id
stringlengths 14
16
| text
stringlengths 31
3.14k
| source
stringlengths 58
124
|
---|---|---|
46bc1c5110e6-2 | return cls(base_embeddings=base_embeddings, llm_chain=llm_chain)
@property
def _chain_type(self) -> str:
return "hyde_chain"
By Harrison Chase
© Copyright 2023, Harrison Chase.
Last updated on Apr 26, 2023. | /content/https://python.langchain.com/en/latest/_modules/langchain/chains/hyde/base.html |
b2b1bb69f84b-0 | Source code for langchain.chains.graph_qa.base
"""Question answering over a graph."""
from __future__ import annotations
from typing import Any, Dict, List
from pydantic import Field
from langchain.chains.base import Chain
from langchain.chains.graph_qa.prompts import ENTITY_EXTRACTION_PROMPT, PROMPT
from langchain.chains.llm import LLMChain
from langchain.graphs.networkx_graph import NetworkxEntityGraph, get_entities
from langchain.llms.base import BaseLLM
from langchain.prompts.base import BasePromptTemplate
[docs]class GraphQAChain(Chain):
"""Chain for question-answering against a graph."""
graph: NetworkxEntityGraph = Field(exclude=True)
entity_extraction_chain: LLMChain
qa_chain: LLMChain
input_key: str = "query" #: :meta private:
output_key: str = "result" #: :meta private:
@property
def input_keys(self) -> List[str]:
"""Return the input keys.
:meta private:
"""
return [self.input_key]
@property
def output_keys(self) -> List[str]:
"""Return the output keys.
:meta private:
"""
_output_keys = [self.output_key]
return _output_keys
[docs] @classmethod
def from_llm(
cls,
llm: BaseLLM, | /content/https://python.langchain.com/en/latest/_modules/langchain/chains/graph_qa/base.html |
b2b1bb69f84b-1 | def from_llm(
cls,
llm: BaseLLM,
qa_prompt: BasePromptTemplate = PROMPT,
entity_prompt: BasePromptTemplate = ENTITY_EXTRACTION_PROMPT,
**kwargs: Any,
) -> GraphQAChain:
"""Initialize from LLM."""
qa_chain = LLMChain(llm=llm, prompt=qa_prompt)
entity_chain = LLMChain(llm=llm, prompt=entity_prompt)
return cls(qa_chain=qa_chain, entity_extraction_chain=entity_chain, **kwargs)
def _call(self, inputs: Dict[str, str]) -> Dict[str, Any]:
"""Extract entities, look up info and answer question."""
question = inputs[self.input_key]
entity_string = self.entity_extraction_chain.run(question)
self.callback_manager.on_text(
"Entities Extracted:", end="\n", verbose=self.verbose
)
self.callback_manager.on_text(
entity_string, color="green", end="\n", verbose=self.verbose
)
entities = get_entities(entity_string)
context = ""
for entity in entities:
triplets = self.graph.get_entity_knowledge(entity)
context += "\n".join(triplets)
self.callback_manager.on_text("Full Context:", end="\n", verbose=self.verbose) | /content/https://python.langchain.com/en/latest/_modules/langchain/chains/graph_qa/base.html |
b2b1bb69f84b-2 | self.callback_manager.on_text(
context, color="green", end="\n", verbose=self.verbose
)
result = self.qa_chain({"question": question, "context": context})
return {self.output_key: result[self.qa_chain.output_key]}
By Harrison Chase
© Copyright 2023, Harrison Chase.
Last updated on Apr 26, 2023. | /content/https://python.langchain.com/en/latest/_modules/langchain/chains/graph_qa/base.html |
7b01f12d4391-0 | Source code for langchain.chains.qa_generation.base
from __future__ import annotations
import json
from typing import Any, Dict, List, Optional
from pydantic import Field
from langchain.chains.base import Chain
from langchain.chains.llm import LLMChain
from langchain.chains.qa_generation.prompt import PROMPT_SELECTOR
from langchain.prompts.base import BasePromptTemplate
from langchain.schema import BaseLanguageModel
from langchain.text_splitter import RecursiveCharacterTextSplitter, TextSplitter
[docs]class QAGenerationChain(Chain):
llm_chain: LLMChain
text_splitter: TextSplitter = Field(
default=RecursiveCharacterTextSplitter(chunk_overlap=500)
)
input_key: str = "text"
output_key: str = "questions"
k: Optional[int] = None
[docs] @classmethod
def from_llm(
cls,
llm: BaseLanguageModel,
prompt: Optional[BasePromptTemplate] = None,
**kwargs: Any,
) -> QAGenerationChain:
_prompt = prompt or PROMPT_SELECTOR.get_prompt(llm)
chain = LLMChain(llm=llm, prompt=_prompt)
return cls(llm_chain=chain, **kwargs)
@property
def _chain_type(self) -> str:
raise NotImplementedError
@property
def input_keys(self) -> List[str]: | /content/https://python.langchain.com/en/latest/_modules/langchain/chains/qa_generation/base.html |
7b01f12d4391-1 | @property
def input_keys(self) -> List[str]:
return [self.input_key]
@property
def output_keys(self) -> List[str]:
return [self.output_key]
def _call(self, inputs: Dict[str, str]) -> Dict[str, Any]:
docs = self.text_splitter.create_documents([inputs[self.input_key]])
results = self.llm_chain.generate([{"text": d.page_content} for d in docs])
qa = [json.loads(res[0].text) for res in results.generations]
return {self.output_key: qa}
async def _acall(self, inputs: Dict[str, str]) -> Dict[str, str]:
raise NotImplementedError
By Harrison Chase
© Copyright 2023, Harrison Chase.
Last updated on Apr 26, 2023. | /content/https://python.langchain.com/en/latest/_modules/langchain/chains/qa_generation/base.html |
8bc5f80a22f6-0 | Source code for langchain.chains.retrieval_qa.base
"""Chain for question-answering against a vector database."""
from __future__ import annotations
import warnings
from abc import abstractmethod
from typing import Any, Dict, List, Optional
from pydantic import Extra, Field, root_validator
from langchain.chains.base import Chain
from langchain.chains.combine_documents.base import BaseCombineDocumentsChain
from langchain.chains.combine_documents.stuff import StuffDocumentsChain
from langchain.chains.llm import LLMChain
from langchain.chains.question_answering import load_qa_chain
from langchain.chains.question_answering.stuff_prompt import PROMPT_SELECTOR
from langchain.prompts import PromptTemplate
from langchain.schema import BaseLanguageModel, BaseRetriever, Document
from langchain.vectorstores.base import VectorStore
class BaseRetrievalQA(Chain):
combine_documents_chain: BaseCombineDocumentsChain
"""Chain to use to combine the documents."""
input_key: str = "query" #: :meta private:
output_key: str = "result" #: :meta private:
return_source_documents: bool = False
"""Return the source documents."""
class Config:
"""Configuration for this pydantic object."""
extra = Extra.forbid
arbitrary_types_allowed = True
allow_population_by_field_name = True
@property
def input_keys(self) -> List[str]: | /content/https://python.langchain.com/en/latest/_modules/langchain/chains/retrieval_qa/base.html |
8bc5f80a22f6-1 | @property
def input_keys(self) -> List[str]:
"""Return the input keys.
:meta private:
"""
return [self.input_key]
@property
def output_keys(self) -> List[str]:
"""Return the output keys.
:meta private:
"""
_output_keys = [self.output_key]
if self.return_source_documents:
_output_keys = _output_keys + ["source_documents"]
return _output_keys
@classmethod
def from_llm(
cls,
llm: BaseLanguageModel,
prompt: Optional[PromptTemplate] = None,
**kwargs: Any,
) -> BaseRetrievalQA:
"""Initialize from LLM."""
_prompt = prompt or PROMPT_SELECTOR.get_prompt(llm)
llm_chain = LLMChain(llm=llm, prompt=_prompt)
document_prompt = PromptTemplate(
input_variables=["page_content"], template="Context:\n{page_content}"
)
combine_documents_chain = StuffDocumentsChain(
llm_chain=llm_chain,
document_variable_name="context",
document_prompt=document_prompt,
)
return cls(combine_documents_chain=combine_documents_chain, **kwargs)
@classmethod
def from_chain_type(
cls,
llm: BaseLanguageModel,
chain_type: str = "stuff", | /content/https://python.langchain.com/en/latest/_modules/langchain/chains/retrieval_qa/base.html |
8bc5f80a22f6-2 | llm: BaseLanguageModel,
chain_type: str = "stuff",
chain_type_kwargs: Optional[dict] = None,
**kwargs: Any,
) -> BaseRetrievalQA:
"""Load chain from chain type."""
_chain_type_kwargs = chain_type_kwargs or {}
combine_documents_chain = load_qa_chain(
llm, chain_type=chain_type, **_chain_type_kwargs
)
return cls(combine_documents_chain=combine_documents_chain, **kwargs)
@abstractmethod
def _get_docs(self, question: str) -> List[Document]:
"""Get documents to do question answering over."""
def _call(self, inputs: Dict[str, str]) -> Dict[str, Any]:
"""Run get_relevant_text and llm on input query.
If chain has 'return_source_documents' as 'True', returns
the retrieved documents as well under the key 'source_documents'.
Example:
.. code-block:: python
res = indexqa({'query': 'This is my query'})
answer, docs = res['result'], res['source_documents']
"""
question = inputs[self.input_key]
docs = self._get_docs(question)
answer = self.combine_documents_chain.run(
input_documents=docs, question=question
)
if self.return_source_documents: | /content/https://python.langchain.com/en/latest/_modules/langchain/chains/retrieval_qa/base.html |
8bc5f80a22f6-3 | )
if self.return_source_documents:
return {self.output_key: answer, "source_documents": docs}
else:
return {self.output_key: answer}
@abstractmethod
async def _aget_docs(self, question: str) -> List[Document]:
"""Get documents to do question answering over."""
async def _acall(self, inputs: Dict[str, str]) -> Dict[str, Any]:
"""Run get_relevant_text and llm on input query.
If chain has 'return_source_documents' as 'True', returns
the retrieved documents as well under the key 'source_documents'.
Example:
.. code-block:: python
res = indexqa({'query': 'This is my query'})
answer, docs = res['result'], res['source_documents']
"""
question = inputs[self.input_key]
docs = await self._aget_docs(question)
answer = await self.combine_documents_chain.arun(
input_documents=docs, question=question
)
if self.return_source_documents:
return {self.output_key: answer, "source_documents": docs}
else:
return {self.output_key: answer}
[docs]class RetrievalQA(BaseRetrievalQA):
"""Chain for question-answering against an index.
Example:
.. code-block:: python
from langchain.llms import OpenAI | /content/https://python.langchain.com/en/latest/_modules/langchain/chains/retrieval_qa/base.html |
8bc5f80a22f6-4 | Example:
.. code-block:: python
from langchain.llms import OpenAI
from langchain.chains import RetrievalQA
from langchain.faiss import FAISS
from langchain.vectorstores.base import VectorStoreRetriever
retriever = VectorStoreRetriever(vectorstore=FAISS(...))
retrievalQA = RetrievalQA.from_llm(llm=OpenAI(), retriever=retriever)
"""
retriever: BaseRetriever = Field(exclude=True)
def _get_docs(self, question: str) -> List[Document]:
return self.retriever.get_relevant_documents(question)
async def _aget_docs(self, question: str) -> List[Document]:
return await self.retriever.aget_relevant_documents(question)
[docs]class VectorDBQA(BaseRetrievalQA):
"""Chain for question-answering against a vector database."""
vectorstore: VectorStore = Field(exclude=True, alias="vectorstore")
"""Vector Database to connect to."""
k: int = 4
"""Number of documents to query for."""
search_type: str = "similarity"
"""Search type to use over vectorstore. `similarity` or `mmr`."""
search_kwargs: Dict[str, Any] = Field(default_factory=dict)
"""Extra search args."""
@root_validator()
def raise_deprecation(cls, values: Dict) -> Dict: | /content/https://python.langchain.com/en/latest/_modules/langchain/chains/retrieval_qa/base.html |
8bc5f80a22f6-5 | def raise_deprecation(cls, values: Dict) -> Dict:
warnings.warn(
"`VectorDBQA` is deprecated - "
"please use `from langchain.chains import RetrievalQA`"
)
return values
@root_validator()
def validate_search_type(cls, values: Dict) -> Dict:
"""Validate search type."""
if "search_type" in values:
search_type = values["search_type"]
if search_type not in ("similarity", "mmr"):
raise ValueError(f"search_type of {search_type} not allowed.")
return values
def _get_docs(self, question: str) -> List[Document]:
if self.search_type == "similarity":
docs = self.vectorstore.similarity_search(
question, k=self.k, **self.search_kwargs
)
elif self.search_type == "mmr":
docs = self.vectorstore.max_marginal_relevance_search(
question, k=self.k, **self.search_kwargs
)
else:
raise ValueError(f"search_type of {self.search_type} not allowed.")
return docs
async def _aget_docs(self, question: str) -> List[Document]:
raise NotImplementedError("VectorDBQA does not support async")
@property
def _chain_type(self) -> str:
"""Return the chain type."""
return "vector_db_qa"
By Harrison Chase
© Copyright 2023, Harrison Chase. | /content/https://python.langchain.com/en/latest/_modules/langchain/chains/retrieval_qa/base.html |
8bc5f80a22f6-6 | By Harrison Chase
© Copyright 2023, Harrison Chase.
Last updated on Apr 26, 2023. | /content/https://python.langchain.com/en/latest/_modules/langchain/chains/retrieval_qa/base.html |
69823ddc0f3c-0 | Source code for langchain.chains.api.base
"""Chain that makes API calls and summarizes the responses to answer a question."""
from __future__ import annotations
from typing import Any, Dict, List, Optional
from pydantic import Field, root_validator
from langchain.chains.api.prompt import API_RESPONSE_PROMPT, API_URL_PROMPT
from langchain.chains.base import Chain
from langchain.chains.llm import LLMChain
from langchain.prompts import BasePromptTemplate
from langchain.requests import TextRequestsWrapper
from langchain.schema import BaseLanguageModel
[docs]class APIChain(Chain):
"""Chain that makes API calls and summarizes the responses to answer a question."""
api_request_chain: LLMChain
api_answer_chain: LLMChain
requests_wrapper: TextRequestsWrapper = Field(exclude=True)
api_docs: str
question_key: str = "question" #: :meta private:
output_key: str = "output" #: :meta private:
@property
def input_keys(self) -> List[str]:
"""Expect input key.
:meta private:
"""
return [self.question_key]
@property
def output_keys(self) -> List[str]:
"""Expect output key.
:meta private:
"""
return [self.output_key]
@root_validator(pre=True) | /content/https://python.langchain.com/en/latest/_modules/langchain/chains/api/base.html |
69823ddc0f3c-1 | @root_validator(pre=True)
def validate_api_request_prompt(cls, values: Dict) -> Dict:
"""Check that api request prompt expects the right variables."""
input_vars = values["api_request_chain"].prompt.input_variables
expected_vars = {"question", "api_docs"}
if set(input_vars) != expected_vars:
raise ValueError(
f"Input variables should be {expected_vars}, got {input_vars}"
)
return values
@root_validator(pre=True)
def validate_api_answer_prompt(cls, values: Dict) -> Dict:
"""Check that api answer prompt expects the right variables."""
input_vars = values["api_answer_chain"].prompt.input_variables
expected_vars = {"question", "api_docs", "api_url", "api_response"}
if set(input_vars) != expected_vars:
raise ValueError(
f"Input variables should be {expected_vars}, got {input_vars}"
)
return values
def _call(self, inputs: Dict[str, str]) -> Dict[str, str]:
question = inputs[self.question_key]
api_url = self.api_request_chain.predict(
question=question, api_docs=self.api_docs
)
self.callback_manager.on_text( | /content/https://python.langchain.com/en/latest/_modules/langchain/chains/api/base.html |
69823ddc0f3c-2 | )
self.callback_manager.on_text(
api_url, color="green", end="\n", verbose=self.verbose
)
api_response = self.requests_wrapper.get(api_url)
self.callback_manager.on_text(
api_response, color="yellow", end="\n", verbose=self.verbose
)
answer = self.api_answer_chain.predict(
question=question,
api_docs=self.api_docs,
api_url=api_url,
api_response=api_response,
)
return {self.output_key: answer}
async def _acall(self, inputs: Dict[str, str]) -> Dict[str, str]:
question = inputs[self.question_key]
api_url = await self.api_request_chain.apredict(
question=question, api_docs=self.api_docs
)
self.callback_manager.on_text(
api_url, color="green", end="\n", verbose=self.verbose
)
api_response = await self.requests_wrapper.aget(api_url)
self.callback_manager.on_text(
api_response, color="yellow", end="\n", verbose=self.verbose
)
answer = await self.api_answer_chain.apredict(
question=question,
api_docs=self.api_docs,
api_url=api_url,
api_response=api_response,
)
return {self.output_key: answer}
[docs] @classmethod | /content/https://python.langchain.com/en/latest/_modules/langchain/chains/api/base.html |
69823ddc0f3c-3 | )
return {self.output_key: answer}
[docs] @classmethod
def from_llm_and_api_docs(
cls,
llm: BaseLanguageModel,
api_docs: str,
headers: Optional[dict] = None,
api_url_prompt: BasePromptTemplate = API_URL_PROMPT,
api_response_prompt: BasePromptTemplate = API_RESPONSE_PROMPT,
**kwargs: Any,
) -> APIChain:
"""Load chain from just an LLM and the api docs."""
get_request_chain = LLMChain(llm=llm, prompt=api_url_prompt)
requests_wrapper = TextRequestsWrapper(headers=headers)
get_answer_chain = LLMChain(llm=llm, prompt=api_response_prompt)
return cls(
api_request_chain=get_request_chain,
api_answer_chain=get_answer_chain,
requests_wrapper=requests_wrapper,
api_docs=api_docs,
**kwargs,
)
@property
def _chain_type(self) -> str:
return "api_chain"
By Harrison Chase
© Copyright 2023, Harrison Chase.
Last updated on Apr 26, 2023. | /content/https://python.langchain.com/en/latest/_modules/langchain/chains/api/base.html |
2963006beed2-0 | Source code for langchain.chains.api.openapi.chain
"""Chain that makes API calls and summarizes the responses to answer a question."""
from __future__ import annotations
import json
from typing import Any, Dict, List, NamedTuple, Optional, cast
from pydantic import BaseModel, Field
from requests import Response
from langchain.chains.api.openapi.requests_chain import APIRequesterChain
from langchain.chains.api.openapi.response_chain import APIResponderChain
from langchain.chains.base import Chain
from langchain.chains.llm import LLMChain
from langchain.llms.base import BaseLLM
from langchain.requests import Requests
from langchain.tools.openapi.utils.api_models import APIOperation
class _ParamMapping(NamedTuple):
"""Mapping from parameter name to parameter value."""
query_params: List[str]
body_params: List[str]
path_params: List[str]
[docs]class OpenAPIEndpointChain(Chain, BaseModel):
"""Chain interacts with an OpenAPI endpoint using natural language."""
api_request_chain: LLMChain
api_response_chain: Optional[LLMChain]
api_operation: APIOperation
requests: Requests = Field(exclude=True, default_factory=Requests)
param_mapping: _ParamMapping = Field(alias="param_mapping")
return_intermediate_steps: bool = False | /content/https://python.langchain.com/en/latest/_modules/langchain/chains/api/openapi/chain.html |
2963006beed2-1 | return_intermediate_steps: bool = False
instructions_key: str = "instructions" #: :meta private:
output_key: str = "output" #: :meta private:
max_text_length: Optional[int] = Field(ge=0) #: :meta private:
@property
def input_keys(self) -> List[str]:
"""Expect input key.
:meta private:
"""
return [self.instructions_key]
@property
def output_keys(self) -> List[str]:
"""Expect output key.
:meta private:
"""
if not self.return_intermediate_steps:
return [self.output_key]
else:
return [self.output_key, "intermediate_steps"]
def _construct_path(self, args: Dict[str, str]) -> str:
"""Construct the path from the deserialized input."""
path = self.api_operation.base_url + self.api_operation.path
for param in self.param_mapping.path_params:
path = path.replace(f"{{{param}}}", args.pop(param, ""))
return path
def _extract_query_params(self, args: Dict[str, str]) -> Dict[str, str]:
"""Extract the query params from the deserialized input."""
query_params = {}
for param in self.param_mapping.query_params:
if param in args: | /content/https://python.langchain.com/en/latest/_modules/langchain/chains/api/openapi/chain.html |
2963006beed2-2 | if param in args:
query_params[param] = args.pop(param)
return query_params
def _extract_body_params(self, args: Dict[str, str]) -> Optional[Dict[str, str]]:
"""Extract the request body params from the deserialized input."""
body_params = None
if self.param_mapping.body_params:
body_params = {}
for param in self.param_mapping.body_params:
if param in args:
body_params[param] = args.pop(param)
return body_params
[docs] def deserialize_json_input(self, serialized_args: str) -> dict:
"""Use the serialized typescript dictionary.
Resolve the path, query params dict, and optional requestBody dict.
"""
args: dict = json.loads(serialized_args)
path = self._construct_path(args)
body_params = self._extract_body_params(args)
query_params = self._extract_query_params(args)
return {
"url": path,
"data": body_params,
"params": query_params,
}
def _get_output(self, output: str, intermediate_steps: dict) -> dict:
"""Return the output from the API call."""
if self.return_intermediate_steps:
return {
self.output_key: output, | /content/https://python.langchain.com/en/latest/_modules/langchain/chains/api/openapi/chain.html |
2963006beed2-3 | return {
self.output_key: output,
"intermediate_steps": intermediate_steps,
}
else:
return {self.output_key: output}
def _call(self, inputs: Dict[str, str]) -> Dict[str, str]:
intermediate_steps = {}
instructions = inputs[self.instructions_key]
instructions = instructions[: self.max_text_length]
_api_arguments = self.api_request_chain.predict_and_parse(
instructions=instructions
)
api_arguments = cast(str, _api_arguments)
intermediate_steps["request_args"] = api_arguments
self.callback_manager.on_text(
api_arguments, color="green", end="\n", verbose=self.verbose
)
if api_arguments.startswith("ERROR"):
return self._get_output(api_arguments, intermediate_steps)
elif api_arguments.startswith("MESSAGE:"):
return self._get_output(
api_arguments[len("MESSAGE:") :], intermediate_steps
)
try:
request_args = self.deserialize_json_input(api_arguments)
method = getattr(self.requests, self.api_operation.method.value)
api_response: Response = method(**request_args)
if api_response.status_code != 200:
method_str = str(self.api_operation.method.value)
response_text = ( | /content/https://python.langchain.com/en/latest/_modules/langchain/chains/api/openapi/chain.html |
2963006beed2-4 | response_text = (
f"{api_response.status_code}: {api_response.reason}"
+ f"\nFor {method_str.upper()} {request_args['url']}\n"
+ f"Called with args: {request_args['params']}"
)
else:
response_text = api_response.text
except Exception as e:
response_text = f"Error with message {str(e)}"
response_text = response_text[: self.max_text_length]
intermediate_steps["response_text"] = response_text
self.callback_manager.on_text(
response_text, color="blue", end="\n", verbose=self.verbose
)
if self.api_response_chain is not None:
_answer = self.api_response_chain.predict_and_parse(
response=response_text,
instructions=instructions,
)
answer = cast(str, _answer)
self.callback_manager.on_text(
answer, color="yellow", end="\n", verbose=self.verbose
)
return self._get_output(answer, intermediate_steps)
else:
return self._get_output(response_text, intermediate_steps)
[docs] @classmethod
def from_url_and_method(
cls,
spec_url: str,
path: str,
method: str,
llm: BaseLLM,
requests: Optional[Requests] = None,
return_intermediate_steps: bool = False,
**kwargs: Any | /content/https://python.langchain.com/en/latest/_modules/langchain/chains/api/openapi/chain.html |
2963006beed2-5 | **kwargs: Any
# TODO: Handle async
) -> "OpenAPIEndpointChain":
"""Create an OpenAPIEndpoint from a spec at the specified url."""
operation = APIOperation.from_openapi_url(spec_url, path, method)
return cls.from_api_operation(
operation,
requests=requests,
llm=llm,
return_intermediate_steps=return_intermediate_steps,
**kwargs,
)
[docs] @classmethod
def from_api_operation(
cls,
operation: APIOperation,
llm: BaseLLM,
requests: Optional[Requests] = None,
verbose: bool = False,
return_intermediate_steps: bool = False,
raw_response: bool = False,
**kwargs: Any
# TODO: Handle async
) -> "OpenAPIEndpointChain":
"""Create an OpenAPIEndpointChain from an operation and a spec."""
param_mapping = _ParamMapping(
query_params=operation.query_params,
body_params=operation.body_params,
path_params=operation.path_params,
)
requests_chain = APIRequesterChain.from_llm_and_typescript(
llm, typescript_definition=operation.to_typescript(), verbose=verbose
)
if raw_response:
response_chain = None
else:
response_chain = APIResponderChain.from_llm(llm, verbose=verbose) | /content/https://python.langchain.com/en/latest/_modules/langchain/chains/api/openapi/chain.html |
2963006beed2-6 | _requests = requests or Requests()
return cls(
api_request_chain=requests_chain,
api_response_chain=response_chain,
api_operation=operation,
requests=_requests,
param_mapping=param_mapping,
verbose=verbose,
return_intermediate_steps=return_intermediate_steps,
**kwargs,
)
By Harrison Chase
© Copyright 2023, Harrison Chase.
Last updated on Apr 26, 2023. | /content/https://python.langchain.com/en/latest/_modules/langchain/chains/api/openapi/chain.html |
45805dbc2654-0 | Source code for langchain.chains.llm_checker.base
"""Chain for question-answering with self-verification."""
from typing import Dict, List
from pydantic import Extra
from langchain.chains.base import Chain
from langchain.chains.llm import LLMChain
from langchain.chains.llm_checker.prompt import (
CHECK_ASSERTIONS_PROMPT,
CREATE_DRAFT_ANSWER_PROMPT,
LIST_ASSERTIONS_PROMPT,
REVISED_ANSWER_PROMPT,
)
from langchain.chains.sequential import SequentialChain
from langchain.llms.base import BaseLLM
from langchain.prompts import PromptTemplate
[docs]class LLMCheckerChain(Chain):
"""Chain for question-answering with self-verification.
Example:
.. code-block:: python
from langchain import OpenAI, LLMCheckerChain
llm = OpenAI(temperature=0.7)
checker_chain = LLMCheckerChain(llm=llm)
"""
llm: BaseLLM
"""LLM wrapper to use."""
create_draft_answer_prompt: PromptTemplate = CREATE_DRAFT_ANSWER_PROMPT
list_assertions_prompt: PromptTemplate = LIST_ASSERTIONS_PROMPT
check_assertions_prompt: PromptTemplate = CHECK_ASSERTIONS_PROMPT
revised_answer_prompt: PromptTemplate = REVISED_ANSWER_PROMPT | /content/https://python.langchain.com/en/latest/_modules/langchain/chains/llm_checker/base.html |
45805dbc2654-1 | """Prompt to use when questioning the documents."""
input_key: str = "query" #: :meta private:
output_key: str = "result" #: :meta private:
class Config:
"""Configuration for this pydantic object."""
extra = Extra.forbid
arbitrary_types_allowed = True
@property
def input_keys(self) -> List[str]:
"""Return the singular input key.
:meta private:
"""
return [self.input_key]
@property
def output_keys(self) -> List[str]:
"""Return the singular output key.
:meta private:
"""
return [self.output_key]
def _call(self, inputs: Dict[str, str]) -> Dict[str, str]:
question = inputs[self.input_key]
create_draft_answer_chain = LLMChain(
llm=self.llm, prompt=self.create_draft_answer_prompt, output_key="statement"
)
list_assertions_chain = LLMChain(
llm=self.llm, prompt=self.list_assertions_prompt, output_key="assertions"
)
check_assertions_chain = LLMChain(
llm=self.llm,
prompt=self.check_assertions_prompt,
output_key="checked_assertions",
)
revised_answer_chain = LLMChain(
llm=self.llm,
prompt=self.revised_answer_prompt,
output_key="revised_statement",
)
chains = [ | /content/https://python.langchain.com/en/latest/_modules/langchain/chains/llm_checker/base.html |
45805dbc2654-2 | output_key="revised_statement",
)
chains = [
create_draft_answer_chain,
list_assertions_chain,
check_assertions_chain,
revised_answer_chain,
]
question_to_checked_assertions_chain = SequentialChain(
chains=chains,
input_variables=["question"],
output_variables=["revised_statement"],
verbose=True,
)
output = question_to_checked_assertions_chain({"question": question})
return {self.output_key: output["revised_statement"]}
@property
def _chain_type(self) -> str:
return "llm_checker_chain"
By Harrison Chase
© Copyright 2023, Harrison Chase.
Last updated on Apr 26, 2023. | /content/https://python.langchain.com/en/latest/_modules/langchain/chains/llm_checker/base.html |
951dd64db524-0 | Source code for langchain.chains.conversational_retrieval.base
"""Chain for chatting with a vector database."""
from __future__ import annotations
import warnings
from abc import abstractmethod
from pathlib import Path
from typing import Any, Callable, Dict, List, Optional, Tuple, Union
from pydantic import Extra, Field, root_validator
from langchain.chains.base import Chain
from langchain.chains.combine_documents.base import BaseCombineDocumentsChain
from langchain.chains.combine_documents.stuff import StuffDocumentsChain
from langchain.chains.conversational_retrieval.prompts import CONDENSE_QUESTION_PROMPT
from langchain.chains.llm import LLMChain
from langchain.chains.question_answering import load_qa_chain
from langchain.prompts.base import BasePromptTemplate
from langchain.schema import BaseLanguageModel, BaseMessage, BaseRetriever, Document
from langchain.vectorstores.base import VectorStore
# Depending on the memory type and configuration, the chat history format may differ.
# This needs to be consolidated.
CHAT_TURN_TYPE = Union[Tuple[str, str], BaseMessage]
_ROLE_MAP = {"human": "Human: ", "ai": "Assistant: "}
def _get_chat_history(chat_history: List[CHAT_TURN_TYPE]) -> str:
buffer = ""
for dialogue_turn in chat_history: | /content/https://python.langchain.com/en/latest/_modules/langchain/chains/conversational_retrieval/base.html |
951dd64db524-1 | buffer = ""
for dialogue_turn in chat_history:
if isinstance(dialogue_turn, BaseMessage):
role_prefix = _ROLE_MAP.get(dialogue_turn.type, f"{dialogue_turn.type}: ")
buffer += f"\n{role_prefix}{dialogue_turn.content}"
elif isinstance(dialogue_turn, tuple):
human = "Human: " + dialogue_turn[0]
ai = "Assistant: " + dialogue_turn[1]
buffer += "\n" + "\n".join([human, ai])
else:
raise ValueError(
f"Unsupported chat history format: {type(dialogue_turn)}."
f" Full chat history: {chat_history} "
)
return buffer
class BaseConversationalRetrievalChain(Chain):
"""Chain for chatting with an index."""
combine_docs_chain: BaseCombineDocumentsChain
question_generator: LLMChain
output_key: str = "answer"
return_source_documents: bool = False
get_chat_history: Optional[Callable[[CHAT_TURN_TYPE], str]] = None
"""Return the source documents."""
class Config:
"""Configuration for this pydantic object."""
extra = Extra.forbid
arbitrary_types_allowed = True
allow_population_by_field_name = True
@property
def input_keys(self) -> List[str]:
"""Input keys.""" | /content/https://python.langchain.com/en/latest/_modules/langchain/chains/conversational_retrieval/base.html |
951dd64db524-2 | """Input keys."""
return ["question", "chat_history"]
@property
def output_keys(self) -> List[str]:
"""Return the output keys.
:meta private:
"""
_output_keys = [self.output_key]
if self.return_source_documents:
_output_keys = _output_keys + ["source_documents"]
return _output_keys
@abstractmethod
def _get_docs(self, question: str, inputs: Dict[str, Any]) -> List[Document]:
"""Get docs."""
def _call(self, inputs: Dict[str, Any]) -> Dict[str, Any]:
question = inputs["question"]
get_chat_history = self.get_chat_history or _get_chat_history
chat_history_str = get_chat_history(inputs["chat_history"])
if chat_history_str:
new_question = self.question_generator.run(
question=question, chat_history=chat_history_str
)
else:
new_question = question
docs = self._get_docs(new_question, inputs)
new_inputs = inputs.copy()
new_inputs["question"] = new_question
new_inputs["chat_history"] = chat_history_str
answer = self.combine_docs_chain.run(input_documents=docs, **new_inputs) | /content/https://python.langchain.com/en/latest/_modules/langchain/chains/conversational_retrieval/base.html |
951dd64db524-3 | if self.return_source_documents:
return {self.output_key: answer, "source_documents": docs}
else:
return {self.output_key: answer}
@abstractmethod
async def _aget_docs(self, question: str, inputs: Dict[str, Any]) -> List[Document]:
"""Get docs."""
async def _acall(self, inputs: Dict[str, Any]) -> Dict[str, Any]:
question = inputs["question"]
get_chat_history = self.get_chat_history or _get_chat_history
chat_history_str = get_chat_history(inputs["chat_history"])
if chat_history_str:
new_question = await self.question_generator.arun(
question=question, chat_history=chat_history_str
)
else:
new_question = question
docs = await self._aget_docs(new_question, inputs)
new_inputs = inputs.copy()
new_inputs["question"] = new_question
new_inputs["chat_history"] = chat_history_str
answer = await self.combine_docs_chain.arun(input_documents=docs, **new_inputs)
if self.return_source_documents:
return {self.output_key: answer, "source_documents": docs}
else:
return {self.output_key: answer} | /content/https://python.langchain.com/en/latest/_modules/langchain/chains/conversational_retrieval/base.html |
951dd64db524-4 | else:
return {self.output_key: answer}
def save(self, file_path: Union[Path, str]) -> None:
if self.get_chat_history:
raise ValueError("Chain not savable when `get_chat_history` is not None.")
super().save(file_path)
[docs]class ConversationalRetrievalChain(BaseConversationalRetrievalChain):
"""Chain for chatting with an index."""
retriever: BaseRetriever
"""Index to connect to."""
max_tokens_limit: Optional[int] = None
"""If set, restricts the docs to return from store based on tokens, enforced only
for StuffDocumentChain"""
def _reduce_tokens_below_limit(self, docs: List[Document]) -> List[Document]:
num_docs = len(docs)
if self.max_tokens_limit and isinstance(
self.combine_docs_chain, StuffDocumentsChain
):
tokens = [
self.combine_docs_chain.llm_chain.llm.get_num_tokens(doc.page_content)
for doc in docs
]
token_count = sum(tokens[:num_docs])
while token_count > self.max_tokens_limit:
num_docs -= 1
token_count -= tokens[num_docs]
return docs[:num_docs]
def _get_docs(self, question: str, inputs: Dict[str, Any]) -> List[Document]: | /content/https://python.langchain.com/en/latest/_modules/langchain/chains/conversational_retrieval/base.html |
951dd64db524-5 | docs = self.retriever.get_relevant_documents(question)
return self._reduce_tokens_below_limit(docs)
async def _aget_docs(self, question: str, inputs: Dict[str, Any]) -> List[Document]:
docs = await self.retriever.aget_relevant_documents(question)
return self._reduce_tokens_below_limit(docs)
[docs] @classmethod
def from_llm(
cls,
llm: BaseLanguageModel,
retriever: BaseRetriever,
condense_question_prompt: BasePromptTemplate = CONDENSE_QUESTION_PROMPT,
chain_type: str = "stuff",
verbose: bool = False,
combine_docs_chain_kwargs: Optional[Dict] = None,
**kwargs: Any,
) -> BaseConversationalRetrievalChain:
"""Load chain from LLM."""
combine_docs_chain_kwargs = combine_docs_chain_kwargs or {}
doc_chain = load_qa_chain(
llm,
chain_type=chain_type,
verbose=verbose,
**combine_docs_chain_kwargs,
)
condense_question_chain = LLMChain(
llm=llm, prompt=condense_question_prompt, verbose=verbose
)
return cls(
retriever=retriever,
combine_docs_chain=doc_chain,
question_generator=condense_question_chain,
**kwargs,
) | /content/https://python.langchain.com/en/latest/_modules/langchain/chains/conversational_retrieval/base.html |
951dd64db524-6 | question_generator=condense_question_chain,
**kwargs,
)
[docs]class ChatVectorDBChain(BaseConversationalRetrievalChain):
"""Chain for chatting with a vector database."""
vectorstore: VectorStore = Field(alias="vectorstore")
top_k_docs_for_context: int = 4
search_kwargs: dict = Field(default_factory=dict)
@property
def _chain_type(self) -> str:
return "chat-vector-db"
@root_validator()
def raise_deprecation(cls, values: Dict) -> Dict:
warnings.warn(
"`ChatVectorDBChain` is deprecated - "
"please use `from langchain.chains import ConversationalRetrievalChain`"
)
return values
def _get_docs(self, question: str, inputs: Dict[str, Any]) -> List[Document]:
vectordbkwargs = inputs.get("vectordbkwargs", {})
full_kwargs = {**self.search_kwargs, **vectordbkwargs}
return self.vectorstore.similarity_search(
question, k=self.top_k_docs_for_context, **full_kwargs
)
async def _aget_docs(self, question: str, inputs: Dict[str, Any]) -> List[Document]:
raise NotImplementedError("ChatVectorDBChain does not support async")
[docs] @classmethod
def from_llm(
cls, | /content/https://python.langchain.com/en/latest/_modules/langchain/chains/conversational_retrieval/base.html |
951dd64db524-7 | [docs] @classmethod
def from_llm(
cls,
llm: BaseLanguageModel,
vectorstore: VectorStore,
condense_question_prompt: BasePromptTemplate = CONDENSE_QUESTION_PROMPT,
chain_type: str = "stuff",
combine_docs_chain_kwargs: Optional[Dict] = None,
**kwargs: Any,
) -> BaseConversationalRetrievalChain:
"""Load chain from LLM."""
combine_docs_chain_kwargs = combine_docs_chain_kwargs or {}
doc_chain = load_qa_chain(
llm,
chain_type=chain_type,
**combine_docs_chain_kwargs,
)
condense_question_chain = LLMChain(llm=llm, prompt=condense_question_prompt)
return cls(
vectorstore=vectorstore,
combine_docs_chain=doc_chain,
question_generator=condense_question_chain,
**kwargs,
)
By Harrison Chase
© Copyright 2023, Harrison Chase.
Last updated on Apr 26, 2023. | /content/https://python.langchain.com/en/latest/_modules/langchain/chains/conversational_retrieval/base.html |
f6615a3df2df-0 | Source code for langchain.chains.combine_documents.base
"""Base interface for chains combining documents."""
from abc import ABC, abstractmethod
from typing import Any, Dict, List, Optional, Tuple
from pydantic import Field
from langchain.chains.base import Chain
from langchain.docstore.document import Document
from langchain.prompts.base import BasePromptTemplate
from langchain.text_splitter import RecursiveCharacterTextSplitter, TextSplitter
def format_document(doc: Document, prompt: BasePromptTemplate) -> str:
"""Format a document into a string based on a prompt template."""
base_info = {"page_content": doc.page_content}
base_info.update(doc.metadata)
missing_metadata = set(prompt.input_variables).difference(base_info)
if len(missing_metadata) > 0:
required_metadata = [
iv for iv in prompt.input_variables if iv != "page_content"
]
raise ValueError(
f"Document prompt requires documents to have metadata variables: "
f"{required_metadata}. Received document with missing metadata: "
f"{list(missing_metadata)}."
)
document_info = {k: base_info[k] for k in prompt.input_variables}
return prompt.format(**document_info)
class BaseCombineDocumentsChain(Chain, ABC):
"""Base interface for chains combining documents."""
input_key: str = "input_documents" #: :meta private: | /content/https://python.langchain.com/en/latest/_modules/langchain/chains/combine_documents/base.html |
f6615a3df2df-1 | input_key: str = "input_documents" #: :meta private:
output_key: str = "output_text" #: :meta private:
@property
def input_keys(self) -> List[str]:
"""Expect input key.
:meta private:
"""
return [self.input_key]
@property
def output_keys(self) -> List[str]:
"""Return output key.
:meta private:
"""
return [self.output_key]
def prompt_length(self, docs: List[Document], **kwargs: Any) -> Optional[int]:
"""Return the prompt length given the documents passed in.
Returns None if the method does not depend on the prompt length.
"""
return None
@abstractmethod
def combine_docs(self, docs: List[Document], **kwargs: Any) -> Tuple[str, dict]:
"""Combine documents into a single string."""
@abstractmethod
async def acombine_docs(
self, docs: List[Document], **kwargs: Any
) -> Tuple[str, dict]:
"""Combine documents into a single string asynchronously."""
def _call(self, inputs: Dict[str, Any]) -> Dict[str, str]:
docs = inputs[self.input_key]
# Other keys are assumed to be needed for LLM prediction
other_keys = {k: v for k, v in inputs.items() if k != self.input_key} | /content/https://python.langchain.com/en/latest/_modules/langchain/chains/combine_documents/base.html |
f6615a3df2df-2 | output, extra_return_dict = self.combine_docs(docs, **other_keys)
extra_return_dict[self.output_key] = output
return extra_return_dict
async def _acall(self, inputs: Dict[str, Any]) -> Dict[str, str]:
docs = inputs[self.input_key]
# Other keys are assumed to be needed for LLM prediction
other_keys = {k: v for k, v in inputs.items() if k != self.input_key}
output, extra_return_dict = await self.acombine_docs(docs, **other_keys)
extra_return_dict[self.output_key] = output
return extra_return_dict
[docs]class AnalyzeDocumentChain(Chain):
"""Chain that splits documents, then analyzes it in pieces."""
input_key: str = "input_document" #: :meta private:
text_splitter: TextSplitter = Field(default_factory=RecursiveCharacterTextSplitter)
combine_docs_chain: BaseCombineDocumentsChain
@property
def input_keys(self) -> List[str]:
"""Expect input key.
:meta private:
"""
return [self.input_key]
@property
def output_keys(self) -> List[str]:
"""Return output key.
:meta private:
"""
return self.combine_docs_chain.output_keys | /content/https://python.langchain.com/en/latest/_modules/langchain/chains/combine_documents/base.html |
f6615a3df2df-3 | """
return self.combine_docs_chain.output_keys
def _call(self, inputs: Dict[str, Any]) -> Dict[str, str]:
document = inputs[self.input_key]
docs = self.text_splitter.create_documents([document])
# Other keys are assumed to be needed for LLM prediction
other_keys = {k: v for k, v in inputs.items() if k != self.input_key}
other_keys[self.combine_docs_chain.input_key] = docs
return self.combine_docs_chain(other_keys, return_only_outputs=True)
By Harrison Chase
© Copyright 2023, Harrison Chase.
Last updated on Apr 26, 2023. | /content/https://python.langchain.com/en/latest/_modules/langchain/chains/combine_documents/base.html |
153e9cb050d5-0 | Source code for langchain.chains.constitutional_ai.base
"""Chain for applying constitutional principles to the outputs of another chain."""
from typing import Any, Dict, List, Optional
from langchain.chains.base import Chain
from langchain.chains.constitutional_ai.models import ConstitutionalPrinciple
from langchain.chains.constitutional_ai.principles import PRINCIPLES
from langchain.chains.constitutional_ai.prompts import CRITIQUE_PROMPT, REVISION_PROMPT
from langchain.chains.llm import LLMChain
from langchain.prompts.base import BasePromptTemplate
from langchain.schema import BaseLanguageModel
[docs]class ConstitutionalChain(Chain):
"""Chain for applying constitutional principles.
Example:
.. code-block:: python
from langchain.llms import OpenAI
from langchain.chains import LLMChain, ConstitutionalChain
qa_prompt = PromptTemplate(
template="Q: {question} A:",
input_variables=["question"],
)
qa_chain = LLMChain(llm=OpenAI(), prompt=qa_prompt)
constitutional_chain = ConstitutionalChain.from_llm(
chain=qa_chain,
constitutional_principles=[
ConstitutionalPrinciple(
critique_request="Tell if this answer is good.",
revision_request="Give a better answer.",
)
],
)
constitutional_chain.run(question="What is the meaning of life?")
"""
chain: LLMChain
constitutional_principles: List[ConstitutionalPrinciple] | /content/https://python.langchain.com/en/latest/_modules/langchain/chains/constitutional_ai/base.html |
153e9cb050d5-1 | chain: LLMChain
constitutional_principles: List[ConstitutionalPrinciple]
critique_chain: LLMChain
revision_chain: LLMChain
[docs] @classmethod
def get_principles(
cls, names: Optional[List[str]] = None
) -> List[ConstitutionalPrinciple]:
if names is None:
return list(PRINCIPLES.values())
else:
return [PRINCIPLES[name] for name in names]
[docs] @classmethod
def from_llm(
cls,
llm: BaseLanguageModel,
chain: LLMChain,
critique_prompt: BasePromptTemplate = CRITIQUE_PROMPT,
revision_prompt: BasePromptTemplate = REVISION_PROMPT,
**kwargs: Any,
) -> "ConstitutionalChain":
"""Create a chain from an LLM."""
critique_chain = LLMChain(llm=llm, prompt=critique_prompt)
revision_chain = LLMChain(llm=llm, prompt=revision_prompt)
return cls(
chain=chain,
critique_chain=critique_chain,
revision_chain=revision_chain,
**kwargs,
)
@property
def input_keys(self) -> List[str]:
"""Defines the input keys."""
return self.chain.input_keys
@property
def output_keys(self) -> List[str]:
"""Defines the output keys."""
return ["output"]
def _call(self, inputs: Dict[str, str]) -> Dict[str, str]: | /content/https://python.langchain.com/en/latest/_modules/langchain/chains/constitutional_ai/base.html |
153e9cb050d5-2 | response = self.chain.run(**inputs)
input_prompt = self.chain.prompt.format(**inputs)
self.callback_manager.on_text(
text="Initial response: " + response + "\n\n",
verbose=self.verbose,
color="yellow",
)
for constitutional_principle in self.constitutional_principles:
# Do critique
raw_critique = self.critique_chain.run(
input_prompt=input_prompt,
output_from_model=response,
critique_request=constitutional_principle.critique_request,
)
critique = self._parse_critique(
output_string=raw_critique,
).strip()
# Do revision
revision = self.revision_chain.run(
input_prompt=input_prompt,
output_from_model=response,
critique_request=constitutional_principle.critique_request,
critique=critique,
revision_request=constitutional_principle.revision_request,
).strip()
response = revision
self.callback_manager.on_text(
text=f"Applying {constitutional_principle.name}..." + "\n\n",
verbose=self.verbose,
color="green",
)
self.callback_manager.on_text(
text="Critique: " + critique + "\n\n",
verbose=self.verbose,
color="blue",
)
self.callback_manager.on_text(
text="Updated response: " + revision + "\n\n",
verbose=self.verbose,
color="yellow",
) | /content/https://python.langchain.com/en/latest/_modules/langchain/chains/constitutional_ai/base.html |
153e9cb050d5-3 | verbose=self.verbose,
color="yellow",
)
return {"output": response}
@staticmethod
def _parse_critique(output_string: str) -> str:
if "Revision request:" not in output_string:
return output_string
output_string = output_string.split("Revision request:")[0]
if "\n\n" in output_string:
output_string = output_string.split("\n\n")[0]
return output_string
By Harrison Chase
© Copyright 2023, Harrison Chase.
Last updated on Apr 26, 2023. | /content/https://python.langchain.com/en/latest/_modules/langchain/chains/constitutional_ai/base.html |
b6876f63a781-0 | Source code for langchain.chains.llm_math.base
"""Chain that interprets a prompt and executes python code to do math."""
import math
import re
from typing import Dict, List
import numexpr
from pydantic import Extra
from langchain.chains.base import Chain
from langchain.chains.llm import LLMChain
from langchain.chains.llm_math.prompt import PROMPT
from langchain.prompts.base import BasePromptTemplate
from langchain.schema import BaseLanguageModel
[docs]class LLMMathChain(Chain):
"""Chain that interprets a prompt and executes python code to do math.
Example:
.. code-block:: python
from langchain import LLMMathChain, OpenAI
llm_math = LLMMathChain(llm=OpenAI())
"""
llm: BaseLanguageModel
"""LLM wrapper to use."""
prompt: BasePromptTemplate = PROMPT
"""Prompt to use to translate to python if neccessary."""
input_key: str = "question" #: :meta private:
output_key: str = "answer" #: :meta private:
class Config:
"""Configuration for this pydantic object."""
extra = Extra.forbid
arbitrary_types_allowed = True
@property
def input_keys(self) -> List[str]:
"""Expect input key.
:meta private:
"""
return [self.input_key]
@property
def output_keys(self) -> List[str]: | /content/https://python.langchain.com/en/latest/_modules/langchain/chains/llm_math/base.html |
b6876f63a781-1 | @property
def output_keys(self) -> List[str]:
"""Expect output key.
:meta private:
"""
return [self.output_key]
def _evaluate_expression(self, expression: str) -> str:
try:
local_dict = {"pi": math.pi, "e": math.e}
output = str(
numexpr.evaluate(
expression.strip(),
global_dict={}, # restrict access to globals
local_dict=local_dict, # add common mathematical functions
)
)
except Exception as e:
raise ValueError(f"{e}. Please try again with a valid numerical expression")
# Remove any leading and trailing brackets from the output
return re.sub(r"^\[|\]$", "", output)
def _process_llm_result(self, llm_output: str) -> Dict[str, str]:
self.callback_manager.on_text(llm_output, color="green", verbose=self.verbose)
llm_output = llm_output.strip()
text_match = re.search(r"^```text(.*?)```", llm_output, re.DOTALL)
if text_match:
expression = text_match.group(1)
output = self._evaluate_expression(expression)
self.callback_manager.on_text("\nAnswer: ", verbose=self.verbose)
self.callback_manager.on_text(output, color="yellow", verbose=self.verbose)
answer = "Answer: " + output | /content/https://python.langchain.com/en/latest/_modules/langchain/chains/llm_math/base.html |
b6876f63a781-2 | answer = "Answer: " + output
elif llm_output.startswith("Answer:"):
answer = llm_output
elif "Answer:" in llm_output:
answer = "Answer: " + llm_output.split("Answer:")[-1]
else:
raise ValueError(f"unknown format from LLM: {llm_output}")
return {self.output_key: answer}
async def _aprocess_llm_result(self, llm_output: str) -> Dict[str, str]:
if self.callback_manager.is_async:
await self.callback_manager.on_text(
llm_output, color="green", verbose=self.verbose
)
else:
self.callback_manager.on_text(
llm_output, color="green", verbose=self.verbose
)
llm_output = llm_output.strip()
text_match = re.search(r"^```text(.*?)```", llm_output, re.DOTALL)
if text_match:
expression = text_match.group(1)
output = self._evaluate_expression(expression)
if self.callback_manager.is_async:
await self.callback_manager.on_text("\nAnswer: ", verbose=self.verbose)
await self.callback_manager.on_text(
output, color="yellow", verbose=self.verbose
)
else: | /content/https://python.langchain.com/en/latest/_modules/langchain/chains/llm_math/base.html |
b6876f63a781-3 | output, color="yellow", verbose=self.verbose
)
else:
self.callback_manager.on_text("\nAnswer: ", verbose=self.verbose)
self.callback_manager.on_text(
output, color="yellow", verbose=self.verbose
)
answer = "Answer: " + output
elif llm_output.startswith("Answer:"):
answer = llm_output
elif "Answer:" in llm_output:
answer = "Answer: " + llm_output.split("Answer:")[-1]
else:
raise ValueError(f"unknown format from LLM: {llm_output}")
return {self.output_key: answer}
def _call(self, inputs: Dict[str, str]) -> Dict[str, str]:
llm_executor = LLMChain(
prompt=self.prompt, llm=self.llm, callback_manager=self.callback_manager
)
self.callback_manager.on_text(inputs[self.input_key], verbose=self.verbose)
llm_output = llm_executor.predict(
question=inputs[self.input_key], stop=["```output"]
)
return self._process_llm_result(llm_output)
async def _acall(self, inputs: Dict[str, str]) -> Dict[str, str]:
llm_executor = LLMChain( | /content/https://python.langchain.com/en/latest/_modules/langchain/chains/llm_math/base.html |
b6876f63a781-4 | llm_executor = LLMChain(
prompt=self.prompt, llm=self.llm, callback_manager=self.callback_manager
)
if self.callback_manager.is_async:
await self.callback_manager.on_text(
inputs[self.input_key], verbose=self.verbose
)
else:
self.callback_manager.on_text(inputs[self.input_key], verbose=self.verbose)
llm_output = await llm_executor.apredict(
question=inputs[self.input_key], stop=["```output"]
)
return await self._aprocess_llm_result(llm_output)
@property
def _chain_type(self) -> str:
return "llm_math_chain"
By Harrison Chase
© Copyright 2023, Harrison Chase.
Last updated on Apr 26, 2023. | /content/https://python.langchain.com/en/latest/_modules/langchain/chains/llm_math/base.html |
fc81c23cd130-0 | Source code for langchain.chains.llm_bash.base
"""Chain that interprets a prompt and executes bash code to perform bash operations."""
from typing import Dict, List
from pydantic import Extra
from langchain.chains.base import Chain
from langchain.chains.llm import LLMChain
from langchain.chains.llm_bash.prompt import PROMPT
from langchain.prompts.base import BasePromptTemplate
from langchain.schema import BaseLanguageModel
from langchain.utilities.bash import BashProcess
[docs]class LLMBashChain(Chain):
"""Chain that interprets a prompt and executes bash code to perform bash operations.
Example:
.. code-block:: python
from langchain import LLMBashChain, OpenAI
llm_bash = LLMBashChain(llm=OpenAI())
"""
llm: BaseLanguageModel
"""LLM wrapper to use."""
input_key: str = "question" #: :meta private:
output_key: str = "answer" #: :meta private:
prompt: BasePromptTemplate = PROMPT
class Config:
"""Configuration for this pydantic object."""
extra = Extra.forbid
arbitrary_types_allowed = True
@property
def input_keys(self) -> List[str]:
"""Expect input key.
:meta private:
"""
return [self.input_key]
@property
def output_keys(self) -> List[str]:
"""Expect output key.
:meta private:
""" | /content/https://python.langchain.com/en/latest/_modules/langchain/chains/llm_bash/base.html |
fc81c23cd130-1 | """Expect output key.
:meta private:
"""
return [self.output_key]
def _call(self, inputs: Dict[str, str]) -> Dict[str, str]:
llm_executor = LLMChain(prompt=self.prompt, llm=self.llm)
bash_executor = BashProcess()
self.callback_manager.on_text(inputs[self.input_key], verbose=self.verbose)
t = llm_executor.predict(question=inputs[self.input_key])
self.callback_manager.on_text(t, color="green", verbose=self.verbose)
t = t.strip()
if t.startswith("```bash"):
# Split the string into a list of substrings
command_list = t.split("\n")
print(command_list)
# Remove the first and last substrings
command_list = [s for s in command_list[1:-1]]
output = bash_executor.run(command_list)
self.callback_manager.on_text("\nAnswer: ", verbose=self.verbose)
self.callback_manager.on_text(output, color="yellow", verbose=self.verbose)
else:
raise ValueError(f"unknown format from LLM: {t}")
return {self.output_key: output}
@property
def _chain_type(self) -> str:
return "llm_bash_chain"
By Harrison Chase
© Copyright 2023, Harrison Chase.
Last updated on Apr 26, 2023. | /content/https://python.langchain.com/en/latest/_modules/langchain/chains/llm_bash/base.html |
7aa748371915-0 | Source code for langchain.chains.sql_database.base
"""Chain for interacting with SQL Database."""
from __future__ import annotations
from typing import Any, Dict, List, Optional
from pydantic import Extra, Field
from langchain.chains.base import Chain
from langchain.chains.llm import LLMChain
from langchain.chains.sql_database.prompt import DECIDER_PROMPT, PROMPT, SQL_PROMPTS
from langchain.prompts.base import BasePromptTemplate
from langchain.schema import BaseLanguageModel
from langchain.sql_database import SQLDatabase
[docs]class SQLDatabaseChain(Chain):
"""Chain for interacting with SQL Database.
Example:
.. code-block:: python
from langchain import SQLDatabaseChain, OpenAI, SQLDatabase
db = SQLDatabase(...)
db_chain = SQLDatabaseChain(llm=OpenAI(), database=db)
"""
llm: BaseLanguageModel
"""LLM wrapper to use."""
database: SQLDatabase = Field(exclude=True)
"""SQL Database to connect to."""
prompt: Optional[BasePromptTemplate] = None
"""Prompt to use to translate natural language to SQL."""
top_k: int = 5
"""Number of results to return from the query"""
input_key: str = "query" #: :meta private:
output_key: str = "result" #: :meta private:
return_intermediate_steps: bool = False | /content/https://python.langchain.com/en/latest/_modules/langchain/chains/sql_database/base.html |
7aa748371915-1 | return_intermediate_steps: bool = False
"""Whether or not to return the intermediate steps along with the final answer."""
return_direct: bool = False
"""Whether or not to return the result of querying the SQL table directly."""
class Config:
"""Configuration for this pydantic object."""
extra = Extra.forbid
arbitrary_types_allowed = True
@property
def input_keys(self) -> List[str]:
"""Return the singular input key.
:meta private:
"""
return [self.input_key]
@property
def output_keys(self) -> List[str]:
"""Return the singular output key.
:meta private:
"""
if not self.return_intermediate_steps:
return [self.output_key]
else:
return [self.output_key, "intermediate_steps"]
def _call(self, inputs: Dict[str, Any]) -> Dict[str, Any]:
prompt = self.prompt or SQL_PROMPTS.get(self.database.dialect, PROMPT)
llm_chain = LLMChain(llm=self.llm, prompt=prompt)
input_text = f"{inputs[self.input_key]}\nSQLQuery:"
self.callback_manager.on_text(input_text, verbose=self.verbose)
# If not present, then defaults to None which is all tables.
table_names_to_use = inputs.get("table_names_to_use") | /content/https://python.langchain.com/en/latest/_modules/langchain/chains/sql_database/base.html |
7aa748371915-2 | table_info = self.database.get_table_info(table_names=table_names_to_use)
llm_inputs = {
"input": input_text,
"top_k": self.top_k,
"dialect": self.database.dialect,
"table_info": table_info,
"stop": ["\nSQLResult:"],
}
intermediate_steps = []
sql_cmd = llm_chain.predict(**llm_inputs)
intermediate_steps.append(sql_cmd)
self.callback_manager.on_text(sql_cmd, color="green", verbose=self.verbose)
result = self.database.run(sql_cmd)
intermediate_steps.append(result)
self.callback_manager.on_text("\nSQLResult: ", verbose=self.verbose)
self.callback_manager.on_text(result, color="yellow", verbose=self.verbose)
# If return direct, we just set the final result equal to the sql query
if self.return_direct:
final_result = result
else:
self.callback_manager.on_text("\nAnswer:", verbose=self.verbose)
input_text += f"{sql_cmd}\nSQLResult: {result}\nAnswer:"
llm_inputs["input"] = input_text
final_result = llm_chain.predict(**llm_inputs)
self.callback_manager.on_text( | /content/https://python.langchain.com/en/latest/_modules/langchain/chains/sql_database/base.html |
7aa748371915-3 | self.callback_manager.on_text(
final_result, color="green", verbose=self.verbose
)
chain_result: Dict[str, Any] = {self.output_key: final_result}
if self.return_intermediate_steps:
chain_result["intermediate_steps"] = intermediate_steps
return chain_result
@property
def _chain_type(self) -> str:
return "sql_database_chain"
[docs]class SQLDatabaseSequentialChain(Chain):
"""Chain for querying SQL database that is a sequential chain.
The chain is as follows:
1. Based on the query, determine which tables to use.
2. Based on those tables, call the normal SQL database chain.
This is useful in cases where the number of tables in the database is large.
"""
return_intermediate_steps: bool = False
[docs] @classmethod
def from_llm(
cls,
llm: BaseLanguageModel,
database: SQLDatabase,
query_prompt: BasePromptTemplate = PROMPT,
decider_prompt: BasePromptTemplate = DECIDER_PROMPT,
**kwargs: Any,
) -> SQLDatabaseSequentialChain:
"""Load the necessary chains."""
sql_chain = SQLDatabaseChain(
llm=llm, database=database, prompt=query_prompt, **kwargs
)
decider_chain = LLMChain(
llm=llm, prompt=decider_prompt, output_key="table_names"
) | /content/https://python.langchain.com/en/latest/_modules/langchain/chains/sql_database/base.html |
7aa748371915-4 | )
return cls(sql_chain=sql_chain, decider_chain=decider_chain, **kwargs)
decider_chain: LLMChain
sql_chain: SQLDatabaseChain
input_key: str = "query" #: :meta private:
output_key: str = "result" #: :meta private:
@property
def input_keys(self) -> List[str]:
"""Return the singular input key.
:meta private:
"""
return [self.input_key]
@property
def output_keys(self) -> List[str]:
"""Return the singular output key.
:meta private:
"""
if not self.return_intermediate_steps:
return [self.output_key]
else:
return [self.output_key, "intermediate_steps"]
def _call(self, inputs: Dict[str, str]) -> Dict[str, str]:
_table_names = self.sql_chain.database.get_usable_table_names()
table_names = ", ".join(_table_names)
llm_inputs = {
"query": inputs[self.input_key],
"table_names": table_names,
}
table_names_to_use = self.decider_chain.predict_and_parse(**llm_inputs)
self.callback_manager.on_text(
"Table names to use:", end="\n", verbose=self.verbose
)
self.callback_manager.on_text( | /content/https://python.langchain.com/en/latest/_modules/langchain/chains/sql_database/base.html |
7aa748371915-5 | )
self.callback_manager.on_text(
str(table_names_to_use), color="yellow", verbose=self.verbose
)
new_inputs = {
self.sql_chain.input_key: inputs[self.input_key],
"table_names_to_use": table_names_to_use,
}
return self.sql_chain(new_inputs, return_only_outputs=True)
@property
def _chain_type(self) -> str:
return "sql_database_sequential_chain"
By Harrison Chase
© Copyright 2023, Harrison Chase.
Last updated on Apr 26, 2023. | /content/https://python.langchain.com/en/latest/_modules/langchain/chains/sql_database/base.html |
2dda60fe1b4e-0 | Source code for langchain.chains.conversation.base
"""Chain that carries on a conversation and calls an LLM."""
from typing import Dict, List
from pydantic import Extra, Field, root_validator
from langchain.chains.conversation.prompt import PROMPT
from langchain.chains.llm import LLMChain
from langchain.memory.buffer import ConversationBufferMemory
from langchain.prompts.base import BasePromptTemplate
from langchain.schema import BaseMemory
[docs]class ConversationChain(LLMChain):
"""Chain to have a conversation and load context from memory.
Example:
.. code-block:: python
from langchain import ConversationChain, OpenAI
conversation = ConversationChain(llm=OpenAI())
"""
memory: BaseMemory = Field(default_factory=ConversationBufferMemory)
"""Default memory store."""
prompt: BasePromptTemplate = PROMPT
"""Default conversation prompt to use."""
input_key: str = "input" #: :meta private:
output_key: str = "response" #: :meta private:
class Config:
"""Configuration for this pydantic object."""
extra = Extra.forbid
arbitrary_types_allowed = True
@property
def input_keys(self) -> List[str]:
"""Use this since so some prompt vars come from history."""
return [self.input_key]
@root_validator() | /content/https://python.langchain.com/en/latest/_modules/langchain/chains/conversation/base.html |
2dda60fe1b4e-1 | return [self.input_key]
@root_validator()
def validate_prompt_input_variables(cls, values: Dict) -> Dict:
"""Validate that prompt input variables are consistent."""
memory_keys = values["memory"].memory_variables
input_key = values["input_key"]
if input_key in memory_keys:
raise ValueError(
f"The input key {input_key} was also found in the memory keys "
f"({memory_keys}) - please provide keys that don't overlap."
)
prompt_variables = values["prompt"].input_variables
expected_keys = memory_keys + [input_key]
if set(expected_keys) != set(prompt_variables):
raise ValueError(
"Got unexpected prompt input variables. The prompt expects "
f"{prompt_variables}, but got {memory_keys} as inputs from "
f"memory, and {input_key} as the normal input key."
)
return values
By Harrison Chase
© Copyright 2023, Harrison Chase.
Last updated on Apr 26, 2023. | /content/https://python.langchain.com/en/latest/_modules/langchain/chains/conversation/base.html |
b52f7fca73c0-0 | Source code for langchain.chains.qa_with_sources.vector_db
"""Question-answering with sources over a vector database."""
import warnings
from typing import Any, Dict, List
from pydantic import Field, root_validator
from langchain.chains.combine_documents.stuff import StuffDocumentsChain
from langchain.chains.qa_with_sources.base import BaseQAWithSourcesChain
from langchain.docstore.document import Document
from langchain.vectorstores.base import VectorStore
[docs]class VectorDBQAWithSourcesChain(BaseQAWithSourcesChain):
"""Question-answering with sources over a vector database."""
vectorstore: VectorStore = Field(exclude=True)
"""Vector Database to connect to."""
k: int = 4
"""Number of results to return from store"""
reduce_k_below_max_tokens: bool = False
"""Reduce the number of results to return from store based on tokens limit"""
max_tokens_limit: int = 3375
"""Restrict the docs to return from store based on tokens,
enforced only for StuffDocumentChain and if reduce_k_below_max_tokens is to true"""
search_kwargs: Dict[str, Any] = Field(default_factory=dict)
"""Extra search args."""
def _reduce_tokens_below_limit(self, docs: List[Document]) -> List[Document]:
num_docs = len(docs) | /content/https://python.langchain.com/en/latest/_modules/langchain/chains/qa_with_sources/vector_db.html |
b52f7fca73c0-1 | num_docs = len(docs)
if self.reduce_k_below_max_tokens and isinstance(
self.combine_documents_chain, StuffDocumentsChain
):
tokens = [
self.combine_documents_chain.llm_chain.llm.get_num_tokens(
doc.page_content
)
for doc in docs
]
token_count = sum(tokens[:num_docs])
while token_count > self.max_tokens_limit:
num_docs -= 1
token_count -= tokens[num_docs]
return docs[:num_docs]
def _get_docs(self, inputs: Dict[str, Any]) -> List[Document]:
question = inputs[self.question_key]
docs = self.vectorstore.similarity_search(
question, k=self.k, **self.search_kwargs
)
return self._reduce_tokens_below_limit(docs)
async def _aget_docs(self, inputs: Dict[str, Any]) -> List[Document]:
raise NotImplementedError("VectorDBQAWithSourcesChain does not support async")
@root_validator()
def raise_deprecation(cls, values: Dict) -> Dict:
warnings.warn(
"`VectorDBQAWithSourcesChain` is deprecated - "
"please use `from langchain.chains import RetrievalQAWithSourcesChain`"
)
return values
@property
def _chain_type(self) -> str: | /content/https://python.langchain.com/en/latest/_modules/langchain/chains/qa_with_sources/vector_db.html |
b52f7fca73c0-2 | )
return values
@property
def _chain_type(self) -> str:
return "vector_db_qa_with_sources_chain"
By Harrison Chase
© Copyright 2023, Harrison Chase.
Last updated on Apr 26, 2023. | /content/https://python.langchain.com/en/latest/_modules/langchain/chains/qa_with_sources/vector_db.html |
23ec5ec36d8b-0 | Source code for langchain.chains.qa_with_sources.retrieval
"""Question-answering with sources over an index."""
from typing import Any, Dict, List
from pydantic import Field
from langchain.chains.combine_documents.stuff import StuffDocumentsChain
from langchain.chains.qa_with_sources.base import BaseQAWithSourcesChain
from langchain.docstore.document import Document
from langchain.schema import BaseRetriever
[docs]class RetrievalQAWithSourcesChain(BaseQAWithSourcesChain):
"""Question-answering with sources over an index."""
retriever: BaseRetriever = Field(exclude=True)
"""Index to connect to."""
reduce_k_below_max_tokens: bool = False
"""Reduce the number of results to return from store based on tokens limit"""
max_tokens_limit: int = 3375
"""Restrict the docs to return from store based on tokens,
enforced only for StuffDocumentChain and if reduce_k_below_max_tokens is to true"""
def _reduce_tokens_below_limit(self, docs: List[Document]) -> List[Document]:
num_docs = len(docs)
if self.reduce_k_below_max_tokens and isinstance(
self.combine_documents_chain, StuffDocumentsChain
):
tokens = [
self.combine_documents_chain.llm_chain.llm.get_num_tokens(
doc.page_content
)
for doc in docs | /content/https://python.langchain.com/en/latest/_modules/langchain/chains/qa_with_sources/retrieval.html |
23ec5ec36d8b-1 | doc.page_content
)
for doc in docs
]
token_count = sum(tokens[:num_docs])
while token_count > self.max_tokens_limit:
num_docs -= 1
token_count -= tokens[num_docs]
return docs[:num_docs]
def _get_docs(self, inputs: Dict[str, Any]) -> List[Document]:
question = inputs[self.question_key]
docs = self.retriever.get_relevant_documents(question)
return self._reduce_tokens_below_limit(docs)
async def _aget_docs(self, inputs: Dict[str, Any]) -> List[Document]:
question = inputs[self.question_key]
docs = await self.retriever.aget_relevant_documents(question)
return self._reduce_tokens_below_limit(docs)
By Harrison Chase
© Copyright 2023, Harrison Chase.
Last updated on Apr 26, 2023. | /content/https://python.langchain.com/en/latest/_modules/langchain/chains/qa_with_sources/retrieval.html |
5f12af28aa9c-0 | Source code for langchain.chains.qa_with_sources.base
"""Question answering with sources over documents."""
from __future__ import annotations
import re
from abc import ABC, abstractmethod
from typing import Any, Dict, List, Optional
from pydantic import Extra, root_validator
from langchain.chains.base import Chain
from langchain.chains.combine_documents.base import BaseCombineDocumentsChain
from langchain.chains.combine_documents.map_reduce import MapReduceDocumentsChain
from langchain.chains.combine_documents.stuff import StuffDocumentsChain
from langchain.chains.llm import LLMChain
from langchain.chains.qa_with_sources.loading import load_qa_with_sources_chain
from langchain.chains.qa_with_sources.map_reduce_prompt import (
COMBINE_PROMPT,
EXAMPLE_PROMPT,
QUESTION_PROMPT,
)
from langchain.docstore.document import Document
from langchain.prompts.base import BasePromptTemplate
from langchain.schema import BaseLanguageModel
class BaseQAWithSourcesChain(Chain, ABC):
"""Question answering with sources over documents."""
combine_documents_chain: BaseCombineDocumentsChain
"""Chain to use to combine documents."""
question_key: str = "question" #: :meta private:
input_docs_key: str = "docs" #: :meta private:
answer_key: str = "answer" #: :meta private: | /content/https://python.langchain.com/en/latest/_modules/langchain/chains/qa_with_sources/base.html |
5f12af28aa9c-1 | answer_key: str = "answer" #: :meta private:
sources_answer_key: str = "sources" #: :meta private:
return_source_documents: bool = False
"""Return the source documents."""
@classmethod
def from_llm(
cls,
llm: BaseLanguageModel,
document_prompt: BasePromptTemplate = EXAMPLE_PROMPT,
question_prompt: BasePromptTemplate = QUESTION_PROMPT,
combine_prompt: BasePromptTemplate = COMBINE_PROMPT,
**kwargs: Any,
) -> BaseQAWithSourcesChain:
"""Construct the chain from an LLM."""
llm_question_chain = LLMChain(llm=llm, prompt=question_prompt)
llm_combine_chain = LLMChain(llm=llm, prompt=combine_prompt)
combine_results_chain = StuffDocumentsChain(
llm_chain=llm_combine_chain,
document_prompt=document_prompt,
document_variable_name="summaries",
)
combine_document_chain = MapReduceDocumentsChain(
llm_chain=llm_question_chain,
combine_document_chain=combine_results_chain,
document_variable_name="context",
)
return cls(
combine_documents_chain=combine_document_chain,
**kwargs,
)
@classmethod
def from_chain_type(
cls,
llm: BaseLanguageModel,
chain_type: str = "stuff", | /content/https://python.langchain.com/en/latest/_modules/langchain/chains/qa_with_sources/base.html |
5f12af28aa9c-2 | llm: BaseLanguageModel,
chain_type: str = "stuff",
chain_type_kwargs: Optional[dict] = None,
**kwargs: Any,
) -> BaseQAWithSourcesChain:
"""Load chain from chain type."""
_chain_kwargs = chain_type_kwargs or {}
combine_document_chain = load_qa_with_sources_chain(
llm, chain_type=chain_type, **_chain_kwargs
)
return cls(combine_documents_chain=combine_document_chain, **kwargs)
class Config:
"""Configuration for this pydantic object."""
extra = Extra.forbid
arbitrary_types_allowed = True
@property
def input_keys(self) -> List[str]:
"""Expect input key.
:meta private:
"""
return [self.question_key]
@property
def output_keys(self) -> List[str]:
"""Return output key.
:meta private:
"""
_output_keys = [self.answer_key, self.sources_answer_key]
if self.return_source_documents:
_output_keys = _output_keys + ["source_documents"]
return _output_keys
@root_validator(pre=True)
def validate_naming(cls, values: Dict) -> Dict:
"""Fix backwards compatability in naming."""
if "combine_document_chain" in values: | /content/https://python.langchain.com/en/latest/_modules/langchain/chains/qa_with_sources/base.html |
5f12af28aa9c-3 | if "combine_document_chain" in values:
values["combine_documents_chain"] = values.pop("combine_document_chain")
return values
@abstractmethod
def _get_docs(self, inputs: Dict[str, Any]) -> List[Document]:
"""Get docs to run questioning over."""
def _call(self, inputs: Dict[str, Any]) -> Dict[str, Any]:
docs = self._get_docs(inputs)
answer = self.combine_documents_chain.run(input_documents=docs, **inputs)
if re.search(r"SOURCES:\s", answer):
answer, sources = re.split(r"SOURCES:\s", answer)
else:
sources = ""
result: Dict[str, Any] = {
self.answer_key: answer,
self.sources_answer_key: sources,
}
if self.return_source_documents:
result["source_documents"] = docs
return result
@abstractmethod
async def _aget_docs(self, inputs: Dict[str, Any]) -> List[Document]:
"""Get docs to run questioning over."""
async def _acall(self, inputs: Dict[str, Any]) -> Dict[str, Any]:
docs = await self._aget_docs(inputs)
answer = await self.combine_documents_chain.arun(input_documents=docs, **inputs) | /content/https://python.langchain.com/en/latest/_modules/langchain/chains/qa_with_sources/base.html |
5f12af28aa9c-4 | if re.search(r"SOURCES:\s", answer):
answer, sources = re.split(r"SOURCES:\s", answer)
else:
sources = ""
result: Dict[str, Any] = {
self.answer_key: answer,
self.sources_answer_key: sources,
}
if self.return_source_documents:
result["source_documents"] = docs
return result
[docs]class QAWithSourcesChain(BaseQAWithSourcesChain):
"""Question answering with sources over documents."""
input_docs_key: str = "docs" #: :meta private:
@property
def input_keys(self) -> List[str]:
"""Expect input key.
:meta private:
"""
return [self.input_docs_key, self.question_key]
def _get_docs(self, inputs: Dict[str, Any]) -> List[Document]:
return inputs.pop(self.input_docs_key)
async def _aget_docs(self, inputs: Dict[str, Any]) -> List[Document]:
return inputs.pop(self.input_docs_key)
@property
def _chain_type(self) -> str:
return "qa_with_sources_chain"
By Harrison Chase
© Copyright 2023, Harrison Chase.
Last updated on Apr 26, 2023. | /content/https://python.langchain.com/en/latest/_modules/langchain/chains/qa_with_sources/base.html |
3df8e9b0c311-0 | Source code for langchain.chains.pal.base
"""Implements Program-Aided Language Models.
As in https://arxiv.org/pdf/2211.10435.pdf.
"""
from __future__ import annotations
from typing import Any, Dict, List, Optional
from pydantic import Extra
from langchain.chains.base import Chain
from langchain.chains.llm import LLMChain
from langchain.chains.pal.colored_object_prompt import COLORED_OBJECT_PROMPT
from langchain.chains.pal.math_prompt import MATH_PROMPT
from langchain.prompts.base import BasePromptTemplate
from langchain.schema import BaseLanguageModel
from langchain.utilities import PythonREPL
[docs]class PALChain(Chain):
"""Implements Program-Aided Language Models."""
llm: BaseLanguageModel
prompt: BasePromptTemplate
stop: str = "\n\n"
get_answer_expr: str = "print(solution())"
python_globals: Optional[Dict[str, Any]] = None
python_locals: Optional[Dict[str, Any]] = None
output_key: str = "result" #: :meta private:
return_intermediate_steps: bool = False
class Config:
"""Configuration for this pydantic object."""
extra = Extra.forbid
arbitrary_types_allowed = True
@property
def input_keys(self) -> List[str]:
"""Return the singular input key.
:meta private: | /content/https://python.langchain.com/en/latest/_modules/langchain/chains/pal/base.html |
3df8e9b0c311-1 | """Return the singular input key.
:meta private:
"""
return self.prompt.input_variables
@property
def output_keys(self) -> List[str]:
"""Return the singular output key.
:meta private:
"""
if not self.return_intermediate_steps:
return [self.output_key]
else:
return [self.output_key, "intermediate_steps"]
def _call(self, inputs: Dict[str, str]) -> Dict[str, str]:
llm_chain = LLMChain(llm=self.llm, prompt=self.prompt)
code = llm_chain.predict(stop=[self.stop], **inputs)
self.callback_manager.on_text(
code, color="green", end="\n", verbose=self.verbose
)
repl = PythonREPL(_globals=self.python_globals, _locals=self.python_locals)
res = repl.run(code + f"\n{self.get_answer_expr}")
output = {self.output_key: res.strip()}
if self.return_intermediate_steps:
output["intermediate_steps"] = code
return output
[docs] @classmethod
def from_math_prompt(cls, llm: BaseLanguageModel, **kwargs: Any) -> PALChain:
"""Load PAL from math prompt."""
return cls(
llm=llm,
prompt=MATH_PROMPT,
stop="\n\n", | /content/https://python.langchain.com/en/latest/_modules/langchain/chains/pal/base.html |
3df8e9b0c311-2 | prompt=MATH_PROMPT,
stop="\n\n",
get_answer_expr="print(solution())",
**kwargs,
)
[docs] @classmethod
def from_colored_object_prompt(
cls, llm: BaseLanguageModel, **kwargs: Any
) -> PALChain:
"""Load PAL from colored object prompt."""
return cls(
llm=llm,
prompt=COLORED_OBJECT_PROMPT,
stop="\n\n\n",
get_answer_expr="print(answer)",
**kwargs,
)
@property
def _chain_type(self) -> str:
return "pal_chain"
By Harrison Chase
© Copyright 2023, Harrison Chase.
Last updated on Apr 26, 2023. | /content/https://python.langchain.com/en/latest/_modules/langchain/chains/pal/base.html |
4d682b03521c-0 | Source code for langchain.output_parsers.retry
from __future__ import annotations
from typing import TypeVar
from langchain.chains.llm import LLMChain
from langchain.prompts.base import BasePromptTemplate
from langchain.prompts.prompt import PromptTemplate
from langchain.schema import (
BaseLanguageModel,
BaseOutputParser,
OutputParserException,
PromptValue,
)
NAIVE_COMPLETION_RETRY = """Prompt:
{prompt}
Completion:
{completion}
Above, the Completion did not satisfy the constraints given in the Prompt.
Please try again:"""
NAIVE_COMPLETION_RETRY_WITH_ERROR = """Prompt:
{prompt}
Completion:
{completion}
Above, the Completion did not satisfy the constraints given in the Prompt.
Details: {error}
Please try again:"""
NAIVE_RETRY_PROMPT = PromptTemplate.from_template(NAIVE_COMPLETION_RETRY)
NAIVE_RETRY_WITH_ERROR_PROMPT = PromptTemplate.from_template(
NAIVE_COMPLETION_RETRY_WITH_ERROR
)
T = TypeVar("T")
[docs]class RetryOutputParser(BaseOutputParser[T]):
"""Wraps a parser and tries to fix parsing errors.
Does this by passing the original prompt and the completion to another | /content/https://python.langchain.com/en/latest/_modules/langchain/output_parsers/retry.html |
4d682b03521c-1 | Does this by passing the original prompt and the completion to another
LLM, and telling it the completion did not satisfy criteria in the prompt.
"""
parser: BaseOutputParser[T]
retry_chain: LLMChain
[docs] @classmethod
def from_llm(
cls,
llm: BaseLanguageModel,
parser: BaseOutputParser[T],
prompt: BasePromptTemplate = NAIVE_RETRY_PROMPT,
) -> RetryOutputParser[T]:
chain = LLMChain(llm=llm, prompt=prompt)
return cls(parser=parser, retry_chain=chain)
[docs] def parse_with_prompt(self, completion: str, prompt_value: PromptValue) -> T:
try:
parsed_completion = self.parser.parse(completion)
except OutputParserException:
new_completion = self.retry_chain.run(
prompt=prompt_value.to_string(), completion=completion
)
parsed_completion = self.parser.parse(new_completion)
return parsed_completion
[docs] def parse(self, completion: str) -> T:
raise NotImplementedError(
"This OutputParser can only be called by the `parse_with_prompt` method."
)
[docs] def get_format_instructions(self) -> str:
return self.parser.get_format_instructions()
@property
def _type(self) -> str:
return self.parser._type | /content/https://python.langchain.com/en/latest/_modules/langchain/output_parsers/retry.html |
4d682b03521c-2 | def _type(self) -> str:
return self.parser._type
[docs]class RetryWithErrorOutputParser(BaseOutputParser[T]):
"""Wraps a parser and tries to fix parsing errors.
Does this by passing the original prompt, the completion, AND the error
that was raised to another language and telling it that the completion
did not work, and raised the given error. Differs from RetryOutputParser
in that this implementation provides the error that was raised back to the
LLM, which in theory should give it more information on how to fix it.
"""
parser: BaseOutputParser[T]
retry_chain: LLMChain
[docs] @classmethod
def from_llm(
cls,
llm: BaseLanguageModel,
parser: BaseOutputParser[T],
prompt: BasePromptTemplate = NAIVE_RETRY_WITH_ERROR_PROMPT,
) -> RetryWithErrorOutputParser[T]:
chain = LLMChain(llm=llm, prompt=prompt)
return cls(parser=parser, retry_chain=chain)
[docs] def parse_with_prompt(self, completion: str, prompt_value: PromptValue) -> T:
try:
parsed_completion = self.parser.parse(completion)
except OutputParserException as e:
new_completion = self.retry_chain.run(
prompt=prompt_value.to_string(), completion=completion, error=repr(e)
) | /content/https://python.langchain.com/en/latest/_modules/langchain/output_parsers/retry.html |
4d682b03521c-3 | )
parsed_completion = self.parser.parse(new_completion)
return parsed_completion
[docs] def parse(self, completion: str) -> T:
raise NotImplementedError(
"This OutputParser can only be called by the `parse_with_prompt` method."
)
[docs] def get_format_instructions(self) -> str:
return self.parser.get_format_instructions()
By Harrison Chase
© Copyright 2023, Harrison Chase.
Last updated on Apr 26, 2023. | /content/https://python.langchain.com/en/latest/_modules/langchain/output_parsers/retry.html |
8789d189b225-0 | Source code for langchain.output_parsers.pydantic
import json
import re
from typing import Type, TypeVar
from pydantic import BaseModel, ValidationError
from langchain.output_parsers.format_instructions import PYDANTIC_FORMAT_INSTRUCTIONS
from langchain.schema import BaseOutputParser, OutputParserException
T = TypeVar("T", bound=BaseModel)
[docs]class PydanticOutputParser(BaseOutputParser[T]):
pydantic_object: Type[T]
[docs] def parse(self, text: str) -> T:
try:
# Greedy search for 1st json candidate.
match = re.search(
"\{.*\}", text.strip(), re.MULTILINE | re.IGNORECASE | re.DOTALL
)
json_str = ""
if match:
json_str = match.group()
json_object = json.loads(json_str)
return self.pydantic_object.parse_obj(json_object)
except (json.JSONDecodeError, ValidationError) as e:
name = self.pydantic_object.__name__
msg = f"Failed to parse {name} from completion {text}. Got: {e}"
raise OutputParserException(msg)
[docs] def get_format_instructions(self) -> str:
schema = self.pydantic_object.schema()
# Remove extraneous fields.
reduced_schema = schema
if "title" in reduced_schema: | /content/https://python.langchain.com/en/latest/_modules/langchain/output_parsers/pydantic.html |
8789d189b225-1 | reduced_schema = schema
if "title" in reduced_schema:
del reduced_schema["title"]
if "type" in reduced_schema:
del reduced_schema["type"]
# Ensure json in context is well-formed with double quotes.
schema_str = json.dumps(reduced_schema)
return PYDANTIC_FORMAT_INSTRUCTIONS.format(schema=schema_str)
@property
def _type(self) -> str:
return "pydantic"
By Harrison Chase
© Copyright 2023, Harrison Chase.
Last updated on Apr 26, 2023. | /content/https://python.langchain.com/en/latest/_modules/langchain/output_parsers/pydantic.html |
2d3f87a79378-0 | Source code for langchain.output_parsers.list
from __future__ import annotations
from abc import abstractmethod
from typing import List
from langchain.schema import BaseOutputParser
[docs]class ListOutputParser(BaseOutputParser):
"""Class to parse the output of an LLM call to a list."""
@property
def _type(self) -> str:
return "list"
[docs] @abstractmethod
def parse(self, text: str) -> List[str]:
"""Parse the output of an LLM call."""
[docs]class CommaSeparatedListOutputParser(ListOutputParser):
"""Parse out comma separated lists."""
[docs] def get_format_instructions(self) -> str:
return (
"Your response should be a list of comma separated values, "
"eg: `foo, bar, baz`"
)
[docs] def parse(self, text: str) -> List[str]:
"""Parse the output of an LLM call."""
return text.strip().split(", ")
By Harrison Chase
© Copyright 2023, Harrison Chase.
Last updated on Apr 26, 2023. | /content/https://python.langchain.com/en/latest/_modules/langchain/output_parsers/list.html |
bd04c7c74e2b-0 | Source code for langchain.output_parsers.structured
from __future__ import annotations
import json
from typing import Any, List
from pydantic import BaseModel
from langchain.output_parsers.format_instructions import STRUCTURED_FORMAT_INSTRUCTIONS
from langchain.schema import BaseOutputParser, OutputParserException
line_template = '\t"{name}": {type} // {description}'
[docs]class ResponseSchema(BaseModel):
name: str
description: str
def _get_sub_string(schema: ResponseSchema) -> str:
return line_template.format(
name=schema.name, description=schema.description, type="string"
)
[docs]class StructuredOutputParser(BaseOutputParser):
response_schemas: List[ResponseSchema]
[docs] @classmethod
def from_response_schemas(
cls, response_schemas: List[ResponseSchema]
) -> StructuredOutputParser:
return cls(response_schemas=response_schemas)
[docs] def get_format_instructions(self) -> str:
schema_str = "\n".join(
[_get_sub_string(schema) for schema in self.response_schemas]
)
return STRUCTURED_FORMAT_INSTRUCTIONS.format(format=schema_str)
[docs] def parse(self, text: str) -> Any:
if "```json" not in text:
raise OutputParserException( | /content/https://python.langchain.com/en/latest/_modules/langchain/output_parsers/structured.html |
bd04c7c74e2b-1 | if "```json" not in text:
raise OutputParserException(
f"Got invalid return object. Expected markdown code snippet with JSON "
f"object, but got:\n{text}"
)
json_string = text.split("```json")[1].strip().strip("```").strip()
try:
json_obj = json.loads(json_string)
except json.JSONDecodeError as e:
raise OutputParserException(f"Got invalid JSON object. Error: {e}")
for schema in self.response_schemas:
if schema.name not in json_obj:
raise OutputParserException(
f"Got invalid return object. Expected key `{schema.name}` "
f"to be present, but got {json_obj}"
)
return json_obj
@property
def _type(self) -> str:
return "structured"
By Harrison Chase
© Copyright 2023, Harrison Chase.
Last updated on Apr 26, 2023. | /content/https://python.langchain.com/en/latest/_modules/langchain/output_parsers/structured.html |
11acca197c4d-0 | Source code for langchain.output_parsers.fix
from __future__ import annotations
from typing import TypeVar
from langchain.chains.llm import LLMChain
from langchain.output_parsers.prompts import NAIVE_FIX_PROMPT
from langchain.prompts.base import BasePromptTemplate
from langchain.schema import BaseLanguageModel, BaseOutputParser, OutputParserException
T = TypeVar("T")
[docs]class OutputFixingParser(BaseOutputParser[T]):
"""Wraps a parser and tries to fix parsing errors."""
parser: BaseOutputParser[T]
retry_chain: LLMChain
[docs] @classmethod
def from_llm(
cls,
llm: BaseLanguageModel,
parser: BaseOutputParser[T],
prompt: BasePromptTemplate = NAIVE_FIX_PROMPT,
) -> OutputFixingParser[T]:
chain = LLMChain(llm=llm, prompt=prompt)
return cls(parser=parser, retry_chain=chain)
[docs] def parse(self, completion: str) -> T:
try:
parsed_completion = self.parser.parse(completion)
except OutputParserException as e:
new_completion = self.retry_chain.run(
instructions=self.parser.get_format_instructions(),
completion=completion,
error=repr(e),
)
parsed_completion = self.parser.parse(new_completion) | /content/https://python.langchain.com/en/latest/_modules/langchain/output_parsers/fix.html |
11acca197c4d-1 | return parsed_completion
[docs] def get_format_instructions(self) -> str:
return self.parser.get_format_instructions()
@property
def _type(self) -> str:
return self.parser._type
By Harrison Chase
© Copyright 2023, Harrison Chase.
Last updated on Apr 26, 2023. | /content/https://python.langchain.com/en/latest/_modules/langchain/output_parsers/fix.html |
79fcd5f557a0-0 | Source code for langchain.output_parsers.regex
from __future__ import annotations
import re
from typing import Dict, List, Optional
from langchain.schema import BaseOutputParser
[docs]class RegexParser(BaseOutputParser):
"""Class to parse the output into a dictionary."""
regex: str
output_keys: List[str]
default_output_key: Optional[str] = None
@property
def _type(self) -> str:
"""Return the type key."""
return "regex_parser"
[docs] def parse(self, text: str) -> Dict[str, str]:
"""Parse the output of an LLM call."""
match = re.search(self.regex, text)
if match:
return {key: match.group(i + 1) for i, key in enumerate(self.output_keys)}
else:
if self.default_output_key is None:
raise ValueError(f"Could not parse output: {text}")
else:
return {
key: text if key == self.default_output_key else ""
for key in self.output_keys
}
By Harrison Chase
© Copyright 2023, Harrison Chase.
Last updated on Apr 26, 2023. | /content/https://python.langchain.com/en/latest/_modules/langchain/output_parsers/regex.html |
b3e5547b9e37-0 | Source code for langchain.output_parsers.rail_parser
from __future__ import annotations
from typing import Any, Dict
from langchain.schema import BaseOutputParser
[docs]class GuardrailsOutputParser(BaseOutputParser):
guard: Any
@property
def _type(self) -> str:
return "guardrails"
[docs] @classmethod
def from_rail(cls, rail_file: str, num_reasks: int = 1) -> GuardrailsOutputParser:
try:
from guardrails import Guard
except ImportError:
raise ValueError(
"guardrails-ai package not installed. "
"Install it by running `pip install guardrails-ai`."
)
return cls(guard=Guard.from_rail(rail_file, num_reasks=num_reasks))
[docs] @classmethod
def from_rail_string(
cls, rail_str: str, num_reasks: int = 1
) -> GuardrailsOutputParser:
try:
from guardrails import Guard
except ImportError:
raise ValueError(
"guardrails-ai package not installed. "
"Install it by running `pip install guardrails-ai`."
)
return cls(guard=Guard.from_rail_string(rail_str, num_reasks=num_reasks))
[docs] def get_format_instructions(self) -> str:
return self.guard.raw_prompt.format_instructions
[docs] def parse(self, text: str) -> Dict:
return self.guard.parse(text)
By Harrison Chase | /content/https://python.langchain.com/en/latest/_modules/langchain/output_parsers/rail_parser.html |
b3e5547b9e37-1 | return self.guard.parse(text)
By Harrison Chase
© Copyright 2023, Harrison Chase.
Last updated on Apr 26, 2023. | /content/https://python.langchain.com/en/latest/_modules/langchain/output_parsers/rail_parser.html |
8e6528f54432-0 | Source code for langchain.output_parsers.regex_dict
from __future__ import annotations
import re
from typing import Dict, Optional
from langchain.schema import BaseOutputParser
[docs]class RegexDictParser(BaseOutputParser):
"""Class to parse the output into a dictionary."""
regex_pattern: str = r"{}:\s?([^.'\n']*)\.?" # : :meta private:
output_key_to_format: Dict[str, str]
no_update_value: Optional[str] = None
@property
def _type(self) -> str:
"""Return the type key."""
return "regex_dict_parser"
[docs] def parse(self, text: str) -> Dict[str, str]:
"""Parse the output of an LLM call."""
result = {}
for output_key, expected_format in self.output_key_to_format.items():
specific_regex = self.regex_pattern.format(re.escape(expected_format))
matches = re.findall(specific_regex, text)
if not matches:
raise ValueError(
f"No match found for output key: {output_key} with expected format \
{expected_format} on text {text}"
)
elif len(matches) > 1:
raise ValueError(
f"Multiple matches found for output key: {output_key} with \
expected format {expected_format} on text {text}"
)
elif ( | /content/https://python.langchain.com/en/latest/_modules/langchain/output_parsers/regex_dict.html |
8e6528f54432-1 | expected format {expected_format} on text {text}"
)
elif (
self.no_update_value is not None and matches[0] == self.no_update_value
):
continue
else:
result[output_key] = matches[0]
return result
By Harrison Chase
© Copyright 2023, Harrison Chase.
Last updated on Apr 26, 2023. | /content/https://python.langchain.com/en/latest/_modules/langchain/output_parsers/regex_dict.html |
0c252c267d2c-0 | Source code for langchain.embeddings.llamacpp
"""Wrapper around llama.cpp embedding models."""
from typing import Any, Dict, List, Optional
from pydantic import BaseModel, Extra, Field, root_validator
from langchain.embeddings.base import Embeddings
[docs]class LlamaCppEmbeddings(BaseModel, Embeddings):
"""Wrapper around llama.cpp embedding models.
To use, you should have the llama-cpp-python library installed, and provide the
path to the Llama model as a named parameter to the constructor.
Check out: https://github.com/abetlen/llama-cpp-python
Example:
.. code-block:: python
from langchain.embeddings import LlamaCppEmbeddings
llama = LlamaCppEmbeddings(model_path="/path/to/model.bin")
"""
client: Any #: :meta private:
model_path: str
n_ctx: int = Field(512, alias="n_ctx")
"""Token context window."""
n_parts: int = Field(-1, alias="n_parts")
"""Number of parts to split the model into.
If -1, the number of parts is automatically determined."""
seed: int = Field(-1, alias="seed")
"""Seed. If -1, a random seed is used."""
f16_kv: bool = Field(False, alias="f16_kv")
"""Use half-precision for key/value cache.""" | /content/https://python.langchain.com/en/latest/_modules/langchain/embeddings/llamacpp.html |
0c252c267d2c-1 | """Use half-precision for key/value cache."""
logits_all: bool = Field(False, alias="logits_all")
"""Return logits for all tokens, not just the last token."""
vocab_only: bool = Field(False, alias="vocab_only")
"""Only load the vocabulary, no weights."""
use_mlock: bool = Field(False, alias="use_mlock")
"""Force system to keep model in RAM."""
n_threads: Optional[int] = Field(None, alias="n_threads")
"""Number of threads to use. If None, the number
of threads is automatically determined."""
n_batch: Optional[int] = Field(8, alias="n_batch")
"""Number of tokens to process in parallel.
Should be a number between 1 and n_ctx."""
class Config:
"""Configuration for this pydantic object."""
extra = Extra.forbid
@root_validator()
def validate_environment(cls, values: Dict) -> Dict:
"""Validate that llama-cpp-python library is installed."""
model_path = values["model_path"]
n_ctx = values["n_ctx"]
n_parts = values["n_parts"]
seed = values["seed"]
f16_kv = values["f16_kv"]
logits_all = values["logits_all"] | /content/https://python.langchain.com/en/latest/_modules/langchain/embeddings/llamacpp.html |
0c252c267d2c-2 | logits_all = values["logits_all"]
vocab_only = values["vocab_only"]
use_mlock = values["use_mlock"]
n_threads = values["n_threads"]
n_batch = values["n_batch"]
try:
from llama_cpp import Llama
values["client"] = Llama(
model_path=model_path,
n_ctx=n_ctx,
n_parts=n_parts,
seed=seed,
f16_kv=f16_kv,
logits_all=logits_all,
vocab_only=vocab_only,
use_mlock=use_mlock,
n_threads=n_threads,
n_batch=n_batch,
embedding=True,
)
except ImportError:
raise ModuleNotFoundError(
"Could not import llama-cpp-python library. "
"Please install the llama-cpp-python library to "
"use this embedding model: pip install llama-cpp-python"
)
except Exception:
raise NameError(f"Could not load Llama model from path: {model_path}")
return values
[docs] def embed_documents(self, texts: List[str]) -> List[List[float]]:
"""Embed a list of documents using the Llama model.
Args:
texts: The list of texts to embed.
Returns:
List of embeddings, one for each text.
"""
embeddings = [self.client.embed(text) for text in texts] | /content/https://python.langchain.com/en/latest/_modules/langchain/embeddings/llamacpp.html |
0c252c267d2c-3 | return [list(map(float, e)) for e in embeddings]
[docs] def embed_query(self, text: str) -> List[float]:
"""Embed a query using the Llama model.
Args:
text: The text to embed.
Returns:
Embeddings for the text.
"""
embedding = self.client.embed(text)
return list(map(float, embedding))
By Harrison Chase
© Copyright 2023, Harrison Chase.
Last updated on Apr 26, 2023. | /content/https://python.langchain.com/en/latest/_modules/langchain/embeddings/llamacpp.html |
dc9577ebe3de-0 | Source code for langchain.embeddings.huggingface
"""Wrapper around HuggingFace embedding models."""
from typing import Any, Dict, List, Optional
from pydantic import BaseModel, Extra, Field
from langchain.embeddings.base import Embeddings
DEFAULT_MODEL_NAME = "sentence-transformers/all-mpnet-base-v2"
DEFAULT_INSTRUCT_MODEL = "hkunlp/instructor-large"
DEFAULT_EMBED_INSTRUCTION = "Represent the document for retrieval: "
DEFAULT_QUERY_INSTRUCTION = (
"Represent the question for retrieving supporting documents: "
)
[docs]class HuggingFaceEmbeddings(BaseModel, Embeddings):
"""Wrapper around sentence_transformers embedding models.
To use, you should have the ``sentence_transformers`` python package installed.
Example:
.. code-block:: python
from langchain.embeddings import HuggingFaceEmbeddings
model_name = "sentence-transformers/all-mpnet-base-v2"
model_kwargs = {'device': 'cpu'}
hf = HuggingFaceEmbeddings(model_name=model_name, model_kwargs=model_kwargs)
"""
client: Any #: :meta private:
model_name: str = DEFAULT_MODEL_NAME
"""Model name to use."""
cache_folder: Optional[str] = None
"""Path to store models. | /content/https://python.langchain.com/en/latest/_modules/langchain/embeddings/huggingface.html |
dc9577ebe3de-1 | """Path to store models.
Can be also set by SENTENCE_TRANSFORMERS_HOME enviroment variable."""
model_kwargs: Dict[str, Any] = Field(default_factory=dict)
"""Key word arguments to pass to the model."""
def __init__(self, **kwargs: Any):
"""Initialize the sentence_transformer."""
super().__init__(**kwargs)
try:
import sentence_transformers
except ImportError as exc:
raise ValueError(
"Could not import sentence_transformers python package. "
"Please install it with `pip install sentence_transformers`."
) from exc
self.client = sentence_transformers.SentenceTransformer(
self.model_name, cache_folder=self.cache_folder, **self.model_kwargs
)
class Config:
"""Configuration for this pydantic object."""
extra = Extra.forbid
[docs] def embed_documents(self, texts: List[str]) -> List[List[float]]:
"""Compute doc embeddings using a HuggingFace transformer model.
Args:
texts: The list of texts to embed.
Returns:
List of embeddings, one for each text.
"""
texts = list(map(lambda x: x.replace("\n", " "), texts))
embeddings = self.client.encode(texts)
return embeddings.tolist()
[docs] def embed_query(self, text: str) -> List[float]: | /content/https://python.langchain.com/en/latest/_modules/langchain/embeddings/huggingface.html |
dc9577ebe3de-2 | """Compute query embeddings using a HuggingFace transformer model.
Args:
text: The text to embed.
Returns:
Embeddings for the text.
"""
text = text.replace("\n", " ")
embedding = self.client.encode(text)
return embedding.tolist()
[docs]class HuggingFaceInstructEmbeddings(BaseModel, Embeddings):
"""Wrapper around sentence_transformers embedding models.
To use, you should have the ``sentence_transformers``
and ``InstructorEmbedding`` python package installed.
Example:
.. code-block:: python
from langchain.embeddings import HuggingFaceInstructEmbeddings
model_name = "hkunlp/instructor-large"
model_kwargs = {'device': 'cpu'}
hf = HuggingFaceInstructEmbeddings(
model_name=model_name, model_kwargs=model_kwargs
)
"""
client: Any #: :meta private:
model_name: str = DEFAULT_INSTRUCT_MODEL
"""Model name to use."""
cache_folder: Optional[str] = None
"""Path to store models.
Can be also set by SENTENCE_TRANSFORMERS_HOME enviroment variable."""
model_kwargs: Dict[str, Any] = Field(default_factory=dict)
"""Key word arguments to pass to the model."""
embed_instruction: str = DEFAULT_EMBED_INSTRUCTION | /content/https://python.langchain.com/en/latest/_modules/langchain/embeddings/huggingface.html |
dc9577ebe3de-3 | embed_instruction: str = DEFAULT_EMBED_INSTRUCTION
"""Instruction to use for embedding documents."""
query_instruction: str = DEFAULT_QUERY_INSTRUCTION
"""Instruction to use for embedding query."""
def __init__(self, **kwargs: Any):
"""Initialize the sentence_transformer."""
super().__init__(**kwargs)
try:
from InstructorEmbedding import INSTRUCTOR
self.client = INSTRUCTOR(
self.model_name, cache_folder=self.cache_folder, **self.model_kwargs
)
except ImportError as e:
raise ValueError("Dependencies for InstructorEmbedding not found.") from e
class Config:
"""Configuration for this pydantic object."""
extra = Extra.forbid
[docs] def embed_documents(self, texts: List[str]) -> List[List[float]]:
"""Compute doc embeddings using a HuggingFace instruct model.
Args:
texts: The list of texts to embed.
Returns:
List of embeddings, one for each text.
"""
instruction_pairs = [[self.embed_instruction, text] for text in texts]
embeddings = self.client.encode(instruction_pairs)
return embeddings.tolist()
[docs] def embed_query(self, text: str) -> List[float]:
"""Compute query embeddings using a HuggingFace instruct model.
Args: | /content/https://python.langchain.com/en/latest/_modules/langchain/embeddings/huggingface.html |
dc9577ebe3de-4 | Args:
text: The text to embed.
Returns:
Embeddings for the text.
"""
instruction_pair = [self.query_instruction, text]
embedding = self.client.encode([instruction_pair])[0]
return embedding.tolist()
By Harrison Chase
© Copyright 2023, Harrison Chase.
Last updated on Apr 26, 2023. | /content/https://python.langchain.com/en/latest/_modules/langchain/embeddings/huggingface.html |
d6d5b25c9fa0-0 | Source code for langchain.embeddings.aleph_alpha
from typing import Any, Dict, List, Optional
from pydantic import BaseModel, root_validator
from langchain.embeddings.base import Embeddings
from langchain.utils import get_from_dict_or_env
[docs]class AlephAlphaAsymmetricSemanticEmbedding(BaseModel, Embeddings):
"""
Wrapper for Aleph Alpha's Asymmetric Embeddings
AA provides you with an endpoint to embed a document and a query.
The models were optimized to make the embeddings of documents and
the query for a document as similar as possible.
To learn more, check out: https://docs.aleph-alpha.com/docs/tasks/semantic_embed/
Example:
.. code-block:: python
from aleph_alpha import AlephAlphaAsymmetricSemanticEmbedding
embeddings = AlephAlphaSymmetricSemanticEmbedding()
document = "This is a content of the document"
query = "What is the content of the document?"
doc_result = embeddings.embed_documents([document])
query_result = embeddings.embed_query(query)
"""
client: Any #: :meta private:
model: Optional[str] = "luminous-base"
"""Model name to use."""
hosting: Optional[str] = "https://api.aleph-alpha.com"
"""Optional parameter that specifies which datacenters may process the request."""
normalize: Optional[bool] = True | /content/https://python.langchain.com/en/latest/_modules/langchain/embeddings/aleph_alpha.html |
d6d5b25c9fa0-1 | normalize: Optional[bool] = True
"""Should returned embeddings be normalized"""
compress_to_size: Optional[int] = 128
"""Should the returned embeddings come back as an original 5120-dim vector,
or should it be compressed to 128-dim."""
contextual_control_threshold: Optional[int] = None
"""Attention control parameters only apply to those tokens that have
explicitly been set in the request."""
control_log_additive: Optional[bool] = True
"""Apply controls on prompt items by adding the log(control_factor)
to attention scores."""
@root_validator()
def validate_environment(cls, values: Dict) -> Dict:
"""Validate that api key and python package exists in environment."""
aleph_alpha_api_key = get_from_dict_or_env(
values, "aleph_alpha_api_key", "ALEPH_ALPHA_API_KEY"
)
try:
from aleph_alpha_client import Client
except ImportError:
raise ValueError(
"Could not import aleph_alpha_client python package. "
"Please install it with `pip install aleph_alpha_client`."
)
values["client"] = Client(token=aleph_alpha_api_key)
return values
[docs] def embed_documents(self, texts: List[str]) -> List[List[float]]:
"""Call out to Aleph Alpha's asymmetric Document endpoint.
Args: | /content/https://python.langchain.com/en/latest/_modules/langchain/embeddings/aleph_alpha.html |
d6d5b25c9fa0-2 | Args:
texts: The list of texts to embed.
Returns:
List of embeddings, one for each text.
"""
try:
from aleph_alpha_client import (
Prompt,
SemanticEmbeddingRequest,
SemanticRepresentation,
)
except ImportError:
raise ValueError(
"Could not import aleph_alpha_client python package. "
"Please install it with `pip install aleph_alpha_client`."
)
document_embeddings = []
for text in texts:
document_params = {
"prompt": Prompt.from_text(text),
"representation": SemanticRepresentation.Document,
"compress_to_size": self.compress_to_size,
"normalize": self.normalize,
"contextual_control_threshold": self.contextual_control_threshold,
"control_log_additive": self.control_log_additive,
}
document_request = SemanticEmbeddingRequest(**document_params)
document_response = self.client.semantic_embed(
request=document_request, model=self.model
)
document_embeddings.append(document_response.embedding)
return document_embeddings
[docs] def embed_query(self, text: str) -> List[float]:
"""Call out to Aleph Alpha's asymmetric, query embedding endpoint
Args:
text: The text to embed.
Returns:
Embeddings for the text.
"""
try:
from aleph_alpha_client import (
Prompt,
SemanticEmbeddingRequest, | /content/https://python.langchain.com/en/latest/_modules/langchain/embeddings/aleph_alpha.html |
d6d5b25c9fa0-3 | Prompt,
SemanticEmbeddingRequest,
SemanticRepresentation,
)
except ImportError:
raise ValueError(
"Could not import aleph_alpha_client python package. "
"Please install it with `pip install aleph_alpha_client`."
)
symmetric_params = {
"prompt": Prompt.from_text(text),
"representation": SemanticRepresentation.Query,
"compress_to_size": self.compress_to_size,
"normalize": self.normalize,
"contextual_control_threshold": self.contextual_control_threshold,
"control_log_additive": self.control_log_additive,
}
symmetric_request = SemanticEmbeddingRequest(**symmetric_params)
symmetric_response = self.client.semantic_embed(
request=symmetric_request, model=self.model
)
return symmetric_response.embedding
[docs]class AlephAlphaSymmetricSemanticEmbedding(AlephAlphaAsymmetricSemanticEmbedding):
"""The symmetric version of the Aleph Alpha's semantic embeddings.
The main difference is that here, both the documents and
queries are embedded with a SemanticRepresentation.Symmetric
Example:
.. code-block:: python
from aleph_alpha import AlephAlphaSymmetricSemanticEmbedding
embeddings = AlephAlphaAsymmetricSemanticEmbedding()
text = "This is a test text" | /content/https://python.langchain.com/en/latest/_modules/langchain/embeddings/aleph_alpha.html |
Subsets and Splits