code
stringlengths
66
870k
docstring
stringlengths
19
26.7k
func_name
stringlengths
1
138
language
stringclasses
1 value
repo
stringlengths
7
68
path
stringlengths
5
324
url
stringlengths
46
389
license
stringclasses
7 values
def bech32_create_checksum(hrp, data): """Compute the checksum values given HRP and data.""" values = bech32_hrp_expand(hrp) + data polymod = bech32_polymod(values + [0, 0, 0, 0, 0, 0]) ^ 1 return [(polymod >> 5 * (5 - i)) & 31 for i in range(6)]
Compute the checksum values given HRP and data.
bech32_create_checksum
python
FuzzingLabs/octopus
octopus/platforms/BTC/bech32.py
https://github.com/FuzzingLabs/octopus/blob/master/octopus/platforms/BTC/bech32.py
MIT
def bech32_encode(hrp, data): """Compute a Bech32 string given HRP and data values.""" combined = data + bech32_create_checksum(hrp, data) return hrp + '1' + ''.join([CHARSET[d] for d in combined])
Compute a Bech32 string given HRP and data values.
bech32_encode
python
FuzzingLabs/octopus
octopus/platforms/BTC/bech32.py
https://github.com/FuzzingLabs/octopus/blob/master/octopus/platforms/BTC/bech32.py
MIT
def bech32_decode(bech): """Validate a Bech32 string, and determine HRP and data.""" if ((any(ord(x) < 33 or ord(x) > 126 for x in bech)) or (bech.lower() != bech and bech.upper() != bech)): return (None, None) bech = bech.lower() pos = bech.rfind('1') if pos < 1 or pos + 7 > len(bech) or len(bech) > 90: return (None, None) if not all(x in CHARSET for x in bech[pos+1:]): return (None, None) hrp = bech[:pos] data = [CHARSET.find(x) for x in bech[pos+1:]] if not bech32_verify_checksum(hrp, data): return (None, None) return (hrp, data[:-6])
Validate a Bech32 string, and determine HRP and data.
bech32_decode
python
FuzzingLabs/octopus
octopus/platforms/BTC/bech32.py
https://github.com/FuzzingLabs/octopus/blob/master/octopus/platforms/BTC/bech32.py
MIT
def _get_reverse_table(self): """Build an internal table used in the assembler.""" reverse_table = {} for (opcode, (mnemonic, immediate_operand_size, pops, pushes, gas, description)) in _table.items(): reverse_table[mnemonic] = opcode, mnemonic, immediate_operand_size, \ pops, pushes, gas, description reverse_table['OP_FALSE'] = 0x00, 'OP_FALSE', 0, 0, 1, gas, 'An empty array of bytes is pushed onto the stack.' reverse_table['OP_TRUE'] = 0x51, 'OP_TRUE', 0, 0, 1, gas, 'The number 1 is pushed onto the stack.' reverse_table['OP_1'] = 0x51, 0, 0, 1, gas, 'The number 1 is pushed onto the stack.' reverse_table['OP_2'] = 0x52, 0, 0, 1, gas, 'The number 2 is pushed onto the stack.' reverse_table['OP_3'] = 0x53, 0, 0, 1, gas, 'The number 3 is pushed onto the stack.' reverse_table['OP_4'] = 0x54, 0, 0, 1, gas, 'The number 4 is pushed onto the stack.' reverse_table['OP_5'] = 0x55, 0, 0, 1, gas, 'The number 5 is pushed onto the stack.' reverse_table['OP_6'] = 0x56, 0, 0, 1, gas, 'The number 6 is pushed onto the stack.' reverse_table['OP_7'] = 0x57, 0, 0, 1, gas, 'The number 7 is pushed onto the stack.' reverse_table['OP_8'] = 0x58, 0, 0, 1, gas, 'The number 8 is pushed onto the stack.' reverse_table['OP_9'] = 0x59, 0, 0, 1, gas, 'The number 9 is pushed onto the stack.' reverse_table['OP_10'] = 0x5A, 0, 0, 1, gas, 'The number 10 is pushed onto the stack.' reverse_table['OP_11'] = 0x5B, 0, 0, 1, gas, 'The number 11 is pushed onto the stack.' reverse_table['OP_12'] = 0x5C, 0, 0, 1, gas, 'The number 12 is pushed onto the stack.' reverse_table['OP_13'] = 0x5D, 0, 0, 1, gas, 'The number 13 is pushed onto the stack.' reverse_table['OP_14'] = 0x5E, 0, 0, 1, gas, 'The number 14 is pushed onto the stack.' reverse_table['OP_15'] = 0x5F, 0, 0, 1, gas, 'The number 15 is pushed onto the stack.' reverse_table['OP_16'] = 0x60, 0, 0, 1, gas, 'The number 16 is pushed onto the stack.' return reverse_table
Build an internal table used in the assembler.
_get_reverse_table
python
FuzzingLabs/octopus
octopus/platforms/BTC/btcscript.py
https://github.com/FuzzingLabs/octopus/blob/master/octopus/platforms/BTC/btcscript.py
MIT
def gettxoutproof(self, txids, blockhash=None): ''' TESTED http://chainquery.com/bitcoin-api/gettxoutproof Returns a hex-encoded proof that "txid" was included in a block. NOTE: By default this function only works sometimes. This is when there is an unspent output in the utxo for this transaction. To make it always work, you need to maintain a transaction index, using the -txindex command line option or specify the block in which the transaction is included manually (by blockhash). Arguments: 1. "txids" (string) A json array of txids to filter [ "txid" (string) A transaction hash ,... ] 2. "blockhash" (string, optional) If specified, looks for txid in the block with this hash Result: "data" (string) A string that is a serialized, hex-encoded data for the proof. ''' if blockhash is None: return self.call('gettxoutproof', [txids]) else: return self.call('gettxoutproof', [txids, blockhash])
TESTED http://chainquery.com/bitcoin-api/gettxoutproof Returns a hex-encoded proof that "txid" was included in a block. NOTE: By default this function only works sometimes. This is when there is an unspent output in the utxo for this transaction. To make it always work, you need to maintain a transaction index, using the -txindex command line option or specify the block in which the transaction is included manually (by blockhash). Arguments: 1. "txids" (string) A json array of txids to filter [ "txid" (string) A transaction hash ,... ] 2. "blockhash" (string, optional) If specified, looks for txid in the block with this hash Result: "data" (string) A string that is a serialized, hex-encoded data for the proof.
gettxoutproof
python
FuzzingLabs/octopus
octopus/platforms/BTC/explorer.py
https://github.com/FuzzingLabs/octopus/blob/master/octopus/platforms/BTC/explorer.py
MIT
def help(self, command=None): ''' TESTED http://chainquery.com/bitcoin-api/help List all commands, or get help for a specified command. Arguments: 1. "command" (string, optional) The command to get help on Result: "text" (string) The help text ''' if command is None: return self.call('help') else: return self.call('help', [command])
TESTED http://chainquery.com/bitcoin-api/help List all commands, or get help for a specified command. Arguments: 1. "command" (string, optional) The command to get help on Result: "text" (string) The help text
help
python
FuzzingLabs/octopus
octopus/platforms/BTC/explorer.py
https://github.com/FuzzingLabs/octopus/blob/master/octopus/platforms/BTC/explorer.py
MIT
def lockunspent(self, unlock, transactions=None): ''' TESTED http://chainquery.com/bitcoin-api/lockunspent Updates list of temporarily unspendable outputs. Temporarily lock (unlock=false) or unlock (unlock=true) specified transaction outputs. If no transaction outputs are specified when unlocking then all current locked transaction outputs are unlocked. A locked transaction output will not be chosen by automatic coin selection, when spending bitcoins. Locks are stored in memory only. Nodes start with zero locked outputs, and the locked output list is always cleared (by virtue of process exit) when a node stops or fails. Also see the listunspent call Arguments: 1. unlock (boolean, required) Whether to unlock (true) or lock (false) the specified transactions 2. "transactions" (string, optional) A json array of objects. Each object the txid (string) vout (numeric) [ (json array of json objects) { "txid":"id", (string) The transaction id "vout": n (numeric) The output number } ,... ] Result: true|false (boolean) Whether the command was successful or not ''' if transactions is None: return self.call('lockunspent', [unlock]) else: return self.call('lockunspent', [unlock, transactions])
TESTED http://chainquery.com/bitcoin-api/lockunspent Updates list of temporarily unspendable outputs. Temporarily lock (unlock=false) or unlock (unlock=true) specified transaction outputs. If no transaction outputs are specified when unlocking then all current locked transaction outputs are unlocked. A locked transaction output will not be chosen by automatic coin selection, when spending bitcoins. Locks are stored in memory only. Nodes start with zero locked outputs, and the locked output list is always cleared (by virtue of process exit) when a node stops or fails. Also see the listunspent call Arguments: 1. unlock (boolean, required) Whether to unlock (true) or lock (false) the specified transactions 2. "transactions" (string, optional) A json array of objects. Each object the txid (string) vout (numeric) [ (json array of json objects) { "txid":"id", (string) The transaction id "vout": n (numeric) The output number } ,... ] Result: true|false (boolean) Whether the command was successful or not
lockunspent
python
FuzzingLabs/octopus
octopus/platforms/BTC/explorer.py
https://github.com/FuzzingLabs/octopus/blob/master/octopus/platforms/BTC/explorer.py
MIT
def sendfrom(self, fromaccount, toaddress, amount, minconf=1, comment=None, comment_to=None): ''' http://chainquery.com/bitcoin-api/sendfrom NOT TESTED DEPRECATED (use sendtoaddress). Sent an amount from an account to a bitcoin address. Requires wallet passphrase to be set with walletpassphrase call. Arguments: 1. "fromaccount" (string, required) The name of the account to send funds from. May be the default account using "". Specifying an account does not influence coin selection, but it does associate the newly created transaction with the account, so the account's balance computation and transaction history can reflect the spend. 2. "toaddress" (string, required) The bitcoin address to send funds to. 3. amount (numeric or string, required) The amount in BTC (transaction fee is added on top). 4. minconf (numeric, optional, default=1) Only use funds with at least this many confirmations. 5. "comment" (string, optional) A comment used to store what the transaction is for. This is not part of the transaction, just kept in your wallet. 6. "comment_to" (string, optional) An optional comment to store the name of the person or organization to which you're sending the transaction. This is not part of the transaction, it is just kept in your wallet. Result: "txid" (string) The transaction id. ''' param = [fromaccount, toaddress, amount] if comment is not None: param.append(comment) if comment_to is not None: param.append(comment_to) return self.call('sendfrom', param)
http://chainquery.com/bitcoin-api/sendfrom NOT TESTED DEPRECATED (use sendtoaddress). Sent an amount from an account to a bitcoin address. Requires wallet passphrase to be set with walletpassphrase call. Arguments: 1. "fromaccount" (string, required) The name of the account to send funds from. May be the default account using "". Specifying an account does not influence coin selection, but it does associate the newly created transaction with the account, so the account's balance computation and transaction history can reflect the spend. 2. "toaddress" (string, required) The bitcoin address to send funds to. 3. amount (numeric or string, required) The amount in BTC (transaction fee is added on top). 4. minconf (numeric, optional, default=1) Only use funds with at least this many confirmations. 5. "comment" (string, optional) A comment used to store what the transaction is for. This is not part of the transaction, just kept in your wallet. 6. "comment_to" (string, optional) An optional comment to store the name of the person or organization to which you're sending the transaction. This is not part of the transaction, it is just kept in your wallet. Result: "txid" (string) The transaction id.
sendfrom
python
FuzzingLabs/octopus
octopus/platforms/BTC/explorer.py
https://github.com/FuzzingLabs/octopus/blob/master/octopus/platforms/BTC/explorer.py
MIT
def sendmany(self, fromaccount, amounts, minconf=1, comment=None, subtractfeefrom=None, replaceable=None, conf_target=None, estimate_mode="UNSET"): ''' http://chainquery.com/bitcoin-api/sendmany NOT TESTED Send multiple times. Amounts are double-precision floating point numbers. Requires wallet passphrase to be set with walletpassphrase call. Arguments: 1. "fromaccount" (string, required) DEPRECATED. The account to send the funds from. Should be "" for the default account 2. "amounts" (string, required) A json object with addresses and amounts { "address":amount (numeric or string) The bitcoin address is the key, the numeric amount (can be string) in BTC is the value ,... } 3. minconf (numeric, optional, default=1) Only use the balance confirmed at least this many times. 4. "comment" (string, optional) A comment 5. subtractfeefrom (array, optional) A json array with addresses. The fee will be equally deducted from the amount of each selected address. Those recipients will receive less bitcoins than you enter in their corresponding amount field. If no addresses are specified here, the sender pays the fee. [ "address" (string) Subtract fee from this address ,... ] 6. replaceable (boolean, optional) Allow this transaction to be replaced by a transaction with higher fees via BIP 125 7. conf_target (numeric, optional) Confirmation target (in blocks) 8. "estimate_mode" (string, optional, default=UNSET) The fee estimate mode, must be one of: "UNSET" "ECONOMICAL" "CONSERVATIVE" Result: "txid" (string) The transaction id for the send. Only 1 transaction is created regardless of the number of addresses. ''' param = [fromaccount, amounts, minconf] if comment is not None: param.append(comment) if subtractfeefrom is not None: param.append(subtractfeefrom) if replaceable is not None: param.append(replaceable) if conf_target is not None: param.append(conf_target) param.append(estimate_mode) return self.call('sendmany', param)
http://chainquery.com/bitcoin-api/sendmany NOT TESTED Send multiple times. Amounts are double-precision floating point numbers. Requires wallet passphrase to be set with walletpassphrase call. Arguments: 1. "fromaccount" (string, required) DEPRECATED. The account to send the funds from. Should be "" for the default account 2. "amounts" (string, required) A json object with addresses and amounts { "address":amount (numeric or string) The bitcoin address is the key, the numeric amount (can be string) in BTC is the value ,... } 3. minconf (numeric, optional, default=1) Only use the balance confirmed at least this many times. 4. "comment" (string, optional) A comment 5. subtractfeefrom (array, optional) A json array with addresses. The fee will be equally deducted from the amount of each selected address. Those recipients will receive less bitcoins than you enter in their corresponding amount field. If no addresses are specified here, the sender pays the fee. [ "address" (string) Subtract fee from this address ,... ] 6. replaceable (boolean, optional) Allow this transaction to be replaced by a transaction with higher fees via BIP 125 7. conf_target (numeric, optional) Confirmation target (in blocks) 8. "estimate_mode" (string, optional, default=UNSET) The fee estimate mode, must be one of: "UNSET" "ECONOMICAL" "CONSERVATIVE" Result: "txid" (string) The transaction id for the send. Only 1 transaction is created regardless of the number of addresses.
sendmany
python
FuzzingLabs/octopus
octopus/platforms/BTC/explorer.py
https://github.com/FuzzingLabs/octopus/blob/master/octopus/platforms/BTC/explorer.py
MIT
def sendtoaddress(self, address, amount, comment=None, comment_to=None, subtractfeefromamount=False, replaceable=None, estimate_mode="UNSET"): ''' http://chainquery.com/bitcoin-api/sendtoaddress NOT TESTED Send an amount to a given address. Requires wallet passphrase to be set with walletpassphrase call. Arguments: 1. "address" (string, required) The bitcoin address to send to. 2. "amount" (numeric or string, required) The amount in BTC to send. eg 0.1 3. "comment" (string, optional) A comment used to store what the transaction is for. This is not part of the transaction, just kept in your wallet. 4. "comment_to" (string, optional) A comment to store the name of the person or organization to which you're sending the transaction. This is not part of the transaction, just kept in your wallet. 5. subtractfeefromamount (boolean, optional, default=false) The fee will be deducted from the amount being sent. The recipient will receive less bitcoins than you enter in the amount field. 6. replaceable (boolean, optional) Allow this transaction to be replaced by a transaction with higher fees via BIP 125 7. conf_target (numeric, optional) Confirmation target (in blocks) 8. "estimate_mode" (string, optional, default=UNSET) The fee estimate mode, must be one of: "UNSET" "ECONOMICAL" "CONSERVATIVE" Result: "txid" (string) The transaction id. ''' param = [address, amount] if comment is not None: param.append(comment) if comment_to is not None: param.append(comment_to) param.append(subtractfeefromamount) if replaceable is not None: param.append(replaceable) param.append(estimate_mode) return self.call('sendtoaddress', param)
http://chainquery.com/bitcoin-api/sendtoaddress NOT TESTED Send an amount to a given address. Requires wallet passphrase to be set with walletpassphrase call. Arguments: 1. "address" (string, required) The bitcoin address to send to. 2. "amount" (numeric or string, required) The amount in BTC to send. eg 0.1 3. "comment" (string, optional) A comment used to store what the transaction is for. This is not part of the transaction, just kept in your wallet. 4. "comment_to" (string, optional) A comment to store the name of the person or organization to which you're sending the transaction. This is not part of the transaction, just kept in your wallet. 5. subtractfeefromamount (boolean, optional, default=false) The fee will be deducted from the amount being sent. The recipient will receive less bitcoins than you enter in the amount field. 6. replaceable (boolean, optional) Allow this transaction to be replaced by a transaction with higher fees via BIP 125 7. conf_target (numeric, optional) Confirmation target (in blocks) 8. "estimate_mode" (string, optional, default=UNSET) The fee estimate mode, must be one of: "UNSET" "ECONOMICAL" "CONSERVATIVE" Result: "txid" (string) The transaction id.
sendtoaddress
python
FuzzingLabs/octopus
octopus/platforms/BTC/explorer.py
https://github.com/FuzzingLabs/octopus/blob/master/octopus/platforms/BTC/explorer.py
MIT
def signrawtransaction(self, hexstring, prevtxs=None, privkeys=None, sighashtype="ALL"): ''' http://chainquery.com/bitcoin-api/signrawtransaction NOT TESTED Sign inputs for raw transaction (serialized, hex-encoded). The second optional argument (may be null) is an array of previous transaction outputs that this transaction depends on but may not yet be in the block chain. The third optional argument (may be null) is an array of base58-encoded private keys that, if given, will be the only keys used to sign the transaction. Requires wallet passphrase to be set with walletpassphrase call. Arguments: 1. "hexstring" (string, required) The transaction hex string 2. "prevtxs" (string, optional) An json array of previous dependent transaction outputs [ (json array of json objects, or 'null' if none provided) { "txid":"id", (string, required) The transaction id "vout":n, (numeric, required) The output number "scriptPubKey": "hex", (string, required) script key "redeemScript": "hex", (string, required for P2SH or P2WSH) redeem script "amount": value (numeric, required) The amount spent } ,... ] 3. "privkeys" (string, optional) A json array of base58-encoded private keys for signing [ (json array of strings, or 'null' if none provided) "privatekey" (string) private key in base58-encoding ,... ] 4. "sighashtype" (string, optional, default=ALL) The signature hash type. Must be one of "ALL" "NONE" "SINGLE" "ALL|ANYONECANPAY" "NONE|ANYONECANPAY" "SINGLE|ANYONECANPAY" Result: { "hex" : "value", (string) The hex-encoded raw transaction with signature(s) "complete" : true|false, (boolean) If the transaction has a complete set of signatures "errors" : [ (json array of objects) Script verification errors (if there are any) { "txid" : "hash", (string) The hash of the referenced, previous transaction "vout" : n, (numeric) The index of the output to spent and used as input "scriptSig" : "hex", (string) The hex-encoded signature script "sequence" : n, (numeric) Script sequence number "error" : "text" (string) Verification or signing error related to the input } ,... ] } ''' param = [hexstring] if prevtxs is not None: param.append(prevtxs) if privkeys is not None: param.append(privkeys) param.append(sighashtype) return self.call('signrawtransaction', param)
http://chainquery.com/bitcoin-api/signrawtransaction NOT TESTED Sign inputs for raw transaction (serialized, hex-encoded). The second optional argument (may be null) is an array of previous transaction outputs that this transaction depends on but may not yet be in the block chain. The third optional argument (may be null) is an array of base58-encoded private keys that, if given, will be the only keys used to sign the transaction. Requires wallet passphrase to be set with walletpassphrase call. Arguments: 1. "hexstring" (string, required) The transaction hex string 2. "prevtxs" (string, optional) An json array of previous dependent transaction outputs [ (json array of json objects, or 'null' if none provided) { "txid":"id", (string, required) The transaction id "vout":n, (numeric, required) The output number "scriptPubKey": "hex", (string, required) script key "redeemScript": "hex", (string, required for P2SH or P2WSH) redeem script "amount": value (numeric, required) The amount spent } ,... ] 3. "privkeys" (string, optional) A json array of base58-encoded private keys for signing [ (json array of strings, or 'null' if none provided) "privatekey" (string) private key in base58-encoding ,... ] 4. "sighashtype" (string, optional, default=ALL) The signature hash type. Must be one of "ALL" "NONE" "SINGLE" "ALL|ANYONECANPAY" "NONE|ANYONECANPAY" "SINGLE|ANYONECANPAY" Result: { "hex" : "value", (string) The hex-encoded raw transaction with signature(s) "complete" : true|false, (boolean) If the transaction has a complete set of signatures "errors" : [ (json array of objects) Script verification errors (if there are any) { "txid" : "hash", (string) The hash of the referenced, previous transaction "vout" : n, (numeric) The index of the output to spent and used as input "scriptSig" : "hex", (string) The hex-encoded signature script "sequence" : n, (numeric) Script sequence number "error" : "text" (string) Verification or signing error related to the input } ,... ] }
signrawtransaction
python
FuzzingLabs/octopus
octopus/platforms/BTC/explorer.py
https://github.com/FuzzingLabs/octopus/blob/master/octopus/platforms/BTC/explorer.py
MIT
def get_block(self, block_num_or_id): '''Get information related to a block. TESTED ''' data = {'block_num_or_id': block_num_or_id} return self.call('get_block', data)
Get information related to a block. TESTED
get_block
python
FuzzingLabs/octopus
octopus/platforms/EOS/explorer.py
https://github.com/FuzzingLabs/octopus/blob/master/octopus/platforms/EOS/explorer.py
MIT
def get_account(self, account_name): '''Get information related to an account. TESTED ''' data = {'account_name': account_name} return self.call('get_account', data)
Get information related to an account. TESTED
get_account
python
FuzzingLabs/octopus
octopus/platforms/EOS/explorer.py
https://github.com/FuzzingLabs/octopus/blob/master/octopus/platforms/EOS/explorer.py
MIT
def get_table_rows(self, scope, code, table, json=False, lower_bound=None, upper_bound=None, limit=None): '''Fetch smart contract data from an account. NOT TESTED ''' data = {'scope': scope, 'code': code, 'table': table, 'json': json} if lower_bound: data['lower_bound'] = lower_bound if upper_bound: data['upper_bound'] = upper_bound if limit: data['limit'] = limit return self.call('get_table_rows', data)
Fetch smart contract data from an account. NOT TESTED
get_table_rows
python
FuzzingLabs/octopus
octopus/platforms/EOS/explorer.py
https://github.com/FuzzingLabs/octopus/blob/master/octopus/platforms/EOS/explorer.py
MIT
def abi_json_to_bin(self, code, action, args): '''Serialize json to binary hex. The resulting binary hex is usually used for the data field in push_transaction. NOT TESTED ''' data = {'code': code, 'action': action, 'args': args} print(data) return self.call('abi_json_to_bin', data)
Serialize json to binary hex. The resulting binary hex is usually used for the data field in push_transaction. NOT TESTED
abi_json_to_bin
python
FuzzingLabs/octopus
octopus/platforms/EOS/explorer.py
https://github.com/FuzzingLabs/octopus/blob/master/octopus/platforms/EOS/explorer.py
MIT
def abi_bin_to_json(self, code, action, binargs): '''Serialize back binary hex to json. NOT TESTED ''' data = {'code': code, 'action': action, 'binargs': binargs} return self.call('abi_bin_to_json', data)
Serialize back binary hex to json. NOT TESTED
abi_bin_to_json
python
FuzzingLabs/octopus
octopus/platforms/EOS/explorer.py
https://github.com/FuzzingLabs/octopus/blob/master/octopus/platforms/EOS/explorer.py
MIT
def get_required_keys(self, transaction): '''Get required keys to sign a transaction from list of your keys. NOT TESTED ''' data = {'transaction': transaction} return self.call('get_required_keys', data)
Get required keys to sign a transaction from list of your keys. NOT TESTED
get_required_keys
python
FuzzingLabs/octopus
octopus/platforms/EOS/explorer.py
https://github.com/FuzzingLabs/octopus/blob/master/octopus/platforms/EOS/explorer.py
MIT
def decode_tx(self, transaction_id): """ Return dict with important information about the given transaction """ tx_data = self.eth_getTransactionByHash(transaction_id) return tx_data #TODO
Return dict with important information about the given transaction
decode_tx
python
FuzzingLabs/octopus
octopus/platforms/ETH/explorer.py
https://github.com/FuzzingLabs/octopus/blob/master/octopus/platforms/ETH/explorer.py
MIT
def create_contract(self, from_, code, gas, sig=None, args=None): """ Create a contract on the blockchain from compiled EVM code. Returns the transaction hash. """ ''' from_ = from_ or self.eth_coinbase() if sig is not None and args is not None: types = sig[sig.find('(') + 1: sig.find(')')].split(',') encoded_params = encode_abi(types, args) code += encoded_params.encode('hex') return self.eth_sendTransaction(from_address=from_, gas=gas, data=code) ''' return NotImplementedError()
Create a contract on the blockchain from compiled EVM code. Returns the transaction hash.
create_contract
python
FuzzingLabs/octopus
octopus/platforms/ETH/explorer.py
https://github.com/FuzzingLabs/octopus/blob/master/octopus/platforms/ETH/explorer.py
MIT
def call_without_transaction(self, address, sig, args, result_types): """ Call a contract function on the RPC server, without sending a transaction (useful for reading data) """ ''' data = self._encode_function(sig, args) data_hex = data.encode('hex') response = self.eth_call(to_address=address, data=data_hex) return decode_abi(result_types, response[2:].decode('hex')) ''' return NotImplementedError()
Call a contract function on the RPC server, without sending a transaction (useful for reading data)
call_without_transaction
python
FuzzingLabs/octopus
octopus/platforms/ETH/explorer.py
https://github.com/FuzzingLabs/octopus/blob/master/octopus/platforms/ETH/explorer.py
MIT
def call_with_transaction(self, from_, address, sig, args, gas=None, gas_price=None, value=None): """ Call a contract function by sending a transaction (useful for storing data) """ ''' gas = gas or DEFAULT_GAS_PER_TX gas_price = gas_price or DEFAULT_GAS_PRICE data = self._encode_function(sig, args) data_hex = data.encode('hex') return self.eth_sendTransaction(from_address=from_, to_address=address, data=data_hex, gas=gas, gas_price=gas_price, value=value) ''' return NotImplementedError()
Call a contract function by sending a transaction (useful for storing data)
call_with_transaction
python
FuzzingLabs/octopus
octopus/platforms/ETH/explorer.py
https://github.com/FuzzingLabs/octopus/blob/master/octopus/platforms/ETH/explorer.py
MIT
def web3_sha3(self, data): """ Returns Keccak-256 (not the standardized SHA3-256) of the given data. :param data: the data to convert into a SHA3 hash :type data: hex string :return: The SHA3 result of the given string. :rtype: hex string :Example: >>> explorer = EthereumExplorerRPC() >>> explorer.web3_sha3('0x' + b'hello world'.hex()) '0x47173285a8d7341e5e972fc677286384f802f8ef42a5ec5f03bbfa254cb01fad' .. seealso:: https://github.com/ethereum/wiki/wiki/JSON-RPC#web3_sha3 .. todo:: TESTED """ #data = str(data).encode('hex') return self.call('web3_sha3', [data])
Returns Keccak-256 (not the standardized SHA3-256) of the given data. :param data: the data to convert into a SHA3 hash :type data: hex string :return: The SHA3 result of the given string. :rtype: hex string :Example: >>> explorer = EthereumExplorerRPC() >>> explorer.web3_sha3('0x' + b'hello world'.hex()) '0x47173285a8d7341e5e972fc677286384f802f8ef42a5ec5f03bbfa254cb01fad' .. seealso:: https://github.com/ethereum/wiki/wiki/JSON-RPC#web3_sha3 .. todo:: TESTED
web3_sha3
python
FuzzingLabs/octopus
octopus/platforms/ETH/explorer.py
https://github.com/FuzzingLabs/octopus/blob/master/octopus/platforms/ETH/explorer.py
MIT
def eth_getBalance(self, address=None, block=BLOCK_TAG_LATEST): """ Returns the balance of the account of given address. :param address: 20 Bytes - address to check for balance. :type address: str :param block: (optionnal) integer block number, or the string "latest", "earliest" or "pending" :type block: int or str :return: integer of the current balance in wei. :rtype: int :Example: >>> explorer = EthereumExplorerRPC() >>> explorer.eth_getBalance("0x956b6B7454884b734B29A8115F045a95179ea00C") 17410594678300000000 .. seealso:: https://github.com/ethereum/wiki/wiki/JSON-RPC#eth_getbalance .. todo:: TESTED """ address = address or self.eth_coinbase() block = validate_block(block) v = hex_to_dec(self.call('eth_getBalance', [address, block])) return (v if v else 0)
Returns the balance of the account of given address. :param address: 20 Bytes - address to check for balance. :type address: str :param block: (optionnal) integer block number, or the string "latest", "earliest" or "pending" :type block: int or str :return: integer of the current balance in wei. :rtype: int :Example: >>> explorer = EthereumExplorerRPC() >>> explorer.eth_getBalance("0x956b6B7454884b734B29A8115F045a95179ea00C") 17410594678300000000 .. seealso:: https://github.com/ethereum/wiki/wiki/JSON-RPC#eth_getbalance .. todo:: TESTED
eth_getBalance
python
FuzzingLabs/octopus
octopus/platforms/ETH/explorer.py
https://github.com/FuzzingLabs/octopus/blob/master/octopus/platforms/ETH/explorer.py
MIT
def eth_getStorageAt(self, address=None, position=0, block=BLOCK_TAG_LATEST): """ Returns the value from a storage position at a given address. :param address: 20 Bytes - address to check for balance. :type address: str :param address: (optionnal) integer of the position in the storage. default is 0 :type address: int :param block: (optionnal) integer block number, or the string "latest", "earliest" or "pending" :type block: int or str :return: the value at this storage position. :rtype: str :Example: >>> explorer = EthereumExplorerRPC() >>> explorer.eth_getStorageAt("0x295a70b2de5e3953354a6a8344e616ed314d7251", 0, "latest") '0x0000000000000000000000000000000000000000000000000000000000000000' .. seealso:: https://github.com/ethereum/wiki/wiki/JSON-RPC#eth_getstorageat .. todo:: TESTED """ block = validate_block(block) return self.call('eth_getStorageAt', [address, hex(position), block])
Returns the value from a storage position at a given address. :param address: 20 Bytes - address to check for balance. :type address: str :param address: (optionnal) integer of the position in the storage. default is 0 :type address: int :param block: (optionnal) integer block number, or the string "latest", "earliest" or "pending" :type block: int or str :return: the value at this storage position. :rtype: str :Example: >>> explorer = EthereumExplorerRPC() >>> explorer.eth_getStorageAt("0x295a70b2de5e3953354a6a8344e616ed314d7251", 0, "latest") '0x0000000000000000000000000000000000000000000000000000000000000000' .. seealso:: https://github.com/ethereum/wiki/wiki/JSON-RPC#eth_getstorageat .. todo:: TESTED
eth_getStorageAt
python
FuzzingLabs/octopus
octopus/platforms/ETH/explorer.py
https://github.com/FuzzingLabs/octopus/blob/master/octopus/platforms/ETH/explorer.py
MIT
def eth_getTransactionCount(self, address, block=BLOCK_TAG_LATEST): """ Returns the number of transactions sent from an address. :param address: 20 Bytes - address. :type address: str :param block: (optionnal) integer block number, or the string "latest", "earliest" or "pending" :type block: int or str :return: integer of the number of transactions send from this address. :rtype: int :Example: >>> explorer = EthereumExplorerRPC() >>> explorer.eth_getTransactionCount("0x956b6B7454884b734B29A8115F045a95179ea00C") 12891 .. seealso:: https://github.com/ethereum/wiki/wiki/JSON-RPC#eth_gettransactioncount .. todo:: TESTED """ block = validate_block(block) return hex_to_dec(self.call('eth_getTransactionCount', [address, block]))
Returns the number of transactions sent from an address. :param address: 20 Bytes - address. :type address: str :param block: (optionnal) integer block number, or the string "latest", "earliest" or "pending" :type block: int or str :return: integer of the number of transactions send from this address. :rtype: int :Example: >>> explorer = EthereumExplorerRPC() >>> explorer.eth_getTransactionCount("0x956b6B7454884b734B29A8115F045a95179ea00C") 12891 .. seealso:: https://github.com/ethereum/wiki/wiki/JSON-RPC#eth_gettransactioncount .. todo:: TESTED
eth_getTransactionCount
python
FuzzingLabs/octopus
octopus/platforms/ETH/explorer.py
https://github.com/FuzzingLabs/octopus/blob/master/octopus/platforms/ETH/explorer.py
MIT
def eth_getBlockTransactionCountByNumber(self, block=BLOCK_TAG_LATEST): """ Returns the number of transactions in a block matching the given block number. :param block: (optionnal) integer block number, or the string "latest", "earliest" or "pending" :type block: int or str :return: integer of the number of transactions in this block. :rtype: int :Example: >>> explorer = EthereumExplorerRPC() >>> explorer.eth_getBlockTransactionCountByNumber(5100196) 69 .. seealso:: https://github.com/ethereum/wiki/wiki/JSON-RPC#eth_getblocktransactioncountbynumber .. todo:: TESTED """ block = validate_block(block) return hex_to_dec(self.call('eth_getBlockTransactionCountByNumber', [block]))
Returns the number of transactions in a block matching the given block number. :param block: (optionnal) integer block number, or the string "latest", "earliest" or "pending" :type block: int or str :return: integer of the number of transactions in this block. :rtype: int :Example: >>> explorer = EthereumExplorerRPC() >>> explorer.eth_getBlockTransactionCountByNumber(5100196) 69 .. seealso:: https://github.com/ethereum/wiki/wiki/JSON-RPC#eth_getblocktransactioncountbynumber .. todo:: TESTED
eth_getBlockTransactionCountByNumber
python
FuzzingLabs/octopus
octopus/platforms/ETH/explorer.py
https://github.com/FuzzingLabs/octopus/blob/master/octopus/platforms/ETH/explorer.py
MIT
def eth_getUncleCountByBlockNumber(self, block=BLOCK_TAG_LATEST): """ Returns the number of uncles in a block from a block matching the given block number. :param block: (optionnal) integer block number, or the string "latest", "earliest" or "pending" :type block: int or str :return: integer of the number of uncles in this block. :rtype: int :Example: >>> explorer = EthereumExplorerRPC() >>> explorer.eth_getUncleCountByBlockNumber(5100196) 0 .. seealso:: https://github.com/ethereum/wiki/wiki/JSON-RPC#eth_getunclecountbyblocknumber .. todo:: TESTED """ block = validate_block(block) return hex_to_dec(self.call('eth_getUncleCountByBlockNumber', [block]))
Returns the number of uncles in a block from a block matching the given block number. :param block: (optionnal) integer block number, or the string "latest", "earliest" or "pending" :type block: int or str :return: integer of the number of uncles in this block. :rtype: int :Example: >>> explorer = EthereumExplorerRPC() >>> explorer.eth_getUncleCountByBlockNumber(5100196) 0 .. seealso:: https://github.com/ethereum/wiki/wiki/JSON-RPC#eth_getunclecountbyblocknumber .. todo:: TESTED
eth_getUncleCountByBlockNumber
python
FuzzingLabs/octopus
octopus/platforms/ETH/explorer.py
https://github.com/FuzzingLabs/octopus/blob/master/octopus/platforms/ETH/explorer.py
MIT
def eth_getCode(self, address, default_block=BLOCK_TAG_LATEST): """ Returns code at a given address. :param address: 20 Bytes - address. :type address: str :param block: (optionnal) integer block number, or the string "latest", "earliest" or "pending" :type block: int or str :return: the code from the given address. :rtype: hex str :Example: >>> explorer = EthereumExplorerRPC() >>> explorer.eth_getCode("0xBB9bc244D798123fDe783fCc1C72d3Bb8C189413") '0x6060604052361561020e5760e060020a6000350463013cf08b[...]62f93160ef3e563' .. seealso:: https://github.com/ethereum/wiki/wiki/JSON-RPC#eth_getcode .. todo:: TESTED """ default_block = validate_block(default_block) return self.call('eth_getCode', [address, default_block])
Returns code at a given address. :param address: 20 Bytes - address. :type address: str :param block: (optionnal) integer block number, or the string "latest", "earliest" or "pending" :type block: int or str :return: the code from the given address. :rtype: hex str :Example: >>> explorer = EthereumExplorerRPC() >>> explorer.eth_getCode("0xBB9bc244D798123fDe783fCc1C72d3Bb8C189413") '0x6060604052361561020e5760e060020a6000350463013cf08b[...]62f93160ef3e563' .. seealso:: https://github.com/ethereum/wiki/wiki/JSON-RPC#eth_getcode .. todo:: TESTED
eth_getCode
python
FuzzingLabs/octopus
octopus/platforms/ETH/explorer.py
https://github.com/FuzzingLabs/octopus/blob/master/octopus/platforms/ETH/explorer.py
MIT
def eth_sendTransaction(self, to_address=None, from_address=None, gas=None, gas_price=None, value=None, data=None, nonce=None): """ https://github.com/ethereum/wiki/wiki/JSON-RPC#eth_sendtransaction NEEDS TESTING """ params = {} params['from'] = from_address or self.eth_coinbase() if to_address is not None: params['to'] = to_address if gas is not None: params['gas'] = hex(gas) if gas_price is not None: params['gasPrice'] = clean_hex(gas_price) if value is not None: params['value'] = clean_hex(value) if data is not None: params['data'] = data if nonce is not None: params['nonce'] = hex(nonce) return self.call('eth_sendTransaction', [params])
ERROR: type should be string, got "\n https://github.com/ethereum/wiki/wiki/JSON-RPC#eth_sendtransaction\n\n NEEDS TESTING\n "
eth_sendTransaction
python
FuzzingLabs/octopus
octopus/platforms/ETH/explorer.py
https://github.com/FuzzingLabs/octopus/blob/master/octopus/platforms/ETH/explorer.py
MIT
def eth_call(self, to_address, from_address=None, gas=None, gas_price=None, value=None, data=None, default_block=BLOCK_TAG_LATEST): """ https://github.com/ethereum/wiki/wiki/JSON-RPC#eth_call NEEDS TESTING """ default_block = validate_block(default_block) obj = {} obj['to'] = to_address if from_address is not None: obj['from'] = from_address if gas is not None: obj['gas'] = hex(gas) if gas_price is not None: obj['gasPrice'] = clean_hex(gas_price) if value is not None: obj['value'] = value if data is not None: obj['data'] = data return self.call('eth_call', [obj, default_block])
ERROR: type should be string, got "\n https://github.com/ethereum/wiki/wiki/JSON-RPC#eth_call\n\n NEEDS TESTING\n "
eth_call
python
FuzzingLabs/octopus
octopus/platforms/ETH/explorer.py
https://github.com/FuzzingLabs/octopus/blob/master/octopus/platforms/ETH/explorer.py
MIT
def eth_estimateGas(self, to_address=None, from_address=None, gas=None, gas_price=None, value=None, data=None, default_block=BLOCK_TAG_LATEST): """ https://github.com/ethereum/wiki/wiki/JSON-RPC#eth_estimategas NEEDS TESTING """ if isinstance(default_block, basestring): if default_block not in BLOCK_TAGS: raise ValueError obj = {} if to_address is not None: obj['to'] = to_address if from_address is not None: obj['from'] = from_address if gas is not None: obj['gas'] = hex(gas) if gas_price is not None: obj['gasPrice'] = clean_hex(gas_price) if value is not None: obj['value'] = value if data is not None: obj['data'] = data return hex_to_dec(self.call('eth_estimateGas', [obj, default_block]))
ERROR: type should be string, got "\n https://github.com/ethereum/wiki/wiki/JSON-RPC#eth_estimategas\n\n NEEDS TESTING\n "
eth_estimateGas
python
FuzzingLabs/octopus
octopus/platforms/ETH/explorer.py
https://github.com/FuzzingLabs/octopus/blob/master/octopus/platforms/ETH/explorer.py
MIT
def eth_getTransactionByBlockNumberAndIndex(self, block=BLOCK_TAG_LATEST, index=0): """ Returns information about a transaction by block number and transaction index position. :param block: (optionnal) integer block number, or the string "latest", "earliest" or "pending" :type block: int or str :param index: (optionnal) integer of the transaction index position. :type index: int :return: A transaction object, or null when no transaction was found :rtype: dict :Example: >>> explorer = EthereumExplorerRPC() >>> explorer.eth_getTransactionByBlockNumberAndIndex(5100196, 1) {'blockHash': '0x98a548cbd0cd385f46c9bf28c16bc36dc6ec27207617e236f527716e617ae91b', 'blockNumber': '0x4dd2a4', 'from': '0xb01cb49fe0d6d6e47edf3a072d15dfe73155331c', 'gas': '0x5208', 'gasPrice': '0xe33e22200', 'hash': '0xf02ffa405bae96e62a9e36fbd781362ca378ec62353d5e2bd0585868d3deaf61', 'input': '0x', 'nonce': '0x1908f', 'r': '0xcad900a5060ba9bb646a7f6965f98e945d71a19b3e30ff53d03b9797c6153d07', 's': '0x53b11a48758fc383df878a9b5468c83b033f5036b124b16dbb0a5167aee7fc4f', 'to': '0x26cd018553871f2e887986bc24c68a0ce622bb8f', 'transactionIndex': '0x1', 'v': '0x25', 'value': '0x1bc16d674ec80000'} .. seealso:: :method:`eth_getTransactionByHash` https://github.com/ethereum/wiki/wiki/JSON-RPC#eth_gettransactionbyblocknumberandindex .. todo:: TESTED """ block = validate_block(block) return self.call('eth_getTransactionByBlockNumberAndIndex', [block, hex(index)])
Returns information about a transaction by block number and transaction index position. :param block: (optionnal) integer block number, or the string "latest", "earliest" or "pending" :type block: int or str :param index: (optionnal) integer of the transaction index position. :type index: int :return: A transaction object, or null when no transaction was found :rtype: dict :Example: >>> explorer = EthereumExplorerRPC() >>> explorer.eth_getTransactionByBlockNumberAndIndex(5100196, 1) {'blockHash': '0x98a548cbd0cd385f46c9bf28c16bc36dc6ec27207617e236f527716e617ae91b', 'blockNumber': '0x4dd2a4', 'from': '0xb01cb49fe0d6d6e47edf3a072d15dfe73155331c', 'gas': '0x5208', 'gasPrice': '0xe33e22200', 'hash': '0xf02ffa405bae96e62a9e36fbd781362ca378ec62353d5e2bd0585868d3deaf61', 'input': '0x', 'nonce': '0x1908f', 'r': '0xcad900a5060ba9bb646a7f6965f98e945d71a19b3e30ff53d03b9797c6153d07', 's': '0x53b11a48758fc383df878a9b5468c83b033f5036b124b16dbb0a5167aee7fc4f', 'to': '0x26cd018553871f2e887986bc24c68a0ce622bb8f', 'transactionIndex': '0x1', 'v': '0x25', 'value': '0x1bc16d674ec80000'} .. seealso:: :method:`eth_getTransactionByHash` https://github.com/ethereum/wiki/wiki/JSON-RPC#eth_gettransactionbyblocknumberandindex .. todo:: TESTED
eth_getTransactionByBlockNumberAndIndex
python
FuzzingLabs/octopus
octopus/platforms/ETH/explorer.py
https://github.com/FuzzingLabs/octopus/blob/master/octopus/platforms/ETH/explorer.py
MIT
def eth_getUncleByBlockNumberAndIndex(self, block=BLOCK_TAG_LATEST, index=0): """ Returns information about a uncle of a block by number and uncle index position. :param block: (optionnal) integer block number, or the string "latest", "earliest" or "pending" :type block: int or str :param index: (optionnal) the uncle's index position. :type index: int :return: A block object, or null when no block was found :rtype: dict .. note:: An uncle doesn't contain individual transactions. .. seealso:: https://github.com/ethereum/wiki/wiki/JSON-RPC#eth_getunclebyblocknumberandindex .. todo:: NOT TESTED """ block = validate_block(block) return self.call('eth_getUncleByBlockNumberAndIndex', [block, hex(index)])
Returns information about a uncle of a block by number and uncle index position. :param block: (optionnal) integer block number, or the string "latest", "earliest" or "pending" :type block: int or str :param index: (optionnal) the uncle's index position. :type index: int :return: A block object, or null when no block was found :rtype: dict .. note:: An uncle doesn't contain individual transactions. .. seealso:: https://github.com/ethereum/wiki/wiki/JSON-RPC#eth_getunclebyblocknumberandindex .. todo:: NOT TESTED
eth_getUncleByBlockNumberAndIndex
python
FuzzingLabs/octopus
octopus/platforms/ETH/explorer.py
https://github.com/FuzzingLabs/octopus/blob/master/octopus/platforms/ETH/explorer.py
MIT
def eth_newFilter(self, from_block=BLOCK_TAG_LATEST, to_block=BLOCK_TAG_LATEST, address=None, topics=None): """ https://github.com/ethereum/wiki/wiki/JSON-RPC#eth_newfilter NEEDS TESTING """ _filter = { 'fromBlock': from_block, 'toBlock': to_block, 'address': address, 'topics': topics, } return self.call('eth_newFilter', [_filter])
ERROR: type should be string, got "\n https://github.com/ethereum/wiki/wiki/JSON-RPC#eth_newfilter\n\n NEEDS TESTING\n "
eth_newFilter
python
FuzzingLabs/octopus
octopus/platforms/ETH/explorer.py
https://github.com/FuzzingLabs/octopus/blob/master/octopus/platforms/ETH/explorer.py
MIT
def db_putString(self, db_name, key, value): """ https://github.com/ethereum/wiki/wiki/JSON-RPC#db_putstring TESTED """ warnings.warn('deprecated', DeprecationWarning) return self.call('db_putString', [db_name, key, value])
ERROR: type should be string, got "\n https://github.com/ethereum/wiki/wiki/JSON-RPC#db_putstring\n\n TESTED\n "
db_putString
python
FuzzingLabs/octopus
octopus/platforms/ETH/explorer.py
https://github.com/FuzzingLabs/octopus/blob/master/octopus/platforms/ETH/explorer.py
MIT
def db_getString(self, db_name, key): """ https://github.com/ethereum/wiki/wiki/JSON-RPC#db_getstring TESTED """ warnings.warn('deprecated', DeprecationWarning) return self.call('db_getString', [db_name, key])
ERROR: type should be string, got "\n https://github.com/ethereum/wiki/wiki/JSON-RPC#db_getstring\n\n TESTED\n "
db_getString
python
FuzzingLabs/octopus
octopus/platforms/ETH/explorer.py
https://github.com/FuzzingLabs/octopus/blob/master/octopus/platforms/ETH/explorer.py
MIT
def db_putHex(self, db_name, key, value): """ https://github.com/ethereum/wiki/wiki/JSON-RPC#db_puthex TESTED """ if not value.startswith('0x'): value = '0x{}'.format(value) warnings.warn('deprecated', DeprecationWarning) return self.call('db_putHex', [db_name, key, value])
ERROR: type should be string, got "\n https://github.com/ethereum/wiki/wiki/JSON-RPC#db_puthex\n\n TESTED\n "
db_putHex
python
FuzzingLabs/octopus
octopus/platforms/ETH/explorer.py
https://github.com/FuzzingLabs/octopus/blob/master/octopus/platforms/ETH/explorer.py
MIT
def db_getHex(self, db_name, key): """ https://github.com/ethereum/wiki/wiki/JSON-RPC#db_gethex TESTED """ warnings.warn('deprecated', DeprecationWarning) return self.call('db_getHex', [db_name, key])
ERROR: type should be string, got "\n https://github.com/ethereum/wiki/wiki/JSON-RPC#db_gethex\n\n TESTED\n "
db_getHex
python
FuzzingLabs/octopus
octopus/platforms/ETH/explorer.py
https://github.com/FuzzingLabs/octopus/blob/master/octopus/platforms/ETH/explorer.py
MIT
def shh_post(self, topics, payload, priority, ttl, from_=None, to=None): """ https://github.com/ethereum/wiki/wiki/JSON-RPC#shh_post NEEDS TESTING """ whisper_object = { 'from': from_, 'to': to, 'topics': topics, 'payload': payload, 'priority': hex(priority), 'ttl': hex(ttl), } return self.call('shh_post', [whisper_object])
ERROR: type should be string, got "\n https://github.com/ethereum/wiki/wiki/JSON-RPC#shh_post\n\n NEEDS TESTING\n "
shh_post
python
FuzzingLabs/octopus
octopus/platforms/ETH/explorer.py
https://github.com/FuzzingLabs/octopus/blob/master/octopus/platforms/ETH/explorer.py
MIT
def shh_newFilter(self, to, topics): """ https://github.com/ethereum/wiki/wiki/JSON-RPC#shh_newfilter NEEDS TESTING """ _filter = { 'to': to, 'topics': topics, } return self.call('shh_newFilter', [_filter])
ERROR: type should be string, got "\n https://github.com/ethereum/wiki/wiki/JSON-RPC#shh_newfilter\n\n NEEDS TESTING\n "
shh_newFilter
python
FuzzingLabs/octopus
octopus/platforms/ETH/explorer.py
https://github.com/FuzzingLabs/octopus/blob/master/octopus/platforms/ETH/explorer.py
MIT
def trace_filter(self, from_block=None, to_block=None, from_addresses=None, to_addresses=None): """ https://github.com/ethcore/parity/wiki/JSONRPC-trace-module#trace_filter TESTED """ params = {} if from_block is not None: from_block = validate_block(from_block) params['fromBlock'] = from_block if to_block is not None: to_block = validate_block(to_block) params['toBlock'] = to_block if from_addresses is not None: if not isinstance(from_addresses, list): from_addresses = [from_addresses] params['fromAddress'] = from_addresses if to_addresses is not None: if not isinstance(to_addresses, list): to_addresses = [to_addresses] params['toAddress'] = to_addresses return self.call('trace_filter', [params])
ERROR: type should be string, got "\n https://github.com/ethcore/parity/wiki/JSONRPC-trace-module#trace_filter\n\n TESTED\n "
trace_filter
python
FuzzingLabs/octopus
octopus/platforms/ETH/explorer.py
https://github.com/FuzzingLabs/octopus/blob/master/octopus/platforms/ETH/explorer.py
MIT
def trace_get(self, tx_hash, positions): """ https://wiki.parity.io/JSONRPC https://github.com/ethcore/parity/wiki/JSONRPC-trace-module#trace_get NEEDS TESTING """ if not isinstance(positions, list): positions = [positions] return self.call('trace_get', [tx_hash, positions])
ERROR: type should be string, got "\n https://wiki.parity.io/JSONRPC\n https://github.com/ethcore/parity/wiki/JSONRPC-trace-module#trace_get\n\n NEEDS TESTING\n "
trace_get
python
FuzzingLabs/octopus
octopus/platforms/ETH/explorer.py
https://github.com/FuzzingLabs/octopus/blob/master/octopus/platforms/ETH/explorer.py
MIT
def trace_block(self, block=BLOCK_TAG_LATEST): """ https://wiki.parity.io/JSONRPC https://github.com/ethcore/parity/wiki/JSONRPC-trace-module#trace_block NEEDS TESTING """ block = validate_block(block) return self.call('trace_block', [block])
ERROR: type should be string, got "\n https://wiki.parity.io/JSONRPC\n https://github.com/ethcore/parity/wiki/JSONRPC-trace-module#trace_block\n\n NEEDS TESTING\n "
trace_block
python
FuzzingLabs/octopus
octopus/platforms/ETH/explorer.py
https://github.com/FuzzingLabs/octopus/blob/master/octopus/platforms/ETH/explorer.py
MIT
def ssa_sha3_instruction(self, instr, state): '''Symbolic execution of SHA3 group of opcode''' # SSA STACK s0, s1 = state.ssa_stack.pop(), state.ssa_stack.pop() instr.ssa = SSA(new_assignement=self.ssa_counter, method_name=instr.name, args=[s0, s1]) state.ssa_stack.append(instr) self.ssa_counter += 1
Symbolic execution of SHA3 group of opcode
ssa_sha3_instruction
python
FuzzingLabs/octopus
octopus/platforms/ETH/save_ssa.py
https://github.com/FuzzingLabs/octopus/blob/master/octopus/platforms/ETH/save_ssa.py
MIT
def clean_hex(d): ''' Convert decimal to hex and remove the "L" suffix that is appended to large numbers ''' try: return hex(d).rstrip('L') except: return None
Convert decimal to hex and remove the "L" suffix that is appended to large numbers
clean_hex
python
FuzzingLabs/octopus
octopus/platforms/ETH/util.py
https://github.com/FuzzingLabs/octopus/blob/master/octopus/platforms/ETH/util.py
MIT
def validate_block(block): ''' Test if the block tag is valid ''' if isinstance(block, str): if block not in BLOCK_TAGS: raise ValueError('invalid block tag') if isinstance(block, int): block = hex(block) return block
Test if the block tag is valid
validate_block
python
FuzzingLabs/octopus
octopus/platforms/ETH/util.py
https://github.com/FuzzingLabs/octopus/blob/master/octopus/platforms/ETH/util.py
MIT
def _get_reverse_table(self): """Build an internal table used in the assembler.""" reverse_table = {} for (opcode, (mnemonic, immediate_operand_size, pops, pushes, gas, description)) in self.table.items(): reverse_table[mnemonic] = opcode, mnemonic, immediate_operand_size, \ pops, pushes, gas, description return reverse_table
Build an internal table used in the assembler.
_get_reverse_table
python
FuzzingLabs/octopus
octopus/platforms/NEO/avm.py
https://github.com/FuzzingLabs/octopus/blob/master/octopus/platforms/NEO/avm.py
MIT
def enum_blocks_edges(instructions): """ Return a list of basicblock after statically parsing given instructions """ basicblocks = list() edges = list() xrefs = enumerate_xref(instructions) # create the first block new_block = True for inst in instructions: if new_block: block = BasicBlock(start_offset=inst.offset, start_instr=inst, name='block_%x' % inst.offset) new_block = False # add current instruction to the basicblock block.instructions.append(inst) # next instruction in xrefs list if (inst.offset_end + 1) in xrefs: # absolute JUMP if inst.is_branch_unconditional: edges.append(Edge(block.name, 'block_%x' % xref_of_instr(inst), EDGE_UNCONDITIONAL)) # conditionnal JUMPI / JUMPIF / ... elif inst.is_branch_conditional: edges.append(Edge(block.name, 'block_%x' % xref_of_instr(inst), EDGE_CONDITIONAL_TRUE)) edges.append(Edge(block.name, 'block_%x' % (inst.offset_end + 1), EDGE_CONDITIONAL_FALSE)) # Halt instruction : RETURN, STOP, RET, ... elif inst.is_halt: pass # just falls to the next instruction else: edges.append(Edge(block.name, 'block_%x' % (inst.offset_end + 1), EDGE_FALLTHROUGH)) block.end_offset = inst.offset_end block.end_instr = inst basicblocks.append(block) new_block = True # add the last block basicblocks.append(block) edges = list(set(edges)) return (basicblocks, edges)
Return a list of basicblock after statically parsing given instructions
enum_blocks_edges
python
FuzzingLabs/octopus
octopus/platforms/NEO/cfg.py
https://github.com/FuzzingLabs/octopus/blob/master/octopus/platforms/NEO/cfg.py
MIT
def get_stats(ids, counts=None): """ Given a list of integers, return a dictionary of counts of consecutive pairs Example: [1, 2, 3, 1, 2] -> {(1, 2): 2, (2, 3): 1, (3, 1): 1} Optionally allows to update an existing dictionary of counts """ counts = {} if counts is None else counts for pair in zip(ids, ids[1:]): # iterate consecutive elements counts[pair] = counts.get(pair, 0) + 1 return counts
Given a list of integers, return a dictionary of counts of consecutive pairs Example: [1, 2, 3, 1, 2] -> {(1, 2): 2, (2, 3): 1, (3, 1): 1} Optionally allows to update an existing dictionary of counts
get_stats
python
karpathy/minbpe
minbpe/base.py
https://github.com/karpathy/minbpe/blob/master/minbpe/base.py
MIT
def merge(ids, pair, idx): """ In the list of integers (ids), replace all consecutive occurrences of pair with the new integer token idx Example: ids=[1, 2, 3, 1, 2], pair=(1, 2), idx=4 -> [4, 3, 4] """ newids = [] i = 0 while i < len(ids): # if not at the very last position AND the pair matches, replace it if ids[i] == pair[0] and i < len(ids) - 1 and ids[i+1] == pair[1]: newids.append(idx) i += 2 else: newids.append(ids[i]) i += 1 return newids
In the list of integers (ids), replace all consecutive occurrences of pair with the new integer token idx Example: ids=[1, 2, 3, 1, 2], pair=(1, 2), idx=4 -> [4, 3, 4]
merge
python
karpathy/minbpe
minbpe/base.py
https://github.com/karpathy/minbpe/blob/master/minbpe/base.py
MIT
def load(self, model_file): """Inverse of save() but only for the model file""" assert model_file.endswith(".model") # read the model file merges = {} special_tokens = {} idx = 256 with open(model_file, 'r', encoding="utf-8") as f: # read the version version = f.readline().strip() assert version == "minbpe v1" # read the pattern self.pattern = f.readline().strip() # read the special tokens num_special = int(f.readline().strip()) for _ in range(num_special): special, special_idx = f.readline().strip().split() special_tokens[special] = int(special_idx) # read the merges for line in f: idx1, idx2 = map(int, line.split()) merges[(idx1, idx2)] = idx idx += 1 self.merges = merges self.special_tokens = special_tokens self.vocab = self._build_vocab()
Inverse of save() but only for the model file
load
python
karpathy/minbpe
minbpe/base.py
https://github.com/karpathy/minbpe/blob/master/minbpe/base.py
MIT
def __init__(self, pattern=None): """ - pattern: optional string to override the default (GPT-4 split pattern) - special_tokens: str -> int dictionary of special tokens example: {'<|endoftext|>': 100257} """ super().__init__() self.pattern = GPT4_SPLIT_PATTERN if pattern is None else pattern self.compiled_pattern = re.compile(self.pattern) self.special_tokens = {} self.inverse_special_tokens = {}
- pattern: optional string to override the default (GPT-4 split pattern) - special_tokens: str -> int dictionary of special tokens example: {'<|endoftext|>': 100257}
__init__
python
karpathy/minbpe
minbpe/regex.py
https://github.com/karpathy/minbpe/blob/master/minbpe/regex.py
MIT
def encode_ordinary(self, text): """Encoding that ignores any special tokens.""" # split text into chunks of text by categories defined in regex pattern text_chunks = re.findall(self.compiled_pattern, text) # all chunks of text are encoded separately, then results are joined ids = [] for chunk in text_chunks: chunk_bytes = chunk.encode("utf-8") # raw bytes chunk_ids = self._encode_chunk(chunk_bytes) ids.extend(chunk_ids) return ids
Encoding that ignores any special tokens.
encode_ordinary
python
karpathy/minbpe
minbpe/regex.py
https://github.com/karpathy/minbpe/blob/master/minbpe/regex.py
MIT
def encode(self, text, allowed_special="none_raise"): """ Unlike encode_ordinary, this function handles special tokens. allowed_special: can be "all"|"none"|"none_raise" or a custom set of special tokens if none_raise, then an error is raised if any special token is encountered in text this is the default tiktoken behavior right now as well any other behavior is either annoying, or a major footgun """ # decode the user desire w.r.t. handling of special tokens special = None if allowed_special == "all": special = self.special_tokens elif allowed_special == "none": special = {} elif allowed_special == "none_raise": special = {} assert all(token not in text for token in self.special_tokens) elif isinstance(allowed_special, set): special = {k: v for k, v in self.special_tokens.items() if k in allowed_special} else: raise ValueError(f"allowed_special={allowed_special} not understood") if not special: # shortcut: if no special tokens, just use the ordinary encoding return self.encode_ordinary(text) # otherwise, we have to be careful with potential special tokens in text # we handle special tokens by splitting the text # based on the occurrence of any exact match with any of the special tokens # we can use re.split for this. note that surrounding the pattern with () # makes it into a capturing group, so the special tokens will be included special_pattern = "(" + "|".join(re.escape(k) for k in special) + ")" special_chunks = re.split(special_pattern, text) # now all the special characters are separated from the rest of the text # all chunks of text are encoded separately, then results are joined ids = [] for part in special_chunks: if part in special: # this is a special token, encode it separately as a special case ids.append(special[part]) else: # this is an ordinary sequence, encode it normally ids.extend(self.encode_ordinary(part)) return ids
Unlike encode_ordinary, this function handles special tokens. allowed_special: can be "all"|"none"|"none_raise" or a custom set of special tokens if none_raise, then an error is raised if any special token is encountered in text this is the default tiktoken behavior right now as well any other behavior is either annoying, or a major footgun
encode
python
karpathy/minbpe
minbpe/regex.py
https://github.com/karpathy/minbpe/blob/master/minbpe/regex.py
MIT
def test_wikipedia_example(tokenizer_factory): """ Quick unit test, following along the Wikipedia example: https://en.wikipedia.org/wiki/Byte_pair_encoding According to Wikipedia, running bpe on the input string: "aaabdaaabac" for 3 merges will result in string: "XdXac" where: X=ZY Y=ab Z=aa Keep in mind that for us a=97, b=98, c=99, d=100 (ASCII values) so Z will be 256, Y will be 257, X will be 258. So we expect the output list of ids to be [258, 100, 258, 97, 99] """ tokenizer = tokenizer_factory() text = "aaabdaaabac" tokenizer.train(text, 256 + 3) ids = tokenizer.encode(text) assert ids == [258, 100, 258, 97, 99] assert tokenizer.decode(tokenizer.encode(text)) == text
Quick unit test, following along the Wikipedia example: https://en.wikipedia.org/wiki/Byte_pair_encoding According to Wikipedia, running bpe on the input string: "aaabdaaabac" for 3 merges will result in string: "XdXac" where: X=ZY Y=ab Z=aa Keep in mind that for us a=97, b=98, c=99, d=100 (ASCII values) so Z will be 256, Y will be 257, X will be 258. So we expect the output list of ids to be [258, 100, 258, 97, 99]
test_wikipedia_example
python
karpathy/minbpe
tests/test_tokenizer.py
https://github.com/karpathy/minbpe/blob/master/tests/test_tokenizer.py
MIT
def __init__( self, img_size=224, patch_size=16, in_chans=3, embed_dim=768, depth=12, num_heads=12, mlp_ratio=4.0, qkv_bias=True, ffn_bias=True, proj_bias=True, drop_path_rate=0.0, drop_path_uniform=False, init_values=None, # for layerscale: None or 0 => no layerscale embed_layer=PatchEmbed, act_layer=nn.GELU, block_fn=Block, ffn_layer="mlp", block_chunks=1, num_register_tokens=0, interpolate_antialias=False, interpolate_offset=0.1, ): """ Args: img_size (int, tuple): input image size patch_size (int, tuple): patch size in_chans (int): number of input channels embed_dim (int): embedding dimension depth (int): depth of transformer num_heads (int): number of attention heads mlp_ratio (int): ratio of mlp hidden dim to embedding dim qkv_bias (bool): enable bias for qkv if True proj_bias (bool): enable bias for proj in attn if True ffn_bias (bool): enable bias for ffn if True drop_path_rate (float): stochastic depth rate drop_path_uniform (bool): apply uniform drop rate across blocks weight_init (str): weight init scheme init_values (float): layer-scale init values embed_layer (nn.Module): patch embedding layer act_layer (nn.Module): MLP activation layer block_fn (nn.Module): transformer block class ffn_layer (str): "mlp", "swiglu", "swiglufused" or "identity" block_chunks: (int) split block sequence into block_chunks units for FSDP wrap num_register_tokens: (int) number of extra cls tokens (so-called "registers") interpolate_antialias: (str) flag to apply anti-aliasing when interpolating positional embeddings interpolate_offset: (float) work-around offset to apply when interpolating positional embeddings """ super().__init__() norm_layer = partial(nn.LayerNorm, eps=1e-6) self.num_features = self.embed_dim = embed_dim # num_features for consistency with other models self.num_tokens = 1 self.n_blocks = depth self.num_heads = num_heads self.patch_size = patch_size self.num_register_tokens = num_register_tokens self.interpolate_antialias = interpolate_antialias self.interpolate_offset = interpolate_offset self.patch_embed = embed_layer(img_size=img_size, patch_size=patch_size, in_chans=in_chans, embed_dim=embed_dim) num_patches = self.patch_embed.num_patches self.cls_token = nn.Parameter(torch.zeros(1, 1, embed_dim)) self.pos_embed = nn.Parameter(torch.zeros(1, num_patches + self.num_tokens, embed_dim)) assert num_register_tokens >= 0 self.register_tokens = ( nn.Parameter(torch.zeros(1, num_register_tokens, embed_dim)) if num_register_tokens else None ) if drop_path_uniform is True: dpr = [drop_path_rate] * depth else: dpr = [x.item() for x in torch.linspace(0, drop_path_rate, depth)] # stochastic depth decay rule if ffn_layer == "mlp": logger.info("using MLP layer as FFN") ffn_layer = Mlp elif ffn_layer == "swiglufused" or ffn_layer == "swiglu": logger.info("using SwiGLU layer as FFN") ffn_layer = SwiGLUFFNFused elif ffn_layer == "identity": logger.info("using Identity layer as FFN") def f(*args, **kwargs): return nn.Identity() ffn_layer = f else: raise NotImplementedError blocks_list = [ block_fn( dim=embed_dim, num_heads=num_heads, mlp_ratio=mlp_ratio, qkv_bias=qkv_bias, proj_bias=proj_bias, ffn_bias=ffn_bias, drop_path=dpr[i], norm_layer=norm_layer, act_layer=act_layer, ffn_layer=ffn_layer, init_values=init_values, ) for i in range(depth) ] if block_chunks > 0: self.chunked_blocks = True chunked_blocks = [] chunksize = depth // block_chunks for i in range(0, depth, chunksize): # this is to keep the block index consistent if we chunk the block list chunked_blocks.append([nn.Identity()] * i + blocks_list[i: i + chunksize]) self.blocks = nn.ModuleList([BlockChunk(p) for p in chunked_blocks]) else: self.chunked_blocks = False self.blocks = nn.ModuleList(blocks_list) self.norm = norm_layer(embed_dim) self.head = nn.Identity() self.mask_token = nn.Parameter(torch.zeros(1, embed_dim)) self.init_weights()
Args: img_size (int, tuple): input image size patch_size (int, tuple): patch size in_chans (int): number of input channels embed_dim (int): embedding dimension depth (int): depth of transformer num_heads (int): number of attention heads mlp_ratio (int): ratio of mlp hidden dim to embedding dim qkv_bias (bool): enable bias for qkv if True proj_bias (bool): enable bias for proj in attn if True ffn_bias (bool): enable bias for ffn if True drop_path_rate (float): stochastic depth rate drop_path_uniform (bool): apply uniform drop rate across blocks weight_init (str): weight init scheme init_values (float): layer-scale init values embed_layer (nn.Module): patch embedding layer act_layer (nn.Module): MLP activation layer block_fn (nn.Module): transformer block class ffn_layer (str): "mlp", "swiglu", "swiglufused" or "identity" block_chunks: (int) split block sequence into block_chunks units for FSDP wrap num_register_tokens: (int) number of extra cls tokens (so-called "registers") interpolate_antialias: (str) flag to apply anti-aliasing when interpolating positional embeddings interpolate_offset: (float) work-around offset to apply when interpolating positional embeddings
__init__
python
ali-vilab/VACE
vace/annotators/depth_anything_v2/dinov2.py
https://github.com/ali-vilab/VACE/blob/master/vace/annotators/depth_anything_v2/dinov2.py
Apache-2.0
def init_weights_vit_timm(module: nn.Module, name: str = ""): """ViT weight initialization, original timm impl (for reproducibility)""" if isinstance(module, nn.Linear): trunc_normal_(module.weight, std=0.02) if module.bias is not None: nn.init.zeros_(module.bias)
ViT weight initialization, original timm impl (for reproducibility)
init_weights_vit_timm
python
ali-vilab/VACE
vace/annotators/depth_anything_v2/dinov2.py
https://github.com/ali-vilab/VACE/blob/master/vace/annotators/depth_anything_v2/dinov2.py
Apache-2.0
def vit_giant2(patch_size=16, num_register_tokens=0, **kwargs): """ Close to ViT-giant, with embed-dim 1536 and 24 heads => embed-dim per head 64 """ model = DinoVisionTransformer( patch_size=patch_size, embed_dim=1536, depth=40, num_heads=24, mlp_ratio=4, block_fn=partial(Block, attn_class=MemEffAttention), num_register_tokens=num_register_tokens, **kwargs, ) return model
Close to ViT-giant, with embed-dim 1536 and 24 heads => embed-dim per head 64
vit_giant2
python
ali-vilab/VACE
vace/annotators/depth_anything_v2/dinov2.py
https://github.com/ali-vilab/VACE/blob/master/vace/annotators/depth_anything_v2/dinov2.py
Apache-2.0
def get_attn_bias_and_cat(x_list, branges=None): """ this will perform the index select, cat the tensors, and provide the attn_bias from cache """ batch_sizes = [b.shape[0] for b in branges] if branges is not None else [x.shape[0] for x in x_list] all_shapes = tuple((b, x.shape[1]) for b, x in zip(batch_sizes, x_list)) if all_shapes not in attn_bias_cache.keys(): seqlens = [] for b, x in zip(batch_sizes, x_list): for _ in range(b): seqlens.append(x.shape[1]) attn_bias = fmha.BlockDiagonalMask.from_seqlens(seqlens) attn_bias._batch_sizes = batch_sizes attn_bias_cache[all_shapes] = attn_bias if branges is not None: cat_tensors = index_select_cat([x.flatten(1) for x in x_list], branges).view(1, -1, x_list[0].shape[-1]) else: tensors_bs1 = tuple(x.reshape([1, -1, *x.shape[2:]]) for x in x_list) cat_tensors = torch.cat(tensors_bs1, dim=1) return attn_bias_cache[all_shapes], cat_tensors
this will perform the index select, cat the tensors, and provide the attn_bias from cache
get_attn_bias_and_cat
python
ali-vilab/VACE
vace/annotators/depth_anything_v2/layers/block.py
https://github.com/ali-vilab/VACE/blob/master/vace/annotators/depth_anything_v2/layers/block.py
Apache-2.0
def forward_nested(self, x_list: List[Tensor]) -> List[Tensor]: """ x_list contains a list of tensors to nest together and run """ assert isinstance(self.attn, MemEffAttention) if self.training and self.sample_drop_ratio > 0.0: def attn_residual_func(x: Tensor, attn_bias=None) -> Tensor: return self.attn(self.norm1(x), attn_bias=attn_bias) def ffn_residual_func(x: Tensor, attn_bias=None) -> Tensor: return self.mlp(self.norm2(x)) x_list = drop_add_residual_stochastic_depth_list( x_list, residual_func=attn_residual_func, sample_drop_ratio=self.sample_drop_ratio, scaling_vector=self.ls1.gamma if isinstance(self.ls1, LayerScale) else None, ) x_list = drop_add_residual_stochastic_depth_list( x_list, residual_func=ffn_residual_func, sample_drop_ratio=self.sample_drop_ratio, scaling_vector=self.ls2.gamma if isinstance(self.ls1, LayerScale) else None, ) return x_list else: def attn_residual_func(x: Tensor, attn_bias=None) -> Tensor: return self.ls1(self.attn(self.norm1(x), attn_bias=attn_bias)) def ffn_residual_func(x: Tensor, attn_bias=None) -> Tensor: return self.ls2(self.mlp(self.norm2(x))) attn_bias, x = get_attn_bias_and_cat(x_list) x = x + attn_residual_func(x, attn_bias=attn_bias) x = x + ffn_residual_func(x) return attn_bias.split(x)
x_list contains a list of tensors to nest together and run
forward_nested
python
ali-vilab/VACE
vace/annotators/depth_anything_v2/layers/block.py
https://github.com/ali-vilab/VACE/blob/master/vace/annotators/depth_anything_v2/layers/block.py
Apache-2.0
def __init__(self, features, activation, bn): """Init. Args: features (int): number of features """ super().__init__() self.bn = bn self.groups = 1 self.conv1 = nn.Conv2d(features, features, kernel_size=3, stride=1, padding=1, bias=True, groups=self.groups) self.conv2 = nn.Conv2d(features, features, kernel_size=3, stride=1, padding=1, bias=True, groups=self.groups) if self.bn == True: self.bn1 = nn.BatchNorm2d(features) self.bn2 = nn.BatchNorm2d(features) self.activation = activation self.skip_add = nn.quantized.FloatFunctional()
Init. Args: features (int): number of features
__init__
python
ali-vilab/VACE
vace/annotators/depth_anything_v2/util/blocks.py
https://github.com/ali-vilab/VACE/blob/master/vace/annotators/depth_anything_v2/util/blocks.py
Apache-2.0
def forward(self, x): """Forward pass. Args: x (tensor): input Returns: tensor: output """ out = self.activation(x) out = self.conv1(out) if self.bn == True: out = self.bn1(out) out = self.activation(out) out = self.conv2(out) if self.bn == True: out = self.bn2(out) if self.groups > 1: out = self.conv_merge(out) return self.skip_add.add(out, x)
Forward pass. Args: x (tensor): input Returns: tensor: output
forward
python
ali-vilab/VACE
vace/annotators/depth_anything_v2/util/blocks.py
https://github.com/ali-vilab/VACE/blob/master/vace/annotators/depth_anything_v2/util/blocks.py
Apache-2.0
def __init__( self, features, activation, deconv=False, bn=False, expand=False, align_corners=True, size=None ): """Init. Args: features (int): number of features """ super(FeatureFusionBlock, self).__init__() self.deconv = deconv self.align_corners = align_corners self.groups = 1 self.expand = expand out_features = features if self.expand == True: out_features = features // 2 self.out_conv = nn.Conv2d(features, out_features, kernel_size=1, stride=1, padding=0, bias=True, groups=1) self.resConfUnit1 = ResidualConvUnit(features, activation, bn) self.resConfUnit2 = ResidualConvUnit(features, activation, bn) self.skip_add = nn.quantized.FloatFunctional() self.size = size
Init. Args: features (int): number of features
__init__
python
ali-vilab/VACE
vace/annotators/depth_anything_v2/util/blocks.py
https://github.com/ali-vilab/VACE/blob/master/vace/annotators/depth_anything_v2/util/blocks.py
Apache-2.0
def __init__( self, width, height, resize_target=True, keep_aspect_ratio=False, ensure_multiple_of=1, resize_method="lower_bound", image_interpolation_method=cv2.INTER_AREA, ): """Init. Args: width (int): desired output width height (int): desired output height resize_target (bool, optional): True: Resize the full sample (image, mask, target). False: Resize image only. Defaults to True. keep_aspect_ratio (bool, optional): True: Keep the aspect ratio of the input sample. Output sample might not have the given width and height, and resize behaviour depends on the parameter 'resize_method'. Defaults to False. ensure_multiple_of (int, optional): Output width and height is constrained to be multiple of this parameter. Defaults to 1. resize_method (str, optional): "lower_bound": Output will be at least as large as the given size. "upper_bound": Output will be at max as large as the given size. (Output size might be smaller than given size.) "minimal": Scale as least as possible. (Output size might be smaller than given size.) Defaults to "lower_bound". """ self.__width = width self.__height = height self.__resize_target = resize_target self.__keep_aspect_ratio = keep_aspect_ratio self.__multiple_of = ensure_multiple_of self.__resize_method = resize_method self.__image_interpolation_method = image_interpolation_method
Init. Args: width (int): desired output width height (int): desired output height resize_target (bool, optional): True: Resize the full sample (image, mask, target). False: Resize image only. Defaults to True. keep_aspect_ratio (bool, optional): True: Keep the aspect ratio of the input sample. Output sample might not have the given width and height, and resize behaviour depends on the parameter 'resize_method'. Defaults to False. ensure_multiple_of (int, optional): Output width and height is constrained to be multiple of this parameter. Defaults to 1. resize_method (str, optional): "lower_bound": Output will be at least as large as the given size. "upper_bound": Output will be at max as large as the given size. (Output size might be smaller than given size.) "minimal": Scale as least as possible. (Output size might be smaller than given size.) Defaults to "lower_bound".
__init__
python
ali-vilab/VACE
vace/annotators/depth_anything_v2/util/transform.py
https://github.com/ali-vilab/VACE/blob/master/vace/annotators/depth_anything_v2/util/transform.py
Apache-2.0
def nms(boxes, scores, nms_thr): """Single class NMS implemented in Numpy.""" x1 = boxes[:, 0] y1 = boxes[:, 1] x2 = boxes[:, 2] y2 = boxes[:, 3] areas = (x2 - x1 + 1) * (y2 - y1 + 1) order = scores.argsort()[::-1] keep = [] while order.size > 0: i = order[0] keep.append(i) xx1 = np.maximum(x1[i], x1[order[1:]]) yy1 = np.maximum(y1[i], y1[order[1:]]) xx2 = np.minimum(x2[i], x2[order[1:]]) yy2 = np.minimum(y2[i], y2[order[1:]]) w = np.maximum(0.0, xx2 - xx1 + 1) h = np.maximum(0.0, yy2 - yy1 + 1) inter = w * h ovr = inter / (areas[i] + areas[order[1:]] - inter) inds = np.where(ovr <= nms_thr)[0] order = order[inds + 1] return keep
Single class NMS implemented in Numpy.
nms
python
ali-vilab/VACE
vace/annotators/dwpose/onnxdet.py
https://github.com/ali-vilab/VACE/blob/master/vace/annotators/dwpose/onnxdet.py
Apache-2.0
def multiclass_nms(boxes, scores, nms_thr, score_thr): """Multiclass NMS implemented in Numpy. Class-aware version.""" final_dets = [] num_classes = scores.shape[1] for cls_ind in range(num_classes): cls_scores = scores[:, cls_ind] valid_score_mask = cls_scores > score_thr if valid_score_mask.sum() == 0: continue else: valid_scores = cls_scores[valid_score_mask] valid_boxes = boxes[valid_score_mask] keep = nms(valid_boxes, valid_scores, nms_thr) if len(keep) > 0: cls_inds = np.ones((len(keep), 1)) * cls_ind dets = np.concatenate( [valid_boxes[keep], valid_scores[keep, None], cls_inds], 1 ) final_dets.append(dets) if len(final_dets) == 0: return None return np.concatenate(final_dets, 0)
Multiclass NMS implemented in Numpy. Class-aware version.
multiclass_nms
python
ali-vilab/VACE
vace/annotators/dwpose/onnxdet.py
https://github.com/ali-vilab/VACE/blob/master/vace/annotators/dwpose/onnxdet.py
Apache-2.0
def preprocess( img: np.ndarray, out_bbox, input_size: Tuple[int, int] = (192, 256) ) -> Tuple[np.ndarray, np.ndarray, np.ndarray]: """Do preprocessing for RTMPose model inference. Args: img (np.ndarray): Input image in shape. input_size (tuple): Input image size in shape (w, h). Returns: tuple: - resized_img (np.ndarray): Preprocessed image. - center (np.ndarray): Center of image. - scale (np.ndarray): Scale of image. """ # get shape of image img_shape = img.shape[:2] out_img, out_center, out_scale = [], [], [] if len(out_bbox) == 0: out_bbox = [[0, 0, img_shape[1], img_shape[0]]] for i in range(len(out_bbox)): x0 = out_bbox[i][0] y0 = out_bbox[i][1] x1 = out_bbox[i][2] y1 = out_bbox[i][3] bbox = np.array([x0, y0, x1, y1]) # get center and scale center, scale = bbox_xyxy2cs(bbox, padding=1.25) # do affine transformation resized_img, scale = top_down_affine(input_size, scale, center, img) # normalize image mean = np.array([123.675, 116.28, 103.53]) std = np.array([58.395, 57.12, 57.375]) resized_img = (resized_img - mean) / std out_img.append(resized_img) out_center.append(center) out_scale.append(scale) return out_img, out_center, out_scale
Do preprocessing for RTMPose model inference. Args: img (np.ndarray): Input image in shape. input_size (tuple): Input image size in shape (w, h). Returns: tuple: - resized_img (np.ndarray): Preprocessed image. - center (np.ndarray): Center of image. - scale (np.ndarray): Scale of image.
preprocess
python
ali-vilab/VACE
vace/annotators/dwpose/onnxpose.py
https://github.com/ali-vilab/VACE/blob/master/vace/annotators/dwpose/onnxpose.py
Apache-2.0
def inference(sess: ort.InferenceSession, img: np.ndarray) -> np.ndarray: """Inference RTMPose model. Args: sess (ort.InferenceSession): ONNXRuntime session. img (np.ndarray): Input image in shape. Returns: outputs (np.ndarray): Output of RTMPose model. """ all_out = [] # build input for i in range(len(img)): input = [img[i].transpose(2, 0, 1)] # build output sess_input = {sess.get_inputs()[0].name: input} sess_output = [] for out in sess.get_outputs(): sess_output.append(out.name) # run model outputs = sess.run(sess_output, sess_input) all_out.append(outputs) return all_out
Inference RTMPose model. Args: sess (ort.InferenceSession): ONNXRuntime session. img (np.ndarray): Input image in shape. Returns: outputs (np.ndarray): Output of RTMPose model.
inference
python
ali-vilab/VACE
vace/annotators/dwpose/onnxpose.py
https://github.com/ali-vilab/VACE/blob/master/vace/annotators/dwpose/onnxpose.py
Apache-2.0
def postprocess(outputs: List[np.ndarray], model_input_size: Tuple[int, int], center: Tuple[int, int], scale: Tuple[int, int], simcc_split_ratio: float = 2.0 ) -> Tuple[np.ndarray, np.ndarray]: """Postprocess for RTMPose model output. Args: outputs (np.ndarray): Output of RTMPose model. model_input_size (tuple): RTMPose model Input image size. center (tuple): Center of bbox in shape (x, y). scale (tuple): Scale of bbox in shape (w, h). simcc_split_ratio (float): Split ratio of simcc. Returns: tuple: - keypoints (np.ndarray): Rescaled keypoints. - scores (np.ndarray): Model predict scores. """ all_key = [] all_score = [] for i in range(len(outputs)): # use simcc to decode simcc_x, simcc_y = outputs[i] keypoints, scores = decode(simcc_x, simcc_y, simcc_split_ratio) # rescale keypoints keypoints = keypoints / model_input_size * scale[i] + center[i] - scale[i] / 2 all_key.append(keypoints[0]) all_score.append(scores[0]) return np.array(all_key), np.array(all_score)
Postprocess for RTMPose model output. Args: outputs (np.ndarray): Output of RTMPose model. model_input_size (tuple): RTMPose model Input image size. center (tuple): Center of bbox in shape (x, y). scale (tuple): Scale of bbox in shape (w, h). simcc_split_ratio (float): Split ratio of simcc. Returns: tuple: - keypoints (np.ndarray): Rescaled keypoints. - scores (np.ndarray): Model predict scores.
postprocess
python
ali-vilab/VACE
vace/annotators/dwpose/onnxpose.py
https://github.com/ali-vilab/VACE/blob/master/vace/annotators/dwpose/onnxpose.py
Apache-2.0
def bbox_xyxy2cs(bbox: np.ndarray, padding: float = 1.) -> Tuple[np.ndarray, np.ndarray]: """Transform the bbox format from (x,y,w,h) into (center, scale) Args: bbox (ndarray): Bounding box(es) in shape (4,) or (n, 4), formatted as (left, top, right, bottom) padding (float): BBox padding factor that will be multilied to scale. Default: 1.0 Returns: tuple: A tuple containing center and scale. - np.ndarray[float32]: Center (x, y) of the bbox in shape (2,) or (n, 2) - np.ndarray[float32]: Scale (w, h) of the bbox in shape (2,) or (n, 2) """ # convert single bbox from (4, ) to (1, 4) dim = bbox.ndim if dim == 1: bbox = bbox[None, :] # get bbox center and scale x1, y1, x2, y2 = np.hsplit(bbox, [1, 2, 3]) center = np.hstack([x1 + x2, y1 + y2]) * 0.5 scale = np.hstack([x2 - x1, y2 - y1]) * padding if dim == 1: center = center[0] scale = scale[0] return center, scale
Transform the bbox format from (x,y,w,h) into (center, scale) Args: bbox (ndarray): Bounding box(es) in shape (4,) or (n, 4), formatted as (left, top, right, bottom) padding (float): BBox padding factor that will be multilied to scale. Default: 1.0 Returns: tuple: A tuple containing center and scale. - np.ndarray[float32]: Center (x, y) of the bbox in shape (2,) or (n, 2) - np.ndarray[float32]: Scale (w, h) of the bbox in shape (2,) or (n, 2)
bbox_xyxy2cs
python
ali-vilab/VACE
vace/annotators/dwpose/onnxpose.py
https://github.com/ali-vilab/VACE/blob/master/vace/annotators/dwpose/onnxpose.py
Apache-2.0
def _fix_aspect_ratio(bbox_scale: np.ndarray, aspect_ratio: float) -> np.ndarray: """Extend the scale to match the given aspect ratio. Args: scale (np.ndarray): The image scale (w, h) in shape (2, ) aspect_ratio (float): The ratio of ``w/h`` Returns: np.ndarray: The reshaped image scale in (2, ) """ w, h = np.hsplit(bbox_scale, [1]) bbox_scale = np.where(w > h * aspect_ratio, np.hstack([w, w / aspect_ratio]), np.hstack([h * aspect_ratio, h])) return bbox_scale
Extend the scale to match the given aspect ratio. Args: scale (np.ndarray): The image scale (w, h) in shape (2, ) aspect_ratio (float): The ratio of ``w/h`` Returns: np.ndarray: The reshaped image scale in (2, )
_fix_aspect_ratio
python
ali-vilab/VACE
vace/annotators/dwpose/onnxpose.py
https://github.com/ali-vilab/VACE/blob/master/vace/annotators/dwpose/onnxpose.py
Apache-2.0
def _rotate_point(pt: np.ndarray, angle_rad: float) -> np.ndarray: """Rotate a point by an angle. Args: pt (np.ndarray): 2D point coordinates (x, y) in shape (2, ) angle_rad (float): rotation angle in radian Returns: np.ndarray: Rotated point in shape (2, ) """ sn, cs = np.sin(angle_rad), np.cos(angle_rad) rot_mat = np.array([[cs, -sn], [sn, cs]]) return rot_mat @ pt
Rotate a point by an angle. Args: pt (np.ndarray): 2D point coordinates (x, y) in shape (2, ) angle_rad (float): rotation angle in radian Returns: np.ndarray: Rotated point in shape (2, )
_rotate_point
python
ali-vilab/VACE
vace/annotators/dwpose/onnxpose.py
https://github.com/ali-vilab/VACE/blob/master/vace/annotators/dwpose/onnxpose.py
Apache-2.0
def _get_3rd_point(a: np.ndarray, b: np.ndarray) -> np.ndarray: """To calculate the affine matrix, three pairs of points are required. This function is used to get the 3rd point, given 2D points a & b. The 3rd point is defined by rotating vector `a - b` by 90 degrees anticlockwise, using b as the rotation center. Args: a (np.ndarray): The 1st point (x,y) in shape (2, ) b (np.ndarray): The 2nd point (x,y) in shape (2, ) Returns: np.ndarray: The 3rd point. """ direction = a - b c = b + np.r_[-direction[1], direction[0]] return c
To calculate the affine matrix, three pairs of points are required. This function is used to get the 3rd point, given 2D points a & b. The 3rd point is defined by rotating vector `a - b` by 90 degrees anticlockwise, using b as the rotation center. Args: a (np.ndarray): The 1st point (x,y) in shape (2, ) b (np.ndarray): The 2nd point (x,y) in shape (2, ) Returns: np.ndarray: The 3rd point.
_get_3rd_point
python
ali-vilab/VACE
vace/annotators/dwpose/onnxpose.py
https://github.com/ali-vilab/VACE/blob/master/vace/annotators/dwpose/onnxpose.py
Apache-2.0
def get_warp_matrix(center: np.ndarray, scale: np.ndarray, rot: float, output_size: Tuple[int, int], shift: Tuple[float, float] = (0., 0.), inv: bool = False) -> np.ndarray: """Calculate the affine transformation matrix that can warp the bbox area in the input image to the output size. Args: center (np.ndarray[2, ]): Center of the bounding box (x, y). scale (np.ndarray[2, ]): Scale of the bounding box wrt [width, height]. rot (float): Rotation angle (degree). output_size (np.ndarray[2, ] | list(2,)): Size of the destination heatmaps. shift (0-100%): Shift translation ratio wrt the width/height. Default (0., 0.). inv (bool): Option to inverse the affine transform direction. (inv=False: src->dst or inv=True: dst->src) Returns: np.ndarray: A 2x3 transformation matrix """ shift = np.array(shift) src_w = scale[0] dst_w = output_size[0] dst_h = output_size[1] # compute transformation matrix rot_rad = np.deg2rad(rot) src_dir = _rotate_point(np.array([0., src_w * -0.5]), rot_rad) dst_dir = np.array([0., dst_w * -0.5]) # get four corners of the src rectangle in the original image src = np.zeros((3, 2), dtype=np.float32) src[0, :] = center + scale * shift src[1, :] = center + src_dir + scale * shift src[2, :] = _get_3rd_point(src[0, :], src[1, :]) # get four corners of the dst rectangle in the input image dst = np.zeros((3, 2), dtype=np.float32) dst[0, :] = [dst_w * 0.5, dst_h * 0.5] dst[1, :] = np.array([dst_w * 0.5, dst_h * 0.5]) + dst_dir dst[2, :] = _get_3rd_point(dst[0, :], dst[1, :]) if inv: warp_mat = cv2.getAffineTransform(np.float32(dst), np.float32(src)) else: warp_mat = cv2.getAffineTransform(np.float32(src), np.float32(dst)) return warp_mat
Calculate the affine transformation matrix that can warp the bbox area in the input image to the output size. Args: center (np.ndarray[2, ]): Center of the bounding box (x, y). scale (np.ndarray[2, ]): Scale of the bounding box wrt [width, height]. rot (float): Rotation angle (degree). output_size (np.ndarray[2, ] | list(2,)): Size of the destination heatmaps. shift (0-100%): Shift translation ratio wrt the width/height. Default (0., 0.). inv (bool): Option to inverse the affine transform direction. (inv=False: src->dst or inv=True: dst->src) Returns: np.ndarray: A 2x3 transformation matrix
get_warp_matrix
python
ali-vilab/VACE
vace/annotators/dwpose/onnxpose.py
https://github.com/ali-vilab/VACE/blob/master/vace/annotators/dwpose/onnxpose.py
Apache-2.0
def top_down_affine(input_size: dict, bbox_scale: dict, bbox_center: dict, img: np.ndarray) -> Tuple[np.ndarray, np.ndarray]: """Get the bbox image as the model input by affine transform. Args: input_size (dict): The input size of the model. bbox_scale (dict): The bbox scale of the img. bbox_center (dict): The bbox center of the img. img (np.ndarray): The original image. Returns: tuple: A tuple containing center and scale. - np.ndarray[float32]: img after affine transform. - np.ndarray[float32]: bbox scale after affine transform. """ w, h = input_size warp_size = (int(w), int(h)) # reshape bbox to fixed aspect ratio bbox_scale = _fix_aspect_ratio(bbox_scale, aspect_ratio=w / h) # get the affine matrix center = bbox_center scale = bbox_scale rot = 0 warp_mat = get_warp_matrix(center, scale, rot, output_size=(w, h)) # do affine transform img = cv2.warpAffine(img, warp_mat, warp_size, flags=cv2.INTER_LINEAR) return img, bbox_scale
Get the bbox image as the model input by affine transform. Args: input_size (dict): The input size of the model. bbox_scale (dict): The bbox scale of the img. bbox_center (dict): The bbox center of the img. img (np.ndarray): The original image. Returns: tuple: A tuple containing center and scale. - np.ndarray[float32]: img after affine transform. - np.ndarray[float32]: bbox scale after affine transform.
top_down_affine
python
ali-vilab/VACE
vace/annotators/dwpose/onnxpose.py
https://github.com/ali-vilab/VACE/blob/master/vace/annotators/dwpose/onnxpose.py
Apache-2.0
def get_simcc_maximum(simcc_x: np.ndarray, simcc_y: np.ndarray) -> Tuple[np.ndarray, np.ndarray]: """Get maximum response location and value from simcc representations. Note: instance number: N num_keypoints: K heatmap height: H heatmap width: W Args: simcc_x (np.ndarray): x-axis SimCC in shape (K, Wx) or (N, K, Wx) simcc_y (np.ndarray): y-axis SimCC in shape (K, Wy) or (N, K, Wy) Returns: tuple: - locs (np.ndarray): locations of maximum heatmap responses in shape (K, 2) or (N, K, 2) - vals (np.ndarray): values of maximum heatmap responses in shape (K,) or (N, K) """ N, K, Wx = simcc_x.shape simcc_x = simcc_x.reshape(N * K, -1) simcc_y = simcc_y.reshape(N * K, -1) # get maximum value locations x_locs = np.argmax(simcc_x, axis=1) y_locs = np.argmax(simcc_y, axis=1) locs = np.stack((x_locs, y_locs), axis=-1).astype(np.float32) max_val_x = np.amax(simcc_x, axis=1) max_val_y = np.amax(simcc_y, axis=1) # get maximum value across x and y axis mask = max_val_x > max_val_y max_val_x[mask] = max_val_y[mask] vals = max_val_x locs[vals <= 0.] = -1 # reshape locs = locs.reshape(N, K, 2) vals = vals.reshape(N, K) return locs, vals
Get maximum response location and value from simcc representations. Note: instance number: N num_keypoints: K heatmap height: H heatmap width: W Args: simcc_x (np.ndarray): x-axis SimCC in shape (K, Wx) or (N, K, Wx) simcc_y (np.ndarray): y-axis SimCC in shape (K, Wy) or (N, K, Wy) Returns: tuple: - locs (np.ndarray): locations of maximum heatmap responses in shape (K, 2) or (N, K, 2) - vals (np.ndarray): values of maximum heatmap responses in shape (K,) or (N, K)
get_simcc_maximum
python
ali-vilab/VACE
vace/annotators/dwpose/onnxpose.py
https://github.com/ali-vilab/VACE/blob/master/vace/annotators/dwpose/onnxpose.py
Apache-2.0
def decode(simcc_x: np.ndarray, simcc_y: np.ndarray, simcc_split_ratio) -> Tuple[np.ndarray, np.ndarray]: """Modulate simcc distribution with Gaussian. Args: simcc_x (np.ndarray[K, Wx]): model predicted simcc in x. simcc_y (np.ndarray[K, Wy]): model predicted simcc in y. simcc_split_ratio (int): The split ratio of simcc. Returns: tuple: A tuple containing center and scale. - np.ndarray[float32]: keypoints in shape (K, 2) or (n, K, 2) - np.ndarray[float32]: scores in shape (K,) or (n, K) """ keypoints, scores = get_simcc_maximum(simcc_x, simcc_y) keypoints /= simcc_split_ratio return keypoints, scores
Modulate simcc distribution with Gaussian. Args: simcc_x (np.ndarray[K, Wx]): model predicted simcc in x. simcc_y (np.ndarray[K, Wy]): model predicted simcc in y. simcc_split_ratio (int): The split ratio of simcc. Returns: tuple: A tuple containing center and scale. - np.ndarray[float32]: keypoints in shape (K, 2) or (n, K, 2) - np.ndarray[float32]: scores in shape (K,) or (n, K)
decode
python
ali-vilab/VACE
vace/annotators/dwpose/onnxpose.py
https://github.com/ali-vilab/VACE/blob/master/vace/annotators/dwpose/onnxpose.py
Apache-2.0
def load(self, path): """Load model from file. Args: path (str): file path """ parameters = torch.load(path, map_location=torch.device('cpu'), weights_only=True) if 'optimizer' in parameters: parameters = parameters['model'] self.load_state_dict(parameters)
Load model from file. Args: path (str): file path
load
python
ali-vilab/VACE
vace/annotators/midas/base_model.py
https://github.com/ali-vilab/VACE/blob/master/vace/annotators/midas/base_model.py
Apache-2.0
def __init__(self, scale_factor, mode, align_corners=False): """Init. Args: scale_factor (float): scaling mode (str): interpolation mode """ super(Interpolate, self).__init__() self.interp = nn.functional.interpolate self.scale_factor = scale_factor self.mode = mode self.align_corners = align_corners
Init. Args: scale_factor (float): scaling mode (str): interpolation mode
__init__
python
ali-vilab/VACE
vace/annotators/midas/blocks.py
https://github.com/ali-vilab/VACE/blob/master/vace/annotators/midas/blocks.py
Apache-2.0
def forward(self, x): """Forward pass. Args: x (tensor): input Returns: tensor: interpolated data """ x = self.interp(x, scale_factor=self.scale_factor, mode=self.mode, align_corners=self.align_corners) return x
Forward pass. Args: x (tensor): input Returns: tensor: interpolated data
forward
python
ali-vilab/VACE
vace/annotators/midas/blocks.py
https://github.com/ali-vilab/VACE/blob/master/vace/annotators/midas/blocks.py
Apache-2.0
def __init__(self, features): """Init. Args: features (int): number of features """ super().__init__() self.conv1 = nn.Conv2d(features, features, kernel_size=3, stride=1, padding=1, bias=True) self.conv2 = nn.Conv2d(features, features, kernel_size=3, stride=1, padding=1, bias=True) self.relu = nn.ReLU(inplace=True)
Init. Args: features (int): number of features
__init__
python
ali-vilab/VACE
vace/annotators/midas/blocks.py
https://github.com/ali-vilab/VACE/blob/master/vace/annotators/midas/blocks.py
Apache-2.0
def forward(self, x): """Forward pass. Args: x (tensor): input Returns: tensor: output """ out = self.relu(x) out = self.conv1(out) out = self.relu(out) out = self.conv2(out) return out + x
Forward pass. Args: x (tensor): input Returns: tensor: output
forward
python
ali-vilab/VACE
vace/annotators/midas/blocks.py
https://github.com/ali-vilab/VACE/blob/master/vace/annotators/midas/blocks.py
Apache-2.0
def __init__(self, features): """Init. Args: features (int): number of features """ super(FeatureFusionBlock, self).__init__() self.resConfUnit1 = ResidualConvUnit(features) self.resConfUnit2 = ResidualConvUnit(features)
Init. Args: features (int): number of features
__init__
python
ali-vilab/VACE
vace/annotators/midas/blocks.py
https://github.com/ali-vilab/VACE/blob/master/vace/annotators/midas/blocks.py
Apache-2.0
def __init__(self, features, activation, bn): """Init. Args: features (int): number of features """ super().__init__() self.bn = bn self.groups = 1 self.conv1 = nn.Conv2d(features, features, kernel_size=3, stride=1, padding=1, bias=True, groups=self.groups) self.conv2 = nn.Conv2d(features, features, kernel_size=3, stride=1, padding=1, bias=True, groups=self.groups) if self.bn is True: self.bn1 = nn.BatchNorm2d(features) self.bn2 = nn.BatchNorm2d(features) self.activation = activation self.skip_add = nn.quantized.FloatFunctional()
Init. Args: features (int): number of features
__init__
python
ali-vilab/VACE
vace/annotators/midas/blocks.py
https://github.com/ali-vilab/VACE/blob/master/vace/annotators/midas/blocks.py
Apache-2.0
def forward(self, x): """Forward pass. Args: x (tensor): input Returns: tensor: output """ out = self.activation(x) out = self.conv1(out) if self.bn is True: out = self.bn1(out) out = self.activation(out) out = self.conv2(out) if self.bn is True: out = self.bn2(out) if self.groups > 1: out = self.conv_merge(out) return self.skip_add.add(out, x) # return out + x
Forward pass. Args: x (tensor): input Returns: tensor: output
forward
python
ali-vilab/VACE
vace/annotators/midas/blocks.py
https://github.com/ali-vilab/VACE/blob/master/vace/annotators/midas/blocks.py
Apache-2.0
def __init__(self, features, activation, deconv=False, bn=False, expand=False, align_corners=True): """Init. Args: features (int): number of features """ super(FeatureFusionBlock_custom, self).__init__() self.deconv = deconv self.align_corners = align_corners self.groups = 1 self.expand = expand out_features = features if self.expand is True: out_features = features // 2 self.out_conv = nn.Conv2d(features, out_features, kernel_size=1, stride=1, padding=0, bias=True, groups=1) self.resConfUnit1 = ResidualConvUnit_custom(features, activation, bn) self.resConfUnit2 = ResidualConvUnit_custom(features, activation, bn) self.skip_add = nn.quantized.FloatFunctional()
Init. Args: features (int): number of features
__init__
python
ali-vilab/VACE
vace/annotators/midas/blocks.py
https://github.com/ali-vilab/VACE/blob/master/vace/annotators/midas/blocks.py
Apache-2.0
def __init__(self, path=None, features=256, non_negative=True): """Init. Args: path (str, optional): Path to saved model. Defaults to None. features (int, optional): Number of features. Defaults to 256. backbone (str, optional): Backbone network for encoder. Defaults to resnet50 """ print('Loading weights: ', path) super(MidasNet, self).__init__() use_pretrained = False if path is None else True self.pretrained, self.scratch = _make_encoder( backbone='resnext101_wsl', features=features, use_pretrained=use_pretrained) self.scratch.refinenet4 = FeatureFusionBlock(features) self.scratch.refinenet3 = FeatureFusionBlock(features) self.scratch.refinenet2 = FeatureFusionBlock(features) self.scratch.refinenet1 = FeatureFusionBlock(features) self.scratch.output_conv = nn.Sequential( nn.Conv2d(features, 128, kernel_size=3, stride=1, padding=1), Interpolate(scale_factor=2, mode='bilinear'), nn.Conv2d(128, 32, kernel_size=3, stride=1, padding=1), nn.ReLU(True), nn.Conv2d(32, 1, kernel_size=1, stride=1, padding=0), nn.ReLU(True) if non_negative else nn.Identity(), ) if path: self.load(path)
Init. Args: path (str, optional): Path to saved model. Defaults to None. features (int, optional): Number of features. Defaults to 256. backbone (str, optional): Backbone network for encoder. Defaults to resnet50
__init__
python
ali-vilab/VACE
vace/annotators/midas/midas_net.py
https://github.com/ali-vilab/VACE/blob/master/vace/annotators/midas/midas_net.py
Apache-2.0
def forward(self, x): """Forward pass. Args: x (tensor): input data (image) Returns: tensor: depth """ layer_1 = self.pretrained.layer1(x) layer_2 = self.pretrained.layer2(layer_1) layer_3 = self.pretrained.layer3(layer_2) layer_4 = self.pretrained.layer4(layer_3) layer_1_rn = self.scratch.layer1_rn(layer_1) layer_2_rn = self.scratch.layer2_rn(layer_2) layer_3_rn = self.scratch.layer3_rn(layer_3) layer_4_rn = self.scratch.layer4_rn(layer_4) path_4 = self.scratch.refinenet4(layer_4_rn) path_3 = self.scratch.refinenet3(path_4, layer_3_rn) path_2 = self.scratch.refinenet2(path_3, layer_2_rn) path_1 = self.scratch.refinenet1(path_2, layer_1_rn) out = self.scratch.output_conv(path_1) return torch.squeeze(out, dim=1)
Forward pass. Args: x (tensor): input data (image) Returns: tensor: depth
forward
python
ali-vilab/VACE
vace/annotators/midas/midas_net.py
https://github.com/ali-vilab/VACE/blob/master/vace/annotators/midas/midas_net.py
Apache-2.0
def __init__(self, path=None, features=64, backbone='efficientnet_lite3', non_negative=True, exportable=True, channels_last=False, align_corners=True, blocks={'expand': True}): """Init. Args: path (str, optional): Path to saved model. Defaults to None. features (int, optional): Number of features. Defaults to 256. backbone (str, optional): Backbone network for encoder. Defaults to resnet50 """ print('Loading weights: ', path) super(MidasNet_small, self).__init__() use_pretrained = False if path else True self.channels_last = channels_last self.blocks = blocks self.backbone = backbone self.groups = 1 features1 = features features2 = features features3 = features features4 = features self.expand = False if 'expand' in self.blocks and self.blocks['expand'] is True: self.expand = True features1 = features features2 = features * 2 features3 = features * 4 features4 = features * 8 self.pretrained, self.scratch = _make_encoder(self.backbone, features, use_pretrained, groups=self.groups, expand=self.expand, exportable=exportable) self.scratch.activation = nn.ReLU(False) self.scratch.refinenet4 = FeatureFusionBlock_custom( features4, self.scratch.activation, deconv=False, bn=False, expand=self.expand, align_corners=align_corners) self.scratch.refinenet3 = FeatureFusionBlock_custom( features3, self.scratch.activation, deconv=False, bn=False, expand=self.expand, align_corners=align_corners) self.scratch.refinenet2 = FeatureFusionBlock_custom( features2, self.scratch.activation, deconv=False, bn=False, expand=self.expand, align_corners=align_corners) self.scratch.refinenet1 = FeatureFusionBlock_custom( features1, self.scratch.activation, deconv=False, bn=False, align_corners=align_corners) self.scratch.output_conv = nn.Sequential( nn.Conv2d(features, features // 2, kernel_size=3, stride=1, padding=1, groups=self.groups), Interpolate(scale_factor=2, mode='bilinear'), nn.Conv2d(features // 2, 32, kernel_size=3, stride=1, padding=1), self.scratch.activation, nn.Conv2d(32, 1, kernel_size=1, stride=1, padding=0), nn.ReLU(True) if non_negative else nn.Identity(), nn.Identity(), ) if path: self.load(path)
Init. Args: path (str, optional): Path to saved model. Defaults to None. features (int, optional): Number of features. Defaults to 256. backbone (str, optional): Backbone network for encoder. Defaults to resnet50
__init__
python
ali-vilab/VACE
vace/annotators/midas/midas_net_custom.py
https://github.com/ali-vilab/VACE/blob/master/vace/annotators/midas/midas_net_custom.py
Apache-2.0
def forward(self, x): """Forward pass. Args: x (tensor): input data (image) Returns: tensor: depth """ if self.channels_last is True: print('self.channels_last = ', self.channels_last) x.contiguous(memory_format=torch.channels_last) layer_1 = self.pretrained.layer1(x) layer_2 = self.pretrained.layer2(layer_1) layer_3 = self.pretrained.layer3(layer_2) layer_4 = self.pretrained.layer4(layer_3) layer_1_rn = self.scratch.layer1_rn(layer_1) layer_2_rn = self.scratch.layer2_rn(layer_2) layer_3_rn = self.scratch.layer3_rn(layer_3) layer_4_rn = self.scratch.layer4_rn(layer_4) path_4 = self.scratch.refinenet4(layer_4_rn) path_3 = self.scratch.refinenet3(path_4, layer_3_rn) path_2 = self.scratch.refinenet2(path_3, layer_2_rn) path_1 = self.scratch.refinenet1(path_2, layer_1_rn) out = self.scratch.output_conv(path_1) return torch.squeeze(out, dim=1)
Forward pass. Args: x (tensor): input data (image) Returns: tensor: depth
forward
python
ali-vilab/VACE
vace/annotators/midas/midas_net_custom.py
https://github.com/ali-vilab/VACE/blob/master/vace/annotators/midas/midas_net_custom.py
Apache-2.0
def apply_min_size(sample, size, image_interpolation_method=cv2.INTER_AREA): """Rezise the sample to ensure the given size. Keeps aspect ratio. Args: sample (dict): sample size (tuple): image size Returns: tuple: new size """ shape = list(sample['disparity'].shape) if shape[0] >= size[0] and shape[1] >= size[1]: return sample scale = [0, 0] scale[0] = size[0] / shape[0] scale[1] = size[1] / shape[1] scale = max(scale) shape[0] = math.ceil(scale * shape[0]) shape[1] = math.ceil(scale * shape[1]) # resize sample['image'] = cv2.resize(sample['image'], tuple(shape[::-1]), interpolation=image_interpolation_method) sample['disparity'] = cv2.resize(sample['disparity'], tuple(shape[::-1]), interpolation=cv2.INTER_NEAREST) sample['mask'] = cv2.resize( sample['mask'].astype(np.float32), tuple(shape[::-1]), interpolation=cv2.INTER_NEAREST, ) sample['mask'] = sample['mask'].astype(bool) return tuple(shape)
Rezise the sample to ensure the given size. Keeps aspect ratio. Args: sample (dict): sample size (tuple): image size Returns: tuple: new size
apply_min_size
python
ali-vilab/VACE
vace/annotators/midas/transforms.py
https://github.com/ali-vilab/VACE/blob/master/vace/annotators/midas/transforms.py
Apache-2.0
def __init__( self, width, height, resize_target=True, keep_aspect_ratio=False, ensure_multiple_of=1, resize_method='lower_bound', image_interpolation_method=cv2.INTER_AREA, ): """Init. Args: width (int): desired output width height (int): desired output height resize_target (bool, optional): True: Resize the full sample (image, mask, target). False: Resize image only. Defaults to True. keep_aspect_ratio (bool, optional): True: Keep the aspect ratio of the input sample. Output sample might not have the given width and height, and resize behaviour depends on the parameter 'resize_method'. Defaults to False. ensure_multiple_of (int, optional): Output width and height is constrained to be multiple of this parameter. Defaults to 1. resize_method (str, optional): "lower_bound": Output will be at least as large as the given size. "upper_bound": Output will be at max as large as the given size. " "(Output size might be smaller than given size.)" "minimal": Scale as least as possible. (Output size might be smaller than given size.) Defaults to "lower_bound". """ self.__width = width self.__height = height self.__resize_target = resize_target self.__keep_aspect_ratio = keep_aspect_ratio self.__multiple_of = ensure_multiple_of self.__resize_method = resize_method self.__image_interpolation_method = image_interpolation_method
Init. Args: width (int): desired output width height (int): desired output height resize_target (bool, optional): True: Resize the full sample (image, mask, target). False: Resize image only. Defaults to True. keep_aspect_ratio (bool, optional): True: Keep the aspect ratio of the input sample. Output sample might not have the given width and height, and resize behaviour depends on the parameter 'resize_method'. Defaults to False. ensure_multiple_of (int, optional): Output width and height is constrained to be multiple of this parameter. Defaults to 1. resize_method (str, optional): "lower_bound": Output will be at least as large as the given size. "upper_bound": Output will be at max as large as the given size. " "(Output size might be smaller than given size.)" "minimal": Scale as least as possible. (Output size might be smaller than given size.) Defaults to "lower_bound".
__init__
python
ali-vilab/VACE
vace/annotators/midas/transforms.py
https://github.com/ali-vilab/VACE/blob/master/vace/annotators/midas/transforms.py
Apache-2.0
def read_pfm(path): """Read pfm file. Args: path (str): path to file Returns: tuple: (data, scale) """ with open(path, 'rb') as file: color = None width = None height = None scale = None endian = None header = file.readline().rstrip() if header.decode('ascii') == 'PF': color = True elif header.decode('ascii') == 'Pf': color = False else: raise Exception('Not a PFM file: ' + path) dim_match = re.match(r'^(\d+)\s(\d+)\s$', file.readline().decode('ascii')) if dim_match: width, height = list(map(int, dim_match.groups())) else: raise Exception('Malformed PFM header.') scale = float(file.readline().decode('ascii').rstrip()) if scale < 0: # little-endian endian = '<' scale = -scale else: # big-endian endian = '>' data = np.fromfile(file, endian + 'f') shape = (height, width, 3) if color else (height, width) data = np.reshape(data, shape) data = np.flipud(data) return data, scale
Read pfm file. Args: path (str): path to file Returns: tuple: (data, scale)
read_pfm
python
ali-vilab/VACE
vace/annotators/midas/utils.py
https://github.com/ali-vilab/VACE/blob/master/vace/annotators/midas/utils.py
Apache-2.0
def write_pfm(path, image, scale=1): """Write pfm file. Args: path (str): pathto file image (array): data scale (int, optional): Scale. Defaults to 1. """ with open(path, 'wb') as file: color = None if image.dtype.name != 'float32': raise Exception('Image dtype must be float32.') image = np.flipud(image) if len(image.shape) == 3 and image.shape[2] == 3: # color image color = True elif (len(image.shape) == 2 or len(image.shape) == 3 and image.shape[2] == 1): # greyscale color = False else: raise Exception( 'Image must have H x W x 3, H x W x 1 or H x W dimensions.') file.write('PF\n' if color else 'Pf\n'.encode()) file.write('%d %d\n'.encode() % (image.shape[1], image.shape[0])) endian = image.dtype.byteorder if endian == '<' or endian == '=' and sys.byteorder == 'little': scale = -scale file.write('%f\n'.encode() % scale) image.tofile(file)
Write pfm file. Args: path (str): pathto file image (array): data scale (int, optional): Scale. Defaults to 1.
write_pfm
python
ali-vilab/VACE
vace/annotators/midas/utils.py
https://github.com/ali-vilab/VACE/blob/master/vace/annotators/midas/utils.py
Apache-2.0
def read_image(path): """Read image and output RGB image (0-1). Args: path (str): path to file Returns: array: RGB image (0-1) """ img = cv2.imread(path) if img.ndim == 2: img = cv2.cvtColor(img, cv2.COLOR_GRAY2BGR) img = cv2.cvtColor(img, cv2.COLOR_BGR2RGB) / 255.0 return img
Read image and output RGB image (0-1). Args: path (str): path to file Returns: array: RGB image (0-1)
read_image
python
ali-vilab/VACE
vace/annotators/midas/utils.py
https://github.com/ali-vilab/VACE/blob/master/vace/annotators/midas/utils.py
Apache-2.0
def resize_image(img): """Resize image and make it fit for network. Args: img (array): image Returns: tensor: data ready for network """ height_orig = img.shape[0] width_orig = img.shape[1] if width_orig > height_orig: scale = width_orig / 384 else: scale = height_orig / 384 height = (np.ceil(height_orig / scale / 32) * 32).astype(int) width = (np.ceil(width_orig / scale / 32) * 32).astype(int) img_resized = cv2.resize(img, (width, height), interpolation=cv2.INTER_AREA) img_resized = (torch.from_numpy(np.transpose( img_resized, (2, 0, 1))).contiguous().float()) img_resized = img_resized.unsqueeze(0) return img_resized
Resize image and make it fit for network. Args: img (array): image Returns: tensor: data ready for network
resize_image
python
ali-vilab/VACE
vace/annotators/midas/utils.py
https://github.com/ali-vilab/VACE/blob/master/vace/annotators/midas/utils.py
Apache-2.0
def resize_depth(depth, width, height): """Resize depth map and bring to CPU (numpy). Args: depth (tensor): depth width (int): image width height (int): image height Returns: array: processed depth """ depth = torch.squeeze(depth[0, :, :, :]).to('cpu') depth_resized = cv2.resize(depth.numpy(), (width, height), interpolation=cv2.INTER_CUBIC) return depth_resized
Resize depth map and bring to CPU (numpy). Args: depth (tensor): depth width (int): image width height (int): image height Returns: array: processed depth
resize_depth
python
ali-vilab/VACE
vace/annotators/midas/utils.py
https://github.com/ali-vilab/VACE/blob/master/vace/annotators/midas/utils.py
Apache-2.0
def write_depth(path, depth, bits=1): """Write depth map to pfm and png file. Args: path (str): filepath without extension depth (array): depth """ write_pfm(path + '.pfm', depth.astype(np.float32)) depth_min = depth.min() depth_max = depth.max() max_val = (2**(8 * bits)) - 1 if depth_max - depth_min > np.finfo('float').eps: out = max_val * (depth - depth_min) / (depth_max - depth_min) else: out = np.zeros(depth.shape, dtype=depth.type) if bits == 1: cv2.imwrite(path + '.png', out.astype('uint8')) elif bits == 2: cv2.imwrite(path + '.png', out.astype('uint16')) return
Write depth map to pfm and png file. Args: path (str): filepath without extension depth (array): depth
write_depth
python
ali-vilab/VACE
vace/annotators/midas/utils.py
https://github.com/ali-vilab/VACE/blob/master/vace/annotators/midas/utils.py
Apache-2.0
def forward( self, hidden_states: torch.Tensor, indices_grid: torch.Tensor, source_latents: torch.Tensor = None, source_mask_latents: torch.Tensor = None, encoder_hidden_states: Optional[torch.Tensor] = None, timestep: Optional[torch.LongTensor] = None, class_labels: Optional[torch.LongTensor] = None, cross_attention_kwargs: Dict[str, Any] = None, attention_mask: Optional[torch.Tensor] = None, encoder_attention_mask: Optional[torch.Tensor] = None, skip_layer_mask: Optional[torch.Tensor] = None, skip_layer_strategy: Optional[SkipLayerStrategy] = None, return_dict: bool = True, context_scale: Optional[torch.FloatTensor] = 1.0, **kwargs ): """ The [`Transformer2DModel`] forward method. Args: hidden_states (`torch.LongTensor` of shape `(batch size, num latent pixels)` if discrete, `torch.FloatTensor` of shape `(batch size, channel, height, width)` if continuous): Input `hidden_states`. indices_grid (`torch.LongTensor` of shape `(batch size, 3, num latent pixels)`): encoder_hidden_states ( `torch.FloatTensor` of shape `(batch size, sequence len, embed dims)`, *optional*): Conditional embeddings for cross attention layer. If not given, cross-attention defaults to self-attention. timestep ( `torch.LongTensor`, *optional*): Used to indicate denoising step. Optional timestep to be applied as an embedding in `AdaLayerNorm`. class_labels ( `torch.LongTensor` of shape `(batch size, num classes)`, *optional*): Used to indicate class labels conditioning. Optional class labels to be applied as an embedding in `AdaLayerZeroNorm`. cross_attention_kwargs ( `Dict[str, Any]`, *optional*): A kwargs dictionary that if specified is passed along to the `AttentionProcessor` as defined under `self.processor` in [diffusers.models.attention_processor](https://github.com/huggingface/diffusers/blob/main/src/diffusers/models/attention_processor.py). attention_mask ( `torch.Tensor`, *optional*): An attention mask of shape `(batch, key_tokens)` is applied to `encoder_hidden_states`. If `1` the mask is kept, otherwise if `0` it is discarded. Mask will be converted into a bias, which adds large negative values to the attention scores corresponding to "discard" tokens. encoder_attention_mask ( `torch.Tensor`, *optional*): Cross-attention mask applied to `encoder_hidden_states`. Two formats supported: * Mask `(batch, sequence_length)` True = keep, False = discard. * Bias `(batch, 1, sequence_length)` 0 = keep, -10000 = discard. If `ndim == 2`: will be interpreted as a mask, then converted into a bias consistent with the format above. This bias will be added to the cross-attention scores. skip_layer_mask ( `torch.Tensor`, *optional*): A mask of shape `(num_layers, batch)` that indicates which layers to skip. `0` at position `layer, batch_idx` indicates that the layer should be skipped for the corresponding batch index. skip_layer_strategy ( `SkipLayerStrategy`, *optional*, defaults to `None`): Controls which layers are skipped when calculating a perturbed latent for spatiotemporal guidance. return_dict (`bool`, *optional*, defaults to `True`): Whether or not to return a [`~models.unets.unet_2d_condition.UNet2DConditionOutput`] instead of a plain tuple. Returns: If `return_dict` is True, an [`~models.transformer_2d.Transformer2DModelOutput`] is returned, otherwise a `tuple` where the first element is the sample tensor. """ # for tpu attention offload 2d token masks are used. No need to transform. if not self.use_tpu_flash_attention: # ensure attention_mask is a bias, and give it a singleton query_tokens dimension. # we may have done this conversion already, e.g. if we came here via UNet2DConditionModel#forward. # we can tell by counting dims; if ndim == 2: it's a mask rather than a bias. # expects mask of shape: # [batch, key_tokens] # adds singleton query_tokens dimension: # [batch, 1, key_tokens] # this helps to broadcast it as a bias over attention scores, which will be in one of the following shapes: # [batch, heads, query_tokens, key_tokens] (e.g. torch sdp attn) # [batch * heads, query_tokens, key_tokens] (e.g. xformers or classic attn) if attention_mask is not None and attention_mask.ndim == 2: # assume that mask is expressed as: # (1 = keep, 0 = discard) # convert mask into a bias that can be added to attention scores: # (keep = +0, discard = -10000.0) attention_mask = (1 - attention_mask.to(hidden_states.dtype)) * -10000.0 attention_mask = attention_mask.unsqueeze(1) # convert encoder_attention_mask to a bias the same way we do for attention_mask if encoder_attention_mask is not None and encoder_attention_mask.ndim == 2: encoder_attention_mask = ( 1 - encoder_attention_mask.to(hidden_states.dtype) ) * -10000.0 encoder_attention_mask = encoder_attention_mask.unsqueeze(1) # 1. Input hidden_states = self.patchify_proj(hidden_states) if source_latents is not None: source_latents = source_latents.repeat(hidden_states.shape[0], 1, 1) if source_mask_latents is not None: source_latents = torch.cat([source_latents, source_mask_latents.repeat(hidden_states.shape[0], 1, 1)], dim=-1) context_hidden_states = self.patchify_context_proj(source_latents) if source_latents is not None else None if self.timestep_scale_multiplier: timestep = self.timestep_scale_multiplier * timestep if self.positional_embedding_type == "absolute": pos_embed_3d = self.get_absolute_pos_embed(indices_grid).to( hidden_states.device ) if self.project_to_2d_pos: pos_embed = self.to_2d_proj(pos_embed_3d) hidden_states = (hidden_states + pos_embed).to(hidden_states.dtype) freqs_cis = None elif self.positional_embedding_type == "rope": freqs_cis = self.precompute_freqs_cis(indices_grid) batch_size = hidden_states.shape[0] timestep, embedded_timestep = self.adaln_single( timestep.flatten(), {"resolution": None, "aspect_ratio": None}, batch_size=batch_size, hidden_dtype=hidden_states.dtype, ) # Second dimension is 1 or number of tokens (if timestep_per_token) timestep = timestep.view(batch_size, -1, timestep.shape[-1]) embedded_timestep = embedded_timestep.view( batch_size, -1, embedded_timestep.shape[-1] ) if skip_layer_mask is None: skip_layer_mask = torch.ones( len(self.transformer_blocks), batch_size, device=hidden_states.device ) # 2. Blocks if self.caption_projection is not None: batch_size = hidden_states.shape[0] encoder_hidden_states = self.caption_projection(encoder_hidden_states) encoder_hidden_states = encoder_hidden_states.view( batch_size, -1, hidden_states.shape[-1] ) # bypass block context_hints = [] for block_idx, block in enumerate(self.transformer_context_blocks): if (context_hidden_states is None) or (block_idx not in self.context_num_layers): context_hints.append(None) continue if self.training and self.gradient_checkpointing: def create_custom_forward(module, return_dict=None): def custom_forward(*inputs): if return_dict is not None: return module(*inputs, return_dict=return_dict) else: return module(*inputs) return custom_forward ckpt_kwargs: Dict[str, Any] = ( {"use_reentrant": False} if is_torch_version(">=", "1.11.0") else {} ) (hint_context_hidden_states, context_hidden_states) = torch.utils.checkpoint.checkpoint( create_custom_forward(block), hidden_states, context_hidden_states, freqs_cis, attention_mask, encoder_hidden_states, encoder_attention_mask, timestep, cross_attention_kwargs, class_labels, skip_layer_mask[block_idx], skip_layer_strategy, **ckpt_kwargs, ) else: (hint_context_hidden_states, context_hidden_states) = block( hidden_states=hidden_states, context_hidden_states=context_hidden_states, freqs_cis=freqs_cis, attention_mask=attention_mask, encoder_hidden_states=encoder_hidden_states, encoder_attention_mask=encoder_attention_mask, timestep=timestep, cross_attention_kwargs=cross_attention_kwargs, class_labels=class_labels, skip_layer_mask=skip_layer_mask[block_idx], skip_layer_strategy=skip_layer_strategy, ) context_hints.append(hint_context_hidden_states) # main block for block_idx, block in enumerate(self.transformer_blocks): if self.training and self.gradient_checkpointing: def create_custom_forward(module, return_dict=None): def custom_forward(*inputs): if return_dict is not None: return module(*inputs, return_dict=return_dict) else: return module(*inputs) return custom_forward ckpt_kwargs: Dict[str, Any] = ( {"use_reentrant": False} if is_torch_version(">=", "1.11.0") else {} ) hidden_states = torch.utils.checkpoint.checkpoint( create_custom_forward(block), hidden_states, freqs_cis, attention_mask, encoder_hidden_states, encoder_attention_mask, timestep, cross_attention_kwargs, class_labels, skip_layer_mask[block_idx], skip_layer_strategy, context_hints, context_scale **ckpt_kwargs, ) else: hidden_states = block( hidden_states=hidden_states, freqs_cis=freqs_cis, attention_mask=attention_mask, encoder_hidden_states=encoder_hidden_states, encoder_attention_mask=encoder_attention_mask, timestep=timestep, cross_attention_kwargs=cross_attention_kwargs, class_labels=class_labels, skip_layer_mask=skip_layer_mask[block_idx], skip_layer_strategy=skip_layer_strategy, context_hints=context_hints, context_scale=context_scale ) # 3. Output scale_shift_values = ( self.scale_shift_table[None, None] + embedded_timestep[:, :, None] ) shift, scale = scale_shift_values[:, :, 0], scale_shift_values[:, :, 1] hidden_states = self.norm_out(hidden_states) # Modulation hidden_states = hidden_states * (1 + scale) + shift hidden_states = self.proj_out(hidden_states) if not return_dict: return (hidden_states,) return Transformer3DModelOutput(sample=hidden_states)
The [`Transformer2DModel`] forward method. Args: hidden_states (`torch.LongTensor` of shape `(batch size, num latent pixels)` if discrete, `torch.FloatTensor` of shape `(batch size, channel, height, width)` if continuous): Input `hidden_states`. indices_grid (`torch.LongTensor` of shape `(batch size, 3, num latent pixels)`): encoder_hidden_states ( `torch.FloatTensor` of shape `(batch size, sequence len, embed dims)`, *optional*): Conditional embeddings for cross attention layer. If not given, cross-attention defaults to self-attention. timestep ( `torch.LongTensor`, *optional*): Used to indicate denoising step. Optional timestep to be applied as an embedding in `AdaLayerNorm`. class_labels ( `torch.LongTensor` of shape `(batch size, num classes)`, *optional*): Used to indicate class labels conditioning. Optional class labels to be applied as an embedding in `AdaLayerZeroNorm`. cross_attention_kwargs ( `Dict[str, Any]`, *optional*): A kwargs dictionary that if specified is passed along to the `AttentionProcessor` as defined under `self.processor` in [diffusers.models.attention_processor](https://github.com/huggingface/diffusers/blob/main/src/diffusers/models/attention_processor.py). attention_mask ( `torch.Tensor`, *optional*): An attention mask of shape `(batch, key_tokens)` is applied to `encoder_hidden_states`. If `1` the mask is kept, otherwise if `0` it is discarded. Mask will be converted into a bias, which adds large negative values to the attention scores corresponding to "discard" tokens. encoder_attention_mask ( `torch.Tensor`, *optional*): Cross-attention mask applied to `encoder_hidden_states`. Two formats supported: * Mask `(batch, sequence_length)` True = keep, False = discard. * Bias `(batch, 1, sequence_length)` 0 = keep, -10000 = discard. If `ndim == 2`: will be interpreted as a mask, then converted into a bias consistent with the format above. This bias will be added to the cross-attention scores. skip_layer_mask ( `torch.Tensor`, *optional*): A mask of shape `(num_layers, batch)` that indicates which layers to skip. `0` at position `layer, batch_idx` indicates that the layer should be skipped for the corresponding batch index. skip_layer_strategy ( `SkipLayerStrategy`, *optional*, defaults to `None`): Controls which layers are skipped when calculating a perturbed latent for spatiotemporal guidance. return_dict (`bool`, *optional*, defaults to `True`): Whether or not to return a [`~models.unets.unet_2d_condition.UNet2DConditionOutput`] instead of a plain tuple. Returns: If `return_dict` is True, an [`~models.transformer_2d.Transformer2DModelOutput`] is returned, otherwise a `tuple` where the first element is the sample tensor.
forward
python
ali-vilab/VACE
vace/models/ltx/models/transformers/transformer3d.py
https://github.com/ali-vilab/VACE/blob/master/vace/models/ltx/models/transformers/transformer3d.py
Apache-2.0
def _resize_crop(self, img, oh, ow, normalize=True): """ Resize, center crop, convert to tensor, and normalize. """ # resize and crop iw, ih = img.size if iw != ow or ih != oh: # resize scale = max(ow / iw, oh / ih) img = img.resize( (round(scale * iw), round(scale * ih)), resample=Image.Resampling.LANCZOS ) assert img.width >= ow and img.height >= oh # center crop x1 = (img.width - ow) // 2 y1 = (img.height - oh) // 2 img = img.crop((x1, y1, x1 + ow, y1 + oh)) # normalize if normalize: img = TF.to_tensor(img).sub_(0.5).div_(0.5).unsqueeze(1) return img
Resize, center crop, convert to tensor, and normalize.
_resize_crop
python
ali-vilab/VACE
vace/models/utils/preprocessor.py
https://github.com/ali-vilab/VACE/blob/master/vace/models/utils/preprocessor.py
Apache-2.0