code
stringlengths
66
870k
docstring
stringlengths
19
26.7k
func_name
stringlengths
1
138
language
stringclasses
1 value
repo
stringlengths
7
68
path
stringlengths
5
324
url
stringlengths
46
389
license
stringclasses
7 values
def get_task_description(task_instance: task_eval.TaskEval) -> str: """Get the description for a task. Args: task_instance: Task instance Returns: Task description """ task_name = task_instance.__class__.__name__ try: # First try to use get_instruction() if available if hasattr(task_instance, 'get_instruction') and callable(getattr(task_instance, 'get_instruction')): return task_instance.get_instruction() # Fall back to goal property which is common in AndroidWorld tasks elif hasattr(task_instance, 'goal'): return task_instance.goal else: # If neither is available, use a default message with the task name logger.warning(f"Task {task_name} has no get_instruction() method or goal property") return f"Complete the '{task_name}' task" except Exception as e: logger.error(f"Error getting task description for {task_name}: {e}") return f"Complete the '{task_name}' task"
Get the description for a task. Args: task_instance: Task instance Returns: Task description
get_task_description
python
droidrun/droidrun
eval/utils/task_manager.py
https://github.com/droidrun/droidrun/blob/master/eval/utils/task_manager.py
MIT
def check_task_success(env, task_instance: task_eval.TaskEval) -> bool: """Check if a task was completed successfully. Args: env: AndroidWorld environment task_instance: Task instance Returns: True if task was successful, False otherwise """ task_name = task_instance.__class__.__name__ try: # First try to use check_success() if available if hasattr(task_instance, 'check_success') and callable(getattr(task_instance, 'check_success')): return task_instance.check_success(env) # Fall back to is_successful() which is common in some AndroidWorld tasks elif hasattr(task_instance, 'is_successful') and callable(getattr(task_instance, 'is_successful')): return task_instance.is_successful(env) else: # If neither is available, mark as failed logger.warning(f"Task {task_name} has no check_success() or is_successful() method") return False except Exception as e: logger.error(f"Error checking task success for {task_name}: {e}") return False
Check if a task was completed successfully. Args: env: AndroidWorld environment task_instance: Task instance Returns: True if task was successful, False otherwise
check_task_success
python
droidrun/droidrun
eval/utils/task_manager.py
https://github.com/droidrun/droidrun/blob/master/eval/utils/task_manager.py
MIT
def teardown_task(env, task_instance: task_eval.TaskEval) -> bool: """Tear down a task. Args: env: AndroidWorld environment task_instance: Task instance Returns: True if teardown was successful, False otherwise """ task_name = task_instance.__class__.__name__ try: if hasattr(task_instance, 'tear_down') and callable(getattr(task_instance, 'tear_down')): task_instance.tear_down(env) logger.info(f"Task {task_name} torn down using tear_down() method") return True elif hasattr(task_instance, 'teardown') and callable(getattr(task_instance, 'teardown')): task_instance.teardown(env) logger.info(f"Task {task_name} torn down using teardown() method") return True else: logger.warning(f"Task {task_name} has no tear_down() or teardown() method") return False except Exception as e: logger.error(f"Error during task teardown for {task_name}: {e}") return False
Tear down a task. Args: env: AndroidWorld environment task_instance: Task instance Returns: True if teardown was successful, False otherwise
teardown_task
python
droidrun/droidrun
eval/utils/task_manager.py
https://github.com/droidrun/droidrun/blob/master/eval/utils/task_manager.py
MIT
def __init__(self, path, target_column=None, ndarray=True, **kwargs): """ :param str path: The *path* represents a filesystem path or URL that's passed on as the *filepath_or_buffer* argument to :func:`read_table`. :param str target_column: The column in the table to load that represents the target value. This column will not be part of the returned *data*. If *target_column* is None, then the target return value will be None as well. :param kwargs: All other keyword parameters are passed on to :func:`pandas.io.parsers.read_table`. The most useful options may be *usecols* to select which columns of the table to use, *skiprows* to skip a certain number of rows at the beginning and *nrows* to select a given number of rows only. """ self.path = path self.target_column = target_column self.ndarray = ndarray self.kwargs = kwargs
:param str path: The *path* represents a filesystem path or URL that's passed on as the *filepath_or_buffer* argument to :func:`read_table`. :param str target_column: The column in the table to load that represents the target value. This column will not be part of the returned *data*. If *target_column* is None, then the target return value will be None as well. :param kwargs: All other keyword parameters are passed on to :func:`pandas.io.parsers.read_table`. The most useful options may be *usecols* to select which columns of the table to use, *skiprows* to skip a certain number of rows at the beginning and *nrows* to select a given number of rows only.
__init__
python
ottogroup/palladium
palladium/dataset.py
https://github.com/ottogroup/palladium/blob/master/palladium/dataset.py
Apache-2.0
def __init__(self, url, sql, target_column=None, ndarray=True, **kwargs): """ :param str url: The database *url* that'll be used to make a connection. Format follows RFC-1738. :param str sql: SQL query to be executed or database table name. :param str target_column: The name of the column used as the target. (All other columns are considered feature data.) :param kwargs: All other keyword parameters are passed on to :func:`pandas.io.parsers.read_sql`. """ self.engine = create_engine(url) self.sql = sql self.target_column = target_column self.ndarray = ndarray self.kwargs = kwargs
:param str url: The database *url* that'll be used to make a connection. Format follows RFC-1738. :param str sql: SQL query to be executed or database table name. :param str target_column: The name of the column used as the target. (All other columns are considered feature data.) :param kwargs: All other keyword parameters are passed on to :func:`pandas.io.parsers.read_sql`.
__init__
python
ottogroup/palladium
palladium/dataset.py
https://github.com/ottogroup/palladium/blob/master/palladium/dataset.py
Apache-2.0
def __init__(self, impl, update_cache_rrule, ): """ :param palladium.interfaces.DatasetLoader impl: The underlying (decorated) dataset loader object. :param dict update_cache_rrule: Keyword arguments for a :class:`dateutil.rrule.rrule` that determines when the cache will be updated. See :class:`~palladium.util.RruleThread` for details. """ self.impl = impl self.update_cache_rrule = update_cache_rrule
:param palladium.interfaces.DatasetLoader impl: The underlying (decorated) dataset loader object. :param dict update_cache_rrule: Keyword arguments for a :class:`dateutil.rrule.rrule` that determines when the cache will be updated. See :class:`~palladium.util.RruleThread` for details.
__init__
python
ottogroup/palladium
palladium/dataset.py
https://github.com/ottogroup/palladium/blob/master/palladium/dataset.py
Apache-2.0
def test_cmd(argv=sys.argv[1:]): # pragma: no cover """\ Test a model. Uses 'dataset_loader_test' and 'model_persister' from the configuration to load a test dataset to test the accuracy of a trained model with. Usage: pld-test [options] Options: -h --help Show this screen. --model-version=<version> The version of the model to be tested. If not specified, the newest model will be used. """ arguments = docopt(test_cmd.__doc__, argv=argv) model_version = arguments['--model-version'] model_version = int(model_version) if model_version is not None else None initialize_config(__mode__='fit') test(model_version=model_version)
Test a model. Uses 'dataset_loader_test' and 'model_persister' from the configuration to load a test dataset to test the accuracy of a trained model with. Usage: pld-test [options] Options: -h --help Show this screen. --model-version=<version> The version of the model to be tested. If not specified, the newest model will be used.
test_cmd
python
ottogroup/palladium
palladium/eval.py
https://github.com/ottogroup/palladium/blob/master/palladium/eval.py
Apache-2.0
def fit_cmd(argv=sys.argv[1:]): # pragma: no cover """\ Fit a model and save to database. Will use 'dataset_loader_train', 'model', and 'model_perister' from the configuration file, to load a dataset to train a model with, and persist it. Usage: pld-fit [options] Options: -n --no-save Don't persist the fitted model to disk. --no-activate Don't activate the fitted model. --save-if-better-than=<k> Persist only if test score better than given value. -e --evaluate Evaluate fitted model on train and test set and print out results. -h --help Show this screen. """ arguments = docopt(fit_cmd.__doc__, argv=argv) no_save = arguments['--no-save'] no_activate = arguments['--no-activate'] save_if_better_than = arguments['--save-if-better-than'] evaluate = arguments['--evaluate'] or bool(save_if_better_than) if save_if_better_than is not None: save_if_better_than = float(save_if_better_than) initialize_config(__mode__='fit') fit( persist=not no_save, activate=not no_activate, evaluate=evaluate, persist_if_better_than=save_if_better_than, )
Fit a model and save to database. Will use 'dataset_loader_train', 'model', and 'model_perister' from the configuration file, to load a dataset to train a model with, and persist it. Usage: pld-fit [options] Options: -n --no-save Don't persist the fitted model to disk. --no-activate Don't activate the fitted model. --save-if-better-than=<k> Persist only if test score better than given value. -e --evaluate Evaluate fitted model on train and test set and print out results. -h --help Show this screen.
fit_cmd
python
ottogroup/palladium
palladium/fit.py
https://github.com/ottogroup/palladium/blob/master/palladium/fit.py
Apache-2.0
def admin_cmd(argv=sys.argv[1:]): # pragma: no cover """\ Activate or delete models. Models are usually made active right after fitting (see command pld-fit). The 'activate' command allows you to explicitly set the currently active model. Use 'pld-list' to get an overview of all available models along with their version identifiers. Deleting a model will simply remove it from the database. Usage: pld-admin activate <version> [options] pld-admin delete <version> [options] Options: -h --help Show this screen. """ arguments = docopt(admin_cmd.__doc__, argv=argv) initialize_config(__mode__='fit') if arguments['activate']: activate(model_version=int(arguments['<version>'])) elif arguments['delete']: delete(model_version=int(arguments['<version>']))
Activate or delete models. Models are usually made active right after fitting (see command pld-fit). The 'activate' command allows you to explicitly set the currently active model. Use 'pld-list' to get an overview of all available models along with their version identifiers. Deleting a model will simply remove it from the database. Usage: pld-admin activate <version> [options] pld-admin delete <version> [options] Options: -h --help Show this screen.
admin_cmd
python
ottogroup/palladium
palladium/fit.py
https://github.com/ottogroup/palladium/blob/master/palladium/fit.py
Apache-2.0
def grid_search_cmd(argv=sys.argv[1:]): # pragma: no cover """\ Grid search parameters for the model. Uses 'dataset_loader_train', 'model', and 'grid_search' from the configuration to load a training dataset, and run a grid search on the model using the grid of hyperparameters. Usage: pld-grid-search [options] Options: --save-results=<fname> Save results to CSV file --persist-best Persist the best model from grid search -h --help Show this screen. """ arguments = docopt(grid_search_cmd.__doc__, argv=argv) initialize_config(__mode__='fit') grid_search( save_results=arguments['--save-results'], persist_best=arguments['--persist-best'], )
Grid search parameters for the model. Uses 'dataset_loader_train', 'model', and 'grid_search' from the configuration to load a training dataset, and run a grid search on the model using the grid of hyperparameters. Usage: pld-grid-search [options] Options: --save-results=<fname> Save results to CSV file --persist-best Persist the best model from grid search -h --help Show this screen.
grid_search_cmd
python
ottogroup/palladium
palladium/fit.py
https://github.com/ottogroup/palladium/blob/master/palladium/fit.py
Apache-2.0
def __call__(self): """Loads the data and returns a tuple *(data, target)*, or *(X, y)*. :return: A tuple *(data, target*). *data* is a two dimensional numpy array with shape n x m (one row per example). *target* is a one dimensional array with n target values. *target* may be ``None`` if there is no target value, e.g. in an unsupervised learning setting. :rtype: tuple """
Loads the data and returns a tuple *(data, target)*, or *(X, y)*. :return: A tuple *(data, target*). *data* is a two dimensional numpy array with shape n x m (one row per example). *target* is a one dimensional array with n target values. *target* may be ``None`` if there is no target value, e.g. in an unsupervised learning setting. :rtype: tuple
__call__
python
ottogroup/palladium
palladium/interfaces.py
https://github.com/ottogroup/palladium/blob/master/palladium/interfaces.py
Apache-2.0
def __iter__(self): """ :return: Tuples of train/test indices. """
:return: Tuples of train/test indices.
__iter__
python
ottogroup/palladium
palladium/interfaces.py
https://github.com/ottogroup/palladium/blob/master/palladium/interfaces.py
Apache-2.0
def fit(self, X, y=None): """Fit to data array *X* and possibly a target array *y*. :return: self """
Fit to data array *X* and possibly a target array *y*. :return: self
fit
python
ottogroup/palladium
palladium/interfaces.py
https://github.com/ottogroup/palladium/blob/master/palladium/interfaces.py
Apache-2.0
def predict(self, X, **kw): """Predict classes for data array *X* with shape n x m. Some models may accept additional keyword arguments. :return: A numpy array of length n with the predicted classes (for classification problems) or numeric values (for regression problems). :raises: May raise a :class:`PredictError` to indicate that some condition made it impossible to deliver a prediction. """
Predict classes for data array *X* with shape n x m. Some models may accept additional keyword arguments. :return: A numpy array of length n with the predicted classes (for classification problems) or numeric values (for regression problems). :raises: May raise a :class:`PredictError` to indicate that some condition made it impossible to deliver a prediction.
predict
python
ottogroup/palladium
palladium/interfaces.py
https://github.com/ottogroup/palladium/blob/master/palladium/interfaces.py
Apache-2.0
def read(self, version=None): """Returns a :class:`Model` instance. :param str version: *version* may be used to read a specific version of a model. If *version* is ``None``, returns the active model. :return: The model object. :raises: LookupError if no model was available. """
Returns a :class:`Model` instance. :param str version: *version* may be used to read a specific version of a model. If *version* is ``None``, returns the active model. :return: The model object. :raises: LookupError if no model was available.
read
python
ottogroup/palladium
palladium/interfaces.py
https://github.com/ottogroup/palladium/blob/master/palladium/interfaces.py
Apache-2.0
def write(self, model): """Persists a :class:`Model` and returns a new version number. It is the :class:`ModelPersister`'s responsibility to annotate the 'version' information onto the model before it is saved. The new model will initially be inactive. Use :meth:`ModelPersister.activate` to activate the model. :return: The new model's version identifier. """
Persists a :class:`Model` and returns a new version number. It is the :class:`ModelPersister`'s responsibility to annotate the 'version' information onto the model before it is saved. The new model will initially be inactive. Use :meth:`ModelPersister.activate` to activate the model. :return: The new model's version identifier.
write
python
ottogroup/palladium
palladium/interfaces.py
https://github.com/ottogroup/palladium/blob/master/palladium/interfaces.py
Apache-2.0
def activate(self, version): """Set the model with the given *version* to be the active one. Implies that any previously active model becomes inactive. :param str version: The *version* of the model that's activated. :raises: LookupError if no model with given *version* exists. """
Set the model with the given *version* to be the active one. Implies that any previously active model becomes inactive. :param str version: The *version* of the model that's activated. :raises: LookupError if no model with given *version* exists.
activate
python
ottogroup/palladium
palladium/interfaces.py
https://github.com/ottogroup/palladium/blob/master/palladium/interfaces.py
Apache-2.0
def delete(self, version): """Delete the model with the given *version* from the database. :param str version: The *version* of the model that's activated. :raises: LookupError if no model with given *version* exists. """
Delete the model with the given *version* from the database. :param str version: The *version* of the model that's activated. :raises: LookupError if no model with given *version* exists.
delete
python
ottogroup/palladium
palladium/interfaces.py
https://github.com/ottogroup/palladium/blob/master/palladium/interfaces.py
Apache-2.0
def list_models(self): """List metadata of all available models. :return: A list of dicts, with each dict containing information about one of the available models. Each dict is guaranteed to contain the ``version`` key, which is the same version number that :meth:`ModelPersister.read` accepts for loading specific models. """
List metadata of all available models. :return: A list of dicts, with each dict containing information about one of the available models. Each dict is guaranteed to contain the ``version`` key, which is the same version number that :meth:`ModelPersister.read` accepts for loading specific models.
list_models
python
ottogroup/palladium
palladium/interfaces.py
https://github.com/ottogroup/palladium/blob/master/palladium/interfaces.py
Apache-2.0
def list_properties(self): """List properties of :class:`ModelPersister` itself. :return: A dictionary of key and value pairs, where both keys and values are of type ``str``. Properties will usually include ``active-model`` and ``db-version`` entries. """
List properties of :class:`ModelPersister` itself. :return: A dictionary of key and value pairs, where both keys and values are of type ``str``. Properties will usually include ``active-model`` and ``db-version`` entries.
list_properties
python
ottogroup/palladium
palladium/interfaces.py
https://github.com/ottogroup/palladium/blob/master/palladium/interfaces.py
Apache-2.0
def upgrade(self, from_version=None, to_version=__version__): """Upgrade the underlying database to the latest version. Newer versions of Palladium may require changes to the :class:`ModelPersister`'s database. This method provides an opportunity to run the necessary upgrade steps. It's the :class:`ModelPersister`'s responsibility to keep track of the Palladium version that was used to create and upgrade its database, and thus to determine the upgrade steps necessary. """
Upgrade the underlying database to the latest version. Newer versions of Palladium may require changes to the :class:`ModelPersister`'s database. This method provides an opportunity to run the necessary upgrade steps. It's the :class:`ModelPersister`'s responsibility to keep track of the Palladium version that was used to create and upgrade its database, and thus to determine the upgrade steps necessary.
upgrade
python
ottogroup/palladium
palladium/interfaces.py
https://github.com/ottogroup/palladium/blob/master/palladium/interfaces.py
Apache-2.0
def __call__(self, model, request): """ Use the model to run a prediction with the requested data. :param model: The :class:`~Model` instance to use for making predictions. :param request: A werkzeug ``request`` object. A dictionary with query parameters is available at *request.values*. :return: A werkzeug ``response`` object. It is the :class:`PredictService`'s responsiblity to return appropriate status codes and data in case of error. """
Use the model to run a prediction with the requested data. :param model: The :class:`~Model` instance to use for making predictions. :param request: A werkzeug ``request`` object. A dictionary with query parameters is available at *request.values*. :return: A werkzeug ``response`` object. It is the :class:`PredictService`'s responsiblity to return appropriate status codes and data in case of error.
__call__
python
ottogroup/palladium
palladium/interfaces.py
https://github.com/ottogroup/palladium/blob/master/palladium/interfaces.py
Apache-2.0
def __init__(self, fit_func, predict_func, fit_kwargs=None, predict_kwargs=None, encode_labels=False): """ Instantiates a model with the given *fit_func* and *predict_func* written in Julia. :param str fit_func: The dotted name of the Julia function to use for fitting. The function must take as its first two arguments the *X* and *y* arrays. All elements of the optional *fit_kwargs* dictionary will be passed on to the Julia function as keyword arguments. The return value of *fit_func* will be used as the first argument to *predict_func*. :param str predict_func: Similar to *fit_func*, this is the dotted name of the Julia function used for prediction. The first argument of this function is the return value of *fit_func*. The second argument is the *X* data array. All elements of the optional *fit_kwargs* dictionary will be passed on to the Julia function as keyword arguments. The return value of *predict_func* is considered to be the target array *y*. :param bool encode_labels: If set to *True*, the *y* target array will be automatically encoded using a :class:`sklearn.preprocessing.LabelEncoder`, which is useful if you have string labels but your Julia function only accepts numeric labels. """ self.fit_func = fit_func self.predict_func = predict_func self.encode_labels = encode_labels self.fit_kwargs = fit_kwargs or {} self.predict_kwargs = predict_kwargs or {}
Instantiates a model with the given *fit_func* and *predict_func* written in Julia. :param str fit_func: The dotted name of the Julia function to use for fitting. The function must take as its first two arguments the *X* and *y* arrays. All elements of the optional *fit_kwargs* dictionary will be passed on to the Julia function as keyword arguments. The return value of *fit_func* will be used as the first argument to *predict_func*. :param str predict_func: Similar to *fit_func*, this is the dotted name of the Julia function used for prediction. The first argument of this function is the return value of *fit_func*. The second argument is the *X* data array. All elements of the optional *fit_kwargs* dictionary will be passed on to the Julia function as keyword arguments. The return value of *predict_func* is considered to be the target array *y*. :param bool encode_labels: If set to *True*, the *y* target array will be automatically encoded using a :class:`sklearn.preprocessing.LabelEncoder`, which is useful if you have string labels but your Julia function only accepts numeric labels.
__init__
python
ottogroup/palladium
palladium/julia.py
https://github.com/ottogroup/palladium/blob/master/palladium/julia.py
Apache-2.0
def open(self, path, mode='r'): """Return a file handle For normal files, the implementation is: ```python return open(path, mode) ``` """
Return a file handle For normal files, the implementation is: ```python return open(path, mode) ```
open
python
ottogroup/palladium
palladium/persistence.py
https://github.com/ottogroup/palladium/blob/master/palladium/persistence.py
Apache-2.0
def exists(self, path): """Test whether a path exists For normal files, the implementation is: ```python return os.path.exists(path) ``` """
Test whether a path exists For normal files, the implementation is: ```python return os.path.exists(path) ```
exists
python
ottogroup/palladium
palladium/persistence.py
https://github.com/ottogroup/palladium/blob/master/palladium/persistence.py
Apache-2.0
def remove(self, path): """Remove a file For normal files, the implementation is: ```python os.remove(path) ``` """
Remove a file For normal files, the implementation is: ```python os.remove(path) ```
remove
python
ottogroup/palladium
palladium/persistence.py
https://github.com/ottogroup/palladium/blob/master/palladium/persistence.py
Apache-2.0
def __init__(self, path, io): """ :param str path: The *path* template that I will use to store models, e.g. ``/path/to/model-{version}``. :param FileLikeIO io: Used to access low level file handle operations. """ if '{version}' not in path: raise ValueError( "Your file persister path must have a {version} placeholder," "e.g., model-{version}.pickle." ) self.path = path self.io = io
:param str path: The *path* template that I will use to store models, e.g. ``/path/to/model-{version}``. :param FileLikeIO io: Used to access low level file handle operations.
__init__
python
ottogroup/palladium
palladium/persistence.py
https://github.com/ottogroup/palladium/blob/master/palladium/persistence.py
Apache-2.0
def __init__( self, url, poolclass=None, chunk_size=1024 ** 2 * 100, table_postfix=''): """ :param str url: The database *url* that'll be used to make a connection. Format follows RFC-1738. I'll create a table ``models`` to store the pickles in if it doesn't exist yet. :param sqlalchemy.pool.Pool poolclass: A class specifying DB connection behavior of the engine. If set to None, the NullPool will be used. :param int chunk_size: The pickled contents of the model are stored inside the database in chunks. The default size is 1024 ** 2 * 100 (100MB). :param str table_postfix: If *table_postfix* is provided, I will append it to the table name of all tables used in this instance. """ if not poolclass: poolclass = NullPool engine = create_engine(url, poolclass=poolclass) self.engine = engine self.chunk_size = chunk_size self.table_postfix = table_postfix self.write_lock = Lock() orms = self.create_orm_classes() self.Property = orms['Property'] self.DBModel = orms['DBModel'] self.DBModelChunk = orms['DBModelChunk'] metadata = self.DBModel.metadata metadata.bind = engine metadata.create_all() self.session = scoped_session(sessionmaker(bind=engine)) self._initialize_properties()
:param str url: The database *url* that'll be used to make a connection. Format follows RFC-1738. I'll create a table ``models`` to store the pickles in if it doesn't exist yet. :param sqlalchemy.pool.Pool poolclass: A class specifying DB connection behavior of the engine. If set to None, the NullPool will be used. :param int chunk_size: The pickled contents of the model are stored inside the database in chunks. The default size is 1024 ** 2 * 100 (100MB). :param str table_postfix: If *table_postfix* is provided, I will append it to the table name of all tables used in this instance.
__init__
python
ottogroup/palladium
palladium/persistence.py
https://github.com/ottogroup/palladium/blob/master/palladium/persistence.py
Apache-2.0
def __init__(self, impl, update_cache_rrule=None, check_version=True, ): """ :param ModelPersister impl: The underlying (decorated) persister object. :param dict update_cache_rrule: Optional keyword arguments for a :class:`dateutil.rrule.rrule` that determines when the cache will be updated. See :class:`~palladium.util.RruleThread` for details. :param bool check_version: If set to `True`, I will perform a check and only load a new model from the storage if my cached version differs from what's the current active version. """ self.impl = impl self.update_cache_rrule = update_cache_rrule self.check_version = check_version
:param ModelPersister impl: The underlying (decorated) persister object. :param dict update_cache_rrule: Optional keyword arguments for a :class:`dateutil.rrule.rrule` that determines when the cache will be updated. See :class:`~palladium.util.RruleThread` for details. :param bool check_version: If set to `True`, I will perform a check and only load a new model from the storage if my cached version differs from what's the current active version.
__init__
python
ottogroup/palladium
palladium/persistence.py
https://github.com/ottogroup/palladium/blob/master/palladium/persistence.py
Apache-2.0
def make_ujson_response(obj, status_code=200): """Encodes the given *obj* to json and wraps it in a response. :return: A Flask response. """ json_encoded = ujson.encode(obj, ensure_ascii=False) resp = make_response(json_encoded) resp.mimetype = 'application/json' resp.content_type = 'application/json; charset=utf-8' resp.status_code = status_code return resp
Encodes the given *obj* to json and wraps it in a response. :return: A Flask response.
make_ujson_response
python
ottogroup/palladium
palladium/server.py
https://github.com/ottogroup/palladium/blob/master/palladium/server.py
Apache-2.0
def __init__( self, mapping, params=(), entry_point='/predict', decorator_list_name='predict_decorators', predict_proba=False, unwrap_sample=False, **kwargs ): """ :param mapping: A list of query parameters and their type that should be included in the request. These will be processed in the :meth:`sample_from_data` method to construct a sample that can be used for prediction. An example that expects two request parameters called ``pos`` and ``neg`` that are both of type str:: { ... 'mapping': [('pos', 'str'), ('neg', 'str')] ... } :param params: Similarly to *mapping*, this is a list of name and type of parameters that will be passed to the model's :meth:`~palladium.interfaces.Model.predict` method as keyword arguments. :param predict_proba: Instead of returning a single class (the default), when *predict_proba* is set to true, the result will instead contain a list of class probabilities. :param unwrap_sample: When working with text, scikit-learn and others will sometimes expect the input to be a 1d array of strings rather than a 2d array. Setting *unwrap_sample* to true will use this representation. """ self.mapping = mapping self.params = params self.entry_point = entry_point self.decorator_list_name = decorator_list_name self.predict_proba = predict_proba self.unwrap_sample = unwrap_sample vars(self).update(kwargs)
:param mapping: A list of query parameters and their type that should be included in the request. These will be processed in the :meth:`sample_from_data` method to construct a sample that can be used for prediction. An example that expects two request parameters called ``pos`` and ``neg`` that are both of type str:: { ... 'mapping': [('pos', 'str'), ('neg', 'str')] ... } :param params: Similarly to *mapping*, this is a list of name and type of parameters that will be passed to the model's :meth:`~palladium.interfaces.Model.predict` method as keyword arguments. :param predict_proba: Instead of returning a single class (the default), when *predict_proba* is set to true, the result will instead contain a list of class probabilities. :param unwrap_sample: When working with text, scikit-learn and others will sometimes expect the input to be a 1d array of strings rather than a 2d array. Setting *unwrap_sample* to true will use this representation.
__init__
python
ottogroup/palladium
palladium/server.py
https://github.com/ottogroup/palladium/blob/master/palladium/server.py
Apache-2.0
def sample_from_data(self, model, data): """Convert incoming sample *data* into a numpy array. :param model: The :class:`~Model` instance to use for making predictions. :param data: A dict-like with the sample's data, typically retrieved from ``request.args`` or similar. """ values = [] for key, type_name in self.mapping: value_type = self.types[type_name] values.append(value_type(data[key])) if self.unwrap_sample: assert len(values) == 1 return np.array(values[0]) else: return np.array(values, dtype=object)
Convert incoming sample *data* into a numpy array. :param model: The :class:`~Model` instance to use for making predictions. :param data: A dict-like with the sample's data, typically retrieved from ``request.args`` or similar.
sample_from_data
python
ottogroup/palladium
palladium/server.py
https://github.com/ottogroup/palladium/blob/master/palladium/server.py
Apache-2.0
def params_from_data(self, model, data): """Retrieve additional parameters (keyword arguments) for ``model.predict`` from request *data*. :param model: The :class:`~Model` instance to use for making predictions. :param data: A dict-like with the parameter data, typically retrieved from ``request.args`` or similar. """ params = {} for key, type_name in self.params: value_type = self.types[type_name] if key in data: params[key] = value_type(data[key]) elif hasattr(model, key): params[key] = getattr(model, key) return params
Retrieve additional parameters (keyword arguments) for ``model.predict`` from request *data*. :param model: The :class:`~Model` instance to use for making predictions. :param data: A dict-like with the parameter data, typically retrieved from ``request.args`` or similar.
params_from_data
python
ottogroup/palladium
palladium/server.py
https://github.com/ottogroup/palladium/blob/master/palladium/server.py
Apache-2.0
def response_from_prediction(self, y_pred, single=True): """Turns a model's prediction in *y_pred* into a JSON response. """ result = y_pred.tolist() if single: result = result[0] response = { 'metadata': get_metadata(), 'result': result, } return make_ujson_response(response, status_code=200)
Turns a model's prediction in *y_pred* into a JSON response.
response_from_prediction
python
ottogroup/palladium
palladium/server.py
https://github.com/ottogroup/palladium/blob/master/palladium/server.py
Apache-2.0
def create_predict_function( route, predict_service, decorator_list_name, config): """Creates a predict function and registers it to the Flask app using the route decorator. :param str route: Path of the entry point. :param palladium.interfaces.PredictService predict_service: The predict service to be registered to this entry point. :param str decorator_list_name: The decorator list to be used for this predict service. It is OK if there is no such entry in the active Palladium config. :return: A predict service function that will be used to process predict requests. """ model_persister = config.get('model_persister') @app.route(route, methods=['GET', 'POST'], endpoint=route) @PluggableDecorator(decorator_list_name) def predict_func(): return predict(model_persister, predict_service) return predict_func
Creates a predict function and registers it to the Flask app using the route decorator. :param str route: Path of the entry point. :param palladium.interfaces.PredictService predict_service: The predict service to be registered to this entry point. :param str decorator_list_name: The decorator list to be used for this predict service. It is OK if there is no such entry in the active Palladium config. :return: A predict service function that will be used to process predict requests.
create_predict_function
python
ottogroup/palladium
palladium/server.py
https://github.com/ottogroup/palladium/blob/master/palladium/server.py
Apache-2.0
def devserver_cmd(argv=sys.argv[1:]): # pragma: no cover """\ Serve the web API for development. Usage: pld-devserver [options] Options: -h --help Show this screen. --host=<host> The host to use [default: 0.0.0.0]. --port=<port> The port to use [default: 5000]. --debug=<debug> Whether or not to use debug mode [default: 0]. """ arguments = docopt(devserver_cmd.__doc__, argv=argv) initialize_config() app.run( host=arguments['--host'], port=int(arguments['--port']), debug=int(arguments['--debug']), )
Serve the web API for development. Usage: pld-devserver [options] Options: -h --help Show this screen. --host=<host> The host to use [default: 0.0.0.0]. --port=<port> The port to use [default: 5000]. --debug=<debug> Whether or not to use debug mode [default: 0].
devserver_cmd
python
ottogroup/palladium
palladium/server.py
https://github.com/ottogroup/palladium/blob/master/palladium/server.py
Apache-2.0
def listen(self, io_in, io_out, io_err): """Listens to provided io stream and writes predictions to output. In case of errors, the error stream will be used. """ for line in io_in: if line.strip().lower() == 'exit': break try: y_pred = self.process_line(line) except Exception as e: io_out.write('[]\n') io_err.write( "Error while processing input row: {}" "{}: {}\n".format(line, type(e), e)) io_err.flush() else: io_out.write(ujson.dumps(y_pred.tolist())) io_out.write('\n') io_out.flush()
Listens to provided io stream and writes predictions to output. In case of errors, the error stream will be used.
listen
python
ottogroup/palladium
palladium/server.py
https://github.com/ottogroup/palladium/blob/master/palladium/server.py
Apache-2.0
def stream_cmd(argv=sys.argv[1:]): # pragma: no cover """\ Start the streaming server, which listens to stdin, processes line by line, and returns predictions. The input should consist of a list of json objects, where each object will result in a prediction. Each line is processed in a batch. Example input (must be on a single line): [{"sepal length": 1.0, "sepal width": 1.1, "petal length": 0.7, "petal width": 5}, {"sepal length": 1.0, "sepal width": 8.0, "petal length": 1.4, "petal width": 5}] Example output: ["Iris-virginica","Iris-setosa"] An input line with the word 'exit' will quit the streaming server. Usage: pld-stream [options] Options: -h --help Show this screen. """ docopt(stream_cmd.__doc__, argv=argv) initialize_config() stream = PredictStream() stream.listen(sys.stdin, sys.stdout, sys.stderr)
Start the streaming server, which listens to stdin, processes line by line, and returns predictions. The input should consist of a list of json objects, where each object will result in a prediction. Each line is processed in a batch. Example input (must be on a single line): [{"sepal length": 1.0, "sepal width": 1.1, "petal length": 0.7, "petal width": 5}, {"sepal length": 1.0, "sepal width": 8.0, "petal length": 1.4, "petal width": 5}] Example output: ["Iris-virginica","Iris-setosa"] An input line with the word 'exit' will quit the streaming server. Usage: pld-stream [options] Options: -h --help Show this screen.
stream_cmd
python
ottogroup/palladium
palladium/server.py
https://github.com/ottogroup/palladium/blob/master/palladium/server.py
Apache-2.0
def apply_kwargs(func, **kwargs): """Call *func* with kwargs, but only those kwargs that it accepts. """ new_kwargs = {} params = signature(func).parameters for param_name in params.keys(): if param_name in kwargs: new_kwargs[param_name] = kwargs[param_name] return func(**new_kwargs)
Call *func* with kwargs, but only those kwargs that it accepts.
apply_kwargs
python
ottogroup/palladium
palladium/util.py
https://github.com/ottogroup/palladium/blob/master/palladium/util.py
Apache-2.0
def args_from_config(func): """Decorator that injects parameters from the configuration. """ func_args = signature(func).parameters @wraps(func) def wrapper(*args, **kwargs): config = get_config() for i, argname in enumerate(func_args): if len(args) > i or argname in kwargs: continue elif argname in config: kwargs[argname] = config[argname] try: getcallargs(func, *args, **kwargs) except TypeError as exc: msg = "{}\n{}".format(exc.args[0], PALLADIUM_CONFIG_ERROR) exc.args = (msg,) raise exc return func(*args, **kwargs) wrapper.__wrapped__ = func return wrapper
Decorator that injects parameters from the configuration.
args_from_config
python
ottogroup/palladium
palladium/util.py
https://github.com/ottogroup/palladium/blob/master/palladium/util.py
Apache-2.0
def session_scope(session): """Provide a transactional scope around a series of operations.""" try: yield session session.commit() except: session.rollback() raise finally: session.close()
Provide a transactional scope around a series of operations.
session_scope
python
ottogroup/palladium
palladium/util.py
https://github.com/ottogroup/palladium/blob/master/palladium/util.py
Apache-2.0
def __init__(self, func, rrule, sleep_between_checks=60): """ :param callable func: The function that I will call periodically. :param rrule rrule: The :class:`dateutil.rrule.rrule` recurrence rule that defines when I will do the calls. See the `python-dateutil docs <https://labix.org/python-dateutil>`_ for details on how to define rrules. For convenience, I will also accept a dict instead of a `rrule` instance, in which case I will instantiate an rrule using the dict contents as keyword parameters. :param int sleep_between_checks: Number of seconds to sleep before I check again if I should run the function *func*. """ super(RruleThread, self).__init__(daemon=True) if isinstance(rrule, dict): rrule = self._rrule_from_dict(rrule) self.func = func self.rrule = rrule self.sleep_between_checks = sleep_between_checks self.last_execution = datetime.now() self.alive = True
:param callable func: The function that I will call periodically. :param rrule rrule: The :class:`dateutil.rrule.rrule` recurrence rule that defines when I will do the calls. See the `python-dateutil docs <https://labix.org/python-dateutil>`_ for details on how to define rrules. For convenience, I will also accept a dict instead of a `rrule` instance, in which case I will instantiate an rrule using the dict contents as keyword parameters. :param int sleep_between_checks: Number of seconds to sleep before I check again if I should run the function *func*.
__init__
python
ottogroup/palladium
palladium/util.py
https://github.com/ottogroup/palladium/blob/master/palladium/util.py
Apache-2.0
def memory_usage_psutil(): """Return the current process memory usage in MB. """ process = psutil.Process(os.getpid()) mem = process.memory_info()[0] / float(2 ** 20) mem_vms = process.memory_info()[1] / float(2 ** 20) return mem, mem_vms
Return the current process memory usage in MB.
memory_usage_psutil
python
ottogroup/palladium
palladium/util.py
https://github.com/ottogroup/palladium/blob/master/palladium/util.py
Apache-2.0
def upgrade_cmd(argv=sys.argv[1:]): # pragma: no cover """\ Upgrade the database to the latest version. Usage: pld-ugprade [options] Options: --from=<v> Upgrade from a specific version, overriding the version stored in the database. --to=<v> Upgrade to a specific version instead of the latest version. -h --help Show this screen. """ arguments = docopt(upgrade_cmd.__doc__, argv=argv) initialize_config(__mode__='fit') upgrade(from_version=arguments['--from'], to_version=arguments['--to'])
Upgrade the database to the latest version. Usage: pld-ugprade [options] Options: --from=<v> Upgrade from a specific version, overriding the version stored in the database. --to=<v> Upgrade to a specific version instead of the latest version. -h --help Show this screen.
upgrade_cmd
python
ottogroup/palladium
palladium/util.py
https://github.com/ottogroup/palladium/blob/master/palladium/util.py
Apache-2.0
def export_cmd(argv=sys.argv[1:]): # pragma: no cover """\ Export a model from one model persister to another. The model persister to export to is supposed to be available in the configuration file under the 'model_persister_export' key. Usage: pld-export [options] Options: --version=<v> Export a specific version rather than the active one. --no-activate Don't activate the exported model with the 'model_persister_export'. -h --help Show this screen. """ arguments = docopt(export_cmd.__doc__, argv=argv) model_version = export( model_version=arguments['--version'], activate=not arguments['--no-activate'], ) logger.info("Exported model. New version number: {}".format(model_version))
Export a model from one model persister to another. The model persister to export to is supposed to be available in the configuration file under the 'model_persister_export' key. Usage: pld-export [options] Options: --version=<v> Export a specific version rather than the active one. --no-activate Don't activate the exported model with the 'model_persister_export'. -h --help Show this screen.
export_cmd
python
ottogroup/palladium
palladium/util.py
https://github.com/ottogroup/palladium/blob/master/palladium/util.py
Apache-2.0
def Partial(func, **kwargs): """Allows the use of partially applied functions in the configuration. """ if isinstance(func, str): func = resolve_dotted_name(func) partial_func = partial(func, **kwargs) update_wrapper(partial_func, func) return partial_func
Allows the use of partially applied functions in the configuration.
Partial
python
ottogroup/palladium
palladium/util.py
https://github.com/ottogroup/palladium/blob/master/palladium/util.py
Apache-2.0
def test_upload(self, mocked_requests, persister): """ test upload of model and metadata """ model = Dummy(name='mymodel') get_md_url = "%s/mymodel-metadata.json" % (self.base_url,) mocked_requests.head(get_md_url, status_code=404) put_model_body = None def handle_put_model(request, context): nonlocal put_model_body put_model_body = request.body.read() return '' put_model_url = "%s/mymodel-1.pkl.gz" % (self.base_url,) put_model = mocked_requests.put( put_model_url, text=handle_put_model, status_code=201, ) put_md_body = None def handle_put_md(request, context): nonlocal put_md_body put_md_body = request.body.read() return '' put_md_url = "%s/mymodel-metadata.json" % (self.base_url,) put_md = mocked_requests.put( put_md_url, text=handle_put_md, status_code=201, ) persister.write(model) assert put_model.called assert put_md.called assert pickle.loads(gzip.decompress(put_model_body)) == model assert len(json.loads(put_md_body.decode('utf-8'))['models']) == 1 self.assert_auth_headers(mocked_requests)
test upload of model and metadata
test_upload
python
ottogroup/palladium
palladium/tests/test_persistence.py
https://github.com/ottogroup/palladium/blob/master/palladium/tests/test_persistence.py
Apache-2.0
def test_download(self, mocked_requests, persister): """ test download and activation of a model """ expected = Dummy(name='mymodel', __metadata__={}) zipped_model = gzip.compress(pickle.dumps(expected)) get_md_url = "%s/mymodel-metadata.json" % (self.base_url,) mocked_requests.head(get_md_url, status_code=200) get_md = mocked_requests.get( get_md_url, json={"models": [{"version": 1}], "properties": {'active-model': 1}}, status_code=200, ) get_model_url = "%s/mymodel-1.pkl.gz" % (self.base_url,) mocked_requests.head(get_model_url, status_code=200) get_model = mocked_requests.get( get_model_url, content=zipped_model, status_code=200, ) model = persister.read() assert get_md.called assert get_model.called assert model == expected self.assert_auth_headers(mocked_requests)
test download and activation of a model
test_download
python
ottogroup/palladium
palladium/tests/test_persistence.py
https://github.com/ottogroup/palladium/blob/master/palladium/tests/test_persistence.py
Apache-2.0
def test_delete(self, mocked_requests, persister): """ test deleting a model and metadata update """ get_md_url = "%s/mymodel-metadata.json" % (self.base_url,) mocked_requests.head(get_md_url, status_code=200) mocked_requests.get( get_md_url, json={"models": [{"version": 1}], "properties": {'active-model': 1}}, status_code=200, ) put_md_body = None def handle_put_md(request, context): nonlocal put_md_body put_md_body = request.body.read() return '' put_md_url = "%s/mymodel-metadata.json" % (self.base_url,) put_md = mocked_requests.put( put_md_url, text=handle_put_md, status_code=201, ) delete_model_url = "%s/mymodel-1.pkl.gz" % (self.base_url,) delete_model = mocked_requests.delete( delete_model_url, status_code=200, ) persister.delete(1) assert put_md.called assert delete_model.called assert len(json.loads(put_md_body.decode('utf-8'))['models']) == 0 self.assert_auth_headers(mocked_requests)
test deleting a model and metadata update
test_delete
python
ottogroup/palladium
palladium/tests/test_persistence.py
https://github.com/ottogroup/palladium/blob/master/palladium/tests/test_persistence.py
Apache-2.0
def flask_app_test(request, config): """A Flask app where _url_map, _view_functions, _rules, and _rules_by_end_point will be reset to the previous values after running the test. """ from palladium.server import app orig_rules = app.url_map._rules app.url_map._rules = [rule for rule in app.url_map._rules] orig_rules_by_endpoint = app.url_map._rules_by_endpoint app.url_map._rules_by_endpoint = { k: v for k, v in app.url_map._rules_by_endpoint.items()} orig_view_functions = app.view_functions app.view_functions = { k: v for (k, v) in app.view_functions.items()} orig_remap = app.url_map._remap request.addfinalizer( lambda: ( _reset_url_map( app, orig_rules, orig_rules_by_endpoint, orig_view_functions, orig_remap)) ) return app
A Flask app where _url_map, _view_functions, _rules, and _rules_by_end_point will be reset to the previous values after running the test.
flask_app_test
python
ottogroup/palladium
palladium/tests/__init__.py
https://github.com/ottogroup/palladium/blob/master/palladium/tests/__init__.py
Apache-2.0
def get_task(benchmark, env_id): """Get a task by env_id. Return None if the benchmark doesn't have the env. """ return next( filter(lambda task: task['env_id'] == env_id, benchmark['tasks']), None)
Get a task by env_id. Return None if the benchmark doesn't have the env.
get_task
python
rlworkgroup/garage
benchmarks/src/garage_benchmarks/benchmarks.py
https://github.com/rlworkgroup/garage/blob/master/benchmarks/src/garage_benchmarks/benchmarks.py
MIT
def find_task_for_env_id_in_any_benchmark(env_id): """Find task for env id in any benchmark.""" for bm in _BENCHMARKS: for task in bm['tasks']: if task['env_id'] == env_id: return bm, task return None, None
Find task for env id in any benchmark.
find_task_for_env_id_in_any_benchmark
python
rlworkgroup/garage
benchmarks/src/garage_benchmarks/benchmarks.py
https://github.com/rlworkgroup/garage/blob/master/benchmarks/src/garage_benchmarks/benchmarks.py
MIT
def continuous_mlp_policy_tf_ddpg_benchmarks(): """Run benchmarking experiments for Continuous MLP Policy on TF-DDPG.""" seeds = random.sample(range(100), 5) iterate_experiments(continuous_mlp_policy, MuJoCo1M_ENV_SET, seeds=seeds)
Run benchmarking experiments for Continuous MLP Policy on TF-DDPG.
continuous_mlp_policy_tf_ddpg_benchmarks
python
rlworkgroup/garage
benchmarks/src/garage_benchmarks/benchmark_policies.py
https://github.com/rlworkgroup/garage/blob/master/benchmarks/src/garage_benchmarks/benchmark_policies.py
MIT
def benchmark(exec_func=None, *, plot=True, auto=False): """Decorator for benchmark function. Args: exec_func (func): The experiment function. plot (bool): Whether the result of this run needs to be plotted. PNG files will be generated in sub folder /plot. auto (auto): Whether this is automatic benchmarking. JSON files will be generated in sub folder /auto. Returns: func: The wrapper function. """ if exec_func is None: return functools.partial(benchmark, plot=plot, auto=auto) @functools.wraps(exec_func) def wrapper_func(): """The wrapper function.""" # pylint: disable=global-statement global _plot, _log_dir, _auto _plot = {} if plot else None plt.close('all') _log_dir = _get_log_dir(exec_func.__name__) if os.path.exists(_log_dir): count = 1 while os.path.exists(_log_dir + '_' + str(count)): count += 1 _log_dir = _log_dir + '_' + str(count) if auto: _auto = auto auto_dir = os.path.join(_log_dir, 'auto') os.makedirs(auto_dir) exec_func() if plot: plot_dir = os.path.join(_log_dir, 'plot') os.makedirs(plot_dir) for env_id in _plot: plt.figure(env_id) plt.legend() plt.xlabel(_plot[env_id]['xlabel']) plt.ylabel(_plot[env_id]['ylabel']) plt.title(env_id) plt.savefig(plot_dir + '/' + env_id) if auto: _upload_to_gcp_storage(_log_dir) return wrapper_func
Decorator for benchmark function. Args: exec_func (func): The experiment function. plot (bool): Whether the result of this run needs to be plotted. PNG files will be generated in sub folder /plot. auto (auto): Whether this is automatic benchmarking. JSON files will be generated in sub folder /auto. Returns: func: The wrapper function.
benchmark
python
rlworkgroup/garage
benchmarks/src/garage_benchmarks/helper.py
https://github.com/rlworkgroup/garage/blob/master/benchmarks/src/garage_benchmarks/helper.py
MIT
def iterate_experiments(func, env_ids, snapshot_config=None, seeds=None, xcolumn='TotalEnvSteps', xlabel='Total Environment Steps', ycolumn='Evaluation/AverageReturn', ylabel='Average Return'): """Iterate experiments for benchmarking over env_ids and seeds. Args: env_ids (list[str]): List of environment ids. snapshot_config (garage.experiment.SnapshotConfig): The experiment configuration used by :class:`~Trainer` to create the :class:`~Snapshotter`. seeds (list[int]): List of seeds. func (func): The experiment function. xcolumn (str): Which column should be the JSON x axis. xlabel (str): Label name for x axis. ycolumn (str): Which column should be the JSON y axis. ylabel (str): Label name for y axis. """ func_name = func.__name__.replace('_', '-') if seeds is None: seeds = random.sample(range(100), 4) for env_id in env_ids: task_ys = [] if _plot is not None and env_id not in _plot: _plot[env_id] = {'xlabel': xlabel, 'ylabel': ylabel} for seed in seeds: exp_name = func_name + '_' + env_id + '_' + str(seed) sub_log_dir = os.path.join(_log_dir, exp_name) tf.compat.v1.reset_default_graph() ctxt = dict(log_dir=sub_log_dir) if snapshot_config: ctxt.update(snapshot_config) func(ctxt, env_id=env_id, seed=seed) if _plot is not None or _auto: xs, ys = _read_csv(sub_log_dir, xcolumn, ycolumn) task_ys.append(ys) if _plot is not None or _auto: ys_mean = np.array(task_ys).mean(axis=0) ys_std = np.array(task_ys).std(axis=0) if _plot is not None: plt.figure(env_id) plt.plot(xs, ys_mean, label=func_name) plt.fill_between(xs, (ys_mean - ys_std), (ys_mean + ys_std), alpha=.1) if _auto: _export_to_json(env_id + '_' + func_name, xs, xlabel, ys_mean, ylabel, ys_std)
Iterate experiments for benchmarking over env_ids and seeds. Args: env_ids (list[str]): List of environment ids. snapshot_config (garage.experiment.SnapshotConfig): The experiment configuration used by :class:`~Trainer` to create the :class:`~Snapshotter`. seeds (list[int]): List of seeds. func (func): The experiment function. xcolumn (str): Which column should be the JSON x axis. xlabel (str): Label name for x axis. ycolumn (str): Which column should be the JSON y axis. ylabel (str): Label name for y axis.
iterate_experiments
python
rlworkgroup/garage
benchmarks/src/garage_benchmarks/helper.py
https://github.com/rlworkgroup/garage/blob/master/benchmarks/src/garage_benchmarks/helper.py
MIT
def _get_log_dir(exec_func_name): """Get the log directory given the experiment name. Args: exec_func_name (str): The function name which runs benchmarks. Returns: str: Log directory. """ cwd = pathlib.Path.cwd() return str(cwd.joinpath('data', 'local', 'benchmarks', exec_func_name))
Get the log directory given the experiment name. Args: exec_func_name (str): The function name which runs benchmarks. Returns: str: Log directory.
_get_log_dir
python
rlworkgroup/garage
benchmarks/src/garage_benchmarks/helper.py
https://github.com/rlworkgroup/garage/blob/master/benchmarks/src/garage_benchmarks/helper.py
MIT
def _read_csv(log_dir, xcolumn, ycolumn): """Read csv files and return xs and ys. Args: log_dir (str): Log directory for csv file. xcolumn (str): Which column should be the JSON x axis. ycolumn (str): Which column should be the JSON y axis. Returns: list: List of x axis points. list: List of y axis points. """ xs, ys = [], [] with open(os.path.join(log_dir, 'progress.csv'), 'r') as csv_file: for row in csv.DictReader(csv_file): xs.append(float(row[xcolumn])) ys.append(float(row[ycolumn])) return xs, ys
Read csv files and return xs and ys. Args: log_dir (str): Log directory for csv file. xcolumn (str): Which column should be the JSON x axis. ycolumn (str): Which column should be the JSON y axis. Returns: list: List of x axis points. list: List of y axis points.
_read_csv
python
rlworkgroup/garage
benchmarks/src/garage_benchmarks/helper.py
https://github.com/rlworkgroup/garage/blob/master/benchmarks/src/garage_benchmarks/helper.py
MIT
def _export_to_json(json_name, xs, xlabel, ys, ylabel, ys_std): """Save selected csv column to JSON preparing for automatic benchmarking. Args: json_name (str): The JSON file name. xs (list): List of x axis points xlabel (str): Label name for x axis. ys (np.array): List of y axis points ylabel (str): Label name for y axis. ys_std (np.array): Standard deviation of y asis, used to calculate upper and lower boundary for confidence interval. """ json_path = os.path.join(_log_dir, 'auto', json_name + '.json') with open(json_path, 'w') as json_file: json.dump( dict(x=xs, y=ys.tolist(), y_min=(ys - ys_std).tolist(), y_max=(ys + ys_std).tolist(), xlabel=xlabel, ylabel=ylabel, git_hash=_get_git_hash()), json_file)
Save selected csv column to JSON preparing for automatic benchmarking. Args: json_name (str): The JSON file name. xs (list): List of x axis points xlabel (str): Label name for x axis. ys (np.array): List of y axis points ylabel (str): Label name for y axis. ys_std (np.array): Standard deviation of y asis, used to calculate upper and lower boundary for confidence interval.
_export_to_json
python
rlworkgroup/garage
benchmarks/src/garage_benchmarks/helper.py
https://github.com/rlworkgroup/garage/blob/master/benchmarks/src/garage_benchmarks/helper.py
MIT
def _upload_to_gcp_storage(exec_dir): """Upload all files to GCP storage under exec_dir folder. Args: exec_dir (str): The execution directory. """ _bucket = storage.Client().bucket('resl-garage-benchmarks') exec_name = os.path.basename(exec_dir) for folder_name in os.listdir(exec_dir): folder_path = os.path.join(exec_dir, folder_name) if not os.path.isfile(folder_path): remote_folder = os.path.join(exec_name, folder_name) for file_name in os.listdir(folder_path): file_path = os.path.join(folder_path, file_name) if os.path.isfile(file_path): blob = _bucket.blob(os.path.join(remote_folder, file_name)) blob.upload_from_filename(file_path)
Upload all files to GCP storage under exec_dir folder. Args: exec_dir (str): The execution directory.
_upload_to_gcp_storage
python
rlworkgroup/garage
benchmarks/src/garage_benchmarks/helper.py
https://github.com/rlworkgroup/garage/blob/master/benchmarks/src/garage_benchmarks/helper.py
MIT
def run(names): """Run selected benchmarks. Args: names (tuple): Benchmark names. Raises: BadParameter: if any run name is invalid or duplicated. """ if not names: raise click.BadParameter('Empty names!') if len(names) != len(set(names)): raise click.BadParameter('Duplicate names!') options = _get_all_options() for name in names: if name not in options: raise click.BadParameter( 'Invalid run name! Make sure every name can be found in ' '`garage_benchmark list`!') for name in names: options[name]()
Run selected benchmarks. Args: names (tuple): Benchmark names. Raises: BadParameter: if any run name is invalid or duplicated.
run
python
rlworkgroup/garage
benchmarks/src/garage_benchmarks/run_benchmarks.py
https://github.com/rlworkgroup/garage/blob/master/benchmarks/src/garage_benchmarks/run_benchmarks.py
MIT
def _get_all_options(): """Return a dict containing all benchmark options. Dict of (str: obj) representing benchmark name and its function object. Returns: dict: Benchmark options. """ d = {} d.update(_get_runs_dict(benchmark_algos)) d.update(_get_runs_dict(benchmark_policies)) d.update(_get_runs_dict(benchmark_baselines)) d.update(_get_runs_dict(benchmark_q_functions)) d.update(_get_runs_dict(benchmark_auto)) return d
Return a dict containing all benchmark options. Dict of (str: obj) representing benchmark name and its function object. Returns: dict: Benchmark options.
_get_all_options
python
rlworkgroup/garage
benchmarks/src/garage_benchmarks/run_benchmarks.py
https://github.com/rlworkgroup/garage/blob/master/benchmarks/src/garage_benchmarks/run_benchmarks.py
MIT
def _get_runs_dict(module): """Return a dict containing benchmark options of the module. Dict of (str: obj) representing benchmark name and its function object. Args: module (object): Module object. Returns: dict: Benchmark options of the module. """ d = {} for name, obj in inspect.getmembers(module): if inspect.isfunction(obj) and name.endswith('benchmarks'): d[name] = obj return d
Return a dict containing benchmark options of the module. Dict of (str: obj) representing benchmark name and its function object. Args: module (object): Module object. Returns: dict: Benchmark options of the module.
_get_runs_dict
python
rlworkgroup/garage
benchmarks/src/garage_benchmarks/run_benchmarks.py
https://github.com/rlworkgroup/garage/blob/master/benchmarks/src/garage_benchmarks/run_benchmarks.py
MIT
def _echo_run_names(header, d): """Echo run names to the command line. Args: header (str): The header name. d (dict): The dict containing benchmark options. """ click.echo('-----' + header + '-----') for name in d: click.echo(name) click.echo()
Echo run names to the command line. Args: header (str): The header name. d (dict): The dict containing benchmark options.
_echo_run_names
python
rlworkgroup/garage
benchmarks/src/garage_benchmarks/run_benchmarks.py
https://github.com/rlworkgroup/garage/blob/master/benchmarks/src/garage_benchmarks/run_benchmarks.py
MIT
def ddpg_garage_tf(ctxt, env_id, seed): """Create garage TensorFlow DDPG model and training. Args: ctxt (ExperimentContext): The experiment configuration used by :class:`~Trainer` to create the :class:`~Snapshotter`. env_id (str): Environment id of the task. seed (int): Random positive integer for the trial. """ deterministic.set_seed(seed) with TFTrainer(ctxt) as trainer: env = normalize(GymEnv(env_id)) policy = ContinuousMLPPolicy( env_spec=env.spec, hidden_sizes=hyper_parameters['policy_hidden_sizes'], hidden_nonlinearity=tf.nn.relu, output_nonlinearity=tf.nn.tanh) exploration_policy = AddOrnsteinUhlenbeckNoise( env.spec, policy, sigma=hyper_parameters['sigma']) qf = ContinuousMLPQFunction( env_spec=env.spec, hidden_sizes=hyper_parameters['qf_hidden_sizes'], hidden_nonlinearity=tf.nn.relu) replay_buffer = PathBuffer( capacity_in_transitions=hyper_parameters['replay_buffer_size']) sampler = LocalSampler(agents=exploration_policy, envs=env, max_episode_length=env.spec.max_episode_length, is_tf_worker=True, worker_class=FragmentWorker) algo = DDPG(env_spec=env.spec, policy=policy, qf=qf, replay_buffer=replay_buffer, sampler=sampler, steps_per_epoch=hyper_parameters['steps_per_epoch'], policy_lr=hyper_parameters['policy_lr'], qf_lr=hyper_parameters['qf_lr'], target_update_tau=hyper_parameters['tau'], n_train_steps=hyper_parameters['n_train_steps'], discount=hyper_parameters['discount'], min_buffer_size=int(1e4), exploration_policy=exploration_policy, policy_optimizer=tf.compat.v1.train.AdamOptimizer, qf_optimizer=tf.compat.v1.train.AdamOptimizer) trainer.setup(algo, env) trainer.train(n_epochs=hyper_parameters['n_epochs'], batch_size=hyper_parameters['n_exploration_steps'])
Create garage TensorFlow DDPG model and training. Args: ctxt (ExperimentContext): The experiment configuration used by :class:`~Trainer` to create the :class:`~Snapshotter`. env_id (str): Environment id of the task. seed (int): Random positive integer for the trial.
ddpg_garage_tf
python
rlworkgroup/garage
benchmarks/src/garage_benchmarks/experiments/algos/ddpg_garage_tf.py
https://github.com/rlworkgroup/garage/blob/master/benchmarks/src/garage_benchmarks/experiments/algos/ddpg_garage_tf.py
MIT
def her_garage_tf(ctxt, env_id, seed): """Create garage TensorFlow HER model and training. Args: ctxt (ExperimentContext): The experiment configuration used by :class:`~Trainer` to create the :class:`~Snapshotter`. env_id (str): Environment id of the task. seed (int): Random positive integer for the trial. """ deterministic.set_seed(seed) with TFTrainer(ctxt) as trainer: env = normalize(GymEnv(env_id)) policy = ContinuousMLPPolicy( env_spec=env.spec, hidden_sizes=hyper_parameters['policy_hidden_sizes'], hidden_nonlinearity=tf.nn.relu, output_nonlinearity=tf.nn.tanh, ) exploration_policy = AddOrnsteinUhlenbeckNoise( env_spec=env.spec, policy=policy, sigma=hyper_parameters['sigma']) qf = ContinuousMLPQFunction( env_spec=env.spec, hidden_sizes=hyper_parameters['qf_hidden_sizes'], hidden_nonlinearity=tf.nn.relu, ) replay_buffer = HERReplayBuffer( env_spec=env.spec, capacity_in_transitions=hyper_parameters['replay_buffer_size'], replay_k=4, reward_fn=env.compute_reward, ) sampler = LocalSampler(agents=exploration_policy, envs=env, max_episode_length=env.spec.max_episode_length, is_tf_worker=True, worker_class=FragmentWorker) algo = DDPG( env_spec=env.spec, policy=policy, qf=qf, replay_buffer=replay_buffer, sampler=sampler, steps_per_epoch=hyper_parameters['steps_per_epoch'], policy_lr=hyper_parameters['policy_lr'], qf_lr=hyper_parameters['qf_lr'], target_update_tau=hyper_parameters['tau'], n_train_steps=hyper_parameters['n_train_steps'], discount=hyper_parameters['discount'], exploration_policy=exploration_policy, policy_optimizer=tf.compat.v1.train.AdamOptimizer, qf_optimizer=tf.compat.v1.train.AdamOptimizer, buffer_batch_size=256, ) trainer.setup(algo, env) trainer.train(n_epochs=hyper_parameters['n_epochs'], batch_size=hyper_parameters['n_exploration_steps'])
Create garage TensorFlow HER model and training. Args: ctxt (ExperimentContext): The experiment configuration used by :class:`~Trainer` to create the :class:`~Snapshotter`. env_id (str): Environment id of the task. seed (int): Random positive integer for the trial.
her_garage_tf
python
rlworkgroup/garage
benchmarks/src/garage_benchmarks/experiments/algos/her_garage_tf.py
https://github.com/rlworkgroup/garage/blob/master/benchmarks/src/garage_benchmarks/experiments/algos/her_garage_tf.py
MIT
def ppo_garage_pytorch(ctxt, env_id, seed): """Create garage PyTorch PPO model and training. Args: ctxt (garage.experiment.ExperimentContext): The experiment configuration used by Trainer to create the snapshotter. env_id (str): Environment id of the task. seed (int): Random positive integer for the trial. """ deterministic.set_seed(seed) trainer = Trainer(ctxt) env = normalize(GymEnv(env_id)) policy = PyTorch_GMP(env.spec, hidden_sizes=(32, 32), hidden_nonlinearity=torch.tanh, output_nonlinearity=None) value_function = GaussianMLPValueFunction(env_spec=env.spec, hidden_sizes=(32, 32), hidden_nonlinearity=torch.tanh, output_nonlinearity=None) policy_optimizer = OptimizerWrapper((torch.optim.Adam, dict(lr=2.5e-4)), policy, max_optimization_epochs=10, minibatch_size=64) vf_optimizer = OptimizerWrapper((torch.optim.Adam, dict(lr=2.5e-4)), value_function, max_optimization_epochs=10, minibatch_size=64) sampler = RaySampler(agents=policy, envs=env, max_episode_length=env.spec.max_episode_length) algo = PyTorch_PPO(env_spec=env.spec, policy=policy, value_function=value_function, sampler=sampler, policy_optimizer=policy_optimizer, vf_optimizer=vf_optimizer, discount=0.99, gae_lambda=0.95, center_adv=True, lr_clip_range=0.2) trainer.setup(algo, env) trainer.train(n_epochs=hyper_parameters['n_epochs'], batch_size=hyper_parameters['batch_size'])
Create garage PyTorch PPO model and training. Args: ctxt (garage.experiment.ExperimentContext): The experiment configuration used by Trainer to create the snapshotter. env_id (str): Environment id of the task. seed (int): Random positive integer for the trial.
ppo_garage_pytorch
python
rlworkgroup/garage
benchmarks/src/garage_benchmarks/experiments/algos/ppo_garage_pytorch.py
https://github.com/rlworkgroup/garage/blob/master/benchmarks/src/garage_benchmarks/experiments/algos/ppo_garage_pytorch.py
MIT
def ppo_garage_tf(ctxt, env_id, seed): """Create garage TensorFlow PPO model and training. Args: ctxt (garage.experiment.ExperimentContext): The experiment configuration used by Trainer to create the snapshotter. env_id (str): Environment id of the task. seed (int): Random positive integer for the trial. """ deterministic.set_seed(seed) with TFTrainer(ctxt) as trainer: env = normalize(GymEnv(env_id)) policy = TF_GMP( env_spec=env.spec, hidden_sizes=(32, 32), hidden_nonlinearity=tf.nn.tanh, output_nonlinearity=None, ) baseline = TF_GMB( env_spec=env.spec, hidden_sizes=(32, 32), use_trust_region=False, optimizer=FirstOrderOptimizer, optimizer_args=dict( batch_size=32, max_optimization_epochs=10, learning_rate=3e-4, ), ) sampler = RaySampler(agents=policy, envs=env, max_episode_length=env.spec.max_episode_length, is_tf_worker=True) algo = TF_PPO(env_spec=env.spec, policy=policy, baseline=baseline, sampler=sampler, discount=0.99, gae_lambda=0.95, center_adv=True, lr_clip_range=0.2, optimizer_args=dict(batch_size=32, max_optimization_epochs=10, learning_rate=3e-4, verbose=True)) trainer.setup(algo, env) trainer.train(n_epochs=hyper_parameters['n_epochs'], batch_size=hyper_parameters['batch_size'])
Create garage TensorFlow PPO model and training. Args: ctxt (garage.experiment.ExperimentContext): The experiment configuration used by Trainer to create the snapshotter. env_id (str): Environment id of the task. seed (int): Random positive integer for the trial.
ppo_garage_tf
python
rlworkgroup/garage
benchmarks/src/garage_benchmarks/experiments/algos/ppo_garage_tf.py
https://github.com/rlworkgroup/garage/blob/master/benchmarks/src/garage_benchmarks/experiments/algos/ppo_garage_tf.py
MIT
def td3_garage_pytorch(ctxt, env_id, seed): """Create garage TensorFlow TD3 model and training. Args: ctxt (garage.experiment.ExperimentContext): The experiment configuration used by Localtrainer to create the snapshotter. env_id (str): Environment id of the task. seed (int): Random positive integer for the trial. """ deterministic.set_seed(seed) trainer = Trainer(ctxt) num_timesteps = hyper_parameters['n_epochs'] * hyper_parameters[ 'steps_per_epoch'] * hyper_parameters['batch_size'] env = normalize(GymEnv(env_id)) policy = DeterministicMLPPolicy( env_spec=env.spec, hidden_sizes=hyper_parameters['policy_hidden_sizes'], hidden_nonlinearity=F.relu, output_nonlinearity=torch.tanh) exploration_policy = AddGaussianNoise(env.spec, policy, total_timesteps=num_timesteps, max_sigma=hyper_parameters['sigma'], min_sigma=hyper_parameters['sigma']) uniform_random_policy = UniformRandomPolicy(env.spec) qf1 = ContinuousMLPQFunction( env_spec=env.spec, hidden_sizes=hyper_parameters['qf_hidden_sizes'], hidden_nonlinearity=F.relu) qf2 = ContinuousMLPQFunction( env_spec=env.spec, hidden_sizes=hyper_parameters['qf_hidden_sizes'], hidden_nonlinearity=F.relu) replay_buffer = PathBuffer( capacity_in_transitions=hyper_parameters['replay_buffer_size']) sampler = LocalSampler(agents=exploration_policy, envs=env, max_episode_length=env.spec.max_episode_length, worker_class=FragmentWorker) td3 = TD3( env_spec=env.spec, policy=policy, qf1=qf1, qf2=qf2, sampler=sampler, exploration_policy=exploration_policy, uniform_random_policy=uniform_random_policy, replay_buffer=replay_buffer, steps_per_epoch=hyper_parameters['steps_per_epoch'], policy_lr=hyper_parameters['policy_lr'], qf_lr=hyper_parameters['qf_lr'], target_update_tau=hyper_parameters['target_update_tau'], discount=hyper_parameters['discount'], grad_steps_per_env_step=hyper_parameters['grad_steps_per_env_step'], start_steps=hyper_parameters['start_steps'], min_buffer_size=hyper_parameters['min_buffer_size'], buffer_batch_size=hyper_parameters['buffer_batch_size'], policy_optimizer=torch.optim.Adam, qf_optimizer=torch.optim.Adam, policy_noise_clip=hyper_parameters['policy_noise_clip'], policy_noise=hyper_parameters['policy_noise']) prefer_gpu() td3.to() trainer.setup(td3, env) trainer.train(n_epochs=hyper_parameters['n_epochs'], batch_size=hyper_parameters['batch_size'])
Create garage TensorFlow TD3 model and training. Args: ctxt (garage.experiment.ExperimentContext): The experiment configuration used by Localtrainer to create the snapshotter. env_id (str): Environment id of the task. seed (int): Random positive integer for the trial.
td3_garage_pytorch
python
rlworkgroup/garage
benchmarks/src/garage_benchmarks/experiments/algos/td3_garage_pytorch.py
https://github.com/rlworkgroup/garage/blob/master/benchmarks/src/garage_benchmarks/experiments/algos/td3_garage_pytorch.py
MIT
def td3_garage_tf(ctxt, env_id, seed): """Create garage TensorFlow TD3 model and training. Args: ctxt (ExperimentContext): The experiment configuration used by :class:`~Trainer` to create the :class:`~Snapshotter`. env_id (str): Environment id of the task. seed (int): Random positive integer for the trial. """ deterministic.set_seed(seed) with TFTrainer(ctxt) as trainer: num_timesteps = (hyper_parameters['n_epochs'] * hyper_parameters['steps_per_epoch'] * hyper_parameters['n_exploration_steps']) env = normalize(GymEnv(env_id)) policy = ContinuousMLPPolicy( env_spec=env.spec, hidden_sizes=hyper_parameters['policy_hidden_sizes'], hidden_nonlinearity=tf.nn.relu, output_nonlinearity=tf.nn.tanh) exploration_policy = AddGaussianNoise( env.spec, policy, total_timesteps=num_timesteps, max_sigma=hyper_parameters['sigma'], min_sigma=hyper_parameters['sigma']) qf = ContinuousMLPQFunction( name='ContinuousMLPQFunction', env_spec=env.spec, hidden_sizes=hyper_parameters['qf_hidden_sizes'], action_merge_layer=0, hidden_nonlinearity=tf.nn.relu) qf2 = ContinuousMLPQFunction( name='ContinuousMLPQFunction2', env_spec=env.spec, hidden_sizes=hyper_parameters['qf_hidden_sizes'], action_merge_layer=0, hidden_nonlinearity=tf.nn.relu) replay_buffer = PathBuffer( capacity_in_transitions=hyper_parameters['replay_buffer_size']) sampler = LocalSampler(agents=exploration_policy, envs=env, max_episode_length=env.spec.max_episode_length, is_tf_worker=True, worker_class=FragmentWorker) td3 = TD3(env.spec, policy=policy, qf=qf, qf2=qf2, replay_buffer=replay_buffer, sampler=sampler, steps_per_epoch=hyper_parameters['steps_per_epoch'], policy_lr=hyper_parameters['policy_lr'], qf_lr=hyper_parameters['qf_lr'], target_update_tau=hyper_parameters['tau'], n_train_steps=hyper_parameters['n_train_steps'], discount=hyper_parameters['discount'], min_buffer_size=hyper_parameters['min_buffer_size'], buffer_batch_size=hyper_parameters['buffer_batch_size'], exploration_policy=exploration_policy, policy_optimizer=tf.compat.v1.train.AdamOptimizer, qf_optimizer=tf.compat.v1.train.AdamOptimizer) trainer.setup(td3, env) trainer.train(n_epochs=hyper_parameters['n_epochs'], batch_size=hyper_parameters['n_exploration_steps'])
Create garage TensorFlow TD3 model and training. Args: ctxt (ExperimentContext): The experiment configuration used by :class:`~Trainer` to create the :class:`~Snapshotter`. env_id (str): Environment id of the task. seed (int): Random positive integer for the trial.
td3_garage_tf
python
rlworkgroup/garage
benchmarks/src/garage_benchmarks/experiments/algos/td3_garage_tf.py
https://github.com/rlworkgroup/garage/blob/master/benchmarks/src/garage_benchmarks/experiments/algos/td3_garage_tf.py
MIT
def trpo_garage_pytorch(ctxt, env_id, seed): """Create garage PyTorch TRPO model and training. Args: ctxt (garage.experiment.ExperimentContext): The experiment configuration used by Trainer to create the snapshotter. env_id (str): Environment id of the task. seed (int): Random positive integer for the trial. """ deterministic.set_seed(seed) trainer = Trainer(ctxt) env = normalize(GymEnv(env_id)) policy = PyTorch_GMP(env.spec, hidden_sizes=hyper_parameters['hidden_sizes'], hidden_nonlinearity=torch.tanh, output_nonlinearity=None) value_function = GaussianMLPValueFunction(env_spec=env.spec, hidden_sizes=(32, 32), hidden_nonlinearity=torch.tanh, output_nonlinearity=None) sampler = LocalSampler(agents=policy, envs=env, max_episode_length=env.spec.max_episode_length) algo = PyTorch_TRPO(env_spec=env.spec, policy=policy, value_function=value_function, sampler=sampler, discount=hyper_parameters['discount'], gae_lambda=hyper_parameters['gae_lambda']) trainer.setup(algo, env) trainer.train(n_epochs=hyper_parameters['n_epochs'], batch_size=hyper_parameters['batch_size'])
Create garage PyTorch TRPO model and training. Args: ctxt (garage.experiment.ExperimentContext): The experiment configuration used by Trainer to create the snapshotter. env_id (str): Environment id of the task. seed (int): Random positive integer for the trial.
trpo_garage_pytorch
python
rlworkgroup/garage
benchmarks/src/garage_benchmarks/experiments/algos/trpo_garage_pytorch.py
https://github.com/rlworkgroup/garage/blob/master/benchmarks/src/garage_benchmarks/experiments/algos/trpo_garage_pytorch.py
MIT
def trpo_garage_tf(ctxt, env_id, seed): """Create garage Tensorflow TROI model and training. Args: ctxt (garage.experiment.ExperimentContext): The experiment configuration used by Trainer to create the snapshotter. env_id (str): Environment id of the task. seed (int): Random positive integer for the trial. """ deterministic.set_seed(seed) with TFTrainer(ctxt) as trainer: env = normalize(GymEnv(env_id)) policy = GaussianMLPPolicy( env_spec=env.spec, hidden_sizes=hyper_parameters['hidden_sizes'], hidden_nonlinearity=tf.nn.tanh, output_nonlinearity=None, ) baseline = LinearFeatureBaseline(env_spec=env.spec) sampler = RaySampler(agents=policy, envs=env, max_episode_length=env.spec.max_episode_length, is_tf_worker=True) algo = TRPO(env_spec=env.spec, policy=policy, baseline=baseline, sampler=sampler, discount=hyper_parameters['discount'], gae_lambda=hyper_parameters['gae_lambda'], max_kl_step=hyper_parameters['max_kl']) trainer.setup(algo, env) trainer.train(n_epochs=hyper_parameters['n_epochs'], batch_size=hyper_parameters['batch_size'])
Create garage Tensorflow TROI model and training. Args: ctxt (garage.experiment.ExperimentContext): The experiment configuration used by Trainer to create the snapshotter. env_id (str): Environment id of the task. seed (int): Random positive integer for the trial.
trpo_garage_tf
python
rlworkgroup/garage
benchmarks/src/garage_benchmarks/experiments/algos/trpo_garage_tf.py
https://github.com/rlworkgroup/garage/blob/master/benchmarks/src/garage_benchmarks/experiments/algos/trpo_garage_tf.py
MIT
def vpg_garage_pytorch(ctxt, env_id, seed): """Create garage PyTorch VPG model and training. Args: ctxt (garage.experiment.ExperimentContext): The experiment configuration used by Trainer to create the snapshotter. env_id (str): Environment id of the task. seed (int): Random positive integer for the trial. """ deterministic.set_seed(seed) trainer = Trainer(ctxt) env = normalize(GymEnv(env_id)) policy = PyTorch_GMP(env.spec, hidden_sizes=hyper_parameters['hidden_sizes'], hidden_nonlinearity=torch.tanh, output_nonlinearity=None) value_function = GaussianMLPValueFunction(env_spec=env.spec, hidden_sizes=(32, 32), hidden_nonlinearity=torch.tanh, output_nonlinearity=None) policy_optimizer = OptimizerWrapper((torch.optim.Adam, dict(lr=2.5e-4)), policy, max_optimization_epochs=10, minibatch_size=64) vf_optimizer = OptimizerWrapper((torch.optim.Adam, dict(lr=2.5e-4)), value_function, max_optimization_epochs=10, minibatch_size=64) sampler = RaySampler(agents=policy, envs=env, max_episode_length=env.spec.max_episode_length) algo = PyTorch_VPG(env_spec=env.spec, policy=policy, value_function=value_function, sampler=sampler, policy_optimizer=policy_optimizer, vf_optimizer=vf_optimizer, discount=hyper_parameters['discount'], center_adv=hyper_parameters['center_adv']) trainer.setup(algo, env) trainer.train(n_epochs=hyper_parameters['n_epochs'], batch_size=hyper_parameters['batch_size'])
Create garage PyTorch VPG model and training. Args: ctxt (garage.experiment.ExperimentContext): The experiment configuration used by Trainer to create the snapshotter. env_id (str): Environment id of the task. seed (int): Random positive integer for the trial.
vpg_garage_pytorch
python
rlworkgroup/garage
benchmarks/src/garage_benchmarks/experiments/algos/vpg_garage_pytorch.py
https://github.com/rlworkgroup/garage/blob/master/benchmarks/src/garage_benchmarks/experiments/algos/vpg_garage_pytorch.py
MIT
def vpg_garage_tf(ctxt, env_id, seed): """Create garage TensorFlow VPG model and training. Args: ctxt (garage.experiment.ExperimentContext): The experiment configuration used by Trainer to create the snapshotter. env_id (str): Environment id of the task. seed (int): Random positive integer for the trial. """ deterministic.set_seed(seed) with TFTrainer(ctxt) as trainer: env = normalize(GymEnv(env_id)) policy = TF_GMP( env_spec=env.spec, hidden_sizes=hyper_parameters['hidden_sizes'], hidden_nonlinearity=tf.nn.tanh, output_nonlinearity=None, ) baseline = LinearFeatureBaseline(env_spec=env.spec) sampler = RaySampler(agents=policy, envs=env, max_episode_length=env.spec.max_episode_length, is_tf_worker=True) algo = TF_VPG(env_spec=env.spec, policy=policy, baseline=baseline, sampler=sampler, discount=hyper_parameters['discount'], center_adv=hyper_parameters['center_adv'], optimizer_args=dict( learning_rate=hyper_parameters['learning_rate'], )) trainer.setup(algo, env) trainer.train(n_epochs=hyper_parameters['n_epochs'], batch_size=hyper_parameters['batch_size'])
Create garage TensorFlow VPG model and training. Args: ctxt (garage.experiment.ExperimentContext): The experiment configuration used by Trainer to create the snapshotter. env_id (str): Environment id of the task. seed (int): Random positive integer for the trial.
vpg_garage_tf
python
rlworkgroup/garage
benchmarks/src/garage_benchmarks/experiments/algos/vpg_garage_tf.py
https://github.com/rlworkgroup/garage/blob/master/benchmarks/src/garage_benchmarks/experiments/algos/vpg_garage_tf.py
MIT
def continuous_mlp_baseline(ctxt, env_id, seed): """Create Continuous MLP Baseline on TF-PPO. Args: ctxt (ExperimentContext): The experiment configuration used by :class:`~Trainer` to create the :class:`~Snapshotter`. env_id (str): Environment id of the task. seed (int): Random positive integer for the trial. """ deterministic.set_seed(seed) with TFTrainer(ctxt) as trainer: env = normalize(GymEnv(env_id)) policy = GaussianLSTMPolicy( env_spec=env.spec, hidden_dim=hyper_params['policy_hidden_sizes'], hidden_nonlinearity=hyper_params['hidden_nonlinearity'], ) baseline = ContinuousMLPBaseline( env_spec=env.spec, hidden_sizes=(64, 64), ) sampler = RaySampler(agents=policy, envs=env, max_episode_length=env.spec.max_episode_length, is_tf_worker=True) algo = PPO(env_spec=env.spec, policy=policy, baseline=baseline, sampler=sampler, discount=hyper_params['discount'], gae_lambda=hyper_params['gae_lambda'], lr_clip_range=hyper_params['lr_clip_range'], entropy_method=hyper_params['entropy_method'], policy_ent_coeff=hyper_params['policy_ent_coeff'], optimizer_args=dict( batch_size=32, max_optimization_epochs=10, learning_rate=1e-3, ), center_adv=hyper_params['center_adv'], stop_entropy_gradient=True) trainer.setup(algo, env) trainer.train(n_epochs=hyper_params['n_epochs'], batch_size=hyper_params['n_exploration_steps'])
Create Continuous MLP Baseline on TF-PPO. Args: ctxt (ExperimentContext): The experiment configuration used by :class:`~Trainer` to create the :class:`~Snapshotter`. env_id (str): Environment id of the task. seed (int): Random positive integer for the trial.
continuous_mlp_baseline
python
rlworkgroup/garage
benchmarks/src/garage_benchmarks/experiments/baselines/continuous_mlp_baseline.py
https://github.com/rlworkgroup/garage/blob/master/benchmarks/src/garage_benchmarks/experiments/baselines/continuous_mlp_baseline.py
MIT
def gaussian_cnn_baseline(ctxt, env_id, seed): """Create Gaussian CNN Baseline on TF-PPO. Args: ctxt (garage.experiment.ExperimentContext): The experiment configuration used by Trainer to create the snapshotter. env_id (str): Environment id of the task. seed (int): Random positive integer for the trial. """ deterministic.set_seed(seed) with TFTrainer(ctxt) as trainer: env = normalize(GymEnv(env_id)) policy = CategoricalCNNPolicy(env_spec=env.spec, filters=params['conv_filters'], strides=params['conv_strides'], padding=params['conv_pad'], hidden_sizes=params['hidden_sizes']) baseline = GaussianCNNBaseline( env_spec=env.spec, filters=params['conv_filters'], strides=params['conv_strides'], padding=params['conv_pad'], hidden_sizes=params['hidden_sizes'], use_trust_region=params['use_trust_region']) sampler = RaySampler(agents=policy, envs=env, max_episode_length=env.spec.max_episode_length, is_tf_worker=True) algo = PPO( env_spec=env.spec, policy=policy, baseline=baseline, sampler=sampler, discount=0.99, gae_lambda=0.95, lr_clip_range=0.2, policy_ent_coeff=0.0, optimizer_args=dict( batch_size=32, max_optimization_epochs=10, learning_rate=1e-3, ), ) trainer.setup(algo, env) trainer.train(n_epochs=params['n_epochs'], batch_size=params['batch_size'])
Create Gaussian CNN Baseline on TF-PPO. Args: ctxt (garage.experiment.ExperimentContext): The experiment configuration used by Trainer to create the snapshotter. env_id (str): Environment id of the task. seed (int): Random positive integer for the trial.
gaussian_cnn_baseline
python
rlworkgroup/garage
benchmarks/src/garage_benchmarks/experiments/baselines/gaussian_cnn_baseline.py
https://github.com/rlworkgroup/garage/blob/master/benchmarks/src/garage_benchmarks/experiments/baselines/gaussian_cnn_baseline.py
MIT
def gaussian_mlp_baseline(ctxt, env_id, seed): """Create Gaussian MLP Baseline on TF-PPO. Args: ctxt (garage.experiment.ExperimentContext): The experiment configuration used by Trainer to create the snapshotter. env_id (str): Environment id of the task. seed (int): Random positive integer for the trial. """ deterministic.set_seed(seed) with TFTrainer(ctxt) as trainer: env = normalize(GymEnv(env_id)) policy = GaussianMLPPolicy( env_spec=env.spec, hidden_sizes=(32, 32), hidden_nonlinearity=tf.nn.tanh, output_nonlinearity=None, ) baseline = GaussianMLPBaseline( env_spec=env.spec, hidden_sizes=(64, 64), use_trust_region=False, optimizer=FirstOrderOptimizer, optimizer_args=dict( batch_size=32, max_optimization_epochs=10, learning_rate=1e-3, ), ) sampler = RaySampler(agents=policy, envs=env, max_episode_length=env.spec.max_episode_length, is_tf_worker=True) algo = PPO( env_spec=env.spec, policy=policy, baseline=baseline, sampler=sampler, discount=0.99, gae_lambda=0.95, lr_clip_range=0.2, policy_ent_coeff=0.0, optimizer_args=dict( batch_size=32, max_optimization_epochs=10, learning_rate=1e-3, ), ) trainer.setup(algo, env) trainer.train(n_epochs=5, batch_size=2048)
Create Gaussian MLP Baseline on TF-PPO. Args: ctxt (garage.experiment.ExperimentContext): The experiment configuration used by Trainer to create the snapshotter. env_id (str): Environment id of the task. seed (int): Random positive integer for the trial.
gaussian_mlp_baseline
python
rlworkgroup/garage
benchmarks/src/garage_benchmarks/experiments/baselines/gaussian_mlp_baseline.py
https://github.com/rlworkgroup/garage/blob/master/benchmarks/src/garage_benchmarks/experiments/baselines/gaussian_mlp_baseline.py
MIT
def categorical_cnn_policy(ctxt, env_id, seed): """Create Categorical CNN Policy on TF-PPO. Args: ctxt (garage.experiment.ExperimentContext): The experiment configuration used by Trainer to create the snapshotter. env_id (str): Environment id of the task. seed (int): Random positive integer for the trial. """ deterministic.set_seed(seed) with TFTrainer(ctxt) as trainer: env = normalize(GymEnv(env_id)) policy = CategoricalCNNPolicy( env_spec=env.spec, filters=hyper_params['conv_filters'], strides=hyper_params['conv_strides'], padding=hyper_params['conv_pad'], hidden_sizes=hyper_params['hidden_sizes']) baseline = GaussianCNNBaseline( env_spec=env.spec, filters=hyper_params['conv_filters'], strides=hyper_params['conv_strides'], padding=hyper_params['conv_pad'], hidden_sizes=hyper_params['hidden_sizes'], use_trust_region=hyper_params['use_trust_region']) sampler = RaySampler(agents=policy, envs=env, max_episode_length=env.spec.max_episode_length, is_tf_worker=True) algo = PPO(env_spec=env.spec, policy=policy, baseline=baseline, sampler=sampler, discount=0.99, gae_lambda=0.95, lr_clip_range=0.2, policy_ent_coeff=0.0, optimizer_args=dict( batch_size=32, max_optimization_epochs=10, learning_rate=1e-3, )) trainer.setup(algo, env) trainer.train(n_epochs=hyper_params['n_epochs'], batch_size=hyper_params['batch_size'])
Create Categorical CNN Policy on TF-PPO. Args: ctxt (garage.experiment.ExperimentContext): The experiment configuration used by Trainer to create the snapshotter. env_id (str): Environment id of the task. seed (int): Random positive integer for the trial.
categorical_cnn_policy
python
rlworkgroup/garage
benchmarks/src/garage_benchmarks/experiments/policies/categorical_cnn_policy.py
https://github.com/rlworkgroup/garage/blob/master/benchmarks/src/garage_benchmarks/experiments/policies/categorical_cnn_policy.py
MIT
def categorical_gru_policy(ctxt, env_id, seed): """Create Categorical CNN Policy on TF-PPO. Args: ctxt (garage.experiment.ExperimentContext): The experiment configuration used by Trainer to create the snapshotter. env_id (str): Environment id of the task. seed (int): Random positive integer for the trial. """ deterministic.set_seed(seed) with TFTrainer(ctxt) as trainer: env = normalize(GymEnv(env_id)) policy = CategoricalGRUPolicy( env_spec=env.spec, hidden_dim=32, hidden_nonlinearity=tf.nn.tanh, ) baseline = LinearFeatureBaseline(env_spec=env.spec) sampler = LocalSampler(agents=policy, envs=env, max_episode_length=env.spec.max_episode_length) algo = PPO( env_spec=env.spec, policy=policy, baseline=baseline, sampler=sampler, discount=0.99, gae_lambda=0.95, lr_clip_range=0.2, policy_ent_coeff=0.0, optimizer_args=dict( batch_size=32, max_optimization_epochs=10, learning_rate=1e-3, ), ) trainer.setup(algo, env) trainer.train(n_epochs=488, batch_size=2048)
Create Categorical CNN Policy on TF-PPO. Args: ctxt (garage.experiment.ExperimentContext): The experiment configuration used by Trainer to create the snapshotter. env_id (str): Environment id of the task. seed (int): Random positive integer for the trial.
categorical_gru_policy
python
rlworkgroup/garage
benchmarks/src/garage_benchmarks/experiments/policies/categorical_gru_policy.py
https://github.com/rlworkgroup/garage/blob/master/benchmarks/src/garage_benchmarks/experiments/policies/categorical_gru_policy.py
MIT
def categorical_lstm_policy(ctxt, env_id, seed): """Create Categorical LSTM Policy on TF-PPO. Args: ctxt (garage.experiment.ExperimentContext): The experiment configuration used by Trainer to create the snapshotter. env_id (str): Environment id of the task. seed (int): Random positive integer for the trial. """ deterministic.set_seed(seed) with TFTrainer(ctxt) as trainer: env = normalize(GymEnv(env_id)) policy = CategoricalLSTMPolicy( env_spec=env.spec, hidden_dim=32, hidden_nonlinearity=tf.nn.tanh, ) baseline = LinearFeatureBaseline(env_spec=env.spec) sampler = RaySampler(agents=policy, envs=env, max_episode_length=env.spec.max_episode_length, is_tf_worker=True) algo = PPO( env_spec=env.spec, policy=policy, baseline=baseline, sampler=sampler, discount=0.99, gae_lambda=0.95, lr_clip_range=0.2, policy_ent_coeff=0.0, optimizer_args=dict( batch_size=32, max_optimization_epochs=10, learning_rate=1e-3, ), ) trainer.setup(algo, env) trainer.train(n_epochs=488, batch_size=2048)
Create Categorical LSTM Policy on TF-PPO. Args: ctxt (garage.experiment.ExperimentContext): The experiment configuration used by Trainer to create the snapshotter. env_id (str): Environment id of the task. seed (int): Random positive integer for the trial.
categorical_lstm_policy
python
rlworkgroup/garage
benchmarks/src/garage_benchmarks/experiments/policies/categorical_lstm_policy.py
https://github.com/rlworkgroup/garage/blob/master/benchmarks/src/garage_benchmarks/experiments/policies/categorical_lstm_policy.py
MIT
def categorical_mlp_policy(ctxt, env_id, seed): """Create Categorical MLP Policy on TF-PPO. Args: ctxt (garage.experiment.ExperimentContext): The experiment configuration used by Trainer to create the snapshotter. env_id (str): Environment id of the task. seed (int): Random positive integer for the trial. """ deterministic.set_seed(seed) with TFTrainer(ctxt) as trainer: env = normalize(GymEnv(env_id)) policy = CategoricalMLPPolicy( env_spec=env.spec, hidden_nonlinearity=tf.nn.tanh, ) baseline = LinearFeatureBaseline(env_spec=env.spec) sampler = RaySampler(agents=policy, envs=env, max_episode_length=env.spec.max_episode_length, is_tf_worker=True) algo = PPO(env_spec=env.spec, policy=policy, baseline=baseline, sampler=sampler, discount=0.99, gae_lambda=0.95, lr_clip_range=0.2, policy_ent_coeff=0.0, optimizer_args=dict( batch_size=32, max_optimization_epochs=10, learning_rate=1e-3, ), name='CategoricalMLPPolicyBenchmark') trainer.setup(algo, env) trainer.train(n_epochs=5, batch_size=2048)
Create Categorical MLP Policy on TF-PPO. Args: ctxt (garage.experiment.ExperimentContext): The experiment configuration used by Trainer to create the snapshotter. env_id (str): Environment id of the task. seed (int): Random positive integer for the trial.
categorical_mlp_policy
python
rlworkgroup/garage
benchmarks/src/garage_benchmarks/experiments/policies/categorical_mlp_policy.py
https://github.com/rlworkgroup/garage/blob/master/benchmarks/src/garage_benchmarks/experiments/policies/categorical_mlp_policy.py
MIT
def continuous_mlp_policy(ctxt, env_id, seed): """Create Continuous MLP Policy on TF-DDPG. Args: ctxt (ExperimentContext): The experiment configuration used by :class:`~Trainer` to create the :class:`~Snapshotter`. env_id (str): Environment id of the task. seed (int): Random positive integer for the trial. """ deterministic.set_seed(seed) with TFTrainer(ctxt) as trainer: env = normalize(GymEnv(env_id)) policy = ContinuousMLPPolicy( env_spec=env.spec, name='ContinuousMLPPolicy', hidden_sizes=hyper_params['policy_hidden_sizes'], hidden_nonlinearity=tf.nn.relu, output_nonlinearity=tf.nn.tanh) exploration_policy = AddOrnsteinUhlenbeckNoise( env.spec, policy, sigma=hyper_params['sigma']) qf = ContinuousMLPQFunction( env_spec=env.spec, hidden_sizes=hyper_params['qf_hidden_sizes'], hidden_nonlinearity=tf.nn.relu, name='ContinuousMLPQFunction') replay_buffer = PathBuffer( capacity_in_transitions=hyper_params['replay_buffer_size']) sampler = LocalSampler(agents=exploration_policy, envs=env, max_episode_length=env.spec.max_episode_length, is_tf_worker=True, worker_class=FragmentWorker) ddpg = DDPG(env_spec=env.spec, policy=policy, qf=qf, replay_buffer=replay_buffer, sampler=sampler, steps_per_epoch=hyper_params['steps_per_epoch'], policy_lr=hyper_params['policy_lr'], qf_lr=hyper_params['qf_lr'], target_update_tau=hyper_params['tau'], n_train_steps=hyper_params['n_train_steps'], discount=hyper_params['discount'], min_buffer_size=int(1e4), exploration_policy=exploration_policy, policy_optimizer=tf.compat.v1.train.AdamOptimizer, qf_optimizer=tf.compat.v1.train.AdamOptimizer) trainer.setup(ddpg, env) trainer.train(n_epochs=hyper_params['n_epochs'], batch_size=hyper_params['n_exploration_steps'])
Create Continuous MLP Policy on TF-DDPG. Args: ctxt (ExperimentContext): The experiment configuration used by :class:`~Trainer` to create the :class:`~Snapshotter`. env_id (str): Environment id of the task. seed (int): Random positive integer for the trial.
continuous_mlp_policy
python
rlworkgroup/garage
benchmarks/src/garage_benchmarks/experiments/policies/continuous_mlp_policy.py
https://github.com/rlworkgroup/garage/blob/master/benchmarks/src/garage_benchmarks/experiments/policies/continuous_mlp_policy.py
MIT
def gaussian_gru_policy(ctxt, env_id, seed): """Create Gaussian GRU Policy on TF-PPO. Args: ctxt (garage.experiment.ExperimentContext): The experiment configuration used by Trainer to create the snapshotter. env_id (str): Environment id of the task. seed (int): Random positive integer for the trial. """ deterministic.set_seed(seed) with TFTrainer(ctxt) as trainer: env = normalize(GymEnv(env_id)) policy = GaussianGRUPolicy( env_spec=env.spec, hidden_dim=32, hidden_nonlinearity=tf.nn.tanh, output_nonlinearity=None, ) baseline = GaussianMLPBaseline( env_spec=env.spec, hidden_sizes=(64, 64), use_trust_region=False, optimizer=FirstOrderOptimizer, optimizer_args=dict( batch_size=32, max_optimization_epochs=10, learning_rate=1e-3, ), ) sampler = RaySampler(agents=policy, envs=env, max_episode_length=env.spec.max_episode_length, is_tf_worker=True) algo = PPO( env_spec=env.spec, policy=policy, baseline=baseline, sampler=sampler, discount=0.99, gae_lambda=0.95, lr_clip_range=0.2, policy_ent_coeff=0.0, optimizer_args=dict( batch_size=32, max_optimization_epochs=10, learning_rate=1e-3, ), ) trainer.setup(algo, env) trainer.train(n_epochs=5, batch_size=2048)
Create Gaussian GRU Policy on TF-PPO. Args: ctxt (garage.experiment.ExperimentContext): The experiment configuration used by Trainer to create the snapshotter. env_id (str): Environment id of the task. seed (int): Random positive integer for the trial.
gaussian_gru_policy
python
rlworkgroup/garage
benchmarks/src/garage_benchmarks/experiments/policies/gaussian_gru_policy.py
https://github.com/rlworkgroup/garage/blob/master/benchmarks/src/garage_benchmarks/experiments/policies/gaussian_gru_policy.py
MIT
def gaussian_lstm_policy(ctxt, env_id, seed): """Create Gaussian LSTM Policy on TF-PPO. Args: ctxt (garage.experiment.ExperimentContext): The experiment configuration used by Trainer to create the snapshotter. env_id (str): Environment id of the task. seed (int): Random positive integer for the trial. """ deterministic.set_seed(seed) with TFTrainer(ctxt) as trainer: env = normalize(GymEnv(env_id)) policy = GaussianLSTMPolicy( env_spec=env.spec, hidden_dim=32, hidden_nonlinearity=tf.nn.tanh, output_nonlinearity=None, ) baseline = GaussianMLPBaseline( env_spec=env.spec, hidden_sizes=(64, 64), use_trust_region=False, optimizer=FirstOrderOptimizer, optimizer_args=dict( batch_size=32, max_optimization_epochs=10, learning_rate=1e-3, ), ) sampler = RaySampler(agents=policy, envs=env, max_episode_length=env.spec.max_episode_length, is_tf_worker=True) algo = PPO( env_spec=env.spec, policy=policy, baseline=baseline, sampler=sampler, discount=0.99, gae_lambda=0.95, lr_clip_range=0.2, policy_ent_coeff=0.0, optimizer_args=dict( batch_size=32, max_optimization_epochs=10, learning_rate=1e-3, ), ) trainer.setup(algo, env) trainer.train(n_epochs=5, batch_size=2048)
Create Gaussian LSTM Policy on TF-PPO. Args: ctxt (garage.experiment.ExperimentContext): The experiment configuration used by Trainer to create the snapshotter. env_id (str): Environment id of the task. seed (int): Random positive integer for the trial.
gaussian_lstm_policy
python
rlworkgroup/garage
benchmarks/src/garage_benchmarks/experiments/policies/gaussian_lstm_policy.py
https://github.com/rlworkgroup/garage/blob/master/benchmarks/src/garage_benchmarks/experiments/policies/gaussian_lstm_policy.py
MIT
def gaussian_mlp_policy(ctxt, env_id, seed): """Create Gaussian MLP Policy on TF-PPO. Args: ctxt (garage.experiment.ExperimentContext): The experiment configuration used by Trainer to create the snapshotter. env_id (str): Environment id of the task. seed (int): Random positive integer for the trial. """ deterministic.set_seed(seed) with TFTrainer(ctxt) as trainer: env = normalize(GymEnv(env_id)) policy = GaussianMLPPolicy( env_spec=env.spec, hidden_sizes=(32, 32), hidden_nonlinearity=tf.nn.tanh, output_nonlinearity=None, ) baseline = GaussianMLPBaseline( env_spec=env.spec, hidden_sizes=(64, 64), use_trust_region=False, optimizer=FirstOrderOptimizer, optimizer_args=dict( batch_size=32, max_optimization_epochs=10, learning_rate=1e-3, ), ) sampler = RaySampler(agents=policy, envs=env, max_episode_length=env.spec.max_episode_length, is_tf_worker=True) algo = PPO( env_spec=env.spec, policy=policy, baseline=baseline, sampler=sampler, discount=0.99, gae_lambda=0.95, lr_clip_range=0.2, policy_ent_coeff=0.0, optimizer_args=dict( batch_size=32, max_optimization_epochs=10, learning_rate=1e-3, ), ) trainer.setup(algo, env) trainer.train(n_epochs=5, batch_size=2048)
Create Gaussian MLP Policy on TF-PPO. Args: ctxt (garage.experiment.ExperimentContext): The experiment configuration used by Trainer to create the snapshotter. env_id (str): Environment id of the task. seed (int): Random positive integer for the trial.
gaussian_mlp_policy
python
rlworkgroup/garage
benchmarks/src/garage_benchmarks/experiments/policies/gaussian_mlp_policy.py
https://github.com/rlworkgroup/garage/blob/master/benchmarks/src/garage_benchmarks/experiments/policies/gaussian_mlp_policy.py
MIT
def continuous_mlp_q_function(ctxt, env_id, seed): """Create Continuous MLP QFunction on TF-DDPG. Args: ctxt (ExperimentContext): The experiment configuration used by :class:`~Trainer` to create the :class:`~Snapshotter`. env_id (str): Environment id of the task. seed (int): Random positive integer for the trial. """ deterministic.set_seed(seed) with TFTrainer(ctxt) as trainer: env = normalize(GymEnv(env_id)) policy = ContinuousMLPPolicy( env_spec=env.spec, name='ContinuousMLPPolicy', hidden_sizes=hyper_params['policy_hidden_sizes'], hidden_nonlinearity=tf.nn.relu, output_nonlinearity=tf.nn.tanh) exploration_policy = AddOrnsteinUhlenbeckNoise( env.spec, policy, sigma=hyper_params['sigma']) qf = ContinuousMLPQFunction( env_spec=env.spec, hidden_sizes=hyper_params['qf_hidden_sizes'], hidden_nonlinearity=tf.nn.relu, name='ContinuousMLPQFunction') replay_buffer = PathBuffer( capacity_in_transitions=hyper_params['replay_buffer_size']) sampler = LocalSampler(agents=exploration_policy, envs=env, max_episode_length=env.spec.max_episode_length, is_tf_worker=True, worker_class=FragmentWorker) ddpg = DDPG(env_spec=env.spec, policy=policy, qf=qf, replay_buffer=replay_buffer, sampler=sampler, steps_per_epoch=hyper_params['steps_per_epoch'], policy_lr=hyper_params['policy_lr'], qf_lr=hyper_params['qf_lr'], target_update_tau=hyper_params['tau'], n_train_steps=hyper_params['n_train_steps'], discount=hyper_params['discount'], min_buffer_size=int(1e4), exploration_policy=exploration_policy, policy_optimizer=tf.compat.v1.train.AdamOptimizer, qf_optimizer=tf.compat.v1.train.AdamOptimizer) trainer.setup(ddpg, env) trainer.train(n_epochs=hyper_params['n_epochs'], batch_size=hyper_params['n_exploration_steps'])
Create Continuous MLP QFunction on TF-DDPG. Args: ctxt (ExperimentContext): The experiment configuration used by :class:`~Trainer` to create the :class:`~Snapshotter`. env_id (str): Environment id of the task. seed (int): Random positive integer for the trial.
continuous_mlp_q_function
python
rlworkgroup/garage
benchmarks/src/garage_benchmarks/experiments/q_functions/continuous_mlp_q_function.py
https://github.com/rlworkgroup/garage/blob/master/benchmarks/src/garage_benchmarks/experiments/q_functions/continuous_mlp_q_function.py
MIT
def setup(self, algo, env): """Set up trainer for algorithm and environment. This method saves algo and env within trainer and creates a sampler. Note: After setup() is called all variables in session should have been initialized. setup() respects existing values in session so policy weights can be loaded before setup(). Args: algo (RLAlgorithm): An algorithm instance. If this algo want to use samplers, it should have a `_sampler` field. env (Environment): An environment instance. """ self._algo = algo self._env = env self._seed = get_seed() if hasattr(self._algo, '_sampler'): # pylint: disable=protected-access self._sampler = self._algo._sampler self._has_setup = True
Set up trainer for algorithm and environment. This method saves algo and env within trainer and creates a sampler. Note: After setup() is called all variables in session should have been initialized. setup() respects existing values in session so policy weights can be loaded before setup(). Args: algo (RLAlgorithm): An algorithm instance. If this algo want to use samplers, it should have a `_sampler` field. env (Environment): An environment instance.
setup
python
rlworkgroup/garage
src/garage/trainer.py
https://github.com/rlworkgroup/garage/blob/master/src/garage/trainer.py
MIT
def obtain_episodes(self, itr, batch_size=None, agent_update=None, env_update=None): """Obtain one batch of episodes. Args: itr (int): Index of iteration (epoch). batch_size (int): Number of steps in batch. This is a hint that the sampler may or may not respect. agent_update (object): Value which will be passed into the `agent_update_fn` before doing sampling episodes. If a list is passed in, it must have length exactly `factory.n_workers`, and will be spread across the workers. env_update (object): Value which will be passed into the `env_update_fn` before sampling episodes. If a list is passed in, it must have length exactly `factory.n_workers`, and will be spread across the workers. Raises: ValueError: If the trainer was initialized without a sampler, or batch_size wasn't provided here or to train. Returns: EpisodeBatch: Batch of episodes. """ if self._sampler is None: raise ValueError('trainer was not initialized with `sampler`. ' 'the algo should have a `_sampler` field when' '`setup()` is called') if batch_size is None and self._train_args.batch_size is None: raise ValueError( 'trainer was not initialized with `batch_size`. ' 'Either provide `batch_size` to trainer.train, ' ' or pass `batch_size` to trainer.obtain_samples.') episodes = None if agent_update is None: policy = getattr(self._algo, 'exploration_policy', None) if policy is None: # This field should exist, since self.make_sampler would have # failed otherwise. policy = self._algo.policy agent_update = policy.get_param_values() episodes = self._sampler.obtain_samples( itr, (batch_size or self._train_args.batch_size), agent_update=agent_update, env_update=env_update) self._stats.total_env_steps += sum(episodes.lengths) return episodes
Obtain one batch of episodes. Args: itr (int): Index of iteration (epoch). batch_size (int): Number of steps in batch. This is a hint that the sampler may or may not respect. agent_update (object): Value which will be passed into the `agent_update_fn` before doing sampling episodes. If a list is passed in, it must have length exactly `factory.n_workers`, and will be spread across the workers. env_update (object): Value which will be passed into the `env_update_fn` before sampling episodes. If a list is passed in, it must have length exactly `factory.n_workers`, and will be spread across the workers. Raises: ValueError: If the trainer was initialized without a sampler, or batch_size wasn't provided here or to train. Returns: EpisodeBatch: Batch of episodes.
obtain_episodes
python
rlworkgroup/garage
src/garage/trainer.py
https://github.com/rlworkgroup/garage/blob/master/src/garage/trainer.py
MIT
def obtain_samples(self, itr, batch_size=None, agent_update=None, env_update=None): """Obtain one batch of samples. Args: itr (int): Index of iteration (epoch). batch_size (int): Number of steps in batch. This is a hint that the sampler may or may not respect. agent_update (object): Value which will be passed into the `agent_update_fn` before sampling episodes. If a list is passed in, it must have length exactly `factory.n_workers`, and will be spread across the workers. env_update (object): Value which will be passed into the `env_update_fn` before sampling episodes. If a list is passed in, it must have length exactly `factory.n_workers`, and will be spread across the workers. Raises: ValueError: Raised if the trainer was initialized without a sampler, or batch_size wasn't provided here or to train. Returns: list[dict]: One batch of samples. """ eps = self.obtain_episodes(itr, batch_size, agent_update, env_update) return eps.to_list()
Obtain one batch of samples. Args: itr (int): Index of iteration (epoch). batch_size (int): Number of steps in batch. This is a hint that the sampler may or may not respect. agent_update (object): Value which will be passed into the `agent_update_fn` before sampling episodes. If a list is passed in, it must have length exactly `factory.n_workers`, and will be spread across the workers. env_update (object): Value which will be passed into the `env_update_fn` before sampling episodes. If a list is passed in, it must have length exactly `factory.n_workers`, and will be spread across the workers. Raises: ValueError: Raised if the trainer was initialized without a sampler, or batch_size wasn't provided here or to train. Returns: list[dict]: One batch of samples.
obtain_samples
python
rlworkgroup/garage
src/garage/trainer.py
https://github.com/rlworkgroup/garage/blob/master/src/garage/trainer.py
MIT
def save(self, epoch): """Save snapshot of current batch. Args: epoch (int): Epoch. Raises: NotSetupError: if save() is called before the trainer is set up. """ if not self._has_setup: raise NotSetupError('Use setup() to setup trainer before saving.') logger.log('Saving snapshot...') params = dict() # Save arguments params['seed'] = self._seed params['train_args'] = self._train_args params['stats'] = self._stats # Save states params['env'] = self._env params['algo'] = self._algo params['n_workers'] = self._n_workers params['worker_class'] = self._worker_class params['worker_args'] = self._worker_args self._snapshotter.save_itr_params(epoch, params) logger.log('Saved')
Save snapshot of current batch. Args: epoch (int): Epoch. Raises: NotSetupError: if save() is called before the trainer is set up.
save
python
rlworkgroup/garage
src/garage/trainer.py
https://github.com/rlworkgroup/garage/blob/master/src/garage/trainer.py
MIT
def restore(self, from_dir, from_epoch='last'): """Restore experiment from snapshot. Args: from_dir (str): Directory of the pickle file to resume experiment from. from_epoch (str or int): The epoch to restore from. Can be 'first', 'last' or a number. Not applicable when snapshot_mode='last'. Returns: TrainArgs: Arguments for train(). """ saved = self._snapshotter.load(from_dir, from_epoch) self._seed = saved['seed'] self._train_args = saved['train_args'] self._stats = saved['stats'] set_seed(self._seed) self.setup(env=saved['env'], algo=saved['algo']) n_epochs = self._train_args.n_epochs last_epoch = self._stats.total_epoch last_itr = self._stats.total_itr total_env_steps = self._stats.total_env_steps batch_size = self._train_args.batch_size store_episodes = self._train_args.store_episodes pause_for_plot = self._train_args.pause_for_plot fmt = '{:<20} {:<15}' logger.log('Restore from snapshot saved in %s' % self._snapshotter.snapshot_dir) logger.log(fmt.format('-- Train Args --', '-- Value --')) logger.log(fmt.format('n_epochs', n_epochs)) logger.log(fmt.format('last_epoch', last_epoch)) logger.log(fmt.format('batch_size', batch_size)) logger.log(fmt.format('store_episodes', store_episodes)) logger.log(fmt.format('pause_for_plot', pause_for_plot)) logger.log(fmt.format('-- Stats --', '-- Value --')) logger.log(fmt.format('last_itr', last_itr)) logger.log(fmt.format('total_env_steps', total_env_steps)) self._train_args.start_epoch = last_epoch + 1 return copy.copy(self._train_args)
Restore experiment from snapshot. Args: from_dir (str): Directory of the pickle file to resume experiment from. from_epoch (str or int): The epoch to restore from. Can be 'first', 'last' or a number. Not applicable when snapshot_mode='last'. Returns: TrainArgs: Arguments for train().
restore
python
rlworkgroup/garage
src/garage/trainer.py
https://github.com/rlworkgroup/garage/blob/master/src/garage/trainer.py
MIT
def log_diagnostics(self, pause_for_plot=False): """Log diagnostics. Args: pause_for_plot (bool): Pause for plot. """ logger.log('Time %.2f s' % (time.time() - self._start_time)) logger.log('EpochTime %.2f s' % (time.time() - self._itr_start_time)) tabular.record('TotalEnvSteps', self._stats.total_env_steps) logger.log(tabular) if self._plot: self._plotter.update_plot(self._algo.policy, self._algo.max_episode_length) if pause_for_plot: input('Plotting evaluation run: Press Enter to " "continue...')
Log diagnostics. Args: pause_for_plot (bool): Pause for plot.
log_diagnostics
python
rlworkgroup/garage
src/garage/trainer.py
https://github.com/rlworkgroup/garage/blob/master/src/garage/trainer.py
MIT
def train(self, n_epochs, batch_size=None, plot=False, store_episodes=False, pause_for_plot=False): """Start training. Args: n_epochs (int): Number of epochs. batch_size (int or None): Number of environment steps in one batch. plot (bool): Visualize an episode from the policy after each epoch. store_episodes (bool): Save episodes in snapshot. pause_for_plot (bool): Pause for plot. Raises: NotSetupError: If train() is called before setup(). Returns: float: The average return in last epoch cycle. """ if not self._has_setup: raise NotSetupError( 'Use setup() to setup trainer before training.') # Save arguments for restore self._train_args = TrainArgs(n_epochs=n_epochs, batch_size=batch_size, plot=plot, store_episodes=store_episodes, pause_for_plot=pause_for_plot, start_epoch=0) self._plot = plot self._start_worker() log_dir = self._snapshotter.snapshot_dir summary_file = os.path.join(log_dir, 'experiment.json') dump_json(summary_file, self) average_return = self._algo.train(self) self._shutdown_worker() return average_return
Start training. Args: n_epochs (int): Number of epochs. batch_size (int or None): Number of environment steps in one batch. plot (bool): Visualize an episode from the policy after each epoch. store_episodes (bool): Save episodes in snapshot. pause_for_plot (bool): Pause for plot. Raises: NotSetupError: If train() is called before setup(). Returns: float: The average return in last epoch cycle.
train
python
rlworkgroup/garage
src/garage/trainer.py
https://github.com/rlworkgroup/garage/blob/master/src/garage/trainer.py
MIT
def step_epochs(self): """Step through each epoch. This function returns a magic generator. When iterated through, this generator automatically performs services such as snapshotting and log management. It is used inside train() in each algorithm. The generator initializes two variables: `self.step_itr` and `self.step_episode`. To use the generator, these two have to be updated manually in each epoch, as the example shows below. Yields: int: The next training epoch. Examples: for epoch in trainer.step_epochs(): trainer.step_episode = trainer.obtain_samples(...) self.train_once(...) trainer.step_itr += 1 """ self._start_time = time.time() self.step_itr = self._stats.total_itr self.step_episode = None # Used by integration tests to ensure examples can run one epoch. n_epochs = int( os.environ.get('GARAGE_EXAMPLE_TEST_N_EPOCHS', self._train_args.n_epochs)) logger.log('Obtaining samples...') for epoch in range(self._train_args.start_epoch, n_epochs): self._itr_start_time = time.time() with logger.prefix('epoch #%d | ' % epoch): yield epoch save_episode = (self.step_episode if self._train_args.store_episodes else None) self._stats.last_episode = save_episode self._stats.total_epoch = epoch self._stats.total_itr = self.step_itr self.save(epoch) if self.enable_logging: self.log_diagnostics(self._train_args.pause_for_plot) logger.dump_all(self.step_itr) tabular.clear()
Step through each epoch. This function returns a magic generator. When iterated through, this generator automatically performs services such as snapshotting and log management. It is used inside train() in each algorithm. The generator initializes two variables: `self.step_itr` and `self.step_episode`. To use the generator, these two have to be updated manually in each epoch, as the example shows below. Yields: int: The next training epoch. Examples: for epoch in trainer.step_epochs(): trainer.step_episode = trainer.obtain_samples(...) self.train_once(...) trainer.step_itr += 1
step_epochs
python
rlworkgroup/garage
src/garage/trainer.py
https://github.com/rlworkgroup/garage/blob/master/src/garage/trainer.py
MIT
def resume(self, n_epochs=None, batch_size=None, plot=None, store_episodes=None, pause_for_plot=None): """Resume from restored experiment. This method provides the same interface as train(). If not specified, an argument will default to the saved arguments from the last call to train(). Args: n_epochs (int): Number of epochs. batch_size (int): Number of environment steps in one batch. plot (bool): Visualize an episode from the policy after each epoch. store_episodes (bool): Save episodes in snapshot. pause_for_plot (bool): Pause for plot. Raises: NotSetupError: If resume() is called before restore(). Returns: float: The average return in last epoch cycle. """ if self._train_args is None: raise NotSetupError('You must call restore() before resume().') self._train_args.n_epochs = n_epochs or self._train_args.n_epochs self._train_args.batch_size = batch_size or self._train_args.batch_size if plot is not None: self._train_args.plot = plot if store_episodes is not None: self._train_args.store_episodes = store_episodes if pause_for_plot is not None: self._train_args.pause_for_plot = pause_for_plot average_return = self._algo.train(self) self._shutdown_worker() return average_return
Resume from restored experiment. This method provides the same interface as train(). If not specified, an argument will default to the saved arguments from the last call to train(). Args: n_epochs (int): Number of epochs. batch_size (int): Number of environment steps in one batch. plot (bool): Visualize an episode from the policy after each epoch. store_episodes (bool): Save episodes in snapshot. pause_for_plot (bool): Pause for plot. Raises: NotSetupError: If resume() is called before restore(). Returns: float: The average return in last epoch cycle.
resume
python
rlworkgroup/garage
src/garage/trainer.py
https://github.com/rlworkgroup/garage/blob/master/src/garage/trainer.py
MIT
def get_env_copy(self): """Get a copy of the environment. Returns: Environment: An environment instance. """ if self._env: return cloudpickle.loads(cloudpickle.dumps(self._env)) else: return None
Get a copy of the environment. Returns: Environment: An environment instance.
get_env_copy
python
rlworkgroup/garage
src/garage/trainer.py
https://github.com/rlworkgroup/garage/blob/master/src/garage/trainer.py
MIT
def __enter__(self): """Set self.sess as the default session. Returns: TFTrainer: This trainer. """ if tf.compat.v1.get_default_session() is not self.sess: self.sess.__enter__() self.sess_entered = True return self
Set self.sess as the default session. Returns: TFTrainer: This trainer.
__enter__
python
rlworkgroup/garage
src/garage/trainer.py
https://github.com/rlworkgroup/garage/blob/master/src/garage/trainer.py
MIT
def __exit__(self, exc_type, exc_val, exc_tb): """Leave session. Args: exc_type (str): Type. exc_val (object): Value. exc_tb (object): Traceback. """ if tf.compat.v1.get_default_session( ) is self.sess and self.sess_entered: self.sess.__exit__(exc_type, exc_val, exc_tb) self.sess_entered = False
Leave session. Args: exc_type (str): Type. exc_val (object): Value. exc_tb (object): Traceback.
__exit__
python
rlworkgroup/garage
src/garage/trainer.py
https://github.com/rlworkgroup/garage/blob/master/src/garage/trainer.py
MIT
def setup(self, algo, env): """Set up trainer and sessions for algorithm and environment. This method saves algo and env within trainer and creates a sampler, and initializes all uninitialized variables in session. Note: After setup() is called all variables in session should have been initialized. setup() respects existing values in session so policy weights can be loaded before setup(). Args: algo (RLAlgorithm): An algorithm instance. env (Environment): An environment instance. """ self.initialize_tf_vars() logger.log(self.sess.graph) super().setup(algo, env)
Set up trainer and sessions for algorithm and environment. This method saves algo and env within trainer and creates a sampler, and initializes all uninitialized variables in session. Note: After setup() is called all variables in session should have been initialized. setup() respects existing values in session so policy weights can be loaded before setup(). Args: algo (RLAlgorithm): An algorithm instance. env (Environment): An environment instance.
setup
python
rlworkgroup/garage
src/garage/trainer.py
https://github.com/rlworkgroup/garage/blob/master/src/garage/trainer.py
MIT
def initialize_tf_vars(self): """Initialize all uninitialized variables in session.""" with tf.name_scope('initialize_tf_vars'): uninited_set = [ e.decode() for e in self.sess.run( tf.compat.v1.report_uninitialized_variables()) ] self.sess.run( tf.compat.v1.variables_initializer([ v for v in tf.compat.v1.global_variables() if v.name.split(':')[0] in uninited_set ]))
Initialize all uninitialized variables in session.
initialize_tf_vars
python
rlworkgroup/garage
src/garage/trainer.py
https://github.com/rlworkgroup/garage/blob/master/src/garage/trainer.py
MIT
def get_step_type(cls, step_cnt, max_episode_length, done): """Determines the step type based on step cnt and done signal. Args: step_cnt (int): current step cnt of the environment. max_episode_length (int): maximum episode length. done (bool): the done signal returned by Environment. Returns: StepType: the step type. Raises: ValueError: if step_cnt is < 1. In this case a environment's `reset()` is likely not called yet and the step_cnt is None. """ if max_episode_length is not None and step_cnt >= max_episode_length: return StepType.TIMEOUT elif done: return StepType.TERMINAL elif step_cnt == 1: return StepType.FIRST elif step_cnt < 1: raise ValueError('Expect step_cnt to be >= 1, but got {} ' 'instead. Did you forget to call `reset(' ')`?'.format(step_cnt)) else: return StepType.MID
Determines the step type based on step cnt and done signal. Args: step_cnt (int): current step cnt of the environment. max_episode_length (int): maximum episode length. done (bool): the done signal returned by Environment. Returns: StepType: the step type. Raises: ValueError: if step_cnt is < 1. In this case a environment's `reset()` is likely not called yet and the step_cnt is None.
get_step_type
python
rlworkgroup/garage
src/garage/_dtypes.py
https://github.com/rlworkgroup/garage/blob/master/src/garage/_dtypes.py
MIT