hash
stringlengths
64
64
content
stringlengths
0
1.51M
2d7b3e3baa7b09aedd17d4dcaca3e7ad5191c78785475f535eeefd50064e8fd9
# Licensed under a 3-clause BSD style license - see LICENSE.rst from io import StringIO from astropy.io import ascii from .common import (assert_equal, assert_almost_equal) def assert_equal_splitlines(arg1, arg2): assert_equal(arg1.splitlines(), arg2.splitlines()) def test_read_normal(): """Normal SimpleRST Table""" table = """ # comment (with blank line above) ======= ========= Col1 Col2 ======= ========= 1.2 "hello" 2.4 's worlds ======= ========= """ reader = ascii.get_reader(Reader=ascii.RST) dat = reader.read(table) assert_equal(dat.colnames, ['Col1', 'Col2']) assert_almost_equal(dat[1][0], 2.4) assert_equal(dat[0][1], '"hello"') assert_equal(dat[1][1], "'s worlds") def test_read_normal_names(): """Normal SimpleRST Table with provided column names""" table = """ # comment (with blank line above) ======= ========= Col1 Col2 ======= ========= 1.2 "hello" 2.4 's worlds ======= ========= """ reader = ascii.get_reader(Reader=ascii.RST, names=('name1', 'name2')) dat = reader.read(table) assert_equal(dat.colnames, ['name1', 'name2']) assert_almost_equal(dat[1][0], 2.4) def test_read_normal_names_include(): """Normal SimpleRST Table with provided column names""" table = """ # comment (with blank line above) ======= ========== ====== Col1 Col2 Col3 ======= ========== ====== 1.2 "hello" 3 2.4 's worlds 7 ======= ========== ====== """ reader = ascii.get_reader(Reader=ascii.RST, names=('name1', 'name2', 'name3'), include_names=('name1', 'name3')) dat = reader.read(table) assert_equal(dat.colnames, ['name1', 'name3']) assert_almost_equal(dat[1][0], 2.4) assert_equal(dat[0][1], 3) def test_read_normal_exclude(): """Nice, typical SimpleRST table with col name excluded""" table = """ ======= ========== Col1 Col2 ======= ========== 1.2 "hello" 2.4 's worlds ======= ========== """ reader = ascii.get_reader(Reader=ascii.RST, exclude_names=('Col1',)) dat = reader.read(table) assert_equal(dat.colnames, ['Col2']) assert_equal(dat[1][0], "'s worlds") def test_read_unbounded_right_column(): """The right hand column should be allowed to overflow""" table = """ # comment (with blank line above) ===== ===== ==== Col1 Col2 Col3 ===== ===== ==== 1.2 2 Hello 2.4 4 Worlds ===== ===== ==== """ reader = ascii.get_reader(Reader=ascii.RST) dat = reader.read(table) assert_equal(dat[0][2], "Hello") assert_equal(dat[1][2], "Worlds") def test_read_unbounded_right_column_header(): """The right hand column should be allowed to overflow""" table = """ # comment (with blank line above) ===== ===== ==== Col1 Col2 Col3Long ===== ===== ==== 1.2 2 Hello 2.4 4 Worlds ===== ===== ==== """ reader = ascii.get_reader(Reader=ascii.RST) dat = reader.read(table) assert_equal(dat.colnames[-1], "Col3Long") def test_read_right_indented_table(): """We should be able to read right indented tables correctly""" table = """ # comment (with blank line above) ==== ==== ==== Col1 Col2 Col3 ==== ==== ==== 3 3.4 foo 1 4.5 bar ==== ==== ==== """ reader = ascii.get_reader(Reader=ascii.RST) dat = reader.read(table) assert_equal(dat.colnames, ["Col1", "Col2", "Col3"]) assert_equal(dat[0][2], "foo") assert_equal(dat[1][0], 1) def test_trailing_spaces_in_row_definition(): """ Trailing spaces in the row definition column shouldn't matter""" table = ( "\n" "# comment (with blank line above)\n" " ==== ==== ==== \n" " Col1 Col2 Col3\n" " ==== ==== ==== \n" " 3 3.4 foo\n" " 1 4.5 bar\n" " ==== ==== ==== \n" ) # make sure no one accidentally deletes the trailing whitespaces in the # table. assert len(table) == 151 reader = ascii.get_reader(Reader=ascii.RST) dat = reader.read(table) assert_equal(dat.colnames, ["Col1", "Col2", "Col3"]) assert_equal(dat[0][2], "foo") assert_equal(dat[1][0], 1) table = """\ ====== =========== ============ =========== Col1 Col2 Col3 Col4 ====== =========== ============ =========== 1.2 "hello" 1 a 2.4 's worlds 2 2 ====== =========== ============ =========== """ dat = ascii.read(table, Reader=ascii.RST) def test_write_normal(): """Write a table as a normal SimpleRST Table""" out = StringIO() ascii.write(dat, out, Writer=ascii.RST) assert_equal_splitlines(out.getvalue(), """\ ==== ========= ==== ==== Col1 Col2 Col3 Col4 ==== ========= ==== ==== 1.2 "hello" 1 a 2.4 's worlds 2 2 ==== ========= ==== ==== """)
4cd4bab9339f1ee3e400d69befa4048b271ad93876cedcbefbdb0ee955e9ab23
# Licensed under a 3-clause BSD style license - see LICENSE.rst from io import StringIO import numpy as np from astropy.io import ascii from .common import assert_equal def test_types_from_dat(): converters = {'a': [ascii.convert_numpy(float)], 'e': [ascii.convert_numpy(str)]} dat = ascii.read(['a b c d e', '1 1 cat 2.1 4.2'], Reader=ascii.Basic, converters=converters) assert dat['a'].dtype.kind == 'f' assert dat['b'].dtype.kind == 'i' assert dat['c'].dtype.kind in ('S', 'U') assert dat['d'].dtype.kind == 'f' assert dat['e'].dtype.kind in ('S', 'U') def test_rdb_write_types(): dat = ascii.read(['a b c d', '1 1.0 cat 2.1'], Reader=ascii.Basic) out = StringIO() ascii.write(dat, out, Writer=ascii.Rdb) outs = out.getvalue().splitlines() assert_equal(outs[1], 'N\tN\tS\tN') def test_ipac_read_types(): table = r"""\ | ra | dec | sai |-----v2---| sptype | | real | float | l | real | char | | unit | unit | unit | unit | ergs | | null | null | null | null | -999 | 2.09708 2956 73765 2.06000 B8IVpMnHg """ reader = ascii.get_reader(Reader=ascii.Ipac) reader.read(table) types = [ascii.FloatType, ascii.FloatType, ascii.IntType, ascii.FloatType, ascii.StrType] for (col, expected_type) in zip(reader.cols, types): assert_equal(col.type, expected_type) def test_col_dtype_in_custom_class(): """Test code in BaseOutputter._convert_vals to handle Column.dtype attribute. See discussion in #11895.""" dtypes = [np.float32, np.int8, np.int16] class TestDtypeHeader(ascii.BasicHeader): def get_cols(self, lines): super().get_cols(lines) for col, dtype in zip(self.cols, dtypes): col.dtype = dtype class TestDtype(ascii.Basic): """ Basic table Data Reader with data type alternating float32, int8 """ header_class = TestDtypeHeader txt = """ a b c 1 2 3 """ reader = ascii.get_reader(TestDtype) t = reader.read(txt) for col, dtype in zip(t.itercols(), dtypes): assert col.dtype.type is dtype
c86313a86cbfa012f9948e0ed9ca8411e9061ddf7f62c4383201653c6f3d2fa7
# Licensed under a 3-clause BSD style license - see LICENSE.rst # -*- coding: utf-8 -*- # This file connects ASDF to the astropy.table.Table class import functools from astropy.io import registry as io_registry from astropy.table import Table def read_table(filename, data_key=None, find_table=None, **kwargs): """ Read a `~astropy.table.Table` object from an ASDF file This requires `asdf <https://pypi.org/project/asdf/>`_ to be installed. By default, this function will look for a Table object with the key of ``data`` in the top-level ASDF tree. The parameters ``data_key`` and ``find_key`` can be used to override the default behavior. This function is registered as the Table reader for ASDF files with the unified I/O interface. Parameters ---------- filename : str or :class:`py.lath:local` Name of the file to be read data_key : str Optional top-level key to use for finding the Table in the tree. If not provided, uses ``data`` by default. Use of this parameter is not compatible with ``find_table``. find_table : function Optional function to be used for locating the Table in the tree. The function takes a single parameter, which is a dictionary representing the top of the ASDF tree. The function must return a `~astropy.table.Table` instance. Returns ------- table : `~astropy.table.Table` `~astropy.table.Table` instance """ try: import asdf except ImportError: raise Exception( "The asdf module is required to read and write ASDF files") if data_key and find_table: raise ValueError("Options 'data_key' and 'find_table' are not compatible") with asdf.open(filename, **kwargs) as af: if find_table: return find_table(af.tree) else: return af[data_key or 'data'] def write_table(table, filename, data_key=None, make_tree=None, **kwargs): """ Write a `~astropy.table.Table` object to an ASDF file. This requires `asdf <https://pypi.org/project/asdf/>`_ to be installed. By default, this function will write a Table object in the top-level ASDF tree using the key of ``data``. The parameters ``data_key`` and ``make_tree`` can be used to override the default behavior. This function is registered as the Table writer for ASDF files with the unified I/O interface. Parameters ---------- table : `~astropy.table.Table` `~astropy.table.Table` instance to be written filename : str or :class:`py.path:local` Name of the new ASDF file to be created data_key : str Optional top-level key in the ASDF tree to use when writing the Table. If not provided, uses ``data`` by default. Use of this parameter is not compatible with ``make_tree``. make_tree : function Optional function to be used for creating the ASDF tree. The function takes a single parameter, which is the `~astropy.table.Table` instance to be written. The function must return a `dict` representing the ASDF tree to be created. """ try: import asdf except ImportError: raise Exception( "The asdf module is required to read and write ASDF files") if data_key and make_tree: raise ValueError("Options 'data_key' and 'make_tree' are not compatible") if make_tree: tree = make_tree(table) else: tree = {data_key or 'data' : table} with asdf.AsdfFile(tree) as af: af.write_to(filename, **kwargs) def asdf_identify(origin, filepath, fileobj, *args, **kwargs): try: import asdf except ImportError: return False return filepath is not None and filepath.endswith('.asdf') io_registry.register_reader('asdf', Table, read_table) io_registry.register_writer('asdf', Table, write_table) io_registry.register_identifier('asdf', Table, asdf_identify)
37a96f444942227ad3adea8f6b0d72e4023744c0ef69ad51d7410b2028b9b262
# Licensed under a 3-clause BSD style license - see LICENSE.rst # -*- coding: utf-8 -*- from asdf.types import CustomType, ExtensionTypeMeta __all__ = ['AstropyType', 'AstropyAsdfType'] # Names of AstropyType or AstropyAsdfType subclasses that are base classes # and aren't used directly for serialization. _TYPE_BASE_CLASS_NAMES = {'PolynomialTypeBase'} _astropy_types = set() _astropy_asdf_types = set() class AstropyTypeMeta(ExtensionTypeMeta): """ Keeps track of `AstropyType` subclasses that are created so that they can be stored automatically by astropy extensions for ASDF. """ def __new__(mcls, name, bases, attrs): cls = super().__new__(mcls, name, bases, attrs) # Classes using this metaclass are automatically added to the list of # astropy extensions if cls.__name__ not in _TYPE_BASE_CLASS_NAMES: if cls.organization == 'astropy.org' and cls.standard == 'astropy': _astropy_types.add(cls) elif cls.organization == 'stsci.edu' and cls.standard == 'asdf': _astropy_asdf_types.add(cls) return cls class AstropyType(CustomType, metaclass=AstropyTypeMeta): """ This class represents types that have schemas and tags that are defined by Astropy. IMPORTANT: This parent class should **not** be used for types that have schemas that are defined by the ASDF standard. """ organization = 'astropy.org' standard = 'astropy' class AstropyAsdfType(CustomType, metaclass=AstropyTypeMeta): """ This class represents types that have schemas that are defined in the ASDF standard, but have tags that are implemented within astropy. IMPORTANT: This parent class should **not** be used for types that also have schemas that are defined by astropy. """ organization = 'stsci.edu' standard = 'asdf'
ff2092ebc2799d2aca7c136e10fd4813aaf9074750fb8a9ecc24a49d8ca7a489
# Licensed under a 3-clause BSD style license - see LICENSE.rst # -*- coding: utf-8 -*- import os from asdf.extension import AsdfExtension, BuiltinExtension from asdf.util import filepath_to_url # Make sure that all tag implementations are imported by the time we create # the extension class so that _astropy_asdf_types is populated correctly. We # could do this using __init__ files, except it causes pytest import errors in # the case that asdf is not installed. from .tags.coordinates.angle import * # noqa from .tags.coordinates.frames import * # noqa from .tags.coordinates.earthlocation import * # noqa from .tags.coordinates.skycoord import * # noqa from .tags.coordinates.representation import * # noqa from .tags.coordinates.spectralcoord import * # noqa from .tags.fits.fits import * # noqa from .tags.table.table import * # noqa from .tags.time.time import * # noqa from .tags.time.timedelta import * # noqa from .tags.transform.basic import * # noqa from .tags.transform.compound import * # noqa from .tags.transform.functional_models import * # noqa from .tags.transform.physical_models import * # noqa from .tags.transform.math import * # noqa from .tags.transform.polynomial import * # noqa from .tags.transform.powerlaws import * # noqa from .tags.transform.projections import * # noqa from .tags.transform.spline import * # noqa from .tags.transform.tabular import * # noqa from .tags.unit.quantity import * # noqa from .tags.unit.unit import * # noqa from .tags.unit.equivalency import * # noqa from .types import _astropy_types, _astropy_asdf_types __all__ = ['AstropyExtension', 'AstropyAsdfExtension'] ASTROPY_SCHEMA_URI_BASE = 'http://astropy.org/schemas/' SCHEMA_PATH = os.path.abspath( os.path.join(os.path.dirname(__file__), 'data', 'schemas')) ASTROPY_URL_MAPPING = [ (ASTROPY_SCHEMA_URI_BASE, filepath_to_url( os.path.join(SCHEMA_PATH, 'astropy.org')) + '/{url_suffix}.yaml')] # This extension is used to register custom types that have both tags and # schemas defined by Astropy. class AstropyExtension(AsdfExtension): @property def types(self): return _astropy_types @property def tag_mapping(self): return [('tag:astropy.org:astropy', ASTROPY_SCHEMA_URI_BASE + 'astropy{tag_suffix}')] @property def url_mapping(self): return ASTROPY_URL_MAPPING # This extension is used to register custom tag types that have schemas defined # by ASDF, but have tag implementations defined in astropy. class AstropyAsdfExtension(BuiltinExtension): @property def types(self): return _astropy_asdf_types
fa2b719f9d7867f18b45043393bedc693efa18b70966cad12ac42decaa066069
# Licensed under a 3-clause BSD style license - see LICENSE.rst # This file connects the readers/writers to the astropy.table.Table class import functools import os.path from astropy.utils.misc import NOT_OVERWRITING_MSG from astropy.table import Table import astropy.io.registry as io_registry __all__ = ['PANDAS_FMTS'] # Astropy users normally expect to not have an index, so default to turn # off writing the index. This structure allows for astropy-specific # customization of all options. PANDAS_FMTS = {'csv': {'read': {}, 'write': {'index': False}}, 'fwf': {'read': {}}, # No writer 'html': {'read': {}, 'write': {'index': False}}, 'json': {'read': {}, 'write': {}}} PANDAS_PREFIX = 'pandas.' # Imports for reading HTML _IMPORTS = False _HAS_BS4 = False _HAS_LXML = False _HAS_HTML5LIB = False def import_html_libs(): """Try importing dependencies for reading HTML. This is copied from pandas.io.html """ # import things we need # but make this done on a first use basis global _IMPORTS if _IMPORTS: return global _HAS_BS4, _HAS_LXML, _HAS_HTML5LIB from astropy.utils.compat.optional_deps import ( HAS_BS4 as _HAS_BS4, HAS_LXML as _HAS_LXML, HAS_HTML5LIB as _HAS_HTML5LIB ) _IMPORTS = True def _pandas_read(fmt, filespec, **kwargs): """Provide io Table connector to read table using pandas. """ try: import pandas except ImportError: raise ImportError('pandas must be installed to use pandas table reader') pandas_fmt = fmt[len(PANDAS_PREFIX):] # chop the 'pandas.' in front read_func = getattr(pandas, 'read_' + pandas_fmt) # Get defaults and then override with user-supplied values read_kwargs = PANDAS_FMTS[pandas_fmt]['read'].copy() read_kwargs.update(kwargs) # Special case: pandas defaults to HTML lxml for reading, but does not attempt # to fall back to bs4 + html5lib. So do that now for convenience if user has # not specifically selected a flavor. If things go wrong the pandas exception # with instruction to install a library will come up. if pandas_fmt == 'html' and 'flavor' not in kwargs: import_html_libs() if (not _HAS_LXML and _HAS_HTML5LIB and _HAS_BS4): read_kwargs['flavor'] = 'bs4' df = read_func(filespec, **read_kwargs) # Special case for HTML if pandas_fmt == 'html': df = df[0] return Table.from_pandas(df) def _pandas_write(fmt, tbl, filespec, overwrite=False, **kwargs): """Provide io Table connector to write table using pandas. """ pandas_fmt = fmt[len(PANDAS_PREFIX):] # chop the 'pandas.' in front # Get defaults and then override with user-supplied values write_kwargs = PANDAS_FMTS[pandas_fmt]['write'].copy() write_kwargs.update(kwargs) df = tbl.to_pandas() write_method = getattr(df, 'to_' + pandas_fmt) if not overwrite: try: # filespec is not always a path-like exists = os.path.exists(filespec) except TypeError: # skip invalid arguments pass else: if exists: # only error if file already exists raise OSError(NOT_OVERWRITING_MSG.format(filespec)) return write_method(filespec, **write_kwargs) for pandas_fmt, defaults in PANDAS_FMTS.items(): fmt = PANDAS_PREFIX + pandas_fmt # Full format specifier if 'read' in defaults: func = functools.partial(_pandas_read, fmt) io_registry.register_reader(fmt, Table, func) if 'write' in defaults: func = functools.partial(_pandas_write, fmt) io_registry.register_writer(fmt, Table, func)
42af53f5cd9ad4bda95b5f973c752bbeac0d0965c6f5e458cf9afce1e94da964
# Licensed under a 3-clause BSD style license - see LICENSE.rst from io import StringIO import pytest import numpy as np from astropy.io import ascii from astropy.table import Table, QTable from astropy import units as u from astropy.coordinates import SkyCoord from astropy.io.misc.pandas import connect from astropy.utils.misc import _NOT_OVERWRITING_MSG_MATCH # Check dependencies pandas = pytest.importorskip("pandas") connect.import_html_libs() HAS_HTML_DEPS = connect._HAS_LXML or (connect._HAS_BS4 and connect._HAS_HTML5LIB) WRITE_FMTS = [fmt for fmt in connect.PANDAS_FMTS if 'write' in connect.PANDAS_FMTS[fmt]] @pytest.mark.parametrize('fmt', WRITE_FMTS) def test_read_write_format(fmt): """ Test round-trip through pandas write/read for supported formats. :param fmt: format name, e.g. csv, html, json :return: """ # Skip the reading tests if fmt == 'html' and not HAS_HTML_DEPS: pytest.skip('Missing lxml or bs4 + html5lib for HTML read/write test') pandas_fmt = 'pandas.' + fmt # Explicitly provide dtype to avoid casting 'a' to int32. # See https://github.com/astropy/astropy/issues/8682 t = Table([[1, 2, 3], [1.0, 2.5, 5.0], ['a', 'b', 'c']], dtype=(np.int64, np.float64, str)) buf = StringIO() t.write(buf, format=pandas_fmt) buf.seek(0) t2 = Table.read(buf, format=pandas_fmt) assert t.colnames == t2.colnames assert np.all(t == t2) @pytest.mark.parametrize('fmt', WRITE_FMTS) def test_write_overwrite(tmpdir, fmt): """Test overwriting.""" tmpfile = tmpdir.join('test.' + fmt).strpath pandas_fmt = 'pandas.' + fmt # Explicitly provide dtype to avoid casting 'a' to int32. # See https://github.com/astropy/astropy/issues/8682 t = Table([[1, 2, 3], [1.0, 2.5, 5.0], ['a', 'b', 'c']], dtype=(np.int64, np.float64, str)) # works when file DNE t.write(tmpfile, format=pandas_fmt) # fails when cannot overwrite with pytest.raises(OSError, match=_NOT_OVERWRITING_MSG_MATCH): t.write(tmpfile, format=pandas_fmt, overwrite=False) # passes when it can t.write(tmpfile, format=pandas_fmt, overwrite=True) def test_read_fixed_width_format(): """Test reading with pandas read_fwf() """ tbl = """\ a b c 1 2.0 a 2 3.0 b""" buf = StringIO() buf.write(tbl) # Explicitly provide converters to avoid casting 'a' to int32. # See https://github.com/astropy/astropy/issues/8682 t = Table.read(tbl, format='ascii', guess=False, converters={'a': [ascii.convert_numpy(np.int64)]}) buf.seek(0) t2 = Table.read(buf, format='pandas.fwf') assert t.colnames == t2.colnames assert np.all(t == t2) def test_write_with_mixins(): """Writing a table with mixins just drops them via to_pandas() This also tests passing a kwarg to pandas read and write. """ sc = SkyCoord([1, 2], [3, 4], unit='deg') q = [5, 6] * u.m qt = QTable([[1, 2], q, sc], names=['i', 'q', 'sc']) buf = StringIO() qt.write(buf, format='pandas.csv', sep=' ') exp = ['i q sc.ra sc.dec', '1 5.0 1.0 3.0', '2 6.0 2.0 4.0'] assert buf.getvalue().splitlines() == exp # Read it back buf.seek(0) qt2 = Table.read(buf, format='pandas.csv', sep=' ') # Explicitly provide converters to avoid casting 'i' to int32. # See https://github.com/astropy/astropy/issues/8682 exp_t = ascii.read(exp, converters={'i': [ascii.convert_numpy(np.int64)]}) assert qt2.colnames == exp_t.colnames assert np.all(qt2 == exp_t)
35decd8cc4706d3533f732290d0362bb546ea477029d816a38feb3e09a95dd38
# Licensed under a 3-clause BSD style license - see LICENSE.rst import pytest import numpy as np from astropy.table import Table, QTable, NdarrayMixin, Column from astropy.table.table_helpers import simple_table from astropy import units as u from astropy.coordinates import (SkyCoord, Latitude, Longitude, Angle, EarthLocation, SphericalRepresentation, CartesianRepresentation, SphericalCosLatDifferential) from astropy.io.misc.parquet import parquet_identify, get_pyarrow from astropy.time import Time, TimeDelta from astropy.units import allclose as quantity_allclose from astropy.units.quantity import QuantityInfo from astropy.utils.exceptions import AstropyUserWarning from astropy.utils.misc import _NOT_OVERWRITING_MSG_MATCH from astropy.utils.compat.optional_deps import HAS_PANDAS # noqa 401 # Skip all tests in this file if we cannot import pyarrow pyarrow = pytest.importorskip("pyarrow") ALL_DTYPES = [np.uint8, np.uint16, np.uint32, np.uint64, np.int8, np.int16, np.int32, np.int64, np.float32, np.float64, np.bool_, '|S3', 'U3'] def _default_values(dtype): if dtype == np.bool_: return [0, 1, 1] elif dtype == '|S3': return [b'abc', b'def', b'ghi'] elif dtype == 'U3': return ['abc', 'def', 'ghi'] else: return [1, 2, 3] def test_read_write_simple(tmpdir): """Test writing/reading a simple parquet file.""" test_file = tmpdir.join('test.parquet') t1 = Table() t1.add_column(Column(name='a', data=[1, 2, 3])) t1.write(test_file) t2 = Table.read(test_file) assert np.all(t2['a'] == [1, 2, 3]) def test_read_write_existing(tmpdir): """Test writing an existing file without overwriting.""" test_file = tmpdir.join('test.parquet') with open(test_file, 'w') as f: # create empty file pass t1 = Table() t1.add_column(Column(name='a', data=[1, 2, 3])) with pytest.raises(OSError, match=_NOT_OVERWRITING_MSG_MATCH): t1.write(test_file) def test_read_write_existing_overwrite(tmpdir): """Test overwriting an existing file.""" test_file = tmpdir.join('test.parquet') with open(test_file, 'w') as f: # create empty file pass t1 = Table() t1.add_column(Column(name='a', data=[1, 2, 3])) t1.write(test_file, overwrite=True) t2 = Table.read(test_file) assert np.all(t2['a'] == [1, 2, 3]) def test_read_fileobj(tmpdir): """Test reading a file object.""" test_file = tmpdir.join('test.parquet') t1 = Table() t1.add_column(Column(name='a', data=[1, 2, 3])) t1.write(test_file) import io with io.FileIO(test_file, mode='r') as input_file: t2 = Table.read(input_file) assert np.all(t2['a'] == [1, 2, 3]) def test_read_pathlikeobj(tmpdir): """Test reading a path-like object.""" test_file = tmpdir.join('test.parquet') t1 = Table() t1.add_column(Column(name='a', data=[1, 2, 3])) t1.write(test_file) import pathlib p = pathlib.Path(test_file) t2 = Table.read(p) assert np.all(t2['a'] == [1, 2, 3]) def test_read_wrong_fileobj(): """Test reading an incorrect fileobject type.""" class FakeFile: def not_read(self): pass f = FakeFile() with pytest.raises(TypeError, match="pyarrow can only open path-like or file-like objects."): Table.read(f, format='parquet') def test_identify_wrong_fileobj(): """Test identifying an incorrect fileobj.""" class FakeFile: def not_read(self): pass f = FakeFile() assert not parquet_identify('test', 'test', f) def test_identify_file_wrong_extension(): """Test identifying an incorrect extension.""" assert not parquet_identify('test', 'test.notparquet', None) def test_identify_file_correct_extension(): """Test identifying an incorrect extension.""" assert parquet_identify('test', 'test.parquet', None) assert parquet_identify('test', 'test.parq', None) def test_identify_file_noobject_nopath(): """Test running identify with no object or path.""" assert not parquet_identify('test', None, None) def test_write_wrong_type(): """Test writing to a filename of the wrong type.""" t1 = Table() t1.add_column(Column(name='a', data=[1, 2, 3])) with pytest.raises(TypeError, match='should be a string'): t1.write(1212, format='parquet') @pytest.mark.parametrize(('dtype'), ALL_DTYPES) def test_preserve_single_dtypes(tmpdir, dtype): """Test that round-tripping a single column preserves datatypes.""" test_file = tmpdir.join('test.parquet') values = _default_values(dtype) t1 = Table() t1.add_column(Column(name='a', data=np.array(values, dtype=dtype))) t1.write(test_file) t2 = Table.read(test_file) assert np.all(t2['a'] == values) assert t2['a'].dtype == dtype def test_preserve_all_dtypes(tmpdir): """Test that round-tripping preserves a table with all the datatypes.""" test_file = tmpdir.join('test.parquet') t1 = Table() for dtype in ALL_DTYPES: values = _default_values(dtype) t1.add_column(Column(name=str(dtype), data=np.array(values, dtype=dtype))) t1.write(test_file) t2 = Table.read(test_file) for dtype in ALL_DTYPES: values = _default_values(dtype) assert np.all(t2[str(dtype)] == values) assert t2[str(dtype)].dtype == dtype def test_preserve_meta(tmpdir): """Test that writing/reading preserves metadata.""" test_file = tmpdir.join('test.parquet') t1 = Table() t1.add_column(Column(name='a', data=[1, 2, 3])) t1.meta['a'] = 1 t1.meta['b'] = 'hello' t1.meta['c'] = 3.14159 t1.meta['d'] = True t1.meta['e'] = np.array([1, 2, 3]) t1.write(test_file) t2 = Table.read(test_file) for key in t1.meta: assert np.all(t1.meta[key] == t2.meta[key]) def test_preserve_serialized(tmpdir): """Test that writing/reading preserves unit/format/description.""" test_file = tmpdir.join('test.parquet') t1 = Table() t1['a'] = Column(data=[1, 2, 3], unit="s") t1['a'].meta['a0'] = "A0" t1['a'].meta['a1'] = {"a1": [0, 1]} t1['a'].format = '7.3f' t1['a'].description = 'A column' t1.meta['b'] = 1 t1.meta['c'] = {"c0": [0, 1]} t1.write(test_file, overwrite=True) t2 = Table.read(test_file) assert t1['a'].unit == t2['a'].unit assert t1['a'].format == t2['a'].format assert t1['a'].description == t2['a'].description assert t1['a'].meta == t2['a'].meta assert t1.meta == t2.meta def test_metadata_very_large(tmpdir): """Test that very large datasets work""" test_file = tmpdir.join('test.parquet') t1 = Table() t1['a'] = Column(data=[1, 2, 3], unit="s") t1['a'].meta['a0'] = "A0" t1['a'].meta['a1'] = {"a1": [0, 1]} t1['a'].format = '7.3f' t1['a'].description = 'A column' t1.meta['b'] = 1 t1.meta['c'] = {"c0": [0, 1]} t1.meta["meta_big"] = "0" * (2 ** 16 + 1) t1.meta["meta_biggerstill"] = "0" * (2 ** 18) t1.write(test_file, overwrite=True) t2 = Table.read(test_file) assert t1['a'].unit == t2['a'].unit assert t1['a'].format == t2['a'].format assert t1['a'].description == t2['a'].description assert t1['a'].meta == t2['a'].meta assert t1.meta == t2.meta def test_fail_meta_serialize(tmpdir): """Test that we cannot preserve objects in metadata.""" test_file = tmpdir.join('test.parquet') t1 = Table() t1.add_column(Column(name='a', data=[1, 2, 3])) t1.meta['f'] = str with pytest.raises(Exception) as err: t1.write(test_file) assert "cannot represent an object" in str(err.value) assert "<class 'str'>" in str(err.value) def assert_objects_equal(obj1, obj2, attrs, compare_class=True): """Convenient routine to check objects and attributes match.""" if compare_class: assert obj1.__class__ is obj2.__class__ info_attrs = ['info.name', 'info.format', 'info.unit', 'info.description', 'info.meta'] for attr in attrs + info_attrs: a1 = obj1 a2 = obj2 for subattr in attr.split('.'): try: a1 = getattr(a1, subattr) a2 = getattr(a2, subattr) except AttributeError: a1 = a1[subattr] a2 = a2[subattr] # Mixin info.meta can None instead of empty OrderedDict(), #6720 would # fix this. if attr == 'info.meta': if a1 is None: a1 = {} if a2 is None: a2 = {} if isinstance(a1, np.ndarray) and a1.dtype.kind == 'f': assert quantity_allclose(a1, a2, rtol=1e-15) else: assert np.all(a1 == a2) # Testing Parquet table read/write with mixins. This is mostly # copied from HDF5/FITS mixin testing, and it might be good to unify it. # Analogous tests also exist for ECSV. el = EarthLocation(x=1 * u.km, y=3 * u.km, z=5 * u.km) el2 = EarthLocation(x=[1, 2] * u.km, y=[3, 4] * u.km, z=[5, 6] * u.km) sr = SphericalRepresentation( [0, 1]*u.deg, [2, 3]*u.deg, 1*u.kpc) cr = CartesianRepresentation( [0, 1]*u.pc, [4, 5]*u.pc, [8, 6]*u.pc) sd = SphericalCosLatDifferential( [0, 1]*u.mas/u.yr, [0, 1]*u.mas/u.yr, 10*u.km/u.s) srd = SphericalRepresentation(sr, differentials=sd) sc = SkyCoord([1, 2], [3, 4], unit='deg,deg', frame='fk4', obstime='J1990.5') scd = SkyCoord([1, 2], [3, 4], [5, 6], unit='deg,deg,m', frame='fk4', obstime=['J1990.5', 'J1991.5']) scdc = scd.copy() scdc.representation_type = 'cartesian' scpm = SkyCoord([1, 2], [3, 4], [5, 6], unit='deg,deg,pc', pm_ra_cosdec=[7, 8]*u.mas/u.yr, pm_dec=[9, 10]*u.mas/u.yr) scpmrv = SkyCoord([1, 2], [3, 4], [5, 6], unit='deg,deg,pc', pm_ra_cosdec=[7, 8]*u.mas/u.yr, pm_dec=[9, 10]*u.mas/u.yr, radial_velocity=[11, 12]*u.km/u.s) scrv = SkyCoord([1, 2], [3, 4], [5, 6], unit='deg,deg,pc', radial_velocity=[11, 12]*u.km/u.s) tm = Time([2450814.5, 2450815.5], format='jd', scale='tai', location=el) # NOTE: in the test below the name of the column "x" for the Quantity is # important since it tests the fix for #10215 (namespace clash, where "x" # clashes with "el2.x"). mixin_cols = { 'tm': tm, 'dt': TimeDelta([1, 2] * u.day), 'sc': sc, 'scd': scd, 'scdc': scdc, 'scpm': scpm, 'scpmrv': scpmrv, 'scrv': scrv, 'x': [1, 2] * u.m, 'qdb': [10, 20] * u.dB(u.mW), 'qdex': [4.5, 5.5] * u.dex(u.cm/u.s**2), 'qmag': [21, 22] * u.ABmag, 'lat': Latitude([1, 2] * u.deg), 'lon': Longitude([1, 2] * u.deg, wrap_angle=180. * u.deg), 'ang': Angle([1, 2] * u.deg), 'el2': el2, 'sr': sr, 'cr': cr, 'sd': sd, 'srd': srd, } time_attrs = ['value', 'shape', 'format', 'scale', 'location'] compare_attrs = { 'c1': ['data'], 'c2': ['data'], 'tm': time_attrs, 'dt': ['shape', 'value', 'format', 'scale'], 'sc': ['ra', 'dec', 'representation_type', 'frame.name'], 'scd': ['ra', 'dec', 'distance', 'representation_type', 'frame.name'], 'scdc': ['x', 'y', 'z', 'representation_type', 'frame.name'], 'scpm': ['ra', 'dec', 'distance', 'pm_ra_cosdec', 'pm_dec', 'representation_type', 'frame.name'], 'scpmrv': ['ra', 'dec', 'distance', 'pm_ra_cosdec', 'pm_dec', 'radial_velocity', 'representation_type', 'frame.name'], 'scrv': ['ra', 'dec', 'distance', 'radial_velocity', 'representation_type', 'frame.name'], 'x': ['value', 'unit'], 'qdb': ['value', 'unit'], 'qdex': ['value', 'unit'], 'qmag': ['value', 'unit'], 'lon': ['value', 'unit', 'wrap_angle'], 'lat': ['value', 'unit'], 'ang': ['value', 'unit'], 'el2': ['x', 'y', 'z', 'ellipsoid'], 'nd': ['x', 'y', 'z'], 'sr': ['lon', 'lat', 'distance'], 'cr': ['x', 'y', 'z'], 'sd': ['d_lon_coslat', 'd_lat', 'd_distance'], 'srd': ['lon', 'lat', 'distance', 'differentials.s.d_lon_coslat', 'differentials.s.d_lat', 'differentials.s.d_distance'], } def test_parquet_mixins_qtable_to_table(tmpdir): """Test writing as QTable and reading as Table. Ensure correct classes come out. """ filename = tmpdir.join('test_simple.parquet') names = sorted(mixin_cols) t = QTable([mixin_cols[name] for name in names], names=names) t.write(filename, format='parquet') t2 = Table.read(filename, format='parquet') assert t.colnames == t2.colnames for name, col in t.columns.items(): col2 = t2[name] # Special-case Time, which does not yet support round-tripping # the format. if isinstance(col2, Time): col2.format = col.format attrs = compare_attrs[name] compare_class = True if isinstance(col.info, QuantityInfo): # Downgrade Quantity to Column + unit assert type(col2) is Column # Class-specific attributes like `value` or `wrap_angle` are lost. attrs = ['unit'] compare_class = False # Compare data values here (assert_objects_equal doesn't know how in this case) assert np.all(col.value == col2) assert_objects_equal(col, col2, attrs, compare_class) @pytest.mark.parametrize('table_cls', (Table, QTable)) def test_parquet_mixins_as_one(table_cls, tmpdir): """Test write/read all cols at once and validate intermediate column names""" filename = tmpdir.join('test_simple.parquet') names = sorted(mixin_cols) t = table_cls([mixin_cols[name] for name in names], names=names) t.meta['C'] = 'spam' t.meta['comments'] = ['this', 'is', 'a', 'comment'] t.meta['history'] = ['first', 'second', 'third'] t.write(filename, format="parquet") t2 = table_cls.read(filename, format='parquet') assert t2.meta['C'] == 'spam' assert t2.meta['comments'] == ['this', 'is', 'a', 'comment'] assert t2.meta['history'] == ['first', 'second', 'third'] assert t.colnames == t2.colnames @pytest.mark.parametrize('name_col', list(mixin_cols.items())) @pytest.mark.parametrize('table_cls', (Table, QTable)) def test_parquet_mixins_per_column(table_cls, name_col, tmpdir): """Test write/read one col at a time and do detailed validation""" filename = tmpdir.join('test_simple.parquet') name, col = name_col c = [1.0, 2.0] t = table_cls([c, col, c], names=['c1', name, 'c2']) t[name].info.description = 'my description' t[name].info.meta = {'list': list(range(50)), 'dict': {'a': 'b' * 200}} if not t.has_mixin_columns: pytest.skip('column is not a mixin (e.g. Quantity subclass in Table)') if isinstance(t[name], NdarrayMixin): pytest.xfail('NdarrayMixin not supported') t.write(filename, format="parquet") t2 = table_cls.read(filename, format='parquet') assert t.colnames == t2.colnames for colname in t.colnames: assert_objects_equal(t[colname], t2[colname], compare_attrs[colname]) # Special case to make sure Column type doesn't leak into Time class data if name.startswith('tm'): assert t2[name]._time.jd1.__class__ is np.ndarray assert t2[name]._time.jd2.__class__ is np.ndarray def test_round_trip_masked_table_default(tmpdir): """Test round-trip of MaskedColumn through Parquet using default serialization that writes a separate mask column. Note: >>> simple_table(masked=True) <Table masked=True length=3> a b c int64 float64 str1 ----- ------- ---- -- 1.0 c 2 2.0 -- 3 -- e """ filename = tmpdir.join('test.parquet') t = simple_table(masked=True) # int, float, and str cols with one masked element t['c'] = [b'c', b'd', b'e'] t['c'].mask[1] = True t.write(filename, format='parquet') t2 = Table.read(filename) assert t2.masked is False assert t2.colnames == t.colnames for name in t2.colnames: assert np.all(t2[name].mask == t[name].mask) assert np.all(t2[name] == t[name]) # Data under the mask round-trips also (unmask data to show this). t[name].mask = False t2[name].mask = False assert np.all(t2[name] == t[name]) @pytest.mark.parametrize('table_cls', (Table, QTable)) def test_parquet_mixins_read_one_name(table_cls, tmpdir): """Test write all cols at once, and read one at a time.""" filename = tmpdir.join('test_simple.parquet') names = sorted(mixin_cols) t = table_cls([mixin_cols[name] for name in names], names=names) t.meta['C'] = 'spam' t.meta['comments'] = ['this', 'is', 'a', 'comment'] t.meta['history'] = ['first', 'second', 'third'] t.write(filename, format="parquet") for name in names: t2 = table_cls.read(filename, format='parquet', include_names=[name]) assert t2.meta['C'] == 'spam' assert t2.meta['comments'] == ['this', 'is', 'a', 'comment'] assert t2.meta['history'] == ['first', 'second', 'third'] assert t2.colnames == [name] @pytest.mark.parametrize('table_cls', (Table, QTable)) def test_parquet_mixins_read_exclude_names(table_cls, tmpdir): """Test write all cols at once, and read all but one at a time.""" filename = tmpdir.join('test_simple.parquet') names = sorted(mixin_cols) t = table_cls([mixin_cols[name] for name in names], names=names) t.meta['C'] = 'spam' t.meta['comments'] = ['this', 'is', 'a', 'comment'] t.meta['history'] = ['first', 'second', 'third'] t.write(filename, format="parquet") t2 = table_cls.read(filename, format='parquet', exclude_names=names[0: 5]) assert t.colnames[5:] == t2.colnames @pytest.mark.parametrize('table_cls', (Table, QTable)) def test_parquet_mixins_read_no_columns(table_cls, tmpdir): """Test write all cols at once, and try to read no valid columns.""" filename = tmpdir.join('test_simple.parquet') names = sorted(mixin_cols) t = table_cls([mixin_cols[name] for name in names], names=names) t.meta['C'] = 'spam' t.meta['comments'] = ['this', 'is', 'a', 'comment'] t.meta['history'] = ['first', 'second', 'third'] t.write(filename, format="parquet") with pytest.raises(ValueError, match='No include_names specified'): t2 = table_cls.read(filename, format='parquet', include_names=['not_a_column', 'also_not_a_column']) @pytest.mark.parametrize('table_cls', (Table, QTable)) def test_parquet_mixins_read_schema(table_cls, tmpdir): """Test write all cols at once, and read the schema.""" filename = tmpdir.join('test_simple.parquet') names = sorted(mixin_cols) t = table_cls([mixin_cols[name] for name in names], names=names) t.meta['C'] = 'spam' t.meta['comments'] = ['this', 'is', 'a', 'comment'] t.meta['history'] = ['first', 'second', 'third'] t.write(filename, format="parquet") t2 = table_cls.read(filename, format="parquet", schema_only=True) assert t2.meta['C'] == 'spam' assert t2.meta['comments'] == ['this', 'is', 'a', 'comment'] assert t2.meta['history'] == ['first', 'second', 'third'] assert t.colnames == t2.colnames assert len(t2) == 0 def test_parquet_filter(tmpdir): """Test reading a parquet file with a filter.""" filename = tmpdir.join('test_simple.parquet') t1 = Table() t1['a'] = Column(data=np.arange(100), dtype=np.int32) t1['b'] = Column(data=np.arange(100, 0, -1), dtype=np.float64) t1.write(filename, overwrite=True) t2 = Table.read(filename, filters=[('a', '<', 50)]) assert t2['a'].max() < 50 t2 = Table.read(filename, filters=[('b', '<', 50)]) assert t2['b'].max() < 50 def test_parquet_read_generic(tmpdir): """Test reading a generic parquet file.""" filename = tmpdir.join('test_generic.parq') t1 = Table() for dtype in ALL_DTYPES: values = _default_values(dtype) t1.add_column(Column(name=str(dtype), data=np.array(values, dtype=dtype))) # Write the table generically via pyarrow.parquet names = t1.dtype.names type_list = [(name, pyarrow.from_numpy_dtype(t1[name].dtype.type)) for name in names] schema = pyarrow.schema(type_list) _, parquet, writer_version = get_pyarrow() # We use version='2.0' for full support of datatypes including uint32. with parquet.ParquetWriter(filename, schema, version=writer_version) as writer: arrays = [pyarrow.array(t1[name].data) for name in names] writer.write_table(pyarrow.Table.from_arrays(arrays, schema=schema)) with pytest.warns(AstropyUserWarning, match='No table::len'): t2 = Table.read(filename) for dtype in ALL_DTYPES: values = _default_values(dtype) assert np.all(t2[str(dtype)] == values) assert t2[str(dtype)].dtype == dtype @pytest.mark.skipif('not HAS_PANDAS') def test_parquet_read_pandas(tmpdir): """Test reading a pandas parquet file.""" filename = tmpdir.join('test_pandas.parq') t1 = Table() for dtype in ALL_DTYPES: values = _default_values(dtype) t1.add_column(Column(name=str(dtype), data=np.array(values, dtype=dtype))) df = t1.to_pandas() # We use version='2.0' for full support of datatypes including uint32. _, _, writer_version = get_pyarrow() df.to_parquet(filename, version=writer_version) with pytest.warns(AstropyUserWarning, match='No table::len'): t2 = Table.read(filename) for dtype in ALL_DTYPES: values = _default_values(dtype) assert np.all(t2[str(dtype)] == values) assert t2[str(dtype)].dtype == dtype
7fe435c1c76b6a0c141f34355f1c2417498a0334e3f3b921e8964cdb48bfd484
# Licensed under a 3-clause BSD style license - see LICENSE.rst """ This module tests some of the methods related to YAML serialization. """ from io import StringIO import pytest import numpy as np from astropy.coordinates import (SkyCoord, EarthLocation, Angle, Longitude, Latitude, SphericalRepresentation, UnitSphericalRepresentation, CartesianRepresentation, SphericalCosLatDifferential, SphericalDifferential, CartesianDifferential) from astropy import units as u from astropy.time import Time from astropy.table import QTable, SerializedColumn from astropy.coordinates.tests.test_representation import representation_equal from astropy.io.misc.yaml import load, load_all, dump # noqa @pytest.mark.parametrize('c', [True, np.uint8(8), np.int16(4), np.int32(1), np.int64(3), np.int64(2**63 - 1), 2.0, np.float64(), 3+4j, np.complex_(3 + 4j), np.complex64(3 + 4j), np.complex128(1. - 2**-52 + 1j * (1. - 2**-52))]) def test_numpy_types(c): cy = load(dump(c)) assert c == cy @pytest.mark.parametrize('c', [u.m, u.m / u.s, u.hPa, u.dimensionless_unscaled, u.Unit('m, (cm, um)')]) def test_unit(c): cy = load(dump(c)) if isinstance(c, (u.CompositeUnit, u.StructuredUnit)): assert c == cy else: assert c is cy @pytest.mark.parametrize('c', [u.Unit('bakers_dozen', 13*u.one), u.def_unit('magic')]) def test_custom_unit(c): s = dump(c) with pytest.warns(u.UnitsWarning, match=f"'{c!s}' did not parse") as w: cy = load(s) assert len(w) == 1 assert isinstance(cy, u.UnrecognizedUnit) assert str(cy) == str(c) with u.add_enabled_units(c): cy2 = load(s) assert cy2 is c @pytest.mark.parametrize('c', [ Angle('1 2 3', unit='deg'), Longitude('1 2 3', unit='deg'), Latitude('1 2 3', unit='deg'), [[1], [3]] * u.m, np.array([[1, 2], [3, 4]], order='F'), np.array([[1, 2], [3, 4]], order='C'), np.array([1, 2, 3, 4])[::2], np.array([(1., 2), (3., 4)], dtype='f8,i4'), # array with structured dtype. np.array((1., 2), dtype='f8,i4'), # array scalar with structured dtype. np.array((1., 2), dtype='f8,i4')[()], # numpy void. np.array((1., 2.), dtype='f8,f8') * u.s, # Quantity structured scalar. [((1., 2., 3.), (4., 5., 6.)), # Quantity with structured unit. ((11., 12., 13.), (14., 15., 16.))] * u.Unit('m, m/s'), np.array([((1., 2., 3.), (4., 5., 6.)), ((11., 12., 13.), (14., 15., 16.))], dtype=[('p', '3f8'), ('v', '3f8')]) * u.Unit('m, m/s') ]) def test_ndarray_subclasses(c): cy = load(dump(c)) assert np.all(c == cy) assert c.shape == cy.shape assert c.dtype == cy.dtype assert type(c) is type(cy) cc = 'C_CONTIGUOUS' fc = 'F_CONTIGUOUS' if c.flags[cc] or c.flags[fc]: assert c.flags[cc] == cy.flags[cc] assert c.flags[fc] == cy.flags[fc] else: # Original was not contiguous but round-trip version # should be c-contig. assert cy.flags[cc] if hasattr(c, 'unit'): assert c.unit == cy.unit def compare_coord(c, cy): assert c.shape == cy.shape assert c.frame.name == cy.frame.name assert list(c.get_frame_attr_names()) == list(cy.get_frame_attr_names()) for attr in c.get_frame_attr_names(): assert getattr(c, attr) == getattr(cy, attr) assert (list(c.representation_component_names) == list(cy.representation_component_names)) for name in c.representation_component_names: assert np.all(getattr(c, attr) == getattr(cy, attr)) @pytest.mark.parametrize('frame', ['fk4', 'altaz']) def test_skycoord(frame): c = SkyCoord([[1, 2], [3, 4]], [[5, 6], [7, 8]], unit='deg', frame=frame, obstime=Time('2016-01-02'), location=EarthLocation(1000, 2000, 3000, unit=u.km)) cy = load(dump(c)) compare_coord(c, cy) @pytest.mark.parametrize('rep', [ CartesianRepresentation(1*u.m, 2.*u.m, 3.*u.m), SphericalRepresentation([[1, 2], [3, 4]]*u.deg, [[5, 6], [7, 8]]*u.deg, 10*u.pc), UnitSphericalRepresentation(0*u.deg, 10*u.deg), SphericalCosLatDifferential([[1.], [2.]]*u.mas/u.yr, [4., 5.]*u.mas/u.yr, [[[10]], [[20]]]*u.km/u.s), CartesianDifferential([10, 20, 30]*u.km/u.s), CartesianRepresentation( [1, 2, 3]*u.m, differentials=CartesianDifferential([10, 20, 30]*u.km/u.s)), SphericalRepresentation( [[1, 2], [3, 4]]*u.deg, [[5, 6], [7, 8]]*u.deg, 10*u.pc, differentials={ 's': SphericalDifferential([[0., 1.], [2., 3.]]*u.mas/u.yr, [[4., 5.], [6., 7.]]*u.mas/u.yr, 10*u.km/u.s)})]) def test_representations(rep): rrep = load(dump(rep)) assert np.all(representation_equal(rrep, rep)) def _get_time(): t = Time([[1], [2]], format='cxcsec', location=EarthLocation(1000, 2000, 3000, unit=u.km)) t.format = 'iso' t.precision = 5 t.delta_ut1_utc = np.array([[3.0], [4.0]]) t.delta_tdb_tt = np.array([[5.0], [6.0]]) t.out_subfmt = 'date_hm' return t def compare_time(t, ty): assert type(t) is type(ty) assert np.all(t == ty) for attr in ('shape', 'jd1', 'jd2', 'format', 'scale', 'precision', 'in_subfmt', 'out_subfmt', 'location', 'delta_ut1_utc', 'delta_tdb_tt'): assert np.all(getattr(t, attr) == getattr(ty, attr)) def test_time(): t = _get_time() ty = load(dump(t)) compare_time(t, ty) def test_timedelta(): t = _get_time() dt = t - t + 0.1234556 * u.s dty = load(dump(dt)) assert type(dt) is type(dty) for attr in ('shape', 'jd1', 'jd2', 'format', 'scale'): assert np.all(getattr(dt, attr) == getattr(dty, attr)) def test_serialized_column(): sc = SerializedColumn({'name': 'hello', 'other': 1, 'other2': 2.0}) scy = load(dump(sc)) assert sc == scy def test_load_all(): t = _get_time() unit = u.m / u.s c = SkyCoord([[1, 2], [3, 4]], [[5, 6], [7, 8]], unit='deg', frame='fk4', obstime=Time('2016-01-02'), location=EarthLocation(1000, 2000, 3000, unit=u.km)) # Make a multi-document stream out = ('---\n' + dump(t) + '---\n' + dump(unit) + '---\n' + dump(c)) ty, unity, cy = list(load_all(out)) compare_time(t, ty) compare_coord(c, cy) assert unity == unit def test_ecsv_astropy_objects_in_meta(): """ Test that astropy core objects in ``meta`` are serialized. """ t = QTable([[1, 2] * u.m, [4, 5]], names=['a', 'b']) tm = _get_time() c = SkyCoord([[1, 2], [3, 4]], [[5, 6], [7, 8]], unit='deg', frame='fk4', obstime=Time('2016-01-02'), location=EarthLocation(1000, 2000, 3000, unit=u.km)) unit = u.m / u.s t.meta = {'tm': tm, 'c': c, 'unit': unit} out = StringIO() t.write(out, format='ascii.ecsv') t2 = QTable.read(out.getvalue(), format='ascii.ecsv') compare_time(tm, t2.meta['tm']) compare_coord(c, t2.meta['c']) assert t2.meta['unit'] == unit
b7a46e2a8664b7554144bd55edf15f8f939f67490d6f4a9ce13010616221ee27
# Licensed under a 3-clause BSD style license - see LICENSE.rst import pytest import numpy as np from astropy.table import Table, QTable, Column from astropy.table.table_helpers import simple_table from astropy.units import allclose as quantity_allclose from astropy.units.quantity import QuantityInfo from astropy.utils.exceptions import AstropyUserWarning from astropy.utils.data import get_pkg_data_filename from astropy.utils.misc import _NOT_OVERWRITING_MSG_MATCH from astropy.io.misc.hdf5 import meta_path from astropy.utils.compat.optional_deps import HAS_H5PY # noqa if HAS_H5PY: import h5py from astropy.io.tests.mixin_columns import mixin_cols, compare_attrs, serialized_names # HDF5 does not support object dtype (since it stores binary representations). unsupported_cols = {name: col for name, col in mixin_cols.items() if (isinstance(col, np.ndarray) and col.dtype.kind == 'O')} mixin_cols = {name: col for name, col in mixin_cols.items() if name not in unsupported_cols} ALL_DTYPES = [np.uint8, np.uint16, np.uint32, np.uint64, np.int8, np.int16, np.int32, np.int64, np.float32, np.float64, np.bool_, '|S3'] def _default_values(dtype): if dtype == np.bool_: return [0, 1, 1] elif dtype == '|S3': return [b'abc', b'def', b'ghi'] else: return [1, 2, 3] @pytest.mark.skipif('not HAS_H5PY') def test_write_nopath(tmpdir): test_file = str(tmpdir.join('test.hdf5')) t1 = Table() t1.add_column(Column(name='a', data=[1, 2, 3])) with pytest.warns(UserWarning, match="table path was not set via the path= argument"): t1.write(test_file) t1 = Table.read(test_file, path='__astropy_table__') @pytest.mark.skipif('not HAS_H5PY') def test_write_nopath_nonempty(tmpdir): test_file = str(tmpdir.join('test.hdf5')) t1 = Table() t1.add_column(Column(name='a', data=[1, 2, 3])) t1.write(test_file, path='bubu') with pytest.raises(ValueError) as exc: t1.write(test_file, append=True) assert 'table path should always be set via the path=' in exc.value.args[0] @pytest.mark.skipif('not HAS_H5PY') def test_read_notable_nopath(tmpdir): test_file = str(tmpdir.join('test.hdf5')) h5py.File(test_file, 'w').close() # create empty file with pytest.raises(ValueError, match='no table found in HDF5 group /'): Table.read(test_file, path='/', format='hdf5') @pytest.mark.skipif('not HAS_H5PY') def test_read_nopath(tmpdir): test_file = str(tmpdir.join('test.hdf5')) t1 = Table() t1.add_column(Column(name='a', data=[1, 2, 3])) t1.write(test_file, path="the_table") t2 = Table.read(test_file) assert np.all(t1['a'] == t2['a']) @pytest.mark.skipif('not HAS_H5PY') def test_read_nopath_multi_tables(tmpdir): test_file = str(tmpdir.join('test.hdf5')) t1 = Table() t1.add_column(Column(name='a', data=[1, 2, 3])) t1.write(test_file, path="the_table") t1.write(test_file, path="the_table_but_different", append=True, overwrite=True) with pytest.warns(AstropyUserWarning, match=r"path= was not specified but multiple tables"): t2 = Table.read(test_file) assert np.all(t1['a'] == t2['a']) @pytest.mark.skipif('not HAS_H5PY') def test_write_invalid_path(tmpdir): test_file = str(tmpdir.join('test.hdf5')) t1 = Table() t1.add_column(Column(name='a', data=[1, 2, 3])) with pytest.raises(ValueError) as exc: t1.write(test_file, path='test/') assert exc.value.args[0] == "table path should end with table name, not /" @pytest.mark.skipif('not HAS_H5PY') def test_read_invalid_path(tmpdir): test_file = str(tmpdir.join('test.hdf5')) t1 = Table() t1.add_column(Column(name='a', data=[1, 2, 3])) t1.write(test_file, path='the_table') with pytest.raises(OSError) as exc: Table.read(test_file, path='test/') assert exc.value.args[0] == "Path test/ does not exist" @pytest.mark.skipif('not HAS_H5PY') def test_read_missing_group(tmpdir): test_file = str(tmpdir.join('test.hdf5')) h5py.File(test_file, 'w').close() # create empty file with pytest.raises(OSError) as exc: Table.read(test_file, path='test/path/table') assert exc.value.args[0] == "Path test/path/table does not exist" @pytest.mark.skipif('not HAS_H5PY') def test_read_missing_table(tmpdir): test_file = str(tmpdir.join('test.hdf5')) with h5py.File(test_file, 'w') as f: f.create_group('test').create_group('path') with pytest.raises(OSError) as exc: Table.read(test_file, path='test/path/table') assert exc.value.args[0] == "Path test/path/table does not exist" @pytest.mark.skipif('not HAS_H5PY') def test_read_missing_group_fileobj(tmpdir): test_file = str(tmpdir.join('test.hdf5')) with h5py.File(test_file, 'w') as f: with pytest.raises(OSError) as exc: Table.read(f, path='test/path/table') assert exc.value.args[0] == "Path test/path/table does not exist" @pytest.mark.skipif('not HAS_H5PY') def test_read_write_simple(tmpdir): test_file = str(tmpdir.join('test.hdf5')) t1 = Table() t1.add_column(Column(name='a', data=[1, 2, 3])) t1.write(test_file, path='the_table') t2 = Table.read(test_file, path='the_table') assert np.all(t2['a'] == [1, 2, 3]) @pytest.mark.skipif('not HAS_H5PY') def test_read_write_existing_table(tmpdir): test_file = str(tmpdir.join('test.hdf5')) t1 = Table() t1.add_column(Column(name='a', data=[1, 2, 3])) t1.write(test_file, path='the_table') with pytest.raises(OSError) as exc: t1.write(test_file, path='the_table', append=True) assert exc.value.args[0] == "Table the_table already exists" @pytest.mark.skipif('not HAS_H5PY') def test_read_write_memory(tmpdir): with h5py.File('test', 'w', driver='core', backing_store=False) as output_file: t1 = Table() t1.add_column(Column(name='a', data=[1, 2, 3])) t1.write(output_file, path='the_table') t2 = Table.read(output_file, path='the_table') assert np.all(t2['a'] == [1, 2, 3]) @pytest.mark.skipif('not HAS_H5PY') def test_read_write_existing(tmpdir): test_file = str(tmpdir.join('test.hdf5')) h5py.File(test_file, 'w').close() # create empty file t1 = Table() t1.add_column(Column(name='a', data=[1, 2, 3])) with pytest.raises(OSError, match=_NOT_OVERWRITING_MSG_MATCH): t1.write(test_file, path='the_table') @pytest.mark.skipif('not HAS_H5PY') def test_read_write_existing_overwrite(tmpdir): test_file = str(tmpdir.join('test.hdf5')) h5py.File(test_file, 'w').close() # create empty file t1 = Table() t1.add_column(Column(name='a', data=[1, 2, 3])) t1.write(test_file, path='the_table', overwrite=True) t2 = Table.read(test_file, path='the_table') assert np.all(t2['a'] == [1, 2, 3]) @pytest.mark.skipif('not HAS_H5PY') def test_read_write_existing_append(tmpdir): test_file = str(tmpdir.join('test.hdf5')) h5py.File(test_file, 'w').close() # create empty file t1 = Table() t1.add_column(Column(name='a', data=[1, 2, 3])) t1.write(test_file, path='the_table_1', append=True) t1.write(test_file, path='the_table_2', append=True) t2 = Table.read(test_file, path='the_table_1') assert np.all(t2['a'] == [1, 2, 3]) t3 = Table.read(test_file, path='the_table_2') assert np.all(t3['a'] == [1, 2, 3]) @pytest.mark.skipif('not HAS_H5PY') def test_read_write_existing_append_groups(tmpdir): test_file = str(tmpdir.join('test.hdf5')) with h5py.File(test_file, 'w') as f: f.create_group('test_1') t1 = Table() t1.add_column(Column(name='a', data=[1, 2, 3])) t1.write(test_file, path='test_1/the_table_1', append=True) t1.write(test_file, path='test_2/the_table_2', append=True) t2 = Table.read(test_file, path='test_1/the_table_1') assert np.all(t2['a'] == [1, 2, 3]) t3 = Table.read(test_file, path='test_2/the_table_2') assert np.all(t3['a'] == [1, 2, 3]) @pytest.mark.skipif('not HAS_H5PY') def test_read_write_existing_append_overwrite(tmpdir): test_file = str(tmpdir.join('test.hdf5')) t1 = Table() t1.add_column(Column(name='a', data=[1, 2, 3])) t1.write(test_file, path='table1') t1.write(test_file, path='table2', append=True) t1v2 = Table() t1v2.add_column(Column(name='a', data=[4, 5, 6])) with pytest.raises(OSError) as exc: t1v2.write(test_file, path='table1', append=True) assert exc.value.args[0] == 'Table table1 already exists' t1v2.write(test_file, path='table1', append=True, overwrite=True) t2 = Table.read(test_file, path='table1') assert np.all(t2['a'] == [4, 5, 6]) t3 = Table.read(test_file, path='table2') assert np.all(t3['a'] == [1, 2, 3]) @pytest.mark.skipif('not HAS_H5PY') def test_read_fileobj(tmpdir): test_file = str(tmpdir.join('test.hdf5')) t1 = Table() t1.add_column(Column(name='a', data=[1, 2, 3])) t1.write(test_file, path='the_table') import h5py with h5py.File(test_file, 'r') as input_file: t2 = Table.read(input_file, path='the_table') assert np.all(t2['a'] == [1, 2, 3]) @pytest.mark.skipif('not HAS_H5PY') def test_read_filobj_path(tmpdir): test_file = str(tmpdir.join('test.hdf5')) t1 = Table() t1.add_column(Column(name='a', data=[1, 2, 3])) t1.write(test_file, path='path/to/data/the_table') import h5py with h5py.File(test_file, 'r') as input_file: t2 = Table.read(input_file, path='path/to/data/the_table') assert np.all(t2['a'] == [1, 2, 3]) @pytest.mark.skipif('not HAS_H5PY') def test_read_filobj_group_path(tmpdir): test_file = str(tmpdir.join('test.hdf5')) t1 = Table() t1.add_column(Column(name='a', data=[1, 2, 3])) t1.write(test_file, path='path/to/data/the_table') import h5py with h5py.File(test_file, 'r') as input_file: t2 = Table.read(input_file['path/to'], path='data/the_table') assert np.all(t2['a'] == [1, 2, 3]) @pytest.mark.skipif('not HAS_H5PY') def test_read_wrong_fileobj(): class FakeFile: def read(self): pass f = FakeFile() with pytest.raises(TypeError, match='h5py can only open regular files'): Table.read(f, format='hdf5') @pytest.mark.skipif('not HAS_H5PY') def test_write_fileobj(tmpdir): test_file = str(tmpdir.join('test.hdf5')) import h5py with h5py.File(test_file, 'w') as output_file: t1 = Table() t1.add_column(Column(name='a', data=[1, 2, 3])) t1.write(output_file, path='the_table') t2 = Table.read(test_file, path='the_table') assert np.all(t2['a'] == [1, 2, 3]) @pytest.mark.skipif('not HAS_H5PY') def test_write_create_dataset_kwargs(tmpdir): test_file = str(tmpdir.join('test.hdf5')) the_path = 'the_table' import h5py with h5py.File(test_file, 'w') as output_file: t1 = Table() t1.add_column(Column(name='a', data=[1, 2, 3])) t1.write(output_file, path=the_path, maxshape=(None, )) # A roundabout way of checking this, but the table created above should be # resizable if the kwarg was passed through successfully t2 = Table() t2.add_column(Column(name='a', data=[4, 5])) with h5py.File(test_file, 'a') as output_file: output_file[the_path].resize((len(t1) + len(t2), )) output_file[the_path][len(t1):] = t2.as_array() t3 = Table.read(test_file, path='the_table') assert np.all(t3['a'] == [1, 2, 3, 4, 5]) @pytest.mark.skipif('not HAS_H5PY') def test_write_filobj_group(tmpdir): test_file = str(tmpdir.join('test.hdf5')) import h5py with h5py.File(test_file, 'w') as output_file: t1 = Table() t1.add_column(Column(name='a', data=[1, 2, 3])) t1.write(output_file, path='path/to/data/the_table') t2 = Table.read(test_file, path='path/to/data/the_table') assert np.all(t2['a'] == [1, 2, 3]) @pytest.mark.skipif('not HAS_H5PY') def test_write_wrong_type(): t1 = Table() t1.add_column(Column(name='a', data=[1, 2, 3])) with pytest.raises(TypeError) as exc: t1.write(1212, path='path/to/data/the_table', format='hdf5') assert exc.value.args[0] == ('output should be a string ' 'or an h5py File or Group object') @pytest.mark.skipif('not HAS_H5PY') @pytest.mark.parametrize(('dtype'), ALL_DTYPES) def test_preserve_single_dtypes(tmpdir, dtype): test_file = str(tmpdir.join('test.hdf5')) values = _default_values(dtype) t1 = Table() t1.add_column(Column(name='a', data=np.array(values, dtype=dtype))) t1.write(test_file, path='the_table') t2 = Table.read(test_file, path='the_table') assert np.all(t2['a'] == values) assert t2['a'].dtype == dtype @pytest.mark.skipif('not HAS_H5PY') def test_preserve_all_dtypes(tmpdir): test_file = str(tmpdir.join('test.hdf5')) t1 = Table() for dtype in ALL_DTYPES: values = _default_values(dtype) t1.add_column(Column(name=str(dtype), data=np.array(values, dtype=dtype))) t1.write(test_file, path='the_table') t2 = Table.read(test_file, path='the_table') for dtype in ALL_DTYPES: values = _default_values(dtype) assert np.all(t2[str(dtype)] == values) assert t2[str(dtype)].dtype == dtype @pytest.mark.skipif('not HAS_H5PY') def test_preserve_meta(tmpdir): test_file = str(tmpdir.join('test.hdf5')) t1 = Table() t1.add_column(Column(name='a', data=[1, 2, 3])) t1.meta['a'] = 1 t1.meta['b'] = 'hello' t1.meta['c'] = 3.14159 t1.meta['d'] = True t1.meta['e'] = np.array([1, 2, 3]) t1.write(test_file, path='the_table') t2 = Table.read(test_file, path='the_table') for key in t1.meta: assert np.all(t1.meta[key] == t2.meta[key]) @pytest.mark.skipif('not HAS_H5PY') def test_preserve_serialized(tmpdir): test_file = str(tmpdir.join('test.hdf5')) t1 = Table() t1['a'] = Column(data=[1, 2, 3], unit="s") t1['a'].meta['a0'] = "A0" t1['a'].meta['a1'] = {"a1": [0, 1]} t1['a'].format = '7.3f' t1['a'].description = 'A column' t1.meta['b'] = 1 t1.meta['c'] = {"c0": [0, 1]} t1.write(test_file, path='the_table', serialize_meta=True, overwrite=True) t2 = Table.read(test_file, path='the_table') assert t1['a'].unit == t2['a'].unit assert t1['a'].format == t2['a'].format assert t1['a'].description == t2['a'].description assert t1['a'].meta == t2['a'].meta assert t1.meta == t2.meta # Check that the meta table is fixed-width bytes (see #11299) h5 = h5py.File(test_file, 'r') meta_lines = h5[meta_path('the_table')] assert meta_lines.dtype.kind == 'S' @pytest.mark.skipif('not HAS_H5PY') def test_preserve_serialized_old_meta_format(tmpdir): """Test the old meta format Only for some files created prior to v4.0, in compatibility mode. """ test_file = get_pkg_data_filename('data/old_meta_example.hdf5') t1 = Table() t1['a'] = Column(data=[1, 2, 3], unit="s") t1['a'].meta['a0'] = "A0" t1['a'].meta['a1'] = {"a1": [0, 1]} t1['a'].format = '7.3f' t1['a'].description = 'A column' t1.meta['b'] = 1 t1.meta['c'] = {"c0": [0, 1]} t2 = Table.read(test_file, path='the_table') assert t1['a'].unit == t2['a'].unit assert t1['a'].format == t2['a'].format assert t1['a'].description == t2['a'].description assert t1['a'].meta == t2['a'].meta assert t1.meta == t2.meta @pytest.mark.skipif('not HAS_H5PY') def test_preserve_serialized_in_complicated_path(tmpdir): test_file = str(tmpdir.join('test.hdf5')) t1 = Table() t1['a'] = Column(data=[1, 2, 3], unit="s") t1['a'].meta['a0'] = "A0" t1['a'].meta['a1'] = {"a1": [0, 1]} t1['a'].format = '7.3f' t1['a'].description = 'A column' t1.meta['b'] = 1 t1.meta['c'] = {"c0": [0, 1]} t1.write(test_file, path='the_table/complicated/path', serialize_meta=True, overwrite=True) t2 = Table.read(test_file, path='the_table/complicated/path') assert t1['a'].format == t2['a'].format assert t1['a'].unit == t2['a'].unit assert t1['a'].description == t2['a'].description assert t1['a'].meta == t2['a'].meta assert t1.meta == t2.meta @pytest.mark.skipif('not HAS_H5PY') def test_metadata_very_large(tmpdir): """Test that very large datasets work, now!""" test_file = str(tmpdir.join('test.hdf5')) t1 = Table() t1['a'] = Column(data=[1, 2, 3], unit="s") t1['a'].meta['a0'] = "A0" t1['a'].meta['a1'] = {"a1": [0, 1]} t1['a'].format = '7.3f' t1['a'].description = 'A column' t1.meta['b'] = 1 t1.meta['c'] = {"c0": [0, 1]} t1.meta["meta_big"] = "0" * (2 ** 16 + 1) t1.meta["meta_biggerstill"] = "0" * (2 ** 18) t1.write(test_file, path='the_table', serialize_meta=True, overwrite=True) t2 = Table.read(test_file, path='the_table') assert t1['a'].unit == t2['a'].unit assert t1['a'].format == t2['a'].format assert t1['a'].description == t2['a'].description assert t1['a'].meta == t2['a'].meta assert t1.meta == t2.meta @pytest.mark.skipif('not HAS_H5PY') def test_skip_meta(tmpdir): test_file = str(tmpdir.join('test.hdf5')) t1 = Table() t1.add_column(Column(name='a', data=[1, 2, 3])) t1.meta['a'] = 1 t1.meta['b'] = 'hello' t1.meta['c'] = 3.14159 t1.meta['d'] = True t1.meta['e'] = np.array([1, 2, 3]) t1.meta['f'] = str wtext = f"Attribute `f` of type {type(t1.meta['f'])} cannot be written to HDF5 files - skipping" with pytest.warns(AstropyUserWarning, match=wtext) as w: t1.write(test_file, path='the_table') assert len(w) == 1 @pytest.mark.skipif('not HAS_H5PY') def test_fail_meta_serialize(tmpdir): test_file = str(tmpdir.join('test.hdf5')) t1 = Table() t1.add_column(Column(name='a', data=[1, 2, 3])) t1.meta['f'] = str with pytest.raises(Exception) as err: t1.write(test_file, path='the_table', serialize_meta=True) assert "cannot represent an object" in str(err.value) assert "<class 'str'>" in str(err.value) @pytest.mark.skipif('not HAS_H5PY') def test_read_h5py_objects(tmpdir): # Regression test - ensure that Datasets are recognized automatically test_file = str(tmpdir.join('test.hdf5')) import h5py with h5py.File(test_file, 'w') as output_file: t1 = Table() t1.add_column(Column(name='a', data=[1, 2, 3])) t1.write(output_file, path='the_table') f = h5py.File(test_file, mode='r') t2 = Table.read(f, path='the_table') assert np.all(t2['a'] == [1, 2, 3]) t3 = Table.read(f['/'], path='the_table') assert np.all(t3['a'] == [1, 2, 3]) t4 = Table.read(f['the_table']) assert np.all(t4['a'] == [1, 2, 3]) f.close() # don't raise an error in 'test --open-files' @pytest.mark.skipif('not HAS_H5PY') def test_read_write_unicode_to_hdf5(tmpdir): test_file = str(tmpdir.join('test.hdf5')) t = Table() t['p'] = ['a', 'b', 'c'] t['q'] = [1, 2, 3] t['r'] = [b'a', b'b', b'c'] t['s'] = ["\u2119", "\u01b4", "\u2602"] t.write(test_file, path='the_table', overwrite=True) t1 = Table.read(test_file, path='the_table', character_as_bytes=False) for col, col1 in zip(t.itercols(), t1.itercols()): assert np.all(col == col1) assert np.all(t1['p'].info.dtype.kind == "U") assert np.all(t1['q'].info.dtype.kind == "i") assert np.all(t1['r'].info.dtype.kind == "U") assert np.all(t1['s'].info.dtype.kind == "U") # Test default (character_as_bytes=True) t2 = Table.read(test_file, path='the_table') for col, col1 in zip(t.itercols(), t2.itercols()): assert np.all(col == col1) assert np.all(t2['p'].info.dtype.kind == "S") assert np.all(t2['q'].info.dtype.kind == "i") assert np.all(t2['r'].info.dtype.kind == "S") assert np.all(t2['s'].info.dtype.kind == "S") def assert_objects_equal(obj1, obj2, attrs, compare_class=True): if compare_class: assert obj1.__class__ is obj2.__class__ info_attrs = ['info.name', 'info.format', 'info.unit', 'info.description', 'info.meta'] for attr in attrs + info_attrs: a1 = obj1 a2 = obj2 for subattr in attr.split('.'): try: a1 = getattr(a1, subattr) a2 = getattr(a2, subattr) except AttributeError: a1 = a1[subattr] a2 = a2[subattr] # Mixin info.meta can None instead of empty OrderedDict(), #6720 would # fix this. if attr == 'info.meta': if a1 is None: a1 = {} if a2 is None: a2 = {} if isinstance(a1, np.ndarray) and a1.dtype.kind == 'f': assert quantity_allclose(a1, a2, rtol=1e-15) else: assert np.all(a1 == a2) @pytest.mark.skipif('not HAS_H5PY') def test_hdf5_mixins_qtable_to_table(tmpdir): """Test writing as QTable and reading as Table. Ensure correct classes come out. """ filename = str(tmpdir.join('test_simple.hdf5')) names = sorted(mixin_cols) t = QTable([mixin_cols[name] for name in names], names=names) t.write(filename, format='hdf5', path='root', serialize_meta=True) t2 = Table.read(filename, format='hdf5', path='root') assert t.colnames == t2.colnames for name, col in t.columns.items(): col2 = t2[name] attrs = compare_attrs[name] compare_class = True if isinstance(col.info, QuantityInfo): # Downgrade Quantity to Column + unit assert type(col2) is Column # Class-specific attributes like `value` or `wrap_angle` are lost. attrs = ['unit'] compare_class = False # Compare data values here (assert_objects_equal doesn't know how in this case) assert np.all(col.value == col2) assert_objects_equal(col, col2, attrs, compare_class) @pytest.mark.skipif('not HAS_H5PY') @pytest.mark.parametrize('table_cls', (Table, QTable)) def test_hdf5_mixins_as_one(table_cls, tmpdir): """Test write/read all cols at once and validate intermediate column names""" filename = str(tmpdir.join('test_simple.hdf5')) names = sorted(mixin_cols) all_serialized_names = [] for name in names: all_serialized_names.extend(serialized_names[name]) t = table_cls([mixin_cols[name] for name in names], names=names) t.meta['C'] = 'spam' t.meta['comments'] = ['this', 'is', 'a', 'comment'] t.meta['history'] = ['first', 'second', 'third'] t.write(filename, format="hdf5", path='root', serialize_meta=True) t2 = table_cls.read(filename, format='hdf5', path='root') assert t2.meta['C'] == 'spam' assert t2.meta['comments'] == ['this', 'is', 'a', 'comment'] assert t2.meta['history'] == ['first', 'second', 'third'] assert t.colnames == t2.colnames # Read directly via hdf5 and confirm column names h5 = h5py.File(filename, 'r') h5_names = list(h5['root'].dtype.names) assert h5_names == all_serialized_names h5.close() @pytest.mark.skipif('not HAS_H5PY') @pytest.mark.parametrize('name_col', list(mixin_cols.items())) @pytest.mark.parametrize('table_cls', (Table, QTable)) def test_hdf5_mixins_per_column(table_cls, name_col, tmpdir): """Test write/read one col at a time and do detailed validation""" filename = str(tmpdir.join('test_simple.hdf5')) name, col = name_col c = [1.0, 2.0] t = table_cls([c, col, c], names=['c1', name, 'c2']) t[name].info.description = 'my description' t[name].info.meta = {'list': list(range(50)), 'dict': {'a': 'b' * 200}} if not t.has_mixin_columns: pytest.skip('column is not a mixin (e.g. Quantity subclass in Table)') t.write(filename, format="hdf5", path='root', serialize_meta=True) t2 = table_cls.read(filename, format='hdf5', path='root') assert t.colnames == t2.colnames for colname in t.colnames: compare = ['data'] if colname in ('c1', 'c2') else compare_attrs[colname] assert_objects_equal(t[colname], t2[colname], compare) # Special case to make sure Column type doesn't leak into Time class data if name.startswith('tm'): assert t2[name]._time.jd1.__class__ is np.ndarray assert t2[name]._time.jd2.__class__ is np.ndarray @pytest.mark.parametrize('name_col', unsupported_cols.items()) @pytest.mark.xfail(reason='column type unsupported') def test_fits_unsupported_mixin(self, name_col, tmpdir): # Check that we actually fail in writing unsupported columns defined # on top. filename = str(tmpdir.join('test_simple.fits')) name, col = name_col Table([col], names=[name]).write(filename, format='hdf5', path='root', serialize_meta=True) @pytest.mark.skipif('not HAS_H5PY') def test_round_trip_masked_table_default(tmpdir): """Test round-trip of MaskedColumn through HDF5 using default serialization that writes a separate mask column. Note: >>> simple_table(masked=True) <Table masked=True length=3> a b c int64 float64 str1 ----- ------- ---- -- 1.0 c 2 2.0 -- 3 -- e """ filename = str(tmpdir.join('test.h5')) t = simple_table(masked=True) # int, float, and str cols with one masked element t['c'] = [b'c', b'd', b'e'] t['c'].mask[1] = True t.write(filename, format='hdf5', path='root', serialize_meta=True) t2 = Table.read(filename) assert t2.masked is False assert t2.colnames == t.colnames for name in t2.colnames: assert np.all(t2[name].mask == t[name].mask) assert np.all(t2[name] == t[name]) # Data under the mask round-trips also (unmask data to show this). t[name].mask = False t2[name].mask = False assert np.all(t2[name] == t[name]) @pytest.mark.skipif('not HAS_H5PY') def test_overwrite_serialized_meta(): # This used to cause an error because the meta data table # was not removed from the existing file. with h5py.File('test_data.h5', 'w', driver='core', backing_store=False) as out: t1 = Table() t1.add_column(Column(data=[4, 8, 15], unit='cm')) t1.write(out, path='data', serialize_meta=True) t2 = Table.read(out, path='data') assert all(t1 == t2) assert t1.info(out=None) == t2.info(out=None) t3 = Table() t3.add_column(Column(data=[16, 23, 42], unit='g')) t3.write(out, path='data', serialize_meta=True, append=True, overwrite=True) t2 = Table.read(out, path='data') assert all(t3 == t2) assert t3.info(out=None) == t2.info(out=None)
0d84803f2dbb2b6c3bace68694370709fdfc360c150faad1d4801916943f224e
# Licensed under a 3-clause BSD style license - see LICENSE.rst import pytest from astropy.io.misc import fnpickle, fnunpickle def test_fnpickling_simple(tmpdir): """ Tests the `fnpickle` and `fnupickle` functions' basic operation by pickling and unpickling a string, using both a filename and a file. """ fn = str(tmpdir.join('test1.pickle')) obj1 = 'astring' fnpickle(obj1, fn) res = fnunpickle(fn, 0) assert obj1 == res # now try with a file-like object instead of a string with open(fn, 'wb') as f: fnpickle(obj1, f) with open(fn, 'rb') as f: res = fnunpickle(f) assert obj1 == res class ToBePickled: def __init__(self, item): self.item = item def __eq__(self, other): if isinstance(other, ToBePickled): return self.item == other.item else: return False def test_fnpickling_class(tmpdir): """ Tests the `fnpickle` and `fnupickle` functions' ability to pickle and unpickle custom classes. """ fn = str(tmpdir.join('test2.pickle')) obj1 = 'astring' obj2 = ToBePickled(obj1) fnpickle(obj2, fn) res = fnunpickle(fn) assert res == obj2 def test_fnpickling_protocol(tmpdir): """ Tests the `fnpickle` and `fnupickle` functions' ability to pickle and unpickle pickle files from all protcols. """ import pickle obj1 = 'astring' obj2 = ToBePickled(obj1) for p in range(pickle.HIGHEST_PROTOCOL + 1): fn = str(tmpdir.join(f'testp{p}.pickle')) fnpickle(obj2, fn, protocol=p) res = fnunpickle(fn) assert res == obj2 def test_fnpickling_many(tmpdir): """ Tests the `fnpickle` and `fnupickle` functions' ability to pickle and unpickle multiple objects from a single file. """ fn = str(tmpdir.join('test3.pickle')) # now try multiples obj3 = 328.3432 obj4 = 'blahblahfoo' fnpickle(obj3, fn) fnpickle(obj4, fn, append=True) res = fnunpickle(fn, number=-1) assert len(res) == 2 assert res[0] == obj3 assert res[1] == obj4 fnpickle(obj4, fn, append=True) res = fnunpickle(fn, number=2) assert len(res) == 2 with pytest.raises(EOFError): fnunpickle(fn, number=5)
70415ca134186e2c2f3b686c218fe021163cdde3b48c9cbf5a3423d4ea964c81
# Licensed under a 3-clause BSD style license - see LICENSE.rst # -*- coding: utf-8 -*- # Define a constant to know if the entry points are installed, since this impacts # whether we can run the tests. from importlib.metadata import entry_points import pytest # TODO: Exclusively use select when Python minversion is 3.10 eps = entry_points() if hasattr(eps, 'select'): ep = [entry.name for entry in eps.select(group='asdf_extensions')] else: ep = [entry.name for entry in eps.get('asdf_extensions', [])] ASDF_ENTRY_INSTALLED = 'astropy' in ep and 'astropy-asdf' in ep del entry_points, eps, ep if not ASDF_ENTRY_INSTALLED: pytest.skip('The astropy asdf entry points are not installed', allow_module_level=True)
4fa877e5922863384f0a02101f6636fa8cd5c67566f2e236d0e8f993a5f31b5d
# Licensed under a 3-clause BSD style license - see LICENSE.rst # -*- coding: utf-8 -*- import pytest asdf = pytest.importorskip('asdf') from astropy.table import Table def make_table(): a = [1, 4, 5] b = [2.0, 5.0, 8.2] c = ['x', 'y', 'z'] return Table([a, b, c], names=('a', 'b', 'c'), meta={'name': 'first table'}) def test_table_io(tmpdir): tmpfile = str(tmpdir.join('table.asdf')) table = make_table() table.write(tmpfile) # Simple sanity check using ASDF directly with asdf.open(tmpfile) as af: assert 'data' in af.keys() assert isinstance(af['data'], Table) assert all(af['data'] == table) # Now test using the table reader new_t = Table.read(tmpfile) assert all(new_t == table) def test_table_io_custom_key(tmpdir): tmpfile = str(tmpdir.join('table.asdf')) table = make_table() table.write(tmpfile, data_key='something') # Simple sanity check using ASDF directly with asdf.open(tmpfile) as af: assert 'something' in af.keys() assert 'data' not in af.keys() assert isinstance(af['something'], Table) assert all(af['something'] == table) # Now test using the table reader with pytest.raises(KeyError): new_t = Table.read(tmpfile) new_t = Table.read(tmpfile, data_key='something') assert all(new_t == table) def test_table_io_custom_tree(tmpdir): tmpfile = str(tmpdir.join('table.asdf')) table = make_table() def make_custom_tree(tab): return dict(foo=dict(bar=tab)) table.write(tmpfile, make_tree=make_custom_tree) # Simple sanity check using ASDF directly with asdf.open(tmpfile) as af: assert 'foo' in af.keys() assert 'bar' in af['foo'] assert 'data' not in af.keys() assert all(af['foo']['bar'] == table) # Now test using table reader with pytest.raises(KeyError): new_t = Table.read(tmpfile) def find_table(asdffile): return asdffile['foo']['bar'] new_t = Table.read(tmpfile, find_table=find_table) assert all(new_t == table)
589a1e9683fa86f1ed44e78bf086bcabd21a12199adf335a25d26c6c3322c561
# Licensed under a 3-clause BSD style license - see LICENSE.rst # -*- coding: utf-8 -*- import numpy as np __all__ = [] def skycoord_equal(sc1, sc2): """SkyCoord equality useful for testing and ASDF serialization """ if not sc1.is_equivalent_frame(sc2): return False if sc1.representation_type is not sc2.representation_type: return False if sc1.shape != sc2.shape: return False # Maybe raise ValueError corresponding to future numpy behavior eq = np.ones(shape=sc1.shape, dtype=bool) for comp in sc1.data.components: eq &= getattr(sc1.data, comp) == getattr(sc2.data, comp) return np.all(eq)
1f79c2c24bf3ed92b41bafaa8d99b988ceb27cc6deb5b062f3c3be76383c0b4c
# Licensed under a 3-clause BSD style license - see LICENSE.rst # -*- coding: utf-8 -*-
861b32a5a1f1c70db8a4cc8eec28f1485288773bda03570d0672bcb415df6acb
# Licensed under a 3-clause BSD style license - see LICENSE.rst # -*- coding: utf-8 -*- import numpy as np from asdf.tags.core.ndarray import NDArrayType from astropy import table from astropy.io.misc.asdf.types import AstropyType, AstropyAsdfType class TableType: """ This class defines to_tree and from_tree methods that are used by both the AstropyTableType and the AsdfTableType defined below. The behavior is differentiated by the ``_compat`` class attribute. When ``_compat==True``, the behavior will conform to the table schema defined by the ASDF Standard. Otherwise, the behavior will conform to the custom table schema defined by Astropy. """ _compat = False @classmethod def from_tree(cls, node, ctx): # This is getting meta, guys meta = node.get('meta', {}) # This enables us to support files that use the table definition from # the ASDF Standard, rather than the custom one that Astropy defines. if cls._compat: return table.Table(node['columns'], meta=meta) if node.get('qtable', False): t = table.QTable(meta=node.get('meta', {})) else: t = table.Table(meta=node.get('meta', {})) for name, col in zip(node['colnames'], node['columns']): t[name] = col return t @classmethod def to_tree(cls, data, ctx): columns = [data[name] for name in data.colnames] node = dict(columns=columns) # Files that use the table definition from the ASDF Standard (instead # of the one defined by Astropy) will not contain these fields if not cls._compat: node['colnames'] = data.colnames node['qtable'] = isinstance(data, table.QTable) if data.meta: node['meta'] = data.meta return node @classmethod def assert_equal(cls, old, new): assert old.meta == new.meta try: NDArrayType.assert_equal(np.array(old), np.array(new)) except (AttributeError, TypeError, ValueError): for col0, col1 in zip(old, new): try: NDArrayType.assert_equal(np.array(col0), np.array(col1)) except (AttributeError, TypeError, ValueError): assert col0 == col1 class AstropyTableType(TableType, AstropyType): """ This tag class reads and writes tables that conform to the custom schema that is defined by Astropy (in contrast to the one that is defined by the ASDF Standard). The primary reason for differentiating is to enable the support of Astropy mixin columns, which are not supported by the ASDF Standard. """ name = 'table/table' types = ['astropy.table.Table'] requires = ['astropy'] class AsdfTableType(TableType, AstropyAsdfType): """ This tag class allows Astropy to read (and write) ASDF files that use the table definition that is provided by the ASDF Standard (instead of the custom one defined by Astropy). This is important to maintain for cross-compatibility. """ name = 'core/table' types = ['astropy.table.Table'] requires = ['astropy'] _compat = True class ColumnType(AstropyAsdfType): name = 'core/column' types = ['astropy.table.Column', 'astropy.table.MaskedColumn'] requires = ['astropy'] handle_dynamic_subclasses = True @classmethod def from_tree(cls, node, ctx): data = node['data'] name = node['name'] description = node.get('description') unit = node.get('unit') meta = node.get('meta', None) return table.Column( data=data._make_array(), name=name, description=description, unit=unit, meta=meta) @classmethod def to_tree(cls, data, ctx): node = { 'data': data.data, 'name': data.name } if data.description: node['description'] = data.description if data.unit: node['unit'] = data.unit if data.meta: node['meta'] = data.meta return node @classmethod def assert_equal(cls, old, new): assert old.meta == new.meta assert old.description == new.description assert old.unit == new.unit NDArrayType.assert_equal(np.array(old), np.array(new))
3230b7ab6c6f15fc8d0923271e3fcba4bf70b8a25b02292e0f2cfa3a324bf28e
# Licensed under a 3-clause BSD style license - see LICENSE.rst # -*- coding: utf-8 -*- import numpy as np from numpy.testing import assert_array_equal from astropy import table from astropy.io import fits from astropy.io.misc.asdf.types import AstropyType, AstropyAsdfType class FitsType: name = 'fits/fits' types = ['astropy.io.fits.HDUList'] requires = ['astropy'] @classmethod def from_tree(cls, data, ctx): hdus = [] first = True for hdu_entry in data: header = fits.Header([fits.Card(*x) for x in hdu_entry['header']]) data = hdu_entry.get('data') if data is not None: try: data = data.__array__() except ValueError: data = None if first: hdu = fits.PrimaryHDU(data=data, header=header) first = False elif data.dtype.names is not None: hdu = fits.BinTableHDU(data=data, header=header) else: hdu = fits.ImageHDU(data=data, header=header) hdus.append(hdu) hdulist = fits.HDUList(hdus) return hdulist @classmethod def to_tree(cls, hdulist, ctx): units = [] for hdu in hdulist: header_list = [] for card in hdu.header.cards: if card.comment: new_card = [card.keyword, card.value, card.comment] else: if card.value: new_card = [card.keyword, card.value] else: if card.keyword: new_card = [card.keyword] else: new_card = [] header_list.append(new_card) hdu_dict = {} hdu_dict['header'] = header_list if hdu.data is not None: if hdu.data.dtype.names is not None: data = table.Table(hdu.data) else: data = hdu.data hdu_dict['data'] = data units.append(hdu_dict) return units @classmethod def reserve_blocks(cls, data, ctx): for hdu in data: if hdu.data is not None: yield ctx.blocks.find_or_create_block_for_array(hdu.data, ctx) @classmethod def assert_equal(cls, old, new): for hdua, hdub in zip(old, new): assert_array_equal(hdua.data, hdub.data) for carda, cardb in zip(hdua.header.cards, hdub.header.cards): assert tuple(carda) == tuple(cardb) class AstropyFitsType(FitsType, AstropyType): """ This class implements ASDF serialization/deserialization that corresponds to the FITS schema defined by Astropy. It will be used by default when writing new HDUs to ASDF files. """ class AsdfFitsType(FitsType, AstropyAsdfType): """ This class implements ASDF serialization/deserialization that corresponds to the FITS schema defined by the ASDF Standard. It will not be used by default, except when reading files that use the ASDF Standard definition rather than the one defined in Astropy. It will primarily be used for backwards compatibility for reading older files. In the unlikely case that another ASDF implementation uses the FITS schema from the ASDF Standard, this tag could also be used to read a file it generated. """
7322d3d0cced654d202f3d5ab1796f2864868affaf25f16ebe96a261ae20a49b
# Licensed under a 3-clause BSD style license - see LICENSE.rst # -*- coding: utf-8 -*- import numpy as np from asdf.versioning import AsdfVersion from astropy.modeling.bounding_box import ModelBoundingBox, CompoundBoundingBox from astropy.modeling import mappings from astropy.modeling import functional_models from astropy.modeling.core import CompoundModel from astropy.io.misc.asdf.types import AstropyAsdfType, AstropyType from . import _parameter_to_value __all__ = ['TransformType', 'IdentityType', 'ConstantType'] class TransformType(AstropyAsdfType): version = '1.2.0' requires = ['astropy'] @classmethod def _from_tree_base_transform_members(cls, model, node, ctx): if 'name' in node: model.name = node['name'] if "inputs" in node: model.inputs = tuple(node["inputs"]) if "outputs" in node: model.outputs = tuple(node["outputs"]) if 'bounding_box' in node: model.bounding_box = node['bounding_box'] elif 'selector_args' in node: cbbox_keys = [tuple(key) for key in node['cbbox_keys']] bbox_dict = dict(zip(cbbox_keys, node['cbbox_values'])) selector_args = node['selector_args'] model.bounding_box = CompoundBoundingBox.validate(model, bbox_dict, selector_args) param_and_model_constraints = {} for constraint in ['fixed', 'bounds']: if constraint in node: param_and_model_constraints[constraint] = node[constraint] model._initialize_constraints(param_and_model_constraints) if "input_units_equivalencies" in node: # this still writes eqs. for compound, but operates on each sub model if not isinstance(model, CompoundModel): model.input_units_equivalencies = node['input_units_equivalencies'] yield model if 'inverse' in node: model.inverse = node['inverse'] @classmethod def from_tree_transform(cls, node, ctx): raise NotImplementedError( "Must be implemented in TransformType subclasses") @classmethod def from_tree(cls, node, ctx): model = cls.from_tree_transform(node, ctx) return cls._from_tree_base_transform_members(model, node, ctx) @classmethod def _to_tree_base_transform_members(cls, model, node, ctx): if getattr(model, '_user_inverse', None) is not None: node['inverse'] = model._user_inverse if model.name is not None: node['name'] = model.name node['inputs'] = list(model.inputs) node['outputs'] = list(model.outputs) try: bb = model.bounding_box except NotImplementedError: bb = None if isinstance(bb, ModelBoundingBox): bb = bb.bounding_box(order='C') if model.n_inputs == 1: bb = list(bb) else: bb = [list(item) for item in bb] node['bounding_box'] = bb elif isinstance(bb, CompoundBoundingBox): selector_args = [[sa.index, sa.ignore] for sa in bb.selector_args] node['selector_args'] = selector_args node['cbbox_keys'] = list(bb.bounding_boxes.keys()) bounding_boxes = list(bb.bounding_boxes.values()) if len(model.inputs) - len(selector_args) == 1: node['cbbox_values'] = [list(sbbox.bounding_box()) for sbbox in bounding_boxes] else: node['cbbox_values'] = [[list(item) for item in sbbox.bounding_box() if np.isfinite(item[0])] for sbbox in bounding_boxes] # model / parameter constraints if not isinstance(model, CompoundModel): fixed_nondefaults = {k: f for k, f in model.fixed.items() if f} if fixed_nondefaults: node['fixed'] = fixed_nondefaults bounds_nondefaults = {k: b for k, b in model.bounds.items() if any(b)} if bounds_nondefaults: node['bounds'] = bounds_nondefaults if not isinstance(model, CompoundModel): if model.input_units_equivalencies: node['input_units_equivalencies'] = model.input_units_equivalencies return node @classmethod def to_tree_transform(cls, model, ctx): raise NotImplementedError("Must be implemented in TransformType subclasses") @classmethod def to_tree(cls, model, ctx): node = cls.to_tree_transform(model, ctx) return cls._to_tree_base_transform_members(model, node, ctx) @classmethod def assert_equal(cls, a, b): # TODO: If models become comparable themselves, remove this. assert a.name == b.name # TODO: Assert inverses are the same # assert the bounding_boxes are the same assert a.get_bounding_box() == b.get_bounding_box() assert a.inputs == b.inputs assert a.outputs == b.outputs assert a.input_units_equivalencies == b.input_units_equivalencies class IdentityType(TransformType): name = "transform/identity" types = ['astropy.modeling.mappings.Identity'] @classmethod def from_tree_transform(cls, node, ctx): return mappings.Identity(node.get('n_dims', 1)) @classmethod def to_tree_transform(cls, data, ctx): node = {} if data.n_inputs != 1: node['n_dims'] = data.n_inputs return node @classmethod def assert_equal(cls, a, b): # TODO: If models become comparable themselves, remove this. TransformType.assert_equal(a, b) assert (isinstance(a, mappings.Identity) and isinstance(b, mappings.Identity) and a.n_inputs == b.n_inputs) class ConstantType(TransformType): name = "transform/constant" version = '1.4.0' supported_versions = ['1.0.0', '1.1.0', '1.2.0', '1.3.0', '1.4.0'] types = ['astropy.modeling.functional_models.Const1D', 'astropy.modeling.functional_models.Const2D'] @classmethod def from_tree_transform(cls, node, ctx): if cls.version < AsdfVersion('1.4.0'): # The 'dimensions' property was added in 1.4.0, # previously all values were 1D. return functional_models.Const1D(node['value']) elif node['dimensions'] == 1: return functional_models.Const1D(node['value']) elif node['dimensions'] == 2: return functional_models.Const2D(node['value']) else: raise TypeError('Only 1D and 2D constant models are supported.') @classmethod def to_tree_transform(cls, data, ctx): if cls.version < AsdfVersion('1.4.0'): if not isinstance(data, functional_models.Const1D): raise ValueError( f'constant-{cls.version} does not support models with > 1 dimension') return { 'value': _parameter_to_value(data.amplitude) } else: if isinstance(data, functional_models.Const1D): dimension = 1 elif isinstance(data, functional_models.Const2D): dimension = 2 return { 'value': _parameter_to_value(data.amplitude), 'dimensions': dimension } class GenericModel(mappings.Mapping): def __init__(self, n_inputs, n_outputs): mapping = tuple(range(n_inputs)) super().__init__(mapping) self._n_outputs = n_outputs self._outputs = tuple('x' + str(idx) for idx in range(n_outputs)) @property def inverse(self): raise NotImplementedError() class GenericType(TransformType): name = "transform/generic" types = [GenericModel] @classmethod def from_tree_transform(cls, node, ctx): return GenericModel( node['n_inputs'], node['n_outputs']) @classmethod def to_tree_transform(cls, data, ctx): return { 'n_inputs': data.n_inputs, 'n_outputs': data.n_outputs } class UnitsMappingType(AstropyType): name = "transform/units_mapping" version = "1.0.0" types = [mappings.UnitsMapping] @classmethod def to_tree(cls, node, ctx): tree = {} if node.name is not None: tree["name"] = node.name inputs = [] outputs = [] for i, o, m in zip(node.inputs, node.outputs, node.mapping): input = { "name": i, "allow_dimensionless": node.input_units_allow_dimensionless[i], } if m[0] is not None: input["unit"] = m[0] if node.input_units_equivalencies is not None and i in node.input_units_equivalencies: input["equivalencies"] = node.input_units_equivalencies[i] inputs.append(input) output = { "name": o, } if m[-1] is not None: output["unit"] = m[-1] outputs.append(output) tree["unit_inputs"] = inputs tree["unit_outputs"] = outputs return tree @classmethod def from_tree(cls, tree, ctx): mapping = tuple((i.get("unit"), o.get("unit")) for i, o in zip(tree["unit_inputs"], tree["unit_outputs"])) equivalencies = None for i in tree["unit_inputs"]: if "equivalencies" in i: if equivalencies is None: equivalencies = {} equivalencies[i["name"]] = i["equivalencies"] kwargs = { "input_units_equivalencies": equivalencies, "input_units_allow_dimensionless": { i["name"]: i.get("allow_dimensionless", False) for i in tree["unit_inputs"]}, } if "name" in tree: kwargs["name"] = tree["name"] return mappings.UnitsMapping(mapping, **kwargs)
bab67b23bd092a8f2b02b4035a49e13aa7bcbc4cb97aecac9c1511bf6fa00235
# Licensed under a 3-clause BSD style license - see LICENSE.rst # -*- coding: utf-8 -*- import astropy.units as u def _parameter_to_value(param): if param.unit is not None: return u.Quantity(param) else: return param.value
bac24b9f303bac8187fca0f60a6dffe91b81fc8706e7a0e99fb5effa72028a2c
from .basic import TransformType from astropy.modeling.models import Spline1D __all__ = ['SplineType'] class SplineType(TransformType): name = 'transform/spline1d' version = '1.0.0' types = ['astropy.modeling.spline.Spline1D'] @classmethod def from_tree_transform(cls, node, ctx): return Spline1D(knots=node['knots'], coeffs=node['coefficients'], degree=node['degree']) @classmethod def to_tree_transform(cls, model, ctx): return { "knots": model.t, "coefficients": model.c, "degree": model.degree }
ce7bc5588d4a2229b32608cba36919375bcf093627a4a39e64296bd6b251d17c
# Licensed under a 3-clause BSD style license - see LICENSE.rst # -*- coding: utf-8 -*- from numpy.testing import assert_array_equal from astropy import modeling from astropy.modeling.math_functions import __all__ as math_classes from astropy.modeling.math_functions import * from astropy.modeling import math_functions from .basic import TransformType __all__ = ['NpUfuncType'] class NpUfuncType(TransformType): name = "transform/math_functions" version = '1.0.0' types = ['astropy.modeling.math_functions.'+ kl for kl in math_classes] @classmethod def from_tree_transform(cls, node, ctx): klass_name = math_functions._make_class_name(node['func_name']) klass = getattr(math_functions, klass_name) return klass() @classmethod def to_tree_transform(cls, model, ctx): return {'func_name': model.func.__name__}
5b4475074faf4e6b57192112d73f4489270fa19548e4f3424dd9a1815f12231b
# Licensed under a 3-clause BSD style license - see LICENSE.rst # -*- coding: utf-8 -*- from numpy.testing import assert_array_equal from astropy.modeling import functional_models from .basic import TransformType from . import _parameter_to_value __all__ = ['AiryDisk2DType', 'Box1DType', 'Box2DType', 'Disk2DType', 'Ellipse2DType', 'Exponential1DType', 'Gaussian1DType', 'Gaussian2DType', 'KingProjectedAnalytic1DType', 'Logarithmic1DType', 'Lorentz1DType', 'Moffat1DType', 'Moffat2DType', 'Planar2D', 'RedshiftScaleFactorType', 'RickerWavelet1DType', 'RickerWavelet2DType', 'Ring2DType', 'Sersic1DType', 'Sersic2DType', 'Sine1DType', 'Cosine1DType', 'Tangent1DType', 'ArcSine1DType', 'ArcCosine1DType', 'ArcTangent1DType', 'Trapezoid1DType', 'TrapezoidDisk2DType', 'Voigt1DType'] class AiryDisk2DType(TransformType): name = 'transform/airy_disk2d' version = '1.0.0' types = ['astropy.modeling.functional_models.AiryDisk2D'] @classmethod def from_tree_transform(cls, node, ctx): return functional_models.AiryDisk2D(amplitude=node['amplitude'], x_0=node['x_0'], y_0=node['y_0'], radius=node['radius']) @classmethod def to_tree_transform(cls, model, ctx): node = {'amplitude': _parameter_to_value(model.amplitude), 'x_0': _parameter_to_value(model.x_0), 'y_0': _parameter_to_value(model.y_0), 'radius': _parameter_to_value(model.radius)} return node @classmethod def assert_equal(cls, a, b): # TODO: If models become comparable themselves, remove this. TransformType.assert_equal(a, b) assert (isinstance(a, functional_models.AiryDisk2D) and isinstance(b, functional_models.AiryDisk2D)) assert_array_equal(a.amplitude, b.amplitude) assert_array_equal(a.x_0, b.x_0) assert_array_equal(a.y_0, b.y_0) assert_array_equal(a.radius, b.radius) class Box1DType(TransformType): name = 'transform/box1d' version = '1.0.0' types = ['astropy.modeling.functional_models.Box1D'] @classmethod def from_tree_transform(cls, node, ctx): return functional_models.Box1D(amplitude=node['amplitude'], x_0=node['x_0'], width=node['width']) @classmethod def to_tree_transform(cls, model, ctx): node = {'amplitude': _parameter_to_value(model.amplitude), 'x_0': _parameter_to_value(model.x_0), 'width': _parameter_to_value(model.width)} return node @classmethod def assert_equal(cls, a, b): # TODO: If models become comparable themselves, remove this. TransformType.assert_equal(a, b) assert (isinstance(a, functional_models.Box1D) and isinstance(b, functional_models.Box1D)) assert_array_equal(a.amplitude, b.amplitude) assert_array_equal(a.x_0, b.x_0) assert_array_equal(a.width, b.width) class Box2DType(TransformType): name = 'transform/box2d' version = '1.0.0' types = ['astropy.modeling.functional_models.Box2D'] @classmethod def from_tree_transform(cls, node, ctx): return functional_models.Box2D(amplitude=node['amplitude'], x_0=node['x_0'], x_width=node['x_width'], y_0=node['y_0'], y_width=node['y_width']) @classmethod def to_tree_transform(cls, model, ctx): node = {'amplitude': _parameter_to_value(model.amplitude), 'x_0': _parameter_to_value(model.x_0), 'x_width': _parameter_to_value(model.x_width), 'y_0': _parameter_to_value(model.y_0), 'y_width': _parameter_to_value(model.y_width)} return node @classmethod def assert_equal(cls, a, b): # TODO: If models become comparable themselves, remove this. TransformType.assert_equal(a, b) assert (isinstance(a, functional_models.Box2D) and isinstance(b, functional_models.Box2D)) assert_array_equal(a.amplitude, b.amplitude) assert_array_equal(a.x_0, b.x_0) assert_array_equal(a.x_width, b.x_width) assert_array_equal(a.y_0, b.y_0) assert_array_equal(a.y_width, b.y_width) class Disk2DType(TransformType): name = 'transform/disk2d' version = '1.0.0' types = ['astropy.modeling.functional_models.Disk2D'] @classmethod def from_tree_transform(cls, node, ctx): return functional_models.Disk2D(amplitude=node['amplitude'], x_0=node['x_0'], y_0=node['y_0'], R_0=node['R_0']) @classmethod def to_tree_transform(cls, model, ctx): node = {'amplitude': _parameter_to_value(model.amplitude), 'x_0': _parameter_to_value(model.x_0), 'y_0': _parameter_to_value(model.y_0), 'R_0': _parameter_to_value(model.R_0)} return node @classmethod def assert_equal(cls, a, b): # TODO: If models become comparable themselves, remove this. TransformType.assert_equal(a, b) assert (isinstance(a, functional_models.Disk2D) and isinstance(b, functional_models.Disk2D)) assert_array_equal(a.amplitude, b.amplitude) assert_array_equal(a.x_0, b.x_0) assert_array_equal(a.y_0, b.y_0) assert_array_equal(a.R_0, b.R_0) class Ellipse2DType(TransformType): name = 'transform/ellipse2d' version = '1.0.0' types = ['astropy.modeling.functional_models.Ellipse2D'] @classmethod def from_tree_transform(cls, node, ctx): return functional_models.Ellipse2D(amplitude=node['amplitude'], x_0=node['x_0'], y_0=node['y_0'], a=node['a'], b=node['b'], theta=node['theta']) @classmethod def to_tree_transform(cls, model, ctx): node = {'amplitude': _parameter_to_value(model.amplitude), 'x_0': _parameter_to_value(model.x_0), 'y_0': _parameter_to_value(model.y_0), 'a': _parameter_to_value(model.a), 'b': _parameter_to_value(model.b), 'theta': _parameter_to_value(model.theta)} return node @classmethod def assert_equal(cls, a, b): # TODO: If models become comparable themselves, remove this. TransformType.assert_equal(a, b) assert (isinstance(a, functional_models.Ellipse2D) and isinstance(b, functional_models.Ellipse2D)) assert_array_equal(a.amplitude, b.amplitude) assert_array_equal(a.x_0, b.x_0) assert_array_equal(a.y_0, b.y_0) assert_array_equal(a.a, b.a) assert_array_equal(a.b, b.b) assert_array_equal(a.theta, b.theta) class Exponential1DType(TransformType): name = 'transform/exponential1d' version = '1.0.0' types = ['astropy.modeling.functional_models.Exponential1D'] @classmethod def from_tree_transform(cls, node, ctx): return functional_models.Exponential1D(amplitude=node['amplitude'], tau=node['tau']) @classmethod def to_tree_transform(cls, model, ctx): node = {'amplitude': _parameter_to_value(model.amplitude), 'tau': _parameter_to_value(model.tau)} return node @classmethod def assert_equal(cls, a, b): # TODO: If models become comparable themselves, remove this. TransformType.assert_equal(a, b) assert (isinstance(a, functional_models.Exponential1D) and isinstance(b, functional_models.Exponential1D)) assert_array_equal(a.amplitude, b.amplitude) assert_array_equal(a.tau, b.tau) class Gaussian1DType(TransformType): name = 'transform/gaussian1d' version = '1.0.0' types = ['astropy.modeling.functional_models.Gaussian1D'] @classmethod def from_tree_transform(cls, node, ctx): return functional_models.Gaussian1D(amplitude=node['amplitude'], mean=node['mean'], stddev=node['stddev']) @classmethod def to_tree_transform(cls, model, ctx): node = {'amplitude': _parameter_to_value(model.amplitude), 'mean': _parameter_to_value(model.mean), 'stddev': _parameter_to_value(model.stddev)} return node @classmethod def assert_equal(cls, a, b): # TODO: If models become comparable themselves, remove this. TransformType.assert_equal(a, b) assert (isinstance(a, functional_models.Gaussian1D) and isinstance(b, functional_models.Gaussian1D)) assert_array_equal(a.amplitude, b.amplitude) assert_array_equal(a.mean, b.mean) assert_array_equal(a.stddev, b.stddev) class Gaussian2DType(TransformType): name = 'transform/gaussian2d' version = '1.0.0' types = ['astropy.modeling.functional_models.Gaussian2D'] @classmethod def from_tree_transform(cls, node, ctx): return functional_models.Gaussian2D(amplitude=node['amplitude'], x_mean=node['x_mean'], y_mean=node['y_mean'], x_stddev=node['x_stddev'], y_stddev=node['y_stddev'], theta=node['theta']) @classmethod def to_tree_transform(cls, model, ctx): node = {'amplitude': _parameter_to_value(model.amplitude), 'x_mean': _parameter_to_value(model.x_mean), 'y_mean': _parameter_to_value(model.y_mean), 'x_stddev': _parameter_to_value(model.x_stddev), 'y_stddev': _parameter_to_value(model.y_stddev), 'theta': _parameter_to_value(model.theta)} return node @classmethod def assert_equal(cls, a, b): # TODO: If models become comparable themselves, remove this. TransformType.assert_equal(a, b) assert (isinstance(a, functional_models.Gaussian2D) and isinstance(b, functional_models.Gaussian2D)) assert_array_equal(a.amplitude, b.amplitude) assert_array_equal(a.x_mean, b.x_mean) assert_array_equal(a.y_mean, b.y_mean) assert_array_equal(a.x_stddev, b.x_stddev) assert_array_equal(a.y_stddev, b.y_stddev) assert_array_equal(a.theta, b.theta) class KingProjectedAnalytic1DType(TransformType): name = 'transform/king_projected_analytic1d' version = '1.0.0' types = ['astropy.modeling.functional_models.KingProjectedAnalytic1D'] @classmethod def from_tree_transform(cls, node, ctx): return functional_models.KingProjectedAnalytic1D( amplitude=node['amplitude'], r_core=node['r_core'], r_tide=node['r_tide']) @classmethod def to_tree_transform(cls, model, ctx): node = {'amplitude': _parameter_to_value(model.amplitude), 'r_core': _parameter_to_value(model.r_core), 'r_tide': _parameter_to_value(model.r_tide)} return node @classmethod def assert_equal(cls, a, b): # TODO: If models become comparable themselves, remove this. TransformType.assert_equal(a, b) assert (isinstance(a, functional_models.KingProjectedAnalytic1D) and isinstance(b, functional_models.KingProjectedAnalytic1D)) assert_array_equal(a.amplitude, b.amplitude) assert_array_equal(a.r_core, b.r_core) assert_array_equal(a.r_tide, b.r_tide) class Logarithmic1DType(TransformType): name = 'transform/logarithmic1d' version = '1.0.0' types = ['astropy.modeling.functional_models.Logarithmic1D'] @classmethod def from_tree_transform(cls, node, ctx): return functional_models.Logarithmic1D(amplitude=node['amplitude'], tau=node['tau']) @classmethod def to_tree_transform(cls, model, ctx): node = {'amplitude': _parameter_to_value(model.amplitude), 'tau': _parameter_to_value(model.tau)} return node @classmethod def assert_equal(cls, a, b): # TODO: If models become comparable themselves, remove this. TransformType.assert_equal(a, b) assert (isinstance(a, functional_models.Logarithmic1D) and isinstance(b, functional_models.Logarithmic1D)) assert_array_equal(a.amplitude, b.amplitude) assert_array_equal(a.tau, b.tau) class Lorentz1DType(TransformType): name = 'transform/lorentz1d' version = '1.0.0' types = ['astropy.modeling.functional_models.Lorentz1D'] @classmethod def from_tree_transform(cls, node, ctx): return functional_models.Lorentz1D(amplitude=node['amplitude'], x_0=node['x_0'], fwhm=node['fwhm']) @classmethod def to_tree_transform(cls, model, ctx): node = {'amplitude': _parameter_to_value(model.amplitude), 'x_0': _parameter_to_value(model.x_0), 'fwhm': _parameter_to_value(model.fwhm)} return node @classmethod def assert_equal(cls, a, b): # TODO: If models become comparable themselves, remove this. TransformType.assert_equal(a, b) assert (isinstance(a, functional_models.Lorentz1D) and isinstance(b, functional_models.Lorentz1D)) assert_array_equal(a.amplitude, b.amplitude) assert_array_equal(a.x_0, b.x_0) assert_array_equal(a.fwhm, b.fwhm) class Moffat1DType(TransformType): name = 'transform/moffat1d' version = '1.0.0' types = ['astropy.modeling.functional_models.Moffat1D'] @classmethod def from_tree_transform(cls, node, ctx): return functional_models.Moffat1D(amplitude=node['amplitude'], x_0=node['x_0'], gamma=node['gamma'], alpha=node['alpha']) @classmethod def to_tree_transform(cls, model, ctx): node = {'amplitude': _parameter_to_value(model.amplitude), 'x_0': _parameter_to_value(model.x_0), 'gamma': _parameter_to_value(model.gamma), 'alpha': _parameter_to_value(model.alpha)} return node @classmethod def assert_equal(cls, a, b): # TODO: If models become comparable themselves, remove this. TransformType.assert_equal(a, b) assert (isinstance(a, functional_models.Moffat1D) and isinstance(b, functional_models.Moffat1D)) assert_array_equal(a.amplitude, b.amplitude) assert_array_equal(a.x_0, b.x_0) assert_array_equal(a.gamma, b.gamma) assert_array_equal(a.alpha, b.alpha) class Moffat2DType(TransformType): name = 'transform/moffat2d' version = '1.0.0' types = ['astropy.modeling.functional_models.Moffat2D'] @classmethod def from_tree_transform(cls, node, ctx): return functional_models.Moffat2D(amplitude=node['amplitude'], x_0=node['x_0'], y_0=node['y_0'], gamma=node['gamma'], alpha=node['alpha']) @classmethod def to_tree_transform(cls, model, ctx): node = {'amplitude': _parameter_to_value(model.amplitude), 'x_0': _parameter_to_value(model.x_0), 'y_0': _parameter_to_value(model.y_0), 'gamma': _parameter_to_value(model.gamma), 'alpha': _parameter_to_value(model.alpha)} return node @classmethod def assert_equal(cls, a, b): # TODO: If models become comparable themselves, remove this. TransformType.assert_equal(a, b) assert (isinstance(a, functional_models.Moffat2D) and isinstance(b, functional_models.Moffat2D)) assert_array_equal(a.amplitude, b.amplitude) assert_array_equal(a.x_0, b.x_0) assert_array_equal(a.y_0, b.y_0) assert_array_equal(a.gamma, b.gamma) assert_array_equal(a.alpha, b.alpha) class Planar2D(TransformType): name = 'transform/planar2d' version = '1.0.0' types = ['astropy.modeling.functional_models.Planar2D'] @classmethod def from_tree_transform(cls, node, ctx): return functional_models.Planar2D(slope_x=node['slope_x'], slope_y=node['slope_y'], intercept=node['intercept']) @classmethod def to_tree_transform(cls, model, ctx): node = {'slope_x': _parameter_to_value(model.slope_x), 'slope_y': _parameter_to_value(model.slope_y), 'intercept': _parameter_to_value(model.intercept)} return node @classmethod def assert_equal(cls, a, b): # TODO: If models become comparable themselves, remove this. TransformType.assert_equal(a, b) assert (isinstance(a, functional_models.Planar2D) and isinstance(b, functional_models.Planar2D)) assert_array_equal(a.slope_x, b.slope_x) assert_array_equal(a.slope_y, b.slope_y) assert_array_equal(a.intercept, b.intercept) class RedshiftScaleFactorType(TransformType): name = 'transform/redshift_scale_factor' version = '1.0.0' types = ['astropy.modeling.functional_models.RedshiftScaleFactor'] @classmethod def from_tree_transform(cls, node, ctx): return functional_models.RedshiftScaleFactor(z=node['z']) @classmethod def to_tree_transform(cls, model, ctx): node = {'z': _parameter_to_value(model.z)} return node @classmethod def assert_equal(cls, a, b): # TODO: If models become comparable themselves, remove this. TransformType.assert_equal(a, b) assert (isinstance(a, functional_models.RedshiftScaleFactor) and isinstance(b, functional_models.RedshiftScaleFactor)) assert_array_equal(a.z, b.z) class RickerWavelet1DType(TransformType): name = 'transform/ricker_wavelet1d' version = '1.0.0' types = ['astropy.modeling.functional_models.RickerWavelet1D'] @classmethod def from_tree_transform(cls, node, ctx): return functional_models.RickerWavelet1D(amplitude=node['amplitude'], x_0=node['x_0'], sigma=node['sigma']) @classmethod def to_tree_transform(cls, model, ctx): node = {'amplitude': _parameter_to_value(model.amplitude), 'x_0': _parameter_to_value(model.x_0), 'sigma': _parameter_to_value(model.sigma)} return node @classmethod def assert_equal(cls, a, b): # TODO: If models become comparable themselves, remove this. TransformType.assert_equal(a, b) assert (isinstance(a, functional_models.RickerWavelet1D) and isinstance(b, functional_models.RickerWavelet1D)) assert_array_equal(a.amplitude, b.amplitude) assert_array_equal(a.x_0, b.x_0) assert_array_equal(a.sigma, b.sigma) class RickerWavelet2DType(TransformType): name = 'transform/ricker_wavelet2d' version = '1.0.0' types = ['astropy.modeling.functional_models.RickerWavelet2D'] @classmethod def from_tree_transform(cls, node, ctx): return functional_models.RickerWavelet2D(amplitude=node['amplitude'], x_0=node['x_0'], y_0=node['y_0'], sigma=node['sigma']) @classmethod def to_tree_transform(cls, model, ctx): node = {'amplitude': _parameter_to_value(model.amplitude), 'x_0': _parameter_to_value(model.x_0), 'y_0': _parameter_to_value(model.y_0), 'sigma': _parameter_to_value(model.sigma)} return node @classmethod def assert_equal(cls, a, b): # TODO: If models become comparable themselves, remove this. TransformType.assert_equal(a, b) assert (isinstance(a, functional_models.RickerWavelet2D) and isinstance(b, functional_models.RickerWavelet2D)) assert_array_equal(a.amplitude, b.amplitude) assert_array_equal(a.x_0, b.x_0) assert_array_equal(a.y_0, b.y_0) assert_array_equal(a.sigma, b.sigma) class Ring2DType(TransformType): name = 'transform/ring2d' version = '1.0.0' types = ['astropy.modeling.functional_models.Ring2D'] @classmethod def from_tree_transform(cls, node, ctx): return functional_models.Ring2D(amplitude=node['amplitude'], x_0=node['x_0'], y_0=node['y_0'], r_in=node['r_in'], width=node['width']) @classmethod def to_tree_transform(cls, model, ctx): node = {'amplitude': _parameter_to_value(model.amplitude), 'x_0': _parameter_to_value(model.x_0), 'y_0': _parameter_to_value(model.y_0), 'r_in': _parameter_to_value(model.r_in), 'width': _parameter_to_value(model.width)} return node @classmethod def assert_equal(cls, a, b): # TODO: If models become comparable themselves, remove this. TransformType.assert_equal(a, b) assert (isinstance(a, functional_models.Ring2D) and isinstance(b, functional_models.Ring2D)) assert_array_equal(a.amplitude, b.amplitude) assert_array_equal(a.x_0, b.x_0) assert_array_equal(a.y_0, b.y_0) assert_array_equal(a.r_in, b.r_in) assert_array_equal(a.width, b.width) class Sersic1DType(TransformType): name = 'transform/sersic1d' version = '1.0.0' types = ['astropy.modeling.functional_models.Sersic1D'] @classmethod def from_tree_transform(cls, node, ctx): return functional_models.Sersic1D(amplitude=node['amplitude'], r_eff=node['r_eff'], n=node['n']) @classmethod def to_tree_transform(cls, model, ctx): node = {'amplitude': _parameter_to_value(model.amplitude), 'r_eff': _parameter_to_value(model.r_eff), 'n': _parameter_to_value(model.n)} return node @classmethod def assert_equal(cls, a, b): # TODO: If models become comparable themselves, remove this. TransformType.assert_equal(a, b) assert (isinstance(a, functional_models.Sersic1D) and isinstance(b, functional_models.Sersic1D)) assert_array_equal(a.amplitude, b.amplitude) assert_array_equal(a.r_eff, b.r_eff) assert_array_equal(a.n, b.n) class Sersic2DType(TransformType): name = 'transform/sersic2d' version = '1.0.0' types = ['astropy.modeling.functional_models.Sersic2D'] @classmethod def from_tree_transform(cls, node, ctx): return functional_models.Sersic2D(amplitude=node['amplitude'], r_eff=node['r_eff'], n=node['n'], x_0=node['x_0'], y_0=node['y_0'], ellip=node['ellip'], theta=node['theta']) @classmethod def to_tree_transform(cls, model, ctx): node = {'amplitude': _parameter_to_value(model.amplitude), 'r_eff': _parameter_to_value(model.r_eff), 'n': _parameter_to_value(model.n), 'x_0': _parameter_to_value(model.x_0), 'y_0': _parameter_to_value(model.y_0), 'ellip': _parameter_to_value(model.ellip), 'theta': _parameter_to_value(model.theta) } return node @classmethod def assert_equal(cls, a, b): # TODO: If models become comparable themselves, remove this. TransformType.assert_equal(a, b) assert (isinstance(a, functional_models.Sersic2D) and isinstance(b, functional_models.Sersic2D)) assert_array_equal(a.amplitude, b.amplitude) assert_array_equal(a.r_eff, b.r_eff) assert_array_equal(a.n, b.n) assert_array_equal(a.x_0, b.x_0) assert_array_equal(a.y_0, b.y_0) assert_array_equal(a.ellip, b.ellip) assert_array_equal(a.theta, b.theta) class Trigonometric1DType(TransformType): _model = None @classmethod def from_tree_transform(cls, node, ctx): return cls._model(amplitude=node['amplitude'], frequency=node['frequency'], phase=node['phase']) @classmethod def to_tree_transform(cls, model, ctx): node = {'amplitude': _parameter_to_value(model.amplitude), 'frequency': _parameter_to_value(model.frequency), 'phase': _parameter_to_value(model.phase)} return node @classmethod def assert_equal(cls, a, b): # TODO: If models become comparable themselves, remove this. TransformType.assert_equal(a, b) assert (isinstance(a, cls._model) and isinstance(b, cls._model)) assert_array_equal(a.amplitude, b.amplitude) assert_array_equal(a.frequency, b.frequency) assert_array_equal(a.phase, b.phase) class Sine1DType(Trigonometric1DType): name = 'transform/sine1d' version = '1.0.0' types = ['astropy.modeling.functional_models.Sine1D'] _model = functional_models.Sine1D class Cosine1DType(Trigonometric1DType): name = 'transform/cosine1d' version = '1.0.0' types = ['astropy.modeling.functional_models.Cosine1D'] _model = functional_models.Cosine1D class Tangent1DType(Trigonometric1DType): name = 'transform/tangent1d' version = '1.0.0' types = ['astropy.modeling.functional_models.Tangent1D'] _model = functional_models.Tangent1D class ArcSine1DType(Trigonometric1DType): name = 'transform/arcsine1d' version = '1.0.0' types = ['astropy.modeling.functional_models.ArcSine1D'] _model = functional_models.ArcSine1D class ArcCosine1DType(Trigonometric1DType): name = 'transform/arccosine1d' version = '1.0.0' types = ['astropy.modeling.functional_models.ArcCosine1D'] _model = functional_models.ArcCosine1D class ArcTangent1DType(Trigonometric1DType): name = 'transform/arctangent1d' version = '1.0.0' types = ['astropy.modeling.functional_models.ArcTangent1D'] _model = functional_models.ArcTangent1D class Trapezoid1DType(TransformType): name = 'transform/trapezoid1d' version = '1.0.0' types = ['astropy.modeling.functional_models.Trapezoid1D'] @classmethod def from_tree_transform(cls, node, ctx): return functional_models.Trapezoid1D(amplitude=node['amplitude'], x_0=node['x_0'], width=node['width'], slope=node['slope']) @classmethod def to_tree_transform(cls, model, ctx): node = {'amplitude': _parameter_to_value(model.amplitude), 'x_0': _parameter_to_value(model.x_0), 'width': _parameter_to_value(model.width), 'slope': _parameter_to_value(model.slope)} return node @classmethod def assert_equal(cls, a, b): # TODO: If models become comparable themselves, remove this. TransformType.assert_equal(a, b) assert (isinstance(a, functional_models.Trapezoid1D) and isinstance(b, functional_models.Trapezoid1D)) assert_array_equal(a.amplitude, b.amplitude) assert_array_equal(a.x_0, b.x_0) assert_array_equal(a.width, b.width) assert_array_equal(a.slope, b.slope) class TrapezoidDisk2DType(TransformType): name = 'transform/trapezoid_disk2d' version = '1.0.0' types = ['astropy.modeling.functional_models.TrapezoidDisk2D'] @classmethod def from_tree_transform(cls, node, ctx): return functional_models.TrapezoidDisk2D(amplitude=node['amplitude'], x_0=node['x_0'], y_0=node['y_0'], R_0=node['R_0'], slope=node['slope']) @classmethod def to_tree_transform(cls, model, ctx): node = {'amplitude': _parameter_to_value(model.amplitude), 'x_0': _parameter_to_value(model.x_0), 'y_0': _parameter_to_value(model.y_0), 'R_0': _parameter_to_value(model.R_0), 'slope': _parameter_to_value(model.slope)} return node @classmethod def assert_equal(cls, a, b): # TODO: If models become comparable themselves, remove this. TransformType.assert_equal(a, b) assert (isinstance(a, functional_models.TrapezoidDisk2D) and isinstance(b, functional_models.TrapezoidDisk2D)) assert_array_equal(a.amplitude, b.amplitude) assert_array_equal(a.x_0, b.x_0) assert_array_equal(a.y_0, b.y_0) assert_array_equal(a.R_0, b.R_0) assert_array_equal(a.slope, b.slope) class Voigt1DType(TransformType): name = 'transform/voigt1d' version = '1.0.0' types = ['astropy.modeling.functional_models.Voigt1D'] @classmethod def from_tree_transform(cls, node, ctx): return functional_models.Voigt1D(x_0=node['x_0'], amplitude_L=node['amplitude_L'], fwhm_L=node['fwhm_L'], fwhm_G=node['fwhm_G']) @classmethod def to_tree_transform(cls, model, ctx): node = {'x_0': _parameter_to_value(model.x_0), 'amplitude_L': _parameter_to_value(model.amplitude_L), 'fwhm_L': _parameter_to_value(model.fwhm_L), 'fwhm_G': _parameter_to_value(model.fwhm_G)} return node @classmethod def assert_equal(cls, a, b): # TODO: If models become comparable themselves, remove this. TransformType.assert_equal(a, b) assert (isinstance(a, functional_models.Voigt1D) and isinstance(b, functional_models.Voigt1D)) assert_array_equal(a.x_0, b.x_0) assert_array_equal(a.amplitude_L, b.amplitude_L) assert_array_equal(a.fwhm_L, b.fwhm_L) assert_array_equal(a.fwhm_G, b.fwhm_G)
46af07201300c745f60f9291f6012e5fedd7e50471aa885c302ecd903234f46d
# Licensed under a 3-clause BSD style license - see LICENSE.rst # -*- coding: utf-8 -*- from numpy.testing import assert_array_equal from astropy import modeling from .basic import TransformType from . import _parameter_to_value __all__ = ['AffineType', 'Rotate2DType', 'Rotate3DType', 'RotationSequenceType'] class AffineType(TransformType): name = "transform/affine" version = '1.3.0' types = ['astropy.modeling.projections.AffineTransformation2D'] @classmethod def from_tree_transform(cls, node, ctx): matrix = node['matrix'] translation = node['translation'] if matrix.shape != (2, 2): raise NotImplementedError( "asdf currently only supports 2x2 (2D) rotation transformation " "matrices") if translation.shape != (2,): raise NotImplementedError( "asdf currently only supports 2D translation transformations.") return modeling.projections.AffineTransformation2D( matrix=matrix, translation=translation) @classmethod def to_tree_transform(cls, model, ctx): return {'matrix': _parameter_to_value(model.matrix), 'translation': _parameter_to_value(model.translation)} @classmethod def assert_equal(cls, a, b): # TODO: If models become comparable themselves, remove this. TransformType.assert_equal(a, b) assert (a.__class__ == b.__class__) assert_array_equal(a.matrix, b.matrix) assert_array_equal(a.translation, b.translation) class Rotate2DType(TransformType): name = "transform/rotate2d" version = '1.3.0' types = ['astropy.modeling.rotations.Rotation2D'] @classmethod def from_tree_transform(cls, node, ctx): return modeling.rotations.Rotation2D(node['angle']) @classmethod def to_tree_transform(cls, model, ctx): return {'angle': _parameter_to_value(model.angle)} @classmethod def assert_equal(cls, a, b): # TODO: If models become comparable themselves, remove this. TransformType.assert_equal(a, b) assert (isinstance(a, modeling.rotations.Rotation2D) and isinstance(b, modeling.rotations.Rotation2D)) assert_array_equal(a.angle, b.angle) class Rotate3DType(TransformType): name = "transform/rotate3d" version = '1.3.0' types = ['astropy.modeling.rotations.RotateNative2Celestial', 'astropy.modeling.rotations.RotateCelestial2Native', 'astropy.modeling.rotations.EulerAngleRotation'] @classmethod def from_tree_transform(cls, node, ctx): if node['direction'] == 'native2celestial': return modeling.rotations.RotateNative2Celestial(node["phi"], node["theta"], node["psi"]) elif node['direction'] == 'celestial2native': return modeling.rotations.RotateCelestial2Native(node["phi"], node["theta"], node["psi"]) else: return modeling.rotations.EulerAngleRotation(node["phi"], node["theta"], node["psi"], axes_order=node["direction"]) @classmethod def to_tree_transform(cls, model, ctx): if isinstance(model, modeling.rotations.RotateNative2Celestial): try: node = {"phi": _parameter_to_value(model.lon), "theta": _parameter_to_value(model.lat), "psi": _parameter_to_value(model.lon_pole), "direction": "native2celestial" } except AttributeError: node = {"phi": model.lon, "theta": model.lat, "psi": model.lon_pole, "direction": "native2celestial" } elif isinstance(model, modeling.rotations.RotateCelestial2Native): try: node = {"phi": _parameter_to_value(model.lon), "theta": _parameter_to_value(model.lat), "psi": _parameter_to_value(model.lon_pole), "direction": "celestial2native" } except AttributeError: node = {"phi": model.lon, "theta": model.lat, "psi": model.lon_pole, "direction": "celestial2native" } else: node = {"phi": _parameter_to_value(model.phi), "theta": _parameter_to_value(model.theta), "psi": _parameter_to_value(model.psi), "direction": model.axes_order } return node @classmethod def assert_equal(cls, a, b): # TODO: If models become comparable themselves, remove this. TransformType.assert_equal(a, b) assert a.__class__ == b.__class__ if a.__class__.__name__ == "EulerAngleRotation": assert_array_equal(a.phi, b.phi) assert_array_equal(a.psi, b.psi) assert_array_equal(a.theta, b.theta) else: assert_array_equal(a.lon, b.lon) assert_array_equal(a.lat, b.lat) assert_array_equal(a.lon_pole, b.lon_pole) class RotationSequenceType(TransformType): name = "transform/rotate_sequence_3d" types = ['astropy.modeling.rotations.RotationSequence3D', 'astropy.modeling.rotations.SphericalRotationSequence'] version = "1.0.0" @classmethod def from_tree_transform(cls, node, ctx): angles = node['angles'] axes_order = node['axes_order'] rotation_type = node['rotation_type'] if rotation_type == 'cartesian': return modeling.rotations.RotationSequence3D(angles, axes_order=axes_order) elif rotation_type == 'spherical': return modeling.rotations.SphericalRotationSequence(angles, axes_order=axes_order) else: raise ValueError(f"Unrecognized rotation_type: {rotation_type}") @classmethod def to_tree_transform(cls, model, ctx): node = {'angles': list(model.angles.value)} node['axes_order'] = model.axes_order if isinstance(model, modeling.rotations.SphericalRotationSequence): node['rotation_type'] = "spherical" elif isinstance(model, modeling.rotations.RotationSequence3D): node['rotation_type'] = "cartesian" else: raise ValueError(f"Cannot serialize model of type {type(model)}") return node @classmethod def assert_equal(cls, a, b): TransformType.assert_equal(a, b) assert a.__class__.__name__ == b.__class__.__name__ assert_array_equal(a.angles, b.angles) assert a.axes_order == b.axes_order class GenericProjectionType(TransformType): @classmethod def from_tree_transform(cls, node, ctx): args = [] for param_name, default in cls.params: args.append(node.get(param_name, default)) if node['direction'] == 'pix2sky': return cls.types[0](*args) else: return cls.types[1](*args) @classmethod def to_tree_transform(cls, model, ctx): node = {} if isinstance(model, cls.types[0]): node['direction'] = 'pix2sky' else: node['direction'] = 'sky2pix' for param_name, default in cls.params: val = getattr(model, param_name).value if val != default: node[param_name] = val return node @classmethod def assert_equal(cls, a, b): # TODO: If models become comparable themselves, remove this. TransformType.assert_equal(a, b) assert a.__class__ == b.__class__ _generic_projections = { 'zenithal_perspective': ('ZenithalPerspective', (('mu', 0.0), ('gamma', 0.0)), '1.3.0'), 'gnomonic': ('Gnomonic', (), None), 'stereographic': ('Stereographic', (), None), 'slant_orthographic': ('SlantOrthographic', (('xi', 0.0), ('eta', 0.0)), None), 'zenithal_equidistant': ('ZenithalEquidistant', (), None), 'zenithal_equal_area': ('ZenithalEqualArea', (), None), 'airy': ('Airy', (('theta_b', 90.0),), '1.2.0'), 'cylindrical_perspective': ('CylindricalPerspective', (('mu', 0.0), ('lam', 0.0)), '1.3.0'), 'cylindrical_equal_area': ('CylindricalEqualArea', (('lam', 0.0),), '1.3.0'), 'plate_carree': ('PlateCarree', (), None), 'mercator': ('Mercator', (), None), 'sanson_flamsteed': ('SansonFlamsteed', (), None), 'parabolic': ('Parabolic', (), None), 'molleweide': ('Molleweide', (), None), 'hammer_aitoff': ('HammerAitoff', (), None), 'conic_perspective': ('ConicPerspective', (('sigma', 0.0), ('delta', 0.0)), '1.3.0'), 'conic_equal_area': ('ConicEqualArea', (('sigma', 0.0), ('delta', 0.0)), '1.3.0'), 'conic_equidistant': ('ConicEquidistant', (('sigma', 0.0), ('delta', 0.0)), '1.3.0'), 'conic_orthomorphic': ('ConicOrthomorphic', (('sigma', 0.0), ('delta', 0.0)), '1.3.0'), 'bonne_equal_area': ('BonneEqualArea', (('theta1', 0.0),), '1.3.0'), 'polyconic': ('Polyconic', (), None), 'tangential_spherical_cube': ('TangentialSphericalCube', (), None), 'cobe_quad_spherical_cube': ('COBEQuadSphericalCube', (), None), 'quad_spherical_cube': ('QuadSphericalCube', (), None), 'healpix': ('HEALPix', (('H', 4.0), ('X', 3.0)), None), 'healpix_polar': ('HEALPixPolar', (), None) } def make_projection_types(): for tag_name, (name, params, version) in _generic_projections.items(): class_name = f'{name}Type' types = [f'astropy.modeling.projections.Pix2Sky_{name}', f'astropy.modeling.projections.Sky2Pix_{name}'] members = {'name': f'transform/{tag_name}', 'types': types, 'params': params} if version: members['version'] = version globals()[class_name] = type( str(class_name), (GenericProjectionType,), members) __all__.append(class_name) make_projection_types()
82f01c726285a7c83d9ed505eb265cee3ebf390a26115e380c00a7c3f7e91247
# Licensed under a 3-clause BSD style license - see LICENSE.rst # -*- coding: utf-8 -*- import numpy as np from numpy.testing import assert_array_equal from asdf.versioning import AsdfVersion import astropy.units as u from astropy import modeling from .basic import TransformType from . import _parameter_to_value __all__ = ['ShiftType', 'ScaleType', 'Linear1DType'] class ShiftType(TransformType): name = "transform/shift" version = '1.2.0' types = ['astropy.modeling.models.Shift'] @classmethod def from_tree_transform(cls, node, ctx): offset = node['offset'] if not isinstance(offset, u.Quantity) and not np.isscalar(offset): raise NotImplementedError( "Asdf currently only supports scalar inputs to Shift transform.") return modeling.models.Shift(offset) @classmethod def to_tree_transform(cls, model, ctx): offset = model.offset return {'offset': _parameter_to_value(offset)} @classmethod def assert_equal(cls, a, b): # TODO: If models become comparable themselves, remove this. TransformType.assert_equal(a, b) assert (isinstance(a, modeling.models.Shift) and isinstance(b, modeling.models.Shift)) assert_array_equal(a.offset.value, b.offset.value) class ScaleType(TransformType): name = "transform/scale" version = '1.2.0' types = ['astropy.modeling.models.Scale'] @classmethod def from_tree_transform(cls, node, ctx): factor = node['factor'] if not isinstance(factor, u.Quantity) and not np.isscalar(factor): raise NotImplementedError( "Asdf currently only supports scalar inputs to Scale transform.") return modeling.models.Scale(factor) @classmethod def to_tree_transform(cls, model, ctx): factor = model.factor return {'factor': _parameter_to_value(factor)} @classmethod def assert_equal(cls, a, b): # TODO: If models become comparable themselves, remove this. TransformType.assert_equal(a, b) assert (isinstance(a, modeling.models.Scale) and isinstance(b, modeling.models.Scale)) assert_array_equal(a.factor, b.factor) class MultiplyType(TransformType): name = "transform/multiplyscale" version = '1.0.0' types = ['astropy.modeling.models.Multiply'] @classmethod def from_tree_transform(cls, node, ctx): factor = node['factor'] return modeling.models.Multiply(factor) @classmethod def to_tree_transform(cls, model, ctx): factor = model.factor return {'factor': _parameter_to_value(factor)} @classmethod def assert_equal(cls, a, b): # TODO: If models become comparable themselves, remove this. TransformType.assert_equal(a, b) assert (isinstance(a, modeling.models.Multiply) and isinstance(b, modeling.models.Multiply)) assert_array_equal(a.factor, b.factor) class PolynomialTypeBase(TransformType): DOMAIN_WINDOW_MIN_VERSION = AsdfVersion("1.2.0") name = "transform/polynomial" types = ['astropy.modeling.models.Polynomial1D', 'astropy.modeling.models.Polynomial2D'] @classmethod def from_tree_transform(cls, node, ctx): coefficients = np.asarray(node['coefficients']) n_dim = coefficients.ndim if n_dim == 1: domain = node.get('domain', None) window = node.get('window', None) model = modeling.models.Polynomial1D(coefficients.size - 1, domain=domain, window=window) model.parameters = coefficients elif n_dim == 2: x_domain, y_domain = tuple(node.get('domain', (None, None))) x_window, y_window = tuple(node.get('window', (None, None))) shape = coefficients.shape degree = shape[0] - 1 if shape[0] != shape[1]: raise TypeError("Coefficients must be an (n+1, n+1) matrix") coeffs = {} for i in range(shape[0]): for j in range(shape[0]): if i + j < degree + 1: name = 'c' + str(i) + '_' + str(j) coeffs[name] = coefficients[i, j] model = modeling.models.Polynomial2D(degree, x_domain=x_domain, y_domain=y_domain, x_window=x_window, y_window=y_window, **coeffs) else: raise NotImplementedError( "Asdf currently only supports 1D or 2D polynomial transform.") return model @classmethod def to_tree_transform(cls, model, ctx): if isinstance(model, modeling.models.Polynomial1D): coefficients = np.array(model.parameters) elif isinstance(model, modeling.models.Polynomial2D): degree = model.degree coefficients = np.zeros((degree + 1, degree + 1)) for i in range(degree + 1): for j in range(degree + 1): if i + j < degree + 1: name = 'c' + str(i) + '_' + str(j) coefficients[i, j] = getattr(model, name).value node = {'coefficients': coefficients} typeindex = cls.types.index(model.__class__) ndim = (typeindex % 2) + 1 if cls.version >= PolynomialTypeBase.DOMAIN_WINDOW_MIN_VERSION: # Schema versions prior to 1.2 included an unrelated "domain" # property. We can't serialize the new domain values with those # versions because they don't validate. if ndim == 1: if model.domain is not None: node['domain'] = model.domain if model.window is not None: node['window'] = model.window else: if model.x_domain or model.y_domain is not None: node['domain'] = (model.x_domain, model.y_domain) if model.x_window or model.y_window is not None: node['window'] = (model.x_window, model.y_window) return node @classmethod def assert_equal(cls, a, b): # TODO: If models become comparable themselves, remove this. TransformType.assert_equal(a, b) assert (isinstance(a, (modeling.models.Polynomial1D, modeling.models.Polynomial2D)) and isinstance(b, (modeling.models.Polynomial1D, modeling.models.Polynomial2D))) assert_array_equal(a.parameters, b.parameters) if cls.version > PolynomialTypeBase.DOMAIN_WINDOW_MIN_VERSION: # Schema versions prior to 1.2 are known not to serialize # domain or window. if isinstance(a, modeling.models.Polynomial1D): assert a.domain == b.domain assert a.window == b.window else: assert a.x_domain == b.x_domain assert a.x_window == b.x_window assert a.y_domain == b.y_domain assert a.y_window == b.y_window class PolynomialType1_0(PolynomialTypeBase): version = "1.0.0" class PolynomialType1_1(PolynomialTypeBase): version = "1.1.0" class PolynomialType1_2(PolynomialTypeBase): version = "1.2.0" class OrthoPolynomialType(TransformType): name = "transform/ortho_polynomial" types = ['astropy.modeling.models.Legendre1D', 'astropy.modeling.models.Legendre2D', 'astropy.modeling.models.Chebyshev1D', 'astropy.modeling.models.Chebyshev2D', 'astropy.modeling.models.Hermite1D', 'astropy.modeling.models.Hermite2D'] typemap = { 'legendre': 0, 'chebyshev': 2, 'hermite': 4, } invtypemap = dict([[v, k] for k, v in typemap.items()]) version = "1.0.0" @classmethod def from_tree_transform(cls, node, ctx): coefficients = np.asarray(node['coefficients']) n_dim = coefficients.ndim poly_type = node['polynomial_type'] if n_dim == 1: domain = node.get('domain', None) window = node.get('window', None) model = cls.types[cls.typemap[poly_type]](coefficients.size - 1, domain=domain, window=window) model.parameters = coefficients elif n_dim == 2: x_domain, y_domain = tuple(node.get('domain', (None, None))) x_window, y_window = tuple(node.get('window', (None, None))) coeffs = {} shape = coefficients.shape x_degree = shape[0] - 1 y_degree = shape[1] - 1 for i in range(x_degree + 1): for j in range(y_degree + 1): name = f'c{i}_{j}' coeffs[name] = coefficients[i, j] model = cls.types[cls.typemap[poly_type]+1](x_degree, y_degree, x_domain=x_domain, y_domain=y_domain, x_window=x_window, y_window=y_window, **coeffs) else: raise NotImplementedError( "Asdf currently only supports 1D or 2D polynomial transforms.") return model @classmethod def to_tree_transform(cls, model, ctx): typeindex = cls.types.index(model.__class__) poly_type = cls.invtypemap[int(typeindex/2)*2] ndim = (typeindex % 2) + 1 if ndim == 1: coefficients = np.array(model.parameters) else: coefficients = np.zeros((model.x_degree + 1, model.y_degree + 1)) for i in range(model.x_degree + 1): for j in range(model.y_degree + 1): name = f'c{i}_{j}' coefficients[i, j] = getattr(model, name).value node = {'polynomial_type': poly_type, 'coefficients': coefficients} if ndim == 1: if model.domain is not None: node['domain'] = model.domain if model.window is not None: node['window'] = model.window else: if model.x_domain or model.y_domain is not None: node['domain'] = (model.x_domain, model.y_domain) if model.x_window or model.y_window is not None: node['window'] = (model.x_window, model.y_window) return node @classmethod def assert_equal(cls, a, b): # TODO: If models become comparable themselves, remove this. # There should be a more elegant way of doing this TransformType.assert_equal(a, b) assert ((isinstance(a, (modeling.models.Legendre1D, modeling.models.Legendre2D)) and isinstance(b, (modeling.models.Legendre1D, modeling.models.Legendre2D))) or (isinstance(a, (modeling.models.Chebyshev1D, modeling.models.Chebyshev2D)) and isinstance(b, (modeling.models.Chebyshev1D, modeling.models.Chebyshev2D))) or (isinstance(a, (modeling.models.Hermite1D, modeling.models.Hermite2D)) and isinstance(b, (modeling.models.Hermite1D, modeling.models.Hermite2D)))) assert_array_equal(a.parameters, b.parameters) class Linear1DType(TransformType): name = "transform/linear1d" version = '1.0.0' types = ['astropy.modeling.models.Linear1D'] @classmethod def from_tree_transform(cls, node, ctx): slope = node.get('slope', None) intercept = node.get('intercept', None) return modeling.models.Linear1D(slope=slope, intercept=intercept) @classmethod def to_tree_transform(cls, model, ctx): return { 'slope': _parameter_to_value(model.slope), 'intercept': _parameter_to_value(model.intercept), } @classmethod def assert_equal(cls, a, b): # TODO: If models become comparable themselves, remove this. TransformType.assert_equal(a, b) assert (isinstance(a, modeling.models.Linear1D) and isinstance(b, modeling.models.Linear1D)) assert_array_equal(a.slope, b.slope) assert_array_equal(a.intercept, b.intercept)
232b5a607e9c5226352e0ccaf85be4079897a01036e6e698205d4ff102139965
# Licensed under a 3-clause BSD style license - see LICENSE.rst # -*- coding: utf-8 -*- import numpy as np from numpy.testing import assert_array_equal from astropy import modeling from astropy import units as u from .basic import TransformType from astropy.modeling.bounding_box import ModelBoundingBox __all__ = ['TabularType'] class TabularType(TransformType): name = "transform/tabular" version = '1.2.0' types = [ modeling.models.Tabular2D, modeling.models.Tabular1D ] @classmethod def from_tree_transform(cls, node, ctx): lookup_table = node.pop("lookup_table") dim = lookup_table.ndim fill_value = node.pop("fill_value", None) if dim == 1: # The copy is necessary because the array is memory mapped. points = (node['points'][0][:],) model = modeling.models.Tabular1D(points=points, lookup_table=lookup_table, method=node['method'], bounds_error=node['bounds_error'], fill_value=fill_value) elif dim == 2: points = tuple([p[:] for p in node['points']]) model = modeling.models.Tabular2D(points=points, lookup_table=lookup_table, method=node['method'], bounds_error=node['bounds_error'], fill_value=fill_value) else: tabular_class = modeling.models.tabular_model(dim, name) points = tuple([p[:] for p in node['points']]) model = tabular_class(points=points, lookup_table=lookup_table, method=node['method'], bounds_error=node['bounds_error'], fill_value=fill_value) return model @classmethod def to_tree_transform(cls, model, ctx): node = {} if model.fill_value is not None: node["fill_value"] = model.fill_value node["lookup_table"] = model.lookup_table node["points"] = [p for p in model.points] node["method"] = str(model.method) node["bounds_error"] = model.bounds_error return node @classmethod def assert_equal(cls, a, b): if isinstance(a.lookup_table, u.Quantity): assert u.allclose(a.lookup_table, b.lookup_table) assert u.allclose(a.points, b.points) a_box = a.bounding_box if isinstance(a_box, ModelBoundingBox): a_box = a_box.bounding_box() b_box = b.bounding_box if isinstance(b_box, ModelBoundingBox): b_box = b_box.bounding_box() for i in range(len(a_box)): assert u.allclose(a_box[i], b_box[i]) else: assert_array_equal(a.lookup_table, b.lookup_table) assert_array_equal(a.points, b.points) a_box = a.bounding_box if isinstance(a_box, ModelBoundingBox): a_box = a_box.bounding_box() b_box = b.bounding_box if isinstance(b_box, ModelBoundingBox): b_box = b_box.bounding_box() assert_array_equal(a_box, b_box) assert (a.method == b.method) if a.fill_value is None: assert b.fill_value is None elif np.isnan(a.fill_value): assert np.isnan(b.fill_value) else: assert(a.fill_value == b.fill_value) assert(a.bounds_error == b.bounds_error)
507b34a4452d0a2d22a2dd2822232967b486b82da90b1cdcdd1c925938cac87b
# Licensed under a 3-clause BSD style license - see LICENSE.rst # -*- coding: utf-8 -*- from numpy.testing import assert_array_equal from astropy.modeling import functional_models, physical_models from .basic import TransformType from . import _parameter_to_value __all__ = ['BlackBody', 'Drude1DType', 'Plummer1DType'] class BlackBody(TransformType): name = 'transform/blackbody' version = '1.0.0' types = ['astropy.modeling.physical_models.BlackBody'] @classmethod def from_tree_transform(cls, node, ctx): return physical_models.BlackBody(scale=node['scale'], temperature=node['temperature']) @classmethod def to_tree_transform(cls, model, ctx): node = {'scale': _parameter_to_value(model.scale), 'temperature': _parameter_to_value(model.temperature)} return node @classmethod def assert_equal(cls, a, b): # TODO: If models become comparable themselves, remove this. TransformType.assert_equal(a, b) assert (isinstance(a, physical_models.BlackBody) and isinstance(b, physical_models.BlackBody)) assert_array_equal(a.scale, b.scale) assert_array_equal(a.temperature, b.temperature) class Drude1DType(TransformType): name = 'transform/drude1d' version = '1.0.0' types = ['astropy.modeling.physical_models.Drude1D'] @classmethod def from_tree_transform(cls, node, ctx): return physical_models.Drude1D(amplitude=node['amplitude'], x_0=node['x_0'], fwhm=node['fwhm']) @classmethod def to_tree_transform(cls, model, ctx): node = {'amplitude': _parameter_to_value(model.amplitude), 'x_0': _parameter_to_value(model.x_0), 'fwhm': _parameter_to_value(model.fwhm)} return node @classmethod def assert_equal(cls, a, b): # TODO: If models become comparable themselves, remove this. TransformType.assert_equal(a, b) assert (isinstance(a, physical_models.Drude1D) and isinstance(b, physical_models.Drude1D)) assert_array_equal(a.amplitude, b.amplitude) assert_array_equal(a.x_0, b.x_0) assert_array_equal(a.fwhm, b.fwhm) class Plummer1DType(TransformType): name = 'transform/plummer1d' version = '1.0.0' types = ['astropy.modeling.physical_models.Plummer1D'] @classmethod def from_tree_transform(cls, node, ctx): return physical_models.Plummer1D(mass=node['mass'], r_plum=node['r_plum']) @classmethod def to_tree_transform(cls, model, ctx): node = {'mass': _parameter_to_value(model.mass), 'r_plum': _parameter_to_value(model.r_plum)} return node @classmethod def assert_equal(cls, a, b): # TODO: If models become comparable themselves, remove this. TransformType.assert_equal(a, b) assert (isinstance(a, physical_models.Plummer1D) and isinstance(b, physical_models.Plummer1D)) assert_array_equal(a.mass, b.mass) assert_array_equal(a.r_plum, b.r_plum)
6cb699916b7362ea58d88f7f94cb410525e6bd1f841be1c4a868622e48828e97
# Licensed under a 3-clause BSD style license - see LICENSE.rst # -*- coding: utf-8 -*- from asdf import tagged from asdf.tests.helpers import assert_tree_match from .basic import TransformType from astropy.modeling.core import Model, CompoundModel from astropy.modeling.models import Identity, Mapping, Const1D __all__ = ['CompoundType', 'RemapAxesType'] _operator_to_tag_mapping = { '+': 'add', '-': 'subtract', '*': 'multiply', '/': 'divide', '**': 'power', '|': 'compose', '&': 'concatenate', 'fix_inputs': 'fix_inputs' } _tag_to_method_mapping = { 'add': '__add__', 'subtract': '__sub__', 'multiply': '__mul__', 'divide': '__truediv__', 'power': '__pow__', 'compose': '__or__', 'concatenate': '__and__', 'fix_inputs': 'fix_inputs' } class CompoundType(TransformType): name = ['transform/' + x for x in _tag_to_method_mapping.keys()] types = [CompoundModel] version = '1.2.0' handle_dynamic_subclasses = True @classmethod def from_tree_tagged(cls, node, ctx): tag = node._tag[node._tag.rfind('/')+1:] tag = tag[:tag.rfind('-')] oper = _tag_to_method_mapping[tag] left = node['forward'][0] if not isinstance(left, Model): raise TypeError(f"Unknown model type '{node['forward'][0]._tag}'") right = node['forward'][1] if (not isinstance(right, Model) and not (oper == 'fix_inputs' and isinstance(right, dict))): raise TypeError(f"Unknown model type '{node['forward'][1]._tag}'") if oper == 'fix_inputs': right = dict(zip(right['keys'], right['values'])) model = CompoundModel('fix_inputs', left, right) else: model = getattr(left, oper)(right) return cls._from_tree_base_transform_members(model, node, ctx) @classmethod def to_tree_tagged(cls, model, ctx): left = model.left if isinstance(model.right, dict): right = { 'keys': list(model.right.keys()), 'values': list(model.right.values()) } else: right = model.right node = { 'forward': [left, right] } try: tag_name = 'transform/' + _operator_to_tag_mapping[model.op] except KeyError: raise ValueError(f"Unknown operator '{model.op}'") node = tagged.tag_object(cls.make_yaml_tag(tag_name), node, ctx=ctx) return cls._to_tree_base_transform_members(model, node, ctx) @classmethod def assert_equal(cls, a, b): # TODO: If models become comparable themselves, remove this. TransformType.assert_equal(a, b) assert_tree_match(a.left, b.left) assert_tree_match(a.right, b.right) class RemapAxesType(TransformType): name = 'transform/remap_axes' types = [Mapping] version = '1.3.0' @classmethod def from_tree_transform(cls, node, ctx): mapping = node['mapping'] n_inputs = node.get('n_inputs') if all([isinstance(x, int) for x in mapping]): return Mapping(tuple(mapping), n_inputs) if n_inputs is None: n_inputs = max([x for x in mapping if isinstance(x, int)]) + 1 transform = Identity(n_inputs) new_mapping = [] i = n_inputs for entry in mapping: if isinstance(entry, int): new_mapping.append(entry) else: new_mapping.append(i) transform = transform & Const1D(entry.value) i += 1 return transform | Mapping(new_mapping) @classmethod def to_tree_transform(cls, model, ctx): node = {'mapping': list(model.mapping)} if model.n_inputs > max(model.mapping) + 1: node['n_inputs'] = model.n_inputs return node @classmethod def assert_equal(cls, a, b): TransformType.assert_equal(a, b) assert a.mapping == b.mapping assert(a.n_inputs == b.n_inputs)
62eca0e16a1aacbb0d1fbe39110d970553de9c21cb5b31db270922df2e5decfc
# Licensed under a 3-clause BSD style license - see LICENSE.rst # -*- coding: utf-8 -*- from numpy.testing import assert_array_equal from astropy.modeling import powerlaws from .basic import TransformType from . import _parameter_to_value __all__ = ['PowerLaw1DType', 'BrokenPowerLaw1DType', 'SmoothlyBrokenPowerLaw1DType', 'ExponentialCutoffPowerLaw1DType', 'LogParabola1DType'] class PowerLaw1DType(TransformType): name = 'transform/power_law1d' version = '1.0.0' types = ['astropy.modeling.powerlaws.PowerLaw1D'] @classmethod def from_tree_transform(cls, node, ctx): return powerlaws.PowerLaw1D(amplitude=node['amplitude'], x_0=node['x_0'], alpha=node['alpha']) @classmethod def to_tree_transform(cls, model, ctx): node = {'amplitude': _parameter_to_value(model.amplitude), 'x_0': _parameter_to_value(model.x_0), 'alpha': _parameter_to_value(model.alpha)} return node @classmethod def assert_equal(cls, a, b): # TODO: If models become comparable themselves, remove this. TransformType.assert_equal(a, b) assert (isinstance(a, powerlaws.PowerLaw1D) and isinstance(b, powerlaws.PowerLaw1D)) assert_array_equal(a.amplitude, b.amplitude) assert_array_equal(a.x_0, b.x_0) assert_array_equal(a.alpha, b.alpha) class BrokenPowerLaw1DType(TransformType): name = 'transform/broken_power_law1d' version = '1.0.0' types = ['astropy.modeling.powerlaws.BrokenPowerLaw1D'] @classmethod def from_tree_transform(cls, node, ctx): return powerlaws.BrokenPowerLaw1D(amplitude=node['amplitude'], x_break=node['x_break'], alpha_1=node['alpha_1'], alpha_2=node['alpha_2']) @classmethod def to_tree_transform(cls, model, ctx): node = {'amplitude': _parameter_to_value(model.amplitude), 'x_break': _parameter_to_value(model.x_break), 'alpha_1': _parameter_to_value(model.alpha_1), 'alpha_2': _parameter_to_value(model.alpha_2)} return node @classmethod def assert_equal(cls, a, b): # TODO: If models become comparable themselves, remove this. TransformType.assert_equal(a, b) assert (isinstance(a, powerlaws.BrokenPowerLaw1D) and isinstance(b, powerlaws.BrokenPowerLaw1D)) assert_array_equal(a.amplitude, b.amplitude) assert_array_equal(a.x_break, b.x_break) assert_array_equal(a.alpha_1, b.alpha_1) assert_array_equal(a.alpha_2, b.alpha_2) class SmoothlyBrokenPowerLaw1DType(TransformType): name = 'transform/smoothly_broken_power_law1d' version = '1.0.0' types = ['astropy.modeling.powerlaws.SmoothlyBrokenPowerLaw1D'] @classmethod def from_tree_transform(cls, node, ctx): return powerlaws.SmoothlyBrokenPowerLaw1D(amplitude=node['amplitude'], x_break=node['x_break'], alpha_1=node['alpha_1'], alpha_2=node['alpha_2'], delta=node['delta']) @classmethod def to_tree_transform(cls, model, ctx): node = {'amplitude': _parameter_to_value(model.amplitude), 'x_break': _parameter_to_value(model.x_break), 'alpha_1': _parameter_to_value(model.alpha_1), 'alpha_2': _parameter_to_value(model.alpha_2), 'delta': _parameter_to_value(model.delta)} return node @classmethod def assert_equal(cls, a, b): # TODO: If models become comparable themselves, remove this. TransformType.assert_equal(a, b) assert (isinstance(a, powerlaws.SmoothlyBrokenPowerLaw1D) and isinstance(b, powerlaws.SmoothlyBrokenPowerLaw1D)) assert_array_equal(a.amplitude, b.amplitude) assert_array_equal(a.x_break, b.x_break) assert_array_equal(a.alpha_1, b.alpha_1) assert_array_equal(a.alpha_2, b.alpha_2) assert_array_equal(a.delta, b.delta) class ExponentialCutoffPowerLaw1DType(TransformType): name = 'transform/exponential_cutoff_power_law1d' version = '1.0.0' types = ['astropy.modeling.powerlaws.ExponentialCutoffPowerLaw1D'] @classmethod def from_tree_transform(cls, node, ctx): return powerlaws.ExponentialCutoffPowerLaw1D(amplitude=node['amplitude'], x_0=node['x_0'], alpha=node['alpha'], x_cutoff=node['x_cutoff']) @classmethod def to_tree_transform(cls, model, ctx): node = {'amplitude': _parameter_to_value(model.amplitude), 'x_0': _parameter_to_value(model.x_0), 'alpha': _parameter_to_value(model.alpha), 'x_cutoff': _parameter_to_value(model.x_cutoff)} return node @classmethod def assert_equal(cls, a, b): # TODO: If models become comparable themselves, remove this. TransformType.assert_equal(a, b) assert (isinstance(a, powerlaws.ExponentialCutoffPowerLaw1D) and isinstance(b, powerlaws.ExponentialCutoffPowerLaw1D)) assert_array_equal(a.amplitude, b.amplitude) assert_array_equal(a.x_0, b.x_0) assert_array_equal(a.alpha, b.alpha) assert_array_equal(a.x_cutoff, b.x_cutoff) class LogParabola1DType(TransformType): name = 'transform/log_parabola1d' version = '1.0.0' types = ['astropy.modeling.powerlaws.LogParabola1D'] @classmethod def from_tree_transform(cls, node, ctx): return powerlaws.LogParabola1D(amplitude=node['amplitude'], x_0=node['x_0'], alpha=node['alpha'], beta=node['beta']) @classmethod def to_tree_transform(cls, model, ctx): node = {'amplitude': _parameter_to_value(model.amplitude), 'x_0': _parameter_to_value(model.x_0), 'alpha': _parameter_to_value(model.alpha), 'beta': _parameter_to_value(model.beta)} return node @classmethod def assert_equal(cls, a, b): # TODO: If models become comparable themselves, remove this. TransformType.assert_equal(a, b) assert (isinstance(a, powerlaws.LogParabola1D) and isinstance(b, powerlaws.LogParabola1D)) assert_array_equal(a.amplitude, b.amplitude) assert_array_equal(a.x_0, b.x_0) assert_array_equal(a.alpha, b.alpha) assert_array_equal(a.beta, b.beta)
1a29212b685daf80046312252974a95d7b50f0bed97694690d1b792c220fb794
# Licensed under a 3-clause BSD style license - see LICENSE.rst # -*- coding: utf-8 -*- import functools import numpy as np from astropy.time import TimeDelta from ...types import AstropyType __all__ = ['TimeDeltaType'] allclose_jd = functools.partial(np.allclose, rtol=2. ** -52, atol=0) allclose_jd2 = functools.partial(np.allclose, rtol=2. ** -52, atol=2. ** -52) # 20 ps atol allclose_sec = functools.partial(np.allclose, rtol=2. ** -52, atol=2. ** -52 * 24 * 3600) # 20 ps atol class TimeDeltaType(AstropyType): name = 'time/timedelta' types = [TimeDelta] version = '1.0.0' @classmethod def to_tree(cls, obj, ctx): return obj.info._represent_as_dict() @classmethod def from_tree(cls, node, ctx): return TimeDelta.info._construct_from_dict(node) @classmethod def assert_equal(cls, old, new): assert allclose_jd(old.jd, new.jd) assert allclose_jd2(old.jd2, new.jd2) assert allclose_sec(old.sec, new.sec)
804ad0fc6cc2c844cc03414a4c842d4e52b8e025994bf276ca6e08c69b7da3b1
# Licensed under a 3-clause BSD style license - see LICENSE.rst # -*- coding: utf-8 -*- import numpy as np from numpy.testing import assert_array_equal from asdf.versioning import AsdfSpec from astropy import time from astropy import units as u from astropy.units import Quantity from astropy.coordinates import EarthLocation from astropy.io.misc.asdf.types import AstropyAsdfType __all__ = ['TimeType'] _guessable_formats = set(['iso', 'byear', 'jyear', 'yday']) _astropy_format_to_asdf_format = { 'isot': 'iso', 'byear_str': 'byear', 'jyear_str': 'jyear' } def _assert_earthlocation_equal(a, b): assert_array_equal(a.x, b.x) assert_array_equal(a.y, b.y) assert_array_equal(a.z, b.z) assert_array_equal(a.lat, b.lat) assert_array_equal(a.lon, b.lon) class TimeType(AstropyAsdfType): name = 'time/time' version = '1.1.0' supported_versions = ['1.0.0', AsdfSpec('>=1.1.0')] types = ['astropy.time.core.Time'] requires = ['astropy'] @classmethod def to_tree(cls, node, ctx): fmt = node.format if fmt == 'byear': node = time.Time(node, format='byear_str') elif fmt == 'jyear': node = time.Time(node, format='jyear_str') elif fmt in ('fits', 'datetime', 'plot_date'): node = time.Time(node, format='isot') fmt = node.format fmt = _astropy_format_to_asdf_format.get(fmt, fmt) guessable_format = fmt in _guessable_formats if node.scale == 'utc' and guessable_format and node.isscalar: return node.value d = {'value': node.value} if not guessable_format: d['format'] = fmt if node.scale != 'utc': d['scale'] = node.scale if node.location is not None: x, y, z = node.location.x, node.location.y, node.location.z # Preserve backwards compatibility for writing the old schema # This allows WCS to test backwards compatibility with old frames # This code does get tested in CI, but we don't run a coverage test if cls.version == '1.0.0': # pragma: no cover unit = node.location.unit d['location'] = { 'x': x.value, 'y': y.value, 'z': z.value, 'unit': unit } else: d['location'] = { # It seems like EarthLocations can be represented either in # terms of Cartesian coordinates or latitude and longitude, so # we rather arbitrarily choose the former for our representation 'x': x, 'y': y, 'z': z } return d @classmethod def from_tree(cls, node, ctx): if isinstance(node, (str, list, np.ndarray)): t = time.Time(node) fmt = _astropy_format_to_asdf_format.get(t.format, t.format) if fmt not in _guessable_formats: raise ValueError(f"Invalid time '{node}'") return t value = node['value'] fmt = node.get('format') scale = node.get('scale') location = node.get('location') if location is not None: unit = location.get('unit', u.m) # This ensures that we can read the v.1.0.0 schema and convert it # to the new EarthLocation object, which expects Quantity components for comp in ['x', 'y', 'z']: if not isinstance(location[comp], Quantity): location[comp] = Quantity(location[comp], unit=unit) location = EarthLocation.from_geocentric( location['x'], location['y'], location['z']) return time.Time(value, format=fmt, scale=scale, location=location) @classmethod def assert_equal(cls, old, new): assert old.format == new.format assert old.scale == new.scale if isinstance(old.location, EarthLocation): assert isinstance(new.location, EarthLocation) _assert_earthlocation_equal(old.location, new.location) else: assert old.location == new.location assert_array_equal(old, new)
11e3af4c2f141630d663757df02b834500ff321b4331256b0ea387052b1398e0
# Licensed under a 3-clause BSD style license - see LICENSE.rst # -*- coding: utf-8 -*- from asdf.tags.core import NDArrayType from astropy.coordinates.spectral_coordinate import SpectralCoord from astropy.io.misc.asdf.types import AstropyType from astropy.io.misc.asdf.tags.unit.unit import UnitType __all__ = ['SpectralCoordType'] class SpectralCoordType(AstropyType): """ ASDF tag implementation used to serialize/derialize SpectralCoord objects """ name = 'coordinates/spectralcoord' types = [SpectralCoord] version = '1.0.0' @classmethod def to_tree(cls, spec_coord, ctx): node = {} if isinstance(spec_coord, SpectralCoord): node['value'] = spec_coord.value node['unit'] = spec_coord.unit if spec_coord.observer is not None: node['observer'] = spec_coord.observer if spec_coord.target is not None: node['target'] = spec_coord.target return node raise TypeError(f"'{spec_coord}' is not a valid SpectralCoord") @classmethod def from_tree(cls, node, ctx): if isinstance(node, SpectralCoord): return node unit = UnitType.from_tree(node['unit'], ctx) value = node['value'] observer = node['observer'] if 'observer' in node else None target = node['target'] if 'observer' in node else None if isinstance(value, NDArrayType): value = value._make_array() return SpectralCoord(value, unit=unit, observer=observer, target=target)
cb8fb12c9563cd3b8907c6110ed8c9295c2be62e21b521ae884eabca8f685f1a
# Licensed under a 3-clause BSD style license - see LICENSE.rst # -*- coding: utf-8 -*- import os import glob from asdf import tagged import astropy.units as u import astropy.coordinates from astropy.coordinates.baseframe import frame_transform_graph from astropy.units import Quantity from astropy.coordinates import ICRS, Longitude, Latitude, Angle from astropy.io.misc.asdf.types import AstropyType __all__ = ['CoordType'] SCHEMA_PATH = os.path.abspath( os.path.join(os.path.dirname(__file__), '..', '..', 'data', 'schemas', 'astropy.org', 'astropy')) def _get_frames(): """ By reading the schema files, get the list of all the frames we can save/load. """ search = os.path.join(SCHEMA_PATH, 'coordinates', 'frames', '*.yaml') files = glob.glob(search) names = [] for fpath in files: path, fname = os.path.split(fpath) frame, _ = fname.split('-') # Skip baseframe because we cannot directly save / load it. # Skip icrs because we have an explicit tag for it because there are # two versions. if frame not in ['baseframe', 'icrs']: names.append(frame) return names class BaseCoordType: """ This defines the base methods for coordinates, without defining anything related to asdf types. This allows subclasses with different types and schemas to use this without confusing the metaclass machinery. """ @staticmethod def _tag_to_frame(tag): """ Extract the frame name from the tag. """ tag = tag[tag.rfind('/')+1:] tag = tag[:tag.rfind('-')] return frame_transform_graph.lookup_name(tag) @classmethod def _frame_name_to_tag(cls, frame_name): return cls.make_yaml_tag(cls._tag_prefix + frame_name) @classmethod def from_tree_tagged(cls, node, ctx): frame = cls._tag_to_frame(node._tag) data = node.get('data', None) if data is not None: return frame(node['data'], **node['frame_attributes']) return frame(**node['frame_attributes']) @classmethod def to_tree_tagged(cls, frame, ctx): if type(frame) not in frame_transform_graph.frame_set: raise ValueError("Can only save frames that are registered with the " "transformation graph.") node = {} if frame.has_data: node['data'] = frame.data frame_attributes = {} for attr in frame.frame_attributes.keys(): value = getattr(frame, attr, None) if value is not None: frame_attributes[attr] = value node['frame_attributes'] = frame_attributes return tagged.tag_object(cls._frame_name_to_tag(frame.name), node, ctx=ctx) @classmethod def assert_equal(cls, old, new): assert isinstance(new, type(old)) if new.has_data: assert u.allclose(new.data.lon, old.data.lon) assert u.allclose(new.data.lat, old.data.lat) class CoordType(BaseCoordType, AstropyType): _tag_prefix = "coordinates/frames/" name = ["coordinates/frames/" + f for f in _get_frames()] types = [astropy.coordinates.BaseCoordinateFrame] handle_dynamic_subclasses = True requires = ['astropy'] version = "1.0.0" class ICRSType(CoordType): """ Define a special tag for ICRS so we can make it version 1.1.0. """ name = "coordinates/frames/icrs" types = ['astropy.coordinates.ICRS'] version = "1.1.0" class ICRSType10(AstropyType): name = "coordinates/frames/icrs" types = [astropy.coordinates.ICRS] requires = ['astropy'] version = "1.0.0" @classmethod def from_tree(cls, node, ctx): wrap_angle = Angle(node['ra']['wrap_angle']) ra = Longitude( node['ra']['value'], unit=node['ra']['unit'], wrap_angle=wrap_angle) dec = Latitude(node['dec']['value'], unit=node['dec']['unit']) return ICRS(ra=ra, dec=dec) @classmethod def to_tree(cls, frame, ctx): node = {} wrap_angle = Quantity(frame.ra.wrap_angle) node['ra'] = { 'value': frame.ra.value, 'unit': frame.ra.unit.to_string(), 'wrap_angle': wrap_angle } node['dec'] = { 'value': frame.dec.value, 'unit': frame.dec.unit.to_string() } return node @classmethod def assert_equal(cls, old, new): assert isinstance(old, ICRS) assert isinstance(new, ICRS) assert u.allclose(new.ra, old.ra) assert u.allclose(new.dec, old.dec)
83e12765cda410bb14e25a9cc25565e3ea7324f30a68c21ca8e7a0257641b43b
# Licensed under a 3-clause BSD style license - see LICENSE.rst # -*- coding: utf-8 -*- from astropy.coordinates import SkyCoord from astropy.io.misc.asdf.tags.helpers import skycoord_equal from ...types import AstropyType class SkyCoordType(AstropyType): name = 'coordinates/skycoord' types = [SkyCoord] version = "1.0.0" @classmethod def to_tree(cls, obj, ctx): return obj.info._represent_as_dict() @classmethod def from_tree(cls, tree, ctx): return SkyCoord.info._construct_from_dict(tree) @classmethod def assert_equal(cls, old, new): assert skycoord_equal(old, new)
8ff80cf3960674f038aeacc196466f0d4b5a52130ce8c62865a372a5134b979f
import astropy.units as u import astropy.coordinates.representation from astropy.coordinates.representation import BaseRepresentationOrDifferential from astropy.io.misc.asdf.types import AstropyType class RepresentationType(AstropyType): name = "coordinates/representation" types = [BaseRepresentationOrDifferential] version = "1.0.0" _representation_module = astropy.coordinates.representation @classmethod def to_tree(cls, representation, ctx): comps = representation.components components = {} for c in comps: value = getattr(representation, '_' + c, None) if value is not None: components[c] = value t = type(representation) node = {} node['type'] = t.__name__ node['components'] = components return node @classmethod def from_tree(cls, node, ctx): rep_type = getattr(cls._representation_module, node['type']) return rep_type(**node['components']) @classmethod def assert_equal(cls, old, new): assert isinstance(new, type(old)) assert new.components == old.components for comp in new.components: nc = getattr(new, comp) oc = getattr(old, comp) assert u.allclose(nc, oc)
73b7c86bb958864247a6628be97199c07178703470c217961dd606cbdff51bc0
# Licensed under a 3-clause BSD style license - see LICENSE.rst # -*- coding: utf-8 -*- from astropy.coordinates import Angle, Latitude, Longitude from astropy.io.misc.asdf.tags.unit.quantity import QuantityType __all__ = ['AngleType', 'LatitudeType', 'LongitudeType'] class AngleType(QuantityType): name = "coordinates/angle" types = [Angle] requires = ['astropy'] version = "1.0.0" organization = 'astropy.org' standard = 'astropy' @classmethod def from_tree(cls, node, ctx): return Angle(super().from_tree(node, ctx)) class LatitudeType(AngleType): name = "coordinates/latitude" types = [Latitude] @classmethod def from_tree(cls, node, ctx): return Latitude(super().from_tree(node, ctx)) class LongitudeType(AngleType): name = "coordinates/longitude" types = [Longitude] @classmethod def from_tree(cls, node, ctx): wrap_angle = node['wrap_angle'] return Longitude(super().from_tree(node, ctx), wrap_angle=wrap_angle) @classmethod def to_tree(cls, longitude, ctx): tree = super().to_tree(longitude, ctx) tree['wrap_angle'] = longitude.wrap_angle return tree
9f822eedc9f99434ae60245657dcf8a6bcaa36b70f25f17b681f7a7198a5ce4a
# Licensed under a 3-clause BSD style license - see LICENSE.rst # -*- coding: utf-8 -*- from astropy.coordinates import EarthLocation from ...types import AstropyType class EarthLocationType(AstropyType): name = 'coordinates/earthlocation' types = [EarthLocation] version = '1.0.0' @classmethod def to_tree(cls, obj, ctx): return obj.info._represent_as_dict() @classmethod def from_tree(cls, node, ctx): return EarthLocation.info._construct_from_dict(node) @classmethod def assert_equal(cls, old, new): return (old == new).all()
976500e2a1efb1d3cd6d56caf913a1dc6b95fced9ea62af4a4d417516abdfa93
# Licensed under a 3-clause BSD style license - see LICENSE.rst # -*- coding: utf-8 -*- import numpy as np def run_schema_example_test(organization, standard, name, version, check_func=None): import asdf from asdf.tests import helpers from asdf.types import format_tag from asdf.schema import load_schema tag = format_tag(organization, standard, version, name) uri = asdf.extension.default_extensions.extension_list.tag_mapping(tag) r = asdf.extension.get_default_resolver() examples = [] schema = load_schema(uri, resolver=r) for node in asdf.treeutil.iter_tree(schema): if (isinstance(node, dict) and 'examples' in node and isinstance(node['examples'], list)): for desc, example in node['examples']: examples.append(example) for example in examples: buff = helpers.yaml_to_asdf('example: ' + example.strip()) ff = asdf.AsdfFile(uri=uri) # Add some dummy blocks so that the ndarray examples work for i in range(3): b = asdf.block.Block(np.zeros((1024*1024*8), dtype=np.uint8)) b._used = True ff.blocks.add(b) ff._open_impl(ff, buff, mode='r') if check_func: check_func(ff)
9abc2d91bdebc6131bf7c6ea241a13fb65ab9129b0a1a439f498eeb25711a7e6
# Licensed under a 3-clause BSD style license - see LICENSE.rst # -*- coding: utf-8 -*- from astropy.units.equivalencies import Equivalency from astropy.units import equivalencies from astropy.units.quantity import Quantity from astropy.io.misc.asdf.types import AstropyType class EquivalencyType(AstropyType): name = "units/equivalency" types = [Equivalency] version = '1.0.0' @classmethod def to_tree(cls, equiv, ctx): node = {} if not isinstance(equiv, Equivalency): raise TypeError(f"'{equiv}' is not a valid Equivalency") eqs = [] for e, kwargs in zip(equiv.name, equiv.kwargs): kwarg_names = list(kwargs.keys()) kwarg_values = list(kwargs.values()) eq = {'name': e, 'kwargs_names': kwarg_names, 'kwargs_values': kwarg_values} eqs.append(eq) return eqs @classmethod def from_tree(cls, node, ctx): eqs = [] for eq in node: equiv = getattr(equivalencies, eq['name']) kwargs = dict(zip(eq['kwargs_names'], eq['kwargs_values'])) eqs.append(equiv(**kwargs)) return sum(eqs[1:], eqs[0]) @classmethod def assert_equal(cls, a, b): assert a == b
1d403453d10e76250f8aaa792a4fa9e4810235dc7374747e59a98f195ff01768
# Licensed under a 3-clause BSD style license - see LICENSE.rst # -*- coding: utf-8 -*- from astropy.units import Unit, UnitBase from astropy.io.misc.asdf.types import AstropyAsdfType class UnitType(AstropyAsdfType): name = 'unit/unit' types = ['astropy.units.UnitBase'] requires = ['astropy'] @classmethod def to_tree(cls, node, ctx): if isinstance(node, str): node = Unit(node, format='vounit', parse_strict='warn') if isinstance(node, UnitBase): return node.to_string(format='vounit') raise TypeError(f"'{node}' is not a valid unit") @classmethod def from_tree(cls, node, ctx): return Unit(node, format='vounit', parse_strict='silent')
72a5c00b75e9695bb36ce2e271f2c4828286875282cfded51778a5b1558790dd
# Licensed under a 3-clause BSD style license - see LICENSE.rst # -*- coding: utf-8 -*- from astropy.units import Quantity from asdf.tags.core import NDArrayType from astropy.io.misc.asdf.types import AstropyAsdfType class QuantityType(AstropyAsdfType): name = 'unit/quantity' types = ['astropy.units.Quantity'] requires = ['astropy'] version = '1.1.0' @classmethod def to_tree(cls, quantity, ctx): node = {} if isinstance(quantity, Quantity): node['value'] = quantity.value node['unit'] = quantity.unit return node raise TypeError(f"'{quantity}' is not a valid Quantity") @classmethod def from_tree(cls, node, ctx): if isinstance(node, Quantity): return node unit = node['unit'] value = node['value'] if isinstance(value, NDArrayType): value = value._make_array() return Quantity(value, unit=unit)
b836203df79a5bf48b2f19c05c6f433b673cad5e32ba74d44470b82758d7ba7e
# Licensed under a 3-clause BSD style license - see LICENSE.rst # -*- coding: utf-8 -*- import pytest asdf = pytest.importorskip('asdf') import numpy as np from packaging.version import Version import astropy.units as u from astropy import table from astropy.time import Time, TimeDelta from astropy.coordinates import SkyCoord, EarthLocation from astropy.io.misc.asdf.tags.helpers import skycoord_equal from asdf.tests import helpers from asdf.tags.core.ndarray import NDArrayType from astropy.io.misc.asdf.tags.tests.helpers import run_schema_example_test def test_table(tmpdir): data_rows = [(1, 2.0, 'x'), (4, 5.0, 'y'), (5, 8.2, 'z')] t = table.Table(rows=data_rows, names=('a', 'b', 'c'), dtype=('i4', 'f8', 'S1')) t.columns['a'].description = 'RA' t.columns['a'].unit = 'degree' t.columns['a'].meta = {'foo': 'bar'} t.columns['c'].description = 'Some description of some sort' def check(ff): assert len(ff.blocks) == 3 helpers.assert_roundtrip_tree({'table': t}, tmpdir, asdf_check_func=check) def test_array_columns(tmpdir): a = np.array([([[1, 2], [3, 4]], 2.0, 'x'), ([[5, 6], [7, 8]], 5.0, 'y'), ([[9, 10], [11, 12]], 8.2, 'z')], dtype=[('a', '<i4', (2, 2)), ('b', '<f8'), ('c', '|S1')]) t = table.Table(a, copy=False) assert t.columns['a'].shape == (3, 2, 2) def check(ff): assert len(ff.blocks) == 1 helpers.assert_roundtrip_tree({'table': t}, tmpdir, asdf_check_func=check) def test_structured_array_columns(tmpdir): a = np.array([((1, 'a'), 2.0, 'x'), ((4, 'b'), 5.0, 'y'), ((5, 'c'), 8.2, 'z')], dtype=[('a', [('a0', '<i4'), ('a1', '|S1')]), ('b', '<f8'), ('c', '|S1')]) t = table.Table(a, copy=False) def check(ff): assert len(ff.blocks) == 1 helpers.assert_roundtrip_tree({'table': t}, tmpdir, asdf_check_func=check) def test_table_row_order(tmpdir): a = np.array([(1, 2.0, 'x'), (4, 5.0, 'y'), (5, 8.2, 'z')], dtype=[('a', '<i4'), ('b', '<f8'), ('c', '|S1')]) t = table.Table(a, copy=False) t.columns['a'].description = 'RA' t.columns['a'].unit = 'degree' t.columns['a'].meta = {'foo': 'bar'} t.columns['c'].description = 'Some description of some sort' def check(ff): assert len(ff.blocks) == 1 helpers.assert_roundtrip_tree({'table': t}, tmpdir, asdf_check_func=check) def test_table_inline(tmpdir): data_rows = [(1, 2.0, 'x'), (4, 5.0, 'y'), (5, 8.2, 'z')] t = table.Table(rows=data_rows, names=('a', 'b', 'c'), dtype=('i4', 'f8', 'S1')) t.columns['a'].description = 'RA' t.columns['a'].unit = 'degree' t.columns['a'].meta = {'foo': 'bar'} t.columns['c'].description = 'Some description of some sort' def check(ff): assert len(list(ff.blocks.internal_blocks)) == 0 if Version(asdf.__version__) >= Version('2.8.0'): # The auto_inline argument is deprecated as of asdf 2.8.0. with asdf.config_context() as config: config.array_inline_threshold = 64 helpers.assert_roundtrip_tree({'table': t}, tmpdir, asdf_check_func=check) else: helpers.assert_roundtrip_tree({'table': t}, tmpdir, asdf_check_func=check, write_options={'auto_inline': 64}) def test_mismatched_columns(): yaml = """ table: !<tag:astropy.org:astropy/table/table-1.0.0> columns: - !core/column-1.0.0 data: !core/ndarray-1.0.0 data: [0, 1, 2] name: a - !core/column-1.0.0 data: !core/ndarray-1.0.0 data: [0, 1, 2, 3] name: b colnames: [a, b] """ buff = helpers.yaml_to_asdf(yaml) with pytest.raises(ValueError) as err: with asdf.open(buff) as ff: pass assert 'Inconsistent data column lengths' in str(err.value) def test_masked_table(tmpdir): data_rows = [(1, 2.0, 'x'), (4, 5.0, 'y'), (5, 8.2, 'z')] t = table.Table(rows=data_rows, names=('a', 'b', 'c'), dtype=('i4', 'f8', 'S1'), masked=True) t.columns['a'].description = 'RA' t.columns['a'].unit = 'degree' t.columns['a'].meta = {'foo': 'bar'} t.columns['a'].mask = [True, False, True] t.columns['c'].description = 'Some description of some sort' def check(ff): assert len(ff.blocks) == 4 helpers.assert_roundtrip_tree({'table': t}, tmpdir, asdf_check_func=check) def test_quantity_mixin(tmpdir): t = table.QTable() t['a'] = [1, 2, 3] t['b'] = ['x', 'y', 'z'] t['c'] = [2.0, 5.0, 8.2] * u.m def check(ff): assert isinstance(ff['table']['c'], u.Quantity) helpers.assert_roundtrip_tree({'table': t}, tmpdir, asdf_check_func=check) def test_time_mixin(tmpdir): t = table.Table() t['a'] = [1, 2] t['b'] = ['x', 'y'] t['c'] = Time(['2001-01-02T12:34:56', '2001-02-03T00:01:02']) def check(ff): assert isinstance(ff['table']['c'], Time) helpers.assert_roundtrip_tree({'table': t}, tmpdir, asdf_check_func=check) def test_timedelta_mixin(tmpdir): t = table.Table() t['a'] = [1, 2] t['b'] = ['x', 'y'] t['c'] = TimeDelta([1, 2] * u.day) def check(ff): assert isinstance(ff['table']['c'], TimeDelta) helpers.assert_roundtrip_tree({'table': t}, tmpdir, asdf_check_func=check) def test_skycoord_mixin(tmpdir): t = table.Table() t['a'] = [1, 2] t['b'] = ['x', 'y'] t['c'] = SkyCoord([1, 2], [3, 4], unit='deg,deg', frame='fk4', obstime='J1990.5') def check(ff): assert isinstance(ff['table']['c'], SkyCoord) def tree_match(old, new): NDArrayType.assert_equal(new['a'], old['a']) NDArrayType.assert_equal(new['b'], old['b']) assert skycoord_equal(new['c'], old['c']) helpers.assert_roundtrip_tree({'table': t}, tmpdir, asdf_check_func=check, tree_match_func=tree_match) def test_earthlocation_mixin(tmpdir): t = table.Table() t['a'] = [1, 2] t['b'] = ['x', 'y'] t['c'] = EarthLocation(x=[1, 2] * u.km, y=[3, 4] * u.km, z=[5, 6] * u.km) def check(ff): assert isinstance(ff['table']['c'], EarthLocation) helpers.assert_roundtrip_tree({'table': t}, tmpdir, asdf_check_func=check) def test_ndarray_mixin(tmpdir): t = table.Table() t['a'] = [1, 2] t['b'] = ['x', 'y'] t['c'] = table.NdarrayMixin([5, 6]) helpers.assert_roundtrip_tree({'table': t}, tmpdir) def test_backwards_compat(): """ Make sure that we can continue to read tables that use the schema from the ASDF Standard. This test uses the examples in the table schema from the ASDF Standard, since these make no reference to Astropy's own table definition. """ def check(asdffile): assert isinstance(asdffile['example'], table.Table) run_schema_example_test('stsci.edu', 'asdf', 'core/table', '1.0.0', check)
7ba7274f6cef19e25026cb1b6b2dd8794c89b870260f8aaba84f2d24511b25e3
import pytest from astropy.io.misc.asdf.tests import ASDF_ENTRY_INSTALLED if not ASDF_ENTRY_INSTALLED: pytest.skip('The astropy asdf entry points are not installed', allow_module_level=True)
4e6e541bd8bc3c50c8d327860c03319d788993998b7d788c1e431be46b5564fa
# Licensed under a 3-clause BSD style license - see LICENSE.rst # -*- coding: utf-8 -*- import pytest asdf = pytest.importorskip('asdf') import os import numpy as np from astropy.io import fits from asdf.tests import helpers from astropy.io.misc.asdf.tags.tests.helpers import run_schema_example_test def test_complex_structure(tmpdir): with fits.open(os.path.join( os.path.dirname(__file__), 'data', 'complex.fits'), memmap=False) as hdulist: tree = { 'fits': hdulist } helpers.assert_roundtrip_tree(tree, tmpdir) def test_fits_table(tmpdir): a = np.array( [(0, 1), (2, 3)], dtype=[('A', int), ('B', int)]) h = fits.HDUList() h.append(fits.BinTableHDU.from_columns(a)) tree = {'fits': h} def check_yaml(content): assert b'!<tag:astropy.org:astropy/table/table-1.0.0>' in content helpers.assert_roundtrip_tree(tree, tmpdir, raw_yaml_check_func=check_yaml) def test_backwards_compat(): """ Make sure that we can continue to read FITS HDUs that use the schema from the ASDF Standard. This test uses the examples in the fits schema from the ASDF Standard, since these make no reference to Astropy's own fits definition. """ def check(asdffile): assert isinstance(asdffile['example'], fits.HDUList) run_schema_example_test('stsci.edu', 'asdf', 'fits/fits', '1.0.0', check)
9f2d2a0364379e65a952a6569d183e6fbb2bd1064e8080257496432bd2ecc38b
# Licensed under a 3-clause BSD style license - see LICENSE.rst import pytest asdf = pytest.importorskip("asdf") from asdf.tests.helpers import assert_roundtrip_tree from astropy.modeling.models import UnitsMapping from astropy import units as u def assert_model_roundtrip(model, tmpdir): tree = {"model": model} assert_roundtrip_tree(tree, tmpdir, tree_match_func=assert_models_equal) def assert_models_equal(a, b): assert a.name == b.name assert a.inputs == b.inputs assert a.input_units == b.input_units assert a.outputs == b.outputs assert a.mapping == b.mapping assert a.input_units_allow_dimensionless == b.input_units_allow_dimensionless for i in a.inputs: if a.input_units_equivalencies is None: a_equiv = None else: a_equiv = a.input_units_equivalencies.get(i) if b.input_units_equivalencies is None: b_equiv = None else: b_equiv = b.input_units_equivalencies.get(i, None) assert a_equiv == b_equiv def test_basic(tmpdir): m = UnitsMapping(((u.m, u.dimensionless_unscaled),)) assert_model_roundtrip(m, tmpdir) def test_remove_units(tmpdir): m = UnitsMapping(((u.m, None),)) assert_model_roundtrip(m, tmpdir) def test_accept_any_units(tmpdir): m = UnitsMapping(((None, u.m),)) assert_model_roundtrip(m, tmpdir) def test_with_equivalencies(tmpdir): m = UnitsMapping(((u.m, u.dimensionless_unscaled),), input_units_equivalencies={"x": u.equivalencies.spectral()}) assert_model_roundtrip(m, tmpdir) def test_with_allow_dimensionless(tmpdir): m = UnitsMapping(((u.m, u.dimensionless_unscaled), (u.s, u.Hz)), input_units_allow_dimensionless=True) assert_model_roundtrip(m, tmpdir) m = UnitsMapping(((u.m, u.dimensionless_unscaled), (u.s, u.Hz)), input_units_allow_dimensionless={"x0": True, "x1": False}) assert_model_roundtrip(m, tmpdir)
12a7824f5539e892b8ee8ec9a3c504bb79b8470b449821016442d8d4dedc3b37
# Licensed under a 3-clause BSD style license - see LICENSE.rst # -*- coding: utf-8 -*- import pytest asdf = pytest.importorskip('asdf') import warnings from packaging.version import Version import numpy as np from asdf import util from asdf.tests import helpers from asdf import AsdfFile import asdf import astropy.units as u from astropy.modeling.core import fix_inputs from astropy.modeling import models as astmodels from astropy.utils.compat.optional_deps import HAS_SCIPY def custom_and_analytical_inverse(): p1 = astmodels.Polynomial1D(1) p2 = astmodels.Polynomial1D(1) p3 = astmodels.Polynomial1D(1) p4 = astmodels.Polynomial1D(1) m1 = p1 & p2 m2 = p3 & p4 m1.inverse = m2 return m1 def custom_inputs_outputs(): m = astmodels.Gaussian2D() m.inputs = ('a', 'b') m.outputs = ('c',) return m test_models = [ astmodels.Identity(2), astmodels.Polynomial1D(2, c0=1, c1=2, c2=3), astmodels.Polynomial2D(1, c0_0=1, c0_1=2, c1_0=3), astmodels.Shift(2.), astmodels.Hermite1D(2, c0=2, c1=3, c2=0.5), astmodels.Legendre1D(2, c0=2, c1=3, c2=0.5), astmodels.Chebyshev1D(2, c0=2, c1=3, c2=0.5), astmodels.Chebyshev2D(1, 1, c0_0=1, c0_1=2, c1_0=3), astmodels.Legendre2D(1, 1, c0_0=1, c0_1=2, c1_0=3), astmodels.Hermite2D(1, 1, c0_0=1, c0_1=2, c1_0=3), astmodels.Scale(3.4), astmodels.RotateNative2Celestial(5.63, -72.5, 180), astmodels.Multiply(3), astmodels.Multiply(10*u.m), astmodels.RotateCelestial2Native(5.63, -72.5, 180), astmodels.EulerAngleRotation(23, 14, 2.3, axes_order='xzx'), astmodels.Mapping((0, 1), n_inputs=3), astmodels.Shift(2.*u.deg), astmodels.Scale(3.4*u.deg), astmodels.RotateNative2Celestial(5.63*u.deg, -72.5*u.deg, 180*u.deg), astmodels.RotateCelestial2Native(5.63*u.deg, -72.5*u.deg, 180*u.deg), astmodels.RotationSequence3D([1.2, 2.3, 3.4, .3], 'xyzx'), astmodels.SphericalRotationSequence([1.2, 2.3, 3.4, .3], 'xyzy'), astmodels.AiryDisk2D(amplitude=10., x_0=0.5, y_0=1.5), astmodels.Box1D(amplitude=10., x_0=0.5, width=5.), astmodels.Box2D(amplitude=10., x_0=0.5, x_width=5., y_0=1.5, y_width=7.), astmodels.Const1D(amplitude=5.), astmodels.Const2D(amplitude=5.), astmodels.Disk2D(amplitude=10., x_0=0.5, y_0=1.5, R_0=5.), astmodels.Ellipse2D(amplitude=10., x_0=0.5, y_0=1.5, a=2., b=4., theta=0.1), astmodels.Exponential1D(amplitude=10., tau=3.5), astmodels.Gaussian1D(amplitude=10., mean=5., stddev=3.), astmodels.Gaussian2D(amplitude=10., x_mean=5., y_mean=5., x_stddev=3., y_stddev=3.), astmodels.KingProjectedAnalytic1D(amplitude=10., r_core=5., r_tide=2.), astmodels.Logarithmic1D(amplitude=10., tau=3.5), astmodels.Lorentz1D(amplitude=10., x_0=0.5, fwhm=2.5), astmodels.Moffat1D(amplitude=10., x_0=0.5, gamma=1.2, alpha=2.5), astmodels.Moffat2D(amplitude=10., x_0=0.5, y_0=1.5, gamma=1.2, alpha=2.5), astmodels.Planar2D(slope_x=0.5, slope_y=1.2, intercept=2.5), astmodels.RedshiftScaleFactor(z=2.5), astmodels.RickerWavelet1D(amplitude=10., x_0=0.5, sigma=1.2), astmodels.RickerWavelet2D(amplitude=10., x_0=0.5, y_0=1.5, sigma=1.2), astmodels.Ring2D(amplitude=10., x_0=0.5, y_0=1.5, r_in=5., width=10.), astmodels.Sersic1D(amplitude=10., r_eff=1., n=4.), astmodels.Sersic2D(amplitude=10., r_eff=1., n=4., x_0=0.5, y_0=1.5, ellip=0.0, theta=0.0), astmodels.Sine1D(amplitude=10., frequency=0.5, phase=1.), astmodels.Cosine1D(amplitude=10., frequency=0.5, phase=1.), astmodels.Tangent1D(amplitude=10., frequency=0.5, phase=1.), astmodels.ArcSine1D(amplitude=10., frequency=0.5, phase=1.), astmodels.ArcCosine1D(amplitude=10., frequency=0.5, phase=1.), astmodels.ArcTangent1D(amplitude=10., frequency=0.5, phase=1.), astmodels.Trapezoid1D(amplitude=10., x_0=0.5, width=5., slope=1.), astmodels.TrapezoidDisk2D(amplitude=10., x_0=0.5, y_0=1.5, R_0=5., slope=1.), astmodels.Voigt1D(x_0=0.55, amplitude_L=10., fwhm_L=0.5, fwhm_G=0.9), astmodels.BlackBody(scale=10.0, temperature=6000.*u.K), astmodels.Drude1D(amplitude=10.0, x_0=0.5, fwhm=2.5), astmodels.Plummer1D(mass=10.0, r_plum=5.0), astmodels.BrokenPowerLaw1D(amplitude=10, x_break=0.5, alpha_1=2.0, alpha_2=3.5), astmodels.ExponentialCutoffPowerLaw1D(10, 0.5, 2.0, 7.), astmodels.LogParabola1D(amplitude=10, x_0=0.5, alpha=2., beta=3.,), astmodels.PowerLaw1D(amplitude=10., x_0=0.5, alpha=2.0), astmodels.SmoothlyBrokenPowerLaw1D(amplitude=10., x_break=5.0, alpha_1=2.0, alpha_2=3.0, delta=0.5), custom_and_analytical_inverse(), custom_inputs_outputs(), ] if HAS_SCIPY: test_models.append(astmodels.Spline1D(np.array([-3., -3., -3., -3., -1., 0., 1., 3., 3., 3., 3.]), np.array([0.10412331, 0.07013616, -0.18799552, 1.35953147, -0.15282581, 0.03923, -0.04297299, 0., 0., 0., 0.]), 3)) math_models = [] for kl in astmodels.math.__all__: klass = getattr(astmodels.math, kl) math_models.append(klass()) test_models.extend(math_models) test_models_with_constraints = [astmodels.Legendre2D(x_degree=1, y_degree=1, c0_0=1, c0_1=2, c1_0=3, fixed={'c1_0': True, 'c0_1': True}, bounds={'c0_0': (-10, 10)})] test_models.extend(test_models_with_constraints) def test_transforms_compound(tmpdir): tree = { 'compound': astmodels.Shift(1) & astmodels.Shift(2) | astmodels.Sky2Pix_TAN() | astmodels.Rotation2D() | astmodels.AffineTransformation2D([[2, 0], [0, 2]], [42, 32]) + astmodels.Rotation2D(32) } helpers.assert_roundtrip_tree(tree, tmpdir) def test_inverse_transforms(tmpdir): rotation = astmodels.Rotation2D(32) rotation.inverse = astmodels.Rotation2D(45) real_rotation = astmodels.Rotation2D(32) tree = { 'rotation': rotation, 'real_rotation': real_rotation } def check(ff): assert ff.tree['rotation'].inverse.angle == 45 helpers.assert_roundtrip_tree(tree, tmpdir, asdf_check_func=check) @pytest.mark.parametrize(('model'), test_models) def test_single_model(tmpdir, model): with warnings.catch_warnings(): # Some schema files are missing from asdf<=2.6.0 which causes warnings if Version(asdf.__version__) <= Version('2.6.0'): warnings.filterwarnings('ignore', 'Unable to locate schema file') tree = {'single_model': model} helpers.assert_roundtrip_tree(tree, tmpdir) def test_name(tmpdir): def check(ff): assert ff.tree['rot'].name == 'foo' tree = {'rot': astmodels.Rotation2D(23, name='foo')} helpers.assert_roundtrip_tree(tree, tmpdir, asdf_check_func=check) def test_zenithal_with_arguments(tmpdir): tree = { 'azp': astmodels.Sky2Pix_AZP(0.5, 0.3) } helpers.assert_roundtrip_tree(tree, tmpdir) def test_naming_of_compound_model(tmpdir): """Issue #87""" def asdf_check(ff): assert ff.tree['model'].name == 'compound_model' offx = astmodels.Shift(1) scl = astmodels.Scale(2) model = (offx | scl).rename('compound_model') tree = { 'model': model } helpers.assert_roundtrip_tree(tree, tmpdir, asdf_check_func=asdf_check) def test_generic_projections(tmpdir): from astropy.io.misc.asdf.tags.transform import projections for tag_name, (name, params, version) in projections._generic_projections.items(): tree = { 'forward': util.resolve_name( f'astropy.modeling.projections.Sky2Pix_{name}')(), 'backward': util.resolve_name( f'astropy.modeling.projections.Pix2Sky_{name}')() } with warnings.catch_warnings(): # Some schema files are missing from asdf<=2.4.2 which causes warnings if Version(asdf.__version__) <= Version('2.5.1'): warnings.filterwarnings('ignore', 'Unable to locate schema file') helpers.assert_roundtrip_tree(tree, tmpdir) def test_tabular_model(tmpdir): points = np.arange(0, 5) values = [1., 10, 2, 45, -3] model = astmodels.Tabular1D(points=points, lookup_table=values) tree = {'model': model} helpers.assert_roundtrip_tree(tree, tmpdir) table = np.array([[3., 0., 0.], [0., 2., 0.], [0., 0., 0.]]) points = ([1, 2, 3], [1, 2, 3]) model2 = astmodels.Tabular2D(points, lookup_table=table, bounds_error=False, fill_value=None, method='nearest') tree = {'model': model2} helpers.assert_roundtrip_tree(tree, tmpdir) def test_bounding_box(tmpdir): model = astmodels.Shift(1) & astmodels.Shift(2) model.bounding_box = ((1, 3), (2, 4)) tree = {'model': model} helpers.assert_roundtrip_tree(tree, tmpdir) @pytest.mark.parametrize("standard_version", asdf.versioning.supported_versions) def test_const1d(tmpdir, standard_version): helpers.assert_roundtrip_tree( {"model": astmodels.Const1D(amplitude=5.)}, tmpdir, init_options={"version": standard_version} ) @pytest.mark.parametrize("standard_version", asdf.versioning.supported_versions) @pytest.mark.parametrize("model", [ astmodels.Polynomial1D(1, c0=5, c1=17), astmodels.Polynomial1D(1, c0=5, c1=17, domain=[-5, 4], window=[-2, 3]), astmodels.Polynomial2D(2, c0_0=3, c1_0=5, c0_1=7), astmodels.Polynomial2D( 2, c0_0=3, c1_0=5, c0_1=7, x_domain=[-2, 2], y_domain=[-4, 4], x_window=[-6, 6], y_window=[-8, 8] ), ]) def test_polynomial(tmpdir, standard_version, model): helpers.assert_roundtrip_tree({"model": model}, tmpdir, init_options={"version": standard_version}) def test_domain_orthopoly(tmpdir): model1d = astmodels.Chebyshev1D(2, c0=2, c1=3, c2=0.5, domain=[-2, 2]) model2d = astmodels.Chebyshev2D(1, 1, c0_0=1, c0_1=2, c1_0=3, x_domain=[-2, 2], y_domain=[-2, 2]) fa = AsdfFile() fa.tree['model1d'] = model1d fa.tree['model2d'] = model2d file_path = str(tmpdir.join('orthopoly_domain.asdf')) fa.write_to(file_path) with asdf.open(file_path) as f: assert f.tree['model1d'](1.8) == model1d(1.8) assert f.tree['model2d'](1.8, -1.5) == model2d(1.8, -1.5) def test_window_orthopoly(tmpdir): model1d = astmodels.Chebyshev1D(2, c0=2, c1=3, c2=0.5, domain=[-2, 2], window=[-0.5, 0.5]) model2d = astmodels.Chebyshev2D(1, 1, c0_0=1, c0_1=2, c1_0=3, x_domain=[-2, 2], y_domain=[-2, 2], x_window=[-0.5, 0.5], y_window=[-0.1, 0.5]) fa = AsdfFile() fa.tree['model1d'] = model1d fa.tree['model2d'] = model2d file_path = str(tmpdir.join('orthopoly_window.asdf')) fa.write_to(file_path) with asdf.open(file_path) as f: assert f.tree['model1d'](1.8) == model1d(1.8) assert f.tree['model2d'](1.8, -1.5) == model2d(1.8, -1.5) def test_linear1d(tmpdir): model = astmodels.Linear1D() tree = {'model': model} helpers.assert_roundtrip_tree(tree, tmpdir) def test_linear1d_quantity(tmpdir): model = astmodels.Linear1D(1*u.nm, 1*(u.nm/u.pixel)) tree = {'model': model} helpers.assert_roundtrip_tree(tree, tmpdir) def test_tabular_model_units(tmpdir): points = np.arange(0, 5) * u.pix values = [1., 10, 2, 45, -3] * u.nm model = astmodels.Tabular1D(points=points, lookup_table=values) tree = {'model': model} helpers.assert_roundtrip_tree(tree, tmpdir) table = np.array([[3., 0., 0.], [0., 2., 0.], [0., 0., 0.]]) * u.nm points = ([1, 2, 3], [1, 2, 3]) * u.pix model2 = astmodels.Tabular2D(points, lookup_table=table, bounds_error=False, fill_value=None, method='nearest') tree = {'model': model2} helpers.assert_roundtrip_tree(tree, tmpdir) def test_fix_inputs(tmpdir): with warnings.catch_warnings(): # Some schema files are missing from asdf<=2.4.2 which causes warnings if Version(asdf.__version__) <= Version('2.5.1'): warnings.filterwarnings('ignore', 'Unable to locate schema file') model0 = astmodels.Pix2Sky_TAN() model0.input_units_equivalencies = {'x': u.dimensionless_angles(), 'y': u.dimensionless_angles()} model1 = astmodels.Rotation2D() model = model0 | model1 tree = { 'compound': fix_inputs(model, {'x': 45}), 'compound1': fix_inputs(model, {0: 45}) } helpers.assert_roundtrip_tree(tree, tmpdir) def test_fix_inputs_type(): with pytest.raises(TypeError): tree = { 'compound': fix_inputs(3, {'x': 45}) } helpers.assert_roundtrip_tree(tree, tmpdir) with pytest.raises(AttributeError): tree = { 'compound': astmodels.Pix2Sky_TAN() & {'x': 45} } helpers.assert_roundtrip_tree(tree, tmpdir) comp_model = custom_and_analytical_inverse() @pytest.mark.parametrize(('model'), [astmodels.Shift(1) & astmodels.Shift(2) | comp_model, comp_model | astmodels.Shift(1) & astmodels.Shift(2), astmodels.Shift(1) & comp_model, comp_model & astmodels.Shift(1) ]) def test_custom_and_analytical(model, tmpdir): fa = AsdfFile() fa.tree['model'] = model file_path = str(tmpdir.join('custom_and_analytical_inverse.asdf')) fa.write_to(file_path) with asdf.open(file_path) as f: assert f.tree['model'].inverse is not None def test_deserialize_compound_user_inverse(tmpdir): """ Confirm that we are able to correctly reconstruct a compound model with a user inverse set on one of its component models. Due to code in TransformType that facilitates circular inverses, the user inverse of the component model is not available at the time that the CompoundModel is constructed. """ yaml = """ model: !transform/concatenate-1.2.0 forward: - !transform/shift-1.2.0 inverse: !transform/shift-1.2.0 {offset: 5.0} offset: -10.0 - !transform/shift-1.2.0 {offset: -20.0} """ buff = helpers.yaml_to_asdf(yaml) with asdf.open(buff) as af: model = af["model"] assert model.has_inverse() assert model.inverse(-5, -20) == (0, 0) # test some models and compound models with some input unit equivalencies def models_with_input_eq(): # 1D model m1 = astmodels.Shift(1*u.kg) m1.input_units_equivalencies = {'x': u.mass_energy()} # 2D model m2 = astmodels.Const2D(10*u.Hz) m2.input_units_equivalencies = {'x': u.dimensionless_angles(), 'y': u.dimensionless_angles()} # 2D model with only one input equivalencies m3 = astmodels.Const2D(10*u.Hz) m3.input_units_equivalencies = {'x': u.dimensionless_angles()} # model using equivalency that has args using units m4 = astmodels.PowerLaw1D(amplitude=1*u.m, x_0=10*u.pix, alpha=7) m4.input_units_equivalencies = {'x': u.equivalencies.pixel_scale(0.5*u.arcsec/u.pix)} return[m1, m2, m3, m4] def compound_models_with_input_eq(): m1 = astmodels.Gaussian1D(10*u.K, 11*u.arcsec, 12*u.arcsec) m1.input_units_equivalencies = {'x': u.parallax()} m2 = astmodels.Gaussian1D(5*u.s, 2*u.K, 3*u.K) m2.input_units_equivalencies = {'x': u.temperature()} return [m1|m2, m1&m2, m1+m2] test_models.extend(models_with_input_eq()) test_models.extend(compound_models_with_input_eq())
8494f148026b98c5f78247662dfe541fe799fe74bdc3a7be2d0707936033aaf8
# Licensed under a 3-clause BSD style license - see LICENSE.rst # -*- coding: utf-8 -*- import pytest asdf = pytest.importorskip('asdf') from asdf.tests.helpers import assert_roundtrip_tree from astropy import units as u from astropy.time import Time, TimeDelta @pytest.mark.parametrize('fmt', TimeDelta.FORMATS.keys()) def test_timedelta(fmt, tmpdir): t1 = Time(Time.now()) t2 = Time(Time.now()) td = TimeDelta(t2 - t1, format=fmt) tree = dict(timedelta=td) assert_roundtrip_tree(tree, tmpdir) @pytest.mark.parametrize('scale', list(TimeDelta.SCALES) + [None]) def test_timedelta_scales(scale, tmpdir): tree = dict(timedelta=TimeDelta(0.125, scale=scale, format="jd")) assert_roundtrip_tree(tree, tmpdir) def test_timedelta_vector(tmpdir): tree = dict(timedelta=TimeDelta([1, 2] * u.day)) assert_roundtrip_tree(tree, tmpdir)
cc98ccf5931a75030d5901c61ed34c223c94d3d9b66cc97fe349318ff1fa6942
# Licensed under a 3-clause BSD style license - see LICENSE.rst # -*- coding: utf-8 -*- import pytest asdf = pytest.importorskip('asdf') import datetime import numpy as np from astropy import time from asdf import AsdfFile, yamlutil, tagged from asdf.tests import helpers import asdf.schema as asdf_schema def _flatten_combiners(schema): newschema = dict() def add_entry(path, schema, combiner): # TODO: Simplify? cursor = newschema for i in range(len(path)): part = path[i] if isinstance(part, int): cursor = cursor.setdefault('items', []) while len(cursor) <= part: cursor.append({}) cursor = cursor[part] elif part == 'items': cursor = cursor.setdefault('items', dict()) else: cursor = cursor.setdefault('properties', dict()) if i < len(path) - 1 and isinstance(path[i+1], int): cursor = cursor.setdefault(part, []) else: cursor = cursor.setdefault(part, dict()) cursor.update(schema) def test_time(tmpdir): time_array = time.Time( np.arange(100), format="unix") tree = { 'large_time_array': time_array } helpers.assert_roundtrip_tree(tree, tmpdir) def test_time_with_location(tmpdir): # See https://github.com/spacetelescope/asdf/issues/341 from astropy import units as u from astropy.coordinates.earth import EarthLocation location = EarthLocation(x=[1,2]*u.m, y=[3,4]*u.m, z=[5,6]*u.m) t = time.Time([1,2], location=location, format='cxcsec') tree = {'time': t} helpers.assert_roundtrip_tree(tree, tmpdir) def test_time_with_location_1_0_0(tmpdir): from astropy import units as u from astropy.coordinates.earth import EarthLocation location = EarthLocation(x=6378100*u.m, y=0*u.m, z=0*u.m) t = time.Time('J2000.000', location=location, format='jyear_str') tree = {'time': t} # The version refers to ASDF Standard 1.0.0, which includes time-1.0.0 helpers.assert_roundtrip_tree(tree, tmpdir, init_options={"version": "1.0.0"}) def test_isot(tmpdir): tree = { 'time': time.Time('2000-01-01T00:00:00.000') } helpers.assert_roundtrip_tree(tree, tmpdir) ff = asdf.AsdfFile(tree) tree = yamlutil.custom_tree_to_tagged_tree(ff.tree, ff) assert isinstance(tree['time'], str) def test_isot_array(tmpdir): tree = { 'time': time.Time(['2001-01-02T12:34:56', '2001-02-03T00:01:02']) } helpers.assert_roundtrip_tree(tree, tmpdir) def test_time_tag(): schema = asdf_schema.load_schema( 'http://stsci.edu/schemas/asdf/time/time-1.1.0', resolve_references=True) schema = _flatten_combiners(schema) date = time.Time(datetime.datetime.now()) tree = {'date': date} asdf = AsdfFile(tree=tree) instance = yamlutil.custom_tree_to_tagged_tree(tree['date'], asdf) asdf_schema.validate(instance, schema=schema) tag = 'tag:stsci.edu:asdf/time/time-1.1.0' date = tagged.tag_object(tag, date) tree = {'date': date} asdf = AsdfFile(tree=tree) instance = yamlutil.custom_tree_to_tagged_tree(tree['date'], asdf) asdf_schema.validate(instance, schema=schema)
8007ff110cb6185ee16dde548d99d9c0e9f38d478a8902daf51bf91e770bedb2
# Licensed under a 3-clause BSD style license - see LICENSE.rst # -*- coding: utf-8 -*- import pytest asdf = pytest.importorskip('asdf') from asdf.tests.helpers import assert_roundtrip_tree from astropy import units from astropy.coordinates import ICRS, FK5, Longitude, Latitude, Angle from astropy.io.misc.asdf.extension import AstropyExtension def test_hcrs_basic(tmpdir): ra = Longitude(25, unit=units.deg) dec = Latitude(45, unit=units.deg) tree = {'coord': ICRS(ra=ra, dec=dec)} assert_roundtrip_tree(tree, tmpdir) def test_icrs_basic(tmpdir): wrap_angle = Angle(1.5, unit=units.rad) ra = Longitude(25, unit=units.deg, wrap_angle=wrap_angle) dec = Latitude(45, unit=units.deg) tree = {'coord': ICRS(ra=ra, dec=dec)} assert_roundtrip_tree(tree, tmpdir) def test_icrs_nodata(tmpdir): tree = {'coord': ICRS()} assert_roundtrip_tree(tree, tmpdir) def test_icrs_compound(tmpdir): icrs = ICRS(ra=[0, 1, 2]*units.deg, dec=[3, 4, 5]*units.deg) tree = {'coord': icrs} assert_roundtrip_tree(tree, tmpdir) def test_fk5_time(tmpdir): tree = {'coord': FK5(equinox="2011-01-01T00:00:00")} assert_roundtrip_tree(tree, tmpdir)
8672d71d7c624c64341aeb30595d2c27edf69afadd90efe8c62738ab022574a5
# Licensed under a 3-clause BSD style license - see LICENSE.rst # -*- coding: utf-8 -*- import pytest asdf = pytest.importorskip('asdf') from asdf.tests.helpers import assert_roundtrip_tree from astropy import units as u from astropy.coordinates.angles import Longitude, Latitude from astropy.coordinates.earth import EarthLocation, ELLIPSOIDS @pytest.fixture def position(): lon = Longitude([0., 45., 90., 135., 180., -180, -90, -45], u.deg, wrap_angle=180*u.deg) lat = Latitude([+0., 30., 60., +90., -90., -60., -30., 0.], u.deg) h = u.Quantity([0.1, 0.5, 1.0, -0.5, -1.0, +4.2, -11., -.1], u.m) return lon, lat, h def test_earthlocation_quantity(tmpdir): location = EarthLocation(lat=34.4900*u.deg, lon=-104.221800*u.deg, height=40*u.km) tree = dict(location=location) assert_roundtrip_tree(tree, tmpdir) def test_earthlocation(position, tmpdir): x, y, z = EarthLocation.from_geodetic(*position).to_geocentric() geocentric = EarthLocation(x, y, z) tree = dict(location=geocentric) assert_roundtrip_tree(tree, tmpdir) @pytest.mark.parametrize('ellipsoid', ELLIPSOIDS) def test_earthlocation_geodetic(position, ellipsoid, tmpdir): location = EarthLocation.from_geodetic(*position, ellipsoid=ellipsoid) tree = dict(location=location) assert_roundtrip_tree(tree, tmpdir) def test_earthlocation_site(tmpdir): orig_sites = getattr(EarthLocation, '_site_registry', None) try: EarthLocation._get_site_registry(force_builtin=True) rog = EarthLocation.of_site('greenwich') tree = dict(location=rog) assert_roundtrip_tree(tree, tmpdir) finally: EarthLocation._site_registry = orig_sites
ddb54d68a991b3a2d7399a63a9094c57479a36012e31f775245f3af2fbc2ab91
# Licensed under a 3-clause BSD style license - see LICENSE.rst # -*- coding: utf-8 -*- import numpy as np import pytest from astropy import units as u from astropy.coordinates import SkyCoord, ICRS, Galactic, FK4, FK5, Longitude asdf = pytest.importorskip('asdf') from asdf.tests.helpers import assert_roundtrip_tree # These tests are cribbed directly from the Examples section of # https://docs.astropy.org/en/stable/api/astropy.coordinates.SkyCoord.html def test_scalar_skycoord(tmpdir): c = SkyCoord(10, 20, unit="deg") # defaults to ICRS frame tree = dict(coord=c) assert_roundtrip_tree(tree, tmpdir) def test_vector_skycoord(tmpdir): c = SkyCoord([1, 2, 3], [-30, 45, 8], frame="icrs", unit="deg") # 3 coords tree = dict(coord=c) assert_roundtrip_tree(tree, tmpdir) def test_skycoord_fk4(tmpdir): coords = ["1:12:43.2 +1:12:43", "1 12 43.2 +1 12 43"] c = SkyCoord(coords, frame=FK4, unit=(u.deg, u.hourangle), obstime="J1992.21") tree = dict(coord=c) assert_roundtrip_tree(tree, tmpdir) @pytest.mark.parametrize('coord', [ SkyCoord("1h12m43.2s +1d12m43s", frame=Galactic), # Units from string SkyCoord(frame="galactic", l="1h12m43.2s", b="+1d12m43s") ]) def test_skycoord_galactic(coord, tmpdir): tree = dict(coord=coord) assert_roundtrip_tree(tree, tmpdir) def test_skycoord_ra_dec(tmpdir): ra = Longitude([1, 2, 3], unit=u.deg) # Could also use Angle dec = np.array([4.5, 5.2, 6.3]) * u.deg # Astropy Quantity c = SkyCoord(ra, dec, frame='icrs') tree = dict(coord=c) assert_roundtrip_tree(tree, tmpdir) c = SkyCoord(frame=ICRS, ra=ra, dec=dec, obstime='2001-01-02T12:34:56') tree = dict(coord=c) assert_roundtrip_tree(tree, tmpdir) def test_skycoord_override_defaults(tmpdir): c = FK4(1 * u.deg, 2 * u.deg) # Uses defaults for obstime, equinox c = SkyCoord(c, obstime='J2010.11', equinox='B1965') # Override defaults tree = dict(coord=c) assert_roundtrip_tree(tree, tmpdir) def test_skycoord_cartesian(tmpdir): c = SkyCoord(w=0, u=1, v=2, unit='kpc', frame='galactic', representation_type='cartesian') tree = dict(coord=c) assert_roundtrip_tree(tree, tmpdir) def test_skycoord_vector_frames(tmpdir): c = SkyCoord([ICRS(ra=1*u.deg, dec=2*u.deg), ICRS(ra=3*u.deg, dec=4*u.deg)]) tree = dict(coord=c) assert_roundtrip_tree(tree, tmpdir) @pytest.mark.xfail(reason='Velocities are not properly serialized yet') def test_skycoord_radial_velocity(tmpdir): c = SkyCoord(ra=1*u.deg, dec=2*u.deg, radial_velocity=10*u.km/u.s) tree = dict(coord=c) assert_roundtrip_tree(tree, tmpdir) @pytest.mark.xfail(reason='Velocities are not properly serialized yet') def test_skycoord_proper_motion(tmpdir): c = SkyCoord(ra=1*u.deg, dec=2*u.deg, pm_ra_cosdec=2*u.mas/u.yr, pm_dec=1*u.mas/u.yr) tree = dict(coord=c) assert_roundtrip_tree(tree, tmpdir) @pytest.mark.skip(reason='Apparent loss of precision during serialization') def test_skycoord_extra_attribute(tmpdir): sc = SkyCoord(10*u.deg, 20*u.deg, equinox="2011-01-01T00:00", frame="fk4") tree = dict(coord=sc.transform_to("icrs")) def check_asdf(asdffile): assert hasattr(asdffile['coord'], 'equinox') assert_roundtrip_tree(tree, tmpdir, asdf_check_func=check_asdf) def test_skycoord_2d_obstime(tmpdir): sc = SkyCoord([1, 2], [3, 4], [5, 6], unit='deg,deg,m', frame='fk4', obstime=['J1990.5', 'J1991.5']), tree = dict(coord=sc) assert_roundtrip_tree(tree, tmpdir)
0ae8273e8cf2dea2faf6bd68fc7084ffa9f00ef3bc116aaac9e68a69086f79df
# Licensed under a 3-clause BSD style license - see LICENSE.rst # -*- coding: utf-8 -*- import pytest asdf = pytest.importorskip('asdf') import astropy.units as u from asdf.tests.helpers import assert_roundtrip_tree from astropy.coordinates import Longitude, Latitude, Angle from astropy.io.misc.asdf.extension import AstropyExtension def test_angle(tmpdir): tree = {'angle': Angle(100, u.deg)} assert_roundtrip_tree(tree, tmpdir) def test_latitude(tmpdir): tree = {'angle': Latitude(10, u.deg)} assert_roundtrip_tree(tree, tmpdir) def test_longitude(tmpdir): tree = {'angle': Longitude(-100, u.deg, wrap_angle=180*u.deg)} assert_roundtrip_tree(tree, tmpdir)
91a2c87919020a418602084e90762044465c89af6bc080ba86cea029b6f6d3be
# Licensed under a 3-clause BSD style license - see LICENSE.rst # -*- coding: utf-8 -*- import pytest asdf = pytest.importorskip('asdf') from numpy.random import random, randint import astropy.units as u from astropy.coordinates import Angle import astropy.coordinates.representation as r from asdf.tests.helpers import assert_roundtrip_tree @pytest.fixture(params=filter(lambda x: "Base" not in x, r.__all__)) def representation(request): rep = getattr(r, request.param) angle_unit = u.deg other_unit = u.km kwargs = {} arr_len = randint(1, 100) for aname, atype in rep.attr_classes.items(): if issubclass(atype, Angle): value = ([random()] * arr_len) * angle_unit else: value = ([random()] * arr_len) * other_unit kwargs[aname] = value return rep(**kwargs) def test_representations(tmpdir, representation): tree = {'representation': representation} assert_roundtrip_tree(tree, tmpdir)
f6edd790ec51bb099e847ea63b95e86d05e4380f5b6d050e5d42c96afa198e69
# Licensed under a 3-clause BSD style license - see LICENSE.rst # -*- coding: utf-8 -*- import pytest from astropy import units as u from astropy.coordinates import SpectralCoord, ICRS, Galactic from astropy.tests.helper import assert_quantity_allclose asdf = pytest.importorskip('asdf') from asdf.tests.helpers import assert_roundtrip_tree # noqa def test_scalar_spectralcoord(tmpdir): sc = SpectralCoord(565 * u.nm) tree = dict(spectralcoord=sc) def check(asdffile): assert isinstance(asdffile['spectralcoord'], SpectralCoord) assert_quantity_allclose(asdffile['spectralcoord'].quantity, 565 * u.nm) assert_roundtrip_tree(tree, tmpdir, asdf_check_func=check) def test_vector_spectralcoord(tmpdir): sc = SpectralCoord([100, 200, 300] * u.GHz) tree = dict(spectralcoord=sc) def check(asdffile): assert isinstance(asdffile['spectralcoord'], SpectralCoord) assert_quantity_allclose(asdffile['spectralcoord'].quantity, [100, 200, 300] * u.GHz) assert_roundtrip_tree(tree, tmpdir, asdf_check_func=check, tree_match_func=assert_quantity_allclose) @pytest.mark.filterwarnings("ignore:No velocity") def test_spectralcoord_with_obstarget(tmpdir): sc = SpectralCoord(10 * u.GHz, observer=ICRS(1 * u.km, 2 * u.km, 3 * u.km, representation_type='cartesian'), target=Galactic(10 * u.deg, 20 * u.deg, distance=30 * u.pc)) tree = dict(spectralcoord=sc) def check(asdffile): assert isinstance(asdffile['spectralcoord'], SpectralCoord) assert_quantity_allclose(asdffile['spectralcoord'].quantity, 10 * u.GHz) assert isinstance(asdffile['spectralcoord'].observer, ICRS) assert isinstance(asdffile['spectralcoord'].target, Galactic) assert_roundtrip_tree(tree, tmpdir, asdf_check_func=check)
235d9cd47d2eca472132d322293d652c45681560f8ae34e4119c25bdc15a67fd
# Licensed under a 3-clause BSD style license - see LICENSE.rst # -*- coding: utf-8 -*- import pytest asdf = pytest.importorskip('asdf') import io from astropy import units as u from asdf.tests import helpers # TODO: Implement defunit def test_unit(): yaml = """ unit: !unit/unit-1.0.0 "2.1798721 10-18kg m2 s-2" """ buff = helpers.yaml_to_asdf(yaml) with asdf.open(buff) as ff: assert ff.tree['unit'].is_equivalent(u.Ry) buff2 = io.BytesIO() ff.write_to(buff2) buff2.seek(0) with asdf.open(buff2) as ff: assert ff.tree['unit'].is_equivalent(u.Ry)
a6745b9dd530770861d556f961324186c8818f7792995d703401cd5a831984ef
# Licensed under a 3-clause BSD style license - see LICENSE.rst # -*- coding: utf-8 -*- import pytest asdf = pytest.importorskip('asdf') import io from astropy import units from asdf.tests import helpers def roundtrip_quantity(yaml, quantity): buff = helpers.yaml_to_asdf(yaml) with asdf.open(buff) as ff: assert (ff.tree['quantity'] == quantity).all() buff2 = io.BytesIO() ff.write_to(buff2) buff2.seek(0) with asdf.open(buff2) as ff: assert (ff.tree['quantity'] == quantity).all() def test_value_scalar(tmpdir): testval = 2.71828 testunit = units.kpc yaml = f""" quantity: !unit/quantity-1.1.0 value: {testval} unit: {testunit} """ quantity = units.Quantity(testval, unit=testunit) roundtrip_quantity(yaml, quantity) def test_value_array(tmpdir): testval = [3.14159] testunit = units.kg yaml = f""" quantity: !unit/quantity-1.1.0 value: !core/ndarray-1.0.0 {testval} unit: {testunit} """ quantity = units.Quantity(testval, unit=testunit) roundtrip_quantity(yaml, quantity) def test_value_multiarray(tmpdir): testval = [x*2.3081 for x in range(10)] testunit = units.ampere yaml = f""" quantity: !unit/quantity-1.1.0 value: !core/ndarray-1.0.0 {testval} unit: {testunit} """ quantity = units.Quantity(testval, unit=testunit) roundtrip_quantity(yaml, quantity) def test_value_ndarray(tmpdir): from numpy import array, float64 testval = [[1,2,3],[4,5,6]] testunit = units.km yaml = f""" quantity: !unit/quantity-1.1.0 value: !core/ndarray-1.0.0 datatype: float64 data: {testval} unit: {testunit} """ data = array(testval, float64) quantity = units.Quantity(data, unit=testunit) roundtrip_quantity(yaml, quantity)
1d421d387bec3a1abccb2b6de89848cb4c666a1a78c1657c9ea195d74fe047fd
# Licensed under a 3-clause BSD style license - see LICENSE.rst # -*- coding: utf-8 -*- import pytest from astropy import units as u from astropy.units import equivalencies as eq from astropy.cosmology import Planck15 asdf = pytest.importorskip('asdf', minversion='2.3.0.dev0') from asdf.tests import helpers def get_equivalencies(): """ Return a list of example equivalencies for testing serialization. """ return [eq.plate_scale(.3 * u.deg/u.mm), eq.pixel_scale(.5 * u.deg/u.pix), eq.pixel_scale(100. * u.pix/u.cm), eq.spectral_density(350 * u.nm, factor=2), eq.spectral_density(350 * u.nm), eq.spectral(), eq.brightness_temperature(500 * u.GHz), eq.brightness_temperature(500 * u.GHz, beam_area=23 * u.sr), eq.temperature_energy(), eq.temperature(), eq.thermodynamic_temperature(300 * u.Hz), eq.thermodynamic_temperature(140 * u.GHz, Planck15.Tcmb0), eq.beam_angular_area(3 * u.sr), eq.mass_energy(), eq.molar_mass_amu(), eq.doppler_relativistic(2 * u.m), eq.doppler_optical(2 * u.nm), eq.doppler_radio(2 * u.Hz), eq.parallax(), eq.logarithmic(), eq.dimensionless_angles(), eq.spectral() + eq.temperature(), (eq.spectral_density(35 * u.nm) + eq.brightness_temperature(5 * u.Hz, beam_area=2 * u.sr)), (eq.spectral() + eq.spectral_density(35 * u.nm) + eq.brightness_temperature(5 * u.Hz, beam_area=2 * u.sr)) ] @pytest.mark.parametrize('equiv', get_equivalencies()) def test_equivalencies(tmpdir, equiv): tree = {'equiv': equiv} helpers.assert_roundtrip_tree(tree, tmpdir)
9b9ea54edd341a82a81050085fad86aafab9619dad77b03db8ae3814bea1efec
# Licensed under a 3-clause BSD style license - see LICENSE.rst from io import StringIO from astropy.nddata import CCDData from astropy.table import Table def test_table_read_help_fits(): """ Test dynamically created documentation help via the I/O registry for 'fits'. """ out = StringIO() Table.read.help('fits', out) doc = out.getvalue() # Check a smattering of expected content assert "Table.read general documentation" not in doc assert "The available built-in formats" not in doc assert "Table.read(format='fits') documentation" in doc assert "hdu : int or str, optional" in doc def test_table_read_help_ascii(): """ Test dynamically created documentation help via the I/O registry for 'ascii'. """ out = StringIO() Table.read.help('ascii', out) doc = out.getvalue() # Check a smattering of expected content assert "Table.read general documentation" not in doc assert "The available built-in formats" not in doc assert "Table.read(format='ascii') documentation" in doc assert "delimiter : str" in doc assert "ASCII reader 'ascii' details" in doc assert "Character-delimited table with a single header line" in doc def test_table_write_help_hdf5(): """ Test dynamically created documentation help via the I/O registry for 'hdf5'. """ out = StringIO() Table.write.help('hdf5', out) doc = out.getvalue() # Check a smattering of expected content assert "Table.write general documentation" not in doc assert "The available built-in formats" not in doc assert "Table.write(format='hdf5') documentation" in doc assert "Write a Table object to an HDF5 file" in doc assert "compression : bool or str or int" in doc def test_list_formats(): """ Test getting list of available formats """ out = StringIO() CCDData.write.list_formats(out) output = out.getvalue() assert output == """\ Format Read Write Auto-identify ------ ---- ----- ------------- fits Yes Yes Yes""" def test_table_write_help_fits(): """ Test dynamically created documentation help via the I/O registry for 'fits'. """ out = StringIO() Table.write.help('fits', out) doc = out.getvalue() # Check a smattering of expected content assert "Table.write general documentation" not in doc assert "The available built-in formats" not in doc assert "Table.write(format='fits') documentation" in doc assert "Write a Table object to a FITS file" in doc def test_table_write_help_no_format(): """ Test dynamically created documentation help via the I/O registry for no format provided. """ out = StringIO() Table.write.help(out=out) doc = out.getvalue() # Check a smattering of expected content assert "Table.write general documentation" in doc assert "The available built-in formats" in doc def test_table_read_help_no_format(): """ Test dynamically created documentation help via the I/O registry for not format provided. """ out = StringIO() Table.read.help(out=out) doc = out.getvalue() # Check a smattering of expected content assert "Table.read general documentation" in doc assert "The available built-in formats" in doc def test_ccddata_write_help_fits(): """ Test dynamically created documentation help via the I/O registry for 'fits'. """ out = StringIO() CCDData.write.help('fits', out) doc = out.getvalue() # Check a smattering of expected content assert "CCDData.write(format='fits') documentation" in doc assert "Write CCDData object to FITS file" in doc assert "key_uncertainty_type : str, optional" in doc def test_ccddata_read_help_fits(): """Test dynamically created documentation help via the I/O registry for CCDData 'fits'. """ out = StringIO() CCDData.read.help('fits', out) doc = out.getvalue() # Check a smattering of expected content assert "CCDData.read(format='fits') documentation" in doc assert "Generate a CCDData object from a FITS file" in doc assert "hdu_uncertainty : str or None, optional" in doc def test_table_write_help_jsviewer(): """ Test dynamically created documentation help via the I/O registry for 'jsviewer'. """ out = StringIO() Table.write.help('jsviewer', out) doc = out.getvalue() # Check a smattering of expected content assert "Table.write general documentation" not in doc assert "The available built-in formats" not in doc assert "Table.write(format='jsviewer') documentation" in doc
dafc3ca1b30ff2af220cf46e8192642829119e8abde0959d393156529daab7e4
# -*- coding: utf-8 -*- # Licensed under a 3-clause BSD style license - see LICENSE.rst """ Test :mod:`astropy.io.registry`. .. todo:: Don't rely on Table for tests """ import contextlib import os from collections import Counter from copy import copy, deepcopy from io import StringIO import pytest import numpy as np import astropy.units as u from astropy.io import registry as io_registry from astropy.io.registry import (IORegistryError, UnifiedInputRegistry, UnifiedIORegistry, UnifiedOutputRegistry, compat) from astropy.io.registry.base import _UnifiedIORegistryBase from astropy.io.registry.compat import default_registry from astropy.table import Table ############################################################################### # pytest setup and fixtures class UnifiedIORegistryBaseSubClass(_UnifiedIORegistryBase): """Non-abstract subclass of UnifiedIORegistryBase for testing.""" def get_formats(self, data_class=None): return None class EmptyData: """ Thing that can read and write. Note that the read/write are the compatibility methods, which allow for the kwarg ``registry``. This allows us to not subclass ``EmptyData`` for each of the types of registry (read-only, ...) and use this class everywhere. """ read = classmethod(io_registry.read) write = io_registry.write class OtherEmptyData: """A different class with different I/O""" read = classmethod(io_registry.read) write = io_registry.write def empty_reader(*args, **kwargs): return EmptyData() def empty_writer(table, *args, **kwargs): return "status: success" def empty_identifier(*args, **kwargs): return True @pytest.fixture def fmtcls1(): return ("test1", EmptyData) @pytest.fixture def fmtcls2(): return ("test2", EmptyData) @pytest.fixture(params=["test1", "test2"]) def fmtcls(request): yield (request.param, EmptyData) @pytest.fixture def original(): ORIGINAL = {} ORIGINAL["readers"] = deepcopy(default_registry._readers) ORIGINAL["writers"] = deepcopy(default_registry._writers) ORIGINAL["identifiers"] = deepcopy(default_registry._identifiers) return ORIGINAL ############################################################################### def test_fmcls1_fmtcls2(fmtcls1, fmtcls2): """Just check a fact that we rely on in other tests.""" assert fmtcls1[1] is fmtcls2[1] def test_IORegistryError(): with pytest.raises(IORegistryError, match="just checking"): raise IORegistryError("just checking") class TestUnifiedIORegistryBase: """Test :class:`astropy.io.registry.UnifiedIORegistryBase`.""" def setup_class(self): """Setup class. This is called 1st by pytest.""" self._cls = UnifiedIORegistryBaseSubClass @pytest.fixture def registry(self): """I/O registry. Cleaned before and after each function.""" registry = self._cls() HAS_READERS = hasattr(registry, "_readers") HAS_WRITERS = hasattr(registry, "_writers") # copy and clear original registry ORIGINAL = {} ORIGINAL["identifiers"] = deepcopy(registry._identifiers) registry._identifiers.clear() if HAS_READERS: ORIGINAL["readers"] = deepcopy(registry._readers) registry._readers.clear() if HAS_WRITERS: ORIGINAL["writers"] = deepcopy(registry._writers) registry._writers.clear() yield registry registry._identifiers.clear() registry._identifiers.update(ORIGINAL["identifiers"]) if HAS_READERS: registry._readers.clear() registry._readers.update(ORIGINAL["readers"]) if HAS_WRITERS: registry._writers.clear() registry._writers.update(ORIGINAL["writers"]) # =========================================== def test_get_formats(self, registry): """Test ``registry.get_formats()``.""" # defaults assert registry.get_formats() is None # (kw)args don't matter assert registry.get_formats(data_class=24) is None def test_delay_doc_updates(self, registry, fmtcls1): """Test ``registry.delay_doc_updates()``.""" # TODO! figure out what can be tested with registry.delay_doc_updates(EmptyData): registry.register_identifier(*fmtcls1, empty_identifier) def test_register_identifier(self, registry, fmtcls1, fmtcls2): """Test ``registry.register_identifier()``.""" # initial check it's not registered assert fmtcls1 not in registry._identifiers assert fmtcls2 not in registry._identifiers # register registry.register_identifier(*fmtcls1, empty_identifier) registry.register_identifier(*fmtcls2, empty_identifier) assert fmtcls1 in registry._identifiers assert fmtcls2 in registry._identifiers def test_register_identifier_invalid(self, registry, fmtcls): """Test calling ``registry.register_identifier()`` twice.""" fmt, cls = fmtcls registry.register_identifier(fmt, cls, empty_identifier) with pytest.raises(IORegistryError) as exc: registry.register_identifier(fmt, cls, empty_identifier) assert ( str(exc.value) == f"Identifier for format '{fmt}' and class " f"'{cls.__name__}' is already defined" ) def test_register_identifier_force(self, registry, fmtcls1): registry.register_identifier(*fmtcls1, empty_identifier) registry.register_identifier(*fmtcls1, empty_identifier, force=True) assert fmtcls1 in registry._identifiers # ----------------------- def test_unregister_identifier(self, registry, fmtcls1): """Test ``registry.unregister_identifier()``.""" registry.register_identifier(*fmtcls1, empty_identifier) assert fmtcls1 in registry._identifiers registry.unregister_identifier(*fmtcls1) assert fmtcls1 not in registry._identifiers def test_unregister_identifier_invalid(self, registry, fmtcls): """Test ``registry.unregister_identifier()``.""" fmt, cls = fmtcls with pytest.raises(IORegistryError) as exc: registry.unregister_identifier(fmt, cls) assert ( str(exc.value) == f"No identifier defined for format '{fmt}' " f"and class '{cls.__name__}'" ) def test_identify_format(self, registry, fmtcls1): """Test ``registry.identify_format()``.""" fmt, cls = fmtcls1 args = (None, cls, None, None, (None,), {}) # test no formats to identify formats = registry.identify_format(*args) assert formats == [] # test there is a format to identify registry.register_identifier(fmt, cls, empty_identifier) formats = registry.identify_format(*args) assert fmt in formats # =========================================== # Compat tests def test_compat_register_identifier(self, registry, fmtcls1): # with registry specified assert fmtcls1 not in registry._identifiers compat.register_identifier(*fmtcls1, empty_identifier, registry=registry) assert fmtcls1 in registry._identifiers # without registry specified it becomes default_registry if registry is not default_registry: assert fmtcls1 not in default_registry._identifiers try: compat.register_identifier(*fmtcls1, empty_identifier) except Exception: pass else: assert fmtcls1 in default_registry._identifiers finally: default_registry._identifiers.pop(fmtcls1) def test_compat_unregister_identifier(self, registry, fmtcls1): # with registry specified registry.register_identifier(*fmtcls1, empty_identifier) assert fmtcls1 in registry._identifiers compat.unregister_identifier(*fmtcls1, registry=registry) assert fmtcls1 not in registry._identifiers # without registry specified it becomes default_registry if registry is not default_registry: assert fmtcls1 not in default_registry._identifiers default_registry.register_identifier(*fmtcls1, empty_identifier) assert fmtcls1 in default_registry._identifiers compat.unregister_identifier(*fmtcls1) assert fmtcls1 not in registry._identifiers def test_compat_identify_format(self, registry, fmtcls1): fmt, cls = fmtcls1 args = (None, cls, None, None, (None,), dict()) # with registry specified registry.register_identifier(*fmtcls1, empty_identifier) formats = compat.identify_format(*args, registry=registry) assert fmt in formats # without registry specified it becomes default_registry if registry is not default_registry: try: default_registry.register_identifier(*fmtcls1, empty_identifier) except Exception: pass else: formats = compat.identify_format(*args) assert fmt in formats finally: default_registry.unregister_identifier(*fmtcls1) @pytest.mark.skip("TODO!") def test_compat_get_formats(self, registry, fmtcls1): assert False @pytest.mark.skip("TODO!") def test_compat_delay_doc_updates(self, registry, fmtcls1): assert False class TestUnifiedInputRegistry(TestUnifiedIORegistryBase): """Test :class:`astropy.io.registry.UnifiedInputRegistry`.""" def setup_class(self): """Setup class. This is called 1st by pytest.""" self._cls = UnifiedInputRegistry # =========================================== def test_inherited_read_registration(self, registry): # check that multi-generation inheritance works properly, # meaning that a child inherits from parents before # grandparents, see astropy/astropy#7156 class Child1(EmptyData): pass class Child2(Child1): pass def _read(): return EmptyData() def _read1(): return Child1() # check that reader gets inherited registry.register_reader("test", EmptyData, _read) assert registry.get_reader("test", Child2) is _read # check that nearest ancestor is identified # (i.e. that the reader for Child2 is the registered method # for Child1, and not Table) registry.register_reader("test", Child1, _read1) assert registry.get_reader("test", Child2) is _read1 # =========================================== @pytest.mark.skip("TODO!") def test_get_formats(self, registry): """Test ``registry.get_formats()``.""" assert False def test_delay_doc_updates(self, registry, fmtcls1): """Test ``registry.delay_doc_updates()``.""" super().test_delay_doc_updates(registry, fmtcls1) with registry.delay_doc_updates(EmptyData): registry.register_reader("test", EmptyData, empty_reader) # test that the doc has not yet been updated. # if a the format was registered in a different way, then # test that this method is not present. if "Format" in EmptyData.read.__doc__: docs = EmptyData.read.__doc__.split("\n") ihd = [i for i, s in enumerate(docs) if ("Format" in s)][0] ifmt = docs[ihd].index("Format") + 1 iread = docs[ihd].index("Read") + 1 # there might not actually be anything here, which is also good if docs[-2] != docs[-1]: assert docs[-1][ifmt : ifmt + 5] == "test" assert docs[-1][iread : iread + 3] != "Yes" # now test it's updated docs = EmptyData.read.__doc__.split("\n") ifmt = docs[ihd].index("Format") + 2 iread = docs[ihd].index("Read") + 1 assert docs[-2][ifmt : ifmt + 4] == "test" assert docs[-2][iread : iread + 3] == "Yes" def test_identify_read_format(self, registry): """Test ``registry.identify_format()``.""" args = ("read", EmptyData, None, None, (None,), dict()) # test there is no format to identify formats = registry.identify_format(*args) assert formats == [] # test there is a format to identify # doesn't actually matter if register a reader, it returns True for all registry.register_identifier("test", EmptyData, empty_identifier) formats = registry.identify_format(*args) assert "test" in formats # ----------------------- def test_register_reader(self, registry, fmtcls1, fmtcls2): """Test ``registry.register_reader()``.""" # initial check it's not registered assert fmtcls1 not in registry._readers assert fmtcls2 not in registry._readers # register registry.register_reader(*fmtcls1, empty_reader) registry.register_reader(*fmtcls2, empty_reader) assert fmtcls1 in registry._readers assert fmtcls2 in registry._readers assert registry._readers[fmtcls1] == (empty_reader, 0) # (f, priority) assert registry._readers[fmtcls2] == (empty_reader, 0) # (f, priority) def test_register_reader_invalid(self, registry, fmtcls1): fmt, cls = fmtcls1 registry.register_reader(fmt, cls, empty_reader) with pytest.raises(IORegistryError) as exc: registry.register_reader(fmt, cls, empty_reader) assert ( str(exc.value) == f"Reader for format '{fmt}' and class " f"'{cls.__name__}' is already defined" ) def test_register_reader_force(self, registry, fmtcls1): registry.register_reader(*fmtcls1, empty_reader) registry.register_reader(*fmtcls1, empty_reader, force=True) assert fmtcls1 in registry._readers def test_register_readers_with_same_name_on_different_classes(self, registry): # No errors should be generated if the same name is registered for # different objects...but this failed under python3 registry.register_reader("test", EmptyData, lambda: EmptyData()) registry.register_reader("test", OtherEmptyData, lambda: OtherEmptyData()) t = EmptyData.read(format="test", registry=registry) assert isinstance(t, EmptyData) tbl = OtherEmptyData.read(format="test", registry=registry) assert isinstance(tbl, OtherEmptyData) # ----------------------- def test_unregister_reader(self, registry, fmtcls1): """Test ``registry.unregister_reader()``.""" registry.register_reader(*fmtcls1, empty_reader) assert fmtcls1 in registry._readers registry.unregister_reader(*fmtcls1) assert fmtcls1 not in registry._readers def test_unregister_reader_invalid(self, registry, fmtcls1): fmt, cls = fmtcls1 with pytest.raises(IORegistryError) as exc: registry.unregister_reader(*fmtcls1) assert ( str(exc.value) == f"No reader defined for format '{fmt}' and " f"class '{cls.__name__}'" ) # ----------------------- def test_get_reader(self, registry, fmtcls): """Test ``registry.get_reader()``.""" fmt, cls = fmtcls with pytest.raises(IORegistryError): registry.get_reader(fmt, cls) registry.register_reader(fmt, cls, empty_reader) reader = registry.get_reader(fmt, cls) assert reader is empty_reader def test_get_reader_invalid(self, registry, fmtcls): fmt, cls = fmtcls with pytest.raises(IORegistryError) as exc: registry.get_reader(fmt, cls) assert str(exc.value).startswith( f"No reader defined for format '{fmt}' and class '{cls.__name__}'" ) # ----------------------- def test_read_noformat(self, registry, fmtcls1): """Test ``registry.read()`` when there isn't a reader.""" with pytest.raises(IORegistryError) as exc: fmtcls1[1].read(registry=registry) assert str(exc.value).startswith( "Format could not be identified based" " on the file name or contents, " "please provide a 'format' argument." ) def test_read_noformat_arbitrary(self, registry, original, fmtcls1): """Test that all identifier functions can accept arbitrary input""" registry._identifiers.update(original["identifiers"]) with pytest.raises(IORegistryError) as exc: fmtcls1[1].read(object(), registry=registry) assert str(exc.value).startswith( "Format could not be identified based" " on the file name or contents, " "please provide a 'format' argument." ) def test_read_noformat_arbitrary_file(self, tmpdir, registry, original): """Tests that all identifier functions can accept arbitrary files""" registry._readers.update(original["readers"]) testfile = str(tmpdir.join("foo.example")) with open(testfile, "w") as f: f.write("Hello world") with pytest.raises(IORegistryError) as exc: Table.read(testfile) assert str(exc.value).startswith( "Format could not be identified based" " on the file name or contents, " "please provide a 'format' argument." ) def test_read_toomanyformats(self, registry, fmtcls1, fmtcls2): fmt1, cls = fmtcls1 fmt2, _ = fmtcls2 registry.register_identifier(fmt1, cls, lambda o, *x, **y: True) registry.register_identifier(fmt2, cls, lambda o, *x, **y: True) with pytest.raises(IORegistryError) as exc: cls.read(registry=registry) assert str(exc.value) == (f"Format is ambiguous - options are: {fmt1}, {fmt2}") def test_read_uses_priority(self, registry, fmtcls1, fmtcls2): fmt1, cls = fmtcls1 fmt2, _ = fmtcls2 counter = Counter() def counting_reader1(*args, **kwargs): counter[fmt1] += 1 return cls() def counting_reader2(*args, **kwargs): counter[fmt2] += 1 return cls() registry.register_reader(fmt1, cls, counting_reader1, priority=1) registry.register_reader(fmt2, cls, counting_reader2, priority=2) registry.register_identifier(fmt1, cls, lambda o, *x, **y: True) registry.register_identifier(fmt2, cls, lambda o, *x, **y: True) cls.read(registry=registry) assert counter[fmt2] == 1 assert counter[fmt1] == 0 def test_read_format_noreader(self, registry, fmtcls1): fmt, cls = fmtcls1 with pytest.raises(IORegistryError) as exc: cls.read(format=fmt, registry=registry) assert str(exc.value).startswith( f"No reader defined for format '{fmt}' and class '{cls.__name__}'" ) def test_read_identifier(self, tmpdir, registry, fmtcls1, fmtcls2): fmt1, cls = fmtcls1 fmt2, _ = fmtcls2 registry.register_identifier( fmt1, cls, lambda o, path, fileobj, *x, **y: path.endswith("a") ) registry.register_identifier( fmt2, cls, lambda o, path, fileobj, *x, **y: path.endswith("b") ) # Now check that we got past the identifier and are trying to get # the reader. The registry.get_reader will fail but the error message # will tell us if the identifier worked. filename = tmpdir.join("testfile.a").strpath open(filename, "w").close() with pytest.raises(IORegistryError) as exc: cls.read(filename, registry=registry) assert str(exc.value).startswith( f"No reader defined for format '{fmt1}' and class '{cls.__name__}'" ) filename = tmpdir.join("testfile.b").strpath open(filename, "w").close() with pytest.raises(IORegistryError) as exc: cls.read(filename, registry=registry) assert str(exc.value).startswith( f"No reader defined for format '{fmt2}' and class '{cls.__name__}'" ) def test_read_valid_return(self, registry, fmtcls): fmt, cls = fmtcls registry.register_reader(fmt, cls, empty_reader) t = cls.read(format=fmt, registry=registry) assert isinstance(t, cls) def test_read_non_existing_unknown_ext(self, fmtcls1): """Raise the correct error when attempting to read a non-existing file with an unknown extension.""" with pytest.raises(OSError): data = fmtcls1[1].read("non-existing-file-with-unknown.ext") def test_read_directory(self, tmpdir, registry, fmtcls1): """ Regression test for a bug that caused the I/O registry infrastructure to not work correctly for datasets that are represented by folders as opposed to files, when using the descriptors to add read/write methods. """ _, cls = fmtcls1 registry.register_identifier( "test_folder_format", cls, lambda o, *x, **y: o == "read" ) registry.register_reader("test_folder_format", cls, empty_reader) filename = tmpdir.mkdir("folder_dataset").strpath # With the format explicitly specified dataset = cls.read(filename, format="test_folder_format", registry=registry) assert isinstance(dataset, cls) # With the auto-format identification dataset = cls.read(filename, registry=registry) assert isinstance(dataset, cls) # =========================================== # Compat tests def test_compat_register_reader(self, registry, fmtcls1): # with registry specified assert fmtcls1 not in registry._readers compat.register_reader(*fmtcls1, empty_reader, registry=registry) assert fmtcls1 in registry._readers # without registry specified it becomes default_registry if registry is not default_registry: assert fmtcls1 not in default_registry._readers try: compat.register_reader(*fmtcls1, empty_identifier) except Exception: pass else: assert fmtcls1 in default_registry._readers finally: default_registry._readers.pop(fmtcls1) def test_compat_unregister_reader(self, registry, fmtcls1): # with registry specified registry.register_reader(*fmtcls1, empty_reader) assert fmtcls1 in registry._readers compat.unregister_reader(*fmtcls1, registry=registry) assert fmtcls1 not in registry._readers # without registry specified it becomes default_registry if registry is not default_registry: assert fmtcls1 not in default_registry._readers default_registry.register_reader(*fmtcls1, empty_reader) assert fmtcls1 in default_registry._readers compat.unregister_reader(*fmtcls1) assert fmtcls1 not in registry._readers def test_compat_get_reader(self, registry, fmtcls1): # with registry specified registry.register_reader(*fmtcls1, empty_reader) reader = compat.get_reader(*fmtcls1, registry=registry) assert reader is empty_reader registry.unregister_reader(*fmtcls1) # without registry specified it becomes default_registry if registry is not default_registry: default_registry.register_reader(*fmtcls1, empty_reader) reader = compat.get_reader(*fmtcls1) assert reader is empty_reader default_registry.unregister_reader(*fmtcls1) def test_compat_read(self, registry, fmtcls1): fmt, cls = fmtcls1 # with registry specified registry.register_reader(*fmtcls1, empty_reader) t = compat.read(cls, format=fmt, registry=registry) assert isinstance(t, cls) registry.unregister_reader(*fmtcls1) # without registry specified it becomes default_registry if registry is not default_registry: default_registry.register_reader(*fmtcls1, empty_reader) t = compat.read(cls, format=fmt) assert isinstance(t, cls) default_registry.unregister_reader(*fmtcls1) class TestUnifiedOutputRegistry(TestUnifiedIORegistryBase): """Test :class:`astropy.io.registry.UnifiedOutputRegistry`.""" def setup_class(self): """Setup class. This is called 1st by pytest.""" self._cls = UnifiedOutputRegistry # =========================================== def test_inherited_write_registration(self, registry): # check that multi-generation inheritance works properly, # meaning that a child inherits from parents before # grandparents, see astropy/astropy#7156 class Child1(EmptyData): pass class Child2(Child1): pass def _write(): return EmptyData() def _write1(): return Child1() # check that writer gets inherited registry.register_writer("test", EmptyData, _write) assert registry.get_writer("test", Child2) is _write # check that nearest ancestor is identified # (i.e. that the writer for Child2 is the registered method # for Child1, and not Table) registry.register_writer("test", Child1, _write1) assert registry.get_writer("test", Child2) is _write1 # =========================================== def test_delay_doc_updates(self, registry, fmtcls1): """Test ``registry.delay_doc_updates()``.""" super().test_delay_doc_updates(registry, fmtcls1) fmt, cls = fmtcls1 with registry.delay_doc_updates(EmptyData): registry.register_writer(*fmtcls1, empty_writer) # test that the doc has not yet been updated. # if a the format was registered in a different way, then # test that this method is not present. if "Format" in EmptyData.read.__doc__: docs = EmptyData.write.__doc__.split("\n") ihd = [i for i, s in enumerate(docs) if ("Format" in s)][0] ifmt = docs[ihd].index("Format") iwrite = docs[ihd].index("Write") + 1 # there might not actually be anything here, which is also good if docs[-2] != docs[-1]: assert fmt in docs[-1][ifmt : ifmt + len(fmt) + 1] assert docs[-1][iwrite : iwrite + 3] != "Yes" # now test it's updated docs = EmptyData.write.__doc__.split("\n") ifmt = docs[ihd].index("Format") + 1 iwrite = docs[ihd].index("Write") + 2 assert fmt in docs[-2][ifmt : ifmt + len(fmt) + 1] assert docs[-2][iwrite : iwrite + 3] == "Yes" @pytest.mark.skip("TODO!") def test_get_formats(self, registry): """Test ``registry.get_formats()``.""" assert False def test_identify_write_format(self, registry, fmtcls1): """Test ``registry.identify_format()``.""" fmt, cls = fmtcls1 args = ("write", cls, None, None, (None,), {}) # test there is no format to identify formats = registry.identify_format(*args) assert formats == [] # test there is a format to identify # doesn't actually matter if register a writer, it returns True for all registry.register_identifier(fmt, cls, empty_identifier) formats = registry.identify_format(*args) assert fmt in formats # ----------------------- def test_register_writer(self, registry, fmtcls1, fmtcls2): """Test ``registry.register_writer()``.""" # initial check it's not registered assert fmtcls1 not in registry._writers assert fmtcls2 not in registry._writers # register registry.register_writer(*fmtcls1, empty_writer) registry.register_writer(*fmtcls2, empty_writer) assert fmtcls1 in registry._writers assert fmtcls2 in registry._writers def test_register_writer_invalid(self, registry, fmtcls): """Test calling ``registry.register_writer()`` twice.""" fmt, cls = fmtcls registry.register_writer(fmt, cls, empty_writer) with pytest.raises(IORegistryError) as exc: registry.register_writer(fmt, cls, empty_writer) assert ( str(exc.value) == f"Writer for format '{fmt}' and class " f"'{cls.__name__}' is already defined" ) def test_register_writer_force(self, registry, fmtcls1): registry.register_writer(*fmtcls1, empty_writer) registry.register_writer(*fmtcls1, empty_writer, force=True) assert fmtcls1 in registry._writers # ----------------------- def test_unregister_writer(self, registry, fmtcls1): """Test ``registry.unregister_writer()``.""" registry.register_writer(*fmtcls1, empty_writer) assert fmtcls1 in registry._writers registry.unregister_writer(*fmtcls1) assert fmtcls1 not in registry._writers def test_unregister_writer_invalid(self, registry, fmtcls): """Test ``registry.unregister_writer()``.""" fmt, cls = fmtcls with pytest.raises(IORegistryError) as exc: registry.unregister_writer(fmt, cls) assert ( str(exc.value) == f"No writer defined for format '{fmt}' " f"and class '{cls.__name__}'" ) # ----------------------- def test_get_writer(self, registry, fmtcls1): """Test ``registry.get_writer()``.""" with pytest.raises(IORegistryError): registry.get_writer(*fmtcls1) registry.register_writer(*fmtcls1, empty_writer) writer = registry.get_writer(*fmtcls1) assert writer is empty_writer def test_get_writer_invalid(self, registry, fmtcls1): """Test invalid ``registry.get_writer()``.""" fmt, cls = fmtcls1 with pytest.raises(IORegistryError) as exc: registry.get_writer(fmt, cls) assert str(exc.value).startswith( f"No writer defined for format '{fmt}' and class '{cls.__name__}'" ) # ----------------------- def test_write_noformat(self, registry, fmtcls1): """Test ``registry.write()`` when there isn't a writer.""" with pytest.raises(IORegistryError) as exc: fmtcls1[1]().write(registry=registry) assert str(exc.value).startswith( "Format could not be identified based" " on the file name or contents, " "please provide a 'format' argument." ) def test_write_noformat_arbitrary(self, registry, original, fmtcls1): """Test that all identifier functions can accept arbitrary input""" registry._identifiers.update(original["identifiers"]) with pytest.raises(IORegistryError) as exc: fmtcls1[1]().write(object(), registry=registry) assert str(exc.value).startswith( "Format could not be identified based" " on the file name or contents, " "please provide a 'format' argument." ) def test_write_noformat_arbitrary_file(self, tmpdir, registry, original): """Tests that all identifier functions can accept arbitrary files""" registry._writers.update(original["writers"]) testfile = str(tmpdir.join("foo.example")) with pytest.raises(IORegistryError) as exc: Table().write(testfile, registry=registry) assert str(exc.value).startswith( "Format could not be identified based" " on the file name or contents, " "please provide a 'format' argument." ) def test_write_toomanyformats(self, registry, fmtcls1, fmtcls2): registry.register_identifier(*fmtcls1, lambda o, *x, **y: True) registry.register_identifier(*fmtcls2, lambda o, *x, **y: True) with pytest.raises(IORegistryError) as exc: fmtcls1[1]().write(registry=registry) assert str(exc.value) == ( f"Format is ambiguous - options are: {fmtcls1[0]}, {fmtcls2[0]}" ) def test_write_uses_priority(self, registry, fmtcls1, fmtcls2): fmt1, cls1 = fmtcls1 fmt2, cls2 = fmtcls2 counter = Counter() def counting_writer1(*args, **kwargs): counter[fmt1] += 1 def counting_writer2(*args, **kwargs): counter[fmt2] += 1 registry.register_writer(fmt1, cls1, counting_writer1, priority=1) registry.register_writer(fmt2, cls2, counting_writer2, priority=2) registry.register_identifier(fmt1, cls1, lambda o, *x, **y: True) registry.register_identifier(fmt2, cls2, lambda o, *x, **y: True) cls1().write(registry=registry) assert counter[fmt2] == 1 assert counter[fmt1] == 0 def test_write_format_nowriter(self, registry, fmtcls1): fmt, cls = fmtcls1 with pytest.raises(IORegistryError) as exc: cls().write(format=fmt, registry=registry) assert str(exc.value).startswith( f"No writer defined for format '{fmt}' and class '{cls.__name__}'" ) def test_write_identifier(self, registry, fmtcls1, fmtcls2): fmt1, cls = fmtcls1 fmt2, _ = fmtcls2 registry.register_identifier(fmt1, cls, lambda o, *x, **y: x[0].startswith("a")) registry.register_identifier(fmt2, cls, lambda o, *x, **y: x[0].startswith("b")) # Now check that we got past the identifier and are trying to get # the reader. The registry.get_writer will fail but the error message # will tell us if the identifier worked. with pytest.raises(IORegistryError) as exc: cls().write("abc", registry=registry) assert str(exc.value).startswith( f"No writer defined for format '{fmt1}' and class '{cls.__name__}'" ) with pytest.raises(IORegistryError) as exc: cls().write("bac", registry=registry) assert str(exc.value).startswith( f"No writer defined for format '{fmt2}' and class '{cls.__name__}'" ) def test_write_return(self, registry, fmtcls1): """Most writers will return None, but other values are not forbidden.""" fmt, cls = fmtcls1 registry.register_writer(fmt, cls, empty_writer) res = cls.write(cls(), format=fmt, registry=registry) assert res == "status: success" # =========================================== # Compat tests def test_compat_register_writer(self, registry, fmtcls1): # with registry specified assert fmtcls1 not in registry._writers compat.register_writer(*fmtcls1, empty_writer, registry=registry) assert fmtcls1 in registry._writers registry.unregister_writer(*fmtcls1) # without registry specified it becomes default_registry if registry is not default_registry: assert fmtcls1 not in default_registry._writers try: compat.register_writer(*fmtcls1, empty_writer) except Exception: pass else: assert fmtcls1 in default_registry._writers finally: default_registry._writers.pop(fmtcls1) def test_compat_unregister_writer(self, registry, fmtcls1): # with registry specified registry.register_writer(*fmtcls1, empty_writer) assert fmtcls1 in registry._writers compat.unregister_writer(*fmtcls1, registry=registry) assert fmtcls1 not in registry._writers # without registry specified it becomes default_registry if registry is not default_registry: assert fmtcls1 not in default_registry._writers default_registry.register_writer(*fmtcls1, empty_writer) assert fmtcls1 in default_registry._writers compat.unregister_writer(*fmtcls1) assert fmtcls1 not in default_registry._writers def test_compat_get_writer(self, registry, fmtcls1): # with registry specified registry.register_writer(*fmtcls1, empty_writer) writer = compat.get_writer(*fmtcls1, registry=registry) assert writer is empty_writer # without registry specified it becomes default_registry if registry is not default_registry: assert fmtcls1 not in default_registry._writers default_registry.register_writer(*fmtcls1, empty_writer) assert fmtcls1 in default_registry._writers writer = compat.get_writer(*fmtcls1) assert writer is empty_writer default_registry.unregister_writer(*fmtcls1) assert fmtcls1 not in default_registry._writers def test_compat_write(self, registry, fmtcls1): fmt, cls = fmtcls1 # with registry specified registry.register_writer(*fmtcls1, empty_writer) res = compat.write(cls(), format=fmt, registry=registry) assert res == "status: success" # without registry specified it becomes default_registry if registry is not default_registry: assert fmtcls1 not in default_registry._writers default_registry.register_writer(*fmtcls1, empty_writer) assert fmtcls1 in default_registry._writers res = compat.write(cls(), format=fmt) assert res == "status: success" default_registry.unregister_writer(*fmtcls1) assert fmtcls1 not in default_registry._writers class TestUnifiedIORegistry(TestUnifiedInputRegistry, TestUnifiedOutputRegistry): def setup_class(self): """Setup class. This is called 1st by pytest.""" self._cls = UnifiedIORegistry # =========================================== @pytest.mark.skip("TODO!") def test_get_formats(self, registry): """Test ``registry.get_formats()``.""" assert False def test_delay_doc_updates(self, registry, fmtcls1): """Test ``registry.delay_doc_updates()``.""" super().test_delay_doc_updates(registry, fmtcls1) # ----------------------- def test_identifier_origin(self, registry, fmtcls1, fmtcls2): fmt1, cls = fmtcls1 fmt2, _ = fmtcls2 registry.register_identifier(fmt1, cls, lambda o, *x, **y: o == "read") registry.register_identifier(fmt2, cls, lambda o, *x, **y: o == "write") registry.register_reader(fmt1, cls, empty_reader) registry.register_writer(fmt2, cls, empty_writer) # There should not be too many formats defined cls.read(registry=registry) cls().write(registry=registry) with pytest.raises(IORegistryError) as exc: cls.read(format=fmt2, registry=registry) assert str(exc.value).startswith( f"No reader defined for format '{fmt2}' and class '{cls.__name__}'" ) with pytest.raises(IORegistryError) as exc: cls().write(format=fmt1, registry=registry) assert str(exc.value).startswith( f"No writer defined for format '{fmt1}' and class '{cls.__name__}'" ) class TestDefaultRegistry(TestUnifiedIORegistry): def setup_class(self): """Setup class. This is called 1st by pytest.""" self._cls = lambda *args: default_registry # ============================================================================= # Test compat # much of this is already tested above since EmptyData uses io_registry.X(), # which are the compat methods. def test_dir(): """Test all the compat methods are in the directory""" dc = dir(compat) for n in compat.__all__: assert n in dc def test_getattr(): for n in compat.__all__: assert hasattr(compat, n) with pytest.raises(AttributeError, match="module 'astropy.io.registry.compat'"): compat.this_is_definitely_not_in_this_module # ============================================================================= # Table tests def test_read_basic_table(): registry = Table.read._registry data = np.array( list(zip([1, 2, 3], ["a", "b", "c"])), dtype=[("A", int), ("B", "|U1")] ) try: registry.register_reader("test", Table, lambda x: Table(x)) except Exception: pass else: t = Table.read(data, format="test") assert t.keys() == ["A", "B"] for i in range(3): assert t["A"][i] == data["A"][i] assert t["B"][i] == data["B"][i] finally: registry._readers.pop("test", None) class TestSubclass: """ Test using registry with a Table sub-class """ @pytest.fixture(autouse=True) def registry(self): """I/O registry. Not cleaned.""" yield def test_read_table_subclass(self): class MyTable(Table): pass data = ["a b", "1 2"] mt = MyTable.read(data, format="ascii") t = Table.read(data, format="ascii") assert np.all(mt == t) assert mt.colnames == t.colnames assert type(mt) is MyTable def test_write_table_subclass(self): buffer = StringIO() class MyTable(Table): pass mt = MyTable([[1], [2]], names=["a", "b"]) mt.write(buffer, format="ascii") assert buffer.getvalue() == os.linesep.join(["a b", "1 2", ""]) def test_read_table_subclass_with_columns_attributes(self, tmpdir): """Regression test for https://github.com/astropy/astropy/issues/7181""" class MTable(Table): pass mt = MTable([[1, 2.5]], names=["a"]) mt["a"].unit = u.m mt["a"].format = ".4f" mt["a"].description = "hello" testfile = str(tmpdir.join("junk.fits")) mt.write(testfile, overwrite=True) t = MTable.read(testfile) assert np.all(mt == t) assert mt.colnames == t.colnames assert type(t) is MTable assert t["a"].unit == u.m assert t["a"].format == "{:13.4f}" assert t["a"].description == "hello"
dbd2d6fd1ad4f4d05161f42aa1cbcc0c47e733bd9b49355605a7bfbf4757f015
# Licensed under a 3-clause BSD style license - see LICENSE.rst import pytest # LOCAL from astropy.io.votable import converters, exceptions, tree def test_reraise(): def fail(): raise RuntimeError("This failed") try: try: fail() except RuntimeError as e: exceptions.vo_reraise(e, additional="From here") except RuntimeError as e: assert "From here" in str(e) else: assert False def test_parse_vowarning(): config = {'verify': 'exception', 'filename': 'foo.xml'} pos = (42, 64) with pytest.warns(exceptions.W47) as w: field = tree.Field( None, name='c', datatype='char', config=config, pos=pos) converters.get_converter(field, config=config, pos=pos) parts = exceptions.parse_vowarning(str(w[0].message)) match = { 'number': 47, 'is_exception': False, 'nchar': 64, 'warning': 'W47', 'is_something': True, 'message': 'Missing arraysize indicates length 1', 'doc_url': 'io/votable/api_exceptions.html#w47', 'nline': 42, 'is_warning': True } assert parts == match def test_suppress_warnings(): cfg = {} warn = exceptions.W01('foo') with exceptions.conf.set_temp('max_warnings', 2): with pytest.warns(exceptions.W01) as record: exceptions._suppressed_warning(warn, cfg) assert len(record) == 1 assert 'suppressing' not in str(record[0].message) with pytest.warns(exceptions.W01, match='suppressing'): exceptions._suppressed_warning(warn, cfg) exceptions._suppressed_warning(warn, cfg) assert cfg['_warning_counts'][exceptions.W01] == 3 assert exceptions.conf.max_warnings == 10
64cbcc0db6659d7659fdf8870c2c00053458780505985b52b64daf33e16e6aca
# Licensed under a 3-clause BSD style license - see LICENSE.rst """ A set of tests for the util.py module """ import pytest from astropy.io.votable import util def test_range_list(): assert util.coerce_range_list_param((5,)) == ("5.0", 1) def test_range_list2(): assert util.coerce_range_list_param((5e-7, 8e-7)) == ("5e-07,8e-07", 2) def test_range_list3(): assert util.coerce_range_list_param((5e-7, 8e-7, "FOO")) == ( "5e-07,8e-07;FOO", 3) def test_range_list4a(): with pytest.raises(ValueError): util.coerce_range_list_param( (5e-7, (None, 8e-7), (4, None), (4, 5), "J", "FOO")) def test_range_list4(): assert (util.coerce_range_list_param( (5e-7, (None, 8e-7), (4, None), (4, 5), "J", "FOO"), numeric=False) == ("5e-07,/8e-07,4/,4/5,J;FOO", 6)) def test_range_list5(): with pytest.raises(ValueError): util.coerce_range_list_param(('FOO', )) def test_range_list6(): with pytest.raises(ValueError): print(util.coerce_range_list_param((5, 'FOO'), util.stc_reference_frames)) def test_range_list7(): assert util.coerce_range_list_param(("J",), numeric=False) == ("J", 1) def test_range_list8(): for s in ["5.0", "5e-07,8e-07", "5e-07,8e-07;FOO", "5e-07,/8e-07,4.0/,4.0/5.0;FOO", "J"]: assert util.coerce_range_list_param(s, numeric=False)[0] == s def test_range_list9a(): with pytest.raises(ValueError): util.coerce_range_list_param("52,-27.8;FOO", util.stc_reference_frames) def test_range_list9(): assert util.coerce_range_list_param( "52,-27.8;GALACTIC", util.stc_reference_frames)
67107f67631a6e3ec82d177e1d0425399293c4d71abb0d57369ff375920814cc
# Licensed under a 3-clause BSD style license - see LICENSE.rst # LOCAL from astropy.io.votable import parse from astropy.utils.data import get_pkg_data_filename def test_resource_groups(): # Read the VOTABLE votable = parse(get_pkg_data_filename('data/resource_groups.xml')) resource = votable.resources[0] groups = resource.groups params = resource.params # Test that params inside groups are not outside assert len(groups[0].entries) == 1 assert groups[0].entries[0].name == "ID" assert len(params) == 2 assert params[0].name == "standardID" assert params[1].name == "accessURL"
f171841265060dc910253b4536655783b18836ae7bd4b80de0e2e96b57bf2cec
# -*- coding: utf-8 -*- # Licensed under a 3-clause BSD style license - see LICENSE.rst """ This is a set of regression tests for vo. """ # STDLIB import difflib import io import pathlib import sys import gzip from unittest import mock # THIRD-PARTY import pytest import numpy as np from numpy.testing import assert_array_equal # LOCAL from astropy.io.votable.table import parse, parse_single_table, validate from astropy.io.votable import tree from astropy.io.votable.exceptions import VOTableSpecError, VOWarning, W39 from astropy.io.votable.xmlutil import validate_schema from astropy.utils.data import get_pkg_data_filename, get_pkg_data_filenames # Determine the kind of float formatting in this build of Python if hasattr(sys, 'float_repr_style'): legacy_float_repr = (sys.float_repr_style == 'legacy') else: legacy_float_repr = sys.platform.startswith('win') def assert_validate_schema(filename, version): if sys.platform.startswith('win'): return try: rc, stdout, stderr = validate_schema(filename, version) except OSError: # If xmllint is not installed, we want the test to pass anyway return assert rc == 0, 'File did not validate against VOTable schema' def test_parse_single_table(): table = parse_single_table(get_pkg_data_filename('data/regression.xml')) assert isinstance(table, tree.Table) assert len(table.array) == 5 def test_parse_single_table2(): table2 = parse_single_table(get_pkg_data_filename('data/regression.xml'), table_number=1) assert isinstance(table2, tree.Table) assert len(table2.array) == 1 assert len(table2.array.dtype.names) == 28 def test_parse_single_table3(): with pytest.raises(IndexError): parse_single_table(get_pkg_data_filename('data/regression.xml'), table_number=3) def _test_regression(tmpdir, _python_based=False, binary_mode=1): # Read the VOTABLE votable = parse(get_pkg_data_filename('data/regression.xml'), _debug_python_based_parser=_python_based) table = votable.get_first_table() dtypes = [ (('string test', 'string_test'), '|O8'), (('fixed string test', 'string_test_2'), '<U10'), ('unicode_test', '|O8'), (('unicode test', 'fixed_unicode_test'), '<U10'), (('string array test', 'string_array_test'), '<U4'), ('unsignedByte', '|u1'), ('short', '<i2'), ('int', '<i4'), ('long', '<i8'), ('double', '<f8'), ('float', '<f4'), ('array', '|O8'), ('bit', '|b1'), ('bitarray', '|b1', (3, 2)), ('bitvararray', '|O8'), ('bitvararray2', '|O8'), ('floatComplex', '<c8'), ('doubleComplex', '<c16'), ('doubleComplexArray', '|O8'), ('doubleComplexArrayFixed', '<c16', (2,)), ('boolean', '|b1'), ('booleanArray', '|b1', (4,)), ('nulls', '<i4'), ('nulls_array', '<i4', (2, 2)), ('precision1', '<f8'), ('precision2', '<f8'), ('doublearray', '|O8'), ('bitarray2', '|b1', (16,)) ] if sys.byteorder == 'big': new_dtypes = [] for dtype in dtypes: dtype = list(dtype) dtype[1] = dtype[1].replace('<', '>') new_dtypes.append(tuple(dtype)) dtypes = new_dtypes assert table.array.dtype == dtypes votable.to_xml(str(tmpdir.join("regression.tabledata.xml")), _debug_python_based_parser=_python_based) assert_validate_schema(str(tmpdir.join("regression.tabledata.xml")), votable.version) if binary_mode == 1: votable.get_first_table().format = 'binary' votable.version = '1.1' elif binary_mode == 2: votable.get_first_table()._config['version_1_3_or_later'] = True votable.get_first_table().format = 'binary2' votable.version = '1.3' # Also try passing a file handle with open(str(tmpdir.join("regression.binary.xml")), "wb") as fd: votable.to_xml(fd, _debug_python_based_parser=_python_based) assert_validate_schema(str(tmpdir.join("regression.binary.xml")), votable.version) # Also try passing a file handle with open(str(tmpdir.join("regression.binary.xml")), "rb") as fd: votable2 = parse(fd, _debug_python_based_parser=_python_based) votable2.get_first_table().format = 'tabledata' votable2.to_xml(str(tmpdir.join("regression.bin.tabledata.xml")), _astropy_version="testing", _debug_python_based_parser=_python_based) assert_validate_schema(str(tmpdir.join("regression.bin.tabledata.xml")), votable.version) with open( get_pkg_data_filename( f'data/regression.bin.tabledata.truth.{votable.version}.xml'), 'rt', encoding='utf-8') as fd: truth = fd.readlines() with open(str(tmpdir.join("regression.bin.tabledata.xml")), 'rt', encoding='utf-8') as fd: output = fd.readlines() # If the lines happen to be different, print a diff # This is convenient for debugging sys.stdout.writelines( difflib.unified_diff(truth, output, fromfile='truth', tofile='output')) assert truth == output # Test implicit gzip saving votable2.to_xml( str(tmpdir.join("regression.bin.tabledata.xml.gz")), _astropy_version="testing", _debug_python_based_parser=_python_based) with gzip.GzipFile( str(tmpdir.join("regression.bin.tabledata.xml.gz")), 'rb') as gzfd: output = gzfd.readlines() output = [x.decode('utf-8').rstrip() for x in output] truth = [x.rstrip() for x in truth] assert truth == output @pytest.mark.xfail('legacy_float_repr') def test_regression(tmpdir): # W39: Bit values can not be masked with pytest.warns(W39): _test_regression(tmpdir, False) @pytest.mark.xfail('legacy_float_repr') def test_regression_python_based_parser(tmpdir): # W39: Bit values can not be masked with pytest.warns(W39): _test_regression(tmpdir, True) @pytest.mark.xfail('legacy_float_repr') def test_regression_binary2(tmpdir): # W39: Bit values can not be masked with pytest.warns(W39): _test_regression(tmpdir, False, 2) class TestFixups: def setup_class(self): self.table = parse( get_pkg_data_filename('data/regression.xml')).get_first_table() self.array = self.table.array self.mask = self.table.array.mask def test_implicit_id(self): assert_array_equal(self.array['string_test_2'], self.array['fixed string test']) class TestReferences: def setup_class(self): self.votable = parse(get_pkg_data_filename('data/regression.xml')) self.table = self.votable.get_first_table() self.array = self.table.array self.mask = self.table.array.mask def test_fieldref(self): fieldref = self.table.groups[1].entries[0] assert isinstance(fieldref, tree.FieldRef) assert fieldref.get_ref().name == 'boolean' assert fieldref.get_ref().datatype == 'boolean' def test_paramref(self): paramref = self.table.groups[0].entries[0] assert isinstance(paramref, tree.ParamRef) assert paramref.get_ref().name == 'INPUT' assert paramref.get_ref().datatype == 'float' def test_iter_fields_and_params_on_a_group(self): assert len(list(self.table.groups[1].iter_fields_and_params())) == 2 def test_iter_groups_on_a_group(self): assert len(list(self.table.groups[1].iter_groups())) == 1 def test_iter_groups(self): # Because of the ref'd table, there are more logical groups # than actually exist in the file assert len(list(self.votable.iter_groups())) == 9 def test_ref_table(self): tables = list(self.votable.iter_tables()) for x, y in zip(tables[0].array.data[0], tables[1].array.data[0]): assert_array_equal(x, y) def test_iter_coosys(self): assert len(list(self.votable.iter_coosys())) == 1 def test_select_columns_by_index(): columns = [0, 5, 13] table = parse( get_pkg_data_filename('data/regression.xml'), columns=columns).get_first_table() # noqa array = table.array mask = table.array.mask assert array['string_test'][0] == "String & test" columns = ['string_test', 'unsignedByte', 'bitarray'] for c in columns: assert not np.all(mask[c]) assert np.all(mask['unicode_test']) def test_select_columns_by_name(): columns = ['string_test', 'unsignedByte', 'bitarray'] table = parse( get_pkg_data_filename('data/regression.xml'), columns=columns).get_first_table() # noqa array = table.array mask = table.array.mask assert array['string_test'][0] == "String & test" for c in columns: assert not np.all(mask[c]) assert np.all(mask['unicode_test']) class TestParse: def setup_class(self): self.votable = parse(get_pkg_data_filename('data/regression.xml')) self.table = self.votable.get_first_table() self.array = self.table.array self.mask = self.table.array.mask def test_string_test(self): assert issubclass(self.array['string_test'].dtype.type, np.object_) assert_array_equal( self.array['string_test'], ['String & test', 'String &amp; test', 'XXXX', '', '']) def test_fixed_string_test(self): assert issubclass(self.array['string_test_2'].dtype.type, np.unicode_) assert_array_equal( self.array['string_test_2'], ['Fixed stri', '0123456789', 'XXXX', '', '']) def test_unicode_test(self): assert issubclass(self.array['unicode_test'].dtype.type, np.object_) assert_array_equal(self.array['unicode_test'], ["Ceçi n'est pas un pipe", 'வணக்கம்', 'XXXX', '', '']) def test_fixed_unicode_test(self): assert issubclass(self.array['fixed_unicode_test'].dtype.type, np.unicode_) assert_array_equal(self.array['fixed_unicode_test'], ["Ceçi n'est", 'வணக்கம்', '0123456789', '', '']) def test_unsignedByte(self): assert issubclass(self.array['unsignedByte'].dtype.type, np.uint8) assert_array_equal(self.array['unsignedByte'], [128, 255, 0, 255, 255]) assert not np.any(self.mask['unsignedByte']) def test_short(self): assert issubclass(self.array['short'].dtype.type, np.int16) assert_array_equal(self.array['short'], [4096, 32767, -4096, 32767, 32767]) assert not np.any(self.mask['short']) def test_int(self): assert issubclass(self.array['int'].dtype.type, np.int32) assert_array_equal( self.array['int'], [268435456, 2147483647, -268435456, 268435455, 123456789]) assert_array_equal(self.mask['int'], [False, False, False, False, True]) def test_long(self): assert issubclass(self.array['long'].dtype.type, np.int64) assert_array_equal( self.array['long'], [922337203685477, 123456789, -1152921504606846976, 1152921504606846975, 123456789]) assert_array_equal(self.mask['long'], [False, True, False, False, True]) def test_double(self): assert issubclass(self.array['double'].dtype.type, np.float64) assert_array_equal(self.array['double'], [8.9990234375, 0.0, np.inf, np.nan, -np.inf]) assert_array_equal(self.mask['double'], [False, False, False, True, False]) def test_float(self): assert issubclass(self.array['float'].dtype.type, np.float32) assert_array_equal(self.array['float'], [1.0, 0.0, np.inf, np.inf, np.nan]) assert_array_equal(self.mask['float'], [False, False, False, False, True]) def test_array(self): assert issubclass(self.array['array'].dtype.type, np.object_) match = [[], [[42, 32], [12, 32]], [[12, 34], [56, 78], [87, 65], [43, 21]], [[-1, 23]], [[31, -1]]] for a, b in zip(self.array['array'], match): # assert issubclass(a.dtype.type, np.int64) # assert a.shape[1] == 2 for a0, b0 in zip(a, b): assert issubclass(a0.dtype.type, np.int64) assert_array_equal(a0, b0) assert self.array.data['array'][3].mask[0][0] assert self.array.data['array'][4].mask[0][1] def test_bit(self): assert issubclass(self.array['bit'].dtype.type, np.bool_) assert_array_equal(self.array['bit'], [True, False, True, False, False]) def test_bit_mask(self): assert_array_equal(self.mask['bit'], [False, False, False, False, True]) def test_bitarray(self): assert issubclass(self.array['bitarray'].dtype.type, np.bool_) assert self.array['bitarray'].shape == (5, 3, 2) assert_array_equal(self.array['bitarray'], [[[True, False], [True, True], [False, True]], [[False, True], [False, False], [True, True]], [[True, True], [True, False], [False, False]], [[False, False], [False, False], [False, False]], [[False, False], [False, False], [False, False]]]) def test_bitarray_mask(self): assert_array_equal(self.mask['bitarray'], [[[False, False], [False, False], [False, False]], [[False, False], [False, False], [False, False]], [[False, False], [False, False], [False, False]], [[True, True], [True, True], [True, True]], [[True, True], [True, True], [True, True]]]) def test_bitvararray(self): assert issubclass(self.array['bitvararray'].dtype.type, np.object_) match = [[True, True, True], [False, False, False, False, False], [True, False, True, False, True], [], []] for a, b in zip(self.array['bitvararray'], match): assert_array_equal(a, b) match_mask = [[False, False, False], [False, False, False, False, False], [False, False, False, False, False], False, False] for a, b in zip(self.array['bitvararray'], match_mask): assert_array_equal(a.mask, b) def test_bitvararray2(self): assert issubclass(self.array['bitvararray2'].dtype.type, np.object_) match = [[], [[[False, True], [False, False], [True, False]], [[True, False], [True, False], [True, False]]], [[[True, True], [True, True], [True, True]]], [], []] for a, b in zip(self.array['bitvararray2'], match): for a0, b0 in zip(a, b): assert a0.shape == (3, 2) assert issubclass(a0.dtype.type, np.bool_) assert_array_equal(a0, b0) def test_floatComplex(self): assert issubclass(self.array['floatComplex'].dtype.type, np.complex64) assert_array_equal(self.array['floatComplex'], [np.nan+0j, 0+0j, 0+-1j, np.nan+0j, np.nan+0j]) assert_array_equal(self.mask['floatComplex'], [True, False, False, True, True]) def test_doubleComplex(self): assert issubclass(self.array['doubleComplex'].dtype.type, np.complex128) assert_array_equal( self.array['doubleComplex'], [np.nan+0j, 0+0j, 0+-1j, np.nan+(np.inf*1j), np.nan+0j]) assert_array_equal(self.mask['doubleComplex'], [True, False, False, True, True]) def test_doubleComplexArray(self): assert issubclass(self.array['doubleComplexArray'].dtype.type, np.object_) assert ([len(x) for x in self.array['doubleComplexArray']] == [0, 2, 2, 0, 0]) def test_boolean(self): assert issubclass(self.array['boolean'].dtype.type, np.bool_) assert_array_equal(self.array['boolean'], [True, False, True, False, False]) def test_boolean_mask(self): assert_array_equal(self.mask['boolean'], [False, False, False, False, True]) def test_boolean_array(self): assert issubclass(self.array['booleanArray'].dtype.type, np.bool_) assert_array_equal(self.array['booleanArray'], [[True, True, True, True], [True, True, False, True], [True, True, False, True], [False, False, False, False], [False, False, False, False]]) def test_boolean_array_mask(self): assert_array_equal(self.mask['booleanArray'], [[False, False, False, False], [False, False, False, False], [False, False, True, False], [True, True, True, True], [True, True, True, True]]) def test_nulls(self): assert_array_equal(self.array['nulls'], [0, -9, 2, -9, -9]) assert_array_equal(self.mask['nulls'], [False, True, False, True, True]) def test_nulls_array(self): assert_array_equal(self.array['nulls_array'], [[[-9, -9], [-9, -9]], [[0, 1], [2, 3]], [[-9, 0], [-9, 1]], [[0, -9], [1, -9]], [[-9, -9], [-9, -9]]]) assert_array_equal(self.mask['nulls_array'], [[[True, True], [True, True]], [[False, False], [False, False]], [[True, False], [True, False]], [[False, True], [False, True]], [[True, True], [True, True]]]) def test_double_array(self): assert issubclass(self.array['doublearray'].dtype.type, np.object_) assert len(self.array['doublearray'][0]) == 0 assert_array_equal(self.array['doublearray'][1], [0, 1, np.inf, -np.inf, np.nan, 0, -1]) assert_array_equal(self.array.data['doublearray'][1].mask, [False, False, False, False, False, False, True]) def test_bit_array2(self): assert_array_equal(self.array['bitarray2'][0], [True, True, True, True, False, False, False, False, True, True, True, True, False, False, False, False]) def test_bit_array2_mask(self): assert not np.any(self.mask['bitarray2'][0]) assert np.all(self.mask['bitarray2'][1:]) def test_get_coosys_by_id(self): coosys = self.votable.get_coosys_by_id('J2000') assert coosys.system == 'eq_FK5' def test_get_field_by_utype(self): fields = list(self.votable.get_fields_by_utype("myint")) assert fields[0].name == "int" assert fields[0].values.min == -1000 def test_get_info_by_id(self): info = self.votable.get_info_by_id('QUERY_STATUS') assert info.value == 'OK' if self.votable.version != '1.1': info = self.votable.get_info_by_id("ErrorInfo") assert info.value == "One might expect to find some INFO here, too..." # noqa def test_repr(self): assert '3 tables' in repr(self.votable) assert repr(list(self.votable.iter_fields_and_params())[0]) == \ '<PARAM ID="awesome" arraysize="*" datatype="float" name="INPUT" unit="deg" value="[0.0 0.0]"/>' # noqa # Smoke test repr(list(self.votable.iter_groups())) # Resource assert repr(self.votable.resources) == '[</>]' class TestThroughTableData(TestParse): def setup_class(self): votable = parse(get_pkg_data_filename('data/regression.xml')) self.xmlout = bio = io.BytesIO() # W39: Bit values can not be masked with pytest.warns(W39): votable.to_xml(bio) bio.seek(0) self.votable = parse(bio) self.table = self.votable.get_first_table() self.array = self.table.array self.mask = self.table.array.mask def test_bit_mask(self): assert_array_equal(self.mask['bit'], [False, False, False, False, False]) def test_bitarray_mask(self): assert not np.any(self.mask['bitarray']) def test_bit_array2_mask(self): assert not np.any(self.mask['bitarray2']) def test_schema(self, tmpdir): # have to use an actual file because assert_validate_schema only works # on filenames, not file-like objects fn = str(tmpdir.join("test_through_tabledata.xml")) with open(fn, 'wb') as f: f.write(self.xmlout.getvalue()) assert_validate_schema(fn, '1.1') class TestThroughBinary(TestParse): def setup_class(self): votable = parse(get_pkg_data_filename('data/regression.xml')) votable.get_first_table().format = 'binary' self.xmlout = bio = io.BytesIO() # W39: Bit values can not be masked with pytest.warns(W39): votable.to_xml(bio) bio.seek(0) self.votable = parse(bio) self.table = self.votable.get_first_table() self.array = self.table.array self.mask = self.table.array.mask # Masked values in bit fields don't roundtrip through the binary # representation -- that's not a bug, just a limitation, so # override the mask array checks here. def test_bit_mask(self): assert not np.any(self.mask['bit']) def test_bitarray_mask(self): assert not np.any(self.mask['bitarray']) def test_bit_array2_mask(self): assert not np.any(self.mask['bitarray2']) class TestThroughBinary2(TestParse): def setup_class(self): votable = parse(get_pkg_data_filename('data/regression.xml')) votable.version = '1.3' votable.get_first_table()._config['version_1_3_or_later'] = True votable.get_first_table().format = 'binary2' self.xmlout = bio = io.BytesIO() # W39: Bit values can not be masked with pytest.warns(W39): votable.to_xml(bio) bio.seek(0) self.votable = parse(bio) self.table = self.votable.get_first_table() self.array = self.table.array self.mask = self.table.array.mask def test_get_coosys_by_id(self): # No COOSYS in VOTable 1.2 or later pass def table_from_scratch(): from astropy.io.votable.tree import VOTableFile, Resource, Table, Field # Create a new VOTable file... votable = VOTableFile() # ...with one resource... resource = Resource() votable.resources.append(resource) # ... with one table table = Table(votable) resource.tables.append(table) # Define some fields table.fields.extend([ Field(votable, ID="filename", datatype="char"), Field(votable, ID="matrix", datatype="double", arraysize="2x2")]) # Now, use those field definitions to create the numpy record arrays, with # the given number of rows table.create_arrays(2) # Now table.array can be filled with data table.array[0] = ('test1.xml', [[1, 0], [0, 1]]) table.array[1] = ('test2.xml', [[0.5, 0.3], [0.2, 0.1]]) # Now write the whole thing to a file. # Note, we have to use the top-level votable file object out = io.StringIO() votable.to_xml(out) def test_open_files(): for filename in get_pkg_data_filenames('data', pattern='*.xml'): if (filename.endswith('custom_datatype.xml') or filename.endswith('timesys_errors.xml')): continue parse(filename) def test_too_many_columns(): with pytest.raises(VOTableSpecError): parse(get_pkg_data_filename('data/too_many_columns.xml.gz')) def test_build_from_scratch(tmpdir): # Create a new VOTable file... votable = tree.VOTableFile() # ...with one resource... resource = tree.Resource() votable.resources.append(resource) # ... with one table table = tree.Table(votable) resource.tables.append(table) # Define some fields table.fields.extend([ tree.Field(votable, ID="filename", name='filename', datatype="char", arraysize='1'), tree.Field(votable, ID="matrix", name='matrix', datatype="double", arraysize="2x2")]) # Now, use those field definitions to create the numpy record arrays, with # the given number of rows table.create_arrays(2) # Now table.array can be filled with data table.array[0] = ('test1.xml', [[1, 0], [0, 1]]) table.array[1] = ('test2.xml', [[0.5, 0.3], [0.2, 0.1]]) # Now write the whole thing to a file. # Note, we have to use the top-level votable file object votable.to_xml(str(tmpdir.join("new_votable.xml"))) votable = parse(str(tmpdir.join("new_votable.xml"))) table = votable.get_first_table() assert_array_equal( table.array.mask, np.array([(False, [[False, False], [False, False]]), (False, [[False, False], [False, False]])], dtype=[('filename', '?'), ('matrix', '?', (2, 2))])) def test_validate(test_path_object=False): """ test_path_object is needed for test below ``test_validate_path_object`` so that file could be passed as pathlib.Path object. """ output = io.StringIO() fpath = get_pkg_data_filename('data/regression.xml') if test_path_object: fpath = pathlib.Path(fpath) # We can't test xmllint, because we can't rely on it being on the # user's machine. result = validate(fpath, output, xmllint=False) assert result is False output.seek(0) output = output.readlines() # Uncomment to generate new groundtruth # with open('validation.txt', 'wt', encoding='utf-8') as fd: # fd.write(u''.join(output)) with open( get_pkg_data_filename('data/validation.txt'), 'rt', encoding='utf-8') as fd: truth = fd.readlines() truth = truth[1:] output = output[1:-1] sys.stdout.writelines( difflib.unified_diff(truth, output, fromfile='truth', tofile='output')) assert truth == output @mock.patch('subprocess.Popen') def test_validate_xmllint_true(mock_subproc_popen): process_mock = mock.Mock() attrs = {'communicate.return_value': ('ok', 'ko'), 'returncode': 0} process_mock.configure_mock(**attrs) mock_subproc_popen.return_value = process_mock assert validate(get_pkg_data_filename('data/empty_table.xml'), xmllint=True) def test_validate_path_object(): """ Validating when source is passed as path object. (#4412) """ test_validate(test_path_object=True) def test_gzip_filehandles(tmpdir): votable = parse(get_pkg_data_filename('data/regression.xml')) # W39: Bit values can not be masked with pytest.warns(W39): with open(str(tmpdir.join("regression.compressed.xml")), 'wb') as fd: votable.to_xml(fd, compressed=True, _astropy_version="testing") with open(str(tmpdir.join("regression.compressed.xml")), 'rb') as fd: votable = parse(fd) def test_from_scratch_example(): _run_test_from_scratch_example() def _run_test_from_scratch_example(): from astropy.io.votable.tree import VOTableFile, Resource, Table, Field # Create a new VOTable file... votable = VOTableFile() # ...with one resource... resource = Resource() votable.resources.append(resource) # ... with one table table = Table(votable) resource.tables.append(table) # Define some fields table.fields.extend([ Field(votable, name="filename", datatype="char", arraysize="*"), Field(votable, name="matrix", datatype="double", arraysize="2x2")]) # Now, use those field definitions to create the numpy record arrays, with # the given number of rows table.create_arrays(2) # Now table.array can be filled with data table.array[0] = ('test1.xml', [[1, 0], [0, 1]]) table.array[1] = ('test2.xml', [[0.5, 0.3], [0.2, 0.1]]) assert table.array[0][0] == 'test1.xml' def test_fileobj(): # Assert that what we get back is a raw C file pointer # so it will be super fast in the C extension. from astropy.utils.xml import iterparser filename = get_pkg_data_filename('data/regression.xml') with iterparser._convert_to_fd_or_read_function(filename) as fd: if sys.platform == 'win32': fd() else: assert isinstance(fd, io.FileIO) def test_nonstandard_units(): from astropy import units as u votable = parse(get_pkg_data_filename('data/nonstandard_units.xml')) assert isinstance( votable.get_first_table().fields[0].unit, u.UnrecognizedUnit) votable = parse(get_pkg_data_filename('data/nonstandard_units.xml'), unit_format='generic') assert not isinstance( votable.get_first_table().fields[0].unit, u.UnrecognizedUnit) def test_resource_structure(): # Based on issue #1223, as reported by @astro-friedel and @RayPlante from astropy.io.votable import tree as vot vtf = vot.VOTableFile() r1 = vot.Resource() vtf.resources.append(r1) t1 = vot.Table(vtf) t1.name = "t1" t2 = vot.Table(vtf) t2.name = 't2' r1.tables.append(t1) r1.tables.append(t2) r2 = vot.Resource() vtf.resources.append(r2) t3 = vot.Table(vtf) t3.name = "t3" t4 = vot.Table(vtf) t4.name = "t4" r2.tables.append(t3) r2.tables.append(t4) r3 = vot.Resource() vtf.resources.append(r3) t5 = vot.Table(vtf) t5.name = "t5" t6 = vot.Table(vtf) t6.name = "t6" r3.tables.append(t5) r3.tables.append(t6) buff = io.BytesIO() vtf.to_xml(buff) buff.seek(0) vtf2 = parse(buff) assert len(vtf2.resources) == 3 for r in range(len(vtf2.resources)): res = vtf2.resources[r] assert len(res.tables) == 2 assert len(res.resources) == 0 def test_no_resource_check(): output = io.StringIO() # We can't test xmllint, because we can't rely on it being on the # user's machine. result = validate(get_pkg_data_filename('data/no_resource.xml'), output, xmllint=False) assert result is False output.seek(0) output = output.readlines() # Uncomment to generate new groundtruth # with open('no_resource.txt', 'wt', encoding='utf-8') as fd: # fd.write(u''.join(output)) with open( get_pkg_data_filename('data/no_resource.txt'), 'rt', encoding='utf-8') as fd: truth = fd.readlines() truth = truth[1:] output = output[1:-1] sys.stdout.writelines( difflib.unified_diff(truth, output, fromfile='truth', tofile='output')) assert truth == output def test_instantiate_vowarning(): # This used to raise a deprecation exception. # See https://github.com/astropy/astroquery/pull/276 VOWarning(()) def test_custom_datatype(): votable = parse(get_pkg_data_filename('data/custom_datatype.xml'), datatype_mapping={'bar': 'int'}) table = votable.get_first_table() assert table.array.dtype['foo'] == np.int32 def _timesys_tests(votable): assert len(list(votable.iter_timesys())) == 4 timesys = votable.get_timesys_by_id('time_frame') assert timesys.timeorigin == 2455197.5 assert timesys.timescale == 'TCB' assert timesys.refposition == 'BARYCENTER' timesys = votable.get_timesys_by_id('mjd_origin') assert timesys.timeorigin == 'MJD-origin' assert timesys.timescale == 'TDB' assert timesys.refposition == 'EMBARYCENTER' timesys = votable.get_timesys_by_id('jd_origin') assert timesys.timeorigin == 'JD-origin' assert timesys.timescale == 'TT' assert timesys.refposition == 'HELIOCENTER' timesys = votable.get_timesys_by_id('no_origin') assert timesys.timeorigin is None assert timesys.timescale == 'UTC' assert timesys.refposition == 'TOPOCENTER' def test_timesys(): votable = parse(get_pkg_data_filename('data/timesys.xml')) _timesys_tests(votable) def test_timesys_roundtrip(): orig_votable = parse(get_pkg_data_filename('data/timesys.xml')) bio = io.BytesIO() orig_votable.to_xml(bio) bio.seek(0) votable = parse(bio) _timesys_tests(votable) def test_timesys_errors(): output = io.StringIO() validate(get_pkg_data_filename('data/timesys_errors.xml'), output, xmllint=False) outstr = output.getvalue() assert("E23: Invalid timeorigin attribute 'bad-origin'" in outstr) assert("E22: ID attribute is required for all TIMESYS elements" in outstr) assert("W48: Unknown attribute 'refposition_mispelled' on TIMESYS" in outstr)
ec61ac2e05071b9c1fc6007b533b5d0a34b77237cdd935516ca7b73be768e3b0
# Licensed under a 3-clause BSD style license - see LICENSE.rst import pytest from astropy.io.votable import ucd def test_none(): assert ucd.check_ucd(None) examples = { 'phys.temperature': [('ivoa', 'phys.temperature')], 'pos.eq.ra;meta.main': [('ivoa', 'pos.eq.ra'), ('ivoa', 'meta.main')], 'meta.id;src': [('ivoa', 'meta.id'), ('ivoa', 'src')], 'phot.flux;em.radio;arith.ratio': [('ivoa', 'phot.flux'), ('ivoa', 'em.radio'), ('ivoa', 'arith.ratio')], 'PHot.Flux;EM.Radio;ivoa:arith.Ratio': [('ivoa', 'phot.flux'), ('ivoa', 'em.radio'), ('ivoa', 'arith.ratio')], 'pos.galactic.lat': [('ivoa', 'pos.galactic.lat')], 'meta.code;phot.mag': [('ivoa', 'meta.code'), ('ivoa', 'phot.mag')], 'stat.error;phot.mag': [('ivoa', 'stat.error'), ('ivoa', 'phot.mag')], 'phys.temperature;instr;stat.max': [('ivoa', 'phys.temperature'), ('ivoa', 'instr'), ('ivoa', 'stat.max')], 'stat.error;phot.mag;em.opt.V': [('ivoa', 'stat.error'), ('ivoa', 'phot.mag'), ('ivoa', 'em.opt.V')], 'phot.color;em.opt.B;em.opt.V': [('ivoa', 'phot.color'), ('ivoa', 'em.opt.B'), ('ivoa', 'em.opt.V')], 'stat.error;phot.color;em.opt.B;em.opt.V': [('ivoa', 'stat.error'), ('ivoa', 'phot.color'), ('ivoa', 'em.opt.B'), ('ivoa', 'em.opt.V')], } def test_check(): for s, p in examples.items(): assert ucd.parse_ucd(s, True, True) == p assert ucd.check_ucd(s, True, True) def test_too_many_colons(): with pytest.raises(ValueError): ucd.parse_ucd("ivoa:stsci:phot", True, True) def test_invalid_namespace(): with pytest.raises(ValueError): ucd.parse_ucd("_ivoa:phot.mag", True, True) def test_invalid_word(): with pytest.raises(ValueError): ucd.parse_ucd("-pho")
799efe7320930754b8b1e975f9fac9e7669819f8d0db790d08fd75e865d2fb00
# Licensed under a 3-clause BSD style license - see LICENSE.rst """ Test the conversion to/from astropy.table """ import io import os import pathlib import pytest import numpy as np from astropy.config import set_temp_config, reload_config from astropy.utils.data import get_pkg_data_filename, get_pkg_data_fileobj from astropy.io.votable.table import parse, writeto from astropy.io.votable import tree, conf, validate from astropy.io.votable.exceptions import VOWarning, W39, E25 from astropy.table import Column, Table from astropy.table.table_helpers import simple_table from astropy.units import Unit from astropy.utils.exceptions import AstropyDeprecationWarning from astropy.utils.misc import _NOT_OVERWRITING_MSG_MATCH def test_table(tmpdir): # Read the VOTABLE votable = parse(get_pkg_data_filename('data/regression.xml')) table = votable.get_first_table() astropy_table = table.to_table() for name in table.array.dtype.names: assert np.all(astropy_table.mask[name] == table.array.mask[name]) votable2 = tree.VOTableFile.from_table(astropy_table) t = votable2.get_first_table() field_types = [ ('string_test', {'datatype': 'char', 'arraysize': '*'}), ('string_test_2', {'datatype': 'char', 'arraysize': '10'}), ('unicode_test', {'datatype': 'unicodeChar', 'arraysize': '*'}), ('fixed_unicode_test', {'datatype': 'unicodeChar', 'arraysize': '10'}), ('string_array_test', {'datatype': 'char', 'arraysize': '4'}), ('unsignedByte', {'datatype': 'unsignedByte'}), ('short', {'datatype': 'short'}), ('int', {'datatype': 'int'}), ('long', {'datatype': 'long'}), ('double', {'datatype': 'double'}), ('float', {'datatype': 'float'}), ('array', {'datatype': 'long', 'arraysize': '2*'}), ('bit', {'datatype': 'bit'}), ('bitarray', {'datatype': 'bit', 'arraysize': '3x2'}), ('bitvararray', {'datatype': 'bit', 'arraysize': '*'}), ('bitvararray2', {'datatype': 'bit', 'arraysize': '3x2*'}), ('floatComplex', {'datatype': 'floatComplex'}), ('doubleComplex', {'datatype': 'doubleComplex'}), ('doubleComplexArray', {'datatype': 'doubleComplex', 'arraysize': '*'}), ('doubleComplexArrayFixed', {'datatype': 'doubleComplex', 'arraysize': '2'}), ('boolean', {'datatype': 'bit'}), ('booleanArray', {'datatype': 'bit', 'arraysize': '4'}), ('nulls', {'datatype': 'int'}), ('nulls_array', {'datatype': 'int', 'arraysize': '2x2'}), ('precision1', {'datatype': 'double'}), ('precision2', {'datatype': 'double'}), ('doublearray', {'datatype': 'double', 'arraysize': '*'}), ('bitarray2', {'datatype': 'bit', 'arraysize': '16'})] for field, type in zip(t.fields, field_types): name, d = type assert field.ID == name assert field.datatype == d['datatype'], f'{name} expected {d["datatype"]} but get {field.datatype}' # noqa if 'arraysize' in d: assert field.arraysize == d['arraysize'] # W39: Bit values can not be masked with pytest.warns(W39): writeto(votable2, os.path.join(str(tmpdir), "through_table.xml")) def test_read_through_table_interface(tmpdir): with get_pkg_data_fileobj('data/regression.xml', encoding='binary') as fd: t = Table.read(fd, format='votable', table_id='main_table') assert len(t) == 5 # Issue 8354 assert t['float'].format is None fn = os.path.join(str(tmpdir), "table_interface.xml") # W39: Bit values can not be masked with pytest.warns(W39): t.write(fn, table_id='FOO', format='votable') with open(fn, 'rb') as fd: t2 = Table.read(fd, format='votable', table_id='FOO') assert len(t2) == 5 def test_read_through_table_interface2(): with get_pkg_data_fileobj('data/regression.xml', encoding='binary') as fd: t = Table.read(fd, format='votable', table_id='last_table') assert len(t) == 0 def test_pass_kwargs_through_table_interface(): # Table.read() should pass on keyword arguments meant for parse() filename = get_pkg_data_filename('data/nonstandard_units.xml') t = Table.read(filename, format='votable', unit_format='generic') assert t['Flux1'].unit == Unit("erg / (Angstrom cm2 s)") def test_names_over_ids(): with get_pkg_data_fileobj('data/names.xml', encoding='binary') as fd: votable = parse(fd) table = votable.get_first_table().to_table(use_names_over_ids=True) assert table.colnames == [ 'Name', 'GLON', 'GLAT', 'RAdeg', 'DEdeg', 'Jmag', 'Hmag', 'Kmag', 'G3.6mag', 'G4.5mag', 'G5.8mag', 'G8.0mag', '4.5mag', '8.0mag', 'Emag', '24mag', 'f_Name'] def test_explicit_ids(): with get_pkg_data_fileobj('data/names.xml', encoding='binary') as fd: votable = parse(fd) table = votable.get_first_table().to_table(use_names_over_ids=False) assert table.colnames == [ 'col1', 'col2', 'col3', 'col4', 'col5', 'col6', 'col7', 'col8', 'col9', 'col10', 'col11', 'col12', 'col13', 'col14', 'col15', 'col16', 'col17'] def test_table_read_with_unnamed_tables(): """ Issue #927 """ with get_pkg_data_fileobj('data/names.xml', encoding='binary') as fd: t = Table.read(fd, format='votable') assert len(t) == 1 def test_votable_path_object(): """ Testing when votable is passed as pathlib.Path object #4412. """ fpath = pathlib.Path(get_pkg_data_filename('data/names.xml')) table = parse(fpath).get_first_table().to_table() assert len(table) == 1 assert int(table[0][3]) == 266 def test_from_table_without_mask(): t = Table() c = Column(data=[1, 2, 3], name='a') t.add_column(c) output = io.BytesIO() t.write(output, format='votable') def test_write_with_format(): t = Table() c = Column(data=[1, 2, 3], name='a') t.add_column(c) output = io.BytesIO() t.write(output, format='votable', tabledata_format="binary") obuff = output.getvalue() assert b'VOTABLE version="1.4"' in obuff assert b'BINARY' in obuff assert b'TABLEDATA' not in obuff output = io.BytesIO() t.write(output, format='votable', tabledata_format="binary2") obuff = output.getvalue() assert b'VOTABLE version="1.4"' in obuff assert b'BINARY2' in obuff assert b'TABLEDATA' not in obuff def test_write_overwrite(tmpdir): t = simple_table(3, 3) filename = os.path.join(tmpdir, 'overwrite_test.vot') t.write(filename, format='votable') with pytest.raises(OSError, match=_NOT_OVERWRITING_MSG_MATCH): t.write(filename, format='votable') t.write(filename, format='votable', overwrite=True) def test_empty_table(): votable = parse(get_pkg_data_filename('data/empty_table.xml')) table = votable.get_first_table() astropy_table = table.to_table() # noqa def test_no_field_not_empty_table(): votable = parse(get_pkg_data_filename('data/no_field_not_empty_table.xml')) table = votable.get_first_table() assert len(table.fields) == 0 assert len(table.infos) == 1 def test_no_field_not_empty_table_exception(): with pytest.raises(E25): parse(get_pkg_data_filename('data/no_field_not_empty_table.xml'), verify='exception') def test_binary2_masked_strings(): """ Issue #8995 """ # Read a VOTable which sets the null mask bit for each empty string value. votable = parse(get_pkg_data_filename('data/binary2_masked_strings.xml')) table = votable.get_first_table() astropy_table = table.to_table() # Ensure string columns have no masked values and can be written out assert not np.any(table.array.mask['epoch_photometry_url']) output = io.BytesIO() astropy_table.write(output, format='votable') def test_validate_output_invalid(): """ Issue #12603. Test that we get the correct output from votable.validate with an invalid votable. """ # A votable with errors invalid_votable_filepath = get_pkg_data_filename('data/regression.xml') # When output is None, check that validate returns validation output as a string validate_out = validate(invalid_votable_filepath, output=None) assert isinstance(validate_out, str) # Check for known error string assert "E02: Incorrect number of elements in array." in validate_out # When output is not set, check that validate returns a bool validate_out = validate(invalid_votable_filepath) assert isinstance(validate_out, bool) # Check that validation output is correct (votable is not valid) assert validate_out is False def test_validate_output_valid(): """ Issue #12603. Test that we get the correct output from votable.validate with a valid votable """ # A valid votable. (Example from the votable standard: # https://www.ivoa.net/documents/VOTable/20191021/REC-VOTable-1.4-20191021.html ) valid_votable_filepath = get_pkg_data_filename('data/valid_votable.xml') # When output is None, check that validate returns validation output as a string validate_out = validate(valid_votable_filepath, output=None) assert isinstance(validate_out, str) # Check for known good output string assert "astropy.io.votable found no violations" in validate_out # When output is not set, check that validate returns a bool validate_out = validate(valid_votable_filepath) assert isinstance(validate_out, bool) # Check that validation output is correct (votable is valid) assert validate_out is True class TestVerifyOptions: # Start off by checking the default (ignore) def test_default(self): parse(get_pkg_data_filename('data/gemini.xml')) # Then try the various explicit options def test_verify_ignore(self): parse(get_pkg_data_filename('data/gemini.xml'), verify='ignore') def test_verify_warn(self): with pytest.warns(VOWarning) as w: parse(get_pkg_data_filename('data/gemini.xml'), verify='warn') assert len(w) == 24 def test_verify_exception(self): with pytest.raises(VOWarning): parse(get_pkg_data_filename('data/gemini.xml'), verify='exception') # Make sure the deprecated pedantic option still works for now def test_pedantic_false(self): with pytest.warns(VOWarning) as w: parse(get_pkg_data_filename('data/gemini.xml'), pedantic=False) assert len(w) == 25 def test_pedantic_true(self): with pytest.warns(AstropyDeprecationWarning): with pytest.raises(VOWarning): parse(get_pkg_data_filename('data/gemini.xml'), pedantic=True) # Make sure that the default behavior can be set via configuration items def test_conf_verify_ignore(self): with conf.set_temp('verify', 'ignore'): parse(get_pkg_data_filename('data/gemini.xml')) def test_conf_verify_warn(self): with conf.set_temp('verify', 'warn'): with pytest.warns(VOWarning) as w: parse(get_pkg_data_filename('data/gemini.xml')) assert len(w) == 24 def test_conf_verify_exception(self): with conf.set_temp('verify', 'exception'): with pytest.raises(VOWarning): parse(get_pkg_data_filename('data/gemini.xml')) # And make sure the old configuration item will keep working def test_conf_pedantic_false(self, tmpdir): with set_temp_config(tmpdir.strpath): with open(tmpdir.join('astropy').join('astropy.cfg').strpath, 'w') as f: f.write('[io.votable]\npedantic = False') reload_config('astropy.io.votable') with pytest.warns(VOWarning) as w: parse(get_pkg_data_filename('data/gemini.xml')) assert len(w) == 25 def test_conf_pedantic_true(self, tmpdir): with set_temp_config(tmpdir.strpath): with open(tmpdir.join('astropy').join('astropy.cfg').strpath, 'w') as f: f.write('[io.votable]\npedantic = True') reload_config('astropy.io.votable') with pytest.warns(AstropyDeprecationWarning): with pytest.raises(VOWarning): parse(get_pkg_data_filename('data/gemini.xml'))
302141eaf7677181bcbf668f38466da6b956e850cc797016d24b5396642a817d
# Licensed under a 3-clause BSD style license - see LICENSE.rst import io import pytest from astropy.io.votable.exceptions import W07, W08, W21, W41 from astropy.io.votable import tree from astropy.io.votable.table import parse from astropy.io.votable.tree import VOTableFile, Resource from astropy.utils.data import get_pkg_data_filename from astropy.utils.exceptions import AstropyDeprecationWarning def test_check_astroyear_fail(): config = {'verify': 'exception'} field = tree.Field(None, name='astroyear', arraysize='1') with pytest.raises(W07): tree.check_astroyear('X2100', field, config) def test_string_fail(): config = {'verify': 'exception'} with pytest.raises(W08): tree.check_string(42, 'foo', config) def test_make_Fields(): votable = tree.VOTableFile() # ...with one resource... resource = tree.Resource() votable.resources.append(resource) # ... with one table table = tree.Table(votable) resource.tables.append(table) table.fields.extend([tree.Field( votable, name='Test', datatype="float", unit="mag")]) def test_unit_format(): data = parse(get_pkg_data_filename('data/irsa-nph-error.xml')) assert data._config['version'] == '1.0' assert tree._get_default_unit_format(data._config) == 'cds' data = parse(get_pkg_data_filename('data/names.xml')) assert data._config['version'] == '1.1' assert tree._get_default_unit_format(data._config) == 'cds' data = parse(get_pkg_data_filename('data/gemini.xml')) assert data._config['version'] == '1.2' assert tree._get_default_unit_format(data._config) == 'cds' data = parse(get_pkg_data_filename('data/binary2_masked_strings.xml')) assert data._config['version'] == '1.3' assert tree._get_default_unit_format(data._config) == 'cds' data = parse(get_pkg_data_filename('data/timesys.xml')) assert data._config['version'] == '1.4' assert tree._get_default_unit_format(data._config) == 'vounit' def test_namespace_warning(): """ A version 1.4 VOTable must use the same namespace as 1.3. (see https://www.ivoa.net/documents/VOTable/20191021/REC-VOTable-1.4-20191021.html#ToC16) """ bad_namespace = b'''<?xml version="1.0" encoding="utf-8"?> <VOTABLE version="1.4" xmlns="http://www.ivoa.net/xml/VOTable/v1.4" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"> <RESOURCE/> </VOTABLE> ''' with pytest.warns(W41): parse(io.BytesIO(bad_namespace), verify='exception') good_namespace_14 = b'''<?xml version="1.0" encoding="utf-8"?> <VOTABLE version="1.4" xmlns="http://www.ivoa.net/xml/VOTable/v1.3" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"> <RESOURCE/> </VOTABLE> ''' parse(io.BytesIO(good_namespace_14), verify='exception') good_namespace_13 = b'''<?xml version="1.0" encoding="utf-8"?> <VOTABLE version="1.3" xmlns="http://www.ivoa.net/xml/VOTable/v1.3" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"> <RESOURCE/> </VOTABLE> ''' parse(io.BytesIO(good_namespace_13), verify='exception') def test_version(): """ VOTableFile.__init__ allows versions of '1.0', '1.1', '1.2', '1.3' and '1.4'. The '1.0' is curious since other checks in parse() and the version setter do not allow '1.0'. This test confirms that behavior for now. A future change may remove the '1.0'. """ # Exercise the checks in __init__ with pytest.warns(AstropyDeprecationWarning): VOTableFile(version='1.0') for version in ('1.1', '1.2', '1.3', '1.4'): VOTableFile(version=version) for version in ('0.9', '2.0'): with pytest.raises(ValueError, match=r"should be in \('1.0', '1.1', '1.2', '1.3', '1.4'\)."): VOTableFile(version=version) # Exercise the checks in the setter vot = VOTableFile() for version in ('1.1', '1.2', '1.3', '1.4'): vot.version = version for version in ('1.0', '2.0'): with pytest.raises(ValueError, match=r"supports VOTable versions '1.1', '1.2', '1.3', '1.4'$"): vot.version = version # Exercise the checks in the parser. begin = b'<?xml version="1.0" encoding="utf-8"?><VOTABLE version="' middle = b'" xmlns="http://www.ivoa.net/xml/VOTable/v' end = b'" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"><RESOURCE/></VOTABLE>' # Valid versions for bversion in (b'1.1', b'1.2', b'1.3'): parse(io.BytesIO(begin + bversion + middle + bversion + end), verify='exception') parse(io.BytesIO(begin + b'1.4' + middle + b'1.3' + end), verify='exception') # Invalid versions for bversion in (b'1.0', b'2.0'): with pytest.warns(W21): parse(io.BytesIO(begin + bversion + middle + bversion + end), verify='exception') def votable_xml_string(version): votable_file = VOTableFile(version=version) votable_file.resources.append(Resource()) xml_bytes = io.BytesIO() votable_file.to_xml(xml_bytes) xml_bytes.seek(0) bstring = xml_bytes.read() s = bstring.decode("utf-8") return s def test_votable_tag(): xml = votable_xml_string('1.1') assert 'xmlns="http://www.ivoa.net/xml/VOTable/v1.1"' in xml assert 'xsi:noNamespaceSchemaLocation="http://www.ivoa.net/xml/VOTable/v1.1"' in xml xml = votable_xml_string('1.2') assert 'xmlns="http://www.ivoa.net/xml/VOTable/v1.2"' in xml assert 'xsi:noNamespaceSchemaLocation="http://www.ivoa.net/xml/VOTable/v1.2"' in xml xml = votable_xml_string('1.3') assert 'xmlns="http://www.ivoa.net/xml/VOTable/v1.3"' in xml assert 'xsi:schemaLocation="http://www.ivoa.net/xml/VOTable/v1.3 ' assert 'http://www.ivoa.net/xml/VOTable/VOTable-1.3.xsd"' in xml xml = votable_xml_string('1.4') assert 'xmlns="http://www.ivoa.net/xml/VOTable/v1.3"' in xml assert 'xsi:schemaLocation="http://www.ivoa.net/xml/VOTable/v1.3 ' assert 'http://www.ivoa.net/xml/VOTable/VOTable-1.4.xsd"' in xml
e3f3edc1381140ebc6414ff22021532d51d09e8be7f4672cc1e2548d48d508d0
# Licensed under a 3-clause BSD style license - see LICENSE.rst import io # THIRD-PARTY import numpy as np from numpy.testing import assert_array_equal import pytest # LOCAL from astropy.io.votable import converters from astropy.io.votable import exceptions from astropy.io.votable import tree from astropy.io.votable.table import parse_single_table from astropy.utils.data import get_pkg_data_filename def test_invalid_arraysize(): with pytest.raises(exceptions.E13): field = tree.Field( None, name='broken', datatype='char', arraysize='foo') converters.get_converter(field) def test_oversize_char(): config = {'verify': 'exception'} with pytest.warns(exceptions.W47) as w: field = tree.Field( None, name='c', datatype='char', config=config) c = converters.get_converter(field, config=config) assert len(w) == 1 with pytest.warns(exceptions.W46) as w: c.parse("XXX") assert len(w) == 1 def test_char_mask(): config = {'verify': 'exception'} field = tree.Field(None, name='c', arraysize='1', datatype='char', config=config) c = converters.get_converter(field, config=config) assert c.output("Foo", True) == '' def test_oversize_unicode(): config = {'verify': 'exception'} with pytest.warns(exceptions.W46) as w: field = tree.Field( None, name='c2', datatype='unicodeChar', arraysize='1', config=config) c = converters.get_converter(field, config=config) c.parse("XXX") assert len(w) == 1 def test_unicode_mask(): config = {'verify': 'exception'} field = tree.Field(None, name='c', arraysize='1', datatype='unicodeChar', config=config) c = converters.get_converter(field, config=config) assert c.output("Foo", True) == '' def test_unicode_as_char(): config = {'verify': 'exception'} field = tree.Field( None, name='unicode_in_char', datatype='char', arraysize='*', config=config) c = converters.get_converter(field, config=config) # Test parsing. c.parse('XYZ') # ASCII succeeds with pytest.warns( exceptions.W55, match=r'FIELD \(unicode_in_char\) has datatype="char" but contains non-ASCII value'): c.parse("zła") # non-ASCII # Test output. c.output('XYZ', False) # ASCII str succeeds c.output(b'XYZ', False) # ASCII bytes succeeds value = 'zła' value_bytes = value.encode('utf-8') with pytest.warns( exceptions.E24, match=r'E24: Attempt to write non-ASCII value'): c.output(value, False) # non-ASCII str raises with pytest.warns( exceptions.E24, match=r'E24: Attempt to write non-ASCII value'): c.output(value_bytes, False) # non-ASCII bytes raises def test_unicode_as_char_binary(): config = {'verify': 'exception'} field = tree.Field( None, name='unicode_in_char', datatype='char', arraysize='*', config=config) c = converters.get_converter(field, config=config) c._binoutput_var('abc', False) # ASCII succeeds with pytest.raises(exceptions.E24, match=r"E24: Attempt to write non-ASCII value"): c._binoutput_var('zła', False) field = tree.Field( None, name='unicode_in_char', datatype='char', arraysize='3', config=config) c = converters.get_converter(field, config=config) c._binoutput_fixed('xyz', False) with pytest.raises(exceptions.E24, match=r"E24: Attempt to write non-ASCII value"): c._binoutput_fixed('zła', False) def test_wrong_number_of_elements(): config = {'verify': 'exception'} field = tree.Field( None, name='c', datatype='int', arraysize='2x3*', config=config) c = converters.get_converter(field, config=config) with pytest.raises(exceptions.E02): c.parse("2 3 4 5 6") def test_float_mask(): config = {'verify': 'exception'} field = tree.Field( None, name='c', datatype='float', config=config) c = converters.get_converter(field, config=config) assert c.parse('') == (c.null, True) with pytest.raises(ValueError): c.parse('null') def test_float_mask_permissive(): config = {'verify': 'ignore'} field = tree.Field( None, name='c', datatype='float', config=config) # config needs to be also passed into parse() to work. # https://github.com/astropy/astropy/issues/8775 c = converters.get_converter(field, config=config) assert c.parse('null', config=config) == (c.null, True) def test_double_array(): config = {'verify': 'exception', 'version_1_3_or_later': True} field = tree.Field(None, name='c', datatype='double', arraysize='3', config=config) data = (1.0, 2.0, 3.0) c = converters.get_converter(field, config=config) assert c.output(1.0, False) == '1' assert c.output(1.0, [False, False]) == '1' assert c.output(data, False) == '1 2 3' assert c.output(data, [False, False, False]) == '1 2 3' assert c.output(data, [False, False, True]) == '1 2 NaN' assert c.output(data, [False, False]) == '1 2' a = c.parse("1 2 3", config=config) assert_array_equal(a[0], data) assert_array_equal(a[1], False) with pytest.raises(exceptions.E02): c.parse("1", config=config) with pytest.raises(AttributeError), pytest.warns(exceptions.E02): c.parse("1") with pytest.raises(exceptions.E02): c.parse("2 3 4 5 6", config=config) with pytest.warns(exceptions.E02): a = c.parse("2 3 4 5 6") assert_array_equal(a[0], [2, 3, 4]) assert_array_equal(a[1], False) def test_complex_array_vararray(): config = {'verify': 'exception'} field = tree.Field( None, name='c', datatype='floatComplex', arraysize='2x3*', config=config) c = converters.get_converter(field, config=config) with pytest.raises(exceptions.E02): c.parse("2 3 4 5 6") def test_complex_array_vararray2(): config = {'verify': 'exception'} field = tree.Field( None, name='c', datatype='floatComplex', arraysize='2x3*', config=config) c = converters.get_converter(field, config=config) x = c.parse("") assert len(x[0]) == 0 def test_complex_array_vararray3(): config = {'verify': 'exception'} field = tree.Field( None, name='c', datatype='doubleComplex', arraysize='2x3*', config=config) c = converters.get_converter(field, config=config) x = c.parse("1 2 3 4 5 6 7 8 9 10 11 12") assert len(x) == 2 assert np.all(x[0][0][0] == complex(1, 2)) def test_complex_vararray(): config = {'verify': 'exception'} field = tree.Field( None, name='c', datatype='doubleComplex', arraysize='*', config=config) c = converters.get_converter(field, config=config) x = c.parse("1 2 3 4") assert len(x) == 2 assert x[0][0] == complex(1, 2) def test_complex(): config = {'verify': 'exception'} field = tree.Field( None, name='c', datatype='doubleComplex', config=config) c = converters.get_converter(field, config=config) with pytest.raises(exceptions.E03): c.parse("1 2 3") def test_bit(): config = {'verify': 'exception'} field = tree.Field( None, name='c', datatype='bit', config=config) c = converters.get_converter(field, config=config) with pytest.raises(exceptions.E04): c.parse("T") def test_bit_mask(): config = {'verify': 'exception'} with pytest.warns(exceptions.W39) as w: field = tree.Field( None, name='c', datatype='bit', config=config) c = converters.get_converter(field, config=config) c.output(True, True) assert len(w) == 1 def test_boolean(): config = {'verify': 'exception'} field = tree.Field( None, name='c', datatype='boolean', config=config) c = converters.get_converter(field, config=config) with pytest.raises(exceptions.E05): c.parse('YES') def test_boolean_array(): config = {'verify': 'exception'} field = tree.Field( None, name='c', datatype='boolean', arraysize='*', config=config) c = converters.get_converter(field, config=config) r, mask = c.parse('TRUE FALSE T F 0 1') assert_array_equal(r, [True, False, True, False, False, True]) def test_invalid_type(): config = {'verify': 'exception'} with pytest.raises(exceptions.E06): field = tree.Field( None, name='c', datatype='foobar', config=config) converters.get_converter(field, config=config) def test_precision(): config = {'verify': 'exception'} field = tree.Field( None, name='c', datatype='float', precision="E4", config=config) c = converters.get_converter(field, config=config) assert c.output(266.248, False) == '266.2' field = tree.Field( None, name='c', datatype='float', precision="F4", config=config) c = converters.get_converter(field, config=config) assert c.output(266.248, False) == '266.2480' def test_integer_overflow(): config = {'verify': 'exception'} field = tree.Field( None, name='c', datatype='int', config=config) c = converters.get_converter(field, config=config) with pytest.raises(exceptions.W51): c.parse('-2208988800', config=config) def test_float_default_precision(): config = {'verify': 'exception'} field = tree.Field( None, name='c', datatype='float', arraysize="4", config=config) c = converters.get_converter(field, config=config) assert (c.output([1, 2, 3, 8.9990234375], [False, False, False, False]) == '1 2 3 8.9990234375') def test_vararray(): votable = tree.VOTableFile() resource = tree.Resource() votable.resources.append(resource) table = tree.Table(votable) resource.tables.append(table) tabarr = [] heads = ['headA', 'headB', 'headC'] types = ["char", "double", "int"] vals = [["A", 1.0, 2], ["B", 2.0, 3], ["C", 3.0, 4]] for i in range(len(heads)): tabarr.append(tree.Field( votable, name=heads[i], datatype=types[i], arraysize="*")) table.fields.extend(tabarr) table.create_arrays(len(vals)) for i in range(len(vals)): values = tuple(vals[i]) table.array[i] = values buff = io.BytesIO() votable.to_xml(buff) def test_gemini_v1_2(): ''' see Pull Request 4782 or Issue 4781 for details ''' table = parse_single_table(get_pkg_data_filename('data/gemini.xml')) assert table is not None tt = table.to_table() assert tt['access_url'][0] == ( 'http://www.cadc-ccda.hia-iha.nrc-cnrc.gc.ca/data/pub/GEMINI/' 'S20120515S0064?runid=bx9b1o8cvk1qesrt')
136c3a17b28bbffd2801a59c60a601f4115ade17ff7d18ad0cd8cb3024431f55
# Licensed under a 3-clause BSD style license - see LICENSE.rst """ Contains a class to handle a validation result for a single VOTable file. """ # STDLIB from xml.parsers.expat import ExpatError import hashlib import os import shutil import socket import subprocess import warnings import pickle import urllib.request import urllib.error import http.client # VO from astropy.io.votable import table from astropy.io.votable import exceptions from astropy.io.votable import xmlutil class Result: def __init__(self, url, root='results', timeout=10): self.url = url m = hashlib.md5() m.update(url) self._hash = m.hexdigest() self._root = root self._path = os.path.join( self._hash[0:2], self._hash[2:4], self._hash[4:]) if not os.path.exists(self.get_dirpath()): os.makedirs(self.get_dirpath()) self.timeout = timeout self.load_attributes() def __enter__(self): return self def __exit__(self, *args): self.save_attributes() def get_dirpath(self): return os.path.join(self._root, self._path) def get_htmlpath(self): return self._path def get_attribute_path(self): return os.path.join(self.get_dirpath(), "values.dat") def get_vo_xml_path(self): return os.path.join(self.get_dirpath(), "vo.xml") # ATTRIBUTES def load_attributes(self): path = self.get_attribute_path() if os.path.exists(path): try: with open(path, 'rb') as fd: self._attributes = pickle.load(fd) except Exception: shutil.rmtree(self.get_dirpath()) os.makedirs(self.get_dirpath()) self._attributes = {} else: self._attributes = {} def save_attributes(self): path = self.get_attribute_path() with open(path, 'wb') as fd: pickle.dump(self._attributes, fd) def __getitem__(self, key): return self._attributes[key] def __setitem__(self, key, val): self._attributes[key] = val def __contains__(self, key): return key in self._attributes # VO XML def download_xml_content(self): path = self.get_vo_xml_path() if 'network_error' not in self._attributes: self['network_error'] = None if os.path.exists(path): return def fail(reason): reason = str(reason) with open(path, 'wb') as fd: fd.write(f'FAILED: {reason}\n'.encode('utf-8')) self['network_error'] = reason r = None try: r = urllib.request.urlopen( self.url.decode('ascii'), timeout=self.timeout) except urllib.error.URLError as e: if hasattr(e, 'reason'): reason = e.reason else: reason = e.code fail(reason) return except http.client.HTTPException as e: fail(f"HTTPException: {str(e)}") return except (socket.timeout, socket.error) as e: fail("Timeout") return if r is None: fail("Invalid URL") return try: content = r.read() except socket.timeout as e: fail("Timeout") return else: r.close() with open(path, 'wb') as fd: fd.write(content) def get_xml_content(self): path = self.get_vo_xml_path() if not os.path.exists(path): self.download_xml_content() with open(path, 'rb') as fd: content = fd.read() return content def validate_vo(self): path = self.get_vo_xml_path() if not os.path.exists(path): self.download_xml_content() self['version'] = '' if 'network_error' in self and self['network_error'] is not None: self['nwarnings'] = 0 self['nexceptions'] = 0 self['warnings'] = [] self['xmllint'] = None self['warning_types'] = set() return nexceptions = 0 nwarnings = 0 t = None lines = [] with open(path, 'rb') as input: with warnings.catch_warnings(record=True) as warning_lines: try: t = table.parse(input, verify='warn', filename=path) except (ValueError, TypeError, ExpatError) as e: lines.append(str(e)) nexceptions += 1 lines = [str(x.message) for x in warning_lines] + lines if t is not None: self['version'] = version = t.version else: self['version'] = version = "1.0" if 'xmllint' not in self: # Now check the VO schema based on the version in # the file. try: success, stdout, stderr = xmlutil.validate_schema(path, version) # OSError is raised when XML file eats all memory and # system sends kill signal. except OSError as e: self['xmllint'] = None self['xmllint_content'] = str(e) else: self['xmllint'] = (success == 0) self['xmllint_content'] = stderr warning_types = set() for line in lines: w = exceptions.parse_vowarning(line) if w['is_warning']: nwarnings += 1 if w['is_exception']: nexceptions += 1 warning_types.add(w['warning']) self['nwarnings'] = nwarnings self['nexceptions'] = nexceptions self['warnings'] = lines self['warning_types'] = warning_types def has_warning(self, warning_code): return warning_code in self['warning_types'] def match_expectations(self): if 'network_error' not in self: self['network_error'] = None if self['expected'] == 'good': return (not self['network_error'] and self['nwarnings'] == 0 and self['nexceptions'] == 0) elif self['expected'] == 'incorrect': return (not self['network_error'] and (self['nwarnings'] > 0 or self['nexceptions'] > 0)) elif self['expected'] == 'broken': return self['network_error'] is not None def validate_with_votlint(self, path_to_stilts_jar): filename = self.get_vo_xml_path() p = subprocess.Popen( f"java -jar {path_to_stilts_jar} votlint validate=false {filename}", shell=True, stdout=subprocess.PIPE, stderr=subprocess.PIPE) stdout, stderr = p.communicate() if len(stdout) or p.returncode: self['votlint'] = False else: self['votlint'] = True self['votlint_content'] = stdout def get_result_subsets(results, root, s=None): all_results = [] correct = [] not_expected = [] fail_schema = [] schema_mismatch = [] fail_votlint = [] votlint_mismatch = [] network_failures = [] version_10 = [] version_11 = [] version_12 = [] version_unknown = [] has_warnings = [] warning_set = {} has_exceptions = [] exception_set = {} for url in results: if s: next(s) if isinstance(url, Result): x = url else: x = Result(url, root=root) all_results.append(x) if (x['nwarnings'] == 0 and x['nexceptions'] == 0 and x['xmllint'] is True): correct.append(x) if not x.match_expectations(): not_expected.append(x) if x['xmllint'] is False: fail_schema.append(x) if (x['xmllint'] is False and x['nwarnings'] == 0 and x['nexceptions'] == 0): schema_mismatch.append(x) if 'votlint' in x and x['votlint'] is False: fail_votlint.append(x) if 'network_error' not in x: x['network_error'] = None if (x['nwarnings'] == 0 and x['nexceptions'] == 0 and x['network_error'] is None): votlint_mismatch.append(x) if 'network_error' in x and x['network_error'] is not None: network_failures.append(x) version = x['version'] if version == '1.0': version_10.append(x) elif version == '1.1': version_11.append(x) elif version == '1.2': version_12.append(x) else: version_unknown.append(x) if x['nwarnings'] > 0: has_warnings.append(x) for warning in x['warning_types']: if (warning is not None and len(warning) == 3 and warning.startswith('W')): warning_set.setdefault(warning, []) warning_set[warning].append(x) if x['nexceptions'] > 0: has_exceptions.append(x) for exc in x['warning_types']: if exc is not None and len(exc) == 3 and exc.startswith('E'): exception_set.setdefault(exc, []) exception_set[exc].append(x) warning_set = list(warning_set.items()) warning_set.sort() exception_set = list(exception_set.items()) exception_set.sort() tables = [ ('all', 'All tests', all_results), ('correct', 'Correct', correct), ('unexpected', 'Unexpected', not_expected), ('schema', 'Invalid against schema', fail_schema), ('schema_mismatch', 'Invalid against schema/Passed vo.table', schema_mismatch, ['ul']), ('fail_votlint', 'Failed votlint', fail_votlint), ('votlint_mismatch', 'Failed votlint/Passed vo.table', votlint_mismatch, ['ul']), ('network_failures', 'Network failures', network_failures), ('version1.0', 'Version 1.0', version_10), ('version1.1', 'Version 1.1', version_11), ('version1.2', 'Version 1.2', version_12), ('version_unknown', 'Version unknown', version_unknown), ('warnings', 'Warnings', has_warnings)] for warning_code, warning in warning_set: if s: next(s) warning_class = getattr(exceptions, warning_code, None) if warning_class: warning_descr = warning_class.get_short_name() tables.append( (warning_code, f'{warning_code}: {warning_descr}', warning, ['ul', 'li'])) tables.append( ('exceptions', 'Exceptions', has_exceptions)) for exception_code, exc in exception_set: if s: next(s) exception_class = getattr(exceptions, exception_code, None) if exception_class: exception_descr = exception_class.get_short_name() tables.append( (exception_code, f'{exception_code}: {exception_descr}', exc, ['ul', 'li'])) return tables
b84763cd1372d76a863bf68f389263bff9eca33159338a24731a1344482e027c
# Licensed under a 3-clause BSD style license - see LICENSE.rst """ Validates a large collection of web-accessible VOTable files, and generates a report as a directory tree of HTML files. """ # STDLIB import os # LOCAL from astropy.utils.data import get_pkg_data_filename from . import html from . import result __all__ = ['make_validation_report'] def get_srcdir(): return os.path.dirname(__file__) def get_urls(destdir, s): import gzip types = ['good', 'broken', 'incorrect'] seen = set() urls = [] for type in types: filename = get_pkg_data_filename( f'data/urls/cone.{type}.dat.gz') with gzip.open(filename, 'rb') as fd: for url in fd.readlines(): next(s) url = url.strip() if url not in seen: with result.Result(url, root=destdir) as r: r['expected'] = type urls.append(url) seen.add(url) return urls def download(args): url, destdir = args with result.Result(url, root=destdir) as r: r.download_xml_content() def validate_vo(args): url, destdir = args with result.Result(url, root=destdir) as r: r.validate_vo() def votlint_validate(args): path_to_stilts_jar, url, destdir = args with result.Result(url, root=destdir) as r: if r['network_error'] is None: r.validate_with_votlint(path_to_stilts_jar) def write_html_result(args): url, destdir = args with result.Result(url, root=destdir) as r: html.write_result(r) def write_subindex(args): subset, destdir, total = args html.write_index_table(destdir, *subset, total=total) def make_validation_report( urls=None, destdir='astropy.io.votable.validator.results', multiprocess=True, stilts=None): """ Validates a large collection of web-accessible VOTable files. Generates a report as a directory tree of HTML files. Parameters ---------- urls : list of str, optional If provided, is a list of HTTP urls to download VOTable files from. If not provided, a built-in set of ~22,000 urls compiled by HEASARC will be used. destdir : path-like, optional The directory to write the report to. By default, this is a directory called ``'results'`` in the current directory. If the directory does not exist, it will be created. multiprocess : bool, optional If `True` (default), perform validations in parallel using all of the cores on this machine. stilts : path-like, optional To perform validation with ``votlint`` from the the Java-based `STILTS <http://www.star.bris.ac.uk/~mbt/stilts/>`_ VOTable parser, in addition to `astropy.io.votable`, set this to the path of the ``'stilts.jar'`` file. ``java`` on the system shell path will be used to run it. Notes ----- Downloads of each given URL will be performed only once and cached locally in *destdir*. To refresh the cache, remove *destdir* first. """ from astropy.utils.console import (color_print, ProgressBar, Spinner) if stilts is not None: if not os.path.exists(stilts): raise ValueError( f'{stilts} does not exist.') destdir = os.path.abspath(destdir) if urls is None: with Spinner('Loading URLs', 'green') as s: urls = get_urls(destdir, s) else: color_print('Marking URLs', 'green') for url in ProgressBar.iterate(urls): with result.Result(url, root=destdir) as r: r['expected'] = type args = [(url, destdir) for url in urls] color_print('Downloading VO files', 'green') ProgressBar.map( download, args, multiprocess=multiprocess) color_print('Validating VO files', 'green') ProgressBar.map( validate_vo, args, multiprocess=multiprocess) if stilts is not None: color_print('Validating with votlint', 'green') votlint_args = [(stilts, x, destdir) for x in urls] ProgressBar.map( votlint_validate, votlint_args, multiprocess=multiprocess) color_print('Generating HTML files', 'green') ProgressBar.map( write_html_result, args, multiprocess=multiprocess) with Spinner('Grouping results', 'green') as s: subsets = result.get_result_subsets(urls, destdir, s) color_print('Generating index', 'green') html.write_index(subsets, urls, destdir) color_print('Generating subindices', 'green') subindex_args = [(subset, destdir, len(urls)) for subset in subsets] ProgressBar.map( write_subindex, subindex_args, multiprocess=multiprocess)
5b296d948953d223920e2793842022832341423d8fa4cc9b0963e2730d64b313
# Licensed under a 3-clause BSD style license - see LICENSE.rst from .main import make_validation_report from . import main __doc__ = main.__doc__ del main
dacf6530d9c444d1edff4a6d0812ad2cccd9748b5e76b6b37f2b75f44e80f577
# Licensed under a 3-clause BSD style license - see LICENSE.rst # STDLIB import contextlib from math import ceil import os import re # ASTROPY from astropy.utils.xml.writer import XMLWriter, xml_escape from astropy import online_docs_root # VO from astropy.io.votable import exceptions html_header = """<?xml version="1.0" encoding="UTF-8"?> <!DOCTYPE html PUBLIC "-//W3C//DTD XHTML Basic 1.0//EN" "http://www.w3.org/TR/xhtml-basic/xhtml-basic10.dtd"> """ default_style = """ body { font-family: sans-serif } a { text-decoration: none } .highlight { color: red; font-weight: bold; text-decoration: underline; } .green { background-color: #ddffdd } .red { background-color: #ffdddd } .yellow { background-color: #ffffdd } tr:hover { background-color: #dddddd } table { border-width: 1px; border-spacing: 0px; border-style: solid; border-color: gray; border-collapse: collapse; background-color: white; padding: 5px; } table th { border-width: 1px; padding: 5px; border-style: solid; border-color: gray; } table td { border-width: 1px; padding: 5px; border-style: solid; border-color: gray; } """ @contextlib.contextmanager def make_html_header(w): w.write(html_header) with w.tag('html', xmlns="http://www.w3.org/1999/xhtml", lang="en-US"): with w.tag('head'): w.element('title', 'VO Validation results') w.element('style', default_style) with w.tag('body'): yield def write_source_line(w, line, nchar=0): part1 = xml_escape(line[:nchar].decode('utf-8')) char = xml_escape(line[nchar:nchar+1].decode('utf-8')) part2 = xml_escape(line[nchar+1:].decode('utf-8')) w.write(' ') w.write(part1) w.write(f'<span class="highlight">{char}</span>') w.write(part2) w.write('\n\n') def write_warning(w, line, xml_lines): warning = exceptions.parse_vowarning(line) if not warning['is_something']: w.data(line) else: w.write(f"Line {warning['nline']:d}: ") if warning['warning']: w.write('<a href="{}/{}">{}</a>: '.format( online_docs_root, warning['doc_url'], warning['warning'])) msg = warning['message'] if not isinstance(warning['message'], str): msg = msg.decode('utf-8') w.write(xml_escape(msg)) w.write('\n') if 1 <= warning['nline'] < len(xml_lines): write_source_line(w, xml_lines[warning['nline'] - 1], warning['nchar']) def write_votlint_warning(w, line, xml_lines): match = re.search(r"(WARNING|ERROR|INFO) \(l.(?P<line>[0-9]+), c.(?P<column>[0-9]+)\): (?P<rest>.*)", line) if match: w.write('Line {:d}: {}\n'.format( int(match.group('line')), xml_escape(match.group('rest')))) write_source_line( w, xml_lines[int(match.group('line')) - 1], int(match.group('column')) - 1) else: w.data(line) w.data('\n') def write_result(result): if 'network_error' in result and result['network_error'] is not None: return xml = result.get_xml_content() xml_lines = xml.splitlines() path = os.path.join(result.get_dirpath(), 'index.html') with open(path, 'w', encoding='utf-8') as fd: w = XMLWriter(fd) with make_html_header(w): with w.tag('p'): with w.tag('a', href='vo.xml'): w.data(result.url.decode('ascii')) w.element('hr') with w.tag('pre'): w._flush() for line in result['warnings']: write_warning(w, line, xml_lines) if result['xmllint'] is False: w.element('hr') w.element('p', 'xmllint results:') content = result['xmllint_content'] if not isinstance(content, str): content = content.decode('ascii') content = content.replace(result.get_dirpath() + '/', '') with w.tag('pre'): w.data(content) if 'votlint' in result: if result['votlint'] is False: w.element('hr') w.element('p', 'votlint results:') content = result['votlint_content'] if not isinstance(content, str): content = content.decode('ascii') with w.tag('pre'): w._flush() for line in content.splitlines(): write_votlint_warning(w, line, xml_lines) def write_result_row(w, result): with w.tag('tr'): with w.tag('td'): if ('network_error' in result and result['network_error'] is not None): w.data(result.url.decode('ascii')) else: w.element('a', result.url.decode('ascii'), href=f'{result.get_htmlpath()}/index.html') if 'network_error' in result and result['network_error'] is not None: w.element('td', str(result['network_error']), attrib={'class': 'red'}) w.element('td', '-') w.element('td', '-') w.element('td', '-') w.element('td', '-') else: w.element('td', '-', attrib={'class': 'green'}) if result['nexceptions']: cls = 'red' msg = 'Fatal' elif result['nwarnings']: cls = 'yellow' msg = str(result['nwarnings']) else: cls = 'green' msg = '-' w.element('td', msg, attrib={'class': cls}) msg = result['version'] if result['xmllint'] is None: cls = '' elif result['xmllint'] is False: cls = 'red' else: cls = 'green' w.element('td', msg, attrib={'class': cls}) if result['expected'] == 'good': cls = 'green' msg = '-' elif result['expected'] == 'broken': cls = 'red' msg = 'net' elif result['expected'] == 'incorrect': cls = 'yellow' msg = 'invalid' w.element('td', msg, attrib={'class': cls}) if 'votlint' in result: if result['votlint']: cls = 'green' msg = 'Passed' else: cls = 'red' msg = 'Failed' else: cls = '' msg = '?' w.element('td', msg, attrib={'class': cls}) def write_table(basename, name, results, root="results", chunk_size=500): def write_page_links(j): if npages <= 1: return with w.tag('center'): if j > 0: w.element('a', '<< ', href=f'{basename}_{j - 1:02d}.html') for i in range(npages): if i == j: w.data(str(i+1)) else: w.element( 'a', str(i+1), href=f'{basename}_{i:02d}.html') w.data(' ') if j < npages - 1: w.element('a', '>>', href=f'{basename}_{j + 1:02d}.html') npages = int(ceil(float(len(results)) / chunk_size)) for i, j in enumerate(range(0, max(len(results), 1), chunk_size)): subresults = results[j:j+chunk_size] path = os.path.join(root, f'{basename}_{i:02d}.html') with open(path, 'w', encoding='utf-8') as fd: w = XMLWriter(fd) with make_html_header(w): write_page_links(i) w.element('h2', name) with w.tag('table'): with w.tag('tr'): w.element('th', 'URL') w.element('th', 'Network') w.element('th', 'Warnings') w.element('th', 'Schema') w.element('th', 'Expected') w.element('th', 'votlint') for result in subresults: write_result_row(w, result) write_page_links(i) def add_subset(w, basename, name, subresults, inside=['p'], total=None): with w.tag('tr'): subresults = list(subresults) if total is None: total = len(subresults) if total == 0: # pragma: no cover percentage = 0.0 else: percentage = (float(len(subresults)) / total) with w.tag('td'): for element in inside: w.start(element) w.element('a', name, href=f'{basename}_00.html') for element in reversed(inside): w.end(element) numbers = f'{len(subresults):d} ({percentage:.2%})' with w.tag('td'): w.data(numbers) def write_index(subsets, results, root='results'): path = os.path.join(root, 'index.html') with open(path, 'w', encoding='utf-8') as fd: w = XMLWriter(fd) with make_html_header(w): w.element('h1', 'VO Validation results') with w.tag('table'): for subset in subsets: add_subset(w, *subset, total=len(results)) def write_index_table(root, basename, name, subresults, inside=None, total=None, chunk_size=500): if total is None: total = len(subresults) percentage = (float(len(subresults)) / total) numbers = f'{len(subresults):d} ({percentage:.2%})' write_table(basename, name + ' ' + numbers, subresults, root, chunk_size)
80796af0bff9732d7150410b8fec3b0b5cc6c56b40fa16440da556cda069f6c4
import pytest # Renamed these imports so that them being in the namespace will not # cause pytest 3 to discover them as tests and then complain that # they have __init__ defined. from astropy.tests.runner import TestRunner as _TestRunner from astropy.tests.runner import TestRunnerBase as _TestRunnerBase from astropy.tests.runner import keyword def test_disable_kwarg(): class no_remote_data(_TestRunner): @keyword() def remote_data(self, remote_data, kwargs): return NotImplemented r = no_remote_data('.') with pytest.raises(TypeError): r.run_tests(remote_data='bob') def test_wrong_kwarg(): r = _TestRunner('.') with pytest.raises(TypeError): r.run_tests(spam='eggs') def test_invalid_kwarg(): class bad_return(_TestRunnerBase): @keyword() def remote_data(self, remote_data, kwargs): return 'bob' r = bad_return('.') with pytest.raises(TypeError): r.run_tests(remote_data='bob') def test_new_kwarg(): class Spam(_TestRunnerBase): @keyword() def spam(self, spam, kwargs): return [spam] r = Spam('.') args = r._generate_args(spam='spam') assert ['spam'] == args def test_priority(): class Spam(_TestRunnerBase): @keyword() def spam(self, spam, kwargs): return [spam] @keyword(priority=1) def eggs(self, eggs, kwargs): return [eggs] r = Spam('.') args = r._generate_args(spam='spam', eggs='eggs') assert ['eggs', 'spam'] == args def test_docs(): class Spam(_TestRunnerBase): @keyword() def spam(self, spam, kwargs): """ Spam Spam Spam """ return [spam] @keyword() def eggs(self, eggs, kwargs): """ eggs asldjasljd """ return [eggs] r = Spam('.') assert "eggs" in r.run_tests.__doc__ assert "Spam Spam Spam" in r.run_tests.__doc__
4fd06d604b4b81f42a9b155b083e5de6bbf1fb04d576197e33c37a61ea48c303
import pytest from astropy import units as u from astropy.tests.helper import assert_quantity_allclose def test_assert_quantity_allclose(): assert_quantity_allclose([1, 2], [1, 2]) assert_quantity_allclose([1, 2] * u.m, [100, 200] * u.cm) assert_quantity_allclose([1, 2] * u.m, [101, 201] * u.cm, atol=2 * u.cm) with pytest.raises(AssertionError) as exc: assert_quantity_allclose([1, 2] * u.m, [90, 200] * u.cm) assert exc.value.args[0].startswith("\nNot equal to tolerance") with pytest.raises(AssertionError): assert_quantity_allclose([1, 2] * u.m, [101, 201] * u.cm, atol=0.5 * u.cm) with pytest.raises(u.UnitsError) as exc: assert_quantity_allclose([1, 2] * u.m, [100, 200]) assert exc.value.args[0] == "Units for 'desired' () and 'actual' (m) are not convertible" with pytest.raises(u.UnitsError) as exc: assert_quantity_allclose([1, 2], [100, 200] * u.cm) assert exc.value.args[0] == "Units for 'desired' (cm) and 'actual' () are not convertible" with pytest.raises(u.UnitsError) as exc: assert_quantity_allclose([1, 2] * u.m, [100, 200] * u.cm, atol=0.3) assert exc.value.args[0] == "Units for 'atol' () and 'actual' (m) are not convertible" with pytest.raises(u.UnitsError) as exc: assert_quantity_allclose([1, 2], [1, 2], atol=0.3 * u.m) assert exc.value.args[0] == "Units for 'atol' (m) and 'actual' () are not convertible" with pytest.raises(u.UnitsError) as exc: assert_quantity_allclose([1, 2], [1, 2], rtol=0.3 * u.m) assert exc.value.args[0] == "'rtol' should be dimensionless"
46b847a0f190eda3332c5d240e1fa98078e52a719f8e95632e01cc9430ea9afc
# -*- coding: utf-8 -*- # Licensed under a 3-clause BSD style license - see LICENSE.rst import pytest # test helper.run_tests function from astropy import test as run_tests # run_tests should raise ValueError when asked to run on a module it can't find def test_module_not_found(): with pytest.raises(ValueError): run_tests(package='fake.module') # run_tests should raise ValueError when passed an invalid pastebin= option def test_pastebin_keyword(): with pytest.raises(ValueError): run_tests(pastebin='not_an_option') def test_unicode_literal_conversion(): assert isinstance('ångström', str)
003093ddbe516fab23534af692b00cb1c6b9b68f8ffa745c954a5aba4bd204bb
# Licensed under a 3-clause BSD style license - see LICENSE.rst import pkgutil def test_imports(): """ This just imports all modules in astropy, making sure they don't have any dependencies that sneak through """ def onerror(name): # We should raise any legitimate error that occurred, but not # any warnings which happen to be caught because of our pytest # settings (e.g., DeprecationWarning). try: raise except Warning: pass for imper, nm, ispkg in pkgutil.walk_packages(['astropy'], 'astropy.', onerror=onerror): imper.find_spec(nm) def test_toplevel_namespace(): import astropy d = dir(astropy) assert 'os' not in d assert 'log' in d assert 'test' in d assert 'sys' not in d
2c1e56531ff092554294f57b32a0ce8b354acbf5a219995ae2a07f53021cdbae
from astropy.timeseries.periodograms.base import * # noqa from astropy.timeseries.periodograms.lombscargle import * # noqa from astropy.timeseries.periodograms.bls import * # noqa
3982d22bd6fe88980ffeb8fb9ea4acb70ff8faa9bd1abe926f2314ef028841c0
import abc import numpy as np from astropy.timeseries import TimeSeries, BinnedTimeSeries __all__ = ['BasePeriodogram'] class BasePeriodogram: @abc.abstractmethod def __init__(self, t, y, dy=None): pass @classmethod def from_timeseries(cls, timeseries, signal_column_name=None, uncertainty=None, **kwargs): """ Initialize a periodogram from a time series object. If a binned time series is passed, the time at the center of the bins is used. Also note that this method automatically gets rid of NaN/undefined values when initializing the periodogram. Parameters ---------- signal_column_name : str The name of the column containing the signal values to use. uncertainty : str or float or `~astropy.units.Quantity`, optional The name of the column containing the errors on the signal, or the value to use for the error, if a scalar. **kwargs Additional keyword arguments are passed to the initializer for this periodogram class. """ if signal_column_name is None: raise ValueError('signal_column_name should be set to a valid column name') y = timeseries[signal_column_name] keep = ~np.isnan(y) if isinstance(uncertainty, str): dy = timeseries[uncertainty] keep &= ~np.isnan(dy) dy = dy[keep] else: dy = uncertainty if isinstance(timeseries, TimeSeries): time = timeseries.time elif isinstance(timeseries, BinnedTimeSeries): time = timeseries.time_bin_center else: raise TypeError('Input time series should be an instance of ' 'TimeSeries or BinnedTimeSeries') return cls(time[keep], y[keep], dy=dy, **kwargs)
47d264058631cb696b4223cd10b57ae68e3c15312ee2f5f1aef7a340a43e7d5c
# Licensed under a 3-clause BSD style license - see LICENSE.rst from .kepler import *
45a497b417aa20f94636a4ad6f62cf6ae12f034183b3bbaaab8ac4fec51a2182
# Licensed under a 3-clause BSD style license - see LICENSE.rst import warnings import numpy as np from astropy.io import registry, fits from astropy.table import Table, MaskedColumn from astropy.time import Time, TimeDelta from astropy.timeseries.sampled import TimeSeries __all__ = ["kepler_fits_reader"] def kepler_fits_reader(filename): """ This serves as the FITS reader for KEPLER or TESS files within astropy-timeseries. This function should generally not be called directly, and instead this time series reader should be accessed with the :meth:`~astropy.timeseries.TimeSeries.read` method:: >>> from astropy.timeseries import TimeSeries >>> ts = TimeSeries.read('kplr33122.fits', format='kepler.fits') # doctest: +SKIP Parameters ---------- filename : `str` or `pathlib.Path` File to load. Returns ------- ts : `~astropy.timeseries.TimeSeries` Data converted into a TimeSeries. """ hdulist = fits.open(filename) # Get the lightcurve HDU telescope = hdulist[0].header['telescop'].lower() if telescope == 'tess': hdu = hdulist['LIGHTCURVE'] elif telescope == 'kepler': hdu = hdulist[1] else: raise NotImplementedError("{} is not implemented, only KEPLER or TESS are " "supported through this reader".format(hdulist[0].header['telescop'])) if hdu.header['EXTVER'] > 1: raise NotImplementedError("Support for {} v{} files not yet " "implemented".format(hdu.header['TELESCOP'], hdu.header['EXTVER'])) # Check time scale if hdu.header['TIMESYS'] != 'TDB': raise NotImplementedError("Support for {} time scale not yet " "implemented in {} reader".format(hdu.header['TIMESYS'], hdu.header['TELESCOP'])) tab = Table.read(hdu, format='fits') # Some KEPLER files have a T column instead of TIME. if "T" in tab.colnames: tab.rename_column("T", "TIME") for colname in tab.colnames: unit = tab[colname].unit # Make masks nan for any column which will turn into a Quantity # later. TODO: remove once we support Masked Quantities properly? if unit and isinstance(tab[colname], MaskedColumn): tab[colname] = tab[colname].filled(np.nan) # Fix units if unit == 'e-/s': tab[colname].unit = 'electron/s' if unit == 'pixels': tab[colname].unit = 'pixel' # Rename columns to lowercase tab.rename_column(colname, colname.lower()) # Filter out NaN rows nans = np.isnan(tab['time'].data) if np.any(nans): warnings.warn(f'Ignoring {np.sum(nans)} rows with NaN times') tab = tab[~nans] # Time column is dependent on source and we correct it here reference_date = Time(hdu.header['BJDREFI'], hdu.header['BJDREFF'], scale=hdu.header['TIMESYS'].lower(), format='jd') time = reference_date + TimeDelta(tab['time'].data) time.format = 'isot' # Remove original time column tab.remove_column('time') hdulist.close() return TimeSeries(time=time, data=tab) registry.register_reader('kepler.fits', TimeSeries, kepler_fits_reader) registry.register_reader('tess.fits', TimeSeries, kepler_fits_reader)
b5ff2cd9a80bcd4fb17b3d41127b29682d1df87e67dca8fabd56f33401594a84
# Licensed under a 3-clause BSD style license - see LICENSE.rst import pytest from numpy.testing import assert_equal from astropy import units as u from astropy.table import Table, QTable, vstack, join from astropy.time import Time from astropy.timeseries.sampled import TimeSeries from astropy.timeseries.binned import BinnedTimeSeries INPUT_TIME = Time(['2016-03-22T12:30:31', '2015-01-21T12:30:32', '2016-03-22T12:30:40']) PLAIN_TABLE = Table([[1., 2., 11.], [3, 4, 1], ['x', 'y', 'z']], names=['a', 'b', 'c']) class CommonTimeSeriesTests: def test_stacking(self): ts = vstack([self.series, self.series]) assert isinstance(ts, self.series.__class__) def test_row_slicing(self): ts = self.series[:2] assert isinstance(ts, self.series.__class__) def test_row_indexing(self): self.series[0][self.time_attr] == Time('2015-01-21T12:30:32') self.series[self.time_attr][0] == Time('2015-01-21T12:30:32') def test_column_indexing(self): assert_equal(self.series['a'], [1, 2, 11]) def test_column_slicing_notime(self): tab = self.series['a', 'b'] assert not isinstance(tab, self.series.__class__) assert isinstance(tab, QTable) def test_add_column(self): self.series['d'] = [1, 2, 3] def test_add_row(self): self.series.add_row(self._row) def test_set_unit(self): self.series['d'] = [1, 2, 3] self.series['d'].unit = 's' def test_replace_column(self): self.series.replace_column('c', [1, 3, 4]) def test_required_after_stacking(self): # When stacking, we have to temporarily relax the checking of the # columns in the time series, but we need to make sure that the # checking works again afterwards ts = vstack([self.series, self.series]) with pytest.raises(ValueError) as exc: ts.remove_columns(ts.colnames) assert 'TimeSeries object is invalid' in exc.value.args[0] def test_join(self): ts_other = self.series.copy() ts_other.add_row(self._row) ts_other['d'] = [11, 22, 33, 44] ts_other.remove_columns(['a', 'b']) ts = join(self.series, ts_other) assert len(ts) == len(self.series) ts = join(self.series, ts_other, join_type='outer') assert len(ts) == len(ts_other) class TestTimeSeries(CommonTimeSeriesTests): _row = {'time': '2016-03-23T12:30:40', 'a': 1., 'b': 2, 'c': 'a'} def setup_method(self, method): self.series = TimeSeries(time=INPUT_TIME, data=PLAIN_TABLE) self.time_attr = 'time' def test_column_slicing(self): ts = self.series['time', 'a'] assert isinstance(ts, TimeSeries) class TestBinnedTimeSeries(CommonTimeSeriesTests): _row = {'time_bin_start': '2016-03-23T12:30:40', 'time_bin_size': 2 * u.s, 'a': 1., 'b': 2, 'c': 'a'} def setup_method(self, method): self.series = BinnedTimeSeries(time_bin_start=INPUT_TIME, time_bin_size=3 * u.s, data=PLAIN_TABLE) self.time_attr = 'time_bin_start' def test_column_slicing(self): ts = self.series['time_bin_start', 'time_bin_size', 'a'] assert isinstance(ts, BinnedTimeSeries)
2e0019f19e1d6989201ecbb3a30483766bd4adfffcfad6af05f1343eb9f47f51
# Licensed under a 3-clause BSD style license - see LICENSE.rst import sys import pytest import numpy as np from numpy.testing import assert_equal from astropy import units as u from astropy.time import Time from astropy.utils.exceptions import AstropyUserWarning from astropy.timeseries.sampled import TimeSeries from astropy.timeseries.downsample import aggregate_downsample, reduceat INPUT_TIME = Time(['2016-03-22T12:30:31', '2016-03-22T12:30:32', '2016-03-22T12:30:33', '2016-03-22T12:30:34', '2016-03-22T12:30:35']) def test_reduceat(): add_output = np.add.reduceat(np.arange(8),[0, 4, 1, 5, 2, 6, 3, 7]) # Similar to np.add for an array input. sum_output = reduceat(np.arange(8), [0, 4, 1, 5, 2, 6, 3, 7], np.sum) assert_equal(sum_output, add_output) mean_output = reduceat(np.arange(8), np.arange(8)[::2], np.mean) assert_equal(mean_output, np.array([0.5, 2.5, 4.5, 6.5])) nanmean_output = reduceat(np.arange(8), [0, 4, 1, 5, 2, 6, 3, 7], np.mean) assert_equal(nanmean_output, np.array([1.5, 4, 2.5, 5, 3.5, 6, 4.5, 7.])) assert_equal(reduceat(np.arange(8), np.arange(8)[::2], np.mean), reduceat(np.arange(8), np.arange(8)[::2], np.nanmean)) def test_timeseries_invalid(): with pytest.raises(TypeError) as exc: aggregate_downsample(None) assert exc.value.args[0] == ("time_series should be a TimeSeries") def test_time_bin_invalid(): # Make sure to raise the right exception when time_bin_* is passed incorrectly. with pytest.raises(TypeError, match=r"'time_bin_size' should be a Quantity or a TimeDelta"): aggregate_downsample(TimeSeries(), time_bin_size=1) def test_binning_arg_invalid(): ts = TimeSeries(time=INPUT_TIME, data=[[1, 2, 3, 4, 5]], names=['a']) with pytest.raises(TypeError, match=r"With single 'time_bin_start' either 'n_bins', " "'time_bin_size' or time_bin_end' must be provided"): aggregate_downsample(ts) def test_time_bin_conversion(): ts = TimeSeries(time=INPUT_TIME, data=[[1, 2, 3, 4, 5]], names=['a']) # Make sure time_bin_start and time_bin_end are properly converted to Time down_start = aggregate_downsample(ts, time_bin_start=['2016-03-22T12:30:31'], time_bin_size=[1]*u.s) assert_equal(down_start.time_bin_start.isot, ['2016-03-22T12:30:31.000']) down_end = aggregate_downsample(ts, time_bin_start=['2016-03-22T12:30:31', '2016-03-22T12:30:33'], time_bin_end='2016-03-22T12:30:34') assert_equal(down_end.time_bin_end.isot, ['2016-03-22T12:30:33.000', '2016-03-22T12:30:34.000']) def test_time_bin_end_auto(): ts = TimeSeries(time=INPUT_TIME, data=[[1, 2, 3, 4, 5]], names=['a']) # Interpret `time_bin_end` as the end of timeseries when `time_bin_start` is # an array and `time_bin_size` is not provided down_auto_end = aggregate_downsample(ts, time_bin_start=['2016-03-22T12:30:31', '2016-03-22T12:30:33']) assert_equal(down_auto_end.time_bin_end.isot, ['2016-03-22T12:30:33.000', '2016-03-22T12:30:35.000']) def test_time_bin_start_array(): ts = TimeSeries(time=INPUT_TIME, data=[[1, 2, 3, 4, 5]], names=['a']) # When `time_bin_end` is an array and `time_bin_start` is not provided, `time_bin_start` is converted # to an array with its first element set to the start of the timeseries and rest populated using #`time_bin_end`. This case is separately tested since `BinnedTimeSeries` allows `time_bin_end` to # be an array only if `time_bin_start` is an array. down_start_array = aggregate_downsample(ts, time_bin_end=['2016-03-22T12:30:33', '2016-03-22T12:30:35']) assert_equal(down_start_array.time_bin_start.isot, ['2016-03-22T12:30:31.000', '2016-03-22T12:30:33.000']) def test_nbins(): ts = TimeSeries(time=INPUT_TIME, data=[[1, 2, 3, 4, 5]], names=['a']) # n_bins should default to the number needed to fit all the original points down_nbins = aggregate_downsample(ts, n_bins=2) assert_equal(down_nbins.time_bin_start.isot, ['2016-03-22T12:30:31.000', '2016-03-22T12:30:33.000']) # Regression test for #12527: ignore `n_bins` if `time_bin_start` is an array n_times = len(INPUT_TIME) for n_bins in [0, n_times - 1, n_times, n_times + 1]: down_nbins = aggregate_downsample(ts, time_bin_start=INPUT_TIME, n_bins=n_bins) assert len(down_nbins) == n_times def test_downsample(): ts = TimeSeries(time=INPUT_TIME, data=[[1, 2, 3, 4, 5]], names=['a']) ts_units = TimeSeries(time=INPUT_TIME, data=[[1, 2, 3, 4, 5] * u.count], names=['a']) # Avoid precision problems with floating-point comparisons on 32bit if sys.maxsize > 2**32: # 64 bit time_bin_incr = 1 * u.s time_bin_start = None else: # 32 bit time_bin_incr = (1 - 1e-6) * u.s time_bin_start = ts.time[0] - 1 * u.ns down_1 = aggregate_downsample(ts, time_bin_size=time_bin_incr, time_bin_start=time_bin_start) u.isclose(down_1.time_bin_size, [1, 1, 1, 1, 1]*time_bin_incr) assert_equal(down_1.time_bin_start.isot, Time(['2016-03-22T12:30:31.000', '2016-03-22T12:30:32.000', '2016-03-22T12:30:33.000', '2016-03-22T12:30:34.000', '2016-03-22T12:30:35.000'])) assert_equal(down_1["a"].data.data, np.array([1, 2, 3, 4, 5])) down_2 = aggregate_downsample(ts, time_bin_size=2*time_bin_incr, time_bin_start=time_bin_start) u.isclose(down_2.time_bin_size, [2, 2, 2]*time_bin_incr) assert_equal(down_2.time_bin_start.isot, Time(['2016-03-22T12:30:31.000', '2016-03-22T12:30:33.000', '2016-03-22T12:30:35.000'])) assert_equal(down_2["a"].data.data, np.array([1, 3, 5])) down_3 = aggregate_downsample(ts, time_bin_size=3*time_bin_incr, time_bin_start=time_bin_start) u.isclose(down_3.time_bin_size, [3, 3]*time_bin_incr) assert_equal(down_3.time_bin_start.isot, Time(['2016-03-22T12:30:31.000', '2016-03-22T12:30:34.000'])) assert_equal(down_3["a"].data.data, np.array([2, 4])) down_4 = aggregate_downsample(ts, time_bin_size=4*time_bin_incr, time_bin_start=time_bin_start) u.isclose(down_4.time_bin_size, [4, 4]*time_bin_incr) assert_equal(down_4.time_bin_start.isot, Time(['2016-03-22T12:30:31.000', '2016-03-22T12:30:35.000'])) assert_equal(down_4["a"].data.data, np.array([2, 5])) down_units = aggregate_downsample(ts_units, time_bin_size=4*time_bin_incr, time_bin_start=time_bin_start) u.isclose(down_units.time_bin_size, [4, 4]*time_bin_incr) assert_equal(down_units.time_bin_start.isot, Time(['2016-03-22T12:30:31.000', '2016-03-22T12:30:35.000'])) assert down_units["a"].unit.name == 'ct' assert_equal(down_units["a"].data, np.array([2.5, 5.0])) # Contiguous bins with uneven bin sizes: `time_bin_size` is an array down_uneven_bins = aggregate_downsample(ts, time_bin_size=[2, 1, 1]*time_bin_incr, time_bin_start=time_bin_start) u.isclose(down_uneven_bins.time_bin_size, [2, 1, 1]*time_bin_incr) assert_equal(down_uneven_bins.time_bin_start.isot, Time(['2016-03-22T12:30:31.000', '2016-03-22T12:30:33.000', '2016-03-22T12:30:34.000'])) assert_equal(down_uneven_bins["a"].data.data, np.array([1, 3, 4])) # Uncontiguous bins with even bin sizes: `time_bin_start` and `time_bin_end` are both arrays down_time_array = aggregate_downsample(ts, time_bin_start=Time(['2016-03-22T12:30:31.000', '2016-03-22T12:30:34.000']), time_bin_end=Time(['2016-03-22T12:30:32.000', '2016-03-22T12:30:35.000'])) u.isclose(down_time_array.time_bin_size, [1, 1]*u.second) assert_equal(down_time_array.time_bin_start.isot, Time(['2016-03-22T12:30:31.000', '2016-03-22T12:30:34.000'])) assert_equal(down_time_array["a"].data.data, np.array([1, 4])) # Overlapping bins with pytest.warns(AstropyUserWarning, match="Overlapping bins should be avoided since they " "can lead to double-counting of data during binning."): down_overlap_bins = aggregate_downsample(ts, time_bin_start=Time(['2016-03-22T12:30:31.000', '2016-03-22T12:30:33.000']), time_bin_end=Time(['2016-03-22T12:30:34', '2016-03-22T12:30:36.000'])) assert_equal(down_overlap_bins["a"].data, np.array([2, 5])) @pytest.mark.parametrize("time, time_bin_start, time_bin_end", [(INPUT_TIME[:2], INPUT_TIME[2:], None), (INPUT_TIME[3:], INPUT_TIME[:2], INPUT_TIME[1:3]), (INPUT_TIME[[0]], INPUT_TIME[:2], None), (INPUT_TIME[[0]], INPUT_TIME[::2], None)]) def test_downsample_edge_cases(time, time_bin_start, time_bin_end): """Regression test for #12527: allow downsampling even if all bins fall before or beyond the time span of the data.""" ts = TimeSeries(time=time, data=[np.ones(len(time))], names=['a']) down = aggregate_downsample(ts, time_bin_start=time_bin_start, time_bin_end=time_bin_end) assert len(down) == len(time_bin_start) assert all(down['time_bin_size'] >= 0) # bin lengths shall never be negative if ts.time.min() < time_bin_start[0] or time_bin_end is not None: assert down['a'].mask.all() # all bins placed *beyond* the time span of the data elif ts.time.min() < time_bin_start[1]: assert down['a'][0] == ts['a'][0] # single-valued time series falls in *first* bin
d46a9206fa8d71d2474628446fd6fdb88c0aa17dc94fe102d41c1864cca1968c
# Licensed under a 3-clause BSD style license - see LICENSE.rst from datetime import datetime import pytest from numpy.testing import assert_equal, assert_allclose from astropy.table import Table, Column from astropy.time import Time, TimeDelta from astropy import units as u from astropy.units import Quantity from astropy.utils.data import get_pkg_data_filename from astropy.tests.helper import assert_quantity_allclose from astropy.timeseries.periodograms import BoxLeastSquares, LombScargle from astropy.timeseries.sampled import TimeSeries INPUT_TIME = Time(['2016-03-22T12:30:31', '2015-01-21T12:30:32', '2016-03-22T12:30:40']) PLAIN_TABLE = Table([[1, 2, 11], [3, 4, 1], [1, 1, 1]], names=['a', 'b', 'c']) CSV_FILE = get_pkg_data_filename('data/sampled.csv') def test_empty_initialization(): ts = TimeSeries() ts['time'] = Time([50001, 50002, 50003], format='mjd') def test_empty_initialization_invalid(): # Make sure things crash when the first column added is not a time column ts = TimeSeries() with pytest.raises(ValueError) as exc: ts['flux'] = [1, 2, 3] assert exc.value.args[0] == ("TimeSeries object is invalid - expected " "'time' as the first column but found 'flux'") def test_initialize_only_time(): ts = TimeSeries(time=INPUT_TIME) assert ts['time'] is ts.time # NOTE: the object in the table is a copy assert_equal(ts.time.isot, INPUT_TIME.isot) def test_initialization_with_data(): ts = TimeSeries(time=INPUT_TIME, data=[[10, 2, 3], [4, 5, 6]], names=['a', 'b']) assert_equal(ts.time.isot, INPUT_TIME.isot) assert_equal(ts['a'], [10, 2, 3]) assert_equal(ts['b'], [4, 5, 6]) def test_initialize_only_data(): with pytest.raises(TypeError) as exc: TimeSeries(data=[[10, 2, 3], [4, 5, 6]], names=['a', 'b']) assert exc.value.args[0] == "Either 'time' or 'time_start' should be specified" def test_initialization_with_table(): ts = TimeSeries(time=INPUT_TIME, data=PLAIN_TABLE) assert ts.colnames == ['time', 'a', 'b', 'c'] def test_initialization_with_time_delta(): ts = TimeSeries(time_start=datetime(2018, 7, 1, 10, 10, 10), time_delta=TimeDelta(3, format='sec'), data=[[10, 2, 3], [4, 5, 6]], names=['a', 'b']) assert_equal(ts.time.isot, ['2018-07-01T10:10:10.000', '2018-07-01T10:10:13.000', '2018-07-01T10:10:16.000']) def test_initialization_missing_time_delta(): with pytest.raises(TypeError) as exc: TimeSeries(time_start=datetime(2018, 7, 1, 10, 10, 10), data=[[10, 2, 3], [4, 5, 6]], names=['a', 'b']) assert exc.value.args[0] == "'time' is scalar, so 'time_delta' is required" def test_initialization_invalid_time_and_time_start(): with pytest.raises(TypeError) as exc: TimeSeries(time=INPUT_TIME, time_start=datetime(2018, 7, 1, 10, 10, 10), data=[[10, 2, 3], [4, 5, 6]], names=['a', 'b']) assert exc.value.args[0] == "Cannot specify both 'time' and 'time_start'" def test_initialization_invalid_time_delta(): with pytest.raises(TypeError) as exc: TimeSeries(time_start=datetime(2018, 7, 1, 10, 10, 10), time_delta=[1, 4, 3], data=[[10, 2, 3], [4, 5, 6]], names=['a', 'b']) assert exc.value.args[0] == "'time_delta' should be a Quantity or a TimeDelta" def test_initialization_with_time_in_data(): data = PLAIN_TABLE.copy() data['time'] = INPUT_TIME ts1 = TimeSeries(data=data) assert set(ts1.colnames) == set(['time', 'a', 'b', 'c']) assert all(ts1.time == INPUT_TIME) ts2 = TimeSeries(data=[[10, 2, 3], INPUT_TIME], names=['a', 'time']) assert set(ts2.colnames) == set(['time', 'a']) assert all(ts2.time == INPUT_TIME) with pytest.raises(TypeError) as exc: # Don't allow ambiguous cases of passing multiple 'time' columns TimeSeries(data=data, time=INPUT_TIME) assert exc.value.args[0] == "'time' has been given both in the table and as a keyword argument" with pytest.raises(TypeError) as exc: # 'time' is a protected name, don't allow ambiguous cases TimeSeries(time=INPUT_TIME, data=[[10, 2, 3], INPUT_TIME], names=['a', 'time']) assert exc.value.args[0] == "'time' has been given both in the table and as a keyword argument" def test_initialization_n_samples(): # Make sure things crash with incorrect n_samples with pytest.raises(TypeError) as exc: TimeSeries(time=INPUT_TIME, data=PLAIN_TABLE, n_samples=1000) assert exc.value.args[0] == ("'n_samples' has been given both and it is not the " "same length as the input data.") def test_initialization_length_mismatch(): with pytest.raises(ValueError) as exc: TimeSeries(time=INPUT_TIME, data=[[10, 2], [4, 5]], names=['a', 'b']) assert exc.value.args[0] == "Length of 'time' (3) should match data length (2)" def test_initialization_invalid_both_time_and_time_delta(): with pytest.raises(TypeError) as exc: TimeSeries(time=INPUT_TIME, time_delta=TimeDelta(3, format='sec')) assert exc.value.args[0] == ("'time_delta' should not be specified since " "'time' is an array") def test_fold(): times = Time([1, 2, 3, 8, 9, 12], format='unix') ts = TimeSeries(time=times) ts['flux'] = [1, 4, 4, 3, 2, 3] # Try without epoch time, as it should default to the first time and # wrapping at half the period. tsf = ts.fold(period=3.2 * u.s) assert isinstance(tsf.time, TimeDelta) assert_allclose(tsf.time.sec, [0, 1, -1.2, 0.6, -1.6, 1.4], rtol=1e-6) # Try with epoch time tsf = ts.fold(period=3.2 * u.s, epoch_time=Time(1.6, format='unix')) assert isinstance(tsf.time, TimeDelta) assert_allclose(tsf.time.sec, [-0.6, 0.4, 1.4, 0.0, 1.0, 0.8], rtol=1e-6, atol=1e-6) # Now with wrap_phase set to the full period tsf = ts.fold(period=3.2 * u.s, wrap_phase=3.2 * u.s) assert isinstance(tsf.time, TimeDelta) assert_allclose(tsf.time.sec, [0, 1, 2, 0.6, 1.6, 1.4], rtol=1e-6) # Now set epoch_phase to be 1/4 of the way through the phase tsf = ts.fold(period=3.2 * u.s, epoch_phase=0.8 * u.s) assert isinstance(tsf.time, TimeDelta) assert_allclose(tsf.time.sec, [0.8, -1.4, -0.4, 1.4, -0.8, -1.0], rtol=1e-6) # And combining epoch_phase and wrap_phase tsf = ts.fold(period=3.2 * u.s, epoch_phase=0.8 * u.s, wrap_phase=3.2 * u.s) assert isinstance(tsf.time, TimeDelta) assert_allclose(tsf.time.sec, [0.8, 1.8, 2.8, 1.4, 2.4, 2.2], rtol=1e-6) # Now repeat the above tests but with normalization applied # Try without epoch time, as it should default to the first time and # wrapping at half the period. tsf = ts.fold(period=3.2 * u.s, normalize_phase=True) assert isinstance(tsf.time, Quantity) assert_allclose(tsf.time.to_value(u.one), [0, 1/3.2, -1.2/3.2, 0.6/3.2, -1.6/3.2, 1.4/3.2], rtol=1e-6) # Try with epoch time tsf = ts.fold(period=3.2 * u.s, epoch_time=Time(1.6, format='unix'), normalize_phase=True) assert isinstance(tsf.time, Quantity) assert_allclose(tsf.time.to_value(u.one), [-0.6/3.2, 0.4/3.2, 1.4/3.2, 0.0/3.2, 1.0/3.2, 0.8/3.2], rtol=1e-6, atol=1e-6) # Now with wrap_phase set to the full period tsf = ts.fold(period=3.2 * u.s, wrap_phase=1, normalize_phase=True) assert isinstance(tsf.time, Quantity) assert_allclose(tsf.time.to_value(u.one), [0, 1/3.2, 2/3.2, 0.6/3.2, 1.6/3.2, 1.4/3.2], rtol=1e-6) # Now set epoch_phase to be 1/4 of the way through the phase tsf = ts.fold(period=3.2 * u.s, epoch_phase=0.25, normalize_phase=True) assert isinstance(tsf.time, Quantity) assert_allclose(tsf.time.to_value(u.one), [0.8/3.2, -1.4/3.2, -0.4/3.2, 1.4/3.2, -0.8/3.2, -1.0/3.2], rtol=1e-6) # And combining epoch_phase and wrap_phase tsf = ts.fold(period=3.2 * u.s, epoch_phase=0.25, wrap_phase=1, normalize_phase=True) assert isinstance(tsf.time, Quantity) assert_allclose(tsf.time.to_value(u.one), [0.8/3.2, 1.8/3.2, 2.8/3.2, 1.4/3.2, 2.4/3.2, 2.2/3.2], rtol=1e-6) def test_fold_invalid_options(): times = Time([1, 2, 3, 8, 9, 12], format='unix') ts = TimeSeries(time=times) ts['flux'] = [1, 4, 4, 3, 2, 3] with pytest.raises(u.UnitsError, match='period should be a Quantity in units of time'): ts.fold(period=3.2) with pytest.raises(u.UnitsError, match='period should be a Quantity in units of time'): ts.fold(period=3.2 * u.m) with pytest.raises(u.UnitsError, match='epoch_phase should be a Quantity in units of ' 'time when normalize_phase=False'): ts.fold(period=3.2 * u.s, epoch_phase=0.2) with pytest.raises(u.UnitsError, match='epoch_phase should be a dimensionless Quantity ' 'or a float when normalize_phase=True'): ts.fold(period=3.2 * u.s, epoch_phase=0.2 * u.s, normalize_phase=True) with pytest.raises(u.UnitsError, match='wrap_phase should be a Quantity in units of ' 'time when normalize_phase=False'): ts.fold(period=3.2 * u.s, wrap_phase=0.2) with pytest.raises(u.UnitsError, match='wrap_phase should be dimensionless when ' 'normalize_phase=True'): ts.fold(period=3.2 * u.s, wrap_phase=0.2 * u.s, normalize_phase=True) with pytest.raises(ValueError, match='wrap_phase should be between 0 and the period'): ts.fold(period=3.2 * u.s, wrap_phase=-0.1 * u.s) with pytest.raises(ValueError, match='wrap_phase should be between 0 and the period'): ts.fold(period=3.2 * u.s, wrap_phase=-4.2 * u.s) with pytest.raises(ValueError, match='wrap_phase should be between 0 and 1'): ts.fold(period=3.2 * u.s, wrap_phase=-0.1, normalize_phase=True) with pytest.raises(ValueError, match='wrap_phase should be between 0 and 1'): ts.fold(period=3.2 * u.s, wrap_phase=2.2, normalize_phase=True) def test_pandas(): pandas = pytest.importorskip("pandas") df1 = pandas.DataFrame() df1['a'] = [1, 2, 3] df1.set_index(pandas.DatetimeIndex(INPUT_TIME.datetime64), inplace=True) ts = TimeSeries.from_pandas(df1) assert_equal(ts.time.isot, INPUT_TIME.isot) assert ts.colnames == ['time', 'a'] assert len(ts.indices) == 1 assert (ts.indices['time'].columns[0] == INPUT_TIME).all() ts_tcb = TimeSeries.from_pandas(df1, time_scale='tcb') assert ts_tcb.time.scale == 'tcb' df2 = ts.to_pandas() assert (df2.index.values == pandas.Index(INPUT_TIME.datetime64).values).all() assert df2.columns == pandas.Index(['a']) assert (df1['a'] == df2['a']).all() with pytest.raises(TypeError) as exc: TimeSeries.from_pandas(None) assert exc.value.args[0] == 'Input should be a pandas DataFrame' df4 = pandas.DataFrame() df4['a'] = [1, 2, 3] with pytest.raises(TypeError) as exc: TimeSeries.from_pandas(df4) assert exc.value.args[0] == 'DataFrame does not have a DatetimeIndex' def test_read_time_missing(): with pytest.raises(ValueError) as exc: TimeSeries.read(CSV_FILE, format='csv') assert exc.value.args[0] == '``time_column`` should be provided since the default Table readers are being used.' def test_read_time_wrong(): with pytest.raises(ValueError) as exc: TimeSeries.read(CSV_FILE, time_column='abc', format='csv') assert exc.value.args[0] == "Time column 'abc' not found in the input data." def test_read(): timeseries = TimeSeries.read(CSV_FILE, time_column='Date', format='csv') assert timeseries.colnames == ['time', 'A', 'B', 'C', 'D', 'E', 'F', 'G'] assert len(timeseries) == 11 assert timeseries['time'].format == 'iso' assert timeseries['A'].sum() == 266.5 @pytest.mark.remote_data(source='astropy') def test_kepler_astropy(): from astropy.units import UnitsWarning filename = get_pkg_data_filename('timeseries/kplr010666592-2009131110544_slc.fits') with pytest.warns(UnitsWarning): timeseries = TimeSeries.read(filename, format='kepler.fits') assert timeseries["time"].format == 'isot' assert timeseries["time"].scale == 'tdb' assert timeseries["sap_flux"].unit.to_string() == 'electron / s' assert len(timeseries) == 14280 assert len(timeseries.columns) == 20 @pytest.mark.remote_data(source='astropy') def test_tess_astropy(): filename = get_pkg_data_filename('timeseries/hlsp_tess-data-alerts_tess_phot_00025155310-s01_tess_v1_lc.fits') with pytest.warns(UserWarning, match='Ignoring 815 rows with NaN times'): timeseries = TimeSeries.read(filename, format='tess.fits') assert timeseries["time"].format == 'isot' assert timeseries["time"].scale == 'tdb' assert timeseries["sap_flux"].unit.to_string() == 'electron / s' assert len(timeseries) == 19261 assert len(timeseries.columns) == 20 def test_required_columns(): # Test the machinery that makes sure that the required columns are present ts = TimeSeries(time=INPUT_TIME, data=[[10, 2, 3], [4, 5, 6]], names=['a', 'b']) # In the examples below, the operation (e.g. remove_column) is actually # carried out before the checks are made, so we need to use copy() so that # we don't change the main version of the time series. # Make sure copy works fine ts.copy() with pytest.raises(ValueError) as exc: ts.copy().add_column(Column([3, 4, 5], name='c'), index=0) assert exc.value.args[0] == ("TimeSeries object is invalid - expected " "'time' as the first column but found 'c'") with pytest.raises(ValueError) as exc: ts.copy().add_columns([Column([3, 4, 5], name='d'), Column([3, 4, 5], name='e')], indexes=[0, 1]) assert exc.value.args[0] == ("TimeSeries object is invalid - expected " "'time' as the first column but found 'd'") with pytest.raises(ValueError) as exc: ts.copy().keep_columns(['a', 'b']) assert exc.value.args[0] == ("TimeSeries object is invalid - expected " "'time' as the first column but found 'a'") with pytest.raises(ValueError) as exc: ts.copy().remove_column('time') assert exc.value.args[0] == ("TimeSeries object is invalid - expected " "'time' as the first column but found 'a'") with pytest.raises(ValueError) as exc: ts.copy().remove_columns(['time', 'a']) assert exc.value.args[0] == ("TimeSeries object is invalid - expected " "'time' as the first column but found 'b'") with pytest.raises(ValueError) as exc: ts.copy().rename_column('time', 'banana') assert exc.value.args[0] == ("TimeSeries object is invalid - expected " "'time' as the first column but found 'banana'") @pytest.mark.parametrize('cls', [BoxLeastSquares, LombScargle]) def test_periodogram(cls): # Note that we don't need to check the actual results from the periodogram # classes here since these are tested extensively in # astropy.timeseries.periodograms. ts = TimeSeries(time=INPUT_TIME, data=[[10, 2, 3], [4, 5, 6]], names=['a', 'b']) p1 = cls.from_timeseries(ts, 'a') assert isinstance(p1, cls) assert_allclose(p1.t.jd, ts.time.jd) assert_equal(p1.y, ts['a']) assert p1.dy is None p2 = cls.from_timeseries(ts, 'a', uncertainty='b') assert_quantity_allclose(p2.dy, ts['b']) p3 = cls.from_timeseries(ts, 'a', uncertainty=0.1) assert_allclose(p3.dy, 0.1)
104e1b83a82d254f6d9397d8601341a5aa655fa4dd2b7d413194c1bc4c2340a2
# Licensed under a 3-clause BSD style license - see LICENSE.rst import pytest from numpy.testing import assert_equal, assert_allclose from astropy import units as u from astropy.time import Time, TimeDelta from astropy.utils.data import get_pkg_data_filename from astropy.timeseries.periodograms import BoxLeastSquares, LombScargle from astropy.timeseries.binned import BinnedTimeSeries from astropy.tests.helper import assert_quantity_allclose CSV_FILE = get_pkg_data_filename('data/binned.csv') def test_empty_initialization(): ts = BinnedTimeSeries() ts['time_bin_start'] = Time([1, 2, 3], format='mjd') def test_empty_initialization_invalid(): # Make sure things crash when the first column added is not a time column ts = BinnedTimeSeries() with pytest.raises(ValueError) as exc: ts['flux'] = [1, 2, 3] assert exc.value.args[0] == ("BinnedTimeSeries object is invalid - expected " "'time_bin_start' as the first column but found 'flux'") def test_initialization_time_bin_invalid(): # Make sure things crash when time_bin_* is passed incorrectly. with pytest.raises(TypeError) as exc: BinnedTimeSeries(data=[[1, 4, 3]]) assert exc.value.args[0] == ("'time_bin_start' has not been specified") with pytest.raises(TypeError) as exc: BinnedTimeSeries(time_bin_start='2016-03-22T12:30:31', data=[[1, 4, 3]]) assert exc.value.args[0] == ("Either 'time_bin_size' or 'time_bin_end' should be specified") def test_initialization_time_bin_both(): # Make sure things crash when time_bin_* is passed twice. with pytest.raises(TypeError) as exc: BinnedTimeSeries(data={"time_bin_start": ["2016-03-22T12:30:31"]}, time_bin_start="2016-03-22T12:30:31") assert exc.value.args[0] == ("'time_bin_start' has been given both in the table " "and as a keyword argument") with pytest.raises(TypeError) as exc: BinnedTimeSeries(data={"time_bin_size": ["2016-03-22T12:30:31"]}, time_bin_size=[1]*u.s) assert exc.value.args[0] == ("'time_bin_size' has been given both in the table " "and as a keyword argument") def test_initialization_time_bin_size(): # Make sure things crash when time_bin_size has no units with pytest.raises(TypeError) as exc: BinnedTimeSeries(data={"time": ["2016-03-22T12:30:31"]}, time_bin_start="2016-03-22T12:30:31", time_bin_size=1) assert exc.value.args[0] == ("'time_bin_size' should be a Quantity or a TimeDelta") # TimeDelta for time_bin_size ts = BinnedTimeSeries(data={"time": ["2016-03-22T12:30:31"]}, time_bin_start="2016-03-22T12:30:31", time_bin_size=TimeDelta(1, format="jd")) assert isinstance(ts.time_bin_size, u.quantity.Quantity) def test_initialization_time_bin_start_scalar(): # Make sure things crash when time_bin_start is a scalar with no time_bin_size with pytest.raises(TypeError) as exc: BinnedTimeSeries(data={"time": ["2016-03-22T12:30:31"]}, time_bin_start=Time(1, format='mjd'), time_bin_end=Time(1, format='mjd')) assert exc.value.args[0] == ("'time_bin_start' is scalar, so 'time_bin_size' is required") def test_initialization_n_bins_invalid_arguments(): # Make sure an exception is raised when n_bins is passed as an argument while # any of the parameters 'time_bin_start' or 'time_bin_end' is not scalar. with pytest.raises(TypeError) as exc: BinnedTimeSeries(time_bin_start=Time([1, 2, 3], format='cxcsec'), time_bin_size=1*u.s, n_bins=10) assert exc.value.args[0] == ("'n_bins' cannot be specified if 'time_bin_start' or " "'time_bin_size' are not scalar'") def test_initialization_n_bins(): # Make sure things crash with incorrect n_bins with pytest.raises(TypeError) as exc: BinnedTimeSeries(data={"time": ["2016-03-22T12:30:31"]}, time_bin_start=Time(1, format='mjd'), time_bin_size=1*u.s, time_bin_end=Time(1, format='mjd'), n_bins=10) assert exc.value.args[0] == ("'n_bins' has been given and it is not the " "same length as the input data.") def test_initialization_non_scalar_time(): # Make sure things crash with incorrect size of time_bin_start with pytest.raises(ValueError) as exc: BinnedTimeSeries(data={"time": ["2016-03-22T12:30:31"]}, time_bin_start=["2016-03-22T12:30:31", "2016-03-22T12:30:32"], time_bin_size=1*u.s, time_bin_end=Time(1, format='mjd')) assert exc.value.args[0] == ("Length of 'time_bin_start' (2) should match table length (1)") with pytest.raises(TypeError) as exc: BinnedTimeSeries(data={"time": ["2016-03-22T12:30:31"]}, time_bin_start=["2016-03-22T12:30:31"], time_bin_size=None, time_bin_end=None) assert exc.value.args[0] == ("Either 'time_bin_size' or 'time_bin_end' should be specified") def test_even_contiguous(): # Initialize a ``BinnedTimeSeries`` with even contiguous bins by specifying # the bin width: ts = BinnedTimeSeries(time_bin_start='2016-03-22T12:30:31', time_bin_size=3 * u.s, data=[[1, 4, 3]]) assert_equal(ts.time_bin_start.isot, ['2016-03-22T12:30:31.000', '2016-03-22T12:30:34.000', '2016-03-22T12:30:37.000']) assert_equal(ts.time_bin_center.isot, ['2016-03-22T12:30:32.500', '2016-03-22T12:30:35.500', '2016-03-22T12:30:38.500']) assert_equal(ts.time_bin_end.isot, ['2016-03-22T12:30:34.000', '2016-03-22T12:30:37.000', '2016-03-22T12:30:40.000']) def test_uneven_contiguous(): # Initialize a ``BinnedTimeSeries`` with uneven contiguous bins by giving an # end time: ts = BinnedTimeSeries(time_bin_start=['2016-03-22T12:30:31', '2016-03-22T12:30:32', '2016-03-22T12:30:40'], time_bin_end='2016-03-22T12:30:55', data=[[1, 4, 3]]) assert_equal(ts.time_bin_start.isot, ['2016-03-22T12:30:31.000', '2016-03-22T12:30:32.000', '2016-03-22T12:30:40.000']) assert_equal(ts.time_bin_center.isot, ['2016-03-22T12:30:31.500', '2016-03-22T12:30:36.000', '2016-03-22T12:30:47.500']) assert_equal(ts.time_bin_end.isot, ['2016-03-22T12:30:32.000', '2016-03-22T12:30:40.000', '2016-03-22T12:30:55.000']) def test_uneven_non_contiguous(): # Initialize a ``BinnedTimeSeries`` with uneven non-contiguous bins with # lists of start times, bin sizes and data: ts = BinnedTimeSeries(time_bin_start=['2016-03-22T12:30:31', '2016-03-22T12:30:38', '2016-03-22T12:34:40'], time_bin_size=[5, 100, 2]*u.s, data=[[1, 4, 3]]) assert_equal(ts.time_bin_start.isot, ['2016-03-22T12:30:31.000', '2016-03-22T12:30:38.000', '2016-03-22T12:34:40.000']) assert_equal(ts.time_bin_center.isot, ['2016-03-22T12:30:33.500', '2016-03-22T12:31:28.000', '2016-03-22T12:34:41.000']) assert_equal(ts.time_bin_end.isot, ['2016-03-22T12:30:36.000', '2016-03-22T12:32:18.000', '2016-03-22T12:34:42.000']) def test_uneven_non_contiguous_full(): # Initialize a ``BinnedTimeSeries`` with uneven non-contiguous bins by # specifying the start and end times for the bins: ts = BinnedTimeSeries(time_bin_start=['2016-03-22T12:30:31', '2016-03-22T12:30:33', '2016-03-22T12:30:40'], time_bin_end=['2016-03-22T12:30:32', '2016-03-22T12:30:35', '2016-03-22T12:30:41'], data=[[1, 4, 3]]) assert_equal(ts.time_bin_start.isot, ['2016-03-22T12:30:31.000', '2016-03-22T12:30:33.000', '2016-03-22T12:30:40.000']) assert_equal(ts.time_bin_center.isot, ['2016-03-22T12:30:31.500', '2016-03-22T12:30:34.000', '2016-03-22T12:30:40.500']) assert_equal(ts.time_bin_end.isot, ['2016-03-22T12:30:32.000', '2016-03-22T12:30:35.000', '2016-03-22T12:30:41.000']) def test_read_empty(): with pytest.raises(ValueError) as exc: BinnedTimeSeries.read(CSV_FILE, format='csv') assert exc.value.args[0] == '``time_bin_start_column`` should be provided since the default Table readers are being used.' def test_read_no_size_end(): with pytest.raises(ValueError) as exc: BinnedTimeSeries.read(CSV_FILE, time_bin_start_column='time_start', format='csv') assert exc.value.args[0] == 'Either `time_bin_end_column` or `time_bin_size_column` should be provided.' def test_read_both_extra_bins(): with pytest.raises(ValueError) as exc: BinnedTimeSeries.read(CSV_FILE, time_bin_start_column='time_start', time_bin_end_column='END', time_bin_size_column='bin_size', format='csv') assert exc.value.args[0] == "Cannot specify both `time_bin_end_column` and `time_bin_size_column`." def test_read_size_no_unit(): with pytest.raises(ValueError) as exc: BinnedTimeSeries.read(CSV_FILE, time_bin_start_column='time_start', time_bin_size_column='bin_size', format='csv') assert exc.value.args[0] == "The bin size unit should be specified as an astropy Unit using ``time_bin_size_unit``." def test_read_start_time_missing(): with pytest.raises(ValueError) as exc: BinnedTimeSeries.read(CSV_FILE, time_bin_start_column='abc', time_bin_size_column='bin_size', time_bin_size_unit=u.second, format='csv') assert exc.value.args[0] == "Bin start time column 'abc' not found in the input data." def test_read_end_time_missing(): with pytest.raises(ValueError) as exc: BinnedTimeSeries.read(CSV_FILE, time_bin_start_column='time_start', time_bin_end_column="missing", format='csv') assert exc.value.args[0] == "Bin end time column 'missing' not found in the input data." def test_read_size_missing(): with pytest.raises(ValueError) as exc: BinnedTimeSeries.read(CSV_FILE, time_bin_start_column='time_start', time_bin_size_column="missing", time_bin_size_unit=u.second, format='csv') assert exc.value.args[0] == "Bin size column 'missing' not found in the input data." def test_read_time_unit_missing(): with pytest.raises(ValueError) as exc: BinnedTimeSeries.read(CSV_FILE, time_bin_start_column='time_start', time_bin_size_column="bin_size", format='csv') assert exc.value.args[0] == "The bin size unit should be specified as an astropy Unit using ``time_bin_size_unit``." def test_read(): timeseries = BinnedTimeSeries.read(CSV_FILE, time_bin_start_column='time_start', time_bin_end_column='time_end', format='csv') assert timeseries.colnames == ['time_bin_start', 'time_bin_size', 'bin_size', 'A', 'B', 'C', 'D', 'E', 'F'] assert len(timeseries) == 10 assert timeseries['B'].sum() == 1151.54 timeseries = BinnedTimeSeries.read(CSV_FILE, time_bin_start_column='time_start', time_bin_size_column='bin_size', time_bin_size_unit=u.second, format='csv') assert timeseries.colnames == ['time_bin_start', 'time_bin_size', 'time_end', 'A', 'B', 'C', 'D', 'E', 'F'] assert len(timeseries) == 10 assert timeseries['B'].sum() == 1151.54 @pytest.mark.parametrize('cls', [BoxLeastSquares, LombScargle]) def test_periodogram(cls): # Note that we don't need to check the actual results from the periodogram # classes here since these are tested extensively in # astropy.timeseries.periodograms. ts = BinnedTimeSeries(time_bin_start='2016-03-22T12:30:31', time_bin_size=3 * u.s, data=[[1, 4, 3], [3, 4, 3]], names=['a', 'b']) p1 = cls.from_timeseries(ts, 'a') assert isinstance(p1, cls) assert_allclose(p1.t.jd, ts.time_bin_center.jd) assert_equal(p1.y, ts['a']) assert p1.dy is None p2 = cls.from_timeseries(ts, 'a', uncertainty='b') assert_quantity_allclose(p2.dy, ts['b']) p3 = cls.from_timeseries(ts, 'a', uncertainty=0.1) assert_allclose(p3.dy, 0.1)
75fe47a1c89b41fac43966c638bc6c6b3eba4ec0ade7f165b180857a0ac4f744
# -*- coding: utf-8 -*- # Licensed under a 3-clause BSD style license - see LICENSE.rst __all__ = ["bls_fast", "bls_slow"] import numpy as np from functools import partial from ._impl import bls_impl def bls_slow(t, y, ivar, period, duration, oversample, use_likelihood): """Compute the periodogram using a brute force reference method t : array-like Sequence of observation times. y : array-like Sequence of observations associated with times t. ivar : array-like The inverse variance of ``y``. period : array-like The trial periods where the periodogram should be computed. duration : array-like The durations that should be tested. oversample : The resolution of the phase grid in units of durations. use_likeliood : bool If true, maximize the log likelihood over phase, duration, and depth. Returns ------- power : array-like The periodogram evaluated at the periods in ``period``. depth : array-like The estimated depth of the maximum power model at each period. depth_err : array-like The 1-sigma uncertainty on ``depth``. duration : array-like The maximum power duration at each period. transit_time : array-like The maximum power phase of the transit in units of time. This indicates the mid-transit time and it will always be in the range (0, period). depth_snr : array-like The signal-to-noise with which the depth is measured at maximum power. log_likelihood : array-like The log likelihood of the maximum power model. """ f = partial(_bls_slow_one, t, y, ivar, duration, oversample, use_likelihood) return _apply(f, period) def bls_fast(t, y, ivar, period, duration, oversample, use_likelihood): """Compute the periodogram using an optimized Cython implementation t : array-like Sequence of observation times. y : array-like Sequence of observations associated with times t. ivar : array-like The inverse variance of ``y``. period : array-like The trial periods where the periodogram should be computed. duration : array-like The durations that should be tested. oversample : The resolution of the phase grid in units of durations. use_likeliood : bool If true, maximize the log likelihood over phase, duration, and depth. Returns ------- power : array-like The periodogram evaluated at the periods in ``period``. depth : array-like The estimated depth of the maximum power model at each period. depth_err : array-like The 1-sigma uncertainty on ``depth``. duration : array-like The maximum power duration at each period. transit_time : array-like The maximum power phase of the transit in units of time. This indicates the mid-transit time and it will always be in the range (0, period). depth_snr : array-like The signal-to-noise with which the depth is measured at maximum power. log_likelihood : array-like The log likelihood of the maximum power model. """ return bls_impl( t, y, ivar, period, duration, oversample, use_likelihood ) def _bls_slow_one(t, y, ivar, duration, oversample, use_likelihood, period): """A private function to compute the brute force periodogram result""" best = (-np.inf, None) hp = 0.5*period min_t = np.min(t) for dur in duration: # Compute the phase grid (this is set by the duration and oversample). d_phase = dur / oversample phase = np.arange(0, period+d_phase, d_phase) for t0 in phase: # Figure out which data points are in and out of transit. m_in = np.abs((t-min_t-t0+hp) % period - hp) < 0.5*dur m_out = ~m_in # Compute the estimates of the in and out-of-transit flux. ivar_in = np.sum(ivar[m_in]) ivar_out = np.sum(ivar[m_out]) y_in = np.sum(y[m_in] * ivar[m_in]) / ivar_in y_out = np.sum(y[m_out] * ivar[m_out]) / ivar_out # Use this to compute the best fit depth and uncertainty. depth = y_out - y_in depth_err = np.sqrt(1.0 / ivar_in + 1.0 / ivar_out) snr = depth / depth_err # Compute the log likelihood of this model. loglike = -0.5*np.sum((y_in - y[m_in])**2 * ivar[m_in]) loglike += 0.5*np.sum((y_out - y[m_in])**2 * ivar[m_in]) # Choose which objective should be used for the optimization. if use_likelihood: objective = loglike else: objective = snr # If this model is better than any before, keep it. if depth > 0 and objective > best[0]: best = ( objective, (objective, depth, depth_err, dur, (t0+min_t) % period, snr, loglike) ) return best[1] def _apply(f, period): return tuple(map(np.array, zip(*map(f, period))))
130492dd480faf45f8d1a34f5d127d8ce10cc89c3e4af4aacdc86f8a71ac9259
# -*- coding: utf-8 -*- # Licensed under a 3-clause BSD style license - see LICENSE.rst __all__ = ["BoxLeastSquares", "BoxLeastSquaresResults"] import numpy as np from astropy import units from astropy.time import Time, TimeDelta from astropy.timeseries.periodograms.lombscargle.core import has_units, strip_units from astropy import units as u from . import methods from astropy.timeseries.periodograms.base import BasePeriodogram def validate_unit_consistency(reference_object, input_object): if has_units(reference_object): input_object = units.Quantity(input_object, unit=reference_object.unit) else: if has_units(input_object): input_object = units.Quantity(input_object, unit=units.one) input_object = input_object.value return input_object class BoxLeastSquares(BasePeriodogram): """Compute the box least squares periodogram This method is a commonly used tool for discovering transiting exoplanets or eclipsing binaries in photometric time series datasets. This implementation is based on the "box least squares (BLS)" method described in [1]_ and [2]_. Parameters ---------- t : array-like, `~astropy.units.Quantity`, `~astropy.time.Time`, or `~astropy.time.TimeDelta` Sequence of observation times. y : array-like or `~astropy.units.Quantity` Sequence of observations associated with times ``t``. dy : float, array-like, or `~astropy.units.Quantity`, optional Error or sequence of observational errors associated with times ``t``. Examples -------- Generate noisy data with a transit: >>> rand = np.random.default_rng(42) >>> t = rand.uniform(0, 10, 500) >>> y = np.ones_like(t) >>> y[np.abs((t + 1.0)%2.0-1)<0.08] = 1.0 - 0.1 >>> y += 0.01 * rand.standard_normal(len(t)) Compute the transit periodogram on a heuristically determined period grid and find the period with maximum power: >>> model = BoxLeastSquares(t, y) >>> results = model.autopower(0.16) >>> results.period[np.argmax(results.power)] # doctest: +FLOAT_CMP 2.000412388152837 Compute the periodogram on a user-specified period grid: >>> periods = np.linspace(1.9, 2.1, 5) >>> results = model.power(periods, 0.16) >>> results.power # doctest: +FLOAT_CMP array([0.01723948, 0.0643028 , 0.1338783 , 0.09428816, 0.03577543]) If the inputs are AstroPy Quantities with units, the units will be validated and the outputs will also be Quantities with appropriate units: >>> from astropy import units as u >>> t = t * u.day >>> y = y * u.dimensionless_unscaled >>> model = BoxLeastSquares(t, y) >>> results = model.autopower(0.16 * u.day) >>> results.period.unit Unit("d") >>> results.power.unit Unit(dimensionless) References ---------- .. [1] Kovacs, Zucker, & Mazeh (2002), A&A, 391, 369 (arXiv:astro-ph/0206099) .. [2] Hartman & Bakos (2016), Astronomy & Computing, 17, 1 (arXiv:1605.06811) """ def __init__(self, t, y, dy=None): # If t is a TimeDelta, convert it to a quantity. The units we convert # to don't really matter since the user gets a Quantity back at the end # so can convert to any units they like. if isinstance(t, TimeDelta): t = t.to('day') # We want to expose self.t as being the times the user passed in, but # if the times are absolute, we need to convert them to relative times # internally, so we use self._trel and self._tstart for this. self.t = t if isinstance(self.t, (Time, TimeDelta)): self._tstart = self.t[0] trel = (self.t - self._tstart).to(u.day) else: self._tstart = None trel = self.t self._trel, self.y, self.dy = self._validate_inputs(trel, y, dy) def autoperiod(self, duration, minimum_period=None, maximum_period=None, minimum_n_transit=3, frequency_factor=1.0): """Determine a suitable grid of periods This method uses a set of heuristics to select a conservative period grid that is uniform in frequency. This grid might be too fine for some user's needs depending on the precision requirements or the sampling of the data. The grid can be made coarser by increasing ``frequency_factor``. Parameters ---------- duration : float, array-like, or `~astropy.units.Quantity` ['time'] The set of durations that will be considered. minimum_period, maximum_period : float or `~astropy.units.Quantity` ['time'], optional The minimum/maximum periods to search. If not provided, these will be computed as described in the notes below. minimum_n_transits : int, optional If ``maximum_period`` is not provided, this is used to compute the maximum period to search by asserting that any systems with at least ``minimum_n_transits`` will be within the range of searched periods. Note that this is not the same as requiring that ``minimum_n_transits`` be required for detection. The default value is ``3``. frequency_factor : float, optional A factor to control the frequency spacing as described in the notes below. The default value is ``1.0``. Returns ------- period : array-like or `~astropy.units.Quantity` ['time'] The set of periods computed using these heuristics with the same units as ``t``. Notes ----- The default minimum period is chosen to be twice the maximum duration because there won't be much sensitivity to periods shorter than that. The default maximum period is computed as .. code-block:: python maximum_period = (max(t) - min(t)) / minimum_n_transits ensuring that any systems with at least ``minimum_n_transits`` are within the range of searched periods. The frequency spacing is given by .. code-block:: python df = frequency_factor * min(duration) / (max(t) - min(t))**2 so the grid can be made finer by decreasing ``frequency_factor`` or coarser by increasing ``frequency_factor``. """ duration = self._validate_duration(duration) baseline = strip_units(self._trel.max() - self._trel.min()) min_duration = strip_units(np.min(duration)) # Estimate the required frequency spacing # Because of the sparsity of a transit, this must be much finer than # the frequency resolution for a sinusoidal fit. For a sinusoidal fit, # df would be 1/baseline (see LombScargle), but here this should be # scaled proportionally to the duration in units of baseline. df = frequency_factor * min_duration / baseline**2 # If a minimum period is not provided, choose one that is twice the # maximum duration because we won't be sensitive to any periods # shorter than that. if minimum_period is None: minimum_period = 2.0 * strip_units(np.max(duration)) else: minimum_period = validate_unit_consistency(self._trel, minimum_period) minimum_period = strip_units(minimum_period) # If no maximum period is provided, choose one by requiring that # all signals with at least minimum_n_transit should be detectable. if maximum_period is None: if minimum_n_transit <= 1: raise ValueError("minimum_n_transit must be greater than 1") maximum_period = baseline / (minimum_n_transit-1) else: maximum_period = validate_unit_consistency(self._trel, maximum_period) maximum_period = strip_units(maximum_period) if maximum_period < minimum_period: minimum_period, maximum_period = maximum_period, minimum_period if minimum_period <= 0.0: raise ValueError("minimum_period must be positive") # Convert bounds to frequency minimum_frequency = 1.0/strip_units(maximum_period) maximum_frequency = 1.0/strip_units(minimum_period) # Compute the number of frequencies and the frequency grid nf = 1 + int(np.round((maximum_frequency - minimum_frequency)/df)) return 1.0/(maximum_frequency-df*np.arange(nf)) * self._t_unit() def autopower(self, duration, objective=None, method=None, oversample=10, minimum_n_transit=3, minimum_period=None, maximum_period=None, frequency_factor=1.0): """Compute the periodogram at set of heuristically determined periods This method calls :func:`BoxLeastSquares.autoperiod` to determine the period grid and then :func:`BoxLeastSquares.power` to compute the periodogram. See those methods for documentation of the arguments. """ period = self.autoperiod(duration, minimum_n_transit=minimum_n_transit, minimum_period=minimum_period, maximum_period=maximum_period, frequency_factor=frequency_factor) return self.power(period, duration, objective=objective, method=method, oversample=oversample) def power(self, period, duration, objective=None, method=None, oversample=10): """Compute the periodogram for a set of periods Parameters ---------- period : array-like or `~astropy.units.Quantity` ['time'] The periods where the power should be computed duration : float, array-like, or `~astropy.units.Quantity` ['time'] The set of durations to test objective : {'likelihood', 'snr'}, optional The scalar that should be optimized to find the best fit phase, duration, and depth. This can be either ``'likelihood'`` (default) to optimize the log-likelihood of the model, or ``'snr'`` to optimize the signal-to-noise with which the transit depth is measured. method : {'fast', 'slow'}, optional The computational method used to compute the periodogram. This is mainly included for the purposes of testing and most users will want to use the optimized ``'fast'`` method (default) that is implemented in Cython. ``'slow'`` is a brute-force method that is used to test the results of the ``'fast'`` method. oversample : int, optional The number of bins per duration that should be used. This sets the time resolution of the phase fit with larger values of ``oversample`` yielding a finer grid and higher computational cost. Returns ------- results : BoxLeastSquaresResults The periodogram results as a :class:`BoxLeastSquaresResults` object. Raises ------ ValueError If ``oversample`` is not an integer greater than 0 or if ``objective`` or ``method`` are not valid. """ period, duration = self._validate_period_and_duration(period, duration) # Check for absurdities in the ``oversample`` choice try: oversample = int(oversample) except TypeError: raise ValueError(f"oversample must be an int, got {oversample}") if oversample < 1: raise ValueError("oversample must be greater than or equal to 1") # Select the periodogram objective if objective is None: objective = "likelihood" allowed_objectives = ["snr", "likelihood"] if objective not in allowed_objectives: raise ValueError(("Unrecognized method '{0}'\n" "allowed methods are: {1}") .format(objective, allowed_objectives)) use_likelihood = (objective == "likelihood") # Select the computational method if method is None: method = "fast" allowed_methods = ["fast", "slow"] if method not in allowed_methods: raise ValueError(("Unrecognized method '{0}'\n" "allowed methods are: {1}") .format(method, allowed_methods)) # Format and check the input arrays t = np.ascontiguousarray(strip_units(self._trel), dtype=np.float64) t_ref = np.min(t) y = np.ascontiguousarray(strip_units(self.y), dtype=np.float64) if self.dy is None: ivar = np.ones_like(y) else: ivar = 1.0 / np.ascontiguousarray(strip_units(self.dy), dtype=np.float64)**2 # Make sure that the period and duration arrays are C-order period_fmt = np.ascontiguousarray(strip_units(period), dtype=np.float64) duration = np.ascontiguousarray(strip_units(duration), dtype=np.float64) # Select the correct implementation for the chosen method if method == "fast": bls = methods.bls_fast else: bls = methods.bls_slow # Run the implementation results = bls( t - t_ref, y - np.median(y), ivar, period_fmt, duration, oversample, use_likelihood) return self._format_results(t_ref, objective, period, results) def _as_relative_time(self, name, times): """ Convert the provided times (if absolute) to relative times using the current _tstart value. If the times provided are relative, they are returned without conversion (though we still do some checks). """ if isinstance(times, TimeDelta): times = times.to('day') if self._tstart is None: if isinstance(times, Time): raise TypeError('{} was provided as an absolute time but ' 'the BoxLeastSquares class was initialized ' 'with relative times.'.format(name)) else: if isinstance(times, Time): times = (times - self._tstart).to(u.day) else: raise TypeError('{} was provided as a relative time but ' 'the BoxLeastSquares class was initialized ' 'with absolute times.'.format(name)) times = validate_unit_consistency(self._trel, times) return times def _as_absolute_time_if_needed(self, name, times): """ Convert the provided times to absolute times using the current _tstart value, if needed. """ if self._tstart is not None: # Some time formats/scales can't represent dates/times too far # off from the present, so we need to mask values offset by # more than 100,000 yr (the periodogram algorithm can return # transit times of e.g 1e300 for some periods). reset = np.abs(times.to_value(u.year)) > 100000 times[reset] = 0 times = self._tstart + times times[reset] = np.nan return times def model(self, t_model, period, duration, transit_time): """Compute the transit model at the given period, duration, and phase Parameters ---------- t_model : array-like, `~astropy.units.Quantity`, or `~astropy.time.Time` Times at which to compute the model. period : float or `~astropy.units.Quantity` ['time'] The period of the transits. duration : float or `~astropy.units.Quantity` ['time'] The duration of the transit. transit_time : float or `~astropy.units.Quantity` or `~astropy.time.Time` The mid-transit time of a reference transit. Returns ------- y_model : array-like or `~astropy.units.Quantity` The model evaluated at the times ``t_model`` with units of ``y``. """ period, duration = self._validate_period_and_duration(period, duration) transit_time = self._as_relative_time('transit_time', transit_time) t_model = strip_units(self._as_relative_time('t_model', t_model)) period = float(strip_units(period)) duration = float(strip_units(duration)) transit_time = float(strip_units(transit_time)) t = np.ascontiguousarray(strip_units(self._trel), dtype=np.float64) y = np.ascontiguousarray(strip_units(self.y), dtype=np.float64) if self.dy is None: ivar = np.ones_like(y) else: ivar = 1.0 / np.ascontiguousarray(strip_units(self.dy), dtype=np.float64)**2 # Compute the depth hp = 0.5*period m_in = np.abs((t-transit_time+hp) % period - hp) < 0.5*duration m_out = ~m_in y_in = np.sum(y[m_in] * ivar[m_in]) / np.sum(ivar[m_in]) y_out = np.sum(y[m_out] * ivar[m_out]) / np.sum(ivar[m_out]) # Evaluate the model y_model = y_out + np.zeros_like(t_model) m_model = np.abs((t_model-transit_time+hp) % period-hp) < 0.5*duration y_model[m_model] = y_in return y_model * self._y_unit() def compute_stats(self, period, duration, transit_time): """Compute descriptive statistics for a given transit model These statistics are commonly used for vetting of transit candidates. Parameters ---------- period : float or `~astropy.units.Quantity` ['time'] The period of the transits. duration : float or `~astropy.units.Quantity` ['time'] The duration of the transit. transit_time : float or `~astropy.units.Quantity` or `~astropy.time.Time` The mid-transit time of a reference transit. Returns ------- stats : dict A dictionary containing several descriptive statistics: - ``depth``: The depth and uncertainty (as a tuple with two values) on the depth for the fiducial model. - ``depth_odd``: The depth and uncertainty on the depth for a model where the period is twice the fiducial period. - ``depth_even``: The depth and uncertainty on the depth for a model where the period is twice the fiducial period and the phase is offset by one orbital period. - ``depth_half``: The depth and uncertainty for a model with a period of half the fiducial period. - ``depth_phased``: The depth and uncertainty for a model with the fiducial period and the phase offset by half a period. - ``harmonic_amplitude``: The amplitude of the best fit sinusoidal model. - ``harmonic_delta_log_likelihood``: The difference in log likelihood between a sinusoidal model and the transit model. If ``harmonic_delta_log_likelihood`` is greater than zero, the sinusoidal model is preferred. - ``transit_times``: The mid-transit time for each transit in the baseline. - ``per_transit_count``: An array with a count of the number of data points in each unique transit included in the baseline. - ``per_transit_log_likelihood``: An array with the value of the log likelihood for each unique transit included in the baseline. """ period, duration = self._validate_period_and_duration(period, duration) transit_time = self._as_relative_time('transit_time', transit_time) period = float(strip_units(period)) duration = float(strip_units(duration)) transit_time = float(strip_units(transit_time)) t = np.ascontiguousarray(strip_units(self._trel), dtype=np.float64) y = np.ascontiguousarray(strip_units(self.y), dtype=np.float64) if self.dy is None: ivar = np.ones_like(y) else: ivar = 1.0 / np.ascontiguousarray(strip_units(self.dy), dtype=np.float64)**2 # This a helper function that will compute the depth for several # different hypothesized transit models with different parameters def _compute_depth(m, y_out=None, var_out=None): if np.any(m) and (var_out is None or np.isfinite(var_out)): var_m = 1.0 / np.sum(ivar[m]) y_m = np.sum(y[m] * ivar[m]) * var_m if y_out is None: return y_m, var_m return y_out - y_m, np.sqrt(var_m + var_out) return 0.0, np.inf # Compute the depth of the fiducial model and the two models at twice # the period hp = 0.5*period m_in = np.abs((t-transit_time+hp) % period - hp) < 0.5*duration m_out = ~m_in m_odd = np.abs((t-transit_time) % (2*period) - period) \ < 0.5*duration m_even = np.abs((t-transit_time+period) % (2*period) - period) \ < 0.5*duration y_out, var_out = _compute_depth(m_out) depth = _compute_depth(m_in, y_out, var_out) depth_odd = _compute_depth(m_odd, y_out, var_out) depth_even = _compute_depth(m_even, y_out, var_out) y_in = y_out - depth[0] # Compute the depth of the model at a phase of 0.5*period m_phase = np.abs((t-transit_time) % period - hp) < 0.5*duration depth_phase = _compute_depth(m_phase, *_compute_depth((~m_phase) & m_out)) # Compute the depth of a model with a period of 0.5*period m_half = np.abs((t-transit_time+0.25*period) % (0.5*period) - 0.25*period) < 0.5*duration depth_half = _compute_depth(m_half, *_compute_depth(~m_half)) # Compute the number of points in each transit transit_id = np.round((t[m_in]-transit_time) / period).astype(int) transit_times = period * np.arange(transit_id.min(), transit_id.max()+1) + transit_time unique_ids, unique_counts = np.unique(transit_id, return_counts=True) unique_ids -= np.min(transit_id) transit_id -= np.min(transit_id) counts = np.zeros(np.max(transit_id) + 1, dtype=int) counts[unique_ids] = unique_counts # Compute the per-transit log likelihood ll = -0.5 * ivar[m_in] * ((y[m_in] - y_in)**2 - (y[m_in] - y_out)**2) lls = np.zeros(len(counts)) for i in unique_ids: lls[i] = np.sum(ll[transit_id == i]) full_ll = -0.5*np.sum(ivar[m_in] * (y[m_in] - y_in)**2) full_ll -= 0.5*np.sum(ivar[m_out] * (y[m_out] - y_out)**2) # Compute the log likelihood of a sine model A = np.vstack(( np.sin(2*np.pi*t/period), np.cos(2*np.pi*t/period), np.ones_like(t) )).T w = np.linalg.solve(np.dot(A.T, A * ivar[:, None]), np.dot(A.T, y * ivar)) mod = np.dot(A, w) sin_ll = -0.5*np.sum((y-mod)**2*ivar) # Format the results y_unit = self._y_unit() ll_unit = 1 if self.dy is None: ll_unit = y_unit * y_unit return dict( transit_times=self._as_absolute_time_if_needed('transit_times', transit_times * self._t_unit()), per_transit_count=counts, per_transit_log_likelihood=lls * ll_unit, depth=(depth[0] * y_unit, depth[1] * y_unit), depth_phased=(depth_phase[0] * y_unit, depth_phase[1] * y_unit), depth_half=(depth_half[0] * y_unit, depth_half[1] * y_unit), depth_odd=(depth_odd[0] * y_unit, depth_odd[1] * y_unit), depth_even=(depth_even[0] * y_unit, depth_even[1] * y_unit), harmonic_amplitude=np.sqrt(np.sum(w[:2]**2)) * y_unit, harmonic_delta_log_likelihood=(sin_ll - full_ll) * ll_unit, ) def transit_mask(self, t, period, duration, transit_time): """Compute which data points are in transit for a given parameter set Parameters ---------- t_model : array-like or `~astropy.units.Quantity` ['time'] Times where the mask should be evaluated. period : float or `~astropy.units.Quantity` ['time'] The period of the transits. duration : float or `~astropy.units.Quantity` ['time'] The duration of the transit. transit_time : float or `~astropy.units.Quantity` or `~astropy.time.Time` The mid-transit time of a reference transit. Returns ------- transit_mask : array-like A boolean array where ``True`` indicates and in transit point and ``False`` indicates and out-of-transit point. """ period, duration = self._validate_period_and_duration(period, duration) transit_time = self._as_relative_time('transit_time', transit_time) t = strip_units(self._as_relative_time('t', t)) period = float(strip_units(period)) duration = float(strip_units(duration)) transit_time = float(strip_units(transit_time)) hp = 0.5*period return np.abs((t-transit_time+hp) % period - hp) < 0.5*duration def _validate_inputs(self, t, y, dy): """Private method used to check the consistency of the inputs Parameters ---------- t : array-like, `~astropy.units.Quantity`, `~astropy.time.Time`, or `~astropy.time.TimeDelta` Sequence of observation times. y : array-like or `~astropy.units.Quantity` Sequence of observations associated with times t. dy : float, array-like, or `~astropy.units.Quantity` Error or sequence of observational errors associated with times t. Returns ------- t, y, dy : array-like, `~astropy.units.Quantity`, or `~astropy.time.Time` The inputs with consistent shapes and units. Raises ------ ValueError If the dimensions are incompatible or if the units of dy cannot be converted to the units of y. """ # Validate shapes of inputs if dy is None: t, y = np.broadcast_arrays(t, y, subok=True) else: t, y, dy = np.broadcast_arrays(t, y, dy, subok=True) if t.ndim != 1: raise ValueError("Inputs (t, y, dy) must be 1-dimensional") # validate units of inputs if any is a Quantity if dy is not None: dy = validate_unit_consistency(y, dy) return t, y, dy def _validate_duration(self, duration): """Private method used to check a set of test durations Parameters ---------- duration : float, array-like, or `~astropy.units.Quantity` The set of durations that will be considered. Returns ------- duration : array-like or `~astropy.units.Quantity` The input reformatted with the correct shape and units. Raises ------ ValueError If the units of duration cannot be converted to the units of t. """ duration = np.atleast_1d(np.abs(duration)) if duration.ndim != 1 or duration.size == 0: raise ValueError("duration must be 1-dimensional") return validate_unit_consistency(self._trel, duration) def _validate_period_and_duration(self, period, duration): """Private method used to check a set of periods and durations Parameters ---------- period : float, array-like, or `~astropy.units.Quantity` ['time'] The set of test periods. duration : float, array-like, or `~astropy.units.Quantity` ['time'] The set of durations that will be considered. Returns ------- period, duration : array-like or `~astropy.units.Quantity` ['time'] The inputs reformatted with the correct shapes and units. Raises ------ ValueError If the units of period or duration cannot be converted to the units of t. """ duration = self._validate_duration(duration) period = np.atleast_1d(np.abs(period)) if period.ndim != 1 or period.size == 0: raise ValueError("period must be 1-dimensional") period = validate_unit_consistency(self._trel, period) if not np.min(period) > np.max(duration): raise ValueError("The maximum transit duration must be shorter " "than the minimum period") return period, duration def _format_results(self, t_ref, objective, period, results): """A private method used to wrap and add units to the periodogram Parameters ---------- t_ref : float The minimum time in the time series (a reference time). objective : str The name of the objective used in the optimization. period : array-like or `~astropy.units.Quantity` ['time'] The set of trial periods. results : tuple The output of one of the periodogram implementations. """ (power, depth, depth_err, duration, transit_time, depth_snr, log_likelihood) = results transit_time += t_ref if has_units(self._trel): transit_time = units.Quantity(transit_time, unit=self._trel.unit) transit_time = self._as_absolute_time_if_needed('transit_time', transit_time) duration = units.Quantity(duration, unit=self._trel.unit) if has_units(self.y): depth = units.Quantity(depth, unit=self.y.unit) depth_err = units.Quantity(depth_err, unit=self.y.unit) depth_snr = units.Quantity(depth_snr, unit=units.one) if self.dy is None: if objective == "likelihood": power = units.Quantity(power, unit=self.y.unit**2) else: power = units.Quantity(power, unit=units.one) log_likelihood = units.Quantity(log_likelihood, unit=self.y.unit**2) else: power = units.Quantity(power, unit=units.one) log_likelihood = units.Quantity(log_likelihood, unit=units.one) return BoxLeastSquaresResults( objective, period, power, depth, depth_err, duration, transit_time, depth_snr, log_likelihood) def _t_unit(self): if has_units(self._trel): return self._trel.unit else: return 1 def _y_unit(self): if has_units(self.y): return self.y.unit else: return 1 class BoxLeastSquaresResults(dict): """The results of a BoxLeastSquares search Attributes ---------- objective : str The scalar used to optimize to find the best fit phase, duration, and depth. See :func:`BoxLeastSquares.power` for more information. period : array-like or `~astropy.units.Quantity` ['time'] The set of test periods. power : array-like or `~astropy.units.Quantity` The periodogram evaluated at the periods in ``period``. If ``objective`` is: * ``'likelihood'``: the values of ``power`` are the log likelihood maximized over phase, depth, and duration, or * ``'snr'``: the values of ``power`` are the signal-to-noise with which the depth is measured maximized over phase, depth, and duration. depth : array-like or `~astropy.units.Quantity` The estimated depth of the maximum power model at each period. depth_err : array-like or `~astropy.units.Quantity` The 1-sigma uncertainty on ``depth``. duration : array-like or `~astropy.units.Quantity` ['time'] The maximum power duration at each period. transit_time : array-like, `~astropy.units.Quantity`, or `~astropy.time.Time` The maximum power phase of the transit in units of time. This indicates the mid-transit time and it will always be in the range (0, period). depth_snr : array-like or `~astropy.units.Quantity` The signal-to-noise with which the depth is measured at maximum power. log_likelihood : array-like or `~astropy.units.Quantity` The log likelihood of the maximum power model. """ def __init__(self, *args): super().__init__(zip( ("objective", "period", "power", "depth", "depth_err", "duration", "transit_time", "depth_snr", "log_likelihood"), args )) def __getattr__(self, name): try: return self[name] except KeyError: raise AttributeError(name) __setattr__ = dict.__setitem__ __delattr__ = dict.__delitem__ def __repr__(self): if self.keys(): m = max(map(len, list(self.keys()))) + 1 return '\n'.join([k.rjust(m) + ': ' + repr(v) for k, v in sorted(self.items())]) else: return self.__class__.__name__ + "()" def __dir__(self): return list(self.keys())
a67a128f1564d09d806fa69b838e384a80851b77a336cb3cfb967407d1f2e106
# Licensed under a 3-clause BSD style license - see LICENSE.rst """ Box Least Squares ================= AstroPy-compatible reference implementation of the transit periorogram used to discover transiting exoplanets. """ __all__ = ["BoxLeastSquares", "BoxLeastSquaresResults"] from .core import BoxLeastSquares, BoxLeastSquaresResults
7e30b42a726b3e407c644a302da76a11ea2a7c019b03920079f85e3f44cc1ef8
# Licensed under a 3-clause BSD style license - see LICENSE.rst import os from os.path import join from setuptools import Extension import numpy BLS_ROOT = os.path.relpath(os.path.dirname(__file__)) def get_extensions(): ext = Extension( "astropy.timeseries.periodograms.bls._impl", sources=[ join(BLS_ROOT, "bls.c"), join(BLS_ROOT, "_impl.pyx"), ], include_dirs=[numpy.get_include()], ) return [ext]
6ee490c99a4a4d05282c7c36b4e5d92ac2f488a614b248f23ea8e41330dc5af4
""" Utilities for computing periodogram statistics. This is an internal module; users should access this functionality via the ``false_alarm_probability`` and ``false_alarm_level`` methods of the ``astropy.timeseries.LombScargle`` API. """ from functools import wraps import numpy as np from astropy import units as u def _weighted_sum(val, dy): if dy is not None: return (val / dy ** 2).sum() else: return val.sum() def _weighted_mean(val, dy): if dy is None: return val.mean() else: return _weighted_sum(val, dy) / _weighted_sum(np.ones(val.shape), dy) def _weighted_var(val, dy): return _weighted_mean(val ** 2, dy) - _weighted_mean(val, dy) ** 2 def _gamma(N): from scipy.special import gammaln # Note: this is closely approximated by (1 - 0.75 / N) for large N return np.sqrt(2 / N) * np.exp(gammaln(N / 2) - gammaln((N - 1) / 2)) def vectorize_first_argument(func): @wraps(func) def new_func(x, *args, **kwargs): x = np.asarray(x) return np.array([func(xi, *args, **kwargs) for xi in x.flat]).reshape(x.shape) return new_func def pdf_single(z, N, normalization, dH=1, dK=3): """Probability density function for Lomb-Scargle periodogram Compute the expected probability density function of the periodogram for the null hypothesis - i.e. data consisting of Gaussian noise. Parameters ---------- z : array-like The periodogram value. N : int The number of data points from which the periodogram was computed. normalization : {'standard', 'model', 'log', 'psd'} The periodogram normalization. dH, dK : int, optional The number of parameters in the null hypothesis and the model. Returns ------- pdf : np.ndarray The expected probability density function. Notes ----- For normalization='psd', the distribution can only be computed for periodograms constructed with errors specified. All expressions used here are adapted from Table 1 of Baluev 2008 [1]_. References ---------- .. [1] Baluev, R.V. MNRAS 385, 1279 (2008) """ z = np.asarray(z) if dK - dH != 2: raise NotImplementedError("Degrees of freedom != 2") Nk = N - dK if normalization == 'psd': return np.exp(-z) elif normalization == 'standard': return 0.5 * Nk * (1 - z) ** (0.5 * Nk - 1) elif normalization == 'model': return 0.5 * Nk * (1 + z) ** (-0.5 * Nk - 1) elif normalization == 'log': return 0.5 * Nk * np.exp(-0.5 * Nk * z) else: raise ValueError(f"normalization='{normalization}' is not recognized") def fap_single(z, N, normalization, dH=1, dK=3): """Single-frequency false alarm probability for the Lomb-Scargle periodogram This is equal to 1 - cdf, where cdf is the cumulative distribution. The single-frequency false alarm probability should not be confused with the false alarm probability for the largest peak. Parameters ---------- z : array-like The periodogram value. N : int The number of data points from which the periodogram was computed. normalization : {'standard', 'model', 'log', 'psd'} The periodogram normalization. dH, dK : int, optional The number of parameters in the null hypothesis and the model. Returns ------- false_alarm_probability : np.ndarray The single-frequency false alarm probability. Notes ----- For normalization='psd', the distribution can only be computed for periodograms constructed with errors specified. All expressions used here are adapted from Table 1 of Baluev 2008 [1]_. References ---------- .. [1] Baluev, R.V. MNRAS 385, 1279 (2008) """ z = np.asarray(z) if dK - dH != 2: raise NotImplementedError("Degrees of freedom != 2") Nk = N - dK if normalization == 'psd': return np.exp(-z) elif normalization == 'standard': return (1 - z) ** (0.5 * Nk) elif normalization == 'model': return (1 + z) ** (-0.5 * Nk) elif normalization == 'log': return np.exp(-0.5 * Nk * z) else: raise ValueError(f"normalization='{normalization}' is not recognized") def inv_fap_single(fap, N, normalization, dH=1, dK=3): """Single-frequency inverse false alarm probability This function computes the periodogram value associated with the specified single-frequency false alarm probability. This should not be confused with the false alarm level of the largest peak. Parameters ---------- fap : array-like The false alarm probability. N : int The number of data points from which the periodogram was computed. normalization : {'standard', 'model', 'log', 'psd'} The periodogram normalization. dH, dK : int, optional The number of parameters in the null hypothesis and the model. Returns ------- z : np.ndarray The periodogram power corresponding to the single-peak false alarm probability. Notes ----- For normalization='psd', the distribution can only be computed for periodograms constructed with errors specified. All expressions used here are adapted from Table 1 of Baluev 2008 [1]_. References ---------- .. [1] Baluev, R.V. MNRAS 385, 1279 (2008) """ fap = np.asarray(fap) if dK - dH != 2: raise NotImplementedError("Degrees of freedom != 2") Nk = N - dK # No warnings for fap = 0; rather, just let it give the right infinity. with np.errstate(divide='ignore'): if normalization == 'psd': return -np.log(fap) elif normalization == 'standard': return 1 - fap ** (2 / Nk) elif normalization == 'model': return -1 + fap ** (-2 / Nk) elif normalization == 'log': return -2 / Nk * np.log(fap) else: raise ValueError(f"normalization='{normalization}' is not recognized") def cdf_single(z, N, normalization, dH=1, dK=3): """Cumulative distribution for the Lomb-Scargle periodogram Compute the expected cumulative distribution of the periodogram for the null hypothesis - i.e. data consisting of Gaussian noise. Parameters ---------- z : array-like The periodogram value. N : int The number of data points from which the periodogram was computed. normalization : {'standard', 'model', 'log', 'psd'} The periodogram normalization. dH, dK : int, optional The number of parameters in the null hypothesis and the model. Returns ------- cdf : np.ndarray The expected cumulative distribution function. Notes ----- For normalization='psd', the distribution can only be computed for periodograms constructed with errors specified. All expressions used here are adapted from Table 1 of Baluev 2008 [1]_. References ---------- .. [1] Baluev, R.V. MNRAS 385, 1279 (2008) """ return 1 - fap_single(z, N, normalization=normalization, dH=dH, dK=dK) def tau_davies(Z, fmax, t, y, dy, normalization='standard', dH=1, dK=3): """tau factor for estimating Davies bound (Baluev 2008, Table 1)""" N = len(t) NH = N - dH # DOF for null hypothesis NK = N - dK # DOF for periodic hypothesis Dt = _weighted_var(t, dy) Teff = np.sqrt(4 * np.pi * Dt) # Effective baseline W = fmax * Teff Z = np.asarray(Z) if normalization == 'psd': # 'psd' normalization is same as Baluev's z return W * np.exp(-Z) * np.sqrt(Z) elif normalization == 'standard': # 'standard' normalization is Z = 2/NH * z_1 return (_gamma(NH) * W * (1 - Z) ** (0.5 * (NK - 1)) * np.sqrt(0.5 * NH * Z)) elif normalization == 'model': # 'model' normalization is Z = 2/NK * z_2 return (_gamma(NK) * W * (1 + Z) ** (-0.5 * NK) * np.sqrt(0.5 * NK * Z)) elif normalization == 'log': # 'log' normalization is Z = 2/NK * z_3 return (_gamma(NK) * W * np.exp(-0.5 * Z * (NK - 0.5)) * np.sqrt(NK * np.sinh(0.5 * Z))) else: raise NotImplementedError(f"normalization={normalization}") def fap_naive(Z, fmax, t, y, dy, normalization='standard'): """False Alarm Probability based on estimated number of indep frequencies""" N = len(t) T = max(t) - min(t) N_eff = fmax * T fap_s = fap_single(Z, N, normalization=normalization) # result is 1 - (1 - fap_s) ** N_eff # this is much more precise for small Z / large N # Ignore divide by zero no np.log1p - fine to let it return -inf. with np.errstate(divide='ignore'): return -np.expm1(N_eff * np.log1p(-fap_s)) def inv_fap_naive(fap, fmax, t, y, dy, normalization='standard'): """Inverse FAP based on estimated number of indep frequencies""" fap = np.asarray(fap) N = len(t) T = max(t) - min(t) N_eff = fmax * T # fap_s = 1 - (1 - fap) ** (1 / N_eff) # Ignore divide by zero no np.log - fine to let it return -inf. with np.errstate(divide='ignore'): fap_s = -np.expm1(np.log(1 - fap) / N_eff) return inv_fap_single(fap_s, N, normalization) def fap_davies(Z, fmax, t, y, dy, normalization='standard'): """Davies upper-bound to the false alarm probability (Eqn 5 of Baluev 2008) """ N = len(t) fap_s = fap_single(Z, N, normalization=normalization) tau = tau_davies(Z, fmax, t, y, dy, normalization=normalization) return fap_s + tau @vectorize_first_argument def inv_fap_davies(p, fmax, t, y, dy, normalization='standard'): """Inverse of the davies upper-bound""" from scipy import optimize args = (fmax, t, y, dy, normalization) z0 = inv_fap_naive(p, *args) func = lambda z, *args: fap_davies(z, *args) - p res = optimize.root(func, z0, args=args, method='lm') if not res.success: raise ValueError(f'inv_fap_baluev did not converge for p={p}') return res.x def fap_baluev(Z, fmax, t, y, dy, normalization='standard'): """Alias-free approximation to false alarm probability (Eqn 6 of Baluev 2008) """ fap_s = fap_single(Z, len(t), normalization) tau = tau_davies(Z, fmax, t, y, dy, normalization=normalization) # result is 1 - (1 - fap_s) * np.exp(-tau) # this is much more precise for small numbers return -np.expm1(-tau) + fap_s * np.exp(-tau) @vectorize_first_argument def inv_fap_baluev(p, fmax, t, y, dy, normalization='standard'): """Inverse of the Baluev alias-free approximation""" from scipy import optimize args = (fmax, t, y, dy, normalization) z0 = inv_fap_naive(p, *args) func = lambda z, *args: fap_baluev(z, *args) - p res = optimize.root(func, z0, args=args, method='lm') if not res.success: raise ValueError(f'inv_fap_baluev did not converge for p={p}') return res.x def _bootstrap_max(t, y, dy, fmax, normalization, random_seed, n_bootstrap=1000): """Generate a sequence of bootstrap estimates of the max""" from .core import LombScargle rng = np.random.default_rng(random_seed) power_max = [] for _ in range(n_bootstrap): s = rng.integers(0, len(y), len(y)) # sample with replacement ls_boot = LombScargle(t, y[s], dy if dy is None else dy[s], normalization=normalization) freq, power = ls_boot.autopower(maximum_frequency=fmax) power_max.append(power.max()) power_max = u.Quantity(power_max) power_max.sort() return power_max def fap_bootstrap(Z, fmax, t, y, dy, normalization='standard', n_bootstraps=1000, random_seed=None): """Bootstrap estimate of the false alarm probability""" pmax = _bootstrap_max(t, y, dy, fmax, normalization, random_seed, n_bootstraps) return 1 - np.searchsorted(pmax, Z) / len(pmax) def inv_fap_bootstrap(fap, fmax, t, y, dy, normalization='standard', n_bootstraps=1000, random_seed=None): """Bootstrap estimate of the inverse false alarm probability""" fap = np.asarray(fap) pmax = _bootstrap_max(t, y, dy, fmax, normalization, random_seed, n_bootstraps) return pmax[np.clip(np.floor((1 - fap) * len(pmax)).astype(int), 0, len(pmax) - 1)] METHODS = {'single': fap_single, 'naive': fap_naive, 'davies': fap_davies, 'baluev': fap_baluev, 'bootstrap': fap_bootstrap} def false_alarm_probability(Z, fmax, t, y, dy, normalization='standard', method='baluev', method_kwds=None): """Compute the approximate false alarm probability for periodogram peaks Z This gives an estimate of the false alarm probability for the largest value in a periodogram, based on the null hypothesis of non-varying data with Gaussian noise. The true probability cannot be computed analytically, so each method available here is an approximation to the true value. Parameters ---------- Z : array-like The periodogram value. fmax : float The maximum frequency of the periodogram. t, y, dy : array-like The data times, values, and errors. normalization : {'standard', 'model', 'log', 'psd'}, optional The periodogram normalization. method : {'baluev', 'davies', 'naive', 'bootstrap'}, optional The approximation method to use. method_kwds : dict, optional Additional method-specific keywords. Returns ------- false_alarm_probability : np.ndarray The false alarm probability. Notes ----- For normalization='psd', the distribution can only be computed for periodograms constructed with errors specified. See Also -------- false_alarm_level : compute the periodogram level for a particular fap References ---------- .. [1] Baluev, R.V. MNRAS 385, 1279 (2008) """ if method == 'single': return fap_single(Z, len(t), normalization) elif method not in METHODS: raise ValueError(f"Unrecognized method: {method}") method = METHODS[method] method_kwds = method_kwds or {} return method(Z, fmax, t, y, dy, normalization, **method_kwds) INV_METHODS = {'single': inv_fap_single, 'naive': inv_fap_naive, 'davies': inv_fap_davies, 'baluev': inv_fap_baluev, 'bootstrap': inv_fap_bootstrap} def false_alarm_level(p, fmax, t, y, dy, normalization, method='baluev', method_kwds=None): """Compute the approximate periodogram level given a false alarm probability This gives an estimate of the periodogram level corresponding to a specified false alarm probability for the largest peak, assuming a null hypothesis of non-varying data with Gaussian noise. The true level cannot be computed analytically, so each method available here is an approximation to the true value. Parameters ---------- p : array-like The false alarm probability (0 < p < 1). fmax : float The maximum frequency of the periodogram. t, y, dy : arrays The data times, values, and errors. normalization : {'standard', 'model', 'log', 'psd'}, optional The periodogram normalization. method : {'baluev', 'davies', 'naive', 'bootstrap'}, optional The approximation method to use. method_kwds : dict, optional Additional method-specific keywords. Returns ------- z : np.ndarray The periodogram level. Notes ----- For normalization='psd', the distribution can only be computed for periodograms constructed with errors specified. See Also -------- false_alarm_probability : compute the fap for a given periodogram level References ---------- .. [1] Baluev, R.V. MNRAS 385, 1279 (2008) """ if method == 'single': return inv_fap_single(p, len(t), normalization) elif method not in INV_METHODS: raise ValueError(f"Unrecognized method: {method}") method = INV_METHODS[method] method_kwds = method_kwds or {} return method(p, fmax, t, y, dy, normalization, **method_kwds)
594e77cc167826d021fb04c7263124173ef018052100eec9e87c78f8c8c38f86
"""Main Lomb-Scargle Implementation""" import numpy as np from .implementations import lombscargle, available_methods from .implementations.mle import periodic_fit, design_matrix from . import _statistics from astropy import units from astropy.time import Time, TimeDelta from astropy import units as u from astropy.timeseries.periodograms.base import BasePeriodogram def has_units(obj): return hasattr(obj, 'unit') def get_unit(obj): return getattr(obj, 'unit', 1) def strip_units(*arrs): strip = lambda a: None if a is None else np.asarray(a) if len(arrs) == 1: return strip(arrs[0]) else: return map(strip, arrs) class LombScargle(BasePeriodogram): """Compute the Lomb-Scargle Periodogram. This implementations here are based on code presented in [1]_ and [2]_; if you use this functionality in an academic application, citation of those works would be appreciated. Parameters ---------- t : array-like or `~astropy.units.Quantity` ['time'] sequence of observation times y : array-like or `~astropy.units.Quantity` sequence of observations associated with times t dy : float, array-like, or `~astropy.units.Quantity`, optional error or sequence of observational errors associated with times t fit_mean : bool, optional if True, include a constant offset as part of the model at each frequency. This can lead to more accurate results, especially in the case of incomplete phase coverage. center_data : bool, optional if True, pre-center the data by subtracting the weighted mean of the input data. This is especially important if fit_mean = False nterms : int, optional number of terms to use in the Fourier fit normalization : {'standard', 'model', 'log', 'psd'}, optional Normalization to use for the periodogram. Examples -------- Generate noisy periodic data: >>> rand = np.random.default_rng(42) >>> t = 100 * rand.random(100) >>> y = np.sin(2 * np.pi * t) + rand.standard_normal(100) Compute the Lomb-Scargle periodogram on an automatically-determined frequency grid & find the frequency of max power: >>> frequency, power = LombScargle(t, y).autopower() >>> frequency[np.argmax(power)] # doctest: +FLOAT_CMP 1.0007641728995051 Compute the Lomb-Scargle periodogram at a user-specified frequency grid: >>> freq = np.arange(0.8, 1.3, 0.1) >>> LombScargle(t, y).power(freq) # doctest: +FLOAT_CMP array([0.0792948 , 0.01778874, 0.25328167, 0.01064157, 0.01471387]) If the inputs are astropy Quantities with units, the units will be validated and the outputs will also be Quantities with appropriate units: >>> from astropy import units as u >>> t = t * u.s >>> y = y * u.mag >>> frequency, power = LombScargle(t, y).autopower() >>> frequency.unit Unit("1 / s") >>> power.unit Unit(dimensionless) Note here that the Lomb-Scargle power is always a unitless quantity, because it is related to the :math:`\\chi^2` of the best-fit periodic model at each frequency. References ---------- .. [1] Vanderplas, J., Connolly, A. Ivezic, Z. & Gray, A. *Introduction to astroML: Machine learning for astrophysics*. Proceedings of the Conference on Intelligent Data Understanding (2012) .. [2] VanderPlas, J. & Ivezic, Z. *Periodograms for Multiband Astronomical Time Series*. ApJ 812.1:18 (2015) """ available_methods = available_methods() def __init__(self, t, y, dy=None, fit_mean=True, center_data=True, nterms=1, normalization='standard'): # If t is a TimeDelta, convert it to a quantity. The units we convert # to don't really matter since the user gets a Quantity back at the end # so can convert to any units they like. if isinstance(t, TimeDelta): t = t.to('day') # We want to expose self.t as being the times the user passed in, but # if the times are absolute, we need to convert them to relative times # internally, so we use self._trel and self._tstart for this. self.t = t if isinstance(self.t, Time): self._tstart = self.t[0] trel = (self.t - self._tstart).to(u.day) else: self._tstart = None trel = self.t self._trel, self.y, self.dy = self._validate_inputs(trel, y, dy) self.fit_mean = fit_mean self.center_data = center_data self.nterms = nterms self.normalization = normalization def _validate_inputs(self, t, y, dy): # Validate shapes of inputs if dy is None: t, y = np.broadcast_arrays(t, y, subok=True) else: t, y, dy = np.broadcast_arrays(t, y, dy, subok=True) if t.ndim != 1: raise ValueError("Inputs (t, y, dy) must be 1-dimensional") # validate units of inputs if any is a Quantity if any(has_units(arr) for arr in (t, y, dy)): t, y = map(units.Quantity, (t, y)) if dy is not None: dy = units.Quantity(dy) try: dy = units.Quantity(dy, unit=y.unit) except units.UnitConversionError: raise ValueError("Units of dy not equivalent " "to units of y") return t, y, dy def _validate_frequency(self, frequency): frequency = np.asanyarray(frequency) if has_units(self._trel): frequency = units.Quantity(frequency) try: frequency = units.Quantity(frequency, unit=1./self._trel.unit) except units.UnitConversionError: raise ValueError("Units of frequency not equivalent to " "units of 1/t") else: if has_units(frequency): raise ValueError("frequency have units while 1/t doesn't.") return frequency def _validate_t(self, t): t = np.asanyarray(t) if has_units(self._trel): t = units.Quantity(t) try: t = units.Quantity(t, unit=self._trel.unit) except units.UnitConversionError: raise ValueError("Units of t not equivalent to " "units of input self.t") return t def _power_unit(self, norm): if has_units(self.y): if self.dy is None and norm == 'psd': return self.y.unit ** 2 else: return units.dimensionless_unscaled else: return 1 def autofrequency(self, samples_per_peak=5, nyquist_factor=5, minimum_frequency=None, maximum_frequency=None, return_freq_limits=False): """Determine a suitable frequency grid for data. Note that this assumes the peak width is driven by the observational baseline, which is generally a good assumption when the baseline is much larger than the oscillation period. If you are searching for periods longer than the baseline of your observations, this may not perform well. Even with a large baseline, be aware that the maximum frequency returned is based on the concept of "average Nyquist frequency", which may not be useful for irregularly-sampled data. The maximum frequency can be adjusted via the nyquist_factor argument, or through the maximum_frequency argument. Parameters ---------- samples_per_peak : float, optional The approximate number of desired samples across the typical peak nyquist_factor : float, optional The multiple of the average nyquist frequency used to choose the maximum frequency if maximum_frequency is not provided. minimum_frequency : float, optional If specified, then use this minimum frequency rather than one chosen based on the size of the baseline. maximum_frequency : float, optional If specified, then use this maximum frequency rather than one chosen based on the average nyquist frequency. return_freq_limits : bool, optional if True, return only the frequency limits rather than the full frequency grid. Returns ------- frequency : ndarray or `~astropy.units.Quantity` ['frequency'] The heuristically-determined optimal frequency bin """ baseline = self._trel.max() - self._trel.min() n_samples = self._trel.size df = 1.0 / baseline / samples_per_peak if minimum_frequency is None: minimum_frequency = 0.5 * df if maximum_frequency is None: avg_nyquist = 0.5 * n_samples / baseline maximum_frequency = nyquist_factor * avg_nyquist Nf = 1 + int(np.round((maximum_frequency - minimum_frequency) / df)) if return_freq_limits: return minimum_frequency, minimum_frequency + df * (Nf - 1) else: return minimum_frequency + df * np.arange(Nf) def autopower(self, method='auto', method_kwds=None, normalization=None, samples_per_peak=5, nyquist_factor=5, minimum_frequency=None, maximum_frequency=None): """Compute Lomb-Scargle power at automatically-determined frequencies. Parameters ---------- method : str, optional specify the lomb scargle implementation to use. Options are: - 'auto': choose the best method based on the input - 'fast': use the O[N log N] fast method. Note that this requires evenly-spaced frequencies: by default this will be checked unless ``assume_regular_frequency`` is set to True. - 'slow': use the O[N^2] pure-python implementation - 'cython': use the O[N^2] cython implementation. This is slightly faster than method='slow', but much more memory efficient. - 'chi2': use the O[N^2] chi2/linear-fitting implementation - 'fastchi2': use the O[N log N] chi2 implementation. Note that this requires evenly-spaced frequencies: by default this will be checked unless ``assume_regular_frequency`` is set to True. - 'scipy': use ``scipy.signal.lombscargle``, which is an O[N^2] implementation written in C. Note that this does not support heteroskedastic errors. method_kwds : dict, optional additional keywords to pass to the lomb-scargle method normalization : {'standard', 'model', 'log', 'psd'}, optional If specified, override the normalization specified at instantiation. samples_per_peak : float, optional The approximate number of desired samples across the typical peak nyquist_factor : float, optional The multiple of the average nyquist frequency used to choose the maximum frequency if maximum_frequency is not provided. minimum_frequency : float or `~astropy.units.Quantity` ['frequency'], optional If specified, then use this minimum frequency rather than one chosen based on the size of the baseline. Should be `~astropy.units.Quantity` if inputs to LombScargle are `~astropy.units.Quantity`. maximum_frequency : float or `~astropy.units.Quantity` ['frequency'], optional If specified, then use this maximum frequency rather than one chosen based on the average nyquist frequency. Should be `~astropy.units.Quantity` if inputs to LombScargle are `~astropy.units.Quantity`. Returns ------- frequency, power : ndarray The frequency and Lomb-Scargle power """ frequency = self.autofrequency(samples_per_peak=samples_per_peak, nyquist_factor=nyquist_factor, minimum_frequency=minimum_frequency, maximum_frequency=maximum_frequency) power = self.power(frequency, normalization=normalization, method=method, method_kwds=method_kwds, assume_regular_frequency=True) return frequency, power def power(self, frequency, normalization=None, method='auto', assume_regular_frequency=False, method_kwds=None): """Compute the Lomb-Scargle power at the given frequencies. Parameters ---------- frequency : array-like or `~astropy.units.Quantity` ['frequency'] frequencies (not angular frequencies) at which to evaluate the periodogram. Note that in order to use method='fast', frequencies must be regularly-spaced. method : str, optional specify the lomb scargle implementation to use. Options are: - 'auto': choose the best method based on the input - 'fast': use the O[N log N] fast method. Note that this requires evenly-spaced frequencies: by default this will be checked unless ``assume_regular_frequency`` is set to True. - 'slow': use the O[N^2] pure-python implementation - 'cython': use the O[N^2] cython implementation. This is slightly faster than method='slow', but much more memory efficient. - 'chi2': use the O[N^2] chi2/linear-fitting implementation - 'fastchi2': use the O[N log N] chi2 implementation. Note that this requires evenly-spaced frequencies: by default this will be checked unless ``assume_regular_frequency`` is set to True. - 'scipy': use ``scipy.signal.lombscargle``, which is an O[N^2] implementation written in C. Note that this does not support heteroskedastic errors. assume_regular_frequency : bool, optional if True, assume that the input frequency is of the form freq = f0 + df * np.arange(N). Only referenced if method is 'auto' or 'fast'. normalization : {'standard', 'model', 'log', 'psd'}, optional If specified, override the normalization specified at instantiation. fit_mean : bool, optional If True, include a constant offset as part of the model at each frequency. This can lead to more accurate results, especially in the case of incomplete phase coverage. center_data : bool, optional If True, pre-center the data by subtracting the weighted mean of the input data. This is especially important if fit_mean = False. method_kwds : dict, optional additional keywords to pass to the lomb-scargle method Returns ------- power : ndarray The Lomb-Scargle power at the specified frequency """ if normalization is None: normalization = self.normalization frequency = self._validate_frequency(frequency) power = lombscargle(*strip_units(self._trel, self.y, self.dy), frequency=strip_units(frequency), center_data=self.center_data, fit_mean=self.fit_mean, nterms=self.nterms, normalization=normalization, method=method, method_kwds=method_kwds, assume_regular_frequency=assume_regular_frequency) return power * self._power_unit(normalization) def _as_relative_time(self, name, times): """ Convert the provided times (if absolute) to relative times using the current _tstart value. If the times provided are relative, they are returned without conversion (though we still do some checks). """ if isinstance(times, TimeDelta): times = times.to('day') if self._tstart is None: if isinstance(times, Time): raise TypeError('{} was provided as an absolute time but ' 'the LombScargle class was initialized ' 'with relative times.'.format(name)) else: if isinstance(times, Time): times = (times - self._tstart).to(u.day) else: raise TypeError('{} was provided as a relative time but ' 'the LombScargle class was initialized ' 'with absolute times.'.format(name)) return times def model(self, t, frequency): """Compute the Lomb-Scargle model at the given frequency. The model at a particular frequency is a linear model: model = offset + dot(design_matrix, model_parameters) Parameters ---------- t : array-like or `~astropy.units.Quantity` ['time'] Times (length ``n_samples``) at which to compute the model. frequency : float the frequency for the model Returns ------- y : np.ndarray The model fit corresponding to the input times (will have length ``n_samples``). See Also -------- design_matrix offset model_parameters """ frequency = self._validate_frequency(frequency) t = self._validate_t(self._as_relative_time('t', t)) y_fit = periodic_fit(*strip_units(self._trel, self.y, self.dy), frequency=strip_units(frequency), t_fit=strip_units(t), center_data=self.center_data, fit_mean=self.fit_mean, nterms=self.nterms) return y_fit * get_unit(self.y) def offset(self): """Return the offset of the model The offset of the model is the (weighted) mean of the y values. Note that if self.center_data is False, the offset is 0 by definition. Returns ------- offset : scalar See Also -------- design_matrix model model_parameters """ y, dy = strip_units(self.y, self.dy) if dy is None: dy = 1 dy = np.broadcast_to(dy, y.shape) if self.center_data: w = dy ** -2.0 y_mean = np.dot(y, w) / w.sum() else: y_mean = 0 return y_mean * get_unit(self.y) def model_parameters(self, frequency, units=True): r"""Compute the best-fit model parameters at the given frequency. The model described by these parameters is: .. math:: y(t; f, \vec{\theta}) = \theta_0 + \sum_{n=1}^{\tt nterms} [\theta_{2n-1}\sin(2\pi n f t) + \theta_{2n}\cos(2\pi n f t)] where :math:`\vec{\theta}` is the array of parameters returned by this function. Parameters ---------- frequency : float the frequency for the model units : bool If True (default), return design matrix with data units. Returns ------- theta : np.ndarray (n_parameters,) The best-fit model parameters at the given frequency. See Also -------- design_matrix model offset """ frequency = self._validate_frequency(frequency) t, y, dy = strip_units(self._trel, self.y, self.dy) if self.center_data: y = y - strip_units(self.offset()) dy = np.ones_like(y) if dy is None else np.asarray(dy) X = self.design_matrix(frequency) parameters = np.linalg.solve(np.dot(X.T, X), np.dot(X.T, y / dy)) if units: parameters = get_unit(self.y) * parameters return parameters def design_matrix(self, frequency, t=None): """Compute the design matrix for a given frequency Parameters ---------- frequency : float the frequency for the model t : array-like, `~astropy.units.Quantity`, or `~astropy.time.Time` (optional) Times (length ``n_samples``) at which to compute the model. If not specified, then the times and uncertainties of the input data are used. Returns ------- X : array The design matrix for the model at the given frequency. This should have a shape of (``len(t)``, ``n_parameters``). See Also -------- model model_parameters offset """ if t is None: t, dy = strip_units(self._trel, self.dy) else: t, dy = strip_units(self._validate_t(self._as_relative_time('t', t)), None) return design_matrix(t, frequency, dy, nterms=self.nterms, bias=self.fit_mean) def distribution(self, power, cumulative=False): """Expected periodogram distribution under the null hypothesis. This computes the expected probability distribution or cumulative probability distribution of periodogram power, under the null hypothesis of a non-varying signal with Gaussian noise. Note that this is not the same as the expected distribution of peak values; for that see the ``false_alarm_probability()`` method. Parameters ---------- power : array-like The periodogram power at which to compute the distribution. cumulative : bool, optional If True, then return the cumulative distribution. See Also -------- false_alarm_probability false_alarm_level Returns ------- dist : np.ndarray The probability density or cumulative probability associated with the provided powers. """ dH = 1 if self.fit_mean or self.center_data else 0 dK = dH + 2 * self.nterms dist = _statistics.cdf_single if cumulative else _statistics.pdf_single return dist(power, len(self._trel), self.normalization, dH=dH, dK=dK) def false_alarm_probability(self, power, method='baluev', samples_per_peak=5, nyquist_factor=5, minimum_frequency=None, maximum_frequency=None, method_kwds=None): """False alarm probability of periodogram maxima under the null hypothesis. This gives an estimate of the false alarm probability given the height of the largest peak in the periodogram, based on the null hypothesis of non-varying data with Gaussian noise. Parameters ---------- power : array-like The periodogram value. method : {'baluev', 'davies', 'naive', 'bootstrap'}, optional The approximation method to use. maximum_frequency : float The maximum frequency of the periodogram. method_kwds : dict, optional Additional method-specific keywords. Returns ------- false_alarm_probability : np.ndarray The false alarm probability Notes ----- The true probability distribution for the largest peak cannot be determined analytically, so each method here provides an approximation to the value. The available methods are: - "baluev" (default): the upper-limit to the alias-free probability, using the approach of Baluev (2008) [1]_. - "davies" : the Davies upper bound from Baluev (2008) [1]_. - "naive" : the approximate probability based on an estimated effective number of independent frequencies. - "bootstrap" : the approximate probability based on bootstrap resamplings of the input data. Note also that for normalization='psd', the distribution can only be computed for periodograms constructed with errors specified. See Also -------- distribution false_alarm_level References ---------- .. [1] Baluev, R.V. MNRAS 385, 1279 (2008) """ if self.nterms != 1: raise NotImplementedError("false alarm probability is not " "implemented for multiterm periodograms.") if not (self.fit_mean or self.center_data): raise NotImplementedError("false alarm probability is implemented " "only for periodograms of centered data.") fmin, fmax = self.autofrequency(samples_per_peak=samples_per_peak, nyquist_factor=nyquist_factor, minimum_frequency=minimum_frequency, maximum_frequency=maximum_frequency, return_freq_limits=True) return _statistics.false_alarm_probability(power, fmax=fmax, t=self._trel, y=self.y, dy=self.dy, normalization=self.normalization, method=method, method_kwds=method_kwds) def false_alarm_level(self, false_alarm_probability, method='baluev', samples_per_peak=5, nyquist_factor=5, minimum_frequency=None, maximum_frequency=None, method_kwds=None): """Level of maximum at a given false alarm probability. This gives an estimate of the periodogram level corresponding to a specified false alarm probability for the largest peak, assuming a null hypothesis of non-varying data with Gaussian noise. Parameters ---------- false_alarm_probability : array-like The false alarm probability (0 < fap < 1). maximum_frequency : float The maximum frequency of the periodogram. method : {'baluev', 'davies', 'naive', 'bootstrap'}, optional The approximation method to use; default='baluev'. method_kwds : dict, optional Additional method-specific keywords. Returns ------- power : np.ndarray The periodogram peak height corresponding to the specified false alarm probability. Notes ----- The true probability distribution for the largest peak cannot be determined analytically, so each method here provides an approximation to the value. The available methods are: - "baluev" (default): the upper-limit to the alias-free probability, using the approach of Baluev (2008) [1]_. - "davies" : the Davies upper bound from Baluev (2008) [1]_. - "naive" : the approximate probability based on an estimated effective number of independent frequencies. - "bootstrap" : the approximate probability based on bootstrap resamplings of the input data. Note also that for normalization='psd', the distribution can only be computed for periodograms constructed with errors specified. See Also -------- distribution false_alarm_probability References ---------- .. [1] Baluev, R.V. MNRAS 385, 1279 (2008) """ if self.nterms != 1: raise NotImplementedError("false alarm probability is not " "implemented for multiterm periodograms.") if not (self.fit_mean or self.center_data): raise NotImplementedError("false alarm probability is implemented " "only for periodograms of centered data.") fmin, fmax = self.autofrequency(samples_per_peak=samples_per_peak, nyquist_factor=nyquist_factor, minimum_frequency=minimum_frequency, maximum_frequency=maximum_frequency, return_freq_limits=True) return _statistics.false_alarm_level(false_alarm_probability, fmax=fmax, t=self._trel, y=self.y, dy=self.dy, normalization=self.normalization, method=method, method_kwds=method_kwds)
6ce7ca07943f560bf64f4ded335691e4797fd15e3b6123d3c75de7af8c2d38fd
# Licensed under a 3-clause BSD style license - see LICENSE.rst """ lombscargle =========== AstroPy-compatible implementation of the Lomb-Scargle periodogram. """ from .core import LombScargle
4ea1bb879f1ae65fce81e87a53b8ad094bab8158abae5dae4ddd47eda3968b93
import numpy as np NORMALIZATIONS = ['standard', 'psd', 'model', 'log'] def compute_chi2_ref(y, dy=None, center_data=True, fit_mean=True): """Compute the reference chi-square for a particular dataset. Note: this is not valid center_data=False and fit_mean=False. Parameters ---------- y : array-like data values dy : float, array, or None, optional data uncertainties center_data : bool specify whether data should be pre-centered fit_mean : bool specify whether model should fit the mean of the data Returns ------- chi2_ref : float The reference chi-square for the periodogram of this data """ if dy is None: dy = 1 y, dy = np.broadcast_arrays(y, dy) w = dy ** -2.0 if center_data or fit_mean: mu = np.dot(w, y) / w.sum() else: mu = 0 yw = (y - mu) / dy return np.dot(yw, yw) def convert_normalization(Z, N, from_normalization, to_normalization, chi2_ref=None): """Convert power from one normalization to another. This currently only works for standard & floating-mean models. Parameters ---------- Z : array-like the periodogram output N : int the number of data points from_normalization, to_normalization : str the normalization to convert from and to. Options are ['standard', 'model', 'log', 'psd'] chi2_ref : float The reference chi-square, required for converting to or from the psd normalization. Returns ------- Z_out : ndarray The periodogram in the new normalization """ Z = np.asarray(Z) from_to = (from_normalization, to_normalization) for norm in from_to: if norm not in NORMALIZATIONS: raise ValueError(f"{from_normalization} is not a valid normalization") if from_normalization == to_normalization: return Z if "psd" in from_to and chi2_ref is None: raise ValueError("must supply reference chi^2 when converting " "to or from psd normalization") if from_to == ('log', 'standard'): return 1 - np.exp(-Z) elif from_to == ('standard', 'log'): return -np.log(1 - Z) elif from_to == ('log', 'model'): return np.exp(Z) - 1 elif from_to == ('model', 'log'): return np.log(Z + 1) elif from_to == ('model', 'standard'): return Z / (1 + Z) elif from_to == ('standard', 'model'): return Z / (1 - Z) elif from_normalization == "psd": return convert_normalization(2 / chi2_ref * Z, N, from_normalization='standard', to_normalization=to_normalization) elif to_normalization == "psd": Z_standard = convert_normalization(Z, N, from_normalization=from_normalization, to_normalization='standard') return 0.5 * chi2_ref * Z_standard else: raise NotImplementedError("conversion from '{}' to '{}'" "".format(from_normalization, to_normalization))
2e5bdcc9a96a9a3aa10d56623a94de696ce44ce38ad0320d6c6358c11214567e
# -*- coding: utf-8 -*- # Licensed under a 3-clause BSD style license - see LICENSE.rst import pytest import numpy as np from numpy.testing import assert_allclose, assert_equal from astropy import units as u from astropy.time import Time, TimeDelta from astropy.tests.helper import assert_quantity_allclose from astropy.timeseries.periodograms.bls import BoxLeastSquares from astropy.timeseries.periodograms.lombscargle.core import has_units def assert_allclose_blsresults(blsresult, other, **kwargs): """Assert that another BoxLeastSquaresResults object is consistent This method loops over all attributes and compares the values using :func:`~astropy.tests.helper.assert_quantity_allclose` function. Parameters ---------- other : BoxLeastSquaresResults The other results object to compare. """ for k, v in blsresult.items(): if k not in other: raise AssertionError(f"missing key '{k}'") if k == "objective": assert v == other[k], ( f"Mismatched objectives. Expected '{v}', got '{other[k]}'" ) continue assert_quantity_allclose(v, other[k], **kwargs) # NOTE: PR 10644 replaced deprecated usage of RandomState but could not # find a new seed that did not cause test failure, resorted to hardcoding. @pytest.fixture def data(): t = np.array([ 6.96469186, 2.86139335, 2.26851454, 5.51314769, 7.1946897, 4.2310646, 9.80764198, 6.84829739, 4.80931901, 3.92117518, 3.43178016, 7.29049707, 4.38572245, 0.59677897, 3.98044255, 7.37995406, 1.8249173, 1.75451756, 5.31551374, 5.31827587, 6.34400959, 8.49431794, 7.24455325, 6.11023511, 7.22443383, 3.22958914, 3.61788656, 2.28263231, 2.93714046, 6.30976124, 0.9210494, 4.33701173, 4.30862763, 4.93685098, 4.2583029, 3.12261223, 4.26351307, 8.93389163, 9.44160018, 5.01836676, 6.23952952, 1.15618395, 3.17285482, 4.14826212, 8.66309158, 2.50455365, 4.83034264, 9.85559786, 5.19485119, 6.12894526, 1.20628666, 8.26340801, 6.03060128, 5.45068006, 3.42763834, 3.04120789, 4.17022211, 6.81300766, 8.75456842, 5.10422337, 6.69313783, 5.85936553, 6.24903502, 6.74689051, 8.42342438, 0.83194988, 7.63682841, 2.43666375, 1.94222961, 5.72456957, 0.95712517, 8.85326826, 6.27248972, 7.23416358, 0.16129207, 5.94431879, 5.56785192, 1.58959644, 1.53070515, 6.95529529, 3.18766426, 6.91970296, 5.5438325, 3.88950574, 9.2513249, 8.41669997, 3.57397567, 0.43591464, 3.04768073, 3.98185682, 7.0495883, 9.95358482, 3.55914866, 7.62547814, 5.93176917, 6.91701799, 1.51127452, 3.98876293, 2.40855898, 3.43456014, 5.13128154, 6.6662455, 1.05908485, 1.30894951, 3.21980606, 6.61564337, 8.46506225, 5.53257345, 8.54452488, 3.84837811, 3.16787897, 3.54264676, 1.71081829, 8.29112635, 3.38670846, 5.52370075, 5.78551468, 5.21533059, 0.02688065, 9.88345419, 9.05341576, 2.07635861, 2.92489413, 5.20010153, 9.01911373, 9.83630885, 2.57542064, 5.64359043, 8.06968684, 3.94370054, 7.31073036, 1.61069014, 6.00698568, 8.65864458, 9.83521609, 0.7936579, 4.28347275, 2.0454286, 4.50636491, 5.47763573, 0.9332671, 2.96860775, 9.2758424, 5.69003731, 4.57411998, 7.53525991, 7.41862152, 0.48579033, 7.08697395, 8.39243348, 1.65937884, 7.80997938, 2.86536617, 3.06469753, 6.65261465, 1.11392172, 6.64872449, 8.87856793, 6.96311268, 4.40327877, 4.38214384, 7.65096095, 5.65642001, 0.84904163, 5.82671088, 8.14843703, 3.37066383, 9.2757658, 7.50717, 5.74063825, 7.51643989, 0.79148961, 8.59389076, 8.21504113, 9.0987166, 1.28631198, 0.81780087, 1.38415573, 3.9937871, 4.24306861, 5.62218379, 1.2224355, 2.01399501, 8.11644348, 4.67987574, 8.07938209, 0.07426379, 5.51592726, 9.31932148, 5.82175459, 2.06095727, 7.17757562, 3.7898585, 6.68383947, 0.29319723, 6.35900359, 0.32197935, 7.44780655, 4.72913002, 1.21754355, 5.42635926, 0.66774443, 6.53364871, 9.96086327, 7.69397337, 5.73774114, 1.02635259, 6.99834075, 6.61167867, 0.49097131, 7.92299302, 5.18716591, 4.25867694, 7.88187174, 4.11569223, 4.81026276, 1.81628843, 3.213189, 8.45532997, 1.86903749, 4.17291061, 9.89034507, 2.36599812, 9.16832333, 9.18397468, 0.91296342, 4.63652725, 5.02216335, 3.1366895, 0.47339537, 2.41685637, 0.95529642, 2.38249906, 8.07791086, 8.94978288, 0.43222892, 3.01946836, 9.80582199, 5.39504823, 6.26309362, 0.05545408, 4.84909443, 9.88328535, 3.75185527, 0.97038159, 4.61908762, 9.63004466, 3.41830614, 7.98922733, 7.98846331, 2.08248297, 4.43367702, 7.15601275, 4.10519785, 1.91006955, 9.67494307, 6.50750366, 8.65459852, 2.52423578e-01, 2.66905815, 5.02071100, 6.74486351e-01, 9.93033261, 2.36462396, 3.74292182, 2.14011915, 1.05445866, 2.32479786, 3.00610136, 6.34442268, 2.81234781, 3.62276761, 5.94284372e-02, 3.65719126, 5.33885982, 1.62015837, 5.97433108, 2.93152469, 6.32050495, 2.61966053e-01, 8.87593460, 1.61186304e-01, 1.26958031, 7.77162462, 4.58952322e-01, 7.10998694, 9.71046141, 8.71682933, 7.10161651, 9.58509743, 4.29813338, 8.72878914, 3.55957668, 9.29763653, 1.48777656, 9.40029015, 8.32716197, 8.46054838, 1.23923010, 5.96486898, 1.63924809e-01, 7.21184366, 7.73751413e-02, 8.48222774e-01, 2.25498410, 8.75124534, 3.63576318, 5.39959935, 5.68103214, 2.25463360, 5.72146768, 6.60951795, 2.98245393, 4.18626859, 4.53088925, 9.32350662, 5.87493747, 9.48252372, 5.56034754, 5.00561421, 3.53221097e-02, 4.80889044, 9.27454999, 1.98365689, 5.20911344e-01, 4.06778893, 3.72396481, 8.57153058, 2.66111156e-01, 9.20149230, 6.80902999, 9.04225994, 6.07529071, 8.11953312, 3.35543874, 3.49566228, 3.89874230, 7.54797082, 3.69291174, 2.42219806, 9.37668357, 9.08011084, 3.48797316, 6.34638070, 2.73842212, 2.06115129, 3.36339529, 3.27099893, 8.82276101, 8.22303815, 7.09623229, 9.59345225, 4.22543353, 2.45033039, 1.17398437, 3.01053358, 1.45263734, 9.21860974e-01, 6.02932197, 3.64187450, 5.64570343, 1.91335721, 6.76905860, 2.15505447, 2.78023594, 7.41760422, 5.59737896, 3.34836413, 5.42988783, 6.93984703, 9.12132121, 5.80713213, 2.32686379, 7.46697631, 7.77769018, 2.00401315, 8.20574220, 4.64934855, 7.79766662, 2.37478220, 3.32580270, 9.53697119, 6.57815073, 7.72877831, 6.88374343, 2.04304118, 4.70688748, 8.08963873, 6.75035127, 6.02788565e-02, 8.74077427e-01, 3.46794720, 9.44365540, 4.91190481, 2.70176267, 3.60423719, 2.10652628, 4.21200057, 2.18035440, 8.45752507, 4.56270599, 2.79802018, 9.32891648, 3.14351354, 9.09714662, 4.34180910e-01, 7.07115060, 4.83889039, 4.44221061, 3.63233444e-01, 4.06831905e-01, 3.32753617, 9.47119540, 6.17659977, 3.68874842, 6.11977039, 2.06131536, 1.65066443, 3.61817266, 8.63353352, 5.09401727, 2.96901516, 9.50251625, 8.15966090, 3.22973943, 9.72098245, 9.87351098, 4.08660134, 6.55923103, 4.05653198, 2.57348106, 8.26526760e-01, 2.63610346, 2.71479854, 3.98639080, 1.84886031, 9.53818403, 1.02879885, 6.25208533, 4.41697388, 4.23518049, 3.71991783, 8.68314710, 2.80476981, 2.05761574e-01, 9.18097016, 8.64480278, 2.76901790, 5.23487548, 1.09088197, 9.34270688e-01, 8.37466108, 4.10265718, 6.61716540, 9.43200558, 2.45130592, 1.31598313e-01, 2.41484058e-01, 7.09385692, 9.24551885, 4.67330273, 3.75109148, 5.42860425, 8.58916838, 6.52153874, 2.32979897, 7.74580205, 1.34613497, 1.65559971, 6.12682283, 2.38783406, 7.04778548, 3.49518527, 2.77423960, 9.98918406, 4.06161246e-01, 6.45822522, 3.86995850e-01, 7.60210258, 2.30089957, 8.98318671e-01, 6.48449712, 7.32601217, 6.78095315, 5.19009471e-01, 2.94306946, 4.51088346, 2.87103290, 8.10513456, 1.31115105, 6.12179362, 9.88214944, 9.02556539, 2.22157062, 8.18876137e-04, 9.80597342, 8.82712985, 9.19472466, 4.15503551, 7.44615462]) y = np.ones_like(t) dy = np.array([ 0.00606416, 0.00696152, 0.00925774, 0.00563806, 0.00946933, 0.00748254, 0.00713048, 0.00652823, 0.00958424, 0.00758812, 0.00902013, 0.00928826, 0.00961191, 0.0065169, 0.00669905, 0.00797537, 0.00720662, 0.00966421, 0.00698782, 0.00738889, 0.00808593, 0.0070237, 0.00996239, 0.00549426, 0.00610302, 0.00661328, 0.00573861, 0.0064211, 0.00889623, 0.00761446, 0.00516977, 0.00991311, 0.00808003, 0.0052947, 0.00830584, 0.00689185, 0.00567837, 0.00781832, 0.0086354, 0.00835563, 0.00623757, 0.00762433, 0.00768832, 0.00858402, 0.00679934, 0.00898866, 0.00813961, 0.00519166, 0.0077324, 0.00930956, 0.00783787, 0.00587914, 0.00755188, 0.00878473, 0.00555053, 0.0090855, 0.00583741, 0.00767038, 0.00692872, 0.00624312, 0.00823716, 0.00518696, 0.00880023, 0.0076347, 0.00937886, 0.00760359, 0.00517517, 0.005718, 0.00897802, 0.00745988, 0.0072094, 0.00659217, 0.00642275, 0.00982943, 0.00716485, 0.00942002, 0.00824082, 0.00929214, 0.00926225, 0.00978156, 0.00848971, 0.00902698, 0.00866564, 0.00802613, 0.00858677, 0.00857875, 0.00520454, 0.00758055, 0.00896326, 0.00621481, 0.00732574, 0.00717493, 0.00701394, 0.0056092, 0.00762856, 0.00723124, 0.00831696, 0.00774707, 0.00513771, 0.00515959, 0.0085068, 0.00853791, 0.0097997, 0.00938352, 0.0073403, 0.00812953, 0.00728591, 0.00611473, 0.00688338, 0.00551942, 0.00833264, 0.00596015, 0.00737734, 0.00983718, 0.00515834, 0.00575865, 0.0064929, 0.00970903, 0.00954421, 0.00581, 0.00990559, 0.00875374, 0.00769989, 0.00965851, 0.00940304, 0.00695658, 0.00828172, 0.00823693, 0.00663484, 0.00589695, 0.00733405, 0.00631641, 0.00677533, 0.00977072, 0.00730569, 0.00842446, 0.00668115, 0.00997931, 0.00829384, 0.00598005, 0.00549092, 0.0097159, 0.00972389, 0.00810664, 0.00508496, 0.00612767, 0.00900638, 0.0093773, 0.00726995, 0.0068276, 0.00637113, 0.00558485, 0.00557872, 0.00976301, 0.00904313, 0.0058239, 0.00603525, 0.00827776, 0.00882332, 0.00905157, 0.00581669, 0.00992064, 0.00613901, 0.00794708, 0.00793808, 0.00983681, 0.00828834, 0.00792452, 0.00759386, 0.00882329, 0.00553028, 0.00501046, 0.00976244, 0.00749329, 0.00664168, 0.00684027, 0.00901922, 0.00691185, 0.00885085, 0.00720231, 0.00922039, 0.00538102, 0.00740564, 0.00733425, 0.00632164, 0.00971807, 0.00952514, 0.00721798, 0.0054858, 0.00603392, 0.00635746, 0.0074211, 0.00669189, 0.00887068, 0.00738013, 0.00935185, 0.00997891, 0.00609918, 0.00805836, 0.00923751, 0.00972618, 0.00645043, 0.00863521, 0.00507508, 0.00939571, 0.00531969, 0.00866698, 0.00997305, 0.00750595, 0.00604667, 0.00797322, 0.00812075, 0.00834036, 0.00586306, 0.00949356, 0.00810496, 0.00521784, 0.00842021, 0.00598042, 0.0051367, 0.00775477, 0.00906657, 0.00929971, 0.0055176, 0.00831521, 0.00855038, 0.00647258, 0.00985682, 0.00639344, 0.00534991, 0.0075964, 0.00847157, 0.0062233, 0.00669291, 0.00781814, 0.00943339, 0.00873663, 0.00604796, 0.00625889, 0.0076194, 0.00884479, 0.00809381, 0.00750662, 0.00798563, 0.0087803, 0.0076854, 0.00948876, 0.00973534, 0.00957677, 0.00877259, 0.00623161, 0.00692636, 0.0064, 0.0082883, 0.00662111, 0.00877196, 0.00556755, 0.00887682, 0.00792951, 0.00917694, 0.00715438, 0.00812482, 0.00777206, 0.00987836, 0.00877737, 0.00772407, 0.00587016, 0.00952057, 0.00602919, 0.00825022, 0.00968236, 0.0061179, 0.00612962, 0.00925909, 0.00913828, 0.00675852, 0.00632548, 0.00563694, 0.00993968, 0.00917672, 0.00949696, 0.0075684, 0.00557192, 0.0052629, 0.00665291, 0.00960165, 0.00973791, 0.00920582, 0.0057934, 0.00709962, 0.00623121, 0.00602675, 0.00842413, 0.00743056, 0.00662455, 0.00550107, 0.00772382, 0.00673513, 0.00695548, 0.00655254, 0.00693598, 0.0077793, 0.00507072, 0.00923823, 0.0096096, 0.00775265, 0.00634011, 0.0099512, 0.00691597, 0.00846828, 0.00844976, 0.00717155, 0.00599579, 0.0098329, 0.00531845, 0.00742575, 0.00610365, 0.00646987, 0.00914264, 0.00683633, 0.00541674, 0.00598155, 0.00930187, 0.00988514, 0.00633991, 0.00837704, 0.00540599, 0.00861733, 0.00708218, 0.0095908, 0.00655768, 0.00970733, 0.00751624, 0.00674446, 0.0082351, 0.00624873, 0.00614882, 0.00598173, 0.0097995, 0.00746457, 0.00875807, 0.00736996, 0.0079377, 0.00792069, 0.00989943, 0.00834217, 0.00619885, 0.00507599, 0.00609341, 0.0072776, 0.0069671, 0.00906163, 0.00892778, 0.00544548, 0.00976005, 0.00763728, 0.00798202, 0.00702528, 0.0082475, 0.00935663, 0.00836968, 0.00985049, 0.00850561, 0.0091086, 0.0052252, 0.00836349, 0.00827376, 0.00550873, 0.00921194, 0.00807086, 0.00549164, 0.00797234, 0.00739208, 0.00616647, 0.00509878, 0.00682784, 0.00809926, 0.0066464, 0.00653627, 0.00875561, 0.00879312, 0.00859383, 0.00550591, 0.00758083, 0.00778899, 0.00872402, 0.00951589, 0.00684519, 0.00714332, 0.00866384, 0.00831318, 0.00778935, 0.0067507, 0.00597676, 0.00591904, 0.00540792, 0.005406, 0.00922899, 0.00691836, 0.0053037, 0.00948213, 0.00611635, 0.00634062, 0.00597249, 0.00983751, 0.0055627, 0.00861082, 0.00966044, 0.00834001, 0.00929363, 0.00621224, 0.00836964, 0.00850436, 0.00729166, 0.00935273, 0.00847193, 0.00947439, 0.00876602, 0.00760145, 0.00749344, 0.00726864, 0.00510823, 0.00767571, 0.00711487, 0.00578767, 0.00559535, 0.00724676, 0.00519957, 0.0099329, 0.0068906, 0.00691055, 0.00525563, 0.00713336, 0.00507873, 0.00515047, 0.0066955, 0.00910484, 0.00729411, 0.0050742, 0.0058161, 0.00869961, 0.00869147, 0.00877261, 0.00675835, 0.00676138, 0.00901038, 0.00699069, 0.00863596, 0.00790562, 0.00682171, 0.00540003, 0.00558063, 0.00944779, 0.0072617, 0.00997002, 0.00681948, 0.00624977, 0.0067527, 0.00671543, 0.00818678, 0.00506369, 0.00881634, 0.00708207, 0.0071612, 0.00740558, 0.00724606, 0.00748735, 0.00672952, 0.00726673, 0.00702326, 0.00759121, 0.00811635, 0.0062052, 0.00754219, 0.00797311, 0.00508474, 0.00760247, 0.00619647, 0.00702269, 0.00913265, 0.00663118, 0.00741608, 0.00512371, 0.00654375, 0.00819861, 0.00657581, 0.00602899, 0.00645328, 0.00977189, 0.00543401, 0.00731679, 0.00529193, 0.00769329, 0.00573018, 0.00817042, 0.00632199, 0.00845458, 0.00673573, 0.00502084, 0.00647447]) period = 2.0 transit_time = 0.5 duration = 0.16 depth = 0.2 m = np.abs((t-transit_time+0.5*period) % period-0.5*period) < 0.5*duration y[m] = 1.0 - depth randn_arr = np.array([ -1.00326528e-02, -8.45644428e-01, 9.11460610e-01, -1.37449688e+00, -5.47065645e-01, -7.55266106e-05, -1.21166803e-01, -2.00858547e+00, -9.20646543e-01, 1.68234342e-01, -1.31989156e+00, 1.26642930e+00, 4.95180889e-01, -5.14240391e-01, -2.20292465e-01, 1.86156412e+00, 9.35988451e-01, 3.80219145e-01, -1.41551877e+00, 1.62961132e+00, 1.05240107e+00, -1.48405388e-01, -5.49698069e-01, -1.87903939e-01, -1.20193668e+00, -4.70785558e-01, 7.63160514e-01, -1.80762128e+00, -3.14074374e-01, 1.13755973e-01, 1.03568037e-01, -1.17893695e+00, -1.18215289e+00, 1.08916538e+00, -1.22452909e+00, 1.00865096e+00, -4.82365315e-01, 1.07979635e+00, -4.21078505e-01, -1.16647132e+00, 8.56554856e-01, -1.73912222e-02, 1.44857659e+00, 8.92200085e-01, -2.29426629e-01, -4.49667602e-01, 2.33723433e-02, 1.90210018e-01, -8.81748527e-01, 8.41939573e-01, -3.97363492e-01, -4.23027745e-01, -5.40688337e-01, 2.31017267e-01, -6.92052602e-01, 1.34970110e-01, 2.76660307e+00, -5.36094601e-02, -4.34004738e-01, -1.66768923e+00, 5.02219248e-02, -1.10923094e+00, -3.75558119e-01, 1.51607594e-01, -1.73098945e+00, 1.57462752e-01, 3.04515175e-01, -1.29710002e+00, -3.92309192e-01, -1.83066636e+00, 1.57550094e+00, 3.30563277e-01, -1.79588501e-01, -1.63435831e-01, 1.13144361e+00, -9.41655519e-02, 3.30816771e-01, 1.51862956e+00, -3.46167148e-01, -1.09263532e+00, -8.24500575e-01, 1.42866383e+00, 9.14283085e-02, -5.02331288e-01, 9.73644380e-01, 9.97957386e-01, -4.75647768e-01, -9.71936837e-01, -1.57052860e+00, -1.79388892e+00, -2.64986452e-01, -8.93195947e-01, 1.85847441e+00, 5.85377547e-02, -1.94214954e+00, 1.41872928e+00, 1.61710309e-01, 7.04979480e-01, 6.82034777e-01, 2.96556567e-01, 5.23342630e-01, 2.38760672e-01, -1.10638591e+00, 3.66732198e-01, 1.02390550e+00, -2.10056413e-01, 5.51302218e-01, 4.19589145e-01, 1.81565206e+00, -2.52750301e-01, -2.92004163e-01, -1.16931740e-01, -1.02391075e-01, -2.27261771e+00, -6.42609841e-01, 2.99885067e-01, -8.25651467e-03, -7.99339154e-01, -6.64779252e-01, -3.55613128e-01, -8.01571781e-01, -5.13050610e-01, -5.39390119e-01, 8.95370847e-01, 1.01639127e+00, 9.33585094e-01, 4.26701799e-01, -7.08322484e-01, 9.59830450e-01, -3.14250587e-01, 2.30522083e-02, 1.33822053e+00, 8.39928561e-02, 2.47284030e-01, -1.41277949e+00, 4.87009294e-01, -9.80006647e-01, 1.01193966e+00, -1.84599177e-01, -2.23616884e+00, -3.58020103e-01, -2.28034538e-01, 4.85475226e-01, 6.70512391e-01, -3.27764245e-01, 1.01286819e+00, -3.16705533e+00, -7.13988998e-01, -1.11236427e+00, -1.25418351e+00, 9.59706371e-01, 8.29170399e-01, -7.75770020e-01, 1.17805700e+00, 1.01466892e-01, -4.21684101e-01, -6.92922796e-01, -7.78271726e-01, 4.72774857e-01, 6.50154901e-01, 2.38501212e-01, -2.05021768e+00, 2.96358656e-01, 5.65396564e-01, -6.69205605e-01, 4.32505429e-02, -1.86388430e+00, -1.22996906e+00, -3.24235348e-01, -3.09751144e-01, 3.51679372e-01, -1.18692539e+00, -3.41206065e-01, -4.89779780e-01, 5.28010474e-01, 1.42104277e+00, 1.72092032e+00, -1.56844005e+00, -4.80141918e-02, -1.11252931e+00, -6.47449515e-02, 4.22919280e-01, 8.14908987e-02, -4.90116988e-02, 1.48303917e+00, 7.20989392e-01, -2.72654462e-01, 2.42113609e-02, 8.70897807e-01, 6.09790506e-01, -4.25076104e-01, -1.77524284e+00, -1.18465749e+00, 1.45979225e-01, -1.78652685e+00, -1.52394498e-01, -4.53569176e-01, 9.99252803e-01, -1.31804382e+00, -1.93176898e+00, -4.19640742e-01, 6.34763132e-01, 1.06991860e+00, -9.09327017e-01, 4.70263748e-01, -1.11143045e+00, -7.48827466e-01, 5.67594726e-01, 7.18150543e-01, -9.99380749e-01, 4.74898323e-01, -1.86849981e+00, -2.02658907e-01, -1.13424803e+00, -8.07699340e-01, -1.27607735e+00, 5.53626395e-01, 5.53874470e-01, -6.91200445e-01, 3.75582306e-01, 2.61272553e-01, -1.28451754e-01, 2.15817020e+00, -8.40878617e-01, 1.43050907e-02, -3.82387029e-01, -3.71780015e-01, 1.59412004e-01, -2.94395700e-01, -8.60426760e-01, 1.24227498e-01, 1.18233165e+00, 9.42766380e-01, 2.03044488e-01, -7.35396814e-01, 1.86429600e-01, 1.08464302e+00, 1.19118926e+00, 3.59687060e-01, -3.64357200e-01, -2.02752749e-01, 7.72045927e-01, 6.86346215e-01, -1.75769961e+00, 6.58617565e-01, 7.11288340e-01, -8.87191425e-01, -7.64981116e-01, -7.57164098e-01, -6.80262803e-01, -1.41674959e+00, 3.13091930e-01, -7.85719399e-01, -7.03838361e-02, -4.97568783e-01, 2.55177521e-01, -1.01061704e+00, 2.45265375e-01, 3.89781016e-01, 8.27594585e-01, 1.96776909e+00, -2.09210177e+00, 3.20314334e-01, -7.09162842e-01, -1.92505867e+00, 8.41630623e-01, 1.33219988e+00, -3.91627710e-01, 2.10916296e-01, -6.40767402e-02, 4.34197668e-01, 8.80535749e-01, 3.44937336e-01, 3.45769929e-01, 1.25973654e+00, -1.64662222e-01, 9.23064571e-01, -8.22000422e-01, 1.60708495e+00, 7.37825392e-01, -4.03759534e-01, -2.11454815e+00, -3.10717131e-04, -1.18180941e+00, 2.99634603e-01, 1.45116882e+00, 1.60059793e-01, -1.78012614e-01, 3.42205404e-01, 2.85650196e-01, -2.36286411e+00, 2.40936864e-01, 6.20277356e-01, -2.59341634e-01, 9.78559078e-01, -1.27674575e-01, 7.66998762e-01, 2.27310511e+00, -9.63911290e-02, -1.94213217e+00, -3.36591724e-01, -1.72589000e+00, 6.11237826e-01, 1.30935097e+00, 6.95879662e-01, 3.20308213e-01, -6.44925458e-01, 1.57564975e+00, 7.53276212e-01, 2.84469557e-01, 2.04860319e-01, 1.11627359e-01, 4.52216424e-01, -6.13327179e-01, 1.52524993e+00, 1.52339753e-01, 6.00054450e-01, -4.33567278e-01, 3.74918534e-01, -2.28175243e+00, -1.11829888e+00, -3.14131532e-02, -1.32247311e+00, 2.43941406e+00, -1.66808131e+00, 3.45900749e-01, 1.65577315e+00, 4.81287059e-01, -3.10227553e-01, -5.52144084e-01, 6.73255489e-01, -8.00270681e-01, -1.19486110e-01, 6.91198606e-01, -3.07879027e-01, 8.75100102e-02, -3.04086293e-01, -9.69797604e-01, 1.18915048e+00, 1.39306624e+00, -3.16699954e-01, -2.65576159e-01, -1.77899339e-01, 5.38803274e-01, -9.05300265e-01, -8.85253056e-02, 2.62959055e-01, 6.42042149e-01, -2.78083727e+00, 4.03403210e-01, 3.45846762e-01, 1.00772824e+00, -5.26264015e-01, -5.18353205e-01, 1.20251659e+00, -1.56315671e+00, 1.62909029e+00, 2.55589446e+00, 4.77451685e-01, 8.14098474e-01, -1.48958171e+00, -6.94559787e-01, 1.05786255e+00, 3.61815347e-01, -1.81427463e-01, 2.32869132e-01, 5.06976484e-01, -2.93095701e-01, -2.89459450e-02, -3.63073748e-02, -1.05227898e+00, 3.23594628e-01, 1.80358591e+00, 1.73196213e+00, -1.47639930e+00, 5.70631220e-01, 6.75503781e-01, -4.10510463e-01, -9.64200035e-01, -1.32081431e+00, -4.44703779e-01, 3.50009137e-01, -1.58058176e-01, -6.10933088e-01, -1.24915663e+00, 3.50716258e-01, 1.06654245e+00, -9.26921972e-01, 4.48428964e-01, -1.87947524e+00, -6.57466109e-01, 7.29604120e-01, -1.11776721e+00, -6.04436725e-01, 1.41796683e+00, -7.32843980e-01, -8.53944819e-01, 5.75848362e-01, 1.95473356e+00, -2.39669947e-01, 7.68735860e-01, 1.34576918e+00, 3.25552163e-01, -2.69917901e-01, -8.76326739e-01, -1.42521096e+00, 1.11170175e+00, 1.80957146e-01, 1.33280094e+00, 9.88925316e-01, -6.16970520e-01, -1.18688670e+00, 4.12669583e-01, -6.32506884e-01, 3.76689141e-01, -7.31151938e-01, -8.61225253e-01, -1.40990810e-01, 9.34100620e-01, 3.06539895e-01, 1.17837515e+00, -1.23356170e+00, -1.05707714e+00, -8.91636992e-02, 2.16570138e+00, 6.74286114e-01, -1.06661274e+00, -7.61404530e-02, 2.20714791e-01, -5.68685746e-01, 6.13274991e-01, -1.56446138e-01, -2.99330718e-01, 1.26025679e+00, -1.70966090e+00, -9.61805342e-01, -8.17308981e-01, -8.47681070e-01, -7.28753045e-01, 4.88475958e-01, 1.09653283e+00, 9.16041261e-01, -1.01956213e+00, -1.07417899e-01, 4.52265213e-01, 2.40002952e-01, 1.30574740e+00, -6.75334236e-01, 1.56319421e-01, -3.93230715e-01, 2.51075019e-01, -1.07889691e+00, -9.28937721e-01, -7.30110860e-01, -5.63669311e-01, 1.54792327e+00, 1.17540191e+00, -2.12649671e-01, 1.72933294e-01, -1.59443602e+00, -1.79292347e-01, 1.59614713e-01, 1.14568421e+00, 3.26804720e-01, 4.32890059e-01, 2.97762890e-01, 2.69001190e-01, -1.39675918e+00, -4.16757668e-01, 1.43488680e+00, 8.23896443e-01, 4.94234499e-01, 6.67153092e-02, 6.59441396e-01, -9.44889409e-01, -1.58005956e+00, -3.82086552e-01, 5.37923058e-01, 1.07829882e-01, 1.01395868e+00, 3.51450517e-01, 4.48421962e-02, 1.32748495e+00, 1.13237578e+00, -9.80913012e-02, -1.10304986e+00, -9.07361492e-01, -1.61451138e-01, -3.66811384e-01, 1.65776233e+00, -1.68013415e+00, -6.42577869e-02, -1.06622649e+00, 1.16801869e-01, 3.82264833e-01, -4.04896974e-01, 5.30481414e-01, -1.98626941e-01, -1.79395613e-01, -4.17888725e-01]) y += dy * randn_arr return t, y, dy, dict(period=period, transit_time=transit_time, duration=duration, depth=depth) def test_32bit_bug(): rand = np.random.default_rng(42) t = rand.uniform(0, 10, 500) y = np.ones_like(t) y[np.abs((t + 1.0) % 2.0-1) < 0.08] = 1.0 - 0.1 y += 0.01 * rand.standard_normal(len(t)) model = BoxLeastSquares(t, y) results = model.autopower(0.16) assert_allclose(results.period[np.argmax(results.power)], 2.000412388152837) periods = np.linspace(1.9, 2.1, 5) results = model.power(periods, 0.16) assert_allclose( results.power, [0.01723948, 0.0643028, 0.1338783, 0.09428816, 0.03577543], rtol=1.1e-7) @pytest.mark.parametrize("objective", ["likelihood", "snr"]) def test_correct_model(data, objective): t, y, dy, params = data model = BoxLeastSquares(t, y, dy) periods = np.exp(np.linspace(np.log(params["period"]) - 0.1, np.log(params["period"]) + 0.1, 1000)) results = model.power(periods, params["duration"], objective=objective) ind = np.argmax(results.power) for k, v in params.items(): assert_allclose(results[k][ind], v, atol=0.01) chi = (results.depth[ind]-params["depth"]) / results.depth_err[ind] assert np.abs(chi) < 1 @pytest.mark.parametrize("objective", ["likelihood", "snr"]) @pytest.mark.parametrize("offset", [False, True]) def test_fast_method(data, objective, offset): t, y, dy, params = data if offset: t = t - params["transit_time"] + params["period"] model = BoxLeastSquares(t, y, dy) periods = np.exp(np.linspace(np.log(params["period"]) - 1, np.log(params["period"]) + 1, 10)) durations = params["duration"] results = model.power(periods, durations, objective=objective) assert_allclose_blsresults(results, model.power(periods, durations, method="slow", objective=objective)) def test_input_units(data): t, y, dy, params = data t_unit = u.day y_unit = u.mag with pytest.raises(u.UnitConversionError): BoxLeastSquares(t * t_unit, y * y_unit, dy * u.one) with pytest.raises(u.UnitConversionError): BoxLeastSquares(t * t_unit, y * u.one, dy * y_unit) with pytest.raises(u.UnitConversionError): BoxLeastSquares(t * t_unit, y, dy * y_unit) model = BoxLeastSquares(t*t_unit, y * u.one, dy) assert model.dy.unit == model.y.unit model = BoxLeastSquares(t*t_unit, y * y_unit, dy) assert model.dy.unit == model.y.unit model = BoxLeastSquares(t*t_unit, y*y_unit) assert model.dy is None def test_period_units(data): t, y, dy, params = data t_unit = u.day y_unit = u.mag model = BoxLeastSquares(t * t_unit, y * y_unit, dy) p = model.autoperiod(params["duration"]) assert p.unit == t_unit p = model.autoperiod(params["duration"] * 24 * u.hour) assert p.unit == t_unit with pytest.raises(u.UnitConversionError): model.autoperiod(params["duration"] * u.mag) p = model.autoperiod(params["duration"], minimum_period=0.5) assert p.unit == t_unit with pytest.raises(u.UnitConversionError): p = model.autoperiod(params["duration"], minimum_period=0.5*u.mag) p = model.autoperiod(params["duration"], maximum_period=0.5) assert p.unit == t_unit with pytest.raises(u.UnitConversionError): p = model.autoperiod(params["duration"], maximum_period=0.5*u.mag) p = model.autoperiod(params["duration"], minimum_period=0.5, maximum_period=1.5) p2 = model.autoperiod(params["duration"], maximum_period=0.5, minimum_period=1.5) assert_quantity_allclose(p, p2) @pytest.mark.parametrize("method", ["fast", "slow"]) @pytest.mark.parametrize("with_err", [True, False]) @pytest.mark.parametrize("t_unit", [None, u.day]) @pytest.mark.parametrize("y_unit", [None, u.mag]) @pytest.mark.parametrize("objective", ["likelihood", "snr"]) def test_results_units(data, method, with_err, t_unit, y_unit, objective): t, y, dy, params = data periods = np.linspace(params["period"]-1.0, params["period"]+1.0, 3) if t_unit is not None: t = t * t_unit if y_unit is not None: y = y * y_unit dy = dy * y_unit if not with_err: dy = None model = BoxLeastSquares(t, y, dy) results = model.power(periods, params["duration"], method=method, objective=objective) if t_unit is None: assert not has_units(results.period) assert not has_units(results.duration) assert not has_units(results.transit_time) else: assert results.period.unit == t_unit assert results.duration.unit == t_unit assert results.transit_time.unit == t_unit if y_unit is None: assert not has_units(results.power) assert not has_units(results.depth) assert not has_units(results.depth_err) assert not has_units(results.depth_snr) assert not has_units(results.log_likelihood) else: assert results.depth.unit == y_unit assert results.depth_err.unit == y_unit assert results.depth_snr.unit == u.one if dy is None: assert results.log_likelihood.unit == y_unit * y_unit if objective == "snr": assert results.power.unit == u.one else: assert results.power.unit == y_unit * y_unit else: assert results.log_likelihood.unit == u.one assert results.power.unit == u.one def test_autopower(data): t, y, dy, params = data duration = params["duration"] + np.linspace(-0.1, 0.1, 3) model = BoxLeastSquares(t, y, dy) period = model.autoperiod(duration) results1 = model.power(period, duration) results2 = model.autopower(duration) assert_allclose_blsresults(results1, results2) @pytest.mark.parametrize("with_units", [True, False]) def test_model(data, with_units): t, y, dy, params = data # Compute the model using linear regression A = np.zeros((len(t), 2)) p = params["period"] dt = np.abs((t-params["transit_time"]+0.5*p) % p-0.5*p) m_in = dt < 0.5*params["duration"] A[~m_in, 0] = 1.0 A[m_in, 1] = 1.0 w = np.linalg.solve(np.dot(A.T, A / dy[:, None]**2), np.dot(A.T, y / dy**2)) model_true = np.dot(A, w) if with_units: t = t * u.day y = y * u.mag dy = dy * u.mag model_true = model_true * u.mag # Compute the model using the periodogram pgram = BoxLeastSquares(t, y, dy) model = pgram.model(t, p, params["duration"], params["transit_time"]) # Make sure that the transit mask is consistent with the model transit_mask = pgram.transit_mask(t, p, params["duration"], params["transit_time"]) transit_mask0 = (model - model.max()) < 0.0 assert_allclose(transit_mask, transit_mask0) assert_quantity_allclose(model, model_true) @pytest.mark.parametrize("shape", [(1,), (2,), (3,), (2, 3)]) def test_shapes(data, shape): t, y, dy, params = data duration = params["duration"] model = BoxLeastSquares(t, y, dy) period = np.empty(shape) period.flat = np.linspace(params["period"]-1, params["period"]+1, period.size) if len(period.shape) > 1: with pytest.raises(ValueError): results = model.power(period, duration) else: results = model.power(period, duration) for k, v in results.items(): if k == "objective": continue assert v.shape == shape @pytest.mark.parametrize("with_units", [True, False]) @pytest.mark.parametrize("with_err", [True, False]) def test_compute_stats(data, with_units, with_err): t, y, dy, params = data y_unit = 1 if with_units: y_unit = u.mag t = t * u.day y = y * u.mag dy = dy * u.mag params["period"] = params["period"] * u.day params["duration"] = params["duration"] * u.day params["transit_time"] = params["transit_time"] * u.day params["depth"] = params["depth"] * u.mag if not with_err: dy = None model = BoxLeastSquares(t, y, dy) results = model.power(params["period"], params["duration"], oversample=1000) stats = model.compute_stats(params["period"], params["duration"], params["transit_time"]) # Test the calculated transit times tt = params["period"] * np.arange(int(t.max() / params["period"]) + 1) tt += params["transit_time"] assert_quantity_allclose(tt, stats["transit_times"]) # Test that the other parameters are consistent with the periodogram assert_allclose(stats["per_transit_count"], [9, 7, 7, 7, 8]) assert_quantity_allclose(np.sum(stats["per_transit_log_likelihood"]), results["log_likelihood"]) assert_quantity_allclose(stats["depth"][0], results["depth"]) # Check the half period result results_half = model.power(0.5*params["period"], params["duration"], oversample=1000) assert_quantity_allclose(stats["depth_half"][0], results_half["depth"]) # Skip the uncertainty tests when the input errors are None if not with_err: assert_quantity_allclose(stats["harmonic_amplitude"], 0.029945029964964204 * y_unit) assert_quantity_allclose(stats["harmonic_delta_log_likelihood"], -0.5875918155223113 * y_unit * y_unit) return assert_quantity_allclose(stats["harmonic_amplitude"], 0.033027988742275853 * y_unit) assert_quantity_allclose(stats["harmonic_delta_log_likelihood"], -12407.505922833765) assert_quantity_allclose(stats["depth"][1], results["depth_err"]) assert_quantity_allclose(stats["depth_half"][1], results_half["depth_err"]) for f, k in zip((1.0, 1.0, 1.0, 0.0), ("depth", "depth_even", "depth_odd", "depth_phased")): res = np.abs((stats[k][0]-f*params["depth"]) / stats[k][1]) assert res < 1, f'f={f}, k={k}, res={res}' def test_negative_times(data): t, y, dy, params = data mu = np.mean(t) duration = params["duration"] + np.linspace(-0.1, 0.1, 3) model1 = BoxLeastSquares(t, y, dy) results1 = model1.autopower(duration) # Compute the periodogram with offset (negative) times model2 = BoxLeastSquares(t - mu, y, dy) results2 = model2.autopower(duration) # Shift the transit times back into the unshifted coordinates results2.transit_time = (results2.transit_time + mu) % results2.period assert_allclose_blsresults(results1, results2) @pytest.mark.parametrize('timedelta', [False, True]) def test_absolute_times(data, timedelta): # Make sure that we handle absolute times correctly. We also check that # TimeDelta works properly when timedelta is True. # The example data uses relative times t, y, dy, params = data # Add units t = t * u.day y = y * u.mag dy = dy * u.mag # We now construct a set of absolute times but keeping the rest the same. start = Time('2019-05-04T12:34:56') trel = TimeDelta(t) if timedelta else t t = trel + start # and we set up two instances of BoxLeastSquares, one with absolute and one # with relative times. bls1 = BoxLeastSquares(t, y, dy) bls2 = BoxLeastSquares(trel, y, dy) results1 = bls1.autopower(0.16 * u.day) results2 = bls2.autopower(0.16 * u.day) # All the results should match except transit time which should be # absolute instead of relative in the first case. for key in results1: if key == 'transit_time': assert_quantity_allclose((results1[key] - start).to(u.day), results2[key]) elif key == 'objective': assert results1[key] == results2[key] else: assert_allclose(results1[key], results2[key]) # Check that model evaluation works fine model1 = bls1.model(t, 0.2 * u.day, 0.05 * u.day, Time('2019-06-04T12:34:56')) model2 = bls2.model(trel, 0.2 * u.day, 0.05 * u.day, TimeDelta(1 * u.day)) assert_quantity_allclose(model1, model2) # Check model validation with pytest.raises(TypeError) as exc: bls1.model(t, 0.2 * u.day, 0.05 * u.day, 1 * u.day) assert exc.value.args[0] == ('transit_time was provided as a relative time ' 'but the BoxLeastSquares class was initialized ' 'with absolute times.') with pytest.raises(TypeError) as exc: bls1.model(trel, 0.2 * u.day, 0.05 * u.day, Time('2019-06-04T12:34:56')) assert exc.value.args[0] == ('t_model was provided as a relative time ' 'but the BoxLeastSquares class was initialized ' 'with absolute times.') with pytest.raises(TypeError) as exc: bls2.model(trel, 0.2 * u.day, 0.05 * u.day, Time('2019-06-04T12:34:56')) assert exc.value.args[0] == ('transit_time was provided as an absolute time ' 'but the BoxLeastSquares class was initialized ' 'with relative times.') with pytest.raises(TypeError) as exc: bls2.model(t, 0.2 * u.day, 0.05 * u.day, 1 * u.day) assert exc.value.args[0] == ('t_model was provided as an absolute time ' 'but the BoxLeastSquares class was initialized ' 'with relative times.') # Check compute_stats stats1 = bls1.compute_stats(0.2 * u.day, 0.05 * u.day, Time('2019-06-04T12:34:56')) stats2 = bls2.compute_stats(0.2 * u.day, 0.05 * u.day, 1 * u.day) for key in stats1: if key == 'transit_times': assert_quantity_allclose((stats1[key] - start).to(u.day), stats2[key], atol=1e-10 * u.day) # noqa: E501 elif key.startswith('depth'): for value1, value2 in zip(stats1[key], stats2[key]): assert_quantity_allclose(value1, value2) else: assert_allclose(stats1[key], stats2[key]) # Check compute_stats validation with pytest.raises(TypeError) as exc: bls1.compute_stats(0.2 * u.day, 0.05 * u.day, 1 * u.day) assert exc.value.args[0] == ('transit_time was provided as a relative time ' 'but the BoxLeastSquares class was initialized ' 'with absolute times.') with pytest.raises(TypeError) as exc: bls2.compute_stats(0.2 * u.day, 0.05 * u.day, Time('2019-06-04T12:34:56')) assert exc.value.args[0] == ('transit_time was provided as an absolute time ' 'but the BoxLeastSquares class was initialized ' 'with relative times.') # Check transit_mask mask1 = bls1.transit_mask(t, 0.2 * u.day, 0.05 * u.day, Time('2019-06-04T12:34:56')) mask2 = bls2.transit_mask(trel, 0.2 * u.day, 0.05 * u.day, 1 * u.day) assert_equal(mask1, mask2) # Check transit_mask validation with pytest.raises(TypeError) as exc: bls1.transit_mask(t, 0.2 * u.day, 0.05 * u.day, 1 * u.day) assert exc.value.args[0] == ('transit_time was provided as a relative time ' 'but the BoxLeastSquares class was initialized ' 'with absolute times.') with pytest.raises(TypeError) as exc: bls1.transit_mask(trel, 0.2 * u.day, 0.05 * u.day, Time('2019-06-04T12:34:56')) assert exc.value.args[0] == ('t was provided as a relative time ' 'but the BoxLeastSquares class was initialized ' 'with absolute times.') with pytest.raises(TypeError) as exc: bls2.transit_mask(trel, 0.2 * u.day, 0.05 * u.day, Time('2019-06-04T12:34:56')) assert exc.value.args[0] == ('transit_time was provided as an absolute time ' 'but the BoxLeastSquares class was initialized ' 'with relative times.') with pytest.raises(TypeError) as exc: bls2.transit_mask(t, 0.2 * u.day, 0.05 * u.day, 1 * u.day) assert exc.value.args[0] == ('t was provided as an absolute time ' 'but the BoxLeastSquares class was initialized ' 'with relative times.') def test_transit_time_in_range(data): t, y, dy, params = data t_ref = 10230.0 t2 = t + t_ref bls1 = BoxLeastSquares(t, y, dy) bls2 = BoxLeastSquares(t2, y, dy) results1 = bls1.autopower(0.16) results2 = bls2.autopower(0.16) assert np.allclose(results1.transit_time, results2.transit_time - t_ref) assert np.all(results1.transit_time >= t.min()) assert np.all(results1.transit_time <= t.max()) assert np.all(results2.transit_time >= t2.min()) assert np.all(results2.transit_time <= t2.max())
a9ec4c87cd041e43e1b8c79abdbe42cba080c874ca989c4bd4b1e8aea64630f8
import numpy as np from .mle import design_matrix def lombscargle_chi2(t, y, dy, frequency, normalization='standard', fit_mean=True, center_data=True, nterms=1): """Lomb-Scargle Periodogram This implements a chi-squared-based periodogram, which is relatively slow but useful for validating the faster algorithms in the package. Parameters ---------- t, y, dy : array-like times, values, and errors of the data points. These should be broadcastable to the same shape. None should be `~astropy.units.Quantity``. frequency : array-like frequencies (not angular frequencies) at which to calculate periodogram normalization : str, optional Normalization to use for the periodogram. Options are 'standard', 'model', 'log', or 'psd'. fit_mean : bool, optional if True, include a constant offset as part of the model at each frequency. This can lead to more accurate results, especially in the case of incomplete phase coverage. center_data : bool, optional if True, pre-center the data by subtracting the weighted mean of the input data. This is especially important if ``fit_mean = False`` nterms : int, optional Number of Fourier terms in the fit Returns ------- power : array-like Lomb-Scargle power associated with each frequency. Units of the result depend on the normalization. References ---------- .. [1] M. Zechmeister and M. Kurster, A&A 496, 577-584 (2009) .. [2] W. Press et al, Numerical Recipes in C (2002) .. [3] Scargle, J.D. 1982, ApJ 263:835-853 """ if dy is None: dy = 1 t, y, dy = np.broadcast_arrays(t, y, dy) frequency = np.asarray(frequency) if t.ndim != 1: raise ValueError("t, y, dy should be one dimensional") if frequency.ndim != 1: raise ValueError("frequency should be one-dimensional") w = dy ** -2.0 w /= w.sum() # if fit_mean is true, centering the data now simplifies the math below. if center_data or fit_mean: yw = (y - np.dot(w, y)) / dy else: yw = y / dy chi2_ref = np.dot(yw, yw) # compute the unnormalized model chi2 at each frequency def compute_power(f): X = design_matrix(t, f, dy=dy, bias=fit_mean, nterms=nterms) XTX = np.dot(X.T, X) XTy = np.dot(X.T, yw) return np.dot(XTy.T, np.linalg.solve(XTX, XTy)) p = np.array([compute_power(f) for f in frequency]) if normalization == 'psd': p *= 0.5 elif normalization == 'model': p /= (chi2_ref - p) elif normalization == 'log': p = -np.log(1 - p / chi2_ref) elif normalization == 'standard': p /= chi2_ref else: raise ValueError(f"normalization='{normalization}' not recognized") return p
49eb977a7c24b30a58ae2b9c402686bd2d25bc0ecfa0a88f03c77d790b1bb629
""" Main Lomb-Scargle Implementation The ``lombscargle`` function here is essentially a sophisticated switch statement for the various implementations available in this submodule """ __all__ = ['lombscargle', 'available_methods'] import numpy as np from .slow_impl import lombscargle_slow from .fast_impl import lombscargle_fast from .scipy_impl import lombscargle_scipy from .chi2_impl import lombscargle_chi2 from .fastchi2_impl import lombscargle_fastchi2 from .cython_impl import lombscargle_cython METHODS = {'slow': lombscargle_slow, 'fast': lombscargle_fast, 'chi2': lombscargle_chi2, 'scipy': lombscargle_scipy, 'fastchi2': lombscargle_fastchi2, 'cython': lombscargle_cython} def available_methods(): methods = ['auto', 'slow', 'chi2', 'cython', 'fast', 'fastchi2'] # Scipy required for scipy algorithm (obviously) try: import scipy except ImportError: pass else: methods.append('scipy') return methods def _is_regular(frequency): frequency = np.asarray(frequency) if frequency.ndim != 1: return False elif len(frequency) == 1: return True else: diff = np.diff(frequency) return np.allclose(diff[0], diff) def _get_frequency_grid(frequency, assume_regular_frequency=False): """Utility to get grid parameters from a frequency array Parameters ---------- frequency : array-like or `~astropy.units.Quantity` ['frequency'] input frequency grid assume_regular_frequency : bool (default = False) if True, then do not check whether frequency is a regular grid Returns ------- f0, df, N : scalar Parameters such that all(frequency == f0 + df * np.arange(N)) """ frequency = np.asarray(frequency) if frequency.ndim != 1: raise ValueError("frequency grid must be 1 dimensional") elif len(frequency) == 1: return frequency[0], frequency[0], 1 elif not (assume_regular_frequency or _is_regular(frequency)): raise ValueError("frequency must be a regular grid") return frequency[0], frequency[1] - frequency[0], len(frequency) def validate_method(method, dy, fit_mean, nterms, frequency, assume_regular_frequency): """ Validate the method argument, and if method='auto' choose the appropriate method """ methods = available_methods() prefer_fast = (len(frequency) > 200 and (assume_regular_frequency or _is_regular(frequency))) prefer_scipy = 'scipy' in methods and dy is None and not fit_mean # automatically choose the appropriate method if method == 'auto': if nterms != 1: if prefer_fast: method = 'fastchi2' else: method = 'chi2' elif prefer_fast: method = 'fast' elif prefer_scipy: method = 'scipy' else: method = 'cython' if method not in METHODS: raise ValueError(f"invalid method: {method}") return method def lombscargle(t, y, dy=None, frequency=None, method='auto', assume_regular_frequency=False, normalization='standard', fit_mean=True, center_data=True, method_kwds=None, nterms=1): """ Compute the Lomb-scargle Periodogram with a given method. Parameters ---------- t : array-like sequence of observation times y : array-like sequence of observations associated with times t dy : float or array-like, optional error or sequence of observational errors associated with times t frequency : array-like frequencies (not angular frequencies) at which to evaluate the periodogram. If not specified, optimal frequencies will be chosen using a heuristic which will attempt to provide sufficient frequency range and sampling so that peaks will not be missed. Note that in order to use method='fast', frequencies must be regularly spaced. method : str, optional specify the lomb scargle implementation to use. Options are: - 'auto': choose the best method based on the input - 'fast': use the O[N log N] fast method. Note that this requires evenly-spaced frequencies: by default this will be checked unless ``assume_regular_frequency`` is set to True. - `slow`: use the O[N^2] pure-python implementation - `chi2`: use the O[N^2] chi2/linear-fitting implementation - `fastchi2`: use the O[N log N] chi2 implementation. Note that this requires evenly-spaced frequencies: by default this will be checked unless `assume_regular_frequency` is set to True. - `scipy`: use ``scipy.signal.lombscargle``, which is an O[N^2] implementation written in C. Note that this does not support heteroskedastic errors. assume_regular_frequency : bool, optional if True, assume that the input frequency is of the form freq = f0 + df * np.arange(N). Only referenced if method is 'auto' or 'fast'. normalization : str, optional Normalization to use for the periodogram. Options are 'standard' or 'psd'. fit_mean : bool, optional if True, include a constant offset as part of the model at each frequency. This can lead to more accurate results, especially in the case of incomplete phase coverage. center_data : bool, optional if True, pre-center the data by subtracting the weighted mean of the input data. This is especially important if `fit_mean = False` method_kwds : dict, optional additional keywords to pass to the lomb-scargle method nterms : int, optional number of Fourier terms to use in the periodogram. Not supported with every method. Returns ------- PLS : array-like Lomb-Scargle power associated with each frequency omega """ # frequencies should be one-dimensional arrays output_shape = frequency.shape frequency = frequency.ravel() # we'll need to adjust args and kwds for each method args = (t, y, dy) kwds = dict(frequency=frequency, center_data=center_data, fit_mean=fit_mean, normalization=normalization, nterms=nterms, **(method_kwds or {})) method = validate_method(method, dy=dy, fit_mean=fit_mean, nterms=nterms, frequency=frequency, assume_regular_frequency=assume_regular_frequency) # scipy doesn't support dy or fit_mean=True if method == 'scipy': if kwds.pop('fit_mean'): raise ValueError("scipy method does not support fit_mean=True") if dy is not None: dy = np.ravel(np.asarray(dy)) if not np.allclose(dy[0], dy): raise ValueError("scipy method only supports " "uniform uncertainties dy") args = (t, y) # fast methods require frequency expressed as a grid if method.startswith('fast'): f0, df, Nf = _get_frequency_grid(kwds.pop('frequency'), assume_regular_frequency) kwds.update(f0=f0, df=df, Nf=Nf) # only chi2 methods support nterms if not method.endswith('chi2'): if kwds.pop('nterms') != 1: raise ValueError("nterms != 1 only supported with 'chi2' " "or 'fastchi2' methods") PLS = METHODS[method](*args, **kwds) return PLS.reshape(output_shape)
62848bb455ac328bdafd729b73570dc561bea8f794b3f9f29c1a084d63b87e87
"""Various implementations of the Lomb-Scargle Periodogram""" from .main import lombscargle, available_methods from .chi2_impl import lombscargle_chi2 from .scipy_impl import lombscargle_scipy from .slow_impl import lombscargle_slow from .fast_impl import lombscargle_fast from .fastchi2_impl import lombscargle_fastchi2
a5ca3b3032782e5c0cb30f02b4dc637ed9819c287934655e2ca179e39e7691c0
import numpy as np from .utils import trig_sum def lombscargle_fast(t, y, dy, f0, df, Nf, center_data=True, fit_mean=True, normalization='standard', use_fft=True, trig_sum_kwds=None): """Fast Lomb-Scargle Periodogram This implements the Press & Rybicki method [1]_ for fast O[N log(N)] Lomb-Scargle periodograms. Parameters ---------- t, y, dy : array-like times, values, and errors of the data points. These should be broadcastable to the same shape. None should be `~astropy.units.Quantity`. f0, df, Nf : (float, float, int) parameters describing the frequency grid, f = f0 + df * arange(Nf). center_data : bool (default=True) Specify whether to subtract the mean of the data before the fit fit_mean : bool (default=True) If True, then compute the floating-mean periodogram; i.e. let the mean vary with the fit. normalization : str, optional Normalization to use for the periodogram. Options are 'standard', 'model', 'log', or 'psd'. use_fft : bool (default=True) If True, then use the Press & Rybicki O[NlogN] algorithm to compute the result. Otherwise, use a slower O[N^2] algorithm trig_sum_kwds : dict or None, optional extra keyword arguments to pass to the ``trig_sum`` utility. Options are ``oversampling`` and ``Mfft``. See documentation of ``trig_sum`` for details. Returns ------- power : ndarray Lomb-Scargle power associated with each frequency. Units of the result depend on the normalization. Notes ----- Note that the ``use_fft=True`` algorithm is an approximation to the true Lomb-Scargle periodogram, and as the number of points grows this approximation improves. On the other hand, for very small datasets (<~50 points or so) this approximation may not be useful. References ---------- .. [1] Press W.H. and Rybicki, G.B, "Fast algorithm for spectral analysis of unevenly sampled data". ApJ 1:338, p277, 1989 .. [2] M. Zechmeister and M. Kurster, A&A 496, 577-584 (2009) .. [3] W. Press et al, Numerical Recipes in C (2002) """ if dy is None: dy = 1 # Validate and setup input data t, y, dy = np.broadcast_arrays(t, y, dy) if t.ndim != 1: raise ValueError("t, y, dy should be one dimensional") # Validate and setup frequency grid if f0 < 0: raise ValueError("Frequencies must be positive") if df <= 0: raise ValueError("Frequency steps must be positive") if Nf <= 0: raise ValueError("Number of frequencies must be positive") w = dy ** -2.0 w /= w.sum() # Center the data. Even if we're fitting the offset, # this step makes the expressions below more succinct if center_data or fit_mean: y = y - np.dot(w, y) # set up arguments to trig_sum kwargs = dict.copy(trig_sum_kwds or {}) kwargs.update(f0=f0, df=df, use_fft=use_fft, N=Nf) # ---------------------------------------------------------------------- # 1. compute functions of the time-shift tau at each frequency Sh, Ch = trig_sum(t, w * y, **kwargs) S2, C2 = trig_sum(t, w, freq_factor=2, **kwargs) if fit_mean: S, C = trig_sum(t, w, **kwargs) tan_2omega_tau = (S2 - 2 * S * C) / (C2 - (C * C - S * S)) else: tan_2omega_tau = S2 / C2 # This is what we're computing below; the straightforward way is slower # and less stable, so we use trig identities instead # # omega_tau = 0.5 * np.arctan(tan_2omega_tau) # S2w, C2w = np.sin(2 * omega_tau), np.cos(2 * omega_tau) # Sw, Cw = np.sin(omega_tau), np.cos(omega_tau) S2w = tan_2omega_tau / np.sqrt(1 + tan_2omega_tau * tan_2omega_tau) C2w = 1 / np.sqrt(1 + tan_2omega_tau * tan_2omega_tau) Cw = np.sqrt(0.5) * np.sqrt(1 + C2w) Sw = np.sqrt(0.5) * np.sign(S2w) * np.sqrt(1 - C2w) # ---------------------------------------------------------------------- # 2. Compute the periodogram, following Zechmeister & Kurster # and using tricks from Press & Rybicki. YY = np.dot(w, y ** 2) YC = Ch * Cw + Sh * Sw YS = Sh * Cw - Ch * Sw CC = 0.5 * (1 + C2 * C2w + S2 * S2w) SS = 0.5 * (1 - C2 * C2w - S2 * S2w) if fit_mean: CC -= (C * Cw + S * Sw) ** 2 SS -= (S * Cw - C * Sw) ** 2 power = (YC * YC / CC + YS * YS / SS) if normalization == 'standard': power /= YY elif normalization == 'model': power /= YY - power elif normalization == 'log': power = -np.log(1 - power / YY) elif normalization == 'psd': power *= 0.5 * (dy ** -2.0).sum() else: raise ValueError(f"normalization='{normalization}' not recognized") return power
c8bc6deedebd38ef58563d67324541bd3f62d9d5affea2637f813d6dedc97564
import numpy as np def lombscargle_scipy(t, y, frequency, normalization='standard', center_data=True): """Lomb-Scargle Periodogram This is a wrapper of ``scipy.signal.lombscargle`` for computation of the Lomb-Scargle periodogram. This is a relatively fast version of the naive O[N^2] algorithm, but cannot handle heteroskedastic errors. Parameters ---------- t, y: array-like times, values, and errors of the data points. These should be broadcastable to the same shape. None should be `~astropy.units.Quantity`. frequency : array-like frequencies (not angular frequencies) at which to calculate periodogram normalization : str, optional Normalization to use for the periodogram. Options are 'standard', 'model', 'log', or 'psd'. center_data : bool, optional if True, pre-center the data by subtracting the weighted mean of the input data. Returns ------- power : array-like Lomb-Scargle power associated with each frequency. Units of the result depend on the normalization. References ---------- .. [1] M. Zechmeister and M. Kurster, A&A 496, 577-584 (2009) .. [2] W. Press et al, Numerical Recipes in C (2002) .. [3] Scargle, J.D. 1982, ApJ 263:835-853 """ try: from scipy import signal except ImportError: raise ImportError("scipy must be installed to use lombscargle_scipy") t, y = np.broadcast_arrays(t, y) # Scipy requires floating-point input t = np.asarray(t, dtype=float) y = np.asarray(y, dtype=float) frequency = np.asarray(frequency, dtype=float) if t.ndim != 1: raise ValueError("t, y, dy should be one dimensional") if frequency.ndim != 1: raise ValueError("frequency should be one-dimensional") if center_data: y = y - y.mean() # Note: scipy input accepts angular frequencies p = signal.lombscargle(t, y, 2 * np.pi * frequency) if normalization == 'psd': pass elif normalization == 'standard': p *= 2 / (t.size * np.mean(y ** 2)) elif normalization == 'log': p = -np.log(1 - 2 * p / (t.size * np.mean(y ** 2))) elif normalization == 'model': p /= 0.5 * t.size * np.mean(y ** 2) - p else: raise ValueError(f"normalization='{normalization}' not recognized") return p
7d67d1ccb9c0dc9eafa04ea381f1ec7c6bf7b31b29e403b47fb01a412a786506
from math import factorial import numpy as np def bitceil(N): """ Find the bit (i.e. power of 2) immediately greater than or equal to N Note: this works for numbers up to 2 ** 64. Roughly equivalent to int(2 ** np.ceil(np.log2(N))) """ return 1 << int(N - 1).bit_length() def extirpolate(x, y, N=None, M=4): """ Extirpolate the values (x, y) onto an integer grid range(N), using lagrange polynomial weights on the M nearest points. Parameters ---------- x : array-like array of abscissas y : array-like array of ordinates N : int number of integer bins to use. For best performance, N should be larger than the maximum of x M : int number of adjoining points on which to extirpolate. Returns ------- yN : ndarray N extirpolated values associated with range(N) Example ------- >>> rng = np.random.default_rng(0) >>> x = 100 * rng.random(20) >>> y = np.sin(x) >>> y_hat = extirpolate(x, y) >>> x_hat = np.arange(len(y_hat)) >>> f = lambda x: np.sin(x / 10) >>> np.allclose(np.sum(y * f(x)), np.sum(y_hat * f(x_hat))) True Notes ----- This code is based on the C implementation of spread() presented in Numerical Recipes in C, Second Edition (Press et al. 1989; p.583). """ x, y = map(np.ravel, np.broadcast_arrays(x, y)) if N is None: N = int(np.max(x) + 0.5 * M + 1) # Now use legendre polynomial weights to populate the results array; # This is an efficient recursive implementation (See Press et al. 1989) result = np.zeros(N, dtype=y.dtype) # first take care of the easy cases where x is an integer integers = (x % 1 == 0) np.add.at(result, x[integers].astype(int), y[integers]) x, y = x[~integers], y[~integers] # For each remaining x, find the index describing the extirpolation range. # i.e. ilo[i] < x[i] < ilo[i] + M with x[i] in the center, # adjusted so that the limits are within the range 0...N ilo = np.clip((x - M // 2).astype(int), 0, N - M) numerator = y * np.prod(x - ilo - np.arange(M)[:, np.newaxis], 0) denominator = factorial(M - 1) for j in range(M): if j > 0: denominator *= j / (j - M) ind = ilo + (M - 1 - j) np.add.at(result, ind, numerator / (denominator * (x - ind))) return result def trig_sum(t, h, df, N, f0=0, freq_factor=1, oversampling=5, use_fft=True, Mfft=4): """Compute (approximate) trigonometric sums for a number of frequencies This routine computes weighted sine and cosine sums:: S_j = sum_i { h_i * sin(2 pi * f_j * t_i) } C_j = sum_i { h_i * cos(2 pi * f_j * t_i) } Where f_j = freq_factor * (f0 + j * df) for the values j in 1 ... N. The sums can be computed either by a brute force O[N^2] method, or by an FFT-based O[Nlog(N)] method. Parameters ---------- t : array-like array of input times h : array-like array weights for the sum df : float frequency spacing N : int number of frequency bins to return f0 : float, optional The low frequency to use freq_factor : float, optional Factor which multiplies the frequency use_fft : bool if True, use the approximate FFT algorithm to compute the result. This uses the FFT with Press & Rybicki's Lagrangian extirpolation. oversampling : int (default = 5) oversampling freq_factor for the approximation; roughly the number of time samples across the highest-frequency sinusoid. This parameter contains the trade-off between accuracy and speed. Not referenced if use_fft is False. Mfft : int The number of adjacent points to use in the FFT approximation. Not referenced if use_fft is False. Returns ------- S, C : ndarray summation arrays for frequencies f = df * np.arange(1, N + 1) """ df *= freq_factor f0 *= freq_factor if df <= 0: raise ValueError("df must be positive") t, h = map(np.ravel, np.broadcast_arrays(t, h)) if use_fft: Mfft = int(Mfft) if Mfft <= 0: raise ValueError("Mfft must be positive") # required size of fft is the power of 2 above the oversampling rate Nfft = bitceil(N * oversampling) t0 = t.min() if f0 > 0: h = h * np.exp(2j * np.pi * f0 * (t - t0)) tnorm = ((t - t0) * Nfft * df) % Nfft grid = extirpolate(tnorm, h, Nfft, Mfft) fftgrid = np.fft.ifft(grid)[:N] if t0 != 0: f = f0 + df * np.arange(N) fftgrid *= np.exp(2j * np.pi * t0 * f) C = Nfft * fftgrid.real S = Nfft * fftgrid.imag else: f = f0 + df * np.arange(N) C = np.dot(h, np.cos(2 * np.pi * f * t[:, np.newaxis])) S = np.dot(h, np.sin(2 * np.pi * f * t[:, np.newaxis])) return S, C
f741bb90fbeefc997e89afb9bd8369f04e4bfc5fc47a95a1fed611da71e52839
import numpy as np def lombscargle_slow(t, y, dy, frequency, normalization='standard', fit_mean=True, center_data=True): """Lomb-Scargle Periodogram This is a pure-python implementation of the original Lomb-Scargle formalism (e.g. [1]_, [2]_), with the addition of the floating mean (e.g. [3]_) Parameters ---------- t, y, dy : array-like times, values, and errors of the data points. These should be broadcastable to the same shape. None should be `~astropy.units.Quantity`. frequency : array-like frequencies (not angular frequencies) at which to calculate periodogram normalization : str, optional Normalization to use for the periodogram. Options are 'standard', 'model', 'log', or 'psd'. fit_mean : bool, optional if True, include a constant offset as part of the model at each frequency. This can lead to more accurate results, especially in the case of incomplete phase coverage. center_data : bool, optional if True, pre-center the data by subtracting the weighted mean of the input data. This is especially important if ``fit_mean = False`` Returns ------- power : array-like Lomb-Scargle power associated with each frequency. Units of the result depend on the normalization. References ---------- .. [1] W. Press et al, Numerical Recipes in C (2002) .. [2] Scargle, J.D. 1982, ApJ 263:835-853 .. [3] M. Zechmeister and M. Kurster, A&A 496, 577-584 (2009) """ if dy is None: dy = 1 t, y, dy = np.broadcast_arrays(t, y, dy) frequency = np.asarray(frequency) if t.ndim != 1: raise ValueError("t, y, dy should be one dimensional") if frequency.ndim != 1: raise ValueError("frequency should be one-dimensional") w = dy ** -2.0 w /= w.sum() # if fit_mean is true, centering the data now simplifies the math below. if fit_mean or center_data: y = y - np.dot(w, y) omega = 2 * np.pi * frequency omega = omega.ravel()[np.newaxis, :] # make following arrays into column vectors t, y, dy, w = map(lambda x: x[:, np.newaxis], (t, y, dy, w)) sin_omega_t = np.sin(omega * t) cos_omega_t = np.cos(omega * t) # compute time-shift tau # S2 = np.dot(w.T, np.sin(2 * omega * t) S2 = 2 * np.dot(w.T, sin_omega_t * cos_omega_t) # C2 = np.dot(w.T, np.cos(2 * omega * t) C2 = 2 * np.dot(w.T, 0.5 - sin_omega_t ** 2) if fit_mean: S = np.dot(w.T, sin_omega_t) C = np.dot(w.T, cos_omega_t) S2 -= (2 * S * C) C2 -= (C * C - S * S) # compute components needed for the fit omega_t_tau = omega * t - 0.5 * np.arctan2(S2, C2) sin_omega_t_tau = np.sin(omega_t_tau) cos_omega_t_tau = np.cos(omega_t_tau) Y = np.dot(w.T, y) wy = w * y YCtau = np.dot(wy.T, cos_omega_t_tau) YStau = np.dot(wy.T, sin_omega_t_tau) CCtau = np.dot(w.T, cos_omega_t_tau * cos_omega_t_tau) SStau = np.dot(w.T, sin_omega_t_tau * sin_omega_t_tau) if fit_mean: Ctau = np.dot(w.T, cos_omega_t_tau) Stau = np.dot(w.T, sin_omega_t_tau) YCtau -= Y * Ctau YStau -= Y * Stau CCtau -= Ctau * Ctau SStau -= Stau * Stau p = (YCtau * YCtau / CCtau + YStau * YStau / SStau) YY = np.dot(w.T, y * y) if normalization == 'standard': p /= YY elif normalization == 'model': p /= YY - p elif normalization == 'log': p = -np.log(1 - p / YY) elif normalization == 'psd': p *= 0.5 * (dy ** -2.0).sum() else: raise ValueError(f"normalization='{normalization}' not recognized") return p.ravel()
303781ef1c7e09c552c66a6e7fb6190359355c9ad217858fe51df4afb0531cf6
import numpy as np from .utils import trig_sum def lombscargle_fastchi2(t, y, dy, f0, df, Nf, normalization='standard', fit_mean=True, center_data=True, nterms=1, use_fft=True, trig_sum_kwds=None): """Lomb-Scargle Periodogram This implements a fast chi-squared periodogram using the algorithm outlined in [4]_. The result is identical to the standard Lomb-Scargle periodogram. The advantage of this algorithm is the ability to compute multiterm periodograms relatively quickly. Parameters ---------- t, y, dy : array-like times, values, and errors of the data points. These should be broadcastable to the same shape. None should be `~astropy.units.Quantity`. f0, df, Nf : (float, float, int) parameters describing the frequency grid, f = f0 + df * arange(Nf). normalization : str, optional Normalization to use for the periodogram. Options are 'standard', 'model', 'log', or 'psd'. fit_mean : bool, optional if True, include a constant offset as part of the model at each frequency. This can lead to more accurate results, especially in the case of incomplete phase coverage. center_data : bool, optional if True, pre-center the data by subtracting the weighted mean of the input data. This is especially important if ``fit_mean = False`` nterms : int, optional Number of Fourier terms in the fit Returns ------- power : array-like Lomb-Scargle power associated with each frequency. Units of the result depend on the normalization. References ---------- .. [1] M. Zechmeister and M. Kurster, A&A 496, 577-584 (2009) .. [2] W. Press et al, Numerical Recipes in C (2002) .. [3] Scargle, J.D. ApJ 263:835-853 (1982) .. [4] Palmer, J. ApJ 695:496-502 (2009) """ if nterms == 0 and not fit_mean: raise ValueError("Cannot have nterms = 0 without fitting bias") if dy is None: dy = 1 # Validate and setup input data t, y, dy = np.broadcast_arrays(t, y, dy) if t.ndim != 1: raise ValueError("t, y, dy should be one dimensional") # Validate and setup frequency grid if f0 < 0: raise ValueError("Frequencies must be positive") if df <= 0: raise ValueError("Frequency steps must be positive") if Nf <= 0: raise ValueError("Number of frequencies must be positive") w = dy ** -2.0 ws = np.sum(w) # if fit_mean is true, centering the data now simplifies the math below. if center_data or fit_mean: y = y - np.dot(w, y) / ws yw = y / dy chi2_ref = np.dot(yw, yw) kwargs = dict.copy(trig_sum_kwds or {}) kwargs.update(f0=f0, df=df, use_fft=use_fft, N=Nf) # Here we build-up the matrices XTX and XTy using pre-computed # sums. The relevant identities are # 2 sin(mx) sin(nx) = cos(m-n)x - cos(m+n)x # 2 cos(mx) cos(nx) = cos(m-n)x + cos(m+n)x # 2 sin(mx) cos(nx) = sin(m-n)x + sin(m+n)x yws = np.sum(y * w) SCw = [(np.zeros(Nf), ws * np.ones(Nf))] SCw.extend([trig_sum(t, w, freq_factor=i, **kwargs) for i in range(1, 2 * nterms + 1)]) Sw, Cw = zip(*SCw) SCyw = [(np.zeros(Nf), yws * np.ones(Nf))] SCyw.extend([trig_sum(t, w * y, freq_factor=i, **kwargs) for i in range(1, nterms + 1)]) Syw, Cyw = zip(*SCyw) # Now create an indexing scheme so we can quickly # build-up matrices at each frequency order = [('C', 0)] if fit_mean else [] order.extend(sum([[('S', i), ('C', i)] for i in range(1, nterms + 1)], [])) funcs = dict(S=lambda m, i: Syw[m][i], C=lambda m, i: Cyw[m][i], SS=lambda m, n, i: 0.5 * (Cw[abs(m - n)][i] - Cw[m + n][i]), CC=lambda m, n, i: 0.5 * (Cw[abs(m - n)][i] + Cw[m + n][i]), SC=lambda m, n, i: 0.5 * (np.sign(m - n) * Sw[abs(m - n)][i] + Sw[m + n][i]), CS=lambda m, n, i: 0.5 * (np.sign(n - m) * Sw[abs(n - m)][i] + Sw[n + m][i])) def compute_power(i): XTX = np.array([[funcs[A[0] + B[0]](A[1], B[1], i) for A in order] for B in order]) XTy = np.array([funcs[A[0]](A[1], i) for A in order]) return np.dot(XTy.T, np.linalg.solve(XTX, XTy)) p = np.array([compute_power(i) for i in range(Nf)]) if normalization == 'psd': p *= 0.5 elif normalization == 'standard': p /= chi2_ref elif normalization == 'log': p = -np.log(1 - p / chi2_ref) elif normalization == 'model': p /= chi2_ref - p else: raise ValueError(f"normalization='{normalization}' not recognized") return p
e6f9d6e8b8ff4757f20ca6bdb39b6f95447f534ee2c384ca80129545eae700b7
import numpy as np def design_matrix(t, frequency, dy=None, bias=True, nterms=1): """Compute the Lomb-Scargle design matrix at the given frequency This is the matrix X such that the periodic model at the given frequency can be expressed :math:`\\hat{y} = X \\theta`. Parameters ---------- t : array-like, shape=(n_times,) times at which to compute the design matrix frequency : float frequency for the design matrix dy : float or array-like, optional data uncertainties: should be broadcastable with `t` bias : bool (default=True) If true, include a bias column in the matrix nterms : int (default=1) Number of Fourier terms to include in the model Returns ------- X : ndarray, shape=(n_times, n_parameters) The design matrix, where n_parameters = bool(bias) + 2 * nterms """ t = np.asarray(t) frequency = np.asarray(frequency) if t.ndim != 1: raise ValueError("t should be one dimensional") if frequency.ndim != 0: raise ValueError("frequency must be a scalar") if nterms == 0 and not bias: raise ValueError("cannot have nterms=0 and no bias") if bias: cols = [np.ones_like(t)] else: cols = [] for i in range(1, nterms + 1): cols.append(np.sin(2 * np.pi * i * frequency * t)) cols.append(np.cos(2 * np.pi * i * frequency * t)) XT = np.vstack(cols) if dy is not None: XT /= dy return np.transpose(XT) def periodic_fit(t, y, dy, frequency, t_fit, center_data=True, fit_mean=True, nterms=1): """Compute the Lomb-Scargle model fit at a given frequency Parameters ---------- t, y, dy : float or array-like The times, observations, and uncertainties to fit frequency : float The frequency at which to compute the model t_fit : float or array-like The times at which the fit should be computed center_data : bool (default=True) If True, center the input data before applying the fit fit_mean : bool (default=True) If True, include the bias as part of the model nterms : int (default=1) The number of Fourier terms to include in the fit Returns ------- y_fit : ndarray The model fit evaluated at each value of t_fit """ t, y, frequency = map(np.asarray, (t, y, frequency)) if dy is None: dy = np.ones_like(y) else: dy = np.asarray(dy) t_fit = np.asarray(t_fit) if t.ndim != 1: raise ValueError("t, y, dy should be one dimensional") if t_fit.ndim != 1: raise ValueError("t_fit should be one dimensional") if frequency.ndim != 0: raise ValueError("frequency should be a scalar") if center_data: w = dy ** -2.0 y_mean = np.dot(y, w) / w.sum() y = (y - y_mean) else: y_mean = 0 X = design_matrix(t, frequency, dy=dy, bias=fit_mean, nterms=nterms) theta_MLE = np.linalg.solve(np.dot(X.T, X), np.dot(X.T, y / dy)) X_fit = design_matrix(t_fit, frequency, bias=fit_mean, nterms=nterms) return y_mean + np.dot(X_fit, theta_MLE)