code
stringlengths 66
870k
| docstring
stringlengths 19
26.7k
| func_name
stringlengths 1
138
| language
stringclasses 1
value | repo
stringlengths 7
68
| path
stringlengths 5
324
| url
stringlengths 46
389
| license
stringclasses 7
values |
---|---|---|---|---|---|---|---|
def call(
self,
input_ids: TFModelInputType | None = None,
token_type_ids: np.ndarray | tf.Tensor | None = None,
input_mask: np.ndarray | tf.Tensor | None = None,
attention_mask: np.ndarray | tf.Tensor | None = None,
mems: np.ndarray | tf.Tensor | None = None,
perm_mask: np.ndarray | tf.Tensor | None = None,
target_mapping: np.ndarray | tf.Tensor | None = None,
head_mask: np.ndarray | tf.Tensor | None = None,
inputs_embeds: np.ndarray | tf.Tensor | None = None,
use_mems: Optional[bool] = None,
output_attentions: Optional[bool] = None,
output_hidden_states: Optional[bool] = None,
return_dict: Optional[bool] = None,
labels: np.ndarray | tf.Tensor | None = None,
training: bool = False,
) -> Union[TFXLNetForMultipleChoiceOutput, Tuple[tf.Tensor]]:
r"""
labels (`tf.Tensor` of shape `(batch_size,)`, *optional*):
Labels for computing the multiple choice classification loss. Indices should be in `[0, ..., num_choices]`
where `num_choices` is the size of the second dimension of the input tensors. (See `input_ids` above)
"""
if input_ids is not None:
num_choices = shape_list(input_ids)[1]
seq_length = shape_list(input_ids)[2]
else:
num_choices = shape_list(inputs_embeds)[1]
seq_length = shape_list(inputs_embeds)[2]
flat_input_ids = tf.reshape(input_ids, (-1, seq_length)) if input_ids is not None else None
flat_attention_mask = tf.reshape(attention_mask, (-1, seq_length)) if attention_mask is not None else None
flat_token_type_ids = tf.reshape(token_type_ids, (-1, seq_length)) if token_type_ids is not None else None
flat_input_mask = tf.reshape(input_mask, (-1, seq_length)) if input_mask is not None else None
flat_inputs_embeds = (
tf.reshape(inputs_embeds, (-1, seq_length, shape_list(inputs_embeds)[3]))
if inputs_embeds is not None
else None
)
transformer_outputs = self.transformer(
flat_input_ids,
flat_attention_mask,
mems,
perm_mask,
target_mapping,
flat_token_type_ids,
flat_input_mask,
head_mask,
flat_inputs_embeds,
use_mems,
output_attentions,
output_hidden_states,
return_dict=return_dict,
training=training,
)
output = transformer_outputs[0]
logits = self.sequence_summary(output)
logits = self.logits_proj(logits)
reshaped_logits = tf.reshape(logits, (-1, num_choices))
loss = None if labels is None else self.hf_compute_loss(labels, reshaped_logits)
if not return_dict:
output = (reshaped_logits,) + transformer_outputs[1:]
return ((loss,) + output) if loss is not None else output
return TFXLNetForMultipleChoiceOutput(
loss=loss,
logits=reshaped_logits,
mems=transformer_outputs.mems,
hidden_states=transformer_outputs.hidden_states,
attentions=transformer_outputs.attentions,
)
|
labels (`tf.Tensor` of shape `(batch_size,)`, *optional*):
Labels for computing the multiple choice classification loss. Indices should be in `[0, ..., num_choices]`
where `num_choices` is the size of the second dimension of the input tensors. (See `input_ids` above)
|
call
|
python
|
huggingface/transformers
|
src/transformers/models/xlnet/modeling_tf_xlnet.py
|
https://github.com/huggingface/transformers/blob/master/src/transformers/models/xlnet/modeling_tf_xlnet.py
|
Apache-2.0
|
def call(
self,
input_ids: TFModelInputType | None = None,
attention_mask: np.ndarray | tf.Tensor | None = None,
mems: np.ndarray | tf.Tensor | None = None,
perm_mask: np.ndarray | tf.Tensor | None = None,
target_mapping: np.ndarray | tf.Tensor | None = None,
token_type_ids: np.ndarray | tf.Tensor | None = None,
input_mask: np.ndarray | tf.Tensor | None = None,
head_mask: np.ndarray | tf.Tensor | None = None,
inputs_embeds: np.ndarray | tf.Tensor | None = None,
use_mems: Optional[bool] = None,
output_attentions: Optional[bool] = None,
output_hidden_states: Optional[bool] = None,
return_dict: Optional[bool] = None,
labels: np.ndarray | tf.Tensor | None = None,
training: bool = False,
) -> Union[TFXLNetForTokenClassificationOutput, Tuple[tf.Tensor]]:
r"""
labels (`tf.Tensor` of shape `(batch_size, sequence_length)`, *optional*):
Labels for computing the token classification loss. Indices should be in `[0, ..., config.num_labels - 1]`.
"""
transformer_outputs = self.transformer(
input_ids=input_ids,
attention_mask=attention_mask,
mems=mems,
perm_mask=perm_mask,
target_mapping=target_mapping,
token_type_ids=token_type_ids,
input_mask=input_mask,
head_mask=head_mask,
inputs_embeds=inputs_embeds,
use_mems=use_mems,
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,
return_dict=return_dict,
training=training,
)
output = transformer_outputs[0]
logits = self.classifier(output)
loss = None if labels is None else self.hf_compute_loss(labels, logits)
if not return_dict:
output = (logits,) + transformer_outputs[1:]
return ((loss,) + output) if loss is not None else output
return TFXLNetForTokenClassificationOutput(
loss=loss,
logits=logits,
mems=transformer_outputs.mems,
hidden_states=transformer_outputs.hidden_states,
attentions=transformer_outputs.attentions,
)
|
labels (`tf.Tensor` of shape `(batch_size, sequence_length)`, *optional*):
Labels for computing the token classification loss. Indices should be in `[0, ..., config.num_labels - 1]`.
|
call
|
python
|
huggingface/transformers
|
src/transformers/models/xlnet/modeling_tf_xlnet.py
|
https://github.com/huggingface/transformers/blob/master/src/transformers/models/xlnet/modeling_tf_xlnet.py
|
Apache-2.0
|
def call(
self,
input_ids: TFModelInputType | None = None,
attention_mask: np.ndarray | tf.Tensor | None = None,
mems: np.ndarray | tf.Tensor | None = None,
perm_mask: np.ndarray | tf.Tensor | None = None,
target_mapping: np.ndarray | tf.Tensor | None = None,
token_type_ids: np.ndarray | tf.Tensor | None = None,
input_mask: np.ndarray | tf.Tensor | None = None,
head_mask: np.ndarray | tf.Tensor | None = None,
inputs_embeds: np.ndarray | tf.Tensor | None = None,
use_mems: Optional[bool] = None,
output_attentions: Optional[bool] = None,
output_hidden_states: Optional[bool] = None,
return_dict: Optional[bool] = None,
start_positions: np.ndarray | tf.Tensor | None = None,
end_positions: np.ndarray | tf.Tensor | None = None,
training: bool = False,
) -> Union[TFXLNetForQuestionAnsweringSimpleOutput, Tuple[tf.Tensor]]:
r"""
start_positions (`tf.Tensor` of shape `(batch_size,)`, *optional*):
Labels for position (index) of the start of the labelled span for computing the token classification loss.
Positions are clamped to the length of the sequence (`sequence_length`). Position outside of the sequence
are not taken into account for computing the loss.
end_positions (`tf.Tensor` of shape `(batch_size,)`, *optional*):
Labels for position (index) of the end of the labelled span for computing the token classification loss.
Positions are clamped to the length of the sequence (`sequence_length`). Position outside of the sequence
are not taken into account for computing the loss.
"""
transformer_outputs = self.transformer(
input_ids=input_ids,
attention_mask=attention_mask,
mems=mems,
perm_mask=perm_mask,
target_mapping=target_mapping,
token_type_ids=token_type_ids,
input_mask=input_mask,
head_mask=head_mask,
inputs_embeds=inputs_embeds,
use_mems=use_mems,
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,
return_dict=return_dict,
training=training,
)
sequence_output = transformer_outputs[0]
logits = self.qa_outputs(sequence_output)
start_logits, end_logits = tf.split(logits, 2, axis=-1)
start_logits = tf.squeeze(start_logits, axis=-1)
end_logits = tf.squeeze(end_logits, axis=-1)
loss = None
if start_positions is not None and end_positions is not None:
labels = {"start_position": start_positions}
labels["end_position"] = end_positions
loss = self.hf_compute_loss(labels, (start_logits, end_logits))
if not return_dict:
output = (start_logits, end_logits) + transformer_outputs[1:]
return ((loss,) + output) if loss is not None else output
return TFXLNetForQuestionAnsweringSimpleOutput(
loss=loss,
start_logits=start_logits,
end_logits=end_logits,
mems=transformer_outputs.mems,
hidden_states=transformer_outputs.hidden_states,
attentions=transformer_outputs.attentions,
)
|
start_positions (`tf.Tensor` of shape `(batch_size,)`, *optional*):
Labels for position (index) of the start of the labelled span for computing the token classification loss.
Positions are clamped to the length of the sequence (`sequence_length`). Position outside of the sequence
are not taken into account for computing the loss.
end_positions (`tf.Tensor` of shape `(batch_size,)`, *optional*):
Labels for position (index) of the end of the labelled span for computing the token classification loss.
Positions are clamped to the length of the sequence (`sequence_length`). Position outside of the sequence
are not taken into account for computing the loss.
|
call
|
python
|
huggingface/transformers
|
src/transformers/models/xlnet/modeling_tf_xlnet.py
|
https://github.com/huggingface/transformers/blob/master/src/transformers/models/xlnet/modeling_tf_xlnet.py
|
Apache-2.0
|
def build_tf_xlnet_to_pytorch_map(model, config, tf_weights=None):
"""
A map of modules from TF to PyTorch. I use a map to keep the PyTorch model as identical to the original PyTorch
model as possible.
"""
tf_to_pt_map = {}
if hasattr(model, "transformer"):
if hasattr(model, "lm_loss"):
# We will load also the output bias
tf_to_pt_map["model/lm_loss/bias"] = model.lm_loss.bias
if hasattr(model, "sequence_summary") and "model/sequnece_summary/summary/kernel" in tf_weights:
# We will load also the sequence summary
tf_to_pt_map["model/sequnece_summary/summary/kernel"] = model.sequence_summary.summary.weight
tf_to_pt_map["model/sequnece_summary/summary/bias"] = model.sequence_summary.summary.bias
if (
hasattr(model, "logits_proj")
and config.finetuning_task is not None
and f"model/regression_{config.finetuning_task}/logit/kernel" in tf_weights
):
tf_to_pt_map[f"model/regression_{config.finetuning_task}/logit/kernel"] = model.logits_proj.weight
tf_to_pt_map[f"model/regression_{config.finetuning_task}/logit/bias"] = model.logits_proj.bias
# Now load the rest of the transformer
model = model.transformer
# Embeddings and output
tf_to_pt_map.update(
{
"model/transformer/word_embedding/lookup_table": model.word_embedding.weight,
"model/transformer/mask_emb/mask_emb": model.mask_emb,
}
)
# Transformer blocks
for i, b in enumerate(model.layer):
layer_str = f"model/transformer/layer_{i}/"
tf_to_pt_map.update(
{
layer_str + "rel_attn/LayerNorm/gamma": b.rel_attn.layer_norm.weight,
layer_str + "rel_attn/LayerNorm/beta": b.rel_attn.layer_norm.bias,
layer_str + "rel_attn/o/kernel": b.rel_attn.o,
layer_str + "rel_attn/q/kernel": b.rel_attn.q,
layer_str + "rel_attn/k/kernel": b.rel_attn.k,
layer_str + "rel_attn/r/kernel": b.rel_attn.r,
layer_str + "rel_attn/v/kernel": b.rel_attn.v,
layer_str + "ff/LayerNorm/gamma": b.ff.layer_norm.weight,
layer_str + "ff/LayerNorm/beta": b.ff.layer_norm.bias,
layer_str + "ff/layer_1/kernel": b.ff.layer_1.weight,
layer_str + "ff/layer_1/bias": b.ff.layer_1.bias,
layer_str + "ff/layer_2/kernel": b.ff.layer_2.weight,
layer_str + "ff/layer_2/bias": b.ff.layer_2.bias,
}
)
# Relative positioning biases
if config.untie_r:
r_r_list = []
r_w_list = []
r_s_list = []
seg_embed_list = []
for b in model.layer:
r_r_list.append(b.rel_attn.r_r_bias)
r_w_list.append(b.rel_attn.r_w_bias)
r_s_list.append(b.rel_attn.r_s_bias)
seg_embed_list.append(b.rel_attn.seg_embed)
else:
r_r_list = [model.r_r_bias]
r_w_list = [model.r_w_bias]
r_s_list = [model.r_s_bias]
seg_embed_list = [model.seg_embed]
tf_to_pt_map.update(
{
"model/transformer/r_r_bias": r_r_list,
"model/transformer/r_w_bias": r_w_list,
"model/transformer/r_s_bias": r_s_list,
"model/transformer/seg_embed": seg_embed_list,
}
)
return tf_to_pt_map
|
A map of modules from TF to PyTorch. I use a map to keep the PyTorch model as identical to the original PyTorch
model as possible.
|
build_tf_xlnet_to_pytorch_map
|
python
|
huggingface/transformers
|
src/transformers/models/xlnet/modeling_xlnet.py
|
https://github.com/huggingface/transformers/blob/master/src/transformers/models/xlnet/modeling_xlnet.py
|
Apache-2.0
|
def load_tf_weights_in_xlnet(model, config, tf_path):
"""Load tf checkpoints in a pytorch model"""
try:
import numpy as np
import tensorflow as tf
except ImportError:
logger.error(
"Loading a TensorFlow models in PyTorch, requires TensorFlow to be installed. Please see "
"https://www.tensorflow.org/install/ for installation instructions."
)
raise
# Load weights from TF model
init_vars = tf.train.list_variables(tf_path)
tf_weights = {}
for name, shape in init_vars:
logger.info(f"Loading TF weight {name} with shape {shape}")
array = tf.train.load_variable(tf_path, name)
tf_weights[name] = array
# Build TF to PyTorch weights loading map
tf_to_pt_map = build_tf_xlnet_to_pytorch_map(model, config, tf_weights)
for name, pointer in tf_to_pt_map.items():
logger.info(f"Importing {name}")
if name not in tf_weights:
logger.info(f"{name} not in tf pre-trained weights, skipping")
continue
array = tf_weights[name]
# adam_v and adam_m are variables used in AdamWeightDecayOptimizer to calculated m and v
# which are not required for using pretrained model
if "kernel" in name and ("ff" in name or "summary" in name or "logit" in name):
logger.info("Transposing")
array = np.transpose(array)
if isinstance(pointer, list):
# Here we will split the TF weights
assert len(pointer) == array.shape[0], (
f"Pointer length {len(pointer)} and array length {array.shape[0]} mismatched"
)
for i, p_i in enumerate(pointer):
arr_i = array[i, ...]
try:
assert p_i.shape == arr_i.shape, (
f"Pointer shape {p_i.shape} and array shape {arr_i.shape} mismatched"
)
except AssertionError as e:
e.args += (p_i.shape, arr_i.shape)
raise
logger.info(f"Initialize PyTorch weight {name} for layer {i}")
p_i.data = torch.from_numpy(arr_i)
else:
try:
assert pointer.shape == array.shape, (
f"Pointer shape {pointer.shape} and array shape {array.shape} mismatched"
)
except AssertionError as e:
e.args += (pointer.shape, array.shape)
raise
logger.info(f"Initialize PyTorch weight {name}")
pointer.data = torch.from_numpy(array)
tf_weights.pop(name, None)
tf_weights.pop(name + "/Adam", None)
tf_weights.pop(name + "/Adam_1", None)
logger.info(f"Weights not copied to PyTorch model: {', '.join(tf_weights.keys())}")
return model
|
Load tf checkpoints in a pytorch model
|
load_tf_weights_in_xlnet
|
python
|
huggingface/transformers
|
src/transformers/models/xlnet/modeling_xlnet.py
|
https://github.com/huggingface/transformers/blob/master/src/transformers/models/xlnet/modeling_xlnet.py
|
Apache-2.0
|
def rel_shift(x, klen=-1):
"""perform relative shift to form the relative attention score."""
x_size = x.shape
x = x.reshape(x_size[1], x_size[0], x_size[2], x_size[3])
x = x[1:, ...]
x = x.reshape(x_size[0], x_size[1] - 1, x_size[2], x_size[3])
# x = x[:, 0:klen, :, :]
x = torch.index_select(x, 1, torch.arange(klen, device=x.device, dtype=torch.long))
return x
|
perform relative shift to form the relative attention score.
|
rel_shift
|
python
|
huggingface/transformers
|
src/transformers/models/xlnet/modeling_xlnet.py
|
https://github.com/huggingface/transformers/blob/master/src/transformers/models/xlnet/modeling_xlnet.py
|
Apache-2.0
|
def forward(
self, hidden_states: torch.FloatTensor, p_mask: Optional[torch.FloatTensor] = None
) -> torch.FloatTensor:
"""
Args:
hidden_states (`torch.FloatTensor` of shape `(batch_size, seq_len, hidden_size)`):
The final hidden states of the model.
p_mask (`torch.FloatTensor` of shape `(batch_size, seq_len)`, *optional*):
Mask for tokens at invalid position, such as query and special symbols (PAD, SEP, CLS). 1.0 means token
should be masked.
Returns:
`torch.FloatTensor`: The start logits for SQuAD.
"""
x = self.dense(hidden_states).squeeze(-1)
if p_mask is not None:
if p_mask.dtype == torch.float16:
x = x * (1 - p_mask) - 65500 * p_mask
else:
x = x * (1 - p_mask) - 1e30 * p_mask
return x
|
Args:
hidden_states (`torch.FloatTensor` of shape `(batch_size, seq_len, hidden_size)`):
The final hidden states of the model.
p_mask (`torch.FloatTensor` of shape `(batch_size, seq_len)`, *optional*):
Mask for tokens at invalid position, such as query and special symbols (PAD, SEP, CLS). 1.0 means token
should be masked.
Returns:
`torch.FloatTensor`: The start logits for SQuAD.
|
forward
|
python
|
huggingface/transformers
|
src/transformers/models/xlnet/modeling_xlnet.py
|
https://github.com/huggingface/transformers/blob/master/src/transformers/models/xlnet/modeling_xlnet.py
|
Apache-2.0
|
def forward(
self,
hidden_states: torch.FloatTensor,
start_states: Optional[torch.FloatTensor] = None,
start_positions: Optional[torch.LongTensor] = None,
p_mask: Optional[torch.FloatTensor] = None,
) -> torch.FloatTensor:
"""
Args:
hidden_states (`torch.FloatTensor` of shape `(batch_size, seq_len, hidden_size)`):
The final hidden states of the model.
start_states (`torch.FloatTensor` of shape `(batch_size, seq_len, hidden_size)`, *optional*):
The hidden states of the first tokens for the labeled span.
start_positions (`torch.LongTensor` of shape `(batch_size,)`, *optional*):
The position of the first token for the labeled span.
p_mask (`torch.FloatTensor` of shape `(batch_size, seq_len)`, *optional*):
Mask for tokens at invalid position, such as query and special symbols (PAD, SEP, CLS). 1.0 means token
should be masked.
<Tip>
One of `start_states` or `start_positions` should be not `None`. If both are set, `start_positions` overrides
`start_states`.
</Tip>
Returns:
`torch.FloatTensor`: The end logits for SQuAD.
"""
assert start_states is not None or start_positions is not None, (
"One of start_states, start_positions should be not None"
)
if start_positions is not None:
slen, hsz = hidden_states.shape[-2:]
start_positions = start_positions[:, None, None].expand(-1, -1, hsz) # shape (bsz, 1, hsz)
start_states = hidden_states.gather(-2, start_positions) # shape (bsz, 1, hsz)
start_states = start_states.expand(-1, slen, -1) # shape (bsz, slen, hsz)
x = self.dense_0(torch.cat([hidden_states, start_states], dim=-1))
x = self.activation(x)
x = self.LayerNorm(x)
x = self.dense_1(x).squeeze(-1)
if p_mask is not None:
if p_mask.dtype == torch.float16:
x = x * (1 - p_mask) - 65500 * p_mask
else:
x = x * (1 - p_mask) - 1e30 * p_mask
return x
|
Args:
hidden_states (`torch.FloatTensor` of shape `(batch_size, seq_len, hidden_size)`):
The final hidden states of the model.
start_states (`torch.FloatTensor` of shape `(batch_size, seq_len, hidden_size)`, *optional*):
The hidden states of the first tokens for the labeled span.
start_positions (`torch.LongTensor` of shape `(batch_size,)`, *optional*):
The position of the first token for the labeled span.
p_mask (`torch.FloatTensor` of shape `(batch_size, seq_len)`, *optional*):
Mask for tokens at invalid position, such as query and special symbols (PAD, SEP, CLS). 1.0 means token
should be masked.
<Tip>
One of `start_states` or `start_positions` should be not `None`. If both are set, `start_positions` overrides
`start_states`.
</Tip>
Returns:
`torch.FloatTensor`: The end logits for SQuAD.
|
forward
|
python
|
huggingface/transformers
|
src/transformers/models/xlnet/modeling_xlnet.py
|
https://github.com/huggingface/transformers/blob/master/src/transformers/models/xlnet/modeling_xlnet.py
|
Apache-2.0
|
def forward(
self,
hidden_states: torch.FloatTensor,
start_states: Optional[torch.FloatTensor] = None,
start_positions: Optional[torch.LongTensor] = None,
cls_index: Optional[torch.LongTensor] = None,
) -> torch.FloatTensor:
"""
Args:
hidden_states (`torch.FloatTensor` of shape `(batch_size, seq_len, hidden_size)`):
The final hidden states of the model.
start_states (`torch.FloatTensor` of shape `(batch_size, seq_len, hidden_size)`, *optional*):
The hidden states of the first tokens for the labeled span.
start_positions (`torch.LongTensor` of shape `(batch_size,)`, *optional*):
The position of the first token for the labeled span.
cls_index (`torch.LongTensor` of shape `(batch_size,)`, *optional*):
Position of the CLS token for each sentence in the batch. If `None`, takes the last token.
<Tip>
One of `start_states` or `start_positions` should be not `None`. If both are set, `start_positions` overrides
`start_states`.
</Tip>
Returns:
`torch.FloatTensor`: The SQuAD 2.0 answer class.
"""
# No dependency on end_feature so that we can obtain one single `cls_logits` for each sample.
hsz = hidden_states.shape[-1]
assert start_states is not None or start_positions is not None, (
"One of start_states, start_positions should be not None"
)
if start_positions is not None:
start_positions = start_positions[:, None, None].expand(-1, -1, hsz) # shape (bsz, 1, hsz)
start_states = hidden_states.gather(-2, start_positions).squeeze(-2) # shape (bsz, hsz)
if cls_index is not None:
cls_index = cls_index[:, None, None].expand(-1, -1, hsz) # shape (bsz, 1, hsz)
cls_token_state = hidden_states.gather(-2, cls_index).squeeze(-2) # shape (bsz, hsz)
else:
cls_token_state = hidden_states[:, -1, :] # shape (bsz, hsz)
x = self.dense_0(torch.cat([start_states, cls_token_state], dim=-1))
x = self.activation(x)
x = self.dense_1(x).squeeze(-1)
return x
|
Args:
hidden_states (`torch.FloatTensor` of shape `(batch_size, seq_len, hidden_size)`):
The final hidden states of the model.
start_states (`torch.FloatTensor` of shape `(batch_size, seq_len, hidden_size)`, *optional*):
The hidden states of the first tokens for the labeled span.
start_positions (`torch.LongTensor` of shape `(batch_size,)`, *optional*):
The position of the first token for the labeled span.
cls_index (`torch.LongTensor` of shape `(batch_size,)`, *optional*):
Position of the CLS token for each sentence in the batch. If `None`, takes the last token.
<Tip>
One of `start_states` or `start_positions` should be not `None`. If both are set, `start_positions` overrides
`start_states`.
</Tip>
Returns:
`torch.FloatTensor`: The SQuAD 2.0 answer class.
|
forward
|
python
|
huggingface/transformers
|
src/transformers/models/xlnet/modeling_xlnet.py
|
https://github.com/huggingface/transformers/blob/master/src/transformers/models/xlnet/modeling_xlnet.py
|
Apache-2.0
|
def forward(
self, hidden_states: torch.FloatTensor, cls_index: Optional[torch.LongTensor] = None
) -> torch.FloatTensor:
"""
Compute a single vector summary of a sequence hidden states.
Args:
hidden_states (`torch.FloatTensor` of shape `[batch_size, seq_len, hidden_size]`):
The hidden states of the last layer.
cls_index (`torch.LongTensor` of shape `[batch_size]` or `[batch_size, ...]` where ... are optional leading dimensions of `hidden_states`, *optional*):
Used if `summary_type == "cls_index"` and takes the last token of the sequence as classification token.
Returns:
`torch.FloatTensor`: The summary of the sequence hidden states.
"""
if self.summary_type == "last":
output = hidden_states[:, -1]
elif self.summary_type == "first":
output = hidden_states[:, 0]
elif self.summary_type == "mean":
output = hidden_states.mean(dim=1)
elif self.summary_type == "cls_index":
if cls_index is None:
cls_index = torch.full_like(
hidden_states[..., :1, :],
hidden_states.shape[-2] - 1,
dtype=torch.long,
)
else:
cls_index = cls_index.unsqueeze(-1).unsqueeze(-1)
cls_index = cls_index.expand((-1,) * (cls_index.dim() - 1) + (hidden_states.size(-1),))
# shape of cls_index: (bsz, XX, 1, hidden_size) where XX are optional leading dim of hidden_states
output = hidden_states.gather(-2, cls_index).squeeze(-2) # shape (bsz, XX, hidden_size)
elif self.summary_type == "attn":
raise NotImplementedError
output = self.first_dropout(output)
output = self.summary(output)
output = self.activation(output)
output = self.last_dropout(output)
return output
|
Compute a single vector summary of a sequence hidden states.
Args:
hidden_states (`torch.FloatTensor` of shape `[batch_size, seq_len, hidden_size]`):
The hidden states of the last layer.
cls_index (`torch.LongTensor` of shape `[batch_size]` or `[batch_size, ...]` where ... are optional leading dimensions of `hidden_states`, *optional*):
Used if `summary_type == "cls_index"` and takes the last token of the sequence as classification token.
Returns:
`torch.FloatTensor`: The summary of the sequence hidden states.
|
forward
|
python
|
huggingface/transformers
|
src/transformers/models/xlnet/modeling_xlnet.py
|
https://github.com/huggingface/transformers/blob/master/src/transformers/models/xlnet/modeling_xlnet.py
|
Apache-2.0
|
def create_mask(self, qlen, mlen):
"""
Creates causal attention mask. Float mask where 1.0 indicates masked, 0.0 indicates not-masked.
Args:
qlen: Sequence length
mlen: Mask length
::
same_length=False: same_length=True: <mlen > < qlen > <mlen > < qlen >
^ [0 0 0 0 0 1 1 1 1] [0 0 0 0 0 1 1 1 1]
[0 0 0 0 0 0 1 1 1] [1 0 0 0 0 0 1 1 1]
qlen [0 0 0 0 0 0 0 1 1] [1 1 0 0 0 0 0 1 1]
[0 0 0 0 0 0 0 0 1] [1 1 1 0 0 0 0 0 1]
v [0 0 0 0 0 0 0 0 0] [1 1 1 1 0 0 0 0 0]
"""
mask = torch.ones((qlen, qlen + mlen), device=self.device)
if self.same_length:
mask_lo = mask[:, :qlen].tril(-1)
mask.triu_(mlen + 1)
mask[:, :qlen] += mask_lo
else:
mask.triu_(mlen + 1)
return mask
|
Creates causal attention mask. Float mask where 1.0 indicates masked, 0.0 indicates not-masked.
Args:
qlen: Sequence length
mlen: Mask length
::
same_length=False: same_length=True: <mlen > < qlen > <mlen > < qlen >
^ [0 0 0 0 0 1 1 1 1] [0 0 0 0 0 1 1 1 1]
[0 0 0 0 0 0 1 1 1] [1 0 0 0 0 0 1 1 1]
qlen [0 0 0 0 0 0 0 1 1] [1 1 0 0 0 0 0 1 1]
[0 0 0 0 0 0 0 0 1] [1 1 1 0 0 0 0 0 1]
v [0 0 0 0 0 0 0 0 0] [1 1 1 1 0 0 0 0 0]
|
create_mask
|
python
|
huggingface/transformers
|
src/transformers/models/xlnet/modeling_xlnet.py
|
https://github.com/huggingface/transformers/blob/master/src/transformers/models/xlnet/modeling_xlnet.py
|
Apache-2.0
|
def forward(
self,
input_ids: Optional[torch.Tensor] = None,
attention_mask: Optional[torch.Tensor] = None,
mems: Optional[torch.Tensor] = None,
perm_mask: Optional[torch.Tensor] = None,
target_mapping: Optional[torch.Tensor] = None,
token_type_ids: Optional[torch.Tensor] = None,
input_mask: Optional[torch.Tensor] = None,
head_mask: Optional[torch.Tensor] = None,
inputs_embeds: Optional[torch.Tensor] = None,
use_mems: Optional[bool] = None,
output_attentions: Optional[bool] = None,
output_hidden_states: Optional[bool] = None,
return_dict: Optional[bool] = None,
**kwargs, # delete after depreciation warning is removed
) -> Union[Tuple, XLNetModelOutput]:
r"""
mems (`List[torch.FloatTensor]` of length `config.n_layers`):
Contains pre-computed hidden-states (see `mems` output below) . Can be used to speed up sequential
decoding. The token ids which have their past given to this model should not be passed as `input_ids` as
they have already been computed.
`use_mems` has to be set to `True` to make use of `mems`.
perm_mask (`torch.FloatTensor` of shape `(batch_size, sequence_length, sequence_length)`, *optional*):
Mask to indicate the attention pattern for each input token with values selected in `[0, 1]`:
- if `perm_mask[k, i, j] = 0`, i attend to j in batch k;
- if `perm_mask[k, i, j] = 1`, i does not attend to j in batch k.
If not set, each token attends to all the others (full bidirectional attention). Only used during
pretraining (to define factorization order) or for sequential decoding (generation).
target_mapping (`torch.FloatTensor` of shape `(batch_size, num_predict, sequence_length)`, *optional*):
Mask to indicate the output tokens to use. If `target_mapping[k, i, j] = 1`, the i-th predict in batch k is
on the j-th token. Only used during pretraining for partial prediction or for sequential decoding
(generation).
input_mask (`torch.FloatTensor` of shape `batch_size, sequence_length`, *optional*):
Mask to avoid performing attention on padding token indices. Negative of `attention_mask`, i.e. with 0 for
real tokens and 1 for padding which is kept for compatibility with the original code base.
Mask values selected in `[0, 1]`:
- 1 for tokens that are **masked**,
- 0 for tokens that are **not masked**.
You can only uses one of `input_mask` and `attention_mask`.
use_mems (`bool`, *optional*):
Whether to use memory states to speed up sequential decoding. If set to `True`, the model will use the hidden
states from previous forward passes to compute attention, which can significantly improve performance for
sequential decoding tasks.
"""
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
output_hidden_states = (
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
)
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
if "use_cache" in kwargs:
warnings.warn(
"The `use_cache` argument is deprecated and will be removed in a future version, use `use_mems`"
" instead.",
FutureWarning,
)
use_mems = kwargs["use_cache"]
if self.training:
use_mems = use_mems if use_mems is not None else self.config.use_mems_train
else:
use_mems = use_mems if use_mems is not None else self.config.use_mems_eval
# the original code for XLNet uses shapes [len, bsz] with the batch dimension at the end
# but we want a unified interface in the library with the batch size on the first dimension
# so we move here the first dimension (batch) to the end
if input_ids is not None and inputs_embeds is not None:
raise ValueError("You cannot specify both input_ids and inputs_embeds at the same time")
elif input_ids is not None:
input_ids = input_ids.transpose(0, 1).contiguous()
qlen, bsz = input_ids.shape[0], input_ids.shape[1]
elif inputs_embeds is not None:
inputs_embeds = inputs_embeds.transpose(0, 1).contiguous()
qlen, bsz = inputs_embeds.shape[0], inputs_embeds.shape[1]
else:
raise ValueError("You have to specify either input_ids or inputs_embeds")
token_type_ids = token_type_ids.transpose(0, 1).contiguous() if token_type_ids is not None else None
input_mask = input_mask.transpose(0, 1).contiguous() if input_mask is not None else None
attention_mask = attention_mask.transpose(0, 1).contiguous() if attention_mask is not None else None
perm_mask = perm_mask.permute(1, 2, 0).contiguous() if perm_mask is not None else None
target_mapping = target_mapping.permute(1, 2, 0).contiguous() if target_mapping is not None else None
mlen = mems[0].shape[0] if mems is not None and mems[0] is not None else 0
klen = mlen + qlen
dtype_float = self.dtype
device = self.device
# Attention mask
# causal attention mask
if self.attn_type == "uni":
attn_mask = self.create_mask(qlen, mlen)
attn_mask = attn_mask[:, :, None, None]
elif self.attn_type == "bi":
attn_mask = None
else:
raise ValueError(f"Unsupported attention type: {self.attn_type}")
# data mask: input mask & perm mask
assert input_mask is None or attention_mask is None, "You can only use one of input_mask (uses 1 for padding) "
"or attention_mask (uses 0 for padding, added for compatibility with BERT). Please choose one."
if input_mask is None and attention_mask is not None:
input_mask = 1.0 - attention_mask
if input_mask is not None and perm_mask is not None:
data_mask = input_mask[None] + perm_mask
elif input_mask is not None and perm_mask is None:
data_mask = input_mask[None]
elif input_mask is None and perm_mask is not None:
data_mask = perm_mask
else:
data_mask = None
if data_mask is not None:
# all mems can be attended to
if mlen > 0:
mems_mask = torch.zeros([data_mask.shape[0], mlen, bsz]).to(data_mask)
data_mask = torch.cat([mems_mask, data_mask], dim=1)
if attn_mask is None:
attn_mask = data_mask[:, :, :, None]
else:
attn_mask += data_mask[:, :, :, None]
if attn_mask is not None:
attn_mask = (attn_mask > 0).to(dtype_float)
if attn_mask is not None:
non_tgt_mask = -torch.eye(qlen).to(attn_mask)
if mlen > 0:
non_tgt_mask = torch.cat([torch.zeros([qlen, mlen]).to(attn_mask), non_tgt_mask], dim=-1)
non_tgt_mask = ((attn_mask + non_tgt_mask[:, :, None, None]) > 0).to(attn_mask)
else:
non_tgt_mask = None
# Word embeddings and prepare h & g hidden states
if inputs_embeds is not None:
word_emb_k = inputs_embeds
else:
word_emb_k = self.word_embedding(input_ids)
output_h = self.dropout(word_emb_k)
if target_mapping is not None:
word_emb_q = self.mask_emb.expand(target_mapping.shape[0], bsz, -1)
# else: # We removed the inp_q input which was same as target mapping
# inp_q_ext = inp_q[:, :, None]
# word_emb_q = inp_q_ext * self.mask_emb + (1 - inp_q_ext) * word_emb_k
output_g = self.dropout(word_emb_q)
else:
output_g = None
# Segment embedding
if token_type_ids is not None:
# Convert `token_type_ids` to one-hot `seg_mat`
if mlen > 0:
mem_pad = torch.zeros([mlen, bsz], dtype=torch.long, device=device)
cat_ids = torch.cat([mem_pad, token_type_ids], dim=0)
else:
cat_ids = token_type_ids
# `1` indicates not in the same segment [qlen x klen x bsz]
seg_mat = (token_type_ids[:, None] != cat_ids[None, :]).long()
seg_mat = nn.functional.one_hot(seg_mat, num_classes=2).to(dtype_float)
else:
seg_mat = None
# Positional encoding
pos_emb = self.relative_positional_encoding(qlen, klen, bsz=bsz)
pos_emb = pos_emb.to(output_h.device)
pos_emb = self.dropout(pos_emb)
# Prepare head mask if needed
# 1.0 in head_mask indicate we keep the head
# attention_probs has shape bsz x n_heads x N x N
# input head_mask has shape [num_heads] or [num_hidden_layers x num_heads] (a head_mask for each layer)
# and head_mask is converted to shape [num_hidden_layers x qlen x klen x bsz x n_head]
if head_mask is not None:
if head_mask.dim() == 1:
head_mask = head_mask.unsqueeze(0).unsqueeze(0).unsqueeze(0).unsqueeze(0)
head_mask = head_mask.expand(self.n_layer, -1, -1, -1, -1)
elif head_mask.dim() == 2:
head_mask = head_mask.unsqueeze(1).unsqueeze(1).unsqueeze(1)
head_mask = head_mask.to(
dtype=next(self.parameters()).dtype
) # switch to float if need + fp16 compatibility
else:
head_mask = [None] * self.n_layer
new_mems = ()
if mems is None:
mems = [None] * len(self.layer)
attentions = [] if output_attentions else None
hidden_states = [] if output_hidden_states else None
for i, layer_module in enumerate(self.layer):
if use_mems:
# cache new mems
new_mems = new_mems + (self.cache_mem(output_h, mems[i]),)
if output_hidden_states:
hidden_states.append((output_h, output_g) if output_g is not None else output_h)
outputs = layer_module(
output_h,
output_g,
attn_mask_h=non_tgt_mask,
attn_mask_g=attn_mask,
r=pos_emb,
seg_mat=seg_mat,
mems=mems[i],
target_mapping=target_mapping,
head_mask=head_mask[i],
output_attentions=output_attentions,
)
output_h, output_g = outputs[:2]
if output_attentions:
attentions.append(outputs[2])
# Add last hidden state
if output_hidden_states:
hidden_states.append((output_h, output_g) if output_g is not None else output_h)
output = self.dropout(output_g if output_g is not None else output_h)
# Prepare outputs, we transpose back here to shape [bsz, len, hidden_dim] (cf. beginning of forward() method)
output = output.permute(1, 0, 2).contiguous()
if not use_mems:
new_mems = None
if output_hidden_states:
if output_g is not None:
hidden_states = tuple(h.permute(1, 0, 2).contiguous() for hs in hidden_states for h in hs)
else:
hidden_states = tuple(hs.permute(1, 0, 2).contiguous() for hs in hidden_states)
if output_attentions:
if target_mapping is not None:
# when target_mapping is provided, there are 2-tuple of attentions
attentions = tuple(
tuple(att_stream.permute(2, 3, 0, 1).contiguous() for att_stream in t) for t in attentions
)
else:
attentions = tuple(t.permute(2, 3, 0, 1).contiguous() for t in attentions)
if not return_dict:
return tuple(v for v in [output, new_mems, hidden_states, attentions] if v is not None)
return XLNetModelOutput(
last_hidden_state=output, mems=new_mems, hidden_states=hidden_states, attentions=attentions
)
|
mems (`List[torch.FloatTensor]` of length `config.n_layers`):
Contains pre-computed hidden-states (see `mems` output below) . Can be used to speed up sequential
decoding. The token ids which have their past given to this model should not be passed as `input_ids` as
they have already been computed.
`use_mems` has to be set to `True` to make use of `mems`.
perm_mask (`torch.FloatTensor` of shape `(batch_size, sequence_length, sequence_length)`, *optional*):
Mask to indicate the attention pattern for each input token with values selected in `[0, 1]`:
- if `perm_mask[k, i, j] = 0`, i attend to j in batch k;
- if `perm_mask[k, i, j] = 1`, i does not attend to j in batch k.
If not set, each token attends to all the others (full bidirectional attention). Only used during
pretraining (to define factorization order) or for sequential decoding (generation).
target_mapping (`torch.FloatTensor` of shape `(batch_size, num_predict, sequence_length)`, *optional*):
Mask to indicate the output tokens to use. If `target_mapping[k, i, j] = 1`, the i-th predict in batch k is
on the j-th token. Only used during pretraining for partial prediction or for sequential decoding
(generation).
input_mask (`torch.FloatTensor` of shape `batch_size, sequence_length`, *optional*):
Mask to avoid performing attention on padding token indices. Negative of `attention_mask`, i.e. with 0 for
real tokens and 1 for padding which is kept for compatibility with the original code base.
Mask values selected in `[0, 1]`:
- 1 for tokens that are **masked**,
- 0 for tokens that are **not masked**.
You can only uses one of `input_mask` and `attention_mask`.
use_mems (`bool`, *optional*):
Whether to use memory states to speed up sequential decoding. If set to `True`, the model will use the hidden
states from previous forward passes to compute attention, which can significantly improve performance for
sequential decoding tasks.
|
forward
|
python
|
huggingface/transformers
|
src/transformers/models/xlnet/modeling_xlnet.py
|
https://github.com/huggingface/transformers/blob/master/src/transformers/models/xlnet/modeling_xlnet.py
|
Apache-2.0
|
def forward(
self,
input_ids: Optional[torch.Tensor] = None,
attention_mask: Optional[torch.Tensor] = None,
mems: Optional[torch.Tensor] = None,
perm_mask: Optional[torch.Tensor] = None,
target_mapping: Optional[torch.Tensor] = None,
token_type_ids: Optional[torch.Tensor] = None,
input_mask: Optional[torch.Tensor] = None,
head_mask: Optional[torch.Tensor] = None,
inputs_embeds: Optional[torch.Tensor] = None,
labels: Optional[torch.Tensor] = None,
use_mems: Optional[bool] = None,
output_attentions: Optional[bool] = None,
output_hidden_states: Optional[bool] = None,
return_dict: Optional[bool] = None,
**kwargs, # delete when `use_cache` is removed in XLNetModel
) -> Union[Tuple, XLNetLMHeadModelOutput]:
r"""
mems (`List[torch.FloatTensor]` of length `config.n_layers`):
Contains pre-computed hidden-states (see `mems` output below) . Can be used to speed up sequential
decoding. The token ids which have their past given to this model should not be passed as `input_ids` as
they have already been computed.
`use_mems` has to be set to `True` to make use of `mems`.
perm_mask (`torch.FloatTensor` of shape `(batch_size, sequence_length, sequence_length)`, *optional*):
Mask to indicate the attention pattern for each input token with values selected in `[0, 1]`:
- if `perm_mask[k, i, j] = 0`, i attend to j in batch k;
- if `perm_mask[k, i, j] = 1`, i does not attend to j in batch k.
If not set, each token attends to all the others (full bidirectional attention). Only used during
pretraining (to define factorization order) or for sequential decoding (generation).
target_mapping (`torch.FloatTensor` of shape `(batch_size, num_predict, sequence_length)`, *optional*):
Mask to indicate the output tokens to use. If `target_mapping[k, i, j] = 1`, the i-th predict in batch k is
on the j-th token. Only used during pretraining for partial prediction or for sequential decoding
(generation).
input_mask (`torch.FloatTensor` of shape `batch_size, sequence_length`, *optional*):
Mask to avoid performing attention on padding token indices. Negative of `attention_mask`, i.e. with 0 for
real tokens and 1 for padding which is kept for compatibility with the original code base.
Mask values selected in `[0, 1]`:
- 1 for tokens that are **masked**,
- 0 for tokens that are **not masked**.
You can only uses one of `input_mask` and `attention_mask`.
labels (`torch.LongTensor` of shape `(batch_size, num_predict)`, *optional*):
Labels for masked language modeling. `num_predict` corresponds to `target_mapping.shape[1]`. If
`target_mapping` is `None`, then `num_predict` corresponds to `sequence_length`.
The labels should correspond to the masked input words that should be predicted and depends on
`target_mapping`. Note in order to perform standard auto-regressive language modeling a *<mask>* token has
to be added to the `input_ids` (see the `prepare_inputs_for_generation` function and examples below)
Indices are selected in `[-100, 0, ..., config.vocab_size]` All labels set to `-100` are ignored, the loss
is only computed for labels in `[0, ..., config.vocab_size]`
use_mems (`bool`, *optional*):
Whether to use memory states to speed up sequential decoding. If set to `True`, the model will use the hidden
states from previous forward passes to compute attention, which can significantly improve performance for
sequential decoding tasks.
Examples:
```python
>>> from transformers import AutoTokenizer, XLNetLMHeadModel
>>> import torch
>>> tokenizer = AutoTokenizer.from_pretrained("xlnet/xlnet-large-cased")
>>> model = XLNetLMHeadModel.from_pretrained("xlnet/xlnet-large-cased")
>>> # We show how to setup inputs to predict a next token using a bi-directional context.
>>> input_ids = torch.tensor(
... tokenizer.encode("Hello, my dog is very <mask>", add_special_tokens=False)
... ).unsqueeze(
... 0
... ) # We will predict the masked token
>>> perm_mask = torch.zeros((1, input_ids.shape[1], input_ids.shape[1]), dtype=torch.float)
>>> perm_mask[:, :, -1] = 1.0 # Previous tokens don't see last token
>>> target_mapping = torch.zeros(
... (1, 1, input_ids.shape[1]), dtype=torch.float
... ) # Shape [1, 1, seq_length] => let's predict one token
>>> target_mapping[
... 0, 0, -1
... ] = 1.0 # Our first (and only) prediction will be the last token of the sequence (the masked token)
>>> outputs = model(input_ids, perm_mask=perm_mask, target_mapping=target_mapping)
>>> next_token_logits = outputs[
... 0
... ] # Output has shape [target_mapping.size(0), target_mapping.size(1), config.vocab_size]
>>> # The same way can the XLNetLMHeadModel be used to be trained by standard auto-regressive language modeling.
>>> input_ids = torch.tensor(
... tokenizer.encode("Hello, my dog is very <mask>", add_special_tokens=False)
... ).unsqueeze(
... 0
... ) # We will predict the masked token
>>> labels = torch.tensor(tokenizer.encode("cute", add_special_tokens=False)).unsqueeze(0)
>>> assert labels.shape[0] == 1, "only one word will be predicted"
>>> perm_mask = torch.zeros((1, input_ids.shape[1], input_ids.shape[1]), dtype=torch.float)
>>> perm_mask[
... :, :, -1
... ] = 1.0 # Previous tokens don't see last token as is done in standard auto-regressive lm training
>>> target_mapping = torch.zeros(
... (1, 1, input_ids.shape[1]), dtype=torch.float
... ) # Shape [1, 1, seq_length] => let's predict one token
>>> target_mapping[
... 0, 0, -1
... ] = 1.0 # Our first (and only) prediction will be the last token of the sequence (the masked token)
>>> outputs = model(input_ids, perm_mask=perm_mask, target_mapping=target_mapping, labels=labels)
>>> loss = outputs.loss
>>> next_token_logits = (
... outputs.logits
... ) # Logits have shape [target_mapping.size(0), target_mapping.size(1), config.vocab_size]
```"""
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
transformer_outputs = self.transformer(
input_ids,
attention_mask=attention_mask,
mems=mems,
perm_mask=perm_mask,
target_mapping=target_mapping,
token_type_ids=token_type_ids,
input_mask=input_mask,
head_mask=head_mask,
inputs_embeds=inputs_embeds,
use_mems=use_mems,
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,
return_dict=return_dict,
**kwargs,
)
logits = self.lm_loss(transformer_outputs[0])
loss = None
if labels is not None:
# Flatten the tokens
loss_fct = CrossEntropyLoss()
loss = loss_fct(logits.view(-1, logits.size(-1)), labels.view(-1))
if not return_dict:
output = (logits,) + transformer_outputs[1:]
return ((loss,) + output) if loss is not None else output
return XLNetLMHeadModelOutput(
loss=loss,
logits=logits,
mems=transformer_outputs.mems,
hidden_states=transformer_outputs.hidden_states,
attentions=transformer_outputs.attentions,
)
|
mems (`List[torch.FloatTensor]` of length `config.n_layers`):
Contains pre-computed hidden-states (see `mems` output below) . Can be used to speed up sequential
decoding. The token ids which have their past given to this model should not be passed as `input_ids` as
they have already been computed.
`use_mems` has to be set to `True` to make use of `mems`.
perm_mask (`torch.FloatTensor` of shape `(batch_size, sequence_length, sequence_length)`, *optional*):
Mask to indicate the attention pattern for each input token with values selected in `[0, 1]`:
- if `perm_mask[k, i, j] = 0`, i attend to j in batch k;
- if `perm_mask[k, i, j] = 1`, i does not attend to j in batch k.
If not set, each token attends to all the others (full bidirectional attention). Only used during
pretraining (to define factorization order) or for sequential decoding (generation).
target_mapping (`torch.FloatTensor` of shape `(batch_size, num_predict, sequence_length)`, *optional*):
Mask to indicate the output tokens to use. If `target_mapping[k, i, j] = 1`, the i-th predict in batch k is
on the j-th token. Only used during pretraining for partial prediction or for sequential decoding
(generation).
input_mask (`torch.FloatTensor` of shape `batch_size, sequence_length`, *optional*):
Mask to avoid performing attention on padding token indices. Negative of `attention_mask`, i.e. with 0 for
real tokens and 1 for padding which is kept for compatibility with the original code base.
Mask values selected in `[0, 1]`:
- 1 for tokens that are **masked**,
- 0 for tokens that are **not masked**.
You can only uses one of `input_mask` and `attention_mask`.
labels (`torch.LongTensor` of shape `(batch_size, num_predict)`, *optional*):
Labels for masked language modeling. `num_predict` corresponds to `target_mapping.shape[1]`. If
`target_mapping` is `None`, then `num_predict` corresponds to `sequence_length`.
The labels should correspond to the masked input words that should be predicted and depends on
`target_mapping`. Note in order to perform standard auto-regressive language modeling a *<mask>* token has
to be added to the `input_ids` (see the `prepare_inputs_for_generation` function and examples below)
Indices are selected in `[-100, 0, ..., config.vocab_size]` All labels set to `-100` are ignored, the loss
is only computed for labels in `[0, ..., config.vocab_size]`
use_mems (`bool`, *optional*):
Whether to use memory states to speed up sequential decoding. If set to `True`, the model will use the hidden
states from previous forward passes to compute attention, which can significantly improve performance for
sequential decoding tasks.
Examples:
```python
>>> from transformers import AutoTokenizer, XLNetLMHeadModel
>>> import torch
>>> tokenizer = AutoTokenizer.from_pretrained("xlnet/xlnet-large-cased")
>>> model = XLNetLMHeadModel.from_pretrained("xlnet/xlnet-large-cased")
>>> # We show how to setup inputs to predict a next token using a bi-directional context.
>>> input_ids = torch.tensor(
... tokenizer.encode("Hello, my dog is very <mask>", add_special_tokens=False)
... ).unsqueeze(
... 0
... ) # We will predict the masked token
>>> perm_mask = torch.zeros((1, input_ids.shape[1], input_ids.shape[1]), dtype=torch.float)
>>> perm_mask[:, :, -1] = 1.0 # Previous tokens don't see last token
>>> target_mapping = torch.zeros(
... (1, 1, input_ids.shape[1]), dtype=torch.float
... ) # Shape [1, 1, seq_length] => let's predict one token
>>> target_mapping[
... 0, 0, -1
... ] = 1.0 # Our first (and only) prediction will be the last token of the sequence (the masked token)
>>> outputs = model(input_ids, perm_mask=perm_mask, target_mapping=target_mapping)
>>> next_token_logits = outputs[
... 0
... ] # Output has shape [target_mapping.size(0), target_mapping.size(1), config.vocab_size]
>>> # The same way can the XLNetLMHeadModel be used to be trained by standard auto-regressive language modeling.
>>> input_ids = torch.tensor(
... tokenizer.encode("Hello, my dog is very <mask>", add_special_tokens=False)
... ).unsqueeze(
... 0
... ) # We will predict the masked token
>>> labels = torch.tensor(tokenizer.encode("cute", add_special_tokens=False)).unsqueeze(0)
>>> assert labels.shape[0] == 1, "only one word will be predicted"
>>> perm_mask = torch.zeros((1, input_ids.shape[1], input_ids.shape[1]), dtype=torch.float)
>>> perm_mask[
... :, :, -1
... ] = 1.0 # Previous tokens don't see last token as is done in standard auto-regressive lm training
>>> target_mapping = torch.zeros(
... (1, 1, input_ids.shape[1]), dtype=torch.float
... ) # Shape [1, 1, seq_length] => let's predict one token
>>> target_mapping[
... 0, 0, -1
... ] = 1.0 # Our first (and only) prediction will be the last token of the sequence (the masked token)
>>> outputs = model(input_ids, perm_mask=perm_mask, target_mapping=target_mapping, labels=labels)
>>> loss = outputs.loss
>>> next_token_logits = (
... outputs.logits
... ) # Logits have shape [target_mapping.size(0), target_mapping.size(1), config.vocab_size]
```
|
forward
|
python
|
huggingface/transformers
|
src/transformers/models/xlnet/modeling_xlnet.py
|
https://github.com/huggingface/transformers/blob/master/src/transformers/models/xlnet/modeling_xlnet.py
|
Apache-2.0
|
def forward(
self,
input_ids: Optional[torch.Tensor] = None,
attention_mask: Optional[torch.Tensor] = None,
mems: Optional[torch.Tensor] = None,
perm_mask: Optional[torch.Tensor] = None,
target_mapping: Optional[torch.Tensor] = None,
token_type_ids: Optional[torch.Tensor] = None,
input_mask: Optional[torch.Tensor] = None,
head_mask: Optional[torch.Tensor] = None,
inputs_embeds: Optional[torch.Tensor] = None,
labels: Optional[torch.Tensor] = None,
use_mems: Optional[bool] = None,
output_attentions: Optional[bool] = None,
output_hidden_states: Optional[bool] = None,
return_dict: Optional[bool] = None,
**kwargs, # delete when `use_cache` is removed in XLNetModel
) -> Union[Tuple, XLNetForSequenceClassificationOutput]:
r"""
mems (`List[torch.FloatTensor]` of length `config.n_layers`):
Contains pre-computed hidden-states (see `mems` output below) . Can be used to speed up sequential
decoding. The token ids which have their past given to this model should not be passed as `input_ids` as
they have already been computed.
`use_mems` has to be set to `True` to make use of `mems`.
perm_mask (`torch.FloatTensor` of shape `(batch_size, sequence_length, sequence_length)`, *optional*):
Mask to indicate the attention pattern for each input token with values selected in `[0, 1]`:
- if `perm_mask[k, i, j] = 0`, i attend to j in batch k;
- if `perm_mask[k, i, j] = 1`, i does not attend to j in batch k.
If not set, each token attends to all the others (full bidirectional attention). Only used during
pretraining (to define factorization order) or for sequential decoding (generation).
target_mapping (`torch.FloatTensor` of shape `(batch_size, num_predict, sequence_length)`, *optional*):
Mask to indicate the output tokens to use. If `target_mapping[k, i, j] = 1`, the i-th predict in batch k is
on the j-th token. Only used during pretraining for partial prediction or for sequential decoding
(generation).
input_mask (`torch.FloatTensor` of shape `batch_size, sequence_length`, *optional*):
Mask to avoid performing attention on padding token indices. Negative of `attention_mask`, i.e. with 0 for
real tokens and 1 for padding which is kept for compatibility with the original code base.
Mask values selected in `[0, 1]`:
- 1 for tokens that are **masked**,
- 0 for tokens that are **not masked**.
You can only uses one of `input_mask` and `attention_mask`.
labels (`torch.LongTensor` of shape `(batch_size,)`, *optional*):
Labels for computing the sequence classification/regression loss. Indices should be in `[0, ...,
config.num_labels - 1]`. If `config.num_labels == 1` a regression loss is computed (Mean-Square loss), If
`config.num_labels > 1` a classification loss is computed (Cross-Entropy).
use_mems (`bool`, *optional*):
Whether to use memory states to speed up sequential decoding. If set to `True`, the model will use the hidden
states from previous forward passes to compute attention, which can significantly improve performance for
sequential decoding tasks.
"""
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
transformer_outputs = self.transformer(
input_ids,
attention_mask=attention_mask,
mems=mems,
perm_mask=perm_mask,
target_mapping=target_mapping,
token_type_ids=token_type_ids,
input_mask=input_mask,
head_mask=head_mask,
inputs_embeds=inputs_embeds,
use_mems=use_mems,
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,
return_dict=return_dict,
**kwargs,
)
output = transformer_outputs[0]
output = self.sequence_summary(output)
logits = self.logits_proj(output)
loss = None
if labels is not None:
if self.config.problem_type is None:
if self.num_labels == 1:
self.config.problem_type = "regression"
elif self.num_labels > 1 and (labels.dtype == torch.long or labels.dtype == torch.int):
self.config.problem_type = "single_label_classification"
else:
self.config.problem_type = "multi_label_classification"
if self.config.problem_type == "regression":
loss_fct = MSELoss()
if self.num_labels == 1:
loss = loss_fct(logits.squeeze(), labels.squeeze())
else:
loss = loss_fct(logits, labels)
elif self.config.problem_type == "single_label_classification":
loss_fct = CrossEntropyLoss()
loss = loss_fct(logits.view(-1, self.num_labels), labels.view(-1))
elif self.config.problem_type == "multi_label_classification":
loss_fct = BCEWithLogitsLoss()
loss = loss_fct(logits, labels)
if not return_dict:
output = (logits,) + transformer_outputs[1:]
return ((loss,) + output) if loss is not None else output
return XLNetForSequenceClassificationOutput(
loss=loss,
logits=logits,
mems=transformer_outputs.mems,
hidden_states=transformer_outputs.hidden_states,
attentions=transformer_outputs.attentions,
)
|
mems (`List[torch.FloatTensor]` of length `config.n_layers`):
Contains pre-computed hidden-states (see `mems` output below) . Can be used to speed up sequential
decoding. The token ids which have their past given to this model should not be passed as `input_ids` as
they have already been computed.
`use_mems` has to be set to `True` to make use of `mems`.
perm_mask (`torch.FloatTensor` of shape `(batch_size, sequence_length, sequence_length)`, *optional*):
Mask to indicate the attention pattern for each input token with values selected in `[0, 1]`:
- if `perm_mask[k, i, j] = 0`, i attend to j in batch k;
- if `perm_mask[k, i, j] = 1`, i does not attend to j in batch k.
If not set, each token attends to all the others (full bidirectional attention). Only used during
pretraining (to define factorization order) or for sequential decoding (generation).
target_mapping (`torch.FloatTensor` of shape `(batch_size, num_predict, sequence_length)`, *optional*):
Mask to indicate the output tokens to use. If `target_mapping[k, i, j] = 1`, the i-th predict in batch k is
on the j-th token. Only used during pretraining for partial prediction or for sequential decoding
(generation).
input_mask (`torch.FloatTensor` of shape `batch_size, sequence_length`, *optional*):
Mask to avoid performing attention on padding token indices. Negative of `attention_mask`, i.e. with 0 for
real tokens and 1 for padding which is kept for compatibility with the original code base.
Mask values selected in `[0, 1]`:
- 1 for tokens that are **masked**,
- 0 for tokens that are **not masked**.
You can only uses one of `input_mask` and `attention_mask`.
labels (`torch.LongTensor` of shape `(batch_size,)`, *optional*):
Labels for computing the sequence classification/regression loss. Indices should be in `[0, ...,
config.num_labels - 1]`. If `config.num_labels == 1` a regression loss is computed (Mean-Square loss), If
`config.num_labels > 1` a classification loss is computed (Cross-Entropy).
use_mems (`bool`, *optional*):
Whether to use memory states to speed up sequential decoding. If set to `True`, the model will use the hidden
states from previous forward passes to compute attention, which can significantly improve performance for
sequential decoding tasks.
|
forward
|
python
|
huggingface/transformers
|
src/transformers/models/xlnet/modeling_xlnet.py
|
https://github.com/huggingface/transformers/blob/master/src/transformers/models/xlnet/modeling_xlnet.py
|
Apache-2.0
|
def forward(
self,
input_ids: Optional[torch.Tensor] = None,
attention_mask: Optional[torch.Tensor] = None,
mems: Optional[torch.Tensor] = None,
perm_mask: Optional[torch.Tensor] = None,
target_mapping: Optional[torch.Tensor] = None,
token_type_ids: Optional[torch.Tensor] = None,
input_mask: Optional[torch.Tensor] = None,
head_mask: Optional[torch.Tensor] = None,
inputs_embeds: Optional[torch.Tensor] = None,
labels: Optional[torch.Tensor] = None,
use_mems: Optional[bool] = None,
output_attentions: Optional[bool] = None,
output_hidden_states: Optional[bool] = None,
return_dict: Optional[bool] = None,
**kwargs, # delete when `use_cache` is removed in XLNetModel
) -> Union[Tuple, XLNetForTokenClassificationOutput]:
r"""
mems (`List[torch.FloatTensor]` of length `config.n_layers`):
Contains pre-computed hidden-states (see `mems` output below) . Can be used to speed up sequential
decoding. The token ids which have their past given to this model should not be passed as `input_ids` as
they have already been computed.
`use_mems` has to be set to `True` to make use of `mems`.
perm_mask (`torch.FloatTensor` of shape `(batch_size, sequence_length, sequence_length)`, *optional*):
Mask to indicate the attention pattern for each input token with values selected in `[0, 1]`:
- if `perm_mask[k, i, j] = 0`, i attend to j in batch k;
- if `perm_mask[k, i, j] = 1`, i does not attend to j in batch k.
If not set, each token attends to all the others (full bidirectional attention). Only used during
pretraining (to define factorization order) or for sequential decoding (generation).
target_mapping (`torch.FloatTensor` of shape `(batch_size, num_predict, sequence_length)`, *optional*):
Mask to indicate the output tokens to use. If `target_mapping[k, i, j] = 1`, the i-th predict in batch k is
on the j-th token. Only used during pretraining for partial prediction or for sequential decoding
(generation).
input_mask (`torch.FloatTensor` of shape `batch_size, sequence_length`, *optional*):
Mask to avoid performing attention on padding token indices. Negative of `attention_mask`, i.e. with 0 for
real tokens and 1 for padding which is kept for compatibility with the original code base.
Mask values selected in `[0, 1]`:
- 1 for tokens that are **masked**,
- 0 for tokens that are **not masked**.
You can only uses one of `input_mask` and `attention_mask`.
labels (`torch.LongTensor` of shape `(batch_size,)`, *optional*):
Labels for computing the multiple choice classification loss. Indices should be in `[0, ..., num_choices]`
where *num_choices* is the size of the second dimension of the input tensors. (see *input_ids* above)
use_mems (`bool`, *optional*):
Whether to use memory states to speed up sequential decoding. If set to `True`, the model will use the hidden
states from previous forward passes to compute attention, which can significantly improve performance for
sequential decoding tasks.emory states to speed up sequential decoding. If set to `True`, the model will use the hidden
states from previous forward passes to compute attention, which can significantly improve performance for
sequential decoding tasks.
"""
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
outputs = self.transformer(
input_ids,
attention_mask=attention_mask,
mems=mems,
perm_mask=perm_mask,
target_mapping=target_mapping,
token_type_ids=token_type_ids,
input_mask=input_mask,
head_mask=head_mask,
inputs_embeds=inputs_embeds,
use_mems=use_mems,
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,
return_dict=return_dict,
)
sequence_output = outputs[0]
logits = self.classifier(sequence_output)
loss = None
if labels is not None:
loss_fct = CrossEntropyLoss()
loss = loss_fct(logits.view(-1, self.num_labels), labels.view(-1))
if not return_dict:
output = (logits,) + outputs[1:]
return ((loss,) + output) if loss is not None else output
return XLNetForTokenClassificationOutput(
loss=loss,
logits=logits,
mems=outputs.mems,
hidden_states=outputs.hidden_states,
attentions=outputs.attentions,
)
|
mems (`List[torch.FloatTensor]` of length `config.n_layers`):
Contains pre-computed hidden-states (see `mems` output below) . Can be used to speed up sequential
decoding. The token ids which have their past given to this model should not be passed as `input_ids` as
they have already been computed.
`use_mems` has to be set to `True` to make use of `mems`.
perm_mask (`torch.FloatTensor` of shape `(batch_size, sequence_length, sequence_length)`, *optional*):
Mask to indicate the attention pattern for each input token with values selected in `[0, 1]`:
- if `perm_mask[k, i, j] = 0`, i attend to j in batch k;
- if `perm_mask[k, i, j] = 1`, i does not attend to j in batch k.
If not set, each token attends to all the others (full bidirectional attention). Only used during
pretraining (to define factorization order) or for sequential decoding (generation).
target_mapping (`torch.FloatTensor` of shape `(batch_size, num_predict, sequence_length)`, *optional*):
Mask to indicate the output tokens to use. If `target_mapping[k, i, j] = 1`, the i-th predict in batch k is
on the j-th token. Only used during pretraining for partial prediction or for sequential decoding
(generation).
input_mask (`torch.FloatTensor` of shape `batch_size, sequence_length`, *optional*):
Mask to avoid performing attention on padding token indices. Negative of `attention_mask`, i.e. with 0 for
real tokens and 1 for padding which is kept for compatibility with the original code base.
Mask values selected in `[0, 1]`:
- 1 for tokens that are **masked**,
- 0 for tokens that are **not masked**.
You can only uses one of `input_mask` and `attention_mask`.
labels (`torch.LongTensor` of shape `(batch_size,)`, *optional*):
Labels for computing the multiple choice classification loss. Indices should be in `[0, ..., num_choices]`
where *num_choices* is the size of the second dimension of the input tensors. (see *input_ids* above)
use_mems (`bool`, *optional*):
Whether to use memory states to speed up sequential decoding. If set to `True`, the model will use the hidden
states from previous forward passes to compute attention, which can significantly improve performance for
sequential decoding tasks.emory states to speed up sequential decoding. If set to `True`, the model will use the hidden
states from previous forward passes to compute attention, which can significantly improve performance for
sequential decoding tasks.
|
forward
|
python
|
huggingface/transformers
|
src/transformers/models/xlnet/modeling_xlnet.py
|
https://github.com/huggingface/transformers/blob/master/src/transformers/models/xlnet/modeling_xlnet.py
|
Apache-2.0
|
def forward(
self,
input_ids: Optional[torch.Tensor] = None,
token_type_ids: Optional[torch.Tensor] = None,
input_mask: Optional[torch.Tensor] = None,
attention_mask: Optional[torch.Tensor] = None,
mems: Optional[torch.Tensor] = None,
perm_mask: Optional[torch.Tensor] = None,
target_mapping: Optional[torch.Tensor] = None,
head_mask: Optional[torch.Tensor] = None,
inputs_embeds: Optional[torch.Tensor] = None,
labels: Optional[torch.Tensor] = None,
use_mems: Optional[bool] = None,
output_attentions: Optional[bool] = None,
output_hidden_states: Optional[bool] = None,
return_dict: Optional[bool] = None,
**kwargs, # delete when `use_cache` is removed in XLNetModel
) -> Union[Tuple, XLNetForMultipleChoiceOutput]:
r"""
input_ids (`torch.LongTensor` of shape `(batch_size, num_choices, sequence_length)`):
Indices of input sequence tokens in the vocabulary.
Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and
[`PreTrainedTokenizer.__call__`] for details.
[What are input IDs?](../glossary#input-ids)
token_type_ids (`torch.LongTensor` of shape `(batch_size, num_choices, sequence_length)`, *optional*):
Segment token indices to indicate first and second portions of the inputs. Indices are selected in `[0,
1]`:
- 0 corresponds to a *sentence A* token,
- 1 corresponds to a *sentence B* token.
[What are token type IDs?](../glossary#token-type-ids)
input_mask (`torch.FloatTensor` of shape `batch_size, num_choices, sequence_length`, *optional*):
Mask to avoid performing attention on padding token indices. Negative of `attention_mask`, i.e. with 0 for
real tokens and 1 for padding which is kept for compatibility with the original code base.
Mask values selected in `[0, 1]`:
- 1 for tokens that are **masked**,
- 0 for tokens that are **not masked**.
You can only uses one of `input_mask` and `attention_mask`.
mems (`List[torch.FloatTensor]` of length `config.n_layers`):
Contains pre-computed hidden-states (see `mems` output below) . Can be used to speed up sequential
decoding. The token ids which have their past given to this model should not be passed as `input_ids` as
they have already been computed.
`use_mems` has to be set to `True` to make use of `mems`.
perm_mask (`torch.FloatTensor` of shape `(batch_size, sequence_length, sequence_length)`, *optional*):
Mask to indicate the attention pattern for each input token with values selected in `[0, 1]`:
- if `perm_mask[k, i, j] = 0`, i attend to j in batch k;
- if `perm_mask[k, i, j] = 1`, i does not attend to j in batch k.
If not set, each token attends to all the others (full bidirectional attention). Only used during
pretraining (to define factorization order) or for sequential decoding (generation).
target_mapping (`torch.FloatTensor` of shape `(batch_size, num_predict, sequence_length)`, *optional*):
Mask to indicate the output tokens to use. If `target_mapping[k, i, j] = 1`, the i-th predict in batch k is
on the j-th token. Only used during pretraining for partial prediction or for sequential decoding
(generation).
inputs_embeds (`torch.FloatTensor` of shape `(batch_size, num_choices, sequence_length, hidden_size)`, *optional*):
Optionally, instead of passing `input_ids` you can choose to directly pass an embedded representation. This
is useful if you want more control over how to convert `input_ids` indices into associated vectors than the
model's internal embedding lookup matrix.
labels (`torch.LongTensor` of shape `(batch_size,)`, *optional*):
Labels for computing the multiple choice classification loss. Indices should be in `[0, ...,
use_mems (`bool`, *optional*):
Whether to use memory states to speed up sequential decoding. If set to `True`, the model will use the hidden
states from previous forward passes to compute attention, which can significantly improve performance for
sequential decoding tasks.
"""
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
num_choices = input_ids.shape[1] if input_ids is not None else inputs_embeds.shape[1]
flat_input_ids = input_ids.view(-1, input_ids.size(-1)) if input_ids is not None else None
flat_token_type_ids = token_type_ids.view(-1, token_type_ids.size(-1)) if token_type_ids is not None else None
flat_attention_mask = attention_mask.view(-1, attention_mask.size(-1)) if attention_mask is not None else None
flat_input_mask = input_mask.view(-1, input_mask.size(-1)) if input_mask is not None else None
flat_inputs_embeds = (
inputs_embeds.view(-1, inputs_embeds.size(-2), inputs_embeds.size(-1))
if inputs_embeds is not None
else None
)
transformer_outputs = self.transformer(
flat_input_ids,
token_type_ids=flat_token_type_ids,
input_mask=flat_input_mask,
attention_mask=flat_attention_mask,
mems=mems,
perm_mask=perm_mask,
target_mapping=target_mapping,
head_mask=head_mask,
inputs_embeds=flat_inputs_embeds,
use_mems=use_mems,
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,
return_dict=return_dict,
**kwargs,
)
output = transformer_outputs[0]
output = self.sequence_summary(output)
logits = self.logits_proj(output)
reshaped_logits = logits.view(-1, num_choices)
loss = None
if labels is not None:
loss_fct = CrossEntropyLoss()
loss = loss_fct(reshaped_logits, labels.view(-1))
if not return_dict:
output = (reshaped_logits,) + transformer_outputs[1:]
return ((loss,) + output) if loss is not None else output
return XLNetForMultipleChoiceOutput(
loss=loss,
logits=reshaped_logits,
mems=transformer_outputs.mems,
hidden_states=transformer_outputs.hidden_states,
attentions=transformer_outputs.attentions,
)
|
input_ids (`torch.LongTensor` of shape `(batch_size, num_choices, sequence_length)`):
Indices of input sequence tokens in the vocabulary.
Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and
[`PreTrainedTokenizer.__call__`] for details.
[What are input IDs?](../glossary#input-ids)
token_type_ids (`torch.LongTensor` of shape `(batch_size, num_choices, sequence_length)`, *optional*):
Segment token indices to indicate first and second portions of the inputs. Indices are selected in `[0,
1]`:
- 0 corresponds to a *sentence A* token,
- 1 corresponds to a *sentence B* token.
[What are token type IDs?](../glossary#token-type-ids)
input_mask (`torch.FloatTensor` of shape `batch_size, num_choices, sequence_length`, *optional*):
Mask to avoid performing attention on padding token indices. Negative of `attention_mask`, i.e. with 0 for
real tokens and 1 for padding which is kept for compatibility with the original code base.
Mask values selected in `[0, 1]`:
- 1 for tokens that are **masked**,
- 0 for tokens that are **not masked**.
You can only uses one of `input_mask` and `attention_mask`.
mems (`List[torch.FloatTensor]` of length `config.n_layers`):
Contains pre-computed hidden-states (see `mems` output below) . Can be used to speed up sequential
decoding. The token ids which have their past given to this model should not be passed as `input_ids` as
they have already been computed.
`use_mems` has to be set to `True` to make use of `mems`.
perm_mask (`torch.FloatTensor` of shape `(batch_size, sequence_length, sequence_length)`, *optional*):
Mask to indicate the attention pattern for each input token with values selected in `[0, 1]`:
- if `perm_mask[k, i, j] = 0`, i attend to j in batch k;
- if `perm_mask[k, i, j] = 1`, i does not attend to j in batch k.
If not set, each token attends to all the others (full bidirectional attention). Only used during
pretraining (to define factorization order) or for sequential decoding (generation).
target_mapping (`torch.FloatTensor` of shape `(batch_size, num_predict, sequence_length)`, *optional*):
Mask to indicate the output tokens to use. If `target_mapping[k, i, j] = 1`, the i-th predict in batch k is
on the j-th token. Only used during pretraining for partial prediction or for sequential decoding
(generation).
inputs_embeds (`torch.FloatTensor` of shape `(batch_size, num_choices, sequence_length, hidden_size)`, *optional*):
Optionally, instead of passing `input_ids` you can choose to directly pass an embedded representation. This
is useful if you want more control over how to convert `input_ids` indices into associated vectors than the
model's internal embedding lookup matrix.
labels (`torch.LongTensor` of shape `(batch_size,)`, *optional*):
Labels for computing the multiple choice classification loss. Indices should be in `[0, ...,
use_mems (`bool`, *optional*):
Whether to use memory states to speed up sequential decoding. If set to `True`, the model will use the hidden
states from previous forward passes to compute attention, which can significantly improve performance for
sequential decoding tasks.
|
forward
|
python
|
huggingface/transformers
|
src/transformers/models/xlnet/modeling_xlnet.py
|
https://github.com/huggingface/transformers/blob/master/src/transformers/models/xlnet/modeling_xlnet.py
|
Apache-2.0
|
def forward(
self,
input_ids: Optional[torch.Tensor] = None,
attention_mask: Optional[torch.Tensor] = None,
mems: Optional[torch.Tensor] = None,
perm_mask: Optional[torch.Tensor] = None,
target_mapping: Optional[torch.Tensor] = None,
token_type_ids: Optional[torch.Tensor] = None,
input_mask: Optional[torch.Tensor] = None,
head_mask: Optional[torch.Tensor] = None,
inputs_embeds: Optional[torch.Tensor] = None,
start_positions: Optional[torch.Tensor] = None,
end_positions: Optional[torch.Tensor] = None,
use_mems: Optional[bool] = None,
output_attentions: Optional[bool] = None,
output_hidden_states: Optional[bool] = None,
return_dict: Optional[bool] = None,
**kwargs, # delete when `use_cache` is removed in XLNetModel
) -> Union[Tuple, XLNetForQuestionAnsweringSimpleOutput]:
r"""
mems (`List[torch.FloatTensor]` of length `config.n_layers`):
Contains pre-computed hidden-states (see `mems` output below) . Can be used to speed up sequential
decoding. The token ids which have their past given to this model should not be passed as `input_ids` as
they have already been computed.
`use_mems` has to be set to `True` to make use of `mems`.
perm_mask (`torch.FloatTensor` of shape `(batch_size, sequence_length, sequence_length)`, *optional*):
Mask to indicate the attention pattern for each input token with values selected in `[0, 1]`:
- if `perm_mask[k, i, j] = 0`, i attend to j in batch k;
- if `perm_mask[k, i, j] = 1`, i does not attend to j in batch k.
If not set, each token attends to all the others (full bidirectional attention). Only used during
pretraining (to define factorization order) or for sequential decoding (generation).
target_mapping (`torch.FloatTensor` of shape `(batch_size, num_predict, sequence_length)`, *optional*):
Mask to indicate the output tokens to use. If `target_mapping[k, i, j] = 1`, the i-th predict in batch k is
on the j-th token. Only used during pretraining for partial prediction or for sequential decoding
(generation).
input_mask (`torch.FloatTensor` of shape `batch_size, sequence_length`, *optional*):
Mask to avoid performing attention on padding token indices. Negative of `attention_mask`, i.e. with 0 for
real tokens and 1 for padding which is kept for compatibility with the original code base.
Mask values selected in `[0, 1]`:
- 1 for tokens that are **masked**,
- 0 for tokens that are **not masked**.
You can only uses one of `input_mask` and `attention_mask`.
use_mems (`bool`, *optional*):
Whether to use memory states to speed up sequential decoding. If set to `True`, the model will use the hidden
states from previous forward passes to compute attention, which can significantly improve performance for
sequential decoding tasks.
"""
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
outputs = self.transformer(
input_ids,
attention_mask=attention_mask,
mems=mems,
perm_mask=perm_mask,
target_mapping=target_mapping,
token_type_ids=token_type_ids,
input_mask=input_mask,
head_mask=head_mask,
inputs_embeds=inputs_embeds,
use_mems=use_mems,
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,
return_dict=return_dict,
**kwargs,
)
sequence_output = outputs[0]
logits = self.qa_outputs(sequence_output)
start_logits, end_logits = logits.split(1, dim=-1)
start_logits = start_logits.squeeze(-1).contiguous()
end_logits = end_logits.squeeze(-1).contiguous()
total_loss = None
if start_positions is not None and end_positions is not None:
# If we are on multi-GPU, split add a dimension
if len(start_positions.size()) > 1:
start_positions = start_positions.squeeze(-1)
if len(end_positions.size()) > 1:
end_positions = end_positions.squeeze(-1)
# sometimes the start/end positions are outside our model inputs, we ignore these terms
ignored_index = start_logits.size(1)
start_positions = start_positions.clamp(0, ignored_index)
end_positions = end_positions.clamp(0, ignored_index)
loss_fct = CrossEntropyLoss(ignore_index=ignored_index)
start_loss = loss_fct(start_logits, start_positions)
end_loss = loss_fct(end_logits, end_positions)
total_loss = (start_loss + end_loss) / 2
if not return_dict:
output = (start_logits, end_logits) + outputs[1:]
return ((total_loss,) + output) if total_loss is not None else output
return XLNetForQuestionAnsweringSimpleOutput(
loss=total_loss,
start_logits=start_logits,
end_logits=end_logits,
mems=outputs.mems,
hidden_states=outputs.hidden_states,
attentions=outputs.attentions,
)
|
mems (`List[torch.FloatTensor]` of length `config.n_layers`):
Contains pre-computed hidden-states (see `mems` output below) . Can be used to speed up sequential
decoding. The token ids which have their past given to this model should not be passed as `input_ids` as
they have already been computed.
`use_mems` has to be set to `True` to make use of `mems`.
perm_mask (`torch.FloatTensor` of shape `(batch_size, sequence_length, sequence_length)`, *optional*):
Mask to indicate the attention pattern for each input token with values selected in `[0, 1]`:
- if `perm_mask[k, i, j] = 0`, i attend to j in batch k;
- if `perm_mask[k, i, j] = 1`, i does not attend to j in batch k.
If not set, each token attends to all the others (full bidirectional attention). Only used during
pretraining (to define factorization order) or for sequential decoding (generation).
target_mapping (`torch.FloatTensor` of shape `(batch_size, num_predict, sequence_length)`, *optional*):
Mask to indicate the output tokens to use. If `target_mapping[k, i, j] = 1`, the i-th predict in batch k is
on the j-th token. Only used during pretraining for partial prediction or for sequential decoding
(generation).
input_mask (`torch.FloatTensor` of shape `batch_size, sequence_length`, *optional*):
Mask to avoid performing attention on padding token indices. Negative of `attention_mask`, i.e. with 0 for
real tokens and 1 for padding which is kept for compatibility with the original code base.
Mask values selected in `[0, 1]`:
- 1 for tokens that are **masked**,
- 0 for tokens that are **not masked**.
You can only uses one of `input_mask` and `attention_mask`.
use_mems (`bool`, *optional*):
Whether to use memory states to speed up sequential decoding. If set to `True`, the model will use the hidden
states from previous forward passes to compute attention, which can significantly improve performance for
sequential decoding tasks.
|
forward
|
python
|
huggingface/transformers
|
src/transformers/models/xlnet/modeling_xlnet.py
|
https://github.com/huggingface/transformers/blob/master/src/transformers/models/xlnet/modeling_xlnet.py
|
Apache-2.0
|
def forward(
self,
input_ids: Optional[torch.Tensor] = None,
attention_mask: Optional[torch.Tensor] = None,
mems: Optional[torch.Tensor] = None,
perm_mask: Optional[torch.Tensor] = None,
target_mapping: Optional[torch.Tensor] = None,
token_type_ids: Optional[torch.Tensor] = None,
input_mask: Optional[torch.Tensor] = None,
head_mask: Optional[torch.Tensor] = None,
inputs_embeds: Optional[torch.Tensor] = None,
start_positions: Optional[torch.Tensor] = None,
end_positions: Optional[torch.Tensor] = None,
is_impossible: Optional[torch.Tensor] = None,
cls_index: Optional[torch.Tensor] = None,
p_mask: Optional[torch.Tensor] = None,
use_mems: Optional[bool] = None,
output_attentions: Optional[bool] = None,
output_hidden_states: Optional[bool] = None,
return_dict: Optional[bool] = None,
**kwargs, # delete when `use_cache` is removed in XLNetModel
) -> Union[Tuple, XLNetForQuestionAnsweringOutput]:
r"""
mems (`List[torch.FloatTensor]` of length `config.n_layers`):
Contains pre-computed hidden-states (see `mems` output below) . Can be used to speed up sequential
decoding. The token ids which have their past given to this model should not be passed as `input_ids` as
they have already been computed.
`use_mems` has to be set to `True` to make use of `mems`.
perm_mask (`torch.FloatTensor` of shape `(batch_size, sequence_length, sequence_length)`, *optional*):
Mask to indicate the attention pattern for each input token with values selected in `[0, 1]`:
- if `perm_mask[k, i, j] = 0`, i attend to j in batch k;
- if `perm_mask[k, i, j] = 1`, i does not attend to j in batch k.
If not set, each token attends to all the others (full bidirectional attention). Only used during
pretraining (to define factorization order) or for sequential decoding (generation).
target_mapping (`torch.FloatTensor` of shape `(batch_size, num_predict, sequence_length)`, *optional*):
Mask to indicate the output tokens to use. If `target_mapping[k, i, j] = 1`, the i-th predict in batch k is
on the j-th token. Only used during pretraining for partial prediction or for sequential decoding
(generation).
input_mask (`torch.FloatTensor` of shape `batch_size, sequence_length`, *optional*):
Mask to avoid performing attention on padding token indices. Negative of `attention_mask`, i.e. with 0 for
real tokens and 1 for padding which is kept for compatibility with the original code base.
Mask values selected in `[0, 1]`:
- 1 for tokens that are **masked**,
- 0 for tokens that are **not masked**.
You can only uses one of `input_mask` and `attention_mask`.
is_impossible (`torch.LongTensor` of shape `(batch_size,)`, *optional*):
Labels whether a question has an answer or no answer (SQuAD 2.0)
cls_index (`torch.LongTensor` of shape `(batch_size,)`, *optional*):
Labels for position (index) of the classification token to use as input for computing plausibility of the
answer.
p_mask (`torch.FloatTensor` of shape `(batch_size, sequence_length)`, *optional*):
Optional mask of tokens which can't be in answers (e.g. [CLS], [PAD], ...). 1.0 means token should be
masked. 0.0 mean token is not masked.
use_mems (`bool`, *optional*):
Whether to use memory states to speed up sequential decoding. If set to `True`, the model will use the hidden
states from previous forward passes to compute attention, which can significantly improve performance for
sequential decoding tasks.
Example:
```python
>>> from transformers import AutoTokenizer, XLNetForQuestionAnswering
>>> import torch
>>> tokenizer = AutoTokenizer.from_pretrained("xlnet/xlnet-base-cased")
>>> model = XLNetForQuestionAnswering.from_pretrained("xlnet/xlnet-base-cased")
>>> input_ids = torch.tensor(tokenizer.encode("Hello, my dog is cute", add_special_tokens=True)).unsqueeze(
... 0
... ) # Batch size 1
>>> start_positions = torch.tensor([1])
>>> end_positions = torch.tensor([3])
>>> outputs = model(input_ids, start_positions=start_positions, end_positions=end_positions)
>>> loss = outputs.loss
```"""
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
transformer_outputs = self.transformer(
input_ids,
attention_mask=attention_mask,
mems=mems,
perm_mask=perm_mask,
target_mapping=target_mapping,
token_type_ids=token_type_ids,
input_mask=input_mask,
head_mask=head_mask,
inputs_embeds=inputs_embeds,
use_mems=use_mems,
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,
return_dict=return_dict,
**kwargs,
)
hidden_states = transformer_outputs[0]
start_logits = self.start_logits(hidden_states, p_mask=p_mask)
outputs = transformer_outputs[1:] # Keep mems, hidden states, attentions if there are in it
if start_positions is not None and end_positions is not None:
# If we are on multi-GPU, let's remove the dimension added by batch splitting
for x in (start_positions, end_positions, cls_index, is_impossible):
if x is not None and x.dim() > 1:
x.squeeze_(-1)
# during training, compute the end logits based on the ground truth of the start position
end_logits = self.end_logits(hidden_states, start_positions=start_positions, p_mask=p_mask)
loss_fct = CrossEntropyLoss()
start_loss = loss_fct(start_logits, start_positions)
end_loss = loss_fct(end_logits, end_positions)
total_loss = (start_loss + end_loss) / 2
if cls_index is not None and is_impossible is not None:
# Predict answerability from the representation of CLS and START
cls_logits = self.answer_class(hidden_states, start_positions=start_positions, cls_index=cls_index)
loss_fct_cls = nn.BCEWithLogitsLoss()
cls_loss = loss_fct_cls(cls_logits, is_impossible)
# note(zhiliny): by default multiply the loss by 0.5 so that the scale is comparable to start_loss and end_loss
total_loss += cls_loss * 0.5
if not return_dict:
return (total_loss,) + transformer_outputs[1:]
else:
return XLNetForQuestionAnsweringOutput(
loss=total_loss,
mems=transformer_outputs.mems,
hidden_states=transformer_outputs.hidden_states,
attentions=transformer_outputs.attentions,
)
else:
# during inference, compute the end logits based on beam search
bsz, slen, hsz = hidden_states.size()
start_log_probs = nn.functional.softmax(start_logits, dim=-1) # shape (bsz, slen)
start_top_log_probs, start_top_index = torch.topk(
start_log_probs, self.start_n_top, dim=-1
) # shape (bsz, start_n_top)
start_top_index_exp = start_top_index.unsqueeze(-1).expand(-1, -1, hsz) # shape (bsz, start_n_top, hsz)
start_states = torch.gather(hidden_states, -2, start_top_index_exp) # shape (bsz, start_n_top, hsz)
start_states = start_states.unsqueeze(1).expand(-1, slen, -1, -1) # shape (bsz, slen, start_n_top, hsz)
hidden_states_expanded = hidden_states.unsqueeze(2).expand_as(
start_states
) # shape (bsz, slen, start_n_top, hsz)
p_mask = p_mask.unsqueeze(-1) if p_mask is not None else None
end_logits = self.end_logits(hidden_states_expanded, start_states=start_states, p_mask=p_mask)
end_log_probs = nn.functional.softmax(end_logits, dim=1) # shape (bsz, slen, start_n_top)
end_top_log_probs, end_top_index = torch.topk(
end_log_probs, self.end_n_top, dim=1
) # shape (bsz, end_n_top, start_n_top)
end_top_log_probs = end_top_log_probs.view(-1, self.start_n_top * self.end_n_top)
end_top_index = end_top_index.view(-1, self.start_n_top * self.end_n_top)
start_states = torch.einsum(
"blh,bl->bh", hidden_states, start_log_probs
) # get the representation of START as weighted sum of hidden states
cls_logits = self.answer_class(
hidden_states, start_states=start_states, cls_index=cls_index
) # Shape (batch size,): one single `cls_logits` for each sample
if not return_dict:
outputs = (start_top_log_probs, start_top_index, end_top_log_probs, end_top_index, cls_logits)
return outputs + transformer_outputs[1:]
else:
return XLNetForQuestionAnsweringOutput(
start_top_log_probs=start_top_log_probs,
start_top_index=start_top_index,
end_top_log_probs=end_top_log_probs,
end_top_index=end_top_index,
cls_logits=cls_logits,
mems=transformer_outputs.mems,
hidden_states=transformer_outputs.hidden_states,
attentions=transformer_outputs.attentions,
)
|
mems (`List[torch.FloatTensor]` of length `config.n_layers`):
Contains pre-computed hidden-states (see `mems` output below) . Can be used to speed up sequential
decoding. The token ids which have their past given to this model should not be passed as `input_ids` as
they have already been computed.
`use_mems` has to be set to `True` to make use of `mems`.
perm_mask (`torch.FloatTensor` of shape `(batch_size, sequence_length, sequence_length)`, *optional*):
Mask to indicate the attention pattern for each input token with values selected in `[0, 1]`:
- if `perm_mask[k, i, j] = 0`, i attend to j in batch k;
- if `perm_mask[k, i, j] = 1`, i does not attend to j in batch k.
If not set, each token attends to all the others (full bidirectional attention). Only used during
pretraining (to define factorization order) or for sequential decoding (generation).
target_mapping (`torch.FloatTensor` of shape `(batch_size, num_predict, sequence_length)`, *optional*):
Mask to indicate the output tokens to use. If `target_mapping[k, i, j] = 1`, the i-th predict in batch k is
on the j-th token. Only used during pretraining for partial prediction or for sequential decoding
(generation).
input_mask (`torch.FloatTensor` of shape `batch_size, sequence_length`, *optional*):
Mask to avoid performing attention on padding token indices. Negative of `attention_mask`, i.e. with 0 for
real tokens and 1 for padding which is kept for compatibility with the original code base.
Mask values selected in `[0, 1]`:
- 1 for tokens that are **masked**,
- 0 for tokens that are **not masked**.
You can only uses one of `input_mask` and `attention_mask`.
is_impossible (`torch.LongTensor` of shape `(batch_size,)`, *optional*):
Labels whether a question has an answer or no answer (SQuAD 2.0)
cls_index (`torch.LongTensor` of shape `(batch_size,)`, *optional*):
Labels for position (index) of the classification token to use as input for computing plausibility of the
answer.
p_mask (`torch.FloatTensor` of shape `(batch_size, sequence_length)`, *optional*):
Optional mask of tokens which can't be in answers (e.g. [CLS], [PAD], ...). 1.0 means token should be
masked. 0.0 mean token is not masked.
use_mems (`bool`, *optional*):
Whether to use memory states to speed up sequential decoding. If set to `True`, the model will use the hidden
states from previous forward passes to compute attention, which can significantly improve performance for
sequential decoding tasks.
Example:
```python
>>> from transformers import AutoTokenizer, XLNetForQuestionAnswering
>>> import torch
>>> tokenizer = AutoTokenizer.from_pretrained("xlnet/xlnet-base-cased")
>>> model = XLNetForQuestionAnswering.from_pretrained("xlnet/xlnet-base-cased")
>>> input_ids = torch.tensor(tokenizer.encode("Hello, my dog is cute", add_special_tokens=True)).unsqueeze(
... 0
... ) # Batch size 1
>>> start_positions = torch.tensor([1])
>>> end_positions = torch.tensor([3])
>>> outputs = model(input_ids, start_positions=start_positions, end_positions=end_positions)
>>> loss = outputs.loss
```
|
forward
|
python
|
huggingface/transformers
|
src/transformers/models/xlnet/modeling_xlnet.py
|
https://github.com/huggingface/transformers/blob/master/src/transformers/models/xlnet/modeling_xlnet.py
|
Apache-2.0
|
def build_inputs_with_special_tokens(
self, token_ids_0: List[int], token_ids_1: Optional[List[int]] = None
) -> List[int]:
"""
Build model inputs from a sequence or a pair of sequence for sequence classification tasks by concatenating and
adding special tokens. An XLNet sequence has the following format:
- single sequence: `X <sep> <cls>`
- pair of sequences: `A <sep> B <sep> <cls>`
Args:
token_ids_0 (`List[int]`):
List of IDs to which the special tokens will be added.
token_ids_1 (`List[int]`, *optional*):
Optional second list of IDs for sequence pairs.
Returns:
`List[int]`: List of [input IDs](../glossary#input-ids) with the appropriate special tokens.
"""
sep = [self.sep_token_id]
cls = [self.cls_token_id]
if token_ids_1 is None:
return token_ids_0 + sep + cls
return token_ids_0 + sep + token_ids_1 + sep + cls
|
Build model inputs from a sequence or a pair of sequence for sequence classification tasks by concatenating and
adding special tokens. An XLNet sequence has the following format:
- single sequence: `X <sep> <cls>`
- pair of sequences: `A <sep> B <sep> <cls>`
Args:
token_ids_0 (`List[int]`):
List of IDs to which the special tokens will be added.
token_ids_1 (`List[int]`, *optional*):
Optional second list of IDs for sequence pairs.
Returns:
`List[int]`: List of [input IDs](../glossary#input-ids) with the appropriate special tokens.
|
build_inputs_with_special_tokens
|
python
|
huggingface/transformers
|
src/transformers/models/xlnet/tokenization_xlnet.py
|
https://github.com/huggingface/transformers/blob/master/src/transformers/models/xlnet/tokenization_xlnet.py
|
Apache-2.0
|
def get_special_tokens_mask(
self, token_ids_0: List[int], token_ids_1: Optional[List[int]] = None, already_has_special_tokens: bool = False
) -> List[int]:
"""
Retrieve sequence ids from a token list that has no special tokens added. This method is called when adding
special tokens using the tokenizer `prepare_for_model` method.
Args:
token_ids_0 (`List[int]`):
List of IDs.
token_ids_1 (`List[int]`, *optional*):
Optional second list of IDs for sequence pairs.
already_has_special_tokens (`bool`, *optional*, defaults to `False`):
Whether or not the token list is already formatted with special tokens for the model.
Returns:
`List[int]`: A list of integers in the range [0, 1]: 1 for a special token, 0 for a sequence token.
"""
if already_has_special_tokens:
return super().get_special_tokens_mask(
token_ids_0=token_ids_0, token_ids_1=token_ids_1, already_has_special_tokens=True
)
if token_ids_1 is not None:
return ([0] * len(token_ids_0)) + [1] + ([0] * len(token_ids_1)) + [1, 1]
return ([0] * len(token_ids_0)) + [1, 1]
|
Retrieve sequence ids from a token list that has no special tokens added. This method is called when adding
special tokens using the tokenizer `prepare_for_model` method.
Args:
token_ids_0 (`List[int]`):
List of IDs.
token_ids_1 (`List[int]`, *optional*):
Optional second list of IDs for sequence pairs.
already_has_special_tokens (`bool`, *optional*, defaults to `False`):
Whether or not the token list is already formatted with special tokens for the model.
Returns:
`List[int]`: A list of integers in the range [0, 1]: 1 for a special token, 0 for a sequence token.
|
get_special_tokens_mask
|
python
|
huggingface/transformers
|
src/transformers/models/xlnet/tokenization_xlnet.py
|
https://github.com/huggingface/transformers/blob/master/src/transformers/models/xlnet/tokenization_xlnet.py
|
Apache-2.0
|
def create_token_type_ids_from_sequences(
self, token_ids_0: List[int], token_ids_1: Optional[List[int]] = None
) -> List[int]:
"""
Create a mask from the two sequences passed to be used in a sequence-pair classification task. An XLNet
sequence pair mask has the following format:
```
0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1
| first sequence | second sequence |
```
If `token_ids_1` is `None`, this method only returns the first portion of the mask (0s).
Args:
token_ids_0 (`List[int]`):
List of IDs.
token_ids_1 (`List[int]`, *optional*):
Optional second list of IDs for sequence pairs.
Returns:
`List[int]`: List of [token type IDs](../glossary#token-type-ids) according to the given sequence(s).
"""
sep = [self.sep_token_id]
cls_segment_id = [2]
if token_ids_1 is None:
return len(token_ids_0 + sep) * [0] + cls_segment_id
return len(token_ids_0 + sep) * [0] + len(token_ids_1 + sep) * [1] + cls_segment_id
|
Create a mask from the two sequences passed to be used in a sequence-pair classification task. An XLNet
sequence pair mask has the following format:
```
0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1
| first sequence | second sequence |
```
If `token_ids_1` is `None`, this method only returns the first portion of the mask (0s).
Args:
token_ids_0 (`List[int]`):
List of IDs.
token_ids_1 (`List[int]`, *optional*):
Optional second list of IDs for sequence pairs.
Returns:
`List[int]`: List of [token type IDs](../glossary#token-type-ids) according to the given sequence(s).
|
create_token_type_ids_from_sequences
|
python
|
huggingface/transformers
|
src/transformers/models/xlnet/tokenization_xlnet.py
|
https://github.com/huggingface/transformers/blob/master/src/transformers/models/xlnet/tokenization_xlnet.py
|
Apache-2.0
|
def build_inputs_with_special_tokens(
self, token_ids_0: List[int], token_ids_1: Optional[List[int]] = None
) -> List[int]:
"""
Build model inputs from a sequence or a pair of sequence for sequence classification tasks by concatenating and
adding special tokens. An XLNet sequence has the following format:
- single sequence: `X <sep> <cls>`
- pair of sequences: `A <sep> B <sep> <cls>`
Args:
token_ids_0 (`List[int]`):
List of IDs to which the special tokens will be added.
token_ids_1 (`List[int]`, *optional*):
Optional second list of IDs for sequence pairs.
Returns:
`List[int]`: List of [input IDs](../glossary#input-ids) with the appropriate special tokens.
"""
sep = [self.sep_token_id]
cls = [self.cls_token_id]
if token_ids_1 is None:
return token_ids_0 + sep + cls
return token_ids_0 + sep + token_ids_1 + sep + cls
|
Build model inputs from a sequence or a pair of sequence for sequence classification tasks by concatenating and
adding special tokens. An XLNet sequence has the following format:
- single sequence: `X <sep> <cls>`
- pair of sequences: `A <sep> B <sep> <cls>`
Args:
token_ids_0 (`List[int]`):
List of IDs to which the special tokens will be added.
token_ids_1 (`List[int]`, *optional*):
Optional second list of IDs for sequence pairs.
Returns:
`List[int]`: List of [input IDs](../glossary#input-ids) with the appropriate special tokens.
|
build_inputs_with_special_tokens
|
python
|
huggingface/transformers
|
src/transformers/models/xlnet/tokenization_xlnet_fast.py
|
https://github.com/huggingface/transformers/blob/master/src/transformers/models/xlnet/tokenization_xlnet_fast.py
|
Apache-2.0
|
def create_token_type_ids_from_sequences(
self, token_ids_0: List[int], token_ids_1: Optional[List[int]] = None
) -> List[int]:
"""
Create a mask from the two sequences passed to be used in a sequence-pair classification task. An XLNet
sequence pair mask has the following format:
```
0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1
| first sequence | second sequence |
```
If `token_ids_1` is `None`, this method only returns the first portion of the mask (0s).
Args:
token_ids_0 (`List[int]`):
List of IDs.
token_ids_1 (`List[int]`, *optional*):
Optional second list of IDs for sequence pairs.
Returns:
`List[int]`: List of [token type IDs](../glossary#token-type-ids) according to the given sequence(s).
"""
sep = [self.sep_token_id]
cls_segment_id = [2]
if token_ids_1 is None:
return len(token_ids_0 + sep) * [0] + cls_segment_id
return len(token_ids_0 + sep) * [0] + len(token_ids_1 + sep) * [1] + cls_segment_id
|
Create a mask from the two sequences passed to be used in a sequence-pair classification task. An XLNet
sequence pair mask has the following format:
```
0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1
| first sequence | second sequence |
```
If `token_ids_1` is `None`, this method only returns the first portion of the mask (0s).
Args:
token_ids_0 (`List[int]`):
List of IDs.
token_ids_1 (`List[int]`, *optional*):
Optional second list of IDs for sequence pairs.
Returns:
`List[int]`: List of [token type IDs](../glossary#token-type-ids) according to the given sequence(s).
|
create_token_type_ids_from_sequences
|
python
|
huggingface/transformers
|
src/transformers/models/xlnet/tokenization_xlnet_fast.py
|
https://github.com/huggingface/transformers/blob/master/src/transformers/models/xlnet/tokenization_xlnet_fast.py
|
Apache-2.0
|
def create_position_ids_from_inputs_embeds(self, inputs_embeds):
"""
We are provided embeddings directly. We cannot infer which are padded so just generate sequential position ids.
Args:
inputs_embeds: torch.Tensor
Returns: torch.Tensor
"""
input_shape = inputs_embeds.size()[:-1]
sequence_length = input_shape[1]
position_ids = torch.arange(
self.padding_idx + 1, sequence_length + self.padding_idx + 1, dtype=torch.long, device=inputs_embeds.device
)
return position_ids.unsqueeze(0).expand(input_shape)
|
We are provided embeddings directly. We cannot infer which are padded so just generate sequential position ids.
Args:
inputs_embeds: torch.Tensor
Returns: torch.Tensor
|
create_position_ids_from_inputs_embeds
|
python
|
huggingface/transformers
|
src/transformers/models/xmod/modeling_xmod.py
|
https://github.com/huggingface/transformers/blob/master/src/transformers/models/xmod/modeling_xmod.py
|
Apache-2.0
|
def set_default_language(self, language: str):
"""
Set the default language code for the model. This is used when the language is not specified in the input.
Args:
language (`str`): The language code, such as `"en_XX"` or `"de_DE"`.
"""
if language not in self.config.languages:
raise ValueError(
f"{self} does not have an adapter for {language}. Supported languages: {list(self.config.languages)}"
)
self.config.default_language = language
|
Set the default language code for the model. This is used when the language is not specified in the input.
Args:
language (`str`): The language code, such as `"en_XX"` or `"de_DE"`.
|
set_default_language
|
python
|
huggingface/transformers
|
src/transformers/models/xmod/modeling_xmod.py
|
https://github.com/huggingface/transformers/blob/master/src/transformers/models/xmod/modeling_xmod.py
|
Apache-2.0
|
def freeze_embeddings_and_language_adapters(self):
"""
Freeze the embeddings and language adapters of the model. Usually, this is applied before the model is
fine-tuned on a downstream task.
"""
logger.info("Freezing embeddings")
for parameter in self.roberta.embeddings.parameters():
parameter.requires_grad = False
logger.info("Freezing adapters")
for layer in self.roberta.encoder.layer:
if layer.output.adapter_layer_norm is not None:
for parameter in layer.output.adapter_layer_norm.parameters():
parameter.requires_grad = False
for parameter in layer.output.adapter_modules.parameters():
parameter.requires_grad = False
|
Freeze the embeddings and language adapters of the model. Usually, this is applied before the model is
fine-tuned on a downstream task.
|
freeze_embeddings_and_language_adapters
|
python
|
huggingface/transformers
|
src/transformers/models/xmod/modeling_xmod.py
|
https://github.com/huggingface/transformers/blob/master/src/transformers/models/xmod/modeling_xmod.py
|
Apache-2.0
|
def __init__(self, config, add_pooling_layer=True):
r"""
add_pooling_layer (bool, *optional*, defaults to `True`):
Whether to add a pooling layer
"""
super().__init__(config)
self.config = config
self.embeddings = XmodEmbeddings(config)
self.encoder = XmodEncoder(config)
self.pooler = XmodPooler(config) if add_pooling_layer else None
# Initialize weights and apply final processing
self.post_init()
|
add_pooling_layer (bool, *optional*, defaults to `True`):
Whether to add a pooling layer
|
__init__
|
python
|
huggingface/transformers
|
src/transformers/models/xmod/modeling_xmod.py
|
https://github.com/huggingface/transformers/blob/master/src/transformers/models/xmod/modeling_xmod.py
|
Apache-2.0
|
def forward(
self,
input_ids: Optional[torch.Tensor] = None,
lang_ids: Optional[torch.LongTensor] = None,
attention_mask: Optional[torch.Tensor] = None,
token_type_ids: Optional[torch.Tensor] = None,
position_ids: Optional[torch.Tensor] = None,
head_mask: Optional[torch.Tensor] = None,
inputs_embeds: Optional[torch.Tensor] = None,
encoder_hidden_states: Optional[torch.Tensor] = None,
encoder_attention_mask: Optional[torch.Tensor] = None,
past_key_values: Optional[List[torch.FloatTensor]] = None,
use_cache: Optional[bool] = None,
output_attentions: Optional[bool] = None,
output_hidden_states: Optional[bool] = None,
return_dict: Optional[bool] = None,
) -> Union[Tuple[torch.Tensor], BaseModelOutputWithPoolingAndCrossAttentions]:
r"""
lang_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):
Indices of the language adapters that should be activated for each sample, respectively. Default: the index
that corresponds to `self.config.default_language`.
"""
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
output_hidden_states = (
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
)
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
if self.config.is_decoder:
use_cache = use_cache if use_cache is not None else self.config.use_cache
else:
use_cache = False
if input_ids is not None and inputs_embeds is not None:
raise ValueError("You cannot specify both input_ids and inputs_embeds at the same time")
elif input_ids is not None:
self.warn_if_padding_and_no_attention_mask(input_ids, attention_mask)
input_shape = input_ids.size()
elif inputs_embeds is not None:
input_shape = inputs_embeds.size()[:-1]
else:
raise ValueError("You have to specify either input_ids or inputs_embeds")
batch_size, seq_length = input_shape
device = input_ids.device if input_ids is not None else inputs_embeds.device
# past_key_values_length
past_key_values_length = past_key_values[0][0].shape[2] if past_key_values is not None else 0
if lang_ids is None:
if self.config.default_language is None:
raise ValueError("Input language unknown. Please call `XmodPreTrainedModel.set_default_language()`")
adapter_languages = list(self.encoder.layer[0].output.adapter_modules.keys())
default_lang_id = adapter_languages.index(self.config.default_language)
lang_ids = default_lang_id * torch.ones(batch_size, device=device)
if attention_mask is None:
attention_mask = torch.ones(((batch_size, seq_length + past_key_values_length)), device=device)
if token_type_ids is None:
if hasattr(self.embeddings, "token_type_ids"):
buffered_token_type_ids = self.embeddings.token_type_ids[:, :seq_length]
buffered_token_type_ids_expanded = buffered_token_type_ids.expand(batch_size, seq_length)
token_type_ids = buffered_token_type_ids_expanded
else:
token_type_ids = torch.zeros(input_shape, dtype=torch.long, device=device)
# We can provide a self-attention mask of dimensions [batch_size, from_seq_length, to_seq_length]
# ourselves in which case we just need to make it broadcastable to all heads.
extended_attention_mask: torch.Tensor = self.get_extended_attention_mask(attention_mask, input_shape)
# If a 2D or 3D attention mask is provided for the cross-attention
# we need to make broadcastable to [batch_size, num_heads, seq_length, seq_length]
if self.config.is_decoder and encoder_hidden_states is not None:
encoder_batch_size, encoder_sequence_length, _ = encoder_hidden_states.size()
encoder_hidden_shape = (encoder_batch_size, encoder_sequence_length)
if encoder_attention_mask is None:
encoder_attention_mask = torch.ones(encoder_hidden_shape, device=device)
encoder_extended_attention_mask = self.invert_attention_mask(encoder_attention_mask)
else:
encoder_extended_attention_mask = None
# Prepare head mask if needed
# 1.0 in head_mask indicate we keep the head
# attention_probs has shape bsz x n_heads x N x N
# input head_mask has shape [num_heads] or [num_hidden_layers x num_heads]
# and head_mask is converted to shape [num_hidden_layers x batch x num_heads x seq_length x seq_length]
head_mask = self.get_head_mask(head_mask, self.config.num_hidden_layers)
embedding_output = self.embeddings(
input_ids=input_ids,
position_ids=position_ids,
token_type_ids=token_type_ids,
inputs_embeds=inputs_embeds,
past_key_values_length=past_key_values_length,
)
encoder_outputs = self.encoder(
embedding_output,
lang_ids=lang_ids,
attention_mask=extended_attention_mask,
head_mask=head_mask,
encoder_hidden_states=encoder_hidden_states,
encoder_attention_mask=encoder_extended_attention_mask,
past_key_values=past_key_values,
use_cache=use_cache,
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,
return_dict=return_dict,
)
sequence_output = encoder_outputs[0]
pooled_output = self.pooler(sequence_output) if self.pooler is not None else None
if not return_dict:
return (sequence_output, pooled_output) + encoder_outputs[1:]
return BaseModelOutputWithPoolingAndCrossAttentions(
last_hidden_state=sequence_output,
pooler_output=pooled_output,
past_key_values=encoder_outputs.past_key_values,
hidden_states=encoder_outputs.hidden_states,
attentions=encoder_outputs.attentions,
cross_attentions=encoder_outputs.cross_attentions,
)
|
lang_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):
Indices of the language adapters that should be activated for each sample, respectively. Default: the index
that corresponds to `self.config.default_language`.
|
forward
|
python
|
huggingface/transformers
|
src/transformers/models/xmod/modeling_xmod.py
|
https://github.com/huggingface/transformers/blob/master/src/transformers/models/xmod/modeling_xmod.py
|
Apache-2.0
|
def forward(
self,
input_ids: Optional[torch.LongTensor] = None,
lang_ids: Optional[torch.LongTensor] = None,
attention_mask: Optional[torch.FloatTensor] = None,
token_type_ids: Optional[torch.LongTensor] = None,
position_ids: Optional[torch.LongTensor] = None,
head_mask: Optional[torch.FloatTensor] = None,
inputs_embeds: Optional[torch.FloatTensor] = None,
encoder_hidden_states: Optional[torch.FloatTensor] = None,
encoder_attention_mask: Optional[torch.FloatTensor] = None,
labels: Optional[torch.LongTensor] = None,
past_key_values: Optional[Tuple[Tuple[torch.FloatTensor]]] = None,
use_cache: Optional[bool] = None,
output_attentions: Optional[bool] = None,
output_hidden_states: Optional[bool] = None,
return_dict: Optional[bool] = None,
**kwargs,
) -> Union[Tuple[torch.Tensor], CausalLMOutputWithCrossAttentions]:
r"""
lang_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):
Indices of the language adapters that should be activated for each sample, respectively. Default: the index
that corresponds to `self.config.default_language`.
labels (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):
Labels for computing the left-to-right language modeling loss (next word prediction). Indices should be in
`[-100, 0, ..., config.vocab_size]` (see `input_ids` docstring) Tokens with indices set to `-100` are
ignored (masked), the loss is only computed for the tokens with labels in `[0, ..., config.vocab_size]`
Example:
```python
>>> from transformers import AutoTokenizer, XmodForCausalLM, AutoConfig
>>> import torch
>>> tokenizer = AutoTokenizer.from_pretrained("FacebookAI/xlm-roberta-base")
>>> config = AutoConfig.from_pretrained("facebook/xmod-base")
>>> config.is_decoder = True
>>> model = XmodForCausalLM.from_pretrained("facebook/xmod-base", config=config)
>>> model.set_default_language("en_XX")
>>> inputs = tokenizer("Hello, my dog is cute", return_tensors="pt")
>>> outputs = model(**inputs)
>>> prediction_logits = outputs.logits
```"""
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
if labels is not None:
use_cache = False
outputs = self.roberta(
input_ids,
lang_ids=lang_ids,
attention_mask=attention_mask,
token_type_ids=token_type_ids,
position_ids=position_ids,
head_mask=head_mask,
inputs_embeds=inputs_embeds,
encoder_hidden_states=encoder_hidden_states,
encoder_attention_mask=encoder_attention_mask,
past_key_values=past_key_values,
use_cache=use_cache,
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,
return_dict=return_dict,
)
sequence_output = outputs[0]
prediction_scores = self.lm_head(sequence_output)
lm_loss = None
if labels is not None:
lm_loss = self.loss_function(
prediction_scores,
labels,
vocab_size=self.config.vocab_size,
**kwargs,
)
if not return_dict:
output = (prediction_scores,) + outputs[2:]
return ((lm_loss,) + output) if lm_loss is not None else output
return CausalLMOutputWithCrossAttentions(
loss=lm_loss,
logits=prediction_scores,
past_key_values=outputs.past_key_values,
hidden_states=outputs.hidden_states,
attentions=outputs.attentions,
cross_attentions=outputs.cross_attentions,
)
|
lang_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):
Indices of the language adapters that should be activated for each sample, respectively. Default: the index
that corresponds to `self.config.default_language`.
labels (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):
Labels for computing the left-to-right language modeling loss (next word prediction). Indices should be in
`[-100, 0, ..., config.vocab_size]` (see `input_ids` docstring) Tokens with indices set to `-100` are
ignored (masked), the loss is only computed for the tokens with labels in `[0, ..., config.vocab_size]`
Example:
```python
>>> from transformers import AutoTokenizer, XmodForCausalLM, AutoConfig
>>> import torch
>>> tokenizer = AutoTokenizer.from_pretrained("FacebookAI/xlm-roberta-base")
>>> config = AutoConfig.from_pretrained("facebook/xmod-base")
>>> config.is_decoder = True
>>> model = XmodForCausalLM.from_pretrained("facebook/xmod-base", config=config)
>>> model.set_default_language("en_XX")
>>> inputs = tokenizer("Hello, my dog is cute", return_tensors="pt")
>>> outputs = model(**inputs)
>>> prediction_logits = outputs.logits
```
|
forward
|
python
|
huggingface/transformers
|
src/transformers/models/xmod/modeling_xmod.py
|
https://github.com/huggingface/transformers/blob/master/src/transformers/models/xmod/modeling_xmod.py
|
Apache-2.0
|
def forward(
self,
input_ids: Optional[torch.LongTensor] = None,
lang_ids: Optional[torch.LongTensor] = None,
attention_mask: Optional[torch.FloatTensor] = None,
token_type_ids: Optional[torch.LongTensor] = None,
position_ids: Optional[torch.LongTensor] = None,
head_mask: Optional[torch.FloatTensor] = None,
inputs_embeds: Optional[torch.FloatTensor] = None,
encoder_hidden_states: Optional[torch.FloatTensor] = None,
encoder_attention_mask: Optional[torch.FloatTensor] = None,
labels: Optional[torch.LongTensor] = None,
output_attentions: Optional[bool] = None,
output_hidden_states: Optional[bool] = None,
return_dict: Optional[bool] = None,
) -> Union[Tuple[torch.Tensor], MaskedLMOutput]:
r"""
lang_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):
Indices of the language adapters that should be activated for each sample, respectively. Default: the index
that corresponds to `self.config.default_language`.
labels (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):
Labels for computing the masked language modeling loss. Indices should be in `[-100, 0, ...,
config.vocab_size]` (see `input_ids` docstring) Tokens with indices set to `-100` are ignored (masked), the
loss is only computed for the tokens with labels in `[0, ..., config.vocab_size]`
"""
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
outputs = self.roberta(
input_ids,
lang_ids=lang_ids,
attention_mask=attention_mask,
token_type_ids=token_type_ids,
position_ids=position_ids,
head_mask=head_mask,
inputs_embeds=inputs_embeds,
encoder_hidden_states=encoder_hidden_states,
encoder_attention_mask=encoder_attention_mask,
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,
return_dict=return_dict,
)
sequence_output = outputs[0]
prediction_scores = self.lm_head(sequence_output)
masked_lm_loss = None
if labels is not None:
loss_fct = CrossEntropyLoss()
masked_lm_loss = loss_fct(prediction_scores.view(-1, self.config.vocab_size), labels.view(-1))
if not return_dict:
output = (prediction_scores,) + outputs[2:]
return ((masked_lm_loss,) + output) if masked_lm_loss is not None else output
return MaskedLMOutput(
loss=masked_lm_loss,
logits=prediction_scores,
hidden_states=outputs.hidden_states,
attentions=outputs.attentions,
)
|
lang_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):
Indices of the language adapters that should be activated for each sample, respectively. Default: the index
that corresponds to `self.config.default_language`.
labels (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):
Labels for computing the masked language modeling loss. Indices should be in `[-100, 0, ...,
config.vocab_size]` (see `input_ids` docstring) Tokens with indices set to `-100` are ignored (masked), the
loss is only computed for the tokens with labels in `[0, ..., config.vocab_size]`
|
forward
|
python
|
huggingface/transformers
|
src/transformers/models/xmod/modeling_xmod.py
|
https://github.com/huggingface/transformers/blob/master/src/transformers/models/xmod/modeling_xmod.py
|
Apache-2.0
|
def forward(
self,
input_ids: Optional[torch.LongTensor] = None,
lang_ids: Optional[torch.LongTensor] = None,
attention_mask: Optional[torch.FloatTensor] = None,
token_type_ids: Optional[torch.LongTensor] = None,
position_ids: Optional[torch.LongTensor] = None,
head_mask: Optional[torch.FloatTensor] = None,
inputs_embeds: Optional[torch.FloatTensor] = None,
labels: Optional[torch.LongTensor] = None,
output_attentions: Optional[bool] = None,
output_hidden_states: Optional[bool] = None,
return_dict: Optional[bool] = None,
) -> Union[Tuple[torch.Tensor], SequenceClassifierOutput]:
r"""
lang_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):
Indices of the language adapters that should be activated for each sample, respectively. Default: the index
that corresponds to `self.config.default_language`.
labels (`torch.LongTensor` of shape `(batch_size,)`, *optional*):
Labels for computing the sequence classification/regression loss. Indices should be in `[0, ...,
config.num_labels - 1]`. If `config.num_labels == 1` a regression loss is computed (Mean-Square loss), If
`config.num_labels > 1` a classification loss is computed (Cross-Entropy).
"""
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
outputs = self.roberta(
input_ids,
lang_ids=lang_ids,
attention_mask=attention_mask,
token_type_ids=token_type_ids,
position_ids=position_ids,
head_mask=head_mask,
inputs_embeds=inputs_embeds,
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,
return_dict=return_dict,
)
sequence_output = outputs[0]
logits = self.classifier(sequence_output)
loss = None
if labels is not None:
if self.config.problem_type is None:
if self.num_labels == 1:
self.config.problem_type = "regression"
elif self.num_labels > 1 and (labels.dtype == torch.long or labels.dtype == torch.int):
self.config.problem_type = "single_label_classification"
else:
self.config.problem_type = "multi_label_classification"
if self.config.problem_type == "regression":
loss_fct = MSELoss()
if self.num_labels == 1:
loss = loss_fct(logits.squeeze(), labels.squeeze())
else:
loss = loss_fct(logits, labels)
elif self.config.problem_type == "single_label_classification":
loss_fct = CrossEntropyLoss()
loss = loss_fct(logits.view(-1, self.num_labels), labels.view(-1))
elif self.config.problem_type == "multi_label_classification":
loss_fct = BCEWithLogitsLoss()
loss = loss_fct(logits, labels)
if not return_dict:
output = (logits,) + outputs[2:]
return ((loss,) + output) if loss is not None else output
return SequenceClassifierOutput(
loss=loss,
logits=logits,
hidden_states=outputs.hidden_states,
attentions=outputs.attentions,
)
|
lang_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):
Indices of the language adapters that should be activated for each sample, respectively. Default: the index
that corresponds to `self.config.default_language`.
labels (`torch.LongTensor` of shape `(batch_size,)`, *optional*):
Labels for computing the sequence classification/regression loss. Indices should be in `[0, ...,
config.num_labels - 1]`. If `config.num_labels == 1` a regression loss is computed (Mean-Square loss), If
`config.num_labels > 1` a classification loss is computed (Cross-Entropy).
|
forward
|
python
|
huggingface/transformers
|
src/transformers/models/xmod/modeling_xmod.py
|
https://github.com/huggingface/transformers/blob/master/src/transformers/models/xmod/modeling_xmod.py
|
Apache-2.0
|
def forward(
self,
input_ids: Optional[torch.LongTensor] = None,
lang_ids: Optional[torch.LongTensor] = None,
token_type_ids: Optional[torch.LongTensor] = None,
attention_mask: Optional[torch.FloatTensor] = None,
labels: Optional[torch.LongTensor] = None,
position_ids: Optional[torch.LongTensor] = None,
head_mask: Optional[torch.FloatTensor] = None,
inputs_embeds: Optional[torch.FloatTensor] = None,
output_attentions: Optional[bool] = None,
output_hidden_states: Optional[bool] = None,
return_dict: Optional[bool] = None,
) -> Union[Tuple[torch.Tensor], MultipleChoiceModelOutput]:
r"""
input_ids (`torch.LongTensor` of shape `(batch_size, num_choices, sequence_length)`):
Indices of input sequence tokens in the vocabulary.
Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and
[`PreTrainedTokenizer.__call__`] for details.
[What are input IDs?](../glossary#input-ids)
lang_ids (`torch.LongTensor` of shape `(batch_size, num_choices, sequence_length)`, *optional*):
Indices of the language adapters that should be activated for each sample, respectively. Default: the index
that corresponds to `self.config.default_language`.
token_type_ids (`torch.LongTensor` of shape `(batch_size, num_choices, sequence_length)`, *optional*):
Segment token indices to indicate first and second portions of the inputs. Indices are selected in `[0,
1]`:
- 0 corresponds to a *sentence A* token,
- 1 corresponds to a *sentence B* token.
[What are token type IDs?](../glossary#token-type-ids)
labels (`torch.LongTensor` of shape `(batch_size,)`, *optional*):
Labels for computing the multiple choice classification loss. Indices should be in `[0, ...,
num_choices-1]` where `num_choices` is the size of the second dimension of the input tensors. (See
`input_ids` above)
position_ids (`torch.LongTensor` of shape `(batch_size, num_choices, sequence_length)`, *optional*):
Indices of positions of each input sequence tokens in the position embeddings. Selected in the range `[0,
config.max_position_embeddings - 1]`.
[What are position IDs?](../glossary#position-ids)
inputs_embeds (`torch.FloatTensor` of shape `(batch_size, num_choices, sequence_length, hidden_size)`, *optional*):
Optionally, instead of passing `input_ids` you can choose to directly pass an embedded representation. This
is useful if you want more control over how to convert `input_ids` indices into associated vectors than the
model's internal embedding lookup matrix.
"""
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
num_choices = input_ids.shape[1] if input_ids is not None else inputs_embeds.shape[1]
flat_input_ids = input_ids.view(-1, input_ids.size(-1)) if input_ids is not None else None
flat_lang_ids = lang_ids.repeat(input_ids.size(0) * input_ids.size(1)) if lang_ids is not None else None
flat_position_ids = position_ids.view(-1, position_ids.size(-1)) if position_ids is not None else None
flat_token_type_ids = token_type_ids.view(-1, token_type_ids.size(-1)) if token_type_ids is not None else None
flat_attention_mask = attention_mask.view(-1, attention_mask.size(-1)) if attention_mask is not None else None
flat_inputs_embeds = (
inputs_embeds.view(-1, inputs_embeds.size(-2), inputs_embeds.size(-1))
if inputs_embeds is not None
else None
)
outputs = self.roberta(
flat_input_ids,
lang_ids=flat_lang_ids,
position_ids=flat_position_ids,
token_type_ids=flat_token_type_ids,
attention_mask=flat_attention_mask,
head_mask=head_mask,
inputs_embeds=flat_inputs_embeds,
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,
return_dict=return_dict,
)
pooled_output = outputs[1]
pooled_output = self.dropout(pooled_output)
logits = self.classifier(pooled_output)
reshaped_logits = logits.view(-1, num_choices)
loss = None
if labels is not None:
loss_fct = CrossEntropyLoss()
loss = loss_fct(reshaped_logits, labels)
if not return_dict:
output = (reshaped_logits,) + outputs[2:]
return ((loss,) + output) if loss is not None else output
return MultipleChoiceModelOutput(
loss=loss,
logits=reshaped_logits,
hidden_states=outputs.hidden_states,
attentions=outputs.attentions,
)
|
input_ids (`torch.LongTensor` of shape `(batch_size, num_choices, sequence_length)`):
Indices of input sequence tokens in the vocabulary.
Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and
[`PreTrainedTokenizer.__call__`] for details.
[What are input IDs?](../glossary#input-ids)
lang_ids (`torch.LongTensor` of shape `(batch_size, num_choices, sequence_length)`, *optional*):
Indices of the language adapters that should be activated for each sample, respectively. Default: the index
that corresponds to `self.config.default_language`.
token_type_ids (`torch.LongTensor` of shape `(batch_size, num_choices, sequence_length)`, *optional*):
Segment token indices to indicate first and second portions of the inputs. Indices are selected in `[0,
1]`:
- 0 corresponds to a *sentence A* token,
- 1 corresponds to a *sentence B* token.
[What are token type IDs?](../glossary#token-type-ids)
labels (`torch.LongTensor` of shape `(batch_size,)`, *optional*):
Labels for computing the multiple choice classification loss. Indices should be in `[0, ...,
num_choices-1]` where `num_choices` is the size of the second dimension of the input tensors. (See
`input_ids` above)
position_ids (`torch.LongTensor` of shape `(batch_size, num_choices, sequence_length)`, *optional*):
Indices of positions of each input sequence tokens in the position embeddings. Selected in the range `[0,
config.max_position_embeddings - 1]`.
[What are position IDs?](../glossary#position-ids)
inputs_embeds (`torch.FloatTensor` of shape `(batch_size, num_choices, sequence_length, hidden_size)`, *optional*):
Optionally, instead of passing `input_ids` you can choose to directly pass an embedded representation. This
is useful if you want more control over how to convert `input_ids` indices into associated vectors than the
model's internal embedding lookup matrix.
|
forward
|
python
|
huggingface/transformers
|
src/transformers/models/xmod/modeling_xmod.py
|
https://github.com/huggingface/transformers/blob/master/src/transformers/models/xmod/modeling_xmod.py
|
Apache-2.0
|
def forward(
self,
input_ids: Optional[torch.LongTensor] = None,
lang_ids: Optional[torch.LongTensor] = None,
attention_mask: Optional[torch.FloatTensor] = None,
token_type_ids: Optional[torch.LongTensor] = None,
position_ids: Optional[torch.LongTensor] = None,
head_mask: Optional[torch.FloatTensor] = None,
inputs_embeds: Optional[torch.FloatTensor] = None,
labels: Optional[torch.LongTensor] = None,
output_attentions: Optional[bool] = None,
output_hidden_states: Optional[bool] = None,
return_dict: Optional[bool] = None,
) -> Union[Tuple[torch.Tensor], TokenClassifierOutput]:
r"""
lang_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):
Indices of the language adapters that should be activated for each sample, respectively. Default: the index
that corresponds to `self.config.default_language`.
labels (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):
Labels for computing the token classification loss. Indices should be in `[0, ..., config.num_labels - 1]`.
"""
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
outputs = self.roberta(
input_ids,
lang_ids=lang_ids,
attention_mask=attention_mask,
token_type_ids=token_type_ids,
position_ids=position_ids,
head_mask=head_mask,
inputs_embeds=inputs_embeds,
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,
return_dict=return_dict,
)
sequence_output = outputs[0]
sequence_output = self.dropout(sequence_output)
logits = self.classifier(sequence_output)
loss = None
if labels is not None:
loss_fct = CrossEntropyLoss()
loss = loss_fct(logits.view(-1, self.num_labels), labels.view(-1))
if not return_dict:
output = (logits,) + outputs[2:]
return ((loss,) + output) if loss is not None else output
return TokenClassifierOutput(
loss=loss,
logits=logits,
hidden_states=outputs.hidden_states,
attentions=outputs.attentions,
)
|
lang_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):
Indices of the language adapters that should be activated for each sample, respectively. Default: the index
that corresponds to `self.config.default_language`.
labels (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):
Labels for computing the token classification loss. Indices should be in `[0, ..., config.num_labels - 1]`.
|
forward
|
python
|
huggingface/transformers
|
src/transformers/models/xmod/modeling_xmod.py
|
https://github.com/huggingface/transformers/blob/master/src/transformers/models/xmod/modeling_xmod.py
|
Apache-2.0
|
def forward(
self,
input_ids: Optional[torch.LongTensor] = None,
lang_ids: Optional[torch.LongTensor] = None,
attention_mask: Optional[torch.FloatTensor] = None,
token_type_ids: Optional[torch.LongTensor] = None,
position_ids: Optional[torch.LongTensor] = None,
head_mask: Optional[torch.FloatTensor] = None,
inputs_embeds: Optional[torch.FloatTensor] = None,
start_positions: Optional[torch.LongTensor] = None,
end_positions: Optional[torch.LongTensor] = None,
output_attentions: Optional[bool] = None,
output_hidden_states: Optional[bool] = None,
return_dict: Optional[bool] = None,
) -> Union[Tuple[torch.Tensor], QuestionAnsweringModelOutput]:
r"""
lang_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):
Indices of the language adapters that should be activated for each sample, respectively. Default: the index
that corresponds to `self.config.default_language`.
"""
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
outputs = self.roberta(
input_ids,
lang_ids=lang_ids,
attention_mask=attention_mask,
token_type_ids=token_type_ids,
position_ids=position_ids,
head_mask=head_mask,
inputs_embeds=inputs_embeds,
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,
return_dict=return_dict,
)
sequence_output = outputs[0]
logits = self.qa_outputs(sequence_output)
start_logits, end_logits = logits.split(1, dim=-1)
start_logits = start_logits.squeeze(-1).contiguous()
end_logits = end_logits.squeeze(-1).contiguous()
total_loss = None
if start_positions is not None and end_positions is not None:
# If we are on multi-GPU, split add a dimension
if len(start_positions.size()) > 1:
start_positions = start_positions.squeeze(-1)
if len(end_positions.size()) > 1:
end_positions = end_positions.squeeze(-1)
# sometimes the start/end positions are outside our model inputs, we ignore these terms
ignored_index = start_logits.size(1)
start_positions = start_positions.clamp(0, ignored_index)
end_positions = end_positions.clamp(0, ignored_index)
loss_fct = CrossEntropyLoss(ignore_index=ignored_index)
start_loss = loss_fct(start_logits, start_positions)
end_loss = loss_fct(end_logits, end_positions)
total_loss = (start_loss + end_loss) / 2
if not return_dict:
output = (start_logits, end_logits) + outputs[2:]
return ((total_loss,) + output) if total_loss is not None else output
return QuestionAnsweringModelOutput(
loss=total_loss,
start_logits=start_logits,
end_logits=end_logits,
hidden_states=outputs.hidden_states,
attentions=outputs.attentions,
)
|
lang_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):
Indices of the language adapters that should be activated for each sample, respectively. Default: the index
that corresponds to `self.config.default_language`.
|
forward
|
python
|
huggingface/transformers
|
src/transformers/models/xmod/modeling_xmod.py
|
https://github.com/huggingface/transformers/blob/master/src/transformers/models/xmod/modeling_xmod.py
|
Apache-2.0
|
def create_position_ids_from_input_ids(input_ids, padding_idx, past_key_values_length=0):
"""
Replace non-padding symbols with their position numbers. Position numbers begin at padding_idx+1. Padding symbols
are ignored. This is modified from fairseq's `utils.make_positions`.
Args:
x: torch.Tensor x:
Returns: torch.Tensor
"""
# The series of casts and type-conversions here are carefully balanced to both work with ONNX export and XLA.
mask = input_ids.ne(padding_idx).int()
incremental_indices = (torch.cumsum(mask, dim=1).type_as(mask) + past_key_values_length) * mask
return incremental_indices.long() + padding_idx
|
Replace non-padding symbols with their position numbers. Position numbers begin at padding_idx+1. Padding symbols
are ignored. This is modified from fairseq's `utils.make_positions`.
Args:
x: torch.Tensor x:
Returns: torch.Tensor
|
create_position_ids_from_input_ids
|
python
|
huggingface/transformers
|
src/transformers/models/xmod/modeling_xmod.py
|
https://github.com/huggingface/transformers/blob/master/src/transformers/models/xmod/modeling_xmod.py
|
Apache-2.0
|
def interpolate_pos_encoding(self, embeddings: torch.Tensor, height: int, width: int) -> torch.Tensor:
"""
This method allows to interpolate the pre-trained position encodings, to be able to use the model on higher resolution
images. This method is also adapted to support torch.jit tracing.
Adapted from:
- https://github.com/facebookresearch/dino/blob/de9ee3df6cf39fac952ab558447af1fa1365362a/vision_transformer.py#L174-L194, and
- https://github.com/facebookresearch/dinov2/blob/e1277af2ba9496fbadf7aec6eba56e8d882d1e35/dinov2/models/vision_transformer.py#L179-L211
"""
num_patches = embeddings.shape[1] - 1
position_embedding = self.position_embedding.weight.unsqueeze(0)
num_positions = position_embedding.shape[1] - 1
# always interpolate when tracing to ensure the exported model works for dynamic input shapes
if not torch.jit.is_tracing() and num_patches == num_positions and height == width:
return self.position_embedding(self.position_ids)
class_pos_embed = position_embedding[:, :1]
patch_pos_embed = position_embedding[:, 1:]
dim = embeddings.shape[-1]
new_height = height // self.patch_size
new_width = width // self.patch_size
sqrt_num_positions = torch_int(num_positions**0.5)
patch_pos_embed = patch_pos_embed.reshape(1, sqrt_num_positions, sqrt_num_positions, dim)
patch_pos_embed = patch_pos_embed.permute(0, 3, 1, 2)
patch_pos_embed = nn.functional.interpolate(
patch_pos_embed,
size=(new_height, new_width),
mode="bicubic",
align_corners=False,
)
patch_pos_embed = patch_pos_embed.permute(0, 2, 3, 1).view(1, -1, dim)
return torch.cat((class_pos_embed, patch_pos_embed), dim=1)
|
This method allows to interpolate the pre-trained position encodings, to be able to use the model on higher resolution
images. This method is also adapted to support torch.jit tracing.
Adapted from:
- https://github.com/facebookresearch/dino/blob/de9ee3df6cf39fac952ab558447af1fa1365362a/vision_transformer.py#L174-L194, and
- https://github.com/facebookresearch/dinov2/blob/e1277af2ba9496fbadf7aec6eba56e8d882d1e35/dinov2/models/vision_transformer.py#L179-L211
|
interpolate_pos_encoding
|
python
|
huggingface/transformers
|
src/transformers/models/x_clip/modeling_x_clip.py
|
https://github.com/huggingface/transformers/blob/master/src/transformers/models/x_clip/modeling_x_clip.py
|
Apache-2.0
|
def forward(
self,
hidden_states: torch.Tensor,
attention_mask: torch.Tensor,
causal_attention_mask: torch.Tensor,
output_attentions: Optional[bool] = False,
) -> Tuple[torch.FloatTensor]:
"""
Args:
hidden_states (`torch.FloatTensor`): input to the layer of shape `(batch, seq_len, embed_dim)`
attention_mask (`torch.FloatTensor`): attention mask of size
`(batch, 1, tgt_len, src_len)` where padding elements are indicated by very large negative values.
`(config.encoder_attention_heads,)`.
output_attentions (`bool`, *optional*):
Whether or not to return the attentions tensors of all attention layers. See `attentions` under
returned tensors for more detail.
"""
residual = hidden_states
hidden_states = self.layer_norm1(hidden_states)
hidden_states, attn_weights = self.self_attn(
hidden_states=hidden_states,
attention_mask=attention_mask,
causal_attention_mask=causal_attention_mask,
output_attentions=output_attentions,
)
hidden_states = residual + hidden_states
residual = hidden_states
hidden_states = self.layer_norm2(hidden_states)
hidden_states = self.mlp(hidden_states)
hidden_states = residual + hidden_states
outputs = (hidden_states,)
if output_attentions:
outputs += (attn_weights,)
return outputs
|
Args:
hidden_states (`torch.FloatTensor`): input to the layer of shape `(batch, seq_len, embed_dim)`
attention_mask (`torch.FloatTensor`): attention mask of size
`(batch, 1, tgt_len, src_len)` where padding elements are indicated by very large negative values.
`(config.encoder_attention_heads,)`.
output_attentions (`bool`, *optional*):
Whether or not to return the attentions tensors of all attention layers. See `attentions` under
returned tensors for more detail.
|
forward
|
python
|
huggingface/transformers
|
src/transformers/models/x_clip/modeling_x_clip.py
|
https://github.com/huggingface/transformers/blob/master/src/transformers/models/x_clip/modeling_x_clip.py
|
Apache-2.0
|
def drop_path(input: torch.Tensor, drop_prob: float = 0.0, training: bool = False) -> torch.Tensor:
"""
Drop paths (Stochastic Depth) per sample (when applied in main path of residual blocks).
Comment by Ross Wightman: This is the same as the DropConnect impl I created for EfficientNet, etc networks,
however, the original name is misleading as 'Drop Connect' is a different form of dropout in a separate paper...
See discussion: https://github.com/tensorflow/tpu/issues/494#issuecomment-532968956 ... I've opted for changing the
layer and argument names to 'drop path' rather than mix DropConnect as a layer name and use 'survival rate' as the
argument.
"""
if drop_prob == 0.0 or not training:
return input
keep_prob = 1 - drop_prob
shape = (input.shape[0],) + (1,) * (input.ndim - 1) # work with diff dim tensors, not just 2D ConvNets
random_tensor = keep_prob + torch.rand(shape, dtype=input.dtype, device=input.device)
random_tensor.floor_() # binarize
output = input.div(keep_prob) * random_tensor
return output
|
Drop paths (Stochastic Depth) per sample (when applied in main path of residual blocks).
Comment by Ross Wightman: This is the same as the DropConnect impl I created for EfficientNet, etc networks,
however, the original name is misleading as 'Drop Connect' is a different form of dropout in a separate paper...
See discussion: https://github.com/tensorflow/tpu/issues/494#issuecomment-532968956 ... I've opted for changing the
layer and argument names to 'drop path' rather than mix DropConnect as a layer name and use 'survival rate' as the
argument.
|
drop_path
|
python
|
huggingface/transformers
|
src/transformers/models/x_clip/modeling_x_clip.py
|
https://github.com/huggingface/transformers/blob/master/src/transformers/models/x_clip/modeling_x_clip.py
|
Apache-2.0
|
def forward(
self,
hidden_states: torch.Tensor,
attention_mask: torch.Tensor,
causal_attention_mask: torch.Tensor,
output_attentions: Optional[bool] = False,
) -> Tuple[torch.FloatTensor]:
"""
Args:
hidden_states (`torch.FloatTensor`): input to the layer of shape `(batch, seq_len, embed_dim)`
attention_mask (`torch.FloatTensor`): attention mask of size
`(batch, 1, tgt_len, src_len)` where padding elements are indicated by very large negative values.
`(config.encoder_attention_heads,)`.
causal_attention_mask (`torch.Tensor` of shape `(batch_size, sequence_length)`, *optional*):
Causal mask for the text model. Mask values selected in `[0, 1]`:
- 1 for tokens that are **not masked**,
- 0 for tokens that are **masked**.
[What are attention masks?](../glossary#attention-mask)
output_attentions (`bool`, *optional*):
Whether or not to return the attentions tensors of all attention layers. See `attentions` under
returned tensors for more detail.
"""
batch_time, seq_length, hidden_size = hidden_states.size()
batch_size = batch_time // self.num_frames
msg_token = self.message_fc(hidden_states[:, 0, :])
msg_token = msg_token.view(batch_size, self.num_frames, hidden_size)
msg_token = msg_token + self.drop_path(self.message_attn(self.message_ln(msg_token))[0])
# add dummy sequence dimension
msg_token = msg_token.view(-1, 1, hidden_size)
hidden_states = torch.cat([hidden_states, msg_token], dim=1)
residual = hidden_states
hidden_states = self.layer_norm1(hidden_states)
hidden_states, attn_weights = self.self_attn(
hidden_states=hidden_states,
attention_mask=attention_mask,
causal_attention_mask=causal_attention_mask,
output_attentions=output_attentions,
)
hidden_states = residual + hidden_states
hidden_states = hidden_states[:, :seq_length, :]
residual = hidden_states
hidden_states = self.layer_norm2(hidden_states)
hidden_states = self.mlp(hidden_states)
hidden_states = residual + hidden_states
outputs = (hidden_states,)
if output_attentions:
outputs += (attn_weights,)
return outputs
|
Args:
hidden_states (`torch.FloatTensor`): input to the layer of shape `(batch, seq_len, embed_dim)`
attention_mask (`torch.FloatTensor`): attention mask of size
`(batch, 1, tgt_len, src_len)` where padding elements are indicated by very large negative values.
`(config.encoder_attention_heads,)`.
causal_attention_mask (`torch.Tensor` of shape `(batch_size, sequence_length)`, *optional*):
Causal mask for the text model. Mask values selected in `[0, 1]`:
- 1 for tokens that are **not masked**,
- 0 for tokens that are **masked**.
[What are attention masks?](../glossary#attention-mask)
output_attentions (`bool`, *optional*):
Whether or not to return the attentions tensors of all attention layers. See `attentions` under
returned tensors for more detail.
|
forward
|
python
|
huggingface/transformers
|
src/transformers/models/x_clip/modeling_x_clip.py
|
https://github.com/huggingface/transformers/blob/master/src/transformers/models/x_clip/modeling_x_clip.py
|
Apache-2.0
|
def forward(
self,
inputs_embeds,
attention_mask: Optional[torch.Tensor] = None,
causal_attention_mask: Optional[torch.Tensor] = None,
output_attentions: Optional[bool] = None,
output_hidden_states: Optional[bool] = None,
return_dict: Optional[bool] = None,
) -> Union[Tuple, BaseModelOutput]:
r"""
Args:
inputs_embeds (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`):
Optionally, instead of passing `input_ids` you can choose to directly pass an embedded representation.
This is useful if you want more control over how to convert `input_ids` indices into associated vectors
than the model's internal embedding lookup matrix.
attention_mask (`torch.Tensor` of shape `(batch_size, sequence_length)`, *optional*):
Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`:
- 1 for tokens that are **not masked**,
- 0 for tokens that are **masked**.
[What are attention masks?](../glossary#attention-mask)
causal_attention_mask (`torch.Tensor` of shape `(batch_size, sequence_length)`, *optional*):
Causal mask for the text model. Mask values selected in `[0, 1]`:
- 1 for tokens that are **not masked**,
- 0 for tokens that are **masked**.
[What are attention masks?](../glossary#attention-mask)
output_attentions (`bool`, *optional*):
Whether or not to return the attentions tensors of all attention layers. See `attentions` under
returned tensors for more detail.
output_hidden_states (`bool`, *optional*):
Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors
for more detail.
return_dict (`bool`, *optional*):
Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple.
"""
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
output_hidden_states = (
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
)
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
encoder_states = () if output_hidden_states else None
all_attentions = () if output_attentions else None
hidden_states = inputs_embeds
for idx, encoder_layer in enumerate(self.layers):
if output_hidden_states:
encoder_states = encoder_states + (hidden_states,)
if self.gradient_checkpointing and self.training:
layer_outputs = self._gradient_checkpointing_func(
encoder_layer.__call__,
hidden_states,
attention_mask,
causal_attention_mask,
output_attentions,
)
else:
layer_outputs = encoder_layer(
hidden_states,
attention_mask,
causal_attention_mask,
output_attentions=output_attentions,
)
hidden_states = layer_outputs[0]
if output_attentions:
all_attentions = all_attentions + (layer_outputs[1],)
if output_hidden_states:
encoder_states = encoder_states + (hidden_states,)
if not return_dict:
return tuple(v for v in [hidden_states, encoder_states, all_attentions] if v is not None)
return BaseModelOutput(
last_hidden_state=hidden_states, hidden_states=encoder_states, attentions=all_attentions
)
|
Args:
inputs_embeds (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`):
Optionally, instead of passing `input_ids` you can choose to directly pass an embedded representation.
This is useful if you want more control over how to convert `input_ids` indices into associated vectors
than the model's internal embedding lookup matrix.
attention_mask (`torch.Tensor` of shape `(batch_size, sequence_length)`, *optional*):
Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`:
- 1 for tokens that are **not masked**,
- 0 for tokens that are **masked**.
[What are attention masks?](../glossary#attention-mask)
causal_attention_mask (`torch.Tensor` of shape `(batch_size, sequence_length)`, *optional*):
Causal mask for the text model. Mask values selected in `[0, 1]`:
- 1 for tokens that are **not masked**,
- 0 for tokens that are **masked**.
[What are attention masks?](../glossary#attention-mask)
output_attentions (`bool`, *optional*):
Whether or not to return the attentions tensors of all attention layers. See `attentions` under
returned tensors for more detail.
output_hidden_states (`bool`, *optional*):
Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors
for more detail.
return_dict (`bool`, *optional*):
Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple.
|
forward
|
python
|
huggingface/transformers
|
src/transformers/models/x_clip/modeling_x_clip.py
|
https://github.com/huggingface/transformers/blob/master/src/transformers/models/x_clip/modeling_x_clip.py
|
Apache-2.0
|
def forward(
self,
input_ids: Optional[torch.Tensor] = None,
attention_mask: Optional[torch.Tensor] = None,
position_ids: Optional[torch.Tensor] = None,
output_attentions: Optional[bool] = None,
output_hidden_states: Optional[bool] = None,
return_dict: Optional[bool] = None,
) -> Union[Tuple, BaseModelOutputWithPooling]:
r"""
Examples:
```python
>>> from transformers import AutoTokenizer, XCLIPTextModel
>>> model = XCLIPTextModel.from_pretrained("microsoft/xclip-base-patch32")
>>> tokenizer = AutoTokenizer.from_pretrained("microsoft/xclip-base-patch32")
>>> inputs = tokenizer(["a photo of a cat", "a photo of a dog"], padding=True, return_tensors="pt")
>>> outputs = model(**inputs)
>>> last_hidden_state = outputs.last_hidden_state
>>> pooled_output = outputs.pooler_output # pooled (EOS token) states
```"""
return self.text_model(
input_ids=input_ids,
attention_mask=attention_mask,
position_ids=position_ids,
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,
return_dict=return_dict,
)
|
Examples:
```python
>>> from transformers import AutoTokenizer, XCLIPTextModel
>>> model = XCLIPTextModel.from_pretrained("microsoft/xclip-base-patch32")
>>> tokenizer = AutoTokenizer.from_pretrained("microsoft/xclip-base-patch32")
>>> inputs = tokenizer(["a photo of a cat", "a photo of a dog"], padding=True, return_tensors="pt")
>>> outputs = model(**inputs)
>>> last_hidden_state = outputs.last_hidden_state
>>> pooled_output = outputs.pooler_output # pooled (EOS token) states
```
|
forward
|
python
|
huggingface/transformers
|
src/transformers/models/x_clip/modeling_x_clip.py
|
https://github.com/huggingface/transformers/blob/master/src/transformers/models/x_clip/modeling_x_clip.py
|
Apache-2.0
|
def forward(
self,
inputs_embeds,
attention_mask: Optional[torch.Tensor] = None,
causal_attention_mask: Optional[torch.Tensor] = None,
output_attentions: Optional[bool] = None,
output_hidden_states: Optional[bool] = None,
return_dict: Optional[bool] = None,
) -> Union[Tuple, BaseModelOutput]:
r"""
Args:
inputs_embeds (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`):
Optionally, instead of passing `input_ids` you can choose to directly pass an embedded representation.
This is useful if you want more control over how to convert `input_ids` indices into associated vectors
than the model's internal embedding lookup matrix.
attention_mask (`torch.Tensor` of shape `(batch_size, sequence_length)`, *optional*):
Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`:
- 1 for tokens that are **not masked**,
- 0 for tokens that are **masked**.
[What are attention masks?](../glossary#attention-mask)
causal_attention_mask (`torch.Tensor` of shape `(batch_size, sequence_length)`, *optional*):
Causal mask for the text model. Mask values selected in `[0, 1]`:
- 1 for tokens that are **not masked**,
- 0 for tokens that are **masked**.
[What are attention masks?](../glossary#attention-mask)
output_attentions (`bool`, *optional*):
Whether or not to return the attentions tensors of all attention layers. See `attentions` under
returned tensors for more detail.
output_hidden_states (`bool`, *optional*):
Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors
for more detail.
return_dict (`bool`, *optional*):
Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple.
"""
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
output_hidden_states = (
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
)
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
encoder_states = () if output_hidden_states else None
all_attentions = () if output_attentions else None
hidden_states = inputs_embeds
for idx, encoder_layer in enumerate(self.layers):
if output_hidden_states:
encoder_states = encoder_states + (hidden_states,)
if self.gradient_checkpointing and self.training:
layer_outputs = self._gradient_checkpointing_func(
encoder_layer.__call__,
hidden_states,
attention_mask,
causal_attention_mask,
output_attentions,
)
else:
layer_outputs = encoder_layer(
hidden_states,
attention_mask,
causal_attention_mask,
output_attentions=output_attentions,
)
hidden_states = layer_outputs[0]
if output_attentions:
all_attentions = all_attentions + (layer_outputs[1],)
if output_hidden_states:
encoder_states = encoder_states + (hidden_states,)
if not return_dict:
return tuple(v for v in [hidden_states, encoder_states, all_attentions] if v is not None)
return BaseModelOutput(
last_hidden_state=hidden_states, hidden_states=encoder_states, attentions=all_attentions
)
|
Args:
inputs_embeds (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`):
Optionally, instead of passing `input_ids` you can choose to directly pass an embedded representation.
This is useful if you want more control over how to convert `input_ids` indices into associated vectors
than the model's internal embedding lookup matrix.
attention_mask (`torch.Tensor` of shape `(batch_size, sequence_length)`, *optional*):
Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`:
- 1 for tokens that are **not masked**,
- 0 for tokens that are **masked**.
[What are attention masks?](../glossary#attention-mask)
causal_attention_mask (`torch.Tensor` of shape `(batch_size, sequence_length)`, *optional*):
Causal mask for the text model. Mask values selected in `[0, 1]`:
- 1 for tokens that are **not masked**,
- 0 for tokens that are **masked**.
[What are attention masks?](../glossary#attention-mask)
output_attentions (`bool`, *optional*):
Whether or not to return the attentions tensors of all attention layers. See `attentions` under
returned tensors for more detail.
output_hidden_states (`bool`, *optional*):
Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors
for more detail.
return_dict (`bool`, *optional*):
Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple.
|
forward
|
python
|
huggingface/transformers
|
src/transformers/models/x_clip/modeling_x_clip.py
|
https://github.com/huggingface/transformers/blob/master/src/transformers/models/x_clip/modeling_x_clip.py
|
Apache-2.0
|
def forward(
self,
pixel_values: Optional[torch.FloatTensor] = None,
output_attentions: Optional[bool] = None,
output_hidden_states: Optional[bool] = None,
return_dict: Optional[bool] = None,
) -> Union[Tuple, BaseModelOutputWithPooling]:
r"""
Examples:
```python
>>> import av
>>> import torch
>>> import numpy as np
>>> from transformers import AutoProcessor, XCLIPVisionModel
>>> from huggingface_hub import hf_hub_download
>>> np.random.seed(0)
>>> def read_video_pyav(container, indices):
... '''
... Decode the video with PyAV decoder.
... Args:
... container (`av.container.input.InputContainer`): PyAV container.
... indices (`List[int]`): List of frame indices to decode.
... Returns:
... result (np.ndarray): np array of decoded frames of shape (num_frames, height, width, 3).
... '''
... frames = []
... container.seek(0)
... start_index = indices[0]
... end_index = indices[-1]
... for i, frame in enumerate(container.decode(video=0)):
... if i > end_index:
... break
... if i >= start_index and i in indices:
... frames.append(frame)
... return np.stack([x.to_ndarray(format="rgb24") for x in frames])
>>> def sample_frame_indices(clip_len, frame_sample_rate, seg_len):
... '''
... Sample a given number of frame indices from the video.
... Args:
... clip_len (`int`): Total number of frames to sample.
... frame_sample_rate (`int`): Sample every n-th frame.
... seg_len (`int`): Maximum allowed index of sample's last frame.
... Returns:
... indices (`List[int]`): List of sampled frame indices
... '''
... converted_len = int(clip_len * frame_sample_rate)
... end_idx = np.random.randint(converted_len, seg_len)
... start_idx = end_idx - converted_len
... indices = np.linspace(start_idx, end_idx, num=clip_len)
... indices = np.clip(indices, start_idx, end_idx - 1).astype(np.int64)
... return indices
>>> # video clip consists of 300 frames (10 seconds at 30 FPS)
>>> file_path = hf_hub_download(
... repo_id="nielsr/video-demo", filename="eating_spaghetti.mp4", repo_type="dataset"
... )
>>> container = av.open(file_path)
>>> # sample 16 frames
>>> indices = sample_frame_indices(clip_len=8, frame_sample_rate=1, seg_len=container.streams.video[0].frames)
>>> video = read_video_pyav(container, indices)
>>> processor = AutoProcessor.from_pretrained("microsoft/xclip-base-patch32")
>>> model = XCLIPVisionModel.from_pretrained("microsoft/xclip-base-patch32")
>>> pixel_values = processor(videos=list(video), return_tensors="pt").pixel_values
>>> batch_size, num_frames, num_channels, height, width = pixel_values.shape
>>> pixel_values = pixel_values.reshape(-1, num_channels, height, width)
>>> outputs = model(pixel_values)
>>> last_hidden_state = outputs.last_hidden_state
```"""
return self.vision_model(
pixel_values=pixel_values,
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,
return_dict=return_dict,
)
|
Examples:
```python
>>> import av
>>> import torch
>>> import numpy as np
>>> from transformers import AutoProcessor, XCLIPVisionModel
>>> from huggingface_hub import hf_hub_download
>>> np.random.seed(0)
>>> def read_video_pyav(container, indices):
... '''
... Decode the video with PyAV decoder.
... Args:
... container (`av.container.input.InputContainer`): PyAV container.
... indices (`List[int]`): List of frame indices to decode.
... Returns:
... result (np.ndarray): np array of decoded frames of shape (num_frames, height, width, 3).
... '''
... frames = []
... container.seek(0)
... start_index = indices[0]
... end_index = indices[-1]
... for i, frame in enumerate(container.decode(video=0)):
... if i > end_index:
... break
... if i >= start_index and i in indices:
... frames.append(frame)
... return np.stack([x.to_ndarray(format="rgb24") for x in frames])
>>> def sample_frame_indices(clip_len, frame_sample_rate, seg_len):
... '''
... Sample a given number of frame indices from the video.
... Args:
... clip_len (`int`): Total number of frames to sample.
... frame_sample_rate (`int`): Sample every n-th frame.
... seg_len (`int`): Maximum allowed index of sample's last frame.
... Returns:
... indices (`List[int]`): List of sampled frame indices
... '''
... converted_len = int(clip_len * frame_sample_rate)
... end_idx = np.random.randint(converted_len, seg_len)
... start_idx = end_idx - converted_len
... indices = np.linspace(start_idx, end_idx, num=clip_len)
... indices = np.clip(indices, start_idx, end_idx - 1).astype(np.int64)
... return indices
>>> # video clip consists of 300 frames (10 seconds at 30 FPS)
>>> file_path = hf_hub_download(
... repo_id="nielsr/video-demo", filename="eating_spaghetti.mp4", repo_type="dataset"
... )
>>> container = av.open(file_path)
>>> # sample 16 frames
>>> indices = sample_frame_indices(clip_len=8, frame_sample_rate=1, seg_len=container.streams.video[0].frames)
>>> video = read_video_pyav(container, indices)
>>> processor = AutoProcessor.from_pretrained("microsoft/xclip-base-patch32")
>>> model = XCLIPVisionModel.from_pretrained("microsoft/xclip-base-patch32")
>>> pixel_values = processor(videos=list(video), return_tensors="pt").pixel_values
>>> batch_size, num_frames, num_channels, height, width = pixel_values.shape
>>> pixel_values = pixel_values.reshape(-1, num_channels, height, width)
>>> outputs = model(pixel_values)
>>> last_hidden_state = outputs.last_hidden_state
```
|
forward
|
python
|
huggingface/transformers
|
src/transformers/models/x_clip/modeling_x_clip.py
|
https://github.com/huggingface/transformers/blob/master/src/transformers/models/x_clip/modeling_x_clip.py
|
Apache-2.0
|
def get_text_features(
self,
input_ids: Optional[torch.Tensor] = None,
attention_mask: Optional[torch.Tensor] = None,
position_ids: Optional[torch.Tensor] = None,
output_attentions: Optional[bool] = None,
output_hidden_states: Optional[bool] = None,
return_dict: Optional[bool] = None,
) -> torch.FloatTensor:
r"""
Returns:
text_features (`torch.FloatTensor` of shape `(batch_size, output_dim`): The text embeddings obtained by
applying the projection layer to the pooled output of [`XCLIPTextModel`].
Examples:
```python
>>> from transformers import AutoTokenizer, AutoModel
>>> tokenizer = AutoTokenizer.from_pretrained("microsoft/xclip-base-patch32")
>>> model = AutoModel.from_pretrained("microsoft/xclip-base-patch32")
>>> inputs = tokenizer(["a photo of a cat", "a photo of a dog"], padding=True, return_tensors="pt")
>>> text_features = model.get_text_features(**inputs)
```"""
# Use X_CLIP model's config for some fields (if specified) instead of those of vision & text components.
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
output_hidden_states = (
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
)
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
text_outputs = self.text_model(
input_ids=input_ids,
attention_mask=attention_mask,
position_ids=position_ids,
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,
return_dict=return_dict,
)
text_embeds = text_outputs[1]
text_embeds = self.text_projection(text_embeds)
return text_embeds
|
Returns:
text_features (`torch.FloatTensor` of shape `(batch_size, output_dim`): The text embeddings obtained by
applying the projection layer to the pooled output of [`XCLIPTextModel`].
Examples:
```python
>>> from transformers import AutoTokenizer, AutoModel
>>> tokenizer = AutoTokenizer.from_pretrained("microsoft/xclip-base-patch32")
>>> model = AutoModel.from_pretrained("microsoft/xclip-base-patch32")
>>> inputs = tokenizer(["a photo of a cat", "a photo of a dog"], padding=True, return_tensors="pt")
>>> text_features = model.get_text_features(**inputs)
```
|
get_text_features
|
python
|
huggingface/transformers
|
src/transformers/models/x_clip/modeling_x_clip.py
|
https://github.com/huggingface/transformers/blob/master/src/transformers/models/x_clip/modeling_x_clip.py
|
Apache-2.0
|
def get_video_features(
self,
pixel_values: Optional[torch.FloatTensor] = None,
output_attentions: Optional[bool] = None,
output_hidden_states: Optional[bool] = None,
return_dict: Optional[bool] = None,
) -> torch.FloatTensor:
r"""
Returns:
video_features (`torch.FloatTensor` of shape `(batch_size, output_dim`): The video embeddings obtained by
applying the projection layer to the pooled output of [`XCLIPVisionModel`] and
[`XCLIPMultiframeIntegrationTransformer`].
Examples:
```python
>>> import av
>>> import torch
>>> import numpy as np
>>> from transformers import AutoProcessor, AutoModel
>>> from huggingface_hub import hf_hub_download
>>> np.random.seed(0)
>>> def read_video_pyav(container, indices):
... '''
... Decode the video with PyAV decoder.
... Args:
... container (`av.container.input.InputContainer`): PyAV container.
... indices (`List[int]`): List of frame indices to decode.
... Returns:
... result (np.ndarray): np array of decoded frames of shape (num_frames, height, width, 3).
... '''
... frames = []
... container.seek(0)
... start_index = indices[0]
... end_index = indices[-1]
... for i, frame in enumerate(container.decode(video=0)):
... if i > end_index:
... break
... if i >= start_index and i in indices:
... frames.append(frame)
... return np.stack([x.to_ndarray(format="rgb24") for x in frames])
>>> def sample_frame_indices(clip_len, frame_sample_rate, seg_len):
... '''
... Sample a given number of frame indices from the video.
... Args:
... clip_len (`int`): Total number of frames to sample.
... frame_sample_rate (`int`): Sample every n-th frame.
... seg_len (`int`): Maximum allowed index of sample's last frame.
... Returns:
... indices (`List[int]`): List of sampled frame indices
... '''
... converted_len = int(clip_len * frame_sample_rate)
... end_idx = np.random.randint(converted_len, seg_len)
... start_idx = end_idx - converted_len
... indices = np.linspace(start_idx, end_idx, num=clip_len)
... indices = np.clip(indices, start_idx, end_idx - 1).astype(np.int64)
... return indices
>>> # video clip consists of 300 frames (10 seconds at 30 FPS)
>>> file_path = hf_hub_download(
... repo_id="nielsr/video-demo", filename="eating_spaghetti.mp4", repo_type="dataset"
... )
>>> container = av.open(file_path)
>>> # sample 8 frames
>>> indices = sample_frame_indices(clip_len=8, frame_sample_rate=1, seg_len=container.streams.video[0].frames)
>>> video = read_video_pyav(container, indices)
>>> processor = AutoProcessor.from_pretrained("microsoft/xclip-base-patch32")
>>> model = AutoModel.from_pretrained("microsoft/xclip-base-patch32")
>>> inputs = processor(videos=list(video), return_tensors="pt")
>>> video_features = model.get_video_features(**inputs)
```"""
# Use X_CLIP model's config for some fields (if specified) instead of those of vision & text components.
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
output_hidden_states = (
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
)
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
batch_size, num_frames, num_channels, height, width = pixel_values.shape
pixel_values = pixel_values.reshape(-1, num_channels, height, width)
vision_outputs = self.vision_model(
pixel_values=pixel_values,
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,
return_dict=return_dict,
)
video_embeds = vision_outputs[1]
video_embeds = self.visual_projection(video_embeds)
cls_features = video_embeds.view(batch_size, num_frames, -1)
mit_outputs = self.mit(
cls_features,
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,
return_dict=return_dict,
)
video_embeds = mit_outputs[1]
return video_embeds
|
Returns:
video_features (`torch.FloatTensor` of shape `(batch_size, output_dim`): The video embeddings obtained by
applying the projection layer to the pooled output of [`XCLIPVisionModel`] and
[`XCLIPMultiframeIntegrationTransformer`].
Examples:
```python
>>> import av
>>> import torch
>>> import numpy as np
>>> from transformers import AutoProcessor, AutoModel
>>> from huggingface_hub import hf_hub_download
>>> np.random.seed(0)
>>> def read_video_pyav(container, indices):
... '''
... Decode the video with PyAV decoder.
... Args:
... container (`av.container.input.InputContainer`): PyAV container.
... indices (`List[int]`): List of frame indices to decode.
... Returns:
... result (np.ndarray): np array of decoded frames of shape (num_frames, height, width, 3).
... '''
... frames = []
... container.seek(0)
... start_index = indices[0]
... end_index = indices[-1]
... for i, frame in enumerate(container.decode(video=0)):
... if i > end_index:
... break
... if i >= start_index and i in indices:
... frames.append(frame)
... return np.stack([x.to_ndarray(format="rgb24") for x in frames])
>>> def sample_frame_indices(clip_len, frame_sample_rate, seg_len):
... '''
... Sample a given number of frame indices from the video.
... Args:
... clip_len (`int`): Total number of frames to sample.
... frame_sample_rate (`int`): Sample every n-th frame.
... seg_len (`int`): Maximum allowed index of sample's last frame.
... Returns:
... indices (`List[int]`): List of sampled frame indices
... '''
... converted_len = int(clip_len * frame_sample_rate)
... end_idx = np.random.randint(converted_len, seg_len)
... start_idx = end_idx - converted_len
... indices = np.linspace(start_idx, end_idx, num=clip_len)
... indices = np.clip(indices, start_idx, end_idx - 1).astype(np.int64)
... return indices
>>> # video clip consists of 300 frames (10 seconds at 30 FPS)
>>> file_path = hf_hub_download(
... repo_id="nielsr/video-demo", filename="eating_spaghetti.mp4", repo_type="dataset"
... )
>>> container = av.open(file_path)
>>> # sample 8 frames
>>> indices = sample_frame_indices(clip_len=8, frame_sample_rate=1, seg_len=container.streams.video[0].frames)
>>> video = read_video_pyav(container, indices)
>>> processor = AutoProcessor.from_pretrained("microsoft/xclip-base-patch32")
>>> model = AutoModel.from_pretrained("microsoft/xclip-base-patch32")
>>> inputs = processor(videos=list(video), return_tensors="pt")
>>> video_features = model.get_video_features(**inputs)
```
|
get_video_features
|
python
|
huggingface/transformers
|
src/transformers/models/x_clip/modeling_x_clip.py
|
https://github.com/huggingface/transformers/blob/master/src/transformers/models/x_clip/modeling_x_clip.py
|
Apache-2.0
|
def forward(
self,
input_ids: Optional[torch.LongTensor] = None,
pixel_values: Optional[torch.FloatTensor] = None,
attention_mask: Optional[torch.Tensor] = None,
position_ids: Optional[torch.LongTensor] = None,
return_loss: Optional[bool] = None,
output_attentions: Optional[bool] = None,
output_hidden_states: Optional[bool] = None,
interpolate_pos_encoding: bool = False,
return_dict: Optional[bool] = None,
) -> Union[Tuple, XCLIPOutput]:
r"""
return_loss (`bool`, *optional*):
Whether or not to return the contrastive loss.
Examples:
```python
>>> import av
>>> import torch
>>> import numpy as np
>>> from transformers import AutoProcessor, AutoModel
>>> from huggingface_hub import hf_hub_download
>>> np.random.seed(0)
>>> def read_video_pyav(container, indices):
... '''
... Decode the video with PyAV decoder.
... Args:
... container (`av.container.input.InputContainer`): PyAV container.
... indices (`List[int]`): List of frame indices to decode.
... Returns:
... result (np.ndarray): np array of decoded frames of shape (num_frames, height, width, 3).
... '''
... frames = []
... container.seek(0)
... start_index = indices[0]
... end_index = indices[-1]
... for i, frame in enumerate(container.decode(video=0)):
... if i > end_index:
... break
... if i >= start_index and i in indices:
... frames.append(frame)
... return np.stack([x.to_ndarray(format="rgb24") for x in frames])
>>> def sample_frame_indices(clip_len, frame_sample_rate, seg_len):
... '''
... Sample a given number of frame indices from the video.
... Args:
... clip_len (`int`): Total number of frames to sample.
... frame_sample_rate (`int`): Sample every n-th frame.
... seg_len (`int`): Maximum allowed index of sample's last frame.
... Returns:
... indices (`List[int]`): List of sampled frame indices
... '''
... converted_len = int(clip_len * frame_sample_rate)
... end_idx = np.random.randint(converted_len, seg_len)
... start_idx = end_idx - converted_len
... indices = np.linspace(start_idx, end_idx, num=clip_len)
... indices = np.clip(indices, start_idx, end_idx - 1).astype(np.int64)
... return indices
>>> # video clip consists of 300 frames (10 seconds at 30 FPS)
>>> file_path = hf_hub_download(
... repo_id="nielsr/video-demo", filename="eating_spaghetti.mp4", repo_type="dataset"
... )
>>> container = av.open(file_path)
>>> # sample 8 frames
>>> indices = sample_frame_indices(clip_len=8, frame_sample_rate=1, seg_len=container.streams.video[0].frames)
>>> video = read_video_pyav(container, indices)
>>> processor = AutoProcessor.from_pretrained("microsoft/xclip-base-patch32")
>>> model = AutoModel.from_pretrained("microsoft/xclip-base-patch32")
>>> inputs = processor(
... text=["playing sports", "eating spaghetti", "go shopping"],
... videos=list(video),
... return_tensors="pt",
... padding=True,
... )
>>> # forward pass
>>> with torch.no_grad():
... outputs = model(**inputs)
>>> logits_per_video = outputs.logits_per_video # this is the video-text similarity score
>>> probs = logits_per_video.softmax(dim=1) # we can take the softmax to get the label probabilities
>>> print(probs)
tensor([[1.9496e-04, 9.9960e-01, 2.0825e-04]])
```"""
# Use X_CLIP model's config for some fields (if specified) instead of those of vision & text components.
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
output_hidden_states = (
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
)
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
batch_size, num_frames, num_channels, height, width = pixel_values.shape
pixel_values = pixel_values.reshape(-1, num_channels, height, width)
vision_outputs = self.vision_model(
pixel_values=pixel_values,
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,
interpolate_pos_encoding=interpolate_pos_encoding,
return_dict=return_dict,
)
video_embeds = vision_outputs[1]
video_embeds = self.visual_projection(video_embeds)
cls_features = video_embeds.view(batch_size, num_frames, -1)
mit_outputs = self.mit(
cls_features,
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,
return_dict=return_dict,
)
video_embeds = mit_outputs[1]
img_features = vision_outputs[0][:, 1:, :]
img_features = self.prompts_visual_layernorm(img_features)
img_features = img_features @ self.prompts_visual_projection
img_features = img_features.view(batch_size, num_frames, -1, video_embeds.shape[-1])
img_features = img_features.mean(dim=1, keepdim=False)
text_outputs = self.text_model(
input_ids=input_ids,
attention_mask=attention_mask,
position_ids=position_ids,
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,
return_dict=return_dict,
)
text_embeds = text_outputs[1]
text_embeds = self.text_projection(text_embeds)
text_embeds = text_embeds.unsqueeze(0).expand(batch_size, -1, -1)
text_embeds = text_embeds + self.prompts_generator(text_embeds, img_features)
# normalized features
video_embeds = video_embeds / video_embeds.norm(p=2, dim=-1, keepdim=True)
text_embeds = text_embeds / text_embeds.norm(p=2, dim=-1, keepdim=True)
# cosine similarity as logits
logit_scale = self.logit_scale.exp()
logits_per_video = torch.einsum("bd,bkd->bk", video_embeds, logit_scale * text_embeds)
logits_per_text = logits_per_video.T
loss = None
if return_loss:
loss = x_clip_loss(logits_per_text)
if not return_dict:
output = (logits_per_video, logits_per_text, text_embeds, video_embeds, text_outputs, vision_outputs)
return ((loss,) + output) if loss is not None else output
return XCLIPOutput(
loss=loss,
logits_per_video=logits_per_video,
logits_per_text=logits_per_text,
text_embeds=text_embeds,
video_embeds=video_embeds,
text_model_output=text_outputs,
vision_model_output=vision_outputs,
mit_output=mit_outputs,
)
|
return_loss (`bool`, *optional*):
Whether or not to return the contrastive loss.
Examples:
```python
>>> import av
>>> import torch
>>> import numpy as np
>>> from transformers import AutoProcessor, AutoModel
>>> from huggingface_hub import hf_hub_download
>>> np.random.seed(0)
>>> def read_video_pyav(container, indices):
... '''
... Decode the video with PyAV decoder.
... Args:
... container (`av.container.input.InputContainer`): PyAV container.
... indices (`List[int]`): List of frame indices to decode.
... Returns:
... result (np.ndarray): np array of decoded frames of shape (num_frames, height, width, 3).
... '''
... frames = []
... container.seek(0)
... start_index = indices[0]
... end_index = indices[-1]
... for i, frame in enumerate(container.decode(video=0)):
... if i > end_index:
... break
... if i >= start_index and i in indices:
... frames.append(frame)
... return np.stack([x.to_ndarray(format="rgb24") for x in frames])
>>> def sample_frame_indices(clip_len, frame_sample_rate, seg_len):
... '''
... Sample a given number of frame indices from the video.
... Args:
... clip_len (`int`): Total number of frames to sample.
... frame_sample_rate (`int`): Sample every n-th frame.
... seg_len (`int`): Maximum allowed index of sample's last frame.
... Returns:
... indices (`List[int]`): List of sampled frame indices
... '''
... converted_len = int(clip_len * frame_sample_rate)
... end_idx = np.random.randint(converted_len, seg_len)
... start_idx = end_idx - converted_len
... indices = np.linspace(start_idx, end_idx, num=clip_len)
... indices = np.clip(indices, start_idx, end_idx - 1).astype(np.int64)
... return indices
>>> # video clip consists of 300 frames (10 seconds at 30 FPS)
>>> file_path = hf_hub_download(
... repo_id="nielsr/video-demo", filename="eating_spaghetti.mp4", repo_type="dataset"
... )
>>> container = av.open(file_path)
>>> # sample 8 frames
>>> indices = sample_frame_indices(clip_len=8, frame_sample_rate=1, seg_len=container.streams.video[0].frames)
>>> video = read_video_pyav(container, indices)
>>> processor = AutoProcessor.from_pretrained("microsoft/xclip-base-patch32")
>>> model = AutoModel.from_pretrained("microsoft/xclip-base-patch32")
>>> inputs = processor(
... text=["playing sports", "eating spaghetti", "go shopping"],
... videos=list(video),
... return_tensors="pt",
... padding=True,
... )
>>> # forward pass
>>> with torch.no_grad():
... outputs = model(**inputs)
>>> logits_per_video = outputs.logits_per_video # this is the video-text similarity score
>>> probs = logits_per_video.softmax(dim=1) # we can take the softmax to get the label probabilities
>>> print(probs)
tensor([[1.9496e-04, 9.9960e-01, 2.0825e-04]])
```
|
forward
|
python
|
huggingface/transformers
|
src/transformers/models/x_clip/modeling_x_clip.py
|
https://github.com/huggingface/transformers/blob/master/src/transformers/models/x_clip/modeling_x_clip.py
|
Apache-2.0
|
def __call__(self, text=None, videos=None, return_tensors=None, **kwargs):
"""
Main method to prepare for the model one or several sequences(s) and image(s). This method forwards the `text`
and `kwargs` arguments to CLIPTokenizerFast's [`~CLIPTokenizerFast.__call__`] if `text` is not `None` to encode
the text. To prepare the image(s), this method forwards the `videos` and `kwargs` arguments to
VideoMAEImageProcessor's [`~VideoMAEImageProcessor.__call__`] if `videos` is not `None`. Please refer to the
docstring of the above two methods for more information.
Args:
text (`str`, `List[str]`, `List[List[str]]`):
The sequence or batch of sequences to be encoded. Each sequence can be a string or a list of strings
(pretokenized string). If the sequences are provided as list of strings (pretokenized), you must set
`is_split_into_words=True` (to lift the ambiguity with a batch of sequences).
videos (`List[PIL.Image.Image]`, `List[np.ndarray]`, `List[torch.Tensor]`, `List[List[PIL.Image.Image]]`, `List[List[np.ndarray]]`,:
`List[List[torch.Tensor]]`): The video or batch of videos to be prepared. Each video should be a list
of frames, which can be either PIL images or NumPy arrays. In case of NumPy arrays/PyTorch tensors,
each frame should be of shape (H, W, C), where H and W are frame height and width, and C is a number of
channels.
return_tensors (`str` or [`~utils.TensorType`], *optional*):
If set, will return tensors of a particular framework. Acceptable values are:
- `'tf'`: Return TensorFlow `tf.constant` objects.
- `'pt'`: Return PyTorch `torch.Tensor` objects.
- `'np'`: Return NumPy `np.ndarray` objects.
- `'jax'`: Return JAX `jnp.ndarray` objects.
Returns:
[`BatchEncoding`]: A [`BatchEncoding`] with the following fields:
- **input_ids** -- List of token ids to be fed to a model. Returned when `text` is not `None`.
- **attention_mask** -- List of indices specifying which tokens should be attended to by the model (when
`return_attention_mask=True` or if *"attention_mask"* is in `self.model_input_names` and if `text` is not
`None`).
- **pixel_values** -- Pixel values to be fed to a model. Returned when `videos` is not `None`.
"""
if text is None and videos is None:
raise ValueError("You have to specify either text or videos. Both cannot be none.")
if text is not None:
encoding = self.tokenizer(text, return_tensors=return_tensors, **kwargs)
if videos is not None:
image_features = self.image_processor(videos, return_tensors=return_tensors, **kwargs)
if text is not None and videos is not None:
encoding["pixel_values"] = image_features.pixel_values
return encoding
elif text is not None:
return encoding
else:
return BatchEncoding(data=dict(**image_features), tensor_type=return_tensors)
|
Main method to prepare for the model one or several sequences(s) and image(s). This method forwards the `text`
and `kwargs` arguments to CLIPTokenizerFast's [`~CLIPTokenizerFast.__call__`] if `text` is not `None` to encode
the text. To prepare the image(s), this method forwards the `videos` and `kwargs` arguments to
VideoMAEImageProcessor's [`~VideoMAEImageProcessor.__call__`] if `videos` is not `None`. Please refer to the
docstring of the above two methods for more information.
Args:
text (`str`, `List[str]`, `List[List[str]]`):
The sequence or batch of sequences to be encoded. Each sequence can be a string or a list of strings
(pretokenized string). If the sequences are provided as list of strings (pretokenized), you must set
`is_split_into_words=True` (to lift the ambiguity with a batch of sequences).
videos (`List[PIL.Image.Image]`, `List[np.ndarray]`, `List[torch.Tensor]`, `List[List[PIL.Image.Image]]`, `List[List[np.ndarray]]`,:
`List[List[torch.Tensor]]`): The video or batch of videos to be prepared. Each video should be a list
of frames, which can be either PIL images or NumPy arrays. In case of NumPy arrays/PyTorch tensors,
each frame should be of shape (H, W, C), where H and W are frame height and width, and C is a number of
channels.
return_tensors (`str` or [`~utils.TensorType`], *optional*):
If set, will return tensors of a particular framework. Acceptable values are:
- `'tf'`: Return TensorFlow `tf.constant` objects.
- `'pt'`: Return PyTorch `torch.Tensor` objects.
- `'np'`: Return NumPy `np.ndarray` objects.
- `'jax'`: Return JAX `jnp.ndarray` objects.
Returns:
[`BatchEncoding`]: A [`BatchEncoding`] with the following fields:
- **input_ids** -- List of token ids to be fed to a model. Returned when `text` is not `None`.
- **attention_mask** -- List of indices specifying which tokens should be attended to by the model (when
`return_attention_mask=True` or if *"attention_mask"* is in `self.model_input_names` and if `text` is not
`None`).
- **pixel_values** -- Pixel values to be fed to a model. Returned when `videos` is not `None`.
|
__call__
|
python
|
huggingface/transformers
|
src/transformers/models/x_clip/processing_x_clip.py
|
https://github.com/huggingface/transformers/blob/master/src/transformers/models/x_clip/processing_x_clip.py
|
Apache-2.0
|
def get_max_height_width(
images: List[np.ndarray], input_data_format: Optional[Union[str, ChannelDimension]] = None
) -> List[int]:
"""
Get the maximum height and width across all images in a batch.
"""
if input_data_format is None:
input_data_format = infer_channel_dimension_format(images[0])
if input_data_format == ChannelDimension.FIRST:
_, max_height, max_width = max_across_indices([img.shape for img in images])
elif input_data_format == ChannelDimension.LAST:
max_height, max_width, _ = max_across_indices([img.shape for img in images])
else:
raise ValueError(f"Invalid channel dimension format: {input_data_format}")
return (max_height, max_width)
|
Get the maximum height and width across all images in a batch.
|
get_max_height_width
|
python
|
huggingface/transformers
|
src/transformers/models/yolos/image_processing_yolos.py
|
https://github.com/huggingface/transformers/blob/master/src/transformers/models/yolos/image_processing_yolos.py
|
Apache-2.0
|
def get_size_with_aspect_ratio(
image_size: Tuple[int, int], size: int, max_size: Optional[int] = None, mod_size: int = 16
) -> Tuple[int, int]:
"""
Computes the output image size given the input image size and the desired output size with multiple of divisible_size.
Args:
image_size (`Tuple[int, int]`):
The input image size.
size (`int`):
The desired output size.
max_size (`int`, *optional*):
The maximum allowed output size.
mod_size (`int`, *optional*):
The size to make multiple of mod_size.
"""
height, width = image_size
raw_size = None
if max_size is not None:
min_original_size = float(min((height, width)))
max_original_size = float(max((height, width)))
if max_original_size / min_original_size * size > max_size:
raw_size = max_size * min_original_size / max_original_size
size = int(round(raw_size))
if width < height:
ow = size
if max_size is not None and raw_size is not None:
oh = int(raw_size * height / width)
else:
oh = int(size * height / width)
elif (height <= width and height == size) or (width <= height and width == size):
oh, ow = height, width
else:
oh = size
if max_size is not None and raw_size is not None:
ow = int(raw_size * width / height)
else:
ow = int(size * width / height)
if mod_size is not None:
ow_mod = np.mod(ow, mod_size)
oh_mod = np.mod(oh, mod_size)
ow = ow - ow_mod
oh = oh - oh_mod
return (oh, ow)
|
Computes the output image size given the input image size and the desired output size with multiple of divisible_size.
Args:
image_size (`Tuple[int, int]`):
The input image size.
size (`int`):
The desired output size.
max_size (`int`, *optional*):
The maximum allowed output size.
mod_size (`int`, *optional*):
The size to make multiple of mod_size.
|
get_size_with_aspect_ratio
|
python
|
huggingface/transformers
|
src/transformers/models/yolos/image_processing_yolos.py
|
https://github.com/huggingface/transformers/blob/master/src/transformers/models/yolos/image_processing_yolos.py
|
Apache-2.0
|
def get_image_size_for_max_height_width(
input_image: np.ndarray,
max_height: int,
max_width: int,
input_data_format: Optional[Union[str, ChannelDimension]] = None,
) -> Tuple[int, int]:
"""
Computes the output image size given the input image and the maximum allowed height and width. Keep aspect ratio.
Important, even if image_height < max_height and image_width < max_width, the image will be resized
to at least one of the edges be equal to max_height or max_width.
For example:
- input_size: (100, 200), max_height: 50, max_width: 50 -> output_size: (25, 50)
- input_size: (100, 200), max_height: 200, max_width: 500 -> output_size: (200, 400)
Args:
input_image (`np.ndarray`):
The image to resize.
max_height (`int`):
The maximum allowed height.
max_width (`int`):
The maximum allowed width.
input_data_format (`ChannelDimension` or `str`, *optional*):
The channel dimension format of the input image. If not provided, it will be inferred from the input image.
"""
image_size = get_image_size(input_image, input_data_format)
height, width = image_size
height_scale = max_height / height
width_scale = max_width / width
min_scale = min(height_scale, width_scale)
new_height = int(height * min_scale)
new_width = int(width * min_scale)
return new_height, new_width
|
Computes the output image size given the input image and the maximum allowed height and width. Keep aspect ratio.
Important, even if image_height < max_height and image_width < max_width, the image will be resized
to at least one of the edges be equal to max_height or max_width.
For example:
- input_size: (100, 200), max_height: 50, max_width: 50 -> output_size: (25, 50)
- input_size: (100, 200), max_height: 200, max_width: 500 -> output_size: (200, 400)
Args:
input_image (`np.ndarray`):
The image to resize.
max_height (`int`):
The maximum allowed height.
max_width (`int`):
The maximum allowed width.
input_data_format (`ChannelDimension` or `str`, *optional*):
The channel dimension format of the input image. If not provided, it will be inferred from the input image.
|
get_image_size_for_max_height_width
|
python
|
huggingface/transformers
|
src/transformers/models/yolos/image_processing_yolos.py
|
https://github.com/huggingface/transformers/blob/master/src/transformers/models/yolos/image_processing_yolos.py
|
Apache-2.0
|
def get_resize_output_image_size(
input_image: np.ndarray,
size: Union[int, Tuple[int, int], List[int]],
max_size: Optional[int] = None,
input_data_format: Optional[Union[str, ChannelDimension]] = None,
) -> Tuple[int, int]:
"""
Computes the output image size given the input image size and the desired output size. If the desired output size
is a tuple or list, the output image size is returned as is. If the desired output size is an integer, the output
image size is computed by keeping the aspect ratio of the input image size.
Args:
input_image (`np.ndarray`):
The image to resize.
size (`int` or `Tuple[int, int]` or `List[int]`):
The desired output size.
max_size (`int`, *optional*):
The maximum allowed output size.
input_data_format (`ChannelDimension` or `str`, *optional*):
The channel dimension format of the input image. If not provided, it will be inferred from the input image.
"""
image_size = get_image_size(input_image, input_data_format)
if isinstance(size, (list, tuple)):
return size
return get_size_with_aspect_ratio(image_size, size, max_size)
|
Computes the output image size given the input image size and the desired output size. If the desired output size
is a tuple or list, the output image size is returned as is. If the desired output size is an integer, the output
image size is computed by keeping the aspect ratio of the input image size.
Args:
input_image (`np.ndarray`):
The image to resize.
size (`int` or `Tuple[int, int]` or `List[int]`):
The desired output size.
max_size (`int`, *optional*):
The maximum allowed output size.
input_data_format (`ChannelDimension` or `str`, *optional*):
The channel dimension format of the input image. If not provided, it will be inferred from the input image.
|
get_resize_output_image_size
|
python
|
huggingface/transformers
|
src/transformers/models/yolos/image_processing_yolos.py
|
https://github.com/huggingface/transformers/blob/master/src/transformers/models/yolos/image_processing_yolos.py
|
Apache-2.0
|
def get_numpy_to_framework_fn(arr) -> Callable:
"""
Returns a function that converts a numpy array to the framework of the input array.
Args:
arr (`np.ndarray`): The array to convert.
"""
if isinstance(arr, np.ndarray):
return np.array
if is_tf_available() and is_tf_tensor(arr):
import tensorflow as tf
return tf.convert_to_tensor
if is_torch_available() and is_torch_tensor(arr):
import torch
return torch.tensor
if is_flax_available() and is_jax_tensor(arr):
import jax.numpy as jnp
return jnp.array
raise ValueError(f"Cannot convert arrays of type {type(arr)}")
|
Returns a function that converts a numpy array to the framework of the input array.
Args:
arr (`np.ndarray`): The array to convert.
|
get_numpy_to_framework_fn
|
python
|
huggingface/transformers
|
src/transformers/models/yolos/image_processing_yolos.py
|
https://github.com/huggingface/transformers/blob/master/src/transformers/models/yolos/image_processing_yolos.py
|
Apache-2.0
|
def safe_squeeze(arr: np.ndarray, axis: Optional[int] = None) -> np.ndarray:
"""
Squeezes an array, but only if the axis specified has dim 1.
"""
if axis is None:
return arr.squeeze()
try:
return arr.squeeze(axis=axis)
except ValueError:
return arr
|
Squeezes an array, but only if the axis specified has dim 1.
|
safe_squeeze
|
python
|
huggingface/transformers
|
src/transformers/models/yolos/image_processing_yolos.py
|
https://github.com/huggingface/transformers/blob/master/src/transformers/models/yolos/image_processing_yolos.py
|
Apache-2.0
|
def make_pixel_mask(
image: np.ndarray, output_size: Tuple[int, int], input_data_format: Optional[Union[str, ChannelDimension]] = None
) -> np.ndarray:
"""
Make a pixel mask for the image, where 1 indicates a valid pixel and 0 indicates padding.
Args:
image (`np.ndarray`):
Image to make the pixel mask for.
output_size (`Tuple[int, int]`):
Output size of the mask.
"""
input_height, input_width = get_image_size(image, channel_dim=input_data_format)
mask = np.zeros(output_size, dtype=np.int64)
mask[:input_height, :input_width] = 1
return mask
|
Make a pixel mask for the image, where 1 indicates a valid pixel and 0 indicates padding.
Args:
image (`np.ndarray`):
Image to make the pixel mask for.
output_size (`Tuple[int, int]`):
Output size of the mask.
|
make_pixel_mask
|
python
|
huggingface/transformers
|
src/transformers/models/yolos/image_processing_yolos.py
|
https://github.com/huggingface/transformers/blob/master/src/transformers/models/yolos/image_processing_yolos.py
|
Apache-2.0
|
def convert_coco_poly_to_mask(segmentations, height: int, width: int) -> np.ndarray:
"""
Convert a COCO polygon annotation to a mask.
Args:
segmentations (`List[List[float]]`):
List of polygons, each polygon represented by a list of x-y coordinates.
height (`int`):
Height of the mask.
width (`int`):
Width of the mask.
"""
try:
from pycocotools import mask as coco_mask
except ImportError:
raise ImportError("Pycocotools is not installed in your environment.")
masks = []
for polygons in segmentations:
rles = coco_mask.frPyObjects(polygons, height, width)
mask = coco_mask.decode(rles)
if len(mask.shape) < 3:
mask = mask[..., None]
mask = np.asarray(mask, dtype=np.uint8)
mask = np.any(mask, axis=2)
masks.append(mask)
if masks:
masks = np.stack(masks, axis=0)
else:
masks = np.zeros((0, height, width), dtype=np.uint8)
return masks
|
Convert a COCO polygon annotation to a mask.
Args:
segmentations (`List[List[float]]`):
List of polygons, each polygon represented by a list of x-y coordinates.
height (`int`):
Height of the mask.
width (`int`):
Width of the mask.
|
convert_coco_poly_to_mask
|
python
|
huggingface/transformers
|
src/transformers/models/yolos/image_processing_yolos.py
|
https://github.com/huggingface/transformers/blob/master/src/transformers/models/yolos/image_processing_yolos.py
|
Apache-2.0
|
def prepare_coco_detection_annotation(
image,
target,
return_segmentation_masks: bool = False,
input_data_format: Optional[Union[ChannelDimension, str]] = None,
):
"""
Convert the target in COCO format into the format expected by DETR.
"""
image_height, image_width = get_image_size(image, channel_dim=input_data_format)
image_id = target["image_id"]
image_id = np.asarray([image_id], dtype=np.int64)
# Get all COCO annotations for the given image.
annotations = target["annotations"]
annotations = [obj for obj in annotations if "iscrowd" not in obj or obj["iscrowd"] == 0]
classes = [obj["category_id"] for obj in annotations]
classes = np.asarray(classes, dtype=np.int64)
# for conversion to coco api
area = np.asarray([obj["area"] for obj in annotations], dtype=np.float32)
iscrowd = np.asarray([obj["iscrowd"] if "iscrowd" in obj else 0 for obj in annotations], dtype=np.int64)
boxes = [obj["bbox"] for obj in annotations]
# guard against no boxes via resizing
boxes = np.asarray(boxes, dtype=np.float32).reshape(-1, 4)
boxes[:, 2:] += boxes[:, :2]
boxes[:, 0::2] = boxes[:, 0::2].clip(min=0, max=image_width)
boxes[:, 1::2] = boxes[:, 1::2].clip(min=0, max=image_height)
keep = (boxes[:, 3] > boxes[:, 1]) & (boxes[:, 2] > boxes[:, 0])
new_target = {}
new_target["image_id"] = image_id
new_target["class_labels"] = classes[keep]
new_target["boxes"] = boxes[keep]
new_target["area"] = area[keep]
new_target["iscrowd"] = iscrowd[keep]
new_target["orig_size"] = np.asarray([int(image_height), int(image_width)], dtype=np.int64)
if annotations and "keypoints" in annotations[0]:
keypoints = [obj["keypoints"] for obj in annotations]
# Converting the filtered keypoints list to a numpy array
keypoints = np.asarray(keypoints, dtype=np.float32)
# Apply the keep mask here to filter the relevant annotations
keypoints = keypoints[keep]
num_keypoints = keypoints.shape[0]
keypoints = keypoints.reshape((-1, 3)) if num_keypoints else keypoints
new_target["keypoints"] = keypoints
if return_segmentation_masks:
segmentation_masks = [obj["segmentation"] for obj in annotations]
masks = convert_coco_poly_to_mask(segmentation_masks, image_height, image_width)
new_target["masks"] = masks[keep]
return new_target
|
Convert the target in COCO format into the format expected by DETR.
|
prepare_coco_detection_annotation
|
python
|
huggingface/transformers
|
src/transformers/models/yolos/image_processing_yolos.py
|
https://github.com/huggingface/transformers/blob/master/src/transformers/models/yolos/image_processing_yolos.py
|
Apache-2.0
|
def masks_to_boxes(masks: np.ndarray) -> np.ndarray:
"""
Compute the bounding boxes around the provided panoptic segmentation masks.
Args:
masks: masks in format `[number_masks, height, width]` where N is the number of masks
Returns:
boxes: bounding boxes in format `[number_masks, 4]` in xyxy format
"""
if masks.size == 0:
return np.zeros((0, 4))
h, w = masks.shape[-2:]
y = np.arange(0, h, dtype=np.float32)
x = np.arange(0, w, dtype=np.float32)
# see https://github.com/pytorch/pytorch/issues/50276
y, x = np.meshgrid(y, x, indexing="ij")
x_mask = masks * np.expand_dims(x, axis=0)
x_max = x_mask.reshape(x_mask.shape[0], -1).max(-1)
x = np.ma.array(x_mask, mask=~(np.array(masks, dtype=bool)))
x_min = x.filled(fill_value=1e8)
x_min = x_min.reshape(x_min.shape[0], -1).min(-1)
y_mask = masks * np.expand_dims(y, axis=0)
y_max = y_mask.reshape(x_mask.shape[0], -1).max(-1)
y = np.ma.array(y_mask, mask=~(np.array(masks, dtype=bool)))
y_min = y.filled(fill_value=1e8)
y_min = y_min.reshape(y_min.shape[0], -1).min(-1)
return np.stack([x_min, y_min, x_max, y_max], 1)
|
Compute the bounding boxes around the provided panoptic segmentation masks.
Args:
masks: masks in format `[number_masks, height, width]` where N is the number of masks
Returns:
boxes: bounding boxes in format `[number_masks, 4]` in xyxy format
|
masks_to_boxes
|
python
|
huggingface/transformers
|
src/transformers/models/yolos/image_processing_yolos.py
|
https://github.com/huggingface/transformers/blob/master/src/transformers/models/yolos/image_processing_yolos.py
|
Apache-2.0
|
def prepare_coco_panoptic_annotation(
image: np.ndarray,
target: Dict,
masks_path: Union[str, pathlib.Path],
return_masks: bool = True,
input_data_format: Union[ChannelDimension, str] = None,
) -> Dict:
"""
Prepare a coco panoptic annotation for YOLOS.
"""
image_height, image_width = get_image_size(image, channel_dim=input_data_format)
annotation_path = pathlib.Path(masks_path) / target["file_name"]
new_target = {}
new_target["image_id"] = np.asarray([target["image_id"] if "image_id" in target else target["id"]], dtype=np.int64)
new_target["size"] = np.asarray([image_height, image_width], dtype=np.int64)
new_target["orig_size"] = np.asarray([image_height, image_width], dtype=np.int64)
if "segments_info" in target:
masks = np.asarray(PIL.Image.open(annotation_path), dtype=np.uint32)
masks = rgb_to_id(masks)
ids = np.array([segment_info["id"] for segment_info in target["segments_info"]])
masks = masks == ids[:, None, None]
masks = masks.astype(np.uint8)
if return_masks:
new_target["masks"] = masks
new_target["boxes"] = masks_to_boxes(masks)
new_target["class_labels"] = np.array(
[segment_info["category_id"] for segment_info in target["segments_info"]], dtype=np.int64
)
new_target["iscrowd"] = np.asarray(
[segment_info["iscrowd"] for segment_info in target["segments_info"]], dtype=np.int64
)
new_target["area"] = np.asarray(
[segment_info["area"] for segment_info in target["segments_info"]], dtype=np.float32
)
return new_target
|
Prepare a coco panoptic annotation for YOLOS.
|
prepare_coco_panoptic_annotation
|
python
|
huggingface/transformers
|
src/transformers/models/yolos/image_processing_yolos.py
|
https://github.com/huggingface/transformers/blob/master/src/transformers/models/yolos/image_processing_yolos.py
|
Apache-2.0
|
def resize_annotation(
annotation: Dict[str, Any],
orig_size: Tuple[int, int],
target_size: Tuple[int, int],
threshold: float = 0.5,
resample: PILImageResampling = PILImageResampling.NEAREST,
):
"""
Resizes an annotation to a target size.
Args:
annotation (`Dict[str, Any]`):
The annotation dictionary.
orig_size (`Tuple[int, int]`):
The original size of the input image.
target_size (`Tuple[int, int]`):
The target size of the image, as returned by the preprocessing `resize` step.
threshold (`float`, *optional*, defaults to 0.5):
The threshold used to binarize the segmentation masks.
resample (`PILImageResampling`, defaults to `PILImageResampling.NEAREST`):
The resampling filter to use when resizing the masks.
"""
ratios = tuple(float(s) / float(s_orig) for s, s_orig in zip(target_size, orig_size))
ratio_height, ratio_width = ratios
new_annotation = {}
new_annotation["size"] = target_size
for key, value in annotation.items():
if key == "boxes":
boxes = value
scaled_boxes = boxes * np.asarray([ratio_width, ratio_height, ratio_width, ratio_height], dtype=np.float32)
new_annotation["boxes"] = scaled_boxes
elif key == "area":
area = value
scaled_area = area * (ratio_width * ratio_height)
new_annotation["area"] = scaled_area
elif key == "masks":
masks = value[:, None]
masks = np.array([resize(mask, target_size, resample=resample) for mask in masks])
masks = masks.astype(np.float32)
masks = masks[:, 0] > threshold
new_annotation["masks"] = masks
elif key == "size":
new_annotation["size"] = target_size
else:
new_annotation[key] = value
return new_annotation
|
Resizes an annotation to a target size.
Args:
annotation (`Dict[str, Any]`):
The annotation dictionary.
orig_size (`Tuple[int, int]`):
The original size of the input image.
target_size (`Tuple[int, int]`):
The target size of the image, as returned by the preprocessing `resize` step.
threshold (`float`, *optional*, defaults to 0.5):
The threshold used to binarize the segmentation masks.
resample (`PILImageResampling`, defaults to `PILImageResampling.NEAREST`):
The resampling filter to use when resizing the masks.
|
resize_annotation
|
python
|
huggingface/transformers
|
src/transformers/models/yolos/image_processing_yolos.py
|
https://github.com/huggingface/transformers/blob/master/src/transformers/models/yolos/image_processing_yolos.py
|
Apache-2.0
|
def binary_mask_to_rle(mask):
"""
Converts given binary mask of shape `(height, width)` to the run-length encoding (RLE) format.
Args:
mask (`torch.Tensor` or `numpy.array`):
A binary mask tensor of shape `(height, width)` where 0 denotes background and 1 denotes the target
segment_id or class_id.
Returns:
`List`: Run-length encoded list of the binary mask. Refer to COCO API for more information about the RLE
format.
"""
if is_torch_tensor(mask):
mask = mask.numpy()
pixels = mask.flatten()
pixels = np.concatenate([[0], pixels, [0]])
runs = np.where(pixels[1:] != pixels[:-1])[0] + 1
runs[1::2] -= runs[::2]
return list(runs)
|
Converts given binary mask of shape `(height, width)` to the run-length encoding (RLE) format.
Args:
mask (`torch.Tensor` or `numpy.array`):
A binary mask tensor of shape `(height, width)` where 0 denotes background and 1 denotes the target
segment_id or class_id.
Returns:
`List`: Run-length encoded list of the binary mask. Refer to COCO API for more information about the RLE
format.
|
binary_mask_to_rle
|
python
|
huggingface/transformers
|
src/transformers/models/yolos/image_processing_yolos.py
|
https://github.com/huggingface/transformers/blob/master/src/transformers/models/yolos/image_processing_yolos.py
|
Apache-2.0
|
def convert_segmentation_to_rle(segmentation):
"""
Converts given segmentation map of shape `(height, width)` to the run-length encoding (RLE) format.
Args:
segmentation (`torch.Tensor` or `numpy.array`):
A segmentation map of shape `(height, width)` where each value denotes a segment or class id.
Returns:
`List[List]`: A list of lists, where each list is the run-length encoding of a segment / class id.
"""
segment_ids = torch.unique(segmentation)
run_length_encodings = []
for idx in segment_ids:
mask = torch.where(segmentation == idx, 1, 0)
rle = binary_mask_to_rle(mask)
run_length_encodings.append(rle)
return run_length_encodings
|
Converts given segmentation map of shape `(height, width)` to the run-length encoding (RLE) format.
Args:
segmentation (`torch.Tensor` or `numpy.array`):
A segmentation map of shape `(height, width)` where each value denotes a segment or class id.
Returns:
`List[List]`: A list of lists, where each list is the run-length encoding of a segment / class id.
|
convert_segmentation_to_rle
|
python
|
huggingface/transformers
|
src/transformers/models/yolos/image_processing_yolos.py
|
https://github.com/huggingface/transformers/blob/master/src/transformers/models/yolos/image_processing_yolos.py
|
Apache-2.0
|
def remove_low_and_no_objects(masks, scores, labels, object_mask_threshold, num_labels):
"""
Binarize the given masks using `object_mask_threshold`, it returns the associated values of `masks`, `scores` and
`labels`.
Args:
masks (`torch.Tensor`):
A tensor of shape `(num_queries, height, width)`.
scores (`torch.Tensor`):
A tensor of shape `(num_queries)`.
labels (`torch.Tensor`):
A tensor of shape `(num_queries)`.
object_mask_threshold (`float`):
A number between 0 and 1 used to binarize the masks.
Raises:
`ValueError`: Raised when the first dimension doesn't match in all input tensors.
Returns:
`Tuple[`torch.Tensor`, `torch.Tensor`, `torch.Tensor`]`: The `masks`, `scores` and `labels` without the region
< `object_mask_threshold`.
"""
if not (masks.shape[0] == scores.shape[0] == labels.shape[0]):
raise ValueError("mask, scores and labels must have the same shape!")
to_keep = labels.ne(num_labels) & (scores > object_mask_threshold)
return masks[to_keep], scores[to_keep], labels[to_keep]
|
Binarize the given masks using `object_mask_threshold`, it returns the associated values of `masks`, `scores` and
`labels`.
Args:
masks (`torch.Tensor`):
A tensor of shape `(num_queries, height, width)`.
scores (`torch.Tensor`):
A tensor of shape `(num_queries)`.
labels (`torch.Tensor`):
A tensor of shape `(num_queries)`.
object_mask_threshold (`float`):
A number between 0 and 1 used to binarize the masks.
Raises:
`ValueError`: Raised when the first dimension doesn't match in all input tensors.
Returns:
`Tuple[`torch.Tensor`, `torch.Tensor`, `torch.Tensor`]`: The `masks`, `scores` and `labels` without the region
< `object_mask_threshold`.
|
remove_low_and_no_objects
|
python
|
huggingface/transformers
|
src/transformers/models/yolos/image_processing_yolos.py
|
https://github.com/huggingface/transformers/blob/master/src/transformers/models/yolos/image_processing_yolos.py
|
Apache-2.0
|
def from_dict(cls, image_processor_dict: Dict[str, Any], **kwargs):
"""
Overrides the `from_dict` method from the base class to make sure parameters are updated if image processor is
created using from_dict and kwargs e.g. `YolosImageProcessor.from_pretrained(checkpoint, size=600,
max_size=800)`
"""
image_processor_dict = image_processor_dict.copy()
if "max_size" in kwargs:
image_processor_dict["max_size"] = kwargs.pop("max_size")
if "pad_and_return_pixel_mask" in kwargs:
image_processor_dict["pad_and_return_pixel_mask"] = kwargs.pop("pad_and_return_pixel_mask")
return super().from_dict(image_processor_dict, **kwargs)
|
Overrides the `from_dict` method from the base class to make sure parameters are updated if image processor is
created using from_dict and kwargs e.g. `YolosImageProcessor.from_pretrained(checkpoint, size=600,
max_size=800)`
|
from_dict
|
python
|
huggingface/transformers
|
src/transformers/models/yolos/image_processing_yolos.py
|
https://github.com/huggingface/transformers/blob/master/src/transformers/models/yolos/image_processing_yolos.py
|
Apache-2.0
|
def prepare_annotation(
self,
image: np.ndarray,
target: Dict,
format: Optional[AnnotationFormat] = None,
return_segmentation_masks: Optional[bool] = None,
masks_path: Optional[Union[str, pathlib.Path]] = None,
input_data_format: Optional[Union[str, ChannelDimension]] = None,
) -> Dict:
"""
Prepare an annotation for feeding into DETR model.
"""
format = format if format is not None else self.format
if format == AnnotationFormat.COCO_DETECTION:
return_segmentation_masks = False if return_segmentation_masks is None else return_segmentation_masks
target = prepare_coco_detection_annotation(
image, target, return_segmentation_masks, input_data_format=input_data_format
)
elif format == AnnotationFormat.COCO_PANOPTIC:
return_segmentation_masks = True if return_segmentation_masks is None else return_segmentation_masks
target = prepare_coco_panoptic_annotation(
image,
target,
masks_path=masks_path,
return_masks=return_segmentation_masks,
input_data_format=input_data_format,
)
else:
raise ValueError(f"Format {format} is not supported.")
return target
|
Prepare an annotation for feeding into DETR model.
|
prepare_annotation
|
python
|
huggingface/transformers
|
src/transformers/models/yolos/image_processing_yolos.py
|
https://github.com/huggingface/transformers/blob/master/src/transformers/models/yolos/image_processing_yolos.py
|
Apache-2.0
|
def resize(
self,
image: np.ndarray,
size: Dict[str, int],
resample: PILImageResampling = PILImageResampling.BILINEAR,
data_format: Optional[ChannelDimension] = None,
input_data_format: Optional[Union[str, ChannelDimension]] = None,
**kwargs,
) -> np.ndarray:
"""
Resize the image to the given size. Size can be `min_size` (scalar) or `(height, width)` tuple. If size is an
int, smaller edge of the image will be matched to this number.
Args:
image (`np.ndarray`):
Image to resize.
size (`Dict[str, int]`):
Size of the image's `(height, width)` dimensions after resizing. Available options are:
- `{"height": int, "width": int}`: The image will be resized to the exact size `(height, width)`.
Do NOT keep the aspect ratio.
- `{"shortest_edge": int, "longest_edge": int}`: The image will be resized to a maximum size respecting
the aspect ratio and keeping the shortest edge less or equal to `shortest_edge` and the longest edge
less or equal to `longest_edge`.
- `{"max_height": int, "max_width": int}`: The image will be resized to the maximum size respecting the
aspect ratio and keeping the height less or equal to `max_height` and the width less or equal to
`max_width`.
resample (`PILImageResampling`, *optional*, defaults to `PILImageResampling.BILINEAR`):
Resampling filter to use if resizing the image.
data_format (`str` or `ChannelDimension`, *optional*):
The channel dimension format for the output image. If unset, the channel dimension format of the input
image is used.
input_data_format (`ChannelDimension` or `str`, *optional*):
The channel dimension format of the input image. If not provided, it will be inferred.
"""
if "max_size" in kwargs:
logger.warning_once(
"The `max_size` parameter is deprecated and will be removed in v4.26. "
"Please specify in `size['longest_edge'] instead`.",
)
max_size = kwargs.pop("max_size")
else:
max_size = None
size = get_size_dict(size, max_size=max_size, default_to_square=False)
if "shortest_edge" in size and "longest_edge" in size:
new_size = get_resize_output_image_size(
image, size["shortest_edge"], size["longest_edge"], input_data_format=input_data_format
)
elif "max_height" in size and "max_width" in size:
new_size = get_image_size_for_max_height_width(
image, size["max_height"], size["max_width"], input_data_format=input_data_format
)
elif "height" in size and "width" in size:
new_size = (size["height"], size["width"])
else:
raise ValueError(
"Size must contain 'height' and 'width' keys or 'shortest_edge' and 'longest_edge' keys. Got"
f" {size.keys()}."
)
image = resize(
image,
size=new_size,
resample=resample,
data_format=data_format,
input_data_format=input_data_format,
**kwargs,
)
return image
|
Resize the image to the given size. Size can be `min_size` (scalar) or `(height, width)` tuple. If size is an
int, smaller edge of the image will be matched to this number.
Args:
image (`np.ndarray`):
Image to resize.
size (`Dict[str, int]`):
Size of the image's `(height, width)` dimensions after resizing. Available options are:
- `{"height": int, "width": int}`: The image will be resized to the exact size `(height, width)`.
Do NOT keep the aspect ratio.
- `{"shortest_edge": int, "longest_edge": int}`: The image will be resized to a maximum size respecting
the aspect ratio and keeping the shortest edge less or equal to `shortest_edge` and the longest edge
less or equal to `longest_edge`.
- `{"max_height": int, "max_width": int}`: The image will be resized to the maximum size respecting the
aspect ratio and keeping the height less or equal to `max_height` and the width less or equal to
`max_width`.
resample (`PILImageResampling`, *optional*, defaults to `PILImageResampling.BILINEAR`):
Resampling filter to use if resizing the image.
data_format (`str` or `ChannelDimension`, *optional*):
The channel dimension format for the output image. If unset, the channel dimension format of the input
image is used.
input_data_format (`ChannelDimension` or `str`, *optional*):
The channel dimension format of the input image. If not provided, it will be inferred.
|
resize
|
python
|
huggingface/transformers
|
src/transformers/models/yolos/image_processing_yolos.py
|
https://github.com/huggingface/transformers/blob/master/src/transformers/models/yolos/image_processing_yolos.py
|
Apache-2.0
|
def resize_annotation(
self,
annotation,
orig_size,
size,
resample: PILImageResampling = PILImageResampling.NEAREST,
) -> Dict:
"""
Resize the annotation to match the resized image. If size is an int, smaller edge of the mask will be matched
to this number.
"""
return resize_annotation(annotation, orig_size=orig_size, target_size=size, resample=resample)
|
Resize the annotation to match the resized image. If size is an int, smaller edge of the mask will be matched
to this number.
|
resize_annotation
|
python
|
huggingface/transformers
|
src/transformers/models/yolos/image_processing_yolos.py
|
https://github.com/huggingface/transformers/blob/master/src/transformers/models/yolos/image_processing_yolos.py
|
Apache-2.0
|
def rescale(
self,
image: np.ndarray,
rescale_factor: float,
data_format: Optional[Union[str, ChannelDimension]] = None,
input_data_format: Optional[Union[str, ChannelDimension]] = None,
) -> np.ndarray:
"""
Rescale the image by the given factor. image = image * rescale_factor.
Args:
image (`np.ndarray`):
Image to rescale.
rescale_factor (`float`):
The value to use for rescaling.
data_format (`str` or `ChannelDimension`, *optional*):
The channel dimension format for the output image. If unset, the channel dimension format of the input
image is used. Can be one of:
- `"channels_first"` or `ChannelDimension.FIRST`: image in (num_channels, height, width) format.
- `"channels_last"` or `ChannelDimension.LAST`: image in (height, width, num_channels) format.
input_data_format (`str` or `ChannelDimension`, *optional*):
The channel dimension format for the input image. If unset, is inferred from the input image. Can be
one of:
- `"channels_first"` or `ChannelDimension.FIRST`: image in (num_channels, height, width) format.
- `"channels_last"` or `ChannelDimension.LAST`: image in (height, width, num_channels) format.
"""
return rescale(image, rescale_factor, data_format=data_format, input_data_format=input_data_format)
|
Rescale the image by the given factor. image = image * rescale_factor.
Args:
image (`np.ndarray`):
Image to rescale.
rescale_factor (`float`):
The value to use for rescaling.
data_format (`str` or `ChannelDimension`, *optional*):
The channel dimension format for the output image. If unset, the channel dimension format of the input
image is used. Can be one of:
- `"channels_first"` or `ChannelDimension.FIRST`: image in (num_channels, height, width) format.
- `"channels_last"` or `ChannelDimension.LAST`: image in (height, width, num_channels) format.
input_data_format (`str` or `ChannelDimension`, *optional*):
The channel dimension format for the input image. If unset, is inferred from the input image. Can be
one of:
- `"channels_first"` or `ChannelDimension.FIRST`: image in (num_channels, height, width) format.
- `"channels_last"` or `ChannelDimension.LAST`: image in (height, width, num_channels) format.
|
rescale
|
python
|
huggingface/transformers
|
src/transformers/models/yolos/image_processing_yolos.py
|
https://github.com/huggingface/transformers/blob/master/src/transformers/models/yolos/image_processing_yolos.py
|
Apache-2.0
|
def _update_annotation_for_padded_image(
self,
annotation: Dict,
input_image_size: Tuple[int, int],
output_image_size: Tuple[int, int],
padding,
update_bboxes,
) -> Dict:
"""
Update the annotation for a padded image.
"""
new_annotation = {}
new_annotation["size"] = output_image_size
for key, value in annotation.items():
if key == "masks":
masks = value
masks = pad(
masks,
padding,
mode=PaddingMode.CONSTANT,
constant_values=0,
input_data_format=ChannelDimension.FIRST,
)
masks = safe_squeeze(masks, 1)
new_annotation["masks"] = masks
elif key == "boxes" and update_bboxes:
boxes = value
boxes *= np.asarray(
[
input_image_size[1] / output_image_size[1],
input_image_size[0] / output_image_size[0],
input_image_size[1] / output_image_size[1],
input_image_size[0] / output_image_size[0],
]
)
new_annotation["boxes"] = boxes
elif key == "size":
new_annotation["size"] = output_image_size
else:
new_annotation[key] = value
return new_annotation
|
Update the annotation for a padded image.
|
_update_annotation_for_padded_image
|
python
|
huggingface/transformers
|
src/transformers/models/yolos/image_processing_yolos.py
|
https://github.com/huggingface/transformers/blob/master/src/transformers/models/yolos/image_processing_yolos.py
|
Apache-2.0
|
def _pad_image(
self,
image: np.ndarray,
output_size: Tuple[int, int],
annotation: Optional[Dict[str, Any]] = None,
constant_values: Union[float, Iterable[float]] = 0,
data_format: Optional[ChannelDimension] = None,
input_data_format: Optional[Union[str, ChannelDimension]] = None,
update_bboxes: bool = True,
) -> np.ndarray:
"""
Pad an image with zeros to the given size.
"""
input_height, input_width = get_image_size(image, channel_dim=input_data_format)
output_height, output_width = output_size
pad_bottom = output_height - input_height
pad_right = output_width - input_width
padding = ((0, pad_bottom), (0, pad_right))
padded_image = pad(
image,
padding,
mode=PaddingMode.CONSTANT,
constant_values=constant_values,
data_format=data_format,
input_data_format=input_data_format,
)
if annotation is not None:
annotation = self._update_annotation_for_padded_image(
annotation, (input_height, input_width), (output_height, output_width), padding, update_bboxes
)
return padded_image, annotation
|
Pad an image with zeros to the given size.
|
_pad_image
|
python
|
huggingface/transformers
|
src/transformers/models/yolos/image_processing_yolos.py
|
https://github.com/huggingface/transformers/blob/master/src/transformers/models/yolos/image_processing_yolos.py
|
Apache-2.0
|
def pad(
self,
images: List[np.ndarray],
annotations: Optional[List[Dict[str, Any]]] = None,
constant_values: Union[float, Iterable[float]] = 0,
return_pixel_mask: bool = False,
return_tensors: Optional[Union[str, TensorType]] = None,
data_format: Optional[ChannelDimension] = None,
input_data_format: Optional[Union[str, ChannelDimension]] = None,
update_bboxes: bool = True,
pad_size: Optional[Dict[str, int]] = None,
) -> BatchFeature:
"""
Pads a batch of images to the bottom and right of the image with zeros to the size of largest height and width
in the batch and optionally returns their corresponding pixel mask.
Args:
image (`np.ndarray`):
Image to pad.
annotations (`List[Dict[str, any]]`, *optional*):
Annotations to pad along with the images. If provided, the bounding boxes will be updated to match the
padded images.
constant_values (`float` or `Iterable[float]`, *optional*):
The value to use for the padding if `mode` is `"constant"`.
return_pixel_mask (`bool`, *optional*, defaults to `True`):
Whether to return a pixel mask.
return_tensors (`str` or `TensorType`, *optional*):
The type of tensors to return. Can be one of:
- Unset: Return a list of `np.ndarray`.
- `TensorType.TENSORFLOW` or `'tf'`: Return a batch of type `tf.Tensor`.
- `TensorType.PYTORCH` or `'pt'`: Return a batch of type `torch.Tensor`.
- `TensorType.NUMPY` or `'np'`: Return a batch of type `np.ndarray`.
- `TensorType.JAX` or `'jax'`: Return a batch of type `jax.numpy.ndarray`.
data_format (`str` or `ChannelDimension`, *optional*):
The channel dimension format of the image. If not provided, it will be the same as the input image.
input_data_format (`ChannelDimension` or `str`, *optional*):
The channel dimension format of the input image. If not provided, it will be inferred.
update_bboxes (`bool`, *optional*, defaults to `True`):
Whether to update the bounding boxes in the annotations to match the padded images. If the
bounding boxes have not been converted to relative coordinates and `(centre_x, centre_y, width, height)`
format, the bounding boxes will not be updated.
pad_size (`Dict[str, int]`, *optional*):
The size `{"height": int, "width" int}` to pad the images to. Must be larger than any image size
provided for preprocessing. If `pad_size` is not provided, images will be padded to the largest
height and width in the batch.
"""
pad_size = pad_size if pad_size is not None else self.pad_size
if pad_size is not None:
padded_size = (pad_size["height"], pad_size["width"])
else:
padded_size = get_max_height_width(images, input_data_format=input_data_format)
annotation_list = annotations if annotations is not None else [None] * len(images)
padded_images = []
padded_annotations = []
for image, annotation in zip(images, annotation_list):
padded_image, padded_annotation = self._pad_image(
image,
padded_size,
annotation,
constant_values=constant_values,
data_format=data_format,
input_data_format=input_data_format,
update_bboxes=update_bboxes,
)
padded_images.append(padded_image)
padded_annotations.append(padded_annotation)
data = {"pixel_values": padded_images}
if return_pixel_mask:
masks = [
make_pixel_mask(image=image, output_size=padded_size, input_data_format=input_data_format)
for image in images
]
data["pixel_mask"] = masks
encoded_inputs = BatchFeature(data=data, tensor_type=return_tensors)
if annotations is not None:
encoded_inputs["labels"] = [
BatchFeature(annotation, tensor_type=return_tensors) for annotation in padded_annotations
]
return encoded_inputs
|
Pads a batch of images to the bottom and right of the image with zeros to the size of largest height and width
in the batch and optionally returns their corresponding pixel mask.
Args:
image (`np.ndarray`):
Image to pad.
annotations (`List[Dict[str, any]]`, *optional*):
Annotations to pad along with the images. If provided, the bounding boxes will be updated to match the
padded images.
constant_values (`float` or `Iterable[float]`, *optional*):
The value to use for the padding if `mode` is `"constant"`.
return_pixel_mask (`bool`, *optional*, defaults to `True`):
Whether to return a pixel mask.
return_tensors (`str` or `TensorType`, *optional*):
The type of tensors to return. Can be one of:
- Unset: Return a list of `np.ndarray`.
- `TensorType.TENSORFLOW` or `'tf'`: Return a batch of type `tf.Tensor`.
- `TensorType.PYTORCH` or `'pt'`: Return a batch of type `torch.Tensor`.
- `TensorType.NUMPY` or `'np'`: Return a batch of type `np.ndarray`.
- `TensorType.JAX` or `'jax'`: Return a batch of type `jax.numpy.ndarray`.
data_format (`str` or `ChannelDimension`, *optional*):
The channel dimension format of the image. If not provided, it will be the same as the input image.
input_data_format (`ChannelDimension` or `str`, *optional*):
The channel dimension format of the input image. If not provided, it will be inferred.
update_bboxes (`bool`, *optional*, defaults to `True`):
Whether to update the bounding boxes in the annotations to match the padded images. If the
bounding boxes have not been converted to relative coordinates and `(centre_x, centre_y, width, height)`
format, the bounding boxes will not be updated.
pad_size (`Dict[str, int]`, *optional*):
The size `{"height": int, "width" int}` to pad the images to. Must be larger than any image size
provided for preprocessing. If `pad_size` is not provided, images will be padded to the largest
height and width in the batch.
|
pad
|
python
|
huggingface/transformers
|
src/transformers/models/yolos/image_processing_yolos.py
|
https://github.com/huggingface/transformers/blob/master/src/transformers/models/yolos/image_processing_yolos.py
|
Apache-2.0
|
def preprocess(
self,
images: ImageInput,
annotations: Optional[Union[AnnotationType, List[AnnotationType]]] = None,
return_segmentation_masks: Optional[bool] = None,
masks_path: Optional[Union[str, pathlib.Path]] = None,
do_resize: Optional[bool] = None,
size: Optional[Dict[str, int]] = None,
resample=None, # PILImageResampling
do_rescale: Optional[bool] = None,
rescale_factor: Optional[Union[int, float]] = None,
do_normalize: Optional[bool] = None,
image_mean: Optional[Union[float, List[float]]] = None,
image_std: Optional[Union[float, List[float]]] = None,
do_convert_annotations: Optional[bool] = None,
do_pad: Optional[bool] = None,
format: Optional[Union[str, AnnotationFormat]] = None,
return_tensors: Optional[Union[TensorType, str]] = None,
data_format: Union[str, ChannelDimension] = ChannelDimension.FIRST,
input_data_format: Optional[Union[str, ChannelDimension]] = None,
pad_size: Optional[Dict[str, int]] = None,
**kwargs,
) -> BatchFeature:
"""
Preprocess an image or a batch of images so that it can be used by the model.
Args:
images (`ImageInput`):
Image or batch of images to preprocess. Expects a single or batch of images with pixel values ranging
from 0 to 255. If passing in images with pixel values between 0 and 1, set `do_rescale=False`.
annotations (`AnnotationType` or `List[AnnotationType]`, *optional*):
List of annotations associated with the image or batch of images. If annotation is for object
detection, the annotations should be a dictionary with the following keys:
- "image_id" (`int`): The image id.
- "annotations" (`List[Dict]`): List of annotations for an image. Each annotation should be a
dictionary. An image can have no annotations, in which case the list should be empty.
If annotation is for segmentation, the annotations should be a dictionary with the following keys:
- "image_id" (`int`): The image id.
- "segments_info" (`List[Dict]`): List of segments for an image. Each segment should be a dictionary.
An image can have no segments, in which case the list should be empty.
- "file_name" (`str`): The file name of the image.
return_segmentation_masks (`bool`, *optional*, defaults to self.return_segmentation_masks):
Whether to return segmentation masks.
masks_path (`str` or `pathlib.Path`, *optional*):
Path to the directory containing the segmentation masks.
do_resize (`bool`, *optional*, defaults to self.do_resize):
Whether to resize the image.
size (`Dict[str, int]`, *optional*, defaults to self.size):
Size of the image's `(height, width)` dimensions after resizing. Available options are:
- `{"height": int, "width": int}`: The image will be resized to the exact size `(height, width)`.
Do NOT keep the aspect ratio.
- `{"shortest_edge": int, "longest_edge": int}`: The image will be resized to a maximum size respecting
the aspect ratio and keeping the shortest edge less or equal to `shortest_edge` and the longest edge
less or equal to `longest_edge`.
- `{"max_height": int, "max_width": int}`: The image will be resized to the maximum size respecting the
aspect ratio and keeping the height less or equal to `max_height` and the width less or equal to
`max_width`.
resample (`PILImageResampling`, *optional*, defaults to self.resample):
Resampling filter to use when resizing the image.
do_rescale (`bool`, *optional*, defaults to self.do_rescale):
Whether to rescale the image.
rescale_factor (`float`, *optional*, defaults to self.rescale_factor):
Rescale factor to use when rescaling the image.
do_normalize (`bool`, *optional*, defaults to self.do_normalize):
Whether to normalize the image.
image_mean (`float` or `List[float]`, *optional*, defaults to self.image_mean):
Mean to use when normalizing the image.
image_std (`float` or `List[float]`, *optional*, defaults to self.image_std):
Standard deviation to use when normalizing the image.
do_convert_annotations (`bool`, *optional*, defaults to self.do_convert_annotations):
Whether to convert the annotations to the format expected by the model. Converts the bounding
boxes from the format `(top_left_x, top_left_y, width, height)` to `(center_x, center_y, width, height)`
and in relative coordinates.
do_pad (`bool`, *optional*, defaults to self.do_pad):
Whether to pad the image. If `True`, padding will be applied to the bottom and right of
the image with zeros. If `pad_size` is provided, the image will be padded to the specified
dimensions. Otherwise, the image will be padded to the maximum height and width of the batch.
format (`str` or `AnnotationFormat`, *optional*, defaults to self.format):
Format of the annotations.
return_tensors (`str` or `TensorType`, *optional*, defaults to self.return_tensors):
Type of tensors to return. If `None`, will return the list of images.
data_format (`str` or `ChannelDimension`, *optional*, defaults to self.data_format):
The channel dimension format of the image. If not provided, it will be the same as the input image.
input_data_format (`ChannelDimension` or `str`, *optional*):
The channel dimension format for the input image. If unset, the channel dimension format is inferred
from the input image. Can be one of:
- `"channels_first"` or `ChannelDimension.FIRST`: image in (num_channels, height, width) format.
- `"channels_last"` or `ChannelDimension.LAST`: image in (height, width, num_channels) format.
- `"none"` or `ChannelDimension.NONE`: image in (height, width) format.
pad_size (`Dict[str, int]`, *optional*):
The size `{"height": int, "width" int}` to pad the images to. Must be larger than any image size
provided for preprocessing. If `pad_size` is not provided, images will be padded to the largest
height and width in the batch.
"""
if "pad_and_return_pixel_mask" in kwargs:
logger.warning_once(
"The `pad_and_return_pixel_mask` argument is deprecated and will be removed in v4.33, "
"use `do_pad` instead.",
)
do_pad = kwargs.pop("pad_and_return_pixel_mask")
if "max_size" in kwargs:
logger.warning_once(
"The `max_size` argument is deprecated and will be removed in v4.33, use"
" `size['longest_edge']` instead.",
)
size = kwargs.pop("max_size")
do_resize = self.do_resize if do_resize is None else do_resize
size = self.size if size is None else size
size = get_size_dict(size=size, default_to_square=False)
resample = self.resample if resample is None else resample
do_rescale = self.do_rescale if do_rescale is None else do_rescale
rescale_factor = self.rescale_factor if rescale_factor is None else rescale_factor
do_normalize = self.do_normalize if do_normalize is None else do_normalize
image_mean = self.image_mean if image_mean is None else image_mean
image_std = self.image_std if image_std is None else image_std
do_convert_annotations = (
self.do_convert_annotations if do_convert_annotations is None else do_convert_annotations
)
do_pad = self.do_pad if do_pad is None else do_pad
pad_size = self.pad_size if pad_size is None else pad_size
format = self.format if format is None else format
validate_kwargs(captured_kwargs=kwargs.keys(), valid_processor_keys=self._valid_processor_keys)
images = make_list_of_images(images)
if not valid_images(images):
raise ValueError(
"Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, "
"torch.Tensor, tf.Tensor or jax.ndarray."
)
# Here the pad() method pads using the max of (width, height) and does not need to be validated.
validate_preprocess_arguments(
do_rescale=do_rescale,
rescale_factor=rescale_factor,
do_normalize=do_normalize,
image_mean=image_mean,
image_std=image_std,
do_resize=do_resize,
size=size,
resample=resample,
)
if annotations is not None and isinstance(annotations, dict):
annotations = [annotations]
if annotations is not None and len(images) != len(annotations):
raise ValueError(
f"The number of images ({len(images)}) and annotations ({len(annotations)}) do not match."
)
format = AnnotationFormat(format)
if annotations is not None:
validate_annotations(format, SUPPORTED_ANNOTATION_FORMATS, annotations)
if (
masks_path is not None
and format == AnnotationFormat.COCO_PANOPTIC
and not isinstance(masks_path, (pathlib.Path, str))
):
raise ValueError(
"The path to the directory containing the mask PNG files should be provided as a"
f" `pathlib.Path` or string object, but is {type(masks_path)} instead."
)
# All transformations expect numpy arrays
images = [to_numpy_array(image) for image in images]
if do_rescale and is_scaled_image(images[0]):
logger.warning_once(
"It looks like you are trying to rescale already rescaled images. If the input"
" images have pixel values between 0 and 1, set `do_rescale=False` to avoid rescaling them again."
)
if input_data_format is None:
# We assume that all images have the same channel dimension format.
input_data_format = infer_channel_dimension_format(images[0])
# prepare (COCO annotations as a list of Dict -> DETR target as a single Dict per image)
if annotations is not None:
prepared_images = []
prepared_annotations = []
for image, target in zip(images, annotations):
target = self.prepare_annotation(
image,
target,
format,
return_segmentation_masks=return_segmentation_masks,
masks_path=masks_path,
input_data_format=input_data_format,
)
prepared_images.append(image)
prepared_annotations.append(target)
images = prepared_images
annotations = prepared_annotations
del prepared_images, prepared_annotations
# transformations
if do_resize:
if annotations is not None:
resized_images, resized_annotations = [], []
for image, target in zip(images, annotations):
orig_size = get_image_size(image, input_data_format)
resized_image = self.resize(
image, size=size, resample=resample, input_data_format=input_data_format
)
resized_annotation = self.resize_annotation(
target, orig_size, get_image_size(resized_image, input_data_format)
)
resized_images.append(resized_image)
resized_annotations.append(resized_annotation)
images = resized_images
annotations = resized_annotations
del resized_images, resized_annotations
else:
images = [
self.resize(image, size=size, resample=resample, input_data_format=input_data_format)
for image in images
]
if do_rescale:
images = [self.rescale(image, rescale_factor, input_data_format=input_data_format) for image in images]
if do_normalize:
images = [
self.normalize(image, image_mean, image_std, input_data_format=input_data_format) for image in images
]
if do_convert_annotations and annotations is not None:
annotations = [
self.normalize_annotation(annotation, get_image_size(image, input_data_format))
for annotation, image in zip(annotations, images)
]
if do_pad:
# Pads images and returns their mask: {'pixel_values': ..., 'pixel_mask': ...}
encoded_inputs = self.pad(
images,
annotations=annotations,
return_pixel_mask=False,
data_format=data_format,
input_data_format=input_data_format,
update_bboxes=do_convert_annotations,
return_tensors=return_tensors,
pad_size=pad_size,
)
else:
images = [
to_channel_dimension_format(image, data_format, input_channel_dim=input_data_format)
for image in images
]
encoded_inputs = BatchFeature(data={"pixel_values": images}, tensor_type=return_tensors)
if annotations is not None:
encoded_inputs["labels"] = [
BatchFeature(annotation, tensor_type=return_tensors) for annotation in annotations
]
return encoded_inputs
|
Preprocess an image or a batch of images so that it can be used by the model.
Args:
images (`ImageInput`):
Image or batch of images to preprocess. Expects a single or batch of images with pixel values ranging
from 0 to 255. If passing in images with pixel values between 0 and 1, set `do_rescale=False`.
annotations (`AnnotationType` or `List[AnnotationType]`, *optional*):
List of annotations associated with the image or batch of images. If annotation is for object
detection, the annotations should be a dictionary with the following keys:
- "image_id" (`int`): The image id.
- "annotations" (`List[Dict]`): List of annotations for an image. Each annotation should be a
dictionary. An image can have no annotations, in which case the list should be empty.
If annotation is for segmentation, the annotations should be a dictionary with the following keys:
- "image_id" (`int`): The image id.
- "segments_info" (`List[Dict]`): List of segments for an image. Each segment should be a dictionary.
An image can have no segments, in which case the list should be empty.
- "file_name" (`str`): The file name of the image.
return_segmentation_masks (`bool`, *optional*, defaults to self.return_segmentation_masks):
Whether to return segmentation masks.
masks_path (`str` or `pathlib.Path`, *optional*):
Path to the directory containing the segmentation masks.
do_resize (`bool`, *optional*, defaults to self.do_resize):
Whether to resize the image.
size (`Dict[str, int]`, *optional*, defaults to self.size):
Size of the image's `(height, width)` dimensions after resizing. Available options are:
- `{"height": int, "width": int}`: The image will be resized to the exact size `(height, width)`.
Do NOT keep the aspect ratio.
- `{"shortest_edge": int, "longest_edge": int}`: The image will be resized to a maximum size respecting
the aspect ratio and keeping the shortest edge less or equal to `shortest_edge` and the longest edge
less or equal to `longest_edge`.
- `{"max_height": int, "max_width": int}`: The image will be resized to the maximum size respecting the
aspect ratio and keeping the height less or equal to `max_height` and the width less or equal to
`max_width`.
resample (`PILImageResampling`, *optional*, defaults to self.resample):
Resampling filter to use when resizing the image.
do_rescale (`bool`, *optional*, defaults to self.do_rescale):
Whether to rescale the image.
rescale_factor (`float`, *optional*, defaults to self.rescale_factor):
Rescale factor to use when rescaling the image.
do_normalize (`bool`, *optional*, defaults to self.do_normalize):
Whether to normalize the image.
image_mean (`float` or `List[float]`, *optional*, defaults to self.image_mean):
Mean to use when normalizing the image.
image_std (`float` or `List[float]`, *optional*, defaults to self.image_std):
Standard deviation to use when normalizing the image.
do_convert_annotations (`bool`, *optional*, defaults to self.do_convert_annotations):
Whether to convert the annotations to the format expected by the model. Converts the bounding
boxes from the format `(top_left_x, top_left_y, width, height)` to `(center_x, center_y, width, height)`
and in relative coordinates.
do_pad (`bool`, *optional*, defaults to self.do_pad):
Whether to pad the image. If `True`, padding will be applied to the bottom and right of
the image with zeros. If `pad_size` is provided, the image will be padded to the specified
dimensions. Otherwise, the image will be padded to the maximum height and width of the batch.
format (`str` or `AnnotationFormat`, *optional*, defaults to self.format):
Format of the annotations.
return_tensors (`str` or `TensorType`, *optional*, defaults to self.return_tensors):
Type of tensors to return. If `None`, will return the list of images.
data_format (`str` or `ChannelDimension`, *optional*, defaults to self.data_format):
The channel dimension format of the image. If not provided, it will be the same as the input image.
input_data_format (`ChannelDimension` or `str`, *optional*):
The channel dimension format for the input image. If unset, the channel dimension format is inferred
from the input image. Can be one of:
- `"channels_first"` or `ChannelDimension.FIRST`: image in (num_channels, height, width) format.
- `"channels_last"` or `ChannelDimension.LAST`: image in (height, width, num_channels) format.
- `"none"` or `ChannelDimension.NONE`: image in (height, width) format.
pad_size (`Dict[str, int]`, *optional*):
The size `{"height": int, "width" int}` to pad the images to. Must be larger than any image size
provided for preprocessing. If `pad_size` is not provided, images will be padded to the largest
height and width in the batch.
|
preprocess
|
python
|
huggingface/transformers
|
src/transformers/models/yolos/image_processing_yolos.py
|
https://github.com/huggingface/transformers/blob/master/src/transformers/models/yolos/image_processing_yolos.py
|
Apache-2.0
|
def post_process(self, outputs, target_sizes):
"""
Converts the raw output of [`YolosForObjectDetection`] into final bounding boxes in (top_left_x, top_left_y,
bottom_right_x, bottom_right_y) format. Only supports PyTorch.
Args:
outputs ([`YolosObjectDetectionOutput`]):
Raw outputs of the model.
target_sizes (`torch.Tensor` of shape `(batch_size, 2)`):
Tensor containing the size (height, width) of each image of the batch. For evaluation, this must be the
original image size (before any data augmentation). For visualization, this should be the image size
after data augment, but before padding.
Returns:
`List[Dict]`: A list of dictionaries, each dictionary containing the scores, labels and boxes for an image
in the batch as predicted by the model.
"""
logger.warning_once(
"`post_process` is deprecated and will be removed in v5 of Transformers, please use"
" `post_process_object_detection` instead, with `threshold=0.` for equivalent results.",
)
out_logits, out_bbox = outputs.logits, outputs.pred_boxes
if len(out_logits) != len(target_sizes):
raise ValueError("Make sure that you pass in as many target sizes as the batch dimension of the logits")
if target_sizes.shape[1] != 2:
raise ValueError("Each element of target_sizes must contain the size (h, w) of each image of the batch")
prob = nn.functional.softmax(out_logits, -1)
scores, labels = prob[..., :-1].max(-1)
# convert to [x0, y0, x1, y1] format
boxes = center_to_corners_format(out_bbox)
# and from relative [0, 1] to absolute [0, height] coordinates
img_h, img_w = target_sizes.unbind(1)
scale_fct = torch.stack([img_w, img_h, img_w, img_h], dim=1).to(boxes.device)
boxes = boxes * scale_fct[:, None, :]
results = [{"scores": s, "labels": l, "boxes": b} for s, l, b in zip(scores, labels, boxes)]
return results
|
Converts the raw output of [`YolosForObjectDetection`] into final bounding boxes in (top_left_x, top_left_y,
bottom_right_x, bottom_right_y) format. Only supports PyTorch.
Args:
outputs ([`YolosObjectDetectionOutput`]):
Raw outputs of the model.
target_sizes (`torch.Tensor` of shape `(batch_size, 2)`):
Tensor containing the size (height, width) of each image of the batch. For evaluation, this must be the
original image size (before any data augmentation). For visualization, this should be the image size
after data augment, but before padding.
Returns:
`List[Dict]`: A list of dictionaries, each dictionary containing the scores, labels and boxes for an image
in the batch as predicted by the model.
|
post_process
|
python
|
huggingface/transformers
|
src/transformers/models/yolos/image_processing_yolos.py
|
https://github.com/huggingface/transformers/blob/master/src/transformers/models/yolos/image_processing_yolos.py
|
Apache-2.0
|
def post_process_object_detection(
self, outputs, threshold: float = 0.5, target_sizes: Union[TensorType, List[Tuple]] = None
):
"""
Converts the raw output of [`YolosForObjectDetection`] into final bounding boxes in (top_left_x, top_left_y,
bottom_right_x, bottom_right_y) format. Only supports PyTorch.
Args:
outputs ([`YolosObjectDetectionOutput`]):
Raw outputs of the model.
threshold (`float`, *optional*):
Score threshold to keep object detection predictions.
target_sizes (`torch.Tensor` or `List[Tuple[int, int]]`, *optional*):
Tensor of shape `(batch_size, 2)` or list of tuples (`Tuple[int, int]`) containing the target size
`(height, width)` of each image in the batch. If unset, predictions will not be resized.
Returns:
`List[Dict]`: A list of dictionaries, each dictionary containing the scores, labels and boxes for an image
in the batch as predicted by the model.
"""
out_logits, out_bbox = outputs.logits, outputs.pred_boxes
if target_sizes is not None:
if len(out_logits) != len(target_sizes):
raise ValueError(
"Make sure that you pass in as many target sizes as the batch dimension of the logits"
)
prob = nn.functional.softmax(out_logits, -1)
scores, labels = prob[..., :-1].max(-1)
# Convert to [x0, y0, x1, y1] format
boxes = center_to_corners_format(out_bbox)
# Convert from relative [0, 1] to absolute [0, height] coordinates
if target_sizes is not None:
if isinstance(target_sizes, List):
img_h = torch.Tensor([i[0] for i in target_sizes])
img_w = torch.Tensor([i[1] for i in target_sizes])
else:
img_h, img_w = target_sizes.unbind(1)
scale_fct = torch.stack([img_w, img_h, img_w, img_h], dim=1).to(boxes.device)
boxes = boxes * scale_fct[:, None, :]
results = []
for s, l, b in zip(scores, labels, boxes):
score = s[s > threshold]
label = l[s > threshold]
box = b[s > threshold]
results.append({"scores": score, "labels": label, "boxes": box})
return results
|
Converts the raw output of [`YolosForObjectDetection`] into final bounding boxes in (top_left_x, top_left_y,
bottom_right_x, bottom_right_y) format. Only supports PyTorch.
Args:
outputs ([`YolosObjectDetectionOutput`]):
Raw outputs of the model.
threshold (`float`, *optional*):
Score threshold to keep object detection predictions.
target_sizes (`torch.Tensor` or `List[Tuple[int, int]]`, *optional*):
Tensor of shape `(batch_size, 2)` or list of tuples (`Tuple[int, int]`) containing the target size
`(height, width)` of each image in the batch. If unset, predictions will not be resized.
Returns:
`List[Dict]`: A list of dictionaries, each dictionary containing the scores, labels and boxes for an image
in the batch as predicted by the model.
|
post_process_object_detection
|
python
|
huggingface/transformers
|
src/transformers/models/yolos/image_processing_yolos.py
|
https://github.com/huggingface/transformers/blob/master/src/transformers/models/yolos/image_processing_yolos.py
|
Apache-2.0
|
def convert_coco_poly_to_mask(segmentations, height: int, width: int, device: torch.device) -> torch.Tensor:
"""
Convert a COCO polygon annotation to a mask.
Args:
segmentations (`List[List[float]]`):
List of polygons, each polygon represented by a list of x-y coordinates.
height (`int`):
Height of the mask.
width (`int`):
Width of the mask.
"""
try:
from pycocotools import mask as coco_mask
except ImportError:
raise ImportError("Pycocotools is not installed in your environment.")
masks = []
for polygons in segmentations:
rles = coco_mask.frPyObjects(polygons, height, width)
mask = coco_mask.decode(rles)
if len(mask.shape) < 3:
mask = mask[..., None]
mask = torch.as_tensor(mask, dtype=torch.uint8, device=device)
mask = torch.any(mask, axis=2)
masks.append(mask)
if masks:
masks = torch.stack(masks, axis=0)
else:
masks = torch.zeros((0, height, width), dtype=torch.uint8, device=device)
return masks
|
Convert a COCO polygon annotation to a mask.
Args:
segmentations (`List[List[float]]`):
List of polygons, each polygon represented by a list of x-y coordinates.
height (`int`):
Height of the mask.
width (`int`):
Width of the mask.
|
convert_coco_poly_to_mask
|
python
|
huggingface/transformers
|
src/transformers/models/yolos/image_processing_yolos_fast.py
|
https://github.com/huggingface/transformers/blob/master/src/transformers/models/yolos/image_processing_yolos_fast.py
|
Apache-2.0
|
def prepare_coco_detection_annotation(
image,
target,
return_segmentation_masks: bool = False,
input_data_format: Optional[Union[ChannelDimension, str]] = None,
):
"""
Convert the target in COCO format into the format expected by YOLOS.
"""
image_height, image_width = image.size()[-2:]
image_id = target["image_id"]
image_id = torch.as_tensor([image_id], dtype=torch.int64, device=image.device)
# Get all COCO annotations for the given image.
annotations = target["annotations"]
classes = []
area = []
boxes = []
keypoints = []
for obj in annotations:
if "iscrowd" not in obj or obj["iscrowd"] == 0:
classes.append(obj["category_id"])
area.append(obj["area"])
boxes.append(obj["bbox"])
if "keypoints" in obj:
keypoints.append(obj["keypoints"])
classes = torch.as_tensor(classes, dtype=torch.int64, device=image.device)
area = torch.as_tensor(area, dtype=torch.float32, device=image.device)
iscrowd = torch.zeros_like(classes, dtype=torch.int64, device=image.device)
# guard against no boxes via resizing
boxes = torch.as_tensor(boxes, dtype=torch.float32, device=image.device).reshape(-1, 4)
boxes[:, 2:] += boxes[:, :2]
boxes[:, 0::2] = boxes[:, 0::2].clip(min=0, max=image_width)
boxes[:, 1::2] = boxes[:, 1::2].clip(min=0, max=image_height)
keep = (boxes[:, 3] > boxes[:, 1]) & (boxes[:, 2] > boxes[:, 0])
new_target = {
"image_id": image_id,
"class_labels": classes[keep],
"boxes": boxes[keep],
"area": area[keep],
"iscrowd": iscrowd[keep],
"orig_size": torch.as_tensor([int(image_height), int(image_width)], dtype=torch.int64, device=image.device),
}
if keypoints:
keypoints = torch.as_tensor(keypoints, dtype=torch.float32, device=image.device)
# Apply the keep mask here to filter the relevant annotations
keypoints = keypoints[keep]
num_keypoints = keypoints.shape[0]
keypoints = keypoints.reshape((-1, 3)) if num_keypoints else keypoints
new_target["keypoints"] = keypoints
if return_segmentation_masks:
segmentation_masks = [obj["segmentation"] for obj in annotations]
masks = convert_coco_poly_to_mask(segmentation_masks, image_height, image_width, device=image.device)
new_target["masks"] = masks[keep]
return new_target
|
Convert the target in COCO format into the format expected by YOLOS.
|
prepare_coco_detection_annotation
|
python
|
huggingface/transformers
|
src/transformers/models/yolos/image_processing_yolos_fast.py
|
https://github.com/huggingface/transformers/blob/master/src/transformers/models/yolos/image_processing_yolos_fast.py
|
Apache-2.0
|
def masks_to_boxes(masks: torch.Tensor) -> torch.Tensor:
"""
Compute the bounding boxes around the provided panoptic segmentation masks.
Args:
masks: masks in format `[number_masks, height, width]` where N is the number of masks
Returns:
boxes: bounding boxes in format `[number_masks, 4]` in xyxy format
"""
if masks.numel() == 0:
return torch.zeros((0, 4), device=masks.device)
h, w = masks.shape[-2:]
y = torch.arange(0, h, dtype=torch.float32, device=masks.device)
x = torch.arange(0, w, dtype=torch.float32, device=masks.device)
# see https://github.com/pytorch/pytorch/issues/50276
y, x = torch.meshgrid(y, x, indexing="ij")
x_mask = masks * torch.unsqueeze(x, 0)
x_max = x_mask.view(x_mask.shape[0], -1).max(-1)[0]
x_min = (
torch.where(masks, x.unsqueeze(0), torch.tensor(1e8, device=masks.device)).view(masks.shape[0], -1).min(-1)[0]
)
y_mask = masks * torch.unsqueeze(y, 0)
y_max = y_mask.view(y_mask.shape[0], -1).max(-1)[0]
y_min = (
torch.where(masks, y.unsqueeze(0), torch.tensor(1e8, device=masks.device)).view(masks.shape[0], -1).min(-1)[0]
)
return torch.stack([x_min, y_min, x_max, y_max], 1)
|
Compute the bounding boxes around the provided panoptic segmentation masks.
Args:
masks: masks in format `[number_masks, height, width]` where N is the number of masks
Returns:
boxes: bounding boxes in format `[number_masks, 4]` in xyxy format
|
masks_to_boxes
|
python
|
huggingface/transformers
|
src/transformers/models/yolos/image_processing_yolos_fast.py
|
https://github.com/huggingface/transformers/blob/master/src/transformers/models/yolos/image_processing_yolos_fast.py
|
Apache-2.0
|
def rgb_to_id(color):
"""
Converts RGB color to unique ID.
"""
if isinstance(color, torch.Tensor) and len(color.shape) == 3:
if color.dtype == torch.uint8:
color = color.to(torch.int32)
return color[:, :, 0] + 256 * color[:, :, 1] + 256 * 256 * color[:, :, 2]
return int(color[0] + 256 * color[1] + 256 * 256 * color[2])
|
Converts RGB color to unique ID.
|
rgb_to_id
|
python
|
huggingface/transformers
|
src/transformers/models/yolos/image_processing_yolos_fast.py
|
https://github.com/huggingface/transformers/blob/master/src/transformers/models/yolos/image_processing_yolos_fast.py
|
Apache-2.0
|
def prepare_coco_panoptic_annotation(
image: torch.Tensor,
target: Dict,
masks_path: Union[str, pathlib.Path],
return_masks: bool = True,
input_data_format: Union[ChannelDimension, str] = None,
) -> Dict:
"""
Prepare a coco panoptic annotation for YOLOS.
"""
image_height, image_width = get_image_size(image, channel_dim=input_data_format)
annotation_path = pathlib.Path(masks_path) / target["file_name"]
new_target = {}
new_target["image_id"] = torch.as_tensor(
[target["image_id"] if "image_id" in target else target["id"]], dtype=torch.int64, device=image.device
)
new_target["size"] = torch.as_tensor([image_height, image_width], dtype=torch.int64, device=image.device)
new_target["orig_size"] = torch.as_tensor([image_height, image_width], dtype=torch.int64, device=image.device)
if "segments_info" in target:
masks = read_image(annotation_path).permute(1, 2, 0).to(dtype=torch.int32, device=image.device)
masks = rgb_to_id(masks)
ids = torch.as_tensor([segment_info["id"] for segment_info in target["segments_info"]], device=image.device)
masks = masks == ids[:, None, None]
masks = masks.to(torch.bool)
if return_masks:
new_target["masks"] = masks
new_target["boxes"] = masks_to_boxes(masks)
new_target["class_labels"] = torch.as_tensor(
[segment_info["category_id"] for segment_info in target["segments_info"]],
dtype=torch.int64,
device=image.device,
)
new_target["iscrowd"] = torch.as_tensor(
[segment_info["iscrowd"] for segment_info in target["segments_info"]],
dtype=torch.int64,
device=image.device,
)
new_target["area"] = torch.as_tensor(
[segment_info["area"] for segment_info in target["segments_info"]],
dtype=torch.float32,
device=image.device,
)
return new_target
|
Prepare a coco panoptic annotation for YOLOS.
|
prepare_coco_panoptic_annotation
|
python
|
huggingface/transformers
|
src/transformers/models/yolos/image_processing_yolos_fast.py
|
https://github.com/huggingface/transformers/blob/master/src/transformers/models/yolos/image_processing_yolos_fast.py
|
Apache-2.0
|
def get_size_with_aspect_ratio(
image_size: Tuple[int, int], size: int, max_size: Optional[int] = None, mod_size: int = 16
) -> Tuple[int, int]:
"""
Computes the output image size given the input image size and the desired output size with multiple of divisible_size.
Args:
image_size (`Tuple[int, int]`):
The input image size.
size (`int`):
The desired output size.
max_size (`int`, *optional*):
The maximum allowed output size.
mod_size (`int`, *optional*):
The size to make multiple of mod_size.
"""
height, width = image_size
raw_size = None
if max_size is not None:
min_original_size = float(min((height, width)))
max_original_size = float(max((height, width)))
if max_original_size / min_original_size * size > max_size:
raw_size = max_size * min_original_size / max_original_size
size = int(round(raw_size))
if width < height:
ow = size
if max_size is not None and raw_size is not None:
oh = int(raw_size * height / width)
else:
oh = int(size * height / width)
elif (height <= width and height == size) or (width <= height and width == size):
oh, ow = height, width
else:
oh = size
if max_size is not None and raw_size is not None:
ow = int(raw_size * width / height)
else:
ow = int(size * width / height)
if mod_size is not None:
ow_mod = torch.remainder(torch.tensor(ow), mod_size).item()
oh_mod = torch.remainder(torch.tensor(oh), mod_size).item()
ow = ow - ow_mod
oh = oh - oh_mod
return (oh, ow)
|
Computes the output image size given the input image size and the desired output size with multiple of divisible_size.
Args:
image_size (`Tuple[int, int]`):
The input image size.
size (`int`):
The desired output size.
max_size (`int`, *optional*):
The maximum allowed output size.
mod_size (`int`, *optional*):
The size to make multiple of mod_size.
|
get_size_with_aspect_ratio
|
python
|
huggingface/transformers
|
src/transformers/models/yolos/image_processing_yolos_fast.py
|
https://github.com/huggingface/transformers/blob/master/src/transformers/models/yolos/image_processing_yolos_fast.py
|
Apache-2.0
|
def from_dict(cls, image_processor_dict: Dict[str, Any], **kwargs):
"""
Overrides the `from_dict` method from the base class to make sure parameters are updated if image processor is
created using from_dict and kwargs e.g. `YolosImageProcessorFast.from_pretrained(checkpoint, size=600,
max_size=800)`
"""
image_processor_dict = image_processor_dict.copy()
if "max_size" in kwargs:
image_processor_dict["max_size"] = kwargs.pop("max_size")
if "pad_and_return_pixel_mask" in kwargs:
image_processor_dict["pad_and_return_pixel_mask"] = kwargs.pop("pad_and_return_pixel_mask")
return super().from_dict(image_processor_dict, **kwargs)
|
Overrides the `from_dict` method from the base class to make sure parameters are updated if image processor is
created using from_dict and kwargs e.g. `YolosImageProcessorFast.from_pretrained(checkpoint, size=600,
max_size=800)`
|
from_dict
|
python
|
huggingface/transformers
|
src/transformers/models/yolos/image_processing_yolos_fast.py
|
https://github.com/huggingface/transformers/blob/master/src/transformers/models/yolos/image_processing_yolos_fast.py
|
Apache-2.0
|
def prepare_annotation(
self,
image: torch.Tensor,
target: Dict,
format: Optional[AnnotationFormat] = None,
return_segmentation_masks: Optional[bool] = None,
masks_path: Optional[Union[str, pathlib.Path]] = None,
input_data_format: Optional[Union[str, ChannelDimension]] = None,
) -> Dict:
"""
Prepare an annotation for feeding into YOLOS model.
"""
format = format if format is not None else self.format
if format == AnnotationFormat.COCO_DETECTION:
return_segmentation_masks = False if return_segmentation_masks is None else return_segmentation_masks
target = prepare_coco_detection_annotation(
image, target, return_segmentation_masks, input_data_format=input_data_format
)
elif format == AnnotationFormat.COCO_PANOPTIC:
return_segmentation_masks = True if return_segmentation_masks is None else return_segmentation_masks
target = prepare_coco_panoptic_annotation(
image,
target,
masks_path=masks_path,
return_masks=return_segmentation_masks,
input_data_format=input_data_format,
)
else:
raise ValueError(f"Format {format} is not supported.")
return target
|
Prepare an annotation for feeding into YOLOS model.
|
prepare_annotation
|
python
|
huggingface/transformers
|
src/transformers/models/yolos/image_processing_yolos_fast.py
|
https://github.com/huggingface/transformers/blob/master/src/transformers/models/yolos/image_processing_yolos_fast.py
|
Apache-2.0
|
def resize(
self,
image: torch.Tensor,
size: SizeDict,
interpolation: "F.InterpolationMode" = None,
**kwargs,
) -> torch.Tensor:
"""
Resize the image to the given size. Size can be `min_size` (scalar) or `(height, width)` tuple. If size is an
int, smaller edge of the image will be matched to this number.
Args:
image (`torch.Tensor`):
Image to resize.
size (`SizeDict`):
Size of the image's `(height, width)` dimensions after resizing. Available options are:
- `{"height": int, "width": int}`: The image will be resized to the exact size `(height, width)`.
Do NOT keep the aspect ratio.
- `{"shortest_edge": int, "longest_edge": int}`: The image will be resized to a maximum size respecting
the aspect ratio and keeping the shortest edge less or equal to `shortest_edge` and the longest edge
less or equal to `longest_edge`.
- `{"max_height": int, "max_width": int}`: The image will be resized to the maximum size respecting the
aspect ratio and keeping the height less or equal to `max_height` and the width less or equal to
`max_width`.
interpolation (`InterpolationMode`, *optional*, defaults to `InterpolationMode.BILINEAR`):
Resampling filter to use if resizing the image.
"""
interpolation = interpolation if interpolation is not None else F.InterpolationMode.BILINEAR
if size.shortest_edge and size.longest_edge:
# Resize the image so that the shortest edge or the longest edge is of the given size
# while maintaining the aspect ratio of the original image.
new_size = get_size_with_aspect_ratio(
image.size()[-2:],
size["shortest_edge"],
size["longest_edge"],
)
elif size.max_height and size.max_width:
new_size = get_image_size_for_max_height_width(image.size()[-2:], size["max_height"], size["max_width"])
elif size.height and size.width:
new_size = (size["height"], size["width"])
else:
raise ValueError(
"Size must contain 'height' and 'width' keys or 'shortest_edge' and 'longest_edge' keys. Got"
f" {size.keys()}."
)
image = F.resize(
image,
size=new_size,
interpolation=interpolation,
**kwargs,
)
return image
|
Resize the image to the given size. Size can be `min_size` (scalar) or `(height, width)` tuple. If size is an
int, smaller edge of the image will be matched to this number.
Args:
image (`torch.Tensor`):
Image to resize.
size (`SizeDict`):
Size of the image's `(height, width)` dimensions after resizing. Available options are:
- `{"height": int, "width": int}`: The image will be resized to the exact size `(height, width)`.
Do NOT keep the aspect ratio.
- `{"shortest_edge": int, "longest_edge": int}`: The image will be resized to a maximum size respecting
the aspect ratio and keeping the shortest edge less or equal to `shortest_edge` and the longest edge
less or equal to `longest_edge`.
- `{"max_height": int, "max_width": int}`: The image will be resized to the maximum size respecting the
aspect ratio and keeping the height less or equal to `max_height` and the width less or equal to
`max_width`.
interpolation (`InterpolationMode`, *optional*, defaults to `InterpolationMode.BILINEAR`):
Resampling filter to use if resizing the image.
|
resize
|
python
|
huggingface/transformers
|
src/transformers/models/yolos/image_processing_yolos_fast.py
|
https://github.com/huggingface/transformers/blob/master/src/transformers/models/yolos/image_processing_yolos_fast.py
|
Apache-2.0
|
def resize_annotation(
self,
annotation: Dict[str, Any],
orig_size: Tuple[int, int],
target_size: Tuple[int, int],
threshold: float = 0.5,
interpolation: "F.InterpolationMode" = None,
):
"""
Resizes an annotation to a target size.
Args:
annotation (`Dict[str, Any]`):
The annotation dictionary.
orig_size (`Tuple[int, int]`):
The original size of the input image.
target_size (`Tuple[int, int]`):
The target size of the image, as returned by the preprocessing `resize` step.
threshold (`float`, *optional*, defaults to 0.5):
The threshold used to binarize the segmentation masks.
resample (`InterpolationMode`, defaults to `InterpolationMode.NEAREST`):
The resampling filter to use when resizing the masks.
"""
interpolation = interpolation if interpolation is not None else F.InterpolationMode.NEAREST
ratio_height, ratio_width = [target / orig for target, orig in zip(target_size, orig_size)]
new_annotation = {}
new_annotation["size"] = target_size
for key, value in annotation.items():
if key == "boxes":
boxes = value
scaled_boxes = boxes * torch.as_tensor(
[ratio_width, ratio_height, ratio_width, ratio_height], dtype=torch.float32, device=boxes.device
)
new_annotation["boxes"] = scaled_boxes
elif key == "area":
area = value
scaled_area = area * (ratio_width * ratio_height)
new_annotation["area"] = scaled_area
elif key == "masks":
masks = value[:, None]
masks = [F.resize(mask, target_size, interpolation=interpolation) for mask in masks]
masks = torch.stack(masks).to(torch.float32)
masks = masks[:, 0] > threshold
new_annotation["masks"] = masks
elif key == "size":
new_annotation["size"] = target_size
else:
new_annotation[key] = value
return new_annotation
|
Resizes an annotation to a target size.
Args:
annotation (`Dict[str, Any]`):
The annotation dictionary.
orig_size (`Tuple[int, int]`):
The original size of the input image.
target_size (`Tuple[int, int]`):
The target size of the image, as returned by the preprocessing `resize` step.
threshold (`float`, *optional*, defaults to 0.5):
The threshold used to binarize the segmentation masks.
resample (`InterpolationMode`, defaults to `InterpolationMode.NEAREST`):
The resampling filter to use when resizing the masks.
|
resize_annotation
|
python
|
huggingface/transformers
|
src/transformers/models/yolos/image_processing_yolos_fast.py
|
https://github.com/huggingface/transformers/blob/master/src/transformers/models/yolos/image_processing_yolos_fast.py
|
Apache-2.0
|
def _update_annotation_for_padded_image(
self,
annotation: Dict,
input_image_size: Tuple[int, int],
output_image_size: Tuple[int, int],
padding,
update_bboxes,
) -> Dict:
"""
Update the annotation for a padded image.
"""
new_annotation = {}
new_annotation["size"] = output_image_size
ratio_height, ratio_width = (input / output for output, input in zip(output_image_size, input_image_size))
for key, value in annotation.items():
if key == "masks":
masks = value
masks = F.pad(
masks,
padding,
fill=0,
)
masks = safe_squeeze(masks, 1)
new_annotation["masks"] = masks
elif key == "boxes" and update_bboxes:
boxes = value
boxes *= torch.as_tensor([ratio_width, ratio_height, ratio_width, ratio_height], device=boxes.device)
new_annotation["boxes"] = boxes
elif key == "size":
new_annotation["size"] = output_image_size
else:
new_annotation[key] = value
return new_annotation
|
Update the annotation for a padded image.
|
_update_annotation_for_padded_image
|
python
|
huggingface/transformers
|
src/transformers/models/yolos/image_processing_yolos_fast.py
|
https://github.com/huggingface/transformers/blob/master/src/transformers/models/yolos/image_processing_yolos_fast.py
|
Apache-2.0
|
def preprocess(
self,
images: ImageInput,
annotations: Optional[Union[AnnotationType, List[AnnotationType]]] = None,
masks_path: Optional[Union[str, pathlib.Path]] = None,
**kwargs: Unpack[YolosFastImageProcessorKwargs],
) -> BatchFeature:
r"""
annotations (`AnnotationType` or `List[AnnotationType]`, *optional*):
List of annotations associated with the image or batch of images. If annotation is for object
detection, the annotations should be a dictionary with the following keys:
- "image_id" (`int`): The image id.
- "annotations" (`List[Dict]`): List of annotations for an image. Each annotation should be a
dictionary. An image can have no annotations, in which case the list should be empty.
If annotation is for segmentation, the annotations should be a dictionary with the following keys:
- "image_id" (`int`): The image id.
- "segments_info" (`List[Dict]`): List of segments for an image. Each segment should be a dictionary.
An image can have no segments, in which case the list should be empty.
- "file_name" (`str`): The file name of the image.
masks_path (`str` or `pathlib.Path`, *optional*):
Path to the directory containing the segmentation masks.
"""
if "pad_and_return_pixel_mask" in kwargs:
kwargs["do_pad"] = kwargs.pop("pad_and_return_pixel_mask")
logger.warning_once(
"The `pad_and_return_pixel_mask` argument is deprecated and will be removed in a future version, "
"use `do_pad` instead."
)
if "max_size" in kwargs:
logger.warning_once(
"The `max_size` argument is deprecated and will be removed in a future version, use"
" `size['longest_edge']` instead."
)
kwargs["size"] = kwargs.pop("max_size")
return super().preprocess(images, annotations, masks_path, **kwargs)
|
annotations (`AnnotationType` or `List[AnnotationType]`, *optional*):
List of annotations associated with the image or batch of images. If annotation is for object
detection, the annotations should be a dictionary with the following keys:
- "image_id" (`int`): The image id.
- "annotations" (`List[Dict]`): List of annotations for an image. Each annotation should be a
dictionary. An image can have no annotations, in which case the list should be empty.
If annotation is for segmentation, the annotations should be a dictionary with the following keys:
- "image_id" (`int`): The image id.
- "segments_info" (`List[Dict]`): List of segments for an image. Each segment should be a dictionary.
An image can have no segments, in which case the list should be empty.
- "file_name" (`str`): The file name of the image.
masks_path (`str` or `pathlib.Path`, *optional*):
Path to the directory containing the segmentation masks.
|
preprocess
|
python
|
huggingface/transformers
|
src/transformers/models/yolos/image_processing_yolos_fast.py
|
https://github.com/huggingface/transformers/blob/master/src/transformers/models/yolos/image_processing_yolos_fast.py
|
Apache-2.0
|
def _preprocess(
self,
images: List["torch.Tensor"],
annotations: Optional[Union[AnnotationType, List[AnnotationType]]],
masks_path: Optional[Union[str, pathlib.Path]],
return_segmentation_masks: bool,
do_resize: bool,
size: SizeDict,
interpolation: Optional["F.InterpolationMode"],
do_rescale: bool,
rescale_factor: float,
do_normalize: bool,
do_convert_annotations: bool,
image_mean: Optional[Union[float, List[float]]],
image_std: Optional[Union[float, List[float]]],
do_pad: bool,
pad_size: Optional[Dict[str, int]],
format: Optional[Union[str, AnnotationFormat]],
return_tensors: Optional[Union[str, TensorType]],
**kwargs,
) -> BatchFeature:
"""
Preprocess an image or a batch of images so that it can be used by the model.
"""
if annotations is not None and isinstance(annotations, dict):
annotations = [annotations]
if annotations is not None and len(images) != len(annotations):
raise ValueError(
f"The number of images ({len(images)}) and annotations ({len(annotations)}) do not match."
)
format = AnnotationFormat(format)
if annotations is not None:
validate_annotations(format, SUPPORTED_ANNOTATION_FORMATS, annotations)
if (
masks_path is not None
and format == AnnotationFormat.COCO_PANOPTIC
and not isinstance(masks_path, (pathlib.Path, str))
):
raise ValueError(
"The path to the directory containing the mask PNG files should be provided as a"
f" `pathlib.Path` or string object, but is {type(masks_path)} instead."
)
data = {}
processed_images = []
processed_annotations = []
pixel_masks = [] # Initialize pixel_masks here
for image, annotation in zip(images, annotations if annotations is not None else [None] * len(images)):
# prepare (COCO annotations as a list of Dict -> YOLOS target as a single Dict per image)
if annotations is not None:
annotation = self.prepare_annotation(
image,
annotation,
format,
return_segmentation_masks=return_segmentation_masks,
masks_path=masks_path,
input_data_format=ChannelDimension.FIRST,
)
if do_resize:
resized_image = self.resize(image, size=size, interpolation=interpolation)
if annotations is not None:
annotation = self.resize_annotation(
annotation,
orig_size=image.size()[-2:],
target_size=resized_image.size()[-2:],
)
image = resized_image
# Fused rescale and normalize
image = self.rescale_and_normalize(image, do_rescale, rescale_factor, do_normalize, image_mean, image_std)
if do_convert_annotations and annotations is not None:
annotation = self.normalize_annotation(annotation, get_image_size(image, ChannelDimension.FIRST))
processed_images.append(image)
processed_annotations.append(annotation)
images = processed_images
annotations = processed_annotations if annotations is not None else None
if do_pad:
# depends on all resized image shapes so we need another loop
if pad_size is not None:
padded_size = (pad_size["height"], pad_size["width"])
else:
padded_size = get_max_height_width(images)
padded_images = []
padded_annotations = []
for image, annotation in zip(images, annotations if annotations is not None else [None] * len(images)):
# Pads images and returns their mask: {'pixel_values': ..., 'pixel_mask': ...}
if padded_size == image.size()[-2:]:
padded_images.append(image)
pixel_masks.append(torch.ones(padded_size, dtype=torch.int64, device=image.device))
padded_annotations.append(annotation)
continue
image, pixel_mask, annotation = self.pad(
image, padded_size, annotation=annotation, update_bboxes=do_convert_annotations
)
padded_images.append(image)
padded_annotations.append(annotation)
pixel_masks.append(pixel_mask)
images = padded_images
annotations = padded_annotations if annotations is not None else None
data.update({"pixel_mask": torch.stack(pixel_masks, dim=0)})
data.update({"pixel_values": torch.stack(images, dim=0)})
encoded_inputs = BatchFeature(data, tensor_type=return_tensors)
if annotations is not None:
encoded_inputs["labels"] = [
BatchFeature(annotation, tensor_type=return_tensors) for annotation in annotations
]
return encoded_inputs
|
Preprocess an image or a batch of images so that it can be used by the model.
|
_preprocess
|
python
|
huggingface/transformers
|
src/transformers/models/yolos/image_processing_yolos_fast.py
|
https://github.com/huggingface/transformers/blob/master/src/transformers/models/yolos/image_processing_yolos_fast.py
|
Apache-2.0
|
def post_process(self, outputs, target_sizes):
"""
Converts the raw output of [`YolosForObjectDetection`] into final bounding boxes in (top_left_x,
top_left_y, bottom_right_x, bottom_right_y) format. Only supports PyTorch.
Args:
outputs ([`YolosObjectDetectionOutput`]):
Raw outputs of the model.
target_sizes (`torch.Tensor` of shape `(batch_size, 2)`):
Tensor containing the size (height, width) of each image of the batch. For evaluation, this must be the
original image size (before any data augmentation). For visualization, this should be the image size
after data augment, but before padding.
Returns:
`List[Dict]`: A list of dictionaries, each dictionary containing the scores, labels and boxes for an image
in the batch as predicted by the model.
"""
logger.warning_once(
"`post_process` is deprecated and will be removed in v5 of Transformers, please use"
" `post_process_object_detection` instead, with `threshold=0.` for equivalent results.",
)
out_logits, out_bbox = outputs.logits, outputs.pred_boxes
if len(out_logits) != len(target_sizes):
raise ValueError("Make sure that you pass in as many target sizes as the batch dimension of the logits")
if target_sizes.shape[1] != 2:
raise ValueError("Each element of target_sizes must contain the size (h, w) of each image of the batch")
prob = out_logits.sigmoid()
topk_values, topk_indexes = torch.topk(prob.view(out_logits.shape[0], -1), 100, dim=1)
scores = topk_values
topk_boxes = torch.div(topk_indexes, out_logits.shape[2], rounding_mode="floor")
labels = topk_indexes % out_logits.shape[2]
boxes = center_to_corners_format(out_bbox)
boxes = torch.gather(boxes, 1, topk_boxes.unsqueeze(-1).repeat(1, 1, 4))
# and from relative [0, 1] to absolute [0, height] coordinates
img_h, img_w = target_sizes.unbind(1)
scale_fct = torch.stack([img_w, img_h, img_w, img_h], dim=1)
boxes = boxes * scale_fct[:, None, :]
results = [{"scores": s, "labels": l, "boxes": b} for s, l, b in zip(scores, labels, boxes)]
return results
|
Converts the raw output of [`YolosForObjectDetection`] into final bounding boxes in (top_left_x,
top_left_y, bottom_right_x, bottom_right_y) format. Only supports PyTorch.
Args:
outputs ([`YolosObjectDetectionOutput`]):
Raw outputs of the model.
target_sizes (`torch.Tensor` of shape `(batch_size, 2)`):
Tensor containing the size (height, width) of each image of the batch. For evaluation, this must be the
original image size (before any data augmentation). For visualization, this should be the image size
after data augment, but before padding.
Returns:
`List[Dict]`: A list of dictionaries, each dictionary containing the scores, labels and boxes for an image
in the batch as predicted by the model.
|
post_process
|
python
|
huggingface/transformers
|
src/transformers/models/yolos/image_processing_yolos_fast.py
|
https://github.com/huggingface/transformers/blob/master/src/transformers/models/yolos/image_processing_yolos_fast.py
|
Apache-2.0
|
def post_process_object_detection(
self, outputs, threshold: float = 0.5, target_sizes: Union[TensorType, List[Tuple]] = None, top_k: int = 100
):
"""
Converts the raw output of [`YolosForObjectDetection`] into final bounding boxes in (top_left_x,
top_left_y, bottom_right_x, bottom_right_y) format. Only supports PyTorch.
Args:
outputs ([`YolosObjectDetectionOutput`]):
Raw outputs of the model.
threshold (`float`, *optional*):
Score threshold to keep object detection predictions.
target_sizes (`torch.Tensor` or `List[Tuple[int, int]]`, *optional*):
Tensor of shape `(batch_size, 2)` or list of tuples (`Tuple[int, int]`) containing the target size
(height, width) of each image in the batch. If left to None, predictions will not be resized.
top_k (`int`, *optional*, defaults to 100):
Keep only top k bounding boxes before filtering by thresholding.
Returns:
`List[Dict]`: A list of dictionaries, each dictionary containing the scores, labels and boxes for an image
in the batch as predicted by the model.
"""
out_logits, out_bbox = outputs.logits, outputs.pred_boxes
if target_sizes is not None:
if len(out_logits) != len(target_sizes):
raise ValueError(
"Make sure that you pass in as many target sizes as the batch dimension of the logits"
)
prob = out_logits.sigmoid()
prob = prob.view(out_logits.shape[0], -1)
k_value = min(top_k, prob.size(1))
topk_values, topk_indexes = torch.topk(prob, k_value, dim=1)
scores = topk_values
topk_boxes = torch.div(topk_indexes, out_logits.shape[2], rounding_mode="floor")
labels = topk_indexes % out_logits.shape[2]
boxes = center_to_corners_format(out_bbox)
boxes = torch.gather(boxes, 1, topk_boxes.unsqueeze(-1).repeat(1, 1, 4))
# and from relative [0, 1] to absolute [0, height] coordinates
if target_sizes is not None:
if isinstance(target_sizes, List):
img_h = torch.Tensor([i[0] for i in target_sizes])
img_w = torch.Tensor([i[1] for i in target_sizes])
else:
img_h, img_w = target_sizes.unbind(1)
scale_fct = torch.stack([img_w, img_h, img_w, img_h], dim=1).to(boxes.device)
boxes = boxes * scale_fct[:, None, :]
results = []
for s, l, b in zip(scores, labels, boxes):
score = s[s > threshold]
label = l[s > threshold]
box = b[s > threshold]
results.append({"scores": score, "labels": label, "boxes": box})
return results
|
Converts the raw output of [`YolosForObjectDetection`] into final bounding boxes in (top_left_x,
top_left_y, bottom_right_x, bottom_right_y) format. Only supports PyTorch.
Args:
outputs ([`YolosObjectDetectionOutput`]):
Raw outputs of the model.
threshold (`float`, *optional*):
Score threshold to keep object detection predictions.
target_sizes (`torch.Tensor` or `List[Tuple[int, int]]`, *optional*):
Tensor of shape `(batch_size, 2)` or list of tuples (`Tuple[int, int]`) containing the target size
(height, width) of each image in the batch. If left to None, predictions will not be resized.
top_k (`int`, *optional*, defaults to 100):
Keep only top k bounding boxes before filtering by thresholding.
Returns:
`List[Dict]`: A list of dictionaries, each dictionary containing the scores, labels and boxes for an image
in the batch as predicted by the model.
|
post_process_object_detection
|
python
|
huggingface/transformers
|
src/transformers/models/yolos/image_processing_yolos_fast.py
|
https://github.com/huggingface/transformers/blob/master/src/transformers/models/yolos/image_processing_yolos_fast.py
|
Apache-2.0
|
def __init__(self, config: YolosConfig, add_pooling_layer: bool = True):
r"""
add_pooling_layer (bool, *optional*, defaults to `True`):
Whether to add a pooling layer
"""
super().__init__(config)
self.config = config
self.embeddings = YolosEmbeddings(config)
self.encoder = YolosEncoder(config)
self.layernorm = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps)
self.pooler = YolosPooler(config) if add_pooling_layer else None
# Initialize weights and apply final processing
self.post_init()
|
add_pooling_layer (bool, *optional*, defaults to `True`):
Whether to add a pooling layer
|
__init__
|
python
|
huggingface/transformers
|
src/transformers/models/yolos/modeling_yolos.py
|
https://github.com/huggingface/transformers/blob/master/src/transformers/models/yolos/modeling_yolos.py
|
Apache-2.0
|
def forward(
self,
pixel_values: torch.FloatTensor,
labels: Optional[List[Dict]] = None,
output_attentions: Optional[bool] = None,
output_hidden_states: Optional[bool] = None,
return_dict: Optional[bool] = None,
) -> Union[Tuple, YolosObjectDetectionOutput]:
r"""
labels (`List[Dict]` of len `(batch_size,)`, *optional*):
Labels for computing the bipartite matching loss. List of dicts, each dictionary containing at least the
following 2 keys: `'class_labels'` and `'boxes'` (the class labels and bounding boxes of an image in the
batch respectively). The class labels themselves should be a `torch.LongTensor` of len `(number of bounding
boxes in the image,)` and the boxes a `torch.FloatTensor` of shape `(number of bounding boxes in the image,
4)`.
Examples:
```python
>>> from transformers import AutoImageProcessor, AutoModelForObjectDetection
>>> import torch
>>> from PIL import Image
>>> import requests
>>> url = "http://images.cocodataset.org/val2017/000000039769.jpg"
>>> image = Image.open(requests.get(url, stream=True).raw)
>>> image_processor = AutoImageProcessor.from_pretrained("hustvl/yolos-tiny")
>>> model = AutoModelForObjectDetection.from_pretrained("hustvl/yolos-tiny")
>>> inputs = image_processor(images=image, return_tensors="pt")
>>> outputs = model(**inputs)
>>> # convert outputs (bounding boxes and class logits) to Pascal VOC format (xmin, ymin, xmax, ymax)
>>> target_sizes = torch.tensor([image.size[::-1]])
>>> results = image_processor.post_process_object_detection(outputs, threshold=0.9, target_sizes=target_sizes)[
... 0
... ]
>>> for score, label, box in zip(results["scores"], results["labels"], results["boxes"]):
... box = [round(i, 2) for i in box.tolist()]
... print(
... f"Detected {model.config.id2label[label.item()]} with confidence "
... f"{round(score.item(), 3)} at location {box}"
... )
Detected remote with confidence 0.991 at location [46.48, 72.78, 178.98, 119.3]
Detected remote with confidence 0.908 at location [336.48, 79.27, 368.23, 192.36]
Detected cat with confidence 0.934 at location [337.18, 18.06, 638.14, 373.09]
Detected cat with confidence 0.979 at location [10.93, 53.74, 313.41, 470.67]
Detected remote with confidence 0.974 at location [41.63, 72.23, 178.09, 119.99]
```"""
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
# First, sent images through YOLOS base model to obtain hidden states
outputs = self.vit(
pixel_values,
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,
return_dict=return_dict,
)
sequence_output = outputs[0]
# Take the final hidden states of the detection tokens
sequence_output = sequence_output[:, -self.config.num_detection_tokens :, :]
# Class logits + predicted bounding boxes
logits = self.class_labels_classifier(sequence_output)
pred_boxes = self.bbox_predictor(sequence_output).sigmoid()
loss, loss_dict, auxiliary_outputs = None, None, None
if labels is not None:
outputs_class, outputs_coord = None, None
if self.config.auxiliary_loss:
intermediate = outputs.intermediate_hidden_states if return_dict else outputs[4]
outputs_class = self.class_labels_classifier(intermediate)
outputs_coord = self.bbox_predictor(intermediate).sigmoid()
loss, loss_dict, auxiliary_outputs = self.loss_function(
logits, labels, self.device, pred_boxes, self.config, outputs_class, outputs_coord
)
if not return_dict:
if auxiliary_outputs is not None:
output = (logits, pred_boxes) + auxiliary_outputs + outputs
else:
output = (logits, pred_boxes) + outputs
return ((loss, loss_dict) + output) if loss is not None else output
return YolosObjectDetectionOutput(
loss=loss,
loss_dict=loss_dict,
logits=logits,
pred_boxes=pred_boxes,
auxiliary_outputs=auxiliary_outputs,
last_hidden_state=outputs.last_hidden_state,
hidden_states=outputs.hidden_states,
attentions=outputs.attentions,
)
|
labels (`List[Dict]` of len `(batch_size,)`, *optional*):
Labels for computing the bipartite matching loss. List of dicts, each dictionary containing at least the
following 2 keys: `'class_labels'` and `'boxes'` (the class labels and bounding boxes of an image in the
batch respectively). The class labels themselves should be a `torch.LongTensor` of len `(number of bounding
boxes in the image,)` and the boxes a `torch.FloatTensor` of shape `(number of bounding boxes in the image,
4)`.
Examples:
```python
>>> from transformers import AutoImageProcessor, AutoModelForObjectDetection
>>> import torch
>>> from PIL import Image
>>> import requests
>>> url = "http://images.cocodataset.org/val2017/000000039769.jpg"
>>> image = Image.open(requests.get(url, stream=True).raw)
>>> image_processor = AutoImageProcessor.from_pretrained("hustvl/yolos-tiny")
>>> model = AutoModelForObjectDetection.from_pretrained("hustvl/yolos-tiny")
>>> inputs = image_processor(images=image, return_tensors="pt")
>>> outputs = model(**inputs)
>>> # convert outputs (bounding boxes and class logits) to Pascal VOC format (xmin, ymin, xmax, ymax)
>>> target_sizes = torch.tensor([image.size[::-1]])
>>> results = image_processor.post_process_object_detection(outputs, threshold=0.9, target_sizes=target_sizes)[
... 0
... ]
>>> for score, label, box in zip(results["scores"], results["labels"], results["boxes"]):
... box = [round(i, 2) for i in box.tolist()]
... print(
... f"Detected {model.config.id2label[label.item()]} with confidence "
... f"{round(score.item(), 3)} at location {box}"
... )
Detected remote with confidence 0.991 at location [46.48, 72.78, 178.98, 119.3]
Detected remote with confidence 0.908 at location [336.48, 79.27, 368.23, 192.36]
Detected cat with confidence 0.934 at location [337.18, 18.06, 638.14, 373.09]
Detected cat with confidence 0.979 at location [10.93, 53.74, 313.41, 470.67]
Detected remote with confidence 0.974 at location [41.63, 72.23, 178.09, 119.99]
```
|
forward
|
python
|
huggingface/transformers
|
src/transformers/models/yolos/modeling_yolos.py
|
https://github.com/huggingface/transformers/blob/master/src/transformers/models/yolos/modeling_yolos.py
|
Apache-2.0
|
def get_size_with_aspect_ratio(
image_size: Tuple[int, int], size: int, max_size: Optional[int] = None, mod_size: int = 16
) -> Tuple[int, int]:
"""
Computes the output image size given the input image size and the desired output size with multiple of divisible_size.
Args:
image_size (`Tuple[int, int]`):
The input image size.
size (`int`):
The desired output size.
max_size (`int`, *optional*):
The maximum allowed output size.
mod_size (`int`, *optional*):
The size to make multiple of mod_size.
"""
height, width = image_size
raw_size = None
if max_size is not None:
min_original_size = float(min((height, width)))
max_original_size = float(max((height, width)))
if max_original_size / min_original_size * size > max_size:
raw_size = max_size * min_original_size / max_original_size
size = int(round(raw_size))
if width < height:
ow = size
if max_size is not None and raw_size is not None:
oh = int(raw_size * height / width)
else:
oh = int(size * height / width)
elif (height <= width and height == size) or (width <= height and width == size):
oh, ow = height, width
else:
oh = size
if max_size is not None and raw_size is not None:
ow = int(raw_size * width / height)
else:
ow = int(size * width / height)
if mod_size is not None:
ow_mod = torch.remainder(torch.tensor(ow), mod_size).item()
oh_mod = torch.remainder(torch.tensor(oh), mod_size).item()
ow = ow - ow_mod
oh = oh - oh_mod
return (oh, ow)
|
Computes the output image size given the input image size and the desired output size with multiple of divisible_size.
Args:
image_size (`Tuple[int, int]`):
The input image size.
size (`int`):
The desired output size.
max_size (`int`, *optional*):
The maximum allowed output size.
mod_size (`int`, *optional*):
The size to make multiple of mod_size.
|
get_size_with_aspect_ratio
|
python
|
huggingface/transformers
|
src/transformers/models/yolos/modular_yolos.py
|
https://github.com/huggingface/transformers/blob/master/src/transformers/models/yolos/modular_yolos.py
|
Apache-2.0
|
def post_process(self, outputs, target_sizes):
"""
Converts the raw output of [`YolosForObjectDetection`] into final bounding boxes in (top_left_x,
top_left_y, bottom_right_x, bottom_right_y) format. Only supports PyTorch.
Args:
outputs ([`YolosObjectDetectionOutput`]):
Raw outputs of the model.
target_sizes (`torch.Tensor` of shape `(batch_size, 2)`):
Tensor containing the size (height, width) of each image of the batch. For evaluation, this must be the
original image size (before any data augmentation). For visualization, this should be the image size
after data augment, but before padding.
Returns:
`List[Dict]`: A list of dictionaries, each dictionary containing the scores, labels and boxes for an image
in the batch as predicted by the model.
"""
logger.warning_once(
"`post_process` is deprecated and will be removed in v5 of Transformers, please use"
" `post_process_object_detection` instead, with `threshold=0.` for equivalent results.",
)
out_logits, out_bbox = outputs.logits, outputs.pred_boxes
if len(out_logits) != len(target_sizes):
raise ValueError("Make sure that you pass in as many target sizes as the batch dimension of the logits")
if target_sizes.shape[1] != 2:
raise ValueError("Each element of target_sizes must contain the size (h, w) of each image of the batch")
prob = out_logits.sigmoid()
topk_values, topk_indexes = torch.topk(prob.view(out_logits.shape[0], -1), 100, dim=1)
scores = topk_values
topk_boxes = torch.div(topk_indexes, out_logits.shape[2], rounding_mode="floor")
labels = topk_indexes % out_logits.shape[2]
boxes = center_to_corners_format(out_bbox)
boxes = torch.gather(boxes, 1, topk_boxes.unsqueeze(-1).repeat(1, 1, 4))
# and from relative [0, 1] to absolute [0, height] coordinates
img_h, img_w = target_sizes.unbind(1)
scale_fct = torch.stack([img_w, img_h, img_w, img_h], dim=1)
boxes = boxes * scale_fct[:, None, :]
results = [{"scores": s, "labels": l, "boxes": b} for s, l, b in zip(scores, labels, boxes)]
return results
|
Converts the raw output of [`YolosForObjectDetection`] into final bounding boxes in (top_left_x,
top_left_y, bottom_right_x, bottom_right_y) format. Only supports PyTorch.
Args:
outputs ([`YolosObjectDetectionOutput`]):
Raw outputs of the model.
target_sizes (`torch.Tensor` of shape `(batch_size, 2)`):
Tensor containing the size (height, width) of each image of the batch. For evaluation, this must be the
original image size (before any data augmentation). For visualization, this should be the image size
after data augment, but before padding.
Returns:
`List[Dict]`: A list of dictionaries, each dictionary containing the scores, labels and boxes for an image
in the batch as predicted by the model.
|
post_process
|
python
|
huggingface/transformers
|
src/transformers/models/yolos/modular_yolos.py
|
https://github.com/huggingface/transformers/blob/master/src/transformers/models/yolos/modular_yolos.py
|
Apache-2.0
|
def post_process_object_detection(
self, outputs, threshold: float = 0.5, target_sizes: Union[TensorType, List[Tuple]] = None, top_k: int = 100
):
"""
Converts the raw output of [`YolosForObjectDetection`] into final bounding boxes in (top_left_x,
top_left_y, bottom_right_x, bottom_right_y) format. Only supports PyTorch.
Args:
outputs ([`YolosObjectDetectionOutput`]):
Raw outputs of the model.
threshold (`float`, *optional*):
Score threshold to keep object detection predictions.
target_sizes (`torch.Tensor` or `List[Tuple[int, int]]`, *optional*):
Tensor of shape `(batch_size, 2)` or list of tuples (`Tuple[int, int]`) containing the target size
(height, width) of each image in the batch. If left to None, predictions will not be resized.
top_k (`int`, *optional*, defaults to 100):
Keep only top k bounding boxes before filtering by thresholding.
Returns:
`List[Dict]`: A list of dictionaries, each dictionary containing the scores, labels and boxes for an image
in the batch as predicted by the model.
"""
out_logits, out_bbox = outputs.logits, outputs.pred_boxes
if target_sizes is not None:
if len(out_logits) != len(target_sizes):
raise ValueError(
"Make sure that you pass in as many target sizes as the batch dimension of the logits"
)
prob = out_logits.sigmoid()
prob = prob.view(out_logits.shape[0], -1)
k_value = min(top_k, prob.size(1))
topk_values, topk_indexes = torch.topk(prob, k_value, dim=1)
scores = topk_values
topk_boxes = torch.div(topk_indexes, out_logits.shape[2], rounding_mode="floor")
labels = topk_indexes % out_logits.shape[2]
boxes = center_to_corners_format(out_bbox)
boxes = torch.gather(boxes, 1, topk_boxes.unsqueeze(-1).repeat(1, 1, 4))
# and from relative [0, 1] to absolute [0, height] coordinates
if target_sizes is not None:
if isinstance(target_sizes, List):
img_h = torch.Tensor([i[0] for i in target_sizes])
img_w = torch.Tensor([i[1] for i in target_sizes])
else:
img_h, img_w = target_sizes.unbind(1)
scale_fct = torch.stack([img_w, img_h, img_w, img_h], dim=1).to(boxes.device)
boxes = boxes * scale_fct[:, None, :]
results = []
for s, l, b in zip(scores, labels, boxes):
score = s[s > threshold]
label = l[s > threshold]
box = b[s > threshold]
results.append({"scores": score, "labels": label, "boxes": box})
return results
|
Converts the raw output of [`YolosForObjectDetection`] into final bounding boxes in (top_left_x,
top_left_y, bottom_right_x, bottom_right_y) format. Only supports PyTorch.
Args:
outputs ([`YolosObjectDetectionOutput`]):
Raw outputs of the model.
threshold (`float`, *optional*):
Score threshold to keep object detection predictions.
target_sizes (`torch.Tensor` or `List[Tuple[int, int]]`, *optional*):
Tensor of shape `(batch_size, 2)` or list of tuples (`Tuple[int, int]`) containing the target size
(height, width) of each image in the batch. If left to None, predictions will not be resized.
top_k (`int`, *optional*, defaults to 100):
Keep only top k bounding boxes before filtering by thresholding.
Returns:
`List[Dict]`: A list of dictionaries, each dictionary containing the scores, labels and boxes for an image
in the batch as predicted by the model.
|
post_process_object_detection
|
python
|
huggingface/transformers
|
src/transformers/models/yolos/modular_yolos.py
|
https://github.com/huggingface/transformers/blob/master/src/transformers/models/yolos/modular_yolos.py
|
Apache-2.0
|
def forward(
self,
input_ids: Optional[torch.Tensor] = None,
attention_mask: Optional[torch.Tensor] = None,
token_type_ids: Optional[torch.Tensor] = None,
position_ids: Optional[torch.Tensor] = None,
head_mask: Optional[torch.Tensor] = None,
inputs_embeds: Optional[torch.Tensor] = None,
labels: Optional[torch.Tensor] = None,
output_attentions: Optional[bool] = None,
output_hidden_states: Optional[bool] = None,
return_dict: Optional[bool] = None,
) -> Union[Tuple, MaskedLMOutput]:
r"""
labels (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):
Labels for computing the masked language modeling loss. Indices should be in `[-100, 0, ...,
config.vocab_size]` (see `input_ids` docstring) Tokens with indices set to `-100` are ignored (masked), the
loss is only computed for the tokens with labels in `[0, ..., config.vocab_size]`.
"""
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
outputs = self.yoso(
input_ids,
attention_mask=attention_mask,
token_type_ids=token_type_ids,
position_ids=position_ids,
head_mask=head_mask,
inputs_embeds=inputs_embeds,
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,
return_dict=return_dict,
)
sequence_output = outputs[0]
prediction_scores = self.cls(sequence_output)
masked_lm_loss = None
if labels is not None:
loss_fct = CrossEntropyLoss() # -100 index = padding token
masked_lm_loss = loss_fct(prediction_scores.view(-1, self.config.vocab_size), labels.view(-1))
if not return_dict:
output = (prediction_scores,) + outputs[1:]
return ((masked_lm_loss,) + output) if masked_lm_loss is not None else output
return MaskedLMOutput(
loss=masked_lm_loss,
logits=prediction_scores,
hidden_states=outputs.hidden_states,
attentions=outputs.attentions,
)
|
labels (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):
Labels for computing the masked language modeling loss. Indices should be in `[-100, 0, ...,
config.vocab_size]` (see `input_ids` docstring) Tokens with indices set to `-100` are ignored (masked), the
loss is only computed for the tokens with labels in `[0, ..., config.vocab_size]`.
|
forward
|
python
|
huggingface/transformers
|
src/transformers/models/yoso/modeling_yoso.py
|
https://github.com/huggingface/transformers/blob/master/src/transformers/models/yoso/modeling_yoso.py
|
Apache-2.0
|
def forward(
self,
input_ids: Optional[torch.Tensor] = None,
attention_mask: Optional[torch.Tensor] = None,
token_type_ids: Optional[torch.Tensor] = None,
position_ids: Optional[torch.Tensor] = None,
head_mask: Optional[torch.Tensor] = None,
inputs_embeds: Optional[torch.Tensor] = None,
labels: Optional[torch.Tensor] = None,
output_attentions: Optional[bool] = None,
output_hidden_states: Optional[bool] = None,
return_dict: Optional[bool] = None,
) -> Union[Tuple, SequenceClassifierOutput]:
r"""
labels (`torch.LongTensor` of shape `(batch_size,)`, *optional*):
Labels for computing the sequence classification/regression loss. Indices should be in `[0, ...,
config.num_labels - 1]`. If `config.num_labels == 1` a regression loss is computed (Mean-Square loss), If
`config.num_labels > 1` a classification loss is computed (Cross-Entropy).
"""
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
outputs = self.yoso(
input_ids,
attention_mask=attention_mask,
token_type_ids=token_type_ids,
position_ids=position_ids,
head_mask=head_mask,
inputs_embeds=inputs_embeds,
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,
return_dict=return_dict,
)
sequence_output = outputs[0]
logits = self.classifier(sequence_output)
loss = None
if labels is not None:
if self.config.problem_type is None:
if self.num_labels == 1:
self.config.problem_type = "regression"
elif self.num_labels > 1 and (labels.dtype == torch.long or labels.dtype == torch.int):
self.config.problem_type = "single_label_classification"
else:
self.config.problem_type = "multi_label_classification"
if self.config.problem_type == "regression":
loss_fct = MSELoss()
if self.num_labels == 1:
loss = loss_fct(logits.squeeze(), labels.squeeze())
else:
loss = loss_fct(logits, labels)
elif self.config.problem_type == "single_label_classification":
loss_fct = CrossEntropyLoss()
loss = loss_fct(logits.view(-1, self.num_labels), labels.view(-1))
elif self.config.problem_type == "multi_label_classification":
loss_fct = BCEWithLogitsLoss()
loss = loss_fct(logits, labels)
if not return_dict:
output = (logits,) + outputs[1:]
return ((loss,) + output) if loss is not None else output
return SequenceClassifierOutput(
loss=loss,
logits=logits,
hidden_states=outputs.hidden_states,
attentions=outputs.attentions,
)
|
labels (`torch.LongTensor` of shape `(batch_size,)`, *optional*):
Labels for computing the sequence classification/regression loss. Indices should be in `[0, ...,
config.num_labels - 1]`. If `config.num_labels == 1` a regression loss is computed (Mean-Square loss), If
`config.num_labels > 1` a classification loss is computed (Cross-Entropy).
|
forward
|
python
|
huggingface/transformers
|
src/transformers/models/yoso/modeling_yoso.py
|
https://github.com/huggingface/transformers/blob/master/src/transformers/models/yoso/modeling_yoso.py
|
Apache-2.0
|
def forward(
self,
input_ids: Optional[torch.Tensor] = None,
attention_mask: Optional[torch.Tensor] = None,
token_type_ids: Optional[torch.Tensor] = None,
position_ids: Optional[torch.Tensor] = None,
head_mask: Optional[torch.Tensor] = None,
inputs_embeds: Optional[torch.Tensor] = None,
labels: Optional[torch.Tensor] = None,
output_attentions: Optional[bool] = None,
output_hidden_states: Optional[bool] = None,
return_dict: Optional[bool] = None,
) -> Union[Tuple, MultipleChoiceModelOutput]:
r"""
input_ids (`torch.LongTensor` of shape `(batch_size, num_choices, sequence_length)`):
Indices of input sequence tokens in the vocabulary.
Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and
[`PreTrainedTokenizer.__call__`] for details.
[What are input IDs?](../glossary#input-ids)
token_type_ids (`torch.LongTensor` of shape `(batch_size, num_choices, sequence_length)`, *optional*):
Segment token indices to indicate first and second portions of the inputs. Indices are selected in `[0,
1]`:
- 0 corresponds to a *sentence A* token,
- 1 corresponds to a *sentence B* token.
[What are token type IDs?](../glossary#token-type-ids)
position_ids (`torch.LongTensor` of shape `(batch_size, num_choices, sequence_length)`, *optional*):
Indices of positions of each input sequence tokens in the position embeddings. Selected in the range `[0,
config.max_position_embeddings - 1]`.
[What are position IDs?](../glossary#position-ids)
inputs_embeds (`torch.FloatTensor` of shape `(batch_size, num_choices, sequence_length, hidden_size)`, *optional*):
Optionally, instead of passing `input_ids` you can choose to directly pass an embedded representation. This
is useful if you want more control over how to convert *input_ids* indices into associated vectors than the
model's internal embedding lookup matrix.
labels (`torch.LongTensor` of shape `(batch_size,)`, *optional*):
Labels for computing the multiple choice classification loss. Indices should be in `[0, ...,
num_choices-1]` where `num_choices` is the size of the second dimension of the input tensors. (See
`input_ids` above)
"""
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
num_choices = input_ids.shape[1] if input_ids is not None else inputs_embeds.shape[1]
input_ids = input_ids.view(-1, input_ids.size(-1)) if input_ids is not None else None
attention_mask = attention_mask.view(-1, attention_mask.size(-1)) if attention_mask is not None else None
token_type_ids = token_type_ids.view(-1, token_type_ids.size(-1)) if token_type_ids is not None else None
position_ids = position_ids.view(-1, position_ids.size(-1)) if position_ids is not None else None
inputs_embeds = (
inputs_embeds.view(-1, inputs_embeds.size(-2), inputs_embeds.size(-1))
if inputs_embeds is not None
else None
)
outputs = self.yoso(
input_ids,
attention_mask=attention_mask,
token_type_ids=token_type_ids,
position_ids=position_ids,
head_mask=head_mask,
inputs_embeds=inputs_embeds,
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,
return_dict=return_dict,
)
hidden_state = outputs[0] # (bs * num_choices, seq_len, dim)
pooled_output = hidden_state[:, 0] # (bs * num_choices, dim)
pooled_output = self.pre_classifier(pooled_output) # (bs * num_choices, dim)
pooled_output = nn.ReLU()(pooled_output) # (bs * num_choices, dim)
logits = self.classifier(pooled_output)
reshaped_logits = logits.view(-1, num_choices)
loss = None
if labels is not None:
loss_fct = CrossEntropyLoss()
loss = loss_fct(reshaped_logits, labels)
if not return_dict:
output = (reshaped_logits,) + outputs[1:]
return ((loss,) + output) if loss is not None else output
return MultipleChoiceModelOutput(
loss=loss,
logits=reshaped_logits,
hidden_states=outputs.hidden_states,
attentions=outputs.attentions,
)
|
input_ids (`torch.LongTensor` of shape `(batch_size, num_choices, sequence_length)`):
Indices of input sequence tokens in the vocabulary.
Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and
[`PreTrainedTokenizer.__call__`] for details.
[What are input IDs?](../glossary#input-ids)
token_type_ids (`torch.LongTensor` of shape `(batch_size, num_choices, sequence_length)`, *optional*):
Segment token indices to indicate first and second portions of the inputs. Indices are selected in `[0,
1]`:
- 0 corresponds to a *sentence A* token,
- 1 corresponds to a *sentence B* token.
[What are token type IDs?](../glossary#token-type-ids)
position_ids (`torch.LongTensor` of shape `(batch_size, num_choices, sequence_length)`, *optional*):
Indices of positions of each input sequence tokens in the position embeddings. Selected in the range `[0,
config.max_position_embeddings - 1]`.
[What are position IDs?](../glossary#position-ids)
inputs_embeds (`torch.FloatTensor` of shape `(batch_size, num_choices, sequence_length, hidden_size)`, *optional*):
Optionally, instead of passing `input_ids` you can choose to directly pass an embedded representation. This
is useful if you want more control over how to convert *input_ids* indices into associated vectors than the
model's internal embedding lookup matrix.
labels (`torch.LongTensor` of shape `(batch_size,)`, *optional*):
Labels for computing the multiple choice classification loss. Indices should be in `[0, ...,
num_choices-1]` where `num_choices` is the size of the second dimension of the input tensors. (See
`input_ids` above)
|
forward
|
python
|
huggingface/transformers
|
src/transformers/models/yoso/modeling_yoso.py
|
https://github.com/huggingface/transformers/blob/master/src/transformers/models/yoso/modeling_yoso.py
|
Apache-2.0
|
def forward(
self,
input_ids: Optional[torch.Tensor] = None,
attention_mask: Optional[torch.Tensor] = None,
token_type_ids: Optional[torch.Tensor] = None,
position_ids: Optional[torch.Tensor] = None,
head_mask: Optional[torch.Tensor] = None,
inputs_embeds: Optional[torch.Tensor] = None,
labels: Optional[torch.Tensor] = None,
output_attentions: Optional[bool] = None,
output_hidden_states: Optional[bool] = None,
return_dict: Optional[bool] = None,
) -> Union[Tuple, TokenClassifierOutput]:
r"""
labels (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):
Labels for computing the token classification loss. Indices should be in `[0, ..., config.num_labels - 1]`.
"""
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
outputs = self.yoso(
input_ids,
attention_mask=attention_mask,
token_type_ids=token_type_ids,
position_ids=position_ids,
head_mask=head_mask,
inputs_embeds=inputs_embeds,
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,
return_dict=return_dict,
)
sequence_output = outputs[0]
sequence_output = self.dropout(sequence_output)
logits = self.classifier(sequence_output)
loss = None
if labels is not None:
loss_fct = CrossEntropyLoss()
# Only keep active parts of the loss
if attention_mask is not None:
active_loss = attention_mask.view(-1) == 1
active_logits = logits.view(-1, self.num_labels)
active_labels = torch.where(
active_loss, labels.view(-1), torch.tensor(loss_fct.ignore_index).type_as(labels)
)
loss = loss_fct(active_logits, active_labels)
else:
loss = loss_fct(logits.view(-1, self.num_labels), labels.view(-1))
if not return_dict:
output = (logits,) + outputs[1:]
return ((loss,) + output) if loss is not None else output
return TokenClassifierOutput(
loss=loss,
logits=logits,
hidden_states=outputs.hidden_states,
attentions=outputs.attentions,
)
|
labels (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):
Labels for computing the token classification loss. Indices should be in `[0, ..., config.num_labels - 1]`.
|
forward
|
python
|
huggingface/transformers
|
src/transformers/models/yoso/modeling_yoso.py
|
https://github.com/huggingface/transformers/blob/master/src/transformers/models/yoso/modeling_yoso.py
|
Apache-2.0
|
def repeat_kv(hidden_states: torch.Tensor, n_rep: int) -> torch.Tensor:
"""
This is the equivalent of torch.repeat_interleave(x, dim=1, repeats=n_rep). The hidden states go from (batch,
num_key_value_heads, seqlen, head_dim) to (batch, num_attention_heads, seqlen, head_dim)
"""
batch, num_key_value_heads, slen, head_dim = hidden_states.shape
if n_rep == 1:
return hidden_states
hidden_states = hidden_states[:, :, None, :, :].expand(batch, num_key_value_heads, n_rep, slen, head_dim)
return hidden_states.reshape(batch, num_key_value_heads * n_rep, slen, head_dim)
|
This is the equivalent of torch.repeat_interleave(x, dim=1, repeats=n_rep). The hidden states go from (batch,
num_key_value_heads, seqlen, head_dim) to (batch, num_attention_heads, seqlen, head_dim)
|
repeat_kv
|
python
|
huggingface/transformers
|
src/transformers/models/zamba/modeling_zamba.py
|
https://github.com/huggingface/transformers/blob/master/src/transformers/models/zamba/modeling_zamba.py
|
Apache-2.0
|
def reorder_cache(self, beam_idx: torch.LongTensor):
"""Reorders the cache for beam search, given the selected beam indices."""
for layer_idx in range(len(self.key_cache)):
device = self.key_cache[layer_idx].device
self.key_cache[layer_idx] = self.key_cache[layer_idx].index_select(0, beam_idx.to(device))
device = self.value_cache[layer_idx].device
self.value_cache[layer_idx] = self.value_cache[layer_idx].index_select(0, beam_idx.to(device))
device = self.conv_states[layer_idx].device
self.conv_states[layer_idx] = self.conv_states[layer_idx].index_select(0, beam_idx.to(device))
device = self.ssm_states[layer_idx].device
self.ssm_states[layer_idx] = self.ssm_states[layer_idx].index_select(0, beam_idx.to(device))
|
Reorders the cache for beam search, given the selected beam indices.
|
reorder_cache
|
python
|
huggingface/transformers
|
src/transformers/models/zamba/modeling_zamba.py
|
https://github.com/huggingface/transformers/blob/master/src/transformers/models/zamba/modeling_zamba.py
|
Apache-2.0
|
def get_seq_length(self, layer_idx: Optional[int] = 0) -> int:
"""Returns the sequence length of the cached states. A layer index can be optionally passed."""
# take any layer that contains cache and not empty tensor
layer_idx = self.transformer_layers[0] if layer_idx not in self.transformer_layers else layer_idx
if len(self.key_cache) <= layer_idx:
return 0
return self.key_cache[layer_idx].shape[-2]
|
Returns the sequence length of the cached states. A layer index can be optionally passed.
|
get_seq_length
|
python
|
huggingface/transformers
|
src/transformers/models/zamba/modeling_zamba.py
|
https://github.com/huggingface/transformers/blob/master/src/transformers/models/zamba/modeling_zamba.py
|
Apache-2.0
|
Subsets and Splits
No community queries yet
The top public SQL queries from the community will appear here once available.