code
stringlengths 66
870k
| docstring
stringlengths 19
26.7k
| func_name
stringlengths 1
138
| language
stringclasses 1
value | repo
stringlengths 7
68
| path
stringlengths 5
324
| url
stringlengths 46
389
| license
stringclasses 7
values |
---|---|---|---|---|---|---|---|
def test_tuned_threshold_classifier_error_constant_predictor():
"""Check that we raise a ValueError if the underlying classifier returns constant
probabilities such that we cannot find any threshold.
"""
X, y = make_classification(random_state=0)
estimator = DummyClassifier(strategy="constant", constant=1)
tuned_model = TunedThresholdClassifierCV(estimator, response_method="predict_proba")
err_msg = "The provided estimator makes constant predictions"
with pytest.raises(ValueError, match=err_msg):
tuned_model.fit(X, y)
|
Check that we raise a ValueError if the underlying classifier returns constant
probabilities such that we cannot find any threshold.
|
test_tuned_threshold_classifier_error_constant_predictor
|
python
|
scikit-learn/scikit-learn
|
sklearn/model_selection/tests/test_classification_threshold.py
|
https://github.com/scikit-learn/scikit-learn/blob/master/sklearn/model_selection/tests/test_classification_threshold.py
|
BSD-3-Clause
|
def test_fixed_threshold_classifier_equivalence_default(response_method):
"""Check that `FixedThresholdClassifier` has the same behaviour as the vanilla
classifier.
"""
X, y = make_classification(random_state=0)
classifier = LogisticRegression().fit(X, y)
classifier_default_threshold = FixedThresholdClassifier(
estimator=clone(classifier), response_method=response_method
)
classifier_default_threshold.fit(X, y)
# emulate the response method that should take into account the `pos_label`
if response_method in ("auto", "predict_proba"):
y_score = classifier_default_threshold.predict_proba(X)[:, 1]
threshold = 0.5
else: # response_method == "decision_function"
y_score = classifier_default_threshold.decision_function(X)
threshold = 0.0
y_pred_lr = (y_score >= threshold).astype(int)
assert_allclose(classifier_default_threshold.predict(X), y_pred_lr)
|
Check that `FixedThresholdClassifier` has the same behaviour as the vanilla
classifier.
|
test_fixed_threshold_classifier_equivalence_default
|
python
|
scikit-learn/scikit-learn
|
sklearn/model_selection/tests/test_classification_threshold.py
|
https://github.com/scikit-learn/scikit-learn/blob/master/sklearn/model_selection/tests/test_classification_threshold.py
|
BSD-3-Clause
|
def test_fixed_threshold_classifier(response_method, threshold, pos_label):
"""Check that applying `predict` lead to the same prediction as applying the
threshold to the output of the response method.
"""
X, y = make_classification(n_samples=50, random_state=0)
logistic_regression = LogisticRegression().fit(X, y)
model = FixedThresholdClassifier(
estimator=clone(logistic_regression),
threshold=threshold,
response_method=response_method,
pos_label=pos_label,
).fit(X, y)
# check that the underlying estimator is the same
assert_allclose(model.estimator_.coef_, logistic_regression.coef_)
# emulate the response method that should take into account the `pos_label`
if response_method == "predict_proba":
y_score = model.predict_proba(X)[:, pos_label]
else: # response_method == "decision_function"
y_score = model.decision_function(X)
y_score = y_score if pos_label == 1 else -y_score
# create a mapping from boolean values to class labels
map_to_label = np.array([0, 1]) if pos_label == 1 else np.array([1, 0])
y_pred_lr = map_to_label[(y_score >= threshold).astype(int)]
assert_allclose(model.predict(X), y_pred_lr)
for method in ("predict_proba", "predict_log_proba", "decision_function"):
assert_allclose(
getattr(model, method)(X), getattr(logistic_regression, method)(X)
)
assert_allclose(
getattr(model.estimator_, method)(X),
getattr(logistic_regression, method)(X),
)
|
Check that applying `predict` lead to the same prediction as applying the
threshold to the output of the response method.
|
test_fixed_threshold_classifier
|
python
|
scikit-learn/scikit-learn
|
sklearn/model_selection/tests/test_classification_threshold.py
|
https://github.com/scikit-learn/scikit-learn/blob/master/sklearn/model_selection/tests/test_classification_threshold.py
|
BSD-3-Clause
|
def test_fixed_threshold_classifier_metadata_routing():
"""Check that everything works with metadata routing."""
X, y = make_classification(random_state=0)
sample_weight = np.ones_like(y)
sample_weight[::2] = 2
classifier = LogisticRegression().set_fit_request(sample_weight=True)
classifier.fit(X, y, sample_weight=sample_weight)
classifier_default_threshold = FixedThresholdClassifier(estimator=clone(classifier))
classifier_default_threshold.fit(X, y, sample_weight=sample_weight)
assert_allclose(classifier_default_threshold.estimator_.coef_, classifier.coef_)
|
Check that everything works with metadata routing.
|
test_fixed_threshold_classifier_metadata_routing
|
python
|
scikit-learn/scikit-learn
|
sklearn/model_selection/tests/test_classification_threshold.py
|
https://github.com/scikit-learn/scikit-learn/blob/master/sklearn/model_selection/tests/test_classification_threshold.py
|
BSD-3-Clause
|
def test_fixed_threshold_classifier_fitted_estimator(method):
"""Check that if the underlying estimator is already fitted, no fit is required."""
X, y = make_classification(random_state=0)
classifier = LogisticRegression().fit(X, y)
fixed_threshold_classifier = FixedThresholdClassifier(estimator=classifier)
# This should not raise an error
getattr(fixed_threshold_classifier, method)(X)
|
Check that if the underlying estimator is already fitted, no fit is required.
|
test_fixed_threshold_classifier_fitted_estimator
|
python
|
scikit-learn/scikit-learn
|
sklearn/model_selection/tests/test_classification_threshold.py
|
https://github.com/scikit-learn/scikit-learn/blob/master/sklearn/model_selection/tests/test_classification_threshold.py
|
BSD-3-Clause
|
def test_fixed_threshold_classifier_classes_():
"""Check that the classes_ attribute is properly set."""
X, y = make_classification(random_state=0)
with pytest.raises(
AttributeError, match="The underlying estimator is not fitted yet."
):
FixedThresholdClassifier(estimator=LogisticRegression()).classes_
classifier = LogisticRegression().fit(X, y)
fixed_threshold_classifier = FixedThresholdClassifier(estimator=classifier)
assert_array_equal(fixed_threshold_classifier.classes_, classifier.classes_)
|
Check that the classes_ attribute is properly set.
|
test_fixed_threshold_classifier_classes_
|
python
|
scikit-learn/scikit-learn
|
sklearn/model_selection/tests/test_classification_threshold.py
|
https://github.com/scikit-learn/scikit-learn/blob/master/sklearn/model_selection/tests/test_classification_threshold.py
|
BSD-3-Clause
|
def test_curve_display_parameters_validation(
pyplot, data, params, err_type, err_msg, CurveDisplay, specific_params
):
"""Check that we raise a proper error when passing invalid parameters."""
X, y = data
estimator = DecisionTreeClassifier(random_state=0)
with pytest.raises(err_type, match=err_msg):
CurveDisplay.from_estimator(estimator, X, y, **specific_params, **params)
|
Check that we raise a proper error when passing invalid parameters.
|
test_curve_display_parameters_validation
|
python
|
scikit-learn/scikit-learn
|
sklearn/model_selection/tests/test_plot.py
|
https://github.com/scikit-learn/scikit-learn/blob/master/sklearn/model_selection/tests/test_plot.py
|
BSD-3-Clause
|
def test_learning_curve_display_default_usage(pyplot, data):
"""Check the default usage of the LearningCurveDisplay class."""
X, y = data
estimator = DecisionTreeClassifier(random_state=0)
train_sizes = [0.3, 0.6, 0.9]
display = LearningCurveDisplay.from_estimator(
estimator, X, y, train_sizes=train_sizes
)
import matplotlib as mpl
assert display.errorbar_ is None
assert isinstance(display.lines_, list)
for line in display.lines_:
assert isinstance(line, mpl.lines.Line2D)
assert isinstance(display.fill_between_, list)
for fill in display.fill_between_:
assert isinstance(fill, mpl.collections.PolyCollection)
assert fill.get_alpha() == 0.5
assert display.score_name == "Score"
assert display.ax_.get_xlabel() == "Number of samples in the training set"
assert display.ax_.get_ylabel() == "Score"
_, legend_labels = display.ax_.get_legend_handles_labels()
assert legend_labels == ["Train", "Test"]
train_sizes_abs, train_scores, test_scores = learning_curve(
estimator, X, y, train_sizes=train_sizes
)
assert_array_equal(display.train_sizes, train_sizes_abs)
assert_allclose(display.train_scores, train_scores)
assert_allclose(display.test_scores, test_scores)
|
Check the default usage of the LearningCurveDisplay class.
|
test_learning_curve_display_default_usage
|
python
|
scikit-learn/scikit-learn
|
sklearn/model_selection/tests/test_plot.py
|
https://github.com/scikit-learn/scikit-learn/blob/master/sklearn/model_selection/tests/test_plot.py
|
BSD-3-Clause
|
def test_validation_curve_display_default_usage(pyplot, data):
"""Check the default usage of the ValidationCurveDisplay class."""
X, y = data
estimator = DecisionTreeClassifier(random_state=0)
param_name, param_range = "max_depth", [1, 3, 5]
display = ValidationCurveDisplay.from_estimator(
estimator, X, y, param_name=param_name, param_range=param_range
)
import matplotlib as mpl
assert display.errorbar_ is None
assert isinstance(display.lines_, list)
for line in display.lines_:
assert isinstance(line, mpl.lines.Line2D)
assert isinstance(display.fill_between_, list)
for fill in display.fill_between_:
assert isinstance(fill, mpl.collections.PolyCollection)
assert fill.get_alpha() == 0.5
assert display.score_name == "Score"
assert display.ax_.get_xlabel() == f"{param_name}"
assert display.ax_.get_ylabel() == "Score"
_, legend_labels = display.ax_.get_legend_handles_labels()
assert legend_labels == ["Train", "Test"]
train_scores, test_scores = validation_curve(
estimator, X, y, param_name=param_name, param_range=param_range
)
assert_array_equal(display.param_range, param_range)
assert_allclose(display.train_scores, train_scores)
assert_allclose(display.test_scores, test_scores)
|
Check the default usage of the ValidationCurveDisplay class.
|
test_validation_curve_display_default_usage
|
python
|
scikit-learn/scikit-learn
|
sklearn/model_selection/tests/test_plot.py
|
https://github.com/scikit-learn/scikit-learn/blob/master/sklearn/model_selection/tests/test_plot.py
|
BSD-3-Clause
|
def test_curve_display_negate_score(pyplot, data, CurveDisplay, specific_params):
"""Check the behaviour of the `negate_score` parameter calling `from_estimator` and
`plot`.
"""
X, y = data
estimator = DecisionTreeClassifier(max_depth=1, random_state=0)
negate_score = False
display = CurveDisplay.from_estimator(
estimator, X, y, **specific_params, negate_score=negate_score
)
positive_scores = display.lines_[0].get_data()[1]
assert (positive_scores >= 0).all()
assert display.ax_.get_ylabel() == "Score"
negate_score = True
display = CurveDisplay.from_estimator(
estimator, X, y, **specific_params, negate_score=negate_score
)
negative_scores = display.lines_[0].get_data()[1]
assert (negative_scores <= 0).all()
assert_allclose(negative_scores, -positive_scores)
assert display.ax_.get_ylabel() == "Negative score"
negate_score = False
display = CurveDisplay.from_estimator(
estimator, X, y, **specific_params, negate_score=negate_score
)
assert display.ax_.get_ylabel() == "Score"
display.plot(negate_score=not negate_score)
assert display.ax_.get_ylabel() == "Score"
assert (display.lines_[0].get_data()[1] < 0).all()
|
Check the behaviour of the `negate_score` parameter calling `from_estimator` and
`plot`.
|
test_curve_display_negate_score
|
python
|
scikit-learn/scikit-learn
|
sklearn/model_selection/tests/test_plot.py
|
https://github.com/scikit-learn/scikit-learn/blob/master/sklearn/model_selection/tests/test_plot.py
|
BSD-3-Clause
|
def test_curve_display_score_name(
pyplot, data, score_name, ylabel, CurveDisplay, specific_params
):
"""Check that we can overwrite the default score name shown on the y-axis."""
X, y = data
estimator = DecisionTreeClassifier(random_state=0)
display = CurveDisplay.from_estimator(
estimator, X, y, **specific_params, score_name=score_name
)
assert display.ax_.get_ylabel() == ylabel
X, y = data
estimator = DecisionTreeClassifier(max_depth=1, random_state=0)
display = CurveDisplay.from_estimator(
estimator, X, y, **specific_params, score_name=score_name
)
assert display.score_name == ylabel
|
Check that we can overwrite the default score name shown on the y-axis.
|
test_curve_display_score_name
|
python
|
scikit-learn/scikit-learn
|
sklearn/model_selection/tests/test_plot.py
|
https://github.com/scikit-learn/scikit-learn/blob/master/sklearn/model_selection/tests/test_plot.py
|
BSD-3-Clause
|
def test_learning_curve_display_score_type(pyplot, data, std_display_style):
"""Check the behaviour of setting the `score_type` parameter."""
X, y = data
estimator = DecisionTreeClassifier(random_state=0)
train_sizes = [0.3, 0.6, 0.9]
train_sizes_abs, train_scores, test_scores = learning_curve(
estimator, X, y, train_sizes=train_sizes
)
score_type = "train"
display = LearningCurveDisplay.from_estimator(
estimator,
X,
y,
train_sizes=train_sizes,
score_type=score_type,
std_display_style=std_display_style,
)
_, legend_label = display.ax_.get_legend_handles_labels()
assert legend_label == ["Train"]
if std_display_style is None:
assert len(display.lines_) == 1
assert display.errorbar_ is None
x_data, y_data = display.lines_[0].get_data()
else:
assert display.lines_ is None
assert len(display.errorbar_) == 1
x_data, y_data = display.errorbar_[0].lines[0].get_data()
assert_array_equal(x_data, train_sizes_abs)
assert_allclose(y_data, train_scores.mean(axis=1))
score_type = "test"
display = LearningCurveDisplay.from_estimator(
estimator,
X,
y,
train_sizes=train_sizes,
score_type=score_type,
std_display_style=std_display_style,
)
_, legend_label = display.ax_.get_legend_handles_labels()
assert legend_label == ["Test"]
if std_display_style is None:
assert len(display.lines_) == 1
assert display.errorbar_ is None
x_data, y_data = display.lines_[0].get_data()
else:
assert display.lines_ is None
assert len(display.errorbar_) == 1
x_data, y_data = display.errorbar_[0].lines[0].get_data()
assert_array_equal(x_data, train_sizes_abs)
assert_allclose(y_data, test_scores.mean(axis=1))
score_type = "both"
display = LearningCurveDisplay.from_estimator(
estimator,
X,
y,
train_sizes=train_sizes,
score_type=score_type,
std_display_style=std_display_style,
)
_, legend_label = display.ax_.get_legend_handles_labels()
assert legend_label == ["Train", "Test"]
if std_display_style is None:
assert len(display.lines_) == 2
assert display.errorbar_ is None
x_data_train, y_data_train = display.lines_[0].get_data()
x_data_test, y_data_test = display.lines_[1].get_data()
else:
assert display.lines_ is None
assert len(display.errorbar_) == 2
x_data_train, y_data_train = display.errorbar_[0].lines[0].get_data()
x_data_test, y_data_test = display.errorbar_[1].lines[0].get_data()
assert_array_equal(x_data_train, train_sizes_abs)
assert_allclose(y_data_train, train_scores.mean(axis=1))
assert_array_equal(x_data_test, train_sizes_abs)
assert_allclose(y_data_test, test_scores.mean(axis=1))
|
Check the behaviour of setting the `score_type` parameter.
|
test_learning_curve_display_score_type
|
python
|
scikit-learn/scikit-learn
|
sklearn/model_selection/tests/test_plot.py
|
https://github.com/scikit-learn/scikit-learn/blob/master/sklearn/model_selection/tests/test_plot.py
|
BSD-3-Clause
|
def test_validation_curve_display_score_type(pyplot, data, std_display_style):
"""Check the behaviour of setting the `score_type` parameter."""
X, y = data
estimator = DecisionTreeClassifier(random_state=0)
param_name, param_range = "max_depth", [1, 3, 5]
train_scores, test_scores = validation_curve(
estimator, X, y, param_name=param_name, param_range=param_range
)
score_type = "train"
display = ValidationCurveDisplay.from_estimator(
estimator,
X,
y,
param_name=param_name,
param_range=param_range,
score_type=score_type,
std_display_style=std_display_style,
)
_, legend_label = display.ax_.get_legend_handles_labels()
assert legend_label == ["Train"]
if std_display_style is None:
assert len(display.lines_) == 1
assert display.errorbar_ is None
x_data, y_data = display.lines_[0].get_data()
else:
assert display.lines_ is None
assert len(display.errorbar_) == 1
x_data, y_data = display.errorbar_[0].lines[0].get_data()
assert_array_equal(x_data, param_range)
assert_allclose(y_data, train_scores.mean(axis=1))
score_type = "test"
display = ValidationCurveDisplay.from_estimator(
estimator,
X,
y,
param_name=param_name,
param_range=param_range,
score_type=score_type,
std_display_style=std_display_style,
)
_, legend_label = display.ax_.get_legend_handles_labels()
assert legend_label == ["Test"]
if std_display_style is None:
assert len(display.lines_) == 1
assert display.errorbar_ is None
x_data, y_data = display.lines_[0].get_data()
else:
assert display.lines_ is None
assert len(display.errorbar_) == 1
x_data, y_data = display.errorbar_[0].lines[0].get_data()
assert_array_equal(x_data, param_range)
assert_allclose(y_data, test_scores.mean(axis=1))
score_type = "both"
display = ValidationCurveDisplay.from_estimator(
estimator,
X,
y,
param_name=param_name,
param_range=param_range,
score_type=score_type,
std_display_style=std_display_style,
)
_, legend_label = display.ax_.get_legend_handles_labels()
assert legend_label == ["Train", "Test"]
if std_display_style is None:
assert len(display.lines_) == 2
assert display.errorbar_ is None
x_data_train, y_data_train = display.lines_[0].get_data()
x_data_test, y_data_test = display.lines_[1].get_data()
else:
assert display.lines_ is None
assert len(display.errorbar_) == 2
x_data_train, y_data_train = display.errorbar_[0].lines[0].get_data()
x_data_test, y_data_test = display.errorbar_[1].lines[0].get_data()
assert_array_equal(x_data_train, param_range)
assert_allclose(y_data_train, train_scores.mean(axis=1))
assert_array_equal(x_data_test, param_range)
assert_allclose(y_data_test, test_scores.mean(axis=1))
|
Check the behaviour of setting the `score_type` parameter.
|
test_validation_curve_display_score_type
|
python
|
scikit-learn/scikit-learn
|
sklearn/model_selection/tests/test_plot.py
|
https://github.com/scikit-learn/scikit-learn/blob/master/sklearn/model_selection/tests/test_plot.py
|
BSD-3-Clause
|
def test_curve_display_xscale_auto(
pyplot, data, CurveDisplay, specific_params, expected_xscale
):
"""Check the behaviour of the x-axis scaling depending on the data provided."""
X, y = data
estimator = DecisionTreeClassifier(random_state=0)
display = CurveDisplay.from_estimator(estimator, X, y, **specific_params)
assert display.ax_.get_xscale() == expected_xscale
|
Check the behaviour of the x-axis scaling depending on the data provided.
|
test_curve_display_xscale_auto
|
python
|
scikit-learn/scikit-learn
|
sklearn/model_selection/tests/test_plot.py
|
https://github.com/scikit-learn/scikit-learn/blob/master/sklearn/model_selection/tests/test_plot.py
|
BSD-3-Clause
|
def test_curve_display_std_display_style(pyplot, data, CurveDisplay, specific_params):
"""Check the behaviour of the parameter `std_display_style`."""
X, y = data
estimator = DecisionTreeClassifier(random_state=0)
import matplotlib as mpl
std_display_style = None
display = CurveDisplay.from_estimator(
estimator,
X,
y,
**specific_params,
std_display_style=std_display_style,
)
assert len(display.lines_) == 2
for line in display.lines_:
assert isinstance(line, mpl.lines.Line2D)
assert display.errorbar_ is None
assert display.fill_between_ is None
_, legend_label = display.ax_.get_legend_handles_labels()
assert len(legend_label) == 2
std_display_style = "fill_between"
display = CurveDisplay.from_estimator(
estimator,
X,
y,
**specific_params,
std_display_style=std_display_style,
)
assert len(display.lines_) == 2
for line in display.lines_:
assert isinstance(line, mpl.lines.Line2D)
assert display.errorbar_ is None
assert len(display.fill_between_) == 2
for fill_between in display.fill_between_:
assert isinstance(fill_between, mpl.collections.PolyCollection)
_, legend_label = display.ax_.get_legend_handles_labels()
assert len(legend_label) == 2
std_display_style = "errorbar"
display = CurveDisplay.from_estimator(
estimator,
X,
y,
**specific_params,
std_display_style=std_display_style,
)
assert display.lines_ is None
assert len(display.errorbar_) == 2
for errorbar in display.errorbar_:
assert isinstance(errorbar, mpl.container.ErrorbarContainer)
assert display.fill_between_ is None
_, legend_label = display.ax_.get_legend_handles_labels()
assert len(legend_label) == 2
|
Check the behaviour of the parameter `std_display_style`.
|
test_curve_display_std_display_style
|
python
|
scikit-learn/scikit-learn
|
sklearn/model_selection/tests/test_plot.py
|
https://github.com/scikit-learn/scikit-learn/blob/master/sklearn/model_selection/tests/test_plot.py
|
BSD-3-Clause
|
def test_curve_display_plot_kwargs(pyplot, data, CurveDisplay, specific_params):
"""Check the behaviour of the different plotting keyword arguments: `line_kw`,
`fill_between_kw`, and `errorbar_kw`."""
X, y = data
estimator = DecisionTreeClassifier(random_state=0)
std_display_style = "fill_between"
line_kw = {"color": "red"}
fill_between_kw = {"color": "red", "alpha": 1.0}
display = CurveDisplay.from_estimator(
estimator,
X,
y,
**specific_params,
std_display_style=std_display_style,
line_kw=line_kw,
fill_between_kw=fill_between_kw,
)
assert display.lines_[0].get_color() == "red"
assert_allclose(
display.fill_between_[0].get_facecolor(),
[[1.0, 0.0, 0.0, 1.0]], # trust me, it's red
)
std_display_style = "errorbar"
errorbar_kw = {"color": "red"}
display = CurveDisplay.from_estimator(
estimator,
X,
y,
**specific_params,
std_display_style=std_display_style,
errorbar_kw=errorbar_kw,
)
assert display.errorbar_[0].lines[0].get_color() == "red"
|
Check the behaviour of the different plotting keyword arguments: `line_kw`,
`fill_between_kw`, and `errorbar_kw`.
|
test_curve_display_plot_kwargs
|
python
|
scikit-learn/scikit-learn
|
sklearn/model_selection/tests/test_plot.py
|
https://github.com/scikit-learn/scikit-learn/blob/master/sklearn/model_selection/tests/test_plot.py
|
BSD-3-Clause
|
def test_validation_curve_xscale_from_param_range_provided_as_a_list(
pyplot, data, param_range, xscale
):
"""Check the induced xscale from the provided param_range values."""
X, y = data
estimator = DecisionTreeClassifier(random_state=0)
param_name = "max_depth"
display = ValidationCurveDisplay.from_estimator(
estimator,
X,
y,
param_name=param_name,
param_range=param_range,
)
assert display.ax_.get_xscale() == xscale
|
Check the induced xscale from the provided param_range values.
|
test_validation_curve_xscale_from_param_range_provided_as_a_list
|
python
|
scikit-learn/scikit-learn
|
sklearn/model_selection/tests/test_plot.py
|
https://github.com/scikit-learn/scikit-learn/blob/master/sklearn/model_selection/tests/test_plot.py
|
BSD-3-Clause
|
def test_subclassing_displays(pyplot, data, Display, params):
"""Check that named constructors return the correct type when subclassed.
Non-regression test for:
https://github.com/scikit-learn/scikit-learn/pull/27675
"""
X, y = data
estimator = DecisionTreeClassifier(random_state=0)
class SubclassOfDisplay(Display):
pass
display = SubclassOfDisplay.from_estimator(estimator, X, y, **params)
assert isinstance(display, SubclassOfDisplay)
|
Check that named constructors return the correct type when subclassed.
Non-regression test for:
https://github.com/scikit-learn/scikit-learn/pull/27675
|
test_subclassing_displays
|
python
|
scikit-learn/scikit-learn
|
sklearn/model_selection/tests/test_plot.py
|
https://github.com/scikit-learn/scikit-learn/blob/master/sklearn/model_selection/tests/test_plot.py
|
BSD-3-Clause
|
def test_refit_callable():
"""
Test refit=callable, which adds flexibility in identifying the
"best" estimator.
"""
def refit_callable(cv_results):
"""
A dummy function tests `refit=callable` interface.
Return the index of a model that has the least
`mean_test_score`.
"""
# Fit a dummy clf with `refit=True` to get a list of keys in
# clf.cv_results_.
X, y = make_classification(n_samples=100, n_features=4, random_state=42)
clf = GridSearchCV(
LinearSVC(random_state=42),
{"C": [0.01, 0.1, 1]},
scoring="precision",
refit=True,
)
clf.fit(X, y)
# Ensure that `best_index_ != 0` for this dummy clf
assert clf.best_index_ != 0
# Assert every key matches those in `cv_results`
for key in clf.cv_results_.keys():
assert key in cv_results
return cv_results["mean_test_score"].argmin()
X, y = make_classification(n_samples=100, n_features=4, random_state=42)
clf = GridSearchCV(
LinearSVC(random_state=42),
{"C": [0.01, 0.1, 1]},
scoring="precision",
refit=refit_callable,
)
clf.fit(X, y)
assert clf.best_index_ == 0
# Ensure `best_score_` is disabled when using `refit=callable`
assert not hasattr(clf, "best_score_")
|
Test refit=callable, which adds flexibility in identifying the
"best" estimator.
|
test_refit_callable
|
python
|
scikit-learn/scikit-learn
|
sklearn/model_selection/tests/test_search.py
|
https://github.com/scikit-learn/scikit-learn/blob/master/sklearn/model_selection/tests/test_search.py
|
BSD-3-Clause
|
def refit_callable(cv_results):
"""
A dummy function tests `refit=callable` interface.
Return the index of a model that has the least
`mean_test_score`.
"""
# Fit a dummy clf with `refit=True` to get a list of keys in
# clf.cv_results_.
X, y = make_classification(n_samples=100, n_features=4, random_state=42)
clf = GridSearchCV(
LinearSVC(random_state=42),
{"C": [0.01, 0.1, 1]},
scoring="precision",
refit=True,
)
clf.fit(X, y)
# Ensure that `best_index_ != 0` for this dummy clf
assert clf.best_index_ != 0
# Assert every key matches those in `cv_results`
for key in clf.cv_results_.keys():
assert key in cv_results
return cv_results["mean_test_score"].argmin()
|
A dummy function tests `refit=callable` interface.
Return the index of a model that has the least
`mean_test_score`.
|
refit_callable
|
python
|
scikit-learn/scikit-learn
|
sklearn/model_selection/tests/test_search.py
|
https://github.com/scikit-learn/scikit-learn/blob/master/sklearn/model_selection/tests/test_search.py
|
BSD-3-Clause
|
def test_refit_callable_invalid_type():
"""
Test implementation catches the errors when 'best_index_' returns an
invalid result.
"""
def refit_callable_invalid_type(cv_results):
"""
A dummy function tests when returned 'best_index_' is not integer.
"""
return None
X, y = make_classification(n_samples=100, n_features=4, random_state=42)
clf = GridSearchCV(
LinearSVC(random_state=42),
{"C": [0.1, 1]},
scoring="precision",
refit=refit_callable_invalid_type,
)
with pytest.raises(TypeError, match="best_index_ returned is not an integer"):
clf.fit(X, y)
|
Test implementation catches the errors when 'best_index_' returns an
invalid result.
|
test_refit_callable_invalid_type
|
python
|
scikit-learn/scikit-learn
|
sklearn/model_selection/tests/test_search.py
|
https://github.com/scikit-learn/scikit-learn/blob/master/sklearn/model_selection/tests/test_search.py
|
BSD-3-Clause
|
def test_refit_callable_out_bound(out_bound_value, search_cv):
"""
Test implementation catches the errors when 'best_index_' returns an
out of bound result.
"""
def refit_callable_out_bound(cv_results):
"""
A dummy function tests when returned 'best_index_' is out of bounds.
"""
return out_bound_value
X, y = make_classification(n_samples=100, n_features=4, random_state=42)
clf = search_cv(
LinearSVC(random_state=42),
{"C": [0.1, 1]},
scoring="precision",
refit=refit_callable_out_bound,
)
with pytest.raises(IndexError, match="best_index_ index out of range"):
clf.fit(X, y)
|
Test implementation catches the errors when 'best_index_' returns an
out of bound result.
|
test_refit_callable_out_bound
|
python
|
scikit-learn/scikit-learn
|
sklearn/model_selection/tests/test_search.py
|
https://github.com/scikit-learn/scikit-learn/blob/master/sklearn/model_selection/tests/test_search.py
|
BSD-3-Clause
|
def test_refit_callable_multi_metric():
"""
Test refit=callable in multiple metric evaluation setting
"""
def refit_callable(cv_results):
"""
A dummy function tests `refit=callable` interface.
Return the index of a model that has the least
`mean_test_prec`.
"""
assert "mean_test_prec" in cv_results
return cv_results["mean_test_prec"].argmin()
X, y = make_classification(n_samples=100, n_features=4, random_state=42)
scoring = {"Accuracy": make_scorer(accuracy_score), "prec": "precision"}
clf = GridSearchCV(
LinearSVC(random_state=42),
{"C": [0.01, 0.1, 1]},
scoring=scoring,
refit=refit_callable,
)
clf.fit(X, y)
assert clf.best_index_ == 0
# Ensure `best_score_` is disabled when using `refit=callable`
assert not hasattr(clf, "best_score_")
|
Test refit=callable in multiple metric evaluation setting
|
test_refit_callable_multi_metric
|
python
|
scikit-learn/scikit-learn
|
sklearn/model_selection/tests/test_search.py
|
https://github.com/scikit-learn/scikit-learn/blob/master/sklearn/model_selection/tests/test_search.py
|
BSD-3-Clause
|
def compare_cv_results_multimetric_with_single(search_multi, search_acc, search_rec):
"""Compare multi-metric cv_results with the ensemble of multiple
single metric cv_results from single metric grid/random search"""
assert search_multi.multimetric_
assert_array_equal(sorted(search_multi.scorer_), ("accuracy", "recall"))
cv_results_multi = search_multi.cv_results_
cv_results_acc_rec = {
re.sub("_score$", "_accuracy", k): v for k, v in search_acc.cv_results_.items()
}
cv_results_acc_rec.update(
{re.sub("_score$", "_recall", k): v for k, v in search_rec.cv_results_.items()}
)
# Check if score and timing are reasonable, also checks if the keys
# are present
assert all(
(
np.all(cv_results_multi[k] <= 1)
for k in (
"mean_score_time",
"std_score_time",
"mean_fit_time",
"std_fit_time",
)
)
)
# Compare the keys, other than time keys, among multi-metric and
# single metric grid search results. np.testing.assert_equal performs a
# deep nested comparison of the two cv_results dicts
np.testing.assert_equal(
{k: v for k, v in cv_results_multi.items() if not k.endswith("_time")},
{k: v for k, v in cv_results_acc_rec.items() if not k.endswith("_time")},
)
|
Compare multi-metric cv_results with the ensemble of multiple
single metric cv_results from single metric grid/random search
|
compare_cv_results_multimetric_with_single
|
python
|
scikit-learn/scikit-learn
|
sklearn/model_selection/tests/test_search.py
|
https://github.com/scikit-learn/scikit-learn/blob/master/sklearn/model_selection/tests/test_search.py
|
BSD-3-Clause
|
def compare_refit_methods_when_refit_with_acc(search_multi, search_acc, refit):
"""Compare refit multi-metric search methods with single metric methods"""
assert search_acc.refit == refit
if refit:
assert search_multi.refit == "accuracy"
else:
assert not search_multi.refit
return # search cannot predict/score without refit
X, y = make_blobs(n_samples=100, n_features=4, random_state=42)
for method in ("predict", "predict_proba", "predict_log_proba"):
assert_almost_equal(
getattr(search_multi, method)(X), getattr(search_acc, method)(X)
)
assert_almost_equal(search_multi.score(X, y), search_acc.score(X, y))
for key in ("best_index_", "best_score_", "best_params_"):
assert getattr(search_multi, key) == getattr(search_acc, key)
|
Compare refit multi-metric search methods with single metric methods
|
compare_refit_methods_when_refit_with_acc
|
python
|
scikit-learn/scikit-learn
|
sklearn/model_selection/tests/test_search.py
|
https://github.com/scikit-learn/scikit-learn/blob/master/sklearn/model_selection/tests/test_search.py
|
BSD-3-Clause
|
def test_unsupported_sample_weight_scorer():
"""Checks that fitting with sample_weight raises a warning if the scorer does not
support sample_weight"""
def fake_score_func(y_true, y_pred):
"Fake scoring function that does not support sample_weight"
return 0.5
fake_scorer = make_scorer(fake_score_func)
X, y = make_classification(n_samples=10, n_features=4, random_state=42)
sw = np.ones_like(y)
search_cv = GridSearchCV(estimator=LogisticRegression(), param_grid={"C": [1, 10]})
# function
search_cv.set_params(scoring=fake_score_func)
with pytest.warns(UserWarning, match="does not support sample_weight"):
search_cv.fit(X, y, sample_weight=sw)
# scorer
search_cv.set_params(scoring=fake_scorer)
with pytest.warns(UserWarning, match="does not support sample_weight"):
search_cv.fit(X, y, sample_weight=sw)
# multi-metric evaluation
search_cv.set_params(
scoring=dict(fake=fake_scorer, accuracy="accuracy"), refit=False
)
# only fake scorer does not support sample_weight
with pytest.warns(
UserWarning, match=r"The scoring fake=.* does not support sample_weight"
):
search_cv.fit(X, y, sample_weight=sw)
|
Checks that fitting with sample_weight raises a warning if the scorer does not
support sample_weight
|
test_unsupported_sample_weight_scorer
|
python
|
scikit-learn/scikit-learn
|
sklearn/model_selection/tests/test_search.py
|
https://github.com/scikit-learn/scikit-learn/blob/master/sklearn/model_selection/tests/test_search.py
|
BSD-3-Clause
|
def test_search_cv_pairwise_property_delegated_to_base_estimator(pairwise):
"""
Test implementation of BaseSearchCV has the pairwise tag
which matches the pairwise tag of its estimator.
This test make sure pairwise tag is delegated to the base estimator.
Non-regression test for issue #13920.
"""
class TestEstimator(BaseEstimator):
def __sklearn_tags__(self):
tags = super().__sklearn_tags__()
tags.input_tags.pairwise = pairwise
return tags
est = TestEstimator()
attr_message = "BaseSearchCV pairwise tag must match estimator"
cv = GridSearchCV(est, {"n_neighbors": [10]})
assert pairwise == cv.__sklearn_tags__().input_tags.pairwise, attr_message
|
Test implementation of BaseSearchCV has the pairwise tag
which matches the pairwise tag of its estimator.
This test make sure pairwise tag is delegated to the base estimator.
Non-regression test for issue #13920.
|
test_search_cv_pairwise_property_delegated_to_base_estimator
|
python
|
scikit-learn/scikit-learn
|
sklearn/model_selection/tests/test_search.py
|
https://github.com/scikit-learn/scikit-learn/blob/master/sklearn/model_selection/tests/test_search.py
|
BSD-3-Clause
|
def test_search_cv__pairwise_property_delegated_to_base_estimator():
"""
Test implementation of BaseSearchCV has the pairwise property
which matches the pairwise tag of its estimator.
This test make sure pairwise tag is delegated to the base estimator.
Non-regression test for issue #13920.
"""
class EstimatorPairwise(BaseEstimator):
def __init__(self, pairwise=True):
self.pairwise = pairwise
def __sklearn_tags__(self):
tags = super().__sklearn_tags__()
tags.input_tags.pairwise = self.pairwise
return tags
est = EstimatorPairwise()
attr_message = "BaseSearchCV _pairwise property must match estimator"
for _pairwise_setting in [True, False]:
est.set_params(pairwise=_pairwise_setting)
cv = GridSearchCV(est, {"n_neighbors": [10]})
assert _pairwise_setting == cv.__sklearn_tags__().input_tags.pairwise, (
attr_message
)
|
Test implementation of BaseSearchCV has the pairwise property
which matches the pairwise tag of its estimator.
This test make sure pairwise tag is delegated to the base estimator.
Non-regression test for issue #13920.
|
test_search_cv__pairwise_property_delegated_to_base_estimator
|
python
|
scikit-learn/scikit-learn
|
sklearn/model_selection/tests/test_search.py
|
https://github.com/scikit-learn/scikit-learn/blob/master/sklearn/model_selection/tests/test_search.py
|
BSD-3-Clause
|
def test_search_cv_pairwise_property_equivalence_of_precomputed():
"""
Test implementation of BaseSearchCV has the pairwise tag
which matches the pairwise tag of its estimator.
This test ensures the equivalence of 'precomputed'.
Non-regression test for issue #13920.
"""
n_samples = 50
n_splits = 2
X, y = make_classification(n_samples=n_samples, random_state=0)
grid_params = {"n_neighbors": [10]}
# defaults to euclidean metric (minkowski p = 2)
clf = KNeighborsClassifier()
cv = GridSearchCV(clf, grid_params, cv=n_splits)
cv.fit(X, y)
preds_original = cv.predict(X)
# precompute euclidean metric to validate pairwise is working
X_precomputed = euclidean_distances(X)
clf = KNeighborsClassifier(metric="precomputed")
cv = GridSearchCV(clf, grid_params, cv=n_splits)
cv.fit(X_precomputed, y)
preds_precomputed = cv.predict(X_precomputed)
attr_message = "GridSearchCV not identical with precomputed metric"
assert (preds_original == preds_precomputed).all(), attr_message
|
Test implementation of BaseSearchCV has the pairwise tag
which matches the pairwise tag of its estimator.
This test ensures the equivalence of 'precomputed'.
Non-regression test for issue #13920.
|
test_search_cv_pairwise_property_equivalence_of_precomputed
|
python
|
scikit-learn/scikit-learn
|
sklearn/model_selection/tests/test_search.py
|
https://github.com/scikit-learn/scikit-learn/blob/master/sklearn/model_selection/tests/test_search.py
|
BSD-3-Clause
|
def test_search_cv_verbose_3(capsys, return_train_score):
"""Check that search cv with verbose>2 shows the score for single
metrics. non-regression test for #19658."""
X, y = make_classification(n_samples=100, n_classes=2, flip_y=0.2, random_state=0)
clf = LinearSVC(random_state=0)
grid = {"C": [0.1]}
GridSearchCV(
clf,
grid,
scoring="accuracy",
verbose=3,
cv=3,
return_train_score=return_train_score,
).fit(X, y)
captured = capsys.readouterr().out
if return_train_score:
match = re.findall(r"score=\(train=[\d\.]+, test=[\d.]+\)", captured)
else:
match = re.findall(r"score=[\d\.]+", captured)
assert len(match) == 3
|
Check that search cv with verbose>2 shows the score for single
metrics. non-regression test for #19658.
|
test_search_cv_verbose_3
|
python
|
scikit-learn/scikit-learn
|
sklearn/model_selection/tests/test_search.py
|
https://github.com/scikit-learn/scikit-learn/blob/master/sklearn/model_selection/tests/test_search.py
|
BSD-3-Clause
|
def test_search_html_repr():
"""Test different HTML representations for GridSearchCV."""
X, y = make_classification(random_state=42)
pipeline = Pipeline([("scale", StandardScaler()), ("clf", DummyClassifier())])
param_grid = {"clf": [DummyClassifier(), LogisticRegression()]}
# Unfitted shows the original pipeline
search_cv = GridSearchCV(pipeline, param_grid=param_grid, refit=False)
with config_context(display="diagram"):
repr_html = search_cv._repr_html_()
assert "<div>DummyClassifier</div>" in repr_html
# Fitted with `refit=False` shows the original pipeline
search_cv.fit(X, y)
with config_context(display="diagram"):
repr_html = search_cv._repr_html_()
assert "<div>DummyClassifier</div>" in repr_html
# Fitted with `refit=True` shows the best estimator
search_cv = GridSearchCV(pipeline, param_grid=param_grid, refit=True)
search_cv.fit(X, y)
with config_context(display="diagram"):
repr_html = search_cv._repr_html_()
assert "<div>DummyClassifier</div>" not in repr_html
assert "<div>LogisticRegression</div>" in repr_html
|
Test different HTML representations for GridSearchCV.
|
test_search_html_repr
|
python
|
scikit-learn/scikit-learn
|
sklearn/model_selection/tests/test_search.py
|
https://github.com/scikit-learn/scikit-learn/blob/master/sklearn/model_selection/tests/test_search.py
|
BSD-3-Clause
|
def test_multi_metric_search_forwards_metadata(SearchCV, param_search):
"""Test that *SearchCV forwards metadata correctly when passed multiple metrics."""
X, y = make_classification(random_state=42)
n_samples = _num_samples(X)
rng = np.random.RandomState(0)
score_weights = rng.rand(n_samples)
score_metadata = rng.rand(n_samples)
est = LinearSVC()
param_grid_search = {param_search: {"C": [1]}}
scorer_registry = _Registry()
scorer = ConsumingScorer(registry=scorer_registry).set_score_request(
sample_weight="score_weights", metadata="score_metadata"
)
scoring = dict(my_scorer=scorer, accuracy="accuracy")
SearchCV(est, refit="accuracy", cv=2, scoring=scoring, **param_grid_search).fit(
X, y, score_weights=score_weights, score_metadata=score_metadata
)
assert len(scorer_registry)
for _scorer in scorer_registry:
check_recorded_metadata(
obj=_scorer,
method="score",
parent="_score",
split_params=("sample_weight", "metadata"),
sample_weight=score_weights,
metadata=score_metadata,
)
|
Test that *SearchCV forwards metadata correctly when passed multiple metrics.
|
test_multi_metric_search_forwards_metadata
|
python
|
scikit-learn/scikit-learn
|
sklearn/model_selection/tests/test_search.py
|
https://github.com/scikit-learn/scikit-learn/blob/master/sklearn/model_selection/tests/test_search.py
|
BSD-3-Clause
|
def test_score_rejects_params_with_no_routing_enabled(SearchCV, param_search):
"""*SearchCV should reject **params when metadata routing is not enabled
since this is added only when routing is enabled."""
X, y = make_classification(random_state=42)
est = LinearSVC()
param_grid_search = {param_search: {"C": [1]}}
gs = SearchCV(est, cv=2, **param_grid_search).fit(X, y)
with pytest.raises(ValueError, match="is only supported if"):
gs.score(X, y, metadata=1)
|
*SearchCV should reject **params when metadata routing is not enabled
since this is added only when routing is enabled.
|
test_score_rejects_params_with_no_routing_enabled
|
python
|
scikit-learn/scikit-learn
|
sklearn/model_selection/tests/test_search.py
|
https://github.com/scikit-learn/scikit-learn/blob/master/sklearn/model_selection/tests/test_search.py
|
BSD-3-Clause
|
def test_cv_results_dtype_issue_29074():
"""Non-regression test for https://github.com/scikit-learn/scikit-learn/issues/29074"""
class MetaEstimator(BaseEstimator, ClassifierMixin):
def __init__(
self,
base_clf,
parameter1=None,
parameter2=None,
parameter3=None,
parameter4=None,
):
self.base_clf = base_clf
self.parameter1 = parameter1
self.parameter2 = parameter2
self.parameter3 = parameter3
self.parameter4 = parameter4
def fit(self, X, y=None):
self.base_clf.fit(X, y)
return self
def score(self, X, y):
return self.base_clf.score(X, y)
# Values of param_grid are such that np.result_type gives slightly
# different errors, in particular ValueError and TypeError
param_grid = {
"parameter1": [None, {"option": "A"}, {"option": "B"}],
"parameter2": [None, [1, 2]],
"parameter3": [{"a": 1}],
"parameter4": ["str1", "str2"],
}
grid_search = GridSearchCV(
estimator=MetaEstimator(LogisticRegression()),
param_grid=param_grid,
cv=3,
)
X, y = make_blobs(random_state=0)
grid_search.fit(X, y)
for param in param_grid:
assert grid_search.cv_results_[f"param_{param}"].dtype == object
|
Non-regression test for https://github.com/scikit-learn/scikit-learn/issues/29074
|
test_cv_results_dtype_issue_29074
|
python
|
scikit-learn/scikit-learn
|
sklearn/model_selection/tests/test_search.py
|
https://github.com/scikit-learn/scikit-learn/blob/master/sklearn/model_selection/tests/test_search.py
|
BSD-3-Clause
|
def test_search_with_estimators_issue_29157():
"""Check cv_results_ for estimators with a `dtype` parameter, e.g. OneHotEncoder."""
pd = pytest.importorskip("pandas")
df = pd.DataFrame(
{
"numeric_1": [1, 2, 3, 4, 5],
"object_1": ["a", "a", "a", "a", "a"],
"target": [1.0, 4.1, 2.0, 3.0, 1.0],
}
)
X = df.drop("target", axis=1)
y = df["target"]
enc = ColumnTransformer(
[("enc", OneHotEncoder(sparse_output=False), ["object_1"])],
remainder="passthrough",
)
pipe = Pipeline(
[
("enc", enc),
("regressor", LinearRegression()),
]
)
grid_params = {
"enc__enc": [
OneHotEncoder(sparse_output=False),
OrdinalEncoder(),
]
}
grid_search = GridSearchCV(pipe, grid_params, cv=2)
grid_search.fit(X, y)
assert grid_search.cv_results_["param_enc__enc"].dtype == object
|
Check cv_results_ for estimators with a `dtype` parameter, e.g. OneHotEncoder.
|
test_search_with_estimators_issue_29157
|
python
|
scikit-learn/scikit-learn
|
sklearn/model_selection/tests/test_search.py
|
https://github.com/scikit-learn/scikit-learn/blob/master/sklearn/model_selection/tests/test_search.py
|
BSD-3-Clause
|
def test_cv_results_multi_size_array():
"""Check that GridSearchCV works with params that are arrays of different sizes.
Non-regression test for #29277.
"""
n_features = 10
X, y = make_classification(n_features=10)
spline_reg_pipe = make_pipeline(
SplineTransformer(extrapolation="periodic"),
LogisticRegression(),
)
n_knots_list = [n_features * i for i in [10, 11, 12]]
knots_list = [
np.linspace(0, np.pi * 2, n_knots).reshape((-1, n_features))
for n_knots in n_knots_list
]
spline_reg_pipe_cv = GridSearchCV(
estimator=spline_reg_pipe,
param_grid={
"splinetransformer__knots": knots_list,
},
)
spline_reg_pipe_cv.fit(X, y)
assert (
spline_reg_pipe_cv.cv_results_["param_splinetransformer__knots"].dtype == object
)
|
Check that GridSearchCV works with params that are arrays of different sizes.
Non-regression test for #29277.
|
test_cv_results_multi_size_array
|
python
|
scikit-learn/scikit-learn
|
sklearn/model_selection/tests/test_search.py
|
https://github.com/scikit-learn/scikit-learn/blob/master/sklearn/model_selection/tests/test_search.py
|
BSD-3-Clause
|
def test_train_test_split_32bit_overflow():
"""Check for integer overflow on 32-bit platforms.
Non-regression test for:
https://github.com/scikit-learn/scikit-learn/issues/20774
"""
# A number 'n' big enough for expression 'n * n * train_size' to cause
# an overflow for signed 32-bit integer
big_number = 100000
# Definition of 'y' is a part of reproduction - population for at least
# one class should be in the same order of magnitude as size of X
X = np.arange(big_number)
y = X > (0.99 * big_number)
split = train_test_split(X, y, stratify=y, train_size=0.25)
X_train, X_test, y_train, y_test = split
assert X_train.size + X_test.size == big_number
assert y_train.size + y_test.size == big_number
|
Check for integer overflow on 32-bit platforms.
Non-regression test for:
https://github.com/scikit-learn/scikit-learn/issues/20774
|
test_train_test_split_32bit_overflow
|
python
|
scikit-learn/scikit-learn
|
sklearn/model_selection/tests/test_split.py
|
https://github.com/scikit-learn/scikit-learn/blob/master/sklearn/model_selection/tests/test_split.py
|
BSD-3-Clause
|
def test_splitter_set_split_request(cv):
"""Check set_split_request is defined for group splitters and not for others."""
if cv in GROUP_SPLITTERS:
assert hasattr(cv, "set_split_request")
elif cv in NO_GROUP_SPLITTERS:
assert not hasattr(cv, "set_split_request")
|
Check set_split_request is defined for group splitters and not for others.
|
test_splitter_set_split_request
|
python
|
scikit-learn/scikit-learn
|
sklearn/model_selection/tests/test_split.py
|
https://github.com/scikit-learn/scikit-learn/blob/master/sklearn/model_selection/tests/test_split.py
|
BSD-3-Clause
|
def test_nan_handling(HalvingSearch, fail_at):
"""Check the selection of the best scores in presence of failure represented by
NaN values."""
n_samples = 1_000
X, y = make_classification(n_samples=n_samples, random_state=0)
search = HalvingSearch(
SometimesFailClassifier(),
{f"fail_{fail_at}": [False, True], "a": range(3)},
resource="n_estimators",
max_resources=6,
min_resources=1,
factor=2,
)
search.fit(X, y)
# estimators that failed during fit/predict should always rank lower
# than ones where the fit/predict succeeded
assert not search.best_params_[f"fail_{fail_at}"]
scores = search.cv_results_["mean_test_score"]
ranks = search.cv_results_["rank_test_score"]
# some scores should be NaN
assert np.isnan(scores).any()
unique_nan_ranks = np.unique(ranks[np.isnan(scores)])
# all NaN scores should have the same rank
assert unique_nan_ranks.shape[0] == 1
# NaNs should have the lowest rank
assert (unique_nan_ranks[0] >= ranks).all()
|
Check the selection of the best scores in presence of failure represented by
NaN values.
|
test_nan_handling
|
python
|
scikit-learn/scikit-learn
|
sklearn/model_selection/tests/test_successive_halving.py
|
https://github.com/scikit-learn/scikit-learn/blob/master/sklearn/model_selection/tests/test_successive_halving.py
|
BSD-3-Clause
|
def test_min_resources_null(SearchCV):
"""Check that we raise an error if the minimum resources is set to 0."""
base_estimator = FastClassifier()
param_grid = {"a": [1]}
X = np.empty(0).reshape(0, 3)
search = SearchCV(base_estimator, param_grid, min_resources="smallest")
err_msg = "min_resources_=0: you might have passed an empty dataset X."
with pytest.raises(ValueError, match=err_msg):
search.fit(X, [])
|
Check that we raise an error if the minimum resources is set to 0.
|
test_min_resources_null
|
python
|
scikit-learn/scikit-learn
|
sklearn/model_selection/tests/test_successive_halving.py
|
https://github.com/scikit-learn/scikit-learn/blob/master/sklearn/model_selection/tests/test_successive_halving.py
|
BSD-3-Clause
|
def test_select_best_index(SearchCV):
"""Check the selection strategy of the halving search."""
results = { # this isn't a 'real world' result dict
"iter": np.array([0, 0, 0, 0, 1, 1, 2, 2, 2]),
"mean_test_score": np.array([4, 3, 5, 1, 11, 10, 5, 6, 9]),
"params": np.array(["a", "b", "c", "d", "e", "f", "g", "h", "i"]),
}
# we expect the index of 'i'
best_index = SearchCV._select_best_index(None, None, results)
assert best_index == 8
|
Check the selection strategy of the halving search.
|
test_select_best_index
|
python
|
scikit-learn/scikit-learn
|
sklearn/model_selection/tests/test_successive_halving.py
|
https://github.com/scikit-learn/scikit-learn/blob/master/sklearn/model_selection/tests/test_successive_halving.py
|
BSD-3-Clause
|
def test_halving_random_search_list_of_dicts():
"""Check the behaviour of the `HalvingRandomSearchCV` with `param_distribution`
being a list of dictionary.
"""
X, y = make_classification(n_samples=150, n_features=4, random_state=42)
params = [
{"kernel": ["rbf"], "C": expon(scale=10), "gamma": expon(scale=0.1)},
{"kernel": ["poly"], "degree": [2, 3]},
]
param_keys = (
"param_C",
"param_degree",
"param_gamma",
"param_kernel",
)
score_keys = (
"mean_test_score",
"mean_train_score",
"rank_test_score",
"split0_test_score",
"split1_test_score",
"split2_test_score",
"split0_train_score",
"split1_train_score",
"split2_train_score",
"std_test_score",
"std_train_score",
"mean_fit_time",
"std_fit_time",
"mean_score_time",
"std_score_time",
)
extra_keys = ("n_resources", "iter")
search = HalvingRandomSearchCV(
SVC(), cv=3, param_distributions=params, return_train_score=True, random_state=0
)
search.fit(X, y)
n_candidates = sum(search.n_candidates_)
cv_results = search.cv_results_
# Check results structure
check_cv_results_keys(cv_results, param_keys, score_keys, n_candidates, extra_keys)
expected_cv_results_kinds = {
"param_C": "f",
"param_degree": "i",
"param_gamma": "f",
"param_kernel": "O",
}
check_cv_results_array_types(
search, param_keys, score_keys, expected_cv_results_kinds
)
assert all(
(
cv_results["param_C"].mask[i]
and cv_results["param_gamma"].mask[i]
and not cv_results["param_degree"].mask[i]
)
for i in range(n_candidates)
if cv_results["param_kernel"][i] == "poly"
)
assert all(
(
not cv_results["param_C"].mask[i]
and not cv_results["param_gamma"].mask[i]
and cv_results["param_degree"].mask[i]
)
for i in range(n_candidates)
if cv_results["param_kernel"][i] == "rbf"
)
|
Check the behaviour of the `HalvingRandomSearchCV` with `param_distribution`
being a list of dictionary.
|
test_halving_random_search_list_of_dicts
|
python
|
scikit-learn/scikit-learn
|
sklearn/model_selection/tests/test_successive_halving.py
|
https://github.com/scikit-learn/scikit-learn/blob/master/sklearn/model_selection/tests/test_successive_halving.py
|
BSD-3-Clause
|
def fit(
self,
X,
Y=None,
sample_weight=None,
class_prior=None,
sparse_sample_weight=None,
sparse_param=None,
dummy_int=None,
dummy_str=None,
dummy_obj=None,
callback=None,
):
"""The dummy arguments are to test that this fit function can
accept non-array arguments through cross-validation, such as:
- int
- str (this is actually array-like)
- object
- function
"""
self.dummy_int = dummy_int
self.dummy_str = dummy_str
self.dummy_obj = dummy_obj
if callback is not None:
callback(self)
if self.allow_nd:
X = X.reshape(len(X), -1)
if X.ndim >= 3 and not self.allow_nd:
raise ValueError("X cannot be d")
if sample_weight is not None:
assert sample_weight.shape[0] == X.shape[0], (
"MockClassifier extra fit_param "
"sample_weight.shape[0] is {0}, should be {1}".format(
sample_weight.shape[0], X.shape[0]
)
)
if class_prior is not None:
assert class_prior.shape[0] == len(np.unique(y)), (
"MockClassifier extra fit_param class_prior.shape[0]"
" is {0}, should be {1}".format(class_prior.shape[0], len(np.unique(y)))
)
if sparse_sample_weight is not None:
fmt = (
"MockClassifier extra fit_param sparse_sample_weight"
".shape[0] is {0}, should be {1}"
)
assert sparse_sample_weight.shape[0] == X.shape[0], fmt.format(
sparse_sample_weight.shape[0], X.shape[0]
)
if sparse_param is not None:
fmt = (
"MockClassifier extra fit_param sparse_param.shape "
"is ({0}, {1}), should be ({2}, {3})"
)
assert sparse_param.shape == P.shape, fmt.format(
sparse_param.shape[0],
sparse_param.shape[1],
P.shape[0],
P.shape[1],
)
self.classes_ = np.unique(y)
return self
|
The dummy arguments are to test that this fit function can
accept non-array arguments through cross-validation, such as:
- int
- str (this is actually array-like)
- object
- function
|
fit
|
python
|
scikit-learn/scikit-learn
|
sklearn/model_selection/tests/test_validation.py
|
https://github.com/scikit-learn/scikit-learn/blob/master/sklearn/model_selection/tests/test_validation.py
|
BSD-3-Clause
|
def check_cross_val_predict_binary(est, X, y, method):
"""Helper for tests of cross_val_predict with binary classification"""
cv = KFold(n_splits=3, shuffle=False)
# Generate expected outputs
if y.ndim == 1:
exp_shape = (len(X),) if method == "decision_function" else (len(X), 2)
else:
exp_shape = y.shape
expected_predictions = np.zeros(exp_shape)
for train, test in cv.split(X, y):
est = clone(est).fit(X[train], y[train])
expected_predictions[test] = getattr(est, method)(X[test])
# Check actual outputs for several representations of y
for tg in [y, y + 1, y - 2, y.astype("str")]:
assert_allclose(
cross_val_predict(est, X, tg, method=method, cv=cv), expected_predictions
)
|
Helper for tests of cross_val_predict with binary classification
|
check_cross_val_predict_binary
|
python
|
scikit-learn/scikit-learn
|
sklearn/model_selection/tests/test_validation.py
|
https://github.com/scikit-learn/scikit-learn/blob/master/sklearn/model_selection/tests/test_validation.py
|
BSD-3-Clause
|
def check_cross_val_predict_multiclass(est, X, y, method):
"""Helper for tests of cross_val_predict with multiclass classification"""
cv = KFold(n_splits=3, shuffle=False)
# Generate expected outputs
float_min = np.finfo(np.float64).min
default_values = {
"decision_function": float_min,
"predict_log_proba": float_min,
"predict_proba": 0,
}
expected_predictions = np.full(
(len(X), len(set(y))), default_values[method], dtype=np.float64
)
_, y_enc = np.unique(y, return_inverse=True)
for train, test in cv.split(X, y_enc):
est = clone(est).fit(X[train], y_enc[train])
fold_preds = getattr(est, method)(X[test])
i_cols_fit = np.unique(y_enc[train])
expected_predictions[np.ix_(test, i_cols_fit)] = fold_preds
# Check actual outputs for several representations of y
for tg in [y, y + 1, y - 2, y.astype("str")]:
assert_allclose(
cross_val_predict(est, X, tg, method=method, cv=cv), expected_predictions
)
|
Helper for tests of cross_val_predict with multiclass classification
|
check_cross_val_predict_multiclass
|
python
|
scikit-learn/scikit-learn
|
sklearn/model_selection/tests/test_validation.py
|
https://github.com/scikit-learn/scikit-learn/blob/master/sklearn/model_selection/tests/test_validation.py
|
BSD-3-Clause
|
def check_cross_val_predict_multilabel(est, X, y, method):
"""Check the output of cross_val_predict for 2D targets using
Estimators which provide a predictions as a list with one
element per class.
"""
cv = KFold(n_splits=3, shuffle=False)
# Create empty arrays of the correct size to hold outputs
float_min = np.finfo(np.float64).min
default_values = {
"decision_function": float_min,
"predict_log_proba": float_min,
"predict_proba": 0,
}
n_targets = y.shape[1]
expected_preds = []
for i_col in range(n_targets):
n_classes_in_label = len(set(y[:, i_col]))
if n_classes_in_label == 2 and method == "decision_function":
exp_shape = (len(X),)
else:
exp_shape = (len(X), n_classes_in_label)
expected_preds.append(
np.full(exp_shape, default_values[method], dtype=np.float64)
)
# Generate expected outputs
y_enc_cols = [
np.unique(y[:, i], return_inverse=True)[1][:, np.newaxis]
for i in range(y.shape[1])
]
y_enc = np.concatenate(y_enc_cols, axis=1)
for train, test in cv.split(X, y_enc):
est = clone(est).fit(X[train], y_enc[train])
fold_preds = getattr(est, method)(X[test])
for i_col in range(n_targets):
fold_cols = np.unique(y_enc[train][:, i_col])
if expected_preds[i_col].ndim == 1:
# Decision function with <=2 classes
expected_preds[i_col][test] = fold_preds[i_col]
else:
idx = np.ix_(test, fold_cols)
expected_preds[i_col][idx] = fold_preds[i_col]
# Check actual outputs for several representations of y
for tg in [y, y + 1, y - 2, y.astype("str")]:
cv_predict_output = cross_val_predict(est, X, tg, method=method, cv=cv)
assert len(cv_predict_output) == len(expected_preds)
for i in range(len(cv_predict_output)):
assert_allclose(cv_predict_output[i], expected_preds[i])
|
Check the output of cross_val_predict for 2D targets using
Estimators which provide a predictions as a list with one
element per class.
|
check_cross_val_predict_multilabel
|
python
|
scikit-learn/scikit-learn
|
sklearn/model_selection/tests/test_validation.py
|
https://github.com/scikit-learn/scikit-learn/blob/master/sklearn/model_selection/tests/test_validation.py
|
BSD-3-Clause
|
def test_learning_curve_partial_fit_regressors():
"""Check that regressors with partial_fit is supported.
Non-regression test for #22981.
"""
X, y = make_regression(random_state=42)
# Does not error
learning_curve(MLPRegressor(), X, y, exploit_incremental_learning=True, cv=2)
|
Check that regressors with partial_fit is supported.
Non-regression test for #22981.
|
test_learning_curve_partial_fit_regressors
|
python
|
scikit-learn/scikit-learn
|
sklearn/model_selection/tests/test_validation.py
|
https://github.com/scikit-learn/scikit-learn/blob/master/sklearn/model_selection/tests/test_validation.py
|
BSD-3-Clause
|
def test_learning_curve_some_failing_fits_warning(global_random_seed):
"""Checks for fit failures in `learning_curve` and raises the required warning"""
X, y = make_classification(
n_samples=30,
n_classes=3,
n_informative=6,
shuffle=False,
random_state=global_random_seed,
)
# sorting the target to trigger SVC error on the 2 first splits because a single
# class is present
sorted_idx = np.argsort(y)
X, y = X[sorted_idx], y[sorted_idx]
svc = SVC()
warning_message = "10 fits failed out of a total of 25"
with pytest.warns(FitFailedWarning, match=warning_message):
_, train_score, test_score, *_ = learning_curve(
svc, X, y, cv=5, error_score=np.nan
)
# the first 2 splits should lead to warnings and thus np.nan scores
for idx in range(2):
assert np.isnan(train_score[idx]).all()
assert np.isnan(test_score[idx]).all()
for idx in range(2, train_score.shape[0]):
assert not np.isnan(train_score[idx]).any()
assert not np.isnan(test_score[idx]).any()
|
Checks for fit failures in `learning_curve` and raises the required warning
|
test_learning_curve_some_failing_fits_warning
|
python
|
scikit-learn/scikit-learn
|
sklearn/model_selection/tests/test_validation.py
|
https://github.com/scikit-learn/scikit-learn/blob/master/sklearn/model_selection/tests/test_validation.py
|
BSD-3-Clause
|
def test_fit_param_deprecation(func, extra_args):
"""Check that we warn about deprecating `fit_params`."""
with pytest.warns(FutureWarning, match="`fit_params` is deprecated"):
func(
estimator=ConsumingClassifier(), X=X, y=y, cv=2, fit_params={}, **extra_args
)
with pytest.raises(
ValueError, match="`params` and `fit_params` cannot both be provided"
):
func(
estimator=ConsumingClassifier(),
X=X,
y=y,
fit_params={},
params={},
**extra_args,
)
|
Check that we warn about deprecating `fit_params`.
|
test_fit_param_deprecation
|
python
|
scikit-learn/scikit-learn
|
sklearn/model_selection/tests/test_validation.py
|
https://github.com/scikit-learn/scikit-learn/blob/master/sklearn/model_selection/tests/test_validation.py
|
BSD-3-Clause
|
def test_groups_with_routing_validation(func, extra_args):
"""Check that we raise an error if `groups` are passed to the cv method instead
of `params` when metadata routing is enabled.
"""
with pytest.raises(ValueError, match="`groups` can only be passed if"):
func(
estimator=ConsumingClassifier(),
X=X,
y=y,
groups=[],
**extra_args,
)
|
Check that we raise an error if `groups` are passed to the cv method instead
of `params` when metadata routing is enabled.
|
test_groups_with_routing_validation
|
python
|
scikit-learn/scikit-learn
|
sklearn/model_selection/tests/test_validation.py
|
https://github.com/scikit-learn/scikit-learn/blob/master/sklearn/model_selection/tests/test_validation.py
|
BSD-3-Clause
|
def test_cross_validate_params_none(func, extra_args):
"""Test that no errors are raised when passing `params=None`, which is the
default value.
Non-regression test for: https://github.com/scikit-learn/scikit-learn/issues/30447
"""
X, y = make_classification(n_samples=100, n_classes=2, random_state=0)
func(estimator=ConsumingClassifier(), X=X, y=y, **extra_args)
|
Test that no errors are raised when passing `params=None`, which is the
default value.
Non-regression test for: https://github.com/scikit-learn/scikit-learn/issues/30447
|
test_cross_validate_params_none
|
python
|
scikit-learn/scikit-learn
|
sklearn/model_selection/tests/test_validation.py
|
https://github.com/scikit-learn/scikit-learn/blob/master/sklearn/model_selection/tests/test_validation.py
|
BSD-3-Clause
|
def test_passed_unrequested_metadata(func, extra_args):
"""Check that we raise an error when passing metadata that is not
requested."""
err_msg = re.escape(
"[metadata] are passed but are not explicitly set as requested or not "
"requested for ConsumingClassifier.fit, which is used within"
)
with pytest.raises(UnsetMetadataPassedError, match=err_msg):
func(
estimator=ConsumingClassifier(),
X=X,
y=y2,
params=dict(metadata=[]),
**extra_args,
)
# cross_val_predict doesn't use scoring
if func == cross_val_predict:
return
err_msg = re.escape(
"[metadata] are passed but are not explicitly set as requested or not "
"requested for ConsumingClassifier.score, which is used within"
)
with pytest.raises(UnsetMetadataPassedError, match=err_msg):
func(
estimator=ConsumingClassifier()
.set_fit_request(metadata=True)
.set_partial_fit_request(metadata=True),
X=X,
y=y2,
params=dict(metadata=[]),
**extra_args,
)
|
Check that we raise an error when passing metadata that is not
requested.
|
test_passed_unrequested_metadata
|
python
|
scikit-learn/scikit-learn
|
sklearn/model_selection/tests/test_validation.py
|
https://github.com/scikit-learn/scikit-learn/blob/master/sklearn/model_selection/tests/test_validation.py
|
BSD-3-Clause
|
def test_validation_functions_routing(func, extra_args):
"""Check that the respective cv method is properly dispatching the metadata
to the consumer."""
scorer_registry = _Registry()
scorer = ConsumingScorer(registry=scorer_registry).set_score_request(
sample_weight="score_weights", metadata="score_metadata"
)
splitter_registry = _Registry()
splitter = ConsumingSplitter(registry=splitter_registry).set_split_request(
groups="split_groups", metadata="split_metadata"
)
estimator_registry = _Registry()
estimator = ConsumingClassifier(registry=estimator_registry).set_fit_request(
sample_weight="fit_sample_weight", metadata="fit_metadata"
)
n_samples = _num_samples(X)
rng = np.random.RandomState(0)
score_weights = rng.rand(n_samples)
score_metadata = rng.rand(n_samples)
split_groups = rng.randint(0, 3, n_samples)
split_metadata = rng.rand(n_samples)
fit_sample_weight = rng.rand(n_samples)
fit_metadata = rng.rand(n_samples)
scoring_args = {
cross_validate: dict(scoring=dict(my_scorer=scorer, accuracy="accuracy")),
cross_val_score: dict(scoring=scorer),
learning_curve: dict(scoring=scorer),
validation_curve: dict(scoring=scorer),
permutation_test_score: dict(scoring=scorer),
cross_val_predict: dict(),
}
params = dict(
split_groups=split_groups,
split_metadata=split_metadata,
fit_sample_weight=fit_sample_weight,
fit_metadata=fit_metadata,
)
if func is not cross_val_predict:
params.update(
score_weights=score_weights,
score_metadata=score_metadata,
)
func(
estimator,
X=X,
y=y,
cv=splitter,
**scoring_args[func],
**extra_args,
params=params,
)
if func is not cross_val_predict:
# cross_val_predict doesn't need a scorer
assert len(scorer_registry)
for _scorer in scorer_registry:
check_recorded_metadata(
obj=_scorer,
method="score",
parent=func.__name__,
split_params=("sample_weight", "metadata"),
sample_weight=score_weights,
metadata=score_metadata,
)
assert len(splitter_registry)
for _splitter in splitter_registry:
check_recorded_metadata(
obj=_splitter,
method="split",
parent=func.__name__,
groups=split_groups,
metadata=split_metadata,
)
assert len(estimator_registry)
for _estimator in estimator_registry:
check_recorded_metadata(
obj=_estimator,
method="fit",
parent=func.__name__,
split_params=("sample_weight", "metadata"),
sample_weight=fit_sample_weight,
metadata=fit_metadata,
)
|
Check that the respective cv method is properly dispatching the metadata
to the consumer.
|
test_validation_functions_routing
|
python
|
scikit-learn/scikit-learn
|
sklearn/model_selection/tests/test_validation.py
|
https://github.com/scikit-learn/scikit-learn/blob/master/sklearn/model_selection/tests/test_validation.py
|
BSD-3-Clause
|
def test_learning_curve_exploit_incremental_learning_routing():
"""Test that learning_curve routes metadata to the estimator correctly while
partial_fitting it with `exploit_incremental_learning=True`."""
n_samples = _num_samples(X)
rng = np.random.RandomState(0)
fit_sample_weight = rng.rand(n_samples)
fit_metadata = rng.rand(n_samples)
estimator_registry = _Registry()
estimator = ConsumingClassifier(
registry=estimator_registry
).set_partial_fit_request(
sample_weight="fit_sample_weight", metadata="fit_metadata"
)
learning_curve(
estimator,
X=X,
y=y,
cv=ConsumingSplitter(),
exploit_incremental_learning=True,
params=dict(fit_sample_weight=fit_sample_weight, fit_metadata=fit_metadata),
)
assert len(estimator_registry)
for _estimator in estimator_registry:
check_recorded_metadata(
obj=_estimator,
method="partial_fit",
parent="learning_curve",
split_params=("sample_weight", "metadata"),
sample_weight=fit_sample_weight,
metadata=fit_metadata,
)
|
Test that learning_curve routes metadata to the estimator correctly while
partial_fitting it with `exploit_incremental_learning=True`.
|
test_learning_curve_exploit_incremental_learning_routing
|
python
|
scikit-learn/scikit-learn
|
sklearn/model_selection/tests/test_validation.py
|
https://github.com/scikit-learn/scikit-learn/blob/master/sklearn/model_selection/tests/test_validation.py
|
BSD-3-Clause
|
def _get_weights(dist, weights):
"""Get the weights from an array of distances and a parameter ``weights``.
Assume weights have already been validated.
Parameters
----------
dist : ndarray
The input distances.
weights : {'uniform', 'distance'}, callable or None
The kind of weighting used.
Returns
-------
weights_arr : array of the same shape as ``dist``
If ``weights == 'uniform'``, then returns None.
"""
if weights in (None, "uniform"):
return None
if weights == "distance":
# if user attempts to classify a point that was zero distance from one
# or more training points, those training points are weighted as 1.0
# and the other points as 0.0
if dist.dtype is np.dtype(object):
for point_dist_i, point_dist in enumerate(dist):
# check if point_dist is iterable
# (ex: RadiusNeighborClassifier.predict may set an element of
# dist to 1e-6 to represent an 'outlier')
if hasattr(point_dist, "__contains__") and 0.0 in point_dist:
dist[point_dist_i] = point_dist == 0.0
else:
dist[point_dist_i] = 1.0 / point_dist
else:
with np.errstate(divide="ignore"):
dist = 1.0 / dist
inf_mask = np.isinf(dist)
inf_row = np.any(inf_mask, axis=1)
dist[inf_row] = inf_mask[inf_row]
return dist
if callable(weights):
return weights(dist)
|
Get the weights from an array of distances and a parameter ``weights``.
Assume weights have already been validated.
Parameters
----------
dist : ndarray
The input distances.
weights : {'uniform', 'distance'}, callable or None
The kind of weighting used.
Returns
-------
weights_arr : array of the same shape as ``dist``
If ``weights == 'uniform'``, then returns None.
|
_get_weights
|
python
|
scikit-learn/scikit-learn
|
sklearn/neighbors/_base.py
|
https://github.com/scikit-learn/scikit-learn/blob/master/sklearn/neighbors/_base.py
|
BSD-3-Clause
|
def _is_sorted_by_data(graph):
"""Return whether the graph's non-zero entries are sorted by data.
The non-zero entries are stored in graph.data and graph.indices.
For each row (or sample), the non-zero entries can be either:
- sorted by indices, as after graph.sort_indices();
- sorted by data, as after _check_precomputed(graph);
- not sorted.
Parameters
----------
graph : sparse matrix of shape (n_samples, n_samples)
Neighbors graph as given by `kneighbors_graph` or
`radius_neighbors_graph`. Matrix should be of format CSR format.
Returns
-------
res : bool
Whether input graph is sorted by data.
"""
assert graph.format == "csr"
out_of_order = graph.data[:-1] > graph.data[1:]
line_change = np.unique(graph.indptr[1:-1] - 1)
line_change = line_change[line_change < out_of_order.shape[0]]
return out_of_order.sum() == out_of_order[line_change].sum()
|
Return whether the graph's non-zero entries are sorted by data.
The non-zero entries are stored in graph.data and graph.indices.
For each row (or sample), the non-zero entries can be either:
- sorted by indices, as after graph.sort_indices();
- sorted by data, as after _check_precomputed(graph);
- not sorted.
Parameters
----------
graph : sparse matrix of shape (n_samples, n_samples)
Neighbors graph as given by `kneighbors_graph` or
`radius_neighbors_graph`. Matrix should be of format CSR format.
Returns
-------
res : bool
Whether input graph is sorted by data.
|
_is_sorted_by_data
|
python
|
scikit-learn/scikit-learn
|
sklearn/neighbors/_base.py
|
https://github.com/scikit-learn/scikit-learn/blob/master/sklearn/neighbors/_base.py
|
BSD-3-Clause
|
def _check_precomputed(X):
"""Check precomputed distance matrix.
If the precomputed distance matrix is sparse, it checks that the non-zero
entries are sorted by distances. If not, the matrix is copied and sorted.
Parameters
----------
X : {sparse matrix, array-like}, (n_samples, n_samples)
Distance matrix to other samples. X may be a sparse matrix, in which
case only non-zero elements may be considered neighbors.
Returns
-------
X : {sparse matrix, array-like}, (n_samples, n_samples)
Distance matrix to other samples. X may be a sparse matrix, in which
case only non-zero elements may be considered neighbors.
"""
if not issparse(X):
X = check_array(X, ensure_non_negative=True, input_name="X")
return X
else:
graph = X
if graph.format not in ("csr", "csc", "coo", "lil"):
raise TypeError(
"Sparse matrix in {!r} format is not supported due to "
"its handling of explicit zeros".format(graph.format)
)
copied = graph.format != "csr"
graph = check_array(
graph,
accept_sparse="csr",
ensure_non_negative=True,
input_name="precomputed distance matrix",
)
graph = sort_graph_by_row_values(graph, copy=not copied, warn_when_not_sorted=True)
return graph
|
Check precomputed distance matrix.
If the precomputed distance matrix is sparse, it checks that the non-zero
entries are sorted by distances. If not, the matrix is copied and sorted.
Parameters
----------
X : {sparse matrix, array-like}, (n_samples, n_samples)
Distance matrix to other samples. X may be a sparse matrix, in which
case only non-zero elements may be considered neighbors.
Returns
-------
X : {sparse matrix, array-like}, (n_samples, n_samples)
Distance matrix to other samples. X may be a sparse matrix, in which
case only non-zero elements may be considered neighbors.
|
_check_precomputed
|
python
|
scikit-learn/scikit-learn
|
sklearn/neighbors/_base.py
|
https://github.com/scikit-learn/scikit-learn/blob/master/sklearn/neighbors/_base.py
|
BSD-3-Clause
|
def sort_graph_by_row_values(graph, copy=False, warn_when_not_sorted=True):
"""Sort a sparse graph such that each row is stored with increasing values.
.. versionadded:: 1.2
Parameters
----------
graph : sparse matrix of shape (n_samples, n_samples)
Distance matrix to other samples, where only non-zero elements are
considered neighbors. Matrix is converted to CSR format if not already.
copy : bool, default=False
If True, the graph is copied before sorting. If False, the sorting is
performed inplace. If the graph is not of CSR format, `copy` must be
True to allow the conversion to CSR format, otherwise an error is
raised.
warn_when_not_sorted : bool, default=True
If True, a :class:`~sklearn.exceptions.EfficiencyWarning` is raised
when the input graph is not sorted by row values.
Returns
-------
graph : sparse matrix of shape (n_samples, n_samples)
Distance matrix to other samples, where only non-zero elements are
considered neighbors. Matrix is in CSR format.
Examples
--------
>>> from scipy.sparse import csr_matrix
>>> from sklearn.neighbors import sort_graph_by_row_values
>>> X = csr_matrix(
... [[0., 3., 1.],
... [3., 0., 2.],
... [1., 2., 0.]])
>>> X.data
array([3., 1., 3., 2., 1., 2.])
>>> X_ = sort_graph_by_row_values(X)
>>> X_.data
array([1., 3., 2., 3., 1., 2.])
"""
if graph.format == "csr" and _is_sorted_by_data(graph):
return graph
if warn_when_not_sorted:
warnings.warn(
(
"Precomputed sparse input was not sorted by row values. Use the"
" function sklearn.neighbors.sort_graph_by_row_values to sort the input"
" by row values, with warn_when_not_sorted=False to remove this"
" warning."
),
EfficiencyWarning,
)
if graph.format not in ("csr", "csc", "coo", "lil"):
raise TypeError(
f"Sparse matrix in {graph.format!r} format is not supported due to "
"its handling of explicit zeros"
)
elif graph.format != "csr":
if not copy:
raise ValueError(
"The input graph is not in CSR format. Use copy=True to allow "
"the conversion to CSR format."
)
graph = graph.asformat("csr")
elif copy: # csr format with copy=True
graph = graph.copy()
row_nnz = np.diff(graph.indptr)
if row_nnz.max() == row_nnz.min():
# if each sample has the same number of provided neighbors
n_samples = graph.shape[0]
distances = graph.data.reshape(n_samples, -1)
order = np.argsort(distances, kind="mergesort")
order += np.arange(n_samples)[:, None] * row_nnz[0]
order = order.ravel()
graph.data = graph.data[order]
graph.indices = graph.indices[order]
else:
for start, stop in zip(graph.indptr, graph.indptr[1:]):
order = np.argsort(graph.data[start:stop], kind="mergesort")
graph.data[start:stop] = graph.data[start:stop][order]
graph.indices[start:stop] = graph.indices[start:stop][order]
return graph
|
Sort a sparse graph such that each row is stored with increasing values.
.. versionadded:: 1.2
Parameters
----------
graph : sparse matrix of shape (n_samples, n_samples)
Distance matrix to other samples, where only non-zero elements are
considered neighbors. Matrix is converted to CSR format if not already.
copy : bool, default=False
If True, the graph is copied before sorting. If False, the sorting is
performed inplace. If the graph is not of CSR format, `copy` must be
True to allow the conversion to CSR format, otherwise an error is
raised.
warn_when_not_sorted : bool, default=True
If True, a :class:`~sklearn.exceptions.EfficiencyWarning` is raised
when the input graph is not sorted by row values.
Returns
-------
graph : sparse matrix of shape (n_samples, n_samples)
Distance matrix to other samples, where only non-zero elements are
considered neighbors. Matrix is in CSR format.
Examples
--------
>>> from scipy.sparse import csr_matrix
>>> from sklearn.neighbors import sort_graph_by_row_values
>>> X = csr_matrix(
... [[0., 3., 1.],
... [3., 0., 2.],
... [1., 2., 0.]])
>>> X.data
array([3., 1., 3., 2., 1., 2.])
>>> X_ = sort_graph_by_row_values(X)
>>> X_.data
array([1., 3., 2., 3., 1., 2.])
|
sort_graph_by_row_values
|
python
|
scikit-learn/scikit-learn
|
sklearn/neighbors/_base.py
|
https://github.com/scikit-learn/scikit-learn/blob/master/sklearn/neighbors/_base.py
|
BSD-3-Clause
|
def _kneighbors_from_graph(graph, n_neighbors, return_distance):
"""Decompose a nearest neighbors sparse graph into distances and indices.
Parameters
----------
graph : sparse matrix of shape (n_samples, n_samples)
Neighbors graph as given by `kneighbors_graph` or
`radius_neighbors_graph`. Matrix should be of format CSR format.
n_neighbors : int
Number of neighbors required for each sample.
return_distance : bool
Whether or not to return the distances.
Returns
-------
neigh_dist : ndarray of shape (n_samples, n_neighbors)
Distances to nearest neighbors. Only present if `return_distance=True`.
neigh_ind : ndarray of shape (n_samples, n_neighbors)
Indices of nearest neighbors.
"""
n_samples = graph.shape[0]
assert graph.format == "csr"
# number of neighbors by samples
row_nnz = np.diff(graph.indptr)
row_nnz_min = row_nnz.min()
if n_neighbors is not None and row_nnz_min < n_neighbors:
raise ValueError(
"%d neighbors per samples are required, but some samples have only"
" %d neighbors in precomputed graph matrix. Decrease number of "
"neighbors used or recompute the graph with more neighbors."
% (n_neighbors, row_nnz_min)
)
def extract(a):
# if each sample has the same number of provided neighbors
if row_nnz.max() == row_nnz_min:
return a.reshape(n_samples, -1)[:, :n_neighbors]
else:
idx = np.tile(np.arange(n_neighbors), (n_samples, 1))
idx += graph.indptr[:-1, None]
return a.take(idx, mode="clip").reshape(n_samples, n_neighbors)
if return_distance:
return extract(graph.data), extract(graph.indices)
else:
return extract(graph.indices)
|
Decompose a nearest neighbors sparse graph into distances and indices.
Parameters
----------
graph : sparse matrix of shape (n_samples, n_samples)
Neighbors graph as given by `kneighbors_graph` or
`radius_neighbors_graph`. Matrix should be of format CSR format.
n_neighbors : int
Number of neighbors required for each sample.
return_distance : bool
Whether or not to return the distances.
Returns
-------
neigh_dist : ndarray of shape (n_samples, n_neighbors)
Distances to nearest neighbors. Only present if `return_distance=True`.
neigh_ind : ndarray of shape (n_samples, n_neighbors)
Indices of nearest neighbors.
|
_kneighbors_from_graph
|
python
|
scikit-learn/scikit-learn
|
sklearn/neighbors/_base.py
|
https://github.com/scikit-learn/scikit-learn/blob/master/sklearn/neighbors/_base.py
|
BSD-3-Clause
|
def _radius_neighbors_from_graph(graph, radius, return_distance):
"""Decompose a nearest neighbors sparse graph into distances and indices.
Parameters
----------
graph : sparse matrix of shape (n_samples, n_samples)
Neighbors graph as given by `kneighbors_graph` or
`radius_neighbors_graph`. Matrix should be of format CSR format.
radius : float
Radius of neighborhoods which should be strictly positive.
return_distance : bool
Whether or not to return the distances.
Returns
-------
neigh_dist : ndarray of shape (n_samples,) of arrays
Distances to nearest neighbors. Only present if `return_distance=True`.
neigh_ind : ndarray of shape (n_samples,) of arrays
Indices of nearest neighbors.
"""
assert graph.format == "csr"
no_filter_needed = bool(graph.data.max() <= radius)
if no_filter_needed:
data, indices, indptr = graph.data, graph.indices, graph.indptr
else:
mask = graph.data <= radius
if return_distance:
data = np.compress(mask, graph.data)
indices = np.compress(mask, graph.indices)
indptr = np.concatenate(([0], np.cumsum(mask)))[graph.indptr]
indices = indices.astype(np.intp, copy=no_filter_needed)
if return_distance:
neigh_dist = _to_object_array(np.split(data, indptr[1:-1]))
neigh_ind = _to_object_array(np.split(indices, indptr[1:-1]))
if return_distance:
return neigh_dist, neigh_ind
else:
return neigh_ind
|
Decompose a nearest neighbors sparse graph into distances and indices.
Parameters
----------
graph : sparse matrix of shape (n_samples, n_samples)
Neighbors graph as given by `kneighbors_graph` or
`radius_neighbors_graph`. Matrix should be of format CSR format.
radius : float
Radius of neighborhoods which should be strictly positive.
return_distance : bool
Whether or not to return the distances.
Returns
-------
neigh_dist : ndarray of shape (n_samples,) of arrays
Distances to nearest neighbors. Only present if `return_distance=True`.
neigh_ind : ndarray of shape (n_samples,) of arrays
Indices of nearest neighbors.
|
_radius_neighbors_from_graph
|
python
|
scikit-learn/scikit-learn
|
sklearn/neighbors/_base.py
|
https://github.com/scikit-learn/scikit-learn/blob/master/sklearn/neighbors/_base.py
|
BSD-3-Clause
|
def _kneighbors_reduce_func(self, dist, start, n_neighbors, return_distance):
"""Reduce a chunk of distances to the nearest neighbors.
Callback to :func:`sklearn.metrics.pairwise.pairwise_distances_chunked`
Parameters
----------
dist : ndarray of shape (n_samples_chunk, n_samples)
The distance matrix.
start : int
The index in X which the first row of dist corresponds to.
n_neighbors : int
Number of neighbors required for each sample.
return_distance : bool
Whether or not to return the distances.
Returns
-------
dist : array of shape (n_samples_chunk, n_neighbors)
Returned only if `return_distance=True`.
neigh : array of shape (n_samples_chunk, n_neighbors)
The neighbors indices.
"""
sample_range = np.arange(dist.shape[0])[:, None]
neigh_ind = np.argpartition(dist, n_neighbors - 1, axis=1)
neigh_ind = neigh_ind[:, :n_neighbors]
# argpartition doesn't guarantee sorted order, so we sort again
neigh_ind = neigh_ind[sample_range, np.argsort(dist[sample_range, neigh_ind])]
if return_distance:
if self.effective_metric_ == "euclidean":
result = np.sqrt(dist[sample_range, neigh_ind]), neigh_ind
else:
result = dist[sample_range, neigh_ind], neigh_ind
else:
result = neigh_ind
return result
|
Reduce a chunk of distances to the nearest neighbors.
Callback to :func:`sklearn.metrics.pairwise.pairwise_distances_chunked`
Parameters
----------
dist : ndarray of shape (n_samples_chunk, n_samples)
The distance matrix.
start : int
The index in X which the first row of dist corresponds to.
n_neighbors : int
Number of neighbors required for each sample.
return_distance : bool
Whether or not to return the distances.
Returns
-------
dist : array of shape (n_samples_chunk, n_neighbors)
Returned only if `return_distance=True`.
neigh : array of shape (n_samples_chunk, n_neighbors)
The neighbors indices.
|
_kneighbors_reduce_func
|
python
|
scikit-learn/scikit-learn
|
sklearn/neighbors/_base.py
|
https://github.com/scikit-learn/scikit-learn/blob/master/sklearn/neighbors/_base.py
|
BSD-3-Clause
|
def kneighbors(self, X=None, n_neighbors=None, return_distance=True):
"""Find the K-neighbors of a point.
Returns indices of and distances to the neighbors of each point.
Parameters
----------
X : {array-like, sparse matrix}, shape (n_queries, n_features), \
or (n_queries, n_indexed) if metric == 'precomputed', default=None
The query point or points.
If not provided, neighbors of each indexed point are returned.
In this case, the query point is not considered its own neighbor.
n_neighbors : int, default=None
Number of neighbors required for each sample. The default is the
value passed to the constructor.
return_distance : bool, default=True
Whether or not to return the distances.
Returns
-------
neigh_dist : ndarray of shape (n_queries, n_neighbors)
Array representing the lengths to points, only present if
return_distance=True.
neigh_ind : ndarray of shape (n_queries, n_neighbors)
Indices of the nearest points in the population matrix.
Examples
--------
In the following example, we construct a NearestNeighbors
class from an array representing our data set and ask who's
the closest point to [1,1,1]
>>> samples = [[0., 0., 0.], [0., .5, 0.], [1., 1., .5]]
>>> from sklearn.neighbors import NearestNeighbors
>>> neigh = NearestNeighbors(n_neighbors=1)
>>> neigh.fit(samples)
NearestNeighbors(n_neighbors=1)
>>> print(neigh.kneighbors([[1., 1., 1.]]))
(array([[0.5]]), array([[2]]))
As you can see, it returns [[0.5]], and [[2]], which means that the
element is at distance 0.5 and is the third element of samples
(indexes start at 0). You can also query for multiple points:
>>> X = [[0., 1., 0.], [1., 0., 1.]]
>>> neigh.kneighbors(X, return_distance=False)
array([[1],
[2]]...)
"""
check_is_fitted(self)
if n_neighbors is None:
n_neighbors = self.n_neighbors
elif n_neighbors <= 0:
raise ValueError("Expected n_neighbors > 0. Got %d" % n_neighbors)
elif not isinstance(n_neighbors, numbers.Integral):
raise TypeError(
"n_neighbors does not take %s value, enter integer value"
% type(n_neighbors)
)
ensure_all_finite = "allow-nan" if get_tags(self).input_tags.allow_nan else True
query_is_train = X is None
if query_is_train:
X = self._fit_X
# Include an extra neighbor to account for the sample itself being
# returned, which is removed later
n_neighbors += 1
else:
if self.metric == "precomputed":
X = _check_precomputed(X)
else:
X = validate_data(
self,
X,
ensure_all_finite=ensure_all_finite,
accept_sparse="csr",
reset=False,
order="C",
)
n_samples_fit = self.n_samples_fit_
if n_neighbors > n_samples_fit:
if query_is_train:
n_neighbors -= 1 # ok to modify inplace because an error is raised
inequality_str = "n_neighbors < n_samples_fit"
else:
inequality_str = "n_neighbors <= n_samples_fit"
raise ValueError(
f"Expected {inequality_str}, but "
f"n_neighbors = {n_neighbors}, n_samples_fit = {n_samples_fit}, "
f"n_samples = {X.shape[0]}" # include n_samples for common tests
)
n_jobs = effective_n_jobs(self.n_jobs)
chunked_results = None
use_pairwise_distances_reductions = (
self._fit_method == "brute"
and ArgKmin.is_usable_for(
X if X is not None else self._fit_X, self._fit_X, self.effective_metric_
)
)
if use_pairwise_distances_reductions:
results = ArgKmin.compute(
X=X,
Y=self._fit_X,
k=n_neighbors,
metric=self.effective_metric_,
metric_kwargs=self.effective_metric_params_,
strategy="auto",
return_distance=return_distance,
)
elif (
self._fit_method == "brute" and self.metric == "precomputed" and issparse(X)
):
results = _kneighbors_from_graph(
X, n_neighbors=n_neighbors, return_distance=return_distance
)
elif self._fit_method == "brute":
# Joblib-based backend, which is used when user-defined callable
# are passed for metric.
# This won't be used in the future once PairwiseDistancesReductions
# support:
# - DistanceMetrics which work on supposedly binary data
# - CSR-dense and dense-CSR case if 'euclidean' in metric.
reduce_func = partial(
self._kneighbors_reduce_func,
n_neighbors=n_neighbors,
return_distance=return_distance,
)
# for efficiency, use squared euclidean distances
if self.effective_metric_ == "euclidean":
kwds = {"squared": True}
else:
kwds = self.effective_metric_params_
chunked_results = list(
pairwise_distances_chunked(
X,
self._fit_X,
reduce_func=reduce_func,
metric=self.effective_metric_,
n_jobs=n_jobs,
**kwds,
)
)
elif self._fit_method in ["ball_tree", "kd_tree"]:
if issparse(X):
raise ValueError(
"%s does not work with sparse matrices. Densify the data, "
"or set algorithm='brute'" % self._fit_method
)
chunked_results = Parallel(n_jobs, prefer="threads")(
delayed(self._tree.query)(X[s], n_neighbors, return_distance)
for s in gen_even_slices(X.shape[0], n_jobs)
)
else:
raise ValueError("internal: _fit_method not recognized")
if chunked_results is not None:
if return_distance:
neigh_dist, neigh_ind = zip(*chunked_results)
results = np.vstack(neigh_dist), np.vstack(neigh_ind)
else:
results = np.vstack(chunked_results)
if not query_is_train:
return results
else:
# If the query data is the same as the indexed data, we would like
# to ignore the first nearest neighbor of every sample, i.e
# the sample itself.
if return_distance:
neigh_dist, neigh_ind = results
else:
neigh_ind = results
n_queries, _ = X.shape
sample_range = np.arange(n_queries)[:, None]
sample_mask = neigh_ind != sample_range
# Corner case: When the number of duplicates are more
# than the number of neighbors, the first NN will not
# be the sample, but a duplicate.
# In that case mask the first duplicate.
dup_gr_nbrs = np.all(sample_mask, axis=1)
sample_mask[:, 0][dup_gr_nbrs] = False
neigh_ind = np.reshape(neigh_ind[sample_mask], (n_queries, n_neighbors - 1))
if return_distance:
neigh_dist = np.reshape(
neigh_dist[sample_mask], (n_queries, n_neighbors - 1)
)
return neigh_dist, neigh_ind
return neigh_ind
|
Find the K-neighbors of a point.
Returns indices of and distances to the neighbors of each point.
Parameters
----------
X : {array-like, sparse matrix}, shape (n_queries, n_features), or (n_queries, n_indexed) if metric == 'precomputed', default=None
The query point or points.
If not provided, neighbors of each indexed point are returned.
In this case, the query point is not considered its own neighbor.
n_neighbors : int, default=None
Number of neighbors required for each sample. The default is the
value passed to the constructor.
return_distance : bool, default=True
Whether or not to return the distances.
Returns
-------
neigh_dist : ndarray of shape (n_queries, n_neighbors)
Array representing the lengths to points, only present if
return_distance=True.
neigh_ind : ndarray of shape (n_queries, n_neighbors)
Indices of the nearest points in the population matrix.
Examples
--------
In the following example, we construct a NearestNeighbors
class from an array representing our data set and ask who's
the closest point to [1,1,1]
>>> samples = [[0., 0., 0.], [0., .5, 0.], [1., 1., .5]]
>>> from sklearn.neighbors import NearestNeighbors
>>> neigh = NearestNeighbors(n_neighbors=1)
>>> neigh.fit(samples)
NearestNeighbors(n_neighbors=1)
>>> print(neigh.kneighbors([[1., 1., 1.]]))
(array([[0.5]]), array([[2]]))
As you can see, it returns [[0.5]], and [[2]], which means that the
element is at distance 0.5 and is the third element of samples
(indexes start at 0). You can also query for multiple points:
>>> X = [[0., 1., 0.], [1., 0., 1.]]
>>> neigh.kneighbors(X, return_distance=False)
array([[1],
[2]]...)
|
kneighbors
|
python
|
scikit-learn/scikit-learn
|
sklearn/neighbors/_base.py
|
https://github.com/scikit-learn/scikit-learn/blob/master/sklearn/neighbors/_base.py
|
BSD-3-Clause
|
def kneighbors_graph(self, X=None, n_neighbors=None, mode="connectivity"):
"""Compute the (weighted) graph of k-Neighbors for points in X.
Parameters
----------
X : {array-like, sparse matrix} of shape (n_queries, n_features), \
or (n_queries, n_indexed) if metric == 'precomputed', default=None
The query point or points.
If not provided, neighbors of each indexed point are returned.
In this case, the query point is not considered its own neighbor.
For ``metric='precomputed'`` the shape should be
(n_queries, n_indexed). Otherwise the shape should be
(n_queries, n_features).
n_neighbors : int, default=None
Number of neighbors for each sample. The default is the value
passed to the constructor.
mode : {'connectivity', 'distance'}, default='connectivity'
Type of returned matrix: 'connectivity' will return the
connectivity matrix with ones and zeros, in 'distance' the
edges are distances between points, type of distance
depends on the selected metric parameter in
NearestNeighbors class.
Returns
-------
A : sparse-matrix of shape (n_queries, n_samples_fit)
`n_samples_fit` is the number of samples in the fitted data.
`A[i, j]` gives the weight of the edge connecting `i` to `j`.
The matrix is of CSR format.
See Also
--------
NearestNeighbors.radius_neighbors_graph : Compute the (weighted) graph
of Neighbors for points in X.
Examples
--------
>>> X = [[0], [3], [1]]
>>> from sklearn.neighbors import NearestNeighbors
>>> neigh = NearestNeighbors(n_neighbors=2)
>>> neigh.fit(X)
NearestNeighbors(n_neighbors=2)
>>> A = neigh.kneighbors_graph(X)
>>> A.toarray()
array([[1., 0., 1.],
[0., 1., 1.],
[1., 0., 1.]])
"""
check_is_fitted(self)
if n_neighbors is None:
n_neighbors = self.n_neighbors
# check the input only in self.kneighbors
# construct CSR matrix representation of the k-NN graph
if mode == "connectivity":
A_ind = self.kneighbors(X, n_neighbors, return_distance=False)
n_queries = A_ind.shape[0]
A_data = np.ones(n_queries * n_neighbors)
elif mode == "distance":
A_data, A_ind = self.kneighbors(X, n_neighbors, return_distance=True)
A_data = np.ravel(A_data)
else:
raise ValueError(
'Unsupported mode, must be one of "connectivity", '
f'or "distance" but got "{mode}" instead'
)
n_queries = A_ind.shape[0]
n_samples_fit = self.n_samples_fit_
n_nonzero = n_queries * n_neighbors
A_indptr = np.arange(0, n_nonzero + 1, n_neighbors)
kneighbors_graph = csr_matrix(
(A_data, A_ind.ravel(), A_indptr), shape=(n_queries, n_samples_fit)
)
return kneighbors_graph
|
Compute the (weighted) graph of k-Neighbors for points in X.
Parameters
----------
X : {array-like, sparse matrix} of shape (n_queries, n_features), or (n_queries, n_indexed) if metric == 'precomputed', default=None
The query point or points.
If not provided, neighbors of each indexed point are returned.
In this case, the query point is not considered its own neighbor.
For ``metric='precomputed'`` the shape should be
(n_queries, n_indexed). Otherwise the shape should be
(n_queries, n_features).
n_neighbors : int, default=None
Number of neighbors for each sample. The default is the value
passed to the constructor.
mode : {'connectivity', 'distance'}, default='connectivity'
Type of returned matrix: 'connectivity' will return the
connectivity matrix with ones and zeros, in 'distance' the
edges are distances between points, type of distance
depends on the selected metric parameter in
NearestNeighbors class.
Returns
-------
A : sparse-matrix of shape (n_queries, n_samples_fit)
`n_samples_fit` is the number of samples in the fitted data.
`A[i, j]` gives the weight of the edge connecting `i` to `j`.
The matrix is of CSR format.
See Also
--------
NearestNeighbors.radius_neighbors_graph : Compute the (weighted) graph
of Neighbors for points in X.
Examples
--------
>>> X = [[0], [3], [1]]
>>> from sklearn.neighbors import NearestNeighbors
>>> neigh = NearestNeighbors(n_neighbors=2)
>>> neigh.fit(X)
NearestNeighbors(n_neighbors=2)
>>> A = neigh.kneighbors_graph(X)
>>> A.toarray()
array([[1., 0., 1.],
[0., 1., 1.],
[1., 0., 1.]])
|
kneighbors_graph
|
python
|
scikit-learn/scikit-learn
|
sklearn/neighbors/_base.py
|
https://github.com/scikit-learn/scikit-learn/blob/master/sklearn/neighbors/_base.py
|
BSD-3-Clause
|
def _radius_neighbors_reduce_func(self, dist, start, radius, return_distance):
"""Reduce a chunk of distances to the nearest neighbors.
Callback to :func:`sklearn.metrics.pairwise.pairwise_distances_chunked`
Parameters
----------
dist : ndarray of shape (n_samples_chunk, n_samples)
The distance matrix.
start : int
The index in X which the first row of dist corresponds to.
radius : float
The radius considered when making the nearest neighbors search.
return_distance : bool
Whether or not to return the distances.
Returns
-------
dist : list of ndarray of shape (n_samples_chunk,)
Returned only if `return_distance=True`.
neigh : list of ndarray of shape (n_samples_chunk,)
The neighbors indices.
"""
neigh_ind = [np.where(d <= radius)[0] for d in dist]
if return_distance:
if self.effective_metric_ == "euclidean":
dist = [np.sqrt(d[neigh_ind[i]]) for i, d in enumerate(dist)]
else:
dist = [d[neigh_ind[i]] for i, d in enumerate(dist)]
results = dist, neigh_ind
else:
results = neigh_ind
return results
|
Reduce a chunk of distances to the nearest neighbors.
Callback to :func:`sklearn.metrics.pairwise.pairwise_distances_chunked`
Parameters
----------
dist : ndarray of shape (n_samples_chunk, n_samples)
The distance matrix.
start : int
The index in X which the first row of dist corresponds to.
radius : float
The radius considered when making the nearest neighbors search.
return_distance : bool
Whether or not to return the distances.
Returns
-------
dist : list of ndarray of shape (n_samples_chunk,)
Returned only if `return_distance=True`.
neigh : list of ndarray of shape (n_samples_chunk,)
The neighbors indices.
|
_radius_neighbors_reduce_func
|
python
|
scikit-learn/scikit-learn
|
sklearn/neighbors/_base.py
|
https://github.com/scikit-learn/scikit-learn/blob/master/sklearn/neighbors/_base.py
|
BSD-3-Clause
|
def radius_neighbors_graph(
self, X=None, radius=None, mode="connectivity", sort_results=False
):
"""Compute the (weighted) graph of Neighbors for points in X.
Neighborhoods are restricted the points at a distance lower than
radius.
Parameters
----------
X : {array-like, sparse matrix} of shape (n_samples, n_features), default=None
The query point or points.
If not provided, neighbors of each indexed point are returned.
In this case, the query point is not considered its own neighbor.
radius : float, default=None
Radius of neighborhoods. The default is the value passed to the
constructor.
mode : {'connectivity', 'distance'}, default='connectivity'
Type of returned matrix: 'connectivity' will return the
connectivity matrix with ones and zeros, in 'distance' the
edges are distances between points, type of distance
depends on the selected metric parameter in
NearestNeighbors class.
sort_results : bool, default=False
If True, in each row of the result, the non-zero entries will be
sorted by increasing distances. If False, the non-zero entries may
not be sorted. Only used with mode='distance'.
.. versionadded:: 0.22
Returns
-------
A : sparse-matrix of shape (n_queries, n_samples_fit)
`n_samples_fit` is the number of samples in the fitted data.
`A[i, j]` gives the weight of the edge connecting `i` to `j`.
The matrix is of CSR format.
See Also
--------
kneighbors_graph : Compute the (weighted) graph of k-Neighbors for
points in X.
Examples
--------
>>> X = [[0], [3], [1]]
>>> from sklearn.neighbors import NearestNeighbors
>>> neigh = NearestNeighbors(radius=1.5)
>>> neigh.fit(X)
NearestNeighbors(radius=1.5)
>>> A = neigh.radius_neighbors_graph(X)
>>> A.toarray()
array([[1., 0., 1.],
[0., 1., 0.],
[1., 0., 1.]])
"""
check_is_fitted(self)
# check the input only in self.radius_neighbors
if radius is None:
radius = self.radius
# construct CSR matrix representation of the NN graph
if mode == "connectivity":
A_ind = self.radius_neighbors(X, radius, return_distance=False)
A_data = None
elif mode == "distance":
dist, A_ind = self.radius_neighbors(
X, radius, return_distance=True, sort_results=sort_results
)
A_data = np.concatenate(list(dist))
else:
raise ValueError(
'Unsupported mode, must be one of "connectivity", '
f'or "distance" but got "{mode}" instead'
)
n_queries = A_ind.shape[0]
n_samples_fit = self.n_samples_fit_
n_neighbors = np.array([len(a) for a in A_ind])
A_ind = np.concatenate(list(A_ind))
if A_data is None:
A_data = np.ones(len(A_ind))
A_indptr = np.concatenate((np.zeros(1, dtype=int), np.cumsum(n_neighbors)))
return csr_matrix((A_data, A_ind, A_indptr), shape=(n_queries, n_samples_fit))
|
Compute the (weighted) graph of Neighbors for points in X.
Neighborhoods are restricted the points at a distance lower than
radius.
Parameters
----------
X : {array-like, sparse matrix} of shape (n_samples, n_features), default=None
The query point or points.
If not provided, neighbors of each indexed point are returned.
In this case, the query point is not considered its own neighbor.
radius : float, default=None
Radius of neighborhoods. The default is the value passed to the
constructor.
mode : {'connectivity', 'distance'}, default='connectivity'
Type of returned matrix: 'connectivity' will return the
connectivity matrix with ones and zeros, in 'distance' the
edges are distances between points, type of distance
depends on the selected metric parameter in
NearestNeighbors class.
sort_results : bool, default=False
If True, in each row of the result, the non-zero entries will be
sorted by increasing distances. If False, the non-zero entries may
not be sorted. Only used with mode='distance'.
.. versionadded:: 0.22
Returns
-------
A : sparse-matrix of shape (n_queries, n_samples_fit)
`n_samples_fit` is the number of samples in the fitted data.
`A[i, j]` gives the weight of the edge connecting `i` to `j`.
The matrix is of CSR format.
See Also
--------
kneighbors_graph : Compute the (weighted) graph of k-Neighbors for
points in X.
Examples
--------
>>> X = [[0], [3], [1]]
>>> from sklearn.neighbors import NearestNeighbors
>>> neigh = NearestNeighbors(radius=1.5)
>>> neigh.fit(X)
NearestNeighbors(radius=1.5)
>>> A = neigh.radius_neighbors_graph(X)
>>> A.toarray()
array([[1., 0., 1.],
[0., 1., 0.],
[1., 0., 1.]])
|
radius_neighbors_graph
|
python
|
scikit-learn/scikit-learn
|
sklearn/neighbors/_base.py
|
https://github.com/scikit-learn/scikit-learn/blob/master/sklearn/neighbors/_base.py
|
BSD-3-Clause
|
def predict(self, X):
"""Predict the class labels for the provided data.
Parameters
----------
X : {array-like, sparse matrix} of shape (n_queries, n_features), \
or (n_queries, n_indexed) if metric == 'precomputed', or None
Test samples. If `None`, predictions for all indexed points are
returned; in this case, points are not considered their own
neighbors.
Returns
-------
y : ndarray of shape (n_queries,) or (n_queries, n_outputs)
Class labels for each data sample.
"""
check_is_fitted(self, "_fit_method")
if self.weights == "uniform":
if self._fit_method == "brute" and ArgKminClassMode.is_usable_for(
X, self._fit_X, self.metric
):
probabilities = self.predict_proba(X)
if self.outputs_2d_:
return np.stack(
[
self.classes_[idx][np.argmax(probas, axis=1)]
for idx, probas in enumerate(probabilities)
],
axis=1,
)
return self.classes_[np.argmax(probabilities, axis=1)]
# In that case, we do not need the distances to perform
# the weighting so we do not compute them.
neigh_ind = self.kneighbors(X, return_distance=False)
neigh_dist = None
else:
neigh_dist, neigh_ind = self.kneighbors(X)
classes_ = self.classes_
_y = self._y
if not self.outputs_2d_:
_y = self._y.reshape((-1, 1))
classes_ = [self.classes_]
n_outputs = len(classes_)
n_queries = _num_samples(self._fit_X if X is None else X)
weights = _get_weights(neigh_dist, self.weights)
if weights is not None and _all_with_any_reduction_axis_1(weights, value=0):
raise ValueError(
"All neighbors of some sample is getting zero weights. "
"Please modify 'weights' to avoid this case if you are "
"using a user-defined function."
)
y_pred = np.empty((n_queries, n_outputs), dtype=classes_[0].dtype)
for k, classes_k in enumerate(classes_):
if weights is None:
mode, _ = _mode(_y[neigh_ind, k], axis=1)
else:
mode, _ = weighted_mode(_y[neigh_ind, k], weights, axis=1)
mode = np.asarray(mode.ravel(), dtype=np.intp)
y_pred[:, k] = classes_k.take(mode)
if not self.outputs_2d_:
y_pred = y_pred.ravel()
return y_pred
|
Predict the class labels for the provided data.
Parameters
----------
X : {array-like, sparse matrix} of shape (n_queries, n_features), or (n_queries, n_indexed) if metric == 'precomputed', or None
Test samples. If `None`, predictions for all indexed points are
returned; in this case, points are not considered their own
neighbors.
Returns
-------
y : ndarray of shape (n_queries,) or (n_queries, n_outputs)
Class labels for each data sample.
|
predict
|
python
|
scikit-learn/scikit-learn
|
sklearn/neighbors/_classification.py
|
https://github.com/scikit-learn/scikit-learn/blob/master/sklearn/neighbors/_classification.py
|
BSD-3-Clause
|
def predict_proba(self, X):
"""Return probability estimates for the test data X.
Parameters
----------
X : {array-like, sparse matrix} of shape (n_queries, n_features), \
or (n_queries, n_indexed) if metric == 'precomputed', or None
Test samples. If `None`, predictions for all indexed points are
returned; in this case, points are not considered their own
neighbors.
Returns
-------
p : ndarray of shape (n_queries, n_classes), or a list of n_outputs \
of such arrays if n_outputs > 1.
The class probabilities of the input samples. Classes are ordered
by lexicographic order.
"""
check_is_fitted(self, "_fit_method")
if self.weights == "uniform":
# TODO: systematize this mapping of metric for
# PairwiseDistancesReductions.
metric, metric_kwargs = _adjusted_metric(
metric=self.metric, metric_kwargs=self.metric_params, p=self.p
)
if (
self._fit_method == "brute"
and ArgKminClassMode.is_usable_for(X, self._fit_X, metric)
# TODO: Implement efficient multi-output solution
and not self.outputs_2d_
):
if self.metric == "precomputed":
X = _check_precomputed(X)
else:
X = validate_data(
self, X, accept_sparse="csr", reset=False, order="C"
)
probabilities = ArgKminClassMode.compute(
X,
self._fit_X,
k=self.n_neighbors,
weights=self.weights,
Y_labels=self._y,
unique_Y_labels=self.classes_,
metric=metric,
metric_kwargs=metric_kwargs,
# `strategy="parallel_on_X"` has in practice be shown
# to be more efficient than `strategy="parallel_on_Y``
# on many combination of datasets.
# Hence, we choose to enforce it here.
# For more information, see:
# https://github.com/scikit-learn/scikit-learn/pull/24076#issuecomment-1445258342
# TODO: adapt the heuristic for `strategy="auto"` for
# `ArgKminClassMode` and use `strategy="auto"`.
strategy="parallel_on_X",
)
return probabilities
# In that case, we do not need the distances to perform
# the weighting so we do not compute them.
neigh_ind = self.kneighbors(X, return_distance=False)
neigh_dist = None
else:
neigh_dist, neigh_ind = self.kneighbors(X)
classes_ = self.classes_
_y = self._y
if not self.outputs_2d_:
_y = self._y.reshape((-1, 1))
classes_ = [self.classes_]
n_queries = _num_samples(self._fit_X if X is None else X)
weights = _get_weights(neigh_dist, self.weights)
if weights is None:
weights = np.ones_like(neigh_ind)
elif _all_with_any_reduction_axis_1(weights, value=0):
raise ValueError(
"All neighbors of some sample is getting zero weights. "
"Please modify 'weights' to avoid this case if you are "
"using a user-defined function."
)
all_rows = np.arange(n_queries)
probabilities = []
for k, classes_k in enumerate(classes_):
pred_labels = _y[:, k][neigh_ind]
proba_k = np.zeros((n_queries, classes_k.size))
# a simple ':' index doesn't work right
for i, idx in enumerate(pred_labels.T): # loop is O(n_neighbors)
proba_k[all_rows, idx] += weights[:, i]
# normalize 'votes' into real [0,1] probabilities
normalizer = proba_k.sum(axis=1)[:, np.newaxis]
proba_k /= normalizer
probabilities.append(proba_k)
if not self.outputs_2d_:
probabilities = probabilities[0]
return probabilities
|
Return probability estimates for the test data X.
Parameters
----------
X : {array-like, sparse matrix} of shape (n_queries, n_features), or (n_queries, n_indexed) if metric == 'precomputed', or None
Test samples. If `None`, predictions for all indexed points are
returned; in this case, points are not considered their own
neighbors.
Returns
-------
p : ndarray of shape (n_queries, n_classes), or a list of n_outputs of such arrays if n_outputs > 1.
The class probabilities of the input samples. Classes are ordered
by lexicographic order.
|
predict_proba
|
python
|
scikit-learn/scikit-learn
|
sklearn/neighbors/_classification.py
|
https://github.com/scikit-learn/scikit-learn/blob/master/sklearn/neighbors/_classification.py
|
BSD-3-Clause
|
def fit(self, X, y):
"""Fit the radius neighbors classifier from the training dataset.
Parameters
----------
X : {array-like, sparse matrix} of shape (n_samples, n_features) or \
(n_samples, n_samples) if metric='precomputed'
Training data.
y : {array-like, sparse matrix} of shape (n_samples,) or \
(n_samples, n_outputs)
Target values.
Returns
-------
self : RadiusNeighborsClassifier
The fitted radius neighbors classifier.
"""
self._fit(X, y)
classes_ = self.classes_
_y = self._y
if not self.outputs_2d_:
_y = self._y.reshape((-1, 1))
classes_ = [self.classes_]
if self.outlier_label is None:
outlier_label_ = None
elif self.outlier_label == "most_frequent":
outlier_label_ = []
# iterate over multi-output, get the most frequent label for each
# output.
for k, classes_k in enumerate(classes_):
label_count = np.bincount(_y[:, k])
outlier_label_.append(classes_k[label_count.argmax()])
else:
if _is_arraylike(self.outlier_label) and not isinstance(
self.outlier_label, str
):
if len(self.outlier_label) != len(classes_):
raise ValueError(
"The length of outlier_label: {} is "
"inconsistent with the output "
"length: {}".format(self.outlier_label, len(classes_))
)
outlier_label_ = self.outlier_label
else:
outlier_label_ = [self.outlier_label] * len(classes_)
for classes, label in zip(classes_, outlier_label_):
if _is_arraylike(label) and not isinstance(label, str):
# ensure the outlier label for each output is a scalar.
raise TypeError(
"The outlier_label of classes {} is "
"supposed to be a scalar, got "
"{}.".format(classes, label)
)
if np.append(classes, label).dtype != classes.dtype:
# ensure the dtype of outlier label is consistent with y.
raise TypeError(
"The dtype of outlier_label {} is "
"inconsistent with classes {} in "
"y.".format(label, classes)
)
self.outlier_label_ = outlier_label_
return self
|
Fit the radius neighbors classifier from the training dataset.
Parameters
----------
X : {array-like, sparse matrix} of shape (n_samples, n_features) or (n_samples, n_samples) if metric='precomputed'
Training data.
y : {array-like, sparse matrix} of shape (n_samples,) or (n_samples, n_outputs)
Target values.
Returns
-------
self : RadiusNeighborsClassifier
The fitted radius neighbors classifier.
|
fit
|
python
|
scikit-learn/scikit-learn
|
sklearn/neighbors/_classification.py
|
https://github.com/scikit-learn/scikit-learn/blob/master/sklearn/neighbors/_classification.py
|
BSD-3-Clause
|
def predict(self, X):
"""Predict the class labels for the provided data.
Parameters
----------
X : {array-like, sparse matrix} of shape (n_queries, n_features), \
or (n_queries, n_indexed) if metric == 'precomputed', or None
Test samples. If `None`, predictions for all indexed points are
returned; in this case, points are not considered their own
neighbors.
Returns
-------
y : ndarray of shape (n_queries,) or (n_queries, n_outputs)
Class labels for each data sample.
"""
probs = self.predict_proba(X)
classes_ = self.classes_
if not self.outputs_2d_:
probs = [probs]
classes_ = [self.classes_]
n_outputs = len(classes_)
n_queries = probs[0].shape[0]
y_pred = np.empty((n_queries, n_outputs), dtype=classes_[0].dtype)
for k, prob in enumerate(probs):
# iterate over multi-output, assign labels based on probabilities
# of each output.
max_prob_index = prob.argmax(axis=1)
y_pred[:, k] = classes_[k].take(max_prob_index)
outlier_zero_probs = (prob == 0).all(axis=1)
if outlier_zero_probs.any():
zero_prob_index = np.flatnonzero(outlier_zero_probs)
y_pred[zero_prob_index, k] = self.outlier_label_[k]
if not self.outputs_2d_:
y_pred = y_pred.ravel()
return y_pred
|
Predict the class labels for the provided data.
Parameters
----------
X : {array-like, sparse matrix} of shape (n_queries, n_features), or (n_queries, n_indexed) if metric == 'precomputed', or None
Test samples. If `None`, predictions for all indexed points are
returned; in this case, points are not considered their own
neighbors.
Returns
-------
y : ndarray of shape (n_queries,) or (n_queries, n_outputs)
Class labels for each data sample.
|
predict
|
python
|
scikit-learn/scikit-learn
|
sklearn/neighbors/_classification.py
|
https://github.com/scikit-learn/scikit-learn/blob/master/sklearn/neighbors/_classification.py
|
BSD-3-Clause
|
def predict_proba(self, X):
"""Return probability estimates for the test data X.
Parameters
----------
X : {array-like, sparse matrix} of shape (n_queries, n_features), \
or (n_queries, n_indexed) if metric == 'precomputed', or None
Test samples. If `None`, predictions for all indexed points are
returned; in this case, points are not considered their own
neighbors.
Returns
-------
p : ndarray of shape (n_queries, n_classes), or a list of \
n_outputs of such arrays if n_outputs > 1.
The class probabilities of the input samples. Classes are ordered
by lexicographic order.
"""
check_is_fitted(self, "_fit_method")
n_queries = _num_samples(self._fit_X if X is None else X)
metric, metric_kwargs = _adjusted_metric(
metric=self.metric, metric_kwargs=self.metric_params, p=self.p
)
if (
self.weights == "uniform"
and self._fit_method == "brute"
and not self.outputs_2d_
and RadiusNeighborsClassMode.is_usable_for(X, self._fit_X, metric)
):
probabilities = RadiusNeighborsClassMode.compute(
X=X,
Y=self._fit_X,
radius=self.radius,
weights=self.weights,
Y_labels=self._y,
unique_Y_labels=self.classes_,
outlier_label=self.outlier_label,
metric=metric,
metric_kwargs=metric_kwargs,
strategy="parallel_on_X",
# `strategy="parallel_on_X"` has in practice be shown
# to be more efficient than `strategy="parallel_on_Y``
# on many combination of datasets.
# Hence, we choose to enforce it here.
# For more information, see:
# https://github.com/scikit-learn/scikit-learn/pull/26828/files#r1282398471
)
return probabilities
neigh_dist, neigh_ind = self.radius_neighbors(X)
outlier_mask = np.zeros(n_queries, dtype=bool)
outlier_mask[:] = [len(nind) == 0 for nind in neigh_ind]
outliers = np.flatnonzero(outlier_mask)
inliers = np.flatnonzero(~outlier_mask)
classes_ = self.classes_
_y = self._y
if not self.outputs_2d_:
_y = self._y.reshape((-1, 1))
classes_ = [self.classes_]
if self.outlier_label_ is None and outliers.size > 0:
raise ValueError(
"No neighbors found for test samples %r, "
"you can try using larger radius, "
"giving a label for outliers, "
"or considering removing them from your dataset." % outliers
)
weights = _get_weights(neigh_dist, self.weights)
if weights is not None:
weights = weights[inliers]
probabilities = []
# iterate over multi-output, measure probabilities of the k-th output.
for k, classes_k in enumerate(classes_):
pred_labels = np.zeros(len(neigh_ind), dtype=object)
pred_labels[:] = [_y[ind, k] for ind in neigh_ind]
proba_k = np.zeros((n_queries, classes_k.size))
proba_inl = np.zeros((len(inliers), classes_k.size))
# samples have different size of neighbors within the same radius
if weights is None:
for i, idx in enumerate(pred_labels[inliers]):
proba_inl[i, :] = np.bincount(idx, minlength=classes_k.size)
else:
for i, idx in enumerate(pred_labels[inliers]):
proba_inl[i, :] = np.bincount(
idx, weights[i], minlength=classes_k.size
)
proba_k[inliers, :] = proba_inl
if outliers.size > 0:
_outlier_label = self.outlier_label_[k]
label_index = np.flatnonzero(classes_k == _outlier_label)
if label_index.size == 1:
proba_k[outliers, label_index[0]] = 1.0
else:
warnings.warn(
"Outlier label {} is not in training "
"classes. All class probabilities of "
"outliers will be assigned with 0."
"".format(self.outlier_label_[k])
)
# normalize 'votes' into real [0,1] probabilities
normalizer = proba_k.sum(axis=1)[:, np.newaxis]
normalizer[normalizer == 0.0] = 1.0
proba_k /= normalizer
probabilities.append(proba_k)
if not self.outputs_2d_:
probabilities = probabilities[0]
return probabilities
|
Return probability estimates for the test data X.
Parameters
----------
X : {array-like, sparse matrix} of shape (n_queries, n_features), or (n_queries, n_indexed) if metric == 'precomputed', or None
Test samples. If `None`, predictions for all indexed points are
returned; in this case, points are not considered their own
neighbors.
Returns
-------
p : ndarray of shape (n_queries, n_classes), or a list of n_outputs of such arrays if n_outputs > 1.
The class probabilities of the input samples. Classes are ordered
by lexicographic order.
|
predict_proba
|
python
|
scikit-learn/scikit-learn
|
sklearn/neighbors/_classification.py
|
https://github.com/scikit-learn/scikit-learn/blob/master/sklearn/neighbors/_classification.py
|
BSD-3-Clause
|
def _check_params(X, metric, p, metric_params):
"""Check the validity of the input parameters"""
params = zip(["metric", "p", "metric_params"], [metric, p, metric_params])
est_params = X.get_params()
for param_name, func_param in params:
if func_param != est_params[param_name]:
raise ValueError(
"Got %s for %s, while the estimator has %s for the same parameter."
% (func_param, param_name, est_params[param_name])
)
|
Check the validity of the input parameters
|
_check_params
|
python
|
scikit-learn/scikit-learn
|
sklearn/neighbors/_graph.py
|
https://github.com/scikit-learn/scikit-learn/blob/master/sklearn/neighbors/_graph.py
|
BSD-3-Clause
|
def _query_include_self(X, include_self, mode):
"""Return the query based on include_self param"""
if include_self == "auto":
include_self = mode == "connectivity"
# it does not include each sample as its own neighbors
if not include_self:
X = None
return X
|
Return the query based on include_self param
|
_query_include_self
|
python
|
scikit-learn/scikit-learn
|
sklearn/neighbors/_graph.py
|
https://github.com/scikit-learn/scikit-learn/blob/master/sklearn/neighbors/_graph.py
|
BSD-3-Clause
|
def kneighbors_graph(
X,
n_neighbors,
*,
mode="connectivity",
metric="minkowski",
p=2,
metric_params=None,
include_self=False,
n_jobs=None,
):
"""Compute the (weighted) graph of k-Neighbors for points in X.
Read more in the :ref:`User Guide <unsupervised_neighbors>`.
Parameters
----------
X : {array-like, sparse matrix} of shape (n_samples, n_features)
Sample data.
n_neighbors : int
Number of neighbors for each sample.
mode : {'connectivity', 'distance'}, default='connectivity'
Type of returned matrix: 'connectivity' will return the connectivity
matrix with ones and zeros, and 'distance' will return the distances
between neighbors according to the given metric.
metric : str, default='minkowski'
Metric to use for distance computation. Default is "minkowski", which
results in the standard Euclidean distance when p = 2. See the
documentation of `scipy.spatial.distance
<https://docs.scipy.org/doc/scipy/reference/spatial.distance.html>`_ and
the metrics listed in
:class:`~sklearn.metrics.pairwise.distance_metrics` for valid metric
values.
p : float, default=2
Power parameter for the Minkowski metric. When p = 1, this is equivalent
to using manhattan_distance (l1), and euclidean_distance (l2) for p = 2.
For arbitrary p, minkowski_distance (l_p) is used. This parameter is expected
to be positive.
metric_params : dict, default=None
Additional keyword arguments for the metric function.
include_self : bool or 'auto', default=False
Whether or not to mark each sample as the first nearest neighbor to
itself. If 'auto', then True is used for mode='connectivity' and False
for mode='distance'.
n_jobs : int, default=None
The number of parallel jobs to run for neighbors search.
``None`` means 1 unless in a :obj:`joblib.parallel_backend` context.
``-1`` means using all processors. See :term:`Glossary <n_jobs>`
for more details.
Returns
-------
A : sparse matrix of shape (n_samples, n_samples)
Graph where A[i, j] is assigned the weight of edge that
connects i to j. The matrix is of CSR format.
See Also
--------
radius_neighbors_graph: Compute the (weighted) graph of Neighbors for points in X.
Examples
--------
>>> X = [[0], [3], [1]]
>>> from sklearn.neighbors import kneighbors_graph
>>> A = kneighbors_graph(X, 2, mode='connectivity', include_self=True)
>>> A.toarray()
array([[1., 0., 1.],
[0., 1., 1.],
[1., 0., 1.]])
"""
if not isinstance(X, KNeighborsMixin):
X = NearestNeighbors(
n_neighbors=n_neighbors,
metric=metric,
p=p,
metric_params=metric_params,
n_jobs=n_jobs,
).fit(X)
else:
_check_params(X, metric, p, metric_params)
query = _query_include_self(X._fit_X, include_self, mode)
return X.kneighbors_graph(X=query, n_neighbors=n_neighbors, mode=mode)
|
Compute the (weighted) graph of k-Neighbors for points in X.
Read more in the :ref:`User Guide <unsupervised_neighbors>`.
Parameters
----------
X : {array-like, sparse matrix} of shape (n_samples, n_features)
Sample data.
n_neighbors : int
Number of neighbors for each sample.
mode : {'connectivity', 'distance'}, default='connectivity'
Type of returned matrix: 'connectivity' will return the connectivity
matrix with ones and zeros, and 'distance' will return the distances
between neighbors according to the given metric.
metric : str, default='minkowski'
Metric to use for distance computation. Default is "minkowski", which
results in the standard Euclidean distance when p = 2. See the
documentation of `scipy.spatial.distance
<https://docs.scipy.org/doc/scipy/reference/spatial.distance.html>`_ and
the metrics listed in
:class:`~sklearn.metrics.pairwise.distance_metrics` for valid metric
values.
p : float, default=2
Power parameter for the Minkowski metric. When p = 1, this is equivalent
to using manhattan_distance (l1), and euclidean_distance (l2) for p = 2.
For arbitrary p, minkowski_distance (l_p) is used. This parameter is expected
to be positive.
metric_params : dict, default=None
Additional keyword arguments for the metric function.
include_self : bool or 'auto', default=False
Whether or not to mark each sample as the first nearest neighbor to
itself. If 'auto', then True is used for mode='connectivity' and False
for mode='distance'.
n_jobs : int, default=None
The number of parallel jobs to run for neighbors search.
``None`` means 1 unless in a :obj:`joblib.parallel_backend` context.
``-1`` means using all processors. See :term:`Glossary <n_jobs>`
for more details.
Returns
-------
A : sparse matrix of shape (n_samples, n_samples)
Graph where A[i, j] is assigned the weight of edge that
connects i to j. The matrix is of CSR format.
See Also
--------
radius_neighbors_graph: Compute the (weighted) graph of Neighbors for points in X.
Examples
--------
>>> X = [[0], [3], [1]]
>>> from sklearn.neighbors import kneighbors_graph
>>> A = kneighbors_graph(X, 2, mode='connectivity', include_self=True)
>>> A.toarray()
array([[1., 0., 1.],
[0., 1., 1.],
[1., 0., 1.]])
|
kneighbors_graph
|
python
|
scikit-learn/scikit-learn
|
sklearn/neighbors/_graph.py
|
https://github.com/scikit-learn/scikit-learn/blob/master/sklearn/neighbors/_graph.py
|
BSD-3-Clause
|
def radius_neighbors_graph(
X,
radius,
*,
mode="connectivity",
metric="minkowski",
p=2,
metric_params=None,
include_self=False,
n_jobs=None,
):
"""Compute the (weighted) graph of Neighbors for points in X.
Neighborhoods are restricted the points at a distance lower than
radius.
Read more in the :ref:`User Guide <unsupervised_neighbors>`.
Parameters
----------
X : {array-like, sparse matrix} of shape (n_samples, n_features)
Sample data.
radius : float
Radius of neighborhoods.
mode : {'connectivity', 'distance'}, default='connectivity'
Type of returned matrix: 'connectivity' will return the connectivity
matrix with ones and zeros, and 'distance' will return the distances
between neighbors according to the given metric.
metric : str, default='minkowski'
Metric to use for distance computation. Default is "minkowski", which
results in the standard Euclidean distance when p = 2. See the
documentation of `scipy.spatial.distance
<https://docs.scipy.org/doc/scipy/reference/spatial.distance.html>`_ and
the metrics listed in
:class:`~sklearn.metrics.pairwise.distance_metrics` for valid metric
values.
p : float, default=2
Power parameter for the Minkowski metric. When p = 1, this is
equivalent to using manhattan_distance (l1), and euclidean_distance
(l2) for p = 2. For arbitrary p, minkowski_distance (l_p) is used.
metric_params : dict, default=None
Additional keyword arguments for the metric function.
include_self : bool or 'auto', default=False
Whether or not to mark each sample as the first nearest neighbor to
itself. If 'auto', then True is used for mode='connectivity' and False
for mode='distance'.
n_jobs : int, default=None
The number of parallel jobs to run for neighbors search.
``None`` means 1 unless in a :obj:`joblib.parallel_backend` context.
``-1`` means using all processors. See :term:`Glossary <n_jobs>`
for more details.
Returns
-------
A : sparse matrix of shape (n_samples, n_samples)
Graph where A[i, j] is assigned the weight of edge that connects
i to j. The matrix is of CSR format.
See Also
--------
kneighbors_graph: Compute the weighted graph of k-neighbors for points in X.
Examples
--------
>>> X = [[0], [3], [1]]
>>> from sklearn.neighbors import radius_neighbors_graph
>>> A = radius_neighbors_graph(X, 1.5, mode='connectivity',
... include_self=True)
>>> A.toarray()
array([[1., 0., 1.],
[0., 1., 0.],
[1., 0., 1.]])
"""
if not isinstance(X, RadiusNeighborsMixin):
X = NearestNeighbors(
radius=radius,
metric=metric,
p=p,
metric_params=metric_params,
n_jobs=n_jobs,
).fit(X)
else:
_check_params(X, metric, p, metric_params)
query = _query_include_self(X._fit_X, include_self, mode)
return X.radius_neighbors_graph(query, radius, mode)
|
Compute the (weighted) graph of Neighbors for points in X.
Neighborhoods are restricted the points at a distance lower than
radius.
Read more in the :ref:`User Guide <unsupervised_neighbors>`.
Parameters
----------
X : {array-like, sparse matrix} of shape (n_samples, n_features)
Sample data.
radius : float
Radius of neighborhoods.
mode : {'connectivity', 'distance'}, default='connectivity'
Type of returned matrix: 'connectivity' will return the connectivity
matrix with ones and zeros, and 'distance' will return the distances
between neighbors according to the given metric.
metric : str, default='minkowski'
Metric to use for distance computation. Default is "minkowski", which
results in the standard Euclidean distance when p = 2. See the
documentation of `scipy.spatial.distance
<https://docs.scipy.org/doc/scipy/reference/spatial.distance.html>`_ and
the metrics listed in
:class:`~sklearn.metrics.pairwise.distance_metrics` for valid metric
values.
p : float, default=2
Power parameter for the Minkowski metric. When p = 1, this is
equivalent to using manhattan_distance (l1), and euclidean_distance
(l2) for p = 2. For arbitrary p, minkowski_distance (l_p) is used.
metric_params : dict, default=None
Additional keyword arguments for the metric function.
include_self : bool or 'auto', default=False
Whether or not to mark each sample as the first nearest neighbor to
itself. If 'auto', then True is used for mode='connectivity' and False
for mode='distance'.
n_jobs : int, default=None
The number of parallel jobs to run for neighbors search.
``None`` means 1 unless in a :obj:`joblib.parallel_backend` context.
``-1`` means using all processors. See :term:`Glossary <n_jobs>`
for more details.
Returns
-------
A : sparse matrix of shape (n_samples, n_samples)
Graph where A[i, j] is assigned the weight of edge that connects
i to j. The matrix is of CSR format.
See Also
--------
kneighbors_graph: Compute the weighted graph of k-neighbors for points in X.
Examples
--------
>>> X = [[0], [3], [1]]
>>> from sklearn.neighbors import radius_neighbors_graph
>>> A = radius_neighbors_graph(X, 1.5, mode='connectivity',
... include_self=True)
>>> A.toarray()
array([[1., 0., 1.],
[0., 1., 0.],
[1., 0., 1.]])
|
radius_neighbors_graph
|
python
|
scikit-learn/scikit-learn
|
sklearn/neighbors/_graph.py
|
https://github.com/scikit-learn/scikit-learn/blob/master/sklearn/neighbors/_graph.py
|
BSD-3-Clause
|
def fit(self, X, y=None):
"""Fit the k-nearest neighbors transformer from the training dataset.
Parameters
----------
X : {array-like, sparse matrix} of shape (n_samples, n_features) or \
(n_samples, n_samples) if metric='precomputed'
Training data.
y : Ignored
Not used, present for API consistency by convention.
Returns
-------
self : KNeighborsTransformer
The fitted k-nearest neighbors transformer.
"""
self._fit(X)
self._n_features_out = self.n_samples_fit_
return self
|
Fit the k-nearest neighbors transformer from the training dataset.
Parameters
----------
X : {array-like, sparse matrix} of shape (n_samples, n_features) or (n_samples, n_samples) if metric='precomputed'
Training data.
y : Ignored
Not used, present for API consistency by convention.
Returns
-------
self : KNeighborsTransformer
The fitted k-nearest neighbors transformer.
|
fit
|
python
|
scikit-learn/scikit-learn
|
sklearn/neighbors/_graph.py
|
https://github.com/scikit-learn/scikit-learn/blob/master/sklearn/neighbors/_graph.py
|
BSD-3-Clause
|
def transform(self, X):
"""Compute the (weighted) graph of Neighbors for points in X.
Parameters
----------
X : array-like of shape (n_samples_transform, n_features)
Sample data.
Returns
-------
Xt : sparse matrix of shape (n_samples_transform, n_samples_fit)
Xt[i, j] is assigned the weight of edge that connects i to j.
Only the neighbors have an explicit value.
The diagonal is always explicit.
The matrix is of CSR format.
"""
check_is_fitted(self)
add_one = self.mode == "distance"
return self.kneighbors_graph(
X, mode=self.mode, n_neighbors=self.n_neighbors + add_one
)
|
Compute the (weighted) graph of Neighbors for points in X.
Parameters
----------
X : array-like of shape (n_samples_transform, n_features)
Sample data.
Returns
-------
Xt : sparse matrix of shape (n_samples_transform, n_samples_fit)
Xt[i, j] is assigned the weight of edge that connects i to j.
Only the neighbors have an explicit value.
The diagonal is always explicit.
The matrix is of CSR format.
|
transform
|
python
|
scikit-learn/scikit-learn
|
sklearn/neighbors/_graph.py
|
https://github.com/scikit-learn/scikit-learn/blob/master/sklearn/neighbors/_graph.py
|
BSD-3-Clause
|
def fit(self, X, y=None):
"""Fit the radius neighbors transformer from the training dataset.
Parameters
----------
X : {array-like, sparse matrix} of shape (n_samples, n_features) or \
(n_samples, n_samples) if metric='precomputed'
Training data.
y : Ignored
Not used, present for API consistency by convention.
Returns
-------
self : RadiusNeighborsTransformer
The fitted radius neighbors transformer.
"""
self._fit(X)
self._n_features_out = self.n_samples_fit_
return self
|
Fit the radius neighbors transformer from the training dataset.
Parameters
----------
X : {array-like, sparse matrix} of shape (n_samples, n_features) or (n_samples, n_samples) if metric='precomputed'
Training data.
y : Ignored
Not used, present for API consistency by convention.
Returns
-------
self : RadiusNeighborsTransformer
The fitted radius neighbors transformer.
|
fit
|
python
|
scikit-learn/scikit-learn
|
sklearn/neighbors/_graph.py
|
https://github.com/scikit-learn/scikit-learn/blob/master/sklearn/neighbors/_graph.py
|
BSD-3-Clause
|
def transform(self, X):
"""Compute the (weighted) graph of Neighbors for points in X.
Parameters
----------
X : array-like of shape (n_samples_transform, n_features)
Sample data.
Returns
-------
Xt : sparse matrix of shape (n_samples_transform, n_samples_fit)
Xt[i, j] is assigned the weight of edge that connects i to j.
Only the neighbors have an explicit value.
The diagonal is always explicit.
The matrix is of CSR format.
"""
check_is_fitted(self)
return self.radius_neighbors_graph(X, mode=self.mode, sort_results=True)
|
Compute the (weighted) graph of Neighbors for points in X.
Parameters
----------
X : array-like of shape (n_samples_transform, n_features)
Sample data.
Returns
-------
Xt : sparse matrix of shape (n_samples_transform, n_samples_fit)
Xt[i, j] is assigned the weight of edge that connects i to j.
Only the neighbors have an explicit value.
The diagonal is always explicit.
The matrix is of CSR format.
|
transform
|
python
|
scikit-learn/scikit-learn
|
sklearn/neighbors/_graph.py
|
https://github.com/scikit-learn/scikit-learn/blob/master/sklearn/neighbors/_graph.py
|
BSD-3-Clause
|
def fit(self, X, y=None, sample_weight=None):
"""Fit the Kernel Density model on the data.
Parameters
----------
X : array-like of shape (n_samples, n_features)
List of n_features-dimensional data points. Each row
corresponds to a single data point.
y : None
Ignored. This parameter exists only for compatibility with
:class:`~sklearn.pipeline.Pipeline`.
sample_weight : array-like of shape (n_samples,), default=None
List of sample weights attached to the data X.
.. versionadded:: 0.20
Returns
-------
self : object
Returns the instance itself.
"""
algorithm = self._choose_algorithm(self.algorithm, self.metric)
if isinstance(self.bandwidth, str):
if self.bandwidth == "scott":
self.bandwidth_ = X.shape[0] ** (-1 / (X.shape[1] + 4))
elif self.bandwidth == "silverman":
self.bandwidth_ = (X.shape[0] * (X.shape[1] + 2) / 4) ** (
-1 / (X.shape[1] + 4)
)
else:
self.bandwidth_ = self.bandwidth
X = validate_data(self, X, order="C", dtype=np.float64)
if sample_weight is not None:
sample_weight = _check_sample_weight(
sample_weight, X, dtype=np.float64, ensure_non_negative=True
)
kwargs = self.metric_params
if kwargs is None:
kwargs = {}
self.tree_ = TREE_DICT[algorithm](
X,
metric=self.metric,
leaf_size=self.leaf_size,
sample_weight=sample_weight,
**kwargs,
)
return self
|
Fit the Kernel Density model on the data.
Parameters
----------
X : array-like of shape (n_samples, n_features)
List of n_features-dimensional data points. Each row
corresponds to a single data point.
y : None
Ignored. This parameter exists only for compatibility with
:class:`~sklearn.pipeline.Pipeline`.
sample_weight : array-like of shape (n_samples,), default=None
List of sample weights attached to the data X.
.. versionadded:: 0.20
Returns
-------
self : object
Returns the instance itself.
|
fit
|
python
|
scikit-learn/scikit-learn
|
sklearn/neighbors/_kde.py
|
https://github.com/scikit-learn/scikit-learn/blob/master/sklearn/neighbors/_kde.py
|
BSD-3-Clause
|
def score_samples(self, X):
"""Compute the log-likelihood of each sample under the model.
Parameters
----------
X : array-like of shape (n_samples, n_features)
An array of points to query. Last dimension should match dimension
of training data (n_features).
Returns
-------
density : ndarray of shape (n_samples,)
Log-likelihood of each sample in `X`. These are normalized to be
probability densities, so values will be low for high-dimensional
data.
"""
check_is_fitted(self)
# The returned density is normalized to the number of points.
# For it to be a probability, we must scale it. For this reason
# we'll also scale atol.
X = validate_data(self, X, order="C", dtype=np.float64, reset=False)
if self.tree_.sample_weight is None:
N = self.tree_.data.shape[0]
else:
N = self.tree_.sum_weight
atol_N = self.atol * N
log_density = self.tree_.kernel_density(
X,
h=self.bandwidth_,
kernel=self.kernel,
atol=atol_N,
rtol=self.rtol,
breadth_first=self.breadth_first,
return_log=True,
)
log_density -= np.log(N)
return log_density
|
Compute the log-likelihood of each sample under the model.
Parameters
----------
X : array-like of shape (n_samples, n_features)
An array of points to query. Last dimension should match dimension
of training data (n_features).
Returns
-------
density : ndarray of shape (n_samples,)
Log-likelihood of each sample in `X`. These are normalized to be
probability densities, so values will be low for high-dimensional
data.
|
score_samples
|
python
|
scikit-learn/scikit-learn
|
sklearn/neighbors/_kde.py
|
https://github.com/scikit-learn/scikit-learn/blob/master/sklearn/neighbors/_kde.py
|
BSD-3-Clause
|
def sample(self, n_samples=1, random_state=None):
"""Generate random samples from the model.
Currently, this is implemented only for gaussian and tophat kernels.
Parameters
----------
n_samples : int, default=1
Number of samples to generate.
random_state : int, RandomState instance or None, default=None
Determines random number generation used to generate
random samples. Pass an int for reproducible results
across multiple function calls.
See :term:`Glossary <random_state>`.
Returns
-------
X : array-like of shape (n_samples, n_features)
List of samples.
"""
check_is_fitted(self)
# TODO: implement sampling for other valid kernel shapes
if self.kernel not in ["gaussian", "tophat"]:
raise NotImplementedError()
data = np.asarray(self.tree_.data)
rng = check_random_state(random_state)
u = rng.uniform(0, 1, size=n_samples)
if self.tree_.sample_weight is None:
i = (u * data.shape[0]).astype(np.int64)
else:
cumsum_weight = np.cumsum(np.asarray(self.tree_.sample_weight))
sum_weight = cumsum_weight[-1]
i = np.searchsorted(cumsum_weight, u * sum_weight)
if self.kernel == "gaussian":
return np.atleast_2d(rng.normal(data[i], self.bandwidth_))
elif self.kernel == "tophat":
# we first draw points from a d-dimensional normal distribution,
# then use an incomplete gamma function to map them to a uniform
# d-dimensional tophat distribution.
dim = data.shape[1]
X = rng.normal(size=(n_samples, dim))
s_sq = row_norms(X, squared=True)
correction = (
gammainc(0.5 * dim, 0.5 * s_sq) ** (1.0 / dim)
* self.bandwidth_
/ np.sqrt(s_sq)
)
return data[i] + X * correction[:, np.newaxis]
|
Generate random samples from the model.
Currently, this is implemented only for gaussian and tophat kernels.
Parameters
----------
n_samples : int, default=1
Number of samples to generate.
random_state : int, RandomState instance or None, default=None
Determines random number generation used to generate
random samples. Pass an int for reproducible results
across multiple function calls.
See :term:`Glossary <random_state>`.
Returns
-------
X : array-like of shape (n_samples, n_features)
List of samples.
|
sample
|
python
|
scikit-learn/scikit-learn
|
sklearn/neighbors/_kde.py
|
https://github.com/scikit-learn/scikit-learn/blob/master/sklearn/neighbors/_kde.py
|
BSD-3-Clause
|
def fit_predict(self, X, y=None):
"""Fit the model to the training set X and return the labels.
**Not available for novelty detection (when novelty is set to True).**
Label is 1 for an inlier and -1 for an outlier according to the LOF
score and the contamination parameter.
Parameters
----------
X : {array-like, sparse matrix} of shape (n_samples, n_features), default=None
The query sample or samples to compute the Local Outlier Factor
w.r.t. the training samples.
y : Ignored
Not used, present for API consistency by convention.
Returns
-------
is_inlier : ndarray of shape (n_samples,)
Returns -1 for anomalies/outliers and 1 for inliers.
"""
# As fit_predict would be different from fit.predict, fit_predict is
# only available for outlier detection (novelty=False)
return self.fit(X)._predict()
|
Fit the model to the training set X and return the labels.
**Not available for novelty detection (when novelty is set to True).**
Label is 1 for an inlier and -1 for an outlier according to the LOF
score and the contamination parameter.
Parameters
----------
X : {array-like, sparse matrix} of shape (n_samples, n_features), default=None
The query sample or samples to compute the Local Outlier Factor
w.r.t. the training samples.
y : Ignored
Not used, present for API consistency by convention.
Returns
-------
is_inlier : ndarray of shape (n_samples,)
Returns -1 for anomalies/outliers and 1 for inliers.
|
fit_predict
|
python
|
scikit-learn/scikit-learn
|
sklearn/neighbors/_lof.py
|
https://github.com/scikit-learn/scikit-learn/blob/master/sklearn/neighbors/_lof.py
|
BSD-3-Clause
|
def fit(self, X, y=None):
"""Fit the local outlier factor detector from the training dataset.
Parameters
----------
X : {array-like, sparse matrix} of shape (n_samples, n_features) or \
(n_samples, n_samples) if metric='precomputed'
Training data.
y : Ignored
Not used, present for API consistency by convention.
Returns
-------
self : LocalOutlierFactor
The fitted local outlier factor detector.
"""
self._fit(X)
n_samples = self.n_samples_fit_
if self.n_neighbors > n_samples:
warnings.warn(
"n_neighbors (%s) is greater than the "
"total number of samples (%s). n_neighbors "
"will be set to (n_samples - 1) for estimation."
% (self.n_neighbors, n_samples)
)
self.n_neighbors_ = max(1, min(self.n_neighbors, n_samples - 1))
self._distances_fit_X_, _neighbors_indices_fit_X_ = self.kneighbors(
n_neighbors=self.n_neighbors_
)
if self._fit_X.dtype == np.float32:
self._distances_fit_X_ = self._distances_fit_X_.astype(
self._fit_X.dtype,
copy=False,
)
self._lrd = self._local_reachability_density(
self._distances_fit_X_, _neighbors_indices_fit_X_
)
# Compute lof score over training samples to define offset_:
lrd_ratios_array = (
self._lrd[_neighbors_indices_fit_X_] / self._lrd[:, np.newaxis]
)
self.negative_outlier_factor_ = -np.mean(lrd_ratios_array, axis=1)
if self.contamination == "auto":
# inliers score around -1 (the higher, the less abnormal).
self.offset_ = -1.5
else:
self.offset_ = np.percentile(
self.negative_outlier_factor_, 100.0 * self.contamination
)
# Verify if negative_outlier_factor_ values are within acceptable range.
# Novelty must also be false to detect outliers
if np.min(self.negative_outlier_factor_) < -1e7 and not self.novelty:
warnings.warn(
"Duplicate values are leading to incorrect results. "
"Increase the number of neighbors for more accurate results."
)
return self
|
Fit the local outlier factor detector from the training dataset.
Parameters
----------
X : {array-like, sparse matrix} of shape (n_samples, n_features) or (n_samples, n_samples) if metric='precomputed'
Training data.
y : Ignored
Not used, present for API consistency by convention.
Returns
-------
self : LocalOutlierFactor
The fitted local outlier factor detector.
|
fit
|
python
|
scikit-learn/scikit-learn
|
sklearn/neighbors/_lof.py
|
https://github.com/scikit-learn/scikit-learn/blob/master/sklearn/neighbors/_lof.py
|
BSD-3-Clause
|
def _predict(self, X=None):
"""Predict the labels (1 inlier, -1 outlier) of X according to LOF.
If X is None, returns the same as fit_predict(X_train).
Parameters
----------
X : {array-like, sparse matrix} of shape (n_samples, n_features), default=None
The query sample or samples to compute the Local Outlier Factor
w.r.t. the training samples. If None, makes prediction on the
training data without considering them as their own neighbors.
Returns
-------
is_inlier : ndarray of shape (n_samples,)
Returns -1 for anomalies/outliers and +1 for inliers.
"""
check_is_fitted(self)
if X is not None:
shifted_opposite_lof_scores = self.decision_function(X)
is_inlier = np.ones(shifted_opposite_lof_scores.shape[0], dtype=int)
is_inlier[shifted_opposite_lof_scores < 0] = -1
else:
is_inlier = np.ones(self.n_samples_fit_, dtype=int)
is_inlier[self.negative_outlier_factor_ < self.offset_] = -1
return is_inlier
|
Predict the labels (1 inlier, -1 outlier) of X according to LOF.
If X is None, returns the same as fit_predict(X_train).
Parameters
----------
X : {array-like, sparse matrix} of shape (n_samples, n_features), default=None
The query sample or samples to compute the Local Outlier Factor
w.r.t. the training samples. If None, makes prediction on the
training data without considering them as their own neighbors.
Returns
-------
is_inlier : ndarray of shape (n_samples,)
Returns -1 for anomalies/outliers and +1 for inliers.
|
_predict
|
python
|
scikit-learn/scikit-learn
|
sklearn/neighbors/_lof.py
|
https://github.com/scikit-learn/scikit-learn/blob/master/sklearn/neighbors/_lof.py
|
BSD-3-Clause
|
def score_samples(self, X):
"""Opposite of the Local Outlier Factor of X.
It is the opposite as bigger is better, i.e. large values correspond
to inliers.
**Only available for novelty detection (when novelty is set to True).**
The argument X is supposed to contain *new data*: if X contains a
point from training, it considers the later in its own neighborhood.
Also, the samples in X are not considered in the neighborhood of any
point. Because of this, the scores obtained via ``score_samples`` may
differ from the standard LOF scores.
The standard LOF scores for the training data is available via the
``negative_outlier_factor_`` attribute.
Parameters
----------
X : {array-like, sparse matrix} of shape (n_samples, n_features)
The query sample or samples to compute the Local Outlier Factor
w.r.t. the training samples.
Returns
-------
opposite_lof_scores : ndarray of shape (n_samples,)
The opposite of the Local Outlier Factor of each input samples.
The lower, the more abnormal.
"""
check_is_fitted(self)
X = check_array(X, accept_sparse="csr")
distances_X, neighbors_indices_X = self.kneighbors(
X, n_neighbors=self.n_neighbors_
)
if X.dtype == np.float32:
distances_X = distances_X.astype(X.dtype, copy=False)
X_lrd = self._local_reachability_density(
distances_X,
neighbors_indices_X,
)
lrd_ratios_array = self._lrd[neighbors_indices_X] / X_lrd[:, np.newaxis]
# as bigger is better:
return -np.mean(lrd_ratios_array, axis=1)
|
Opposite of the Local Outlier Factor of X.
It is the opposite as bigger is better, i.e. large values correspond
to inliers.
**Only available for novelty detection (when novelty is set to True).**
The argument X is supposed to contain *new data*: if X contains a
point from training, it considers the later in its own neighborhood.
Also, the samples in X are not considered in the neighborhood of any
point. Because of this, the scores obtained via ``score_samples`` may
differ from the standard LOF scores.
The standard LOF scores for the training data is available via the
``negative_outlier_factor_`` attribute.
Parameters
----------
X : {array-like, sparse matrix} of shape (n_samples, n_features)
The query sample or samples to compute the Local Outlier Factor
w.r.t. the training samples.
Returns
-------
opposite_lof_scores : ndarray of shape (n_samples,)
The opposite of the Local Outlier Factor of each input samples.
The lower, the more abnormal.
|
score_samples
|
python
|
scikit-learn/scikit-learn
|
sklearn/neighbors/_lof.py
|
https://github.com/scikit-learn/scikit-learn/blob/master/sklearn/neighbors/_lof.py
|
BSD-3-Clause
|
def _local_reachability_density(self, distances_X, neighbors_indices):
"""The local reachability density (LRD)
The LRD of a sample is the inverse of the average reachability
distance of its k-nearest neighbors.
Parameters
----------
distances_X : ndarray of shape (n_queries, self.n_neighbors)
Distances to the neighbors (in the training samples `self._fit_X`)
of each query point to compute the LRD.
neighbors_indices : ndarray of shape (n_queries, self.n_neighbors)
Neighbors indices (of each query point) among training samples
self._fit_X.
Returns
-------
local_reachability_density : ndarray of shape (n_queries,)
The local reachability density of each sample.
"""
dist_k = self._distances_fit_X_[neighbors_indices, self.n_neighbors_ - 1]
reach_dist_array = np.maximum(distances_X, dist_k)
# 1e-10 to avoid `nan' when nb of duplicates > n_neighbors_:
return 1.0 / (np.mean(reach_dist_array, axis=1) + 1e-10)
|
The local reachability density (LRD)
The LRD of a sample is the inverse of the average reachability
distance of its k-nearest neighbors.
Parameters
----------
distances_X : ndarray of shape (n_queries, self.n_neighbors)
Distances to the neighbors (in the training samples `self._fit_X`)
of each query point to compute the LRD.
neighbors_indices : ndarray of shape (n_queries, self.n_neighbors)
Neighbors indices (of each query point) among training samples
self._fit_X.
Returns
-------
local_reachability_density : ndarray of shape (n_queries,)
The local reachability density of each sample.
|
_local_reachability_density
|
python
|
scikit-learn/scikit-learn
|
sklearn/neighbors/_lof.py
|
https://github.com/scikit-learn/scikit-learn/blob/master/sklearn/neighbors/_lof.py
|
BSD-3-Clause
|
def fit(self, X, y):
"""Fit the model according to the given training data.
Parameters
----------
X : array-like of shape (n_samples, n_features)
The training samples.
y : array-like of shape (n_samples,)
The corresponding training labels.
Returns
-------
self : object
Fitted estimator.
"""
# Validate the inputs X and y, and converts y to numerical classes.
X, y = validate_data(self, X, y, ensure_min_samples=2)
check_classification_targets(y)
y = LabelEncoder().fit_transform(y)
# Check the preferred dimensionality of the projected space
if self.n_components is not None and self.n_components > X.shape[1]:
raise ValueError(
"The preferred dimensionality of the "
f"projected space `n_components` ({self.n_components}) cannot "
"be greater than the given data "
f"dimensionality ({X.shape[1]})!"
)
# If warm_start is enabled, check that the inputs are consistent
if (
self.warm_start
and hasattr(self, "components_")
and self.components_.shape[1] != X.shape[1]
):
raise ValueError(
f"The new inputs dimensionality ({X.shape[1]}) does not "
"match the input dimensionality of the "
f"previously learned transformation ({self.components_.shape[1]})."
)
# Check how the linear transformation should be initialized
init = self.init
if isinstance(init, np.ndarray):
init = check_array(init)
# Assert that init.shape[1] = X.shape[1]
if init.shape[1] != X.shape[1]:
raise ValueError(
f"The input dimensionality ({init.shape[1]}) of the given "
"linear transformation `init` must match the "
f"dimensionality of the given inputs `X` ({X.shape[1]})."
)
# Assert that init.shape[0] <= init.shape[1]
if init.shape[0] > init.shape[1]:
raise ValueError(
f"The output dimensionality ({init.shape[0]}) of the given "
"linear transformation `init` cannot be "
f"greater than its input dimensionality ({init.shape[1]})."
)
# Assert that self.n_components = init.shape[0]
if self.n_components is not None and self.n_components != init.shape[0]:
raise ValueError(
"The preferred dimensionality of the "
f"projected space `n_components` ({self.n_components}) does"
" not match the output dimensionality of "
"the given linear transformation "
f"`init` ({init.shape[0]})!"
)
# Initialize the random generator
self.random_state_ = check_random_state(self.random_state)
# Measure the total training time
t_train = time.time()
# Compute a mask that stays fixed during optimization:
same_class_mask = y[:, np.newaxis] == y[np.newaxis, :]
# (n_samples, n_samples)
# Initialize the transformation
transformation = np.ravel(self._initialize(X, y, init))
# Create a dictionary of parameters to be passed to the optimizer
disp = self.verbose - 2 if self.verbose > 1 else -1
optimizer_params = {
"method": "L-BFGS-B",
"fun": self._loss_grad_lbfgs,
"args": (X, same_class_mask, -1.0),
"jac": True,
"x0": transformation,
"tol": self.tol,
"options": dict(maxiter=self.max_iter, disp=disp),
"callback": self._callback,
}
# Call the optimizer
self.n_iter_ = 0
opt_result = minimize(**optimizer_params)
# Reshape the solution found by the optimizer
self.components_ = opt_result.x.reshape(-1, X.shape[1])
# Stop timer
t_train = time.time() - t_train
if self.verbose:
cls_name = self.__class__.__name__
# Warn the user if the algorithm did not converge
if not opt_result.success:
warn(
"[{}] NCA did not converge: {}".format(
cls_name, opt_result.message
),
ConvergenceWarning,
)
print("[{}] Training took {:8.2f}s.".format(cls_name, t_train))
return self
|
Fit the model according to the given training data.
Parameters
----------
X : array-like of shape (n_samples, n_features)
The training samples.
y : array-like of shape (n_samples,)
The corresponding training labels.
Returns
-------
self : object
Fitted estimator.
|
fit
|
python
|
scikit-learn/scikit-learn
|
sklearn/neighbors/_nca.py
|
https://github.com/scikit-learn/scikit-learn/blob/master/sklearn/neighbors/_nca.py
|
BSD-3-Clause
|
def transform(self, X):
"""Apply the learned transformation to the given data.
Parameters
----------
X : array-like of shape (n_samples, n_features)
Data samples.
Returns
-------
X_embedded: ndarray of shape (n_samples, n_components)
The data samples transformed.
Raises
------
NotFittedError
If :meth:`fit` has not been called before.
"""
check_is_fitted(self)
X = validate_data(self, X, reset=False)
return np.dot(X, self.components_.T)
|
Apply the learned transformation to the given data.
Parameters
----------
X : array-like of shape (n_samples, n_features)
Data samples.
Returns
-------
X_embedded: ndarray of shape (n_samples, n_components)
The data samples transformed.
Raises
------
NotFittedError
If :meth:`fit` has not been called before.
|
transform
|
python
|
scikit-learn/scikit-learn
|
sklearn/neighbors/_nca.py
|
https://github.com/scikit-learn/scikit-learn/blob/master/sklearn/neighbors/_nca.py
|
BSD-3-Clause
|
def _initialize(self, X, y, init):
"""Initialize the transformation.
Parameters
----------
X : array-like of shape (n_samples, n_features)
The training samples.
y : array-like of shape (n_samples,)
The training labels.
init : str or ndarray of shape (n_features_a, n_features_b)
The validated initialization of the linear transformation.
Returns
-------
transformation : ndarray of shape (n_components, n_features)
The initialized linear transformation.
"""
transformation = init
if self.warm_start and hasattr(self, "components_"):
transformation = self.components_
elif isinstance(init, np.ndarray):
pass
else:
n_samples, n_features = X.shape
n_components = self.n_components or n_features
if init == "auto":
n_classes = len(np.unique(y))
if n_components <= min(n_features, n_classes - 1):
init = "lda"
elif n_components < min(n_features, n_samples):
init = "pca"
else:
init = "identity"
if init == "identity":
transformation = np.eye(n_components, X.shape[1])
elif init == "random":
transformation = self.random_state_.standard_normal(
size=(n_components, X.shape[1])
)
elif init in {"pca", "lda"}:
init_time = time.time()
if init == "pca":
pca = PCA(
n_components=n_components, random_state=self.random_state_
)
if self.verbose:
print("Finding principal components... ", end="")
sys.stdout.flush()
pca.fit(X)
transformation = pca.components_
elif init == "lda":
from ..discriminant_analysis import LinearDiscriminantAnalysis
lda = LinearDiscriminantAnalysis(n_components=n_components)
if self.verbose:
print("Finding most discriminative components... ", end="")
sys.stdout.flush()
lda.fit(X, y)
transformation = lda.scalings_.T[:n_components]
if self.verbose:
print("done in {:5.2f}s".format(time.time() - init_time))
return transformation
|
Initialize the transformation.
Parameters
----------
X : array-like of shape (n_samples, n_features)
The training samples.
y : array-like of shape (n_samples,)
The training labels.
init : str or ndarray of shape (n_features_a, n_features_b)
The validated initialization of the linear transformation.
Returns
-------
transformation : ndarray of shape (n_components, n_features)
The initialized linear transformation.
|
_initialize
|
python
|
scikit-learn/scikit-learn
|
sklearn/neighbors/_nca.py
|
https://github.com/scikit-learn/scikit-learn/blob/master/sklearn/neighbors/_nca.py
|
BSD-3-Clause
|
def _callback(self, transformation):
"""Called after each iteration of the optimizer.
Parameters
----------
transformation : ndarray of shape (n_components * n_features,)
The solution computed by the optimizer in this iteration.
"""
if self.callback is not None:
self.callback(transformation, self.n_iter_)
self.n_iter_ += 1
|
Called after each iteration of the optimizer.
Parameters
----------
transformation : ndarray of shape (n_components * n_features,)
The solution computed by the optimizer in this iteration.
|
_callback
|
python
|
scikit-learn/scikit-learn
|
sklearn/neighbors/_nca.py
|
https://github.com/scikit-learn/scikit-learn/blob/master/sklearn/neighbors/_nca.py
|
BSD-3-Clause
|
def _loss_grad_lbfgs(self, transformation, X, same_class_mask, sign=1.0):
"""Compute the loss and the loss gradient w.r.t. `transformation`.
Parameters
----------
transformation : ndarray of shape (n_components * n_features,)
The raveled linear transformation on which to compute loss and
evaluate gradient.
X : ndarray of shape (n_samples, n_features)
The training samples.
same_class_mask : ndarray of shape (n_samples, n_samples)
A mask where `mask[i, j] == 1` if `X[i]` and `X[j]` belong
to the same class, and `0` otherwise.
Returns
-------
loss : float
The loss computed for the given transformation.
gradient : ndarray of shape (n_components * n_features,)
The new (flattened) gradient of the loss.
"""
if self.n_iter_ == 0:
self.n_iter_ += 1
if self.verbose:
header_fields = ["Iteration", "Objective Value", "Time(s)"]
header_fmt = "{:>10} {:>20} {:>10}"
header = header_fmt.format(*header_fields)
cls_name = self.__class__.__name__
print("[{}]".format(cls_name))
print(
"[{}] {}\n[{}] {}".format(
cls_name, header, cls_name, "-" * len(header)
)
)
t_funcall = time.time()
transformation = transformation.reshape(-1, X.shape[1])
X_embedded = np.dot(X, transformation.T) # (n_samples, n_components)
# Compute softmax distances
p_ij = pairwise_distances(X_embedded, squared=True)
np.fill_diagonal(p_ij, np.inf)
p_ij = softmax(-p_ij) # (n_samples, n_samples)
# Compute loss
masked_p_ij = p_ij * same_class_mask
p = np.sum(masked_p_ij, axis=1, keepdims=True) # (n_samples, 1)
loss = np.sum(p)
# Compute gradient of loss w.r.t. `transform`
weighted_p_ij = masked_p_ij - p_ij * p
weighted_p_ij_sym = weighted_p_ij + weighted_p_ij.T
np.fill_diagonal(weighted_p_ij_sym, -weighted_p_ij.sum(axis=0))
gradient = 2 * X_embedded.T.dot(weighted_p_ij_sym).dot(X)
# time complexity of the gradient: O(n_components x n_samples x (
# n_samples + n_features))
if self.verbose:
t_funcall = time.time() - t_funcall
values_fmt = "[{}] {:>10} {:>20.6e} {:>10.2f}"
print(
values_fmt.format(
self.__class__.__name__, self.n_iter_, loss, t_funcall
)
)
sys.stdout.flush()
return sign * loss, sign * gradient.ravel()
|
Compute the loss and the loss gradient w.r.t. `transformation`.
Parameters
----------
transformation : ndarray of shape (n_components * n_features,)
The raveled linear transformation on which to compute loss and
evaluate gradient.
X : ndarray of shape (n_samples, n_features)
The training samples.
same_class_mask : ndarray of shape (n_samples, n_samples)
A mask where `mask[i, j] == 1` if `X[i]` and `X[j]` belong
to the same class, and `0` otherwise.
Returns
-------
loss : float
The loss computed for the given transformation.
gradient : ndarray of shape (n_components * n_features,)
The new (flattened) gradient of the loss.
|
_loss_grad_lbfgs
|
python
|
scikit-learn/scikit-learn
|
sklearn/neighbors/_nca.py
|
https://github.com/scikit-learn/scikit-learn/blob/master/sklearn/neighbors/_nca.py
|
BSD-3-Clause
|
def fit(self, X, y):
"""
Fit the NearestCentroid model according to the given training data.
Parameters
----------
X : {array-like, sparse matrix} of shape (n_samples, n_features)
Training vector, where `n_samples` is the number of samples and
`n_features` is the number of features.
Note that centroid shrinking cannot be used with sparse matrices.
y : array-like of shape (n_samples,)
Target values.
Returns
-------
self : object
Fitted estimator.
"""
# If X is sparse and the metric is "manhattan", store it in a csc
# format is easier to calculate the median.
if self.metric == "manhattan":
X, y = validate_data(self, X, y, accept_sparse=["csc"])
else:
ensure_all_finite = (
"allow-nan" if get_tags(self).input_tags.allow_nan else True
)
X, y = validate_data(
self,
X,
y,
ensure_all_finite=ensure_all_finite,
accept_sparse=["csr", "csc"],
)
is_X_sparse = sp.issparse(X)
check_classification_targets(y)
n_samples, n_features = X.shape
le = LabelEncoder()
y_ind = le.fit_transform(y)
self.classes_ = classes = le.classes_
n_classes = classes.size
if n_classes < 2:
raise ValueError(
"The number of classes has to be greater than one; got %d class"
% (n_classes)
)
if self.priors == "empirical": # estimate priors from sample
_, class_counts = np.unique(y, return_inverse=True) # non-negative ints
self.class_prior_ = np.bincount(class_counts) / float(len(y))
elif self.priors == "uniform":
self.class_prior_ = np.asarray([1 / n_classes] * n_classes)
else:
self.class_prior_ = np.asarray(self.priors)
if (self.class_prior_ < 0).any():
raise ValueError("priors must be non-negative")
if not np.isclose(self.class_prior_.sum(), 1.0):
warnings.warn(
"The priors do not sum to 1. Normalizing such that it sums to one.",
UserWarning,
)
self.class_prior_ = self.class_prior_ / self.class_prior_.sum()
# Mask mapping each class to its members.
self.centroids_ = np.empty((n_classes, n_features), dtype=np.float64)
# Number of clusters in each class.
nk = np.zeros(n_classes)
for cur_class in range(n_classes):
center_mask = y_ind == cur_class
nk[cur_class] = np.sum(center_mask)
if is_X_sparse:
center_mask = np.where(center_mask)[0]
if self.metric == "manhattan":
# NumPy does not calculate median of sparse matrices.
if not is_X_sparse:
self.centroids_[cur_class] = np.median(X[center_mask], axis=0)
else:
self.centroids_[cur_class] = csc_median_axis_0(X[center_mask])
else: # metric == "euclidean"
self.centroids_[cur_class] = X[center_mask].mean(axis=0)
# Compute within-class std_dev with unshrunked centroids
variance = np.array(X - self.centroids_[y_ind], copy=False) ** 2
self.within_class_std_dev_ = np.array(
np.sqrt(variance.sum(axis=0) / (n_samples - n_classes)), copy=False
)
if any(self.within_class_std_dev_ == 0):
warnings.warn(
"self.within_class_std_dev_ has at least 1 zero standard deviation."
"Inputs within the same classes for at least 1 feature are identical."
)
err_msg = "All features have zero variance. Division by zero."
if is_X_sparse and np.all((X.max(axis=0) - X.min(axis=0)).toarray() == 0):
raise ValueError(err_msg)
elif not is_X_sparse and np.all(np.ptp(X, axis=0) == 0):
raise ValueError(err_msg)
dataset_centroid_ = X.mean(axis=0)
# m parameter for determining deviation
m = np.sqrt((1.0 / nk) - (1.0 / n_samples))
# Calculate deviation using the standard deviation of centroids.
# To deter outliers from affecting the results.
s = self.within_class_std_dev_ + np.median(self.within_class_std_dev_)
mm = m.reshape(len(m), 1) # Reshape to allow broadcasting.
ms = mm * s
self.deviations_ = np.array(
(self.centroids_ - dataset_centroid_) / ms, copy=False
)
# Soft thresholding: if the deviation crosses 0 during shrinking,
# it becomes zero.
if self.shrink_threshold:
signs = np.sign(self.deviations_)
self.deviations_ = np.abs(self.deviations_) - self.shrink_threshold
np.clip(self.deviations_, 0, None, out=self.deviations_)
self.deviations_ *= signs
# Now adjust the centroids using the deviation
msd = ms * self.deviations_
self.centroids_ = np.array(dataset_centroid_ + msd, copy=False)
return self
|
Fit the NearestCentroid model according to the given training data.
Parameters
----------
X : {array-like, sparse matrix} of shape (n_samples, n_features)
Training vector, where `n_samples` is the number of samples and
`n_features` is the number of features.
Note that centroid shrinking cannot be used with sparse matrices.
y : array-like of shape (n_samples,)
Target values.
Returns
-------
self : object
Fitted estimator.
|
fit
|
python
|
scikit-learn/scikit-learn
|
sklearn/neighbors/_nearest_centroid.py
|
https://github.com/scikit-learn/scikit-learn/blob/master/sklearn/neighbors/_nearest_centroid.py
|
BSD-3-Clause
|
def predict(self, X):
"""Perform classification on an array of test vectors `X`.
The predicted class `C` for each sample in `X` is returned.
Parameters
----------
X : {array-like, sparse matrix} of shape (n_samples, n_features)
Input data.
Returns
-------
y_pred : ndarray of shape (n_samples,)
The predicted classes.
"""
check_is_fitted(self)
if np.isclose(self.class_prior_, 1 / len(self.classes_)).all():
# `validate_data` is called here since we are not calling `super()`
ensure_all_finite = (
"allow-nan" if get_tags(self).input_tags.allow_nan else True
)
X = validate_data(
self,
X,
ensure_all_finite=ensure_all_finite,
accept_sparse="csr",
reset=False,
)
return self.classes_[
pairwise_distances_argmin(X, self.centroids_, metric=self.metric)
]
else:
return super().predict(X)
|
Perform classification on an array of test vectors `X`.
The predicted class `C` for each sample in `X` is returned.
Parameters
----------
X : {array-like, sparse matrix} of shape (n_samples, n_features)
Input data.
Returns
-------
y_pred : ndarray of shape (n_samples,)
The predicted classes.
|
predict
|
python
|
scikit-learn/scikit-learn
|
sklearn/neighbors/_nearest_centroid.py
|
https://github.com/scikit-learn/scikit-learn/blob/master/sklearn/neighbors/_nearest_centroid.py
|
BSD-3-Clause
|
def predict(self, X):
"""Predict the target for the provided data.
Parameters
----------
X : {array-like, sparse matrix} of shape (n_queries, n_features), \
or (n_queries, n_indexed) if metric == 'precomputed', or None
Test samples. If `None`, predictions for all indexed points are
returned; in this case, points are not considered their own
neighbors.
Returns
-------
y : ndarray of shape (n_queries,) or (n_queries, n_outputs), dtype=int
Target values.
"""
if self.weights == "uniform":
# In that case, we do not need the distances to perform
# the weighting so we do not compute them.
neigh_ind = self.kneighbors(X, return_distance=False)
neigh_dist = None
else:
neigh_dist, neigh_ind = self.kneighbors(X)
weights = _get_weights(neigh_dist, self.weights)
_y = self._y
if _y.ndim == 1:
_y = _y.reshape((-1, 1))
if weights is None:
y_pred = np.mean(_y[neigh_ind], axis=1)
else:
y_pred = np.empty((neigh_dist.shape[0], _y.shape[1]), dtype=np.float64)
denom = np.sum(weights, axis=1)
for j in range(_y.shape[1]):
num = np.sum(_y[neigh_ind, j] * weights, axis=1)
y_pred[:, j] = num / denom
if self._y.ndim == 1:
y_pred = y_pred.ravel()
return y_pred
|
Predict the target for the provided data.
Parameters
----------
X : {array-like, sparse matrix} of shape (n_queries, n_features), or (n_queries, n_indexed) if metric == 'precomputed', or None
Test samples. If `None`, predictions for all indexed points are
returned; in this case, points are not considered their own
neighbors.
Returns
-------
y : ndarray of shape (n_queries,) or (n_queries, n_outputs), dtype=int
Target values.
|
predict
|
python
|
scikit-learn/scikit-learn
|
sklearn/neighbors/_regression.py
|
https://github.com/scikit-learn/scikit-learn/blob/master/sklearn/neighbors/_regression.py
|
BSD-3-Clause
|
def predict(self, X):
"""Predict the target for the provided data.
Parameters
----------
X : {array-like, sparse matrix} of shape (n_queries, n_features), \
or (n_queries, n_indexed) if metric == 'precomputed', or None
Test samples. If `None`, predictions for all indexed points are
returned; in this case, points are not considered their own
neighbors.
Returns
-------
y : ndarray of shape (n_queries,) or (n_queries, n_outputs), \
dtype=double
Target values.
"""
neigh_dist, neigh_ind = self.radius_neighbors(X)
weights = _get_weights(neigh_dist, self.weights)
_y = self._y
if _y.ndim == 1:
_y = _y.reshape((-1, 1))
empty_obs = np.full_like(_y[0], np.nan)
if weights is None:
y_pred = np.array(
[
np.mean(_y[ind, :], axis=0) if len(ind) else empty_obs
for (i, ind) in enumerate(neigh_ind)
]
)
else:
y_pred = np.array(
[
(
np.average(_y[ind, :], axis=0, weights=weights[i])
if len(ind)
else empty_obs
)
for (i, ind) in enumerate(neigh_ind)
]
)
if np.any(np.isnan(y_pred)):
empty_warning_msg = (
"One or more samples have no neighbors "
"within specified radius; predicting NaN."
)
warnings.warn(empty_warning_msg)
if self._y.ndim == 1:
y_pred = y_pred.ravel()
return y_pred
|
Predict the target for the provided data.
Parameters
----------
X : {array-like, sparse matrix} of shape (n_queries, n_features), or (n_queries, n_indexed) if metric == 'precomputed', or None
Test samples. If `None`, predictions for all indexed points are
returned; in this case, points are not considered their own
neighbors.
Returns
-------
y : ndarray of shape (n_queries,) or (n_queries, n_outputs), dtype=double
Target values.
|
predict
|
python
|
scikit-learn/scikit-learn
|
sklearn/neighbors/_regression.py
|
https://github.com/scikit-learn/scikit-learn/blob/master/sklearn/neighbors/_regression.py
|
BSD-3-Clause
|
def test_array_object_type(BallTreeImplementation):
"""Check that we do not accept object dtype array."""
X = np.array([(1, 2, 3), (2, 5), (5, 5, 1, 2)], dtype=object)
with pytest.raises(ValueError, match="setting an array element with a sequence"):
BallTreeImplementation(X)
|
Check that we do not accept object dtype array.
|
test_array_object_type
|
python
|
scikit-learn/scikit-learn
|
sklearn/neighbors/tests/test_ball_tree.py
|
https://github.com/scikit-learn/scikit-learn/blob/master/sklearn/neighbors/tests/test_ball_tree.py
|
BSD-3-Clause
|
def _has_explicit_diagonal(X):
"""Return True if the diagonal is explicitly stored"""
X = X.tocoo()
explicit = X.row[X.row == X.col]
return len(explicit) == X.shape[0]
|
Return True if the diagonal is explicitly stored
|
_has_explicit_diagonal
|
python
|
scikit-learn/scikit-learn
|
sklearn/neighbors/tests/test_graph.py
|
https://github.com/scikit-learn/scikit-learn/blob/master/sklearn/neighbors/tests/test_graph.py
|
BSD-3-Clause
|
def test_graph_feature_names_out(Klass):
"""Check `get_feature_names_out` for transformers defined in `_graph.py`."""
n_samples_fit = 20
n_features = 10
rng = np.random.RandomState(42)
X = rng.randn(n_samples_fit, n_features)
est = Klass().fit(X)
names_out = est.get_feature_names_out()
class_name_lower = Klass.__name__.lower()
expected_names_out = np.array(
[f"{class_name_lower}{i}" for i in range(est.n_samples_fit_)],
dtype=object,
)
assert_array_equal(names_out, expected_names_out)
|
Check `get_feature_names_out` for transformers defined in `_graph.py`.
|
test_graph_feature_names_out
|
python
|
scikit-learn/scikit-learn
|
sklearn/neighbors/tests/test_graph.py
|
https://github.com/scikit-learn/scikit-learn/blob/master/sklearn/neighbors/tests/test_graph.py
|
BSD-3-Clause
|
def test_array_object_type(BinarySearchTree):
"""Check that we do not accept object dtype array."""
X = np.array([(1, 2, 3), (2, 5), (5, 5, 1, 2)], dtype=object)
with pytest.raises(ValueError, match="setting an array element with a sequence"):
BinarySearchTree(X)
|
Check that we do not accept object dtype array.
|
test_array_object_type
|
python
|
scikit-learn/scikit-learn
|
sklearn/neighbors/tests/test_kd_tree.py
|
https://github.com/scikit-learn/scikit-learn/blob/master/sklearn/neighbors/tests/test_kd_tree.py
|
BSD-3-Clause
|
def test_kdtree_picklable_with_joblib(BinarySearchTree):
"""Make sure that KDTree queries work when joblib memmaps.
Non-regression test for #21685 and #21228."""
rng = np.random.RandomState(0)
X = rng.random_sample((10, 3))
tree = BinarySearchTree(X, leaf_size=2)
# Call Parallel with max_nbytes=1 to trigger readonly memory mapping that
# use to raise "ValueError: buffer source array is read-only" in a previous
# version of the Cython code.
Parallel(n_jobs=2, max_nbytes=1)(delayed(tree.query)(data) for data in 2 * [X])
|
Make sure that KDTree queries work when joblib memmaps.
Non-regression test for #21685 and #21228.
|
test_kdtree_picklable_with_joblib
|
python
|
scikit-learn/scikit-learn
|
sklearn/neighbors/tests/test_kd_tree.py
|
https://github.com/scikit-learn/scikit-learn/blob/master/sklearn/neighbors/tests/test_kd_tree.py
|
BSD-3-Clause
|
Subsets and Splits
No community queries yet
The top public SQL queries from the community will appear here once available.