code
stringlengths
66
870k
docstring
stringlengths
19
26.7k
func_name
stringlengths
1
138
language
stringclasses
1 value
repo
stringlengths
7
68
path
stringlengths
5
324
url
stringlengths
46
389
license
stringclasses
7 values
def set_score_request(self, **kwargs): """Set requested parameters by the scorer. Please see :ref:`User Guide <metadata_routing>` on how the routing mechanism works. .. versionadded:: 1.5 Parameters ---------- kwargs : dict Arguments should be of the form ``param_name=alias``, and `alias` can be one of ``{True, False, None, str}``. """ if not _routing_enabled(): raise RuntimeError( "This method is only available when metadata routing is enabled." " You can enable it using" " sklearn.set_config(enable_metadata_routing=True)." ) for param, alias in kwargs.items(): self._metadata_request.score.add_request(param=param, alias=alias) return self
Set requested parameters by the scorer. Please see :ref:`User Guide <metadata_routing>` on how the routing mechanism works. .. versionadded:: 1.5 Parameters ---------- kwargs : dict Arguments should be of the form ``param_name=alias``, and `alias` can be one of ``{True, False, None, str}``.
set_score_request
python
scikit-learn/scikit-learn
sklearn/metrics/_scorer.py
https://github.com/scikit-learn/scikit-learn/blob/master/sklearn/metrics/_scorer.py
BSD-3-Clause
def _check_multimetric_scoring(estimator, scoring): """Check the scoring parameter in cases when multiple metrics are allowed. In addition, multimetric scoring leverages a caching mechanism to not call the same estimator response method multiple times. Hence, the scorer is modified to only use a single response method given a list of response methods and the estimator. Parameters ---------- estimator : sklearn estimator instance The estimator for which the scoring will be applied. scoring : list, tuple or dict Strategy to evaluate the performance of the cross-validated model on the test set. The possibilities are: - a list or tuple of unique strings; - a callable returning a dictionary where they keys are the metric names and the values are the metric scores; - a dictionary with metric names as keys and callables a values. See :ref:`multimetric_grid_search` for an example. Returns ------- scorers_dict : dict A dict mapping each scorer name to its validated scorer. """ err_msg_generic = ( f"scoring is invalid (got {scoring!r}). Refer to the " "scoring glossary for details: " "https://scikit-learn.org/stable/glossary.html#term-scoring" ) if isinstance(scoring, (list, tuple, set)): err_msg = ( "The list/tuple elements must be unique strings of predefined scorers. " ) try: keys = set(scoring) except TypeError as e: raise ValueError(err_msg) from e if len(keys) != len(scoring): raise ValueError( f"{err_msg} Duplicate elements were found in" f" the given list. {scoring!r}" ) elif len(keys) > 0: if not all(isinstance(k, str) for k in keys): if any(callable(k) for k in keys): raise ValueError( f"{err_msg} One or more of the elements " "were callables. Use a dict of score " "name mapped to the scorer callable. " f"Got {scoring!r}" ) else: raise ValueError( f"{err_msg} Non-string types were found " f"in the given list. Got {scoring!r}" ) scorers = { scorer: check_scoring(estimator, scoring=scorer) for scorer in scoring } else: raise ValueError(f"{err_msg} Empty list was given. {scoring!r}") elif isinstance(scoring, dict): keys = set(scoring) if not all(isinstance(k, str) for k in keys): raise ValueError( "Non-string types were found in the keys of " f"the given dict. scoring={scoring!r}" ) if len(keys) == 0: raise ValueError(f"An empty dict was passed. {scoring!r}") scorers = { key: check_scoring(estimator, scoring=scorer) for key, scorer in scoring.items() } else: raise ValueError(err_msg_generic) return scorers
Check the scoring parameter in cases when multiple metrics are allowed. In addition, multimetric scoring leverages a caching mechanism to not call the same estimator response method multiple times. Hence, the scorer is modified to only use a single response method given a list of response methods and the estimator. Parameters ---------- estimator : sklearn estimator instance The estimator for which the scoring will be applied. scoring : list, tuple or dict Strategy to evaluate the performance of the cross-validated model on the test set. The possibilities are: - a list or tuple of unique strings; - a callable returning a dictionary where they keys are the metric names and the values are the metric scores; - a dictionary with metric names as keys and callables a values. See :ref:`multimetric_grid_search` for an example. Returns ------- scorers_dict : dict A dict mapping each scorer name to its validated scorer.
_check_multimetric_scoring
python
scikit-learn/scikit-learn
sklearn/metrics/_scorer.py
https://github.com/scikit-learn/scikit-learn/blob/master/sklearn/metrics/_scorer.py
BSD-3-Clause
def make_scorer( score_func, *, response_method="default", greater_is_better=True, **kwargs ): """Make a scorer from a performance metric or loss function. A scorer is a wrapper around an arbitrary metric or loss function that is called with the signature `scorer(estimator, X, y_true, **kwargs)`. It is accepted in all scikit-learn estimators or functions allowing a `scoring` parameter. The parameter `response_method` allows to specify which method of the estimator should be used to feed the scoring/loss function. Read more in the :ref:`User Guide <scoring_callable>`. Parameters ---------- score_func : callable Score function (or loss function) with signature ``score_func(y, y_pred, **kwargs)``. response_method : {"predict_proba", "decision_function", "predict"} or \ list/tuple of such str, default=None Specifies the response method to use get prediction from an estimator (i.e. :term:`predict_proba`, :term:`decision_function` or :term:`predict`). Possible choices are: - if `str`, it corresponds to the name to the method to return; - if a list or tuple of `str`, it provides the method names in order of preference. The method returned corresponds to the first method in the list and which is implemented by `estimator`. - if `None`, it is equivalent to `"predict"`. .. versionadded:: 1.4 .. deprecated:: 1.6 None is equivalent to 'predict' and is deprecated. It will be removed in version 1.8. greater_is_better : bool, default=True Whether `score_func` is a score function (default), meaning high is good, or a loss function, meaning low is good. In the latter case, the scorer object will sign-flip the outcome of the `score_func`. **kwargs : additional arguments Additional parameters to be passed to `score_func`. Returns ------- scorer : callable Callable object that returns a scalar score; greater is better. Examples -------- >>> from sklearn.metrics import fbeta_score, make_scorer >>> ftwo_scorer = make_scorer(fbeta_score, beta=2) >>> ftwo_scorer make_scorer(fbeta_score, response_method='predict', beta=2) >>> from sklearn.model_selection import GridSearchCV >>> from sklearn.svm import LinearSVC >>> grid = GridSearchCV(LinearSVC(), param_grid={'C': [1, 10]}, ... scoring=ftwo_scorer) """ sign = 1 if greater_is_better else -1 if response_method is None: warnings.warn( "response_method=None is deprecated in version 1.6 and will be removed " "in version 1.8. Leave it to its default value to avoid this warning.", FutureWarning, ) response_method = "predict" elif response_method == "default": response_method = "predict" return _Scorer(score_func, sign, kwargs, response_method)
Make a scorer from a performance metric or loss function. A scorer is a wrapper around an arbitrary metric or loss function that is called with the signature `scorer(estimator, X, y_true, **kwargs)`. It is accepted in all scikit-learn estimators or functions allowing a `scoring` parameter. The parameter `response_method` allows to specify which method of the estimator should be used to feed the scoring/loss function. Read more in the :ref:`User Guide <scoring_callable>`. Parameters ---------- score_func : callable Score function (or loss function) with signature ``score_func(y, y_pred, **kwargs)``. response_method : {"predict_proba", "decision_function", "predict"} or list/tuple of such str, default=None Specifies the response method to use get prediction from an estimator (i.e. :term:`predict_proba`, :term:`decision_function` or :term:`predict`). Possible choices are: - if `str`, it corresponds to the name to the method to return; - if a list or tuple of `str`, it provides the method names in order of preference. The method returned corresponds to the first method in the list and which is implemented by `estimator`. - if `None`, it is equivalent to `"predict"`. .. versionadded:: 1.4 .. deprecated:: 1.6 None is equivalent to 'predict' and is deprecated. It will be removed in version 1.8. greater_is_better : bool, default=True Whether `score_func` is a score function (default), meaning high is good, or a loss function, meaning low is good. In the latter case, the scorer object will sign-flip the outcome of the `score_func`. **kwargs : additional arguments Additional parameters to be passed to `score_func`. Returns ------- scorer : callable Callable object that returns a scalar score; greater is better. Examples -------- >>> from sklearn.metrics import fbeta_score, make_scorer >>> ftwo_scorer = make_scorer(fbeta_score, beta=2) >>> ftwo_scorer make_scorer(fbeta_score, response_method='predict', beta=2) >>> from sklearn.model_selection import GridSearchCV >>> from sklearn.svm import LinearSVC >>> grid = GridSearchCV(LinearSVC(), param_grid={'C': [1, 10]}, ... scoring=ftwo_scorer)
make_scorer
python
scikit-learn/scikit-learn
sklearn/metrics/_scorer.py
https://github.com/scikit-learn/scikit-learn/blob/master/sklearn/metrics/_scorer.py
BSD-3-Clause
def check_scoring(estimator=None, scoring=None, *, allow_none=False, raise_exc=True): """Determine scorer from user options. A TypeError will be thrown if the estimator cannot be scored. Parameters ---------- estimator : estimator object implementing 'fit' or None, default=None The object to use to fit the data. If `None`, then this function may error depending on `allow_none`. scoring : str, callable, list, tuple, set, or dict, default=None Scorer to use. If `scoring` represents a single score, one can use: - a single string (see :ref:`scoring_string_names`); - a callable (see :ref:`scoring_callable`) that returns a single value; - `None`, the `estimator`'s :ref:`default evaluation criterion <scoring_api_overview>` is used. If `scoring` represents multiple scores, one can use: - a list, tuple or set of unique strings; - a callable returning a dictionary where the keys are the metric names and the values are the metric scorers; - a dictionary with metric names as keys and callables a values. The callables need to have the signature `callable(estimator, X, y)`. allow_none : bool, default=False Whether to return None or raise an error if no `scoring` is specified and the estimator has no `score` method. raise_exc : bool, default=True Whether to raise an exception (if a subset of the scorers in multimetric scoring fails) or to return an error code. - If set to `True`, raises the failing scorer's exception. - If set to `False`, a formatted string of the exception details is passed as result of the failing scorer(s). This applies if `scoring` is list, tuple, set, or dict. Ignored if `scoring` is a str or a callable. .. versionadded:: 1.6 Returns ------- scoring : callable A scorer callable object / function with signature ``scorer(estimator, X, y)``. Examples -------- >>> from sklearn.datasets import load_iris >>> from sklearn.metrics import check_scoring >>> from sklearn.tree import DecisionTreeClassifier >>> X, y = load_iris(return_X_y=True) >>> classifier = DecisionTreeClassifier(max_depth=2).fit(X, y) >>> scorer = check_scoring(classifier, scoring='accuracy') >>> scorer(classifier, X, y) 0.96... >>> from sklearn.metrics import make_scorer, accuracy_score, mean_squared_log_error >>> X, y = load_iris(return_X_y=True) >>> y *= -1 >>> clf = DecisionTreeClassifier().fit(X, y) >>> scoring = { ... "accuracy": make_scorer(accuracy_score), ... "mean_squared_log_error": make_scorer(mean_squared_log_error), ... } >>> scoring_call = check_scoring(estimator=clf, scoring=scoring, raise_exc=False) >>> scores = scoring_call(clf, X, y) >>> scores {'accuracy': 1.0, 'mean_squared_log_error': 'Traceback ...'} """ if isinstance(scoring, str): return get_scorer(scoring) if callable(scoring): # Heuristic to ensure user has not passed a metric module = getattr(scoring, "__module__", None) if ( hasattr(module, "startswith") and module.startswith("sklearn.metrics.") and not module.startswith("sklearn.metrics._scorer") and not module.startswith("sklearn.metrics.tests.") ): raise ValueError( "scoring value %r looks like it is a metric " "function rather than a scorer. A scorer should " "require an estimator as its first parameter. " "Please use `make_scorer` to convert a metric " "to a scorer." % scoring ) return get_scorer(scoring) if isinstance(scoring, (list, tuple, set, dict)): scorers = _check_multimetric_scoring(estimator, scoring=scoring) return _MultimetricScorer(scorers=scorers, raise_exc=raise_exc) if scoring is None: if hasattr(estimator, "score"): return _PassthroughScorer(estimator) elif allow_none: return None else: raise TypeError( "If no scoring is specified, the estimator passed should " "have a 'score' method. The estimator %r does not." % estimator )
Determine scorer from user options. A TypeError will be thrown if the estimator cannot be scored. Parameters ---------- estimator : estimator object implementing 'fit' or None, default=None The object to use to fit the data. If `None`, then this function may error depending on `allow_none`. scoring : str, callable, list, tuple, set, or dict, default=None Scorer to use. If `scoring` represents a single score, one can use: - a single string (see :ref:`scoring_string_names`); - a callable (see :ref:`scoring_callable`) that returns a single value; - `None`, the `estimator`'s :ref:`default evaluation criterion <scoring_api_overview>` is used. If `scoring` represents multiple scores, one can use: - a list, tuple or set of unique strings; - a callable returning a dictionary where the keys are the metric names and the values are the metric scorers; - a dictionary with metric names as keys and callables a values. The callables need to have the signature `callable(estimator, X, y)`. allow_none : bool, default=False Whether to return None or raise an error if no `scoring` is specified and the estimator has no `score` method. raise_exc : bool, default=True Whether to raise an exception (if a subset of the scorers in multimetric scoring fails) or to return an error code. - If set to `True`, raises the failing scorer's exception. - If set to `False`, a formatted string of the exception details is passed as result of the failing scorer(s). This applies if `scoring` is list, tuple, set, or dict. Ignored if `scoring` is a str or a callable. .. versionadded:: 1.6 Returns ------- scoring : callable A scorer callable object / function with signature ``scorer(estimator, X, y)``. Examples -------- >>> from sklearn.datasets import load_iris >>> from sklearn.metrics import check_scoring >>> from sklearn.tree import DecisionTreeClassifier >>> X, y = load_iris(return_X_y=True) >>> classifier = DecisionTreeClassifier(max_depth=2).fit(X, y) >>> scorer = check_scoring(classifier, scoring='accuracy') >>> scorer(classifier, X, y) 0.96... >>> from sklearn.metrics import make_scorer, accuracy_score, mean_squared_log_error >>> X, y = load_iris(return_X_y=True) >>> y *= -1 >>> clf = DecisionTreeClassifier().fit(X, y) >>> scoring = { ... "accuracy": make_scorer(accuracy_score), ... "mean_squared_log_error": make_scorer(mean_squared_log_error), ... } >>> scoring_call = check_scoring(estimator=clf, scoring=scoring, raise_exc=False) >>> scores = scoring_call(clf, X, y) >>> scores {'accuracy': 1.0, 'mean_squared_log_error': 'Traceback ...'}
check_scoring
python
scikit-learn/scikit-learn
sklearn/metrics/_scorer.py
https://github.com/scikit-learn/scikit-learn/blob/master/sklearn/metrics/_scorer.py
BSD-3-Clause
def _threshold_scores_to_class_labels(y_score, threshold, classes, pos_label): """Threshold `y_score` and return the associated class labels.""" if pos_label is None: map_thresholded_score_to_label = np.array([0, 1]) else: pos_label_idx = np.flatnonzero(classes == pos_label)[0] neg_label_idx = np.flatnonzero(classes != pos_label)[0] map_thresholded_score_to_label = np.array([neg_label_idx, pos_label_idx]) return classes[map_thresholded_score_to_label[(y_score >= threshold).astype(int)]]
Threshold `y_score` and return the associated class labels.
_threshold_scores_to_class_labels
python
scikit-learn/scikit-learn
sklearn/metrics/_scorer.py
https://github.com/scikit-learn/scikit-learn/blob/master/sklearn/metrics/_scorer.py
BSD-3-Clause
def from_scorer(cls, scorer, response_method, thresholds): """Create a continuous scorer from a normal scorer.""" instance = cls( score_func=scorer._score_func, sign=scorer._sign, response_method=response_method, thresholds=thresholds, kwargs=scorer._kwargs, ) # transfer the metadata request instance._metadata_request = scorer._get_metadata_request() return instance
Create a continuous scorer from a normal scorer.
from_scorer
python
scikit-learn/scikit-learn
sklearn/metrics/_scorer.py
https://github.com/scikit-learn/scikit-learn/blob/master/sklearn/metrics/_scorer.py
BSD-3-Clause
def _score(self, method_caller, estimator, X, y_true, **kwargs): """Evaluate predicted target values for X relative to y_true. Parameters ---------- method_caller : callable Returns predictions given an estimator, method name, and other arguments, potentially caching results. estimator : object Trained estimator to use for scoring. X : {array-like, sparse matrix} of shape (n_samples, n_features) Test data that will be fed to estimator.predict. y_true : array-like of shape (n_samples,) Gold standard target values for X. **kwargs : dict Other parameters passed to the scorer. Refer to :func:`set_score_request` for more details. Returns ------- scores : ndarray of shape (thresholds,) The scores associated to each threshold. potential_thresholds : ndarray of shape (thresholds,) The potential thresholds used to compute the scores. """ pos_label = self._get_pos_label() y_score = method_caller( estimator, self._response_method, X, pos_label=pos_label ) scoring_kwargs = {**self._kwargs, **kwargs} if isinstance(self._thresholds, Integral): potential_thresholds = np.linspace( np.min(y_score), np.max(y_score), self._thresholds ) else: potential_thresholds = np.asarray(self._thresholds) score_thresholds = [ self._sign * self._score_func( y_true, _threshold_scores_to_class_labels( y_score, th, estimator.classes_, pos_label ), **scoring_kwargs, ) for th in potential_thresholds ] return np.array(score_thresholds), potential_thresholds
Evaluate predicted target values for X relative to y_true. Parameters ---------- method_caller : callable Returns predictions given an estimator, method name, and other arguments, potentially caching results. estimator : object Trained estimator to use for scoring. X : {array-like, sparse matrix} of shape (n_samples, n_features) Test data that will be fed to estimator.predict. y_true : array-like of shape (n_samples,) Gold standard target values for X. **kwargs : dict Other parameters passed to the scorer. Refer to :func:`set_score_request` for more details. Returns ------- scores : ndarray of shape (thresholds,) The scores associated to each threshold. potential_thresholds : ndarray of shape (thresholds,) The potential thresholds used to compute the scores.
_score
python
scikit-learn/scikit-learn
sklearn/metrics/_scorer.py
https://github.com/scikit-learn/scikit-learn/blob/master/sklearn/metrics/_scorer.py
BSD-3-Clause
def _check_rows_and_columns(a, b): """Unpacks the row and column arrays and checks their shape.""" check_consistent_length(*a) check_consistent_length(*b) checks = lambda x: check_array(x, ensure_2d=False) a_rows, a_cols = map(checks, a) b_rows, b_cols = map(checks, b) return a_rows, a_cols, b_rows, b_cols
Unpacks the row and column arrays and checks their shape.
_check_rows_and_columns
python
scikit-learn/scikit-learn
sklearn/metrics/cluster/_bicluster.py
https://github.com/scikit-learn/scikit-learn/blob/master/sklearn/metrics/cluster/_bicluster.py
BSD-3-Clause
def _jaccard(a_rows, a_cols, b_rows, b_cols): """Jaccard coefficient on the elements of the two biclusters.""" intersection = (a_rows * b_rows).sum() * (a_cols * b_cols).sum() a_size = a_rows.sum() * a_cols.sum() b_size = b_rows.sum() * b_cols.sum() return intersection / (a_size + b_size - intersection)
Jaccard coefficient on the elements of the two biclusters.
_jaccard
python
scikit-learn/scikit-learn
sklearn/metrics/cluster/_bicluster.py
https://github.com/scikit-learn/scikit-learn/blob/master/sklearn/metrics/cluster/_bicluster.py
BSD-3-Clause
def _pairwise_similarity(a, b, similarity): """Computes pairwise similarity matrix. result[i, j] is the Jaccard coefficient of a's bicluster i and b's bicluster j. """ a_rows, a_cols, b_rows, b_cols = _check_rows_and_columns(a, b) n_a = a_rows.shape[0] n_b = b_rows.shape[0] result = np.array( [ [similarity(a_rows[i], a_cols[i], b_rows[j], b_cols[j]) for j in range(n_b)] for i in range(n_a) ] ) return result
Computes pairwise similarity matrix. result[i, j] is the Jaccard coefficient of a's bicluster i and b's bicluster j.
_pairwise_similarity
python
scikit-learn/scikit-learn
sklearn/metrics/cluster/_bicluster.py
https://github.com/scikit-learn/scikit-learn/blob/master/sklearn/metrics/cluster/_bicluster.py
BSD-3-Clause
def consensus_score(a, b, *, similarity="jaccard"): """The similarity of two sets of biclusters. Similarity between individual biclusters is computed. Then the best matching between sets is found by solving a linear sum assignment problem, using a modified Jonker-Volgenant algorithm. The final score is the sum of similarities divided by the size of the larger set. Read more in the :ref:`User Guide <biclustering>`. Parameters ---------- a : tuple (rows, columns) Tuple of row and column indicators for a set of biclusters. b : tuple (rows, columns) Another set of biclusters like ``a``. similarity : 'jaccard' or callable, default='jaccard' May be the string "jaccard" to use the Jaccard coefficient, or any function that takes four arguments, each of which is a 1d indicator vector: (a_rows, a_columns, b_rows, b_columns). Returns ------- consensus_score : float Consensus score, a non-negative value, sum of similarities divided by size of larger set. See Also -------- scipy.optimize.linear_sum_assignment : Solve the linear sum assignment problem. References ---------- * Hochreiter, Bodenhofer, et. al., 2010. `FABIA: factor analysis for bicluster acquisition <https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2881408/>`__. Examples -------- >>> from sklearn.metrics import consensus_score >>> a = ([[True, False], [False, True]], [[False, True], [True, False]]) >>> b = ([[False, True], [True, False]], [[True, False], [False, True]]) >>> consensus_score(a, b, similarity='jaccard') 1.0 """ if similarity == "jaccard": similarity = _jaccard matrix = _pairwise_similarity(a, b, similarity) row_indices, col_indices = linear_sum_assignment(1.0 - matrix) n_a = len(a[0]) n_b = len(b[0]) return float(matrix[row_indices, col_indices].sum() / max(n_a, n_b))
The similarity of two sets of biclusters. Similarity between individual biclusters is computed. Then the best matching between sets is found by solving a linear sum assignment problem, using a modified Jonker-Volgenant algorithm. The final score is the sum of similarities divided by the size of the larger set. Read more in the :ref:`User Guide <biclustering>`. Parameters ---------- a : tuple (rows, columns) Tuple of row and column indicators for a set of biclusters. b : tuple (rows, columns) Another set of biclusters like ``a``. similarity : 'jaccard' or callable, default='jaccard' May be the string "jaccard" to use the Jaccard coefficient, or any function that takes four arguments, each of which is a 1d indicator vector: (a_rows, a_columns, b_rows, b_columns). Returns ------- consensus_score : float Consensus score, a non-negative value, sum of similarities divided by size of larger set. See Also -------- scipy.optimize.linear_sum_assignment : Solve the linear sum assignment problem. References ---------- * Hochreiter, Bodenhofer, et. al., 2010. `FABIA: factor analysis for bicluster acquisition <https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2881408/>`__. Examples -------- >>> from sklearn.metrics import consensus_score >>> a = ([[True, False], [False, True]], [[False, True], [True, False]]) >>> b = ([[False, True], [True, False]], [[True, False], [False, True]]) >>> consensus_score(a, b, similarity='jaccard') 1.0
consensus_score
python
scikit-learn/scikit-learn
sklearn/metrics/cluster/_bicluster.py
https://github.com/scikit-learn/scikit-learn/blob/master/sklearn/metrics/cluster/_bicluster.py
BSD-3-Clause
def check_clusterings(labels_true, labels_pred): """Check that the labels arrays are 1D and of same dimension. Parameters ---------- labels_true : array-like of shape (n_samples,) The true labels. labels_pred : array-like of shape (n_samples,) The predicted labels. """ labels_true = check_array( labels_true, ensure_2d=False, ensure_min_samples=0, dtype=None, ) labels_pred = check_array( labels_pred, ensure_2d=False, ensure_min_samples=0, dtype=None, ) type_label = type_of_target(labels_true) type_pred = type_of_target(labels_pred) if "continuous" in (type_pred, type_label): msg = ( "Clustering metrics expects discrete values but received" f" {type_label} values for label, and {type_pred} values " "for target" ) warnings.warn(msg, UserWarning) # input checks if labels_true.ndim != 1: raise ValueError("labels_true must be 1D: shape is %r" % (labels_true.shape,)) if labels_pred.ndim != 1: raise ValueError("labels_pred must be 1D: shape is %r" % (labels_pred.shape,)) check_consistent_length(labels_true, labels_pred) return labels_true, labels_pred
Check that the labels arrays are 1D and of same dimension. Parameters ---------- labels_true : array-like of shape (n_samples,) The true labels. labels_pred : array-like of shape (n_samples,) The predicted labels.
check_clusterings
python
scikit-learn/scikit-learn
sklearn/metrics/cluster/_supervised.py
https://github.com/scikit-learn/scikit-learn/blob/master/sklearn/metrics/cluster/_supervised.py
BSD-3-Clause
def _generalized_average(U, V, average_method): """Return a particular mean of two numbers.""" if average_method == "min": return min(U, V) elif average_method == "geometric": return np.sqrt(U * V) elif average_method == "arithmetic": return np.mean([U, V]) elif average_method == "max": return max(U, V) else: raise ValueError( "'average_method' must be 'min', 'geometric', 'arithmetic', or 'max'" )
Return a particular mean of two numbers.
_generalized_average
python
scikit-learn/scikit-learn
sklearn/metrics/cluster/_supervised.py
https://github.com/scikit-learn/scikit-learn/blob/master/sklearn/metrics/cluster/_supervised.py
BSD-3-Clause
def contingency_matrix( labels_true, labels_pred, *, eps=None, sparse=False, dtype=np.int64 ): """Build a contingency matrix describing the relationship between labels. Read more in the :ref:`User Guide <contingency_matrix>`. Parameters ---------- labels_true : array-like of shape (n_samples,) Ground truth class labels to be used as a reference. labels_pred : array-like of shape (n_samples,) Cluster labels to evaluate. eps : float, default=None If a float, that value is added to all values in the contingency matrix. This helps to stop NaN propagation. If ``None``, nothing is adjusted. sparse : bool, default=False If `True`, return a sparse CSR contingency matrix. If `eps` is not `None` and `sparse` is `True` will raise ValueError. .. versionadded:: 0.18 dtype : numeric type, default=np.int64 Output dtype. Ignored if `eps` is not `None`. .. versionadded:: 0.24 Returns ------- contingency : {array-like, sparse}, shape=[n_classes_true, n_classes_pred] Matrix :math:`C` such that :math:`C_{i, j}` is the number of samples in true class :math:`i` and in predicted class :math:`j`. If ``eps is None``, the dtype of this array will be integer unless set otherwise with the ``dtype`` argument. If ``eps`` is given, the dtype will be float. Will be a ``sklearn.sparse.csr_matrix`` if ``sparse=True``. Examples -------- >>> from sklearn.metrics.cluster import contingency_matrix >>> labels_true = [0, 0, 1, 1, 2, 2] >>> labels_pred = [1, 0, 2, 1, 0, 2] >>> contingency_matrix(labels_true, labels_pred) array([[1, 1, 0], [0, 1, 1], [1, 0, 1]]) """ if eps is not None and sparse: raise ValueError("Cannot set 'eps' when sparse=True") classes, class_idx = np.unique(labels_true, return_inverse=True) clusters, cluster_idx = np.unique(labels_pred, return_inverse=True) n_classes = classes.shape[0] n_clusters = clusters.shape[0] # Using coo_matrix to accelerate simple histogram calculation, # i.e. bins are consecutive integers # Currently, coo_matrix is faster than histogram2d for simple cases contingency = sp.coo_matrix( (np.ones(class_idx.shape[0]), (class_idx, cluster_idx)), shape=(n_classes, n_clusters), dtype=dtype, ) if sparse: contingency = contingency.tocsr() contingency.sum_duplicates() else: contingency = contingency.toarray() if eps is not None: # don't use += as contingency is integer contingency = contingency + eps return contingency
Build a contingency matrix describing the relationship between labels. Read more in the :ref:`User Guide <contingency_matrix>`. Parameters ---------- labels_true : array-like of shape (n_samples,) Ground truth class labels to be used as a reference. labels_pred : array-like of shape (n_samples,) Cluster labels to evaluate. eps : float, default=None If a float, that value is added to all values in the contingency matrix. This helps to stop NaN propagation. If ``None``, nothing is adjusted. sparse : bool, default=False If `True`, return a sparse CSR contingency matrix. If `eps` is not `None` and `sparse` is `True` will raise ValueError. .. versionadded:: 0.18 dtype : numeric type, default=np.int64 Output dtype. Ignored if `eps` is not `None`. .. versionadded:: 0.24 Returns ------- contingency : {array-like, sparse}, shape=[n_classes_true, n_classes_pred] Matrix :math:`C` such that :math:`C_{i, j}` is the number of samples in true class :math:`i` and in predicted class :math:`j`. If ``eps is None``, the dtype of this array will be integer unless set otherwise with the ``dtype`` argument. If ``eps`` is given, the dtype will be float. Will be a ``sklearn.sparse.csr_matrix`` if ``sparse=True``. Examples -------- >>> from sklearn.metrics.cluster import contingency_matrix >>> labels_true = [0, 0, 1, 1, 2, 2] >>> labels_pred = [1, 0, 2, 1, 0, 2] >>> contingency_matrix(labels_true, labels_pred) array([[1, 1, 0], [0, 1, 1], [1, 0, 1]])
contingency_matrix
python
scikit-learn/scikit-learn
sklearn/metrics/cluster/_supervised.py
https://github.com/scikit-learn/scikit-learn/blob/master/sklearn/metrics/cluster/_supervised.py
BSD-3-Clause
def homogeneity_completeness_v_measure(labels_true, labels_pred, *, beta=1.0): """Compute the homogeneity and completeness and V-Measure scores at once. Those metrics are based on normalized conditional entropy measures of the clustering labeling to evaluate given the knowledge of a Ground Truth class labels of the same samples. A clustering result satisfies homogeneity if all of its clusters contain only data points which are members of a single class. A clustering result satisfies completeness if all the data points that are members of a given class are elements of the same cluster. Both scores have positive values between 0.0 and 1.0, larger values being desirable. Those 3 metrics are independent of the absolute values of the labels: a permutation of the class or cluster label values won't change the score values in any way. V-Measure is furthermore symmetric: swapping ``labels_true`` and ``label_pred`` will give the same score. This does not hold for homogeneity and completeness. V-Measure is identical to :func:`normalized_mutual_info_score` with the arithmetic averaging method. Read more in the :ref:`User Guide <homogeneity_completeness>`. Parameters ---------- labels_true : array-like of shape (n_samples,) Ground truth class labels to be used as a reference. labels_pred : array-like of shape (n_samples,) Cluster labels to evaluate. beta : float, default=1.0 Ratio of weight attributed to ``homogeneity`` vs ``completeness``. If ``beta`` is greater than 1, ``completeness`` is weighted more strongly in the calculation. If ``beta`` is less than 1, ``homogeneity`` is weighted more strongly. Returns ------- homogeneity : float Score between 0.0 and 1.0. 1.0 stands for perfectly homogeneous labeling. completeness : float Score between 0.0 and 1.0. 1.0 stands for perfectly complete labeling. v_measure : float Harmonic mean of the first two. See Also -------- homogeneity_score : Homogeneity metric of cluster labeling. completeness_score : Completeness metric of cluster labeling. v_measure_score : V-Measure (NMI with arithmetic mean option). Examples -------- >>> from sklearn.metrics import homogeneity_completeness_v_measure >>> y_true, y_pred = [0, 0, 1, 1, 2, 2], [0, 0, 1, 2, 2, 2] >>> homogeneity_completeness_v_measure(y_true, y_pred) (0.71, 0.771, 0.74) """ labels_true, labels_pred = check_clusterings(labels_true, labels_pred) if len(labels_true) == 0: return 1.0, 1.0, 1.0 entropy_C = entropy(labels_true) entropy_K = entropy(labels_pred) contingency = contingency_matrix(labels_true, labels_pred, sparse=True) MI = mutual_info_score(None, None, contingency=contingency) homogeneity = MI / (entropy_C) if entropy_C else 1.0 completeness = MI / (entropy_K) if entropy_K else 1.0 if homogeneity + completeness == 0.0: v_measure_score = 0.0 else: v_measure_score = ( (1 + beta) * homogeneity * completeness / (beta * homogeneity + completeness) ) return float(homogeneity), float(completeness), float(v_measure_score)
Compute the homogeneity and completeness and V-Measure scores at once. Those metrics are based on normalized conditional entropy measures of the clustering labeling to evaluate given the knowledge of a Ground Truth class labels of the same samples. A clustering result satisfies homogeneity if all of its clusters contain only data points which are members of a single class. A clustering result satisfies completeness if all the data points that are members of a given class are elements of the same cluster. Both scores have positive values between 0.0 and 1.0, larger values being desirable. Those 3 metrics are independent of the absolute values of the labels: a permutation of the class or cluster label values won't change the score values in any way. V-Measure is furthermore symmetric: swapping ``labels_true`` and ``label_pred`` will give the same score. This does not hold for homogeneity and completeness. V-Measure is identical to :func:`normalized_mutual_info_score` with the arithmetic averaging method. Read more in the :ref:`User Guide <homogeneity_completeness>`. Parameters ---------- labels_true : array-like of shape (n_samples,) Ground truth class labels to be used as a reference. labels_pred : array-like of shape (n_samples,) Cluster labels to evaluate. beta : float, default=1.0 Ratio of weight attributed to ``homogeneity`` vs ``completeness``. If ``beta`` is greater than 1, ``completeness`` is weighted more strongly in the calculation. If ``beta`` is less than 1, ``homogeneity`` is weighted more strongly. Returns ------- homogeneity : float Score between 0.0 and 1.0. 1.0 stands for perfectly homogeneous labeling. completeness : float Score between 0.0 and 1.0. 1.0 stands for perfectly complete labeling. v_measure : float Harmonic mean of the first two. See Also -------- homogeneity_score : Homogeneity metric of cluster labeling. completeness_score : Completeness metric of cluster labeling. v_measure_score : V-Measure (NMI with arithmetic mean option). Examples -------- >>> from sklearn.metrics import homogeneity_completeness_v_measure >>> y_true, y_pred = [0, 0, 1, 1, 2, 2], [0, 0, 1, 2, 2, 2] >>> homogeneity_completeness_v_measure(y_true, y_pred) (0.71, 0.771, 0.74)
homogeneity_completeness_v_measure
python
scikit-learn/scikit-learn
sklearn/metrics/cluster/_supervised.py
https://github.com/scikit-learn/scikit-learn/blob/master/sklearn/metrics/cluster/_supervised.py
BSD-3-Clause
def mutual_info_score(labels_true, labels_pred, *, contingency=None): """Mutual Information between two clusterings. The Mutual Information is a measure of the similarity between two labels of the same data. Where :math:`|U_i|` is the number of the samples in cluster :math:`U_i` and :math:`|V_j|` is the number of the samples in cluster :math:`V_j`, the Mutual Information between clusterings :math:`U` and :math:`V` is given as: .. math:: MI(U,V)=\\sum_{i=1}^{|U|} \\sum_{j=1}^{|V|} \\frac{|U_i\\cap V_j|}{N} \\log\\frac{N|U_i \\cap V_j|}{|U_i||V_j|} This metric is independent of the absolute values of the labels: a permutation of the class or cluster label values won't change the score value in any way. This metric is furthermore symmetric: switching :math:`U` (i.e ``label_true``) with :math:`V` (i.e. ``label_pred``) will return the same score value. This can be useful to measure the agreement of two independent label assignments strategies on the same dataset when the real ground truth is not known. Read more in the :ref:`User Guide <mutual_info_score>`. Parameters ---------- labels_true : array-like of shape (n_samples,), dtype=integral A clustering of the data into disjoint subsets, called :math:`U` in the above formula. labels_pred : array-like of shape (n_samples,), dtype=integral A clustering of the data into disjoint subsets, called :math:`V` in the above formula. contingency : {array-like, sparse matrix} of shape \ (n_classes_true, n_classes_pred), default=None A contingency matrix given by the :func:`~sklearn.metrics.cluster.contingency_matrix` function. If value is ``None``, it will be computed, otherwise the given value is used, with ``labels_true`` and ``labels_pred`` ignored. Returns ------- mi : float Mutual information, a non-negative value, measured in nats using the natural logarithm. See Also -------- adjusted_mutual_info_score : Adjusted against chance Mutual Information. normalized_mutual_info_score : Normalized Mutual Information. Notes ----- The logarithm used is the natural logarithm (base-e). Examples -------- >>> from sklearn.metrics import mutual_info_score >>> labels_true = [0, 1, 1, 0, 1, 0] >>> labels_pred = [0, 1, 0, 0, 1, 1] >>> mutual_info_score(labels_true, labels_pred) 0.0566 """ if contingency is None: labels_true, labels_pred = check_clusterings(labels_true, labels_pred) contingency = contingency_matrix(labels_true, labels_pred, sparse=True) else: contingency = check_array( contingency, accept_sparse=["csr", "csc", "coo"], dtype=[int, np.int32, np.int64], ) if isinstance(contingency, np.ndarray): # For an array nzx, nzy = np.nonzero(contingency) nz_val = contingency[nzx, nzy] else: # For a sparse matrix nzx, nzy, nz_val = sp.find(contingency) contingency_sum = contingency.sum() pi = np.ravel(contingency.sum(axis=1)) pj = np.ravel(contingency.sum(axis=0)) # Since MI <= min(H(X), H(Y)), any labelling with zero entropy, i.e. containing a # single cluster, implies MI = 0 if pi.size == 1 or pj.size == 1: return 0.0 log_contingency_nm = np.log(nz_val) contingency_nm = nz_val / contingency_sum # Don't need to calculate the full outer product, just for non-zeroes outer = pi.take(nzx).astype(np.int64, copy=False) * pj.take(nzy).astype( np.int64, copy=False ) log_outer = -np.log(outer) + log(pi.sum()) + log(pj.sum()) mi = ( contingency_nm * (log_contingency_nm - log(contingency_sum)) + contingency_nm * log_outer ) mi = np.where(np.abs(mi) < np.finfo(mi.dtype).eps, 0.0, mi) return float(np.clip(mi.sum(), 0.0, None))
Mutual Information between two clusterings. The Mutual Information is a measure of the similarity between two labels of the same data. Where :math:`|U_i|` is the number of the samples in cluster :math:`U_i` and :math:`|V_j|` is the number of the samples in cluster :math:`V_j`, the Mutual Information between clusterings :math:`U` and :math:`V` is given as: .. math:: MI(U,V)=\sum_{i=1}^{|U|} \sum_{j=1}^{|V|} \frac{|U_i\cap V_j|}{N} \log\frac{N|U_i \cap V_j|}{|U_i||V_j|} This metric is independent of the absolute values of the labels: a permutation of the class or cluster label values won't change the score value in any way. This metric is furthermore symmetric: switching :math:`U` (i.e ``label_true``) with :math:`V` (i.e. ``label_pred``) will return the same score value. This can be useful to measure the agreement of two independent label assignments strategies on the same dataset when the real ground truth is not known. Read more in the :ref:`User Guide <mutual_info_score>`. Parameters ---------- labels_true : array-like of shape (n_samples,), dtype=integral A clustering of the data into disjoint subsets, called :math:`U` in the above formula. labels_pred : array-like of shape (n_samples,), dtype=integral A clustering of the data into disjoint subsets, called :math:`V` in the above formula. contingency : {array-like, sparse matrix} of shape (n_classes_true, n_classes_pred), default=None A contingency matrix given by the :func:`~sklearn.metrics.cluster.contingency_matrix` function. If value is ``None``, it will be computed, otherwise the given value is used, with ``labels_true`` and ``labels_pred`` ignored. Returns ------- mi : float Mutual information, a non-negative value, measured in nats using the natural logarithm. See Also -------- adjusted_mutual_info_score : Adjusted against chance Mutual Information. normalized_mutual_info_score : Normalized Mutual Information. Notes ----- The logarithm used is the natural logarithm (base-e). Examples -------- >>> from sklearn.metrics import mutual_info_score >>> labels_true = [0, 1, 1, 0, 1, 0] >>> labels_pred = [0, 1, 0, 0, 1, 1] >>> mutual_info_score(labels_true, labels_pred) 0.0566
mutual_info_score
python
scikit-learn/scikit-learn
sklearn/metrics/cluster/_supervised.py
https://github.com/scikit-learn/scikit-learn/blob/master/sklearn/metrics/cluster/_supervised.py
BSD-3-Clause
def normalized_mutual_info_score( labels_true, labels_pred, *, average_method="arithmetic" ): """Normalized Mutual Information between two clusterings. Normalized Mutual Information (NMI) is a normalization of the Mutual Information (MI) score to scale the results between 0 (no mutual information) and 1 (perfect correlation). In this function, mutual information is normalized by some generalized mean of ``H(labels_true)`` and ``H(labels_pred))``, defined by the `average_method`. This measure is not adjusted for chance. Therefore :func:`adjusted_mutual_info_score` might be preferred. This metric is independent of the absolute values of the labels: a permutation of the class or cluster label values won't change the score value in any way. This metric is furthermore symmetric: switching ``label_true`` with ``label_pred`` will return the same score value. This can be useful to measure the agreement of two independent label assignments strategies on the same dataset when the real ground truth is not known. Read more in the :ref:`User Guide <mutual_info_score>`. Parameters ---------- labels_true : int array-like of shape (n_samples,) A clustering of the data into disjoint subsets. labels_pred : int array-like of shape (n_samples,) A clustering of the data into disjoint subsets. average_method : {'min', 'geometric', 'arithmetic', 'max'}, default='arithmetic' How to compute the normalizer in the denominator. .. versionadded:: 0.20 .. versionchanged:: 0.22 The default value of ``average_method`` changed from 'geometric' to 'arithmetic'. Returns ------- nmi : float Score between 0.0 and 1.0 in normalized nats (based on the natural logarithm). 1.0 stands for perfectly complete labeling. See Also -------- v_measure_score : V-Measure (NMI with arithmetic mean option). adjusted_rand_score : Adjusted Rand Index. adjusted_mutual_info_score : Adjusted Mutual Information (adjusted against chance). Examples -------- Perfect labelings are both homogeneous and complete, hence have score 1.0:: >>> from sklearn.metrics.cluster import normalized_mutual_info_score >>> normalized_mutual_info_score([0, 0, 1, 1], [0, 0, 1, 1]) 1.0 >>> normalized_mutual_info_score([0, 0, 1, 1], [1, 1, 0, 0]) 1.0 If classes members are completely split across different clusters, the assignment is totally in-complete, hence the NMI is null:: >>> normalized_mutual_info_score([0, 0, 0, 0], [0, 1, 2, 3]) 0.0 """ labels_true, labels_pred = check_clusterings(labels_true, labels_pred) classes = np.unique(labels_true) clusters = np.unique(labels_pred) # Special limit cases: no clustering since the data is not split. # It corresponds to both labellings having zero entropy. # This is a perfect match hence return 1.0. if ( classes.shape[0] == clusters.shape[0] == 1 or classes.shape[0] == clusters.shape[0] == 0 ): return 1.0 contingency = contingency_matrix(labels_true, labels_pred, sparse=True) contingency = contingency.astype(np.float64, copy=False) # Calculate the MI for the two clusterings mi = mutual_info_score(labels_true, labels_pred, contingency=contingency) # At this point mi = 0 can't be a perfect match (the special case of a single # cluster has been dealt with before). Hence, if mi = 0, the nmi must be 0 whatever # the normalization. if mi == 0: return 0.0 # Calculate entropy for each labeling h_true, h_pred = entropy(labels_true), entropy(labels_pred) normalizer = _generalized_average(h_true, h_pred, average_method) return float(mi / normalizer)
Normalized Mutual Information between two clusterings. Normalized Mutual Information (NMI) is a normalization of the Mutual Information (MI) score to scale the results between 0 (no mutual information) and 1 (perfect correlation). In this function, mutual information is normalized by some generalized mean of ``H(labels_true)`` and ``H(labels_pred))``, defined by the `average_method`. This measure is not adjusted for chance. Therefore :func:`adjusted_mutual_info_score` might be preferred. This metric is independent of the absolute values of the labels: a permutation of the class or cluster label values won't change the score value in any way. This metric is furthermore symmetric: switching ``label_true`` with ``label_pred`` will return the same score value. This can be useful to measure the agreement of two independent label assignments strategies on the same dataset when the real ground truth is not known. Read more in the :ref:`User Guide <mutual_info_score>`. Parameters ---------- labels_true : int array-like of shape (n_samples,) A clustering of the data into disjoint subsets. labels_pred : int array-like of shape (n_samples,) A clustering of the data into disjoint subsets. average_method : {'min', 'geometric', 'arithmetic', 'max'}, default='arithmetic' How to compute the normalizer in the denominator. .. versionadded:: 0.20 .. versionchanged:: 0.22 The default value of ``average_method`` changed from 'geometric' to 'arithmetic'. Returns ------- nmi : float Score between 0.0 and 1.0 in normalized nats (based on the natural logarithm). 1.0 stands for perfectly complete labeling. See Also -------- v_measure_score : V-Measure (NMI with arithmetic mean option). adjusted_rand_score : Adjusted Rand Index. adjusted_mutual_info_score : Adjusted Mutual Information (adjusted against chance). Examples -------- Perfect labelings are both homogeneous and complete, hence have score 1.0:: >>> from sklearn.metrics.cluster import normalized_mutual_info_score >>> normalized_mutual_info_score([0, 0, 1, 1], [0, 0, 1, 1]) 1.0 >>> normalized_mutual_info_score([0, 0, 1, 1], [1, 1, 0, 0]) 1.0 If classes members are completely split across different clusters, the assignment is totally in-complete, hence the NMI is null:: >>> normalized_mutual_info_score([0, 0, 0, 0], [0, 1, 2, 3]) 0.0
normalized_mutual_info_score
python
scikit-learn/scikit-learn
sklearn/metrics/cluster/_supervised.py
https://github.com/scikit-learn/scikit-learn/blob/master/sklearn/metrics/cluster/_supervised.py
BSD-3-Clause
def fowlkes_mallows_score(labels_true, labels_pred, *, sparse="deprecated"): """Measure the similarity of two clusterings of a set of points. .. versionadded:: 0.18 The Fowlkes-Mallows index (FMI) is defined as the geometric mean of the precision and recall:: FMI = TP / sqrt((TP + FP) * (TP + FN)) Where ``TP`` is the number of **True Positive** (i.e. the number of pairs of points that belong to the same cluster in both ``labels_true`` and ``labels_pred``), ``FP`` is the number of **False Positive** (i.e. the number of pairs of points that belong to the same cluster in ``labels_pred`` but not in ``labels_true``) and ``FN`` is the number of **False Negative** (i.e. the number of pairs of points that belong to the same cluster in ``labels_true`` but not in ``labels_pred``). The score ranges from 0 to 1. A high value indicates a good similarity between two clusters. Read more in the :ref:`User Guide <fowlkes_mallows_scores>`. Parameters ---------- labels_true : array-like of shape (n_samples,), dtype=int A clustering of the data into disjoint subsets. labels_pred : array-like of shape (n_samples,), dtype=int A clustering of the data into disjoint subsets. sparse : bool, default=False Compute contingency matrix internally with sparse matrix. .. deprecated:: 1.7 The ``sparse`` parameter is deprecated and will be removed in 1.9. It has no effect. Returns ------- score : float The resulting Fowlkes-Mallows score. References ---------- .. [1] `E. B. Fowkles and C. L. Mallows, 1983. "A method for comparing two hierarchical clusterings". Journal of the American Statistical Association <https://www.tandfonline.com/doi/abs/10.1080/01621459.1983.10478008>`_ .. [2] `Wikipedia entry for the Fowlkes-Mallows Index <https://en.wikipedia.org/wiki/Fowlkes-Mallows_index>`_ Examples -------- Perfect labelings are both homogeneous and complete, hence have score 1.0:: >>> from sklearn.metrics.cluster import fowlkes_mallows_score >>> fowlkes_mallows_score([0, 0, 1, 1], [0, 0, 1, 1]) 1.0 >>> fowlkes_mallows_score([0, 0, 1, 1], [1, 1, 0, 0]) 1.0 If classes members are completely split across different clusters, the assignment is totally random, hence the FMI is null:: >>> fowlkes_mallows_score([0, 0, 0, 0], [0, 1, 2, 3]) 0.0 """ # TODO(1.9): remove the sparse parameter if sparse != "deprecated": warnings.warn( "The 'sparse' parameter was deprecated in 1.7 and will be removed in 1.9. " "It has no effect. Leave it to its default value to silence this warning.", FutureWarning, ) labels_true, labels_pred = check_clusterings(labels_true, labels_pred) (n_samples,) = labels_true.shape c = contingency_matrix(labels_true, labels_pred, sparse=True) c = c.astype(np.int64, copy=False) tk = np.dot(c.data, c.data) - n_samples pk = np.sum(np.asarray(c.sum(axis=0)).ravel() ** 2) - n_samples qk = np.sum(np.asarray(c.sum(axis=1)).ravel() ** 2) - n_samples return float(np.sqrt(tk / pk) * np.sqrt(tk / qk)) if tk != 0.0 else 0.0
Measure the similarity of two clusterings of a set of points. .. versionadded:: 0.18 The Fowlkes-Mallows index (FMI) is defined as the geometric mean of the precision and recall:: FMI = TP / sqrt((TP + FP) * (TP + FN)) Where ``TP`` is the number of **True Positive** (i.e. the number of pairs of points that belong to the same cluster in both ``labels_true`` and ``labels_pred``), ``FP`` is the number of **False Positive** (i.e. the number of pairs of points that belong to the same cluster in ``labels_pred`` but not in ``labels_true``) and ``FN`` is the number of **False Negative** (i.e. the number of pairs of points that belong to the same cluster in ``labels_true`` but not in ``labels_pred``). The score ranges from 0 to 1. A high value indicates a good similarity between two clusters. Read more in the :ref:`User Guide <fowlkes_mallows_scores>`. Parameters ---------- labels_true : array-like of shape (n_samples,), dtype=int A clustering of the data into disjoint subsets. labels_pred : array-like of shape (n_samples,), dtype=int A clustering of the data into disjoint subsets. sparse : bool, default=False Compute contingency matrix internally with sparse matrix. .. deprecated:: 1.7 The ``sparse`` parameter is deprecated and will be removed in 1.9. It has no effect. Returns ------- score : float The resulting Fowlkes-Mallows score. References ---------- .. [1] `E. B. Fowkles and C. L. Mallows, 1983. "A method for comparing two hierarchical clusterings". Journal of the American Statistical Association <https://www.tandfonline.com/doi/abs/10.1080/01621459.1983.10478008>`_ .. [2] `Wikipedia entry for the Fowlkes-Mallows Index <https://en.wikipedia.org/wiki/Fowlkes-Mallows_index>`_ Examples -------- Perfect labelings are both homogeneous and complete, hence have score 1.0:: >>> from sklearn.metrics.cluster import fowlkes_mallows_score >>> fowlkes_mallows_score([0, 0, 1, 1], [0, 0, 1, 1]) 1.0 >>> fowlkes_mallows_score([0, 0, 1, 1], [1, 1, 0, 0]) 1.0 If classes members are completely split across different clusters, the assignment is totally random, hence the FMI is null:: >>> fowlkes_mallows_score([0, 0, 0, 0], [0, 1, 2, 3]) 0.0
fowlkes_mallows_score
python
scikit-learn/scikit-learn
sklearn/metrics/cluster/_supervised.py
https://github.com/scikit-learn/scikit-learn/blob/master/sklearn/metrics/cluster/_supervised.py
BSD-3-Clause
def entropy(labels): """Calculate the entropy for a labeling. Parameters ---------- labels : array-like of shape (n_samples,), dtype=int The labels. Returns ------- entropy : float The entropy for a labeling. Notes ----- The logarithm used is the natural logarithm (base-e). """ xp, is_array_api_compliant, device_ = get_namespace_and_device(labels) labels_len = labels.shape[0] if is_array_api_compliant else len(labels) if labels_len == 0: return 1.0 pi = xp.astype(xp.unique_counts(labels)[1], _max_precision_float_dtype(xp, device_)) # single cluster => zero entropy if pi.size == 1: return 0.0 pi_sum = xp.sum(pi) # log(a / b) should be calculated as log(a) - log(b) for # possible loss of precision # Always convert the result as a Python scalar (on CPU) instead of a device # specific scalar array. return float(-xp.sum((pi / pi_sum) * (xp.log(pi) - log(pi_sum))))
Calculate the entropy for a labeling. Parameters ---------- labels : array-like of shape (n_samples,), dtype=int The labels. Returns ------- entropy : float The entropy for a labeling. Notes ----- The logarithm used is the natural logarithm (base-e).
entropy
python
scikit-learn/scikit-learn
sklearn/metrics/cluster/_supervised.py
https://github.com/scikit-learn/scikit-learn/blob/master/sklearn/metrics/cluster/_supervised.py
BSD-3-Clause
def check_number_of_labels(n_labels, n_samples): """Check that number of labels are valid. Parameters ---------- n_labels : int Number of labels. n_samples : int Number of samples. """ if not 1 < n_labels < n_samples: raise ValueError( "Number of labels is %d. Valid values are 2 to n_samples - 1 (inclusive)" % n_labels )
Check that number of labels are valid. Parameters ---------- n_labels : int Number of labels. n_samples : int Number of samples.
check_number_of_labels
python
scikit-learn/scikit-learn
sklearn/metrics/cluster/_unsupervised.py
https://github.com/scikit-learn/scikit-learn/blob/master/sklearn/metrics/cluster/_unsupervised.py
BSD-3-Clause
def silhouette_score( X, labels, *, metric="euclidean", sample_size=None, random_state=None, **kwds ): """Compute the mean Silhouette Coefficient of all samples. The Silhouette Coefficient is calculated using the mean intra-cluster distance (``a``) and the mean nearest-cluster distance (``b``) for each sample. The Silhouette Coefficient for a sample is ``(b - a) / max(a, b)``. To clarify, ``b`` is the distance between a sample and the nearest cluster that the sample is not a part of. Note that Silhouette Coefficient is only defined if number of labels is ``2 <= n_labels <= n_samples - 1``. This function returns the mean Silhouette Coefficient over all samples. To obtain the values for each sample, use :func:`silhouette_samples`. The best value is 1 and the worst value is -1. Values near 0 indicate overlapping clusters. Negative values generally indicate that a sample has been assigned to the wrong cluster, as a different cluster is more similar. Read more in the :ref:`User Guide <silhouette_coefficient>`. Parameters ---------- X : {array-like, sparse matrix} of shape (n_samples_a, n_samples_a) if metric == \ "precomputed" or (n_samples_a, n_features) otherwise An array of pairwise distances between samples, or a feature array. labels : array-like of shape (n_samples,) Predicted labels for each sample. metric : str or callable, default='euclidean' The metric to use when calculating distance between instances in a feature array. If metric is a string, it must be one of the options allowed by :func:`~sklearn.metrics.pairwise_distances`. If ``X`` is the distance array itself, use ``metric="precomputed"``. sample_size : int, default=None The size of the sample to use when computing the Silhouette Coefficient on a random subset of the data. If ``sample_size is None``, no sampling is used. random_state : int, RandomState instance or None, default=None Determines random number generation for selecting a subset of samples. Used when ``sample_size is not None``. Pass an int for reproducible results across multiple function calls. See :term:`Glossary <random_state>`. **kwds : optional keyword parameters Any further parameters are passed directly to the distance function. If using a scipy.spatial.distance metric, the parameters are still metric dependent. See the scipy docs for usage examples. Returns ------- silhouette : float Mean Silhouette Coefficient for all samples. References ---------- .. [1] `Peter J. Rousseeuw (1987). "Silhouettes: a Graphical Aid to the Interpretation and Validation of Cluster Analysis". Computational and Applied Mathematics 20: 53-65. <https://www.sciencedirect.com/science/article/pii/0377042787901257>`_ .. [2] `Wikipedia entry on the Silhouette Coefficient <https://en.wikipedia.org/wiki/Silhouette_(clustering)>`_ Examples -------- >>> from sklearn.datasets import make_blobs >>> from sklearn.cluster import KMeans >>> from sklearn.metrics import silhouette_score >>> X, y = make_blobs(random_state=42) >>> kmeans = KMeans(n_clusters=2, random_state=42) >>> silhouette_score(X, kmeans.fit_predict(X)) 0.49... """ if sample_size is not None: X, labels = check_X_y(X, labels, accept_sparse=["csc", "csr"]) random_state = check_random_state(random_state) indices = random_state.permutation(X.shape[0])[:sample_size] if metric == "precomputed": X, labels = X[indices].T[indices].T, labels[indices] else: X, labels = X[indices], labels[indices] return float(np.mean(silhouette_samples(X, labels, metric=metric, **kwds)))
Compute the mean Silhouette Coefficient of all samples. The Silhouette Coefficient is calculated using the mean intra-cluster distance (``a``) and the mean nearest-cluster distance (``b``) for each sample. The Silhouette Coefficient for a sample is ``(b - a) / max(a, b)``. To clarify, ``b`` is the distance between a sample and the nearest cluster that the sample is not a part of. Note that Silhouette Coefficient is only defined if number of labels is ``2 <= n_labels <= n_samples - 1``. This function returns the mean Silhouette Coefficient over all samples. To obtain the values for each sample, use :func:`silhouette_samples`. The best value is 1 and the worst value is -1. Values near 0 indicate overlapping clusters. Negative values generally indicate that a sample has been assigned to the wrong cluster, as a different cluster is more similar. Read more in the :ref:`User Guide <silhouette_coefficient>`. Parameters ---------- X : {array-like, sparse matrix} of shape (n_samples_a, n_samples_a) if metric == "precomputed" or (n_samples_a, n_features) otherwise An array of pairwise distances between samples, or a feature array. labels : array-like of shape (n_samples,) Predicted labels for each sample. metric : str or callable, default='euclidean' The metric to use when calculating distance between instances in a feature array. If metric is a string, it must be one of the options allowed by :func:`~sklearn.metrics.pairwise_distances`. If ``X`` is the distance array itself, use ``metric="precomputed"``. sample_size : int, default=None The size of the sample to use when computing the Silhouette Coefficient on a random subset of the data. If ``sample_size is None``, no sampling is used. random_state : int, RandomState instance or None, default=None Determines random number generation for selecting a subset of samples. Used when ``sample_size is not None``. Pass an int for reproducible results across multiple function calls. See :term:`Glossary <random_state>`. **kwds : optional keyword parameters Any further parameters are passed directly to the distance function. If using a scipy.spatial.distance metric, the parameters are still metric dependent. See the scipy docs for usage examples. Returns ------- silhouette : float Mean Silhouette Coefficient for all samples. References ---------- .. [1] `Peter J. Rousseeuw (1987). "Silhouettes: a Graphical Aid to the Interpretation and Validation of Cluster Analysis". Computational and Applied Mathematics 20: 53-65. <https://www.sciencedirect.com/science/article/pii/0377042787901257>`_ .. [2] `Wikipedia entry on the Silhouette Coefficient <https://en.wikipedia.org/wiki/Silhouette_(clustering)>`_ Examples -------- >>> from sklearn.datasets import make_blobs >>> from sklearn.cluster import KMeans >>> from sklearn.metrics import silhouette_score >>> X, y = make_blobs(random_state=42) >>> kmeans = KMeans(n_clusters=2, random_state=42) >>> silhouette_score(X, kmeans.fit_predict(X)) 0.49...
silhouette_score
python
scikit-learn/scikit-learn
sklearn/metrics/cluster/_unsupervised.py
https://github.com/scikit-learn/scikit-learn/blob/master/sklearn/metrics/cluster/_unsupervised.py
BSD-3-Clause
def _silhouette_reduce(D_chunk, start, labels, label_freqs): """Accumulate silhouette statistics for vertical chunk of X. Parameters ---------- D_chunk : {array-like, sparse matrix} of shape (n_chunk_samples, n_samples) Precomputed distances for a chunk. If a sparse matrix is provided, only CSR format is accepted. start : int First index in the chunk. labels : array-like of shape (n_samples,) Corresponding cluster labels, encoded as {0, ..., n_clusters-1}. label_freqs : array-like Distribution of cluster labels in ``labels``. """ n_chunk_samples = D_chunk.shape[0] # accumulate distances from each sample to each cluster cluster_distances = np.zeros( (n_chunk_samples, len(label_freqs)), dtype=D_chunk.dtype ) if issparse(D_chunk): if D_chunk.format != "csr": raise TypeError( "Expected CSR matrix. Please pass sparse matrix in CSR format." ) for i in range(n_chunk_samples): indptr = D_chunk.indptr indices = D_chunk.indices[indptr[i] : indptr[i + 1]] sample_weights = D_chunk.data[indptr[i] : indptr[i + 1]] sample_labels = np.take(labels, indices) cluster_distances[i] += np.bincount( sample_labels, weights=sample_weights, minlength=len(label_freqs) ) else: for i in range(n_chunk_samples): sample_weights = D_chunk[i] sample_labels = labels cluster_distances[i] += np.bincount( sample_labels, weights=sample_weights, minlength=len(label_freqs) ) # intra_index selects intra-cluster distances within cluster_distances end = start + n_chunk_samples intra_index = (np.arange(n_chunk_samples), labels[start:end]) # intra_cluster_distances are averaged over cluster size outside this function intra_cluster_distances = cluster_distances[intra_index] # of the remaining distances we normalise and extract the minimum cluster_distances[intra_index] = np.inf cluster_distances /= label_freqs inter_cluster_distances = cluster_distances.min(axis=1) return intra_cluster_distances, inter_cluster_distances
Accumulate silhouette statistics for vertical chunk of X. Parameters ---------- D_chunk : {array-like, sparse matrix} of shape (n_chunk_samples, n_samples) Precomputed distances for a chunk. If a sparse matrix is provided, only CSR format is accepted. start : int First index in the chunk. labels : array-like of shape (n_samples,) Corresponding cluster labels, encoded as {0, ..., n_clusters-1}. label_freqs : array-like Distribution of cluster labels in ``labels``.
_silhouette_reduce
python
scikit-learn/scikit-learn
sklearn/metrics/cluster/_unsupervised.py
https://github.com/scikit-learn/scikit-learn/blob/master/sklearn/metrics/cluster/_unsupervised.py
BSD-3-Clause
def silhouette_samples(X, labels, *, metric="euclidean", **kwds): """Compute the Silhouette Coefficient for each sample. The Silhouette Coefficient is a measure of how well samples are clustered with samples that are similar to themselves. Clustering models with a high Silhouette Coefficient are said to be dense, where samples in the same cluster are similar to each other, and well separated, where samples in different clusters are not very similar to each other. The Silhouette Coefficient is calculated using the mean intra-cluster distance (``a``) and the mean nearest-cluster distance (``b``) for each sample. The Silhouette Coefficient for a sample is ``(b - a) / max(a, b)``. Note that Silhouette Coefficient is only defined if number of labels is 2 ``<= n_labels <= n_samples - 1``. This function returns the Silhouette Coefficient for each sample. The best value is 1 and the worst value is -1. Values near 0 indicate overlapping clusters. Read more in the :ref:`User Guide <silhouette_coefficient>`. Parameters ---------- X : {array-like, sparse matrix} of shape (n_samples_a, n_samples_a) if metric == \ "precomputed" or (n_samples_a, n_features) otherwise An array of pairwise distances between samples, or a feature array. If a sparse matrix is provided, CSR format should be favoured avoiding an additional copy. labels : array-like of shape (n_samples,) Label values for each sample. metric : str or callable, default='euclidean' The metric to use when calculating distance between instances in a feature array. If metric is a string, it must be one of the options allowed by :func:`~sklearn.metrics.pairwise_distances`. If ``X`` is the distance array itself, use "precomputed" as the metric. Precomputed distance matrices must have 0 along the diagonal. **kwds : optional keyword parameters Any further parameters are passed directly to the distance function. If using a ``scipy.spatial.distance`` metric, the parameters are still metric dependent. See the scipy docs for usage examples. Returns ------- silhouette : array-like of shape (n_samples,) Silhouette Coefficients for each sample. References ---------- .. [1] `Peter J. Rousseeuw (1987). "Silhouettes: a Graphical Aid to the Interpretation and Validation of Cluster Analysis". Computational and Applied Mathematics 20: 53-65. <https://www.sciencedirect.com/science/article/pii/0377042787901257>`_ .. [2] `Wikipedia entry on the Silhouette Coefficient <https://en.wikipedia.org/wiki/Silhouette_(clustering)>`_ Examples -------- >>> from sklearn.metrics import silhouette_samples >>> from sklearn.datasets import make_blobs >>> from sklearn.cluster import KMeans >>> X, y = make_blobs(n_samples=50, random_state=42) >>> kmeans = KMeans(n_clusters=3, random_state=42) >>> labels = kmeans.fit_predict(X) >>> silhouette_samples(X, labels) array([...]) """ X, labels = check_X_y(X, labels, accept_sparse=["csr"]) # Check for non-zero diagonal entries in precomputed distance matrix if metric == "precomputed": error_msg = ValueError( "The precomputed distance matrix contains non-zero " "elements on the diagonal. Use np.fill_diagonal(X, 0)." ) if X.dtype.kind == "f": atol = _atol_for_type(X.dtype) if np.any(np.abs(X.diagonal()) > atol): raise error_msg elif np.any(X.diagonal() != 0): # integral dtype raise error_msg le = LabelEncoder() labels = le.fit_transform(labels) n_samples = len(labels) label_freqs = np.bincount(labels) check_number_of_labels(len(le.classes_), n_samples) kwds["metric"] = metric reduce_func = functools.partial( _silhouette_reduce, labels=labels, label_freqs=label_freqs ) results = zip(*pairwise_distances_chunked(X, reduce_func=reduce_func, **kwds)) intra_clust_dists, inter_clust_dists = results intra_clust_dists = np.concatenate(intra_clust_dists) inter_clust_dists = np.concatenate(inter_clust_dists) denom = (label_freqs - 1).take(labels, mode="clip") with np.errstate(divide="ignore", invalid="ignore"): intra_clust_dists /= denom sil_samples = inter_clust_dists - intra_clust_dists with np.errstate(divide="ignore", invalid="ignore"): sil_samples /= np.maximum(intra_clust_dists, inter_clust_dists) # nan values are for clusters of size 1, and should be 0 return np.nan_to_num(sil_samples)
Compute the Silhouette Coefficient for each sample. The Silhouette Coefficient is a measure of how well samples are clustered with samples that are similar to themselves. Clustering models with a high Silhouette Coefficient are said to be dense, where samples in the same cluster are similar to each other, and well separated, where samples in different clusters are not very similar to each other. The Silhouette Coefficient is calculated using the mean intra-cluster distance (``a``) and the mean nearest-cluster distance (``b``) for each sample. The Silhouette Coefficient for a sample is ``(b - a) / max(a, b)``. Note that Silhouette Coefficient is only defined if number of labels is 2 ``<= n_labels <= n_samples - 1``. This function returns the Silhouette Coefficient for each sample. The best value is 1 and the worst value is -1. Values near 0 indicate overlapping clusters. Read more in the :ref:`User Guide <silhouette_coefficient>`. Parameters ---------- X : {array-like, sparse matrix} of shape (n_samples_a, n_samples_a) if metric == "precomputed" or (n_samples_a, n_features) otherwise An array of pairwise distances between samples, or a feature array. If a sparse matrix is provided, CSR format should be favoured avoiding an additional copy. labels : array-like of shape (n_samples,) Label values for each sample. metric : str or callable, default='euclidean' The metric to use when calculating distance between instances in a feature array. If metric is a string, it must be one of the options allowed by :func:`~sklearn.metrics.pairwise_distances`. If ``X`` is the distance array itself, use "precomputed" as the metric. Precomputed distance matrices must have 0 along the diagonal. **kwds : optional keyword parameters Any further parameters are passed directly to the distance function. If using a ``scipy.spatial.distance`` metric, the parameters are still metric dependent. See the scipy docs for usage examples. Returns ------- silhouette : array-like of shape (n_samples,) Silhouette Coefficients for each sample. References ---------- .. [1] `Peter J. Rousseeuw (1987). "Silhouettes: a Graphical Aid to the Interpretation and Validation of Cluster Analysis". Computational and Applied Mathematics 20: 53-65. <https://www.sciencedirect.com/science/article/pii/0377042787901257>`_ .. [2] `Wikipedia entry on the Silhouette Coefficient <https://en.wikipedia.org/wiki/Silhouette_(clustering)>`_ Examples -------- >>> from sklearn.metrics import silhouette_samples >>> from sklearn.datasets import make_blobs >>> from sklearn.cluster import KMeans >>> X, y = make_blobs(n_samples=50, random_state=42) >>> kmeans = KMeans(n_clusters=3, random_state=42) >>> labels = kmeans.fit_predict(X) >>> silhouette_samples(X, labels) array([...])
silhouette_samples
python
scikit-learn/scikit-learn
sklearn/metrics/cluster/_unsupervised.py
https://github.com/scikit-learn/scikit-learn/blob/master/sklearn/metrics/cluster/_unsupervised.py
BSD-3-Clause
def calinski_harabasz_score(X, labels): """Compute the Calinski and Harabasz score. It is also known as the Variance Ratio Criterion. The score is defined as ratio of the sum of between-cluster dispersion and of within-cluster dispersion. Read more in the :ref:`User Guide <calinski_harabasz_index>`. Parameters ---------- X : array-like of shape (n_samples, n_features) A list of ``n_features``-dimensional data points. Each row corresponds to a single data point. labels : array-like of shape (n_samples,) Predicted labels for each sample. Returns ------- score : float The resulting Calinski-Harabasz score. References ---------- .. [1] `T. Calinski and J. Harabasz, 1974. "A dendrite method for cluster analysis". Communications in Statistics <https://www.tandfonline.com/doi/abs/10.1080/03610927408827101>`_ Examples -------- >>> from sklearn.datasets import make_blobs >>> from sklearn.cluster import KMeans >>> from sklearn.metrics import calinski_harabasz_score >>> X, _ = make_blobs(random_state=0) >>> kmeans = KMeans(n_clusters=3, random_state=0,).fit(X) >>> calinski_harabasz_score(X, kmeans.labels_) 114.8... """ X, labels = check_X_y(X, labels) le = LabelEncoder() labels = le.fit_transform(labels) n_samples, _ = X.shape n_labels = len(le.classes_) check_number_of_labels(n_labels, n_samples) extra_disp, intra_disp = 0.0, 0.0 mean = np.mean(X, axis=0) for k in range(n_labels): cluster_k = X[labels == k] mean_k = np.mean(cluster_k, axis=0) extra_disp += len(cluster_k) * np.sum((mean_k - mean) ** 2) intra_disp += np.sum((cluster_k - mean_k) ** 2) return float( 1.0 if intra_disp == 0.0 else extra_disp * (n_samples - n_labels) / (intra_disp * (n_labels - 1.0)) )
Compute the Calinski and Harabasz score. It is also known as the Variance Ratio Criterion. The score is defined as ratio of the sum of between-cluster dispersion and of within-cluster dispersion. Read more in the :ref:`User Guide <calinski_harabasz_index>`. Parameters ---------- X : array-like of shape (n_samples, n_features) A list of ``n_features``-dimensional data points. Each row corresponds to a single data point. labels : array-like of shape (n_samples,) Predicted labels for each sample. Returns ------- score : float The resulting Calinski-Harabasz score. References ---------- .. [1] `T. Calinski and J. Harabasz, 1974. "A dendrite method for cluster analysis". Communications in Statistics <https://www.tandfonline.com/doi/abs/10.1080/03610927408827101>`_ Examples -------- >>> from sklearn.datasets import make_blobs >>> from sklearn.cluster import KMeans >>> from sklearn.metrics import calinski_harabasz_score >>> X, _ = make_blobs(random_state=0) >>> kmeans = KMeans(n_clusters=3, random_state=0,).fit(X) >>> calinski_harabasz_score(X, kmeans.labels_) 114.8...
calinski_harabasz_score
python
scikit-learn/scikit-learn
sklearn/metrics/cluster/_unsupervised.py
https://github.com/scikit-learn/scikit-learn/blob/master/sklearn/metrics/cluster/_unsupervised.py
BSD-3-Clause
def davies_bouldin_score(X, labels): """Compute the Davies-Bouldin score. The score is defined as the average similarity measure of each cluster with its most similar cluster, where similarity is the ratio of within-cluster distances to between-cluster distances. Thus, clusters which are farther apart and less dispersed will result in a better score. The minimum score is zero, with lower values indicating better clustering. Read more in the :ref:`User Guide <davies-bouldin_index>`. .. versionadded:: 0.20 Parameters ---------- X : array-like of shape (n_samples, n_features) A list of ``n_features``-dimensional data points. Each row corresponds to a single data point. labels : array-like of shape (n_samples,) Predicted labels for each sample. Returns ------- score: float The resulting Davies-Bouldin score. References ---------- .. [1] Davies, David L.; Bouldin, Donald W. (1979). `"A Cluster Separation Measure" <https://ieeexplore.ieee.org/document/4766909>`__. IEEE Transactions on Pattern Analysis and Machine Intelligence. PAMI-1 (2): 224-227 Examples -------- >>> from sklearn.metrics import davies_bouldin_score >>> X = [[0, 1], [1, 1], [3, 4]] >>> labels = [0, 0, 1] >>> davies_bouldin_score(X, labels) 0.12... """ X, labels = check_X_y(X, labels) le = LabelEncoder() labels = le.fit_transform(labels) n_samples, _ = X.shape n_labels = len(le.classes_) check_number_of_labels(n_labels, n_samples) intra_dists = np.zeros(n_labels) centroids = np.zeros((n_labels, len(X[0])), dtype=float) for k in range(n_labels): cluster_k = _safe_indexing(X, labels == k) centroid = cluster_k.mean(axis=0) centroids[k] = centroid intra_dists[k] = np.average(pairwise_distances(cluster_k, [centroid])) centroid_distances = pairwise_distances(centroids) if np.allclose(intra_dists, 0) or np.allclose(centroid_distances, 0): return 0.0 centroid_distances[centroid_distances == 0] = np.inf combined_intra_dists = intra_dists[:, None] + intra_dists scores = np.max(combined_intra_dists / centroid_distances, axis=1) return float(np.mean(scores))
Compute the Davies-Bouldin score. The score is defined as the average similarity measure of each cluster with its most similar cluster, where similarity is the ratio of within-cluster distances to between-cluster distances. Thus, clusters which are farther apart and less dispersed will result in a better score. The minimum score is zero, with lower values indicating better clustering. Read more in the :ref:`User Guide <davies-bouldin_index>`. .. versionadded:: 0.20 Parameters ---------- X : array-like of shape (n_samples, n_features) A list of ``n_features``-dimensional data points. Each row corresponds to a single data point. labels : array-like of shape (n_samples,) Predicted labels for each sample. Returns ------- score: float The resulting Davies-Bouldin score. References ---------- .. [1] Davies, David L.; Bouldin, Donald W. (1979). `"A Cluster Separation Measure" <https://ieeexplore.ieee.org/document/4766909>`__. IEEE Transactions on Pattern Analysis and Machine Intelligence. PAMI-1 (2): 224-227 Examples -------- >>> from sklearn.metrics import davies_bouldin_score >>> X = [[0, 1], [1, 1], [3, 4]] >>> labels = [0, 0, 1] >>> davies_bouldin_score(X, labels) 0.12...
davies_bouldin_score
python
scikit-learn/scikit-learn
sklearn/metrics/cluster/_unsupervised.py
https://github.com/scikit-learn/scikit-learn/blob/master/sklearn/metrics/cluster/_unsupervised.py
BSD-3-Clause
def test_consensus_score_issue2445(): """Different number of biclusters in A and B""" a_rows = np.array( [ [True, True, False, False], [False, False, True, True], [False, False, False, True], ] ) a_cols = np.array( [ [True, True, False, False], [False, False, True, True], [False, False, False, True], ] ) idx = [0, 2] s = consensus_score((a_rows, a_cols), (a_rows[idx], a_cols[idx])) # B contains 2 of the 3 biclusters in A, so score should be 2/3 assert_almost_equal(s, 2.0 / 3.0)
Different number of biclusters in A and B
test_consensus_score_issue2445
python
scikit-learn/scikit-learn
sklearn/metrics/cluster/tests/test_bicluster.py
https://github.com/scikit-learn/scikit-learn/blob/master/sklearn/metrics/cluster/tests/test_bicluster.py
BSD-3-Clause
def test_returned_value_consistency(name): """Ensure that the returned values of all metrics are consistent. It can only be a float. It should not be a numpy float64 or float32. """ rng = np.random.RandomState(0) X = rng.randint(10, size=(20, 10)) labels_true = rng.randint(0, 3, size=(20,)) labels_pred = rng.randint(0, 3, size=(20,)) if name in SUPERVISED_METRICS: metric = SUPERVISED_METRICS[name] score = metric(labels_true, labels_pred) else: metric = UNSUPERVISED_METRICS[name] score = metric(X, labels_pred) assert isinstance(score, float) assert not isinstance(score, (np.float64, np.float32))
Ensure that the returned values of all metrics are consistent. It can only be a float. It should not be a numpy float64 or float32.
test_returned_value_consistency
python
scikit-learn/scikit-learn
sklearn/metrics/cluster/tests/test_common.py
https://github.com/scikit-learn/scikit-learn/blob/master/sklearn/metrics/cluster/tests/test_common.py
BSD-3-Clause
def test_adjusted_rand_score_overflow(): """Check that large amount of data will not lead to overflow in `adjusted_rand_score`. Non-regression test for: https://github.com/scikit-learn/scikit-learn/issues/20305 """ rng = np.random.RandomState(0) y_true = rng.randint(0, 2, 100_000, dtype=np.int8) y_pred = rng.randint(0, 2, 100_000, dtype=np.int8) with warnings.catch_warnings(): warnings.simplefilter("error", RuntimeWarning) adjusted_rand_score(y_true, y_pred)
Check that large amount of data will not lead to overflow in `adjusted_rand_score`. Non-regression test for: https://github.com/scikit-learn/scikit-learn/issues/20305
test_adjusted_rand_score_overflow
python
scikit-learn/scikit-learn
sklearn/metrics/cluster/tests/test_supervised.py
https://github.com/scikit-learn/scikit-learn/blob/master/sklearn/metrics/cluster/tests/test_supervised.py
BSD-3-Clause
def test_normalized_mutual_info_score_bounded(average_method): """Check that nmi returns a score between 0 (included) and 1 (excluded for non-perfect match) Non-regression test for issue #13836 """ labels1 = [0] * 469 labels2 = [1] + labels1[1:] labels3 = [0, 1] + labels1[2:] # labels1 is constant. The mutual info between labels1 and any other labelling is 0. nmi = normalized_mutual_info_score(labels1, labels2, average_method=average_method) assert nmi == 0 # non constant, non perfect matching labels nmi = normalized_mutual_info_score(labels2, labels3, average_method=average_method) assert 0 <= nmi < 1
Check that nmi returns a score between 0 (included) and 1 (excluded for non-perfect match) Non-regression test for issue #13836
test_normalized_mutual_info_score_bounded
python
scikit-learn/scikit-learn
sklearn/metrics/cluster/tests/test_supervised.py
https://github.com/scikit-learn/scikit-learn/blob/master/sklearn/metrics/cluster/tests/test_supervised.py
BSD-3-Clause
def test_fowlkes_mallows_sparse_deprecated(sparse): """Check deprecation warning for 'sparse' parameter of fowlkes_mallows_score.""" with pytest.warns( FutureWarning, match="The 'sparse' parameter was deprecated in 1.7" ): fowlkes_mallows_score([0, 1], [1, 1], sparse=sparse)
Check deprecation warning for 'sparse' parameter of fowlkes_mallows_score.
test_fowlkes_mallows_sparse_deprecated
python
scikit-learn/scikit-learn
sklearn/metrics/cluster/tests/test_supervised.py
https://github.com/scikit-learn/scikit-learn/blob/master/sklearn/metrics/cluster/tests/test_supervised.py
BSD-3-Clause
def test_silhouette_samples_precomputed_sparse(sparse_container): """Check that silhouette_samples works for sparse matrices correctly.""" X = np.array([[0.2, 0.1, 0.1, 0.2, 0.1, 1.6, 0.2, 0.1]], dtype=np.float32).T y = [0, 0, 0, 0, 1, 1, 1, 1] pdist_dense = pairwise_distances(X) pdist_sparse = sparse_container(pdist_dense) assert issparse(pdist_sparse) output_with_sparse_input = silhouette_samples(pdist_sparse, y, metric="precomputed") output_with_dense_input = silhouette_samples(pdist_dense, y, metric="precomputed") assert_allclose(output_with_sparse_input, output_with_dense_input)
Check that silhouette_samples works for sparse matrices correctly.
test_silhouette_samples_precomputed_sparse
python
scikit-learn/scikit-learn
sklearn/metrics/cluster/tests/test_unsupervised.py
https://github.com/scikit-learn/scikit-learn/blob/master/sklearn/metrics/cluster/tests/test_unsupervised.py
BSD-3-Clause
def test_silhouette_samples_euclidean_sparse(sparse_container): """Check that silhouette_samples works for sparse matrices correctly.""" X = np.array([[0.2, 0.1, 0.1, 0.2, 0.1, 1.6, 0.2, 0.1]], dtype=np.float32).T y = [0, 0, 0, 0, 1, 1, 1, 1] pdist_dense = pairwise_distances(X) pdist_sparse = sparse_container(pdist_dense) assert issparse(pdist_sparse) output_with_sparse_input = silhouette_samples(pdist_sparse, y) output_with_dense_input = silhouette_samples(pdist_dense, y) assert_allclose(output_with_sparse_input, output_with_dense_input)
Check that silhouette_samples works for sparse matrices correctly.
test_silhouette_samples_euclidean_sparse
python
scikit-learn/scikit-learn
sklearn/metrics/cluster/tests/test_unsupervised.py
https://github.com/scikit-learn/scikit-learn/blob/master/sklearn/metrics/cluster/tests/test_unsupervised.py
BSD-3-Clause
def test_silhouette_reduce(sparse_container): """Check for non-CSR input to private method `_silhouette_reduce`.""" X = np.array([[0.2, 0.1, 0.1, 0.2, 0.1, 1.6, 0.2, 0.1]], dtype=np.float32).T pdist_dense = pairwise_distances(X) pdist_sparse = sparse_container(pdist_dense) y = [0, 0, 0, 0, 1, 1, 1, 1] label_freqs = np.bincount(y) with pytest.raises( TypeError, match="Expected CSR matrix. Please pass sparse matrix in CSR format.", ): _silhouette_reduce(pdist_sparse, start=0, labels=y, label_freqs=label_freqs)
Check for non-CSR input to private method `_silhouette_reduce`.
test_silhouette_reduce
python
scikit-learn/scikit-learn
sklearn/metrics/cluster/tests/test_unsupervised.py
https://github.com/scikit-learn/scikit-learn/blob/master/sklearn/metrics/cluster/tests/test_unsupervised.py
BSD-3-Clause
def assert_raises_on_only_one_label(func): """Assert message when there is only one label""" rng = np.random.RandomState(seed=0) with pytest.raises(ValueError, match="Number of labels is"): func(rng.rand(10, 2), np.zeros(10))
Assert message when there is only one label
assert_raises_on_only_one_label
python
scikit-learn/scikit-learn
sklearn/metrics/cluster/tests/test_unsupervised.py
https://github.com/scikit-learn/scikit-learn/blob/master/sklearn/metrics/cluster/tests/test_unsupervised.py
BSD-3-Clause
def assert_raises_on_all_points_same_cluster(func): """Assert message when all point are in different clusters""" rng = np.random.RandomState(seed=0) with pytest.raises(ValueError, match="Number of labels is"): func(rng.rand(10, 2), np.arange(10))
Assert message when all point are in different clusters
assert_raises_on_all_points_same_cluster
python
scikit-learn/scikit-learn
sklearn/metrics/cluster/tests/test_unsupervised.py
https://github.com/scikit-learn/scikit-learn/blob/master/sklearn/metrics/cluster/tests/test_unsupervised.py
BSD-3-Clause
def test_silhouette_score_integer_precomputed(): """Check that silhouette_score works for precomputed metrics that are integers. Non-regression test for #22107. """ result = silhouette_score( [[0, 1, 2], [1, 0, 1], [2, 1, 0]], [0, 0, 1], metric="precomputed" ) assert result == pytest.approx(1 / 6) # non-zero on diagonal for ints raises an error with pytest.raises(ValueError, match="contains non-zero"): silhouette_score( [[1, 1, 2], [1, 0, 1], [2, 1, 0]], [0, 0, 1], metric="precomputed" )
Check that silhouette_score works for precomputed metrics that are integers. Non-regression test for #22107.
test_silhouette_score_integer_precomputed
python
scikit-learn/scikit-learn
sklearn/metrics/cluster/tests/test_unsupervised.py
https://github.com/scikit-learn/scikit-learn/blob/master/sklearn/metrics/cluster/tests/test_unsupervised.py
BSD-3-Clause
def make_prediction(dataset=None, binary=False): """Make some classification predictions on a toy dataset using a SVC If binary is True restrict to a binary classification problem instead of a multiclass classification problem """ if dataset is None: # import some data to play with dataset = datasets.load_iris() X = dataset.data y = dataset.target if binary: # restrict to a binary classification task X, y = X[y < 2], y[y < 2] n_samples, n_features = X.shape p = np.arange(n_samples) rng = check_random_state(37) rng.shuffle(p) X, y = X[p], y[p] half = int(n_samples / 2) # add noisy features to make the problem harder and avoid perfect results rng = np.random.RandomState(0) X = np.c_[X, rng.randn(n_samples, 200 * n_features)] # run classifier, get class probabilities and label predictions clf = svm.SVC(kernel="linear", probability=True, random_state=0) y_pred_proba = clf.fit(X[:half], y[:half]).predict_proba(X[half:]) if binary: # only interested in probabilities of the positive case # XXX: do we really want a special API for the binary case? y_pred_proba = y_pred_proba[:, 1] y_pred = clf.predict(X[half:]) y_true = y[half:] return y_true, y_pred, y_pred_proba
Make some classification predictions on a toy dataset using a SVC If binary is True restrict to a binary classification problem instead of a multiclass classification problem
make_prediction
python
scikit-learn/scikit-learn
sklearn/metrics/tests/test_classification.py
https://github.com/scikit-learn/scikit-learn/blob/master/sklearn/metrics/tests/test_classification.py
BSD-3-Clause
def test_classification_report_labels_subset_superset(labels, show_micro_avg): """Check the behaviour of passing `labels` as a superset or subset of the labels. WHen a superset, we expect to show the "accuracy" in the report while it should be the micro-averaging if this is a subset. Non-regression test for: https://github.com/scikit-learn/scikit-learn/issues/27927 """ y_true, y_pred = [0, 1], [0, 1] report = classification_report(y_true, y_pred, labels=labels, output_dict=True) if show_micro_avg: assert "micro avg" in report assert "accuracy" not in report else: # accuracy should be shown assert "accuracy" in report assert "micro avg" not in report
Check the behaviour of passing `labels` as a superset or subset of the labels. WHen a superset, we expect to show the "accuracy" in the report while it should be the micro-averaging if this is a subset. Non-regression test for: https://github.com/scikit-learn/scikit-learn/issues/27927
test_classification_report_labels_subset_superset
python
scikit-learn/scikit-learn
sklearn/metrics/tests/test_classification.py
https://github.com/scikit-learn/scikit-learn/blob/master/sklearn/metrics/tests/test_classification.py
BSD-3-Clause
def test_confusion_matrix_single_label(): """Test `confusion_matrix` warns when only one label found.""" y_test = [0, 0, 0, 0] y_pred = [0, 0, 0, 0] with pytest.warns(UserWarning, match="A single label was found in"): confusion_matrix(y_pred, y_test)
Test `confusion_matrix` warns when only one label found.
test_confusion_matrix_single_label
python
scikit-learn/scikit-learn
sklearn/metrics/tests/test_classification.py
https://github.com/scikit-learn/scikit-learn/blob/master/sklearn/metrics/tests/test_classification.py
BSD-3-Clause
def test_likelihood_ratios_raise_warning_deprecation(raise_warning): """Test that class_likelihood_ratios raises a `FutureWarning` when `raise_warning` param is set.""" y_true = np.array([1, 0]) y_pred = np.array([1, 0]) msg = "`raise_warning` was deprecated in version 1.7 and will be removed in 1.9." with pytest.warns(FutureWarning, match=msg): class_likelihood_ratios(y_true, y_pred, raise_warning=raise_warning)
Test that class_likelihood_ratios raises a `FutureWarning` when `raise_warning` param is set.
test_likelihood_ratios_raise_warning_deprecation
python
scikit-learn/scikit-learn
sklearn/metrics/tests/test_classification.py
https://github.com/scikit-learn/scikit-learn/blob/master/sklearn/metrics/tests/test_classification.py
BSD-3-Clause
def test_likelihood_ratios_replace_undefined_by_worst(): """Test that class_likelihood_ratios returns the worst scores `1.0` for both LR+ and LR- when `replace_undefined_by=1` is set.""" # This data causes fp=0 (0 false positives) in the confusion_matrix and a division # by zero that affects the positive_likelihood_ratio: y_true = np.array([1, 1, 0]) y_pred = np.array([1, 0, 0]) positive_likelihood_ratio, _ = class_likelihood_ratios( y_true, y_pred, replace_undefined_by=1 ) assert positive_likelihood_ratio == pytest.approx(1.0) # This data causes tn=0 (0 true negatives) in the confusion_matrix and a division # by zero that affects the negative_likelihood_ratio: y_true = np.array([1, 0, 0]) y_pred = np.array([1, 1, 1]) _, negative_likelihood_ratio = class_likelihood_ratios( y_true, y_pred, replace_undefined_by=1 ) assert negative_likelihood_ratio == pytest.approx(1.0)
Test that class_likelihood_ratios returns the worst scores `1.0` for both LR+ and LR- when `replace_undefined_by=1` is set.
test_likelihood_ratios_replace_undefined_by_worst
python
scikit-learn/scikit-learn
sklearn/metrics/tests/test_classification.py
https://github.com/scikit-learn/scikit-learn/blob/master/sklearn/metrics/tests/test_classification.py
BSD-3-Clause
def test_likelihood_ratios_wrong_dict_replace_undefined_by(replace_undefined_by): """Test that class_likelihood_ratios raises a `ValueError` if the input dict for `replace_undefined_by` is in the wrong format or contains impossible values.""" y_true = np.array([1, 0]) y_pred = np.array([1, 0]) msg = "The dictionary passed as `replace_undefined_by` needs to be in the form" with pytest.raises(ValueError, match=msg): class_likelihood_ratios( y_true, y_pred, replace_undefined_by=replace_undefined_by )
Test that class_likelihood_ratios raises a `ValueError` if the input dict for `replace_undefined_by` is in the wrong format or contains impossible values.
test_likelihood_ratios_wrong_dict_replace_undefined_by
python
scikit-learn/scikit-learn
sklearn/metrics/tests/test_classification.py
https://github.com/scikit-learn/scikit-learn/blob/master/sklearn/metrics/tests/test_classification.py
BSD-3-Clause
def test_likelihood_ratios_replace_undefined_by_0_fp(replace_undefined_by, expected): """Test that the `replace_undefined_by` param returns the right value for the positive_likelihood_ratio as defined by the user.""" # This data causes fp=0 (0 false positives) in the confusion_matrix and a division # by zero that affects the positive_likelihood_ratio: y_true = np.array([1, 1, 0]) y_pred = np.array([1, 0, 0]) positive_likelihood_ratio, _ = class_likelihood_ratios( y_true, y_pred, replace_undefined_by=replace_undefined_by ) if np.isnan(expected): assert np.isnan(positive_likelihood_ratio) else: assert positive_likelihood_ratio == pytest.approx(expected)
Test that the `replace_undefined_by` param returns the right value for the positive_likelihood_ratio as defined by the user.
test_likelihood_ratios_replace_undefined_by_0_fp
python
scikit-learn/scikit-learn
sklearn/metrics/tests/test_classification.py
https://github.com/scikit-learn/scikit-learn/blob/master/sklearn/metrics/tests/test_classification.py
BSD-3-Clause
def test_likelihood_ratios_replace_undefined_by_0_tn(replace_undefined_by, expected): """Test that the `replace_undefined_by` param returns the right value for the negative_likelihood_ratio as defined by the user.""" # This data causes tn=0 (0 true negatives) in the confusion_matrix and a division # by zero that affects the negative_likelihood_ratio: y_true = np.array([1, 0, 0]) y_pred = np.array([1, 1, 1]) _, negative_likelihood_ratio = class_likelihood_ratios( y_true, y_pred, replace_undefined_by=replace_undefined_by ) if np.isnan(expected): assert np.isnan(negative_likelihood_ratio) else: assert negative_likelihood_ratio == pytest.approx(expected)
Test that the `replace_undefined_by` param returns the right value for the negative_likelihood_ratio as defined by the user.
test_likelihood_ratios_replace_undefined_by_0_tn
python
scikit-learn/scikit-learn
sklearn/metrics/tests/test_classification.py
https://github.com/scikit-learn/scikit-learn/blob/master/sklearn/metrics/tests/test_classification.py
BSD-3-Clause
def test_cohen_kappa_score_error_wrong_label(): """Test that correct error is raised when users pass labels that are not in y1.""" labels = [1, 2] y1 = np.array(["a"] * 5 + ["b"] * 5) y2 = np.array(["b"] * 10) with pytest.raises( ValueError, match="At least one label in `labels` must be present in `y1`" ): cohen_kappa_score(y1, y2, labels=labels)
Test that correct error is raised when users pass labels that are not in y1.
test_cohen_kappa_score_error_wrong_label
python
scikit-learn/scikit-learn
sklearn/metrics/tests/test_classification.py
https://github.com/scikit-learn/scikit-learn/blob/master/sklearn/metrics/tests/test_classification.py
BSD-3-Clause
def test_zero_division_nan_no_warning(metric, y_true, y_pred, zero_division): """Check the behaviour of `zero_division` when setting to 0, 1 or np.nan. No warnings should be raised. """ with warnings.catch_warnings(): warnings.simplefilter("error") result = metric(y_true, y_pred, zero_division=zero_division) if np.isnan(zero_division): assert np.isnan(result) else: assert result == zero_division
Check the behaviour of `zero_division` when setting to 0, 1 or np.nan. No warnings should be raised.
test_zero_division_nan_no_warning
python
scikit-learn/scikit-learn
sklearn/metrics/tests/test_classification.py
https://github.com/scikit-learn/scikit-learn/blob/master/sklearn/metrics/tests/test_classification.py
BSD-3-Clause
def test_zero_division_nan_warning(metric, y_true, y_pred): """Check the behaviour of `zero_division` when setting to "warn". A `UndefinedMetricWarning` should be raised. """ with pytest.warns(UndefinedMetricWarning): result = metric(y_true, y_pred, zero_division="warn") assert result == 0.0
Check the behaviour of `zero_division` when setting to "warn". A `UndefinedMetricWarning` should be raised.
test_zero_division_nan_warning
python
scikit-learn/scikit-learn
sklearn/metrics/tests/test_classification.py
https://github.com/scikit-learn/scikit-learn/blob/master/sklearn/metrics/tests/test_classification.py
BSD-3-Clause
def test_confusion_matrix_pandas_nullable(dtype): """Checks that confusion_matrix works with pandas nullable dtypes. Non-regression test for gh-25635. """ pd = pytest.importorskip("pandas") y_ndarray = np.array([1, 0, 0, 1, 0, 1, 1, 0, 1]) y_true = pd.Series(y_ndarray, dtype=dtype) y_predicted = pd.Series([0, 0, 1, 1, 0, 1, 1, 1, 1], dtype="int64") output = confusion_matrix(y_true, y_predicted) expected_output = confusion_matrix(y_ndarray, y_predicted) assert_array_equal(output, expected_output)
Checks that confusion_matrix works with pandas nullable dtypes. Non-regression test for gh-25635.
test_confusion_matrix_pandas_nullable
python
scikit-learn/scikit-learn
sklearn/metrics/tests/test_classification.py
https://github.com/scikit-learn/scikit-learn/blob/master/sklearn/metrics/tests/test_classification.py
BSD-3-Clause
def test_log_loss_eps(dtype): """Check the behaviour internal eps that changes depending on the input dtype. Non-regression test for: https://github.com/scikit-learn/scikit-learn/issues/24315 """ y_true = np.array([0, 1], dtype=dtype) y_pred = np.array([1, 0], dtype=dtype) loss = log_loss(y_true, y_pred) assert np.isfinite(loss)
Check the behaviour internal eps that changes depending on the input dtype. Non-regression test for: https://github.com/scikit-learn/scikit-learn/issues/24315
test_log_loss_eps
python
scikit-learn/scikit-learn
sklearn/metrics/tests/test_classification.py
https://github.com/scikit-learn/scikit-learn/blob/master/sklearn/metrics/tests/test_classification.py
BSD-3-Clause
def test_log_loss_not_probabilities_warning(dtype): """Check that log_loss raises a warning when y_pred values don't sum to 1.""" y_true = np.array([0, 1, 1, 0]) y_pred = np.array([[0.2, 0.7], [0.6, 0.3], [0.4, 0.7], [0.8, 0.3]], dtype=dtype) with pytest.warns(UserWarning, match="The y_prob values do not sum to one."): log_loss(y_true, y_pred)
Check that log_loss raises a warning when y_pred values don't sum to 1.
test_log_loss_not_probabilities_warning
python
scikit-learn/scikit-learn
sklearn/metrics/tests/test_classification.py
https://github.com/scikit-learn/scikit-learn/blob/master/sklearn/metrics/tests/test_classification.py
BSD-3-Clause
def test_log_loss_perfect_predictions(y_true, y_pred): """Check that log_loss returns 0 for perfect predictions.""" # Because of the clipping, the result is not exactly 0 assert log_loss(y_true, y_pred) == pytest.approx(0)
Check that log_loss returns 0 for perfect predictions.
test_log_loss_perfect_predictions
python
scikit-learn/scikit-learn
sklearn/metrics/tests/test_classification.py
https://github.com/scikit-learn/scikit-learn/blob/master/sklearn/metrics/tests/test_classification.py
BSD-3-Clause
def test_classification_metric_pos_label_types(metric, classes): """Check that the metric works with different types of `pos_label`. We can expect `pos_label` to be a bool, an integer, a float, a string. No error should be raised for those types. """ rng = np.random.RandomState(42) n_samples, pos_label = 10, classes[-1] y_true = rng.choice(classes, size=n_samples, replace=True) if metric is brier_score_loss: # brier score loss requires probabilities y_pred = rng.uniform(size=n_samples) else: y_pred = y_true.copy() result = metric(y_true, y_pred, pos_label=pos_label) assert not np.any(np.isnan(result))
Check that the metric works with different types of `pos_label`. We can expect `pos_label` to be a bool, an integer, a float, a string. No error should be raised for those types.
test_classification_metric_pos_label_types
python
scikit-learn/scikit-learn
sklearn/metrics/tests/test_classification.py
https://github.com/scikit-learn/scikit-learn/blob/master/sklearn/metrics/tests/test_classification.py
BSD-3-Clause
def test_classification_metric_division_by_zero_nan_validaton(scoring): """Check that we validate `np.nan` properly for classification metrics. With `n_jobs=2` in cross-validation, the `np.nan` used for the singleton will be different in the sub-process and we should not use the `is` operator but `math.isnan`. Non-regression test for: https://github.com/scikit-learn/scikit-learn/issues/27563 """ X, y = datasets.make_classification(random_state=0) classifier = DecisionTreeClassifier(max_depth=3, random_state=0).fit(X, y) cross_val_score(classifier, X, y, scoring=scoring, n_jobs=2, error_score="raise")
Check that we validate `np.nan` properly for classification metrics. With `n_jobs=2` in cross-validation, the `np.nan` used for the singleton will be different in the sub-process and we should not use the `is` operator but `math.isnan`. Non-regression test for: https://github.com/scikit-learn/scikit-learn/issues/27563
test_classification_metric_division_by_zero_nan_validaton
python
scikit-learn/scikit-learn
sklearn/metrics/tests/test_classification.py
https://github.com/scikit-learn/scikit-learn/blob/master/sklearn/metrics/tests/test_classification.py
BSD-3-Clause
def test_d2_log_loss_score_missing_labels(): """Check that d2_log_loss_score works when not all labels are present in y_true non-regression test for https://github.com/scikit-learn/scikit-learn/issues/30713 """ y_true = [2, 0, 2, 0] labels = [0, 1, 2] sample_weight = [1.4, 0.6, 0.7, 0.3] y_pred = np.tile([1, 0, 0], (4, 1)) log_loss_obs = log_loss(y_true, y_pred, sample_weight=sample_weight, labels=labels) # Null model consists of weighted average of the classes. # Given that the sum of the weights is 3, # - weighted average of 0s is (0.6 + 0.3) / 3 = 0.3 # - weighted average of 1s is 0 # - weighted average of 2s is (1.4 + 0.7) / 3 = 0.7 y_pred_null = np.tile([0.3, 0, 0.7], (4, 1)) log_loss_null = log_loss( y_true, y_pred_null, sample_weight=sample_weight, labels=labels ) expected_d2_score = 1 - log_loss_obs / log_loss_null d2_score = d2_log_loss_score( y_true, y_pred, sample_weight=sample_weight, labels=labels ) assert_allclose(d2_score, expected_d2_score)
Check that d2_log_loss_score works when not all labels are present in y_true non-regression test for https://github.com/scikit-learn/scikit-learn/issues/30713
test_d2_log_loss_score_missing_labels
python
scikit-learn/scikit-learn
sklearn/metrics/tests/test_classification.py
https://github.com/scikit-learn/scikit-learn/blob/master/sklearn/metrics/tests/test_classification.py
BSD-3-Clause
def test_d2_log_loss_score_label_order(): """Check that d2_log_loss_score doesn't depend on the order of the labels.""" y_true = [2, 0, 2, 0] y_pred = np.tile([1, 0, 0], (4, 1)) d2_score = d2_log_loss_score(y_true, y_pred, labels=[0, 1, 2]) d2_score_other = d2_log_loss_score(y_true, y_pred, labels=[0, 2, 1]) assert_allclose(d2_score, d2_score_other)
Check that d2_log_loss_score doesn't depend on the order of the labels.
test_d2_log_loss_score_label_order
python
scikit-learn/scikit-learn
sklearn/metrics/tests/test_classification.py
https://github.com/scikit-learn/scikit-learn/blob/master/sklearn/metrics/tests/test_classification.py
BSD-3-Clause
def test_d2_log_loss_score_raises(): """Test that d2_log_loss_score raises the appropriate errors on invalid inputs.""" y_true = [0, 1, 2] y_pred = [[0.2, 0.8], [0.5, 0.5], [0.4, 0.6]] err = "contain different number of classes" with pytest.raises(ValueError, match=err): d2_log_loss_score(y_true, y_pred) # check error if the number of classes in labels do not match the number # of classes in y_pred. y_true = [0, 1, 2] y_pred = [[0.5, 0.5], [0.5, 0.5], [0.5, 0.5]] labels = [0, 1, 2] err = "number of classes in labels is different" with pytest.raises(ValueError, match=err): d2_log_loss_score(y_true, y_pred, labels=labels) # check error if y_true and y_pred do not have equal lengths y_true = [0, 1, 2] y_pred = [[0.5, 0.5, 0.5], [0.6, 0.3, 0.1]] err = "inconsistent numbers of samples" with pytest.raises(ValueError, match=err): d2_log_loss_score(y_true, y_pred) # check warning for samples < 2 y_true = [1] y_pred = [[0.5, 0.5]] err = "score is not well-defined" with pytest.warns(UndefinedMetricWarning, match=err): d2_log_loss_score(y_true, y_pred) # check error when y_true only has 1 label y_true = [1, 1, 1] y_pred = [[0.5, 0.5], [0.5, 0.5], [0.5, 0.5]] err = "y_true contains only one label" with pytest.raises(ValueError, match=err): d2_log_loss_score(y_true, y_pred) # check error when y_true only has 1 label and labels also has # only 1 label y_true = [1, 1, 1] labels = [1] y_pred = [[0.5, 0.5], [0.5, 0.5], [0.5, 0.5]] err = "The labels array needs to contain at least two" with pytest.raises(ValueError, match=err): d2_log_loss_score(y_true, y_pred, labels=labels)
Test that d2_log_loss_score raises the appropriate errors on invalid inputs.
test_d2_log_loss_score_raises
python
scikit-learn/scikit-learn
sklearn/metrics/tests/test_classification.py
https://github.com/scikit-learn/scikit-learn/blob/master/sklearn/metrics/tests/test_classification.py
BSD-3-Clause
def precision_recall_curve_padded_thresholds(*args, **kwargs): """ The dimensions of precision-recall pairs and the threshold array as returned by the precision_recall_curve do not match. See func:`sklearn.metrics.precision_recall_curve` This prevents implicit conversion of return value triple to an higher dimensional np.array of dtype('float64') (it will be of dtype('object) instead). This again is needed for assert_array_equal to work correctly. As a workaround we pad the threshold array with NaN values to match the dimension of precision and recall arrays respectively. """ precision, recall, thresholds = precision_recall_curve(*args, **kwargs) pad_threshholds = len(precision) - len(thresholds) return np.array( [ precision, recall, np.pad( thresholds.astype(np.float64), pad_width=(0, pad_threshholds), mode="constant", constant_values=[np.nan], ), ] )
The dimensions of precision-recall pairs and the threshold array as returned by the precision_recall_curve do not match. See func:`sklearn.metrics.precision_recall_curve` This prevents implicit conversion of return value triple to an higher dimensional np.array of dtype('float64') (it will be of dtype('object) instead). This again is needed for assert_array_equal to work correctly. As a workaround we pad the threshold array with NaN values to match the dimension of precision and recall arrays respectively.
precision_recall_curve_padded_thresholds
python
scikit-learn/scikit-learn
sklearn/metrics/tests/test_common.py
https://github.com/scikit-learn/scikit-learn/blob/master/sklearn/metrics/tests/test_common.py
BSD-3-Clause
def test_classification_inf_nan_input(metric, y_true, y_score): """check that classification metrics raise a message mentioning the occurrence of non-finite values in the target vectors.""" if not np.isfinite(y_true).all(): input_name = "y_true" if np.isnan(y_true).any(): unexpected_value = "NaN" else: unexpected_value = "infinity or a value too large" else: input_name = "y_pred" if np.isnan(y_score).any(): unexpected_value = "NaN" else: unexpected_value = "infinity or a value too large" err_msg = f"Input {input_name} contains {unexpected_value}" with pytest.raises(ValueError, match=err_msg): metric(y_true, y_score)
check that classification metrics raise a message mentioning the occurrence of non-finite values in the target vectors.
test_classification_inf_nan_input
python
scikit-learn/scikit-learn
sklearn/metrics/tests/test_common.py
https://github.com/scikit-learn/scikit-learn/blob/master/sklearn/metrics/tests/test_common.py
BSD-3-Clause
def test_classification_binary_continuous_input(metric): """check that classification metrics raise a message of mixed type data with continuous/binary target vectors.""" y_true, y_score = ["a", "b", "a"], [0.1, 0.2, 0.3] err_msg = ( "Classification metrics can't handle a mix of binary and continuous targets" ) with pytest.raises(ValueError, match=err_msg): metric(y_true, y_score)
check that classification metrics raise a message of mixed type data with continuous/binary target vectors.
test_classification_binary_continuous_input
python
scikit-learn/scikit-learn
sklearn/metrics/tests/test_common.py
https://github.com/scikit-learn/scikit-learn/blob/master/sklearn/metrics/tests/test_common.py
BSD-3-Clause
def _get_metric_kwargs_for_array_api_testing(metric, params): """Helper function to enable specifying a variety of additional params and their corresponding values, so that they can be passed to a metric function when testing for array api compliance.""" metric_kwargs_combinations = [{}] for param, values in params.items(): if param not in signature(metric).parameters: continue new_combinations = [] for kwargs in metric_kwargs_combinations: for value in values: new_kwargs = kwargs.copy() new_kwargs[param] = value new_combinations.append(new_kwargs) metric_kwargs_combinations = new_combinations return metric_kwargs_combinations
Helper function to enable specifying a variety of additional params and their corresponding values, so that they can be passed to a metric function when testing for array api compliance.
_get_metric_kwargs_for_array_api_testing
python
scikit-learn/scikit-learn
sklearn/metrics/tests/test_common.py
https://github.com/scikit-learn/scikit-learn/blob/master/sklearn/metrics/tests/test_common.py
BSD-3-Clause
def test_returned_value_consistency(name): """Ensure that the returned values of all metrics are consistent. It can either be a float, a numpy array, or a tuple of floats or numpy arrays. It should not be a numpy float64 or float32. """ rng = np.random.RandomState(0) y_true = rng.randint(0, 2, size=(20,)) y_pred = rng.randint(0, 2, size=(20,)) if name in METRICS_REQUIRE_POSITIVE_Y: y_true, y_pred = _require_positive_targets(y_true, y_pred) if name in METRIC_UNDEFINED_BINARY: y_true = rng.randint(0, 2, size=(20, 3)) y_pred = rng.randint(0, 2, size=(20, 3)) metric = ALL_METRICS[name] score = metric(y_true, y_pred) assert isinstance(score, (float, np.ndarray, tuple)) assert not isinstance(score, (np.float64, np.float32)) if isinstance(score, tuple): assert all(isinstance(v, float) for v in score) or all( isinstance(v, np.ndarray) for v in score )
Ensure that the returned values of all metrics are consistent. It can either be a float, a numpy array, or a tuple of floats or numpy arrays. It should not be a numpy float64 or float32.
test_returned_value_consistency
python
scikit-learn/scikit-learn
sklearn/metrics/tests/test_common.py
https://github.com/scikit-learn/scikit-learn/blob/master/sklearn/metrics/tests/test_common.py
BSD-3-Clause
def test_nan_euclidean_support(pairwise_distances_func): """Check that `nan_euclidean` is lenient with `nan` values.""" X = [[0, 1], [1, np.nan], [2, 3], [3, 5]] output = pairwise_distances_func(X, X, metric="nan_euclidean") assert not np.isnan(output).any()
Check that `nan_euclidean` is lenient with `nan` values.
test_nan_euclidean_support
python
scikit-learn/scikit-learn
sklearn/metrics/tests/test_pairwise.py
https://github.com/scikit-learn/scikit-learn/blob/master/sklearn/metrics/tests/test_pairwise.py
BSD-3-Clause
def test_nan_euclidean_constant_input_argmin(): """Check that the behavior of constant input is the same in the case of full of nan vector and full of zero vector. """ X_nan = [[np.nan, np.nan], [np.nan, np.nan], [np.nan, np.nan]] argmin_nan = pairwise_distances_argmin(X_nan, X_nan, metric="nan_euclidean") X_const = [[0, 0], [0, 0], [0, 0]] argmin_const = pairwise_distances_argmin(X_const, X_const, metric="nan_euclidean") assert_allclose(argmin_nan, argmin_const)
Check that the behavior of constant input is the same in the case of full of nan vector and full of zero vector.
test_nan_euclidean_constant_input_argmin
python
scikit-learn/scikit-learn
sklearn/metrics/tests/test_pairwise.py
https://github.com/scikit-learn/scikit-learn/blob/master/sklearn/metrics/tests/test_pairwise.py
BSD-3-Clause
def test_pairwise_dist_custom_metric_for_string(X, Y, expected_distance): """Check pairwise_distances with lists of strings as input.""" def dummy_string_similarity(x, y): return np.abs(len(x) - len(y)) actual_distance = pairwise_distances(X=X, Y=Y, metric=dummy_string_similarity) assert_allclose(actual_distance, expected_distance)
Check pairwise_distances with lists of strings as input.
test_pairwise_dist_custom_metric_for_string
python
scikit-learn/scikit-learn
sklearn/metrics/tests/test_pairwise.py
https://github.com/scikit-learn/scikit-learn/blob/master/sklearn/metrics/tests/test_pairwise.py
BSD-3-Clause
def test_pairwise_dist_custom_metric_for_bool(): """Check that pairwise_distances does not convert boolean input to float when using a custom metric. """ def dummy_bool_dist(v1, v2): # dummy distance func using `&` and thus relying on the input data being boolean return 1 - (v1 & v2).sum() / (v1 | v2).sum() X = np.array([[1, 0, 0, 0], [1, 0, 1, 0], [1, 1, 1, 1]], dtype=bool) expected_distance = np.array( [ [0.0, 0.5, 0.75], [0.5, 0.0, 0.5], [0.75, 0.5, 0.0], ] ) actual_distance = pairwise_distances(X=X, metric=dummy_bool_dist) assert_allclose(actual_distance, expected_distance)
Check that pairwise_distances does not convert boolean input to float when using a custom metric.
test_pairwise_dist_custom_metric_for_bool
python
scikit-learn/scikit-learn
sklearn/metrics/tests/test_pairwise.py
https://github.com/scikit-learn/scikit-learn/blob/master/sklearn/metrics/tests/test_pairwise.py
BSD-3-Clause
def _get_metric_params_list(metric: str, n_features: int, seed: int = 1): """Return list of dummy DistanceMetric kwargs for tests.""" # Distinguishing on cases not to compute unneeded datastructures. rng = np.random.RandomState(seed) if metric == "minkowski": minkowski_kwargs = [ dict(p=1.5), dict(p=2), dict(p=3), dict(p=np.inf), dict(p=3, w=rng.rand(n_features)), ] return minkowski_kwargs if metric == "seuclidean": return [dict(V=rng.rand(n_features))] # Case of: "euclidean", "manhattan", "chebyshev", "haversine" or any other metric. # In those cases, no kwargs is needed. return [{}]
Return list of dummy DistanceMetric kwargs for tests.
_get_metric_params_list
python
scikit-learn/scikit-learn
sklearn/metrics/tests/test_pairwise_distances_reduction.py
https://github.com/scikit-learn/scikit-learn/blob/master/sklearn/metrics/tests/test_pairwise_distances_reduction.py
BSD-3-Clause
def assert_same_distances_for_common_neighbors( query_idx, dist_row_a, dist_row_b, indices_row_a, indices_row_b, rtol, atol, ): """Check that the distances of common neighbors are equal up to tolerance. This does not check if there are missing neighbors in either result set. Missingness is handled by assert_no_missing_neighbors. """ # Compute a mapping from indices to distances for each result set and # check that the computed neighbors with matching indices are within # the expected distance tolerance. indices_to_dist_a = dict(zip(indices_row_a, dist_row_a)) indices_to_dist_b = dict(zip(indices_row_b, dist_row_b)) common_indices = set(indices_row_a).intersection(set(indices_row_b)) for idx in common_indices: dist_a = indices_to_dist_a[idx] dist_b = indices_to_dist_b[idx] try: assert_allclose(dist_a, dist_b, rtol=rtol, atol=atol) except AssertionError as e: # Wrap exception to provide more context while also including # the original exception with the computed absolute and # relative differences. raise AssertionError( f"Query vector with index {query_idx} lead to different distances" f" for common neighbor with index {idx}:" f" dist_a={dist_a} vs dist_b={dist_b} (with atol={atol} and" f" rtol={rtol})" ) from e
Check that the distances of common neighbors are equal up to tolerance. This does not check if there are missing neighbors in either result set. Missingness is handled by assert_no_missing_neighbors.
assert_same_distances_for_common_neighbors
python
scikit-learn/scikit-learn
sklearn/metrics/tests/test_pairwise_distances_reduction.py
https://github.com/scikit-learn/scikit-learn/blob/master/sklearn/metrics/tests/test_pairwise_distances_reduction.py
BSD-3-Clause
def assert_no_missing_neighbors( query_idx, dist_row_a, dist_row_b, indices_row_a, indices_row_b, threshold, ): """Compare the indices of neighbors in two results sets. Any neighbor index with a distance below the precision threshold should match one in the other result set. We ignore the last few neighbors beyond the threshold as those can typically be missing due to rounding errors. For radius queries, the threshold is just the radius minus the expected precision level. For k-NN queries, it is the maximum distance to the k-th neighbor minus the expected precision level. """ mask_a = dist_row_a < threshold mask_b = dist_row_b < threshold missing_from_b = np.setdiff1d(indices_row_a[mask_a], indices_row_b) missing_from_a = np.setdiff1d(indices_row_b[mask_b], indices_row_a) if len(missing_from_a) > 0 or len(missing_from_b) > 0: raise AssertionError( f"Query vector with index {query_idx} lead to mismatched result indices:\n" f"neighbors in b missing from a: {missing_from_a}\n" f"neighbors in a missing from b: {missing_from_b}\n" f"dist_row_a={dist_row_a}\n" f"dist_row_b={dist_row_b}\n" f"indices_row_a={indices_row_a}\n" f"indices_row_b={indices_row_b}\n" )
Compare the indices of neighbors in two results sets. Any neighbor index with a distance below the precision threshold should match one in the other result set. We ignore the last few neighbors beyond the threshold as those can typically be missing due to rounding errors. For radius queries, the threshold is just the radius minus the expected precision level. For k-NN queries, it is the maximum distance to the k-th neighbor minus the expected precision level.
assert_no_missing_neighbors
python
scikit-learn/scikit-learn
sklearn/metrics/tests/test_pairwise_distances_reduction.py
https://github.com/scikit-learn/scikit-learn/blob/master/sklearn/metrics/tests/test_pairwise_distances_reduction.py
BSD-3-Clause
def assert_compatible_argkmin_results( neighbors_dists_a, neighbors_dists_b, neighbors_indices_a, neighbors_indices_b, rtol=1e-5, atol=1e-6, ): """Assert that argkmin results are valid up to rounding errors. This function asserts that the results of argkmin queries are valid up to: - rounding error tolerance on distance values; - permutations of indices for distances values that differ up to the expected precision level. Furthermore, the distances must be sorted. To be used for testing neighbors queries on float32 datasets: we accept neighbors rank swaps only if they are caused by small rounding errors on the distance computations. """ is_sorted = lambda a: np.all(a[:-1] <= a[1:]) assert ( neighbors_dists_a.shape == neighbors_dists_b.shape == neighbors_indices_a.shape == neighbors_indices_b.shape ), "Arrays of results have incompatible shapes." n_queries, _ = neighbors_dists_a.shape # Asserting equality results one row at a time for query_idx in range(n_queries): dist_row_a = neighbors_dists_a[query_idx] dist_row_b = neighbors_dists_b[query_idx] indices_row_a = neighbors_indices_a[query_idx] indices_row_b = neighbors_indices_b[query_idx] assert is_sorted(dist_row_a), f"Distances aren't sorted on row {query_idx}" assert is_sorted(dist_row_b), f"Distances aren't sorted on row {query_idx}" assert_same_distances_for_common_neighbors( query_idx, dist_row_a, dist_row_b, indices_row_a, indices_row_b, rtol, atol, ) # Check that any neighbor with distances below the rounding error # threshold have matching indices. The threshold is the distance to the # k-th neighbors minus the expected precision level: # # (1 - rtol) * dist_k - atol # # Where dist_k is defined as the maximum distance to the kth-neighbor # among the two result sets. This way of defining the threshold is # stricter than taking the minimum of the two. threshold = (1 - rtol) * np.maximum( np.max(dist_row_a), np.max(dist_row_b) ) - atol assert_no_missing_neighbors( query_idx, dist_row_a, dist_row_b, indices_row_a, indices_row_b, threshold, )
Assert that argkmin results are valid up to rounding errors. This function asserts that the results of argkmin queries are valid up to: - rounding error tolerance on distance values; - permutations of indices for distances values that differ up to the expected precision level. Furthermore, the distances must be sorted. To be used for testing neighbors queries on float32 datasets: we accept neighbors rank swaps only if they are caused by small rounding errors on the distance computations.
assert_compatible_argkmin_results
python
scikit-learn/scikit-learn
sklearn/metrics/tests/test_pairwise_distances_reduction.py
https://github.com/scikit-learn/scikit-learn/blob/master/sklearn/metrics/tests/test_pairwise_distances_reduction.py
BSD-3-Clause
def assert_compatible_radius_results( neighbors_dists_a, neighbors_dists_b, neighbors_indices_a, neighbors_indices_b, radius, check_sorted=True, rtol=1e-5, atol=1e-6, ): """Assert that radius neighborhood results are valid up to: - relative and absolute tolerance on computed distance values - permutations of indices for distances values that differ up to a precision level - missing or extra last elements if their distance is close to the radius To be used for testing neighbors queries on float32 datasets: we accept neighbors rank swaps only if they are caused by small rounding errors on the distance computations. Input arrays must be sorted w.r.t distances. """ is_sorted = lambda a: np.all(a[:-1] <= a[1:]) assert ( len(neighbors_dists_a) == len(neighbors_dists_b) == len(neighbors_indices_a) == len(neighbors_indices_b) ) n_queries = len(neighbors_dists_a) # Asserting equality of results one vector at a time for query_idx in range(n_queries): dist_row_a = neighbors_dists_a[query_idx] dist_row_b = neighbors_dists_b[query_idx] indices_row_a = neighbors_indices_a[query_idx] indices_row_b = neighbors_indices_b[query_idx] if check_sorted: assert is_sorted(dist_row_a), f"Distances aren't sorted on row {query_idx}" assert is_sorted(dist_row_b), f"Distances aren't sorted on row {query_idx}" assert len(dist_row_a) == len(indices_row_a) assert len(dist_row_b) == len(indices_row_b) # Check that all distances are within the requested radius if len(dist_row_a) > 0: max_dist_a = np.max(dist_row_a) assert max_dist_a <= radius, ( f"Largest returned distance {max_dist_a} not within requested" f" radius {radius} on row {query_idx}" ) if len(dist_row_b) > 0: max_dist_b = np.max(dist_row_b) assert max_dist_b <= radius, ( f"Largest returned distance {max_dist_b} not within requested" f" radius {radius} on row {query_idx}" ) assert_same_distances_for_common_neighbors( query_idx, dist_row_a, dist_row_b, indices_row_a, indices_row_b, rtol, atol, ) threshold = (1 - rtol) * radius - atol assert_no_missing_neighbors( query_idx, dist_row_a, dist_row_b, indices_row_a, indices_row_b, threshold, )
Assert that radius neighborhood results are valid up to: - relative and absolute tolerance on computed distance values - permutations of indices for distances values that differ up to a precision level - missing or extra last elements if their distance is close to the radius To be used for testing neighbors queries on float32 datasets: we accept neighbors rank swaps only if they are caused by small rounding errors on the distance computations. Input arrays must be sorted w.r.t distances.
assert_compatible_radius_results
python
scikit-learn/scikit-learn
sklearn/metrics/tests/test_pairwise_distances_reduction.py
https://github.com/scikit-learn/scikit-learn/blob/master/sklearn/metrics/tests/test_pairwise_distances_reduction.py
BSD-3-Clause
def test_chunk_size_agnosticism( global_random_seed, Dispatcher, dtype, n_features=100, ): """Check that results do not depend on the chunk size.""" rng = np.random.RandomState(global_random_seed) spread = 100 n_samples_X, n_samples_Y = rng.choice([97, 100, 101, 500], size=2, replace=False) X = rng.rand(n_samples_X, n_features).astype(dtype) * spread Y = rng.rand(n_samples_Y, n_features).astype(dtype) * spread if Dispatcher is ArgKmin: parameter = 10 check_parameters = {} compute_parameters = {} else: radius = _non_trivial_radius(X=X, Y=Y, metric="euclidean") parameter = radius check_parameters = {"radius": radius} compute_parameters = {"sort_results": True} ref_dist, ref_indices = Dispatcher.compute( X, Y, parameter, chunk_size=256, # default metric="manhattan", return_distance=True, **compute_parameters, ) dist, indices = Dispatcher.compute( X, Y, parameter, chunk_size=41, metric="manhattan", return_distance=True, **compute_parameters, ) ASSERT_RESULT[(Dispatcher, dtype)]( ref_dist, dist, ref_indices, indices, **check_parameters )
Check that results do not depend on the chunk size.
test_chunk_size_agnosticism
python
scikit-learn/scikit-learn
sklearn/metrics/tests/test_pairwise_distances_reduction.py
https://github.com/scikit-learn/scikit-learn/blob/master/sklearn/metrics/tests/test_pairwise_distances_reduction.py
BSD-3-Clause
def test_n_threads_agnosticism( global_random_seed, Dispatcher, dtype, n_features=100, ): """Check that results do not depend on the number of threads.""" rng = np.random.RandomState(global_random_seed) n_samples_X, n_samples_Y = rng.choice([97, 100, 101, 500], size=2, replace=False) spread = 100 X = rng.rand(n_samples_X, n_features).astype(dtype) * spread Y = rng.rand(n_samples_Y, n_features).astype(dtype) * spread if Dispatcher is ArgKmin: parameter = 10 check_parameters = {} compute_parameters = {} else: radius = _non_trivial_radius(X=X, Y=Y, metric="euclidean") parameter = radius check_parameters = {"radius": radius} compute_parameters = {"sort_results": True} ref_dist, ref_indices = Dispatcher.compute( X, Y, parameter, chunk_size=25, # make sure we use multiple threads return_distance=True, **compute_parameters, ) with _get_threadpool_controller().limit(limits=1, user_api="openmp"): dist, indices = Dispatcher.compute( X, Y, parameter, chunk_size=25, return_distance=True, **compute_parameters, ) ASSERT_RESULT[(Dispatcher, dtype)]( ref_dist, dist, ref_indices, indices, **check_parameters )
Check that results do not depend on the number of threads.
test_n_threads_agnosticism
python
scikit-learn/scikit-learn
sklearn/metrics/tests/test_pairwise_distances_reduction.py
https://github.com/scikit-learn/scikit-learn/blob/master/sklearn/metrics/tests/test_pairwise_distances_reduction.py
BSD-3-Clause
def test_format_agnosticism( global_random_seed, Dispatcher, dtype, csr_container, ): """Check that results do not depend on the format (dense, sparse) of the input.""" rng = np.random.RandomState(global_random_seed) spread = 100 n_samples, n_features = 100, 100 X = rng.rand(n_samples, n_features).astype(dtype) * spread Y = rng.rand(n_samples, n_features).astype(dtype) * spread X_csr = csr_container(X) Y_csr = csr_container(Y) if Dispatcher is ArgKmin: parameter = 10 check_parameters = {} compute_parameters = {} else: # Adjusting the radius to ensure that the expected results is neither # trivially empty nor too large. radius = _non_trivial_radius(X=X, Y=Y, metric="euclidean") parameter = radius check_parameters = {"radius": radius} compute_parameters = {"sort_results": True} dist_dense, indices_dense = Dispatcher.compute( X, Y, parameter, chunk_size=50, return_distance=True, **compute_parameters, ) for _X, _Y in itertools.product((X, X_csr), (Y, Y_csr)): if _X is X and _Y is Y: continue dist, indices = Dispatcher.compute( _X, _Y, parameter, chunk_size=50, return_distance=True, **compute_parameters, ) ASSERT_RESULT[(Dispatcher, dtype)]( dist_dense, dist, indices_dense, indices, **check_parameters, )
Check that results do not depend on the format (dense, sparse) of the input.
test_format_agnosticism
python
scikit-learn/scikit-learn
sklearn/metrics/tests/test_pairwise_distances_reduction.py
https://github.com/scikit-learn/scikit-learn/blob/master/sklearn/metrics/tests/test_pairwise_distances_reduction.py
BSD-3-Clause
def test_strategies_consistency( global_random_seed, global_dtype, Dispatcher, n_features=10, ): """Check that the results do not depend on the strategy used.""" rng = np.random.RandomState(global_random_seed) metric = rng.choice( np.array( [ "euclidean", "minkowski", "manhattan", "haversine", ], dtype=object, ) ) n_samples_X, n_samples_Y = rng.choice([97, 100, 101, 500], size=2, replace=False) spread = 100 X = rng.rand(n_samples_X, n_features).astype(global_dtype) * spread Y = rng.rand(n_samples_Y, n_features).astype(global_dtype) * spread # Haversine distance only accepts 2D data if metric == "haversine": X = np.ascontiguousarray(X[:, :2]) Y = np.ascontiguousarray(Y[:, :2]) if Dispatcher is ArgKmin: parameter = 10 check_parameters = {} compute_parameters = {} else: radius = _non_trivial_radius(X=X, Y=Y, metric=metric) parameter = radius check_parameters = {"radius": radius} compute_parameters = {"sort_results": True} dist_par_X, indices_par_X = Dispatcher.compute( X, Y, parameter, metric=metric, # Taking the first metric_kwargs=_get_metric_params_list( metric, n_features, seed=global_random_seed )[0], # To be sure to use parallelization chunk_size=n_samples_X // 4, strategy="parallel_on_X", return_distance=True, **compute_parameters, ) dist_par_Y, indices_par_Y = Dispatcher.compute( X, Y, parameter, metric=metric, # Taking the first metric_kwargs=_get_metric_params_list( metric, n_features, seed=global_random_seed )[0], # To be sure to use parallelization chunk_size=n_samples_Y // 4, strategy="parallel_on_Y", return_distance=True, **compute_parameters, ) ASSERT_RESULT[(Dispatcher, global_dtype)]( dist_par_X, dist_par_Y, indices_par_X, indices_par_Y, **check_parameters )
Check that the results do not depend on the strategy used.
test_strategies_consistency
python
scikit-learn/scikit-learn
sklearn/metrics/tests/test_pairwise_distances_reduction.py
https://github.com/scikit-learn/scikit-learn/blob/master/sklearn/metrics/tests/test_pairwise_distances_reduction.py
BSD-3-Clause
def test_memmap_backed_data( metric, Dispatcher, dtype, ): """Check that the results do not depend on the datasets writability.""" rng = np.random.RandomState(0) spread = 100 n_samples, n_features = 128, 10 X = rng.rand(n_samples, n_features).astype(dtype) * spread Y = rng.rand(n_samples, n_features).astype(dtype) * spread # Create read only datasets X_mm, Y_mm = create_memmap_backed_data([X, Y]) if Dispatcher is ArgKmin: parameter = 10 check_parameters = {} compute_parameters = {} else: # Scaling the radius slightly with the numbers of dimensions radius = 10 ** np.log(n_features) parameter = radius check_parameters = {"radius": radius} compute_parameters = {"sort_results": True} ref_dist, ref_indices = Dispatcher.compute( X, Y, parameter, metric=metric, return_distance=True, **compute_parameters, ) dist_mm, indices_mm = Dispatcher.compute( X_mm, Y_mm, parameter, metric=metric, return_distance=True, **compute_parameters, ) ASSERT_RESULT[(Dispatcher, dtype)]( ref_dist, dist_mm, ref_indices, indices_mm, **check_parameters )
Check that the results do not depend on the datasets writability.
test_memmap_backed_data
python
scikit-learn/scikit-learn
sklearn/metrics/tests/test_pairwise_distances_reduction.py
https://github.com/scikit-learn/scikit-learn/blob/master/sklearn/metrics/tests/test_pairwise_distances_reduction.py
BSD-3-Clause
def make_prediction(dataset=None, binary=False): """Make some classification predictions on a toy dataset using a SVC If binary is True restrict to a binary classification problem instead of a multiclass classification problem """ if dataset is None: # import some data to play with dataset = datasets.load_iris() X = dataset.data y = dataset.target if binary: # restrict to a binary classification task X, y = X[y < 2], y[y < 2] n_samples, n_features = X.shape p = np.arange(n_samples) rng = check_random_state(37) rng.shuffle(p) X, y = X[p], y[p] half = int(n_samples / 2) # add noisy features to make the problem harder and avoid perfect results rng = np.random.RandomState(0) X = np.c_[X, rng.randn(n_samples, 200 * n_features)] # run classifier, get class probabilities and label predictions clf = svm.SVC(kernel="linear", probability=True, random_state=0) y_score = clf.fit(X[:half], y[:half]).predict_proba(X[half:]) if binary: # only interested in probabilities of the positive case # XXX: do we really want a special API for the binary case? y_score = y_score[:, 1] y_pred = clf.predict(X[half:]) y_true = y[half:] return y_true, y_pred, y_score
Make some classification predictions on a toy dataset using a SVC If binary is True restrict to a binary classification problem instead of a multiclass classification problem
make_prediction
python
scikit-learn/scikit-learn
sklearn/metrics/tests/test_ranking.py
https://github.com/scikit-learn/scikit-learn/blob/master/sklearn/metrics/tests/test_ranking.py
BSD-3-Clause
def _auc(y_true, y_score): """Alternative implementation to check for correctness of `roc_auc_score`.""" pos_label = np.unique(y_true)[1] # Count the number of times positive samples are correctly ranked above # negative samples. pos = y_score[y_true == pos_label] neg = y_score[y_true != pos_label] diff_matrix = pos.reshape(1, -1) - neg.reshape(-1, 1) n_correct = np.sum(diff_matrix > 0) return n_correct / float(len(pos) * len(neg))
Alternative implementation to check for correctness of `roc_auc_score`.
_auc
python
scikit-learn/scikit-learn
sklearn/metrics/tests/test_ranking.py
https://github.com/scikit-learn/scikit-learn/blob/master/sklearn/metrics/tests/test_ranking.py
BSD-3-Clause
def _average_precision(y_true, y_score): """Alternative implementation to check for correctness of `average_precision_score`. Note that this implementation fails on some edge cases. For example, for constant predictions e.g. [0.5, 0.5, 0.5], y_true = [1, 0, 0] returns an average precision of 0.33... but y_true = [0, 0, 1] returns 1.0. """ pos_label = np.unique(y_true)[1] n_pos = np.sum(y_true == pos_label) order = np.argsort(y_score)[::-1] y_score = y_score[order] y_true = y_true[order] score = 0 for i in range(len(y_score)): if y_true[i] == pos_label: # Compute precision up to document i # i.e, percentage of relevant documents up to document i. prec = 0 for j in range(0, i + 1): if y_true[j] == pos_label: prec += 1.0 prec /= i + 1.0 score += prec return score / n_pos
Alternative implementation to check for correctness of `average_precision_score`. Note that this implementation fails on some edge cases. For example, for constant predictions e.g. [0.5, 0.5, 0.5], y_true = [1, 0, 0] returns an average precision of 0.33... but y_true = [0, 0, 1] returns 1.0.
_average_precision
python
scikit-learn/scikit-learn
sklearn/metrics/tests/test_ranking.py
https://github.com/scikit-learn/scikit-learn/blob/master/sklearn/metrics/tests/test_ranking.py
BSD-3-Clause
def _average_precision_slow(y_true, y_score): """A second alternative implementation of average precision that closely follows the Wikipedia article's definition (see References). This should give identical results as `average_precision_score` for all inputs. References ---------- .. [1] `Wikipedia entry for the Average precision <https://en.wikipedia.org/wiki/Average_precision>`_ """ precision, recall, threshold = precision_recall_curve(y_true, y_score) precision = list(reversed(precision)) recall = list(reversed(recall)) average_precision = 0 for i in range(1, len(precision)): average_precision += precision[i] * (recall[i] - recall[i - 1]) return average_precision
A second alternative implementation of average precision that closely follows the Wikipedia article's definition (see References). This should give identical results as `average_precision_score` for all inputs. References ---------- .. [1] `Wikipedia entry for the Average precision <https://en.wikipedia.org/wiki/Average_precision>`_
_average_precision_slow
python
scikit-learn/scikit-learn
sklearn/metrics/tests/test_ranking.py
https://github.com/scikit-learn/scikit-learn/blob/master/sklearn/metrics/tests/test_ranking.py
BSD-3-Clause
def _partial_roc_auc_score(y_true, y_predict, max_fpr): """Alternative implementation to check for correctness of `roc_auc_score` with `max_fpr` set. """ def _partial_roc(y_true, y_predict, max_fpr): fpr, tpr, _ = roc_curve(y_true, y_predict) new_fpr = fpr[fpr <= max_fpr] new_fpr = np.append(new_fpr, max_fpr) new_tpr = tpr[fpr <= max_fpr] idx_out = np.argmax(fpr > max_fpr) idx_in = idx_out - 1 x_interp = [fpr[idx_in], fpr[idx_out]] y_interp = [tpr[idx_in], tpr[idx_out]] new_tpr = np.append(new_tpr, np.interp(max_fpr, x_interp, y_interp)) return (new_fpr, new_tpr) new_fpr, new_tpr = _partial_roc(y_true, y_predict, max_fpr) partial_auc = auc(new_fpr, new_tpr) # Formula (5) from McClish 1989 fpr1 = 0 fpr2 = max_fpr min_area = 0.5 * (fpr2 - fpr1) * (fpr2 + fpr1) max_area = fpr2 - fpr1 return 0.5 * (1 + (partial_auc - min_area) / (max_area - min_area))
Alternative implementation to check for correctness of `roc_auc_score` with `max_fpr` set.
_partial_roc_auc_score
python
scikit-learn/scikit-learn
sklearn/metrics/tests/test_ranking.py
https://github.com/scikit-learn/scikit-learn/blob/master/sklearn/metrics/tests/test_ranking.py
BSD-3-Clause
def test_precision_recall_curve_drop_intermediate(): """Check the behaviour of the `drop_intermediate` parameter.""" y_true = [0, 0, 0, 0, 1, 1] y_score = [0.0, 0.2, 0.5, 0.6, 0.7, 1.0] precision, recall, thresholds = precision_recall_curve( y_true, y_score, drop_intermediate=True ) assert_allclose(thresholds, [0.0, 0.7, 1.0]) # Test dropping thresholds with repeating scores y_true = [0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1] y_score = [0.0, 0.1, 0.6, 0.6, 0.7, 0.8, 0.9, 0.6, 0.7, 0.8, 0.9, 0.9, 1.0] precision, recall, thresholds = precision_recall_curve( y_true, y_score, drop_intermediate=True ) assert_allclose(thresholds, [0.0, 0.6, 0.7, 0.8, 0.9, 1.0]) # Test all false keeps only endpoints y_true = [0, 0, 0, 0] y_score = [0.0, 0.1, 0.2, 0.3] precision, recall, thresholds = precision_recall_curve( y_true, y_score, drop_intermediate=True ) assert_allclose(thresholds, [0.0, 0.3]) # Test all true keeps all thresholds y_true = [1, 1, 1, 1] y_score = [0.0, 0.1, 0.2, 0.3] precision, recall, thresholds = precision_recall_curve( y_true, y_score, drop_intermediate=True ) assert_allclose(thresholds, [0.0, 0.1, 0.2, 0.3])
Check the behaviour of the `drop_intermediate` parameter.
test_precision_recall_curve_drop_intermediate
python
scikit-learn/scikit-learn
sklearn/metrics/tests/test_ranking.py
https://github.com/scikit-learn/scikit-learn/blob/master/sklearn/metrics/tests/test_ranking.py
BSD-3-Clause
def _my_lrap(y_true, y_score): """Simple implementation of label ranking average precision""" check_consistent_length(y_true, y_score) y_true = check_array(y_true) y_score = check_array(y_score) n_samples, n_labels = y_true.shape score = np.empty((n_samples,)) for i in range(n_samples): # The best rank correspond to 1. Rank higher than 1 are worse. # The best inverse ranking correspond to n_labels. unique_rank, inv_rank = np.unique(y_score[i], return_inverse=True) n_ranks = unique_rank.size rank = n_ranks - inv_rank # Rank need to be corrected to take into account ties # ex: rank 1 ex aequo means that both label are rank 2. corr_rank = np.bincount(rank, minlength=n_ranks + 1).cumsum() rank = corr_rank[rank] relevant = y_true[i].nonzero()[0] if relevant.size == 0 or relevant.size == n_labels: score[i] = 1 continue score[i] = 0.0 for label in relevant: # Let's count the number of relevant label with better rank # (smaller rank). n_ranked_above = sum(rank[r] <= rank[label] for r in relevant) # Weight by the rank of the actual label score[i] += n_ranked_above / rank[label] score[i] /= relevant.size return score.mean()
Simple implementation of label ranking average precision
_my_lrap
python
scikit-learn/scikit-learn
sklearn/metrics/tests/test_ranking.py
https://github.com/scikit-learn/scikit-learn/blob/master/sklearn/metrics/tests/test_ranking.py
BSD-3-Clause
def test_ndcg_negative_ndarray_error(): """Check `ndcg_score` exception when `y_true` contains negative values.""" y_true = np.array([[-0.89, -0.53, -0.47, 0.39, 0.56]]) y_score = np.array([[0.07, 0.31, 0.75, 0.33, 0.27]]) expected_message = "ndcg_score should not be used on negative y_true values" with pytest.raises(ValueError, match=expected_message): ndcg_score(y_true, y_score)
Check `ndcg_score` exception when `y_true` contains negative values.
test_ndcg_negative_ndarray_error
python
scikit-learn/scikit-learn
sklearn/metrics/tests/test_ranking.py
https://github.com/scikit-learn/scikit-learn/blob/master/sklearn/metrics/tests/test_ranking.py
BSD-3-Clause
def test_ndcg_error_single_document(): """Check that we raise an informative error message when trying to compute NDCG with a single document.""" err_msg = ( "Computing NDCG is only meaningful when there is more than 1 document. " "Got 1 instead." ) with pytest.raises(ValueError, match=err_msg): ndcg_score([[1]], [[1]])
Check that we raise an informative error message when trying to compute NDCG with a single document.
test_ndcg_error_single_document
python
scikit-learn/scikit-learn
sklearn/metrics/tests/test_ranking.py
https://github.com/scikit-learn/scikit-learn/blob/master/sklearn/metrics/tests/test_ranking.py
BSD-3-Clause
def test_top_k_accuracy_score_multiclass_with_labels( y_true, true_score, labels, labels_as_ndarray ): """Test when labels and y_score are multiclass.""" if labels_as_ndarray: labels = np.asarray(labels) y_score = np.array( [ [0.4, 0.3, 0.2, 0.1], [0.1, 0.3, 0.4, 0.2], [0.4, 0.1, 0.2, 0.3], [0.3, 0.2, 0.4, 0.1], ] ) score = top_k_accuracy_score(y_true, y_score, k=2, labels=labels) assert score == pytest.approx(true_score)
Test when labels and y_score are multiclass.
test_top_k_accuracy_score_multiclass_with_labels
python
scikit-learn/scikit-learn
sklearn/metrics/tests/test_ranking.py
https://github.com/scikit-learn/scikit-learn/blob/master/sklearn/metrics/tests/test_ranking.py
BSD-3-Clause
def test_ranking_metric_pos_label_types(metric, classes): """Check that the metric works with different types of `pos_label`. We can expect `pos_label` to be a bool, an integer, a float, a string. No error should be raised for those types. """ rng = np.random.RandomState(42) n_samples, pos_label = 10, classes[-1] y_true = rng.choice(classes, size=n_samples, replace=True) y_proba = rng.rand(n_samples) result = metric(y_true, y_proba, pos_label=pos_label) if isinstance(result, float): assert not np.isnan(result) else: metric_1, metric_2, thresholds = result assert not np.isnan(metric_1).any() assert not np.isnan(metric_2).any() assert not np.isnan(thresholds).any()
Check that the metric works with different types of `pos_label`. We can expect `pos_label` to be a bool, an integer, a float, a string. No error should be raised for those types.
test_ranking_metric_pos_label_types
python
scikit-learn/scikit-learn
sklearn/metrics/tests/test_ranking.py
https://github.com/scikit-learn/scikit-learn/blob/master/sklearn/metrics/tests/test_ranking.py
BSD-3-Clause
def test_roc_curve_with_probablity_estimates(global_random_seed): """Check that thresholds do not exceed 1.0 when `y_score` is a probability estimate. Non-regression test for: https://github.com/scikit-learn/scikit-learn/issues/26193 """ rng = np.random.RandomState(global_random_seed) y_true = rng.randint(0, 2, size=10) y_score = rng.rand(10) _, _, thresholds = roc_curve(y_true, y_score) assert np.isinf(thresholds[0])
Check that thresholds do not exceed 1.0 when `y_score` is a probability estimate. Non-regression test for: https://github.com/scikit-learn/scikit-learn/issues/26193
test_roc_curve_with_probablity_estimates
python
scikit-learn/scikit-learn
sklearn/metrics/tests/test_ranking.py
https://github.com/scikit-learn/scikit-learn/blob/master/sklearn/metrics/tests/test_ranking.py
BSD-3-Clause
def test_multimetric_scorer_exception_handling(raise_exc): """Check that the calling of the `_MultimetricScorer` returns exception messages in the result dict for the failing scorers in case of `raise_exc` is `False` and if `raise_exc` is `True`, then the proper exception is raised. """ scorers = { "failing_1": "neg_mean_squared_log_error", "non_failing": "neg_median_absolute_error", "failing_2": "neg_mean_squared_log_error", } X, y = make_classification( n_samples=50, n_features=2, n_redundant=0, random_state=0 ) # neg_mean_squared_log_error fails if y contains values less than or equal to -1 y *= -1 clf = DecisionTreeClassifier().fit(X, y) scorer_dict = _check_multimetric_scoring(clf, scorers) multi_scorer = _MultimetricScorer(scorers=scorer_dict, raise_exc=raise_exc) error_msg = ( "Mean Squared Logarithmic Error cannot be used when " "targets contain values less than or equal to -1." ) if raise_exc: with pytest.raises(ValueError, match=error_msg): multi_scorer(clf, X, y) else: result = multi_scorer(clf, X, y) exception_message_1 = result["failing_1"] score = result["non_failing"] exception_message_2 = result["failing_2"] assert isinstance(exception_message_1, str) and error_msg in exception_message_1 assert isinstance(score, float) assert isinstance(exception_message_2, str) and error_msg in exception_message_2
Check that the calling of the `_MultimetricScorer` returns exception messages in the result dict for the failing scorers in case of `raise_exc` is `False` and if `raise_exc` is `True`, then the proper exception is raised.
test_multimetric_scorer_exception_handling
python
scikit-learn/scikit-learn
sklearn/metrics/tests/test_score_objects.py
https://github.com/scikit-learn/scikit-learn/blob/master/sklearn/metrics/tests/test_score_objects.py
BSD-3-Clause
def string_labeled_classification_problem(): """Train a classifier on binary problem with string target. The classifier is trained on a binary classification problem where the minority class of interest has a string label that is intentionally not the greatest class label using the lexicographic order. In this case, "cancer" is the positive label, and `classifier.classes_` is `["cancer", "not cancer"]`. In addition, the dataset is imbalanced to better identify problems when using non-symmetric performance metrics such as f1-score, average precision and so on. Returns ------- classifier : estimator object Trained classifier on the binary problem. X_test : ndarray of shape (n_samples, n_features) Data to be used as testing set in tests. y_test : ndarray of shape (n_samples,), dtype=object Binary target where labels are strings. y_pred : ndarray of shape (n_samples,), dtype=object Prediction of `classifier` when predicting for `X_test`. y_pred_proba : ndarray of shape (n_samples, 2), dtype=np.float64 Probabilities of `classifier` when predicting for `X_test`. y_pred_decision : ndarray of shape (n_samples,), dtype=np.float64 Decision function values of `classifier` when predicting on `X_test`. """ from sklearn.datasets import load_breast_cancer from sklearn.utils import shuffle X, y = load_breast_cancer(return_X_y=True) # create an highly imbalanced classification task idx_positive = np.flatnonzero(y == 1) idx_negative = np.flatnonzero(y == 0) idx_selected = np.hstack([idx_negative, idx_positive[:25]]) X, y = X[idx_selected], y[idx_selected] X, y = shuffle(X, y, random_state=42) # only use 2 features to make the problem even harder X = X[:, :2] y = np.array(["cancer" if c == 1 else "not cancer" for c in y], dtype=object) X_train, X_test, y_train, y_test = train_test_split( X, y, stratify=y, random_state=0, ) classifier = LogisticRegression().fit(X_train, y_train) y_pred = classifier.predict(X_test) y_pred_proba = classifier.predict_proba(X_test) y_pred_decision = classifier.decision_function(X_test) return classifier, X_test, y_test, y_pred, y_pred_proba, y_pred_decision
Train a classifier on binary problem with string target. The classifier is trained on a binary classification problem where the minority class of interest has a string label that is intentionally not the greatest class label using the lexicographic order. In this case, "cancer" is the positive label, and `classifier.classes_` is `["cancer", "not cancer"]`. In addition, the dataset is imbalanced to better identify problems when using non-symmetric performance metrics such as f1-score, average precision and so on. Returns ------- classifier : estimator object Trained classifier on the binary problem. X_test : ndarray of shape (n_samples, n_features) Data to be used as testing set in tests. y_test : ndarray of shape (n_samples,), dtype=object Binary target where labels are strings. y_pred : ndarray of shape (n_samples,), dtype=object Prediction of `classifier` when predicting for `X_test`. y_pred_proba : ndarray of shape (n_samples, 2), dtype=np.float64 Probabilities of `classifier` when predicting for `X_test`. y_pred_decision : ndarray of shape (n_samples,), dtype=np.float64 Decision function values of `classifier` when predicting on `X_test`.
string_labeled_classification_problem
python
scikit-learn/scikit-learn
sklearn/metrics/tests/test_score_objects.py
https://github.com/scikit-learn/scikit-learn/blob/master/sklearn/metrics/tests/test_score_objects.py
BSD-3-Clause
def test_scorer_set_score_request_raises(name): """Test that set_score_request is only available when feature flag is on.""" # Make sure they expose the routing methods. scorer = get_scorer(name) with pytest.raises(RuntimeError, match="This method is only available"): scorer.set_score_request()
Test that set_score_request is only available when feature flag is on.
test_scorer_set_score_request_raises
python
scikit-learn/scikit-learn
sklearn/metrics/tests/test_score_objects.py
https://github.com/scikit-learn/scikit-learn/blob/master/sklearn/metrics/tests/test_score_objects.py
BSD-3-Clause
def test_scorer_metadata_request(name): """Testing metadata requests for scorers. This test checks many small things in a large test, to reduce the boilerplate required for each section. """ # Make sure they expose the routing methods. scorer = get_scorer(name) assert hasattr(scorer, "set_score_request") assert hasattr(scorer, "get_metadata_routing") # Check that by default no metadata is requested. assert_request_is_empty(scorer.get_metadata_routing()) weighted_scorer = scorer.set_score_request(sample_weight=True) # set_score_request should mutate the instance, rather than returning a # new instance assert weighted_scorer is scorer # make sure the scorer doesn't request anything on methods other than # `score`, and that the requested value on `score` is correct. assert_request_is_empty(weighted_scorer.get_metadata_routing(), exclude="score") assert ( weighted_scorer.get_metadata_routing().score.requests["sample_weight"] is True ) # make sure putting the scorer in a router doesn't request anything by # default router = MetadataRouter(owner="test").add( scorer=get_scorer(name), method_mapping=MethodMapping().add(caller="score", callee="score"), ) # make sure `sample_weight` is refused if passed. with pytest.raises(TypeError, match="got unexpected argument"): router.validate_metadata(params={"sample_weight": 1}, method="score") # make sure `sample_weight` is not routed even if passed. routed_params = router.route_params(params={"sample_weight": 1}, caller="score") assert not routed_params.scorer.score # make sure putting weighted_scorer in a router requests sample_weight router = MetadataRouter(owner="test").add( scorer=weighted_scorer, method_mapping=MethodMapping().add(caller="score", callee="score"), ) router.validate_metadata(params={"sample_weight": 1}, method="score") routed_params = router.route_params(params={"sample_weight": 1}, caller="score") assert list(routed_params.scorer.score.keys()) == ["sample_weight"]
Testing metadata requests for scorers. This test checks many small things in a large test, to reduce the boilerplate required for each section.
test_scorer_metadata_request
python
scikit-learn/scikit-learn
sklearn/metrics/tests/test_score_objects.py
https://github.com/scikit-learn/scikit-learn/blob/master/sklearn/metrics/tests/test_score_objects.py
BSD-3-Clause
def test_metadata_kwarg_conflict(): """This test makes sure the right warning is raised if the user passes some metadata both as a constructor to make_scorer, and during __call__. """ X, y = make_classification( n_classes=3, n_informative=3, n_samples=20, random_state=0 ) lr = LogisticRegression().fit(X, y) scorer = make_scorer( roc_auc_score, response_method="predict_proba", multi_class="ovo", labels=lr.classes_, ) with pytest.warns(UserWarning, match="already set as kwargs"): scorer.set_score_request(labels=True) with pytest.warns(UserWarning, match="There is an overlap"): scorer(lr, X, y, labels=lr.classes_)
This test makes sure the right warning is raised if the user passes some metadata both as a constructor to make_scorer, and during __call__.
test_metadata_kwarg_conflict
python
scikit-learn/scikit-learn
sklearn/metrics/tests/test_score_objects.py
https://github.com/scikit-learn/scikit-learn/blob/master/sklearn/metrics/tests/test_score_objects.py
BSD-3-Clause
def test_PassthroughScorer_set_score_request(): """Test that _PassthroughScorer.set_score_request adds the correct metadata request on itself and doesn't change its estimator's routing.""" est = LogisticRegression().set_score_request(sample_weight="estimator_weights") # make a `_PassthroughScorer` with `check_scoring`: scorer = check_scoring(est, None) assert ( scorer.get_metadata_routing().score.requests["sample_weight"] == "estimator_weights" ) scorer.set_score_request(sample_weight="scorer_weights") assert ( scorer.get_metadata_routing().score.requests["sample_weight"] == "scorer_weights" ) # making sure changing the passthrough object doesn't affect the estimator. assert ( est.get_metadata_routing().score.requests["sample_weight"] == "estimator_weights" )
Test that _PassthroughScorer.set_score_request adds the correct metadata request on itself and doesn't change its estimator's routing.
test_PassthroughScorer_set_score_request
python
scikit-learn/scikit-learn
sklearn/metrics/tests/test_score_objects.py
https://github.com/scikit-learn/scikit-learn/blob/master/sklearn/metrics/tests/test_score_objects.py
BSD-3-Clause
def test_PassthroughScorer_set_score_request_raises_without_routing_enabled(): """Test that _PassthroughScorer.set_score_request raises if metadata routing is disabled.""" scorer = check_scoring(LogisticRegression(), None) msg = "This method is only available when metadata routing is enabled." with pytest.raises(RuntimeError, match=msg): scorer.set_score_request(sample_weight="my_weights")
Test that _PassthroughScorer.set_score_request raises if metadata routing is disabled.
test_PassthroughScorer_set_score_request_raises_without_routing_enabled
python
scikit-learn/scikit-learn
sklearn/metrics/tests/test_score_objects.py
https://github.com/scikit-learn/scikit-learn/blob/master/sklearn/metrics/tests/test_score_objects.py
BSD-3-Clause
def test_get_scorer_multilabel_indicator(): """Check that our scorer deal with multi-label indicator matrices. Non-regression test for: https://github.com/scikit-learn/scikit-learn/issues/26817 """ X, Y = make_multilabel_classification(n_samples=72, n_classes=3, random_state=0) X_train, X_test, Y_train, Y_test = train_test_split(X, Y, random_state=0) estimator = KNeighborsClassifier().fit(X_train, Y_train) score = get_scorer("average_precision")(estimator, X_test, Y_test) assert score > 0.8
Check that our scorer deal with multi-label indicator matrices. Non-regression test for: https://github.com/scikit-learn/scikit-learn/issues/26817
test_get_scorer_multilabel_indicator
python
scikit-learn/scikit-learn
sklearn/metrics/tests/test_score_objects.py
https://github.com/scikit-learn/scikit-learn/blob/master/sklearn/metrics/tests/test_score_objects.py
BSD-3-Clause
def test_get_scorer_multimetric(pass_estimator): """Check that check_scoring is compatible with multi-metric configurations.""" X, y = make_classification(n_samples=150, n_features=10, random_state=0) X_train, X_test, y_train, y_test = train_test_split(X, y, random_state=0) clf = LogisticRegression(random_state=0) if pass_estimator: check_scoring_ = check_scoring else: check_scoring_ = partial(check_scoring, clf) clf.fit(X_train, y_train) y_pred = clf.predict(X_test) y_proba = clf.predict_proba(X_test) expected_results = { "r2": r2_score(y_test, y_pred), "roc_auc": roc_auc_score(y_test, y_proba[:, 1]), "accuracy": accuracy_score(y_test, y_pred), } for container in [set, list, tuple]: scoring = check_scoring_(scoring=container(["r2", "roc_auc", "accuracy"])) result = scoring(clf, X_test, y_test) assert result.keys() == expected_results.keys() for name in result: assert result[name] == pytest.approx(expected_results[name]) def double_accuracy(y_true, y_pred): return 2 * accuracy_score(y_true, y_pred) custom_scorer = make_scorer(double_accuracy, response_method="predict") # dict with different names dict_scoring = check_scoring_( scoring={ "my_r2": "r2", "my_roc_auc": "roc_auc", "double_accuracy": custom_scorer, } ) dict_result = dict_scoring(clf, X_test, y_test) assert len(dict_result) == 3 assert dict_result["my_r2"] == pytest.approx(expected_results["r2"]) assert dict_result["my_roc_auc"] == pytest.approx(expected_results["roc_auc"]) assert dict_result["double_accuracy"] == pytest.approx( 2 * expected_results["accuracy"] )
Check that check_scoring is compatible with multi-metric configurations.
test_get_scorer_multimetric
python
scikit-learn/scikit-learn
sklearn/metrics/tests/test_score_objects.py
https://github.com/scikit-learn/scikit-learn/blob/master/sklearn/metrics/tests/test_score_objects.py
BSD-3-Clause
def test_check_scoring_multimetric_raise_exc(): """Test that check_scoring returns error code for a subset of scorers in multimetric scoring if raise_exc=False and raises otherwise.""" def raising_scorer(estimator, X, y): raise ValueError("That doesn't work.") X, y = make_classification(n_samples=150, n_features=10, random_state=0) X_train, X_test, y_train, y_test = train_test_split(X, y, random_state=0) clf = LogisticRegression().fit(X_train, y_train) # "raising_scorer" is raising ValueError and should return an string representation # of the error of the last scorer: scoring = { "accuracy": make_scorer(accuracy_score), "raising_scorer": raising_scorer, } scoring_call = check_scoring(estimator=clf, scoring=scoring, raise_exc=False) scores = scoring_call(clf, X_test, y_test) assert "That doesn't work." in scores["raising_scorer"] # should raise an error scoring_call = check_scoring(estimator=clf, scoring=scoring, raise_exc=True) err_msg = "That doesn't work." with pytest.raises(ValueError, match=err_msg): scores = scoring_call(clf, X_test, y_test)
Test that check_scoring returns error code for a subset of scorers in multimetric scoring if raise_exc=False and raises otherwise.
test_check_scoring_multimetric_raise_exc
python
scikit-learn/scikit-learn
sklearn/metrics/tests/test_score_objects.py
https://github.com/scikit-learn/scikit-learn/blob/master/sklearn/metrics/tests/test_score_objects.py
BSD-3-Clause
def test_metadata_routing_multimetric_metadata_routing(enable_metadata_routing): """Test multimetric scorer works with and without metadata routing enabled when there is no actual metadata to pass. Non-regression test for https://github.com/scikit-learn/scikit-learn/issues/28256 """ X, y = make_classification(n_samples=50, n_features=10, random_state=0) estimator = EstimatorWithFitAndPredict().fit(X, y) multimetric_scorer = _MultimetricScorer(scorers={"acc": get_scorer("accuracy")}) with config_context(enable_metadata_routing=enable_metadata_routing): multimetric_scorer(estimator, X, y)
Test multimetric scorer works with and without metadata routing enabled when there is no actual metadata to pass. Non-regression test for https://github.com/scikit-learn/scikit-learn/issues/28256
test_metadata_routing_multimetric_metadata_routing
python
scikit-learn/scikit-learn
sklearn/metrics/tests/test_score_objects.py
https://github.com/scikit-learn/scikit-learn/blob/master/sklearn/metrics/tests/test_score_objects.py
BSD-3-Clause
def test_curve_scorer(): """Check the behaviour of the `_CurveScorer` class.""" X, y = make_classification(random_state=0) estimator = LogisticRegression().fit(X, y) curve_scorer = _CurveScorer( balanced_accuracy_score, sign=1, response_method="predict_proba", thresholds=10, kwargs={}, ) scores, thresholds = curve_scorer(estimator, X, y) assert thresholds.shape == scores.shape # check that the thresholds are probabilities with extreme values close to 0 and 1. # they are not exactly 0 and 1 because they are the extremum of the # `estimator.predict_proba(X)` values. assert 0 <= thresholds.min() <= 0.01 assert 0.99 <= thresholds.max() <= 1 # balanced accuracy should be between 0.5 and 1 when it is not adjusted assert 0.5 <= scores.min() <= 1 # check that passing kwargs to the scorer works curve_scorer = _CurveScorer( balanced_accuracy_score, sign=1, response_method="predict_proba", thresholds=10, kwargs={"adjusted": True}, ) scores, thresholds = curve_scorer(estimator, X, y) # balanced accuracy should be between 0.5 and 1 when it is not adjusted assert 0 <= scores.min() <= 0.5 # check that we can inverse the sign of the score when dealing with `neg_*` scorer curve_scorer = _CurveScorer( balanced_accuracy_score, sign=-1, response_method="predict_proba", thresholds=10, kwargs={"adjusted": True}, ) scores, thresholds = curve_scorer(estimator, X, y) assert all(scores <= 0)
Check the behaviour of the `_CurveScorer` class.
test_curve_scorer
python
scikit-learn/scikit-learn
sklearn/metrics/tests/test_score_objects.py
https://github.com/scikit-learn/scikit-learn/blob/master/sklearn/metrics/tests/test_score_objects.py
BSD-3-Clause
def test_curve_scorer_pos_label(global_random_seed): """Check that we propagate properly the `pos_label` parameter to the scorer.""" n_samples = 30 X, y = make_classification( n_samples=n_samples, weights=[0.9, 0.1], random_state=global_random_seed ) estimator = LogisticRegression().fit(X, y) curve_scorer = _CurveScorer( recall_score, sign=1, response_method="predict_proba", thresholds=10, kwargs={"pos_label": 1}, ) scores_pos_label_1, thresholds_pos_label_1 = curve_scorer(estimator, X, y) curve_scorer = _CurveScorer( recall_score, sign=1, response_method="predict_proba", thresholds=10, kwargs={"pos_label": 0}, ) scores_pos_label_0, thresholds_pos_label_0 = curve_scorer(estimator, X, y) # Since `pos_label` is forwarded to the curve_scorer, the thresholds are not equal. assert not (thresholds_pos_label_1 == thresholds_pos_label_0).all() # The min-max range for the thresholds is defined by the probabilities of the # `pos_label` class (the column of `predict_proba`). y_pred = estimator.predict_proba(X) assert thresholds_pos_label_0.min() == pytest.approx(y_pred.min(axis=0)[0]) assert thresholds_pos_label_0.max() == pytest.approx(y_pred.max(axis=0)[0]) assert thresholds_pos_label_1.min() == pytest.approx(y_pred.min(axis=0)[1]) assert thresholds_pos_label_1.max() == pytest.approx(y_pred.max(axis=0)[1]) # The recall cannot be negative and `pos_label=1` should have a higher recall # since there is less samples to be considered. assert 0.0 < scores_pos_label_0.min() < scores_pos_label_1.min() assert scores_pos_label_0.max() == pytest.approx(1.0) assert scores_pos_label_1.max() == pytest.approx(1.0)
Check that we propagate properly the `pos_label` parameter to the scorer.
test_curve_scorer_pos_label
python
scikit-learn/scikit-learn
sklearn/metrics/tests/test_score_objects.py
https://github.com/scikit-learn/scikit-learn/blob/master/sklearn/metrics/tests/test_score_objects.py
BSD-3-Clause