SivaMallikarjun commited on
Commit
e99aa8b
·
verified ·
1 Parent(s): d322c3a

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +55 -3
README.md CHANGED
@@ -1,3 +1,55 @@
1
- ---
2
- license: mit
3
- ---
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # NSG Dataset (Network Security Group Logs)
2
+
3
+ ## License
4
+ **MIT License**
5
+
6
+ ## Dataset Overview
7
+ The **NSG Dataset** contains **500 records** of simulated **Network Security Group (NSG) logs** to analyze security threats, detect anomalies, and build AI-driven threat prediction models. It includes details on network traffic, threat levels, and response actions.
8
+
9
+ ## Dataset Files
10
+ - `nsg_dataset.csv` - Contains the main dataset with 500 records.
11
+ - `README.md` - Documentation for understanding and using the dataset.
12
+
13
+ ## Data Schema
14
+
15
+ | Column Name | Data Type | Description |
16
+ |-----------------|----------|-------------|
17
+ | `timestamp` | `string` (YYYY-MM-DD HH:MM:SS) | Date and time of the network event |
18
+ | `source_ip` | `string` (IPv4) | IP address of the source device |
19
+ | `destination_ip` | `string` (IPv4) | IP address of the target device |
20
+ | `protocol` | `string` | Network protocol (TCP, UDP, ICMP) |
21
+ | `port` | `integer` | Destination port (20 - 65535) |
22
+ | `action` | `string` | Whether the traffic was **Allowed** or **Denied** |
23
+ | `threat_level` | `string` | Severity of the security event (**Low, Medium, High, Critical**) |
24
+ | `threat_type` | `string` | Type of attack (**DDoS, Brute Force, SQL Injection, Port Scan, Malware**) |
25
+ | `response_action`| `string` | Action taken (**Blocked, Alerted, Monitored, Escalated**) |
26
+
27
+ ## Dataset Statistics
28
+ - **Total Records:** 500
29
+ - **Unique Source IPs:** ~400+
30
+ - **Threat Level Distribution:**
31
+ - Low (~25%)
32
+ - Medium (~30%)
33
+ - High (~25%)
34
+ - Critical (~20%)
35
+
36
+ ## Use Cases
37
+ - **Anomaly Detection:** Identify unusual traffic patterns.
38
+ - **Threat Intelligence:** Analyze network security trends.
39
+ - **Machine Learning Models:** Train AI models for cyber threat prediction.
40
+ - **Power BI Dashboards:** Visualize security logs for real-time monitoring.
41
+
42
+ ## How to Use the Dataset
43
+ ### **Python (Pandas) Example**
44
+ ```python
45
+ import pandas as pd
46
+
47
+ df = pd.read_csv("nsg_dataset.csv")
48
+ print(df.head()) # Preview first 5 records
49
+ ```
50
+
51
+
52
+ ## Contact
53
+ 📧 **Email:** [email protected]
54
+ 📍 **Location:** Bengaluru, India
55
+