code
stringlengths
66
870k
docstring
stringlengths
19
26.7k
func_name
stringlengths
1
138
language
stringclasses
1 value
repo
stringlengths
7
68
path
stringlengths
5
324
url
stringlengths
46
389
license
stringclasses
7 values
def test_cpu_accelerator_disk_loading_custom_device_map(self): r""" A test to check is dispatching a model on cpu & gpu works correctly using a custom `device_map`. This time we also add `disk` on the device_map. """ device_map = { "transformer.word_embeddings": 0, "transformer.word_embeddings_layernorm": "cpu", "lm_head": 0, "transformer.h": 1, "transformer.ln_f": "disk", } bnb_config = BitsAndBytesConfig(llm_int8_enable_fp32_cpu_offload=True, load_in_8bit=True) with tempfile.TemporaryDirectory() as tmpdirname: # Load model model_8bit = AutoModelForCausalLM.from_pretrained( self.model_name, device_map=device_map, quantization_config=bnb_config, offload_folder=tmpdirname, ) # Check that the model has been correctly set on device 0, 1, and `cpu`. self.assertEqual(set(model_8bit.hf_device_map.values()), {0, 1, "cpu", "disk"}) self.check_inference_correctness(model_8bit)
A test to check is dispatching a model on cpu & gpu works correctly using a custom `device_map`. This time we also add `disk` on the device_map.
test_cpu_accelerator_disk_loading_custom_device_map
python
huggingface/transformers
tests/quantization/bnb/test_mixed_int8.py
https://github.com/huggingface/transformers/blob/master/tests/quantization/bnb/test_mixed_int8.py
Apache-2.0
def test_cpu_accelerator_disk_loading_custom_device_map_kwargs(self): r""" A test to check is dispatching a model on cpu & gpu works correctly using a custom `device_map`. This time we also add `disk` on the device_map - using the kwargs directly instead of the quantization config """ device_map = { "transformer.word_embeddings": 0, "transformer.word_embeddings_layernorm": "cpu", "lm_head": 0, "transformer.h": 1, "transformer.ln_f": "disk", } with tempfile.TemporaryDirectory() as tmpdirname: # Load model model_8bit = AutoModelForCausalLM.from_pretrained( self.model_name, device_map=device_map, load_in_8bit=True, llm_int8_enable_fp32_cpu_offload=True, offload_folder=tmpdirname, ) # Check that the model has been correctly set on device 0, 1, and `cpu`. self.assertEqual(set(model_8bit.hf_device_map.values()), {0, 1, "cpu", "disk"}) self.check_inference_correctness(model_8bit)
A test to check is dispatching a model on cpu & gpu works correctly using a custom `device_map`. This time we also add `disk` on the device_map - using the kwargs directly instead of the quantization config
test_cpu_accelerator_disk_loading_custom_device_map_kwargs
python
huggingface/transformers
tests/quantization/bnb/test_mixed_int8.py
https://github.com/huggingface/transformers/blob/master/tests/quantization/bnb/test_mixed_int8.py
Apache-2.0
def test_int8_from_pretrained(self): r""" Test whether loading a 8bit model from the Hub works as expected """ from bitsandbytes.nn import Int8Params model_id = "ybelkada/gpt2-xl-8bit" model = AutoModelForCausalLM.from_pretrained(model_id) linear = get_some_linear_layer(model) self.assertTrue(linear.weight.__class__ == Int8Params) self.assertTrue(hasattr(linear.weight, "SCB")) # generate encoded_input = self.tokenizer(self.input_text, return_tensors="pt") output_sequences = model.generate(input_ids=encoded_input["input_ids"].to(torch_device), max_new_tokens=10) self.assertIn(self.tokenizer.decode(output_sequences[0], skip_special_tokens=True), self.EXPECTED_OUTPUTS)
Test whether loading a 8bit model from the Hub works as expected
test_int8_from_pretrained
python
huggingface/transformers
tests/quantization/bnb/test_mixed_int8.py
https://github.com/huggingface/transformers/blob/master/tests/quantization/bnb/test_mixed_int8.py
Apache-2.0
def test_int8_from_pretrained(self): r""" Test whether loading a 8bit model from the Hub works as expected """ from bitsandbytes.nn import Int8Params model_id = "Jiqing/TinyLlama-1.1B-Chat-v1.0-bnb-8bit" model = AutoModelForCausalLM.from_pretrained(model_id) linear = get_some_linear_layer(model) self.assertTrue(linear.weight.__class__ == Int8Params) self.assertTrue(hasattr(linear.weight, "SCB")) # generate encoded_input = self.tokenizer(self.input_text, return_tensors="pt") output_sequences = model.generate(input_ids=encoded_input["input_ids"].to(torch_device), max_new_tokens=10) self.assertIn(self.tokenizer.decode(output_sequences[0], skip_special_tokens=True), self.EXPECTED_OUTPUTS)
Test whether loading a 8bit model from the Hub works as expected
test_int8_from_pretrained
python
huggingface/transformers
tests/quantization/bnb/test_mixed_int8.py
https://github.com/huggingface/transformers/blob/master/tests/quantization/bnb/test_mixed_int8.py
Apache-2.0
def test_compressed_uncompressed_model_shapes(self): """ Verify that the weights of an uncompressed model and its decompressed compressed counterpart match. Note: Weights for sparsely compressed models may differ due to packing. """ def _has_nested_attr(obj, attr_path): attrs = attr_path.split(".") for attr in attrs: if not hasattr(obj, attr): return None obj = getattr(obj, attr) return obj from compressed_tensors.quantization.utils import iter_named_leaf_modules for compressed_model, uncompressed_model in self.compressed_uncompressed_model_stubs: with self.subTest(compressed_model=compressed_model, uncompressed_model=uncompressed_model): uncompressed = AutoModelForCausalLM.from_pretrained( uncompressed_model, device_map="auto", torch_dtype="auto", quantization_config=CompressedTensorsConfig(run_compressed=False), ) compressed_decompressed = AutoModelForCausalLM.from_pretrained( compressed_model, device_map="auto", torch_dtype="auto", quantization_config=CompressedTensorsConfig(run_compressed=False), ) for name, submodule in iter_named_leaf_modules(uncompressed): comp_decomp_obj = _has_nested_attr(compressed_decompressed, name) if comp_decomp_obj is not None and hasattr(submodule, "weight"): if "sparse-only" in uncompressed_model: self.assertTrue( torch.equal(submodule.weight, comp_decomp_obj.weight), f"Weight mismatch for module '{name}' in sparse-only model.", ) else: self.assertTrue( torch.allclose(submodule.weight, comp_decomp_obj.weight, atol=0.2), f"Weight mismatch for module '{name}' in quantized-only or stacked model.", )
Verify that the weights of an uncompressed model and its decompressed compressed counterpart match. Note: Weights for sparsely compressed models may differ due to packing.
test_compressed_uncompressed_model_shapes
python
huggingface/transformers
tests/quantization/compressed_tensors_integration/test_compressed_models.py
https://github.com/huggingface/transformers/blob/master/tests/quantization/compressed_tensors_integration/test_compressed_models.py
Apache-2.0
def test_outputs_match(self): """ Ensure that the generated outputs match between the uncompressed model and its decompressed compressed counterpart. """ tokenizer = AutoTokenizer.from_pretrained(self.sparse_uncompressed_model) input_ids = tokenizer(self.prompt, return_tensors="pt").input_ids uncompressed = AutoModelForCausalLM.from_pretrained( self.sparse_uncompressed_model, device_map="auto", torch_dtype="auto", quantization_config=CompressedTensorsConfig(run_compressed=False), ) output_uncompressed = uncompressed.generate(input_ids.to(uncompressed.device), max_new_tokens=100) decompressed = AutoModelForCausalLM.from_pretrained( self.sparse_compressed_model, device_map="auto", torch_dtype="auto", quantization_config=CompressedTensorsConfig(run_compressed=False), ) output_decompressed = decompressed.generate(input_ids.to(decompressed.device), max_new_tokens=100) self.assertEqual( tokenizer.decode(output_uncompressed[0]), tokenizer.decode(output_decompressed[0]), "Generated outputs do not match between compressed and uncompressed models.", )
Ensure that the generated outputs match between the uncompressed model and its decompressed compressed counterpart.
test_outputs_match
python
huggingface/transformers
tests/quantization/compressed_tensors_integration/test_compressed_models.py
https://github.com/huggingface/transformers/blob/master/tests/quantization/compressed_tensors_integration/test_compressed_models.py
Apache-2.0
def test_no_warnings_for_all_models(self): """ Confirm that loading any model using compressed tensors does not trigger warnings about missing or unexpected keys. """ for model_stub in self.model_stubs: with self.subTest(model_stub=model_stub): with warnings.catch_warnings(record=True) as caught_warnings: warnings.simplefilter("always") AutoModelForCausalLM.from_pretrained( model_stub, device_map="auto", torch_dtype="auto", quantization_config=CompressedTensorsConfig(run_compressed=False), ) for warning in caught_warnings: self.assertNotIn( "missing keys", str(warning.message).lower(), f"'missing keys' found in warnings for model {model_stub}", ) self.assertNotIn( "unexpected keys", str(warning.message).lower(), f"'unexpected keys' found in warnings for model {model_stub}", )
Confirm that loading any model using compressed tensors does not trigger warnings about missing or unexpected keys.
test_no_warnings_for_all_models
python
huggingface/transformers
tests/quantization/compressed_tensors_integration/test_compressed_models.py
https://github.com/huggingface/transformers/blob/master/tests/quantization/compressed_tensors_integration/test_compressed_models.py
Apache-2.0
def test_run_compressed_outputs_match(self): """Check that run_compressed=True/False output are the same""" from transformers import AutoTokenizer from transformers.utils.quantization_config import CompressedTensorsConfig quantization_config = CompressedTensorsConfig(run_compressed=False) for stub in self.stubs: tokenizer = AutoTokenizer.from_pretrained(stub) input_ids = tokenizer(self.prompt, return_tensors="pt").input_ids model_run_compressed__True = AutoModelForCausalLM.from_pretrained( stub, ) output_rc_true = model_run_compressed__True.generate(input_ids, max_new_tokens=100) model_run_compressed__False = AutoModelForCausalLM.from_pretrained( stub, quantization_config=quantization_config, ) output_rc_false = model_run_compressed__False.generate(input_ids, max_new_tokens=100) assert tokenizer.decode(output_rc_true[0]) == tokenizer.decode(output_rc_false[0])
Check that run_compressed=True/False output are the same
test_run_compressed_outputs_match
python
huggingface/transformers
tests/quantization/compressed_tensors_integration/test_compressed_models.py
https://github.com/huggingface/transformers/blob/master/tests/quantization/compressed_tensors_integration/test_compressed_models.py
Apache-2.0
def test_to_dict(self): """ Simple test that checks if one uses a config and converts it to a dict, the dict is the same as the config object """ quantization_config = EetqConfig() config_to_dict = quantization_config.to_dict() for key in config_to_dict: self.assertEqual(getattr(quantization_config, key), config_to_dict[key])
Simple test that checks if one uses a config and converts it to a dict, the dict is the same as the config object
test_to_dict
python
huggingface/transformers
tests/quantization/eetq_integration/test_eetq.py
https://github.com/huggingface/transformers/blob/master/tests/quantization/eetq_integration/test_eetq.py
Apache-2.0
def test_from_dict(self): """ Simple test that checks if one uses a dict and converts it to a config object, the config object is the same as the dict """ dict = {"modules_to_not_convert": ["lm_head.weight"], "quant_method": "eetq", "weights": "int8"} quantization_config = EetqConfig.from_dict(dict) self.assertEqual(dict["modules_to_not_convert"], quantization_config.modules_to_not_convert) self.assertEqual(dict["quant_method"], quantization_config.quant_method) self.assertEqual(dict["weights"], quantization_config.weights)
Simple test that checks if one uses a dict and converts it to a config object, the config object is the same as the dict
test_from_dict
python
huggingface/transformers
tests/quantization/eetq_integration/test_eetq.py
https://github.com/huggingface/transformers/blob/master/tests/quantization/eetq_integration/test_eetq.py
Apache-2.0
def test_quantized_model_conversion(self): """ Simple test that checks if the quantized model has been converted properly """ from eetq import EetqLinear from transformers.integrations import replace_with_eetq_linear model_id = "facebook/opt-350m" config = AutoConfig.from_pretrained(model_id, revision="cb32f77e905cccbca1d970436fb0f5e6b58ee3c5") quantization_config = EetqConfig(weights="int8") with init_empty_weights(): model = OPTForCausalLM(config) nb_linears = 0 for module in model.modules(): if isinstance(module, torch.nn.Linear): nb_linears += 1 model = replace_with_eetq_linear(model, quantization_config=quantization_config) nb_eetq_linear = 0 for module in model.modules(): if isinstance(module, EetqLinear): nb_eetq_linear += 1 self.assertEqual(nb_linears - 1, nb_eetq_linear) # Try with `modules_to_not_convert` with init_empty_weights(): model = OPTForCausalLM(config) quantization_config = EetqConfig(modules_to_not_convert=["fc1"]) model = replace_with_eetq_linear(model, quantization_config=quantization_config) nb_eetq_linear = 0 for module in model.modules(): if isinstance(module, EetqLinear): nb_eetq_linear += 1 # 25 corresponds to the lm_head along with 24 fc1 layers. self.assertEqual(nb_linears - 25, nb_eetq_linear)
Simple test that checks if the quantized model has been converted properly
test_quantized_model_conversion
python
huggingface/transformers
tests/quantization/eetq_integration/test_eetq.py
https://github.com/huggingface/transformers/blob/master/tests/quantization/eetq_integration/test_eetq.py
Apache-2.0
def test_quantized_model(self): """ Simple test that checks if the quantized model is working properly """ input_ids = self.tokenizer(self.input_text, return_tensors="pt").to(torch_device) output = self.quantized_model.generate(**input_ids, max_new_tokens=self.max_new_tokens) self.assertEqual(self.tokenizer.decode(output[0], skip_special_tokens=True), self.EXPECTED_OUTPUT)
Simple test that checks if the quantized model is working properly
test_quantized_model
python
huggingface/transformers
tests/quantization/eetq_integration/test_eetq.py
https://github.com/huggingface/transformers/blob/master/tests/quantization/eetq_integration/test_eetq.py
Apache-2.0
def test_save_pretrained(self): """ Simple test that checks if the quantized model is working properly after being saved and loaded """ with tempfile.TemporaryDirectory() as tmpdirname: self.quantized_model.save_pretrained(tmpdirname) model = AutoModelForCausalLM.from_pretrained(tmpdirname, device_map=self.device_map) input_ids = self.tokenizer(self.input_text, return_tensors="pt").to(torch_device) output = model.generate(**input_ids, max_new_tokens=self.max_new_tokens) self.assertEqual(self.tokenizer.decode(output[0], skip_special_tokens=True), self.EXPECTED_OUTPUT)
Simple test that checks if the quantized model is working properly after being saved and loaded
test_save_pretrained
python
huggingface/transformers
tests/quantization/eetq_integration/test_eetq.py
https://github.com/huggingface/transformers/blob/master/tests/quantization/eetq_integration/test_eetq.py
Apache-2.0
def test_quantized_model_multi_gpu(self): """ Simple test that checks if the quantized model is working properly with multiple GPUs set CUDA_VISIBLE_DEVICES=0,1 if you have more than 2 GPUs """ input_ids = self.tokenizer(self.input_text, return_tensors="pt").to(torch_device) quantization_config = EetqConfig() quantized_model = AutoModelForCausalLM.from_pretrained( self.model_name, device_map="auto", quantization_config=quantization_config ) self.assertTrue(set(quantized_model.hf_device_map.values()) == {0, 1}) output = quantized_model.generate(**input_ids, max_new_tokens=self.max_new_tokens) self.assertEqual(self.tokenizer.decode(output[0], skip_special_tokens=True), self.EXPECTED_OUTPUT)
Simple test that checks if the quantized model is working properly with multiple GPUs set CUDA_VISIBLE_DEVICES=0,1 if you have more than 2 GPUs
test_quantized_model_multi_gpu
python
huggingface/transformers
tests/quantization/eetq_integration/test_eetq.py
https://github.com/huggingface/transformers/blob/master/tests/quantization/eetq_integration/test_eetq.py
Apache-2.0
def test_to_dict(self): """ Simple test that checks if one uses a config and converts it to a dict, the dict is the same as the config object """ quantization_config = FbgemmFp8Config() config_to_dict = quantization_config.to_dict() for key in config_to_dict: self.assertEqual(getattr(quantization_config, key), config_to_dict[key])
Simple test that checks if one uses a config and converts it to a dict, the dict is the same as the config object
test_to_dict
python
huggingface/transformers
tests/quantization/fbgemm_fp8/test_fbgemm_fp8.py
https://github.com/huggingface/transformers/blob/master/tests/quantization/fbgemm_fp8/test_fbgemm_fp8.py
Apache-2.0
def test_from_dict(self): """ Simple test that checks if one uses a dict and converts it to a config object, the config object is the same as the dict """ dict = {"modules_to_not_convert": ["lm_head.weight"], "quant_method": "fbgemm_fp8"} quantization_config = FbgemmFp8Config.from_dict(dict) self.assertEqual(dict["modules_to_not_convert"], quantization_config.modules_to_not_convert) self.assertEqual(dict["quant_method"], quantization_config.quant_method)
Simple test that checks if one uses a dict and converts it to a config object, the config object is the same as the dict
test_from_dict
python
huggingface/transformers
tests/quantization/fbgemm_fp8/test_fbgemm_fp8.py
https://github.com/huggingface/transformers/blob/master/tests/quantization/fbgemm_fp8/test_fbgemm_fp8.py
Apache-2.0
def test_quantized_model_conversion(self): """ Simple test that checks if the quantized model has been converted properly """ from transformers.integrations import FbgemmFp8Linear, replace_with_fbgemm_fp8_linear model_id = "facebook/opt-350m" config = AutoConfig.from_pretrained(model_id, revision="cb32f77e905cccbca1d970436fb0f5e6b58ee3c5") quantization_config = FbgemmFp8Config() with init_empty_weights(): model = OPTForCausalLM(config) nb_linears = 0 for module in model.modules(): if isinstance(module, torch.nn.Linear): nb_linears += 1 model = replace_with_fbgemm_fp8_linear(model, quantization_config=quantization_config) nb_fbgemm_linear = 0 for module in model.modules(): if isinstance(module, FbgemmFp8Linear): nb_fbgemm_linear += 1 self.assertEqual(nb_linears - 1, nb_fbgemm_linear) with init_empty_weights(): model = OPTForCausalLM(config) quantization_config = FbgemmFp8Config(modules_to_not_convert=["fc1"]) model = replace_with_fbgemm_fp8_linear(model, quantization_config=quantization_config) nb_fbgemm_linear = 0 for module in model.modules(): if isinstance(module, FbgemmFp8Linear): nb_fbgemm_linear += 1 self.assertEqual(nb_linears - 25, nb_fbgemm_linear)
Simple test that checks if the quantized model has been converted properly
test_quantized_model_conversion
python
huggingface/transformers
tests/quantization/fbgemm_fp8/test_fbgemm_fp8.py
https://github.com/huggingface/transformers/blob/master/tests/quantization/fbgemm_fp8/test_fbgemm_fp8.py
Apache-2.0
def test_quantized_model(self): """ Simple test that checks if the quantized model is working properly """ input_ids = self.tokenizer(self.input_text, return_tensors="pt").to(torch_device) output = self.quantized_model.generate(**input_ids, max_new_tokens=self.max_new_tokens) self.assertEqual(self.tokenizer.decode(output[0], skip_special_tokens=True), self.EXPECTED_OUTPUT)
Simple test that checks if the quantized model is working properly
test_quantized_model
python
huggingface/transformers
tests/quantization/fbgemm_fp8/test_fbgemm_fp8.py
https://github.com/huggingface/transformers/blob/master/tests/quantization/fbgemm_fp8/test_fbgemm_fp8.py
Apache-2.0
def test_save_pretrained(self): """ Simple test that checks if the quantized model is working properly after being saved and loaded """ with tempfile.TemporaryDirectory() as tmpdirname: self.quantized_model.save_pretrained(tmpdirname) model = AutoModelForCausalLM.from_pretrained(tmpdirname, device_map=self.device_map) input_ids = self.tokenizer(self.input_text, return_tensors="pt").to(torch_device) output = model.generate(**input_ids, max_new_tokens=self.max_new_tokens) self.assertEqual(self.tokenizer.decode(output[0], skip_special_tokens=True), self.EXPECTED_OUTPUT)
Simple test that checks if the quantized model is working properly after being saved and loaded
test_save_pretrained
python
huggingface/transformers
tests/quantization/fbgemm_fp8/test_fbgemm_fp8.py
https://github.com/huggingface/transformers/blob/master/tests/quantization/fbgemm_fp8/test_fbgemm_fp8.py
Apache-2.0
def test_change_loading_attributes(self): """ Simple test that checks if the quantized model is working properly after being saved and loaded """ with tempfile.TemporaryDirectory() as tmpdirname: self.quantized_model.save_pretrained(tmpdirname) quantization_config = FbgemmFp8Config(activation_scale_ub=1000.0) model = AutoModelForCausalLM.from_pretrained( tmpdirname, device_map=self.device_map, quantization_config=quantization_config ) self.assertEqual(model.model.layers[1].mlp.down_proj.input_scale_ub.item(), 1000.0) input_ids = self.tokenizer(self.input_text, return_tensors="pt").to(torch_device) output = model.generate(**input_ids, max_new_tokens=self.max_new_tokens) self.assertEqual(self.tokenizer.decode(output[0], skip_special_tokens=True), self.EXPECTED_OUTPUT)
Simple test that checks if the quantized model is working properly after being saved and loaded
test_change_loading_attributes
python
huggingface/transformers
tests/quantization/fbgemm_fp8/test_fbgemm_fp8.py
https://github.com/huggingface/transformers/blob/master/tests/quantization/fbgemm_fp8/test_fbgemm_fp8.py
Apache-2.0
def test_quantized_model_multi_gpu(self): """ Simple test that checks if the quantized model is working properly with multiple GPUs set CUDA_VISIBLE_DEVICES=0,1 if you have more than 2 GPUs """ input_ids = self.tokenizer(self.input_text, return_tensors="pt").to(torch_device) quantization_config = FbgemmFp8Config() quantized_model = AutoModelForCausalLM.from_pretrained( self.model_name, device_map="auto", quantization_config=quantization_config ) self.assertTrue(set(quantized_model.hf_device_map.values()) == {0, 1}) output = quantized_model.generate(**input_ids, max_new_tokens=self.max_new_tokens) self.assertEqual(self.tokenizer.decode(output[0], skip_special_tokens=True), self.EXPECTED_OUTPUT)
Simple test that checks if the quantized model is working properly with multiple GPUs set CUDA_VISIBLE_DEVICES=0,1 if you have more than 2 GPUs
test_quantized_model_multi_gpu
python
huggingface/transformers
tests/quantization/fbgemm_fp8/test_fbgemm_fp8.py
https://github.com/huggingface/transformers/blob/master/tests/quantization/fbgemm_fp8/test_fbgemm_fp8.py
Apache-2.0
def test_quantized_model_offload(self): """ Simple test that checks if the quantized model returns an error when loading with cpu/disk offloaded """ quantization_config = FbgemmFp8Config() with self.assertRaisesRegex( ValueError, "You are attempting to load an FP8 model with a device_map that contains a CPU or disk device." ): AutoModelForCausalLM.from_pretrained( self.model_name, device_map=self.offload_device_map, quantization_config=quantization_config )
Simple test that checks if the quantized model returns an error when loading with cpu/disk offloaded
test_quantized_model_offload
python
huggingface/transformers
tests/quantization/fbgemm_fp8/test_fbgemm_fp8.py
https://github.com/huggingface/transformers/blob/master/tests/quantization/fbgemm_fp8/test_fbgemm_fp8.py
Apache-2.0
def test_save_pretrained_offload(self): """ Simple test that checks if the saved quantized model is working properly cpu/disk offload """ with tempfile.TemporaryDirectory() as tmpdirname: self.quantized_model.save_pretrained(tmpdirname) input_ids = self.tokenizer(self.input_text, return_tensors="pt").to(torch_device) quantized_model = AutoModelForCausalLM.from_pretrained(tmpdirname, device_map=self.offload_device_map) output = quantized_model.generate(**input_ids, max_new_tokens=self.max_new_tokens) self.assertEqual(self.tokenizer.decode(output[0], skip_special_tokens=True), self.EXPECTED_OUTPUT)
Simple test that checks if the saved quantized model is working properly cpu/disk offload
test_save_pretrained_offload
python
huggingface/transformers
tests/quantization/fbgemm_fp8/test_fbgemm_fp8.py
https://github.com/huggingface/transformers/blob/master/tests/quantization/fbgemm_fp8/test_fbgemm_fp8.py
Apache-2.0
def test_save_pretrained_multi_gpu(self): """ Simple test that checks if the quantized model is working properly after being saved and loaded """ with tempfile.TemporaryDirectory() as tmpdirname: self.quantized_model.save_pretrained(tmpdirname) model = AutoModelForCausalLM.from_pretrained(tmpdirname, device_map="auto") self.assertTrue(set(model.hf_device_map.values()) == {0, 1}) input_ids = self.tokenizer(self.input_text, return_tensors="pt").to(torch_device) output = model.generate(**input_ids, max_new_tokens=self.max_new_tokens) self.assertEqual(self.tokenizer.decode(output[0], skip_special_tokens=True), self.EXPECTED_OUTPUT)
Simple test that checks if the quantized model is working properly after being saved and loaded
test_save_pretrained_multi_gpu
python
huggingface/transformers
tests/quantization/fbgemm_fp8/test_fbgemm_fp8.py
https://github.com/huggingface/transformers/blob/master/tests/quantization/fbgemm_fp8/test_fbgemm_fp8.py
Apache-2.0
def test_linear_with_diff_feature_size_preserves_shape(self): """ Test that FbgemmFp8Linear generates the correct shape when in_features != out_features. """ from transformers.integrations import FbgemmFp8Linear with init_empty_weights(include_buffers=True): linear = FbgemmFp8Linear(1024, 2048, True) x = torch.rand((17, 23, 1024)) x_ = linear(x) self.assertEqual(x_.shape, (17, 23, 2048))
Test that FbgemmFp8Linear generates the correct shape when in_features != out_features.
test_linear_with_diff_feature_size_preserves_shape
python
huggingface/transformers
tests/quantization/fbgemm_fp8/test_fbgemm_fp8.py
https://github.com/huggingface/transformers/blob/master/tests/quantization/fbgemm_fp8/test_fbgemm_fp8.py
Apache-2.0
def test_to_dict(self): """ Simple test that checks if one uses a config and converts it to a dict, the dict is the same as the config object """ quantization_config = FineGrainedFP8Config() config_to_dict = quantization_config.to_dict() for key in config_to_dict: self.assertEqual(getattr(quantization_config, key), config_to_dict[key])
Simple test that checks if one uses a config and converts it to a dict, the dict is the same as the config object
test_to_dict
python
huggingface/transformers
tests/quantization/finegrained_fp8/test_fp8.py
https://github.com/huggingface/transformers/blob/master/tests/quantization/finegrained_fp8/test_fp8.py
Apache-2.0
def test_from_dict(self): """ Simple test that checks if one uses a dict and converts it to a config object, the config object is the same as the dict """ dict = {"modules_to_not_convert": ["lm_head.weight"], "quant_method": "fp8"} quantization_config = FineGrainedFP8Config.from_dict(dict) self.assertEqual(dict["modules_to_not_convert"], quantization_config.modules_to_not_convert) self.assertEqual(dict["quant_method"], quantization_config.quant_method)
Simple test that checks if one uses a dict and converts it to a config object, the config object is the same as the dict
test_from_dict
python
huggingface/transformers
tests/quantization/finegrained_fp8/test_fp8.py
https://github.com/huggingface/transformers/blob/master/tests/quantization/finegrained_fp8/test_fp8.py
Apache-2.0
def test_quantized_model_conversion(self): """ Simple test that checks if the quantized model has been converted properly """ from transformers.integrations import FP8Linear, replace_with_fp8_linear model_id = "facebook/opt-350m" config = AutoConfig.from_pretrained(model_id, revision="cb32f77e905cccbca1d970436fb0f5e6b58ee3c5") quantization_config = FineGrainedFP8Config() with init_empty_weights(): model = OPTForCausalLM(config) nb_linears = 0 for module in model.modules(): if isinstance(module, torch.nn.Linear): nb_linears += 1 model = replace_with_fp8_linear(model, quantization_config=quantization_config) nb_fp8_linear = 0 for module in model.modules(): if isinstance(module, FP8Linear): nb_fp8_linear += 1 self.assertEqual(nb_linears - 1, nb_fp8_linear) with init_empty_weights(): model = OPTForCausalLM(config) quantization_config = FineGrainedFP8Config(modules_to_not_convert=["fc1"]) model = replace_with_fp8_linear(model, quantization_config=quantization_config) nb_fp8_linear = 0 for module in model.modules(): if isinstance(module, FP8Linear): nb_fp8_linear += 1 self.assertEqual(nb_linears - 25, nb_fp8_linear)
Simple test that checks if the quantized model has been converted properly
test_quantized_model_conversion
python
huggingface/transformers
tests/quantization/finegrained_fp8/test_fp8.py
https://github.com/huggingface/transformers/blob/master/tests/quantization/finegrained_fp8/test_fp8.py
Apache-2.0
def test_quantized_model(self): """ Simple test that checks if the quantized model is working properly """ input_ids = self.tokenizer(self.input_text, return_tensors="pt").to(self.device_map) output = self.quantized_model.generate(**input_ids, max_new_tokens=self.max_new_tokens, do_sample=False) output_tokens = self.tokenizer.decode(output[0], skip_special_tokens=True) self.assertEqual(output_tokens, self.EXPECTED_OUTPUT)
Simple test that checks if the quantized model is working properly
test_quantized_model
python
huggingface/transformers
tests/quantization/finegrained_fp8/test_fp8.py
https://github.com/huggingface/transformers/blob/master/tests/quantization/finegrained_fp8/test_fp8.py
Apache-2.0
def test_save_pretrained(self): """ Simple test that checks if the quantized model is working properly after being saved and loaded """ with tempfile.TemporaryDirectory() as tmpdirname: self.quantized_model.save_pretrained(tmpdirname) model = AutoModelForCausalLM.from_pretrained(tmpdirname, device_map=self.device_map) input_ids = self.tokenizer(self.input_text, return_tensors="pt").to(self.device_map) output = model.generate(**input_ids, max_new_tokens=self.max_new_tokens, do_sample=False) self.assertEqual(self.tokenizer.decode(output[0], skip_special_tokens=True), self.EXPECTED_OUTPUT)
Simple test that checks if the quantized model is working properly after being saved and loaded
test_save_pretrained
python
huggingface/transformers
tests/quantization/finegrained_fp8/test_fp8.py
https://github.com/huggingface/transformers/blob/master/tests/quantization/finegrained_fp8/test_fp8.py
Apache-2.0
def test_weight_and_weight_scale_inv(self): """ Simple test that checks if the weight and weight_scale_inv are working properly """ weight = self.quantized_model.model.layers[0].self_attn.q_proj.weight weight_scale_inv = self.quantized_model.model.layers[0].self_attn.q_proj.weight_scale_inv self.assertEqual(weight.dtype, torch.float8_e4m3fn) self.assertEqual(weight_scale_inv.dtype, torch.float32) self.assertEqual(weight.shape, (weight_scale_inv.shape[0] * 128, weight_scale_inv.shape[1] * 128))
Simple test that checks if the weight and weight_scale_inv are working properly
test_weight_and_weight_scale_inv
python
huggingface/transformers
tests/quantization/finegrained_fp8/test_fp8.py
https://github.com/huggingface/transformers/blob/master/tests/quantization/finegrained_fp8/test_fp8.py
Apache-2.0
def test_block_size(self): """ Simple test that checks if the block size is working properly """ self.assertEqual(self.quantized_model.config.quantization_config.weight_block_size, (128, 128)) quantization_config = FineGrainedFP8Config(weight_block_size=(32, 32)) quantized_model = AutoModelForCausalLM.from_pretrained( self.model_name, device_map=self.device_map, quantization_config=quantization_config ) self.assertEqual(quantized_model.config.quantization_config.weight_block_size, (32, 32))
Simple test that checks if the block size is working properly
test_block_size
python
huggingface/transformers
tests/quantization/finegrained_fp8/test_fp8.py
https://github.com/huggingface/transformers/blob/master/tests/quantization/finegrained_fp8/test_fp8.py
Apache-2.0
def test_quantized_model_multi_accelerator(self): """ Simple test that checks if the quantized model is working properly with multiple accelerators set CUDA_VISIBLE_DEVICES=0,1 if you have more than 2 GPUs; or set ZE_AFFINITY_MASK=0,1 if you have more than 2 XPUs. """ input_ids = self.tokenizer(self.input_text, return_tensors="pt").to(self.device_map) quantization_config = FineGrainedFP8Config() quantized_model = AutoModelForCausalLM.from_pretrained( self.model_name, device_map="auto", quantization_config=quantization_config ) self.assertTrue(set(quantized_model.hf_device_map.values()) == {0, 1}) output = quantized_model.generate(**input_ids, max_new_tokens=self.max_new_tokens, do_sample=False) self.assertEqual(self.tokenizer.decode(output[0], skip_special_tokens=True), self.EXPECTED_OUTPUT)
Simple test that checks if the quantized model is working properly with multiple accelerators set CUDA_VISIBLE_DEVICES=0,1 if you have more than 2 GPUs; or set ZE_AFFINITY_MASK=0,1 if you have more than 2 XPUs.
test_quantized_model_multi_accelerator
python
huggingface/transformers
tests/quantization/finegrained_fp8/test_fp8.py
https://github.com/huggingface/transformers/blob/master/tests/quantization/finegrained_fp8/test_fp8.py
Apache-2.0
def test_save_pretrained_multi_accelerators(self): """ Simple test that checks if the quantized model is working properly after being saved and loaded """ with tempfile.TemporaryDirectory() as tmpdirname: self.quantized_model.save_pretrained(tmpdirname) model = AutoModelForCausalLM.from_pretrained(tmpdirname, device_map="auto") self.assertTrue(set(model.hf_device_map.values()) == {0, 1}) input_ids = self.tokenizer(self.input_text, return_tensors="pt").to(self.device_map) output = model.generate(**input_ids, max_new_tokens=self.max_new_tokens, do_sample=False) self.assertEqual(self.tokenizer.decode(output[0], skip_special_tokens=True), self.EXPECTED_OUTPUT)
Simple test that checks if the quantized model is working properly after being saved and loaded
test_save_pretrained_multi_accelerators
python
huggingface/transformers
tests/quantization/finegrained_fp8/test_fp8.py
https://github.com/huggingface/transformers/blob/master/tests/quantization/finegrained_fp8/test_fp8.py
Apache-2.0
def test_quantized_model_offload(self): """ Simple test that checks if the quantized model returns an error when loading with cpu/disk offloaded """ with self.assertRaisesRegex( ValueError, "You are attempting to load an FP8 model with a device_map that contains a cpu/disk device." ): AutoModelForCausalLM.from_pretrained( self.model_name, device_map=self.offload_device_map, quantization_config=self.quantization_config )
Simple test that checks if the quantized model returns an error when loading with cpu/disk offloaded
test_quantized_model_offload
python
huggingface/transformers
tests/quantization/finegrained_fp8/test_fp8.py
https://github.com/huggingface/transformers/blob/master/tests/quantization/finegrained_fp8/test_fp8.py
Apache-2.0
def test_save_pretrained_offload(self): """ Simple test that checks if the saved quantized model is working properly cpu/disk offload """ with tempfile.TemporaryDirectory() as tmpdirname: self.quantized_model.save_pretrained(tmpdirname) input_ids = self.tokenizer(self.input_text, return_tensors="pt").to(self.device_map) quantized_model = AutoModelForCausalLM.from_pretrained(tmpdirname, device_map=self.offload_device_map) output = quantized_model.generate(**input_ids, max_new_tokens=self.max_new_tokens, do_sample=False) self.assertEqual(self.tokenizer.decode(output[0], skip_special_tokens=True), self.EXPECTED_OUTPUT)
Simple test that checks if the saved quantized model is working properly cpu/disk offload
test_save_pretrained_offload
python
huggingface/transformers
tests/quantization/finegrained_fp8/test_fp8.py
https://github.com/huggingface/transformers/blob/master/tests/quantization/finegrained_fp8/test_fp8.py
Apache-2.0
def test_linear_with_diff_feature_size_preserves_shape(self): """ Test that FP8Linear generates the correct shape when in_features != out_features. """ from transformers.integrations import FP8Linear linear = FP8Linear(128, 256, block_size=(128, 128), device=self.device) x = torch.rand((1, 5, 128)).to(self.device) x_ = linear(x) self.assertEqual(x_.shape, (1, 5, 256))
Test that FP8Linear generates the correct shape when in_features != out_features.
test_linear_with_diff_feature_size_preserves_shape
python
huggingface/transformers
tests/quantization/finegrained_fp8/test_fp8.py
https://github.com/huggingface/transformers/blob/master/tests/quantization/finegrained_fp8/test_fp8.py
Apache-2.0
def test_memory_footprint(self): r""" A simple test to check if the model conversion has been done correctly by checking on the memory footprint of the converted model """ mem_quantized = self.quantized_model.get_memory_footprint() self.assertAlmostEqual(self.mem_fp16 / mem_quantized, self.EXPECTED_RELATIVE_DIFFERENCE, places=4)
A simple test to check if the model conversion has been done correctly by checking on the memory footprint of the converted model
test_memory_footprint
python
huggingface/transformers
tests/quantization/gptq/test_gptq.py
https://github.com/huggingface/transformers/blob/master/tests/quantization/gptq/test_gptq.py
Apache-2.0
def test_device_and_dtype_assignment(self): r""" Test whether trying to cast (or assigning a device to) a model after quantization will throw an error. Checks also if other models are casted correctly. """ # This should work if self.device_map in (None, "cpu"): _ = self.quantized_model.to(0) with self.assertRaises(ValueError): # Tries with a `dtype`` self.quantized_model.to(torch.float16)
Test whether trying to cast (or assigning a device to) a model after quantization will throw an error. Checks also if other models are casted correctly.
test_device_and_dtype_assignment
python
huggingface/transformers
tests/quantization/gptq/test_gptq.py
https://github.com/huggingface/transformers/blob/master/tests/quantization/gptq/test_gptq.py
Apache-2.0
def test_original_dtype(self): r""" A simple test to check if the model successfully stores the original dtype """ self.assertTrue(hasattr(self.quantized_model.config, "_pre_quantization_dtype")) self.assertFalse(hasattr(self.model_fp16.config, "_pre_quantization_dtype")) self.assertTrue(self.quantized_model.config._pre_quantization_dtype == torch.float16)
A simple test to check if the model successfully stores the original dtype
test_original_dtype
python
huggingface/transformers
tests/quantization/gptq/test_gptq.py
https://github.com/huggingface/transformers/blob/master/tests/quantization/gptq/test_gptq.py
Apache-2.0
def test_quantized_layers_class(self): """ Simple test to check if the model conversion has been done correctly by checking on the class type of the linear layers of the converted models """ if is_gptqmodel_available(): from gptqmodel.utils.importer import hf_select_quant_linear if hasattr(self.config, "quantization_config"): checkpoint_format = self.config.quantization_config.get("checkpoint_format") meta = self.config.quantization_config.get("meta") else: checkpoint_format = "gptq" meta = None QuantLinear = hf_select_quant_linear( bits=self.bits, group_size=self.group_size, desc_act=self.desc_act, sym=self.sym, device_map=self.device_map, checkpoint_format=checkpoint_format, meta=meta, backend=self.quantization_config.backend, ) elif is_auto_gptq_available(): from auto_gptq.utils.import_utils import dynamically_import_QuantLinear as hf_select_quant_linear QuantLinear = hf_select_quant_linear( use_triton=False, desc_act=self.desc_act, group_size=self.group_size, bits=self.bits, disable_exllama=not self.use_exllama, disable_exllamav2=True, ) self.assertTrue(self.quantized_model.transformer.h[0].mlp.dense_4h_to_h.__class__ == QuantLinear)
Simple test to check if the model conversion has been done correctly by checking on the class type of the linear layers of the converted models
test_quantized_layers_class
python
huggingface/transformers
tests/quantization/gptq/test_gptq.py
https://github.com/huggingface/transformers/blob/master/tests/quantization/gptq/test_gptq.py
Apache-2.0
def check_inference_correctness(self, model): r""" Test the generation quality of the quantized model and see that we are matching the expected output. Given that we are operating on small numbers + the testing model is relatively small, we might not get the same output across GPUs. So we'll generate few tokens (5-10) and check their output. """ # Check that inference pass works on the model encoded_input = self.tokenizer(self.input_text, return_tensors="pt") # Check the exactness of the results output_sequences = model.generate(input_ids=encoded_input["input_ids"].to(model.device), max_new_tokens=10) # Get the generation self.assertIn(self.tokenizer.decode(output_sequences[0], skip_special_tokens=True), self.EXPECTED_OUTPUTS)
Test the generation quality of the quantized model and see that we are matching the expected output. Given that we are operating on small numbers + the testing model is relatively small, we might not get the same output across GPUs. So we'll generate few tokens (5-10) and check their output.
check_inference_correctness
python
huggingface/transformers
tests/quantization/gptq/test_gptq.py
https://github.com/huggingface/transformers/blob/master/tests/quantization/gptq/test_gptq.py
Apache-2.0
def test_generate_quality(self): """ Simple test to check the quality of the model by comparing the generated tokens with the expected tokens """ if self.device_map is None: self.check_inference_correctness(self.quantized_model.to(0)) else: if self.device_map == "cpu" and self.quantized_model.device.type != "cpu": self.quantized_model.to("cpu") self.check_inference_correctness(self.quantized_model)
Simple test to check the quality of the model by comparing the generated tokens with the expected tokens
test_generate_quality
python
huggingface/transformers
tests/quantization/gptq/test_gptq.py
https://github.com/huggingface/transformers/blob/master/tests/quantization/gptq/test_gptq.py
Apache-2.0
def test_serialization(self): """ Test the serialization of the model and the loading of the quantized weights works """ with tempfile.TemporaryDirectory() as tmpdirname: self.quantized_model.save_pretrained(tmpdirname) if is_auto_gptq_available() and not is_gptqmodel_available(): quant_type = "cuda-old" if not self.use_exllama else "exllama" if not self.use_exllama: quantized_model_from_saved = AutoModelForCausalLM.from_pretrained( tmpdirname, quantization_config=GPTQConfig(use_exllama=False, bits=4) ) if self.device_map != "cpu": quantized_model_from_saved = quantized_model_from_saved.to(0) else: quantized_model_from_saved = AutoModelForCausalLM.from_pretrained( tmpdirname, device_map=self.device_map ) else: if self.device_map == "cpu": quant_type = "ipex" if is_ipex_available() else "torch" else: # We expect tritonv2 to be used here, because exllama backend doesn't support packing https://github.com/ModelCloud/GPTQModel/issues/1354 # TODO: Remove this once GPTQModel exllama kernels supports packing quant_type = "tritonv2" quantized_model_from_saved = AutoModelForCausalLM.from_pretrained( tmpdirname, device_map=self.device_map ) self.check_quantized_layers_type(quantized_model_from_saved, quant_type) self.check_inference_correctness(quantized_model_from_saved)
Test the serialization of the model and the loading of the quantized weights works
test_serialization
python
huggingface/transformers
tests/quantization/gptq/test_gptq.py
https://github.com/huggingface/transformers/blob/master/tests/quantization/gptq/test_gptq.py
Apache-2.0
def test_serialization_big_model_inference(self): """ Test the serialization of the model and the loading of the quantized weights with big model inference """ with tempfile.TemporaryDirectory() as tmpdirname: self.quantized_model.save_pretrained(tmpdirname) device_map = self.device_map or "auto" quantized_model_from_saved = AutoModelForCausalLM.from_pretrained(tmpdirname, device_map=device_map) self.check_inference_correctness(quantized_model_from_saved)
Test the serialization of the model and the loading of the quantized weights with big model inference
test_serialization_big_model_inference
python
huggingface/transformers
tests/quantization/gptq/test_gptq.py
https://github.com/huggingface/transformers/blob/master/tests/quantization/gptq/test_gptq.py
Apache-2.0
def test_change_loading_attributes(self): """ Test the serialization of the model and the loading of the quantized weights works with another config file """ with tempfile.TemporaryDirectory() as tmpdirname: self.quantized_model.save_pretrained(tmpdirname) if is_auto_gptq_available() and not is_gptqmodel_available() and not self.use_exllama: self.check_quantized_layers_type(self.quantized_model, "cuda-old") # we need to put it directly to the gpu. Otherwise, we won't be able to initialize the exllama kernel quantized_model_from_saved = AutoModelForCausalLM.from_pretrained( tmpdirname, quantization_config=GPTQConfig(use_exllama=True, bits=4), device_map=self.device_map ) self.assertEqual(quantized_model_from_saved.config.quantization_config.bits, self.bits) self.check_quantized_layers_type(quantized_model_from_saved, "exllama") self.check_inference_correctness(quantized_model_from_saved)
Test the serialization of the model and the loading of the quantized weights works with another config file
test_change_loading_attributes
python
huggingface/transformers
tests/quantization/gptq/test_gptq.py
https://github.com/huggingface/transformers/blob/master/tests/quantization/gptq/test_gptq.py
Apache-2.0
def check_inference_correctness(self, model): """ Test the generation quality of the quantized model and see that we are matching the expected output. Given that we are operating on small numbers + the testing model is relatively small, we might not get the same output across GPUs. So we'll generate few tokens (5-10) and check their output. """ # Check that inference pass works on the model encoded_input = self.tokenizer(self.input_text, return_tensors="pt") # Check the exactness of the results output_sequences = model.generate(input_ids=encoded_input["input_ids"].to(0), max_new_tokens=10) # Get the generation self.assertIn(self.tokenizer.decode(output_sequences[0], skip_special_tokens=True), self.EXPECTED_OUTPUTS)
Test the generation quality of the quantized model and see that we are matching the expected output. Given that we are operating on small numbers + the testing model is relatively small, we might not get the same output across GPUs. So we'll generate few tokens (5-10) and check their output.
check_inference_correctness
python
huggingface/transformers
tests/quantization/gptq/test_gptq.py
https://github.com/huggingface/transformers/blob/master/tests/quantization/gptq/test_gptq.py
Apache-2.0
def test_max_input_length(self): """ Test if the max_input_length works. It modifies the maximum input length that of the model that runs with exllama backend. """ prompt = "I am in Paris and" * 1000 inp = self.tokenizer(prompt, return_tensors="pt").to(0) self.assertTrue(inp["input_ids"].shape[1] > 4028) with self.assertRaises(RuntimeError) as cm: self.quantized_model.generate(**inp, num_beams=1, min_new_tokens=3, max_new_tokens=3) self.assertTrue("temp_state buffer is too small" in str(cm.exception)) prompt = "I am in Paris and" inp = self.tokenizer(prompt, return_tensors="pt").to(0) self.assertTrue(inp["input_ids"].shape[1] < 4028) self.quantized_model.generate(**inp, num_beams=1, min_new_tokens=3, max_new_tokens=3)
Test if the max_input_length works. It modifies the maximum input length that of the model that runs with exllama backend.
test_max_input_length
python
huggingface/transformers
tests/quantization/gptq/test_gptq.py
https://github.com/huggingface/transformers/blob/master/tests/quantization/gptq/test_gptq.py
Apache-2.0
def check_inference_correctness(self, model): """ Test the generation quality of the quantized model and see that we are matching the expected output. Given that we are operating on small numbers + the testing model is relatively small, we might not get the same output across GPUs. So we'll generate few tokens (5-10) and check their output. """ # Check that inference pass works on the model encoded_input = self.tokenizer(self.input_text, return_tensors="pt") # Check the exactness of the results output_sequences = model.generate(input_ids=encoded_input["input_ids"].to(0), max_new_tokens=10) # Get the generation self.assertIn(self.tokenizer.decode(output_sequences[0], skip_special_tokens=True), self.EXPECTED_OUTPUTS)
Test the generation quality of the quantized model and see that we are matching the expected output. Given that we are operating on small numbers + the testing model is relatively small, we might not get the same output across GPUs. So we'll generate few tokens (5-10) and check their output.
check_inference_correctness
python
huggingface/transformers
tests/quantization/gptq/test_gptq.py
https://github.com/huggingface/transformers/blob/master/tests/quantization/gptq/test_gptq.py
Apache-2.0
def test_to_dict(self): """ Simple test that checks if one uses a config and converts it to a dict, the dict is the same as the config object """ quantization_config = HiggsConfig() config_to_dict = quantization_config.to_dict() for key in config_to_dict: self.assertEqual(getattr(quantization_config, key), config_to_dict[key])
Simple test that checks if one uses a config and converts it to a dict, the dict is the same as the config object
test_to_dict
python
huggingface/transformers
tests/quantization/higgs/test_higgs.py
https://github.com/huggingface/transformers/blob/master/tests/quantization/higgs/test_higgs.py
Apache-2.0
def test_from_dict(self): """ Simple test that checks if one uses a dict and converts it to a config object, the config object is the same as the dict """ dict = {"modules_to_not_convert": ["embed_tokens", "lm_head"], "quant_method": "higgs"} quantization_config = HiggsConfig.from_dict(dict) self.assertEqual(dict["modules_to_not_convert"], quantization_config.modules_to_not_convert) self.assertEqual(dict["quant_method"], quantization_config.quant_method)
Simple test that checks if one uses a dict and converts it to a config object, the config object is the same as the dict
test_from_dict
python
huggingface/transformers
tests/quantization/higgs/test_higgs.py
https://github.com/huggingface/transformers/blob/master/tests/quantization/higgs/test_higgs.py
Apache-2.0
def test_quantized_model_conversion(self): """ Simple test that checks if the quantized model has been converted properly """ from transformers.integrations import HiggsLinear, replace_with_higgs_linear model_id = "facebook/opt-350m" config = AutoConfig.from_pretrained(model_id, revision="cb32f77e905cccbca1d970436fb0f5e6b58ee3c5") quantization_config = HiggsConfig() with init_empty_weights(): model = OPTForCausalLM(config) nb_linears = 0 for module in model.modules(): if isinstance(module, torch.nn.Linear): nb_linears += 1 model, _ = replace_with_higgs_linear(model, quantization_config=quantization_config) nb_higgs_linear = 0 for module in model.modules(): if isinstance(module, HiggsLinear): nb_higgs_linear += 1 self.assertEqual(nb_linears - 1, nb_higgs_linear) with init_empty_weights(): model = OPTForCausalLM(config) quantization_config = HiggsConfig(modules_to_not_convert=["fc1"]) model, _ = replace_with_higgs_linear(model, quantization_config=quantization_config) nb_higgs_linear = 0 for module in model.modules(): if isinstance(module, HiggsLinear): nb_higgs_linear += 1 self.assertEqual(nb_linears - 24, nb_higgs_linear)
Simple test that checks if the quantized model has been converted properly
test_quantized_model_conversion
python
huggingface/transformers
tests/quantization/higgs/test_higgs.py
https://github.com/huggingface/transformers/blob/master/tests/quantization/higgs/test_higgs.py
Apache-2.0
def test_quantized_model(self): """ Simple test that checks if the quantized model is working properly """ input_ids = self.tokenizer(self.input_text, return_tensors="pt").to(torch_device) output = self.quantized_model.generate(**input_ids, max_new_tokens=self.max_new_tokens) self.assertEqual(self.tokenizer.decode(output[0], skip_special_tokens=True), self.EXPECTED_OUTPUT)
Simple test that checks if the quantized model is working properly
test_quantized_model
python
huggingface/transformers
tests/quantization/higgs/test_higgs.py
https://github.com/huggingface/transformers/blob/master/tests/quantization/higgs/test_higgs.py
Apache-2.0
def test_save_pretrained(self): """ Simple test that checks if the quantized model is working properly after being saved and loaded """ with tempfile.TemporaryDirectory() as tmpdirname: self.quantized_model.save_pretrained(tmpdirname) model = AutoModelForCausalLM.from_pretrained(tmpdirname, device_map=self.device_map) input_ids = self.tokenizer(self.input_text, return_tensors="pt").to(torch_device) output = model.generate(**input_ids, max_new_tokens=self.max_new_tokens) self.assertEqual(self.tokenizer.decode(output[0], skip_special_tokens=True), self.EXPECTED_OUTPUT)
Simple test that checks if the quantized model is working properly after being saved and loaded
test_save_pretrained
python
huggingface/transformers
tests/quantization/higgs/test_higgs.py
https://github.com/huggingface/transformers/blob/master/tests/quantization/higgs/test_higgs.py
Apache-2.0
def test_quantized_model_multi_gpu(self): """ Simple test that checks if the quantized model is working properly with multiple GPUs set CUDA_VISIBLE_DEVICES=0,1 if you have more than 2 GPUs """ input_ids = self.tokenizer(self.input_text, return_tensors="pt").to(torch_device) quantization_config = HiggsConfig() quantized_model = AutoModelForCausalLM.from_pretrained( self.model_name, device_map="auto", quantization_config=quantization_config ) self.assertTrue(set(quantized_model.hf_device_map.values()) == {0, 1}) output = quantized_model.generate(**input_ids, max_new_tokens=self.max_new_tokens) self.assertEqual(self.tokenizer.decode(output[0], skip_special_tokens=True), self.EXPECTED_OUTPUT)
Simple test that checks if the quantized model is working properly with multiple GPUs set CUDA_VISIBLE_DEVICES=0,1 if you have more than 2 GPUs
test_quantized_model_multi_gpu
python
huggingface/transformers
tests/quantization/higgs/test_higgs.py
https://github.com/huggingface/transformers/blob/master/tests/quantization/higgs/test_higgs.py
Apache-2.0
def test_save_pretrained_multi_gpu(self): """ Simple test that checks if the quantized model is working properly after being saved and loaded """ with tempfile.TemporaryDirectory() as tmpdirname: self.quantized_model.save_pretrained(tmpdirname) model = AutoModelForCausalLM.from_pretrained(tmpdirname, device_map="auto") self.assertTrue(set(model.hf_device_map.values()) == {0, 1}) input_ids = self.tokenizer(self.input_text, return_tensors="pt").to(torch_device) output = model.generate(**input_ids, max_new_tokens=self.max_new_tokens) self.assertEqual(self.tokenizer.decode(output[0], skip_special_tokens=True), self.EXPECTED_OUTPUT)
Simple test that checks if the quantized model is working properly after being saved and loaded
test_save_pretrained_multi_gpu
python
huggingface/transformers
tests/quantization/higgs/test_higgs.py
https://github.com/huggingface/transformers/blob/master/tests/quantization/higgs/test_higgs.py
Apache-2.0
def test_dequantize(self): """ Test the ability to dequantize a model """ self.quantized_model.dequantize() input_ids = self.tokenizer(self.input_text, return_tensors="pt").to(torch_device) output = self.quantized_model.generate(**input_ids, max_new_tokens=self.max_new_tokens) self.assertEqual(self.tokenizer.decode(output[0], skip_special_tokens=True), self.EXPECTED_OUTPUT)
Test the ability to dequantize a model
test_dequantize
python
huggingface/transformers
tests/quantization/higgs/test_higgs.py
https://github.com/huggingface/transformers/blob/master/tests/quantization/higgs/test_higgs.py
Apache-2.0
def test_to_dict(self): """ Makes sure the config format is properly set """ quantization_config = HqqConfig() hqq_orig_config = quantization_config.to_dict() self.assertEqual(quantization_config.quant_config, hqq_orig_config["quant_config"])
Makes sure the config format is properly set
test_to_dict
python
huggingface/transformers
tests/quantization/hqq/test_hqq.py
https://github.com/huggingface/transformers/blob/master/tests/quantization/hqq/test_hqq.py
Apache-2.0
def test_fp16_quantized_model_multipgpu(self): """ Simple LLM model testing fp16 with multi-gpu """ quant_config = HqqConfig(nbits=8, group_size=64) hqq_runner = HQQLLMRunner( model_id=MODEL_ID, quant_config=quant_config, compute_dtype=torch.float16, device="auto" ) check_hqqlayer(self, hqq_runner.model.model.layers[0].self_attn.v_proj) check_forward(self, hqq_runner.model)
Simple LLM model testing fp16 with multi-gpu
test_fp16_quantized_model_multipgpu
python
huggingface/transformers
tests/quantization/hqq/test_hqq.py
https://github.com/huggingface/transformers/blob/master/tests/quantization/hqq/test_hqq.py
Apache-2.0
def test_fp16_quantized_model(self): """ Simple LLM model testing fp16 with bias """ quant_config = HqqConfig(nbits=8, group_size=64) hqq_runner = HQQLLMRunner( model_id="facebook/opt-125m", quant_config=quant_config, compute_dtype=torch.float16, device=torch_device ) check_hqqlayer(self, hqq_runner.model.model.decoder.layers[0].self_attn.v_proj) check_forward(self, hqq_runner.model)
Simple LLM model testing fp16 with bias
test_fp16_quantized_model
python
huggingface/transformers
tests/quantization/hqq/test_hqq.py
https://github.com/huggingface/transformers/blob/master/tests/quantization/hqq/test_hqq.py
Apache-2.0
def test_save_and_load_quantized_model(self): """ Test saving and loading a quantized model with bias """ import tempfile quant_config = HqqConfig(nbits=8, group_size=64) hqq_runner = HQQLLMRunner( model_id="facebook/opt-125m", quant_config=quant_config, compute_dtype=torch.float16, device=torch_device ) input_tensor = torch.zeros((1, 8), dtype=torch.int32, device=torch_device) # Get reference logits with torch.no_grad(): logits_ref = hqq_runner.model.forward(input_tensor).logits with tempfile.TemporaryDirectory() as tmpdirname: hqq_runner.model.save_pretrained(tmpdirname) del hqq_runner.model backend_empty_cache(torch_device) model_loaded = AutoModelForCausalLM.from_pretrained( tmpdirname, torch_dtype=torch.float16, device_map=torch_device ) with torch.no_grad(): logits_loaded = model_loaded.forward(input_tensor).logits self.assertEqual((logits_loaded - logits_ref).abs().mean().item(), 0)
Test saving and loading a quantized model with bias
test_save_and_load_quantized_model
python
huggingface/transformers
tests/quantization/hqq/test_hqq.py
https://github.com/huggingface/transformers/blob/master/tests/quantization/hqq/test_hqq.py
Apache-2.0
def test_model_serialization(self): """ Simple HQQ LLM save/load test """ quant_config = HqqConfig(nbits=4, group_size=64) hqq_runner = HQQLLMRunner( model_id=MODEL_ID, quant_config=quant_config, compute_dtype=torch.float16, device=torch_device ) input_tensor = torch.zeros((1, 8), dtype=torch.int32, device=torch_device) with torch.no_grad(): logits_ref = hqq_runner.model.forward(input_tensor).logits # Save saved_model_id = "quant_model" hqq_runner.model.save_pretrained(saved_model_id) # Remove old model del hqq_runner.model backend_empty_cache(torch_device) # Load and check if the logits match model_loaded = AutoModelForCausalLM.from_pretrained( "quant_model", torch_dtype=torch.float16, device_map=torch_device, low_cpu_mem_usage=True ) with torch.no_grad(): logits_loaded = model_loaded.forward(input_tensor).logits self.assertEqual((logits_loaded - logits_ref).abs().mean().item(), 0)
Simple HQQ LLM save/load test
test_model_serialization
python
huggingface/transformers
tests/quantization/hqq/test_hqq.py
https://github.com/huggingface/transformers/blob/master/tests/quantization/hqq/test_hqq.py
Apache-2.0
def test_model_serialization_dynamic_quant_with_skip(self): """ Simple HQQ LLM save/load test with dynamic quant """ q4_config = {"nbits": 4, "group_size": 64} q3_config = {"nbits": 3, "group_size": 64} quant_config = HqqConfig( dynamic_config={ "self_attn.q_proj": q4_config, "self_attn.k_proj": q4_config, "self_attn.v_proj": q4_config, "self_attn.o_proj": q4_config, "mlp.gate_proj": q3_config, "mlp.up_proj": q3_config, }, skip_modules=["lm_head", "down_proj"], ) hqq_runner = HQQLLMRunner( model_id=MODEL_ID, quant_config=quant_config, compute_dtype=torch.float16, device=torch_device ) model = hqq_runner.model input_tensor = torch.zeros((1, 8), dtype=torch.int32, device=torch_device) with torch.no_grad(): model.forward(input_tensor).logits self.assertEqual(isinstance(model.model.layers[1].mlp.down_proj, torch.nn.Linear), True) self.assertEqual(model.model.layers[1].self_attn.v_proj.quant_config["weight_quant_params"]["nbits"], 4) self.assertEqual(model.model.layers[1].mlp.gate_proj.quant_config["weight_quant_params"]["nbits"], 3)
Simple HQQ LLM save/load test with dynamic quant
test_model_serialization_dynamic_quant_with_skip
python
huggingface/transformers
tests/quantization/hqq/test_hqq.py
https://github.com/huggingface/transformers/blob/master/tests/quantization/hqq/test_hqq.py
Apache-2.0
def test_weight_only_quantization_conversion(self): """ Simple test that checks if the quantized model has been converted properly when using weight only quantization """ # Try with weight only quantization quantization_config = QuantoConfig(weights="int8", activations=None) self.model, _ = replace_with_quanto_layers(self.model, quantization_config=quantization_config) nb_qlinear = 0 for module in self.model.modules(): if isinstance(module, QLinear): nb_qlinear += 1 self.assertEqual(self.nb_linear, nb_qlinear)
Simple test that checks if the quantized model has been converted properly when using weight only quantization
test_weight_only_quantization_conversion
python
huggingface/transformers
tests/quantization/quanto_integration/test_quanto.py
https://github.com/huggingface/transformers/blob/master/tests/quantization/quanto_integration/test_quanto.py
Apache-2.0
def test_weight_and_activation_quantization_conversion(self): """ Simple test that checks if the quantized model has been converted properly when using weight + activation quantization """ # Try with weight + activation quantization quantization_config = QuantoConfig(weights="int8", activations="int8") self.model, _ = replace_with_quanto_layers(self.model, quantization_config=quantization_config) nb_qlinear = 0 nb_qlayernorm = 0 for module in self.model.modules(): if isinstance(module, QLinear): nb_qlinear += 1 if isinstance(module, QLayerNorm): nb_qlayernorm += 1 self.assertEqual(self.nb_linear, nb_qlinear) self.assertEqual(self.nb_layernorm, nb_qlayernorm)
Simple test that checks if the quantized model has been converted properly when using weight + activation quantization
test_weight_and_activation_quantization_conversion
python
huggingface/transformers
tests/quantization/quanto_integration/test_quanto.py
https://github.com/huggingface/transformers/blob/master/tests/quantization/quanto_integration/test_quanto.py
Apache-2.0
def test_conversion_with_modules_to_not_convert(self): """ Simple test that checks if the quantized model has been converted properly when specifying modules_to_not_convert argument """ # Try with weight + activatioin quantization quantization_config = QuantoConfig(weights="int8", activations="int8") self.model, _ = replace_with_quanto_layers( self.model, quantization_config=quantization_config, modules_to_not_convert=["lm_head"] ) nb_qlinear = 0 nb_qlayernorm = 0 for module in self.model.modules(): if isinstance(module, QLinear): nb_qlinear += 1 if isinstance(module, QLayerNorm): nb_qlayernorm += 1 self.assertEqual(self.nb_linear - 1, nb_qlinear)
Simple test that checks if the quantized model has been converted properly when specifying modules_to_not_convert argument
test_conversion_with_modules_to_not_convert
python
huggingface/transformers
tests/quantization/quanto_integration/test_quanto.py
https://github.com/huggingface/transformers/blob/master/tests/quantization/quanto_integration/test_quanto.py
Apache-2.0
def check_inference_correctness(self, model, device): r""" Test the generation quality of the quantized model and see that we are matching the expected output. Given that we are operating on small numbers + the testing model is relatively small, we might not get the same output across GPUs. So we'll generate few tokens (5-10) and check their output. """ if not self.have_accelerate_hooks: model.to(device) encoded_input = self.tokenizer(self.input_text, return_tensors="pt") output_sequences = model.generate(input_ids=encoded_input["input_ids"].to(device), max_new_tokens=10) self.assertIn(self.tokenizer.decode(output_sequences[0], skip_special_tokens=True), self.EXPECTED_OUTPUTS)
Test the generation quality of the quantized model and see that we are matching the expected output. Given that we are operating on small numbers + the testing model is relatively small, we might not get the same output across GPUs. So we'll generate few tokens (5-10) and check their output.
check_inference_correctness
python
huggingface/transformers
tests/quantization/quanto_integration/test_quanto.py
https://github.com/huggingface/transformers/blob/master/tests/quantization/quanto_integration/test_quanto.py
Apache-2.0
def test_serialization_bin(self): """ Test the serialization, the loading and the inference of the quantized weights """ with tempfile.TemporaryDirectory() as tmpdirname: with self.assertRaises(ValueError) as e: self.quantized_model.save_pretrained(tmpdirname, safe_serialization=False) self.assertIn("The model is quantized with quanto and is not serializable", str(e.exception)) # TODO: replace by the following when it works # quantized_model_from_saved = AutoModelForCausalLM.from_pretrained( # tmpdirname, torch_dtype=torch.float32, device_map="cpu" # ) # self.check_inference_correctness(quantized_model_from_saved, device="cuda")
Test the serialization, the loading and the inference of the quantized weights
test_serialization_bin
python
huggingface/transformers
tests/quantization/quanto_integration/test_quanto.py
https://github.com/huggingface/transformers/blob/master/tests/quantization/quanto_integration/test_quanto.py
Apache-2.0
def test_serialization_safetensors(self): """ Test the serialization, the loading and the inference of the quantized weights """ with tempfile.TemporaryDirectory() as tmpdirname: with self.assertRaises(ValueError) as e: self.quantized_model.save_pretrained(tmpdirname) self.assertIn("The model is quantized with quanto and is not serializable", str(e.exception)) # quantized_model_from_saved = AutoModelForCausalLM.from_pretrained( # tmpdirname, torch_dtype=torch.float32, device_map="cpu" # ) # self.check_inference_correctness(quantized_model_from_saved, device="cuda")
Test the serialization, the loading and the inference of the quantized weights
test_serialization_safetensors
python
huggingface/transformers
tests/quantization/quanto_integration/test_quanto.py
https://github.com/huggingface/transformers/blob/master/tests/quantization/quanto_integration/test_quanto.py
Apache-2.0
def test_check_offload_quantized(self): """ We check that we have unquantized value in the cpu and in the disk """ from optimum.quanto import QBitsTensor, QTensor cpu_weights = self.quantized_model.transformer.h[22].self_attention.query_key_value._hf_hook.weights_map[ "weight" ] disk_weights = self.quantized_model.transformer.h[23].self_attention.query_key_value._hf_hook.weights_map[ "weight" ] self.assertTrue(isinstance(cpu_weights, torch.Tensor) and not isinstance(cpu_weights, QTensor)) self.assertTrue(isinstance(disk_weights, torch.Tensor) and not isinstance(disk_weights, QTensor)) if self.weights == "int4": self.assertTrue(isinstance(cpu_weights, torch.Tensor) and not isinstance(disk_weights, QBitsTensor)) self.assertTrue(isinstance(disk_weights, torch.Tensor) and not isinstance(disk_weights, QBitsTensor))
We check that we have unquantized value in the cpu and in the disk
test_check_offload_quantized
python
huggingface/transformers
tests/quantization/quanto_integration/test_quanto.py
https://github.com/huggingface/transformers/blob/master/tests/quantization/quanto_integration/test_quanto.py
Apache-2.0
def test_device_and_dtype_assignment(self): r""" Test whether trying to cast (or assigning a device to) a model after quantization will throw an error. Checks also if other models are casted correctly . """ # This should work if self.device_map is None: _ = self.quantized_model.to(0) with self.assertRaises(ValueError): # Tries with a `dtype`` self.quantized_model.to(torch.float16)
Test whether trying to cast (or assigning a device to) a model after quantization will throw an error. Checks also if other models are casted correctly .
test_device_and_dtype_assignment
python
huggingface/transformers
tests/quantization/quark_integration/test_quark.py
https://github.com/huggingface/transformers/blob/master/tests/quantization/quark_integration/test_quark.py
Apache-2.0
def test_original_dtype(self): r""" A simple test to check if the model successfully stores the original dtype """ self.assertTrue(hasattr(self.quantized_model.config, "_pre_quantization_dtype")) self.assertFalse(hasattr(self.model_fp16.config, "_pre_quantization_dtype")) self.assertTrue(self.quantized_model.config._pre_quantization_dtype == torch.float16) self.assertTrue(isinstance(self.quantized_model.model.layers[0].mlp.gate_proj, QParamsLinear))
A simple test to check if the model successfully stores the original dtype
test_original_dtype
python
huggingface/transformers
tests/quantization/quark_integration/test_quark.py
https://github.com/huggingface/transformers/blob/master/tests/quantization/quark_integration/test_quark.py
Apache-2.0
def check_inference_correctness(self, model): r""" Test the generation quality of the quantized model and see that we are matching the expected output. Given that we are operating on small numbers + the testing model is relatively small, we might not get the same output across GPUs. So we'll generate few tokens (5-10) and check their output. """ # Check that inference pass works on the model encoded_input = self.tokenizer(self.input_text, return_tensors="pt") gen_config = GenerationConfig( max_new_tokens=15, min_new_tokens=15, use_cache=True, num_beams=1, do_sample=False, ) # Check the exactness of the results output_sequences = model.generate(input_ids=encoded_input["input_ids"].to(0), generation_config=gen_config) # Get the generation self.assertIn(self.tokenizer.decode(output_sequences[0], skip_special_tokens=True), self.EXPECTED_OUTPUTS)
Test the generation quality of the quantized model and see that we are matching the expected output. Given that we are operating on small numbers + the testing model is relatively small, we might not get the same output across GPUs. So we'll generate few tokens (5-10) and check their output.
check_inference_correctness
python
huggingface/transformers
tests/quantization/quark_integration/test_quark.py
https://github.com/huggingface/transformers/blob/master/tests/quantization/quark_integration/test_quark.py
Apache-2.0
def test_generate_quality(self): """ Simple test to check the quality of the model by comparing the generated tokens with the expected tokens """ if self.device_map is None: self.check_inference_correctness(self.quantized_model.to(0)) else: self.check_inference_correctness(self.quantized_model)
Simple test to check the quality of the model by comparing the generated tokens with the expected tokens
test_generate_quality
python
huggingface/transformers
tests/quantization/quark_integration/test_quark.py
https://github.com/huggingface/transformers/blob/master/tests/quantization/quark_integration/test_quark.py
Apache-2.0
def test_to_dict(self): """ Simple test that checks if one uses a config and converts it to a dict, the dict is the same as the config object """ quantization_config = SpQRConfig() config_to_dict = quantization_config.to_dict() for key in config_to_dict: self.assertEqual(getattr(quantization_config, key), config_to_dict[key])
Simple test that checks if one uses a config and converts it to a dict, the dict is the same as the config object
test_to_dict
python
huggingface/transformers
tests/quantization/spqr_integration/test_spqr.py
https://github.com/huggingface/transformers/blob/master/tests/quantization/spqr_integration/test_spqr.py
Apache-2.0
def test_from_dict(self): """ Simple test that checks if one uses a dict and converts it to a config object, the config object is the same as the dict """ dict = { "beta1": 16, "beta2": 16, "bits": 3, "modules_to_not_convert": ["lm_head.weight"], "shapes": {"model.layers.0.self_attn.q_proj.dense_weights.shape": 16}, } quantization_config = SpQRConfig.from_dict(dict) self.assertEqual(dict["beta1"], quantization_config.beta1) self.assertEqual(dict["beta2"], quantization_config.beta2) self.assertEqual(dict["bits"], quantization_config.bits) self.assertEqual(dict["modules_to_not_convert"], quantization_config.modules_to_not_convert) self.assertEqual(dict["shapes"], quantization_config.shapes)
Simple test that checks if one uses a dict and converts it to a config object, the config object is the same as the dict
test_from_dict
python
huggingface/transformers
tests/quantization/spqr_integration/test_spqr.py
https://github.com/huggingface/transformers/blob/master/tests/quantization/spqr_integration/test_spqr.py
Apache-2.0
def test_quantized_model_conversion(self): """ Simple test that checks if the quantized model has been converted properly """ from spqr_quant import QuantizedLinear from transformers.integrations import replace_with_spqr_linear model_id = "meta-llama/Llama-2-7b-hf" config = AutoConfig.from_pretrained(model_id) quantization_config = AutoConfig.from_pretrained(self.model_name, return_dict=False).quantization_config quantization_config = SpQRConfig.from_dict(quantization_config) with init_empty_weights(): model = AutoModelForCausalLM.from_pretrained(pretrained_model_name_or_path=model_id, config=config) nb_linears = 0 for module in model.modules(): if isinstance(module, torch.nn.Linear): nb_linears += 1 model, _ = replace_with_spqr_linear( model, quantization_config=quantization_config, modules_to_not_convert=quantization_config.modules_to_not_convert, ) nb_spqr_linear = 0 for module in model.modules(): if isinstance(module, QuantizedLinear): nb_spqr_linear += 1 self.assertEqual(nb_linears - 1, nb_spqr_linear)
Simple test that checks if the quantized model has been converted properly
test_quantized_model_conversion
python
huggingface/transformers
tests/quantization/spqr_integration/test_spqr.py
https://github.com/huggingface/transformers/blob/master/tests/quantization/spqr_integration/test_spqr.py
Apache-2.0
def test_quantized_model(self): """ Simple test that checks if the quantized model is working properly """ input_ids = self.tokenizer(self.input_text, return_tensors="pt").to(torch_device) output = self.quantized_model.generate(**input_ids, max_new_tokens=self.max_new_tokens) self.assertEqual(self.tokenizer.decode(output[0], skip_special_tokens=True), self.EXPECTED_OUTPUT)
Simple test that checks if the quantized model is working properly
test_quantized_model
python
huggingface/transformers
tests/quantization/spqr_integration/test_spqr.py
https://github.com/huggingface/transformers/blob/master/tests/quantization/spqr_integration/test_spqr.py
Apache-2.0
def test_save_pretrained(self): """ Simple test that checks if the quantized model is working properly after being saved and loaded """ with tempfile.TemporaryDirectory() as tmpdirname: self.quantized_model.save_pretrained(tmpdirname) model = AutoModelForCausalLM.from_pretrained(tmpdirname, device_map=torch_device) input_ids = self.tokenizer(self.input_text, return_tensors="pt").to(torch_device) output = model.generate(**input_ids, max_new_tokens=self.max_new_tokens) self.assertEqual(self.tokenizer.decode(output[0], skip_special_tokens=True), self.EXPECTED_OUTPUT)
Simple test that checks if the quantized model is working properly after being saved and loaded
test_save_pretrained
python
huggingface/transformers
tests/quantization/spqr_integration/test_spqr.py
https://github.com/huggingface/transformers/blob/master/tests/quantization/spqr_integration/test_spqr.py
Apache-2.0
def test_quantized_model_multi_gpu(self): """ Simple test that checks if the quantized model is working properly with multiple GPUs """ input_ids = self.tokenizer(self.input_text, return_tensors="pt").to(torch_device) quantized_model = AutoModelForCausalLM.from_pretrained(self.model_name, device_map="auto") self.assertTrue(set(quantized_model.hf_device_map.values()) == {0, 1}) output = quantized_model.generate(**input_ids, max_new_tokens=self.max_new_tokens) self.assertEqual(self.tokenizer.decode(output[0], skip_special_tokens=True), self.EXPECTED_OUTPUT)
Simple test that checks if the quantized model is working properly with multiple GPUs
test_quantized_model_multi_gpu
python
huggingface/transformers
tests/quantization/spqr_integration/test_spqr.py
https://github.com/huggingface/transformers/blob/master/tests/quantization/spqr_integration/test_spqr.py
Apache-2.0
def test_quantized_model_compile(self): """ Simple test that checks if the quantized model is working properly """ # Sample tokens greedily def decode_one_tokens(model, cur_token, input_pos, cache_position, past_key_values): logits = model( cur_token, position_ids=input_pos, cache_position=cache_position, past_key_values=past_key_values, return_dict=False, use_cache=True, )[0] new_token = torch.argmax(logits[:, [-1]], dim=-1).to(torch.int) return new_token # Tokenize the test input input_ids = self.tokenizer(self.input_text, return_tensors="pt").to(torch_device)["input_ids"] seq_length = input_ids.shape[1] # Setup static KV cache for generation past_key_values = StaticCache( config=self.quantized_model.config, max_batch_size=1, max_cache_len=seq_length + self.max_new_tokens + 1, device=torch_device, dtype=self.quantized_model.config._pre_quantization_dtype, ) # Allocate token ids to be generated and copy prefix ids cache_position = torch.arange(seq_length, device=torch_device) generated_ids = torch.zeros(1, seq_length + self.max_new_tokens, dtype=torch.int, device=torch_device) generated_ids[:, cache_position] = input_ids.to(torch_device).to(torch.int) # Do a forward pass to fill the prefix cache and compile the kernels if necessary logits = self.quantized_model( input_ids, cache_position=cache_position, past_key_values=past_key_values, return_dict=False, use_cache=True, )[0] next_token = torch.argmax(logits[:, [-1]], dim=-1).to(torch.int) generated_ids[:, [seq_length]] = next_token with torch.no_grad(): # Compile the CUDA graph decode_one_tokens = torch.compile(decode_one_tokens, mode="default", backend="inductor", fullgraph=True) # Generate tokens one by one cache_position = torch.tensor([seq_length + 1], device=torch_device) for _ in range(1, self.max_new_tokens): with torch.backends.cuda.sdp_kernel(enable_flash=False, enable_mem_efficient=False, enable_math=True): next_token = decode_one_tokens( self.quantized_model, next_token.clone(), None, cache_position, past_key_values ) generated_ids.index_copy_(1, cache_position, next_token) cache_position += 1 # Check generated text self.assertEqual( self.tokenizer.decode(generated_ids[0], skip_special_tokens=True), self.EXPECTED_OUTPUT_COMPILE )
Simple test that checks if the quantized model is working properly
test_quantized_model_compile
python
huggingface/transformers
tests/quantization/spqr_integration/test_spqr.py
https://github.com/huggingface/transformers/blob/master/tests/quantization/spqr_integration/test_spqr.py
Apache-2.0
def test_to_dict(self): """ Makes sure the config format is properly set """ quantization_config = TorchAoConfig("int4_weight_only") torchao_orig_config = quantization_config.to_dict() for key in torchao_orig_config: self.assertEqual(getattr(quantization_config, key), torchao_orig_config[key])
Makes sure the config format is properly set
test_to_dict
python
huggingface/transformers
tests/quantization/torchao_integration/test_torchao.py
https://github.com/huggingface/transformers/blob/master/tests/quantization/torchao_integration/test_torchao.py
Apache-2.0
def test_json_serializable(self): """ Check that the config dict can be JSON serialized. """ quantization_config = TorchAoConfig("int4_weight_only", group_size=32, layout=TensorCoreTiledLayout()) d = quantization_config.to_dict() self.assertIsInstance(d["quant_type_kwargs"]["layout"], list) self.assertTrue("inner_k_tiles" in d["quant_type_kwargs"]["layout"][1]) quantization_config.to_json_string(use_diff=False)
Check that the config dict can be JSON serialized.
test_json_serializable
python
huggingface/transformers
tests/quantization/torchao_integration/test_torchao.py
https://github.com/huggingface/transformers/blob/master/tests/quantization/torchao_integration/test_torchao.py
Apache-2.0
def test_int4wo_quant(self): """ Simple LLM model testing int4 weight only quantization """ quant_config = TorchAoConfig("int4_weight_only", **self.quant_scheme_kwargs) # Note: we quantize the bfloat16 model on the fly to int4 quantized_model = AutoModelForCausalLM.from_pretrained( self.model_name, torch_dtype=torch.bfloat16, device_map=self.device, quantization_config=quant_config, ) tokenizer = AutoTokenizer.from_pretrained(self.model_name) check_torchao_int4_wo_quantized(self, quantized_model.model.layers[0].self_attn.v_proj) input_ids = tokenizer(self.input_text, return_tensors="pt").to(self.device) output = quantized_model.generate(**input_ids, max_new_tokens=self.max_new_tokens) self.assertEqual(tokenizer.decode(output[0], skip_special_tokens=True), self.EXPECTED_OUTPUT)
Simple LLM model testing int4 weight only quantization
test_int4wo_quant
python
huggingface/transformers
tests/quantization/torchao_integration/test_torchao.py
https://github.com/huggingface/transformers/blob/master/tests/quantization/torchao_integration/test_torchao.py
Apache-2.0
def test_int4wo_quant_bfloat16_conversion(self): """ Testing the dtype of model will be modified to be bfloat16 for int4 weight only quantization """ quant_config = TorchAoConfig("int4_weight_only", **self.quant_scheme_kwargs) # Note: we quantize the bfloat16 model on the fly to int4 quantized_model = AutoModelForCausalLM.from_pretrained( self.model_name, torch_dtype=torch.bfloat16, device_map=self.device, quantization_config=quant_config, ) tokenizer = AutoTokenizer.from_pretrained(self.model_name) check_torchao_int4_wo_quantized(self, quantized_model.model.layers[0].self_attn.v_proj) input_ids = tokenizer(self.input_text, return_tensors="pt").to(self.device) output = quantized_model.generate(**input_ids, max_new_tokens=self.max_new_tokens) self.assertEqual(tokenizer.decode(output[0], skip_special_tokens=True), self.EXPECTED_OUTPUT)
Testing the dtype of model will be modified to be bfloat16 for int4 weight only quantization
test_int4wo_quant_bfloat16_conversion
python
huggingface/transformers
tests/quantization/torchao_integration/test_torchao.py
https://github.com/huggingface/transformers/blob/master/tests/quantization/torchao_integration/test_torchao.py
Apache-2.0
def test_int4wo_offload(self): """ Simple test that checks if the quantized model int4 weight only is working properly with cpu/disk offload """ device_map_offload = { "model.embed_tokens": 0, "model.layers.0": 0, "model.layers.1": 0, "model.layers.2": 0, "model.layers.3": 0, "model.layers.4": 0, "model.layers.5": 0, "model.layers.6": 0, "model.layers.7": 0, "model.layers.8": 0, "model.layers.9": 0, "model.layers.10": 0, "model.layers.11": 0, "model.layers.12": 0, "model.layers.13": 0, "model.layers.14": 0, "model.layers.15": 0, "model.layers.16": 0, "model.layers.17": 0, "model.layers.18": 0, "model.layers.19": "cpu", "model.layers.20": "cpu", "model.layers.21": "disk", "model.norm": 0, "model.rotary_emb": 0, "lm_head": 0, } quant_config = TorchAoConfig("int4_weight_only", group_size=32) quantized_model = AutoModelForCausalLM.from_pretrained( self.model_name, torch_dtype=torch.bfloat16, device_map=device_map_offload, quantization_config=quant_config, ) tokenizer = AutoTokenizer.from_pretrained(self.model_name) input_ids = tokenizer(self.input_text, return_tensors="pt").to(self.device) # fmt: off EXPECTED_OUTPUTS = Expectations( { ("xpu", 3): "What are we having for dinner?\n\nJessica: (smiling)", ("cuda", 7): "What are we having for dinner?\n- 2. What is the temperature outside", } ) # fmt: on EXPECTED_OUTPUT = EXPECTED_OUTPUTS.get_expectation() output = quantized_model.generate(**input_ids, max_new_tokens=self.max_new_tokens) generated_text = tokenizer.decode(output[0], skip_special_tokens=True) self.assertEqual(generated_text, EXPECTED_OUTPUT)
Simple test that checks if the quantized model int4 weight only is working properly with cpu/disk offload
test_int4wo_offload
python
huggingface/transformers
tests/quantization/torchao_integration/test_torchao.py
https://github.com/huggingface/transformers/blob/master/tests/quantization/torchao_integration/test_torchao.py
Apache-2.0
def test_int4wo_quant_multi_accelerator(self): """ Simple test that checks if the quantized model int4 weight only is working properly with multiple accelerators set CUDA_VISIBLE_DEVICES=0,1 if you have more than 2 CUDA GPUs set ZE_AFFINITY_MASK=0,1 if you have more than 2 Intel XPUs """ quant_config = TorchAoConfig("int4_weight_only", **self.quant_scheme_kwargs) quantized_model = AutoModelForCausalLM.from_pretrained( self.model_name, torch_dtype=torch.bfloat16, device_map="auto", quantization_config=quant_config, ) tokenizer = AutoTokenizer.from_pretrained(self.model_name) self.assertTrue(set(quantized_model.hf_device_map.values()) == {0, 1}) input_ids = tokenizer(self.input_text, return_tensors="pt").to(self.device) output = quantized_model.generate(**input_ids, max_new_tokens=self.max_new_tokens) self.assertEqual(tokenizer.decode(output[0], skip_special_tokens=True), self.EXPECTED_OUTPUT)
Simple test that checks if the quantized model int4 weight only is working properly with multiple accelerators set CUDA_VISIBLE_DEVICES=0,1 if you have more than 2 CUDA GPUs set ZE_AFFINITY_MASK=0,1 if you have more than 2 Intel XPUs
test_int4wo_quant_multi_accelerator
python
huggingface/transformers
tests/quantization/torchao_integration/test_torchao.py
https://github.com/huggingface/transformers/blob/master/tests/quantization/torchao_integration/test_torchao.py
Apache-2.0
def check_serialization_expected_output(self, device, expected_output): """ Test if we can serialize and load/infer the model again on the same device """ torch_dtype = torch.bfloat16 if self.quant_scheme == "int4_weight_only" else "auto" with tempfile.TemporaryDirectory() as tmpdirname: self.quantized_model.save_pretrained(tmpdirname, safe_serialization=False) loaded_quantized_model = AutoModelForCausalLM.from_pretrained( tmpdirname, torch_dtype=torch_dtype, device_map=device ) input_ids = self.tokenizer(self.input_text, return_tensors="pt").to(device) output = loaded_quantized_model.generate(**input_ids, max_new_tokens=self.max_new_tokens) self.assertEqual(self.tokenizer.decode(output[0], skip_special_tokens=True), expected_output)
Test if we can serialize and load/infer the model again on the same device
check_serialization_expected_output
python
huggingface/transformers
tests/quantization/torchao_integration/test_torchao.py
https://github.com/huggingface/transformers/blob/master/tests/quantization/torchao_integration/test_torchao.py
Apache-2.0
def test_to_dict(self): """ Makes sure the config format is properly set """ quantization_config = VptqConfig() vptq_orig_config = quantization_config.to_dict() self.assertEqual(vptq_orig_config["quant_method"], quantization_config.quant_method)
Makes sure the config format is properly set
test_to_dict
python
huggingface/transformers
tests/quantization/vptq_integration/test_vptq.py
https://github.com/huggingface/transformers/blob/master/tests/quantization/vptq_integration/test_vptq.py
Apache-2.0
def test_quantized_model(self): """ Simple test that checks if the quantized model is working properly """ input_ids = self.tokenizer(self.input_text, return_tensors="pt").to(torch_device) output = self.quantized_model.generate(**input_ids, max_new_tokens=self.max_new_tokens, do_sample=False) self.assertEqual(self.tokenizer.decode(output[0], skip_special_tokens=True), self.EXPECTED_OUTPUT)
Simple test that checks if the quantized model is working properly
test_quantized_model
python
huggingface/transformers
tests/quantization/vptq_integration/test_vptq.py
https://github.com/huggingface/transformers/blob/master/tests/quantization/vptq_integration/test_vptq.py
Apache-2.0
def test_save_pretrained(self): """ Simple test that checks if the quantized model is working properly after being saved and loaded """ with tempfile.TemporaryDirectory() as tmpdirname: self.quantized_model.save_pretrained(tmpdirname) model = AutoModelForCausalLM.from_pretrained(tmpdirname, device_map=self.device_map) input_ids = self.tokenizer(self.input_text, return_tensors="pt").to(torch_device) output = model.generate(**input_ids, max_new_tokens=self.max_new_tokens, do_sample=False) self.assertEqual(self.tokenizer.decode(output[0], skip_special_tokens=True), self.EXPECTED_OUTPUT)
Simple test that checks if the quantized model is working properly after being saved and loaded
test_save_pretrained
python
huggingface/transformers
tests/quantization/vptq_integration/test_vptq.py
https://github.com/huggingface/transformers/blob/master/tests/quantization/vptq_integration/test_vptq.py
Apache-2.0
def test_quantized_model_multi_gpu(self): """ Simple test that checks if the quantized model is working properly with multiple GPUs """ input_ids = self.tokenizer(self.input_text, return_tensors="pt").to(torch_device) quantized_model = AutoModelForCausalLM.from_pretrained(self.model_name, device_map="auto") self.assertTrue(set(quantized_model.hf_device_map.values()) == {0, 1}) output = quantized_model.generate(**input_ids, max_new_tokens=self.max_new_tokens, do_sample=False) self.assertEqual(self.tokenizer.decode(output[0], skip_special_tokens=True), self.EXPECTED_OUTPUT)
Simple test that checks if the quantized model is working properly with multiple GPUs
test_quantized_model_multi_gpu
python
huggingface/transformers
tests/quantization/vptq_integration/test_vptq.py
https://github.com/huggingface/transformers/blob/master/tests/quantization/vptq_integration/test_vptq.py
Apache-2.0
def test_quantized_model_conversion(self): """ Simple test that checks if the quantized model has been converted properly """ from vptq import VQuantLinear from transformers.integrations import replace_with_vptq_linear model_id = "facebook/opt-350m" config = AutoConfig.from_pretrained(model_id, revision="cb32f77e905cccbca1d970436fb0f5e6b58ee3c5") modules_to_not_convert = ["lm_head"] names = [ "q_proj", "k_proj", "v_proj", "out_proj", "fc1", "fc2", ] value = { "enable_norm": True, "enable_perm": True, "group_num": 1, "group_size": 128, "indices_as_float": False, "num_centroids": [-1, 128], "num_res_centroids": [-1, 128], "outlier_size": 0, "vector_lens": [-1, 12], } shared_layer_config = {} for name in names: shared_layer_config[name] = value for i in range(24): modules_to_not_convert.append(f"model.decoder.layers.{i}.fc1") layer_configs = {} layer_configs["model.decoder.project_out"] = value layer_configs["model.decoder.project_in"] = value quantization_config = VptqConfig(config_for_layers=layer_configs, shared_layer_config=shared_layer_config) with init_empty_weights(): model = AutoModelForCausalLM.from_config(config) nb_linears = 0 for module in model.modules(): if isinstance(module, torch.nn.Linear): nb_linears += 1 model, _ = replace_with_vptq_linear(model, quantization_config=quantization_config) nb_vptq_linear = 0 for module in model.modules(): if isinstance(module, VQuantLinear): nb_vptq_linear += 1 self.assertEqual(nb_linears - 1, nb_vptq_linear) # Try with `linear_weights_not_to_quantize` with init_empty_weights(): model = AutoModelForCausalLM.from_config(config) quantization_config = VptqConfig(config_for_layers=layer_configs, shared_layer_config=shared_layer_config) model, _ = replace_with_vptq_linear( model, quantization_config=quantization_config, modules_to_not_convert=modules_to_not_convert ) nb_vptq_linear = 0 for module in model.modules(): if isinstance(module, VQuantLinear): nb_vptq_linear += 1 # 25 comes from 24 decoder.layers.{layer_idx}.fc1 # and the last lm_head self.assertEqual(nb_linears - 25, nb_vptq_linear)
Simple test that checks if the quantized model has been converted properly
test_quantized_model_conversion
python
huggingface/transformers
tests/quantization/vptq_integration/test_vptq.py
https://github.com/huggingface/transformers/blob/master/tests/quantization/vptq_integration/test_vptq.py
Apache-2.0
def create_tmp_repo(tmp_dir): """ Creates a mock repository in a temporary folder for testing. """ tmp_dir = Path(tmp_dir) if tmp_dir.exists(): shutil.rmtree(tmp_dir) tmp_dir.mkdir(exist_ok=True) model_dir = tmp_dir / "src" / "transformers" / "models" model_dir.mkdir(parents=True, exist_ok=True) models = { "bert": MOCK_BERT_CODE, "bertcopy": MOCK_BERT_COPY_CODE, "dummy_bert_match": MOCK_DUMMY_BERT_CODE_MATCH, "dummy_roberta_match": MOCK_DUMMY_ROBERTA_CODE_MATCH, "dummy_bert_no_match": MOCK_DUMMY_BERT_CODE_NO_MATCH, "dummy_roberta_no_match": MOCK_DUMMY_ROBERTA_CODE_NO_MATCH, } for model, code in models.items(): model_subdir = model_dir / model model_subdir.mkdir(exist_ok=True) with open(model_subdir / f"modeling_{model}.py", "w", encoding="utf-8", newline="\n") as f: f.write(code)
Creates a mock repository in a temporary folder for testing.
create_tmp_repo
python
huggingface/transformers
tests/repo_utils/test_check_copies.py
https://github.com/huggingface/transformers/blob/master/tests/repo_utils/test_check_copies.py
Apache-2.0
def patch_transformer_repo_path(new_folder): """ Temporarily patches the variables defines in `check_copies` to use a different location for the repo. """ old_repo_path = check_copies.REPO_PATH old_doc_path = check_copies.PATH_TO_DOCS old_transformer_path = check_copies.TRANSFORMERS_PATH repo_path = Path(new_folder).resolve() check_copies.REPO_PATH = str(repo_path) check_copies.PATH_TO_DOCS = str(repo_path / "docs" / "source" / "en") check_copies.TRANSFORMERS_PATH = str(repo_path / "src" / "transformers") try: yield finally: check_copies.REPO_PATH = old_repo_path check_copies.PATH_TO_DOCS = old_doc_path check_copies.TRANSFORMERS_PATH = old_transformer_path
Temporarily patches the variables defines in `check_copies` to use a different location for the repo.
patch_transformer_repo_path
python
huggingface/transformers
tests/repo_utils/test_check_copies.py
https://github.com/huggingface/transformers/blob/master/tests/repo_utils/test_check_copies.py
Apache-2.0
def create_tmp_repo(tmp_dir, models=None): """ Creates a repository in a temporary directory mimicking the structure of Transformers. Uses the list of models provided (which defaults to just `["bert"]`). """ tmp_dir = Path(tmp_dir) if tmp_dir.exists(): shutil.rmtree(tmp_dir) tmp_dir.mkdir(exist_ok=True) repo = Repo.init(tmp_dir) if models is None: models = ["bert"] class_names = [model[0].upper() + model[1:] for model in models] transformers_dir = tmp_dir / "src" / "transformers" transformers_dir.mkdir(parents=True, exist_ok=True) with open(transformers_dir / "__init__.py", "w") as f: init_lines = ["from .utils import cached_file, is_torch_available"] init_lines.extend( [f"from .models.{model} import {cls}Config, {cls}Model" for model, cls in zip(models, class_names)] ) f.write("\n".join(init_lines) + "\n") with open(transformers_dir / "configuration_utils.py", "w") as f: f.write("from .utils import cached_file\n\ncode") with open(transformers_dir / "modeling_utils.py", "w") as f: f.write("from .utils import cached_file\n\ncode") utils_dir = tmp_dir / "src" / "transformers" / "utils" utils_dir.mkdir(exist_ok=True) with open(utils_dir / "__init__.py", "w") as f: f.write("from .hub import cached_file\nfrom .imports import is_torch_available\n") with open(utils_dir / "hub.py", "w") as f: f.write("import huggingface_hub\n\ncode") with open(utils_dir / "imports.py", "w") as f: f.write("code") model_dir = tmp_dir / "src" / "transformers" / "models" model_dir.mkdir(parents=True, exist_ok=True) with open(model_dir / "__init__.py", "w") as f: f.write("\n".join([f"import {model}" for model in models])) for model, cls in zip(models, class_names): model_dir = tmp_dir / "src" / "transformers" / "models" / model model_dir.mkdir(parents=True, exist_ok=True) with open(model_dir / "__init__.py", "w") as f: f.write(f"from .configuration_{model} import {cls}Config\nfrom .modeling_{model} import {cls}Model\n") with open(model_dir / f"configuration_{model}.py", "w") as f: f.write("from ...configuration_utils import PretrainedConfig\ncode") with open(model_dir / f"modeling_{model}.py", "w") as f: modeling_code = BERT_MODEL_FILE.replace("bert", model).replace("Bert", cls) f.write(modeling_code) test_dir = tmp_dir / "tests" test_dir.mkdir(exist_ok=True) with open(test_dir / "test_modeling_common.py", "w") as f: f.write("from transformers.modeling_utils import PreTrainedModel\ncode") for model, cls in zip(models, class_names): test_model_dir = test_dir / "models" / model test_model_dir.mkdir(parents=True, exist_ok=True) (test_model_dir / "__init__.py").touch() with open(test_model_dir / f"test_modeling_{model}.py", "w") as f: f.write( f"from transformers import {cls}Config, {cls}Model\nfrom ...test_modeling_common import ModelTesterMixin\n\ncode" ) example_dir = tmp_dir / "examples" example_dir.mkdir(exist_ok=True) for framework in ["flax", "pytorch", "tensorflow"]: framework_dir = example_dir / framework framework_dir.mkdir(exist_ok=True) with open(framework_dir / f"test_{framework}_examples.py", "w") as f: f.write("""test_args = "run_glue.py"\n""") glue_dir = framework_dir / "text-classification" glue_dir.mkdir(exist_ok=True) with open(glue_dir / "run_glue.py", "w") as f: f.write("from transformers import BertModel\n\ncode") repo.index.add(["examples", "src", "tests"]) repo.index.commit("Initial commit") repo.create_head("main") repo.head.reference = repo.refs.main repo.delete_head("master") return repo
Creates a repository in a temporary directory mimicking the structure of Transformers. Uses the list of models provided (which defaults to just `["bert"]`).
create_tmp_repo
python
huggingface/transformers
tests/repo_utils/test_tests_fetcher.py
https://github.com/huggingface/transformers/blob/master/tests/repo_utils/test_tests_fetcher.py
Apache-2.0
def patch_transformer_repo_path(new_folder): """ Temporarily patches the variables defines in `tests_fetcher` to use a different location for the repo. """ old_repo_path = tests_fetcher.PATH_TO_REPO tests_fetcher.PATH_TO_REPO = Path(new_folder).resolve() tests_fetcher.PATH_TO_EXAMPLES = tests_fetcher.PATH_TO_REPO / "examples" tests_fetcher.PATH_TO_TRANFORMERS = tests_fetcher.PATH_TO_REPO / "src/transformers" tests_fetcher.PATH_TO_TESTS = tests_fetcher.PATH_TO_REPO / "tests" try: yield finally: tests_fetcher.PATH_TO_REPO = old_repo_path tests_fetcher.PATH_TO_EXAMPLES = tests_fetcher.PATH_TO_REPO / "examples" tests_fetcher.PATH_TO_TRANFORMERS = tests_fetcher.PATH_TO_REPO / "src/transformers" tests_fetcher.PATH_TO_TESTS = tests_fetcher.PATH_TO_REPO / "tests"
Temporarily patches the variables defines in `tests_fetcher` to use a different location for the repo.
patch_transformer_repo_path
python
huggingface/transformers
tests/repo_utils/test_tests_fetcher.py
https://github.com/huggingface/transformers/blob/master/tests/repo_utils/test_tests_fetcher.py
Apache-2.0
def torchrun(self, script: str, is_torchrun: bool = True): """Run the `script` using `torchrun` command for multi-processing in a subprocess. Captures errors as necessary.""" with tempfile.NamedTemporaryFile(mode="w+", suffix=".py") as tmp: tmp.write(script) tmp.flush() tmp.seek(0) if is_torchrun: cmd = ( f"torchrun --nproc_per_node {self.nproc_per_node} --master_port {get_torch_dist_unique_port()} {tmp.name}" ).split() else: cmd = ["python3", tmp.name] # Note that the subprocess will be waited for here, and raise an error if not successful try: _ = subprocess.run(cmd, capture_output=True, env=self.get_env(), text=True, check=True) except subprocess.CalledProcessError as e: raise Exception(f"The following error was captured: {e.stderr}")
Run the `script` using `torchrun` command for multi-processing in a subprocess. Captures errors as necessary.
torchrun
python
huggingface/transformers
tests/tensor_parallel/test_tensor_parallel.py
https://github.com/huggingface/transformers/blob/master/tests/tensor_parallel/test_tensor_parallel.py
Apache-2.0
def test_probability_sum_error(self): """Test that the sum of mask_replace_prob and random_replace_prob exceeding 1 raises an error.""" tokenizer = BertTokenizer(self.vocab_file) with self.assertRaises(ValueError): DataCollatorForLanguageModeling(tokenizer=tokenizer, mask_replace_prob=0.9, random_replace_prob=0.2)
Test that the sum of mask_replace_prob and random_replace_prob exceeding 1 raises an error.
test_probability_sum_error
python
huggingface/transformers
tests/trainer/test_data_collator.py
https://github.com/huggingface/transformers/blob/master/tests/trainer/test_data_collator.py
Apache-2.0
def test_load_backbone_from_config(self): """ Test that load_backbone correctly loads a backbone from a backbone config. """ config = MaskFormerConfig(backbone_config=ResNetConfig(out_indices=(0, 2))) backbone = load_backbone(config) self.assertEqual(backbone.out_features, ["stem", "stage2"]) self.assertEqual(backbone.out_indices, (0, 2)) self.assertIsInstance(backbone, ResNetBackbone)
Test that load_backbone correctly loads a backbone from a backbone config.
test_load_backbone_from_config
python
huggingface/transformers
tests/utils/test_backbone_utils.py
https://github.com/huggingface/transformers/blob/master/tests/utils/test_backbone_utils.py
Apache-2.0