code
stringlengths 66
870k
| docstring
stringlengths 19
26.7k
| func_name
stringlengths 1
138
| language
stringclasses 1
value | repo
stringlengths 7
68
| path
stringlengths 5
324
| url
stringlengths 46
389
| license
stringclasses 7
values |
---|---|---|---|---|---|---|---|
def rate(self, pores=[], throats=[], mode='group'):
"""
Calculates the net rate of material moving into a given set of
pores or throats
Parameters
----------
pores : array_like
The pores for which the rate should be calculated
throats : array_like
The throats through which the rate should be calculated
mode : str, optional
Controls how to return the rate. The default value is 'group'.
Options are:
=========== =====================================================
mode meaning
=========== =====================================================
'group' Returns the cumulative rate of material
'single' Calculates the rate for each pore individually
=========== =====================================================
Returns
-------
If ``pores`` are specified, then the returned values indicate the
net rate of material exiting the pore or pores. Thus a positive
rate indicates material is leaving the pores, and negative values
mean material is entering.
If ``throats`` are specified the rate is calculated in the
direction of the gradient, thus is always positive.
If ``mode`` is 'single' then the cumulative rate through the given
pores (or throats) are returned as a vector, if ``mode`` is
'group' then the individual rates are summed and returned as a
scalar.
"""
pores = self._parse_indices(pores)
throats = self._parse_indices(throats)
if throats.size > 0 and pores.size > 0:
raise Exception('Must specify either pores or throats, not both')
if (throats.size == 0) and (pores.size == 0):
raise Exception('Must specify either pores or throats')
network = self.project.network
phase = self.project[self.settings['phase']]
g = phase[self.settings['conductance']]
P12 = network['throat.conns']
X12 = self.x[P12]
if g.size == self.Nt:
g = np.tile(g, (2, 1)).T # Make conductance an Nt by 2 matrix
# The next line is critical for rates to be correct
# We could also do "g.T.flatten()" or "g.flatten('F')"
g = np.flip(g, axis=1)
Qt = np.diff(g*X12, axis=1).ravel()
if throats.size:
R = np.absolute(Qt[throats])
if mode == 'group':
R = np.sum(R)
elif pores.size:
Qp = np.zeros((self.Np, ))
np.add.at(Qp, P12[:, 0], -Qt)
np.add.at(Qp, P12[:, 1], Qt)
R = Qp[pores]
if mode == 'group':
R = np.sum(R)
return np.array(R, ndmin=1)
|
Calculates the net rate of material moving into a given set of
pores or throats
Parameters
----------
pores : array_like
The pores for which the rate should be calculated
throats : array_like
The throats through which the rate should be calculated
mode : str, optional
Controls how to return the rate. The default value is 'group'.
Options are:
=========== =====================================================
mode meaning
=========== =====================================================
'group' Returns the cumulative rate of material
'single' Calculates the rate for each pore individually
=========== =====================================================
Returns
-------
If ``pores`` are specified, then the returned values indicate the
net rate of material exiting the pore or pores. Thus a positive
rate indicates material is leaving the pores, and negative values
mean material is entering.
If ``throats`` are specified the rate is calculated in the
direction of the gradient, thus is always positive.
If ``mode`` is 'single' then the cumulative rate through the given
pores (or throats) are returned as a vector, if ``mode`` is
'group' then the individual rates are summed and returned as a
scalar.
|
rate
|
python
|
PMEAL/OpenPNM
|
openpnm/algorithms/_transport.py
|
https://github.com/PMEAL/OpenPNM/blob/master/openpnm/algorithms/_transport.py
|
MIT
|
def add_phases(self, phases):
"""
Adds supplied phases to MultiPhase object and sets occupancy to 0.
Parameters
----------
phases : list[Phase] or Phase
"""
phases = np.array(phases, ndmin=1)
for phase in phases:
if phase.name in self.settings["phases"]:
continue
self.settings['phases'].add(phase.name)
self[f'pore.occupancy.{phase.name}'] = 0.0
self[f'throat.occupancy.{phase.name}'] = 0.0
|
Adds supplied phases to MultiPhase object and sets occupancy to 0.
Parameters
----------
phases : list[Phase] or Phase
|
add_phases
|
python
|
PMEAL/OpenPNM
|
openpnm/contrib/_multiphase.py
|
https://github.com/PMEAL/OpenPNM/blob/master/openpnm/contrib/_multiphase.py
|
MIT
|
def set_occupancy(self, phase, *, pores=[], throats=[], values=1):
r"""
Specifies occupancy of a phase in each pore or throat. This
method doesn't return any value.
Parameters
----------
phase : Phase
The phase whose occupancy is being specified.
pores : ndarray
The location of pores whose occupancy is to be set.
throats : ndarray
The location of throats whose occupancy is to be set.
values : ndarray or float
Pore/throat occupancy values.
"""
pores = np.array(pores, ndmin=1)
throats = np.array(throats, ndmin=1)
if not(pores.size ^ throats.size):
raise Exception("Must either pass 'pores' or 'throats'")
if phase not in self.project:
raise Exception(f"{phase.name} doesn't belong to this project")
self.add_phases(phase)
if pores.size:
self[f'pore.occupancy.{phase.name}'][pores] = values
if throats.size:
self[f'throat.occupancy.{phase.name}'][throats] = values
if self.settings["throat_occupancy"] == "automatic":
self.regenerate_models(propnames=f"throat.occupancy.{phase.name}")
|
Specifies occupancy of a phase in each pore or throat. This
method doesn't return any value.
Parameters
----------
phase : Phase
The phase whose occupancy is being specified.
pores : ndarray
The location of pores whose occupancy is to be set.
throats : ndarray
The location of throats whose occupancy is to be set.
values : ndarray or float
Pore/throat occupancy values.
|
set_occupancy
|
python
|
PMEAL/OpenPNM
|
openpnm/contrib/_multiphase.py
|
https://github.com/PMEAL/OpenPNM/blob/master/openpnm/contrib/_multiphase.py
|
MIT
|
def regenerate_models(self, propnames=None, exclude=[]):
r"""
Regenerate models associated with the Multiphase object
This method works by first regenerating the models associated with
the constituent phases, and then regenerating Multiphase models.
Parameters
----------
propnames : list[str] or str
The list of property names to be regenerated. If None are
given then ALL models are re-run (except for those whose
``regen_mode`` is 'constant').
exclude : list[str]
Since the default behavior is to run ALL models, this can be
used to exclude specific models. It may be more convenient to
supply as list of 2 models to exclude than to specify 8 models
to include.
"""
# Regenerate models associated with phases within MultiPhase object
for phase in self.phases.values():
phase.regenerate_models(propnames=propnames, exclude=exclude)
# Regenerate models specific to MultiPhase object
super().regenerate_models(propnames=propnames, exclude=exclude)
|
Regenerate models associated with the Multiphase object
This method works by first regenerating the models associated with
the constituent phases, and then regenerating Multiphase models.
Parameters
----------
propnames : list[str] or str
The list of property names to be regenerated. If None are
given then ALL models are re-run (except for those whose
``regen_mode`` is 'constant').
exclude : list[str]
Since the default behavior is to run ALL models, this can be
used to exclude specific models. It may be more convenient to
supply as list of 2 models to exclude than to specify 8 models
to include.
|
regenerate_models
|
python
|
PMEAL/OpenPNM
|
openpnm/contrib/_multiphase.py
|
https://github.com/PMEAL/OpenPNM/blob/master/openpnm/contrib/_multiphase.py
|
MIT
|
def set_binary_partition_coef(self, phases, model, **kwargs):
"""
Sets binary partition coefficient as defined by the interface
concentration ratio of phase 1 to phase 2.
Parameters
----------
phases : list[Phase]
List of the two phases for which the binary partition
coefficient model is being added.
model : OpenPNM model
Model for calculating the binary partition coefficient.
kwargs : dict
Keyword arguments to be passed to the ``model``.
"""
assert len(phases) == 2
# Add partition coefficient interface model to the MultiPhase
propname_prefix = self.settings["partition_coef_prefix"]
self._add_interface_prop(propname_prefix, phases, model, **kwargs)
self._build_K()
|
Sets binary partition coefficient as defined by the interface
concentration ratio of phase 1 to phase 2.
Parameters
----------
phases : list[Phase]
List of the two phases for which the binary partition
coefficient model is being added.
model : OpenPNM model
Model for calculating the binary partition coefficient.
kwargs : dict
Keyword arguments to be passed to the ``model``.
|
set_binary_partition_coef
|
python
|
PMEAL/OpenPNM
|
openpnm/contrib/_multiphase.py
|
https://github.com/PMEAL/OpenPNM/blob/master/openpnm/contrib/_multiphase.py
|
MIT
|
def _add_interface_prop(self, propname, phases, model, **kwargs):
"""
Adds an interface model to the MultiPhase object. See Notes.
Notes
-----
Let's say the two phases corresponding to the interface model are
named: 'air' and 'water', and the interface propname to be added
is 'throat.foo'. After augmentation, 'throat.foo.air:water' will
be the propname that's stored on the ``MultiPhase`` object.
Note that because of this convention, the order of the phases that
are passed to this method is important.
"""
# Add "throat" keyword to the begining of propname if no identifier is found
if propname.split(".")[0] not in ["pore", "throat"]:
propname = f"throat.{propname}"
# Check propname is throat property
if propname.startswith("pore"):
raise Exception("'propname' must be a throat property")
# Add model to Multiphase
propname = self._format_interface_prop(propname, phases)
self.add_model(propname, model, **kwargs)
|
Adds an interface model to the MultiPhase object. See Notes.
Notes
-----
Let's say the two phases corresponding to the interface model are
named: 'air' and 'water', and the interface propname to be added
is 'throat.foo'. After augmentation, 'throat.foo.air:water' will
be the propname that's stored on the ``MultiPhase`` object.
Note that because of this convention, the order of the phases that
are passed to this method is important.
|
_add_interface_prop
|
python
|
PMEAL/OpenPNM
|
openpnm/contrib/_multiphase.py
|
https://github.com/PMEAL/OpenPNM/blob/master/openpnm/contrib/_multiphase.py
|
MIT
|
def _format_interface_prop(self, propname, phases):
"""Formats propname as {propname}.{phase[0].name}:{phase[1].name}"""
prefix = propname
suffix = ":".join(phase.name for phase in phases)
return f"{prefix}.{suffix}"
|
Formats propname as {propname}.{phase[0].name}:{phase[1].name}
|
_format_interface_prop
|
python
|
PMEAL/OpenPNM
|
openpnm/contrib/_multiphase.py
|
https://github.com/PMEAL/OpenPNM/blob/master/openpnm/contrib/_multiphase.py
|
MIT
|
def _build_K(self):
"""Updates the global partition coefficient array"""
prefix = self.settings["partition_coef_prefix"]
self._K = np.ones(self.Nt, dtype=float)
# Find all binary partition coefficient models
models = [k for k in self.models.keys() if k.startswith(prefix)]
# Modify the global partition coefficient for each phase pair
for model in models:
K12 = self[model]
phase1, phase2 = self._get_phase_labels(model)
idx12, idx21 = self._get_interface_throats(phase1, phase2)
self._K[idx12] = K12[idx12]
self._K[idx21] = 1 / K12[idx21]
# Store a reference in self as a propname for convenience
self[f"{prefix}.global"][:] = self._K
|
Updates the global partition coefficient array
|
_build_K
|
python
|
PMEAL/OpenPNM
|
openpnm/contrib/_multiphase.py
|
https://github.com/PMEAL/OpenPNM/blob/master/openpnm/contrib/_multiphase.py
|
MIT
|
def _interleave_data(self, prop):
"""Gathers property values from component phases to build a single array."""
element = self._parse_element(prop)[0]
vals = np.zeros(self._count(element=element), dtype=float)
# Retrieve property from constituent phases (weight = occupancy)
for phase in self.phases.values():
vals += phase[prop] * self[f"{element}.occupancy.{phase.name}"]
return vals
|
Gathers property values from component phases to build a single array.
|
_interleave_data
|
python
|
PMEAL/OpenPNM
|
openpnm/contrib/_multiphase.py
|
https://github.com/PMEAL/OpenPNM/blob/master/openpnm/contrib/_multiphase.py
|
MIT
|
def _set_automatic_throat_occupancy(self, mode="mean"):
"""
Automatically interpolates throat occupancy based on that in
adjacent pores. This method doesn't return any value.
Parameters
----------
mode : str
Interpolation method. Options are:
=========== =====================================================
mode meaning
=========== =====================================================
'mean' sets the throat occupancy as the average of that in
adjacent pores.
'min' sets the throat occupancy as the minimum value of
that in adjacent pores.
'max' sets the throat occupancy as the maximum value of
that in adjacent pores.
=========== =====================================================
"""
self.settings['throat_occupancy'] = 'automatic'
for phase in self.phases.values():
self.add_model(propname=f"throat.occupancy.{phase.name}",
model=misc.from_neighbor_pores,
prop=f"pore.occupancy.{phase.name}",
mode=mode)
|
Automatically interpolates throat occupancy based on that in
adjacent pores. This method doesn't return any value.
Parameters
----------
mode : str
Interpolation method. Options are:
=========== =====================================================
mode meaning
=========== =====================================================
'mean' sets the throat occupancy as the average of that in
adjacent pores.
'min' sets the throat occupancy as the minimum value of
that in adjacent pores.
'max' sets the throat occupancy as the maximum value of
that in adjacent pores.
=========== =====================================================
|
_set_automatic_throat_occupancy
|
python
|
PMEAL/OpenPNM
|
openpnm/contrib/_multiphase.py
|
https://github.com/PMEAL/OpenPNM/blob/master/openpnm/contrib/_multiphase.py
|
MIT
|
def multiphase_diffusion(phase,
pore_diffusivity="pore.diffusivity",
throat_diffusivity="throat.diffusivity",
size_factors="throat.diffusive_size_factors",
partition_coef_global="throat.partition_coef.global"):
r"""
Calculates the diffusive conductance of conduits for multiphase systems.
Parameters
----------
%(phase)s
pore_diffusivity : str
%(dict_blurb)s pore diffusivity
throat_diffusivity : str
%(dict_blurb)s throat diffusivity
size_factors : str
%(dict_blurb)s conduit size factors
Returns
-------
%(return_arr)s diffusive conductance
Notes
-----
This method assumes that ``phase["partition_coef"]`` contains information
on binary phase partitioning. See ``MultiPhase`` class documentation for
more information.
"""
network = phase.network
cn = network.conns
SF = network[size_factors]
if isinstance(SF, dict):
F1, Ft, F2 = SF.values()
elif SF.ndim > 1:
F1, Ft, F2 = SF.T
else:
F1, Ft, F2 = np.inf, SF, np.inf
# Fetch model parameters
D1, D2 = phase[pore_diffusivity][cn].T
Dt = phase[throat_diffusivity]
g1 = D1 * F1
gt = Dt * Ft
g2 = D2 * F2
# Apply Henry's partitioning coefficient
# Note: m12 = (G21*c1 - G12*c2) NOT (G12*c1 - G21*c2)
K12 = phase[partition_coef_global]
G21 = (1/g1 + 0.5/gt + K12 * (1/g2 + 0.5/gt)) ** -1
G12 = K12 * G21
return np.vstack((G12, G21)).T
|
Calculates the diffusive conductance of conduits for multiphase systems.
Parameters
----------
%(phase)s
pore_diffusivity : str
%(dict_blurb)s pore diffusivity
throat_diffusivity : str
%(dict_blurb)s throat diffusivity
size_factors : str
%(dict_blurb)s conduit size factors
Returns
-------
%(return_arr)s diffusive conductance
Notes
-----
This method assumes that ``phase["partition_coef"]`` contains information
on binary phase partitioning. See ``MultiPhase`` class documentation for
more information.
|
multiphase_diffusion
|
python
|
PMEAL/OpenPNM
|
openpnm/contrib/_multiphase.py
|
https://github.com/PMEAL/OpenPNM/blob/master/openpnm/contrib/_multiphase.py
|
MIT
|
def run(self, x0, tspan, saveat=None, integrator=None):
"""
Runs all of the transient algorithms simultaneoulsy and returns the
solution.
Parameters
----------
x0 : ndarray or float
Array (or scalar) containing initial condition values.
tspan : array_like
Tuple (or array) containing the integration time span.
saveat : array_like or float, optional
If an array is passed, it signifies the time points at which
the solution is to be stored, and if a scalar is passed, it
refers to the interval at which the solution is to be stored.
integrator : Integrator, optional
Integrator object which will be used to to the time stepping.
Can be instantiated using openpnm.integrators module.
Returns
-------
TransientSolution
The solution object, which is basically a numpy array with
the added functionality that it can be called to return the
solution at intermediate times (i.e., those not stored in the
solution object). In the case of multiphysics, the solution object
is a combined array of solutions for each physics. The solution
for each physics is available on each algorithm object
independently.
"""
logger.info('Running TransientMultiphysics')
if np.isscalar(saveat):
saveat = np.arange(*tspan, saveat)
if (saveat is not None) and (tspan[1] not in saveat):
saveat = np.hstack((saveat, [tspan[1]]))
integrator = ScipyRK45() if integrator is None else integrator
for i, alg in enumerate(self._algs):
# Perform pre-solve validations
alg._validate_settings()
alg._validate_topology_health()
alg._validate_linear_system()
# Write x0 to algorithm the obj (needed by _update_iterative_props)
x0_i = self._get_x0(x0, i)
alg['pore.ic'] = x0_i = np.ones(alg.Np, dtype=float) * x0_i
alg._merge_inital_and_boundary_values()
# Build RHS (dx/dt = RHS), then integrate the system of ODEs
rhs = self._build_rhs()
# Integrate RHS using the given solver
soln = integrator.solve(rhs, x0, tspan, saveat)
# Return dictionary containing solution
self.soln = SolutionContainer()
for i, alg in enumerate(self._algs):
# Slice soln and attach as TransientSolution object to each alg
t = soln.t
x = soln[i*alg.Np:(i+1)*alg.Np, :]
alg.soln = TransientSolution(t, x)
# Add solution of each alg to solution dictionary
self.soln[alg.settings['quantity']] = alg.soln
|
Runs all of the transient algorithms simultaneoulsy and returns the
solution.
Parameters
----------
x0 : ndarray or float
Array (or scalar) containing initial condition values.
tspan : array_like
Tuple (or array) containing the integration time span.
saveat : array_like or float, optional
If an array is passed, it signifies the time points at which
the solution is to be stored, and if a scalar is passed, it
refers to the interval at which the solution is to be stored.
integrator : Integrator, optional
Integrator object which will be used to to the time stepping.
Can be instantiated using openpnm.integrators module.
Returns
-------
TransientSolution
The solution object, which is basically a numpy array with
the added functionality that it can be called to return the
solution at intermediate times (i.e., those not stored in the
solution object). In the case of multiphysics, the solution object
is a combined array of solutions for each physics. The solution
for each physics is available on each algorithm object
independently.
|
run
|
python
|
PMEAL/OpenPNM
|
openpnm/contrib/_transient_multiphysics.py
|
https://github.com/PMEAL/OpenPNM/blob/master/openpnm/contrib/_transient_multiphysics.py
|
MIT
|
def _build_rhs(self):
"""
Returns a function handle, which calculates dy/dt = rhs(y, t).
Notes
-----
``y`` is a composite array that contains ALL the variables that
the multiphysics algorithm solves for, e.g., if the constituent
algorithms are ``TransientFickianDiffusion``, and
``TransientFourierConduction``, ``y[0:Np-1]`` refers to the
concentration, and ``[Np:2*Np-1]`` refers to the temperature
values.
"""
def ode_func(t, y):
# Initialize RHS
rhs = []
for i, alg in enumerate(self._algs):
# Get x from y, assume alg.Np is same for all algs
x = self._get_x0(y, i) # again use helper function
# Store x onto algorithm,
alg.x = x
# Build A and b
alg._update_A_and_b()
A = alg.A.tocsc()
b = alg.b
# Retrieve volume
V = alg.network[alg.settings["pore_volume"]]
# Calcualte RHS
rhs_alg = np.hstack(-A.dot(x) + b)/V
rhs = np.hstack((rhs, rhs_alg))
return rhs
return ode_func
|
Returns a function handle, which calculates dy/dt = rhs(y, t).
Notes
-----
``y`` is a composite array that contains ALL the variables that
the multiphysics algorithm solves for, e.g., if the constituent
algorithms are ``TransientFickianDiffusion``, and
``TransientFourierConduction``, ``y[0:Np-1]`` refers to the
concentration, and ``[Np:2*Np-1]`` refers to the temperature
values.
|
_build_rhs
|
python
|
PMEAL/OpenPNM
|
openpnm/contrib/_transient_multiphysics.py
|
https://github.com/PMEAL/OpenPNM/blob/master/openpnm/contrib/_transient_multiphysics.py
|
MIT
|
def clear(self, mode=None):
r"""
Clears or deletes certain things from object. If no arguments are provided
it defaults to the normal `dict` behavior.
Parameters
----------
mode : str
Controls which things are to be deleted. Options are:
=========== ============================================================
`mode` Description
=========== ============================================================
'props' Deletes all pore and throat properties (i.e numerical data)
in the object's dictionary (except 'pore.coords' and
'throat.conns' if it is a network object).
'labels' Deletes all labels (i.e. boolean data) in the object's
dictionary.
'models' Delete are pore and throat properties that were produced
by a pore-scale model.
=========== ============================================================
"""
if mode is None:
super().clear()
else:
if isinstance(mode, str):
mode = [mode]
if 'props' in mode:
for item in self.props():
if item not in ['pore.coords', 'throat.conns']:
del self[item]
if 'labels' in mode:
for item in self.labels():
if item not in ['pore.'+self.name, 'throat.'+self.name]:
del self[item]
if 'models' in mode:
for item in self.models.keys():
_ = self.pop(item.split('@')[0], None)
|
Clears or deletes certain things from object. If no arguments are provided
it defaults to the normal `dict` behavior.
Parameters
----------
mode : str
Controls which things are to be deleted. Options are:
=========== ============================================================
`mode` Description
=========== ============================================================
'props' Deletes all pore and throat properties (i.e numerical data)
in the object's dictionary (except 'pore.coords' and
'throat.conns' if it is a network object).
'labels' Deletes all labels (i.e. boolean data) in the object's
dictionary.
'models' Delete are pore and throat properties that were produced
by a pore-scale model.
=========== ============================================================
|
clear
|
python
|
PMEAL/OpenPNM
|
openpnm/core/_base2.py
|
https://github.com/PMEAL/OpenPNM/blob/master/openpnm/core/_base2.py
|
MIT
|
def keys(self, mode=None):
r"""
An overloaded version of ``keys`` that optionally accepts a ``mode``
Parameters
----------
mode : str
If given, optionally, it controls which type of keys are returned.
Options are:
========== =======================================================
mode description
========== =======================================================
props Returns only keys that contain numerical arrays
labels Returns only keys that contain boolean arrays
models Returns only keys that were generated by a pore-scale
model
constants Returns only keys are were *not* generated by a pore-
scale model
========== =======================================================
"""
if mode is None:
return super().keys()
else:
if isinstance(mode, str):
mode = [mode]
vals = set()
if 'props' in mode:
for item in self.props():
vals.add(item)
if 'labels' in mode:
for item in self.labels():
vals.add(item)
if 'models' in mode:
for item in self.models.keys():
propname = item.split('@')[0]
if propname in self.keys():
vals.add(propname)
if 'constants' in mode:
vals = vals.union(set(self.props()))
for item in self.models.keys():
propname = item.split('@')[0]
if propname in vals:
vals.remove(propname)
return PrintableList(vals)
|
An overloaded version of ``keys`` that optionally accepts a ``mode``
Parameters
----------
mode : str
If given, optionally, it controls which type of keys are returned.
Options are:
========== =======================================================
mode description
========== =======================================================
props Returns only keys that contain numerical arrays
labels Returns only keys that contain boolean arrays
models Returns only keys that were generated by a pore-scale
model
constants Returns only keys are were *not* generated by a pore-
scale model
========== =======================================================
|
keys
|
python
|
PMEAL/OpenPNM
|
openpnm/core/_base2.py
|
https://github.com/PMEAL/OpenPNM/blob/master/openpnm/core/_base2.py
|
MIT
|
def to_mask(self, pores=None, throats=None):
r"""
Generates a boolean mask with `True` values in the given locations
Parameters
----------
pores : array_like
The pore indices where `True` values will be placed. If `pores` is
given the `throats` is ignored.
throats : array_like
The throat indices where `True` values will be placed. If `pores` is
given the `throats` is ignored.
Returns
-------
mask : ndarray, boolean
A boolean array of length Np is `pores` was given or Nt if
`throats` was given.
"""
if pores is not None:
indices = np.array(pores, ndmin=1)
N = self.Np
elif throats is not None:
indices = np.array(throats, ndmin=1)
N = self.Nt
else:
raise Exception('Must specify either pores or throats')
mask = np.zeros((N, ), dtype=bool)
mask[indices] = True
return mask
|
Generates a boolean mask with `True` values in the given locations
Parameters
----------
pores : array_like
The pore indices where `True` values will be placed. If `pores` is
given the `throats` is ignored.
throats : array_like
The throat indices where `True` values will be placed. If `pores` is
given the `throats` is ignored.
Returns
-------
mask : ndarray, boolean
A boolean array of length Np is `pores` was given or Nt if
`throats` was given.
|
to_mask
|
python
|
PMEAL/OpenPNM
|
openpnm/core/_base2.py
|
https://github.com/PMEAL/OpenPNM/blob/master/openpnm/core/_base2.py
|
MIT
|
def to_indices(self, mask):
r"""
Converts a boolean mask to pore or throat indices
Parameters
----------
mask : ndarray
A boolean mask with `True` values indicating either pore or
throat indices. This array must either be Nt or Np long, otherwise
an Exception is raised.
Returns
-------
indices : ndarray
An array containing numerical indices of where `mask` was `True`.
Notes
-----
This function is equivalent to just calling `np.where(mask)[0]` but
does check to ensure that `mask` is a valid length.
"""
mask = np.array(mask, dtype=bool)
if mask.shape[0] not in [self.Np, self.Nt]:
raise Exception('Mask must be either Nt or Np long')
return np.where(mask)[0]
|
Converts a boolean mask to pore or throat indices
Parameters
----------
mask : ndarray
A boolean mask with `True` values indicating either pore or
throat indices. This array must either be Nt or Np long, otherwise
an Exception is raised.
Returns
-------
indices : ndarray
An array containing numerical indices of where `mask` was `True`.
Notes
-----
This function is equivalent to just calling `np.where(mask)[0]` but
does check to ensure that `mask` is a valid length.
|
to_indices
|
python
|
PMEAL/OpenPNM
|
openpnm/core/_base2.py
|
https://github.com/PMEAL/OpenPNM/blob/master/openpnm/core/_base2.py
|
MIT
|
def props(self, element=['pore', 'throat']):
r"""
Retrieves a list of keys that contain numerical data (i.e. "properties")
Parameters
----------
element : str, list of strings
Indicates whether `'pore'` or `'throat'` properties should be returned.
The default is `['pore', 'throat']`, so both are returned.
Returns
-------
props : list of strings
The names of all dictionary keys on the object that contain
numerical data.
"""
if element is None:
element = ['pore', 'throat']
if isinstance(element, str):
element = [element]
props = []
for k, v in self.items():
el, prop = k.split('.', 1)
if (el in element) and (v.dtype != bool) and not prop.startswith('_'):
props.append(k)
props = sorted(props)
props = PrintableList(props)
return props
|
Retrieves a list of keys that contain numerical data (i.e. "properties")
Parameters
----------
element : str, list of strings
Indicates whether `'pore'` or `'throat'` properties should be returned.
The default is `['pore', 'throat']`, so both are returned.
Returns
-------
props : list of strings
The names of all dictionary keys on the object that contain
numerical data.
|
props
|
python
|
PMEAL/OpenPNM
|
openpnm/core/_base2.py
|
https://github.com/PMEAL/OpenPNM/blob/master/openpnm/core/_base2.py
|
MIT
|
def interpolate_data(self, propname, mode='mean'):
r"""
Generates an array of the requested pore/throat data by interpolating
the neighboring throat/pore data.
Parameters
----------
propname : str
The data to be generated.
mode : str
Dictate how the interpolation is done. Options are 'mean', 'min',
and 'max'.
Returns
-------
data : ndarray
An ndarray containing the interpolated data. E.g. Requesting
'throat.temperature' will read the values of 'pore.temperature'
in each of the neighboring pores and compute the average
(if `mode='mean'`).
"""
from openpnm.models.misc import from_neighbor_throats, from_neighbor_pores
element, prop = propname.split('.', 1)
if element == 'throat':
if self['pore.'+prop].dtype == bool:
raise Exception('The requested datatype is boolean, cannot interpolate')
values = from_neighbor_pores(self, prop='pore.'+prop, mode=mode)
elif element == 'pore':
if self['throat.'+prop].dtype == bool:
raise Exception('The requested datatype is boolean, cannot interpolate')
values = from_neighbor_throats(self, prop='throat.'+prop, mode=mode)
return values
|
Generates an array of the requested pore/throat data by interpolating
the neighboring throat/pore data.
Parameters
----------
propname : str
The data to be generated.
mode : str
Dictate how the interpolation is done. Options are 'mean', 'min',
and 'max'.
Returns
-------
data : ndarray
An ndarray containing the interpolated data. E.g. Requesting
'throat.temperature' will read the values of 'pore.temperature'
in each of the neighboring pores and compute the average
(if `mode='mean'`).
|
interpolate_data
|
python
|
PMEAL/OpenPNM
|
openpnm/core/_base2.py
|
https://github.com/PMEAL/OpenPNM/blob/master/openpnm/core/_base2.py
|
MIT
|
def get_conduit_data(self, propname):
r"""
Fetches an Nt-by-3 array of the requested property
Parameters
----------
propname : str
The dictionary key of the property to fetch.
Returns
-------
data : ndarray
An Nt-by-3 array with each column containing the requrested data
for pore1, throat, and pore2 respectively.
"""
poreprop = 'pore.' + propname.split('.', 1)[-1]
throatprop = 'throat.' + propname.split('.', 1)[-1]
conns = self.network.conns
try:
T = self[throatprop]
if T.ndim > 1:
raise Exception(f'{throatprop} must be a single column wide')
except KeyError:
T = np.ones([self.Nt, ], dtype=float)*np.nan
try:
P1, P2 = self[poreprop][conns.T]
except KeyError:
P1 = np.ones([self.Nt, ], dtype=float)*np.nan
P2 = np.ones([self.Nt, ], dtype=float)*np.nan
vals = np.vstack((P1, T, P2)).T
if np.isnan(vals).sum() == vals.size:
raise KeyError(f'{propname} not found')
return vals
|
Fetches an Nt-by-3 array of the requested property
Parameters
----------
propname : str
The dictionary key of the property to fetch.
Returns
-------
data : ndarray
An Nt-by-3 array with each column containing the requrested data
for pore1, throat, and pore2 respectively.
|
get_conduit_data
|
python
|
PMEAL/OpenPNM
|
openpnm/core/_base2.py
|
https://github.com/PMEAL/OpenPNM/blob/master/openpnm/core/_base2.py
|
MIT
|
def _parse_indices(self, indices):
r"""
This private method accepts a list of pores or throats and returns a
properly structured Numpy array of indices.
Parameters
----------
indices : int or array_like
This argument can accept numerous different data types including
boolean masks, integers and arrays.
Returns
-------
A Numpy array of indices.
Notes
-----
This method should only be called by the method that is actually using
the locations, to avoid calling it multiple times.
"""
if indices is None:
indices = np.array([], ndmin=1, dtype=int)
locs = np.array(indices, ndmin=1)
# If boolean array, convert to indices
if locs.dtype == bool:
if np.size(locs) == self.Np:
locs = self.Ps[locs]
elif np.size(locs) == self.Nt:
locs = self.Ts[locs]
else:
raise Exception('Mask of locations must be either '
+ 'Np nor Nt long')
locs = locs.astype(dtype=int)
return locs
|
This private method accepts a list of pores or throats and returns a
properly structured Numpy array of indices.
Parameters
----------
indices : int or array_like
This argument can accept numerous different data types including
boolean masks, integers and arrays.
Returns
-------
A Numpy array of indices.
Notes
-----
This method should only be called by the method that is actually using
the locations, to avoid calling it multiple times.
|
_parse_indices
|
python
|
PMEAL/OpenPNM
|
openpnm/core/_mixins.py
|
https://github.com/PMEAL/OpenPNM/blob/master/openpnm/core/_mixins.py
|
MIT
|
def _parse_element(self, element, single=False):
r"""
This private method is used to parse the keyword \'element\' in many
of the above methods.
Parameters
----------
element : str or List[str]
The element argument to check. If is None is recieved, then a list
containing both \'pore\' and \'throat\' is returned.
single : bool (default is False)
When set to True only a single element is allowed and it will also
return a string containing the element.
Returns
-------
When ``single`` is ``False`` (default) a list containing the element(s)
is returned. When ``single`` is ``True`` a bare string containing the
element is returned.
"""
if element is None:
element = ['pore', 'throat']
# Convert element to a list for subsequent processing
if isinstance(element, str):
element = [element]
# Convert 'pore.prop' and 'throat.prop' into just 'pore' and 'throat'
element = [item.split('.', 1)[0] for item in element]
# Make sure all are lowercase
element = [item.lower() for item in element]
# Deal with an plurals
element = [item.rsplit('s', maxsplit=1)[0] for item in element]
for item in element:
if item not in ['pore', 'throat']:
raise Exception('All keys must start with either pore or throat')
# Remove duplicates if any
_ = [element.remove(L) for L in element if element.count(L) > 1]
if single:
if len(element) > 1:
raise Exception('Both elements recieved when single element '
+ 'allowed')
element = element[0]
return element
|
This private method is used to parse the keyword \'element\' in many
of the above methods.
Parameters
----------
element : str or List[str]
The element argument to check. If is None is recieved, then a list
containing both \'pore\' and \'throat\' is returned.
single : bool (default is False)
When set to True only a single element is allowed and it will also
return a string containing the element.
Returns
-------
When ``single`` is ``False`` (default) a list containing the element(s)
is returned. When ``single`` is ``True`` a bare string containing the
element is returned.
|
_parse_element
|
python
|
PMEAL/OpenPNM
|
openpnm/core/_mixins.py
|
https://github.com/PMEAL/OpenPNM/blob/master/openpnm/core/_mixins.py
|
MIT
|
def _parse_labels(self, labels, element):
r"""
This private method is used for converting \'labels\' to a proper
format, including dealing with wildcards (\*).
Parameters
----------
labels : str or List[str]
The label or list of labels to be parsed. Note that the \* can be
used as a wildcard.
Returns
-------
A list of label strings, with all wildcard matches included if
applicable.
"""
if labels is None:
raise Exception('Labels cannot be None')
if isinstance(labels, str):
labels = [labels]
# Parse the labels list
parsed_labels = []
for label in labels:
# Remove element from label, if present
if element in label:
label = label.split('.', 1)[-1]
# Deal with wildcards
if '*' in label:
Ls = [L.split('.', 1)[-1] for L in self.labels(element=element)]
if label.startswith('*'):
temp = [L for L in Ls if L.endswith(label.strip('*'))]
if label.endswith('*'):
temp = [L for L in Ls if L.startswith(label.strip('*'))]
temp = [element+'.'+L for L in temp]
elif element+'.'+label in self.keys():
temp = [element+'.'+label]
else:
temp = [element+'.'+label]
parsed_labels.extend(temp)
# Remove duplicates if any
_ = [parsed_labels.remove(L) for L in parsed_labels
if parsed_labels.count(L) > 1]
return parsed_labels
|
This private method is used for converting \'labels\' to a proper
format, including dealing with wildcards (\*).
Parameters
----------
labels : str or List[str]
The label or list of labels to be parsed. Note that the \* can be
used as a wildcard.
Returns
-------
A list of label strings, with all wildcard matches included if
applicable.
|
_parse_labels
|
python
|
PMEAL/OpenPNM
|
openpnm/core/_mixins.py
|
https://github.com/PMEAL/OpenPNM/blob/master/openpnm/core/_mixins.py
|
MIT
|
def _parse_mode(self, mode, allowed=None, single=False):
r"""
This private method is for checking the \'mode\' used in the calling
method.
Parameters
----------
mode : str or List[str]
The mode(s) to be parsed
allowed : List[str]
A list containing the allowed modes. This list is defined by the
calling method. If any of the received modes are not in the
allowed list an exception is raised.
single : bool (default is False)
Indicates if only a single mode is allowed. If this argument is
True than a string is returned rather than a list of strings, which
makes it easier to work with in the caller method.
Returns
-------
A list containing the received modes as strings, checked to ensure they
are all within the allowed set (if provoided). Also, if the ``single``
argument was True, then a string is returned.
"""
if isinstance(mode, str):
mode = [mode]
for item in mode:
if (allowed is not None) and (item not in allowed):
raise Exception('\'mode\' must be one of the following: '
+ allowed.__str__())
# Remove duplicates, if any
_ = [mode.remove(L) for L in mode if mode.count(L) > 1]
if single:
if len(mode) > 1:
raise Exception('Multiple modes received when only one mode '
+ 'is allowed by this method')
mode = mode[0]
return mode
|
This private method is for checking the \'mode\' used in the calling
method.
Parameters
----------
mode : str or List[str]
The mode(s) to be parsed
allowed : List[str]
A list containing the allowed modes. This list is defined by the
calling method. If any of the received modes are not in the
allowed list an exception is raised.
single : bool (default is False)
Indicates if only a single mode is allowed. If this argument is
True than a string is returned rather than a list of strings, which
makes it easier to work with in the caller method.
Returns
-------
A list containing the received modes as strings, checked to ensure they
are all within the allowed set (if provoided). Also, if the ``single``
argument was True, then a string is returned.
|
_parse_mode
|
python
|
PMEAL/OpenPNM
|
openpnm/core/_mixins.py
|
https://github.com/PMEAL/OpenPNM/blob/master/openpnm/core/_mixins.py
|
MIT
|
def _get_labels(self, element, locations, mode):
r"""
This is the actual label getter method, but it should not be called
directly. Use ``labels`` instead.
"""
# Parse inputs
locations = self._parse_indices(locations)
element = self._parse_element(element=element)
# Collect list of all pore OR throat labels
labels = [i for i in self.keys(mode='labels') if i.split('.', 1)[0] in element]
labels.sort()
labels = np.array(labels) # Convert to ndarray for following checks
# Make an 2D array with locations in rows and labels in cols
arr = np.vstack([self[item][locations] for item in labels]).T
num_hits = np.sum(arr, axis=0) # Number of locations with each label
if mode in ['or', 'union', 'any']:
temp = labels[num_hits > 0]
elif mode in ['and', 'intersection']:
temp = labels[num_hits == locations.size]
elif mode in ['xor', 'exclusive_or']:
temp = labels[num_hits == 1]
elif mode in ['nor', 'not', 'none']:
temp = labels[num_hits == 0]
elif mode in ['nand']:
temp = labels[num_hits == (locations.size - 1)]
elif mode in ['xnor', 'nxor']:
temp = labels[num_hits > 1]
else:
raise Exception('Unrecognized mode:'+str(mode))
return PrintableList(temp)
|
This is the actual label getter method, but it should not be called
directly. Use ``labels`` instead.
|
_get_labels
|
python
|
PMEAL/OpenPNM
|
openpnm/core/_mixins.py
|
https://github.com/PMEAL/OpenPNM/blob/master/openpnm/core/_mixins.py
|
MIT
|
def labels(self, pores=[], throats=[], element=None, mode='union'):
r"""
Returns a list of labels present on the object
Additionally, this function can return labels applied to a specified
set of pores or throats
Parameters
----------
element : str
Controls whether pore or throat labels are returned. If empty then
both are returned (default).
pores (or throats) : array_like
The pores (or throats) whose labels are sought. If left empty a
list containing all pore and throat labels is returned.
mode : str, optional
Controls how the query should be performed. Only applicable
when ``pores`` or ``throats`` are specified:
============== ===================================================
mode meaning
============== ===================================================
'or' Returns the labels that are assigned to *any* of
the given locations. Also accepts 'union' and 'any'
'and' Labels that are present on all the given locations.
also accepts 'intersection' and 'all'
'xor' Labels that are present on *only one*
of the given locations.Also accepts 'exclusive_or'
'nor' Labels that are *not* present on any of
the given locations. Also accepts 'not' and 'none'
'nand' Labels that are present on *all but one* of the
given locations
'xnor' Labels that are present on *more than one* of the
given locations.
============== ===================================================
Returns
-------
A list containing the labels on the object. If ``pores`` or
``throats`` are given, the results are filtered according to the
specified ``mode``.
See Also
--------
props
keys
Notes
-----
Technically, *'nand'* and *'xnor'* should also return pores with *none*
of the labels but these are not included. This makes the returned list
more useful.
"""
# Short-circuit query when no pores or throats are given
if (np.size(pores) == 0) and (np.size(throats) == 0):
if element is None:
element = ['pore', 'throat']
if isinstance(element, str):
element = [element]
labels = PrintableList()
for k, v in self.items():
el, prop = k.split('.', 1)
if (el in element) and (v.dtype == bool) and not prop.startswith('_'):
labels.append(k)
elif (np.size(pores) > 0) and (np.size(throats) > 0):
raise Exception('Cannot perform label query on pores and '
+ 'throats simultaneously')
elif np.size(pores) > 0:
labels = self._get_labels(element='pore', locations=pores,
mode=mode)
elif np.size(throats) > 0:
labels = self._get_labels(element='throat', locations=throats,
mode=mode)
return sorted(labels)
|
Returns a list of labels present on the object
Additionally, this function can return labels applied to a specified
set of pores or throats
Parameters
----------
element : str
Controls whether pore or throat labels are returned. If empty then
both are returned (default).
pores (or throats) : array_like
The pores (or throats) whose labels are sought. If left empty a
list containing all pore and throat labels is returned.
mode : str, optional
Controls how the query should be performed. Only applicable
when ``pores`` or ``throats`` are specified:
============== ===================================================
mode meaning
============== ===================================================
'or' Returns the labels that are assigned to *any* of
the given locations. Also accepts 'union' and 'any'
'and' Labels that are present on all the given locations.
also accepts 'intersection' and 'all'
'xor' Labels that are present on *only one*
of the given locations.Also accepts 'exclusive_or'
'nor' Labels that are *not* present on any of
the given locations. Also accepts 'not' and 'none'
'nand' Labels that are present on *all but one* of the
given locations
'xnor' Labels that are present on *more than one* of the
given locations.
============== ===================================================
Returns
-------
A list containing the labels on the object. If ``pores`` or
``throats`` are given, the results are filtered according to the
specified ``mode``.
See Also
--------
props
keys
Notes
-----
Technically, *'nand'* and *'xnor'* should also return pores with *none*
of the labels but these are not included. This makes the returned list
more useful.
|
labels
|
python
|
PMEAL/OpenPNM
|
openpnm/core/_mixins.py
|
https://github.com/PMEAL/OpenPNM/blob/master/openpnm/core/_mixins.py
|
MIT
|
def set_label(self, label, pores=None, throats=None, mode='add'):
r"""
Creates or updates a label array
Parameters
----------
label : str
The label to apply to the specified locations
pores : array_like
A list of pore indices or a boolean mask of where given label
should be added or removed (see ``mode``)
throats : array_like
A list of throat indices or a boolean mask of where given label
should be added or removed (see ``mode``)
mode : str
Controls how the labels are handled. Options are:
=========== ======================================================
mode description
=========== ======================================================
'add' (default) Adds the given label to the specified
locations while keeping existing labels
'overwrite' Removes existing label from all locations before
adding the label in the specified locations
'remove' Removes the given label from the specified locations
leaving the remainder intact
'purge' Removes the specified label from the object completely.
This ignores the ``pores`` and ``throats`` arguments.
'clear' Sets all the labels to ``False`` but does not remove
the label array
=========== ======================================================
"""
self._parse_mode(mode=mode,
allowed=['add', 'overwrite', 'remove', 'purge',
'clear'])
if label.split('.', 1)[0] in ['pore', 'throat']:
label = label.split('.', 1)[1]
if (pores is not None) and (throats is not None):
self.set_label(label=label, pores=pores, mode=mode)
self.set_label(label=label, throats=throats, mode=mode)
return
elif pores is not None:
locs = self._parse_indices(pores)
element = 'pore'
elif throats is not None:
locs = self._parse_indices(throats)
element = 'throat'
if mode == 'add':
if element + '.' + label not in self.keys():
self[element + '.' + label] = False
self[element + '.' + label][locs] = True
if mode == 'overwrite':
self[element + '.' + label] = False
self[element + '.' + label][locs] = True
if mode == 'remove':
self[element + '.' + label][locs] = False
if mode == 'clear':
self['pore' + '.' + label] = False
self['throat' + '.' + label] = False
if mode == 'purge':
_ = self.pop('pore.' + label, None)
_ = self.pop('throat.' + label, None)
|
Creates or updates a label array
Parameters
----------
label : str
The label to apply to the specified locations
pores : array_like
A list of pore indices or a boolean mask of where given label
should be added or removed (see ``mode``)
throats : array_like
A list of throat indices or a boolean mask of where given label
should be added or removed (see ``mode``)
mode : str
Controls how the labels are handled. Options are:
=========== ======================================================
mode description
=========== ======================================================
'add' (default) Adds the given label to the specified
locations while keeping existing labels
'overwrite' Removes existing label from all locations before
adding the label in the specified locations
'remove' Removes the given label from the specified locations
leaving the remainder intact
'purge' Removes the specified label from the object completely.
This ignores the ``pores`` and ``throats`` arguments.
'clear' Sets all the labels to ``False`` but does not remove
the label array
=========== ======================================================
|
set_label
|
python
|
PMEAL/OpenPNM
|
openpnm/core/_mixins.py
|
https://github.com/PMEAL/OpenPNM/blob/master/openpnm/core/_mixins.py
|
MIT
|
def _get_indices(self, element, labels, mode='or'):
r"""
This is the actual method for getting indices, but should not be called
directly. Use ``pores`` or ``throats`` instead.
"""
# Parse and validate all input values.
element = self._parse_element(element, single=True)
labels = self._parse_labels(labels=labels, element=element)
# Begin computing label array
if mode in ['or', 'any', 'union']:
union = np.zeros([self._count(element), ], dtype=bool)
for item in labels: # Iterate over labels and collect all indices
union = union + self[element+'.'+item.split('.', 1)[-1]]
ind = union
elif mode in ['and', 'all', 'intersection']:
intersect = np.ones([self._count(element), ], dtype=bool)
for item in labels: # Iterate over labels and collect all indices
intersect = intersect*self[element+'.'+item.split('.', 1)[-1]]
ind = intersect
elif mode in ['xor', 'exclusive_or']:
xor = np.zeros([self._count(element), ], dtype=int)
for item in labels: # Iterate over labels and collect all indices
info = self[element+'.'+item.split('.', 1)[-1]]
xor = xor + np.int8(info)
ind = (xor == 1)
elif mode in ['nor', 'not', 'none']:
nor = np.zeros([self._count(element), ], dtype=int)
for item in labels: # Iterate over labels and collect all indices
info = self[element+'.'+item.split('.', 1)[-1]]
nor = nor + np.int8(info)
ind = (nor == 0)
elif mode in ['nand']:
nand = np.zeros([self._count(element), ], dtype=int)
for item in labels: # Iterate over labels and collect all indices
info = self[element+'.'+item.split('.', 1)[-1]]
nand = nand + np.int8(info)
ind = (nand < len(labels)) * (nand > 0)
elif mode in ['xnor', 'nxor']:
xnor = np.zeros([self._count(element), ], dtype=int)
for item in labels: # Iterate over labels and collect all indices
info = self[element+'.'+item.split('.', 1)[-1]]
xnor = xnor + np.int8(info)
ind = (xnor > 1)
else:
raise Exception('Unsupported mode: '+mode)
# Extract indices from boolean mask
ind = np.where(ind)[0]
ind = ind.astype(dtype=int)
return ind
|
This is the actual method for getting indices, but should not be called
directly. Use ``pores`` or ``throats`` instead.
|
_get_indices
|
python
|
PMEAL/OpenPNM
|
openpnm/core/_mixins.py
|
https://github.com/PMEAL/OpenPNM/blob/master/openpnm/core/_mixins.py
|
MIT
|
def pores(self, labels=None, mode='or', asmask=False):
r"""
Returns pore indicies where given labels exist, according to the logic
specified by the ``mode`` argument.
Parameters
----------
labels : str or list[str]
The label(s) whose pores locations are requested. This argument
also accepts '*' for wildcard searches.
mode : str
Specifies how the query should be performed. The options are:
============== ===================================================
mode meaning
============== ===================================================
'or' Returns the labels that are assigned to *any* of
the given locations. Also accepts 'union' and 'any'
'and' Labels that are present on all the given locations.
also accepts 'intersection' and 'all'
'xor' Labels that are present on *only one*
of the given locations.Also accepts 'exclusive_or'
'nor' Labels that are *not* present on any of
the given locations. Also accepts 'not' and 'none'
'nand' Labels that are present on *all but one* of the
given locations
'xnor' Labels that are present on *more than one* of the
given locations.
============== ===================================================
asmask : bool
If ``True`` then a boolean array of length Np is returned with
``True`` values indicating the pores that satisfy the query.
Returns
-------
A Numpy array containing pore indices filtered by the logic specified
in ``mode``.
See Also
--------
throats
Notes
-----
Technically, *nand* and *xnor* should also return pores with *none* of
the labels but these are not included. This makes the returned list
more useful.
To perform more complex or compound queries, you can opt to receive
the result a a boolean mask (``asmask=True``), then manipulate the
arrays manually.
"""
if labels is None:
labels = self.name
ind = self._get_indices(element='pore', labels=labels, mode=mode)
if asmask:
ind = self.to_mask(pores=ind)
return ind
|
Returns pore indicies where given labels exist, according to the logic
specified by the ``mode`` argument.
Parameters
----------
labels : str or list[str]
The label(s) whose pores locations are requested. This argument
also accepts '*' for wildcard searches.
mode : str
Specifies how the query should be performed. The options are:
============== ===================================================
mode meaning
============== ===================================================
'or' Returns the labels that are assigned to *any* of
the given locations. Also accepts 'union' and 'any'
'and' Labels that are present on all the given locations.
also accepts 'intersection' and 'all'
'xor' Labels that are present on *only one*
of the given locations.Also accepts 'exclusive_or'
'nor' Labels that are *not* present on any of
the given locations. Also accepts 'not' and 'none'
'nand' Labels that are present on *all but one* of the
given locations
'xnor' Labels that are present on *more than one* of the
given locations.
============== ===================================================
asmask : bool
If ``True`` then a boolean array of length Np is returned with
``True`` values indicating the pores that satisfy the query.
Returns
-------
A Numpy array containing pore indices filtered by the logic specified
in ``mode``.
See Also
--------
throats
Notes
-----
Technically, *nand* and *xnor* should also return pores with *none* of
the labels but these are not included. This makes the returned list
more useful.
To perform more complex or compound queries, you can opt to receive
the result a a boolean mask (``asmask=True``), then manipulate the
arrays manually.
|
pores
|
python
|
PMEAL/OpenPNM
|
openpnm/core/_mixins.py
|
https://github.com/PMEAL/OpenPNM/blob/master/openpnm/core/_mixins.py
|
MIT
|
def filter_by_label(self, pores=[], throats=[], labels=None, mode='or'):
r"""
Returns which of the supplied pores (or throats) has the specified
label(s)
Parameters
----------
pores, or throats : array_like
List of pores or throats to be filtered
labels : list of strings
The labels to apply as a filter
mode : str
Controls how the filter is applied. The default value is
'or'. Options include:
============== ===================================================
mode meaning
============== ===================================================
'or' Returns the labels that are assigned to *any* of
the given locations. Also accepts 'union' and 'any'
'and' Labels that are present on all the given locations.
also accepts 'intersection' and 'all'
'xor' Labels that are present on *only one*
of the given locations.Also accepts 'exclusive_or'
'nor' Labels that are *not* present on any of
the given locations. Also accepts 'not' and 'none'
'nand' Labels that are present on *all but one* of the
given locations
'xnor' Labels that are present on *more than one* of the
given locations.
============== ===================================================
Returns
-------
A list of pores (or throats) that have been filtered according the
given criteria. The returned list is a subset of the received list of
pores (or throats).
See Also
--------
pores
throats
"""
# Convert inputs to locations and element
if (np.size(throats) > 0) and (np.size(pores) > 0):
raise Exception('Can only filter either pores OR labels')
if np.size(pores) > 0:
element = 'pore'
locations = self._parse_indices(pores)
elif np.size(throats) > 0:
element = 'throat'
locations = self._parse_indices(throats)
else:
return np.array([], dtype=int)
labels = self._parse_labels(labels=labels, element=element)
labels = [element+'.'+item.split('.', 1)[-1] for item in labels]
all_locs = self._get_indices(element=element, labels=labels, mode=mode)
mask = self._tomask(indices=all_locs, element=element)
ind = mask[locations]
return locations[ind]
|
Returns which of the supplied pores (or throats) has the specified
label(s)
Parameters
----------
pores, or throats : array_like
List of pores or throats to be filtered
labels : list of strings
The labels to apply as a filter
mode : str
Controls how the filter is applied. The default value is
'or'. Options include:
============== ===================================================
mode meaning
============== ===================================================
'or' Returns the labels that are assigned to *any* of
the given locations. Also accepts 'union' and 'any'
'and' Labels that are present on all the given locations.
also accepts 'intersection' and 'all'
'xor' Labels that are present on *only one*
of the given locations.Also accepts 'exclusive_or'
'nor' Labels that are *not* present on any of
the given locations. Also accepts 'not' and 'none'
'nand' Labels that are present on *all but one* of the
given locations
'xnor' Labels that are present on *more than one* of the
given locations.
============== ===================================================
Returns
-------
A list of pores (or throats) that have been filtered according the
given criteria. The returned list is a subset of the received list of
pores (or throats).
See Also
--------
pores
throats
|
filter_by_label
|
python
|
PMEAL/OpenPNM
|
openpnm/core/_mixins.py
|
https://github.com/PMEAL/OpenPNM/blob/master/openpnm/core/_mixins.py
|
MIT
|
def num_pores(self, labels='all', mode='or'):
r"""
Returns the number of pores of the specified labels
Parameters
----------
labels : list of strings, optional
The pore labels that should be included in the count.
If not supplied, all pores are counted.
labels : list of strings
Label of pores to be returned
mode : str, optional
Specifies how the count should be performed. The options are:
============== ===================================================
mode meaning
============== ===================================================
'or' Returns the labels that are assigned to *any* of
the given locations. Also accepts 'union' and 'any'
'and' Labels that are present on all the given locations.
also accepts 'intersection' and 'all'
'xor' Labels that are present on *only one*
of the given locations.Also accepts 'exclusive_or'
'nor' Labels that are *not* present on any of
the given locations. Also accepts 'not' and 'none'
'nand' Labels that are present on *all but one* of the
given locations
'xnor' Labels that are present on *more than one* of the
given locations.
============== ===================================================
Returns
-------
Np : int
Number of pores with the specified labels
See Also
--------
num_throats
count
Notes
-----
Technically, *'nand'* and *'xnor'* should also count pores with *none*
of the labels, however, to make the count more useful these are not
included.
"""
# Count number of pores of specified type
Ps = self._get_indices(labels=labels, mode=mode, element='pore')
Np = np.shape(Ps)[0]
return Np
|
Returns the number of pores of the specified labels
Parameters
----------
labels : list of strings, optional
The pore labels that should be included in the count.
If not supplied, all pores are counted.
labels : list of strings
Label of pores to be returned
mode : str, optional
Specifies how the count should be performed. The options are:
============== ===================================================
mode meaning
============== ===================================================
'or' Returns the labels that are assigned to *any* of
the given locations. Also accepts 'union' and 'any'
'and' Labels that are present on all the given locations.
also accepts 'intersection' and 'all'
'xor' Labels that are present on *only one*
of the given locations.Also accepts 'exclusive_or'
'nor' Labels that are *not* present on any of
the given locations. Also accepts 'not' and 'none'
'nand' Labels that are present on *all but one* of the
given locations
'xnor' Labels that are present on *more than one* of the
given locations.
============== ===================================================
Returns
-------
Np : int
Number of pores with the specified labels
See Also
--------
num_throats
count
Notes
-----
Technically, *'nand'* and *'xnor'* should also count pores with *none*
of the labels, however, to make the count more useful these are not
included.
|
num_pores
|
python
|
PMEAL/OpenPNM
|
openpnm/core/_mixins.py
|
https://github.com/PMEAL/OpenPNM/blob/master/openpnm/core/_mixins.py
|
MIT
|
def num_throats(self, labels='all', mode='union'):
r"""
Return the number of throats of the specified labels
Parameters
----------
labels : list of strings, optional
The throat labels that should be included in the count.
If not supplied, all throats are counted.
mode : str, optional
Specifies how the count should be performed. The options are:
============== ===================================================
mode meaning
============== ===================================================
'or' Returns the labels that are assigned to *any* of
the given locations. Also accepts 'union' and 'any'
'and' Labels that are present on all the given locations.
also accepts 'intersection' and 'all'
'xor' Labels that are present on *only one*
of the given locations.Also accepts 'exclusive_or'
'nor' Labels that are *not* present on any of
the given locations. Also accepts 'not' and 'none'
'nand' Labels that are present on *all but one* of the
given locations
'xnor' Labels that are present on *more than one* of the
given locations.
============== ===================================================
Returns
-------
Nt : int
Number of throats with the specified labels
See Also
--------
num_pores
count
Notes
-----
Technically, *'nand'* and *'xnor'* should also count throats with
*none* of the labels, however, to make the count more useful these are
not included.
"""
# Count number of pores of specified type
Ts = self._get_indices(labels=labels, mode=mode, element='throat')
Nt = np.shape(Ts)[0]
return Nt
|
Return the number of throats of the specified labels
Parameters
----------
labels : list of strings, optional
The throat labels that should be included in the count.
If not supplied, all throats are counted.
mode : str, optional
Specifies how the count should be performed. The options are:
============== ===================================================
mode meaning
============== ===================================================
'or' Returns the labels that are assigned to *any* of
the given locations. Also accepts 'union' and 'any'
'and' Labels that are present on all the given locations.
also accepts 'intersection' and 'all'
'xor' Labels that are present on *only one*
of the given locations.Also accepts 'exclusive_or'
'nor' Labels that are *not* present on any of
the given locations. Also accepts 'not' and 'none'
'nand' Labels that are present on *all but one* of the
given locations
'xnor' Labels that are present on *more than one* of the
given locations.
============== ===================================================
Returns
-------
Nt : int
Number of throats with the specified labels
See Also
--------
num_pores
count
Notes
-----
Technically, *'nand'* and *'xnor'* should also count throats with
*none* of the labels, however, to make the count more useful these are
not included.
|
num_throats
|
python
|
PMEAL/OpenPNM
|
openpnm/core/_mixins.py
|
https://github.com/PMEAL/OpenPNM/blob/master/openpnm/core/_mixins.py
|
MIT
|
def _find_target(self):
"""
Finds and returns the target object to which this ModelsDict is
associated.
"""
for proj in ws.values():
for obj in proj:
if hasattr(obj, "models"):
if obj.models is self:
return obj
raise Exception("No target object found!")
|
Finds and returns the target object to which this ModelsDict is
associated.
|
_find_target
|
python
|
PMEAL/OpenPNM
|
openpnm/core/_models.py
|
https://github.com/PMEAL/OpenPNM/blob/master/openpnm/core/_models.py
|
MIT
|
def dependency_list(self):
r"""
Returns a list of dependencies in the order with which they should
be called to ensure data is calculated by one model before it's
asked for by another.
Notes
-----
This raises an exception if the graph has cycles which means the
dependencies are unresolvable (i.e. there is no order which the
models can be called that will work). In this case it is possible
to visually inspect the graph using ``dependency_graph``.
See Also
--------
dependency_graph
dependency_map
"""
import networkx as nx
dtree = self.dependency_graph()
cycles = list(nx.simple_cycles(dtree))
if cycles:
msg = 'Cyclic dependency: ' + ' -> '.join(cycles[0] + [cycles[0][0]])
raise Exception(msg)
d = nx.algorithms.dag.lexicographical_topological_sort(dtree, sorted)
return list(d)
|
Returns a list of dependencies in the order with which they should
be called to ensure data is calculated by one model before it's
asked for by another.
Notes
-----
This raises an exception if the graph has cycles which means the
dependencies are unresolvable (i.e. there is no order which the
models can be called that will work). In this case it is possible
to visually inspect the graph using ``dependency_graph``.
See Also
--------
dependency_graph
dependency_map
|
dependency_list
|
python
|
PMEAL/OpenPNM
|
openpnm/core/_models.py
|
https://github.com/PMEAL/OpenPNM/blob/master/openpnm/core/_models.py
|
MIT
|
def dependency_graph(self, deep=False):
"""
Returns a NetworkX graph object of the dependencies
Parameters
----------
deep : bool, optional
Defines whether intra- or inter-object dependency graph is
desired. Default is False, i.e. only returns dependencies
within the object.
See Also
--------
dependency_list
dependency_map
"""
import networkx as nx
dtree = nx.DiGraph()
models = list(self.keys())
for model in models:
propname = model.split("@")[0]
dtree.add_node(propname)
# Filter pore/throat props only
args = op.utils.flat_list(self[model].values())
dependencies = [arg for arg in args if is_valid_propname(arg)]
# Add dependency from model's parameters
for d in dependencies:
dtree.add_edge(d, propname)
return dtree
|
Returns a NetworkX graph object of the dependencies
Parameters
----------
deep : bool, optional
Defines whether intra- or inter-object dependency graph is
desired. Default is False, i.e. only returns dependencies
within the object.
See Also
--------
dependency_list
dependency_map
|
dependency_graph
|
python
|
PMEAL/OpenPNM
|
openpnm/core/_models.py
|
https://github.com/PMEAL/OpenPNM/blob/master/openpnm/core/_models.py
|
MIT
|
def dependency_map(self,
ax=None,
figsize=None,
deep=False,
style='shell'): # pragma: no cover
"""
Create a graph of the dependency graph in a decent format
Parameters
----------
ax : matplotlib.axis, optional
Matplotlib axis object on which dependency map is to be drawn.
figsize : tuple, optional
Tuple containing frame size.
See Also
--------
dependency_graph
dependency_list
"""
import networkx as nx
import matplotlib.pyplot as plt
if ax is None:
fig, ax = plt.subplots()
if figsize is not None:
fig.set_size_inches(figsize)
labels = {}
node_shapes = {}
dtree = self.dependency_graph(deep=deep)
for node in dtree.nodes:
labels[node] = node.split(".")[1]
node_shapes[node] = "o" if node.startswith("pore") else "s"
nx.set_node_attributes(dtree, node_shapes, "node_shape")
layout = getattr(nx, f"{style}_layout")
pos = layout(dtree)
Pprops = [prop for prop in dtree.nodes if prop.startswith("pore")]
Tprops = [prop for prop in dtree.nodes if prop.startswith("throat")]
colors = ["yellowgreen", "coral"]
shapes = ["o", "s"]
for props, color, shape in zip([Pprops, Tprops], colors, shapes):
nx.draw(
dtree,
pos=pos,
nodelist=props,
node_shape=shape,
labels=labels,
with_labels=True,
edge_color='lightgrey',
node_color=color,
font_size=12,
width=2.0
)
ax = plt.gca()
ax.margins(x=0.2, y=0.05)
return ax
|
Create a graph of the dependency graph in a decent format
Parameters
----------
ax : matplotlib.axis, optional
Matplotlib axis object on which dependency map is to be drawn.
figsize : tuple, optional
Tuple containing frame size.
See Also
--------
dependency_graph
dependency_list
|
dependency_map
|
python
|
PMEAL/OpenPNM
|
openpnm/core/_models.py
|
https://github.com/PMEAL/OpenPNM/blob/master/openpnm/core/_models.py
|
MIT
|
def _info(self): # Pragma: no cover
r"""
Prints a nicely formatted list of model names and the domain to which
they apply.
Notes
-----
This is a hidden function for now, but could be exposed if useful.
"""
names = {}
for item in self:
name, _, domain = item.partition('@')
if name not in names.keys():
names[name] = []
names[name].append(domain)
D = PrintableDict(names, key='Model', value='Domain')
print(D)
|
Prints a nicely formatted list of model names and the domain to which
they apply.
Notes
-----
This is a hidden function for now, but could be exposed if useful.
|
_info
|
python
|
PMEAL/OpenPNM
|
openpnm/core/_models.py
|
https://github.com/PMEAL/OpenPNM/blob/master/openpnm/core/_models.py
|
MIT
|
def target(self):
"""
Finds and returns the object to which this model is assigned
"""
for proj in ws.values():
for obj in proj:
if hasattr(obj, "models"):
for mod in obj.models.values():
if mod is self:
return obj
raise Exception("No target object found!")
|
Finds and returns the object to which this model is assigned
|
target
|
python
|
PMEAL/OpenPNM
|
openpnm/core/_models.py
|
https://github.com/PMEAL/OpenPNM/blob/master/openpnm/core/_models.py
|
MIT
|
def add_model(self, propname, model, domain='all', regen_mode='normal',
**kwargs):
r"""
Add a pore-scale model to the object, along with the desired arguments
Parameters
----------
propname : str
The name of the property being computed. E.g. if
``propname='pore.diameter'`` then the computed results will be stored
in ``obj['pore.diameter']``.
model : function handle
The function that produces the values
domain : str
The label indicating the locations in which results generated by
``model`` should be stored. See `Notes` for more details.
regen_mode : str
How the model should be regenerated. Options are:
============ =====================================================
regen_mode description
============ =====================================================
normal (default) The model is run immediately upon being
added, and is also run each time ``regenerate_models``
is called.
deferred The model is NOT run when added, but is run each time
``regenerate_models`` is called. This is useful for
models that depend on other data that may not exist
yet.
constant The model is run immediately upon being added, but is
is not run when ``regenerate_models`` is called,
effectively turning the property into a constant.
============ =====================================================
kwargs : keyword arguments
All additional keyword arguments are passed on to the model
Notes
-----
The ``domain`` argument dictates where the results of ``model`` should
be stored. For instance, given ``propname='pore.diameter'`` and
``domain='left'`` then when `model` is run, the results are stored in
in the pores labelled left. Note that if ``model`` returns ``Np``
values, then values not belonging to ``'pore.left'`` are discarded.
The following steps outline the process:
1. Find the pore indices:
.. code-block:: python
Ps = obj.pores('left')
2. Run the model:
.. code-block:: python
vals = model(**kwargs)
3. If the model returns a full Np-length array, then extract the
correct values and apply them to the corresponding locations:
.. code-block:: python
if len(vals) == obj.Np:
obj['pore.diameter'][Ps] = vals[Ps]
4. If the model was designed to return only the subset of values then:
.. code-block:: python
if len(vals) == obj.num_pores('left'):
obj['pore.diameter'][Ps] = vals
"""
if '@' in propname:
propname, domain = propname.split('@')
elif domain is None:
domain = self.settings['default_domain']
element, prop = propname.split('.', 1)
domain = domain.split('.', 1)[-1]
# Add model and regen_mode to kwargs dictionary
kwargs.update({'model': model, 'regen_mode': regen_mode})
# Insepct model to extract arguments and default values
kwargs.update(self._inspect_model(model, kwargs))
self.models[propname+'@'+domain] = ModelWrapper(**kwargs)
if regen_mode != 'deferred':
self.run_model(propname+'@'+domain)
|
Add a pore-scale model to the object, along with the desired arguments
Parameters
----------
propname : str
The name of the property being computed. E.g. if
``propname='pore.diameter'`` then the computed results will be stored
in ``obj['pore.diameter']``.
model : function handle
The function that produces the values
domain : str
The label indicating the locations in which results generated by
``model`` should be stored. See `Notes` for more details.
regen_mode : str
How the model should be regenerated. Options are:
============ =====================================================
regen_mode description
============ =====================================================
normal (default) The model is run immediately upon being
added, and is also run each time ``regenerate_models``
is called.
deferred The model is NOT run when added, but is run each time
``regenerate_models`` is called. This is useful for
models that depend on other data that may not exist
yet.
constant The model is run immediately upon being added, but is
is not run when ``regenerate_models`` is called,
effectively turning the property into a constant.
============ =====================================================
kwargs : keyword arguments
All additional keyword arguments are passed on to the model
Notes
-----
The ``domain`` argument dictates where the results of ``model`` should
be stored. For instance, given ``propname='pore.diameter'`` and
``domain='left'`` then when `model` is run, the results are stored in
in the pores labelled left. Note that if ``model`` returns ``Np``
values, then values not belonging to ``'pore.left'`` are discarded.
The following steps outline the process:
1. Find the pore indices:
.. code-block:: python
Ps = obj.pores('left')
2. Run the model:
.. code-block:: python
vals = model(**kwargs)
3. If the model returns a full Np-length array, then extract the
correct values and apply them to the corresponding locations:
.. code-block:: python
if len(vals) == obj.Np:
obj['pore.diameter'][Ps] = vals[Ps]
4. If the model was designed to return only the subset of values then:
.. code-block:: python
if len(vals) == obj.num_pores('left'):
obj['pore.diameter'][Ps] = vals
|
add_model
|
python
|
PMEAL/OpenPNM
|
openpnm/core/_models.py
|
https://github.com/PMEAL/OpenPNM/blob/master/openpnm/core/_models.py
|
MIT
|
def add_model_collection(self, models, domain='all', regen_mode='deferred'):
r"""
Add a ``collection`` of several models at once
Parameters
----------
models : dict
The collection of models to add.
regen_mode : str
By default the models are not regenerated upon addition. See the
docstring for ``add_model`` for more information.
domain : str
The label indicating which locations the supplied collection
of models should be applied to.
Notes
-----
Collections are dictionaries that are formatted the same as
``obj.models``. Several model collections are available in
``openpnm.models.collections``.
"""
models = deepcopy(models)
for k, v in models.items():
if 'domain' not in v.keys():
v['domain'] = domain
if 'regen_mode' not in v.keys():
v['regen_mode'] = regen_mode
self.add_model(propname=k, **v)
|
Add a ``collection`` of several models at once
Parameters
----------
models : dict
The collection of models to add.
regen_mode : str
By default the models are not regenerated upon addition. See the
docstring for ``add_model`` for more information.
domain : str
The label indicating which locations the supplied collection
of models should be applied to.
Notes
-----
Collections are dictionaries that are formatted the same as
``obj.models``. Several model collections are available in
``openpnm.models.collections``.
|
add_model_collection
|
python
|
PMEAL/OpenPNM
|
openpnm/core/_models.py
|
https://github.com/PMEAL/OpenPNM/blob/master/openpnm/core/_models.py
|
MIT
|
def regenerate_models(self, propnames=None, exclude=[]):
r"""
Runs all the models stored in the object's ``models`` attribute
Parameters
----------
propnames : list of strings
If given then only the specified models are run
exclude : list of strings
If given then these models will *not* be run
Notes
-----
This function will ensure that models are called in the correct order
such that 'pore.diameter' will be run before 'pore.volume', since
the diameter is required to compute the volume.
"""
all_models = self.models.dependency_list()
# Regenerate all properties by default
if propnames is None:
propnames = all_models
else:
propnames = np.atleast_1d(propnames).tolist()
# Remove any that are specifically excluded
propnames = np.setdiff1d(propnames, exclude).tolist()
# Reorder given propnames according to dependency tree
tmp = [e.split("@")[0] for e in propnames]
idx_sorted = [all_models.index(e) for e in tmp]
propnames = [elem for i, elem in sorted(zip(idx_sorted, propnames))]
# Now run each on in sequence
for item in propnames:
try:
self.run_model(item)
except KeyError as e:
msg = (f"{item} was not run since the following property"
f" is missing: {e}")
logger.warning(msg)
self.models[item]['regen_mode'] = 'deferred'
|
Runs all the models stored in the object's ``models`` attribute
Parameters
----------
propnames : list of strings
If given then only the specified models are run
exclude : list of strings
If given then these models will *not* be run
Notes
-----
This function will ensure that models are called in the correct order
such that 'pore.diameter' will be run before 'pore.volume', since
the diameter is required to compute the volume.
|
regenerate_models
|
python
|
PMEAL/OpenPNM
|
openpnm/core/_models.py
|
https://github.com/PMEAL/OpenPNM/blob/master/openpnm/core/_models.py
|
MIT
|
def run_model(self, propname, domain=None):
r"""
Runs the requested model and places the result into the correct
locations
Parameters
----------
propname : str
The name of the model to run.
domain : str
The label of the domain for which the model should be run. Passing
``propname='pore.diameter@domain1`` and ``domain=None`` is
equivalent to passing ``propname='pore.diameter`` and
``domain=domain1``. Passing ``domain=None`` will regenerate
all models starting with ``propname``.
"""
if domain is None:
if '@' in propname: # Get domain from propname if present
propname, _, domain = propname.partition('@')
self.run_model(propname=propname, domain=domain)
else: # No domain means run model for ALL domains
for item in self.models.keys():
if item.startswith(propname+"@"):
_, _, domain = item.partition("@")
self.run_model(propname=propname, domain=domain)
else: # domain was given explicitly
domain = domain.split('.', 1)[-1]
element, prop = propname.split('@')[0].split('.', 1)
propname = f'{element}.{prop}'
mod_dict = self.models[propname+'@'+domain]
# Collect kwargs
kwargs = {'domain': f'{element}.{domain}'}
for item in mod_dict.keys():
if item not in ['model', 'regen_mode']:
kwargs[item] = mod_dict[item]
# Deal with models that don't have domain argument yet
if 'domain' not in inspect.getfullargspec(mod_dict['model']).args:
_ = kwargs.pop('domain', None)
vals = mod_dict['model'](self, **kwargs)
if isinstance(vals, dict): # Handle models that return a dict
for k, v in vals.items():
v = np.atleast_1d(v)
if v.shape[0] == 1: # Returned item was a scalar
v = np.tile(v, self._count(element))
vals[k] = v[self[f'{element}.{domain}']]
elif isinstance(vals, (int, float)): # Handle models that return a float
vals = np.atleast_1d(vals)
else: # Index into full domain result for use below
vals = vals[self[f'{element}.{domain}']]
else: # Model that accepts domain arg
vals = mod_dict['model'](self, **kwargs)
# Finally add model results to self
if isinstance(vals, np.ndarray): # If model returns single array
if propname not in self.keys():
temp = self._initialize_empty_array_like(vals, element)
self[f'{element}.{prop}'] = temp
self[propname][self[f'{element}.{domain}']] = vals
elif isinstance(vals, dict): # If model returns a dict of arrays
for k, v in vals.items():
if f'{propname}.{k}' not in self.keys():
temp = self._initialize_empty_array_like(v, element)
self[f'{propname}.{k}'] = temp
self[f'{propname}.{k}'][self[f'{element}.{domain}']] = v
|
Runs the requested model and places the result into the correct
locations
Parameters
----------
propname : str
The name of the model to run.
domain : str
The label of the domain for which the model should be run. Passing
``propname='pore.diameter@domain1`` and ``domain=None`` is
equivalent to passing ``propname='pore.diameter`` and
``domain=domain1``. Passing ``domain=None`` will regenerate
all models starting with ``propname``.
|
run_model
|
python
|
PMEAL/OpenPNM
|
openpnm/core/_models.py
|
https://github.com/PMEAL/OpenPNM/blob/master/openpnm/core/_models.py
|
MIT
|
def solve(self, rhs, x0, tspan, saveat, **kwargs):
"""
Solves the system of ODEs defined by dy/dt = rhs(t, y).
Parameters
----------
rhs : function handle
RHS vector in the system of ODEs defined by dy/dt = rhs(t, y)
x0 : array_like
Initial value for the system of ODEs
tspan : array_like
2-element tuple (or array) representing the timespan for the
system of ODEs
saveat : float or array_like
If float, defines the time interval at which the solution is
to be stored. If array_like, defines the time points at which
the solution is to be stored.
**kwargs : keyword arguments
Other keyword arguments that might get used by the integrator
Returns
-------
TransientSolution
Solution of the system of ODEs stored in a subclass of numpy's
ndarray with some added functionalities (ex. you can get the
solution at intermediate time points via: y = soln(t_i)).
"""
options = {
"atol": self.atol,
"rtol": self.rtol,
"t_eval": saveat,
# FIXME: uncomment next line when/if scipy#11815 is merged
# "verbose": self.verbose,
}
sol = solve_ivp(rhs, tspan, x0, method="RK45", **options)
if sol.success:
return TransientSolution(sol.t, sol.y)
raise Exception(sol.message)
|
Solves the system of ODEs defined by dy/dt = rhs(t, y).
Parameters
----------
rhs : function handle
RHS vector in the system of ODEs defined by dy/dt = rhs(t, y)
x0 : array_like
Initial value for the system of ODEs
tspan : array_like
2-element tuple (or array) representing the timespan for the
system of ODEs
saveat : float or array_like
If float, defines the time interval at which the solution is
to be stored. If array_like, defines the time points at which
the solution is to be stored.
**kwargs : keyword arguments
Other keyword arguments that might get used by the integrator
Returns
-------
TransientSolution
Solution of the system of ODEs stored in a subclass of numpy's
ndarray with some added functionalities (ex. you can get the
solution at intermediate time points via: y = soln(t_i)).
|
solve
|
python
|
PMEAL/OpenPNM
|
openpnm/integrators/_scipy.py
|
https://github.com/PMEAL/OpenPNM/blob/master/openpnm/integrators/_scipy.py
|
MIT
|
def network_to_comsol(network, filename=None):
r"""
Saves the network and geometry data from the given objects into the
specified file. This exports in 2D only where throats and pores
have rectangular and circular shapes, respectively.
Parameters
----------
network : Network
The network containing the desired data
Notes
-----
- The exported files contain COMSOL geometry objects, not meshes.
- This class exports in 2D only.
"""
if op.topotools.dimensionality(network).sum() == 3:
raise Exception("COMSOL I/O class only works for 2D networks!")
filename = network.name if filename is None else filename
f = open(f"{filename}.mphtxt", 'w')
header(file=f, Nr=network.Nt, Nc=network.Np)
cn = network['throat.conns']
p1 = network['pore.coords'][cn[:, 0]]
p2 = network['pore.coords'][cn[:, 1]]
# Compute the rotation angle of throats
dif_x = p2[:, 0]-p1[:, 0]
dif_y = p2[:, 1]-p1[:, 1]
# Avoid division by 0
m = np.array([dif_x_i != 0 for dif_x_i in dif_x])
r = np.zeros((len(dif_x)))
r[~m] = np.inf
r[m] = dif_y[m]/dif_x[m]
angles = np.arctan(r)
r_w = network['throat.diameter']
rectangles(file=f, pores1=p1, pores2=p2, alphas=angles, widths=r_w)
c_c = network['pore.coords']
c_r = network['pore.diameter']/2.0
circles(file=f, centers=c_c, radii=c_r)
f.close()
|
Saves the network and geometry data from the given objects into the
specified file. This exports in 2D only where throats and pores
have rectangular and circular shapes, respectively.
Parameters
----------
network : Network
The network containing the desired data
Notes
-----
- The exported files contain COMSOL geometry objects, not meshes.
- This class exports in 2D only.
|
network_to_comsol
|
python
|
PMEAL/OpenPNM
|
openpnm/io/_comsol.py
|
https://github.com/PMEAL/OpenPNM/blob/master/openpnm/io/_comsol.py
|
MIT
|
def project_to_csv(project, filename=''):
r"""
Save all the pore and throat data on the Network and Phase objects to a CSV
file
Parameters
----------
project : list
An openpnm ``project`` object
filename : str or path object
The name of the file to store the data
"""
df = project_to_pandas(project=project, join=True, delim='.')
if filename == '':
filename = project.name
fname = _parse_filename(filename=filename, ext='csv')
df.to_csv(fname, index=False)
|
Save all the pore and throat data on the Network and Phase objects to a CSV
file
Parameters
----------
project : list
An openpnm ``project`` object
filename : str or path object
The name of the file to store the data
|
project_to_csv
|
python
|
PMEAL/OpenPNM
|
openpnm/io/_csv.py
|
https://github.com/PMEAL/OpenPNM/blob/master/openpnm/io/_csv.py
|
MIT
|
def project_to_dict(project, categorize_by=['name'], flatten=False, element=None,
delim=' | '):
r"""
Returns a single dictionary object containing data from the given
OpenPNM project, with the keys organized differently depending on
optional arguments.
Parameters
----------
project : list
An OpenPNM project object
categorize_by : str or list[str]
Indicates how the dictionaries should be organized. The list can
contain any, all or none of the following strings:
**'object'** : If specified the dictionary keys will be stored
under a general level corresponding to their type (e.g.
'network/net_01/pore.all').
**'name'** : If specified, then the data arrays are additionally
categorized by their name. This is enabled by default.
**'data'** : If specified the data arrays are additionally
categorized by ``label`` and ``property`` to separate *boolean*
from *numeric* data.
**'element'** : If specified the data arrays are
additionally categorized by ``pore`` and ``throat``, meaning
that the propnames are no longer prepended by a 'pore.' or
'throat.'
Returns
-------
A dictionary with the data stored in a hierarchical data structure, the
actual format of which depends on the arguments to the function.
"""
network = project.network
phases = project.phases
algs = project.algorithms
if flatten:
d = {}
else:
d = NestedDict(delimiter=delim)
def build_path(obj, key):
propname = key
name = ''
prefix = ''
datatype = ''
arr = obj[key]
if 'object' in categorize_by:
if hasattr(obj, 'coords'):
prefix = 'network' + delim
else:
prefix = 'phase' + delim
if 'element' in categorize_by:
propname = key.replace('.', delim)
if 'data' in categorize_by:
if arr.dtype == bool:
datatype = 'labels' + delim
else:
datatype = 'properties' + delim
if 'name' in categorize_by:
name = obj.name + delim
path = prefix + name + datatype + propname
return path
for key in network.props(element=element) + network.labels(element=element):
path = build_path(obj=network, key=key)
d[path] = network[key]
for phase in phases:
for key in phase.props(element=element) + phase.labels(element=element):
path = build_path(obj=phase, key=key)
d[path] = phase[key]
for alg in algs:
try: # 'quantity' is missing for multiphysics algorithm
key = alg.settings['quantity']
except AttributeError:
break
# only for transient algs
transient = is_transient(alg)
path = build_path(alg, key)
if transient:
times = alg.soln[key].t
for i, t in enumerate(times):
d[path + '#' + nbr_to_str(t)] = alg.soln[key][:, i]
else:
d[path] = alg.soln[key]
return d
|
Returns a single dictionary object containing data from the given
OpenPNM project, with the keys organized differently depending on
optional arguments.
Parameters
----------
project : list
An OpenPNM project object
categorize_by : str or list[str]
Indicates how the dictionaries should be organized. The list can
contain any, all or none of the following strings:
**'object'** : If specified the dictionary keys will be stored
under a general level corresponding to their type (e.g.
'network/net_01/pore.all').
**'name'** : If specified, then the data arrays are additionally
categorized by their name. This is enabled by default.
**'data'** : If specified the data arrays are additionally
categorized by ``label`` and ``property`` to separate *boolean*
from *numeric* data.
**'element'** : If specified the data arrays are
additionally categorized by ``pore`` and ``throat``, meaning
that the propnames are no longer prepended by a 'pore.' or
'throat.'
Returns
-------
A dictionary with the data stored in a hierarchical data structure, the
actual format of which depends on the arguments to the function.
|
project_to_dict
|
python
|
PMEAL/OpenPNM
|
openpnm/io/_dict.py
|
https://github.com/PMEAL/OpenPNM/blob/master/openpnm/io/_dict.py
|
MIT
|
def project_to_hdf5(project, filename=''):
r"""
Creates an HDF5 file containing data from the specified objects
Parameters
----------
network : Network
The network containing the desired data
phases : list[Phase]s (optional, default is none)
A list of phase objects whose data are to be included
Returns
-------
f : hdf5 file handle
A handle to an hdf5 file. This must be closed when done (i.e.
``f.close()``.
"""
from h5py import File as hdfFile
if filename == '':
filename = project.name
filename = _parse_filename(filename, ext='hdf')
dct = project_to_dict(project=project)
d = pd.json_normalize(dct, sep='.').to_dict(orient='records')[0]
for k in list(d.keys()):
d[k.replace('.', '/')] = d.pop(k)
f = hdfFile(filename, "w")
for item in list(d.keys()):
tempname = '_'.join(item.split('.'))
arr = d[item]
if d[item].dtype == 'O':
logger.warning(item + ' has dtype object, will not write to file')
del d[item]
elif 'U' in str(arr[0].dtype):
pass
else:
f.create_dataset(name='/'+tempname, shape=arr.shape,
dtype=arr.dtype, data=arr)
return f
|
Creates an HDF5 file containing data from the specified objects
Parameters
----------
network : Network
The network containing the desired data
phases : list[Phase]s (optional, default is none)
A list of phase objects whose data are to be included
Returns
-------
f : hdf5 file handle
A handle to an hdf5 file. This must be closed when done (i.e.
``f.close()``.
|
project_to_hdf5
|
python
|
PMEAL/OpenPNM
|
openpnm/io/_hdf5.py
|
https://github.com/PMEAL/OpenPNM/blob/master/openpnm/io/_hdf5.py
|
MIT
|
def print_hdf5(f, flat=False):
r"""
Given an hdf5 file handle, prints to console in a human readable manner
Parameters
----------
f : file handle
The hdf5 file to print
flat : bool
Flag to indicate if print should be nested or flat. The default is
``flat==False`` resulting in a nested view.
"""
if flat is False:
def print_level(f, p='', indent='-'):
for item in f.keys():
if hasattr(f[item], 'keys'):
p = print_level(f[item], p=p, indent=indent + indent[0])
elif indent[-1] != ' ':
indent = indent + ''
p = indent + item + '\n' + p
return p
p = print_level(f)
print(p)
else:
f.visit(print)
|
Given an hdf5 file handle, prints to console in a human readable manner
Parameters
----------
f : file handle
The hdf5 file to print
flat : bool
Flag to indicate if print should be nested or flat. The default is
``flat==False`` resulting in a nested view.
|
print_hdf5
|
python
|
PMEAL/OpenPNM
|
openpnm/io/_hdf5.py
|
https://github.com/PMEAL/OpenPNM/blob/master/openpnm/io/_hdf5.py
|
MIT
|
def network_to_jsongraph(network, filename=''):
r"""
Write the network to disk as a JGF file.
Parameters
----------
network : Network
filename : str
Desired file name, defaults to network name if not given
"""
# Ensure output file is valid
filename = _parse_filename(filename=filename, ext='json')
# Ensure network contains the required properties
try:
required_props = {'pore.diameter', 'pore.coords', 'throat.length',
'throat.conns', 'throat.diameter'}
assert required_props.issubset(network.props())
except AssertionError:
raise Exception('Error - network is missing one of: '
+ str(required_props))
# Create 'metadata' JSON object
graph_metadata_obj = {'number_of_nodes': network.Np,
'number_of_links': network.Nt}
# Create 'nodes' JSON object
nodes_obj = [
{
'id': str(ps),
'metadata': {
'node_squared_radius': int(network['pore.diameter'][ps] / 2)**2,
'node_coordinates': {
'x': int(network['pore.coords'][ps, 0]),
'y': int(network['pore.coords'][ps, 1]),
'z': int(network['pore.coords'][ps, 2])
}
}
} for ps in network.Ps]
# Create 'edges' JSON object
edges_obj = [
{
'id': str(ts),
'source': str(network['throat.conns'][ts, 0]),
'target': str(network['throat.conns'][ts, 1]),
'metadata': {
'link_length': float(network['throat.length'][ts]),
'link_squared_radius': float(network['throat.diameter'][ts] / 2)**2
}
} for ts in network.Ts]
# Build 'graph' JSON object from 'metadata', 'nodes' and 'edges'
graph_obj = {'metadata': graph_metadata_obj,
'nodes': nodes_obj,
'edges': edges_obj}
# Build full JSON object
json_obj = {'graph': graph_obj}
# Load and validate input JSON
with open(filename, 'w') as file:
json.dump(json_obj, file, indent=2)
|
Write the network to disk as a JGF file.
Parameters
----------
network : Network
filename : str
Desired file name, defaults to network name if not given
|
network_to_jsongraph
|
python
|
PMEAL/OpenPNM
|
openpnm/io/_jsongraph.py
|
https://github.com/PMEAL/OpenPNM/blob/master/openpnm/io/_jsongraph.py
|
MIT
|
def network_from_jsongraph(filename):
r"""
Loads the JGF file onto the given project.
Parameters
----------
filename : str
The name of the file containing the data to import. The formatting
of this file is outlined below.
Returns
-------
network : dict
An OpenPNM Network dictionary
"""
# Ensure input file is valid
filename = _parse_filename(filename=filename, ext='json')
# Load and validate input JSON
with open(filename, 'r') as file:
json_file = json.load(file)
if not _validate_json(json_file):
raise Exception('File is not in the JSON Graph Format')
# Extract graph metadata from JSON
number_of_nodes = json_file['graph']['metadata']['number_of_nodes']
number_of_links = json_file['graph']['metadata']['number_of_links']
# Extract node properties from JSON
nodes = sorted(json_file['graph']['nodes'], key=lambda node: int(node['id']))
x = np.array([node['metadata']['node_coordinates']['x'] for node in nodes])
y = np.array([node['metadata']['node_coordinates']['y'] for node in nodes])
z = np.array([node['metadata']['node_coordinates']['z'] for node in nodes])
# Extract link properties from JSON
edges = sorted(json_file['graph']['edges'], key=lambda edge: int(edge['id']))
source = np.array([int(edge['source']) for edge in edges])
target = np.array([int(edge['target']) for edge in edges])
link_length = np.array([edge['metadata']['link_length'] for edge in edges])
link_squared_radius = np.array(
[edge['metadata']['link_squared_radius'] for edge in edges])
# Generate network object
network = Network()
network['pore.all'] = np.ones([number_of_nodes, ], dtype=bool)
network['throat.all'] = np.ones([number_of_links, ], dtype=bool)
# Define primitive throat properties
network['throat.length'] = link_length
network['throat.conns'] = np.column_stack([source, target])
network['throat.diameter'] = 2.0 * np.sqrt(link_squared_radius)
# Define primitive pore properties
network['pore.index'] = np.arange(number_of_nodes)
network['pore.coords'] = np.column_stack([x, y, z])
network['pore.diameter'] = np.zeros(number_of_nodes)
return network
|
Loads the JGF file onto the given project.
Parameters
----------
filename : str
The name of the file containing the data to import. The formatting
of this file is outlined below.
Returns
-------
network : dict
An OpenPNM Network dictionary
|
network_from_jsongraph
|
python
|
PMEAL/OpenPNM
|
openpnm/io/_jsongraph.py
|
https://github.com/PMEAL/OpenPNM/blob/master/openpnm/io/_jsongraph.py
|
MIT
|
def network_from_marock(filename, voxel_size=1):
r"""
Load data from a 3DMA-Rock extracted network.
Parameters
----------
filename : str
The location of the 'np2th' and 'th2np' files. This can be an
absolute path or relative to the current working directory.
voxel_size : scalar
The resolution of the image on which 3DMA-Rock was run, in terms of
the linear length of eac voxel. The default is 1. This is used to
scale the voxel counts to actual dimension. It is recommended that
this value be in SI units [m] to work well with OpenPNM.
Returns
-------
network : dict
An OpenPNM Network dictionary
Notes
-----
This format consists of two files: 'rockname.np2th' and 'rockname.th2pn'.
They should be stored together in a folder which is referred to by the
path argument. These files are binary and therefore not human readable.
References
----------
3DMA-Rock is a network extraction algorithm developed by Brent Lindquist
and his group
It uses Medial Axis thinning to find the skeleton of the pore space, then
extracts geometrical features such as pore volume and throat
cross-sectional area.
[1] Lindquist, W. Brent, S. M. Lee, W. Oh, A. B. Venkatarangan, H. Shin,
and M. Prodanovic. "3DMA-Rock: A software package for automated analysis
of rock pore structure in 3-D computed microtomography images." SUNY Stony
Brook (2005).
"""
net = {}
path = Path(filename)
path = path.resolve()
for file in os.listdir(path):
if file.endswith(".np2th"):
np2th_file = os.path.join(path, file)
elif file.endswith(".th2np"):
th2np_file = os.path.join(path, file)
with open(np2th_file, mode='rb') as f:
[Np, Nt] = np.fromfile(file=f, count=2, dtype='u4')
net['pore.boundary_type'] = np.ndarray([Np, ], int)
net['throat.conns'] = np.ones([Nt, 2], int)*(-1)
net['pore.coordination'] = np.ndarray([Np, ], int)
net['pore.ID_number'] = np.ndarray([Np, ], int)
for i in range(0, Np):
ID = np.fromfile(file=f, count=1, dtype='u4')
net['pore.ID_number'][i] = ID
net['pore.boundary_type'][i] = np.fromfile(file=f, count=1,
dtype='u1')
z = np.fromfile(file=f, count=1, dtype='u4')[0]
net['pore.coordination'][i] = z
att_pores = np.fromfile(file=f, count=z, dtype='u4')
att_throats = np.fromfile(file=f, count=z, dtype='u4')
for j in range(0, len(att_throats)):
t = att_throats[j] - 1
p = att_pores[j] - 1
net['throat.conns'][t] = [i, p]
net['throat.conns'] = np.sort(net['throat.conns'], axis=1)
net['pore.volume'] = np.fromfile(file=f, count=Np, dtype='u4')
nx = np.fromfile(file=f, count=1, dtype='u4')
nxy = np.fromfile(file=f, count=1, dtype='u4')
pos = np.fromfile(file=f, count=Np, dtype='u4')
ny = nxy/nx
ni = np.mod(pos, nx)
nj = np.mod(np.floor(pos/nx), ny)
nk = np.floor(np.floor(pos/nx)/ny)
net['pore.coords'] = np.array([ni, nj, nk]).T
with open(th2np_file, mode='rb') as f:
Nt = np.fromfile(file=f, count=1, dtype='u4')[0]
net['throat.cross_sectional_area'] = \
np.ones([Nt, ], dtype=int)*(-1)
for i in range(0, Nt):
ID = np.fromfile(file=f, count=1, dtype='u4')
net['throat.cross_sectional_area'][i] = \
np.fromfile(file=f, count=1, dtype='f4')
# numvox = np.fromfile(file=f, count=1, dtype='u4')
att_pores = np.fromfile(file=f, count=2, dtype='u4')
nx = np.fromfile(file=f, count=1, dtype='u4')
nxy = np.fromfile(file=f, count=1, dtype='u4')
pos = np.fromfile(file=f, count=Nt, dtype='u4')
ny = nxy/nx
ni = np.mod(pos, nx)
nj = np.mod(np.floor(pos/nx), ny)
nk = np.floor(np.floor(pos/nx)/ny)
net['throat.coords'] = np.array([ni, nj, nk]).T
net['pore.internal'] = net['pore.boundary_type'] == 0
# Convert voxel area and volume to actual dimensions
net['throat.cross_sectional_area'] = \
(voxel_size**2)*net['throat.cross_sectional_area']
net['pore.volume'] = (voxel_size**3)*net['pore.volume']
network = Network()
network.update(net)
# Trim headless throats before returning
ind = np.where(network['throat.conns'][:, 0] == -1)[0]
trim(network=network, throats=ind)
return network
|
Load data from a 3DMA-Rock extracted network.
Parameters
----------
filename : str
The location of the 'np2th' and 'th2np' files. This can be an
absolute path or relative to the current working directory.
voxel_size : scalar
The resolution of the image on which 3DMA-Rock was run, in terms of
the linear length of eac voxel. The default is 1. This is used to
scale the voxel counts to actual dimension. It is recommended that
this value be in SI units [m] to work well with OpenPNM.
Returns
-------
network : dict
An OpenPNM Network dictionary
Notes
-----
This format consists of two files: 'rockname.np2th' and 'rockname.th2pn'.
They should be stored together in a folder which is referred to by the
path argument. These files are binary and therefore not human readable.
References
----------
3DMA-Rock is a network extraction algorithm developed by Brent Lindquist
and his group
It uses Medial Axis thinning to find the skeleton of the pore space, then
extracts geometrical features such as pore volume and throat
cross-sectional area.
[1] Lindquist, W. Brent, S. M. Lee, W. Oh, A. B. Venkatarangan, H. Shin,
and M. Prodanovic. "3DMA-Rock: A software package for automated analysis
of rock pore structure in 3-D computed microtomography images." SUNY Stony
Brook (2005).
|
network_from_marock
|
python
|
PMEAL/OpenPNM
|
openpnm/io/_marock.py
|
https://github.com/PMEAL/OpenPNM/blob/master/openpnm/io/_marock.py
|
MIT
|
def network_from_networkx(G):
r"""
Creates an OpenPNM Network from a undirected NetworkX graph object
Parameters
----------
G : networkx.classes.graph.Graph Object
The NetworkX graph. G should be undirected. The numbering of nodes
should be numeric (int's), zero-based and should not contain any
gaps, i.e. ``G.nodes() = [0,1,3,4,5]`` is not allowed and should be
mapped to ``G.nodes() = [0,1,2,3,4]``.
Returns
-------
network : dict
An OpenPNM network dictionary
Notes
-----
1. Each node in a NetworkX object (i.e. ``G``) can be assigned properties
using syntax like ``G.node[n]['diameter'] = 0.5`` where ``n`` is the
node number. There is no need to precede the property name with any
indication that it is pore data such as \'pore\_\'. OpenPNM will prepend
\'pore.\' to each property name.
2. Since \'pore.coords\' is so central to OpenPNM it should be specified
in the NetworkX object as \'coords\', and the [X, Y, Z] coordinates of
each node should be a 1x3 list.
3. Edges in a NetworkX object are accessed using the index numbers of the
two nodes it connects, such as ``G.adj[2][3]['length'] = 0.1``
indicating the edge that connects nodes 2 and 3. There is no need to
precede the property name with any indication that it is throat data such
as \'throat\_\'. OpenPNM will prepend \'throat.\' to each property name.
4. The \'throat.conns\' property is essential to OpenPNM, but this does NOT
need to be specified explicitly as a property in NetworkX. The
connectivity is embedded into the network representation and is extracted
by OpenPNM.
"""
import networkx as nx
from openpnm.network import Network
net = {}
# Ensure G is an undirected networkX graph with numerically numbered
# nodes for which numbering starts at 0 and does not contain any gaps
if not isinstance(G, nx.Graph): # pragma: no cover
raise Exception('Provided object is not a NetworkX graph.')
if nx.is_directed(G): # pragma: no cover
raise Exception('Provided graph is directed. Convert to undirected graph.')
if not all(isinstance(n, int) for n in G.nodes()): # pragma: no cover
raise Exception('Node numbering is not numeric. Convert to int.')
if min(G.nodes()) != 0: # pragma: no cover
raise Exception('Node numbering does not start at zero.')
if max(G.nodes()) + 1 != len(G.nodes()): # pragma: no cover
raise Exception('Node numbering contains gaps. Map nodes to remove gaps.')
# Parsing node data
Np = len(G)
net.update({'pore.all': np.ones((Np,), dtype=bool)})
for n, props in G.nodes(data=True):
for item in props.keys():
val = props[item]
dtype = type(val)
# Remove prepended pore. and pore_ if present
for b in ['pore.', 'pore_']:
item = item.replace(b, '')
# Create arrays for subsequent indexing, if not present already
if 'pore.'+item not in net.keys():
if dtype == str: # handle strings of arbitrary length
net['pore.'+item] = np.ndarray((Np,), dtype='object')
elif dtype is list:
dtype = type(val[0])
if dtype == str:
dtype = 'object'
cols = len(val)
net['pore.'+item] = np.ndarray((Np, cols), dtype=dtype)
else:
net['pore.'+item] = np.ndarray((Np,), dtype=dtype)
net['pore.'+item][n] = val
# Parsing edge data
# Deal with conns explicitly
try:
conns = list(G.edges) # NetworkX V2
except Exception: # pragma: no cover
conns = G.edges() # NetworkX V1
conns.sort()
# Add conns to Network
Nt = len(conns)
net.update({'throat.all': np.ones(Nt, dtype=bool)})
net.update({'throat.conns': np.array(conns)})
# Scan through each edge and extract all its properties
i = 0
for t in conns:
props = G[t[0]][t[1]]
for item in props:
val = props[item]
dtype = type(val)
# Remove prepended throat. and throat_ if present
for b in ['throat.', 'throat_']:
item = item.replace(b, '')
# Create arrays for subsequent indexing, if not present already
if 'throat.'+item not in net.keys():
if dtype == str:
net['throat.'+item] = np.ndarray((Nt,), dtype='object')
if dtype is list:
dtype = type(val[0])
if dtype == str:
dtype = 'object'
cols = len(val)
net['throat.'+item] = np.ndarray((Nt, cols),
dtype=dtype)
else:
net['throat.'+item] = np.ndarray((Nt,), dtype=dtype)
net['throat.'+item][i] = val
i += 1
network = Network()
network.update(net)
return network
|
Creates an OpenPNM Network from a undirected NetworkX graph object
Parameters
----------
G : networkx.classes.graph.Graph Object
The NetworkX graph. G should be undirected. The numbering of nodes
should be numeric (int's), zero-based and should not contain any
gaps, i.e. ``G.nodes() = [0,1,3,4,5]`` is not allowed and should be
mapped to ``G.nodes() = [0,1,2,3,4]``.
Returns
-------
network : dict
An OpenPNM network dictionary
Notes
-----
1. Each node in a NetworkX object (i.e. ``G``) can be assigned properties
using syntax like ``G.node[n]['diameter'] = 0.5`` where ``n`` is the
node number. There is no need to precede the property name with any
indication that it is pore data such as \'pore\_\'. OpenPNM will prepend
\'pore.\' to each property name.
2. Since \'pore.coords\' is so central to OpenPNM it should be specified
in the NetworkX object as \'coords\', and the [X, Y, Z] coordinates of
each node should be a 1x3 list.
3. Edges in a NetworkX object are accessed using the index numbers of the
two nodes it connects, such as ``G.adj[2][3]['length'] = 0.1``
indicating the edge that connects nodes 2 and 3. There is no need to
precede the property name with any indication that it is throat data such
as \'throat\_\'. OpenPNM will prepend \'throat.\' to each property name.
4. The \'throat.conns\' property is essential to OpenPNM, but this does NOT
need to be specified explicitly as a property in NetworkX. The
connectivity is embedded into the network representation and is extracted
by OpenPNM.
|
network_from_networkx
|
python
|
PMEAL/OpenPNM
|
openpnm/io/_networkx.py
|
https://github.com/PMEAL/OpenPNM/blob/master/openpnm/io/_networkx.py
|
MIT
|
def network_to_networkx(network):
r"""
Write OpenPNM Network to a NetworkX object.
Parameters
----------
network : dict
The OpenPNM Network to be converted to a NetworkX object
Returns
-------
G : undirected graph object
A NetworkX object with all pore/throat properties attached to it
"""
import networkx as nx
from openpnm.network import Network
# Ensure network is an Network.
if not isinstance(network, Network): # pragma: no cover
raise Exception('Provided network is not an OpenPNM Network.')
G = nx.Graph()
# Extracting node list and connectivity matrix from Network
nodes = map(int, network.Ps)
conns = network['throat.conns']
# Explicitly add nodes and connectivity matrix
G.add_nodes_from(nodes)
G.add_edges_from(conns)
# Attach Network properties to G
for prop in network.props() + network.labels():
if 'pore.' in prop:
if len(network[prop].shape) > 1:
val = {i: list(network[prop][i]) for i in network.Ps}
else:
val = {i: network[prop][i] for i in network.Ps}
nx.set_node_attributes(G, name=prop[5:], values=val)
if 'throat.' in prop:
val = {tuple(conn): network[prop][i] for i, conn
in enumerate(conns)}
nx.set_edge_attributes(G, name=prop[7:], values=val)
return G
|
Write OpenPNM Network to a NetworkX object.
Parameters
----------
network : dict
The OpenPNM Network to be converted to a NetworkX object
Returns
-------
G : undirected graph object
A NetworkX object with all pore/throat properties attached to it
|
network_to_networkx
|
python
|
PMEAL/OpenPNM
|
openpnm/io/_networkx.py
|
https://github.com/PMEAL/OpenPNM/blob/master/openpnm/io/_networkx.py
|
MIT
|
def network_to_pandas(network, join=False, delim='.'):
"""Converts network data to a Pandas DataFrame."""
proj = Project()
proj.append(network)
# Initialize pore and throat data dictionary using Dict class
pdata = project_to_dict(project=proj, element='pore',
flatten=True, categorize_by=[], delim=delim)
tdata = project_to_dict(project=proj, element='throat',
flatten=True, categorize_by=[], delim=delim)
data = _to_pandas(pdata, tdata, join, Np=network.Np, Nt=network.Nt)
return data
|
Converts network data to a Pandas DataFrame.
|
network_to_pandas
|
python
|
PMEAL/OpenPNM
|
openpnm/io/_pandas.py
|
https://github.com/PMEAL/OpenPNM/blob/master/openpnm/io/_pandas.py
|
MIT
|
def project_to_pandas(project, join=False, delim='.'):
r"""
Convert the Network and Phase data to a Pandas DataFrame(s)
Parameters
----------
project : list
An OpenPNM ``project`` object
join : bool
If ``False`` (default), two DataFrames are returned with *pore*
data in one, and *throat* data in the other. If ``True`` the pore
and throat data are combined into a single DataFrame. This can be
problematic as it will put NaNs into all the *pore* columns which
are shorter than the *throat* columns.
Returns
-------
Pandas ``DataFrame`` object(s) containing property and label data in
each column. If ``join`` was ``False`` (default) the two DataFrames are
returned in a dict, otherwise a single DataFrame with pore and
throat data in the same file, despite the column length being
different.
"""
network = project.network
# Initialize pore and throat data dictionary using Dict class
pdata = project_to_dict(project=project, element='pore',
flatten=True, categorize_by=['name'], delim=delim)
tdata = project_to_dict(project=project, element='throat',
flatten=True, categorize_by=['name'], delim=delim)
data = _to_pandas(pdata, tdata, join, Np=network.Np, Nt=network.Nt)
return data
|
Convert the Network and Phase data to a Pandas DataFrame(s)
Parameters
----------
project : list
An OpenPNM ``project`` object
join : bool
If ``False`` (default), two DataFrames are returned with *pore*
data in one, and *throat* data in the other. If ``True`` the pore
and throat data are combined into a single DataFrame. This can be
problematic as it will put NaNs into all the *pore* columns which
are shorter than the *throat* columns.
Returns
-------
Pandas ``DataFrame`` object(s) containing property and label data in
each column. If ``join`` was ``False`` (default) the two DataFrames are
returned in a dict, otherwise a single DataFrame with pore and
throat data in the same file, despite the column length being
different.
|
project_to_pandas
|
python
|
PMEAL/OpenPNM
|
openpnm/io/_pandas.py
|
https://github.com/PMEAL/OpenPNM/blob/master/openpnm/io/_pandas.py
|
MIT
|
def project_to_paraview(project, filename): # pragma: no cover
r"""
Exports an OpenPNM network to a paraview state file.
Parameters
----------
network : Network
The network containing the desired data.
filename : str
Path to saved .vtp file.
Notes
-----
Outputs a pvsm file that can be opened in Paraview. The pvsm file will
be saved with the same name as .vtp file
"""
try:
import paraview.simple
except ModuleNotFoundError:
msg = (
"The paraview python bindings must be installed using "
"conda install -c conda-forge paraview, however this may require"
" using a virtualenv since conflicts with other packages are common."
" This is why it is not explicitly included as a dependency in"
" OpenPNM."
)
raise ModuleNotFoundError(msg)
paraview.simple._DisableFirstRenderCameraReset()
file = os.path.splitext(filename)[0]
network = project.network
x, y, z = np.ptp(network.coords, axis=0)
if sum(op.topotools.dimensionality(network)) == 2:
zshape = 0
xshape = y
yshape = x
elif sum(op.topotools.dimensionality(network)) == 3:
zshape = x
xshape = z
yshape = y
maxshape = max(xshape, yshape, zshape)
shape = np.array([xshape, yshape, zshape])
# Create a new 'XML PolyData Reader'
Path = os.getcwd() + "\\" + file + '.vtp'
net_vtp = paraview.simple.XMLPolyDataReader(FileName=[Path])
p = op.io.Dict.to_dict(project=project, element=['pore'],
flatten=False,
categorize_by=['data' 'object'])
# The folloing lines are bit complex but avoid using the flatdict lib
p = pd.json_normalize(p, sep='.').to_dict(orient='records')[0]
for k in list(p.keys()):
p[k.replace('.', ' | ')] = p.pop(k)
t = op.io.Dict.to_dict(project=project, element=['throat'],
flatten=False,
categorize_by=['data' 'object'])
t = pd.json_normalize(t, sep='.').to_dict(orient='records')[0]
for k in list(t.keys()):
t[k.replace('.', '/')] = t.pop(k)
# Now write the p and t dictionaries
net_vtp.CellArrayStatus = t.keys()
net_vtp.PointArrayStatus = p.keys()
# Get active view
render_view = paraview.simple.GetActiveViewOrCreate('RenderView')
# Uncomment following to set a specific view size
# render_view.ViewSize = [1524, 527]
# Get layout
_ = paraview.simple.GetLayout()
# Show data in view
net_vtp_display = paraview.simple.Show(
net_vtp, render_view, 'GeometryRepresentation'
)
# Trace defaults for the display properties.
net_vtp_display.Representation = 'Surface'
net_vtp_display.ColorArrayName = [None, '']
net_vtp_display.OSPRayScaleArray = [
f'network | {network.name} | labels | pore.all']
net_vtp_display.OSPRayScaleFunction = 'PiecewiseFunction'
net_vtp_display.SelectOrientationVectors = 'None'
net_vtp_display.ScaleFactor = (maxshape-1)/10
net_vtp_display.SelectScaleArray = 'None'
net_vtp_display.GlyphType = 'Arrow'
net_vtp_display.GlyphTableIndexArray = 'None'
net_vtp_display.GaussianRadius = (maxshape-1)/200
net_vtp_display.SetScaleArray = \
['POINTS', 'network | ' + network.name + ' | labels | pore.all']
net_vtp_display.ScaleTransferFunction = 'PiecewiseFunction'
net_vtp_display.OpacityArray = \
['POINTS', 'network | ' + network.name + ' | labels | pore.all']
net_vtp_display.OpacityTransferFunction = 'PiecewiseFunction'
net_vtp_display.DataAxesGrid = 'GridAxesRepresentation'
net_vtp_display.PolarAxes = 'PolarAxesRepresentation'
# Init the 'PiecewiseFunction' selected for 'ScaleTransferFunction'
net_vtp_display.ScaleTransferFunction.Points = [1, 0, 0.5, 0, 1, 1, 0.5, 0]
# Init the 'PiecewiseFunction' selected for 'OpacityTransferFunction'
net_vtp_display.OpacityTransferFunction.Points = [1, 0, 0.5, 0, 1, 1, 0.5, 0]
# Reset view to fit data
render_view.ResetCamera()
# Get the material library
_ = paraview.simple.GetMaterialLibrary()
# Update the view to ensure updated data information
render_view.Update()
# Create a new 'Glyph'
glyph = paraview.simple.Glyph(Input=net_vtp, GlyphType='Arrow')
glyph.OrientationArray = ['POINTS', 'No orientation array']
glyph.ScaleArray = ['POINTS', 'No scale array']
glyph.ScaleFactor = 1
glyph.GlyphTransform = 'Transform2'
# Properties modified on glyph
glyph.GlyphType = 'Sphere'
glyph.ScaleArray = \
['POINTS', 'network | ' + network.name + ' | properties | pore.diameter']
# Show data in view
glyph_display = paraview.simple.Show(
glyph, render_view, 'GeometryRepresentation')
# Trace defaults for the display properties.
glyph_display.Representation = 'Surface'
glyph_display.ColorArrayName = [None, '']
glyph_display.OSPRayScaleArray = 'Normals'
glyph_display.OSPRayScaleFunction = 'PiecewiseFunction'
glyph_display.SelectOrientationVectors = 'None'
glyph_display.ScaleFactor = (maxshape - 1) / 10
glyph_display.SelectScaleArray = 'None'
glyph_display.GlyphType = 'Arrow'
glyph_display.GlyphTableIndexArray = 'None'
glyph_display.GaussianRadius = (maxshape - 1) / 200
glyph_display.SetScaleArray = ['POINTS', 'Normals']
glyph_display.ScaleTransferFunction = 'PiecewiseFunction'
glyph_display.OpacityArray = ['POINTS', 'Normals']
glyph_display.OpacityTransferFunction = 'PiecewiseFunction'
glyph_display.DataAxesGrid = 'GridAxesRepresentation'
glyph_display.PolarAxes = 'PolarAxesRepresentation'
# Init the 'PiecewiseFunction' selected for 'ScaleTransferFunction'
glyph_display.ScaleTransferFunction.Points = [-0.97, 0, 0.5, 0, 0.97, 1, 0.5, 0]
# Init the 'PiecewiseFunction' selected for 'OpacityTransferFunction'
glyph_display.OpacityTransferFunction.Points = [-0.97, 0, 0.5, 0, 0.97, 1, 0.5, 0]
# Update the view to ensure updated data information
render_view.Update()
# Set active source
paraview.simple.SetActiveSource(net_vtp)
# Create a new 'Shrink'
shrink1 = paraview.simple.Shrink(Input=net_vtp)
# Properties modified on shrink1
shrink1.ShrinkFactor = 1.0
# Show data in view
shrink_display = paraview.simple.Show(
shrink1, render_view, 'UnstructuredGridRepresentation')
# Trace defaults for the display properties.
shrink_display.Representation = 'Surface'
shrink_display.ColorArrayName = [None, '']
shrink_display.OSPRayScaleArray = \
['network | ' + network.name + ' | labels | pore.all']
shrink_display.OSPRayScaleFunction = 'PiecewiseFunction'
shrink_display.SelectOrientationVectors = 'None'
shrink_display.ScaleFactor = (maxshape-1)/10
shrink_display.SelectScaleArray = 'None'
shrink_display.GlyphType = 'Arrow'
shrink_display.GlyphTableIndexArray = 'None'
shrink_display.GaussianRadius = (maxshape-1)/200
shrink_display.SetScaleArray = \
['POINTS', 'network | ' + network.name + ' | labels | pore.all']
shrink_display.ScaleTransferFunction = 'PiecewiseFunction'
shrink_display.OpacityArray = \
['POINTS', 'network | ' + network.name + ' | labels | pore.all']
shrink_display.OpacityTransferFunction = 'PiecewiseFunction'
shrink_display.DataAxesGrid = 'GridAxesRepresentation'
shrink_display.PolarAxes = 'PolarAxesRepresentation'
shrink_display.ScalarOpacityUnitDistance = 1.0349360947089783
# Init the 'PiecewiseFunction' selected for 'ScaleTransferFunction'
shrink_display.ScaleTransferFunction.Points = [1, 0, 0.5, 0, 1, 1, 0.5, 0]
# Init the 'PiecewiseFunction' selected for 'OpacityTransferFunction'
shrink_display.OpacityTransferFunction.Points = [1, 0, 0.5, 0, 1, 1, 0.5, 0]
# Hide data in view
paraview.simple.Hide(net_vtp, render_view)
# Update the view to ensure updated data information
render_view.Update()
# Create a new 'Cell Data to Point Data'
cellDatatoPointData1 = paraview.simple.CellDatatoPointData(Input=shrink1)
cellDatatoPointData1.CellDataArraytoprocess = t
# Show data in view
cell_data_to_point_data_display = paraview.simple.Show(
cellDatatoPointData1, render_view, 'UnstructuredGridRepresentation'
)
# Trace defaults for the display properties.
cell_data_to_point_data_display.Representation = 'Surface'
cell_data_to_point_data_display.ColorArrayName = [None, '']
cell_data_to_point_data_display.OSPRayScaleArray = \
['network | ' + network.name + ' | labels | pore.all']
cell_data_to_point_data_display.OSPRayScaleFunction = 'PiecewiseFunction'
cell_data_to_point_data_display.SelectOrientationVectors = 'None'
cell_data_to_point_data_display.ScaleFactor = (maxshape-1)/10
cell_data_to_point_data_display.SelectScaleArray = 'None'
cell_data_to_point_data_display.GlyphType = 'Arrow'
cell_data_to_point_data_display.GlyphTableIndexArray = 'None'
cell_data_to_point_data_display.GaussianRadius = (maxshape-1)/200
cell_data_to_point_data_display.SetScaleArray = \
['POINTS', 'network | ' + network.name + ' | labels | pore.all']
cell_data_to_point_data_display.ScaleTransferFunction = 'PiecewiseFunction'
cell_data_to_point_data_display.OpacityArray = \
['POINTS', 'network | ' + network.name + ' | labels | pore.all']
cell_data_to_point_data_display.OpacityTransferFunction = 'PiecewiseFunction'
cell_data_to_point_data_display.DataAxesGrid = 'GridAxesRepresentation'
cell_data_to_point_data_display.PolarAxes = 'PolarAxesRepresentation'
cell_data_to_point_data_display.ScalarOpacityUnitDistance = 1.0349360947089783
# Init the 'PiecewiseFunction' selected for 'ScaleTransferFunction'
cell_data_to_point_data_display.ScaleTransferFunction.Points = [
1, 0, 0.5, 0, 1, 1, 0.5, 0]
# Init the 'PiecewiseFunction' selected for 'OpacityTransferFunction'
cell_data_to_point_data_display.OpacityTransferFunction.Points = [
1, 0, 0.5, 0, 1, 1, 0.5, 0]
# Hide data in view
paraview.simple.Hide(shrink1, render_view)
# Update the view to ensure updated data information
render_view.Update()
# Set active source
paraview.simple.SetActiveSource(shrink1)
# Set active source
paraview.simple.SetActiveSource(cellDatatoPointData1)
# Set active source
paraview.simple.SetActiveSource(shrink1)
# Create a new 'Extract Surface'
extractSurface1 = paraview.simple.ExtractSurface(Input=shrink1)
# Show data in view
extract_surface_display = paraview.simple.Show(
extractSurface1, render_view, 'GeometryRepresentation')
# Trace defaults for the display properties.
extract_surface_display.Representation = 'Surface'
extract_surface_display.ColorArrayName = [None, '']
extract_surface_display.OSPRayScaleArray = \
['network | ' + network.name + ' | labels | pore.all']
extract_surface_display.OSPRayScaleFunction = 'PiecewiseFunction'
extract_surface_display.SelectOrientationVectors = 'None'
extract_surface_display.ScaleFactor = (maxshape-1)/10
extract_surface_display.SelectScaleArray = 'None'
extract_surface_display.GlyphType = 'Arrow'
extract_surface_display.GlyphTableIndexArray = 'None'
extract_surface_display.GaussianRadius = (maxshape-1)/200
extract_surface_display.SetScaleArray = \
['POINTS', 'network | ' + network.name + ' | labels | pore.all']
extract_surface_display.ScaleTransferFunction = 'PiecewiseFunction'
extract_surface_display.OpacityArray = \
['POINTS', 'network | ' + network.name + ' | labels | pore.all']
extract_surface_display.OpacityTransferFunction = 'PiecewiseFunction'
extract_surface_display.DataAxesGrid = 'GridAxesRepresentation'
extract_surface_display.PolarAxes = 'PolarAxesRepresentation'
# Init the 'PiecewiseFunction' selected for 'ScaleTransferFunction'
extract_surface_display.ScaleTransferFunction.Points = [
1, 0, 0.5, 0, 1, 1, 0.5, 0]
# Init the 'PiecewiseFunction' selected for 'OpacityTransferFunction'
extract_surface_display.OpacityTransferFunction.Points = [
1, 0, 0.5, 0, 1, 1, 0.5, 0]
# Hide data in view
paraview.simple.Hide(shrink1, render_view)
# Update the view to ensure updated data information
render_view.Update()
# create a new 'Tube'
tube = paraview.simple.Tube(Input=extractSurface1)
tube.Scalars = ['POINTS', 'network |' + network.name + '| labels | pore.all']
tube.Vectors = [None, '1']
tube.Radius = 0.04
# Set active source
paraview.simple.SetActiveSource(extractSurface1)
# Destroy tube
paraview.simple.Delete(tube)
del tube
# Set active source
paraview.simple.SetActiveSource(shrink1)
# Set active source
paraview.simple.SetActiveSource(cellDatatoPointData1)
# Set active source
paraview.simple.SetActiveSource(extractSurface1)
# Create a new 'Tube'
tube = paraview.simple.Tube(Input=extractSurface1)
tube.Scalars = [
'POINTS', 'network |' + network.name + ' | labels | pore.all']
tube.Vectors = [None, '1']
tube.Radius = 0.04
# Properties modified on tube
tube.Vectors = ['POINTS', '1']
# Show data in view
tube_display = paraview.simple.Show(tube, render_view,
'GeometryRepresentation')
# Trace defaults for the display properties.
tube_display.Representation = 'Surface'
tube_display.ColorArrayName = [None, '']
tube_display.OSPRayScaleArray = 'TubeNormals'
tube_display.OSPRayScaleFunction = 'PiecewiseFunction'
tube_display.SelectOrientationVectors = 'None'
tube_display.ScaleFactor = (maxshape)/10
tube_display.SelectScaleArray = 'None'
tube_display.GlyphType = 'Arrow'
tube_display.GlyphTableIndexArray = 'None'
tube_display.GaussianRadius = (maxshape)/200
tube_display.SetScaleArray = ['POINTS', 'TubeNormals']
tube_display.ScaleTransferFunction = 'PiecewiseFunction'
tube_display.OpacityArray = ['POINTS', 'TubeNormals']
tube_display.OpacityTransferFunction = 'PiecewiseFunction'
tube_display.DataAxesGrid = 'GridAxesRepresentation'
tube_display.PolarAxes = 'PolarAxesRepresentation'
# Init the 'PiecewiseFunction' selected for 'ScaleTransferFunction'
tube_display.ScaleTransferFunction.Points = [-1, 0, 0.5, 0, 1, 1, 0.5, 0]
# Init the 'PiecewiseFunction' selected for 'OpacityTransferFunction'
tube_display.OpacityTransferFunction.Points = [-1, 0, 0.5, 0, 1, 1, 0.5, 0]
# Hide data in view
paraview.simple.Hide(extractSurface1, render_view)
# Update the view to ensure updated data information
render_view.Update()
# Saving camera placements for all active views
# Current camera placement for render_view
render_view.CameraPosition = [
(xshape + 1) / 2, (yshape + 1) / 2, 4.3 * np.sqrt(np.sum(shape / 2)**2)
]
render_view.CameraFocalPoint = [(xi+1) / 2 for xi in shape]
render_view.CameraParallelScale = np.sqrt(np.sum(shape / 2)**2)
paraview.simple.SaveState(f"{file}.pvsm")
|
Exports an OpenPNM network to a paraview state file.
Parameters
----------
network : Network
The network containing the desired data.
filename : str
Path to saved .vtp file.
Notes
-----
Outputs a pvsm file that can be opened in Paraview. The pvsm file will
be saved with the same name as .vtp file
|
project_to_paraview
|
python
|
PMEAL/OpenPNM
|
openpnm/io/_paraview.py
|
https://github.com/PMEAL/OpenPNM/blob/master/openpnm/io/_paraview.py
|
MIT
|
def network_from_pergeos(filename):
r"""
Loads a network from a PerGeos file.
Notes
-----
PerGeos is the format used by the Avizo software. See `here for more
details <https://cases.pergeos.com/>`_.
"""
net = {}
# ---------------------------------------------------------------------
# Parse the link1 file
filename = _parse_filename(filename=filename, ext='am')
with open(filename, mode='r') as f:
Np = None
Nt = None
while (Np is None) or (Nt is None):
s = f.readline()[:-1].split(' ')
if s[0] == 'define':
if s[1] == 'VERTEX':
Np = int(s[2])
if s[1] == 'EDGE':
Nt = int(s[2])
net = {}
propmap = {}
typemap = {}
shapemap = {}
while True:
s = f.readline()[:-1].split(' ')
if s[0] == 'VERTEX':
dshape = [Np]
if s[2].endswith(']'):
ncols = int(s[2].split('[', 1)[1].split(']')[0])
dshape.append(ncols)
dtype = s[2].split('[')[0]
temp = np.zeros(dshape, dtype=dtype)
net['pore.'+s[3]] = temp
key = int(s[-1].replace('@', ''))
propmap[key] = 'pore.'+s[3]
typemap[key] = dtype
shapemap[key] = dshape
elif s[0] == 'EDGE':
dshape = [Nt]
if s[2].endswith(']'):
ncols = int(s[2].split('[', 1)[1].split(']')[0])
dshape.append(ncols)
dtype = s[2].split('[')[0]
temp = np.zeros(dshape, dtype=dtype)
net['throat.'+s[3]] = temp
key = int(s[-1].replace('@', ''))
propmap[key] = 'throat.'+s[3]
typemap[key] = dtype
shapemap[key] = dshape
elif s[0] == '#':
break
s = f.read().split('@')
for key in propmap.keys():
if key in s:
data = s[key].split('\n')[1:]
data = ' '.join(data)
arr = np.fromstring(data, dtype=typemap[key], sep=' ')
arr = np.reshape(arr, newshape=shapemap[key])
net[propmap[key]] = arr
# End file parsing
net['pore.coords'] = net['pore.VertexCoordinates']
net['throat.conns'] = np.sort(net['throat.EdgeConnectivity'], axis=1)
network = Network()
network.update(net)
return network
|
Loads a network from a PerGeos file.
Notes
-----
PerGeos is the format used by the Avizo software. See `here for more
details <https://cases.pergeos.com/>`_.
|
network_from_pergeos
|
python
|
PMEAL/OpenPNM
|
openpnm/io/_pergeos.py
|
https://github.com/PMEAL/OpenPNM/blob/master/openpnm/io/_pergeos.py
|
MIT
|
def network_from_porespy(filename):
r"""
Load a network extracted using the PoreSpy package
Parameters
----------
filename : str or dict
Can either be a filename pointing to a pickled dictionary, or a
handle to a dictionary in memory. The second option lets users
avoid the step of saving the dictionary to a file.
Returns
-------
network : dict
An OpenPNM network dictionary
"""
# Parse the filename
if isinstance(filename, dict):
net = filename
else:
filename = _parse_filename(filename=filename)
with open(filename, mode='rb') as f:
net = pk.load(f)
network = Network()
network.update(net)
return network
|
Load a network extracted using the PoreSpy package
Parameters
----------
filename : str or dict
Can either be a filename pointing to a pickled dictionary, or a
handle to a dictionary in memory. The second option lets users
avoid the step of saving the dictionary to a file.
Returns
-------
network : dict
An OpenPNM network dictionary
|
network_from_porespy
|
python
|
PMEAL/OpenPNM
|
openpnm/io/_porespy.py
|
https://github.com/PMEAL/OpenPNM/blob/master/openpnm/io/_porespy.py
|
MIT
|
def network_to_salome(network, filename=None, explicit=False):
r"""
Saves the network data and writes a Salome .py instruction file.
Parameters
----------
network : Network
The network containing the desired data
Notes
-----
This method only saves the data, not any of the pore-scale models
or other attributes. To save an actual OpenPNM Project use the
``Workspace`` object.
"""
# Temporarily add endpoints to network so STL class works
network["throat.endpoints.head"] = network.coords[network.conns[:, 0]]
network["throat.endpoints.tail"] = network.coords[network.conns[:, 1]]
filename = network.name if filename is None else filename
filename = _parse_filename(filename=filename, ext='py')
f = open(filename, 'w')
f.write(_header+'\n')
x = network['throat.endpoints.head']
s = str(x.shape)
f.write('cylinder_head = np.array([')
np.savetxt(f, X=[x.flatten()], fmt='%.18e', delimiter=',', newline='')
f.write('])\n')
f.write('cylinder_head = np.reshape(cylinder_head, '+s+')\n')
x = network['throat.endpoints.tail']
s = str(x.shape)
f.write('cylinder_tail = np.array([')
np.savetxt(f, X=[x.flatten()], fmt='%.18e', delimiter=',', newline='')
f.write('])\n')
f.write('cylinder_tail = np.reshape(cylinder_tail, '+s+')\n')
x = network['throat.diameter']/2
s = str(x.shape)
f.write('cylinder_r = np.array([')
np.savetxt(f, X=[x.flatten()], fmt='%.18e', delimiter=',', newline='')
f.write('])\n')
f.write('cylinder_r = np.reshape(cylinder_r, '+s+')\n')
x = network['pore.coords']
s = str(x.shape)
f.write('sphere_c = np.array([')
np.savetxt(f, X=[x.flatten()], fmt='%.18e', delimiter=',', newline='')
f.write('])\n')
f.write('sphere_c = np.reshape(sphere_c, '+s+')\n')
x = network['pore.diameter']/2
s = str(x.shape)
f.write('sphere_r = np.array([')
np.savetxt(f, X=[x.flatten()], fmt='%.18e', delimiter=',', newline='')
f.write('])\n')
f.write('sphere_r = np.reshape(sphere_r, '+s+')\n')
f.write('explicit = '+str(explicit))
f.write(_footer)
f.close()
|
Saves the network data and writes a Salome .py instruction file.
Parameters
----------
network : Network
The network containing the desired data
Notes
-----
This method only saves the data, not any of the pore-scale models
or other attributes. To save an actual OpenPNM Project use the
``Workspace`` object.
|
network_to_salome
|
python
|
PMEAL/OpenPNM
|
openpnm/io/_salome.py
|
https://github.com/PMEAL/OpenPNM/blob/master/openpnm/io/_salome.py
|
MIT
|
def network_from_statoil(path, prefix):
r"""
Load data from the \'dat\' files located in specified folder.
Parameters
----------
path : str
The full path to the folder containing the set of \'dat\' files.
prefix : str
The file name prefix on each file. The data files are stored
as \<prefix\>_node1.dat.
network : Network
If given then the data will be loaded on it and returned. If not
given, a Network will be created and returned.
Returns
-------
Project
An OpenPNM Project containing a Network holding all the data
Notes
-----
The StatOil format is used by the Maximal Ball network extraction code of
the Imperial College London group
This class can be used to load and work with those networks. Numerous
datasets are available for download from the group's
`website <http://tinyurl.com/zurko4q>`_.
The 'Statoil' format consists of 4 different files in a single
folder. The data is stored in columns with each corresponding to a
specific property. Headers are not provided in the files, so one must
refer to various theses and documents to interpret their meaning.
"""
net = {}
# Parse the link1 file
path = Path(path)
filename = Path(path.resolve(), prefix+'_link1.dat')
with open(filename, mode='r') as f:
link1 = read_table(filepath_or_buffer=f,
header=None,
skiprows=1,
sep=' ',
skipinitialspace=True,
index_col=0)
link1.columns = ['throat.pore1', 'throat.pore2', 'throat.radius',
'throat.shape_factor', 'throat.total_length']
# Add link1 props to net
net['throat.conns'] = np.vstack((link1['throat.pore1']-1,
link1['throat.pore2']-1)).T
net['throat.conns'] = np.sort(net['throat.conns'], axis=1)
net['throat.radius'] = np.array(link1['throat.radius'])
net['throat.shape_factor'] = np.array(link1['throat.shape_factor'])
net['throat.total_length'] = np.array(link1['throat.total_length'])
filename = Path(path.resolve(), prefix+'_link2.dat')
with open(filename, mode='r') as f:
link2 = read_table(filepath_or_buffer=f,
header=None,
sep=' ',
skipinitialspace=True,
index_col=0)
link2.columns = ['throat.pore1', 'throat.pore2',
'throat.pore1_length', 'throat.pore2_length',
'throat.length', 'throat.volume',
'throat.clay_volume']
# Add link2 props to net
cl_t = np.array(link2['throat.length'])
net['throat.length'] = cl_t
net['throat.conduit_lengths.throat'] = cl_t
net['throat.volume'] = np.array(link2['throat.volume'])
cl_p1 = np.array(link2['throat.pore1_length'])
net['throat.conduit_lengths.pore1'] = cl_p1
cl_p2 = np.array(link2['throat.pore2_length'])
net['throat.conduit_lengths.pore2'] = cl_p2
net['throat.clay_volume'] = np.array(link2['throat.clay_volume'])
# ---------------------------------------------------------------------
# Parse the node1 file
filename = Path(path.resolve(), prefix+'_node1.dat')
with open(filename, mode='r') as f:
row_0 = f.readline().split()
num_lines = int(row_0[0])
array = np.ndarray([num_lines, 6])
for i in range(num_lines):
row = f.readline()\
.replace('\t', ' ').replace('\n', ' ').split()
array[i, :] = row[0:6]
node1 = DataFrame(array[:, [1, 2, 3, 4]])
node1.columns = ['pore.x_coord', 'pore.y_coord', 'pore.z_coord',
'pore.coordination_number']
# Add node1 props to net
net['pore.coords'] = np.vstack((node1['pore.x_coord'],
node1['pore.y_coord'],
node1['pore.z_coord'])).T
# ---------------------------------------------------------------------
# Parse the node2 file
filename = Path(path.resolve(), prefix+'_node2.dat')
with open(filename, mode='r') as f:
node2 = read_table(filepath_or_buffer=f,
header=None,
sep=' ',
skipinitialspace=True,
index_col=0)
node2.columns = ['pore.volume', 'pore.radius', 'pore.shape_factor',
'pore.clay_volume']
# Add node2 props to net
net['pore.volume'] = np.array(node2['pore.volume'])
net['pore.radius'] = np.array(node2['pore.radius'])
net['pore.shape_factor'] = np.array(node2['pore.shape_factor'])
net['pore.clay_volume'] = np.array(node2['pore.clay_volume'])
net['throat.cross_sectional_area'] = ((net['throat.radius']**2)
/ (4.0*net['throat.shape_factor']))
net['pore.area'] = ((net['pore.radius']**2)
/ (4.0*net['pore.shape_factor']))
network = Network()
network.update(net)
# Use OpenPNM Tools to clean up network
# Trim throats connected to 'inlet' or 'outlet' reservoirs
trim1 = np.where(np.any(net['throat.conns'] == -1, axis=1))[0]
# Apply 'outlet' label to these pores
outlets = network['throat.conns'][trim1, 1]
network['pore.outlets'] = False
network['pore.outlets'][outlets] = True
trim2 = np.where(np.any(net['throat.conns'] == -2, axis=1))[0]
# Apply 'inlet' label to these pores
inlets = network['throat.conns'][trim2, 1]
network['pore.inlets'] = False
network['pore.inlets'][inlets] = True
# Now trim the throats
to_trim = np.hstack([trim1, trim2])
trim(network=network, throats=to_trim)
return network
|
Load data from the \'dat\' files located in specified folder.
Parameters
----------
path : str
The full path to the folder containing the set of \'dat\' files.
prefix : str
The file name prefix on each file. The data files are stored
as \<prefix\>_node1.dat.
network : Network
If given then the data will be loaded on it and returned. If not
given, a Network will be created and returned.
Returns
-------
Project
An OpenPNM Project containing a Network holding all the data
Notes
-----
The StatOil format is used by the Maximal Ball network extraction code of
the Imperial College London group
This class can be used to load and work with those networks. Numerous
datasets are available for download from the group's
`website <http://tinyurl.com/zurko4q>`_.
The 'Statoil' format consists of 4 different files in a single
folder. The data is stored in columns with each corresponding to a
specific property. Headers are not provided in the files, so one must
refer to various theses and documents to interpret their meaning.
|
network_from_statoil
|
python
|
PMEAL/OpenPNM
|
openpnm/io/_statoil.py
|
https://github.com/PMEAL/OpenPNM/blob/master/openpnm/io/_statoil.py
|
MIT
|
def network_to_stl(network, filename=None, maxsize='auto',
fileformat='STL Format', logger_level=0):
r"""
Saves (transient/steady-state) data from the given objects into the
specified file.
Parameters
----------
network : Network.
The network containing the desired data.
phases : list[Phase] (place holder, default is None).
List of phases containing the desired data.
filename : str (optional).
The name of the file containing the data to export.
maxsize : a float or a string "auto" (optional).
The maximum size of the mesh elements allowed. "auto" corresponds
to an automatic determination based on pores and throats sizes. Any
float value will be used as a maximum size. Small values result in
finner meshes, but slower mesh calculations.
fileformat : str (optional).
Default is "STL Format" which corresponds to STL format. Other
formats such as Gmsh and Fluent are supported (see ngsolve.org).
logger_level : integer between 0 and 7 (optional).
Default is 0. The logger level set in netgen package.
Notes
-----
The STL Format is a Standard Triangle (or Tessellation) Language supported
by many CAD packages and used for 3D printing. Export to this format may be
slow since a 3D closed surface mesh is built.
Requires installation of "netgen".
"""
try:
import netgen.csg as csg
except ModuleNotFoundError:
raise Exception('Module "netgen" not found.')
try:
from netgen.meshing import SetMessageImportance as log
log(logger_level)
except ModuleNotFoundError:
logger.warning('Module "netgen.meshing" not found.'
+ ' The "logger_level" will be ignored.')
# Temporarily add endpoints to network so STL class works
network["throat.endpoints.head"] = network.coords[network.conns[:, 0]]
network["throat.endpoints.tail"] = network.coords[network.conns[:, 1]]
filename = network.name if filename is None else filename
path = _parse_filename(filename=filename, ext='stl')
# Path is a pathlib object, so slice it up as needed
fname_stl = path.name
# Correct connections where 'pore.diameter' = 'throat.diameter'
dt = network['throat.diameter'].copy()
dp = network['pore.diameter'][network['throat.conns']]
dt[dp[:, 0] == dt] *= 0.99
dt[dp[:, 1] == dt] *= 0.99
scale = max(network['pore.diameter'].max(), dt.max(),
network['throat.length'].max())
if maxsize == 'auto':
maxsize = min(network['pore.diameter'].min(), dt.min(),
network['throat.length'].min())
geo = csg.CSGeometry()
# Define pores
geometry = csg.Sphere(csg.Pnt(network['pore.coords'][0, 0]/scale,
network['pore.coords'][0, 1]/scale,
network['pore.coords'][0, 2]/scale),
network['pore.diameter'][0]/scale/2)
for p in range(1, network.Np):
pore = csg.Sphere(csg.Pnt(network['pore.coords'][p, 0]/scale,
network['pore.coords'][p, 1]/scale,
network['pore.coords'][p, 2]/scale),
network['pore.diameter'][p]/scale/2)
geometry += pore
# Define throats
for t in range(network.Nt):
A = network['throat.endpoints.tail'][t, :]/scale
B = network['throat.endpoints.head'][t, :]/scale
V = (B-A)/_np.linalg.norm(B-A)
plane1 = csg.Plane(csg.Pnt(A[0], A[1], A[2]),
csg.Vec(-V[0], -V[1], -V[2]))
plane2 = csg.Plane(csg.Pnt(B[0], B[1], B[2]),
csg.Vec(V[0], V[1], V[2]))
cylinder = csg.Cylinder(csg.Pnt(A[0], A[1], A[2]),
csg.Pnt(B[0], B[1], B[2]),
dt[t]/scale/2)
throat = cylinder * plane1 * plane2
geometry += throat
# Add pore and throats to geometry, build mesh, rescale, and export
geo.Add(geometry)
mesh = geo.GenerateMesh(maxh=maxsize/scale)
mesh.Scale(scale)
mesh.Export(filename=fname_stl, format=fileformat)
# Remove endpoints label from network
del network["throat.endpoints"]
|
Saves (transient/steady-state) data from the given objects into the
specified file.
Parameters
----------
network : Network.
The network containing the desired data.
phases : list[Phase] (place holder, default is None).
List of phases containing the desired data.
filename : str (optional).
The name of the file containing the data to export.
maxsize : a float or a string "auto" (optional).
The maximum size of the mesh elements allowed. "auto" corresponds
to an automatic determination based on pores and throats sizes. Any
float value will be used as a maximum size. Small values result in
finner meshes, but slower mesh calculations.
fileformat : str (optional).
Default is "STL Format" which corresponds to STL format. Other
formats such as Gmsh and Fluent are supported (see ngsolve.org).
logger_level : integer between 0 and 7 (optional).
Default is 0. The logger level set in netgen package.
Notes
-----
The STL Format is a Standard Triangle (or Tessellation) Language supported
by many CAD packages and used for 3D printing. Export to this format may be
slow since a 3D closed surface mesh is built.
Requires installation of "netgen".
|
network_to_stl
|
python
|
PMEAL/OpenPNM
|
openpnm/io/_stl.py
|
https://github.com/PMEAL/OpenPNM/blob/master/openpnm/io/_stl.py
|
MIT
|
def project_to_vtk(project, filename="",
fill_nans=None, fill_infs=None):
r"""
Save network and phase data to a single vtp file for visualizing in
Paraview.
Parameters
----------
network : Network
The Network containing the data to be written
phases : list, optional
A list containing Phase(s) containing data to be
written
filename : str, optional
Filename to write data. If no name is given the file is named
after the network
fill_nans : scalar
The value to use to replace NaNs with. The VTK file format does
not work with NaNs, so they must be dealt with. The default is
`None` which means property arrays with NaNs are not written to the
file. Other useful options might be 0 or -1, but the user must
be aware that these are not real values, only place holders.
fill_infs : scalar
The value to use to replace infs with. The default is ``None``
which means that property arrays containing ``None`` will *not*
be written to the file, and a warning will be issued. A useful
value is
"""
network = project.network
algs = project.algorithms
# Check if any of the phases has time series
transient = is_transient(algs)
if transient:
logger.warning(
"vtp format does not support transient data, " + "use xdmf instead"
)
if filename == "":
filename = project.name
filename = _parse_filename(filename=filename, ext="vtp")
am = project_to_dict(project=project,
categorize_by=["object", "data"])
am = pd.json_normalize(am, sep='.').to_dict(orient='records')[0]
for k in list(am.keys()):
am[k.replace('.', ' | ')] = am.pop(k)
key_list = list(sorted(am.keys()))
points = network["pore.coords"]
pairs = network["throat.conns"]
num_points = np.shape(points)[0]
num_throats = np.shape(pairs)[0]
root = ET.fromstring(_TEMPLATE)
piece_node = root.find("PolyData").find("Piece")
piece_node.set("NumberOfPoints", str(num_points))
piece_node.set("NumberOfLines", str(num_throats))
points_node = piece_node.find("Points")
coords = _array_to_element("coords", points.T.ravel("F"), n=3)
points_node.append(coords)
lines_node = piece_node.find("Lines")
connectivity = _array_to_element("connectivity", pairs)
lines_node.append(connectivity)
offsets = _array_to_element("offsets", 2 * np.arange(len(pairs)) + 2)
lines_node.append(offsets)
point_data_node = piece_node.find("PointData")
cell_data_node = piece_node.find("CellData")
for key in key_list:
array = am[key]
if array.dtype == "O":
logger.warning(key + " has dtype object," + " will not write to file")
else:
if array.dtype == bool:
array = array.astype(int)
if np.any(np.isnan(array)):
if fill_nans is None:
logger.warning(key + " has nans," + " will not write to file")
continue
else:
array[np.isnan(array)] = fill_nans
if np.any(np.isinf(array)):
if fill_infs is None:
logger.warning(key + " has infs," + " will not write to file")
continue
else:
array[np.isinf(array)] = fill_infs
element = _array_to_element(key, array)
if array.size == num_points:
point_data_node.append(element)
elif array.size == num_throats:
cell_data_node.append(element)
tree = ET.ElementTree(root)
tree.write(filename)
with open(filename, "r+") as f:
string = f.read()
string = string.replace("</DataArray>", "</DataArray>\n\t\t\t")
f.seek(0)
# consider adding header: '<?xml version="1.0"?>\n'+
f.write(string)
|
Save network and phase data to a single vtp file for visualizing in
Paraview.
Parameters
----------
network : Network
The Network containing the data to be written
phases : list, optional
A list containing Phase(s) containing data to be
written
filename : str, optional
Filename to write data. If no name is given the file is named
after the network
fill_nans : scalar
The value to use to replace NaNs with. The VTK file format does
not work with NaNs, so they must be dealt with. The default is
`None` which means property arrays with NaNs are not written to the
file. Other useful options might be 0 or -1, but the user must
be aware that these are not real values, only place holders.
fill_infs : scalar
The value to use to replace infs with. The default is ``None``
which means that property arrays containing ``None`` will *not*
be written to the file, and a warning will be issued. A useful
value is
|
project_to_vtk
|
python
|
PMEAL/OpenPNM
|
openpnm/io/_vtk.py
|
https://github.com/PMEAL/OpenPNM/blob/master/openpnm/io/_vtk.py
|
MIT
|
def project_to_xdmf(project, filename=''):
r"""
Saves (transient/steady-state) data from the given objects into
the specified file.
Parameters
----------
network : Network
The network containing the desired data
phases : list[Phase] (optional, default is None)
A list of phase objects whose data are to be included
Notes
-----
This method only saves the data, not any of the pore-scale models
or other attributes.
"""
import h5py
network = project.network
algs = project.algorithms
# Check if any of the phases has time series
transient = is_transient(algs)
if filename == '':
filename = project.name
path = _parse_filename(filename=filename, ext='xmf')
# Path is a pathlib object, so slice it up as needed
fname_xdf = path.name
d = project_to_dict(project=project, flatten=False,
categorize_by=['element', 'data'])
D = pd.json_normalize(d, sep='.').to_dict(orient='records')[0]
for k in list(D.keys()):
D[k.replace('.', '/')] = D.pop(k)
# Identify time steps
t_steps = []
if transient:
for key in D.keys():
if '#' in key:
t_steps.append(key.split('#')[1])
t_steps = list(set(t_steps))
t_grid = create_grid(Name="TimeSeries", GridType="Collection",
CollectionType="Temporal")
# If steady-state, define '0' time step
if not transient:
t_steps.append('0')
# Setup xdmf file
root = create_root('Xdmf')
domain = create_domain()
# Iterate over time steps present
for i, t_step in enumerate(t_steps):
# Define the hdf file
if not transient:
fname_hdf = path.stem+".hdf"
else:
fname_hdf = path.stem+'#'+t_step+".hdf"
path_p = path.parent
f = h5py.File(path_p.joinpath(fname_hdf), "w")
# Add coordinate and connection information to top of HDF5 file
f["coordinates"] = network["pore.coords"]
f["connections"] = network["throat.conns"]
# geometry coordinates
row, col = f["coordinates"].shape
dims = ' '.join((str(row), str(col)))
hdf_loc = fname_hdf + ":coordinates"
geo_data = create_data_item(value=hdf_loc, Dimensions=dims,
Format='HDF', DataType="Float")
geo = create_geometry(GeometryType="XYZ")
geo.append(geo_data)
# topolgy connections
row, col = f["connections"].shape # col first then row
dims = ' '.join((str(row), str(col)))
hdf_loc = fname_hdf + ":connections"
topo_data = create_data_item(value=hdf_loc, Dimensions=dims,
Format="HDF", NumberType="Int")
topo = create_topology(TopologyType="Polyline",
NodesPerElement=str(2),
NumberOfElements=str(row))
topo.append(topo_data)
# Make HDF5 file with all datasets, and no groups
for item in list(D.keys()):
if D[item].dtype == 'O':
logger.warning(item + ' has dtype object,'
+ ' will not write to file')
del D[item]
elif 'U' in str(D[item][0].dtype):
pass
elif ('#' in item and t_step == item.split('#')[1]):
f.create_dataset(name='/'+item.split('#')[0]+'#t',
shape=D[item].shape,
dtype=D[item].dtype,
data=D[item],
compression="gzip")
elif ('#' not in item and i == 0):
f.create_dataset(name='/'+item, shape=D[item].shape,
dtype=D[item].dtype, data=D[item],
compression="gzip")
# Create a grid
grid = create_grid(Name=t_step, GridType="Uniform")
time = create_time(mode='Single', Value=t_step)
grid.append(time)
# Add pore and throat properties
for item in list(D.keys()):
if item not in ['coordinates', 'connections']:
if ("#" in item and t_step == item.split("#")[1]) or (
"#" not in item
):
attr_type = 'Scalar'
shape = D[item].shape
dims = (' '.join([str(i) for i in shape]))
if '#' in item:
item = item.split('#')[0]+'#t'
hdf_loc = fname_hdf + ":" + item
elif ('#' not in item and i == 0):
hdf_loc = fname_hdf + ":" + item
elif ('#' not in item and i > 0):
hdf_loc = path.stem + '#' + t_steps[0] + ".hdf" + ":" + item
attr = create_data_item(value=hdf_loc,
Dimensions=dims,
Format='HDF',
Precision='8',
DataType='Float')
name = item.replace('/', ' | ')
if 'throat' in item:
Center = "Cell"
else:
Center = "Node"
el_attr = create_attribute(Name=name, Center=Center,
AttributeType=attr_type)
el_attr.append(attr)
grid.append(el_attr)
else:
pass
grid.append(topo)
grid.append(geo)
t_grid.append(grid)
# CLose the HDF5 file
f.close()
domain.append(t_grid)
root.append(domain)
with open(path_p.joinpath(fname_xdf), 'w') as file:
file.write(_header)
file.write(ET.tostring(root).decode("utf-8"))
|
Saves (transient/steady-state) data from the given objects into
the specified file.
Parameters
----------
network : Network
The network containing the desired data
phases : list[Phase] (optional, default is None)
A list of phase objects whose data are to be included
Notes
-----
This method only saves the data, not any of the pore-scale models
or other attributes.
|
project_to_xdmf
|
python
|
PMEAL/OpenPNM
|
openpnm/io/_xdmf.py
|
https://github.com/PMEAL/OpenPNM/blob/master/openpnm/io/_xdmf.py
|
MIT
|
def spheres_and_cylinders(
network,
pore_diameter="pore.diameter",
throat_diameter="throat.diameter",
):
r"""
Calculates conduit lengths in the network assuming pores are spheres
and throats are cylinders.
A conduit is defined as ( 1/2 pore - full throat - 1/2 pore ).
Parameters
----------
%(network)s
%(Dp)s
%(Dt)s
Returns
-------
lengths : ndarray
Array (Nt by 3) containing conduit values for each element
of the pore-throat-pore conduits. The array is formatted as
``[pore1, throat, pore2]``.
"""
L_ctc = _get_L_ctc(network)
D1, Dt, D2 = network.get_conduit_data(pore_diameter.split(".", 1)[-1]).T
# Handle the case where Dt > Dp
if (Dt > D1).any() or (Dt > D2).any():
_raise_incompatible_data()
# If spheres do not overlap:
L1 = np.sqrt(D1**2 - Dt**2) / 2
L2 = np.sqrt(D2**2 - Dt**2) / 2
Lt = L_ctc - (L1 + L2)
if np.any(Lt < 0): # Find pores that touch/overlap
# Find diameter of overlap between spheres
d = L_ctc
R1 = D1/2
R2 = D2/2
# Check distance to the intersection
L1_int = (d**2 - R2**2 + R1**2) / (2*d)
if np.any(L1_int < 0) or np.any(L1_int > L_ctc):
raise Exception('The pores overlap too much')
D_int = 2/(2*d) * np.sqrt(4*d**2 * R1**2 - (d**2 - R2**2 + R1**2)**2)
mask = D_int > Dt
if np.any(mask):
d = d[mask]
R1 = R1[mask]
R2 = R2[mask]
L1[mask] = (d**2 - R2**2 + R1**2) / (2*d)
L2[mask] = L_ctc[mask] - L1[mask]
Lt[mask] = 1e-15
return np.vstack((L1, Lt, L2)).T
|
Calculates conduit lengths in the network assuming pores are spheres
and throats are cylinders.
A conduit is defined as ( 1/2 pore - full throat - 1/2 pore ).
Parameters
----------
%(network)s
%(Dp)s
%(Dt)s
Returns
-------
lengths : ndarray
Array (Nt by 3) containing conduit values for each element
of the pore-throat-pore conduits. The array is formatted as
``[pore1, throat, pore2]``.
|
spheres_and_cylinders
|
python
|
PMEAL/OpenPNM
|
openpnm/models/geometry/conduit_lengths/_funcs.py
|
https://github.com/PMEAL/OpenPNM/blob/master/openpnm/models/geometry/conduit_lengths/_funcs.py
|
MIT
|
def circles_and_rectangles(
network, pore_diameter="pore.diameter", throat_diameter="throat.diameter"
):
r"""
Calculates conduit lengths in the network assuming pores are circles
and throats are rectangles.
A conduit is defined as ( 1/2 pore - full throat - 1/2 pore ).
Parameters
----------
%(network)s
%(Dp)s
%(Dt)s
Returns
-------
Notes
-----
This model should only be used for true 2D networks, i.e. with planar
symmetry.
"""
return spheres_and_cylinders(
network=network,
pore_diameter=pore_diameter,
throat_diameter=throat_diameter,
)
|
Calculates conduit lengths in the network assuming pores are circles
and throats are rectangles.
A conduit is defined as ( 1/2 pore - full throat - 1/2 pore ).
Parameters
----------
%(network)s
%(Dp)s
%(Dt)s
Returns
-------
Notes
-----
This model should only be used for true 2D networks, i.e. with planar
symmetry.
|
circles_and_rectangles
|
python
|
PMEAL/OpenPNM
|
openpnm/models/geometry/conduit_lengths/_funcs.py
|
https://github.com/PMEAL/OpenPNM/blob/master/openpnm/models/geometry/conduit_lengths/_funcs.py
|
MIT
|
def cones_and_cylinders(
network, pore_diameter="pore.diameter", throat_diameter="throat.diameter"
):
r"""
Calculates conduit lengths in the network assuming pores are cones
and throats are cylinders.
A conduit is defined as ( 1/2 pore - full throat - 1/2 pore ).
Parameters
----------
%(network)s
%(Dp)s
%(Dt)s
Returns
-------
"""
L_ctc = _get_L_ctc(network)
D1, Dt, D2 = network.get_conduit_data(pore_diameter.split(".", 1)[-1]).T
L1 = D1 / 2
L2 = D2 / 2
# Handle throats w/ overlapping pores
_L1 = (4 * L_ctc**2 + D1**2 - D2**2) / (8 * L_ctc)
mask = L_ctc - 0.5 * (D1 + D2) < 0
L1[mask] = _L1[mask]
L2[mask] = (L_ctc - L1)[mask]
Lt = np.maximum(L_ctc - (L1 + L2), 1e-15)
return np.vstack((L1, Lt, L2)).T
|
Calculates conduit lengths in the network assuming pores are cones
and throats are cylinders.
A conduit is defined as ( 1/2 pore - full throat - 1/2 pore ).
Parameters
----------
%(network)s
%(Dp)s
%(Dt)s
Returns
-------
|
cones_and_cylinders
|
python
|
PMEAL/OpenPNM
|
openpnm/models/geometry/conduit_lengths/_funcs.py
|
https://github.com/PMEAL/OpenPNM/blob/master/openpnm/models/geometry/conduit_lengths/_funcs.py
|
MIT
|
def intersecting_cones(network, pore_coords="pore.coords", throat_coords="throat.coords"):
r"""
Calculates conduit lengths in the network assuming pores are cones
that intersect. Therefore, the throat is the cross sectional plane where
two pores meet and has negligible/zero volume.
A conduit is defined as ( 1/2 pore - 1/2 pore ).
Parameters
----------
%(network)s
%(Pcoords)s
%(Tcoords)s
Returns
-------
"""
P12 = network["throat.conns"]
p_coords = network[pore_coords]
t_coords = network[throat_coords]
L1 = np.sqrt(np.sum(((p_coords[P12[:, 0]] - t_coords)) ** 2, axis=1))
L2 = np.sqrt(np.sum(((p_coords[P12[:, 1]] - t_coords)) ** 2, axis=1))
Lt = np.zeros(len(network.Ts))
return np.vstack((L1, Lt, L2)).T
|
Calculates conduit lengths in the network assuming pores are cones
that intersect. Therefore, the throat is the cross sectional plane where
two pores meet and has negligible/zero volume.
A conduit is defined as ( 1/2 pore - 1/2 pore ).
Parameters
----------
%(network)s
%(Pcoords)s
%(Tcoords)s
Returns
-------
|
intersecting_cones
|
python
|
PMEAL/OpenPNM
|
openpnm/models/geometry/conduit_lengths/_funcs.py
|
https://github.com/PMEAL/OpenPNM/blob/master/openpnm/models/geometry/conduit_lengths/_funcs.py
|
MIT
|
def hybrid_cones_and_cylinders(
network, pore_diameter="pore.diameter", throat_coords="throat.coords"
):
r"""
Calculates conduit lengths in the network assuming pores are cones
and throats are cylinders.
A conduit is defined as ( 1/2 pore - full throat - 1/2 pore ).
Parameters
----------
%(network)s
%(Dp)s
%(Tcoords)s
Returns
-------
"""
L_ctc = _get_L_ctc(network)
D1, Dt, D2 = network.get_conduit_data(pore_diameter.split(".", 1)[-1]).T
L1 = D1 / 2
L2 = D2 / 2
Lt = np.maximum(L_ctc - (L1 + L2), 1e-15)
# Handle intersecting pores
XYp = network.coords[network.conns]
XYt = network[throat_coords]
_L1, _L2 = np.linalg.norm(XYp - XYt[:, None], axis=2).T
mask1 = _L1 < L1
mask2 = _L2 < L2
mask = np.logical_or(mask1, mask2)
if mask.any():
L1[mask] = _L1[mask]
L2[mask] = _L2[mask]
Lt[mask] = 0.0
return np.vstack((L1, Lt, L2)).T
|
Calculates conduit lengths in the network assuming pores are cones
and throats are cylinders.
A conduit is defined as ( 1/2 pore - full throat - 1/2 pore ).
Parameters
----------
%(network)s
%(Dp)s
%(Tcoords)s
Returns
-------
|
hybrid_cones_and_cylinders
|
python
|
PMEAL/OpenPNM
|
openpnm/models/geometry/conduit_lengths/_funcs.py
|
https://github.com/PMEAL/OpenPNM/blob/master/openpnm/models/geometry/conduit_lengths/_funcs.py
|
MIT
|
def trapezoids_and_rectangles(
network, pore_diameter="pore.diameter", throat_diameter="throat.diameter"
):
r"""
Calculates conduit lengths in the network assuming pores are
trapezoids and throats are rectangles.
Parameters
----------
%(network)s
%(Dp)s
%(Dt)s
Returns
-------
Notes
-----
This model should only be used for true 2D networks, i.e. with planar
symmetry.
"""
return cones_and_cylinders(
network=network,
pore_diameter=pore_diameter,
throat_diameter=throat_diameter,
)
|
Calculates conduit lengths in the network assuming pores are
trapezoids and throats are rectangles.
Parameters
----------
%(network)s
%(Dp)s
%(Dt)s
Returns
-------
Notes
-----
This model should only be used for true 2D networks, i.e. with planar
symmetry.
|
trapezoids_and_rectangles
|
python
|
PMEAL/OpenPNM
|
openpnm/models/geometry/conduit_lengths/_funcs.py
|
https://github.com/PMEAL/OpenPNM/blob/master/openpnm/models/geometry/conduit_lengths/_funcs.py
|
MIT
|
def intersecting_trapezoids(
network, pore_coords="pore.coords", throat_coords="throat.coords"
):
r"""
Calculates conduit lengths in the network assuming pores are
intersecting trapezoids.
Parameters
----------
%(network)s
%(Pcoords)s
%(Tcoords)s
Returns
-------
Notes
-----
This model should only be used for true 2D networks, i.e. with planar
symmetry.
"""
return intersecting_cones(
network=network,
pore_coords=pore_coords,
throat_coords=throat_coords,
)
|
Calculates conduit lengths in the network assuming pores are
intersecting trapezoids.
Parameters
----------
%(network)s
%(Pcoords)s
%(Tcoords)s
Returns
-------
Notes
-----
This model should only be used for true 2D networks, i.e. with planar
symmetry.
|
intersecting_trapezoids
|
python
|
PMEAL/OpenPNM
|
openpnm/models/geometry/conduit_lengths/_funcs.py
|
https://github.com/PMEAL/OpenPNM/blob/master/openpnm/models/geometry/conduit_lengths/_funcs.py
|
MIT
|
def hybrid_trapezoids_and_rectangles(
network, pore_diameter="pore.diameter", throat_coords="throat.coords"
):
r"""
Calculates conduit lengths in the network assuming pores are
trapezoids and throats are rectangles.
Parameters
----------
%(network)s
%(Dp)s
%(Tcoords)s
Returns
-------
Notes
-----
This model should only be used for true 2D networks, i.e. with planar
symmetry.
"""
return hybrid_cones_and_cylinders(
network=network,
pore_diameter=pore_diameter,
throat_coords=throat_coords,
)
|
Calculates conduit lengths in the network assuming pores are
trapezoids and throats are rectangles.
Parameters
----------
%(network)s
%(Dp)s
%(Tcoords)s
Returns
-------
Notes
-----
This model should only be used for true 2D networks, i.e. with planar
symmetry.
|
hybrid_trapezoids_and_rectangles
|
python
|
PMEAL/OpenPNM
|
openpnm/models/geometry/conduit_lengths/_funcs.py
|
https://github.com/PMEAL/OpenPNM/blob/master/openpnm/models/geometry/conduit_lengths/_funcs.py
|
MIT
|
def pyramids_and_cuboids(
network, pore_diameter="pore.diameter", throat_diameter="throat.diameter"
):
r"""
Calculates conduit lengths in the network assuming pores are truncated
pyramids and throats are cuboids.
Parameters
----------
%(network)s
%(Dp)s
%(Dt)s
Returns
-------
"""
return cones_and_cylinders(
network=network,
pore_diameter=pore_diameter,
throat_diameter=throat_diameter,
)
|
Calculates conduit lengths in the network assuming pores are truncated
pyramids and throats are cuboids.
Parameters
----------
%(network)s
%(Dp)s
%(Dt)s
Returns
-------
|
pyramids_and_cuboids
|
python
|
PMEAL/OpenPNM
|
openpnm/models/geometry/conduit_lengths/_funcs.py
|
https://github.com/PMEAL/OpenPNM/blob/master/openpnm/models/geometry/conduit_lengths/_funcs.py
|
MIT
|
def intersecting_pyramids(
network, pore_coords="pore.coords", throat_coords="throat.coords"
):
r"""
Calculates conduit lengths in the network assuming pores are
intersecting pyramids.
Parameters
----------
%(network)s
%(Pcoords)s
%(Tcoords)s
Returns
-------
"""
return intersecting_cones(
network=network,
pore_coords=pore_coords,
throat_coords=throat_coords,
)
|
Calculates conduit lengths in the network assuming pores are
intersecting pyramids.
Parameters
----------
%(network)s
%(Pcoords)s
%(Tcoords)s
Returns
-------
|
intersecting_pyramids
|
python
|
PMEAL/OpenPNM
|
openpnm/models/geometry/conduit_lengths/_funcs.py
|
https://github.com/PMEAL/OpenPNM/blob/master/openpnm/models/geometry/conduit_lengths/_funcs.py
|
MIT
|
def hybrid_pyramids_and_cuboids(
network, pore_diameter="pore.diameter", throat_coords="throat.coords"
):
r"""
Calculates conduit lengths in the network assuming pores are truncated
pyramids that intersect. Therefore, the throat is the cross sectional plane where
two pores meet and has negligible/zero volume.
Parameters
----------
%(network)s
%(Dp)s
%(Tcoords)s
Returns
-------
"""
return hybrid_cones_and_cylinders(
network=network,
pore_diameter=pore_diameter,
throat_coords=throat_coords,
)
|
Calculates conduit lengths in the network assuming pores are truncated
pyramids that intersect. Therefore, the throat is the cross sectional plane where
two pores meet and has negligible/zero volume.
Parameters
----------
%(network)s
%(Dp)s
%(Tcoords)s
Returns
-------
|
hybrid_pyramids_and_cuboids
|
python
|
PMEAL/OpenPNM
|
openpnm/models/geometry/conduit_lengths/_funcs.py
|
https://github.com/PMEAL/OpenPNM/blob/master/openpnm/models/geometry/conduit_lengths/_funcs.py
|
MIT
|
def cubes_and_cuboids(
network, pore_diameter="pore.diameter", throat_diameter="throat.diameter"
):
r"""
Calculates conduit lengths in the network assuming pores are cubes
and throats are cuboids.
Parameters
----------
%(network)s
%(Dp)s
%(Dt)s
Returns
-------
"""
L_ctc = _get_L_ctc(network)
D1, Dt, D2 = network.get_conduit_data(pore_diameter.split(".", 1)[-1]).T
L1 = D1 / 2
L2 = D2 / 2
Lt = L_ctc - (L1 + L2)
# Handle overlapping pores
mask = (Lt < 0) & (L1 > L2)
L2[mask] = (L_ctc - L1)[mask]
mask = (Lt < 0) & (L2 > L1)
L1[mask] = (L_ctc - L2)[mask]
Lt = np.maximum(Lt, 1e-15)
return np.vstack((L1, Lt, L2)).T
|
Calculates conduit lengths in the network assuming pores are cubes
and throats are cuboids.
Parameters
----------
%(network)s
%(Dp)s
%(Dt)s
Returns
-------
|
cubes_and_cuboids
|
python
|
PMEAL/OpenPNM
|
openpnm/models/geometry/conduit_lengths/_funcs.py
|
https://github.com/PMEAL/OpenPNM/blob/master/openpnm/models/geometry/conduit_lengths/_funcs.py
|
MIT
|
def squares_and_rectangles(
network, pore_diameter="pore.diameter", throat_diameter="throat.diameter"
):
r"""
Calculates conduit lengths in the network assuming pores are squares
and throats are rectangles.
Parameters
----------
%(network)s
%(Dp)s
%(Dt)s
Returns
-------
Notes
-----
This model should only be used for true 2D networks, i.e. with planar
symmetry.
"""
return cubes_and_cuboids(
network=network,
pore_diameter=pore_diameter,
throat_diameter=throat_diameter,
)
|
Calculates conduit lengths in the network assuming pores are squares
and throats are rectangles.
Parameters
----------
%(network)s
%(Dp)s
%(Dt)s
Returns
-------
Notes
-----
This model should only be used for true 2D networks, i.e. with planar
symmetry.
|
squares_and_rectangles
|
python
|
PMEAL/OpenPNM
|
openpnm/models/geometry/conduit_lengths/_funcs.py
|
https://github.com/PMEAL/OpenPNM/blob/master/openpnm/models/geometry/conduit_lengths/_funcs.py
|
MIT
|
def _get_L_ctc(network):
"""Returns throat spacing if it exists, otherwise calculates it."""
try:
L_ctc = network["throat.spacing"]
except KeyError:
P12 = network["throat.conns"]
C1 = network["pore.coords"][P12[:, 0]]
C2 = network["pore.coords"][P12[:, 1]]
L_ctc = np.linalg.norm(C1 - C2, axis=1)
return L_ctc
|
Returns throat spacing if it exists, otherwise calculates it.
|
_get_L_ctc
|
python
|
PMEAL/OpenPNM
|
openpnm/models/geometry/conduit_lengths/_funcs.py
|
https://github.com/PMEAL/OpenPNM/blob/master/openpnm/models/geometry/conduit_lengths/_funcs.py
|
MIT
|
def spheres_and_cylinders(
network,
pore_diameter="pore.diameter",
throat_diameter="throat.diameter",
):
r"""
Computes diffusive shape coefficient for conduits assuming pores are
spheres and throats are cylinders.
Parameters
----------
%(network)s
%(Dp)s
%(Dt)s
Returns
-------
size_factors : ndarray
Array (Nt by 3) containing conduit values for each element
of the pore-throat-pore conduits. The array is formatted as
``[pore1, throat, pore2]``.
Notes
-----
The diffusive size factor is the geometrical part of the pre-factor in
Fick's law:
.. math::
n_A = \frac{A}{L} \Delta C_A
= S_{diffusive} D_{AB} \Delta C_A
Thus :math:`S_{diffusive}` represents the combined effect of the area and
length of the *conduit*, which consists of a throat and 1/2 of the pore
on each end.
"""
D1, Dt, D2 = network.get_conduit_data(pore_diameter.split('.', 1)[1]).T
L1, Lt, L2 = _conduit_lengths.spheres_and_cylinders(
network,
pore_diameter=pore_diameter,
throat_diameter=throat_diameter
).T
# Fi is the integral of (1/A) dx, x = [0, Li]
F1 = 2 / (D1 * _np.pi) * _np.arctanh(2 * L1 / D1)
F2 = 2 / (D2 * _np.pi) * _np.arctanh(2 * L2 / D2)
Ft = Lt / (_np.pi / 4 * Dt ** 2)
vals = _np.vstack([1/F1, 1/Ft, 1/F2]).T
return vals
|
Computes diffusive shape coefficient for conduits assuming pores are
spheres and throats are cylinders.
Parameters
----------
%(network)s
%(Dp)s
%(Dt)s
Returns
-------
size_factors : ndarray
Array (Nt by 3) containing conduit values for each element
of the pore-throat-pore conduits. The array is formatted as
``[pore1, throat, pore2]``.
Notes
-----
The diffusive size factor is the geometrical part of the pre-factor in
Fick's law:
.. math::
n_A = \frac{A}{L} \Delta C_A
= S_{diffusive} D_{AB} \Delta C_A
Thus :math:`S_{diffusive}` represents the combined effect of the area and
length of the *conduit*, which consists of a throat and 1/2 of the pore
on each end.
|
spheres_and_cylinders
|
python
|
PMEAL/OpenPNM
|
openpnm/models/geometry/diffusive_size_factors/_funcs.py
|
https://github.com/PMEAL/OpenPNM/blob/master/openpnm/models/geometry/diffusive_size_factors/_funcs.py
|
MIT
|
def circles_and_rectangles(
network,
pore_diameter="pore.diameter",
throat_diameter="throat.diameter",
):
r"""
Computes diffusive shape coefficient for conduits assuming pores are
circles and throats are rectangles
Parameters
----------
%(network)s
%(Dp)s
%(Dt)s
Returns
-------
Notes
-----
This model should only be used for true 2D networks, i.e. with planar
symmetry.
"""
D1, Dt, D2 = network.get_conduit_data(pore_diameter.split('.', 1)[1]).T
L1, Lt, L2 = _conduit_lengths.circles_and_rectangles(
network,
pore_diameter=pore_diameter,
throat_diameter=throat_diameter
).T
# Fi is the integral of (1/A) dx, x = [0, Li]
F1 = 0.5 * _np.arcsin(2 * L1 / D1)
F2 = 0.5 * _np.arcsin(2 * L2 / D2)
Ft = Lt / Dt
vals = _np.vstack([1/F1, 1/Ft, 1/F2]).T
return vals
|
Computes diffusive shape coefficient for conduits assuming pores are
circles and throats are rectangles
Parameters
----------
%(network)s
%(Dp)s
%(Dt)s
Returns
-------
Notes
-----
This model should only be used for true 2D networks, i.e. with planar
symmetry.
|
circles_and_rectangles
|
python
|
PMEAL/OpenPNM
|
openpnm/models/geometry/diffusive_size_factors/_funcs.py
|
https://github.com/PMEAL/OpenPNM/blob/master/openpnm/models/geometry/diffusive_size_factors/_funcs.py
|
MIT
|
def cones_and_cylinders(
network,
pore_diameter="pore.diameter",
throat_diameter="throat.diameter",
):
r"""
Computes diffusive shape coefficient assuming pores are truncated cones
and throats are cylinders.
Parameters
----------
%(network)s
%(Dp)s
%(Dt)s
Returns
-------
Notes
-----
This model should only be used for true 2D networks, i.e. with planar
symmetry.
"""
D1, Dt, D2 = network.get_conduit_data(pore_diameter.split('.', 1)[1]).T
L1, Lt, L2 = _conduit_lengths.cones_and_cylinders(
network,
pore_diameter=pore_diameter,
throat_diameter=throat_diameter
).T
# Fi is the integral of (1/A) dx, x = [0, Li]
F1 = 4 * L1 / (D1 * Dt * _np.pi)
F2 = 4 * L2 / (D2 * Dt * _np.pi)
Ft = Lt / (_np.pi * Dt**2 / 4)
vals = _np.vstack([1/F1, 1/Ft, 1/F2]).T
return vals
|
Computes diffusive shape coefficient assuming pores are truncated cones
and throats are cylinders.
Parameters
----------
%(network)s
%(Dp)s
%(Dt)s
Returns
-------
Notes
-----
This model should only be used for true 2D networks, i.e. with planar
symmetry.
|
cones_and_cylinders
|
python
|
PMEAL/OpenPNM
|
openpnm/models/geometry/diffusive_size_factors/_funcs.py
|
https://github.com/PMEAL/OpenPNM/blob/master/openpnm/models/geometry/diffusive_size_factors/_funcs.py
|
MIT
|
def intersecting_cones(
network,
pore_diameter="pore.diameter",
throat_coords="throat.coords"
):
r"""
Computes diffusive shape coefficient assuming pores are intersecting cones.
Parameters
----------
%(network)s
%(Dp)s
%(Tcoords)s
Returns
-------
Notes
-----
This model should only be used for true 2D networks, i.e. with planar
symmetry.
"""
D1, Dt, D2 = network.get_conduit_data(pore_diameter.split('.', 1)[1]).T
L1, Lt, L2 = _conduit_lengths.intersecting_cones(
network,
throat_coords=throat_coords
).T
# Fi is the integral of (1/A) dx, x = [0, Li]
F1 = 4 * L1 / (D1 * Dt * _np.pi)
F2 = 4 * L2 / (D2 * Dt * _np.pi)
inv_F_t = _np.full(len(Lt), _np.inf)
vals = _np.vstack([1/F1, inv_F_t, 1/F2]).T
return vals
|
Computes diffusive shape coefficient assuming pores are intersecting cones.
Parameters
----------
%(network)s
%(Dp)s
%(Tcoords)s
Returns
-------
Notes
-----
This model should only be used for true 2D networks, i.e. with planar
symmetry.
|
intersecting_cones
|
python
|
PMEAL/OpenPNM
|
openpnm/models/geometry/diffusive_size_factors/_funcs.py
|
https://github.com/PMEAL/OpenPNM/blob/master/openpnm/models/geometry/diffusive_size_factors/_funcs.py
|
MIT
|
def hybrid_cones_and_cylinders(
network,
pore_diameter="pore.diameter",
throat_coords="throat.coords"
):
r"""
Computes diffusive shape coefficient assuming pores are truncated cones
and throats are cylinders.
Parameters
----------
%(network)s
%(Dp)s
%(Tcoords)s
Returns
-------
Notes
-----
This model should only be used for true 2D networks, i.e. with planar
symmetry.
"""
D1, Dt, D2 = network.get_conduit_data(pore_diameter.split('.', 1)[1]).T
L1, Lt, L2 = _conduit_lengths.hybrid_cones_and_cylinders(
network,
pore_diameter=pore_diameter,
throat_coords=throat_coords
).T
# Fi is the integral of (1/A) dx, x = [0, Li]
F1 = 4 * L1 / (D1 * Dt * _np.pi)
F2 = 4 * L2 / (D2 * Dt * _np.pi)
Ft = Lt / (_np.pi * Dt**2 / 4)
mask = Lt == 0.0
if mask.any():
inv_F_t = _np.zeros(len(Ft))
inv_F_t[~mask] = 1/Ft[~mask]
inv_F_t[mask] = _np.inf
else:
inv_F_t = 1/Ft
vals = _np.vstack([1/F1, inv_F_t, 1/F2]).T
return vals
|
Computes diffusive shape coefficient assuming pores are truncated cones
and throats are cylinders.
Parameters
----------
%(network)s
%(Dp)s
%(Tcoords)s
Returns
-------
Notes
-----
This model should only be used for true 2D networks, i.e. with planar
symmetry.
|
hybrid_cones_and_cylinders
|
python
|
PMEAL/OpenPNM
|
openpnm/models/geometry/diffusive_size_factors/_funcs.py
|
https://github.com/PMEAL/OpenPNM/blob/master/openpnm/models/geometry/diffusive_size_factors/_funcs.py
|
MIT
|
def trapezoids_and_rectangles(
network,
pore_diameter="pore.diameter",
throat_diameter="throat.diameter",
):
r"""
Compute diffusive shape coefficient for conduits assuming pores are
trapezoids and throats are rectangles.
Parameters
----------
%(network)s
%(Dp)s
%(Dt)s
Returns
-------
Notes
-----
This model should only be used for true 2D networks, i.e. with planar
symmetry.
"""
D1, Dt, D2 = network.get_conduit_data(pore_diameter.split('.', 1)[-1]).T
L1, Lt, L2 = _conduit_lengths.trapezoids_and_rectangles(
network,
pore_diameter=pore_diameter,
throat_diameter=throat_diameter
).T
# Fi is the integral of (1/A) dx, x = [0, Li]
F1 = L1 * _np.log(Dt / D1) / (Dt - D1)
F2 = L2 * _np.log(Dt / D2) / (Dt - D2)
Ft = Lt / Dt
# Edge case where Di = Dt
mask = _np.isclose(D1, Dt)
F1[mask] = (L1 / D1)[mask]
mask = _np.isclose(D2, Dt)
F2[mask] = (L2 / D2)[mask]
vals = _np.vstack([1/F1, 1/Ft, 1/F2]).T
return vals
|
Compute diffusive shape coefficient for conduits assuming pores are
trapezoids and throats are rectangles.
Parameters
----------
%(network)s
%(Dp)s
%(Dt)s
Returns
-------
Notes
-----
This model should only be used for true 2D networks, i.e. with planar
symmetry.
|
trapezoids_and_rectangles
|
python
|
PMEAL/OpenPNM
|
openpnm/models/geometry/diffusive_size_factors/_funcs.py
|
https://github.com/PMEAL/OpenPNM/blob/master/openpnm/models/geometry/diffusive_size_factors/_funcs.py
|
MIT
|
def intersecting_trapezoids(
network,
pore_diameter="pore.diameter",
throat_coords="throat.coords"
):
r"""
Computes diffusive shape coefficient for conduits of intersecting
trapezoids.
Parameters
----------
%(network)s
%(Dp)s
%(Tcoords)s
Returns
-------
Notes
-----
This model should only be used for true 2D networks, i.e. with planar
symmetry.
"""
D1, Dt, D2 = network.get_conduit_data(pore_diameter.split('.', 1)[-1]).T
L1, Lt, L2 = _conduit_lengths.intersecting_trapezoids(
network,
throat_coords=throat_coords
).T
# Fi is the integral of (1/A) dx, x = [0, Li]
F1 = L1 * _np.log(Dt / D1) / (Dt - D1)
F2 = L2 * _np.log(Dt / D2) / (Dt - D2)
# Edge case where Di = Dt
mask = _np.isclose(D1, Dt)
F1[mask] = (L1 / D1)[mask]
mask = _np.isclose(D2, Dt)
F2[mask] = (L2 / D2)[mask]
inv_F_t = _np.full(len(Lt), _np.inf)
vals = _np.vstack([1/F1, inv_F_t, 1/F2]).T
return vals
|
Computes diffusive shape coefficient for conduits of intersecting
trapezoids.
Parameters
----------
%(network)s
%(Dp)s
%(Tcoords)s
Returns
-------
Notes
-----
This model should only be used for true 2D networks, i.e. with planar
symmetry.
|
intersecting_trapezoids
|
python
|
PMEAL/OpenPNM
|
openpnm/models/geometry/diffusive_size_factors/_funcs.py
|
https://github.com/PMEAL/OpenPNM/blob/master/openpnm/models/geometry/diffusive_size_factors/_funcs.py
|
MIT
|
def hybrid_trapezoids_and_rectangles(
network,
pore_diameter="pore.diameter",
throat_coords="throat.coords"
):
r"""
Compute diffusive shape coefficient for conduits assuming pores are
trapezoids and throats are rectangles.
Parameters
----------
%(network)s
%(Dp)s
%(Tcoords)s
Returns
-------
Notes
-----
This model should only be used for true 2D networks, i.e. with planar
symmetry.
"""
D1, Dt, D2 = network.get_conduit_data(pore_diameter.split('.', 1)[-1]).T
L1, Lt, L2 = _conduit_lengths.hybrid_trapezoids_and_rectangles(
network,
pore_diameter=pore_diameter,
throat_coords=throat_coords
).T
# Fi is the integral of (1/A) dx, x = [0, Li]
F1 = L1 * _np.log(Dt / D1) / (Dt - D1)
F2 = L2 * _np.log(Dt / D2) / (Dt - D2)
Ft = Lt / Dt
# Edge case where Di = Dt
mask = _np.isclose(D1, Dt)
F1[mask] = (L1 / D1)[mask]
mask = _np.isclose(D2, Dt)
F2[mask] = (L2 / D2)[mask]
mask = Lt == 0.0
if mask.any():
inv_F_t = _np.zeros(len(Ft))
inv_F_t[~mask] = 1/Ft[~mask]
inv_F_t[mask] = _np.inf
else:
inv_F_t = 1/Ft
vals = _np.vstack([1/F1, inv_F_t, 1/F2]).T
return vals
|
Compute diffusive shape coefficient for conduits assuming pores are
trapezoids and throats are rectangles.
Parameters
----------
%(network)s
%(Dp)s
%(Tcoords)s
Returns
-------
Notes
-----
This model should only be used for true 2D networks, i.e. with planar
symmetry.
|
hybrid_trapezoids_and_rectangles
|
python
|
PMEAL/OpenPNM
|
openpnm/models/geometry/diffusive_size_factors/_funcs.py
|
https://github.com/PMEAL/OpenPNM/blob/master/openpnm/models/geometry/diffusive_size_factors/_funcs.py
|
MIT
|
def pyramids_and_cuboids(
network,
pore_diameter="pore.diameter",
throat_diameter="throat.diameter",
):
r"""
Computes diffusive size factor for conduits of truncated pyramids and
cuboids.
Parameters
----------
%(network)s
%(Dp)s
%(Dt)s
Returns
-------
Notes
-----
This model should only be used for true 2D networks, i.e. with planar
symmetry.
"""
D1, Dt, D2 = network.get_conduit_data(pore_diameter.split('.', 1)[-1]).T
L1, Lt, L2 = _conduit_lengths.pyramids_and_cuboids(
network,
pore_diameter=pore_diameter,
throat_diameter=throat_diameter
).T
# Fi is the integral of (1/A) dx, x = [0, Li]
F1 = L1 / (D1 * Dt)
F2 = L2 / (D2 * Dt)
Ft = Lt / Dt**2
vals = _np.vstack([1/F1, 1/Ft, 1/F2]).T
return vals
|
Computes diffusive size factor for conduits of truncated pyramids and
cuboids.
Parameters
----------
%(network)s
%(Dp)s
%(Dt)s
Returns
-------
Notes
-----
This model should only be used for true 2D networks, i.e. with planar
symmetry.
|
pyramids_and_cuboids
|
python
|
PMEAL/OpenPNM
|
openpnm/models/geometry/diffusive_size_factors/_funcs.py
|
https://github.com/PMEAL/OpenPNM/blob/master/openpnm/models/geometry/diffusive_size_factors/_funcs.py
|
MIT
|
def hybrid_pyramids_and_cuboids(
network,
pore_diameter="pore.diameter",
throat_coords="throat.coords"
):
r"""
Computes diffusive size factor for conduits of truncated pyramids and
cuboids.
Parameters
----------
%(network)s
%(Dp)s
%(Tcoords)s
Returns
-------
Notes
-----
This model should only be used for true 2D networks, i.e. with planar
symmetry.
"""
D1, Dt, D2 = network.get_conduit_data(pore_diameter.split('.', 1)[-1]).T
L1, Lt, L2 = _conduit_lengths.hybrid_pyramids_and_cuboids(
network,
pore_diameter=pore_diameter,
throat_coords=throat_coords
).T
# Fi is the integral of (1/A) dx, x = [0, Li]
F1 = L1 / (D1 * Dt)
F2 = L2 / (D2 * Dt)
Ft = Lt / Dt**2
mask = Lt == 0.0
if mask.any():
inv_F_t = _np.zeros(len(Ft))
inv_F_t[~mask] = 1/Ft[~mask]
inv_F_t[mask] = _np.inf
else:
inv_F_t = 1/Ft
vals = _np.vstack([1/F1, inv_F_t, 1/F2]).T
return vals
|
Computes diffusive size factor for conduits of truncated pyramids and
cuboids.
Parameters
----------
%(network)s
%(Dp)s
%(Tcoords)s
Returns
-------
Notes
-----
This model should only be used for true 2D networks, i.e. with planar
symmetry.
|
hybrid_pyramids_and_cuboids
|
python
|
PMEAL/OpenPNM
|
openpnm/models/geometry/diffusive_size_factors/_funcs.py
|
https://github.com/PMEAL/OpenPNM/blob/master/openpnm/models/geometry/diffusive_size_factors/_funcs.py
|
MIT
|
def intersecting_pyramids(
network,
pore_diameter="pore.diameter",
throat_coords="throat.coords"
):
r"""
Computes diffusive size factor for conduits of pores with intersecting pyramids.
Parameters
----------
%(network)s
%(Dp)s
%(Tcoords)s
Returns
-------
Notes
-----
This model should only be used for true 2D networks, i.e. with planar
symmetry.
"""
D1, Dt, D2 = network.get_conduit_data(pore_diameter.split('.', 1)[-1]).T
L1, Lt, L2 = _conduit_lengths.intersecting_pyramids(
network,
throat_coords=throat_coords
).T
# Fi is the integral of (1/A) dx, x = [0, Li]
F1 = L1 / (D1 * Dt)
F2 = L2 / (D2 * Dt)
inv_F_t = _np.full(len(Lt), _np.inf)
vals = _np.vstack([1/F1, inv_F_t, 1/F2]).T
return vals
|
Computes diffusive size factor for conduits of pores with intersecting pyramids.
Parameters
----------
%(network)s
%(Dp)s
%(Tcoords)s
Returns
-------
Notes
-----
This model should only be used for true 2D networks, i.e. with planar
symmetry.
|
intersecting_pyramids
|
python
|
PMEAL/OpenPNM
|
openpnm/models/geometry/diffusive_size_factors/_funcs.py
|
https://github.com/PMEAL/OpenPNM/blob/master/openpnm/models/geometry/diffusive_size_factors/_funcs.py
|
MIT
|
def cubes_and_cuboids(
network,
pore_diameter="pore.diameter",
throat_diameter="throat.diameter",
pore_aspect=[1, 1, 1],
throat_aspect=[1, 1, 1],
):
r"""
Computes diffusive shape coefficient for conduits assuming pores are
cubes and throats are cuboids.
Parameters
----------
%(network)s
%(Dp)s
%(Dt)s
pore_aspect : list
Aspect ratio of the pores
throat_aspect : list
Aspect ratio of the throats
Returns
-------
Notes
-----
This model should only be used for true 2D networks, i.e. with planar
symmetry.
"""
D1, Dt, D2 = network.get_conduit_data(pore_diameter.split('.', 1)[-1]).T
L1, Lt, L2 = _conduit_lengths.cubes_and_cuboids(
network,
pore_diameter=pore_diameter,
throat_diameter=throat_diameter
).T
# Fi is the integral of (1/A) dx, x = [0, Li]
F1 = L1 / D1**2
F2 = L2 / D2**2
Ft = Lt / Dt**2
vals = _np.vstack([1/F1, 1/Ft, 1/F2]).T
return vals
|
Computes diffusive shape coefficient for conduits assuming pores are
cubes and throats are cuboids.
Parameters
----------
%(network)s
%(Dp)s
%(Dt)s
pore_aspect : list
Aspect ratio of the pores
throat_aspect : list
Aspect ratio of the throats
Returns
-------
Notes
-----
This model should only be used for true 2D networks, i.e. with planar
symmetry.
|
cubes_and_cuboids
|
python
|
PMEAL/OpenPNM
|
openpnm/models/geometry/diffusive_size_factors/_funcs.py
|
https://github.com/PMEAL/OpenPNM/blob/master/openpnm/models/geometry/diffusive_size_factors/_funcs.py
|
MIT
|
def squares_and_rectangles(
network,
pore_diameter="pore.diameter",
throat_diameter="throat.diameter",
pore_aspect=[1, 1],
throat_aspect=[1, 1],
):
r"""
Computes diffusive size factor for conduits assuming pores are squares
and throats are rectangles.
Parameters
----------
%(network)s
%(Dp)s
%(Dt)s
pore_aspect : list
Aspect ratio of the pores
throat_aspect : list
Aspect ratio of the throats
Returns
-------
Notes
-----
This model should only be used for true 2D networks, i.e. with planar
symmetry.
"""
D1, Dt, D2 = network.get_conduit_data(pore_diameter.split('.', 1)[-1]).T
L1, Lt, L2 = _conduit_lengths.squares_and_rectangles(
network,
pore_diameter=pore_diameter,
throat_diameter=throat_diameter
).T
# Fi is the integral of (1/A) dx, x = [0, Li]
F1 = L1 / D1
F2 = L2 / D2
Ft = Lt / Dt
vals = _np.vstack([1/F1, 1/Ft, 1/F2]).T
return vals
|
Computes diffusive size factor for conduits assuming pores are squares
and throats are rectangles.
Parameters
----------
%(network)s
%(Dp)s
%(Dt)s
pore_aspect : list
Aspect ratio of the pores
throat_aspect : list
Aspect ratio of the throats
Returns
-------
Notes
-----
This model should only be used for true 2D networks, i.e. with planar
symmetry.
|
squares_and_rectangles
|
python
|
PMEAL/OpenPNM
|
openpnm/models/geometry/diffusive_size_factors/_funcs.py
|
https://github.com/PMEAL/OpenPNM/blob/master/openpnm/models/geometry/diffusive_size_factors/_funcs.py
|
MIT
|
def ncylinders_in_series(
network,
pore_diameter="pore.diameter",
throat_diameter="throat.diameter",
n=5
):
r"""
Computes diffusive size factors for conduits of spheres and cylinders
with the spheres approximated as N cylinders in series.
Parameters
----------
%(network)s
%(Dp)s
%(Dt)s
n : int
Number of cylindrical divisions for each pore and throat
Returns
-------
Notes
-----
"""
D1, Dt, D2 = network.get_conduit_data(pore_diameter.split('.', 1)[-1]).T
# Ensure throats are never bigger than connected pores
Dt = _np.minimum(Dt, 0.99 * _np.minimum(D1, D2))
L1, Lt, L2 = _conduit_lengths.spheres_and_cylinders(
network,
pore_diameter=pore_diameter,
throat_diameter=throat_diameter
).T
dL1 = _np.linspace(0, L1, num=n)
dL2 = _np.linspace(0, L2, num=n)
r1 = D1 / 2 * _np.sin(_np.arccos(dL1 / (D1 / 2)))
r2 = D2 / 2 * _np.sin(_np.arccos(dL2 / (D2 / 2)))
gtemp = (_np.pi * r1**2 / (L1 / n)).T
F1 = 1 / _np.sum(1 / gtemp, axis=1)
gtemp = (_np.pi * r2 ** 2 / (L2 / n)).T
F2 = 1 / _np.sum(1 / gtemp, axis=1)
Ft = (_np.pi * (Dt / 2)**2 / (Lt)).T
vals = _np.vstack([F1, Ft, F2]).T
return vals
|
Computes diffusive size factors for conduits of spheres and cylinders
with the spheres approximated as N cylinders in series.
Parameters
----------
%(network)s
%(Dp)s
%(Dt)s
n : int
Number of cylindrical divisions for each pore and throat
Returns
-------
Notes
-----
|
ncylinders_in_series
|
python
|
PMEAL/OpenPNM
|
openpnm/models/geometry/diffusive_size_factors/_funcs.py
|
https://github.com/PMEAL/OpenPNM/blob/master/openpnm/models/geometry/diffusive_size_factors/_funcs.py
|
MIT
|
def spheres_and_cylinders(
network,
pore_diameter="pore.diameter",
throat_diameter="throat.diameter",
):
r"""
Computes hydraulic size factors for conduits assuming pores are
spheres and throats are cylinders.
Parameters
----------
%(network)s
%(Dp)s
%(Dt)s
Returns
-------
size_factors : ndarray
Array (Nt by 3) containing conduit values for each element
of the pore-throat-pore conduits. The array is formatted as
``[pore1, throat, pore2]``.
Notes
-----
The hydraulic size factor is the geometrical part of the pre-factor in
Stoke's flow:
.. math::
Q = \frac{A^2}{8 \pi \mu L} \Delta P
= \frac{S_{hydraulic}}{\mu} \Delta P
Thus :math:`S_{hydraulic}` represents the combined effect of the area
and length of the *conduit*, which consists of a throat and 1/2 of the
pores on each end.
"""
D1, Dt, D2 = network.get_conduit_data(pore_diameter.split('.', 1)[-1]).T
L1, Lt, L2 = _conduit_lengths.spheres_and_cylinders(
network=network,
pore_diameter=pore_diameter,
throat_diameter=throat_diameter
).T
# Fi is the integral of (1/A^2) dx, x = [0, Li]
a = 4 / (D1**3 * _np.pi**2)
b = 2 * D1 * L1 / (D1**2 - 4 * L1**2) + _np.arctanh(2 * L1 / D1)
F1 = a * b
a = 4 / (D2**3 * _np.pi**2)
b = 2 * D2 * L2 / (D2**2 - 4 * L2**2) + _np.arctanh(2 * L2 / D2)
F2 = a * b
Ft = Lt / (_np.pi / 4 * Dt**2)**2
# I is the integral of (y^2 + z^2) dA, divided by A^2
I1 = I2 = It = 1 / (2 * _np.pi)
# S is 1 / (16 * pi^2 * I * F)
S1 = 1 / (16 * _np.pi**2 * I1 * F1)
St = 1 / (16 * _np.pi**2 * It * Ft)
S2 = 1 / (16 * _np.pi**2 * I2 * F2)
return _np.vstack([S1, St, S2]).T
|
Computes hydraulic size factors for conduits assuming pores are
spheres and throats are cylinders.
Parameters
----------
%(network)s
%(Dp)s
%(Dt)s
Returns
-------
size_factors : ndarray
Array (Nt by 3) containing conduit values for each element
of the pore-throat-pore conduits. The array is formatted as
``[pore1, throat, pore2]``.
Notes
-----
The hydraulic size factor is the geometrical part of the pre-factor in
Stoke's flow:
.. math::
Q = \frac{A^2}{8 \pi \mu L} \Delta P
= \frac{S_{hydraulic}}{\mu} \Delta P
Thus :math:`S_{hydraulic}` represents the combined effect of the area
and length of the *conduit*, which consists of a throat and 1/2 of the
pores on each end.
|
spheres_and_cylinders
|
python
|
PMEAL/OpenPNM
|
openpnm/models/geometry/hydraulic_size_factors/_funcs.py
|
https://github.com/PMEAL/OpenPNM/blob/master/openpnm/models/geometry/hydraulic_size_factors/_funcs.py
|
MIT
|
def circles_and_rectangles(
network,
pore_diameter="pore.diameter",
throat_diameter="throat.diameter",
):
r"""
Computes hydraulic size factors for conduits assuming pores are
circles and throats are rectangles.
Parameters
----------
%(network)s
%(Dp)s
%(Dt)s
Returns
-------
Notes
-----
"""
D1, Dt, D2 = network.get_conduit_data(pore_diameter.split('.', 1)[-1]).T
L1, Lt, L2 = _conduit_lengths.circles_and_rectangles(
network=network,
pore_diameter=pore_diameter,
throat_diameter=throat_diameter
).T
# Fi is the integral of (1/A^3) dx, x = [0, Li]
F1 = L1 / (D1**2 * _np.sqrt(D1**2 - 4 * L1**2))
F2 = L2 / (D2**2 * _np.sqrt(D2**2 - 4 * L2**2))
Ft = Lt / Dt**3
# S is 1 / (12 * F)
S1, St, S2 = [1 / (Fi * 12) for Fi in [F1, Ft, F2]]
return _np.vstack([S1, St, S2]).T
|
Computes hydraulic size factors for conduits assuming pores are
circles and throats are rectangles.
Parameters
----------
%(network)s
%(Dp)s
%(Dt)s
Returns
-------
Notes
-----
|
circles_and_rectangles
|
python
|
PMEAL/OpenPNM
|
openpnm/models/geometry/hydraulic_size_factors/_funcs.py
|
https://github.com/PMEAL/OpenPNM/blob/master/openpnm/models/geometry/hydraulic_size_factors/_funcs.py
|
MIT
|
def cones_and_cylinders(
network,
pore_diameter="pore.diameter",
throat_diameter="throat.diameter",
):
r"""
Computes hydraulic size factors for conduits assuming pores are
truncated cones and throats are cylinders.
Parameters
----------
%(network)s
%(Dp)s
%(Dt)s
Returns
-------
Notes
-----
"""
D1, Dt, D2 = network.get_conduit_data(pore_diameter.split('.', 1)[-1]).T
L1, Lt, L2 = _conduit_lengths.cones_and_cylinders(
network=network,
pore_diameter=pore_diameter,
throat_diameter=throat_diameter
).T
# Fi is the integral of (1/A^2) dx, x = [0, Li]
F1 = 16 / 3 * (L1 * (D1**2 + D1 * Dt + Dt**2) / (D1**3 * Dt**3 * _np.pi**2))
F2 = 16 / 3 * (L2 * (D2**2 + D2 * Dt + Dt**2) / (D2**3 * Dt**3 * _np.pi**2))
Ft = Lt / (_np.pi * Dt**2 / 4) ** 2
# I is the integral of (y^2 + z^2) dA, divided by A^2
I1 = I2 = It = 1 / (2 * _np.pi)
# S is 1 / (16 * pi^2 * I * F)
S1 = 1 / (16 * _np.pi**2 * I1 * F1)
St = 1 / (16 * _np.pi**2 * It * Ft)
S2 = 1 / (16 * _np.pi**2 * I2 * F2)
return _np.vstack([S1, St, S2]).T
|
Computes hydraulic size factors for conduits assuming pores are
truncated cones and throats are cylinders.
Parameters
----------
%(network)s
%(Dp)s
%(Dt)s
Returns
-------
Notes
-----
|
cones_and_cylinders
|
python
|
PMEAL/OpenPNM
|
openpnm/models/geometry/hydraulic_size_factors/_funcs.py
|
https://github.com/PMEAL/OpenPNM/blob/master/openpnm/models/geometry/hydraulic_size_factors/_funcs.py
|
MIT
|
def intersecting_cones(
network,
pore_diameter="pore.diameter",
throat_coords="throat.coords"
):
r"""
Computes hydraulic size factors of intersecting cones.
Parameters
----------
%(network)s
%(Dp)s
%(Dt)s
Returns
-------
Notes
-----
"""
D1, Dt, D2 = network.get_conduit_data(pore_diameter.split('.', 1)[-1]).T
L1, Lt, L2 = _conduit_lengths.intersecting_cones(
network=network,
throat_coords=throat_coords
).T
# Fi is the integral of (1/A^2) dx, x = [0, Li]
F1 = 16 / 3 * (L1 * (D1**2 + D1 * Dt + Dt**2) / (D1**3 * Dt**3 * _np.pi**2))
F2 = 16 / 3 * (L2 * (D2**2 + D2 * Dt + Dt**2) / (D2**3 * Dt**3 * _np.pi**2))
# I is the integral of (y^2 + z^2) dA, divided by A^2
I1 = I2 = 1 / (2 * _np.pi)
# S is 1 / (16 * pi^2 * I * F)
S1 = 1 / (16 * _np.pi**2 * I1 * F1)
S2 = 1 / (16 * _np.pi**2 * I2 * F2)
St = _np.full(len(Lt), _np.inf)
return _np.vstack([S1, St, S2]).T
|
Computes hydraulic size factors of intersecting cones.
Parameters
----------
%(network)s
%(Dp)s
%(Dt)s
Returns
-------
Notes
-----
|
intersecting_cones
|
python
|
PMEAL/OpenPNM
|
openpnm/models/geometry/hydraulic_size_factors/_funcs.py
|
https://github.com/PMEAL/OpenPNM/blob/master/openpnm/models/geometry/hydraulic_size_factors/_funcs.py
|
MIT
|
def hybrid_cones_and_cylinders(
network,
pore_diameter="pore.diameter",
throat_coords="throat.coords"
):
r"""
Computes hydraulic size factors for conduits assuming pores are
truncated cones and throats are cylinders.
Parameters
----------
%(network)s
%(Dp)s
%(Tcoords)s
Returns
-------
Notes
-----
"""
D1, Dt, D2 = network.get_conduit_data(pore_diameter.split('.', 1)[-1]).T
L1, Lt, L2 = _conduit_lengths.hybrid_cones_and_cylinders(
network=network,
pore_diameter=pore_diameter,
throat_coords=throat_coords
).T
# Fi is the integral of (1/A^2) dx, x = [0, Li]
F1 = 16 / 3 * (L1 * (D1**2 + D1 * Dt + Dt**2) / (D1**3 * Dt**3 * _np.pi**2))
F2 = 16 / 3 * (L2 * (D2**2 + D2 * Dt + Dt**2) / (D2**3 * Dt**3 * _np.pi**2))
Ft = Lt / (_np.pi * Dt**2 / 4) ** 2
# I is the integral of (y^2 + z^2) dA, divided by A^2
I1 = I2 = It = 1 / (2 * _np.pi)
mask = Lt == 0.0
if mask.any():
inv_F_t = _np.zeros(len(Ft))
inv_F_t[~mask] = 1/Ft[~mask]
inv_F_t[mask] = _np.inf
else:
inv_F_t = 1/Ft
# S is 1 / (16 * pi^2 * I * F)
S1 = 1 / (16 * _np.pi**2 * I1 * F1)
St = inv_F_t / (16 * _np.pi**2 * It)
S2 = 1 / (16 * _np.pi**2 * I2 * F2)
return _np.vstack([S1, St, S2]).T
|
Computes hydraulic size factors for conduits assuming pores are
truncated cones and throats are cylinders.
Parameters
----------
%(network)s
%(Dp)s
%(Tcoords)s
Returns
-------
Notes
-----
|
hybrid_cones_and_cylinders
|
python
|
PMEAL/OpenPNM
|
openpnm/models/geometry/hydraulic_size_factors/_funcs.py
|
https://github.com/PMEAL/OpenPNM/blob/master/openpnm/models/geometry/hydraulic_size_factors/_funcs.py
|
MIT
|
def trapezoids_and_rectangles(
network,
pore_diameter="pore.diameter",
throat_diameter="throat.diameter",
):
r"""
Computes hydraulic size factors for conduits assuming pores are
trapezoids and throats are rectangles.
Parameters
----------
%(network)s
%(Dp)s
%(Dt)s
Returns
-------
Notes
-----
This model should only be used for true 2D networks, i.e. with planar
symmetry.
"""
D1, Dt, D2 = network.get_conduit_data(pore_diameter.split('.', 1)[-1]).T
L1, Lt, L2 = _conduit_lengths.cones_and_cylinders(
network=network,
pore_diameter=pore_diameter,
throat_diameter=throat_diameter
).T
# Fi is the integral of (1/A^3) dx, x = [0, Li]
F1 = L1 / 2 * (D1 + Dt) / (D1 * Dt)**2
F2 = L2 / 2 * (D2 + Dt) / (D2 * Dt)**2
Ft = Lt / Dt**3
# S is 1 / (12 * F)
S1, St, S2 = [1 / (Fi * 12) for Fi in [F1, Ft, F2]]
return _np.vstack([S1, St, S2]).T
|
Computes hydraulic size factors for conduits assuming pores are
trapezoids and throats are rectangles.
Parameters
----------
%(network)s
%(Dp)s
%(Dt)s
Returns
-------
Notes
-----
This model should only be used for true 2D networks, i.e. with planar
symmetry.
|
trapezoids_and_rectangles
|
python
|
PMEAL/OpenPNM
|
openpnm/models/geometry/hydraulic_size_factors/_funcs.py
|
https://github.com/PMEAL/OpenPNM/blob/master/openpnm/models/geometry/hydraulic_size_factors/_funcs.py
|
MIT
|
def intersecting_trapezoids(
network,
pore_diameter="pore.diameter",
throat_coords="throat.coords"
):
r"""
Computes hydraulic size factors for conduits of intersecting
trapezoids.
Parameters
----------
%(network)s
%(Dp)s
%(Tcoords)s
Returns
-------
Notes
-----
This model should only be used for true 2D networks, i.e. with planar
symmetry.
"""
D1, Dt, D2 = network.get_conduit_data(pore_diameter.split('.', 1)[-1]).T
L1, Lt, L2 = _conduit_lengths.intersecting_trapezoids(
network=network,
throat_coords=throat_coords
).T
# Fi is the integral of (1/A^3) dx, x = [0, Li]
F1 = L1 / 2 * (D1 + Dt) / (D1 * Dt)**2
F2 = L2 / 2 * (D2 + Dt) / (D2 * Dt)**2
# S is 1 / (12 * F)
S1 = 1 / (F1 * 12)
S2 = 1 / (F2 * 12)
St = _np.full(len(Lt), _np.inf)
return _np.vstack([S1, St, S2]).T
|
Computes hydraulic size factors for conduits of intersecting
trapezoids.
Parameters
----------
%(network)s
%(Dp)s
%(Tcoords)s
Returns
-------
Notes
-----
This model should only be used for true 2D networks, i.e. with planar
symmetry.
|
intersecting_trapezoids
|
python
|
PMEAL/OpenPNM
|
openpnm/models/geometry/hydraulic_size_factors/_funcs.py
|
https://github.com/PMEAL/OpenPNM/blob/master/openpnm/models/geometry/hydraulic_size_factors/_funcs.py
|
MIT
|
def hybrid_trapezoids_and_rectangles(
network,
pore_diameter="pore.diameter",
throat_coords="throat.coords"
):
r"""
Computes hydraulic size factors for conduits assuming pores are
trapezoids and throats are rectangles.
Parameters
----------
%(network)s
%(Dp)s
%(Tcoords)s
Returns
-------
Notes
-----
This model should only be used for true 2D networks, i.e. with planar
symmetry.
"""
D1, Dt, D2 = network.get_conduit_data(pore_diameter.split('.', 1)[-1]).T
L1, Lt, L2 = _conduit_lengths.hybrid_trapezoids_and_rectangles(
network=network,
pore_diameter=pore_diameter,
throat_coords=throat_coords
).T
# Fi is the integral of (1/A^3) dx, x = [0, Li]
F1 = L1 / 2 * (D1 + Dt) / (D1 * Dt)**2
F2 = L2 / 2 * (D2 + Dt) / (D2 * Dt)**2
Ft = Lt / Dt**3
mask = Lt == 0.0
if mask.any():
inv_F_t = _np.zeros(len(Ft))
inv_F_t[~mask] = 1/Ft[~mask]
inv_F_t[mask] = _np.inf
else:
inv_F_t = 1/Ft
# S is 1 / (12 * F)
S1 = 1 / (F1 * 12)
St = inv_F_t / 12
S2 = 1 / (F2 * 12)
return _np.vstack([S1, St, S2]).T
|
Computes hydraulic size factors for conduits assuming pores are
trapezoids and throats are rectangles.
Parameters
----------
%(network)s
%(Dp)s
%(Tcoords)s
Returns
-------
Notes
-----
This model should only be used for true 2D networks, i.e. with planar
symmetry.
|
hybrid_trapezoids_and_rectangles
|
python
|
PMEAL/OpenPNM
|
openpnm/models/geometry/hydraulic_size_factors/_funcs.py
|
https://github.com/PMEAL/OpenPNM/blob/master/openpnm/models/geometry/hydraulic_size_factors/_funcs.py
|
MIT
|
def pyramids_and_cuboids(
network,
pore_diameter="pore.diameter",
throat_diameter="throat.diameter",
):
r"""
Computes hydraulic size factors for conduits assuming pores are
truncated pyramids and throats are cuboids.
Parameters
----------
%(network)s
%(Dp)s
%(Dt)s
Returns
-------
Notes
-----
"""
D1, Dt, D2 = network.get_conduit_data(pore_diameter.split('.', 1)[-1]).T
L1, Lt, L2 = _conduit_lengths.pyramids_and_cuboids(
network=network,
pore_diameter=pore_diameter,
throat_diameter=throat_diameter
).T
# Fi is the integral of (1/A^2) dx, x = [0, Li]
F1 = 1 / 3 * (L1 * (D1**2 + D1 * Dt + Dt**2) / (D1**3 * Dt**3))
F2 = 1 / 3 * (L2 * (D2**2 + D2 * Dt + Dt**2) / (D2**3 * Dt**3))
Ft = Lt / Dt**4
# I is the integral of (y^2 + z^2) dA, divided by A^2
I1 = I2 = It = 1 / 6
# S is 1 / (16 * pi^2 * I * F)
S1 = 1 / (16 * _np.pi**2 * I1 * F1)
St = 1 / (16 * _np.pi**2 * It * Ft)
S2 = 1 / (16 * _np.pi**2 * I2 * F2)
return _np.vstack([S1, St, S2]).T
|
Computes hydraulic size factors for conduits assuming pores are
truncated pyramids and throats are cuboids.
Parameters
----------
%(network)s
%(Dp)s
%(Dt)s
Returns
-------
Notes
-----
|
pyramids_and_cuboids
|
python
|
PMEAL/OpenPNM
|
openpnm/models/geometry/hydraulic_size_factors/_funcs.py
|
https://github.com/PMEAL/OpenPNM/blob/master/openpnm/models/geometry/hydraulic_size_factors/_funcs.py
|
MIT
|
Subsets and Splits
No community queries yet
The top public SQL queries from the community will appear here once available.