code
stringlengths
66
870k
docstring
stringlengths
19
26.7k
func_name
stringlengths
1
138
language
stringclasses
1 value
repo
stringlengths
7
68
path
stringlengths
5
324
url
stringlengths
46
389
license
stringclasses
7 values
def ignore_warnings(warning=RuntimeWarning): r""" Decorator for catching warnings. Useful in pore-scale models where nans are inevitable, and numpy gets annoying by throwing lots of RuntimeWarnings. Parameters ---------- warning : Warning Python warning type that you want to temporarily ignore Examples -------- >>> from openpnm.utils import ignore_warnings >>> @ignore_warnings() ... def myfun(x): ... return 1/x >>> import numpy as np >>> x = np.arange(5) >>> myfun(x) array([ inf, 1. , 0.5 , 0.33333333, 0.25 ]) """ def _ignore_warning(function): @functools.wraps(function) def __ignore_warning(*args, **kwargs): with warnings.catch_warnings(record=True): # Catch all warnings of this type warnings.simplefilter("always", warning) # Execute the function result = function(*args, **kwargs) return result return __ignore_warning return _ignore_warning
Decorator for catching warnings. Useful in pore-scale models where nans are inevitable, and numpy gets annoying by throwing lots of RuntimeWarnings. Parameters ---------- warning : Warning Python warning type that you want to temporarily ignore Examples -------- >>> from openpnm.utils import ignore_warnings >>> @ignore_warnings() ... def myfun(x): ... return 1/x >>> import numpy as np >>> x = np.arange(5) >>> myfun(x) array([ inf, 1. , 0.5 , 0.33333333, 0.25 ])
ignore_warnings
python
PMEAL/OpenPNM
openpnm/utils/_misc.py
https://github.com/PMEAL/OpenPNM/blob/master/openpnm/utils/_misc.py
MIT
def is_symmetric(a, rtol=1e-10): r""" Is ``a`` a symmetric matrix? Parameters ---------- a : ndarray or sparse matrix Object to check for being a symmetric matrix. rtol : float Relative tolerance with respect to the smallest entry in ``a`` that is used to determine if ``a`` is symmetric. Returns ------- bool ``True`` if ``a`` is a symmetric matrix, ``False`` otherwise. """ if not isinstance(a, np.ndarray) and not sparse.issparse(a): raise Exception("'a' must be either a sparse matrix or an ndarray.") if a.shape[0] != a.shape[1]: raise Exception("'a' must be a square matrix.") atol = np.amin(np.absolute(a.data)) * rtol if sparse.issparse(a): issym = False if ((a - a.T) > atol).nnz else True elif isinstance(a, np.ndarray): issym = False if np.any((a - a.T) > atol) else True return issym
Is ``a`` a symmetric matrix? Parameters ---------- a : ndarray or sparse matrix Object to check for being a symmetric matrix. rtol : float Relative tolerance with respect to the smallest entry in ``a`` that is used to determine if ``a`` is symmetric. Returns ------- bool ``True`` if ``a`` is a symmetric matrix, ``False`` otherwise.
is_symmetric
python
PMEAL/OpenPNM
openpnm/utils/_misc.py
https://github.com/PMEAL/OpenPNM/blob/master/openpnm/utils/_misc.py
MIT
def get_mixture_model_args( phase, composition='xs', args={ 'mus': 'pore.viscosity', 'MWs': 'param.molecular_weight', } ): r""" This is used in tests to run models generically """ from openpnm.models.phase.misc import mole_to_mass_fraction vals = {} if composition in ['ws']: temp = np.vstack(list(mole_to_mass_fraction(phase=phase).values()))[:, 0] vals[composition] = temp else: temp = np.vstack(list(phase['pore.mole_fraction'].values()))[:, 0] vals[composition] = temp for item in args.keys(): temp = np.vstack(list(phase.get_comp_vals(args[item]).values()))[:, 0] vals[item] = temp return vals
This is used in tests to run models generically
get_mixture_model_args
python
PMEAL/OpenPNM
openpnm/utils/_misc.py
https://github.com/PMEAL/OpenPNM/blob/master/openpnm/utils/_misc.py
MIT
def dict_to_struct(d): r""" Converts a dictionary of numpy arrays to a numpy struct Parameters ---------- d : dict A dictionary wtih numpy arrays in each key. The arrays must be all the same size. Returns ------- s : numpy struct A numpy struct with the fields or names take from the dictionary keys """ struct = rf.unstructured_to_structured(np.vstack(list(d.values())).T, names=list(d.keys())) return struct
Converts a dictionary of numpy arrays to a numpy struct Parameters ---------- d : dict A dictionary wtih numpy arrays in each key. The arrays must be all the same size. Returns ------- s : numpy struct A numpy struct with the fields or names take from the dictionary keys
dict_to_struct
python
PMEAL/OpenPNM
openpnm/utils/_misc.py
https://github.com/PMEAL/OpenPNM/blob/master/openpnm/utils/_misc.py
MIT
def struct_to_dict(s): r""" Converts a numpy struct array into a dictionary using the struct labels as keys Parameters ---------- s : numpy struct The struct array Returns ------- d : dict A dictionary with the struct labels or fields as the keys """ d = {} for key in s.dtype.names: d[key] = s[key] return d
Converts a numpy struct array into a dictionary using the struct labels as keys Parameters ---------- s : numpy struct The struct array Returns ------- d : dict A dictionary with the struct labels or fields as the keys
struct_to_dict
python
PMEAL/OpenPNM
openpnm/utils/_misc.py
https://github.com/PMEAL/OpenPNM/blob/master/openpnm/utils/_misc.py
MIT
def is_valid_propname(propname): r""" Checks if ``propname`` is a valid OpenPNM propname, i.e. starts with 'pore.' or 'throat.' Parameters ---------- propname : str Property name to check whether it's a valid OpenPNM propname. Returns ------- bool Whether or not ``propname`` is a valid name """ if not isinstance(propname, str): return False temp = propname.split(".") if temp[0] not in ["pore", "throat"]: return False if len(temp) == 1: return False for field in temp: if len(field) == 0: return False return True
Checks if ``propname`` is a valid OpenPNM propname, i.e. starts with 'pore.' or 'throat.' Parameters ---------- propname : str Property name to check whether it's a valid OpenPNM propname. Returns ------- bool Whether or not ``propname`` is a valid name
is_valid_propname
python
PMEAL/OpenPNM
openpnm/utils/_misc.py
https://github.com/PMEAL/OpenPNM/blob/master/openpnm/utils/_misc.py
MIT
def nbr_to_str(nbr, t_precision=12): r""" Converts a scalar into a string in scientific (exponential) notation without the decimal point. Parameters ---------- nbr : scalar The number to be converted into a scalar. t_precision : integer The time precision (number of decimal places). Default value is 12. Returns ------- num : str The string represenation of the given number in scientific notation """ from decimal import Decimal as dc n = int(-dc(str(round(nbr, t_precision))).as_tuple().exponent * (round(nbr, t_precision) != int(nbr))) nbr_str = (str(int(round(nbr, t_precision)*10**n)) + ('e-'+str(n))*(n != 0)) return nbr_str
Converts a scalar into a string in scientific (exponential) notation without the decimal point. Parameters ---------- nbr : scalar The number to be converted into a scalar. t_precision : integer The time precision (number of decimal places). Default value is 12. Returns ------- num : str The string represenation of the given number in scientific notation
nbr_to_str
python
PMEAL/OpenPNM
openpnm/utils/_misc.py
https://github.com/PMEAL/OpenPNM/blob/master/openpnm/utils/_misc.py
MIT
def copy(self, name=None): r""" Creates a deep copy of the current project A deep copy means that new, unique versions of all the objects are created but with identical data and properties. Parameters ---------- name : str The name to give to the new project. If not supplied, a name is automatically generated. Returns ------- proj : list A new Project object containing copies of all objects Notes ----- Because they are new objects, they are given a new uuid (``obj.settings['uuid']``), but the uuid of the original object is also stored (``obj.settings['original_uuid']``) for reference. """ name = ws._validate_name(name) proj = deepcopy(self) for item in proj: item.settings['uuid'] = str(uuid.uuid4()) proj.settings['uuid'] = str(uuid.uuid4()) proj.settings['name'] = name ws[name] = proj return proj
Creates a deep copy of the current project A deep copy means that new, unique versions of all the objects are created but with identical data and properties. Parameters ---------- name : str The name to give to the new project. If not supplied, a name is automatically generated. Returns ------- proj : list A new Project object containing copies of all objects Notes ----- Because they are new objects, they are given a new uuid (``obj.settings['uuid']``), but the uuid of the original object is also stored (``obj.settings['original_uuid']``) for reference.
copy
python
PMEAL/OpenPNM
openpnm/utils/_project.py
https://github.com/PMEAL/OpenPNM/blob/master/openpnm/utils/_project.py
MIT
def _get_locations(self, label): r""" Find locations indicated by the given label regardless of which object it is defined on Parameters ---------- label : str The label whose locations are sought, such as 'pore.left' Returns ------- locations : ndarray A boolean array with ``True`` values indicating which locations have the given label Notes ----- The returns the first instance of ``label`` that it finds """ for item in self: try: return item[label] except KeyError: pass raise KeyError(label)
Find locations indicated by the given label regardless of which object it is defined on Parameters ---------- label : str The label whose locations are sought, such as 'pore.left' Returns ------- locations : ndarray A boolean array with ``True`` values indicating which locations have the given label Notes ----- The returns the first instance of ``label`` that it finds
_get_locations
python
PMEAL/OpenPNM
openpnm/utils/_project.py
https://github.com/PMEAL/OpenPNM/blob/master/openpnm/utils/_project.py
MIT
def _create_console_handles(self, project): r""" Adds all objects in the given project to the console as variables with handle names taken from each object's name. """ import __main__ for item in project: __main__.__dict__[item.name] = item
Adds all objects in the given project to the console as variables with handle names taken from each object's name.
_create_console_handles
python
PMEAL/OpenPNM
openpnm/utils/_workspace.py
https://github.com/PMEAL/OpenPNM/blob/master/openpnm/utils/_workspace.py
MIT
def save_workspace(self, filename=None): r""" Saves all projects in the current workspace as a single file Parameters ---------- filename : str The filename to use when saving. If not provided, the present date and time are used. Notes ----- The file is actually zip archive containing ``pnm`` files, one for each project in the workspace. This archive can be extracted and each ``pnm`` file can be loaded manually using ``load_project`` or the ``openpnm.io.PNM`` class. """ if filename is None: dt = datetime.now() filename = dt.strftime("%Y_%m_%d_%H_%M_%S") from zipfile import ZipFile with ZipFile(filename + '.wrk', 'w') as z: for prj in self.values(): prj.save_project() z.write(prj.name + '.pnm')
Saves all projects in the current workspace as a single file Parameters ---------- filename : str The filename to use when saving. If not provided, the present date and time are used. Notes ----- The file is actually zip archive containing ``pnm`` files, one for each project in the workspace. This archive can be extracted and each ``pnm`` file can be loaded manually using ``load_project`` or the ``openpnm.io.PNM`` class.
save_workspace
python
PMEAL/OpenPNM
openpnm/utils/_workspace.py
https://github.com/PMEAL/OpenPNM/blob/master/openpnm/utils/_workspace.py
MIT
def load_workspace(self, filename): r""" Loads project(s) from a saved workspace into current workspace Parameters ---------- filename : str or Path The filename containing the saved workspace """ from zipfile import ZipFile with ZipFile(filename, 'r') as z: logger.info('Loading projects contained in ' + filename) files = z.filelist for f in files: self.load_project(f.orig_filename)
Loads project(s) from a saved workspace into current workspace Parameters ---------- filename : str or Path The filename containing the saved workspace
load_workspace
python
PMEAL/OpenPNM
openpnm/utils/_workspace.py
https://github.com/PMEAL/OpenPNM/blob/master/openpnm/utils/_workspace.py
MIT
def save_project(self, project, filename=None): r""" Saves given Project to a ``pnm`` file This will include all of associated objects, including algorithms. Parameters ---------- project : Project The project to save. filename : str, optional If no filename is given, the given project name is used. See Notes for more information. See Also -------- save_workspace Notes ----- The filename can be a string such as 'saved_file.pnm'. The string can include absolute path such as 'C:\networks\saved_file.pnm', or can be a relative path such as '..\..\saved_file.pnm', which will look 2 directories above the current working directory. Can also be a path object object such as that produced by ``pathlib`` or ``os.path`` in the Python standard library. """ if filename is None: dt = datetime.now() filename = dt.strftime("%Y_%m_%d_%H_%M_%S") with open(filename.split('.')[-1]+'.pnm', 'wb') as f: pickle.dump(project, f)
Saves given Project to a ``pnm`` file This will include all of associated objects, including algorithms. Parameters ---------- project : Project The project to save. filename : str, optional If no filename is given, the given project name is used. See Notes for more information. See Also -------- save_workspace Notes ----- The filename can be a string such as 'saved_file.pnm'. The string can include absolute path such as 'C:\networks\saved_file.pnm', or can be a relative path such as '..\..\saved_file.pnm', which will look 2 directories above the current working directory. Can also be a path object object such as that produced by ``pathlib`` or ``os.path`` in the Python standard library.
save_project
python
PMEAL/OpenPNM
openpnm/utils/_workspace.py
https://github.com/PMEAL/OpenPNM/blob/master/openpnm/utils/_workspace.py
MIT
def load_project(self, filename): r""" Loads a Project from the specified 'pnm' file The loaded project is added to the Workspace. This will *not* delete any existing Projects in the Workspace and will rename any Projects being loaded if necessary. Parameters ---------- filename : str or Path The name of the file to open. See Notes for more information. See Also -------- load_workspace Notes ----- The filename can be a string such as 'saved_file.pnm'. The string can include absolute path such as 'C:\networks\saved_file.pnm', or can be a relative path such as '..\..\saved_file.pnm', which will look 2 directories above the current working directory. Can also be a path object object such as that produced by ``pathlib`` or ``os.path`` in the Python standard library. """ with open(filename, 'rb') as f: proj = pickle.load(f) proj.settings.uuid = str(uuid4()) proj.name = self._validate_name(proj.name) self[proj.name] = proj return proj
Loads a Project from the specified 'pnm' file The loaded project is added to the Workspace. This will *not* delete any existing Projects in the Workspace and will rename any Projects being loaded if necessary. Parameters ---------- filename : str or Path The name of the file to open. See Notes for more information. See Also -------- load_workspace Notes ----- The filename can be a string such as 'saved_file.pnm'. The string can include absolute path such as 'C:\networks\saved_file.pnm', or can be a relative path such as '..\..\saved_file.pnm', which will look 2 directories above the current working directory. Can also be a path object object such as that produced by ``pathlib`` or ``os.path`` in the Python standard library.
load_project
python
PMEAL/OpenPNM
openpnm/utils/_workspace.py
https://github.com/PMEAL/OpenPNM/blob/master/openpnm/utils/_workspace.py
MIT
def new_project(self, name=None): r""" Creates a new empty Project object Parameters ---------- name : str, optional The unique name to give to the project. If none is given, one will be automatically generated (e.g. 'proj_01`) Returns ------- proj : list An empty Project object, suitable for passing into a Network generator """ from openpnm.utils import Project proj = Project(name=name) return proj
Creates a new empty Project object Parameters ---------- name : str, optional The unique name to give to the project. If none is given, one will be automatically generated (e.g. 'proj_01`) Returns ------- proj : list An empty Project object, suitable for passing into a Network generator
new_project
python
PMEAL/OpenPNM
openpnm/utils/_workspace.py
https://github.com/PMEAL/OpenPNM/blob/master/openpnm/utils/_workspace.py
MIT
def draw_conduit(network, throat): """Draws a subset of a network given throat numbers.""" pn = network P1, P2 = find_connected_sites(g=pn, bonds=throat) new_net = Network(coords=pn.coords[[P1, P2], :], conns=np.atleast_2d([0, 1])) new_net.regenerate_models() new_net['pore.diameter'] = pn['pore.diameter'][[P1, P2]] new_net['throat.diameter'] = [pn['throat.diameter'][throat]] new_net['throat.length'] = throat_length.circles_and_rectangles(new_net) new_net['throat.endpoints'] = throat_endpoints.spheres_and_cylinders(new_net) Pcrds = np.vstack((pn.coords[0, :], pn.coords[0, :])) Pcrds[1, :] = Pcrds[1, :] + np.array([new_net['throat.spacing'], 0, 0]) fig, ax = plt.subplots(figsize=[10, 5]) patches = [] for i, P in enumerate([0, 1]): x, y, r = Pcrds[P, 0], Pcrds[P, 1], new_net['pore.diameter'][P]/2 circle = Circle((x, y), r) patches.append(circle) Tcrds = np.vstack(list(new_net['throat.endpoints'].values())) Tcrds = rotate_coords(Tcrds, b=270) H = new_net['throat.diameter'][0] W = new_net['throat.length'][0] R1 = new_net['pore.diameter'][0]/2 R2 = new_net['pore.diameter'][1]/2 rect = Rectangle(xy=(Tcrds[0, 0], Tcrds[0, 1]-H/2), height=H, width=W) patches.append(rect) p = PatchCollection(patches, alpha=0.5, edgecolor='k', linewidth=3) p.set_array([1, 1, 2]) p.cmap = plt.cm.bwr ax.add_collection(p) ax.scatter(*Pcrds[0, :2], marker='+', c='k', s=100) ax.scatter(*Pcrds[1, :2], marker='+', c='k', s=100) left = min(Pcrds[:, 0])-R1 right = max(Pcrds[:, 0])+R2 ax.set_xlim([left - abs(left-right)/32, right + abs(left-right)/32]) temp = (Pcrds[:, 1]).mean() ax.set_ylim([temp - abs(left-right)/4, temp + abs(left-right)/4]) ax.annotate(text='', xy=Pcrds[0, :2], xytext=(Pcrds[0, 0], Pcrds[0, 1]-R1), arrowprops=dict(arrowstyle='<-', lw=2)) ax.annotate(text=f"{R1}", xy=Pcrds[0, :2], xytext=(Pcrds[0, 0], Pcrds[0, 1]-R1/2), textcoords='data') return ax
Draws a subset of a network given throat numbers.
draw_conduit
python
PMEAL/OpenPNM
openpnm/visualization/_conduit_visualizer.py
https://github.com/PMEAL/OpenPNM/blob/master/openpnm/visualization/_conduit_visualizer.py
MIT
def plot_connections(network, throats=None, ax=None, size_by=None, color_by=None, label_by=None, cmap='jet', color='b', alpha=1.0, linestyle='solid', linewidth=1, **kwargs): # pragma: no cover r""" Produce a 3D plot of the network topology. This shows how throats connect for quick visualization without having to export data to veiw in Paraview. Parameters ---------- network : Network The network whose topological connections to plot throats : array_like (optional) The list of throats to plot if only a sub-sample is desired. This is useful for inspecting a small region of the network. If no throats are specified then all throats are shown. fig : Matplotlib figure handle and line property arguments (optional) If a ``fig`` is supplied, then the topology will be overlaid on this plot. This makes it possible to combine coordinates and connections, and to color throats differently for instance. size_by : array_like (optional) An ndarray of throat values (e.g. alg['throat.rate']). These values are used to scale the ``linewidth``, so if the lines are too thin, then increase ``linewidth``. color_by : array_like (optional) An ndarray of throat values (e.g. alg['throat.rate']). label_by : array_like (optional) An array or list of values to use as labels cmap : str or cmap object (optional) The matplotlib colormap to use if specfying a throat property for ``color_by`` color : str, optional (optional) A matplotlib named color (e.g. 'r' for red). alpha : float (optional) The transparency of the lines, with 1 being solid and 0 being invisible linestyle : str (optional) Can be one of {'solid', 'dashed', 'dashdot', 'dotted'}. Default is 'solid'. linewidth : float (optional) Controls the thickness of drawn lines. Is used to scale the thickness if ``size_by`` is given. Default is 1. If a value is provided for ``size_by`` then they are used to scale the ``linewidth``. font : dict A dictionary of key-value pairs that are used to control the font appearance if `label_by` is provided. **kwargs : dict All other keyword arguments are passed on to the ``Line3DCollection`` class of matplotlib, so check their documentation for additional formatting options. Returns ------- lc : LineCollection or Line3DCollection Matplotlib object containing the lines representing the throats. Notes ----- To create a single plot containing both pore coordinates and throats, consider creating an empty figure and then pass the ``ax`` object as an argument to ``plot_connections`` and ``plot_coordinates``. Otherwise, each call to either of these methods creates a new figure. See Also -------- plot_coordinates Examples -------- >>> import openpnm as op >>> import matplotlib as mpl >>> import matplotlib.pyplot as plt >>> mpl.use('Agg') >>> pn = op.network.Cubic(shape=[10, 10, 3]) >>> pn.add_boundary_pores() >>> Ts = pn.throats('*boundary', mode='not') # find internal throats >>> fig, ax = plt.subplots() # create empty figure >>> _ = op.visualization.plot_connections(network=pn, ... throats=Ts) # plot internal throats >>> Ts = pn.throats('*boundary') # find boundary throats >>> _ = op.visualization.plot_connections(network=pn, ... throats=Ts, ... ax=ax, ... color='r') # plot boundary throats in red """ import matplotlib.pyplot as plt from matplotlib import cm from matplotlib import colors as mcolors from matplotlib.collections import LineCollection from mpl_toolkits.mplot3d import Axes3D from mpl_toolkits.mplot3d.art3d import Line3DCollection from openpnm.topotools import dimensionality Ts = network.Ts if throats is None else network._parse_indices(throats) dim = dimensionality(network) ThreeD = True if dim.sum() == 3 else False # Add a dummy axis for 1D networks if dim.sum() == 1: dim[np.argwhere(~dim)[0]] = True if "fig" in kwargs.keys(): raise Exception("'fig' argument is deprecated, use 'ax' instead.") if ax is None: fig, ax = plt.subplots() else: # The next line is necessary if ax was created using plt.subplots() fig, ax = ax.get_figure(), ax.get_figure().gca() if ThreeD and ax.name != '3d': fig.delaxes(ax) ax = fig.add_subplot(111, projection='3d') # Collect coordinates Ps = np.unique(network['throat.conns'][Ts]) X, Y, Z = network['pore.coords'][Ps].T xyz = network["pore.coords"][:, dim] P1, P2 = network["throat.conns"][Ts].T throat_pos = np.column_stack((xyz[P1], xyz[P2])).reshape((Ts.size, 2, dim.sum())) # Deal with optional style related arguments if 'c' in kwargs.keys(): color = kwargs.pop('c') color = mcolors.to_rgb(color) + tuple([alpha]) if isinstance(cmap, str): try: cmap = plt.colormaps.get_cmap(cmap) except AttributeError: cmap = plt.cm.get_cmap(cmap) # Override colors with color_by if given if color_by is not None: color_by = np.array(color_by, dtype=np.float16) if len(color_by) != len(Ts): color_by = color_by[Ts] if not np.all(np.isfinite(color_by)): color_by[~np.isfinite(color_by)] = 0 logger.warning('nans or infs found in color_by array, setting to 0') vmin = kwargs.pop('vmin', color_by.min()) vmax = kwargs.pop('vmax', color_by.max()) cscale = (color_by - vmin) / (vmax - vmin) color = cmap(cscale) color[:, 3] = alpha if size_by is not None: if len(size_by) != len(Ts): size_by = size_by[Ts] if not np.all(np.isfinite(size_by)): size_by[~np.isfinite(size_by)] = 0 logger.warning('nans or infs found in size_by array, setting to 0') linewidth = size_by / size_by.max() * linewidth if label_by is not None: if len(label_by) != len(Ts): label_by = label_by[Ts] fontkws = kwargs.pop('font', {}) if ThreeD: lc = Line3DCollection(throat_pos, colors=color, cmap=cmap, linestyles=linestyle, linewidths=linewidth, antialiaseds=np.ones_like(network.Ts), **kwargs) else: lc = LineCollection(throat_pos, colors=color, cmap=cmap, linestyles=linestyle, linewidths=linewidth, antialiaseds=np.ones_like(network.Ts), **kwargs) if label_by is not None: for count, (P1, P2) in enumerate(network.conns[Ts, :]): i, j, k = np.mean(network.coords[[P1, P2], :], axis=0) ax.text(i, j, label_by[count], ha='center', va='center', **fontkws) ax.add_collection(lc) if np.size(Ts) > 0: _scale_axes(ax=ax, X=X, Y=Y, Z=Z) _label_axes(ax=ax, X=X, Y=Y, Z=Z) fig.tight_layout() return lc
Produce a 3D plot of the network topology. This shows how throats connect for quick visualization without having to export data to veiw in Paraview. Parameters ---------- network : Network The network whose topological connections to plot throats : array_like (optional) The list of throats to plot if only a sub-sample is desired. This is useful for inspecting a small region of the network. If no throats are specified then all throats are shown. fig : Matplotlib figure handle and line property arguments (optional) If a ``fig`` is supplied, then the topology will be overlaid on this plot. This makes it possible to combine coordinates and connections, and to color throats differently for instance. size_by : array_like (optional) An ndarray of throat values (e.g. alg['throat.rate']). These values are used to scale the ``linewidth``, so if the lines are too thin, then increase ``linewidth``. color_by : array_like (optional) An ndarray of throat values (e.g. alg['throat.rate']). label_by : array_like (optional) An array or list of values to use as labels cmap : str or cmap object (optional) The matplotlib colormap to use if specfying a throat property for ``color_by`` color : str, optional (optional) A matplotlib named color (e.g. 'r' for red). alpha : float (optional) The transparency of the lines, with 1 being solid and 0 being invisible linestyle : str (optional) Can be one of {'solid', 'dashed', 'dashdot', 'dotted'}. Default is 'solid'. linewidth : float (optional) Controls the thickness of drawn lines. Is used to scale the thickness if ``size_by`` is given. Default is 1. If a value is provided for ``size_by`` then they are used to scale the ``linewidth``. font : dict A dictionary of key-value pairs that are used to control the font appearance if `label_by` is provided. **kwargs : dict All other keyword arguments are passed on to the ``Line3DCollection`` class of matplotlib, so check their documentation for additional formatting options. Returns ------- lc : LineCollection or Line3DCollection Matplotlib object containing the lines representing the throats. Notes ----- To create a single plot containing both pore coordinates and throats, consider creating an empty figure and then pass the ``ax`` object as an argument to ``plot_connections`` and ``plot_coordinates``. Otherwise, each call to either of these methods creates a new figure. See Also -------- plot_coordinates Examples -------- >>> import openpnm as op >>> import matplotlib as mpl >>> import matplotlib.pyplot as plt >>> mpl.use('Agg') >>> pn = op.network.Cubic(shape=[10, 10, 3]) >>> pn.add_boundary_pores() >>> Ts = pn.throats('*boundary', mode='not') # find internal throats >>> fig, ax = plt.subplots() # create empty figure >>> _ = op.visualization.plot_connections(network=pn, ... throats=Ts) # plot internal throats >>> Ts = pn.throats('*boundary') # find boundary throats >>> _ = op.visualization.plot_connections(network=pn, ... throats=Ts, ... ax=ax, ... color='r') # plot boundary throats in red
plot_connections
python
PMEAL/OpenPNM
openpnm/visualization/_plottools.py
https://github.com/PMEAL/OpenPNM/blob/master/openpnm/visualization/_plottools.py
MIT
def plot_coordinates(network, pores=None, ax=None, size_by=None, color_by=None, label_by=None, cmap='jet', color='r', alpha=1.0, marker='o', markersize=10, **kwargs): # pragma: no cover r""" Produce a 3D plot showing specified pore coordinates as markers. Parameters ---------- network : Network The network whose topological connections to plot. pores : array_like (optional) The list of pores to plot if only a sub-sample is desired. This is useful for inspecting a small region of the network. If no pores are specified then all are shown. ax : Matplotlib axis handle If ``ax`` is supplied, then the coordinates will be overlaid. This enables the plotting of multiple different sets of pores as well as throat connections from ``plot_connections``. size_by : str or array_like An ndarray of pore values (e.g. alg['pore.concentration']). These values are normalized by scaled by ``markersize``. Note that this controls the marker *area*, so if you want the markers to be proportional to diameter you should do `size_by=net['pore.diameter']**2`. color_by : str or array_like An ndarray of pore values (e.g. alg['pore.concentration']). label_by : array_like (optional) An array or list of values to use as labels cmap : str or cmap object The matplotlib colormap to use if specfying a pore property for ``color_by`` color : str A matplotlib named color (e.g. 'r' for red). alpha : float The transparency of the lines, with 1 being solid and 0 being invisible marker : 's' The marker to use. The default is a circle. Options are explained `here <https://matplotlib.org/3.2.1/api/markers_api.html>`_ markersize : scalar Controls size of marker, default is 1.0. This value is used to scale the ``size_by`` argument if given. font : dict A dictionary of key-value pairs that are used to control the font appearance if `label_by` is provided. **kwargs All other keyword arguments are passed on to the ``scatter`` function of matplotlib, so check their documentation for additional formatting options. Returns ------- pc : PathCollection Matplotlib object containing the markers representing the pores. Notes ----- To create a single plot containing both pore coordinates and throats, consider creating an empty figure and then pass the ``ax`` object as an argument to ``plot_connections`` and ``plot_coordinates``. Otherwise, each call to either of these methods creates a new figure. See Also -------- plot_connections Examples -------- >>> import openpnm as op >>> import matplotlib as mpl >>> import matplotlib.pyplot as plt >>> mpl.use('Agg') >>> pn = op.network.Cubic(shape=[10, 10, 3]) >>> pn['pore.internal'] = True >>> pn.add_boundary_pores() >>> Ps = pn.pores('internal') # find internal pores >>> fig, ax = plt.subplots() # create empty figure >>> _ = op.visualization.plot_coordinates(network=pn, ... pores=Ps, ... color='b', ... ax=ax) # plot internal pores >>> Ps = pn.pores('*boundary') # find boundary pores >>> _ = op.visualization.plot_coordinates(network=pn, ... pores=Ps, ... color='r', ... ax=ax) # plot boundary pores in red """ import matplotlib.pyplot as plt from matplotlib import cm from mpl_toolkits.mplot3d import Axes3D from openpnm.topotools import dimensionality Ps = network.Ps if pores is None else network._parse_indices(pores) dim = dimensionality(network) ThreeD = True if dim.sum() == 3 else False # Add a dummy axis for 1D networks if dim.sum() == 1: dim[np.argwhere(~dim)[0]] = True # Add 2 dummy axes for 0D networks (1 pore only) if dim.sum() == 0: dim[[0, 1]] = True if "fig" in kwargs.keys(): raise Exception("'fig' argument is deprecated, use 'ax' instead.") if ax is None: fig, ax = plt.subplots() else: # The next line is necessary if ax was created using plt.subplots() fig, ax = ax.get_figure(), ax.get_figure().gca() if ThreeD and ax.name != '3d': fig.delaxes(ax) ax = fig.add_subplot(111, projection='3d') # Collect specified coordinates X, Y, Z = network['pore.coords'][Ps].T # The bounding box for fig is the entire ntwork (to fix the problem with # overwriting figures' axes lim) Xl, Yl, Zl = network['pore.coords'].T # Parse formatting kwargs if 'c' in kwargs.keys(): color = kwargs.pop('c') if 's' in kwargs.keys(): markersize = kwargs.pop('s') if isinstance(cmap, str): try: cmap = plt.colormaps.get_cmap(cmap) except AttributeError: cmap = plt.cm.get_cmap(cmap) if color_by is not None: color_by = np.array(color_by, dtype=np.float16) if len(color_by) != len(Ps): color_by = color_by[Ps] if not np.all(np.isfinite(color_by)): color_by[~np.isfinite(color_by)] = 0 logger.warning('nans or infs found in color_by array, setting to 0') vmin = kwargs.pop('vmin', color_by.min()) vmax = kwargs.pop('vmax', color_by.max()) cscale = (color_by - vmin) / (vmax - vmin) color = cmap(cscale) if size_by is not None: if len(size_by) != len(Ps): size_by = size_by[Ps] if not np.all(np.isfinite(size_by)): size_by[~np.isfinite(size_by)] = 0 logger.warning('nans or infs found in size_by array, setting to 0') markersize = size_by / size_by.max() * markersize if label_by is not None: if len(label_by) != len(Ps): label_by = label_by[Ps] fontkws = kwargs.pop('font', {}) if ThreeD: sc = ax.scatter(X, Y, Z, c=color, s=markersize, marker=marker, alpha=alpha, **kwargs) _scale_axes(ax=ax, X=Xl, Y=Yl, Z=Zl) else: _X, _Y = np.column_stack((X, Y, Z))[:, dim].T sc = ax.scatter(_X, _Y, c=color, s=markersize, marker=marker, alpha=alpha, **kwargs) if label_by is not None: for count, (i, j, k) in enumerate(network.coords[Ps, :]): ax.text(i, j, label_by[count], ha='center', va='center', **fontkws) _scale_axes(ax=ax, X=Xl, Y=Yl, Z=np.zeros_like(Yl)) _label_axes(ax=ax, X=Xl, Y=Yl, Z=Zl) fig.tight_layout() return sc
Produce a 3D plot showing specified pore coordinates as markers. Parameters ---------- network : Network The network whose topological connections to plot. pores : array_like (optional) The list of pores to plot if only a sub-sample is desired. This is useful for inspecting a small region of the network. If no pores are specified then all are shown. ax : Matplotlib axis handle If ``ax`` is supplied, then the coordinates will be overlaid. This enables the plotting of multiple different sets of pores as well as throat connections from ``plot_connections``. size_by : str or array_like An ndarray of pore values (e.g. alg['pore.concentration']). These values are normalized by scaled by ``markersize``. Note that this controls the marker *area*, so if you want the markers to be proportional to diameter you should do `size_by=net['pore.diameter']**2`. color_by : str or array_like An ndarray of pore values (e.g. alg['pore.concentration']). label_by : array_like (optional) An array or list of values to use as labels cmap : str or cmap object The matplotlib colormap to use if specfying a pore property for ``color_by`` color : str A matplotlib named color (e.g. 'r' for red). alpha : float The transparency of the lines, with 1 being solid and 0 being invisible marker : 's' The marker to use. The default is a circle. Options are explained `here <https://matplotlib.org/3.2.1/api/markers_api.html>`_ markersize : scalar Controls size of marker, default is 1.0. This value is used to scale the ``size_by`` argument if given. font : dict A dictionary of key-value pairs that are used to control the font appearance if `label_by` is provided. **kwargs All other keyword arguments are passed on to the ``scatter`` function of matplotlib, so check their documentation for additional formatting options. Returns ------- pc : PathCollection Matplotlib object containing the markers representing the pores. Notes ----- To create a single plot containing both pore coordinates and throats, consider creating an empty figure and then pass the ``ax`` object as an argument to ``plot_connections`` and ``plot_coordinates``. Otherwise, each call to either of these methods creates a new figure. See Also -------- plot_connections Examples -------- >>> import openpnm as op >>> import matplotlib as mpl >>> import matplotlib.pyplot as plt >>> mpl.use('Agg') >>> pn = op.network.Cubic(shape=[10, 10, 3]) >>> pn['pore.internal'] = True >>> pn.add_boundary_pores() >>> Ps = pn.pores('internal') # find internal pores >>> fig, ax = plt.subplots() # create empty figure >>> _ = op.visualization.plot_coordinates(network=pn, ... pores=Ps, ... color='b', ... ax=ax) # plot internal pores >>> Ps = pn.pores('*boundary') # find boundary pores >>> _ = op.visualization.plot_coordinates(network=pn, ... pores=Ps, ... color='r', ... ax=ax) # plot boundary pores in red
plot_coordinates
python
PMEAL/OpenPNM
openpnm/visualization/_plottools.py
https://github.com/PMEAL/OpenPNM/blob/master/openpnm/visualization/_plottools.py
MIT
def plot_networkx(network, plot_throats=True, labels=None, colors=None, scale=1, ax=None, alpha=1.0): # pragma: no cover r""" Creates a pretty 2D plot for 2D OpenPNM networks. Parameters ---------- network : Network plot_throats : bool, optional Plots throats as well as pores, if True. labels : list, optional List of OpenPNM labels colors : list, optional List of corresponding colors to the given `labels`. scale : float, optional Scale factor for size of pores. ax : matplotlib.Axes, optional Matplotlib axes object alpha: float, optional Transparency value, 1 is opaque and 0 is transparent """ import matplotlib.pyplot as plt from matplotlib.collections import PathCollection from networkx import Graph, draw_networkx_edges, draw_networkx_nodes from openpnm.topotools import dimensionality dims = dimensionality(network) if dims.sum() > 2: raise Exception("NetworkX plotting only works for 2D networks.") temp = network['pore.coords'].T[dims].squeeze() if dims.sum() == 1: x = temp y = np.zeros_like(x) if dims.sum() == 2: x, y = temp try: node_size = scale * network['pore.diameter'] except KeyError: node_size = np.ones_like(x) * scale * 0.5 G = Graph() pos = {network.Ps[i]: [x[i], y[i]] for i in range(network.Np)} if not np.isfinite(node_size).all(): node_size[~np.isfinite(node_size)] = np.nanmin(node_size) node_color = np.array(['k'] * len(network.Ps)) if labels: if not isinstance(labels, list): labels = [labels] if not isinstance(colors, list): colors = [colors] if len(labels) != len(colors): raise Exception('len(colors) must be equal to len(labels)!') for label, color in zip(labels, colors): node_color[network.pores(label)] = color if ax is None: fig, ax = plt.subplots() ax.set_aspect('equal', adjustable='datalim') offset = node_size.max() * 0.5 ax.set_xlim((x.min() - offset, x.max() + offset)) ax.set_ylim((y.min() - offset, y.max() + offset)) ax.axis("off") # Keep track of already plotted nodes temp = [id(item) for item in ax.collections if isinstance(item, PathCollection)] # Plot pores gplot = draw_networkx_nodes(G, ax=ax, pos=pos, nodelist=network.Ps.tolist(), alpha=alpha, node_color=node_color, edgecolors=node_color, node_size=node_size) # (Optionally) Plot throats if plot_throats: draw_networkx_edges(G, pos=pos, edge_color='k', alpha=alpha, edgelist=network['throat.conns'].tolist(), ax=ax) spi = 2700 # 1250 was obtained by trial and error figwidth, figheight = ax.get_figure().get_size_inches() figsize_ratio = figheight / figwidth data_ratio = ax.get_data_ratio() corr = min(figsize_ratio / data_ratio, 1) xrange = np.ptp(ax.get_xlim()) markersize = np.atleast_1d((corr*figwidth)**2 / xrange**2 * node_size**2 * spi) for item in ax.collections: if isinstance(item, PathCollection) and id(item) not in temp: item.set_sizes(markersize) return gplot
Creates a pretty 2D plot for 2D OpenPNM networks. Parameters ---------- network : Network plot_throats : bool, optional Plots throats as well as pores, if True. labels : list, optional List of OpenPNM labels colors : list, optional List of corresponding colors to the given `labels`. scale : float, optional Scale factor for size of pores. ax : matplotlib.Axes, optional Matplotlib axes object alpha: float, optional Transparency value, 1 is opaque and 0 is transparent
plot_networkx
python
PMEAL/OpenPNM
openpnm/visualization/_plottools.py
https://github.com/PMEAL/OpenPNM/blob/master/openpnm/visualization/_plottools.py
MIT
def plot_tutorial(network, pore_labels=None, throat_labels=None, font_size=12, line_width=2, node_color='b', edge_color='r', node_size=500): # pragma: no cover r""" Generate a network plot suitable for tutorials and explanations. Parameters ---------- network : Network The network to plot, should be 2D, since the z-coordinate will be ignored. pore_labels : array_like A list of values to use for labeling the pores. If not provided then pore index is used. throat_labels : array_like A list of values to use for labeling the throat. If not provided then throat index is used. font_size : int Size of font to use for labels. line_width : int Thickness of edge lines and node borders. node_color : str Color of node border. edge_color : str Color of edge lines. node_size : int Size of node circle. Returns ------- g : NetworkX plot object """ import matplotlib.pyplot as plt import networkx as nx from openpnm.io import network_to_networkx G = network_to_networkx(network=network) pos = {i: network['pore.coords'][i, 0:2] for i in network.Ps} if pore_labels is None: labels = {i: i for i in network.Ps} else: labels = {i: pore_labels[i] for i in network.Ps} if throat_labels is None: edge_labels = {tuple(network['throat.conns'][i, :]): i for i in network.Ts} else: edge_labels = {tuple(network['throat.conns'][i, :]): throat_labels[i] for i in network.Ts} gplot = nx.draw_networkx_nodes(G, pos, node_size=node_size, node_color='w', edgecolors=node_color, linewidths=line_width) nx.draw_networkx_edges( G, pos, width=line_width, edge_color=edge_color) nx.draw_networkx_labels( G, pos, labels=labels, font_size=font_size, font_color='k') nx.draw_networkx_edge_labels( G, pos, edge_labels=edge_labels, font_size=font_size, font_color='k') # Prettify the figure (margins, etc.) plt.axis('off') ax = plt.gca() ax.margins(0.1, 0.1) ax.set_aspect("equal") fig = plt.gcf() fig.tight_layout() dims = op.topotools.dimensionality(network) xy_range = np.ptp(network.coords, axis=0)[dims] aspect_ratio = xy_range[0] / xy_range[1] fig.set_size_inches(5, 5 / aspect_ratio) return gplot
Generate a network plot suitable for tutorials and explanations. Parameters ---------- network : Network The network to plot, should be 2D, since the z-coordinate will be ignored. pore_labels : array_like A list of values to use for labeling the pores. If not provided then pore index is used. throat_labels : array_like A list of values to use for labeling the throat. If not provided then throat index is used. font_size : int Size of font to use for labels. line_width : int Thickness of edge lines and node borders. node_color : str Color of node border. edge_color : str Color of edge lines. node_size : int Size of node circle. Returns ------- g : NetworkX plot object
plot_tutorial
python
PMEAL/OpenPNM
openpnm/visualization/_plottools.py
https://github.com/PMEAL/OpenPNM/blob/master/openpnm/visualization/_plottools.py
MIT
def plot_notebook(network, node_color=0, edge_color=0, node_size=1, node_scale=20, edge_scale=5, colormap='viridis'): r""" Visualize a network in 3D using Plotly. The pores and throats are scaled and colored by their properties. The final figure can be rotated and zoomed. Parameters ---------- network : Network The network to visualize node_color : ndarray An array of values used for coloring the pores. If not given, the lowest value of the employed colormap is assigned to all markers. edge_color : ndarray An array of values used for coloring the throats. If not given, the lowest value of the employed colormap is assigned to all lines. node_size : ndarray An array of values controlling the size of the markers. If not given all markers will be the same size node_scale : scalar A scaler to resize the markers edge_scale : scalar A scaler to the line thickness colormap : str The colormap to use Returns ------- fig : Plotly graph object The graph object containing the generated plots. The object has several useful methods. Notes ----- **Important** a) This does not work in Spyder. It should only be called from a Jupyter Notebook. b) This is only meant for relatively small networks. For proper visualization use Paraview. """ try: import plotly.graph_objects as go except ImportError: raise Exception('Plotly is not installed.' 'Please install Plotly using "pip install plotly"') # Get xyz coords for points x_nodes, y_nodes, z_nodes = network.coords.T node_size = np.ones(network.Np)*node_size node_color = np.ones(network.Np)*node_color edge_color = np.ones(network.Nt)*edge_color node_labels = [str(i) + ': ' + str(x) for i, x in enumerate(zip(node_size, node_color))] edge_labels = [str(i) + ': ' + str(x) for i, x in enumerate(edge_color)] # Create edges and nodes coordinates N = network.Nt*3 x_edges = np.zeros(N) x_edges[np.arange(0, N, 3)] = network.coords[network.conns[:, 0]][:, 0] x_edges[np.arange(1, N, 3)] = network.coords[network.conns[:, 1]][:, 0] x_edges[np.arange(2, N, 3)] = np.nan y_edges = np.zeros(network.Nt*3) y_edges[np.arange(0, N, 3)] = network.coords[network.conns[:, 0]][:, 1] y_edges[np.arange(1, N, 3)] = network.coords[network.conns[:, 1]][:, 1] y_edges[np.arange(2, N, 3)] = np.nan z_edges = np.zeros(network.Nt*3) z_edges[np.arange(0, N, 3)] = network.coords[network.conns[:, 0]][:, 2] z_edges[np.arange(1, N, 3)] = network.coords[network.conns[:, 1]][:, 2] z_edges[np.arange(2, N, 3)] = np.nan # Create plotly's Scatter3d object for pores and throats trace_edges = go.Scatter3d(x=x_edges, y=y_edges, z=z_edges, mode='lines', line=dict(color=edge_color, width=edge_scale, colorscale=colormap), text=edge_labels, hoverinfo='text') trace_nodes = go.Scatter3d(x=x_nodes, y=y_nodes, z=z_nodes, mode='markers', marker=dict(symbol='circle', size=node_size*node_scale, color=node_color, colorscale=colormap, line=dict(color='black', width=0.5)), text=node_labels, hoverinfo='text') axis = dict(showbackground=False, showline=False, zeroline=False, showgrid=False, showticklabels=False, title='') layout = go.Layout(width=650, height=625, showlegend=False, scene=dict(xaxis=dict(axis), yaxis=dict(axis), zaxis=dict(axis),), margin=dict(t=100), hovermode='closest') data = [trace_edges, trace_nodes] fig = go.Figure(data=data, layout=layout) return fig
Visualize a network in 3D using Plotly. The pores and throats are scaled and colored by their properties. The final figure can be rotated and zoomed. Parameters ---------- network : Network The network to visualize node_color : ndarray An array of values used for coloring the pores. If not given, the lowest value of the employed colormap is assigned to all markers. edge_color : ndarray An array of values used for coloring the throats. If not given, the lowest value of the employed colormap is assigned to all lines. node_size : ndarray An array of values controlling the size of the markers. If not given all markers will be the same size node_scale : scalar A scaler to resize the markers edge_scale : scalar A scaler to the line thickness colormap : str The colormap to use Returns ------- fig : Plotly graph object The graph object containing the generated plots. The object has several useful methods. Notes ----- **Important** a) This does not work in Spyder. It should only be called from a Jupyter Notebook. b) This is only meant for relatively small networks. For proper visualization use Paraview.
plot_notebook
python
PMEAL/OpenPNM
openpnm/visualization/_plottools.py
https://github.com/PMEAL/OpenPNM/blob/master/openpnm/visualization/_plottools.py
MIT
def _generate_voxel_image(network, pore_shape, throat_shape, max_dim=200): r""" Generates a 3d numpy array from an OpenPNM network Parameters ---------- network : OpenPNM Network Network from which voxel image is to be generated pore_shape : str Shape of pores in the network, valid choices are "sphere", "cube" throat_shape : str Shape of throats in the network, valid choices are "cylinder", "cuboid" max_dim : int Number of voxels in the largest dimension of the network Returns ------- im : ndarray Voxelated image corresponding to the given pore network model Notes ----- (1) The generated voxel image is labeled with 0s, 1s and 2s signifying solid phase, pores, and throats respectively. """ from porespy.tools import insert_cylinder, overlay from skimage.morphology import ball, cube xyz = network["pore.coords"] cn = network["throat.conns"] # Distance bounding box from the network by a fixed amount delta = network["pore.diameter"].mean() / 2 if isinstance(network, op.network.Cubic): try: delta = op.topotools.get_spacing(network).mean() / 2 except AttributeError: delta = network.spacing.mean() / 2 # Shift everything to avoid out-of-bounds extra_clearance = int(max_dim * 0.05) # Transform points to satisfy origin at (0, 0, 0) xyz0 = xyz.min(axis=0) - delta xyz += -xyz0 res = (np.ptp(xyz, axis=0).max() + 2 * delta) / max_dim shape = np.rint((xyz.max(axis=0) + delta) / res).astype(int) + 2 * extra_clearance # Transforming from real coords to matrix coords xyz = np.rint(xyz / res).astype(int) + extra_clearance pore_radi = np.rint(network["pore.diameter"] * 0.5 / res).astype(int) throat_radi = np.rint(network["throat.diameter"] * 0.5 / res).astype(int) im_pores = np.zeros(shape, dtype=np.uint8) im_throats = np.zeros_like(im_pores) if pore_shape == "cube": pore_elem = cube rp = pore_radi * 2 + 1 # +1 since num_voxel must be odd rp_max = int(2 * round(delta / res)) + 1 if pore_shape == "sphere": pore_elem = ball rp = pore_radi rp_max = int(round(delta / res)) if throat_shape == "cuboid": raise Exception("Not yet implemented, try 'cylinder'.") # Generating voxels for pores for i, pore in enumerate(tqdm(network.Ps)): elem = pore_elem(rp[i]) try: im_pores = overlay(im1=im_pores, im2=elem, c=xyz[i]) except ValueError: elem = pore_elem(rp_max) im_pores = overlay(im1=im_pores, im2=elem, c=xyz[i]) # Get rid of pore overlaps im_pores[im_pores > 0] = 1 # Generating voxels for throats for i, throat in enumerate(tqdm(network.Ts)): try: im_throats = insert_cylinder( im_throats, r=throat_radi[i], xyz0=xyz[cn[i, 0]], xyz1=xyz[cn[i, 1]]) except ValueError: im_throats = insert_cylinder( im_throats, r=rp_max, xyz0=xyz[cn[i, 0]], xyz1=xyz[cn[i, 1]]) # Get rid of throat overlaps im_throats[im_throats > 0] = 1 # Subtract pore-throat overlap from throats im_throats = (im_throats.astype(bool) * ~im_pores.astype(bool)).astype(np.uint8) im = im_pores * 1 + im_throats * 2 return im[extra_clearance:-extra_clearance, extra_clearance:-extra_clearance, extra_clearance:-extra_clearance]
Generates a 3d numpy array from an OpenPNM network Parameters ---------- network : OpenPNM Network Network from which voxel image is to be generated pore_shape : str Shape of pores in the network, valid choices are "sphere", "cube" throat_shape : str Shape of throats in the network, valid choices are "cylinder", "cuboid" max_dim : int Number of voxels in the largest dimension of the network Returns ------- im : ndarray Voxelated image corresponding to the given pore network model Notes ----- (1) The generated voxel image is labeled with 0s, 1s and 2s signifying solid phase, pores, and throats respectively.
_generate_voxel_image
python
PMEAL/OpenPNM
openpnm/visualization/_plottools.py
https://github.com/PMEAL/OpenPNM/blob/master/openpnm/visualization/_plottools.py
MIT
def generate_voxel_image(network, pore_shape="sphere", throat_shape="cylinder", max_dim=None, rtol=0.1): r""" Generate a voxel image from a Network Parameters ---------- network : OpenPNM Network Network from which voxel image is to be generated pore_shape : str Shape of pores in the network, valid choices are "sphere", "cube" throat_shape : str Shape of throats in the network, valid choices are "cylinder", "cuboid" max_dim : int Number of voxels in the largest dimension of the network rtol : float Stopping criteria for finding the smallest voxel image such that further increasing the number of voxels in each dimension by 25% would improve the predicted porosity of the image by less that ``rtol`` Returns ------- im : ndarray Voxelated image corresponding to the given pore network model Notes ----- (1) The generated voxelated image is labeled with 0s, 1s and 2s signifying solid phase, pores, and throats respectively. (2) If max_dim is not provided, the method calculates it such that the further increasing it doesn't change porosity by much. """ # If max_dim is provided, generate voxel image using max_dim if max_dim is not None: return _generate_voxel_image( network, pore_shape, throat_shape, max_dim=max_dim) max_dim = 200 # If max_dim is not provided, find best max_dim that predicts porosity err = 100 eps_old = 200 while err > rtol: im = _generate_voxel_image( network, pore_shape, throat_shape, max_dim=max_dim) eps = im.astype(bool).sum() / np.prod(im.shape) err = abs(1 - eps / eps_old) eps_old = eps max_dim = int(max_dim * 1.25) return im
Generate a voxel image from a Network Parameters ---------- network : OpenPNM Network Network from which voxel image is to be generated pore_shape : str Shape of pores in the network, valid choices are "sphere", "cube" throat_shape : str Shape of throats in the network, valid choices are "cylinder", "cuboid" max_dim : int Number of voxels in the largest dimension of the network rtol : float Stopping criteria for finding the smallest voxel image such that further increasing the number of voxels in each dimension by 25% would improve the predicted porosity of the image by less that ``rtol`` Returns ------- im : ndarray Voxelated image corresponding to the given pore network model Notes ----- (1) The generated voxelated image is labeled with 0s, 1s and 2s signifying solid phase, pores, and throats respectively. (2) If max_dim is not provided, the method calculates it such that the further increasing it doesn't change porosity by much.
generate_voxel_image
python
PMEAL/OpenPNM
openpnm/visualization/_plottools.py
https://github.com/PMEAL/OpenPNM/blob/master/openpnm/visualization/_plottools.py
MIT
def plot_vispy( network, pore_color=None, pore_size=None, throat_color=None, throat_size=None, bgcolor='grey', ): r""" Creates a pretty network plot using VisPy. Parameters ---------- network """ try: from vispy import scene except ModuleNotFoundError: raise Exception("vispy must be installed to use this function") canvas = scene.SceneCanvas(keys='interactive', show=True, bgcolor=bgcolor) view = canvas.central_widget.add_view() view.camera = 'turntable' view.camera.fov = 30 view.camera.distance = 3*np.max(network['pore.coords']) if pore_color is None: pore_color = create_pore_colors_from_array(network['pore.diameter'], cmap='viridis') else: pore_color = create_pore_colors_from_array(pore_color, cmap='viridis') if throat_color is None: throat_color = create_throat_colors_from_array(network['throat.diameter'], cmap='viridis') else: throat_color = create_throat_colors_from_array(throat_color, cmap='viridis') if pore_size is None: pore_size = network['pore.diameter'] if throat_size is None: throat_size = 2 else: throat_size = np.max(throat_size) # Arrays not supported here # plot spheres vis = scene.visuals.Markers( pos=network['pore.coords'], size=pore_size, antialias=0, face_color=pore_color, edge_width=0, scaling=True, spherical=True, ) vis.parent = view.scene # plot axis # vispy.scene.visuals.XYZAxis(parent=view.scene) # set camera center view.camera.center = np.array((network['pore.coords'][:, 0].max()/2, network['pore.coords'][:, 1].max()/2, network['pore.coords'][:, 2].max()/2)) # data preparation lines = np.zeros((len(network['throat.conns']), 2, 3)) for i in range(len(network['throat.conns'])): pair = network['throat.conns'][i] line = np.array([[network['pore.coords'][pair[0]], network['pore.coords'][pair[1]]]]) lines[i, :, :] = line # plot throats vis2 = scene.visuals.Line(lines, width=throat_size, color=throat_color, connect='segments', antialias=True,) vis2.parent = view.scene
Creates a pretty network plot using VisPy. Parameters ---------- network
plot_vispy
python
PMEAL/OpenPNM
openpnm/visualization/_plottools.py
https://github.com/PMEAL/OpenPNM/blob/master/openpnm/visualization/_plottools.py
MIT
def set_mpl_style(): # pragma: no cover r""" Prettifies matplotlib's output by adjusting fonts, markersize etc. """ sfont = 12 mfont = 12 lfont = 12 image_props = {'interpolation': 'none', 'cmap': 'viridis'} line_props = {'linewidth': 2, 'markersize': 7, 'markerfacecolor': 'w'} font_props = {'size': sfont} axes_props = {'titlesize': lfont, 'labelsize': mfont, 'linewidth': 2, 'labelpad': 8} xtick_props = {'labelsize': sfont, 'top': True, 'direction': 'in', 'major.size': 6, 'major.width': 2} ytick_props = {'labelsize': sfont, 'right': True, 'direction': 'in', 'major.size': 6, 'major.width': 2} legend_props = {'fontsize': mfont, 'frameon': False} figure_props = {'titlesize': sfont, 'autolayout': True} plt.rc('font', **font_props) plt.rc('lines', **line_props) plt.rc('axes', **axes_props) plt.rc('xtick', **xtick_props) plt.rc('ytick', **ytick_props) plt.rc('legend', **legend_props) plt.rc('figure', **figure_props) plt.rc('image', **image_props) try: import IPython IPython.display.set_matplotlib_formats('png2x') except ModuleNotFoundError: pass
Prettifies matplotlib's output by adjusting fonts, markersize etc.
set_mpl_style
python
PMEAL/OpenPNM
openpnm/visualization/_plottools.py
https://github.com/PMEAL/OpenPNM/blob/master/openpnm/visualization/_plottools.py
MIT
def info(network): r""" Prints an overview of the network dictionary """ d = _pdict(network) d._key = 'Attribute' d._value = 'Description' print(d)
Prints an overview of the network dictionary
info
python
PMEAL/OpenPNM
openpnm/_skgraph/__init__.py
https://github.com/PMEAL/OpenPNM/blob/master/openpnm/_skgraph/__init__.py
MIT
def bcc(shape, spacing=1, mode='kdtree', node_prefix='node', edge_prefix='edge'): r""" Generate a body-centered cubic lattice Parameters ---------- shape : array_like The number of corner sites in each direction. A cubic lattice of this size is created and then 'body-centered' nodes are added afterward. spacing : array_like or float The size of a unit cell in each direction. If an scalar is given it is applied in all 3 directions. mode : str Dictate how neighbors are found. Options are: =============== ====================================================== mode meaning =============== ====================================================== 'kdtree' Uses ``scipy.spatial.KDTree`` to find all neighbors within the unit cell 'triangulation' Uses ``scipy.spatial.Delaunay`` to find all neighbors =============== ====================================================== Returns ------- network : dict A dictionary containing 'coords', 'conns' and various boolean labels (i.e. 'node.center') Notes ----- It is not clear whether KDTree or Delaunay are faster. In fact it is surely possible to find the neighbors formulaically but this is not implemented yet. """ shape = np.array(shape) spacing = np.array(spacing) net1 = cubic(shape=shape, spacing=1, node_prefix=node_prefix, edge_prefix=edge_prefix) net2 = cubic(shape=shape-1, spacing=1, node_prefix=node_prefix, edge_prefix=edge_prefix) net2[node_prefix + '.coords'] += 0.5 crds = np.concatenate( (net1[node_prefix + '.coords'], net2[node_prefix + '.coords'])) corner_label = np.concatenate( (np.ones(net1[node_prefix + '.coords'].shape[0], dtype=bool), np.zeros(net2[node_prefix + '.coords'].shape[0], dtype=bool))) body_label = np.concatenate( (np.zeros(net1[node_prefix + '.coords'].shape[0], dtype=bool), np.ones(net2[node_prefix + '.coords'].shape[0], dtype=bool))) if mode.startswith('tri'): tri = sptl.Delaunay(points=crds) am = tri_to_am(tri) conns = np.vstack((am.row, am.col)).T # Trim diagonal connections between cubic pores L = np.sqrt(np.sum(np.diff(crds[conns], axis=1)**2, axis=2)).flatten() conns = conns[L <= 1] elif mode.startswith('kd'): tree1 = sptl.KDTree(crds) # Method 1 hits = tree1.query_ball_point(crds, r=1) # Method 2: Not sure which is faster # tree2 = sptl.KDTree(crds) # hits = tree1.query_ball_tree(tree1, r=1) indices = np.hstack(hits) # Convert to CSR matrix indptr = [len(i) for i in hits] indptr.insert(0, 0) indptr = np.cumsum(indptr) am = sprs.csr_matrix((np.ones_like(indices), indices, indptr)) am = sprs.triu(am, k=1) am = am.tocoo() conns = np.vstack((am.row, am.col)).T d = {} d[node_prefix+'.coords'] = crds*spacing d[edge_prefix+'.conns'] = conns d[node_prefix+'.corner'] = corner_label d[node_prefix+'.body'] = body_label return d
Generate a body-centered cubic lattice Parameters ---------- shape : array_like The number of corner sites in each direction. A cubic lattice of this size is created and then 'body-centered' nodes are added afterward. spacing : array_like or float The size of a unit cell in each direction. If an scalar is given it is applied in all 3 directions. mode : str Dictate how neighbors are found. Options are: =============== ====================================================== mode meaning =============== ====================================================== 'kdtree' Uses ``scipy.spatial.KDTree`` to find all neighbors within the unit cell 'triangulation' Uses ``scipy.spatial.Delaunay`` to find all neighbors =============== ====================================================== Returns ------- network : dict A dictionary containing 'coords', 'conns' and various boolean labels (i.e. 'node.center') Notes ----- It is not clear whether KDTree or Delaunay are faster. In fact it is surely possible to find the neighbors formulaically but this is not implemented yet.
bcc
python
PMEAL/OpenPNM
openpnm/_skgraph/generators/_bcc.py
https://github.com/PMEAL/OpenPNM/blob/master/openpnm/_skgraph/generators/_bcc.py
MIT
def cubic(shape, spacing=1, connectivity=6, node_prefix='node', edge_prefix='edge'): r""" Generate a simple cubic lattice Parameters ---------- shape : array_like The number of unit cells in each direction. A unit cell has 1 vertex at its center. spacing : array_like or float The size of a unit cell in each direction. If an scalar is given it is applied in all 3 directions. Returns ------- network : dict A dictionary containing ``coords`` and ``conns`` of a cubic network with the specified spacing and connectivity. """ # Take care of 1D/2D networks shape = np.array(shape, ndmin=1) shape = np.concatenate((shape, [1] * (3 - shape.size))).astype(int) arr = np.atleast_3d(np.empty(shape)) spacing = np.float64(spacing) if spacing.size == 2: spacing = np.concatenate((spacing, [1])) spacing = np.ones(3, dtype=float) * np.array(spacing, ndmin=1) z = np.tile(np.arange(shape[2]), shape[0] * shape[1]) y = np.tile(np.repeat(np.arange(shape[1]), shape[2]), shape[0]) x = np.repeat(np.arange(shape[0]), shape[1] * shape[2]) points = (np.vstack([x, y, z]).T).astype(float) + 0.5 idx = np.arange(arr.size).reshape(arr.shape) face_joints = [(idx[:, :, :-1], idx[:, :, 1:]), (idx[:, :-1], idx[:, 1:]), (idx[:-1], idx[1:])] corner_joints = [(idx[:-1, :-1, :-1], idx[1:, 1:, 1:]), (idx[:-1, :-1, 1:], idx[1:, 1:, :-1]), (idx[:-1, 1:, :-1], idx[1:, :-1, 1:]), (idx[1:, :-1, :-1], idx[:-1, 1:, 1:])] edge_joints = [(idx[:, :-1, :-1], idx[:, 1:, 1:]), (idx[:, :-1, 1:], idx[:, 1:, :-1]), (idx[:-1, :, :-1], idx[1:, :, 1:]), (idx[1:, :, :-1], idx[:-1, :, 1:]), (idx[1:, 1:, :], idx[:-1, :-1, :]), (idx[1:, :-1, :], idx[:-1, 1:, :])] if connectivity == 6: joints = face_joints elif connectivity == 6 + 8: joints = face_joints + corner_joints elif connectivity == 6 + 12: joints = face_joints + edge_joints elif connectivity == 12 + 8: joints = edge_joints + corner_joints elif connectivity == 6 + 8 + 12: joints = face_joints + corner_joints + edge_joints else: raise Exception("Invalid connectivity. Must be 6, 14, 18, 20 or 26.") tails, heads = np.array([], dtype=int), np.array([], dtype=int) for T, H in joints: tails = np.concatenate((tails, T.flatten())) heads = np.concatenate((heads, H.flatten())) pairs = np.vstack([tails, heads]).T # NOTE: pairs is already sorted for connectivity = 6 if connectivity != 6: pairs = np.sort(pairs, axis=1) d = {} d[f"{node_prefix}.coords"] = points * spacing d[f"{edge_prefix}.conns"] = pairs return d
Generate a simple cubic lattice Parameters ---------- shape : array_like The number of unit cells in each direction. A unit cell has 1 vertex at its center. spacing : array_like or float The size of a unit cell in each direction. If an scalar is given it is applied in all 3 directions. Returns ------- network : dict A dictionary containing ``coords`` and ``conns`` of a cubic network with the specified spacing and connectivity.
cubic
python
PMEAL/OpenPNM
openpnm/_skgraph/generators/_cubic.py
https://github.com/PMEAL/OpenPNM/blob/master/openpnm/_skgraph/generators/_cubic.py
MIT
def delaunay( points, shape=[1, 1, 1], reflect=False, f=1, trim=True, node_prefix='node', edge_prefix='edge', ): r""" Generate a network based on Delaunay triangulation of random points Parameters ---------- points : array_like or int Can either be an N-by-3 array of point coordinates which will be used, or a scalar value indicating the number of points to generate shape : array_like Indicates the size and shape of the domain reflect : boolean, optional (default = ``False``) If ``True`` then points are reflected across each face of the domain prior to performing the tessellation. These reflected points are automatically trimmed. Enabling this behavior prevents long-range connections between surface pores. f : float The fraction of points which should be reflected. The default is 1 which reflects all the points in the domain, but this can lead to a lot of unnecessary points, so setting to 0.1 or 0.2 helps speed, but risks that the tessellation may not have smooth faces if not enough points are reflected. trim : boolean, optional (default = ``True``) If ``True`` then any points laying outside the domain are removed. This is mostly only useful if ``reflect=True``. Returns ------- network : dict A dictionary containing 'node.coords' and 'edge.conns' tri : Delaunay tessellation object The Delaunay tessellation object produced by ``scipy.spatial.Delaunay`` """ points = tools.parse_points(points=points, shape=shape, reflect=reflect, f=f) mask = ~np.all(points == 0, axis=0) tri = sptl.Delaunay(points=points[:, mask]) coo = tri_to_am(tri) d = {} d[node_prefix+'.coords'] = points d[edge_prefix+'.conns'] = np.vstack((coo.row, coo.col)).T if trim: trim = isoutside(d, shape=shape) d = trim_nodes(network=d, inds=np.where(trim)[0]) return d, tri
Generate a network based on Delaunay triangulation of random points Parameters ---------- points : array_like or int Can either be an N-by-3 array of point coordinates which will be used, or a scalar value indicating the number of points to generate shape : array_like Indicates the size and shape of the domain reflect : boolean, optional (default = ``False``) If ``True`` then points are reflected across each face of the domain prior to performing the tessellation. These reflected points are automatically trimmed. Enabling this behavior prevents long-range connections between surface pores. f : float The fraction of points which should be reflected. The default is 1 which reflects all the points in the domain, but this can lead to a lot of unnecessary points, so setting to 0.1 or 0.2 helps speed, but risks that the tessellation may not have smooth faces if not enough points are reflected. trim : boolean, optional (default = ``True``) If ``True`` then any points laying outside the domain are removed. This is mostly only useful if ``reflect=True``. Returns ------- network : dict A dictionary containing 'node.coords' and 'edge.conns' tri : Delaunay tessellation object The Delaunay tessellation object produced by ``scipy.spatial.Delaunay``
delaunay
python
PMEAL/OpenPNM
openpnm/_skgraph/generators/_delaunay.py
https://github.com/PMEAL/OpenPNM/blob/master/openpnm/_skgraph/generators/_delaunay.py
MIT
def fcc(shape, spacing=1, mode='kdtree', node_prefix='node', edge_prefix='edge'): r""" Generate a face-centered cubic lattice Parameters ---------- shape : array_like The number of corner sites in each direction. A sipmle cubic lattice is created then the 'face-sites' are added afterwards. spacing : array_like or float The size of a unit cell in each direction. If an scalar is given it is applied in all 3 directions. mode : str Dictate how neighbors are found. Options are: =============== ===================================================== mode meaning =============== ===================================================== 'kdtree' Uses ``scipy.spatial.KDTree`` to find all neighbors within the unit cell. 'triangulation' Uses ``scipy.spatial.Delaunay`` to find all neighbors. =============== ===================================================== Returns ------- network : dict A dictionary containing 'coords', 'conns' and various boolean labels (i.e. 'node.center') Notes ----- It is not clear whether KDTree of Delaunay are faster. In fact it is surely possible to find the neighbors formulaically but this is not implemented yet. """ shape = np.array(shape) # Create base cubic network of corner sites net1 = cubic(shape=shape, node_prefix=node_prefix, edge_prefix=edge_prefix) # Create 3 networks to become face sites net2 = cubic(shape=shape - [1, 1, 0], node_prefix=node_prefix, edge_prefix=edge_prefix) net3 = cubic(shape=shape - [1, 0, 1], node_prefix=node_prefix, edge_prefix=edge_prefix) net4 = cubic(shape=shape - [0, 1, 1], node_prefix=node_prefix, edge_prefix=edge_prefix) # Offset pore coords by 1/2 a unit cell net2[node_prefix+'.coords'] += np.array([0.5, 0.5, 0]) net3[node_prefix+'.coords'] += np.array([0.5, 0, 0.5]) net4[node_prefix+'.coords'] += np.array([0, 0.5, 0.5]) crds = np.concatenate((net1[node_prefix+'.coords'], net2[node_prefix+'.coords'], net3[node_prefix+'.coords'], net4[node_prefix+'.coords'])) corner_labels = np.concatenate( (np.ones(net1[node_prefix+'.coords'].shape[0], dtype=bool), np.zeros(net2[node_prefix+'.coords'].shape[0], dtype=bool), np.zeros(net3[node_prefix+'.coords'].shape[0], dtype=bool), np.zeros(net4[node_prefix+'.coords'].shape[0], dtype=bool))) if mode.startswith('tri'): tri = sptl.Delaunay(points=crds) am = tri_to_am(tri) conns = np.vstack((am.row, am.col)).T # Trim diagonal connections between cubic pores L = np.sqrt(np.sum(np.diff(crds[conns], axis=1)**2, axis=2)).flatten() conns = conns[L <= 0.75] elif mode.startswith('kd'): tree1 = sptl.KDTree(crds) # Method 1 hits = tree1.query_ball_point(crds, r=.75) # Method 2: Not sure which is faster # tree2 = sptl.KDTree(crds) # hits = tree1.query_ball_tree(tree1, r=1) indices = np.hstack(hits) # Convert to CSR matrix indptr = [len(i) for i in hits] indptr.insert(0, 0) indptr = np.cumsum(indptr) am = sprs.csr_matrix((np.ones_like(indices), indices, indptr)) am = sprs.triu(am, k=1) am = am.tocoo() conns = np.vstack((am.row, am.col)).T conns = np.vstack((net1[edge_prefix+'.conns'], conns)) d = {} d[node_prefix + '.coords'] = crds*spacing d[edge_prefix + '.conns'] = conns d[node_prefix + '.corner'] = corner_labels d[node_prefix + '.face'] = ~corner_labels return d
Generate a face-centered cubic lattice Parameters ---------- shape : array_like The number of corner sites in each direction. A sipmle cubic lattice is created then the 'face-sites' are added afterwards. spacing : array_like or float The size of a unit cell in each direction. If an scalar is given it is applied in all 3 directions. mode : str Dictate how neighbors are found. Options are: =============== ===================================================== mode meaning =============== ===================================================== 'kdtree' Uses ``scipy.spatial.KDTree`` to find all neighbors within the unit cell. 'triangulation' Uses ``scipy.spatial.Delaunay`` to find all neighbors. =============== ===================================================== Returns ------- network : dict A dictionary containing 'coords', 'conns' and various boolean labels (i.e. 'node.center') Notes ----- It is not clear whether KDTree of Delaunay are faster. In fact it is surely possible to find the neighbors formulaically but this is not implemented yet.
fcc
python
PMEAL/OpenPNM
openpnm/_skgraph/generators/_fcc.py
https://github.com/PMEAL/OpenPNM/blob/master/openpnm/_skgraph/generators/_fcc.py
MIT
def cubic_template(template, spacing=1, connectivity=6, node_prefix='node', edge_prefix='edge'): r""" Generate a simple cubic lattice matching the shape of the provided tempate Parameters ---------- templte : ndarray Each ``True`` value will be treated as a vertex while all others will be trimmed. spacing : array_like or float The size of a unit cell in each direction. If an scalar is given it is applied in all 3 directions. Returns ------- network : dict A dictionary containing 'node.coords' and 'edge.conns' """ template = np.atleast_3d(template).astype(bool) # Generate a full cubic network temp = cubic(shape=template.shape, spacing=spacing, connectivity=connectivity, node_prefix=node_prefix, edge_prefix=edge_prefix) # Store some info about template coords = np.unravel_index(range(template.size), template.shape) coords = np.vstack(coords).T Np = coords.shape[0] temp[node_prefix+'.template_coords'] = coords temp[node_prefix+'.template_indices'] = np.arange(Np) # Trim pores not present in template temp = trim_nodes(network=temp, inds=~template.flatten()) return temp
Generate a simple cubic lattice matching the shape of the provided tempate Parameters ---------- templte : ndarray Each ``True`` value will be treated as a vertex while all others will be trimmed. spacing : array_like or float The size of a unit cell in each direction. If an scalar is given it is applied in all 3 directions. Returns ------- network : dict A dictionary containing 'node.coords' and 'edge.conns'
cubic_template
python
PMEAL/OpenPNM
openpnm/_skgraph/generators/_template.py
https://github.com/PMEAL/OpenPNM/blob/master/openpnm/_skgraph/generators/_template.py
MIT
def voronoi( points, shape=[1, 1, 1], trim=True, reflect=False, f=1, relaxation=0, node_prefix='node', edge_prefix='edge', ): r""" Generate a network based on a Voronoi tessellation of base points Parameters ---------- points : array_like or int Can either be an N-by-3 array of point coordinates which will be used directly, or a scalar indicating the number of points to generate. shape : array_like The size and shape of the domain trim : boolean If ``True`` (default) then any vertices laying outside the domain given by ``shape`` are removed (as are the edges connected to them). reflect : boolean, optional (default = ``False``) If ``True`` then points are reflected across each face of the domain prior to performing the tessellation. Enabling this behavior creates flat faces on all sizes of the domain. f : float The fraction of points which should be reflected. The default is 1 which reflects all the points in the domain, but this can lead to a lot of unnecessary points, so setting to 0.1 or 0.2 helps speed, but risks that the tessellation may not have smooth faces if not enough points are reflected. relaxation : int, optional (default = 0) The number of iterations to use for relaxing the base points. This is sometimes called `Lloyd's algorithm <https://en.wikipedia.org/wiki/Lloyd%27s_algorithm>`_. This function computes the new base points as the simple average of the Voronoi vertices instead of rigorously finding the center of mass, which is quite time consuming. To use the rigorous method, call the ``lloyd_relaxation`` function manually to obtain relaxed points, then pass the points directly to this funcion. The results are quite stable after only a few iterations. Returns ------- network : dict A dictionary containing node coordinates and edge connections vor : Voronoi tessellation object The Voronoi tessellation object produced by ``scipy.spatial.Voronoi`` """ points = tools.parse_points(points=points, shape=shape, reflect=reflect, f=f) mask = ~np.all(points == 0, axis=0) # Perform tessellation vor = sptl.Voronoi(points=points[:, mask]) for _ in range(relaxation): points = tools.lloyd_relaxation(vor, mode='rigorous') # Reparse points d = {} d[node_prefix+'.coords'] = points keep = ~isoutside(network=d, shape=shape) points = points[keep] points = tools.parse_points(points=points, shape=shape, reflect=reflect) vor = sptl.Voronoi(points=points[:, mask]) # Convert to adjecency matrix coo = vor_to_am(vor) # Write values to dictionary d = {} conns = np.vstack((coo.row, coo.col)).T d[edge_prefix+'.conns'] = conns # Convert coords to 3D if necessary # Rounding is crucial since some voronoi verts endup outside domain pts = np.around(vor.vertices, decimals=10) if mask.sum() < 3: coords = np.zeros([pts.shape[0], 3], dtype=float) coords[:, mask] = pts else: coords = pts d[node_prefix+'.coords'] = coords if trim: hits = isoutside(d, shape=shape) d = trim_nodes(d, hits) return d, vor
Generate a network based on a Voronoi tessellation of base points Parameters ---------- points : array_like or int Can either be an N-by-3 array of point coordinates which will be used directly, or a scalar indicating the number of points to generate. shape : array_like The size and shape of the domain trim : boolean If ``True`` (default) then any vertices laying outside the domain given by ``shape`` are removed (as are the edges connected to them). reflect : boolean, optional (default = ``False``) If ``True`` then points are reflected across each face of the domain prior to performing the tessellation. Enabling this behavior creates flat faces on all sizes of the domain. f : float The fraction of points which should be reflected. The default is 1 which reflects all the points in the domain, but this can lead to a lot of unnecessary points, so setting to 0.1 or 0.2 helps speed, but risks that the tessellation may not have smooth faces if not enough points are reflected. relaxation : int, optional (default = 0) The number of iterations to use for relaxing the base points. This is sometimes called `Lloyd's algorithm <https://en.wikipedia.org/wiki/Lloyd%27s_algorithm>`_. This function computes the new base points as the simple average of the Voronoi vertices instead of rigorously finding the center of mass, which is quite time consuming. To use the rigorous method, call the ``lloyd_relaxation`` function manually to obtain relaxed points, then pass the points directly to this funcion. The results are quite stable after only a few iterations. Returns ------- network : dict A dictionary containing node coordinates and edge connections vor : Voronoi tessellation object The Voronoi tessellation object produced by ``scipy.spatial.Voronoi``
voronoi
python
PMEAL/OpenPNM
openpnm/_skgraph/generators/_voronoi.py
https://github.com/PMEAL/OpenPNM/blob/master/openpnm/_skgraph/generators/_voronoi.py
MIT
def voronoi_delaunay_dual( points, shape, trim=True, reflect=True, f=1, relaxation=0, node_prefix='node', edge_prefix='edge', return_tri=False, ): r""" Generate a dual Voronoi-Delaunay network from given base points Parameters ---------- points : array_like or scalar The points to be tessellated. If a scalar is given a set of points of that size is generated inside the given ``shape``. shape : array_like The size of the domain in which the points lie trim : bool, optional If ``True`` (default) then all points lying beyond the given domain shape will be removed reflect : bool, optionl If ``True`` (Default) then points are reflected across each face of the domain prior to performing the tessellation. f : float The fraction of points which should be reflected. The default is 1 which reflects all the points in the domain, but this can lead to a lot of unnecessary points, so setting to 0.1 or 0.2 helps speed, but risks that the tessellation may not have smooth faces if not enough points are reflected. relaxation : int, optional (default = 0) The number of iterations to use for relaxing the base points. This is sometimes called `Lloyd's algorithm <https://en.wikipedia.org/wiki/Lloyd%27s_algorithm>`_. This function computes the new base points as the simple average of the Voronoi vertices instead of rigorously finding the center of mass, which is quite time consuming. To use the rigorous method, call the ``lloyd_relaxation`` function manually to obtain relaxed points, then pass the points directly to this funcion. The results are quite stable after only a few iterations. Returns ------- network : dict A dictionary containing '<node_prefix>.coords' and '<edge_prefix>.conns' vor : Voronoi object The Voronoi tessellation object produced by ``scipy.spatial.Voronoi`` tri : Delaunay object The Delaunay triangulation object produced by ``scipy.spatial.Delaunay`` """ # Generate a set of base points if scalar was given points = tools.parse_points( points=points, shape=shape, reflect=reflect, f=f, ) # Generate mask to remove any dims with all 0's mask = ~np.all(points == 0, axis=0) # Perform tessellations vor = sptl.Voronoi(points=points[:, mask]) for _ in range(relaxation): points = tools.lloyd_relaxation(vor, mode='fast') vor = sptl.Voronoi(points=points[:, mask]) # Collect delaunay edges conns_del = vor.ridge_points # Deal with voronoi edges v = vor.ridge_vertices.copy() # Assuming 'ridge' means facet between regions # Add row [0] to close the facet on itself, add -1 to break connection to # next facet in list as connections with -1 get deleted later _ = [row.extend([row[0], -1]) for row in v] v = np.hstack(v) conns_vor = np.vstack((v[:-1], v[1:])).T mask = np.any(conns_vor < 0, axis=1) conns_vor = conns_vor[~mask] + vor.npoints # Finally, get interconnecting edges idx = [vor.regions[vor.point_region[i]] for i in range(0, len(vor.regions)-1)] conns_inter = [([i]*len(idx[i]), idx[i]) for i in range(0, len(idx))] conns_inter = np.hstack(conns_inter).astype(int).T mask = np.any(conns_inter < 0, axis=1) conns_inter = conns_inter[~mask, :] + np.array([0, vor.npoints], dtype=int) conns = np.vstack((conns_del, conns_vor, conns_inter)) # Tidy up am = conns_to_am(conns) conns = np.vstack((am.row, am.col)).T # Combine delaunay and voronoi points pts_all = np.vstack((vor.points, vor.vertices)) # Rounding is crucial since some voronoi verts endup outside domain pts_all = np.around(pts_all, decimals=10) # Convert coords to 3D if necessary mask = ~np.all(points == 0, axis=0) if mask.sum() < 3: coords = np.zeros([pts_all.shape[0], 3], dtype=float) coords[:, mask] = pts_all else: coords = pts_all # Assign coords and conns to network dict network = {} network[node_prefix+'.coords'] = coords network[edge_prefix+'.conns'] = conns n_nodes = coords.shape[0] n_edges = conns.shape[0] # Label all pores and throats by type network[node_prefix+'.delaunay'] = np.zeros(n_nodes, dtype=bool) network[node_prefix+'.delaunay'][0:vor.npoints] = True network[node_prefix+'.voronoi'] = np.zeros(n_nodes, dtype=bool) network[node_prefix+'.voronoi'][vor.npoints:] = True # Label throats between Delaunay pores network[edge_prefix+'.delaunay'] = np.zeros(n_edges, dtype=bool) Ts = np.all(network[edge_prefix+'.conns'] < vor.npoints, axis=1) network[edge_prefix+'.delaunay'][Ts] = True # Label throats between Voronoi pores network[edge_prefix+'.voronoi'] = np.zeros(n_edges, dtype=bool) Ts = np.all(network[edge_prefix+'.conns'] >= vor.npoints, axis=1) network[edge_prefix+'.voronoi'][Ts] = True # Label throats connecting a Delaunay and a Voronoi pore Ts = np.sum(network[node_prefix+'.delaunay'][conns].astype(int), axis=1) == 1 network[edge_prefix+'.interconnect'] = Ts if trim: # Find all delaunay nodes outside the domain Ps = isoutside(network=network, shape=shape)*network[node_prefix+'.delaunay'] if np.any(Ps): # only occurs if points were reflected # Find voronoi nodes connected to these and mark them as surface nodes inds = np.where(Ps)[0] Ns = find_neighbor_nodes(network=network, inds=inds) network[node_prefix+'.surface'] = np.zeros(n_nodes, dtype=bool) network[node_prefix+'.surface'][Ns] = True Ps = isoutside(network=network, shape=shape) inds = np.where(Ps)[0] network = trim_nodes(network=network, inds=inds) else: trim = isoutside(network=network, shape=shape) inds = np.where(trim)[0] network = trim_nodes(network=network, inds=inds) if return_tri: tri = sptl.Delaunay(points=points[:, mask]) else: tri = None return network, vor, tri
Generate a dual Voronoi-Delaunay network from given base points Parameters ---------- points : array_like or scalar The points to be tessellated. If a scalar is given a set of points of that size is generated inside the given ``shape``. shape : array_like The size of the domain in which the points lie trim : bool, optional If ``True`` (default) then all points lying beyond the given domain shape will be removed reflect : bool, optionl If ``True`` (Default) then points are reflected across each face of the domain prior to performing the tessellation. f : float The fraction of points which should be reflected. The default is 1 which reflects all the points in the domain, but this can lead to a lot of unnecessary points, so setting to 0.1 or 0.2 helps speed, but risks that the tessellation may not have smooth faces if not enough points are reflected. relaxation : int, optional (default = 0) The number of iterations to use for relaxing the base points. This is sometimes called `Lloyd's algorithm <https://en.wikipedia.org/wiki/Lloyd%27s_algorithm>`_. This function computes the new base points as the simple average of the Voronoi vertices instead of rigorously finding the center of mass, which is quite time consuming. To use the rigorous method, call the ``lloyd_relaxation`` function manually to obtain relaxed points, then pass the points directly to this funcion. The results are quite stable after only a few iterations. Returns ------- network : dict A dictionary containing '<node_prefix>.coords' and '<edge_prefix>.conns' vor : Voronoi object The Voronoi tessellation object produced by ``scipy.spatial.Voronoi`` tri : Delaunay object The Delaunay triangulation object produced by ``scipy.spatial.Delaunay``
voronoi_delaunay_dual
python
PMEAL/OpenPNM
openpnm/_skgraph/generators/_voronoi_delaunay_dual.py
https://github.com/PMEAL/OpenPNM/blob/master/openpnm/_skgraph/generators/_voronoi_delaunay_dual.py
MIT
def lloyd_relaxation(vor, mode='rigorous'): r""" Computes the center of mass for each polyhedra in a Voronoi tessellaion Parameters ---------- vor : Scipy Voronoi object The object returned by ``scipy.spatial.Voronoi`` mode : str Options are: =========== ================================================================ mode description =========== ================================================================ rigorous Computes a Delaunay triangulation of the input points then finds the true centroid by computing the area/volume of each triangle/ tetrahedron to find the weighted average center of mass. fast Computes the basic average of the input points without accounting for the distribution of points. This is a decent approximation and is *much* faster. =========== ================================================================ """ pts = vor.points for i, r in enumerate(vor.point_region): if np.all(np.array(vor.regions[r]) > 0): pts[i, :pts.shape[1]] = \ get_centroid(vor.vertices[vor.regions[r]], mode=mode) if pts.shape[1] == 2: pts = np.c_[pts, np.zeros_like(pts[:, 0])] return pts
Computes the center of mass for each polyhedra in a Voronoi tessellaion Parameters ---------- vor : Scipy Voronoi object The object returned by ``scipy.spatial.Voronoi`` mode : str Options are: =========== ================================================================ mode description =========== ================================================================ rigorous Computes a Delaunay triangulation of the input points then finds the true centroid by computing the area/volume of each triangle/ tetrahedron to find the weighted average center of mass. fast Computes the basic average of the input points without accounting for the distribution of points. This is a decent approximation and is *much* faster. =========== ================================================================
lloyd_relaxation
python
PMEAL/OpenPNM
openpnm/_skgraph/generators/tools/_funcs.py
https://github.com/PMEAL/OpenPNM/blob/master/openpnm/_skgraph/generators/tools/_funcs.py
MIT
def get_centroid(pts, mode='rigorous'): r""" Finds the centroid of a given set of points Parameters ---------- pts : ndarray The points in 2D or 3D mode : str Options are: =========== ================================================================ mode description =========== ================================================================ rigorous Computes a Delaunay triangulation of the input points then finds the true centroid by computing the area/volume of each triangle/ tetrahedron to find the weighted average center of mass. fast Computes the basic average of the input points without accounting for the distribution of points. This is a decent approximation and is *much* faster. =========== ================================================================ Returns ------- pt : ndarray A single coordinate representing the center of mass of the input points """ if mode == 'rigorous': tri = sptl.Delaunay(pts) CoM = center_of_mass(simplices=tri.simplices.astype(np.int_), points=tri.points.astype(float)) elif mode == 'fast': CoM = pts.mean(axis=0) return CoM
Finds the centroid of a given set of points Parameters ---------- pts : ndarray The points in 2D or 3D mode : str Options are: =========== ================================================================ mode description =========== ================================================================ rigorous Computes a Delaunay triangulation of the input points then finds the true centroid by computing the area/volume of each triangle/ tetrahedron to find the weighted average center of mass. fast Computes the basic average of the input points without accounting for the distribution of points. This is a decent approximation and is *much* faster. =========== ================================================================ Returns ------- pt : ndarray A single coordinate representing the center of mass of the input points
get_centroid
python
PMEAL/OpenPNM
openpnm/_skgraph/generators/tools/_funcs.py
https://github.com/PMEAL/OpenPNM/blob/master/openpnm/_skgraph/generators/tools/_funcs.py
MIT
def parse_points(shape, points, reflect=False, f=1): r""" Converts given points argument to consistent format Parameters ---------- shape : array_like The shape of the domain points : int or array_like If a scalar value then this indicates the number of points to generate. If an array, then these points are used directly. reflect : bool, optional If ``True`` the base points are reflected across the borders of the domain. f : float The fraction of points which should be reflected. The default is 1 which reflects all the points in the domain, but this can lead to a lot of unnecessary points, so setting to 0.1 or 0.2 helps speed, but risks that the tessellation may not have smooth faces if not enough points are reflected. Returns ------- points : ndarray The points after being cleaned and parsed correctly """ # Deal with input arguments shape = np.array(shape, dtype=float) if isinstance(points, int): points = generate_base_points(num_points=points, domain_size=shape, reflect=False) else: points = np.array(points) # Add 3rd column to 2D points if points.shape[1] == 2: zeros = np.atleast_2d(np.zeros_like(points[:, 0])).T points = np.hstack((points, zeros)) # Ensure z-axis is all 0's if shape ends in 0 (ie. square or disk) if shape[-1] == 0: points[:, -1] = 0.0 if reflect: if np.any(tools.isoutside(points, shape=shape)): raise Exception('Some points lie outside the domain, ' + 'cannot safely apply reflection') if len(shape) == 3: points = reflect_base_points(points=points, domain_size=shape, f=f) elif len(shape) == 2: # Convert xyz to cylindrical, and back R, Q, Z = tools.cart2cyl(*points.T) R, Q, Z = reflect_base_points(np.vstack((R, Q, Z)), domain_size=shape, f=f) # Convert back to cartesean coordinates points = np.vstack(tools.cyl2cart(R, Q, Z)).T elif len(shape) == 1: # Convert to spherical coordinates R, Q, P = tools.cart2sph(*points.T) R, Q, P = reflect_base_points(np.vstack((R, Q, P)), domain_size=shape, f=f) # Convert to back to cartesean coordinates points = np.vstack(tools.sph2cart(R, Q, P)).T return points
Converts given points argument to consistent format Parameters ---------- shape : array_like The shape of the domain points : int or array_like If a scalar value then this indicates the number of points to generate. If an array, then these points are used directly. reflect : bool, optional If ``True`` the base points are reflected across the borders of the domain. f : float The fraction of points which should be reflected. The default is 1 which reflects all the points in the domain, but this can lead to a lot of unnecessary points, so setting to 0.1 or 0.2 helps speed, but risks that the tessellation may not have smooth faces if not enough points are reflected. Returns ------- points : ndarray The points after being cleaned and parsed correctly
parse_points
python
PMEAL/OpenPNM
openpnm/_skgraph/generators/tools/_funcs.py
https://github.com/PMEAL/OpenPNM/blob/master/openpnm/_skgraph/generators/tools/_funcs.py
MIT
def add_all_label(network): r""" Add 'node.all' and 'edge.all' to network dictionary Parameters ---------- network : dict The network dictionary, containing 'node.coords' and 'edge.conns' Returns ------- network : dict The supplied dictionary with the 'all' labels added Notes ----- This function is helpful for working with OpenPNM """ node_prefix = tools.get_node_prefix(network) edge_prefix = tools.get_edge_prefix(network) coords = network[node_prefix+'.coords'] conns = network[edge_prefix+'.conns'] network['pore.all'] = np.ones(coords.shape[0], dtype=bool) network['throat.all'] = np.ones(conns.shape[0], dtype=bool) return network
Add 'node.all' and 'edge.all' to network dictionary Parameters ---------- network : dict The network dictionary, containing 'node.coords' and 'edge.conns' Returns ------- network : dict The supplied dictionary with the 'all' labels added Notes ----- This function is helpful for working with OpenPNM
add_all_label
python
PMEAL/OpenPNM
openpnm/_skgraph/generators/tools/_funcs.py
https://github.com/PMEAL/OpenPNM/blob/master/openpnm/_skgraph/generators/tools/_funcs.py
MIT
def label_faces_cubic(network, rtol=0.0): r""" Label the nodes sitting on the faces of the domain assuming the domain is cubic Parameters ---------- network : dict The network dictionary contain 'node.coords' rtol : float Controls how closely a node must be to a face to be counted. It is computed relative to the fraction of domain size, as: ``hi_label = abs(1 - x[i]/x.max()) < rtol`` and ``lo_label = abs(x[i]/x.max()) < rtol`` Returns ------- network : dict The network dictionary with the face labels added """ node_prefix = tools.get_node_prefix(network) coords = network[node_prefix+'.coords'] dims = tools.dimensionality(network) coords = np.around(coords, decimals=10) min_labels = ['left', 'front', 'bottom'] max_labels = ['right', 'back', 'top'] min_coords = np.amin(coords, axis=0) max_coords = np.amax(coords, axis=0) for ax in np.where(dims)[0]: network[node_prefix + '.' + min_labels[ax]] = \ abs((coords[:, ax]-min_coords[ax])/max_coords[ax]) <= rtol network[node_prefix + '.' + max_labels[ax]] = \ abs(1-coords[:, ax]/max_coords[ax]) <= rtol return network
Label the nodes sitting on the faces of the domain assuming the domain is cubic Parameters ---------- network : dict The network dictionary contain 'node.coords' rtol : float Controls how closely a node must be to a face to be counted. It is computed relative to the fraction of domain size, as: ``hi_label = abs(1 - x[i]/x.max()) < rtol`` and ``lo_label = abs(x[i]/x.max()) < rtol`` Returns ------- network : dict The network dictionary with the face labels added
label_faces_cubic
python
PMEAL/OpenPNM
openpnm/_skgraph/generators/tools/_funcs.py
https://github.com/PMEAL/OpenPNM/blob/master/openpnm/_skgraph/generators/tools/_funcs.py
MIT
def _template_sphere_disc(dim, outer_radius, inner_radius): r""" This private method generates an image array of a sphere/shell-disc/ring. It is useful for passing to Cubic networks as a ``template`` to make networks with desired shapes. Parameters ---------- dim : int Network dimension outer_radius : int Number of the nodes in the outer radius of the network inner_radius : int Number of the nodes in the inner radius of the network Returns ------- im : array_like A Numpy array containing 1's to demarcate the desired shape, and 0's elsewhere. """ rmax = np.array(outer_radius, ndmin=1) rmin = np.array(inner_radius, ndmin=1) ind = 2 * rmax - 1 coord = np.indices((ind * np.ones(dim, dtype=int))) coord = coord - (ind - 1)/2 x = coord[0, :] y = coord[1, :] if dim == 2: img = (x ** 2 + y ** 2) < rmax ** 2 elif dim == 3: z = coord[2, :] img = (x ** 2 + y ** 2 + z ** 2) < rmax ** 2 if rmin[0] != 0: if dim == 2: img_min = (x ** 2 + y ** 2) > rmin ** 2 elif dim == 3: img_min = (x ** 2 + y ** 2 + z ** 2) > rmin ** 2 img = img * img_min return img
This private method generates an image array of a sphere/shell-disc/ring. It is useful for passing to Cubic networks as a ``template`` to make networks with desired shapes. Parameters ---------- dim : int Network dimension outer_radius : int Number of the nodes in the outer radius of the network inner_radius : int Number of the nodes in the inner radius of the network Returns ------- im : array_like A Numpy array containing 1's to demarcate the desired shape, and 0's elsewhere.
_template_sphere_disc
python
PMEAL/OpenPNM
openpnm/_skgraph/generators/tools/_funcs.py
https://github.com/PMEAL/OpenPNM/blob/master/openpnm/_skgraph/generators/tools/_funcs.py
MIT
def template_sphere_shell(r_outer, r_inner=0): r""" This method generates an image array of a sphere-shell. It is useful for passing to Cubic networks as a ``template`` to make spherical shaped networks. Parameters ---------- r_outer : int Number of nodes in the outer radius of the sphere r_inner : int, optional Number of nodes in the inner radius of the shell. A value of 0 will result in a solid sphere. Returns ------- im : array_like A Numpy array containing 1's to demarcate the sphere-shell, and 0's elsewhere. """ img = _template_sphere_disc(dim=3, outer_radius=r_outer, inner_radius=r_inner) return img
This method generates an image array of a sphere-shell. It is useful for passing to Cubic networks as a ``template`` to make spherical shaped networks. Parameters ---------- r_outer : int Number of nodes in the outer radius of the sphere r_inner : int, optional Number of nodes in the inner radius of the shell. A value of 0 will result in a solid sphere. Returns ------- im : array_like A Numpy array containing 1's to demarcate the sphere-shell, and 0's elsewhere.
template_sphere_shell
python
PMEAL/OpenPNM
openpnm/_skgraph/generators/tools/_funcs.py
https://github.com/PMEAL/OpenPNM/blob/master/openpnm/_skgraph/generators/tools/_funcs.py
MIT
def template_cylinder_annulus(z, r_outer, r_inner=0): r""" This method generates an image array of a disc-ring. It is useful for passing to Cubic networks as a ``template`` to make circular-shaped 2D networks. Parameters ---------- z : int The height of the cylinder. A value of 0 will result in a circle r_outer : int Number of nodes in the outer radius of the cylinder r_inner : int, optional Number of the nodes in the inner radius of the annulus. A value of 0 will result in a solid cylinder. Returns ------- im : array_like A Numpy array containing 1's to demarcate the disc-ring, and 0's elsewhere. """ img = _template_sphere_disc(dim=2, outer_radius=r_outer, inner_radius=r_inner) if z > 0: img = np.tile(np.atleast_3d(img), reps=z) return img
This method generates an image array of a disc-ring. It is useful for passing to Cubic networks as a ``template`` to make circular-shaped 2D networks. Parameters ---------- z : int The height of the cylinder. A value of 0 will result in a circle r_outer : int Number of nodes in the outer radius of the cylinder r_inner : int, optional Number of the nodes in the inner radius of the annulus. A value of 0 will result in a solid cylinder. Returns ------- im : array_like A Numpy array containing 1's to demarcate the disc-ring, and 0's elsewhere.
template_cylinder_annulus
python
PMEAL/OpenPNM
openpnm/_skgraph/generators/tools/_funcs.py
https://github.com/PMEAL/OpenPNM/blob/master/openpnm/_skgraph/generators/tools/_funcs.py
MIT
def reflect_base_points(points, domain_size, f=1): r""" Relects a set of points about the faces of a given domain Parameters ---------- points : ndarray The coordinates of the points to be reflected. The points should be in the coordinate system corresponding to the the domain. domain_size : list or array Controls the size and shape of the domain, as follows: ========== ============================================================ shape result ========== ============================================================ [x, y, z] Points will be reflected about all 6 faces [x, y, 0] Points will be relfected about the x and y faces [r, z] Points will be reflected above and below the end faces and across the perimeter [r, 0] Points will be reflected across the perimeter [r] Points will be reflected across the outer surface ========== ============================================================ f : float The fraction of points which should be reflected. The default is 1 which reflects all the points in the domain, but this can lead to a lot of unnecessary points, so setting to 0.1 or 0.2 helps speed, but risks that the tessellation may not have smooth faces if not enough points are reflected. Returns ------- points : ndarray The coordinates of the original points plus the new reflected points """ assert 0 <= f <= 1, 'f must be between 0 and 1' domain_size = np.array(domain_size) if len(domain_size) == 1: r, theta, phi = points new_r = 2*domain_size[0] - r r = np.hstack([r, new_r]) theta = np.hstack([theta, theta]) phi = np.hstack([phi, phi]) points = np.vstack((r, theta, phi)) # Trim excess points outside radius hi = domain_size[0]*(1+f) keep = (points[0, :] <= hi) points = points[:, keep] if len(domain_size) == 2: r, theta, z = points new_r = 2*domain_size[0] - r r = np.hstack([r, new_r]) theta = np.hstack([theta, theta]) z = np.hstack([z, z]) if domain_size[1] != 0: # If not a disk r = np.hstack([r, r, r]) theta = np.hstack([theta, theta, theta]) z = np.hstack([z, -z, 2*domain_size[1]-z]) points = np.vstack((r, theta, z)) # Trim excess basepoints above and below cylinder hi = domain_size[1]*(1+f) lo = domain_size[1]*(-f) keep = (points[2, :] <= hi)*(points[2, :] >= lo) # Trim excess points outside radius hi = domain_size[0]*(1+f) keep *= (points[0, :] <= hi) points = points[:, keep] elif len(domain_size) == 3: Nx, Ny, Nz = domain_size # Reflect base points about all 6 faces orig_pts = points points = np.vstack((points, [-1, 1, 1] * orig_pts + [2.0 * Nx, 0, 0])) points = np.vstack((points, [-1, 1, 1] * orig_pts)) points = np.vstack((points, [1, -1, 1] * orig_pts + [0, 2.0 * Ny, 0])) points = np.vstack((points, [1, -1, 1] * orig_pts)) if domain_size[2] != 0: points = np.vstack((points, [1, 1, -1] * orig_pts + [0, 0, 2.0 * Nz])) points = np.vstack((points, [1, 1, -1] * orig_pts)) # Trim excess basepoints hi = domain_size*(1+f) lo = domain_size*(-f) keep = np.all(points <= hi, axis=1) keep *= np.all(points >= lo, axis=1) points = points[keep, :] return points
Relects a set of points about the faces of a given domain Parameters ---------- points : ndarray The coordinates of the points to be reflected. The points should be in the coordinate system corresponding to the the domain. domain_size : list or array Controls the size and shape of the domain, as follows: ========== ============================================================ shape result ========== ============================================================ [x, y, z] Points will be reflected about all 6 faces [x, y, 0] Points will be relfected about the x and y faces [r, z] Points will be reflected above and below the end faces and across the perimeter [r, 0] Points will be reflected across the perimeter [r] Points will be reflected across the outer surface ========== ============================================================ f : float The fraction of points which should be reflected. The default is 1 which reflects all the points in the domain, but this can lead to a lot of unnecessary points, so setting to 0.1 or 0.2 helps speed, but risks that the tessellation may not have smooth faces if not enough points are reflected. Returns ------- points : ndarray The coordinates of the original points plus the new reflected points
reflect_base_points
python
PMEAL/OpenPNM
openpnm/_skgraph/generators/tools/_funcs.py
https://github.com/PMEAL/OpenPNM/blob/master/openpnm/_skgraph/generators/tools/_funcs.py
MIT
def generate_base_points(num_points, domain_size, reflect=True, f=1): r""" Generates a set of randomly distributed points in rectilinear coordinates for use in spatial tessellations The points can be distributed in spherical, cylindrical, or rectilinear domains, as well as 2D and 3D (disks and squares) Parameters ---------- num_points : scalar The number of base points that lie within the domain domain_size : list or array Controls the size and shape of the domain, as follows: ========== ============================================================ shape result ========== ============================================================ [x, y, z] A 3D cubic domain of dimension x, y and z, with points in the range [0:x, 0:y, 0:z] [x, y, 0] A 2D square domain of size x by y, with points in the range [0:x, 0:y, 0:0] [r, z] A 3D cylindrical domain of radius r and height z, with points in the range [-r:r, -r:r, 0:z] [r, 0] A 2D circular domain of radius r, with points in the range [-r:r, -r:r, 0:0] [r] A 3D spherical domain of radius r, with points in the range [-r:r, -r:r, -r:r] ========== ============================================================ reflect : bool If ``True``, the base points are generated as specified then reflected about each face of the domain. This essentially tricks the tessellation functions into creating smooth faces at the boundaries once these excess points are trimmed. Note that the surface is not perfectly smooth for the curved faces. f : float The fraction of points which should be reflected. The default is 1 which reflects all the points in the domain, but this can lead to a lot of unnecessary points, so setting to 0.1 or 0.2 helps speed, but risks that the tessellation may not have smooth faces if not enough points are reflected. Notes ----- To convert between coordinate systems see ``cart2sph`` and ``cart2cyl`` """ if len(domain_size) == 1: # Spherical shape = np.array([2*domain_size[0], 2*domain_size[0], 2*domain_size[0]]) base_pts = np.random.rand(num_points*9, 3) # Generate more than needed # Convert to spherical coordinates X, Y, Z = ((np.array(base_pts - [0.5, 0.5, 0.5]))*shape).T R, Q, P = tools.cart2sph(X, Y, Z) # Keep points outside the domain inds = R <= domain_size[0] R, Q, P = R[inds], Q[inds], P[inds] # Trim internal points to give requested final number R, Q, P = R[:num_points], Q[:num_points], P[:num_points] # Reflect base points across perimeter if reflect: R, Q, P = reflect_base_points(np.vstack((R, Q, P)), domain_size, f=f) # Convert to Cartesean coordinates base_pts = np.vstack(tools.sph2cart(R, Q, P)).T elif len(domain_size) == 2: # Cylindrical or Disk shape = np.array([2*domain_size[0], 2*domain_size[0], domain_size[1]]) base_pts = np.random.rand(num_points*9, 3) # Generate more than needed # Convert to cylindrical coordinates X, Y, Z = ((np.array(base_pts - [0.5, 0.5, 0]))*shape).T R, Q, Z = tools.cart2cyl(X, Y, Z) # Trim points outside the domain inds = R <= domain_size[0] R, Q, Z = R[inds], Q[inds], Z[inds] # Reduce to requested number of points R, Q, Z = R[:num_points], Q[:num_points], Z[:num_points] if reflect: R, Q, Z = reflect_base_points(np.vstack((R, Q, Z)), domain_size, f=f) # Convert to Cartesean coordinates base_pts = np.vstack(tools.cyl2cart(R, Q, Z)).T elif len(domain_size) == 3: # Cube or square base_pts = np.random.rand(num_points, 3)*domain_size if reflect: base_pts = reflect_base_points(base_pts, domain_size, f=f) return base_pts
Generates a set of randomly distributed points in rectilinear coordinates for use in spatial tessellations The points can be distributed in spherical, cylindrical, or rectilinear domains, as well as 2D and 3D (disks and squares) Parameters ---------- num_points : scalar The number of base points that lie within the domain domain_size : list or array Controls the size and shape of the domain, as follows: ========== ============================================================ shape result ========== ============================================================ [x, y, z] A 3D cubic domain of dimension x, y and z, with points in the range [0:x, 0:y, 0:z] [x, y, 0] A 2D square domain of size x by y, with points in the range [0:x, 0:y, 0:0] [r, z] A 3D cylindrical domain of radius r and height z, with points in the range [-r:r, -r:r, 0:z] [r, 0] A 2D circular domain of radius r, with points in the range [-r:r, -r:r, 0:0] [r] A 3D spherical domain of radius r, with points in the range [-r:r, -r:r, -r:r] ========== ============================================================ reflect : bool If ``True``, the base points are generated as specified then reflected about each face of the domain. This essentially tricks the tessellation functions into creating smooth faces at the boundaries once these excess points are trimmed. Note that the surface is not perfectly smooth for the curved faces. f : float The fraction of points which should be reflected. The default is 1 which reflects all the points in the domain, but this can lead to a lot of unnecessary points, so setting to 0.1 or 0.2 helps speed, but risks that the tessellation may not have smooth faces if not enough points are reflected. Notes ----- To convert between coordinate systems see ``cart2sph`` and ``cart2cyl``
generate_base_points
python
PMEAL/OpenPNM
openpnm/_skgraph/generators/tools/_funcs.py
https://github.com/PMEAL/OpenPNM/blob/master/openpnm/_skgraph/generators/tools/_funcs.py
MIT
def join(g1, g2, L_max=0.99): r""" Joins two networks together topologically including new connections Parameters ---------- g1 : dictionary A dictionary containing 'node.coords' and 'edge.conns'. g2 : dictionary A dictionary containing 'node.coords' and 'edge.conns' L_max : float The distance between nodes below which they are joined Returns ------- network : dict A new dictionary containing coords and conns from both ``net1`` and ``net2``, plus new connections between the two input networks. Notes ----- The returned network will use the same node and edge prefixes as ``g1`` """ node_prefix_1 = tools.get_node_prefix(g1) node_prefix_2 = tools.get_node_prefix(g2) if node_prefix_1 != node_prefix_2: for item in g2.keys(): _, prop = item.split('.', 1) g2[node_prefix_1 + '.' + item] = g2.pop(item) node_prefix = node_prefix_1 edge_prefix_1 = tools.get_edge_prefix(g1) edge_prefix_2 = tools.get_edge_prefix(g2) if edge_prefix_1 != edge_prefix_2: for item in g2.keys(): _, prop = item.split('.', 1) g2[edge_prefix_1 + '.' + item] = g2.pop(item) edge_prefix = edge_prefix_1 # Perform neighbor query from scipy.spatial import KDTree t1 = KDTree(g1[node_prefix+'.coords']) t2 = KDTree(g2[node_prefix+'.coords']) pairs = t1.query_ball_tree(t2, r=L_max) # Combine existing network data net3 = {} Np1 = g1[node_prefix+'.coords'].shape[0] Np2 = g2[node_prefix+'.coords'].shape[0] Nt1 = g1[edge_prefix+'.conns'].shape[0] Nt2 = g2[edge_prefix+'.conns'].shape[0] net3[node_prefix+'.coords'] = \ np.vstack((g1.pop(node_prefix+'.coords'), g2.pop(node_prefix+'.coords'))) net3[edge_prefix+'.conns'] = \ np.vstack((g1.pop(edge_prefix+'.conns'), g2.pop(edge_prefix+'.conns') + Np1)) # Convert kdtree result into new connections nnz = sum([len(row) for row in pairs]) conns = np.zeros((nnz, 2), dtype=int) i = 0 for j, row in enumerate(pairs): for col in row: conns[i, :] = j, col + Np1 i += 1 # Add new connections to network net3[edge_prefix+'.conns'] = \ np.vstack((net3.pop(edge_prefix+'.conns'), conns)) # Finally, expand any other data arrays on given networks items = list(g1.keys()) + list(g2.keys()) N = {node_prefix: [Np1, Np2], edge_prefix: [Nt1, Nt2]} for item in items: prefix, attr = item.split('.', 1) if prefix == node_prefix: temp1 = g1.pop(item, None) temp2 = g2.pop(item, None) if prefix == edge_prefix: temp1 = g1.pop(item, None) temp2 = g2.pop(item, None) if temp1 is None: blank = False if temp2.dtype == bool else np.nan temp1 = np.zeros(N[prefix][0], dtype=type(blank))*blank elif temp2 is None: blank = False if temp1.dtype == bool else np.nan temp2 = np.zeros(N[prefix][1], dtype=type(blank))*blank net3[item] = np.concatenate((temp1, temp2), axis=0) return net3
Joins two networks together topologically including new connections Parameters ---------- g1 : dictionary A dictionary containing 'node.coords' and 'edge.conns'. g2 : dictionary A dictionary containing 'node.coords' and 'edge.conns' L_max : float The distance between nodes below which they are joined Returns ------- network : dict A new dictionary containing coords and conns from both ``net1`` and ``net2``, plus new connections between the two input networks. Notes ----- The returned network will use the same node and edge prefixes as ``g1``
join
python
PMEAL/OpenPNM
openpnm/_skgraph/operations/_binary.py
https://github.com/PMEAL/OpenPNM/blob/master/openpnm/_skgraph/operations/_binary.py
MIT
def add_nodes(network, new_coords): r""" Given a list of node coordinates, add them to the network Parameters ---------- network : dict A dictionary containing the node and edge attributes as ndarrays new_coords : ndarray The N-by-3 array of coordinates of the new nodes Returns ------- network : dict The network dictionary with the new nodes added to the end. Note that any existing node attributes are also extended and filled with default values specified in ``settings.default_values`` """ # TODO: At present this does not work with empty networks. It's a bit # challenging to determine what size each 'empty' array should become. # It's fine for 1D arrays like ``np.array([])``, but for N-dimensional # stuff it's trickier. For instance ``np.array([[], []])`` has a shape # of (2, 0) so the empty dimension is the wrong one since all the array # extending in this function occurs on the 1st axis. g = network node_prefix = tools.get_node_prefix(g) coords = np.atleast_2d(new_coords) Nnew = coords.shape[0] for k, v in g.items(): if k.startswith(node_prefix): dval = None for t in settings.missing_values.keys(): if v.dtype == t: dval = settings.missing_values[t] blank = np.repeat(v[:1, ...], Nnew, axis=0)*dval blank.fill(dval) g[k] = np.concatenate((v, blank), axis=0).astype(v.dtype) # Lastly, overwrite the -Nnew elements of coords with the given values g[node_prefix+'.coords'][-Nnew:] = np.array(coords) return g
Given a list of node coordinates, add them to the network Parameters ---------- network : dict A dictionary containing the node and edge attributes as ndarrays new_coords : ndarray The N-by-3 array of coordinates of the new nodes Returns ------- network : dict The network dictionary with the new nodes added to the end. Note that any existing node attributes are also extended and filled with default values specified in ``settings.default_values``
add_nodes
python
PMEAL/OpenPNM
openpnm/_skgraph/operations/_unary.py
https://github.com/PMEAL/OpenPNM/blob/master/openpnm/_skgraph/operations/_unary.py
MIT
def add_edges(network, new_conns): r""" Given a list of edge connections, add them to the network Parameters ---------- network : dict A dictionary containing the node and edge attributes as ndarrays new_conns : ndarray The N-by-2 array of connections betwween existing nodes Returns ------- network : dict The network dictionary with the new edges added to the end. Note that any existing edge attributes are also extended and filled with default values specified in ``settings.default_values``. """ # TODO: At present this does not work with empty networks. It's a bit # challenging to determine what size each 'empty' array should become. # It's fine for 1D arrays like ``np.array([])``, but for N-dimensional # stuff it's trickier. For instance ``np.array([[], []])`` has a shape # of (2, 0) so the empty dimension is the wrong one since all the array # extending in this function occurs on the 1st axis. g = network edge_prefix = tools.get_edge_prefix(g) conns = np.atleast_2d(new_conns) Nnew = conns.shape[0] for k, v in g.items(): if k.startswith(edge_prefix): dval = None for t in settings.missing_values.keys(): if v.dtype == t: dval = settings.missing_values[t] blank = np.repeat(v[:1, ...], Nnew, axis=0)*dval blank.fill(dval) g[k] = np.concatenate((v, blank), axis=0).astype(v.dtype) # Lastly, overwrite the -Nnew elements of coords with the given values g[edge_prefix+'.conns'][-Nnew:] = np.array(conns) return g
Given a list of edge connections, add them to the network Parameters ---------- network : dict A dictionary containing the node and edge attributes as ndarrays new_conns : ndarray The N-by-2 array of connections betwween existing nodes Returns ------- network : dict The network dictionary with the new edges added to the end. Note that any existing edge attributes are also extended and filled with default values specified in ``settings.default_values``.
add_edges
python
PMEAL/OpenPNM
openpnm/_skgraph/operations/_unary.py
https://github.com/PMEAL/OpenPNM/blob/master/openpnm/_skgraph/operations/_unary.py
MIT
def trim_edges(network, inds): r""" Removes given edges from a graph or network Parameters ---------- network : dictionary A dictionary containing coords, conns and other attributes inds : array_like The edge indices to be trimmed in the form of a 1D list or boolean mask with ``True`` values indicating indices to trim. Returns ------- network : dict The dictionary with all edge arrays trimmed accordingly """ g = network edge_prefix = tools.get_edge_prefix(g) N_bonds = g[edge_prefix+'.conns'].shape[0] inds = np.atleast_1d(inds) keep = np.ones(N_bonds, dtype=bool) keep[inds] = False for k, v in g.items(): if k.startswith(edge_prefix): g[k] = v[keep] return g
Removes given edges from a graph or network Parameters ---------- network : dictionary A dictionary containing coords, conns and other attributes inds : array_like The edge indices to be trimmed in the form of a 1D list or boolean mask with ``True`` values indicating indices to trim. Returns ------- network : dict The dictionary with all edge arrays trimmed accordingly
trim_edges
python
PMEAL/OpenPNM
openpnm/_skgraph/operations/_unary.py
https://github.com/PMEAL/OpenPNM/blob/master/openpnm/_skgraph/operations/_unary.py
MIT
def trim_nodes(network, inds): r""" Removes given nodes and any connected edges from a graph or network Parameters ---------- network : dict A dictionary containing coords, conns and other attributes inds : array_like The node indices to be trimmed in the form of a 1D list or boolean mask with ``True`` values indicating indices to trim. Returns ------- network : dict The dictionary with all nodes arrays trimmed accordingly, all edges trimmed that were connected to the trimmed nodes, and the 'edge.conns' array renumbered so edges point to the updated node indices. """ node_prefix = tools.get_node_prefix(network) edge_prefix = tools.get_edge_prefix(network) N_sites = network[node_prefix+'.coords'].shape[0] inds = np.atleast_1d(inds) if inds.dtype == bool: inds = np.where(inds)[0] keep = np.ones(N_sites, dtype=bool) keep[inds] = False for k, v in network.items(): if k.startswith(node_prefix): network[k] = v[keep] # Remove edges edges = np.any(np.isin(network[edge_prefix+'.conns'], inds), axis=1) network = trim_edges(network, inds=edges) # Renumber conns remapping = np.cumsum(keep) - 1 network[edge_prefix+'.conns'] = remapping[network[edge_prefix+'.conns']] return network
Removes given nodes and any connected edges from a graph or network Parameters ---------- network : dict A dictionary containing coords, conns and other attributes inds : array_like The node indices to be trimmed in the form of a 1D list or boolean mask with ``True`` values indicating indices to trim. Returns ------- network : dict The dictionary with all nodes arrays trimmed accordingly, all edges trimmed that were connected to the trimmed nodes, and the 'edge.conns' array renumbered so edges point to the updated node indices.
trim_nodes
python
PMEAL/OpenPNM
openpnm/_skgraph/operations/_unary.py
https://github.com/PMEAL/OpenPNM/blob/master/openpnm/_skgraph/operations/_unary.py
MIT
def drop_nodes_from_am(am, inds): r""" Update adjacency matrix after dropping nodes Parameters ---------- am : scipy.sparse matrix The adjacency matrix of the network in COO format. inds : array_like A list of which nodes indices to drop. Can either be integer indices or a boolean mask with ``True`` indicating which locations to drop Returns ------- am : ndarray An updated adjacency matrix with nodes and headless edges removed, and node indices updated accordingly dropped_edges : ndarray A boolean array with ``True`` values indicating which edges were rendered headless. This can be used to drop invalid edges from other arrays (i.e. array = array[~dropped_edges]). """ nodes = np.array(inds) if nodes.dtype != bool: inds = np.copy(nodes) nodes = np.zeros(am.shape[0], dtype=bool) nodes[inds] = True node_mask = ~nodes conns = np.vstack((am.row, am.col)).T node_id = np.cumsum(node_mask) - 1 edge_mask = ~np.all(node_mask[conns], axis=1) conns = node_id[conns[~edge_mask]] am = sprs.coo_matrix((am.data[~edge_mask], (conns[:, 0], conns[:, 1]))) return am, edge_mask
Update adjacency matrix after dropping nodes Parameters ---------- am : scipy.sparse matrix The adjacency matrix of the network in COO format. inds : array_like A list of which nodes indices to drop. Can either be integer indices or a boolean mask with ``True`` indicating which locations to drop Returns ------- am : ndarray An updated adjacency matrix with nodes and headless edges removed, and node indices updated accordingly dropped_edges : ndarray A boolean array with ``True`` values indicating which edges were rendered headless. This can be used to drop invalid edges from other arrays (i.e. array = array[~dropped_edges]).
drop_nodes_from_am
python
PMEAL/OpenPNM
openpnm/_skgraph/operations/_unary.py
https://github.com/PMEAL/OpenPNM/blob/master/openpnm/_skgraph/operations/_unary.py
MIT
def split_edges(network): r""" Inserts an new node between each existing node and joins with new edges Parameters ---------- network : dict The dictionary containing the network connections and coordinates Returns ------- result : tuple A tuple containing ``new_conns`` and optionally ``new_coords`` if ``coords`` was provided. ============== ======================================================== Value Description ============== ======================================================== ``new_conns`` A new adjacency matrix in COO format with new nodes added between each original node. If edge 1 connected nodes 1 and 2, then row 1 of the new sparse adjacency matrix will be [1, Nt + 1], and row Nt + 1 will be [Nt + 1, 2]. ``new_coords`` A and updated list of node coordinates with the new nodes appended to the end. The coordinates of the new nodes are taken as the average of the two nodes between which they were inserted. ============== ======================================================== """ g = network node_prefix = tools.get_node_prefix(g) edge_prefix = tools.get_edge_prefix(g) conns = g[edge_prefix + '.conns'] coords = g[node_prefix + '.coords'] Nt = conns.shape[0] Np = conns.max() + 1 new_conns = np.zeros([2*Nt, 2], dtype=int) new_conns[:Nt, :] = np.vstack((conns[:, 0], np.arange(Np, Np+Nt))).T new_conns[Nt:, :] = np.vstack((np.arange(Np, Np+Nt), conns[:, 1])).T result = (new_conns, ) if coords is not None: Np = coords.shape[0] new_coords = np.zeros([Np + Nt, 3], dtype=float) new_coords[:Np, :] = coords new_coords[Np:, :] = np.mean(coords[conns], axis=1) result = (new_conns, new_coords) return result
Inserts an new node between each existing node and joins with new edges Parameters ---------- network : dict The dictionary containing the network connections and coordinates Returns ------- result : tuple A tuple containing ``new_conns`` and optionally ``new_coords`` if ``coords`` was provided. ============== ======================================================== Value Description ============== ======================================================== ``new_conns`` A new adjacency matrix in COO format with new nodes added between each original node. If edge 1 connected nodes 1 and 2, then row 1 of the new sparse adjacency matrix will be [1, Nt + 1], and row Nt + 1 will be [Nt + 1, 2]. ``new_coords`` A and updated list of node coordinates with the new nodes appended to the end. The coordinates of the new nodes are taken as the average of the two nodes between which they were inserted. ============== ========================================================
split_edges
python
PMEAL/OpenPNM
openpnm/_skgraph/operations/_unary.py
https://github.com/PMEAL/OpenPNM/blob/master/openpnm/_skgraph/operations/_unary.py
MIT
def find_complementary_edges(network, inds, asmask=False): r""" Finds the complementary edges to a given set of inputs Parameters ---------- network : dict The network dictionary inds : array_like A list of edge indices for which the complement is sought asmask : bool If set to ``True`` the result is returned as a boolean mask of the correct length with ``True`` values indicate the complements. The default is ``False`` which returns a list of indices instead. Returns ------- An array containing indices of the edges that are not part of the input list """ edge_prefix = get_edge_prefix(network) inds = np.unique(inds) N = network[edge_prefix+'.conns'].shape[0] mask = np.ones(shape=N, dtype=bool) mask[inds] = False if asmask: return mask else: return np.arange(N)[mask]
Finds the complementary edges to a given set of inputs Parameters ---------- network : dict The network dictionary inds : array_like A list of edge indices for which the complement is sought asmask : bool If set to ``True`` the result is returned as a boolean mask of the correct length with ``True`` values indicate the complements. The default is ``False`` which returns a list of indices instead. Returns ------- An array containing indices of the edges that are not part of the input list
find_complementary_edges
python
PMEAL/OpenPNM
openpnm/_skgraph/queries/_funcs.py
https://github.com/PMEAL/OpenPNM/blob/master/openpnm/_skgraph/queries/_funcs.py
MIT
def find_complementary_nodes(network, inds, asmask=False): r""" Finds the complementary nodes to a given set of inputs Parameters ---------- network : dict The network dictionary inds : array_like (optional) A list of indices for which the complement is sought asmask : bool If set to ``True`` the result is returned as a boolean mask of the correct length with ``True`` values indicate the complements. The default is ``False`` which returns a list of indices instead. Returns ------- An array containing indices of the nodes that are not part of the input list """ node_prefix = get_node_prefix(network) inds = np.unique(inds) N = network[node_prefix+'.coords'].shape[0] mask = np.ones(shape=N, dtype=bool) mask[inds] = False if asmask: return mask else: return np.arange(N)[mask]
Finds the complementary nodes to a given set of inputs Parameters ---------- network : dict The network dictionary inds : array_like (optional) A list of indices for which the complement is sought asmask : bool If set to ``True`` the result is returned as a boolean mask of the correct length with ``True`` values indicate the complements. The default is ``False`` which returns a list of indices instead. Returns ------- An array containing indices of the nodes that are not part of the input list
find_complementary_nodes
python
PMEAL/OpenPNM
openpnm/_skgraph/queries/_funcs.py
https://github.com/PMEAL/OpenPNM/blob/master/openpnm/_skgraph/queries/_funcs.py
MIT
def find_connected_nodes(network, inds, flatten=True, logic='or'): r""" Finds which nodes are connected to a given set of edges Parameters ---------- network : dict The network dictionary inds : array_like A list of edges indices whose connected nodes are sought flatten : bool (default is ``True``) Indicates whether the returned result is a compressed array of all neighbors, or a list of lists with each sub-list containing the neighbors for each input edge. Note that an *unflattened* list might be slow to generate since it is a Python ``list`` rather than a Numpy array. logic : str Specifies logic to filter the resulting list. Options are: ======= =============================================================== logic Description ======= =============================================================== 'or' (default) All neighbors of the inputs. This is also known as the 'union' in set theory or 'any' in boolean logic. Both keywords are accepted and treated as 'or'. 'xor' Only neighbors of one and only one inputs. This is useful for finding neighbors that are not *shared* by any of the input nodes. 'exclusive_or' is also accepted. 'xnor' Neighbors that are shared by two or more inputs . This is equivalent to finding all neighbors with 'or', minus those found with 'xor', and is useful for finding neighbors that the inputs have in common. 'nxor' is also accepted. 'and' Only neighbors shared by all inputs. This is also known as 'intersection' in set theory and (sometimes) as 'all' in boolean logic. Both keywords are accepted and treated as 'and'. ======= =============================================================== Returns ------- An array containing the connected sites, filtered by the given logic. If ``flatten`` is ``False`` then the result is a list of lists containing the neighbors of each given input edge. In this latter case, nodes that have been removed by the given logic are indicated by ``nans``, thus the array is of type ``float`` and is not suitable for indexing. """ if not isgtriu(network): raise Exception("This function is not implemented for directed networks") edges = np.array(inds, ndmin=1) if len(edges) == 0: # Short-circuit this function if edges is empty return [] am = dict_to_am(network) neighbors = np.hstack((am.row[edges], am.col[edges])) if neighbors.size > 0: n_sites = np.amax(neighbors) if logic in ['or', 'union', 'any']: neighbors = np.unique(neighbors) elif logic in ['xor', 'exclusive_or']: neighbors = np.unique(np.where(np.bincount(neighbors) == 1)[0]) elif logic in ['xnor', 'nxor']: neighbors = np.unique(np.where(np.bincount(neighbors) > 1)[0]) elif logic in ['and', 'all', 'intersection']: temp = np.vstack((am.row[edges], am.col[edges])).T.tolist() temp = [set(pair) for pair in temp] neighbors = temp[0] [neighbors.intersection_update(pair) for pair in temp[1:]] neighbors = np.array(list(neighbors), dtype=np.int64, ndmin=1) else: raise Exception('Specified logic is not implemented') if flatten is False: if neighbors.size: mask = np.zeros(shape=n_sites + 1, dtype=bool) mask[neighbors] = True temp = np.hstack((am.row[edges], am.col[edges])).astype(np.int64) temp[~mask[temp]] = -1 inds = np.where(temp == -1)[0] if len(inds): temp = temp.astype(float) temp[inds] = np.nan temp = np.reshape(a=temp, newshape=[len(edges), 2], order='F') neighbors = temp else: neighbors = [np.array([], dtype=np.int64) for i in range(len(edges))] return neighbors
Finds which nodes are connected to a given set of edges Parameters ---------- network : dict The network dictionary inds : array_like A list of edges indices whose connected nodes are sought flatten : bool (default is ``True``) Indicates whether the returned result is a compressed array of all neighbors, or a list of lists with each sub-list containing the neighbors for each input edge. Note that an *unflattened* list might be slow to generate since it is a Python ``list`` rather than a Numpy array. logic : str Specifies logic to filter the resulting list. Options are: ======= =============================================================== logic Description ======= =============================================================== 'or' (default) All neighbors of the inputs. This is also known as the 'union' in set theory or 'any' in boolean logic. Both keywords are accepted and treated as 'or'. 'xor' Only neighbors of one and only one inputs. This is useful for finding neighbors that are not *shared* by any of the input nodes. 'exclusive_or' is also accepted. 'xnor' Neighbors that are shared by two or more inputs . This is equivalent to finding all neighbors with 'or', minus those found with 'xor', and is useful for finding neighbors that the inputs have in common. 'nxor' is also accepted. 'and' Only neighbors shared by all inputs. This is also known as 'intersection' in set theory and (sometimes) as 'all' in boolean logic. Both keywords are accepted and treated as 'and'. ======= =============================================================== Returns ------- An array containing the connected sites, filtered by the given logic. If ``flatten`` is ``False`` then the result is a list of lists containing the neighbors of each given input edge. In this latter case, nodes that have been removed by the given logic are indicated by ``nans``, thus the array is of type ``float`` and is not suitable for indexing.
find_connected_nodes
python
PMEAL/OpenPNM
openpnm/_skgraph/queries/_funcs.py
https://github.com/PMEAL/OpenPNM/blob/master/openpnm/_skgraph/queries/_funcs.py
MIT
def find_neighbor_edges(network, inds, flatten=True, logic='or'): r""" Finds all edges that are connected to the given input nodes Parameters ---------- network : dict The network dictionary inds : array_like (optional) A list of node indices whose neighbor edges are sought flatten : bool (default is ``True``) Indicates whether the returned result is a compressed array of all neighbors, or a list of lists with each sub-list containing the neighbors for each input node. Note that an *unflattened* list might be slow to generate since it is a Python ``list`` rather than a Numpy array. logic : str Specifies logic to filter the resulting list. Options are: ======= =============================================================== logic Description ======= =============================================================== 'or' (default) All neighbors of the inputs. This is also known as the 'union' in set theory or 'any' in boolean logic. Both keywords are accepted and treated as 'or'. 'xor' Only neighbors of one and only one inputs. This is useful for finding neighbors that are not *shared* by any of the input nodes. 'exclusive_or' is also accepted. 'xnor' Neighbors that are shared by two or more inputs . This is equivalent to finding all neighbors with 'or', minus those found with 'xor', and is useful for finding neighbors that the inputs have in common. 'nxor' is also accepted. 'and' Only neighbors shared by all inputs. This is also known as 'intersection' in set theory and (somtimes) as 'all' in boolean logic. Both keywords are accepted and treated as 'and'. ======= =============================================================== Returns ------- An array containing the neighboring edges filtered by the given logic. If ``flatten`` is ``False`` then the result is a list of lists containing the neighbors of each given input node. Notes ----- The ``logic`` options are applied to neighboring edges only, thus it is not possible to obtain edges that are part of the global set but not neighbors. This is because (a) the list of global edges might be very large, and (b) it is not possible to return a list of neighbors for each input site if global sites are considered. """ if flatten == False: im = dict_to_im(network) am = None else: am = dict_to_am(network) im = None if im is not None: if im.format != 'lil': im = im.tolil(copy=False) rows = [im.rows[i] for i in np.array(inds, ndmin=1, dtype=np.int64)] if len(rows) == 0: return [] neighbors = np.hstack(rows).astype(np.int64) n_bonds = int(im.nnz / 2) if logic in ['or', 'union', 'any']: neighbors = np.unique(neighbors) elif logic in ['xor', 'exclusive_or']: neighbors = np.unique(np.where(np.bincount(neighbors) == 1)[0]) elif logic in ['xnor', 'shared']: neighbors = np.unique(np.where(np.bincount(neighbors) > 1)[0]) elif logic in ['and', 'all', 'intersection']: neighbors = set(neighbors) [neighbors.intersection_update(i) for i in rows] neighbors = np.array(list(neighbors), dtype=int, ndmin=1) else: raise Exception('Specified logic is not implemented') if (flatten is False): if (neighbors.size > 0): mask = np.zeros(shape=n_bonds, dtype=bool) mask[neighbors] = True for i in range(len(rows)): vals = np.array(rows[i], dtype=np.int64) rows[i] = vals[mask[vals]] neighbors = rows else: neighbors = [np.array([], dtype=np.int64) for i in range(len(inds))] return neighbors elif am is not None: if am.format != 'coo': am = am.tocoo(copy=False) if flatten is False: raise Exception('flatten cannot be used with an adjacency matrix') if isgtriu(network): am = sprs.triu(am, k=1) Ps = np.zeros(am.shape[0], dtype=bool) Ps[inds] = True conns = np.vstack((am.row, am.col)).T if logic in ['or', 'union', 'any']: neighbors = np.any(Ps[conns], axis=1) elif logic in ['xor', 'exclusive_or']: neighbors = np.sum(Ps[conns], axis=1) == 1 elif logic in ['xnor', 'shared']: neighbors = np.all(Ps[conns], axis=1) elif logic in ['and', 'all', 'intersection']: raise Exception('Specified logic is not implemented') else: raise Exception('Specified logic is not implemented') neighbors = np.where(neighbors)[0] return neighbors else: raise Exception('Either the incidence or the adjacency matrix must be specified')
Finds all edges that are connected to the given input nodes Parameters ---------- network : dict The network dictionary inds : array_like (optional) A list of node indices whose neighbor edges are sought flatten : bool (default is ``True``) Indicates whether the returned result is a compressed array of all neighbors, or a list of lists with each sub-list containing the neighbors for each input node. Note that an *unflattened* list might be slow to generate since it is a Python ``list`` rather than a Numpy array. logic : str Specifies logic to filter the resulting list. Options are: ======= =============================================================== logic Description ======= =============================================================== 'or' (default) All neighbors of the inputs. This is also known as the 'union' in set theory or 'any' in boolean logic. Both keywords are accepted and treated as 'or'. 'xor' Only neighbors of one and only one inputs. This is useful for finding neighbors that are not *shared* by any of the input nodes. 'exclusive_or' is also accepted. 'xnor' Neighbors that are shared by two or more inputs . This is equivalent to finding all neighbors with 'or', minus those found with 'xor', and is useful for finding neighbors that the inputs have in common. 'nxor' is also accepted. 'and' Only neighbors shared by all inputs. This is also known as 'intersection' in set theory and (somtimes) as 'all' in boolean logic. Both keywords are accepted and treated as 'and'. ======= =============================================================== Returns ------- An array containing the neighboring edges filtered by the given logic. If ``flatten`` is ``False`` then the result is a list of lists containing the neighbors of each given input node. Notes ----- The ``logic`` options are applied to neighboring edges only, thus it is not possible to obtain edges that are part of the global set but not neighbors. This is because (a) the list of global edges might be very large, and (b) it is not possible to return a list of neighbors for each input site if global sites are considered.
find_neighbor_edges
python
PMEAL/OpenPNM
openpnm/_skgraph/queries/_funcs.py
https://github.com/PMEAL/OpenPNM/blob/master/openpnm/_skgraph/queries/_funcs.py
MIT
def find_neighbor_nodes(network, inds, flatten=True, include_input=False, logic='or'): r""" Finds all nodes that are directly connected to the input nodes Parameters ---------- network : dict The network dictionary inds : array_like A list of node indices whose neighbors are sought flatten : bool If ``True`` (default) the returned result is a compressed array of all neighbors, or a list of lists with each sub-list containing the neighbors for each input site. Note that an *unflattened* list might be slow to generate since it is a Python ``list`` rather than a Numpy array. include_input : bool If ``False`` (default) the input nodes will be removed from the result. logic : str Specifies logic to filter the resulting list. Options are: ======= =============================================================== logic Description ======= =============================================================== 'or' (default) All neighbors of the inputs. This is also known as the 'union' in set theory or 'any' in boolean logic. Both keywords are accepted and treated as 'or'. 'xor' Only neighbors of one and only one inputs. This is useful for finding neighbors that are not *shared* by any of the input nodes. 'exclusive_or' is also accepted. 'xnor' Neighbors that are shared by two or more inputs . This is equivalent to finding all neighbors with 'or', minus those found with 'xor', and is useful for finding neighbors that the inputs have in common. 'nxor' is also accepted. 'and' Only neighbors shared by all inputs. This is also known as 'intersection' in set theory and (somtimes) as 'all' in boolean logic. Both keywords are accepted and treated as 'and'. ======= =============================================================== Returns ------- nodes : ndarray An array containing the neighboring nodes filtered by the given logic. If ``flatten`` is ``False`` then the result is a list of lists containing the neighbors of each input site. Notes ----- The ``logic`` options are applied to neighboring nodes only, thus it is not possible to obtain nodes that are part of the global set but not neighbors. This is because the list of global nodes might be very large. """ g = network nodes = np.array(inds, ndmin=1) # Short-circuit the function if the input list is already empty if len(nodes) == 0: return [] am_coo = dict_to_am(g) am = am_coo.tolil(copy=False) rows = am.rows[nodes].tolist() if len(rows) == 0: return [] n_nodes = am.shape[0] neighbors = am_coo.col[np.in1d(am_coo.row, nodes)] if logic in ['or', 'union', 'any']: neighbors = np.unique(neighbors) elif logic in ['xor', 'exclusive_or']: neighbors = np.unique(np.where(np.bincount(neighbors) == 1)[0]) elif logic in ['xnor', 'nxor']: neighbors = np.unique(np.where(np.bincount(neighbors) > 1)[0]) elif logic in ['and', 'all', 'intersection']: neighbors = set(neighbors) [neighbors.intersection_update(i) for i in rows] neighbors = np.array(list(neighbors), dtype=np.int64, ndmin=1) else: raise Exception('Specified logic is not implemented') # Deal with removing inputs or not mask = np.zeros(shape=n_nodes, dtype=bool) mask[neighbors] = True if not include_input: mask[nodes] = False # Finally flatten or not if flatten: neighbors = np.where(mask)[0] else: if neighbors.size > 0: for i in range(len(rows)): vals = np.array(rows[i], dtype=np.int64) rows[i] = vals[mask[vals]] neighbors = rows else: neighbors = [np.array([], dtype=int) for i in range(len(nodes))] return neighbors
Finds all nodes that are directly connected to the input nodes Parameters ---------- network : dict The network dictionary inds : array_like A list of node indices whose neighbors are sought flatten : bool If ``True`` (default) the returned result is a compressed array of all neighbors, or a list of lists with each sub-list containing the neighbors for each input site. Note that an *unflattened* list might be slow to generate since it is a Python ``list`` rather than a Numpy array. include_input : bool If ``False`` (default) the input nodes will be removed from the result. logic : str Specifies logic to filter the resulting list. Options are: ======= =============================================================== logic Description ======= =============================================================== 'or' (default) All neighbors of the inputs. This is also known as the 'union' in set theory or 'any' in boolean logic. Both keywords are accepted and treated as 'or'. 'xor' Only neighbors of one and only one inputs. This is useful for finding neighbors that are not *shared* by any of the input nodes. 'exclusive_or' is also accepted. 'xnor' Neighbors that are shared by two or more inputs . This is equivalent to finding all neighbors with 'or', minus those found with 'xor', and is useful for finding neighbors that the inputs have in common. 'nxor' is also accepted. 'and' Only neighbors shared by all inputs. This is also known as 'intersection' in set theory and (somtimes) as 'all' in boolean logic. Both keywords are accepted and treated as 'and'. ======= =============================================================== Returns ------- nodes : ndarray An array containing the neighboring nodes filtered by the given logic. If ``flatten`` is ``False`` then the result is a list of lists containing the neighbors of each input site. Notes ----- The ``logic`` options are applied to neighboring nodes only, thus it is not possible to obtain nodes that are part of the global set but not neighbors. This is because the list of global nodes might be very large.
find_neighbor_nodes
python
PMEAL/OpenPNM
openpnm/_skgraph/queries/_funcs.py
https://github.com/PMEAL/OpenPNM/blob/master/openpnm/_skgraph/queries/_funcs.py
MIT
def find_connecting_edges(inds, network=None, am=None): r""" Finds the edge that connects each pair of given nodes Parameters ---------- inds : array_like A 2-column vector containing pairs of node indices network : dict, optional The network dictionary. Either this or ``am`` must be provided am : scipy.sparse matrix, optional The adjacency matrix of the network. Must be symmetrical such that if nodes *i* and *j* are connected, the matrix contains non-zero values at locations (i, j) and (j, i). Either this or ``g`` must be provided. Returns ------- edges : ndarray An ndarry the same length as P1 (and P2) with each element containing the edge number that connects the corresponding nodes, or `nan`` if nodes are not connected. Notes ----- The adjacency matrix is converted to the ``DOK`` format internally if needed, so if this format is already available it should be provided to save time. """ nodes = np.array(inds, ndmin=2) # Short-circuit function if nodes is an empty list if nodes.size == 0: return [] if network is not None: edge_prefix = get_edge_prefix(network) am = dict_to_am( network, weights=np.arange(network[edge_prefix+'.conns'].shape[0]) ) elif am is not None: pass else: raise Exception('Either g or am must be provided') if am.format != 'dok': am = am.todok(copy=True) z = tuple(zip(nodes[:, 0], nodes[:, 1])) neighbors = np.array([am.get(item, np.nan) for item in z]) return neighbors
Finds the edge that connects each pair of given nodes Parameters ---------- inds : array_like A 2-column vector containing pairs of node indices network : dict, optional The network dictionary. Either this or ``am`` must be provided am : scipy.sparse matrix, optional The adjacency matrix of the network. Must be symmetrical such that if nodes *i* and *j* are connected, the matrix contains non-zero values at locations (i, j) and (j, i). Either this or ``g`` must be provided. Returns ------- edges : ndarray An ndarry the same length as P1 (and P2) with each element containing the edge number that connects the corresponding nodes, or `nan`` if nodes are not connected. Notes ----- The adjacency matrix is converted to the ``DOK`` format internally if needed, so if this format is already available it should be provided to save time.
find_connecting_edges
python
PMEAL/OpenPNM
openpnm/_skgraph/queries/_funcs.py
https://github.com/PMEAL/OpenPNM/blob/master/openpnm/_skgraph/queries/_funcs.py
MIT
def find_common_edges(network, inds_1, inds_2): """ Finds edges shared between two sets of nodes Parameters ---------- network : dict The network dictionary inds_1 : array_like A list of indices defining the first set of nodes inds_2 : array_like A list of indices defining the second set of nodes Returns ------- edges : ndarray List of edge indices connecting the two given sets of nodes """ if np.intersect1d(inds_1, inds_2).size != 0: raise Exception("inds_1 and inds_2 must not share any nodes") if not isgtriu(network): raise Exception("This function is not implemented for directed graphs") edges_1 = find_neighbor_edges(inds=inds_1, network=network, logic="xor") edges_2 = find_neighbor_edges(inds=inds_2, network=network, logic="xor") return np.intersect1d(edges_1, edges_2)
Finds edges shared between two sets of nodes Parameters ---------- network : dict The network dictionary inds_1 : array_like A list of indices defining the first set of nodes inds_2 : array_like A list of indices defining the second set of nodes Returns ------- edges : ndarray List of edge indices connecting the two given sets of nodes
find_common_edges
python
PMEAL/OpenPNM
openpnm/_skgraph/queries/_funcs.py
https://github.com/PMEAL/OpenPNM/blob/master/openpnm/_skgraph/queries/_funcs.py
MIT
def filter_by_z(network, inds, z=1): r""" Filters a list of nodes to those with a given number of neighbors Parameters ---------- network : dict The network dictionary inds : array_like A list containing the indices of the nodes to be filtered z : int The coordination number by which to filter Returns ------- inds : array_like A list of node indices which satisfy the criteria """ inds = np.array(inds) coordination = find_coordination(network) hits = coordination == z inds = inds[hits[inds]] return inds
Filters a list of nodes to those with a given number of neighbors Parameters ---------- network : dict The network dictionary inds : array_like A list containing the indices of the nodes to be filtered z : int The coordination number by which to filter Returns ------- inds : array_like A list of node indices which satisfy the criteria
filter_by_z
python
PMEAL/OpenPNM
openpnm/_skgraph/queries/_funcs.py
https://github.com/PMEAL/OpenPNM/blob/master/openpnm/_skgraph/queries/_funcs.py
MIT
def find_coordination(network, nodes=None): r""" Find the coordination number of nodes Parameters ---------- network : dict The network dictionary nodes : array_like, optional The nodes for which coordination is sought. If not provided then coordination for *all* nodes is returned Returns ------- z : ndarray An array containing the number of neighbors for each given node Notes ----- Supports directed and undirected graphs """ am = dict_to_am(network) z = am.getnnz(axis=1) if nodes is None: return z else: return z[np.array(nodes)]
Find the coordination number of nodes Parameters ---------- network : dict The network dictionary nodes : array_like, optional The nodes for which coordination is sought. If not provided then coordination for *all* nodes is returned Returns ------- z : ndarray An array containing the number of neighbors for each given node Notes ----- Supports directed and undirected graphs
find_coordination
python
PMEAL/OpenPNM
openpnm/_skgraph/queries/_funcs.py
https://github.com/PMEAL/OpenPNM/blob/master/openpnm/_skgraph/queries/_funcs.py
MIT
def find_path(network, pairs, weights=None): r""" Find the shortest path between pairs of nodes Parameters ---------- network : dict The network dictionary pairs : array_like An N x 2 array containing N pairs of nodes between which the shortest path is sought weights : ndarray, optional The edge weights to use when traversing the path. If not provided then 1's will be used. Returns ------- paths : dict A dictionary containing ``'node_paths'`` and ``'edge_paths'``, each containing a list of lists indicating the path between each set of nodes given in ``pairs``. An empty list indicates that no path was found between a given set of pairs. Notes ----- The shortest path is found using Dijkstra's algorithm included in the ``scipy.sparse.csgraph`` module """ am = dict_to_am(network) if weights is not None: am.data = np.ones_like(am.row, dtype=int) pairs = np.array(pairs, ndmin=2) paths = csgraph.dijkstra(csgraph=am, indices=pairs[:, 0], return_predecessors=True, min_only=False)[1] if isgtriu(network): am.data = np.hstack(2*[np.arange(am.data.size/2)]).astype(int) else: am.data = np.arange(am.data.size).astype(int) dok = am.todok() nodes = [] edges = [] for row in range(0, np.shape(pairs)[0]): j = pairs[row][1] ans = [] while paths[row][j] > -9999: ans.append(j) j = paths[row][j] if len(ans) > 0: ans.append(pairs[row][0]) ans.reverse() nodes.append(np.array(ans, dtype=int)) keys = [tuple((ans[i], ans[i+1])) for i in range(len(ans)-1)] temp = [dok[k] for k in keys] edges.append(np.array(temp, dtype=int)) else: nodes.append([]) edges.append([]) return {'node_paths': nodes, 'edge_paths': edges}
Find the shortest path between pairs of nodes Parameters ---------- network : dict The network dictionary pairs : array_like An N x 2 array containing N pairs of nodes between which the shortest path is sought weights : ndarray, optional The edge weights to use when traversing the path. If not provided then 1's will be used. Returns ------- paths : dict A dictionary containing ``'node_paths'`` and ``'edge_paths'``, each containing a list of lists indicating the path between each set of nodes given in ``pairs``. An empty list indicates that no path was found between a given set of pairs. Notes ----- The shortest path is found using Dijkstra's algorithm included in the ``scipy.sparse.csgraph`` module
find_path
python
PMEAL/OpenPNM
openpnm/_skgraph/queries/_funcs.py
https://github.com/PMEAL/OpenPNM/blob/master/openpnm/_skgraph/queries/_funcs.py
MIT
def bond_percolation(conns, occupied_bonds): r""" Assigns cluster numbers to sites and bonds acccording to a bond percolation process, given a list of occupied bonds. Parameters ---------- conns : array_like An N x 2 array connections. Any sites connected to an occupied bond will also be considered occupied and given the same cluster number as the bond. occupied_bonds : ndarray A boolean array with one element for each bond, with ``True`` values indicating that a bond is occupied Returns ------- A tuple containing a list of site and bond labels, indicating which cluster each belongs to. A value of -1 indicates uninvaded. Notes ----- The ``connected_components`` function of ``scipy.sparse.csgraph`` will give a cluster number to ALL bonds whether they are occupied or not, so this function essentially adjusts the cluster numbers to represent a percolation process. """ Np = np.amax(conns) + 1 # Find occupied sites based on status of shared bonds occupied_sites = np.zeros([Np, ], dtype=bool) occupied_sites[conns[occupied_bonds].flatten()] = True # Perform cluster labeling of network adj_mat = sprs.csr_matrix((occupied_bonds.astype(int), (conns[:, 0], conns[:, 1])), shape=(Np, Np)) adj_mat.eliminate_zeros() clusters = csgraph.connected_components(csgraph=adj_mat, directed=False)[1] # Set cluster number of unoccupied sites to -1 s_labels = (clusters + 1)*occupied_sites - 1 # Bonds inherit the cluster number of its connected sites b_labels = np.amin(s_labels[conns], axis=1) # Set cluster number of unoccupied bonds to -1 b_labels[~occupied_bonds] = -1 tup = namedtuple('cluster_labels', ('site_labels', 'bond_labels')) return tup(s_labels, b_labels)
Assigns cluster numbers to sites and bonds acccording to a bond percolation process, given a list of occupied bonds. Parameters ---------- conns : array_like An N x 2 array connections. Any sites connected to an occupied bond will also be considered occupied and given the same cluster number as the bond. occupied_bonds : ndarray A boolean array with one element for each bond, with ``True`` values indicating that a bond is occupied Returns ------- A tuple containing a list of site and bond labels, indicating which cluster each belongs to. A value of -1 indicates uninvaded. Notes ----- The ``connected_components`` function of ``scipy.sparse.csgraph`` will give a cluster number to ALL bonds whether they are occupied or not, so this function essentially adjusts the cluster numbers to represent a percolation process.
bond_percolation
python
PMEAL/OpenPNM
openpnm/_skgraph/simulations/_percolation.py
https://github.com/PMEAL/OpenPNM/blob/master/openpnm/_skgraph/simulations/_percolation.py
MIT
def site_percolation(conns, occupied_sites): r""" Assigns cluster numbers to sites and bonds acccording to a site percolation process, given a list of occupied sites. Parameters ---------- conns : array_like An N x 2 array connections. If two connected sites are both occupied they are part of the same cluster, as is the bond connecting them. occupied_sites : ndarray A boolean array with one element for each site, with ``True`` values indicating that a site is occupied Returns ------- A tuple containing a list of site and bond labels, indicating which cluster each belongs to. A value of -1 indicates unoccupied. Notes ----- The ``connected_components`` function of ``scipy.sparse.csgraph`` will give ALL sites a cluster number whether they are occupied or not, so this function essentially adjusts the cluster numbers to represent a percolation process. """ Np = np.size(occupied_sites) # Find bond occupancy based on status of its connected sites occupied_bonds = np.all(occupied_sites[conns], axis=1) # Perform cluster labeling of network adj_mat = sprs.csr_matrix((occupied_bonds, (conns[:, 0], conns[:, 1])), shape=(Np, Np)) adj_mat.eliminate_zeros() clusters = csgraph.connected_components(csgraph=adj_mat, directed=False)[1] # Set cluster number of unoccupied sites to -1 s_labels = (clusters + 1)*occupied_sites - 1 # Bonds inherit the cluster number of its connected sites b_labels = np.amin(s_labels[conns], axis=1) # Set cluster number of unoccupied bonds to -1 b_labels[~occupied_bonds] = -1 tup = namedtuple('cluster_labels', ('site_labels', 'bond_labels')) return tup(s_labels, b_labels)
Assigns cluster numbers to sites and bonds acccording to a site percolation process, given a list of occupied sites. Parameters ---------- conns : array_like An N x 2 array connections. If two connected sites are both occupied they are part of the same cluster, as is the bond connecting them. occupied_sites : ndarray A boolean array with one element for each site, with ``True`` values indicating that a site is occupied Returns ------- A tuple containing a list of site and bond labels, indicating which cluster each belongs to. A value of -1 indicates unoccupied. Notes ----- The ``connected_components`` function of ``scipy.sparse.csgraph`` will give ALL sites a cluster number whether they are occupied or not, so this function essentially adjusts the cluster numbers to represent a percolation process.
site_percolation
python
PMEAL/OpenPNM
openpnm/_skgraph/simulations/_percolation.py
https://github.com/PMEAL/OpenPNM/blob/master/openpnm/_skgraph/simulations/_percolation.py
MIT
def trim_disconnected_clusters(b_labels, s_labels, inlets): r""" Computes actual node and edge occupancy based on connectivity to the given inlets Parameters ---------- b_labels : ndarray An array of cluster labels assigned to each bond. -1 indicates unoccupied s_labels : ndarray An array of cluster labels assigned to each site. -1 indicates unoccupied. Site cluster numbers must correspond to the bond clusters, such that if bond j has a cluster number N, then both sites on each end of j are also labeled N. inlets : ndarray An array containing node indices that are to be treated as inlets. Any clusters labels not found in these nodes will be considered disconnected and set to -1. Returns ------- occupancy : tuple of ndarrays The returned tuple containing arrays of cluster numbers of ``occupied_sites`` and ``occupied_bonds``, after accounting for connection to the ``inlets``. Notes ----- The ``b_labels`` and ``s_labels`` arrays are returned from the ``bond_percolation`` or ``site_percolation`` function. """ hits = np.unique(s_labels[inlets]) hits = hits[hits >= 0] occupied_bonds = np.isin(b_labels, hits)*(b_labels + 1) - 1 occupied_sites = np.isin(s_labels, hits)*(s_labels + 1) - 1 r = namedtuple('cluster_labels', ('site_labels', 'bond_labels')) return r(occupied_sites, occupied_bonds)
Computes actual node and edge occupancy based on connectivity to the given inlets Parameters ---------- b_labels : ndarray An array of cluster labels assigned to each bond. -1 indicates unoccupied s_labels : ndarray An array of cluster labels assigned to each site. -1 indicates unoccupied. Site cluster numbers must correspond to the bond clusters, such that if bond j has a cluster number N, then both sites on each end of j are also labeled N. inlets : ndarray An array containing node indices that are to be treated as inlets. Any clusters labels not found in these nodes will be considered disconnected and set to -1. Returns ------- occupancy : tuple of ndarrays The returned tuple containing arrays of cluster numbers of ``occupied_sites`` and ``occupied_bonds``, after accounting for connection to the ``inlets``. Notes ----- The ``b_labels`` and ``s_labels`` arrays are returned from the ``bond_percolation`` or ``site_percolation`` function.
trim_disconnected_clusters
python
PMEAL/OpenPNM
openpnm/_skgraph/simulations/_percolation.py
https://github.com/PMEAL/OpenPNM/blob/master/openpnm/_skgraph/simulations/_percolation.py
MIT
def remove_isolated_clusters(labels, inlets): r""" Finds cluster labels not attached to the inlets, and sets them to unoccupied (-1) Parameters ---------- labels : tuple of node and edge labels This information is provided by the ``site_percolation`` or ``bond_percolation`` functions inlets : array_like A list of which nodes are inlets. Can be a boolean mask or an array of indices. Returns ------- A tuple containing a list of node and edge labels, with all clusters not connected to the inlets set to not occupied (-1). """ # Identify clusters of invasion sites inv_clusters = np.unique(labels.site_labels[inlets]) # Remove cluster numbers == -1, if any inv_clusters = inv_clusters[inv_clusters >= 0] # Find all pores in invading clusters p_invading = np.in1d(labels.site_labels, inv_clusters) labels.site_labels[~p_invading] = -1 t_invading = np.in1d(labels.bond_labels, inv_clusters) labels.bond_labels[~t_invading] = -1 return labels
Finds cluster labels not attached to the inlets, and sets them to unoccupied (-1) Parameters ---------- labels : tuple of node and edge labels This information is provided by the ``site_percolation`` or ``bond_percolation`` functions inlets : array_like A list of which nodes are inlets. Can be a boolean mask or an array of indices. Returns ------- A tuple containing a list of node and edge labels, with all clusters not connected to the inlets set to not occupied (-1).
remove_isolated_clusters
python
PMEAL/OpenPNM
openpnm/_skgraph/simulations/_percolation.py
https://github.com/PMEAL/OpenPNM/blob/master/openpnm/_skgraph/simulations/_percolation.py
MIT
def ispercolating(conns, occupied, inlets, outlets): r""" Determines if a percolating cluster exists in the network spanning the given inlet and outlet nodes Parameters ---------- conns : array_like An N x 2 array connections. If two connected sites are both occupied they are part of the same cluster, as is the bond connecting them. occupied : array_like A boolean array with ``True`` values indicating if a bond or site is occupied. If the length of this array is equal to the number of bonds (i.e. ``conns.shape[0]``) then bond percolation is assumed, otherwise site percolation is assumed. inlets : array_like An array of indices indicating which nodes are part of the inlets outlets : array_like An array of indices indicating which nodes are part of the outlets """ if occupied.size == conns.shape[0]: mode = 'bond' else: mode = 'site' if mode.startswith('site'): clusters = site_percolation(conns, occupied) elif mode.startswith('bond'): clusters = bond_percolation(conns, occupied) ins = np.unique(clusters.site_labels[inlets]) if ins[0] == -1: ins = ins[1:] outs = np.unique(clusters.site_labels[outlets]) if outs[0] == -1: outs = outs[1:] hits = np.in1d(ins, outs) return np.any(hits)
Determines if a percolating cluster exists in the network spanning the given inlet and outlet nodes Parameters ---------- conns : array_like An N x 2 array connections. If two connected sites are both occupied they are part of the same cluster, as is the bond connecting them. occupied : array_like A boolean array with ``True`` values indicating if a bond or site is occupied. If the length of this array is equal to the number of bonds (i.e. ``conns.shape[0]``) then bond percolation is assumed, otherwise site percolation is assumed. inlets : array_like An array of indices indicating which nodes are part of the inlets outlets : array_like An array of indices indicating which nodes are part of the outlets
ispercolating
python
PMEAL/OpenPNM
openpnm/_skgraph/simulations/_percolation.py
https://github.com/PMEAL/OpenPNM/blob/master/openpnm/_skgraph/simulations/_percolation.py
MIT
def rotate_coords(coords, a=0, b=0, c=0, R=None): r""" Rotates coordinates a given amount about each axis Parameters ---------- coords : ndarray The site coordinates to be transformed. ``coords`` must be in 3D, but a 2D network can be represented by putting 0's in the missing dimension. a, b, c : scalar, optional The amount in degrees to rotate about the x, y, and z-axis, respectively. R : array_like, optional Rotation matrix. Must be a 3-by-3 matrix since coordinates are always in 3D. If this is given then `a`, `b`, and `c` are ignored. Returns ------- coords : ndarray A copy of the given ``coords`` is made and returned to the rotation does not occur *in place*. See Also -------- shear_coords """ coords = np.copy(coords) if R is None: if a: R = np.array([[1, 0, 0], [0, np.cos(np.deg2rad(a)), -np.sin(np.deg2rad(a))], [0, np.sin(np.deg2rad(a)), np.cos(np.deg2rad(a))]]) coords = np.tensordot(coords, R, axes=(1, 1)) if b: R = np.array([[np.cos(np.deg2rad(b)), 0, -np.sin(np.deg2rad(b))], [0, 1, 0], [np.sin(np.deg2rad(b)), 0, np.cos(np.deg2rad(b))]]) coords = np.tensordot(coords, R, axes=(1, 1)) if c: R = np.array([[np.cos(np.deg2rad(c)), -np.sin(np.deg2rad(c)), 0], [np.sin(np.deg2rad(c)), np.cos(np.deg2rad(c)), 0], [0, 0, 1]]) coords = np.tensordot(coords, R, axes=(1, 1)) else: coords = np.tensordot(coords, R, axes=(1, 1)) return coords
Rotates coordinates a given amount about each axis Parameters ---------- coords : ndarray The site coordinates to be transformed. ``coords`` must be in 3D, but a 2D network can be represented by putting 0's in the missing dimension. a, b, c : scalar, optional The amount in degrees to rotate about the x, y, and z-axis, respectively. R : array_like, optional Rotation matrix. Must be a 3-by-3 matrix since coordinates are always in 3D. If this is given then `a`, `b`, and `c` are ignored. Returns ------- coords : ndarray A copy of the given ``coords`` is made and returned to the rotation does not occur *in place*. See Also -------- shear_coords
rotate_coords
python
PMEAL/OpenPNM
openpnm/_skgraph/tools/_coords_transforms.py
https://github.com/PMEAL/OpenPNM/blob/master/openpnm/_skgraph/tools/_coords_transforms.py
MIT
def shear_coords(coords, ay=0, az=0, bx=0, bz=0, cx=0, cy=0, S=None): r""" Shears the coordinates a given amount about along axis Parameters ---------- coords : ndarray The coordinates to be transformed ay : scalar The factor by which to shear along the x-axis as a function of y az : scalar The factor by which to shear along the x-axis as a function of z bx : scalar The factor by which to shear along the y-axis as a function of x bz : scalar The factor by which to shear along the y-axis as a function of z cx : scalar The factor by which to shear along the z-axis as a function of x cy : scalar The factor by which to shear along the z-axis as a function of y S : array_like The shear matrix. Must be a 3-by-3 matrix since pore coordinates are always in 3D. If this is given then the other individual arguments are ignored. Returns ------- coords : ndarray The sheared coordinates. A copy of the supplied coordinates is made so that the operation is not performed *in place*. See Also -------- rotate_coords Notes ----- The shear along the i *th*-axis is given as i\* = i + aj. This means the new i coordinate is the old one plus some linear factor *a* in the j *th* direction. The values of ``a``, ``b``, and ``c`` are essentially the inverse of the slope to be formed by the neighboring layers of sheared pores. A value of 0 means no shear, and neighboring points are stacked directly on top of each other; a value of 1 means they form a 45 degree diagonal, and so on. If ``S`` is given, then is should be of the form: :: S = [[1 , ay, az], [bx, 1 , bz], [cx, cy, 1 ]] where any of the off-diagonal components can be 0 meaning no shear """ coords = np.copy(coords) if S is None: S = np.array([[1, ay, az], [bx, 1, bz], [cx, cy, 1]]) coords = ([email protected]).T return coords
Shears the coordinates a given amount about along axis Parameters ---------- coords : ndarray The coordinates to be transformed ay : scalar The factor by which to shear along the x-axis as a function of y az : scalar The factor by which to shear along the x-axis as a function of z bx : scalar The factor by which to shear along the y-axis as a function of x bz : scalar The factor by which to shear along the y-axis as a function of z cx : scalar The factor by which to shear along the z-axis as a function of x cy : scalar The factor by which to shear along the z-axis as a function of y S : array_like The shear matrix. Must be a 3-by-3 matrix since pore coordinates are always in 3D. If this is given then the other individual arguments are ignored. Returns ------- coords : ndarray The sheared coordinates. A copy of the supplied coordinates is made so that the operation is not performed *in place*. See Also -------- rotate_coords Notes ----- The shear along the i *th*-axis is given as i\* = i + aj. This means the new i coordinate is the old one plus some linear factor *a* in the j *th* direction. The values of ``a``, ``b``, and ``c`` are essentially the inverse of the slope to be formed by the neighboring layers of sheared pores. A value of 0 means no shear, and neighboring points are stacked directly on top of each other; a value of 1 means they form a 45 degree diagonal, and so on. If ``S`` is given, then is should be of the form: :: S = [[1 , ay, az], [bx, 1 , bz], [cx, cy, 1 ]] where any of the off-diagonal components can be 0 meaning no shear
shear_coords
python
PMEAL/OpenPNM
openpnm/_skgraph/tools/_coords_transforms.py
https://github.com/PMEAL/OpenPNM/blob/master/openpnm/_skgraph/tools/_coords_transforms.py
MIT
def generate_points_on_sphere(n=100, r=1): r""" Generates approximately equispaced points on the surface of a sphere Parameters ---------- n : int or [int, int] If a single ``int`` is provided then this number of points will be generated using the Fibonacci method to make them approximately equally spaced. If a list of 2 ``int``s is given, they are interpreted as the number of meridians and parallels to divide the sphere with. r : scalar The radius of the sphere on which the points should lie Returns ------- coords : ndarray An array of x, y, z coordinates for the sphere which will be centered on [0, 0, 0] """ if isinstance(n, int): i = np.arange(n) phi = np.pi * (3 - np.sqrt(5)) # golden angle in radians y = 1 - (i / float(n - 1))*2 # y goes from 1 to -1 radius = np.sqrt(1 - y*y) # radius at y theta = phi * i # golden angle increment x = np.cos(theta) * radius z = np.sin(theta) * radius # Convert to spherical coords r_, q, p = cart2sph(x, y, z) # Scale the radius then convert back to cartesian X, Y, Z = sph2cart(r=r*r_, theta=q, phi=p) coords = np.vstack((X, Y, Z)).T else: nlat = n[0] nlon = n[1] lat = [] lon = [] for i in range(0, 360, max(1, int(360/nlon))): for j in range(max(1, int(180/nlat)), 180, max(1, int(180/nlat))): lon.append(i) lat.append(j) lat.extend([0, 180]) lon.extend([0, 0]) theta = np.deg2rad(lon) - np.pi phi = np.deg2rad(lat) - np.pi/2 X, Y, Z = sph2cart(phi=phi, theta=theta, r=r) coords = np.vstack((X, Y, Z)).T return coords
Generates approximately equispaced points on the surface of a sphere Parameters ---------- n : int or [int, int] If a single ``int`` is provided then this number of points will be generated using the Fibonacci method to make them approximately equally spaced. If a list of 2 ``int``s is given, they are interpreted as the number of meridians and parallels to divide the sphere with. r : scalar The radius of the sphere on which the points should lie Returns ------- coords : ndarray An array of x, y, z coordinates for the sphere which will be centered on [0, 0, 0]
generate_points_on_sphere
python
PMEAL/OpenPNM
openpnm/_skgraph/tools/_coords_transforms.py
https://github.com/PMEAL/OpenPNM/blob/master/openpnm/_skgraph/tools/_coords_transforms.py
MIT
def generate_points_in_disk(n=100, r=1): r""" Generates approximately equally spaced points inside a disk Parameters ---------- n : int The number of points to generate r : scalar The radius of the disk Returns ------- coords : ndarray An ``n by 2`` array of x, y points (in cartesian coordinates) """ indices = np.arange(0, n, dtype=float) + 0.5 r = np.sqrt(indices/n) theta = np.pi*(1 + 5**0.5)*indices x = r*np.cos(theta) y = r*np.sin(theta) return np.vstack((x, y)).T
Generates approximately equally spaced points inside a disk Parameters ---------- n : int The number of points to generate r : scalar The radius of the disk Returns ------- coords : ndarray An ``n by 2`` array of x, y points (in cartesian coordinates)
generate_points_in_disk
python
PMEAL/OpenPNM
openpnm/_skgraph/tools/_coords_transforms.py
https://github.com/PMEAL/OpenPNM/blob/master/openpnm/_skgraph/tools/_coords_transforms.py
MIT
def generate_points_on_circle(n=100, r=1): r""" Generates equally spaced points on a circle Parameters ---------- n : int The number of points to generate r : scalar The radius of the disk Returns ------- coords : ndarray An ``n by 2`` array of x, y points (in cartesian coordinates) """ theta = np.linspace(0, 2*np.pi, n, endpoint=False) r = np.ones_like(theta)*r z = np.zeros_like(theta) x, y, z = cyl2cart(r=r, theta=theta, z=z) return np.vstack((x, y)).T
Generates equally spaced points on a circle Parameters ---------- n : int The number of points to generate r : scalar The radius of the disk Returns ------- coords : ndarray An ``n by 2`` array of x, y points (in cartesian coordinates)
generate_points_on_circle
python
PMEAL/OpenPNM
openpnm/_skgraph/tools/_coords_transforms.py
https://github.com/PMEAL/OpenPNM/blob/master/openpnm/_skgraph/tools/_coords_transforms.py
MIT
def cart2sph(x, y, z): r""" Converts cartesian to spherical coordinates Parameters ---------- x, y, z : array_like Arrays containing the x, y and z coordinates to be converted Returns ------- r, theta, phi : ndarrays Three arrays containing the spherical coordinate of each given point Notes ----- Surprizingly (and annoyingly) this is not built into numpy, for reasons discussed `here <https://github.com/numpy/numpy/issues/5228>`_. """ hxy = np.hypot(x, y) r = np.hypot(hxy, z) phi = np.arctan2(z, hxy) theta = np.arctan2(y, x) return r, theta, phi
Converts cartesian to spherical coordinates Parameters ---------- x, y, z : array_like Arrays containing the x, y and z coordinates to be converted Returns ------- r, theta, phi : ndarrays Three arrays containing the spherical coordinate of each given point Notes ----- Surprizingly (and annoyingly) this is not built into numpy, for reasons discussed `here <https://github.com/numpy/numpy/issues/5228>`_.
cart2sph
python
PMEAL/OpenPNM
openpnm/_skgraph/tools/_coords_transforms.py
https://github.com/PMEAL/OpenPNM/blob/master/openpnm/_skgraph/tools/_coords_transforms.py
MIT
def sph2cart(r, theta, phi): r""" Converts spherical to cartesian coordinates Parameters ---------- r, theta, phi : array_like Arrays containing the r, theta and phi coordinates to be transformed Returns ------- x, y, z : ndarrays Three arrays containing the cartesian coordinates of the given points Notes ----- Surprizingly (and annoyingly) this is not built into numpy, for reasons discussed `here <https://github.com/numpy/numpy/issues/5228>`_. """ rcos_theta = r * np.cos(phi) x = rcos_theta * np.cos(theta) y = rcos_theta * np.sin(theta) z = r * np.sin(phi) return x, y, z
Converts spherical to cartesian coordinates Parameters ---------- r, theta, phi : array_like Arrays containing the r, theta and phi coordinates to be transformed Returns ------- x, y, z : ndarrays Three arrays containing the cartesian coordinates of the given points Notes ----- Surprizingly (and annoyingly) this is not built into numpy, for reasons discussed `here <https://github.com/numpy/numpy/issues/5228>`_.
sph2cart
python
PMEAL/OpenPNM
openpnm/_skgraph/tools/_coords_transforms.py
https://github.com/PMEAL/OpenPNM/blob/master/openpnm/_skgraph/tools/_coords_transforms.py
MIT
def get_edge_prefix(network): r""" Determines the prefix used for edge arrays from ``<edge_prefix>.conns`` Parameters ---------- network : dict The network dictionary Returns ------- edge_prefix : str The value of ``<edge_prefix>`` used in ``g``. This is found by scanning ``g.keys()`` until an array ending in ``'.conns'`` is found, then returning the prefix. Notes ----- This process is surprizingly fast, on the order of nano seconds, so this overhead is worth it for the flexibility it provides in array naming. However, since all ``dict`` are now sorted in Python, it may be helpful to ensure the ``'conns'`` array is near the beginning of the list. """ for item in network.keys(): if item.endswith('.conns'): return item.split('.')[0]
Determines the prefix used for edge arrays from ``<edge_prefix>.conns`` Parameters ---------- network : dict The network dictionary Returns ------- edge_prefix : str The value of ``<edge_prefix>`` used in ``g``. This is found by scanning ``g.keys()`` until an array ending in ``'.conns'`` is found, then returning the prefix. Notes ----- This process is surprizingly fast, on the order of nano seconds, so this overhead is worth it for the flexibility it provides in array naming. However, since all ``dict`` are now sorted in Python, it may be helpful to ensure the ``'conns'`` array is near the beginning of the list.
get_edge_prefix
python
PMEAL/OpenPNM
openpnm/_skgraph/tools/_funcs.py
https://github.com/PMEAL/OpenPNM/blob/master/openpnm/_skgraph/tools/_funcs.py
MIT
def get_node_prefix(network): r""" Determines the prefix used for node arrays from ``<edge_prefix>.coords`` Parameters ---------- network : dict The network dictionary Returns ------- node_prefix : str The value of ``<node_prefix>`` used in ``g``. This is found by scanning ``g.keys()`` until an array ending in ``'.coords'`` is found, then returning the prefix. Notes ----- This process is surprizingly fast, on the order of nano seconds, so this overhead is worth it for the flexibility it provides in array naming. However, since all ``dict`` are now sorted in Python, it may be helpful to ensure the ``'conns'`` array is near the beginning of the list. """ for item in network.keys(): if item.endswith('.coords'): return item.split('.')[0]
Determines the prefix used for node arrays from ``<edge_prefix>.coords`` Parameters ---------- network : dict The network dictionary Returns ------- node_prefix : str The value of ``<node_prefix>`` used in ``g``. This is found by scanning ``g.keys()`` until an array ending in ``'.coords'`` is found, then returning the prefix. Notes ----- This process is surprizingly fast, on the order of nano seconds, so this overhead is worth it for the flexibility it provides in array naming. However, since all ``dict`` are now sorted in Python, it may be helpful to ensure the ``'conns'`` array is near the beginning of the list.
get_node_prefix
python
PMEAL/OpenPNM
openpnm/_skgraph/tools/_funcs.py
https://github.com/PMEAL/OpenPNM/blob/master/openpnm/_skgraph/tools/_funcs.py
MIT
def change_prefix(network, old_prefix, new_prefix): r""" Changes the prefix used when generating the graph Parameters ---------- network : dict The network graph old_prefix : str The current prefix to change, can either be a node or an edge prefix new_prefix : str The prefix to use instead Returns ------- network : dict The graph dictionary will arrays assigned to new keys """ for key in list(network.keys()): if key.startswith(old_prefix): temp = key.split('.', 1)[1] network[new_prefix + '.' + temp] = network.pop(key) return network
Changes the prefix used when generating the graph Parameters ---------- network : dict The network graph old_prefix : str The current prefix to change, can either be a node or an edge prefix new_prefix : str The prefix to use instead Returns ------- network : dict The graph dictionary will arrays assigned to new keys
change_prefix
python
PMEAL/OpenPNM
openpnm/_skgraph/tools/_funcs.py
https://github.com/PMEAL/OpenPNM/blob/master/openpnm/_skgraph/tools/_funcs.py
MIT
def isoutside(network, shape, rtol=0.0): r""" Identifies sites that lie outside the specified shape Parameters ---------- network : dict The network dictionary. For convenience it is also permissible to just supply an N-by-D array of coordinates. shape : array_like The shape of the domain beyond which points are considered "outside". The argument is treated as follows: ========== ============================================================ shape Interpretation ========== ============================================================ [x, y, z] A 3D cubic domain of dimension x, y and z with the origin at [0, 0, 0]. [x, y, 0] A 2D square domain of size x by y with the origin at [0, 0] [r, z] A 3D cylindrical domain of radius r and height z whose central axis starts at [0, 0, 0] [r, 0] A 2D circular domain of radius r centered on [0, 0] and extending upwards [r] A 3D spherical domain of radius r centered on [0, 0, 0] ========== ============================================================ rtol : scalar or array_like, optional Controls how far a node must be from the domain boundary to be considered outside. It is applied as a fraction of the domain size as ``x[i] > (shape[0] + shape[0]*threshold)`` or ``y[i] < (0 - shape[1]*threshold)``. Discrete threshold values can be given for each axis by supplying a list the same size as ``shape``. Returns ------- mask : boolean ndarray A boolean array with ``True`` values indicating nodes that lie outside the domain. Notes ----- If the domain is 2D, either a circle or a square, then the z-dimension of ``shape`` should be set to 0. """ try: node_prefix = get_node_prefix(network) coords = network[node_prefix+'.coords'] except AttributeError: coords = network shape = np.array(shape, dtype=float) if np.isscalar(rtol): tolerance = np.array([rtol]*len(shape)) else: tolerance = np.array(rtol) # Label external pores for trimming below if len(shape) == 1: # Spherical # Find external points R, Q, P = cart2sph(*coords.T) thresh = tolerance[0]*shape[0] Ps = R > (shape[0] + thresh) elif len(shape) == 2: # Cylindrical # Find external pores outside radius R, Q, Z = cart2cyl(*coords.T) thresh = tolerance[0]*shape[0] Ps = R > shape[0]*(1 + thresh) # Find external pores above and below cylinder if shape[1] > 0: thresh = tolerance[1]*shape[1] Ps = Ps + (coords[:, 2] > (shape[1] + thresh)) Ps = Ps + (coords[:, 2] < (0 - thresh)) else: pass elif len(shape) == 3: # Rectilinear thresh = tolerance*shape Ps1 = np.any(coords > (shape + thresh), axis=1) Ps2 = np.any(coords < (0 - thresh), axis=1) Ps = Ps1 + Ps2 return Ps
Identifies sites that lie outside the specified shape Parameters ---------- network : dict The network dictionary. For convenience it is also permissible to just supply an N-by-D array of coordinates. shape : array_like The shape of the domain beyond which points are considered "outside". The argument is treated as follows: ========== ============================================================ shape Interpretation ========== ============================================================ [x, y, z] A 3D cubic domain of dimension x, y and z with the origin at [0, 0, 0]. [x, y, 0] A 2D square domain of size x by y with the origin at [0, 0] [r, z] A 3D cylindrical domain of radius r and height z whose central axis starts at [0, 0, 0] [r, 0] A 2D circular domain of radius r centered on [0, 0] and extending upwards [r] A 3D spherical domain of radius r centered on [0, 0, 0] ========== ============================================================ rtol : scalar or array_like, optional Controls how far a node must be from the domain boundary to be considered outside. It is applied as a fraction of the domain size as ``x[i] > (shape[0] + shape[0]*threshold)`` or ``y[i] < (0 - shape[1]*threshold)``. Discrete threshold values can be given for each axis by supplying a list the same size as ``shape``. Returns ------- mask : boolean ndarray A boolean array with ``True`` values indicating nodes that lie outside the domain. Notes ----- If the domain is 2D, either a circle or a square, then the z-dimension of ``shape`` should be set to 0.
isoutside
python
PMEAL/OpenPNM
openpnm/_skgraph/tools/_funcs.py
https://github.com/PMEAL/OpenPNM/blob/master/openpnm/_skgraph/tools/_funcs.py
MIT
def dimensionality(network, cache=True): r""" Checks the dimensionality of the network Parameters ---------- network : dict The network dictionary cache : boolean, optional (default is True) If ``False`` then the dimensionality is recalculated even if it has already been calculated and stored in the graph dictionary. Returns ------- dims : list A 3-by-1 array containing ``True`` for each axis that contains multiple values, indicating that the pores are spatially distributed in that dimension. """ if cache: try: return network.params["dimensionality"] # union of KeyErroa and AttributeError except (KeyError, AttributeError): pass n = get_node_prefix(network) coords = network[n+'.coords'] eps = np.finfo(float).resolution dims_unique = \ [not np.allclose(xk, xk.mean(), atol=0, rtol=eps) for xk in coords.T] if cache: network["params.dimensionality"] = np.array(dims_unique) return np.array(dims_unique)
Checks the dimensionality of the network Parameters ---------- network : dict The network dictionary cache : boolean, optional (default is True) If ``False`` then the dimensionality is recalculated even if it has already been calculated and stored in the graph dictionary. Returns ------- dims : list A 3-by-1 array containing ``True`` for each axis that contains multiple values, indicating that the pores are spatially distributed in that dimension.
dimensionality
python
PMEAL/OpenPNM
openpnm/_skgraph/tools/_funcs.py
https://github.com/PMEAL/OpenPNM/blob/master/openpnm/_skgraph/tools/_funcs.py
MIT
def find_surface_nodes_cubic(network): r""" Identifies nodes on the outer surface of the domain assuming a cubic domain to save time Parameters ---------- network : dict The graph dictionary Returns ------- mask : ndarray A boolean array of ``True`` values indicating which nodes were found on the surfaces. """ node_prefix = get_node_prefix(network) coords = network[node_prefix+'.coords'] hits = np.zeros(coords.shape[0], dtype=bool) dims = dimensionality(network) for d in range(3): if dims[d]: hi = np.where(coords[:, d] == coords[:, d].max())[0] lo = np.where(coords[:, d] == coords[:, d].min())[0] hits[hi] = True hits[lo] = True return hits
Identifies nodes on the outer surface of the domain assuming a cubic domain to save time Parameters ---------- network : dict The graph dictionary Returns ------- mask : ndarray A boolean array of ``True`` values indicating which nodes were found on the surfaces.
find_surface_nodes_cubic
python
PMEAL/OpenPNM
openpnm/_skgraph/tools/_funcs.py
https://github.com/PMEAL/OpenPNM/blob/master/openpnm/_skgraph/tools/_funcs.py
MIT
def find_coincident_nodes(network): r""" Finds nodes with identical coordinates Parameters ---------- network : dict The network dictionary Returns ------- duplicates : list of ndarrays A list with each sublist indicating the indices of nodes that share a common set of coordinates Notes ----- This function works by computing a ``hash`` of the coordinates then finding all nodes with equivalent hash values. Hashes are supposed to be unique but they occassionally "collide", meaning nodes may be identified as coincident that are not. """ node_prefix = get_node_prefix(network) coords = network[node_prefix+'.coords'] hashed = [hash(row.tobytes()) for row in coords] uniq, counts = np.unique(hashed, return_counts=True) hits = np.where(counts > 1)[0] dupes = [] for item in hits: dupes.append(np.where(hashed == uniq[item])[0]) return dupes
Finds nodes with identical coordinates Parameters ---------- network : dict The network dictionary Returns ------- duplicates : list of ndarrays A list with each sublist indicating the indices of nodes that share a common set of coordinates Notes ----- This function works by computing a ``hash`` of the coordinates then finding all nodes with equivalent hash values. Hashes are supposed to be unique but they occassionally "collide", meaning nodes may be identified as coincident that are not.
find_coincident_nodes
python
PMEAL/OpenPNM
openpnm/_skgraph/tools/_funcs.py
https://github.com/PMEAL/OpenPNM/blob/master/openpnm/_skgraph/tools/_funcs.py
MIT
def find_surface_nodes(network): r""" Identifies nodes on the outer surface of the domain using a Delaunay tessellation Parameters ---------- network : dict The network dictionary Returns ------- mask : ndarray A boolean array of ``True`` values indicating which nodes were found on the surfaces. Notes ----- This function generates points around the domain the performs a Delaunay tesselation between these points and the network nodes. Any network nodes which are connected to a generated points is considered a surface node. """ node_prefix = get_node_prefix(network) coords = np.copy(network[node_prefix+'.coords']) shift = np.mean(coords, axis=0) coords = coords - shift tmp = cart2sph(*coords.T) hits = np.zeros(coords.shape[0], dtype=bool) r = 2*tmp[0].max() dims = dimensionality(network) if sum(dims) == 1: hi = np.where(coords[:, dims] == coords[:, dims].max())[0] lo = np.where(coords[:, dims] == coords[:, dims].min())[0] hits[hi] = True hits[lo] = True return hits if sum(dims) == 2: markers = generate_points_on_circle(n=max(10, int(coords.shape[0]/10)), r=r) pts = np.vstack((coords[:, dims], markers)) else: markers = generate_points_on_sphere(n=max(10, int(coords.shape[0]/10)), r=r) pts = np.vstack((coords, markers)) tri = Delaunay(pts, incremental=False) (indices, indptr) = tri.vertex_neighbor_vertices for k in range(coords.shape[0], tri.npoints): neighbors = indptr[indices[k]:indices[k+1]] inds = np.where(neighbors < coords.shape[0]) hits[neighbors[inds]] = True return hits
Identifies nodes on the outer surface of the domain using a Delaunay tessellation Parameters ---------- network : dict The network dictionary Returns ------- mask : ndarray A boolean array of ``True`` values indicating which nodes were found on the surfaces. Notes ----- This function generates points around the domain the performs a Delaunay tesselation between these points and the network nodes. Any network nodes which are connected to a generated points is considered a surface node.
find_surface_nodes
python
PMEAL/OpenPNM
openpnm/_skgraph/tools/_funcs.py
https://github.com/PMEAL/OpenPNM/blob/master/openpnm/_skgraph/tools/_funcs.py
MIT
def internode_distance(network, inds_1=None, inds_2=None): r""" Find the distance between all nodes on set 1 to each node in set 2 Parameters ---------- network : dict The network dictionary inds_1 : array_like A list containing the indices of the first set of nodes inds_2 : array_Like A list containing the indices of the first set of nodes. It's OK if these indices are partially or completely duplicating ``nodes1``. Returns ------- dist : array_like A distance matrix with ``len(site1)`` rows and ``len(sites2)`` columns. The distance between site *i* in ``site1`` and *j* in ``sites2`` is located at *(i, j)* and *(j, i)* in the distance matrix. Notes ----- This function computes and returns a distance matrix, so can get large. For distances between larger sets a KD-tree approach would be better, which is available in ``scipy.spatial``. """ node_prefix = get_node_prefix(network) coords = network[node_prefix+'.coords'] p1 = np.array(inds_1, ndmin=1) p2 = np.array(inds_2, ndmin=1) return distance_matrix(coords[p1], coords[p2])
Find the distance between all nodes on set 1 to each node in set 2 Parameters ---------- network : dict The network dictionary inds_1 : array_like A list containing the indices of the first set of nodes inds_2 : array_Like A list containing the indices of the first set of nodes. It's OK if these indices are partially or completely duplicating ``nodes1``. Returns ------- dist : array_like A distance matrix with ``len(site1)`` rows and ``len(sites2)`` columns. The distance between site *i* in ``site1`` and *j* in ``sites2`` is located at *(i, j)* and *(j, i)* in the distance matrix. Notes ----- This function computes and returns a distance matrix, so can get large. For distances between larger sets a KD-tree approach would be better, which is available in ``scipy.spatial``.
internode_distance
python
PMEAL/OpenPNM
openpnm/_skgraph/tools/_funcs.py
https://github.com/PMEAL/OpenPNM/blob/master/openpnm/_skgraph/tools/_funcs.py
MIT
def iscoplanar(network): r""" Determines if specified nodes are coplanar with each other Parameters ---------- network : dict The graph dictionary Returns ------- flag : bool A boolean value of whether given nodes are coplanar (``True``) or not (``False``) """ node_prefix = get_node_prefix(network) coords = network[node_prefix + '.coords'] if np.shape(coords)[0] < 3: raise Exception('At least 3 input pores are required') Px = coords[:, 0] Py = coords[:, 1] Pz = coords[:, 2] # Do easy check first, for common coordinate if np.shape(np.unique(Px))[0] == 1: return True if np.shape(np.unique(Py))[0] == 1: return True if np.shape(np.unique(Pz))[0] == 1: return True # Perform rigorous check using vector algebra # Grab first basis vector from list of coords n1 = np.array((Px[1] - Px[0], Py[1] - Py[0], Pz[1] - Pz[0])).T n = np.array([0.0, 0.0, 0.0]) i = 1 while n.sum() == 0: if i >= (np.size(Px) - 1): return False # Chose a secon basis vector n2 = np.array((Px[i+1] - Px[i], Py[i+1] - Py[i], Pz[i+1] - Pz[i])).T # Find their cross product n = np.cross(n1, n2) i += 1 # Create vectors between all other pairs of points r = np.array((Px[1:-1] - Px[0], Py[1:-1] - Py[0], Pz[1:-1] - Pz[0])) # Ensure they all lie on the same plane n_dot = np.dot(n, r) return bool(np.sum(np.absolute(n_dot)) == 0)
Determines if specified nodes are coplanar with each other Parameters ---------- network : dict The graph dictionary Returns ------- flag : bool A boolean value of whether given nodes are coplanar (``True``) or not (``False``)
iscoplanar
python
PMEAL/OpenPNM
openpnm/_skgraph/tools/_funcs.py
https://github.com/PMEAL/OpenPNM/blob/master/openpnm/_skgraph/tools/_funcs.py
MIT
def is_fully_connected(network, inds=None): r""" Checks whether graph is fully connected, i.e. not clustered Parameters ---------- network : dict The network dictionary inds : array_like (optional) The indices of boundary nodes (i.e. inlets/outlets). If this is given the multiple sample spanning clusters will count as fully connected. Returns ------- flag : bool If ``inds`` is not specified, then returns ``True`` only if the entire network is connected to the same cluster. If ``inds`` is given, then returns ``True`` only if all clusters are connected to the given boundary nodes. """ am = dict_to_am(network) am = am.tolil() inds = np.array(inds) temp = csgraph.connected_components(am, directed=False)[1] is_connected = np.unique(temp).size == 1 Np = am.shape[0] Nt = int(am.nnz/2) # Ensure all clusters are part of inds, if given if not is_connected and inds is not None: am.resize(Np + 1, Np + 1) am.rows[-1] = inds.tolist() am.data[-1] = np.arange(Nt, Nt + len(inds)).tolist() temp = csgraph.connected_components(am, directed=False)[1] is_connected = np.unique(temp).size == 1 return is_connected
Checks whether graph is fully connected, i.e. not clustered Parameters ---------- network : dict The network dictionary inds : array_like (optional) The indices of boundary nodes (i.e. inlets/outlets). If this is given the multiple sample spanning clusters will count as fully connected. Returns ------- flag : bool If ``inds`` is not specified, then returns ``True`` only if the entire network is connected to the same cluster. If ``inds`` is given, then returns ``True`` only if all clusters are connected to the given boundary nodes.
is_fully_connected
python
PMEAL/OpenPNM
openpnm/_skgraph/tools/_funcs.py
https://github.com/PMEAL/OpenPNM/blob/master/openpnm/_skgraph/tools/_funcs.py
MIT
def get_cubic_spacing(network): r""" Determine spacing of a cubic network Parameters ---------- network : dict The network dictionary Returns ------- spacing : ndarray An array containing the spacing between nodes in each direction """ node_prefix = get_node_prefix(network) edge_prefix = get_edge_prefix(network) coords = network[node_prefix+'.coords'] conns = network[edge_prefix+'.conns'] # Find Network spacing C12 = coords[conns] mag = np.linalg.norm(np.diff(C12, axis=1), axis=2) unit_vec = np.around(np.squeeze(np.diff(C12, axis=1)) / mag, decimals=14) spacing = [0, 0, 0] dims = dimensionality(network) # Ensure vectors point in n-dims unique directions c = {tuple(row): 1 for row in unit_vec} mag = np.atleast_1d(mag.squeeze()).astype(float) if len(c.keys()) > sum(dims): raise Exception( "Spacing is undefined when throats point in more directions" " than network has dimensions." ) for ax in [0, 1, 2]: if dims[ax]: inds = np.where(unit_vec[:, ax] == unit_vec[:, ax].max())[0] temp = np.unique(mag[inds]) if not np.allclose(temp, temp[0]): raise Exception("A unique value of spacing could not be found.") spacing[ax] = temp[0] return np.array(spacing)
Determine spacing of a cubic network Parameters ---------- network : dict The network dictionary Returns ------- spacing : ndarray An array containing the spacing between nodes in each direction
get_cubic_spacing
python
PMEAL/OpenPNM
openpnm/_skgraph/tools/_funcs.py
https://github.com/PMEAL/OpenPNM/blob/master/openpnm/_skgraph/tools/_funcs.py
MIT
def get_cubic_shape(network): r""" Determine shape of a cubic network Parameters ---------- network : dict The network dictionary Returns ------- shape : ndarray An array containing the shape of the network each direction """ node_prefix = get_node_prefix(network) coords = network[node_prefix+'.coords'] L = np.ptp(coords, axis=0) mask = L.astype(bool) S = get_cubic_spacing(network) shape = np.array([1, 1, 1], int) shape[mask] = L[mask] / S[mask] + 1 return shape
Determine shape of a cubic network Parameters ---------- network : dict The network dictionary Returns ------- shape : ndarray An array containing the shape of the network each direction
get_cubic_shape
python
PMEAL/OpenPNM
openpnm/_skgraph/tools/_funcs.py
https://github.com/PMEAL/OpenPNM/blob/master/openpnm/_skgraph/tools/_funcs.py
MIT
def get_domain_area(network, inlets=None, outlets=None): r""" Determine the cross sectional area relative to the inlets/outlets. Parameters ---------- network : dict The network dictionary inlets : array_like The indices of the inlets outlets : array_Like The indices of the outlets Returns ------- area : scalar The cross sectional area relative to the inlets/outlets. """ if dimensionality(network).sum() != 3: raise Exception('The network is not 3D, specify area manually') node_prefix = get_node_prefix(network) coords = network[node_prefix+'.coords'] inlets = coords[inlets] outlets = coords[outlets] if not iscoplanar(inlets): print('Detected inlet pores are not coplanar') if not iscoplanar(outlets): print('Detected outlet pores are not coplanar') Nin = np.ptp(inlets, axis=0) > 0 if Nin.all(): print('Detected inlets are not oriented along a principle axis') Nout = np.ptp(outlets, axis=0) > 0 if Nout.all(): print('Detected outlets are not oriented along a principle axis') hull_in = ConvexHull(points=inlets[:, Nin]) hull_out = ConvexHull(points=outlets[:, Nout]) if hull_in.volume != hull_out.volume: print('Inlet and outlet faces are different area') area = hull_in.volume # In 2D: volume=area, area=perimeter return area
Determine the cross sectional area relative to the inlets/outlets. Parameters ---------- network : dict The network dictionary inlets : array_like The indices of the inlets outlets : array_Like The indices of the outlets Returns ------- area : scalar The cross sectional area relative to the inlets/outlets.
get_domain_area
python
PMEAL/OpenPNM
openpnm/_skgraph/tools/_funcs.py
https://github.com/PMEAL/OpenPNM/blob/master/openpnm/_skgraph/tools/_funcs.py
MIT
def get_domain_length(network, inlets=None, outlets=None): r""" Determine the domain length relative to the inlets/outlets. Parameters ---------- network : dict The network dictionary inlets : array_like The pore indices of the inlets. outlets : array_Like The pore indices of the outlets. Returns ------- area : scalar The domain length relative to the inlets/outlets. """ node_prefix = get_node_prefix(network) coords = network[node_prefix+'.coords'] inlets = coords[inlets] outlets = coords[outlets] if not iscoplanar(inlets): print('Detected inlet pores are not coplanar') if not iscoplanar(outlets): print('Detected inlet pores are not coplanar') tree = KDTree(data=inlets) Ls = np.unique(np.float64(tree.query(x=outlets)[0])) if not np.allclose(Ls, Ls[0]): print('A unique value of length could not be found') length = Ls[0] return length
Determine the domain length relative to the inlets/outlets. Parameters ---------- network : dict The network dictionary inlets : array_like The pore indices of the inlets. outlets : array_Like The pore indices of the outlets. Returns ------- area : scalar The domain length relative to the inlets/outlets.
get_domain_length
python
PMEAL/OpenPNM
openpnm/_skgraph/tools/_funcs.py
https://github.com/PMEAL/OpenPNM/blob/master/openpnm/_skgraph/tools/_funcs.py
MIT
def tri_to_am(tri): r""" Given a Delaunay triangulation object from Scipy's ``spatial`` module, converts to a sparse adjacency matrix network representation. Parameters ---------- tri : Delaunay Triangulation Object This object is produced by ``scipy.spatial.Delaunay`` Returns ------- A sparse adjacency matrix in COO format. The network is undirected and unweighted, so the adjacency matrix is upper-triangular and all the weights are set to 1. """ # Create an empty list-of-list matrix lil = sprs.lil_matrix((tri.npoints, tri.npoints)) # Scan through Delaunay triangulation object to retrieve pairs indices, indptr = tri.vertex_neighbor_vertices if 1: # Original way for k in range(tri.npoints): lil.rows[k] = indptr[indices[k]:indices[k + 1]].tolist() # Convert to coo format lil.data = lil.rows # Just a dummy array to make things work properly coo = lil.tocoo() else: # Alternative way, about 10x SLOWER coo = [[], []] for k in range(tri.npoints): # lil.rows[k] = indptr[indices[k]:indices[k + 1]].tolist() col = indptr[indices[k]:indices[k+1]] coo[0].extend(np.ones_like(col)*k) coo[1].extend(col) coo = sprs.coo_matrix((np.ones_like(coo[0]), (coo[0], coo[1]))) # Set weights to 1's coo.data = np.ones_like(coo.data) # Remove diagonal, and convert to csr remove duplicates am = sprs.triu(A=coo, k=1, format='csr') # The convert back to COO and return am = am.tocoo() return am
Given a Delaunay triangulation object from Scipy's ``spatial`` module, converts to a sparse adjacency matrix network representation. Parameters ---------- tri : Delaunay Triangulation Object This object is produced by ``scipy.spatial.Delaunay`` Returns ------- A sparse adjacency matrix in COO format. The network is undirected and unweighted, so the adjacency matrix is upper-triangular and all the weights are set to 1.
tri_to_am
python
PMEAL/OpenPNM
openpnm/_skgraph/tools/_funcs.py
https://github.com/PMEAL/OpenPNM/blob/master/openpnm/_skgraph/tools/_funcs.py
MIT
def vor_to_am(vor): r""" Given a Voronoi tessellation object from Scipy's ``spatial`` module, converts to a sparse adjacency matrix network representation in COO format. Parameters ---------- vor : Voronoi Tessellation object This object is produced by ``scipy.spatial.Voronoi`` Returns ------- A sparse adjacency matrix in COO format. The network is undirected and unweighted, so the adjacency matrix is upper-triangular and all the weights are set to 1. """ if 0: # Original way, 2X slower rc = [[], []] for ij in vor.ridge_dict.keys(): row = vor.ridge_dict[ij].copy() # Make sure voronoi cell closes upon itself row.append(row[0]) # Add connections to rc list rc[0].extend(row[:-1]) rc[1].extend(row[1:]) rc = np.vstack(rc).T else: v = vor.ridge_vertices.copy() # Add row [0] to close the facet on itself, add -1 to break connection to # next facet in list as connections with -1 get deleted _ = [row.extend([row[0], -1]) for row in v] v = np.hstack(v) rc = np.vstack((v[:-1], v[1:])).T mask = np.any(rc < 0, axis=1) rc = rc[~mask] rc = np.sort(rc, axis=1) am = conns_to_am(rc) return am
Given a Voronoi tessellation object from Scipy's ``spatial`` module, converts to a sparse adjacency matrix network representation in COO format. Parameters ---------- vor : Voronoi Tessellation object This object is produced by ``scipy.spatial.Voronoi`` Returns ------- A sparse adjacency matrix in COO format. The network is undirected and unweighted, so the adjacency matrix is upper-triangular and all the weights are set to 1.
vor_to_am
python
PMEAL/OpenPNM
openpnm/_skgraph/tools/_funcs.py
https://github.com/PMEAL/OpenPNM/blob/master/openpnm/_skgraph/tools/_funcs.py
MIT
def dict_to_am(network, weights=None): r""" Convert a graph dictionary into a ``scipy.sparse`` adjacency matrix in COO format Parameters ---------- network : dict A network dictionary weights : ndarray, optional The weight values to use for the connections. If not provided then 1's are assumed. Returns ------- am : sparse matrix The sparse adjacency matrix in COO format Notes ----- If the edge connections in ``g`` are in upper-triangular form, then the graph is assumed to be undirected and the returned adjacency matrix is symmetrical (i.e. the triu entries are reflected in tril). If any edges are found in the lower triangle, then the returned adjacency matrix is unsymmetrical. Multigraphs (i.e. duplicate connections between nodes) are not suported, but this is not checked for here to avoid overhead since this function is called frequently. """ edge_prefix = get_edge_prefix(network) node_prefix = get_node_prefix(network) conns = np.copy(network[edge_prefix+'.conns']) shape = [network[node_prefix+'.coords'].shape[0]]*2 if weights is None: weights = np.ones_like(conns[:, 0], dtype=int) if isgtriu(network): # If graph is triu, then it is assumed to be undirected conns = np.vstack((conns, np.fliplr(conns))) # Reflect to tril data = np.ones_like(conns[:, 0], dtype=int) # Generate fake data am = sprs.coo_matrix((data, (conns[:, 0], conns[:, 1])), shape=shape) am.data = np.hstack((weights, weights)) else: am = sprs.coo_matrix((weights, (conns[:, 0], conns[:, 1])), shape=shape) return am
Convert a graph dictionary into a ``scipy.sparse`` adjacency matrix in COO format Parameters ---------- network : dict A network dictionary weights : ndarray, optional The weight values to use for the connections. If not provided then 1's are assumed. Returns ------- am : sparse matrix The sparse adjacency matrix in COO format Notes ----- If the edge connections in ``g`` are in upper-triangular form, then the graph is assumed to be undirected and the returned adjacency matrix is symmetrical (i.e. the triu entries are reflected in tril). If any edges are found in the lower triangle, then the returned adjacency matrix is unsymmetrical. Multigraphs (i.e. duplicate connections between nodes) are not suported, but this is not checked for here to avoid overhead since this function is called frequently.
dict_to_am
python
PMEAL/OpenPNM
openpnm/_skgraph/tools/_funcs.py
https://github.com/PMEAL/OpenPNM/blob/master/openpnm/_skgraph/tools/_funcs.py
MIT
def dict_to_im(network): r""" Convert a graph dictionary into a ``scipy.sparse`` incidence matrix in COO format Parameters ---------- network : dict The network dictionary Returns ------- im : sparse matrix The sparse incidence matrix in COO format Notes ----- Rows correspond to nodes and columns correspond to edges. Each column has 2 nonzero values indicating which 2 nodes are connected by the corresponding edge. Each row contains an arbitrary number of nonzeros whose locations indicate which edges are directly connected to the corresponding node. """ edge_prefix = get_edge_prefix(network) node_prefix = get_node_prefix(network) conns = network[edge_prefix+'.conns'] coords = network[node_prefix+'.coords'] if isgtriu(network): data = np.ones(2*conns.shape[0], dtype=int) shape = (coords.shape[0], conns.shape[0]) temp = np.arange(conns.shape[0]) cols = np.vstack((temp, temp)).T.flatten() rows = conns.flatten() im = sprs.coo_matrix((data, (rows, cols)), shape=shape) else: raise Exception('This function is not implemented for directed graphs') return im
Convert a graph dictionary into a ``scipy.sparse`` incidence matrix in COO format Parameters ---------- network : dict The network dictionary Returns ------- im : sparse matrix The sparse incidence matrix in COO format Notes ----- Rows correspond to nodes and columns correspond to edges. Each column has 2 nonzero values indicating which 2 nodes are connected by the corresponding edge. Each row contains an arbitrary number of nonzeros whose locations indicate which edges are directly connected to the corresponding node.
dict_to_im
python
PMEAL/OpenPNM
openpnm/_skgraph/tools/_funcs.py
https://github.com/PMEAL/OpenPNM/blob/master/openpnm/_skgraph/tools/_funcs.py
MIT
def ismultigraph(network): r""" Checks if graph contains multiple connections between any pair of nodes Parameters ---------- network : dict The network dictionary Returns ------- flag : bool Returns ``True`` if any pair of nodes is connected by more than one edge. """ edge_prefix = get_edge_prefix(network) node_prefix = get_node_prefix(network) conns = network[edge_prefix+'.conns'] coords = network[node_prefix+'.coords'] data = np.ones_like(conns[:, 0], dtype=int) shape = 2*[coords.shape[0]] am = sprs.coo_matrix((data, (conns[:, 0], conns[:, 1])), shape=shape) am.sum_duplicates() return np.any(am.data > 1)
Checks if graph contains multiple connections between any pair of nodes Parameters ---------- network : dict The network dictionary Returns ------- flag : bool Returns ``True`` if any pair of nodes is connected by more than one edge.
ismultigraph
python
PMEAL/OpenPNM
openpnm/_skgraph/tools/_funcs.py
https://github.com/PMEAL/OpenPNM/blob/master/openpnm/_skgraph/tools/_funcs.py
MIT
def isgtriu(network): r""" Determines if graph connections are in upper triangular format Parameters ---------- network : dict The network dictionary Returns ------- flag : bool Returns ``True`` if *all* rows in "conns" are ordered as [lo, hi] """ edge_prefix = get_edge_prefix(network) conns = network[edge_prefix+'.conns'] return np.all(conns[:, 0] < conns[:, 1])
Determines if graph connections are in upper triangular format Parameters ---------- network : dict The network dictionary Returns ------- flag : bool Returns ``True`` if *all* rows in "conns" are ordered as [lo, hi]
isgtriu
python
PMEAL/OpenPNM
openpnm/_skgraph/tools/_funcs.py
https://github.com/PMEAL/OpenPNM/blob/master/openpnm/_skgraph/tools/_funcs.py
MIT
def to_triu(network): r""" Adjusts conns array to force into upper triangular form Parameters ---------- network : dict The network dictionary Returns ------- network : dict The graph dictionary with edge connections updated Notes ----- This does not check for the creation of duplicate connections """ edge_prefix = get_edge_prefix(network) conns = network[edge_prefix+'.conns'] network[edge_prefix+'.conns'] = np.sort(conns, axis=1) return network
Adjusts conns array to force into upper triangular form Parameters ---------- network : dict The network dictionary Returns ------- network : dict The graph dictionary with edge connections updated Notes ----- This does not check for the creation of duplicate connections
to_triu
python
PMEAL/OpenPNM
openpnm/_skgraph/tools/_funcs.py
https://github.com/PMEAL/OpenPNM/blob/master/openpnm/_skgraph/tools/_funcs.py
MIT
def conns_to_am(conns, shape=None, force_triu=True, drop_diag=True, drop_dupes=True, drop_negs=True): r""" Converts a list of connections into a Scipy sparse adjacency matrix Parameters ---------- conns : array_like, N x 2 The list of site-to-site connections shape : list, optional The shape of the array. If none is given then it is taken as 1 + the maximum value in ``conns``. force_triu : bool If True (default), then all connections are assumed undirected, and moved to the upper triangular portion of the array drop_diag : bool If True (default), then connections from a site and itself are removed. drop_dupes : bool If True (default), then all pairs of sites sharing multiple connections are reduced to a single connection. drop_negs : bool If True (default), then all connections with one or both ends pointing to a negative number are removed. Returns ------- am : ndarray A sparse adjacency matrix in COO format """ if drop_negs: # Remove connections to -1 keep = ~np.any(conns < 0, axis=1) conns = conns[keep] if drop_diag: # Remove connections of [self, self] keep = np.where(conns[:, 0] != conns[:, 1])[0] conns = conns[keep] if force_triu: # Sort connections to [low, high] conns = np.sort(conns, axis=1) # Now convert to actual sparse array in COO format data = np.ones_like(conns[:, 0], dtype=int) if shape is None: N = conns.max() + 1 shape = (N, N) am = sprs.coo_matrix((data, (conns[:, 0], conns[:, 1])), shape=shape) if drop_dupes: # Convert to csr and back too coo am = am.tocsr() am = am.tocoo() # Perform one last check on adjacency matrix missing = np.where(np.bincount(conns.flatten()) == 0)[0] if np.size(missing) or np.any(am.col.max() < (shape[0] - 1)): print('Some nodes are not connected to any bonds') return am
Converts a list of connections into a Scipy sparse adjacency matrix Parameters ---------- conns : array_like, N x 2 The list of site-to-site connections shape : list, optional The shape of the array. If none is given then it is taken as 1 + the maximum value in ``conns``. force_triu : bool If True (default), then all connections are assumed undirected, and moved to the upper triangular portion of the array drop_diag : bool If True (default), then connections from a site and itself are removed. drop_dupes : bool If True (default), then all pairs of sites sharing multiple connections are reduced to a single connection. drop_negs : bool If True (default), then all connections with one or both ends pointing to a negative number are removed. Returns ------- am : ndarray A sparse adjacency matrix in COO format
conns_to_am
python
PMEAL/OpenPNM
openpnm/_skgraph/tools/_funcs.py
https://github.com/PMEAL/OpenPNM/blob/master/openpnm/_skgraph/tools/_funcs.py
MIT
def istriu(am): r""" Returns ``True`` if the sparse adjacency matrix is upper triangular """ if am.shape[0] != am.shape[1]: print('Matrix is not square, triangularity is irrelevant') return False if am.format != 'coo': am = am.tocoo(copy=False) return np.all(am.row <= am.col)
Returns ``True`` if the sparse adjacency matrix is upper triangular
istriu
python
PMEAL/OpenPNM
openpnm/_skgraph/tools/_funcs.py
https://github.com/PMEAL/OpenPNM/blob/master/openpnm/_skgraph/tools/_funcs.py
MIT
def istril(am): r""" Returns ``True`` if the sparse adjacency matrix is lower triangular """ if am.shape[0] != am.shape[1]: print('Matrix is not square, triangularity is irrelevant') return False if am.format != 'coo': am = am.tocoo(copy=False) return np.all(am.row >= am.col)
Returns ``True`` if the sparse adjacency matrix is lower triangular
istril
python
PMEAL/OpenPNM
openpnm/_skgraph/tools/_funcs.py
https://github.com/PMEAL/OpenPNM/blob/master/openpnm/_skgraph/tools/_funcs.py
MIT
def istriangular(am): r""" Returns ``True`` if the sparse adjacency matrix is either upper or lower triangular """ if am.format != 'coo': am = am.tocoo(copy=False) return istril(am) or istriu(am)
Returns ``True`` if the sparse adjacency matrix is either upper or lower triangular
istriangular
python
PMEAL/OpenPNM
openpnm/_skgraph/tools/_funcs.py
https://github.com/PMEAL/OpenPNM/blob/master/openpnm/_skgraph/tools/_funcs.py
MIT
def issymmetric(am): r""" A method to check if a square matrix is symmetric Returns ``True`` if the sparse adjacency matrix is symmetric """ if am.shape[0] != am.shape[1]: print('Matrix is not square, symmetrical is irrelevant') return False if am.format != 'coo': am = am.tocoo(copy=False) if istril(am) or istriu(am): return False # Compare am with its transpose, element wise sym = ((am != am.T).size) == 0 return sym
A method to check if a square matrix is symmetric Returns ``True`` if the sparse adjacency matrix is symmetric
issymmetric
python
PMEAL/OpenPNM
openpnm/_skgraph/tools/_funcs.py
https://github.com/PMEAL/OpenPNM/blob/master/openpnm/_skgraph/tools/_funcs.py
MIT
def plot_edges(network, edges=None, ax=None, size_by=None, color_by=None, cmap='jet', color='b', alpha=1.0, linestyle='solid', linewidth=1, **kwargs): # pragma: no cover r""" Produce a 3D plot of the network topology This shows how edges connect for quick visualization without having to export data to veiw in Paraview. Parameters ---------- network : dict The network dictionary edges : array_like (optional) The list of edges to plot if only a sub-sample is desired. This is useful for inspecting a small region of the network. If no edges are specified then all are shown. fig : Matplotlib figure handle and line property arguments (optional) If a ``fig`` is supplied, then the topology will be overlaid on this plot. This makes it possible to combine coordinates and connections, and to color edges differently for instance. size_by : array_like (optional) An ndarray of edge values (e.g. alg['throat.rate']). These values are used to scale the ``linewidth``, so if the lines are too thin, then increase ``linewidth``. color_by : str or array_like (optional) An ndarray of edge values (e.g. alg['edge.rate']). cmap : str or cmap object (optional) The matplotlib colormap to use if specfying an edge property for ``color_by`` color : str, optional (optional) A matplotlib named color (e.g. 'r' for red). alpha : float (optional) The transparency of the lines, with 1 being solid and 0 being invisible linestyle : str (optional) Can be one of {'solid', 'dashed', 'dashdot', 'dotted'}. Default is 'solid'. linewidth : float (optional) Controls the thickness of drawn lines. Is used to scale the thickness if ``size_by`` is given. Default is 1. If a value is provided for ``size_by`` then they are used to scale the ``linewidth``. **kwargs : dict All other keyword arguments are passed on to the ``Line3DCollection`` class of matplotlib, so check their documentation for additional formatting options. Returns ------- lc : LineCollection or Line3DCollection Matplotlib object containing the lines representing the throats. Notes ----- To create a single plot containing both coordinates and connections, consider creating an empty figure and then passing the ``ax`` object as an argument to ``plot_connections`` and ``plot_coordinates``. Otherwise, each call to either of these methods creates a new figure. See Also -------- plot_coordinates """ node_prefix = get_node_prefix(network) edge_prefix = get_edge_prefix(network) conns = network[edge_prefix+'.conns'] coords = network[node_prefix+'.coords'] Ts = np.arange(conns.shape[0]) if edges is None else edges dim = dimensionality(network) ThreeD = True if dim.sum() == 3 else False # Add a dummy axis for 1D networks if dim.sum() == 1: dim[np.argwhere(~dim)[0]] = True if "fig" in kwargs.keys(): raise Exception("'fig' argument is deprecated, use 'ax' instead.") if ax is None: fig, ax = plt.subplots() else: # The next line is necessary if ax was created using plt.subplots() fig, ax = ax.get_figure(), ax.get_figure().gca() if ThreeD and ax.name != '3d': fig.delaxes(ax) ax = fig.add_subplot(111, projection='3d') # Collect coordinates Ps = np.unique(conns[Ts]) X, Y, Z = coords[Ps].T xyz = coords[:, dim] P1, P2 = conns[Ts].T throat_pos = np.column_stack((xyz[P1], xyz[P2])).reshape((Ts.size, 2, dim.sum())) # Deal with optional style related arguments if 'c' in kwargs.keys(): color = kwargs.pop('c') color = mcolors.to_rgb(color) + tuple([alpha]) # Override colors with color_by if given if color_by is not None: color = cm.get_cmap(name=cmap)(color_by / color_by.max()) color[:, 3] = alpha if size_by is not None: linewidth = size_by / size_by.max() * linewidth if ThreeD: lc = Line3DCollection(throat_pos, colors=color, cmap=cmap, linestyles=linestyle, linewidths=linewidth, antialiaseds=np.ones_like(Ts), **kwargs) else: lc = LineCollection(throat_pos, colors=color, cmap=cmap, linestyles=linestyle, linewidths=linewidth, antialiaseds=np.ones_like(Ts), **kwargs) ax.add_collection(lc) _scale_axes(ax=ax, X=X, Y=Y, Z=Z) _label_axes(ax=ax, X=X, Y=Y, Z=Z) fig.tight_layout() return lc
Produce a 3D plot of the network topology This shows how edges connect for quick visualization without having to export data to veiw in Paraview. Parameters ---------- network : dict The network dictionary edges : array_like (optional) The list of edges to plot if only a sub-sample is desired. This is useful for inspecting a small region of the network. If no edges are specified then all are shown. fig : Matplotlib figure handle and line property arguments (optional) If a ``fig`` is supplied, then the topology will be overlaid on this plot. This makes it possible to combine coordinates and connections, and to color edges differently for instance. size_by : array_like (optional) An ndarray of edge values (e.g. alg['throat.rate']). These values are used to scale the ``linewidth``, so if the lines are too thin, then increase ``linewidth``. color_by : str or array_like (optional) An ndarray of edge values (e.g. alg['edge.rate']). cmap : str or cmap object (optional) The matplotlib colormap to use if specfying an edge property for ``color_by`` color : str, optional (optional) A matplotlib named color (e.g. 'r' for red). alpha : float (optional) The transparency of the lines, with 1 being solid and 0 being invisible linestyle : str (optional) Can be one of {'solid', 'dashed', 'dashdot', 'dotted'}. Default is 'solid'. linewidth : float (optional) Controls the thickness of drawn lines. Is used to scale the thickness if ``size_by`` is given. Default is 1. If a value is provided for ``size_by`` then they are used to scale the ``linewidth``. **kwargs : dict All other keyword arguments are passed on to the ``Line3DCollection`` class of matplotlib, so check their documentation for additional formatting options. Returns ------- lc : LineCollection or Line3DCollection Matplotlib object containing the lines representing the throats. Notes ----- To create a single plot containing both coordinates and connections, consider creating an empty figure and then passing the ``ax`` object as an argument to ``plot_connections`` and ``plot_coordinates``. Otherwise, each call to either of these methods creates a new figure. See Also -------- plot_coordinates
plot_edges
python
PMEAL/OpenPNM
openpnm/_skgraph/visualization/_funcs.py
https://github.com/PMEAL/OpenPNM/blob/master/openpnm/_skgraph/visualization/_funcs.py
MIT