code
stringlengths
66
870k
docstring
stringlengths
19
26.7k
func_name
stringlengths
1
138
language
stringclasses
1 value
repo
stringlengths
7
68
path
stringlengths
5
324
url
stringlengths
46
389
license
stringclasses
7 values
def _initialize_affine_weight(weight, output_size, input_size, per_partition_size, partition_dim, init_method, stride=1, return_master_weight=False): """Initialize affine weight for model parallel. Build the master weight on all processes and scatter the relevant chunk.""" # If we only use 1 process for model parallelism, bypass scatter. world_size = get_model_parallel_world_size() if world_size == 1: init_method(weight) if return_master_weight: return weight return None # Initialize master weight master_weight = torch.empty(output_size, input_size, dtype=weight.dtype, requires_grad=False) init_method(master_weight) # Split and copy per_partition_per_stride_size = divide(per_partition_size, stride) weight_list = torch.split(master_weight, per_partition_per_stride_size, dim=partition_dim) rank = get_model_parallel_rank() my_weight_list = weight_list[rank::world_size] with torch.no_grad(): torch.cat(my_weight_list, dim=partition_dim, out=weight) if return_master_weight: return master_weight return None
Initialize affine weight for model parallel. Build the master weight on all processes and scatter the relevant chunk.
_initialize_affine_weight
python
THUDM/GLM
mpu/layers.py
https://github.com/THUDM/GLM/blob/master/mpu/layers.py
MIT
def _reduce(input_): """All-reduce the the input tensor across model parallel group.""" group = get_model_parallel_group() # Bypass the function if we are using only 1 GPU. if torch.distributed.get_world_size(group=group) == 1: return input_ # All-reduce. torch.distributed.all_reduce(input_, group=group) return input_
All-reduce the the input tensor across model parallel group.
_reduce
python
THUDM/GLM
mpu/mappings.py
https://github.com/THUDM/GLM/blob/master/mpu/mappings.py
MIT
def _split(input_): """Split the tensor along its last dimension and keep the corresponding slice.""" group = get_model_parallel_group() # Bypass the function if we are using only 1 GPU. if torch.distributed.get_world_size(group=group) == 1: return input_ # Split along last dimension. world_size = torch.distributed.get_world_size(group=group) input_list = split_tensor_along_last_dim(input_, world_size) # Note: torch.split does not create contiguous tensors by default. rank = torch.distributed.get_rank(group=group) output = input_list[rank].contiguous() return output
Split the tensor along its last dimension and keep the corresponding slice.
_split
python
THUDM/GLM
mpu/mappings.py
https://github.com/THUDM/GLM/blob/master/mpu/mappings.py
MIT
def _gather(input_): """Gather tensors and concatinate along the last dimension.""" group = get_model_parallel_group() # Bypass the function if we are using only 1 GPU. if torch.distributed.get_world_size(group=group) == 1: return input_ # Size and dimension. last_dim = input_.dim() - 1 rank = torch.distributed.get_rank(group=group) world_size = torch.distributed.get_world_size(group=group) tensor_list = [torch.empty_like(input_) for _ in range(world_size)] tensor_list[rank] = input_ torch.distributed.all_gather(tensor_list, input_, group=group) # Note: torch.cat already creates a contiguous tensor. output = torch.cat(tensor_list, dim=last_dim).contiguous() return output
Gather tensors and concatinate along the last dimension.
_gather
python
THUDM/GLM
mpu/mappings.py
https://github.com/THUDM/GLM/blob/master/mpu/mappings.py
MIT
def _set_cuda_rng_state(new_state, device=-1): """Sets the random number generator state of the current GPU. Argumentss: new_state (torch.ByteTensor): The desired state This function is adapted from PyTorch repo (torch.cuda.set_rng_state) with a single change: the input state is not cloned. Cloning caused major performance issues for +4 GPU cases. """ if hasattr(_C, '_cuda_setRNGState') and callable(_C._cuda_setRNGState): # older PyTorch def cb(): with device_ctx_manager(device): _C._cuda_setRNGState(new_state) else: # newer PyTorch if device == -1: device = torch.device('cuda') elif isinstance(device, str): device = torch.device(device) elif isinstance(device, int): device = torch.device('cuda', device) def cb(): idx = device.index if idx is None: idx = torch.cuda.current_device() default_generator = torch.cuda.default_generators[idx] default_generator.set_state(new_state) _lazy_call(cb)
Sets the random number generator state of the current GPU. Argumentss: new_state (torch.ByteTensor): The desired state This function is adapted from PyTorch repo (torch.cuda.set_rng_state) with a single change: the input state is not cloned. Cloning caused major performance issues for +4 GPU cases.
_set_cuda_rng_state
python
THUDM/GLM
mpu/random.py
https://github.com/THUDM/GLM/blob/master/mpu/random.py
MIT
def reset(self): """Set to the initial state (no tracker).""" self.states_ = {} self.seeds_ = set()
Set to the initial state (no tracker).
reset
python
THUDM/GLM
mpu/random.py
https://github.com/THUDM/GLM/blob/master/mpu/random.py
MIT
def get_states(self): """Get rng states. Copy the dictionary so we have direct pointers to the states, not just a pointer to the dictionary.""" states = {} for name in self.states_: states[name] = self.states_[name] return states
Get rng states. Copy the dictionary so we have direct pointers to the states, not just a pointer to the dictionary.
get_states
python
THUDM/GLM
mpu/random.py
https://github.com/THUDM/GLM/blob/master/mpu/random.py
MIT
def fork(self, name=_MODEL_PARALLEL_RNG_TRACKER_NAME): """Fork the cuda rng state, perform operations, and exit with the original state.""" # Check if we have added the state if name not in self.states_: raise Exception('cuda rng state {} is not added'.format(name)) # Store current rng state. orig_cuda_rng_state = torch.cuda.get_rng_state() # Set rng state to the desired one _set_cuda_rng_state(self.states_[name]) # Do the stuff we wanted to do. try: yield finally: # Update the current rng state for later use. self.states_[name] = torch.cuda.get_rng_state() # And set the state to the original state we started with. _set_cuda_rng_state(orig_cuda_rng_state)
Fork the cuda rng state, perform operations, and exit with the original state.
fork
python
THUDM/GLM
mpu/random.py
https://github.com/THUDM/GLM/blob/master/mpu/random.py
MIT
def model_parallel_cuda_manual_seed(seed): """Initialize model parallel cuda seed. This function should be called after the model parallel is initialized. Also, no torch.cuda.manual_seed should be called after this function. Basically, this is replacement for that function. Two set of RNG states are tracked: default state: This is for data parallelism and is the same among a set of model parallel GPUs but different across different model paralle groups. This is used for example for dropout in the non-model-parallel regions. model-parallel state: This state is different among a set of model parallel GPUs, but the same across data parallel groups. This is used for example for dropout in model parallel regions. """ # 2718 is just for fun and any POSITIVE value will work. offset = seed + 2718 model_parallel_seed = offset + get_model_parallel_rank() # Data parallel gets the original sedd. data_parallel_seed = seed if torch.distributed.get_rank() == 0: print('> initializing model parallel cuda seeds on global rank {}, ' 'model parallel rank {}, and data parallel rank {} with ' 'model parallel seed: {} and data parallel seed: {}'.format( torch.distributed.get_rank(), get_model_parallel_rank(), get_data_parallel_rank(), model_parallel_seed, data_parallel_seed), flush=True) _CUDA_RNG_STATE_TRACKER.reset() # Set the default state. torch.cuda.manual_seed(data_parallel_seed) # and model parallel state. _CUDA_RNG_STATE_TRACKER.add(_MODEL_PARALLEL_RNG_TRACKER_NAME, model_parallel_seed)
Initialize model parallel cuda seed. This function should be called after the model parallel is initialized. Also, no torch.cuda.manual_seed should be called after this function. Basically, this is replacement for that function. Two set of RNG states are tracked: default state: This is for data parallelism and is the same among a set of model parallel GPUs but different across different model paralle groups. This is used for example for dropout in the non-model-parallel regions. model-parallel state: This state is different among a set of model parallel GPUs, but the same across data parallel groups. This is used for example for dropout in model parallel regions.
model_parallel_cuda_manual_seed
python
THUDM/GLM
mpu/random.py
https://github.com/THUDM/GLM/blob/master/mpu/random.py
MIT
def _transpose_for_scores(self, tensor): """Transpose a 3D tensor [b, s, np*hn] into a 4D tensor with size [b, np, s, hn]. """ new_tensor_shape = tensor.size()[:-1] + \ (self.num_attention_heads_per_partition, self.hidden_size_per_attention_head) tensor = tensor.view(*new_tensor_shape) return tensor.permute(0, 2, 1, 3)
Transpose a 3D tensor [b, s, np*hn] into a 4D tensor with size [b, np, s, hn].
_transpose_for_scores
python
THUDM/GLM
mpu/transformer.py
https://github.com/THUDM/GLM/blob/master/mpu/transformer.py
MIT
def _transpose_for_scores(self, tensor): """Transpose a 3D tensor [b, s, np*hn] into a 4D tensor with size [b, np, s, hn]. """ new_tensor_shape = tensor.size()[:-1] + \ (self.num_attention_heads_per_partition, self.hidden_size_per_attention_head) tensor = tensor.view(*new_tensor_shape) return tensor.permute(0, 2, 1, 3)
Transpose a 3D tensor [b, s, np*hn] into a 4D tensor with size [b, np, s, hn].
_transpose_for_scores
python
THUDM/GLM
mpu/transformer.py
https://github.com/THUDM/GLM/blob/master/mpu/transformer.py
MIT
def scaled_init_method(sigma, num_layers): """Init method based on N(0, sigma/sqrt(2*num_layers).""" std = sigma / math.sqrt(2.0 * num_layers) def init_(tensor): return torch.nn.init.normal_(tensor, mean=0.0, std=std) return init_
Init method based on N(0, sigma/sqrt(2*num_layers).
scaled_init_method
python
THUDM/GLM
mpu/transformer.py
https://github.com/THUDM/GLM/blob/master/mpu/transformer.py
MIT
def divide(numerator, denominator): """Ensure that numerator is divisible by the denominator and return the division value.""" ensure_divisibility(numerator, denominator) return numerator // denominator
Ensure that numerator is divisible by the denominator and return the division value.
divide
python
THUDM/GLM
mpu/utils.py
https://github.com/THUDM/GLM/blob/master/mpu/utils.py
MIT
def split_tensor_along_last_dim(tensor, num_partitions, contiguous_split_chunks=False): """Split a tensor along its last dimension. Arguments: tensor: input tensor. num_partitions: number of partitions to split the tensor contiguous_split_chunks: If True, make each chunk contiguous in memory. """ # Get the size and dimension. last_dim = tensor.dim() - 1 last_dim_size = divide(tensor.size()[last_dim], num_partitions) # Split. tensor_list = torch.split(tensor, last_dim_size, dim=last_dim) # Note: torch.split does not create contiguous tensors by default. if contiguous_split_chunks: return tuple(chunk.contiguous() for chunk in tensor_list) return tensor_list
Split a tensor along its last dimension. Arguments: tensor: input tensor. num_partitions: number of partitions to split the tensor contiguous_split_chunks: If True, make each chunk contiguous in memory.
split_tensor_along_last_dim
python
THUDM/GLM
mpu/utils.py
https://github.com/THUDM/GLM/blob/master/mpu/utils.py
MIT
def update_cmd(cmd, config): ''' @param cmd str @param configs list of dicts ''' for k, v in config.items(): if v is None: continue if type(v) == bool: if v: cmd += "--{} ".format(k) else: cmd += "--{} {} ".format(k, v) return cmd
@param cmd str @param configs list of dicts
update_cmd
python
THUDM/GLM
scripts/dispatcher.py
https://github.com/THUDM/GLM/blob/master/scripts/dispatcher.py
MIT
def clean_text(text): """Remove new lines and multiple spaces and adjust end of sentence dot.""" text = text.replace("\n", " ") text = re.sub(r'\s+', ' ', text) for _ in range(3): text = text.replace(' . ', '. ') return text
Remove new lines and multiple spaces and adjust end of sentence dot.
clean_text
python
THUDM/GLM
tasks/data_utils.py
https://github.com/THUDM/GLM/blob/master/tasks/data_utils.py
MIT
def __init__(self, guid, text_a, text_b=None, label=None, logits=None, meta: Optional[Dict] = None, idx=-1, num_choices=1): """ Create a new InputExample. :param guid: a unique textual identifier :param text_a: the sequence of text :param text_b: an optional, second sequence of text :param label: an optional label :param logits: an optional list of per-class logits :param meta: an optional dictionary to store arbitrary meta information :param idx: an optional numeric index """ self.guid = guid self.text_a = text_a self.text_b = text_b self.label = label self.logits = logits self.idx = idx self.num_choices = num_choices self.meta = meta if meta else {}
Create a new InputExample. :param guid: a unique textual identifier :param text_a: the sequence of text :param text_b: an optional, second sequence of text :param label: an optional label :param logits: an optional list of per-class logits :param meta: an optional dictionary to store arbitrary meta information :param idx: an optional numeric index
__init__
python
THUDM/GLM
tasks/data_utils.py
https://github.com/THUDM/GLM/blob/master/tasks/data_utils.py
MIT
def build_sample(ids, types=None, paddings=None, positions=None, masks=None, label=None, unique_id=None, target=None, logit_mask=None, segment_ids=None, prompt_ids=None): """Convert to numpy and return a sample consumed by the batch producer.""" ids_np = np.array(ids, dtype=np.int64) sample = {'text': ids_np, 'label': int(label)} if types is not None: types_np = np.array(types, dtype=np.int64) sample['types'] = types_np if paddings is not None: paddings_np = np.array(paddings, dtype=np.int64) sample['padding_mask'] = paddings_np if positions is not None: positions_np = np.array(positions, dtype=np.int64) sample['position'] = positions_np if masks is not None: masks_np = np.array(masks, dtype=np.int64) sample['mask'] = masks_np if target is not None: target_np = np.array(target, dtype=np.int64) sample['target'] = target_np if logit_mask is not None: logit_mask_np = np.array(logit_mask, dtype=np.int64) sample['logit_mask'] = logit_mask_np if segment_ids is not None: segment_ids = np.array(segment_ids, dtype=np.int64) sample['segment_id'] = segment_ids if prompt_ids is not None: prompt_ids = np.array(prompt_ids, dtype=np.int64) sample['prompt_pos'] = prompt_ids if unique_id is not None: sample['uid'] = unique_id return sample
Convert to numpy and return a sample consumed by the batch producer.
build_sample
python
THUDM/GLM
tasks/data_utils.py
https://github.com/THUDM/GLM/blob/master/tasks/data_utils.py
MIT
def build_data_loader(dataset, batch_size, num_workers, drop_last, shuffle=True, only_rank0=False): """Data loader. Note that batch-size is the local (per GPU) batch-size.""" # Sampler. if only_rank0: rank, world_size = 0, 1 else: world_size = mpu.get_data_parallel_world_size() rank = mpu.get_data_parallel_rank() sampler = torch.utils.data.distributed.DistributedSampler( dataset, num_replicas=world_size, rank=rank, shuffle=shuffle) # Data loader. Note that batch size is the per GPU batch size. data_loader = torch.utils.data.DataLoader(dataset, batch_size=batch_size, sampler=sampler, shuffle=False, num_workers=num_workers, drop_last=drop_last, pin_memory=True, collate_fn=my_collate) return data_loader
Data loader. Note that batch-size is the local (per GPU) batch-size.
build_data_loader
python
THUDM/GLM
tasks/data_utils.py
https://github.com/THUDM/GLM/blob/master/tasks/data_utils.py
MIT
def multichoice_evaluate(model, dataloader, example_dict, args): """Calculate correct over total answers and return prediction if the `output_predictions` is true.""" model.eval() results = {} with torch.no_grad(): # For all the batches in the dataset. for _, batch in enumerate(dataloader): # Run the model forward. data = process_batch(batch, args) if args.pretrained_bert: tokens, types, labels_, attention_mask = data['text'], data['types'], data['label'], data[ 'padding_mask'] inputs = [tokens, types, attention_mask] elif args.cloze_eval: tokens, labels_, position_ids = data['text'], data['label'], data['position'] attention_mask, target_ids, logit_mask = data['mask'], data['target'], data['logit_mask'] if not args.fast_decode: inputs = [tokens, position_ids, attention_mask, target_ids, logit_mask] if args.continuous_prompt: prompt_pos = data["prompt_pos"] inputs.append(prompt_pos) else: dec_input_ids, dec_position_ids, dec_attention_mask = data['dec_text'], data['dec_position'], data[ 'dec_mask'] dec_target_ids, dec_logit_mask = data['dec_target'], data['dec_logit_mask'] inputs = [tokens, position_ids, attention_mask, dec_input_ids, dec_position_ids, dec_attention_mask, dec_target_ids, dec_logit_mask] else: tokens, labels_, position_ids, attention_mask = data['text'], data['label'], data['position'], data[ 'mask'] inputs = [tokens, position_ids, attention_mask] if len(inputs[0].shape) == 3 and inputs[0].size(1) > segment_length: logit_list = [] for i in range((inputs[0].size(1) - 1) // segment_length + 1): input_batch = [arg[:, i * segment_length: (i + 1) * segment_length] for arg in inputs] if args.pretrained_bert: logits = model(*input_batch) else: logits, *mems = model(*input_batch) logit_list.append(logits) logits = torch.cat(logit_list, dim=1) elif args.cloze_eval and args.fast_decode: logit_list = [] num_choices = inputs[3].size(1) for i in range((num_choices - 1) // segment_length + 1): input_batch = inputs[:3] + [arg[:, i * segment_length: (i + 1) * segment_length] for arg in inputs[3:]] logits, *mems = model(*input_batch) logit_list.append(logits) logits = torch.cat(logit_list, dim=1) else: if args.pretrained_bert: logits = model(*inputs) else: logits, *mems = model(*inputs) if "segment_id" in data: from torch_scatter import scatter_sum if "loss_mask" in data: logits = logits * data["loss_mask"] logits = scatter_sum(logits, data["segment_id"], dim=1) elif "loss_mask" in data: loss_mask = data["loss_mask"] logits = logits * loss_mask - 10000.0 * (1.0 - loss_mask) uid_list = batch['uid'] if isinstance(uid_list, torch.Tensor): uid_list = uid_list.cpu().numpy().tolist() predicted = torch.argmax(logits, dim=-1).tolist() labels = labels_.tolist() if args.task.lower() == 'wsc': predicted = [1 if pred == 0 else 0 for pred in predicted] for uid, prediction, label in zip(uid_list, predicted, labels): results[uid] = (prediction, label) model.train() torch.distributed.barrier() results_gathered = [None for _ in range(mpu.get_data_parallel_world_size())] torch.distributed.all_gather_object(results_gathered, results, group=mpu.get_data_parallel_group()) results = {} for result in results_gathered: results.update(result) predictions, labels, examples = [], [], [] for uid, example in example_dict.items(): prediction, label = results[uid] predictions.append(prediction) labels.append(label) examples.append(example) torch.distributed.barrier() return predictions, labels, examples
Calculate correct over total answers and return prediction if the `output_predictions` is true.
multichoice_evaluate
python
THUDM/GLM
tasks/eval_utils.py
https://github.com/THUDM/GLM/blob/master/tasks/eval_utils.py
MIT
def evaluate_and_print_results(data_loader, model, eval_metric, args): """Evaluate and print results on screen.""" # Evaluate and get results. output, _ = evaluate(model, data_loader, eval_metric, args) string = "" if eval_metric == 'loss': output = output['loss'] num_tokenized_tokens = data_loader.dataset.num_tokenized_tokens num_original_tokens = data_loader.dataset.num_original_tokens val_loss = output / (num_tokenized_tokens - 1) ppl = math.exp(min(20, val_loss)) token_ratio = (num_tokenized_tokens - 1) / (num_original_tokens - 1) adjusted_ppl = math.exp(min(20, val_loss * token_ratio)) string += 'avg loss: {:.4E} | '.format(val_loss) string += 'ppl: {:.4E} | '.format(ppl) string += 'adjusted ppl: {:.4E} | '.format(adjusted_ppl) string += 'token ratio: {} |'.format(token_ratio) score_dict = {"avg loss": val_loss, "ppl": ppl, "adjusted ppl": adjusted_ppl} elif eval_metric == 'accuracy': output = output['accuracy'] num_examples = len(data_loader.dataset) acc = output / num_examples * 100 string += 'number correct: {} | '.format(output) string += 'total examples: {} | '.format(num_examples) string += 'avg accuracy: {:.2f}'.format(acc) score_dict = {"accuracy": acc} else: raise NotImplementedError('evaluation method for {} metric is not ' 'implemented yet.'.format(eval_metric)) length = len(string) + 1 print_rank_0('-' * length) print_rank_0(string) print_rank_0('-' * length) return score_dict
Evaluate and print results on screen.
evaluate_and_print_results
python
THUDM/GLM
tasks/language_model/finetune.py
https://github.com/THUDM/GLM/blob/master/tasks/language_model/finetune.py
MIT
def process_batch(batch, args): """Process batch and produce inputs for the model.""" if 'mask' in batch: # finetune SQuAD batch['attention_mask'] = batch.pop('mask') batch['position_id'] = batch.pop('position') tokens = batch['text'].long().cuda() attention_mask = batch['attention_mask'].long().cuda() position_ids = batch['position_id'].long().cuda() if tokens.dim() == 3: tokens = tokens.squeeze(1) attention_mask = attention_mask.squeeze(1) position_ids = position_ids.squeeze(1) return tokens, attention_mask, position_ids
Process batch and produce inputs for the model.
process_batch
python
THUDM/GLM
tasks/seq2seq/evaluate.py
https://github.com/THUDM/GLM/blob/master/tasks/seq2seq/evaluate.py
MIT
def evaluate(self, model, dataloader, example_dict, args): """Calculate correct over total answers and return prediction if the `output_predictions` is true.""" model.eval() local_predictions = {} print_rank_0("Distributed store created") with torch.no_grad(): # For all the batches in the dataset. for idx, data in enumerate(dataloader): tokens, attention_mask, position_ids = process_batch(data, args) batch_size = tokens.size(0) beam_scorer = BeamSearchScorer( batch_size=batch_size, max_length=args.out_seq_length, num_beams=args.num_beams, device=tokens.device, length_penalty=args.length_penalty, do_early_stopping=False, ) beam_scores = torch.zeros((batch_size, args.num_beams), dtype=torch.float, device=tokens.device) beam_scores[:, 1:] = -1e9 beam_scores = beam_scores.view((batch_size * args.num_beams,)) # Run the model forward. counter = 0 context_length = tokens.size(1) while counter < args.tgt_seq_length: if counter == 0: next_token_logits, *mems = model(tokens, position_ids, attention_mask, return_memory=True) seq_length = next_token_logits.size(1) next_token_logits = next_token_logits[:, -1] next_token_logits = next_token_logits.unsqueeze(1).repeat(1, args.num_beams, 1).view( batch_size * args.num_beams, -1) mems = [mem.unsqueeze(1).repeat(1, args.num_beams, 1, 1).view(batch_size * args.num_beams, seq_length, -1) for mem in mems] position_ids = tokens.new_ones(batch_size, args.num_beams, 2, 1) for i, text in enumerate(tokens.tolist()): mask_pos = text.index(self.mask_token) position_ids[i, :, 0] = mask_pos position_ids = position_ids.reshape(batch_size * args.num_beams, 2, 1) tokens = tokens.new_zeros(batch_size * args.num_beams, 0) else: if not args.no_block_position: position_ids[:, 1] = counter + 1 last_token = tokens[:, -1:] if self.mask_pad_token: cur_attention_mask = attention_mask[:, :, -1:, :].unsqueeze(1).expand(-1, args.num_beams, -1, -1, -1).reshape( batch_size * args.num_beams, 1, 1, context_length) cur_attention_mask = torch.cat( (cur_attention_mask, attention_mask.new_ones((batch_size * args.num_beams, 1, 1, counter))), dim=-1) else: cur_attention_mask = tokens.new_zeros([batch_size * args.num_beams]) next_token_logits, *mems = model(last_token, position_ids, cur_attention_mask, *mems, return_memory=True) next_token_logits = next_token_logits[:, -1] next_token_logits = top_k_logits(next_token_logits, top_k=args.top_k, top_p=args.top_p) next_token_scores = F.log_softmax(next_token_logits, dim=-1) next_token_scores = self.processors(tokens, next_token_scores) next_token_scores = next_token_scores + beam_scores[:, None].expand_as(next_token_scores) vocab_size = next_token_scores.shape[-1] next_token_scores = next_token_scores.view(batch_size, args.num_beams * vocab_size) probs = F.softmax(next_token_scores, dim=-1) if args.select_topk: _, next_tokens = torch.topk(probs, k=2 * args.num_beams, dim=-1, largest=True) else: next_tokens = torch.multinomial(probs, num_samples=2 * args.num_beams) next_token_scores = torch.gather(next_token_scores, -1, next_tokens) next_token_scores, _indices = torch.sort(next_token_scores, descending=True, dim=1) next_tokens = torch.gather(next_tokens, -1, _indices) next_indices = next_tokens // vocab_size next_tokens = next_tokens % vocab_size # stateless beam_outputs = beam_scorer.process( tokens, next_token_scores, next_tokens, next_indices, eos_token_id=self.end_token, pad_token_id=self.pad_token ) beam_scores = beam_outputs["next_beam_scores"] beam_next_tokens = beam_outputs["next_beam_tokens"] beam_idx = beam_outputs["next_beam_indices"] beam_next_tokens = beam_next_tokens.unsqueeze(-1) tokens = torch.cat([tokens[beam_idx, :], beam_next_tokens], dim=-1) mems = [mem[beam_idx] for mem in mems] if mems else [] if beam_scorer.is_done: break counter += 1 tokens, _, scores = beam_scorer.finalize(tokens, beam_scores, next_tokens, next_indices, eos_token_id=self.end_token, pad_token_id=self.pad_token) uid_list = data['uid'] if isinstance(uid_list, torch.Tensor): uid_list = uid_list.cpu().numpy().tolist() predictions = [] for i, text in enumerate(tokens.tolist()): text = [token for token in text if token not in [self.end_token, self.pad_token]] if args.task in ['squad', 'squad_v1'] and args.tokenizer_model_type.startswith('bert'): uid = uid_list[i] example = example_dict[uid] text = squad_decode(example, text, self.tokenizer) else: text = self.tokenizer.DecodeIds(text) predictions.append(text) for uid, prediction in zip(uid_list, predictions): local_predictions[uid] = prediction if (idx + 1) % args.log_interval == 0: print_rank_0(f"Iteration {idx + 1} / {len(dataloader)}") model.train() torch.distributed.barrier() print_rank_0("Evaluation completed") gathered_predictions = [None for i in range(torch.distributed.get_world_size())] torch.distributed.all_gather_object(gathered_predictions, local_predictions) gathered_predictions = {uid: pred for preds in gathered_predictions for uid, pred in preds.items() } predictions, examples, scores = [], [], [] for uid, example in example_dict.items(): prediction = gathered_predictions[uid] predictions.append(prediction) examples.append(example) torch.distributed.barrier() return predictions, [], examples
Calculate correct over total answers and return prediction if the `output_predictions` is true.
evaluate
python
THUDM/GLM
tasks/seq2seq/evaluate.py
https://github.com/THUDM/GLM/blob/master/tasks/seq2seq/evaluate.py
MIT
def clean_text(text): """Remove new lines and multiple spaces and adjust end of sentence dot.""" text = text.replace("\n", " ") text = re.sub(r'\s+', ' ', text) for _ in range(3): text = text.replace(' . ', '. ') return text
Remove new lines and multiple spaces and adjust end of sentence dot.
clean_text
python
THUDM/GLM
tasks/superglue/dataset.py
https://github.com/THUDM/GLM/blob/master/tasks/superglue/dataset.py
MIT
def normalize_answer(s): """Lower text and remove punctuation, articles and extra whitespace.""" def remove_articles(text): return re.sub(r'\b(a|an|the)\b', ' ', text) def white_space_fix(text): return ' '.join(text.split()) def remove_punc(text): exclude = set(string.punctuation) return ''.join(ch for ch in text if ch not in exclude) def lower(text): return unidecode.unidecode(text.lower()) return white_space_fix(remove_articles(remove_punc(lower(s))))
Lower text and remove punctuation, articles and extra whitespace.
normalize_answer
python
THUDM/GLM
tasks/superglue/evaluate.py
https://github.com/THUDM/GLM/blob/master/tasks/superglue/evaluate.py
MIT
def multirc_em(predictions, labels, examples: List[InputExample]): """Compute the exact match (EM) for a sequence of predictions and actual labels""" question_ids = [example.meta["question_idx"] for example in examples] unique_questions = set(question_ids) q_actuals = list(zip(question_ids, labels)) q_predictions = list(zip(question_ids, predictions)) actuals_per_question = defaultdict(list) predictions_per_question = defaultdict(list) for qid, val in q_actuals: actuals_per_question[qid].append(val) for qid, val in q_predictions: predictions_per_question[qid].append(val) em = 0 for qid in unique_questions: if actuals_per_question[qid] == predictions_per_question[qid]: em += 1 em /= len(unique_questions) return em
Compute the exact match (EM) for a sequence of predictions and actual labels
multirc_em
python
THUDM/GLM
tasks/superglue/evaluate.py
https://github.com/THUDM/GLM/blob/master/tasks/superglue/evaluate.py
MIT
def __init__(self, args, tokenizer, label_list, max_seq_length, pattern_id: int = 0, verbalizer_file: str = None, seed: int = 42, is_multi_token=False, max_segment_length=0, fast_decode: bool = False, split='train', num_prompt_tokens=0): """ Create a new PVP. :param args: the args :param tokenizer: the tokenizer :param label_list: the list of labels :param max_seq_length: the maximum length of the sequence :param pattern_id: the pattern id to use :param seed: a seed to be used for generating random numbers if necessary :param is_multi_token: if the verbalizers contain multiple tokens :param fast_decode: whether to use the fast decode mode for multi-token tasks :param continuous_prompt: whether to use continuous prompt optimization """ self.args = args self.tokenizer = tokenizer self.label_list = label_list self.max_seq_length = max_seq_length self.pattern_id = pattern_id self.num_prompt_tokens = num_prompt_tokens self.rng = random.Random(seed) self.num_truncated = 0 self.fast_decode = fast_decode self.split = split self.max_dec_seq_length = 16 self._is_multi_token = is_multi_token self.max_segment_length = max_segment_length self.task_mask = args.task_mask self.continuous_prompt = args.continuous_prompt self.prefix_prompt = args.prefix_prompt if self.continuous_prompt: print_rank_0(f"Prompt tokens in pvp {self.num_prompt_tokens} spell length {self.spell_length}") if verbalizer_file: self.verbalize = PVP._load_verbalizer_from_file(verbalizer_file, self.pattern_id)
Create a new PVP. :param args: the args :param tokenizer: the tokenizer :param label_list: the list of labels :param max_seq_length: the maximum length of the sequence :param pattern_id: the pattern id to use :param seed: a seed to be used for generating random numbers if necessary :param is_multi_token: if the verbalizers contain multiple tokens :param fast_decode: whether to use the fast decode mode for multi-token tasks :param continuous_prompt: whether to use continuous prompt optimization
__init__
python
THUDM/GLM
tasks/superglue/pvp.py
https://github.com/THUDM/GLM/blob/master/tasks/superglue/pvp.py
MIT
def encode(self, example: InputExample, priming: bool = False, labeled: bool = False): """ Encode an input example using this pattern-verbalizer pair. :param example: the input example to encode :param priming: whether to use this example for priming :param labeled: if ``priming=True``, whether the label should be appended to this example :return: A tuple, consisting of a list of input ids and a list of token type ids """ if not priming: assert not labeled, "'labeled' can only be set to true if 'priming' is also set to true" tokenizer = self.tokenizer raw_parts_a, raw_parts_b = self.get_parts(example) raw_parts_a = [x if isinstance(x, tuple) else (x, False) for x in raw_parts_a] prompt_id = tokenizer.num_tokens def encode_input(raw_parts): parts = [] for x, s in raw_parts: if isinstance(x, str): x = tokenizer.EncodeAsIds(x) elif isinstance(x, int): x = [prompt_id] * x else: pass parts.append((x, s)) return parts parts_a = encode_input(raw_parts_a) if self.prefix_prompt > 0: parts_a = [([prompt_id] * self.prefix_prompt, False)] + parts_a parts_b = None if raw_parts_b: raw_parts_b = [x if isinstance(x, tuple) else (x, False) for x in raw_parts_b] parts_b = encode_input(raw_parts_b) if self.is_multi_token: answers = self.get_answers(example) if example.label is not None: label = self.label_list.index(example.label) else: label = 0 if not self.fast_decode: ids_list, positions_list, sep_list, mask_list, target_list, prompt_list = [], [], [], [], [], [] segment_id_list = [] if priming: answer = answers[label] answer_ids = get_verbalization_ids(answer, tokenizer, force_single_token=False) self.num_truncated += self.truncate(parts_a, parts_b, answer_ids, max_length=self.max_seq_length) tokens_a = [token_id for part, _ in parts_a for token_id in part] tokens_b = [token_id for part, _ in parts_b for token_id in part] if parts_b else None input_ids = tokens_a if tokens_b: input_ids += tokens_b if labeled: mask_idx = input_ids.index(self.mask_id) input_ids = input_ids[:mask_idx] + answer_ids + input_ids[mask_idx + 1:] return input_ids else: for idx, answer in enumerate(answers): this_parts_a, this_parts_b = copy.deepcopy(parts_a), copy.deepcopy(parts_b) answer_ids = get_verbalization_ids(answer, tokenizer, force_single_token=False) answer_ids = answer_ids + [tokenizer.get_command('eop').Id] self.num_truncated += self.truncate(this_parts_a, this_parts_b, answer_ids, max_length=self.max_seq_length) tokens_a = [token_id for part, _ in this_parts_a for token_id in part] tokens_b = [token_id for part, _ in this_parts_b for token_id in part] if parts_b else None if self.max_segment_length > 0: num_segments = (len(answer_ids) - 1) // self.max_segment_length + 1 segments = [ answer_ids[index * self.max_segment_length: (index + 1) * self.max_segment_length] for index in range(num_segments)] segment_id_list += [idx] * len(segments) else: segments = [answer_ids] for segment in segments: data = build_input_from_ids(tokens_a, tokens_b, segment, self.max_seq_length, self.tokenizer, args=self.args, add_cls=True, add_sep=False, add_piece=True, mask_id=self.mask_id) ids, types, paddings, position_ids, sep, target_ids, loss_masks = data prompt_pos = [idx for idx, token in enumerate(ids) if token == prompt_id] ids = [idx if idx != prompt_id else 0 for idx in ids] prompt_list.append(prompt_pos) ids_list.append(ids) positions_list.append(position_ids) sep_list.append(sep) target_list.append(target_ids) mask_list.append(loss_masks) if self.mask in tokens_a: mask_pos = tokens_a.index(self.mask) tokens_a = tokens_a[:mask_pos] + segment + tokens_a[mask_pos:] else: mask_pos = tokens_b.index(self.mask) tokens_b = tokens_b[:mask_pos] + segment + tokens_b[mask_pos:] segment_id_list = segment_id_list if segment_id_list else None sample = build_sample(ids_list, positions=positions_list, masks=sep_list, label=label, logit_mask=mask_list, target=target_list, unique_id=example.guid, segment_ids=segment_id_list, prompt_ids=prompt_list) return sample else: this_parts_a, this_parts_b = copy.deepcopy(parts_a), copy.deepcopy(parts_b) self.num_truncated += self.truncate(this_parts_a, this_parts_b, None, max_length=self.max_seq_length) tokens_a = [token_id for part, _ in this_parts_a for token_id in part] tokens_b = [token_id for part, _ in this_parts_b for token_id in part] if parts_b else None data = build_input_from_ids(tokens_a, tokens_b, None, self.max_seq_length, self.tokenizer, args=self.args, add_cls=True, add_sep=False, add_piece=False) ids, types, paddings, position_ids, sep, target_ids, loss_masks = data sample = build_sample(ids, positions=position_ids, masks=sep, label=label, unique_id=example.guid) ids_list, positions_list, mask_list, target_list, logit_mask_list = [], [], [], [], [] for answer in answers: answer_ids = get_verbalization_ids(answer, tokenizer, force_single_token=False) answer_ids = answer_ids + [tokenizer.get_command('eop').Id] answer_ids = answer_ids[:self.max_dec_seq_length] data = build_decoder_input(ids, answer_ids, self.max_seq_length, self.max_dec_seq_length, tokenizer) dec_ids, _, _, dec_position_ids, _, dec_target_ids, dec_loss_masks = data ids_list.append(dec_ids) positions_list.append(dec_position_ids) mask_list.append(sep) target_list.append(dec_target_ids) logit_mask_list.append(dec_loss_masks) sample = build_decoder_sample(sample, ids_list, positions_list, mask_list, target_list, logit_mask_list) return sample else: self.num_truncated += self.truncate(parts_a, parts_b, [], max_length=self.max_seq_length) tokens_a = [token_id for part, _ in parts_a for token_id in part] tokens_b = [token_id for part, _ in parts_b for token_id in part] if parts_b else None if priming: input_ids = tokens_a if tokens_b: input_ids += tokens_b if labeled: mask_idx = input_ids.index(self.mask_id) verbalizer = self.verbalize(example.label) assert len(verbalizer) == 1, 'priming only supports one verbalization per label' verbalizer = verbalizer[0] verbalizer_id = get_verbalization_ids(verbalizer, self.tokenizer, force_single_token=True) input_ids[mask_idx] = verbalizer_id return input_ids data = build_input_from_ids(tokens_a, tokens_b, None, self.max_seq_length, self.tokenizer, args=self.args, add_cls=True, add_sep=False, add_piece=True) ids, types, paddings, position_ids, sep, target_ids, loss_masks = data prompt_pos = [idx for idx, token in enumerate(ids) if token == prompt_id] ids = [token if token != prompt_id else 0 for token in ids] target_ids = self.get_verbalizer_ids() if example.label is not None: label = self.label_list.index(example.label) else: label = 0 sample = build_sample(ids=ids, positions=position_ids, target=target_ids, masks=sep, logit_mask=loss_masks, label=label, unique_id=example.guid, prompt_ids=prompt_pos) return sample
Encode an input example using this pattern-verbalizer pair. :param example: the input example to encode :param priming: whether to use this example for priming :param labeled: if ``priming=True``, whether the label should be appended to this example :return: A tuple, consisting of a list of input ids and a list of token type ids
encode
python
THUDM/GLM
tasks/superglue/pvp.py
https://github.com/THUDM/GLM/blob/master/tasks/superglue/pvp.py
MIT
def truncate(self, parts_a: List[Tuple[List[int], bool]], parts_b: List[Tuple[List[int], bool]], answer: List[int], max_length: int): """Truncate two sequences of text to a predefined total maximum length""" total_len = self._seq_length(parts_a) + self._seq_length(parts_b) if answer: total_len += len(answer) total_len += num_special_tokens_to_add(parts_a, parts_b, answer, add_cls=True, add_sep=False, add_piece=True) num_tokens_to_remove = total_len - max_length if num_tokens_to_remove <= 0: return False for _ in range(num_tokens_to_remove): if self._seq_length(parts_a, only_shortenable=True) > self._seq_length(parts_b, only_shortenable=True): self._remove_last(parts_a) else: self._remove_last(parts_b) return True
Truncate two sequences of text to a predefined total maximum length
truncate
python
THUDM/GLM
tasks/superglue/pvp.py
https://github.com/THUDM/GLM/blob/master/tasks/superglue/pvp.py
MIT
def encode(self, example: InputExample, priming: bool = False, labeled: bool = False): """ Encode an input example using this pattern-verbalizer pair. :param example: the input example to encode :param priming: whether to use this example for priming :param labeled: if ``priming=True``, whether the label should be appended to this example :return: A tuple, consisting of a list of input ids and a list of token type ids """ if self.continuous_prompt or self.pattern_id < 2: return super().encode(example, priming=priming, labeled=labeled) if not priming: assert not labeled, "'labeled' can only be set to true if 'priming' is also set to true" tokenizer = self.tokenizer premise = self.remove_final_punc(self.shortenable(example.text_a)) choice1 = " " + self.remove_final_punc(self.lowercase_first(example.meta['choice1'])) choice2 = " " + self.remove_final_punc(self.lowercase_first(example.meta['choice2'])) question = example.meta['question'] assert question in ['cause', 'effect'] answer = " because" if question == 'cause' else " so" answer_ids = [get_verbalization_ids(answer, tokenizer, force_single_token=True)] if self.is_multi_token: answer_ids.append(tokenizer.get_command('eop').Id) ids_list, positions_list, sep_list, mask_list, target_list = [], [], [], [], [] for choice in [choice1, choice2]: parts = ['"', choice1[1:], '" or "', choice2[1:], '"?', premise, [self.mask], choice] parts = [x if isinstance(x, tuple) else (x, False) for x in parts] parts = [(tokenizer.EncodeAsIds(x).tokenization if isinstance(x, str) else x, s) for x, s in parts if x] self.num_truncated += self.truncate(parts, None, answer_ids, max_length=self.max_seq_length) tokens_a = [token_id for part, _ in parts for token_id in part] data = build_input_from_ids(tokens_a, None, answer_ids, self.max_seq_length, self.tokenizer, args=self.args, add_cls=True, add_sep=False, add_piece=True) ids, types, paddings, position_ids, sep, target_ids, loss_masks = data ids_list.append(ids) positions_list.append(position_ids) sep_list.append(sep) target_list.append(target_ids) mask_list.append(loss_masks) if example.label is not None: label = self.label_list.index(example.label) else: label = 0 sample = build_sample(ids_list, positions=positions_list, masks=sep_list, label=label, logit_mask=mask_list, target=target_list, unique_id=example.guid) return sample
Encode an input example using this pattern-verbalizer pair. :param example: the input example to encode :param priming: whether to use this example for priming :param labeled: if ``priming=True``, whether the label should be appended to this example :return: A tuple, consisting of a list of input ids and a list of token type ids
encode
python
THUDM/GLM
tasks/superglue/pvp.py
https://github.com/THUDM/GLM/blob/master/tasks/superglue/pvp.py
MIT
def encode(self, example: InputExample, priming: bool = False, labeled: bool = False): """ Encode an input example using this pattern-verbalizer pair. :param example: the input example to encode :param priming: whether to use this example for priming :param labeled: if ``priming=True``, whether the label should be appended to this example :return: A tuple, consisting of a list of input ids and a list of token type ids """ if self.args.loss_func in ['generative', 'mix']: sample = super().encode(example, priming=priming, labeled=labeled) if self.split == 'train': sample['label'] = 0 return sample if not priming: assert not labeled, "'labeled' can only be set to true if 'priming' is also set to true" tokenizer = self.tokenizer prompt_id = tokenizer.num_tokens raw_parts_a, raw_parts_b = self.get_parts(example) raw_parts_a = [x if isinstance(x, tuple) else (x, False) for x in raw_parts_a] def encode_input(raw_parts): parts = [] for x, s in raw_parts: if isinstance(x, str): x = tokenizer.EncodeAsIds(x) elif isinstance(x, int): x = [prompt_id] * x else: pass parts.append((x, s)) return parts parts_a = encode_input(raw_parts_a) if self.prefix_prompt > 0: parts_a = [([prompt_id] * self.prefix_prompt, False)] + parts_a parts_b = None if raw_parts_b: raw_parts_b = [x if isinstance(x, tuple) else (x, False) for x in raw_parts_b] parts_b = encode_input(raw_parts_b) answer = self.get_answers(example)[0] answer_ids = get_verbalization_ids(answer, tokenizer, force_single_token=False) answer_ids = answer_ids + [tokenizer.get_command('eop').Id] self.num_truncated += self.truncate(parts_a, parts_b, answer_ids, max_length=self.max_seq_length) tokens_a = [token_id for part, _ in parts_a for token_id in part] tokens_b = [token_id for part, _ in parts_b for token_id in part] if parts_b else None data = build_input_from_ids(tokens_a, tokens_b, answer_ids, self.max_seq_length, self.tokenizer, args=self.args, add_cls=True, add_sep=False, add_piece=True) ids, types, paddings, position_ids, sep, target_ids, loss_masks = data prompt_pos = [idx for idx, token in enumerate(ids) if token == prompt_id] ids = [token if token != prompt_id else 0 for token in ids] if example.label is not None: label = self.label_list.index(example.label) else: label = 0 return {'text': np.array(ids, dtype=np.int64), 'target': np.array(target_ids, dtype=np.int64), 'attention_mask': np.array(sep, dtype=np.int64), 'loss_mask': np.array(loss_masks, dtype=np.int64), "position_id": np.array(position_ids, dtype=np.int64), 'prompt_pos': np.array(prompt_pos, dtype=np.int64), 'label': label, 'uid': example.guid}
Encode an input example using this pattern-verbalizer pair. :param example: the input example to encode :param priming: whether to use this example for priming :param labeled: if ``priming=True``, whether the label should be appended to this example :return: A tuple, consisting of a list of input ids and a list of token type ids
encode
python
THUDM/GLM
tasks/superglue/pvp.py
https://github.com/THUDM/GLM/blob/master/tasks/superglue/pvp.py
MIT
def get_verbalization_ids(word: str, tokenizer, force_single_token: bool) -> Union[int, List[int]]: """ Get the token ids corresponding to a verbalization :param word: the verbalization :param tokenizer: the tokenizer to use :param force_single_token: whether it should be enforced that the verbalization corresponds to a single token. If set to true, this method returns a single int instead of a list and throws an error if the word corresponds to multiple tokens. :return: either the list of token ids or the single token id corresponding to this word """ ids = tokenizer.EncodeAsIds(word).tokenization if not force_single_token: return ids assert len(ids) == 1, \ f'Verbalization "{word}" does not correspond to a single token, got {tokenizer.DecodeIds(ids)}' verbalization_id = ids[0] assert verbalization_id not in tokenizer.command_id_map, \ f'Verbalization {word} is mapped to a special token {tokenizer.IdToToken(verbalization_id)}' return verbalization_id
Get the token ids corresponding to a verbalization :param word: the verbalization :param tokenizer: the tokenizer to use :param force_single_token: whether it should be enforced that the verbalization corresponds to a single token. If set to true, this method returns a single int instead of a list and throws an error if the word corresponds to multiple tokens. :return: either the list of token ids or the single token id corresponding to this word
get_verbalization_ids
python
THUDM/GLM
tasks/superglue/pvp.py
https://github.com/THUDM/GLM/blob/master/tasks/superglue/pvp.py
MIT
def search_github_code_byapi(token: str, peer_page: int = 50, page: int = 1, excludes: list = []) -> list[str]: """ curl -Ls -o response.json -H "Authorization: Bearer <token>" https://api.github.com/search/code?q=%22%2Fapi%2Fv1%2Fclient%2Fsubscribe%3Ftoken%3D%22&sort=indexed&order=desc&per_page=30&page=1 """ if utils.isblank(token): return [] peer_page, page = min(max(peer_page, 1), 100), max(1, page) url = f"https://api.github.com/search/code?q=%22%2Fapi%2Fv1%2Fclient%2Fsubscribe%3Ftoken%3D%22&sort=indexed&order=desc&per_page={peer_page}&page={page}" headers = { "Accept": "application/vnd.github+json", "Authorization": f"Bearer {token}", # "X-GitHub-Api-Version": "2022-11-28" } content, links = utils.http_get(url=url, headers=headers), set() if utils.isblank(content): return [] try: items = json.loads(content).get("items", []) excludes = list(set(excludes)) for item in items: if not item or type(item) != dict: continue link = item.get("html_url", "") if utils.isblank(link): continue reponame = item.get("repository", {}).get("full_name", "") + "/" if not intercept(text=reponame, excludes=excludes): links.add(link) return list(links) except: return []
curl -Ls -o response.json -H "Authorization: Bearer <token>" https://api.github.com/search/code?q=%22%2Fapi%2Fv1%2Fclient%2Fsubscribe%3Ftoken%3D%22&sort=indexed&order=desc&per_page=30&page=1
search_github_code_byapi
python
wzdnzd/aggregator
subscribe/crawl.py
https://github.com/wzdnzd/aggregator/blob/master/subscribe/crawl.py
Apache-2.0
def download_mmdb(repo: str, target: str, filepath: str, retry: int = 3) -> bool: """ Download GeoLite2-City.mmdb from github release """ repo = utils.trim(text=repo) if not repo or len(repo.split("/", maxsplit=1)) != 2: logger.error(f"invalid github repo name: {repo}") return False target = utils.trim(text=target) if not target: logger.error("invalid download target") return False # extract download url from github release page release_api = f"https://api.github.com/repos/{repo}/releases/latest?per_page=1" assets, content = None, utils.http_get(url=release_api) try: data = json.loads(content) assets = data.get("assets", []) except: logger.error(f"failed download {target} due to cannot extract download url through Github API") if not assets or not isinstance(assets, list): logger.error(f"no assets found for {target} in github release") return False download_url = "" for asset in assets: if asset.get("name", "") == target: download_url = asset.get("browser_download_url", "") break if not download_url: logger.error(f"no download url found for {target} in github release") return False return download(download_url, filepath, target, retry)
Download GeoLite2-City.mmdb from github release
download_mmdb
python
wzdnzd/aggregator
subscribe/location.py
https://github.com/wzdnzd/aggregator/blob/master/subscribe/location.py
Apache-2.0
def download(url: str, filepath: str, filename: str, retry: int = 3) -> bool: """Download file from url to filepath with filename""" if retry < 0: logger.error(f"archieved max retry count for download, url: {url}") return False url = utils.trim(text=url) if not url: logger.error("invalid download url") return False filepath = utils.trim(text=filepath) if not filepath: logger.error(f"invalid save filepath, url: {url}") return False filename = utils.trim(text=filename) if not filename: logger.error(f"invalid save filename, url: {url}") return False if not os.path.exists(filepath) or not os.path.isdir(filepath): os.makedirs(filepath) fullpath = os.path.join(filepath, filename) if os.path.exists(fullpath) and os.path.isfile(fullpath): os.remove(fullpath) # download target file from github release to fullpath try: urllib.request.urlretrieve(url=url, filename=fullpath) except Exception: return download(url, filepath, filename, retry - 1) logger.info(f"download file {filename} to {fullpath} success") return True
Download file from url to filepath with filename
download
python
wzdnzd/aggregator
subscribe/location.py
https://github.com/wzdnzd/aggregator/blob/master/subscribe/location.py
Apache-2.0
def query_ip_country(ip: str, reader: database.Reader) -> str: """ Query country information for an IP address using mmdb database Args: ip: The IP address to query reader: The mmdb database reader Returns: The country name in Chinese """ if not ip or not reader: return "" try: # fake ip if ip.startswith("198.18.0."): logger.warning("cannot get geolocation because IP address is faked") return "" response = reader.country(ip) # Try to get country name in Chinese country = response.country.names.get("zh-CN", "") # If Chinese name is not available, try to convert ISO code to Chinese country name if not country and response.country.iso_code: iso_code = response.country.iso_code # Try to get Chinese country name from ISO code mapping country = ISO_TO_CHINESE.get(iso_code, iso_code) # Special handling for well-known IPs if not country: if ip == "1.1.1.1" or ip == "1.0.0.1": country = "Cloudflare" elif ip.startswith("8.8.8.") or ip.startswith("8.8.4."): country = "Google" return country except Exception as e: logger.error(f"query ip country failed, ip: {ip}, error: {str(e)}") return ""
Query country information for an IP address using mmdb database Args: ip: The IP address to query reader: The mmdb database reader Returns: The country name in Chinese
query_ip_country
python
wzdnzd/aggregator
subscribe/location.py
https://github.com/wzdnzd/aggregator/blob/master/subscribe/location.py
Apache-2.0
def get_listening_ports() -> set: """Get the set of listening ports in the system, cross-platform compatible""" listening_ports = set() try: # Windows system if os.name == "nt": try: # Use 'cp437' encoding to handle Windows command line output output = subprocess.check_output("netstat -an", shell=True).decode("cp437", errors="replace") for line in output.split("\n"): if "LISTENING" in line: parts = line.split() if len(parts) >= 2: addr_port = parts[1] if ":" in addr_port: try: port = int(addr_port.split(":")[-1]) listening_ports.add(port) except ValueError: pass except Exception as e: logger.warning(f"Windows netstat command failed: {str(e)}") return listening_ports # macOS system elif sys.platform == "darwin": try: output = subprocess.check_output("lsof -i -P -n | grep LISTEN", shell=True).decode( "utf-8", errors="replace" ) for line in output.split("\n"): if ":" in line: try: port_part = line.split(":")[-1].split(" ")[0] port = int(port_part) listening_ports.add(port) except (ValueError, IndexError): pass except Exception as e: logger.warning(f"macOS lsof command failed: {str(e)}") return listening_ports # Linux and other systems else: # Try using ss command (newer Linux systems) try: output = subprocess.check_output("ss -tuln", shell=True).decode("utf-8", errors="replace") for line in output.split("\n"): if "LISTEN" in line: parts = line.split() for part in parts: if ":" in part: try: port = int(part.split(":")[-1]) listening_ports.add(port) except ValueError: pass except Exception as e: logger.warning(f"Linux ss command failed, trying netstat: {str(e)}") # Fall back to netstat command (older Linux systems) try: output = subprocess.check_output("netstat -tuln", shell=True).decode("utf-8", errors="replace") for line in output.split("\n"): if "LISTEN" in line: parts = line.split() for part in parts: if ":" in part: try: port = int(part.split(":")[-1]) listening_ports.add(port) except ValueError: pass except Exception as e: logger.warning(f"Linux netstat command also failed: {str(e)}") return listening_ports except Exception as e: logger.warning(f"Failed to get listening ports: {str(e)}") return listening_ports
Get the set of listening ports in the system, cross-platform compatible
get_listening_ports
python
wzdnzd/aggregator
subscribe/location.py
https://github.com/wzdnzd/aggregator/blob/master/subscribe/location.py
Apache-2.0
def scan_ports_batch(start_port: int, count: int = 100) -> dict: """Batch scan port statuses, return a dictionary of port statuses""" global _PORT_STATUS_CACHE, _AVAILABLE_PORTS # Create a list of ports to scan (excluding ports with known status) ports_to_scan = [p for p in range(start_port, start_port + count) if p not in _PORT_STATUS_CACHE] if not ports_to_scan: # If all ports are already cached, return cached results directly return {p: _PORT_STATUS_CACHE.get(p, True) for p in range(start_port, start_port + count)} # Use a more efficient way to check ports in batch results = {} try: # Get the ports that are currently listening in the system listening_ports = get_listening_ports() # Update results for port in ports_to_scan: in_use = port in listening_ports results[port] = in_use _PORT_STATUS_CACHE[port] = in_use if not in_use: _AVAILABLE_PORTS.add(port) except Exception as e: logger.warning(f"Batch port scanning failed, falling back to individual port checks: {str(e)}") # If batch checking fails, fall back to individual port checks for port in ports_to_scan: in_use = check_single_port(port) results[port] = in_use _PORT_STATUS_CACHE[port] = in_use if not in_use: _AVAILABLE_PORTS.add(port) # Merge cached and newly scanned results return { **{ p: _PORT_STATUS_CACHE.get(p, True) for p in range(start_port, start_port + count) if p in _PORT_STATUS_CACHE }, **results, }
Batch scan port statuses, return a dictionary of port statuses
scan_ports_batch
python
wzdnzd/aggregator
subscribe/location.py
https://github.com/wzdnzd/aggregator/blob/master/subscribe/location.py
Apache-2.0
def check_single_port(port: int) -> bool: """Helper function for checking a single port, checks if the port is listening""" try: # Use socket to check TCP port sock = socket.socket(socket.AF_INET, socket.SOCK_STREAM) sock.settimeout(0.2) result = sock.connect_ex(("127.0.0.1", port)) sock.close() if result == 0: return True # Also check IPv6 try: sock = socket.socket(socket.AF_INET6, socket.SOCK_STREAM) sock.settimeout(0.2) result = sock.connect_ex(("::1", port)) sock.close() return result == 0 except: pass return False except: # Assume port is not in use when an error occurs return False
Helper function for checking a single port, checks if the port is listening
check_single_port
python
wzdnzd/aggregator
subscribe/location.py
https://github.com/wzdnzd/aggregator/blob/master/subscribe/location.py
Apache-2.0
def is_port_in_use(port: int) -> bool: """Check if a port is in use (using cache)""" global _PORT_STATUS_CACHE, _AVAILABLE_PORTS # If port is known to be available, return directly if port in _AVAILABLE_PORTS: return False # If port status is already cached, return directly if port in _PORT_STATUS_CACHE: return _PORT_STATUS_CACHE[port] # Otherwise check the port and cache the result in_use = check_single_port(port) _PORT_STATUS_CACHE[port] = in_use if not in_use: _AVAILABLE_PORTS.add(port) return in_use
Check if a port is in use (using cache)
is_port_in_use
python
wzdnzd/aggregator
subscribe/location.py
https://github.com/wzdnzd/aggregator/blob/master/subscribe/location.py
Apache-2.0
def generate_mihomo_config(proxies: list[dict]) -> tuple[dict, dict]: """Generate mihomo configuration for the given proxies""" # Base configuration config = { "mixed-port": 7890, "allow-lan": True, "mode": "global", "log-level": "error", "proxies": proxies, "dns": { "enable": True, "enhanced-mode": "fake-ip", "fake-ip-range": "198.18.0.1/16", "default-nameserver": ["114.114.114.114", "223.5.5.5", "8.8.8.8"], "nameserver": ["https://doh.pub/dns-query"], }, "listeners": [], } # Record the port assigned to each proxy records = dict() # If there are no proxies, return directly if not proxies: return config, records # Pre-scan ports in batch to improve efficiency start_port = 32001 # Scan enough ports to ensure there are sufficient available ports port_count = len(proxies) * 2 port_status = scan_ports_batch(start_port, port_count) # Find all available ports available_ports = [p for p, in_use in port_status.items() if not in_use] # If available ports are insufficient, scan more ports if len(available_ports) < len(proxies): additional_ports = scan_ports_batch(start_port + port_count, port_count * 2) available_ports.extend([p for p, in_use in additional_ports.items() if not in_use]) # Assign an available port to each proxy for index, proxy in enumerate(proxies): if index < len(available_ports): port = available_ports[index] else: # If available ports are insufficient, use traditional method to find available ports port = start_port + port_count + index max_attempts = 1000 attempts = 0 while is_port_in_use(port) and attempts < max_attempts: port += 1 attempts += 1 if attempts >= max_attempts: logger.warning( f"Could not find an available port for proxy {proxy['name']} after {max_attempts} attempts" ) continue listener = { "name": f"http-{index}", "type": "http", "port": port, "proxy": proxy["name"], "listen": "127.0.0.1", "users": [], } config["listeners"].append(listener) records[proxy["name"]] = port return config, records
Generate mihomo configuration for the given proxies
generate_mihomo_config
python
wzdnzd/aggregator
subscribe/location.py
https://github.com/wzdnzd/aggregator/blob/master/subscribe/location.py
Apache-2.0
def make_proxy_request(port: int, url: str, max_retries: int = 5, timeout: int = 10) -> tuple[bool, dict]: """ Make an HTTP request through a proxy and return the response Args: port: The port of the proxy url: The URL to request max_retries: Maximum number of retry attempts timeout: Timeout for the request in seconds Returns: A tuple of (success, data) where: - success: Whether the request was successful - data: The parsed JSON data (empty dict if request failed) """ if not port: logger.warning("No port provided for proxy") return False, {} # Configure the proxy for the request proxy_url = f"http://127.0.0.1:{port}" proxies_config = {"http": proxy_url, "https": proxy_url} # Configure proxy handler proxy_handler = urllib.request.ProxyHandler(proxies_config) # Build opener with proxy handler opener = urllib.request.build_opener(proxy_handler) opener.addheaders = [ ("User-Agent", utils.USER_AGENT), ("Accept", "application/json"), ("Connection", "close"), ] # Try to get response with retry and backoff attempt, success, data = 0, False, {} while not success and attempt < max(max_retries, 1): try: # Random sleep to avoid being blocked by the API (increasing with each retry) if attempt > 0: wait_time = min(2**attempt * random.uniform(0.5, 1.5), 6) time.sleep(wait_time) # Make request response = opener.open(url, timeout=timeout) if response.getcode() == 200: content = response.read().decode("utf-8") data = json.loads(content) success = True except Exception as e: logger.warning(f"Attempt {attempt+1} failed to request {url} through proxy port {port}: {str(e)}") attempt += 1 return success, data
Make an HTTP request through a proxy and return the response Args: port: The port of the proxy url: The URL to request max_retries: Maximum number of retry attempts timeout: Timeout for the request in seconds Returns: A tuple of (success, data) where: - success: Whether the request was successful - data: The parsed JSON data (empty dict if request failed)
make_proxy_request
python
wzdnzd/aggregator
subscribe/location.py
https://github.com/wzdnzd/aggregator/blob/master/subscribe/location.py
Apache-2.0
def get_ipv4(port: int, max_retries: int = 5) -> str: """ Get the IPv4 address by accessing https://api.ipify.org?format=json through a proxy Args: port: The port of the proxy max_retries: Maximum number of retry attempts Returns: The IPv4 address or empty string if failed """ if not port: logger.warning("No port provided for proxy") return "" success, data = make_proxy_request(port=port, url="https://api.ipify.org?format=json", max_retries=max_retries) return data.get("ip", "") if success else ""
Get the IPv4 address by accessing https://api.ipify.org?format=json through a proxy Args: port: The port of the proxy max_retries: Maximum number of retry attempts Returns: The IPv4 address or empty string if failed
get_ipv4
python
wzdnzd/aggregator
subscribe/location.py
https://github.com/wzdnzd/aggregator/blob/master/subscribe/location.py
Apache-2.0
def locate_by_ipinfo(name: str, port: int, reader: database.Reader = None) -> dict: """Check the location of a single proxy by making a request through it""" result = {"name": name, "country": ""} if not port: logger.warning(f"No port found for proxy {name}") return result if reader: # Get IP address through proxy if ip := get_ipv4(port=port, max_retries=2): country = query_ip_country(ip, reader) if country: result["country"] = country return result # Random sleep to avoid being blocked by the API time.sleep(random.uniform(0.01, 0.5)) api_services = [ {"url": "https://ipinfo.io", "country_key": "country"}, {"url": "https://ipapi.co/json/", "country_key": "country_code"}, {"url": "https://ipwho.is", "country_key": "country_code"}, {"url": "https://freeipapi.com/api/json", "country_key": "countryCode"}, {"url": "https://api.country.is", "country_key": "country"}, {"url": "https://api.ip.sb/geoip", "country_key": "country_code"}, ] max_retries = 3 for attempt in range(max_retries): service = random.choice(api_services) # We're already handling retries in this loop success, data = make_proxy_request(port=port, url=service["url"], max_retries=1, timeout=12) if success: # Extract country code from the response using the service-specific key country_key = service["country_key"] country_code = data.get(country_key, "") if country_code: # Convert ISO code to Chinese country name result["country"] = ISO_TO_CHINESE.get(country_code, country_code) break # If request failed, wait before trying another service if attempt < max_retries - 1: wait_time = min(2**attempt * random.uniform(1, 2), 6) logger.warning( f"Attempt {attempt+1} failed for proxy {name} with {service['url']}, waiting {wait_time:.2f}s" ) time.sleep(wait_time) return result
Check the location of a single proxy by making a request through it
locate_by_ipinfo
python
wzdnzd/aggregator
subscribe/location.py
https://github.com/wzdnzd/aggregator/blob/master/subscribe/location.py
Apache-2.0
def get_messages(self, account: Account) -> list: """download a list of messages currently in the account.""" if not account or not self.auth_headers: return [] content = utils.http_get( url="{}/messages?page={}".format(self.api_address, 1), headers=self.auth_headers, retry=2, ) messages = [] if not content: return messages try: dataset = json.loads(content).get("hydra:member", []) for message_data in dataset: content = utils.http_get( url=f"{self.api_address}/messages/{message_data['id']}", headers=self.auth_headers, ) if not content: continue data = json.loads(content) text = data.get("text", "") html = data.get("html", "") messages.append( Message( id=message_data["id"], sender=message_data["from"], to=message_data["to"], subject=message_data["subject"], intro=message_data["intro"], text=text, html=html, data=message_data, ) ) except: logger.error(f"failed to list messages, email: {self.address}") return messages
download a list of messages currently in the account.
get_messages
python
wzdnzd/aggregator
subscribe/mailtm.py
https://github.com/wzdnzd/aggregator/blob/master/subscribe/mailtm.py
Apache-2.0
def delete_account(self, account: Account) -> bool: """try to delete the account. returns True if it succeeds.""" if account is None or not self.auth_headers: return False try: request = urllib.request.Request( url=f"{self.api_address}/accounts/{account.id}", headers=self.auth_headers, method="DELETE", ) response = urllib.request.urlopen(request, timeout=10, context=utils.CTX) status_code = response.getcode() return status_code == 204 except Exception: logger.info(f"[MailTMError] delete account failed, domain: {self.api_address}, address: {account.address}") return False
try to delete the account. returns True if it succeeds.
delete_account
python
wzdnzd/aggregator
subscribe/mailtm.py
https://github.com/wzdnzd/aggregator/blob/master/subscribe/mailtm.py
Apache-2.0
def download_mmdb(repo: str, target: str, filepath: str, retry: int = 3): """ Download GeoLite2-City.mmdb from github release """ repo = trim(text=repo) if not repo or len(repo.split("/", maxsplit=1)) != 2: raise ValueError(f"invalid github repo name: {repo}") target = trim(target) if not target: raise ValueError("invalid download target") # extract download url from github release page release_api = f"https://api.github.com/repos/{repo}/releases/latest?per_page=1" headers = { "User-Agent": "Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/126.0.0.0 Safari/537.36", "Accept": "text/html,application/xhtml+xml,application/xml;q=0.9,image/webp,image/apng,*/*;q=0.8,application/signed-exchange;v=b3;q=0.9", } count, response = 0, None while count < retry and response is None: try: request = urllib.request.Request(url=release_api, headers=headers) response = urllib.request.urlopen(request, timeout=10, context=CTX) except Exception: count += 1 assets = read_response(response=response, expected=200, deserialize=True, key="assets") if not assets or not isinstance(assets, list): raise Exception("no assets found in github release") download_url = "" for asset in assets: if asset.get("name", "") == target: download_url = asset.get("browser_download_url", "") break if not download_url: raise Exception("no download url found in github release") download(download_url, filepath, target, retry)
Download GeoLite2-City.mmdb from github release
download_mmdb
python
wzdnzd/aggregator
tools/clean.py
https://github.com/wzdnzd/aggregator/blob/master/tools/clean.py
Apache-2.0
def download(url: str, filepath: str, filename: str, retry: int = 3) -> None: """Download file from url to filepath with filename""" if retry < 0: raise Exception("archieved max retry count for download") url = trim(url) if not url: raise ValueError("invalid download url") filepath = trim(filepath) if not filepath: raise ValueError("invalid save filepath") filename = trim(filename) if not filename: raise ValueError("invalid save filename") if not os.path.exists(filepath) or not os.path.isdir(filepath): os.makedirs(filepath) fullpath = os.path.join(filepath, filename) if os.path.exists(fullpath) and os.path.isfile(fullpath): os.remove(fullpath) # download target file from github release to fullpath try: urllib.request.urlretrieve(url=url, filename=fullpath) except Exception: return download(url, filepath, filename, retry - 1) print(f"download file {filename} to {fullpath} success")
Download file from url to filepath with filename
download
python
wzdnzd/aggregator
tools/clean.py
https://github.com/wzdnzd/aggregator/blob/master/tools/clean.py
Apache-2.0
def download_mmdb(target: str, filepath: str, retry: int = 3): """ Download GeoLite2-City.mmdb from github release """ target = trim(target) if not target: raise ValueError("invalid download target") # extract download url from github release page release_api = "https://api.github.com/repos/PrxyHunter/GeoLite2/releases/latest?per_page=1" count, response = 0, None while count < retry and response is None: try: response = requests.get(release_api, timeout=10) except Exception: count += 1 if not response or response.status_code != 200: raise Exception("request github release api failed") assets = response.json().get("assets", []) if not assets: raise Exception("no assets found in github release") download_url = "" for asset in assets: if asset.get("name", "") == target: download_url = asset.get("browser_download_url", "") break if not download_url: raise Exception("no download url found in github release") download(download_url, filepath, target, retry, 60)
Download GeoLite2-City.mmdb from github release
download_mmdb
python
wzdnzd/aggregator
tools/ip-location.py
https://github.com/wzdnzd/aggregator/blob/master/tools/ip-location.py
Apache-2.0
def download(url: str, filepath: str, filename: str, retry: int = 3, timeout: int = 10) -> None: """Download file from url to filepath with filename""" if retry < 0: raise Exception("archieved max retry count for download") url = trim(url) if not url: raise ValueError("invalid download url") filepath = trim(filepath) if not filepath: raise ValueError("invalid save filepath") filename = trim(filename) if not filename: raise ValueError("invalid save filename") if not os.path.exists(filepath) or not os.path.isdir(filepath): os.makedirs(filepath) fullpath = os.path.join(filepath, filename) if os.path.exists(fullpath) and os.path.isfile(fullpath): os.remove(fullpath) # download target file from github release to fullpath timeout = max(timeout, 6) try: with requests.get(url, stream=True, timeout=timeout) as r: r.raise_for_status() with open(fullpath, "wb") as f: for chunk in r.iter_content(chunk_size=8192): f.write(chunk) f.flush() except Exception: return download(url, filepath, filename, retry - 1, min(timeout * 2, 180)) print(f"download file {filename} to {fullpath} success")
Download file from url to filepath with filename
download
python
wzdnzd/aggregator
tools/ip-location.py
https://github.com/wzdnzd/aggregator/blob/master/tools/ip-location.py
Apache-2.0
def download_mmdb(repo: str, target: str, filepath: str, retry: int = 3): """ Download GeoLite2-City.mmdb from github release """ repo = trim(text=repo) if not repo or len(repo.split("/", maxsplit=1)) != 2: raise ValueError(f"invalid github repo name: {repo}") target = trim(target) if not target: raise ValueError("invalid download target") # extract download url from github release page release_api = f"https://api.github.com/repos/{repo}/releases/latest?per_page=1" headers = { "User-Agent": USER_AGENT, "Accept": "text/html,application/xhtml+xml,application/xml;q=0.9,image/webp,image/apng,*/*;q=0.8,application/signed-exchange;v=b3;q=0.9", } count, response = 0, None while count < retry and response is None: try: request = urllib.request.Request(url=release_api, headers=headers) response = urllib.request.urlopen(request, timeout=10, context=CTX) except Exception: count += 1 assets = read_response(response=response, expected=200, deserialize=True, key="assets") if not assets or not isinstance(assets, list): raise Exception("no assets found in github release") download_url = "" for asset in assets: if asset.get("name", "") == target: download_url = asset.get("browser_download_url", "") break if not download_url: raise Exception("no download url found in github release") download(download_url, filepath, target, retry)
Download GeoLite2-City.mmdb from github release
download_mmdb
python
wzdnzd/aggregator
tools/xui.py
https://github.com/wzdnzd/aggregator/blob/master/tools/xui.py
Apache-2.0
def download(url: str, filepath: str, filename: str, retry: int = 3) -> None: """Download file from url to filepath with filename""" if retry < 0: raise Exception("archieved max retry count for download") url = trim(url) if not url: raise ValueError("invalid download url") filepath = trim(filepath) if not filepath: raise ValueError("invalid save filepath") filename = trim(filename) if not filename: raise ValueError("invalid save filename") if not os.path.exists(filepath) or not os.path.isdir(filepath): os.makedirs(filepath) fullpath = os.path.join(filepath, filename) if os.path.exists(fullpath) and os.path.isfile(fullpath): os.remove(fullpath) # download target file from github release to fullpath try: urllib.request.urlretrieve(url=url, filename=fullpath) except Exception: return download(url, filepath, filename, retry - 1) print(f"download file {filename} to {fullpath} success")
Download file from url to filepath with filename
download
python
wzdnzd/aggregator
tools/xui.py
https://github.com/wzdnzd/aggregator/blob/master/tools/xui.py
Apache-2.0
def test_synthetic_arange_random_n_data(): """Test if correct data quantity is generated by synthetic_arange_random.""" n_list = [10, 20] for n in n_list: y_pred, y_std, y_true, x = synthetic_arange_random(n) assert len(y_pred) == n assert len(y_std) == n assert len(y_true) == n assert len(x) == n
Test if correct data quantity is generated by synthetic_arange_random.
test_synthetic_arange_random_n_data
python
uncertainty-toolbox/uncertainty-toolbox
tests/test_data.py
https://github.com/uncertainty-toolbox/uncertainty-toolbox/blob/master/tests/test_data.py
MIT
def test_synthetic_sine_heteroscedastic_n_data(): """Test if correct data quantity is generated by synthetic_sine_heteroscedastic.""" n_list = [10, 20] for n in n_list: y_pred, y_std, y_true, x = synthetic_sine_heteroscedastic(n) assert len(y_pred) == n assert len(y_std) == n assert len(y_true) == n assert len(x) == n
Test if correct data quantity is generated by synthetic_sine_heteroscedastic.
test_synthetic_sine_heteroscedastic_n_data
python
uncertainty-toolbox/uncertainty-toolbox
tests/test_data.py
https://github.com/uncertainty-toolbox/uncertainty-toolbox/blob/master/tests/test_data.py
MIT
def test_get_all_accuracy_metrics_returns(get_test_set): """Test if correct accuracy metrics are returned.""" y_pred, y_std, y_true = get_test_set met_dict = get_all_accuracy_metrics(y_pred, y_true) met_keys = met_dict.keys() assert len(met_keys) == 6 met_str_list = ["mae", "rmse", "mdae", "marpd", "r2", "corr"] bool_list = [s in met_keys for s in met_str_list] assert all(bool_list)
Test if correct accuracy metrics are returned.
test_get_all_accuracy_metrics_returns
python
uncertainty-toolbox/uncertainty-toolbox
tests/test_metrics.py
https://github.com/uncertainty-toolbox/uncertainty-toolbox/blob/master/tests/test_metrics.py
MIT
def test_get_all_average_calibration_returns(get_test_set): """Test if correct average calibration metrics are returned.""" n_bins = 20 met_dict = get_all_average_calibration(*get_test_set, n_bins) met_keys = met_dict.keys() assert len(met_keys) == 3 met_str_list = ["rms_cal", "ma_cal", "miscal_area"] bool_list = [s in met_keys for s in met_str_list] assert all(bool_list)
Test if correct average calibration metrics are returned.
test_get_all_average_calibration_returns
python
uncertainty-toolbox/uncertainty-toolbox
tests/test_metrics.py
https://github.com/uncertainty-toolbox/uncertainty-toolbox/blob/master/tests/test_metrics.py
MIT
def test_get_all_adversarial_group_calibration_returns(get_test_set): """Test if correct adversarial group calibration metrics are returned.""" n_bins = 20 met_dict = get_all_adversarial_group_calibration(*get_test_set, n_bins) met_keys = met_dict.keys() assert len(met_keys) == 2 met_str_list = ["ma_adv_group_cal", "rms_adv_group_cal"] bool_list = [s in met_keys for s in met_str_list] assert all(bool_list) for met_str in met_str_list: inner_dict = met_dict[met_str] inner_keys = inner_dict.keys() assert len(inner_keys) == 3 inner_str_list = [ "group_sizes", "adv_group_cali_mean", "adv_group_cali_stderr", ] bool_list = [s in inner_keys for s in inner_str_list] assert all(bool_list)
Test if correct adversarial group calibration metrics are returned.
test_get_all_adversarial_group_calibration_returns
python
uncertainty-toolbox/uncertainty-toolbox
tests/test_metrics.py
https://github.com/uncertainty-toolbox/uncertainty-toolbox/blob/master/tests/test_metrics.py
MIT
def test_get_all_sharpness_metrics_returns(get_test_set): """Test if correct sharpness metrics are returned.""" y_pred, y_std, y_true = get_test_set met_dict = get_all_sharpness_metrics(y_std) met_keys = met_dict.keys() assert len(met_keys) == 1 assert "sharp" in met_keys
Test if correct sharpness metrics are returned.
test_get_all_sharpness_metrics_returns
python
uncertainty-toolbox/uncertainty-toolbox
tests/test_metrics.py
https://github.com/uncertainty-toolbox/uncertainty-toolbox/blob/master/tests/test_metrics.py
MIT
def test_get_all_scoring_rule_metrics_returns(get_test_set): """Test if correct scoring rule metrics are returned.""" resolution = 99 scaled = True met_dict = get_all_scoring_rule_metrics(*get_test_set, resolution, scaled) met_keys = met_dict.keys() assert len(met_keys) == 4 met_str_list = ["nll", "crps", "check", "interval"] bool_list = [s in met_keys for s in met_str_list] assert all(bool_list)
Test if correct scoring rule metrics are returned.
test_get_all_scoring_rule_metrics_returns
python
uncertainty-toolbox/uncertainty-toolbox
tests/test_metrics.py
https://github.com/uncertainty-toolbox/uncertainty-toolbox/blob/master/tests/test_metrics.py
MIT
def test_get_all_metrics_returns(get_test_set): """Test if correct metrics are returned by get_all_metrics function.""" met_dict = get_all_metrics(*get_test_set) met_keys = met_dict.keys() assert len(met_keys) == 5 met_str_list = [ "accuracy", "avg_calibration", "adv_group_calibration", "sharpness", "scoring_rule", ] bool_list = [s in met_keys for s in met_str_list] assert all(bool_list)
Test if correct metrics are returned by get_all_metrics function.
test_get_all_metrics_returns
python
uncertainty-toolbox/uncertainty-toolbox
tests/test_metrics.py
https://github.com/uncertainty-toolbox/uncertainty-toolbox/blob/master/tests/test_metrics.py
MIT
def test_prediction_error_metric_fields(get_test_set): """Test if prediction error metrics have correct fields.""" y_pred, y_std, y_true = get_test_set met_dict = prediction_error_metrics(y_pred, y_true) met_keys = met_dict.keys() assert len(met_keys) == 6 met_str_list = ["mae", "rmse", "mdae", "marpd", "r2", "corr"] bool_list = [s in met_keys for s in met_str_list] assert all(bool_list)
Test if prediction error metrics have correct fields.
test_prediction_error_metric_fields
python
uncertainty-toolbox/uncertainty-toolbox
tests/test_metrics_accuracy.py
https://github.com/uncertainty-toolbox/uncertainty-toolbox/blob/master/tests/test_metrics_accuracy.py
MIT
def test_prediction_error_metric_values(get_test_set): """Test if prediction error metrics have correct values.""" y_pred, y_std, y_true = get_test_set met_dict = prediction_error_metrics(y_pred, y_true) print(met_dict) assert met_dict["mae"] > 0.21 and met_dict["mae"] < 0.22 assert met_dict["rmse"] > 0.21 and met_dict["rmse"] < 0.22 assert met_dict["mdae"] >= 0.20 and met_dict["mdae"] < 0.21 assert met_dict["marpd"] > 12 and met_dict["marpd"] < 13 assert met_dict["r2"] > 0.88 and met_dict["r2"] < 0.89 assert met_dict["corr"] > 0.99 and met_dict["corr"] < 1.0
Test if prediction error metrics have correct values.
test_prediction_error_metric_values
python
uncertainty-toolbox/uncertainty-toolbox
tests/test_metrics_accuracy.py
https://github.com/uncertainty-toolbox/uncertainty-toolbox/blob/master/tests/test_metrics_accuracy.py
MIT
def test_sharpness_on_test_set(supply_test_set): """Test sharpness on the test set for some dummy values.""" _, test_std, _ = supply_test_set assert np.abs(sharpness(test_std) - 0.648074069840786) < 1e-6
Test sharpness on the test set for some dummy values.
test_sharpness_on_test_set
python
uncertainty-toolbox/uncertainty-toolbox
tests/test_metrics_calibration.py
https://github.com/uncertainty-toolbox/uncertainty-toolbox/blob/master/tests/test_metrics_calibration.py
MIT
def test_root_mean_squared_calibration_error_on_test_set(supply_test_set): """Test root mean squared calibration error on some dummy values.""" test_rmsce_nonvectorized_interval = root_mean_squared_calibration_error( *supply_test_set, num_bins=100, vectorized=False, recal_model=None, prop_type="interval" ) test_rmsce_vectorized_interval = root_mean_squared_calibration_error( *supply_test_set, num_bins=100, vectorized=True, recal_model=None, prop_type="interval" ) assert ( np.abs(test_rmsce_nonvectorized_interval - test_rmsce_vectorized_interval) < 1e-6 ) assert np.abs(test_rmsce_vectorized_interval - 0.4165757476562379) < 1e-6 test_rmsce_nonvectorized_quantile = root_mean_squared_calibration_error( *supply_test_set, num_bins=100, vectorized=False, recal_model=None, prop_type="quantile" ) test_rmsce_vectorized_quantile = root_mean_squared_calibration_error( *supply_test_set, num_bins=100, vectorized=True, recal_model=None, prop_type="quantile" ) assert ( np.abs(test_rmsce_nonvectorized_quantile - test_rmsce_vectorized_quantile) < 1e-6 ) assert np.abs(test_rmsce_vectorized_quantile - 0.30362567774902066) < 1e-6
Test root mean squared calibration error on some dummy values.
test_root_mean_squared_calibration_error_on_test_set
python
uncertainty-toolbox/uncertainty-toolbox
tests/test_metrics_calibration.py
https://github.com/uncertainty-toolbox/uncertainty-toolbox/blob/master/tests/test_metrics_calibration.py
MIT
def test_mean_absolute_calibration_error_on_test_set(supply_test_set): """Test mean absolute calibration error on some dummy values.""" test_mace_nonvectorized_interval = mean_absolute_calibration_error( *supply_test_set, num_bins=100, vectorized=False, recal_model=None, prop_type="interval" ) test_mace_vectorized_interval = mean_absolute_calibration_error( *supply_test_set, num_bins=100, vectorized=True, recal_model=None, prop_type="interval" ) assert ( np.abs(test_mace_nonvectorized_interval - test_mace_vectorized_interval) < 1e-6 ) assert np.abs(test_mace_vectorized_interval - 0.3733333333333335) < 1e-6 test_mace_nonvectorized_quantile = mean_absolute_calibration_error( *supply_test_set, num_bins=100, vectorized=False, recal_model=None, prop_type="quantile" ) test_mace_vectorized_quantile = mean_absolute_calibration_error( *supply_test_set, num_bins=100, vectorized=True, recal_model=None, prop_type="quantile" ) assert ( np.abs(test_mace_nonvectorized_quantile - test_mace_vectorized_quantile) < 1e-6 ) assert np.abs(test_mace_vectorized_quantile - 0.23757575757575758) < 1e-6
Test mean absolute calibration error on some dummy values.
test_mean_absolute_calibration_error_on_test_set
python
uncertainty-toolbox/uncertainty-toolbox
tests/test_metrics_calibration.py
https://github.com/uncertainty-toolbox/uncertainty-toolbox/blob/master/tests/test_metrics_calibration.py
MIT
def test_adversarial_group_calibration_on_test_set(supply_test_set): """Test adversarial group calibration on test set for some dummy values.""" test_out_interval = adversarial_group_calibration( *supply_test_set, cali_type="mean_abs", prop_type="interval", num_bins=100, num_group_bins=10, draw_with_replacement=False, num_trials=10, num_group_draws=10, verbose=False ) assert np.max(np.abs(test_out_interval.group_size - np.linspace(0, 1, 10))) < 1e-6 assert np.all(test_out_interval.score_mean < 0.5) assert np.abs(test_out_interval.score_mean[-1] - 0.3733333333333335) < 1e-6 assert np.min(test_out_interval.score_stderr) >= 0 test_out_quantile = adversarial_group_calibration( *supply_test_set, cali_type="mean_abs", prop_type="quantile", num_bins=100, num_group_bins=10, draw_with_replacement=False, num_trials=10, num_group_draws=10, verbose=False ) assert np.max(np.abs(test_out_quantile.group_size - np.linspace(0, 1, 10))) < 1e-6 assert np.all(test_out_quantile.score_mean < 0.5) assert np.abs(test_out_quantile.score_mean[-1] - 0.2375757575757576) < 1e-6 assert np.min(test_out_quantile.score_stderr) >= 0
Test adversarial group calibration on test set for some dummy values.
test_adversarial_group_calibration_on_test_set
python
uncertainty-toolbox/uncertainty-toolbox
tests/test_metrics_calibration.py
https://github.com/uncertainty-toolbox/uncertainty-toolbox/blob/master/tests/test_metrics_calibration.py
MIT
def test_miscalibration_area_on_test_set(supply_test_set): """Test miscalibration area on some dummy values.""" test_miscal_area_nonvectorized_interval = miscalibration_area( *supply_test_set, num_bins=100, vectorized=False, recal_model=None, prop_type="interval" ) test_miscal_area_vectorized_interval = miscalibration_area( *supply_test_set, num_bins=100, vectorized=True, recal_model=None, prop_type="interval" ) assert ( np.abs( test_miscal_area_nonvectorized_interval - test_miscal_area_vectorized_interval ) < 1e-6 ) assert np.abs(test_miscal_area_vectorized_interval - 0.37710437710437716) < 1e-6 test_miscal_area_nonvectorized_quantile = miscalibration_area( *supply_test_set, num_bins=100, vectorized=False, recal_model=None, prop_type="quantile" ) test_miscal_area_vectorized_quantile = miscalibration_area( *supply_test_set, num_bins=100, vectorized=True, recal_model=None, prop_type="quantile" ) assert ( np.abs( test_miscal_area_nonvectorized_quantile - test_miscal_area_vectorized_quantile ) < 1e-6 ) assert np.abs(test_miscal_area_vectorized_quantile - 0.23916245791245785) < 1e-6
Test miscalibration area on some dummy values.
test_miscalibration_area_on_test_set
python
uncertainty-toolbox/uncertainty-toolbox
tests/test_metrics_calibration.py
https://github.com/uncertainty-toolbox/uncertainty-toolbox/blob/master/tests/test_metrics_calibration.py
MIT
def test_vectorization_for_proportion_list_on_test_set(supply_test_set): """Test vectorization in get_proportion_lists on the test set for some dummy values.""" ( test_exp_props_nonvec_interval, test_obs_props_nonvec_interval, ) = get_proportion_lists( *supply_test_set, num_bins=100, recal_model=None, prop_type="interval" ) ( test_exp_props_vec_interval, test_obs_props_vec_interval, ) = get_proportion_lists_vectorized( *supply_test_set, num_bins=100, recal_model=None, prop_type="interval" ) assert ( np.max(np.abs(test_exp_props_nonvec_interval - test_exp_props_vec_interval)) < 1e-6 ) assert ( np.max(np.abs(test_obs_props_nonvec_interval - test_obs_props_vec_interval)) < 1e-6 ) ( test_exp_props_nonvec_quantile, test_obs_props_nonvec_quantile, ) = get_proportion_lists( *supply_test_set, num_bins=100, recal_model=None, prop_type="quantile" ) ( test_exp_props_vec_quantile, test_obs_props_vec_quantile, ) = get_proportion_lists_vectorized( *supply_test_set, num_bins=100, recal_model=None, prop_type="quantile" ) assert ( np.max(np.abs(test_exp_props_nonvec_quantile - test_exp_props_vec_quantile)) < 1e-6 ) assert ( np.max(np.abs(test_obs_props_nonvec_quantile - test_obs_props_vec_quantile)) < 1e-6 )
Test vectorization in get_proportion_lists on the test set for some dummy values.
test_vectorization_for_proportion_list_on_test_set
python
uncertainty-toolbox/uncertainty-toolbox
tests/test_metrics_calibration.py
https://github.com/uncertainty-toolbox/uncertainty-toolbox/blob/master/tests/test_metrics_calibration.py
MIT
def test_get_proportion_lists_vectorized_on_test_set(supply_test_set): """Test get_proportion_lists_vectorized on the test set for some dummy values.""" ( test_exp_props_interval, test_obs_props_interval, ) = get_proportion_lists_vectorized( *supply_test_set, num_bins=100, recal_model=None, prop_type="interval" ) assert test_exp_props_interval.shape == test_obs_props_interval.shape assert ( np.max(np.abs(np.unique(test_exp_props_interval) - np.linspace(0, 1, 100))) < 1e-6 ) assert ( np.max( np.abs( np.sort(np.unique(test_obs_props_interval)) - np.array([0.0, 0.33333333, 0.66666667, 1.0]) ) ) < 1e-6 ) ( test_exp_props_quantile, test_obs_props_quantile, ) = get_proportion_lists_vectorized( *supply_test_set, num_bins=100, recal_model=None, prop_type="quantile" ) assert test_exp_props_quantile.shape == test_obs_props_quantile.shape assert ( np.max(np.abs(np.unique(test_exp_props_quantile) - np.linspace(0, 1, 100))) < 1e-6 ) assert ( np.max( np.abs( np.sort(np.unique(test_obs_props_quantile)) - np.array([0.0, 0.33333333, 0.66666667, 1.0]) ) ) < 1e-6 )
Test get_proportion_lists_vectorized on the test set for some dummy values.
test_get_proportion_lists_vectorized_on_test_set
python
uncertainty-toolbox/uncertainty-toolbox
tests/test_metrics_calibration.py
https://github.com/uncertainty-toolbox/uncertainty-toolbox/blob/master/tests/test_metrics_calibration.py
MIT
def test_get_proportion_lists_on_test_set(supply_test_set): """Test get_proportion_lists on the test set for some dummy values.""" test_exp_props_interval, test_obs_props_interval = get_proportion_lists( *supply_test_set, num_bins=100, recal_model=None, prop_type="interval" ) assert len(test_exp_props_interval) == len(test_obs_props_interval) assert ( np.max(np.abs(np.unique(test_exp_props_interval) - np.linspace(0, 1, 100))) < 1e-6 ) assert ( np.max( np.abs( np.sort(np.unique(test_obs_props_interval)) - np.array([0.0, 0.33333333, 0.66666667, 1.0]) ) ) < 1e-6 ) test_exp_props_quantile, test_obs_props_quantile = get_proportion_lists( *supply_test_set, num_bins=100, recal_model=None, prop_type="quantile" ) assert len(test_exp_props_quantile) == len(test_obs_props_quantile) assert ( np.max(np.abs(np.unique(test_exp_props_quantile) - np.linspace(0, 1, 100))) < 1e-6 ) assert ( np.max( np.abs( np.sort(np.unique(test_obs_props_quantile)) - np.array([0.0, 0.33333333, 0.66666667, 1.0]) ) ) < 1e-6 )
Test get_proportion_lists on the test set for some dummy values.
test_get_proportion_lists_on_test_set
python
uncertainty-toolbox/uncertainty-toolbox
tests/test_metrics_calibration.py
https://github.com/uncertainty-toolbox/uncertainty-toolbox/blob/master/tests/test_metrics_calibration.py
MIT
def test_get_proportion_in_interval_on_test_set(supply_test_set): """Test get_proportion_in_interval on the test set for some dummy values.""" test_quantile_value_list = [ (0.0, 0.0), (0.25, 0.0), (0.5, 0.0), (0.75, 0.3333333333333333), (1.0, 1.0), ] for test_q, test_val in test_quantile_value_list: assert ( np.abs( get_proportion_in_interval(*supply_test_set, quantile=test_q) - test_val ) < 1e-6 )
Test get_proportion_in_interval on the test set for some dummy values.
test_get_proportion_in_interval_on_test_set
python
uncertainty-toolbox/uncertainty-toolbox
tests/test_metrics_calibration.py
https://github.com/uncertainty-toolbox/uncertainty-toolbox/blob/master/tests/test_metrics_calibration.py
MIT
def test_get_proportion_under_quantile_on_test_set(supply_test_set): """Test get_proportion_in_interval on the test set for some dummy values.""" test_quantile_value_list = [ (0.0, 0.0), (0.25, 0.6666666666666666), (0.5, 0.6666666666666666), (0.75, 0.6666666666666666), (1.0, 1.0), ] for test_q, test_val in test_quantile_value_list: assert ( np.abs( get_proportion_under_quantile(*supply_test_set, quantile=test_q) - test_val ) < 1e-6 )
Test get_proportion_in_interval on the test set for some dummy values.
test_get_proportion_under_quantile_on_test_set
python
uncertainty-toolbox/uncertainty-toolbox
tests/test_metrics_calibration.py
https://github.com/uncertainty-toolbox/uncertainty-toolbox/blob/master/tests/test_metrics_calibration.py
MIT
def test_get_prediction_interval_on_test_set(supply_test_set): """Test get_prediction_interval on the test set for some dummy values.""" test_quantile_value_list = [ ( 0.01, np.array([1.00125335, 2.00626673, 3.01253347]), np.array([0.99874665, 1.99373327, 2.98746653]), ), ( 0.25, np.array([1.03186394, 2.15931968, 3.31863936]), np.array([0.96813606, 1.84068032, 2.68136064]), ), ( 0.50, np.array([1.06744898, 2.33724488, 3.67448975]), np.array([0.93255102, 1.66275512, 2.32551025]), ), ( 0.75, np.array([1.11503494, 2.57517469, 4.15034938]), np.array([0.88496506, 1.42482531, 1.84965062]), ), ( 0.99, np.array([1.25758293, 3.28791465, 5.5758293]), np.array([0.74241707, 0.71208535, 0.4241707]), ), ] y_pred, y_std, y_true = supply_test_set with pytest.raises(Exception): bounds = get_prediction_interval(y_pred, y_std, quantile=0.0, recal_model=None) with pytest.raises(Exception): bounds = get_prediction_interval(y_pred, y_std, quantile=1.0, recal_model=None) for test_q, test_upper, test_lower in test_quantile_value_list: bounds = get_prediction_interval( y_pred, y_std, quantile=test_q, recal_model=None ) upper_bound = bounds.upper lower_bound = bounds.lower assert np.max(np.abs(upper_bound - test_upper)) < 1e-6 assert np.max(np.abs(upper_bound - test_upper)) < 1e-6
Test get_prediction_interval on the test set for some dummy values.
test_get_prediction_interval_on_test_set
python
uncertainty-toolbox/uncertainty-toolbox
tests/test_metrics_calibration.py
https://github.com/uncertainty-toolbox/uncertainty-toolbox/blob/master/tests/test_metrics_calibration.py
MIT
def test_get_quantile_on_test_set(supply_test_set): """Test get_prediction_interval on the test set for some dummy values.""" test_quantile_value_list = [ (0.01, np.array([0.76736521, 0.83682606, 0.67365213])), ( 0.25, np.array([0.93255102, 1.66275512, 2.32551025]), ), ( 0.50, np.array([1.0, 2.0, 3.0]), ), ( 0.75, np.array([1.06744898, 2.33724488, 3.67448975]), ), ( 0.99, np.array([1.23263479, 3.16317394, 5.32634787]), ), ] y_pred, y_std, y_true = supply_test_set with pytest.raises(Exception): bound = get_quantile(y_pred, y_std, quantile=0.0, recal_model=None) with pytest.raises(Exception): bound = get_quantile(y_pred, y_std, quantile=1.0, recal_model=None) for test_q, test_bound in test_quantile_value_list: bound = get_quantile(y_pred, y_std, quantile=test_q, recal_model=None) assert np.max(np.abs(bound - test_bound)) < 1e-6
Test get_prediction_interval on the test set for some dummy values.
test_get_quantile_on_test_set
python
uncertainty-toolbox/uncertainty-toolbox
tests/test_metrics_calibration.py
https://github.com/uncertainty-toolbox/uncertainty-toolbox/blob/master/tests/test_metrics_calibration.py
MIT
def test_nll_gaussian_on_one_pt(): """Sanity check by testing one point at mean of gaussian.""" y_pred = np.array([0]) y_true = np.array([0]) y_std = np.array([1 / np.sqrt(2 * np.pi)]) assert np.abs(nll_gaussian(y_pred, y_std, y_true)) < 1e-6
Sanity check by testing one point at mean of gaussian.
test_nll_gaussian_on_one_pt
python
uncertainty-toolbox/uncertainty-toolbox
tests/test_metrics_scoring_rule.py
https://github.com/uncertainty-toolbox/uncertainty-toolbox/blob/master/tests/test_metrics_scoring_rule.py
MIT
def test_check_score_on_one_pt(): """Sanity check to show that check score is minimized (i.e. 0) if data occurs at the exact requested quantile.""" y_pred = np.array([0]) y_true = np.array([1]) y_std = np.array([1]) score = check_score( y_pred=y_pred, y_std=y_std, y_true=y_true, start_q=0.5 + 0.341, end_q=0.5 + 0.341, resolution=1, ) assert np.abs(score) < 1e-2
Sanity check to show that check score is minimized (i.e. 0) if data occurs at the exact requested quantile.
test_check_score_on_one_pt
python
uncertainty-toolbox/uncertainty-toolbox
tests/test_metrics_scoring_rule.py
https://github.com/uncertainty-toolbox/uncertainty-toolbox/blob/master/tests/test_metrics_scoring_rule.py
MIT
def test_interval_score_on_one_pt(): """Sanity check on interval score. For one point in the center of the distribution and intervals one standard deviation and two standard deviations away, should return ((1 std) * 2 + (2 std) * 2) / 2 = 3. """ y_pred = np.array([0]) y_true = np.array([0]) y_std = np.array([1]) score = interval_score( y_pred=y_pred, y_std=y_std, y_true=y_true, start_p=0.682, end_p=0.954, resolution=2, ) assert np.abs(score - 3) < 1e-2
Sanity check on interval score. For one point in the center of the distribution and intervals one standard deviation and two standard deviations away, should return ((1 std) * 2 + (2 std) * 2) / 2 = 3.
test_interval_score_on_one_pt
python
uncertainty-toolbox/uncertainty-toolbox
tests/test_metrics_scoring_rule.py
https://github.com/uncertainty-toolbox/uncertainty-toolbox/blob/master/tests/test_metrics_scoring_rule.py
MIT
def test_recal_model_mace_criterion_on_test_set(supply_test_set): """ Test recalibration on mean absolute calibration error on the test set for some dummy values. """ test_mace = mean_absolute_calibration_error( *supply_test_set, num_bins=100, vectorized=True, recal_model=None ) test_exp_props, test_obs_props = get_proportion_lists_vectorized( *supply_test_set, num_bins=100, recal_model=None ) recal_model = iso_recal(test_exp_props, test_obs_props) recal_test_mace = mean_absolute_calibration_error( *supply_test_set, num_bins=100, vectorized=True, recal_model=recal_model ) recal_exp_props = recal_model.predict(test_obs_props) assert np.abs(test_mace - 0.24206060606060598) < 1e-2 assert np.abs(recal_test_mace - 0.003035353535353514) < 1e-2 for idx in range(1, recal_exp_props.shape[0]): assert recal_exp_props[idx - 1] <= recal_exp_props[idx]
Test recalibration on mean absolute calibration error on the test set for some dummy values.
test_recal_model_mace_criterion_on_test_set
python
uncertainty-toolbox/uncertainty-toolbox
tests/test_recalibration.py
https://github.com/uncertainty-toolbox/uncertainty-toolbox/blob/master/tests/test_recalibration.py
MIT
def test_recal_model_rmce_criterion_on_test_set(supply_test_set): """ Test recalibration on root mean squared calibration error on the test set for some dummy values. """ test_rmsce = root_mean_squared_calibration_error( *supply_test_set, num_bins=100, vectorized=True, recal_model=None ) test_exp_props, test_obs_props = get_proportion_lists_vectorized( *supply_test_set, num_bins=100, recal_model=None ) recal_model = iso_recal(test_exp_props, test_obs_props) recal_test_rmsce = root_mean_squared_calibration_error( *supply_test_set, num_bins=100, vectorized=True, recal_model=recal_model ) recal_exp_props = recal_model.predict(test_obs_props) assert np.abs(test_rmsce - 0.28741418862839013) < 1e-2 assert np.abs(recal_test_rmsce - 0.003981861230030349) < 1e-2 for idx in range(1, recal_exp_props.shape[0]): assert recal_exp_props[idx - 1] <= recal_exp_props[idx]
Test recalibration on root mean squared calibration error on the test set for some dummy values.
test_recal_model_rmce_criterion_on_test_set
python
uncertainty-toolbox/uncertainty-toolbox
tests/test_recalibration.py
https://github.com/uncertainty-toolbox/uncertainty-toolbox/blob/master/tests/test_recalibration.py
MIT
def test_recal_model_miscal_area_criterion_on_test_set(supply_test_set): """ Test recalibration on miscalibration area on the test set for some dummy values. """ test_miscal_area = miscalibration_area( *supply_test_set, num_bins=100, vectorized=True, recal_model=None ) test_exp_props, test_obs_props = get_proportion_lists_vectorized( *supply_test_set, num_bins=100, recal_model=None ) recal_model = iso_recal(test_exp_props, test_obs_props) recal_test_miscal_area = miscalibration_area( *supply_test_set, num_bins=100, vectorized=True, recal_model=recal_model ) recal_exp_props = recal_model.predict(test_obs_props) assert np.abs(test_miscal_area - 0.24426139657444004) < 1e-2 assert np.abs(recal_test_miscal_area - 0.0029569160997732244) < 1e-2 for idx in range(1, recal_exp_props.shape[0]): assert recal_exp_props[idx - 1] <= recal_exp_props[idx]
Test recalibration on miscalibration area on the test set for some dummy values.
test_recal_model_miscal_area_criterion_on_test_set
python
uncertainty-toolbox/uncertainty-toolbox
tests/test_recalibration.py
https://github.com/uncertainty-toolbox/uncertainty-toolbox/blob/master/tests/test_recalibration.py
MIT
def test_optimize_recalibration_ratio_mace_criterion(supply_test_set): """ Test standard deviation recalibration on mean absolute calibration error on the test set for some dummy values. """ random.seed(0) np.random.seed(seed=0) y_pred, y_std, y_true = supply_test_set ma_cal_ratio = optimize_recalibration_ratio( y_pred, y_std, y_true, criterion="ma_cal" ) recal_ma_cal = mean_absolute_calibration_error(y_pred, ma_cal_ratio * y_std, y_true) recal_rms_cal = root_mean_squared_calibration_error( y_pred, ma_cal_ratio * y_std, y_true ) recal_miscal = miscalibration_area(y_pred, ma_cal_ratio * y_std, y_true) assert np.abs(ma_cal_ratio - 0.33215708813773176) < 1e-2 assert np.abs(recal_ma_cal - 0.06821616161616162) < 1e-2 assert np.abs(recal_rms_cal - 0.08800130087804929) < 1e-2 assert np.abs(recal_miscal - 0.06886262626262629) < 1e-2
Test standard deviation recalibration on mean absolute calibration error on the test set for some dummy values.
test_optimize_recalibration_ratio_mace_criterion
python
uncertainty-toolbox/uncertainty-toolbox
tests/test_recalibration.py
https://github.com/uncertainty-toolbox/uncertainty-toolbox/blob/master/tests/test_recalibration.py
MIT
def test_optimize_recalibration_ratio_rmce_criterion(supply_test_set): """ Test standard deviation recalibration on root mean squared calibration error on the test set for some dummy values. """ random.seed(0) np.random.seed(seed=0) y_pred, y_std, y_true = supply_test_set rms_cal_ratio = optimize_recalibration_ratio( y_pred, y_std, y_true, criterion="rms_cal" ) recal_ma_cal = mean_absolute_calibration_error( y_pred, rms_cal_ratio * y_std, y_true ) recal_rms_cal = root_mean_squared_calibration_error( y_pred, rms_cal_ratio * y_std, y_true ) recal_miscal = miscalibration_area(y_pred, rms_cal_ratio * y_std, y_true) assert np.abs(rms_cal_ratio - 0.34900989073212507) < 1e-2 assert np.abs(recal_ma_cal - 0.06945555555555555) < 1e-2 assert np.abs(recal_rms_cal - 0.08570902541177935) < 1e-2 assert np.abs(recal_miscal - 0.07011706864564003) < 1e-2
Test standard deviation recalibration on root mean squared calibration error on the test set for some dummy values.
test_optimize_recalibration_ratio_rmce_criterion
python
uncertainty-toolbox/uncertainty-toolbox
tests/test_recalibration.py
https://github.com/uncertainty-toolbox/uncertainty-toolbox/blob/master/tests/test_recalibration.py
MIT
def test_optimize_recalibration_ratio_miscal_area_criterion(supply_test_set): """ Test standard deviation recalibration on miscalibration area on the test set for some dummy values. """ random.seed(0) np.random.seed(seed=0) y_pred, y_std, y_true = supply_test_set miscal_ratio = optimize_recalibration_ratio( y_pred, y_std, y_true, criterion="miscal" ) recal_ma_cal = mean_absolute_calibration_error(y_pred, miscal_ratio * y_std, y_true) recal_rms_cal = root_mean_squared_calibration_error( y_pred, miscal_ratio * y_std, y_true ) recal_miscal = miscalibration_area(y_pred, miscal_ratio * y_std, y_true) assert np.abs(miscal_ratio - 0.3321912522557988) < 1e-2 assert np.abs(recal_ma_cal - 0.06821616161616162) < 1e-2 assert np.abs(recal_rms_cal - 0.08800130087804929) < 1e-2 assert np.abs(recal_miscal - 0.06886262626262629) < 1e-2
Test standard deviation recalibration on miscalibration area on the test set for some dummy values.
test_optimize_recalibration_ratio_miscal_area_criterion
python
uncertainty-toolbox/uncertainty-toolbox
tests/test_recalibration.py
https://github.com/uncertainty-toolbox/uncertainty-toolbox/blob/master/tests/test_recalibration.py
MIT
def test_get_prediction_interval_recalibrated(supply_test_set): """ Test standard deviation recalibration on miscalibration area on the test set for some dummy values. """ random.seed(0) np.random.seed(seed=0) y_pred, y_std, y_true = supply_test_set test_exp_props, test_obs_props = get_proportion_lists_vectorized( y_pred, y_std, y_true, num_bins=100, recal_model=None ) recal_model = iso_recal(test_exp_props, test_obs_props) test_quantile_prop_list = [ (0.01, 0.0, 0.0), (0.25, 0.69, 0.25), (0.5, 0.86, 0.5), (0.75, 0.92, 0.75), (0.99, 0.97, 0.97), ] for q, test_orig_prop, test_recal_prop in test_quantile_prop_list: orig_bounds = get_prediction_interval(y_pred, y_std, q, None) recal_bounds = get_prediction_interval(y_pred, y_std, q, recal_model) orig_prop = np.mean( (orig_bounds.lower <= y_true) * (y_true <= orig_bounds.upper) ) recal_prop = np.mean( (recal_bounds.lower <= y_true) * (y_true <= recal_bounds.upper) ) assert np.max(np.abs(test_orig_prop - orig_prop)) < 1e-2 assert np.max(np.abs(test_recal_prop - recal_prop)) < 1e-2
Test standard deviation recalibration on miscalibration area on the test set for some dummy values.
test_get_prediction_interval_recalibrated
python
uncertainty-toolbox/uncertainty-toolbox
tests/test_recalibration.py
https://github.com/uncertainty-toolbox/uncertainty-toolbox/blob/master/tests/test_recalibration.py
MIT
def test_get_std_recalibrator(supply_test_set): """ Test get_std_recalibration on the test set for some dummy values. """ random.seed(0) np.random.seed(seed=0) y_pred, y_std, y_true = supply_test_set test_quantile_prop_list = [ (0.01, 0.00, 0.00), (0.25, 0.06, 0.00), (0.50, 0.56, 0.00), (0.75, 0.74, 0.56), (0.99, 0.89, 0.88), ] std_recalibrator = get_std_recalibrator(y_pred, y_std, y_true) for q, test_prop_in_pi, test_prop_under_q in test_quantile_prop_list: y_std_recal = std_recalibrator(y_std) pi = get_prediction_interval(y_pred, y_std_recal, q) prop_in_pi = ((pi.lower <= y_true) * (y_true <= pi.upper)).mean() quantile_bound = get_quantile(y_pred, y_std_recal, q) prop_under_q = (quantile_bound >= y_true).mean() assert np.max(np.abs(test_prop_in_pi - prop_in_pi)) < 5e-2 assert np.max(np.abs(test_prop_under_q - prop_under_q)) < 5e-2
Test get_std_recalibration on the test set for some dummy values.
test_get_std_recalibrator
python
uncertainty-toolbox/uncertainty-toolbox
tests/test_recalibration.py
https://github.com/uncertainty-toolbox/uncertainty-toolbox/blob/master/tests/test_recalibration.py
MIT
def test_get_quantile_recalibrator(supply_test_set): """ Test get_std_recalibration on the test set for some dummy values. """ random.seed(0) np.random.seed(seed=0) y_pred, y_std, y_true = supply_test_set test_quantile_prop_list = [ (0.01, 0.00), (0.25, 0.00), (0.50, 0.00), (0.75, 0.00), (0.99, 0.83), ] quantile_recalibrator = get_quantile_recalibrator(y_pred, y_std, y_true) for q, test_prop_under_q in test_quantile_prop_list: quantile_bound_recal = quantile_recalibrator(y_pred, y_std, q) assert all(np.isfinite(quantile_bound_recal)) prop_under_q_recal = (quantile_bound_recal >= y_true).mean() assert np.max(np.abs(test_prop_under_q - prop_under_q_recal)) < 1e-2
Test get_std_recalibration on the test set for some dummy values.
test_get_quantile_recalibrator
python
uncertainty-toolbox/uncertainty-toolbox
tests/test_recalibration.py
https://github.com/uncertainty-toolbox/uncertainty-toolbox/blob/master/tests/test_recalibration.py
MIT
def test_get_interval_recalibrator(supply_test_set): """ Test get_std_recalibration on the test set for some dummy values. """ random.seed(0) np.random.seed(seed=0) y_pred, y_std, y_true = supply_test_set test_quantile_prop_list = [ (0.01, 0.00), (0.25, 0.25), (0.50, 0.50), (0.75, 0.75), (0.99, 0.97), ] interval_recalibrator = get_interval_recalibrator(y_pred, y_std, y_true) for q, test_prop_in_interval in test_quantile_prop_list: interval_recal = interval_recalibrator(y_pred, y_std, q) prop_in_interval_recal = ( (interval_recal.lower <= y_true) * (y_true <= interval_recal.upper) ).mean() assert np.max(np.abs(test_prop_in_interval - prop_in_interval_recal)) < 1e-2
Test get_std_recalibration on the test set for some dummy values.
test_get_interval_recalibrator
python
uncertainty-toolbox/uncertainty-toolbox
tests/test_recalibration.py
https://github.com/uncertainty-toolbox/uncertainty-toolbox/blob/master/tests/test_recalibration.py
MIT
def test_filter_subset(get_test_set): """Test if filter_subset returns correct number of subset elements.""" y_pred, y_std, y_true, _ = get_test_set _test_n_subset = 2 [y_pred, y_std, y_true] = filter_subset([y_pred, y_std, y_true], _test_n_subset) assert len(y_pred) == _test_n_subset assert len(y_std) == _test_n_subset assert len(y_true) == _test_n_subset
Test if filter_subset returns correct number of subset elements.
test_filter_subset
python
uncertainty-toolbox/uncertainty-toolbox
tests/test_viz.py
https://github.com/uncertainty-toolbox/uncertainty-toolbox/blob/master/tests/test_viz.py
MIT
def synthetic_arange_random( num_points: int = 10, ) -> Tuple[np.ndarray, np.ndarray, np.ndarray, np.ndarray]: """Dataset of evenly spaced points and identity function (with some randomization). This function returns predictions and predictive uncertainties (given as standard deviations) from some hypothetical uncertainty model, along with true input x and output y data points. Args: num_points: The number of data points in the set. Returns: - The y predictions given by a hypothetical predictive uncertainty model. These are the true values of y but with uniform noise added. - The standard deviations given by a hypothetical predictive uncertainty model. These are the errors between the predictions and the truth plus some unifom noise. - The true outputs y. - The true inputs x. """ x = np.arange(num_points) y_true = np.arange(num_points) y_pred = np.arange(num_points) + np.random.random((num_points,)) y_std = np.abs(y_true - y_pred) + 0.1 * np.random.random((num_points,)) return y_pred, y_std, y_true, x
Dataset of evenly spaced points and identity function (with some randomization). This function returns predictions and predictive uncertainties (given as standard deviations) from some hypothetical uncertainty model, along with true input x and output y data points. Args: num_points: The number of data points in the set. Returns: - The y predictions given by a hypothetical predictive uncertainty model. These are the true values of y but with uniform noise added. - The standard deviations given by a hypothetical predictive uncertainty model. These are the errors between the predictions and the truth plus some unifom noise. - The true outputs y. - The true inputs x.
synthetic_arange_random
python
uncertainty-toolbox/uncertainty-toolbox
uncertainty_toolbox/data.py
https://github.com/uncertainty-toolbox/uncertainty-toolbox/blob/master/uncertainty_toolbox/data.py
MIT
def synthetic_sine_heteroscedastic( n_points: int = 10, ) -> Tuple[np.ndarray, np.ndarray, np.ndarray, np.ndarray]: """Return samples from "synthetic sine" heteroscedastic noisy function. This returns a synthetic dataset which can be used to train and assess a predictive uncertainty model. Args: n_points: The number of data points in the set. Returns: - Predicted output points y. - Predictive uncertainties, defined using standard deviation of added noise. - True output points y. - True input points x. """ bounds = [0, 15] x = np.linspace(bounds[0], bounds[1], n_points) f = np.sin(x) std = 0.01 + np.abs(x - 5.0) / 10.0 noise = np.random.normal(scale=std) y = f + noise return f, std, y, x
Return samples from "synthetic sine" heteroscedastic noisy function. This returns a synthetic dataset which can be used to train and assess a predictive uncertainty model. Args: n_points: The number of data points in the set. Returns: - Predicted output points y. - Predictive uncertainties, defined using standard deviation of added noise. - True output points y. - True input points x.
synthetic_sine_heteroscedastic
python
uncertainty-toolbox/uncertainty-toolbox
uncertainty_toolbox/data.py
https://github.com/uncertainty-toolbox/uncertainty-toolbox/blob/master/uncertainty_toolbox/data.py
MIT
def get_all_accuracy_metrics( y_pred: np.ndarray, y_true: np.ndarray, verbose: bool = True, ) -> Dict[str, float]: """Compute all accuracy metrics. Args: y_pred: 1D array of the predicted means for the held out dataset. y_true: 1D array of the true labels in the held out dataset. verbose: Activate verbose mode. Returns: The evaluations for all accuracy related metrics. """ if verbose: print(" (1/n) Calculating accuracy metrics") acc_metrics = prediction_error_metrics(y_pred, y_true) return acc_metrics
Compute all accuracy metrics. Args: y_pred: 1D array of the predicted means for the held out dataset. y_true: 1D array of the true labels in the held out dataset. verbose: Activate verbose mode. Returns: The evaluations for all accuracy related metrics.
get_all_accuracy_metrics
python
uncertainty-toolbox/uncertainty-toolbox
uncertainty_toolbox/metrics.py
https://github.com/uncertainty-toolbox/uncertainty-toolbox/blob/master/uncertainty_toolbox/metrics.py
MIT
def get_all_average_calibration( y_pred: np.ndarray, y_std: np.ndarray, y_true: np.ndarray, num_bins: int, verbose: bool = True, ) -> Dict[str, float]: """Compute all metrics for average calibration. Args: y_pred: 1D array of the predicted means for the held out dataset. y_std: 1D array of he predicted standard deviations for the held out dataset. y_true: 1D array of the true labels in the held out dataset. num_bins: The number of bins to use for discretization in some metrics. verbose: Activate verbose mode. Returns: The evaluations for all metrics relating to average calibration. """ if verbose: print(" (2/n) Calculating average calibration metrics") cali_metrics = {} cali_metrics["rms_cal"] = root_mean_squared_calibration_error( y_pred, y_std, y_true, num_bins=num_bins ) cali_metrics["ma_cal"] = mean_absolute_calibration_error( y_pred, y_std, y_true, num_bins=num_bins ) cali_metrics["miscal_area"] = miscalibration_area( y_pred, y_std, y_true, num_bins=num_bins ) return cali_metrics
Compute all metrics for average calibration. Args: y_pred: 1D array of the predicted means for the held out dataset. y_std: 1D array of he predicted standard deviations for the held out dataset. y_true: 1D array of the true labels in the held out dataset. num_bins: The number of bins to use for discretization in some metrics. verbose: Activate verbose mode. Returns: The evaluations for all metrics relating to average calibration.
get_all_average_calibration
python
uncertainty-toolbox/uncertainty-toolbox
uncertainty_toolbox/metrics.py
https://github.com/uncertainty-toolbox/uncertainty-toolbox/blob/master/uncertainty_toolbox/metrics.py
MIT
def get_all_adversarial_group_calibration( y_pred: np.ndarray, y_std: np.ndarray, y_true: np.ndarray, num_bins: int, verbose: bool = True, ) -> Dict[str, Dict[str, np.ndarray]]: """Compute all metrics for adversarial group calibration. Args: y_pred: 1D array of the predicted means for the held out dataset. y_std: 1D array of he predicted standard deviations for the held out dataset. y_true: 1D array of the true labels in the held out dataset. num_bins: The number of bins to use for discretization in some metrics. verbose: Activate verbose mode. Returns: The evaluations for all metrics relating to adversarial group calibration. Each inner dictionary contains the size of each group and the metrics computed for each group. """ adv_group_cali_metrics = {} if verbose: print(" (3/n) Calculating adversarial group calibration metrics") print(" [1/2] for mean absolute calibration error") ma_adv_group_cali = adversarial_group_calibration( y_pred, y_std, y_true, cali_type="mean_abs", num_bins=num_bins, verbose=verbose, ) ma_adv_group_size = ma_adv_group_cali.group_size ma_adv_group_cali_score_mean = ma_adv_group_cali.score_mean ma_adv_group_cali_score_stderr = ma_adv_group_cali.score_stderr adv_group_cali_metrics["ma_adv_group_cal"] = { "group_sizes": ma_adv_group_size, "adv_group_cali_mean": ma_adv_group_cali_score_mean, "adv_group_cali_stderr": ma_adv_group_cali_score_stderr, } if verbose: print(" [2/2] for root mean squared calibration error") rms_adv_group_cali = adversarial_group_calibration( y_pred, y_std, y_true, cali_type="root_mean_sq", num_bins=num_bins, verbose=verbose, ) rms_adv_group_size = rms_adv_group_cali.group_size rms_adv_group_cali_score_mean = rms_adv_group_cali.score_mean rms_adv_group_cali_score_stderr = rms_adv_group_cali.score_stderr adv_group_cali_metrics["rms_adv_group_cal"] = { "group_sizes": rms_adv_group_size, "adv_group_cali_mean": rms_adv_group_cali_score_mean, "adv_group_cali_stderr": rms_adv_group_cali_score_stderr, } return adv_group_cali_metrics
Compute all metrics for adversarial group calibration. Args: y_pred: 1D array of the predicted means for the held out dataset. y_std: 1D array of he predicted standard deviations for the held out dataset. y_true: 1D array of the true labels in the held out dataset. num_bins: The number of bins to use for discretization in some metrics. verbose: Activate verbose mode. Returns: The evaluations for all metrics relating to adversarial group calibration. Each inner dictionary contains the size of each group and the metrics computed for each group.
get_all_adversarial_group_calibration
python
uncertainty-toolbox/uncertainty-toolbox
uncertainty_toolbox/metrics.py
https://github.com/uncertainty-toolbox/uncertainty-toolbox/blob/master/uncertainty_toolbox/metrics.py
MIT
def get_all_sharpness_metrics( y_std: np.ndarray, verbose: bool = True, ) -> Dict[str, float]: """Compute all sharpness metrics Args: y_std: 1D array of he predicted standard deviations for the held out dataset. verbose: Activate verbose mode. Returns: The evaluations for all sharpness metrics. """ if verbose: print(" (4/n) Calculating sharpness metrics") sharp_metrics = {} sharp_metrics["sharp"] = sharpness(y_std) return sharp_metrics
Compute all sharpness metrics Args: y_std: 1D array of he predicted standard deviations for the held out dataset. verbose: Activate verbose mode. Returns: The evaluations for all sharpness metrics.
get_all_sharpness_metrics
python
uncertainty-toolbox/uncertainty-toolbox
uncertainty_toolbox/metrics.py
https://github.com/uncertainty-toolbox/uncertainty-toolbox/blob/master/uncertainty_toolbox/metrics.py
MIT
def get_all_scoring_rule_metrics( y_pred: np.ndarray, y_std: np.ndarray, y_true: np.ndarray, resolution: int, scaled: bool, verbose: bool = True, ) -> Dict[str, float]: """Compute all scoring rule metrics Args: y_pred: 1D array of the predicted means for the held out dataset. y_std: 1D array of he predicted standard deviations for the held out dataset. y_true: 1D array of the true labels in the held out dataset. resolution: The number of quantiles to use for computation. scaled: Whether to scale the score by size of held out set. verbose: Activate verbose mode. Returns: The computed scoring rule metrics. """ if verbose: print(" (n/n) Calculating proper scoring rule metrics") sr_metrics = {} sr_metrics["nll"] = nll_gaussian(y_pred, y_std, y_true, scaled=scaled) sr_metrics["crps"] = crps_gaussian(y_pred, y_std, y_true, scaled=scaled) sr_metrics["check"] = check_score( y_pred, y_std, y_true, scaled=scaled, resolution=resolution ) sr_metrics["interval"] = interval_score( y_pred, y_std, y_true, scaled=scaled, resolution=resolution ) return sr_metrics
Compute all scoring rule metrics Args: y_pred: 1D array of the predicted means for the held out dataset. y_std: 1D array of he predicted standard deviations for the held out dataset. y_true: 1D array of the true labels in the held out dataset. resolution: The number of quantiles to use for computation. scaled: Whether to scale the score by size of held out set. verbose: Activate verbose mode. Returns: The computed scoring rule metrics.
get_all_scoring_rule_metrics
python
uncertainty-toolbox/uncertainty-toolbox
uncertainty_toolbox/metrics.py
https://github.com/uncertainty-toolbox/uncertainty-toolbox/blob/master/uncertainty_toolbox/metrics.py
MIT
def get_all_metrics( y_pred: np.ndarray, y_std: np.ndarray, y_true: np.ndarray, num_bins: int = 100, resolution: int = 99, scaled: bool = True, verbose: bool = True, ) -> Dict[str, Any]: """Compute all metrics. Args: y_pred: 1D array of the predicted means for the held out dataset. y_std: 1D array of he predicted standard deviations for the held out dataset. y_true: 1D array of the true labels in the held out dataset. num_bins: The number of bins to use for discretization in some metrics. resolution: The number of quantiles to use for computation. scaled: Whether to scale the score by size of held out set. verbose: Activate verbose mode. Returns: Dictionary containing all metrics. """ # Accuracy accuracy_metrics = get_all_accuracy_metrics(y_pred, y_true, verbose) # Calibration calibration_metrics = get_all_average_calibration( y_pred, y_std, y_true, num_bins, verbose ) # Adversarial Group Calibration adv_group_cali_metrics = get_all_adversarial_group_calibration( y_pred, y_std, y_true, num_bins, verbose ) # Sharpness sharpness_metrics = get_all_sharpness_metrics(y_std, verbose) # Proper Scoring Rules scoring_rule_metrics = get_all_scoring_rule_metrics( y_pred, y_std, y_true, resolution, scaled, verbose ) # Print all outputs if verbose: print("**Finished Calculating All Metrics**") print("\n") print(" Accuracy Metrics ".center(60, "=")) for acc_metric, acc_val in accuracy_metrics.items(): print(" {:<13} {:.3f}".format(METRIC_NAMES[acc_metric], acc_val)) print(" Average Calibration Metrics ".center(60, "=")) for cali_metric, cali_val in calibration_metrics.items(): print(" {:<37} {:.3f}".format(METRIC_NAMES[cali_metric], cali_val)) print(" Adversarial Group Calibration Metrics ".center(60, "=")) _print_adversarial_group_calibration(adv_group_cali_metrics, print_group_num=3) print(" Sharpness Metrics ".center(60, "=")) for sharp_metric, sharp_val in sharpness_metrics.items(): print(" {:} {:.3f}".format(METRIC_NAMES[sharp_metric], sharp_val)) print(" Scoring Rule Metrics ".center(60, "=")) for sr_metric, sr_val in scoring_rule_metrics.items(): print(" {:<25} {:.3f}".format(METRIC_NAMES[sr_metric], sr_val)) all_scores = { "accuracy": accuracy_metrics, "avg_calibration": calibration_metrics, "adv_group_calibration": adv_group_cali_metrics, "sharpness": sharpness_metrics, "scoring_rule": scoring_rule_metrics, } return all_scores
Compute all metrics. Args: y_pred: 1D array of the predicted means for the held out dataset. y_std: 1D array of he predicted standard deviations for the held out dataset. y_true: 1D array of the true labels in the held out dataset. num_bins: The number of bins to use for discretization in some metrics. resolution: The number of quantiles to use for computation. scaled: Whether to scale the score by size of held out set. verbose: Activate verbose mode. Returns: Dictionary containing all metrics.
get_all_metrics
python
uncertainty-toolbox/uncertainty-toolbox
uncertainty_toolbox/metrics.py
https://github.com/uncertainty-toolbox/uncertainty-toolbox/blob/master/uncertainty_toolbox/metrics.py
MIT
def prediction_error_metrics( y_pred: np.ndarray, y_true: np.ndarray, ) -> Dict[str, float]: """Get all prediction error metrics. Args: y_pred: 1D array of the predicted means for the held out dataset. y_true: 1D array of the true labels in the held out dataset. Returns: A dictionary with Mean average error ('mae'), Root mean squared error ('rmse'), Median absolute error ('mdae'), Mean absolute relative percent difference ('marpd'), r^2 ('r2'), and Pearson's correlation coefficient ('corr'). """ # Check that input arrays are flat assert_is_flat_same_shape(y_pred, y_true) # Compute metrics mae = mean_absolute_error(y_true, y_pred) rmse = np.sqrt(mean_squared_error(y_true, y_pred)) mdae = median_absolute_error(y_true, y_pred) residuals = y_true - y_pred marpd = np.abs(2 * residuals / (np.abs(y_pred) + np.abs(y_true))).mean() * 100 r2 = r2_score(y_true, y_pred) corr = np.corrcoef(y_true, y_pred)[0, 1] prediction_metrics = { "mae": mae, "rmse": rmse, "mdae": mdae, "marpd": marpd, "r2": r2, "corr": corr, } return prediction_metrics
Get all prediction error metrics. Args: y_pred: 1D array of the predicted means for the held out dataset. y_true: 1D array of the true labels in the held out dataset. Returns: A dictionary with Mean average error ('mae'), Root mean squared error ('rmse'), Median absolute error ('mdae'), Mean absolute relative percent difference ('marpd'), r^2 ('r2'), and Pearson's correlation coefficient ('corr').
prediction_error_metrics
python
uncertainty-toolbox/uncertainty-toolbox
uncertainty_toolbox/metrics_accuracy.py
https://github.com/uncertainty-toolbox/uncertainty-toolbox/blob/master/uncertainty_toolbox/metrics_accuracy.py
MIT
def sharpness(y_std: np.ndarray) -> float: """Return sharpness (a single measure of the overall confidence). Args: y_std: 1D array of the predicted standard deviations for the held out dataset. Returns: A single scalar which quantifies the average of the standard deviations. """ # Check that input arrays are flat assert_is_flat_same_shape(y_std) # Check that input std is positive assert_is_positive(y_std) # Compute sharpness sharp_metric = np.sqrt(np.mean(y_std**2)) return sharp_metric
Return sharpness (a single measure of the overall confidence). Args: y_std: 1D array of the predicted standard deviations for the held out dataset. Returns: A single scalar which quantifies the average of the standard deviations.
sharpness
python
uncertainty-toolbox/uncertainty-toolbox
uncertainty_toolbox/metrics_calibration.py
https://github.com/uncertainty-toolbox/uncertainty-toolbox/blob/master/uncertainty_toolbox/metrics_calibration.py
MIT
def root_mean_squared_calibration_error( y_pred: np.ndarray, y_std: np.ndarray, y_true: np.ndarray, num_bins: int = 100, vectorized: bool = False, recal_model: IsotonicRegression = None, prop_type: str = "interval", ) -> float: """Root mean squared calibration error. Args: y_pred: 1D array of the predicted means for the held out dataset. y_std: 1D array of the predicted standard deviations for the held out dataset. y_true: 1D array of the true labels in the held out dataset. num_bins: number of discretizations for the probability space [0, 1]. vectorized: whether to vectorize computation for observed proportions. (while setting to True is faster, it has much higher memory requirements and may fail to run for larger datasets). recal_model: an sklearn isotonic regression model which recalibrates the predictions. prop_type: "interval" to measure observed proportions for centered prediction intervals, and "quantile" for observed proportions below a predicted quantile. Returns: A single scalar which calculates the root mean squared calibration error. """ # Check that input arrays are flat assert_is_flat_same_shape(y_pred, y_std, y_true) # Check that input std is positive assert_is_positive(y_std) # Check that prop_type is one of 'interval' or 'quantile' assert prop_type in ["interval", "quantile"] # Get lists of expected and observed proportions for a range of quantiles if vectorized: (exp_proportions, obs_proportions) = get_proportion_lists_vectorized( y_pred, y_std, y_true, num_bins, recal_model, prop_type ) else: (exp_proportions, obs_proportions) = get_proportion_lists( y_pred, y_std, y_true, num_bins, recal_model, prop_type ) squared_diff_proportions = np.square(exp_proportions - obs_proportions) rmsce = np.sqrt(np.mean(squared_diff_proportions)) return rmsce
Root mean squared calibration error. Args: y_pred: 1D array of the predicted means for the held out dataset. y_std: 1D array of the predicted standard deviations for the held out dataset. y_true: 1D array of the true labels in the held out dataset. num_bins: number of discretizations for the probability space [0, 1]. vectorized: whether to vectorize computation for observed proportions. (while setting to True is faster, it has much higher memory requirements and may fail to run for larger datasets). recal_model: an sklearn isotonic regression model which recalibrates the predictions. prop_type: "interval" to measure observed proportions for centered prediction intervals, and "quantile" for observed proportions below a predicted quantile. Returns: A single scalar which calculates the root mean squared calibration error.
root_mean_squared_calibration_error
python
uncertainty-toolbox/uncertainty-toolbox
uncertainty_toolbox/metrics_calibration.py
https://github.com/uncertainty-toolbox/uncertainty-toolbox/blob/master/uncertainty_toolbox/metrics_calibration.py
MIT
def mean_absolute_calibration_error( y_pred: np.ndarray, y_std: np.ndarray, y_true: np.ndarray, num_bins: int = 100, vectorized: bool = False, recal_model: IsotonicRegression = None, prop_type: str = "interval", ) -> float: """Mean absolute calibration error; identical to ECE. Args: y_pred: 1D array of the predicted means for the held out dataset. y_std: 1D array of the predicted standard deviations for the held out dataset. y_true: 1D array of the true labels in the held out dataset. num_bins: number of discretizations for the probability space [0, 1]. vectorized: whether to vectorize computation for observed proportions. (while setting to True is faster, it has much higher memory requirements and may fail to run for larger datasets). recal_model: an sklearn isotonic regression model which recalibrates the predictions. prop_type: "interval" to measure observed proportions for centered prediction intervals, and "quantile" for observed proportions below a predicted quantile. Returns: A single scalar which calculates the mean absolute calibration error. """ # Check that input arrays are flat assert_is_flat_same_shape(y_pred, y_std, y_true) # Check that input std is positive assert_is_positive(y_std) # Check that prop_type is one of 'interval' or 'quantile' assert prop_type in ["interval", "quantile"] # Get lists of expected and observed proportions for a range of quantiles if vectorized: (exp_proportions, obs_proportions) = get_proportion_lists_vectorized( y_pred, y_std, y_true, num_bins, recal_model, prop_type ) else: (exp_proportions, obs_proportions) = get_proportion_lists( y_pred, y_std, y_true, num_bins, recal_model, prop_type ) abs_diff_proportions = np.abs(exp_proportions - obs_proportions) mace = np.mean(abs_diff_proportions) return mace
Mean absolute calibration error; identical to ECE. Args: y_pred: 1D array of the predicted means for the held out dataset. y_std: 1D array of the predicted standard deviations for the held out dataset. y_true: 1D array of the true labels in the held out dataset. num_bins: number of discretizations for the probability space [0, 1]. vectorized: whether to vectorize computation for observed proportions. (while setting to True is faster, it has much higher memory requirements and may fail to run for larger datasets). recal_model: an sklearn isotonic regression model which recalibrates the predictions. prop_type: "interval" to measure observed proportions for centered prediction intervals, and "quantile" for observed proportions below a predicted quantile. Returns: A single scalar which calculates the mean absolute calibration error.
mean_absolute_calibration_error
python
uncertainty-toolbox/uncertainty-toolbox
uncertainty_toolbox/metrics_calibration.py
https://github.com/uncertainty-toolbox/uncertainty-toolbox/blob/master/uncertainty_toolbox/metrics_calibration.py
MIT