code
stringlengths 24
2.07M
| docstring
stringlengths 25
85.3k
| func_name
stringlengths 1
92
| language
stringclasses 1
value | repo
stringlengths 5
64
| path
stringlengths 4
172
| url
stringlengths 44
218
| license
stringclasses 7
values |
---|---|---|---|---|---|---|---|
function _import(name, value, options) {
// TODO: refactor this function, it's to complicated and contains duplicate code
if (options.wrap && typeof value === 'function') {
// create a wrapper around the function
value = _wrap(value);
}
if (isTypedFunction(math[name]) && isTypedFunction(value)) {
if (options.override) {
// give the typed function the right name
value = typed(name, value.signatures);
} else {
// merge the existing and typed function
value = typed(math[name], value);
}
math[name] = value;
_importTransform(name, value);
math.emit('import', name, function resolver() {
return value;
});
return;
}
if (math[name] === undefined || options.override) {
math[name] = value;
_importTransform(name, value);
math.emit('import', name, function resolver() {
return value;
});
return;
}
if (!options.silent) {
throw new Error('Cannot import "' + name + '": already exists');
}
}
|
Add a property to the math namespace and create a chain proxy for it.
@param {string} name
@param {*} value
@param {Object} options See import for a description of the options
@private
|
_import
|
javascript
|
grimalschi/calque
|
math.js
|
https://github.com/grimalschi/calque/blob/master/math.js
|
MIT
|
function _importTransform(name, value) {
if (value && typeof value.transform === 'function') {
math.expression.transform[name] = value.transform;
if (allowedInExpressions(name)) {
math.expression.mathWithTransform[name] = value.transform;
}
} else {
// remove existing transform
delete math.expression.transform[name];
if (allowedInExpressions(name)) {
math.expression.mathWithTransform[name] = value;
}
}
}
|
Add a property to the math namespace and create a chain proxy for it.
@param {string} name
@param {*} value
@param {Object} options See import for a description of the options
@private
|
_importTransform
|
javascript
|
grimalschi/calque
|
math.js
|
https://github.com/grimalschi/calque/blob/master/math.js
|
MIT
|
function _deleteTransform(name) {
delete math.expression.transform[name];
if (allowedInExpressions(name)) {
math.expression.mathWithTransform[name] = math[name];
} else {
delete math.expression.mathWithTransform[name];
}
}
|
Add a property to the math namespace and create a chain proxy for it.
@param {string} name
@param {*} value
@param {Object} options See import for a description of the options
@private
|
_deleteTransform
|
javascript
|
grimalschi/calque
|
math.js
|
https://github.com/grimalschi/calque/blob/master/math.js
|
MIT
|
function _importFactory(factory, options) {
if (typeof factory.name === 'string') {
var name = factory.name;
var existingTransform = name in math.expression.transform;
var namespace = factory.path ? traverse(math, factory.path) : math;
var existing = namespace.hasOwnProperty(name) ? namespace[name] : undefined;
var resolver = function resolver() {
var instance = load(factory);
if (instance && typeof instance.transform === 'function') {
throw new Error('Transforms cannot be attached to factory functions. ' + 'Please create a separate function for it with exports.path="expression.transform"');
}
if (isTypedFunction(existing) && isTypedFunction(instance)) {
if (options.override) {// replace the existing typed function (nothing to do)
} else {
// merge the existing and new typed function
instance = typed(existing, instance);
}
return instance;
}
if (existing === undefined || options.override) {
return instance;
}
if (!options.silent) {
throw new Error('Cannot import "' + name + '": already exists');
}
};
if (factory.lazy !== false) {
lazy(namespace, name, resolver);
if (existingTransform) {
_deleteTransform(name);
} else {
if (factory.path === 'expression.transform' || factoryAllowedInExpressions(factory)) {
lazy(math.expression.mathWithTransform, name, resolver);
}
}
} else {
namespace[name] = resolver();
if (existingTransform) {
_deleteTransform(name);
} else {
if (factory.path === 'expression.transform' || factoryAllowedInExpressions(factory)) {
math.expression.mathWithTransform[name] = resolver();
}
}
}
math.emit('import', name, resolver, factory.path);
} else {
// unnamed factory.
// no lazy loading
load(factory);
}
}
|
Import an instance of a factory into math.js
@param {{factory: Function, name: string, path: string, math: boolean}} factory
@param {Object} options See import for a description of the options
@private
|
_importFactory
|
javascript
|
grimalschi/calque
|
math.js
|
https://github.com/grimalschi/calque/blob/master/math.js
|
MIT
|
resolver = function resolver() {
var instance = load(factory);
if (instance && typeof instance.transform === 'function') {
throw new Error('Transforms cannot be attached to factory functions. ' + 'Please create a separate function for it with exports.path="expression.transform"');
}
if (isTypedFunction(existing) && isTypedFunction(instance)) {
if (options.override) {// replace the existing typed function (nothing to do)
} else {
// merge the existing and new typed function
instance = typed(existing, instance);
}
return instance;
}
if (existing === undefined || options.override) {
return instance;
}
if (!options.silent) {
throw new Error('Cannot import "' + name + '": already exists');
}
}
|
Import an instance of a factory into math.js
@param {{factory: Function, name: string, path: string, math: boolean}} factory
@param {Object} options See import for a description of the options
@private
|
resolver
|
javascript
|
grimalschi/calque
|
math.js
|
https://github.com/grimalschi/calque/blob/master/math.js
|
MIT
|
function isSupportedType(object) {
return typeof object === 'function' || typeof object === 'number' || typeof object === 'string' || typeof object === 'boolean' || object === null || object && type.isUnit(object) || object && type.isComplex(object) || object && type.isBigNumber(object) || object && type.isFraction(object) || object && type.isMatrix(object) || object && Array.isArray(object);
}
|
Check whether given object is a type which can be imported
@param {Function | number | string | boolean | null | Unit | Complex} object
@return {boolean}
@private
|
isSupportedType
|
javascript
|
grimalschi/calque
|
math.js
|
https://github.com/grimalschi/calque/blob/master/math.js
|
MIT
|
function isTypedFunction(fn) {
return typeof fn === 'function' && _typeof(fn.signatures) === 'object';
}
|
Test whether a given thing is a typed-function
@param {*} fn
@return {boolean} Returns true when `fn` is a typed-function
|
isTypedFunction
|
javascript
|
grimalschi/calque
|
math.js
|
https://github.com/grimalschi/calque/blob/master/math.js
|
MIT
|
function allowedInExpressions(name) {
return !unsafe.hasOwnProperty(name);
}
|
Test whether a given thing is a typed-function
@param {*} fn
@return {boolean} Returns true when `fn` is a typed-function
|
allowedInExpressions
|
javascript
|
grimalschi/calque
|
math.js
|
https://github.com/grimalschi/calque/blob/master/math.js
|
MIT
|
function factoryAllowedInExpressions(factory) {
return factory.path === undefined && !unsafe.hasOwnProperty(factory.name);
} // namespaces and functions not available in the parser for safety reasons
|
Test whether a given thing is a typed-function
@param {*} fn
@return {boolean} Returns true when `fn` is a typed-function
|
factoryAllowedInExpressions
|
javascript
|
grimalschi/calque
|
math.js
|
https://github.com/grimalschi/calque/blob/master/math.js
|
MIT
|
function contains(array, item) {
return array.indexOf(item) !== -1;
}
|
Test whether an Array contains a specific item.
@param {Array.<string>} array
@param {string} item
@return {boolean}
|
contains
|
javascript
|
grimalschi/calque
|
math.js
|
https://github.com/grimalschi/calque/blob/master/math.js
|
MIT
|
function findIndex(array, item) {
return array.map(function (i) {
return i.toLowerCase();
}).indexOf(item.toLowerCase());
}
|
Find a string in an array. Case insensitive search
@param {Array.<string>} array
@param {string} item
@return {number} Returns the index when found. Returns -1 when not found
|
findIndex
|
javascript
|
grimalschi/calque
|
math.js
|
https://github.com/grimalschi/calque/blob/master/math.js
|
MIT
|
function validateOption(options, name, values) {
if (options[name] !== undefined && !contains(values, options[name])) {
var index = findIndex(values, options[name]);
if (index !== -1) {
// right value, wrong casing
// TODO: lower case values are deprecated since v3, remove this warning some day.
console.warn('Warning: Wrong casing for configuration option "' + name + '", should be "' + values[index] + '" instead of "' + options[name] + '".');
options[name] = values[index]; // change the option to the right casing
} else {
// unknown value
console.warn('Warning: Unknown value "' + options[name] + '" for configuration option "' + name + '". Available options: ' + values.map(JSON.stringify).join(', ') + '.');
}
}
}
|
Validate an option
@param {Object} options Object with options
@param {string} name Name of the option to validate
@param {Array.<string>} values Array with valid values for this option
|
validateOption
|
javascript
|
grimalschi/calque
|
math.js
|
https://github.com/grimalschi/calque/blob/master/math.js
|
MIT
|
function Chain(value) {
if (!(this instanceof Chain)) {
throw new SyntaxError('Constructor must be called with the new operator');
}
if (type.isChain(value)) {
this.value = value.value;
} else {
this.value = value;
}
}
|
@constructor Chain
Wrap any value in a chain, allowing to perform chained operations on
the value.
All methods available in the math.js library can be called upon the chain,
and then will be evaluated with the value itself as first argument.
The chain can be closed by executing chain.done(), which will return
the final value.
The Chain has a number of special functions:
- done() Finalize the chained operation and return the
chain's value.
- valueOf() The same as done()
- toString() Returns a string representation of the chain's value.
@param {*} [value]
|
Chain
|
javascript
|
grimalschi/calque
|
math.js
|
https://github.com/grimalschi/calque/blob/master/math.js
|
MIT
|
function createProxy(name, fn) {
if (typeof fn === 'function') {
Chain.prototype[name] = chainify(fn);
}
}
|
Create a proxy method for the chain
@param {string} name
@param {Function} fn The function to be proxied
If fn is no function, it is silently ignored.
@private
|
createProxy
|
javascript
|
grimalschi/calque
|
math.js
|
https://github.com/grimalschi/calque/blob/master/math.js
|
MIT
|
function createLazyProxy(name, resolver) {
lazy(Chain.prototype, name, function outerResolver() {
var fn = resolver();
if (typeof fn === 'function') {
return chainify(fn);
}
return undefined; // if not a function, ignore
});
}
|
Create a proxy method for the chain
@param {string} name
@param {function} resolver The function resolving with the
function to be proxied
@private
|
createLazyProxy
|
javascript
|
grimalschi/calque
|
math.js
|
https://github.com/grimalschi/calque/blob/master/math.js
|
MIT
|
function chainify(fn) {
return function () {
var args = [this.value]; // `this` will be the context of a Chain instance
for (var i = 0; i < arguments.length; i++) {
args[i + 1] = arguments[i];
}
return new Chain(fn.apply(fn, args));
};
}
|
Make a function chainable
@param {function} fn
@return {Function} chain function
@private
|
chainify
|
javascript
|
grimalschi/calque
|
math.js
|
https://github.com/grimalschi/calque/blob/master/math.js
|
MIT
|
cosh = function(x) {
return (Math.exp(x) + Math.exp(-x)) * 0.5;
}
|
This class allows the manipulation of complex numbers.
You can pass a complex number in different formats. Either as object, double, string or two integer parameters.
Object form
{ re: <real>, im: <imaginary> }
{ arg: <angle>, abs: <radius> }
{ phi: <angle>, r: <radius> }
Array / Vector form
[ real, imaginary ]
Double form
99.3 - Single double value
String form
'23.1337' - Simple real number
'15+3i' - a simple complex number
'3-i' - a simple complex number
Example:
var c = new Complex('99.3+8i');
c.mul({r: 3, i: 9}).div(4.9).sub(3, 2);
|
cosh
|
javascript
|
grimalschi/calque
|
math.js
|
https://github.com/grimalschi/calque/blob/master/math.js
|
MIT
|
sinh = function(x) {
return (Math.exp(x) - Math.exp(-x)) * 0.5;
}
|
This class allows the manipulation of complex numbers.
You can pass a complex number in different formats. Either as object, double, string or two integer parameters.
Object form
{ re: <real>, im: <imaginary> }
{ arg: <angle>, abs: <radius> }
{ phi: <angle>, r: <radius> }
Array / Vector form
[ real, imaginary ]
Double form
99.3 - Single double value
String form
'23.1337' - Simple real number
'15+3i' - a simple complex number
'3-i' - a simple complex number
Example:
var c = new Complex('99.3+8i');
c.mul({r: 3, i: 9}).div(4.9).sub(3, 2);
|
sinh
|
javascript
|
grimalschi/calque
|
math.js
|
https://github.com/grimalschi/calque/blob/master/math.js
|
MIT
|
cosm1 = function(x) {
var limit = Math.PI/4;
if (x < -limit || x > limit) {
return (Math.cos(x) - 1.0);
}
var xx = x * x;
return xx *
(-0.5 + xx *
(1/24 + xx *
(-1/720 + xx *
(1/40320 + xx *
(-1/3628800 + xx *
(1/4790014600 + xx *
(-1/87178291200 + xx *
(1/20922789888000)
)
)
)
)
)
)
)
}
|
Calculates cos(x) - 1 using Taylor series if x is small.
@param {number} x
@returns {number} cos(x) - 1
|
cosm1
|
javascript
|
grimalschi/calque
|
math.js
|
https://github.com/grimalschi/calque/blob/master/math.js
|
MIT
|
hypot = function(x, y) {
var a = Math.abs(x);
var b = Math.abs(y);
if (a < 3000 && b < 3000) {
return Math.sqrt(a * a + b * b);
}
if (a < b) {
a = b;
b = x / y;
} else {
b = y / x;
}
return a * Math.sqrt(1 + b * b);
}
|
Calculates cos(x) - 1 using Taylor series if x is small.
@param {number} x
@returns {number} cos(x) - 1
|
hypot
|
javascript
|
grimalschi/calque
|
math.js
|
https://github.com/grimalschi/calque/blob/master/math.js
|
MIT
|
parser_exit = function() {
throw SyntaxError('Invalid Param');
}
|
Calculates cos(x) - 1 using Taylor series if x is small.
@param {number} x
@returns {number} cos(x) - 1
|
parser_exit
|
javascript
|
grimalschi/calque
|
math.js
|
https://github.com/grimalschi/calque/blob/master/math.js
|
MIT
|
parse = function(a, b) {
var z = {'re': 0, 'im': 0};
if (a === undefined || a === null) {
z['re'] =
z['im'] = 0;
} else if (b !== undefined) {
z['re'] = a;
z['im'] = b;
} else
switch (typeof a) {
case 'object':
if ('im' in a && 're' in a) {
z['re'] = a['re'];
z['im'] = a['im'];
} else if ('abs' in a && 'arg' in a) {
if (!Number.isFinite(a['abs']) && Number.isFinite(a['arg'])) {
return Complex['INFINITY'];
}
z['re'] = a['abs'] * Math.cos(a['arg']);
z['im'] = a['abs'] * Math.sin(a['arg']);
} else if ('r' in a && 'phi' in a) {
if (!Number.isFinite(a['r']) && Number.isFinite(a['phi'])) {
return Complex['INFINITY'];
}
z['re'] = a['r'] * Math.cos(a['phi']);
z['im'] = a['r'] * Math.sin(a['phi']);
} else if (a.length === 2) { // Quick array check
z['re'] = a[0];
z['im'] = a[1];
} else {
parser_exit();
}
break;
case 'string':
z['im'] = /* void */
z['re'] = 0;
var tokens = a.match(/\d+\.?\d*e[+-]?\d+|\d+\.?\d*|\.\d+|./g);
var plus = 1;
var minus = 0;
if (tokens === null) {
parser_exit();
}
for (var i = 0; i < tokens.length; i++) {
var c = tokens[i];
if (c === ' ' || c === '\t' || c === '\n') {
/* void */
} else if (c === '+') {
plus++;
} else if (c === '-') {
minus++;
} else if (c === 'i' || c === 'I') {
if (plus + minus === 0) {
parser_exit();
}
if (tokens[i + 1] !== ' ' && !isNaN(tokens[i + 1])) {
z['im'] += parseFloat((minus % 2 ? '-' : '') + tokens[i + 1]);
i++;
} else {
z['im'] += parseFloat((minus % 2 ? '-' : '') + '1');
}
plus = minus = 0;
} else {
if (plus + minus === 0 || isNaN(c)) {
parser_exit();
}
if (tokens[i + 1] === 'i' || tokens[i + 1] === 'I') {
z['im'] += parseFloat((minus % 2 ? '-' : '') + c);
i++;
} else {
z['re'] += parseFloat((minus % 2 ? '-' : '') + c);
}
plus = minus = 0;
}
}
// Still something on the stack
if (plus + minus > 0) {
parser_exit();
}
break;
case 'number':
z['im'] = 0;
z['re'] = a;
break;
default:
parser_exit();
}
if (isNaN(z['re']) || isNaN(z['im'])) {
// If a calculation is NaN, we treat it as NaN and don't throw
//parser_exit();
}
return z;
}
|
Calculates log(sqrt(a^2+b^2)) in a way to avoid overflows
@param {number} a
@param {number} b
@returns {number}
|
parse
|
javascript
|
grimalschi/calque
|
math.js
|
https://github.com/grimalschi/calque/blob/master/math.js
|
MIT
|
_loop = function _loop() {
var specialCharFound = false;
escapeKeys.forEach(function (key, index) {
if (specialCharFound) {
return;
}
if (runningStr.length >= key.length && runningStr.slice(0, key.length) === key) {
result += escapes[escapeKeys[index]];
runningStr = runningStr.slice(key.length, runningStr.length);
specialCharFound = true;
}
});
if (!specialCharFound) {
result += runningStr.slice(0, 1);
runningStr = runningStr.slice(1, runningStr.length);
}
}
|
Escape a string to be used in LaTeX documents.
@param {string} str the string to be escaped.
@param {boolean} params.preserveFormatting whether formatting escapes should
be performed (default: false).
@param {function} params.escapeMapFn the function to modify the escape maps.
@return {string} the escaped string, ready to be used in LaTeX.
|
_loop
|
javascript
|
grimalschi/calque
|
math.js
|
https://github.com/grimalschi/calque/blob/master/math.js
|
MIT
|
function factory(type, config, load, typed) {
return Fraction;
}
|
Instantiate a Fraction from a JSON object
@param {Object} json a JSON object structured as:
`{"mathjs": "Fraction", "n": 3, "d": 8}`
@return {BigNumber}
|
factory
|
javascript
|
grimalschi/calque
|
math.js
|
https://github.com/grimalschi/calque/blob/master/math.js
|
MIT
|
function createError(name) {
function errorConstructor() {
var temp = Error.apply(this, arguments);
temp['name'] = this['name'] = name;
this['stack'] = temp['stack'];
this['message'] = temp['message'];
}
/**
* Error constructor
*
* @constructor
*/
function IntermediateInheritor() {}
IntermediateInheritor.prototype = Error.prototype;
errorConstructor.prototype = new IntermediateInheritor();
return errorConstructor;
}
|
This class offers the possibility to calculate fractions.
You can pass a fraction in different formats. Either as array, as double, as string or as an integer.
Array/Object form
[ 0 => <nominator>, 1 => <denominator> ]
[ n => <nominator>, d => <denominator> ]
Integer form
- Single integer value
Double form
- Single double value
String form
123.456 - a simple double
123/456 - a string fraction
123.'456' - a double with repeating decimal places
123.(456) - synonym
123.45'6' - a double with repeating last place
123.45(6) - synonym
Example:
var f = new Fraction("9.4'31'");
f.mul([-4, 3]).div(4.9);
|
createError
|
javascript
|
grimalschi/calque
|
math.js
|
https://github.com/grimalschi/calque/blob/master/math.js
|
MIT
|
function errorConstructor() {
var temp = Error.apply(this, arguments);
temp['name'] = this['name'] = name;
this['stack'] = temp['stack'];
this['message'] = temp['message'];
}
|
This class offers the possibility to calculate fractions.
You can pass a fraction in different formats. Either as array, as double, as string or as an integer.
Array/Object form
[ 0 => <nominator>, 1 => <denominator> ]
[ n => <nominator>, d => <denominator> ]
Integer form
- Single integer value
Double form
- Single double value
String form
123.456 - a simple double
123/456 - a string fraction
123.'456' - a double with repeating decimal places
123.(456) - synonym
123.45'6' - a double with repeating last place
123.45(6) - synonym
Example:
var f = new Fraction("9.4'31'");
f.mul([-4, 3]).div(4.9);
|
errorConstructor
|
javascript
|
grimalschi/calque
|
math.js
|
https://github.com/grimalschi/calque/blob/master/math.js
|
MIT
|
function Fraction(a, b) {
if (!(this instanceof Fraction)) {
return new Fraction(a, b);
}
parse(a, b);
if (Fraction['REDUCE']) {
a = gcd(P["d"], P["n"]); // Abuse a
} else {
a = 1;
}
this["s"] = P["s"];
this["n"] = P["n"] / a;
this["d"] = P["d"] / a;
}
|
Module constructor
@constructor
@param {number|Fraction=} a
@param {number=} b
|
Fraction
|
javascript
|
grimalschi/calque
|
math.js
|
https://github.com/grimalschi/calque/blob/master/math.js
|
MIT
|
function rec(a) {
if (a.length === 1)
return new Fraction(a[0]);
return rec(a.slice(1))['inverse']()['add'](a[0]);
}
|
Check if two rational numbers are the same
Ex: new Fraction(19.6).equals([98, 5]);
|
rec
|
javascript
|
grimalschi/calque
|
math.js
|
https://github.com/grimalschi/calque/blob/master/math.js
|
MIT
|
function SparseMatrix(data, datatype) {
if (!(this instanceof SparseMatrix)) {
throw new SyntaxError('Constructor must be called with the new operator');
}
if (datatype && !isString(datatype)) {
throw new Error('Invalid datatype: ' + datatype);
}
if (type.isMatrix(data)) {
// create from matrix
_createFromMatrix(this, data, datatype);
} else if (data && isArray(data.index) && isArray(data.ptr) && isArray(data.size)) {
// initialize fields
this._values = data.values;
this._index = data.index;
this._ptr = data.ptr;
this._size = data.size;
this._datatype = datatype || data.datatype;
} else if (isArray(data)) {
// create from array
_createFromArray(this, data, datatype);
} else if (data) {
// unsupported type
throw new TypeError('Unsupported type of data (' + util.types.type(data) + ')');
} else {
// nothing provided
this._values = [];
this._index = [];
this._ptr = [0];
this._size = [0, 0];
this._datatype = datatype;
}
}
|
Sparse Matrix implementation. This type implements a Compressed Column Storage format
for sparse matrices.
@class SparseMatrix
|
SparseMatrix
|
javascript
|
grimalschi/calque
|
math.js
|
https://github.com/grimalschi/calque/blob/master/math.js
|
MIT
|
function _createFromMatrix(matrix, source, datatype) {
// check matrix type
if (source.type === 'SparseMatrix') {
// clone arrays
matrix._values = source._values ? object.clone(source._values) : undefined;
matrix._index = object.clone(source._index);
matrix._ptr = object.clone(source._ptr);
matrix._size = object.clone(source._size);
matrix._datatype = datatype || source._datatype;
} else {
// build from matrix data
_createFromArray(matrix, source.valueOf(), datatype || source._datatype);
}
}
|
Sparse Matrix implementation. This type implements a Compressed Column Storage format
for sparse matrices.
@class SparseMatrix
|
_createFromMatrix
|
javascript
|
grimalschi/calque
|
math.js
|
https://github.com/grimalschi/calque/blob/master/math.js
|
MIT
|
function _createFromArray(matrix, data, datatype) {
// initialize fields
matrix._values = [];
matrix._index = [];
matrix._ptr = [];
matrix._datatype = datatype; // discover rows & columns, do not use math.size() to avoid looping array twice
var rows = data.length;
var columns = 0; // equal signature to use
var eq = equalScalar; // zero value
var zero = 0;
if (isString(datatype)) {
// find signature that matches (datatype, datatype)
eq = typed.find(equalScalar, [datatype, datatype]) || equalScalar; // convert 0 to the same datatype
zero = typed.convert(0, datatype);
} // check we have rows (empty array)
if (rows > 0) {
// column index
var j = 0;
do {
// store pointer to values index
matrix._ptr.push(matrix._index.length); // loop rows
for (var i = 0; i < rows; i++) {
// current row
var row = data[i]; // check row is an array
if (isArray(row)) {
// update columns if needed (only on first column)
if (j === 0 && columns < row.length) {
columns = row.length;
} // check row has column
if (j < row.length) {
// value
var v = row[j]; // check value != 0
if (!eq(v, zero)) {
// store value
matrix._values.push(v); // index
matrix._index.push(i);
}
}
} else {
// update columns if needed (only on first column)
if (j === 0 && columns < 1) {
columns = 1;
} // check value != 0 (row is a scalar)
if (!eq(row, zero)) {
// store value
matrix._values.push(row); // index
matrix._index.push(i);
}
}
} // increment index
j++;
} while (j < columns);
} // store number of values in ptr
matrix._ptr.push(matrix._index.length); // size
matrix._size = [rows, columns];
}
|
Sparse Matrix implementation. This type implements a Compressed Column Storage format
for sparse matrices.
@class SparseMatrix
|
_createFromArray
|
javascript
|
grimalschi/calque
|
math.js
|
https://github.com/grimalschi/calque/blob/master/math.js
|
MIT
|
function _getsubset(matrix, idx) {
// check idx
if (!type.isIndex(idx)) {
throw new TypeError('Invalid index');
}
var isScalar = idx.isScalar();
if (isScalar) {
// return a scalar
return matrix.get(idx.min());
} // validate dimensions
var size = idx.size();
if (size.length !== matrix._size.length) {
throw new DimensionError(size.length, matrix._size.length);
} // vars
var i, ii, k, kk; // validate if any of the ranges in the index is out of range
var min = idx.min();
var max = idx.max();
for (i = 0, ii = matrix._size.length; i < ii; i++) {
validateIndex(min[i], matrix._size[i]);
validateIndex(max[i], matrix._size[i]);
} // matrix arrays
var mvalues = matrix._values;
var mindex = matrix._index;
var mptr = matrix._ptr; // rows & columns dimensions for result matrix
var rows = idx.dimension(0);
var columns = idx.dimension(1); // workspace & permutation vector
var w = [];
var pv = []; // loop rows in resulting matrix
rows.forEach(function (i, r) {
// update permutation vector
pv[i] = r[0]; // mark i in workspace
w[i] = true;
}); // result matrix arrays
var values = mvalues ? [] : undefined;
var index = [];
var ptr = []; // loop columns in result matrix
columns.forEach(function (j) {
// update ptr
ptr.push(index.length); // loop values in column j
for (k = mptr[j], kk = mptr[j + 1]; k < kk; k++) {
// row
i = mindex[k]; // check row is in result matrix
if (w[i] === true) {
// push index
index.push(pv[i]); // check we need to process values
if (values) {
values.push(mvalues[k]);
}
}
}
}); // update ptr
ptr.push(index.length); // return matrix
return new SparseMatrix({
values: values,
index: index,
ptr: ptr,
size: size,
datatype: matrix._datatype
});
}
|
Get a subset of the matrix, or replace a subset of the matrix.
Usage:
const subset = matrix.subset(index) // retrieve subset
const value = matrix.subset(index, replacement) // replace subset
@memberof SparseMatrix
@param {Index} index
@param {Array | Matrix | *} [replacement]
@param {*} [defaultValue=0] Default value, filled in on new entries when
the matrix is resized. If not provided,
new matrix elements will be filled with zeros.
|
_getsubset
|
javascript
|
grimalschi/calque
|
math.js
|
https://github.com/grimalschi/calque/blob/master/math.js
|
MIT
|
function _setsubset(matrix, index, submatrix, defaultValue) {
// check index
if (!index || index.isIndex !== true) {
throw new TypeError('Invalid index');
} // get index size and check whether the index contains a single value
var iSize = index.size();
var isScalar = index.isScalar(); // calculate the size of the submatrix, and convert it into an Array if needed
var sSize;
if (type.isMatrix(submatrix)) {
// submatrix size
sSize = submatrix.size(); // use array representation
submatrix = submatrix.toArray();
} else {
// get submatrix size (array, scalar)
sSize = array.size(submatrix);
} // check index is a scalar
if (isScalar) {
// verify submatrix is a scalar
if (sSize.length !== 0) {
throw new TypeError('Scalar expected');
} // set value
matrix.set(index.min(), submatrix, defaultValue);
} else {
// validate dimensions, index size must be one or two dimensions
if (iSize.length !== 1 && iSize.length !== 2) {
throw new DimensionError(iSize.length, matrix._size.length, '<');
} // check submatrix and index have the same dimensions
if (sSize.length < iSize.length) {
// calculate number of missing outer dimensions
var i = 0;
var outer = 0;
while (iSize[i] === 1 && sSize[i] === 1) {
i++;
}
while (iSize[i] === 1) {
outer++;
i++;
} // unsqueeze both outer and inner dimensions
submatrix = array.unsqueeze(submatrix, iSize.length, outer, sSize);
} // check whether the size of the submatrix matches the index size
if (!object.deepEqual(iSize, sSize)) {
throw new DimensionError(iSize, sSize, '>');
} // offsets
var x0 = index.min()[0];
var y0 = index.min()[1]; // submatrix rows and columns
var m = sSize[0];
var n = sSize[1]; // loop submatrix
for (var x = 0; x < m; x++) {
// loop columns
for (var y = 0; y < n; y++) {
// value at i, j
var v = submatrix[x][y]; // invoke set (zero value will remove entry from matrix)
matrix.set([x + x0, y + y0], v, defaultValue);
}
}
}
return matrix;
}
|
Get a subset of the matrix, or replace a subset of the matrix.
Usage:
const subset = matrix.subset(index) // retrieve subset
const value = matrix.subset(index, replacement) // replace subset
@memberof SparseMatrix
@param {Index} index
@param {Array | Matrix | *} [replacement]
@param {*} [defaultValue=0] Default value, filled in on new entries when
the matrix is resized. If not provided,
new matrix elements will be filled with zeros.
|
_setsubset
|
javascript
|
grimalschi/calque
|
math.js
|
https://github.com/grimalschi/calque/blob/master/math.js
|
MIT
|
function _getValueIndex(i, top, bottom, index) {
// check row is on the bottom side
if (bottom - top === 0) {
return bottom;
} // loop rows [top, bottom[
for (var r = top; r < bottom; r++) {
// check we found value index
if (index[r] === i) {
return r;
}
} // we did not find row
return top;
}
|
Replace a single element in the matrix.
@memberof SparseMatrix
@param {number[]} index Zero-based index
@param {*} v
@param {*} [defaultValue] Default value, filled in on new entries when
the matrix is resized. If not provided,
new matrix elements will be set to zero.
@return {SparseMatrix} self
|
_getValueIndex
|
javascript
|
grimalschi/calque
|
math.js
|
https://github.com/grimalschi/calque/blob/master/math.js
|
MIT
|
function _remove(k, j, values, index, ptr) {
// remove value @ k
values.splice(k, 1);
index.splice(k, 1); // update pointers
for (var x = j + 1; x < ptr.length; x++) {
ptr[x]--;
}
}
|
Replace a single element in the matrix.
@memberof SparseMatrix
@param {number[]} index Zero-based index
@param {*} v
@param {*} [defaultValue] Default value, filled in on new entries when
the matrix is resized. If not provided,
new matrix elements will be set to zero.
@return {SparseMatrix} self
|
_remove
|
javascript
|
grimalschi/calque
|
math.js
|
https://github.com/grimalschi/calque/blob/master/math.js
|
MIT
|
function _insert(k, i, j, v, values, index, ptr) {
// insert value
values.splice(k, 0, v); // update row for k
index.splice(k, 0, i); // update column pointers
for (var x = j + 1; x < ptr.length; x++) {
ptr[x]++;
}
}
|
Replace a single element in the matrix.
@memberof SparseMatrix
@param {number[]} index Zero-based index
@param {*} v
@param {*} [defaultValue] Default value, filled in on new entries when
the matrix is resized. If not provided,
new matrix elements will be set to zero.
@return {SparseMatrix} self
|
_insert
|
javascript
|
grimalschi/calque
|
math.js
|
https://github.com/grimalschi/calque/blob/master/math.js
|
MIT
|
function _resize(matrix, rows, columns, defaultValue) {
// value to insert at the time of growing matrix
var value = defaultValue || 0; // equal signature to use
var eq = equalScalar; // zero value
var zero = 0;
if (isString(matrix._datatype)) {
// find signature that matches (datatype, datatype)
eq = typed.find(equalScalar, [matrix._datatype, matrix._datatype]) || equalScalar; // convert 0 to the same datatype
zero = typed.convert(0, matrix._datatype); // convert value to the same datatype
value = typed.convert(value, matrix._datatype);
} // should we insert the value?
var ins = !eq(value, zero); // old columns and rows
var r = matrix._size[0];
var c = matrix._size[1];
var i, j, k; // check we need to increase columns
if (columns > c) {
// loop new columns
for (j = c; j < columns; j++) {
// update matrix._ptr for current column
matrix._ptr[j] = matrix._values.length; // check we need to insert matrix._values
if (ins) {
// loop rows
for (i = 0; i < r; i++) {
// add new matrix._values
matrix._values.push(value); // update matrix._index
matrix._index.push(i);
}
}
} // store number of matrix._values in matrix._ptr
matrix._ptr[columns] = matrix._values.length;
} else if (columns < c) {
// truncate matrix._ptr
matrix._ptr.splice(columns + 1, c - columns); // truncate matrix._values and matrix._index
matrix._values.splice(matrix._ptr[columns], matrix._values.length);
matrix._index.splice(matrix._ptr[columns], matrix._index.length);
} // update columns
c = columns; // check we need to increase rows
if (rows > r) {
// check we have to insert values
if (ins) {
// inserts
var n = 0; // loop columns
for (j = 0; j < c; j++) {
// update matrix._ptr for current column
matrix._ptr[j] = matrix._ptr[j] + n; // where to insert matrix._values
k = matrix._ptr[j + 1] + n; // pointer
var p = 0; // loop new rows, initialize pointer
for (i = r; i < rows; i++, p++) {
// add value
matrix._values.splice(k + p, 0, value); // update matrix._index
matrix._index.splice(k + p, 0, i); // increment inserts
n++;
}
} // store number of matrix._values in matrix._ptr
matrix._ptr[c] = matrix._values.length;
}
} else if (rows < r) {
// deletes
var d = 0; // loop columns
for (j = 0; j < c; j++) {
// update matrix._ptr for current column
matrix._ptr[j] = matrix._ptr[j] - d; // where matrix._values start for next column
var k0 = matrix._ptr[j];
var k1 = matrix._ptr[j + 1] - d; // loop matrix._index
for (k = k0; k < k1; k++) {
// row
i = matrix._index[k]; // check we need to delete value and matrix._index
if (i > rows - 1) {
// remove value
matrix._values.splice(k, 1); // remove item from matrix._index
matrix._index.splice(k, 1); // increase deletes
d++;
}
}
} // update matrix._ptr for current column
matrix._ptr[j] = matrix._values.length;
} // update matrix._size
matrix._size[0] = rows;
matrix._size[1] = columns; // return matrix
return matrix;
}
|
Resize the matrix to the given size. Returns a copy of the matrix when
`copy=true`, otherwise return the matrix itself (resize in place).
@memberof SparseMatrix
@param {number[]} size The new size the matrix should have.
@param {*} [defaultValue=0] Default value, filled in on new entries.
If not provided, the matrix elements will
be filled with zeros.
@param {boolean} [copy] Return a resized copy of the matrix
@return {Matrix} The resized matrix
|
_resize
|
javascript
|
grimalschi/calque
|
math.js
|
https://github.com/grimalschi/calque/blob/master/math.js
|
MIT
|
invoke = function invoke(v, i, j) {
// invoke callback
return callback(v, [i, j], me);
}
|
Create a new matrix with the results of the callback function executed on
each entry of the matrix.
@memberof SparseMatrix
@param {Function} callback The callback function is invoked with three
parameters: the value of the element, the index
of the element, and the Matrix being traversed.
@param {boolean} [skipZeros] Invoke callback function for non-zero values only.
@return {SparseMatrix} matrix
|
invoke
|
javascript
|
grimalschi/calque
|
math.js
|
https://github.com/grimalschi/calque/blob/master/math.js
|
MIT
|
function _map(matrix, minRow, maxRow, minColumn, maxColumn, callback, skipZeros) {
// result arrays
var values = [];
var index = [];
var ptr = []; // equal signature to use
var eq = equalScalar; // zero value
var zero = 0;
if (isString(matrix._datatype)) {
// find signature that matches (datatype, datatype)
eq = typed.find(equalScalar, [matrix._datatype, matrix._datatype]) || equalScalar; // convert 0 to the same datatype
zero = typed.convert(0, matrix._datatype);
} // invoke callback
var invoke = function invoke(v, x, y) {
// invoke callback
v = callback(v, x, y); // check value != 0
if (!eq(v, zero)) {
// store value
values.push(v); // index
index.push(x);
}
}; // loop columns
for (var j = minColumn; j <= maxColumn; j++) {
// store pointer to values index
ptr.push(values.length); // k0 <= k < k1 where k0 = _ptr[j] && k1 = _ptr[j+1]
var k0 = matrix._ptr[j];
var k1 = matrix._ptr[j + 1];
if (skipZeros) {
// loop k within [k0, k1[
for (var k = k0; k < k1; k++) {
// row index
var i = matrix._index[k]; // check i is in range
if (i >= minRow && i <= maxRow) {
// value @ k
invoke(matrix._values[k], i - minRow, j - minColumn);
}
}
} else {
// create a cache holding all defined values
var _values = {};
for (var _k = k0; _k < k1; _k++) {
var _i4 = matrix._index[_k];
_values[_i4] = matrix._values[_k];
} // loop over all rows (indexes can be unordered so we can't use that),
// and either read the value or zero
for (var _i5 = minRow; _i5 <= maxRow; _i5++) {
var value = _i5 in _values ? _values[_i5] : 0;
invoke(value, _i5 - minRow, j - minColumn);
}
}
} // store number of values in ptr
ptr.push(values.length); // return sparse matrix
return new SparseMatrix({
values: values,
index: index,
ptr: ptr,
size: [maxRow - minRow + 1, maxColumn - minColumn + 1]
});
}
|
Create a new matrix with the results of the callback function executed on the interval
[minRow..maxRow, minColumn..maxColumn].
|
_map
|
javascript
|
grimalschi/calque
|
math.js
|
https://github.com/grimalschi/calque/blob/master/math.js
|
MIT
|
invoke = function invoke(v, x, y) {
// invoke callback
v = callback(v, x, y); // check value != 0
if (!eq(v, zero)) {
// store value
values.push(v); // index
index.push(x);
}
}
|
Create a new matrix with the results of the callback function executed on the interval
[minRow..maxRow, minColumn..maxColumn].
|
invoke
|
javascript
|
grimalschi/calque
|
math.js
|
https://github.com/grimalschi/calque/blob/master/math.js
|
MIT
|
function Spa() {
if (!(this instanceof Spa)) {
throw new SyntaxError('Constructor must be called with the new operator');
} // allocate vector, TODO use typed arrays
this._values = [];
this._heap = new type.FibonacciHeap();
}
|
An ordered Sparse Accumulator is a representation for a sparse vector that includes a dense array
of the vector elements and an ordered list of non-zero elements.
|
Spa
|
javascript
|
grimalschi/calque
|
math.js
|
https://github.com/grimalschi/calque/blob/master/math.js
|
MIT
|
function FibonacciHeap() {
if (!(this instanceof FibonacciHeap)) {
throw new SyntaxError('Constructor must be called with the new operator');
} // initialize fields
this._minimum = null;
this._size = 0;
}
|
Fibonacci Heap implementation, used interally for Matrix math.
@class FibonacciHeap
@constructor FibonacciHeap
|
FibonacciHeap
|
javascript
|
grimalschi/calque
|
math.js
|
https://github.com/grimalschi/calque/blob/master/math.js
|
MIT
|
function _decreaseKey(minimum, node, key) {
// set node key
node.key = key; // get parent node
var parent = node.parent;
if (parent && smaller(node.key, parent.key)) {
// remove node from parent
_cut(minimum, node, parent); // remove all nodes from parent to the root parent
_cascadingCut(minimum, parent);
} // update minimum node if needed
if (smaller(node.key, minimum.key)) {
minimum = node;
} // return minimum
return minimum;
}
|
Decreases the key value for a heap node, given the new value to take on.
The structure of the heap may be changed and will not be consolidated.
Running time: O(1) amortized.
@memberof FibonacciHeap
|
_decreaseKey
|
javascript
|
grimalschi/calque
|
math.js
|
https://github.com/grimalschi/calque/blob/master/math.js
|
MIT
|
function _cut(minimum, node, parent) {
// remove node from parent children and decrement Degree[parent]
node.left.right = node.right;
node.right.left = node.left;
parent.degree--; // reset y.child if necessary
if (parent.child === node) {
parent.child = node.right;
} // remove child if degree is 0
if (parent.degree === 0) {
parent.child = null;
} // add node to root list of heap
node.left = minimum;
node.right = minimum.right;
minimum.right = node;
node.right.left = node; // set parent[node] to null
node.parent = null; // set mark[node] to false
node.mark = false;
}
|
The reverse of the link operation: removes node from the child list of parent.
This method assumes that min is non-null. Running time: O(1).
@memberof FibonacciHeap
|
_cut
|
javascript
|
grimalschi/calque
|
math.js
|
https://github.com/grimalschi/calque/blob/master/math.js
|
MIT
|
function _cascadingCut(minimum, node) {
// store parent node
var parent = node.parent; // if there's a parent...
if (!parent) {
return;
} // if node is unmarked, set it marked
if (!node.mark) {
node.mark = true;
} else {
// it's marked, cut it from parent
_cut(minimum, node, parent); // cut its parent as well
_cascadingCut(parent);
}
}
|
Performs a cascading cut operation. This cuts node from its parent and then
does the same for its parent, and so on up the tree.
Running time: O(log n); O(1) excluding the recursion.
@memberof FibonacciHeap
|
_cascadingCut
|
javascript
|
grimalschi/calque
|
math.js
|
https://github.com/grimalschi/calque/blob/master/math.js
|
MIT
|
_linkNodes = function _linkNodes(node, parent) {
// remove node from root list of heap
node.left.right = node.right;
node.right.left = node.left; // make node a Child of parent
node.parent = parent;
if (!parent.child) {
parent.child = node;
node.right = node;
node.left = node;
} else {
node.left = parent.child;
node.right = parent.child.right;
parent.child.right = node;
node.right.left = node;
} // increase degree[parent]
parent.degree++; // set mark[node] false
node.mark = false;
}
|
Make the first node a child of the second one. Running time: O(1) actual.
@memberof FibonacciHeap
|
_linkNodes
|
javascript
|
grimalschi/calque
|
math.js
|
https://github.com/grimalschi/calque/blob/master/math.js
|
MIT
|
function _findMinimumNode(minimum, size) {
// to find trees of the same degree efficiently we use an array of length O(log n) in which we keep a pointer to one root of each degree
var arraySize = Math.floor(Math.log(size) * oneOverLogPhi) + 1; // create list with initial capacity
var array = new Array(arraySize); // find the number of root nodes.
var numRoots = 0;
var x = minimum;
if (x) {
numRoots++;
x = x.right;
while (x !== minimum) {
numRoots++;
x = x.right;
}
} // vars
var y; // For each node in root list do...
while (numRoots > 0) {
// access this node's degree..
var d = x.degree; // get next node
var next = x.right; // check if there is a node already in array with the same degree
while (true) {
// get node with the same degree is any
y = array[d];
if (!y) {
break;
} // make one node with the same degree a child of the other, do this based on the key value.
if (larger(x.key, y.key)) {
var temp = y;
y = x;
x = temp;
} // make y a child of x
_linkNodes(y, x); // we have handled this degree, go to next one.
array[d] = null;
d++;
} // save this node for later when we might encounter another of the same degree.
array[d] = x; // move forward through list.
x = next;
numRoots--;
} // Set min to null (effectively losing the root list) and reconstruct the root list from the array entries in array[].
minimum = null; // loop nodes in array
for (var i = 0; i < arraySize; i++) {
// get current node
y = array[i];
if (!y) {
continue;
} // check if we have a linked list
if (minimum) {
// First remove node from root list.
y.left.right = y.right;
y.right.left = y.left; // now add to root list, again.
y.left = minimum;
y.right = minimum.right;
minimum.right = y;
y.right.left = y; // check if this is a new min.
if (smaller(y.key, minimum.key)) {
minimum = y;
}
} else {
minimum = y;
}
}
return minimum;
}
|
Make the first node a child of the second one. Running time: O(1) actual.
@memberof FibonacciHeap
|
_findMinimumNode
|
javascript
|
grimalschi/calque
|
math.js
|
https://github.com/grimalschi/calque/blob/master/math.js
|
MIT
|
function Unit(value, name) {
if (!(this instanceof Unit)) {
throw new Error('Constructor must be called with the new operator');
}
if (!(value === null || value === undefined || isNumeric(value) || type.isComplex(value))) {
throw new TypeError('First parameter in Unit constructor must be number, BigNumber, Fraction, Complex, or undefined');
}
if (name !== undefined && (typeof name !== 'string' || name === '')) {
throw new TypeError('Second parameter in Unit constructor must be a string');
}
if (name !== undefined) {
var u = Unit.parse(name);
this.units = u.units;
this.dimensions = u.dimensions;
} else {
this.units = [{
unit: UNIT_NONE,
prefix: PREFIXES.NONE,
// link to a list with supported prefixes
power: 0
}];
this.dimensions = [];
for (var i = 0; i < BASE_DIMENSIONS.length; i++) {
this.dimensions[i] = 0;
}
}
this.value = value !== undefined && value !== null ? this._normalize(value) : null;
this.fixPrefix = false; // if true, function format will not search for the
// best prefix but leave it as initially provided.
// fixPrefix is set true by the method Unit.to
// The justification behind this is that if the constructor is explicitly called,
// the caller wishes the units to be returned exactly as he supplied.
this.skipAutomaticSimplification = true;
}
|
A unit can be constructed in the following ways:
const a = new Unit(value, name)
const b = new Unit(null, name)
const c = Unit.parse(str)
Example usage:
const a = new Unit(5, 'cm') // 50 mm
const b = Unit.parse('23 kg') // 23 kg
const c = math.in(a, new Unit(null, 'm') // 0.05 m
const d = new Unit(9.81, "m/s^2") // 9.81 m/s^2
@class Unit
@constructor Unit
@param {number | BigNumber | Fraction | Complex | boolean} [value] A value like 5.2
@param {string} [name] A unit name like "cm" or "inch", or a derived unit of the form: "u1[^ex1] [u2[^ex2] ...] [/ u3[^ex3] [u4[^ex4]]]", such as "kg m^2/s^2", where each unit appearing after the forward slash is taken to be in the denominator. "kg m^2 s^-2" is a synonym and is also acceptable. Any of the units can include a prefix.
|
Unit
|
javascript
|
grimalschi/calque
|
math.js
|
https://github.com/grimalschi/calque/blob/master/math.js
|
MIT
|
function _findUnit(str) {
// First, match units names exactly. For example, a user could define 'mm' as 10^-4 m, which is silly, but then we would want 'mm' to match the user-defined unit.
if (UNITS.hasOwnProperty(str)) {
var unit = UNITS[str];
var prefix = unit.prefixes[''];
return {
unit: unit,
prefix: prefix
};
}
for (var name in UNITS) {
if (UNITS.hasOwnProperty(name)) {
if (endsWith(str, name)) {
var _unit = UNITS[name];
var prefixLen = str.length - name.length;
var prefixName = str.substring(0, prefixLen);
var _prefix = _unit.prefixes.hasOwnProperty(prefixName) ? _unit.prefixes[prefixName] : undefined;
if (_prefix !== undefined) {
// store unit, prefix, and value
return {
unit: _unit,
prefix: _prefix
};
}
}
}
}
return null;
}
|
Find a unit from a string
@memberof Unit
@param {string} str A string like 'cm' or 'inch'
@returns {Object | null} result When found, an object with fields unit and
prefix is returned. Else, null is returned.
@private
|
_findUnit
|
javascript
|
grimalschi/calque
|
math.js
|
https://github.com/grimalschi/calque/blob/master/math.js
|
MIT
|
function getNumericIfUnitless(unit) {
if (unit.equalBase(BASE_UNITS.NONE) && unit.value !== null && !config.predictable) {
return unit.value;
} else {
return unit;
}
}
|
Return the numeric value of this unit if it is dimensionless, has a value, and config.predictable == false; or the original unit otherwise
@param {Unit} unit
@returns {number | Fraction | BigNumber | Unit} The numeric value of the unit if conditions are met, or the original unit otherwise
|
getNumericIfUnitless
|
javascript
|
grimalschi/calque
|
math.js
|
https://github.com/grimalschi/calque/blob/master/math.js
|
MIT
|
function calculateAngleValues(config) {
if (config.number === 'BigNumber') {
var pi = constants.pi(type.BigNumber);
UNITS.rad.value = new type.BigNumber(1);
UNITS.deg.value = pi.div(180); // 2 * pi / 360
UNITS.grad.value = pi.div(200); // 2 * pi / 400
UNITS.cycle.value = pi.times(2); // 2 * pi
UNITS.arcsec.value = pi.div(648000); // 2 * pi / 360 / 3600
UNITS.arcmin.value = pi.div(10800); // 2 * pi / 360 / 60
} else {
// number
UNITS.rad.value = 1;
UNITS.deg.value = Math.PI / 180; // 2 * pi / 360
UNITS.grad.value = Math.PI / 200; // 2 * pi / 400
UNITS.cycle.value = Math.PI * 2; // 2 * pi
UNITS.arcsec.value = Math.PI / 648000; // 2 * pi / 360 / 3600
UNITS.arcmin.value = Math.PI / 10800; // 2 * pi / 360 / 60
} // copy to the full names of the angles
UNITS.radian.value = UNITS.rad.value;
UNITS.degree.value = UNITS.deg.value;
UNITS.gradian.value = UNITS.grad.value;
} // apply the angle values now
|
Calculate the values for the angle units.
Value is calculated as number or BigNumber depending on the configuration
@param {{number: 'number' | 'BigNumber'}} config
|
calculateAngleValues
|
javascript
|
grimalschi/calque
|
math.js
|
https://github.com/grimalschi/calque/blob/master/math.js
|
MIT
|
function assertUnitNameIsValid(name) {
for (var i = 0; i < name.length; i++) {
var _c = name.charAt(i);
var isValidAlpha = function isValidAlpha(p) {
return /^[a-zA-Z]$/.test(p);
};
var _isDigit = function _isDigit(c) {
return c >= '0' && c <= '9';
};
if (i === 0 && !isValidAlpha(_c)) {
throw new Error('Invalid unit name (must begin with alpha character): "' + name + '"');
}
if (i > 0 && !(isValidAlpha(_c) || _isDigit(_c))) {
throw new Error('Invalid unit name (only alphanumeric characters are allowed): "' + name + '"');
}
}
}
|
Retrieve the right convertor function corresponding with the type
of provided exampleValue.
@param {string} type A string 'number', 'BigNumber', or 'Fraction'
In case of an unknown type,
@return {Function}
|
assertUnitNameIsValid
|
javascript
|
grimalschi/calque
|
math.js
|
https://github.com/grimalschi/calque/blob/master/math.js
|
MIT
|
isValidAlpha = function isValidAlpha(p) {
return /^[a-zA-Z]$/.test(p);
}
|
Retrieve the right convertor function corresponding with the type
of provided exampleValue.
@param {string} type A string 'number', 'BigNumber', or 'Fraction'
In case of an unknown type,
@return {Function}
|
isValidAlpha
|
javascript
|
grimalschi/calque
|
math.js
|
https://github.com/grimalschi/calque/blob/master/math.js
|
MIT
|
_isDigit = function _isDigit(c) {
return c >= '0' && c <= '9';
}
|
Retrieve the right convertor function corresponding with the type
of provided exampleValue.
@param {string} type A string 'number', 'BigNumber', or 'Fraction'
In case of an unknown type,
@return {Function}
|
_isDigit
|
javascript
|
grimalschi/calque
|
math.js
|
https://github.com/grimalschi/calque/blob/master/math.js
|
MIT
|
function funcArgsCheck(node) {
// TODO add min, max etc
if ((node.name === 'log' || node.name === 'nthRoot' || node.name === 'pow') && node.args.length === 2) {
return;
} // There should be an incorrect number of arguments if we reach here
// Change all args to constants to avoid unidentified
// symbol error when compiling function
for (var i = 0; i < node.args.length; ++i) {
node.args[i] = createConstantNode(0);
}
node.compile().eval();
throw new Error('Expected TypeError, but none found');
}
|
Ensures the number of arguments for a function are correct,
and will throw an error otherwise.
@param {FunctionNode} node
|
funcArgsCheck
|
javascript
|
grimalschi/calque
|
math.js
|
https://github.com/grimalschi/calque/blob/master/math.js
|
MIT
|
function createConstantNode(value, valueType) {
return new ConstantNode(numeric(value, valueType || config.number));
}
|
Helper function to create a constant node with a specific type
(number, BigNumber, Fraction)
@param {number} value
@param {string} [valueType]
@return {ConstantNode}
|
createConstantNode
|
javascript
|
grimalschi/calque
|
math.js
|
https://github.com/grimalschi/calque/blob/master/math.js
|
MIT
|
function resolve(node, scope) {
if (!scope) {
return node;
}
if (type.isSymbolNode(node)) {
var value = scope[node.name];
if (value instanceof Node) {
return resolve(value, scope);
} else if (typeof value === 'number') {
return math.parse(String(value));
}
} else if (type.isOperatorNode(node)) {
var args = node.args.map(function (arg) {
return resolve(arg, scope);
});
return new OperatorNode(node.op, node.fn, args, node.implicit);
} else if (type.isParenthesisNode(node)) {
return new ParenthesisNode(resolve(node.content, scope));
} else if (type.isFunctionNode(node)) {
var _args = node.args.map(function (arg) {
return resolve(arg, scope);
});
return new FunctionNode(node.name, _args);
}
return node;
}
|
resolve(expr, scope) replaces variable nodes with their scoped values
Syntax:
simplify.resolve(expr, scope)
Examples:
math.simplify.resolve('x + y', {x:1, y:2}) // Node {1 + 2}
math.simplify.resolve(math.parse('x+y'), {x:1, y:2}) // Node {1 + 2}
math.simplify('x+y', {x:2, y:'x+x'}).toString() // "6"
@param {Node} node
The expression tree to be simplified
@param {Object} scope with variables to be resolved
|
resolve
|
javascript
|
grimalschi/calque
|
math.js
|
https://github.com/grimalschi/calque/blob/master/math.js
|
MIT
|
function polynomial(expr, scope, extended, rules) {
var variables = [];
var node = simplify(expr, rules, scope, {
exactFractions: false
}); // Resolves any variables and functions with all defined parameters
extended = !!extended;
var oper = '+-*' + (extended ? '/' : '');
recPoly(node);
var retFunc = {};
retFunc.expression = node;
retFunc.variables = variables;
return retFunc; // -------------------------------------------------------------------------------------------------------
/**
* Function to simplify an expression using an optional scope and
* return it if the expression is a polynomial expression, i.e.
* an expression with one or more variables and the operators
* +, -, *, and ^, where the exponent can only be a positive integer.
*
* Syntax:
*
* recPoly(node)
*
*
* @param {Node} node The current sub tree expression in recursion
*
* @return nothing, throw an exception if error
*/
function recPoly(node) {
var tp = node.type; // node type
if (tp === 'FunctionNode') {
// No function call in polynomial expression
throw new Error('There is an unsolved function call');
} else if (tp === 'OperatorNode') {
if (node.op === '^') {
if (node.args[1].fn === 'unaryMinus') {
node = node.args[0];
}
if (node.args[1].type !== 'ConstantNode' || !number.isInteger(parseFloat(node.args[1].value))) {
throw new Error('There is a non-integer exponent');
} else {
recPoly(node.args[0]);
}
} else {
if (oper.indexOf(node.op) === -1) {
throw new Error('Operator ' + node.op + ' invalid in polynomial expression');
}
for (var i = 0; i < node.args.length; i++) {
recPoly(node.args[i]);
}
} // type of operator
} else if (tp === 'SymbolNode') {
var name = node.name; // variable name
var pos = variables.indexOf(name);
if (pos === -1) {
// new variable in expression
variables.push(name);
}
} else if (tp === 'ParenthesisNode') {
recPoly(node.content);
} else if (tp !== 'ConstantNode') {
throw new Error('type ' + tp + ' is not allowed in polynomial expression');
}
} // end of recPoly
}
|
Function to simplify an expression using an optional scope and
return it if the expression is a polynomial expression, i.e.
an expression with one or more variables and the operators
+, -, *, and ^, where the exponent can only be a positive integer.
Syntax:
polynomial(expr,scope,extended, rules)
@param {Node | string} expr The expression to simplify and check if is polynomial expression
@param {object} scope Optional scope for expression simplification
@param {boolean} extended Optional. Default is false. When true allows divide operator.
@param {array} rules Optional. Default is no rule.
@return {Object}
{Object} node: node simplified expression
{Array} variables: variable names
|
polynomial
|
javascript
|
grimalschi/calque
|
math.js
|
https://github.com/grimalschi/calque/blob/master/math.js
|
MIT
|
function recPoly(node) {
var tp = node.type; // node type
if (tp === 'FunctionNode') {
// No function call in polynomial expression
throw new Error('There is an unsolved function call');
} else if (tp === 'OperatorNode') {
if (node.op === '^') {
if (node.args[1].fn === 'unaryMinus') {
node = node.args[0];
}
if (node.args[1].type !== 'ConstantNode' || !number.isInteger(parseFloat(node.args[1].value))) {
throw new Error('There is a non-integer exponent');
} else {
recPoly(node.args[0]);
}
} else {
if (oper.indexOf(node.op) === -1) {
throw new Error('Operator ' + node.op + ' invalid in polynomial expression');
}
for (var i = 0; i < node.args.length; i++) {
recPoly(node.args[i]);
}
} // type of operator
} else if (tp === 'SymbolNode') {
var name = node.name; // variable name
var pos = variables.indexOf(name);
if (pos === -1) {
// new variable in expression
variables.push(name);
}
} else if (tp === 'ParenthesisNode') {
recPoly(node.content);
} else if (tp !== 'ConstantNode') {
throw new Error('type ' + tp + ' is not allowed in polynomial expression');
}
}
|
Function to simplify an expression using an optional scope and
return it if the expression is a polynomial expression, i.e.
an expression with one or more variables and the operators
+, -, *, and ^, where the exponent can only be a positive integer.
Syntax:
recPoly(node)
@param {Node} node The current sub tree expression in recursion
@return nothing, throw an exception if error
|
recPoly
|
javascript
|
grimalschi/calque
|
math.js
|
https://github.com/grimalschi/calque/blob/master/math.js
|
MIT
|
function expandPower(node, parent, indParent) {
var tp = node.type;
var internal = arguments.length > 1; // TRUE in internal calls
if (tp === 'OperatorNode' && node.isBinary()) {
var does = false;
var val;
if (node.op === '^') {
// First operator: Parenthesis or UnaryMinus
if ((node.args[0].type === 'ParenthesisNode' || node.args[0].type === 'OperatorNode') && node.args[1].type === 'ConstantNode') {
// Second operator: Constant
val = parseFloat(node.args[1].value);
does = val >= 2 && number.isInteger(val);
}
}
if (does) {
// Exponent >= 2
// Before:
// operator A --> Subtree
// parent pow
// constant
//
if (val > 2) {
// Exponent > 2,
// AFTER: (exponent > 2)
// operator A --> Subtree
// parent *
// deep clone (operator A --> Subtree
// pow
// constant - 1
//
var nEsqTopo = node.args[0];
var nDirTopo = new OperatorNode('^', 'pow', [node.args[0].cloneDeep(), new ConstantNode(val - 1)]);
node = new OperatorNode('*', 'multiply', [nEsqTopo, nDirTopo]);
} else {
// Expo = 2 - no power
// AFTER: (exponent = 2)
// operator A --> Subtree
// parent oper
// deep clone (operator A --> Subtree)
//
node = new OperatorNode('*', 'multiply', [node.args[0], node.args[0].cloneDeep()]);
}
if (internal) {
// Change parent references in internal recursive calls
if (indParent === 'content') {
parent.content = node;
} else {
parent.args[indParent] = node;
}
}
} // does
} // binary OperatorNode
if (tp === 'ParenthesisNode') {
// Recursion
expandPower(node.content, node, 'content');
} else if (tp !== 'ConstantNode' && tp !== 'SymbolNode') {
for (var i = 0; i < node.args.length; i++) {
expandPower(node.args[i], node, i);
}
}
if (!internal) {
// return the root node
return node;
}
}
|
Expand recursively a tree node for handling with expressions with exponents
(it's not for constants, symbols or functions with exponents)
PS: The other parameters are internal for recursion
Syntax:
expandPower(node)
@param {Node} node Current expression node
@param {node} parent Parent current node inside the recursion
@param (int} Parent number of chid inside the rercursion
@return {node} node expression with all powers expanded.
|
expandPower
|
javascript
|
grimalschi/calque
|
math.js
|
https://github.com/grimalschi/calque/blob/master/math.js
|
MIT
|
function recurPol(node, noPai, o) {
var tp = node.type;
if (tp === 'FunctionNode') {
// ***** FunctionName *****
// No function call in polynomial expression
throw new Error('There is an unsolved function call');
} else if (tp === 'OperatorNode') {
// ***** OperatorName *****
if ('+-*^'.indexOf(node.op) === -1) throw new Error('Operator ' + node.op + ' invalid');
if (noPai !== null) {
// -(unary),^ : children of *,+,-
if ((node.fn === 'unaryMinus' || node.fn === 'pow') && noPai.fn !== 'add' && noPai.fn !== 'subtract' && noPai.fn !== 'multiply') {
throw new Error('Invalid ' + node.op + ' placing');
} // -,+,* : children of +,-
if ((node.fn === 'subtract' || node.fn === 'add' || node.fn === 'multiply') && noPai.fn !== 'add' && noPai.fn !== 'subtract') {
throw new Error('Invalid ' + node.op + ' placing');
} // -,+ : first child
if ((node.fn === 'subtract' || node.fn === 'add' || node.fn === 'unaryMinus') && o.noFil !== 0) {
throw new Error('Invalid ' + node.op + ' placing');
}
} // Has parent
// Firers: ^,* Old: ^,&,-(unary): firers
if (node.op === '^' || node.op === '*') {
o.fire = node.op;
}
for (var _i = 0; _i < node.args.length; _i++) {
// +,-: reset fire
if (node.fn === 'unaryMinus') o.oper = '-';
if (node.op === '+' || node.fn === 'subtract') {
o.fire = '';
o.cte = 1; // default if there is no constant
o.oper = _i === 0 ? '+' : node.op;
}
o.noFil = _i; // number of son
recurPol(node.args[_i], node, o);
} // for in children
} else if (tp === 'SymbolNode') {
// ***** SymbolName *****
if (node.name !== varname && varname !== '') {
throw new Error('There is more than one variable');
}
varname = node.name;
if (noPai === null) {
coefficients[1] = 1;
return;
} // ^: Symbol is First child
if (noPai.op === '^' && o.noFil !== 0) {
throw new Error('In power the variable should be the first parameter');
} // *: Symbol is Second child
if (noPai.op === '*' && o.noFil !== 1) {
throw new Error('In multiply the variable should be the second parameter');
} // Symbol: firers '',* => it means there is no exponent above, so it's 1 (cte * var)
if (o.fire === '' || o.fire === '*') {
if (maxExpo < 1) coefficients[1] = 0;
coefficients[1] += o.cte * (o.oper === '+' ? 1 : -1);
maxExpo = Math.max(1, maxExpo);
}
} else if (tp === 'ConstantNode') {
var valor = parseFloat(node.value);
if (noPai === null) {
coefficients[0] = valor;
return;
}
if (noPai.op === '^') {
// cte: second child of power
if (o.noFil !== 1) throw new Error('Constant cannot be powered');
if (!number.isInteger(valor) || valor <= 0) {
throw new Error('Non-integer exponent is not allowed');
}
for (var _i2 = maxExpo + 1; _i2 < valor; _i2++) {
coefficients[_i2] = 0;
}
if (valor > maxExpo) coefficients[valor] = 0;
coefficients[valor] += o.cte * (o.oper === '+' ? 1 : -1);
maxExpo = Math.max(valor, maxExpo);
return;
}
o.cte = valor; // Cte: firer '' => There is no exponent and no multiplication, so the exponent is 0.
if (o.fire === '') {
coefficients[0] += o.cte * (o.oper === '+' ? 1 : -1);
}
} else {
throw new Error('Type ' + tp + ' is not allowed');
}
}
|
Recursive auxilary function inside polyToCanonical for
converting expression in canonical form
Syntax:
recurPol(node, noPai, obj)
@param {Node} node The current subpolynomial expression
@param {Node | Null} noPai The current parent node
@param {object} obj Object with many internal flags
@return {} No return. If error, throws an exception
|
recurPol
|
javascript
|
grimalschi/calque
|
math.js
|
https://github.com/grimalschi/calque/blob/master/math.js
|
MIT
|
function _denseQR(m) {
// rows & columns (m x n)
var rows = m._size[0]; // m
var cols = m._size[1]; // n
var Q = identity([rows], 'dense');
var Qdata = Q._data;
var R = m.clone();
var Rdata = R._data; // vars
var i, j, k;
var w = zeros([rows], '');
for (k = 0; k < Math.min(cols, rows); ++k) {
/*
* **k-th Household matrix**
*
* The matrix I - 2*v*transpose(v)
* x = first column of A
* x1 = first element of x
* alpha = x1 / |x1| * |x|
* e1 = tranpose([1, 0, 0, ...])
* u = x - alpha * e1
* v = u / |u|
*
* Household matrix = I - 2 * v * tranpose(v)
*
* * Initially Q = I and R = A.
* * Household matrix is a reflection in a plane normal to v which
* will zero out all but the top right element in R.
* * Appplying reflection to both Q and R will not change product.
* * Repeat this process on the (1,1) minor to get R as an upper
* triangular matrix.
* * Reflections leave the magnitude of the columns of Q unchanged
* so Q remains othoganal.
*
*/
var pivot = Rdata[k][k];
var sgn = unaryMinus(sign(pivot));
var conjSgn = conj(sgn);
var alphaSquared = 0;
for (i = k; i < rows; i++) {
alphaSquared = addScalar(alphaSquared, multiplyScalar(Rdata[i][k], conj(Rdata[i][k])));
}
var alpha = multiplyScalar(sgn, sqrt(alphaSquared));
if (!isZero(alpha)) {
// first element in vector u
var u1 = subtract(pivot, alpha); // w = v * u1 / |u| (only elements k to (rows-1) are used)
w[k] = 1;
for (i = k + 1; i < rows; i++) {
w[i] = divideScalar(Rdata[i][k], u1);
} // tau = - conj(u1 / alpha)
var tau = unaryMinus(conj(divideScalar(u1, alpha)));
var s = void 0;
/*
* tau and w have been choosen so that
*
* 2 * v * tranpose(v) = tau * w * tranpose(w)
*/
/*
* -- calculate R = R - tau * w * tranpose(w) * R --
* Only do calculation with rows k to (rows-1)
* Additionally columns 0 to (k-1) will not be changed by this
* multiplication so do not bother recalculating them
*/
for (j = k; j < cols; j++) {
s = 0.0; // calculate jth element of [tranpose(w) * R]
for (i = k; i < rows; i++) {
s = addScalar(s, multiplyScalar(conj(w[i]), Rdata[i][j]));
} // calculate the jth element of [tau * transpose(w) * R]
s = multiplyScalar(s, tau);
for (i = k; i < rows; i++) {
Rdata[i][j] = multiplyScalar(subtract(Rdata[i][j], multiplyScalar(w[i], s)), conjSgn);
}
}
/*
* -- calculate Q = Q - tau * Q * w * transpose(w) --
* Q is a square matrix (rows x rows)
* Only do calculation with columns k to (rows-1)
* Additionally rows 0 to (k-1) will not be changed by this
* multiplication so do not bother recalculating them
*/
for (i = 0; i < rows; i++) {
s = 0.0; // calculate ith element of [Q * w]
for (j = k; j < rows; j++) {
s = addScalar(s, multiplyScalar(Qdata[i][j], w[j]));
} // calculate the ith element of [tau * Q * w]
s = multiplyScalar(s, tau);
for (j = k; j < rows; ++j) {
Qdata[i][j] = divideScalar(subtract(Qdata[i][j], multiplyScalar(s, conj(w[j]))), conjSgn);
}
}
}
} // coerse almost zero elements to zero
// TODO I feel uneasy just zeroing these values
for (i = 0; i < rows; ++i) {
for (j = 0; j < i && j < cols; ++j) {
if (unequal(0, divideScalar(Rdata[i][j], 1e5))) {
throw new Error('math.qr(): unknown error - ' + 'R is not lower triangular (element (' + i + ', ' + j + ') = ' + Rdata[i][j] + ')');
}
Rdata[i][j] = multiplyScalar(Rdata[i][j], 0);
}
} // return matrices
return {
Q: Q,
R: R,
toString: function toString() {
return 'Q: ' + this.Q.toString() + '\nR: ' + this.R.toString();
}
};
}
|
Calculate the Matrix QR decomposition. Matrix `A` is decomposed in
two matrices (`Q`, `R`) where `Q` is an
orthogonal matrix and `R` is an upper triangular matrix.
Syntax:
math.qr(A)
Example:
const m = [
[1, -1, 4],
[1, 4, -2],
[1, 4, 2],
[1, -1, 0]
]
const result = math.qr(m)
// r = {
// Q: [
// [0.5, -0.5, 0.5],
// [0.5, 0.5, -0.5],
// [0.5, 0.5, 0.5],
// [0.5, -0.5, -0.5],
// ],
// R: [
// [2, 3, 2],
// [0, 5, -2],
// [0, 0, 4],
// [0, 0, 0]
// ]
// }
See also:
lup, lusolve
@param {Matrix | Array} A A two dimensional matrix or array
for which to get the QR decomposition.
@return {{Q: Array | Matrix, R: Array | Matrix}} Q: the orthogonal
matrix and R: the upper triangular matrix
|
_denseQR
|
javascript
|
grimalschi/calque
|
math.js
|
https://github.com/grimalschi/calque/blob/master/math.js
|
MIT
|
function _sparseQR(m) {
throw new Error('qr not implemented for sparse matrices yet');
}
|
Calculate the Matrix QR decomposition. Matrix `A` is decomposed in
two matrices (`Q`, `R`) where `Q` is an
orthogonal matrix and `R` is an upper triangular matrix.
Syntax:
math.qr(A)
Example:
const m = [
[1, -1, 4],
[1, 4, -2],
[1, 4, 2],
[1, -1, 0]
]
const result = math.qr(m)
// r = {
// Q: [
// [0.5, -0.5, 0.5],
// [0.5, 0.5, -0.5],
// [0.5, 0.5, 0.5],
// [0.5, -0.5, -0.5],
// ],
// R: [
// [2, 3, 2],
// [0, 5, -2],
// [0, 0, 4],
// [0, 0, 0]
// ]
// }
See also:
lup, lusolve
@param {Matrix | Array} A A two dimensional matrix or array
for which to get the QR decomposition.
@return {{Q: Array | Matrix, R: Array | Matrix}} Q: the orthogonal
matrix and R: the upper triangular matrix
|
_sparseQR
|
javascript
|
grimalschi/calque
|
math.js
|
https://github.com/grimalschi/calque/blob/master/math.js
|
MIT
|
csSqr = function csSqr(order, a, qr) {
// a arrays
var aptr = a._ptr;
var asize = a._size; // columns
var n = asize[1]; // vars
var k; // symbolic analysis result
var s = {}; // fill-reducing ordering
s.q = csAmd(order, a); // validate results
if (order && !s.q) {
return null;
} // QR symbolic analysis
if (qr) {
// apply permutations if needed
var c = order ? csPermute(a, null, s.q, 0) : a; // etree of C'*C, where C=A(:,q)
s.parent = csEtree(c, 1); // post order elimination tree
var post = csPost(s.parent, n); // col counts chol(C'*C)
s.cp = csCounts(c, s.parent, post, 1); // check we have everything needed to calculate number of nonzero elements
if (c && s.parent && s.cp && _vcount(c, s)) {
// calculate number of nonzero elements
for (s.unz = 0, k = 0; k < n; k++) {
s.unz += s.cp[k];
}
}
} else {
// for LU factorization only, guess nnz(L) and nnz(U)
s.unz = 4 * aptr[n] + n;
s.lnz = s.unz;
} // return result S
return s;
}
|
Symbolic ordering and analysis for QR and LU decompositions.
@param {Number} order The ordering strategy (see csAmd for more details)
@param {Matrix} a The A matrix
@param {boolean} qr Symbolic ordering and analysis for QR decomposition (true) or
symbolic ordering and analysis for LU decomposition (false)
@return {Object} The Symbolic ordering and analysis for matrix A
Reference: http://faculty.cse.tamu.edu/davis/publications.html
|
csSqr
|
javascript
|
grimalschi/calque
|
math.js
|
https://github.com/grimalschi/calque/blob/master/math.js
|
MIT
|
function _vcount(a, s) {
// a arrays
var aptr = a._ptr;
var aindex = a._index;
var asize = a._size; // rows & columns
var m = asize[0];
var n = asize[1]; // initialize s arrays
s.pinv = []; // (m + n)
s.leftmost = []; // (m)
// vars
var parent = s.parent;
var pinv = s.pinv;
var leftmost = s.leftmost; // workspace, next: first m entries, head: next n entries, tail: next n entries, nque: next n entries
var w = []; // (m + 3 * n)
var next = 0;
var head = m;
var tail = m + n;
var nque = m + 2 * n; // vars
var i, k, p, p0, p1; // initialize w
for (k = 0; k < n; k++) {
// queue k is empty
w[head + k] = -1;
w[tail + k] = -1;
w[nque + k] = 0;
} // initialize row arrays
for (i = 0; i < m; i++) {
leftmost[i] = -1;
} // loop columns backwards
for (k = n - 1; k >= 0; k--) {
// values & index for column k
for (p0 = aptr[k], p1 = aptr[k + 1], p = p0; p < p1; p++) {
// leftmost[i] = min(find(A(i,:)))
leftmost[aindex[p]] = k;
}
} // scan rows in reverse order
for (i = m - 1; i >= 0; i--) {
// row i is not yet ordered
pinv[i] = -1;
k = leftmost[i]; // check row i is empty
if (k === -1) {
continue;
} // first row in queue k
if (w[nque + k]++ === 0) {
w[tail + k] = i;
} // put i at head of queue k
w[next + i] = w[head + k];
w[head + k] = i;
}
s.lnz = 0;
s.m2 = m; // find row permutation and nnz(V)
for (k = 0; k < n; k++) {
// remove row i from queue k
i = w[head + k]; // count V(k,k) as nonzero
s.lnz++; // add a fictitious row
if (i < 0) {
i = s.m2++;
} // associate row i with V(:,k)
pinv[i] = k; // skip if V(k+1:m,k) is empty
if (--nque[k] <= 0) {
continue;
} // nque[k] is nnz (V(k+1:m,k))
s.lnz += w[nque + k]; // move all rows to parent of k
var pa = parent[k];
if (pa !== -1) {
if (w[nque + pa] === 0) {
w[tail + pa] = w[tail + k];
}
w[next + w[tail + k]] = w[head + pa];
w[head + pa] = w[next + i];
w[nque + pa] += w[nque + k];
}
}
for (i = 0; i < m; i++) {
if (pinv[i] < 0) {
pinv[i] = k++;
}
}
return true;
}
|
Compute nnz(V) = s.lnz, s.pinv, s.leftmost, s.m2 from A and s.parent
|
_vcount
|
javascript
|
grimalschi/calque
|
math.js
|
https://github.com/grimalschi/calque/blob/master/math.js
|
MIT
|
csAmd = function csAmd(order, a) {
// check input parameters
if (!a || order <= 0 || order > 3) {
return null;
} // a matrix arrays
var asize = a._size; // rows and columns
var m = asize[0];
var n = asize[1]; // initialize vars
var lemax = 0; // dense threshold
var dense = Math.max(16, 10 * Math.sqrt(n));
dense = Math.min(n - 2, dense); // create target matrix C
var cm = _createTargetMatrix(order, a, m, n, dense); // drop diagonal entries
csFkeep(cm, _diag, null); // C matrix arrays
var cindex = cm._index;
var cptr = cm._ptr; // number of nonzero elements in C
var cnz = cptr[n]; // allocate result (n+1)
var P = []; // create workspace (8 * (n + 1))
var W = [];
var len = 0; // first n + 1 entries
var nv = n + 1; // next n + 1 entries
var next = 2 * (n + 1); // next n + 1 entries
var head = 3 * (n + 1); // next n + 1 entries
var elen = 4 * (n + 1); // next n + 1 entries
var degree = 5 * (n + 1); // next n + 1 entries
var w = 6 * (n + 1); // next n + 1 entries
var hhead = 7 * (n + 1); // last n + 1 entries
// use P as workspace for last
var last = P; // initialize quotient graph
var mark = _initializeQuotientGraph(n, cptr, W, len, head, last, next, hhead, nv, w, elen, degree); // initialize degree lists
var nel = _initializeDegreeLists(n, cptr, W, degree, elen, w, dense, nv, head, last, next); // minimum degree node
var mindeg = 0; // vars
var i, j, k, k1, k2, e, pj, ln, nvi, pk, eln, p1, p2, pn, h, d; // while (selecting pivots) do
while (nel < n) {
// select node of minimum approximate degree. amd() is now ready to start eliminating the graph. It first
// finds a node k of minimum degree and removes it from its degree list. The variable nel keeps track of thow
// many nodes have been eliminated.
for (k = -1; mindeg < n && (k = W[head + mindeg]) === -1; mindeg++) {
;
}
if (W[next + k] !== -1) {
last[W[next + k]] = -1;
} // remove k from degree list
W[head + mindeg] = W[next + k]; // elenk = |Ek|
var elenk = W[elen + k]; // # of nodes k represents
var nvk = W[nv + k]; // W[nv + k] nodes of A eliminated
nel += nvk; // Construct a new element. The new element Lk is constructed in place if |Ek| = 0. nv[i] is
// negated for all nodes i in Lk to flag them as members of this set. Each node i is removed from the
// degree lists. All elements e in Ek are absorved into element k.
var dk = 0; // flag k as in Lk
W[nv + k] = -nvk;
var p = cptr[k]; // do in place if W[elen + k] === 0
var pk1 = elenk === 0 ? p : cnz;
var pk2 = pk1;
for (k1 = 1; k1 <= elenk + 1; k1++) {
if (k1 > elenk) {
// search the nodes in k
e = k; // list of nodes starts at cindex[pj]
pj = p; // length of list of nodes in k
ln = W[len + k] - elenk;
} else {
// search the nodes in e
e = cindex[p++];
pj = cptr[e]; // length of list of nodes in e
ln = W[len + e];
}
for (k2 = 1; k2 <= ln; k2++) {
i = cindex[pj++]; // check node i dead, or seen
if ((nvi = W[nv + i]) <= 0) {
continue;
} // W[degree + Lk] += size of node i
dk += nvi; // negate W[nv + i] to denote i in Lk
W[nv + i] = -nvi; // place i in Lk
cindex[pk2++] = i;
if (W[next + i] !== -1) {
last[W[next + i]] = last[i];
} // check we need to remove i from degree list
if (last[i] !== -1) {
W[next + last[i]] = W[next + i];
} else {
W[head + W[degree + i]] = W[next + i];
}
}
if (e !== k) {
// absorb e into k
cptr[e] = csFlip(k); // e is now a dead element
W[w + e] = 0;
}
} // cindex[cnz...nzmax] is free
if (elenk !== 0) {
cnz = pk2;
} // external degree of k - |Lk\i|
W[degree + k] = dk; // element k is in cindex[pk1..pk2-1]
cptr[k] = pk1;
W[len + k] = pk2 - pk1; // k is now an element
W[elen + k] = -2; // Find set differences. The scan1 function now computes the set differences |Le \ Lk| for all elements e. At the start of the
// scan, no entry in the w array is greater than or equal to mark.
// clear w if necessary
mark = _wclear(mark, lemax, W, w, n); // scan 1: find |Le\Lk|
for (pk = pk1; pk < pk2; pk++) {
i = cindex[pk]; // check if W[elen + i] empty, skip it
if ((eln = W[elen + i]) <= 0) {
continue;
} // W[nv + i] was negated
nvi = -W[nv + i];
var wnvi = mark - nvi; // scan Ei
for (p = cptr[i], p1 = cptr[i] + eln - 1; p <= p1; p++) {
e = cindex[p];
if (W[w + e] >= mark) {
// decrement |Le\Lk|
W[w + e] -= nvi;
} else if (W[w + e] !== 0) {
// ensure e is a live element, 1st time e seen in scan 1
W[w + e] = W[degree + e] + wnvi;
}
}
} // degree update
// The second pass computes the approximate degree di, prunes the sets Ei and Ai, and computes a hash
// function h(i) for all nodes in Lk.
// scan2: degree update
for (pk = pk1; pk < pk2; pk++) {
// consider node i in Lk
i = cindex[pk];
p1 = cptr[i];
p2 = p1 + W[elen + i] - 1;
pn = p1; // scan Ei
for (h = 0, d = 0, p = p1; p <= p2; p++) {
e = cindex[p]; // check e is an unabsorbed element
if (W[w + e] !== 0) {
// dext = |Le\Lk|
var dext = W[w + e] - mark;
if (dext > 0) {
// sum up the set differences
d += dext; // keep e in Ei
cindex[pn++] = e; // compute the hash of node i
h += e;
} else {
// aggressive absorb. e->k
cptr[e] = csFlip(k); // e is a dead element
W[w + e] = 0;
}
}
} // W[elen + i] = |Ei|
W[elen + i] = pn - p1 + 1;
var p3 = pn;
var p4 = p1 + W[len + i]; // prune edges in Ai
for (p = p2 + 1; p < p4; p++) {
j = cindex[p]; // check node j dead or in Lk
var nvj = W[nv + j];
if (nvj <= 0) {
continue;
} // degree(i) += |j|
d += nvj; // place j in node list of i
cindex[pn++] = j; // compute hash for node i
h += j;
} // check for mass elimination
if (d === 0) {
// absorb i into k
cptr[i] = csFlip(k);
nvi = -W[nv + i]; // |Lk| -= |i|
dk -= nvi; // |k| += W[nv + i]
nvk += nvi;
nel += nvi;
W[nv + i] = 0; // node i is dead
W[elen + i] = -1;
} else {
// update degree(i)
W[degree + i] = Math.min(W[degree + i], d); // move first node to end
cindex[pn] = cindex[p3]; // move 1st el. to end of Ei
cindex[p3] = cindex[p1]; // add k as 1st element in of Ei
cindex[p1] = k; // new len of adj. list of node i
W[len + i] = pn - p1 + 1; // finalize hash of i
h = (h < 0 ? -h : h) % n; // place i in hash bucket
W[next + i] = W[hhead + h];
W[hhead + h] = i; // save hash of i in last[i]
last[i] = h;
}
} // finalize |Lk|
W[degree + k] = dk;
lemax = Math.max(lemax, dk); // clear w
mark = _wclear(mark + lemax, lemax, W, w, n); // Supernode detection. Supernode detection relies on the hash function h(i) computed for each node i.
// If two nodes have identical adjacency lists, their hash functions wil be identical.
for (pk = pk1; pk < pk2; pk++) {
i = cindex[pk]; // check i is dead, skip it
if (W[nv + i] >= 0) {
continue;
} // scan hash bucket of node i
h = last[i];
i = W[hhead + h]; // hash bucket will be empty
W[hhead + h] = -1;
for (; i !== -1 && W[next + i] !== -1; i = W[next + i], mark++) {
ln = W[len + i];
eln = W[elen + i];
for (p = cptr[i] + 1; p <= cptr[i] + ln - 1; p++) {
W[w + cindex[p]] = mark;
}
var jlast = i; // compare i with all j
for (j = W[next + i]; j !== -1;) {
var ok = W[len + j] === ln && W[elen + j] === eln;
for (p = cptr[j] + 1; ok && p <= cptr[j] + ln - 1; p++) {
// compare i and j
if (W[w + cindex[p]] !== mark) {
ok = 0;
}
} // check i and j are identical
if (ok) {
// absorb j into i
cptr[j] = csFlip(i);
W[nv + i] += W[nv + j];
W[nv + j] = 0; // node j is dead
W[elen + j] = -1; // delete j from hash bucket
j = W[next + j];
W[next + jlast] = j;
} else {
// j and i are different
jlast = j;
j = W[next + j];
}
}
}
} // Finalize new element. The elimination of node k is nearly complete. All nodes i in Lk are scanned one last time.
// Node i is removed from Lk if it is dead. The flagged status of nv[i] is cleared.
for (p = pk1, pk = pk1; pk < pk2; pk++) {
i = cindex[pk]; // check i is dead, skip it
if ((nvi = -W[nv + i]) <= 0) {
continue;
} // restore W[nv + i]
W[nv + i] = nvi; // compute external degree(i)
d = W[degree + i] + dk - nvi;
d = Math.min(d, n - nel - nvi);
if (W[head + d] !== -1) {
last[W[head + d]] = i;
} // put i back in degree list
W[next + i] = W[head + d];
last[i] = -1;
W[head + d] = i; // find new minimum degree
mindeg = Math.min(mindeg, d);
W[degree + i] = d; // place i in Lk
cindex[p++] = i;
} // # nodes absorbed into k
W[nv + k] = nvk; // length of adj list of element k
if ((W[len + k] = p - pk1) === 0) {
// k is a root of the tree
cptr[k] = -1; // k is now a dead element
W[w + k] = 0;
}
if (elenk !== 0) {
// free unused space in Lk
cnz = p;
}
} // Postordering. The elimination is complete, but no permutation has been computed. All that is left
// of the graph is the assembly tree (ptr) and a set of dead nodes and elements (i is a dead node if
// nv[i] is zero and a dead element if nv[i] > 0). It is from this information only that the final permutation
// is computed. The tree is restored by unflipping all of ptr.
// fix assembly tree
for (i = 0; i < n; i++) {
cptr[i] = csFlip(cptr[i]);
}
for (j = 0; j <= n; j++) {
W[head + j] = -1;
} // place unordered nodes in lists
for (j = n; j >= 0; j--) {
// skip if j is an element
if (W[nv + j] > 0) {
continue;
} // place j in list of its parent
W[next + j] = W[head + cptr[j]];
W[head + cptr[j]] = j;
} // place elements in lists
for (e = n; e >= 0; e--) {
// skip unless e is an element
if (W[nv + e] <= 0) {
continue;
}
if (cptr[e] !== -1) {
// place e in list of its parent
W[next + e] = W[head + cptr[e]];
W[head + cptr[e]] = e;
}
} // postorder the assembly tree
for (k = 0, i = 0; i <= n; i++) {
if (cptr[i] === -1) {
k = csTdfs(i, k, W, head, next, P, w);
}
} // remove last item in array
P.splice(P.length - 1, 1); // return P
return P;
}
|
Approximate minimum degree ordering. The minimum degree algorithm is a widely used
heuristic for finding a permutation P so that P*A*P' has fewer nonzeros in its factorization
than A. It is a gready method that selects the sparsest pivot row and column during the course
of a right looking sparse Cholesky factorization.
Reference: http://faculty.cse.tamu.edu/davis/publications.html
@param {Number} order 0: Natural, 1: Cholesky, 2: LU, 3: QR
@param {Matrix} m Sparse Matrix
|
csAmd
|
javascript
|
grimalschi/calque
|
math.js
|
https://github.com/grimalschi/calque/blob/master/math.js
|
MIT
|
function _createTargetMatrix(order, a, m, n, dense) {
// compute A'
var at = transpose(a); // check order = 1, matrix must be square
if (order === 1 && n === m) {
// C = A + A'
return add(a, at);
} // check order = 2, drop dense columns from M'
if (order === 2) {
// transpose arrays
var tindex = at._index;
var tptr = at._ptr; // new column index
var p2 = 0; // loop A' columns (rows)
for (var j = 0; j < m; j++) {
// column j of AT starts here
var p = tptr[j]; // new column j starts here
tptr[j] = p2; // skip dense col j
if (tptr[j + 1] - p > dense) {
continue;
} // map rows in column j of A
for (var p1 = tptr[j + 1]; p < p1; p++) {
tindex[p2++] = tindex[p];
}
} // finalize AT
tptr[m] = p2; // recreate A from new transpose matrix
a = transpose(at); // use A' * A
return multiply(at, a);
} // use A' * A, square or rectangular matrix
return multiply(at, a);
}
|
Creates the matrix that will be used by the approximate minimum degree ordering algorithm. The function accepts the matrix M as input and returns a permutation
vector P. The amd algorithm operates on a symmetrix matrix, so one of three symmetric matrices is formed.
Order: 0
A natural ordering P=null matrix is returned.
Order: 1
Matrix must be square. This is appropriate for a Cholesky or LU factorization.
P = M + M'
Order: 2
Dense columns from M' are dropped, M recreated from M'. This is appropriatefor LU factorization of unsymmetric matrices.
P = M' * M
Order: 3
This is best used for QR factorization or LU factorization is matrix M has no dense rows. A dense row is a row with more than 10*sqr(columns) entries.
P = M' * M
|
_createTargetMatrix
|
javascript
|
grimalschi/calque
|
math.js
|
https://github.com/grimalschi/calque/blob/master/math.js
|
MIT
|
function _initializeQuotientGraph(n, cptr, W, len, head, last, next, hhead, nv, w, elen, degree) {
// Initialize quotient graph
for (var k = 0; k < n; k++) {
W[len + k] = cptr[k + 1] - cptr[k];
}
W[len + n] = 0; // initialize workspace
for (var i = 0; i <= n; i++) {
// degree list i is empty
W[head + i] = -1;
last[i] = -1;
W[next + i] = -1; // hash list i is empty
W[hhead + i] = -1; // node i is just one node
W[nv + i] = 1; // node i is alive
W[w + i] = 1; // Ek of node i is empty
W[elen + i] = 0; // degree of node i
W[degree + i] = W[len + i];
} // clear w
var mark = _wclear(0, 0, W, w, n); // n is a dead element
W[elen + n] = -2; // n is a root of assembly tree
cptr[n] = -1; // n is a dead element
W[w + n] = 0; // return mark
return mark;
}
|
Initialize quotient graph. There are four kind of nodes and elements that must be represented:
- A live node is a node i (or a supernode) that has not been selected as a pivot nad has not been merged into another supernode.
- A dead node i is one that has been removed from the graph, having been absorved into r = flip(ptr[i]).
- A live element e is one that is in the graph, having been formed when node e was selected as the pivot.
- A dead element e is one that has benn absorved into a subsequent element s = flip(ptr[e]).
|
_initializeQuotientGraph
|
javascript
|
grimalschi/calque
|
math.js
|
https://github.com/grimalschi/calque/blob/master/math.js
|
MIT
|
function _initializeDegreeLists(n, cptr, W, degree, elen, w, dense, nv, head, last, next) {
// result
var nel = 0; // loop columns
for (var i = 0; i < n; i++) {
// degree @ i
var d = W[degree + i]; // check node i is empty
if (d === 0) {
// element i is dead
W[elen + i] = -2;
nel++; // i is a root of assembly tree
cptr[i] = -1;
W[w + i] = 0;
} else if (d > dense) {
// absorb i into element n
W[nv + i] = 0; // node i is dead
W[elen + i] = -1;
nel++;
cptr[i] = csFlip(n);
W[nv + n]++;
} else {
var h = W[head + d];
if (h !== -1) {
last[h] = i;
} // put node i in degree list d
W[next + i] = W[head + d];
W[head + d] = i;
}
}
return nel;
}
|
Initialize degree lists. Each node is placed in its degree lists. Nodes of zero degree are eliminated immediately. Nodes with
degree >= dense are alsol eliminated and merged into a placeholder node n, a dead element. Thes nodes will appera last in the
output permutation p.
|
_initializeDegreeLists
|
javascript
|
grimalschi/calque
|
math.js
|
https://github.com/grimalschi/calque/blob/master/math.js
|
MIT
|
function _wclear(mark, lemax, W, w, n) {
if (mark < 2 || mark + lemax < 0) {
for (var k = 0; k < n; k++) {
if (W[w + k] !== 0) {
W[w + k] = 1;
}
}
mark = 2;
} // at this point, W [0..n-1] < mark holds
return mark;
}
|
Initialize degree lists. Each node is placed in its degree lists. Nodes of zero degree are eliminated immediately. Nodes with
degree >= dense are alsol eliminated and merged into a placeholder node n, a dead element. Thes nodes will appera last in the
output permutation p.
|
_wclear
|
javascript
|
grimalschi/calque
|
math.js
|
https://github.com/grimalschi/calque/blob/master/math.js
|
MIT
|
function _diag(i, j) {
return i !== j;
}
|
Initialize degree lists. Each node is placed in its degree lists. Nodes of zero degree are eliminated immediately. Nodes with
degree >= dense are alsol eliminated and merged into a placeholder node n, a dead element. Thes nodes will appera last in the
output permutation p.
|
_diag
|
javascript
|
grimalschi/calque
|
math.js
|
https://github.com/grimalschi/calque/blob/master/math.js
|
MIT
|
csFkeep = function csFkeep(a, callback, other) {
// a arrays
var avalues = a._values;
var aindex = a._index;
var aptr = a._ptr;
var asize = a._size; // columns
var n = asize[1]; // nonzero items
var nz = 0; // loop columns
for (var j = 0; j < n; j++) {
// get current location of col j
var p = aptr[j]; // record new location of col j
aptr[j] = nz;
for (; p < aptr[j + 1]; p++) {
// check we need to keep this item
if (callback(aindex[p], j, avalues ? avalues[p] : 1, other)) {
// keep A(i,j)
aindex[nz] = aindex[p]; // check we need to process values (pattern only)
if (avalues) {
avalues[nz] = avalues[p];
} // increment nonzero items
nz++;
}
}
} // finalize A
aptr[n] = nz; // trim arrays
aindex.splice(nz, aindex.length - nz); // check we need to process values (pattern only)
if (avalues) {
avalues.splice(nz, avalues.length - nz);
} // return number of nonzero items
return nz;
}
|
Keeps entries in the matrix when the callback function returns true, removes the entry otherwise
@param {Matrix} a The sparse matrix
@param {function} callback The callback function, function will be invoked with the following args:
- The entry row
- The entry column
- The entry value
- The state parameter
@param {any} other The state
@return The number of nonzero elements in the matrix
Reference: http://faculty.cse.tamu.edu/davis/publications.html
|
csFkeep
|
javascript
|
grimalschi/calque
|
math.js
|
https://github.com/grimalschi/calque/blob/master/math.js
|
MIT
|
csPermute = function csPermute(a, pinv, q, values) {
// a arrays
var avalues = a._values;
var aindex = a._index;
var aptr = a._ptr;
var asize = a._size;
var adt = a._datatype; // rows & columns
var m = asize[0];
var n = asize[1]; // c arrays
var cvalues = values && a._values ? [] : null;
var cindex = []; // (aptr[n])
var cptr = []; // (n + 1)
// initialize vars
var nz = 0; // loop columns
for (var k = 0; k < n; k++) {
// column k of C is column q[k] of A
cptr[k] = nz; // apply column permutation
var j = q ? q[k] : k; // loop values in column j of A
for (var t0 = aptr[j], t1 = aptr[j + 1], t = t0; t < t1; t++) {
// row i of A is row pinv[i] of C
var r = pinv ? pinv[aindex[t]] : aindex[t]; // index
cindex[nz] = r; // check we need to populate values
if (cvalues) {
cvalues[nz] = avalues[t];
} // increment number of nonzero elements
nz++;
}
} // finalize the last column of C
cptr[n] = nz; // return C matrix
return new SparseMatrix({
values: cvalues,
index: cindex,
ptr: cptr,
size: [m, n],
datatype: adt
});
}
|
Permutes a sparse matrix C = P * A * Q
@param {Matrix} a The Matrix A
@param {Array} pinv The row permutation vector
@param {Array} q The column permutation vector
@param {boolean} values Create a pattern matrix (false), values and pattern otherwise
@return {Matrix} C = P * A * Q, null on error
Reference: http://faculty.cse.tamu.edu/davis/publications.html
|
csPermute
|
javascript
|
grimalschi/calque
|
math.js
|
https://github.com/grimalschi/calque/blob/master/math.js
|
MIT
|
csEtree = function csEtree(a, ata) {
// check inputs
if (!a) {
return null;
} // a arrays
var aindex = a._index;
var aptr = a._ptr;
var asize = a._size; // rows & columns
var m = asize[0];
var n = asize[1]; // allocate result
var parent = []; // (n)
// allocate workspace
var w = []; // (n + (ata ? m : 0))
var ancestor = 0; // first n entries in w
var prev = n; // last m entries (ata = true)
var i, inext; // check we are calculating A'A
if (ata) {
// initialize workspace
for (i = 0; i < m; i++) {
w[prev + i] = -1;
}
} // loop columns
for (var k = 0; k < n; k++) {
// node k has no parent yet
parent[k] = -1; // nor does k have an ancestor
w[ancestor + k] = -1; // values in column k
for (var p0 = aptr[k], p1 = aptr[k + 1], p = p0; p < p1; p++) {
// row
var r = aindex[p]; // node
i = ata ? w[prev + r] : r; // traverse from i to k
for (; i !== -1 && i < k; i = inext) {
// inext = ancestor of i
inext = w[ancestor + i]; // path compression
w[ancestor + i] = k; // check no anc., parent is k
if (inext === -1) {
parent[i] = k;
}
}
if (ata) {
w[prev + r] = k;
}
}
}
return parent;
}
|
Computes the elimination tree of Matrix A (using triu(A)) or the
elimination tree of A'A without forming A'A.
@param {Matrix} a The A Matrix
@param {boolean} ata A value of true the function computes the etree of A'A
Reference: http://faculty.cse.tamu.edu/davis/publications.html
|
csEtree
|
javascript
|
grimalschi/calque
|
math.js
|
https://github.com/grimalschi/calque/blob/master/math.js
|
MIT
|
csPost = function csPost(parent, n) {
// check inputs
if (!parent) {
return null;
} // vars
var k = 0;
var j; // allocate result
var post = []; // (n)
// workspace, head: first n entries, next: next n entries, stack: last n entries
var w = []; // (3 * n)
var head = 0;
var next = n;
var stack = 2 * n; // initialize workspace
for (j = 0; j < n; j++) {
// empty linked lists
w[head + j] = -1;
} // traverse nodes in reverse order
for (j = n - 1; j >= 0; j--) {
// check j is a root
if (parent[j] === -1) {
continue;
} // add j to list of its parent
w[next + j] = w[head + parent[j]];
w[head + parent[j]] = j;
} // loop nodes
for (j = 0; j < n; j++) {
// skip j if it is not a root
if (parent[j] !== -1) {
continue;
} // depth-first search
k = csTdfs(j, k, w, head, next, post, stack);
}
return post;
}
|
Post order a tree of forest
@param {Array} parent The tree or forest
@param {Number} n Number of columns
Reference: http://faculty.cse.tamu.edu/davis/publications.html
|
csPost
|
javascript
|
grimalschi/calque
|
math.js
|
https://github.com/grimalschi/calque/blob/master/math.js
|
MIT
|
csCounts = function csCounts(a, parent, post, ata) {
// check inputs
if (!a || !parent || !post) {
return null;
} // a matrix arrays
var asize = a._size; // rows and columns
var m = asize[0];
var n = asize[1]; // variables
var i, j, k, J, p, p0, p1; // workspace size
var s = 4 * n + (ata ? n + m + 1 : 0); // allocate workspace
var w = []; // (s)
var ancestor = 0; // first n entries
var maxfirst = n; // next n entries
var prevleaf = 2 * n; // next n entries
var first = 3 * n; // next n entries
var head = 4 * n; // next n + 1 entries (used when ata is true)
var next = 5 * n + 1; // last entries in workspace
// clear workspace w[0..s-1]
for (k = 0; k < s; k++) {
w[k] = -1;
} // allocate result
var colcount = []; // (n)
// AT = A'
var at = transpose(a); // at arrays
var tindex = at._index;
var tptr = at._ptr; // find w[first + j]
for (k = 0; k < n; k++) {
j = post[k]; // colcount[j]=1 if j is a leaf
colcount[j] = w[first + j] === -1 ? 1 : 0;
for (; j !== -1 && w[first + j] === -1; j = parent[j]) {
w[first + j] = k;
}
} // initialize ata if needed
if (ata) {
// invert post
for (k = 0; k < n; k++) {
w[post[k]] = k;
} // loop rows (columns in AT)
for (i = 0; i < m; i++) {
// values in column i of AT
for (k = n, p0 = tptr[i], p1 = tptr[i + 1], p = p0; p < p1; p++) {
k = Math.min(k, w[tindex[p]]);
} // place row i in linked list k
w[next + i] = w[head + k];
w[head + k] = i;
}
} // each node in its own set
for (i = 0; i < n; i++) {
w[ancestor + i] = i;
}
for (k = 0; k < n; k++) {
// j is the kth node in postordered etree
j = post[k]; // check j is not a root
if (parent[j] !== -1) {
colcount[parent[j]]--;
} // J=j for LL'=A case
for (J = ata ? w[head + k] : j; J !== -1; J = ata ? w[next + J] : -1) {
for (p = tptr[J]; p < tptr[J + 1]; p++) {
i = tindex[p];
var r = csLeaf(i, j, w, first, maxfirst, prevleaf, ancestor); // check A(i,j) is in skeleton
if (r.jleaf >= 1) {
colcount[j]++;
} // check account for overlap in q
if (r.jleaf === 2) {
colcount[r.q]--;
}
}
}
if (parent[j] !== -1) {
w[ancestor + j] = parent[j];
}
} // sum up colcount's of each child
for (j = 0; j < n; j++) {
if (parent[j] !== -1) {
colcount[parent[j]] += colcount[j];
}
}
return colcount;
}
|
Computes the column counts using the upper triangular part of A.
It transposes A internally, none of the input parameters are modified.
@param {Matrix} a The sparse matrix A
@param {Matrix} ata Count the columns of A'A instead
@return An array of size n of the column counts or null on error
Reference: http://faculty.cse.tamu.edu/davis/publications.html
|
csCounts
|
javascript
|
grimalschi/calque
|
math.js
|
https://github.com/grimalschi/calque/blob/master/math.js
|
MIT
|
csLeaf = function csLeaf(i, j, w, first, maxfirst, prevleaf, ancestor) {
var s, sparent, jprev; // our result
var jleaf = 0;
var q; // check j is a leaf
if (i <= j || w[first + j] <= w[maxfirst + i]) {
return -1;
} // update max first[j] seen so far
w[maxfirst + i] = w[first + j]; // jprev = previous leaf of ith subtree
jprev = w[prevleaf + i];
w[prevleaf + i] = j; // check j is first or subsequent leaf
if (jprev === -1) {
// 1st leaf, q = root of ith subtree
jleaf = 1;
q = i;
} else {
// update jleaf
jleaf = 2; // q = least common ancester (jprev,j)
for (q = jprev; q !== w[ancestor + q]; q = w[ancestor + q]) {
;
}
for (s = jprev; s !== q; s = sparent) {
// path compression
sparent = w[ancestor + s];
w[ancestor + s] = q;
}
}
return {
jleaf: jleaf,
q: q
};
}
|
This function determines if j is a leaf of the ith row subtree.
Consider A(i,j), node j in ith row subtree and return lca(jprev,j)
@param {Number} i The ith row subtree
@param {Number} j The node to test
@param {Array} w The workspace array
@param {Number} first The index offset within the workspace for the first array
@param {Number} maxfirst The index offset within the workspace for the maxfirst array
@param {Number} prevleaf The index offset within the workspace for the prevleaf array
@param {Number} ancestor The index offset within the workspace for the ancestor array
@return {Object}
Reference: http://faculty.cse.tamu.edu/davis/publications.html
|
csLeaf
|
javascript
|
grimalschi/calque
|
math.js
|
https://github.com/grimalschi/calque/blob/master/math.js
|
MIT
|
csLu = function csLu(m, s, tol) {
// validate input
if (!m) {
return null;
} // m arrays
var size = m._size; // columns
var n = size[1]; // symbolic analysis result
var q;
var lnz = 100;
var unz = 100; // update symbolic analysis parameters
if (s) {
q = s.q;
lnz = s.lnz || lnz;
unz = s.unz || unz;
} // L arrays
var lvalues = []; // (lnz)
var lindex = []; // (lnz)
var lptr = []; // (n + 1)
// L
var L = new SparseMatrix({
values: lvalues,
index: lindex,
ptr: lptr,
size: [n, n]
}); // U arrays
var uvalues = []; // (unz)
var uindex = []; // (unz)
var uptr = []; // (n + 1)
// U
var U = new SparseMatrix({
values: uvalues,
index: uindex,
ptr: uptr,
size: [n, n]
}); // inverse of permutation vector
var pinv = []; // (n)
// vars
var i, p; // allocate arrays
var x = []; // (n)
var xi = []; // (2 * n)
// initialize variables
for (i = 0; i < n; i++) {
// clear workspace
x[i] = 0; // no rows pivotal yet
pinv[i] = -1; // no cols of L yet
lptr[i + 1] = 0;
} // reset number of nonzero elements in L and U
lnz = 0;
unz = 0; // compute L(:,k) and U(:,k)
for (var k = 0; k < n; k++) {
// update ptr
lptr[k] = lnz;
uptr[k] = unz; // apply column permutations if needed
var col = q ? q[k] : k; // solve triangular system, x = L\A(:,col)
var top = csSpsolve(L, m, col, xi, x, pinv, 1); // find pivot
var ipiv = -1;
var a = -1; // loop xi[] from top -> n
for (p = top; p < n; p++) {
// x[i] is nonzero
i = xi[p]; // check row i is not yet pivotal
if (pinv[i] < 0) {
// absolute value of x[i]
var xabs = abs(x[i]); // check absoulte value is greater than pivot value
if (larger(xabs, a)) {
// largest pivot candidate so far
a = xabs;
ipiv = i;
}
} else {
// x(i) is the entry U(pinv[i],k)
uindex[unz] = pinv[i];
uvalues[unz++] = x[i];
}
} // validate we found a valid pivot
if (ipiv === -1 || a <= 0) {
return null;
} // update actual pivot column, give preference to diagonal value
if (pinv[col] < 0 && largerEq(abs(x[col]), multiply(a, tol))) {
ipiv = col;
} // the chosen pivot
var pivot = x[ipiv]; // last entry in U(:,k) is U(k,k)
uindex[unz] = k;
uvalues[unz++] = pivot; // ipiv is the kth pivot row
pinv[ipiv] = k; // first entry in L(:,k) is L(k,k) = 1
lindex[lnz] = ipiv;
lvalues[lnz++] = 1; // L(k+1:n,k) = x / pivot
for (p = top; p < n; p++) {
// row
i = xi[p]; // check x(i) is an entry in L(:,k)
if (pinv[i] < 0) {
// save unpermuted row in L
lindex[lnz] = i; // scale pivot column
lvalues[lnz++] = divideScalar(x[i], pivot);
} // x[0..n-1] = 0 for next k
x[i] = 0;
}
} // update ptr
lptr[n] = lnz;
uptr[n] = unz; // fix row indices of L for final pinv
for (p = 0; p < lnz; p++) {
lindex[p] = pinv[lindex[p]];
} // trim arrays
lvalues.splice(lnz, lvalues.length - lnz);
lindex.splice(lnz, lindex.length - lnz);
uvalues.splice(unz, uvalues.length - unz);
uindex.splice(unz, uindex.length - unz); // return LU factor
return {
L: L,
U: U,
pinv: pinv
};
}
|
Computes the numeric LU factorization of the sparse matrix A. Implements a Left-looking LU factorization
algorithm that computes L and U one column at a tume. At the kth step, it access columns 1 to k-1 of L
and column k of A. Given the fill-reducing column ordering q (see parameter s) computes L, U and pinv so
L * U = A(p, q), where p is the inverse of pinv.
@param {Matrix} m The A Matrix to factorize
@param {Object} s The symbolic analysis from csSqr(). Provides the fill-reducing
column ordering q
@param {Number} tol Partial pivoting threshold (1 for partial pivoting)
@return {Number} The numeric LU factorization of A or null
Reference: http://faculty.cse.tamu.edu/davis/publications.html
|
csLu
|
javascript
|
grimalschi/calque
|
math.js
|
https://github.com/grimalschi/calque/blob/master/math.js
|
MIT
|
csSpsolve = function csSpsolve(g, b, k, xi, x, pinv, lo) {
// g arrays
var gvalues = g._values;
var gindex = g._index;
var gptr = g._ptr;
var gsize = g._size; // columns
var n = gsize[1]; // b arrays
var bvalues = b._values;
var bindex = b._index;
var bptr = b._ptr; // vars
var p, p0, p1, q; // xi[top..n-1] = csReach(B(:,k))
var top = csReach(g, b, k, xi, pinv); // clear x
for (p = top; p < n; p++) {
x[xi[p]] = 0;
} // scatter b
for (p0 = bptr[k], p1 = bptr[k + 1], p = p0; p < p1; p++) {
x[bindex[p]] = bvalues[p];
} // loop columns
for (var px = top; px < n; px++) {
// x array index for px
var j = xi[px]; // apply permutation vector (U x = b), j maps to column J of G
var J = pinv ? pinv[j] : j; // check column J is empty
if (J < 0) {
continue;
} // column value indeces in G, p0 <= p < p1
p0 = gptr[J];
p1 = gptr[J + 1]; // x(j) /= G(j,j)
x[j] = divideScalar(x[j], gvalues[lo ? p0 : p1 - 1]); // first entry L(j,j)
p = lo ? p0 + 1 : p0;
q = lo ? p1 : p1 - 1; // loop
for (; p < q; p++) {
// row
var i = gindex[p]; // x(i) -= G(i,j) * x(j)
x[i] = subtract(x[i], multiply(gvalues[p], x[j]));
}
} // return top of stack
return top;
}
|
The function csSpsolve() computes the solution to G * x = bk, where bk is the
kth column of B. When lo is true, the function assumes G = L is lower triangular with the
diagonal entry as the first entry in each column. When lo is true, the function assumes G = U
is upper triangular with the diagonal entry as the last entry in each column.
@param {Matrix} g The G matrix
@param {Matrix} b The B matrix
@param {Number} k The kth column in B
@param {Array} xi The nonzero pattern xi[top] .. xi[n - 1], an array of size = 2 * n
The first n entries is the nonzero pattern, the last n entries is the stack
@param {Array} x The soluton to the linear system G * x = b
@param {Array} pinv The inverse row permutation vector, must be null for L * x = b
@param {boolean} lo The lower (true) upper triangular (false) flag
@return {Number} The index for the nonzero pattern
Reference: http://faculty.cse.tamu.edu/davis/publications.html
|
csSpsolve
|
javascript
|
grimalschi/calque
|
math.js
|
https://github.com/grimalschi/calque/blob/master/math.js
|
MIT
|
csReach = function csReach(g, b, k, xi, pinv) {
// g arrays
var gptr = g._ptr;
var gsize = g._size; // b arrays
var bindex = b._index;
var bptr = b._ptr; // columns
var n = gsize[1]; // vars
var p, p0, p1; // initialize top
var top = n; // loop column indeces in B
for (p0 = bptr[k], p1 = bptr[k + 1], p = p0; p < p1; p++) {
// node i
var i = bindex[p]; // check node i is marked
if (!csMarked(gptr, i)) {
// start a dfs at unmarked node i
top = csDfs(i, g, top, xi, pinv);
}
} // loop columns from top -> n - 1
for (p = top; p < n; p++) {
// restore G
csMark(gptr, xi[p]);
}
return top;
}
|
The csReach function computes X = Reach(B), where B is the nonzero pattern of the n-by-1
sparse column of vector b. The function returns the set of nodes reachable from any node in B. The
nonzero pattern xi of the solution x to the sparse linear system Lx=b is given by X=Reach(B).
@param {Matrix} g The G matrix
@param {Matrix} b The B matrix
@param {Number} k The kth column in B
@param {Array} xi The nonzero pattern xi[top] .. xi[n - 1], an array of size = 2 * n
The first n entries is the nonzero pattern, the last n entries is the stack
@param {Array} pinv The inverse row permutation vector
@return {Number} The index for the nonzero pattern
Reference: http://faculty.cse.tamu.edu/davis/publications.html
|
csReach
|
javascript
|
grimalschi/calque
|
math.js
|
https://github.com/grimalschi/calque/blob/master/math.js
|
MIT
|
csDfs = function csDfs(j, g, top, xi, pinv) {
// g arrays
var index = g._index;
var ptr = g._ptr;
var size = g._size; // columns
var n = size[1]; // vars
var i, p, p2; // initialize head
var head = 0; // initialize the recursion stack
xi[0] = j; // loop
while (head >= 0) {
// get j from the top of the recursion stack
j = xi[head]; // apply permutation vector
var jnew = pinv ? pinv[j] : j; // check node j is marked
if (!csMarked(ptr, j)) {
// mark node j as visited
csMark(ptr, j); // update stack (last n entries in xi)
xi[n + head] = jnew < 0 ? 0 : csUnflip(ptr[jnew]);
} // node j done if no unvisited neighbors
var done = 1; // examine all neighbors of j, stack (last n entries in xi)
for (p = xi[n + head], p2 = jnew < 0 ? 0 : csUnflip(ptr[jnew + 1]); p < p2; p++) {
// consider neighbor node i
i = index[p]; // check we have visited node i, skip it
if (csMarked(ptr, i)) {
continue;
} // pause depth-first search of node j, update stack (last n entries in xi)
xi[n + head] = p; // start dfs at node i
xi[++head] = i; // node j is not done
done = 0; // break, to start dfs(i)
break;
} // check depth-first search at node j is done
if (done) {
// remove j from the recursion stack
head--; // and place in the output stack
xi[--top] = j;
}
}
return top;
}
|
Depth-first search computes the nonzero pattern xi of the directed graph G (Matrix) starting
at nodes in B (see csReach()).
@param {Number} j The starting node for the DFS algorithm
@param {Matrix} g The G matrix to search, ptr array modified, then restored
@param {Number} top Start index in stack xi[top..n-1]
@param {Number} k The kth column in B
@param {Array} xi The nonzero pattern xi[top] .. xi[n - 1], an array of size = 2 * n
The first n entries is the nonzero pattern, the last n entries is the stack
@param {Array} pinv The inverse row permutation vector, must be null for L * x = b
@return {Number} New value of top
Reference: http://faculty.cse.tamu.edu/davis/publications.html
|
csDfs
|
javascript
|
grimalschi/calque
|
math.js
|
https://github.com/grimalschi/calque/blob/master/math.js
|
MIT
|
csUnflip = function csUnflip(i) {
// flip the value if it is negative
return i < 0 ? csFlip(i) : i;
}
|
Flips the value if it is negative of returns the same value otherwise.
@param {Number} i The value to flip
Reference: http://faculty.cse.tamu.edu/davis/publications.html
|
csUnflip
|
javascript
|
grimalschi/calque
|
math.js
|
https://github.com/grimalschi/calque/blob/master/math.js
|
MIT
|
_toMatrix = function _toMatrix(a) {
// check it is a matrix
if (type.isMatrix(a)) {
return a;
} // check array
if (isArray(a)) {
return matrix(a);
} // throw
throw new TypeError('Invalid Matrix LU decomposition');
}
|
Solves the linear system `A * x = b` where `A` is an [n x n] matrix and `b` is a [n] column vector.
Syntax:
math.lusolve(A, b) // returns column vector with the solution to the linear system A * x = b
math.lusolve(lup, b) // returns column vector with the solution to the linear system A * x = b, lup = math.lup(A)
Examples:
const m = [[1, 0, 0, 0], [0, 2, 0, 0], [0, 0, 3, 0], [0, 0, 0, 4]]
const x = math.lusolve(m, [-1, -1, -1, -1]) // x = [[-1], [-0.5], [-1/3], [-0.25]]
const f = math.lup(m)
const x1 = math.lusolve(f, [-1, -1, -1, -1]) // x1 = [[-1], [-0.5], [-1/3], [-0.25]]
const x2 = math.lusolve(f, [1, 2, 1, -1]) // x2 = [[1], [1], [1/3], [-0.25]]
const a = [[-2, 3], [2, 1]]
const b = [11, 9]
const x = math.lusolve(a, b) // [[2], [5]]
See also:
lup, slu, lsolve, usolve
@param {Matrix | Array | Object} A Invertible Matrix or the Matrix LU decomposition
@param {Matrix | Array} b Column Vector
@param {number} [order] The Symbolic Ordering and Analysis order, see slu for details. Matrix must be a SparseMatrix
@param {Number} [threshold] Partial pivoting threshold (1 for partial pivoting), see slu for details. Matrix must be a SparseMatrix.
@return {DenseMatrix | Array} Column vector with the solution to the linear system A * x = b
|
_toMatrix
|
javascript
|
grimalschi/calque
|
math.js
|
https://github.com/grimalschi/calque/blob/master/math.js
|
MIT
|
function _lusolve(l, u, p, q, b) {
// verify L, U, P
l = _toMatrix(l);
u = _toMatrix(u); // validate matrix and vector
b = solveValidation(l, b, false); // apply row permutations if needed (b is a DenseMatrix)
if (p) {
b._data = csIpvec(p, b._data);
} // use forward substitution to resolve L * y = b
var y = lsolve(l, b); // use backward substitution to resolve U * x = y
var x = usolve(u, y); // apply column permutations if needed (x is a DenseMatrix)
if (q) {
x._data = csIpvec(q, x._data);
} // return solution
return x;
}
|
Solves the linear system `A * x = b` where `A` is an [n x n] matrix and `b` is a [n] column vector.
Syntax:
math.lusolve(A, b) // returns column vector with the solution to the linear system A * x = b
math.lusolve(lup, b) // returns column vector with the solution to the linear system A * x = b, lup = math.lup(A)
Examples:
const m = [[1, 0, 0, 0], [0, 2, 0, 0], [0, 0, 3, 0], [0, 0, 0, 4]]
const x = math.lusolve(m, [-1, -1, -1, -1]) // x = [[-1], [-0.5], [-1/3], [-0.25]]
const f = math.lup(m)
const x1 = math.lusolve(f, [-1, -1, -1, -1]) // x1 = [[-1], [-0.5], [-1/3], [-0.25]]
const x2 = math.lusolve(f, [1, 2, 1, -1]) // x2 = [[1], [1], [1/3], [-0.25]]
const a = [[-2, 3], [2, 1]]
const b = [11, 9]
const x = math.lusolve(a, b) // [[2], [5]]
See also:
lup, slu, lsolve, usolve
@param {Matrix | Array | Object} A Invertible Matrix or the Matrix LU decomposition
@param {Matrix | Array} b Column Vector
@param {number} [order] The Symbolic Ordering and Analysis order, see slu for details. Matrix must be a SparseMatrix
@param {Number} [threshold] Partial pivoting threshold (1 for partial pivoting), see slu for details. Matrix must be a SparseMatrix.
@return {DenseMatrix | Array} Column vector with the solution to the linear system A * x = b
|
_lusolve
|
javascript
|
grimalschi/calque
|
math.js
|
https://github.com/grimalschi/calque/blob/master/math.js
|
MIT
|
function csIpvec(p, b) {
// vars
var k;
var n = b.length;
var x = []; // check permutation vector was provided, p = null denotes identity
if (p) {
// loop vector
for (k = 0; k < n; k++) {
// apply permutation
x[p[k]] = b[k];
}
} else {
// loop vector
for (k = 0; k < n; k++) {
// x[i] = b[i]
x[k] = b[k];
}
}
return x;
}
|
Permutes a vector; x = P'b. In MATLAB notation, x(p)=b.
@param {Array} p The permutation vector of length n. null value denotes identity
@param {Array} b The input vector
@return {Array} The output vector x = P'b
|
csIpvec
|
javascript
|
grimalschi/calque
|
math.js
|
https://github.com/grimalschi/calque/blob/master/math.js
|
MIT
|
function _cbrtComplex(x, allRoots) {
// https://www.wikiwand.com/en/Cube_root#/Complex_numbers
var arg3 = x.arg() / 3;
var abs = x.abs(); // principal root:
var principal = new type.Complex(_cbrtNumber(abs), 0).mul(new type.Complex(0, arg3).exp());
if (allRoots) {
var all = [principal, new type.Complex(_cbrtNumber(abs), 0).mul(new type.Complex(0, arg3 + Math.PI * 2 / 3).exp()), new type.Complex(_cbrtNumber(abs), 0).mul(new type.Complex(0, arg3 - Math.PI * 2 / 3).exp())];
return config.matrix === 'Array' ? all : matrix(all);
} else {
return principal;
}
}
|
Calculate the cubic root for a complex number
@param {Complex} x
@param {boolean} [allRoots] If true, the function will return an array
with all three roots. If false or undefined,
the principal root is returned.
@returns {Complex | Array.<Complex> | Matrix.<Complex>} Returns the cubic root(s) of x
@private
|
_cbrtComplex
|
javascript
|
grimalschi/calque
|
math.js
|
https://github.com/grimalschi/calque/blob/master/math.js
|
MIT
|
function _cbrtUnit(x) {
if (x.value && type.isComplex(x.value)) {
var result = x.clone();
result.value = 1.0;
result = result.pow(1.0 / 3); // Compute the units
result.value = _cbrtComplex(x.value); // Compute the value
return result;
} else {
var negate = isNegative(x.value);
if (negate) {
x.value = unaryMinus(x.value);
} // TODO: create a helper function for this
var third;
if (type.isBigNumber(x.value)) {
third = new type.BigNumber(1).div(3);
} else if (type.isFraction(x.value)) {
third = new type.Fraction(1, 3);
} else {
third = 1 / 3;
}
var _result = x.pow(third);
if (negate) {
_result.value = unaryMinus(_result.value);
}
return _result;
}
}
|
Calculate the cubic root for a Unit
@param {Unit} x
@return {Unit} Returns the cubic root of x
@private
|
_cbrtUnit
|
javascript
|
grimalschi/calque
|
math.js
|
https://github.com/grimalschi/calque/blob/master/math.js
|
MIT
|
function _expm1(x) {
return x >= 2e-4 || x <= -2e-4 ? Math.exp(x) - 1 : x + x * x / 2 + x * x * x / 6;
}
|
Calculates exponentiation minus 1.
@param {number} x
@return {number} res
@private
|
_expm1
|
javascript
|
grimalschi/calque
|
math.js
|
https://github.com/grimalschi/calque/blob/master/math.js
|
MIT
|
function _gcdBigNumber(a, b) {
if (!a.isInt() || !b.isInt()) {
throw new Error('Parameters in function gcd must be integer numbers');
} // https://en.wikipedia.org/wiki/Euclidean_algorithm
var zero = new type.BigNumber(0);
while (!b.isZero()) {
var r = a.mod(b);
a = b;
b = r;
}
return a.lt(zero) ? a.neg() : a;
}
|
Calculate gcd for BigNumbers
@param {BigNumber} a
@param {BigNumber} b
@returns {BigNumber} Returns greatest common denominator of a and b
@private
|
_gcdBigNumber
|
javascript
|
grimalschi/calque
|
math.js
|
https://github.com/grimalschi/calque/blob/master/math.js
|
MIT
|
function _gcd(a, b) {
if (!isInteger(a) || !isInteger(b)) {
throw new Error('Parameters in function gcd must be integer numbers');
} // https://en.wikipedia.org/wiki/Euclidean_algorithm
var r;
while (b !== 0) {
r = a % b;
a = b;
b = r;
}
return a < 0 ? -a : a;
}
|
Calculate gcd for numbers
@param {number} a
@param {number} b
@returns {number} Returns the greatest common denominator of a and b
@private
|
_gcd
|
javascript
|
grimalschi/calque
|
math.js
|
https://github.com/grimalschi/calque/blob/master/math.js
|
MIT
|
function _hypot(args) {
// code based on `hypot` from es6-shim:
// https://github.com/paulmillr/es6-shim/blob/master/es6-shim.js#L1619-L1633
var result = 0;
var largest = 0;
for (var i = 0; i < args.length; i++) {
var value = abs(args[i]);
if (smaller(largest, value)) {
result = multiply(result, multiply(divide(largest, value), divide(largest, value)));
result = add(result, 1);
largest = value;
} else {
result = add(result, isPositive(value) ? multiply(divide(value, largest), divide(value, largest)) : value);
}
}
return multiply(largest, sqrt(result));
}
|
Calculate the hypotenusa for an Array with values
@param {Array.<number | BigNumber>} args
@return {number | BigNumber} Returns the result
@private
|
_hypot
|
javascript
|
grimalschi/calque
|
math.js
|
https://github.com/grimalschi/calque/blob/master/math.js
|
MIT
|
function _lcmBigNumber(a, b) {
if (!a.isInt() || !b.isInt()) {
throw new Error('Parameters in function lcm must be integer numbers');
}
if (a.isZero() || b.isZero()) {
return new type.BigNumber(0);
} // https://en.wikipedia.org/wiki/Euclidean_algorithm
// evaluate lcm here inline to reduce overhead
var prod = a.times(b);
while (!b.isZero()) {
var t = b;
b = a.mod(t);
a = t;
}
return prod.div(a).abs();
}
|
Calculate lcm for two BigNumbers
@param {BigNumber} a
@param {BigNumber} b
@returns {BigNumber} Returns the least common multiple of a and b
@private
|
_lcmBigNumber
|
javascript
|
grimalschi/calque
|
math.js
|
https://github.com/grimalschi/calque/blob/master/math.js
|
MIT
|
function _lcm(a, b) {
if (!isInteger(a) || !isInteger(b)) {
throw new Error('Parameters in function lcm must be integer numbers');
}
if (a === 0 || b === 0) {
return 0;
} // https://en.wikipedia.org/wiki/Euclidean_algorithm
// evaluate lcm here inline to reduce overhead
var t;
var prod = a * b;
while (b !== 0) {
t = b;
b = a % t;
a = t;
}
return Math.abs(prod / a);
}
|
Calculate lcm for two numbers
@param {number} a
@param {number} b
@returns {number} Returns the least common multiple of a and b
@private
|
_lcm
|
javascript
|
grimalschi/calque
|
math.js
|
https://github.com/grimalschi/calque/blob/master/math.js
|
MIT
|
function _log1pNumber(x) {
if (x >= -1 || config.predictable) {
return Math.log1p ? Math.log1p(x) : Math.log(x + 1);
} else {
// negative value -> complex value computation
return _log1pComplex(new type.Complex(x, 0));
}
}
|
Calculate the natural logarithm of a `number+1`
@param {number} x
@returns {number | Complex}
@private
|
_log1pNumber
|
javascript
|
grimalschi/calque
|
math.js
|
https://github.com/grimalschi/calque/blob/master/math.js
|
MIT
|
function _log1pComplex(x) {
var xRe1p = x.re + 1;
return new type.Complex(Math.log(Math.sqrt(xRe1p * xRe1p + x.im * x.im)), Math.atan2(x.im, xRe1p));
}
|
Calculate the natural logarithm of a complex number + 1
@param {Complex} x
@returns {Complex}
@private
|
_log1pComplex
|
javascript
|
grimalschi/calque
|
math.js
|
https://github.com/grimalschi/calque/blob/master/math.js
|
MIT
|
function _log2Complex(x) {
var newX = Math.sqrt(x.re * x.re + x.im * x.im);
return new type.Complex(Math.log2 ? Math.log2(newX) : Math.log(newX) / Math.LN2, Math.atan2(x.im, x.re) / Math.LN2);
}
|
Calculate log2 for a complex value
@param {Complex} x
@returns {Complex}
@private
|
_log2Complex
|
javascript
|
grimalschi/calque
|
math.js
|
https://github.com/grimalschi/calque/blob/master/math.js
|
MIT
|
function _mod(x, y) {
if (y > 0) {
// We don't use JavaScript's % operator here as this doesn't work
// correctly for x < 0 and x === 0
// see https://en.wikipedia.org/wiki/Modulo_operation
return x - y * Math.floor(x / y);
} else if (y === 0) {
return x;
} else {
// y < 0
// TODO: implement mod for a negative divisor
throw new Error('Cannot calculate mod for a negative divisor');
}
}
|
Calculate the modulus of two numbers
@param {number} x
@param {number} y
@returns {number} res
@private
|
_mod
|
javascript
|
grimalschi/calque
|
math.js
|
https://github.com/grimalschi/calque/blob/master/math.js
|
MIT
|
function _norm(x, p) {
// size
var sizeX = x.size(); // check if it is a vector
if (sizeX.length === 1) {
// check p
if (p === Number.POSITIVE_INFINITY || p === 'inf') {
// norm(x, Infinity) = max(abs(x))
var pinf = 0; // skip zeros since abs(0) === 0
x.forEach(function (value) {
var v = abs(value);
if (larger(v, pinf)) {
pinf = v;
}
}, true);
return pinf;
}
if (p === Number.NEGATIVE_INFINITY || p === '-inf') {
// norm(x, -Infinity) = min(abs(x))
var ninf; // skip zeros since abs(0) === 0
x.forEach(function (value) {
var v = abs(value);
if (!ninf || smaller(v, ninf)) {
ninf = v;
}
}, true);
return ninf || 0;
}
if (p === 'fro') {
return _norm(x, 2);
}
if (typeof p === 'number' && !isNaN(p)) {
// check p != 0
if (!equalScalar(p, 0)) {
// norm(x, p) = sum(abs(xi) ^ p) ^ 1/p
var n = 0; // skip zeros since abs(0) === 0
x.forEach(function (value) {
n = add(pow(abs(value), p), n);
}, true);
return pow(n, 1 / p);
}
return Number.POSITIVE_INFINITY;
} // invalid parameter value
throw new Error('Unsupported parameter value');
} // MxN matrix
if (sizeX.length === 2) {
// check p
if (p === 1) {
// norm(x) = the largest column sum
var c = []; // result
var maxc = 0; // skip zeros since abs(0) == 0
x.forEach(function (value, index) {
var j = index[1];
var cj = add(c[j] || 0, abs(value));
if (larger(cj, maxc)) {
maxc = cj;
}
c[j] = cj;
}, true);
return maxc;
}
if (p === Number.POSITIVE_INFINITY || p === 'inf') {
// norm(x) = the largest row sum
var r = []; // result
var maxr = 0; // skip zeros since abs(0) == 0
x.forEach(function (value, index) {
var i = index[0];
var ri = add(r[i] || 0, abs(value));
if (larger(ri, maxr)) {
maxr = ri;
}
r[i] = ri;
}, true);
return maxr;
}
if (p === 'fro') {
// norm(x) = sqrt(sum(diag(x'x)))
var fro = 0;
x.forEach(function (value, index) {
fro = add(fro, multiply(value, conj(value)));
});
return abs(sqrt(fro));
}
if (p === 2) {
// not implemented
throw new Error('Unsupported parameter value, missing implementation of matrix singular value decomposition');
} // invalid parameter value
throw new Error('Unsupported parameter value');
}
}
|
Calculate the norm for an array
@param {Matrix} x
@param {number | string} p
@returns {number} Returns the norm
@private
|
_norm
|
javascript
|
grimalschi/calque
|
math.js
|
https://github.com/grimalschi/calque/blob/master/math.js
|
MIT
|
function _bigNthRoot(a, root) {
var precision = type.BigNumber.precision;
var Big = type.BigNumber.clone({
precision: precision + 2
});
var zero = new type.BigNumber(0);
var one = new Big(1);
var inv = root.isNegative();
if (inv) {
root = root.neg();
}
if (root.isZero()) {
throw new Error('Root must be non-zero');
}
if (a.isNegative() && !root.abs().mod(2).equals(1)) {
throw new Error('Root must be odd when a is negative.');
} // edge cases zero and infinity
if (a.isZero()) {
return inv ? new Big(Infinity) : 0;
}
if (!a.isFinite()) {
return inv ? zero : a;
}
var x = a.abs().pow(one.div(root)); // If a < 0, we require that root is an odd integer,
// so (-1) ^ (1/root) = -1
x = a.isNeg() ? x.neg() : x;
return new type.BigNumber((inv ? one.div(x) : x).toPrecision(precision));
}
|
Calculate the nth root of a for BigNumbers, solve x^root == a
https://rosettacode.org/wiki/Nth_root#JavaScript
@param {BigNumber} a
@param {BigNumber} root
@private
|
_bigNthRoot
|
javascript
|
grimalschi/calque
|
math.js
|
https://github.com/grimalschi/calque/blob/master/math.js
|
MIT
|
function _nthRoot(a, root) {
var inv = root < 0;
if (inv) {
root = -root;
}
if (root === 0) {
throw new Error('Root must be non-zero');
}
if (a < 0 && Math.abs(root) % 2 !== 1) {
throw new Error('Root must be odd when a is negative.');
} // edge cases zero and infinity
if (a === 0) {
return inv ? Infinity : 0;
}
if (!isFinite(a)) {
return inv ? 0 : a;
}
var x = Math.pow(Math.abs(a), 1 / root); // If a < 0, we require that root is an odd integer,
// so (-1) ^ (1/root) = -1
x = a < 0 ? -x : x;
return inv ? 1 / x : x; // Very nice algorithm, but fails with nthRoot(-2, 3).
// Newton's method has some well-known problems at times:
// https://en.wikipedia.org/wiki/Newton%27s_method#Failure_analysis
/*
let x = 1 // Initial guess
let xPrev = 1
let i = 0
const iMax = 10000
do {
const delta = (a / Math.pow(x, root - 1) - x) / root
xPrev = x
x = x + delta
i++
}
while (xPrev !== x && i < iMax)
if (xPrev !== x) {
throw new Error('Function nthRoot failed to converge')
}
return inv ? 1 / x : x
*/
}
|
Calculate the nth root of a, solve x^root == a
https://rosettacode.org/wiki/Nth_root#JavaScript
@param {number} a
@param {number} root
@private
|
_nthRoot
|
javascript
|
grimalschi/calque
|
math.js
|
https://github.com/grimalschi/calque/blob/master/math.js
|
MIT
|
Subsets and Splits
No community queries yet
The top public SQL queries from the community will appear here once available.