code
stringlengths
66
870k
docstring
stringlengths
19
26.7k
func_name
stringlengths
1
138
language
stringclasses
1 value
repo
stringlengths
7
68
path
stringlengths
5
324
url
stringlengths
46
389
license
stringclasses
7 values
def test_ohe_infrequent_two_levels_user_cats_one_frequent(kwargs): """'a' is the only frequent category, all other categories are infrequent.""" X_train = np.array([["a"] * 5 + ["e"] * 30], dtype=object).T ohe = OneHotEncoder( categories=[["c", "d", "a", "b"]], sparse_output=False, handle_unknown="infrequent_if_exist", **kwargs, ).fit(X_train) X_test = [["a"], ["b"], ["c"], ["d"], ["e"]] expected = np.array([[1, 0], [0, 1], [0, 1], [0, 1], [0, 1]]) X_trans = ohe.transform(X_test) assert_allclose(expected, X_trans) # 'a' is dropped drops = ["first", "if_binary", ["a"]] X_test = [["a"], ["c"]] for drop in drops: ohe.set_params(drop=drop).fit(X_train) assert_allclose([[0], [1]], ohe.transform(X_test))
'a' is the only frequent category, all other categories are infrequent.
test_ohe_infrequent_two_levels_user_cats_one_frequent
python
scikit-learn/scikit-learn
sklearn/preprocessing/tests/test_encoders.py
https://github.com/scikit-learn/scikit-learn/blob/master/sklearn/preprocessing/tests/test_encoders.py
BSD-3-Clause
def test_ohe_infrequent_two_levels_user_cats(): """Test that the order of the categories provided by a user is respected.""" X_train = np.array( [["a"] * 5 + ["b"] * 20 + ["c"] * 10 + ["d"] * 3], dtype=object ).T ohe = OneHotEncoder( categories=[["c", "d", "a", "b"]], sparse_output=False, handle_unknown="infrequent_if_exist", max_categories=2, ).fit(X_train) assert_array_equal(ohe.infrequent_categories_, [["c", "d", "a"]]) X_test = [["b"], ["a"], ["c"], ["d"], ["e"]] expected = np.array([[1, 0], [0, 1], [0, 1], [0, 1], [0, 1]]) X_trans = ohe.transform(X_test) assert_allclose(expected, X_trans) # 'infrequent' is used to denote the infrequent categories for # `inverse_transform` expected_inv = [[col] for col in ["b"] + ["infrequent_sklearn"] * 4] X_inv = ohe.inverse_transform(X_trans) assert_array_equal(expected_inv, X_inv)
Test that the order of the categories provided by a user is respected.
test_ohe_infrequent_two_levels_user_cats
python
scikit-learn/scikit-learn
sklearn/preprocessing/tests/test_encoders.py
https://github.com/scikit-learn/scikit-learn/blob/master/sklearn/preprocessing/tests/test_encoders.py
BSD-3-Clause
def test_ohe_infrequent_three_levels_user_cats(): """Test that the order of the categories provided by a user is respected. In this case 'c' is encoded as the first category and 'b' is encoded as the second one.""" X_train = np.array( [["a"] * 5 + ["b"] * 20 + ["c"] * 10 + ["d"] * 3], dtype=object ).T ohe = OneHotEncoder( categories=[["c", "d", "b", "a"]], sparse_output=False, handle_unknown="infrequent_if_exist", max_categories=3, ).fit(X_train) assert_array_equal(ohe.infrequent_categories_, [["d", "a"]]) X_test = [["b"], ["a"], ["c"], ["d"], ["e"]] expected = np.array([[0, 1, 0], [0, 0, 1], [1, 0, 0], [0, 0, 1], [0, 0, 1]]) X_trans = ohe.transform(X_test) assert_allclose(expected, X_trans) # 'infrequent' is used to denote the infrequent categories for # `inverse_transform` expected_inv = [ ["b"], ["infrequent_sklearn"], ["c"], ["infrequent_sklearn"], ["infrequent_sklearn"], ] X_inv = ohe.inverse_transform(X_trans) assert_array_equal(expected_inv, X_inv)
Test that the order of the categories provided by a user is respected. In this case 'c' is encoded as the first category and 'b' is encoded as the second one.
test_ohe_infrequent_three_levels_user_cats
python
scikit-learn/scikit-learn
sklearn/preprocessing/tests/test_encoders.py
https://github.com/scikit-learn/scikit-learn/blob/master/sklearn/preprocessing/tests/test_encoders.py
BSD-3-Clause
def test_ohe_infrequent_mixed(): """Test infrequent categories where feature 0 has infrequent categories, and feature 1 does not.""" # X[:, 0] 1 and 2 are infrequent # X[:, 1] nothing is infrequent X = np.c_[[0, 1, 3, 3, 3, 3, 2, 0, 3], [0, 0, 0, 0, 1, 1, 1, 1, 1]] ohe = OneHotEncoder(max_categories=3, drop="if_binary", sparse_output=False) ohe.fit(X) X_test = [[3, 0], [1, 1]] X_trans = ohe.transform(X_test) # feature 1 is binary so it drops a category 0 assert_allclose(X_trans, [[0, 1, 0, 0], [0, 0, 1, 1]])
Test infrequent categories where feature 0 has infrequent categories, and feature 1 does not.
test_ohe_infrequent_mixed
python
scikit-learn/scikit-learn
sklearn/preprocessing/tests/test_encoders.py
https://github.com/scikit-learn/scikit-learn/blob/master/sklearn/preprocessing/tests/test_encoders.py
BSD-3-Clause
def test_ohe_infrequent_multiple_categories(): """Test infrequent categories with feature matrix with 3 features.""" X = np.c_[ [0, 1, 3, 3, 3, 3, 2, 0, 3], [0, 0, 5, 1, 1, 10, 5, 5, 0], [1, 0, 1, 0, 1, 0, 1, 0, 1], ] ohe = OneHotEncoder( categories="auto", max_categories=3, handle_unknown="infrequent_if_exist" ) # X[:, 0] 1 and 2 are infrequent # X[:, 1] 1 and 10 are infrequent # X[:, 2] nothing is infrequent X_trans = ohe.fit_transform(X).toarray() assert_array_equal(ohe.infrequent_categories_[0], [1, 2]) assert_array_equal(ohe.infrequent_categories_[1], [1, 10]) assert_array_equal(ohe.infrequent_categories_[2], None) # 'infrequent' is used to denote the infrequent categories # For the first column, 1 and 2 have the same frequency. In this case, # 1 will be chosen to be the feature name because is smaller lexiconically feature_names = ohe.get_feature_names_out() assert_array_equal( [ "x0_0", "x0_3", "x0_infrequent_sklearn", "x1_0", "x1_5", "x1_infrequent_sklearn", "x2_0", "x2_1", ], feature_names, ) expected = [ [1, 0, 0, 1, 0, 0, 0, 1], [0, 0, 1, 1, 0, 0, 1, 0], [0, 1, 0, 0, 1, 0, 0, 1], [0, 1, 0, 0, 0, 1, 1, 0], [0, 1, 0, 0, 0, 1, 0, 1], [0, 1, 0, 0, 0, 1, 1, 0], [0, 0, 1, 0, 1, 0, 0, 1], [1, 0, 0, 0, 1, 0, 1, 0], [0, 1, 0, 1, 0, 0, 0, 1], ] assert_allclose(expected, X_trans) X_test = [[3, 1, 2], [4, 0, 3]] X_test_trans = ohe.transform(X_test) # X[:, 2] does not have an infrequent category, thus it is encoded as all # zeros expected = [[0, 1, 0, 0, 0, 1, 0, 0], [0, 0, 1, 1, 0, 0, 0, 0]] assert_allclose(expected, X_test_trans.toarray()) X_inv = ohe.inverse_transform(X_test_trans) expected_inv = np.array( [[3, "infrequent_sklearn", None], ["infrequent_sklearn", 0, None]], dtype=object ) assert_array_equal(expected_inv, X_inv) # error for unknown categories ohe = OneHotEncoder( categories="auto", max_categories=3, handle_unknown="error" ).fit(X) with pytest.raises(ValueError, match="Found unknown categories"): ohe.transform(X_test) # only infrequent or known categories X_test = [[1, 1, 1], [3, 10, 0]] X_test_trans = ohe.transform(X_test) expected = [[0, 0, 1, 0, 0, 1, 0, 1], [0, 1, 0, 0, 0, 1, 1, 0]] assert_allclose(expected, X_test_trans.toarray()) X_inv = ohe.inverse_transform(X_test_trans) expected_inv = np.array( [["infrequent_sklearn", "infrequent_sklearn", 1], [3, "infrequent_sklearn", 0]], dtype=object, ) assert_array_equal(expected_inv, X_inv)
Test infrequent categories with feature matrix with 3 features.
test_ohe_infrequent_multiple_categories
python
scikit-learn/scikit-learn
sklearn/preprocessing/tests/test_encoders.py
https://github.com/scikit-learn/scikit-learn/blob/master/sklearn/preprocessing/tests/test_encoders.py
BSD-3-Clause
def test_ohe_infrequent_multiple_categories_dtypes(): """Test infrequent categories with a pandas dataframe with multiple dtypes.""" pd = pytest.importorskip("pandas") X = pd.DataFrame( { "str": ["a", "f", "c", "f", "f", "a", "c", "b", "b"], "int": [5, 3, 0, 10, 10, 12, 0, 3, 5], }, columns=["str", "int"], ) ohe = OneHotEncoder( categories="auto", max_categories=3, handle_unknown="infrequent_if_exist" ) # X[:, 0] 'a', 'b', 'c' have the same frequency. 'a' and 'b' will be # considered infrequent because they are greater # X[:, 1] 0, 3, 5, 10 has frequency 2 and 12 has frequency 1. # 0, 3, 12 will be considered infrequent X_trans = ohe.fit_transform(X).toarray() assert_array_equal(ohe.infrequent_categories_[0], ["a", "b"]) assert_array_equal(ohe.infrequent_categories_[1], [0, 3, 12]) expected = [ [0, 0, 1, 1, 0, 0], [0, 1, 0, 0, 0, 1], [1, 0, 0, 0, 0, 1], [0, 1, 0, 0, 1, 0], [0, 1, 0, 0, 1, 0], [0, 0, 1, 0, 0, 1], [1, 0, 0, 0, 0, 1], [0, 0, 1, 0, 0, 1], [0, 0, 1, 1, 0, 0], ] assert_allclose(expected, X_trans) X_test = pd.DataFrame({"str": ["b", "f"], "int": [14, 12]}, columns=["str", "int"]) expected = [[0, 0, 1, 0, 0, 1], [0, 1, 0, 0, 0, 1]] X_test_trans = ohe.transform(X_test) assert_allclose(expected, X_test_trans.toarray()) X_inv = ohe.inverse_transform(X_test_trans) expected_inv = np.array( [["infrequent_sklearn", "infrequent_sklearn"], ["f", "infrequent_sklearn"]], dtype=object, ) assert_array_equal(expected_inv, X_inv) # only infrequent or known categories X_test = pd.DataFrame({"str": ["c", "b"], "int": [12, 5]}, columns=["str", "int"]) X_test_trans = ohe.transform(X_test).toarray() expected = [[1, 0, 0, 0, 0, 1], [0, 0, 1, 1, 0, 0]] assert_allclose(expected, X_test_trans) X_inv = ohe.inverse_transform(X_test_trans) expected_inv = np.array( [["c", "infrequent_sklearn"], ["infrequent_sklearn", 5]], dtype=object ) assert_array_equal(expected_inv, X_inv)
Test infrequent categories with a pandas dataframe with multiple dtypes.
test_ohe_infrequent_multiple_categories_dtypes
python
scikit-learn/scikit-learn
sklearn/preprocessing/tests/test_encoders.py
https://github.com/scikit-learn/scikit-learn/blob/master/sklearn/preprocessing/tests/test_encoders.py
BSD-3-Clause
def test_ohe_infrequent_one_level_errors(kwargs): """All user provided categories are infrequent.""" X_train = np.array([["a"] * 5 + ["b"] * 20 + ["c"] * 10 + ["d"] * 2]).T ohe = OneHotEncoder( handle_unknown="infrequent_if_exist", sparse_output=False, **kwargs ) ohe.fit(X_train) X_trans = ohe.transform([["a"]]) assert_allclose(X_trans, [[1]])
All user provided categories are infrequent.
test_ohe_infrequent_one_level_errors
python
scikit-learn/scikit-learn
sklearn/preprocessing/tests/test_encoders.py
https://github.com/scikit-learn/scikit-learn/blob/master/sklearn/preprocessing/tests/test_encoders.py
BSD-3-Clause
def test_ohe_infrequent_user_cats_unknown_training_errors(kwargs): """All user provided categories are infrequent.""" X_train = np.array([["e"] * 3], dtype=object).T ohe = OneHotEncoder( categories=[["c", "d", "a", "b"]], sparse_output=False, handle_unknown="infrequent_if_exist", **kwargs, ).fit(X_train) X_trans = ohe.transform([["a"], ["e"]]) assert_allclose(X_trans, [[1], [1]])
All user provided categories are infrequent.
test_ohe_infrequent_user_cats_unknown_training_errors
python
scikit-learn/scikit-learn
sklearn/preprocessing/tests/test_encoders.py
https://github.com/scikit-learn/scikit-learn/blob/master/sklearn/preprocessing/tests/test_encoders.py
BSD-3-Clause
def test_encoders_string_categories(input_dtype, category_dtype, array_type): """Check that encoding work with object, unicode, and byte string dtypes. Non-regression test for: https://github.com/scikit-learn/scikit-learn/issues/15616 https://github.com/scikit-learn/scikit-learn/issues/15726 https://github.com/scikit-learn/scikit-learn/issues/19677 """ X = np.array([["b"], ["a"]], dtype=input_dtype) categories = [np.array(["b", "a"], dtype=category_dtype)] ohe = OneHotEncoder(categories=categories, sparse_output=False).fit(X) X_test = _convert_container( [["a"], ["a"], ["b"], ["a"]], array_type, dtype=input_dtype ) X_trans = ohe.transform(X_test) expected = np.array([[0, 1], [0, 1], [1, 0], [0, 1]]) assert_allclose(X_trans, expected) oe = OrdinalEncoder(categories=categories).fit(X) X_trans = oe.transform(X_test) expected = np.array([[1], [1], [0], [1]]) assert_array_equal(X_trans, expected)
Check that encoding work with object, unicode, and byte string dtypes. Non-regression test for: https://github.com/scikit-learn/scikit-learn/issues/15616 https://github.com/scikit-learn/scikit-learn/issues/15726 https://github.com/scikit-learn/scikit-learn/issues/19677
test_encoders_string_categories
python
scikit-learn/scikit-learn
sklearn/preprocessing/tests/test_encoders.py
https://github.com/scikit-learn/scikit-learn/blob/master/sklearn/preprocessing/tests/test_encoders.py
BSD-3-Clause
def test_mixed_string_bytes_categoricals(): """Check that this mixture of predefined categories and X raises an error. Categories defined as bytes can not easily be compared to data that is a string. """ # data as unicode X = np.array([["b"], ["a"]], dtype="U") # predefined categories as bytes categories = [np.array(["b", "a"], dtype="S")] ohe = OneHotEncoder(categories=categories, sparse_output=False) msg = re.escape( "In column 0, the predefined categories have type 'bytes' which is incompatible" " with values of type 'str_'." ) with pytest.raises(ValueError, match=msg): ohe.fit(X)
Check that this mixture of predefined categories and X raises an error. Categories defined as bytes can not easily be compared to data that is a string.
test_mixed_string_bytes_categoricals
python
scikit-learn/scikit-learn
sklearn/preprocessing/tests/test_encoders.py
https://github.com/scikit-learn/scikit-learn/blob/master/sklearn/preprocessing/tests/test_encoders.py
BSD-3-Clause
def test_ohe_drop_first_handle_unknown_ignore_warns(handle_unknown): """Check drop='first' and handle_unknown='ignore'/'infrequent_if_exist' during transform.""" X = [["a", 0], ["b", 2], ["b", 1]] ohe = OneHotEncoder( drop="first", sparse_output=False, handle_unknown=handle_unknown ) X_trans = ohe.fit_transform(X) X_expected = np.array( [ [0, 0, 0], [1, 0, 1], [1, 1, 0], ] ) assert_allclose(X_trans, X_expected) # Both categories are unknown X_test = [["c", 3]] X_expected = np.array([[0, 0, 0]]) warn_msg = ( r"Found unknown categories in columns \[0, 1\] during " "transform. These unknown categories will be encoded as all " "zeros" ) with pytest.warns(UserWarning, match=warn_msg): X_trans = ohe.transform(X_test) assert_allclose(X_trans, X_expected) # inverse_transform maps to None X_inv = ohe.inverse_transform(X_expected) assert_array_equal(X_inv, np.array([["a", 0]], dtype=object))
Check drop='first' and handle_unknown='ignore'/'infrequent_if_exist' during transform.
test_ohe_drop_first_handle_unknown_ignore_warns
python
scikit-learn/scikit-learn
sklearn/preprocessing/tests/test_encoders.py
https://github.com/scikit-learn/scikit-learn/blob/master/sklearn/preprocessing/tests/test_encoders.py
BSD-3-Clause
def test_ohe_drop_if_binary_handle_unknown_ignore_warns(handle_unknown): """Check drop='if_binary' and handle_unknown='ignore' during transform.""" X = [["a", 0], ["b", 2], ["b", 1]] ohe = OneHotEncoder( drop="if_binary", sparse_output=False, handle_unknown=handle_unknown ) X_trans = ohe.fit_transform(X) X_expected = np.array( [ [0, 1, 0, 0], [1, 0, 0, 1], [1, 0, 1, 0], ] ) assert_allclose(X_trans, X_expected) # Both categories are unknown X_test = [["c", 3]] X_expected = np.array([[0, 0, 0, 0]]) warn_msg = ( r"Found unknown categories in columns \[0, 1\] during " "transform. These unknown categories will be encoded as all " "zeros" ) with pytest.warns(UserWarning, match=warn_msg): X_trans = ohe.transform(X_test) assert_allclose(X_trans, X_expected) # inverse_transform maps to None X_inv = ohe.inverse_transform(X_expected) assert_array_equal(X_inv, np.array([["a", None]], dtype=object))
Check drop='if_binary' and handle_unknown='ignore' during transform.
test_ohe_drop_if_binary_handle_unknown_ignore_warns
python
scikit-learn/scikit-learn
sklearn/preprocessing/tests/test_encoders.py
https://github.com/scikit-learn/scikit-learn/blob/master/sklearn/preprocessing/tests/test_encoders.py
BSD-3-Clause
def test_ohe_drop_first_explicit_categories(handle_unknown): """Check drop='first' and handle_unknown='ignore'/'infrequent_if_exist' during fit with categories passed in.""" X = [["a", 0], ["b", 2], ["b", 1]] ohe = OneHotEncoder( drop="first", sparse_output=False, handle_unknown=handle_unknown, categories=[["b", "a"], [1, 2]], ) ohe.fit(X) X_test = [["c", 1]] X_expected = np.array([[0, 0]]) warn_msg = ( r"Found unknown categories in columns \[0\] during transform. " r"These unknown categories will be encoded as all zeros" ) with pytest.warns(UserWarning, match=warn_msg): X_trans = ohe.transform(X_test) assert_allclose(X_trans, X_expected)
Check drop='first' and handle_unknown='ignore'/'infrequent_if_exist' during fit with categories passed in.
test_ohe_drop_first_explicit_categories
python
scikit-learn/scikit-learn
sklearn/preprocessing/tests/test_encoders.py
https://github.com/scikit-learn/scikit-learn/blob/master/sklearn/preprocessing/tests/test_encoders.py
BSD-3-Clause
def test_ohe_more_informative_error_message(): """Raise informative error message when pandas output and sparse_output=True.""" pd = pytest.importorskip("pandas") df = pd.DataFrame({"a": [1, 2, 3], "b": ["z", "b", "b"]}, columns=["a", "b"]) ohe = OneHotEncoder(sparse_output=True) ohe.set_output(transform="pandas") msg = ( "Pandas output does not support sparse data. Set " "sparse_output=False to output pandas dataframes or disable Pandas output" ) with pytest.raises(ValueError, match=msg): ohe.fit_transform(df) ohe.fit(df) with pytest.raises(ValueError, match=msg): ohe.transform(df)
Raise informative error message when pandas output and sparse_output=True.
test_ohe_more_informative_error_message
python
scikit-learn/scikit-learn
sklearn/preprocessing/tests/test_encoders.py
https://github.com/scikit-learn/scikit-learn/blob/master/sklearn/preprocessing/tests/test_encoders.py
BSD-3-Clause
def test_ordinal_encoder_passthrough_missing_values_float_errors_dtype(): """Test ordinal encoder with nan passthrough fails when dtype=np.int32.""" X = np.array([[np.nan, 3.0, 1.0, 3.0]]).T oe = OrdinalEncoder(dtype=np.int32) msg = ( r"There are missing values in features \[0\]. For OrdinalEncoder " f"to encode missing values with dtype: {np.int32}" ) with pytest.raises(ValueError, match=msg): oe.fit(X)
Test ordinal encoder with nan passthrough fails when dtype=np.int32.
test_ordinal_encoder_passthrough_missing_values_float_errors_dtype
python
scikit-learn/scikit-learn
sklearn/preprocessing/tests/test_encoders.py
https://github.com/scikit-learn/scikit-learn/blob/master/sklearn/preprocessing/tests/test_encoders.py
BSD-3-Clause
def test_ordinal_encoder_passthrough_missing_values_float(encoded_missing_value): """Test ordinal encoder with nan on float dtypes.""" X = np.array([[np.nan, 3.0, 1.0, 3.0]], dtype=np.float64).T oe = OrdinalEncoder(encoded_missing_value=encoded_missing_value).fit(X) assert len(oe.categories_) == 1 assert_allclose(oe.categories_[0], [1.0, 3.0, np.nan]) X_trans = oe.transform(X) assert_allclose(X_trans, [[encoded_missing_value], [1.0], [0.0], [1.0]]) X_inverse = oe.inverse_transform(X_trans) assert_allclose(X_inverse, X)
Test ordinal encoder with nan on float dtypes.
test_ordinal_encoder_passthrough_missing_values_float
python
scikit-learn/scikit-learn
sklearn/preprocessing/tests/test_encoders.py
https://github.com/scikit-learn/scikit-learn/blob/master/sklearn/preprocessing/tests/test_encoders.py
BSD-3-Clause
def test_ordinal_encoder_missing_value_support_pandas_categorical( pd_nan_type, encoded_missing_value ): """Check ordinal encoder is compatible with pandas.""" # checks pandas dataframe with categorical features pd = pytest.importorskip("pandas") pd_missing_value = pd.NA if pd_nan_type == "pd.NA" else np.nan df = pd.DataFrame( { "col1": pd.Series(["c", "a", pd_missing_value, "b", "a"], dtype="category"), } ) oe = OrdinalEncoder(encoded_missing_value=encoded_missing_value).fit(df) assert len(oe.categories_) == 1 assert_array_equal(oe.categories_[0][:3], ["a", "b", "c"]) assert np.isnan(oe.categories_[0][-1]) df_trans = oe.transform(df) assert_allclose(df_trans, [[2.0], [0.0], [encoded_missing_value], [1.0], [0.0]]) X_inverse = oe.inverse_transform(df_trans) assert X_inverse.shape == (5, 1) assert_array_equal(X_inverse[:2, 0], ["c", "a"]) assert_array_equal(X_inverse[3:, 0], ["b", "a"]) assert np.isnan(X_inverse[2, 0])
Check ordinal encoder is compatible with pandas.
test_ordinal_encoder_missing_value_support_pandas_categorical
python
scikit-learn/scikit-learn
sklearn/preprocessing/tests/test_encoders.py
https://github.com/scikit-learn/scikit-learn/blob/master/sklearn/preprocessing/tests/test_encoders.py
BSD-3-Clause
def test_ordinal_encoder_specified_categories_missing_passthrough( X, X2, cats, cat_dtype ): """Test ordinal encoder for specified categories.""" oe = OrdinalEncoder(categories=cats) exp = np.array([[0.0], [np.nan]]) assert_array_equal(oe.fit_transform(X), exp) # manually specified categories should have same dtype as # the data when coerced from lists assert oe.categories_[0].dtype == cat_dtype # when specifying categories manually, unknown categories should already # raise when fitting oe = OrdinalEncoder(categories=cats) with pytest.raises(ValueError, match="Found unknown categories"): oe.fit(X2)
Test ordinal encoder for specified categories.
test_ordinal_encoder_specified_categories_missing_passthrough
python
scikit-learn/scikit-learn
sklearn/preprocessing/tests/test_encoders.py
https://github.com/scikit-learn/scikit-learn/blob/master/sklearn/preprocessing/tests/test_encoders.py
BSD-3-Clause
def test_encoder_duplicate_specified_categories(Encoder): """Test encoder for specified categories have duplicate values. Non-regression test for: https://github.com/scikit-learn/scikit-learn/issues/27088 """ cats = [np.array(["a", "b", "a"], dtype=object)] enc = Encoder(categories=cats) X = np.array([["a", "b"]], dtype=object).T with pytest.raises( ValueError, match="the predefined categories contain duplicate elements." ): enc.fit(X)
Test encoder for specified categories have duplicate values. Non-regression test for: https://github.com/scikit-learn/scikit-learn/issues/27088
test_encoder_duplicate_specified_categories
python
scikit-learn/scikit-learn
sklearn/preprocessing/tests/test_encoders.py
https://github.com/scikit-learn/scikit-learn/blob/master/sklearn/preprocessing/tests/test_encoders.py
BSD-3-Clause
def test_ordinal_encoder_handle_missing_and_unknown(X, expected_X_trans, X_test): """Test the interaction between missing values and handle_unknown""" oe = OrdinalEncoder(handle_unknown="use_encoded_value", unknown_value=-1) X_trans = oe.fit_transform(X) assert_allclose(X_trans, expected_X_trans) assert_allclose(oe.transform(X_test), [[-1.0]])
Test the interaction between missing values and handle_unknown
test_ordinal_encoder_handle_missing_and_unknown
python
scikit-learn/scikit-learn
sklearn/preprocessing/tests/test_encoders.py
https://github.com/scikit-learn/scikit-learn/blob/master/sklearn/preprocessing/tests/test_encoders.py
BSD-3-Clause
def test_ordinal_encoder_sparse(csr_container): """Check that we raise proper error with sparse input in OrdinalEncoder. Non-regression test for: https://github.com/scikit-learn/scikit-learn/issues/19878 """ X = np.array([[3, 2, 1], [0, 1, 1]]) X_sparse = csr_container(X) encoder = OrdinalEncoder() err_msg = "Sparse data was passed, but dense data is required" with pytest.raises(TypeError, match=err_msg): encoder.fit(X_sparse) with pytest.raises(TypeError, match=err_msg): encoder.fit_transform(X_sparse) X_trans = encoder.fit_transform(X) X_trans_sparse = csr_container(X_trans) with pytest.raises(TypeError, match=err_msg): encoder.inverse_transform(X_trans_sparse)
Check that we raise proper error with sparse input in OrdinalEncoder. Non-regression test for: https://github.com/scikit-learn/scikit-learn/issues/19878
test_ordinal_encoder_sparse
python
scikit-learn/scikit-learn
sklearn/preprocessing/tests/test_encoders.py
https://github.com/scikit-learn/scikit-learn/blob/master/sklearn/preprocessing/tests/test_encoders.py
BSD-3-Clause
def test_ordinal_encoder_fit_with_unseen_category(): """Check OrdinalEncoder.fit works with unseen category when `handle_unknown="use_encoded_value"`. Non-regression test for: https://github.com/scikit-learn/scikit-learn/issues/19872 """ X = np.array([0, 0, 1, 0, 2, 5])[:, np.newaxis] oe = OrdinalEncoder( categories=[[-1, 0, 1]], handle_unknown="use_encoded_value", unknown_value=-999 ) oe.fit(X) oe = OrdinalEncoder(categories=[[-1, 0, 1]], handle_unknown="error") with pytest.raises(ValueError, match="Found unknown categories"): oe.fit(X)
Check OrdinalEncoder.fit works with unseen category when `handle_unknown="use_encoded_value"`. Non-regression test for: https://github.com/scikit-learn/scikit-learn/issues/19872
test_ordinal_encoder_fit_with_unseen_category
python
scikit-learn/scikit-learn
sklearn/preprocessing/tests/test_encoders.py
https://github.com/scikit-learn/scikit-learn/blob/master/sklearn/preprocessing/tests/test_encoders.py
BSD-3-Clause
def test_ordinal_encoder_handle_unknown_string_dtypes(X_train, X_test): """Checks that `OrdinalEncoder` transforms string dtypes. Non-regression test for: https://github.com/scikit-learn/scikit-learn/issues/19872 """ enc = OrdinalEncoder(handle_unknown="use_encoded_value", unknown_value=-9) enc.fit(X_train) X_trans = enc.transform(X_test) assert_allclose(X_trans, [[-9, 0]])
Checks that `OrdinalEncoder` transforms string dtypes. Non-regression test for: https://github.com/scikit-learn/scikit-learn/issues/19872
test_ordinal_encoder_handle_unknown_string_dtypes
python
scikit-learn/scikit-learn
sklearn/preprocessing/tests/test_encoders.py
https://github.com/scikit-learn/scikit-learn/blob/master/sklearn/preprocessing/tests/test_encoders.py
BSD-3-Clause
def test_ordinal_encoder_python_integer(): """Check that `OrdinalEncoder` accepts Python integers that are potentially larger than 64 bits. Non-regression test for: https://github.com/scikit-learn/scikit-learn/issues/20721 """ X = np.array( [ 44253463435747313673, 9867966753463435747313673, 44253462342215747313673, 442534634357764313673, ] ).reshape(-1, 1) encoder = OrdinalEncoder().fit(X) assert_array_equal(encoder.categories_, np.sort(X, axis=0).T) X_trans = encoder.transform(X) assert_array_equal(X_trans, [[0], [3], [2], [1]])
Check that `OrdinalEncoder` accepts Python integers that are potentially larger than 64 bits. Non-regression test for: https://github.com/scikit-learn/scikit-learn/issues/20721
test_ordinal_encoder_python_integer
python
scikit-learn/scikit-learn
sklearn/preprocessing/tests/test_encoders.py
https://github.com/scikit-learn/scikit-learn/blob/master/sklearn/preprocessing/tests/test_encoders.py
BSD-3-Clause
def test_ordinal_encoder_features_names_out_pandas(): """Check feature names out is same as the input.""" pd = pytest.importorskip("pandas") names = ["b", "c", "a"] X = pd.DataFrame([[1, 2, 3]], columns=names) enc = OrdinalEncoder().fit(X) feature_names_out = enc.get_feature_names_out() assert_array_equal(names, feature_names_out)
Check feature names out is same as the input.
test_ordinal_encoder_features_names_out_pandas
python
scikit-learn/scikit-learn
sklearn/preprocessing/tests/test_encoders.py
https://github.com/scikit-learn/scikit-learn/blob/master/sklearn/preprocessing/tests/test_encoders.py
BSD-3-Clause
def test_ordinal_encoder_unknown_missing_interaction(): """Check interactions between encode_unknown and missing value encoding.""" X = np.array([["a"], ["b"], [np.nan]], dtype=object) oe = OrdinalEncoder( handle_unknown="use_encoded_value", unknown_value=np.nan, encoded_missing_value=-3, ).fit(X) X_trans = oe.transform(X) assert_allclose(X_trans, [[0], [1], [-3]]) # "c" is unknown and is mapped to np.nan # "None" is a missing value and is set to -3 X_test = np.array([["c"], [np.nan]], dtype=object) X_test_trans = oe.transform(X_test) assert_allclose(X_test_trans, [[np.nan], [-3]]) # Non-regression test for #24082 X_roundtrip = oe.inverse_transform(X_test_trans) # np.nan is unknown so it maps to None assert X_roundtrip[0][0] is None # -3 is the encoded missing value so it maps back to nan assert np.isnan(X_roundtrip[1][0])
Check interactions between encode_unknown and missing value encoding.
test_ordinal_encoder_unknown_missing_interaction
python
scikit-learn/scikit-learn
sklearn/preprocessing/tests/test_encoders.py
https://github.com/scikit-learn/scikit-learn/blob/master/sklearn/preprocessing/tests/test_encoders.py
BSD-3-Clause
def test_ordinal_encoder_encoded_missing_value_error(with_pandas): """Check OrdinalEncoder errors when encoded_missing_value is used by an known category.""" X = np.array([["a", "dog"], ["b", "cat"], ["c", np.nan]], dtype=object) # The 0-th feature has no missing values so it is not included in the list of # features error_msg = ( r"encoded_missing_value \(1\) is already used to encode a known category " r"in features: " ) if with_pandas: pd = pytest.importorskip("pandas") X = pd.DataFrame(X, columns=["letter", "pet"]) error_msg = error_msg + r"\['pet'\]" else: error_msg = error_msg + r"\[1\]" oe = OrdinalEncoder(encoded_missing_value=1) with pytest.raises(ValueError, match=error_msg): oe.fit(X)
Check OrdinalEncoder errors when encoded_missing_value is used by an known category.
test_ordinal_encoder_encoded_missing_value_error
python
scikit-learn/scikit-learn
sklearn/preprocessing/tests/test_encoders.py
https://github.com/scikit-learn/scikit-learn/blob/master/sklearn/preprocessing/tests/test_encoders.py
BSD-3-Clause
def test_ordinal_encoder_unknown_missing_interaction_both_nan( X_train, X_test_trans_expected, X_roundtrip_expected ): """Check transform when unknown_value and encoded_missing_value is nan. Non-regression test for #24082. """ oe = OrdinalEncoder( handle_unknown="use_encoded_value", unknown_value=np.nan, encoded_missing_value=np.nan, ).fit(X_train) X_test = np.array([["1"], [np.nan], ["b"]]) X_test_trans = oe.transform(X_test) # both nan and unknown are encoded as nan assert_allclose(X_test_trans, X_test_trans_expected) X_roundtrip = oe.inverse_transform(X_test_trans) n_samples = X_roundtrip_expected.shape[0] for i in range(n_samples): expected_val = X_roundtrip_expected[i, 0] val = X_roundtrip[i, 0] if expected_val is None: assert val is None elif is_scalar_nan(expected_val): assert np.isnan(val) else: assert val == expected_val
Check transform when unknown_value and encoded_missing_value is nan. Non-regression test for #24082.
test_ordinal_encoder_unknown_missing_interaction_both_nan
python
scikit-learn/scikit-learn
sklearn/preprocessing/tests/test_encoders.py
https://github.com/scikit-learn/scikit-learn/blob/master/sklearn/preprocessing/tests/test_encoders.py
BSD-3-Clause
def test_predefined_categories_dtype(): """Check that the categories_ dtype is `object` for string categories Regression test for gh-25171. """ categories = [["as", "mmas", "eas", "ras", "acs"], ["1", "2"]] enc = OneHotEncoder(categories=categories) enc.fit([["as", "1"]]) assert len(categories) == len(enc.categories_) for n, cat in enumerate(enc.categories_): assert cat.dtype == object assert_array_equal(categories[n], cat)
Check that the categories_ dtype is `object` for string categories Regression test for gh-25171.
test_predefined_categories_dtype
python
scikit-learn/scikit-learn
sklearn/preprocessing/tests/test_encoders.py
https://github.com/scikit-learn/scikit-learn/blob/master/sklearn/preprocessing/tests/test_encoders.py
BSD-3-Clause
def test_ordinal_encoder_missing_unknown_encoding_max(): """Check missing value or unknown encoding can equal the cardinality.""" X = np.array([["dog"], ["cat"], [np.nan]], dtype=object) X_trans = OrdinalEncoder(encoded_missing_value=2).fit_transform(X) assert_allclose(X_trans, [[1], [0], [2]]) enc = OrdinalEncoder(handle_unknown="use_encoded_value", unknown_value=2).fit(X) X_test = np.array([["snake"]]) X_trans = enc.transform(X_test) assert_allclose(X_trans, [[2]])
Check missing value or unknown encoding can equal the cardinality.
test_ordinal_encoder_missing_unknown_encoding_max
python
scikit-learn/scikit-learn
sklearn/preprocessing/tests/test_encoders.py
https://github.com/scikit-learn/scikit-learn/blob/master/sklearn/preprocessing/tests/test_encoders.py
BSD-3-Clause
def test_drop_idx_infrequent_categories(): """Check drop_idx is defined correctly with infrequent categories. Non-regression test for gh-25550. """ X = np.array( [["a"] * 2 + ["b"] * 4 + ["c"] * 4 + ["d"] * 4 + ["e"] * 4], dtype=object ).T ohe = OneHotEncoder(min_frequency=4, sparse_output=False, drop="first").fit(X) assert_array_equal( ohe.get_feature_names_out(), ["x0_c", "x0_d", "x0_e", "x0_infrequent_sklearn"] ) assert ohe.categories_[0][ohe.drop_idx_[0]] == "b" X = np.array([["a"] * 2 + ["b"] * 2 + ["c"] * 10], dtype=object).T ohe = OneHotEncoder(min_frequency=4, sparse_output=False, drop="if_binary").fit(X) assert_array_equal(ohe.get_feature_names_out(), ["x0_infrequent_sklearn"]) assert ohe.categories_[0][ohe.drop_idx_[0]] == "c" X = np.array( [["a"] * 2 + ["b"] * 4 + ["c"] * 4 + ["d"] * 4 + ["e"] * 4], dtype=object ).T ohe = OneHotEncoder(min_frequency=4, sparse_output=False, drop=["d"]).fit(X) assert_array_equal( ohe.get_feature_names_out(), ["x0_b", "x0_c", "x0_e", "x0_infrequent_sklearn"] ) assert ohe.categories_[0][ohe.drop_idx_[0]] == "d" ohe = OneHotEncoder(min_frequency=4, sparse_output=False, drop=None).fit(X) assert_array_equal( ohe.get_feature_names_out(), ["x0_b", "x0_c", "x0_d", "x0_e", "x0_infrequent_sklearn"], ) assert ohe.drop_idx_ is None
Check drop_idx is defined correctly with infrequent categories. Non-regression test for gh-25550.
test_drop_idx_infrequent_categories
python
scikit-learn/scikit-learn
sklearn/preprocessing/tests/test_encoders.py
https://github.com/scikit-learn/scikit-learn/blob/master/sklearn/preprocessing/tests/test_encoders.py
BSD-3-Clause
def test_ordinal_encoder_infrequent_three_levels(kwargs): """Test parameters for grouping 'a', and 'd' into the infrequent category.""" X_train = np.array([["a"] * 5 + ["b"] * 20 + ["c"] * 10 + ["d"] * 3]).T ordinal = OrdinalEncoder( handle_unknown="use_encoded_value", unknown_value=-1, **kwargs ).fit(X_train) assert_array_equal(ordinal.categories_, [["a", "b", "c", "d"]]) assert_array_equal(ordinal.infrequent_categories_, [["a", "d"]]) X_test = [["a"], ["b"], ["c"], ["d"], ["z"]] expected_trans = [[2], [0], [1], [2], [-1]] X_trans = ordinal.transform(X_test) assert_allclose(X_trans, expected_trans) X_inverse = ordinal.inverse_transform(X_trans) expected_inverse = [ ["infrequent_sklearn"], ["b"], ["c"], ["infrequent_sklearn"], [None], ] assert_array_equal(X_inverse, expected_inverse)
Test parameters for grouping 'a', and 'd' into the infrequent category.
test_ordinal_encoder_infrequent_three_levels
python
scikit-learn/scikit-learn
sklearn/preprocessing/tests/test_encoders.py
https://github.com/scikit-learn/scikit-learn/blob/master/sklearn/preprocessing/tests/test_encoders.py
BSD-3-Clause
def test_ordinal_encoder_infrequent_three_levels_user_cats(): """Test that the order of the categories provided by a user is respected. In this case 'c' is encoded as the first category and 'b' is encoded as the second one. """ X_train = np.array( [["a"] * 5 + ["b"] * 20 + ["c"] * 10 + ["d"] * 3], dtype=object ).T ordinal = OrdinalEncoder( categories=[["c", "d", "b", "a"]], max_categories=3, handle_unknown="use_encoded_value", unknown_value=-1, ).fit(X_train) assert_array_equal(ordinal.categories_, [["c", "d", "b", "a"]]) assert_array_equal(ordinal.infrequent_categories_, [["d", "a"]]) X_test = [["a"], ["b"], ["c"], ["d"], ["z"]] expected_trans = [[2], [1], [0], [2], [-1]] X_trans = ordinal.transform(X_test) assert_allclose(X_trans, expected_trans) X_inverse = ordinal.inverse_transform(X_trans) expected_inverse = [ ["infrequent_sklearn"], ["b"], ["c"], ["infrequent_sklearn"], [None], ] assert_array_equal(X_inverse, expected_inverse)
Test that the order of the categories provided by a user is respected. In this case 'c' is encoded as the first category and 'b' is encoded as the second one.
test_ordinal_encoder_infrequent_three_levels_user_cats
python
scikit-learn/scikit-learn
sklearn/preprocessing/tests/test_encoders.py
https://github.com/scikit-learn/scikit-learn/blob/master/sklearn/preprocessing/tests/test_encoders.py
BSD-3-Clause
def test_ordinal_encoder_infrequent_mixed(): """Test when feature 0 has infrequent categories and feature 1 does not.""" X = np.column_stack(([0, 1, 3, 3, 3, 3, 2, 0, 3], [0, 0, 0, 0, 1, 1, 1, 1, 1])) ordinal = OrdinalEncoder(max_categories=3).fit(X) assert_array_equal(ordinal.infrequent_categories_[0], [1, 2]) assert ordinal.infrequent_categories_[1] is None X_test = [[3, 0], [1, 1]] expected_trans = [[1, 0], [2, 1]] X_trans = ordinal.transform(X_test) assert_allclose(X_trans, expected_trans) X_inverse = ordinal.inverse_transform(X_trans) expected_inverse = np.array([[3, 0], ["infrequent_sklearn", 1]], dtype=object) assert_array_equal(X_inverse, expected_inverse)
Test when feature 0 has infrequent categories and feature 1 does not.
test_ordinal_encoder_infrequent_mixed
python
scikit-learn/scikit-learn
sklearn/preprocessing/tests/test_encoders.py
https://github.com/scikit-learn/scikit-learn/blob/master/sklearn/preprocessing/tests/test_encoders.py
BSD-3-Clause
def test_ordinal_encoder_infrequent_multiple_categories_dtypes(): """Test infrequent categories with a pandas DataFrame with multiple dtypes.""" pd = pytest.importorskip("pandas") categorical_dtype = pd.CategoricalDtype(["bird", "cat", "dog", "snake"]) X = pd.DataFrame( { "str": ["a", "f", "c", "f", "f", "a", "c", "b", "b"], "int": [5, 3, 0, 10, 10, 12, 0, 3, 5], "categorical": pd.Series( ["dog"] * 4 + ["cat"] * 3 + ["snake"] + ["bird"], dtype=categorical_dtype, ), }, columns=["str", "int", "categorical"], ) ordinal = OrdinalEncoder(max_categories=3).fit(X) # X[:, 0] 'a', 'b', 'c' have the same frequency. 'a' and 'b' will be # considered infrequent because they appear first when sorted # X[:, 1] 0, 3, 5, 10 has frequency 2 and 12 has frequency 1. # 0, 3, 12 will be considered infrequent because they appear first when # sorted. # X[:, 2] "snake" and "bird" or infrequent assert_array_equal(ordinal.infrequent_categories_[0], ["a", "b"]) assert_array_equal(ordinal.infrequent_categories_[1], [0, 3, 12]) assert_array_equal(ordinal.infrequent_categories_[2], ["bird", "snake"]) X_test = pd.DataFrame( { "str": ["a", "b", "f", "c"], "int": [12, 0, 10, 5], "categorical": pd.Series( ["cat"] + ["snake"] + ["bird"] + ["dog"], dtype=categorical_dtype, ), }, columns=["str", "int", "categorical"], ) expected_trans = [[2, 2, 0], [2, 2, 2], [1, 1, 2], [0, 0, 1]] X_trans = ordinal.transform(X_test) assert_allclose(X_trans, expected_trans)
Test infrequent categories with a pandas DataFrame with multiple dtypes.
test_ordinal_encoder_infrequent_multiple_categories_dtypes
python
scikit-learn/scikit-learn
sklearn/preprocessing/tests/test_encoders.py
https://github.com/scikit-learn/scikit-learn/blob/master/sklearn/preprocessing/tests/test_encoders.py
BSD-3-Clause
def test_ordinal_encoder_infrequent_custom_mapping(): """Check behavior of unknown_value and encoded_missing_value with infrequent.""" X_train = np.array( [["a"] * 5 + ["b"] * 20 + ["c"] * 10 + ["d"] * 3 + [np.nan]], dtype=object ).T ordinal = OrdinalEncoder( handle_unknown="use_encoded_value", unknown_value=2, max_categories=2, encoded_missing_value=3, ).fit(X_train) assert_array_equal(ordinal.infrequent_categories_, [["a", "c", "d"]]) X_test = np.array([["a"], ["b"], ["c"], ["d"], ["e"], [np.nan]], dtype=object) expected_trans = [[1], [0], [1], [1], [2], [3]] X_trans = ordinal.transform(X_test) assert_allclose(X_trans, expected_trans)
Check behavior of unknown_value and encoded_missing_value with infrequent.
test_ordinal_encoder_infrequent_custom_mapping
python
scikit-learn/scikit-learn
sklearn/preprocessing/tests/test_encoders.py
https://github.com/scikit-learn/scikit-learn/blob/master/sklearn/preprocessing/tests/test_encoders.py
BSD-3-Clause
def test_ordinal_encoder_all_frequent(kwargs): """All categories are considered frequent have same encoding as default encoder.""" X_train = np.array( [["a"] * 5 + ["b"] * 20 + ["c"] * 10 + ["d"] * 3], dtype=object ).T adjusted_encoder = OrdinalEncoder( **kwargs, handle_unknown="use_encoded_value", unknown_value=-1 ).fit(X_train) default_encoder = OrdinalEncoder( handle_unknown="use_encoded_value", unknown_value=-1 ).fit(X_train) X_test = [["a"], ["b"], ["c"], ["d"], ["e"]] assert_allclose( adjusted_encoder.transform(X_test), default_encoder.transform(X_test) )
All categories are considered frequent have same encoding as default encoder.
test_ordinal_encoder_all_frequent
python
scikit-learn/scikit-learn
sklearn/preprocessing/tests/test_encoders.py
https://github.com/scikit-learn/scikit-learn/blob/master/sklearn/preprocessing/tests/test_encoders.py
BSD-3-Clause
def test_ordinal_encoder_all_infrequent(kwargs): """When all categories are infrequent, they are all encoded as zero.""" X_train = np.array( [["a"] * 5 + ["b"] * 20 + ["c"] * 10 + ["d"] * 3], dtype=object ).T encoder = OrdinalEncoder( **kwargs, handle_unknown="use_encoded_value", unknown_value=-1 ).fit(X_train) X_test = [["a"], ["b"], ["c"], ["d"], ["e"]] assert_allclose(encoder.transform(X_test), [[0], [0], [0], [0], [-1]])
When all categories are infrequent, they are all encoded as zero.
test_ordinal_encoder_all_infrequent
python
scikit-learn/scikit-learn
sklearn/preprocessing/tests/test_encoders.py
https://github.com/scikit-learn/scikit-learn/blob/master/sklearn/preprocessing/tests/test_encoders.py
BSD-3-Clause
def test_ordinal_encoder_missing_appears_frequent(): """Check behavior when missing value appears frequently.""" X = np.array( [[np.nan] * 20 + ["dog"] * 10 + ["cat"] * 5 + ["snake"] + ["deer"]], dtype=object, ).T ordinal = OrdinalEncoder(max_categories=3).fit(X) X_test = np.array([["snake", "cat", "dog", np.nan]], dtype=object).T X_trans = ordinal.transform(X_test) assert_allclose(X_trans, [[2], [0], [1], [np.nan]])
Check behavior when missing value appears frequently.
test_ordinal_encoder_missing_appears_frequent
python
scikit-learn/scikit-learn
sklearn/preprocessing/tests/test_encoders.py
https://github.com/scikit-learn/scikit-learn/blob/master/sklearn/preprocessing/tests/test_encoders.py
BSD-3-Clause
def test_ordinal_encoder_missing_appears_infrequent(): """Check behavior when missing value appears infrequently.""" # feature 0 has infrequent categories # feature 1 has no infrequent categories X = np.array( [ [np.nan] + ["dog"] * 10 + ["cat"] * 5 + ["snake"] + ["deer"], ["red"] * 9 + ["green"] * 9, ], dtype=object, ).T ordinal = OrdinalEncoder(min_frequency=4).fit(X) X_test = np.array( [ ["snake", "red"], ["deer", "green"], [np.nan, "green"], ["dog", "green"], ["cat", "red"], ], dtype=object, ) X_trans = ordinal.transform(X_test) assert_allclose(X_trans, [[2, 1], [2, 0], [np.nan, 0], [1, 0], [0, 1]])
Check behavior when missing value appears infrequently.
test_ordinal_encoder_missing_appears_infrequent
python
scikit-learn/scikit-learn
sklearn/preprocessing/tests/test_encoders.py
https://github.com/scikit-learn/scikit-learn/blob/master/sklearn/preprocessing/tests/test_encoders.py
BSD-3-Clause
def test_encoder_not_fitted(Encoder): """Check that we raise a `NotFittedError` by calling transform before fit with the encoders. One could expect that the passing the `categories` argument to the encoder would make it stateless. However, `fit` is making a couple of check, such as the position of `np.nan`. """ X = np.array([["A"], ["B"], ["C"]], dtype=object) encoder = Encoder(categories=[["A", "B", "C"]]) with pytest.raises(NotFittedError): encoder.transform(X)
Check that we raise a `NotFittedError` by calling transform before fit with the encoders. One could expect that the passing the `categories` argument to the encoder would make it stateless. However, `fit` is making a couple of check, such as the position of `np.nan`.
test_encoder_not_fitted
python
scikit-learn/scikit-learn
sklearn/preprocessing/tests/test_encoders.py
https://github.com/scikit-learn/scikit-learn/blob/master/sklearn/preprocessing/tests/test_encoders.py
BSD-3-Clause
def test_function_transformer_raise_error_with_mixed_dtype(X_type): """Check that `FunctionTransformer.check_inverse` raises error on mixed dtype.""" mapping = {"one": 1, "two": 2, "three": 3, 5: "five", 6: "six"} inverse_mapping = {value: key for key, value in mapping.items()} dtype = "object" data = ["one", "two", "three", "one", "one", 5, 6] data = _convert_container(data, X_type, columns_name=["value"], dtype=dtype) def func(X): return np.array([mapping[X[i]] for i in range(X.size)], dtype=object) def inverse_func(X): return _convert_container( [inverse_mapping[x] for x in X], X_type, columns_name=["value"], dtype=dtype, ) transformer = FunctionTransformer( func=func, inverse_func=inverse_func, validate=False, check_inverse=True ) msg = "'check_inverse' is only supported when all the elements in `X` is numerical." with pytest.raises(ValueError, match=msg): transformer.fit(data)
Check that `FunctionTransformer.check_inverse` raises error on mixed dtype.
test_function_transformer_raise_error_with_mixed_dtype
python
scikit-learn/scikit-learn
sklearn/preprocessing/tests/test_function_transformer.py
https://github.com/scikit-learn/scikit-learn/blob/master/sklearn/preprocessing/tests/test_function_transformer.py
BSD-3-Clause
def test_function_transformer_support_all_nummerical_dataframes_check_inverse_True(): """Check support for dataframes with only numerical values.""" pd = pytest.importorskip("pandas") df = pd.DataFrame({"a": [1, 2, 3], "b": [4, 5, 6]}) transformer = FunctionTransformer( func=lambda x: x + 2, inverse_func=lambda x: x - 2, check_inverse=True ) # Does not raise an error df_out = transformer.fit_transform(df) assert_allclose_dense_sparse(df_out, df + 2)
Check support for dataframes with only numerical values.
test_function_transformer_support_all_nummerical_dataframes_check_inverse_True
python
scikit-learn/scikit-learn
sklearn/preprocessing/tests/test_function_transformer.py
https://github.com/scikit-learn/scikit-learn/blob/master/sklearn/preprocessing/tests/test_function_transformer.py
BSD-3-Clause
def test_function_transformer_with_dataframe_and_check_inverse_True(): """Check error is raised when check_inverse=True. Non-regresion test for gh-25261. """ pd = pytest.importorskip("pandas") transformer = FunctionTransformer( func=lambda x: x, inverse_func=lambda x: x, check_inverse=True ) df_mixed = pd.DataFrame({"a": [1, 2, 3], "b": ["a", "b", "c"]}) msg = "'check_inverse' is only supported when all the elements in `X` is numerical." with pytest.raises(ValueError, match=msg): transformer.fit(df_mixed)
Check error is raised when check_inverse=True. Non-regresion test for gh-25261.
test_function_transformer_with_dataframe_and_check_inverse_True
python
scikit-learn/scikit-learn
sklearn/preprocessing/tests/test_function_transformer.py
https://github.com/scikit-learn/scikit-learn/blob/master/sklearn/preprocessing/tests/test_function_transformer.py
BSD-3-Clause
def test_function_transformer_validate_inverse(): """Test that function transformer does not reset estimator in `inverse_transform`.""" def add_constant_feature(X): X_one = np.ones((X.shape[0], 1)) return np.concatenate((X, X_one), axis=1) def inverse_add_constant(X): return X[:, :-1] X = np.array([[1, 2], [3, 4], [3, 4]]) trans = FunctionTransformer( func=add_constant_feature, inverse_func=inverse_add_constant, validate=True, ) X_trans = trans.fit_transform(X) assert trans.n_features_in_ == X.shape[1] trans.inverse_transform(X_trans) assert trans.n_features_in_ == X.shape[1]
Test that function transformer does not reset estimator in `inverse_transform`.
test_function_transformer_validate_inverse
python
scikit-learn/scikit-learn
sklearn/preprocessing/tests/test_function_transformer.py
https://github.com/scikit-learn/scikit-learn/blob/master/sklearn/preprocessing/tests/test_function_transformer.py
BSD-3-Clause
def test_get_feature_names_out_dataframe_with_string_data( feature_names_out, expected, in_pipeline ): """Check that get_feature_names_out works with DataFrames with string data.""" pd = pytest.importorskip("pandas") X = pd.DataFrame({"pet": ["dog", "cat"], "color": ["red", "green"]}) def func(X): if feature_names_out == "one-to-one": return X else: name = feature_names_out(None, X.columns) return X.rename(columns=dict(zip(X.columns, name))) transformer = FunctionTransformer(func=func, feature_names_out=feature_names_out) if in_pipeline: transformer = make_pipeline(transformer) X_trans = transformer.fit_transform(X) assert isinstance(X_trans, pd.DataFrame) names = transformer.get_feature_names_out() assert isinstance(names, np.ndarray) assert names.dtype == object assert_array_equal(names, expected)
Check that get_feature_names_out works with DataFrames with string data.
test_get_feature_names_out_dataframe_with_string_data
python
scikit-learn/scikit-learn
sklearn/preprocessing/tests/test_function_transformer.py
https://github.com/scikit-learn/scikit-learn/blob/master/sklearn/preprocessing/tests/test_function_transformer.py
BSD-3-Clause
def test_set_output_func(): """Check behavior of set_output with different settings.""" pd = pytest.importorskip("pandas") X = pd.DataFrame({"a": [1, 2, 3], "b": [10, 20, 100]}) ft = FunctionTransformer(np.log, feature_names_out="one-to-one") # no warning is raised when feature_names_out is defined with warnings.catch_warnings(): warnings.simplefilter("error", UserWarning) ft.set_output(transform="pandas") X_trans = ft.fit_transform(X) assert isinstance(X_trans, pd.DataFrame) assert_array_equal(X_trans.columns, ["a", "b"]) ft = FunctionTransformer(lambda x: 2 * x) ft.set_output(transform="pandas") # no warning is raised when func returns a panda dataframe with warnings.catch_warnings(): warnings.simplefilter("error", UserWarning) X_trans = ft.fit_transform(X) assert isinstance(X_trans, pd.DataFrame) assert_array_equal(X_trans.columns, ["a", "b"]) # Warning is raised when func returns a ndarray ft_np = FunctionTransformer(lambda x: np.asarray(x)) for transform in ("pandas", "polars"): ft_np.set_output(transform=transform) msg = ( f"When `set_output` is configured to be '{transform}'.*{transform} " "DataFrame.*" ) with pytest.warns(UserWarning, match=msg): ft_np.fit_transform(X) # default transform does not warn ft_np.set_output(transform="default") with warnings.catch_warnings(): warnings.simplefilter("error", UserWarning) ft_np.fit_transform(X)
Check behavior of set_output with different settings.
test_set_output_func
python
scikit-learn/scikit-learn
sklearn/preprocessing/tests/test_function_transformer.py
https://github.com/scikit-learn/scikit-learn/blob/master/sklearn/preprocessing/tests/test_function_transformer.py
BSD-3-Clause
def test_consistence_column_name_between_steps(): """Check that we have a consistence between the feature names out of `FunctionTransformer` and the feature names in of the next step in the pipeline. Non-regression test for: https://github.com/scikit-learn/scikit-learn/issues/27695 """ pd = pytest.importorskip("pandas") def with_suffix(_, names): return [name + "__log" for name in names] pipeline = make_pipeline( FunctionTransformer(np.log1p, feature_names_out=with_suffix), StandardScaler() ) df = pd.DataFrame([[1, 2], [3, 4], [5, 6]], columns=["a", "b"]) X_trans = pipeline.fit_transform(df) assert pipeline.get_feature_names_out().tolist() == ["a__log", "b__log"] # StandardScaler will convert to a numpy array assert isinstance(X_trans, np.ndarray)
Check that we have a consistence between the feature names out of `FunctionTransformer` and the feature names in of the next step in the pipeline. Non-regression test for: https://github.com/scikit-learn/scikit-learn/issues/27695
test_consistence_column_name_between_steps
python
scikit-learn/scikit-learn
sklearn/preprocessing/tests/test_function_transformer.py
https://github.com/scikit-learn/scikit-learn/blob/master/sklearn/preprocessing/tests/test_function_transformer.py
BSD-3-Clause
def test_function_transformer_overwrite_column_names(dataframe_lib, transform_output): """Check that we overwrite the column names when we should.""" lib = pytest.importorskip(dataframe_lib) if transform_output != "numpy": pytest.importorskip(transform_output) df = lib.DataFrame({"a": [1, 2, 3], "b": [10, 20, 100]}) def with_suffix(_, names): return [name + "__log" for name in names] transformer = FunctionTransformer(feature_names_out=with_suffix).set_output( transform=transform_output ) X_trans = transformer.fit_transform(df) assert_array_equal(np.asarray(X_trans), np.asarray(df)) feature_names = transformer.get_feature_names_out() assert list(X_trans.columns) == with_suffix(None, df.columns) assert feature_names.tolist() == with_suffix(None, df.columns)
Check that we overwrite the column names when we should.
test_function_transformer_overwrite_column_names
python
scikit-learn/scikit-learn
sklearn/preprocessing/tests/test_function_transformer.py
https://github.com/scikit-learn/scikit-learn/blob/master/sklearn/preprocessing/tests/test_function_transformer.py
BSD-3-Clause
def test_function_transformer_overwrite_column_names_numerical(feature_names_out): """Check the same as `test_function_transformer_overwrite_column_names` but for the specific case of pandas where column names can be numerical.""" pd = pytest.importorskip("pandas") df = pd.DataFrame({0: [1, 2, 3], 1: [10, 20, 100]}) transformer = FunctionTransformer(feature_names_out=feature_names_out) X_trans = transformer.fit_transform(df) assert_array_equal(np.asarray(X_trans), np.asarray(df)) feature_names = transformer.get_feature_names_out() assert list(X_trans.columns) == list(feature_names)
Check the same as `test_function_transformer_overwrite_column_names` but for the specific case of pandas where column names can be numerical.
test_function_transformer_overwrite_column_names_numerical
python
scikit-learn/scikit-learn
sklearn/preprocessing/tests/test_function_transformer.py
https://github.com/scikit-learn/scikit-learn/blob/master/sklearn/preprocessing/tests/test_function_transformer.py
BSD-3-Clause
def test_function_transformer_error_column_inconsistent( dataframe_lib, feature_names_out ): """Check that we raise an error when `func` returns a dataframe with new column names that become inconsistent with `get_feature_names_out`.""" lib = pytest.importorskip(dataframe_lib) df = lib.DataFrame({"a": [1, 2, 3], "b": [10, 20, 100]}) def func(df): if dataframe_lib == "pandas": return df.rename(columns={"a": "c"}) else: return df.rename({"a": "c"}) transformer = FunctionTransformer(func=func, feature_names_out=feature_names_out) err_msg = "The output generated by `func` have different column names" with pytest.raises(ValueError, match=err_msg): transformer.fit_transform(df).columns
Check that we raise an error when `func` returns a dataframe with new column names that become inconsistent with `get_feature_names_out`.
test_function_transformer_error_column_inconsistent
python
scikit-learn/scikit-learn
sklearn/preprocessing/tests/test_function_transformer.py
https://github.com/scikit-learn/scikit-learn/blob/master/sklearn/preprocessing/tests/test_function_transformer.py
BSD-3-Clause
def test_label_binarizer_pandas_nullable(dtype, unique_first): """Checks that LabelBinarizer works with pandas nullable dtypes. Non-regression test for gh-25637. """ pd = pytest.importorskip("pandas") y_true = pd.Series([1, 0, 0, 1, 0, 1, 1, 0, 1], dtype=dtype) if unique_first: # Calling unique creates a pandas array which has a different interface # compared to a pandas Series. Specifically, pandas arrays do not have "iloc". y_true = y_true.unique() lb = LabelBinarizer().fit(y_true) y_out = lb.transform([1, 0]) assert_array_equal(y_out, [[1], [0]])
Checks that LabelBinarizer works with pandas nullable dtypes. Non-regression test for gh-25637.
test_label_binarizer_pandas_nullable
python
scikit-learn/scikit-learn
sklearn/preprocessing/tests/test_label.py
https://github.com/scikit-learn/scikit-learn/blob/master/sklearn/preprocessing/tests/test_label.py
BSD-3-Clause
def test_nan_label_encoder(): """Check that label encoder encodes nans in transform. Non-regression test for #22628. """ le = LabelEncoder() le.fit(["a", "a", "b", np.nan]) y_trans = le.transform([np.nan]) assert_array_equal(y_trans, [2])
Check that label encoder encodes nans in transform. Non-regression test for #22628.
test_nan_label_encoder
python
scikit-learn/scikit-learn
sklearn/preprocessing/tests/test_label.py
https://github.com/scikit-learn/scikit-learn/blob/master/sklearn/preprocessing/tests/test_label.py
BSD-3-Clause
def test_label_encoders_do_not_have_set_output(encoder): """Check that label encoders do not define set_output and work with y as a kwarg. Non-regression test for #26854. """ assert not hasattr(encoder, "set_output") y_encoded_with_kwarg = encoder.fit_transform(y=["a", "b", "c"]) y_encoded_positional = encoder.fit_transform(["a", "b", "c"]) assert_array_equal(y_encoded_with_kwarg, y_encoded_positional)
Check that label encoders do not define set_output and work with y as a kwarg. Non-regression test for #26854.
test_label_encoders_do_not_have_set_output
python
scikit-learn/scikit-learn
sklearn/preprocessing/tests/test_label.py
https://github.com/scikit-learn/scikit-learn/blob/master/sklearn/preprocessing/tests/test_label.py
BSD-3-Clause
def test_polynomial_and_spline_array_order(est): """Test that output array has the given order.""" X = np.arange(10).reshape(5, 2) def is_c_contiguous(a): return np.isfortran(a.T) assert is_c_contiguous(est().fit_transform(X)) assert is_c_contiguous(est(order="C").fit_transform(X)) assert np.isfortran(est(order="F").fit_transform(X))
Test that output array has the given order.
test_polynomial_and_spline_array_order
python
scikit-learn/scikit-learn
sklearn/preprocessing/tests/test_polynomial.py
https://github.com/scikit-learn/scikit-learn/blob/master/sklearn/preprocessing/tests/test_polynomial.py
BSD-3-Clause
def test_spline_transformer_input_validation(params, err_msg): """Test that we raise errors for invalid input in SplineTransformer.""" X = [[1], [2]] with pytest.raises(ValueError, match=err_msg): SplineTransformer(**params).fit(X)
Test that we raise errors for invalid input in SplineTransformer.
test_spline_transformer_input_validation
python
scikit-learn/scikit-learn
sklearn/preprocessing/tests/test_polynomial.py
https://github.com/scikit-learn/scikit-learn/blob/master/sklearn/preprocessing/tests/test_polynomial.py
BSD-3-Clause
def test_spline_transformer_integer_knots(extrapolation): """Test that SplineTransformer accepts integer value knot positions.""" X = np.arange(20).reshape(10, 2) knots = [[0, 1], [1, 2], [5, 5], [11, 10], [12, 11]] _ = SplineTransformer( degree=3, knots=knots, extrapolation=extrapolation ).fit_transform(X)
Test that SplineTransformer accepts integer value knot positions.
test_spline_transformer_integer_knots
python
scikit-learn/scikit-learn
sklearn/preprocessing/tests/test_polynomial.py
https://github.com/scikit-learn/scikit-learn/blob/master/sklearn/preprocessing/tests/test_polynomial.py
BSD-3-Clause
def test_spline_transformer_feature_names(): """Test that SplineTransformer generates correct features name.""" X = np.arange(20).reshape(10, 2) splt = SplineTransformer(n_knots=3, degree=3, include_bias=True).fit(X) feature_names = splt.get_feature_names_out() assert_array_equal( feature_names, [ "x0_sp_0", "x0_sp_1", "x0_sp_2", "x0_sp_3", "x0_sp_4", "x1_sp_0", "x1_sp_1", "x1_sp_2", "x1_sp_3", "x1_sp_4", ], ) splt = SplineTransformer(n_knots=3, degree=3, include_bias=False).fit(X) feature_names = splt.get_feature_names_out(["a", "b"]) assert_array_equal( feature_names, [ "a_sp_0", "a_sp_1", "a_sp_2", "a_sp_3", "b_sp_0", "b_sp_1", "b_sp_2", "b_sp_3", ], )
Test that SplineTransformer generates correct features name.
test_spline_transformer_feature_names
python
scikit-learn/scikit-learn
sklearn/preprocessing/tests/test_polynomial.py
https://github.com/scikit-learn/scikit-learn/blob/master/sklearn/preprocessing/tests/test_polynomial.py
BSD-3-Clause
def test_split_transform_feature_names_extrapolation_degree(extrapolation, degree): """Test feature names are correct for different extrapolations and degree. Non-regression test for gh-25292. """ X = np.arange(20).reshape(10, 2) splt = SplineTransformer(degree=degree, extrapolation=extrapolation).fit(X) feature_names = splt.get_feature_names_out(["a", "b"]) assert len(feature_names) == splt.n_features_out_ X_trans = splt.transform(X) assert X_trans.shape[1] == len(feature_names)
Test feature names are correct for different extrapolations and degree. Non-regression test for gh-25292.
test_split_transform_feature_names_extrapolation_degree
python
scikit-learn/scikit-learn
sklearn/preprocessing/tests/test_polynomial.py
https://github.com/scikit-learn/scikit-learn/blob/master/sklearn/preprocessing/tests/test_polynomial.py
BSD-3-Clause
def test_spline_transformer_unity_decomposition(degree, n_knots, knots, extrapolation): """Test that B-splines are indeed a decomposition of unity. Splines basis functions must sum up to 1 per row, if we stay in between boundaries. """ X = np.linspace(0, 1, 100)[:, None] # make the boundaries 0 and 1 part of X_train, for sure. X_train = np.r_[[[0]], X[::2, :], [[1]]] X_test = X[1::2, :] if extrapolation == "periodic": n_knots = n_knots + degree # periodic splines require degree < n_knots splt = SplineTransformer( n_knots=n_knots, degree=degree, knots=knots, include_bias=True, extrapolation=extrapolation, ) splt.fit(X_train) for X in [X_train, X_test]: assert_allclose(np.sum(splt.transform(X), axis=1), 1)
Test that B-splines are indeed a decomposition of unity. Splines basis functions must sum up to 1 per row, if we stay in between boundaries.
test_spline_transformer_unity_decomposition
python
scikit-learn/scikit-learn
sklearn/preprocessing/tests/test_polynomial.py
https://github.com/scikit-learn/scikit-learn/blob/master/sklearn/preprocessing/tests/test_polynomial.py
BSD-3-Clause
def test_spline_transformer_linear_regression(bias, intercept): """Test that B-splines fit a sinusodial curve pretty well.""" X = np.linspace(0, 10, 100)[:, None] y = np.sin(X[:, 0]) + 2 # +2 to avoid the value 0 in assert_allclose pipe = Pipeline( steps=[ ( "spline", SplineTransformer( n_knots=15, degree=3, include_bias=bias, extrapolation="constant", ), ), ("ols", LinearRegression(fit_intercept=intercept)), ] ) pipe.fit(X, y) assert_allclose(pipe.predict(X), y, rtol=1e-3)
Test that B-splines fit a sinusodial curve pretty well.
test_spline_transformer_linear_regression
python
scikit-learn/scikit-learn
sklearn/preprocessing/tests/test_polynomial.py
https://github.com/scikit-learn/scikit-learn/blob/master/sklearn/preprocessing/tests/test_polynomial.py
BSD-3-Clause
def test_spline_transformer_get_base_knot_positions( knots, n_knots, sample_weight, expected_knots ): """Check the behaviour to find knot positions with and without sample_weight.""" X = np.array([[0, 2], [0, 2], [2, 2], [3, 3], [4, 6], [5, 8], [6, 14]]) base_knots = SplineTransformer._get_base_knot_positions( X=X, knots=knots, n_knots=n_knots, sample_weight=sample_weight ) assert_allclose(base_knots, expected_knots)
Check the behaviour to find knot positions with and without sample_weight.
test_spline_transformer_get_base_knot_positions
python
scikit-learn/scikit-learn
sklearn/preprocessing/tests/test_polynomial.py
https://github.com/scikit-learn/scikit-learn/blob/master/sklearn/preprocessing/tests/test_polynomial.py
BSD-3-Clause
def test_spline_transformer_periodic_linear_regression(bias, intercept): """Test that B-splines fit a periodic curve pretty well.""" # "+ 3" to avoid the value 0 in assert_allclose def f(x): return np.sin(2 * np.pi * x) - np.sin(8 * np.pi * x) + 3 X = np.linspace(0, 1, 101)[:, None] pipe = Pipeline( steps=[ ( "spline", SplineTransformer( n_knots=20, degree=3, include_bias=bias, extrapolation="periodic", ), ), ("ols", LinearRegression(fit_intercept=intercept)), ] ) pipe.fit(X, f(X[:, 0])) # Generate larger array to check periodic extrapolation X_ = np.linspace(-1, 2, 301)[:, None] predictions = pipe.predict(X_) assert_allclose(predictions, f(X_[:, 0]), atol=0.01, rtol=0.01) assert_allclose(predictions[0:100], predictions[100:200], rtol=1e-3)
Test that B-splines fit a periodic curve pretty well.
test_spline_transformer_periodic_linear_regression
python
scikit-learn/scikit-learn
sklearn/preprocessing/tests/test_polynomial.py
https://github.com/scikit-learn/scikit-learn/blob/master/sklearn/preprocessing/tests/test_polynomial.py
BSD-3-Clause
def test_spline_transformer_periodic_spline_backport(): """Test that the backport of extrapolate="periodic" works correctly""" X = np.linspace(-2, 3.5, 10)[:, None] degree = 2 # Use periodic extrapolation backport in SplineTransformer transformer = SplineTransformer( degree=degree, extrapolation="periodic", knots=[[-1.0], [0.0], [1.0]] ) Xt = transformer.fit_transform(X) # Use periodic extrapolation in BSpline coef = np.array([[1.0, 0.0], [0.0, 1.0], [1.0, 0.0], [0.0, 1.0]]) spl = BSpline(np.arange(-3, 4), coef, degree, "periodic") Xspl = spl(X[:, 0]) assert_allclose(Xt, Xspl)
Test that the backport of extrapolate="periodic" works correctly
test_spline_transformer_periodic_spline_backport
python
scikit-learn/scikit-learn
sklearn/preprocessing/tests/test_polynomial.py
https://github.com/scikit-learn/scikit-learn/blob/master/sklearn/preprocessing/tests/test_polynomial.py
BSD-3-Clause
def test_spline_transformer_periodic_splines_periodicity(): """Test if shifted knots result in the same transformation up to permutation.""" X = np.linspace(0, 10, 101)[:, None] transformer_1 = SplineTransformer( degree=3, extrapolation="periodic", knots=[[0.0], [1.0], [3.0], [4.0], [5.0], [8.0]], ) transformer_2 = SplineTransformer( degree=3, extrapolation="periodic", knots=[[1.0], [3.0], [4.0], [5.0], [8.0], [9.0]], ) Xt_1 = transformer_1.fit_transform(X) Xt_2 = transformer_2.fit_transform(X) assert_allclose(Xt_1, Xt_2[:, [4, 0, 1, 2, 3]])
Test if shifted knots result in the same transformation up to permutation.
test_spline_transformer_periodic_splines_periodicity
python
scikit-learn/scikit-learn
sklearn/preprocessing/tests/test_polynomial.py
https://github.com/scikit-learn/scikit-learn/blob/master/sklearn/preprocessing/tests/test_polynomial.py
BSD-3-Clause
def test_spline_transformer_periodic_splines_smoothness(degree): """Test that spline transformation is smooth at first / last knot.""" X = np.linspace(-2, 10, 10_000)[:, None] transformer = SplineTransformer( degree=degree, extrapolation="periodic", knots=[[0.0], [1.0], [3.0], [4.0], [5.0], [8.0]], ) Xt = transformer.fit_transform(X) delta = (X.max() - X.min()) / len(X) tol = 10 * delta dXt = Xt # We expect splines of degree `degree` to be (`degree`-1) times # continuously differentiable. I.e. for d = 0, ..., `degree` - 1 the d-th # derivative should be continuous. This is the case if the (d+1)-th # numerical derivative is reasonably small (smaller than `tol` in absolute # value). We thus compute d-th numeric derivatives for d = 1, ..., `degree` # and compare them to `tol`. # # Note that the 0-th derivative is the function itself, such that we are # also checking its continuity. for d in range(1, degree + 1): # Check continuity of the (d-1)-th derivative diff = np.diff(dXt, axis=0) assert np.abs(diff).max() < tol # Compute d-th numeric derivative dXt = diff / delta # As degree `degree` splines are not `degree` times continuously # differentiable at the knots, the `degree + 1`-th numeric derivative # should have spikes at the knots. diff = np.diff(dXt, axis=0) assert np.abs(diff).max() > 1
Test that spline transformation is smooth at first / last knot.
test_spline_transformer_periodic_splines_smoothness
python
scikit-learn/scikit-learn
sklearn/preprocessing/tests/test_polynomial.py
https://github.com/scikit-learn/scikit-learn/blob/master/sklearn/preprocessing/tests/test_polynomial.py
BSD-3-Clause
def test_spline_transformer_extrapolation(bias, intercept, degree): """Test that B-spline extrapolation works correctly.""" # we use a straight line for that X = np.linspace(-1, 1, 100)[:, None] y = X.squeeze() # 'constant' pipe = Pipeline( [ [ "spline", SplineTransformer( n_knots=4, degree=degree, include_bias=bias, extrapolation="constant", ), ], ["ols", LinearRegression(fit_intercept=intercept)], ] ) pipe.fit(X, y) assert_allclose(pipe.predict([[-10], [5]]), [-1, 1]) # 'linear' pipe = Pipeline( [ [ "spline", SplineTransformer( n_knots=4, degree=degree, include_bias=bias, extrapolation="linear", ), ], ["ols", LinearRegression(fit_intercept=intercept)], ] ) pipe.fit(X, y) assert_allclose(pipe.predict([[-10], [5]]), [-10, 5]) # 'error' splt = SplineTransformer( n_knots=4, degree=degree, include_bias=bias, extrapolation="error" ) splt.fit(X) msg = "X contains values beyond the limits of the knots" with pytest.raises(ValueError, match=msg): splt.transform([[-10]]) with pytest.raises(ValueError, match=msg): splt.transform([[5]])
Test that B-spline extrapolation works correctly.
test_spline_transformer_extrapolation
python
scikit-learn/scikit-learn
sklearn/preprocessing/tests/test_polynomial.py
https://github.com/scikit-learn/scikit-learn/blob/master/sklearn/preprocessing/tests/test_polynomial.py
BSD-3-Clause
def test_spline_transformer_kbindiscretizer(global_random_seed): """Test that a B-spline of degree=0 is equivalent to KBinsDiscretizer.""" rng = np.random.RandomState(global_random_seed) X = rng.randn(200).reshape(200, 1) n_bins = 5 n_knots = n_bins + 1 splt = SplineTransformer( n_knots=n_knots, degree=0, knots="quantile", include_bias=True ) splines = splt.fit_transform(X) kbd = KBinsDiscretizer( n_bins=n_bins, encode="onehot-dense", strategy="quantile", quantile_method="averaged_inverted_cdf", ) kbins = kbd.fit_transform(X) # Though they should be exactly equal, we test approximately with high # accuracy. assert_allclose(splines, kbins, rtol=1e-13)
Test that a B-spline of degree=0 is equivalent to KBinsDiscretizer.
test_spline_transformer_kbindiscretizer
python
scikit-learn/scikit-learn
sklearn/preprocessing/tests/test_polynomial.py
https://github.com/scikit-learn/scikit-learn/blob/master/sklearn/preprocessing/tests/test_polynomial.py
BSD-3-Clause
def test_spline_transformer_n_features_out( n_knots, include_bias, degree, extrapolation, sparse_output ): """Test that transform results in n_features_out_ features.""" splt = SplineTransformer( n_knots=n_knots, degree=degree, include_bias=include_bias, extrapolation=extrapolation, sparse_output=sparse_output, ) X = np.linspace(0, 1, 10)[:, None] splt.fit(X) assert splt.transform(X).shape[1] == splt.n_features_out_
Test that transform results in n_features_out_ features.
test_spline_transformer_n_features_out
python
scikit-learn/scikit-learn
sklearn/preprocessing/tests/test_polynomial.py
https://github.com/scikit-learn/scikit-learn/blob/master/sklearn/preprocessing/tests/test_polynomial.py
BSD-3-Clause
def test_polynomial_features_input_validation(params, err_msg): """Test that we raise errors for invalid input in PolynomialFeatures.""" X = [[1], [2]] with pytest.raises(ValueError, match=err_msg): PolynomialFeatures(**params).fit(X)
Test that we raise errors for invalid input in PolynomialFeatures.
test_polynomial_features_input_validation
python
scikit-learn/scikit-learn
sklearn/preprocessing/tests/test_polynomial.py
https://github.com/scikit-learn/scikit-learn/blob/master/sklearn/preprocessing/tests/test_polynomial.py
BSD-3-Clause
def test_polynomial_features_one_feature( single_feature_degree3, degree, include_bias, interaction_only, indices, X_container, ): """Test PolynomialFeatures on single feature up to degree 3.""" X, P = single_feature_degree3 if X_container is not None: X = X_container(X) tf = PolynomialFeatures( degree=degree, include_bias=include_bias, interaction_only=interaction_only ).fit(X) out = tf.transform(X) if X_container is not None: out = out.toarray() assert_allclose(out, P[:, indices]) if tf.n_output_features_ > 0: assert tf.powers_.shape == (tf.n_output_features_, tf.n_features_in_)
Test PolynomialFeatures on single feature up to degree 3.
test_polynomial_features_one_feature
python
scikit-learn/scikit-learn
sklearn/preprocessing/tests/test_polynomial.py
https://github.com/scikit-learn/scikit-learn/blob/master/sklearn/preprocessing/tests/test_polynomial.py
BSD-3-Clause
def test_polynomial_features_two_features( two_features_degree3, degree, include_bias, interaction_only, indices, X_container, ): """Test PolynomialFeatures on 2 features up to degree 3.""" X, P = two_features_degree3 if X_container is not None: X = X_container(X) tf = PolynomialFeatures( degree=degree, include_bias=include_bias, interaction_only=interaction_only ).fit(X) out = tf.transform(X) if X_container is not None: out = out.toarray() assert_allclose(out, P[:, indices]) if tf.n_output_features_ > 0: assert tf.powers_.shape == (tf.n_output_features_, tf.n_features_in_)
Test PolynomialFeatures on 2 features up to degree 3.
test_polynomial_features_two_features
python
scikit-learn/scikit-learn
sklearn/preprocessing/tests/test_polynomial.py
https://github.com/scikit-learn/scikit-learn/blob/master/sklearn/preprocessing/tests/test_polynomial.py
BSD-3-Clause
def test_csr_polynomial_expansion_index_overflow_non_regression( interaction_only, include_bias, csr_container ): """Check the automatic index dtype promotion to `np.int64` when needed. This ensures that sufficiently large input configurations get properly promoted to use `np.int64` for index and indptr representation while preserving data integrity. Non-regression test for gh-16803. Note that this is only possible for Python runtimes with a 64 bit address space. On 32 bit platforms, a `ValueError` is raised instead. """ def degree_2_calc(d, i, j): if interaction_only: return d * i - (i**2 + 3 * i) // 2 - 1 + j else: return d * i - (i**2 + i) // 2 + j n_samples = 13 n_features = 120001 data_dtype = np.float32 data = np.arange(1, 5, dtype=np.int64) row = np.array([n_samples - 2, n_samples - 2, n_samples - 1, n_samples - 1]) # An int64 dtype is required to avoid overflow error on Windows within the # `degree_2_calc` function. col = np.array( [n_features - 2, n_features - 1, n_features - 2, n_features - 1], dtype=np.int64 ) X = csr_container( (data, (row, col)), shape=(n_samples, n_features), dtype=data_dtype, ) pf = PolynomialFeatures( interaction_only=interaction_only, include_bias=include_bias, degree=2 ) # Calculate the number of combinations a-priori, and if needed check for # the correct ValueError and terminate the test early. num_combinations = pf._num_combinations( n_features=n_features, min_degree=0, max_degree=2, interaction_only=pf.interaction_only, include_bias=pf.include_bias, ) if num_combinations > np.iinfo(np.intp).max: msg = ( r"The output that would result from the current configuration would have" r" \d* features which is too large to be indexed" ) with pytest.raises(ValueError, match=msg): pf.fit(X) return X_trans = pf.fit_transform(X) row_nonzero, col_nonzero = X_trans.nonzero() n_degree_1_features_out = n_features + include_bias max_degree_2_idx = ( degree_2_calc(n_features, col[int(not interaction_only)], col[1]) + n_degree_1_features_out ) # Account for bias of all samples except last one which will be handled # separately since there are distinct data values before it data_target = [1] * (n_samples - 2) if include_bias else [] col_nonzero_target = [0] * (n_samples - 2) if include_bias else [] for i in range(2): x = data[2 * i] y = data[2 * i + 1] x_idx = col[2 * i] y_idx = col[2 * i + 1] if include_bias: data_target.append(1) col_nonzero_target.append(0) data_target.extend([x, y]) col_nonzero_target.extend( [x_idx + int(include_bias), y_idx + int(include_bias)] ) if not interaction_only: data_target.extend([x * x, x * y, y * y]) col_nonzero_target.extend( [ degree_2_calc(n_features, x_idx, x_idx) + n_degree_1_features_out, degree_2_calc(n_features, x_idx, y_idx) + n_degree_1_features_out, degree_2_calc(n_features, y_idx, y_idx) + n_degree_1_features_out, ] ) else: data_target.extend([x * y]) col_nonzero_target.append( degree_2_calc(n_features, x_idx, y_idx) + n_degree_1_features_out ) nnz_per_row = int(include_bias) + 3 + 2 * int(not interaction_only) assert pf.n_output_features_ == max_degree_2_idx + 1 assert X_trans.dtype == data_dtype assert X_trans.shape == (n_samples, max_degree_2_idx + 1) assert X_trans.indptr.dtype == X_trans.indices.dtype == np.int64 # Ensure that dtype promotion was actually required: assert X_trans.indices.max() > np.iinfo(np.int32).max row_nonzero_target = list(range(n_samples - 2)) if include_bias else [] row_nonzero_target.extend( [n_samples - 2] * nnz_per_row + [n_samples - 1] * nnz_per_row ) assert_allclose(X_trans.data, data_target) assert_array_equal(row_nonzero, row_nonzero_target) assert_array_equal(col_nonzero, col_nonzero_target)
Check the automatic index dtype promotion to `np.int64` when needed. This ensures that sufficiently large input configurations get properly promoted to use `np.int64` for index and indptr representation while preserving data integrity. Non-regression test for gh-16803. Note that this is only possible for Python runtimes with a 64 bit address space. On 32 bit platforms, a `ValueError` is raised instead.
test_csr_polynomial_expansion_index_overflow_non_regression
python
scikit-learn/scikit-learn
sklearn/preprocessing/tests/test_polynomial.py
https://github.com/scikit-learn/scikit-learn/blob/master/sklearn/preprocessing/tests/test_polynomial.py
BSD-3-Clause
def test_csr_polynomial_expansion_index_overflow( degree, n_features, interaction_only, include_bias, csr_container ): """Tests known edge-cases to the dtype promotion strategy and custom Cython code, including a current bug in the upstream `scipy.sparse.hstack`. """ data = [1.0] # Use int32 indices as much as we can indices_dtype = np.int32 if n_features - 1 <= np.iinfo(np.int32).max else np.int64 row = np.array([0], dtype=indices_dtype) col = np.array([n_features - 1], dtype=indices_dtype) # First degree index expected_indices = [ n_features - 1 + int(include_bias), ] # Second degree index expected_indices.append(n_features * (n_features + 1) // 2 + expected_indices[0]) # Third degree index expected_indices.append( n_features * (n_features + 1) * (n_features + 2) // 6 + expected_indices[1] ) X = csr_container((data, (row, col))) pf = PolynomialFeatures( interaction_only=interaction_only, include_bias=include_bias, degree=degree ) # Calculate the number of combinations a-priori, and if needed check for # the correct ValueError and terminate the test early. num_combinations = pf._num_combinations( n_features=n_features, min_degree=0, max_degree=degree, interaction_only=pf.interaction_only, include_bias=pf.include_bias, ) if num_combinations > np.iinfo(np.intp).max: msg = ( r"The output that would result from the current configuration would have" r" \d* features which is too large to be indexed" ) with pytest.raises(ValueError, match=msg): pf.fit(X) return # When `n_features>=65535`, `scipy.sparse.hstack` may not use the right # dtype for representing indices and indptr if `n_features` is still # small enough so that each block matrix's indices and indptr arrays # can be represented with `np.int32`. We test `n_features==65535` # since it is guaranteed to run into this bug. if ( sp_version < parse_version("1.9.2") and n_features == 65535 and degree == 2 and not interaction_only ): # pragma: no cover msg = r"In scipy versions `<1.9.2`, the function `scipy.sparse.hstack`" with pytest.raises(ValueError, match=msg): X_trans = pf.fit_transform(X) return X_trans = pf.fit_transform(X) expected_dtype = np.int64 if num_combinations > np.iinfo(np.int32).max else np.int32 # Terms higher than first degree non_bias_terms = 1 + (degree - 1) * int(not interaction_only) expected_nnz = int(include_bias) + non_bias_terms assert X_trans.dtype == X.dtype assert X_trans.shape == (1, pf.n_output_features_) assert X_trans.indptr.dtype == X_trans.indices.dtype == expected_dtype assert X_trans.nnz == expected_nnz if include_bias: assert X_trans[0, 0] == pytest.approx(1.0) for idx in range(non_bias_terms): assert X_trans[0, expected_indices[idx]] == pytest.approx(1.0) offset = interaction_only * n_features if degree == 3: offset *= 1 + n_features assert pf.n_output_features_ == expected_indices[degree - 1] + 1 - offset
Tests known edge-cases to the dtype promotion strategy and custom Cython code, including a current bug in the upstream `scipy.sparse.hstack`.
test_csr_polynomial_expansion_index_overflow
python
scikit-learn/scikit-learn
sklearn/preprocessing/tests/test_polynomial.py
https://github.com/scikit-learn/scikit-learn/blob/master/sklearn/preprocessing/tests/test_polynomial.py
BSD-3-Clause
def test_polynomial_features_behaviour_on_zero_degree(sparse_container): """Check that PolynomialFeatures raises error when degree=0 and include_bias=False, and output a single constant column when include_bias=True """ X = np.ones((10, 2)) poly = PolynomialFeatures(degree=0, include_bias=False) err_msg = ( "Setting degree to zero and include_bias to False would result in" " an empty output array." ) with pytest.raises(ValueError, match=err_msg): poly.fit_transform(X) poly = PolynomialFeatures(degree=(0, 0), include_bias=False) err_msg = ( "Setting both min_degree and max_degree to zero and include_bias to" " False would result in an empty output array." ) with pytest.raises(ValueError, match=err_msg): poly.fit_transform(X) for _X in [X, sparse_container(X)]: poly = PolynomialFeatures(degree=0, include_bias=True) output = poly.fit_transform(_X) # convert to dense array if needed if sparse.issparse(output): output = output.toarray() assert_array_equal(output, np.ones((X.shape[0], 1)))
Check that PolynomialFeatures raises error when degree=0 and include_bias=False, and output a single constant column when include_bias=True
test_polynomial_features_behaviour_on_zero_degree
python
scikit-learn/scikit-learn
sklearn/preprocessing/tests/test_polynomial.py
https://github.com/scikit-learn/scikit-learn/blob/master/sklearn/preprocessing/tests/test_polynomial.py
BSD-3-Clause
def _encode_target(X_ordinal, y_numeric, n_categories, smooth): """Simple Python implementation of target encoding.""" cur_encodings = np.zeros(n_categories, dtype=np.float64) y_mean = np.mean(y_numeric) if smooth == "auto": y_variance = np.var(y_numeric) for c in range(n_categories): y_subset = y_numeric[X_ordinal == c] n_i = y_subset.shape[0] if n_i == 0: cur_encodings[c] = y_mean continue y_subset_variance = np.var(y_subset) m = y_subset_variance / y_variance lambda_ = n_i / (n_i + m) cur_encodings[c] = lambda_ * np.mean(y_subset) + (1 - lambda_) * y_mean return cur_encodings else: # float for c in range(n_categories): y_subset = y_numeric[X_ordinal == c] current_sum = np.sum(y_subset) + y_mean * smooth current_cnt = y_subset.shape[0] + smooth cur_encodings[c] = current_sum / current_cnt return cur_encodings
Simple Python implementation of target encoding.
_encode_target
python
scikit-learn/scikit-learn
sklearn/preprocessing/tests/test_target_encoder.py
https://github.com/scikit-learn/scikit-learn/blob/master/sklearn/preprocessing/tests/test_target_encoder.py
BSD-3-Clause
def test_encoding(categories, unknown_value, global_random_seed, smooth, target_type): """Check encoding for binary and continuous targets. Compare the values returned by `TargetEncoder.fit_transform` against the expected encodings for cv splits from a naive reference Python implementation in _encode_target. """ n_categories = 3 X_train_int_array = np.array([[0] * 20 + [1] * 30 + [2] * 40], dtype=np.int64).T X_test_int_array = np.array([[0, 1, 2]], dtype=np.int64).T n_samples = X_train_int_array.shape[0] if categories == "auto": X_train = X_train_int_array X_test = X_test_int_array else: X_train = categories[0][X_train_int_array] X_test = categories[0][X_test_int_array] X_test = np.concatenate((X_test, [[unknown_value]])) data_rng = np.random.RandomState(global_random_seed) n_splits = 3 if target_type == "binary": y_numeric = data_rng.randint(low=0, high=2, size=n_samples) target_names = np.array(["cat", "dog"], dtype=object) y_train = target_names[y_numeric] else: assert target_type == "continuous" y_numeric = data_rng.uniform(low=-10, high=20, size=n_samples) y_train = y_numeric shuffled_idx = data_rng.permutation(n_samples) X_train_int_array = X_train_int_array[shuffled_idx] X_train = X_train[shuffled_idx] y_train = y_train[shuffled_idx] y_numeric = y_numeric[shuffled_idx] # Define our CV splitting strategy if target_type == "binary": cv = StratifiedKFold( n_splits=n_splits, random_state=global_random_seed, shuffle=True ) else: cv = KFold(n_splits=n_splits, random_state=global_random_seed, shuffle=True) # Compute the expected values using our reference Python implementation of # target encoding: expected_X_fit_transform = np.empty_like(X_train_int_array, dtype=np.float64) for train_idx, test_idx in cv.split(X_train_int_array, y_train): X_, y_ = X_train_int_array[train_idx, 0], y_numeric[train_idx] cur_encodings = _encode_target(X_, y_, n_categories, smooth) expected_X_fit_transform[test_idx, 0] = cur_encodings[ X_train_int_array[test_idx, 0] ] # Check that we can obtain the same encodings by calling `fit_transform` on # the estimator with the same CV parameters: target_encoder = TargetEncoder( smooth=smooth, categories=categories, cv=n_splits, random_state=global_random_seed, ) X_fit_transform = target_encoder.fit_transform(X_train, y_train) assert target_encoder.target_type_ == target_type assert_allclose(X_fit_transform, expected_X_fit_transform) assert len(target_encoder.encodings_) == 1 if target_type == "binary": assert_array_equal(target_encoder.classes_, target_names) else: assert target_encoder.classes_ is None # compute encodings for all data to validate `transform` y_mean = np.mean(y_numeric) expected_encodings = _encode_target( X_train_int_array[:, 0], y_numeric, n_categories, smooth ) assert_allclose(target_encoder.encodings_[0], expected_encodings) assert target_encoder.target_mean_ == pytest.approx(y_mean) # Transform on test data, the last value is unknown so it is encoded as the target # mean expected_X_test_transform = np.concatenate( (expected_encodings, np.array([y_mean])) ).reshape(-1, 1) X_test_transform = target_encoder.transform(X_test) assert_allclose(X_test_transform, expected_X_test_transform)
Check encoding for binary and continuous targets. Compare the values returned by `TargetEncoder.fit_transform` against the expected encodings for cv splits from a naive reference Python implementation in _encode_target.
test_encoding
python
scikit-learn/scikit-learn
sklearn/preprocessing/tests/test_target_encoder.py
https://github.com/scikit-learn/scikit-learn/blob/master/sklearn/preprocessing/tests/test_target_encoder.py
BSD-3-Clause
def test_custom_categories(X, categories, smooth): """Custom categories with unknown categories that are not in training data.""" rng = np.random.RandomState(0) y = rng.uniform(low=-10, high=20, size=X.shape[0]) enc = TargetEncoder(categories=categories, smooth=smooth, random_state=0).fit(X, y) # The last element is unknown and encoded as the mean y_mean = y.mean() X_trans = enc.transform(X[-1:]) assert X_trans[0, 0] == pytest.approx(y_mean) assert len(enc.encodings_) == 1 # custom category that is not in training data assert enc.encodings_[0][-1] == pytest.approx(y_mean)
Custom categories with unknown categories that are not in training data.
test_custom_categories
python
scikit-learn/scikit-learn
sklearn/preprocessing/tests/test_target_encoder.py
https://github.com/scikit-learn/scikit-learn/blob/master/sklearn/preprocessing/tests/test_target_encoder.py
BSD-3-Clause
def test_use_regression_target(): """Check inferred and specified `target_type` on regression target.""" X = np.array([[0, 1, 0, 1, 0, 1]]).T y = np.array([1.0, 2.0, 3.0, 2.0, 3.0, 4.0]) enc = TargetEncoder(cv=2) with pytest.warns( UserWarning, match=re.escape( "The least populated class in y has only 1 members, which is less than" " n_splits=2." ), ): enc.fit_transform(X, y) assert enc.target_type_ == "multiclass" enc = TargetEncoder(cv=2, target_type="continuous") enc.fit_transform(X, y) assert enc.target_type_ == "continuous"
Check inferred and specified `target_type` on regression target.
test_use_regression_target
python
scikit-learn/scikit-learn
sklearn/preprocessing/tests/test_target_encoder.py
https://github.com/scikit-learn/scikit-learn/blob/master/sklearn/preprocessing/tests/test_target_encoder.py
BSD-3-Clause
def test_multiple_features_quick(to_pandas, smooth, target_type): """Check target encoder with multiple features.""" X_ordinal = np.array( [[1, 1], [0, 1], [1, 1], [2, 1], [1, 0], [0, 1], [1, 0], [0, 0]], dtype=np.int64 ) if target_type == "binary-str": y_train = np.array(["a", "b", "a", "a", "b", "b", "a", "b"]) y_integer = LabelEncoder().fit_transform(y_train) cv = StratifiedKFold(2, random_state=0, shuffle=True) elif target_type == "binary-ints": y_train = np.array([3, 4, 3, 3, 3, 4, 4, 4]) y_integer = LabelEncoder().fit_transform(y_train) cv = StratifiedKFold(2, random_state=0, shuffle=True) else: y_train = np.array([3.0, 5.1, 2.4, 3.5, 4.1, 5.5, 10.3, 7.3], dtype=np.float32) y_integer = y_train cv = KFold(2, random_state=0, shuffle=True) y_mean = np.mean(y_integer) categories = [[0, 1, 2], [0, 1]] X_test = np.array( [ [0, 1], [3, 0], # 3 is unknown [1, 10], # 10 is unknown ], dtype=np.int64, ) if to_pandas: pd = pytest.importorskip("pandas") # convert second feature to an object X_train = pd.DataFrame( { "feat0": X_ordinal[:, 0], "feat1": np.array(["cat", "dog"], dtype=object)[X_ordinal[:, 1]], } ) # "snake" is unknown X_test = pd.DataFrame({"feat0": X_test[:, 0], "feat1": ["dog", "cat", "snake"]}) else: X_train = X_ordinal # manually compute encoding for fit_transform expected_X_fit_transform = np.empty_like(X_ordinal, dtype=np.float64) for f_idx, cats in enumerate(categories): for train_idx, test_idx in cv.split(X_ordinal, y_integer): X_, y_ = X_ordinal[train_idx, f_idx], y_integer[train_idx] current_encoding = _encode_target(X_, y_, len(cats), smooth) expected_X_fit_transform[test_idx, f_idx] = current_encoding[ X_ordinal[test_idx, f_idx] ] # manually compute encoding for transform expected_encodings = [] for f_idx, cats in enumerate(categories): current_encoding = _encode_target( X_ordinal[:, f_idx], y_integer, len(cats), smooth ) expected_encodings.append(current_encoding) expected_X_test_transform = np.array( [ [expected_encodings[0][0], expected_encodings[1][1]], [y_mean, expected_encodings[1][0]], [expected_encodings[0][1], y_mean], ], dtype=np.float64, ) enc = TargetEncoder(smooth=smooth, cv=2, random_state=0) X_fit_transform = enc.fit_transform(X_train, y_train) assert_allclose(X_fit_transform, expected_X_fit_transform) assert len(enc.encodings_) == 2 for i in range(2): assert_allclose(enc.encodings_[i], expected_encodings[i]) X_test_transform = enc.transform(X_test) assert_allclose(X_test_transform, expected_X_test_transform)
Check target encoder with multiple features.
test_multiple_features_quick
python
scikit-learn/scikit-learn
sklearn/preprocessing/tests/test_target_encoder.py
https://github.com/scikit-learn/scikit-learn/blob/master/sklearn/preprocessing/tests/test_target_encoder.py
BSD-3-Clause
def test_constant_target_and_feature(y, y_mean, smooth): """Check edge case where feature and target is constant.""" X = np.array([[1] * 20]).T n_samples = X.shape[0] enc = TargetEncoder(cv=2, smooth=smooth, random_state=0) X_trans = enc.fit_transform(X, y) assert_allclose(X_trans, np.repeat([[y_mean]], n_samples, axis=0)) assert enc.encodings_[0][0] == pytest.approx(y_mean) assert enc.target_mean_ == pytest.approx(y_mean) X_test = np.array([[1], [0]]) X_test_trans = enc.transform(X_test) assert_allclose(X_test_trans, np.repeat([[y_mean]], 2, axis=0))
Check edge case where feature and target is constant.
test_constant_target_and_feature
python
scikit-learn/scikit-learn
sklearn/preprocessing/tests/test_target_encoder.py
https://github.com/scikit-learn/scikit-learn/blob/master/sklearn/preprocessing/tests/test_target_encoder.py
BSD-3-Clause
def test_smooth_zero(): """Check edge case with zero smoothing and cv does not contain category.""" X = np.array([[0, 0, 0, 0, 0, 1, 1, 1, 1, 1]]).T y = np.array([2.1, 4.3, 1.2, 3.1, 1.0, 9.0, 10.3, 14.2, 13.3, 15.0]) enc = TargetEncoder(smooth=0.0, shuffle=False, cv=2) X_trans = enc.fit_transform(X, y) # With cv = 2, category 0 does not exist in the second half, thus # it will be encoded as the mean of the second half assert_allclose(X_trans[0], np.mean(y[5:])) # category 1 does not exist in the first half, thus it will be encoded as # the mean of the first half assert_allclose(X_trans[-1], np.mean(y[:5]))
Check edge case with zero smoothing and cv does not contain category.
test_smooth_zero
python
scikit-learn/scikit-learn
sklearn/preprocessing/tests/test_target_encoder.py
https://github.com/scikit-learn/scikit-learn/blob/master/sklearn/preprocessing/tests/test_target_encoder.py
BSD-3-Clause
def test_pandas_copy_on_write(): """ Test target-encoder cython code when y is read-only. The numpy array underlying df["y"] is read-only when copy-on-write is enabled. Non-regression test for gh-27879. """ pd = pytest.importorskip("pandas", minversion="2.0") with pd.option_context("mode.copy_on_write", True): df = pd.DataFrame({"x": ["a", "b", "b"], "y": [4.0, 5.0, 6.0]}) TargetEncoder(target_type="continuous").fit(df[["x"]], df["y"])
Test target-encoder cython code when y is read-only. The numpy array underlying df["y"] is read-only when copy-on-write is enabled. Non-regression test for gh-27879.
test_pandas_copy_on_write
python
scikit-learn/scikit-learn
sklearn/preprocessing/tests/test_target_encoder.py
https://github.com/scikit-learn/scikit-learn/blob/master/sklearn/preprocessing/tests/test_target_encoder.py
BSD-3-Clause
def predict(self, X): """Perform inductive inference across the model. Parameters ---------- X : array-like of shape (n_samples, n_features) The data matrix. Returns ------- y : ndarray of shape (n_samples,) Predictions for input data. """ # Note: since `predict` does not accept semi-supervised labels as input, # `fit(X, y).predict(X) != fit(X, y).transduction_`. # Hence, `fit_predict` is not implemented. # See https://github.com/scikit-learn/scikit-learn/pull/24898 probas = self.predict_proba(X) return self.classes_[np.argmax(probas, axis=1)].ravel()
Perform inductive inference across the model. Parameters ---------- X : array-like of shape (n_samples, n_features) The data matrix. Returns ------- y : ndarray of shape (n_samples,) Predictions for input data.
predict
python
scikit-learn/scikit-learn
sklearn/semi_supervised/_label_propagation.py
https://github.com/scikit-learn/scikit-learn/blob/master/sklearn/semi_supervised/_label_propagation.py
BSD-3-Clause
def predict_proba(self, X): """Predict probability for each possible outcome. Compute the probability estimates for each single sample in X and each possible outcome seen during training (categorical distribution). Parameters ---------- X : array-like of shape (n_samples, n_features) The data matrix. Returns ------- probabilities : ndarray of shape (n_samples, n_classes) Normalized probability distributions across class labels. """ check_is_fitted(self) X_2d = validate_data( self, X, accept_sparse=["csc", "csr", "coo", "dok", "bsr", "lil", "dia"], reset=False, ) weight_matrices = self._get_kernel(self.X_, X_2d) if self.kernel == "knn": probabilities = np.array( [ np.sum(self.label_distributions_[weight_matrix], axis=0) for weight_matrix in weight_matrices ] ) else: weight_matrices = weight_matrices.T probabilities = safe_sparse_dot(weight_matrices, self.label_distributions_) normalizer = np.atleast_2d(np.sum(probabilities, axis=1)).T probabilities /= normalizer return probabilities
Predict probability for each possible outcome. Compute the probability estimates for each single sample in X and each possible outcome seen during training (categorical distribution). Parameters ---------- X : array-like of shape (n_samples, n_features) The data matrix. Returns ------- probabilities : ndarray of shape (n_samples, n_classes) Normalized probability distributions across class labels.
predict_proba
python
scikit-learn/scikit-learn
sklearn/semi_supervised/_label_propagation.py
https://github.com/scikit-learn/scikit-learn/blob/master/sklearn/semi_supervised/_label_propagation.py
BSD-3-Clause
def fit(self, X, y): """Fit a semi-supervised label propagation model to X. The input samples (labeled and unlabeled) are provided by matrix X, and target labels are provided by matrix y. We conventionally apply the label -1 to unlabeled samples in matrix y in a semi-supervised classification. Parameters ---------- X : {array-like, sparse matrix} of shape (n_samples, n_features) Training data, where `n_samples` is the number of samples and `n_features` is the number of features. y : array-like of shape (n_samples,) Target class values with unlabeled points marked as -1. All unlabeled samples will be transductively assigned labels internally, which are stored in `transduction_`. Returns ------- self : object Returns the instance itself. """ X, y = validate_data( self, X, y, accept_sparse=["csr", "csc"], reset=True, ) self.X_ = X check_classification_targets(y) # actual graph construction (implementations should override this) graph_matrix = self._build_graph() # label construction # construct a categorical distribution for classification only classes = np.unique(y) classes = classes[classes != -1] self.classes_ = classes n_samples, n_classes = len(y), len(classes) y = np.asarray(y) unlabeled = y == -1 # initialize distributions self.label_distributions_ = np.zeros((n_samples, n_classes)) for label in classes: self.label_distributions_[y == label, classes == label] = 1 y_static = np.copy(self.label_distributions_) if self._variant == "propagation": # LabelPropagation y_static[unlabeled] = 0 else: # LabelSpreading y_static *= 1 - self.alpha l_previous = np.zeros((self.X_.shape[0], n_classes)) unlabeled = unlabeled[:, np.newaxis] if sparse.issparse(graph_matrix): graph_matrix = graph_matrix.tocsr() for self.n_iter_ in range(self.max_iter): if np.abs(self.label_distributions_ - l_previous).sum() < self.tol: break l_previous = self.label_distributions_ self.label_distributions_ = safe_sparse_dot( graph_matrix, self.label_distributions_ ) if self._variant == "propagation": normalizer = np.sum(self.label_distributions_, axis=1)[:, np.newaxis] normalizer[normalizer == 0] = 1 self.label_distributions_ /= normalizer self.label_distributions_ = np.where( unlabeled, self.label_distributions_, y_static ) else: # clamp self.label_distributions_ = ( np.multiply(self.alpha, self.label_distributions_) + y_static ) else: warnings.warn( "max_iter=%d was reached without convergence." % self.max_iter, category=ConvergenceWarning, ) self.n_iter_ += 1 normalizer = np.sum(self.label_distributions_, axis=1)[:, np.newaxis] normalizer[normalizer == 0] = 1 self.label_distributions_ /= normalizer # set the transduction item transduction = self.classes_[np.argmax(self.label_distributions_, axis=1)] self.transduction_ = transduction.ravel() return self
Fit a semi-supervised label propagation model to X. The input samples (labeled and unlabeled) are provided by matrix X, and target labels are provided by matrix y. We conventionally apply the label -1 to unlabeled samples in matrix y in a semi-supervised classification. Parameters ---------- X : {array-like, sparse matrix} of shape (n_samples, n_features) Training data, where `n_samples` is the number of samples and `n_features` is the number of features. y : array-like of shape (n_samples,) Target class values with unlabeled points marked as -1. All unlabeled samples will be transductively assigned labels internally, which are stored in `transduction_`. Returns ------- self : object Returns the instance itself.
fit
python
scikit-learn/scikit-learn
sklearn/semi_supervised/_label_propagation.py
https://github.com/scikit-learn/scikit-learn/blob/master/sklearn/semi_supervised/_label_propagation.py
BSD-3-Clause
def _build_graph(self): """Matrix representing a fully connected graph between each sample This basic implementation creates a non-stochastic affinity matrix, so class distributions will exceed 1 (normalization may be desired). """ if self.kernel == "knn": self.nn_fit = None affinity_matrix = self._get_kernel(self.X_) normalizer = affinity_matrix.sum(axis=0) if sparse.issparse(affinity_matrix): affinity_matrix.data /= np.diag(np.array(normalizer)) else: affinity_matrix /= normalizer[:, np.newaxis] return affinity_matrix
Matrix representing a fully connected graph between each sample This basic implementation creates a non-stochastic affinity matrix, so class distributions will exceed 1 (normalization may be desired).
_build_graph
python
scikit-learn/scikit-learn
sklearn/semi_supervised/_label_propagation.py
https://github.com/scikit-learn/scikit-learn/blob/master/sklearn/semi_supervised/_label_propagation.py
BSD-3-Clause
def _build_graph(self): """Graph matrix for Label Spreading computes the graph laplacian""" # compute affinity matrix (or gram matrix) if self.kernel == "knn": self.nn_fit = None n_samples = self.X_.shape[0] affinity_matrix = self._get_kernel(self.X_) laplacian = csgraph_laplacian(affinity_matrix, normed=True) laplacian = -laplacian if sparse.issparse(laplacian): diag_mask = laplacian.row == laplacian.col laplacian.data[diag_mask] = 0.0 else: laplacian.flat[:: n_samples + 1] = 0.0 # set diag to 0.0 return laplacian
Graph matrix for Label Spreading computes the graph laplacian
_build_graph
python
scikit-learn/scikit-learn
sklearn/semi_supervised/_label_propagation.py
https://github.com/scikit-learn/scikit-learn/blob/master/sklearn/semi_supervised/_label_propagation.py
BSD-3-Clause
def _get_estimator(self): """Get the estimator. Returns ------- estimator_ : estimator object The cloned estimator object. """ # TODO(1.8): remove and only keep clone(self.estimator) if self.estimator is None and self.base_estimator != "deprecated": estimator_ = clone(self.base_estimator) warn( ( "`base_estimator` has been deprecated in 1.6 and will be removed" " in 1.8. Please use `estimator` instead." ), FutureWarning, ) # TODO(1.8) remove elif self.estimator is None and self.base_estimator == "deprecated": raise ValueError( "You must pass an estimator to SelfTrainingClassifier. Use `estimator`." ) elif self.estimator is not None and self.base_estimator != "deprecated": raise ValueError( "You must pass only one estimator to SelfTrainingClassifier." " Use `estimator`." ) else: estimator_ = clone(self.estimator) return estimator_
Get the estimator. Returns ------- estimator_ : estimator object The cloned estimator object.
_get_estimator
python
scikit-learn/scikit-learn
sklearn/semi_supervised/_self_training.py
https://github.com/scikit-learn/scikit-learn/blob/master/sklearn/semi_supervised/_self_training.py
BSD-3-Clause
def fit(self, X, y, **params): """ Fit self-training classifier using `X`, `y` as training data. Parameters ---------- X : {array-like, sparse matrix} of shape (n_samples, n_features) Array representing the data. y : {array-like, sparse matrix} of shape (n_samples,) Array representing the labels. Unlabeled samples should have the label -1. **params : dict Parameters to pass to the underlying estimators. .. versionadded:: 1.6 Only available if `enable_metadata_routing=True`, which can be set by using ``sklearn.set_config(enable_metadata_routing=True)``. See :ref:`Metadata Routing User Guide <metadata_routing>` for more details. Returns ------- self : object Fitted estimator. """ _raise_for_params(params, self, "fit") self.estimator_ = self._get_estimator() # we need row slicing support for sparse matrices, but costly finiteness check # can be delegated to the base estimator. X, y = validate_data( self, X, y, accept_sparse=["csr", "csc", "lil", "dok"], ensure_all_finite=False, ) if y.dtype.kind in ["U", "S"]: raise ValueError( "y has dtype string. If you wish to predict on " "string targets, use dtype object, and use -1" " as the label for unlabeled samples." ) has_label = y != -1 if np.all(has_label): warnings.warn("y contains no unlabeled samples", UserWarning) if self.criterion == "k_best" and ( self.k_best > X.shape[0] - np.sum(has_label) ): warnings.warn( ( "k_best is larger than the amount of unlabeled " "samples. All unlabeled samples will be labeled in " "the first iteration" ), UserWarning, ) if _routing_enabled(): routed_params = process_routing(self, "fit", **params) else: routed_params = Bunch(estimator=Bunch(fit={})) self.transduction_ = np.copy(y) self.labeled_iter_ = np.full_like(y, -1) self.labeled_iter_[has_label] = 0 self.n_iter_ = 0 while not np.all(has_label) and ( self.max_iter is None or self.n_iter_ < self.max_iter ): self.n_iter_ += 1 self.estimator_.fit( X[safe_mask(X, has_label)], self.transduction_[has_label], **routed_params.estimator.fit, ) # Predict on the unlabeled samples prob = self.estimator_.predict_proba(X[safe_mask(X, ~has_label)]) pred = self.estimator_.classes_[np.argmax(prob, axis=1)] max_proba = np.max(prob, axis=1) # Select new labeled samples if self.criterion == "threshold": selected = max_proba > self.threshold else: n_to_select = min(self.k_best, max_proba.shape[0]) if n_to_select == max_proba.shape[0]: selected = np.ones_like(max_proba, dtype=bool) else: # NB these are indices, not a mask selected = np.argpartition(-max_proba, n_to_select)[:n_to_select] # Map selected indices into original array selected_full = np.nonzero(~has_label)[0][selected] # Add newly labeled confident predictions to the dataset self.transduction_[selected_full] = pred[selected] has_label[selected_full] = True self.labeled_iter_[selected_full] = self.n_iter_ if selected_full.shape[0] == 0: # no changed labels self.termination_condition_ = "no_change" break if self.verbose: print( f"End of iteration {self.n_iter_}," f" added {selected_full.shape[0]} new labels." ) if self.n_iter_ == self.max_iter: self.termination_condition_ = "max_iter" if np.all(has_label): self.termination_condition_ = "all_labeled" self.estimator_.fit( X[safe_mask(X, has_label)], self.transduction_[has_label], **routed_params.estimator.fit, ) self.classes_ = self.estimator_.classes_ return self
Fit self-training classifier using `X`, `y` as training data. Parameters ---------- X : {array-like, sparse matrix} of shape (n_samples, n_features) Array representing the data. y : {array-like, sparse matrix} of shape (n_samples,) Array representing the labels. Unlabeled samples should have the label -1. **params : dict Parameters to pass to the underlying estimators. .. versionadded:: 1.6 Only available if `enable_metadata_routing=True`, which can be set by using ``sklearn.set_config(enable_metadata_routing=True)``. See :ref:`Metadata Routing User Guide <metadata_routing>` for more details. Returns ------- self : object Fitted estimator.
fit
python
scikit-learn/scikit-learn
sklearn/semi_supervised/_self_training.py
https://github.com/scikit-learn/scikit-learn/blob/master/sklearn/semi_supervised/_self_training.py
BSD-3-Clause
def predict(self, X, **params): """Predict the classes of `X`. Parameters ---------- X : {array-like, sparse matrix} of shape (n_samples, n_features) Array representing the data. **params : dict of str -> object Parameters to pass to the underlying estimator's ``predict`` method. .. versionadded:: 1.6 Only available if `enable_metadata_routing=True`, which can be set by using ``sklearn.set_config(enable_metadata_routing=True)``. See :ref:`Metadata Routing User Guide <metadata_routing>` for more details. Returns ------- y : ndarray of shape (n_samples,) Array with predicted labels. """ check_is_fitted(self) _raise_for_params(params, self, "predict") if _routing_enabled(): # metadata routing is enabled. routed_params = process_routing(self, "predict", **params) else: routed_params = Bunch(estimator=Bunch(predict={})) X = validate_data( self, X, accept_sparse=True, ensure_all_finite=False, reset=False, ) return self.estimator_.predict(X, **routed_params.estimator.predict)
Predict the classes of `X`. Parameters ---------- X : {array-like, sparse matrix} of shape (n_samples, n_features) Array representing the data. **params : dict of str -> object Parameters to pass to the underlying estimator's ``predict`` method. .. versionadded:: 1.6 Only available if `enable_metadata_routing=True`, which can be set by using ``sklearn.set_config(enable_metadata_routing=True)``. See :ref:`Metadata Routing User Guide <metadata_routing>` for more details. Returns ------- y : ndarray of shape (n_samples,) Array with predicted labels.
predict
python
scikit-learn/scikit-learn
sklearn/semi_supervised/_self_training.py
https://github.com/scikit-learn/scikit-learn/blob/master/sklearn/semi_supervised/_self_training.py
BSD-3-Clause
def predict_proba(self, X, **params): """Predict probability for each possible outcome. Parameters ---------- X : {array-like, sparse matrix} of shape (n_samples, n_features) Array representing the data. **params : dict of str -> object Parameters to pass to the underlying estimator's ``predict_proba`` method. .. versionadded:: 1.6 Only available if `enable_metadata_routing=True`, which can be set by using ``sklearn.set_config(enable_metadata_routing=True)``. See :ref:`Metadata Routing User Guide <metadata_routing>` for more details. Returns ------- y : ndarray of shape (n_samples, n_features) Array with prediction probabilities. """ check_is_fitted(self) _raise_for_params(params, self, "predict_proba") if _routing_enabled(): # metadata routing is enabled. routed_params = process_routing(self, "predict_proba", **params) else: routed_params = Bunch(estimator=Bunch(predict_proba={})) X = validate_data( self, X, accept_sparse=True, ensure_all_finite=False, reset=False, ) return self.estimator_.predict_proba(X, **routed_params.estimator.predict_proba)
Predict probability for each possible outcome. Parameters ---------- X : {array-like, sparse matrix} of shape (n_samples, n_features) Array representing the data. **params : dict of str -> object Parameters to pass to the underlying estimator's ``predict_proba`` method. .. versionadded:: 1.6 Only available if `enable_metadata_routing=True`, which can be set by using ``sklearn.set_config(enable_metadata_routing=True)``. See :ref:`Metadata Routing User Guide <metadata_routing>` for more details. Returns ------- y : ndarray of shape (n_samples, n_features) Array with prediction probabilities.
predict_proba
python
scikit-learn/scikit-learn
sklearn/semi_supervised/_self_training.py
https://github.com/scikit-learn/scikit-learn/blob/master/sklearn/semi_supervised/_self_training.py
BSD-3-Clause
def decision_function(self, X, **params): """Call decision function of the `estimator`. Parameters ---------- X : {array-like, sparse matrix} of shape (n_samples, n_features) Array representing the data. **params : dict of str -> object Parameters to pass to the underlying estimator's ``decision_function`` method. .. versionadded:: 1.6 Only available if `enable_metadata_routing=True`, which can be set by using ``sklearn.set_config(enable_metadata_routing=True)``. See :ref:`Metadata Routing User Guide <metadata_routing>` for more details. Returns ------- y : ndarray of shape (n_samples, n_features) Result of the decision function of the `estimator`. """ check_is_fitted(self) _raise_for_params(params, self, "decision_function") if _routing_enabled(): # metadata routing is enabled. routed_params = process_routing(self, "decision_function", **params) else: routed_params = Bunch(estimator=Bunch(decision_function={})) X = validate_data( self, X, accept_sparse=True, ensure_all_finite=False, reset=False, ) return self.estimator_.decision_function( X, **routed_params.estimator.decision_function )
Call decision function of the `estimator`. Parameters ---------- X : {array-like, sparse matrix} of shape (n_samples, n_features) Array representing the data. **params : dict of str -> object Parameters to pass to the underlying estimator's ``decision_function`` method. .. versionadded:: 1.6 Only available if `enable_metadata_routing=True`, which can be set by using ``sklearn.set_config(enable_metadata_routing=True)``. See :ref:`Metadata Routing User Guide <metadata_routing>` for more details. Returns ------- y : ndarray of shape (n_samples, n_features) Result of the decision function of the `estimator`.
decision_function
python
scikit-learn/scikit-learn
sklearn/semi_supervised/_self_training.py
https://github.com/scikit-learn/scikit-learn/blob/master/sklearn/semi_supervised/_self_training.py
BSD-3-Clause
def predict_log_proba(self, X, **params): """Predict log probability for each possible outcome. Parameters ---------- X : {array-like, sparse matrix} of shape (n_samples, n_features) Array representing the data. **params : dict of str -> object Parameters to pass to the underlying estimator's ``predict_log_proba`` method. .. versionadded:: 1.6 Only available if `enable_metadata_routing=True`, which can be set by using ``sklearn.set_config(enable_metadata_routing=True)``. See :ref:`Metadata Routing User Guide <metadata_routing>` for more details. Returns ------- y : ndarray of shape (n_samples, n_features) Array with log prediction probabilities. """ check_is_fitted(self) _raise_for_params(params, self, "predict_log_proba") if _routing_enabled(): # metadata routing is enabled. routed_params = process_routing(self, "predict_log_proba", **params) else: routed_params = Bunch(estimator=Bunch(predict_log_proba={})) X = validate_data( self, X, accept_sparse=True, ensure_all_finite=False, reset=False, ) return self.estimator_.predict_log_proba( X, **routed_params.estimator.predict_log_proba )
Predict log probability for each possible outcome. Parameters ---------- X : {array-like, sparse matrix} of shape (n_samples, n_features) Array representing the data. **params : dict of str -> object Parameters to pass to the underlying estimator's ``predict_log_proba`` method. .. versionadded:: 1.6 Only available if `enable_metadata_routing=True`, which can be set by using ``sklearn.set_config(enable_metadata_routing=True)``. See :ref:`Metadata Routing User Guide <metadata_routing>` for more details. Returns ------- y : ndarray of shape (n_samples, n_features) Array with log prediction probabilities.
predict_log_proba
python
scikit-learn/scikit-learn
sklearn/semi_supervised/_self_training.py
https://github.com/scikit-learn/scikit-learn/blob/master/sklearn/semi_supervised/_self_training.py
BSD-3-Clause
def score(self, X, y, **params): """Call score on the `estimator`. Parameters ---------- X : {array-like, sparse matrix} of shape (n_samples, n_features) Array representing the data. y : array-like of shape (n_samples,) Array representing the labels. **params : dict of str -> object Parameters to pass to the underlying estimator's ``score`` method. .. versionadded:: 1.6 Only available if `enable_metadata_routing=True`, which can be set by using ``sklearn.set_config(enable_metadata_routing=True)``. See :ref:`Metadata Routing User Guide <metadata_routing>` for more details. Returns ------- score : float Result of calling score on the `estimator`. """ check_is_fitted(self) _raise_for_params(params, self, "score") if _routing_enabled(): # metadata routing is enabled. routed_params = process_routing(self, "score", **params) else: routed_params = Bunch(estimator=Bunch(score={})) X = validate_data( self, X, accept_sparse=True, ensure_all_finite=False, reset=False, ) return self.estimator_.score(X, y, **routed_params.estimator.score)
Call score on the `estimator`. Parameters ---------- X : {array-like, sparse matrix} of shape (n_samples, n_features) Array representing the data. y : array-like of shape (n_samples,) Array representing the labels. **params : dict of str -> object Parameters to pass to the underlying estimator's ``score`` method. .. versionadded:: 1.6 Only available if `enable_metadata_routing=True`, which can be set by using ``sklearn.set_config(enable_metadata_routing=True)``. See :ref:`Metadata Routing User Guide <metadata_routing>` for more details. Returns ------- score : float Result of calling score on the `estimator`.
score
python
scikit-learn/scikit-learn
sklearn/semi_supervised/_self_training.py
https://github.com/scikit-learn/scikit-learn/blob/master/sklearn/semi_supervised/_self_training.py
BSD-3-Clause
def get_metadata_routing(self): """Get metadata routing of this object. Please check :ref:`User Guide <metadata_routing>` on how the routing mechanism works. .. versionadded:: 1.6 Returns ------- routing : MetadataRouter A :class:`~sklearn.utils.metadata_routing.MetadataRouter` encapsulating routing information. """ router = MetadataRouter(owner=self.__class__.__name__) router.add( estimator=self.estimator, method_mapping=( MethodMapping() .add(callee="fit", caller="fit") .add(callee="score", caller="fit") .add(callee="predict", caller="predict") .add(callee="predict_proba", caller="predict_proba") .add(callee="decision_function", caller="decision_function") .add(callee="predict_log_proba", caller="predict_log_proba") .add(callee="score", caller="score") ), ) return router
Get metadata routing of this object. Please check :ref:`User Guide <metadata_routing>` on how the routing mechanism works. .. versionadded:: 1.6 Returns ------- routing : MetadataRouter A :class:`~sklearn.utils.metadata_routing.MetadataRouter` encapsulating routing information.
get_metadata_routing
python
scikit-learn/scikit-learn
sklearn/semi_supervised/_self_training.py
https://github.com/scikit-learn/scikit-learn/blob/master/sklearn/semi_supervised/_self_training.py
BSD-3-Clause
def test_self_training_estimator_attribute_error(): """Check that we raise the proper AttributeErrors when the `estimator` does not implement the `predict_proba` method, which is called from within `fit`, or `decision_function`, which is decorated with `available_if`. Non-regression test for: https://github.com/scikit-learn/scikit-learn/issues/28108 """ # `SVC` with `probability=False` does not implement 'predict_proba' that # is required internally in `fit` of `SelfTrainingClassifier`. We expect # an AttributeError to be raised. estimator = SVC(probability=False, gamma="scale") self_training = SelfTrainingClassifier(estimator) with pytest.raises(AttributeError, match="has no attribute 'predict_proba'"): self_training.fit(X_train, y_train_missing_labels) # `DecisionTreeClassifier` does not implement 'decision_function' and # should raise an AttributeError self_training = SelfTrainingClassifier(estimator=DecisionTreeClassifier()) outer_msg = "This 'SelfTrainingClassifier' has no attribute 'decision_function'" inner_msg = "'DecisionTreeClassifier' object has no attribute 'decision_function'" with pytest.raises(AttributeError, match=outer_msg) as exec_info: self_training.fit(X_train, y_train_missing_labels).decision_function(X_train) assert isinstance(exec_info.value.__cause__, AttributeError) assert inner_msg in str(exec_info.value.__cause__)
Check that we raise the proper AttributeErrors when the `estimator` does not implement the `predict_proba` method, which is called from within `fit`, or `decision_function`, which is decorated with `available_if`. Non-regression test for: https://github.com/scikit-learn/scikit-learn/issues/28108
test_self_training_estimator_attribute_error
python
scikit-learn/scikit-learn
sklearn/semi_supervised/tests/test_self_training.py
https://github.com/scikit-learn/scikit-learn/blob/master/sklearn/semi_supervised/tests/test_self_training.py
BSD-3-Clause
def test_routing_passed_metadata_not_supported(method): """Test that the right error message is raised when metadata is passed while not supported when `enable_metadata_routing=False`.""" est = SelfTrainingClassifier(estimator=SimpleEstimator()) with pytest.raises( ValueError, match="is only supported if enable_metadata_routing=True" ): est.fit([[1], [1]], [1, 1], sample_weight=[1], prop="a") est = SelfTrainingClassifier(estimator=SimpleEstimator()) with pytest.raises( ValueError, match="is only supported if enable_metadata_routing=True" ): # make sure that the estimator thinks it is already fitted est.fitted_params_ = True getattr(est, method)([[1]], sample_weight=[1], prop="a")
Test that the right error message is raised when metadata is passed while not supported when `enable_metadata_routing=False`.
test_routing_passed_metadata_not_supported
python
scikit-learn/scikit-learn
sklearn/semi_supervised/tests/test_self_training.py
https://github.com/scikit-learn/scikit-learn/blob/master/sklearn/semi_supervised/tests/test_self_training.py
BSD-3-Clause
def _one_vs_one_coef(dual_coef, n_support, support_vectors): """Generate primal coefficients from dual coefficients for the one-vs-one multi class LibSVM in the case of a linear kernel.""" # get 1vs1 weights for all n*(n-1) classifiers. # this is somewhat messy. # shape of dual_coef_ is nSV * (n_classes -1) # see docs for details n_class = dual_coef.shape[0] + 1 # XXX we could do preallocation of coef but # would have to take care in the sparse case coef = [] sv_locs = np.cumsum(np.hstack([[0], n_support])) for class1 in range(n_class): # SVs for class1: sv1 = support_vectors[sv_locs[class1] : sv_locs[class1 + 1], :] for class2 in range(class1 + 1, n_class): # SVs for class1: sv2 = support_vectors[sv_locs[class2] : sv_locs[class2 + 1], :] # dual coef for class1 SVs: alpha1 = dual_coef[class2 - 1, sv_locs[class1] : sv_locs[class1 + 1]] # dual coef for class2 SVs: alpha2 = dual_coef[class1, sv_locs[class2] : sv_locs[class2 + 1]] # build weight for class1 vs class2 coef.append(safe_sparse_dot(alpha1, sv1) + safe_sparse_dot(alpha2, sv2)) return coef
Generate primal coefficients from dual coefficients for the one-vs-one multi class LibSVM in the case of a linear kernel.
_one_vs_one_coef
python
scikit-learn/scikit-learn
sklearn/svm/_base.py
https://github.com/scikit-learn/scikit-learn/blob/master/sklearn/svm/_base.py
BSD-3-Clause
def fit(self, X, y, sample_weight=None): """Fit the SVM model according to the given training data. Parameters ---------- X : {array-like, sparse matrix} of shape (n_samples, n_features) \ or (n_samples, n_samples) Training vectors, where `n_samples` is the number of samples and `n_features` is the number of features. For kernel="precomputed", the expected shape of X is (n_samples, n_samples). y : array-like of shape (n_samples,) Target values (class labels in classification, real numbers in regression). sample_weight : array-like of shape (n_samples,), default=None Per-sample weights. Rescale C per sample. Higher weights force the classifier to put more emphasis on these points. Returns ------- self : object Fitted estimator. Notes ----- If X and y are not C-ordered and contiguous arrays of np.float64 and X is not a scipy.sparse.csr_matrix, X and/or y may be copied. If X is a dense array, then the other methods will not support sparse matrices as input. """ rnd = check_random_state(self.random_state) sparse = sp.issparse(X) if sparse and self.kernel == "precomputed": raise TypeError("Sparse precomputed kernels are not supported.") self._sparse = sparse and not callable(self.kernel) if callable(self.kernel): check_consistent_length(X, y) else: X, y = validate_data( self, X, y, dtype=np.float64, order="C", accept_sparse="csr", accept_large_sparse=False, ) y = self._validate_targets(y) sample_weight = np.asarray( [] if sample_weight is None else sample_weight, dtype=np.float64 ) solver_type = LIBSVM_IMPL.index(self._impl) # input validation n_samples = _num_samples(X) if solver_type != 2 and n_samples != y.shape[0]: raise ValueError( "X and y have incompatible shapes.\n" + "X has %s samples, but y has %s." % (n_samples, y.shape[0]) ) if self.kernel == "precomputed" and n_samples != X.shape[1]: raise ValueError( "Precomputed matrix must be a square matrix." " Input is a {}x{} matrix.".format(X.shape[0], X.shape[1]) ) if sample_weight.shape[0] > 0 and sample_weight.shape[0] != n_samples: raise ValueError( "sample_weight and X have incompatible shapes: " "%r vs %r\n" "Note: Sparse matrices cannot be indexed w/" "boolean masks (use `indices=True` in CV)." % (sample_weight.shape, X.shape) ) kernel = "precomputed" if callable(self.kernel) else self.kernel if kernel == "precomputed": # unused but needs to be a float for cython code that ignores # it anyway self._gamma = 0.0 elif isinstance(self.gamma, str): if self.gamma == "scale": # var = E[X^2] - E[X]^2 if sparse X_var = (X.multiply(X)).mean() - (X.mean()) ** 2 if sparse else X.var() self._gamma = 1.0 / (X.shape[1] * X_var) if X_var != 0 else 1.0 elif self.gamma == "auto": self._gamma = 1.0 / X.shape[1] elif isinstance(self.gamma, Real): self._gamma = self.gamma fit = self._sparse_fit if self._sparse else self._dense_fit if self.verbose: print("[LibSVM]", end="") seed = rnd.randint(np.iinfo("i").max) fit(X, y, sample_weight, solver_type, kernel, random_seed=seed) # see comment on the other call to np.iinfo in this file self.shape_fit_ = X.shape if hasattr(X, "shape") else (n_samples,) # In binary case, we need to flip the sign of coef, intercept and # decision function. Use self._intercept_ and self._dual_coef_ # internally. self._intercept_ = self.intercept_.copy() self._dual_coef_ = self.dual_coef_ if self._impl in ["c_svc", "nu_svc"] and len(self.classes_) == 2: self.intercept_ *= -1 self.dual_coef_ = -self.dual_coef_ dual_coef = self._dual_coef_.data if self._sparse else self._dual_coef_ intercept_finiteness = np.isfinite(self._intercept_).all() dual_coef_finiteness = np.isfinite(dual_coef).all() if not (intercept_finiteness and dual_coef_finiteness): raise ValueError( "The dual coefficients or intercepts are not finite." " The input data may contain large values and need to be" " preprocessed." ) # Since, in the case of SVC and NuSVC, the number of models optimized by # libSVM could be greater than one (depending on the input), `n_iter_` # stores an ndarray. # For the other sub-classes (SVR, NuSVR, and OneClassSVM), the number of # models optimized by libSVM is always one, so `n_iter_` stores an # integer. if self._impl in ["c_svc", "nu_svc"]: self.n_iter_ = self._num_iter else: self.n_iter_ = self._num_iter.item() return self
Fit the SVM model according to the given training data. Parameters ---------- X : {array-like, sparse matrix} of shape (n_samples, n_features) or (n_samples, n_samples) Training vectors, where `n_samples` is the number of samples and `n_features` is the number of features. For kernel="precomputed", the expected shape of X is (n_samples, n_samples). y : array-like of shape (n_samples,) Target values (class labels in classification, real numbers in regression). sample_weight : array-like of shape (n_samples,), default=None Per-sample weights. Rescale C per sample. Higher weights force the classifier to put more emphasis on these points. Returns ------- self : object Fitted estimator. Notes ----- If X and y are not C-ordered and contiguous arrays of np.float64 and X is not a scipy.sparse.csr_matrix, X and/or y may be copied. If X is a dense array, then the other methods will not support sparse matrices as input.
fit
python
scikit-learn/scikit-learn
sklearn/svm/_base.py
https://github.com/scikit-learn/scikit-learn/blob/master/sklearn/svm/_base.py
BSD-3-Clause