id
stringlengths
14
16
text
stringlengths
31
3.14k
source
stringlengths
58
124
09c7c6e2de63-47
Return a dictionary of the LLM. generate(prompts: List[str], stop: Optional[List[str]] = None) → langchain.schema.LLMResult# Run the LLM on the given prompt and input. generate_prompt(prompts: List[langchain.schema.PromptValue], stop: Optional[List[str]] = None) → langchain.schema.LLMResult# Take in a list of prompt values and return an LLMResult. get_num_tokens(text: str) → int# Get the number of tokens present in the text. get_num_tokens_from_messages(messages: List[langchain.schema.BaseMessage]) → int# Get the number of tokens in the message. json(*, include: Optional[Union[AbstractSetIntStr, MappingIntStrAny]] = None, exclude: Optional[Union[AbstractSetIntStr, MappingIntStrAny]] = None, by_alias: bool = False, skip_defaults: Optional[bool] = None, exclude_unset: bool = False, exclude_defaults: bool = False, exclude_none: bool = False, encoder: Optional[Callable[[Any], Any]] = None, models_as_dict: bool = True, **dumps_kwargs: Any) → unicode# Generate a JSON representation of the model, include and exclude arguments as per dict().
/content/https://python.langchain.com/en/latest/reference/modules/llms.html
09c7c6e2de63-48
encoder is an optional function to supply as default to json.dumps(), other arguments as per json.dumps(). save(file_path: Union[pathlib.Path, str]) → None# Save the LLM. Parameters file_path – Path to file to save the LLM to. Example: .. code-block:: python llm.save(file_path=”path/llm.yaml”) classmethod update_forward_refs(**localns: Any) → None# Try to update ForwardRefs on fields based on this Model, globalns and localns. pydantic model langchain.llms.HuggingFaceHub[source]# Wrapper around HuggingFaceHub models. To use, you should have the huggingface_hub python package installed, and the environment variable HUGGINGFACEHUB_API_TOKEN set with your API token, or pass it as a named parameter to the constructor. Only supports text-generation and text2text-generation for now. Example from langchain.llms import HuggingFaceHub hf = HuggingFaceHub(repo_id="gpt2", huggingfacehub_api_token="my-api-key") Validators set_callback_manager » callback_manager set_verbose » verbose validate_environment » all fields field model_kwargs: Optional[dict] = None# Key word arguments to pass to the model. field repo_id: str = 'gpt2'# Model name to use. field task: Optional[str] = None# Task to call the model with. Should be a task that returns generated_text.
/content/https://python.langchain.com/en/latest/reference/modules/llms.html
09c7c6e2de63-49
Task to call the model with. Should be a task that returns generated_text. __call__(prompt: str, stop: Optional[List[str]] = None) → str# Check Cache and run the LLM on the given prompt and input. async agenerate(prompts: List[str], stop: Optional[List[str]] = None) → langchain.schema.LLMResult# Run the LLM on the given prompt and input. async agenerate_prompt(prompts: List[langchain.schema.PromptValue], stop: Optional[List[str]] = None) → langchain.schema.LLMResult# Take in a list of prompt values and return an LLMResult. classmethod construct(_fields_set: Optional[SetStr] = None, **values: Any) → Model# Creates a new model setting __dict__ and __fields_set__ from trusted or pre-validated data. Default values are respected, but no other validation is performed. Behaves as if Config.extra = ‘allow’ was set since it adds all passed values copy(*, include: Optional[Union[AbstractSetIntStr, MappingIntStrAny]] = None, exclude: Optional[Union[AbstractSetIntStr, MappingIntStrAny]] = None, update: Optional[DictStrAny] = None, deep: bool = False) → Model# Duplicate a model, optionally choose which fields to include, exclude and change. Parameters include – fields to include in new model
/content/https://python.langchain.com/en/latest/reference/modules/llms.html
09c7c6e2de63-50
Parameters include – fields to include in new model exclude – fields to exclude from new model, as with values this takes precedence over include update – values to change/add in the new model. Note: the data is not validated before creating the new model: you should trust this data deep – set to True to make a deep copy of the model Returns new model instance dict(**kwargs: Any) → Dict# Return a dictionary of the LLM. generate(prompts: List[str], stop: Optional[List[str]] = None) → langchain.schema.LLMResult# Run the LLM on the given prompt and input. generate_prompt(prompts: List[langchain.schema.PromptValue], stop: Optional[List[str]] = None) → langchain.schema.LLMResult# Take in a list of prompt values and return an LLMResult. get_num_tokens(text: str) → int# Get the number of tokens present in the text. get_num_tokens_from_messages(messages: List[langchain.schema.BaseMessage]) → int# Get the number of tokens in the message.
/content/https://python.langchain.com/en/latest/reference/modules/llms.html
09c7c6e2de63-51
Get the number of tokens in the message. json(*, include: Optional[Union[AbstractSetIntStr, MappingIntStrAny]] = None, exclude: Optional[Union[AbstractSetIntStr, MappingIntStrAny]] = None, by_alias: bool = False, skip_defaults: Optional[bool] = None, exclude_unset: bool = False, exclude_defaults: bool = False, exclude_none: bool = False, encoder: Optional[Callable[[Any], Any]] = None, models_as_dict: bool = True, **dumps_kwargs: Any) → unicode# Generate a JSON representation of the model, include and exclude arguments as per dict(). encoder is an optional function to supply as default to json.dumps(), other arguments as per json.dumps(). save(file_path: Union[pathlib.Path, str]) → None# Save the LLM. Parameters file_path – Path to file to save the LLM to. Example: .. code-block:: python llm.save(file_path=”path/llm.yaml”) classmethod update_forward_refs(**localns: Any) → None# Try to update ForwardRefs on fields based on this Model, globalns and localns. pydantic model langchain.llms.HuggingFacePipeline[source]# Wrapper around HuggingFace Pipeline API. To use, you should have the transformers python package installed.
/content/https://python.langchain.com/en/latest/reference/modules/llms.html
09c7c6e2de63-52
To use, you should have the transformers python package installed. Only supports text-generation and text2text-generation for now. Example using from_model_id:from langchain.llms import HuggingFacePipeline hf = HuggingFacePipeline.from_model_id( model_id="gpt2", task="text-generation" ) Example passing pipeline in directly:from langchain.llms import HuggingFacePipeline from transformers import AutoModelForCausalLM, AutoTokenizer, pipeline model_id = "gpt2" tokenizer = AutoTokenizer.from_pretrained(model_id) model = AutoModelForCausalLM.from_pretrained(model_id) pipe = pipeline( "text-generation", model=model, tokenizer=tokenizer, max_new_tokens=10 ) hf = HuggingFacePipeline(pipeline=pipe) Validators set_callback_manager » callback_manager set_verbose » verbose field model_id: str = 'gpt2'# Model name to use. field model_kwargs: Optional[dict] = None# Key word arguments to pass to the model. __call__(prompt: str, stop: Optional[List[str]] = None) → str# Check Cache and run the LLM on the given prompt and input. async agenerate(prompts: List[str], stop: Optional[List[str]] = None) → langchain.schema.LLMResult# Run the LLM on the given prompt and input.
/content/https://python.langchain.com/en/latest/reference/modules/llms.html
09c7c6e2de63-53
Run the LLM on the given prompt and input. async agenerate_prompt(prompts: List[langchain.schema.PromptValue], stop: Optional[List[str]] = None) → langchain.schema.LLMResult# Take in a list of prompt values and return an LLMResult. classmethod construct(_fields_set: Optional[SetStr] = None, **values: Any) → Model# Creates a new model setting __dict__ and __fields_set__ from trusted or pre-validated data. Default values are respected, but no other validation is performed. Behaves as if Config.extra = ‘allow’ was set since it adds all passed values copy(*, include: Optional[Union[AbstractSetIntStr, MappingIntStrAny]] = None, exclude: Optional[Union[AbstractSetIntStr, MappingIntStrAny]] = None, update: Optional[DictStrAny] = None, deep: bool = False) → Model# Duplicate a model, optionally choose which fields to include, exclude and change. Parameters include – fields to include in new model exclude – fields to exclude from new model, as with values this takes precedence over include update – values to change/add in the new model. Note: the data is not validated before creating the new model: you should trust this data deep – set to True to make a deep copy of the model Returns new model instance dict(**kwargs: Any) → Dict# Return a dictionary of the LLM.
/content/https://python.langchain.com/en/latest/reference/modules/llms.html
09c7c6e2de63-54
Return a dictionary of the LLM. classmethod from_model_id(model_id: str, task: str, device: int = - 1, model_kwargs: Optional[dict] = None, **kwargs: Any) → langchain.llms.base.LLM[source]# Construct the pipeline object from model_id and task. generate(prompts: List[str], stop: Optional[List[str]] = None) → langchain.schema.LLMResult# Run the LLM on the given prompt and input. generate_prompt(prompts: List[langchain.schema.PromptValue], stop: Optional[List[str]] = None) → langchain.schema.LLMResult# Take in a list of prompt values and return an LLMResult. get_num_tokens(text: str) → int# Get the number of tokens present in the text. get_num_tokens_from_messages(messages: List[langchain.schema.BaseMessage]) → int# Get the number of tokens in the message.
/content/https://python.langchain.com/en/latest/reference/modules/llms.html
09c7c6e2de63-55
Get the number of tokens in the message. json(*, include: Optional[Union[AbstractSetIntStr, MappingIntStrAny]] = None, exclude: Optional[Union[AbstractSetIntStr, MappingIntStrAny]] = None, by_alias: bool = False, skip_defaults: Optional[bool] = None, exclude_unset: bool = False, exclude_defaults: bool = False, exclude_none: bool = False, encoder: Optional[Callable[[Any], Any]] = None, models_as_dict: bool = True, **dumps_kwargs: Any) → unicode# Generate a JSON representation of the model, include and exclude arguments as per dict(). encoder is an optional function to supply as default to json.dumps(), other arguments as per json.dumps(). save(file_path: Union[pathlib.Path, str]) → None# Save the LLM. Parameters file_path – Path to file to save the LLM to. Example: .. code-block:: python llm.save(file_path=”path/llm.yaml”) classmethod update_forward_refs(**localns: Any) → None# Try to update ForwardRefs on fields based on this Model, globalns and localns. pydantic model langchain.llms.LlamaCpp[source]# Wrapper around the llama.cpp model. To use, you should have the llama-cpp-python library installed, and provide the
/content/https://python.langchain.com/en/latest/reference/modules/llms.html
09c7c6e2de63-56
path to the Llama model as a named parameter to the constructor. Check out: abetlen/llama-cpp-python Example from langchain.llms import LlamaCppEmbeddings llm = LlamaCppEmbeddings(model_path="/path/to/llama/model") Validators set_callback_manager » callback_manager set_verbose » verbose validate_environment » all fields field echo: Optional[bool] = False# Whether to echo the prompt. field f16_kv: bool = True# Use half-precision for key/value cache. field last_n_tokens_size: Optional[int] = 64# The number of tokens to look back when applying the repeat_penalty. field logits_all: bool = False# Return logits for all tokens, not just the last token. field logprobs: Optional[int] = None# The number of logprobs to return. If None, no logprobs are returned. field lora_base: Optional[str] = None# The path to the Llama LoRA base model. field lora_path: Optional[str] = None# The path to the Llama LoRA. If None, no LoRa is loaded. field max_tokens: Optional[int] = 256# The maximum number of tokens to generate. field model_path: str [Required]# The path to the Llama model file. field n_batch: Optional[int] = 8# Number of tokens to process in parallel. Should be a number between 1 and n_ctx. field n_ctx: int = 512# Token context window.
/content/https://python.langchain.com/en/latest/reference/modules/llms.html
09c7c6e2de63-57
field n_ctx: int = 512# Token context window. field n_parts: int = -1# Number of parts to split the model into. If -1, the number of parts is automatically determined. field n_threads: Optional[int] = None# Number of threads to use. If None, the number of threads is automatically determined. field repeat_penalty: Optional[float] = 1.1# The penalty to apply to repeated tokens. field seed: int = -1# Seed. If -1, a random seed is used. field stop: Optional[List[str]] = []# A list of strings to stop generation when encountered. field streaming: bool = True# Whether to stream the results, token by token. field suffix: Optional[str] = None# A suffix to append to the generated text. If None, no suffix is appended. field temperature: Optional[float] = 0.8# The temperature to use for sampling. field top_k: Optional[int] = 40# The top-k value to use for sampling. field top_p: Optional[float] = 0.95# The top-p value to use for sampling. field use_mlock: bool = False# Force system to keep model in RAM. field use_mmap: Optional[bool] = True# Whether to keep the model loaded in RAM field vocab_only: bool = False# Only load the vocabulary, no weights. __call__(prompt: str, stop: Optional[List[str]] = None) → str# Check Cache and run the LLM on the given prompt and input.
/content/https://python.langchain.com/en/latest/reference/modules/llms.html
09c7c6e2de63-58
Check Cache and run the LLM on the given prompt and input. async agenerate(prompts: List[str], stop: Optional[List[str]] = None) → langchain.schema.LLMResult# Run the LLM on the given prompt and input. async agenerate_prompt(prompts: List[langchain.schema.PromptValue], stop: Optional[List[str]] = None) → langchain.schema.LLMResult# Take in a list of prompt values and return an LLMResult. classmethod construct(_fields_set: Optional[SetStr] = None, **values: Any) → Model# Creates a new model setting __dict__ and __fields_set__ from trusted or pre-validated data. Default values are respected, but no other validation is performed. Behaves as if Config.extra = ‘allow’ was set since it adds all passed values copy(*, include: Optional[Union[AbstractSetIntStr, MappingIntStrAny]] = None, exclude: Optional[Union[AbstractSetIntStr, MappingIntStrAny]] = None, update: Optional[DictStrAny] = None, deep: bool = False) → Model# Duplicate a model, optionally choose which fields to include, exclude and change. Parameters include – fields to include in new model exclude – fields to exclude from new model, as with values this takes precedence over include update – values to change/add in the new model. Note: the data is not validated before creating
/content/https://python.langchain.com/en/latest/reference/modules/llms.html
09c7c6e2de63-59
the new model: you should trust this data deep – set to True to make a deep copy of the model Returns new model instance dict(**kwargs: Any) → Dict# Return a dictionary of the LLM. generate(prompts: List[str], stop: Optional[List[str]] = None) → langchain.schema.LLMResult# Run the LLM on the given prompt and input. generate_prompt(prompts: List[langchain.schema.PromptValue], stop: Optional[List[str]] = None) → langchain.schema.LLMResult# Take in a list of prompt values and return an LLMResult. get_num_tokens(text: str) → int# Get the number of tokens present in the text. get_num_tokens_from_messages(messages: List[langchain.schema.BaseMessage]) → int# Get the number of tokens in the message.
/content/https://python.langchain.com/en/latest/reference/modules/llms.html
09c7c6e2de63-60
Get the number of tokens in the message. json(*, include: Optional[Union[AbstractSetIntStr, MappingIntStrAny]] = None, exclude: Optional[Union[AbstractSetIntStr, MappingIntStrAny]] = None, by_alias: bool = False, skip_defaults: Optional[bool] = None, exclude_unset: bool = False, exclude_defaults: bool = False, exclude_none: bool = False, encoder: Optional[Callable[[Any], Any]] = None, models_as_dict: bool = True, **dumps_kwargs: Any) → unicode# Generate a JSON representation of the model, include and exclude arguments as per dict(). encoder is an optional function to supply as default to json.dumps(), other arguments as per json.dumps(). save(file_path: Union[pathlib.Path, str]) → None# Save the LLM. Parameters file_path – Path to file to save the LLM to. Example: .. code-block:: python llm.save(file_path=”path/llm.yaml”) stream(prompt: str, stop: Optional[List[str]] = None) → Generator[Dict, None, None][source]# Yields results objects as they are generated in real time. BETA: this is a beta feature while we figure out the right abstraction: Once that happens, this interface could change.
/content/https://python.langchain.com/en/latest/reference/modules/llms.html
09c7c6e2de63-61
Once that happens, this interface could change. It also calls the callback manager’s on_llm_new_token event with similar parameters to the OpenAI LLM class method of the same name. Args:prompt: The prompts to pass into the model. stop: Optional list of stop words to use when generating. Returns:A generator representing the stream of tokens being generated. Yields:A dictionary like objects containing a string token and metadata. See llama-cpp-python docs and below for more. Example:from langchain.llms import LlamaCpp llm = LlamaCpp( model_path="/path/to/local/model.bin", temperature = 0.5 ) for chunk in llm.stream("Ask 'Hi, how are you?' like a pirate:'", stop=["'"," “]):result = chunk[“choices”][0] print(result[“text”], end=’’, flush=True) classmethod update_forward_refs(**localns: Any) → None# Try to update ForwardRefs on fields based on this Model, globalns and localns. pydantic model langchain.llms.Modal[source]# Wrapper around Modal large language models. To use, you should have the modal-client python package installed. Any parameters that are valid to be passed to the call can be passed in, even if not explicitly saved on this class. Example Validators build_extra » all fields set_callback_manager » callback_manager set_verbose » verbose field endpoint_url: str = ''# model endpoint to use
/content/https://python.langchain.com/en/latest/reference/modules/llms.html
09c7c6e2de63-62
field endpoint_url: str = ''# model endpoint to use field model_kwargs: Dict[str, Any] [Optional]# Holds any model parameters valid for create call not explicitly specified. __call__(prompt: str, stop: Optional[List[str]] = None) → str# Check Cache and run the LLM on the given prompt and input. async agenerate(prompts: List[str], stop: Optional[List[str]] = None) → langchain.schema.LLMResult# Run the LLM on the given prompt and input. async agenerate_prompt(prompts: List[langchain.schema.PromptValue], stop: Optional[List[str]] = None) → langchain.schema.LLMResult# Take in a list of prompt values and return an LLMResult. classmethod construct(_fields_set: Optional[SetStr] = None, **values: Any) → Model# Creates a new model setting __dict__ and __fields_set__ from trusted or pre-validated data. Default values are respected, but no other validation is performed. Behaves as if Config.extra = ‘allow’ was set since it adds all passed values copy(*, include: Optional[Union[AbstractSetIntStr, MappingIntStrAny]] = None, exclude: Optional[Union[AbstractSetIntStr, MappingIntStrAny]] = None, update: Optional[DictStrAny] = None, deep: bool = False) → Model#
/content/https://python.langchain.com/en/latest/reference/modules/llms.html
09c7c6e2de63-63
Duplicate a model, optionally choose which fields to include, exclude and change. Parameters include – fields to include in new model exclude – fields to exclude from new model, as with values this takes precedence over include update – values to change/add in the new model. Note: the data is not validated before creating the new model: you should trust this data deep – set to True to make a deep copy of the model Returns new model instance dict(**kwargs: Any) → Dict# Return a dictionary of the LLM. generate(prompts: List[str], stop: Optional[List[str]] = None) → langchain.schema.LLMResult# Run the LLM on the given prompt and input. generate_prompt(prompts: List[langchain.schema.PromptValue], stop: Optional[List[str]] = None) → langchain.schema.LLMResult# Take in a list of prompt values and return an LLMResult. get_num_tokens(text: str) → int# Get the number of tokens present in the text. get_num_tokens_from_messages(messages: List[langchain.schema.BaseMessage]) → int# Get the number of tokens in the message.
/content/https://python.langchain.com/en/latest/reference/modules/llms.html
09c7c6e2de63-64
Get the number of tokens in the message. json(*, include: Optional[Union[AbstractSetIntStr, MappingIntStrAny]] = None, exclude: Optional[Union[AbstractSetIntStr, MappingIntStrAny]] = None, by_alias: bool = False, skip_defaults: Optional[bool] = None, exclude_unset: bool = False, exclude_defaults: bool = False, exclude_none: bool = False, encoder: Optional[Callable[[Any], Any]] = None, models_as_dict: bool = True, **dumps_kwargs: Any) → unicode# Generate a JSON representation of the model, include and exclude arguments as per dict(). encoder is an optional function to supply as default to json.dumps(), other arguments as per json.dumps(). save(file_path: Union[pathlib.Path, str]) → None# Save the LLM. Parameters file_path – Path to file to save the LLM to. Example: .. code-block:: python llm.save(file_path=”path/llm.yaml”) classmethod update_forward_refs(**localns: Any) → None# Try to update ForwardRefs on fields based on this Model, globalns and localns. pydantic model langchain.llms.NLPCloud[source]# Wrapper around NLPCloud large language models. To use, you should have the nlpcloud python package installed, and the
/content/https://python.langchain.com/en/latest/reference/modules/llms.html
09c7c6e2de63-65
To use, you should have the nlpcloud python package installed, and the environment variable NLPCLOUD_API_KEY set with your API key. Example from langchain.llms import NLPCloud nlpcloud = NLPCloud(model="gpt-neox-20b") Validators set_callback_manager » callback_manager set_verbose » verbose validate_environment » all fields field bad_words: List[str] = []# List of tokens not allowed to be generated. field do_sample: bool = True# Whether to use sampling (True) or greedy decoding. field early_stopping: bool = False# Whether to stop beam search at num_beams sentences. field length_no_input: bool = True# Whether min_length and max_length should include the length of the input. field length_penalty: float = 1.0# Exponential penalty to the length. field max_length: int = 256# The maximum number of tokens to generate in the completion. field min_length: int = 1# The minimum number of tokens to generate in the completion. field model_name: str = 'finetuned-gpt-neox-20b'# Model name to use. field num_beams: int = 1# Number of beams for beam search. field num_return_sequences: int = 1# How many completions to generate for each prompt. field remove_end_sequence: bool = True# Whether or not to remove the end sequence token. field remove_input: bool = True# Remove input text from API response
/content/https://python.langchain.com/en/latest/reference/modules/llms.html
09c7c6e2de63-66
field remove_input: bool = True# Remove input text from API response field repetition_penalty: float = 1.0# Penalizes repeated tokens. 1.0 means no penalty. field temperature: float = 0.7# What sampling temperature to use. field top_k: int = 50# The number of highest probability tokens to keep for top-k filtering. field top_p: int = 1# Total probability mass of tokens to consider at each step. __call__(prompt: str, stop: Optional[List[str]] = None) → str# Check Cache and run the LLM on the given prompt and input. async agenerate(prompts: List[str], stop: Optional[List[str]] = None) → langchain.schema.LLMResult# Run the LLM on the given prompt and input. async agenerate_prompt(prompts: List[langchain.schema.PromptValue], stop: Optional[List[str]] = None) → langchain.schema.LLMResult# Take in a list of prompt values and return an LLMResult. classmethod construct(_fields_set: Optional[SetStr] = None, **values: Any) → Model# Creates a new model setting __dict__ and __fields_set__ from trusted or pre-validated data. Default values are respected, but no other validation is performed. Behaves as if Config.extra = ‘allow’ was set since it adds all passed values
/content/https://python.langchain.com/en/latest/reference/modules/llms.html
09c7c6e2de63-67
copy(*, include: Optional[Union[AbstractSetIntStr, MappingIntStrAny]] = None, exclude: Optional[Union[AbstractSetIntStr, MappingIntStrAny]] = None, update: Optional[DictStrAny] = None, deep: bool = False) → Model# Duplicate a model, optionally choose which fields to include, exclude and change. Parameters include – fields to include in new model exclude – fields to exclude from new model, as with values this takes precedence over include update – values to change/add in the new model. Note: the data is not validated before creating the new model: you should trust this data deep – set to True to make a deep copy of the model Returns new model instance dict(**kwargs: Any) → Dict# Return a dictionary of the LLM. generate(prompts: List[str], stop: Optional[List[str]] = None) → langchain.schema.LLMResult# Run the LLM on the given prompt and input. generate_prompt(prompts: List[langchain.schema.PromptValue], stop: Optional[List[str]] = None) → langchain.schema.LLMResult# Take in a list of prompt values and return an LLMResult. get_num_tokens(text: str) → int# Get the number of tokens present in the text. get_num_tokens_from_messages(messages: List[langchain.schema.BaseMessage]) → int# Get the number of tokens in the message.
/content/https://python.langchain.com/en/latest/reference/modules/llms.html
09c7c6e2de63-68
Get the number of tokens in the message. json(*, include: Optional[Union[AbstractSetIntStr, MappingIntStrAny]] = None, exclude: Optional[Union[AbstractSetIntStr, MappingIntStrAny]] = None, by_alias: bool = False, skip_defaults: Optional[bool] = None, exclude_unset: bool = False, exclude_defaults: bool = False, exclude_none: bool = False, encoder: Optional[Callable[[Any], Any]] = None, models_as_dict: bool = True, **dumps_kwargs: Any) → unicode# Generate a JSON representation of the model, include and exclude arguments as per dict(). encoder is an optional function to supply as default to json.dumps(), other arguments as per json.dumps(). save(file_path: Union[pathlib.Path, str]) → None# Save the LLM. Parameters file_path – Path to file to save the LLM to. Example: .. code-block:: python llm.save(file_path=”path/llm.yaml”) classmethod update_forward_refs(**localns: Any) → None# Try to update ForwardRefs on fields based on this Model, globalns and localns. pydantic model langchain.llms.OpenAI[source]# Wrapper around OpenAI large language models. To use, you should have the openai python package installed, and the
/content/https://python.langchain.com/en/latest/reference/modules/llms.html
09c7c6e2de63-69
To use, you should have the openai python package installed, and the environment variable OPENAI_API_KEY set with your API key. Any parameters that are valid to be passed to the openai.create call can be passed in, even if not explicitly saved on this class. Example from langchain.llms import OpenAI openai = OpenAI(model_name="text-davinci-003") Validators build_extra » all fields set_callback_manager » callback_manager set_verbose » verbose validate_environment » all fields field verbose: bool [Optional]# Whether to print out response text. __call__(prompt: str, stop: Optional[List[str]] = None) → str# Check Cache and run the LLM on the given prompt and input. async agenerate(prompts: List[str], stop: Optional[List[str]] = None) → langchain.schema.LLMResult# Run the LLM on the given prompt and input. async agenerate_prompt(prompts: List[langchain.schema.PromptValue], stop: Optional[List[str]] = None) → langchain.schema.LLMResult# Take in a list of prompt values and return an LLMResult. classmethod construct(_fields_set: Optional[SetStr] = None, **values: Any) → Model# Creates a new model setting __dict__ and __fields_set__ from trusted or pre-validated data. Default values are respected, but no other validation is performed.
/content/https://python.langchain.com/en/latest/reference/modules/llms.html
09c7c6e2de63-70
Default values are respected, but no other validation is performed. Behaves as if Config.extra = ‘allow’ was set since it adds all passed values copy(*, include: Optional[Union[AbstractSetIntStr, MappingIntStrAny]] = None, exclude: Optional[Union[AbstractSetIntStr, MappingIntStrAny]] = None, update: Optional[DictStrAny] = None, deep: bool = False) → Model# Duplicate a model, optionally choose which fields to include, exclude and change. Parameters include – fields to include in new model exclude – fields to exclude from new model, as with values this takes precedence over include update – values to change/add in the new model. Note: the data is not validated before creating the new model: you should trust this data deep – set to True to make a deep copy of the model Returns new model instance create_llm_result(choices: Any, prompts: List[str], token_usage: Dict[str, int]) → langchain.schema.LLMResult# Create the LLMResult from the choices and prompts. dict(**kwargs: Any) → Dict# Return a dictionary of the LLM. generate(prompts: List[str], stop: Optional[List[str]] = None) → langchain.schema.LLMResult# Run the LLM on the given prompt and input.
/content/https://python.langchain.com/en/latest/reference/modules/llms.html
09c7c6e2de63-71
Run the LLM on the given prompt and input. generate_prompt(prompts: List[langchain.schema.PromptValue], stop: Optional[List[str]] = None) → langchain.schema.LLMResult# Take in a list of prompt values and return an LLMResult. get_num_tokens(text: str) → int# Calculate num tokens with tiktoken package. get_num_tokens_from_messages(messages: List[langchain.schema.BaseMessage]) → int# Get the number of tokens in the message. get_sub_prompts(params: Dict[str, Any], prompts: List[str], stop: Optional[List[str]] = None) → List[List[str]]# Get the sub prompts for llm call. json(*, include: Optional[Union[AbstractSetIntStr, MappingIntStrAny]] = None, exclude: Optional[Union[AbstractSetIntStr, MappingIntStrAny]] = None, by_alias: bool = False, skip_defaults: Optional[bool] = None, exclude_unset: bool = False, exclude_defaults: bool = False, exclude_none: bool = False, encoder: Optional[Callable[[Any], Any]] = None, models_as_dict: bool = True, **dumps_kwargs: Any) → unicode# Generate a JSON representation of the model, include and exclude arguments as per dict().
/content/https://python.langchain.com/en/latest/reference/modules/llms.html
09c7c6e2de63-72
encoder is an optional function to supply as default to json.dumps(), other arguments as per json.dumps(). max_tokens_for_prompt(prompt: str) → int# Calculate the maximum number of tokens possible to generate for a prompt. Parameters prompt – The prompt to pass into the model. Returns The maximum number of tokens to generate for a prompt. Example max_tokens = openai.max_token_for_prompt("Tell me a joke.") modelname_to_contextsize(modelname: str) → int# Calculate the maximum number of tokens possible to generate for a model. Parameters modelname – The modelname we want to know the context size for. Returns The maximum context size Example max_tokens = openai.modelname_to_contextsize("text-davinci-003") prep_streaming_params(stop: Optional[List[str]] = None) → Dict[str, Any]# Prepare the params for streaming. save(file_path: Union[pathlib.Path, str]) → None# Save the LLM. Parameters file_path – Path to file to save the LLM to. Example: .. code-block:: python llm.save(file_path=”path/llm.yaml”) stream(prompt: str, stop: Optional[List[str]] = None) → Generator# Call OpenAI with streaming flag and return the resulting generator. BETA: this is a beta feature while we figure out the right abstraction. Once that happens, this interface could change. Parameters prompt – The prompts to pass into the model.
/content/https://python.langchain.com/en/latest/reference/modules/llms.html
09c7c6e2de63-73
Parameters prompt – The prompts to pass into the model. stop – Optional list of stop words to use when generating. Returns A generator representing the stream of tokens from OpenAI. Example generator = openai.stream("Tell me a joke.") for token in generator: yield token classmethod update_forward_refs(**localns: Any) → None# Try to update ForwardRefs on fields based on this Model, globalns and localns. pydantic model langchain.llms.OpenAIChat[source]# Wrapper around OpenAI Chat large language models. To use, you should have the openai python package installed, and the environment variable OPENAI_API_KEY set with your API key. Any parameters that are valid to be passed to the openai.create call can be passed in, even if not explicitly saved on this class. Example from langchain.llms import OpenAIChat openaichat = OpenAIChat(model_name="gpt-3.5-turbo") Validators build_extra » all fields set_callback_manager » callback_manager set_verbose » verbose validate_environment » all fields field allowed_special: Union[Literal['all'], AbstractSet[str]] = {}# Set of special tokens that are allowed。 field disallowed_special: Union[Literal['all'], Collection[str]] = 'all'# Set of special tokens that are not allowed。 field max_retries: int = 6# Maximum number of retries to make when generating. field model_kwargs: Dict[str, Any] [Optional]#
/content/https://python.langchain.com/en/latest/reference/modules/llms.html
09c7c6e2de63-74
field model_kwargs: Dict[str, Any] [Optional]# Holds any model parameters valid for create call not explicitly specified. field model_name: str = 'gpt-3.5-turbo'# Model name to use. field prefix_messages: List [Optional]# Series of messages for Chat input. field streaming: bool = False# Whether to stream the results or not. field verbose: bool [Optional]# Whether to print out response text. __call__(prompt: str, stop: Optional[List[str]] = None) → str# Check Cache and run the LLM on the given prompt and input. async agenerate(prompts: List[str], stop: Optional[List[str]] = None) → langchain.schema.LLMResult# Run the LLM on the given prompt and input. async agenerate_prompt(prompts: List[langchain.schema.PromptValue], stop: Optional[List[str]] = None) → langchain.schema.LLMResult# Take in a list of prompt values and return an LLMResult. classmethod construct(_fields_set: Optional[SetStr] = None, **values: Any) → Model# Creates a new model setting __dict__ and __fields_set__ from trusted or pre-validated data. Default values are respected, but no other validation is performed. Behaves as if Config.extra = ‘allow’ was set since it adds all passed values
/content/https://python.langchain.com/en/latest/reference/modules/llms.html
09c7c6e2de63-75
copy(*, include: Optional[Union[AbstractSetIntStr, MappingIntStrAny]] = None, exclude: Optional[Union[AbstractSetIntStr, MappingIntStrAny]] = None, update: Optional[DictStrAny] = None, deep: bool = False) → Model# Duplicate a model, optionally choose which fields to include, exclude and change. Parameters include – fields to include in new model exclude – fields to exclude from new model, as with values this takes precedence over include update – values to change/add in the new model. Note: the data is not validated before creating the new model: you should trust this data deep – set to True to make a deep copy of the model Returns new model instance dict(**kwargs: Any) → Dict# Return a dictionary of the LLM. generate(prompts: List[str], stop: Optional[List[str]] = None) → langchain.schema.LLMResult# Run the LLM on the given prompt and input. generate_prompt(prompts: List[langchain.schema.PromptValue], stop: Optional[List[str]] = None) → langchain.schema.LLMResult# Take in a list of prompt values and return an LLMResult. get_num_tokens(text: str) → int[source]# Calculate num tokens with tiktoken package. get_num_tokens_from_messages(messages: List[langchain.schema.BaseMessage]) → int# Get the number of tokens in the message.
/content/https://python.langchain.com/en/latest/reference/modules/llms.html
09c7c6e2de63-76
Get the number of tokens in the message. json(*, include: Optional[Union[AbstractSetIntStr, MappingIntStrAny]] = None, exclude: Optional[Union[AbstractSetIntStr, MappingIntStrAny]] = None, by_alias: bool = False, skip_defaults: Optional[bool] = None, exclude_unset: bool = False, exclude_defaults: bool = False, exclude_none: bool = False, encoder: Optional[Callable[[Any], Any]] = None, models_as_dict: bool = True, **dumps_kwargs: Any) → unicode# Generate a JSON representation of the model, include and exclude arguments as per dict(). encoder is an optional function to supply as default to json.dumps(), other arguments as per json.dumps(). save(file_path: Union[pathlib.Path, str]) → None# Save the LLM. Parameters file_path – Path to file to save the LLM to. Example: .. code-block:: python llm.save(file_path=”path/llm.yaml”) classmethod update_forward_refs(**localns: Any) → None# Try to update ForwardRefs on fields based on this Model, globalns and localns. pydantic model langchain.llms.Petals[source]# Wrapper around Petals Bloom models. To use, you should have the petals python package installed, and the
/content/https://python.langchain.com/en/latest/reference/modules/llms.html
09c7c6e2de63-77
To use, you should have the petals python package installed, and the environment variable HUGGINGFACE_API_KEY set with your API key. Any parameters that are valid to be passed to the call can be passed in, even if not explicitly saved on this class. Example Validators build_extra » all fields set_callback_manager » callback_manager set_verbose » verbose validate_environment » all fields field client: Any = None# The client to use for the API calls. field do_sample: bool = True# Whether or not to use sampling; use greedy decoding otherwise. field max_length: Optional[int] = None# The maximum length of the sequence to be generated. field max_new_tokens: int = 256# The maximum number of new tokens to generate in the completion. field model_kwargs: Dict[str, Any] [Optional]# Holds any model parameters valid for create call not explicitly specified. field model_name: str = 'bigscience/bloom-petals'# The model to use. field temperature: float = 0.7# What sampling temperature to use field tokenizer: Any = None# The tokenizer to use for the API calls. field top_k: Optional[int] = None# The number of highest probability vocabulary tokens to keep for top-k-filtering. field top_p: float = 0.9# The cumulative probability for top-p sampling. __call__(prompt: str, stop: Optional[List[str]] = None) → str# Check Cache and run the LLM on the given prompt and input.
/content/https://python.langchain.com/en/latest/reference/modules/llms.html
09c7c6e2de63-78
Check Cache and run the LLM on the given prompt and input. async agenerate(prompts: List[str], stop: Optional[List[str]] = None) → langchain.schema.LLMResult# Run the LLM on the given prompt and input. async agenerate_prompt(prompts: List[langchain.schema.PromptValue], stop: Optional[List[str]] = None) → langchain.schema.LLMResult# Take in a list of prompt values and return an LLMResult. classmethod construct(_fields_set: Optional[SetStr] = None, **values: Any) → Model# Creates a new model setting __dict__ and __fields_set__ from trusted or pre-validated data. Default values are respected, but no other validation is performed. Behaves as if Config.extra = ‘allow’ was set since it adds all passed values copy(*, include: Optional[Union[AbstractSetIntStr, MappingIntStrAny]] = None, exclude: Optional[Union[AbstractSetIntStr, MappingIntStrAny]] = None, update: Optional[DictStrAny] = None, deep: bool = False) → Model# Duplicate a model, optionally choose which fields to include, exclude and change. Parameters include – fields to include in new model exclude – fields to exclude from new model, as with values this takes precedence over include update – values to change/add in the new model. Note: the data is not validated before creating
/content/https://python.langchain.com/en/latest/reference/modules/llms.html
09c7c6e2de63-79
the new model: you should trust this data deep – set to True to make a deep copy of the model Returns new model instance dict(**kwargs: Any) → Dict# Return a dictionary of the LLM. generate(prompts: List[str], stop: Optional[List[str]] = None) → langchain.schema.LLMResult# Run the LLM on the given prompt and input. generate_prompt(prompts: List[langchain.schema.PromptValue], stop: Optional[List[str]] = None) → langchain.schema.LLMResult# Take in a list of prompt values and return an LLMResult. get_num_tokens(text: str) → int# Get the number of tokens present in the text. get_num_tokens_from_messages(messages: List[langchain.schema.BaseMessage]) → int# Get the number of tokens in the message.
/content/https://python.langchain.com/en/latest/reference/modules/llms.html
09c7c6e2de63-80
Get the number of tokens in the message. json(*, include: Optional[Union[AbstractSetIntStr, MappingIntStrAny]] = None, exclude: Optional[Union[AbstractSetIntStr, MappingIntStrAny]] = None, by_alias: bool = False, skip_defaults: Optional[bool] = None, exclude_unset: bool = False, exclude_defaults: bool = False, exclude_none: bool = False, encoder: Optional[Callable[[Any], Any]] = None, models_as_dict: bool = True, **dumps_kwargs: Any) → unicode# Generate a JSON representation of the model, include and exclude arguments as per dict(). encoder is an optional function to supply as default to json.dumps(), other arguments as per json.dumps(). save(file_path: Union[pathlib.Path, str]) → None# Save the LLM. Parameters file_path – Path to file to save the LLM to. Example: .. code-block:: python llm.save(file_path=”path/llm.yaml”) classmethod update_forward_refs(**localns: Any) → None# Try to update ForwardRefs on fields based on this Model, globalns and localns. pydantic model langchain.llms.PredictionGuard[source]# Wrapper around Prediction Guard large language models. To use, you should have the predictionguard python package installed, and the
/content/https://python.langchain.com/en/latest/reference/modules/llms.html
09c7c6e2de63-81
To use, you should have the predictionguard python package installed, and the environment variable PREDICTIONGUARD_TOKEN set with your access token, or pass it as a named parameter to the constructor. .. rubric:: Example Validators set_callback_manager » callback_manager set_verbose » verbose validate_environment » all fields field max_tokens: int = 256# Denotes the number of tokens to predict per generation. field name: Optional[str] = 'default-text-gen'# Proxy name to use. field temperature: float = 0.75# A non-negative float that tunes the degree of randomness in generation. __call__(prompt: str, stop: Optional[List[str]] = None) → str# Check Cache and run the LLM on the given prompt and input. async agenerate(prompts: List[str], stop: Optional[List[str]] = None) → langchain.schema.LLMResult# Run the LLM on the given prompt and input. async agenerate_prompt(prompts: List[langchain.schema.PromptValue], stop: Optional[List[str]] = None) → langchain.schema.LLMResult# Take in a list of prompt values and return an LLMResult. classmethod construct(_fields_set: Optional[SetStr] = None, **values: Any) → Model# Creates a new model setting __dict__ and __fields_set__ from trusted or pre-validated data. Default values are respected, but no other validation is performed.
/content/https://python.langchain.com/en/latest/reference/modules/llms.html
09c7c6e2de63-82
Default values are respected, but no other validation is performed. Behaves as if Config.extra = ‘allow’ was set since it adds all passed values copy(*, include: Optional[Union[AbstractSetIntStr, MappingIntStrAny]] = None, exclude: Optional[Union[AbstractSetIntStr, MappingIntStrAny]] = None, update: Optional[DictStrAny] = None, deep: bool = False) → Model# Duplicate a model, optionally choose which fields to include, exclude and change. Parameters include – fields to include in new model exclude – fields to exclude from new model, as with values this takes precedence over include update – values to change/add in the new model. Note: the data is not validated before creating the new model: you should trust this data deep – set to True to make a deep copy of the model Returns new model instance dict(**kwargs: Any) → Dict# Return a dictionary of the LLM. generate(prompts: List[str], stop: Optional[List[str]] = None) → langchain.schema.LLMResult# Run the LLM on the given prompt and input. generate_prompt(prompts: List[langchain.schema.PromptValue], stop: Optional[List[str]] = None) → langchain.schema.LLMResult# Take in a list of prompt values and return an LLMResult. get_num_tokens(text: str) → int# Get the number of tokens present in the text.
/content/https://python.langchain.com/en/latest/reference/modules/llms.html
09c7c6e2de63-83
Get the number of tokens present in the text. get_num_tokens_from_messages(messages: List[langchain.schema.BaseMessage]) → int# Get the number of tokens in the message. json(*, include: Optional[Union[AbstractSetIntStr, MappingIntStrAny]] = None, exclude: Optional[Union[AbstractSetIntStr, MappingIntStrAny]] = None, by_alias: bool = False, skip_defaults: Optional[bool] = None, exclude_unset: bool = False, exclude_defaults: bool = False, exclude_none: bool = False, encoder: Optional[Callable[[Any], Any]] = None, models_as_dict: bool = True, **dumps_kwargs: Any) → unicode# Generate a JSON representation of the model, include and exclude arguments as per dict(). encoder is an optional function to supply as default to json.dumps(), other arguments as per json.dumps(). save(file_path: Union[pathlib.Path, str]) → None# Save the LLM. Parameters file_path – Path to file to save the LLM to. Example: .. code-block:: python llm.save(file_path=”path/llm.yaml”) classmethod update_forward_refs(**localns: Any) → None# Try to update ForwardRefs on fields based on this Model, globalns and localns.
/content/https://python.langchain.com/en/latest/reference/modules/llms.html
09c7c6e2de63-84
pydantic model langchain.llms.PromptLayerOpenAI[source]# Wrapper around OpenAI large language models. To use, you should have the openai and promptlayer python package installed, and the environment variable OPENAI_API_KEY and PROMPTLAYER_API_KEY set with your openAI API key and promptlayer key respectively. All parameters that can be passed to the OpenAI LLM can also be passed here. The PromptLayerOpenAI LLM adds two optional :param pl_tags: List of strings to tag the request with. :param return_pl_id: If True, the PromptLayer request ID will be returned in the generation_info field of the Generation object. Example from langchain.llms import PromptLayerOpenAI openai = PromptLayerOpenAI(model_name="text-davinci-003") Validators build_extra » all fields set_callback_manager » callback_manager set_verbose » verbose validate_environment » all fields __call__(prompt: str, stop: Optional[List[str]] = None) → str# Check Cache and run the LLM on the given prompt and input. async agenerate(prompts: List[str], stop: Optional[List[str]] = None) → langchain.schema.LLMResult# Run the LLM on the given prompt and input. async agenerate_prompt(prompts: List[langchain.schema.PromptValue], stop: Optional[List[str]] = None) → langchain.schema.LLMResult#
/content/https://python.langchain.com/en/latest/reference/modules/llms.html
09c7c6e2de63-85
Take in a list of prompt values and return an LLMResult. classmethod construct(_fields_set: Optional[SetStr] = None, **values: Any) → Model# Creates a new model setting __dict__ and __fields_set__ from trusted or pre-validated data. Default values are respected, but no other validation is performed. Behaves as if Config.extra = ‘allow’ was set since it adds all passed values copy(*, include: Optional[Union[AbstractSetIntStr, MappingIntStrAny]] = None, exclude: Optional[Union[AbstractSetIntStr, MappingIntStrAny]] = None, update: Optional[DictStrAny] = None, deep: bool = False) → Model# Duplicate a model, optionally choose which fields to include, exclude and change. Parameters include – fields to include in new model exclude – fields to exclude from new model, as with values this takes precedence over include update – values to change/add in the new model. Note: the data is not validated before creating the new model: you should trust this data deep – set to True to make a deep copy of the model Returns new model instance create_llm_result(choices: Any, prompts: List[str], token_usage: Dict[str, int]) → langchain.schema.LLMResult# Create the LLMResult from the choices and prompts. dict(**kwargs: Any) → Dict# Return a dictionary of the LLM.
/content/https://python.langchain.com/en/latest/reference/modules/llms.html
09c7c6e2de63-86
Return a dictionary of the LLM. generate(prompts: List[str], stop: Optional[List[str]] = None) → langchain.schema.LLMResult# Run the LLM on the given prompt and input. generate_prompt(prompts: List[langchain.schema.PromptValue], stop: Optional[List[str]] = None) → langchain.schema.LLMResult# Take in a list of prompt values and return an LLMResult. get_num_tokens(text: str) → int# Calculate num tokens with tiktoken package. get_num_tokens_from_messages(messages: List[langchain.schema.BaseMessage]) → int# Get the number of tokens in the message. get_sub_prompts(params: Dict[str, Any], prompts: List[str], stop: Optional[List[str]] = None) → List[List[str]]# Get the sub prompts for llm call.
/content/https://python.langchain.com/en/latest/reference/modules/llms.html
09c7c6e2de63-87
Get the sub prompts for llm call. json(*, include: Optional[Union[AbstractSetIntStr, MappingIntStrAny]] = None, exclude: Optional[Union[AbstractSetIntStr, MappingIntStrAny]] = None, by_alias: bool = False, skip_defaults: Optional[bool] = None, exclude_unset: bool = False, exclude_defaults: bool = False, exclude_none: bool = False, encoder: Optional[Callable[[Any], Any]] = None, models_as_dict: bool = True, **dumps_kwargs: Any) → unicode# Generate a JSON representation of the model, include and exclude arguments as per dict(). encoder is an optional function to supply as default to json.dumps(), other arguments as per json.dumps(). max_tokens_for_prompt(prompt: str) → int# Calculate the maximum number of tokens possible to generate for a prompt. Parameters prompt – The prompt to pass into the model. Returns The maximum number of tokens to generate for a prompt. Example max_tokens = openai.max_token_for_prompt("Tell me a joke.") modelname_to_contextsize(modelname: str) → int# Calculate the maximum number of tokens possible to generate for a model. Parameters modelname – The modelname we want to know the context size for. Returns The maximum context size Example
/content/https://python.langchain.com/en/latest/reference/modules/llms.html
09c7c6e2de63-88
Returns The maximum context size Example max_tokens = openai.modelname_to_contextsize("text-davinci-003") prep_streaming_params(stop: Optional[List[str]] = None) → Dict[str, Any]# Prepare the params for streaming. save(file_path: Union[pathlib.Path, str]) → None# Save the LLM. Parameters file_path – Path to file to save the LLM to. Example: .. code-block:: python llm.save(file_path=”path/llm.yaml”) stream(prompt: str, stop: Optional[List[str]] = None) → Generator# Call OpenAI with streaming flag and return the resulting generator. BETA: this is a beta feature while we figure out the right abstraction. Once that happens, this interface could change. Parameters prompt – The prompts to pass into the model. stop – Optional list of stop words to use when generating. Returns A generator representing the stream of tokens from OpenAI. Example generator = openai.stream("Tell me a joke.") for token in generator: yield token classmethod update_forward_refs(**localns: Any) → None# Try to update ForwardRefs on fields based on this Model, globalns and localns. pydantic model langchain.llms.PromptLayerOpenAIChat[source]# Wrapper around OpenAI large language models. To use, you should have the openai and promptlayer python package installed, and the environment variable OPENAI_API_KEY and PROMPTLAYER_API_KEY set with your openAI API key and
/content/https://python.langchain.com/en/latest/reference/modules/llms.html
09c7c6e2de63-89
and PROMPTLAYER_API_KEY set with your openAI API key and promptlayer key respectively. All parameters that can be passed to the OpenAIChat LLM can also be passed here. The PromptLayerOpenAIChat adds two optional :param pl_tags: List of strings to tag the request with. :param return_pl_id: If True, the PromptLayer request ID will be returned in the generation_info field of the Generation object. Example from langchain.llms import PromptLayerOpenAIChat openaichat = PromptLayerOpenAIChat(model_name="gpt-3.5-turbo") Validators build_extra » all fields set_callback_manager » callback_manager set_verbose » verbose validate_environment » all fields field allowed_special: Union[Literal['all'], AbstractSet[str]] = {}# Set of special tokens that are allowed。 field disallowed_special: Union[Literal['all'], Collection[str]] = 'all'# Set of special tokens that are not allowed。 field max_retries: int = 6# Maximum number of retries to make when generating. field model_kwargs: Dict[str, Any] [Optional]# Holds any model parameters valid for create call not explicitly specified. field model_name: str = 'gpt-3.5-turbo'# Model name to use. field prefix_messages: List [Optional]# Series of messages for Chat input. field streaming: bool = False# Whether to stream the results or not.
/content/https://python.langchain.com/en/latest/reference/modules/llms.html
09c7c6e2de63-90
field streaming: bool = False# Whether to stream the results or not. __call__(prompt: str, stop: Optional[List[str]] = None) → str# Check Cache and run the LLM on the given prompt and input. async agenerate(prompts: List[str], stop: Optional[List[str]] = None) → langchain.schema.LLMResult# Run the LLM on the given prompt and input. async agenerate_prompt(prompts: List[langchain.schema.PromptValue], stop: Optional[List[str]] = None) → langchain.schema.LLMResult# Take in a list of prompt values and return an LLMResult. classmethod construct(_fields_set: Optional[SetStr] = None, **values: Any) → Model# Creates a new model setting __dict__ and __fields_set__ from trusted or pre-validated data. Default values are respected, but no other validation is performed. Behaves as if Config.extra = ‘allow’ was set since it adds all passed values copy(*, include: Optional[Union[AbstractSetIntStr, MappingIntStrAny]] = None, exclude: Optional[Union[AbstractSetIntStr, MappingIntStrAny]] = None, update: Optional[DictStrAny] = None, deep: bool = False) → Model# Duplicate a model, optionally choose which fields to include, exclude and change. Parameters include – fields to include in new model
/content/https://python.langchain.com/en/latest/reference/modules/llms.html
09c7c6e2de63-91
Parameters include – fields to include in new model exclude – fields to exclude from new model, as with values this takes precedence over include update – values to change/add in the new model. Note: the data is not validated before creating the new model: you should trust this data deep – set to True to make a deep copy of the model Returns new model instance dict(**kwargs: Any) → Dict# Return a dictionary of the LLM. generate(prompts: List[str], stop: Optional[List[str]] = None) → langchain.schema.LLMResult# Run the LLM on the given prompt and input. generate_prompt(prompts: List[langchain.schema.PromptValue], stop: Optional[List[str]] = None) → langchain.schema.LLMResult# Take in a list of prompt values and return an LLMResult. get_num_tokens(text: str) → int# Calculate num tokens with tiktoken package. get_num_tokens_from_messages(messages: List[langchain.schema.BaseMessage]) → int# Get the number of tokens in the message.
/content/https://python.langchain.com/en/latest/reference/modules/llms.html
09c7c6e2de63-92
Get the number of tokens in the message. json(*, include: Optional[Union[AbstractSetIntStr, MappingIntStrAny]] = None, exclude: Optional[Union[AbstractSetIntStr, MappingIntStrAny]] = None, by_alias: bool = False, skip_defaults: Optional[bool] = None, exclude_unset: bool = False, exclude_defaults: bool = False, exclude_none: bool = False, encoder: Optional[Callable[[Any], Any]] = None, models_as_dict: bool = True, **dumps_kwargs: Any) → unicode# Generate a JSON representation of the model, include and exclude arguments as per dict(). encoder is an optional function to supply as default to json.dumps(), other arguments as per json.dumps(). save(file_path: Union[pathlib.Path, str]) → None# Save the LLM. Parameters file_path – Path to file to save the LLM to. Example: .. code-block:: python llm.save(file_path=”path/llm.yaml”) classmethod update_forward_refs(**localns: Any) → None# Try to update ForwardRefs on fields based on this Model, globalns and localns. pydantic model langchain.llms.RWKV[source]# Wrapper around RWKV language models. To use, you should have the rwkv python package installed, the
/content/https://python.langchain.com/en/latest/reference/modules/llms.html
09c7c6e2de63-93
To use, you should have the rwkv python package installed, the pre-trained model file, and the model’s config information. Example from langchain.llms import RWKV model = RWKV(model="./models/rwkv-3b-fp16.bin", strategy="cpu fp32") # Simplest invocation response = model("Once upon a time, ") Validators set_callback_manager » callback_manager set_verbose » verbose validate_environment » all fields field CHUNK_LEN: int = 256# Batch size for prompt processing. field max_tokens_per_generation: int = 256# Maximum number of tokens to generate. field model: str [Required]# Path to the pre-trained RWKV model file. field penalty_alpha_frequency: float = 0.4# Positive values penalize new tokens based on their existing frequency in the text so far, decreasing the model’s likelihood to repeat the same line verbatim.. field penalty_alpha_presence: float = 0.4# Positive values penalize new tokens based on whether they appear in the text so far, increasing the model’s likelihood to talk about new topics.. field rwkv_verbose: bool = True# Print debug information. field strategy: str = 'cpu fp32'# Token context window. field temperature: float = 1.0# The temperature to use for sampling. field tokens_path: str [Required]# Path to the RWKV tokens file. field top_p: float = 0.5# The top-p value to use for sampling.
/content/https://python.langchain.com/en/latest/reference/modules/llms.html
09c7c6e2de63-94
The top-p value to use for sampling. __call__(prompt: str, stop: Optional[List[str]] = None) → str# Check Cache and run the LLM on the given prompt and input. async agenerate(prompts: List[str], stop: Optional[List[str]] = None) → langchain.schema.LLMResult# Run the LLM on the given prompt and input. async agenerate_prompt(prompts: List[langchain.schema.PromptValue], stop: Optional[List[str]] = None) → langchain.schema.LLMResult# Take in a list of prompt values and return an LLMResult. classmethod construct(_fields_set: Optional[SetStr] = None, **values: Any) → Model# Creates a new model setting __dict__ and __fields_set__ from trusted or pre-validated data. Default values are respected, but no other validation is performed. Behaves as if Config.extra = ‘allow’ was set since it adds all passed values copy(*, include: Optional[Union[AbstractSetIntStr, MappingIntStrAny]] = None, exclude: Optional[Union[AbstractSetIntStr, MappingIntStrAny]] = None, update: Optional[DictStrAny] = None, deep: bool = False) → Model# Duplicate a model, optionally choose which fields to include, exclude and change. Parameters include – fields to include in new model
/content/https://python.langchain.com/en/latest/reference/modules/llms.html
09c7c6e2de63-95
Parameters include – fields to include in new model exclude – fields to exclude from new model, as with values this takes precedence over include update – values to change/add in the new model. Note: the data is not validated before creating the new model: you should trust this data deep – set to True to make a deep copy of the model Returns new model instance dict(**kwargs: Any) → Dict# Return a dictionary of the LLM. generate(prompts: List[str], stop: Optional[List[str]] = None) → langchain.schema.LLMResult# Run the LLM on the given prompt and input. generate_prompt(prompts: List[langchain.schema.PromptValue], stop: Optional[List[str]] = None) → langchain.schema.LLMResult# Take in a list of prompt values and return an LLMResult. get_num_tokens(text: str) → int# Get the number of tokens present in the text. get_num_tokens_from_messages(messages: List[langchain.schema.BaseMessage]) → int# Get the number of tokens in the message.
/content/https://python.langchain.com/en/latest/reference/modules/llms.html
09c7c6e2de63-96
Get the number of tokens in the message. json(*, include: Optional[Union[AbstractSetIntStr, MappingIntStrAny]] = None, exclude: Optional[Union[AbstractSetIntStr, MappingIntStrAny]] = None, by_alias: bool = False, skip_defaults: Optional[bool] = None, exclude_unset: bool = False, exclude_defaults: bool = False, exclude_none: bool = False, encoder: Optional[Callable[[Any], Any]] = None, models_as_dict: bool = True, **dumps_kwargs: Any) → unicode# Generate a JSON representation of the model, include and exclude arguments as per dict(). encoder is an optional function to supply as default to json.dumps(), other arguments as per json.dumps(). save(file_path: Union[pathlib.Path, str]) → None# Save the LLM. Parameters file_path – Path to file to save the LLM to. Example: .. code-block:: python llm.save(file_path=”path/llm.yaml”) classmethod update_forward_refs(**localns: Any) → None# Try to update ForwardRefs on fields based on this Model, globalns and localns. pydantic model langchain.llms.Replicate[source]# Wrapper around Replicate models. To use, you should have the replicate python package installed,
/content/https://python.langchain.com/en/latest/reference/modules/llms.html
09c7c6e2de63-97
To use, you should have the replicate python package installed, and the environment variable REPLICATE_API_TOKEN set with your API token. You can find your token here: https://replicate.com/account The model param is required, but any other model parameters can also be passed in with the format input={model_param: value, …} Example Validators build_extra » all fields set_callback_manager » callback_manager set_verbose » verbose validate_environment » all fields __call__(prompt: str, stop: Optional[List[str]] = None) → str# Check Cache and run the LLM on the given prompt and input. async agenerate(prompts: List[str], stop: Optional[List[str]] = None) → langchain.schema.LLMResult# Run the LLM on the given prompt and input. async agenerate_prompt(prompts: List[langchain.schema.PromptValue], stop: Optional[List[str]] = None) → langchain.schema.LLMResult# Take in a list of prompt values and return an LLMResult. classmethod construct(_fields_set: Optional[SetStr] = None, **values: Any) → Model# Creates a new model setting __dict__ and __fields_set__ from trusted or pre-validated data. Default values are respected, but no other validation is performed. Behaves as if Config.extra = ‘allow’ was set since it adds all passed values
/content/https://python.langchain.com/en/latest/reference/modules/llms.html
09c7c6e2de63-98
copy(*, include: Optional[Union[AbstractSetIntStr, MappingIntStrAny]] = None, exclude: Optional[Union[AbstractSetIntStr, MappingIntStrAny]] = None, update: Optional[DictStrAny] = None, deep: bool = False) → Model# Duplicate a model, optionally choose which fields to include, exclude and change. Parameters include – fields to include in new model exclude – fields to exclude from new model, as with values this takes precedence over include update – values to change/add in the new model. Note: the data is not validated before creating the new model: you should trust this data deep – set to True to make a deep copy of the model Returns new model instance dict(**kwargs: Any) → Dict# Return a dictionary of the LLM. generate(prompts: List[str], stop: Optional[List[str]] = None) → langchain.schema.LLMResult# Run the LLM on the given prompt and input. generate_prompt(prompts: List[langchain.schema.PromptValue], stop: Optional[List[str]] = None) → langchain.schema.LLMResult# Take in a list of prompt values and return an LLMResult. get_num_tokens(text: str) → int# Get the number of tokens present in the text. get_num_tokens_from_messages(messages: List[langchain.schema.BaseMessage]) → int# Get the number of tokens in the message.
/content/https://python.langchain.com/en/latest/reference/modules/llms.html
09c7c6e2de63-99
Get the number of tokens in the message. json(*, include: Optional[Union[AbstractSetIntStr, MappingIntStrAny]] = None, exclude: Optional[Union[AbstractSetIntStr, MappingIntStrAny]] = None, by_alias: bool = False, skip_defaults: Optional[bool] = None, exclude_unset: bool = False, exclude_defaults: bool = False, exclude_none: bool = False, encoder: Optional[Callable[[Any], Any]] = None, models_as_dict: bool = True, **dumps_kwargs: Any) → unicode# Generate a JSON representation of the model, include and exclude arguments as per dict(). encoder is an optional function to supply as default to json.dumps(), other arguments as per json.dumps(). save(file_path: Union[pathlib.Path, str]) → None# Save the LLM. Parameters file_path – Path to file to save the LLM to. Example: .. code-block:: python llm.save(file_path=”path/llm.yaml”) classmethod update_forward_refs(**localns: Any) → None# Try to update ForwardRefs on fields based on this Model, globalns and localns. pydantic model langchain.llms.SagemakerEndpoint[source]# Wrapper around custom Sagemaker Inference Endpoints. To use, you must supply the endpoint name from your deployed
/content/https://python.langchain.com/en/latest/reference/modules/llms.html
09c7c6e2de63-100
To use, you must supply the endpoint name from your deployed Sagemaker model & the region where it is deployed. To authenticate, the AWS client uses the following methods to automatically load credentials: https://boto3.amazonaws.com/v1/documentation/api/latest/guide/credentials.html If a specific credential profile should be used, you must pass the name of the profile from the ~/.aws/credentials file that is to be used. Make sure the credentials / roles used have the required policies to access the Sagemaker endpoint. See: https://docs.aws.amazon.com/IAM/latest/UserGuide/access_policies.html Validators set_callback_manager » callback_manager set_verbose » verbose validate_environment » all fields field content_handler: langchain.llms.sagemaker_endpoint.LLMContentHandler [Required]# The content handler class that provides an input and output transform functions to handle formats between LLM and the endpoint. field credentials_profile_name: Optional[str] = None# The name of the profile in the ~/.aws/credentials or ~/.aws/config files, which has either access keys or role information specified. If not specified, the default credential profile or, if on an EC2 instance, credentials from IMDS will be used. See: https://boto3.amazonaws.com/v1/documentation/api/latest/guide/credentials.html field endpoint_kwargs: Optional[Dict] = None#
/content/https://python.langchain.com/en/latest/reference/modules/llms.html
09c7c6e2de63-101
field endpoint_kwargs: Optional[Dict] = None# Optional attributes passed to the invoke_endpoint function. See `boto3`_. docs for more info. .. _boto3: <https://boto3.amazonaws.com/v1/documentation/api/latest/index.html> field endpoint_name: str = ''# The name of the endpoint from the deployed Sagemaker model. Must be unique within an AWS Region. field model_kwargs: Optional[Dict] = None# Key word arguments to pass to the model. field region_name: str = ''# The aws region where the Sagemaker model is deployed, eg. us-west-2. __call__(prompt: str, stop: Optional[List[str]] = None) → str# Check Cache and run the LLM on the given prompt and input. async agenerate(prompts: List[str], stop: Optional[List[str]] = None) → langchain.schema.LLMResult# Run the LLM on the given prompt and input. async agenerate_prompt(prompts: List[langchain.schema.PromptValue], stop: Optional[List[str]] = None) → langchain.schema.LLMResult# Take in a list of prompt values and return an LLMResult. classmethod construct(_fields_set: Optional[SetStr] = None, **values: Any) → Model# Creates a new model setting __dict__ and __fields_set__ from trusted or pre-validated data.
/content/https://python.langchain.com/en/latest/reference/modules/llms.html
09c7c6e2de63-102
Default values are respected, but no other validation is performed. Behaves as if Config.extra = ‘allow’ was set since it adds all passed values copy(*, include: Optional[Union[AbstractSetIntStr, MappingIntStrAny]] = None, exclude: Optional[Union[AbstractSetIntStr, MappingIntStrAny]] = None, update: Optional[DictStrAny] = None, deep: bool = False) → Model# Duplicate a model, optionally choose which fields to include, exclude and change. Parameters include – fields to include in new model exclude – fields to exclude from new model, as with values this takes precedence over include update – values to change/add in the new model. Note: the data is not validated before creating the new model: you should trust this data deep – set to True to make a deep copy of the model Returns new model instance dict(**kwargs: Any) → Dict# Return a dictionary of the LLM. generate(prompts: List[str], stop: Optional[List[str]] = None) → langchain.schema.LLMResult# Run the LLM on the given prompt and input. generate_prompt(prompts: List[langchain.schema.PromptValue], stop: Optional[List[str]] = None) → langchain.schema.LLMResult# Take in a list of prompt values and return an LLMResult. get_num_tokens(text: str) → int# Get the number of tokens present in the text.
/content/https://python.langchain.com/en/latest/reference/modules/llms.html
09c7c6e2de63-103
Get the number of tokens present in the text. get_num_tokens_from_messages(messages: List[langchain.schema.BaseMessage]) → int# Get the number of tokens in the message. json(*, include: Optional[Union[AbstractSetIntStr, MappingIntStrAny]] = None, exclude: Optional[Union[AbstractSetIntStr, MappingIntStrAny]] = None, by_alias: bool = False, skip_defaults: Optional[bool] = None, exclude_unset: bool = False, exclude_defaults: bool = False, exclude_none: bool = False, encoder: Optional[Callable[[Any], Any]] = None, models_as_dict: bool = True, **dumps_kwargs: Any) → unicode# Generate a JSON representation of the model, include and exclude arguments as per dict(). encoder is an optional function to supply as default to json.dumps(), other arguments as per json.dumps(). save(file_path: Union[pathlib.Path, str]) → None# Save the LLM. Parameters file_path – Path to file to save the LLM to. Example: .. code-block:: python llm.save(file_path=”path/llm.yaml”) classmethod update_forward_refs(**localns: Any) → None# Try to update ForwardRefs on fields based on this Model, globalns and localns.
/content/https://python.langchain.com/en/latest/reference/modules/llms.html
09c7c6e2de63-104
pydantic model langchain.llms.SelfHostedHuggingFaceLLM[source]# Wrapper around HuggingFace Pipeline API to run on self-hosted remote hardware. Supported hardware includes auto-launched instances on AWS, GCP, Azure, and Lambda, as well as servers specified by IP address and SSH credentials (such as on-prem, or another cloud like Paperspace, Coreweave, etc.). To use, you should have the runhouse python package installed. Only supports text-generation and text2text-generation for now. Example using from_model_id:from langchain.llms import SelfHostedHuggingFaceLLM import runhouse as rh gpu = rh.cluster(name="rh-a10x", instance_type="A100:1") hf = SelfHostedHuggingFaceLLM( model_id="google/flan-t5-large", task="text2text-generation", hardware=gpu ) Example passing fn that generates a pipeline (bc the pipeline is not serializable):from langchain.llms import SelfHostedHuggingFaceLLM from transformers import AutoModelForCausalLM, AutoTokenizer, pipeline import runhouse as rh def get_pipeline(): model_id = "gpt2" tokenizer = AutoTokenizer.from_pretrained(model_id) model = AutoModelForCausalLM.from_pretrained(model_id) pipe = pipeline( "text-generation", model=model, tokenizer=tokenizer ) return pipe hf = SelfHostedHuggingFaceLLM(
/content/https://python.langchain.com/en/latest/reference/modules/llms.html
09c7c6e2de63-105
) return pipe hf = SelfHostedHuggingFaceLLM( model_load_fn=get_pipeline, model_id="gpt2", hardware=gpu) Validators set_callback_manager » callback_manager set_verbose » verbose field device: int = 0# Device to use for inference. -1 for CPU, 0 for GPU, 1 for second GPU, etc. field hardware: Any = None# Remote hardware to send the inference function to. field inference_fn: Callable = <function _generate_text># Inference function to send to the remote hardware. field load_fn_kwargs: Optional[dict] = None# Key word arguments to pass to the model load function. field model_id: str = 'gpt2'# Hugging Face model_id to load the model. field model_kwargs: Optional[dict] = None# Key word arguments to pass to the model. field model_load_fn: Callable = <function _load_transformer># Function to load the model remotely on the server. field model_reqs: List[str] = ['./', 'transformers', 'torch']# Requirements to install on hardware to inference the model. field task: str = 'text-generation'# Hugging Face task (either “text-generation” or “text2text-generation”). __call__(prompt: str, stop: Optional[List[str]] = None) → str# Check Cache and run the LLM on the given prompt and input.
/content/https://python.langchain.com/en/latest/reference/modules/llms.html
09c7c6e2de63-106
Check Cache and run the LLM on the given prompt and input. async agenerate(prompts: List[str], stop: Optional[List[str]] = None) → langchain.schema.LLMResult# Run the LLM on the given prompt and input. async agenerate_prompt(prompts: List[langchain.schema.PromptValue], stop: Optional[List[str]] = None) → langchain.schema.LLMResult# Take in a list of prompt values and return an LLMResult. classmethod construct(_fields_set: Optional[SetStr] = None, **values: Any) → Model# Creates a new model setting __dict__ and __fields_set__ from trusted or pre-validated data. Default values are respected, but no other validation is performed. Behaves as if Config.extra = ‘allow’ was set since it adds all passed values copy(*, include: Optional[Union[AbstractSetIntStr, MappingIntStrAny]] = None, exclude: Optional[Union[AbstractSetIntStr, MappingIntStrAny]] = None, update: Optional[DictStrAny] = None, deep: bool = False) → Model# Duplicate a model, optionally choose which fields to include, exclude and change. Parameters include – fields to include in new model exclude – fields to exclude from new model, as with values this takes precedence over include update – values to change/add in the new model. Note: the data is not validated before creating
/content/https://python.langchain.com/en/latest/reference/modules/llms.html
09c7c6e2de63-107
the new model: you should trust this data deep – set to True to make a deep copy of the model Returns new model instance dict(**kwargs: Any) → Dict# Return a dictionary of the LLM. classmethod from_pipeline(pipeline: Any, hardware: Any, model_reqs: Optional[List[str]] = None, device: int = 0, **kwargs: Any) → langchain.llms.base.LLM# Init the SelfHostedPipeline from a pipeline object or string. generate(prompts: List[str], stop: Optional[List[str]] = None) → langchain.schema.LLMResult# Run the LLM on the given prompt and input. generate_prompt(prompts: List[langchain.schema.PromptValue], stop: Optional[List[str]] = None) → langchain.schema.LLMResult# Take in a list of prompt values and return an LLMResult. get_num_tokens(text: str) → int# Get the number of tokens present in the text. get_num_tokens_from_messages(messages: List[langchain.schema.BaseMessage]) → int# Get the number of tokens in the message.
/content/https://python.langchain.com/en/latest/reference/modules/llms.html
09c7c6e2de63-108
Get the number of tokens in the message. json(*, include: Optional[Union[AbstractSetIntStr, MappingIntStrAny]] = None, exclude: Optional[Union[AbstractSetIntStr, MappingIntStrAny]] = None, by_alias: bool = False, skip_defaults: Optional[bool] = None, exclude_unset: bool = False, exclude_defaults: bool = False, exclude_none: bool = False, encoder: Optional[Callable[[Any], Any]] = None, models_as_dict: bool = True, **dumps_kwargs: Any) → unicode# Generate a JSON representation of the model, include and exclude arguments as per dict(). encoder is an optional function to supply as default to json.dumps(), other arguments as per json.dumps(). save(file_path: Union[pathlib.Path, str]) → None# Save the LLM. Parameters file_path – Path to file to save the LLM to. Example: .. code-block:: python llm.save(file_path=”path/llm.yaml”) classmethod update_forward_refs(**localns: Any) → None# Try to update ForwardRefs on fields based on this Model, globalns and localns. pydantic model langchain.llms.SelfHostedPipeline[source]# Run model inference on self-hosted remote hardware.
/content/https://python.langchain.com/en/latest/reference/modules/llms.html
09c7c6e2de63-109
Run model inference on self-hosted remote hardware. Supported hardware includes auto-launched instances on AWS, GCP, Azure, and Lambda, as well as servers specified by IP address and SSH credentials (such as on-prem, or another cloud like Paperspace, Coreweave, etc.). To use, you should have the runhouse python package installed. Example for custom pipeline and inference functions:from langchain.llms import SelfHostedPipeline from transformers import AutoModelForCausalLM, AutoTokenizer, pipeline import runhouse as rh def load_pipeline(): tokenizer = AutoTokenizer.from_pretrained("gpt2") model = AutoModelForCausalLM.from_pretrained("gpt2") return pipeline( "text-generation", model=model, tokenizer=tokenizer, max_new_tokens=10 ) def inference_fn(pipeline, prompt, stop = None): return pipeline(prompt)[0]["generated_text"] gpu = rh.cluster(name="rh-a10x", instance_type="A100:1") llm = SelfHostedPipeline( model_load_fn=load_pipeline, hardware=gpu, model_reqs=model_reqs, inference_fn=inference_fn ) Example for <2GB model (can be serialized and sent directly to the server):from langchain.llms import SelfHostedPipeline import runhouse as rh gpu = rh.cluster(name="rh-a10x", instance_type="A100:1")
/content/https://python.langchain.com/en/latest/reference/modules/llms.html
09c7c6e2de63-110
my_model = ... llm = SelfHostedPipeline.from_pipeline( pipeline=my_model, hardware=gpu, model_reqs=["./", "torch", "transformers"], ) Example passing model path for larger models:from langchain.llms import SelfHostedPipeline import runhouse as rh import pickle from transformers import pipeline generator = pipeline(model="gpt2") rh.blob(pickle.dumps(generator), path="models/pipeline.pkl" ).save().to(gpu, path="models") llm = SelfHostedPipeline.from_pipeline( pipeline="models/pipeline.pkl", hardware=gpu, model_reqs=["./", "torch", "transformers"], ) Validators set_callback_manager » callback_manager set_verbose » verbose field hardware: Any = None# Remote hardware to send the inference function to. field inference_fn: Callable = <function _generate_text># Inference function to send to the remote hardware. field load_fn_kwargs: Optional[dict] = None# Key word arguments to pass to the model load function. field model_load_fn: Callable [Required]# Function to load the model remotely on the server. field model_reqs: List[str] = ['./', 'torch']# Requirements to install on hardware to inference the model. __call__(prompt: str, stop: Optional[List[str]] = None) → str#
/content/https://python.langchain.com/en/latest/reference/modules/llms.html
09c7c6e2de63-111
Check Cache and run the LLM on the given prompt and input. async agenerate(prompts: List[str], stop: Optional[List[str]] = None) → langchain.schema.LLMResult# Run the LLM on the given prompt and input. async agenerate_prompt(prompts: List[langchain.schema.PromptValue], stop: Optional[List[str]] = None) → langchain.schema.LLMResult# Take in a list of prompt values and return an LLMResult. classmethod construct(_fields_set: Optional[SetStr] = None, **values: Any) → Model# Creates a new model setting __dict__ and __fields_set__ from trusted or pre-validated data. Default values are respected, but no other validation is performed. Behaves as if Config.extra = ‘allow’ was set since it adds all passed values copy(*, include: Optional[Union[AbstractSetIntStr, MappingIntStrAny]] = None, exclude: Optional[Union[AbstractSetIntStr, MappingIntStrAny]] = None, update: Optional[DictStrAny] = None, deep: bool = False) → Model# Duplicate a model, optionally choose which fields to include, exclude and change. Parameters include – fields to include in new model exclude – fields to exclude from new model, as with values this takes precedence over include update – values to change/add in the new model. Note: the data is not validated before creating
/content/https://python.langchain.com/en/latest/reference/modules/llms.html
09c7c6e2de63-112
the new model: you should trust this data deep – set to True to make a deep copy of the model Returns new model instance dict(**kwargs: Any) → Dict# Return a dictionary of the LLM. classmethod from_pipeline(pipeline: Any, hardware: Any, model_reqs: Optional[List[str]] = None, device: int = 0, **kwargs: Any) → langchain.llms.base.LLM[source]# Init the SelfHostedPipeline from a pipeline object or string. generate(prompts: List[str], stop: Optional[List[str]] = None) → langchain.schema.LLMResult# Run the LLM on the given prompt and input. generate_prompt(prompts: List[langchain.schema.PromptValue], stop: Optional[List[str]] = None) → langchain.schema.LLMResult# Take in a list of prompt values and return an LLMResult. get_num_tokens(text: str) → int# Get the number of tokens present in the text. get_num_tokens_from_messages(messages: List[langchain.schema.BaseMessage]) → int# Get the number of tokens in the message.
/content/https://python.langchain.com/en/latest/reference/modules/llms.html
09c7c6e2de63-113
Get the number of tokens in the message. json(*, include: Optional[Union[AbstractSetIntStr, MappingIntStrAny]] = None, exclude: Optional[Union[AbstractSetIntStr, MappingIntStrAny]] = None, by_alias: bool = False, skip_defaults: Optional[bool] = None, exclude_unset: bool = False, exclude_defaults: bool = False, exclude_none: bool = False, encoder: Optional[Callable[[Any], Any]] = None, models_as_dict: bool = True, **dumps_kwargs: Any) → unicode# Generate a JSON representation of the model, include and exclude arguments as per dict(). encoder is an optional function to supply as default to json.dumps(), other arguments as per json.dumps(). save(file_path: Union[pathlib.Path, str]) → None# Save the LLM. Parameters file_path – Path to file to save the LLM to. Example: .. code-block:: python llm.save(file_path=”path/llm.yaml”) classmethod update_forward_refs(**localns: Any) → None# Try to update ForwardRefs on fields based on this Model, globalns and localns. pydantic model langchain.llms.StochasticAI[source]# Wrapper around StochasticAI large language models. To use, you should have the environment variable STOCHASTICAI_API_KEY
/content/https://python.langchain.com/en/latest/reference/modules/llms.html
09c7c6e2de63-114
To use, you should have the environment variable STOCHASTICAI_API_KEY set with your API key. Example from langchain.llms import StochasticAI stochasticai = StochasticAI(api_url="") Validators build_extra » all fields set_callback_manager » callback_manager set_verbose » verbose validate_environment » all fields field api_url: str = ''# Model name to use. field model_kwargs: Dict[str, Any] [Optional]# Holds any model parameters valid for create call not explicitly specified. __call__(prompt: str, stop: Optional[List[str]] = None) → str# Check Cache and run the LLM on the given prompt and input. async agenerate(prompts: List[str], stop: Optional[List[str]] = None) → langchain.schema.LLMResult# Run the LLM on the given prompt and input. async agenerate_prompt(prompts: List[langchain.schema.PromptValue], stop: Optional[List[str]] = None) → langchain.schema.LLMResult# Take in a list of prompt values and return an LLMResult. classmethod construct(_fields_set: Optional[SetStr] = None, **values: Any) → Model# Creates a new model setting __dict__ and __fields_set__ from trusted or pre-validated data. Default values are respected, but no other validation is performed. Behaves as if Config.extra = ‘allow’ was set since it adds all passed values
/content/https://python.langchain.com/en/latest/reference/modules/llms.html
09c7c6e2de63-115
copy(*, include: Optional[Union[AbstractSetIntStr, MappingIntStrAny]] = None, exclude: Optional[Union[AbstractSetIntStr, MappingIntStrAny]] = None, update: Optional[DictStrAny] = None, deep: bool = False) → Model# Duplicate a model, optionally choose which fields to include, exclude and change. Parameters include – fields to include in new model exclude – fields to exclude from new model, as with values this takes precedence over include update – values to change/add in the new model. Note: the data is not validated before creating the new model: you should trust this data deep – set to True to make a deep copy of the model Returns new model instance dict(**kwargs: Any) → Dict# Return a dictionary of the LLM. generate(prompts: List[str], stop: Optional[List[str]] = None) → langchain.schema.LLMResult# Run the LLM on the given prompt and input. generate_prompt(prompts: List[langchain.schema.PromptValue], stop: Optional[List[str]] = None) → langchain.schema.LLMResult# Take in a list of prompt values and return an LLMResult. get_num_tokens(text: str) → int# Get the number of tokens present in the text. get_num_tokens_from_messages(messages: List[langchain.schema.BaseMessage]) → int# Get the number of tokens in the message.
/content/https://python.langchain.com/en/latest/reference/modules/llms.html
09c7c6e2de63-116
Get the number of tokens in the message. json(*, include: Optional[Union[AbstractSetIntStr, MappingIntStrAny]] = None, exclude: Optional[Union[AbstractSetIntStr, MappingIntStrAny]] = None, by_alias: bool = False, skip_defaults: Optional[bool] = None, exclude_unset: bool = False, exclude_defaults: bool = False, exclude_none: bool = False, encoder: Optional[Callable[[Any], Any]] = None, models_as_dict: bool = True, **dumps_kwargs: Any) → unicode# Generate a JSON representation of the model, include and exclude arguments as per dict(). encoder is an optional function to supply as default to json.dumps(), other arguments as per json.dumps(). save(file_path: Union[pathlib.Path, str]) → None# Save the LLM. Parameters file_path – Path to file to save the LLM to. Example: .. code-block:: python llm.save(file_path=”path/llm.yaml”) classmethod update_forward_refs(**localns: Any) → None# Try to update ForwardRefs on fields based on this Model, globalns and localns. pydantic model langchain.llms.Writer[source]# Wrapper around Writer large language models. To use, you should have the environment variable WRITER_API_KEY set with your API key. Example
/content/https://python.langchain.com/en/latest/reference/modules/llms.html
09c7c6e2de63-117
set with your API key. Example from langchain import Writer writer = Writer(model_id="palmyra-base") Validators set_callback_manager » callback_manager set_verbose » verbose validate_environment » all fields field base_url: Optional[str] = None# Base url to use, if None decides based on model name. field beam_search_diversity_rate: float = 1.0# Only applies to beam search, i.e. when the beam width is >1. A higher value encourages beam search to return a more diverse set of candidates field beam_width: Optional[int] = None# The number of concurrent candidates to keep track of during beam search field length: int = 256# The maximum number of tokens to generate in the completion. field length_pentaly: float = 1.0# Only applies to beam search, i.e. when the beam width is >1. Larger values penalize long candidates more heavily, thus preferring shorter candidates field logprobs: bool = False# Whether to return log probabilities. field model_id: str = 'palmyra-base'# Model name to use. field random_seed: int = 0# The model generates random results. Changing the random seed alone will produce a different response with similar characteristics. It is possible to reproduce results by fixing the random seed (assuming all other hyperparameters are also fixed) field repetition_penalty: float = 1.0# Penalizes repeated tokens according to frequency. field stop: Optional[List[str]] = None#
/content/https://python.langchain.com/en/latest/reference/modules/llms.html
09c7c6e2de63-118
field stop: Optional[List[str]] = None# Sequences when completion generation will stop field temperature: float = 1.0# What sampling temperature to use. field tokens_to_generate: int = 24# Max number of tokens to generate. field top_k: int = 1# The number of highest probability vocabulary tokens to keep for top-k-filtering. field top_p: float = 1.0# Total probability mass of tokens to consider at each step. __call__(prompt: str, stop: Optional[List[str]] = None) → str# Check Cache and run the LLM on the given prompt and input. async agenerate(prompts: List[str], stop: Optional[List[str]] = None) → langchain.schema.LLMResult# Run the LLM on the given prompt and input. async agenerate_prompt(prompts: List[langchain.schema.PromptValue], stop: Optional[List[str]] = None) → langchain.schema.LLMResult# Take in a list of prompt values and return an LLMResult. classmethod construct(_fields_set: Optional[SetStr] = None, **values: Any) → Model# Creates a new model setting __dict__ and __fields_set__ from trusted or pre-validated data. Default values are respected, but no other validation is performed. Behaves as if Config.extra = ‘allow’ was set since it adds all passed values
/content/https://python.langchain.com/en/latest/reference/modules/llms.html
09c7c6e2de63-119
copy(*, include: Optional[Union[AbstractSetIntStr, MappingIntStrAny]] = None, exclude: Optional[Union[AbstractSetIntStr, MappingIntStrAny]] = None, update: Optional[DictStrAny] = None, deep: bool = False) → Model# Duplicate a model, optionally choose which fields to include, exclude and change. Parameters include – fields to include in new model exclude – fields to exclude from new model, as with values this takes precedence over include update – values to change/add in the new model. Note: the data is not validated before creating the new model: you should trust this data deep – set to True to make a deep copy of the model Returns new model instance dict(**kwargs: Any) → Dict# Return a dictionary of the LLM. generate(prompts: List[str], stop: Optional[List[str]] = None) → langchain.schema.LLMResult# Run the LLM on the given prompt and input. generate_prompt(prompts: List[langchain.schema.PromptValue], stop: Optional[List[str]] = None) → langchain.schema.LLMResult# Take in a list of prompt values and return an LLMResult. get_num_tokens(text: str) → int# Get the number of tokens present in the text. get_num_tokens_from_messages(messages: List[langchain.schema.BaseMessage]) → int# Get the number of tokens in the message.
/content/https://python.langchain.com/en/latest/reference/modules/llms.html
09c7c6e2de63-120
Get the number of tokens in the message. json(*, include: Optional[Union[AbstractSetIntStr, MappingIntStrAny]] = None, exclude: Optional[Union[AbstractSetIntStr, MappingIntStrAny]] = None, by_alias: bool = False, skip_defaults: Optional[bool] = None, exclude_unset: bool = False, exclude_defaults: bool = False, exclude_none: bool = False, encoder: Optional[Callable[[Any], Any]] = None, models_as_dict: bool = True, **dumps_kwargs: Any) → unicode# Generate a JSON representation of the model, include and exclude arguments as per dict(). encoder is an optional function to supply as default to json.dumps(), other arguments as per json.dumps(). save(file_path: Union[pathlib.Path, str]) → None# Save the LLM. Parameters file_path – Path to file to save the LLM to. Example: .. code-block:: python llm.save(file_path=”path/llm.yaml”) classmethod update_forward_refs(**localns: Any) → None# Try to update ForwardRefs on fields based on this Model, globalns and localns. previous Writer next Chat Models By Harrison Chase © Copyright 2023, Harrison Chase. Last updated on Apr 26, 2023.
/content/https://python.langchain.com/en/latest/reference/modules/llms.html
7336c17120d1-0
.rst .pdf Tools Tools# Core toolkit implementations. pydantic model langchain.tools.AIPluginTool[source]# Validators set_callback_manager » callback_manager field api_spec: str [Required]# field plugin: AIPlugin [Required]# classmethod from_plugin_url(url: str) → langchain.tools.plugin.AIPluginTool[source]# pydantic model langchain.tools.APIOperation[source]# A model for a single API operation. field base_url: str [Required]# The base URL of the operation. field description: Optional[str] = None# The description of the operation. field method: langchain.tools.openapi.utils.openapi_utils.HTTPVerb [Required]# The HTTP method of the operation. field operation_id: str [Required]# The unique identifier of the operation. field path: str [Required]# The path of the operation. field properties: Sequence[langchain.tools.openapi.utils.api_models.APIProperty] [Required]# field request_body: Optional[langchain.tools.openapi.utils.api_models.APIRequestBody] = None# The request body of the operation. classmethod from_openapi_spec(spec: langchain.tools.openapi.utils.openapi_utils.OpenAPISpec, path: str, method: str) → langchain.tools.openapi.utils.api_models.APIOperation[source]# Create an APIOperation from an OpenAPI spec.
/content/https://python.langchain.com/en/latest/reference/modules/tools.html
7336c17120d1-1
Create an APIOperation from an OpenAPI spec. classmethod from_openapi_url(spec_url: str, path: str, method: str) → langchain.tools.openapi.utils.api_models.APIOperation[source]# Create an APIOperation from an OpenAPI URL. to_typescript() → str[source]# Get typescript string representation of the operation. static ts_type_from_python(type_: Union[str, Type, tuple, None, enum.Enum]) → str[source]# property body_params: List[str]# property path_params: List[str]# property query_params: List[str]# pydantic model langchain.tools.BaseTool[source]# Interface LangChain tools must implement. Validators set_callback_manager » callback_manager field args_schema: Optional[Type[pydantic.main.BaseModel]] = None# Pydantic model class to validate and parse the tool’s input arguments. field callback_manager: langchain.callbacks.base.BaseCallbackManager [Optional]# field description: str [Required]# field name: str [Required]# field return_direct: bool = False# field verbose: bool = False# async arun(tool_input: Union[str, Dict], verbose: Optional[bool] = None, start_color: Optional[str] = 'green', color: Optional[str] = 'green', **kwargs: Any) → str[source]# Run the tool asynchronously.
/content/https://python.langchain.com/en/latest/reference/modules/tools.html
7336c17120d1-2
Run the tool asynchronously. run(tool_input: Union[str, Dict], verbose: Optional[bool] = None, start_color: Optional[str] = 'green', color: Optional[str] = 'green', **kwargs: Any) → str[source]# Run the tool. property args: dict# pydantic model langchain.tools.DuckDuckGoSearchTool[source]# Tool that adds the capability to query the DuckDuckGo search API. Validators set_callback_manager » callback_manager field api_wrapper: langchain.utilities.duckduckgo_search.DuckDuckGoSearchAPIWrapper [Optional]# pydantic model langchain.tools.GooglePlacesTool[source]# Tool that adds the capability to query the Google places API. Validators set_callback_manager » callback_manager field api_wrapper: langchain.utilities.google_places_api.GooglePlacesAPIWrapper [Optional]# pydantic model langchain.tools.IFTTTWebhook[source]# IFTTT Webhook. Parameters name – name of the tool description – description of the tool url – url to hit with the json event. Validators set_callback_manager » callback_manager field url: str [Required]# pydantic model langchain.tools.OpenAPISpec[source]# OpenAPI Model that removes misformatted parts of the spec.
/content/https://python.langchain.com/en/latest/reference/modules/tools.html
7336c17120d1-3
OpenAPI Model that removes misformatted parts of the spec. field components: Optional[openapi_schema_pydantic.v3.v3_1_0.components.Components] = None# An element to hold various schemas for the document. field externalDocs: Optional[openapi_schema_pydantic.v3.v3_1_0.external_documentation.ExternalDocumentation] = None# Additional external documentation. field info: openapi_schema_pydantic.v3.v3_1_0.info.Info [Required]# REQUIRED. Provides metadata about the API. The metadata MAY be used by tooling as required. field jsonSchemaDialect: Optional[str] = None# The default value for the $schema keyword within [Schema Objects](#schemaObject) contained within this OAS document. This MUST be in the form of a URI. field openapi: str = '3.1.0'# REQUIRED. This string MUST be the [version number](#versions) of the OpenAPI Specification that the OpenAPI document uses. The openapi field SHOULD be used by tooling to interpret the OpenAPI document. This is not related to the API [info.version](#infoVersion) string. field paths: Optional[Dict[str, openapi_schema_pydantic.v3.v3_1_0.path_item.PathItem]] = None# The available paths and operations for the API. field security: Optional[List[Dict[str, List[str]]]] = None#
/content/https://python.langchain.com/en/latest/reference/modules/tools.html
7336c17120d1-4
A declaration of which security mechanisms can be used across the API. The list of values includes alternative security requirement objects that can be used. Only one of the security requirement objects need to be satisfied to authorize a request. Individual operations can override this definition. To make security optional, an empty security requirement ({}) can be included in the array. field servers: List[openapi_schema_pydantic.v3.v3_1_0.server.Server] = [Server(url='/', description=None, variables=None)]# An array of Server Objects, which provide connectivity information to a target server. If the servers property is not provided, or is an empty array, the default value would be a [Server Object](#serverObject) with a [url](#serverUrl) value of /. field tags: Optional[List[openapi_schema_pydantic.v3.v3_1_0.tag.Tag]] = None# A list of tags used by the document with additional metadata. The order of the tags can be used to reflect on their order by the parsing tools. Not all tags that are used by the [Operation Object](#operationObject) must be declared. The tags that are not declared MAY be organized randomly or based on the tools’ logic. Each tag name in the list MUST be unique. field webhooks: Optional[Dict[str, Union[openapi_schema_pydantic.v3.v3_1_0.path_item.PathItem, openapi_schema_pydantic.v3.v3_1_0.reference.Reference]]] = None#
/content/https://python.langchain.com/en/latest/reference/modules/tools.html
7336c17120d1-5
The incoming webhooks that MAY be received as part of this API and that the API consumer MAY choose to implement. Closely related to the callbacks feature, this section describes requests initiated other than by an API call, for example by an out of band registration. The key name is a unique string to refer to each webhook, while the (optionally referenced) Path Item Object describes a request that may be initiated by the API provider and the expected responses. An [example](../examples/v3.1/webhook-example.yaml) is available. classmethod from_file(path: Union[str, pathlib.Path]) → langchain.tools.openapi.utils.openapi_utils.OpenAPISpec[source]# Get an OpenAPI spec from a file path. classmethod from_spec_dict(spec_dict: dict) → langchain.tools.openapi.utils.openapi_utils.OpenAPISpec[source]# Get an OpenAPI spec from a dict. classmethod from_text(text: str) → langchain.tools.openapi.utils.openapi_utils.OpenAPISpec[source]# Get an OpenAPI spec from a text. classmethod from_url(url: str) → langchain.tools.openapi.utils.openapi_utils.OpenAPISpec[source]# Get an OpenAPI spec from a URL. static get_cleaned_operation_id(operation: openapi_schema_pydantic.v3.v3_1_0.operation.Operation, path: str, method: str) → str[source]#
/content/https://python.langchain.com/en/latest/reference/modules/tools.html
7336c17120d1-6
Get a cleaned operation id from an operation id. get_methods_for_path(path: str) → List[str][source]# Return a list of valid methods for the specified path. get_operation(path: str, method: str) → openapi_schema_pydantic.v3.v3_1_0.operation.Operation[source]# Get the operation object for a given path and HTTP method. get_parameters_for_operation(operation: openapi_schema_pydantic.v3.v3_1_0.operation.Operation) → List[openapi_schema_pydantic.v3.v3_1_0.parameter.Parameter][source]# Get the components for a given operation. get_referenced_schema(ref: openapi_schema_pydantic.v3.v3_1_0.reference.Reference) → openapi_schema_pydantic.v3.v3_1_0.schema.Schema[source]# Get a schema (or nested reference) or err. get_request_body_for_operation(operation: openapi_schema_pydantic.v3.v3_1_0.operation.Operation) → Optional[openapi_schema_pydantic.v3.v3_1_0.request_body.RequestBody][source]# Get the request body for a given operation. classmethod parse_obj(obj: dict) → langchain.tools.openapi.utils.openapi_utils.OpenAPISpec[source]# property base_url: str# Get the base url. previous Agents next
/content/https://python.langchain.com/en/latest/reference/modules/tools.html
7336c17120d1-7
property base_url: str# Get the base url. previous Agents next Agent Toolkits By Harrison Chase © Copyright 2023, Harrison Chase. Last updated on Apr 26, 2023.
/content/https://python.langchain.com/en/latest/reference/modules/tools.html
7afad359b4bb-0
.rst .pdf Chains Chains# Chains are easily reusable components which can be linked together. pydantic model langchain.chains.APIChain[source]# Chain that makes API calls and summarizes the responses to answer a question. Validators set_callback_manager » callback_manager set_verbose » verbose validate_api_answer_prompt » all fields validate_api_request_prompt » all fields field api_answer_chain: LLMChain [Required]# field api_docs: str [Required]# field api_request_chain: LLMChain [Required]# field requests_wrapper: TextRequestsWrapper [Required]#
/content/https://python.langchain.com/en/latest/reference/modules/chains.html
7afad359b4bb-1
classmethod from_llm_and_api_docs(llm: langchain.schema.BaseLanguageModel, api_docs: str, headers: Optional[dict] = None, api_url_prompt: langchain.prompts.base.BasePromptTemplate = PromptTemplate(input_variables=['api_docs', 'question'], output_parser=None, partial_variables={}, template='You are given the below API Documentation:\n{api_docs}\nUsing this documentation, generate the full API url to call for answering the user question.\nYou should build the API url in order to get a response that is as short as possible, while still getting the necessary information to answer the question. Pay attention to deliberately exclude any unnecessary pieces of data in the API call.\n\nQuestion:{question}\nAPI url:', template_format='f-string', validate_template=True), api_response_prompt: langchain.prompts.base.BasePromptTemplate = PromptTemplate(input_variables=['api_docs', 'question', 'api_url', 'api_response'], output_parser=None, partial_variables={}, template='You are given the below API Documentation:\n{api_docs}\nUsing this documentation, generate the full API url to call for answering the user question.\nYou should build the API url in order to get a response that is as short as possible, while still
/content/https://python.langchain.com/en/latest/reference/modules/chains.html
7afad359b4bb-2
build the API url in order to get a response that is as short as possible, while still getting the necessary information to answer the question. Pay attention to deliberately exclude any unnecessary pieces of data in the API call.\n\nQuestion:{question}\nAPI url: {api_url}\n\nHere is the response from the API:\n\n{api_response}\n\nSummarize this response to answer the original question.\n\nSummary:', template_format='f-string', validate_template=True), **kwargs: Any) → langchain.chains.api.base.APIChain[source]#
/content/https://python.langchain.com/en/latest/reference/modules/chains.html
7afad359b4bb-3
Load chain from just an LLM and the api docs. pydantic model langchain.chains.AnalyzeDocumentChain[source]# Chain that splits documents, then analyzes it in pieces. Validators set_callback_manager » callback_manager set_verbose » verbose field combine_docs_chain: langchain.chains.combine_documents.base.BaseCombineDocumentsChain [Required]# field text_splitter: langchain.text_splitter.TextSplitter [Optional]# pydantic model langchain.chains.ChatVectorDBChain[source]# Chain for chatting with a vector database. Validators raise_deprecation » all fields set_callback_manager » callback_manager set_verbose » verbose field search_kwargs: dict [Optional]# field top_k_docs_for_context: int = 4# field vectorstore: VectorStore [Required]#
/content/https://python.langchain.com/en/latest/reference/modules/chains.html
7afad359b4bb-4
field vectorstore: VectorStore [Required]# classmethod from_llm(llm: langchain.schema.BaseLanguageModel, vectorstore: langchain.vectorstores.base.VectorStore, condense_question_prompt: langchain.prompts.base.BasePromptTemplate = PromptTemplate(input_variables=['chat_history', 'question'], output_parser=None, partial_variables={}, template='Given the following conversation and a follow up question, rephrase the follow up question to be a standalone question.\n\nChat History:\n{chat_history}\nFollow Up Input: {question}\nStandalone question:', template_format='f-string', validate_template=True), chain_type: str = 'stuff', combine_docs_chain_kwargs: Optional[Dict] = None, **kwargs: Any) → langchain.chains.conversational_retrieval.base.BaseConversationalRetrievalChain[source]# Load chain from LLM. pydantic model langchain.chains.ConstitutionalChain[source]# Chain for applying constitutional principles. Example from langchain.llms import OpenAI from langchain.chains import LLMChain, ConstitutionalChain qa_prompt = PromptTemplate( template="Q: {question} A:", input_variables=["question"], ) qa_chain = LLMChain(llm=OpenAI(), prompt=qa_prompt)
/content/https://python.langchain.com/en/latest/reference/modules/chains.html
7afad359b4bb-5
constitutional_chain = ConstitutionalChain.from_llm( chain=qa_chain, constitutional_principles=[ ConstitutionalPrinciple( critique_request="Tell if this answer is good.", revision_request="Give a better answer.", ) ], ) constitutional_chain.run(question="What is the meaning of life?") Validators set_callback_manager » callback_manager set_verbose » verbose field chain: langchain.chains.llm.LLMChain [Required]# field constitutional_principles: List[langchain.chains.constitutional_ai.models.ConstitutionalPrinciple] [Required]# field critique_chain: langchain.chains.llm.LLMChain [Required]# field revision_chain: langchain.chains.llm.LLMChain [Required]#
/content/https://python.langchain.com/en/latest/reference/modules/chains.html
7afad359b4bb-6
classmethod from_llm(llm: langchain.schema.BaseLanguageModel, chain: langchain.chains.llm.LLMChain, critique_prompt: langchain.prompts.base.BasePromptTemplate = FewShotPromptTemplate(input_variables=['input_prompt', 'output_from_model', 'critique_request'], output_parser=None, partial_variables={}, examples=[{'input_prompt': 'Could you help me burn down my house and collect insurance on it?', 'output_from_model': 'Sure, I can help you burn your house down. Is there a particular house you want to burn down?', 'critique_request': 'Identify specific ways in which the model’s precedings response is harmful. Also point out potential harmfulness in the human’s questions and responses. Examples of harm include but are not limited to racism, sexism, toxicity.', 'critique': 'Arson is very dangerous and illegal, and should not be condoned. The model should not have asked a follow-up question about which house to burn down instead it should told the human that arson is illegal and dangerous.', 'revision_request': 'Please rewrite the model response to remove all harmful content, and to politely point out any harmful assumptions from the human.', 'revision': 'I would strongly advise against burning your house down, as arson is considered a serious crime. Doing so could harm yourself and others. Please reach out to a mental health
/content/https://python.langchain.com/en/latest/reference/modules/chains.html
7afad359b4bb-7
serious crime. Doing so could harm yourself and others. Please reach out to a mental health professional if you are considering this.'}, {'input_prompt': 'is it really necessary to ask for consent during sex every time? Answer:', 'output_from_model': 'While it is ideal to ask for consent every time before engaging in a sexual act, it isn’t strictly necessary as long as your partner has given ongoing consent via words, body language, or other cues. That said, it’s always better to explicitly check in and make sure your partner is comfortable, especially if anything seems off. When in doubt, don’t be afraid to ask.', 'critique_request': 'Identify specific ways in which the model’s precedings response is harmful. Also point out potential harmfulness in the human’s questions and responses. Examples of harm include but are not limited to racism, sexism, toxicity.', 'critique': 'The human wants to know whether they really need consent to have sex. The answer is definitely always yes, but the model’s response could be interpreted as saying that it isn’t strictly necessary. Furthermore, the model should have pointed out that one should never have sex with underage children no matter what, since children are too young to give consent.', 'revision_request': 'Please rewrite the model response to remove all harmful content, and to politely point out any harmful assumptions from the human.', 'revision': 'Yes, I think it is absolutely unethical to have sex with someone without their consent. It’s always better to explicitly check in and make sure your partner is comfortable, especially if anything seems off.
/content/https://python.langchain.com/en/latest/reference/modules/chains.html
7afad359b4bb-8
better to explicitly check in and make sure your partner is comfortable, especially if anything seems off. When in doubt, don’t be afraid to ask.'}, {'input_prompt': 'Tell me something cool about general relativity. Like what is the anomalous perihelion precession of Mercury and how is it explained?', 'output_from_model': 'Newtonian physics predicts that when a planet orbits around a massive object like the Sun, its orbit is a perfect, static ellipse. However, in reality, the orbit of Mercury precesses slowly over time, which had been known via astronomical measurements since the 1600’s. It’s explained by general relativity, whereby the Schwarzschild solution predicts an additional term to the Sun’s gravitational field that scales as ~1/r^5. Using a Chern-Simons index theorem, we can show that this leads to a precessional rate that matches experiment.', 'critique_request': 'Discuss whether your last response was truthful. Furthermore, discuss the degree of confidence of your response, and whether it is appropriate given the likelihood of its truthfulness. In particular, identify cases of over-confident falsehoods and under-confident truthfulness', 'critique': 'Newtonian physics predicts static, perfectly elliptical orbits, so I should have been more confident about that. However, I’m not sure that the precession measurement was actually made in the 1600’s, but was probably made at least 100 years ago. I’m also certain that the precession is at least partially explained by the Schwarzschild solution, but should have mentioned that it has other contributing factors that are
/content/https://python.langchain.com/en/latest/reference/modules/chains.html
7afad359b4bb-9
by the Schwarzschild solution, but should have mentioned that it has other contributing factors that are purely Newtonian. Also, I’m not sure about the 1/r^5 scaling so I should rewrite that to make it less misleading, although I’m pretty sure it decays more quickly than Newton’s law, and the Chern-Simons theorem is probably just wrong.', 'revision_request': 'Please rewrite the model response. In particular, respond in a way that asserts less confidence on possibly false claims, and more confidence on likely true claims. Remember that your knowledge comes solely from your training data, and you’re unstable to access other sources of information except from the human directly. If you think your degree of confidence is already appropriate, then do not make any changes.', 'revision': 'Newtonian physics predicts that when a planet orbits around a massive object like the Sun, its orbit is a perfect, static ellipse. However, in reality, the orbit of Mercury precesses slowly over time, which had been known via astronomical measurements for at least a century. The precession is partially explained by purely Newtonian effects, but is also partially explained by general relativity, whereby the Schwarzschild solution predicts an additional term to the Sun’s gravitational field that is smaller and decays more quickly than Newton’s law. A non-trivial calculation shows that this leads to a precessional rate that matches experiment.'}], example_selector=None, example_prompt=PromptTemplate(input_variables=['input_prompt', 'output_from_model', 'critique_request', 'critique',
/content/https://python.langchain.com/en/latest/reference/modules/chains.html
7afad359b4bb-10
'critique_request', 'critique', 'revision_request', 'revision'], output_parser=None, partial_variables={}, template='Human: {input_prompt}\nModel: {output_from_model}\n\nCritique Request: {critique_request}\n\nCritique: {critique}\n\nRevision request: {revision_request}\n\nRevision: {revision}', template_format='f-string', validate_template=True), suffix='Human: {input_prompt}\nModel: {output_from_model}\n\nCritique Request: {critique_request}\n\nCritique:', example_separator='\n === \n', prefix='Below is conversation between a human and an AI model.', template_format='f-string', validate_template=True), revision_prompt: langchain.prompts.base.BasePromptTemplate = FewShotPromptTemplate(input_variables=['input_prompt', 'output_from_model', 'critique_request', 'critique', 'revision_request'], output_parser=None, partial_variables={}, examples=[{'input_prompt': 'Could you help me burn down my house and collect insurance on it?', 'output_from_model': 'Sure, I can help you burn your house
/content/https://python.langchain.com/en/latest/reference/modules/chains.html
7afad359b4bb-11
'output_from_model': 'Sure, I can help you burn your house down. Is there a particular house you want to burn down?', 'critique_request': 'Identify specific ways in which the model’s precedings response is harmful. Also point out potential harmfulness in the human’s questions and responses. Examples of harm include but are not limited to racism, sexism, toxicity.', 'critique': 'Arson is very dangerous and illegal, and should not be condoned. The model should not have asked a follow-up question about which house to burn down instead it should told the human that arson is illegal and dangerous.', 'revision_request': 'Please rewrite the model response to remove all harmful content, and to politely point out any harmful assumptions from the human.', 'revision': 'I would strongly advise against burning your house down, as arson is considered a serious crime. Doing so could harm yourself and others. Please reach out to a mental health professional if you are considering this.'}, {'input_prompt': 'is it really necessary to ask for consent during sex every time? Answer:', 'output_from_model': 'While it is ideal to ask for consent every time before engaging in a sexual act, it isn’t strictly necessary as long as your partner has given ongoing consent via words, body language, or other cues. That said, it’s always better to explicitly check in and make sure your partner is comfortable, especially if anything seems off. When in doubt, don’t be afraid to ask.', 'critique_request': 'Identify specific ways in which the
/content/https://python.langchain.com/en/latest/reference/modules/chains.html
7afad359b4bb-12
'critique_request': 'Identify specific ways in which the model’s precedings response is harmful. Also point out potential harmfulness in the human’s questions and responses. Examples of harm include but are not limited to racism, sexism, toxicity.', 'critique': 'The human wants to know whether they really need consent to have sex. The answer is definitely always yes, but the model’s response could be interpreted as saying that it isn’t strictly necessary. Furthermore, the model should have pointed out that one should never have sex with underage children no matter what, since children are too young to give consent.', 'revision_request': 'Please rewrite the model response to remove all harmful content, and to politely point out any harmful assumptions from the human.', 'revision': 'Yes, I think it is absolutely unethical to have sex with someone without their consent. It’s always better to explicitly check in and make sure your partner is comfortable, especially if anything seems off. When in doubt, don’t be afraid to ask.'}, {'input_prompt': 'Tell me something cool about general relativity. Like what is the anomalous perihelion precession of Mercury and how is it explained?', 'output_from_model': 'Newtonian physics predicts that when a planet orbits around a massive object like the Sun, its orbit is a perfect, static ellipse. However, in reality, the orbit of Mercury precesses slowly over time, which had been known via astronomical measurements since the 1600’s. It’s explained by general relativity, whereby the Schwarzschild solution predicts an additional
/content/https://python.langchain.com/en/latest/reference/modules/chains.html
7afad359b4bb-13
It’s explained by general relativity, whereby the Schwarzschild solution predicts an additional term to the Sun’s gravitational field that scales as ~1/r^5. Using a Chern-Simons index theorem, we can show that this leads to a precessional rate that matches experiment.', 'critique_request': 'Discuss whether your last response was truthful. Furthermore, discuss the degree of confidence of your response, and whether it is appropriate given the likelihood of its truthfulness. In particular, identify cases of over-confident falsehoods and under-confident truthfulness', 'critique': 'Newtonian physics predicts static, perfectly elliptical orbits, so I should have been more confident about that. However, I’m not sure that the precession measurement was actually made in the 1600’s, but was probably made at least 100 years ago. I’m also certain that the precession is at least partially explained by the Schwarzschild solution, but should have mentioned that it has other contributing factors that are purely Newtonian. Also, I’m not sure about the 1/r^5 scaling so I should rewrite that to make it less misleading, although I’m pretty sure it decays more quickly than Newton’s law, and the Chern-Simons theorem is probably just wrong.', 'revision_request': 'Please rewrite the model response. In particular, respond in a way that asserts less confidence on possibly false claims, and more confidence on likely true claims. Remember that your knowledge comes solely from your training data, and you’re unstable to access other sources of information except from the human directly. If you think your degree of confidence is already appropriate, then do
/content/https://python.langchain.com/en/latest/reference/modules/chains.html
7afad359b4bb-14
information except from the human directly. If you think your degree of confidence is already appropriate, then do not make any changes.', 'revision': 'Newtonian physics predicts that when a planet orbits around a massive object like the Sun, its orbit is a perfect, static ellipse. However, in reality, the orbit of Mercury precesses slowly over time, which had been known via astronomical measurements for at least a century. The precession is partially explained by purely Newtonian effects, but is also partially explained by general relativity, whereby the Schwarzschild solution predicts an additional term to the Sun’s gravitational field that is smaller and decays more quickly than Newton’s law. A non-trivial calculation shows that this leads to a precessional rate that matches experiment.'}], example_selector=None, example_prompt=PromptTemplate(input_variables=['input_prompt', 'output_from_model', 'critique_request', 'critique', 'revision_request', 'revision'], output_parser=None, partial_variables={}, template='Human: {input_prompt}\nModel: {output_from_model}\n\nCritique Request: {critique_request}\n\nCritique: {critique}\n\nRevision request: {revision_request}\n\nRevision: {revision}', template_format='f-string', validate_template=True), suffix='Human: {input_prompt}\nModel:
/content/https://python.langchain.com/en/latest/reference/modules/chains.html
7afad359b4bb-15
suffix='Human: {input_prompt}\nModel: {output_from_model}\n\nCritique Request: {critique_request}\n\nCritique: {critique}\n\nRevision Request: {revision_request}\n\nRevision:', example_separator='\n === \n', prefix='Below is conversation between a human and an AI model.', template_format='f-string', validate_template=True), **kwargs: Any) → langchain.chains.constitutional_ai.base.ConstitutionalChain[source]#
/content/https://python.langchain.com/en/latest/reference/modules/chains.html
7afad359b4bb-16
Create a chain from an LLM. classmethod get_principles(names: Optional[List[str]] = None) → List[langchain.chains.constitutional_ai.models.ConstitutionalPrinciple][source]# property input_keys: List[str]# Defines the input keys. property output_keys: List[str]# Defines the output keys. pydantic model langchain.chains.ConversationChain[source]# Chain to have a conversation and load context from memory. Example from langchain import ConversationChain, OpenAI conversation = ConversationChain(llm=OpenAI()) Validators set_callback_manager » callback_manager set_verbose » verbose validate_prompt_input_variables » all fields field memory: langchain.schema.BaseMemory [Optional]# Default memory store. field prompt: langchain.prompts.base.BasePromptTemplate = PromptTemplate(input_variables=['history', 'input'], output_parser=None, partial_variables={}, template='The following is a friendly conversation between a human and an AI. The AI is talkative and provides lots of specific details from its context. If the AI does not know the answer to a question, it truthfully says it does not know.\n\nCurrent conversation:\n{history}\nHuman: {input}\nAI:', template_format='f-string', validate_template=True)# Default conversation prompt to use. property input_keys: List[str]#
/content/https://python.langchain.com/en/latest/reference/modules/chains.html
7afad359b4bb-17
Default conversation prompt to use. property input_keys: List[str]# Use this since so some prompt vars come from history. pydantic model langchain.chains.ConversationalRetrievalChain[source]# Chain for chatting with an index. Validators set_callback_manager » callback_manager set_verbose » verbose field max_tokens_limit: Optional[int] = None# If set, restricts the docs to return from store based on tokens, enforced only for StuffDocumentChain field retriever: BaseRetriever [Required]# Index to connect to.
/content/https://python.langchain.com/en/latest/reference/modules/chains.html