Update dataset
Browse files
dataset
CHANGED
@@ -1,24 +1,28 @@
|
|
1 |
import pandas as pd
|
2 |
import random
|
|
|
3 |
from datetime import datetime, timedelta
|
4 |
|
5 |
-
#
|
|
|
|
|
|
|
6 |
def random_timestamp():
|
7 |
-
start = datetime(
|
8 |
-
return start + timedelta(seconds=random.randint(0, 60 * 60 * 24 *
|
9 |
|
10 |
-
# Generate random
|
11 |
def random_ip():
|
12 |
return ".".join(str(random.randint(0, 255)) for _ in range(4))
|
13 |
|
14 |
-
#
|
15 |
protocols = ["TCP", "UDP", "ICMP"]
|
16 |
actions = ["Allow", "Deny"]
|
17 |
threat_levels = ["Low", "Medium", "High", "Critical"]
|
18 |
threat_types = ["DDoS", "Brute Force", "SQL Injection", "Port Scan", "Malware"]
|
19 |
response_actions = ["Blocked", "Alerted", "Monitored", "Escalated"]
|
20 |
|
21 |
-
#
|
22 |
data = {
|
23 |
"timestamp": [random_timestamp().strftime("%Y-%m-%d %H:%M:%S") for _ in range(500)],
|
24 |
"source_ip": [random_ip() for _ in range(500)],
|
@@ -34,7 +38,13 @@ data = {
|
|
34 |
# Convert to DataFrame
|
35 |
df = pd.DataFrame(data)
|
36 |
|
37 |
-
# Save as CSV
|
38 |
-
|
|
|
|
|
|
|
|
|
|
|
39 |
|
40 |
-
|
|
|
|
1 |
import pandas as pd
|
2 |
import random
|
3 |
+
import logging
|
4 |
from datetime import datetime, timedelta
|
5 |
|
6 |
+
# Configure logging
|
7 |
+
logging.basicConfig(level=logging.INFO, format="%(asctime)s - %(levelname)s - %(message)s")
|
8 |
+
|
9 |
+
# Generate random timestamps within the last 90 days
|
10 |
def random_timestamp():
|
11 |
+
start = datetime.now() - timedelta(days=90)
|
12 |
+
return start + timedelta(seconds=random.randint(0, 60 * 60 * 24 * 90))
|
13 |
|
14 |
+
# Generate random IP addresses
|
15 |
def random_ip():
|
16 |
return ".".join(str(random.randint(0, 255)) for _ in range(4))
|
17 |
|
18 |
+
# Define dataset attributes
|
19 |
protocols = ["TCP", "UDP", "ICMP"]
|
20 |
actions = ["Allow", "Deny"]
|
21 |
threat_levels = ["Low", "Medium", "High", "Critical"]
|
22 |
threat_types = ["DDoS", "Brute Force", "SQL Injection", "Port Scan", "Malware"]
|
23 |
response_actions = ["Blocked", "Alerted", "Monitored", "Escalated"]
|
24 |
|
25 |
+
# Generate dataset
|
26 |
data = {
|
27 |
"timestamp": [random_timestamp().strftime("%Y-%m-%d %H:%M:%S") for _ in range(500)],
|
28 |
"source_ip": [random_ip() for _ in range(500)],
|
|
|
38 |
# Convert to DataFrame
|
39 |
df = pd.DataFrame(data)
|
40 |
|
41 |
+
# Save as CSV with validation
|
42 |
+
output_file = "nsg_dataset.csv"
|
43 |
+
try:
|
44 |
+
df.to_csv(output_file, index=False)
|
45 |
+
logging.info(f"✅ NSG Dataset ({len(df)} records) saved to '{output_file}' successfully!")
|
46 |
+
except Exception as e:
|
47 |
+
logging.error(f"❌ Error saving dataset: {e}")
|
48 |
|
49 |
+
# Preview dataset
|
50 |
+
print(df.head())
|