code
stringlengths
66
870k
docstring
stringlengths
19
26.7k
func_name
stringlengths
1
138
language
stringclasses
1 value
repo
stringlengths
7
68
path
stringlengths
5
324
url
stringlengths
46
389
license
stringclasses
7 values
def _download(url, path, md5sum=None): """ Download from url, save to path. url (str): download url path (str): download to given path """ if not osp.exists(path): os.makedirs(path) fname = osp.split(url)[-1] fullname = osp.join(path, fname) retry_cnt = 0 while not (osp.exists(fullname) and _check_exist_file_md5(fullname, md5sum, url)): if retry_cnt < DOWNLOAD_RETRY_LIMIT: retry_cnt += 1 else: raise RuntimeError("Download from {} failed. " "Retry limit reached".format(url)) # NOTE: windows path join may incur \, which is invalid in url if sys.platform == "win32": url = url.replace('\\', '/') req = requests.get(url, stream=True) if req.status_code != 200: raise RuntimeError("Downloading from {} failed with code " "{}!".format(url, req.status_code)) # For protecting download interupted, download to # tmp_fullname firstly, move tmp_fullname to fullname # after download finished tmp_fullname = fullname + "_tmp" total_size = req.headers.get('content-length') with open(tmp_fullname, 'wb') as f: if total_size: for chunk in tqdm.tqdm( req.iter_content(chunk_size=1024), total=(int(total_size) + 1023) // 1024, unit='KB'): f.write(chunk) else: for chunk in req.iter_content(chunk_size=1024): if chunk: f.write(chunk) shutil.move(tmp_fullname, fullname) return fullname
Download from url, save to path. url (str): download url path (str): download to given path
_download
python
PaddlePaddle/models
modelcenter/PP-YOLOv2/APP/src/download.py
https://github.com/PaddlePaddle/models/blob/master/modelcenter/PP-YOLOv2/APP/src/download.py
Apache-2.0
def decode_image(im_file, im_info): """read rgb image Args: im_file (str|np.ndarray): input can be image path or np.ndarray im_info (dict): info of image Returns: im (np.ndarray): processed image (np.ndarray) im_info (dict): info of processed image """ if isinstance(im_file, str): with open(im_file, 'rb') as f: im_read = f.read() data = np.frombuffer(im_read, dtype='uint8') im = cv2.imdecode(data, 1) # BGR mode, but need RGB mode im = cv2.cvtColor(im, cv2.COLOR_BGR2RGB) else: im = im_file im_info['im_shape'] = np.array(im.shape[:2], dtype=np.float32) im_info['scale_factor'] = np.array([1., 1.], dtype=np.float32) return im, im_info
read rgb image Args: im_file (str|np.ndarray): input can be image path or np.ndarray im_info (dict): info of image Returns: im (np.ndarray): processed image (np.ndarray) im_info (dict): info of processed image
decode_image
python
PaddlePaddle/models
modelcenter/PP-YOLOv2/APP/src/preprocess.py
https://github.com/PaddlePaddle/models/blob/master/modelcenter/PP-YOLOv2/APP/src/preprocess.py
Apache-2.0
def __call__(self, im, im_info): """ Args: im (np.ndarray): image (np.ndarray) im_info (dict): info of image Returns: im (np.ndarray): processed image (np.ndarray) im_info (dict): info of processed image """ assert len(self.target_size) == 2 assert self.target_size[0] > 0 and self.target_size[1] > 0 im_channel = im.shape[2] im_scale_y, im_scale_x = self.generate_scale(im) im = cv2.resize( im, None, None, fx=im_scale_x, fy=im_scale_y, interpolation=self.interp) im_info['im_shape'] = np.array(im.shape[:2]).astype('float32') im_info['scale_factor'] = np.array( [im_scale_y, im_scale_x]).astype('float32') return im, im_info
Args: im (np.ndarray): image (np.ndarray) im_info (dict): info of image Returns: im (np.ndarray): processed image (np.ndarray) im_info (dict): info of processed image
__call__
python
PaddlePaddle/models
modelcenter/PP-YOLOv2/APP/src/preprocess.py
https://github.com/PaddlePaddle/models/blob/master/modelcenter/PP-YOLOv2/APP/src/preprocess.py
Apache-2.0
def generate_scale(self, im): """ Args: im (np.ndarray): image (np.ndarray) Returns: im_scale_x: the resize ratio of X im_scale_y: the resize ratio of Y """ origin_shape = im.shape[:2] im_c = im.shape[2] if self.keep_ratio: im_size_min = np.min(origin_shape) im_size_max = np.max(origin_shape) target_size_min = np.min(self.target_size) target_size_max = np.max(self.target_size) im_scale = float(target_size_min) / float(im_size_min) if np.round(im_scale * im_size_max) > target_size_max: im_scale = float(target_size_max) / float(im_size_max) im_scale_x = im_scale im_scale_y = im_scale else: resize_h, resize_w = self.target_size im_scale_y = resize_h / float(origin_shape[0]) im_scale_x = resize_w / float(origin_shape[1]) return im_scale_y, im_scale_x
Args: im (np.ndarray): image (np.ndarray) Returns: im_scale_x: the resize ratio of X im_scale_y: the resize ratio of Y
generate_scale
python
PaddlePaddle/models
modelcenter/PP-YOLOv2/APP/src/preprocess.py
https://github.com/PaddlePaddle/models/blob/master/modelcenter/PP-YOLOv2/APP/src/preprocess.py
Apache-2.0
def __call__(self, im, im_info): """ Args: im (np.ndarray): image (np.ndarray) im_info (dict): info of image Returns: im (np.ndarray): processed image (np.ndarray) im_info (dict): info of processed image """ im = im.astype(np.float32, copy=False) if self.is_scale: scale = 1.0 / 255.0 im *= scale if self.norm_type == 'mean_std': mean = np.array(self.mean)[np.newaxis, np.newaxis, :] std = np.array(self.std)[np.newaxis, np.newaxis, :] im -= mean im /= std return im, im_info
Args: im (np.ndarray): image (np.ndarray) im_info (dict): info of image Returns: im (np.ndarray): processed image (np.ndarray) im_info (dict): info of processed image
__call__
python
PaddlePaddle/models
modelcenter/PP-YOLOv2/APP/src/preprocess.py
https://github.com/PaddlePaddle/models/blob/master/modelcenter/PP-YOLOv2/APP/src/preprocess.py
Apache-2.0
def __call__(self, im, im_info): """ Args: im (np.ndarray): image (np.ndarray) im_info (dict): info of image Returns: im (np.ndarray): processed image (np.ndarray) im_info (dict): info of processed image """ im = im.transpose((2, 0, 1)).copy() return im, im_info
Args: im (np.ndarray): image (np.ndarray) im_info (dict): info of image Returns: im (np.ndarray): processed image (np.ndarray) im_info (dict): info of processed image
__call__
python
PaddlePaddle/models
modelcenter/PP-YOLOv2/APP/src/preprocess.py
https://github.com/PaddlePaddle/models/blob/master/modelcenter/PP-YOLOv2/APP/src/preprocess.py
Apache-2.0
def __call__(self, im, im_info): """ Args: im (np.ndarray): image (np.ndarray) im_info (dict): info of image Returns: im (np.ndarray): processed image (np.ndarray) im_info (dict): info of processed image """ coarsest_stride = self.coarsest_stride if coarsest_stride <= 0: return im, im_info im_c, im_h, im_w = im.shape pad_h = int(np.ceil(float(im_h) / coarsest_stride) * coarsest_stride) pad_w = int(np.ceil(float(im_w) / coarsest_stride) * coarsest_stride) padding_im = np.zeros((im_c, pad_h, pad_w), dtype=np.float32) padding_im[:, :im_h, :im_w] = im return padding_im, im_info
Args: im (np.ndarray): image (np.ndarray) im_info (dict): info of image Returns: im (np.ndarray): processed image (np.ndarray) im_info (dict): info of processed image
__call__
python
PaddlePaddle/models
modelcenter/PP-YOLOv2/APP/src/preprocess.py
https://github.com/PaddlePaddle/models/blob/master/modelcenter/PP-YOLOv2/APP/src/preprocess.py
Apache-2.0
def get_color_map_list(num_classes): """ Args: num_classes (int): number of class Returns: color_map (list): RGB color list """ color_map = num_classes * [0, 0, 0] for i in range(0, num_classes): j = 0 lab = i while lab: color_map[i * 3] |= (((lab >> 0) & 1) << (7 - j)) color_map[i * 3 + 1] |= (((lab >> 1) & 1) << (7 - j)) color_map[i * 3 + 2] |= (((lab >> 2) & 1) << (7 - j)) j += 1 lab >>= 3 color_map = [color_map[i:i + 3] for i in range(0, len(color_map), 3)] return color_map
Args: num_classes (int): number of class Returns: color_map (list): RGB color list
get_color_map_list
python
PaddlePaddle/models
modelcenter/PP-YOLOv2/APP/src/visualize.py
https://github.com/PaddlePaddle/models/blob/master/modelcenter/PP-YOLOv2/APP/src/visualize.py
Apache-2.0
def get_package_data_files(package, data, package_dir=None): """ Helps to list all specified files in package including files in directories since `package_data` ignores directories. """ if package_dir is None: package_dir = os.path.join(*package.split('.')) all_files = [] for f in data: path = os.path.join(package_dir, f) if os.path.isfile(path): all_files.append(f) continue for root, _dirs, files in os.walk(path, followlinks=True): root = os.path.relpath(root, package_dir) for file in files: file = os.path.join(root, file) if file not in all_files: all_files.append(file) return all_files
Helps to list all specified files in package including files in directories since `package_data` ignores directories.
get_package_data_files
python
PaddlePaddle/models
paddlecv/setup.py
https://github.com/PaddlePaddle/models/blob/master/paddlecv/setup.py
Apache-2.0
def __call__(self, inputs): """ step1: parser inputs step2: run step3: merge results input: a list of dict """ # for the input_keys as list # inputs = [pipe_input[key] for pipe_input in pipe_inputs for key in self.input_keys] key = self.input_keys[0] if isinstance(inputs[0][key], (list, tuple)): inputs = [input[key] for input in inputs] else: inputs = [[input[key]] for input in inputs] sub_index_list = [len(input) for input in inputs] inputs = reduce(lambda x, y: x.extend(y) or x, inputs) # step2: run outputs, bbox_nums = self.infer(inputs) # step3: merge curr_offsef_id = 0 pipe_outputs = [] for i, bbox_num in enumerate(bbox_nums): output = outputs[i] start_id = 0 for num in bbox_num: end_id = start_id + num out = {k: v[start_id:end_id] for k, v in output.items()} pipe_outputs.append(out) start_id = end_id return pipe_outputs
step1: parser inputs step2: run step3: merge results input: a list of dict
__call__
python
PaddlePaddle/models
paddlecv/custom_op/inference.py
https://github.com/PaddlePaddle/models/blob/master/paddlecv/custom_op/inference.py
Apache-2.0
def hard_nms(box_scores, iou_threshold, top_k=-1, candidate_size=200): """ Args: box_scores (N, 5): boxes in corner-form and probabilities. iou_threshold: intersection over union threshold. top_k: keep top_k results. If k <= 0, keep all the results. candidate_size: only consider the candidates with the highest scores. Returns: picked: a list of indexes of the kept boxes """ scores = box_scores[:, -1] boxes = box_scores[:, :-1] picked = [] indexes = np.argsort(scores) indexes = indexes[-candidate_size:] while len(indexes) > 0: current = indexes[-1] picked.append(current) if 0 < top_k == len(picked) or len(indexes) == 1: break current_box = boxes[current, :] indexes = indexes[:-1] rest_boxes = boxes[indexes, :] iou = iou_of( rest_boxes, np.expand_dims( current_box, axis=0), ) indexes = indexes[iou <= iou_threshold] return box_scores[picked, :]
Args: box_scores (N, 5): boxes in corner-form and probabilities. iou_threshold: intersection over union threshold. top_k: keep top_k results. If k <= 0, keep all the results. candidate_size: only consider the candidates with the highest scores. Returns: picked: a list of indexes of the kept boxes
hard_nms
python
PaddlePaddle/models
paddlecv/custom_op/postprocess.py
https://github.com/PaddlePaddle/models/blob/master/paddlecv/custom_op/postprocess.py
Apache-2.0
def iou_of(boxes0, boxes1, eps=1e-5): """Return intersection-over-union (Jaccard index) of boxes. Args: boxes0 (N, 4): ground truth boxes. boxes1 (N or 1, 4): predicted boxes. eps: a small number to avoid 0 as denominator. Returns: iou (N): IoU values. """ overlap_left_top = np.maximum(boxes0[..., :2], boxes1[..., :2]) overlap_right_bottom = np.minimum(boxes0[..., 2:], boxes1[..., 2:]) overlap_area = area_of(overlap_left_top, overlap_right_bottom) area0 = area_of(boxes0[..., :2], boxes0[..., 2:]) area1 = area_of(boxes1[..., :2], boxes1[..., 2:]) return overlap_area / (area0 + area1 - overlap_area + eps)
Return intersection-over-union (Jaccard index) of boxes. Args: boxes0 (N, 4): ground truth boxes. boxes1 (N or 1, 4): predicted boxes. eps: a small number to avoid 0 as denominator. Returns: iou (N): IoU values.
iou_of
python
PaddlePaddle/models
paddlecv/custom_op/postprocess.py
https://github.com/PaddlePaddle/models/blob/master/paddlecv/custom_op/postprocess.py
Apache-2.0
def area_of(left_top, right_bottom): """Compute the areas of rectangles given two corners. Args: left_top (N, 2): left top corner. right_bottom (N, 2): right bottom corner. Returns: area (N): return the area. """ hw = np.clip(right_bottom - left_top, 0.0, None) return hw[..., 0] * hw[..., 1]
Compute the areas of rectangles given two corners. Args: left_top (N, 2): left top corner. right_bottom (N, 2): right bottom corner. Returns: area (N): return the area.
area_of
python
PaddlePaddle/models
paddlecv/custom_op/postprocess.py
https://github.com/PaddlePaddle/models/blob/master/paddlecv/custom_op/postprocess.py
Apache-2.0
def decode_image(im_file, im_info): """read rgb image Args: im_file (str|np.ndarray): input can be image path or np.ndarray im_info (dict): info of image Returns: im (np.ndarray): processed image (np.ndarray) im_info (dict): info of processed image """ if isinstance(im_file, str): with open(im_file, 'rb') as f: im_read = f.read() data = np.frombuffer(im_read, dtype='uint8') im = cv2.imdecode(data, 1) # BGR mode, but need RGB mode im = cv2.cvtColor(im, cv2.COLOR_BGR2RGB) else: im = im_file im_info['im_shape'] = np.array(im.shape[:2], dtype=np.float32) im_info['scale_factor'] = np.array([1., 1.], dtype=np.float32) return im, im_info
read rgb image Args: im_file (str|np.ndarray): input can be image path or np.ndarray im_info (dict): info of image Returns: im (np.ndarray): processed image (np.ndarray) im_info (dict): info of processed image
decode_image
python
PaddlePaddle/models
paddlecv/custom_op/preprocess.py
https://github.com/PaddlePaddle/models/blob/master/paddlecv/custom_op/preprocess.py
Apache-2.0
def __call__(self, im, im_info): """ Args: im (np.ndarray): image (np.ndarray) im_info (dict): info of image Returns: im (np.ndarray): processed image (np.ndarray) im_info (dict): info of processed image """ assert len(self.target_size) == 2 assert self.target_size[0] > 0 and self.target_size[1] > 0 im_channel = im.shape[2] im_scale_y, im_scale_x = self.generate_scale(im) # set image_shape im_info['input_shape'][1] = int(im_scale_y * im.shape[0]) im_info['input_shape'][2] = int(im_scale_x * im.shape[1]) im = cv2.resize( im, None, None, fx=im_scale_x, fy=im_scale_y, interpolation=self.interp) im_info['im_shape'] = np.array(im.shape[:2]).astype('float32') im_info['scale_factor'] = np.array( [im_scale_y, im_scale_x]).astype('float32') return im, im_info
Args: im (np.ndarray): image (np.ndarray) im_info (dict): info of image Returns: im (np.ndarray): processed image (np.ndarray) im_info (dict): info of processed image
__call__
python
PaddlePaddle/models
paddlecv/custom_op/preprocess.py
https://github.com/PaddlePaddle/models/blob/master/paddlecv/custom_op/preprocess.py
Apache-2.0
def generate_scale(self, im): """ Args: im (np.ndarray): image (np.ndarray) Returns: im_scale_x: the resize ratio of X im_scale_y: the resize ratio of Y """ origin_shape = im.shape[:2] im_c = im.shape[2] if self.keep_ratio: im_size_min = np.min(origin_shape) im_size_max = np.max(origin_shape) target_size_min = np.min(self.target_size) target_size_max = np.max(self.target_size) im_scale = float(target_size_min) / float(im_size_min) if np.round(im_scale * im_size_max) > target_size_max: im_scale = float(target_size_max) / float(im_size_max) im_scale_x = im_scale im_scale_y = im_scale else: resize_h, resize_w = self.target_size im_scale_y = resize_h / float(origin_shape[0]) im_scale_x = resize_w / float(origin_shape[1]) return im_scale_y, im_scale_x
Args: im (np.ndarray): image (np.ndarray) Returns: im_scale_x: the resize ratio of X im_scale_y: the resize ratio of Y
generate_scale
python
PaddlePaddle/models
paddlecv/custom_op/preprocess.py
https://github.com/PaddlePaddle/models/blob/master/paddlecv/custom_op/preprocess.py
Apache-2.0
def __call__(self, im, im_info): """ Args: im (np.ndarray): image (np.ndarray) im_info (dict): info of image Returns: im (np.ndarray): processed image (np.ndarray) im_info (dict): info of processed image """ im = im.astype(np.float32, copy=False) if self.is_scale: scale = 1.0 / 255.0 im *= scale if self.norm_type == 'mean_std': mean = np.array(self.mean)[np.newaxis, np.newaxis, :] std = np.array(self.std)[np.newaxis, np.newaxis, :] im -= mean im /= std return im, im_info
Args: im (np.ndarray): image (np.ndarray) im_info (dict): info of image Returns: im (np.ndarray): processed image (np.ndarray) im_info (dict): info of processed image
__call__
python
PaddlePaddle/models
paddlecv/custom_op/preprocess.py
https://github.com/PaddlePaddle/models/blob/master/paddlecv/custom_op/preprocess.py
Apache-2.0
def __call__(self, im, im_info): """ Args: im (np.ndarray): image (np.ndarray) im_info (dict): info of image Returns: im (np.ndarray): processed image (np.ndarray) im_info (dict): info of processed image """ im = im.transpose((2, 0, 1)).copy() return im, im_info
Args: im (np.ndarray): image (np.ndarray) im_info (dict): info of image Returns: im (np.ndarray): processed image (np.ndarray) im_info (dict): info of processed image
__call__
python
PaddlePaddle/models
paddlecv/custom_op/preprocess.py
https://github.com/PaddlePaddle/models/blob/master/paddlecv/custom_op/preprocess.py
Apache-2.0
def __call__(self, im, im_info): """ Args: im (np.ndarray): image (np.ndarray) im_info (dict): info of image Returns: im (np.ndarray): processed image (np.ndarray) im_info (dict): info of processed image """ coarsest_stride = self.coarsest_stride if coarsest_stride <= 0: return im, im_info im_c, im_h, im_w = im.shape pad_h = int(np.ceil(float(im_h) / coarsest_stride) * coarsest_stride) pad_w = int(np.ceil(float(im_w) / coarsest_stride) * coarsest_stride) padding_im = np.zeros((im_c, pad_h, pad_w), dtype=np.float32) padding_im[:, :im_h, :im_w] = im return padding_im, im_info
Args: im (np.ndarray): image (np.ndarray) im_info (dict): info of image Returns: im (np.ndarray): processed image (np.ndarray) im_info (dict): info of processed image
__call__
python
PaddlePaddle/models
paddlecv/custom_op/preprocess.py
https://github.com/PaddlePaddle/models/blob/master/paddlecv/custom_op/preprocess.py
Apache-2.0
def topo_sort(self): """ Topological sort of DAG, creates inverted multi-layers views. Args: graph (dict): the DAG stucture in_degrees (dict): Next op list for each op Returns: sort_result: the hierarchical topology list. examples: DAG :[A -> B -> C -> E] \-> D / sort_result: [A, B, C, D, E] """ # Select vertices with in_degree = 0 Q = [u for u in self.in_degrees if self.in_degrees[u] == 0] sort_result = [] while Q: u = Q.pop() sort_result.append(u) for v in self.graph[u]: # remove output degrees self.in_degrees[v] -= 1 # re-select vertices with in_degree = 0 if self.in_degrees[v] == 0: Q.append(v) if len(sort_result) == self.num: return sort_result else: return None
Topological sort of DAG, creates inverted multi-layers views. Args: graph (dict): the DAG stucture in_degrees (dict): Next op list for each op Returns: sort_result: the hierarchical topology list. examples: DAG :[A -> B -> C -> E] \-> D / sort_result: [A, B, C, D, E]
topo_sort
python
PaddlePaddle/models
paddlecv/ppcv/core/framework.py
https://github.com/PaddlePaddle/models/blob/master/paddlecv/ppcv/core/framework.py
Apache-2.0
def register(cls): """ Register a given module class. Args: cls (type): Module class to be registered. Returns: cls """ if cls.__name__ in global_config: raise ValueError("Module class already registered: {}".format( cls.__name__)) global_config[cls.__name__] = cls return cls
Register a given module class. Args: cls (type): Module class to be registered. Returns: cls
register
python
PaddlePaddle/models
paddlecv/ppcv/core/workspace.py
https://github.com/PaddlePaddle/models/blob/master/paddlecv/ppcv/core/workspace.py
Apache-2.0
def create(cls_name, op_cfg, env_cfg): """ Create an instance of given module class. Args: cls_name(str): Class of which to create instnce. Return: instance of type `cls_or_name` """ assert type(cls_name) == str, "should be a name of class" if cls_name not in global_config: raise ValueError("The module {} is not registered".format(cls_name)) cls = global_config[cls_name] return cls(op_cfg, env_cfg)
Create an instance of given module class. Args: cls_name(str): Class of which to create instnce. Return: instance of type `cls_or_name`
create
python
PaddlePaddle/models
paddlecv/ppcv/core/workspace.py
https://github.com/PaddlePaddle/models/blob/master/paddlecv/ppcv/core/workspace.py
Apache-2.0
def create_operators(params, mod): """ create operators based on the config Args: params(list): a dict list, used to create some operators mod(module) : a module that can import single ops """ assert isinstance(params, list), ('operator config should be a list') if mod is None: mod = importlib.import_module(__name__) ops = [] for operator in params: if isinstance(operator, str): op_name = operator param = {} else: assert isinstance(operator, dict) and len(operator) == 1, "yaml format error" op_name = list(operator)[0] param = {} if operator[op_name] is None else operator[op_name] op = getattr(mod, op_name)(**param) ops.append(op) return ops
create operators based on the config Args: params(list): a dict list, used to create some operators mod(module) : a module that can import single ops
create_operators
python
PaddlePaddle/models
paddlecv/ppcv/ops/base.py
https://github.com/PaddlePaddle/models/blob/master/paddlecv/ppcv/ops/base.py
Apache-2.0
def get(self, key): """ key can be one of [list, tuple, str] """ if isinstance(key, (list, tuple)): return [self.data_dict[k] for k in key] elif isinstance(key, (str)): return self.data_dict[key] else: assert False, f"key({key}) type must be in on of [list, tuple, str] but got {type(key)}"
key can be one of [list, tuple, str]
get
python
PaddlePaddle/models
paddlecv/ppcv/ops/general_data_obj.py
https://github.com/PaddlePaddle/models/blob/master/paddlecv/ppcv/ops/general_data_obj.py
Apache-2.0
def get_rotate_crop_image(self, img, points): ''' img_height, img_width = img.shape[0:2] left = int(np.min(points[:, 0])) right = int(np.max(points[:, 0])) top = int(np.min(points[:, 1])) bottom = int(np.max(points[:, 1])) img_crop = img[top:bottom, left:right, :].copy() points[:, 0] = points[:, 0] - left points[:, 1] = points[:, 1] - top ''' assert len(points) == 4, "shape of points must be 4*2" img_crop_width = int( max( np.linalg.norm(points[0] - points[1]), np.linalg.norm(points[2] - points[3]))) img_crop_height = int( max( np.linalg.norm(points[0] - points[3]), np.linalg.norm(points[1] - points[2]))) pts_std = np.float32([[0, 0], [img_crop_width, 0], [img_crop_width, img_crop_height], [0, img_crop_height]]) M = cv2.getPerspectiveTransform(points.astype(np.float32), pts_std) dst_img = cv2.warpPerspective( img, M, (img_crop_width, img_crop_height), borderMode=cv2.BORDER_REPLICATE, flags=cv2.INTER_CUBIC) dst_img_height, dst_img_width = dst_img.shape[0:2] if dst_img_height * 1.0 / dst_img_width >= 1.5: dst_img = np.rot90(dst_img) return dst_img
img_height, img_width = img.shape[0:2] left = int(np.min(points[:, 0])) right = int(np.max(points[:, 0])) top = int(np.min(points[:, 1])) bottom = int(np.max(points[:, 1])) img_crop = img[top:bottom, left:right, :].copy() points[:, 0] = points[:, 0] - left points[:, 1] = points[:, 1] - top
get_rotate_crop_image
python
PaddlePaddle/models
paddlecv/ppcv/ops/connector/op_connector.py
https://github.com/PaddlePaddle/models/blob/master/paddlecv/ppcv/ops/connector/op_connector.py
Apache-2.0
def sorted_boxes(self, dt_boxes): """ Sort text boxes in order from top to bottom, left to right args: dt_boxes(array):detected text boxes with shape [4, 2] return: sorted boxes(array) with shape [4, 2] """ num_boxes = dt_boxes.shape[0] sorted_boxes = sorted(dt_boxes, key=lambda x: (x[0][1], x[0][0])) _boxes = list(sorted_boxes) for i in range(num_boxes - 1): for j in range(i, 0, -1): if abs(_boxes[j + 1][0][1] - _boxes[j][0][1]) < 10 and \ (_boxes[j + 1][0][0] < _boxes[j][0][0]): tmp = _boxes[j] _boxes[j] = _boxes[j + 1] _boxes[j + 1] = tmp else: break return _boxes
Sort text boxes in order from top to bottom, left to right args: dt_boxes(array):detected text boxes with shape [4, 2] return: sorted boxes(array) with shape [4, 2]
sorted_boxes
python
PaddlePaddle/models
paddlecv/ppcv/ops/connector/op_connector.py
https://github.com/PaddlePaddle/models/blob/master/paddlecv/ppcv/ops/connector/op_connector.py
Apache-2.0
def compute_iou(rec1, rec2): """ computing IoU :param rec1: (y0, x0, y1, x1), which reflects (top, left, bottom, right) :param rec2: (y0, x0, y1, x1) :return: scala value of IoU """ # computing area of each rectangles S_rec1 = (rec1[2] - rec1[0]) * (rec1[3] - rec1[1]) S_rec2 = (rec2[2] - rec2[0]) * (rec2[3] - rec2[1]) # computing the sum_area sum_area = S_rec1 + S_rec2 # find the each edge of intersect rectangle left_line = max(rec1[1], rec2[1]) right_line = min(rec1[3], rec2[3]) top_line = max(rec1[0], rec2[0]) bottom_line = min(rec1[2], rec2[2]) # judge if there is an intersect if left_line >= right_line or top_line >= bottom_line: return 0.0 else: intersect = (right_line - left_line) * (bottom_line - top_line) return (intersect / (sum_area - intersect)) * 1.0
computing IoU :param rec1: (y0, x0, y1, x1), which reflects (top, left, bottom, right) :param rec2: (y0, x0, y1, x1) :return: scala value of IoU
compute_iou
python
PaddlePaddle/models
paddlecv/ppcv/ops/connector/table_matcher.py
https://github.com/PaddlePaddle/models/blob/master/paddlecv/ppcv/ops/connector/table_matcher.py
Apache-2.0
def convert_bbox_to_z(bbox): """ Takes a bounding box in the form [x1,y1,x2,y2] and returns z in the form [x,y,s,r] where x,y is the centre of the box and s is the scale/area and r is the aspect ratio """ w = bbox[2] - bbox[0] h = bbox[3] - bbox[1] x = bbox[0] + w / 2. y = bbox[1] + h / 2. s = w * h # scale is just area r = w / float(h + 1e-6) return np.array([x, y, s, r]).reshape((4, 1))
Takes a bounding box in the form [x1,y1,x2,y2] and returns z in the form [x,y,s,r] where x,y is the centre of the box and s is the scale/area and r is the aspect ratio
convert_bbox_to_z
python
PaddlePaddle/models
paddlecv/ppcv/ops/connector/tracker/tracker.py
https://github.com/PaddlePaddle/models/blob/master/paddlecv/ppcv/ops/connector/tracker/tracker.py
Apache-2.0
def convert_x_to_bbox(x, score=None): """ Takes a bounding box in the centre form [x,y,s,r] and returns it in the form [x1,y1,x2,y2] where x1,y1 is the top left and x2,y2 is the bottom right """ w = np.sqrt(x[2] * x[3]) h = x[2] / w if (score == None): return np.array( [x[0] - w / 2., x[1] - h / 2., x[0] + w / 2., x[1] + h / 2.]).reshape((1, 4)) else: score = np.array([score]) return np.array([ x[0] - w / 2., x[1] - h / 2., x[0] + w / 2., x[1] + h / 2., score ]).reshape((1, 5))
Takes a bounding box in the centre form [x,y,s,r] and returns it in the form [x1,y1,x2,y2] where x1,y1 is the top left and x2,y2 is the bottom right
convert_x_to_bbox
python
PaddlePaddle/models
paddlecv/ppcv/ops/connector/tracker/tracker.py
https://github.com/PaddlePaddle/models/blob/master/paddlecv/ppcv/ops/connector/tracker/tracker.py
Apache-2.0
def update(self, bbox): """ Updates the state vector with observed bbox. """ if bbox is not None: if self.last_observation.sum() >= 0: # no previous observation previous_box = None for i in range(self.delta_t): dt = self.delta_t - i if self.age - dt in self.observations: previous_box = self.observations[self.age - dt] break if previous_box is None: previous_box = self.last_observation """ Estimate the track speed direction with observations \Delta t steps away """ self.velocity = speed_direction(previous_box, bbox) """ Insert new observations. This is a ugly way to maintain both self.observations and self.history_observations. Bear it for the moment. """ self.last_observation = bbox self.observations[self.age] = bbox self.history_observations.append(bbox) self.time_since_update = 0 self.history = [] self.hits += 1 self.hit_streak += 1 self.kf.update(convert_bbox_to_z(bbox)) else: self.kf.update(bbox)
Updates the state vector with observed bbox.
update
python
PaddlePaddle/models
paddlecv/ppcv/ops/connector/tracker/tracker.py
https://github.com/PaddlePaddle/models/blob/master/paddlecv/ppcv/ops/connector/tracker/tracker.py
Apache-2.0
def predict(self): """ Advances the state vector and returns the predicted bounding box estimate. """ if ((self.kf.x[6] + self.kf.x[2]) <= 0): self.kf.x[6] *= 0.0 self.kf.predict() self.age += 1 if (self.time_since_update > 0): self.hit_streak = 0 self.time_since_update += 1 self.history.append(convert_x_to_bbox(self.kf.x, score=self.score)) return self.history[-1]
Advances the state vector and returns the predicted bounding box estimate.
predict
python
PaddlePaddle/models
paddlecv/ppcv/ops/connector/tracker/tracker.py
https://github.com/PaddlePaddle/models/blob/master/paddlecv/ppcv/ops/connector/tracker/tracker.py
Apache-2.0
def update(self, pred_dets, pred_embs=None): """ Args: pred_dets (np.array): Detection results of the image, the shape is [N, 6], means 'cls_id, score, x0, y0, x1, y1'. pred_embs (np.array): Embedding results of the image, the shape is [N, 128] or [N, 512], default as None. Return: tracking boxes (np.array): [M, 6], means 'x0, y0, x1, y1, score, id'. """ if pred_dets is None: return np.empty((0, 6)) self.frame_count += 1 bboxes = pred_dets[:, 2:] scores = pred_dets[:, 1:2] dets = np.concatenate((bboxes, scores), axis=1) scores = scores.squeeze(-1) inds_low = scores > 0.1 inds_high = scores < self.det_thresh inds_second = np.logical_and(inds_low, inds_high) # self.det_thresh > score > 0.1, for second matching dets_second = dets[inds_second] # detections for second matching remain_inds = scores > self.det_thresh dets = dets[remain_inds] # get predicted locations from existing trackers. trks = np.zeros((len(self.trackers), 5)) to_del = [] ret = [] for t, trk in enumerate(trks): pos = self.trackers[t].predict()[0] trk[:] = [pos[0], pos[1], pos[2], pos[3], 0] if np.any(np.isnan(pos)): to_del.append(t) trks = np.ma.compress_rows(np.ma.masked_invalid(trks)) for t in reversed(to_del): self.trackers.pop(t) velocities = np.array([ trk.velocity if trk.velocity is not None else np.array((0, 0)) for trk in self.trackers ]) last_boxes = np.array([trk.last_observation for trk in self.trackers]) k_observations = np.array([ k_previous_obs(trk.observations, trk.age, self.delta_t) for trk in self.trackers ]) """ First round of association """ matched, unmatched_dets, unmatched_trks = associate( dets, trks, self.iou_threshold, velocities, k_observations, self.inertia) for m in matched: self.trackers[m[1]].update(dets[m[0], :]) """ Second round of associaton by OCR """ # BYTE association if self.use_byte and len(dets_second) > 0 and unmatched_trks.shape[ 0] > 0: u_trks = trks[unmatched_trks] iou_left = iou_batch( dets_second, u_trks) # iou between low score detections and unmatched tracks iou_left = np.array(iou_left) if iou_left.max() > self.iou_threshold: """ NOTE: by using a lower threshold, e.g., self.iou_threshold - 0.1, you may get a higher performance especially on MOT17/MOT20 datasets. But we keep it uniform here for simplicity """ matched_indices = linear_assignment(-iou_left) to_remove_trk_indices = [] for m in matched_indices: det_ind, trk_ind = m[0], unmatched_trks[m[1]] if iou_left[m[0], m[1]] < self.iou_threshold: continue self.trackers[trk_ind].update(dets_second[det_ind, :]) to_remove_trk_indices.append(trk_ind) unmatched_trks = np.setdiff1d(unmatched_trks, np.array(to_remove_trk_indices)) if unmatched_dets.shape[0] > 0 and unmatched_trks.shape[0] > 0: left_dets = dets[unmatched_dets] left_trks = last_boxes[unmatched_trks] iou_left = iou_batch(left_dets, left_trks) iou_left = np.array(iou_left) if iou_left.max() > self.iou_threshold: """ NOTE: by using a lower threshold, e.g., self.iou_threshold - 0.1, you may get a higher performance especially on MOT17/MOT20 datasets. But we keep it uniform here for simplicity """ rematched_indices = linear_assignment(-iou_left) to_remove_det_indices = [] to_remove_trk_indices = [] for m in rematched_indices: det_ind, trk_ind = unmatched_dets[m[0]], unmatched_trks[m[ 1]] if iou_left[m[0], m[1]] < self.iou_threshold: continue self.trackers[trk_ind].update(dets[det_ind, :]) to_remove_det_indices.append(det_ind) to_remove_trk_indices.append(trk_ind) unmatched_dets = np.setdiff1d(unmatched_dets, np.array(to_remove_det_indices)) unmatched_trks = np.setdiff1d(unmatched_trks, np.array(to_remove_trk_indices)) for m in unmatched_trks: self.trackers[m].update(None) # create and initialise new trackers for unmatched detections for i in unmatched_dets: trk = KalmanBoxTracker(dets[i, :], delta_t=self.delta_t) self.trackers.append(trk) i = len(self.trackers) for trk in reversed(self.trackers): if trk.last_observation.sum() < 0: d = trk.get_state()[0] else: d = trk.last_observation # tlbr + score if (trk.time_since_update < 1) and ( trk.hit_streak >= self.min_hits or self.frame_count <= self.min_hits): # +1 as MOT benchmark requires positive ret.append(np.concatenate((d, [trk.id + 1])).reshape(1, -1)) i -= 1 # remove dead tracklet if (trk.time_since_update > self.max_age): self.trackers.pop(i) if (len(ret) > 0): return np.concatenate(ret) return np.empty((0, 6))
Args: pred_dets (np.array): Detection results of the image, the shape is [N, 6], means 'cls_id, score, x0, y0, x1, y1'. pred_embs (np.array): Embedding results of the image, the shape is [N, 128] or [N, 512], default as None. Return: tracking boxes (np.array): [M, 6], means 'x0, y0, x1, y1, score, id'.
update
python
PaddlePaddle/models
paddlecv/ppcv/ops/connector/tracker/tracker.py
https://github.com/PaddlePaddle/models/blob/master/paddlecv/ppcv/ops/connector/tracker/tracker.py
Apache-2.0
def __call__(self, inputs): """ step1: parser inputs step2: run step3: merge results input: a list of dict """ key = self.input_keys[0] is_list = False if isinstance(inputs[0][key], (list, tuple)): inputs = [input[key] for input in inputs] is_list = True else: inputs = [[input[key]] for input in inputs] sub_index_list = [len(input) for input in inputs] inputs = reduce(lambda x, y: x.extend(y) or x, inputs) # step2: run outputs = self.infer(inputs) # step3: merge curr_offsef_id = 0 pipe_outputs = [] for idx in range(len(sub_index_list)): sub_start_idx = curr_offsef_id sub_end_idx = curr_offsef_id + sub_index_list[idx] output = outputs[sub_start_idx:sub_end_idx] if len(output) > 0: output = {k: [o[k] for o in output] for k in output[0]} if is_list is not True: output = {k: output[k][0] for k in output} else: output = { self.output_keys[0]: [], self.output_keys[1]: [], self.output_keys[2]: [] } pipe_outputs.append(output) curr_offsef_id = sub_end_idx return pipe_outputs
step1: parser inputs step2: run step3: merge results input: a list of dict
__call__
python
PaddlePaddle/models
paddlecv/ppcv/ops/models/classification/inference.py
https://github.com/PaddlePaddle/models/blob/master/paddlecv/ppcv/ops/models/classification/inference.py
Apache-2.0
def __call__(self, inputs): """ step1: parser inputs step2: run step3: merge results input: a list of dict """ # for the input_keys as list # inputs = [pipe_input[key] for pipe_input in pipe_inputs for key in self.input_keys] key = self.input_keys[0] if isinstance(inputs[0][key], (list, tuple)): inputs = [input[key] for input in inputs] else: inputs = [[input[key]] for input in inputs] sub_index_list = [len(input) for input in inputs] inputs = reduce(lambda x, y: x.extend(y) or x, inputs) # step2: run outputs, bbox_nums = self.infer(inputs) # step3: merge curr_offsef_id = 0 pipe_outputs = [] for i, bbox_num in enumerate(bbox_nums): output = outputs[i] start_id = 0 for num in bbox_num: end_id = start_id + num out = {k: v[start_id:end_id] for k, v in output.items()} pipe_outputs.append(out) start_id = end_id return pipe_outputs
step1: parser inputs step2: run step3: merge results input: a list of dict
__call__
python
PaddlePaddle/models
paddlecv/ppcv/ops/models/detection/inference.py
https://github.com/PaddlePaddle/models/blob/master/paddlecv/ppcv/ops/models/detection/inference.py
Apache-2.0
def decode_image(im_file, im_info): """read rgb image Args: im_file (str|np.ndarray): input can be image path or np.ndarray im_info (dict): info of image Returns: im (np.ndarray): processed image (np.ndarray) im_info (dict): info of processed image """ if isinstance(im_file, str): with open(im_file, 'rb') as f: im_read = f.read() data = np.frombuffer(im_read, dtype='uint8') im = cv2.imdecode(data, 1) # BGR mode, but need RGB mode im = cv2.cvtColor(im, cv2.COLOR_BGR2RGB) else: im = im_file im_info['im_shape'] = np.array(im.shape[:2], dtype=np.float32) im_info['scale_factor'] = np.array([1., 1.], dtype=np.float32) return im, im_info
read rgb image Args: im_file (str|np.ndarray): input can be image path or np.ndarray im_info (dict): info of image Returns: im (np.ndarray): processed image (np.ndarray) im_info (dict): info of processed image
decode_image
python
PaddlePaddle/models
paddlecv/ppcv/ops/models/detection/preprocess.py
https://github.com/PaddlePaddle/models/blob/master/paddlecv/ppcv/ops/models/detection/preprocess.py
Apache-2.0
def __call__(self, im, im_info): """ Args: im (np.ndarray): image (np.ndarray) im_info (dict): info of image Returns: im (np.ndarray): processed image (np.ndarray) im_info (dict): info of processed image """ assert len(self.target_size) == 2 assert self.target_size[0] > 0 and self.target_size[1] > 0 im_channel = im.shape[2] im_scale_y, im_scale_x = self.generate_scale(im) # set image_shape im_info['input_shape'][1] = int(im_scale_y * im.shape[0]) im_info['input_shape'][2] = int(im_scale_x * im.shape[1]) im = cv2.resize( im, None, None, fx=im_scale_x, fy=im_scale_y, interpolation=self.interp) im_info['im_shape'] = np.array(im.shape[:2]).astype('float32') im_info['scale_factor'] = np.array( [im_scale_y, im_scale_x]).astype('float32') return im, im_info
Args: im (np.ndarray): image (np.ndarray) im_info (dict): info of image Returns: im (np.ndarray): processed image (np.ndarray) im_info (dict): info of processed image
__call__
python
PaddlePaddle/models
paddlecv/ppcv/ops/models/detection/preprocess.py
https://github.com/PaddlePaddle/models/blob/master/paddlecv/ppcv/ops/models/detection/preprocess.py
Apache-2.0
def generate_scale(self, im): """ Args: im (np.ndarray): image (np.ndarray) Returns: im_scale_x: the resize ratio of X im_scale_y: the resize ratio of Y """ origin_shape = im.shape[:2] im_c = im.shape[2] if self.keep_ratio: im_size_min = np.min(origin_shape) im_size_max = np.max(origin_shape) target_size_min = np.min(self.target_size) target_size_max = np.max(self.target_size) im_scale = float(target_size_min) / float(im_size_min) if np.round(im_scale * im_size_max) > target_size_max: im_scale = float(target_size_max) / float(im_size_max) im_scale_x = im_scale im_scale_y = im_scale else: resize_h, resize_w = self.target_size im_scale_y = resize_h / float(origin_shape[0]) im_scale_x = resize_w / float(origin_shape[1]) return im_scale_y, im_scale_x
Args: im (np.ndarray): image (np.ndarray) Returns: im_scale_x: the resize ratio of X im_scale_y: the resize ratio of Y
generate_scale
python
PaddlePaddle/models
paddlecv/ppcv/ops/models/detection/preprocess.py
https://github.com/PaddlePaddle/models/blob/master/paddlecv/ppcv/ops/models/detection/preprocess.py
Apache-2.0
def __call__(self, im, im_info): """ Args: im (np.ndarray): image (np.ndarray) im_info (dict): info of image Returns: im (np.ndarray): processed image (np.ndarray) im_info (dict): info of processed image """ im = im.astype(np.float32, copy=False) if self.is_scale: scale = 1.0 / 255.0 im *= scale if self.norm_type == 'mean_std': mean = np.array(self.mean)[np.newaxis, np.newaxis, :] std = np.array(self.std)[np.newaxis, np.newaxis, :] im -= mean im /= std return im, im_info
Args: im (np.ndarray): image (np.ndarray) im_info (dict): info of image Returns: im (np.ndarray): processed image (np.ndarray) im_info (dict): info of processed image
__call__
python
PaddlePaddle/models
paddlecv/ppcv/ops/models/detection/preprocess.py
https://github.com/PaddlePaddle/models/blob/master/paddlecv/ppcv/ops/models/detection/preprocess.py
Apache-2.0
def __call__(self, im, im_info): """ Args: im (np.ndarray): image (np.ndarray) im_info (dict): info of image Returns: im (np.ndarray): processed image (np.ndarray) im_info (dict): info of processed image """ im = im.transpose((2, 0, 1)).copy() return im, im_info
Args: im (np.ndarray): image (np.ndarray) im_info (dict): info of image Returns: im (np.ndarray): processed image (np.ndarray) im_info (dict): info of processed image
__call__
python
PaddlePaddle/models
paddlecv/ppcv/ops/models/detection/preprocess.py
https://github.com/PaddlePaddle/models/blob/master/paddlecv/ppcv/ops/models/detection/preprocess.py
Apache-2.0
def __call__(self, im, im_info): """ Args: im (np.ndarray): image (np.ndarray) im_info (dict): info of image Returns: im (np.ndarray): processed image (np.ndarray) im_info (dict): info of processed image """ coarsest_stride = self.coarsest_stride if coarsest_stride <= 0: return im, im_info im_c, im_h, im_w = im.shape pad_h = int(np.ceil(float(im_h) / coarsest_stride) * coarsest_stride) pad_w = int(np.ceil(float(im_w) / coarsest_stride) * coarsest_stride) padding_im = np.zeros((im_c, pad_h, pad_w), dtype=np.float32) padding_im[:, :im_h, :im_w] = im return padding_im, im_info
Args: im (np.ndarray): image (np.ndarray) im_info (dict): info of image Returns: im (np.ndarray): processed image (np.ndarray) im_info (dict): info of processed image
__call__
python
PaddlePaddle/models
paddlecv/ppcv/ops/models/detection/preprocess.py
https://github.com/PaddlePaddle/models/blob/master/paddlecv/ppcv/ops/models/detection/preprocess.py
Apache-2.0
def __call__(self, im, im_info): """ Args: im (np.ndarray): image (np.ndarray) im_info (dict): info of image Returns: im (np.ndarray): processed image (np.ndarray) im_info (dict): info of processed image """ im = im[:, :, ::-1] return im, im_info
Args: im (np.ndarray): image (np.ndarray) im_info (dict): info of image Returns: im (np.ndarray): processed image (np.ndarray) im_info (dict): info of processed image
__call__
python
PaddlePaddle/models
paddlecv/ppcv/ops/models/detection/preprocess.py
https://github.com/PaddlePaddle/models/blob/master/paddlecv/ppcv/ops/models/detection/preprocess.py
Apache-2.0
def __call__(self, inputs): """ step1: parser inputs step2: run step3: merge results input: a list of dict """ # for the input_keys as list # inputs = [pipe_input[key] for pipe_input in pipe_inputs for key in self.input_keys] # step1: for the input_keys as str if len(self.input_keys) > 1: tl_points = [input[self.input_keys[1]] for input in inputs] tl_points = reduce(lambda x, y: x.extend(y) or x, tl_points) else: tl_points = None key = self.input_keys[0] if isinstance(inputs[0][key], (list, tuple)): inputs = [input[key] for input in inputs] else: inputs = [[input[key]] for input in inputs] sub_index_list = [len(input) for input in inputs] inputs = reduce(lambda x, y: x.extend(y) or x, inputs) # step2: run outputs = self.infer(inputs, tl_points) # step3: merge curr_offsef_id = 0 pipe_outputs = [] for idx in range(len(sub_index_list)): sub_start_idx = curr_offsef_id sub_end_idx = curr_offsef_id + sub_index_list[idx] output = outputs[sub_start_idx:sub_end_idx] output = {k: [o[k] for o in output] for k in output[0]} pipe_outputs.append(output) curr_offsef_id = sub_end_idx return pipe_outputs
step1: parser inputs step2: run step3: merge results input: a list of dict
__call__
python
PaddlePaddle/models
paddlecv/ppcv/ops/models/keypoint/inference.py
https://github.com/PaddlePaddle/models/blob/master/paddlecv/ppcv/ops/models/keypoint/inference.py
Apache-2.0
def warp_affine_joints(joints, mat): """Apply affine transformation defined by the transform matrix on the joints. Args: joints (np.ndarray[..., 2]): Origin coordinate of joints. mat (np.ndarray[3, 2]): The affine matrix. Returns: matrix (np.ndarray[..., 2]): Result coordinate of joints. """ joints = np.array(joints) shape = joints.shape joints = joints.reshape(-1, 2) return np.dot(np.concatenate( (joints, joints[:, 0:1] * 0 + 1), axis=1), mat.T).reshape(shape)
Apply affine transformation defined by the transform matrix on the joints. Args: joints (np.ndarray[..., 2]): Origin coordinate of joints. mat (np.ndarray[3, 2]): The affine matrix. Returns: matrix (np.ndarray[..., 2]): Result coordinate of joints.
warp_affine_joints
python
PaddlePaddle/models
paddlecv/ppcv/ops/models/keypoint/postprocess.py
https://github.com/PaddlePaddle/models/blob/master/paddlecv/ppcv/ops/models/keypoint/postprocess.py
Apache-2.0
def get_max_preds(self, heatmaps): """get predictions from score maps Args: heatmaps: numpy.ndarray([batch_size, num_joints, height, width]) Returns: preds: numpy.ndarray([batch_size, num_joints, 2]), keypoints coords maxvals: numpy.ndarray([batch_size, num_joints, 2]), the maximum confidence of the keypoints """ assert isinstance(heatmaps, np.ndarray), 'heatmaps should be numpy.ndarray' assert heatmaps.ndim == 4, 'batch_images should be 4-ndim' batch_size = heatmaps.shape[0] num_joints = heatmaps.shape[1] width = heatmaps.shape[3] heatmaps_reshaped = heatmaps.reshape((batch_size, num_joints, -1)) idx = np.argmax(heatmaps_reshaped, 2) maxvals = np.amax(heatmaps_reshaped, 2) maxvals = maxvals.reshape((batch_size, num_joints, 1)) idx = idx.reshape((batch_size, num_joints, 1)) preds = np.tile(idx, (1, 1, 2)).astype(np.float32) preds[:, :, 0] = (preds[:, :, 0]) % width preds[:, :, 1] = np.floor((preds[:, :, 1]) / width) pred_mask = np.tile(np.greater(maxvals, 0.0), (1, 1, 2)) pred_mask = pred_mask.astype(np.float32) preds *= pred_mask return preds, maxvals
get predictions from score maps Args: heatmaps: numpy.ndarray([batch_size, num_joints, height, width]) Returns: preds: numpy.ndarray([batch_size, num_joints, 2]), keypoints coords maxvals: numpy.ndarray([batch_size, num_joints, 2]), the maximum confidence of the keypoints
get_max_preds
python
PaddlePaddle/models
paddlecv/ppcv/ops/models/keypoint/postprocess.py
https://github.com/PaddlePaddle/models/blob/master/paddlecv/ppcv/ops/models/keypoint/postprocess.py
Apache-2.0
def dark_postprocess(self, hm, coords, kernelsize): """ refer to https://github.com/ilovepose/DarkPose/lib/core/inference.py """ hm = self.gaussian_blur(hm, kernelsize) hm = np.maximum(hm, 1e-10) hm = np.log(hm) for n in range(coords.shape[0]): for p in range(coords.shape[1]): coords[n, p] = self.dark_parse(hm[n][p], coords[n][p]) return coords
refer to https://github.com/ilovepose/DarkPose/lib/core/inference.py
dark_postprocess
python
PaddlePaddle/models
paddlecv/ppcv/ops/models/keypoint/postprocess.py
https://github.com/PaddlePaddle/models/blob/master/paddlecv/ppcv/ops/models/keypoint/postprocess.py
Apache-2.0
def get_final_preds(self, heatmaps, center, scale, kernelsize=3): """the highest heatvalue location with a quarter offset in the direction from the highest response to the second highest response. Args: heatmaps (numpy.ndarray): The predicted heatmaps center (numpy.ndarray): The boxes center scale (numpy.ndarray): The scale factor Returns: preds: numpy.ndarray([batch_size, num_joints, 2]), keypoints coords maxvals: numpy.ndarray([batch_size, num_joints, 1]), the maximum confidence of the keypoints """ coords, maxvals = self.get_max_preds(heatmaps) heatmap_height = heatmaps.shape[2] heatmap_width = heatmaps.shape[3] if self.use_dark: coords = self.dark_postprocess(heatmaps, coords, kernelsize) else: for n in range(coords.shape[0]): for p in range(coords.shape[1]): hm = heatmaps[n][p] px = int(math.floor(coords[n][p][0] + 0.5)) py = int(math.floor(coords[n][p][1] + 0.5)) if 1 < px < heatmap_width - 1 and 1 < py < heatmap_height - 1: diff = np.array([ hm[py][px + 1] - hm[py][px - 1], hm[py + 1][px] - hm[py - 1][px] ]) coords[n][p] += np.sign(diff) * .25 preds = coords.copy() # Transform back for i in range(coords.shape[0]): preds[i] = transform_preds(coords[i], center[i], scale[i], [heatmap_width, heatmap_height]) return preds, maxvals
the highest heatvalue location with a quarter offset in the direction from the highest response to the second highest response. Args: heatmaps (numpy.ndarray): The predicted heatmaps center (numpy.ndarray): The boxes center scale (numpy.ndarray): The scale factor Returns: preds: numpy.ndarray([batch_size, num_joints, 2]), keypoints coords maxvals: numpy.ndarray([batch_size, num_joints, 1]), the maximum confidence of the keypoints
get_final_preds
python
PaddlePaddle/models
paddlecv/ppcv/ops/models/keypoint/postprocess.py
https://github.com/PaddlePaddle/models/blob/master/paddlecv/ppcv/ops/models/keypoint/postprocess.py
Apache-2.0
def get_affine_transform(center, input_size, rot, output_size, shift=(0., 0.), inv=False): """Get the affine transform matrix, given the center/scale/rot/output_size. Args: center (np.ndarray[2, ]): Center of the bounding box (x, y). scale (np.ndarray[2, ]): Scale of the bounding box wrt [width, height]. rot (float): Rotation angle (degree). output_size (np.ndarray[2, ]): Size of the destination heatmaps. shift (0-100%): Shift translation ratio wrt the width/height. Default (0., 0.). inv (bool): Option to inverse the affine transform direction. (inv=False: src->dst or inv=True: dst->src) Returns: np.ndarray: The transform matrix. """ assert len(center) == 2 assert len(output_size) == 2 assert len(shift) == 2 if not isinstance(input_size, (np.ndarray, list)): input_size = np.array([input_size, input_size], dtype=np.float32) scale_tmp = input_size shift = np.array(shift) src_w = scale_tmp[0] dst_w = output_size[0] dst_h = output_size[1] rot_rad = np.pi * rot / 180 src_dir = rotate_point([0., src_w * -0.5], rot_rad) dst_dir = np.array([0., dst_w * -0.5]) src = np.zeros((3, 2), dtype=np.float32) src[0, :] = center + scale_tmp * shift src[1, :] = center + src_dir + scale_tmp * shift src[2, :] = _get_3rd_point(src[0, :], src[1, :]) dst = np.zeros((3, 2), dtype=np.float32) dst[0, :] = [dst_w * 0.5, dst_h * 0.5] dst[1, :] = np.array([dst_w * 0.5, dst_h * 0.5]) + dst_dir dst[2, :] = _get_3rd_point(dst[0, :], dst[1, :]) if inv: trans = cv2.getAffineTransform(np.float32(dst), np.float32(src)) else: trans = cv2.getAffineTransform(np.float32(src), np.float32(dst)) return trans
Get the affine transform matrix, given the center/scale/rot/output_size. Args: center (np.ndarray[2, ]): Center of the bounding box (x, y). scale (np.ndarray[2, ]): Scale of the bounding box wrt [width, height]. rot (float): Rotation angle (degree). output_size (np.ndarray[2, ]): Size of the destination heatmaps. shift (0-100%): Shift translation ratio wrt the width/height. Default (0., 0.). inv (bool): Option to inverse the affine transform direction. (inv=False: src->dst or inv=True: dst->src) Returns: np.ndarray: The transform matrix.
get_affine_transform
python
PaddlePaddle/models
paddlecv/ppcv/ops/models/keypoint/preprocess.py
https://github.com/PaddlePaddle/models/blob/master/paddlecv/ppcv/ops/models/keypoint/preprocess.py
Apache-2.0
def rotate_point(pt, angle_rad): """Rotate a point by an angle. Args: pt (list[float]): 2 dimensional point to be rotated angle_rad (float): rotation angle by radian Returns: list[float]: Rotated point. """ assert len(pt) == 2 sn, cs = np.sin(angle_rad), np.cos(angle_rad) new_x = pt[0] * cs - pt[1] * sn new_y = pt[0] * sn + pt[1] * cs rotated_pt = [new_x, new_y] return rotated_pt
Rotate a point by an angle. Args: pt (list[float]): 2 dimensional point to be rotated angle_rad (float): rotation angle by radian Returns: list[float]: Rotated point.
rotate_point
python
PaddlePaddle/models
paddlecv/ppcv/ops/models/keypoint/preprocess.py
https://github.com/PaddlePaddle/models/blob/master/paddlecv/ppcv/ops/models/keypoint/preprocess.py
Apache-2.0
def _get_3rd_point(a, b): """To calculate the affine matrix, three pairs of points are required. This function is used to get the 3rd point, given 2D points a & b. The 3rd point is defined by rotating vector `a - b` by 90 degrees anticlockwise, using b as the rotation center. Args: a (np.ndarray): point(x,y) b (np.ndarray): point(x,y) Returns: np.ndarray: The 3rd point. """ assert len(a) == 2 assert len(b) == 2 direction = a - b third_pt = b + np.array([-direction[1], direction[0]], dtype=np.float32) return third_pt
To calculate the affine matrix, three pairs of points are required. This function is used to get the 3rd point, given 2D points a & b. The 3rd point is defined by rotating vector `a - b` by 90 degrees anticlockwise, using b as the rotation center. Args: a (np.ndarray): point(x,y) b (np.ndarray): point(x,y) Returns: np.ndarray: The 3rd point.
_get_3rd_point
python
PaddlePaddle/models
paddlecv/ppcv/ops/models/keypoint/preprocess.py
https://github.com/PaddlePaddle/models/blob/master/paddlecv/ppcv/ops/models/keypoint/preprocess.py
Apache-2.0
def __call__(self, im, im_info): """ Args: im (np.ndarray): image (np.ndarray) im_info (dict): info of image Returns: im (np.ndarray): processed image (np.ndarray) im_info (dict): info of processed image """ im = im.astype(np.float32, copy=False) mean = np.array(self.mean)[np.newaxis, np.newaxis, :] std = np.array(self.std)[np.newaxis, np.newaxis, :] if self.is_scale: im = im / 255.0 im -= mean im /= std return im, im_info
Args: im (np.ndarray): image (np.ndarray) im_info (dict): info of image Returns: im (np.ndarray): processed image (np.ndarray) im_info (dict): info of processed image
__call__
python
PaddlePaddle/models
paddlecv/ppcv/ops/models/keypoint/preprocess.py
https://github.com/PaddlePaddle/models/blob/master/paddlecv/ppcv/ops/models/keypoint/preprocess.py
Apache-2.0
def __call__(self, im, im_info): """ Args: im (np.ndarray): image (np.ndarray) im_info (dict): info of image Returns: im (np.ndarray): processed image (np.ndarray) im_info (dict): info of processed image """ im = im.transpose((2, 0, 1)).copy() return im, im_info
Args: im (np.ndarray): image (np.ndarray) im_info (dict): info of image Returns: im (np.ndarray): processed image (np.ndarray) im_info (dict): info of processed image
__call__
python
PaddlePaddle/models
paddlecv/ppcv/ops/models/keypoint/preprocess.py
https://github.com/PaddlePaddle/models/blob/master/paddlecv/ppcv/ops/models/keypoint/preprocess.py
Apache-2.0
def __call__(self, inputs): """ step1: parser inputs step2: run step3: merge results input: a list of dict """ key = self.input_keys[0] is_list = False if isinstance(inputs[0][key], (list, tuple)): inputs = [input[key] for input in inputs] is_list = True else: inputs = [[input[key]] for input in inputs] sub_index_list = [len(input) for input in inputs] inputs = reduce(lambda x, y: x.extend(y) or x, inputs) # step2: run outputs = self.infer(inputs) # step3: merge curr_offsef_id = 0 pipe_outputs = [] for idx in range(len(sub_index_list)): sub_start_idx = curr_offsef_id sub_end_idx = curr_offsef_id + sub_index_list[idx] output = outputs[sub_start_idx:sub_end_idx] output = {k: [o[k] for o in output] for k in output[0]} if is_list is not True: output = {k: output[k][0] for k in output} pipe_outputs.append(output) curr_offsef_id = sub_end_idx return pipe_outputs
step1: parser inputs step2: run step3: merge results input: a list of dict
__call__
python
PaddlePaddle/models
paddlecv/ppcv/ops/models/nlp/inference.py
https://github.com/PaddlePaddle/models/blob/master/paddlecv/ppcv/ops/models/nlp/inference.py
Apache-2.0
def __call__(self, inputs): """ step1: parser inputs step2: run step3: merge results input: a list of dict """ key = self.input_keys[0] is_list = False if isinstance(inputs[0][key], (list, tuple)): inputs = [input[key] for input in inputs] is_list = True else: inputs = [[input[key]] for input in inputs] # expand a dim to adjust [[image,iamge],[image,image]] format expand_dim = False if isinstance(inputs[0][0], np.ndarray): inputs = [inputs] expand_dim = True pipe_outputs = [] for i, images in enumerate(inputs): sub_index_list = [len(input) for input in images] images = reduce(lambda x, y: x.extend(y) or x, images) # step2: run outputs = self.infer(images) # step3: merge curr_offsef_id = 0 results = [] for idx in range(len(sub_index_list)): sub_start_idx = curr_offsef_id sub_end_idx = curr_offsef_id + sub_index_list[idx] output = outputs[sub_start_idx:sub_end_idx] if len(output) > 0: output = {k: [o[k] for o in output] for k in output[0]} if is_list is not True: output = {k: output[k][0] for k in output} else: output = {self.output_keys[0]: [], self.output_keys[1]: []} results.append(output) curr_offsef_id = sub_end_idx pipe_outputs.append(results) if expand_dim: pipe_outputs = pipe_outputs[0] else: outputs = [] for pipe_output in pipe_outputs: d = defaultdict(list) for item in pipe_output: for k in self.output_keys: d[k].append(item[k]) outputs.append(d) pipe_outputs = outputs return pipe_outputs
step1: parser inputs step2: run step3: merge results input: a list of dict
__call__
python
PaddlePaddle/models
paddlecv/ppcv/ops/models/ocr/ocr_crnn_recognition/inference.py
https://github.com/PaddlePaddle/models/blob/master/paddlecv/ppcv/ops/models/ocr/ocr_crnn_recognition/inference.py
Apache-2.0
def decode(self, text_index, text_prob=None, is_remove_duplicate=False): """ convert text-index into text-label. """ result_list = [] ignored_tokens = self.get_ignored_tokens() batch_size = len(text_index) for batch_idx in range(batch_size): selection = np.ones(len(text_index[batch_idx]), dtype=bool) if is_remove_duplicate: selection[1:] = text_index[batch_idx][1:] != text_index[ batch_idx][:-1] for ignored_token in ignored_tokens: selection &= text_index[batch_idx] != ignored_token char_list = [ self.character[text_id] for text_id in text_index[batch_idx][selection] ] if text_prob is not None: conf_list = text_prob[batch_idx][selection] else: conf_list = [1] * len(selection) if len(conf_list) == 0: conf_list = [0] text = ''.join(char_list) if self.reverse: # for arabic rec text = self.pred_reverse(text) result_list.append((text, np.mean(conf_list).tolist())) return result_list
convert text-index into text-label.
decode
python
PaddlePaddle/models
paddlecv/ppcv/ops/models/ocr/ocr_crnn_recognition/postprocess.py
https://github.com/PaddlePaddle/models/blob/master/paddlecv/ppcv/ops/models/ocr/ocr_crnn_recognition/postprocess.py
Apache-2.0
def __call__(self, inputs): """ step1: parser inputs step2: run step3: merge results input: a list of dict """ key = self.input_keys[0] is_list = False if isinstance(inputs[0][key], (list, tuple)): inputs = [input[key] for input in inputs] is_list = True else: inputs = [[input[key]] for input in inputs] sub_index_list = [len(input) for input in inputs] inputs = reduce(lambda x, y: x.extend(y) or x, inputs) # step2: run outputs = self.infer(inputs) # step3: merge curr_offsef_id = 0 pipe_outputs = [] for idx in range(len(sub_index_list)): sub_start_idx = curr_offsef_id sub_end_idx = curr_offsef_id + sub_index_list[idx] output = outputs[sub_start_idx:sub_end_idx] output = {k: [o[k] for o in output] for k in output[0]} if is_list is not True: output = {k: output[k][0] for k in output} pipe_outputs.append(output) curr_offsef_id = sub_end_idx return pipe_outputs
step1: parser inputs step2: run step3: merge results input: a list of dict
__call__
python
PaddlePaddle/models
paddlecv/ppcv/ops/models/ocr/ocr_db_detection/inference.py
https://github.com/PaddlePaddle/models/blob/master/paddlecv/ppcv/ops/models/ocr/ocr_db_detection/inference.py
Apache-2.0
def polygons_from_bitmap(self, pred, _bitmap, dest_width, dest_height): ''' _bitmap: single map with shape (1, H, W), whose values are binarized as {0, 1} ''' bitmap = _bitmap height, width = bitmap.shape boxes = [] scores = [] contours, _ = cv2.findContours((bitmap * 255).astype(np.uint8), cv2.RETR_LIST, cv2.CHAIN_APPROX_SIMPLE) for contour in contours[:self.max_candidates]: epsilon = 0.002 * cv2.arcLength(contour, True) approx = cv2.approxPolyDP(contour, epsilon, True) points = approx.reshape((-1, 2)) if points.shape[0] < 4: continue score = self.box_score_fast(pred, points.reshape(-1, 2)) if self.box_thresh > score: continue if points.shape[0] > 2: box = self.unclip(points, self.unclip_ratio) if len(box) > 1: continue else: continue box = box.reshape(-1, 2) _, sside = self.get_mini_boxes(box.reshape((-1, 1, 2))) if sside < self.min_size + 2: continue box = np.array(box) box[:, 0] = np.clip( np.round(box[:, 0] / width * dest_width), 0, dest_width) box[:, 1] = np.clip( np.round(box[:, 1] / height * dest_height), 0, dest_height) boxes.append(box.tolist()) scores.append(score) return boxes, scores
_bitmap: single map with shape (1, H, W), whose values are binarized as {0, 1}
polygons_from_bitmap
python
PaddlePaddle/models
paddlecv/ppcv/ops/models/ocr/ocr_db_detection/postprocess.py
https://github.com/PaddlePaddle/models/blob/master/paddlecv/ppcv/ops/models/ocr/ocr_db_detection/postprocess.py
Apache-2.0
def boxes_from_bitmap(self, pred, _bitmap, dest_width, dest_height): ''' _bitmap: single map with shape (1, H, W), whose values are binarized as {0, 1} ''' bitmap = _bitmap height, width = bitmap.shape outs = cv2.findContours((bitmap * 255).astype(np.uint8), cv2.RETR_LIST, cv2.CHAIN_APPROX_SIMPLE) if len(outs) == 3: img, contours, _ = outs[0], outs[1], outs[2] elif len(outs) == 2: contours, _ = outs[0], outs[1] num_contours = min(len(contours), self.max_candidates) boxes = [] scores = [] for index in range(num_contours): contour = contours[index] points, sside = self.get_mini_boxes(contour) if sside < self.min_size: continue points = np.array(points) if self.score_mode == "fast": score = self.box_score_fast(pred, points.reshape(-1, 2)) else: score = self.box_score_slow(pred, contour) if self.box_thresh > score: continue box = self.unclip(points, self.unclip_ratio).reshape(-1, 1, 2) box, sside = self.get_mini_boxes(box) if sside < self.min_size + 2: continue box = np.array(box) box[:, 0] = np.clip( np.round(box[:, 0] / width * dest_width), 0, dest_width) box[:, 1] = np.clip( np.round(box[:, 1] / height * dest_height), 0, dest_height) boxes.append(box.astype(np.int16)) scores.append(score) return np.array(boxes, dtype=np.int16), scores
_bitmap: single map with shape (1, H, W), whose values are binarized as {0, 1}
boxes_from_bitmap
python
PaddlePaddle/models
paddlecv/ppcv/ops/models/ocr/ocr_db_detection/postprocess.py
https://github.com/PaddlePaddle/models/blob/master/paddlecv/ppcv/ops/models/ocr/ocr_db_detection/postprocess.py
Apache-2.0
def box_score_fast(self, bitmap, _box): ''' box_score_fast: use bbox mean score as the mean score ''' h, w = bitmap.shape[:2] box = _box.copy() xmin = np.clip(np.floor(box[:, 0].min()).astype("int"), 0, w - 1) xmax = np.clip(np.ceil(box[:, 0].max()).astype("int"), 0, w - 1) ymin = np.clip(np.floor(box[:, 1].min()).astype("int"), 0, h - 1) ymax = np.clip(np.ceil(box[:, 1].max()).astype("int"), 0, h - 1) mask = np.zeros((ymax - ymin + 1, xmax - xmin + 1), dtype=np.uint8) box[:, 0] = box[:, 0] - xmin box[:, 1] = box[:, 1] - ymin cv2.fillPoly(mask, box.reshape(1, -1, 2).astype(np.int32), 1) return cv2.mean(bitmap[ymin:ymax + 1, xmin:xmax + 1], mask)[0]
box_score_fast: use bbox mean score as the mean score
box_score_fast
python
PaddlePaddle/models
paddlecv/ppcv/ops/models/ocr/ocr_db_detection/postprocess.py
https://github.com/PaddlePaddle/models/blob/master/paddlecv/ppcv/ops/models/ocr/ocr_db_detection/postprocess.py
Apache-2.0
def box_score_slow(self, bitmap, contour): ''' box_score_slow: use polyon mean score as the mean score ''' h, w = bitmap.shape[:2] contour = contour.copy() contour = np.reshape(contour, (-1, 2)) xmin = np.clip(np.min(contour[:, 0]), 0, w - 1) xmax = np.clip(np.max(contour[:, 0]), 0, w - 1) ymin = np.clip(np.min(contour[:, 1]), 0, h - 1) ymax = np.clip(np.max(contour[:, 1]), 0, h - 1) mask = np.zeros((ymax - ymin + 1, xmax - xmin + 1), dtype=np.uint8) contour[:, 0] = contour[:, 0] - xmin contour[:, 1] = contour[:, 1] - ymin cv2.fillPoly(mask, contour.reshape(1, -1, 2).astype(np.int32), 1) return cv2.mean(bitmap[ymin:ymax + 1, xmin:xmax + 1], mask)[0]
box_score_slow: use polyon mean score as the mean score
box_score_slow
python
PaddlePaddle/models
paddlecv/ppcv/ops/models/ocr/ocr_db_detection/postprocess.py
https://github.com/PaddlePaddle/models/blob/master/paddlecv/ppcv/ops/models/ocr/ocr_db_detection/postprocess.py
Apache-2.0
def sorted_boxes(dt_boxes): """ Sort text boxes in order from top to bottom, left to right args: dt_boxes(array):detected text boxes with shape [4, 2] return: sorted boxes(array) with shape [4, 2] """ num_boxes = dt_boxes.shape[0] sorted_boxes = sorted(dt_boxes, key=lambda x: (x[0][1], x[0][0])) _boxes = list(sorted_boxes) for i in range(num_boxes - 1): for j in range(i, 0, -1): if abs(_boxes[j + 1][0][1] - _boxes[j][0][1]) < 10 and \ (_boxes[j + 1][0][0] < _boxes[j][0][0]): tmp = _boxes[j] _boxes[j] = _boxes[j + 1] _boxes[j + 1] = tmp else: break return np.array(_boxes)
Sort text boxes in order from top to bottom, left to right args: dt_boxes(array):detected text boxes with shape [4, 2] return: sorted boxes(array) with shape [4, 2]
sorted_boxes
python
PaddlePaddle/models
paddlecv/ppcv/ops/models/ocr/ocr_db_detection/postprocess.py
https://github.com/PaddlePaddle/models/blob/master/paddlecv/ppcv/ops/models/ocr/ocr_db_detection/postprocess.py
Apache-2.0
def resize_image_type0(self, img): """ resize image to a size multiple of 32 which is required by the network args: img(array): array with shape [h, w, c] return(tuple): img, (ratio_h, ratio_w) """ limit_side_len = self.limit_side_len h, w, c = img.shape # limit the max side if self.limit_type == 'max': if max(h, w) > limit_side_len: if h > w: ratio = float(limit_side_len) / h else: ratio = float(limit_side_len) / w else: ratio = 1. elif self.limit_type == 'min': if min(h, w) < limit_side_len: if h < w: ratio = float(limit_side_len) / h else: ratio = float(limit_side_len) / w else: ratio = 1. elif self.limit_type == 'resize_long': ratio = float(limit_side_len) / max(h, w) else: raise Exception('not support limit type, image ') resize_h = int(h * ratio) resize_w = int(w * ratio) resize_h = max(int(round(resize_h / 32) * 32), 32) resize_w = max(int(round(resize_w / 32) * 32), 32) try: if int(resize_w) <= 0 or int(resize_h) <= 0: return None, (None, None) img = cv2.resize(img, (int(resize_w), int(resize_h))) except: print(img.shape, resize_w, resize_h) sys.exit(0) ratio_h = resize_h / float(h) ratio_w = resize_w / float(w) return img, [ratio_h, ratio_w]
resize image to a size multiple of 32 which is required by the network args: img(array): array with shape [h, w, c] return(tuple): img, (ratio_h, ratio_w)
resize_image_type0
python
PaddlePaddle/models
paddlecv/ppcv/ops/models/ocr/ocr_db_detection/preprocess.py
https://github.com/PaddlePaddle/models/blob/master/paddlecv/ppcv/ops/models/ocr/ocr_db_detection/preprocess.py
Apache-2.0
def __call__(self, inputs): """ step1: parser inputs step2: run step3: merge results input: a list of dict """ # step2: run outputs, ser_inputs = self.infer(inputs) # step3: merge pipe_outputs = [] for output, ser_input in zip(outputs, ser_inputs): d = defaultdict(list) for res in output: d[self.output_keys[0]].append(res['pred_id']) d[self.output_keys[1]].append(res['pred']) d[self.output_keys[2]].append(res['points']) d[self.output_keys[3]].append(res['transcription']) d[self.output_keys[4]] = ser_input pipe_outputs.append(d) return pipe_outputs
step1: parser inputs step2: run step3: merge results input: a list of dict
__call__
python
PaddlePaddle/models
paddlecv/ppcv/ops/models/ocr/ocr_kie/inference.py
https://github.com/PaddlePaddle/models/blob/master/paddlecv/ppcv/ops/models/ocr/ocr_kie/inference.py
Apache-2.0
def __call__(self, inputs): """ step1: parser inputs step2: run step3: merge results input: a list of dict """ # step2: run outputs = self.infer(inputs) # step3: merge pipe_outputs = [] for output in outputs: d = defaultdict(list) for res in output: d[self.output_keys[0]].append(res[0]) d[self.output_keys[1]].append(res[1]) pipe_outputs.append(d) return pipe_outputs
step1: parser inputs step2: run step3: merge results input: a list of dict
__call__
python
PaddlePaddle/models
paddlecv/ppcv/ops/models/ocr/ocr_kie/inference.py
https://github.com/PaddlePaddle/models/blob/master/paddlecv/ppcv/ops/models/ocr/ocr_kie/inference.py
Apache-2.0
def filter_empty_contents(self, ocr_info): """ find out the empty texts and remove the links """ new_ocr_info = [] empty_index = [] for idx, info in enumerate(ocr_info): if len(info["transcription"]) > 0: new_ocr_info.append(copy.deepcopy(info)) else: empty_index.append(info["id"]) for idx, info in enumerate(new_ocr_info): new_link = [] for link in info["linking"]: if link[0] in empty_index or link[1] in empty_index: continue new_link.append(link) new_ocr_info[idx]["linking"] = new_link return new_ocr_info
find out the empty texts and remove the links
filter_empty_contents
python
PaddlePaddle/models
paddlecv/ppcv/ops/models/ocr/ocr_kie/preprocess.py
https://github.com/PaddlePaddle/models/blob/master/paddlecv/ppcv/ops/models/ocr/ocr_kie/preprocess.py
Apache-2.0
def __call__(self, inputs): """ step1: parser inputs step2: run step3: merge results input: a list of dict """ key = self.input_keys[0] is_list = False if isinstance(inputs[0][key], (list, tuple)): inputs = [input[key] for input in inputs] is_list = True else: inputs = [[input[key]] for input in inputs] sub_index_list = [len(input) for input in inputs] inputs = reduce(lambda x, y: x.extend(y) or x, inputs) pipe_outputs = [] if len(inputs) == 0: pipe_outputs.append({ self.output_keys[0]: [], self.output_keys[1]: [], self.output_keys[2]: [], }) return pipe_outputs # step2: run outputs = self.infer(inputs) # step3: merge curr_offsef_id = 0 for idx in range(len(sub_index_list)): sub_start_idx = curr_offsef_id sub_end_idx = curr_offsef_id + sub_index_list[idx] output = outputs[sub_start_idx:sub_end_idx] output = {k: [o[k] for o in output] for k in output[0]} if is_list is not True: output = {k: output[k][0] for k in output} pipe_outputs.append(output) curr_offsef_id = sub_end_idx return pipe_outputs
step1: parser inputs step2: run step3: merge results input: a list of dict
__call__
python
PaddlePaddle/models
paddlecv/ppcv/ops/models/ocr/ocr_table_recognition/inference.py
https://github.com/PaddlePaddle/models/blob/master/paddlecv/ppcv/ops/models/ocr/ocr_table_recognition/inference.py
Apache-2.0
def decode(self, structure_probs, bbox_preds, shape_list): """convert text-label into text-index. """ ignored_tokens = self.get_ignored_tokens() end_idx = self.dict[self.end_str] structure_idx = structure_probs.argmax(axis=2) structure_probs = structure_probs.max(axis=2) structure_batch_list = [] bbox_batch_list = [] batch_size = len(structure_idx) for batch_idx in range(batch_size): structure_list = [] bbox_list = [] score_list = [] for idx in range(len(structure_idx[batch_idx])): char_idx = int(structure_idx[batch_idx][idx]) if idx > 0 and char_idx == end_idx: break if char_idx in ignored_tokens: continue text = self.character[char_idx] if text in self.td_token: bbox = bbox_preds[batch_idx, idx] bbox = self._bbox_decode(bbox, shape_list[batch_idx]) bbox_list.append(bbox) structure_list.append(text) score_list.append(structure_probs[batch_idx, idx]) structure_batch_list.append( [structure_list, np.mean(score_list).tolist()]) bbox_batch_list.append(np.array(bbox_list).tolist()) result = { 'bbox_batch_list': bbox_batch_list, 'structure_batch_list': structure_batch_list, } return result
convert text-label into text-index.
decode
python
PaddlePaddle/models
paddlecv/ppcv/ops/models/ocr/ocr_table_recognition/postprocess.py
https://github.com/PaddlePaddle/models/blob/master/paddlecv/ppcv/ops/models/ocr/ocr_table_recognition/postprocess.py
Apache-2.0
def decode_label(self, batch): """convert text-label into text-index. """ structure_idx = batch[1] gt_bbox_list = batch[2] shape_list = batch[-1] ignored_tokens = self.get_ignored_tokens() end_idx = self.dict[self.end_str] structure_batch_list = [] bbox_batch_list = [] batch_size = len(structure_idx) for batch_idx in range(batch_size): structure_list = [] bbox_list = [] for idx in range(len(structure_idx[batch_idx])): char_idx = int(structure_idx[batch_idx][idx]) if idx > 0 and char_idx == end_idx: break if char_idx in ignored_tokens: continue structure_list.append(self.character[char_idx]) bbox = gt_bbox_list[batch_idx][idx] if bbox.sum() != 0: bbox = self._bbox_decode(bbox, shape_list[batch_idx]) bbox_list.append(bbox) structure_batch_list.append(structure_list) bbox_batch_list.append(bbox_list) result = { 'bbox_batch_list': bbox_batch_list, 'structure_batch_list': structure_batch_list, } return result
convert text-label into text-index.
decode_label
python
PaddlePaddle/models
paddlecv/ppcv/ops/models/ocr/ocr_table_recognition/postprocess.py
https://github.com/PaddlePaddle/models/blob/master/paddlecv/ppcv/ops/models/ocr/ocr_table_recognition/postprocess.py
Apache-2.0
def __call__(self, inputs): """ step1: parser inputs step2: run step3: merge results input: a list of dict """ key = self.input_keys[0] is_list = False if isinstance(inputs[0][key], (list, tuple)): inputs = [input[key] for input in inputs] is_list = True else: inputs = [[input[key]] for input in inputs] sub_index_list = [len(input) for input in inputs] inputs = reduce(lambda x, y: x.extend(y) or x, inputs) # step2: run outputs = self.infer(inputs) # step3: merge curr_offsef_id = 0 pipe_outputs = [] for idx in range(len(sub_index_list)): sub_start_idx = curr_offsef_id sub_end_idx = curr_offsef_id + sub_index_list[idx] output = outputs[sub_start_idx:sub_end_idx] output = {k: [o[k] for o in output] for k in output[0]} if is_list is not True: output = {k: output[k][0] for k in output} pipe_outputs.append(output) curr_offsef_id = sub_end_idx return pipe_outputs
step1: parser inputs step2: run step3: merge results input: a list of dict
__call__
python
PaddlePaddle/models
paddlecv/ppcv/ops/models/segmentation/inference.py
https://github.com/PaddlePaddle/models/blob/master/paddlecv/ppcv/ops/models/segmentation/inference.py
Apache-2.0
def __call__(self, inputs): """ step1: parser inputs step2: run step3: merge results input: a list of dict """ # step2: run outputs = self.infer(inputs) return outputs
step1: parser inputs step2: run step3: merge results input: a list of dict
__call__
python
PaddlePaddle/models
paddlecv/ppcv/ops/models/speech/inference.py
https://github.com/PaddlePaddle/models/blob/master/paddlecv/ppcv/ops/models/speech/inference.py
Apache-2.0
def get_color_map_list(num_classes): """ Args: num_classes (int): number of class Returns: color_map (list): RGB color list """ color_map = num_classes * [0, 0, 0] for i in range(0, num_classes): j = 0 lab = i while lab: color_map[i * 3] |= (((lab >> 0) & 1) << (7 - j)) color_map[i * 3 + 1] |= (((lab >> 1) & 1) << (7 - j)) color_map[i * 3 + 2] |= (((lab >> 2) & 1) << (7 - j)) j += 1 lab >>= 3 color_map = [color_map[i:i + 3] for i in range(0, len(color_map), 3)] return color_map
Args: num_classes (int): number of class Returns: color_map (list): RGB color list
get_color_map_list
python
PaddlePaddle/models
paddlecv/ppcv/ops/output/detection.py
https://github.com/PaddlePaddle/models/blob/master/paddlecv/ppcv/ops/output/detection.py
Apache-2.0
def get_pseudo_color_map(pred, color_map=None): """ Get the pseudo color image. Args: pred (numpy.ndarray): the origin predicted image. color_map (list, optional): the palette color map. Default: None, use paddleseg's default color map. Returns: (numpy.ndarray): the pseduo image. """ pred_mask = Image.fromarray(pred.astype(np.uint8), mode='P') if color_map is None: color_map = get_color_map_list(256) pred_mask.putpalette(color_map) return pred_mask
Get the pseudo color image. Args: pred (numpy.ndarray): the origin predicted image. color_map (list, optional): the palette color map. Default: None, use paddleseg's default color map. Returns: (numpy.ndarray): the pseduo image.
get_pseudo_color_map
python
PaddlePaddle/models
paddlecv/ppcv/ops/output/segmentation.py
https://github.com/PaddlePaddle/models/blob/master/paddlecv/ppcv/ops/output/segmentation.py
Apache-2.0
def get_color_map_list(num_classes, custom_color=None): """ Returns the color map for visualizing the segmentation mask, which can support arbitrary number of classes. Args: num_classes (int): Number of classes. custom_color (list, optional): Save images with a custom color map. Default: None, use paddleseg's default color map. Returns: (list). The color map. """ num_classes += 1 color_map = num_classes * [0, 0, 0] for i in range(0, num_classes): j = 0 lab = i while lab: color_map[i * 3] |= (((lab >> 0) & 1) << (7 - j)) color_map[i * 3 + 1] |= (((lab >> 1) & 1) << (7 - j)) color_map[i * 3 + 2] |= (((lab >> 2) & 1) << (7 - j)) j += 1 lab >>= 3 color_map = color_map[3:] if custom_color: color_map[:len(custom_color)] = custom_color return color_map
Returns the color map for visualizing the segmentation mask, which can support arbitrary number of classes. Args: num_classes (int): Number of classes. custom_color (list, optional): Save images with a custom color map. Default: None, use paddleseg's default color map. Returns: (list). The color map.
get_color_map_list
python
PaddlePaddle/models
paddlecv/ppcv/ops/output/segmentation.py
https://github.com/PaddlePaddle/models/blob/master/paddlecv/ppcv/ops/output/segmentation.py
Apache-2.0
def is_url(path): """ Whether path is URL. Args: path (string): URL string or not. """ return path.startswith('http://') \ or path.startswith('https://') \ or path.startswith('paddlecv://')
Whether path is URL. Args: path (string): URL string or not.
is_url
python
PaddlePaddle/models
paddlecv/ppcv/utils/download.py
https://github.com/PaddlePaddle/models/blob/master/paddlecv/ppcv/utils/download.py
Apache-2.0
def get_model_path(path): """Get model path from WEIGHTS_HOME, if not exists, download it from url. """ if not is_url(path): return path url = parse_url(path) path, _ = get_path(url, WEIGHTS_HOME, path_depth=2) logger.info("The model path is {}".format(path)) return path
Get model path from WEIGHTS_HOME, if not exists, download it from url.
get_model_path
python
PaddlePaddle/models
paddlecv/ppcv/utils/download.py
https://github.com/PaddlePaddle/models/blob/master/paddlecv/ppcv/utils/download.py
Apache-2.0
def get_config_path(path): """Get config path from CONFIGS_HOME, if not exists, download it from url. """ if not is_url(path): return path url = parse_url(path) path, _ = get_path(url, CONFIGS_HOME) logger.info("The config path is {}".format(path)) return path
Get config path from CONFIGS_HOME, if not exists, download it from url.
get_config_path
python
PaddlePaddle/models
paddlecv/ppcv/utils/download.py
https://github.com/PaddlePaddle/models/blob/master/paddlecv/ppcv/utils/download.py
Apache-2.0
def get_dict_path(path): """Get dict path from DICTS_HOME, if not exists, download it from url. """ if not is_url(path): return path url = parse_url(path) path, _ = get_path(url, DICTS_HOME) logger.info("The dict path is {}".format(path)) return path
Get dict path from DICTS_HOME, if not exists, download it from url.
get_dict_path
python
PaddlePaddle/models
paddlecv/ppcv/utils/download.py
https://github.com/PaddlePaddle/models/blob/master/paddlecv/ppcv/utils/download.py
Apache-2.0
def get_font_path(path): """Get config path from CONFIGS_HOME, if not exists, download it from url. """ if not is_url(path): return path url = parse_url(path) path, _ = get_path(url, FONTS_HOME) return path
Get config path from CONFIGS_HOME, if not exists, download it from url.
get_font_path
python
PaddlePaddle/models
paddlecv/ppcv/utils/download.py
https://github.com/PaddlePaddle/models/blob/master/paddlecv/ppcv/utils/download.py
Apache-2.0
def get_path(url, root_dir, md5sum=None, check_exist=True, path_depth=1): """ Download from given url to root_dir. if file or directory specified by url is exists under root_dir, return the path directly, otherwise download from url, return the path. url (str): download url root_dir (str): root dir for downloading, it should be WEIGHTS_HOME md5sum (str): md5 sum of download package """ # parse path after download to decompress under root_dir fullpath, dirname = map_path(url, root_dir, path_depth) if osp.exists(fullpath) and check_exist: if not osp.isfile(fullpath) or \ _check_exist_file_md5(fullpath, md5sum, url): logger.debug("Found {}".format(fullpath)) return fullpath, True else: os.remove(fullpath) fullname = _download(url, dirname, md5sum) return fullpath, False
Download from given url to root_dir. if file or directory specified by url is exists under root_dir, return the path directly, otherwise download from url, return the path. url (str): download url root_dir (str): root dir for downloading, it should be WEIGHTS_HOME md5sum (str): md5 sum of download package
get_path
python
PaddlePaddle/models
paddlecv/ppcv/utils/download.py
https://github.com/PaddlePaddle/models/blob/master/paddlecv/ppcv/utils/download.py
Apache-2.0
def _download(url, path, md5sum=None): """ Download from url, save to path. url (str): download url path (str): download to given path """ if not osp.exists(path): os.makedirs(path) fname = osp.split(url)[-1] fullname = osp.join(path, fname) retry_cnt = 0 while not (osp.exists(fullname) and _check_exist_file_md5(fullname, md5sum, url)): if retry_cnt < DOWNLOAD_RETRY_LIMIT: retry_cnt += 1 else: raise RuntimeError("Download from {} failed. " "Retry limit reached".format(url)) logger.info("Downloading {} from {}".format(fname, url)) # NOTE: windows path join may incur \, which is invalid in url if sys.platform == "win32": url = url.replace('\\', '/') req = requests.get(url, stream=True) if req.status_code != 200: raise RuntimeError("Downloading from {} failed with code " "{}!".format(url, req.status_code)) # For protecting download interupted, download to # tmp_fullname firstly, move tmp_fullname to fullname # after download finished tmp_fullname = fullname + "_tmp" total_size = req.headers.get('content-length') with open(tmp_fullname, 'wb') as f: if total_size: for chunk in tqdm.tqdm( req.iter_content(chunk_size=1024), total=(int(total_size) + 1023) // 1024, unit='KB'): f.write(chunk) else: for chunk in req.iter_content(chunk_size=1024): if chunk: f.write(chunk) shutil.move(tmp_fullname, fullname) return fullname
Download from url, save to path. url (str): download url path (str): download to given path
_download
python
PaddlePaddle/models
paddlecv/ppcv/utils/download.py
https://github.com/PaddlePaddle/models/blob/master/paddlecv/ppcv/utils/download.py
Apache-2.0
def setup_logger(name="ppcv", output=None): """ Initialize logger and set its verbosity level to INFO. Args: name (str): the root module name of this logger output (str): a file name or a directory to save log. If None, will not save log file. If ends with ".txt" or ".log", assumed to be a file name. Otherwise, logs will be saved to `output/log.txt`. Returns: logging.Logger: a logger """ logger = logging.getLogger(name) if name in logger_initialized: return logger logger.setLevel(logging.INFO) logger.propagate = False formatter = logging.Formatter( "[%(asctime)s] %(name)s %(levelname)s: %(message)s", datefmt="%m/%d %H:%M:%S") # stdout logging: master only local_rank = dist.get_rank() if local_rank == 0: ch = logging.StreamHandler(stream=sys.stdout) ch.setLevel(logging.DEBUG) ch.setFormatter(formatter) logger.addHandler(ch) # file logging: all workers if output is not None: if output.endswith(".txt") or output.endswith(".log"): filename = output else: filename = os.path.join(output, "log.txt") if local_rank > 0: filename = filename + ".rank{}".format(local_rank) os.makedirs(os.path.dirname(filename)) fh = logging.FileHandler(filename, mode='a') fh.setLevel(logging.DEBUG) fh.setFormatter(logging.Formatter()) logger.addHandler(fh) logger_initialized.append(name) return logger
Initialize logger and set its verbosity level to INFO. Args: name (str): the root module name of this logger output (str): a file name or a directory to save log. If None, will not save log file. If ends with ".txt" or ".log", assumed to be a file name. Otherwise, logs will be saved to `output/log.txt`. Returns: logging.Logger: a logger
setup_logger
python
PaddlePaddle/models
paddlecv/ppcv/utils/logger.py
https://github.com/PaddlePaddle/models/blob/master/paddlecv/ppcv/utils/logger.py
Apache-2.0
def accuracy_paddle(output, target, topk=(1, )): """Computes the accuracy over the k top predictions for the specified values of k""" with paddle.no_grad(): maxk = max(topk) batch_size = target.shape[0] _, pred = output.topk(maxk, 1, True, True) pred = pred.t() correct = pred.equal(target) res = [] for k in topk: correct_k = correct.astype(paddle.int32)[:k].flatten().sum( dtype='float32') res.append(correct_k * (100.0 / batch_size)) return res
Computes the accuracy over the k top predictions for the specified values of k
accuracy_paddle
python
PaddlePaddle/models
tutorials/mobilenetv3_prod/Step1-5/mobilenetv3_paddle/metric.py
https://github.com/PaddlePaddle/models/blob/master/tutorials/mobilenetv3_prod/Step1-5/mobilenetv3_paddle/metric.py
Apache-2.0
def synchronize_between_processes(self): """ Warning: does not synchronize the deque! """ t = paddle.to_tensor([self.count, self.total], dtype='float64') t = t.numpy().tolist() self.count = int(t[0]) self.total = t[1]
Warning: does not synchronize the deque!
synchronize_between_processes
python
PaddlePaddle/models
tutorials/mobilenetv3_prod/Step1-5/mobilenetv3_paddle/utils.py
https://github.com/PaddlePaddle/models/blob/master/tutorials/mobilenetv3_prod/Step1-5/mobilenetv3_paddle/utils.py
Apache-2.0
def accuracy(output, target, topk=(1, )): """Computes the accuracy over the k top predictions for the specified values of k""" with paddle.no_grad(): maxk = max(topk) batch_size = target.shape[0] _, pred = output.topk(maxk, 1, True, True) pred = pred.t() correct = pred.equal(target) res = [] for k in topk: correct_k = correct.astype(paddle.int32)[:k].flatten().sum( dtype='float32') res.append(correct_k / batch_size) return res
Computes the accuracy over the k top predictions for the specified values of k
accuracy
python
PaddlePaddle/models
tutorials/mobilenetv3_prod/Step1-5/mobilenetv3_paddle/utils.py
https://github.com/PaddlePaddle/models/blob/master/tutorials/mobilenetv3_prod/Step1-5/mobilenetv3_paddle/utils.py
Apache-2.0
def has_file_allowed_extension(filename: str, extensions: Tuple[str, ...]) -> bool: """Checks if a file is an allowed extension. Args: filename (string): path to a file extensions (tuple of strings): extensions to consider (lowercase) Returns: bool: True if the filename ends with one of given extensions """ return filename.lower().endswith(extensions)
Checks if a file is an allowed extension. Args: filename (string): path to a file extensions (tuple of strings): extensions to consider (lowercase) Returns: bool: True if the filename ends with one of given extensions
has_file_allowed_extension
python
PaddlePaddle/models
tutorials/mobilenetv3_prod/Step1-5/mobilenetv3_paddle/paddlevision/datasets/folder.py
https://github.com/PaddlePaddle/models/blob/master/tutorials/mobilenetv3_prod/Step1-5/mobilenetv3_paddle/paddlevision/datasets/folder.py
Apache-2.0
def find_classes(directory: str) -> Tuple[List[str], Dict[str, int]]: """Finds the class folders in a dataset. See :class:`DatasetFolder` for details. """ classes = sorted( entry.name for entry in os.scandir(directory) if entry.is_dir()) if not classes: raise FileNotFoundError( f"Couldn't find any class folder in {directory}.") class_to_idx = {cls_name: i for i, cls_name in enumerate(classes)} return classes, class_to_idx
Finds the class folders in a dataset. See :class:`DatasetFolder` for details.
find_classes
python
PaddlePaddle/models
tutorials/mobilenetv3_prod/Step1-5/mobilenetv3_paddle/paddlevision/datasets/folder.py
https://github.com/PaddlePaddle/models/blob/master/tutorials/mobilenetv3_prod/Step1-5/mobilenetv3_paddle/paddlevision/datasets/folder.py
Apache-2.0
def make_dataset( directory: str, class_to_idx: Optional[Dict[str, int]]=None, extensions: Optional[Tuple[str, ...]]=None, is_valid_file: Optional[Callable[[str], bool]]=None, ) -> List[Tuple[ str, int]]: """Generates a list of samples of a form (path_to_sample, class). See :class:`DatasetFolder` for details. Note: The class_to_idx parameter is here optional and will use the logic of the ``find_classes`` function by default. """ directory = os.path.expanduser(directory) if class_to_idx is None: _, class_to_idx = find_classes(directory) elif not class_to_idx: raise ValueError( "'class_to_index' must have at least one entry to collect any samples." ) both_none = extensions is None and is_valid_file is None both_something = extensions is not None and is_valid_file is not None if both_none or both_something: raise ValueError( "Both extensions and is_valid_file cannot be None or not None at the same time" ) if extensions is not None: def is_valid_file(x: str) -> bool: return has_file_allowed_extension( x, cast(Tuple[str, ...], extensions)) is_valid_file = cast(Callable[[str], bool], is_valid_file) instances = [] available_classes = set() for target_class in sorted(class_to_idx.keys()): class_index = class_to_idx[target_class] target_dir = os.path.join(directory, target_class) if not os.path.isdir(target_dir): continue for root, _, fnames in sorted(os.walk(target_dir, followlinks=True)): for fname in sorted(fnames): if is_valid_file(fname): path = os.path.join(root, fname) item = path, class_index instances.append(item) if target_class not in available_classes: available_classes.add(target_class) # print(fname) # exit() # empty_classes = set(class_to_idx.keys()) - available_classes # if empty_classes: # msg = f"Found no valid file for the classes {', '.join(sorted(empty_classes))}. " # if extensions is not None: # msg += f"Supported extensions are: {', '.join(extensions)}" # raise FileNotFoundError(msg) return instances
Generates a list of samples of a form (path_to_sample, class). See :class:`DatasetFolder` for details. Note: The class_to_idx parameter is here optional and will use the logic of the ``find_classes`` function by default.
make_dataset
python
PaddlePaddle/models
tutorials/mobilenetv3_prod/Step1-5/mobilenetv3_paddle/paddlevision/datasets/folder.py
https://github.com/PaddlePaddle/models/blob/master/tutorials/mobilenetv3_prod/Step1-5/mobilenetv3_paddle/paddlevision/datasets/folder.py
Apache-2.0
def make_dataset( directory: str, class_to_idx: Dict[str, int], extensions: Optional[Tuple[str, ...]]=None, is_valid_file: Optional[Callable[[str], bool]]=None, ) -> List[ Tuple[str, int]]: """Generates a list of samples of a form (path_to_sample, class). This can be overridden to e.g. read files from a compressed zip file instead of from the disk. Args: directory (str): root dataset directory, corresponding to ``self.root``. class_to_idx (Dict[str, int]): Dictionary mapping class name to class index. extensions (optional): A list of allowed extensions. Either extensions or is_valid_file should be passed. Defaults to None. is_valid_file (optional): A function that takes path of a file and checks if the file is a valid file (used to check of corrupt files) both extensions and is_valid_file should not be passed. Defaults to None. Raises: ValueError: In case ``class_to_idx`` is empty. ValueError: In case ``extensions`` and ``is_valid_file`` are None or both are not None. FileNotFoundError: In case no valid file was found for any class. Returns: List[Tuple[str, int]]: samples of a form (path_to_sample, class) """ if class_to_idx is None: # prevent potential bug since make_dataset() would use the class_to_idx logic of the # find_classes() function, instead of using that of the find_classes() method, which # is potentially overridden and thus could have a different logic. raise ValueError("The class_to_idx parameter cannot be None.") return make_dataset( directory, class_to_idx, extensions=extensions, is_valid_file=is_valid_file)
Generates a list of samples of a form (path_to_sample, class). This can be overridden to e.g. read files from a compressed zip file instead of from the disk. Args: directory (str): root dataset directory, corresponding to ``self.root``. class_to_idx (Dict[str, int]): Dictionary mapping class name to class index. extensions (optional): A list of allowed extensions. Either extensions or is_valid_file should be passed. Defaults to None. is_valid_file (optional): A function that takes path of a file and checks if the file is a valid file (used to check of corrupt files) both extensions and is_valid_file should not be passed. Defaults to None. Raises: ValueError: In case ``class_to_idx`` is empty. ValueError: In case ``extensions`` and ``is_valid_file`` are None or both are not None. FileNotFoundError: In case no valid file was found for any class. Returns: List[Tuple[str, int]]: samples of a form (path_to_sample, class)
make_dataset
python
PaddlePaddle/models
tutorials/mobilenetv3_prod/Step1-5/mobilenetv3_paddle/paddlevision/datasets/folder.py
https://github.com/PaddlePaddle/models/blob/master/tutorials/mobilenetv3_prod/Step1-5/mobilenetv3_paddle/paddlevision/datasets/folder.py
Apache-2.0
def __getitem__(self, index: int) -> Tuple[Any, Any]: """ Args: index (int): Index Returns: tuple: (sample, target) where target is class_index of the target class. """ path, target = self.samples[index] sample = self.loader(path) if self.transform is not None: sample = self.transform(sample) if self.target_transform is not None: target = self.target_transform(target) return sample, target
Args: index (int): Index Returns: tuple: (sample, target) where target is class_index of the target class.
__getitem__
python
PaddlePaddle/models
tutorials/mobilenetv3_prod/Step1-5/mobilenetv3_paddle/paddlevision/datasets/folder.py
https://github.com/PaddlePaddle/models/blob/master/tutorials/mobilenetv3_prod/Step1-5/mobilenetv3_paddle/paddlevision/datasets/folder.py
Apache-2.0
def _make_divisible(v: float, divisor: int, min_value: Optional[int]=None) -> int: """ This function is taken from the original tf repo. It ensures that all layers have a channel number that is divisible by 8 It can be seen here: https://github.com/tensorflow/models/blob/master/research/slim/nets/mobilenet/mobilenet.py """ if min_value is None: min_value = divisor new_v = max(min_value, int(v + divisor / 2) // divisor * divisor) # Make sure that round down does not go down by more than 10%. if new_v < 0.9 * v: new_v += divisor return new_v
This function is taken from the original tf repo. It ensures that all layers have a channel number that is divisible by 8 It can be seen here: https://github.com/tensorflow/models/blob/master/research/slim/nets/mobilenet/mobilenet.py
_make_divisible
python
PaddlePaddle/models
tutorials/mobilenetv3_prod/Step1-5/mobilenetv3_paddle/paddlevision/models/mobilenet_v3_paddle.py
https://github.com/PaddlePaddle/models/blob/master/tutorials/mobilenetv3_prod/Step1-5/mobilenetv3_paddle/paddlevision/models/mobilenet_v3_paddle.py
Apache-2.0
def __init__( self, inverted_residual_setting: List[InvertedResidualConfig], last_channel: int, num_classes: int=1000, block: Optional[Callable[..., nn.Layer]]=None, norm_layer: Optional[Callable[..., nn.Layer]]=None, dropout: float=0.2, **kwargs: Any, ) -> None: """ MobileNet V3 main class Args: inverted_residual_setting (List[InvertedResidualConfig]): Network structure last_channel (int): The number of channels on the penultimate layer num_classes (int): Number of classes block (Optional[Callable[..., nn.Layer]]): Module specifying inverted residual building block for mobilenet norm_layer (Optional[Callable[..., nn.Layer]]): Module specifying the normalization layer to use dropout (float): The droupout probability """ super().__init__() if not inverted_residual_setting: raise ValueError( "The inverted_residual_setting should not be empty") elif not (isinstance(inverted_residual_setting, Sequence) and all([ isinstance(s, InvertedResidualConfig) for s in inverted_residual_setting ])): raise TypeError( "The inverted_residual_setting should be List[InvertedResidualConfig]" ) if block is None: block = InvertedResidual if norm_layer is None: norm_layer = partial(nn.BatchNorm2D, epsilon=0.001, momentum=0.01) layers: List[nn.Layer] = [] # building first layer firstconv_output_channels = inverted_residual_setting[0].input_channels layers.append( ConvNormActivation( 3, firstconv_output_channels, kernel_size=3, stride=2, norm_layer=norm_layer, activation_layer=nn.Hardswish, )) # building inverted residual blocks for cnf in inverted_residual_setting: layers.append(block(cnf, norm_layer)) # building last several layers lastconv_input_channels = inverted_residual_setting[-1].out_channels lastconv_output_channels = 6 * lastconv_input_channels layers.append( ConvNormActivation( lastconv_input_channels, lastconv_output_channels, kernel_size=1, norm_layer=norm_layer, activation_layer=nn.Hardswish, )) self.features = nn.Sequential(*layers) self.avgpool = nn.AdaptiveAvgPool2D(1) self.classifier = nn.Sequential( nn.Linear(lastconv_output_channels, last_channel), nn.Hardswish(), nn.Dropout(p=dropout), nn.Linear(last_channel, num_classes), )
MobileNet V3 main class Args: inverted_residual_setting (List[InvertedResidualConfig]): Network structure last_channel (int): The number of channels on the penultimate layer num_classes (int): Number of classes block (Optional[Callable[..., nn.Layer]]): Module specifying inverted residual building block for mobilenet norm_layer (Optional[Callable[..., nn.Layer]]): Module specifying the normalization layer to use dropout (float): The droupout probability
__init__
python
PaddlePaddle/models
tutorials/mobilenetv3_prod/Step1-5/mobilenetv3_paddle/paddlevision/models/mobilenet_v3_paddle.py
https://github.com/PaddlePaddle/models/blob/master/tutorials/mobilenetv3_prod/Step1-5/mobilenetv3_paddle/paddlevision/models/mobilenet_v3_paddle.py
Apache-2.0
def mobilenet_v3_large(pretrained: bool=False, progress: bool=True, **kwargs: Any) -> MobileNetV3: """ Constructs a large MobileNetV3 architecture from `"Searching for MobileNetV3" <https://arxiv.org/abs/1905.02244>`_. Args: pretrained (bool): If True, returns a model pre-trained on ImageNet progress (bool): If True, displays a progress bar of the download to stderr """ arch = "mobilenet_v3_large" inverted_residual_setting, last_channel = _mobilenet_v3_conf(arch, **kwargs) return _mobilenet_v3(arch, inverted_residual_setting, last_channel, pretrained, progress, **kwargs)
Constructs a large MobileNetV3 architecture from `"Searching for MobileNetV3" <https://arxiv.org/abs/1905.02244>`_. Args: pretrained (bool): If True, returns a model pre-trained on ImageNet progress (bool): If True, displays a progress bar of the download to stderr
mobilenet_v3_large
python
PaddlePaddle/models
tutorials/mobilenetv3_prod/Step1-5/mobilenetv3_paddle/paddlevision/models/mobilenet_v3_paddle.py
https://github.com/PaddlePaddle/models/blob/master/tutorials/mobilenetv3_prod/Step1-5/mobilenetv3_paddle/paddlevision/models/mobilenet_v3_paddle.py
Apache-2.0
def mobilenet_v3_small(pretrained: bool=False, progress: bool=True, **kwargs: Any) -> MobileNetV3: """ Constructs a small MobileNetV3 architecture from `"Searching for MobileNetV3" <https://arxiv.org/abs/1905.02244>`_. Args: pretrained (bool): If True, returns a model pre-trained on ImageNet progress (bool): If True, displays a progress bar of the download to stderr """ arch = "mobilenet_v3_small" inverted_residual_setting, last_channel = _mobilenet_v3_conf(arch, **kwargs) return _mobilenet_v3(arch, inverted_residual_setting, last_channel, pretrained, progress, **kwargs)
Constructs a small MobileNetV3 architecture from `"Searching for MobileNetV3" <https://arxiv.org/abs/1905.02244>`_. Args: pretrained (bool): If True, returns a model pre-trained on ImageNet progress (bool): If True, displays a progress bar of the download to stderr
mobilenet_v3_small
python
PaddlePaddle/models
tutorials/mobilenetv3_prod/Step1-5/mobilenetv3_paddle/paddlevision/models/mobilenet_v3_paddle.py
https://github.com/PaddlePaddle/models/blob/master/tutorials/mobilenetv3_prod/Step1-5/mobilenetv3_paddle/paddlevision/models/mobilenet_v3_paddle.py
Apache-2.0
def get_params(transform_num: int) -> Tuple[int, Tensor, Tensor]: """Get parameters for autoaugment transformation Returns: params required by the autoaugment transformation """ policy_id = int(paddle.randint(low=0, high=transform_num, shape=(1, ))) probs = paddle.rand((2, )) signs = paddle.randint(low=0, high=2, shape=(2, )) return policy_id, probs, signs
Get parameters for autoaugment transformation Returns: params required by the autoaugment transformation
get_params
python
PaddlePaddle/models
tutorials/mobilenetv3_prod/Step1-5/mobilenetv3_paddle/paddlevision/transforms/autoaugment.py
https://github.com/PaddlePaddle/models/blob/master/tutorials/mobilenetv3_prod/Step1-5/mobilenetv3_paddle/paddlevision/transforms/autoaugment.py
Apache-2.0
def forward(self, img: Tensor): """ img (PIL Image or Tensor): Image to be transformed. Returns: PIL Image or Tensor: AutoAugmented image. """ fill = self.fill if isinstance(img, Tensor): if isinstance(fill, (int, float)): fill = [float(fill)] * F._get_image_num_channels(img) elif fill is not None: fill = [float(f) for f in fill] transform_id, probs, signs = self.get_params(len(self.transforms)) for i, (op_name, p, magnitude_id) in enumerate(self.transforms[transform_id]): if probs[i] <= p: magnitudes, signed = self._get_op_meta(op_name) magnitude = float(magnitudes[magnitude_id].item()) \ if magnitudes is not None and magnitude_id is not None else 0.0 if signed is not None and signed and signs[i] == 0: magnitude *= -1.0 if op_name == "ShearX": img = F.affine( img, angle=0.0, translate=[0, 0], scale=1.0, shear=[math.degrees(magnitude), 0.0], interpolation=self.interpolation, fill=fill) elif op_name == "ShearY": img = F.affine( img, angle=0.0, translate=[0, 0], scale=1.0, shear=[0.0, math.degrees(magnitude)], interpolation=self.interpolation, fill=fill) elif op_name == "TranslateX": img = F.affine( img, angle=0.0, translate=[ int(F._get_image_size(img)[0] * magnitude), 0 ], scale=1.0, interpolation=self.interpolation, shear=[0.0, 0.0], fill=fill) elif op_name == "TranslateY": img = F.affine( img, angle=0.0, translate=[ 0, int(F._get_image_size(img)[1] * magnitude) ], scale=1.0, interpolation=self.interpolation, shear=[0.0, 0.0], fill=fill) elif op_name == "Rotate": img = F.rotate( img, magnitude, interpolation=self.interpolation, fill=fill) elif op_name == "Brightness": img = F.adjust_brightness(img, 1.0 + magnitude) elif op_name == "Color": img = F.adjust_saturation(img, 1.0 + magnitude) elif op_name == "Contrast": img = F.adjust_contrast(img, 1.0 + magnitude) elif op_name == "Sharpness": img = F.adjust_sharpness(img, 1.0 + magnitude) elif op_name == "Posterize": img = F.posterize(img, int(magnitude)) elif op_name == "Solarize": img = F.solarize(img, magnitude) elif op_name == "AutoContrast": img = F.autocontrast(img) elif op_name == "Equalize": img = F.equalize(img) elif op_name == "Invert": img = F.invert(img) else: raise ValueError( "The provided operator {} is not recognized.".format( op_name)) return img
img (PIL Image or Tensor): Image to be transformed. Returns: PIL Image or Tensor: AutoAugmented image.
forward
python
PaddlePaddle/models
tutorials/mobilenetv3_prod/Step1-5/mobilenetv3_paddle/paddlevision/transforms/autoaugment.py
https://github.com/PaddlePaddle/models/blob/master/tutorials/mobilenetv3_prod/Step1-5/mobilenetv3_paddle/paddlevision/transforms/autoaugment.py
Apache-2.0
def to_tensor(pic): """Convert a ``PIL Image`` or ``numpy.ndarray`` to tensor. See :class:`~paddlevision.transforms.ToTensor` for more details. Args: pic (PIL Image or numpy.ndarray): Image to be converted to tensor. Returns: Tensor: Converted image. """ if not (F_pil._is_pil_image(pic) or _is_numpy(pic)): raise TypeError('pic should be PIL Image or ndarray. Got {}'.format( type(pic))) if _is_numpy(pic) and not _is_numpy_image(pic): raise ValueError('pic should be 2/3 dimensional. Got {} dimensions.'. format(pic.ndim)) default_float_dtype = paddle.get_default_dtype() if isinstance(pic, np.ndarray): # handle numpy array if pic.ndim == 2: pic = pic[:, :, None] img = paddle.to_tensor(pic.transpose((2, 0, 1))) # backward compatibility if not img.dtype == default_float_dtype: img = img.astype(dtype=default_float_dtype) return img.divide(paddle.full_like(img, 255)) else: return img if accimage is not None and isinstance(pic, accimage.Image): nppic = np.zeros( [pic.channels, pic.height, pic.width], dtype=np.float32) pic.copyto(nppic) return paddle.to_tensor(nppic).astype(dtype=default_float_dtype) # handle PIL Image mode_to_nptype = {'I': np.int32, 'I;16': np.int16, 'F': np.float32} img = paddle.to_tensor( np.array( pic, mode_to_nptype.get(pic.mode, np.uint8), copy=True)) if pic.mode == '1': img = 255 * img img = img.reshape([pic.size[1], pic.size[0], len(pic.getbands())]) if not img.dtype == default_float_dtype: img = img.astype(dtype=default_float_dtype) # put it from HWC to CHW format img = img.transpose((2, 0, 1)) return img.divide(paddle.full_like(img, 255)) else: # put it from HWC to CHW format img = img.transpose((2, 0, 1)) return img
Convert a ``PIL Image`` or ``numpy.ndarray`` to tensor. See :class:`~paddlevision.transforms.ToTensor` for more details. Args: pic (PIL Image or numpy.ndarray): Image to be converted to tensor. Returns: Tensor: Converted image.
to_tensor
python
PaddlePaddle/models
tutorials/mobilenetv3_prod/Step1-5/mobilenetv3_paddle/paddlevision/transforms/functional.py
https://github.com/PaddlePaddle/models/blob/master/tutorials/mobilenetv3_prod/Step1-5/mobilenetv3_paddle/paddlevision/transforms/functional.py
Apache-2.0
def normalize(tensor: Tensor, mean: List[float], std: List[float], inplace: bool=False) -> Tensor: """Normalize a float tensor image with mean and standard deviation. This transform does not support PIL Image. .. note:: This transform acts out of place by default, i.e., it does not mutates the input tensor. See :class:`~paddlevision.transforms.Normalize` for more details. Args: tensor (Tensor): Float tensor image of size (C, H, W) or (B, C, H, W) to be normalized. mean (sequence): Sequence of means for each channel. std (sequence): Sequence of standard deviations for each channel. inplace(bool,optional): Bool to make this operation inplace. Returns: Tensor: Normalized Tensor image. """ if not isinstance(tensor, paddle.Tensor): raise TypeError('Input tensor should be a paddle tensor. Got {}.'. format(type(tensor))) if not tensor.dtype in (paddle.float16, paddle.float32, paddle.float64): raise TypeError('Input tensor should be a float tensor. Got {}.'. format(tensor.dtype)) if tensor.ndim < 3: raise ValueError( 'Expected tensor to be a tensor image of size (..., C, H, W). Got tensor.shape() = ' '{}.'.format(tensor.shape)) if not inplace: tensor = tensor.clone() dtype = tensor.dtype mean = paddle.to_tensor(mean, dtype=dtype, place=tensor.place) std = paddle.to_tensor(std, dtype=dtype, place=tensor.place) if (std == 0).any(): raise ValueError('std evaluated to zero, leading to division by zero.') if mean.ndim == 1: mean = mean.reshape((-1, 1, 1)) if std.ndim == 1: std = std.reshape((-1, 1, 1)) tensor = tensor.subtract(mean).divide(std) return tensor
Normalize a float tensor image with mean and standard deviation. This transform does not support PIL Image. .. note:: This transform acts out of place by default, i.e., it does not mutates the input tensor. See :class:`~paddlevision.transforms.Normalize` for more details. Args: tensor (Tensor): Float tensor image of size (C, H, W) or (B, C, H, W) to be normalized. mean (sequence): Sequence of means for each channel. std (sequence): Sequence of standard deviations for each channel. inplace(bool,optional): Bool to make this operation inplace. Returns: Tensor: Normalized Tensor image.
normalize
python
PaddlePaddle/models
tutorials/mobilenetv3_prod/Step1-5/mobilenetv3_paddle/paddlevision/transforms/functional.py
https://github.com/PaddlePaddle/models/blob/master/tutorials/mobilenetv3_prod/Step1-5/mobilenetv3_paddle/paddlevision/transforms/functional.py
Apache-2.0
def resize(img: Tensor, size: List[int], interpolation: InterpolationMode=InterpolationMode.BILINEAR, max_size: Optional[int]=None, antialias: Optional[bool]=None) -> Tensor: r"""Resize the input image to the given size. If the image is paddle Tensor, it is expected to have [..., H, W] shape, where ... means an arbitrary number of leading dimensions .. warning:: The output image might be different depending on its type: when downsampling, the interpolation of PIL images and tensors is slightly different, because PIL applies antialiasing. This may lead to significant differences in the performance of a network. Therefore, it is preferable to train and serve a model with the same input types. See also below the ``antialias`` parameter, which can help making the output of PIL images and tensors closer. Args: img (PIL Image or Tensor): Image to be resized. size (sequence or int): Desired output size. If size is a sequence like (h, w), the output size will be matched to this. If size is an int, the smaller edge of the image will be matched to this number maintaining the aspect ratio. i.e, if height > width, then image will be rescaled to :math:`\left(\text{size} \times \frac{\text{height}}{\text{width}}, \text{size}\right)`. interpolation (InterpolationMode): Desired interpolation enum defined by :class:`paddlevision.transforms.InterpolationMode`. Default is ``InterpolationMode.BILINEAR``. If input is Tensor, only ``InterpolationMode.NEAREST``, ``InterpolationMode.BILINEAR`` and ``InterpolationMode.BICUBIC`` are supported. For backward compatibility integer values (e.g. ``PIL.Image.NEAREST``) are still acceptable. max_size (int, optional): The maximum allowed for the longer edge of the resized image: if the longer edge of the image is greater than ``max_size`` after being resized according to ``size``, then the image is resized again so that the longer edge is equal to ``max_size``. As a result, ``size`` might be overruled, i.e the smaller edge may be shorter than ``size``. antialias (bool, optional): antialias flag. If ``img`` is PIL Image, the flag is ignored and anti-alias is always used. If ``img`` is Tensor, the flag is False by default and can be set to True for ``InterpolationMode.BILINEAR`` only mode. This can help making the output for PIL images and tensors closer. .. warning:: There is no autodiff support for ``antialias=True`` option with input ``img`` as Tensor. Returns: PIL Image or Tensor: Resized image. """ # Backward compatibility with integer value if isinstance(interpolation, int): warnings.warn( "Argument interpolation should be of type InterpolationMode instead of int. " "Please, use InterpolationMode enum.") interpolation = _interpolation_modes_from_int(interpolation) if not isinstance(interpolation, InterpolationMode): raise TypeError("Argument interpolation should be a InterpolationMode") if not isinstance(img, paddle.Tensor): if antialias is not None and not antialias: warnings.warn( "Anti-alias option is always applied for PIL Image input. Argument antialias is ignored." ) pil_interpolation = pil_modes_mapping[interpolation] return F_pil.resize( img, size=size, interpolation=pil_interpolation, max_size=max_size) return F_t.resize( img, size=size, interpolation=interpolation.value, max_size=max_size, antialias=antialias)
Resize the input image to the given size. If the image is paddle Tensor, it is expected to have [..., H, W] shape, where ... means an arbitrary number of leading dimensions .. warning:: The output image might be different depending on its type: when downsampling, the interpolation of PIL images and tensors is slightly different, because PIL applies antialiasing. This may lead to significant differences in the performance of a network. Therefore, it is preferable to train and serve a model with the same input types. See also below the ``antialias`` parameter, which can help making the output of PIL images and tensors closer. Args: img (PIL Image or Tensor): Image to be resized. size (sequence or int): Desired output size. If size is a sequence like (h, w), the output size will be matched to this. If size is an int, the smaller edge of the image will be matched to this number maintaining the aspect ratio. i.e, if height > width, then image will be rescaled to :math:`\left(\text{size} \times \frac{\text{height}}{\text{width}}, \text{size}\right)`. interpolation (InterpolationMode): Desired interpolation enum defined by :class:`paddlevision.transforms.InterpolationMode`. Default is ``InterpolationMode.BILINEAR``. If input is Tensor, only ``InterpolationMode.NEAREST``, ``InterpolationMode.BILINEAR`` and ``InterpolationMode.BICUBIC`` are supported. For backward compatibility integer values (e.g. ``PIL.Image.NEAREST``) are still acceptable. max_size (int, optional): The maximum allowed for the longer edge of the resized image: if the longer edge of the image is greater than ``max_size`` after being resized according to ``size``, then the image is resized again so that the longer edge is equal to ``max_size``. As a result, ``size`` might be overruled, i.e the smaller edge may be shorter than ``size``. antialias (bool, optional): antialias flag. If ``img`` is PIL Image, the flag is ignored and anti-alias is always used. If ``img`` is Tensor, the flag is False by default and can be set to True for ``InterpolationMode.BILINEAR`` only mode. This can help making the output for PIL images and tensors closer. .. warning:: There is no autodiff support for ``antialias=True`` option with input ``img`` as Tensor. Returns: PIL Image or Tensor: Resized image.
resize
python
PaddlePaddle/models
tutorials/mobilenetv3_prod/Step1-5/mobilenetv3_paddle/paddlevision/transforms/functional.py
https://github.com/PaddlePaddle/models/blob/master/tutorials/mobilenetv3_prod/Step1-5/mobilenetv3_paddle/paddlevision/transforms/functional.py
Apache-2.0
def pad(img: Tensor, padding: List[int], fill: int=0, padding_mode: str="constant") -> Tensor: r"""Pad the given image on all sides with the given "pad" value. If the image is paddle Tensor, it is expected to have [..., H, W] shape, where ... means at most 2 leading dimensions for mode reflect and symmetric, at most 3 leading dimensions for mode edge, and an arbitrary number of leading dimensions for mode constant Args: img (PIL Image or Tensor): Image to be padded. padding (int or sequence): Padding on each border. If a single int is provided this is used to pad all borders. If sequence of length 2 is provided this is the padding on left/right and top/bottom respectively. If a sequence of length 4 is provided this is the padding for the left, top, right and bottom borders respectively. fill (number or str or tuple): Pixel fill value for constant fill. Default is 0. If a tuple of length 3, it is used to fill R, G, B channels respectively. This value is only used when the padding_mode is constant. Only number is supported for paddle Tensor. Only int or str or tuple value is supported for PIL Image. padding_mode (str): Type of padding. Should be: constant, edge, reflect or symmetric. Default is constant. - constant: pads with a constant value, this value is specified with fill - edge: pads with the last value at the edge of the image. If input a 5D paddle Tensor, the last 3 dimensions will be padded instead of the last 2 - reflect: pads with reflection of image without repeating the last value on the edge. For example, padding [1, 2, 3, 4] with 2 elements on both sides in reflect mode will result in [3, 2, 1, 2, 3, 4, 3, 2] - symmetric: pads with reflection of image repeating the last value on the edge. For example, padding [1, 2, 3, 4] with 2 elements on both sides in symmetric mode will result in [2, 1, 1, 2, 3, 4, 4, 3] Returns: PIL Image or Tensor: Padded image. """ if not isinstance(img, paddle.Tensor): return F_pil.pad(img, padding=padding, fill=fill, padding_mode=padding_mode) return F_t.pad(img, padding=padding, fill=fill, padding_mode=padding_mode)
Pad the given image on all sides with the given "pad" value. If the image is paddle Tensor, it is expected to have [..., H, W] shape, where ... means at most 2 leading dimensions for mode reflect and symmetric, at most 3 leading dimensions for mode edge, and an arbitrary number of leading dimensions for mode constant Args: img (PIL Image or Tensor): Image to be padded. padding (int or sequence): Padding on each border. If a single int is provided this is used to pad all borders. If sequence of length 2 is provided this is the padding on left/right and top/bottom respectively. If a sequence of length 4 is provided this is the padding for the left, top, right and bottom borders respectively. fill (number or str or tuple): Pixel fill value for constant fill. Default is 0. If a tuple of length 3, it is used to fill R, G, B channels respectively. This value is only used when the padding_mode is constant. Only number is supported for paddle Tensor. Only int or str or tuple value is supported for PIL Image. padding_mode (str): Type of padding. Should be: constant, edge, reflect or symmetric. Default is constant. - constant: pads with a constant value, this value is specified with fill - edge: pads with the last value at the edge of the image. If input a 5D paddle Tensor, the last 3 dimensions will be padded instead of the last 2 - reflect: pads with reflection of image without repeating the last value on the edge. For example, padding [1, 2, 3, 4] with 2 elements on both sides in reflect mode will result in [3, 2, 1, 2, 3, 4, 3, 2] - symmetric: pads with reflection of image repeating the last value on the edge. For example, padding [1, 2, 3, 4] with 2 elements on both sides in symmetric mode will result in [2, 1, 1, 2, 3, 4, 4, 3] Returns: PIL Image or Tensor: Padded image.
pad
python
PaddlePaddle/models
tutorials/mobilenetv3_prod/Step1-5/mobilenetv3_paddle/paddlevision/transforms/functional.py
https://github.com/PaddlePaddle/models/blob/master/tutorials/mobilenetv3_prod/Step1-5/mobilenetv3_paddle/paddlevision/transforms/functional.py
Apache-2.0
def crop(img: Tensor, top: int, left: int, height: int, width: int) -> Tensor: """Crop the given image at specified location and output size. If the image is paddle Tensor, it is expected to have [..., H, W] shape, where ... means an arbitrary number of leading dimensions. If image size is smaller than output size along any edge, image is padded with 0 and then cropped. Args: img (PIL Image or Tensor): Image to be cropped. (0,0) denotes the top left corner of the image. top (int): Vertical component of the top left corner of the crop box. left (int): Horizontal component of the top left corner of the crop box. height (int): Height of the crop box. width (int): Width of the crop box. Returns: PIL Image or Tensor: Cropped image. """ if not isinstance(img, paddle.Tensor): return F_pil.crop(img, top, left, height, width) return F_t.crop(img, top, left, height, width)
Crop the given image at specified location and output size. If the image is paddle Tensor, it is expected to have [..., H, W] shape, where ... means an arbitrary number of leading dimensions. If image size is smaller than output size along any edge, image is padded with 0 and then cropped. Args: img (PIL Image or Tensor): Image to be cropped. (0,0) denotes the top left corner of the image. top (int): Vertical component of the top left corner of the crop box. left (int): Horizontal component of the top left corner of the crop box. height (int): Height of the crop box. width (int): Width of the crop box. Returns: PIL Image or Tensor: Cropped image.
crop
python
PaddlePaddle/models
tutorials/mobilenetv3_prod/Step1-5/mobilenetv3_paddle/paddlevision/transforms/functional.py
https://github.com/PaddlePaddle/models/blob/master/tutorials/mobilenetv3_prod/Step1-5/mobilenetv3_paddle/paddlevision/transforms/functional.py
Apache-2.0
def center_crop(img: Tensor, output_size: List[int]) -> Tensor: """Crops the given image at the center. If the image is paddle Tensor, it is expected to have [..., H, W] shape, where ... means an arbitrary number of leading dimensions. If image size is smaller than output size along any edge, image is padded with 0 and then center cropped. Args: img (PIL Image or Tensor): Image to be cropped. output_size (sequence or int): (height, width) of the crop box. If int or sequence with single int, it is used for both directions. Returns: PIL Image or Tensor: Cropped image. """ if isinstance(output_size, numbers.Number): output_size = (int(output_size), int(output_size)) elif isinstance(output_size, (tuple, list)) and len(output_size) == 1: output_size = (output_size[0], output_size[0]) image_width, image_height = _get_image_size(img) crop_height, crop_width = output_size if crop_width > image_width or crop_height > image_height: padding_ltrb = [ (crop_width - image_width) // 2 if crop_width > image_width else 0, (crop_height - image_height) // 2 if crop_height > image_height else 0, (crop_width - image_width + 1) // 2 if crop_width > image_width else 0, (crop_height - image_height + 1) // 2 if crop_height > image_height else 0, ] img = pad(img, padding_ltrb, fill=0) # PIL uses fill value 0 image_width, image_height = _get_image_size(img) if crop_width == image_width and crop_height == image_height: return img crop_top = int(round((image_height - crop_height) / 2.)) crop_left = int(round((image_width - crop_width) / 2.)) return crop(img, crop_top, crop_left, crop_height, crop_width)
Crops the given image at the center. If the image is paddle Tensor, it is expected to have [..., H, W] shape, where ... means an arbitrary number of leading dimensions. If image size is smaller than output size along any edge, image is padded with 0 and then center cropped. Args: img (PIL Image or Tensor): Image to be cropped. output_size (sequence or int): (height, width) of the crop box. If int or sequence with single int, it is used for both directions. Returns: PIL Image or Tensor: Cropped image.
center_crop
python
PaddlePaddle/models
tutorials/mobilenetv3_prod/Step1-5/mobilenetv3_paddle/paddlevision/transforms/functional.py
https://github.com/PaddlePaddle/models/blob/master/tutorials/mobilenetv3_prod/Step1-5/mobilenetv3_paddle/paddlevision/transforms/functional.py
Apache-2.0