5, buf6, buf7, buf9, buf10, buf12, buf14, buf16,
primals_10, primals_8)
class NetNew(nn.Module):
def __init__(self):
super(NetNew, self).__init__()
self.conv1 = nn.Conv2d(3, 32, (3, 3))
self.pool1 = nn.MaxPool2d((2, 2))
self.conv2 = nn.Conv2d(32, 32, (3, 3))
self.pool2 = nn.MaxPool2d((2, 2))
self.conv3 = nn.Conv2d(32, 64, (3, 3))
self.pool3 = nn.MaxPool2d((2, 2))
self.fc1 = nn.Linear(17 * 17 * 64, 64)
self.fc1_drop = nn.Dropout(0.5)
self.fc2 = nn.Linear(64, 1)
def forward(self, input_0):
primals_1 = self.conv1.weight
primals_2 = self.conv1.bias
primals_4 = self.conv2.weight
primals_5 = self.conv2.bias
primals_6 = self.conv3.weight
primals_7 = self.conv3.bias
primals_8 = self.fc1.weight
primals_9 = self.fc1.bias
primals_10 = self.fc2.weight
primals_11 = self.fc2.bias
primals_3 = input_0
output = call([primals_1, primals_2, primals_3, primals_4,
primals_5, primals_6, primals_7, primals_8, primals_9,
primals_10, primals_11])
return output[0]
|
CSCfi/machine-learning-scripts
|
Net
| false | 13,484 |
[
"MIT"
] | 59 |
005f9343fb703ca2b6b11b5c2369e19efcaa5f62
|
https://github.com/CSCfi/machine-learning-scripts/tree/005f9343fb703ca2b6b11b5c2369e19efcaa5f62
|
AffineTransform
|
import torch
from torch import nn
class FC(nn.Module):
def __init__(self, n_dim_in, n_dim_out, equal_lr=True):
super().__init__()
norm_const = n_dim_in ** -0.5
scale_init = 1 if equal_lr else norm_const
self.scale_forward = norm_const if equal_lr else 1
self.weight = nn.Parameter(scale_init * torch.randn(n_dim_out,
n_dim_in))
self.bias = nn.Parameter(torch.zeros(n_dim_out))
def forward(self, x):
return nn.functional.linear(x, self.scale_forward * self.weight,
bias=self.bias)
class AffineTransform(nn.Module):
def __init__(self, n_dim_w, n_feature_maps, equal_lr):
super().__init__()
self.fc = FC(n_dim_w, n_feature_maps, equal_lr=equal_lr)
nn.init.ones_(self.fc.bias)
def forward(self, w):
return self.fc(w)
def get_inputs():
return [torch.rand([4, 4, 4, 4])]
def get_init_inputs():
return [[], {'n_dim_w': 4, 'n_feature_maps': 4, 'equal_lr': 4}]
|
import torch
from torch._inductor.select_algorithm import extern_kernels
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
from torch import nn
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
@triton.jit
def triton_poi_fused_mul_0(in_ptr0, out_ptr0, xnumel, XBLOCK: tl.constexpr):
xnumel = 16
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex
tmp0 = tl.load(in_ptr0 + x0, xmask)
tmp1 = 0.5
tmp2 = tmp0 * tmp1
tl.store(out_ptr0 + x0, tmp2, xmask)
def call(args):
primals_1, primals_2, primals_3 = args
args.clear()
assert_size_stride(primals_1, (4, 4), (4, 1))
assert_size_stride(primals_2, (4,), (1,))
assert_size_stride(primals_3, (4, 4, 4, 4), (64, 16, 4, 1))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((4, 4), (4, 1), torch.float32)
get_raw_stream(0)
triton_poi_fused_mul_0[grid(16)](primals_1, buf0, 16, XBLOCK=16,
num_warps=1, num_stages=1)
del primals_1
buf1 = empty_strided_cuda((64, 4), (4, 1), torch.float32)
extern_kernels.addmm(primals_2, reinterpret_tensor(primals_3, (64,
4), (4, 1), 0), reinterpret_tensor(buf0, (4, 4), (1, 4), 0),
alpha=1, beta=1, out=buf1)
del buf0
del primals_2
return reinterpret_tensor(buf1, (4, 4, 4, 4), (64, 16, 4, 1), 0
), reinterpret_tensor(primals_3, (64, 4), (4, 1), 0)
class FC(nn.Module):
def __init__(self, n_dim_in, n_dim_out, equal_lr=True):
super().__init__()
norm_const = n_dim_in ** -0.5
scale_init = 1 if equal_lr else norm_const
self.scale_forward = norm_const if equal_lr else 1
self.weight = nn.Parameter(scale_init * torch.randn(n_dim_out,
n_dim_in))
self.bias = nn.Parameter(torch.zeros(n_dim_out))
def forward(self, x):
return nn.functional.linear(x, self.scale_forward * self.weight,
bias=self.bias)
class AffineTransformNew(nn.Module):
def __init__(self, n_dim_w, n_feature_maps, equal_lr):
super().__init__()
self.fc = FC(n_dim_w, n_feature_maps, equal_lr=equal_lr)
nn.init.ones_(self.fc.bias)
def forward(self, input_0):
primals_1 = self.fc.weight
primals_2 = self.fc.bias
primals_3 = input_0
output = call([primals_1, primals_2, primals_3])
return output[0]
|
moritztng/stylegan2-pytorch
|
AffineTransform
| false | 4,028 |
[
"MIT"
] | 0 |
8827eae2e76c54b7406b34b2d49563ae53b04001
|
https://github.com/moritztng/stylegan2-pytorch/tree/8827eae2e76c54b7406b34b2d49563ae53b04001
|
SimBasedLoss
|
import torch
from torch import nn
import torch.nn.functional as F
class SimBasedLoss(nn.Module):
def __init__(self):
super(SimBasedLoss, self).__init__()
def forward(self, y_s, y_t):
y_s = F.normalize(y_s, p=2, dim=1)
y_t = F.normalize(y_t, p=2, dim=1)
student_sims = torch.matmul(y_s, y_s.T)
teacher_sims = torch.matmul(y_t, y_t.T)
loss = F.mse_loss(student_sims, teacher_sims)
return loss
def get_inputs():
return [torch.rand([4, 4, 4, 4]), torch.rand([4, 4, 4, 4])]
def get_init_inputs():
return [[], {}]
|
import torch
from torch._inductor.select_algorithm import extern_kernels
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
from torch._inductor.runtime import triton_helpers
from torch._inductor.runtime.triton_helpers import libdevice
from torch import nn
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
@triton.jit
def triton_poi_fused_div_0(in_ptr0, out_ptr0, xnumel, XBLOCK: tl.constexpr):
xnumel = 256
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x3 = xindex
x0 = xindex % 16
x2 = xindex // 64
tmp0 = tl.load(in_ptr0 + x3, xmask)
tmp1 = tl.load(in_ptr0 + (x0 + 64 * x2), xmask, eviction_policy=
'evict_last')
tmp3 = tl.load(in_ptr0 + (16 + x0 + 64 * x2), xmask, eviction_policy=
'evict_last')
tmp6 = tl.load(in_ptr0 + (32 + x0 + 64 * x2), xmask, eviction_policy=
'evict_last')
tmp9 = tl.load(in_ptr0 + (48 + x0 + 64 * x2), xmask, eviction_policy=
'evict_last')
tmp2 = tmp1 * tmp1
tmp4 = tmp3 * tmp3
tmp5 = tmp2 + tmp4
tmp7 = tmp6 * tmp6
tmp8 = tmp5 + tmp7
tmp10 = tmp9 * tmp9
tmp11 = tmp8 + tmp10
tmp12 = libdevice.sqrt(tmp11)
tmp13 = 1e-12
tmp14 = triton_helpers.maximum(tmp12, tmp13)
tmp15 = tmp0 / tmp14
tl.store(out_ptr0 + x3, tmp15, xmask)
@triton.jit
def triton_poi_fused_clone_1(in_ptr0, out_ptr0, ynumel, xnumel, YBLOCK: tl.
constexpr, XBLOCK: tl.constexpr):
ynumel = 4
xnumel = 64
yoffset = tl.program_id(1) * YBLOCK
yindex = yoffset + tl.arange(0, YBLOCK)[None, :]
ymask = yindex < ynumel
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:, None]
xmask = xindex < xnumel
x1 = xindex % 4
x2 = xindex // 4 % 4
x3 = xindex // 16
y0 = yindex
x4 = xindex
tmp0 = tl.load(in_ptr0 + (y0 + 4 * x3 + 16 * x2 + 64 * x1), xmask &
ymask, eviction_policy='evict_last')
tl.store(out_ptr0 + (x4 + 64 * y0), tmp0, xmask & ymask)
@triton.jit
def triton_per_fused_mse_loss_2(in_out_ptr0, in_ptr0, in_ptr1, xnumel, rnumel):
XBLOCK: tl.constexpr = 1
RBLOCK: tl.constexpr = 256
xoffset = tl.program_id(0) * XBLOCK
tl.full([1], xoffset, tl.int32)
tl.full([RBLOCK], True, tl.int1)
rindex = tl.arange(0, RBLOCK)[:]
tl.full([RBLOCK], True, tl.int1)
r0 = rindex
tmp0 = tl.load(in_ptr0 + r0, None)
tmp1 = tl.load(in_ptr1 + r0, None)
tmp2 = tmp0 - tmp1
tmp3 = tmp2 * tmp2
tmp4 = tl.broadcast_to(tmp3, [RBLOCK])
tmp6 = triton_helpers.promote_to_tensor(tl.sum(tmp4, 0))
tmp7 = 256.0
tmp8 = tmp6 / tmp7
tl.debug_barrier()
tl.store(in_out_ptr0 + tl.full([1], 0, tl.int32), tmp8, None)
def call(args):
arg0_1, arg1_1 = args
args.clear()
assert_size_stride(arg0_1, (4, 4, 4, 4), (64, 16, 4, 1))
assert_size_stride(arg1_1, (4, 4, 4, 4), (64, 16, 4, 1))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32)
get_raw_stream(0)
triton_poi_fused_div_0[grid(256)](arg0_1, buf0, 256, XBLOCK=256,
num_warps=4, num_stages=1)
del arg0_1
buf1 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32)
triton_poi_fused_clone_1[grid(4, 64)](buf0, buf1, 4, 64, XBLOCK=32,
YBLOCK=4, num_warps=4, num_stages=1)
buf2 = empty_strided_cuda((16, 4, 4), (16, 4, 1), torch.float32)
extern_kernels.bmm(reinterpret_tensor(buf0, (16, 4, 4), (16, 4, 1),
0), reinterpret_tensor(buf1, (16, 4, 4), (16, 4, 1), 0), out=buf2)
buf3 = buf1
del buf1
triton_poi_fused_div_0[grid(256)](arg1_1, buf3, 256, XBLOCK=256,
num_warps=4, num_stages=1)
del arg1_1
buf4 = buf0
del buf0
triton_poi_fused_clone_1[grid(4, 64)](buf3, buf4, 4, 64, XBLOCK=32,
YBLOCK=4, num_warps=4, num_stages=1)
buf5 = empty_strided_cuda((16, 4, 4), (16, 4, 1), torch.float32)
extern_kernels.bmm(reinterpret_tensor(buf3, (16, 4, 4), (16, 4, 1),
0), reinterpret_tensor(buf4, (16, 4, 4), (16, 4, 1), 0), out=buf5)
del buf3
del buf4
buf6 = empty_strided_cuda((), (), torch.float32)
buf7 = buf6
del buf6
triton_per_fused_mse_loss_2[grid(1)](buf7, buf2, buf5, 1, 256,
num_warps=2, num_stages=1)
del buf2
del buf5
return buf7,
class SimBasedLossNew(nn.Module):
def __init__(self):
super(SimBasedLossNew, self).__init__()
def forward(self, input_0, input_1):
arg0_1 = input_0
arg1_1 = input_1
output = call([arg0_1, arg1_1])
return output[0]
|
kctsiolis/RepDistiller
|
SimBasedLoss
| false | 3,929 |
[
"BSD-2-Clause"
] | 0 |
ce88f6e53fcf8ef81c5bac2d20ad31628dd279ac
|
https://github.com/kctsiolis/RepDistiller/tree/ce88f6e53fcf8ef81c5bac2d20ad31628dd279ac
|
TransposeConv2dLayer
|
import torch
import torch.nn as nn
from torch.nn import functional as F
from torch.nn import Parameter
def l2normalize(v, eps=1e-12):
return v / (v.norm() + eps)
class LayerNorm(nn.Module):
def __init__(self, num_features, eps=1e-08, affine=True):
super(LayerNorm, self).__init__()
self.num_features = num_features
self.affine = affine
self.eps = eps
if self.affine:
self.gamma = Parameter(torch.Tensor(num_features).uniform_())
self.beta = Parameter(torch.zeros(num_features))
def forward(self, x):
shape = [-1] + [1] * (x.dim() - 1)
if x.size(0) == 1:
mean = x.view(-1).mean().view(*shape)
std = x.view(-1).std().view(*shape)
else:
mean = x.view(x.size(0), -1).mean(1).view(*shape)
std = x.view(x.size(0), -1).std(1).view(*shape)
x = (x - mean) / (std + self.eps)
if self.affine:
shape = [1, -1] + [1] * (x.dim() - 2)
x = x * self.gamma.view(*shape) + self.beta.view(*shape)
return x
class SpectralNorm(nn.Module):
def __init__(self, module, name='weight', power_iterations=1):
super(SpectralNorm, self).__init__()
self.module = module
self.name = name
self.power_iterations = power_iterations
if not self._made_params():
self._make_params()
def _update_u_v(self):
u = getattr(self.module, self.name + '_u')
v = getattr(self.module, self.name + '_v')
w = getattr(self.module, self.name + '_bar')
height = w.data.shape[0]
for _ in range(self.power_iterations):
v.data = l2normalize(torch.mv(torch.t(w.view(height, -1).data),
u.data))
u.data = l2normalize(torch.mv(w.view(height, -1).data, v.data))
sigma = u.dot(w.view(height, -1).mv(v))
setattr(self.module, self.name, w / sigma.expand_as(w))
def _made_params(self):
try:
getattr(self.module, self.name + '_u')
getattr(self.module, self.name + '_v')
getattr(self.module, self.name + '_bar')
return True
except AttributeError:
return False
def _make_params(self):
w = getattr(self.module, self.name)
height = w.data.shape[0]
width = w.view(height, -1).data.shape[1]
u = Parameter(w.data.new(height).normal_(0, 1), requires_grad=False)
v = Parameter(w.data.new(width).normal_(0, 1), requires_grad=False)
u.data = l2normalize(u.data)
v.data = l2normalize(v.data)
w_bar = Parameter(w.data)
del self.module._parameters[self.name]
self.module.register_parameter(self.name + '_u', u)
self.module.register_parameter(self.name + '_v', v)
self.module.register_parameter(self.name + '_bar', w_bar)
def forward(self, *args):
self._update_u_v()
return self.module.forward(*args)
class Conv2dLayer(nn.Module):
def __init__(self, in_channels, out_channels, kernel_size, stride=1,
padding=0, dilation=1, pad_type='zero', activation='elu', norm=
'none', sn=False):
super(Conv2dLayer, self).__init__()
if pad_type == 'reflect':
self.pad = nn.ReflectionPad2d(padding)
elif pad_type == 'replicate':
self.pad = nn.ReplicationPad2d(padding)
elif pad_type == 'zero':
self.pad = nn.ZeroPad2d(padding)
else:
assert 0, 'Unsupported padding type: {}'.format(pad_type)
if norm == 'bn':
self.norm = nn.BatchNorm2d(out_channels)
elif norm == 'in':
self.norm = nn.InstanceNorm2d(out_channels)
elif norm == 'ln':
self.norm = LayerNorm(out_channels)
elif norm == 'none':
self.norm = None
else:
assert 0, 'Unsupported normalization: {}'.format(norm)
if activation == 'relu':
self.activation = nn.ReLU(inplace=True)
elif activation == 'lrelu':
self.activation = nn.LeakyReLU(0.2, inplace=True)
elif activation == 'elu':
self.activation = nn.ELU(inplace=True)
elif activation == 'selu':
self.activation = nn.SELU(inplace=True)
elif activation == 'tanh':
self.activation = nn.Tanh()
elif activation == 'sigmoid':
self.activation = nn.Sigmoid()
elif activation == 'none':
self.activation = None
else:
assert 0, 'Unsupported activation: {}'.format(activation)
if sn:
self.conv2d = SpectralNorm(nn.Conv2d(in_channels, out_channels,
kernel_size, stride, padding=0, dilation=dilation))
else:
self.conv2d = nn.Conv2d(in_channels, out_channels, kernel_size,
stride, padding=0, dilation=dilation)
def forward(self, x):
x = self.pad(x)
x = self.conv2d(x)
if self.norm:
x = self.norm(x)
if self.activation:
x = self.activation(x)
return x
class TransposeConv2dLayer(nn.Module):
def __init__(self, in_channels, out_channels, kernel_size, stride=1,
padding=0, dilation=1, pad_type='zero', activation='lrelu', norm=
'none', sn=False, scale_factor=2):
super(TransposeConv2dLayer, self).__init__()
self.scale_factor = scale_factor
self.conv2d = Conv2dLayer(in_channels, out_channels, kernel_size,
stride, padding, dilation, pad_type, activation, norm, sn)
def forward(self, x):
x = F.interpolate(x, scale_factor=self.scale_factor, mode='nearest',
recompute_scale_factor=False)
x = self.conv2d(x)
return x
def get_inputs():
return [torch.rand([4, 4, 4, 4])]
def get_init_inputs():
return [[], {'in_channels': 4, 'out_channels': 4, 'kernel_size': 4}]
|
import torch
from torch._inductor.select_algorithm import extern_kernels
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
import torch.nn as nn
from torch.nn import Parameter
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
@triton.jit
def triton_poi_fused__unsafe_index_0(in_ptr0, out_ptr0, xnumel, XBLOCK: tl.
constexpr):
xnumel = 1024
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x1 = xindex // 8 % 8
x0 = xindex % 8
x2 = xindex // 64
x4 = xindex
tmp0 = x1
tmp1 = tmp0.to(tl.float32)
tmp2 = 0.5
tmp3 = tmp1 * tmp2
tmp4 = tmp3.to(tl.int32)
tmp5 = x0
tmp6 = tmp5.to(tl.float32)
tmp7 = tmp6 * tmp2
tmp8 = tmp7.to(tl.int32)
tmp9 = tl.load(in_ptr0 + (tmp8 + 4 * tmp4 + 16 * x2), xmask,
eviction_policy='evict_last')
tl.store(out_ptr0 + x4, tmp9, xmask)
@triton.jit
def triton_poi_fused_convolution_leaky_relu_leaky_relu_backward_1(in_out_ptr0,
in_ptr0, out_ptr0, xnumel, XBLOCK: tl.constexpr):
xnumel = 400
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x3 = xindex
x1 = xindex // 25 % 4
tmp0 = tl.load(in_out_ptr0 + x3, xmask)
tmp1 = tl.load(in_ptr0 + x1, xmask, eviction_policy='evict_last')
tmp2 = tmp0 + tmp1
tmp3 = 0.0
tmp4 = tmp2 > tmp3
tmp5 = 0.2
tmp6 = tmp2 * tmp5
tmp7 = tl.where(tmp4, tmp2, tmp6)
tmp8 = tmp7 > tmp3
tl.store(in_out_ptr0 + x3, tmp7, xmask)
tl.store(out_ptr0 + x3, tmp8, xmask)
def call(args):
primals_1, primals_2, primals_3 = args
args.clear()
assert_size_stride(primals_1, (4, 4, 4, 4), (64, 16, 4, 1))
assert_size_stride(primals_2, (4, 4, 4, 4), (64, 16, 4, 1))
assert_size_stride(primals_3, (4,), (1,))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((4, 4, 8, 8), (256, 64, 8, 1), torch.float32)
get_raw_stream(0)
triton_poi_fused__unsafe_index_0[grid(1024)](primals_1, buf0, 1024,
XBLOCK=256, num_warps=4, num_stages=1)
del primals_1
buf1 = extern_kernels.convolution(buf0, primals_2, stride=(1, 1),
padding=(0, 0), dilation=(1, 1), transposed=False,
output_padding=(0, 0), groups=1, bias=None)
assert_size_stride(buf1, (4, 4, 5, 5), (100, 25, 5, 1))
buf2 = buf1
del buf1
buf3 = empty_strided_cuda((4, 4, 5, 5), (100, 25, 5, 1), torch.bool)
triton_poi_fused_convolution_leaky_relu_leaky_relu_backward_1[grid(400)
](buf2, primals_3, buf3, 400, XBLOCK=256, num_warps=4, num_stages=1
)
del primals_3
return buf2, primals_2, buf0, buf3
def l2normalize(v, eps=1e-12):
return v / (v.norm() + eps)
class LayerNorm(nn.Module):
def __init__(self, num_features, eps=1e-08, affine=True):
super(LayerNorm, self).__init__()
self.num_features = num_features
self.affine = affine
self.eps = eps
if self.affine:
self.gamma = Parameter(torch.Tensor(num_features).uniform_())
self.beta = Parameter(torch.zeros(num_features))
def forward(self, x):
shape = [-1] + [1] * (x.dim() - 1)
if x.size(0) == 1:
mean = x.view(-1).mean().view(*shape)
std = x.view(-1).std().view(*shape)
else:
mean = x.view(x.size(0), -1).mean(1).view(*shape)
std = x.view(x.size(0), -1).std(1).view(*shape)
x = (x - mean) / (std + self.eps)
if self.affine:
shape = [1, -1] + [1] * (x.dim() - 2)
x = x * self.gamma.view(*shape) + self.beta.view(*shape)
return x
class SpectralNorm(nn.Module):
def __init__(self, module, name='weight', power_iterations=1):
super(SpectralNorm, self).__init__()
self.module = module
self.name = name
self.power_iterations = power_iterations
if not self._made_params():
self._make_params()
def _update_u_v(self):
u = getattr(self.module, self.name + '_u')
v = getattr(self.module, self.name + '_v')
w = getattr(self.module, self.name + '_bar')
height = w.data.shape[0]
for _ in range(self.power_iterations):
v.data = l2normalize(torch.mv(torch.t(w.view(height, -1).data),
u.data))
u.data = l2normalize(torch.mv(w.view(height, -1).data, v.data))
sigma = u.dot(w.view(height, -1).mv(v))
setattr(self.module, self.name, w / sigma.expand_as(w))
def _made_params(self):
try:
getattr(self.module, self.name + '_u')
getattr(self.module, self.name + '_v')
getattr(self.module, self.name + '_bar')
return True
except AttributeError:
return False
def _make_params(self):
w = getattr(self.module, self.name)
height = w.data.shape[0]
width = w.view(height, -1).data.shape[1]
u = Parameter(w.data.new(height).normal_(0, 1), requires_grad=False)
v = Parameter(w.data.new(width).normal_(0, 1), requires_grad=False)
u.data = l2normalize(u.data)
v.data = l2normalize(v.data)
w_bar = Parameter(w.data)
del self.module._parameters[self.name]
self.module.register_parameter(self.name + '_u', u)
self.module.register_parameter(self.name + '_v', v)
self.module.register_parameter(self.name + '_bar', w_bar)
def forward(self, *args):
self._update_u_v()
return self.module.forward(*args)
class Conv2dLayer(nn.Module):
def __init__(self, in_channels, out_channels, kernel_size, stride=1,
padding=0, dilation=1, pad_type='zero', activation='elu', norm=
'none', sn=False):
super(Conv2dLayer, self).__init__()
if pad_type == 'reflect':
self.pad = nn.ReflectionPad2d(padding)
elif pad_type == 'replicate':
self.pad = nn.ReplicationPad2d(padding)
elif pad_type == 'zero':
self.pad = nn.ZeroPad2d(padding)
else:
assert 0, 'Unsupported padding type: {}'.format(pad_type)
if norm == 'bn':
self.norm = nn.BatchNorm2d(out_channels)
elif norm == 'in':
self.norm = nn.InstanceNorm2d(out_channels)
elif norm == 'ln':
self.norm = LayerNorm(out_channels)
elif norm == 'none':
self.norm = None
else:
assert 0, 'Unsupported normalization: {}'.format(norm)
if activation == 'relu':
self.activation = nn.ReLU(inplace=True)
elif activation == 'lrelu':
self.activation = nn.LeakyReLU(0.2, inplace=True)
elif activation == 'elu':
self.activation = nn.ELU(inplace=True)
elif activation == 'selu':
self.activation = nn.SELU(inplace=True)
elif activation == 'tanh':
self.activation = nn.Tanh()
elif activation == 'sigmoid':
self.activation = nn.Sigmoid()
elif activation == 'none':
self.activation = None
else:
assert 0, 'Unsupported activation: {}'.format(activation)
if sn:
self.conv2d = SpectralNorm(nn.Conv2d(in_channels, out_channels,
kernel_size, stride, padding=0, dilation=dilation))
else:
self.conv2d = nn.Conv2d(in_channels, out_channels, kernel_size,
stride, padding=0, dilation=dilation)
def forward(self, x):
x = self.pad(x)
x = self.conv2d(x)
if self.norm:
x = self.norm(x)
if self.activation:
x = self.activation(x)
return x
class TransposeConv2dLayerNew(nn.Module):
def __init__(self, in_channels, out_channels, kernel_size, stride=1,
padding=0, dilation=1, pad_type='zero', activation='lrelu', norm=
'none', sn=False, scale_factor=2):
super(TransposeConv2dLayerNew, self).__init__()
self.scale_factor = scale_factor
self.conv2d = Conv2dLayer(in_channels, out_channels, kernel_size,
stride, padding, dilation, pad_type, activation, norm, sn)
def forward(self, input_0):
primals_1 = self.conv2d.conv2d.weight
primals_3 = self.conv2d.conv2d.bias
primals_2 = input_0
output = call([primals_1, primals_2, primals_3])
return output[0]
|
autocomic/deepfillv2
|
TransposeConv2dLayer
| false | 12,140 |
[
"MIT"
] | 0 |
4b0f565accbf20ee90093a4504b1cff0099d9cb9
|
https://github.com/autocomic/deepfillv2/tree/4b0f565accbf20ee90093a4504b1cff0099d9cb9
|
Attention
|
import torch
from torch import nn
import torch.nn.utils
class Attention(nn.Module):
def __init__(self, hidden_dim):
super(Attention, self).__init__()
self.hidden_dim = hidden_dim
self.ff = nn.Linear(in_features=hidden_dim, out_features=1)
self.softmax = nn.Softmax(dim=-1)
def forward(self, contexts, context_masks=None):
"""
:param contexts: (batch_size, seq_len, n_hid)
:param context_masks: (batch_size, seq_len)
:return: (batch_size, n_hid), (batch_size, seq_len)
"""
out = self.ff(contexts)
out = out.view(contexts.size(0), contexts.size(1))
if context_masks is not None:
masked_out = out.masked_fill(context_masks, float('-inf'))
else:
masked_out = out
attn_weights = self.softmax(masked_out)
out = attn_weights.unsqueeze(1).bmm(contexts)
out = out.squeeze(1)
return out, attn_weights
def get_inputs():
return [torch.rand([4, 4, 4])]
def get_init_inputs():
return [[], {'hidden_dim': 4}]
|
import torch
from torch._inductor.select_algorithm import extern_kernels
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
from torch._inductor.runtime import triton_helpers
from torch._inductor.runtime.triton_helpers import math as tl_math
from torch import nn
import torch.nn.utils
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
@triton.jit
def triton_poi_fused__softmax_0(in_ptr0, out_ptr0, xnumel, XBLOCK: tl.constexpr
):
xnumel = 16
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x2 = xindex
x1 = xindex // 4
tmp0 = tl.load(in_ptr0 + x2, xmask)
tmp1 = tl.load(in_ptr0 + 4 * x1, xmask, eviction_policy='evict_last')
tmp2 = tl.load(in_ptr0 + (1 + 4 * x1), xmask, eviction_policy='evict_last')
tmp4 = tl.load(in_ptr0 + (2 + 4 * x1), xmask, eviction_policy='evict_last')
tmp6 = tl.load(in_ptr0 + (3 + 4 * x1), xmask, eviction_policy='evict_last')
tmp3 = triton_helpers.maximum(tmp1, tmp2)
tmp5 = triton_helpers.maximum(tmp3, tmp4)
tmp7 = triton_helpers.maximum(tmp5, tmp6)
tmp8 = tmp0 - tmp7
tmp9 = tl_math.exp(tmp8)
tl.store(out_ptr0 + x2, tmp9, xmask)
@triton.jit
def triton_poi_fused__softmax_1(in_ptr0, out_ptr0, xnumel, XBLOCK: tl.constexpr
):
xnumel = 16
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x2 = xindex
x1 = xindex // 4
tmp0 = tl.load(in_ptr0 + x2, xmask)
tmp1 = tl.load(in_ptr0 + 4 * x1, xmask, eviction_policy='evict_last')
tmp2 = tl.load(in_ptr0 + (1 + 4 * x1), xmask, eviction_policy='evict_last')
tmp4 = tl.load(in_ptr0 + (2 + 4 * x1), xmask, eviction_policy='evict_last')
tmp6 = tl.load(in_ptr0 + (3 + 4 * x1), xmask, eviction_policy='evict_last')
tmp3 = tmp1 + tmp2
tmp5 = tmp3 + tmp4
tmp7 = tmp5 + tmp6
tmp8 = tmp0 / tmp7
tl.store(out_ptr0 + x2, tmp8, xmask)
def call(args):
primals_1, primals_2, primals_3 = args
args.clear()
assert_size_stride(primals_1, (1, 4), (4, 1))
assert_size_stride(primals_2, (1,), (1,))
assert_size_stride(primals_3, (4, 4, 4), (16, 4, 1))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf1 = empty_strided_cuda((16, 1), (1, 1), torch.float32)
extern_kernels.addmm(primals_2, reinterpret_tensor(primals_3, (16,
4), (4, 1), 0), reinterpret_tensor(primals_1, (4, 1), (1, 4), 0
), alpha=1, beta=1, out=buf1)
del primals_1
del primals_2
buf2 = empty_strided_cuda((4, 4), (4, 1), torch.float32)
get_raw_stream(0)
triton_poi_fused__softmax_0[grid(16)](buf1, buf2, 16, XBLOCK=16,
num_warps=1, num_stages=1)
buf3 = reinterpret_tensor(buf1, (4, 4), (4, 1), 0)
del buf1
triton_poi_fused__softmax_1[grid(16)](buf2, buf3, 16, XBLOCK=16,
num_warps=1, num_stages=1)
buf4 = reinterpret_tensor(buf2, (4, 1, 4), (4, 4, 1), 0)
del buf2
extern_kernels.bmm(reinterpret_tensor(buf3, (4, 1, 4), (4, 4, 1), 0
), primals_3, out=buf4)
return reinterpret_tensor(buf4, (4, 4), (4, 1), 0), buf3, primals_3, buf3
class AttentionNew(nn.Module):
def __init__(self, hidden_dim):
super(AttentionNew, self).__init__()
self.hidden_dim = hidden_dim
self.ff = nn.Linear(in_features=hidden_dim, out_features=1)
self.softmax = nn.Softmax(dim=-1)
def forward(self, input_0):
primals_1 = self.ff.weight
primals_2 = self.ff.bias
primals_3 = input_0
output = call([primals_1, primals_2, primals_3])
return output[0], output[1]
|
bstee615/ReVeal
|
Attention
| false | 14,982 |
[
"MIT"
] | 63 |
fc22d0d54a3a23d4e0bc45a249b7eea22749685e
|
https://github.com/bstee615/ReVeal/tree/fc22d0d54a3a23d4e0bc45a249b7eea22749685e
|
FFModule
|
# AOT ID: ['0_forward']
from ctypes import c_void_p, c_long, c_int
import torch
import math
import random
import os
import tempfile
from math import inf, nan
from torch._inductor.hooks import run_intermediate_hooks
from torch._inductor.utils import maybe_profile
from torch._inductor.codegen.memory_planning import _align as align
from torch import device, empty_strided
from torch._inductor.async_compile import AsyncCompile
from torch._inductor.select_algorithm import extern_kernels
from torch._inductor.codegen.multi_kernel import MultiKernelCall
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
aten = torch.ops.aten
inductor_ops = torch.ops.inductor
_quantized = torch.ops._quantized
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
alloc_from_pool = torch.ops.inductor._alloc_from_pool
async_compile = AsyncCompile()
# kernel path: runs/run_shard_1/inductor_cache/bm/cbmvwkhgioz63mnhrh3onxemouh4axyclce6ay7mypmzm62glj7h.py
# Topologically Sorted Source Nodes: [x], Original ATen: [aten.native_layer_norm]
# Source node to ATen node mapping:
# x => add, rsqrt, var_mean
# Graph fragment:
# %var_mean : [num_users=2] = call_function[target=torch.ops.aten.var_mean.correction](args = (%primals_3, [3]), kwargs = {correction: 0, keepdim: True})
# %add : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%getitem, 1e-05), kwargs = {})
# %rsqrt : [num_users=1] = call_function[target=torch.ops.aten.rsqrt.default](args = (%add,), kwargs = {})
triton_poi_fused_native_layer_norm_0 = async_compile.triton('triton_poi_fused_native_layer_norm_0', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[64],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=90, major=9, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=132), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_native_layer_norm_0', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 4, 'num_reduction': 0, 'backend_hash': 'B098E03CDA7B8ADC90DAFFDF24A2956451D1B13F297756A5DCC209498AA53705', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_native_layer_norm_0(in_ptr0, out_ptr0, out_ptr1, xnumel, XBLOCK : tl.constexpr):
xnumel = 64
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex
tmp0 = tl.load(in_ptr0 + (4*x0), xmask, eviction_policy='evict_last')
tmp1 = tl.load(in_ptr0 + (1 + (4*x0)), xmask, eviction_policy='evict_last')
tmp3 = tl.load(in_ptr0 + (2 + (4*x0)), xmask, eviction_policy='evict_last')
tmp5 = tl.load(in_ptr0 + (3 + (4*x0)), xmask, eviction_policy='evict_last')
tmp2 = tmp0 + tmp1
tmp4 = tmp2 + tmp3
tmp6 = tmp4 + tmp5
tmp7 = 4.0
tmp8 = tmp6 / tmp7
tmp9 = tmp0 - tmp8
tmp10 = tmp9 * tmp9
tmp11 = tmp1 - tmp8
tmp12 = tmp11 * tmp11
tmp13 = tmp10 + tmp12
tmp14 = tmp3 - tmp8
tmp15 = tmp14 * tmp14
tmp16 = tmp13 + tmp15
tmp17 = tmp5 - tmp8
tmp18 = tmp17 * tmp17
tmp19 = tmp16 + tmp18
tmp20 = tmp19 / tmp7
tmp21 = 1e-05
tmp22 = tmp20 + tmp21
tmp23 = libdevice.rsqrt(tmp22)
tl.store(out_ptr0 + (x0), tmp8, xmask)
tl.store(out_ptr1 + (x0), tmp23, xmask)
''', device_str='cuda')
# kernel path: runs/run_shard_1/inductor_cache/gn/cgn3tpasui6fv3xxba47jzqip7bgipyrz4akedry64e2fx5k4rvd.py
# Topologically Sorted Source Nodes: [x], Original ATen: [aten.native_layer_norm]
# Source node to ATen node mapping:
# x => add, add_1, mul, mul_1, rsqrt, sub, var_mean
# Graph fragment:
# %var_mean : [num_users=2] = call_function[target=torch.ops.aten.var_mean.correction](args = (%primals_3, [3]), kwargs = {correction: 0, keepdim: True})
# %add : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%getitem, 1e-05), kwargs = {})
# %rsqrt : [num_users=1] = call_function[target=torch.ops.aten.rsqrt.default](args = (%add,), kwargs = {})
# %sub : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (%primals_3, %getitem_1), kwargs = {})
# %mul : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%sub, %rsqrt), kwargs = {})
# %mul_1 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%mul, %primals_1), kwargs = {})
# %add_1 : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%mul_1, %primals_2), kwargs = {})
triton_poi_fused_native_layer_norm_1 = async_compile.triton('triton_poi_fused_native_layer_norm_1', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[256],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: '*fp32', 4: '*fp32', 5: '*fp32', 6: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=90, major=9, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=132), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3, 4, 5, 6), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_native_layer_norm_1', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 5, 'num_reduction': 0, 'backend_hash': 'B098E03CDA7B8ADC90DAFFDF24A2956451D1B13F297756A5DCC209498AA53705', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_native_layer_norm_1(in_ptr0, in_ptr1, in_ptr2, in_ptr3, in_ptr4, out_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 256
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x2 = xindex
x1 = (xindex // 4)
x0 = xindex % 4
tmp0 = tl.load(in_ptr0 + (x2), xmask)
tmp1 = tl.load(in_ptr1 + (x1), xmask, eviction_policy='evict_last')
tmp3 = tl.load(in_ptr2 + (x1), xmask, eviction_policy='evict_last')
tmp5 = tl.load(in_ptr3 + (x0), xmask, eviction_policy='evict_last')
tmp7 = tl.load(in_ptr4 + (x0), xmask, eviction_policy='evict_last')
tmp2 = tmp0 - tmp1
tmp4 = tmp2 * tmp3
tmp6 = tmp4 * tmp5
tmp8 = tmp6 + tmp7
tl.store(out_ptr0 + (x2), tmp8, xmask)
''', device_str='cuda')
# kernel path: runs/run_shard_1/inductor_cache/p3/cp3utc5v23sn2cyk7duypeqnubya7xxdpwoonppg3f7ngk5462gb.py
# Topologically Sorted Source Nodes: [sigmoid, x_2], Original ATen: [aten.sigmoid, aten.mul]
# Source node to ATen node mapping:
# sigmoid => sigmoid
# x_2 => mul_2
# Graph fragment:
# %sigmoid : [num_users=1] = call_function[target=torch.ops.aten.sigmoid.default](args = (%view_1,), kwargs = {})
# %mul_2 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%view_1, %sigmoid), kwargs = {})
triton_poi_fused_mul_sigmoid_2 = async_compile.triton('triton_poi_fused_mul_sigmoid_2', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[256],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=90, major=9, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=132), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_mul_sigmoid_2', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 1, 'num_reduction': 0, 'backend_hash': 'B098E03CDA7B8ADC90DAFFDF24A2956451D1B13F297756A5DCC209498AA53705', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_mul_sigmoid_2(in_ptr0, out_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 256
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex
tmp0 = tl.load(in_ptr0 + (x0), xmask)
tmp1 = tl.sigmoid(tmp0)
tmp2 = tmp0 * tmp1
tl.store(out_ptr0 + (x0), tmp2, xmask)
''', device_str='cuda')
async_compile.wait(globals())
del async_compile
def call(args):
primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7 = args
args.clear()
assert_size_stride(primals_1, (4, ), (1, ))
assert_size_stride(primals_2, (4, ), (1, ))
assert_size_stride(primals_3, (4, 4, 4, 4), (64, 16, 4, 1))
assert_size_stride(primals_4, (4, 4), (4, 1))
assert_size_stride(primals_5, (4, ), (1, ))
assert_size_stride(primals_6, (4, 4), (4, 1))
assert_size_stride(primals_7, (4, ), (1, ))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((4, 4, 4, 1), (16, 4, 1, 64), torch.float32)
buf1 = empty_strided_cuda((4, 4, 4, 1), (16, 4, 1, 64), torch.float32)
# Topologically Sorted Source Nodes: [x], Original ATen: [aten.native_layer_norm]
stream0 = get_raw_stream(0)
triton_poi_fused_native_layer_norm_0.run(primals_3, buf0, buf1, 64, grid=grid(64), stream=stream0)
buf2 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32)
# Topologically Sorted Source Nodes: [x], Original ATen: [aten.native_layer_norm]
triton_poi_fused_native_layer_norm_1.run(primals_3, buf0, buf1, primals_1, primals_2, buf2, 256, grid=grid(256), stream=stream0)
del buf0
del buf1
del primals_1
del primals_2
buf3 = empty_strided_cuda((64, 4), (4, 1), torch.float32)
# Topologically Sorted Source Nodes: [x_1], Original ATen: [aten.addmm]
extern_kernels.addmm(primals_5, reinterpret_tensor(buf2, (64, 4), (4, 1), 0), reinterpret_tensor(primals_4, (4, 4), (1, 4), 0), alpha=1, beta=1, out=buf3)
del primals_5
buf4 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32)
# Topologically Sorted Source Nodes: [sigmoid, x_2], Original ATen: [aten.sigmoid, aten.mul]
triton_poi_fused_mul_sigmoid_2.run(buf3, buf4, 256, grid=grid(256), stream=stream0)
buf5 = empty_strided_cuda((64, 4), (4, 1), torch.float32)
# Topologically Sorted Source Nodes: [x_4], Original ATen: [aten.addmm]
extern_kernels.addmm(primals_7, reinterpret_tensor(buf4, (64, 4), (4, 1), 0), reinterpret_tensor(primals_6, (4, 4), (1, 4), 0), alpha=1, beta=1, out=buf5)
del primals_7
return (reinterpret_tensor(buf5, (4, 4, 4, 4), (64, 16, 4, 1), 0), primals_3, reinterpret_tensor(buf2, (64, 4), (4, 1), 0), buf3, reinterpret_tensor(buf4, (64, 4), (4, 1), 0), primals_6, primals_4, )
def benchmark_compiled_module(times=10, repeat=10):
from torch._dynamo.testing import rand_strided
from torch._inductor.utils import print_performance
primals_1 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32)
primals_2 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32)
primals_3 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32)
primals_4 = rand_strided((4, 4), (4, 1), device='cuda:0', dtype=torch.float32)
primals_5 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32)
primals_6 = rand_strided((4, 4), (4, 1), device='cuda:0', dtype=torch.float32)
primals_7 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32)
fn = lambda: call([primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7])
return print_performance(fn, times=times, repeat=repeat)
if __name__ == "__main__":
from torch._inductor.wrapper_benchmark import compiled_module_main
compiled_module_main('None', benchmark_compiled_module)
|
import torch
from torch._inductor.select_algorithm import extern_kernels
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
from torch._inductor.runtime.triton_helpers import libdevice
import torch.nn as nn
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
@triton.jit
def triton_poi_fused_native_layer_norm_0(in_ptr0, out_ptr0, out_ptr1,
xnumel, XBLOCK: tl.constexpr):
xnumel = 64
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex
tmp0 = tl.load(in_ptr0 + 4 * x0, xmask, eviction_policy='evict_last')
tmp1 = tl.load(in_ptr0 + (1 + 4 * x0), xmask, eviction_policy='evict_last')
tmp3 = tl.load(in_ptr0 + (2 + 4 * x0), xmask, eviction_policy='evict_last')
tmp5 = tl.load(in_ptr0 + (3 + 4 * x0), xmask, eviction_policy='evict_last')
tmp2 = tmp0 + tmp1
tmp4 = tmp2 + tmp3
tmp6 = tmp4 + tmp5
tmp7 = 4.0
tmp8 = tmp6 / tmp7
tmp9 = tmp0 - tmp8
tmp10 = tmp9 * tmp9
tmp11 = tmp1 - tmp8
tmp12 = tmp11 * tmp11
tmp13 = tmp10 + tmp12
tmp14 = tmp3 - tmp8
tmp15 = tmp14 * tmp14
tmp16 = tmp13 + tmp15
tmp17 = tmp5 - tmp8
tmp18 = tmp17 * tmp17
tmp19 = tmp16 + tmp18
tmp20 = tmp19 / tmp7
tmp21 = 1e-05
tmp22 = tmp20 + tmp21
tmp23 = libdevice.rsqrt(tmp22)
tl.store(out_ptr0 + x0, tmp8, xmask)
tl.store(out_ptr1 + x0, tmp23, xmask)
@triton.jit
def triton_poi_fused_native_layer_norm_1(in_ptr0, in_ptr1, in_ptr2, in_ptr3,
in_ptr4, out_ptr0, xnumel, XBLOCK: tl.constexpr):
xnumel = 256
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x2 = xindex
x1 = xindex // 4
x0 = xindex % 4
tmp0 = tl.load(in_ptr0 + x2, xmask)
tmp1 = tl.load(in_ptr1 + x1, xmask, eviction_policy='evict_last')
tmp3 = tl.load(in_ptr2 + x1, xmask, eviction_policy='evict_last')
tmp5 = tl.load(in_ptr3 + x0, xmask, eviction_policy='evict_last')
tmp7 = tl.load(in_ptr4 + x0, xmask, eviction_policy='evict_last')
tmp2 = tmp0 - tmp1
tmp4 = tmp2 * tmp3
tmp6 = tmp4 * tmp5
tmp8 = tmp6 + tmp7
tl.store(out_ptr0 + x2, tmp8, xmask)
@triton.jit
def triton_poi_fused_mul_sigmoid_2(in_ptr0, out_ptr0, xnumel, XBLOCK: tl.
constexpr):
xnumel = 256
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex
tmp0 = tl.load(in_ptr0 + x0, xmask)
tmp1 = tl.sigmoid(tmp0)
tmp2 = tmp0 * tmp1
tl.store(out_ptr0 + x0, tmp2, xmask)
def call(args):
(primals_1, primals_2, primals_3, primals_4, primals_5, primals_6,
primals_7) = args
args.clear()
assert_size_stride(primals_1, (4,), (1,))
assert_size_stride(primals_2, (4,), (1,))
assert_size_stride(primals_3, (4, 4, 4, 4), (64, 16, 4, 1))
assert_size_stride(primals_4, (4, 4), (4, 1))
assert_size_stride(primals_5, (4,), (1,))
assert_size_stride(primals_6, (4, 4), (4, 1))
assert_size_stride(primals_7, (4,), (1,))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((4, 4, 4, 1), (16, 4, 1, 64), torch.float32)
buf1 = empty_strided_cuda((4, 4, 4, 1), (16, 4, 1, 64), torch.float32)
get_raw_stream(0)
triton_poi_fused_native_layer_norm_0[grid(64)](primals_3, buf0,
buf1, 64, XBLOCK=64, num_warps=1, num_stages=1)
buf2 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32)
triton_poi_fused_native_layer_norm_1[grid(256)](primals_3, buf0,
buf1, primals_1, primals_2, buf2, 256, XBLOCK=128, num_warps=4,
num_stages=1)
del buf0
del buf1
del primals_1
del primals_2
buf3 = empty_strided_cuda((64, 4), (4, 1), torch.float32)
extern_kernels.addmm(primals_5, reinterpret_tensor(buf2, (64, 4), (
4, 1), 0), reinterpret_tensor(primals_4, (4, 4), (1, 4), 0),
alpha=1, beta=1, out=buf3)
del primals_5
buf4 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32)
triton_poi_fused_mul_sigmoid_2[grid(256)](buf3, buf4, 256, XBLOCK=
256, num_warps=4, num_stages=1)
buf5 = empty_strided_cuda((64, 4), (4, 1), torch.float32)
extern_kernels.addmm(primals_7, reinterpret_tensor(buf4, (64, 4), (
4, 1), 0), reinterpret_tensor(primals_6, (4, 4), (1, 4), 0),
alpha=1, beta=1, out=buf5)
del primals_7
return reinterpret_tensor(buf5, (4, 4, 4, 4), (64, 16, 4, 1), 0
), primals_3, reinterpret_tensor(buf2, (64, 4), (4, 1), 0
), buf3, reinterpret_tensor(buf4, (64, 4), (4, 1), 0
), primals_6, primals_4
def swish(x):
return x * torch.sigmoid(x)
class FFModuleNew(nn.Module):
def __init__(self, d_model, h_size, dropout=0.2):
super(FFModuleNew, self).__init__()
self.layer_norm = nn.LayerNorm(d_model)
self.layer1 = nn.Linear(d_model, h_size)
self.swish_activation = swish
self.dropout = nn.Dropout(dropout)
self.layer2 = nn.Linear(h_size, d_model)
def forward(self, input_0):
primals_1 = self.layer_norm.weight
primals_2 = self.layer_norm.bias
primals_4 = self.layer1.weight
primals_5 = self.layer1.bias
primals_6 = self.layer2.weight
primals_7 = self.layer2.bias
primals_3 = input_0
output = call([primals_1, primals_2, primals_3, primals_4,
primals_5, primals_6, primals_7])
return output[0]
|
Masao-Someki/Conformer
|
FFModule
| false | 8,529 |
[
"MIT"
] | 18 |
866da9ae05a6d07304775c592caac8d516f67c92
|
https://github.com/Masao-Someki/Conformer/tree/866da9ae05a6d07304775c592caac8d516f67c92
|
CircleLoss
|
import torch
from torch import Tensor
from torch import nn
class CircleLoss(nn.Module):
def __init__(self, m: 'float', gamma: 'float') ->None:
super(CircleLoss, self).__init__()
self.m = m
self.gamma = gamma
self.soft_plus = nn.Softplus()
def forward(self, sp: 'Tensor', sn: 'Tensor') ->Tensor:
ap = torch.clamp_min(-sp.detach() + 1 + self.m, min=0.0)
an = torch.clamp_min(sn.detach() + self.m, min=0.0)
delta_p = 1 - self.m
delta_n = self.m
logit_p = -ap * (sp - delta_p) * self.gamma
logit_n = an * (sn - delta_n) * self.gamma
loss = self.soft_plus(torch.logsumexp(logit_n, dim=0) + torch.
logsumexp(logit_p, dim=0))
return loss
def get_inputs():
return [torch.rand([4, 4, 4, 4]), torch.rand([4, 4, 4, 4])]
def get_init_inputs():
return [[], {'m': 4, 'gamma': 4}]
|
import torch
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
from torch._inductor.runtime import triton_helpers
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch import nn
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
@triton.jit
def triton_poi_fused_add_clamp_min_logsumexp_mul_neg_softplus_sub_0(in_out_ptr0
, in_ptr0, in_ptr1, xnumel, XBLOCK: tl.constexpr):
xnumel = 64
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex
tmp0 = tl.load(in_ptr0 + x0, xmask)
tmp8 = tl.load(in_ptr0 + (64 + x0), xmask)
tmp15 = tl.load(in_ptr0 + (128 + x0), xmask)
tmp22 = tl.load(in_ptr0 + (192 + x0), xmask)
tmp44 = tl.load(in_ptr1 + x0, xmask)
tmp55 = tl.load(in_ptr1 + (64 + x0), xmask)
tmp65 = tl.load(in_ptr1 + (128 + x0), xmask)
tmp75 = tl.load(in_ptr1 + (192 + x0), xmask)
tmp1 = 4.0
tmp2 = tmp0 + tmp1
tmp3 = 0.0
tmp4 = triton_helpers.maximum(tmp2, tmp3)
tmp5 = tmp0 - tmp1
tmp6 = tmp4 * tmp5
tmp7 = tmp6 * tmp1
tmp9 = tmp8 + tmp1
tmp10 = triton_helpers.maximum(tmp9, tmp3)
tmp11 = tmp8 - tmp1
tmp12 = tmp10 * tmp11
tmp13 = tmp12 * tmp1
tmp14 = triton_helpers.maximum(tmp7, tmp13)
tmp16 = tmp15 + tmp1
tmp17 = triton_helpers.maximum(tmp16, tmp3)
tmp18 = tmp15 - tmp1
tmp19 = tmp17 * tmp18
tmp20 = tmp19 * tmp1
tmp21 = triton_helpers.maximum(tmp14, tmp20)
tmp23 = tmp22 + tmp1
tmp24 = triton_helpers.maximum(tmp23, tmp3)
tmp25 = tmp22 - tmp1
tmp26 = tmp24 * tmp25
tmp27 = tmp26 * tmp1
tmp28 = triton_helpers.maximum(tmp21, tmp27)
tmp29 = tl_math.abs(tmp28)
tmp30 = float('inf')
tmp31 = tmp29 == tmp30
tmp32 = tl.where(tmp31, tmp3, tmp28)
tmp33 = tmp7 - tmp32
tmp34 = tl_math.exp(tmp33)
tmp35 = tmp13 - tmp32
tmp36 = tl_math.exp(tmp35)
tmp37 = tmp34 + tmp36
tmp38 = tmp20 - tmp32
tmp39 = tl_math.exp(tmp38)
tmp40 = tmp37 + tmp39
tmp41 = tmp27 - tmp32
tmp42 = tl_math.exp(tmp41)
tmp43 = tmp40 + tmp42
tmp45 = -tmp44
tmp46 = 1.0
tmp47 = tmp45 + tmp46
tmp48 = tmp47 + tmp1
tmp49 = triton_helpers.maximum(tmp48, tmp3)
tmp50 = -tmp49
tmp51 = -3.0
tmp52 = tmp44 - tmp51
tmp53 = tmp50 * tmp52
tmp54 = tmp53 * tmp1
tmp56 = -tmp55
tmp57 = tmp56 + tmp46
tmp58 = tmp57 + tmp1
tmp59 = triton_helpers.maximum(tmp58, tmp3)
tmp60 = -tmp59
tmp61 = tmp55 - tmp51
tmp62 = tmp60 * tmp61
tmp63 = tmp62 * tmp1
tmp64 = triton_helpers.maximum(tmp54, tmp63)
tmp66 = -tmp65
tmp67 = tmp66 + tmp46
tmp68 = tmp67 + tmp1
tmp69 = triton_helpers.maximum(tmp68, tmp3)
tmp70 = -tmp69
tmp71 = tmp65 - tmp51
tmp72 = tmp70 * tmp71
tmp73 = tmp72 * tmp1
tmp74 = triton_helpers.maximum(tmp64, tmp73)
tmp76 = -tmp75
tmp77 = tmp76 + tmp46
tmp78 = tmp77 + tmp1
tmp79 = triton_helpers.maximum(tmp78, tmp3)
tmp80 = -tmp79
tmp81 = tmp75 - tmp51
tmp82 = tmp80 * tmp81
tmp83 = tmp82 * tmp1
tmp84 = triton_helpers.maximum(tmp74, tmp83)
tmp85 = tl_math.abs(tmp84)
tmp86 = tmp85 == tmp30
tmp87 = tl.where(tmp86, tmp3, tmp84)
tmp88 = tmp54 - tmp87
tmp89 = tl_math.exp(tmp88)
tmp90 = tmp63 - tmp87
tmp91 = tl_math.exp(tmp90)
tmp92 = tmp89 + tmp91
tmp93 = tmp73 - tmp87
tmp94 = tl_math.exp(tmp93)
tmp95 = tmp92 + tmp94
tmp96 = tmp83 - tmp87
tmp97 = tl_math.exp(tmp96)
tmp98 = tmp95 + tmp97
tmp99 = tl_math.log(tmp43)
tmp100 = tmp99 + tmp32
tmp101 = tl_math.log(tmp98)
tmp102 = tmp101 + tmp87
tmp103 = tmp100 + tmp102
tmp104 = tmp103 * tmp46
tmp105 = 20.0
tmp106 = tmp104 > tmp105
tmp107 = tl_math.exp(tmp104)
tmp108 = libdevice.log1p(tmp107)
tmp109 = tmp108 * tmp46
tmp110 = tl.where(tmp106, tmp103, tmp109)
tl.store(in_out_ptr0 + x0, tmp110, xmask)
def call(args):
arg0_1, arg1_1 = args
args.clear()
assert_size_stride(arg0_1, (4, 4, 4, 4), (64, 16, 4, 1))
assert_size_stride(arg1_1, (4, 4, 4, 4), (64, 16, 4, 1))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf2 = empty_strided_cuda((4, 4, 4), (16, 4, 1), torch.float32)
buf5 = buf2
del buf2
get_raw_stream(0)
triton_poi_fused_add_clamp_min_logsumexp_mul_neg_softplus_sub_0[grid
(64)](buf5, arg1_1, arg0_1, 64, XBLOCK=64, num_warps=1,
num_stages=1)
del arg0_1
del arg1_1
return buf5,
class CircleLossNew(nn.Module):
def __init__(self, m: 'float', gamma: 'float') ->None:
super(CircleLossNew, self).__init__()
self.m = m
self.gamma = gamma
self.soft_plus = nn.Softplus()
def forward(self, input_0, input_1):
arg0_1 = input_0
arg1_1 = input_1
output = call([arg0_1, arg1_1])
return output[0]
|
fabiozappo/Person_reID_tensorrt
|
CircleLoss
| false | 6,675 |
[
"Apache-2.0"
] | 1 |
164441f35777698274e7664a9aefcc8d54467dc3
|
https://github.com/fabiozappo/Person_reID_tensorrt/tree/164441f35777698274e7664a9aefcc8d54467dc3
|
MSE
|
# AOT ID: ['0_inference']
from ctypes import c_void_p, c_long, c_int
import torch
import math
import random
import os
import tempfile
from math import inf, nan
from torch._inductor.hooks import run_intermediate_hooks
from torch._inductor.utils import maybe_profile
from torch._inductor.codegen.memory_planning import _align as align
from torch import device, empty_strided
from torch._inductor.async_compile import AsyncCompile
from torch._inductor.select_algorithm import extern_kernels
from torch._inductor.codegen.multi_kernel import MultiKernelCall
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
aten = torch.ops.aten
inductor_ops = torch.ops.inductor
_quantized = torch.ops._quantized
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
alloc_from_pool = torch.ops.inductor._alloc_from_pool
async_compile = AsyncCompile()
# kernel path: runs/run_shard_6/inductor_cache/6a/c6at7k6mlvvyb6bhxconu56vmlljdfsi5u47zlmh7d3irv3tnmhl.py
# Topologically Sorted Source Nodes: [neg, diffs, pow_1, sum_1, mse], Original ATen: [aten.neg, aten.add, aten.pow, aten.sum, aten.div]
# Source node to ATen node mapping:
# diffs => add
# mse => div
# neg => neg
# pow_1 => pow_1
# sum_1 => sum_1
# Graph fragment:
# %neg : [num_users=1] = call_function[target=torch.ops.aten.neg.default](args = (%arg0_1,), kwargs = {})
# %add : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%arg1_1, %neg), kwargs = {})
# %pow_1 : [num_users=1] = call_function[target=torch.ops.aten.pow.Tensor_Scalar](args = (%add, 2), kwargs = {})
# %sum_1 : [num_users=1] = call_function[target=torch.ops.aten.sum.default](args = (%pow_1,), kwargs = {})
# %div : [num_users=1] = call_function[target=torch.ops.aten.div.Tensor](args = (%sum_1, 256), kwargs = {})
triton_per_fused_add_div_neg_pow_sum_0 = async_compile.triton('triton_per_fused_add_div_neg_pow_sum_0', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.persistent_reduction(
size_hints=[1, 256],
reduction_hint=ReductionHint.INNER,
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: 'i32', 4: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {3: 1}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 4), equal_to_1=(3,))]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_per_fused_add_div_neg_pow_sum_0', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': True, 'num_load': 2, 'num_reduction': 1, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}
)
@triton.jit
def triton_per_fused_add_div_neg_pow_sum_0(in_out_ptr0, in_ptr0, in_ptr1, xnumel, rnumel):
xnumel = 1
XBLOCK: tl.constexpr = 1
rnumel = 256
RBLOCK: tl.constexpr = 256
xoffset = tl.program_id(0) * XBLOCK
xindex = tl.full([1], xoffset, tl.int32)
xmask = tl.full([RBLOCK], True, tl.int1)
rindex = tl.arange(0, RBLOCK)[:]
roffset = 0
rmask = tl.full([RBLOCK], True, tl.int1)
r0 = rindex
tmp0 = tl.load(in_ptr0 + (r0), None)
tmp1 = tl.load(in_ptr1 + (r0), None)
tmp2 = -tmp1
tmp3 = tmp0 + tmp2
tmp4 = tmp3 * tmp3
tmp5 = tl.broadcast_to(tmp4, [RBLOCK])
tmp7 = triton_helpers.promote_to_tensor(tl.sum(tmp5, 0))
tmp8 = 0.00390625
tmp9 = tmp7 * tmp8
tl.debug_barrier()
tl.store(in_out_ptr0 + (tl.full([1], 0, tl.int32)), tmp9, None)
''', device_str='cuda')
async_compile.wait(globals())
del async_compile
def call(args):
arg0_1, arg1_1 = args
args.clear()
assert_size_stride(arg0_1, (4, 4, 4, 4), (64, 16, 4, 1))
assert_size_stride(arg1_1, (4, 4, 4, 4), (64, 16, 4, 1))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((), (), torch.float32)
buf1 = buf0; del buf0 # reuse
# Topologically Sorted Source Nodes: [neg, diffs, pow_1, sum_1, mse], Original ATen: [aten.neg, aten.add, aten.pow, aten.sum, aten.div]
stream0 = get_raw_stream(0)
triton_per_fused_add_div_neg_pow_sum_0.run(buf1, arg1_1, arg0_1, 1, 256, grid=grid(1), stream=stream0)
del arg0_1
del arg1_1
return (buf1, )
def benchmark_compiled_module(times=10, repeat=10):
from torch._dynamo.testing import rand_strided
from torch._inductor.utils import print_performance
arg0_1 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32)
arg1_1 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32)
fn = lambda: call([arg0_1, arg1_1])
return print_performance(fn, times=times, repeat=repeat)
if __name__ == "__main__":
from torch._inductor.wrapper_benchmark import compiled_module_main
compiled_module_main('None', benchmark_compiled_module)
|
import torch
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
from torch._inductor.runtime import triton_helpers
import torch.nn as nn
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
@triton.jit
def triton_per_fused_add_div_neg_pow_sum_0(in_out_ptr0, in_ptr0, in_ptr1,
xnumel, rnumel):
XBLOCK: tl.constexpr = 1
RBLOCK: tl.constexpr = 256
xoffset = tl.program_id(0) * XBLOCK
tl.full([1], xoffset, tl.int32)
tl.full([RBLOCK], True, tl.int1)
rindex = tl.arange(0, RBLOCK)[:]
tl.full([RBLOCK], True, tl.int1)
r0 = rindex
tmp0 = tl.load(in_ptr0 + r0, None)
tmp1 = tl.load(in_ptr1 + r0, None)
tmp2 = -tmp1
tmp3 = tmp0 + tmp2
tmp4 = tmp3 * tmp3
tmp5 = tl.broadcast_to(tmp4, [RBLOCK])
tmp7 = triton_helpers.promote_to_tensor(tl.sum(tmp5, 0))
tmp8 = 0.00390625
tmp9 = tmp7 * tmp8
tl.debug_barrier()
tl.store(in_out_ptr0 + tl.full([1], 0, tl.int32), tmp9, None)
def call(args):
arg0_1, arg1_1 = args
args.clear()
assert_size_stride(arg0_1, (4, 4, 4, 4), (64, 16, 4, 1))
assert_size_stride(arg1_1, (4, 4, 4, 4), (64, 16, 4, 1))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((), (), torch.float32)
buf1 = buf0
del buf0
get_raw_stream(0)
triton_per_fused_add_div_neg_pow_sum_0[grid(1)](buf1, arg1_1,
arg0_1, 1, 256, num_warps=2, num_stages=1)
del arg0_1
del arg1_1
return buf1,
class MSENew(nn.Module):
def __init__(self):
super(MSENew, self).__init__()
def forward(self, input_0, input_1):
arg0_1 = input_0
arg1_1 = input_1
output = call([arg0_1, arg1_1])
return output[0]
|
Clement25/Multimodal-Attack
|
MSE
| false | 285 |
[
"MIT"
] | 0 |
bd04ee099d457e87b6e6ee918c03f65a589bcb9a
|
https://github.com/Clement25/Multimodal-Attack/tree/bd04ee099d457e87b6e6ee918c03f65a589bcb9a
|
Transition
|
import torch
import torch.nn as nn
import torch.nn.functional as F
class Transition(nn.Module):
def __init__(self, in_planes, out_planes):
super(Transition, self).__init__()
self.conv = nn.Conv2d(in_planes, out_planes, kernel_size=1, bias=True)
def forward(self, x):
out = self.conv(F.relu(x))
out = F.avg_pool2d(out, 2)
return out
def get_inputs():
return [torch.rand([4, 4, 4, 4])]
def get_init_inputs():
return [[], {'in_planes': 4, 'out_planes': 4}]
|
import torch
from torch._inductor.select_algorithm import extern_kernels
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
from torch._inductor.runtime import triton_helpers
import torch.nn as nn
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
@triton.jit
def triton_poi_fused_relu_0(in_ptr0, out_ptr0, xnumel, XBLOCK: tl.constexpr):
xnumel = 256
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex
tmp0 = tl.load(in_ptr0 + x0, xmask)
tmp1 = tl.full([1], 0, tl.int32)
tmp2 = triton_helpers.maximum(tmp1, tmp0)
tl.store(out_ptr0 + x0, tmp2, xmask)
@triton.jit
def triton_poi_fused_convolution_1(in_out_ptr0, in_ptr0, xnumel, XBLOCK: tl
.constexpr):
xnumel = 256
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x3 = xindex
x1 = xindex // 16 % 4
tmp0 = tl.load(in_out_ptr0 + x3, xmask)
tmp1 = tl.load(in_ptr0 + x1, xmask, eviction_policy='evict_last')
tmp2 = tmp0 + tmp1
tl.store(in_out_ptr0 + x3, tmp2, xmask)
@triton.jit
def triton_poi_fused_avg_pool2d_2(in_ptr0, out_ptr0, xnumel, XBLOCK: tl.
constexpr):
xnumel = 64
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex % 2
x1 = xindex // 2
x2 = xindex
tmp0 = tl.load(in_ptr0 + (2 * x0 + 8 * x1), xmask, eviction_policy=
'evict_last')
tmp1 = tl.load(in_ptr0 + (1 + 2 * x0 + 8 * x1), xmask, eviction_policy=
'evict_last')
tmp3 = tl.load(in_ptr0 + (4 + 2 * x0 + 8 * x1), xmask, eviction_policy=
'evict_last')
tmp5 = tl.load(in_ptr0 + (5 + 2 * x0 + 8 * x1), xmask, eviction_policy=
'evict_last')
tmp2 = tmp1 + tmp0
tmp4 = tmp3 + tmp2
tmp6 = tmp5 + tmp4
tmp7 = 0.25
tmp8 = tmp6 * tmp7
tl.store(out_ptr0 + x2, tmp8, xmask)
def call(args):
primals_1, primals_2, primals_3 = args
args.clear()
assert_size_stride(primals_1, (4, 4, 4, 4), (64, 16, 4, 1))
assert_size_stride(primals_2, (4, 4, 1, 1), (4, 1, 1, 1))
assert_size_stride(primals_3, (4,), (1,))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32)
get_raw_stream(0)
triton_poi_fused_relu_0[grid(256)](primals_1, buf0, 256, XBLOCK=256,
num_warps=4, num_stages=1)
del primals_1
buf1 = extern_kernels.convolution(buf0, primals_2, stride=(1, 1),
padding=(0, 0), dilation=(1, 1), transposed=False,
output_padding=(0, 0), groups=1, bias=None)
assert_size_stride(buf1, (4, 4, 4, 4), (64, 16, 4, 1))
buf2 = buf1
del buf1
triton_poi_fused_convolution_1[grid(256)](buf2, primals_3, 256,
XBLOCK=256, num_warps=4, num_stages=1)
del primals_3
buf3 = empty_strided_cuda((4, 4, 2, 2), (16, 4, 2, 1), torch.float32)
triton_poi_fused_avg_pool2d_2[grid(64)](buf2, buf3, 64, XBLOCK=64,
num_warps=1, num_stages=1)
return buf3, primals_2, buf0, buf2
class TransitionNew(nn.Module):
def __init__(self, in_planes, out_planes):
super(TransitionNew, self).__init__()
self.conv = nn.Conv2d(in_planes, out_planes, kernel_size=1, bias=True)
def forward(self, input_0):
primals_2 = self.conv.weight
primals_3 = self.conv.bias
primals_1 = input_0
output = call([primals_1, primals_2, primals_3])
return output[0]
|
Mahoumaru/auto_LiRPA
|
Transition
| false | 11,673 |
[
"BSD-3-Clause"
] | 0 |
b03a6c36eb1b921726778359d6d2b94e0cd7e480
|
https://github.com/Mahoumaru/auto_LiRPA/tree/b03a6c36eb1b921726778359d6d2b94e0cd7e480
|
BiaffineScorer
|
import torch
import torch.nn as nn
class BiaffineScorer(nn.Module):
def __init__(self, input1_size, input2_size, output_size):
super().__init__()
self.W_bilin = nn.Bilinear(input1_size + 1, input2_size + 1,
output_size)
self.W_bilin.weight.data.zero_()
self.W_bilin.bias.data.zero_()
def forward(self, input1, input2):
input1 = torch.cat([input1, input1.new_ones(*input1.size()[:-1], 1)
], len(input1.size()) - 1)
input2 = torch.cat([input2, input2.new_ones(*input2.size()[:-1], 1)
], len(input2.size()) - 1)
return self.W_bilin(input1, input2)
def get_inputs():
return [torch.rand([4, 4, 4, 4]), torch.rand([4, 4, 4, 4])]
def get_init_inputs():
return [[], {'input1_size': 4, 'input2_size': 4, 'output_size': 4}]
|
import torch
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
import torch.nn as nn
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
@triton.jit
def triton_poi_fused_cat_0(in_ptr0, out_ptr0, xnumel, XBLOCK: tl.constexpr):
xnumel = 320
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex % 5
x1 = xindex // 5
x2 = xindex
tmp0 = x0
tl.full([1], 0, tl.int64)
tmp3 = tl.full([1], 4, tl.int64)
tmp4 = tmp0 < tmp3
tmp5 = tl.load(in_ptr0 + (4 * x1 + x0), tmp4 & xmask, eviction_policy=
'evict_last', other=0.0)
tmp6 = tmp0 >= tmp3
tl.full([1], 5, tl.int64)
tmp9 = 1.0
tmp10 = tl.full(tmp9.shape, 0.0, tmp9.dtype)
tmp11 = tl.where(tmp6, tmp9, tmp10)
tmp12 = tl.where(tmp4, tmp5, tmp11)
tl.store(out_ptr0 + x2, tmp12, xmask)
@triton.jit
def triton_poi_fused_add_1(in_out_ptr0, in_ptr0, xnumel, XBLOCK: tl.constexpr):
xnumel = 256
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x2 = xindex
x0 = xindex % 4
tmp0 = tl.load(in_out_ptr0 + x2, xmask)
tmp1 = tl.load(in_ptr0 + x0, xmask, eviction_policy='evict_last')
tmp2 = tmp0 + tmp1
tl.store(in_out_ptr0 + x2, tmp2, xmask)
def call(args):
primals_1, primals_2, primals_3, primals_4 = args
args.clear()
assert_size_stride(primals_1, (4, 4, 4, 4), (64, 16, 4, 1))
assert_size_stride(primals_2, (4, 4, 4, 4), (64, 16, 4, 1))
assert_size_stride(primals_3, (4, 5, 5), (25, 5, 1))
assert_size_stride(primals_4, (4,), (1,))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((4, 4, 4, 5), (80, 20, 5, 1), torch.float32)
get_raw_stream(0)
triton_poi_fused_cat_0[grid(320)](primals_1, buf0, 320, XBLOCK=256,
num_warps=4, num_stages=1)
del primals_1
buf1 = empty_strided_cuda((4, 4, 4, 5), (80, 20, 5, 1), torch.float32)
triton_poi_fused_cat_0[grid(320)](primals_2, buf1, 320, XBLOCK=256,
num_warps=4, num_stages=1)
del primals_2
buf2 = torch.ops.aten._trilinear.default(reinterpret_tensor(buf0, (
64, 5), (5, 1), 0), primals_3, reinterpret_tensor(buf1, (64, 5),
(5, 1), 0), [1, 3], [0], [1, 2], [2, 3])
del primals_3
buf3 = buf2
del buf2
buf4 = reinterpret_tensor(buf3, (4, 4, 4, 4), (64, 16, 4, 1), 0)
del buf3
triton_poi_fused_add_1[grid(256)](buf4, primals_4, 256, XBLOCK=128,
num_warps=4, num_stages=1)
del primals_4
return buf4, reinterpret_tensor(buf0, (64, 5), (5, 1), 0
), reinterpret_tensor(buf1, (64, 5), (5, 1), 0)
class BiaffineScorerNew(nn.Module):
def __init__(self, input1_size, input2_size, output_size):
super().__init__()
self.W_bilin = nn.Bilinear(input1_size + 1, input2_size + 1,
output_size)
self.W_bilin.weight.data.zero_()
self.W_bilin.bias.data.zero_()
def forward(self, input_0, input_1):
primals_3 = self.W_bilin.weight
primals_4 = self.W_bilin.bias
primals_1 = input_0
primals_2 = input_1
output = call([primals_1, primals_2, primals_3, primals_4])
return output[0]
|
NLPInBLCU/BiaffineDependencyParsing
|
BiaffineScorer
| false | 14,074 |
[
"MIT"
] | 67 |
40b133648c747957dacd59916add0403371fe680
|
https://github.com/NLPInBLCU/BiaffineDependencyParsing/tree/40b133648c747957dacd59916add0403371fe680
|
SelfAttention
|
# AOT ID: ['0_forward']
from ctypes import c_void_p, c_long, c_int
import torch
import math
import random
import os
import tempfile
from math import inf, nan
from torch._inductor.hooks import run_intermediate_hooks
from torch._inductor.utils import maybe_profile
from torch._inductor.codegen.memory_planning import _align as align
from torch import device, empty_strided
from torch._inductor.async_compile import AsyncCompile
from torch._inductor.select_algorithm import extern_kernels
from torch._inductor.codegen.multi_kernel import MultiKernelCall
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
aten = torch.ops.aten
inductor_ops = torch.ops.inductor
_quantized = torch.ops._quantized
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
alloc_from_pool = torch.ops.inductor._alloc_from_pool
async_compile = AsyncCompile()
# kernel path: runs/run_shard_0/inductor_cache/qw/cqw7yoyglmtjad3kirznl5odetqfs3k6pjtnfdbzklyhsdvuvgft.py
# Topologically Sorted Source Nodes: [multi_head_attention_forward], Original ATen: [aten.mul]
# Source node to ATen node mapping:
# multi_head_attention_forward => mul
# Graph fragment:
# %mul : [num_users=2] = call_function[target=torch.ops.aten.mul.Tensor](args = (%permute_3, 1.0), kwargs = {})
triton_poi_fused_mul_0 = async_compile.triton('triton_poi_fused_mul_0', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[16],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_mul_0', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_mul_0(in_out_ptr0, in_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 16
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x2 = xindex
x0 = xindex % 4
tmp0 = tl.load(in_out_ptr0 + (x2), xmask)
tmp1 = tl.load(in_ptr0 + (x0), xmask, eviction_policy='evict_last')
tmp2 = tmp0 + tmp1
tmp3 = 1.0
tmp4 = tmp2 * tmp3
tl.store(in_out_ptr0 + (x2), tmp4, xmask)
''', device_str='cuda')
# kernel path: runs/run_shard_0/inductor_cache/hz/chzi3aam26mikdhljz5x7jlqazm7kpktzeptsf36thgfhsg7ub6a.py
# Topologically Sorted Source Nodes: [multi_head_attention_forward], Original ATen: [aten._softmax]
# Source node to ATen node mapping:
# multi_head_attention_forward => amax, exp, sub
# Graph fragment:
# %amax : [num_users=1] = call_function[target=torch.ops.aten.amax.default](args = (%bmm, [-1], True), kwargs = {})
# %sub : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (%bmm, %amax), kwargs = {})
# %exp : [num_users=2] = call_function[target=torch.ops.aten.exp.default](args = (%sub,), kwargs = {})
triton_poi_fused__softmax_1 = async_compile.triton('triton_poi_fused__softmax_1', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[64],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused__softmax_1', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 5, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused__softmax_1(in_ptr0, out_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 64
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x2 = xindex
x1 = (xindex // 4)
tmp0 = tl.load(in_ptr0 + (x2), xmask)
tmp1 = tl.load(in_ptr0 + (4*x1), xmask, eviction_policy='evict_last')
tmp2 = tl.load(in_ptr0 + (1 + (4*x1)), xmask, eviction_policy='evict_last')
tmp4 = tl.load(in_ptr0 + (2 + (4*x1)), xmask, eviction_policy='evict_last')
tmp6 = tl.load(in_ptr0 + (3 + (4*x1)), xmask, eviction_policy='evict_last')
tmp3 = triton_helpers.maximum(tmp1, tmp2)
tmp5 = triton_helpers.maximum(tmp3, tmp4)
tmp7 = triton_helpers.maximum(tmp5, tmp6)
tmp8 = tmp0 - tmp7
tmp9 = tl_math.exp(tmp8)
tl.store(out_ptr0 + (x2), tmp9, xmask)
''', device_str='cuda')
# kernel path: runs/run_shard_0/inductor_cache/em/cem6qbxwbiqnjqybzk5arf2obt5uggy4qs7otwwpovvnrhvdc6h4.py
# Topologically Sorted Source Nodes: [multi_head_attention_forward], Original ATen: [aten._softmax]
# Source node to ATen node mapping:
# multi_head_attention_forward => div, sum_1
# Graph fragment:
# %sum_1 : [num_users=1] = call_function[target=torch.ops.aten.sum.dim_IntList](args = (%exp, [-1], True), kwargs = {})
# %div : [num_users=2] = call_function[target=torch.ops.aten.div.Tensor](args = (%exp, %sum_1), kwargs = {})
triton_poi_fused__softmax_2 = async_compile.triton('triton_poi_fused__softmax_2', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[64],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused__softmax_2', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 5, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused__softmax_2(in_ptr0, out_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 64
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x2 = xindex
x1 = (xindex // 4)
tmp0 = tl.load(in_ptr0 + (x2), xmask)
tmp1 = tl.load(in_ptr0 + (4*x1), xmask, eviction_policy='evict_last')
tmp2 = tl.load(in_ptr0 + (1 + (4*x1)), xmask, eviction_policy='evict_last')
tmp4 = tl.load(in_ptr0 + (2 + (4*x1)), xmask, eviction_policy='evict_last')
tmp6 = tl.load(in_ptr0 + (3 + (4*x1)), xmask, eviction_policy='evict_last')
tmp3 = tmp1 + tmp2
tmp5 = tmp3 + tmp4
tmp7 = tmp5 + tmp6
tmp8 = tmp0 / tmp7
tl.store(out_ptr0 + (x2), tmp8, xmask)
''', device_str='cuda')
# kernel path: runs/run_shard_0/inductor_cache/rh/crhjfwyl6xoj5ylcsbbh6lp2vlegits2zkdej3b3wb2q4ddfnejv.py
# Topologically Sorted Source Nodes: [multi_head_attention_forward], Original ATen: [aten.clone]
# Source node to ATen node mapping:
# multi_head_attention_forward => clone
# Graph fragment:
# %clone : [num_users=1] = call_function[target=torch.ops.aten.clone.default](args = (%permute_7,), kwargs = {memory_format: torch.contiguous_format})
triton_poi_fused_clone_3 = async_compile.triton('triton_poi_fused_clone_3', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[4, 4], tile_hint=TileHint.SQUARE,
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_clone_3', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 1, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_clone_3(in_ptr0, out_ptr0, ynumel, xnumel, YBLOCK : tl.constexpr, XBLOCK : tl.constexpr):
ynumel = 4
xnumel = 4
yoffset = tl.program_id(1) * YBLOCK
yindex = yoffset + tl.arange(0, YBLOCK)[None, :]
ymask = yindex < ynumel
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:, None]
xmask = xindex < xnumel
x1 = xindex
y0 = yindex
tmp0 = tl.load(in_ptr0 + (y0 + (4*x1)), xmask & ymask)
tl.store(out_ptr0 + (x1 + (4*y0)), tmp0, xmask & ymask)
''', device_str='cuda')
async_compile.wait(globals())
del async_compile
def call(args):
primals_1, primals_2, primals_3, primals_4, primals_5 = args
args.clear()
assert_size_stride(primals_1, (4, 4), (4, 1))
assert_size_stride(primals_2, (12, 4), (4, 1))
assert_size_stride(primals_3, (12, ), (1, ))
assert_size_stride(primals_4, (4, 4), (4, 1))
assert_size_stride(primals_5, (4, ), (1, ))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((4, 4), (4, 1), torch.float32)
# Topologically Sorted Source Nodes: [], Original ATen: []
extern_kernels.mm(primals_1, reinterpret_tensor(primals_2, (4, 4), (1, 4), 0), out=buf0)
buf1 = empty_strided_cuda((4, 4), (4, 1), torch.float32)
# Topologically Sorted Source Nodes: [multi_head_attention_forward], Original ATen: [aten.addmm]
extern_kernels.addmm(reinterpret_tensor(primals_3, (4, ), (1, ), 4), primals_1, reinterpret_tensor(primals_2, (4, 4), (1, 4), 16), alpha=1, beta=1, out=buf1)
buf2 = empty_strided_cuda((4, 4), (4, 1), torch.float32)
# Topologically Sorted Source Nodes: [multi_head_attention_forward], Original ATen: [aten.addmm]
extern_kernels.addmm(reinterpret_tensor(primals_3, (4, ), (1, ), 8), primals_1, reinterpret_tensor(primals_2, (4, 4), (1, 4), 32), alpha=1, beta=1, out=buf2)
del primals_2
buf3 = reinterpret_tensor(buf0, (4, 4, 1), (1, 4, 16), 0); del buf0 # reuse
# Topologically Sorted Source Nodes: [multi_head_attention_forward], Original ATen: [aten.mul]
stream0 = get_raw_stream(0)
triton_poi_fused_mul_0.run(buf3, primals_3, 16, grid=grid(16), stream=stream0)
del primals_3
buf4 = empty_strided_cuda((4, 4, 4), (16, 4, 1), torch.float32)
# Topologically Sorted Source Nodes: [multi_head_attention_forward], Original ATen: [aten.bmm]
extern_kernels.bmm(buf3, reinterpret_tensor(buf1, (4, 1, 4), (1, 1, 4), 0), out=buf4)
buf5 = empty_strided_cuda((4, 4, 4), (16, 4, 1), torch.float32)
# Topologically Sorted Source Nodes: [multi_head_attention_forward], Original ATen: [aten._softmax]
triton_poi_fused__softmax_1.run(buf4, buf5, 64, grid=grid(64), stream=stream0)
buf6 = buf4; del buf4 # reuse
# Topologically Sorted Source Nodes: [multi_head_attention_forward], Original ATen: [aten._softmax]
triton_poi_fused__softmax_2.run(buf5, buf6, 64, grid=grid(64), stream=stream0)
del buf5
buf7 = empty_strided_cuda((4, 4, 1), (4, 1, 1), torch.float32)
# Topologically Sorted Source Nodes: [multi_head_attention_forward], Original ATen: [aten.bmm]
extern_kernels.bmm(buf6, reinterpret_tensor(buf2, (4, 4, 1), (1, 4, 1), 0), out=buf7)
buf8 = empty_strided_cuda((4, 4, 1), (4, 1, 1), torch.float32)
# Topologically Sorted Source Nodes: [multi_head_attention_forward], Original ATen: [aten.clone]
triton_poi_fused_clone_3.run(buf7, buf8, 4, 4, grid=grid(4, 4), stream=stream0)
buf9 = reinterpret_tensor(buf7, (4, 4), (4, 1), 0); del buf7 # reuse
# Topologically Sorted Source Nodes: [multi_head_attention_forward], Original ATen: [aten.addmm]
extern_kernels.addmm(primals_5, reinterpret_tensor(buf8, (4, 4), (4, 1), 0), reinterpret_tensor(primals_4, (4, 4), (1, 4), 0), alpha=1, beta=1, out=buf9)
del primals_5
return (buf9, primals_1, buf6, reinterpret_tensor(buf8, (4, 4), (4, 1), 0), primals_4, reinterpret_tensor(buf2, (4, 1, 4), (1, 1, 4), 0), reinterpret_tensor(buf3, (4, 1, 4), (1, 1, 4), 0), reinterpret_tensor(buf1, (4, 4, 1), (1, 4, 1), 0), )
def benchmark_compiled_module(times=10, repeat=10):
from torch._dynamo.testing import rand_strided
from torch._inductor.utils import print_performance
primals_1 = rand_strided((4, 4), (4, 1), device='cuda:0', dtype=torch.float32)
primals_2 = rand_strided((12, 4), (4, 1), device='cuda:0', dtype=torch.float32)
primals_3 = rand_strided((12, ), (1, ), device='cuda:0', dtype=torch.float32)
primals_4 = rand_strided((4, 4), (4, 1), device='cuda:0', dtype=torch.float32)
primals_5 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32)
fn = lambda: call([primals_1, primals_2, primals_3, primals_4, primals_5])
return print_performance(fn, times=times, repeat=repeat)
if __name__ == "__main__":
from torch._inductor.wrapper_benchmark import compiled_module_main
compiled_module_main('None', benchmark_compiled_module)
|
import torch
from torch._inductor.select_algorithm import extern_kernels
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
from torch._inductor.runtime import triton_helpers
from torch._inductor.runtime.triton_helpers import math as tl_math
import torch.nn as nn
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
@triton.jit
def triton_poi_fused_mul_0(in_out_ptr0, in_ptr0, xnumel, XBLOCK: tl.constexpr):
xnumel = 16
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x2 = xindex
x0 = xindex % 4
tmp0 = tl.load(in_out_ptr0 + x2, xmask)
tmp1 = tl.load(in_ptr0 + x0, xmask, eviction_policy='evict_last')
tmp2 = tmp0 + tmp1
tmp3 = 1.0
tmp4 = tmp2 * tmp3
tl.store(in_out_ptr0 + x2, tmp4, xmask)
@triton.jit
def triton_poi_fused__softmax_1(in_ptr0, out_ptr0, xnumel, XBLOCK: tl.constexpr
):
xnumel = 64
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x2 = xindex
x1 = xindex // 4
tmp0 = tl.load(in_ptr0 + x2, xmask)
tmp1 = tl.load(in_ptr0 + 4 * x1, xmask, eviction_policy='evict_last')
tmp2 = tl.load(in_ptr0 + (1 + 4 * x1), xmask, eviction_policy='evict_last')
tmp4 = tl.load(in_ptr0 + (2 + 4 * x1), xmask, eviction_policy='evict_last')
tmp6 = tl.load(in_ptr0 + (3 + 4 * x1), xmask, eviction_policy='evict_last')
tmp3 = triton_helpers.maximum(tmp1, tmp2)
tmp5 = triton_helpers.maximum(tmp3, tmp4)
tmp7 = triton_helpers.maximum(tmp5, tmp6)
tmp8 = tmp0 - tmp7
tmp9 = tl_math.exp(tmp8)
tl.store(out_ptr0 + x2, tmp9, xmask)
@triton.jit
def triton_poi_fused__softmax_2(in_ptr0, out_ptr0, xnumel, XBLOCK: tl.constexpr
):
xnumel = 64
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x2 = xindex
x1 = xindex // 4
tmp0 = tl.load(in_ptr0 + x2, xmask)
tmp1 = tl.load(in_ptr0 + 4 * x1, xmask, eviction_policy='evict_last')
tmp2 = tl.load(in_ptr0 + (1 + 4 * x1), xmask, eviction_policy='evict_last')
tmp4 = tl.load(in_ptr0 + (2 + 4 * x1), xmask, eviction_policy='evict_last')
tmp6 = tl.load(in_ptr0 + (3 + 4 * x1), xmask, eviction_policy='evict_last')
tmp3 = tmp1 + tmp2
tmp5 = tmp3 + tmp4
tmp7 = tmp5 + tmp6
tmp8 = tmp0 / tmp7
tl.store(out_ptr0 + x2, tmp8, xmask)
@triton.jit
def triton_poi_fused_clone_3(in_ptr0, out_ptr0, ynumel, xnumel, YBLOCK: tl.
constexpr, XBLOCK: tl.constexpr):
ynumel = 4
xnumel = 4
yoffset = tl.program_id(1) * YBLOCK
yindex = yoffset + tl.arange(0, YBLOCK)[None, :]
ymask = yindex < ynumel
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:, None]
xmask = xindex < xnumel
x1 = xindex
y0 = yindex
tmp0 = tl.load(in_ptr0 + (y0 + 4 * x1), xmask & ymask)
tl.store(out_ptr0 + (x1 + 4 * y0), tmp0, xmask & ymask)
def call(args):
primals_1, primals_2, primals_3, primals_4, primals_5 = args
args.clear()
assert_size_stride(primals_1, (4, 4), (4, 1))
assert_size_stride(primals_2, (12, 4), (4, 1))
assert_size_stride(primals_3, (12,), (1,))
assert_size_stride(primals_4, (4, 4), (4, 1))
assert_size_stride(primals_5, (4,), (1,))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((4, 4), (4, 1), torch.float32)
extern_kernels.mm(primals_1, reinterpret_tensor(primals_2, (4, 4),
(1, 4), 0), out=buf0)
buf1 = empty_strided_cuda((4, 4), (4, 1), torch.float32)
extern_kernels.addmm(reinterpret_tensor(primals_3, (4,), (1,), 4),
primals_1, reinterpret_tensor(primals_2, (4, 4), (1, 4), 16),
alpha=1, beta=1, out=buf1)
buf2 = empty_strided_cuda((4, 4), (4, 1), torch.float32)
extern_kernels.addmm(reinterpret_tensor(primals_3, (4,), (1,), 8),
primals_1, reinterpret_tensor(primals_2, (4, 4), (1, 4), 32),
alpha=1, beta=1, out=buf2)
del primals_2
buf3 = reinterpret_tensor(buf0, (4, 4, 1), (1, 4, 16), 0)
del buf0
get_raw_stream(0)
triton_poi_fused_mul_0[grid(16)](buf3, primals_3, 16, XBLOCK=16,
num_warps=1, num_stages=1)
del primals_3
buf4 = empty_strided_cuda((4, 4, 4), (16, 4, 1), torch.float32)
extern_kernels.bmm(buf3, reinterpret_tensor(buf1, (4, 1, 4), (1, 1,
4), 0), out=buf4)
buf5 = empty_strided_cuda((4, 4, 4), (16, 4, 1), torch.float32)
triton_poi_fused__softmax_1[grid(64)](buf4, buf5, 64, XBLOCK=64,
num_warps=1, num_stages=1)
buf6 = buf4
del buf4
triton_poi_fused__softmax_2[grid(64)](buf5, buf6, 64, XBLOCK=64,
num_warps=1, num_stages=1)
del buf5
buf7 = empty_strided_cuda((4, 4, 1), (4, 1, 1), torch.float32)
extern_kernels.bmm(buf6, reinterpret_tensor(buf2, (4, 4, 1), (1, 4,
1), 0), out=buf7)
buf8 = empty_strided_cuda((4, 4, 1), (4, 1, 1), torch.float32)
triton_poi_fused_clone_3[grid(4, 4)](buf7, buf8, 4, 4, XBLOCK=4,
YBLOCK=4, num_warps=1, num_stages=1)
buf9 = reinterpret_tensor(buf7, (4, 4), (4, 1), 0)
del buf7
extern_kernels.addmm(primals_5, reinterpret_tensor(buf8, (4, 4), (4,
1), 0), reinterpret_tensor(primals_4, (4, 4), (1, 4), 0), alpha
=1, beta=1, out=buf9)
del primals_5
return buf9, primals_1, buf6, reinterpret_tensor(buf8, (4, 4), (4, 1), 0
), primals_4, reinterpret_tensor(buf2, (4, 1, 4), (1, 1, 4), 0
), reinterpret_tensor(buf3, (4, 1, 4), (1, 1, 4), 0
), reinterpret_tensor(buf1, (4, 4, 1), (1, 4, 1), 0)
class SelfAttentionNew(nn.Module):
def __init__(self, *args, **kargs):
super().__init__()
self.attention = nn.MultiheadAttention(*args, **kargs)
def forward(self, input_0):
primals_2 = self.attention.in_proj_weight
primals_3 = self.attention.in_proj_bias
primals_1 = self.attention.out_proj.weight
primals_5 = self.attention.out_proj.bias
primals_4 = input_0
output = call([primals_1, primals_2, primals_3, primals_4, primals_5])
return output[0]
|
eitin-infant/FinRL-Meta
|
SelfAttention
| false | 15,295 |
[
"MIT"
] | 214 |
4c94011e58425796e7e2e5c1bf848afd65c828d6
|
https://github.com/eitin-infant/FinRL-Meta/tree/4c94011e58425796e7e2e5c1bf848afd65c828d6
|
FixupBasicBlock
|
# AOT ID: ['0_forward']
from ctypes import c_void_p, c_long, c_int
import torch
import math
import random
import os
import tempfile
from math import inf, nan
from torch._inductor.hooks import run_intermediate_hooks
from torch._inductor.utils import maybe_profile
from torch._inductor.codegen.memory_planning import _align as align
from torch import device, empty_strided
from torch._inductor.async_compile import AsyncCompile
from torch._inductor.select_algorithm import extern_kernels
from torch._inductor.codegen.multi_kernel import MultiKernelCall
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
aten = torch.ops.aten
inductor_ops = torch.ops.inductor
_quantized = torch.ops._quantized
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
alloc_from_pool = torch.ops.inductor._alloc_from_pool
async_compile = AsyncCompile()
# kernel path: runs/run_shard_0/inductor_cache/pb/cpbshtrpnaucbs7hqoiqkvsndkguzk4er52bxaovgoqcnlnyqv6v.py
# Topologically Sorted Source Nodes: [add], Original ATen: [aten.add]
# Source node to ATen node mapping:
# add => add
# Graph fragment:
# %add : [num_users=2] = call_function[target=torch.ops.aten.add.Tensor](args = (%primals_1, %primals_2), kwargs = {})
triton_poi_fused_add_0 = async_compile.triton('triton_poi_fused_add_0', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[256],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_add_0', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_add_0(in_ptr0, in_ptr1, out_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 256
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex
tmp0 = tl.load(in_ptr0 + (x0), xmask)
tmp1 = tl.load(in_ptr1 + (0))
tmp2 = tl.broadcast_to(tmp1, [XBLOCK])
tmp3 = tmp0 + tmp2
tl.store(out_ptr0 + (x0), tmp3, xmask)
''', device_str='cuda')
# kernel path: runs/run_shard_0/inductor_cache/ii/ciidyz7k62ig6agzsjgqpv736t42hwampit52unv6yf3hsf7nm72.py
# Topologically Sorted Source Nodes: [add_1, out_1, add_2], Original ATen: [aten.add, aten.relu, aten.threshold_backward]
# Source node to ATen node mapping:
# add_1 => add_1
# add_2 => add_2
# out_1 => relu
# Graph fragment:
# %add_1 : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%convolution, %primals_4), kwargs = {})
# %relu : [num_users=2] = call_function[target=torch.ops.aten.relu.default](args = (%add_1,), kwargs = {})
# %add_2 : [num_users=2] = call_function[target=torch.ops.aten.add.Tensor](args = (%relu, %primals_5), kwargs = {})
# %le_1 : [num_users=1] = call_function[target=torch.ops.aten.le.Scalar](args = (%relu, 0), kwargs = {})
triton_poi_fused_add_relu_threshold_backward_1 = async_compile.triton('triton_poi_fused_add_relu_threshold_backward_1', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[256],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: '*fp32', 4: '*i1', 5: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3, 4, 5), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_add_relu_threshold_backward_1', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 3, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_add_relu_threshold_backward_1(in_ptr0, in_ptr1, in_ptr2, out_ptr0, out_ptr1, xnumel, XBLOCK : tl.constexpr):
xnumel = 256
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex
tmp0 = tl.load(in_ptr0 + (x0), xmask)
tmp1 = tl.load(in_ptr1 + (0))
tmp2 = tl.broadcast_to(tmp1, [XBLOCK])
tmp6 = tl.load(in_ptr2 + (0))
tmp7 = tl.broadcast_to(tmp6, [XBLOCK])
tmp3 = tmp0 + tmp2
tmp4 = tl.full([1], 0, tl.int32)
tmp5 = triton_helpers.maximum(tmp4, tmp3)
tmp8 = tmp5 + tmp7
tmp9 = 0.0
tmp10 = tmp5 <= tmp9
tl.store(out_ptr0 + (x0), tmp8, xmask)
tl.store(out_ptr1 + (x0), tmp10, xmask)
''', device_str='cuda')
# kernel path: runs/run_shard_0/inductor_cache/ru/cruzz4bw56op4a2umcojvqo7x3yllo524t6ildzprzx27ua6kcm5.py
# Topologically Sorted Source Nodes: [mul, out_3, out_4, out_5], Original ATen: [aten.mul, aten.add, aten.relu, aten.threshold_backward]
# Source node to ATen node mapping:
# mul => mul
# out_3 => add_3
# out_4 => add_4
# out_5 => relu_1
# Graph fragment:
# %mul : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%convolution_1, %primals_7), kwargs = {})
# %add_3 : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%mul, %primals_8), kwargs = {})
# %add_4 : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%add_3, %primals_1), kwargs = {})
# %relu_1 : [num_users=2] = call_function[target=torch.ops.aten.relu.default](args = (%add_4,), kwargs = {})
# %le : [num_users=1] = call_function[target=torch.ops.aten.le.Scalar](args = (%relu_1, 0), kwargs = {})
triton_poi_fused_add_mul_relu_threshold_backward_2 = async_compile.triton('triton_poi_fused_add_mul_relu_threshold_backward_2', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[256],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: '*fp32', 4: '*fp32', 5: '*i1', 6: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3, 4, 5, 6), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_add_mul_relu_threshold_backward_2', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 4, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_add_mul_relu_threshold_backward_2(in_ptr0, in_ptr1, in_ptr2, in_ptr3, out_ptr0, out_ptr1, xnumel, XBLOCK : tl.constexpr):
xnumel = 256
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex
tmp0 = tl.load(in_ptr0 + (x0), xmask)
tmp1 = tl.load(in_ptr1 + (0))
tmp2 = tl.broadcast_to(tmp1, [XBLOCK])
tmp4 = tl.load(in_ptr2 + (0))
tmp5 = tl.broadcast_to(tmp4, [XBLOCK])
tmp7 = tl.load(in_ptr3 + (x0), xmask)
tmp3 = tmp0 * tmp2
tmp6 = tmp3 + tmp5
tmp8 = tmp6 + tmp7
tmp9 = tl.full([1], 0, tl.int32)
tmp10 = triton_helpers.maximum(tmp9, tmp8)
tmp11 = 0.0
tmp12 = tmp10 <= tmp11
tl.store(out_ptr0 + (x0), tmp10, xmask)
tl.store(out_ptr1 + (x0), tmp12, xmask)
''', device_str='cuda')
async_compile.wait(globals())
del async_compile
def call(args):
primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7, primals_8 = args
args.clear()
assert_size_stride(primals_1, (4, 4, 4, 4), (64, 16, 4, 1))
assert_size_stride(primals_2, (1, ), (1, ))
assert_size_stride(primals_3, (4, 4, 3, 3), (36, 9, 3, 1))
assert_size_stride(primals_4, (1, ), (1, ))
assert_size_stride(primals_5, (1, ), (1, ))
assert_size_stride(primals_6, (4, 4, 3, 3), (36, 9, 3, 1))
assert_size_stride(primals_7, (1, ), (1, ))
assert_size_stride(primals_8, (1, ), (1, ))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32)
# Topologically Sorted Source Nodes: [add], Original ATen: [aten.add]
stream0 = get_raw_stream(0)
triton_poi_fused_add_0.run(primals_1, primals_2, buf0, 256, grid=grid(256), stream=stream0)
del primals_2
# Topologically Sorted Source Nodes: [out], Original ATen: [aten.convolution]
buf1 = extern_kernels.convolution(buf0, primals_3, stride=(1, 1), padding=(1, 1), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None)
assert_size_stride(buf1, (4, 4, 4, 4), (64, 16, 4, 1))
buf2 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32)
buf6 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.bool)
# Topologically Sorted Source Nodes: [add_1, out_1, add_2], Original ATen: [aten.add, aten.relu, aten.threshold_backward]
triton_poi_fused_add_relu_threshold_backward_1.run(buf1, primals_4, primals_5, buf2, buf6, 256, grid=grid(256), stream=stream0)
del primals_4
del primals_5
# Topologically Sorted Source Nodes: [out_2], Original ATen: [aten.convolution]
buf3 = extern_kernels.convolution(buf2, primals_6, stride=(1, 1), padding=(1, 1), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None)
assert_size_stride(buf3, (4, 4, 4, 4), (64, 16, 4, 1))
buf4 = buf1; del buf1 # reuse
buf5 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.bool)
# Topologically Sorted Source Nodes: [mul, out_3, out_4, out_5], Original ATen: [aten.mul, aten.add, aten.relu, aten.threshold_backward]
triton_poi_fused_add_mul_relu_threshold_backward_2.run(buf3, primals_7, primals_8, primals_1, buf4, buf5, 256, grid=grid(256), stream=stream0)
del primals_1
del primals_8
return (buf4, primals_3, primals_6, primals_7, buf0, buf2, buf3, buf5, buf6, )
def benchmark_compiled_module(times=10, repeat=10):
from torch._dynamo.testing import rand_strided
from torch._inductor.utils import print_performance
primals_1 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32)
primals_2 = rand_strided((1, ), (1, ), device='cuda:0', dtype=torch.float32)
primals_3 = rand_strided((4, 4, 3, 3), (36, 9, 3, 1), device='cuda:0', dtype=torch.float32)
primals_4 = rand_strided((1, ), (1, ), device='cuda:0', dtype=torch.float32)
primals_5 = rand_strided((1, ), (1, ), device='cuda:0', dtype=torch.float32)
primals_6 = rand_strided((4, 4, 3, 3), (36, 9, 3, 1), device='cuda:0', dtype=torch.float32)
primals_7 = rand_strided((1, ), (1, ), device='cuda:0', dtype=torch.float32)
primals_8 = rand_strided((1, ), (1, ), device='cuda:0', dtype=torch.float32)
fn = lambda: call([primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7, primals_8])
return print_performance(fn, times=times, repeat=repeat)
if __name__ == "__main__":
from torch._inductor.wrapper_benchmark import compiled_module_main
compiled_module_main('None', benchmark_compiled_module)
|
import torch
from torch._inductor.select_algorithm import extern_kernels
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
from torch._inductor.runtime import triton_helpers
from torch import nn
import torch.nn.parallel
import torch.optim
import torch.utils.data
import torch.utils.data.distributed
import torch.nn
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
@triton.jit
def triton_poi_fused_add_0(in_ptr0, in_ptr1, out_ptr0, xnumel, XBLOCK: tl.
constexpr):
xnumel = 256
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex
tmp0 = tl.load(in_ptr0 + x0, xmask)
tmp1 = tl.load(in_ptr1 + 0)
tmp2 = tl.broadcast_to(tmp1, [XBLOCK])
tmp3 = tmp0 + tmp2
tl.store(out_ptr0 + x0, tmp3, xmask)
@triton.jit
def triton_poi_fused_add_relu_threshold_backward_1(in_ptr0, in_ptr1,
in_ptr2, out_ptr0, out_ptr1, xnumel, XBLOCK: tl.constexpr):
xnumel = 256
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex
tmp0 = tl.load(in_ptr0 + x0, xmask)
tmp1 = tl.load(in_ptr1 + 0)
tmp2 = tl.broadcast_to(tmp1, [XBLOCK])
tmp6 = tl.load(in_ptr2 + 0)
tmp7 = tl.broadcast_to(tmp6, [XBLOCK])
tmp3 = tmp0 + tmp2
tmp4 = tl.full([1], 0, tl.int32)
tmp5 = triton_helpers.maximum(tmp4, tmp3)
tmp8 = tmp5 + tmp7
tmp9 = 0.0
tmp10 = tmp5 <= tmp9
tl.store(out_ptr0 + x0, tmp8, xmask)
tl.store(out_ptr1 + x0, tmp10, xmask)
@triton.jit
def triton_poi_fused_add_mul_relu_threshold_backward_2(in_ptr0, in_ptr1,
in_ptr2, in_ptr3, out_ptr0, out_ptr1, xnumel, XBLOCK: tl.constexpr):
xnumel = 256
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex
tmp0 = tl.load(in_ptr0 + x0, xmask)
tmp1 = tl.load(in_ptr1 + 0)
tmp2 = tl.broadcast_to(tmp1, [XBLOCK])
tmp4 = tl.load(in_ptr2 + 0)
tmp5 = tl.broadcast_to(tmp4, [XBLOCK])
tmp7 = tl.load(in_ptr3 + x0, xmask)
tmp3 = tmp0 * tmp2
tmp6 = tmp3 + tmp5
tmp8 = tmp6 + tmp7
tmp9 = tl.full([1], 0, tl.int32)
tmp10 = triton_helpers.maximum(tmp9, tmp8)
tmp11 = 0.0
tmp12 = tmp10 <= tmp11
tl.store(out_ptr0 + x0, tmp10, xmask)
tl.store(out_ptr1 + x0, tmp12, xmask)
def call(args):
(primals_1, primals_2, primals_3, primals_4, primals_5, primals_6,
primals_7, primals_8) = args
args.clear()
assert_size_stride(primals_1, (4, 4, 4, 4), (64, 16, 4, 1))
assert_size_stride(primals_2, (1,), (1,))
assert_size_stride(primals_3, (4, 4, 3, 3), (36, 9, 3, 1))
assert_size_stride(primals_4, (1,), (1,))
assert_size_stride(primals_5, (1,), (1,))
assert_size_stride(primals_6, (4, 4, 3, 3), (36, 9, 3, 1))
assert_size_stride(primals_7, (1,), (1,))
assert_size_stride(primals_8, (1,), (1,))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32)
get_raw_stream(0)
triton_poi_fused_add_0[grid(256)](primals_1, primals_2, buf0, 256,
XBLOCK=256, num_warps=4, num_stages=1)
del primals_2
buf1 = extern_kernels.convolution(buf0, primals_3, stride=(1, 1),
padding=(1, 1), dilation=(1, 1), transposed=False,
output_padding=(0, 0), groups=1, bias=None)
assert_size_stride(buf1, (4, 4, 4, 4), (64, 16, 4, 1))
buf2 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32)
buf6 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.bool)
triton_poi_fused_add_relu_threshold_backward_1[grid(256)](buf1,
primals_4, primals_5, buf2, buf6, 256, XBLOCK=256, num_warps=4,
num_stages=1)
del primals_4
del primals_5
buf3 = extern_kernels.convolution(buf2, primals_6, stride=(1, 1),
padding=(1, 1), dilation=(1, 1), transposed=False,
output_padding=(0, 0), groups=1, bias=None)
assert_size_stride(buf3, (4, 4, 4, 4), (64, 16, 4, 1))
buf4 = buf1
del buf1
buf5 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.bool)
triton_poi_fused_add_mul_relu_threshold_backward_2[grid(256)](buf3,
primals_7, primals_8, primals_1, buf4, buf5, 256, XBLOCK=128,
num_warps=4, num_stages=1)
del primals_1
del primals_8
return buf4, primals_3, primals_6, primals_7, buf0, buf2, buf3, buf5, buf6
def conv3x3(in_planes, out_planes, stride=1):
"""3x3 convolution with padding"""
return nn.Conv2d(in_planes, out_planes, kernel_size=3, stride=stride,
padding=1, bias=False)
class FixupBasicBlockNew(nn.Module):
expansion = 1
def __init__(self, inplanes, planes, stride=1, downsample=None):
super(FixupBasicBlockNew, self).__init__()
self.bias1a = nn.Parameter(torch.zeros(1))
self.conv1 = conv3x3(inplanes, planes, stride)
self.bias1b = nn.Parameter(torch.zeros(1))
self.relu = nn.ReLU(inplace=True)
self.bias2a = nn.Parameter(torch.zeros(1))
self.conv2 = conv3x3(planes, planes)
self.scale = nn.Parameter(torch.ones(1))
self.bias2b = nn.Parameter(torch.zeros(1))
self.downsample = downsample
self.stride = stride
def forward(self, input_0):
primals_2 = self.bias1a
primals_4 = self.bias1b
primals_5 = self.bias2a
primals_7 = self.scale
primals_8 = self.bias2b
primals_3 = self.conv1.weight
primals_6 = self.conv2.weight
primals_1 = input_0
output = call([primals_1, primals_2, primals_3, primals_4,
primals_5, primals_6, primals_7, primals_8])
return output[0]
|
bethgelab/robustness
|
FixupBasicBlock
| false | 14,954 |
[
"Apache-2.0"
] | 67 |
aa0a6798fe3973bae5f47561721b59b39f126ab7
|
https://github.com/bethgelab/robustness/tree/aa0a6798fe3973bae5f47561721b59b39f126ab7
|
MNACLayer
|
import collections
import math
import torch
import torch.utils.data
def sparsity_error(W):
W_error = torch.min(torch.abs(W), torch.abs(1 - torch.abs(W)))
return torch.max(W_error)
def mnac(x, W, mode='prod'):
out_size, in_size = W.size()
x = x.view(x.size()[0], in_size, 1)
W = W.t().view(1, in_size, out_size)
if mode == 'prod':
return torch.prod(x * W + 1 - W, -2)
elif mode == 'exp-log':
return torch.exp(torch.sum(torch.log(x * W + 1 - W), -2))
elif mode == 'no-idendity':
return torch.prod(x * W, -2)
else:
raise ValueError(f'mnac mode "{mode}" is not implemented')
class SummaryWriterNamespaceNoLoggingScope:
def __init__(self, writer):
self._writer = writer
def __enter__(self):
self._writer._logging_enabled = False
def __exit__(self, type, value, traceback):
self._writer._logging_enabled = True
return False
class DummySummaryWriter:
def __init__(self, **kwargs):
self._logging_enabled = False
pass
def add_scalar(self, name, value, verbose_only=True):
pass
def add_summary(self, name, tensor, verbose_only=True):
pass
def add_histogram(self, name, tensor, verbose_only=True):
pass
def add_tensor(self, name, tensor, verbose_only=True):
pass
def print(self, name, tensor, verbose_only=True):
pass
def namespace(self, name):
return self
def every(self, epoch_interval):
return self
def verbose(self, verbose):
return self
def no_logging(self):
return SummaryWriterNamespaceNoLoggingScope(self)
class NoRandomScope:
def __init__(self, module):
self._module = module
def __enter__(self):
self._module._disable_random()
def __exit__(self, type, value, traceback):
self._module._enable_random()
return False
class ExtendedTorchModule(torch.nn.Module):
def __init__(self, default_name, *args, writer=None, name=None, **kwargs):
super().__init__()
if writer is None:
writer = DummySummaryWriter()
self.writer = writer.namespace(default_name if name is None else name)
self.allow_random = True
def set_parameter(self, name, value):
parameter = getattr(self, name, None)
if isinstance(parameter, torch.nn.Parameter):
parameter.fill_(value)
for module in self.children():
if isinstance(module, ExtendedTorchModule):
module.set_parameter(name, value)
def regualizer(self, merge_in=None):
regualizers = collections.defaultdict(int)
if merge_in is not None:
for key, value in merge_in.items():
self.writer.add_scalar(f'regualizer/{key}', value)
regualizers[key] += value
for module in self.children():
if isinstance(module, ExtendedTorchModule):
for key, value in module.regualizer().items():
regualizers[key] += value
return regualizers
def optimize(self, loss):
for module in self.children():
if isinstance(module, ExtendedTorchModule):
module.optimize(loss)
def log_gradients(self):
for name, parameter in self.named_parameters(recurse=False):
if parameter.requires_grad:
gradient, *_ = parameter.grad.data
self.writer.add_summary(f'{name}/grad', gradient)
self.writer.add_histogram(f'{name}/grad', gradient)
for module in self.children():
if isinstance(module, ExtendedTorchModule):
module.log_gradients()
def no_internal_logging(self):
return self.writer.no_logging()
def _disable_random(self):
self.allow_random = False
for module in self.children():
if isinstance(module, ExtendedTorchModule):
module._disable_random()
def _enable_random(self):
self.allow_random = True
for module in self.children():
if isinstance(module, ExtendedTorchModule):
module._enable_random()
def no_random(self):
return NoRandomScope(self)
class MNACLayer(ExtendedTorchModule):
"""Implements the NAC (Neural Accumulator)
Arguments:
in_features: number of ingoing features
out_features: number of outgoing features
"""
def __init__(self, in_features, out_features, **kwargs):
super().__init__('nac', **kwargs)
self.in_features = in_features
self.out_features = out_features
self.W_hat = torch.nn.Parameter(torch.Tensor(out_features, in_features)
)
self.register_parameter('bias', None)
def reset_parameters(self):
std = math.sqrt(0.25)
r = math.sqrt(3.0) * std
torch.nn.init.uniform_(self.W_hat, -r, r)
def forward(self, x, reuse=False):
W = torch.sigmoid(self.W_hat)
self.writer.add_histogram('W', W)
self.writer.add_tensor('W', W)
self.writer.add_scalar('W/sparsity_error', sparsity_error(W),
verbose_only=False)
return mnac(x, W)
def extra_repr(self):
return 'in_features={}, out_features={}'.format(self.in_features,
self.out_features)
def get_inputs():
return [torch.rand([4, 4, 1])]
def get_init_inputs():
return [[], {'in_features': 4, 'out_features': 4}]
|
import torch
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
import collections
import math
import torch.utils.data
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
@triton.jit
def triton_poi_fused_add_mul_sub_0(in_ptr0, in_ptr1, out_ptr0, xnumel,
XBLOCK: tl.constexpr):
xnumel = 64
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex % 4
x2 = xindex // 16
x3 = xindex % 16
x4 = xindex
tmp0 = tl.load(in_ptr0 + (x0 + 4 * x2), xmask, eviction_policy='evict_last'
)
tmp1 = tl.load(in_ptr1 + x3, xmask, eviction_policy='evict_last')
tmp2 = tl.sigmoid(tmp1)
tmp3 = tmp0 * tmp2
tmp4 = 1.0
tmp5 = tmp3 + tmp4
tmp6 = tmp5 - tmp2
tl.store(out_ptr0 + x4, tmp6, xmask)
@triton.jit
def triton_poi_fused_prod_1(in_ptr0, out_ptr0, xnumel, XBLOCK: tl.constexpr):
xnumel = 16
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex
tmp0 = tl.load(in_ptr0 + 4 * x0, xmask, eviction_policy='evict_last')
tmp1 = tl.load(in_ptr0 + (1 + 4 * x0), xmask, eviction_policy='evict_last')
tmp3 = tl.load(in_ptr0 + (2 + 4 * x0), xmask, eviction_policy='evict_last')
tmp5 = tl.load(in_ptr0 + (3 + 4 * x0), xmask, eviction_policy='evict_last')
tmp2 = tmp0 * tmp1
tmp4 = tmp2 * tmp3
tmp6 = tmp4 * tmp5
tl.store(out_ptr0 + x0, tmp6, xmask)
def call(args):
primals_1, primals_2 = args
args.clear()
assert_size_stride(primals_1, (4, 4), (4, 1))
assert_size_stride(primals_2, (4, 4, 1), (4, 1, 1))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((4, 4, 4), (16, 1, 4), torch.float32)
get_raw_stream(0)
triton_poi_fused_add_mul_sub_0[grid(64)](primals_2, primals_1, buf0,
64, XBLOCK=64, num_warps=1, num_stages=1)
buf1 = empty_strided_cuda((4, 4), (4, 1), torch.float32)
triton_poi_fused_prod_1[grid(16)](buf0, buf1, 16, XBLOCK=16,
num_warps=1, num_stages=1)
return buf1, primals_1, primals_2, buf0
def sparsity_error(W):
W_error = torch.min(torch.abs(W), torch.abs(1 - torch.abs(W)))
return torch.max(W_error)
def mnac(x, W, mode='prod'):
out_size, in_size = W.size()
x = x.view(x.size()[0], in_size, 1)
W = W.t().view(1, in_size, out_size)
if mode == 'prod':
return torch.prod(x * W + 1 - W, -2)
elif mode == 'exp-log':
return torch.exp(torch.sum(torch.log(x * W + 1 - W), -2))
elif mode == 'no-idendity':
return torch.prod(x * W, -2)
else:
raise ValueError(f'mnac mode "{mode}" is not implemented')
class SummaryWriterNamespaceNoLoggingScope:
def __init__(self, writer):
self._writer = writer
def __enter__(self):
self._writer._logging_enabled = False
def __exit__(self, type, value, traceback):
self._writer._logging_enabled = True
return False
class DummySummaryWriter:
def __init__(self, **kwargs):
self._logging_enabled = False
pass
def add_scalar(self, name, value, verbose_only=True):
pass
def add_summary(self, name, tensor, verbose_only=True):
pass
def add_histogram(self, name, tensor, verbose_only=True):
pass
def add_tensor(self, name, tensor, verbose_only=True):
pass
def print(self, name, tensor, verbose_only=True):
pass
def namespace(self, name):
return self
def every(self, epoch_interval):
return self
def verbose(self, verbose):
return self
def no_logging(self):
return SummaryWriterNamespaceNoLoggingScope(self)
class NoRandomScope:
def __init__(self, module):
self._module = module
def __enter__(self):
self._module._disable_random()
def __exit__(self, type, value, traceback):
self._module._enable_random()
return False
class ExtendedTorchModule(torch.nn.Module):
def __init__(self, default_name, *args, writer=None, name=None, **kwargs):
super().__init__()
if writer is None:
writer = DummySummaryWriter()
self.writer = writer.namespace(default_name if name is None else name)
self.allow_random = True
def set_parameter(self, name, value):
parameter = getattr(self, name, None)
if isinstance(parameter, torch.nn.Parameter):
parameter.fill_(value)
for module in self.children():
if isinstance(module, ExtendedTorchModule):
module.set_parameter(name, value)
def regualizer(self, merge_in=None):
regualizers = collections.defaultdict(int)
if merge_in is not None:
for key, value in merge_in.items():
self.writer.add_scalar(f'regualizer/{key}', value)
regualizers[key] += value
for module in self.children():
if isinstance(module, ExtendedTorchModule):
for key, value in module.regualizer().items():
regualizers[key] += value
return regualizers
def optimize(self, loss):
for module in self.children():
if isinstance(module, ExtendedTorchModule):
module.optimize(loss)
def log_gradients(self):
for name, parameter in self.named_parameters(recurse=False):
if parameter.requires_grad:
gradient, *_ = parameter.grad.data
self.writer.add_summary(f'{name}/grad', gradient)
self.writer.add_histogram(f'{name}/grad', gradient)
for module in self.children():
if isinstance(module, ExtendedTorchModule):
module.log_gradients()
def no_internal_logging(self):
return self.writer.no_logging()
def _disable_random(self):
self.allow_random = False
for module in self.children():
if isinstance(module, ExtendedTorchModule):
module._disable_random()
def _enable_random(self):
self.allow_random = True
for module in self.children():
if isinstance(module, ExtendedTorchModule):
module._enable_random()
def no_random(self):
return NoRandomScope(self)
class MNACLayerNew(ExtendedTorchModule):
"""Implements the NAC (Neural Accumulator)
Arguments:
in_features: number of ingoing features
out_features: number of outgoing features
"""
def __init__(self, in_features, out_features, **kwargs):
super().__init__('nac', **kwargs)
self.in_features = in_features
self.out_features = out_features
self.W_hat = torch.nn.Parameter(torch.Tensor(out_features, in_features)
)
self.register_parameter('bias', None)
def reset_parameters(self):
std = math.sqrt(0.25)
r = math.sqrt(3.0) * std
torch.nn.init.uniform_(self.W_hat, -r, r)
def extra_repr(self):
return 'in_features={}, out_features={}'.format(self.in_features,
self.out_features)
def forward(self, input_0):
primals_1 = self.W_hat
primals_2 = input_0
output = call([primals_1, primals_2])
return output[0]
|
wlm2019/Neural-Arithmetic-Units
|
MNACLayer
| false | 16,716 |
[
"MIT"
] | 147 |
f9de9d004bb2dc2ee28577cd1760d0a00c185836
|
https://github.com/wlm2019/Neural-Arithmetic-Units/tree/f9de9d004bb2dc2ee28577cd1760d0a00c185836
|
HardAttn
|
# AOT ID: ['0_forward']
from ctypes import c_void_p, c_long, c_int
import torch
import math
import random
import os
import tempfile
from math import inf, nan
from torch._inductor.hooks import run_intermediate_hooks
from torch._inductor.utils import maybe_profile
from torch._inductor.codegen.memory_planning import _align as align
from torch import device, empty_strided
from torch._inductor.async_compile import AsyncCompile
from torch._inductor.select_algorithm import extern_kernels
from torch._inductor.codegen.multi_kernel import MultiKernelCall
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
aten = torch.ops.aten
inductor_ops = torch.ops.inductor
_quantized = torch.ops._quantized
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
alloc_from_pool = torch.ops.inductor._alloc_from_pool
async_compile = AsyncCompile()
# kernel path: runs/run_shard_0/inductor_cache/is/cispe7zbbl4nxt2jjus6h5iou2w7htohqj7z2oz6g7nqz6vbpbqr.py
# Topologically Sorted Source Nodes: [avg_pool2d], Original ATen: [aten.avg_pool2d]
# Source node to ATen node mapping:
# avg_pool2d => avg_pool2d
# Graph fragment:
# %avg_pool2d : [num_users=1] = call_function[target=torch.ops.aten.avg_pool2d.default](args = (%primals_1, [4, 4]), kwargs = {})
triton_poi_fused_avg_pool2d_0 = async_compile.triton('triton_poi_fused_avg_pool2d_0', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[16],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_avg_pool2d_0', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 16, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_avg_pool2d_0(in_ptr0, out_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 16
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex
tmp0 = tl.load(in_ptr0 + (16*x0), xmask, eviction_policy='evict_last')
tmp1 = tl.load(in_ptr0 + (1 + (16*x0)), xmask, eviction_policy='evict_last')
tmp3 = tl.load(in_ptr0 + (2 + (16*x0)), xmask, eviction_policy='evict_last')
tmp5 = tl.load(in_ptr0 + (3 + (16*x0)), xmask, eviction_policy='evict_last')
tmp7 = tl.load(in_ptr0 + (4 + (16*x0)), xmask, eviction_policy='evict_last')
tmp9 = tl.load(in_ptr0 + (5 + (16*x0)), xmask, eviction_policy='evict_last')
tmp11 = tl.load(in_ptr0 + (6 + (16*x0)), xmask, eviction_policy='evict_last')
tmp13 = tl.load(in_ptr0 + (7 + (16*x0)), xmask, eviction_policy='evict_last')
tmp15 = tl.load(in_ptr0 + (8 + (16*x0)), xmask, eviction_policy='evict_last')
tmp17 = tl.load(in_ptr0 + (9 + (16*x0)), xmask, eviction_policy='evict_last')
tmp19 = tl.load(in_ptr0 + (10 + (16*x0)), xmask, eviction_policy='evict_last')
tmp21 = tl.load(in_ptr0 + (11 + (16*x0)), xmask, eviction_policy='evict_last')
tmp23 = tl.load(in_ptr0 + (12 + (16*x0)), xmask, eviction_policy='evict_last')
tmp25 = tl.load(in_ptr0 + (13 + (16*x0)), xmask, eviction_policy='evict_last')
tmp27 = tl.load(in_ptr0 + (14 + (16*x0)), xmask, eviction_policy='evict_last')
tmp29 = tl.load(in_ptr0 + (15 + (16*x0)), xmask, eviction_policy='evict_last')
tmp2 = tmp1 + tmp0
tmp4 = tmp3 + tmp2
tmp6 = tmp5 + tmp4
tmp8 = tmp7 + tmp6
tmp10 = tmp9 + tmp8
tmp12 = tmp11 + tmp10
tmp14 = tmp13 + tmp12
tmp16 = tmp15 + tmp14
tmp18 = tmp17 + tmp16
tmp20 = tmp19 + tmp18
tmp22 = tmp21 + tmp20
tmp24 = tmp23 + tmp22
tmp26 = tmp25 + tmp24
tmp28 = tmp27 + tmp26
tmp30 = tmp29 + tmp28
tmp31 = 0.0625
tmp32 = tmp30 * tmp31
tl.store(out_ptr0 + (x0), tmp32, xmask)
''', device_str='cuda')
# kernel path: runs/run_shard_0/inductor_cache/ow/cowjexxxal2b7gsm3dt4uy42yticfka2kv6a5zlnecjnm6klax5t.py
# Topologically Sorted Source Nodes: [theta], Original ATen: [aten.tanh, aten.tanh_backward]
# Source node to ATen node mapping:
# theta => tanh
# Graph fragment:
# %add_tensor : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%mm_default, %primals_3), kwargs = {})
# %tanh : [num_users=2] = call_function[target=torch.ops.aten.tanh.default](args = (%add_tensor,), kwargs = {})
# %mul : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%tanh, %tanh), kwargs = {})
# %sub : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (1, %mul), kwargs = {})
triton_poi_fused_tanh_tanh_backward_1 = async_compile.triton('triton_poi_fused_tanh_tanh_backward_1', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[32],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_tanh_tanh_backward_1', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_tanh_tanh_backward_1(in_out_ptr0, in_ptr0, out_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 32
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x2 = xindex
x0 = xindex % 8
tmp0 = tl.load(in_out_ptr0 + (x2), xmask)
tmp1 = tl.load(in_ptr0 + (x0), xmask, eviction_policy='evict_last')
tmp2 = tmp0 + tmp1
tmp3 = libdevice.tanh(tmp2)
tmp4 = tmp3 * tmp3
tmp5 = 1.0
tmp6 = tmp5 - tmp4
tl.store(in_out_ptr0 + (x2), tmp3, xmask)
tl.store(out_ptr0 + (x2), tmp6, xmask)
''', device_str='cuda')
async_compile.wait(globals())
del async_compile
def call(args):
primals_1, primals_2, primals_3 = args
args.clear()
assert_size_stride(primals_1, (4, 4, 4, 4), (64, 16, 4, 1))
assert_size_stride(primals_2, (8, 4), (4, 1))
assert_size_stride(primals_3, (8, ), (1, ))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((4, 4, 1, 1), (4, 1, 1, 1), torch.float32)
# Topologically Sorted Source Nodes: [avg_pool2d], Original ATen: [aten.avg_pool2d]
stream0 = get_raw_stream(0)
triton_poi_fused_avg_pool2d_0.run(primals_1, buf0, 16, grid=grid(16), stream=stream0)
del primals_1
buf1 = empty_strided_cuda((4, 8), (8, 1), torch.float32)
# Topologically Sorted Source Nodes: [], Original ATen: []
extern_kernels.mm(reinterpret_tensor(buf0, (4, 4), (4, 1), 0), reinterpret_tensor(primals_2, (4, 8), (1, 4), 0), out=buf1)
del primals_2
buf2 = buf1; del buf1 # reuse
buf3 = empty_strided_cuda((4, 8), (8, 1), torch.float32)
# Topologically Sorted Source Nodes: [theta], Original ATen: [aten.tanh, aten.tanh_backward]
triton_poi_fused_tanh_tanh_backward_1.run(buf2, primals_3, buf3, 32, grid=grid(32), stream=stream0)
del primals_3
return (reinterpret_tensor(buf2, (4, 4, 2), (8, 2, 1), 0), reinterpret_tensor(buf0, (4, 4), (4, 1), 0), buf3, )
def benchmark_compiled_module(times=10, repeat=10):
from torch._dynamo.testing import rand_strided
from torch._inductor.utils import print_performance
primals_1 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32)
primals_2 = rand_strided((8, 4), (4, 1), device='cuda:0', dtype=torch.float32)
primals_3 = rand_strided((8, ), (1, ), device='cuda:0', dtype=torch.float32)
fn = lambda: call([primals_1, primals_2, primals_3])
return print_performance(fn, times=times, repeat=repeat)
if __name__ == "__main__":
from torch._inductor.wrapper_benchmark import compiled_module_main
compiled_module_main('None', benchmark_compiled_module)
|
import torch
from torch._inductor.select_algorithm import extern_kernels
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
from torch._inductor.runtime.triton_helpers import libdevice
import torch.nn as nn
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
@triton.jit
def triton_poi_fused_avg_pool2d_0(in_ptr0, out_ptr0, xnumel, XBLOCK: tl.
constexpr):
xnumel = 16
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex
tmp0 = tl.load(in_ptr0 + 16 * x0, xmask, eviction_policy='evict_last')
tmp1 = tl.load(in_ptr0 + (1 + 16 * x0), xmask, eviction_policy='evict_last'
)
tmp3 = tl.load(in_ptr0 + (2 + 16 * x0), xmask, eviction_policy='evict_last'
)
tmp5 = tl.load(in_ptr0 + (3 + 16 * x0), xmask, eviction_policy='evict_last'
)
tmp7 = tl.load(in_ptr0 + (4 + 16 * x0), xmask, eviction_policy='evict_last'
)
tmp9 = tl.load(in_ptr0 + (5 + 16 * x0), xmask, eviction_policy='evict_last'
)
tmp11 = tl.load(in_ptr0 + (6 + 16 * x0), xmask, eviction_policy=
'evict_last')
tmp13 = tl.load(in_ptr0 + (7 + 16 * x0), xmask, eviction_policy=
'evict_last')
tmp15 = tl.load(in_ptr0 + (8 + 16 * x0), xmask, eviction_policy=
'evict_last')
tmp17 = tl.load(in_ptr0 + (9 + 16 * x0), xmask, eviction_policy=
'evict_last')
tmp19 = tl.load(in_ptr0 + (10 + 16 * x0), xmask, eviction_policy=
'evict_last')
tmp21 = tl.load(in_ptr0 + (11 + 16 * x0), xmask, eviction_policy=
'evict_last')
tmp23 = tl.load(in_ptr0 + (12 + 16 * x0), xmask, eviction_policy=
'evict_last')
tmp25 = tl.load(in_ptr0 + (13 + 16 * x0), xmask, eviction_policy=
'evict_last')
tmp27 = tl.load(in_ptr0 + (14 + 16 * x0), xmask, eviction_policy=
'evict_last')
tmp29 = tl.load(in_ptr0 + (15 + 16 * x0), xmask, eviction_policy=
'evict_last')
tmp2 = tmp1 + tmp0
tmp4 = tmp3 + tmp2
tmp6 = tmp5 + tmp4
tmp8 = tmp7 + tmp6
tmp10 = tmp9 + tmp8
tmp12 = tmp11 + tmp10
tmp14 = tmp13 + tmp12
tmp16 = tmp15 + tmp14
tmp18 = tmp17 + tmp16
tmp20 = tmp19 + tmp18
tmp22 = tmp21 + tmp20
tmp24 = tmp23 + tmp22
tmp26 = tmp25 + tmp24
tmp28 = tmp27 + tmp26
tmp30 = tmp29 + tmp28
tmp31 = 0.0625
tmp32 = tmp30 * tmp31
tl.store(out_ptr0 + x0, tmp32, xmask)
@triton.jit
def triton_poi_fused_tanh_tanh_backward_1(in_out_ptr0, in_ptr0, out_ptr0,
xnumel, XBLOCK: tl.constexpr):
xnumel = 32
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x2 = xindex
x0 = xindex % 8
tmp0 = tl.load(in_out_ptr0 + x2, xmask)
tmp1 = tl.load(in_ptr0 + x0, xmask, eviction_policy='evict_last')
tmp2 = tmp0 + tmp1
tmp3 = libdevice.tanh(tmp2)
tmp4 = tmp3 * tmp3
tmp5 = 1.0
tmp6 = tmp5 - tmp4
tl.store(in_out_ptr0 + x2, tmp3, xmask)
tl.store(out_ptr0 + x2, tmp6, xmask)
def call(args):
primals_1, primals_2, primals_3 = args
args.clear()
assert_size_stride(primals_1, (4, 4, 4, 4), (64, 16, 4, 1))
assert_size_stride(primals_2, (8, 4), (4, 1))
assert_size_stride(primals_3, (8,), (1,))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((4, 4, 1, 1), (4, 1, 1, 1), torch.float32)
get_raw_stream(0)
triton_poi_fused_avg_pool2d_0[grid(16)](primals_1, buf0, 16, XBLOCK
=16, num_warps=1, num_stages=1)
del primals_1
buf1 = empty_strided_cuda((4, 8), (8, 1), torch.float32)
extern_kernels.mm(reinterpret_tensor(buf0, (4, 4), (4, 1), 0),
reinterpret_tensor(primals_2, (4, 8), (1, 4), 0), out=buf1)
del primals_2
buf2 = buf1
del buf1
buf3 = empty_strided_cuda((4, 8), (8, 1), torch.float32)
triton_poi_fused_tanh_tanh_backward_1[grid(32)](buf2, primals_3,
buf3, 32, XBLOCK=32, num_warps=1, num_stages=1)
del primals_3
return reinterpret_tensor(buf2, (4, 4, 2), (8, 2, 1), 0
), reinterpret_tensor(buf0, (4, 4), (4, 1), 0), buf3
class HardAttnNew(nn.Module):
"""Hard Attention (Sec. 3.1.II)"""
def __init__(self, in_channels):
super(HardAttnNew, self).__init__()
self.fc = nn.Linear(in_channels, 4 * 2)
self.init_params()
def init_params(self):
self.fc.weight.data.zero_()
self.fc.bias.data.copy_(torch.tensor([0, -0.75, 0, -0.25, 0, 0.25,
0, 0.75], dtype=torch.float))
def forward(self, input_0):
primals_2 = self.fc.weight
primals_3 = self.fc.bias
primals_1 = input_0
output = call([primals_1, primals_2, primals_3])
return output[0]
|
Danish-VSL/deep-person-reid
|
HardAttn
| false | 13,551 |
[
"MIT"
] | 244 |
2e3a4b6706b84c77203f9905683b917ab0871b93
|
https://github.com/Danish-VSL/deep-person-reid/tree/2e3a4b6706b84c77203f9905683b917ab0871b93
|
CMMD
|
# AOT ID: ['0_inference']
from ctypes import c_void_p, c_long, c_int
import torch
import math
import random
import os
import tempfile
from math import inf, nan
from torch._inductor.hooks import run_intermediate_hooks
from torch._inductor.utils import maybe_profile
from torch._inductor.codegen.memory_planning import _align as align
from torch import device, empty_strided
from torch._inductor.async_compile import AsyncCompile
from torch._inductor.select_algorithm import extern_kernels
from torch._inductor.codegen.multi_kernel import MultiKernelCall
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
aten = torch.ops.aten
inductor_ops = torch.ops.inductor
_quantized = torch.ops._quantized
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
alloc_from_pool = torch.ops.inductor._alloc_from_pool
async_compile = AsyncCompile()
# kernel path: runs/run_shard_1/inductor_cache/f6/cf6zadwv7a5akbud7ttdbdc565ql6iiuysbozq7xwvkys7sxo7oz.py
# Topologically Sorted Source Nodes: [feat_v_1], Original ATen: [aten.linalg_vector_norm]
# Source node to ATen node mapping:
# feat_v_1 => pow_1, sum_1
# Graph fragment:
# %pow_1 : [num_users=1] = call_function[target=torch.ops.aten.pow.Tensor_Scalar](args = (%view, 2.0), kwargs = {})
# %sum_1 : [num_users=1] = call_function[target=torch.ops.aten.sum.dim_IntList](args = (%pow_1, [-1], True), kwargs = {})
triton_per_fused_linalg_vector_norm_0 = async_compile.triton('triton_per_fused_linalg_vector_norm_0', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.persistent_reduction(
size_hints=[4, 64],
reduction_hint=ReductionHint.INNER,
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=90, major=9, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=132), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 3), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_per_fused_linalg_vector_norm_0', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 1, 'num_reduction': 1, 'backend_hash': 'B098E03CDA7B8ADC90DAFFDF24A2956451D1B13F297756A5DCC209498AA53705', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}
)
@triton.jit
def triton_per_fused_linalg_vector_norm_0(in_ptr0, out_ptr0, xnumel, rnumel, XBLOCK : tl.constexpr):
xnumel = 4
rnumel = 64
RBLOCK: tl.constexpr = 64
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:, None]
xmask = xindex < xnumel
rindex = tl.arange(0, RBLOCK)[None, :]
roffset = 0
rmask = tl.full([XBLOCK, RBLOCK], True, tl.int1)
r1 = rindex
x0 = xindex
tmp0 = tl.load(in_ptr0 + (r1 + (64*x0)), xmask, other=0.0)
tmp1 = tmp0 * tmp0
tmp2 = tl.broadcast_to(tmp1, [XBLOCK, RBLOCK])
tmp4 = tl.where(xmask, tmp2, 0)
tmp5 = tl.sum(tmp4, 1)[:, None]
tl.store(out_ptr0 + (x0), tmp5, xmask)
''', device_str='cuda')
# kernel path: runs/run_shard_1/inductor_cache/o6/co65xeotc4w3dat3ahcsyaw4klhv5mxlia7b5j6qfhr2a27ig27r.py
# Topologically Sorted Source Nodes: [mul, sum_1, mul_1, sum_2, mul_2, sum_3], Original ATen: [aten.mul, aten.sum]
# Source node to ATen node mapping:
# mul => mul
# mul_1 => mul_1
# mul_2 => mul_2
# sum_1 => sum_3
# sum_2 => sum_4
# sum_3 => sum_5
# Graph fragment:
# %mul : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%unsqueeze, %unsqueeze_1), kwargs = {})
# %sum_3 : [num_users=1] = call_function[target=torch.ops.aten.sum.dim_IntList](args = (%mul, [-1]), kwargs = {})
# %mul_1 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%unsqueeze_2, %unsqueeze_3), kwargs = {})
# %sum_4 : [num_users=1] = call_function[target=torch.ops.aten.sum.dim_IntList](args = (%mul_1, [-1]), kwargs = {})
# %mul_2 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%unsqueeze_4, %unsqueeze_5), kwargs = {})
# %sum_5 : [num_users=1] = call_function[target=torch.ops.aten.sum.dim_IntList](args = (%mul_2, [-1]), kwargs = {})
triton_per_fused_mul_sum_1 = async_compile.triton('triton_per_fused_mul_sum_1', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.persistent_reduction(
size_hints=[16, 64],
reduction_hint=ReductionHint.DEFAULT,
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: '*fp32', 4: '*fp32', 5: '*fp32', 6: '*fp32', 7: 'i32', 8: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=90, major=9, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=132), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3, 4, 5, 6, 7, 8), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_per_fused_mul_sum_1', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 8, 'num_reduction': 3, 'backend_hash': 'B098E03CDA7B8ADC90DAFFDF24A2956451D1B13F297756A5DCC209498AA53705', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}
)
@triton.jit
def triton_per_fused_mul_sum_1(in_ptr0, in_ptr1, in_ptr2, in_ptr3, out_ptr0, out_ptr1, out_ptr2, xnumel, rnumel, XBLOCK : tl.constexpr):
xnumel = 16
rnumel = 64
RBLOCK: tl.constexpr = 64
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:, None]
xmask = xindex < xnumel
rindex = tl.arange(0, RBLOCK)[None, :]
roffset = 0
rmask = tl.full([XBLOCK, RBLOCK], True, tl.int1)
r2 = rindex
x0 = xindex % 4
x1 = (xindex // 4)
x3 = xindex
tmp0 = tl.load(in_ptr0 + (r2 + (64*x0)), xmask, eviction_policy='evict_last', other=0.0)
tmp1 = tl.load(in_ptr1 + (x0), xmask, eviction_policy='evict_last')
tmp6 = tl.load(in_ptr0 + (r2 + (64*x1)), xmask, eviction_policy='evict_last', other=0.0)
tmp7 = tl.load(in_ptr1 + (x1), xmask, eviction_policy='evict_last')
tmp16 = tl.load(in_ptr2 + (r2 + (64*x0)), xmask, eviction_policy='evict_last', other=0.0)
tmp17 = tl.load(in_ptr3 + (x0), xmask, eviction_policy='evict_last')
tmp21 = tl.load(in_ptr2 + (r2 + (64*x1)), xmask, eviction_policy='evict_last', other=0.0)
tmp22 = tl.load(in_ptr3 + (x1), xmask, eviction_policy='evict_last')
tmp2 = libdevice.sqrt(tmp1)
tmp3 = 1e-12
tmp4 = triton_helpers.maximum(tmp2, tmp3)
tmp5 = tmp0 / tmp4
tmp8 = libdevice.sqrt(tmp7)
tmp9 = triton_helpers.maximum(tmp8, tmp3)
tmp10 = tmp6 / tmp9
tmp11 = tmp5 * tmp10
tmp12 = tl.broadcast_to(tmp11, [XBLOCK, RBLOCK])
tmp14 = tl.where(xmask, tmp12, 0)
tmp15 = tl.sum(tmp14, 1)[:, None]
tmp18 = libdevice.sqrt(tmp17)
tmp19 = triton_helpers.maximum(tmp18, tmp3)
tmp20 = tmp16 / tmp19
tmp23 = libdevice.sqrt(tmp22)
tmp24 = triton_helpers.maximum(tmp23, tmp3)
tmp25 = tmp21 / tmp24
tmp26 = tmp20 * tmp25
tmp27 = tl.broadcast_to(tmp26, [XBLOCK, RBLOCK])
tmp29 = tl.where(xmask, tmp27, 0)
tmp30 = tl.sum(tmp29, 1)[:, None]
tmp31 = tmp5 * tmp25
tmp32 = tl.broadcast_to(tmp31, [XBLOCK, RBLOCK])
tmp34 = tl.where(xmask, tmp32, 0)
tmp35 = tl.sum(tmp34, 1)[:, None]
tl.store(out_ptr0 + (x3), tmp15, xmask)
tl.store(out_ptr1 + (x3), tmp30, xmask)
tl.store(out_ptr2 + (x3), tmp35, xmask)
''', device_str='cuda')
# kernel path: runs/run_shard_1/inductor_cache/ts/ctsxkk536uyp5fec3ryq3tilzzjb36yephn2kbrcplax6x4ngjxm.py
# Topologically Sorted Source Nodes: [res, mean, res_1, mean_1, add, res_2, mean_2, mul_3, sub, add_1, loss], Original ATen: [aten.pow, aten.mean, aten.add, aten.mul, aten.sub, aten.div]
# Source node to ATen node mapping:
# add => add
# add_1 => add_1
# loss => div_2
# mean => mean
# mean_1 => mean_1
# mean_2 => mean_2
# mul_3 => mul_3
# res => pow_5
# res_1 => pow_6
# res_2 => pow_7
# sub => sub
# Graph fragment:
# %pow_5 : [num_users=1] = call_function[target=torch.ops.aten.pow.Tensor_Scalar](args = (%sum_3, 2), kwargs = {})
# %mean : [num_users=1] = call_function[target=torch.ops.aten.mean.default](args = (%pow_5,), kwargs = {})
# %pow_6 : [num_users=1] = call_function[target=torch.ops.aten.pow.Tensor_Scalar](args = (%sum_4, 2), kwargs = {})
# %mean_1 : [num_users=1] = call_function[target=torch.ops.aten.mean.default](args = (%pow_6,), kwargs = {})
# %add : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%mean, %mean_1), kwargs = {})
# %pow_7 : [num_users=1] = call_function[target=torch.ops.aten.pow.Tensor_Scalar](args = (%sum_5, 2), kwargs = {})
# %mean_2 : [num_users=1] = call_function[target=torch.ops.aten.mean.default](args = (%pow_7,), kwargs = {})
# %mul_3 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%mean_2, 2), kwargs = {})
# %sub : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (%add, %mul_3), kwargs = {})
# %add_1 : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%sub, 0), kwargs = {})
# %div_2 : [num_users=1] = call_function[target=torch.ops.aten.div.Tensor](args = (%add_1, 1), kwargs = {})
triton_per_fused_add_div_mean_mul_pow_sub_2 = async_compile.triton('triton_per_fused_add_div_mean_mul_pow_sub_2', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.persistent_reduction(
size_hints=[1, 16],
reduction_hint=ReductionHint.INNER,
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: '*fp32', 4: 'i32', 5: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=90, major=9, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=132), 'constants': {4: 1}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3, 5), equal_to_1=(4,))]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_per_fused_add_div_mean_mul_pow_sub_2', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 3, 'num_reduction': 3, 'backend_hash': 'B098E03CDA7B8ADC90DAFFDF24A2956451D1B13F297756A5DCC209498AA53705', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}
)
@triton.jit
def triton_per_fused_add_div_mean_mul_pow_sub_2(in_out_ptr0, in_ptr0, in_ptr1, in_ptr2, xnumel, rnumel, XBLOCK : tl.constexpr):
xnumel = 1
rnumel = 16
RBLOCK: tl.constexpr = 16
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:, None]
xmask = tl.full([XBLOCK, RBLOCK], True, tl.int1)
rindex = tl.arange(0, RBLOCK)[None, :]
roffset = 0
rmask = tl.full([XBLOCK, RBLOCK], True, tl.int1)
r0 = rindex
tmp0 = tl.load(in_ptr0 + (r0), None)
tmp5 = tl.load(in_ptr1 + (r0), None)
tmp10 = tl.load(in_ptr2 + (r0), None)
tmp1 = tmp0 * tmp0
tmp2 = tl.broadcast_to(tmp1, [XBLOCK, RBLOCK])
tmp4 = tl.sum(tmp2, 1)[:, None]
tmp6 = tmp5 * tmp5
tmp7 = tl.broadcast_to(tmp6, [XBLOCK, RBLOCK])
tmp9 = tl.sum(tmp7, 1)[:, None]
tmp11 = tmp10 * tmp10
tmp12 = tl.broadcast_to(tmp11, [XBLOCK, RBLOCK])
tmp14 = tl.sum(tmp12, 1)[:, None]
tmp15 = 16.0
tmp16 = tmp4 / tmp15
tmp17 = tmp9 / tmp15
tmp18 = tmp16 + tmp17
tmp19 = tmp14 / tmp15
tmp20 = 2.0
tmp21 = tmp19 * tmp20
tmp22 = tmp18 - tmp21
tmp23 = 0.0
tmp24 = tmp22 + tmp23
tmp25 = 1.0
tmp26 = tmp24 * tmp25
tl.debug_barrier()
tl.store(in_out_ptr0 + (tl.full([XBLOCK, 1], 0, tl.int32)), tmp26, None)
''', device_str='cuda')
async_compile.wait(globals())
del async_compile
def call(args):
arg0_1, arg1_1 = args
args.clear()
assert_size_stride(arg0_1, (4, 4, 4, 4), (64, 16, 4, 1))
assert_size_stride(arg1_1, (4, 4, 4, 4), (64, 16, 4, 1))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((4, 1), (1, 4), torch.float32)
# Topologically Sorted Source Nodes: [feat_v_1], Original ATen: [aten.linalg_vector_norm]
stream0 = get_raw_stream(0)
triton_per_fused_linalg_vector_norm_0.run(arg0_1, buf0, 4, 64, grid=grid(4), stream=stream0)
buf1 = empty_strided_cuda((4, 1), (1, 4), torch.float32)
# Topologically Sorted Source Nodes: [feat_t_1], Original ATen: [aten.linalg_vector_norm]
triton_per_fused_linalg_vector_norm_0.run(arg1_1, buf1, 4, 64, grid=grid(4), stream=stream0)
buf2 = empty_strided_cuda((4, 4), (4, 1), torch.float32)
buf4 = empty_strided_cuda((4, 4), (4, 1), torch.float32)
buf6 = empty_strided_cuda((4, 4), (4, 1), torch.float32)
# Topologically Sorted Source Nodes: [mul, sum_1, mul_1, sum_2, mul_2, sum_3], Original ATen: [aten.mul, aten.sum]
triton_per_fused_mul_sum_1.run(arg0_1, buf0, arg1_1, buf1, buf2, buf4, buf6, 16, 64, grid=grid(16), stream=stream0)
del arg0_1
del arg1_1
del buf0
del buf1
buf3 = empty_strided_cuda((), (), torch.float32)
buf8 = buf3; del buf3 # reuse
# Topologically Sorted Source Nodes: [res, mean, res_1, mean_1, add, res_2, mean_2, mul_3, sub, add_1, loss], Original ATen: [aten.pow, aten.mean, aten.add, aten.mul, aten.sub, aten.div]
triton_per_fused_add_div_mean_mul_pow_sub_2.run(buf8, buf2, buf4, buf6, 1, 16, grid=grid(1), stream=stream0)
del buf2
del buf4
del buf6
return (buf8, )
def benchmark_compiled_module(times=10, repeat=10):
from torch._dynamo.testing import rand_strided
from torch._inductor.utils import print_performance
arg0_1 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32)
arg1_1 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32)
fn = lambda: call([arg0_1, arg1_1])
return print_performance(fn, times=times, repeat=repeat)
if __name__ == "__main__":
from torch._inductor.wrapper_benchmark import compiled_module_main
compiled_module_main('None', benchmark_compiled_module)
|
import torch
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
from torch._inductor.runtime import triton_helpers
from torch._inductor.runtime.triton_helpers import libdevice
import torch.nn as nn
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
@triton.jit
def triton_per_fused_linalg_vector_norm_0(in_ptr0, out_ptr0, xnumel, rnumel,
XBLOCK: tl.constexpr):
xnumel = 4
RBLOCK: tl.constexpr = 64
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:, None]
xmask = xindex < xnumel
rindex = tl.arange(0, RBLOCK)[None, :]
tl.full([XBLOCK, RBLOCK], True, tl.int1)
r1 = rindex
x0 = xindex
tmp0 = tl.load(in_ptr0 + (r1 + 64 * x0), xmask, other=0.0)
tmp1 = tmp0 * tmp0
tmp2 = tl.broadcast_to(tmp1, [XBLOCK, RBLOCK])
tmp4 = tl.where(xmask, tmp2, 0)
tmp5 = tl.sum(tmp4, 1)[:, None]
tl.store(out_ptr0 + x0, tmp5, xmask)
@triton.jit
def triton_per_fused_mul_sum_1(in_ptr0, in_ptr1, in_ptr2, in_ptr3, out_ptr0,
out_ptr1, out_ptr2, xnumel, rnumel, XBLOCK: tl.constexpr):
xnumel = 16
RBLOCK: tl.constexpr = 64
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:, None]
xmask = xindex < xnumel
rindex = tl.arange(0, RBLOCK)[None, :]
tl.full([XBLOCK, RBLOCK], True, tl.int1)
r2 = rindex
x0 = xindex % 4
x1 = xindex // 4
x3 = xindex
tmp0 = tl.load(in_ptr0 + (r2 + 64 * x0), xmask, eviction_policy=
'evict_last', other=0.0)
tmp1 = tl.load(in_ptr1 + x0, xmask, eviction_policy='evict_last')
tmp6 = tl.load(in_ptr0 + (r2 + 64 * x1), xmask, eviction_policy=
'evict_last', other=0.0)
tmp7 = tl.load(in_ptr1 + x1, xmask, eviction_policy='evict_last')
tmp16 = tl.load(in_ptr2 + (r2 + 64 * x0), xmask, eviction_policy=
'evict_last', other=0.0)
tmp17 = tl.load(in_ptr3 + x0, xmask, eviction_policy='evict_last')
tmp21 = tl.load(in_ptr2 + (r2 + 64 * x1), xmask, eviction_policy=
'evict_last', other=0.0)
tmp22 = tl.load(in_ptr3 + x1, xmask, eviction_policy='evict_last')
tmp2 = libdevice.sqrt(tmp1)
tmp3 = 1e-12
tmp4 = triton_helpers.maximum(tmp2, tmp3)
tmp5 = tmp0 / tmp4
tmp8 = libdevice.sqrt(tmp7)
tmp9 = triton_helpers.maximum(tmp8, tmp3)
tmp10 = tmp6 / tmp9
tmp11 = tmp5 * tmp10
tmp12 = tl.broadcast_to(tmp11, [XBLOCK, RBLOCK])
tmp14 = tl.where(xmask, tmp12, 0)
tmp15 = tl.sum(tmp14, 1)[:, None]
tmp18 = libdevice.sqrt(tmp17)
tmp19 = triton_helpers.maximum(tmp18, tmp3)
tmp20 = tmp16 / tmp19
tmp23 = libdevice.sqrt(tmp22)
tmp24 = triton_helpers.maximum(tmp23, tmp3)
tmp25 = tmp21 / tmp24
tmp26 = tmp20 * tmp25
tmp27 = tl.broadcast_to(tmp26, [XBLOCK, RBLOCK])
tmp29 = tl.where(xmask, tmp27, 0)
tmp30 = tl.sum(tmp29, 1)[:, None]
tmp31 = tmp5 * tmp25
tmp32 = tl.broadcast_to(tmp31, [XBLOCK, RBLOCK])
tmp34 = tl.where(xmask, tmp32, 0)
tmp35 = tl.sum(tmp34, 1)[:, None]
tl.store(out_ptr0 + x3, tmp15, xmask)
tl.store(out_ptr1 + x3, tmp30, xmask)
tl.store(out_ptr2 + x3, tmp35, xmask)
@triton.jit
def triton_per_fused_add_div_mean_mul_pow_sub_2(in_out_ptr0, in_ptr0,
in_ptr1, in_ptr2, xnumel, rnumel, XBLOCK: tl.constexpr):
RBLOCK: tl.constexpr = 16
xoffset = tl.program_id(0) * XBLOCK
xoffset + tl.arange(0, XBLOCK)[:, None]
tl.full([XBLOCK, RBLOCK], True, tl.int1)
rindex = tl.arange(0, RBLOCK)[None, :]
tl.full([XBLOCK, RBLOCK], True, tl.int1)
r0 = rindex
tmp0 = tl.load(in_ptr0 + r0, None)
tmp5 = tl.load(in_ptr1 + r0, None)
tmp10 = tl.load(in_ptr2 + r0, None)
tmp1 = tmp0 * tmp0
tmp2 = tl.broadcast_to(tmp1, [XBLOCK, RBLOCK])
tmp4 = tl.sum(tmp2, 1)[:, None]
tmp6 = tmp5 * tmp5
tmp7 = tl.broadcast_to(tmp6, [XBLOCK, RBLOCK])
tmp9 = tl.sum(tmp7, 1)[:, None]
tmp11 = tmp10 * tmp10
tmp12 = tl.broadcast_to(tmp11, [XBLOCK, RBLOCK])
tmp14 = tl.sum(tmp12, 1)[:, None]
tmp15 = 16.0
tmp16 = tmp4 / tmp15
tmp17 = tmp9 / tmp15
tmp18 = tmp16 + tmp17
tmp19 = tmp14 / tmp15
tmp20 = 2.0
tmp21 = tmp19 * tmp20
tmp22 = tmp18 - tmp21
tmp23 = 0.0
tmp24 = tmp22 + tmp23
tmp25 = 1.0
tmp26 = tmp24 * tmp25
tl.debug_barrier()
tl.store(in_out_ptr0 + tl.full([XBLOCK, 1], 0, tl.int32), tmp26, None)
def call(args):
arg0_1, arg1_1 = args
args.clear()
assert_size_stride(arg0_1, (4, 4, 4, 4), (64, 16, 4, 1))
assert_size_stride(arg1_1, (4, 4, 4, 4), (64, 16, 4, 1))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((4, 1), (1, 4), torch.float32)
get_raw_stream(0)
triton_per_fused_linalg_vector_norm_0[grid(4)](arg0_1, buf0, 4, 64,
XBLOCK=1, num_warps=2, num_stages=1)
buf1 = empty_strided_cuda((4, 1), (1, 4), torch.float32)
triton_per_fused_linalg_vector_norm_0[grid(4)](arg1_1, buf1, 4, 64,
XBLOCK=1, num_warps=2, num_stages=1)
buf2 = empty_strided_cuda((4, 4), (4, 1), torch.float32)
buf4 = empty_strided_cuda((4, 4), (4, 1), torch.float32)
buf6 = empty_strided_cuda((4, 4), (4, 1), torch.float32)
triton_per_fused_mul_sum_1[grid(16)](arg0_1, buf0, arg1_1, buf1,
buf2, buf4, buf6, 16, 64, XBLOCK=8, num_warps=4, num_stages=1)
del arg0_1
del arg1_1
del buf0
del buf1
buf3 = empty_strided_cuda((), (), torch.float32)
buf8 = buf3
del buf3
triton_per_fused_add_div_mean_mul_pow_sub_2[grid(1)](buf8, buf2,
buf4, buf6, 1, 16, XBLOCK=1, num_warps=2, num_stages=1)
del buf2
del buf4
del buf6
return buf8,
class CMMDNew(nn.Module):
def __init__(self, num_pos):
super(CMMDNew, self).__init__()
self.num_pos = num_pos
def mmd_loss(self, f_v, f_t):
return self.poly_kernel(f_v, f_v).mean() + self.poly_kernel(f_t, f_t
).mean() - 2 * self.poly_kernel(f_v, f_t).mean()
def poly_kernel(self, a, b):
a = a.unsqueeze(0)
b = b.unsqueeze(1)
res = (a * b).sum(-1).pow(2)
return res
def forward(self, input_0, input_1):
arg0_1 = input_0
arg1_1 = input_1
output = call([arg0_1, arg1_1])
return output[0]
|
JDAI-CV/CM-NAS
|
CMMD
| false | 8,302 |
[
"Apache-2.0"
] | 31 |
bbc77f427b2c8afb9f3865f5a04e86079d33dd28
|
https://github.com/JDAI-CV/CM-NAS/tree/bbc77f427b2c8afb9f3865f5a04e86079d33dd28
|
GAT
|
import torch
import torch.nn as nn
import torch.nn.functional as F
class GAT(nn.Module):
def __init__(self, num_feats):
super(GAT, self).__init__()
self.num_feats = num_feats
self.weight_key = nn.Parameter(torch.zeros(size=(self.num_feats, 1)))
self.weight_query = nn.Parameter(torch.zeros(size=(self.num_feats, 1)))
nn.init.xavier_uniform_(self.weight_key, gain=1.414)
nn.init.xavier_uniform_(self.weight_query, gain=1.414)
self.dropout = nn.Dropout(0.5)
def forward(self, x):
"""
:param x: dim: bz x num_node x num_feat
:return: dim: bz x num_node x num_node
"""
batch_size = x.size(0)
num_nodes = x.size(1)
key = torch.matmul(x, self.weight_key)
query = torch.matmul(x, self.weight_query)
attn_input = key.repeat(1, 1, num_nodes).view(batch_size, num_nodes *
num_nodes, 1) + query.repeat(1, num_nodes, 1)
attn_output = attn_input.squeeze(2).view(batch_size, num_nodes,
num_nodes)
attn_output = F.leaky_relu(attn_output, negative_slope=0.2)
attention = F.softmax(attn_output, dim=2)
attention = self.dropout(attention)
attn_feat = torch.matmul(attention, x).permute(0, 2, 1)
return attn_feat
def get_inputs():
return [torch.rand([4, 4, 4])]
def get_init_inputs():
return [[], {'num_feats': 4}]
|
import torch
from torch._inductor.select_algorithm import extern_kernels
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
from torch._inductor.runtime import triton_helpers
from torch._inductor.runtime.triton_helpers import math as tl_math
import torch.nn as nn
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
@triton.jit
def triton_poi_fused_add_repeat_0(in_ptr0, in_ptr1, out_ptr0, xnumel,
XBLOCK: tl.constexpr):
xnumel = 64
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x2 = xindex
x0 = xindex % 16
x1 = xindex // 16
tmp0 = tl.load(in_ptr0 + x2 // 4, xmask, eviction_policy='evict_last')
tmp1 = tl.load(in_ptr1 + (4 * x1 + x0 % 4), xmask)
tmp2 = tmp0 + tmp1
tl.store(out_ptr0 + x2, tmp2, xmask)
@triton.jit
def triton_poi_fused__softmax_leaky_relu_1(in_ptr0, out_ptr0, xnumel,
XBLOCK: tl.constexpr):
xnumel = 64
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x2 = xindex
x1 = xindex // 4
tmp0 = tl.load(in_ptr0 + x2, xmask)
tmp6 = tl.load(in_ptr0 + 4 * x1, xmask, eviction_policy='evict_last')
tmp10 = tl.load(in_ptr0 + (1 + 4 * x1), xmask, eviction_policy='evict_last'
)
tmp15 = tl.load(in_ptr0 + (2 + 4 * x1), xmask, eviction_policy='evict_last'
)
tmp20 = tl.load(in_ptr0 + (3 + 4 * x1), xmask, eviction_policy='evict_last'
)
tmp1 = 0.0
tmp2 = tmp0 > tmp1
tmp3 = 0.2
tmp4 = tmp0 * tmp3
tmp5 = tl.where(tmp2, tmp0, tmp4)
tmp7 = tmp6 > tmp1
tmp8 = tmp6 * tmp3
tmp9 = tl.where(tmp7, tmp6, tmp8)
tmp11 = tmp10 > tmp1
tmp12 = tmp10 * tmp3
tmp13 = tl.where(tmp11, tmp10, tmp12)
tmp14 = triton_helpers.maximum(tmp9, tmp13)
tmp16 = tmp15 > tmp1
tmp17 = tmp15 * tmp3
tmp18 = tl.where(tmp16, tmp15, tmp17)
tmp19 = triton_helpers.maximum(tmp14, tmp18)
tmp21 = tmp20 > tmp1
tmp22 = tmp20 * tmp3
tmp23 = tl.where(tmp21, tmp20, tmp22)
tmp24 = triton_helpers.maximum(tmp19, tmp23)
tmp25 = tmp5 - tmp24
tmp26 = tl_math.exp(tmp25)
tl.store(out_ptr0 + x2, tmp26, xmask)
@triton.jit
def triton_poi_fused__softmax_2(in_ptr0, out_ptr0, xnumel, XBLOCK: tl.constexpr
):
xnumel = 64
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x2 = xindex
x1 = xindex // 4
tmp0 = tl.load(in_ptr0 + x2, xmask)
tmp1 = tl.load(in_ptr0 + 4 * x1, xmask, eviction_policy='evict_last')
tmp2 = tl.load(in_ptr0 + (1 + 4 * x1), xmask, eviction_policy='evict_last')
tmp4 = tl.load(in_ptr0 + (2 + 4 * x1), xmask, eviction_policy='evict_last')
tmp6 = tl.load(in_ptr0 + (3 + 4 * x1), xmask, eviction_policy='evict_last')
tmp3 = tmp1 + tmp2
tmp5 = tmp3 + tmp4
tmp7 = tmp5 + tmp6
tmp8 = tmp0 / tmp7
tl.store(out_ptr0 + x2, tmp8, xmask)
def call(args):
primals_1, primals_2, primals_3 = args
args.clear()
assert_size_stride(primals_1, (4, 4, 4), (16, 4, 1))
assert_size_stride(primals_2, (4, 1), (1, 1))
assert_size_stride(primals_3, (4, 1), (1, 1))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((16, 1), (1, 1), torch.float32)
extern_kernels.mm(reinterpret_tensor(primals_1, (16, 4), (4, 1), 0),
primals_2, out=buf0)
del primals_2
buf1 = empty_strided_cuda((16, 1), (1, 1), torch.float32)
extern_kernels.mm(reinterpret_tensor(primals_1, (16, 4), (4, 1), 0),
primals_3, out=buf1)
del primals_3
buf2 = empty_strided_cuda((4, 16, 1), (16, 1, 1), torch.float32)
get_raw_stream(0)
triton_poi_fused_add_repeat_0[grid(64)](buf0, buf1, buf2, 64,
XBLOCK=64, num_warps=1, num_stages=1)
del buf0
del buf1
buf3 = empty_strided_cuda((4, 4, 4), (16, 4, 1), torch.float32)
triton_poi_fused__softmax_leaky_relu_1[grid(64)](buf2, buf3, 64,
XBLOCK=64, num_warps=1, num_stages=1)
buf4 = empty_strided_cuda((4, 4, 4), (16, 4, 1), torch.float32)
triton_poi_fused__softmax_2[grid(64)](buf3, buf4, 64, XBLOCK=64,
num_warps=1, num_stages=1)
buf5 = buf3
del buf3
extern_kernels.bmm(buf4, primals_1, out=buf5)
del buf4
return reinterpret_tensor(buf5, (4, 4, 4), (16, 1, 4), 0
), primals_1, reinterpret_tensor(buf2, (4, 4, 4), (16, 4, 1), 0)
class GATNew(nn.Module):
def __init__(self, num_feats):
super(GATNew, self).__init__()
self.num_feats = num_feats
self.weight_key = nn.Parameter(torch.zeros(size=(self.num_feats, 1)))
self.weight_query = nn.Parameter(torch.zeros(size=(self.num_feats, 1)))
nn.init.xavier_uniform_(self.weight_key, gain=1.414)
nn.init.xavier_uniform_(self.weight_query, gain=1.414)
self.dropout = nn.Dropout(0.5)
def forward(self, input_0):
primals_2 = self.weight_key
primals_3 = self.weight_query
primals_1 = input_0
output = call([primals_1, primals_2, primals_3])
return output[0]
|
juaduan/babybrainguardian
|
GAT
| false | 6,992 |
[
"MIT"
] | 1 |
b871e3a83fef98c2e05dd8857721a3c964a46418
|
https://github.com/juaduan/babybrainguardian/tree/b871e3a83fef98c2e05dd8857721a3c964a46418
|
SamePadConv2d
|
import torch
from torch.nn import functional as F
import torch.nn as nn
class SamePadConv2d(nn.Conv2d):
"""
Conv with TF padding='same'
https://github.com/pytorch/pytorch/issues/3867#issuecomment-349279036
"""
def __init__(self, in_channels, out_channels, kernel_size, stride=1,
dilation=1, groups=1, bias=True, padding_mode='zeros'):
super().__init__(in_channels, out_channels, kernel_size, stride, 0,
dilation, groups, bias, padding_mode)
def get_pad_odd(self, in_, weight, stride, dilation):
effective_filter_size_rows = (weight - 1) * dilation + 1
out_rows = (in_ + stride - 1) // stride
max(0, (out_rows - 1) * stride + effective_filter_size_rows - in_)
padding_rows = max(0, (out_rows - 1) * stride + (weight - 1) *
dilation + 1 - in_)
rows_odd = padding_rows % 2 != 0
return padding_rows, rows_odd
def forward(self, x):
padding_rows, rows_odd = self.get_pad_odd(x.shape[2], self.weight.
shape[2], self.stride[0], self.dilation[0])
padding_cols, cols_odd = self.get_pad_odd(x.shape[3], self.weight.
shape[3], self.stride[1], self.dilation[1])
if rows_odd or cols_odd:
x = F.pad(x, [0, int(cols_odd), 0, int(rows_odd)])
return F.conv2d(x, self.weight, self.bias, self.stride, padding=(
padding_rows // 2, padding_cols // 2), dilation=self.dilation,
groups=self.groups)
def get_inputs():
return [torch.rand([4, 4, 4, 4])]
def get_init_inputs():
return [[], {'in_channels': 4, 'out_channels': 4, 'kernel_size': 4}]
|
import torch
from torch._inductor.select_algorithm import extern_kernels
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
import torch.nn as nn
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
@triton.jit
def triton_poi_fused_constant_pad_nd_0(in_ptr0, out_ptr0, xnumel, XBLOCK:
tl.constexpr):
xnumel = 400
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x1 = xindex // 5 % 5
x0 = xindex % 5
x2 = xindex // 25
x3 = xindex
tmp0 = x1
tmp1 = tl.full([1], 4, tl.int64)
tmp2 = tmp0 < tmp1
tmp3 = x0
tmp4 = tmp3 < tmp1
tmp5 = tmp2 & tmp4
tmp6 = tl.load(in_ptr0 + (x0 + 4 * x1 + 16 * x2), tmp5 & xmask, other=0.0)
tl.store(out_ptr0 + x3, tmp6, xmask)
@triton.jit
def triton_poi_fused_convolution_1(in_out_ptr0, in_ptr0, xnumel, XBLOCK: tl
.constexpr):
xnumel = 256
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x3 = xindex
x1 = xindex // 16 % 4
tmp0 = tl.load(in_out_ptr0 + x3, xmask)
tmp1 = tl.load(in_ptr0 + x1, xmask, eviction_policy='evict_last')
tmp2 = tmp0 + tmp1
tl.store(in_out_ptr0 + x3, tmp2, xmask)
def call(args):
primals_1, primals_2, primals_3 = args
args.clear()
assert_size_stride(primals_1, (4, 4, 4, 4), (64, 16, 4, 1))
assert_size_stride(primals_2, (4, 4, 4, 4), (64, 16, 4, 1))
assert_size_stride(primals_3, (4,), (1,))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((4, 4, 5, 5), (100, 25, 5, 1), torch.float32)
get_raw_stream(0)
triton_poi_fused_constant_pad_nd_0[grid(400)](primals_1, buf0, 400,
XBLOCK=256, num_warps=4, num_stages=1)
del primals_1
buf1 = extern_kernels.convolution(buf0, primals_2, stride=(1, 1),
padding=(1, 1), dilation=(1, 1), transposed=False,
output_padding=(0, 0), groups=1, bias=None)
assert_size_stride(buf1, (4, 4, 4, 4), (64, 16, 4, 1))
buf2 = buf1
del buf1
triton_poi_fused_convolution_1[grid(256)](buf2, primals_3, 256,
XBLOCK=256, num_warps=4, num_stages=1)
del primals_3
return buf2, primals_2, buf0
class SamePadConv2dNew(nn.Conv2d):
"""
Conv with TF padding='same'
https://github.com/pytorch/pytorch/issues/3867#issuecomment-349279036
"""
def __init__(self, in_channels, out_channels, kernel_size, stride=1,
dilation=1, groups=1, bias=True, padding_mode='zeros'):
super().__init__(in_channels, out_channels, kernel_size, stride, 0,
dilation, groups, bias, padding_mode)
def get_pad_odd(self, in_, weight, stride, dilation):
effective_filter_size_rows = (weight - 1) * dilation + 1
out_rows = (in_ + stride - 1) // stride
max(0, (out_rows - 1) * stride + effective_filter_size_rows - in_)
padding_rows = max(0, (out_rows - 1) * stride + (weight - 1) *
dilation + 1 - in_)
rows_odd = padding_rows % 2 != 0
return padding_rows, rows_odd
def forward(self, input_0):
primals_1 = self.weight
primals_3 = self.bias
primals_2 = input_0
output = call([primals_1, primals_2, primals_3])
return output[0]
|
jjeamin/obJDetection
|
SamePadConv2d
| false | 6,951 |
[
"MIT"
] | 1 |
eb7fbc410beb00fad1a6477e827e9ce2d8efbac5
|
https://github.com/jjeamin/obJDetection/tree/eb7fbc410beb00fad1a6477e827e9ce2d8efbac5
|
F_conv
|
import torch
import warnings
import torch.nn as nn
import torch.nn.functional as F
class F_conv(nn.Module):
"""ResNet transformation, not itself reversible, just used below"""
def __init__(self, in_channels, channels, channels_hidden=None, stride=
None, kernel_size=3, leaky_slope=0.1, batch_norm=False):
super(F_conv, self).__init__()
if stride:
warnings.warn(
"Stride doesn't do anything, the argument should be removed",
DeprecationWarning)
if not channels_hidden:
channels_hidden = channels
pad = kernel_size // 2
self.leaky_slope = leaky_slope
self.conv1 = nn.Conv2d(in_channels, channels_hidden, kernel_size=
kernel_size, padding=pad, bias=not batch_norm)
self.conv2 = nn.Conv2d(channels_hidden, channels_hidden,
kernel_size=kernel_size, padding=pad, bias=not batch_norm)
self.conv3 = nn.Conv2d(channels_hidden, channels, kernel_size=
kernel_size, padding=pad, bias=not batch_norm)
if batch_norm:
self.bn1 = nn.BatchNorm2d(channels_hidden)
self.bn1.weight.data.fill_(1)
self.bn2 = nn.BatchNorm2d(channels_hidden)
self.bn2.weight.data.fill_(1)
self.bn3 = nn.BatchNorm2d(channels)
self.bn3.weight.data.fill_(1)
self.batch_norm = batch_norm
def forward(self, x):
out = self.conv1(x)
if self.batch_norm:
out = self.bn1(out)
out = F.leaky_relu(out, self.leaky_slope)
out = self.conv2(out)
if self.batch_norm:
out = self.bn2(out)
out = F.leaky_relu(out, self.leaky_slope)
out = self.conv3(out)
if self.batch_norm:
out = self.bn3(out)
return out
def get_inputs():
return [torch.rand([4, 4, 4, 4])]
def get_init_inputs():
return [[], {'in_channels': 4, 'channels': 4}]
|
import torch
from torch._inductor.select_algorithm import extern_kernels
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
import warnings
import torch.nn as nn
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
@triton.jit
def triton_poi_fused_convolution_leaky_relu_0(in_ptr0, in_ptr1, out_ptr0,
out_ptr1, xnumel, XBLOCK: tl.constexpr):
xnumel = 256
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x3 = xindex
x1 = xindex // 16 % 4
tmp0 = tl.load(in_ptr0 + x3, xmask)
tmp1 = tl.load(in_ptr1 + x1, xmask, eviction_policy='evict_last')
tmp2 = tmp0 + tmp1
tmp3 = 0.0
tmp4 = tmp2 > tmp3
tmp5 = 0.1
tmp6 = tmp2 * tmp5
tmp7 = tl.where(tmp4, tmp2, tmp6)
tl.store(out_ptr0 + x3, tmp4, xmask)
tl.store(out_ptr1 + x3, tmp7, xmask)
@triton.jit
def triton_poi_fused_convolution_1(in_out_ptr0, in_ptr0, xnumel, XBLOCK: tl
.constexpr):
xnumel = 256
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x3 = xindex
x1 = xindex // 16 % 4
tmp0 = tl.load(in_out_ptr0 + x3, xmask)
tmp1 = tl.load(in_ptr0 + x1, xmask, eviction_policy='evict_last')
tmp2 = tmp0 + tmp1
tl.store(in_out_ptr0 + x3, tmp2, xmask)
def call(args):
(primals_1, primals_2, primals_3, primals_4, primals_5, primals_6,
primals_7) = args
args.clear()
assert_size_stride(primals_1, (4, 4, 3, 3), (36, 9, 3, 1))
assert_size_stride(primals_2, (4,), (1,))
assert_size_stride(primals_3, (4, 4, 4, 4), (64, 16, 4, 1))
assert_size_stride(primals_4, (4, 4, 3, 3), (36, 9, 3, 1))
assert_size_stride(primals_5, (4,), (1,))
assert_size_stride(primals_6, (4, 4, 3, 3), (36, 9, 3, 1))
assert_size_stride(primals_7, (4,), (1,))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = extern_kernels.convolution(primals_3, primals_1, stride=(1,
1), padding=(1, 1), dilation=(1, 1), transposed=False,
output_padding=(0, 0), groups=1, bias=None)
assert_size_stride(buf0, (4, 4, 4, 4), (64, 16, 4, 1))
buf1 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.bool)
buf2 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32)
get_raw_stream(0)
triton_poi_fused_convolution_leaky_relu_0[grid(256)](buf0,
primals_2, buf1, buf2, 256, XBLOCK=128, num_warps=4, num_stages=1)
del primals_2
buf3 = extern_kernels.convolution(buf2, primals_4, stride=(1, 1),
padding=(1, 1), dilation=(1, 1), transposed=False,
output_padding=(0, 0), groups=1, bias=None)
assert_size_stride(buf3, (4, 4, 4, 4), (64, 16, 4, 1))
buf4 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.bool)
buf5 = buf0
del buf0
triton_poi_fused_convolution_leaky_relu_0[grid(256)](buf3,
primals_5, buf4, buf5, 256, XBLOCK=128, num_warps=4, num_stages=1)
del buf3
del primals_5
buf6 = extern_kernels.convolution(buf5, primals_6, stride=(1, 1),
padding=(1, 1), dilation=(1, 1), transposed=False,
output_padding=(0, 0), groups=1, bias=None)
assert_size_stride(buf6, (4, 4, 4, 4), (64, 16, 4, 1))
buf7 = buf6
del buf6
triton_poi_fused_convolution_1[grid(256)](buf7, primals_7, 256,
XBLOCK=256, num_warps=4, num_stages=1)
del primals_7
return (buf7, primals_1, primals_3, primals_4, primals_6, buf1, buf2,
buf4, buf5)
class F_convNew(nn.Module):
"""ResNet transformation, not itself reversible, just used below"""
def __init__(self, in_channels, channels, channels_hidden=None, stride=
None, kernel_size=3, leaky_slope=0.1, batch_norm=False):
super(F_convNew, self).__init__()
if stride:
warnings.warn(
"Stride doesn't do anything, the argument should be removed",
DeprecationWarning)
if not channels_hidden:
channels_hidden = channels
pad = kernel_size // 2
self.leaky_slope = leaky_slope
self.conv1 = nn.Conv2d(in_channels, channels_hidden, kernel_size=
kernel_size, padding=pad, bias=not batch_norm)
self.conv2 = nn.Conv2d(channels_hidden, channels_hidden,
kernel_size=kernel_size, padding=pad, bias=not batch_norm)
self.conv3 = nn.Conv2d(channels_hidden, channels, kernel_size=
kernel_size, padding=pad, bias=not batch_norm)
if batch_norm:
self.bn1 = nn.BatchNorm2d(channels_hidden)
self.bn1.weight.data.fill_(1)
self.bn2 = nn.BatchNorm2d(channels_hidden)
self.bn2.weight.data.fill_(1)
self.bn3 = nn.BatchNorm2d(channels)
self.bn3.weight.data.fill_(1)
self.batch_norm = batch_norm
def forward(self, input_0):
primals_1 = self.conv1.weight
primals_2 = self.conv1.bias
primals_4 = self.conv2.weight
primals_5 = self.conv2.bias
primals_6 = self.conv3.weight
primals_7 = self.conv3.bias
primals_3 = input_0
output = call([primals_1, primals_2, primals_3, primals_4,
primals_5, primals_6, primals_7])
return output[0]
|
ramonpeter/LaSeR
|
F_conv
| false | 7,531 |
[
"MIT"
] | 1 |
28daa6876256501ed0d3e84a4ddfedc7892bd528
|
https://github.com/ramonpeter/LaSeR/tree/28daa6876256501ed0d3e84a4ddfedc7892bd528
|
Subsets and Splits
No community queries yet
The top public SQL queries from the community will appear here once available.